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1. Lagrange’s Method

For many simple optimization problems in economics, the solution is
at a point of tangency of two curves. The best known example of this is
that of a consumer who chooses the amounts of two commodities on
his budget line to reach the highest possible indifference curve on his
indifference map. At the chosen point, the budget line is tangent to the
highest attainable indifference curve.  Another example is that of a
producer with given resources, who can produce any combination of
amounts of two goods lying on a transformation cuwe showing a
diminishing marginal rate of transformation. Given the prices of the two
goods, he would produce that combination which yields maximum
revenue. In the first example the constraint cuwe is a straight line, while
in the second the contours of equal revenue  form a family of parallel
straight lines. In general, both the constraint curve  and the family of
level curves of the objective can be non-linear. An example of this
would be a planned economy with a known transformation curve,
choosing a production plan to maximize a criterion of social welfare.
The contours of equal social welfare would form a convex indifference
map, and the production possibility schedule would be a concave cuwe.
There will be conditions concerning permissible curvatures to be
discussed later.

The  general problem leads to the very familiar picture of Figure I .l.
To give an algebraic treatment, we have to define the constrain1 cuwe
by an equation. Write x, and x2 for the quantities of  the two goods.
and let the equation relating the two be written as

G(xl,x*)=c (1-I)

where G is a function and c LI given constant. For example, in the
consumer’s problem the constrain1 has  the form p,,x, + 1)2.~2 = m
where p,  and p2  are the prices of the two goods and m is the money
I”COIlle.

Let the  optimum choice be labelled  (,Sl, X2),  and let the equation of
the level curve  of the objective function F through this point be

F((a1.x2)=v. (I.21
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FIG. 1.1

Note that c is a datum of the problem, but that the value of v  can be
found only after the optimum choice is known, as v  = F(s?,  , f2),

The quantities are rmxe  compactly written as vectors arranged in
vertical columns, thus

and r=

Initially, 1 shall use vectors only m abbreviate lists of components.
Actual operations  with vectors and matrices will appear gradually.

On inspection of Figure 1. I, we have  the well-known economic
condition that if X: is to be the optimum choice, the  two cuwzs defined
by (1.1) and (I 2) should touch each  other at that point.  In other
words, they should hue  the same slope there. To write this
algebraically. we must find expressions for these slopes in term3 of the
functions rand  G. Begin with the constraint cu~ye,  and consider a
point (X  + dx). lying on it and adjacent to  X, where dx  = (dx  I i dx2)  is
an infinitesimal increment. Then dxx,/dx,  is defined to be tbe  slope  of
the c”we at  .?.
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such  infinitesimal increments have the natural  economic meafi%  Of
marginal  changes,  and  their w CXI be given rigorous  justification. But
beginners  sometimes m*e  mistakes in handling infinitesimals, and  it
tifi  be  a useful  exercise  for  them to rework the arguments  using  the
standaId  method  of cal~d~s t&s,  taking finite but  small  changes  and
then  going to the limit.

Since  both  the  points  being considered lie on  the CUPX (1.1),  the
value  *fc is the  Same  at  both. I” particular, the first order  change  de,
whicb  is found  by taking a linear approximation to  G using  its
derivatives  at X, is zero.  This gives

O=dG=G,(~)dz,  +G,@)dr,,

where C, and G- mjh&!&?4&Jc..‘&+b&&~~&j  f&j=  f&,2:  0;’
COUIS%  each  is itself a function ofx, and in the equation they  are
evaluated at 1. This yields

&P-r, = - G, (q/c,(x),

the standard  CALCULUS  formula for the differentiation of implicit
functions. Note that  if one of G, (2) and G,(i) is 2~3,  we can  still
make sense  of this and call it zem OT  infinity as the case  may be.  Ifb,,tb
are  ZWO,  we  are liable to have problems. Special cases  may still work,
but in order to be we of the validity of general results we must
COnfine  WI  attention to  the case where at least one  of  these  derivatives
1s  non-zero at ,f.

By the SCI”X  argoment,  the slope of (1 .2) at 2 is -I,‘, (X)/F,@).  1f.f
is the optimum choice. then the two slopes will be equal,  i.e.

F, (q/F*cq  = c, (2)/C,(i). (1.3)

Such  a condition, which necessarily holds at an  optimu”l,  is called  ;,
fleCesWY  condition for optimality. A condition which  ens,lres
oPtimalilY, i.e. one  such that if it holds at X. then  x is opttinum,  will be
a sufficient condition.

‘fhe  left hand side, being the slope of a level  CU~Y~  nfF.  is the
marginal  rate  uf  (subjective) substitution along an indifference curve  of
the  maximand. Similarly, the right hand side is the  marginal  late uf
t~~~sf~~nlation  07 technical substitution for the constraint.  Thus  the
condition of their equality slxmld  be familiar: the two IIp mnr-~.-
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expressed here in terms of the partial derivatives of the underlying
functions.

Of course the point X must lie on the constraint curve, i.e.

G@,,Iq=c (1.4)

In (1.3) and (1.4) we have two equations to solve for the hvo
unknowns, Z, and X2.  The equations are usually non-linear, and we
have to make careful checks before we can say whether a solution is
possible OI  unique. Even worse, exactly the same tangency argument
would have  produced the same necessary conditions had we been
minimizing the same function subject to the same constraint. Thus our
necessary condition is far from being sufficient. However, these
questions are better handled along different lines. I shall therefore
neglect them for a while, and proceed assuming that X is the unique
maximizer.

One important fact should be noted at this point. The number Y was
introduced with a warning that its value could not be known until the
optimum choice had been found. Fortunately, Y does not appear in
(1.3) and (1.4). Thus  the lack of foreknowledge does not pose any
problems. We can calculate X without knowing v,  and then use this to
calculate the value of V.

It is useful to express (1.3) in an alternative form as

F, (.x)/C,  (2) = FZ(X)/G2(f).

Write r for the common value; then we have equivalently

(1 5)

These equations can be interpreted as follows. Having defined the
constant 71, define 3  new function

L(x) = F(x) nG(x). (1.7)

Then (1.6) says that the partial derivatives of I, are both  Nero  when
evaluated at X. Now it is a well known calculus result that. if a function
is maximized without any constraints, ail its first order parti;ll
derivatives should equal  zero at the optimum. This should be obvious
from  its economic meaning. For example, if a consumer  is given an
unlimited budget. he will choose goods until no addition to utility is
possible, i.e. until the marginal utilities of all goods are reduced to zero.
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Subject to a tricky point that will be taken up in Chapter 6, we see  that
X fulfiis the necessary first order conditions for maximizing L(x)
without any constraints. This reduction of a constrained optimization
problem to an unconstrained one is of great economic significance: the
meaning will become clear in Chapter 4.

The condition (1.6) gives us an alternative method for determining%
In (1.4) and (1.6),  we have three equations in the three numbersxt,  X2
and 8. Subject to the same warnings as were given before, we can use
these equations to complete the solution. As was the case with Y, we do
not have to know the value of 71 in advance even though we began by
defining it in terms of the optimum choice. In setting up the functionl,
we can introduce n as an ‘undetermined multiplier’, and obtain its value
as a part of the whole process of solution.

This alternative approach is called Lagrange’s method (after its
inventor) for constrained optimization. The number li is called the
Lagrange multiplier, and the function L is called the Lagrangean or the
Lagrange expression.

This alternative approach is easy to extend to cases where there are
several variables and several constraints. Clearly, two choice variables
were  used only to facilitate the geometric reasoning of Figure 1.1.
Problems with several constraints are quite common in economics. For
example, a consumer may have to  budget his time as well as his income,
or he may face a separate budget constraint at each point in time in
drawing up his optimum consumption plan over an extended horizon.
A national planner may have to ensure that his production plan does
not use more of any one of several resources than the amounts available.
For many of the results in the next few chapters, I shall use this last
example for illustration and interpretation.

Lagrange’s method is easy to extend to these problems, and the
obvious generalizations turn out  to be cornxt.  Suppose there are n
choice variables forming a vector x, and are subject to one constraint,
C(x) = c, which defines a hypersurface  in n-dimensional space. For the
maximization of F(x) we have the conditions on tirst-order  derivatives,
i.e. the first-order conditions

Fj(‘l(x)  ~~~  77Gi(f)  = 0 for j=I,?....n (1.8)

These n equations, together with the constraint. Cc,?)  = c,  enable us to
find the )I components of X and the multiplier n.  Next suppose there are
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n  choice variables and m constraints C’(x) = ci, where the  functions are
identified by superscripts to avoid confusion with subscripts denoting
partial derivatives. We need m <n,  for n  constraints would generally
reduce the feasible set to a discrete set of points, while more constraints
would generally be mutually inconsistent. To extend Lagrange’s method
to this situation, all we have to do is to define a multiplier for each
constraint. If we write n; for the multiplier for the ith  constraint, the
conditions are

Fj(,q  - 2  n,G,‘(Z) = 0 for j=1,2,...rl (1.9)
i= I

where Gii are the partial derivatives aG’/axi.  It is easy to verify that
(1.9),  and the constraining equations G’(Z) = cjr provide just the right
number of equations for finding the components Xi and the multipliers
vi.

It will be convenient to express (1.9) in a more compact form using
vectors. Let c be a column vector with components cir and G a column
vector function with component functions G’. Then 311 the constraints
can be written together as a vector equality C(x) = c. Next, the partial
derivatives F&T)  should be formed into a vector  which I shall write as
Fx(X), the subscript x indicating the vector argument with respect to
which the derivatives are  taken. 1 shall make the convention that where
the argument of 3 function is a column vector,  the vector of partial
derivatives will be a row  vector (and vice versa; we shall meet row vecr”~
arguments later). There is a good mathematical reason for this.  but the
main advantage here is that it will save  us from having to f.orm  frequent
transposes. Similarly, for each G’, the row  vector of partial derivatives
will be C,‘(X), and these will be stacked vertically to  form an m-by-n
matrix, written C,(Z).  The multipliers vi will form a row  vector P. Now
it is easy to see, from the definition of matrix multiplication applied to
(I .9),  that  the row  vector,  or l-by+  matriu, I;,(X),  equals the product
of the I-by-m matrix v and  the nl-by-r!  matrix C,(X). When there was
only  one constraint, we lud to assume that  at least  one GjCXJ wars  non-
zero.  i.e. that  G,(Z)  had  at  least one non-zero component. The
generalization for more constraints is Llvat  the  rows of the matrix C,Y(X)
should be linearly independent, i.e. that  it should Ihave  the  maximum
possible rank. no.  It is easy to  see that the condition for a sjngle
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constraint is a special case of this: 2  vectw  on its own is linearly
independent if and only if it is non-zero.

The proofs of all these generalizations are neither easy nor
illuminating. Also, other more instructive methods will be used in
deriving more general results in Chapters 5 and 6. I shall therefore omit
the proofs here, and merely summarize the result for reference

If X maximizes F(x) subject to the constraints C(x) = (‘,  and
if the matrix L‘,(f)  has full rank, then there exists a ~owvector
II such that

I-,(f)  nG,(.f)  = 0 (1.10)

Lagrange’smethod  provides a convenient and mechanical way to
solve many economic optimization problems. We define a multiplier for
each constraint, form the function L, equate  its  partial derivatives to
zero, and solve the resulting equations and the constraints. We shall
soon  see ways in which this must be modified and supplemented to
admit some complications that are relevant in economic problems,  but
the basic method will remain a valuable tool.

To maximize F(x,  v)  =x”$.  subject to the corrstr;lint

px + yy  =  IPI.

This will typically occur as  a problem oirrtility  mkmiratiun  subject
to ii budget constraint, p,  q being  the  prices of goodsx. ,v.  and 171 being
money income. (With two variables, the (x. TV) notation is simpler than
(X,.-X2).)

The  first mcrhod of solution quatcs  the slope  of ii level CURVY  of.  the
objective  function TU  that of the constraint curve. As discussed in the
Text.  we use the tinplicit function differentiation result to evaluate  the
fornlcr  35
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and the latter as -p/q. In this example, these expressions can be found
equally easily by finding an explicit equation for each curve. Thus,

F(x,  y) = Y implies y=“‘lox-aiP

and along the constraint curve, we have

Y  = m/q - (Plq)s.

In general, explicit solutions will be much harder.
Now the optimum choice (3, ~7)  satisfies the condition that the two

slopes are equal, yielding

wwB/,~)  = P/4
or Pi/a  = G/P. (1.11)

Using the budget constraint, we can easily complete the solution

px/m  = a/@  + 0) and qm  = bxQ + 0)

The solution has the property that the budget shares are constant.
This is usually not a realistic description of consumes  behaviour,  and
better ones are available (cf. Example 1.2 and Exercise I .4 below).
However, this example has great illustrative value in many situations.
Also, similar examples are somewhat more realistic in the case of
production.

The second method of solution is to introduce a Lagrange multiplier
n and to  form the Lagrange expression

L(x, y)  = XQ.l”I  ~-  ntpx t 4.”  1.

The first-order conditions for maximization of E‘(x, 4’) are found by
equating each partial derivative of L to xro.  Thus the optimum choice
(2,  .F) satisfies

ax-- ‘.,,P - np  = 0

,axyJ-  ’ - nq  = 0.

A useful  trick for solving such equations  when the constreint  is linear is
to multiply the first by x. the second by .v.  and add the two together.
We hme

(a +/3lx”v” =n(px +qy,=nm.
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If we substitute the value of n given by this in each of the equations
above, we have the solution as before. Then, if we wish, we can find ii
in terms of the parameters of the problem. This last step is left as an
exercise.

The mirror image of this problem is that of minimizing (px  +qy)

subject to the constraint

PyP  = 2, (1.12)

where L is a given scalar. This will typically occw  as a problem of
minimizing the cost of producing a target output z using factors of
production x and y, whenp and 4 are the prices of the factors, and the
production function is of the product-of-powers form in (1.12),  known
as the Cobb-Douglas function. If there are constant returns to scale, we
havea+fl=l.

The method of equating the slopes shows at once that the cost-
minimizing choice satisfies (1 .I 1). However, the sum pZ  + @ no longer
has a known value; it is the minimum cost of production to be
determined. Thus we can only say that the shares of each factor in total
factor cost are constant:

Pf/(Pf + 47) = da  + 0).  YxP.z + 4.!3  = Pi@ + 11)

With comtant returns tu scale, the exponents a and fl are directly the
facior  shares. Such constancy of factor shares is sometimes an
acceptable first approximation to observed producer behaviour,  and this
explains  ihe  popularity of the Cobb-Douglas production function.

Exxompir  1.2 Consider another cunsumer  choice problem with the
utility function

F(x, v)  = [ox’  + of  ] I if

The marginal rate  of substitution along a level curve  of this objective  is

If the indifference curves  are  to  be convex to the urigin,  the numerical
value of fhe  above should fall asx  increases or asy decreases. This needs
t < 1, Check this by drawing sume  level curves  for  special values. For
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E = 2 these are ellipses, which have the wrong curvature. Try -1,  or  213,
which yields a shape that is well known in geometry. It turns out that
the  limiting case as E goes to zero is that of Example 1. I above.

On equating the slope above and that  of the budget constraint, we
have the condition for the optimum choice

1.e. Y/X  = KPBm41”

where we define 0 = l/(1  - E). It k easy to  solve this  with the budget
balance equation pf + qJ = m to obtain

and a similar expression for the budget share of the other good.
If we use E = 0, ix. o = 1, in this equation, we have (1.11). Thus we

see that Example 1.2 is B generalizatjon of Example 1 .I. It allows the
budget shares to vary systematically with the prices. For example, if f is
positive, the budget share ofx goes to 0 asp  goes to infinity, and to 1
asp goes to zero. Therefore this example has  a greater potential for
being a reasonable description of consumes  behaviour  than the one
before. However, at given prices, the expenditures on each commodiQ
are proportional to income, i.e. both income elasticities of demand are
unity. This is not very reasonable, and there is still room for improve-
ment.

1.  I Solve the problem of Example 1.2 by Lagrange’s method

1.2 Generalize the two examples above to the case of n  variables.
(Change the notation, replacing (x, y) by (x1,x2. .x.); (01, 0) by
(01. (Yz,. r,)etc.)

1.3 It is well known in consumes  theory that the exact form of the
utility function is immaterial so long as the ordering of preference is
preserved: F and fiwill  serve  equally well as utility functions so long as
we baaye  P(x) > F(y)  if and only if&x ) > bb).  This is the case if there
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is an increasing function 4 such that b(x) = Q(F(x))  for all x. To verify
this, solve the consumer’s problem with the utility functions

‘qx, y) = x”*y3P

and ~(x,4’)=alogxtplogy,

and show that they yield the same solution as Example 1.1.

1.4 Solve the consumer’s problem with the utility function

a lo& x0) + B ho,  ~- .!+I)

where x0 andy,  are given numbers. Show that, provided m exceeds the
value m.  = px,  + qyo.  the solution is

.f = xg +@I  -~  m,yp,y  =yo  + fl(m  - mo)/q.

The parameters a and fi are positive, and u+l. By Exercise 1.3, this
involves no loss of generality. Give yourself extra credit if you can solve
this by a trick without having to do any hard work.

This provides another way of generalizing Example 1.1, allowing
richer possibilities for income and price elasticities. This formulation is
used a great deal in practice for estimating demand systems.

FURTHER READING

Readers who need to remind themselves of the economics and the
geometry of indifference curves and transformation cuwcs  can do so
using any one of:

SAMUELSON, P. A, Ecnnomics,  ninth edition, 1973. McGraw-Hill,
New York, Chapter 2h and the appendix to chapter 22.

LIPSEY, R. G. Positive Economics, fourlh  edition, 1975, Wcidenfeld
and Nicholson, London: Chapter 4 and the appendix to chapter 15.

DORFMAN, R. Prices ond Markets, Prentice-Hall, En&wood  Cliffs,
NJ.,  second edition, 1972, chapters 4, 5, and 7.
The last of these is a shade less elementary.

Those who need to know more about the mathematical techniques
have the choice of proper  mathematics books, mathematics books
designed for economists, and economics book  which explain
mathematics along the way. In this order, I offer:

COURANT, R. and JOHN, F. Introductiorr  fo CaL:ulus  and Anulysis,
Wiley-Interscience, New York and London; Vol. I 1%5,  Vol. II 1974.

YAMANE,T. Mafhernofics  for Economists. Prentice-Hall, New York:
second edition, 1968.
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ARCHIBALD, G. C. and LIPSEY, R. G. A M~themoricnl  Treatment
a/ Economics, Weidenfeld  and Nicholson, London; second edition,
1973.
As far as optimization is concerned, roughly speaking, the present book
begins where the book by Archibald and Lipsey ends.

I append a table of references from these books. In each case, the
volume (if any) is in roman  numerals, chapter in boldface, and sectjon
in arabic.

courant
and John

(I-1965, 11-1974)

Derivatives 1.2.8,9; 1.3.1-3
Partial derivatives 11.1.1-7

Chain de 11.1.6
Taylor’s theorem 11.1.7
Implicit functions 11.3.1

Linear algebra II.2.1,2
Matrix products 11.2.2
Quadratic forms II.3.Al

Integration 1.2.1-3
by parts 1.3.9,ll

Y~lllXE Archibald
(1968) and Lipsey

(1973)

3 4 - 7
4 8

4.6 4.6
4.5.7.1-6

4.7 8.6
lO.l-6,lS 15.1-4

10.6 15.3
10.12,11.7,8 -

6.1-4 13
Fn. p.  312

Accomplished  mathematicians who wish 10  read a conventional proof
of Lagrange’s method will find one in Courant  and John (II- ~1974),  3.7.



2. Shadow Prices

Thus far I have not given any real reason for introducing the
multipliers to solve optimization problems. A problem with two
variables and one constraint would be simpler without a multiplier: its
use would replace the solution of two equations in two unknowns by
that of three equations in three unknowns. With mope  vziables,  the
multiplier makes the conditions more symmetric and easier to
remember. We could have looked at cross-sections of two variables at a
time and found (n - 1) necessary conditions

then proved that there were no other independent conditions, and
solved these with the constraint C(X) = c for the n components of 2.
This would be cumbersome; it would become even more so with many
constraints.

But aesthetic appeal OI  mild simplicity are by no means the strongest
reasons for using the multipliers. We would probably prefer to do
without them if they did not convey some vital information about the
economics of the problem. This arises in the following way.

The maximization problem has several parameters as data. The
numbers ci  are obvious examples, and there will be other parameters
that appear in the functions F and G’. Economists often wish to know
how the solution to the problem changes if these parameters take
different values. In consumes  theory, for instance, we discuss the
income and substitution effects by comparing the optimum choice for
different budget lines corresponding to different prices and incomes.
For a producer facing given output prices, we want to know how is
supply plans will change if these prices or  his technology ctrange.  The
generalmethod of comparing solutions for various parameter changes is
called  comparative statics, and the importance of the Lagrange
multipliers lies in the fact that they provide the answer  to a very basic
comparative static question

To explain this in the simplesl  way,  consider a problem with two
choicevariables and one constraint. As before. write the mxCmand  as
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F(x), the constraint as G(x) = c, the optimum choice as .V,  and the
maximum value  v  = F(f). Now consider a problem which differs from
this only by a marginal increment dc  in c, so that the constraint is
C(x) = c + dc. Given enough regularity, we expect the solution to differ
from X  by a marginal amount ti.  The change in the maximum value is
F(f + &) - F(f). The first order approximation to  this can be
calculated by successive use of first order Taylor expansions for F andG
based on the derivatives at X, and using the condition (I .6). We thus
have, to first order,

dv  = F,(f)  dr, f F,(Z) d.?*

=n[(ctdc)-c]  =ndc

or dv/dc  = w.

Thus the multiplier gives us the  rate of change of the  maximum
attainable value of the criterion function with respect to a change in the
constraining parameter. In the consumer’~  problem, for example, the
multiplier wwld  be the rate at which utility could be increased in
response to tire  availability uf  greater money income: it would then be
natural to call that multiplier the marginal utility of money income.

This generalizes very easily. and 1 shall discuss the general case  to
illustrate the ease  and advantage of vectors. If ti  is the column vector
of increments in.? corresponding to a columnveck~r dc of increments
in c’.  the  first order  change in value  can be written as

dl’  =&(X)  d2
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If dv  is the first order  change in the maximum value of F(x)
as a result of an infinitesimal increment dc in c, and n is the
vector of multipliers for the constraints G(x) = c, then

dv  = ii de (2.1)
In particular, if dc;  is the only non-zero component in dc, so that

only the ith constraint changes, this reduces to dv  = rri dc;.  Thus iii is
the rate of change  of v  with respect to  ci  alone;  7ii  = au/&+

It should be stressed that (2.1) is only the first order (linear)
approximation to the change in v.  For a finite change in c,  we could
take more  derivatives and carry the Taylor expansion to higher orders
to find a closer approximation. This will be done, although for a
somewhat different purpose, in Chapter 8.

To illustrate and explain this result, consider a planned economy for
which a production and consumption planx  is to be chosen to
maximize an indicator of social welfare, F(x).  Suppose the various
constraints C’(x) = ci  equate the  aifferent  *esouce  requirements of this
plan to  the availabilities of these resources. Suppose the problem has
been solved and the value of the Lagrange multipliers obtained. Now
suppose some  power outside the economy puts an additional man-hour
at its disposal. The  problem can be solved afresh with the new labour
constraint to determine the new pattern of production. But we know
the extent of the resultant increase in social welfare without having to
do this calculation it is given hv  its original hgrange  multiplier. at
least up to a linear approximation. We con  then say tlrat  the multiplier
tells us the value of the margin;ll  product of labour  for  this economy in
terms  of its own criterion function.

Another way  of louking  at this is even  more instructive. Suppose we
use this additional  man-hour for producing more output of good ialone.
If dxi is the increase in or~~put,  and the lahour  constraint is G(x) = r,
then we must have c;,(X)  d-ri  = I in order to go on satisfying the
constraint when (’ increases by 1 (assumed to  count  as 3 small
increment). Thus tii  = l/(;i(.Y). and the  contribution to social welfxe
IS

k&F)  dr; = Fj(X)/Gj(X).

the ratio of the mxginal  conrribntion of good j 10  social welfare to its
marginal resource requirement. At the optimum, such ratios will have
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been arranged to be equal for all j, since otherwise some gain in social
welfare remains feasible by shifting some labour  from production of a
good with a lower value of this ratio to another with a higher one.
Recall that it is by such verbal arguments that the proportionality of
marginal utilities to the corresponding prices is established for the
consume~‘s  choice problem in elementary textbooks. Recalling (1 A),
the Lagrange multiplier shows the trade-off between the constraint and
the criterion. This is clearly a most important piece of economic
information, and this is what establishes the importance of Lagrange’s
method in economics.

Now suppose this additional man-hour can only be used at some
cost. The maximum cat  this economy will be willing to incur in terms
of its criterion is clearly equal to this multiplier, since any smaller cost
will leave it with a positive net benefit from using  the man-hour. In this
natural sense, the multiplier represents the price that is placed on a man-
hour in this economy. In the case of social welfare maximization,
payments 01 prices expressed in terms of units of social welfare seems a
strange concept. However, a minor modification brings us back on
familiar ground. Consider some other resource, say land. Let the labour
constraint be numbered 1 and the land constraint 2, and lel  i7, and r2
be the respective multipliers. Now suppose the economy in question is
offered an additional man-hour, but asked for payment in return of the
services of dc2  units of land. The gain in social welfare from having one
additional man-hour is rrl, while the loss from giving up the use of dc,
units of land is n2  de,.  There is a net gain so long as 11, r2 dc, is non-
negative, and therefore the maximum amount of land use payment that
will be offered in return for a unit of labour  is (n,/nz).  This is of course
the demand price of labour  for this economy, expressed relative to land.
If another economy has a different trade-off on account of different
resource  availabilities or technology, and is willing to offer a man-hour
in return for the use  of a smaller amount of land, then there is the
possibility of mutually advantageous trade between the two.

Of course, the internal organization of the economy need have
nothing to do with prices, and the multiplier (perhaps expressed relative
to anuther  multiplier) need not equal the wage that is actually paid for
each man-hour. Labour  may simply be directed to various tasks in a
command economy. Perhaps discriminatory pricing may be possible.
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iiowever,  the multipliers remain an integral part of the outcome of the
ma.ximiration  problem that is solved, and they implicitly place a value
on resources  like labour.

However,suppose  the economy does allocate resources using markets.
Suppose the markets are in a state of equilibrium, where the prices are
such that the demands and supplies chosen by individuals pursuing their
own maximization criteria are equal in the aggregate. Now suppose an
economist sets out to evaluate the performance of this economy using
some given criterion. When he solves the constrained maximization
problem, he will have  a set of multipliers for the resource constraints.
There  seems little reason why the market should replicate this
allocation, and the multipliers need not have any relation to the market
prices of resources. But there are cases when the optimum is replicated
as a market equilibrium, and the economist is tempted to say that the
economy is guided to the optimum by an ‘invisible hand’. This occurs in
the following circumstances. Suppose the criterion has the consumers’
utility levels as its only arguments, and is an increasing function of each.
If the economy is competitive, with no external effects anywhere and
no significant increasing returns  to scale in production, and if it is
possible to redistribute the initial ownership of resources as we see fit,
then such an ‘invisible hand’ result will be true. This case has been a
central concern of economic theory for a very long time. An increasing
amount of attention is being paid to cases where this result cannot be
true,  for the conditions required are clearly very stringent. In such cases
the economist must look for policies which will produce some improve-
ment over a free market, even though the outcome may fall short of the
ideal. This leads to a two-stage maximization problem in which
individuals respond to policies in light of their own criteria, and the
planners take these responses into account when choosing the best
policy in light of theirs. In this case, we have some systematic relation,
but not identity, between the planners’multipliers  and the market
prices, the difference being the tax or the subsidy which is the
appropriate policy. Examples of such problems are(i) regulation of
industries with significant increasing returns, (ii) policies concerning
externalities and public goods. and (iii) tax policies which must consider
a balance between equity and efficiency. I shall exainine some of these
in more specific contexts in later chapters.
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To evoke the connection with prices, and yet maintain a conceptual
distinction from market prices, the Lagrange multipliers are often called
shadow prices.

An economic question now arises. We expect prices to be non-
negative, but so far we have seen no reason why the shadow prices in
OUI  standard maximization problem should be non-negative. Clearly,
relaxing a constraint should enable us to achieve a value at least as great
for the criterion, but in the general statement of the problem an
increase in c need not mean a relaxation of the constraint. Trivially, we
could have written the constraint as -C(x) = --c, and an increase in the
right hand side of this would mean a decrease inc. Also, not all of the
constraints need be ones on resource  availability. We might be
maximizing the amount of investment subject to providing a given
amount of consumer goods. Now an increase in this stipulated amount
makes the economic constraint more severe, so a smaller amount of
investment is available and the multiplier is negative. These examples
show that if we want non-negative shadow prices, we must be careful to
write the constraints in such a way that an increase in the right hand
side does  relax the restrictions on the choice being made.

There is another, more important, consideration. There may be cases
in which the marginal value of a resource turns negative beyond some
point. In this range, a further increase in its use will mean a lower
maximum value and a negative shadow price. We have expressed the
constraint as an exact equality, which forces the use of a resource  even
when it would have been better to leave some of it idle. If the constraint
were an inequality, such as G(x) S c;  we would have the freedom to do
this. Of course, in adding this freedom with no other change in the
problem, we assume that it is costless to leave a resource idle, which
need not be the case: some resources like human brains may deteriorate
faster when unused. But provided we account for such costs in the
criterion, it is a good idea to allow a planner the freedom not to use
some part of resources  if this serves the interests of the chosen criterion.
As a further argument, even the economically intuitive non-negativity
of market prices would be threatened if we abandoned the assumption
of costless disposability.

To admit constraints expressed by inequalities. we must develop
some mathematical techniques. This will be done in Chapters 4 and 5.
but one of the results is important and should be evident from the
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discussion above. If a part of some resource is already idle, then any
increment in it will also be left idle. The maximum value of the criterion
will be unchanged and the shadow price will be zero. On the other
hand, a positive shadow price means that an increase in availability of
the resource  will increase the attainable value of the criterion. Clearly,
none of the amount originally available could then have been left idle
in the interests of maximization. These two arguments can be put
together in the statement that, at least one of the shadow prices and the
‘slack’ in the use of the ~esowce  will always be zero. This general
principle is one of the most important features of economic
maximization problems, and it is given the name of complmentary
slackness. It will be formulated more precisely in Chapter 6, and we
shall meet  it again several times.

Note that writing inequality constraints in the form shown above
takes care of the problem mentioned earlier, since anx which satisfies
C(x) < c will also satisfy G(x) 4 c’  for any c’ exceeding c,  ensuring that
an increase in the right hand side means freer choice. A constraint which
stipulates B minimum provision of some good will be of the form
G(x) > c. In the standard form this will become -G(x) < -c, and an
increase in the right hand side of this, i.e. a decrease in c, is again a
relaxation of the constraint.

hmple  2.  I Let us return to the consumer’s problem of Example
1.1; and find the marginal utility of money income. The multiplier was
eliminated since it was not the  Sows  of interest there, but we do have
an expression for it as part of the solution:

Now we need only to substitute the values OS,? and,i  to find
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In particular, if a + fl= 1, the last factor equals 1, and r becomes
independent of m. This makes economic sense. The case is one in which,
for the scale chosen, utility shows constant returns to scale. Also, a
doubling of money income at fxed prices merely leads to a doubling of
both commodity quantities chosen, and therefore a doubling of utility,
Therefore the marginal utility of money income is independent of the
level of money income, and equal to its average utility.

Once again, it should be stressed that the whole reasoning is odd as
far as consumer theory is concerned, for the particular cardinal form of
the utility function does not have any special meaning and a concept
such as constant returns to scale is out of place. However, welfare
economics often imposes specific cardinal forms on consumers’
utilities in the process of making interpersonal comparisons, and
then the question becomes important. Also, for production under
constant returns to scale, similar properties are true and of
interest.

Example 2.2 As a step towards establishing the ‘invisible hand’
result mentioned in the text, consider a stage of planning where the
total amounts of the various goods are known and fixed, and the only
remaining question is that of distributing them among the consumers.
Suppose there are I of them, labelled i = 1,2,  I, and that there are G
goods, labelled  g = 1,2, G. (Recall that a different notation is being
used in examples.) Let  X,  be the total amount of goodg,  and let the
amount of it allocated to individual i hex,. Each individual’s utility is
a function only of his own allocations,

ui =  U’(Xi,  ,  xiz, XiC) for i=l,?,...I.

Social welfare is an increasing function of these utility levels

w=W(u,,u*  ,... u,)

The c”nstraints are that for  each good. its allocations to the individuals
should add up to the total anwunt available.

XIX  +xzc + +.x*&.  =.K* for g=l,2,...G
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Defining Lagrange multipliers nx  for these constraints, we form the
Lagrange expression

where the range of each summation and the arguments of L are  clear.
Differentiating with respect to each xi8 using the chain rule, we have

the conditions

w;ugi  ~ 7r&.  = 0, (2.2)

where subscripts of functions indicate the appropriate partial derivatives
in the usual way. They are to be evaluated at the optimum as usual, but
the arguments are left out  for the sake of brevity.

Now suppose the resulting numbers nx  were the prices of the
respective goods in a market economy. Suppose individual i has a
money income ml, and maximizes ui  subject to the budget constraint

n,xi,  +  71*xiz f +  ncxic  =  mi

Defining a Lagrange multiplier A;  for this constraint, we have the
expression

Differentiating with respect to xip, we have the conditions

,y-X.n  =o* 18 (2 .3 )
.

If  we compare these with (Z.?), we see that they coincide provided Ai,
the marginal utility of money income for individual i, equals l/W, for
each i. If we have control over  the ownership of ~CSOUTC~S,  we can
distribute it to  adjust the mi in such  a way as to  bring about such
equalities. (It is only in exceptional cases &at  m; will fail to affect Xi,
and in these cases distribution will cease to  be a concern so that the
problem will not arise.) Of cuu~se.  this argument is of the same  status as
counting equations and unknowns, but like most  sensible arguments of
that type, it can be made rigorous. This is the ‘invisible hand’ result for
the distribution problem.
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EXERCISES

2. I Although the choice of different cardinal forms to represent
utility does not affect the optimum choice of commodities for a
consumer, it does change the scale of measurement of utility and thus
changes the value of the marginal utility of money income. Verify this
by showing that, for the second of the functions of Exercise 1.3, we
have

n = (a +/q/m,

This does have the property of diminishing marginal utility of money
income that acquires relevance in welfare economics.

2.2 Consider a consumes  planning his consumption over  two years.
He will have money income ml during the fist  year and m2 during the
second. He will face pricespt  and 4, for goodsx,  andy,  during the
first year, and p2  and qz  for goods x2 and yz during the second. He
maximizes utility

u=a,  logx, tpl  logy, +a2  logx,  +p*  logy*

subject to two budget constraints, one for each year.
Solve this problem, and find the  multipliers 71, and rr2  for the two

constraints. Examine how these  depend on money income, prices, and
the parameters that enter the utility function.

How much of mz will the consumer be willing to give up in return
for being given another unit ofm,?  Why would you expect institutions
of borrowing and lending to develop in an economy populated by such
consumers with different incomes and utility functions’!

2.3 Extend the ‘invisible hand’ result of Example 2.2 to  the following
situation where the amounts of the goods to be produced are also
decision variables. Suppose there arc Ffactors  of production, available
ic fixed amounts Z,  fbrl=  1, 2, fi’.  If amounts zrg  of factorfare
used in the production of goodx,  the outputs of the various goods are
given by

llaxirnize  was befbre.  but now subject to constraints bdancing  the use
and  the av&bility  of factors as well as those for the goods. From the
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conditions for the optimum choice, find  relations between the shadow
prices of goods and those factors, and interpret these relations
economically.

2.4 Extend the result further to a situation where the factor supplies
are also a matter for decision. Consumers supply factors, and experience
disutility from doing so. Write yif  for the amount of factor f supplied
by individual i, formulate the appropriate constraints, and proceed as in
the above exercise.

F U R T H E R  R E A D I N G

The concept of the ‘invisible hand’ is discussed in all elementary
texts, e.g. Samuelson,  op. cit. (p. 1 I),  chs. 3, 32; and Dorfman,  op.
cit. (p.  I l), ch. 8. For a proof similar to the one here, as well as an
indication of approaches that do not need derivatives, see

MALINVAUD,  E. Lectures on Microeconomic Theory, North-
Holland, Amsterdam, 1972, ch. 4.

An extremely valuable general discussion can be found in
KOOPMANS, T. C. Three Essays on the Srate  of Economic Science,

McGraw-Hill, New York, 1957, Essay 1.
Shadow prices are sometimes alluded to in elementary texts, e.g.

Samuelson  op. cit. (p. 1  I), pp. 775-6;  and Dorfman, op. cit. (p. I I),
p. 18311
For a more detailed discussion with applications, see

HEAL, G. M. 7-he Theory of Economic Planning, North-Holland,
Amsterdam, 1973, Section 4.5 and Appendix A.7.
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The two are clearly equal when k = 4.
It is a useful exercise to plot these functions, and the associated

average cost curves,  to scale on graph paper. To simplify paper-and-
pencil calculations, take a = 240, b = 15, and try values k = 2,3,4,  5
and 6. If using a slide rule OI a calculator, experiment with your own
numbers.

Example 3.2 The most important development in this chapter has
been the introduction of the idea of regarding the maximum value of
the criterion as a function of the parameters of the problem. Such
functions convey a lot of economically useful information about the
optimization problem under study, and have several important
applications. This example is designed to illustrate some such applica-
tions in consumer theory.

For a consumes  maximizing utility subject to the budget constraint
px  = m, where p is a row  vector of prices and M  is money income, the
maximum utility he can achieve is a function of p and m. This is called
the indirect utility function. Write it as V(p.  m). Some properties of it
are evident; for example, changing all prices and income in the same
proportion leaves the feasible commodity bundles x unchanged, and
thus does not affect the maximum attainable utility level; thus V(p,  m)
is homogeneous of degree zero in its arguments. Some other properties
will be studied later. The feature of particular interest at this point is
the application of the comparative static results derived so far. Write
V, for the partial derivative avjam,  and Vi for  avjap,.  If, following
the standard practice in consumer theory, we denote the Lagrange
multiplier for the problem by h,  we know from the shadow price
interpretation that

x = v*(p,  m). (3.16)

We can also apply (3.3). If all prices except the j*”  are fixed, we can
find  the rate of change of V with respect to pi,  i.e. Vi,  from (3.3) as

vi@,  m) =  -xaglxyapj  =  -hi,

evaluated at the optimum choice. Of course  the utility-maximizing
choice defines the demand functions,xi  =o’@,  m). Thus we have

NJ?  ml= -v&P,  mw,l&  m). (3.17)
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This is a useful and important result. If we are given the consumer’s
utility function and asked to find the resultant demand functions,
we have to carry out the whole constrained optimization solution,
which is a messy task even in the simplest cases. On the other hand, if
we are given his indirect utility function, we can find  the demand
functions by differentiation alone. Thus it is much simpler to
summarize our  information about consumers by means of indirect
utility functions. Particularly in models in which the consumers are
oniy one part of the story, the consequent economy of effort and of
notation makes a great deal of difference. Some such applications will
be developed in the subsequent chapters.

Next consider the mirror image problem mentioned before, where
the consumer is seen as minimizing the expenditure necessary for
attaining a given target utility level. The minimum value that results is
MW  a function of the prices and of the utility level. This is called the
e.rpmdimrefunctim,  writtenE(p,  u). Keeping u fixed and changing all
prices in the same proportion will change the necessary expenditure by
that proportion, and therefore the expenditure function is homogeneous
of degree one in p for every fixed u.  Once again, other properties will
be developed later; once again, first  order changes in its value tell us
about demand functions.

In notation analogous to that wed above, if&is the Lagrange
multiplier, we have

or  = EA.  u) (3.18)

In this case. price changes do not affect the constraint, and we can use
(3.2). This gives

Ej(p. u) = xj

evaluated at the optimum. Cost-minimizing commodity choices for a
given utility level are the compensated demand functions, c’cp.  u).  The
process is as if, following any price change, the consumer is
compensated by changing his money income just enough to leave him
on the same indifference curve. This is done in the two-good case by
sliding the budget tangentially to the indifference curve,  in order to
isolate the substitution effect of a price change. Now we have shown

CQp,  u) = qp,  u). (3.19)
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This expression is even simpler than that for the (uncompensated)
demand functions above, and is often more useful. Its applications will
be taken up later.

Example 3.3 Since the vector c of the right hand sides of the
constraints can be subsumed in the vector of parameters b used in this
chapter, it should be possible to derive (2.1) as a special case of (3.3).
To do this, let us identify b and c, and consider the special case where
G(x,  b) = C(x) ~ c. Now the partial derivative of the ith  component
function with respect to ci  is -1 if i = j and zero otherwise; thus the
matrix Gb becomes -I where I is the (may-m)  identity matrix. The
maximand  does not involve c.  Therefore (3.3) becomes

dv= [O-11(-1)]  dc=ndc,

which is (2.1). It is common to write the constraints C(x) = c in the
form C(x) - c = 0. Then the Lagrange expression (1.7) can be written as

L(x) = F(x) - 71 [G(x) - c] (3.20)

This is often useful in theoretical developments I shall not discuss, but
the practical benefit is that (2.1) and (3.3) can be stated in a simple
form: the first order derivatives of the maximum value with respect to
the parameters are equal to the corresponding partial derivatives of the
Lagrange expression, evaluated at the optimum.

EXERCISES

3.2 Give details of the limit arguments used in deriving (3.14) and
(3.15).

3.2 Consider a producer who uses a vector of inputs x to produce a
given amount of output y according to a production functiony  = F(x).
He faces prices w for these inputs. Define his minimum cost of
production as a function of w andy,  called the costfunction, C(w,  y).
Derive his factor demands for achieving minimum-cost production in
terms of the derivatives of the cost function. Interpret the Lagrange
multiplier for the minimization problem.

Now suppose he faces a price p for output, and chooses its quantity
to maximize profit. What further conditions emerge? If the profit
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function  is defmed as  the maximum value of profit regarded as a
function of all prices, how can the producer’s supply curve for output
be derived from it?

3.3 For the second case in Exercise 1.3, show that the indirect utility
funct ion  i s

v~,q,m)=~logcr+~log~-(a+~)log(ol+~)

t(a+p)logm-ulogp-Plogq,

1 and that for the case of Example 1.2, it is

V@, q, m) = m(u”p-“’  + poq-oy  /(Of).

In each case, find the corresponding expenditure function. Generalize
these  express ions  to  the  case  of  n choice  var iables ,  wi th  proper
no ta t iona l  changes .

3.4 For the production function

y=Ax,‘-,x2e2  .x,-n,

show tha t  the  cos t  func t ion  i s

C(w,  y )  =  r(!J/A)“~  (W,/O1)“~  ‘7 (w,/a,)Q’~

where y =c  PI  aj. If y < 1, calculate the corresponding profit
function. What will go wrong if y = 1, i.e. if there are constant returns
to  scale in production?

F U R T H E R  R E A D I N G

For more on cost  curves  and their  envelope proper t ies ,  see  Samuelson
op. cit. (p. 111,  ch. 24; Lipsey, op. cit. (p.  1 I),  ch. 18; and Dorfman,
op. cit. (p. Ill,  ch. 3. For the story of the discovery of the Wang-Viner
theorem, see

VINER,  J. ‘Cost Curves and Supply Curves’, reprinted inReadings  in
Price Theory, (eds.  G. J. Stigler  and K. E. Boulding),  Irwin, Homewood,
Ill., 1952.

Unfortunately, no textbook treats the indirect utility, expenditure,
cost and profit functions at all systematically. 1 hope that the treatment
here  and in  la te r  chapters  goes  a  smal l  way towards  f i l l ing  th is  la rge  gap .
Some references dealing with particular applications will appear later. A
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~nera~  md definitive analysis of production theory with applications,
~~~~~~~,z~ited  in published  form,  isLy.Le  I..”

McFP ,DDEN. D. L. ‘Cost, Revenue and Profit Functions’, University
of California, Bdrkeley,  Working Paper, 1970.

For an extensive survey of applications, with the basic  theory, see
DIEWERT W. E. ‘Applications of duality theory’, m Frontiers of

Quantitative  .6conomics,  Vol. II, eds. M. D. Intriligator  and D. A.
Kendrick,  North Holland, Amsterdam, 1974, pp. 106-71.

4. Inequality Constraints

The discussion of shadow prices in Chapter 2 pointed to a major
defect of theories of optimization which use constraints in equation
form: they force the use of ~esouces  even when it is undesirable to do
so. The methods developed in this chapter and the following two
chapters remove this flaw, and thus add a lot of economic relevance to
the theory. They do so in another way, too. In previous chapters, all
functions uwe  supposed to have derivatives with respect to all
arguments. It is often claimed that functions appropriate to economic
analysis are unlikely to be smooth enough. The results to come are valid
for continuous functions, and therefore more general. This lets us
ranove  differentiability from the list of assumptions essential to the
theory, and put it in its proper role of a convenient approximation, to
be used only when it does no great harm to the reality.

Finally, the mathematics we need here is simple analytic geometry
in particular the equations of straight lines and planes. This is an
important advantage, for it is undeniably simpler to multiply and add
numbers and compare magnitudes than it is to differentiate.

L,et  us begin with two variables and one constraint. The familiar
picture of Figure 1.1 is easily modified to allow for inequalities, and
leads to Figure 4.1. In the’usual  case, both F and G are increasing
functions ofx, so  the choice ofx can be on the constraint curve OI
below it, as in the shaded are8  .zZ It is convenient to contrast this with
the set  of points yielding unattainable, or  at best just attainable, values
of the criterion; this is the shaded area~oon  and above the level curve
through the optimum choice3.  If the two CUIV~S  have straight line
segments, the optimum choice may not be unique and &anda  may
have  points in common besidesi;  I shall  return to such problems later.
The main point to be noted here is that any points common to the two
areas  must be on their boundaries. There can be no points in &with
F(x) > Y, nor can there be points ing  with G(x) <c;  for in either case
we would be able to find an improvement on X, contrary to our
definition of it as the optimum choice.

I have used the term ‘boundary’ in an intuitive geometric way, and
this will suffice for much of our work. But it can be misleading, and a
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FIG. 4.1

better definition will help. A point is inferior to a set if it is surrounded
for some distance by points of that set. Thus a points in a set Ywlll be
an interior point if there is a positive number r such that all points of
the space within distance r of s are also in 9  In the plane, such points
will form a disc of radius r centred  on s. Then, a point which is interior
neither toynor  to the rest of the space will be called a boundary point
of%  Thus s will be a boundary point ofyif,  for any positive I, we can
fmd points of Yas well as points not in Ywithin distance r of s.  Any
point x for which F(x) > F(X) = Y will be an interior point of9  so long
as F is continuous, and any x for which G(x) < c will be  an interior
point of&so  long as G is continuous. This miniium  assumption of
regularity will be maintained in all that follows. Further, so long as F
and G are continuous and the setd  is bounded, it can be proved
rigorously that the problem of maximizing F(x) subject to G(x) < c has
a solution. Existence will not present a problem except possibly in
Chapters 10 and 11.

The usual assumption of a diminishing marginal rate of transformation
corresponds to the requirement that the set&should  be corwex, i.e.
given any two points in it, the whole of the straight line segment joining
them should also lie within the set. Let the vector co-ordinates of the
two points bex and x’. Then, as those of their midpoint are (x +x1)/2,

.-.,-_,.,... ,..,...,.,,.  _...,.. .._ . -.,.-.,. -,- ,,.. ,.~,  ,..~. ,..,,.,,,....
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those of the entire straight line segment joining them can be traced out
by (Lx + (1 6)x’),  with the number 6 ranging ow  the interval
0 Q 8 4 1. This enables us to define a convex set in terms of analytic
geometry, and will be used frequently.

Similarly, the assumption of a diminishing marginal rate of substitu.
tion corresponds to the set L@  being convex. If both assumptions are
made, the consequence, as in Figure 4.1, is that the sets lie one on each
side of their common tangent at X. Suppose the equation of this tangent
1s

0,x,  tl?2xz = d (4.1)

For this to be a meaningful equation, 8, and 82 cannot both be zero,
and for the line to pass through X, we must have

0,X,  + BzXz  =d (4.2)

For all points x on one side of the lie, the value of the expression in
(4.1) will exceed d, and for all those on the other side, it will fall short
of d. Since the line is not altered if we multiply both sides of its
equation by the same non-zero number, we can choose the sign of this
number to en.sue  that

<d forallxind
elxl +~zx,

>d forallxin  a
(4.3)

As Figure 4.1 is drawn, 0t,  0, and d will all be positive when this is
done. The economic reason  for this will soon become clear.

The results generalize very easily. In a space of any dimension, given
two convex  sets which have only boundary points in common, we can
find a hyperplane such that the sets lie one on each side of it, or  in
other words, the hyperplane separafes  the sets. A hyperplane has a
linear equation, 0x =d, where 0  is a non-zero row  vector. Then for all
points in one of the sets, we will have 0.x < d, and for the other, 0x > d.
This is quite obvious from geometric intuition, and I shall leave it to the
reada to convince himself by drawing a few pictures, and omit the
proof. However, there is a small complication to be resolved. A straight
line segment in a plane is a convex set. Moreover, it has no interior
points, as any disc around any of its points contains points of the plane
not on the line. Thus all its points are boundary points. Now two line



40 Optimization in Economic Theory

segments which cross each other are convex sets  with only boundary
points in common, but they cannot be separated by a line. The trouble
is precisely that both sets have empty interiors. This need not worry US
here, as all sets we shall meet have “on-empty interiors. But the
problem can be serious in more advanced work, particularly in infinite
dimensional cases. Thus we can use the following theorem, eve”  though
mme  general results exist -

Separation Theorem: lf.&?andC3  are two convex sets
with no interior points in common, and if at least one of the
two has a “on-empty interior, then we can fiid a “on-zero row
vector B and a number d such that

{

<d foralx  in &
tlx (4.4)

>d forallxing

In the standard maximization problem, d = OX  where X  is the
optimum choice. The separation theorem can then be paraphrased to
Sly:

(a) X  maximizes 8.x over all points x ind,  and
(b) X  minimizes 8.x over all points x inZ%.

This twofold result is a consequence of the assumptions of diminish-
ing marginal rates of transformation and of substitution, and it is this
result which gives their economic importance to the separate
assumptions. This is because it raises the possibility of decentralized
economic decisions. To give the simplest interpretation, interpret the
problem as one of producing a bill of goods x in a one-consumer
economy to maximize the utility F(x) subject to the constraints
G(x) < c.  The solution yields not only?, but also  the equation of the
common tangent. Now suppose we announce 0 to be the vector of
prices for the goods. Then the result (a) above says that the optimum 3
would be produced by a” entrepreneur maximizing the value of output,
while  (b) says that X would also be demanded by the conwme~  trying
to reach the utility level F(X) with the fininmm  expenditure. If we
assume away s”me technical complications that arise when there are
free goods, this is equivalent to maximizing utility subject to the
budget constraint 8x Gd. This separation of decisions has two
advantages. One is infomxitional:  the producer need know nothing
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about the consumer’s tastes, and the consumer need know nothing
about the production technology. For each, the relevant information
about the other is adequately summarized by the prices. The other
relates to incentives: the process relies on the self-interest of each side
to ensure  the effective implementation of the optimum.

To extend this to the more meaningful case of many producers and
many consuners,  we need further assumptions. Specifically,
externalities and income distribution problems must  be either absent “I
efficiently resolved in the process. But even if these major restrictions
are  granted, a critical problem remains. Basically, the optimum
quantitiesx and the prices0 emerge in the same calculation, and the
two appruaches  are formally equivalent. The informational gain would
be illusory if the calculation of the prices required detailed information
about resources, technology and tastes, while many would regard the
desirability of relying on self-interest to be dubious at best.

The issue of the relative advantages of centralized and decentralized
planning is a” area of very active research. One line is to calculate the
information flows in the two processes; this leads to some difficult
theory. Another is to ask whether workable approximations to the
optimum prices can be found without solving the whole optimization
problem in detail. There are special cases of some importance, such as
that of a small open economy, where this is possible. However, general
results are rare, and there are some  very serious difficulties in letting the
markets themselves find such approximations by a dynamic process.
Finally, the realistic feature of uncertainty produces a difference
between planning by quantities and planning through prices. These
developments are matters for further reading by interested readers.

If we do not assume both&and 9 to be convex, full decentralization
is not possible. Figure 4.2 illustrates this. In case (a) there, gis  not
convex and X: does not minimize Bx over it. In case  (b), &is  not convex
and X does not maximize 0x over  it. The latter is the more co-“”
case, arising from increasing returns in production. In such a case,
considerations of marginal benefits and costs have to be supplemented
by an examination of the discrete choice of whether to produce at all.
This leads us  to look at consumers’ surplus or  related concepts.

We must next find conditions on the underlying functions F and G
which correspond to convexity of the sets ganda’.  Since 9 is defined
as the set of points x for which F(x) > v,  the function F should be such
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FIG. 4.2

that whenever F(x) > Y and F(x’)  > Y for points x and x’,  and F  is a
number satisfying 0 < 6  Q 1, we also have F(Sx + (1 ~ 8)x’)  > Y. Of
course  we do not know Y in advance, so we should be prepared by
imposing this condition for all v  at the outset. A function F for which,
for all points x and x’ in its domain of definition, for all numbers Y in
its range, and for all numbers S  satisfying 0 < 6 < 1, the inequalities
F(x) > Y and F(d)  > Y together imply F(6.x  + (1 - 6)x’)  > v,  will be
called a quasi-concave function. The term may seem rather odd, but the
reason  for it will appear in the next chapter.

Similarly, whenever G(x) <c,  G(x’)  <c,  and 0 < 6  < 1, we should
have  G(6.x  + (1 - Sk’)  <c for&  to be convex. We do know c in
advance, but we are  likely to try different values for it when doing
comparative statics. We should therefore impose this condition for all e,
and a function fulfilling it will be called  quasi-convex. Now we can state
our result in terms of the properties of the functions defining the two
sets as  follows -

If X maximizes F(x) subject to C(x) < c, where F is qwi-
concave and G is quasi-convex, then there is a IOW  vector 0  f 0
such that
(a) X maximizes 0.x subject to C(x) Q c, and
(b) X minimizes 9.x subject to F(x) > F(f).

The generalization to several constraints is straightforward. The set
di  of points for which G’(x) S ci  will be convex if G’ is quasi-convex. If
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this is so for all i, then the set &of  points satisfying all the constraints,
being the intersection of the convex sass&  is itself convex; this is quite
easy to verify from the definition of a convex set.

We can write all the constraints together in vector form as G(x) <c,
where the inequality <for  vectors is simply the sane inequality
component by component. There are other types of vector inequalities
that wiU be used later. The weak inequality above does not exclude the
special case of equality of all components. If we wish to exclude it, so
that at least one component inequality will be strict (<),  the symbol <
will be used  for the vector inequality. If we want all component
inequalities to be strict, we shall  use < for the vector inequality.
Similarly in reverse, > is weak inequality in each component, >
strengthens this to a strict inequality in at least one component, and %
denotes strict inequality component by component.

Another advantage of using inequality constraints is that it is no
longer necessary to restrict them to be fewer in number than the choice
variables. The feasible set of choices can be non-trivial even with more
constraints. Figure 4.3 shows sane examples of this. Case (a) has two
constraints, and depending on the slope of the level curves  of the
criterion, the optimum could be either at the corner  where both
constraints hold with equality, or  on either face where one of them
must be a strict inequality. This illustrates how it may be desirable to
leave some  resource unused. In case(b) with three constraints, there is
in general no point where all three hold with equality, and it becomes
necessary  to leave at least one of them not binding. Which one is left as

(a)

FIG. 4.3
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a strict inequality depends on the criterion function. If the optimum is
on one of the three faces, then two constraints will not be binding. In
the case of linear programming, where F and G are linear functions, it
is possible to make more precise statements about the number of
binding constraints.

Throughout this discussion we have only required .~4 and 9 to be
convex. Their boundaries need not be smooth curws,  and can have
kinks OI  flat segments. This raises a number of possibilities, same  of
which are shown in Figure 4.4. In case (a), two  corners happen to meet
at the optimum. Now we can find many lines through X which separate
the two sets, i.e. B  is not unique. None of these lines can be called a

(b)

L

FIG. 4.4

mnmon  tangent in the usual sense, but that is not essential for the
economics of the problem. Decentralization depends only on the
separation property, namely that the two Sets lie one on each side of
the line .9x = d. Thus separation is a generalization of the notion of a
common tangent, and that is how we dispense with the requirements of
differentiability ofFand  G. In case (b), the two sets have a flat portion
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in common. This need not worry us unduly, for all candidates for the
optimum choice along this common segment must have  the same value
of F(x),  and that, after all, is the magnitude that interests us. There is,
however, a problem about decentralization. Given 8, all points on the
flat portion of d  will yield equal value of output to the producer, and
all those on the flat portion of C3 will yield the same utility to the
consumer. Their choices will be arbitrary to that extent, and there is no
reason why the independent choices should coincide. We can only make
a weaker claim, namely that if the two happen to make coincident
choices, neither will have any positive incentive to depart from these
choices. This is a standard procedure in any careful statement of
economic equilibrium theory.

If the two boundaries have vertical parts at the optimum, we may
have a vertical separating line, corresponding to 0, = 0. This is the case
in (c). However, in case (d) it is also possible to have non-vertical
separating lines even though the boundaries have vertical parts at the
optimum. Similarly for horizontal parts leading to the possibility of
8, = 0. This shows that without stronger assumptions, it is not possible
to guarantee strictly positive prices. In fact, if the boundaries sloped
upward at the optimum, the common tangent would have a positive
slope, and one of the prices would be negative. This is usually avoided
by assuming either (a) there is free disposability of both goods, when
the boundary of&cannot slope upward, or (b) both goods are desirable,
so that the boundary of93 cannot slope upward. Both these assumptions
have been implicit in all the illustrative figures.

Finally, we should note that nothing of economic substance will
change if we multiply the row  vector l3  and the related numbers liked
by the same positive number. Another way of saying the same thing is
that only the relative prices like B,lB,  matter. Of course, these relative
prices equal the common value of the appropriate marginal rates of
transformation and substitution at the optimum when we have smooth
curves, and provide the appropriate generalizations in terms of the
notion of separability otherwise.

This chapter has introduced some basic mathematical concepts for
handling inequality constraints, and carried the analysis to the point of
defining and interpreting ‘prices’associated  with the outputs or the choice
variables themselves. In the next chapter, these concepts will be used for
obtaining the shadow prices associated with the resource  constraints.
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EXAMPLES I l%mple  4.2 To illustrate the importance of inequality constraints

Exiromple  4.1 To illustrate separation, consider a simple case

m, Y) = XY a n d G(x,y)=2 tyz.

Restrict x and y to non-negative values, and consider the set &defined
by C(x,  y) < 25 and the set @ defined by F(x.  y)  > Y for various values
of V. It is well known thatdis  a quarter disc, and $3 a rectangular
hyperbola and points above. Each set is convex.

Figure 4.5 illustrates this. For Y = 10, the two sets have interior

I

FIG. 4.5

points in ccmmon and cannot be separated. For Y = 12.5, they have
only the boundary point (S/42,  S/x/2) in common, and we can separate
them by choosing 0, = 1, f?*  = 1, and d = 5d2,  CIT  any positive multiple
of all three numbers. For even larger values of Y, e.g. Y = 18, the sets  do
not have any points in common. We can then separate them strictly, i.e.
find a B  and d such that the inequalities in (4.4) hold strictly. An
example would be to take 0, = 1, o2  = 1 and d = 8.

in another context, consider a consumes  with a utility function
ax + log y. In the familiar notation, mechanical application of the
conditions gives

a = irp a n d l/y=llq.

Using the budget constraint,

rn=p*+qy=(ax+l)/n.

s o

a =p(ax f 1)/m,

and hence the demand functions

x =m/p  l/o, Y  =  P/(W).

If m <p/a,  the demand forx  becomes negative. This may be possible
in some  cases, e.g. in a portfolio selection problem where ‘short sales’
are allowed. Generally, however, we will require such quantities to be
non-negative, and the only way to ensure that is to incorporate an
explicit constraint x > 0 in the problem.

hlmple 4.3 For yet another illustration of inequality constraints,
consider the problem of distributing income between two ccmsumers
who envy each other. If the tirst  is given an income of y,  and the
second yz, their utilities are respectively

UI  =Yl -aYz2 a n d 4  =yz -flYI

where a is a positive constant; thus each derives disutility from
income given to the other. Suppose the criterion of social welfare admits
such feelings of envy, and simply maximizes the sum of utilities,
u,  +u2.

Even if there were no constraints on the aggregate income available,
this maximization problem would have a finite solution. It is easy to
verify that the unconstrained maximum is attained when y , = y,
= 1/(2a). Therefore. even if aggregate income in exces.!  of (l/a) were
available, we would choose not to use it. The envy effects would
become so strong as to overwhelm the additional utility each consumer

.._~  .-.I-  ..,......-...  -,...,  -.--  -.  -.-.-.-.-,.  -~ .-.-,,  -.~..--,----,----,----,  ...,.  -.-..-.~  ..,..  -.‘~-‘-‘.--“-.-~.-‘-.--‘-‘~~--‘.--’--’.---’ .“.‘~--.
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would obtain from his own additional income. In view of this, if y* is
the  aggregate  income given,  the  const ra int  should  be  expressed as
yl  + yz  Qy*,  and whether or not the constraint holds as an equality
should be answered in the process of solution of the problem.

EXERCISES

4.1 How would you adapt the concepts and analyses of this chapter
in order to handle constrained minimization problems with inequality
co”strai”ts?

4.2 If we made assumptions which rule out the possibility of the
boundaries of the sets&and3  having flat segments, the optimum
choice would be unique. Examine how the definitions of quasi-
concavity and quasi-convexity need to be strengthened in order to
ach ieve  th i s .

4.3 How is Figure 4.1 altered when (a) one of the choice variables is
labour,  which gives disutility to consumers and is an input to
production, and(b) when one of them is pollution, which gives
disutility to consumers and is a by-product of production of a good
which is the other choice variable? Interpret the associated ‘prices’ in
each of  these cases.

F U R T H E R  R E A D I N G

For an excel lent  discussion of  separat ion theorems and the economics
of decentralization, see Koopmans, op. tit  (p. 23). A microeconomics
textbook which  uses  such geometr ic  methods  as  wel l  as  ca lculus  ones  i s
Malinvaud, op. tit  (p. 23).

A deta i led  d iscuss ion  of  the  var ious  aspects  of  decent ra l iza t ion  can
be found in Heal, op. tit  (p. 23), Section 3.3. A pioneering analysis of
the implications of uncertainty for the relative desirability of price and
quantity control is

WEITZMAN, M. L.  ‘Prices vs.  Quantities’,Review  ofEconomic
Sfudies,  XL1(4), October 1974, pp. 477-91

The issue of optimum production decisions subject to economies of
scale is discussed at an elementary level by Samuelson, op. cit. (p,  I l),
p.  637, and at a more  advanced level by Malinvaud, op. tit  (p.  23),
pp. 225-9.
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would obtain from his own additional income. In view of this, ify*  is
the aggregate income given, the constraint should be expressed as
yl  +yz  <JJ*, and whether or not the constraint holds as an equality
should be answered in the process of solution of the problem.

EXERCISES

4.1 How would you adapt the concepts and analyses of this chapter
in order to handle constrained minimization problems with inequality
co”strai”ts?

4.2 If we made assumptions which rule out the possibility of the
boundaries of the setsdandg  having flat segments, the optimum
choice would be unique. Examine how the definitions of quasi-
concavity and quasi-convexity need to be strengthened in order to
achieve this.

4.3 How is Figure 4.1 altered when (a) one of the choice variables is
labour,  which gives disutility to consumers and is an input to
production, and(b) when one of them is pollution, which gives
disutility to consumers  and is a by-product of production of a good
which is the other choice variable? Interpret the associated ‘prices’ in
each of these cases.

FURTHER READING

For an excellent discussion of separation theorems and the economlcS
of decentralization, see Koopmans, op. tit (p. 23). A microeconomics
textbook which uses such geometric methods as well as calculus ones is
Malinvaud, op. tit (p.  23).

A detailed discussion of the various aspects of decentralization can
be found in Heal, op. tit (p.  23), Section 3.3. A pioneering analysis of
the implications of uncertainty for the relative desirability of price and
quantity control is

WEITZMAN, M. L. ‘Prices vs.  Quantities’,Review ofEconomic
Studies, XL1(4), October 1974, pp.  477-91

The issue of optimum production decisions subject to economies of
scale is discussed at an elementary level by Samuelson,  op. cit. (p.  1 I),
p. 637, and at a more advanced level by Malinvaud,  op. tit (p,  231,
pp. 225-9.

5. Concave Programming

The analysis of Chapter 2 shows that the Lagrange multipliers
measure  the trade-off between the constraints and the value of the
objective. To extend this to the case of inequality constraints, we must
mine  such a trade-off in this context, and express it in the language
of  analytic geometry.

As in other situations that have to do with prices, problems arise if
this  trade-off shows increasing returns. To avoid this, at least to begin
with,  1 shall place stronger restrictions on F and G than were used in the
previous  chapter. To draw a parallel with consumer theory, the
agsumption  for F will be that it shows diminishing marginal utility and
not merely a diminishing marginal rate of substitution.

For a function of a scalar variable, the condition of diminishing
marginal utility would be a negative second derivative. This can be
extended to functions of vector variables using matrices, but geometric
reasoning enables us to avoid that for a long time. We can characterize
such  a function in terms of geometry by saying that the chord joining
my two points on its graph lies entirely below the graph between the
fame two points. Algebraically, this can be expressed as

F(6x f (1 6b’)  > SF(x) + (1 - 6)J’(x’) (5.1)

for allx, x’ in the domain of F, and for all numbers S  with 0 S 6 < 1. A
function which has this property is called concave. This allows the
lpecial  case of a straight line, and it could be excluded by requiring the
inequality  to be strict for 0 < 8 < 1; such a function would be called
mict1y ConcaYe.

Concavity is a stronger requirement than quasi-concavity, i.e. every
mncave  function is quasi-concave but not vice versa. This is in fact the
@aan  for the term quasi-concave, which must otherwise seem rather
en&

Let  Fbe  a concave function, and suppose that each of F(x) and F(x’)
ia> y  for some scalar v.  Then, using  (5.1),  we have

F(6x + (1 ~ 6)x’)  > Sv f (1 - S)v  = Y,
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which proves that concavity implies quasi-concavity. To show that the
conwse  is not true, we need only remember the difference between
diminishing marginal utility and diminishing marginal rate  of
substitution; for example, it is easy to verify that F(x,,  x2) =x,x* is
quasi-concave but not concave.

Two other equivalent characterizations of concave functions will be
useful later. First, the set of points on and under the graph of such a
function is a convex set, i.e. if (x. y) and (x’, y’) are such that y <F(x)
and y’  < F(x’),  then for 0 <S < 1, we have

sy  +(l -S)y’<F(Sx  t(1  -6)x’).

This follows at once from (5.1). Next, write that inequality as

[F(x’tG(x-x’))-F(x’)]/6>F(x)-F(i)

Now let S  tend to zero. Provided F is differentiable, the chain rule
shows that the left hand side tends to F,(x’)(x  w’). which is the linear
approximation to F using its tangent at x’ to approximate the curve.
Thus we have

F(x) - F(x’) < F,(x’~x  x’), (5.2)

In words, the change in a concave function is overestimated by its
tangent at any point, i.e. any tangent to the curve  lies above it. For a
function of a scalar variable, it is easy to see the equivalence of these
characterizations. We shall soon meet a natural generalization of (5.2)
for functions that are not differentiable.

Similarly, a function G is called c~nva  if, for all x, x’ in its domain
and for all numbers 6  with 0 <6 < 1, we have

G(6x +(l ~6~‘)<L5G(x)t(l  -6)G(x’) (5.3)

and sttictly convex  if the inequality is strict when 0< S  < 1. The set of
points on and above the graph of a convex function will be a convex set,
and changes in such a function will be underestimated by a linear
approximation. A vector function will be convex if each of its
component functions is convex. In this chapter, I assume that the
criterion function is concave and the vector constraint function is
convex; this is c~ncwe programming.

We are now ready to discuss Lagrange multipliers. Throughout the
argument, I shall use  the production example, with x as output levels
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and c as resource  availabilities, for illustration and concreteness. No
special interpretation will be placed on the criterion, and I shall refer to
its ‘value’ in general terms.

Consider the problem in standard form: to maximize  F(x) subject to
G(x)  <c.  The maxtium  value is a function of c;  write it in the usual
notation as V(c).  This is just the function which shows the trade-off
between resources and value, and is therefore the crucial concept in the
argument. It is tempting to identify its partial derivatives as the
Lagrange multipliers at once, but we have to proceed m”re  slowly in
order to sort out some problems along the way.

The important general result on which the subsequent argument
hinges is that if F is concave and G is convex, then V is concave. The
proof is a mechanical verification, but this type of argument appears
very frequently, and its steps are not without economic interest. It is
therefore advisable to follow it carefully.

Let c and c’ be any two resource endowments, and suppose that the
corresponding values Y = V(c)  and Y’ = V(c’)  are attained at .?  and .z’
respectively. Since the optimum choices must  be feasible, C(X) <c and
C(?)  4 c’. Now let 6  be any number satisfying 0 <S < 1, and ask
whether it is possible to do at least as well as S  V(c)  t (1 - 6)V(c’)
when the resources are 6c + (1 - S)c’, which would prove concavity of
V. A natural candidate for the output vector to try is &? t (1 - 6fi’.
The first point to check is whether it is feasible. By the convexity of G,
we have

C(SX  t (1 - 6)?)  4 6G(Z) + (1 - 6)G(X’) < SC t (1 - S)c’,

proving feasibility. The next point is to find its value. Using the
concavity of F, we have

F(6x  t (1 - 6fi’)  > SF(f) + (1 ~ 6)F(X’)  = SF’(C) t (1 - s)v(c’).

Since we have found a feasible vector yielding value at least as high as
the expression on the extreme right, the maximum value, V(Sc  t
(1 - 6)c’), can be no smaller. This is the result we are trying to prove.

The economics behind this is that the convexity of G rules out
increasing returns, thus ensuring that a weighted average of outputs can
be  produced given the same weighted averages of resources, and then
the concavity of F results in its yielding at least the same weighted
mrage  of values.
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As V is a concave function, the set of points on or  below its graph is
a convex set. This set &is the collection of points (c,  v)  such that
Y < V(c), i.e. value of at least Y can be produced using I~SOUPXS  of no
mope  than c.  Therefore it is natural to think of it as the set of produc-
tion possibilities for ‘value’. Clearly, given any point in 4  all points to
the southeast of it are also in & (Equivalently, V is a monotonic non-
decreasing function.) This is because we have written the constraints so
that an increase in c widens the choice. The set is (m + 1) dimensional
when m is the number of constraints. Figure 5.1 shows it for the case

FIG. 5.1

m = 1. We see that V being an increasing concave function corresponds
to a positive but diminishing marginal return to the resource  in
producing value.

Convex sets are meant to be separated from other convex sets. To do
this in the most useful way, choose a point (c*.  v*)  in&such that
v*  = V(c*).  This must be a boundary point, since the point (c*,  Y* - r)
is in&and  (c*,  v*  +r) is not in&,  for any positive r. Now let gbe  the
set of all points (c.  V) such that c <c* and Y > Y*,  i.e. value Y cannot be
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attained with rescwces c save  when c = c*  and Y  = Y*.  Thus the set ~4
saves  the same function as the corresponding set in Chapter 4. Clearly
.iAis  a convex set with a non-empty interior, and &and ~8  have only
boundary points in common, thus the separation theorem can be
applied. For reasons that will become clear in a moment, I write the
equation of the separating hyperplane as

rvenc=d=rv*-nc*

with the signs arranged so that

I

4d for all (c, V) in &
LY ?Ic

>d for all (c,  v)  in .@
(5.4)

The first point to note is that the number L and the row vector II
must both be non-negative. For example, suppose that L is negative.
Now consider the point (c*.  Y* + I), which is clearly in 3. We have

L(Y*  + 1) - IIC* < LY*  ~ IIC* = d,

which contradicts the separation property. Similarly, considering points
(c*  - ei, v*)  where ei  is a vector with its ith  component equal to 1 and
all other components zero, we find that ni must be non-negative, for
each i.

Next observe that (c*,  v*)  maximizes (LY  - rc) over&This  has an
important interpretation. Consider a hypothetical producer who
‘manufactures’ value of the criterion out of the inputs. If he is paid a
price L for each unit of value, and charged prices n for use of the inputs
c, then a production plan (c, V) will yield him a profit of (LY - nc). Then
(c*,  v*)  will be a profit-maximizing choice for him from among all
conceivable  plans, i.e. the whole set ~4.  There may be an aggregate
constraint of c*  on resource  availability, but there is no need for the
producer to be aware of it, since he will not wish to violate it anyway
The interpretation is special, but the principle is general and important:
constrained choice can be converted into unconstrained choice if the
proper scarcity costs or shadow values of the constraints are netted out
of  the criterion function. To the economist, this is the most important
feature of Lagrange’s method in concave programming.

Again, only relative prices matter, and nothing of any substance is
changed if we multiply L, II, and d by any positive number. This raises
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an attractive possibility: if we choose marginal value itself as numCraire,
thus setting L = 1, then the resource prices 71 will become precise
generalizations of the Lagrange multipliers of Chapter 2. But before we
choose a num&aire, we must ensue  that it is not a free good, and
nothing so far guarantees L  > 0. The entire vector (1, n) cannot be zero,
but that is not enough.

Let  us see what happens if L  = 0. Then at least one component of n
must  be non-zero, i.e. positive. The equation of the separating
hyperplane becomes --lit  = --11c*,  i.e. n(c c*)  = 0. For all (c,  V) ins’,
we have -nc  < --IIc*,  i.e.  n(c - c*)  > 0. In the one constraint case this
means that the hyperplane is vertical at c*,  and the entire set dlies  to
its right. This means that production is impossible at a level in the
domain of definition of F if the resouce  availability is less than c*.  This
is commonly cawed by indivisibilities.

Figure 5.2 shows two examples of this. In case (a), the marginal

(a)

FIG. 5.2

lb)

product of the resxuce  is infinite at c*  and falls gradually; thus only a
vertical separating line will do. In case (b) this is not so, and while a
vertical separating line exists, it is also possible to find such lines of
finite slope, and thus positive L.  This shows that the conditions soon to
be found for ensuring this are only sufficient and not necessary.

The concept of indivisibility gives us a hint for finding a natural
condition. If the set &has  any points to the left of c*,  its boundary
cannot have an infinite slope at (c*,  v*).  For this to be true, there must
be an x0 such that G(x’) <c in the domain of definition of F, for then
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we can choose (G(x’), F(x’)) as the desired point. If there are several
constraints, we must assume  this for each of them, i.e. that there is an
9’ such that C(x’j  < c. This condition will be called the consmini
qualification. It is possible to use a much weaker condition, and thereby
have a stronger result. But the proof is quite complicated, and is best
left for more advanced work.

It is easy to prove formally that the constraint qualification ensuresa
positive L. Otherwise at least one component of K would be positive.
Now every component of (G(x’) - c)  is negative. So if we multiply the
corresponding components of these vectors, we  will have all non-
positive products with at least one actually negative. Adding them
together gives n(C(x’)  -c) <O.  However, the point (G(x’), F(x’))  is
in d,  and by the separation property we have -rC(P’)  G --nc, i.e.
n(C(x’)  -c) > 0. Thii contradiction forces us to conclude that the
supposition L = 0 must be wrong, thus proving the result.

Henceforth I shall assume  the constraint qualification to be satisfied,
and normalize to L = 1.

Now for any c,  the point (c.  V(c)) is in & So by the separation
property we have V(c)  ~ ix  < V(c*)  - nc*,  or

V(c) - v(c*)  G n(c  - c*). (5.5)

The linear function on the right hand side thus overestimates changes in
V. This looks very much like (5.2),  thus strengthening our  idea that n is
closely related to V,(c*),  the vector of partial derivatives of Vat the
initial point c*.  But one difficulty remains: we cannot be we that V is
differentiable. So far in this chapter we have not even assumed F and G
to be differentiable, but even if they are, Vmay  fail to be. This is
because different inequality constraints may hold as exact equalities for
different values of the parameters, and in the process of moving from
one such r&$x  to another the slope of V may change suddenly.
Consider a case  where some resource is just on the point of becoming
superfluous at the margin. Any further increment in it will be left
unused, and the ‘rightward’  partial derivative of V will be zero. What
happens for a slight reduction in the amount available depends on
whether the point of superfluity is reached with the marginal product
of the resource  dropping smoothly. If so, a small decrease in its
availability will cause a second order small loss  in value, and the
‘leftward’ partial derivative will be zero as well. If the marginal product
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stays above a positive level before reaching this point, then the leftward
partial derivative will have to be positive, and any multiplier between
this value and zero will do for separation. This is the case in linear
programming, where the marginal product is constant because of
linearity right up to the point where the constraint ceases to bind.

Even when such discontinuities exist, a very natural generalization of
the concept of diminishing returns holds. The leftward partial is never
less than the rightward, which is like saying that the marginal product
of the kth  dose of a resource  cannot exceed that of the (k l)‘h. T h i s
is a simple consequence of the concavity of V, which is really the
economically important property.

The asterisks having served their purpose of distinguishing a
particular point in the (c, v)  space for separation, let us drop them, and
consider a point (c,  V(r)) with its associated multipliers r, and compare
it with a neighbouring  point (c + hei, V(c  + hei)), where h is a number
and ei  a vector with its ilh component equal to 1 and allathers  zero. As
in (5.5) we have

V(c + hq)  V(c) Q hnj.

If h is positive, we can divide by it to write

[V(c  +  he<)  - V(c)] /h < 9.

It is easy to show that as Visa concave function, the left hand side is
a monotonic non-increasing function of h, and therefore must have a
limit ash goes to zero. This limit is what I have been calling the
‘rightward’ partial derivative, which 1 shall denote by V,(c)+. Thus we
have proved that V,(c)+  <iii.  If h is negative, division reverses the
direction of the inequality, and defining the leftward partial V,(c)-
similarly, we have V,(c)_ > ni.  Thus we have the final result
generalizing the notion of diminishing returns and relating the
multipliers to these derivatives:

Vi(C)-  > 7ri > V,(c)+ (5.6)

This chapter has built up the desired interpretation of the multipliers
in terms of the maximum value function. The next chapter will
complete the story by considering the implications in terms of the
choice variablesx.  Then the relevant results can be stated precisely, and
some applications discussed.
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EXAMPLES

i-J\ot”ple  5.1 To illustrate the constraint qualification, we have the
fi~nrous  problem of maximizing F(x.  .v) = xy subject to C(x.  y) =
(.Y  +J’ 1)” < 0. The  constraint  will turn out to be binding, and we can
wite  the  conditions in terms of a multiplier ii as

y 377(x +I’ l)* = 0

x-3n(x+y-1)2=0.

tlut the constraint is (x +J’  1)3 = 0, so (x +y  1)’  = 0 and therefore
the  conditions become x =v  = 0. However, this violates the constraint.

Cunversely,  suppose we use the conditions to derive x =y,  and then
USC  the constraint to conclude that x =y  = 31.  This will in fact turn out
tc be the correct  solution. However, each condition then becomes
Lh n0  = 0. This can be true only  if n  is infinite.

Since only relative prices matter, an infinite ?I  is equivalent to a zero
i in our  earlier notation. Thus the constraint qualification must have
failed. Unfortunately we cannot check this directly since the form we
used works only  for convex G.

However, we can relate the problem to the condition in Chapter 1
which required at least one partial derivative of G to be non-zero at the
optimum. In this case each of these is 3(x tp  l)‘,  so both are zero
when x = y = %.  Then, recalling the definition of n  as the common value
in eqn. (1 S),  WC see why it is infinite in this case.

hmple 5.2 Consider the maximization of

F(x)=1 t[l-(x-2)*]%

subject to x 4 c,  where the positive value of the square root is taken.
The graph of the function in (x, y)  space is then the upper semi-circle
of a circle of radius I and centre  (2,l). The function is defined only for
I 4x < 3. This is shown in Figure 5.3, which also  shows the
corresponding maximum value function v  = V(c). For c < 1 the
function is not defined. For 1 <c < 2 it follows the function F(x).
Iiowever,  when c > 2, it becomes desirable to maintain x = 2, thus
achieving the value V(c)  = 2 whenF(c)  would be smaller, or undefined
ISor  c > 3. Thus V(c) remains constant at 2 for c > 2.

This example illustrates another constraint qualification problem, as
well as the need for inequality constrainfs~
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3 ,Y.l

FIG. 5.3

EXERCISES

5.1 Reformulate the analysis of this chapter, including the
appropriate concavity and convexity conditions to be imposed on the
various functions, to deal with constrained minimization problems.
Draw the analogue  of Figure 5.1, and obtain the multipliers from a
separation argument.

5.2 For the problem of maximizing F(x) = fx + sin x subject to
x <c,  draw the maximum value function v  = P’(c).

(Note: For drawing the graph of F(x), recall that d(sin  x)/dx  = cosx,
and that cos  x < -1 when x is between 120’ and 240°,  and of course
periodically at 360’  intervals.)

FURTHER READlNG

A more general treatment of the constraint qualification can be
found in GALE, D. ‘A Geometric Duality Theorem with Applications’,
Review ofEconomic  Studies, XXXIV(l),  January 1967, (pp. 19-24).

For a proper mathematical treatment of convex sets etc. see
EGGLESTON, H. G. Convexity, Cambridge University Press,
Cambridge, 1963.

6. Results and Applications

To complete the  discussion of concave programming, let us recast
the discussion surrounding Figure 5.1 in terms  of the underlying choice
variables. Suppose X  maximizes F(x) subject to C(x) <c,  and let n be
the  vector derived from the separating hyperplane at (c.  V(c));
remember that we have dropped the asterisks. Now the point (F(X),
c;(f))  is in 4  and from the separation property (5.4) we have

F(f) - nG(X)  Q t’(c)  - AC.

Of course  I+) = l’(c), and therefore

(6.1)

n[c G(f)] GO. (6.2)

This causes a problem. Every component of ?I  is non-negative, and since
X satisfies the constraints, every component of [c - G(f)]  is also non-
negative. So every term in the inner product of these vectors on the left
hand side of (6.2) is non-negative. There is only one way in which the
sum of such terms could be non-positive and that is for each of these
terms and therefore the whole inner product to be zero. Thus, for each
i, ri[ci  ~.~  G’(Z)] = 0, i.e.  at least one of these two factors must be zero.
The whole result can be stated in the form that for each i, we must have

Ilj > 0, C’(Z) < ci with at least one equality. (6.3)

Then both (6.1) and (6.2) also become equalities.
This  is the important economic implication of inequality constraints

that was mentioned in Chapter 2, for (6.3) says that each resource is
either fully used 01 has a zero shadow price. Note that there is nothing to
prevent both ni = 0 and C’(Z) = ci  being true for any i. This can happen
when a constraint is just about to cease  being binding. What (6.3) rules
out is the possibility of an unused resource  having a positive shadow
price.

When two vector inequalities are such that in each component pair at
least one exact equality must hold, i.e.  no two component inequalities
can be slack together, we say that the vector inequalities show
complementmy  slackness Thus we can restate (6.3) as

n>O,G@)<c with complementary slackness. (6.3)
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Next consider the fact that for any x, the point (F(x),  G(x)) is in the
set a? Since (6.1) has been proved to be an equality, the separation
property can be written as

F ( x )  nG(x)  <F(j) - d&f), (6.4)

i.e. Z  maximizes F(x) ~ K(x) without any constraints. This is an
alternative statement in terms of the underlying functions of what
Lagrange’s method achieves, and is more convenient than the earlier
statement in tams of the set & This completes the characterization
stated in the result -

Suppose F is a concave function and G a vector convex
function, and that there exists an x0 satisfying C(x”)  Qc.
If X  maximizes F(x) subject to G(x) S c,  then there is a row
vector n > 0 such that
(i) X maximizes F(x) - s(x) without constraints, and
(ii) n > 0, C(2)  <c show complementary  slackness.

None of this requires F and G to have derivatives. If they do happen
to be differentiable, the first-order conditions necessary for (i) aboveare

F,(X)  - nG,($  = 0. (6.5)

This looks exactly like (l.lO), but the inequality constraints make a
difference. To solve for X  and n,  we must now use (6.5) together with
the complementary slackness conditions (6.3). Each pair of these
contributes one equation, and there is no difficulty in principle about
having enough equations. But we do not know in advance for any i
whether that equation is going to be ni = 0 OI  G’(f)  = ci. We may have
to resort to the crude device of trying all possible combinations (2*  of
them) and checking each for consistency, hoping to rule out all but one.
This can be very tedious, but that is a price to be paid for the economic
realism of inequality constraints. After a little experience, we can tell
for many standard economic problems which constraints are sure  to
hold as equalities, and this cuts down the number of cases to be
checked. Thus, for a consumes  who is not satiated, we can be sure  that
his budget constraint will be binding.

If F and G are not differentiable, we can establish inequalities for the
leftward and rightward derivatives using techniques now familiar:
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F&m  nG,(.$  > 0 > F,(f)+  - rG,(,T)+

The solution is then even more complicated,

(6.6)

There is another point where the problem of this chapter differs
from that in Chapter 1. The conditions there  were derived without any
reference to the concavity ox  convexity of functions. It is possible to
use separation arguments to obtain such necessary conditions without
assuming concavity or convexity even  with inequality constraints. This
involves some rather specialized theorems in mathematics, and I shall
not go into the subject here, but merely mention some important
differences involved. First, conditions (6.5) remain valid, but exactly
the same conditions would result for a problem of minimizing F(x), or
of maximizing it with respect to some  variables and minimizing it with
respect to others, or  in general for a stationary point of F. Further, the
same conditions apply to a local stationary point, i.e. where F is
stationary in comparison with points in some small neighbourhood.
Thus the first-order conditions are not sufficient for a trueglobal
maximum. In the case of concave programming, we shall soon see that
they are.

Secondly, a different constraint qualification is necessary. Finally,
and most important, even if.? is the true global maximizing choice,
without concavity we cannot be sure that it maximizes the Lagrangean;
it may merely yield a stationary point of it. The problem is similar to
that of determining the optimum output when there are economies of
scale. The first-order condition of equality between price and marginal
cost is still necessary, but profit need not be maximized even locally.
The interpretation of Lagrange’s method as converting constrained
‘value’ maximization to unconstrained ‘profit’ nzximization  must be
confined to the case of concave programming.

However, if we find an2  that maximizes the Lagrangean  expression
and shows complementary slackness, then we can be assured that it is a
global maximizing choice. This yields sufficient conditions. To prove
the result, consider any feasible x, i.e. one satisfying G(x) < c. Since X
maximizes L without any constraints, we have, afortiori,

F ( i )  S(f)  > F(x)  nG(x).

Next, remember that ni > 0 for each i. If we multiply G’(x) < ci  by ni
and add, we will find nC(x)  < K for the matrix products. However, if



62 Optimization in Economic Theory

thisis  done for f, we will have either G’(f)  = ci  “ I IT<  = 0, and therefore
niG’(?) = ?iici  for each i. Adding, G(X) = w.  The two  together yield

nG(f)  a rqx),

and adding,

F-(:(x) > F(x).

Since x could have been any feasible choice, we have proved that .F is a
global maximizing choice. The argument so  far has not used  concavity
at all. The need for it arises because an X  satisfying (i) is not easy to find
in the abstract. If (F nG) is concave, for which it is sufficient to have
F c”ncavc  and G convex, then the task is simplified. We need only find
anx satisfying (6.5),  “ I in the absence of differentiability (6.6),  and it
will do the job. In the differentiable case, for example, knowing that a
linear approximation overestimates changes in a’concave  function, we
have

[F(x)  - nG(x)]  - [ F ( f )  nG(i)]  < [F,(Y)  nC&)]  (x Z)  =  0 .

In the more general case, the same result follows from separate linear
approximations to the right and the left. All this is summed up as
follows -

If 17 and ii are such that
(i) X maximizes F(x) ~ s(x),  and
(ii) li > 0, C(f) < c show complementary slackness,
then * maximizes F(x) subject to G(x) 4 c. If (E; - nG) is a
c”ncave  function, or  even more strongly, F is a concave
function and G a convex function, then (6.5) “I (6.6) will be
sufficient for(i) above.

Note that no constraint qualification appears in the sufficient
conditions.

In many economic problems, a natural requirement is that the choice
variables should be non-negative. It may be optimum in some cases to
meet some of these constraints with equality: specialization of
production in some cases of international trade is an instance of this.
We can use the results above t” take care of such constraints quite
easily, since x > 0 can be written as -x $0, and -x is a convex
function. But the special case is of such frequent “ccur~ence  that it will
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be useful t” state the form of the result explicitly for it. Suppose we
have some constraints G(x) <c in addition to the non-negativity ones.
All we have to do is to define a vector of multipliers li for these other
constraints and another, p,  for the constraints -.x < 0, and the result
for necessary conditions becomes -

Suppose F is a concave function and G a vector c”nvex
function, and that there exists an x0 satisfying G(x’) <c,
x0 > 0. If f maximizes F(x) subject to C(x) <c, x > 0, then
there are row  vectors n and p of appropriate dimensions such
that
(i) 1 maximizes F(x) - nG(x)  + px  without constraints,
(ii) ?I  > 0, C(Z) <c show complementary slackness, and

(iii) p > 0, X > 0 show complementary slackness.
IfF and C are differentiable, then (i) implies

F,(Z)  - 7TGx(,q + p = 0. (6.7)

Otherwise we have the appropriate left and right inequalities. These,
and a statement of similar sufficient conditions, are left as exercises.

Example 6.1 The simplest illustration of the effect of non-
negativity conditions is that of maximizing F(x) for a scalar variable x,
with x > 0 as the only constraint. Then (6.7) becomes F’(Z) = --p 4 0,
and at least one of p and X  must be zero by complementary slackness.
Thus we have two possibilities, either*  = 0 with F’(0) Q 0, “I.% > 0
with F'(Z) = 0. A simple sketch will show the meaning of this. It will
also show how the same conditions are sufficient if F is concave.

Example 6.2 The methods of this chapter enable us to solve the
problem introduced in Example 4.2. Suppose we are to maximize
F(x,  y) = nx  f logy, subject t” the constraints px + qy < m, x > 0 and
y > 0, To save space, I shall assume it known that the budget constraint
must hold as an equality, thus removing the need for some checking,
and that the constraint y > 0 will not bind; then its multiplier will be
zero and there will be no need to introduce it at all.  However, as we
saw, we do not know in advance whether x > 0 will matter. Let p  be
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the multiplier for it, and II  that for the budget constraint. Then OUI
conditions are

o~irptp=O.l/y~nq=O, a n d

p > 0, f > 0 with complementary slackness.

Let us try the different possibilities.
First suppose p > 0. Then by complementary slackness X = 0, and

from the budget constrainty = m/q. The second of the derivative
conditions implies n = l/(qj)  = l/m, and finally from the first,

p=np-a=p/m-a.

This is consistent provided p/m (1  > 0.

Next suppose X > 0. Using  complementary slackness, the conditions
become those of Example 4.2, and tracing the steps there, we have
consistency provided p/m a < 0.

Finally,  we can have both X and p zero if p/m = a. These three cases
are mutually exclusive and exhaustive, i.e. one and only one of them
must hold, and therefore the solution is complete.

Example 6.3 The most important application of the results of this
chapter is the theory of linear programming. Here we try to maximize a
linear function

F(x) = 4.x

subject to linear constraints and non-negativity constraints

G’(x) = b’x < ci fo r i=l,2,...m

X>O,

(6.8)

(6.9)

where n and b’  are n-dimensional row  vectors. Stacking the b’  vertically
into an m-by-n matrixB,  we can write the constraints in vector form

G(x)=Bx<c. (6.10)

The concavity and convexity conditions are fulfilled. So is the
constraint qualification if the constraints do not reduce the feasible
choices to a space of dimension smaller than n.  As a matter of fact, for
the kinds of seasons  that Figure 5.2 explained, this will not matter
8.*pay.
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We have the partial derivatives Fj(x) = ai  and G,‘(x)  = bii.  therefore
F,(x) = a and G,(x) = B. We can now write down the necessary
conditions of the standard result. There is one small notational
difference. Since in this problem we shall have occasion to consider the
multipliers as variables, we denote their particular values corresponding
to the solution of the problem at hand by placing bars over the
corresponding symbols.

The conditions are sufficient, too, on account of concavity. They are

a-iB+p  = 0 (6.11)

f>O,BX$C with complementary slackness (6.12)

p>o,  x>o with complementary slackness (6.13)

Now define7  = c BX,  and using (6.1 l), write this, (6.12),  and (6.13)
in the equivalent form

<tB,ftj=o (6.14)

.iZ>O,-irB<-U with complementary slackness (6.15)

y>o,  ii>0 with complementary slackness (6.16)

Except for an interchange of rows and columns, these are exactly like
(6.1 l)-(6.13),  and are therefore necessary and sufficient conditions for
the problem of choosing variables n  to maximize - iic, subject to the
cO”StIal”tS

-7s < 42, Tr  a 0,

i.e. to minimize a(n)  = nc (6.17)

subject to

II>0 (6.18)

a n d

r(n)  = nB  > (1. (6.19)

We see at once that the new linear programming problem defined by
(6.17),  (6.18) and (6.19) stands in a very symmetric relation to the
earlier one defined by (6.&I), (6.9) and (6.10). It is customary to call the
new problem the dual of the original one, which is then called the
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primal. The change from maximization to minimization, and the
interchanges of rows and columns, and of coefficients in the objective
function and the right hand sides of the constraints, are all features that
should be obvious on inspection of the statements of the problems. On
inspection of the respective optimization conditions, we see a more
interesting interchange of the choice variables and the multipliers. The
optimum choices X for the primal become the multipliers for the dual,
and vice versa for ii. Also, 7 is the vector showing the gaps between
resource availabilities c and uses BX  for the primal, and p is the vector
serving the same purpose for the constraints of the dual. We now see
that ,0  serves as the multipliers for the non-negativity constraints for the
dual, and vice vex+ for p.

Complementary slackness enables us to obtain another interesting
relation. Consider the conditions (6.12). For any component i, we have
either

“I

(B&  = ci and therefore

7ri = 0, and once again 77,(B.$  = nic;(=  0).

Adding these over  i to obtain the matrix product of the vectors, we
have iiB.Y = nc.  Similar arguments apply to (6.15),  thus yielding

ti=iTB,?=iic. (6.20)

Thus the maximum value of the primal is equal to the minimum value
of the dual.

This also provides a sufficient condition for solution of linear
programming problems. Thus, if we succeed in finding feasible choices1
and ii for the respective problems such that af  = ?ic, then the choices
are optimum, each for its own problem. To see this for the primal,
consider any x satisfying (6.9) and (6. IO). Since 7i is non-negative, we
can multiply each component inequality in (6.10) by the
corresponding component of 7? and add to find iiBx  Q iic. Similarly,
since ii satisfies (6.19) and x is non-negative, we have iBx  > ax. Then,
for any feasible x, we have ax  <ax, which is the result. The same
argument applies to the dual. This is sometimes a useful trick for finding
the solutions to such problems.
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This is in essence the duality theory of linear programming except
for one point. We have paid no attention to the problem of existence of
solutions. The problem can arise because the constraints may be
lnutualIy  inconsistent,  or  because they may define an unbounded
feasible set in a direction which makes the objective function
unbounded ova  this set. Here, too, a duality obtains. If the primal is
infeasible, then the dual is either infeasible or unbounded, and similarly

: the other way around. If both are feasible, then both have optimum
i solutions and the earlier theory is valid. I shall omit the discussion of
~ this.

Finally, it is easy to see that if we take the dual as our  starting point
and go through the mechanical steps of finding its dual, we return to
the primal. In other words, duality is ‘reflexive’.

An important economic question is the interpretation to be assigned
to  p.  In our  usual interpretation of the problem as one of production,
when X yields the optimum output levels and ir the shadow prices of the
resources, a natural interpretation is available. The jth  component of the
left hand side in (6.19) is Zin&‘.  Since b: is the amount of the ith
resource needed to produce a unit of good j, this is simply the shadow
cost for a unit output of good j. Since ai  is the value placed by the
objective function on such a unit, the constraints (6.19) amount to the
requirement that at the shadow costing, no good should make a profit.
This is natural, since it would have been desirable to expand production
had there been such a profit, given the linearity of the problem. On the
other hand, p is then the vector of the shadow losses in the production
of various goods, and the complementary slackness conditions (6.13)
say that production will not be undertaken for a good involving a
shadow loss. Once again, because of linearity, the occurrence of a
positive loss is a signal of the desirability of shutting down that line of
production altogether. This makes economic sense, but I omit details of
the argument to save space. Similarly, I must leave other aspects of
linear programming, such as characterization and computation of
solutions, to specialized books.

EXERCISES

6.1 State the analagues  of the results of this chapter for minimization
problems. Devise proofs for at least one of them.
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6.2 Solve the problem of Example 4.3 using the methods of this A useful reference that will help in avoiding pitfalls in optimization
chapter . theory and practxe  is

SYDSAETER, K. ‘Letter to the Editor on Some Frequently

6.3 What conditions should be imposed on the -VCSUS  functions
involved in the ‘invisible hand’ problem of Example 2.2 and Exercise  2.3
if the conditions found to be necessary  for optimization there are also

Occuring  Errors in the Economic Literature concerning Problems Of
Maxima and Minima’, Journal ofEconomic  Theory, 9(d), De
1974, pp. 464-6.

to  be  suff ic ient  according to  the  resul ts  of  th is  chapter?

FURTHER READING

For a detailed account of linear programming and its applications to
economic theory and practice, the best reference is still

DORFMAN, R., SAMUELSON, P. A. and SOLOW, R. M. Linear
Programmingand  Economic Analysis, McGraw-HIII,  New York, 1958,
especia l ly  chs .  l-7.

A more advanced treatment of optimization with inequality
cons t ra in t s  wi th  appl ica t ions  in  economics  can  be  found in

INTRILIGATOR, M. D. Marhemotical  Optimization and Economic
Theory, Prentice-Hall, En&wood  Cliffs, NJ., 1971, chs. 4, 5.

The classic article on the necessary conditions for optimization with
no concavi ty  requi rements  i s

KUHN, H. W. and TUCKER, A. W. ‘Nonlinear programming’, in
Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, ed. J.  Neyman,  Univers i ty  of  Cal i forn ia  Press ,
Berkeley, Cal. I950  (pp. 4X1-92).
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often not fulfilled in economic problems. For example, budget
constraints are not jointly convex in quantities and prices, and utility
and production functions are not jointly concave in quantities and
other parameters. Therefore we have to seek more specific results.

As an example, consider the case where the parameters do not affect

the constraints. Then the choice that is optimum for one set of
parameter values remains feasible for any other set, and this fact allows
some very simple and useful value comparisons. One such result is the
following

Let V(b) denote the maximum value ofF(x, b)  subject to
G(x) 4 0. If F is convex as a function of b alone for any fixed
value of x, then V is convex.

To see this, write V(b) = F(.T,  b) and V(b’)  = F(T’,  b’) as usual. Let
0 G-6  < 1, and consider the weighted average parameter values,
6b + (1 - S)b’.  Supposex*  is the optimum choice for this set. Sincex*
is feasible when X or  X’  is chosen, we must have

F(x*,  b) < F(f,  b) a n d F(x*,b’)<F(X’,b’).

Then, using convexity of F as a function of b, we have

V@b+(l  -S)b’)<F(x*,6bt(l  -6)b’)

~6F(x*,b)t(l-G)F(x*,b’)

SW@,  b)+(l  -6)%T’,b’)

= 6V(b)+(l  -6)V(b’)

one very  interesting feature of this result is that no conditions hadto
be  imposed  on  G. Convexity, or  even quasi-convexity, in the choice
variables, such an important condition in similar proofs  earlier, is not
required  here.  Of cowx  some conditions will he necessaly  t0 enSUE t h e

existence  of  a solution, but given that, the fact that the feasible Set
remains  unchanged as parameters vary is all  we need.

This result  has  some  important applications that will he considered

7. Comparative Statics

The concept of comparative statics was introduced in Chapter 2, and
some examplesof it have appeared in earlier chapters. The interpretation
of Lagrange multipliers as shadow prices was based on comparative
static considerations, and the proof of concavity of the maximum value
function V(c)  in Chapter 5  was also of this nature. I now turn to
comparative statics for more general parametric variations. The general
results are rather weak in an abstract context, hut have many and varied
applications. This produces a chapter with a brief text and lengthy
C?Xll”plL?S.

In the notation of Chapter 3, let b he any vector of parameters.
Consider the problem of maximizing F(x,  b) subject to C(x,  6)  4 0, and
let V(b) he the maximum value. Then we have the following general
r e s u l t

If F is concave and G convex, in each case jointly as a
function of the choice variables and parameters, then V is
CO”CtWl2.

The proof follows the line used so often before. Let  b and b’he any
two values of the parameter, and X and X’  the corresponding optimum
choices. Thus G(.?,  b) S 0, V(b) = F(iZ,  b) and C(?, b) < 0, V(b’) =
F(.?,  b). Now let 6  be any number such that 0 < 6 4 1, and consider
the choice 6X + (1 SF’.  Since G is convex, we have G(6f  + (I 6)$,
6b  + (1 S)b’)  Q SC@,  b) + (I 6)c(?,  b’) < 0 so the proposed
choice is feasible. Also, for it, by the concavity of F,

F(SXt(l  ~6).?,6b+(lL6)b’)>6F@,b)+(l~~)F(f’,b’)

= 6 V(b) + (1 F)V(b’).

Then V(6b  + (I 6)b’)  can he no less than the right hand side.
This result has its uses. As a simple example, the case  of the

function V(c) in Chapter 5  is a special case  of it. Another application
concerns sufficient conditions of optimization in a dynamic context.
However, it is a weak result, because the requirements of the concavity
of F and convexity of G jointly in choice variables and parameters are

in the examples to follow.
Another simple value comparison is possible in this case, and it

enables  US  to  deduce some properties of the optimum choice itself,
again  without having to impose any conditions other  than those needed
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to ensure a solution. Consider the same problem of maximizing b’(x,  6)
subject to G(x) < 0, and suppose X’  and X” are the optimum choices for
parameter values b’  and b” respectively. Since each is feasible when the
other is chosen, we must have

F(X’,  b’) > F(X”,  b’) and F(i+‘,  b”) >F@‘,  b”) (7.1)

A similar argument is possible in the other polar case where the
parameters affect the objective function but not the constraints.
Consider the problem of wxximizing  b’(x) subject to G(x, b) S 0. In  the
same notation as above, suppose X’  happens to be feasible when the
parameters are b”,  i.e. G(,?,  b”) < 0. Since X” is the choice when  X’
could have been chosen, we must have b’(z?“)  > F(X’).  However, 1’ is
chosen for parameter values b’, and the only reason for not choosing X”
with its higher value must be that it is then infeasible, i.e. G(.?‘,  b’) > 0,
Thus we have

IfG(x’,b”)<O, then C(f”,  b’) > 0. (7.2)

Again, applications of these results will appear in the examples that
follow. These examples will illustrate the methods of comparative
statics that use only the most basic concepts of optimization, namely
the definitions of feasibility, optimality, concavity and convexity. This
approach is very general, involves only the most elementary
mathematics, and is aesthetically quite pleasing. On the other hand, few
comparative static results are  available at this level of generality. Most
specific economic problems have more structure, i.e. the functions F
and G are known or assumed to have properties besides those of
concavity and convexity used in establishing the conditions for
optimality. These other properties, such as additive separability, are
useful in yielding further comparative static results, but the approach of
this chapter is not very suitable for handling them.

The next chapter will introduce a complementary way of doing
comparative statics. It begins with the (m +n) equations which define
the values of then variables and them multipliers, and differentiates
these equations with respect to the parameters to find the rates of
change in the variables and the multipliers. This is messy, but
mechanical. The additional conditions on the various functions in
special problems are often expressed in terms of their derivatives, and
are therefore suitably tackled by the differentiation approach. However,

C o m p a r a t i v e  S t a t i c s  7 3

this method is restrictive, not merely because some problems may
involve non-differentiable functions, but also because inequality
constraints may pose problems. It is not legitimate to take derivatives of
both sides of an inequality to obtain another inequality. If we are  t0
apply this method to problems with inequality constraints, we have t o

know in advance which of the constraints will hold as equalities, and
which ones being not binding can be ignored. Further, we must  be SoIe
that  the same  set will hold as equalities over the entire range of
parametric variation being considered, for switches from one regime to
another pose their own problems for differentiation.

The two methods  thus have complementary advantages and
disadvantages.  We should always keep both in mind, and should be
ready to use the one which is best suited to the problem at hand.
Correct judgement  concerning this, of course, comes only with practice.

EXAMPLES

Example  7.1 This example continues the development of consumes
theory using the indirect utility function and the expenditure function.
The notation of Example 3.2 is retained. 1 shall assume the functions to
be twice differentiable. Roughly speaking, this amounts to assuming
that the (direct) utility function, besides being twice differentiable, has

no flat portions to its indifference surfaces.
Begin with the expenditure function. The first point is that for any

fixed U, E@,  u) is concave as a function of p. This is because the
relevant parameter affects only the criterion function, and wrltten in
the standard maximization form, -px  is convex (although only just) in
p for each  fixed x. The standard result of the text then says that
-~E(p,  u)  is convex in p, i.e. E(p,  u) is concave in p. The economic
reason  pertains to substitution in consumption. For example, as  one
component of p increases, the worst that could happen is that it would
be new~sary  to maintain the old consumption plan to attain the given
utility level, in which case expenditure would increa%  linearly with the
price. If it is possible to substitute against the commodity that has
become more expensive, expenditure will increase less than linearly. Of
cause such concavity in each direction does not prove overall
concavity, but provides some economic intuition for the result proved
before
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For a twice-differentiable concave function, the partial derivative
with respect to any  argument must be non-positive. This has an
implication for the derivatives of compensated demand functions.
Remembering that superscripts denote the commodity number and
subscripts denote partial derivatives, (3.19) gives

c@, u) =  E&, u) 4  0 .

Thus, when any price increases, the compensated amount demanded of
that commodity cannot increase, i.e. the own substitution effect is no”.
positive. This is a well known and important theorem of consumer
theory.

The %“ne  result  follows without assuming differentiability from
(7.1). Consider price vectors p’.  p” and the corresponding compensated
demands, say .?’  and ,?‘. Write p” - p’ = 4, and 2’ - x’ = &.  Now
(7.1) gives

-p”~”  > -p’rf’ a n d -p’j’  > mp’z”.

On adding these inequalities and simplifying, we find

ApA.?<
( 7 . 3 )

I” we ““1~ theith  component of Ap is non-zero, this becomes

which  is our  result.

AptA.?/  G 0,

Let US turn to the indirect utility function. This is not amenable to
standard  theorems. In fact V is quasi-convex in p for give” m; i.e. for
give” m and  u,  the set of vectors p satisfying Vk,  m) <u  is convex. To
show  this,  SUPpOSe  Up,  m)  G U,  V(p’,  m)  <u, and 0 4 S < 1. We wish
to  show V@P  + (1 -  6)p’fl)  G U.  Suppose this is false, i.e. suppose there
exists a feasible x* yielding utility U(P) > u.  This exceeds the utility
attainable with the actual choices with pricesp and p’, therefore it must
be  the cake  that X* would not be feasible in either of those situations
i.e.  PX* > m and P’X*  > m. Now each of S and (1 - 6) is non-negativk,
and not  both can be zero simultaneously. Therefore (6px*  + (I ~ 6)
P’X*)>hl  +(l -  S)m,i.e.  (6p +(l - 6)p’)x*  >m.Th”sx*  isnot
feasible  for  the weighted average price vector. This contradiction forces
US to  abandon  ““I  supposition that U(x*) > u,  thus  proving the result
of quasi-convexity.
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This causes some problems. Consider a two-stage maximization
problem in which the government, through its tax policies, can affect
c”nsuner  prices. Consumers make their optimum adjustments to these
policies, and the” the government, in choosing the optimum policy,
takes these responses into account. This can lead to a problem in which
p is being chosen to maximize V@,  m) subject to some constraints. But
a quasi-convex function is not a very suitable maximand, particularly
when we wish to establish sufficient conditions. This issue will reappear
later.

One useful property can be found from (7.2) which makes no
concavity assumptions. Since prices and income affect the budget
constraint but not the utility function directly, we can use this equation
to write, in usual notation,

lf p’fj’ <ml’, t h e n p’x”>m’,  01

if
p”x’ <p,#2”, t h e n pk”  >pk’, ( 7 . 4 )

assuming non-satiation so that for each choice the budget constraint is
binding. This has a” important application. It is possible to base
consumer theory on properties of demand functions rather than of
utility functions, and this is held to be desirable because the former are
observable and the latter are not. This is called the revealed preference
approach to consumer theory. In such a formulation, (7.4) is not a
theorem, but one of the fundamental assumptions, called the Weak
Axiom of Revealed Preference. It turns ““t, however,  that the two ways
of developing consumes  theory are formally equivalent, once enough
assumptions are made for each theory to be of  any use.

Finally we relate the indirect utility function and the expenditure
function, or  the uncompensated and compensated demand functions.
Suppose we begin with some u,  and find m = E@,  u). Then we assign
this m as the money income, and find the utility-maximizing choice.
Except for some technical problems that arise when there are some
goods with zero prices, we have the expected result, i.e. u  = V@.  m),
and theoptimum  choicescoincide. Ishall aswme  this to be true, i.e. that

u = V@.  m) if and only if m=E@,  u ) ( 7 . 5 )

and that if m and u are so related,

d(p,  u) = Df@,  m). ( 7 . 6 )

, . ~ ,. .~, ., ,.. ,,,...,  .~  ~.._....~  . . , ,  .,.~~.~  ~...-  .,...  ,,,..,.. -..,-  -..-  - .,.,.,
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In Particular, m =E(L? v@,  m)),  and differentiation using (3.16) ad
(3.17) yields

A/l=  1.
(7.7)

This relationship between the Lagrange multipliers of mirror-image
optimization problems has obvious economic meaning.

Finally, for fixed U, differentiate (7.6) with respect to pr,
remembering that m must change according to (7.5). The chain rule

gives

C&A’> u) = D&p, m)  + D,i(p, m)  E,@,  u).

Using the definition (3.19) and (7.6),  this becomes

C&P,  u) = D&p, m)  + ok@,  m) D,‘@,  m).
(7.8)

This  relation between the substitution, income and overall  effects of a
price  change is one of the most important results of consumes  theory;
It is called the Slutsky-Hicks  equation. It is instructive to contrast  the
simple derivation above with the lengthy conventional proofwhich
relies on direct methods alone.

the
Readers  still unfamiliar with the notation used here should recognize
result in the form

Example 7.2 This example develops the elementary theory of
cost-of-living indices. Consider a consumes  with given tastes. Fix a
utility level u  which forms the standard of living chosen as the basis of
comparison. For each price vector p,  we can calculate the amount of
expenditure necessary in order to attain this standard quite simply as
m  = E(p,  u).

Now consider two situations, the initial or base period with pricesp’
and the final or  current period with pricesp”, and suppose the
corresponding expenditures are m’and  m”. It is natural to say that the
cost of living has gone up if more expenditure is necessary in order to
attain the target utility level in the current period than in the base
period, and that it has gone down if the reverse  is true. We are looking
for criteria to judge this in terms of observable prices and quantities.
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We know that the expenditure function is concave. Assuming it to be
differentiable, changes in it are overestimated by linear approximations
based on tangents. Moreover, the vector of derivatives at any point is
simply the vector of compensated demands there. Write X’  = Ep(p’, u)
and .2”  = E&l’,  u); note that p being a row vector, E&I.  u) is a column
vector. Then we have

and m’  - m” = E@‘,  u) - E@“, u) < lji  - p”)?“.

From these, we obtain the following sufficient conditions.

If (p” - p’).?’  <  0, t h e n m”<FYZ’ a n d

if (p’ - p”)f”  < 0, t h e n m’<m”.

In the first case, the cost of living has fallen, while in the second case it
has risen. A slight change enables us to write these in the standard index
number form as

If p’k’/p’Z  < 1, t h e n ?%“<Vl’ a n d

if p”x”/p’.f”  >  1, t h e n m’<m”.

The two ratios look very much like the Laspeyres (base quantity
weighted) and Paasche  (current quantity weighted) price indices. But
we must remember that the quantities which appear here are the
compensated demands at the specified utility level u,  which need not
have  any r&ion  to the actual demands OI  utilities ln either period. In
non~,l  use,  the standard of comparison will be the actual utility level in
one of the  situations, and the quantities the actual demands in that
situation. This enables us to draw conclusions that depend only on
observable prices and quantities. Thus, if the Laspeyres  price index is
less than one, the current  situation has lower cost of living as judged by
the base period utility standard, while if the Paasche price index is
greater than one, then the base period situation has the lower Cost  of
living as judged by the current period utility standard.

These  are really rather weak statements, for they say nothing about a
very wide range of other possibilities. However, there is no way Out Of
this, and price and quantity data alone permit only a very limited set of
welfare  comparisons. Besides, further complications arise when we try
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to take account of changes in tastes, or of distributive concerns when
there are many consumers.

Example 7.3 In this example we consider aspects of production
theory using methods similar to those used for consumer theory in
Example 7.1.

The cost function for a producer has been defined in Exercise 3.2 as
the minimum cost of production given the factor prices and the target
output level. It is clear that it should have the same properties as the
expenditure function. Thus it should be a” increasing function of all
arguments, and for each fixed output level it should be homogeneous of
degree zero in the factor prices, and a concave function of them. This
last property is a reflection of substitution in production: with no
substitution, the cost function will be linear in the factor prices, and the
greater the substitution possibility, the greater its concavity. Finally, its
partial derivatives are the cost-minimizing input demands, i.e. in the
notation of Exercise 3.2,

x = G(w Y). (7.9)

Remember once again that, by the convention established in Chapter 1,
the argument being a row vector, the partial derivatives form a column
vector.

This leaves open the determination of output, and in the example I
shall outline one possibility. Suppose there are constant returns to scale,
so  the cost function can be written in the formyC(w),  where c(w)  is
now the minimum cost of producing one “nit of output. The size of the
firm is indeterminate when there are constant returns to scale, and we
may take this to be the industry cost function withy as the industry
output, and the corresponding factor demands for the industry will be

x =yC,(w). (7.10)

Consider a competitive equilibrium. If p is the output price, each firm’s
profit-maximization decision will be to equate marginal cost to price.
Under constant returns to scale, this is the same  as equating the average
cost and price, i.e.

P  =  c(w). (7.11) j
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Finally, for market-clearing, we must have

Y =a), (7.12)

where  D is the industry demand function. Successive substitution from
these  into (7.10) will define the derived factor demands as functions of
the factor prices alone.

As an illustration of the use of this model, suppose we want to know
how the various factor demands change as wk  changes, the remaining
factor prices being unchanged. A simple differentiation gives

axi/awk  =.Yc,,  + ~‘cp)c,q,

where the arguments of the derivatives of Care omitted for brevity. It
is more instructive to write this as a” elasticity. After some simplifica-
tion, we fiid

b4.qa+4k  = s,(o~,  -  d, (7.13)

where Q is the elasticity of the industry demand cwve,

is the share of the factor kin total factor cost, and

Ojk = (CCjk)/(Cjck).

Thus  the effect of a change in wk  is composed of two parts. The
first is the substitution effect: as relative prices of factors change,  the
cost-minimizing factor proportions change. As in CO”S”~W  theory, the
own substitution effect is unambiguous, since Cis a concave function,
and  therefore Ckk 4 0. However, for j # k, the effect depends on
whether  the factorsi and k are substitutes or complements. The other
term gives the output effect. An increase in wk  raises the whole
marginal  cost  schedule, thus reducing the profit-maximizing output and
the&y  the demand for all factors. Of course,  Constant returns t0  scale
imply that this effect is equi-proportional  for all factors. In general,
there  can  eve”  be inferior factors for which the demand rises as output
falls.

The  output effect in production theory should be distinguished from
the income effect in consumes  theory. The former arises because It is
desirable to produce less as costs increase, i.e. roughly from the side of
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the objective function. The latter arises because it is necessary to
consume less as costs increase, i.e. on account of the constraint.

Both the substitution effect and the output effect in (7.13) contain
the factor 8,.  Roughly, this is because if a factor accounts for only a
small fraction of cost, then a given percentage change in Its  price calls
for only a small adjustment on either count.

The expressions oiik  are called the partial elasticities of substitution
for the production process, for any pairj  #  k. For the casei  = k, it is
better to write (7.13) differently. Since C is homogeneous of degree
one, each of its partial derivatives C,  is homogeneous of degree zero,
and by Euler’s theorem we have

This can be written equivalently as

n
c BjUjk =a.

j=*

Then (7.13) becomes

(7.14)

This shows that the numerical value of the own price elasticity of
demand for a factor is a weighted average (since the 0, sum to one) of
various elasticities. The cost share of the factor in question multiplies
the elasticity of product demand, and each remaining cost share
multiplies the partial elasticity of substitution between the pair of
factors involved.

This is an example of a precise model for formalizing Marshall’s
various laws of derived demand.

Example 7.4 Consider an economy with H households and G goods.
Labour  is chosen as nun&be,  and the prices of the goods in wage
units arep,  fag = 1, 2, G. There is no income-leisure choice, and
the labour  supplies of the households are fixed at Ph  for
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h  = 1,2,  H. Wage income, of course, contributes to indirect utility.
This function for household h is (cf. Exercise 3.3) given by

mP,  Q,)  = 1%  Q, - q&g  1%  Pg, (7.15)

where, for each h, Zg LY hg  = 1. The demand for goodg by household h is
easily seen  to be

x”TP, Qh)  = %,QhlP,.

Then the aggregate demands are

(7.16)

s(P, Q,,. QH)= &~,,Q,/P,. (7.17)

The production of one unit of good g needs cs  units of labour.
Therefore a production plan (xl, x2, xc) is feasible if

c&.x,  < XhQh. (7.18)

The government can choose the prices of the goods, and wishes to
choose a feasible production plan by doing so in order to maximize the
sum of the households’ utilities. Since the Ph  are constant, its maximand
can be seen from (7.15) to be

ml = -q4&&lg)  l%P,.

Using (7.17) and (7.18),  the constraint becomes

(7.19)

q-c@*ahpQ,)/P,  G &Qh (7.20)

The problem mentioned in the text can now be seen in an explicit
context. The objective function is not concave. We know it to be quasi-
convex in general; in this case it is in fact convex. The constraint
function is convex, and since the relative convexity, or  more precisely,
the concavity of the Lagrange expression, is what really matters, we
still have some  hope of proving sufficiency. Fortunately, in the special
case  of these functions, a simple change of variables reduces the
problem to standard form. Writing qg  = l/p,,  and introducing the
convenient abbreviations

A, = C,a,,,B,  = &,oL,,~Q,,, Q = ZhQh, (7.21)
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the problem becomes -

maxlmize q-Ag  log 4g (7.19’)

subject to Zxc8B8qg  Q Q. (7.20’)

Now the maximand  is concave and the constraint convex, and the
Lagrangean  conditions are sufficient. Introducing a multiplier II, we
have

A&,  = Q+. (7.22)

Substituting into the constraint, we see that n = 0 would not be
permissible. Then the constraint must hold with equality, and

l/n  = Q&A,  = Q/T&&a,,  = Q/Z,  I = Q/H.

Finally, using this in (7.22),  we have the solution

P*k = HBgIC+). (7.23)

A question of major interest is the classification of goods into those
for which pg  exceeds the cost of production cs,  i.e. those that are
subject to a tax, and those for whichp8 < cs,  i.e. those which are
subsidized. After some  tedious algebra, we fiid that those goods are
taxed for which there is a positive covariance  across  h between Qh  and
ahg.  Since Q, are household incomes and ahg  their budget shares for
good g, we see that goodg is taxed if, on the average, it is more
important in the budgets of the rich, and subsidized if on the average
it is more important in the budgets of the poor. Thus we have a model
to show how commodity taxation gives some  redistributive
leverage

E X E R C I S E S

7.1 For the consumer demand model of Example 7.1, prove that (a)
substitution effects are symmetric, i.e.

and (b) a Giffen good, i.e. one with a positively sloped uncompensated
demand curve, must be an inferior good, i.e. one with a negative income
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derivative of demand, or  in symbols,

if D/(p,m)>O,

Is the converse true?

t h e n D,‘@,  m) < 0.

7.2 Express the Slutsky-Hicks equation (7.8) in elasticity form.

7.3 Consider the production problem of Example 7.3, with n = 2. Let
w, increase, but suppose that w2, instead of remaining unchanged,
adjusts to equate the supply and demand for the second factor. Show
that the elasticity of derived demand for factor 1 is given by

where E? is the elasticity of supply of factor 2, and the other symbols
are as before. Can you obtain (7.14) as a special case of (7.24)?
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8. Second-Order Conditions

In this chapter we shall turn to some further results in comparative
statics, and their relation to second order conditions for optimization.
As explained at the end of the previous chapter, this approach relies on
the differentiation of first order conditions and the constraints, and is
therefore confmed to problems with equality constraints. However, it
can also be used in problems with inequality constraints provided we
confine the variations to a range where one and the same set of
constraints holds with equalities, and the rest, being not binding, can
be disregarded.

On the other hand, if this second-order derivative is negative, the
quadratic term in (8.2) will be negative, and therefore in a small enough
interval around Z  we will have F(x) -F(X) negative, irrespective of the
signs of the higher order terms.  Thus, given that (8.1) holds,

Fxx@)  < 0 (8.4)

is a second-order condition that is sufficient for P to give a local
maximum of F(x). It is possible to find  global sufficient conditions
using second-order derivatives, but this involves some messy
CdC”MiO”S.

The general theory is quite complicated. I shall first illustrate the
relationship between comparative statics and secondurder  conditions
in a much simpler context, then derive the conditions in a very simple
constrained maximization problem, and finally state the general result
and give some applications of it.

Let us begin with the simplest maximization problem, with one
choice variable and no constraints. For X to maximize  F(x), the first.
order nexessary  condition is

F,(Z)  = 0. (8.1)
Now consider the Taylor series for F(x) carried beyond the first-order
terms:

Note the difference between (8.3) and (8.4): apart from the obvious
difference of a weak and a strong inequality, the former applies to local
and to global maxima, while the latter applies only to local maxima.
Similar remarks will apply to second-order conditions in more general
contexts, when 1 shall concentrate on the local sufficient conditions and
leave the readers to state the corresponding necessary ones.

A local maximum satisfying the second-order sufficient conditions is
sometimes called a regular maximum. For an irregular maximum, when
F,,(.f) is zero, we have to look at further derivatives. Even that may
not work if the function F is non-analytic (i.e. if Taylor’s theorem is
not valid for it.) I shall not consider these problems further.

Now suppose the problem involves a parameter b.  The first-order
condition is F&f,  b) = 0, so differentiating this,  we have

F&,  b) d.T  +  Fxb(.f,  b) db = 0
F(x) = J@)  + F,(T)  (x - X) + +F&) (x - $2 f

Using (8.1),  we have

F ( x )  F(X) =+F&)  (x a)2 f (8.2)
Forx  near enough to.?, the quadratic term will dominate the higher

order ones. Therefore, if F,,(X)  is positive, we will be able to find an x
near enough to .? for which F(x) > F(X). Then .Z  will not yield a
maximum of F(x) in any small neighbourhood  of .?, and hence a fortiori
over the whole range of variation of x. The former would be classed as a
local maximum and the latter as a global maximum. Thus we have
found the secondurder condition necessary for both types of maxima:

d.f/db  = -Fxb(.f,  b)/Fx,(Z,  b). (8.5)

For a regular maximum, the denominator on the right hand side is
negative, and then the sign of d.?/db  is the same as that of F&,  b).
We see at cmce  how the second-order condition helps us in assessing the
qualitative effects of parametric changes on the optimum choice.

As a simple illustration of this, consider a profit-maximizing firm
whose demand curve, and hence revenue  curve, shifts. If R(x,  b) is the
revenue curve where x is the output and b a parameter that increases
for the demand cuwe to shift to the right (i.e. R&x.  b) is always
positive) then according to (8.5) the shift wiU lead to a higher optimum
output level if and only if Rx&  b) is positive. This requires the

F,,(X)  < 0. (8.3)..,. ._~., ..~,, .I ,, .,.
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parametric shift to cause an increase in the marginal revenue R,(x, b) at
X.  This is what underlies those fond paradoxes in microeconomics
where an outward shift of demand leads to a fall in output, for it is easy
to arrange a shift that is an increase in average revenue  but a decrease in
marginal revenue at the point in question.

For a problem with many choice variables but no constraints, the
secondader  terms in the Taylor series are

where F,,(X)  is the symmetric square matrix of the second-order
partial derivatives Fjk(X), and the superscript T indicates the transpose
of a matrix. Since (x - a) is a column vector, its transpose is a row
vector, and thus (8.6) is a qdraticfom.  Second-order sufficient
conditions will then correspond to this always having a negative sign for
x #X,  i.e. the conditions will be that the quadratic form, or its
associated matrix, be negative definite. The corresponding necessary
condition will require it to be negative semi-definite. Now it is well
known that a matrix is negative definite if a principal minor of it
formed by taking any m rows and the same m columns has the sign of
(-l)m. Such conditions are once again useful in doing comparative
statics, since the analogue  of (8 S)  for the case of many choice variables is

ti/db  =-F,,(f, b)-‘F&,  b). (8.7)
The inverse of a negative definite matrix is also negative definite, and
the information about the signs of its minors can be combined with the
knowledge of Fxb  in specific problems to obtain some results
concerning the effects of changes in parameters on choice variables.
Some applications of this will be considered in the examples.

Let  us turn to second-order conditions for optimization problems
with constraints. Once again, necessary conditions concern non-
positiveness of secondader terms, and local sufficient conditions
concern their negativeness. However, these now concern the
Lagrangean, and need only hold for all x near X  and satisfying the
constraints. For this we have to consider the theory of definiteness of
quadratic forms subject to (locally) linear constraints. The general
theory needs some formidable mathematical machinery, and I
illustrate the principles involved only in a simple geometric context
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and then generalize the result. Consider the case where we have two
choice variables and one constraint, and where F and G in the usual
notation are both increasing functions of both choice variables. There
are now three possibilities, as shown in Figure 1 .I (or 4.1) and the two
cases of Figure 4.2. Regard x2 as a function of xt along each of the
constraint curve  and the level CUIK  of the objective function through
j. The two have equal slopes at f, and a local maximum will be assured
if the former function is more concave, 01 less convex, than the latter,
i.e. if d2x2/dxIZ  along the constraint curve  is (algebraically) less than
that along the level curve.  It remains to express these second-order
derivatives in terms of the underlying functions. This is merely carrying
the differentiation of implicit functions to the second order,
remembering the earlier result for the first order. Thus, for the level
curve, we have

= -(Fz’F,,  -2F,F,F,*  +F,*F,,)/Fz3,

where the argument 2 at which all these derivatives are to be evaluated
has been suppressed for brevity. An exactly similar expression can be
derived for the constraint curve. Finally, using the first-order conditions
F1  = nC, and Fz = nCz,  and remembering that we are considering a
case where all the Fi  and Gi are positive, the second-order sufficient
condition for a local maximum can be written as

-G,*(F,  L nG,d+2G,G,@‘,,  -GIz)-GI~(F~z - ~‘Gz)>‘J.

The corresponding necessary condition is obtained by weakening the
inequality.

It is much neater to express the sufficient condition using a
determinant as
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The conditions for the general problem with n choice variables and
m constraints are direct generalizations of this. In the matrix notation
already established, we form the partitioned matrix

-Gx 0 1
evaluated, of course, at Z’.  Consider its diagonal submatrices which are
formed by the last j rows  and columns. We can let j range from 1 to
(m + n), and the submatrix for this last value of j will be the whole
matrix. For low values of j, the submatrices will be singular on account
of the large number of zeroes in the bottom right hand corner. But the
last (n - m),  i.e. those withj equal to (2m f 1) or  higher, will not
necessarily be singular. Sufficient conditions for a local maximum then
impose restrictions on the signs of their determinants. The signs are
required to alternate, that of the first one (i.e. that formed from the last
(2m + 1) rows and columns) being the sign of (-l)mt’, It is now easy
to see that (8.8) is a special case of this. With n = 2 and m = 1, there is
only one submatrix involved, namely the whole matrix, since 2m  + 1 =
n + m = 3. The sign of its determinant is then required to be that of
(-l)‘+’ , i.e. positive.

Note that the successive submatrices start from the lower right hand
corner, not the top left. Thus (F,,  nG,,)  is not involved, and
(F nG) need not be concave. For the restricted variations dx
compatible with the constraints, we can have dxT(Fx,  - TG,,)  dx
negative without such concavity, and that is all we need. Thus we see
that the sufficient conditions of Chapter 6, which use such concavity,
can be overly strong, although they are sometimes more convenient to
use and lead to global maxima. If f is a maximizing choice but (F,,  -
&,,) is not definite or  even semidefinite there, we will have a case
where X  does not maximize the Lagrange expression, but merely gives
some other kind of stationary point of it. This was mentioned as a
possibility in Chapter 6, and we can now see how it arises.

As usual, the secondader  conditions are closely related to questions
of comparative statics. Consider the standard maximization problem
with equality constraints, but involving parameters in the maximand
and the constraints, i.e. to maximize F(x,  b) subject to C(x,  b) = 0. The
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solution is found by solving the equations

F,(X, b) - nC,(.?,  b) = 0, (8.9)

G(.f,  b) = 0. (8.10)

The optimum choice I? and the multipliers n can both change in
response to a change db in the parameters b. In developing the general
theory, it is simpler to let all these changes occur at once, and this is
done by taking the total differentials of the above equations. For the
jth  equation in (8.9),  we have

*{,  (a2F/axjaxk)  tik  + i (a2F/axjab,)  db,,=t

-;, ni{;,  ( aZci/axiaxk)  tik  + f: (a2ci/axiab,)  db,r=t I

- f dniaci/axi  = 0.
i=l

This formidable expression, and a somewhat simpler one for (8.10),  can
both be stated in a much mme  compact form using vectors and
matrices. In the standard notation, we find

Of course, it is understood that all  the derivatives are to be evaluated at
(i,  b).

It should be no surprise that the partitioned matrix on the left hand
side is the same as the one involved in the second-order conditions.
These conditions once again give us some information about the
solutions. Their use is not easy to demonstrate in the abstract, but some
applications to particular problems will be discussed in the examples.

Finally, let us examine what happens to the envelope properties of
maximum value functions when we consider second-order terms. Recall
the discussion in Chapter 3, where we compared two situations with



90 Optimization in Economic Theory

different degrees of choice. With all variables free, the optimum choice
~sy  = Y(b) and Z = Z(b) as a function of the parameters, and the
maximum value is

V(b)  = W’(b),  Z(b), b). (3.8)

When the set of variablesy  is held fixed, the optimum choice is Z(y,  b)
and the maximum value

Wzb)=Fb~.Zti,b),b). (3.9)

In particular, ify is held fixed at p,  then ZCy,  b) = zand

Vfi, b) = V(b)

VCj,  b + db) < V(b  + db). 1
(3.12)

Finally, assuming differentiability, we have the fist-order result

V/A?,  b)  = V,(b). (3.14)

To Illustrate second-order results, consider the case where there is
only one scalar parameter b, and it affects only the objective function.
Then we know from (3.2) that

V&7 b) = F& ZCE  b), b)

V,(b)  = F&‘(b),Z(b),  b). >
(8.12)

Now  consider  the Taylor  expansion of the inequality in (3.12).  We  have

%?  b) + vb6? b)db  +*Vbb&  b)db2 +a V,,,@,  b)& +

Q  V(b)  + V,,(b) db +@‘&b)  db’  +; Vbbb(b)  db3  ,

Using (3.12) and (3.14) and cancelling  dL?, this becomes

vbb@,  b) + 3 vbbbw,  b) db + Q  Vb,,(b)  +; V,,,(b) db +
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If this is to hold for all db  small enough, we must have

(8.13)

This is the basic secondurder envelope result. The geometric reason
behind it should be clear from Figure 3.1. If there are several
parameters, we can consider them one at a time to establish inequalities
like (8.13) for the second-order partial derivatives with respect to each
one. If we consider them all at once, we will establish the negative semi-
definiteness of the matrix [Vbb@,  b) - V,,(b)].  However, this will not
generally yield any useful conditions concerning particular secondurder
cross  partial derivatives. For suitable ‘regular’ maxima, we can find  a
strict inequality like (8.13): I shall not pursue this refinement.

We can use (8.12) to express (8.13) in terms of the underlying
functions. A simple application of the chain rule gives

FbJJf,  b&L?,  b)GFb,fJ,%b)Yt,(b) +FAF,Z.b&(b). (8.14)

The importance of this result is that it yields a simple comparison
between the responses of the actual optimum choices to parameter
changes in the two situations. In particular, if we compare the situation
where all the variables x = (?J,  z) are free with the one where they are all
fixed at their initial optimum levels .V,  we can write this as

Fbx(.%  b&(b)  a 0.

These inequalities have several useful applications.

(8.15)

The envelope properties discussed here and in Chapter 3 can easily
be generalized. The essential comparison is between one optimization
problem and another with added constraints which happen to be
satisfied at the optimum for the first corresponding to one value of the
parameter. Clearly the maximum value attainable when there are more
constraints can never exceed that when there are fewer constraints, but
will just equal the latter at the particular Initial point. This gives us
(3.12),  and the rest follows. The type of constraints which fuc  a subset
of variables are a special case of this. Many of the results that follow
from comparisons of maximization problems with differing degrees of
constraints have been referred to as examples of Le Chatelier’sPrlnciple;
we shall meet one such result of economic importance in the examples
that follow.

I



92 Optimization in Economic Theory

E X A M P L E S

Example 8 1 Consider a firm which buys a vector x of inputs,
when the corresponding row vector of input prices is w,  to produce
output 4 = Q(x)  and sell it to obtain revenue R(q). Its profits are
F(x) =R(Q(x)) W.X.  Suppose we have a regular maximum, i.e. one
satisfying the second-order sufficient condition, for the choice Z’.  Now
the vector of parameters b being the column vector wT,  we find  on
assembling components that Fxb = -I where I is the (n-by-n) identity
matrix. Then (8.7) becomes

d.?  = F,,(&  w)-’  dwT. (8.16)

For a regular maximum, F,,(.f, w) and its inverse are both symmetric
and negative defmite. This yields two results.

First, we have

dw ti  = dw F,,@, w)-’  dw=  < 0,

and in particular, for eachj,  J.$wj < 0. Thus each factor demand
curve slopes downward.

Secondly, for  anyj  and k, agawk  = ai,jawi,  i.e. the CROSS  effects
on factor demands are symmetric.

The techniques of Chapter 7 would also have led to such results on
defining a profit function and examining its properties; in fact a
somewhat different case of a competitive industry under constant
returns  to scale was considered there. One difference is that the new
assumption of a regular maximum enables us to obtain strict
inequalities for the own substitution effects.

Example 8.2 Consider a consumes  minimizing the expenditure
required to attain a target utility level. Using (8.11) it is trivial to show
the symmetry of the cross-substitution effects and not difficult to show
the negativity of the own ones. A new and interesting result can be
found from the second-order envelope properties, particularly in the
form (8.14). Take any one price, sayp,,  as the parameter b. Now the
maximand  is -px, and the vector Fbx has a component -1 correspond-
ing to the first  good and zeroes elsewhere. This gives a particularly
simple form to (8.14). Compare two problems, in both of whichx,  is
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among the choice variables z, but in the second of which some good,
say x2, is fixed at its optimum level corresponding to a particular value
of p , Now consider small changes in p,  from this value. We have

-ax, Iah a -axlap,

I

(8.17)
x* free x2 fixed

Further, comparing each problem with the trivial one where ail the xi’s
are fixed, using (8.15),  we see that each of the above expressions Is  non-
negative. Thus we have the result that the absolute value of the response
of any compensated demand to the price of that good is greater when
the remaining goods are free to vary to their new optimum levels than
when one (or  more) of them are held fixed. This is an example of the
lx Chat&r  Principle. It leads us to the presumption that when some
goods are rationed, the demands for the remaining goods will become
more inelastic.

Unfortunately, the general Le Chat&x  Principle seems to be too
elusive a concept to be stated precisely.

EXERCISES

8.1 State the second-order sufficient conditions for a ‘regular’
minimization problem.

8.2 Consider the compensated demands of a consumer, taking the
price of good 1 to be the only relevant parameter. Derive the
appropriate form of (8.1 l), and solve it using  Cramer’s Rule. Use the
second-order sufficient conditions to show that the own substitution
effect for good 1 is negative. How can you use the same  method to
obtain the same result for the remaining goods?

8.3 Illustrate the L.e  Chaterller  Principle using Example 8.1.

I FURTHER READING

The locus  classicus  for the use of secondada  conditions in deriving
meaningful economic theorems is

SAMUELSON,  P. A. Foundations of Economic Analysis, Harvard
University Press, Cambridge, Mass., 1947.
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For further reflections on these, including a discussion of the Le
Chatelier  Principle, see Samuelson’s Nobel Prize Lecture, reprinted as

SAMUELSON, P. A. ‘Maximum Principles in Analytical Economics’,
American Economic Review, LX11(3),  June 1972, pp. 249-62.

For an extension of this principle, with applications, see
SILBERBERG, E. ‘The Le Chatelier Principle as a Corollary to a

Generalized Envelope Theorem’, Journal of Economic Theory, 3(Z),
June 1971, pp. 146-55.

9. Optimization Over Time

In a formal sense, the general theory of optimum choice involving
time requires no new principles. The reason is that we are now
considering only the taking of one such decision. The variables to be
chosen will pertain to different dates, but we can always stack them
together in one large vector x, and the problem will remain one of
maximizing a function F(x) subject to some constraints C(x) <e.  At
the time when the decision is taken, the knowledge of future tastes and
technology may be very imperfect. There may also be some irreducible
uncertainty about events. But all this does not change the structure of
the problem. We must take account of the lack of knowledge and the
other uncertainties and of our attitudes to risk in setting up the
functions F and G. Flexibility in the light of alternative eventualities as
we now see them may become a desirable feature of plans. But once the
functions are set up, the formalism takes over. Previous decisions may
have to be revised as the future unfolds, experience may tell us more
about the problem, and the outcome of a sequence of such decisions
may look different from what we would have expected at the outset.
However, these issues are outside our  present limited scope, namely the
methods of taking one decision that is regarded as optimum at the time
it is taken, in the light of some  criterion agreed upon at that time andof
the possibilities as visualized then.

The reason for studying optimization involving time as a separate
topic, therefore, is not that it requires any basically new theory. Rather,
it is that such problems often have a special structure which enables us
to say more about their solutions. The most important aspect of this
special structure is the existence of stock-flow relationships among the
constraints. Some of the dated variables, which I henceforth labely
with the appropriate date subscript or  argument, have dimensions of a
stock. Others, labelled  z, have the dimensions of a flow. Thinking in
terms of the usual production interpretation, economic activity in one
period determines the changes in stocks from that period to the next.
The feasible activity levels depend both on the stocks and the flows

during this period. This gives rise to constraints of the form
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The simplest illustration would be one where y, is the amount of
inventory in stock at time f.  If a proportion 6 of this stock spoils each
year, then Q(y,,  zy,  f) would equal the survivals from existing stocks,
(1 ~ S)y,,  plus net new stockbuilding, zf. I allow the date t to affect Q
separately. This may happen, for example, as improvements in storage
methods make 6  a decreasing function oft. Another example is one
wherey,  is a vector of capital good  stocks, which produce net outputs
&ycv,,  t), and then Q(yr,z,,  t)  = Qb,,  t)  - zt. where L, is a vector of
consumption flows, Again r can affect Q separately, representing
technical progress.

In addition to constraints which govern changes in stocks, there may
be constraints which bind all the variables pertaining to one date, such
a s

q!+.+. ago. (9.2)

An example would be a constraint which says that consumption cannot
exceed gross output. Non-negativity constraints on stocks and flows are
also included in (9.2).

Another special feature that often occurs in such problems is that the
criterion function separates as a sum of functions, each of which
depends on the choice variables pertaining to only one date. Thus it can
be written as

For example, a firm maximizing the discounted present value of its
stream of profits would have such an objective, and time would enter
the function explicitly in the form of discount factors (1 + r)-’  where r
is the rate of interest. On the other hand, (9.3) is a debatable
requirement if it is imposed on the decisions of a consumer, for it
implies a restriction vividly expressed as ‘the marginal rate of
substitution between lunch and dinner being independent of the
amount of breakfast’, known as the Wan-Brezski example. However, the
separable form of the objective simplifies the theory a great deal, for it
implies a kind of separability in the decision process as well. 1 shall
assume this form in this elementary exposition, and refer the interested
reader to a few articles that dispense with it.
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Up to now I have treated time as passing in a discrete succession of
periods. For most of the work, it turns out to be much more convenient
to  think of it as a continuous variable. There is no real theoretical
reason  for preferring the one 01 the other. Some modifications of (9.1)
to (9.3) are necessary for a continuous treatment. For example, (9.3) is
a sum of a finite number of terms. Treating time continuously is like
dividing the total span of time from 0 to T into more and  more but
shorter and shorter intervals, and letting this process go to the limit. In
this limit, the sum of an infinite number of terms, each of which is
infinitesimally small, is exactly what is called an integral of the
function over  the range [0, T] Readers who are unfamiliar with
integration should at this point consult some elementary definitions and
operations; references for this are cited in the list of Further Reading
following Chapter 1. For much of the work, it will suffice to think of
integrals exactly like sums, only in a different notation. Also, with
continuous time, it is conventional to write y(t) instead ofy,.  Then the
criterion can be written

J,’
%O),  d0, 9  df. (9.4)

The stock-flow constraints will have to be modified, introducing
rates of change of stocks in continuous time. Derivatives are designed to
do just that. However, it is conventional to write derivatives with
respect to time by means of dots over the corresponding function
instead of dashes after, i.e. asj(t)  instead ofy’(r)  which would be used
if f wtxe not time. Thus

X0 G QCv(O>  z(t),  9,

and finally, (9.2) merely needs to be rewritten as

(9.5)

NJ@),  do,  0  4 0. (9.6)

There is a deeper mathematical problem in treating time as a
continuous variable. All of our earlier theory was developed with a
finite number of choice variables. When time is being treated
continuously, the choice variables y(t) and z(t) for alI f over 0 G I4 T
amount to a continuously infinite number. We now have to use



98 Optimization in Economic Theory

separation theorems in infinite-dimensional spaces, and there are serious
difficulties in ensuring that one of the sets being separated has anon-
empty interior. To give a rigorous treatment of this needs some very
powerful mathematical machinery. But the result is very simple, and
the  theory of Chapters 4 to 6 can be applied without any noticeable
change. I shall proceed to apply it, and cite further readings for
interested readers.

In much of the discussion of optimization in a static context, 1 used
a production example for constant illustration. I shall have a similar
standard interpretation for the problem defined by (9.4) to (9.6),
takingy(r)  to be stocks of capital goods and z(t) to be the current
activity levels, including consumption flows. Thus F can depend on
both stocks and flows. Following Irving Fisher, it has become
customary to emphasize that it is the consumption stream that is the
real aim of economic activity, and 1 shall later specialize to an example
where F is independent of the stocks. I shall call the value of F the
utility flow, and the criterion (9.4) the utility integral.

With a finite number of constraints, we would introduce a Lagrange
multiplier for each and form the Lagrange expression in the standard
form. Exactly the same thing is done here, except of course  that
integrals replace sums. Writing the multipliers for (9.5) as n(t)  and
those for (9.6) as p(f), we have the expression

0
FO(O,  z(f),  f)  ~ MEW  ~ QWL  z(f),  t)l

- dfWA9,49,f)  dt.
1

(9.7)

There may be other constraints, pertaining to the end-points. For the
moment, I shall  assume a very simple form  for these. Suppose T is
fmed,  and we have an initial stock vector b.  and a target terminal
stock vector bT. Thus the added constraints are

~(0)  G bo> y(T)ab. (9.8)

Writing these in the standard form, and using multipliers q.  and 9~
respectively for the two, we must add

-PO  Iv(O) -bol +e-MT) -&I

Optimization Over Time 99

to (9.7) to obtain the final Lagrange expression for the problem. The
first-order conditions would be found by equating to zero the partial
derivatives of this expression with respect to each choice variable. There
will of course  be a continuous infinity of such conditions.

The task is made somewhat more complicated by the appearance of
j(r)  in (9.7). This has an analogue in the discrete case of (9.1),  where
each y, would appear in two constraints corresponding to two adjacent
periods. The analogue also shows what can be done about the problem,
for we can rearrange the sum so that each yt  appears in only one term
in the Lagrange expression. Thus we write

%lCvl -Yo)+ntCvz  -yl)+...t~‘T-ICYT-YT--I)

=-n,yo  -CT,  -q)y,  -. .- -@T-1  -nT-dYT-I+~T-lYT,

“ I

T- l T--L
c dJJt+l  -Yr)=rT-IYT-wo-  c (~t-~t-llvr.

t=o *=  t

When this is done in smaller steps in time, we have in the limit

j; ir(GO) df  = n(Tly(T)  - ~O)Y(O) - r’ X9.W  df (9.9)
0

Note that nT-  ,yT is replaced by r(rly(r),  as it should be in the limit
when the length of each period is not 1, but an infinitesimal duration.

The equation (9.9) is known as the formula for integration by parts.
Note that when using it, we have to assume that the Lagrange
multipliers r(t)  are such that II  regarded as a function of time is
differentiable. It is possible to do without this restriction, but the
arguments become tedious and the extension is not of much use for our
present purpose.

Suppose the optimum choice isy(f),  f(t).  Assuming that the
i appropriate constraint qualification is met, the first order conditions
1 will be satisfied. Moreover, if Fis a concave function, Q is a vector

concave function and G is a vector convex function, the conditions will
be sufficient.
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After integration by parts, the Lagrange expression becomes

jr{ %‘@)a  z(r),  t) + ir(M) + ~(t)QCv(O,  +I,  9

~ Pw~ti@)>  m>  t)] dt  -n(Tly(T) + n(‘U(O)

-%b’(Wbol  +e-MT)--~1 (9.10)

When we differentiate this, we must be careful about the end-points.
y(O)  andy(T)  contribute terms to the derivative both from within the
integral and from outside it. The former are infinitesimal, and when
they occur together with finite  terms like the latter, they can be
neglected. Thus the derivatives with respect toy(O) and y(T)  produce
the conditions

-4T)  + e = 0, n(O)  - % = 0
01

a = w> “(0)  = %. (9.11)

Using this, the complementary slackness conditions for the constraints
(9.8) can be written

n(OWo  - YWI  = 0, 4ioW-h-1=0. (9.12)

Now n(O)  and r(T)  have a ready interpretation. As usual, regard b,  and
b,  as parameters of the problem, and consider the maximum utility
integral as a function of them, say V(b,,  bT).  Then

aviab,  = Po  = or, and -aV/ab*  =PT  = n(~. (9.13)

In other words, n(O)  is the extra benefit we can secure from having
another unit of initial stocks, and n(T) is the loss we have to suffer in
order to meet a terminal requirement that is more stringent by one unit.
We shall see later that an extension of this is possible for interpreting all
n(t). The complementary slackness conditions have the obvious
meaning.

The remaining first order conditions are found by differentiating the
terms  in the integral:

F&W,  %t),  f)  + +(O  + nWQJJ@),  Q),f)  - dW;yW),  3% 9 = 0
(9.14)
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FJjm,  m 9 + n(txMxt),  4C).  0 - Pw,6x0.  z(t),  f)  = 0 (9.15)

However, these can also be thought of as the first-order conditions
fory(t),  Z((r)  to maximize F(y, z, t) t ;r(t)y t Ir(r)Q@,  z, t) subject to
the constraints G(v,  z, t) < 0 for each t. Let us examine what this
implies. It is clear that in order to maximize the utility integral, we
would not want to maximize F(y, z, r)  subject to C(y,  z, t) for each t;
this would be far too short-sighted. The choice at any point in time
affects the possibilities for all subsequent points through (9.5). For
example, a big splurge of consumption now would leave a much smaller
capital stock tomorrow, and then a lower utility flow at subsequent
dates would result. This could lead to a lower utility integral. and
therefore we must balance present gains against future ones at the
margin in order to attain an intertemporal optimum.

We are by now used to handling gains or losses arising on account of
constraints by modifying the objective function by the appropriate
shadow values. In (9.15),  for example,~(t)G&(~), Z(r),  f)  represents
the marginal cost of z considering the constraints (9.6) which apply to
the variables at time  t. This suggests that the other term, n(t)Q&(t),
2((t),  r),  must represent a similar marginal shadow gain from constraints
(9.5). This is in fact the case. We shall soon see that, in the natural
sense, n(t) is the shadow price of stocks at time t. Now an extra unit of
z leads to Q,  more  units of stock a unit of time later, and thus the
future consequences of the choice of z are taken into account by adding
the marginal shadow value term rQ,.

Interpretation of the choice ofy would be similar  except for the
term ii(r).  It seems tempting to think of it as the rate of accrual of
extra capital gains from having another unit of stock. However, this is
not a very good way of looking at the problem. It is almost never
optimum to keep the inequality in (9.5) strict: an addition to stock will
be desirable in all the problems we shall meet. Then there is no real
choice of the stock levels open to us. The choice of z(t) at any instant,
so to speak, fxes the stocks at the next instant through (9.5) holding as
an equality. This is emphasized in the technical language of the subject
by calling y(t) the staate  variables and z(r)  the connol  variables. The
state variables are then built from the initial conditions and the choice
of the control variables. It is therefore better to think of the stocks as
passive, and to give an active role to the shadow prices: it is ii(t) that
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takes on the right value to satisfy (9.15). The condition is then
interpreted as saying that on the optimum time path the shadow prices
change in such a way that the marginal benefits from holding a”
additional unit of stocks at any point in time, including the current and
future shadow scarcity costs and the capital gains as well as the utility
flow, are zero. In other words, producers who have to bear the shadow
costs and gain the shadow profits in a decentralized economy of this
kind, will be in equilibrium when holding the stocks which the past
optimum flow decisions have produced. This is a natural extension of
the usual role of prices in decentralization to the case of a”
intertemporal economy.

It is now convenient to introduce some new notation. Define a
function H, called the Hamiltonian, as foUows:

Hb,  z, n,  t) = Fcv.  z, t)  + nQb.  2,  0 (9.16)

Now (9.15) gives the first  order conditions for $t)  to maximize H@(t),
z, n(t), t)  subject to the constraints G@(t), z, t)  $0. The Lagrangean
for this static maximization problem is

The maximizing choice Z((t)  is naturally a function ofy(t),  rr(r) and t;  it
is called the policy function. Substituting in the Hamiltonian, the
maximum value function, or the maximized Hamiltonian, is obtained.
It is written as H*@(t), r(t),  f).

Now (9.14) can be written as

;r@)  = -qm, m n(t), La, f) (9.17)

In the static maximization problem, p(f)  and n(r) are parameters
affecting the criterion and the constraints. We can therefore use (3.3) to
write

f(t)  = -Hy*@(r),  n(t), t). (9.18)

Further, using the same  theorem, we have H,*  = L, = Q evaluated at
the optimum. This enables us to write (9.5),  now assumed to hold as a”
equation, in a form that is more symmetric to (9.18) as

j(t)  = f&*@(t),  tit),  t). (9.19)
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These two differential equations, along with the conditions for the
end-points, enable us to find  the functionsJ(t)  and n(r). Suppose we
knew g(O) and n(O).  Then it would be a simple matter in principle to
solve the two differential equations. There are existence theorems and
analytical methods that we do not need; at the worst we can use these
equations as giving approximate rates of change over small discrete
intervals f and calculate approximate solutions by iteration. As a matter
of fact, we do not know?(O)  and n(O), but the complementary
slackness conditions (9.12) usually contain just enough information to
enable us to complete the solution. We can, for example, try different
values ofg(0)  and n(O), and from the resulting paths, just one will yield
a pairg(T)  and $7’)  such that (9.12) holds. Again, in practice, more
direct methods will be available, making such tedious trial-anderror
techniques unnecessary. Finally, having found y(t)  and n(r), we can
easily find  the optimum policy path f(r).

When F and Q are concave and G is convex, the first-order conditions
are also sufficient for a maximum of the utility integral. The proof is
messy, and does not introduce any new concepts beyond the static case.
So I shall omit it, and merely state the results so far in a collected form
for reference ~

IfY(r),  qf)  maximize (9.4) subject to (9.5),  (9.6) and (9.8),
and if the appropriate constraint qualification is satisfied, then
there exist non-negative functions n(f) such that

(i) Z(t)  maximizesH@(t),z,  n(r),t)subject  toG@(t),r,  t)<  0,
(ii);$i;;d  n(r) satisfy the differential equations (9.18) and

(iii) the complementary slackness conditions (9.12) hold.

If F is concave, Q is (vector) concave and G is (vector)
convex, then @<iii)  are together also sufficient.

This result is commonly called the Maximum  Principle, and was put
in this framework by Pontryagi” and his associates. Since it gives such
Prominence to the associated shadow prices, it turns out to be very
useful and instructive for solving many economic problems. Some such
applications will be discussed in Chapter 11,

There is one special case of the Maximum  Principle that is worth a
separate  mention, both because it can lead to simple solutions, and
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because it was historically the earlier technique used for optimization
involving time. This is the case where Q(!J,  z, t)  = z, i.e. where the rates
of change of the stocks are themselves the control variables. Suppose
there are no other constraints like (9.6). Then, replacing z by $J
everywhere, the condition for the maximization of the Hamiltonian is

F$Jq),j(f), t)  + n(r) = 0

Then (9.17) can be written as a differential equation involving~(r)
alone:

$ [F;W),.a  91  = Fym,~(t),  f) (9.20)

This is called the Euler-Lagrange equation. The total derivative on the
left hand side, when evaluated using the chain rule, will produce the
second order time derivative of?(f);  thus the equation is a second order
differential equation. It can always be solved in terms of two
parameters, and then, subject to some tricky cyclic exceptions, the
parameters can be adjusted to satisfy the end-point conditions.

This method is most useful when one integral of (9.20) can be found
at once, thus reducing the problem to that of solving one first-order
differential equation and determining a constant from initial conditions.
This can be done when any one of the three argumentsy,  ,i~  and f is
absent from F. If>  does not affect F, we have F&(t),  t)  = 0. However,
there is nothing of specifically intertemporal interest in the problem in
this case: it reduces to separate optimizations at each instant. The other
two cases are of greater interest. If y does not affect F, (9.20) integrates
directly to yield

F#(f),  j(t),  t)  = constant. (9.21)

The value of the constant is to be determined from the end-point
conditions. Finally, if t does not affect F directly, we find

Optimization Over Time 105

using  (9.20),  where it is understood that the derivatives are evaluated at
the optimum. Therefore

F@(f),&))  &&(?(r),P(t))  = constant, (9.22)

which is again a first-order differential equation once the constant has
been determined.

This last case has a parallel that is valid in the earlier, more general,
context. Suppose we have a problem in which the forces of technical
progress, discounting etc. are absent, so that time does not enter
explicitly as an argument in any of the functions. Then the maximized
Hamiltonian H* also does not involve f as a separate argument on its
own. Then we have

dH*@(t), n(r))/dr = Hyde.  n(r)) j+)  + H,,*@(r), n(t));i(r) = 0

using (9.18) and (9.19). Therefore the maximized Hamiltonian is
constant along the optimum path. If we know the functional form of
H*, we can draw its contours in the (y,  n)  space, and one of these
contours will be the optimum path of y and II. The end-point conditions
will then help us select it. Such a contour diagram is called a Phase
Diagram, and we shall meet an example of it in Chapter Il.

EXAMPLES

E,wmple  9.1 This example is to illustrate how saving decisions
over  a lifetime can be handled using the Maximum Principle. Consider a
worker with a known span of life T, “WI  which he will earn wages at a
constant rate w, and receive interest at a constant rate I on accumulated
savings, or  pay the same on accumulated debts. Thus, when his capital
is k, his income is (w +rk). If he consumes c,  capital accumulation will
be given by

ii=wtrk-c. (9.23)

Thus k is the state variable and c the control variable. Suppose there are
no inheritances “I bequests, so that the end-point conditions are

k(0) = 0 = k(T). (9.24)
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Suppose there are no other constraints on the choice, and the
maximand  is

log c e --01f  dr. (9.25)

To use the Maximum Principle we write down the Hamiltonian

H=logce~‘tn(w+rk-c). (9.26)

The condition for the choice of c maximizing H is

c-1  p?’ -n=O, (9.27)
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The opposite would happen ifr < a. Of course some institutional
constraints  may prevent him from having negative assets by dissaving at
the beginning of his life, and of course an economy could not be in
equilibrium  with all consumers attempting to do so, with the result that
r would change. However, these are separate issues. In the special case
I = a, the wage stream would itself constitute the optimum
consumption stream and there would be exactly zao  saving.

This problem is even easier to solve using the Euler-Lagrange
equation. Write the maximand  as

Jr log (w + i-k - i) Cm’ dt.

and, substituting in (9.26),  the maximized Hamiltonian becomes
I Then eqn (9.20) becomes

H* = qlog  II  + a+-‘“’  + n(w  +rk)  eYr,

The differential equations for k and II  become

(9.28)

R=aH*/an=wtrk-n-‘e~ur

;r  = -aH*/ak  = -?n

(9.29) I h terms  of c, this becomes

(9.30)
c-2;e-af  +c-lae--af=c-t*e-at,

It is easy to solve (9.30) to obtain

n(r) = 110 e-” (9.31)

where no  is a constant to be determined. Substituting in (9.29),  it is
possible to integrate this by recognizing

d(k e-“‘)/dt  =(ic  mrk)e?’  =weCr* ~ nom’  Cat.

Then the value of no  can be found using (9.24) and the solution
completed. However, some economically important facts can be found
without doing this. From (9.27),  we find

C(f)  = no-’  &‘a (9.32)

Thus, along the optimum plan, consumption grows over the worker’s
life if I > a. Since consumption and wages must balance over his whole
lifetime in the sense of having equal discounted present values, this
must mean that c < w over the earlier years and c > w for the later
years; i.e. the consumer saves early on and later runs down his savings.

+=1-a.

This integrates to a form like (9.32),  and it remains to determine the
constant using the end-point conditions.

Example  9.2 This example has no economic content, but has the
great merit that the answer is known at the outset, enabling us to follow
the techniques that much better. Also, it illustrates the point that
although the independent variable r in the theory has a natural
interpretation as time, any other variable such as space serving the same
formal role fits into the same theory.

We will find the path of minimum length between the points (0,O)
and (1,O)  in the plane. Choose the horizontal coordinate as r and the
vertical one asy. It is clear that any path which loops or winds cannot
be of minimum length, since we can simply omit a loop or an s-shape to
have a shorter path. We can therefore restrict discussion to a case where
y is a (single-valued) function of r. The distance between the adjacent

L - ~...~._ ..~. ..~  .,.....  -...-,-  ,.,.,....,......,..  -.-.-...~-.-  --~- .,...  - ..,.,,.
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points (r, y) and (r + dr,y + dy)  being [(dr)’ + (dy)*]“,  our problem is
to maximize

withy(O) = 0 =y(l).
Let us  begin with the Euler-Lagrange approach. Since the integrand

F is independent ofy, we have the integral (9.21),  which reduces to
j = constant, ory(t)  = c, + c2t in terms  of two undetermined constants.
Using the end-point conditions, we find c, = 0 = c2, or  y(r)  = 0 for all I,
which of course  gives us the straight line joining the two points in
question.

To use the Maximum Principle, write .!J  = z and define the
Hamiltonian

H = - ( 1  tzytliz.

To maximize this as a function of z, we set Hz  = 0 and solve to obtain

z= r,(, - gp. H* = 4, - gp. (9.33)

The two differential equations are

j=n/(l  -n*)%, ir=o. (9.34)

Thus  II  is constant, a conclusion we could also have drawn by noting
that since H does not involve time explicitly,H*  must be constant.
Thenj  is constant, and an integration and use of the end-point
conditions complete the solution as before.

EXERCISES

9.1 Solve the saving problem of Example 9.1 with the maximand
changed to

1: U(c)  Co’  dr,
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9.2 Solve the saving problem of Exercise 9.1 for a rentier, who has no
wage  income but begins his life with an inherited capita1 k, and plans to
leave  a bequest of k,. How large can k, be before a solution becomes

I impossible?

w h e r e
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10. Dynamic Programming

In the previous chapter we saw how the value n(O)  could be
interpreted as the vector of shadow prices of the initial stocks. It was
also stated that all the n(t) could be interpreted as shadow prices of the
stocks at t.  The simplest way to see this is to use that earlier result, and
this is done by setting up a problem in which n(t) become the shadow
prices of initial stocks. For this, we must take t to be the starting point
of the optimization problem. Consider any particular value I’ of r, and
consider the problem of maximizing an integral exactly like (9.4),  but
extending over the smaller interval [t’,  r] , subject to the constraints
(9.5) and (9.6) over  the same interval. Leave the terminal conditions
y(T) > bT  unchanged, and allow a more general initial condition
fit’) < y’,  where y’ is some parametric vector. The maximum value for
this problem will depend, among other parameters, on t’ and y’; write it
as V@‘,y’).

Now suppose the problem of Chapter 9 for the whole interval [0, T]
has been solved, and the optimum paths?(r),  f((t)  and n(r) obtained.
Now s&y’  =j(f’).  It is easy to see that the same  paths truncated and
considered only ova  the interval [t’, T] satisfy all the first order
conditions of the Maximum Principle over  this interval. Subject to the
concavity assumptions, they are sufficient to ensure the optbnality of
the truncated paths.

Similarly, we could have chosen a terminal time f” short of T, and
imposed a terminal stock requirement y”  =9(f), and the portion of the
optimum for the full problem would remain optimum for the
subproblem. ln other words, if we truncate an optimum path to any
subinterval, we have an optimum path for the truncated optimization
problem over  the same subinterval  with the end-point conditions
defined by the values of the state variables at the points chosen for
truncation. This is a consequence of the special structure of separabilit)
of the maximand  and the constraints.

Now we can use OUI  earlier result and interpret
n(r’) = V,,(r’,j(t’))  as the shadow prices of initial stocks in the
subproblem. Each component of rr(r’)  thus shows the addition to the
utility integral ova  [t’,  r] that would result from a unit increase in the
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initial  stocksy’  = y(t’).  This is not yet the same  a~  the addition to the
utility integral over  [0, T] that would result from an increase in the
sto&  at i’, for in this latter case we could anticipate such an increase
and  adjust the utility flows over [0, t’] suitably. But an envelope
dwxem  argument again saves us from having to do this recalculation
explicitly. Treating the addition to stocks at t’ as parametric, the fact
that the utility flows were arranged to be optimum in the initial setting
enables us to say that to the first order a readjustment would make no
difference. Since the particular value t’  could have been chosen
arbitrarily, this completes the interpretation of n(r) as the shadow
prices of the stocks at time t, for every t in [0, r]

The function V has other uses besides helping to establish this
interpretation. In fact we can develop the whole theory of
intertemporal optimization and obtain methods of solution based on
this function. This method is called Dynamic Programming. I shall
derive the basic results of it using the Maximum Principle already
established, but the two approaches are equivalent, and it is possible to
develop the argument the other way.

As usual, y(T),  T(t)  and n(t)  will denote the optimum paths of the
relevant variables over  the whole interval [0, 7’1, Fix any t within this
range, and consider V(& J(t)).  Take a very short time interval dr  and
write, to first  order,

j(t + dr) =Y(T)  + Q@(r), F(t),  t)  dr.

Over the interval from t to (t + dt), the contribution to the utility
integral isF@(t),  f(t), r) di. Thereafter, the path continues as the
truncation of the full optimum to the interval [t + dr, T] , and hence is
the optimum over this interval when the initial stocks are .7(t  + dt).
Thus the remaining utility integral equals V(r f dT,y((f  + dt)). Hence

V@,  j(t)) = F@(t), Z@(t),  t)  df + V(r  + dr,j(t  + dr)), (10.1)

to first order. Now consider any value of z satisfying C@(t), z, f) $0.
lf this had been chosen at r, we would have, to first  order,

y(T  + dt) = y(r) + Q@(r), z, r) dr.

With this, we would have a contribution F@(t),  z, t)  dt over  this
interval, and at most V(t + dt,  y(T  + dr)) thereafter to the utility
integral. Further, the sum of these two can never  exceed V(r, j(t)), for
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if it did, we would have found a feasible policy that performed better
than the one we began with as the optimum. Thus we must have

V(r,  j(t)) > FCj(t),  z, t)  dT  f V(r + df,  y(~  + dr)). (10.2)

Combining (10.1) and (10.2),  we conclude that

V(i, j(t))  = my {F(y(f),  L,  f) dt  + I’@ + dr,y(T + dt))) (10.3)

the maximum being subject to the constraints G@(t), z, t)  G 0.
We can simplify (10.3) by taking a linear approximation to the value

of V on the right hand side. We have, to first order,

= V(t.  ~(0) + V,k j(t))  df  + V,O, .W)QW),  2, 0  df

On substituting this in (10.3),  we find that V(r,  y(t))  cancels. Then we
can divide by dt, and finally note that the term V,(T, j(t))  does not
involve z and can therefore be moved outside the maximization
operator. This leaves us with

0 = V,(f. 7(r))  + “ ,“” VAO,  2, 0  + VJ’, N))QW),  2,  01 (1’3.4)

Notice that the maximand  looks exactly like the Hamiltonian of
(9.16),  except that V,(t, .?(I)) replaces n(t). And there could not be a
more natural substitution, since our  shadow price interpretation of n(t)
shows that these two are equal. The maximization is subject to the same
constraints as before, and this produces the maximum value
Hamiltonian H*. We can therefore write

V,(t, Y(t)) + H*W),  Vyk  Y(O), 9  = 0 (10.5)

This is the fundamentalequation of Dynamic Programming.
This equation also provides us an alternative method for solving the

intertemporal optimization problem. We start, of couws,  without
knowledge of the function V. But a purely static optimization gives us
the functional form of H*. Now we know that V must satisfy the
partial differential equation I’, + H*(y, Vy.  t) = 0. We can solve this in
terms of various undetermined constants. and then use the end-point
conditions to determine the values of these constants. This is not easy
in practice, since the functional form of H* will in general be quite
complex, and solution of partial differential equations is not a trivial
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matter  in any case. For these reasons, analytic solutions can be found
only in some  very simple cases, and numerical solution depends on good
computing facilities. Consequently Dynamic Programming has
proved somewhat less useful than the Maximum Principle ln solving
economic problems, especially in economic theory where closed form
solutions are often sought. It does, however, produce some  shadow
price results very quickly. Also, it becomes more useful in problems
involving uncertainty.

The discussion so far has kept the terminal time T and the associated
target stock requirement bT  fLued,  allowing the initial time and stock to
vary. The reverse is also possible, and leads to an equation very  much
like (10.5). Write IV@,  y) as the maximum utility integral over  [0, t]
with a fixed stock endowment b, at 0 and the requirement y at i. Now
the shadow price interpretation becomes n(t) = JV,.(‘. J(t)). The
change of sign is natural since having to meet a larger requirement
reduces the possible utility flows. Also, we must now split w(r, j(r))
into a utility flow over  [r - dt, I] and IV(r di, Y(t - dr)). This causes
another change of sign.  The result is

W,k  7(t))  -mm, -Wy(‘. m), 0  = 0. (10.6)

This alternative approach is suitable for extending our discussion of
optimization over  time to allow more general end-point conditions. Our
choice of the initial condition fixing the time and stock availability is a
very natural one, but forms of the terminal conditions other than a
fued date and stock requirement are conceivable. Thus we may have a
fixed target for stocks, and may wish to attain it in the shortest possible
time. Now Titself  is the choice variable, and the maximand  can be
written as JT(-1)  dT.  Again, there may be some  flexibility both in the
terminal time and stocks, with a longer time being  allowed in return for
meeting a more stringent requirement. A general form of such
constraints can be given by

.a Y(T)) G 0. (10.7)

We can solve such a problem in two stages. First we fix Tandy(T), and
solve the earlier problem with the corresponding terminal conditions.
This produces a value IV(T, y(n)  for the criterion. Among all pairs
(T, y(T)) satisfying (10.7),  we then have to choose the one which
maximizes this. The second stage is a static problem, for which we have
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a Lagrange multiplier E such that the optimum choice (T,  y(n)
satisfies the first order conditions

Wt(T*  Y(T)) = 5Jr(~>Ym, W,(T.  Y(n)  = 5Jy@  Ym

Using (10.6) and the shadow price interpretation, this becomes

So long as 5  is positive, this says that the vector (P, - n)  should be
parallel to the vector (J,, JY) when both are evaluated at the optimum.
Since the latter is perpendicular to the surface defined by J(f, y) = 0,
the former should also be perpendicular to this surface. For this reason,
the conditions (10.8) are called the transversality  conditions. As an
example, consider the minimum-time problem mentioned before. There
T does not enter explicitly in the terminal conditions defined by (10.7).
Thus Ji  is identically zero, and the transversality conditions reduce to
P = 0 at the optimum. On the other hand, if T is fixed but the
terminal stock is totally unconstrained, we have JY identically zero and
the transversality conditions yield so  = 0.

Dynamic Programming, the Maximum Principle, and in special cases
the Euler-Lagrange equation provide us three alternative and equivalent
means of solving optimization problems involving time. They have
different advantages and disadvantages, and are all useful in ?ome
economic applications. Incidentally, physicists have long been
formulating laws of motion in a way that is formally  very similar to
economic optimization over time. All three of these approaches
originate in physics. For example, physicists know (9.18) and (9.19) as
the Hamiltonian canonical equation of motion, and (10.5) as the
Hamilton-Jacobi equation. The variables y and ?I  usually have the
physical interpretations of position and momentum respectively. It is
well worth the effort to read and compare the treatment of these
problems in physics and in economics.

There is one mope  extension of the basic intertemporal optimization
problem that is important in many economic problems. Often there is
no natural way to specify a terminal date for decisions. In fact, we can
rarely fix a date in advance and claim that considerations beyond it can
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be totally disregarded. This may be a minor problem for an individual,
but becomes more and more important as we consider wider and wider
contexts of decision-making. It may seem that the terminal stock
requirement in a finite-time problem is designed to take account of the
indefinite future, for the role of such stocks is implicitly to provide
utility flows beyond the terminal date. But it is precisely this that
makes such a procedure very inadequate. The level of the target stock
requirement will have to be fixed in a purely arbitrary way without an
explicit analysis of the subsequent utility flows. But such an explicit
account means solving a problem very  much like the original one but
with a longer time horizon. Of cowse,  there is no logical stopping point
to this argument. This forces us to allow an  inftite  time horizon.

We run into some  technical problems when we consider decisions
over  an infinite time horizon. First, there Is  the possibility that the
utility integrals may not always be finite. If two or  more feasible plans
each yield an infinite utility integral, we cannot directly say which is
preferable. Thus our  old definition of an optimum as a plan providing
the highest utility integral becomes useless. Comparisons between two
infinite integrals can only be made partially and in a roundabout way.
The simplest method is to compare the integrals taken over the same
fmite horizon and then take limits as the camnon  horizon goes to
infinity. Thus, for two plans (y(t),  z(t)) and (y’(r), z’(t)) over the
infinite future, and for each T, we calculate

~TFol(O,  4,O dt  - f FO’W,  ~‘(0, 0  dr, (10.9)
0 0

and take the limit of this difference as T goes to infinity. If the limit is
non-negative, we say that the plan (y(t), z(t)) overtakes  (v’(t), z’(T)).  If
a feasible plan overtakes all other feasible plans, it is an optimum.

In a situation with convergent utility integrals this must  reduce to
the old definition of an optimum, for then the limit of the difference is
the difference between the limits. Thus the overtaking criterion is no
less general. But the positive advantage from using  it is only partial. We
cannot compare all pairs of infinite utility integrals using it, for it is
quite possible to have cases  where the difference (10:9)  goes on
oscillating repeatedly between positive and negative values. Nothing can
be said about the relative merits of such plans using the overtaking
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concept. Still, there are cases  where the approach helps, and it, or  some
subtle variations of it, have become common.

There is another rs.son why an optimum may fail to exist.
Discont~nuities  provide a reason why no path can overtake all others;
thus we may be able to find  a sequence of paths each of which
overtakes its predecessor, but such that the limiting path of the
sequence, instead of being optimum, is very undesirable. A typical
example of this situation is the following. Let consumption and
investment be perfect substitutes in production. Suppose the marginal
productivity of investment is constant and equal to b, and suppose we
wish to maximize the integral of consumption discounted back to time
0 at a discount rater, with r <b. If we divert a unit of output from
consumption to investment at time 0 and let it compound up to time T,
the added amount of consumption available will be exp(bT),  and its
discounted present value will be exdb  r)T. This exceeds the
opportunity cost of the investment, namely 1. Thus any investment
increases the utility integral, and we can find a sequence of more
investment allowed to mature longer, yielding progressively higher
values of the criterion. The limit of such a sequence would be all
investment and no consumption ever, which is the worst  of all policies.

There are other, mox  subtle, kinds of discontinuities, but it seems
best to leave those to more advanced expositions.

We can now consider the conditions for an optimum. It is clear that
the principle that a portion of an optimum path must remain optimum
for the appropriately formulated subproblem is still valid. For any finite
subproblem, moreover, we can use our  earlier definition of optimality
and the corresponding conditions such as the Maximum Principle or
Dynamic Programming. Using the former, for example, we see that the
control variables should maximize the Hamiltonian at each instant in
time, and the state variables and the shadow prices should satisfy the
differential equations (9.18) and (9.19). But the transversality
conditions present a problem. Over any finite interval with the
appropriate stock constraints at its end-points we will have the standard
complementary slackness conditions, and thus the condition
corresponding to the initial point r = 0 will remain valid. However, there
is no terminal stock requirement at t = m, We might think that
something could be gained from a constraint that stocks must be non-
negative at each point in time. Thus we might set up a finite time
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horizon problem where the target stock has to be at least zero, i.e.
br  = 0. Then the transversality condition is x(7$(7’) = 0. Hence we
might conjecture that for the infinite horizon problem the terminal
condition would be

lhn  n(t)j(t)  = 0. (10.10)
t--

However, in general this condition is not necessary. It is only for
problems in a somewhat limited range that it can be shown to be a
necessary condition. It has a much more important and generally valid
rule as a sufficient condition when taken together with the standard
concavity requirements and the other two conditons  of Hamiltonian-
maximization and the differential equations. The proof is a simple
application of all the techniques used so far and of the overtaking
definition, but it has little economic interest, and I relegate it to an
example following this chapter.

EXAMPLES

Example IO. 1 As an illustration of Dynamic Programming and
transversality conditions, consider the minimum-distance problem of
Example 9.2, modified so that the terminal point is allowed to lie
anywhere on the line t = 1. As explained in the text, this can be donein
two parts. First we find the path of minimum length from (0,O)  to some
point (1, y( 1)). This leads to equations (9.33) and (9.34) as before, and
it remains to find the value of ?I  from the equation

T/(1  - n*p  =y(l). (10.11)

Finally, to determine the choice ofy(l),  we employ the transversality
condition. From (10.8) and the fact that the terminal constraint is
independent ofy, the condition becomes n(l)  = 0, and then from
(10.11) we have y(l)  = 0. Thus we choose the terminal point and the
path in such a way that at this point the path is perpendicular to the
curve on which the point is constrained to lie.

The problem can in fact be tackled from first principles, combining
the two stages into one. Define V(r,  y) as the shortest distance from the
point (f, y) to the line r = 1. Exactly the same argument as in the text



119 Optimization in Economic Theory

establishes (10.5) for this case, where H* is defined as in (9.33). Thus
we have

v, -(I Vy2)”  =o. (10.12)

This is subject to the obvious boundary condition that V( 1,  y) = 0 for
ally.

While the general methods for solving partial differential equations
are quite hard, it is easy to verify in this instance that V(r,  y) = 1 t is
the desired solution, given the appropriate choice of the sign of the
square root. Of cowse  this value of the distance is attained by the
perpendicular from the point (r, y) on to the line I = 1.

Example 10.2 This example sketches the proof of sufficiency in
the infinite context, in the sense  of the overtaking criterion. Suppose
that for each t, regarding (y,  z) as one vector argument, F is a concave
function, Q a vector concave function, and C a vector convex  function.
Suppose further that there exist non-negative multipliers n(t)  and p(r)
such that, omitting time arguments for brevity where no ambiguity is
possible, we have

FY@.  Z, r) +  ii  +  nQY@,  2,  t)  - pC,lj7  Z, t)  = 0 (9.14)

F& Z, f) + nQ,@, i,  r) pC,(v,  2,  f) = 0 (9.15)
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Further, (9.6) subsumes non-negativity conditions.
To prove the result, begin by observing that for each t,  F + !ry + nQ

is a concave function of (v,  2). Thus, from the sufficiency result of
Chapter 6, we have in (9.14) and (9.15) the necessary and sufficient
conditions for v,  Z)  to maximize this subject to the constraints (9.6)
involving the convex function C. Therefore, for any fj~.  z) satisfying
these, we have

F@,  Z, t)  + @ + TTQCJ,  f, r) > F(Y,  z, t)  + jry + mQ(y,  z, t)

Nuw  suppose we have (y(t), z(t)) satisfying (9.5) as well. Then

F~,z,t)t~~+li~~FD,z,r)tiiy+nL.

This holds for each t,  and can be integrated from 0 to T.  Since we have
d(iiy)/dr  = ;ir + rrj,  etc, this yields

lorF~,i,i)ditrr(~~(T)-nab

>z, 0  di  + n(Tly(Z’l  - n(O)y(O).

Using the fact that y(O)  = y(O), and the non-negativity of n and y.  and
finally the transversality  condition (lO.lO),  we have on taking limits

for each r,  and

Theny(r),  r(f)  yield the overtaking optimum of

lim 77(7$(T)  = 0
T-00

(10.10) r) dr  - I=Fg,(t),  z(r), r) dt  > 0.
0

Since (y(t), z(t)) could be any feasible policy, this proves the result.

subject to a given y(O), and

j = Qti,  z, f) (9.5)

G(y,  z, r) G 0. (9.6)

Note that we have subsumed the differential equations (9.18) and
(9.19) in (9.5) and (9.14) here

E X E R C I S E S

10.1 Consider the rentier  of Exercise 9.2, now planning over  an
infinite horizon, starting with capital stock k at time t.  Show that

solves the fundamental equation of Dynamic Programming for his
optimization problem. Deduce that his optimum policy is one of saving

..~ ,-.l,..--.-  -,.-.-,-...-  .,. . - -.-.. - -,-.-. .,...~...._  -..-
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a constant fraction of his income at all times. Under what restrictions
on the parameters will the transversality condition be satisfied?

20.2 Solve the problem of Example 10.1 by defining IV(t, y) as the
shortest distance from (0,O)  to (t,  y), and using (10.6).

FURTHER READING

For a “ore  advanced treatment of Dynamic Programming and its
relation toothermethodsof intertemporal optimization, see Intriligator,
op. cit., ch. 13, and mathematically “ore rigorous treatments in

DREYFUS, S. Dynamic Pwgramming  and the Calculus of Variations,
Academic Press, New York, 1966.

BELLMAN, R. and KALABA, R. Dynamic Programming and Modern
Conrrol  Theory, Academic Ress,  New York, 1965.

For a classic treatment, see
BELLMAN, R. Dynamic Programming, Princeton University Press,

Princeton, N. J., 1957.
For a discussion of problems that arise in infinite-horizon planning

models see Heal, op. cit. (p. 231,  chs. 11, 13. A model where the
transversality condition (10.10) is also necessary is developed by

WEITZMAN, M. L. ‘Duality Theory for Infinite Horizon Convex
Models’,Management  Science, 19(7), March 1973, pp. 783-9.

Intertemporal optimization methods are applied to physics in most
modern books on mechanics; my favourite  is

SYNGE, J. L. and GRIFFITHS,  B. A. Principles of~echonics.  Third
Edition, McGraw-H& New York, 1959.

11. Some Applications

This chapter is devoted to an exposition of two examples of
economic models using the techniques developed in the previous
chapters, and a statement of some others as exercises and further
readings.

EXAMPLES

Example 11.1 This example considers the problem of optimum
saving in a manner similar to that of Exercise 9.1, but from the point of
view of society as a whole. This produces two new features. First, there
is no logical terminal da&  to the plan. Secondly, the rate of return to
saving cannot be taken to be fixed by exogenous market forces, but will
depend on accumulated capital.

The simplest case of this occurs in a onegood model, where physical
capital stock k consists of accumulated savings. Output flow is then
F(k), where F is an increasing and strictly concave function, with
F(O)  = 0 and F’(0) = -_ Capital depreciates at a rate 6. If consumption
flows take place at a rate c, then capital accumulation is given by

ic=F(k)-Gk-c. (11.1)

The initial capital stock YO) is given. Suppose there are no other
constraints, and suppose the aim of the plan is to maximize

J10
U(c)  e-OL’  dt (11.2)

in the overtaking sense, where Liis  an increasing strictly concave
function. Detailed comments on these assumptions can be found in
economic texts cited later.

This allows a straightforward application of the Maximum Principle.
We define  the multipliers over time, n(t), and the Hamiltonian

H= U(c)  emat  + r(t) (F(k) - 6k  - c). (11.3)
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AU the concavity conditions are satisfied, so the first-order conditions
are necessary and, along with transversality, sufficient. Henceforth 1
shall consider all variables only at their optimum values, and drop the
bars distinguishing them as such for sake of brevity.

Maximization of the Hamiltonian yields, for each I,

U’(c) e-0”  = n.

The differential equation satisfied by n is

(11.4)

ii = -n(F’(k) - 6). (11.5)

We could use (11.4) to substitute for c in (11 ,l) to obtain a pair of
differential equations for k and r. However, in this case it is easier to do
the reverse, i.e. substitute for II  in (11.5) to give a pair of differential
equations ink and c.  We have

u”(c)?  cot  U’(c)u  Car = -U’(c) e?“(F’(k)  - 6).

To simplify this, define

E(C) = -CrJ”(C)/U(C). (11.6)

This enables us to write

t/c = [F’(k) - (a + 6)] /e(c). (11.7)

Observe that Example 9.1 and Exercise 9.1 had a formally identical
structure, with F’(k) constant and equal to r, and E(C) constant (equal
to 1 in Example 9.1 and to E in Exercise 9,1).This  is why they share the
convenient property of a constant rate of growth of consumption along
the optimum path.

The pair of equations (11.1) and (11.7) has the convenient property
that t does not enter explicitly on the right hand side. Thus, if we are
given any pair (k, c), we shall be able to find  the rates  of change (i, t)
from these equations. In the (k, c) plane, these velocities can be shown
by a small vector arrow  attached to the point (k, c), If we do this for all
points, we can join successive avow  together to find  all paths (k(t),
c(r)) which satisfy the two differential equations, both necessary
conditions for optimality. No two such paths can CIOSS,  since the
direction of motion is unique given the starting point. If, from among
all such paths, for a given k(0) we are able to find a c(O)  such that the
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path starting there satisfies the transversality condition, we will have
found an optimum.

Figure 11 .l shows this diagram. The easiest way to understand it is
to think of the plane as being split into regions where the directions of
change of the variables are the same.  Since each of the two variables k
and c can increase 01 decrease, we have four possible combinations, and
indeed in this case there are four regions. From (1 I .l), we see that k
increases if c <F(k) - 6k, which is the region below the curve

k
k* k

FIG. 11.1

c = F(k) Sk in the diagram. This curve has its peak where F(k) - 6k is
maximum, i.e. fork = k’ defined by F’(k’)  = S  Turning to (11.7),  we see
that c increases ifF’(k)  > LY + 8, since E(C) is positive when V’(c)  is
negative. Now define  the vertical line k = k*  by F’(k*) = ol  + 6, so that c
increases to its left and decreases to its right. Since F is a concave
function, we have k*  <k’  when a > 0. It is then easy to verify that all
possible paths satisfying the two differential equations fall into one of
the patterns shown by the arrows.

Writing c*  = F(k*)  - Sk*, we see that there are exactly two of these
paths which converge to (k*, c*),  and that for each k(O),  there is exactly
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one c(O)  providing the initial point on one of these two. Suppose we
make this choice. Then in the limit, qr)  goes to k*, and n(t) goes to
U’(P)  e?‘. Provided a is positive, the transversality  condition is
satisfied and the choice is optimum.

Had we used the variables k and 71, the diagram would have been a
proper phase diag:am  in the sense explained in Chapter 9. In fact
economists often call a diagram involving solutions to a pair of
differential equations that do not involve time explicitly a phase
diagram even when the two variables do not stand in the relation of a
quantity and its shadow price. However, in this case the equations in k
and n do involve time explicitly through the discount factor. In the case
of exponential discounting, a very simple change of variables eliminates
this. Define $(t)  by

Comparing this with (11.4),  we see that $(r)  is the undiscounted
shadow price of k(t).  Now a mechanical differentiation shows

a n d

j, = -$ [F’(k) (a + S)] (11.8)

ir = F(k) - 6k  - V($), (11.9)

where V, the inverse function to U’,  is a decreasing function since U’  is.
It is now easy to draw the phase diagram in terms of k and $. Since c
and $I are inversely related, this looks exactly like Figure 1 I.1 but
reflected upside down. This is left as a simple exercise.

The study of optimum saving policy forms an obviously important
part of growth theory. Only the very briefest sketch of the simplest
such model can be accommodated here, but the interested reader has a
very extensive literature available for pursuing further developemnts.  A
sample of such work is listed at the end of the chapter.

Exmnple  11.2 Here I shall outline  a very simple model of the
optimum arrangement of roads and housing in the residential belt of a
circular city. It gives an interesting economic application of the
techniques of Chapters 9 and IO in which the independent variable is
not time.
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The central business district of the city occupies a circle of given
radius a.  The residential belt spreads from there to a bigger circle of
given radius b. We are also given the number of residents, N, and the
amount of housing space to be allotted to each, 2nh.  The factor 277  is
chosen to simplify notation later, and n is not a shadow price, but
3.14159 , the ratio of the circumference of a circle to its diameter.
So long as 2nhN<  n(b*  -a*),  there will be land left over for roads.

The roads are used by commuters to travel to the central business
district and back, and the problem is to arrange roads and housing in
such a way as to minimize the congestion costs of this travel. Suppose
that we have a large number of evenly spaced radial roads, so that the
trips  necessary to reach the nearest one can be neglected, and attention
concentrated on the trips radially to the central business district and
back.

Suppose N(r) residents live between r and b. Then there are -N’(r)
dr living in a small ring  located between the radii I and (r + dr), shown
in Figwe II .2. These occupy -2nluV’(r)  dr  units of land, leaving the
rest out of the total area of 27~  dr  in the ring to roads. Thus, along the
circumference of the ring, such roads occupy a width of 2n[r  + /uV’(r)]
Since these roads are used for commuting by theN(r)  residents living

FIG. 11.2

..-  ,.....  I...-,.~~. ..-..-.--.-- . . ~  -...~-  .,., -,.--.-  ..,.....  -..~  ,,,,...,..., .,.... -- _-,.. --..,-



126 Optimization in Economic Theory

farther away, the traffic density along them is proportional to
N(r)/[r  + M’(r)], There areN(r)  dr  man-yards of travel at this density
in each direction. Omitting factors of proportionality, suppose the
congestion cost element contributed by these is

{N(r)/ [r + hN’(r)]] k  N(f)  dl = N(r)k+  1 dr/ [I + hN’(r)] k

where k is a positive constant. In practice we find that k exceeds 2.
Thus our  problem is to choose the function N(r), subject to the end-

point conditions N(a) = N and N(b) = 0, to minimize

(11.10)

This is most easily tackled using the Euler-Lagrange equation. Simple
differentiation gives

I k+’ \ _ (k + l)N(r)k

it  ,,Jkz&+  ‘I - [r + hN’(r)]kl
(11.11)

This looks quite formidable, but a simple substitution makes it
manageable. Define D(r) = N(r)/ [r + w(r)] , which is the traffic density
at r except for a constant of proportionality. Then (11.1) becomes

-khdDX+‘/dr=(k+  1)ti

o r

dD/dr  = -l&h). (11.12)

This shows at once that traffic density in the optimum arrangement
falls linearly with distance. In terms of an undetermined constant c,,
we have

D(r) = (c, - r)/(kh). (11.13)

Recalling the definition ofD(r),  we have a firsturder  differential
equation for N(r) which can be solved, introducing another constant of
integration ct.  After some tedious calculation, it is possible to show
that

N(r) = (cl - r)-k (11.14)
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The end-point conditions can then be used to determine c, and c2. This
can  be computed numerically.

Interesting qualitative features can be found by examining the width
of roads. Within a constant of proportionality, defme W(r)  =r  + &V’(r).
Obviously we must have W(r) 47.  We have the differential equation

W’(r) = [(k + I)W(r) - krl  /(Cl  - I). (11.15)

The solution can be examined geometricaIly,  as in Figure 11.3. Clearly
W(b) = 0, as there is no reason to provide roads for zero traffic. Now

FIG. 11.3

W’(r) has the same  sign as [W(r)  - kr/(k  + I)], and we can trace the
solution backwards starting at b. We fmd three possibilities. The first
has W(r)  decreasing all the way from a to b. This occurs when N is small
relative to the maximum value it is allowed to attain, i.e. for sparsely
populated cities. For mope  congested cities, we have the second case
where W(r)  increases for a while and then decreases. For very heavily
congested cities, the solution traced backward hits the line W  = I,
showing that there is a range near II where the entire area has to be
devoted to roads. To solve this properly, of course, we have to
formulate the problem allowing for such inequality constraints. This is
more difficult, but the feature of the solution is clear. However, if u
were a choice variable, we would not allow the third case to occur, for
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it would be desirable to expand the central business district to occupy
the space that is being wasted on roads just  outside (1.

The last remark is just one example of the way in which the model
could be, and indeed has been, generalized. Once again, such
refmements  must be left to be pursued by the interested readers. These
changes, however, leave the basic qualitative features of the allocation
of space to roads in the residential belt unchanged.

EXERCISES

11.1 Consider a firm which faces a demand curve

q(t) = a - x(t) - bp(r)

at time t.  Here a and b are positive constants, p(t) and q(r)  are
respectively the price and the quantity demanded at f, and x(r)  equals
the sales of its competitors at t.  These sales are governed by the
differential equation

i(r)=k[p(t)-P*l,

where k andp’  are positive constants. This shows that competitors
enter or expand if they see this firm charging a price above the ‘limit
price’ p*,  The average costs of production are constant and equal to c
at all times, and there is a constant rate of interest r. The firm wishes to
maximize

1,
[p(t)  - c]q(t)  e-” dt,

with x(0) given.
Apply the Maximum Principle to solve this problem, takingx  as the

state variable and p as  the control variable. Construct the diagram in
(x, p) space showing the possible solution paths of the appropriate
differential equations. Hence find the qualitative features of the
optimum pricing policy of the firm over  time. Assume that p* 2 c, and
obtain the conditions on the parameters of the problem which must be
satisfied if the competing firms retain positive sales in the limit.

11.2 An economy begins its planning at time 0, when it has a stock

J!
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So of an exhaustible resource. It chooses a plan of depletion at a rate
R(t) as a function of time, subject to the feasibility requirement

The plan aims to maximize

w h e r e

J,
U(R(r)) e--OLf  dr,

U(R)=R’-‘I(1  -E),

~2  and E being positive constants.
Taking S(r), the stqck  of the resource that remains at I, as  the state

variable, and R(t) = 4(r) as  the control variable, show that the
multiplier n(t) obatined from the Maximum Principle is constant over
time. Hence deduce that the optimum depletion plan is given by

R(r) = (C&/E)  e-(“‘+.

Solve the problem using the Euler-Lagrange equation. Set up the
Dynamic Programming equation and guess a solution to it as  in Exercise
10.1.

What problems arise if a equals zero?

FURTHER READING

For relatively simple expositions of optimum saving theory, see
SOLOW,  R. M. Growth Theory.. An Exposition, Clarendon  Press,

Oxford, 1970, Chapter 5.
DIXIT, A. K. The Theory of Equilibrium Growth, Oxford University

Press, 1976, chs. 5, 7.
For a more advanced treatment, see Intriligator, op. cit. (p.  68)

ch. 16. Heal op. cit., chs. 12, 13. See also
WAN, H.  Y. Jr. Economic Growth, Harwurt  Brace Jovanovich,  New

York,197l,chs.9-11.
An important related branch is the tlieory of optimum depletion of

exhaustible resources. See the special symposium issue of the Review of
Economic Sfudies,  1974. Exercise 11.2 is the simplest case of the
problem.
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For richer models of the optimum size and organization of cities, see
MILLS, E. S. and DE FERRANTI, D. M. ‘Market Choices and

Optimum City Size’,Americnn  Economic Review, LXI(Z), May 1971,
pp. 340-S.

DIXIT, A. K. ‘The Optimum Factory Town’, The Bell Journal of
Economics md  Management Science, 4(2),  Autumn 1973, pp.  637-S 1.

For details of the problem of Exercise 11.1, see
GASKINS, D. W. Jr., ‘Dynamic Limit Pricing: Optimal Pricing under

Threat of Entry’, JournalofEconomic  Theory, 3(3),  September 1971,
pp. 306-22,  and comment by N. I. IRELAND, Journal of Economic
Theory, 5(2),  October 1972, pp. 303-S.

Models of optimum capital accumulation which use an objective
more general than (I I .2) can be found in

RYDER, H. E. Jr. and HEAL, G. M., ‘Optimum growth with
intertemporally dependent preferences’, Review of Economic Studies.
XL(l), January 1973, pp. l-31.

WAN, H. Y. Jr., ‘Optimal saving programs under intertemporally
dependent preferences’, Infernotional  Economic Review, I l(2),
October 1970, pp. 521-47.

Concluding Comments

I hope that I have provided sufficient theory and applications in this
book to give the general economic theorist a good working understanding
of optimization methods. However, readers who wish to specialize have
large aeas  for further reading and thought available. The books by
Malinvaud,  Heal, Intriligator and Luenberger  cited frequently in
individual chapter reading lists will provide an excellent start. I have
listed them here roughly in increasing order of mathematical
sophistication.

One large and important area  concerning optimization that I have
omitted completely is that of decision-making under uncertainty. As
with time, optimization under uncertainty does not introduce radically
new basic theories, but the structure that arises when the various
functions are expected values under some  probability distributions leads
to richer results. A useful treatment even at a very  cursory level would
add far too much to the bulk of this book. I shall therefore merely
suggest some  readings. These are

ARROW, K. J. Essays in the Theory of Risk&viing,  North-Holland,
Amsterdam, 1970, especially chs. 1 and 3,

DE GROOT, M.  H. OptimalStatisticalDecisions,  McGraw-Hill, New
York, 1970.
and a forthcoming collection of articles edited by P. A. DIAMOND and
M. ROTHSCHILD.
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