THE EFFECTS OF SOFTWARE PROCESS MATURITY

ON SOFTWARE DEVELOPMENT EFFORT

by
Bradford K. Clark
A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(Computer Science)

August 1997

Version 1.0

Copyright 1997 Bradford K. Clark

Copyright Notification

Copyright (C) Bradford K. Clark, 1997
All Rights Reserved.

Permission to use, copy, modify, and distribute this document for NON-COMMERCIAL
purposes and without fee is hereby granted provided that the above two copyright notice
lines appears in all copies of the document.

DEDICATION

This work is dedicated to Deborah Clark. It was through your encourage-
ment, support, and sacrifice that | was able to attend Graduate School. |
will be in your debt always. God bless you.

ACKNOWLEDGMENTS

| would like to thank some of the key people from the eighteen organizations that
made data available for this research: Jarius Hihn from NASA JPL, Gary Thomas from
Raytheon/E-Systems, Charity Nosse from EDS, Don Firesmith from NASA SEL, Stuart
Glickman from Bellcore, Sherry Stukes from MCR, and Hillel Myers with others from Mo-
torola. Without their efforts | would not have been able to do the analysis which led to this
report.

| would like to acknowledge the support of employer supervisor, Mr. Robert Page.
He supported my request for a leave of absence and my request for employer education as-
sistance for graduate school. Since returning to my employer, his continued support made
possible the productive use of my education in my everyday work.

| would like to thank Dr. Barry Boehm for being an excellent mentor. He was pa-
tient with my learning and always enthusiastic about my research. He helped me when |
asked for it. His kindness and generosity made the strain of graduate school bearable. His
brilliance motivates me still to keep digging.

TABLE OF CONTENTS

1. INTRODUCTION

.. 1
2. REVIEW OF THE SOFTWARE CAPABILITY MATURITY MODEL AND STA-
TISTICAL MODELING OF EFFORT EXPENDITURE
Software Capability Maturity Model 3
SW-CMM Key ProCcess Areas« 5
Industry SW-CMM ASSESSMENtSottt ns 6
Modeling of Effort Expenditure 6
Analogy Models 7
Theoretical Models. 7
Statistical Models 9
Assessmentof Models 12
Multiple Regression Analysis. 13
Log-Log Model. 13
Hypothesis Testing 15
Regression Model Assumptions and Collinearity 16
Model Evaluation 17
3. SW-CMM CASE STUDIES AND
AVAILABLE EFFORT ESTIMATION MODELS
The Capability Maturity Model for Software. 20
Institute for Defense Analysis. 20
Hughes Ground Systems Groupo oo i vttt 21
Raytheon 21
Schlumberger 22
Oklahoma City Air Logistics Center 22
Software Engineering Institute 23
LOGOS International InC.. e 24
DACS StUdy . . . oo 24
SEI Capability Maturity Model’s Impact on Contractors. 24
Other Assessment Criteria for Process Maturity 25
Software Productivity Research 25
Software Development Capability/Capacity Review 25
ISO-9001 and ISO-9000-3ot 26
Comparison of Assessment Criteria. 26
Available Effort Estimation Models. 27
Wideband Delphi 27
Work Breakdown Structure 27
Checkpoint 28

Jensen Model 28
SEER-SEM. 29
SOftCOSt 29
EStimacs 29
PRICE S . . e 30
Meta-Model 30

COCOMO. . .. 31
COCOMO L. vt e 32

4. RESEARCH QUESTION AND APPROACH

The Problem 33
Research QUESHION e 34
The Research Model. e 35
Hypothesis Testingo 36
Candidate Predictor Variables 37
Product Characteristics. 37
Development ProCess 38
Development Team.ttt 41
Environment Factors. 41
Collecting Data.o 42
Collecting Dataon Predictors. 43
Collecting Process Maturity Data., 46
Approach to Quantification of Qualitative Data. 49
Assigning Valuesto Ratings. 49
5. RESULTS
Data DesCHptioN 50
Collinearity Test Results. e e 52
PMAT Quantification. 52
Research Model Predictor Values. i 53
Research Model ResUlts e 54
The FullModel 54
Pruning Predictors from the Research Model. 55
Reduced Research Model 55
Compact Research Model. 56
Small ResearchModel 57
Summary of Research Model ForecastResults 58
Summary of PMAT Results 59
COCOMO IIMoOdEl . . . e e e e 60
Full COCOMO I Model e 61
Reduced COCOMO IIModel.o 61

Vi

Comparison of Results for the Research and COCOMO Il Models. 61
Model FOrecast ACCUIaCY oo e e e 62
Adding KPAs tothe ResearchModel. 64

6. CONCLUSIONS

CONCIUSIONS. . . . 67
Summary of Contributions 67
Future Research 68
7. ACRONYMS/GLOSSARY /SYMBOLS e 69
8. REFERENCES 70
APPENDIX A. Rationale for a Process’s Maturity Influence on Effort 74
APPENDIX B. COCOMO Il Cost Estimation Questionnaire 80

APPENDIX C. Distribution of Predictor and KPA Variables

Predictor Distribution for 112 Observations. 105
Predictor Summary Statistics 105
Histograms for each costdriver 106
Pairwise Correlations fromthe Data Set. 110

KPA Data Distribution for 50 Observations. 112
Summary Statistics 112
Histograms foreach KPA. 113
Pairwise Correlations fromthe Data Set. 118

50 0bservations 118
40 observations 119

APPENDIX D. Analysis Results

Full Research Model - All e 120
Full Research Model - Cross Validation. 121
Reduced Research Model - All. 122
Reduced Research Model - Cross Validation. 123
Compact Research Model - All 124
Compact Research Model - Cross Validation. 124
Small Research Model - All 125

Vii

Small Research Model - Cross Validation 125
Full COCOMO Il Model - All e 126
Full COCOMO Il Model - Cross Validation 127
Reduced COCOMO Il Model - All 128
Reduced COCOMO Il Model - Cross Validation 129

viii

LIST OF FIGURES

KPA SHUCIUIE. . . . e S5...
Organization Maturity Profile. 7
Rayleigh Model. 8....
Linear vS. NON-LINGAI. 10
Non-Linear FP Relationship. 11
Multicollinearity 17 ..
Explained and Unexplained Variance fromtheMean 18
Effort Influencing Areas. 37
Maturity Level a7i. ..
KSLOC DistribUtioN o e 51
PM Distribution 51....
PMAT Rating Value Range e 53
Histogram of Reduced Model PE. 56
Histogram of Compact Model PE. 57
Histogram of Small Model PE 58
Estimated RM PMAT Interval 59
Estimated COCOMO Il PMAT Interval. e 62
KPADIStibUtioN 65. ...
RM KPA RESUILS 66

LIST OF TABLES

Process Maturity Framework 4
Summary of Log-linear Models 12
Assessment Criteria CompPariSONottt 27
Meta-Model Factors 31
COCOMO COSt DIIVEIS . . o et et e e e e e e 32
Product-related Predictor Variables 38
Process-related Predictor Variables 39
Development Team-related Predictor Variables. 41
Environmental-related Predictor Variables 41
Rating Criteria.o 43 ..
Complexity Ratings 45
KPA Rating Weights e a7
Example of KPA Collection. 48
Research Model Predictor Values. 53
Research Model ACCUIaCY e e e 58
COCOMO Il Provisional Values e 60
Calibration Set Results 2..... 6
Validation Set Results. 3....6
KPA vs. Development Stage 76
Rating Scale for Assessment and Assimilation Increment (AA) 96

ABSTRACT

A software product is often behind schedule, over budget, nhon-conforming to re-
guirements and of poor quality. Controlling and improving the processes used to develop
software has been proposed as a primary remedy to these problems. The Software Engi-
neering Institute at Carnegie Mellon University has published the Software Capability Ma-
turity Model (SW-CMM) for use as a set of criteria to evaluate an organization’s Process
Maturity. The model is also used as a roadmap to improve a software development pro-
cess’s maturity. The premise of the SW-CMM is that mature development processes deliv-
er products on time, within budget, within requirements, and of high quality.

This research examines the effects of Software Process Maturity, using the SW-
CMM, on software development effort. Effort is the primary determinant of software de-
velopment cost and schedule. The technical challenge in this research is determining how
much change in effort is due solely to changing Process Maturity when this change gener-
ally occurs concurrently with changes to other factors that also influence software develop-
ment effort.

The six mathematical models used in this research support the following conclu-
sion: For the one hundred twelve projects in this sample, Software Process Maturity was a
significant factor (95% confidence level) affecting software development effort. After nor-
malizing for the effects of other effort influences, a one-increment change in the rating of
Process Maturity resulted in a 15% to 21% reduction in effort. The modeling approach used
in this analysis can be used in other areas of Software Engineering as well.

Xi

Chapter 1

INTRODUCTION

There are many companies and government organizations that develop or maintain
software to support their operations or their business products. The development of soft-
ware includes the creation of specification, design, source code, and testing. These different
artifacts interact with each other where a delay or defect in one affects the completeness of
the others. This often results in a software product that is behind schedule, over budget,
non-conforming to requirements and of poor quality. The result is that the company loses
money or the government organization misuses taxpayers’ money either through budget
overruns or decreased user and customer satisfaction. Controlling and improving the pro-
cess used to develop software is seen as the remedy to these problems [Humphrey 1989].

The Software Engineering Institute has published a Software Capability Maturity
Model (SW-CMM) that can be used to rate an organization’s software process maturity
[Paulk et al. 1995a]. The motivation behind the SW-CMM is that a mature software devel-
opment process will deliver the product on time, within budget, within requirements, and
of high quality. The model is based on five levels; organizations with ad hoc processes start
at Level One. To progress to the next higher level, Level Two, an organization has to dem-
onstrate a repeatable process. To gain a Level Three rating an organization has to demon-
strate a defined process. A Level Four organization has a managed process and a Level Five
organization has an optimizing software development process. The SW-CMM is explained
in Chapter 2.

An important question for industry and government is what are the benefits of in-
vesting resources to improve the Organization’s Process Maturity. The long-term benefits
of high process maturity are software delivered on time, within budget, within customer re-
quirements, and of high quality. An important benefit would be the effect it has on produc-
tivity. Two experts have expressed significant disagreements [Springsteen et al. 1992].
Using the database associated with his Checkpoint model, Capers Jones predicted that as
an organization increases maturity levels its productivity increases. However the burden of
oversight groups, compliance checking, and upper management involvement will start
causing productivity to decrease at the mid-maturity level. His analysis was focused at the
process level and does not consider organization level processes which occur at the higher
maturity levels. Another prediction by Larry Putnam, using his Productivity Analysis Da-
tabase, was that as the Maturity Level increases productivity increases. This is based on the
database Productivity Index which is derived from size, effort, and time used to develop the
software. It did not separate out other factors that influence productivity, e.g., product com-
plexity, personnel, software technologies, or development practices. It may not be correct
to assume a relation exists between Maturity Level and Productivity.

Much has been written discussing the short-term and long-term benefits of increas-
ing maturity levels [Broadman and Johnson 1995, Butler 1995, Dion 1993, Herbsleb et. al.
1997, Humphrey et. al. 1991, McGibbon 1996, Springsteen et. al. 1992, Wohlwend and
Rosenbaum 1994]. It requires a large amount of dollar investment by an organization to
change the software development process within the organization and to realize an in-
creased level of maturity. The effects of increasing process maturity alone are not easy to
determine, as organizations are generally making concurrent improvements in other areas
that result in benefits to the development organization.

The reported results would be more convincing if the method of evaluation were
able to separate out the effects of other software development factors in addition to Process
Maturity. Only then can a concise conclusion be drawn about Process Maturity’s effect on
productivity. The purpose of this research is to perform a more sophisticated analysis of the
effect that increasing Process Maturity has on software development effort, a component
of productivity.

The technical challenge in this research is determining the effect that increasing
Process Maturity has on effort within the context of other factors that influence software
development effort. This involves the collection of data that is based on observations and
not on controlled experiments. A mathematical model is proposed that segregates Process
Maturity’s influence on effort from other influencing factors. The model is analyzed for
goodness of fit and accuracy.

The contribution of this research is the discovery of the quantified effect that Pro-
cess Maturity has on software development effort and the modeling approach used to iso-
late the effects of Process Maturity on effort. Understanding Process Maturity’s influence
on effort within the context of other factors provides a trade-off analysis capability that can
be used to lower the effort required to produce a software product. The modeling approach
can be used in other areas of Software Engineering.

The next Chapter discusses background material: the Software Capability Maturity
Model, effort estimation modeling methods, and multiple regression analysis. Chapter 3 re-
views the literature on Software Process Improvement using the SW-CMM and on process
related inputs to currently available effort estimation models. Chapter 4 discusses the re-
search question drawn from the literature review and presents the modeling approach.
Chapter 5 presents the results of this research. Chapter 6 discusses the research conclusions,
contributions and future directions.

Chapter 2

REVIEW OF THE SOFTWARE CAPABILITY MATURITY MODEL AND
STATISTICAL MODELING OF EFFORT EXPENDITURE

2.1 Software Capability Maturity Model

The Software Capability Maturity Model (SW-CMM) provides a set of require-
ments that organizations can use in setting up the software process used to control software
product development. The SW-CMM specifies “what” should be in the software process
but not “when” or “for how long.” The SW-CMM has what is called a process maturity
framework [Paulk et al. 1995a]. There are five levels of process maturity, Level 1 (lowest)
to Level 5 (highest). To be rated at a specific level an Organization has to demonstrate ca-
pabilities in a number of Key Process Areas (KPA) associated with a specific SW-CMM
level, Table 1. The capabilities demonstrated in transitioning from lower levels to higher
levels are cumulative. In other words, a Level 3 Organization must demonstrate KPA ca-
pabilities from Level 2 and from Level 3.

The Process Maturity framework is presented in Table 1. All Organizations start at
Level 1. This is called the Initial level. At this level few processes are defined, and success
depends on individual effort. This makes the software process unpredictable because it
changes as work progresses. Schedules, budgets, functionality, and product quality are gen-
erally unpredictable.

To achieve Level 2 the organization demonstrates capability in 6 KPA’s. A Level 2
Organization has basic management processes established to track cost, schedule, and func-
tionality. Problems in meeting commitments are identified when they arise. Software re-
guirements and work products developed to satisfy requirements are baselined and their
integrity is controlled. Software project standards are defined and the organization ensures
they are faithfully followed. The project works with its subcontractors to establish a strong
relationship. The necessary process discipline is in place to repeat earlier successes on
projects with similar applications. Level 2 is called the Repeatable level.

A Level 3 Organization has demonstrated capabilities in an additional 7 KPA'’s. At
this level the software process for both management and engineering activities is docu-
mented, standardized, and integrated into a standard software process for the whole orga-
nization. Projects tailor the standard software process to develop their own unique defined
software process. A well-defined process includes readiness criteria, inputs, standards and
procedures for performing the work, verification mechanisms, outputs, and completion cri-
teria. Level 3 is called the Defined level.

A Level 4 Organization has added 2 more KPA's to its capabilities. At this level de-
tailed measures of the software process and product quality are collected. Projects achieve

Table 1: Process Maturity Framework

SW-CMM Key Process Areas
Level

Level 1 None

Requirements Management

Software Project Planning

Level 2 | Software Project Tracking and Oversight

Repeatable goftware Subcontract Management

Software Quality Assurance

Software Configuration Management

Organization Process Focus

Organization Process Definition

Training Program

Level 3

Defined Integrated Software Management

Software Product Engineering

Intergroup Coordination

Peer Reviews

Level 4 | Quantitative Process Management

Managed | goftware Quality Management

Defect Prevention

Level 5

Optimizing Technology Change Management

Process Change Management

control over their products and processes by narrowing the variation in their process per-
formance to fall within acceptable quantitative boundaries. Both the process and product
are quantitatively understood and controlled. Level 4 is called the Managed level.

At Level 5 an Organization has capabilities in 3 more KPA’s and is in a continuous
improvement state. Continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies. Software project
teams analyze defects to determine their causes. Processes are evaluated to prevent known
types of defects from recurring, and lessons learned are disseminated to other projects. Lev-
el 5 is called the Optimizing level.

2.1.1 SW-CMM Key Process Areas

Each KPA has a set of goals, capabilities, key practices, measurements and verifi-
cation practices. The goals and key practices are the most interesting of these because they
could be used to assess the impact of a KPA on a project development effort, Figure 1. The
goals state the scope, boundaries, and intent of a KPA. A key practice describes “what”
should happen in that KPA. There are a total of 52 goals and 149 key practices. All of the
KPAs are described in [Paulk et al. 1995a].

Key Process Areas

NN

Common
Features

Goals

Implementation or Key
Institutionalization Practices

Activities

Figure 1. KPA Structure

As an illustration the goals of one KPA from Level 2, Software Project Planning,
are given. The purpose of Software Project Planning is to establish reasonable plans for per-
forming the software engineering and for managing the software project. Software Project
Planning involves developing estimates for the work to be performed, establishing the nec-
essary commitments, and defining the plan to perform the work.

The goals of Software Project Planning are:

1. Software estimates are documented for use in planning and tracking the

software project.

2. Software project activities and commitments are planned and documented.

3. Affected groups and individuals agree to their commitments related to the soft-

ware project.

The top-level activities performed for Software Project Planning are:

1. The software engineering group participates on the project proposal

team.

2. Software project planning is initiated in the early stages of, and in parallel with,

the overall project planning.

3. The software engineering group participates with other affected groups in the

overall project planning throughout the project’s life.

4. Software project commitments made to individuals and groups external to the

organization are reviewed with senior management according to a documented
procedure.

5. A software life cycle with predefined stages of manageable size is identified or
defined.

6. The project’s software development plan is developed according to a document-
ed procedure.

7. The plan for the software project is documented.

8. Software work products that are needed to establish and maintain control of the
software project are identified.
9. Estimates for the size of the software work products (or changes to the size of
software work products) are derived according to a documented procedure.
10. Estimates for the software project’s effort and costs are derived according to a
documented procedure.

11. Estimates for the project’s critical computer resources are derived according to
a documented procedure.

12. The project’s software schedule is derived according to a documented proce-
dure.

13. The software risks associated with the cost, resource, schedule, and technical
aspects of the project are identified, assessed, and documented.

14. Plans for the project’s software engineering facilities and support tools are pre-
pared.

15. Software planning data are recorded.

2.1.2 Industry SW-CMM Assessments

There are two methods to determine an organization’s SW-CMM level, Software
Process Assessments and Software Capability Evaluations. The former is done by the or-
ganization internally. A team is selected which has been trained in the SW-CMM. The as-
sessment is done with a maturity questionnaire for several projects. The responses are
tallied, evaluated and a list of findings are produced. The results become the basis for rec-
ommendations for process improvement.

The Software Capability Evaluations focus on identifying risks (such as schedule
and budget) on a specific project. The evaluation is performed by the contracting agency
during contract bidding. An evaluation team shows up at the contractor’s site, interviews
are conducted as well as physical evidence of software process artifacts (software require-
ments documents, policy and procedures documents) are inspected. A list of findings are
produced and are used in proposal evaluation.

As of April 1997 the number of Organizations that have had assessments is 542,
Figure 2 [Peterson 1997].

2.2 Modeling of Effort Expenditure

There are three approaches used by models to estimate software development ef-
fort. Some are based on analogy, some on theory, and others on statistics. The most influ-
ential factor in predicting effort in these models is the size of the software product. There
are other factors that also affect effort such as product complexity, the application experi-
ence of the development team, and development tool support.

542 Organizations

100%
90%
80%
70% +
60%
50% +
40%
30%
20%
10% +

0% -

0.669

% of Organizations

0.196

0.118
. . 0.013 0.004

Initial Repeatable Defined Managed Optimizing

Figure 2. Organization Maturity Profile

2.2.1 Analogy Models

This method of estimating effort is based on the comparison of the planned project
with previous projects that have similar characteristics. This model uses experts or stored
project data to determine the effort required to develop a software product. For a new prod-
uct it must be determined what subcomponent level is practical for estimation. There must
be an estimate of how many components will likely be in the product. Experts compute the
high, low, and most likely estimates for effort required based on the differences between
the new and previous projects. It can provide a detailed estimate of effort depending on how
deep into the sub-components the analogies are made. The model is weak because the de-
gree of similarity may not be very close to the new project. It is often said that “the devil is
in the details.”

2.2.2 Theoretical Models

A theory-based estimation model was put forth by [Putnam 1979] and explained in
[Conte et. al. 1986, Kitchenham 1990]. It is based on the probability distribution called the
Rayliegh curve. This curve express manpower distribution on a project over time, Figure
3. The curve is modeled by the differential equation

2
%% = 2Kat(e™ Equation 1
where dy/dt is the staff build-up rate, tis the elapsed time from the start of design to product
replacement, K is the area under the curve and represents total life-cycle effort (including
maintenance), and a is a constant that determines the shape of the curve.

15—

10 +

5 E=0.4K

Percent of Total Effort

t=0

Time

Figure 3. Rayleigh Model

Putnam useproductivityto link the basic Rayleigh manpower distribution model
to the software development characteristics of size and technology factors. Productivity in
software has been defined as the size of the software product, S, divided by the develop-

ment effort, E:P = g

To find E in the Rayleigh model, Putham made the assumption that the peak staffing
level (top of the curve) corresponded to the development time. With this assumption, the
area under the curve represented development effort, E. E was found to be approximately
40% of K, the total life-cycle effort which is the total area under the curve. Putnam ob-
served from project data that the more productive projects had an initial slower staff build-
up and the less productive projects had an initial faster staff buildup. He associated the
initial staff buildup of a project with the difficulty of the project, D. D is represented on the
Rayleigh curve as the slope of the curve at time t=0. By taking the derivative of Equation
1 and setting t=0, difficulty is defined as:

D = K >
(Tq)
Next Putnam links the Rayleigh manpower distribution and software development

effort. He assumes that there must be a relation between difficulty, D, and productivity, P.
He finds this relationship to be:

Equation 2

p=aD ¥ Equation 3

Software development productivity is usually defined as the ratio of the software
product size to the effort required to develop the product:

P== Equation 4

In Equation 5, Equations 3 and 4 are set equal to each other with D in Equation 3
replaced by its definition in Equation 2 and E in Equation 4 replaced by 0.4K (as explained
earlier).

—(2/3)
S _ | K .
04K GL 2} Equation 5
d

S = 0.4 (K)" 3ty 2 Equation 6

Total life-cycle effort, K, is found to be:
K3 = ;4/3 Equation 7

0.4a(ty)

Equation 8 introducestachnology factqrC, which is the product of 0.4 aodThe
technology factor accounts for differences among projects such as hardware constraints,
personnel experience, and programming environment. Putnam suggests using 20 different
values for C ranging from 610 to 57,314.

3
K== D% Equation 8
C” (ty)

Development effort, E, is found by substituting E = 0.4K:
3
E = OA[ESJ D% Equation 9
(tg)

It can be seen from Equation 9 that the effort E increases as the third power of the
size S if the schedule remains constant. For a fixed program size, the effort E increases with
the inverse of the fourth power @f This relationship has been disputed by other research-
ers [Conte et. al. 1986, Kitchenham 1990]. The resulting optimum development schedule
is:

ty = 2473 Equation 10
Equation 10 agrees substantially with most statistical models used in practice today.
2.2.3 Statistical Models

Statistical models use data to derive the values for model coefficients. Regression
analysis is used to establish the relationship between model parameters and software devel-
opment effort. There are two forms of statistical models: linear and non-linear.

Linear statistical models have the form:

n
Effort = b, + z b;X; Equation 11
i=1
where x are software development factors that are believed to influence effortaned b
coefficients. There two reasons that models of this form do not work well for estimating
software development effort:

1. Empirical evidence shows that the relationship between software devel-
opment effort and size of the software product is not linear. Figure 4
shows two plots of product size, Adjusted Thousands of Delivered
Source Instructions, to development effort, Actual Man Months taken
from the database in [Boehm 1981]. Figure 4-A is a plot in linear space.
The linear relationship is expressed Bs= 68.27+ 9.24 Sizp . Fig-
ure 4-B is a plot in logspace. The nonlinear relationship is expressed

as:E = 1.3q Sizé

111

. The more suitable relationship is obvious.

10

EFFORT
2e4+034e4+036e+035e+035 1e+04d

log[EFFORT]

0

0 500 le+03 1.5e+03 0 z 4 & &
SIZE lag[SIZE]

(A) (B)
Figure 4. Linear vs. Non-Linear

2. As the software product gets bigger effort exhibdgssaconomyf scale. This
diseconomy of scale with an exponent of 1.11 is shown in Figure 4-B. Econo-
mies / diseconomies of scale will be discussed shortly.

Given the evidence of diseconomies of scale linear models are not accurate for
modeling effort expenditure. This includes the linear model based on a counting metric
called Function Points. The original Function Points was published by Albrecht in 1979
[Albrecht and Gaffney 1983]. This metric consists of counting the number of inputs, out-
puts, inquiries, interfaces, and logical files from the user’s perspective and weighting the
counts as simple, average, or complex. The total unadjusted function point count was ad-

10

justed with 14 complexity characteristics to derive an adjusted function point count, FP.
From data presented in [Albrecht and Gaffney 1983] the estimation for effort in person-
hours waskE = 54[0FP- 13390 . However, when the data points from the article were

plotted the effort in person-hours was found to be of the relgtienl.1(FF)l'49 , see Fig-

ure 5. This also supports the conclusion that the relationship between size and effort is non-
linear.

Hours
8 Ze+Bhlp+0hGe+B48e+01e+89 2o+ 05

8 580 1e+031.5e+032e+03
FP

Figure 5. Non-Linear FP Relationship
Non-linear estimation models have the form:

Effort = A E(Size)b Equation 12

where S is size A is a combination of project factors that affect effort. The exponent, b, in
non-linear models supports the concept of economies and diseconomies of scale in soft-
ware development [Banker et al. 1994, Boehm 1981]. Table 2 shows the exponent, b, de-
rived from regression of different data sets for non-linear models [Banker and Kemerer
1989, Boehm 1981, pp.86].

The reasons for economy of scale in software development are [Banker et al. 1994,
Boehm 1981]:

» Specialization of labor

* Learning curves

» Software engineering tools

» Diagnostic aids

» Documentation aids

11

Table 2: Summary of Log-linear Models

Data Set b Data Set b
Yourdon 0.72 COCOMO 1.11
Kemerer 0.85 Frederic 1.18
Walston-Felix 0.91 Phister 1.275
Behrens 0.94 Jones 1.40
Bailey 0.95 Freburger-Basili 1.48
Nelson 0.98 Albrecht 1.49
Herd 1.06 Halstead 1.50
Belady 1.06 Schneider 1.83
Wingfield 1.06

* Program library aids

* Pre- and post-processors

» Fixed project overhead

The reasons for diseconomies of scale in software development are [Banker et al.
1984, Boehm 1981]:

* More effort to manage the project.

* More extensive testing required to cover increased number of interfaces.

* More time is spent communicating among a larger development team.

* More effort required to design complex of interacting subsystems and then val-

idate that design to requirements.

These models work under the premise that there exists a strong relationship be-
tween development effort and software product size. Estimating effort relies on the project
being estimated behaving asarerageof the previous projects in the database. The pur-
pose of using project factors, A, in an estimate is to explain the deviations displayed by the
project being estimated from the statistically derived nominal project.

2.2.4 Assessment of Models

Considering the research on Process Maturity effects discussed in Chapter 1 and
further explained in Chapter 3, Analogy models are not suitable for this type of research.
The model does not give insight into the potential effects of software development process
changes. This would make assessing Process Maturity’s effect on effort a unqualified esti-
mate.

Models based on theory are not usable for this research because of the aggregation
of input parameters and the reliance of an underlying theory to explain and predict effort.
Researchers have disagreed with some of the assumptions in these models [Conte et al.
1986, Kitchenham 1990]. Itis not clear how these models account for an Iterative software
process model where the effort from one build is overlapped with the effort on the next
build.

Statistical models are easy to understand. The effect of the model inputs on effort is
made understandable by observing the position of the inputs in the mathematical model.

12

The model is suitable to support this research if a technique can be found to calibrate the
inputs and identify / resolve the correlations between inputs.

Statistical models have the disadvantage of possibly producing results that are only
valid for the local environment. Another disadvantage to a statistical approach is that as the
number of model inputs increases, the amount of data needed to calibrate the model in-
creases (this has to do with the model degrees of freedom).

2.3 Multiple Regression Analysis

Multiple regression analysis is a statistical technique that can be used to analyze the
relationship between a single response variable and multiple predictor variables [Hair et al.
1995, Weisberg 1985]. For this research, the response variable is effort, Person Months,
and the predictors are factors that influence the effort required to develop a software prod-
uct. The objectives of multiple regression analysis are to specify the predictor variables in
a mathematical equation that will estimate the response variable. Each predictor variable is
weighted. The weights denote a variable’s relative contribution to the overall prediction of
the response.

Y = B +B.X, +B.,X,+... +B,X Equation 13
0 1M1 2722 kM k

whereY is the estimated response variabjs, afe the predictor variables; 8are coef-

ficients that act as weights, and k is the number of predictor variables.

As was discussed earlier, linear statistical models are inadequate to model effort ex-
penditure. A non-linear model is needed. A multiplicative model is proposed which can
model diseconomies of scale and which can be transformed into a linear model for use in
regression analysis.

Vo= AKX DX,? O DX, Equation 14

The above model has desirable characteristics that will support this research. It is
clear how it works, i.e. the effect of the different input parameters on the final result can be
assessed. The simplicity of a model helps reveal the model assumptions and insights about
the software process. There is a straight-forward mathematical technique to derive the mod-
el exponents (discussed next). The accuracy and fit of the model can be measured. The
model can be automated which will simplify the estimation and analysis process.

2.3.1 Log-Log Model

The Log-Log production function, from the field of Econometrics, is a non-linear
model that can be transformed into a linear model thus permitting the use of linear regres-
sion techniques [Griffiths et al. 1993, pp. 258,277]. The non-linear form is given in Equa-
tion 14.

The non-linear model in Equation 14 can be transformed into a linear model by tak-
ing the logarithms of both sides of the equation.

13

IN(Y) = By +B,In(Xy) +B,In(X,) + ... +B,In(X,) Equation 15

The Bi's were the exponents for the X’s in Equation 14 and here they are the coef-
ficients for the X’s. In Econometrics they are cakdaksticities An elasticity represents the
percentage change in Y brought about by a percentage change in X, [Griffiths et al. 1993,
p. 174]. For instance if Bhad a value of 1.4 and,Xhanged 10% then Y would change
14%. In this case, itis the percentage change in the Y brought about by a percentage change
in the X.

~ _ Percentage change in Y
' Percentage change in Xi

Equation 16

which transforms to:

Percentage change in¥ Percentage changelinh Xi B Equation 17

In the above models,Bepresents the elasticity for the entire population. Since the
data for the entire population does not exisisEstimated with ;pBecause jas an esti-

mate there is error associated with it and based on this error, there is a prediction interval
about b in which B should reside.

Equation 18 shows a system of transformed equations for n observatidnsand
ables. This system is used to derive the values; foy minimizing the sum of squared er-

rors. When preforming the regression analysis,\Arthe are substituted with the actual effort
observed, Y, on a project. Thg'Xare the actual observed values for the predictor vari-
ables.

|n(\?1) = In(bg) + byIn(Xy) +byIn(Xy p) +... +bIn(Xy)
|n(\?2) = In(bg) + byIn(X,) +byIn(X, 5) + ... +bIn(X,)
In(YAS) = In(bg) +b;In(X5 1) +byIN(X5 ,) +... +bIn(X5) Equation 18

IN(Y,) = In(bg) +byIn(X, 1) +byIn (X,) + ... +bIn(X,)

The minimum number of observations, n, required for regression has to be at least
k+1.

Every model of real-world phenomena has error. The estimated standard error (est
s.e.), or standard deviation (SD), for this model can be found by comparing the predicted

value,\? , to the actual value, Y, for each observations where<li < n [Griffiths et al.
1993, pg.23]:

14

ests.e=

Equation 19

With the standard error, a prediction interval can be foundt dis&ibution is used
in constructing the interval because the population standard error of estimate is unknown.
However the response variable is assumed to be normally distributed in the population. The
value fort is found in a table for Student'distribution and depends on degrees of freedom
anda. The degrees of freedom is the number of observations minus the number of indepen-
dent variables minus one:- k - 1 For this researcly, is set to 0.025 which gives a 95%
prediction interval.

Prediction Interval (95%) (A)(i (t(qt,q) LESE S.€) Equation 20

2.3.2 Hypothesis Testing

Hypothesis testing for this research amounts to determining if a coefficient is non-
zero. A non-zero coefficient would show that the related predictor variable (e.g. process
maturity level) does affect effort. The null hypothesig, &#d the alternative hypothesis,

H,, are stated as follows:
Ho:B, =0

Equation 21
H;:B;#0

The objective of the analysis is to reject the null hypothesis at the given confidence level,
thereby showing that the predictor does effect effort.
In reality though, B is not known. It can only be estimated usipgb successfully

conclude thatts predictor variable does affect effort, must not be equal to zero. A test

must be performed to check if zero is within the estimation interval. This is called a t-test
which checks for Type | errors. A Type | error is the probability of incorrectly rejecting the
null hypothesis when a correlation between the predictor variable and the response does not
really exist.

For the t-test a t-value is computed from the estimated coefficieandthe coef-
ficient’s standard error, s;eThe standard error for the coefficient is the square root of the
coefficient’s variance. Equation 22 shows the t-value computation [Weisberg 1985, pg.20].
The difference between the estimated and actual coefficient is normalized by the standard
error of the coefficient. Since; B not known, the value from the null hypothesis is used

instead, zero. It can be seen that the t-test represents a signal to noise ratio. The stronger the
signal coming from a predictor variable the smaller the estimated standard error. But if
there is a lot of noise or standard error in the signal then the influence of the predictor might
remain unknown.

15

b,—B,

tvalug = oot s.e.(p

Equation 22

The t-value is compared to Student’s t distribution to determine if it is significant,
Equation 23. The t distribution is used because the population standard error of the estimate
for B; is unknown and the response variable is assumed to be normally distributed in the

population. The value for t is found in a table for Student’s t distribution and depends on
degrees of freedom and the confidence levdlhe degrees of freedom (df) is the number

of observations, n, minus the number of independent predictor variables, k, plus the inter-
cept term: df = n - (k + 1). The symbmwlrepresents the probability of committing a Type

1 error in Hypothesis testing [Griffiths et al. 1993, pg.136]. With a 95% level of confidence
and as degrees of freedom get very large, the t distribution value is 1.96 [Griffiths et al.
1993, p. 845]. If the absolute value of the computed t-value exceeds the t distribution value
then the coefficient is considered significant with a 95% confidence level. For a 90% level
of confidence, the t distribution value is 1.65. This lower value is easier to achieve but there
is a little more uncertainty as to whether a Type | error has occurred.

|t-valug = {4 o Equation 23

2.3.3 Regression Model Assumptions and Collinearity

Regression models must satisfy five assumptions to be valid in their results:

1. The independent variables and the dependent variables have a linear re-
lationship. The linear relationship of the Log-Log model is expressed by
Equation 15.

2. The dependent variable is a continuous random variable and the independent
variable are set at various values and are not random.

3. The variances of the dependent variable are equally distributed given various
combinations of the independent variables.

4. Successive observed values of the dependent variable are uncorrelated.

5. The distribution of the sampling errey, in the regression model is normal.

The regression model is used in this research to depict the effects of the independent
variables on the dependent variable. If the independent variables are not linearly indepen-
dent from each other, determining the contribution of each independent variable will be dif-
ficult because the effects of the independent variables are mixed. Thus the regression
coefficients may be incorrectly estimated. Interdependence of independent variables is
calledmulticollinearity.

Figure 6 shows a Venn diagram which serves as a conceptual model for regression.
The box represents the dependent variable, the effort required to develop a software prod-
uct. Each circle is an independent variable used to estimate effort. The size of the circle is
proportional to the amount of correlation between the independent variable and the depen-
dent variable. No intersection of the circles means the independent variables are not corre-
lated among themselves. An intersection is an example of collinearity between the
variables, see (g Xg) and (X, X1, X7) in the figure. The amount of intersection can be

16

Figure 6. Multicollinearity

thought of as the degree of collinearity between the variables which ranges from-1to 1. A
collinearity of zero (0) means no overlap in independent variable effect on the dependent
variable. A value of -1 means the independent variables are inversely correlated and a value
of 1 means they are directly correlated. The space between the circles is the amount of vari-
ance unaccounted for by the independent variables. Collinearity may be due to the com-
bined effect of two or more other independent variables.
Possible solutions to handle the collinearity are:
* Omit or combine the highly collinear independent variables and find other vari-
ables to use in the model that are not collinear.
» If the variables are truly thought to be independent, collect more data (the col-
linearity results may come from noise in the data).

2.3.4 Model Evaluation

A regression model predicts a response variable’s v&lue, , based on the assump-
tion that the value is the same as the average value from a set of observations in the data-

base. Deviations from the average or mean observed Walue, , are explained by the
predictor variables. These variables are used to adjust the average to be close to the actual
observed value.

Figure 7 shows a data point and a regression line (solid) for a single predictor and

response regression model. The average predictor variable Xalue, , and the average re-

sponse variable valu®, , define a point the regression line must pass through. This point
represents the average observation. A point, XX in the figure sits above the regression

line. The distance from the point to the regression line is unexplained variation and is an
error. The sum of the errors from all observations is squared and called the Sum of Squared
Error (SSE). The distance from the regression line to the average line for the response vari-

able,Y , is explained variance and it is due to the regression line. The sum of the explained
variations from all observations are squared and called Sum of Squared Regression (SSR).

17

The distance from the point (XY;) to the average line for the response variable is called
the Total Sum of Squar&ST = SSR+ SSE .

Y An observed point

The predicted point

explained variance from the mean (SSE)

Explained variance from the mean (SSR)

SST =SSR + SSE

RZ= % = % of explained variance

B X

|
|
|
|
|
X

X|f— — — —

Figure 7. Explained and Unexplained Variance from the Mean

There are four criterion used to judge how well a model fits the data and how well
it will forecast. Adj-R and the standard error statistics give an indication of the “goodness”
of fit of the model to the data. P.E. and Pred(X) give an indication of the model’s accuracy.
R? is called the coefficient of determination and it ranges between 0.0 and 1.0. R
denotes the percentage of variance explained by the predictor variables used in the regres-
sion analysis, Equation 24. Arf Rear 1.0 indicates that almost all of the variability in the
predicted response variable is explained by the model and that inclusion of additional pre-
dictors variables in the model is not likely to improve the model.

Rz ———— Equation 24

It is also known that the more predictors added to a model, the highe?. the-R
justed R, Adj-Rz, is a more realistic indicator of the model “goodness obBtause it is

adjusted for the number of parameters in the model. Adjustésiaiways less than’R
[Weisberg 1985, pg.217]. If the response values in the dataset vary greatly about the mean

18

then the model estimated values of the response can vary greatly about the mean of PM and
still produce a high R

Adj-R® = 1- Eh%%l— R%) Equation 25

The standard error for the model expresses the “noise” that is in the data. Standard
error is given in Equation 19. It can also be expressed in terms of SSE.

ests.e= /ﬁ Equation 26
n—-k-1

Proportional Error (PE) is a measure of relative error. As the estimates become larg-
er for larger projects, the residual (or pure error) is normalized for project size. Equation 27
shows this normalization.

_O[Y=Y]-1whenY-Y20

P.E.= O ~ -
-[Y+Y]+1whenY-Y <0

Equation 27

There have been previous evaluations of cost models that used Relative Error,

RE = (Y-Y)/Y, as a measure of prediction accuracy [Boehm 1981, Conte et. al. 1986].
Usage of this error statistic shows that it is bounded at -1.0 in the negative numbers and it
can extend to infinity in the positive numbers. This presents misleading results and visually
it presents a biased graph. Magnitude Relative Error has also been proposed for use [Conte
et. al. 1986 and Kemerer 19897] but it is more misleading because it folds the negative er-
rors between -1.0 and O into the interval between 0 and 1.0. PE is used because it is sym-
metric about 0 and extends to infinity in both directions.

The last evaluation criterion is the percentage of predictions that fall within X% of
the actuals, denoted as Pred(X) [Conte et al. 1986, pg.173]. The models are evaluated at
Pred(20) and Pred(40) which is done be counting the number of PE’s less than or equal to
0.20 and 0.40 respectively and dividing by the number of projects.

19

Chapter 3

SW-CMM CASE STUDIES AND
AVAILABLE EFFORT ESTIMATION MODELS

This chapter is a survey of “what is out there.” It has two sections. The first section
examines the literature on the benefits of using the Software Capability Maturity Model to
increase process maturity (this model was discussed in section 2.1 on page 3). Both case
studies and studies of case studies are reviewed. The second section surveys cost models
available either commercially or from the literature to determine if they account for the ef-
fects of Process Maturity as inputs for estimation of software development effort.

3.1 The Capability Maturity Model for Software

There have been many reports on the benefits of adopting the Software Engineering
Institute (SEI) Software Capability Maturity Model (SW-CMM). This section surveys the
most authoritative articles for the cost and benefits of increasing Process Maturity.

3.1.1 Institute for Defense Analysis

The Institute for Defense Analysis (IDA) performed a study [Springsteen et al.
1992] for the U.S. Department of Defense that presented quantitative and qualitative data
on the SW-CMM and that compared the SW-CMM to other process maturity models (these
comparisons will be discussed later).

IDA’s review of cost estimation models found disagreement among their propri-
etors with respect to the effects of the SW-CMM. Capers Jones based his assessment on his
Checkpoint Model from Software Productivity Research with its associated database of
3000 projects. His prediction was that quality of software would peak at SW-CMM Level
3 and the productivity would peak at Level 3 and decline for Levels 4 and 5. His analysis
was an extrapolation based on the very small sample of projects at the time with high SW-
CMM levels. For example the IBM-Houston Space Shuttle software project was assessed
at Level 5, but its productivity was not high, due in large measure to its safety-critical na-
ture.

Another expert, Larry Putnam, based his assessment of SW-CMM effects on his
Productivity Analysis Database System with its database of 1500 projects. He assumed that
there was a similarity between the Productivity Index (based on development size, effort,
and time) and SW-CMM Levels. Higher levels of Process Maturity resulted in higher levels
of productivity. However, the Productivity Index does not account for specific software
practices such as those specified in the SW-CMM and it may not be correlated with the SW-

20

CMM Levels. For example, many of the projects his database indicated were Level 5 may
have had a high Productivity Index because of the low complexity of their applications.
IDA surveyed 480 users of the SW-CMM. 88% of the users that had performed in-
ternal process maturity assessments felt that it was useful for identifying areas that needed
improvement. 68% of the users that had an external evaluation thought that it was a viable
contract selection criterion. 55 companies were surveyed and the majority of them had no
definitive measurement results although several companies had significant process im-
provement efforts.
The IDA assessment of the available data on increasing Process Maturity was fa-
vorable:
» Limited case studies indicated positive return on investment and improved qual-
ity
* There was not enough information to separate out other factors that might have
been improved
» Many firms were just starting data collection on the effects of process improve-
ment

3.1.2 Hughes Ground Systems Group

The Software Engineering Division at Hughes Aircraft in Fullerton, Ca, spent
$400,000 and 2 years improving their Process Maturity from Level 2 to Level 3 [Humphrey
et al. 1991]. Several observations are made in this paper. It takes management commitment
to survive the investment, risk, time, and pain of cultural change that occurred during the
transition period. Achievements feed on themselves and when the whole organization buys
into the improvement process, it gains a sense of esprit de corps. Increasing maturity levels
reduced risk in meeting planned costs and schedules. The reduction in planned versus ac-
tual budgets saved Hughes about $2 million annually—a short term gain. There were fewer
overtime hours, fewer gut-wrenching problems, and a more stable work environment.

This report shows that in addition to the activities required by the SW-CMM to
move from maturity Level 2 to Level 3 there were collateral benefits that helped improve
their software capability. “Esprit de corps” affects the effort people put into a product—
they are more motivated. The work environment became more stable. Technology insertion
became a visible, controlled activity. These effects need to be accounted for in analyzing
the difference made by implementing KPAs from the SW-CMM, i.e. some of the gains may
have been achieved via other people and technology improvements without using the SW-
CMM.

3.1.3 Raytheon

The Raytheon Software Systems Laboratory in the Equipment Division had the
goal of transitioning from SW-CMM Maturity Level 1 to Level 3 [Dion 1993]. This initia-
tive took approximately 5 years and the Division invested almost $1 million. A sequence
of three steps was cyclically followed to manage change:

1. Process-stabilization where elements of the process were identified and

institutionalized progressively across all projects.

21

2. Process-control where projects are measured to gather significant data which is

analyzed on how to control the process.

3. Process-change where processes are adjusted and technology is transitioned

into the process.

The initiative had top management support in that the manager of the Software Sys-
tems Laboratory was the chair of the steering committee that provided direction and over-
sight. Four groups were formed to assist in implementing the infrastructure to support
maturity level transition: policy and procedures group, training group, tools and methods
group, and process database group.

Raytheon measured the effects of increasing their Process Maturity by looking at
the cost of performance (the cost of doing it right the first time) and the cost of quality: ap-
praisal (the cost of testing for faults), rework (cost of fixing defects), and prevention (the
cost of preventing the fault from getting into the product). This approach is based on [Cros-
by 1984]. The most notable benefit of moving to a higher maturity level is the sdulgs
to the reduction in reworHt is estimated that $15.8 million was saved from August 1988
through November 1992. Rework savings were achieved at the expense of an increase in
the early life-cycle activities (design and coding) to find the errors early before they were
discovered in integration and required fixes and retesting. The main practice that was
changed was that informal inspections were replaced by formal inspections.

In additional to reduction in rework, other collateral benefits were realized. Work
conditions improved (less nights and weekends), job satisfaction increased, less schedule
erosion, and higher levels of interpersonal communication. The areas of work environment
and team cohesion helped increase the productivity in software development production.
Again, however, there was no way to separate out SW-CMM-related effects from the ef-
fects of concurrent people and technology improvements.

3.1.4 Schlumberger

Schlumberger’s Laboratory for Computer Science has the charter in part to help
software engineers improve software productivity and product quality. Initially, an evalu-
ation was performed using assessment techniques from the SEI. The evaluation revealed
that improvement was needed in project management, process definition and control, and
project planning and control. They reported that three components drive improvement in
software development productivity: process, people, and technology. For people, training
them in project management and peer reviews has a very beneficial effect. For tools, eval-
uating and disseminating results of the evaluation on CASE tools, C++ environments, and
Requirement Management tools make tool adoption more efficient. Collaboration was seen
as the most important process improvement. Training was very important as well.

The positive results reported were influenced by the three components: process,
people, and technology. The report did not separate out the individual effects of each.

3.1.5 Oklahoma City Air Logistics Center

The Center hired a consultant, Software Productivity Research, to determine the
economic benefit of Software Process Improvement [Butler 1995]. Four projects that pro-

22

duced program sets for an engine control and avionics for three airplanes were studied. The
first project, the baseline project, was started in March 1986 and ended in May 1988. The
last project studied started in June 1992 and ended in March 1995. The Center was rated a
Level 1in 1990 and a Level 2 in 1992.

An important effect mentioned in the report was the formation of a Management
Steering Team and a Software Process Engineering Group. These groups met once a month
to clear any problems that might impede the progress of process improvement. They ad-
dress both SW-CMM and non-SW-CMM issues.

The results reported are a 7.5 to 1 Return on Investment (ROI) and a factor of ten
improvement in productivity. The ROI figure was derived by comparing the baseline
project to the three subsequent projects. The additional amount the three projects would
have cost had there not been any improvements in productivity were used to compare to the
baseline project: 7.5 to 1.

The factor of ten productivity improvement gain is attributed to both process and
technology improvement and the effect of each could not be separated out. It is difficult to
achieve more than a factor of 2 improvement through pure process improvements; higher
factors generally involve software reuse or very high level languages [Boehm 1993]. This
does not help in understanding how process improvement alone affects productivity.

3.1.6 Software Engineering Institute

A report was published from the Software Engineering Institute [Herbsleb et al.
1997] that gave some results of the effects of software process improvement on organiza-
tions. They looked at published case studies (some of which are reported here) and sur-
veyed organizations that had appraisals within one to three years from the date of the report.
One hundred sixty seven questionnaires were sent out and one hundred thirty eight returned
responses. To assess the effect of Process Maturity the survey sought information on how
long it took to change SW-CMM Levels, how much did it cost, and how did it benefit busi-
ness?

The range for moving from SW-CMM Level 1 to Level 2 was 1.5 to 2 years. From
Level 2 to Level 3 the time to move ranged from 17 to 31 months. The range for cost per
software engineer was $490 to $2004.

There were five benefits that had four possible responses: excellent, good, fair, or
poor. The benefits being surveyed were product quality, customer satisfaction, ability to
meet schedule, ability to meet budget, and staff morale. All of the benefits increased with
maturity level.

Table 1 in the report shows a productivity gain per SW-CMM Level of 25%. This
data is based on four observations. It is noted in the report that a detailed study by Krishnan
on the relationship between Process Maturity and software quality of a Fortune 100 Com-
pany showed a significant increase in quality but no direct evidence of an effect on cost
[Krishnan 1996].

23

3.1.7 LOGOS International Inc.

A study was performed by LOGOS International for the Air Force on the Return on
Investment (ROI) for increasing maturity level using the SW-CMM [Brodman and Johnson
1995]. Questionnaires and interviews were used to survey 33 companies as well as a liter-
ature search was conducted. The investigator found differing definitions for ROI. The text-
book definition is the amount returned in realized gains to the amount invested to improve.
The Government respondents in the survey looked at investment in terms of cost. Their def-
inition was the cost of savings due to reduced operating expenses to the cost of investing in
new technology. The Industry respondents focused on effort. Their definition was effort
saved to effort invested in improvement. Companies want to stay within budget, meet qual-
ity goals, meet requirements, and build a maintainable product.

Respondents noted non-SW-CMM changes. These were in attitude, less overtime,
less turnover, and an improved competitive edge. Three data points on change in effort re-
quired to develop a product showed effort decreased. There were many reported increases
in productivity: 10-20%, 90-100%, 50%, 15-20%, 5%, 130%, 12%, 6.3%, and 30%.

This research shows that case studies that report on improvement in ROI due to in-
creased Process Maturity may not be comparable. This is due to the different definitions for
ROI. Also the range of increases in productivity, 10-130%, make it difficult to pin down
how much Process Maturity affects productivity.

3.1.8 DACS Study

A state of the art report by Kaman Sciences Corp. done for Rome Laboratory re-
viewed the literature on SW-CMM-based improvements and the benefits of software reuse,
inspections, and Cleanroom Software Engineering [McGibbon 1996]. This report broad-
ened the view of Software Process Improvement to include developmental technologies. It
also took the unique approach of developing a Software Process Improvement model in a
spreadsheet. The model is used to show ROI, benefits of inspections, software reuse and
Cleanroom Software Engineering. The model uses COCOMO [Boehm 1981] and a quan-
tification of seven stages an organization moves through when increasing process maturity.

This report is different in that it attempts to use raw numbers in the literature to con-
struct a model. The literature shows a wide range of information some of which is not com-
parable between case studies. The seven stages used in the model have no correlation to the
SW-CMM. The model is not based on collected data.

3.1.9 SEI Capability Maturity Model's Impact on Contractors

This article acknowledges the successes of the SW-CMM discussed above [Saiedi-
an and Kuzara 1995]. But it also points out that the SW-CMM assumes that major software
development problems are managerial and not technical. It notes that the SW-CMM does
not directly address expertise in an application domain, advocate specific tools, methods,
or software technologies, or address issues related to human resources such as how to se-
lect, hire, motivate, and retain competent people. It does not address issues related to con-

24

current engineering, teamwork, change management, or systems engineering. These claims
are acknowledged in [Paulk et al. 1993].

The SW-CMM has been impressed on industry by government and defense-orient-
ed software acquisitions. A dilemma that contractors face is that moving from level to level
can cost hundreds of thousands of dollars but the government selects bidders using lowest
development cost as a significant criterion (a problem the SW-CMM was commissioned to
help resolve). How do organizations pay for improving process maturity? How do they jus-
tify their choice of investments?

3.1.10 Other Assessment Criteria for Process Maturity

In addition to the SEI Capability Maturity Model which was first published as the
Process Maturity Model in 1987 [Humphrey and Sweet 1987] there are other software de-
velopment models / criteria to assess process maturity. These assessments are from a com-
pany called Software Productivity Research, the Air Force’s Software Development
Capability/Capacity Review and the 1ISO-9001 and ISO-9000-3 [Springsteen et al. 1992,
Paulk 1995b].

3.1.10.1 Software Productivity Research

The Software Productivity Research (SPR) assessment consists of approximately
400 questions that are applied to individual projects within an organization [Springsteen et
al. 1992]. The assessment identifies strength and weaknesses at both the project and, using
combined project data, at the organization level. The project assessments are compared to
other projects within the same organization, with combined-project profiles of the organi-
zations, and with a composite profile of the software industry as a whole. The information
collected enables process improvement actions to be taken at the project level and the detail
of information that is tracked makes improvement more easily observable. The assessment
covers areas about the physical environment provided for software developers, experience
level of key staff members, development methodologies used, automated tools employed,
testing techniques applied, and the degree of design and code reuse achieved. The areas
covered by the SPR assessment have some overlap with the SW-CMM. The models will be
compared below.

The SPR assessment has some weaknesses. It is not based on a mathematical model
of software development but is based on analogy. The strength of the evaluation is in the
comparison to data that was collected from past assessments and this information kept pro-
prietary. Use of analogy does not provide guidance on how to prioritize process improve-
ment activities. The SPR assessment’s focus on individual projects does not capture
organization-level issues that influence software development such as training, standards/
procedures, or for the parties responsible for process improvement.

3.1.10.2 Software Development Capability/Capacity Review

The Software Development Capability/Capacity Review (SDC/CR) assessment
consists of 450 essay questions. Its purpose is to assess the offeror’s capability and capacity

25

to develop software as required for a particular software product [Springsteen et al. 1992].
The assessment looks at eight categories: management approach, management tools, devel-
opment process, personnel resources, Ada, flight critical software, Al, complex hardware
development. The assessment includes site visits where the contractor explains their soft-
ware development approach. This assessment covers categories not in the SW-CMM.

The weakness of this assessment method is that there is little guidance for process
improvement. It is focused strongly on use for source selection. This assessment is not
based on a model but on criteria for rating the essay responses. Poor performance in an area
does not indicate what process improvements should be made.

3.1.10.3 1SO-9001 and 1ISO-9000-3

ISO-9001 is the standard in the ISO-9000 series that pertains to software develop-
ment and maintenance. It identifies the minimal requirements for a quality system. Itis used
to ensure the supplier conforms to specified requirements during several stages of develop-
ment, including design, development, production, installation, and servicing. The ISO-
9000-3 provides guidelines for applying ISO-9001 to the development, supply, and main-
tenance of software. Assessments are done by a trained and certified evaluation team.

The 1SO-9001 does not address personnel or software development technology ca-
pabilities. It is focused on the methods, techniques, and tools that a process would have to
use to produce a quality product. There is some overlap with the SW-CMM but the focus
of the SW-CMM is continuous process improvement with which higher quality is a by-
product [Paulk 1995b].

3.1.10.4 Comparison of Assessment Criteria

Table 3 which was extended from [Springsteen et al. 1992] uses nine attributes to
show a summary comparison of the different process maturity assessment criteria discussed
above. Project tailoring is for criteria that assess the project’s ability to meet the product
requirements of type, scope, experience, budget, schedule, and size. Project personnel is for
criteria that assess staffing resources, experience, and training. Project management is for
criteria that assess project structure, estimation, tracking and commitment. Methods and
tools are for criteria that assess tool and method support for requirements, design, support
and development tools. Product and technology constraints are for criteria that assess the
ability of the project to work within hardware, language, required reuse and customer fur-
nished equipment constraints. Quality and configuration control is for criteria that assess a
project’s quality assurance, configuration management, and review procedures. Project
measurement data is for criteria that assess quantitative measure of progress, quality, and
productivity. Organization process support is for criteria that assess standards, training, and
planning. Organization technology support is for criteria that assess the infusion of tools
and software development technology into the process. In Table 3, the black circle is the
highest rating and the hollow circle is the lowest rating.

26

Table 3: Assessment Criteria Comparison

Attributes SW- SPR SDC/CR | 1S0O-9001
CMM

Project Tailoring [) [) ([)
Project Personnel O (® O
Project Management ® O (®
Methods and Tools O ((0)
Product and Technology Constraints O (((

(F;roorjlter%tl Quality and Configuration PY (PY PY
Project Measurement Data o (O o
Organization Process Support o O O (

Organization Technology Support | O O O

3.2 Available Effort Estimation Models

This section is a survey of cost estimation models for their treatment of the effects
of Process Maturity in the model. This is done by examining the model inputs and reason-
ing about how Process Maturity influences the model.

3.2.1 Wideband Delphi

This method seeks to gain consensus on an effort estimation by a group of experts
[Boehm 1981]. The process works by having a moderator disseminate software require-
ments and an effort estimation form to a selected group of experts. A meeting is held where
the experts discuss estimation issues. Then each expert fills out the estimation form. The
moderator collects and summarizes the estimates. Another meeting is called and the anon-
ymous differences in estimating points is discussed. The experts fill out the estimation form
again and the moderator collects and summarizes the estimates. The process is repeated un-
til there is convergence on an estimate. Everyone has a partial view of the total effort re-
quired for development. The Delphi process shares those views.

This estimation technique does perhaps consider Process Maturity by having an ex-
pert use the performance from a previous project that was at a specific level. It may not be
considered though if the expert does not consciously make a comparison of the intended
maturity level of the new project to the level of the past project being used as the basis of
estimate.

3.2.2 Work Breakdown Structure
The Work Breakdown Structu(@/BS) method of estimation is based on breaking

down the work to be done into smaller and smaller subsystems until the individual tasks are

27

identified [Boehm 1981]. For each task, either a database is consulted or an expert makes
an estimate on the amount of effort required to complete the task. A process of “rolling up”
all of the task estimates into their respective subsystems then up to the system level produc-
es an overall estimate.

If there are defined processes, the tasks specified in those processes should be in the
tasking WBS. The effect of process maturity cannot be seen when using the WBS but its
effects can be accounted.

3.2.3 Checkpoint

Checkpoint is a knowledge based software estimation and assessment tool. It con-
tains its own knowledge base of thousands of software projects from different application
domains. The projects in the knowledge base represent new and maintenance projects. It
uses Function Points or Feature Points to measure the size of a software project.

Checkpoint considers Project Management factors in assessing a project. The inputs
focus on management experience, management methods and tools, managerial and techni-
cal cohesiveness, and measurement activity. There are process inputs as well that include
development methods, quality assurance, and testing [SPR1994]. These inputs capture
some of the focus of the SW-CMM but do not consider Key Process Areas such as Peer
Reviews or Intergroup Coordination.

3.2.4 SLIM

SLIM (Software Lifecycle Model) is a software cost, schedule, risk, and reliability
estimation tool for project planning, project control, and risk analysis. It is based on the the-
oretical model discussed in section 2.2.2 on page 7. SLIM uses a “Productivity Index” to
encompass many factors including management influence on the project; development
methods; development tools, techniques, and aids; skills and experience of the develop-
ment team; available of resources; and complexity of the application [SLIM 1995]. There
is not a direct input for Process Maturity. However the tool can be calibrated to local con-
ditions which would reflect any influence of Process Maturity on project data.

3.2.5 Jensen Model

Randy Jensen proposed a model that is similar to the theoretical model discussed in
section 2.2.2 on page 7 [Jensen 1984]. He proposed the following:

S = C;eTKl/2 Equation 28

Solving for development effort, E, gives:

_0aS%H1 .
E = 04— 0= Equation 29
Cie T

A different form of the technology constant is used, called the effective technology
constant, . This constant consists of a basic technology constant and the product of a

28

number environmental adjustment factors (this follows the form of the COCOMO Cost
Model to be discussed later). The Environmental adjustment factors take into account prod-
uct, personnel and computer factors that affect effort. Management practices are not con-
sidered.

3.2.6 SEER-SEM

SEER-SEM (System Evaluation and Estimation of Resources - Software Estima-
tion Model) is a software cost, schedule and risk estimation tool that address all DOD soft-
ware standards and requirements. Software issues such as Ada, DOD Standard 2167A,
security and others are specifically supported by the model. A knowledge base developed
from thousands of DOD projects are an integral part of the model.

This model does have an input parameter called Process Improvement [SEER-SEM
1994]. It captures the amount of effort spent on improvement activities on the next project.
Improvement is defined as implementing modern programming practices such as Object
Oriented design or Concurrent Engineering. Changing ratings for the input parameter also
means changing SEI levels.

This cost model has Process Maturity as an input. This is the only commercial mod-
el reviewed with this input. However, because it is a commercial product its formulas are
proprietary.

3.2.7 Softcost

The Softcost model attempts to incorporate the good points of a number of different
models [Tausworthe 1981]. The model has 68 parameters related to productivity, duration,
staffing level, documentation and computer resources. The outputs are effort, schedule bro-
ken down into a standard Work Breakdown Structure, staffing level, pages of documenta-
tion, and CPU requirements. The model uses management reviews as model inputs.
Because the model was created for use at the Jet Propulsion Laboratory, many process fac-
tors aggregated with other inputs.

The Softcost model was adopted and extended to a new model, Softcost-R [Reifer
et al. 1989]. This model takes process factors as inputs. Those factors include degree of
standardization, lifecycle coverage, scope of support, use of modern software methods, use
of peer reviews, use of software tools/environment, tool/environment stability, and geo-
graphical co-location. This model comes closer to capturing the effects of Process Maturity
via the SW-CMM on development effort. It considers peer reviews as a direct input, one of
the Software CMM'’s Key Process Areas. There are other KPAs that are not considered, e.g.
project planning and tracking, quantitative process management.

3.2.8 Estimacs

This model uses a size measure similar to function points. There are 25 input pa-
rameters in the following groups: size, product, environment, personnel, project, and user.
Outputs are effort, schedule, staffing level, and risk assessment. At this time the model was

29

reviewed, none of the inputs had a direct correlation to SW-CMM Maturity levels. The
model is proprietary and the internal details are not available [Rubin 1983].

3.29 PRICES

PRICE S (Parametric Review of Information for Costing and Evaluation Software)
estimates size, costs, and schedules for design, programming, integration, testing, and sup-
port. The key inputs to PRICE S are software function to establish the size of the program;
productivity factor that includes such items as skill levels, experience, productivity, and ef-
ficiency as related to an activity such as development; complexity which defines the degree
of difficulty; platform which characterizes the operational and reliability requirements; ap-
plication to capture coding difficulty; and design / code inventory that defines the amount
of new design and new code required. The productivity index must be determined from lo-
cal projects before the model is used. The model can only be used in an environment for
which it was calibrated. Process Maturity effects are aggregated in the Productivity Index
and their individual influence is not identifiable [PRICE S 1993].

3.2.10 Meta-Model

The Meta-Model is a non-linear model of the form in Equation 30 [Bailey and Basili
1981]. Using data from NASA Goddard Space Flight Center, the following coefficients
were obtained:

E = 3.5+ 0.73$1° Equation 30

Equation 30 is called the background equation and predicts effort with the assump-
tion the project under examination behaves as an average of the previous projects in the da-
tabase. The difference between this project and the historical ones is explained by project
factors. The relationship of the project factors, background equation and predicted effort,

E, is:

O(1+ F)E .
Effort = DS) Equation 31

[(E/|1+H

F is the multiplicative adjustment factor which is derived by regression on the re-
siduals from Equation 30:

F = by +b;METH+b,CPLX+b,EXP Equation 32

METH was an assessment of the methodology, CPLX was an assessment of the cu-
mulative complexity, and EXP was an assessment of the cumulative experience. Each of
the characteristics in the categories of methodology, complexity, and experience are rated
on a scale of 0 to 5 and summed. The adjustment factor, F, and the background equation,
E, are combined in Equation 31 to obtain an estimate of effort.

This model works well on its calibration data set. It was intended not as a general
prediction model but one to be adapted to local development conditions. The model cur-

30

Table 4. Meta-Model Factors

Methodology (METH) Complexity (CPLX) Experience (EXP)
Tree charts Customer interface cplx. Programmer qualifications
Top down design Customer-init. design changes Pgmr. machine exp.
Design formalisms Application process cplx Pgmr. language exp.
Formal documentation Program flow cplx Pgmr application exp.
Code reading Internal communication cplx Team cohesion
Chief programmer teams External communication cplx
Formal test plans Database cplx
Unit development folders
Formal training

rently does not consider Process Maturity as defined by the SW-CMM but it could be mod-
ified to accept it as input. The only drawback in using this model is that it uses non-linear
regression to derive the background equation coefficients. This is a mathematically diffi-
cult technigue requiring iteration and initial estimates of coefficients.

3.2.11 COCOMO

COCOMO (Constructive Cost Model) [Boehm 1981] is a set of three models: basic,
intermediate, and detailed. The Intermediate COCOMO model estimates Person Months
(PM) of effort. It takes as input the estimated size of the software product in thousands of
Delivered Source Instructions (KDSI) adjusted for code reuse, the project development
mode,b, and 15 cost drivers. The development mode can take only three values, {1.05,
1.12, 1.20}, which reflect the difficulty of the development. The estimate is adjusted by fac-
tors, calleccost driversthat influence the effort to produce the software product, Table 5.
Cost drivers have up to six levels of rating: Very Low, Low, Nominal, High, Very High,
and Extra High. The estimated effort in Person Months is given as:

15
PM = A(Size)" [(Cost Drive), Equation 33

estimated —
i=1
The model does not have a cost driver called Process Maturity but there is a cost
driver called “Use of modern programming practices” (MODP). This cost driver is charac-
teristic of organizations that have higher maturity levels. The COCOMO Il model is an up-
dated version of COCOMO and it does have Process Maturity as a model input. It is
discussed next.

31

Table 5: COCOMO Cost Drivers

Category Cost Driver Symbol i
Required software reliability RELY 1
Product Database size DATA 2
Product complexity CPLX 3
Execution time constraint TIME 4
Main storage constraint STOR 5
Platform
Virtual machine volatility VIRT 6
Computer turnaround time TURN 7
Analyst capability ACAP 8
Applications experience AEXP 9
Personnel | Programmer capability PCAP 10
Virtual machine experience VEXP 11
Programming language experience LEXH p
Use of modern programming practices MODP 13
Project Use of software tools TOOL 14
Required development schedule SCEQ 15

3.2.12 COCOMO I

The COCOMO Il model is an update to the previous COCOMO models [Boehm et
al. 1995]. There are three models that comprise the COCOMO Il model: Application Com-
position, Early Design, and Post-Architecture. The Post-Architecture model has the form:

5
{1.01+ z sh:] 17
PM = A[Size j= D|‘| EM, Equation 34
i=1
This is a non-linear model (see the model explanation in section 2.2.3 on page 9)
that has an exponent that consists of five different scale factors. Each of these factors is
thought to exhibit diseconomies of scale in relation to effort. Process Maturity is one of the
five scale factors and its rating is based on the SW-CMM. The COCOMO II Post-Archi-
tecture model is still undergoing calibration and refinement. This research into Process Ma-

turity’s effect on effort is based on the data collected for COCOMO Il research. The
COCOMO Il cost drivers (or predictor variables) are described in section 4.5 on page 37.

32

Chapter 4

RESEARCH QUESTION AND APPROACH

4.1 The Problem

The Software Capability Maturity Model (SW-CMM) is a specification of what
should be in software processes. It does not describe how they should be done nor when
they should be performed. The SW-CMM addresses management issues. It discusses the
process elements and activities involved in the management of software. It can be used as
aroadmap for improving software processes. It can be used as a set of criteria for evaluation
of software processes. The SW-CMM is not a quick fix for a project in trouble.

While the SW-CMM is focused on addressing software management issues, it does
not address other important areas that affect software development productivity. These ar-
eas include development methodologies, technologies, standards, and the need for qualified
people; the latter is addressed in a separate People CMM [Curtis 1995]. Other issues not
addressed in the current Software CMM are criteria for effective risk management, reuse
guidelines, product-line development, and component brokerage, although these are candi-
dates in the current draft of Software CMM version 2.0 [Paulk 1997].

The SW-CMM does not address the need for incentives or career paths that reward
the creation and following of successful management processes. Upward career paths fre-
guently are made on short term gains instead of long term investments. Improving process-
es take time because of the required change in corporate culture and in daily practices.
Being a champion of process improvement may not mean advancement or recognition in
the organization.

There is a need for a clearer assessment of Process Maturity effects on software de-
velopment productivity. The case studies show that there are many benefits to improving
Process Maturity. However Process Maturity as specified by the SW-CMM does not ad-
dress all areas that affect productivity on a software development project. The conclusions
in the case studies used different assessment approaches, none of which attempt to separate
out individual factors that affected productivity. Even with this incomplete analysis, the in-
dication is that increasing maturity levels has generally positive effects.

Many of the case studies describe the benefits of Software Process Maturity in
terms of productivity, a controversial measurement. Boehm defines productivity as the ra-
tio of the outputs produced by the process to the inputs consumed by the process, Equation
35 [Boehm, 1987, p. 44]. The difficulty in using this ratio is the controversy of what con-
stitutes the inputs and outputs of the software development process. Outputs can include
specification documents, interface documents, design documents, test documents, source
code listings, development plans, test cases with data, and user’s manuals. One of the out-

33

puts, source code listings, is criticized as being ill defined, i.e. what is a line of code, and
non-uniform counting, i.e. different lines of code counts produce the same functionality
when using different high order languages. Inputs required to produce these outputs are la-
bor, tools, training, computers, facilities. Depending on when in the lifecycle the measure-
ment of inputs begin, additional inputs are specification documents, test documents, and
interface documents.

Outputs produced by the process
Inputs consumed by the process

Productivity = Equation 35

Instead of productivitythis research examines Process Maturity’s effect on effort,
which is a fundamental component of productivity. However there are many factors that
affect the measurement of effort. Effort on a development project consists of developers,
project managers, support personnel in specialties such as system administration, configu-
ration management, or quality assurance, and administrative personnel. Factors that affect
effort on a development project come from the areas of product characteristics, project
management, target platform, and development team qualifications. These will be dis-
cussed later. The approach to addressing these concerns is to measure effort spent on a soft-
ware development project consistently and to measure the factors that influence effort.

4.2 Research Question

My hypothesis is thahcreasing the level of Software Process Maturity decreases
the amount of software development effequired to produce a software product; a posi-
tive contribution. Case studies have reported [Broadman and Johnson 1995, Butler 1995,
Dion 1993, Herbsleb et al. 1997, Humphrey et al. 1991, McGibbon 1996, Springsteen et al.
1992, Wohlwend and Rosenbaum 1994] an increase in productivity resulting from a mix of
process-related improvements, e.g. a reduction in rework and a reduction in “re-inventing
the wheel,” and non-process improvements such as reuse, tools, and personnel.

It is reported in [Dion 1993, Herbsleb et al. 1994] that increasing Process Maturity
resulted in a reduction oéworkwhich causes a net reduction in effort. The following is a
list factors that can cause rework:

» Changing requirements

* Not satisfying requirements

* Unresolved risks

» Poor planning

» Lack of coordination between a development group and/or another develop-

ment group, customers, users, subcontractors

* Uncoordinated changes in the software product

* Incorrect sequence of work activities (poorly defined software process)

* Poor workmanship in requirements analysis, product design, coding and testing

» Lack of a defect prevention process (detection, feedback, and correction)

In assessing KPA effects on effort, this dissertation includes an analysis organized
by software development stage (which may represent a phase in a waterfall model, or a cy-
clically revisited activity in a spiral model). Appendix A presents the major effort effects

34

by software lifecycle stage for each KPA. The primary conclusion is that the KPAs’ prima-
ry contribution to effort reduction is via reduction of rework.

The quantification portion of this dissertation uses a different approach than those
found in the case studies. The approach collects and analyzes data to quantify factors that
affect software development effort, including Process Maturity. This quantification will de-
termine the magnitude of the effect of Process Maturity on effort and show the quantified
relationship between Process Maturity and other factors. This result will be a clear assess-
ment of Process Maturity’s effect on effort by separating it from the other factors that in-
fluence effort.

A mathematical model is used to quantify the influences that different factors have
on development effort. The model’'s output is the predicted effort required to develop a soft-
ware product. The position of the factors and their associated coefficients and exponents in
the model provide a bases for understanding the effect that one factor has on the model out-
put, effort. The model also makes explicit a factor’s relative degree of influence among the
other factors in the model.

4.3 The Research Model

After reviewing the existing effort estimation models there are several requirements

an estimation model needs to address to support this research:

» The model must support the non-linear relationship between effort and size. The
economy/diseconomy of scale relationship has been shown to exist in studies,
Table 2.

* The model must use Process Maturity as an input. This will show if Process Ma-
turity can be quantified and it will show the significance of Process Maturity in
explaining the variation in effort.

* The model must be accurate. Sufficient accuracy will verify the model form and
coefficients as representative of the real world.

* The model must be explainable. The effect on effort of varying each model pa-
rameter must be understandable.

* The model should use only enough factors such that the variation in effort is ex-
plained and each factor is significant.

* The model should use factors that are independent of each other but related to
effort. This prevents double counting and makes the model stable.

* It must be possible to numerically calibrate the factors in the model using mul-
tiple regression analysis. This type of analysis also examines interrelationships
among the independent variables, reports unexplained variance, provides a
goodness of fit of the model to data, and reports the significance that each inde-
pendent variable has in predicting effort. With the latter analysis, weak indepen-
dent variables can be removed from the model, thereby permitting the full
strength of the remaining variables to be determined.

A Research Model is proposed based on the Log-Log model discussed in section

2.3.1 on page 13. This model will have a coefficient for Process Maturity that quantifies the
effect on effort. The predictor variable for Process Maturity is labeled PMAT and its expo-

35

nentis labeled By 1. The set of coefficients for all influencing factors identify which fac-

tors are the most influential on determining development effort required to produce a
software product. The set of coefficients can also be used to understand the relative
strengths between factors from the point of view of influencing effort.

A model is proposed that is non-linear but that can be transformed into a linear mod-
el thus permitting the use of linear regression techniques. This model is based on the econo-
metric Log-Log model and is labeled in this dissertation as the Research Model [Griffiths
et al. 1993, pp. 258,277].

~ B B .
Vo= AKX DX,? O DX Equation 36

The Research Model in Equation 36 can be transformed into a linear model by tak-
ing the logarithm of both sides, Equation 37. This technique was first demonstrated on cost
models in 1986 as a suggestion for calibration of COCOMO [Gulezian 1986]. It is also use
in the field of Econometrics [Griffiths et al. 1993].

In(Y) = By+B;In(X;) +B,In(X,) +... +B,In(X,) Equation 37

where By is In(A).

In addition to the Research Model the COCOMO Il model is used with the same
data to compare and contrast results [Boehm et al. 1995]. The mathematical form of the
COCOMO Il model is different (see section 3.2.12 on page 32) than the form of the Re-
search Model. Using two models provides the opportunity to consider PMAT's effective-
ness differently.

4.4 Hypothesis Testing

The focus of this research is deriving the value for the exponent for the PMAT pre-
dictor variable in the Research Model. If Process Maturity affects software development ef-
fort, then the coefficient for PMAT should not be zero. Examining the Research Model
above, a Byat that is zero would make PMAT equivalent to one. A non-zero coefficient
would show that PMAT affects effort. The null hypothesis and the alternative hypothesis
are stated as follows:

Ho:Bpyat = 0

_ Equation 38
H,;:Bpyat 20

The objective of this research is to test the null hypothesis, at the 95% confidence level, to
determine whether PMAT does affect effort even after including the effects of other major
contributing factors.

In reality though, ByaT, IS not known. It can only be estimated usipgRr- To

successfully conclude that PMAT does affect effort the estimated coeffigigftr bmust
not be equal to zero. Becausgat is an estimate of BT, a test must be performed to

36

check if zero is within thedy, a1 estimation interval. This is called a t-test which checks

for Type I errors in hypothesis testing. This was explained in section 2.3.2 on page 15.
The hypothesis will be tested using the t-test. Singg B is not known, the value

from the null hypothesis is used insteag)&t = 0. The t-value acts as a measure of the
signal to noise ratio.

Bpmat —Bpumat
ests.e.(bByat)

t-valug a1 = Equation 39

4.5 Candidate Predictor Variables
Most analyses identify four areas that influence software development effort. Pre-
dictor variables that represent four influential areas are used as inputs into the Research

Model. These predictor variables are also in the COCOMO Il cost model [Boehm et al.,
1995] and they are regrouped into the four areas in Figure 8.

SW-CMM Key
Process Areas
Process Product
Characteristics Characteristics

Development Effort

Development Environment
Team Factors

Figure 8. Effort Influencing Areas

The next four subsections are a list of COCOMO Il predictor variables that support
the four areas shown in Figure 8.

4.5.1 Product Characteristics

The Product characteristics can have a large impact on effort. Product characteris-
tics include size, amount of required software reuse, required reliability, complexity, stor-

37

age and time constraints, and the stability of the underlying infrastructure on which the
software relies.

Table 6. Product-related Predictor Variables

Predictor Variable Symbol Description

Size KSLOC?2 | Software size is measured in thousands of source lineg of
code adjusted for reuse and breakage. See section 4.6|on
page 42 for an explanation of KSLOC2.

Precedentedness of the appli¢ PREC This is the extra effort needed because an organization does
tion not understand the software product objectives and has no
experience in working on related software systems.

Architecture and risk resolutiol RESL This is the extra effort required because of incompletely
specified high-level design or unresolved and unmanaged
risks.

Required software reliability | RELY The measure of the assurance that the software will perform
its intended function over a period of time.

Database Size DATA Database size attempts to capture the effects of large data re-
quirements on product development.

Product complexity CPLX Complexity captures the difficulty of the product develop-
ment in five areas: control operations, computational opera-
tions, device-dependent operations, data management
operations, and user interface management operations

A=)
[

Required reuse RUSE This accounts for the extra effort needed to build comp
nents intended for reuse on the current or future projects.

2]

Documentation match to life- | DOCU This accounts for the extra effort needed to produce docu-
cycle needs mentation that is excessive for the life-cycle of the software

Execution time constraint TIME Execution time is a measure of the constraint imposed pn
the software product to execute within a percentage of the
processor’s total capacity.

Main storage constraint STOR Main Storage Constraint rates the constraint imposed dn a
software product to fit within a limited storage area.

4.5.2 Development Process

The Development Process directs the activities of the developers, quality assurance
personnel, and project management. Activities include SW-CMM-oriented practices such
as requirements management, product design, coding, unit testing, integration and test,
configuration management, quality assurance, and peer reviews. Although the SW-CMM

38

specifies a progression on KPAs to attain higher maturity levels, organizations may prac-
tice some of the KPAs in all of the levels.

Table 7. Process-related Predictor Variables

Predictor Variable Symbol Description

Process Maturity PMAT It is the measure of the maturity level of a project’s software pro-
cess. Itis either a rating selected from one of six choices (CMM 1
Lower, CMM 1 Upper, CMM 2, CMM 3, CMM 4, CMM 5) OR it
is the average of 18 KPA ratings used to assess a process’s maturity
(Boehm et al. 1995, p.79). See section 4.6.2 on page 46 for an ex-
planation.

Requirements Manage; KPA1 Management of requirements allocated to software to resolve issues

ment before they are incorporated into the software project [Paulk et al.
1995a, p.126].

Software Project Plan- | KPA2 Developing estimates for the work to be performed, establishing the

ning necessary commitments, and defining the plan to perform the york
[Paulk et al. 19954, p.133].

Software Project Tracky KPA3 Tracking and reviewing the software accomplishments and results

ing and Oversight against documented estimates, commitments, and plans, and adjust-
ing these plans based on the actual accomplishments and results
[Paulk et al. 19954, p.148].

Software Subcontract | KPA4 Selecting a software subcontractor, establishing commitments|with

Management the subcontractor, and tracking and reviewing the subcontractor’s
performance and results [Paulk et al. 1995a, p.159].

Software Quality Assurt KPA5 Reviewing and auditing the software products and activities to|ver-

ance ify that they comply with the applicable procedures and standdrds
and providing the software project and other appropriate manggers
with the results of these reviews and audits [Paulk et al. 19953,
p.171].

Software Configuration| KPA6 Identifying the configuration of selected software work products at

Management given points in time, systematically controlling changes to the ¢on-
figuration, and maintaining the integrity and traceability of the gon-
figuration throughout the software life cycle [Paulk et al. 19954,
p.180].

Organization Process | KPA7 Developing and maintaining an understanding of the organization’s

Focus and projects’ software processes and coordinating the activities to
assess, develop, maintain, and improve these processes [Paulk et al.
1995a, p.194].

Organization Process | KAP8 Develop and maintain a usable set of software process assetg that

Definition improve process performance across the projects and provide|a ba-
sis for cumulative, long- term benefits to the organization [Paulk et
al. 1995a, p.202].

Training Program KPA9 Identifying the training needed by the organization, projects, gnd in-
dividuals, then developing or procuring training to address the iden-

tified needs [Paulk et al. 213].

39

Table 7. Process-related Predictor Variables

Integrated Software KPA10 Integrate the software engineering and management activities |nto a

Management coherent, defined software process that is tailored from the organi-
zation’s standard software process and related process assets [Paulk
et al. 1995a, p.223].

Software Product Engi{ KAP11 Integrates all the software engineering activities; such as analyzing

neering the system requirements allocated to software, developing the|soft-
ware architecture, designing the software, implementing the saft-
ware in the code, and testing the software to verify that it satisfies
the specified requirements; to produce and support correct, cansis-
tent software products effectively and efficiently [Paulk et al.
19954, p.241].

Intergroup Coordina- | KPA12 Participation with other project engineering groups to address|sys-

tion tem-level requirements, objectives, process, and issues. Participa-
tion in establishing the system-level requirements, objectives, and
plans by working with the customer and end users, as approptjiate
[Paulk et al. 19954, p.261].

Peer Reviews KPA13 Methodical examination of software work products by the produc-
ers’ peers to identify defects and areas where changes are needed
[Paulk et al. 1995a, p.270].

Quantitative Process | KPA14 Taking measurements of the process performance, analyzing these

Management measurements, and making adjustments to maintain process perfor-
mance within acceptable limits [Paulk et al. 1995a, p.278].

Software Quality Man- | KPA15 Defining quality goals for the software products, establishing plans

agement to achieve these goals, and monitoring and adjusting the software
plans, software work products, activities, and quality goals to safisfy
the needs and desires of the customer and end user [Paulk et|al.
1995a, p.292].

Defect Prevention KPA16 Analyzing defects that were encountered in the past and takihg spe-
cific actions to prevent the occurrence of those types of defects in
the future [Paulk et al. 1995a, p.306].

Technology Change KPA17 Identifying, selecting, and evaluating new technologies, and incor-

Management porating effective technologies into the organization [Paulk et al.
19954, p.319].

Process Change Man-| KPA18 Defining process improvement goals and, with senior management

agement sponsorship, proactively and systematically identifying, evaluating,
and implementing improvements to the organization's standard
software process and the projects’ defined software processes on a

continuous basis [Paulk et al. 1995a, p.330].

40

4.5.3 Development Team

The Development Team affects effort due to its capability, teamwork, experience,
continuity, and cohesiveness.

Table 8. Development Team-related Predictor Variables

Predictor Variable Symbol Description

Analyst capability ACAP Analyst capability rates the personnel that work on requirements, high
level design, and detailed design.

Programmer capabiliy PCAP Programmer capability rates the project team’s ability, efficiency / thor-

ty oughness, and ability to communicate.

Applications experi- | AEXP Application experience is a rating dependent on the level of appli¢a-

ence tions experience of the project team.

Platform experience | PEXP Platform experience rates the understanding of using more powerful
platforms such as workstations, graphical user interfaces, databases,
networking, and distributed middleware.

Language and tool ex LTEX Language and Tool Experience is a measure of the level of program-

perience ming language and software tool experience of the project team.

Personnel continuity | PCON Personnel continuity is a rating scaled for the project’s annual personnel
turnover.

Development team | TEAM This is the extra effort required on software projects whose developers,

cohesion customers, and users have difficulty in coordinating their activities.

4.5.4 Environment Factors

The Environment factors that affect effort are technology insertion (such software
engineering methods and tools), facilities, and work conditions (such as multi-site devel-
opment or development schedule compression).

Table 9. Environmental-related Predictor Variables

Predictor Variable

Symbol

Description

Development Flexibility

FLEX

This is the required conformity to development standards and
straints such as rigid schedules or performance requirements.
counts for the extra effort needed to follow rigid and inflexible
software development standards and constraints.

con-
It ac-

Use of software tools

TOOL

Use of Software Tools rates the use of tools in making the soft
development more efficient.

jvare

Multi-site development

SITE

This accounts for the extra effort needed to coordinate and inte
development activities that are not co-located and do not have
cess to wideband electronic communication facilities.

grate
ac-

41

Table 9. Environmental-related Predictor Variables

Platform volatility PVOL Platform Volatility is a rating of the frequency of change in the com-
plex of hardware and software that the product calls upon to do its
work.

Required development | SCED Required Development Schedule measures the schedule constraint

schedule imposed on the project team developing the software, e.g. schedule
compression.

4.6 Collecting Data

Data is collected on the product size, the actual effort expended on the project, and
the predictor variables. Sizing data consists of a count of new lines of code developed, lines
of code adapted from previous projects, and the amount of code breakage, i.e. code that was
developed but not used. Size is computed as in Equation 40.

NsLoc L(BRAfOS 100)E+ (ASLOC10.20

KSLOC2 = 1000 Equation 40

The sizing equation incorporates both newly developed lines of code, NSLOC, and
code that is adapted from other software developments, ASLOC. The new code is adjusted
for breakage, BRAK, which is additional code written but not used. A percentage of code
size from adapted code modules is used to represent an equivalent size of newly developed
code. The Manager’'s Handbook for Software Developrnent the NASA Software En-
gineering Laboratory uses 20% of the adapted code size for computing equivalent lines of
newly developed code with the restriction that not more than 25% of the adapted code mod-
ule has been modified [SEL 1990, Table 3-8]. KSLOC2 contains a count of both new and
equivalent lines of code.

The KSLOC?2 sizing formula is different than that specified for the COCOMO II
model [Boehm et al. 1995, pp. 60-62]. The COCOMO Il sizing formula has a more sophis-
ticated approach to counting adapted code. It accounts for the non-linear percentage of ef-
fort required to modify adapted code. It accounts for the percentage change in module
design and changes in the integration required for the software. It also accounts for the ef-
fort saving effect of structured, documented code or people on the project that have worked
previously on the adapted code. The 20% used in computing KSLOC2, Equation 40, is a
gross approximation of these effects. It is used to enable use of some data points for which
the complete set of COCOMO Il reuse parameters are not available.

Effort is measured in Person Months. A person month is 152 hours. It includes the
software developer’s time, project management time, administrative support time, and
project support personnel time, e.g. configuration management and quality assurance. The
period measured on a project was from completion of requirements analysis to the end of
integration and test.

42

4.6.1 Collecting Data on Predictors

The data collection form in Appendix B was used to collect data. This is the same
data collection form and definitions used to collect data for the COCOMO Il model. The
rating names have been changed from COCOMO's Very Low, Low, Nominal, High, Very
High, and Extra High to R1, R2, R3, R4, R5, and R6 in this dissertation. In COCOMO, the
nominal rating is predefined. For research purposes the median rating for each predictor
from the collected data is designated as nominal. The median values for all predictors are
given in section C.1.1 on page 105. The nominal rating for this research is assigned the val-
ue of 1.0 as in the COCOMO Il model.

Each predictor variable can have up to six ratings, R1 through R6. Some of the pre-
dictors have less than six ratings because of the scale definition. For instance TIME and
STOR only have four ratings. A rating less than R3 would not impact effort therefore no
ratings are assigned. Table 10 shows the ratings and the definitions for the rating for each
predictor variable.

Table 10. Rating Criteria

R1 R2 R3 R4 R5 R6
PREC | thoroughly | largely un- | somewhat | generally fa- | largely famil- | thoroughly
unprecedent-| precedented| unprecedent{ miliar iar familiar
ed ed
RESL | little (20%) some (40%)| often (60% generally | mostly (90%)| full (100%)
(75%
RELY | slightincon- | low, easily | moderate, high finan- risk to human
venience recoverable | easily recov-| cial loss life
losses erable losses
DATA DB bytes/ |10 (D/P< | 100 (D/P < | D/P (1000
Pgm SLOC | 100 1000
<10
CPLX see Table 11
RUSE none across across pro- | across prod- | across multi-
project gram uct line ple product
lines
DOCU | Many life- Some life- Right-sized | Excessive for| Very exces-
cycle needs | cycle needs | to life-cycle | life-cycle sive for life-
uncovered uncovered. | needs needs cycle needs
TIME (50% use of | 70% 85% 95%
available ex-
ecution time
STOR (50% use of | 70% 85% 95%
available
storage

43

Table 10. Rating Criteria

R1 R2 R3 R4 RS R6
TEAM | very difficult | some diffi- | basically co-| largely coop-| highly coop- | seamless
interactions | cult interac- | operative in-| erative inter- | erative interactions
tions teractions actions
ACAP | 15th percen- | 35th percen-| 55th percen-| 75th percen- | 90th percen-
tile tile tile tile tile
PCAP 15th percen-| 35th percen-| 55th percen-| 75th percen- | 90th percen-
tile tile tile tile tile
PCON | 48% / year 24% | year 12% / yeal 6% / year 3% / yea
AEXP | <2 months 6 months 1 year 3 years 6 years
PEXP | <2 months 6 months 1 year 3 years 6 year
LTEX | <2 months 6 months 1 year 3 years 6 year
FLEX | rigorous occasional | some general some general goalg
relaxation relaxation conformity conformity
TOOL | edit, code, simple, fron- | basic lifecy- | strong, ma- | strong, ma-
debug tend, back- | cle tools, ture lifecycle | ture, proac-
end CASE, | moderately | tools, moder-| tive lifecycle
little integra- | integrated ately inte- tools, well in-
tion grated tegrated with
processes,
methods, re-
use
PVOL major major: 6 major: 2 mo.;| major: 2 wk.;
change ev- | mo.; minor: | minor: 1 wk. | minor: 2 days
ery 12 mo.; | 2 wk.
minor
change ev-
ery 1 mo.
SITE: | International | Multi-city Multi-city or | Same city or | Same build- | Fully collo-
Collo- and Multi-com- | metro. area | ing or com- | cated
cation Multi-com- | pany plex
pany
SITE: Some phone,| Individual Narrowband | Wideband Wideband Interactive
Com- mail phone, FAX | email electronic elect. comm, | multimedia
muni- communica- | occasional
cations tion. video conf.
SCED 75% of nomi{ 85% 100% 130% 160%
nal
CMM Lvl 1 CMMLvil | CMMLvI2 |CMM LvI3 CMM Lvl 4 CMM Lvl 5
PMAT | (Lower) (Upper)

or an average of KPA Goal compliance, see Equation 41

44

Product complexity is an average of five different measures. Table 11 shows the

different measures and the associated ratings.

Table 11. Complexity Ratings

Control Opera- | Computational Device-depen- | Data Manage- User Interface
tions Operations dent Operations | ment Operations | Management Op-
erations
Straight-line code| Evaluation of Simple read, Simple arrays in | Simple input

with a few non-
nested structured
programming op-
erators: DOs,

simple expres-
sions: e.g.,
A=B+C*(D-E)

write statements
with simple for-
mats.

main memory.
Simple COTS-
DB queries, up-
dates.

forms, report gen
erators.

R1 | CASEs, IF-
THENELSEs.
Simple module
composition via
procedure calls of
simple scripts.
Straightforward | Evaluation of No cognizance | Single file subseti Use of simple
nesting of struc- | moderate-level | needed of partic{ ting with no data | graphic user inter
tured program- | expressions: e.g., ular processor on structure changes, face (GUI) build-
R2 ming operators. | D=SQRT(B**2- | 1/O device char- | no edits, no inter-| ers.
Mostly simple 4.*A*C) acteristics. I/0 | mediate files.
predicates done at GET/ Moderately com-
PUT level. plex COTS-DB
queries, updates.
Mostly simple Use of standard | 1/O processing | Multi-file input Simple use of
nesting. Some in{ math and statisti{ includes device | and single file widget set.
termodule con- | cal routines. Ba- | selection, status | output. Simple
trol. Decision sic matrix/vector | checking and er-| structural chang-
tables. Simple operations. ror processing. | es, simple edits.
R3 | callbacks or mes- Complex COTS-
sage passing, in- DB queries, up-
cluding dates.
middleware-sup-
ported distributed
processing
Highly nested Basic numerical | Operations at Simple triggers | Widget set devel-
structured pro- analysis: multi- | physical I/O lev- | activated by data| opment and ex-
gramming opera-| variate interpola-| el (physical stor-| stream contents. | tension. Simple
tors with many | tion, ordinary age address Complex data re-| voice 1/O, multi-
compound predi- | differential equa-| translations; structuring. media.
R4 | cates. Queue and tions. Basic trun-| seeks, reads,

stack control. Ho-
mogeneous, dis-
tributed
processing. Sin-
gle processor soft
real-time control.

cation, roundoff
concerns.

etc.). Optimized
I/O overlap.

45

Table 11. Complexity Ratings

Control Opera- | Computational Device-depen- | Data Manage- User Interface
tions Operations dent Operations | ment Operations | Management Op-
erations
Reentrant and re- Difficult but Routines for in- | Distributed data- | Moderately com-

cursive coding.
Fixed-priority in-
terrupt handling.

structured nu-

merical analysis:

near-singular

terruptdiagnosis
servicing, mask-

ing. Communica-|

base coordina-
tion. Complex
triggers. Search

plex 2D/3D, dy-
namic graphics,
multimedia.

Task synchroni- | matrix equations,| tion line optimization.
R5 zation, complex | partial differen- | handling. Perfor-
callbacks, hetero4 tial equations. mance-intensive
geneous distribut} Simple parallel- | embedded sys-
ed processing. ization. tems.
Single-processor
hard real-time
control.
Multiple resource | Difficult and un- | Device timing- | Highly coupled, | Complex multi-

R6

scheduling with
dynamically
changing priori-
ties. Microcode-
level control. Dis-
tributed hard real
time control.

structured nu-

merical analysis:

highly accurate

analysis of noisy,

stochastic data.
Complex paral-
lelization.

dependent cod-
ing, micro-pro-
grammed
operations. Per-
formance-criti-
cal embedded
systems.

dynamic relation-
al and object
structures. Natu-
ral language data
management.

media, virtual re-
ality.

4.6.2 Collecting Process Maturity Data

Data on Process Maturity is collected at the project level. While an organization
may be rated at a specific SW-CMM level, the respondents were encouraged to answer all
of the KPA questions considerimghat actually happened on the projeRespondents had
two ways to respond to rating Process Maturity. The first way was by selecting an overall
maturity level based either on an organized evaluation or subjective judgment, Figure 9.

The selection for SW-CMM Level 1 (lower half) is for organizations that rely on
“heroes” to get the job done. There is no focus on processes or documenting lessons
learned. The SW-CMM Level 1 (upper half) is for organizations that have implemented
most of the KPA goals that would satisfy SW-CMM Level 2. SW-CMM Level 2 is for or-
ganizations that have processes in place that will permit repeated successes on projects.
These organizations manage requirements, plan and track projects and employ configura-
tion management at the project level. SW-CMM Level 3 is for organizations that maintain
organization level processes used to guide individual project processes. The organization
learns by continually improving processes to reflect lessons learned. SW-CMM Level 4
and 5 are for organizations that have been assessed as meeting Level 4 or Level 5 KPA
goals.

The second way of rating Process Maturity is to rate the percentage of compliance
for each set of KPA goals. The data collection form in Appendix B, shows each KPA and
its goals. The goals for each KPA are considered and a rating is selected that reflects the
percentage of compliance by the project. Table 12 shows the KPA rating weights.

46

Overall Maturity Level
O CMM Level 1 (lower half)
O CMM Level 1 (upper half)
O CMM Level 2
O CMM Level 3
O CMM Level 4
O CMM Level 5

Figure 9. Maturity Level

Table 12. KPA Rating Weights

Rating Description Weight

When the goals are consistently achieved and are well established in stagg

Almost Always | 2. operating procedures (over 90% of the time)

When the goals are achieved relatively often, but sometimes are omitted ung

Frequently der difficult circumstances (about 60 to 90% of the time)
About Half :/i\r/rtlg)n the goals are achieved about half of the time (about 40 to 60% of thg0
Occasionally When the goals are sometimes achieved, but less often (about 10 to 40% QE

the time)

Rarely If Ever | When the goals are rarely if ever achieved (less than 10% of the time

~
=

When you have the required knowledge about your project or organizationo

Does Not Apply | ang the KPA, but you feel the KPA does not apply to your circumstances

When you are uncertain about how to respond for the KPA. After the level
of KPA compliance is determined each compliance level is weighted and a,
PMAT factor is calculated, as in Equation 13. Initially, all KPAs will be|
equally weighted

Don't Know

PMAT is computed as the average of all rated KPAs (Does Not Apply and Don’t
Know are not counted which sometimes makes n less than 18).

n
O
_ O« KPA %O .
PMAT az 100 E s Equation 41
=1

The KPA data is collected at the project level. This level of information is desired
so that the effects of Process Maturity can be assessed at the project level. Table 13 shows
an example page from the KPA entry form in Appendix B. There are eighteen KPAs and
each has five ratings for a total of ninety possible selections.

47

8

Table 13Example of KPA Collection

Key Process Area Goals of each KPA > ol @ 9
3| T 2 g 8 R g
2l @ gl g o 5
> 3| Z| 9| 5| 2| =
s 2| 2| 2| M| | 3
s|<| 5 2| 5| B 2
» T <
Requirements Managemeityvolves establishing and| System requirements allocated to software are controlled
maintaining an agreement with the customer on the|rts establish a baseline for software engineering and njan-
quirements for the software project. agement use. Oo|jo|jo|o(g|o
Software plans, products, and activities are kept consigtent
with the system requirements allocated to software.
Software Project Planningstablishes reasonable plapSoftware estimates are documented for use in plannind and
for performing rt]he s?ftware engineering activities arf ctra?king the software project.d I
for managing the software project. Software project activities and commitments are plann
and documented. qﬁ Diojojojgd
Affected groups and individuals agree to their commit
ments related to the software project.
Software Project Tracking and Oversightovides ade{ Actual results and performances are tracked against the
guate visibility into actual progress so that managenjesaftware plans.
can take corrective actions when the software projegi®orrective actions are taken and managed to closure when
performance deviates significantly from the softwarg actual results and performance deviate significantly froid [0 | O (O | O | 0O (O
plans. the software plans.
Changes to software commitments are agreed to by the af-
fected groups and individuals.
Software Quality Assurancerovides management | Software quality assurance activities are planned.
with appropriate visibility into the process being usedAdherence of software products and activities to the appli-
by the software project and of the products being byikkable standards, procedures, and requirements is ver|fied
objectively.
Affected groups and individuals are informed of softwarlgI Diojojojgd

guality assurance activities and results. .
Noncompliance issues that cannot be resolved within
software project are addressed by senior managemer

the
L.

4.7 Approach to Quantification of Qualitative Data
4.7.1 Assigning Values to Ratings

To convert a predictor rating, an ordinal value, to a quantified value for use in the
Research Model a monotonic sequence of numbers that pass through the median rating, 1.0,
are assigned to each rating. The sequence of numbers assigned to the PMAT rating should
be decreasing from R1 to R6 and should use the number one as the median value (see sec-
tion 5.3 on page 52 for the actual values assigned). The sequence decreases to test the hy-
pothesis that as higher levels of Process Maturity are attained (moving towards the R6
rating) the software development effort should decrease.

49

Chapter 5

RESULTS

5.1 Data Description

There are one hundred twelve project observations used in this research. The data
is all qualitative except for size and effort. The data is stored symbolically and it is instan-
tiated with a set of predictor values for use in analysis. The values and the rationale for cre-
ating them is given in this chapter. The same data set can be instantiated with different
value sets depending on the cost model specification. Results of this research used a value
set for the Research Model and a different value set for the COCOMO Il model. Both sets
are described later.

The data came from eighteen sources. These sources covered the Aerospace Indus-
try, Federally Funded Research Centers, Commercial Industry, and Department of Defense
supported Industry. The data was on past, completed projects. Much of the data is propri-
etary and furnished to the University of Southern California under nondisclosure agree-
ments. The data cannot unfortunately be included in this document. However the data is
described in Appendix C.

Most of the data came from 1990’s projects, although some projects from the

1970's and 1980's are included. Product sizes range from 2.6 to 1264 KSLOC, Figure 10
The KSLOC data has an average of 158, a median of 53 and a standard deviation of 265.
Project effort ranges from 6 to 11,400 Person Months, Figure 11. PM data has an average
of 830, a median of 180 and a standard deviation of 2001. Process maturity levels cover the
full range. The proportion of Levels 3, 4, and 5 projects is higher than the community-wide
distributions shown in Figure 2. This is due to the higher emphasis on data collection and
analysis at the higher process maturity levels. See Appendix C for the distribution of PMAT
and KPA values among the one hundred twelve projects.

While the data sources varied there was selection bias in the data. We were not giv-
en data on unfinished or unsuccessful projects nor did any unsuccessful companies contrib-
ute data. The data was from successful projects from successful companies. Proof of this is
in the fact that these companies were mature enough to practice collecting data and that the
project had to finish in order to provide completed data.

The data collected was on the predictor variables and the actual effort expended
during the project. Supporting information such as application domain and reuse sizing data

LIn the histogram, a count was added to the bin if a value was equal to or less than the bin marker. For example, there
are 10 counts in the 20 bin which means a project’s size was equal to or less than 20 KSLOC but greater than 10
KSLOC, the next bin.

50

KSLOC Frequency Distribution

14

12

10 -

2] i
2 8
2
S 6
o
4
2
0 A
=]] =] [Ty [Ty]]]]]]
— L] Tyl - Lay] [- | Ty]]]] =
— — [=T L] [wu]] L]
— —
KSLOC2

Figure 10. KSLOC Distribution

PM Frequency Distribution

12

10

Projects
B (e} o]

25
50
75
100
150
200
300
400
500
E00
700
200
300
1000
1250
2500
5000
7500
10000
12500

Person Months

Figure 11. PM Distribution

was collected but it is incomplete. There was no data collected on whether the software
technology used on the project matched the application complexity. There was no data col-
lected on whether the processes used to develop the software were mismatched to the type
of application domain. While it was requested, uncompensated overtime was not consis-

51

tently collected. These and other factors, such as the interpretation of qualitative ratings,
mean that the data are imprecise. Precise results should not be expected.

5.2 Collinearity Test Results

Appendix C has the results of pairwise correlation for all the Predictor Variables.
The correlation results show three sets of correlations. The first is Analyst Capability
(ACAP) and Programmer Capability (PCAP) with a correlation of 0.66. Many respondents
could not distinguish between the two predictor variables because the development teams
did both analysis and programming. These two predictors are combined into a new predic-
tor called Personnel Capability (PERS) using the geometric mean of the two predictors’ rat-
ings.

The next pairwise correlation is between Execution Time Constraint (TIME) and
Main Storage Constraint (STOR) with a correlation of 0.67. Generally, the target platform
on which the software was going to execute was either constrained in both TIME and
STOR or neither predictor had any constraints. A satellite is an example of the former plat-
form and a high performance workstation with virtual memory is an example of the latter.
These predictors are combined into a new predictor, Resource Constraints (RCON), using
the geometric mean of the two predictors’ ratings.

The third pairwise correlation is Language and Tool Experience (LTEX) and Plat-
form Experience (PEXP) with a correlation of 0.65. This frequently results from organiza-
tions operating on a stable platform, programming language, and toolset. They are not
combined as their computed effects were relatively small.

When performing the analysis on the data, the new predictors, PERS and RCON,
are used.

Correlation between 3 or more predictor variables was investigated using Principal
Components Analysis [Weisberg 1985, pp.186-188]. No group correlations were found.

5.3 PMAT Quantification

Process Maturity is measured either by selecting one of six ratings or by averaging
the level of compliance with each set of KPA goals (this was explained in section 4.6.2 on
page 46). From one of these two selection criterion, PMAT is rated with one of six possible
ratings, R1 through R6.

All of the ratings in the data for PMAT were examined to find the median rating.
The median value for PMAT was the R3 rating, i.e. the data showed that R3 was the median
of responses. The median rating was given a value of 1.0. The rating on either side of the
median was given values that differed from 1.0 by 10%.

Considering the elasticity interpretation for the Research Model (see section 2.3.1
on page 13), a uniform 10% change in value between ratings was chosen to simplify inter-
pretation of the model. These values are used to initialize the statistical analysis process.
Uniform changes of 5% or 20% would produce essentially the same end results. The scale
and the corresponding ratings are shown in Figure 12.

52

R1

R2 R3 R4 R5 R6
| | | | |

121

| | | | |
1.10 1.00 0.909 0.826 0.751

Figure 12. PMAT Rating Value Range

5.4 Research Model Predictor Values

The approach taken for all qualitative predictor variables is that the frequency of re-
sponses for each rating determines the median. Appendix C has the distribution for all of
the predictor variables. The median for most predictors was between R3 and R4. If the me-
dian falls on 3.5, between R3 and R4, then the ratings values for R1 through R6 are inter-

polated.

Table 14 contains the values assigned to the symbolic data for one hundred twelve
observations. The values are based on a 10% interval as explained above. There are blanks
in the table which represent invalid ratings.

Table 14. Research Model Predictor Values

Cost Driver | R1 R2 R3 R4 R5 R6 PR
PREC 1.27 1.16 1.05 0.954 | 0.867 | 0.788 | 1.61
FLEX 121 |11 1 0.909 | 0.826 | 0.751 | 1.61
RESL 1.27 1.16 1.05 0.954 | 0.867 | 0.788 | 1.61
TEAM 1.27 1.16 1.05 0.954 | 0.867 | 0.788 | 1.61
PMAT 121 |11 1 0.909 | 0.826 | 0.751 | 1.61
RELY 0.751 | 0.826 | 0.909 | 1 1.1 1.46
DATA 0.867 | 0.954 | 1.05 1.16 1.33
CPLX 0.788 | 0.867 | 0.954 | 1.05 1.16 1.27 1.61
RUSE 0.909 | 1 1.1 1.21 1.33 1.46
DOCU 0.826 | 0.909 | 1 1.1 1.21 1.46
TIME 0.954 | 1.05 1.16 1.27 1.33
STOR 0.954 | 1.05 1.16 1.27 1.33
PVOL 0.909 | 1 1.1 1.21 1.33

53

Table 14. Research Model Predictor Values

ACAP 133 | 121 |11 1 0.909 1.46
PCAP 133 | 121 |11 1 0.909 1.46
PCON 1.27 |1.16 |1.05 | 0.954 | 0.867 1.46
AEXP 133 | 121 |11 1 0.909 1.46
PEXP 1.27 |1.16 |1.05 | 0.954 | 0.867 1.46
LTEX 1.27 |1.16 |1.05 | 0.954 | 0.867 1.46
TOOL 11 1 0.909 | 0.826 | 0.751 1.46
SITE 1.4 127 |1.16 |1.05 |0.954 | 0.867 | 1.61
SCED 121 |11 1 11 1.21 1.46

The PR column is for the productivity range. This range is found by taking the dif-
ference between each rating and raising it to the number of intervals, e.g., 6 ratings repre-

sent5intervals(1.1)5 =161 .
5.5 Research Model Results
5.5.1 The Full Model

The results of the statistical analysis of the full Research Model are given in section

D.1 on page 120. The?®alue is high (0.936) and a nhumber of t-values are high, but the
Research Model with all of the predictors in it has some problems. Estimated negative co-
efficients produce results counter to the understanding of what the model is attempting to
predict. A negative estimate means that as the ratings for a predictor (e.g., Applications Ex-
perience, AEXP) get more difficult less effort is required; see Equation 42. The negative
estimates are generally a result of predictors either having all responses fall within one or
two ratings (weak dispersion) or being marked as “I don’t know” which were given rating
values of 1.0. These negative predictors all have low, statistically insignificant t-values, and
are removed from the Research Model.

PM = 2.220KSLOCZ ®° tPMATY (PREC* (RESL?2

RELY>2° DATA B cpLx RUSE®*° tDoc U’ 32
[RCON>>° PERS * AEXP O3 tPEXP 2 L TEX Y
tPcoN 2 reaM 8 CFLEX 1.32

0.17 -0.26 [S|TE
PvoL’® scep*!

TOOL
The t-value for PMAT is 2.2 in Equation 42 which exceeds the significance thresh-
old of 1.96. The exponent value of 1.49 indicates that the effect of increasing one PMAT
rating level is an effort decrease of about 15% rather than 10%.

Equation 42

54

5.5.2 Pruning Predictors from the Research Model

The analysis results in Appendix D.1 show that some predictors are not significant,
with low t-values. There are several possible reasons for this. First, the reason could be that
the predictor is not important in influencing software development effort. Yet the majority
of these predictors came from the successful COCOMO 1981 model [Boehm, 1981] where
they proved important. Other reasons include weak dispersion and effects of partially cor-
related variables. The final reason relates to the imprecise nature of software data. There is
not enough data to support the estimation of all the predictors in the model at the same time.
This is a more likely explanation. A statistician’s rule of thumb for the amount of data need-
ed to calibrate a model of this size is four observations for each rating. There are on the av-
erage five ratings per predictor, twenty predictors, and four observations needed for each
rating. This is four hundred observations required and the data set used in this research had
only one hundred twelve. Thus, not all of the variables were likely to be statistically signif-
icant.

5.5.3 Reduced Research Model

This model is the result of removing predictors that were insignificant (t-value less
than 1.96). All of the remaining predictors are significant. However, the scope of parameter
coverage over the four effort influencing areas, product, process, team, and environment,
is not broad enough to claim this model accounts for all factors that influence effort (a goal
of this research). The model may be strong but alternative data sets could substantially
change the estimates of the coefficients consequently making them insignificant. The anal-
ysis results are given in section 1.2 on page 122; the resulting estimation equation is:

0.86 1.44

PM = 2.190KSLOCZ ®PmATH3!
[RCON>® (PERS® TEAM 88
(5CED"

[DATA
[BITEX?PVOL

CPLX
1.28

Equation 43

55

The PMAT predictor has an estimated coefficient of 1.31 and is significant with a
t-value of 2.69. The proportional error of the model is shown in the histagxeinsw.

Reduced Model PE

20
18
16 —

14 -
12 -

o N A O ©

TN

T R B R T =
- g g g9

15 @

T S
e I R R

Figure 13. Histogram of Reduced Model PE

5.5.4 Compact Research Model

The Compact Research Model uses parameters that are aggregates of the predictors.
The aggregates were created by taking the product of the predictors in the effort-influenc-
ing groups Product (PROD), Development Team (DEVT), and Environment (ENVR).
These sets of predictors were discussed in section 4.5 on page 37. The analysis results are
given in section 1.4 on page 124; the resulting estimation equation is:

0.65

PM = 2.87KSLOCZ ®PMAT**?PROD>®° (EVT?* (ENVR®®® Equation 44

2 In the histogram, a count was added to the bin if a proportional error was equal to or less than the bin marker. For ex-
ample, there are 19 counts in the 0.20 bin which means a project’'s PE was equal to or less than 0.20 but greater than 0,
the next bin. This gives the histogram the appearance of being positively skewed.

56

Because this model is an aggregation of predictor sets it has the potential to be sta-
ble with different data sets. PMAT has an estimate of 2.02 with a t-value of 4.24. The pro-
portional error is shown below.

Compact Model PE

18

16

14

12

10

A O o]
|

N
|

I R A = T B B I B T R
— g9 5949 oo do =

Figure 14. Histogram of Compact Model PE

5.5.5 Small Research Model

The Small Research Model is a roll up of all the predictors, except PMAT, into a
composite variable called Effort Multipliers (EM). The advantage of the model is that it
should be robust across different data sets. In the process of defining the other Research
Models it was observed that as some predictor variables were added or deleted, the coeffi-
cients for the remaining predictors in the model changed. This is due to the interaction that
is always present among predictor variables, however slight; see Appendix C. When pre-
dictors are combined those interactions disappear and the aggregated predictor variable
gets a stable estimated coefficient.

The disadvantage of using the Small Research Model is that it is hard to interpret.
It is difficult to distinguish what the effect changing one of the predictor variables rolled up
into EM will have on effort. Additionally, the relative influence of the predictors in EM
cannot be compared to PMAT. PMAT's coefficient estimate is 2.11 with a significant t-val-
ue of 4.77, see section 1.6 on page 125. The resulting estimation equation is:

57

PM = 3.00kSLOCZ*rPMAT*H EM®®? Equation 45

Small Model PR

18

16

14
12

10

A O 0

N
|

0z
0.4
0E
0s

Figure 15. Histogram of Small Model PE

5.5.6 Summary of Research Model Forecast Results

Table 15 shows the model fit to the data. Aaj@st s.e (or standard deviation), and
the accuracy of the different model forecasts are discussed in section 2.3.4 on page 17. Re-
call that the standard deviation for PM is 2001. The models have an estimated standard er-
ror between 611 and 769 PM. This is between 31% and 38% of the actual PM standard
deviation. The different forms of the Research Model have the model fit and forecast accu-
racy shown in Table 15. These results will be compared to the accuracy of the forecast tests
presented later.

Table 15. Research Model Accuracy

Models Adj-R 2 est s.e. PRED(20) | PRED(40)
Full RM .89 633 32% 60%
Reduced RM .87 611 32% 58%
Compact RM .84 692 32% 52%
Small RM .81 769 30% 52%

58

5.5.7 Summary of PMAT Results

The estimation interval for PMAT’s coefficient is given below for the four Re-
search Models. The interval is depicted in Figure 16. The interval for the Full Research
Model is large due to PMAT's high est. s.e. (prediction intervals are explained in section
2.3.1 on page 13). The interval between 1.5 and 2.0 appear within all of the model estima-

tion intervals.
Full RM: 0.20< bppat < 2.8

Reduced RM: 0.32 bPMAT <23
Small RM: 1.22% bppa1 < 3.0
Compact RM: 1.05 bppyat < 2.9

0.0 05 10 15 20 25 30
| | | | | | | | | | | | |
! \

} Full RM

| Reduced RM

Small RM |

Compact RM |

Figure 16. Estimated RM PMAT Interval

Recall that the b values multiplicatively adjust the 10% baseline values assigned in
Table 14 with the effect of reducing effort of a one-level change in process maturity. When
the coefficient range of 1.5 to 2.0 is applied to PMAT’s productivity range (discussed in
section 5.4 on page 53), it is stretched from 1.61 to 2.04-fgkp= 1.5 and to 2.59 for
bpmat = 2.0. When these productivity ranges are allocated across the five intervals for the

six ratings, a change in one rating level for PMAT becomes (°64)..153 for BMmAT =

1.5 and 1.21 for@at = 2.0. Thus it is conservative to say that for a one level change or
a 10% change in PMAT there is between a 15.3% to 21% decreasing change in software
development effort.

59

5.6 COCOMO II Model

The COCOMO Il model has PMAT as an input parameter [Boehm et al. 1995]. The
same data set as used on the Research Model can also be used on the COCOMO Il model
but the symbolic data is instantiated with COCOMO Il provisional values instead of the
values given in Table 14.

Table 16. COCOMO Il Provisional Values

Cost Driver VL L N H VH XH
PREC 0.05 | 0.04 | 0.03 | 0.02 [0.01 |O
FLEX 0.05 | 0.04 | 0.03 | 0.02 [0.01 |O
RESL 0.05 | 0.04 | 0.03 |0.02 [0.01 |O
TEAM 0.05 | 0.04 | 0.03 | 0.02 [0.01 |O
PMAT 0.05 | 0.04 | 0.03 |0.02 [0.01 |O
RELY 0.75 {088 |1 1.15 | 14
DATA 094 |1 1.08 | 1.16
CPLX 0.75 {088 |1 1.15 | 1.3 1.65
RUSE 089 |1 1.16 | 1.34 | 1.56
DOCU 085 {093 |1 1.08 | 1.17
TIME 1 1.11 | 1.3 1.66
STOR 1 1.06 | 1.21 | 1.56
PVOL 087 |1 1.15 | 1.3
ACAP 15 122 |1 0.83 | 0.67
PCAP 137 | 116 |1 0.87 | 0.74
PCON 126 | 111 |1 0.91 | 0.83
AEXP 123 |11 1 0.88 | 0.8
PEXP 1.26 (112 |1 0.88 | 0.8

LTEX 124 | 111 |1 0.9 0.82
TOOL 1.2 1.1 1 0.88 | 0.75
SITE 124 |11 1 0.92 | 0.85 | 0.79
SCED 1.23 1108 |1 1 1

60

5.6.1 Full COCOMO II Model

The one hundred twelve observations were used to estimate coefficients for all of
the predictors. The complete results are in section 1.8 on page 126. As with the Research
Model there are some estimates that are negative. These values contradict the model scales
as defined in Table 16. The parameters are removed in the Reduced COCOMO Il model
with the same caveat as for the Research Model.

PM = 2.970SIZE 8 (51zePRECHOY (5 zg(FLEX .29 Equation 46
517 E(RESLE-0.19 o> (TEAM (1.6) g | (PMAT (.22
MATA*°[RUSE "~ [DOCU

[RELY
1.71 .
[RCON '~ [PERS® AEXP 4 PEXP?’

[CPLX
O TEX > tpcoN® Y rooL M sITE>*? pvoL *4°

[5CED*®

The t-value for PMAT is 3.05, which exceeds the significance threshold of 1.96 and
exceeds the full RM PMAT's t-value of 2.2. The coefficient for PMAT is 4.22 which
strengthens the provisional values assigned to PMAT in Table 16. The strong significance
and the large coefficient suggest that PMAT has a diseconomy of scale influence (section
2.2.3 on page 9) on development effort.

0.82 0.79 —0.31 —0.02

1.26

5.6.2 Reduced COCOMO Il Model

The reduced COCOMO Il Model is using the same set of predictors as the Reduced
Research Model. The estimates with their t-values are given in section 1.10 on page 128.

PM = 2.770SI1ZE % 51z TEAM (2:69) 157 (PMAT [8.56

2.23
DATA%® cpLX M (RCON ™" PERS 2 BITEM 3
PvoL%%? scep® ™

For the reduced model, PMAT has a very strong estimate, 3.56, and a significant t-
value, 3.26. PMAT's effect on effort is strong and significant. However the magnitude of
PMAT’s influence varies with SIZE. The distribution of KSLOC for the data used in this
research is shown in Figure 10.

Equation 47

0.92

5.7 Comparison of Results for the Research and COCOMO Il Models

Both models show that PMAT is statistically significant. Yet both models treat
PMAT differently in that it is specified differently in each equation. It is possible to setup
an example and compare the models directly if representative values are chosen for the CO-
COMO Il model inputs. Looking at the distribution of KSLOC in the data used for this re-
search, 30 KSLOC and 150 KSLOC appear to be two representative sizes. When PMAT is
set to COCOMO Il provisional values, it increases 0.01 for each change in increment in rat-
ing. From Figure 17, the value 4.0 can be used as a representative value for PMAT because

61

I
|

} ‘ - FullcocOMO
|

} L } Reduced COCOMO

Figure 17. Estimated COCOMO Il PMAT Interval

it is within the estimation interval both the Full and Reduced COCOMO Il models. Apply-
ing this value to PMAT causes it to increase 0.04 for each increment in rating.

Now consider an example in which the project’'s COCOMO Il scale factors yield an
exponent of 1.10 (see section 3.2.12 on page 32 for the model description). If PMAT were
found to have no influence, this exponent would not change from 1.10 when PMAT’s rating

was increased one level for a 30 KSLOC project, (30 KSEGS) 42.2 PM. Using the
PMAT adjusted value (0.04 increase for each rating), increasing PMAT’s rating by one lev-
el changes the exponent from 1.10 to 1.14, yielding (30 KSL&G) 48.3 PM. This rep-
resents a 14.4% increase: 48.3 / 42.2 = 1.144. Using 150 KSLOC yields a 22% increase:
(150)+14/ (150)-10=1.22. This example shows that the six models (four Research and two

COCOMO Il models) produce similar results for PMAT with the COCOMO Il model hav-
ing a more statistically significant PMAT coefficient.

5.8 Model Forecast Accuracy

A method called cross validation is used to test each model’s forecast accuracy
[Weisberg 1985, pg.229]. In cross validation the data are split into two groups. The first
group is used to estimate the model coefficients, called the calibration set. Seventy-five per-
cent of the observations (84/112 observations) are used in the calibration set. The second
group is used for validation of the model, called the validation set. Twenty-five percent of

the observations (28/112 observations) comprise this group. Theerlj}mnated Stan-
dard Deviation, SD, and the prediction level at 25% and 40%, PRED(25,40), should be sim-
ilar between the calibration set and validation set.

Table 17. Calibration Set Results

Models Adj-R2 | SD | PRED(20) | PRED(40)
Full RM 0.79 665 | 33% 68%
Reduced RM 0.83 592 | 36% 58%

62

Table 17. Calibration Set Results

Compact RM 0.77 697 37% 51%
Small RM 0.76 720 | 36% 56%
Full COCOMO i 0.79 658 36% 61%
Reduced COCOMO Il | 0.80 674 | 29% 56%

Table 18. Validation Set Results

Models Adj-R2 | SD | PRED(20) | PRED(40)
Full RM 0.87 689 18% 36%
Reduced RM 0.89 523 14% 46%
Compact RM 0.89 545 11% 37%
Small RM 0.85 604 14% 42%
Full COCOMO i 0.89 526 25% 46%
Reduced COCOMO Il | 0.90 490 | 25% 39%

Using the 84 observations in the calibration set, the Research Model coefficient es-
timates are given below. The full analysis results are in Appendix D.
1. The Full RM estimated coefficients are:

PM = 2.510kSLOCZ 2 PmATH?
RELY 2 mDATA B epLx % (RUSE
0.04

RCON* ¥ PERZ S AEXP 3 PEXP®2 L TEX
0.94

PcoN 2 rEaM P FLEX *** orooL™ " sITE

PvoL % sceED*®®

2. The Reduced RM estimated coefficients are:

PREC Y [RESL 23

-0.74 EDOCUO.ZZ

1.38 0.41

epLxt
rpvoL’?’

PM = 2.20KSLOCZ°PMAT
RCON**3PERS® TEAM T3

[BCED">°
3. The Compact RM estimated coefficients are:

[DATA
BITEX*

PM = 3.060KSLOCZ ! tPMAT?>® PROD ' (DEVT* ¥ LENVR®®®

4. The Small RM estimated coefficients are:

PM = 3.060KSLOCZ ' (PMAT?* EM®®?
5. The Full COCOMO Il estimated coefficients are:

63

PM = 2.330SIZE % (5IzePRECH0 88 57 g(FLEX (049
5|7 E(RESLE-169 o > £(TEAM [1.59) o - -(PMAT (8.6

—-0.55 |
%47 RUSE pocu*?

—0.61

053 pATA

[RELY
cPLX 1 RCON ¥ PERS "° AEXP
nTeEX > rPcoN®® orooL ™ sITE
[SCED*™®

6. The Reduced COCOMO Il estimated coefficients are:
PM = 2.230SIZE % (a1zE{TFAM 1196) (5 7 g(PMAT [3:23

3.36
(DATA B cPLX 2 RCON™ ™ (PERS 8 BITE
PvoL’%® (sceD*™®

In all of the models PMAT was significant using the calibration data set.

PEXP!

0.89 EPVOL—O.lS

0.26

5.9 Adding KPAs to the Research Model

There were two methods to assess PMAT on a project, see section 4.6.2 on page 46.
Of the one hundred twelve observations, only fifty observations used KPA data to compute
PMAT.

The distribution of the KPA data is interesting. Figure 18 below shows that for the
SW-CMM Level 2 and 3 KPAs, the median is about the “Frequently” rating. This shows
that good, successful companies have processes that already incorporate many of the Level
2 and 3 KPA goals. The Level 4 and 5 KPAs show a median of “About Half.” Histograms
of each KPA are given in Appendix C.2.

A pairwise correlation analysis of the KPAs show two groups. KPA 2, Project Plan-
ning, and KPA 3, Project Tracking and Oversight are highly correlated, 0.82. This makes
sense because the two areas support each other in planning and executing a project. For
analysis purposes, KPAs 2 and 3 were combined into KPA 23 using their geometric mean.

KPA 7, Organizational Process Focus, and KPA 8, Organizational Process Defini-
tion, are highly correlated, 0.85. KPA 7 and KPA 10, Integrated Software Management, are
correlated, 0.76. KPA 8 and KPA 10 are correlated, 0.72. The three KPAs are related. KPA
8 establishes a group to maintain process definitions, KPA 7, at the Organizational level.

64

KPA 10 uses the defined processes in managing software projects. For analysis purposes,
KPAs 7, 8, and 10 were combined into KPA 7810 using their geometric mean.

RS

o z

HAHEHEEE
213ls(2|22 <
Elg|5|g8|5|5|¢E
<ju|c|lold|l 0| -
KPA1: Requirements Management 26| 141 7| 3| 0| 62|112
KPA2: Software Project Planning 24| 191 3| 4| 0| 62|112
KPA3: Software Project Tracking and Oversight | 24| 13| 9| 4| 0| 62[112
KPA4: Software Subcontract Management 2| 2| 2| 3| 1|102|112
KPAS: Software Quality Assurance 19(17| 9] 4| O] 63|112
KPAG: Software Configuration Management 22| 23] 5| 0O O 62|112
KPA7: Organization Process Focus 20| 101 7| 5| 8| 62|112
KPAS8: Organization Process Definition 21| 131 7| 3| 6| 62|112
KPAO9: Training Program 10(14| 10} 10f 3| 65| 112
KPA10: Integrated Software Management 18| 13| 7| 5| 7| 62|112
KPA11: Software Product Engineering 15(27| 3| 4| 1| 62| 112
KPA12: Intergroup Coordination 12| 24| 6] 7| O] 63|112
KPA13: Peer Reviews 15(15| 4] 9| 4| 65|112
KPA14: Quantitative Process Management 5| 12| 6| 7| 6| 76|112
KPA15: Software Quality Management 6] 9] 8| 9| 6| 74|112
KPA16: Defect Prevention 5| 9] 9| 4| 13| 72|112
KPA17: Technology Change Management 6] 7| 5| 5| 15| 74|112
KPA18: Process Change Management 8| 10| 3| 8| 11| 72| 112

Figure 18. KPA Distribution

The first thirteen KPAs were inserted into the Small Research Model with PMAT
removed. In the Small RM, PMAT has an estimated exponent of 2.11 and a t-value of 4.77.
KPA 4, Software Subcontract Management, was withheld because of the high number of
“I Don’'t Know” responses. When inserting the KPAs directly into the Small Research
Model all of the KPAs are insignificant, Figure 19. All of the estimation intervals include
zero as an estimate.

There is not enough data to support analysis of individual KPA effects on effort. Us-
ing the statistician’s rule of thumb, there are ninety possible responses with four observa-
tions required per response. That exceeds the current number of projects in the data set.

65

Data set = Db3_v11 970617 KPA

Response = log[EFFORT]
Coefficient Estimates
Label Estimate Std. Error t-value

Constant -0.922021 1.26386 -0.730
log[KSLOC?2] 1.06116 0.0983104 10.794
log[EM] 0.253494 0.169876 1.492

KPA1 0.427579 1.34149 0.319
KPA23 -1.50597 1.42907 -1.054
KPAS5 0.105173 0.643145 0.164
KPAG -0.167887 1.86325 -0.090
KPA7810 0.980771 1.07825 0.910
KPA9 0.112774 0.291503 0.387

KPA11l 1.11771 1.10032 1.016
KPA12 0.998204 0.639690 1.560
KPA13 -0.516214 0.362163 -1.425

R Squared: 0.925114
Sigma hat: 0.519689
Number of cases: 50

Degrees of freedom: 38

Summary Analysis of Variance Table
Source df SS MS F p-value

Regression 11 126.784 11.5259 42.68 0.0000

Residual 38 10.2629 0.270076

Figure 19. RM KPA Results

66

Chapter 6

CONCLUSIONS

6.1 Conclusions

1.

For the one hundred twelve projects in this sample, Software Process

Maturity was a significant factor affecting software development effort.

After normalizing for the effects of other effort influences, a one-incre-

ment change in the rating of Process Maturity resulted in a 15% to 21%
reduction in effort.

As an effort multiplier, PMAT’s productivity range is between 2.04 and 2.59.
This is not as high as PERS, Personnel Capability, but it is similar to CPLX,
Software Product Complexity, and it is higher than the other predictor vari-
able’s effects.

The statistical significance of PMAT as an exponent predictor variable in the
COCOMO Il models was higher than for PMAT as a multiplicative predictor
variable in the Research models. This suggests that it is appropriate to consider
PMAT as an exponent predictor variable which acts to reduce diseconomies of
scale, i.e., process maturity improvement savings are higher for large projects
than on small projects.

Process Maturity should be in all cost models. The Capability Maturity Model

is well defined. It establishes criteria to evaluate processes used to develop soft-
ware. It provides a significant assessment of the effects of process on develop-
ment effort.

6.2 Summary of Contributions

This research resulted in seven contributions to knowledge:

1.

2.

Demonstrated a method to distinguish the effects of an interesting factor

from other factors affecting development effort.

Proposed a new specification for a Software Development Cost Model based on
the econometric Log-Log model. The use of elasticities makes the model ex-
plainable and understandable.

The Compact Research Model demonstrates that aggregation of predictors
eliminates their interaction while still producing a useful high-level model.

The steps used in this research for calibration, pruning, and independent vari-
able insertion can be used to create an effort estimation model that is specific to
a software development environment. This has the following advantages:

67

The data used to calibrate the model can be used to produce a prediction interval for the

estimate.

The effects of local independent variables on effort are identified.

5. The calibration of the Research Model permits sensitivity analysis on the rela-
tionship of Process Maturity to other development effort factors. In other words,
the relationship of the PMAT variable to other independent variables can be
used to understand how the effects of Process Maturity can be offset by other
factors.

6. The Research Model can be used to assist in calibration of the larger COCOMO
[l Post-Architecture model.

7. The data indicated that the Key Practices Areas of the Capability Maturity Mod-
el do enable a Software Organization to develop software with less effort.

6.3 Future Research

1. More KPA data needs to be gathered to assess which KPAs have the
most influence on effort. Implementing the effort saving KPAs first
would offset the costs of implementing the other KPAs. Based on the
KPA results, the model could be refined to capture any nonuniform im-
provements in going from CMM Level n to Level (n+1).

2. Thisresearch established Process Maturity’s effect on software development ef-
fort. This addresses software costs. A future investigation should study the ef-
fects Process Maturity has on software development schedule, i.e. cycletime.

3. The Log-Log model came from the field of Econometrics. It would be appealing
to investigate the suitability of using other econometric models for use in the
field of Software Engineering, e.g. Poisson model, Logit model.

4. The reports of CMM Return On Investment should be analyzed with the results
of this research to determine if they confirm each other.

5. The negative coefficients for some of the predictors should be investigated us-
ing larger data samples and analysis of the effects of weak-dispersion. Not in-
cluding these predictors leaves areas of influence uncovered.

68

Adj- R?
ASLOC
B;
bj

BRAK
CMM

df

DOD
elasticity

Kk
KPA
KSLOC2

IDA
n

NASA
NSLOC
P

PE

PM
PRED(L)

R2

ROI
SDC/CR
SEI

SPR

SSE

SSR

SST
SW-CMM
WBS

ACRONYMS / GLOSSARY / SYMBOLS

R? adjusted for the number of parameters in the model.
Adapted Source Lines of Code
Population parameter coefficient.

Sample population parameter coefficient; an estimation.of B

Code breakage; code developed but not used in the final product.
Capability Maturity Model

Degrees of freedom

Department of Defense

The ratio of the change in the response variable to the change in the
predictor variable.

Number of parameters or predictor variables in the model.

Key Process Area

Thousands of Source Lines of Code. Includes new code and 20% of
the adapted code.

Institute for Defense Analysis

Number of observations or projects.

National Aeronautics and Space Administration

New Source Lines of Code

Number of parameters in the model + 1

Proportional Error (section 2.3.4 on page 17)

Person Months (effort)

The percentage of predictions that fall within L% of the actuals

Coefficient of determination. The amount of model explained vari-
ation in the data.

Return on Investment

Software Development Capacity / Capacity Review
Software Engineering Institute

Software Productivity Research, Inc.

Sum of squares error.

Sum of squares regression

Sum of squares total = SSE + SSR

Software Capability Maturity Model

Work Breakdown Structure

69

REFERENCES

[Bate et al. 1994]. R. Bate, S. Garcia, J. Armitage, K. Cusick, R. Jones, D. Kuhn, I. Min-
nich, H. Pierson, T. Powell, and A. Reichner, A Systems Engineering Capability
Maturity Model, Version 1.0,” CMU/SEI-94-HB-04, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pa., 1994.

[Boehm 1981]. B.W. Boehm, Software Engineering Econonfiesntice-Hall, NJ, 1981.

[Boehm 1987]. B.W. Boehm, “Improving Software Productivity,” IEEE Computegust
1987, pp. 34-57.

[Boehm 1993]. B.W. Boehm, “Economic Analysis of Software Technology Investments,”
Analytical Methods in Software Engineering Economit®. Gulledge and W.P.
Hutzler (Eds.), Springer-Verlag, New York, NY, 1993, pp.1-37.

[Boehm et al. 1995]. B.W. Boehm, B Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes: COCOMO 2.0,”
Annals of Software Engineering.D. Arthur and S.M. Henry (Eds.), J.C. Baltzer
AG, Science Publishers, Amsterdam, The Netherlands, 1995, pp. 57-94.

[Brodman and Johnson 1995]. J.G. Brodman and D.L. Johnson, “Return on Investment
(ROI) from Software Process Improvement as Measured by US Industry,” Software
Process Improvement and Practidehn Wiley &Sons Ltd., Sussex, England and
Gauthier-Villars, 1995, pp. 35-47.

[Butler 1995]. K. Butler, “The Economic Benefits of Software Process Improvement,”
Crosstalk Hill AFB, Ogden, Ut., 1995, pp. 14-17.

[Crosby 1984]. P. Crosby, Quality Without TeavcGraw-Hill, New York, NY, 1986.

[Conte et al. 1986]. S. Conte, H. Dunsmore, and V. Shen, Software Engineering Metrics
and ModelsBenjamin/Cummings, Menlo Park, Ca., 1986.

[Curtis et al. 1995]. B. Curtis, W. Hefley, and S. Miller, “People Capability Maturity Mod-
el,” CMU/SEI-95-MM-02, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pa., September 1995.

[Dion 1993]. R. Dion, “Process Improvement and the Corporate Balance Sheet,” IEEE
Software,October 1993, pp. 28-35.

[Ferguson et al. 1996]. J. Ferguson, J. Cooper, M. Falat, M. Fisher, A. Guido, J. Marciniak,
H. Matejceck, R. Webster, “Software Acquisition Capability Maturity Model (SA-
CMM), Version 1.01,” CMU/SEI-96-TR-020, Software Engineering Institute, Car-
negie Mellon University, Pittsburgh, Pa., 1996.

[Griffiths et al. 1993]. W.E. Griffiths, R.C. Hill, and G.G. Judge, Learning and Practicing
EconometricsJohn Wiley & Sons, Inc., New York, NY, 1993.

70

[Gulezian 1986]. R. Gulezian, “Utilizing COCOMO Inputs as a Basis for Developing Gen-
eralized Software Development Cost Estimation Models,” COCOMO / WICOMO
User’s Group Meeting, Wang Institute, Tyngsboro, Ma., May 1986.

[Hair et al. 1995]. J. Hair, R. Anderson, R. Tatham, and W. Black, Multivariate Data Anal-
ysis with ReadingsPrentice Hall, Englewood Cliffs, N.J., 1995.

[Herbsleb et al. 1994]. J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, D. Zubrow, “Benefits
of CMM-Based Software Process Improvement: Initial Results,” CMU/SEI-94-
TR-13, Software Engineering Institute, Pittsburgh, Pa., 1994.

[Herbsleb et al. 1997]. J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk,
“Software Quality and the Capability Maturity Model,” Communications of the
ACM, June 1997, pp. 30-40.

[Humphrey and Sweet 1987]. W.S. Humphrey and W.L. Sweet, “A Method for Assessing
the Software Engineering Capability of Contractors,” CMU/SEI-87-TRS23t-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa., 1987.

[Humphrey 1989]. W.S. Humphrey, Managing the Software Proéegison-Wesley,
Reading, Ma. 1989.

[Humphrey et al. 1991]. W.S. Humphrey, T.R. Snyder, and RR. Willis, “Software Process
Improvement at Hughes Aircraft,” IEEE Softwafejgust 1991, pp. 11-23.

[Kemerer 1987]. C. Kemerer, “An Empirical Validation of Software Cost Estimation Mod-
els,” Communications of the ACM/ay 1987, pp.416-429.

[Kitchenham 1990]. B. Kitchenham, “Software Development Cost Models,” in Software
Reliability HandbookR. Rook (Ed.), Elsevier, London, U.K., 1990.

[Krishnan 1996]. M. Krishnan, Cost and Quality Considerations in Software Product Man-
agementDissertation, Graduate School of Industrial Administration, Carnegie
Mellon University, 1996.

[Madachy 1996]. R. Madachy, “Systems Dynamics Modeling of an Inspection-Based Pro-
cess,” Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, March 1996, pp.376-386.

[McGibbon 1996]. T. McGibbon, “A Business Case for Software Process Improvement,”
Contract Number F30602-92-C-0158, Data & Analysis Center for Software
(DACS), Kaman Sciences Corp., Utica, NY, 1996.

[Paulk et al. 1993] M. Paulk, B. Curtis, M. Chrissis, and C. Weber, “Capability Maturity
Model for Software, Version 1.1,” CMU/SEI-93-TR-24, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, Pa., 1993.

[Paulk et al. 1995a]. M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis. The Capability
Maturity Model: Guidelines for Improving the Software Pro¢césklison-Wesley,
Reading, Ma., 1995.

71

[Paulk 1995b]. M. Paulk, “How ISO 9001 Compares with the CMM,” IEEE Softwle-
uary 1995, pp74-83.

[Paulk 1997]. M. Paulk, “Software Capability Maturity Model, Version 2,” Draft Technical
Report, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pa., January 1997.

[Peterson 1997]. W.C. Peterson, “SEI's Software Process Program,” Presentation to the
Board of Visitors, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., April 1997.

[PRICE S 1993]. PRICE S Reference Man®®ICE Systems, Moorestown, N.J., January
1993.

[Putnam 1978]. L.H. Putnam, “A General Empirical Solution to the Macro Software Sizing
and Estimating Problem,” IEEE Transactions on Software Engineduhgl1978,
pp.345-361.

[Reifer et al. 1989]. D. Reifer, P. Kane, and D. Willens, SoftCost-R User (rlier
Consultants, Inc., Torrance, Ca. 1989.

[Rubin 1983]. H. Rubin, “Macroestimation of Software Development Parameters: the Es-
timacs System,” in SOFTFAIR Conference on Software Development Tools, Tech-
nigues and Alternatives, Arlington, IEEE Press, New York, NY, July 1983, pp.4-
16.

[Saiedian and Kuzara 1995]. H. Saiedian and R. Kuzara, “SEI Capability Maturity Model's
Impact on Contractors,” IEEE Computdanuary 1995, pp.16-26.

[SEER-SEM 1994]. SEER-SEM User's Manu@hlorath Associates, Inc., Los Angeles,
Ca., 1994.

[SEL 1990]._Manager’s Handbook for Software Developm8Bai -84-101, National
Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt,
Md, 1990.

[SLIM 1995] SLIM 3.2 User’'s ManualQuantitative Software Measurement, Inc.,
McLean, Va., 1995.

[SPR 1994]. “Checkpoint Assessment Questionnaire,” Software Productivity Research,
Inc., Burlington, Ma., 1994.

[Springsteen et al. 1992]. B. Springsteen, B. Brykczynski, D. Fife, R. Meeson, and J. Nor-
ris, “Policy Assessment for the Software Process Maturity Model,” IDA D-1202
Institute for Defense Analyses, Alexandria, Va., 1992.

[Tausworthe 1981]. R.C. Tausworthe, Deep Space Network Software Cost Estimation
Model, JPL Publication 81-7, Jet Propulsion Laboratory, Pasadena, Ca., April 1981.

[Weisberg 1985]. S. Weisberg, Applied Linear Regressiohn Wiley & Sons, New York,
NY, 1985.

72

[Wohlwend and Rosenbaum 1994]. H. Wohlwend and S. Rosenbaum, “Schlumberger’s
Software Improvement Program,” IEEE Transactions on Software Engineering
November 1994, pp. 833-839.

73

Appendix A

RATIONALE FOR A PROCESS’'S MATURITY INFLUENCE ON

EFFORT

Table 19 shows a summary of the effect each KPA has on effort and the reduction
of rework. The symbols (+,-) used in the table are from the perspective of effiuis £+)
shows an effect that requires extra effort amtirgus (-) shows an effect that reduces re-
work. Iteration of a symbol (e.g., ++) indicates a stronger effect. All the KPAs are defined
with their goals and practices in [Paulk et al. 1995].

Analysis of the effect each KPA has on effort leads to the following observations:

Most KPA'’s will probably produce a net savings in effort as seen byethe-

tion of reworkanalysis for each KPA. In the Plans and Requirements stage, al-
most all KPA’s require more effort. In later stages they reduce effort by
eliminating the ripple effect of errors, ensuring the necessary tools and plans are
available when needed, and coordinating later life-cycle activities for maximum
effectiveness.

Some KPA's are likely to produce considerably more savings than others. For
instance Peer Reviews is an up-front method for eliminating errors early in the
life-cycle. The earlier the elimination of errors the greater the savings in extra
effort. Madachy’s analysis of several hundred peer reviews on a Litton project
indicated that their use reduced effort by about 10% [Madachy 1996]. Most ef-
fort savings from KPA'’s will come fromeducing reworKDion 1993]. KPA's

such as Training, Product Engineering, Quantitative Process Measurement and
Technology Change Management reduce effort by increasing the skill of the
work force, ensuring software development of the product is achievable,
spreadingoest practicescross the organization, and incorporating change the
will improve product quality.

Rework savings from several KPA'’s overlap considerably. For instance if Re-
guirements Management is implemented before Configuration Management
then extra effort will be required to baseline the requirements. Whereas if these
KPA implementations are reversed, the procedures for baselining the require-
ments will already be in place. This will complicate Blackbox analysis of indi-
vidual KPA effort reduction contributions.

While not mentioned in this analysis, case studies cited earlier [Dion 1993,
Herbsleb et. al. 1994] have reported an increase in morale. This will reduce ef-
fort because people assimilate the practices required by in the KPA’s and with-
out enforcement, they enact them.

NOTE: There is a saying that goes “l would have written you a shorter letter but

74

| did not have the time” which reflects a paradox that more effort could result in

a smaller software product (the accepted premise is that the larger the product
the more effort required to produce itif writing all new code). Itis easier to write
big, sloppy code than tight, concise code. The presence of this anomaly will be
suggested by the use of software development process such as the spiral model
or iterative model where early effort can be used to refined and verify later life-

cycle requirements.

75

9L

Table 19: KPA vs. Development Stage

KPA

Plans and
Requirements

Code and
Unit Test

Integration

Design and Test

KPA 1: Require-
ments
Management

+ Extra effort to establish
requirements baseline and set
management process.

+ Extra effort to review modifications to requirements before incorporation into product.
U-- Reduction of ripple effect of changes to poorly-assessed requirements.
- Reduction in code size due to carefully defined requirements.

KPA2: Software
Project

+ Establish plans, prepare for
down-stream activities.

+ Creation of test plans.
- Availability of tools to support
design.

-- Availability of tools and facilities to support code, unit test an
integration and test.

ce and

bilities.

Plannin
g -- Rework reduced because development activities are coordinated within constraints.

KPA 3:

Software . . L -

Project + Extra effort to establish track} + Extra effort to perform tracking, communication of status and revising plans

Tracking ing and oversight functions -- Rework reduced due to early detection of actions that need correction.

and Oversight

KPA 4: . . - . . . ,

Software + Extra work to select subcon-| + Extra work in tracking, reviewing, and changing commitments with subcontractor’s performan
tractor and set up managementresults.

Subcontract
process. -- Rework reduced due to early detection and correction of contractor-subcontractor incompati

Management

KPA 5:

Software + Extra work to establish stan-| + Extra effort to review project activities and audit software work products for conformance.

Quality dards and procedures -- Rework reduced due to early identification of non-conformances.

Assurance

KPA 6:

Software + Extra work in creating base- | + Extra work in maintaining requirements, design, code and test baselines.

Configuration lines and setting up procedure$-- Rework reduced due to avoidance of uncoordinated changes, incompatible or lost baselines

Management

KPA 7: . o o _ . .

Organizational + Extra effort to establish organizational responsibility for software process activities that improve the overall softess capability|

Process + Extra effort to assess, develop, maintain, and impact organization’s and project’s software process.

Focus - Rework reduced due to reduced process inconsistencies across projects.

LL

Table 19: KPA vs. Development Stage

=

used

KPA Plans and Desian Code and Integration
Requirements 9 Unit Test and Test
+ Extra effort in collecting, doc . . + Extra effort in collecting, doc
. . . S + Extra effort in collecting, doc . AP
KPA 8: + Extra effort in collecting, doct umenting and maintaining . L umenting, and maintaining inte
T . S ; L . |.umenting, and maintaining cod- .
Organizational | umenting, and maintaining design activities, test plan actii- . gration procedures and
. . T S ing standards and unit test .
Process requirements analysis activitieg.ties, QA activities, and CM rocedures procedures for execution of tes
Definition activities. P ’ plans.
+ Extra effort in monitoring, evaluating, and disseminating of new processes, methods, and tools.
+ Extra effort in identifying training needed by organization, project or individuals for each activity.
+ Extra effort required for on-the-job training during different activities.

KPA 9: - Rework reduced by having people trained in quality assurance and configuration management activities.

Training -- General effort reductions due to training in applications, tools, technigues, languages.

Program - Rework reduced by having [- Rework reduced by having | - Rework reduced by having |- Rework reduced by having
skilled people perform require-| skilled people perform design | skilled people perform coding | skilled people perform integra-
ments analysis. and planning of tests. and unit testing. tion and testing.

- Rework reduced by adopting
standard processes f_or requirer . -Rework reduced by adoption ¢f- Rework reduced by adoption ¢
ments analysis, configuration | - Rework reduced by adoption ¢f _~. . .) .

KPA 10: . . . coding standards and unit test| predefined integration and test|
management, quality assurandea standard design activity. .

Integrated : . procedures. activities.
test planning, and risk manage-

Software ment.

Management - - - -

+ Extra effort in evaluating and codifying best practices.
- Rework reduced by adopting best practices in staffing, planning, tracking, and estimating a software project.
- Rework reduced by anticipating problems and acting to prevent or minimize the effects of the problems.
) + Extra effort in evaluating and codifying best practices.
KPA 11: . .
+ Extra effort expended on careful design and code reduces product size.

Software . . . S - . . ,

Product - Rework is reduced because consistency is maintained across software products permitting experiences in one produat to be

Engineerin another.

9 9 -- General effort reductions due to improved tools and techniques.
+ Extra effort required to plan and manage interfaces and interactions between groups.

KPA 12: -

Int - rework reduced because real S_ngork reducgd because - Rework reduced because code Rework reduced due to earlig

ntergroup design assumptions about the

Coordination

tic software requirements are
set.

target platform can be con-

firmed.

dependencies on hardware int
faces can be confirmed.

bdetection and correction of sof
ware/system incompatibilities.

=

8.

Table 19: KPA vs. Development Stage

-

bmpl

KPA Plans and Desian Code and Integration
Requirements 9 Unit Test and Test
KPA 13- + Extra effort required for planning and managing review process.
Peer - Rework reduced by early -- Rework reduc_ed by early -- Rework reduc_:ed by early s Rework reduc_:ed by early _
Revi : removal of requirements and | removal of requirements, desighremoval of requirements, desig
eview removal of requirements defects, .
design defects. and code defects. and code defects.

KPA 14:) . N

o + Extra effort to define goals, collect and analyze performance data, and make adjustments to maintain process performance.
Quantitative . - -
Process + Extra effort to disseminate the results and baseline the performance of the process.

-- Rework reduced due to process improvements from analysis of previous projects.
Management
KPA 15: + Extra effort required to define quality goals.
Software + Extra effort required to establish, monitor and adjust plans, products, and activities.
Quality -- Rework reduced because system, component, or process meets customer or end-user needs or expectations, or duertveuality imp
Management ments from analysis of previous projects.
KPA 16 + Extra effort in identifying defects, performing causal analysis to determine the root cause and assess implicatiorieat$ tioe de
' future activities.
Defect S L
Prevention Extra effort in disseminating status and lessons learned.
-- Rework reduced by eliminating causes that produce defects. Earlier elimination results in greater reduction of rework.

KPA 17: + Extra effort in identifying, selecting, and evaluating new technologies, and incorporating effective technologies igtomiregion.
Technology -- Rework reduced where technology reduces defect detection and correction effort, improves coordination, reduces preditgt ¢
Change or stabilizes product platform.
Management -- General effort reductions due to improved tools and techniques.
KPA 18:
Process + Extra effort required in identifying, evaluating, and implementing improvements to the organization standard software proces
Change -- Rework reduced due to more rapid incorporation of new practices that among other things prevent rework.
Management

The different activities used in Table 19 are described below [Boehm 1981]:

Plans and Requirements. During this stage system requirements are allocated to
hardware and software. The concept of operation for the system is specified (hu-
man - machine interactions are understood and defined). The software require-
ments are validated for completeness, consistency, testability, and feasibility for
functional, performance and interface specifications.

Life-cycle plans are created to address:

+ Project milestones and detailed schedules
+ Project resources and budgets
+ Customer, developer, and end-user responsibilities; project orga-
nizational structure
+ Product control such as configuration management, quality assur-
ance, risk management, development standards, and a software de-
velopment model (waterfall, iterative, spiral) which addresses
“when” and “for how long” to perform design, coding, and testing.
+ Training in activities and techniques; software development sup-
port products
Design. This stage produces a product design specification broken down from
the system level to the sub-system then component then unit levels where a unit
is a well defined piece of the product about 100 - 300 lines of source code in
size. If appropriate, the different software builds are identified. This specifica-
tion includes control structure, data flow and component interfaces. The design
is verified for completeness and consistency and validated to the requirements.
High-risk development issues are identified and resolved. Two test plans, inte-
gration (for verification of the software) and acceptance (for validation to the
requirements) are drafted and approved.
Code and Unit Test. This stage produces coding for all units identified for the
software build. The units are verified for nominal and extreme inputs, error han-
dling, all data declarations / initialization, executable statements and all branch-
ing options. The code is verified for compliance to programming standards.
Documentation for the units is completed.
Integration and Test. This stage involves integration of units into components
and components into sub-systems. Components and sub-systems are tested on
the target platform for correct outputs, error handling, and desired performance
using nominal and extreme inputs and different platform configurations. It also
includes integration, test, and acceptance of the software system and deliver-
ables (manuals, reports, code).

79

Appendix B

COCOMO Il COST ESTIMATION QUESTIONNAIRE

B.1 Introduction

The Center for Software Engineering at the University of Southern California is
conducting research to update the software development cost estimation model
called COCOMO [Boehm 1981]. The project name is COCOMO Il and is led
by Dr. Barry W. Boehm [Boehm et al. 1995].

A fundamental requirement for such research is real-world software
development project data. This data will be used to test hypotheses and verify
the model’s postulations. In return the model will be open and made available
to the public. The contribution of your data will ensure the final model is useful.

The data that is contributed is important to us. We will safeguard your
contribution so as not to compromise company proprietary information. The
next section discusses the data management aspects of the project. The
following section is the data collection form. The last section is an explanation
of expected values in the data collection form.

Some Affiliates have an active collection program and the data from past
projects is available for the COCOMO Il data collection effort. This
guestionnaire can be used to extract relevant COCOMO Il data.

This questionnaire attempts to address two different levels of data granularity:
project level and component level. The project level of granularity is data that
is applicable for the whole project. This includes things like application type
and development activity being reported. Component level data are things like
size, cost, and component cost drivers. If the data being submitted is on a
project that has multiple components then fill out the project data once, and the
component data for each of the identifiable component. If the data are being
submitted for the whole project fill out the form once.

80

B.2 Project Level Information

General Information

B.2.1

B.2.2

B.2.3

B.24

B.2.5

Affiliate Identification NumberEach separate software project contributing data
will have a separate file identification number of the form XXX. XXX will be one
of a random set of three-digit organization identification numbers, provided by
USC Center for Software Engineering to the Affiliate.

Project Identification NumbeFhe project identification is a three digit number
assigned by the organization. Only the Affiliate knows the correspondence between
vyyvand the actual project. The same project identification must be used with each
data submission.

Application TypeThis field captures a broad description of the type of activity this
software application is attempting to perform.

Circle One:
Command and Control MIS Simulation
Communication Operating Systems Software Dev. Tools
Diagnostics Process Control Testing
Engineering and Science Signal processing Utilities
Other:

Activity. This field captures the phase of development that the project is in. For
one-time reporting the activity is ‘completed'. It is assumed that data for completed
projects includes data from software requirements through integration / test. Please
report the correct phasing if this is not the case.

Circle OneRequirements Design Code
Unit Test Integration/Test Maintenance
Completed

Other:

Development Proceskhis is a description of the software process used to control
the software development.

81

B.2.6

B.2.7

Development Process lteratidiithe process is iterative, e.g. spiral, which
iteration is this?

COCOMO ModelThis specifies which COCOMO Il model is being used in this
data submission. If this is a “historical” data submission, select the Post-
Architecture model or the Applications Composition model.

Application Composition: This model involves prototyping efforts to resolve
potential high risk issues such as user interfaces, software/system interaction,
performance, or technology maturity.

Early Design: This model involves exploration of alternative software/system
architectures and concepts of operations. At this stage of development, not
enough is known to support fine-grain cost estimation.

Post-Architecture: This model involves the actual development and
maintenance of a software product. This stage of development proceeds most
cost-effectively if a software life-cycle architecture has been developed,;
validated with respect to the system’s mission, concept of operation, and risk;
and established as the framework for the product.

Circle OneApplication Composition, Early Design, Post-Architecture

Schedule

B.2.8

B.2.9

Year of developmenftor reporting of historical data, please provide the year in
which the software development was completed. For periodic reporting put the year
of this submission or leave blank.

Schedule Month$or reporting of historical data, provide the number of calendar
months from the time the development began through the time it completed (from
the beginning of Software Preliminary Design through the end of System Test and
Integration). For periodic reporting, provide the number of months in this
development activity.

82

Circle the life-cycle phases that the schedule covers:

System Preliminary Code and
Requirements Design Unit Test Maintenance

|Software | | Detailed | |Integration
Requirements Design and Test

» Software Requirements. This phase defines the complete, validated
specification of the required functions, interfaces, and performances for the
software product.

* Preliminary Design. This phase defines the complete, verified specification of
the overall hardware/software architecture, control structure, and data structure
for the product, along with such necessary components as draft user’s manuals
and test plans.

» Detailed Design. This phase defines a complete, verified specification of the
control structure, data structure, interface relations, sizing, key algorithms, and
assumptions of each program component.

» Code & Unit Test. This phase produces a complete and verified set of program
components.

* S/W System Integration & Test. This phase produces a properly functioning
software product composed of the software components.

* Maintenance. This phase produces a fully functioning update of the hardware/
software system.

83

Project Exponential Cost Drivers

Scalf(av\llfsa\ctors Very Low Low Nominal High Very High | Extra High

I

Precedented- |thoroughly |largely somewhat |generally largely throughly

ness unprece- unprece- unprece- familiar familiar familiar
dented dented dented

Development |rigorous occasional |some general some general

Flexibility relaxation |relaxation |conformity |conformity |goals

Architecture / |little some often generally mostly full

risk resolutiod | (20%) (40%) (60%) (75%) (90%) (100%)

Team cohesion| very difficultsome basically largely highly seamless
interactions | difficult cooperative |cooperative |cooperative |interactions

interactions |interactions

.95 significant module interfaces specified,% significant risks eliminated.

Enter the rating level for the first four cost drivers by circling one of the tick

marks.

B.2.10 Precedentedness (PREICHhe product is similar to several that have been

developed before then the precedentedness is high.

B.2.11 Development Flexibility (FLEX)This cost driver captures the amount of

constraints the product has to meet. The more flexible the requirements, schedules,
interfaces, etc., the higher the rating. See the User’'s Manual for more details.

B.2.12 Architecture / Risk Resolution (RESThis cost driver captures the
thoroughness of definition and freedom from risk of the software architecture used
for the product. See the User’s Manual for more details.

VH

B.2.13 Team Cohesion (TEAMJhe Team Cohesion cost driver accounts for the sources
of project turbulence and extra effort due to difficulties in synchronizing the

84

project’s stakeholders: users, customers, developers, maintainers, interfacers,
others. See the User’s Manual for more details.

B.2.14 Process Maturity (PMATThe procedure for determining PMAT is organized
around the Software Engineering Institute’s Capability Maturity Model
(CMM). The time period for reporting process maturity is at the time the project
was underway. We are interested in the capabilities praeti¢ed project level
more than the overall organization’s capabilities.

There are three ways of responding to this question: choose onRKerwye

Process Area Evaluation” requires a response for each Key Process Area
(KPA). We have provided enough information for you to self-evaluate the
project’s enactment of a KPA (we hope will you will take the time to complete
this section). “Overall Maturity Level” is a response that captures the result of
an organized evaluation based on the CMM. “No Response” means you do not
know or will not report the process maturity either at the Capability Maturity
Model or Key Process Area level.

O No Response

Overall Maturity Level

O CMM Level 1 (lower half)
CMM Level 1 (upper half)
CMM Level 2
CMM Level 3
CMM Level 4
CMM Level 5

O 0O 0o o0

Basis of estimate:

O Software Process Assessment (SPA)
O Software Capability Evaluation (SCE)
O Interim Process Assessment (IPA)

O Other:

Key Process Area Evaluation

Enough information is provided in the following table so that you can assess the
degree to which a KPA was exercised on the project. Each KPA is briefly
described and its goals are given. The response catagories are explained below:

85

Almost Always(over90% of the time) when the goals are consistently
achieved and are well established in standard operating procedures.

Frequently(aboutt0 to 90%o0f the time) when the goals are achieved relatively
often, but sometimes are omitted under difficult circumstances.

About Half (about40 to 60% of the time) when the goals are achieved about
half of the time.

Occasionallyaboutl0 to 40%of the time) when the goals are sometimes
achieved, but less often.

Rarely If Ever(less tharl0% of the time) when the goals are rarely if ever
achieved.

Does Not Applywhen you have the required knowledge about your project or
organization and the KPA, but you feel the KPA does not apply to your
circumstances (e.g. Subcontract Management).

Don’'t Know when you are uncertain about how to respond for the KPA.

86

.8

% nl»|0|8 g | o
~|lz|8|5]|8]|¢9
a|&|2(8|s|z|2
Key Process Area Goals of each KPA >|s|=2|l&|=|2|=
= | 3 I | S > |5
5122|237]8|¢8
G =122
Requirements Managemeimvolves establishing and | System requirements allocated to software are controllgd to
maintaining an agreement with the customer on the | establish a baseline for software engineering and manpge-
requirements for the software project. ment use. Oo|o|oo|jo|o|0
Software plans, products, and activities are kept consigtent
with the system requirements allocated to software.
Software Project Planningstablishes reasonable plapSoftware estimates are documented for use in planning and
for performing the software engineering activities anftracking the software project.
for managing the software project. Software project activities and commitments are planna(h olololololo
and documented.
Affected groups and individuals agree to their commit-
ments related to the software project.
Software Project Tracking and Oversigptovides ade- Actual results and performances are tracked against the
guate visibility into actual progress so that managemeoftware plans.
can take corrective actions when the software proje¢i@orrective actions are taken and managed to closure ywhen
performance deviates significantly from the software| actual results and performance deviate significantly franid | O (O | O (O | O | O
plans. the software plans.
Changes to software commitments are agreed to by the
affected groups and individuals.
Software Subcontract Managementzolves selecting @The prime contractor selects qualified software subcortrac-
software subcontractor, establishing commitments witbrs.
the subcontractor, and tracking and reviewing the syihe prime contractor and the software subcontractor agree
contractor’s performance and results. to their commitments to each other. olololololo

The prime contractor and the software subcontractor n
tain ongoing communications.
The prime contractor tracks the software subcontracto

[
hain-

actual results and performance against its commitmen

[S.

88

)3_> nl»|0|8 g)
o |l3|8|g|e|2|S
Key Process Area Goals of each KPA S ':ED =) : g =
s12|E|l3|0|>|3
3 || 5| |s5|B | =
S < |2 Z
Software Quality Assurancprovides management wiffSoftware quality assurance activities are planned.
appropriate visibility into the process being used by {alherence of software products and activities to the appli-
software project and of the products being built. cable standards, procedures, and requirements is verified
objectively.
Affected groups and individuals are informed of softwarel:I oyopoyojoo
quality assurance activities and results.
Noncompliance issues that cannot be resolved within the
software project are addressed by senior management.
Software Configuration Managemeamstablishes and | Software configuration management activities are planned.
maintains the integrity of the products of the softwargSelected software work products are identified, controlled,
project throughout the project’s software life cycle. |and available.
Changes to identified software work productsarecon-| O | O (O (O (O | O | O
trolled.
Affected groups and individuals are informed of the stgtus
and content of software baselines.
Organization Process Focuestablishes the organiza- | Software process development and improvement activities
tional responsibility for software process activities thpdre coordinated across the organization.
improve the organization’s overall software process | The strengths and weaknesses of the software processeﬁ olololololo
capability. used are identified relative to a process standard.
Organization-level process development and improverpent
activities are planned.
Organization Process Definitiodevelops and maintain#\ standard software process for the organization is deyel-
a usable set of software process assets that improve ged and maintained.
cess performance across the projects and provides pinformation related to the use of the organization'sstapn-l] (O (O | O (O | O | O

basis for cumulative, long- term benefits to the organ
tion.

idard software process by the software projects is colle

cted,

reviewed, and made available.

68

o
2l o > 9|88 |9
2131218822
Key Process Area Goals of each KPA ; c|S|a|Z g =
= o u e - Iy =)
s512|2(2|212|¢
S < |2 =
Training Programdevelops the skills and knowledge [dfraining activities are planned.
individuals so they can perform their roles effectively Training for developing the skills and knowledge needed to
and efficiently. perform software management and technical roles is gro-
vided. Ooo(o|jo|o|o|0
Individuals in the software engineering group and soft-
ware-related groups receive the training necessary to per-
form their roles.
Integrated Software Managemeinitegrates the soft- | The project’s defined software process is a tailored version
ware engineering and management activities into a | of the organization’s standard software process.
coherent, defined software process that is tailored frofine project is planned and managed accordingtothe | OO (O (O | O (O | O | O
the organization’s standard software process and relgieaject’s defined software process.
process assets.
Software Product Engineeriniitegrates all the soft- | The software engineering tasks are defined, integrated, and
ware engineering activities to produce and support damnsistently performed to produce the software. ololololololo
rect, consistent software products effectively and Software work products are kept consistent with each
efficiently other.
Intergroup Coordinatiorestablishes a means for the | The customer’s requirements are agreed to by all affe¢ted
software engineering group to participate actively wifigroups.
the other engineering groups so the project is better|dtlle commitments between the engineering groups are ololololololo
to satisfy the customer’s needs effectively and effi- [agreed to by the affected groups.
ciently. The engineering groups identify, track, and resolve inter-
group issues.
Peer Reviewremoves defects from the software workPeer review activities are planned.
products early and efficiently. Defects in the software work products are identifiedandd | O (O | O | O (O | O

removed.

06

o
2l o > 9|88 |9
AENEE SRR
Key Process Area Goals of each KPA ; c =1 g, = &=
|2l |m|>]|3
0 | < = | = é) <
5 <%z
Quantitative Process Managemeatntrols the process The quantitative process management activities are
performance of the software project quantitatively. |planned.
The process performance of the project’s defined softwaﬁ olololololo
process is controlled quantitatively.
The process capability of the organization’s standard goft-
ware process is known in quantitative terms.
Software Quality Managemeritivolves defining qual- | The project’s software quality management activities are
ity goals for the software products, establishing planspianned.
achieve these goals, and monitoring and adjusting th&leasurable goals for software product quality and their ololololololo
software plans, software work products, activities, angriorities are defined.
quality goals to satisfy the needs and desires of the pistual progress toward achieving the quality goals for the
tomer and end user. software products is quantified and managed.
Defect Preventionanalyzes defects that were encoun-Defect prevention activities are planned.
tered in the past and takes specific actions to prevent@benmon causes of defects are sought out and identifie olololololo
occurrence of those types of defects in the future. | Common causes of defects are prioritized and systemati-
cally eliminated.
Technology Change Managemeintvolves identifying, [Incorporation of technology changes are planned.
selecting, and evaluating new technologies, and incoiy@w technologies are evaluated to determine their effect
rating effective technologies into the organization. |on quality and productivity. O|o|ojo|jo|o|o
Appropriate new technologies are transferred into normal
practice across the organization.
Process Change Managemenvolves defining processContinuous process improvement is planned.
improvement goals and, with senior management spéarticipation in the organization’s software process
sorship, proactively and systematically identifying, eyathprovement activities is organization wide.
uating, and implementing improvements to the The organization’s standard software processandthe| O | O (O | O | O (O | O
organization’s standard software process and the | projects’ defined software processes are improved continu-

projects’ defined software processes on a continuou

ously.

basis.

B.3 Component Level Information

Component ID

B.3.1

B.3.2

B.3.3

Cost
B.3.4

If the whole project is being reported as a single component then skip to the next
section.

If the data being submitted is for multiple components that comprise a single project
then it is necessary to identify each component with its project. Please fill out this
section for each component and attach all of the component sections to the project
sections describing the overall project data.

Affiliate Identification NumberEach separate software project contributing data
will have a separate file identification number of the form XXX. XXX will be one
of a random set of three-digit organization identification numbers, provided by
USC Center for Software Engineering to the Affiliate.

Project Identification NumbeFhe project identification is a three digit number
assigned by the organization. Only the Affiliate knows the correspondence between
yvyand the actual project. The same project identification must be used with each
data submission.

Component Identification (if applicabl@his is a unique sequentiatter that
identifies a software module that is part of a project.

Circle OneA B C D E F G H I

J K L M N O P Q R

Total Effort (Person Monthd}or one-time reporting, provide the effort in Person
Months associated with development and test of the software component described,
including its share of such common activities as system design and integration. For
periodic reporting, provide the effort in Person Months since the project began.

91

Circle the life-cycle phases that the effort estimate covers:

System Preliminary Code and
Requirements Design |UnitTest | |Maintenance

Software Detailed Integration
Requirements Design and Test

B.3.5 Hours / Person Montindicate the average number of hours per person month
experienced by your organization.

B.3.6 _Labor Breakoutndicate the percentage of labor for different categories,e.qg.
Managers, S/W Requirement Analysts, Designers, CM/QA Personnel,
Programmers, Testers, and Interfacers for each phase of software development:

Total for
Labor Category all Rats PD DD CuT IT M
phases

* Requirements(Rqts). This phase defines the complete, validated specification
of the required functions, interfaces, and performances for the software
product.

* Preliminary Design (PD). This phase defines the complete, verified
specification of the overall hardware/software architecture, control structure,
and data structure for the product, along with such necessary components as
draft user’s manuals and test plans.

* Detailed Design (DD). This phase defines a complete, verified specification of
the control structure, data structure, interface relations, sizing, key algorithms,
and assumptions of each program component.

92

Size

B.3.7

B.3.8

B.3.9

Code & Unit Test (CUT). This phase produces a complete and verified set of
program components.

S/W System Integration & Test (IT). This phase produces a properly
functioning software product composed of the software components.

Maintenance (M). This phase produces a fully functioning update of the
hardware/software system.

The project would like to collect size in object points, logical lines of code, and
unadjusted function points. Please submit all size measures that are available,
e.g. if you have a component in lines of code and unadjusted function points
then submit both numbers.

Percentage of Code Breakageis is an estimate of how much the requirements
have changed over the lifetime of the project. It is the percentage of code thrown
away due to requirements volatility. For example, a project which delivers 100,000
instructions but discards the equivalent of an additional 20,000 instructions would
have a breakage of value of 20. See the User’s Manual for more detail.

Object Pointdf the COCOMO Il Applications Programming model was used
then enter the object point count.

New Unigue SLOCThis is the number of new source lines of code (SLOC)
generated.

B.3.10 SLOC Count Typ&Vhen reporting size in source lines of code, please indicate if

the count was fdpbgical SLOC orphysicalSLOC. If both are available, please
submit both types of counts. If neither type of count applies to the way the code was
counted, please describe the method. An extensive definition for logical source
lines of code is given in an Appendix in the Model User’s Manual.

Circle One:
Logical SLOC Physical SLOC (carriage returns)

Physical SLOC (semicolons) Non-Commented/Non-Blank SLOC

93

Other:

B.3.11 Unadjusted Function Poinisyou are using the Early Design or Post-
Architecture model, provide the total Unadjusted Function Points for each type. An
Unadjusted Function Point is the product of the function point count and the weight
for that type of point. Function Points are discussed in the User’s Manual.

B.3.12 Programming Languagéyou are using the Early Design or Post-Architecture
model, enter the language name that was used in this component, e.g. Ada, C, C++,
COBOL, FORTRAN and the amount of usage if more than one language was used.

Language Used Percentage Usegd

B.3.13 Software Maintenance ParametEos software maintenance, use items 4.8 -4.12
to describe the size of the base software product, and use the same units to describe
the following parameters:

a. Amount of software added:

b. Amount of software modified:

c. Amount of software deleted:

B.3.14 Object Points Reusdtlyou are using the Application Composition model, enter
the number of object pointsused. Do not fill in the fields on DM, CM, IM, SU,
or AA.

B.3.15 ASLOC Adaptedf you are using the Early Design or Post-Architecture model
enter the amounts for the SLOC adapted.

B.3.16 ASLOC Count TypéNhen reporting size in source lines of code, please indicate
if the count was fological ASLOC orphysicalASLOC. If both are available,

94

please submit both types of counts. If neither type of count applies to the way the
code was counted, please describe the method. An extensive definition for logical
source lines of code is given in an Appendix in the Model User’s Manual.

Circle One:
Logical ASLOC Physical ASLOC (carriage returns)

Physical ASLOC (semicolons) Non-Commented/Non-Blank ASLOC

Other:

B.3.17 Design Maodified - DMThe percentage of design modified.

B.3.18 Code Modified - CMThe percentage of code modified.

B.3.19 Integration and Test - IMhe percentage of the adapted software’s original
integration and test effort expended.

95

B.3.20 Software Understanding - SU

Very Low Low Nom High Very High
Structure | Very low cohe- |[Moderately low|Reasonably High cohesion, | Strong modulart
sion, high cou- |cohesion, high |well-structured;|low coupling. |ity, information
pling, spaghetti | coupling. some weak hiding in data /
code. areas. control struc-
tures.
Application |No match betweenSome correla- | Moderate corre; Good correla- |Clear match
Clarity program and applition between |lation between |tion between |between pro-
cation world program and [program and |[program and [gram and appli
views. application. application. application. cation world-
views.

Self Obscure code; |Some code Moderate level | Good code Self-descriptive
Descriptive- [documentation |commentary |of code com- |[commentary |code; document
ness missing, obscure |and headers; |mentary, head-|and headers; |tation up-to-

or obsolete some useful ers, useful docu- |date, well-orga-
documentation.| documentationg.mentation; nized, with
some weak design rationalg.
areas.
SU Increment 50 40 30 20 10

to ESLOC

The Software Understandinigcrement (SU) is obtained from Table 20. SU is
expressed quantitatively as a percentage. If the software is rated very high on

Table 20: Rating Scale for Software Understanding Increment SU

structure, applications clarity, and self-descriptiveness, the software

understanding and interface checking penalty is 10%. If the software is rated
very low on these factors, the penalty is 50%. SU is determined by taking the

subjective average of the three categories. Enter the percentage.

B.3.21 Assessment and Assimilation - AA

: Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort
0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The other nonlinear reuse increment deals with the degressetsment and

Assimilation(AA) needed to determine whether a fully-reused software module
is appropriate to the application, and to integrate its description into the overall

96

product description. Table provides the rating scale and values for the
assessment and assimilatioarement. Enter the percentage of AA:

97

Post-Architecture Cost Drivers.

Use this section fazompleted projects These are the 17 effort multipliers used

in COCOMO Il Post-Architecture model to adjust the nominal effort, Person
Months, to reflect the software product under development. They are grouped
into four categories: product, platform, personnel, and project. When an
evaluation is in-between two rating levels always round to Nominal.

Product Cost Drivers.

For maintenance projects, identify any differences between the base code and
modified code Product Cost Drivers (e.g. complexity).

Very Low Low Nominal High Very High |Extra High
RELY |[slight inconve-low, easily moderate, eag-high financial |risk to human
nience recoverable |ily recover- |loss life
losses able losses
DATA DB bytes/Pgm|10< D/P < 100<D/P < [D/P= 1000
SLOC <10 |100 1000
RUSE none across projedt across pro-|across productacross multi
gram line ple product
lines
DOCU [Many life- Some life- Right-sized to | Excessive for | Very exces-
cycle needs |cycle needs |life-cycle life-cycle sive for life-
uncovered uncovered. |needs needs cycle needs

B.3.22 Required Software Reliability (RELYThis is the measure of the extent to
which the software must perform its intended function over a period of time.

VL L N H VH XH

B.3.23 Data Base Size (DATAJhis measure attempts to capture the affect large data
requirements have on product development. The rating is determined by
calculating D/P.

B.3.24 Required Reusability(RUSH)his cost driver accounts for the additional effort
needed to construct components intended for reuse on the current or future projects.

98

B.3.25 Documentation match to life-cycle needs (DOQW)s captures the suitability

of the project’s documentation to its life-cycle needs. See the User’s Manual.

Very Low

VL L N H VH XH
I Oy O A A A
I | I I I I
B.3.26 Product Complexity (CPLX)
. Device- Data User
. Computational Interface
Control Operations . dependent Management
Operations ; : Management
Operations Operations .
Operations
Straight-line code with| Evaluation of sim{ Simple read, writg Simple arrays in | Simple input
a few non-nested strudple expressions: | statements with | main memory. |forms, report
tured programming e.g.,A=B+C*(D- |simple formats. |Simple COTS-DB|generators.
operators: DOs, E) queries, updates.

CASEs,

IFTHENELSES. Sim-
ple module composi-
tion via procedure callg
or simple scripts.

Straightforward nesting
of structured program-

Evaluation of
moderate-level

No cognizance
needed of particu

Single file subset
Hting with no data

Use of simple
graphic user

ming operators. Mostly expressions: e.g.| lar processor or If structure changegnterface
= |simple predicates D=SQRT(B**2- |O device charac-| no edits, no inter{ (GUI) build-
S 4 *A*C) teristics. 1/0 dond mediate files. ers.

at GET/PUT Moderately com-
level. plex COTS-DB
queries, updates.

Mostly simple nesting.|Use of standard |1/O processing | Multi-file input Simple use of

Some intermodule contmath and statisti-| includes device |and single file widget set.
= [|trol. Decision tables. |cal routines. Basi¢selection, status |output. Simple
£ | Simple callbacks or | matrix/vector checking and structural
% message passing, operations. error processing.| changes, simple
Z |including middleware- edits. Complex

supported distributed COTS-DB que-

processing ries, updates.

Highly nested struc- |Basic numerical |Operations at Simple triggers | Widget set

tured programming analysis: multi- | physical I/O level| activated by data|development

operators with many |variate interpola- | (physical storage| stream contents. [and extension
- compound predicates. [tion, ordinary address transla- | Complex data Simple voice
2 |Queue and stack con-|differential equa- |tions; seeks, restructuring. I/O, multime-
T trol. Homogeneous, distions. Basic trun- | reads, etc.). OptiA dia.

tributed processing.
Single processor soft
real-time control.

cation, roundoff
concerns.

mized I/O over-
lap.

99

. User
. Device- Data
. Computational Interface
Control Operations . dependent Management
Operations : : Management
Operations Operations .
Operations
Reentrant and recursivifficult but Routines for intert Distributed data- | Moderately
coding. Fixed-priority |[structured numeri-rupt diagnosis, |base coordina- [complex 2D/
- interrupt handling. Taskcal analysis: neartservicing, mask- | tion. Complex 3D, dynamic
© |synchronization, com- |singular matrix |ing. Communica-|triggers. Search |graphics, mul-
i plex callbacks, hetero-| equations, partial| tion line handling.| optimization. timedia.
& |geneous distributed |differential equa- | Performance-
= processing. Single-prottions. Simple par{intensive embed-
cessor hard real-time |allelization. ded systems.
control.
Multiple resource Difficult and Device timing- | Highly coupled, [Complex mul-
scheduling with dynami-unstructured dependent cod- |dynamic rela- timedia, vir-
§, |ically changing priori- |numerical analy- |ing, micro-pro- [tional and object |tual reality.
T |ties. Microcode-level |sis: highly accu- |grammed structures. Natu-
& |control. Distributed rate analysis of |operations. Per- |ral language data|
4j | hard real-time control. | noisy, stochastic |formance-critical | management.
data. Complex |embedded sys-
parallelization. |tems.

Complexity is divided into five areas: control operations, computational

operations, device-dependent operations, data management operations, and
user interface management operations. Select the area or combination of areas
that characterize the product or a sub-system of the product. The complexity
rating is the subjective weighted average of these areas. The Post-Arch model
only used one value for all 5 areas but for data collection purposes we are

collecting the rating of each of the areas.

100

Platform Cost Drivers.

The platform refers to the target-machine complex of hardware and
infrastructure software.

Very Low Low Nominal High Very High | Extra High
TIME < 50% use of
available exe- 70% 85% 95%
cution time
STOR < 50% use of
available stor- 70% 85% 95%
age
PVOL major change [major: 6 mo.; [major: 2 mo.; | major: 2 wk.;
every 12 mo.;[minor: 2 wk. [minor: 1 wk. |minor: 2 days
minor change
every 1 mo.

B.3.27 Execution Time Constraint (TIMEJhis is a measure of the execution time
constraint imposed upon a software system.

B.3.28 Main Storage Constraint (STORMis rating represents the degree of main
storage constraint imposed on a software system or subsystem. See the User’s
Manual.

B.3.29 Platform Volatility (PVOL)“Platform” is used here to mean the complex of
hardware and software (OS, DBMS, etc.) the software product calls on to perform
its tasks.

101

Personnel Cost Drivers

Very Low Low Nominal High Very High | Extra High

ACAP [15th percentil¢ 35th percent|le 55th percentile 75th percentile 90th perg¢entile

PCAP | 15th percentile 35th percentile 55th percenptile 75th percentile 90th pergentile

PCON 48% / year 24% [year| 12% / year 6% / year 3% / year
AEXP < 2 months 6 months 1 year 3 years 6 yearg
PEXP | <2 months 6 months 1 year 3 years 6 year
LTEX < 2 months 6 months 1 year 3 years 6 year

B.3.30 Analyst Capability (ACAP)Analysts are personnel that work on requirements,
high level design and detailed design. See the User’'s Manual.

B.3.31 _Programmer Capability (PCAREvaluation should be based on the capability of
the programmers as a team rather than as individuals. Major factors which should
be considered in the rating are ability, efficiency and thoroughness, and the ability
to communicate and cooperate. See the User’'s Manual.

B.3.32 Applications Experience (AEXPDhis rating is dependent on the level of
applications experience of the project team developing the software system or
subsystem. The ratings are defined in terms of the project team’s equivalent level of
experience with this type of application. See the User’s Manual.

B.3.33 Platform Experience (PEXPhe Post-Architecture model broadens the
productivity influence of PEXP, recognizing the importance of understanding the
use of more powerful platforms, including more graphic user interface, database,
networking, and distributed middleware capabilities. See the User’s Manual.

102

B.3.34 Language and Tool Experience (LTEXNis is a measure of the level of
programming language and software tool experience of the project team developing
the software system or subsystem. See the User’s Manual.

B.3.35 Personnel Continuity (PCON)he rating scale for PCON is in terms of the
project’s annual personnel turnover.

Project Cost Drivers.

This table gives a summary of the criteria used to select a rating level for project
cost drivers.

Very Low Low Nominal High Very High |Extra High
TOOL | edit, code, simple, fron- |basic lifecycle|strong, maturg strong, mature},
debug tend, backend|tools, moder- |lifecycle tools, | proactive life-
CASE, little | ately inte- moderately |cycle tools,
integration grated integrated well inte-
grated with
processes,

methods, reusge

SITE: [International | Multi-city and| Multi-city or | Same city or |Same building| Fully collo-

Colloca- Multi-com- Multi-com- metro. area |or complex |cated
tion pany pany
SITE: |Some phone, | Individual Narrowband [Wideband Wideband Interactive
Commu- | malil phone, FAX |email electronic elect. comm, | multimedia
nications communica- |occasional
tion. video conf.
SCED 75% of nomi 85% 100% 130% 160%
nal

B.3.36 Use of Software Tools (TOOLJee the User’'s Manual.

VL L N H VH XH

B.3.37 Multisite Development (SITEgiven the increasing frequency of multisite
developments, and indications from Given the increasing frequency of multisite
developments, and indications that multisite development effects are significant,
the SITE cost driver has been added in COCOMO II. Determining its cost driver

103

rating involves the assessment and averaging of two factors: site collocation (from
fully collocated to international distribution) and communication support (from
surface mail and some phone access to full interactive multimedia). See the User’s

Manual.

B.3.38 Required Development Schedule (SCHD)s rating measures the schedule
constraint imposed on the project team developing the software. The ratings are
defined in terms of the percentage of schedule stretch-out or acceleration with
respect to a nominal schedule for a project requiring a given amount of effort. See
the User’s Manual.

104

Appendix C

DISTRIBUTION OF PREDICTOR AND KPA VARIABLES

C.1 Predictor Distribution for 112 Observations

This data was created by assigning the values {1, 2, 3, 4, 5, 6} to the symbols {VL,
L, N, H, VH, XH} respectively for each predictor variable in the data set. The ordinal val-
ues correspond with the R1, R2, R3, R4, R5, and R6 ratings in Table 14. Not all predictors
have six valid; see section 5.4 on page 53.

C.1.1 Predictor Summary Statistic$

Variable N Average Std. Dev Minimum Median Maximum
KSLOC2 112 158.33 264.58 2.6 53.37 1264.
PREC 112 3.5469 1.4641 1. 4. 6.
FLEX 112 2.9129 1.4638 1. 3. 6.
RESL 112 3.2232 1.1162 1. 3. 6.
TEAM 112 3.8393 1.3372 1. 4. 6.
PMAT 112 3.219 1.2497 1. 3. 6.
RELY 112 3.2701 1.0527 1. 35 5.5
DATA 112 3.3058 1.1467 2. 3. 5.
RUSE 112 3.2277 0.84266 2. 3. 5.75
DOCU 112 3.1183 0.94735 1. 3. 5.
CPLX 112 3.6049 1.0292 1. 3.5 6.
TIME 112 3.7031 0.83594 3. 35 6.
STOR 112 3.6763 0.8819 25 3. 6.
PVOL 112 2.9844 0.93438 2. 3. 5.
ACAP 112 3.9665 0.79447 2. 4. 5.
PCAP 112 3.8058 0.90027 1. 4. 5.
AEXP 112 4.0022 0.99009 1. 4. 5.
PEXP 112 3.125 1.0349 1. 3. 5.
LTEX 112 3.1563 0.98418 1. 3. 5.
PCON 112 3.3839 0.84158 1.25 3. 5.
TOOL 112 1.9911 1.0424 1. 2. 5.
SITE 112 4.2902 1.0215 2. 4. 6.
SCED 112 2.7835 0.85061 1. 3. 5.

105

C.1.2 Histograms for each cost driver.

35

30

25

20

15

10 -

40 30

25

20

20 15 1

10 -

1 Data set = Db3_v10_1_Distribution

106

35

30
25 -
20 -
15 |
10 |
5 1
0 4
1 2 3 4 5 6 6
PMAT RELY
35 70
30 60
25 | 50
20 | 40
15 - 30
10 - 20
5 - 10 -
0 - t t t 0 -
2 3 4 5 4 5 6
DATA RUSE
60 35
50 30 1
25
40 >
20 -
30
15 |
20
10 |
10 - 5 |
0 - 0 A
1 2 3 4 5 3 4 5 6
Docu CPLX

107

60 60 -
50 50 -
40 - 40 -
30 30 -
20 1 20
10] 10] I
0 ; 0 ; ; N
3 4 5 6
TIME STOR
45 50
40 - 45
35 i 40
30 35
25 - 30
25
20 -
20
15 15
10 1 10
5 T 5 B
0 - } 0 A
1 2 3 4 5
PVOL ACAP
45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 - 5 |
0 4 0 A
3 1 2 3 4 5
PCAP AEXP

108

45 40
40 35
35 30
30 25
25
20
20 -
15
15
10 - 107
5 4 S 1
0 - 0
3 3 4 5
PEXP LTEX
50 45 -
45 40 A
40 35 i
35 30 |
30 25
25
20 -
20
15 15
10 - 10 -
5 5
0 0
3 3 4 5
PCON TOOL
45 70
40 60
35
50
30
25 40
20 7 30
15
20
10
5 10
0 0 A
3 4 3 4 5
SITE SCED

109

oTT

1.0000

C.1.3 Pairwise Correlations from the Data Set
KSLOC2 1.0000
PREC 0.0654 1.0000
FLEX -0.0891| 0.537 1.0000
RESL -0.0314| 0.3811 0.2942 1.0000
TEAM -0.1102| 0.5164 0.5568 0.5829 1.0000
PMAT -0.0237| 0.133¢0 -0.1638 0.2569 -0.0061 1.0Q00
RELY 0.2328| -0.2238 -0.4998 -0.1505 -0.4157 0.1983 1.0p00
DATA 0.2786| 0.1195 -0.1500 -0.0908 -0.0396 0.1982 0.0672 1.4000
RUSE -0.1340 -0.078¢ -0.1541 0.1466 0.0078 0.2p66 0.1471 -0.p838 1{0000
DOCU -0.0906| -0.153§ -0.337p -0.0438 -0.2218 0.2032 0.2872 0.0410 0J1726 1.0000
CPLX 0.1638| -0.0963 -0.1348 -0.0719 -0.0965 -0.0410 0.5094 -0.1958 -0/0284 (2326 1.0000
TIME 0.2067| -0.2563 -0.4511 -0.1830 -0.29f9 -0.1065 0.5B46 -0.0372 0.0616 0[1087 (.4593
STOR -0.0836| -0.2193 -0.3012 -0.0941 -0.1371 -0.3575 0.3558 -0.1785 0[0273 0.0220 D.2676590
KSLOC2 PREC FLEX RESYy TEAM, PMAT| RELY| DATA RUSH DoOcCU CPL TIME

TTT

STOR 1.0000

PVOL 0.1865 1.000d

ACAP -0.0044 0.2147 1.000p

PCAP -0.0969 0.192% 0.6694 1.0000

AEXP 0.1440 0.0883 0.259p 0.1881 1.00p0

PEXP -0.2675 -0.461% 0.051f7 0.1248 0.2349 1.0p00

LTEX -0.3136 -0.4296 -0.0091 0.04466 -0.0009 0.6490 1.0000

PCON -0.1042 -0.0181 0.0758 0.17Y3 -0.1538 -0.0414 -0.0112 1.p000

TOOL -0.3903 0.1611 0.1968 0.2789 -0.1703 0.0934 0.1386 0.1278 1/0000

SITE -0.2848 -0.2052 0.158p 0.195%3 -0.0574 0.3180 0.3236 0.2956 0]1584 1.0000

SCED -0.0928 -0.1127 -0.1591 -0.2444 -0.1158 -0.0809 -0.0359 0.p731 00232 (.1002
STOR PVOL ACAP PCAP AEXP PEXR LTEX PCON TOOL SITE SCH

1.0000
D

C.2 KPA Data Distribution for 50 Observations

This data was were generated by assigning the values {100, 75, 50, 25, 1, 0} to the
ratings {Almost Always, Frequently, About Half, Occasionally, Rarely if Ever, Don't
Know or Does Not Apply} respectively. For KPAs 1 to 13, 50 observations were used. For
KPAs 14 to 18, 40 observations were used

C.2.1 Summary Statisticd

Variable N Average Std. Dev. | Minimum Median Maximum
KPA1 50 80.4 23.164 25. 90. 100.
KPA2 50 80.7 23.168 25. 75. 100.
KPA3 50 77.5 25.158 25. 75. 100.
KPA4 50 10.22 25.103 0. 0. 100.
KPA5 50 73.3 27.004 0. 75. 100.
KPAG 50 82.9 17.026 50. 75. 100.
KPA7 50 64.16 37.014 1. 75. 100.
KPAS8 50 69.82 33.848 1. 75. 100.
KPA9 50 55.96 32.796 0. 50. 100.

KPA10 50 64.84 35.26 1. 75. 100.
KPA11 50 75.22 23.451 1. 75. 100.
KPA12 50 68.8 25.982 0. 75. 100.
KPA13 50 60.28 36.245 0. 75. 100.
Variable N Average Std. Dev. | Minimum Median | Maximum
KPA14 40 47.025 35.238 0. 50. 100.
KPA15 40 47.275 34.468 0. 50. 100.
KPA16 40 42.325 36.129 1. 50. 100.
KPA17 40 37.875 38.442 0. 25. 100.
KPA18 40 46.4 38.785 1. 45. 100.

2. Data set = Db3_v10 1 Distribution_ KPA

112

C.2.2 Histograms for each KPA
For KPAs 1 to 13, 50 observations were used to construct the histograms. For KPAs

14 to 18, 50 observations were used but 10 of those observations had 0 values.

25 25
20 20
15 15
10 10
5 5
0 - 0
1 25 50 75 100 1 25 50 75 100
KPA 1 KPA 2
25 40 -
35
20
30 |
15 25 7
20
10 15 |
10 -
5
5 4
0 0
1 25 50 75 100 1 25 50 75 100
KPA 3 KPA 4

113

o o
S S
— -
T} T}
~ ~
© ©
o o
SM SM
X X
T T
N N
— —
—
T} o T} o o o O O < N O O N O
N I3 — — N A A A o
o o
o o
- -
7o) T}
~ ~
o ~
o o
SM SM
X N2
Te) T}
Y N
— —
O O < N O O N O O WO < N O WO N O
N A A A o SR T T |

114

14 18
12 16
14
10 |
12
8 1 10
6 - 8
6 i
4
4
2 - 5 |
0 4 0 A
25 50 75 100 25 50 75 100
KPA 9 KPA 10
30 25
2 20
20
15
15
10
10
5 i
5
0 4 0
25 50 75 100 25 50 75 100
KPA 11 KPA 12

115

16 20 -
14 18 1
16 |
12
14 |
10 12 a
8 10 -
6 8
4 6
l .
2 1 2
0 - 0 A
25 50 75 100 25 50 75 100
KPA 13 KPA 14
18 - 25
16 |
14 - 20
12
15 |
10 |
8 10 |
6 B
4 - 5 |
2
0 - 0 A
25 50 75 100 25 50 75 100
KPA 15 KPA 16

116

30

25

20

15

10

25

50
KPA 17

75

100

25

20

15

10 +

25

50
KPA 18

75

100

117

8TT

C.2.3 Pairwise Correlations from the Data Set

C.2.3.1 50 observations

KPA1l 1.0000

KPA2 0.5366 1.000d

KPA3 0.6050(0.8487(1.0000

KPA4 -0.1047| -0.2505 -0.279p 1.00Q0

KPAS 0.5533(0.7304 0.7259(-0.1025 1.0000

KPAG 0.5054| 0.4526 0.5354 -0.0547 0.54b8 1.0000

KPA7 0.2608(0.5531 0.606p 0.0492 0.7080 0.4908 1.0p00

KPAS 0.2405(0.6084 0.673p 0.0564 0.6382 0.50980.8456| 1.0000

KPA9 0.4242] 0.5135 0.586p -0.1490 0.60p1 0.3%56 0.6[734 0.5868 10000

KPA10 0.2897| 0.4939 0.606ff -0.0221 0.56p0 0.56¢560.7603 0.7240 0.3998 1.0000

KPA1l 0.3725| 0.3147 0.351p -0.1448 0.46p6 0.4032 0.3273 0.1782 03074 Q.2181 1.0000

KPA12 0.5544(0.3784 0.480B -0.1246 0.3606 0.2860 0.3223 0.2586 0/4284 (Q.3765 D.4288 1.0000

KPA13 0.3603 0.7023 0.7507 0.0100 0.6714 0.5189 0.8241 0.7688 0.5402| 0.8423| 0.2520 0.4524 1.000
KPA1l KPA2 KPAS3 KPA4 KPA5 KPAG KPA7 KPAS8 KPA9 KPA10| KPA1ll KPA1Z KPA1]

C.2.3.2 40 observations

KPA1| 0.3656| 0.1538 0.3524 0.3035 0.40p5
KPA2 | 0.3963| 0.3844 0.3186 0.477%4 0.51p2
KPA3 | 0.4127| 0.347C 0.268L 0.46Q2 0.53p1
KPA4 | 0.1880| 0.1099 0.236L -0.0148 0.1713
KPA5 | 0.3677| 0.2999 0.416l 0.5285 0.5963
KPAG6 | 0.3017| 0.3983 0.2472 0.0875 0.31y74
KPA7 | 0.2962| 0.2309 0.404p 0.5288 0.67[70
KPA8 | 0.3460| 0.3956 0.423p 0.4748 0.6191
KPA9 | 0.3087| 0.2134 0.410p 0.39§0 0.51p2
KPA10| 0.1978] 0.2354 0.0866 0.3024 0.44R7
KPA11| 0.2925| 0.2369 0.2214 0.2113 0.3984
KPA12| 0.2833] 0.169§ 0.1458 0.23%2 0.4089
KPA13| 0.3205] 0.411(0.2468 0.5070 0.5846
KPA14| 1.0000{ 0.3537 0.3714 0.0012 0.31p4
KPA15| 0.3537 1.000(0.585p 0.4159 0.5887
KPAl6| 0.3714] 0.5855 1.000p 0.5247 0.6799
KPA17 | 0.0012] 0.4159 0.524) 1.0000 0.7492
KPA18| 0.3194| 0.588¢ 0.6799| 0.7492 1.0000
KPA14 | KPA15| KPA16| KPA17| KPA18

119

Appendix A

ANALYSIS RESULTS

D.1 Full Research Model - All

Using all of the observations, these are the results from using all of the predictor
variables in the Research Model.

Data set = Db3_v11 970617
Response = log[EFFORT]
Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 0.796782 0.240585 3.312
log[KSLOC2] 1.04932 0.0442353 23.721
log[PMAT] 1.48913 0.663393 2.245
log[PREC] 0.474474 0.449612 1.055
log[RESL] -0.227454 0.607055 -0.375
log[RELY] 0.257940 0.770396 0.335
log[DATA] 0.879129 0.486636 1.807
log[CPLX] 1.45251 0.643870 2.256
log[RUSE] -0.263324 0.628031 -0.419
log[DOCU] 0.318624 0.596665 0.534
log[RCON] 3.54582 0.892315 3.974
log[PERS] 2.64321 0.847329 3.119
log[AEXP] -0.391858 0.585143 -0.670
log[PEXP] 0.860007 0.733443 1.173
log[LTEX] -0.470369 0.737439 -0.638
log[PCON] 0.215602 0.611967 0.352
log[TEAM] 0.483059 0.604500 0.799
log[FLEX] 0.165126 0.522200 0.316
log[TOOL] -0.263195 0.655921 -0.401
log[SITE] 1.31893 0.661568 1.994
log[PVOL] 0.841042 0.699746 1.202
log[SCED] 3.10286 0.768474 4.038
R Squared: 0.935788

Sigma hat: 0.465415

Number of cases: 112

Degrees of freedom: 90

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 21 284.109 13.529 62.46 0.0000
Residual 90 19.495 0.216611

120

1.1 Full Research Model - Cross Validation

For cross-validation, these are the results for the full Model using only the calibra-

tion set of observations:

Data set = Db3_v11 970617 Xval
= log[EFFORT]
Coefficient Estimates

Response

Label Estimate Std. Error t-value
Constant 0.919514 0.292618 3.142
log[KSLOC2] 1.03202 0.0552520 18.678
log[PMAT] 1.42425 0.788834 1.806
log[PREC] 0.667982 0.556857 1.200
log[RESL] -0.630829 0.779058 -0.810
log[RELY] 1.05994 0.942694 1.124
log[DATA] 0.330507 0.579183 0.571
log[CPLX] 1.05988 0.746511 1.420
log[RUSE] -0.742793 0.745860 -0.996
log[DOCU] 0.218062 0.722029 0.302
log[RCON] 4.29785 1.15614 3.717
log[PERS] 2.62630 0.948850 2.768
log[AEXP] -1.35602 0.840944 -1.613
log[PEXP] 0.818338 0.851910 0.961
log[LTEX] 0.0428895 0.867368 0.049
log[PCON] 0.581018 0.746053 0.779
log[TEAM] 0.895094 0.741495 1.207
log[FLEX] -0.351118 0.632725 -0.555
log[TOOL] -0.776168 0.880840 -0.881
log[SITE] 0.939589 0.817975 1.149
log[PVOL] -0.213260 0.825159 -0.258
log[SCED] 2.68509 0.886308 3.030
R Squared: 0.931845

Sigma hat: 0.474334

Number of cases: 84

Degrees of freedom: 62

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 21 190.723 9.08205 40.37 0.0000
Residual 62 13.9496 0.224993

121

1.2 Reduced Research Model - All

Using all of the observations, these are the results from pruning the Research Model

down to ten predictors:

Data set = Db3_v11 970617

Response = log[EFFORT]

Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 0.786106 0.179891 4.370
log[KSLOC2] 1.05095 0.0369861 28.415
log[PMAT] 1.30885 0.485761 2.694
log[DATA] 0.862294 0.435838 1.978
log[CPLX] 1.43726 0.546981 2.628
log[RCON] 3.83335 0.653661 5.864
log[PERS] 2.38454 0.739814 3.223
log[TEAM] 0.879949 0.395178 2.227
log[SITE] 1.52240 0.566938 2.685
log[PVOL] 1.28229 0.558666 2.295
log[SCED] 3.09489 0.682231 4536

R Squared: 0.933491
Sigma hat: 0.447128
Number of cases: 112
Degrees of freedom: 101

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 10 283.411 28.3411 141.76 0.0000
Residual 101 20.1923 0.199924

122

1.3 Reduced Research Model - Cross Validation

For cross-validation, these are the results for the ten variable Reduce Model using

only the calibration set of observations:

Data set = Db3_v11 970617 Xval

Response = log[EFFORT]
Coefficient Estimates:
Label Estimate Std. Error t-value

Constant 0.790715 0.212977 3.713
log[KSLOC?2] 1.04961 0.0444649 23.605
log[PMAT] 1.38333 0.590911 2.341
log[DATA] 0.413613 0.526307 0.786
log[CPLX] 1.39871 0.618259 2.262
log[RCON] 4.32553 0.800964 5.400
log[PERS] 1.90445 0.816951 2.331
log[TEAM] 1.02954 0.473071 2.176
log[SITE] 1.44455 0.641958 2.250
log[PVOL] 0.469202 0.672104 0.698
log[SCED] 2.56069 0.778700 3.288

R Squared: 0.925031
Sigma hat: 0.458467
Number of cases: 84

Degrees of freedom: 73

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 10 189.329 18.9329 90.07 0.0000
Residual 73 15.344 0.210192

123

1.4 Compact Research Model - All

Using all of the observations, the estimation for the compact Research Model is:

Data set = Db3_v11 970617

Response = log[EFFORT]
Coefficient Estimates:
Label Estimate Std. Error t-value

Constant 1.05511 0.165850 6.362
log[KSLOC2] 1.02607 0.0367183 27.944
log[PMAT] 2.02038 0.476405 4.241
log[PROD] 0.653098 0.152087 4.294
log[DEVT] 0.359646 0.160309 2.243
log[ENVR] 0.831887 0.276917 3.004

R Squared: 0.910937
Sigma hat: 0.505068
Number of cases: 112
Degrees of freedom: 106

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 5 276.564 55.3128 216.83 0.0000
Residual 106 27.0399 0.255094

1.5 Compact Research Model - Cross Validation

Using only the calibration observations the estimated coefficients for the five vari-

able Compact Research Model is:

Data set = Db3_v11 970617 Xval

Response = log[EFFORT]
Coefficient Estimates:
Label Estimate Std. Error t-value

Constant 1.11876 0.203559 5.496
log[KSLOC2] 1.01072 0.0458399 22.049
log[PMAT] 2.43036 0.580460 4.187
log[PROD] 0.701924 0.194504 3.609
log[DEVT] 0.393635 0.196436 2.004
log[ENVR] 0.627138 0.330555 1.897

R Squared: 0.89916
Sigma hat: 0.514399
Number of cases: 84

Degrees of freedom: 78

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 5 184.033 36.8067 139.10 0.0000
Residual 78 20.6393 0.264606

124

1.6 Small Research Model - All

Using all of the observations, these are the results for estimating the three predictor

Small Research Model:

Data set = Db3_v11 970617

Response = log[EFFORT]

Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 1.09681 0.157295 6.973
log[KSLOC2] 1.01986 0.0362210 28.157
log[PMAT] 2.11616 0.443367 4.773
log[EM] 0.636091 0.0671441 9.474

R Squared: 0.903052
Sigma hat: 0.522048
Number of cases: 112
Degrees of freedom: 108

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 3 274.17 91.39 335.33 0.0000
Residual 108 29.4337 0.272535

1.7 Small Research Model - Cross Validation

Using only the calibration set of observations, these are the results for estimating

the three predictor Small Research Model:

Data set = Db3_v11 970617 Xval

Response = log[EFFORT]
Coefficient Estimates:
Label Estimate Std. Error t-value

Constant 1.11911 0.185702 6.026
log[KSLOC?2] 1.01160 0.0436769 23.161
log[PMAT] 2.46227 0.537821 4,578
log[EM] 0.613062 0.0761062 8.055

R Squared: 0.891633
Sigma hat: 0.526541
Number of cases: 84

Degrees of freedom: 80

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 3 182.493 60.831 219.41 0.0000
Residual 80 22.1797 0.277246

125

1.8 Full COCOMO Il Model - All

Using all the observations, the estimated Full COCOMO Il model is:

Data set = Db3_v11 C2

Response = log[EFFORT]

Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 1.08849 0.202421 5.377
log[SIZE] 0.811825 0.0823121 9.863
PREC _LNS 0.894581 0.918885 0.974
FLEX_LNS 1.25707 1.14759 1.095
RESL_LNS -0.176452 1.34640 -0.131
TEAM _LNS 1.60058 1.37306 1.166
PMAT_LNS 4.22667 1.38671 3.048
log[RELY] 0.822193 0.460910 1.784
log[DATA] 0.794800 0.684728 1.161
log[RUSE] -0.318157 0.432453 -0.736
log[DOCU] -0.0172566 0.766769 -0.023
log[CPLX] 1.26428 0.460036 2.748
log[RCON] 1.71444 0.548171 3.128
log[PVOL] 0.455017 0.493255 0.922
log[PERS] 1.87018 0.460419 4.062
log[AEXP] -0.404470 0.530952 -0.762
log[PEXP] 1.26537 0.606701 2.086
log[LTEX] -0.708010 0.679353 -1.042
log[PCON] -0.138229 0.615606 -0.225
log[TOOL] -0.137238 0.601720 -0.228
log[SITE] 0.324189 0.840655 0.386
log[SCED] 2.64426 0.767024 3.447

R Squared: 0.933373
Sigma hat: 0.474085
Number of cases: 112
Degrees of freedom: 90

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 21 283.376 13.4941 60.04 0.0000
Residual 90 20.2281 0.224757

126

1.9 Full COCOMO Il Model - Cross Validation
Using only the calibration observations, the estimated coefficients for the full CO-

COMO Il model is:

Data set = Db3_v11 C2_ Xval, Name of Model = L2
Response = log[EFFORT]

Coefficient Estimates

Label Estimate Std. Error t-value
Constant 0.844182 0.245004 3.446
log[SIZE] 0.944874 0.107182 8.816
PREC_LNS 0.883160 1.13329 0.779
FLEX LNS 0.438326 1.38776 0.316
RESL_LNS -1.69034 1.76402 -0.958
TEAM_LNS 1.58888 1.62094 0.980
PMAT_LNS 3.64052 1.66106 2.192
log[RELY] 0.533289 0.613838 0.869
log[DATA] 0.465244 0.774043 0.601
log[RUSE] -0.550270 0.519236 -1.060
log[DOCU] 0.518967 0.885174 0.586
log[CPLX] 1.18649 0.508268 2.334
log[RCON] 2.92304 0.805223 3.630
log[PVOL] -0.131208 0.566377 -0.232
log[PERS] 1.79118 0.512331 3.496
log[AEXP] -0.613232 0.676852 -0.906
log[PEXP] 0.914033 0.703826 1.299
log[LTEX] -0.299041 0.782096 -0.382
log[PCON] -0.0357251 0.733913 -0.049
log[TOOL] -0.308430 0.777198 -0.397
log[SITE] 0.887400 1.00075 0.887
log[SCED] 2.57817 0.862417 2.989

R Squared: 0.933985
Sigma hat: 0.473875
Number of cases: 84

Degrees of freedom: 62

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 21 196.976 9.37983 41.77 0.0000
Residual 62 13.9226 0.224557

127

1.10 Reduced COCOMO Il Model - All

Using all of the observations, the estimated coefficients for the ten predictor Re-

duced COCOMO Il model is:

Data set = Db3_v11 C2

Response = log[EFFORT]

Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 1.01863 0.168203 6.056
log[SIZE] 0.892034 0.0639966 13.939
TEAM_LNS 2.64278 0.999088 2.645
PMAT _LNS 3.55860 1.08989 3.265
log[DATA] 0.984160 0.630235 1.562
log[CPLX] 1.39620 0.407362 3.427
log[RCON] 2.23342 0.467444 4.778
log[PVOL] 0.920725 0.405546 2.270
log[PERS] 1.72001 0.417995 4.115
log[SCED] 2.91359 0.698897 4.169
log[SITE] 1.13320 0.734880 1.542

R Squared: 0.925634
Sigma hat: 0.472802
Number of cases: 112
Degrees of freedom: 101

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 10 281.026 28.1026 125.72 0.0000
Residual 101 22.5777 0.223542

128

1.11 Reduced COCOMO Il Model - Cross Validation
Using only the calibration observations, the estimated coefficients for the ten vari-

able Reduced COCOMO Il model is:

Data set = Dv3_v11_C2_Xval

Response = log[EFFORT]

Coefficient Estimates:

Label Estimate Std. Error t-value
Constant 0.802689 0.184615 4.348
log[SIZE] 0.944137 0.0733542 12.871
TEAM_LNS 1.96491 1.09856 1.789
PMAT LNS 3.22736 1.28858 2.505
log[DATA] 0.384699 0.707824 0.543
log[CPLX] 1.24893 0.432262 2.889
log[RCON] 3.36296 0.595562 5.647
log[PVOL] 0.257121 0.463105 0.555
log[PERS] 1.48057 0.441727 3.352
log[SITE] 1.13605 0.788598 1.441
log[SCED] 2.55000 0.756120 3.372

R Squared: 0.928048
Sigma hat: 0.455928
Number of cases: 84

Degrees of freedom: 73

Summary Analysis of Variance Table

Source df SS MS F p-value
Regression 10 195.725 19.5725 94.16 0.0000
Residual 73 15.1745 0.20787

129

	INTRODUCTION
	REVIEW OF THE Software Capability Maturity model AND statistical MODELING of EFFORT EXPENDiTURE
	SW-CMM CASE STUDIES AND AVAILABLE EFFORT ESTIMATION MODELS
	RESEARCH QUESTION AND APPROACH
	RESULTS
	Conclusions
	ACRONYMs / Glossary / SYMBOLs
	REFERENCES
	Rationale for a Process’s Maturity Influence on Effort
	COCOMO II Cost Estimation Questionnaire
	Distribution of Predictor and KPA Variables
	Analysis Results

