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l. Lagrange’s Method

For many smple optimization problems in economics, the solution is
a a point of tangency of two curves. The best known example of this is
that of a consumer who chooses the amounts of two commodities on
his budget line to reach the highest possible indifference curve on his
indifference map. At the chosen point, the budget line is tangent to the
highest attaineble indifference curve. Another example is that of a
producer with given resources, who can produce any combination of
amounts of two goods lying on a transformation curve showing a
diminishing marginad rate of transformation. Given the prices of the two
goods, he would produce that combination which yidds maximum
revenue. In the fird example the condraint curve is a draight line, while
in the second the contours of equa revenue form a family of parald
draight lines. In generd, both the congraint curve and the family of
leve curves of the objective can be norHinear. An example of this
would be a planned economy with a known transformation curve,
choosing a production plan to maximize a criterion of socid wdfare.
The contours of equad socid welfare would form a convex indifference
map, and the production possibility schedule would be a concave curve.
There will be conditions concerning permissible curvatures to be
discussed |ater.

The generd problem leeds to the very familiar picture of Figure | 1.
To give an dgebraic trestment, we have to define the congtranl curve
by an eguetion. Write x; and x; for the quantities of the two goods,
and let the equation relating the two be written as

Glxy,x) = ¢ (1.1)

where G is a function and ¢ a given condant. For example, in the
consumer’s problem the constrainl has the form px + pyx, = M
where p, and p, are the prices of the two goods and  is the money
meome.

Let the optimum choice be labelled (%,, ¥,), and let the equation of
the levd curve of the objective function F through this point be

F(_YI,XQ)=V. (12)
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X Common
tangent

\

Gx)=c

FIG. 11

Note that ¢ is a datum of the problem, but that the value of v can be
found only after the optimum choice is known, &s v = F(%,, %,).

The quantities are more compectly written as vectors arranged in
vetica columns, thus

Initially, | shal use vectors only to abbreviate lists of components.
Actud operations with vectors and matrices will appear gradualy.

On ingpection of Figure 1. 1, we have the well-known economic
condition that if ¥ is to be the optimum choice, the {wo curves defined
by (1.1) and (I .2} should touch each other at that point. In other
words, they should have the same dope there. To write this
dgebraicaly. we must find expressions for these dopes in terms of the
functions F and (7. Begin with the condraint curve, and consider a
point (¥ + dx), lying on it and adjacent to X, where dx = (dx |, dx,} is
an infinitesmal increment. Then dx, /dx, is defined to be the slope of
the curve at x.
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Such infinitesimal increments have the natural economic me_aning of
marginal changes, and their use can be given.rigo.rou‘s.jus.tlﬁcatlon. }}ut
beginniers sometimes make Misiakes in handiing infinitesimals, and it
will be a useful exercise for them to rework the arguments using the
standard method of calculus texts, taking finite but smail changes and

then going to the limit.
Since both the points being considered lie on the curve {1.1), the

value of G is the same at both. In particular, the first order change d,
which is found by taking a linear approximation to {7 using its
derivatives a %, is zero, This gives

0=dG = G;(F) dx; +G,(X) dxy,

where G, and 3. a2 be}%‘é)éoikff?f?(f{& for ;= {and 3. O'f,
course, each is itself a function ofx, and in the eguation they are
evauated & . This yields

dxafdx, = — G (£)/G4(%),

the standard calcutus formula for the differentiation of implicit
functions. Note that if one of & () and G, (%) is zero, we can still
make sense of this and cal it zero or infinity as the ¢ase may be. If both
are zero, we are lidble to have problems. Specid cases may stil] work,
but in order to be sure of the vaidity of generd results we must
confine vur attention 1o the case where a least one of these derivatives
15 non-zero a x,

By the same argument, theslope of (L.2) a 7 is _p' (F)/F, (%) If ¥
is the optimum choice. then the two dopes will be equal, {e.

FyEYF(E) = G (R)Go(2). 13)

Such a condition, which necessarily holds & an aptimum, is called 3
necessary condition for optimality. A condition which ensures
optimality, i.e. one such that if it holds & %, then ¥ is optimum, will be
a sufficient condition.

The left hand side, being the slope of a Jeve] curve of £, js the
marginal rate of (subjective) substitution dlong an indifference curve of
the maximand. Similarly, the right hand side is the marginal rate of
transformation or technica substitution for the gonstraint. Thus the
condition of their equdity should be familiar: the twn are maral.
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expressed here in terms of the partia derivatives of the underlying
functions.
Of course the point ¥ must lie on the condraint curve, i.e

Gix,, %) =¢ (L4

In (1.3) and (1.4) we have two equations to solve for the two
unknowns, ¥; and %,, The equdions are usudly non-linear, and we
have to meke careful checks before we can say whether a solution is
posshle or unique. Even worse, exactly the same tangency argument
would have produced the same necessary conditions had we been
minimizing the same function subject to the same condraint. Thus our
necessry condition is far from being sufficient. However, these
questions are better handled dong different lines. | shdl therefore
neglect them for a while, and proceed assuming that ¥ is the unique
maximizer.

One important fact should be noted at this point. The number y wes
introduced with a warning that its value could not be known until the
optimum choice had been found. Fortunatdy, v does not appear in
(1.3) and (14). Thus the lack of foreknowledge does not pose any
problems. We can cdculate x without knowing v, and then use this to
cdculae the vaue of v.

It is useful to express (1.3) in an dternative form as

FL®)/G (%)= F2 (0[G4 (). (1.5)
Write 7 for the common vdue then we have equivdently
F(x) - a6 (X)) = 0= F3(%) — nG4(x). (1.6}

These equations can be interpreted as follows. Having defined the
constant 7, define g new function

Lix) = Flx) mGx). (1.7

Then (1.6) says that the partia derivatives of [ ae both zero when
evauaed a x. Now it is a well known calculus result that. if a function
is maximized without any condraints, al its first order partial
derivatives should equal zero a the optimum. This should be obvious
from its economic meaning. For example, if a consumer is given an
unlimited budget. he will choose goods until no addition to wutility iS
possble, i.e until the margind utilities of al goods are reduced to zero.
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Subject to a tricky point that will be taken up in Chapter 6, we see that
¥ fulfiis the necessary first order conditions for maximizing L(x)
without any congraints. This reduction of a congtrained optimization
problem to an uncongrained one is of great economic significance the
meaning will become clear in Chapter 4.

The condition (1.6) gives us an dterndive method for determining%o
In (1.4) and (1.6), we have three equations in the three numbers %, X,
and 7. Subject to the same warnings as were given before, we can use
these equetions to complete the solution. As was the case with y, we do
not have to know the vaue of 7 in advance even though we began by
defining it in terms of the optimum choice. In setting up the function £
we can introduce ¢ as an ‘undetermined multiplier’, and obtain its vaue
as a pat of the whole process of solution.

This dternative approach is cdled Lagrange's method (after its
inventor) for consrained optimization. The number 7 is cdled the
Lagrange multiplier, and the function L is cdled the Lagrangean or the
Lagrange expression.

This dternative approach is easy to extend to cases where there are
sverd variables and severd condraints. Clearly, two choice variables
were used only to facilitate the geometric reasoning of Figure 1.1.
Problems with severd condraints are quite common in economics. For
example, a consumer may have to budget his time as wel as his income,
or he may face a separate budget condraint & each point in time in
drawing up his optimum consumption plan over an extended horizon.
A nationa planner may have to ensure that his production plan does
not use more of any one of severd resources than the amounts available.
For many of the results in the next few chapters, | shal use this last
example for illugtration and interpretation.

Lagrange's method is easy to extend to these problems, and the
obvious generdizations turn out to be correct, Suppose there are n
choice variables forming a vector x, and are subject to one condraint,
G(x) = ¢, which defines a hypersurface in n-dimensond space. For the
maximization of F(x) we have the conditions on fjrst-order derivaives,
i.e. the first-order conditions

b

Fix) --7G{x)=0 for j=1,2,...n (1.8)

These n equations, together with the congtraint. (x) = ¢, enable us to
find the # components of x and the multiplier 7. Next suppose there are
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R choice varigbles and s congtraints C'(X) = ¢;, where the functions are
identified by superscripts to avoid confuson with subscripts denoting
partid derivatives. We need m < p, for n condraints would generaly
reduce the feasible st to a discrete set of points, while more condraints
would generdly be mutudly incondgtent. To extend Lagranges method
to this dtuation, al we have to do is to define a multiplier for each
condraint. If we write 5; for the multiplier for the /™ constraint, the
conditions are

m
Ffx) - X G =0 for i=1,2,...n (L9
i=1
where G, are the partial derivatives 3G'/dx;. It is easy to verify that
(1.9), and the condraining equations G'(x) = ¢;, provide just the right
number of equations for finding the components X and the multipliers
M.

It will be convenient to express (1.9) in a more compact form using
vectors. Let ¢ be a column vector with components ¢;, and & a column
vector function with component functions (*. Then all the condraints
can be written together as a vector equdity (x) = c. Next, the patid
derivatives Fi{x) should be formed into a vector which | shal write as
F (%), the subscript x indicating the vector argument with respect to
which the derivatives yre taken. | shadl make the convention tha where
the argument of 3 function is a column vector, the vector of partia
derivaives will be 4 row vector (and vice versa, we shdl meet row vector
aguments later). There is a good mathematica reason for this, but the
main advantage here is that it will save us from having to form frequent
transposes. Similarly, for each ¢*, the row vector of partia derivatives
will be C/(X), and these will be stacked verticdly to form an m-by-n
matrix, written & (). The multipliers 7; will foom a 10w .. 7. Now
it is easy to see, from the definition of matrix multiplication gpplied to
(1.9}, that the row vecier, or 1-by-n matrix, F,.(xX}, equals the product
of the I-by-m matrix 7 and the m-by-r matrix C,(X). When there was
onfy one condraint, we had to assume that a least one G,(x ) was non-
zero, i.e. that G, (%) had a1 leest one non-zero component. The
generdization for more congraints is that the rows of the matrix G, (x)
should be linearly independent, i.e. that it should have the maximum
posshle rank. m. It is easy 10 see that the condition for a single
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congraint is a specid case of this a vegtor on its own is linearly
independent if and only if it is non-zero.

The proofs of dl these generdizations are neither easy nor
illuminating. Also, other more ingructive methods will be used in
deriving more generd results in Chepters 5 and 6. | shdl therefore omit
the proofs here, and merdly summarize the result for reference

If ¥ maximizes F(x) subject to the congraints Gix) = ¢, ad
if the matrix G, (x) has full rank, then there exists a row vector
7 such that

Fo(®) 76G.(%) = 0 (1.10)

Lagrange’s method provides a convenient and mechanicd way to
solve many economic optimization problems. We define a multiplier for
each condraint, form the function L, equate its patia derivatives to
zero, and solve the resulting equations and the condraints. We shall
$00N See ways in which this must be modified and supplemented to
admit some complications that are relevant in economic prohlems, but
the basc method will remain a vduable tool.

EXAMPLES

Example 1.1 To maximize F(x, v) =x%y# subject to the constraint
px +qv=m.

This will typically occur as a problem of utility maximization subject
to 3 budget condraint, p, ¢ being the prices of goodsx, v, ad sy being
money income. (With two variables, the (x, y) notation is smpler than
(xy.xq0)

The first method of solution equates the siope of « level curve of the
chjective function to that of the congtraint curve. As discussed in the
text, we use the implicit function differentiation result to cvgluate the
former as

(BFfx)/(DF/3y) = (ax™ w9 f(pxc P 1
= —la/x)(8]v)



8 Optimization in Economic Theory

and the latter as -p/g. In this example, these expressons can be found
equally eadly by finding an explicit equation for each curve. Thus,

F(x,y) =» implies y =yliix—alb
and dong the condraint curve, we have
y=mlq - (plqye.

In generd, explicit solutions will be much harder.
Now the optimum choice {# 7) satisfies the condition that the two

dopes are equd, yidding

(@/®)NB/Y)=plq
or pxfe = qp/B. (1.11)
Using the budget congtraint, we can eadily complete the solution

pEim = af(e +§) and gpim = Bi(a +8)

The solution has the property that the budget shares are constant.
This is usudly not a redigtic description of consumer behaviour, and
better ones are available (cf. Example 1.2 and Exercise | .4 below).
However, this example has great illustrative vaue in many situations.
Also, smilar examples are somewhat more redidtic in the case of
production.

The second method of solution is to introduce a Lagrange multiplier
7 and to form the Lagrange expresson

Lix, v)= x*vY —m(px +qv).

The firg-order conditions for maximization of F(x, y} ae found by
equating eaech partid derivative of L to zero, Thus the optimum choice
(x, ») stisfies

ax® L _ap=0

axy?= -3y = 0.
A yseful trick for solving such equations when the constraint is linear is

to multiply the first by x, the second by 1, and add the two together.
Wehgve

a+ ,G)xo‘yﬁ =a(px tqy)=nm.
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If we subgtitute the value of 7 given by this in each of the equations
above, we have the solution as before. Then, if we wish, we can find 7
in terms of the parameters of the problem. This last step is left as an
exads

The mirror imege of this problem is that of minimizing (px +qy)
subject to the congraint

xyf =g, (1L12)

where 7 is a given scda. This will typicaly occur as a problem of
minimizing the cost of producing a target output 7 using factors of
production x and y, when p and g are the prices of the factors, and the
production function is of the product-of-powers form in (1.12), known
as the Cobb-Douglas function. If there are constant returns to scale, we
havea+f§=1.

The method of equating the dopes shows a once that the ¢ost-
minimizing choice satisfies (1 .1 1). However, the sum px + g7 no longer
has a known vaue; it is the minimum cost of production to be
determined. Thus we can only say that the shares of each factor in totd
factor cost are congdant:

pE[(px + q7) = afla + P), gy /(px + q7) = (o + §)

With constant returns to scale, the exponents a and 3 are directly the
factor shares. Such constancy of factor shares is sometimes an
acceptable first gpproximation to observed producer behaviour, and this
explains the popularity of the Cobb-Douglas production function.

Example 1.2 Condder another consumer choice problem with the
utility function
Fx, v)=axt+ gye) e

The margindl rate of substitution aong 4 level cuve of this objective is

(HeyFee, )T Fpey<—T 7 g

(He)Fx, )t Daex ! o:(x)f_'
Y,

If the indifference curves are to be convex to the origin, the numerica
vaue of the aove should fal asx incresses or as ) decreases. This needs
¢ < 1, Check this by drawing some leve purves for specid vaues. For
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¢ = 2 these are dlipses, which have the wrong curvature. Try —1, or 2/3,
which yidds a shape that is well known in geometry. It turns out that
the limiting case as € goes to zero is that of Example 1. | above.

On equating the dope above and that of the budget congraint, we
have the condition for the optimum choice

/By (17~ =plq,
Le. V% = UpB/ge))®

where we define g = 1/(1 = E). It js easy o solve this with the budget
balance equation px + g7 = m to obtain

px/m =aﬂp—06/(a_ﬂp—ﬂe +B0q—ﬂf)

and a amilar expresson for the budget share of the other good.

If weuse ¢ =0, ie. ¢ = 1, in this equation, we have (1.11). Thus we
see that Example 1.2 is g generalization of Example 1 .1, It alows the
budget shares to vary systematicaly with the prices. For example, if ¢ is
positive, the budget share ofx goes to O asp goes to infinity, and to |
ap goes to zero. Therefore this example has a grester potentid for
being a reasonable description of consumer behaviour then the one
before. However, a given prices, the expenditures on esch commodity
are proportional to income, i.e. both income dadticities of demand are
unity. This is not very reasonable, and there is ill room for improve-
ment.

EXERCISES
11 Solve the problem of Example 1.2 by Lagrange's method

12 Generalize the two examples above to the case of n variables

(Change the notation, replacing {x, y) by {x;,x,, -Xa) (o B) by
(0‘1 .C!z, R Yn)etc.)

1.3 It iswdl known in consumer theory that the exact form of the
utility function is immaterid so long as the ordering of preference is
preserved: F and F will serve equaly well as utility functions o long as
we have F(x) = F(v) if and only if £(x } = £(y). Thisis the case if there
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is an increasing function ¢ such that £1(x} = ¢(£(x)) for al x. To verify
this, solve the consumer’s problem with the utility functions

Fix,y) = x3*y %

and Fx, v)=o logx +5log y,
and show that they yield the same solution as Example 1.1.

14 Solve the consumer’s problem with the utility function

a log(x xo) + f log(y ~ yy)

where xg and yq are given numbers. Show that, provided m exceeds the
value Mg = pXp + Vg, the solution is

X=xg+a(m - my)fp, ¥ =yo+ [{(m~moliq.

The parameters ¢ and f§ are positive, and a+f=1. By Exercise 1.3, this
involves no loss of generality. Give yourself extra credit if you can solve
this by a trick without having to do any hard work.

This provides another way of generalizing Example 1.1, alowing
richer possibilities for income and price easticities. This formulation is
used a great deal in practice for estimating demand systems.

FURTHER READING

Readers who need to remind themselves of the economics and the
geometry of indifference curves and transformation curves can do so
using any one of:

SAMUELSON, P. A, Feonomics, ninth edition, 1973. McGraw-Hill,
New York, Chapter 2h and the appendix to chapter 22.

LIPSEY, R. G. Positive Economics, fourth edition, 1975, Weidenfeld
and Nicholson, London: Chapter 4 and the appendix to chapter 15.

DORFMAN, R. Prices ond Markets, Prentice-Hdl, Englewoond Cliffs,
N.J., second edition, 1972, chapters 4, 5, and 7.

The last of these is a shade less elementary.

Those who need to know more about the mathematical techniques
have the choice of proper mathematics books, mathematics books
designed for economists, and economics hooks which explain
mathematics along the way. In this order, | offer:

COURANT, R. and JOHN, F. [rtroduction to Calcuius end Anulysis,
Wiley-Interscience, New York and London; Vol. 1 1965, Val. 1l 1974.

YAMANE,T. Mathematics For Economists. Prentice-Hall, New York:
second edition, 1968.
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ARCHIBALD, G. C. and LIPSEY, R. G. A Mathematical Treatment
of Economics, Weidenfeld and Nicholson, London; second edition,
1973.

As far as optimization is concerned, roughly speaking, the present book
begins where the book by Archibald and Lipsey ends.

| append a table of references from these books. In each case, the
volume (if any) is in roman numerals, chapter in boldface, and section
in arabic.

Courant Yamane Archibald
and John (1968) and Lipsey
(1-1965, 11-1974) (1973)
Derivatives 1.2.89; 1313 3 4-7
Partial derivatives 1IL1.1-7 4 8
Chain rule 1116 4.6 4.6
Taylor's theorem 1117 4.5.7.1-6
Implicit functions 11.3.1 4.7 8.6
Linear agebra 11.2.1,2 10.1-6.15 15.1-4
Matrix products i1.2.2 10.6 15.3
Quadratic forms I1.3.A1 10.12,11.7,8 ~
Integration 1.2.1-3 6.1-4 13
by parts 1.3.9,11 Fn. p. 312

Accomplished mathematicians who wish to read a conventional proof
of Lagrange’'s method will find one in Courant and John (1i- -1974), 3.7.



2. Shadow Prices

Thus far | have not given any red reason for introducing the
multipliers to solve optimization problems. A problem with two
vaiables and one congraint would be smpler without a multiplier: its
use would replace the solution of two equations in two unknowns by
that of three equations in three unknowns. With more variables, the
multiplier makes the conditions more symmetric and easier to
remember. We could have looked at cross-sections of two variables a a
time and found (n -~ 1) necessary conditions

FL(®)IF, (%) = G (DG (x), Fo(X)F 3(X) = G5 (%)/G 5(%),
- anl(f)/Fn(-f) = Gn—l(j)/Gn(f),

then proved that there were no other independent conditions, and
solved these with the congtraint C(X) = ¢ for the n components of %.
This would be cumbersome; it would become even more so with many
congtraints.

But aesthetic apped or mild smplicity are by no means the strongest
reasons for using the multipliers. We would probably prefer to do
without them if they did not convey some vita information about the
economics of the problem. This arises in the following way.

The maximization problem has severd parameters as data. The
numbers ¢; are obvious examples, and there will be other parameters
that appear in the functions F and ¢;*, Economists often wish to know
how the solution to the problem changes if these parameters take
different values. In consumer theory, for ingance, we discuss the
income and subdtitution effects by comparing the optimum choice for
different budget lines corresponding to different prices and incomes.
For a producer facing given output prices, we want to know how is
supply plans will change if these prices or his technology change. The
generdmethod of comparing solutions for various parameter changes is
called comparative statics, and the importance of the Lagrange
multipliers lies in the fact that they provide the answer to a very basic
comparative static question

To explain this in the simplest way, congder a problem with two
choicevariables and one congtraint. As before. write the maximand as
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F(x), the congraint as ¢(x} = c, the optimum choice as ¥, and the
madmum value v = F(f). Now consder a problem which differs from
this only by a margind increment de in ¢, o that the condraint is

G{x) = ¢ + dc. Given enough regularity, we expect the solution to differ
from x by a marginal amount dx. The change in the maximum vdue is
F(x + dx) - F(f). The first order gpproximation to this can be
caculated by successive use of firg order Taylor expandions for F and G
based on the derivatives a %, and using the condition (1.6). We thus
have, to first order,

dv = F{x) d¥, + F,(2) d¥,
=n[G,(¥) dF; + G{%) d¥;]
= n[G(x + dX) — G(F)]
=af(c +de)—¢] =mde
or dv/d¢ = .

Thus the multiplier gives us the rate of change of the maximum
atainable vaue of the criterion function with respect to a change in the
congraining parameter. In the consumer’s problem, for example the
multiplier would be the rate a which utility could be increased in
response to the availability of grester money income: it would then be
natura to cal that multiplier the marginad utility of money income.

This generdizes very eedly. and | shdl discuss the generd case to
illugtrate the ease and advantage of vectors. If dx is the column vector
of increments in x corresponding to a column vector dc of increments
in ¢, the first order change in value can be written as

dv = F.(x} d¥

the matrix product of a row vector and a column vector. Then,
following the steps as above and using (1.10), we have

dv = F (x) dx
=76 (%) dx =7 de.

This result is important enough to be stated separately for reference
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If dv isthe first order change in the maximum vaue of F(x)
as a result of an infinitesma increment dc in ¢, and ¢ is the
vector of multipliers for the congtraints z(x) = c, then

dv=1ndc 2.1)

In particular, if de; is the only non-zero component in dc, so that
only the /! constraint changes, this reduces to dv = @; dey. Thus 7, is
the rate of change of v with respect to ¢; alone; ; = dv{ac;.

It should be stressed that (2.1) is only the first order (linear)
approximation to the change in ¥, For afinite change in ¢, we could
take more derivatives and carry the Taylor expanson to higher orders
to find a closer approximation. This will be done, athough for a
somewhat different purpose, in Chapter 8.

To illugrate and explain this result, consder a planned economy for
which a production and consumption plan x is to be chosen to
maximize an indicator of socid wdfare, F(x). Suppose the various
congtraints C'(x) = ¢; equate the different resource requirements of this
plan to the availabilities of these resources. Suppose the problem has
been solved and the vaue of the Lagrange multipliers obtained. Now
suppose some power outsde the economy puts an additional man-hour
at its disposal. The problem can be solved afresh with the new labour
congtraint to determine the new pattern of production. But we know
the extent of the resultant increese in socid welfare without having to
do this caculation it is given by its origind Lagrange multiplier. a
least up to a linear approximation. We ¢yn then say that the multiplier
tells us the value of the marginal product of labour fur this economy iy,
terms of its own criterion function.

Another way of louking et thisis even more instructive. Suppose we
use this additional man-hour for producing more output of good ; alone.
If dx; is the increase in output, and the Tabour congtraint is G{x) = ¢,
then we must have (7,(x) dx; = | in order to go on satisfying the
congtraint when ¢ increases by | (assumed to count as 3 smdl
increment). Thus dx; = 1/(;(¥). and the contribution to socia we|fyre
N

FAX) dx; = FR)/GAX),

the ratio of the marginal contribution of good ; (o sodd welfare (g its
margind resource requirement. At the optimum, such retios will have
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been arranged to be equd for dl j, snce otherwise some gain in sodd
wdfare remains feasble by shifting some labour from production of a
good with a lower vaue of this retio to another with a higher one
Recall that it is by such verbd arguments that the proportiondity of
margina utilities to the corresponding prices is established for the
consumer’s choice problem in dementary textbooks. Recdling (1 .8),
the Lagrange multiplier shows the trade-off between the congraint and
the criterion. This is clearly a most important piece of economic
information, and this is what establishes the importance of Lagrange's
method in economics

Now suppose this additional man-hour can only be used at some
cod. The maximum ¢ost this economy will be willing to incur in terms
of its criterion is clearly equd to this multiplier, since any smaler cost
will leave it with a positive net benefit from using the man-hour. In this
natural sense, the multiplier represents the price that is placed on a man-
hour in this economy. In the case of sodd wefare maximization,
payments or prices expressed in terms of units of socia welfare seems a
drange concept. However, a minor modification brings us back on
familiar ground. Consider some other resource, say land. Let the labour
congraint be numbered 1 and the land congtraint 2, and let 7, and 1,
be the respective multipliers. Now suppose the economy in question is
offered an additiond man-hour, but asked for payment in return of the
sarvices of de, units of land. The gain in socid welfare from having one
additiond man-hour is 7, while the loss from giving up the use of de,
units of land is 7, dc,. There is a net gain so0 long as @, 7, dey IS non-
negative, and therefore the maximum amount of land use payment that
will be offered in return for a unit of Yabour is (7, /7, ). Thisis of course
the demand price of labour for this economy, expressed relative to land.
If another economy has a different trade-off on account of different
resource availabilities or technology, and is willing to offer a man-hour
in return for the use of a smaler amount of land, then there is the
posshility of mutualy advantageous trade between the two.

Of course, the internd organization of the economy need have
nothing to do with prices, and the multiplier (perhaps expressed relative
to another multiplier) need not equa the wage that is actudly pad for
each man-hour. Labour may smply be directed to various tasks in a
command economy. Perhaps discriminatory pricing may be posshble
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However, the multipliers remain an integral part of the outcome of the
maximization problem that is solved, and they implicitly place a vaue
on resaurces like labour.

However, suppose the economy does dlocate resources using markets.
Suppose the markets are in a state of equilibrium, where the prices are
such that the demands and supplies chosen by individuas pursuing their
own maximization criteria are equd in the aggregete. Now suppose an
economist sets out to evaluate the performance of this economy using
some given criterion. When he solves the condrained maximization
problem, he will have a set of multipliers for the resource congraints.
There seems little resson why the market should replicate this
alocation, and the multipliers need not have any rdation to the market
prices of resources. But there are cases when the optimum is replicated
as a market eguilibrium, and the economist is tempted to say that the
economy is guided to the optimum by an ‘invisble hand’. This occurs in
the following circumstances. Suppose the criterion has the consumers
utility levels as its only arguments, and is an increasing function of each.
If the economy is competitive, with no externd effects anywhere and
no sgnificant increasing returns to scae in production, and if it is
possible to redistribute the initial ownership of resources as we see fit,
then such an ‘invisble hand’ result will be true. This case has been a
central concern of economic theory for a very long time. An incressing
amount of attention is being paid to cases where this result cannot be
true, for the conditions required are clearly very stringent. In such cases
the economist must look for policies which will produce some improve-
ment over a free market, even though the outcome may fal short of the
ided. This leads to a two-stage maximization problem in which
individuals respond to policies in light of their own criteria, and the
planners take these responses into account when choosing the best
policy in light of theirs. In this case, we have some systematic relation,
but not identity, between the planners” multipliers and the market
prices, the difference being the tax or the subsidy which is the
gppropricte policy. Examples of such problems are(i) regulation of
industries with sgnificant increasing returns, (ii) policies concerning
externdities and public goods. and (jii) tax policies which must consider
a balance between equity and efficiency. | shdl examine some of these
in more specific contexts in later chapters.
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To evoke the connection with prices, and yet maintan a conceptua
diginction from market prices, the Lagrange multipliers are often caled
shadow prices.

An economic question now arises. We expect prices to be non-
negative, but so far we have seen no reason why the shadow prices in
our dandard maximization problem should be non-negative. Clearly,
relaxing a congraint should engble us to achieve a vdue a leest as great
for the criterion, but in the genera statement of the problem an
increese in ¢ need not mean a relaxation of the condraint. Trividly, we
could have written the condraint as -C(x) = —¢, and an increese in the
right hand side of this would mean a decrease inc. Also, not dl of the
condraints need be ones on resource availability. We might be
maximizing the amount of invesment subject to providing a given
amount of consumer goods. Now an increase in this Stipulated amount
makes the economic condraint more severe, 0 a smdler amount of
investment is avalable and the multiplier is negaive. These examples
show that if we want non-negative shadow prices, we must be careful to
write the congraints in such a way that an increase in the right hand
sde does reax the redrictions on the choice being made.

There is another, more important, consderation. There may be cases
in which the margind vaue of a resource turns negative beyond some
point. In this range, a further increase in its use will mean a lower
maximum vaue and a negative shadow price. We have expressed the
condraint as an exact equdity, which forces the use of a resource even
when it would have been better to leave some of it idle. If the congtraint
were an inequality, such as G(x) < ¢, we would have the freedom to do
this. Of course, in adding this freedom with no other change in the
problem, we assume that it is costless to leave a resource idle, which
need not be the case some resources like human brains may deteriorate
faster when unused. But provided we account for such cogts in the
criterion, it is a good idea to dlow a planner the freedom not to use
some part of resources if this serves the interests of the chosen criterion.
As a further argument, even the economicdly intuitive non-negativity
of market prices would be threatened if we abandoned the assumption
of costless disposability.

To admit condraints expressed by inequdities. we must develop
some mathematical techniques. This will be done in Chapters 4 and 5.
but one of the results is important and should be evident from the
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discussion above. If a pat of some resource is dready idle, then any
increment in it will dso be left idle. The maximum vaue of the criterion
will be unchanged and the shadow price will be zero. On the other
hand, a postive shadow price means that an increase in availability of
the resource will increase the dtainable vaue of the criterion. Clearly,
none of the amount origindly available could then have been Ieft idle
in the interests of maximization. These two arguments can be put
together in the statement that, a least one of the shadow prices and the
‘dack’ in the use of the resource will dways be zero. This generd
principle is one of the most important feetures of economic
maximization problems, and it is given the name of complementary
slackness. It will be formulated more precisely in Chapter 6, and we
ghdl meet it agan severd times

Note that writing inequdity congtraints in the form shown above
takes care of the problem mentioned earlier, since an x which saidfies
G(x) € ¢ will dso satisfy G(x) 4 ¢ for ay ¢ exceeding ¢, ensuring that
an increase in the right hand sde means freer choicet A congtraint which
gtipulates 1 minimum provison of some good will be of the form
G(x) 2 c. In the standard form this will become —G(x) < —¢, and an
increase in the right hand side of this i.e a decreese in ¢, is again a
relaxation of the congtraint.

EXAMPLES

Lxample 2.1 Let us return to the consumer’s problem of Example
1.1, and find the margina utility of money income. The multiplier was
eiminated since it was not the focus of interest there, but we do have
an expression for it as part of the solution:

7= (o + HEF fm.
Now we need only to subgtitute the values of £ and ¥ to find

B L oam A\ fm P
"'(“B)(p(wm) (q(&+ﬁ)) fm

() ()15)

atg—1
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In particular, if a+ §= 1, the last factor equals 1, and = becomes
independent of . This makes economic sense. The case is one in which,
for the scade chosen, utility shows congant returns to scade. Also, a
doubling of money income a fixed prices merdly leads to a doubling of
both commodity quantities chosen, and therefore a doubling of utility,
Therefore the margind utility of money income is independent of the
level of money income, and equa to its average utility.

Once again, it should be gressed that the whole reasoning is odd as
far as consumer theory is concerned, for the particular cardind form of
the utility function does not have any specid meaning and a concept
such as congant returns to scale is out of place. However, wefare
economics often imposes specific cardind forms on consumers
utilities in the process of making interpersonal comparisons, and
then the question becomes important. Also, for production under
congtant returns to scale, Smilar properties are true and of
interest.

Example 2.2 As a gep towards edtablishing the ‘invisble hand
result mentioned in the text, consder a stage of planning where the
tota amounts of the various goods are known and fixed, and the only
remaining question is that of digtributing them among the consumers.
Suppose there are | of them, labelled i = 1,2, |, and that there are G
goods, labelled g = 1,2, G. (Recdl that a different notation is being
used in examples) Let X, be the tota amount of good g, and let the
amount of it alocated to individua | be x,.. Each individud's utility is
a function only of his own alocations,

ut. = L"t(x“ s ,'.L'[-ZJJ.'IG) fOr 3:1,2,[

Socid welfare is an increasing function of these utility levels

w=Wu, uz,...U)

The constraints ae tha for each good. its dlocations to the individuds
should add up to the total amount avaladle

Xig tXg T txg =X, for g=12...C
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Defining Lagrange multipliers mg for these condraints, we form the
Lagrange expresson

L= WU xy,,- S X1g)-- U, oxi6))
3ofr

where the range of each summation and the arguments of L are dedar.

Differentiating with respect to each x;, using the chain rule, we have
the conditions

WU me=0, 2.2)

where subscripts of functions indicate the appropriate partial derivatives
in the usuad way. They are to be evduated at the optimum as usud, but
the arguments are left out for the sake of brevity.

Now suppose the resulting numbers m1, were the prices of the
respective goods in a market economy. Suppose individud i has a
money income #;, and maximizes u; subject to the budget condraint

MXp + MXp t + dgxie = My

Defining a Lagrange multiplier 3, for this constraint, we have the
expression

Li = Ui(xfl, L. .X,'G) — 7\;‘ z ﬂ'gxig
g
Differentiating with respect to x;,, we have the conditions

brg[ _ 7\1'”g =0 (23)

If we compare these with (2.2), we see that they coincide provided A,
the margind utility of money income for individud i, equds |/, for
eech i. If we have control over the ownership of resources, we can
distribute it 10 adjust the m; in such away as to bring about such
equdities. (It is only in exceptiona cases that m; Wil fail to affect };,
and in these cases didtribution will cease t be a concern so that the
problem will not arise) Of course, this argument is of the same Status as
counting equations and unknowns, but like most sensble arguments of

that type, it can be made rigorous. This is the ‘invishble hand’ result for
the digribution problem.
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EXERCISES

2.1 Although the choice of different cardind forms to represent
utility does not affect the optimum choice of commodities for a
consumer, it does change the scde of messurement of utility and thus
changes the vdue of the margind utility of money income. Veify this
by showing that, for the second of the functions of Exercise 1.3, we
have

7= (@a+p)m

This does have the property of diminishing margina utility of money
income that acquires relevance in welfare economics

22 Condder a consumer planing his consumption over two years.
He will have money income m; during the first year and 15 during the
second. He will face prices py and g, for goodsx; and y, during the
first year, and p, and ¢, for goods x, and y, during the second. He
maximizes  utility

= logx; +§; logy, +a, logx, +3, logy*

subject to two budget condraints, one for each year.

Solve this problem, and find the multipliers 7, and =, for the two
condraints. Examine how these depend on money income, prices and
the parameters that enter the utility function.

How much of #, will the consumer be willing to give up in return
for being given another unit of m, 7 Why would you expect inditutions
of borrowing and lending to develop in an economy populated by such
consumers with different incomes and utility functions'!

23 Extend the ‘invisble hand' result of Example 22 to the following
Stuation where the amounts of the goods to be produced are dso
decison variables Suppose there arc # factors of production, available
in fixed amounts Zy forf=1, 2, F. If amounts zge OF factor fare
used in the production of good g, the outputs of the various goods are
given by

Xy =X8(z1g. 2000 . . ZEg).

Maximize was before, but now subject (o constraints balancing the use
and the availability of factors as well as those for the goods. From the
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conditions for the optimum choice, find relations between the shadow
prices of goods and those factors, and interpret these relations
economically.

2.4 Extend the result further to a situation where the factor supplies
are adso a matter for decision. Consumers supply factors, and experience
disutility from doing so. Write ;¢ for the amount of factor T supplied
by individual i, formulate the appropriate constraints, and proceed as in
the above exercise.

FURTHER READING

The concept of the ‘invisible hand’ is discussed in all elementary
texts, eg. Samuelson, op. cit. (p. 1 1}, chs. 3, 32; and Dorfman, op.
cit. {p.1 1), ch. 8. For a proof similar to the one here, as well as an
indication of approaches that do not need derivatives, see

MALINVAUD, E. Lectures on Microeconomic Theory, North-
Holland, Amsterdam, 1972, ch. 4.

An extremely valuable general discussion can be found in

KOOPMANS, T. C. Three Essays on the §tazre of Economic Science,
McGraw-Hill, New York, 1957, Essay 1.

Shadow prices are sometimes alluded to in elementary texts, eg.
Samuelson op. cit. (p. 1 1), pp. 775-6; and Dorfman, op. cit. (p. 11),
p. 183n.

For a more detailed discussion with applications, see

HEAL, G. M. The Theory of Economic Planning, North-Holland,

Amsterdam, 1973, Section 4.5 and Appendix A.7.



3. Maximum Value Functions

Before turning to inequality constraints, [ shall discuss some othet
important results in comparative statics. In Chapter 2, we considered
the rate of change of the maximum attainable value of the criterion

with respect to the right hand side of the constraint. In other words, we |

recognized that the optimum choice, and therefore this maximum value,
depend on the number on the right hand side of the constraint, and
examined one property of this functional dependence ¥(c), namely its
derivative v'(c). There is a great deal to be learnt from extending this
concept further. Several other parameters enter the constrained
maximization problem, and the maximum value is a function of them
all. For example, the maximum utility attainable for a consumer isa
function of the prices and his income; this function is called the indired :
utility function. A great deal about the consumer’s choice can be learnt
from the properties of his indirect utility function, and sometimes it i§

1

a much better way to model his behaviour than an explicit discussionof_:
the maximization of his ordinary {direct) utility function. This exampk’
will be taken up again in the examples and exercises at the end of this i
chapter. Until then, I shall consider the question in terms of the generll-;.
constrained maximization problem and derive results to be applied latet;
Consider first a case where the parameters affect the maximand
alone. This might arise for a producer minimizing the cost of productiof
while meeting an output target, when the parameters are the pricesof
the factors. Alternatively the parameters may be world prices faced bya
small country wishing to maximize the value of its outputs given its
resources and technology. In any case, let these parameters forma
column vector b, and enlarge the list of arguments of the criterion
function ¥ to include b. Now the problem is to maximize F(x, b)
subject to the constraints G(x) = ¢, by choice of x. Defining a vectorr .
of multipliers, we know that the optimum choice ¥ satisfies

Fx(f- b) - ﬂcx(f)=0.~ (31}

where now £ is the row vector function of the partial derivatives of F |
with respect to the components of x, holding b constant. The maxinus
value is v = F(%, b), where ¥ is itself a function of & on account of (3.1)




Maximum Value Functions 25

above. Now let an increment db in b occur, and let dx and dv be the
corresponding changes to first order in X and ». As in the previous
chapter, we have

dv=F (% b) dx + F,(x, b) db
=7G,(X)dx + F (%, b) db
But b does not enter into the constraint equations, and therefore
G (%) 4% = dG =0,
and
dv = Fy(x, b) db (3.2)

3 Once again, for changes of significant size in &, we can carry the

series expansion further to find closer approximations to the change in
v. However, the first order result above has great interest on account of
its simplicity. For it says that, in calculating the first order change in

_ "the maximum value in response to a parametric change affecting the

f, eriterion function alone, we need not worry about the simultaneous

E change in the choice ¥ itself. All we have to do is to calculate the partial
;. change with respect to the parameters, and evaluate the expression at

] "t‘l!initial optimum choice. For the cost-minimizing producer, for
“example, if factor prices change the optimum factor proportions (given
soe substitution possibilities i production) will also change. But as far
g8 changes in the minimum cost of production are concerned, we can

" {to the first order) forget about substitution and calculate as if fixed

- coefficients ruled.

£ Now let the parameters & enter the constraints as well. We can in fact
E* subsume the right hand side vector ¢ into the vector b, and write the
genenal constraints in the form G(x, ») = 0. The previous form can then
- become a special case with the left hand side in the form G(x) ¢

b Now we have

0=dG = G (%, b) d¥ + G (%, b) db

Fo(x b) d¥ = 7/ (X, b)Y dx = —7w(7 (%, ) db.
Then, calculating as before, the change in the maximum value is

dv = {Fy(x, B) - 7G, (%, b)] db. (3.3)
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The difference between (3.2) and (3.3) has an obvious explanation,
When b affects the constraints, a change of db in it changes the value of
G by an amount G (%, b) db, and this acts exactly like a reduction in
resource availability of an equal magnitude. The cost to the maximum
value is thus 7Gp, (%, b) db. However, once again we need not remember
the induced change in X.

These results suggest a more general question; namely, what happens
if some of the components of x adjust to the new optimum values while
the others are held fixed at their old ones? To be more precise, let the
vector x be partitioned into two vectors y and z, and let the correspond:
ing values for the optimum be ¥ and z. We want to compare the
response of v to a change in b when we allow the whole of x to adjust
optimally, with that when we hold ¥ fixed and allow only £ to adjust.
Of course, enough components must be flexible to ensure that the
constraints can be met; this needs at least as many flexible components
as there are constraints.

Let us first examine the question using Lagrange’s method. In the
first case, when all components are free, we can rewrite the conditions
(3.1) in the partitioned notation as

Fy(5, £ b) = 1G5, £, b)= 0
F.(G,Z b) —nG,(3 2, b) =0
and (3.2) becomes
dv = [Fp(F, 2, b) - 1G (7, 7, b)] db. (35

When only z adjusts, we are solving the problem of maximizing
F(¥, z, b) subject to the conditions G(7, z, &) = 0. Defining a vector of
multipliers A, we have the conditions

F, (7, 7, b) - NG,(7, £, b)=0 39

(34)

and then
dv = [Fp(¥, 2, B) - MG, (7, Z, b)] db. (37

It is not clear whether (3.7) and (3.5) will give the same answer. A
sufficient condition for this will be # = X, which is cumbersome to
prove, and subject to pedantic-looking qualifications.

[ have set up this inconclusive argument to demonstrate by contrast
the power of an alternative approach. This method relies directly on the
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definition of an optimum, rather than on necessary conditions in terms
of derivatives. Quite simply, we use the inequality that the value of the
ctiterion cormresponrding to the optimum choice must be at least as great
# that corresponding to any feasible choice. In the present case, this
approach tells us very easily when the desired result is valid, and also
gives us the meaning of the qualifications that arise.

To formulate this, it is useful to give explicit recognition to the fact
that the optimum value and the corresponding choices are all functions
of the parameters. Thus, when both y and z are free, let v = V(b) be the
maximum value, and 7 = ¥{b) and Z = Z(}) the corresponding choices,
thus

V(b)Y =F(Y(b),Z(b), b) (3.8)

When y is fixed, we must admit it as another vector of parameters, For
the problem when only z is free, write V(y, b) as the maximum value,
and Z(y, b) as the optimum choice. Then

Wy, b) = F(y, Z(y, b), b) 39

The use of the same function symbols in the two cases should not cause
any confusion, since in each case the arguments will be written
explicitly to make it clear which case is intended.

Now the point on which the argument hinges is quite simply that the
choice (y, Z(y, b)) satisfies the constraints which would apply if both
sets of variables were free, namely G(y, z, b) =0. As V{(b) is the
optimum value for that problem, we must have

Vv, b) < V(b) (3.10)

For one particular case, namely when y is held fixed at just the value it
would have taken had it been free, the two solutions coincide, and
therefore

V(Y(b),b) = ¥(b) {3.11)

Now consider an increment db in b. Although 7 = Y(b) was the
optimum choice for that set in the original problem, it need not remain
o when the parameters change to (b + db). We therefore have

V(. b)=V(b) }

(3.12)
Vi, b +db) < V(b + db)
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and subtracting,
V(7 b +db) — V(7 b)< V(b +db) - V(b). (313

This is the general result for the comparison of changes in value when
some of the choice variables are held fixed and those when they are all
free. To see the earlier question in this context, consider the case when
there is only one parameter &. This is illustrated in Figure 3.1 A (31D |
requires, the curve showing the maximum value as a function of b whea
y is held fixed at y lies everywhere below the corresponding curve for
the case when y is free, and the two coincide at the particular value of &

Vib)

¥{v.b)

FI1G. 3.1

for which 7 happens to be the optimum choice. If both functions are
differentiable, they must be mutually tangential at this point, as in
Figure 3.1. Then

Vi (v, b) = Vp(b). (3.14;

where V}, is simply another notation for the derivative V'

To prove this algebraically, regard db as a finite change, and divide
both sides of (3.13) by it. The direction of the inequality is maintained
if db is positive, and reversed if it is negative. In each case, proceed to
the limit as db goes to zero. This gives two weak inequalities pointingis




Maximum Value Functions 29

opposite directions between the two sides of (3.14), thus establishing
the equation provided the derivatives exist. If b is a vector, this can be
done separately for each of its components, establishing equations like
(3.14) for each corresponding pair of partial derivatives of the two
functions, i.e. the vector equality for the derivatives as whole vectors.
This is the kind of result that we have been trying to find; it equates the
rates of change of the maximum value with respect to the parameters,
irrespective of whether all variables are free or some of them are fixed.
However, we shall see later that maximum value functions may fail
1o have derivatives, i.e. they may have different slopes at a point
depending on whether we approach it from the left or the right. This
can happen even when all the underlying criterion and constraint
functions are differentiable. This gives rise to a possibility like that
shown in Figure 3.2, where (3.12) are satisfied, but an equality

Vb)
Viib)

FIG. 3.2

tike (3.14) cannot be inferred from them. The best we can do is to

:define separate ‘left-handed’ and ‘right-handed’ derivatives depending

.. onwhether db approaches zero from positive or negative values, and

' establish inequalities which say that the upper curve is steeper to the
tight and flatter to the left, f.c. in obvious notation

Vp(b)e 2 V(¥, b)s, V() < V(7. B) . (3.15)
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It is in just such a case that equations like (3.5) and (3.7) will be valid
but will have different values for the Lagrange multipliers.

In discussing applications, I shall assume differentiability of the
maximum value function where appropriate without rigorous
justification. One such application has become famous in ¢conomics,
since it was the first instance to be discovered of the general properties
discussed in this chapter. Cost curves are found by minimizing the cost
of producing a stipulated amount of output, and drawing the value of
the minimized cost as a function of the cutput. Marginal cost is then
the slope of this curve as the output parameter changes. In the long run,
all factors are at the firm’s choice, while in the short run, only a subset
of them can be chosen freely. For each short run cost curve, there will
be a level of output at which the fixed factors happen to be at their
long run optimurmn levels. Then (3.14) tells us that at this cutput [evel,
the short run marginal cost will equal the long run marginal cost, and
then the corresponding average cost curves will touch each other.
Further, from (3.12), we see that the long run total (or average) cost
curves must lie everywhere below the corresponding short run ones
{remember that this is a minimization problem}. If we repeat this for all
short run cost curves, the long run cost curve will emerge as the
envelope of the family of short run cost curves corresponding to
ditferent levels ot the fixed factors. Hence, in fact, the general result is
often called the “envelope theorem’ It has also been called the Wong-
Viner theorem. after the two who stumbled upon it while studving
properties of cost curves.

The first order nature ot this result should be siressed. Higher order
derivatives ot the two functions F(H) and V(. by will not in general be
equal. We see ttom Figure 3.0 that the latter must have a greater
downward curvature. Le, it must be more concave. This has some
important implications. and | shall have occasion to refer to them i
Chapier 5

The next natural comparative static question concerns the response
of ¥ 1sell 1o changes in the parameters. Results like the negativity ot
the own substitution effect belong to this category. As ¥ as found trom
t1 107 and the constraints, we have 1o find how these change when the
parameters change This can be done by differentiation, but (1 10)
iseli has virst order derivatives. and changes it will bring in second
arder omes | shall postpane discussion of changes in ¥ for two reasons
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First, the readers will in the meantime have had more practice of
mathematical reasoning and will be able to understand the arguments
and the results more easily. Secondly, the techniques to be developed in
the next two chapters will often provide ways of answering comparative
static questions more easily without resorting to second order

derivatives in many important cases. The direct reasoning used in this
chapter has already provided an example of the power and simplicity of
such methods, and there is much to be said for developing them further
and using them more frequently.

EXAMPLES

Example 3.1 As an illustration of the envelope theorem on its
home ground, consider the following situation. In the short run, if a
plant designed for capacity % is to be used for producing output g, the
cost is given by

Clg, k)=a + k2 [1 +{g/k)*].

In the long run, & is variable. In order to produce output g in the long
run at the minimum cost, the producer will choose k so as to minimize
(g, k). The first order condition for this is

Celg, k) =blk - q*k= ] =0
and the second order derivative
Crlq. k) =b[1 + 3(g/k)*]

s positive, thus ensuring a minimum. This yields k = g, i.e. capacity
L thould be chosen equal to the long run output level planned. Then the
long run cost curve is found by substituting this value as

Cg)=a+bg”.

L. Now the short-run marginal cost is

Colg, k) = 30K + 4% [k* = 204 K2,
 and the long-run marginal cost is

C'(q) = 2bg.
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The two are clearly equal whenk =g,

It isauseful exerciseto plot these functions, and the associated
average cost curves, to scale on graph paper. To simplify paper-and-
pencil calculations, take a= 240, b = 15, and try valuesk = 2, 3, 4,5
and 6. If using a slide rule or a calculator, experiment with your own
numbers.

Example 3.2 The most important development in this chapter has
been the introduction of the idea of regarding the maximum value of
the criterion as a function of the parameters of the problem. Such
functions convey a lot of economically useful information about the
optimization problem under study, and have several important
applications. This exampleis designed to illustrate some such applica-
tionsin consumer theory.

For a consumer maximizing utility subject to the budget constraint
px =m, where p is arow vector of prices and # is money income, the
maximum utility he can achieveisafunction of p and m. Thisiscalled
the indirect utility function. Write it as ¥{p, m). Some properties of it
are evident; for example, changing al prices and income in the same
proportion leaves the feasible commodity bundles x unchanged, and
thus does not affect the maximum attainable utility level; thus i(p, m)
is homogeneous of degree zero in its arguments. Some other properties
will be studied later. The feature of particular interest at this point is
the application of the comparative static results derived so far. Write
Vi for the partia derivative aF/om, and V,- for aV/ap;. If, following
the standard practice in consumer theory, we denote the Lagrange
multiplier for the problem by A, we know from the shadow price
interpretation that

A = Vidp, m). (3.16)

We can also apply (3.3). If all prices except the ;" are fixed, we can
find the rate of change of V with respect to p;, i.e. V;, from (3.3) as

V](p, m) = ——?\a(px),fap, = *?\X,',

evaluated at the optimum choice. Of course the utility-maximizing
choice defines the demand functions, X;= DY{p, m). Thuswe have

D(p, m)= —Vp, m)Vyu(p, m). @17
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Thisisauseful and important result. If we are given the consumer’s
utility function and asked to find the resultant demand functions,
we have to carry out the whole constrained optimization solution,
which is a mesy tak even in the smplest cases On the other hand, if
we are given hisindirect utility function, we can find the demand
functions by differentiation alone. Thusit is much simpler to
summarize our information about consumers by means of indirect
utility functions. Particularly in models in which the consumers are
only one part of the story, the consequent economy of effort and of
notation makes a great deal of difference. Some such applications will
be developed in the subsequent chapters.

Next consider the mirror image problem mentioned before, where
the consumer is seen as minimizing the expenditure necessary for
attaining a given target utility level. The minimum value that resultsis
now afunction of the prices and of the utility level. Thisis called the
expenditure function, written E(p, u). Keeping ¥ fixed and changing all
prices in the same proportion will change the necessary expenditure by
that proportion, and therefore the expenditure function is homogeneous
of degree one inp for every fixedy, Once again, other properties will
be developed |ater; once again, first order changes in its value tell us
about demand functions.

In notation anal ogous to that wed above, if&is the Lagrange
multiplier, we have

u=FE,(p,uw) (3.18)

In this case price changes do not afect the condrant, and we can use
(3.2). This gives

Edp.u) = X;

evaluated at the optimum. Cost-minimizing commodity choicesfor a
given utility levd are the compensated demend functions C¥(p, u). The
process is as if, following any price change the consumer is

compensated by changing his money income just enough to leave him
on the same indifference curve. This is done in the two-good case by
sliding the budget tangentially to the indifference curve, in order to
icolae the <ubditution effect of a price change Now we have shown

Cp,u) = Efp. u). (3.19)
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This expression is even simpler than that for the (uncompensated)
demand functions above, and is often more useful. Its applications will
be taken up later.

Example 3.3 Since the vector c of the right hand sides of the
constraints can be subsumed in the vector of parametersb used in this
chapter, it should be possible to derive (2.1) as a special case of (3.3).
To do this, let usidentify b and ¢, and consider the special case where
G(x, b) = G(x) — c. Now the partial derivative of the #*" component
function with respect to¢; is-1if i = and zero otherwise; thus the
matrix G, becomes -1 where I is the (m-by-m) identity matrix. The
maximand does not involve ¢, Therefore (3.3) becomes

dv= [0 — n(~D)] dc = n dc,

which is (2.1). It is common to write the constraints G(x) = ¢ in the
form G(x}=¢ = 0. Then the Lagrange expression (1.7) can be written as

L =F) 7Gx c (3.20)

Thisis often useful in theoretical developments | shall not discuss, but
the practical benefit is that (2.1) and (3.3) can be stated in a simple
form: the first order derivatives of the maximum value with respect to
the parameters are equal to the corresponding partial derivatives of the
Lagrange expression, evaluated at the optimum.

EXERCISES

32 Give details of the limit arguments used in deriving (3.14) and
(3.15).

3.2 Consider aproducer who uses avector of inputsx to produce a
given amount of output y according to a production function y = F(x).
He faces pricesw for these inputs. Define his minimum cost of
production as a function of w and y, called the cost function, C(w, y).
Derive his factor demands for achieving minimum-cost production in
terms of the derivatives of the cost function. Interpret the Lagrange
multiplier for the minimization problem.

Now suppose he faces a price p for output, and chooses its quantity
to maximize profit. What further conditions emerge? If the profit
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function is defined as the maximum value of profit regarded as a
function of all prices, how can the producer’s supply curve for output
be derived from it?

3.3 For the second case in Exercise 1.3, show that the indirect utility
function is

V(p,q. m)=alog a+flogf — (a+p)log(a+p)

t(x+p)logm —alogp —flogg,
and that for the case of Example 1.2, it is

V(p,d, M) = ma®p=%¢ + f°q )1 1009,

In each case, find the corresponding expenditure function. Generalize
these expressions to the case of n choice variables, with proper
notational changes.

3.4 For the production function

53]
2

y=Ax," x2% L x,
show that the cost function is

Cw, y ) = y/AMT (wyfag)*r 1Y (wyfa,)*n /Y

where y =E =1 a;. If y < 1, calculate the corresponding profit
function. What will gowrong if ¥ =1, i.e. if there are constant returns
to scale in production?

FURTHER READING

For more on cost curves and their envelope properties, see Samuelson
op. cit. (p. 11), ch. 24; Lipsey, op. cit. (p.11), ch. 18; and Dorfman,
op. cit. (p. 11}, ch. 3. For the story of the discovery of the Wong-Viner
theorem, see

VINER, J. ‘Cost Curves and Supply Curves', reprintedin Readings in
Price Theory, (eds. G. J. Stigler and K. E. Boulding), Irwin, Homewood,
., 1952.

Unfortunately, no textbook treats the indirect utility, expenditure,
cost and profit functions at all systematically. 1 hope that the treatment
here and in later chapters goes a small way towards filling this large gap.
Some references dealing with particular applications will appear later. A
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general and definitive analysis of production theory with applications,
long awaited in published form, IS ) ) o
McFADDEN, D. L. ‘Cost, Revenue and Profit Functions', University
of California, Berkeley, Working Paper, 1970.
For an extensive survey of applications, with the basic theory, see
DIEWERT,W. E ‘Applications of duality theory”, in Frontiers of
Quantitative Economics,Vol. 11, eds. M. D. Intriligator and D. A.
Kendrick, North Holland, Amsterdam, 1974, pp. 106-71.

A. Inequality Constraints

The discusson of shadow prices jn Chapter 2 pointed to a mgor
defect of theories of optimization which use constraintsin equation
form: they force the use of resources even when it is undesirable to do
2. The methods developed in this chapter and the following two
chapters remove this flaw, and thus add a lot of economic rdevance to
the theory. They do so in another way, too. In previous chapters, dl
functions were <upposed to have derivatives with respect to dl
arguments. It is often claimed that functions appropriate to economic
andyss ae unlikdy to be smooth enough. The results to come ae vdid
for continuous functions, and therefore more general. This lets us
remove differentiability from the list of assumptions essential to the
theory, and put it in its proper role of a convenient approximation, to
be used only when it does no gres ham to the redity.

Finally, the mathematics we need here is simple analytic geometry
in paticular the equations of draght lines and planes. This is an
important advantage, for it is undeniably simpler to multiply and add
numbers and compare magnitudes than it isto differentiate.

Let us begin with two variables and one constraint. The familiar
picture of Figure 1.1 is easily modified to allow for inequalities, and
leads to Figure 4.1. Inthe usual case, both F and G are increasing
functions ofx, sg the choice ofx can be on the constraint curve gor
below it, asin the shaded grea o It is convenient to contrast this with
the set of pointsyielding unattainable, or at best just attainable, values
of the criterion; this is the shaded area#on and eove the leve curve
through the optimum ¢hoice . If the two curves have straight line
segments, the optimum choice may not be unique and &£ and % may
have points in common besides ¥; | shall return to such problems later.
The main point to be noted here is that any points common to the two
ar¢as must be on their boundaries. There can be no pointsin & with
F{x) >y, nor can there be pointsin & with G(x)< c; for in either case
we would be able to find an improvement on X, contrary topur
definition of it as the optimum choice.

| have used the tem ‘boundary’ in an intuitive geometric way, and
thiswill suffice for much of our work. But it can be misleading, and a
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better definition will help. A point isinferior to a set if it is surrounded
for some distance by points of that set. Thus a pointsin a set & will be
an interior point if thereis a positive number r such that all points of
the space within distancer of s are also in . In the plane, such points
will form adisc of radiusr centred on s. Then, apoint which isinterior
neither to % nor to the rest of the space will be called aboundary point
of &. Thus s will be aboundary point of & if, for any positive r, we can
find points of $7as well as points not in Ywithin distancer of s. Any
point x for which F(x) > F(X) =v will be an interior point of # so long
as F is continuous, and any x for which G{x) <€ will be an interior
point of & 50 long as( is continuous. Thisminimum assumption of
regularity will be maintained in all that follows. Further, so long asF
and G ae continuous and the setsd is bounded, it can be proved
rigorously that the problem of maximizing F(x) subject to G{x)}< ¢ has
asolution. Existence will not present a problem except possibly in
Chapters 10 and}1.

The usua assumption of a diminising margind rate of trandformation
corresponds to the requirement that the set & should be convex, i.e.
given any two pointsin it, the whole of the straight line segment joining
them should also lie within the set. L et the vector co-ordinates of the
two points bex and x’. Then, as those of their midpoint are (x +x')/2,

[ —— LT T e T DA Tl P MM Lt
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those of the entire straight line segment joining them can be traced out
by (§x + (1 8)x"), with the number § ranging over the interval

04 41. Thisenables usto define a convex set in terms of analytic
geometry, and will be used frequently.

Similarly, the assumption of adiminishing margina rate of sybstitu-
tion corresponds to the st # being convex. If both assumptions are
made, the consequence, as in Figure 4.1, is tha the sds lie one on each
side of their common tangent at ¥, Suppose the equation of this tangent
18

f1x) +8,x, =d (4.

For this to be a meaningful equation, ¢, and &, cannot both be zero,
and for the line to pass through ¥, we must have

6%+ 0%, =d (4.2

For al pointsx on one side of the ling, the value of the expression in
(4.1) will exceedd, and for all those on the other side, it will fall short
of d. Sincethelineisnot altered if we multiply both sides of its
equation by the same non-zero number, we can choose the sgn of this
number to ensure that

<d foralxin &
>d forallxin &

AsFigure4.1isdrawn, 8,8, and d will al be positive when thisis
done. The economic reason for thiswill soon become clear.

The resllts generdize very essly. In a space of ay dimenson, given
two copvex SeS which have only boundary points in common, we can
find a hyperplane such that the sets lie one on each side of it, or in
other words, the hyperplane separates the sits A hypeplane has a
linear equation, §x = d, where fl is a non-zero row vector. Then for all
points in one of the sets, we will have §x < d, ad for the other, gx = d.
This is quite obvious from geometric intuition, and | shal leave it to the
reader to convince himself by drawing afew pictures, and omit the
proof. However, there is a smdl complication to be resolved. A  draight
line ssgment in a plane is a convex st Moreover, it has no interior
points a any disc aound any of its points contains points of the plane
not on the line. Thus all its points are boundary points. Now two line

f1x; +0,x, { 4.3)
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segments which cross each other are convex sets with only boundary
pointsin common, but they cannot be separated by aline. The trouble
isprecisely that both sets have empty interiors. This need not worry us
here, as all setswe shall meet have “ on-empty interiors. But the
problem can be seriousin more advanced work, particularly in infinite
dimensonad cass. Thus we can use the following theorem, eveti though
more general results exist —

Separation ~ Theorem: If sfand # ae two covex sds
with no interior pointsin common, and if at least one of the
two has a “ on-empty interior, then we can fiid a “on-zero row
vector § and anumber d such that

{éd foralix in o
x

44
=d foralxin®

In the standard maximization problem, d = 8x where ¥ is the
optimum choice. The separation theorem can then be paraphrased to
say:

(8) ¥ maximizes6x over al points x in&, and
(b) X minimizes 8x over all points x in #.

This twofold rexult is a consequence of the assumptions of diminish-
ing marginal rates of transformation and of substitution, and it isthis
result which gives their economic importance to the separate
assumptions.  This is because it raises the posshility of decentralized
economic decisions. To give the simplest interpretation, interpret the
problen a one of producing a hill of goods x in a one-consumer
economy to maximize the utility F(x) subject to the constraints
G(x) < ¢. The solution yields not only?, but also the equation of the
common tangent. Now suppose we announce § to be the vector of
pricesfor the goods. Then the result (a) above says that the optimum %
would be produced by a”" entrepreneur maximizing the value of output,
while (b) says that ¥ would also be demanded by the consumer trying
to reach the utility level F(¥)with the minimum expenditure. If we
assume away some technical complications that arise when there are
free goods, thisis equivalent to maximizing utility subject to the
budget consrant Ox <&d, This separation of decisons has two
advantages. One is informational: the producer need know nothing
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about the consumer’s tastes, and the consumer need know nothing
about the production technology. For each, the relevant information
about the other is adequately summarized by the prices. The other
rdaes to incentives the process reies on the sdf-interet of each dde
to ensure the effective implementation of the optimum.

To extend this to the more meaningful case of many producers and
many consumers, we need further assumptions. Specifically,
externalities and income distribution problems must be either absent ;¢
eficienty resolved in the process. But even if these mgor redrictions
are granted, a critical problem remains. Basically, the optimum
quantities x and the pricesO emerge in the same calculation, and the
two approaches are formally equivalent. The informational gain would
beillusory if the calculation of the prices required detailed information
about resources, technology and tastes, while many would regard the
desrability of relying on <df-interet to be dubious a bed.

The issue of the relative advantages of centralized and decentralized
planning is d& aea of vey active resach. One line is to cdculae the
information  flows in the two processes; this leads to some difficult
theory. Another isto ask whether workable approximations to the
optimum prices can be found without solving the whole optimization
problem in detal. Thee ae gpecid cases of some importance, such &s
tha of a samdl open economy, where this is posshle However, generd
results are rare, and there are some very serious difficultiesin letting the
markets themselves find such approximations by a dynamic process.
Finally, the realistic feature of uncertainty produces a difference
between planning by quantities and planning through prices. These
developments are matters for further reading by interested readers.

If we do not assume both& and # to be convex, full decentralization
isnot possible. Figure 4.2 illustrates this. In case (a) there, #is not
convex and ¥ does not minimize §x over it. In case (b), #is not convex
and ¥ does not maximize fx over it. The latter is the more common
case, aisng from increesing returns in  production. In such a casg
considerations of marginal benefits and costs have to be supplemented
by an examination of the discrete choice of whether to produce at all.
This leads pys to look a consumers surplus or related concepts.

We must next find conditions on the underlying functionsF and ;
which correspond to convexity of the sts Fandsf. Snce # is defined
as the set of pointsx for which £{x) 2y, the function F should be such
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that whenever F(x)>2y and F(x") > p for pointsx and x’, and §isa
number satisfying 0< § <1, we also have F(5x+(1 &) ».Of
course we do not know v in advance, so we should be prepared by
imposing this condition for all y at the outset. A function F for which,
for all points x and X’ in its domain of definition, for all numbersy in
itsrange, and for all numbers} satisfying 0 < 6 < 1, the inequalities
F(x)>v and F(x") 2 v together imply F(6x + (1=8)x") 2 v, will be
called a quasi-concave function. The term may seem rather odd, but the
reason for it will appear in the next chapter.

Similarly, whenever G(x) < ¢, G{x"} < ¢, and 0 € § < 1, we should
have G(6x + (1 ~ §)}x"} < ¢ foref to be convex. We do know ¢ in
advance, but we are likely to try different valuesfor it when doing
comparative statics. We should therefore impose this condition for all ¢,
and a function fulfilling it will be called quasiconvex. Now we can state
our result in terms of the properties of the functions defining the two
sets as follows—

If x maximizes F(x) subject to G(x) < c, where F isquasi-
concave and (7 is quasi-convex, then thereis arow vector § # 0
such that
(@) x maximizes fx subject to G(x) < ¢, and
(b) ¥ minimizes@x subject to F(x) > F(x).

The generalization to several constraints is straightforward. The set
#; of points for which G'(x) < ¢; will be convex if G*is quasi-convex. If
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this is so for dl i, then the set sfof points saisfying al the congraints,
being the intersection of the convex sets .of;, is itself convex; thisis quite
easy to verify from the definition of a convex set.

We can write all the constraints together in vector form asG(x) < c,
where the inequality € for vectorsis simply the same inequality
component by component. There are other types of vector inequalities
that will be used later. The weak inequality above does not exclude the
special case of equality of all components. If we wish to excludeiit, so
that at |east one component inequality will be strict (<), the symbol <
will be used for the vector inequality. If we want g]} component
inequalities to be strict, we shall use <€ for the vector inequality.
Similarly in reverse, z isweak inequality in each component, >
strengthens thisto a strict inequality in at least one component, and3
denotes strict inequality component by component.

Another advantage of using inequdity condraints is that it is no
longer necessary to restrict them to be fewer in number than the choice
vaidbles. The feashle set of choices can be nonrivid even with more
constraints. Figure 4.3 shows sane examples of this. Case (a) hastwo
condraints, and depending on the dope of the levdl curves of the
criterion, the optimum could be either at the corner where both
constraints hold with equality, or on either face where one of them
must be a drict inequality. This illustrates how it may be desirable to
leave some resource unused. In case(b) with three constraints, thereis
in general no point where all three hold with equality, and it becomes
necessary to leave at least one of them not binding. Which oneis leftas

X2

X

X,

s -
[Fiies sorse

//////////’/




44 Optimization in Economic Theory

astrict inequality depends on the criterion function. If the optimum is
on one of the three faces, thentwa constraints will not be binding. In
the case of linear programming, where F and & are linear functions, it
is possible to make more precise statements about the number of
binding constraints.

Throughout this discussion we have only required & and # to be
convex. Their boundaries need not be smooth ¢urves, and can have
kinks gr flat segments. This raises a number of possibilities, some of
which are shown in Figure 4.4. In case (a), tw0 corners happen to meet
at the optimum. Now we can find many lines through x which separate
the two sets, i.e. ff is not unique. None of these lines can be called a

{b)

Separating

Separating {
 line

/ line

X, <2

4

X Ay

(c) (d)
HG. 44

common tangent in the usud sense but that is not essentid for the
economics of the problem. Decentralization depends only on the
separation property, namely that the two Sets lie one on each side of
thelinegx = d. Thus separation is ageneralization of the notion of a
common tangent, and that is how we dispense with the requirements of
differentiability of F and G. In case (b), the two sets have aflat portion
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in common. This need not worry us unduly, for all candidates for the
optimum choice along this common segment must haye the same value
of #(x), and that, after all, is the magnitude that interests us. Thereis,
however, a problem about decentralization. Giveng, all points on the
flat portion of & will yield equal value of output to the producer, and
all those on the flat portion of # will yield the same utility to the
consumer. Their choiceswill be arbitrary to that extent, and thereis no
reason why the independent choices should coincide. We can only make
aweaker claim, namely that if the two happen to make coincident
choices, neither will have any postive incentive to depat from these
choices. This is a dandard procedure in any caeful dtatement of
economic equilibrium theory.

If the two boundaries have vertical parts at the optimum, we may
have a veticd separating line, corresponding to #, = 0. This is the case
in (c). However, in cae (d) it is dso posshle to have non-vertica
spading lines even though the boundaries have veticd pats a the
optimum. Similarly for horizontal parts leading to the possibility of
1= 0. This shows that without stronger assumptions, it is not possible
to guarantee dricly postive prices In fact, if the boundaries doped
upward at the optimum, the common tangent would have a positive
dope, and one of the prices would be negaive. This is usudly avoided
by asuming ether (8) there is free digposebility of both goods when
the boundary of & cannot slope upward, or (b) both goods are desirable,
so that the boundary of # cannot slope upward. Both these assumptions
have been implicit in dl the illudrative figures.

Finally, we should note that nothing of economic substance will
change if we multiply the row vector § and the related numbers liked
by the same postive number. Ancther way of saying the same thing is
that only the relative prices like 8 /6, matter. Of course, these relative
prices equal the common value of the appropriate marginal rates of
transformation and substitution at the optimum when we have smooth
curves, and provide the appropriate generalizations in terms of the
notion of separability otherwise.

This chapter has introduced some basic mathematical concepts for
handling inequality condraints, and caried the andyss to the point of
defining and interpreting “prices’ associated with the outputs or the choice
vaidles themsdves. In the next chapter, thee concepts will be used for
obtaining the shadow prices associated  with the respurce  constraints.
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EXAMPLES
Example 4.1 To illustrate separation, consider a smple case

Fx, y)=xy and G, y)=x* + )2

Resrict x and y to nonnegative vaues, and consder the set & defined
by G(x,y) < 25 and the set & defined by F{x, y) 2 for various values
of p, Itiswell knownthat & is a quarter disc, and # arectangular
hyperbola and points above. Each st is  convex.

Figure 4.5 illustrates this. For ¥ = 10, the two sets have interior

(5/J2.582)
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points in common and cannot be separated. For y = 12.5, they have
only the boundary point{5/+/2,5/+/2) in common, and we can separate
them by choosing #;,= 1,6,=1, andd = 52, or any positive multiple
of all three numbers. For even larger values of ¥, e.g. v = 18, thesets do
not have awy points in common. We can then separate them strictly, ie
find ag and d such that the inequalitiesin (4.4) hold strictly. An
example would beto take #;=1,8,=1and d = 8.
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Example 4.2 To illustrate the importance of inequality constraints
in another context, consider a consumer With a utility function

ax tlog y. In the familiar notation, mechanical application of the
conditions gives

a=mp and 1/y =nq.

Using the budget constraint,
m=pxtqy=(ax+1)/n
SO
a =plax +1)im,
and hence the demand functions
Y = pl(ag).

If m <pla, the demand for x becomes negative This may be possble
in some cass, eg in a portfolio sdection problem where ‘short sdes
are allowed. Generally, however, we will require such quantities to be
non-negative, and the only way to ensure tha is to incorporae an
explicit constraint x 2 0 in the problem.

x =mfp lfa,

Example 4.3 For yet another illustration of inequality constraints,
consider the problem of distributing income between two consurmers
who envy each other. If the first is given anincome of y, and the

soond  y,, ther utilities are  respectively

U =y2 - aylzn

where g is a positive constant; thus each derives disutility from

income given to the other. Suppose the criterion of social welfare admits
such feelings of envy, and simply maximizes the sum of utilities,

Uy + Uq.

Even if there were no condrants on the aggregate income availale,
this maximization problem would have afinite solution. It is easy to
verify that the unconstrained maximum is attained when y , = y,
=1/(2a). Therefore. even if aggregate income in excess of (I/a) were
avalable we would choose not to use it. The ey effects would
become s drong a to ovewhem the additiond utility each consumer

uy =y - ayy? and
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would obtain from his own additional income. In view of this, if y* is
the aggregate income given, the constraint should be expressed as

¥1 ¥ y2<¥*, and whether or not the constraint holds as an equality
should be answered in the process of solution of the problem.

EXERCISES

41 How would you adapt the concepts and analyses of this chapter
in order to handle constrained minimization problems with inequality
constraints?

4.2  If we made assumptions which rule out the possibility of the
boundaries of the sets.of and % having flat segments, the optimum
choice would be unique. Examine how the definitions of quasi-
concavity and quasi-convexity need to be strengthened in order to
achieve this.

4.3 How isFigure 4.1 altered when (a) one of the choice variablesis
labour, which gives disutility to consumers and is an input to
production, and(b) when one of them is pollution, which gives
disutility to consumers and is a by-product of production of a good
which is the other choice variable? Interpret the associated ‘prices’ in
each of these cases.

FURTHER READING

For an excellent discussion of separation theorems and the economics
of decentralization, see Koopmans, op. ¢it (p. 23). A microeconomics
textbook which uses such geometric methods as well as calculus ones is
Malinvaud, op. cit (p. 23).

A detailed discussion of the various aspects of decentralization can
be found in Heal, op. cit (p. 23}, Section 3.3. A pioneering analysis of
the implications of uncertainty for the relative desirability of price and
quantity control is

WEITZMAN, M. L. ‘Prices vs. Quantities’, Review of Economic
Studies, XLI(4), October 1974, pp. 477-91

The issue of optimum production decisions subject to economies of
scale is discussed at an elementary level by Samuelson, op. cit. (p.11},
p. 637, and at a more advanced level by Malinvaud, op. ¢it (p.23),
pp. 225-9.
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would obtain from his own additional income. In view of this, if p*is
the agoregate income given, the condrant should be expresed as
¥y1 + ya<y*, and whether or not the constraint holds as an equality
should be answered in the process of solution of the problem.

EXERCISES

41 How would you adapt the concepts and analyses of this chapter
in order to handle constrained minimization problems with inequality
constraints?

42  If we made assumptions which rule out the possibility of the
boundaries of the sets & and & having flat segments, the optimum
choice would be unique. Examine how the definitions of quasi-
concavity and quasi-convexity need to be strengthened in order to
ahieve  this

43 How isFigure4.1 atered when (a) one of the choice variablesis
labour, which gives disutility to consumers and is an input to
production, and(b) when one of them is pollution, which gives
disutility to consumers and is a by-product of production of agood
which is the other choice variable? Interpret the associated ‘prices in
each of these cases.

FURTHER READING

For an excdlent discussion of separation theorems and the economics
of decentralization, see Koopmans, op. cit (p. 23). A microeconomics
textbook which uses such geometric methods as well as cdculus ones 18
Malinvaud, op. <it (p.23).

A detailed discussion of the various aspects of decentralization can
be found in Heal, op. cit (p. 23), Section 3.3. A pioneering analysisof
the implications of uncertainty for the relative desirability of price and
quantity control is

WEITZMAN, M. L. ‘Pricesvs. Quantities’, Review of Economic
Studies, XLI(4)}, October 1974, pp. 477-91

The issue of optimum production decisions subject to economies of
scaleis discussed at an elementary level by Samuelson, op. cit. (p.11).
p. 637, and at a more advanced level by Malinvaud, op. cit (p. 23).
pp. 225-9.

B. Concave Programming

The andyss of Chapter 2 shows that the Lagrange multipliers
measure the trade-off between the constraints and the value of the
objective. To extend this to the case of inequaity condraints, we must
examine such atrade-off in this context, and express it in the language
of analytic geometry.

Asin other situations that have to do with prices, problems arise if
this trade-off chows increasing retumns. To avoid this & lesst to begin
with, [ shall place stronger restrictions on F and G thanwere used in the
previous chapter. To draw a parallel with consumer theory, the
assumption for F will bethat it shows diminishing marginal utility and
not merely adiminishing marginal rate of substitution.

For afunction of ascalar variable, the condition of diminishing
marginal utility would be a negative second derivative. This can be
extended to functions of vector variables using matrices, but geometric
reasoning endbles us to avoid that for a long time We can characterize
such afunction in terms of geometry by saying that the chord joining
any two points on its graph lies entirely below the graph between the
fame two points. Algebraicdly, this can be expresed as

F(ox + (L)) = 8F(x) + (1 = 8)F(x) (5.1)

for allx, x" in the domain of F, and for all numbers§ with0 <5 < 1. A
function which has this propety is caled concave. This dlows the
#pecial case of astraight line, and it could be excluded by requiring the
tnequality to be strict for 0 < §< 1; such afunction would be called
Strictly concave .

Concavity is a dronger requirement than ques-concavity, i.e every
Concave function is quas-concave but not vice versa This is in fact the
Teason for the term quasi-concave, which must otherwise seem rather
Strange,

Let Fbe aconcave function, and suppose that each of F(x) and F(x")
82 y for some scalar v, Then, using (5.1), we have

FOx+(1=8xN =8+ ~8p=y,
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which proves that concavity implies quasi-concavity. To show that the
converse is not true, we need only remember the difference between
diminishing marginal utility and diminishing marginal rate of
substitution; for example, it is easy to verify that F(x,;, x,) = x x,is
quasi-concave but not concave.

Two other equivalent characterizations of concave functions will be
useful later. First, the set of points on and under the graph of such a
functionisaconvex set, i.e. if (x, ) and (x',y’) are such that y < F(x)
and y'< F(x"), then for 0< §< 1, we have

by +(1 = 8)y <F(5x +(1 —8x".
This follows at once from (5.1). Next, write that inequality as
[FOx' +8(x — x")) — F(x)]} /8 = Fix) — F(x"

Now let § tend to zero. Provided F is differentiable, the chain rule
shows that the left hand side tends to £, {x)}(x w’). which is the linear
approximation to F using its tangent at X’ to approximate the cyrve.
Thus we have

F(x) = Fix") < Fy(x'Yx x'). (5.2)

In words, the change in a concave function is overesimated by its
tangent at any point, i.e. any tangent to the curve lies aboveit. For a
function of a scda vaiable, it is essy to e the equivdence of these
characterizations. We shall soon meet a natural generalization of (5.2)
for functions that are not differentiable.

Similarly, afunction G is called conyex if, for dl x, X’ in its domain
and for all numbers § with 0 £ 6 < 1, we have

G(ox +(1 — 80"y <8G(x) + (1 - 8)G(x') (53

and strictly convex if the inequality is strict when 0< § < 1. The set of
points on and above the graph of a convex function will be a convex <,
and changes in such a function will be underestimated by a linear
approximation. A vector function will be convex if each of its
component functionsis convex. In this chapter, | assume that the
criterion function is concave and the vector constraint function is
convex; this is concave programming.

We ae now ready to discuss Lagrange multipliers.  Throughout the
argument, | shall use the production example, with x as output levels
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ad ¢ & resource avaldbiliies, for illusration and concreteness. No
special interpretation will be placed on the criterion, and | shall refer to
its ‘value in generd terms.

Consider the problem in standard form: to maximize F(x) subject to
G(x) < c. The maximum valueisafunction of ¢, writeit in the usual
notation as¥{c). Thisisjust the function which shows the trade-off
between resources and value, and is therefore the crucial concept in the
argument. It istempting to identify its partial derivativesasthe
Lagrange multipliers at once, but we have to proceed more owly in
order to sort out some problems along the way.

The important general result on which the subsequent argument
hinges is that if F is concave and 7 is convex, then V is concave. The
proof isamechanical verification, but this type of argument appears
very frequently, and its steps are not without economic interest. It is
therefore advisable to follow it carefully.

Le ¢ ad ¢ be ay two resource endowments, and suppose that the
corresponding valuesy = ¥{¢) and v’ =¥(c") are attained at 5 and 5’
respectively. Since the optimum choicesmust befeasible, C(X) < ¢ and
G(x") 4 ¢'. Now let § be any number satisfying 0 <5< 1, and ask
whether it is possible to do at least aswell as§ ¥{c) + (1—5)}V{c")
when the resources are 8¢ + (1= 6 ', which would prove concavity of
¥. A natural candidate for the output vector to try is§x + (1—8)x',
Thefirst point to check iswhether it isfeasible. By the convexity of G,
we have

GEX+(1=-8)x)48G(%)+ (1 -8)G(FEISSC+ (1 —8)',

proving feasibility. The next point isto find its value. Using the
concavity of F, we have

Fx+(1=-8)X)=8F(x)+ (1 8FE)Y=8V(c)+ A ~8)H(c").

Snce we have found a fessble vector yidding vdue a less a high as
the expression on the extreme right, the maximum value, ¥(é¢ +
(I=8)c"), can be no smaller. Thisisthe result we are trying to prove.

The economics behind thisisthat the convexity of (; rules out
increesing  returns, thus ensuring  that a weighted average of outputs can
be produced given the same weighted averages of resources, and then
the concavity of F results in its yidding a lesst the same weighted
average of vaues
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As V is a concave function, the set of points on or below its graph is
aconvex set. This set .« is the collection of points(c, v} such that
< V(c), i.e. value of at leasty can be produced using resources of no
morte than ¢. Thereforeit is natural to think of it as the set of produc-
tion possibilitiesfor ‘value'. Clearly, given any point ing, all pointsto
the southeast of it are also in .« (Equivalently, V isamonotonic non-
decreasing  function) This is because we have written the condrants 0
that an increase in ¢ widens the choice. The set is (m + 1) dimensional
when pt isthe number of constraints. Figure 5.1 showsit for the case
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m = 1 We se tha V being an incressing concave function corregponds
to a positive but diminishing marginal return to theresource in
producing value.

Convex sets are meant to be separated from other convex sets, Tode
thisin the most useful way, choose a point (¢*,v*} in& such that
p* = F{c*). This must be a boundary point, since the point {¢*, v* ~7)
isin.eand (c*,v*+r)is notins?, for any positiver, Now let 4 be the
set of all points{c, v) such that ¢ < ¢* and v = v*, i.e. valuey cannot be
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attained with resources ¢ save when ¢ =c¢* andy =v*, Thus the set @
serves the same function as the corresponding set in Chapter 4. Clearly
Ais aconvex set with anon-empty interior, and & and # have only
boundary pointsin common, thus the separation theorem can be
applied. For reasons that will become clear in amoment, | write the
equation of the separating hyperplane as

w—nc=d=p* - qc*

with the dgns aranged <0 that

{gd
T
2d for al {¢.»)in &

fordl (c, v) ingsf
(5.4)

Thefirst point to note is that the number ; and the row vector g
must both be non-negative. For example, suppose that | is negative.
Now consider the point {¢*, p* +1), which isclearly in & We have

p*+ 1) —met<w* qe¥=d,

which contradicts the separation property. Similarly, considering points
(c* — ¢;,v*) where ¢; is avector with itsi*™ component equal to 1 and
all other components zero, we find that 7; must be non-negative, for
exch .

Next observe that {¢*, y*) maximizes (w - nc¢) over & This has an
important interpretation. Consider a hypothetical producer who
‘manufactures’ value of the criterion out of theinputs. If heispaid a
price for each unit of value, and charged pricesy for use of the inputs
¢, then a production plan (c, v) will yield him a profit of (i - nc). Then
{c*, v*) will be a profit-maximizing choice for him from among all
conceivable plans, i.e the whole set o There may be an aggregate
constraint of ¢* onresource availability, but there is no need for the
producer to be aware of it, since he will not wish to violate it anyway
The interpretation is special, but the principleis general and important:
constrained choice can be converted into unconstrained choice if the
proper scarcity cods or shadow vaues of the condrants ae netted out
of the criterion function. To the economist, this is the most important
feature of Lagrange's method in concave programming.

Again, only reaive prices matter, and nothing of any subdtance s
changed if we multiplyt, 11, and d by any positive number. Thisraises
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an attractive possibility: if we choose marginal value itself asnuméraire,
thus setting ¢ = 1, then the resource prices# will become precise
generalizations of the Lagrange multipliers of Chapter 2. But before we
choose a numéraire, we must ensure that it is not afree good, and
nothing so far guaranteest > 0. The entire vector {¢, n) cannot be zero,
but that is not enough.

Let us see what happensif ¢ = 0. Then at least one component of #
must be non-zero, i.e. positive. The equation of the separating
hyperplane becomes —nc = —-mc*, i.e. a(c ¢*) = 0. For al {c, v) in &,
we have e & —nc*,ie. n(c - ¢*} 2 0. In the one constraint case this
means that the hyperplaneis vertical atc*, and the entire set </ lies to
itsright. This meansthat production isimpossible at alevel in the
domain of definition of F if the resoutce availability isless thanc*. This
is commonly cawed by indivisibilities.

Figure 5.2 shows two examples of this. In case (a), the marginal

v S_eparaling v ?eparating
line ine

(a) {b)
FG. 52

product of the respurce isinfinite at ¢* and falls gradually; thus only a
vertical separating linewill do. In case (b) thisisnot so, and whilea
veticd separating line exists, it is dso possble to find such lines of
finte dope, and thus postive ¢ This shows that the conditions soon to
be found for ensuring this are only sufficient and not necessary.

The concept of indivishility gives us a hint for finding a naturd
condition. If the set #has any pointsto the left of ¢*, its boundary
cannot have an infinite slope at (¢*, ¥*). For this to be true, there must
be an x? such that G(x?} < ¢ in the domain of definition of F, for then
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we can choose (G(x?), F(x°)) as the dedred point. If thee ae severd
constraints, we must assume this for each of them, i.e. that thereisan
xY such that G(x*) < c. This condition will be called the constraint
qualification. It is posshle to use a much weeker condition, and thereby
have a dronger result. But the proof is quite complicated, and is best
left for more advanced work.

It is easy to prove formally that the constraint qualificationensuresa
positive t. Otherwise at least one component of # would be positive.
Now every component of (G(x?) = ¢} is negative. So if we multiply the
corresponding  components  of  thee  vectors, we will have dl nop-
postive products with a least one actudly negative. Adding them
together gives7(G(x®) —c) < (). However, the point (G(x®), F(x°)) is
in .s# and by the separation property we have —nG(x?) < —me, i.e.
m(G(x®) —c) 2 0. Thii contradiction forces us to conclude that the
supposition ¢ = 0 must be wrong, thus proving the result.

Henceforth | shall a3ssume the constraint qualification to be satisfied,
and normalize to | =1,

Now for any ¢, the point {¢, V(c)) isin & So by the separation
property we have V(c) #c¢ < F(c*) = mc*, or

V(c) = Kc*) < n(c ~ c*). (5.5)
The linear function on the right hand sde thus overestimates changes in
V. Thislooks very much like(5.2), thus strengthening our idea that  is
closely related toV(c*), the vector of partial derivatives of Vat the
initial point ¢*, But one difficulty remains; we cannot be syre that V is
differentiable. So far in this chapter we have not even assumed F and G
to be differentiable, but even if they are, I may fail to be. Thisis
because different inequality constraints may hold as exact equalities for
different values of the parameters, and in the process of moving from
one such régime to another the dope of ¥ may change suddenly.
Condder a case Wwhere some resource is just on the point of becoming
superfluous at the margin. Any further increment in it will be left
unused, and the ‘rightward’ partial derivative of ¥ will be zero. What
happens for a dight reduction in the amount avalable depends on
whether the point of superfluity is reached with the marginal product
of the resource dropping smoothly. If so, asmall decreasein its
avalability will cause a second order smdl ioss in vaue, and the
‘leftward’ partia derivative will be zero aswell. If the margina product
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days above a postive levd before resching this point, then the leftward
partial derivative will have to be positive, and any multiplier between
this value and zero will do for separation. Thisisthe casein linear
programming, where the marginal product is constant because of
linearity right up to the point where the constraint ceases to bind.

Even when such discontinuities exist, avery natural generalization of
the concept of diminishing returns holds. The leftward partial is never
less than the rightward, which is like saying that the marginal product
of the k'™ dose of a resource cannot exceed that of the (k  1)**. This
isasimple consequence of the concavity of V, whichisreally the
economically important property.

The aderisks having served their purpose of diginguishing a
particular point in the (c, v) space for separation, let us drop them, and
consider a point (¢, V(r)) with its associated multipliersz, and compare
it with a neighbouring point (c + he;, V(c + he;)), where i is a number
and e; avector with itsi'™ component equal to 1 andall others zero. As
in (5.5) we have

Vic + he;) V(c) € k.
If hispositive, we can divide by it to write
[Vc + hey) = V(0)] [R<;.

It is easy to show that asVisa concave function, the left hand sideis
amonotonic non-increasing function of h, and therefore must have a
limit ash goesto zero. Thislimitiswhat | have been calling the
‘rightward’ partial derivative, which 1 shall denote by V(). Thuswe
have proved that V{c)y <. If h is negative, divison reverses the
direction of the inequality, and defining the leftward partial Fi{(c)_
similarly, we haveV{¢)._ 2 ;. Thus we have the final result
generalizing the notion of diminishing returns and relating the
multipliers to these derivatives:

Vile) 2 m 2 V(o) (5.6)

This chapter has built up the desired interpretation of the multipliers
in terms of the maximum value function. The next chapter will
complete the story by considering the implicationsin terms of the
choice variables x. Then the relevant results can be dated precisdy, and
some applications discussed.
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EXAMPLES

Example 5.1 To illustrate the constraint qualification, we have the
{zmous problem of maximizing F(x, ») = xy subject to G(x, ¥) =
ix +1r1)" €£0. The constraint will turn out to be binding, and we can
write the conditions in terms of 3 multiplier 7 as
y 3m(x +y 1) = 0
x-3a(x+y-1)*=0.
Bul the constraint is {x +p 1)> =0, so {x +y 1)* = 0 and therefore
the conditions become x = v = 0. However, this viol ates the constraint.

Conversely, suppose we use the conditions to derive x =y, ad then
use the constraint to conclude that x = y = %. Thiswill in fact turn out
to be the correct solution. However, each condition then becomes
1«0 = 0. This can be true only if 7 isinfinite,

Since only relative prices matter, an infinite 7 is equivalent to a zero
¢ inour earlier notation. Thus the constraint qualification must have
failed. Unfortunately we cannot check this directly since the form we
used worksonty for convex (5.

However, we can relate the problem to the condition in Chapter 1
which required at |east one partial derivative of (5 to be non-zero at the
optimum. In this case each of theseis 3(x +y1)?, so both are zero
when x = y =%. Then, recalling the definition of 7 as the common value
in egn. (1.5, we see why it is infinite in this case

Consider the maximization of

Flx)=1+[1—(x-2)*"
subject to x 4¢, where the positive value of the square root is taken.
The graph of the function in(x, y) space is then the upper semi-circle
of 3 circle of radius and centre (2,1). The function is defined only for
| <x< 3. Thisisshown in Figure 5.3, whichalso shows the
corresponding maximum value function v = V(c). For ¢ < 1 the
function is not defined. For 1 < ¢ < 2 it follows the function F(x).
However, when ¢ > 2, it becomes desirable to maintain x = 2, thus
achieving the value¥(¢)= 2when F{(¢) would be smaller, or undefined
for ¢ > 3. Thus V(c) remains constant at 2 for ¢ 2 2.

This example illustrates another constraint qualification problem, as
well as the need for inequality constraints.

Example 5.2
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EXERCISES

51 Reformulate the analysis of this chapter, including the
appropriate concavity and convexity conditions to be imposed on the
various functions, to deal with constrained minimization problems.
Draw the analogue of Figure 5.1, and obtain the multipliers from a
separation argument.

52  For the problem of maximizing F(x) = 4x + sin x subject to
x < ¢, draw the maximum value function ¥ = V(c}.

(Note: For drawing the graph of F(x), recall that d(sin x)/dx = cos X,
and that cos x < -4 when x is between 120° and 240°, and of course
periodically at 360" intervals.)

FURTHER READING

A more general treatment of the constraint qualification can be
found in GALE, D. ‘A Geometric Duality Theorem with Applications’,
Review of Economic Studies, XXXIV(1), January 1967, (pp. 19-24),

For a proper mathematical treatment of convex sets etc. see
EGGLESTON, H. G. Convexity, Cambridge University Press,
Cambridge, 1963.

6. Results and Applications

To complete the discussion of concave programming, let us recast
the discusson surrounding Figure 51 in terms of the underlying choice
variables. Suppose x maximizesF(x) subject toG(x)< ¢, and let 7 be
the vector derived from the separating hyperplane at (¢, V(c));
remember tha we have dropped the aderisks Now the point (F(X),
(;(¥}} isin &/ and from the separation property (5.4) we have

F(x) = 7G(%) < V(c) - AC. (6.1
Of course F(X) = V{(c), and therefore
nfe G(x)] <0. (6.2)

This causes a problem. Every component of 7 is non-negative, and since
x satisfies the constraints, every component of [c - G(x)]is also non-
negative. So every termin theinner product of these vectors on the left
hand sde of (6.2) is non-negative There is only one way in which the
am of such terms could be non-positive and tha is for exch of thee
terms and therefore the whole inner product to be zero. Thus, for each

i, mile - Gi(f)] =0, i.e. at least one of these two factors must be zero.
The whole result can be stated in the form that for each;, we must have

m 20 GFE) <

Then both (6.1) and (6.2) also become equalities.

This is the important economic implication of inequality constraints
that was mentioned in Chapter 2, for (6.3) says that each resourceis
gther fully used or has a zero shadow price Note that there is nothing to
prevent both ;=0 and G'(%) = ¢; being true for any i. This can happen
when aconstraint isjust about to¢ease being binding. What (6.3) rules
out is the posshility of an unused resource having a postive shadow
price.

When two vector inequdities ae such that in exch component par a
least one exact equality must hold, i.e. no two component inequalities
can be dack together, we sy that the vector inequaities show
complementary slackness Thus we can restate (6.3) as

#20,G(F) <c

with at least one equality. (6.3)

with complementary slackness. (6.3)
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Next consider the fact that for any x, the point (F(x), G(x)) isin the
set . Since (6.1) has been proved to be an equality, the separation
property can be written as

F(x) mG(x) <F(X) = aG(x), (6.4)

i.e. X maximizes F(x) G (x) without any constraints. Thisis an
aternative statement in terms of the underlying functions of what
Lagrange's method achieves, and is more convenient than the earlier
statement in terms of the set .o This completes the characterization
stated in the result —

Suppose F is a concave funcion and G a vector convex
function, and that there exists an x° satisfying G(x°) <.
If X maximizes F(x) subject to G{x) < ¢, then thereis arow
vector 7z 0 such that
(i) ¥ maximizes F(x)  w(;{x) without constraints, and
(i) 720, G(X) < ¢ show complementary slackness.

None of this requires F and G to have derivatives If they do happen
to be differentiable, the first-order conditions necessary for (i) above are

F (%)= 1G (%) = 0. (6.5)

This looks exactly like (1.10}), but the inequality constraints make a
difference. To solve for ¥ and ¢, we must now use (6.5) together with
the complementary slackness conditions (6.3). Each pair of these
contributes one equation, and there is no difficulty in principle about
having enough equations. But we do not know in advance for ay
whether that equation is going to bes; = 0or Gi(x)= ¢;. Wemay have
to resort to the crude device of trying all possible combinations(2™ of

them) and checking each for consistency, hoping to rule out all but one.

This can be very tedious, but that is a price to be paid for the economic
realism of inequality constraints. After a little experience, we can tell
for many standard economic problems which constraints are syre to
hold as equaities, and this cuts down the number of cases to hbe
checked. Thus, for aconsumer who is not satiated, we can be gyre that
his budget constraint will be binding.

If F and G are not differentiable, we can establish inequalities for the
leftward and rightward derivatives using techniques now familiar:
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Fol®)_ 16, (8)_ 2 0 2 Fu(®). = 1G,(%), (6.6)

The <olution is then even more complicated,

There is another point where the problem of this chapter differs
from that in Chapter 1. The conditions there were derived without any
reference to the concavity pr convexity of functions. It is possible to
use separation arguments to obtain such necessary conditions without
assuming concavity or convexity even with inequdity condraints. This
involves some rather  specidized theorems in - mathematics, and | shdl
not go into the subject here, but merely mention some important
differencesinvolved. First, conditions (6.5) remain valid, but exactly
the same conditions would result for a problem of minimizing F(X), or
of maximizing it with respect to some variables and minimizing it with
repect to others or in general for a dationary point of F. Further, the
same conditions apply to alocal stationary point, j.e. whereF is
stationary in comparison with points in some small neighbourhood.
Thus the first-order conditions are not sufficient for atrue global
maximum. In the case of concave programming, we shall soon see that
they are.

Secondly, adifferent constraint qualification is necessary. Finally,
and most important, even if ¥ is the true global maximizing choice,
without concavity we cannot be sure that it maximizes the Lagrangean;
it may merely yield a stationary point of it. The problem is similar to
that of determining the optimum output when there are economies of
scale. Thefirst-order condition of equality between price and marginal
cost is still necessary, but profit need not be maximized even locally.
The interpretation of Lagrange’s method as converting constrained
‘value’ maximization to unconstrained ‘ profit’ maximization must be
confined to the case of concave programming.

However, if we find an x that maximizes the Lagrangean expression
and shows complementary dackness, then we can be asured tha it is a
global maximizing choice. This yields sufficient conditions. To prove
the resut, consider any fessble x, ie one stisfying G(x) < c¢ dne ¥
maximizes L without any constraints, we have, @ fortiori,

F (i) nGE) > FKx) 1G(x).

Next, remember that «; 2 0 for each i. If we multiply G'(X) < ¢; by ;
and add, we will find #G(x) < m¢ for the matrix products. However, if
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this is done for x, we will have either G'(%) = ¢;orm; =0, and therefore
7,G' (%) =m;c; for each i. Adding, nG(x) = nc. The two together yield

7G(X) 2 7G(x),
and adding,
F(x) 2 FX).

Snce x coud have been any feesble choice we have proved tha x is a
global maximizing choice. The argument so far has not used concavity
a dl. The need for it aises because an X sdtisfying () is not easy to find
inthe abstract. If (F #G)isconcave, for whichit is sufficient to have
F concave and (¢ convex, then the task is simplified. We need only find
an X satisfying (6.5), or in the absence of differentiability (6.6), and it
will do the job. In the differentiable case, for example, knowing that a
linear approximation overestimates changes ina concave function, we
have

[F(X) = nGx)] ~ [F(f) aG(x)] < [Fux) nG(x)] (x %) = 0.

In the more general case, the same result follows from separate linear
approximations to the right and the left. All thisis summed up as
follows -

If ¥ and 7 are such that
(i) X maximizes F(x) — n(7(x), and
(i) 2 0, G(X) < ¢ show complementary slackness,
then X maximizes F(x) subject to G(x) 4c. If (F #(G)isa
concave function, or even more strongly, F is a concave
function and G a convex function, then (6.5) “I (6.6) will be
sufficient for(i) above.

Note that no constraint qualification appears in the sufficient
conditions.

In many economic problems, a natural requirement is that the choice
vaidbles should be non-negative. It may be optimum in some casss to
meet some of these constraints with equality: specialization of
production in some casss of interndtiond trade is an ingance of this
We can use the resllts ebove t' take cae of such congraints quite
easily, since x 3 0 can be written as —x $0, and - is a convex
function. But the special caseis of such frequent occurrence that it will
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be useful t” state the form of the result explicitly for it. Suppose we
have some condrants (i(x) < ¢ in addition to the non-negativity ones.
All we have to do is to define avector of multipliersz for these other
constraints and another, p, for the constraints—x < 0, and the result
for necessary conditions becomes -

Suppose F is a concave function and G a vector convex

function, and that there exists an x? satisfying G{x%) <,
x% > 0. If ¥ maximizes F(x) subject to G{x) < ¢, x > O, then
there arerow vectorsm and p of appropriate dimensions such
that

(i) * maximizes F(x) wG(x)+ px without constraints,

(i) 2 0, G(%) < ¢ show complementary slackness, and
(iii) p 2 0, x 2 0 show complementary slackness.
If F and G are differentiable, then (i) implies

Fx(j) - ﬂGx()?) tp=0 6.7)

Otherwise we have the appropriate left and right inequdities These,
and a statement of similar sufficient conditions, are left as exercises.

EXAMPLES

Exanple 6.1 The simplest illustration of the effect of non-
negativity conditionsis that of maximizing F(x) for ascalar variablex,
with x 22 0 as the only constraint. Then (6.7) becomes F'(Z) = —p 40,
and at least one of p and X must be zero by complementary slackness.
Thus we have two possibilities, either ¥ = Owith F(0) < 0, or >0
with £'(x) =0. A simple sketch will show the meaning of this. It will
do show how the same conditions ae aufficient if F is concave

Exanple 6.2 The methods of this chapter enable us to solve the
problem introduced in Example 4.2. Suppose we are to maximize

Flx, y) = ax + logy, subject t' the constraints px + gy < m, x > 0 ad

y 2 0 To swe gace, | shdl asume it known that the budget congraint
mus hold & an equdity, thus removing the need for some checking,
and that the constraint y 2 0 will not bind; then its multiplier will be
zero and there will be no need to introduce it at alt. However, aswe
saw, we do not know in advance whether x 2 Owill matter. Let p be
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the multiplier for it, and = that for the budget constraint. Then our
conditions are

a—-qnp+p=0,1{J —wa =0, and
p=0x20 with complementary slackness.

Let ustry the different possibilities.

First suppose g > 0. Then by complementary slacknessx = 0, and
from the budget constraint y =m/q. The second of the derivative
conditions implies 7 = 1/(gy) = 1/m, and finaly from the first,

pg=ap —a=plm—a.
This is consistent provided p/m a > 0.

Next suppose ¥ >0. Using complementary slackness, the conditions
become those of Example 4.2, and tracing the steps there, we have
consistency provided p/m a < 0.

Finally, we can have both 5 and p zero if p/m = a. These three cases

are mutually exclusive and exhaustive, i.e. one and only one of them
must hold, and therefore the solution is compl ete.

Example 6.3 The most important application of the results of this
chapter isthe theory of linear programming. Here we try to maximize a
linear function

Flx}=4x (6.8)
subject to linear constraints and non-negativity constraints
G'(x) = b'x <¢; for i=1,2,...m

x =0, (6.9)

where g and b are n-dimensional tow vectors. Stacking the ! vertically
into an m-by-nmatrix B, we can write the constraints in vector form

G(x)=Bx <c. (6.10)

The concavity and convexity conditions are fulfilled. Soisthe

constraint qualification if the constraints do not reduce the feasible
choices to a space of dimension smaller thany, As amatter of fact, for

the kinds of reasons that Figure 5.2 explained, this will not matter
anyway.
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We have the patid derivatives Fi(x) = a; ad Gj(x) = b/. therfore
F(x)=aand G,(x) = B. We can now write down the necessary
conditions of the dandard result. There is one smal notationd
difference. Since in this problen we shdl have occason to condder the
multipliers as variables, we denote their particular values corresponding
to the solution of the problem at hand by placing bars over the
corresponding symbols.

The conditions are sufficient, too, on account of concavity. They are

a-7B+p=0 (6.12)
7#=0,Bx<¢ Wwith complementary slackness (6.12)
p20, ¥20 with complementary slackness (6.13)

Now define 7 = ¢ B, and using (6.1 1), write this, (6.12), and (6.13)
in the equivalent form

—~+Bxty=0 (6.14)
¥20,—7iB< —q Wwith complementary slackness  (6.15)
720, 720 with complementary slackness ~ (6.16)

Except for an interchange of rows and columns, these are exactly like
(6.11)(6.13), and are therefore necessary and sufficient conditions for
the problem of choosing variables 7 to maximize— nic, subject to the
constraints

—mB <€ -an20,

i.e. to minimize B(7) = mc (6.17)
subject to
=0 (6.18)
and
T(m)=nB=a. (6.19)

We see at once that the new linear programming problem defined by
(6.17), (6.18) and (6.19) stands in a very symmetric relation to the
earlier one defined by (6.8), (6.9) and (6.10). It is customary to call the
new problem the dual of the original one, which isthen called the
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primal. The change from maximization to minimization, and the
interchanges of rows and columns, and of coefficients in the objective
function and the right hand ddes of the condraints ae dl fedures tha
should be obvious on ingection of the dtatements of the problems. On
inspection of the respective optimization conditions, we see amore
interedting interchange  of the choice variables and the multipliers.  The
optimum choices 5 for the primal become the multipliers for the dual,
and vice versa for ii. Also, p is the vector showing the gaps between
resource availabilities¢ and uses B for the primal, andp is the vector
sving the same purpose for the condrants of the dud. We now see
tha 7 serves as the multipliers for the non-negativity condraints for the
dual, and vice versa for p.

Complementary slackness enables us to obtain another interesting
relation. Consider the conditions (6.12). For any component ;, we have
either

(Bx);=¢; and therefore AABXY = 7ic;,

=0, and once again #{(Bx); = mied=0).
Adding these gver i to obtain the matrix product of the vectors, we
have 78% =f¢. Similar arguments apply to (6.15), thusyielding

ax = iBx = 7ic. (6.20)

Thus the maximum value of the primal is equal to the minimum value
of the dual.

This dso provides a sufficient condiion for solution of linear
programming problems. Thus, if we succeed in finding feasible choices
and  for the respective problems such that 4 = 77¢, then the choices
are optimum, each for its own problem. To see this for the primal,
condder ay x sdisfying (69) and (6. 10). Since 7 is non-negative, we
can multiply each component inequality in (6.10) by the
corresponding component of 7 and add to find #8x < iic. Similarly,
since f satisfies (6.19) and x is non-negative, we have #B8x = ax. Then,
for any feasible x, we have ax < g%, which is the result. The same
argument appliesto the dual. Thisis sometimes a useful trick for finding
the solutions to such problems.
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Thisisin essence the duality theory of linear programming except
for one point. We have paid no attention to the problem of existence of
solutions.  The problem can aise because the condraints may be
mutually inconsistent, or because they may define an unbounded
feasible set in a direction which makes the objective function
unbounded over this set. Here, too, aduality obtains. If the primal is
infeasible, then the dual is either infeasible or unbounded, and similarly
the other way around. If both are feasible, then both have optimum
solutions and the ealier theory is vaid. | shdl omit the discussion of
this.

Finally, it is easy to seethat if we take the dual asour starting point
and go through the mechanicd geps of finding its dud, we reun to
the primal. In other words, duality is ‘reflexive’.

An important economic question is the interpretation to be assigned
to p. Inour usual interpretation of the problem as one of production,
when x yields the optimum output levels and a the shadow prices of the
resources, a natural interpretation is available. The jt* component of the
left hand side in (6.19) isE,-ﬂ,-b,-‘. Sinceb,-’ is the amount of the i
reource needed to produce a unit of good j, this is smply the shadow
cogt for a unit output of good j. Since 4; is the vaue placed by the
objective function on such a unit, the constraints (6.19) amount to the
requirement that at the shadow costing, no good should make a profit.
This is naurd, snce it would have been desrable to expand production
had there been such a profit, given the linearity of the problem. On the
other hand, g is then the vector of the shadow loses in the production
of various goods, and the complementary slackness conditions (6.13)
sy tha production will not be undetaken for a good involving a
shadow loss. Once agan, because of linearity, the occurrence of a
postive loss is a signd of the desirability of shutting down that line of
production altogether. This makes economic sense, but | omit details of
the agument to save space Similaly, | must leave other aspects of
linear programming, such as characterization and computation of
solutions, to  specidized  books.

EXERCISES

6.1 State the analogues of the results of this chapter for minimization
problems. Devise proofs for a& lesst one of them.
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6.2  Solve the problem of Example 4.3 using the methods of this
chapter.

6.3 What conditions should beimposed on the varipus functions
involved in the ‘invisible hand’ problem of Example 2.2 and Exercise 2.3
if the conditions found to be necessary for gptimization there are also
to be sufficient according to the results of this chapter?
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1. Comparative Statics

The concept of comparative statics was introduced in Chapter 2, and
some examplesof it have appeared in earlier chapters. The interpretation
of Lagrange multipliers as shadow prices was based on comparative
static considerations, and the proof of concavity of the maximum value
function ¥(c) in Chapter § was also of this nature. | now turn to
comparative statics for more general parametric variations. The general
results are rather weak in an abstract context, hut have many and varied
applications. This produces a chapter with a brief text and lengthy
examples.

In the notation of Chapter 3, let b he any vector of parameters.
Consider the problem of maximizing £{x, b) subject to GG(x, 5) 4 0, and
let V(b) he the maximum value. Then we have the following general
result

If F is concave and (; convex, in each case jointly & a
function of the choice variables and parameters, thenV is

concave.

The proof follows the line used so often before. [ et b and " he any
two values of the parameter, and x and x' the corresponding optimum
choices. ThusG(x,b) < 0, V(b) = F(% b) and G(x’,b) £ 0, V(b') =
F(x', b). Now let § be any number such that 0 < § 4 1, and consider
the choice 6X + (1 8)x". Since G is convex, we have G(6x + ( &)%',
8b + (L 8"y <8G(x, b) + (I $)}+(%', ') < 0 so the proposed
choice is fessble Also, for it, by the concavity of F,

FF+(1 - 8)F,8b + (1 - 6)b') > 8F(%, b) + (1 — §)F(E, b')
=6 V() + (1 8&)V®).

Then V(&b +(18)k") can he no less than the right hand side.

This result has its uses. As a smple example, the case of the
function V(c) in Chapter 5 isaspecial case of it. Another application
concerns sufficient conditions of optimization in a dynamic context.
However, it is a wesk reslt, because the requirements of the concavity
of F and convexity of ¢ jointly in choice variables and parametersare
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often not fulfilled in economic problems. For example, budget
constraints are not jointly convex in quantities and prices, and utility
and production functions are not jointly concave in quantities and

other parameters. Therefore we have to seek more specific results.
As an example, consider the case where the parameters do not affect

the constraints. Then the choice that is optimum for one set of
paameter vaues remans feashle for ay other s, and this fact dlows
some very smple and useful vaue compaisons. One such result is the

following

Let V(b) denote the maximum value of F(x, b) subject to
G(x)40.1f Fisconvex as afunction of b alonefor any fixed
vdue of x, then V is convex.

To see this, write V(b) = F(¥, b) and V(b = F(X', b’) as usual. Let
0< §< 1, and consider the weighted average parameter values,
b+ (1-6)b". Suppose x* is the optimum choice for this set. Since x*
is feasble when ¥ or % is chosen, we must have

F{x*,b) < F(%,b) and Fx*, b)Y <F(F,b).
Then, usng convexity of F & a function of b, we have
V(sb +(1 — ') <Fx*,8b+(1 -6)b')
< BF(x*,b) + (1 - 8)F(x*,b")
<8F(% b) +(1 — 8)F(E,b")
= s¥(B) + (1 —8)V(d)

One very interesting feature of this result is that no conditionshad to
be imposed on G. Convexity, or even quasi-convexity, in the choice
variables, such an important condition in similar proofs garlier, is not
required here. Of course some conditions will he necessary to ensure
existence of a solution, but given that, the fact that the feasible set
remains unchanged & parameters vay is all we need.

This result has some important applications that will he considered
in the examples to follow.

Another  simple vaue compaison is possble in this case and it
enables us to deduce some properties of the optimum choice itself,
again Without having to impose any conditionsother than those needed

the
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to ensure a solution. Consider the same problem of maximizing #(x, )
subject to G(x)< 0, and suppose x' and X” are the optimum choices for

paangter vdues p' ad b" repedtivdy. Since exch is fessible when the
other is chosen, we must have

FE',0)>FE" D) and A&, b") 2 F(x',b") (7)

A similar argument is possible in the other polar case where the
parameters affect the objective function but not the constraints.
Consider the problem of ;naximizing #{x) subject toG(x, b) < 0. In the
same notdion as above, suppose ¥ happens to be feasble when the
parametersare b’ i.e. G(x',b”) < 0. Since X” isthe choice when &
could have been chosen, we must have F(£") > F(x'). However, ' js
chosen for parameter velues b', and the only resson for not choosng x”
with its higher value must be that it isthen infeasible, i.e. (3", b") > 0,
Thus we have

If Gz, " <0, then GE', b)>0 (7.2

Again, applications of these results will appear in the examples that
follow. These examples will illustrate the methods of comparative
statics that use only the most basic concepts of optimization, namely
the definitions of feasibility, optimality, concavity and convexity. This
goproach is very generd, involves only the most eementary
mathematics, and is aesthetically quite pleasing. On the other hand, few
comparative ddic results are avaleble a this levd of generdity. Mogt
specific economic problems have more structure, i.e. the functionsF
ad G ae known or assumed to have properties besdes those of
concavity and convexity used in establishing the conditions for
optimality. These other properties, such as additive separability, are
useful inyielding further comparative static results, but the approach of
this chapter is not very suitable for handling them.

The next chapter will introduce a complementary way of doing
comparative statics. It begins with the (m + #) equations which define
the values of then variables and them multipliers, and differentiates
these equations with respect to the parameters to find the rates of
change in the variables and the multipliers. This is messy, but
mechanical. The additional conditions on the various functionsin
special problems are often expressed in terms of their derivatives, and
are therefore suitably tackled by the differentiation approach. However,
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this method isrestrictive, not merely because some problems may
involve non-differentiable functions, but also because inequality
constraints may pose problems. It is not legitimate to take derivatives of
both sides of an inequality to obtain another inequality. If weareto
apply this method to problems with inequality constraints, we have to
know in advance which of the condraints will hold a equdities and
which ones being not binding can be ignored. Further, we must be Sure
that the same set will hold as equalities over the entire range of
parametric variation being considered, for switches from one regime to
another pose their own problems for differentiation.

The two methods thus have complementary advantages and
disadvantages. We should aways keep both in mind, and should be
reedy to use the one which is best suited to the problem a hand.
Correct judgement concerning this, of course, comes only with practice.

EXAMPLES

Example 7.1 This example continues the devel opment of consumer
theory using the indirect utility function and the expenditure function.
The notation of Example 3.2 isretained. | shall assume the functionsto
be twice differentiable. Roughly speaking, this amounts to assuming
that the (direct) utility function, besides being twice differentiable, has
no flat portions to its indifference surfaces.

Begin with the expenditure function. The first point is that for any
fixed u, F(p, u) is concave as afunction of p. Thisis because the
relevant parameter affects only the criterion function, and written in
the standard maximization form, —px is convex (although only just) in
p for each fixedx. The standard result of the text then says that
—E(p,u)isconvex inp,i.e. E(p, u) is concavein p. The economic
reason pertains to substitution in consumption. For example, as one
component of pincreases, the worst that could happen is that it would
be necessary to maintain the old consumption plan to attain the given
utility level, in which case expenditure would increase linearly with the
price. if it is possible to substitute against the commodity that has
become more expensive, expenditure will increase less than linearly. Of
course such concavity in each direction does not prove overdl
concavity, but provides some economic intuition for the result proved
before
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For atwice-differentiable concave function, the partial derivative
with respect to any agument must be non-postive This has an
implication for the derivatives of compensated demand functions.

Remembering that superscripts denote the commodity number and
Subscripts  denote  partid  derivetives,  (319)  gives

C/p, u) = E;{p,u)4 0.

Thus, when any price increases, the compensated amount demanded of

that commaodity cannot increase, i.e. the own substitution effect isno”.

positive. Thisisawell known and important theorem of consumer
theory.

The same result follows without assuming differentiability from
(7.1). Consider price vectors p', p" and the corresponding compensated
demands, say ' and g" Writep" - p' = Ap,and g 5' = A%. Now
(1) gives

r_

PEZ P ad pE > pE

On alding these inequdities and simplifying, we find

ApAX <0

(7.3)
In case only the /™ component of Ap is non-zero, this becomes

Aijfj < O,
which isour result.

Let us turn to the indirect utility function. Thisis not amenable to
standard theorems. In fact Vis quasi-convex inp for give’ p; i.e. for
give” mand u, the set of vectors p satisfying F{p,m) & 1 is convex. To
show this, suppose Vip, m) <u,V(p', m) <u,and 04 § < 1. We wish
to show V(8p + (1= 8)p'm) < u. Suppose this is false, i.e. suppose there
exists a feasible x* yielding utility U(x*) > u. This exceeds the utility
attainable with the actual choices with prices p and p', therefore it myst
be the case that x* would not be feasible in either of those situatinns.,
ie. px*>mand p'x* > m Now each of $and (1 - 6) is non-negative,
and not both can be zero simultaneously. Therefore (§px* + (I — 8)

Px*)>6m +(1=8)m,ie. (5p +(1— 8)p"* >m. Thus x* is not
feasible for the weighted average price vector. This contradiction forces
us to abandon our supposition that I{x*) > u, thus proving the result

of quasi-convexity.
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This causes some problems. Consider a two-stage maximization
problem in which the government, through its tax policies, can affect
consumer prices. Consumers make their optimum adjustments to these
policies, and the” the government, in choosing the optimum policy,
tekes these responses into account. This can lead to a problem in which
P is being chosen to maximize F(p, m) subject to some constraints. But
aquasi-convex function is not avery suitable maximand, particularly
when we wish to establish sufficient conditions. This issie will regppear
later.

One useful property can be found from (7.2) which makes no
concavity assumptions. Since prices and income affect the budget
constraint but not the utility function directly, we can use this equation
to write, in usual notation,

if p'E <m", then p'x'>m', or

i p'% <p"F,  then p’f >p'¥, (7.4)
asuming non-sdtigtion so that for each choice the budget condrant is
binding. This has & important application. It is posshle to base
consumer theory on properties of demand functions rather than of
utility functions, and thisis held to be desirable because the former are
observable and the latter are not. Thisis called the revealed preference
approach to consumer theory. In such aformulation, (7.4) isnot a
theorem, but one of the fundamental assumptions, called the Weak
Axiom of Revealed Preference. It turns out, however, that the two ways
of developing censumert theory are formally equivalent, once enough
assumptions are made for each theory to be of any use.

Finally we relate the indirect utility function and the expenditure
function, or the uncompensated and compensated demand functions.
Suppose we begin with some &, and find m = E{p, u). Then we assign
this m as the money income, and find the utility-maximizing choice.
Except for some technical problems that arise when there are some
goods with zero prices, we have the expected result, i.e. u=¥{p, m),
and the optimum choicescoincide. I shall assume this to be true, i.e. that

u=V(p, m if and only if m=E(p,u) (7.5)
and that if m and # are so related,
Cl(p, u) = Di(p, m). (7.6)
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In particular, m = E(p, ¥(p, m)), and differentiation using (3.16) anq
(3.17) yields

=1
This relationship between the Lagrange multipliers of mirror-image
optimization problems has obvious economic meaning.
Finaly, for fixed u, differentiate (7.6) with respect to p,,

remembering that tn must change according to (7.5). The chain rule
gives

(7.7

Cdp, u) = Di/(p, m) + D (p, m) Ex(p, v).
Using the definition (3.19) and {7.6), this becomes

C(p, ) = D (p, m) + D (p, m) D, (p, m). 7.8)
This relation between the substitution, income and gyerall effects Of a
price change is one of the most important results of consumer theory;
it is called the Slutsky-Hicks equation. It is instructive to contrast the
simple derivation above with the lengthy conventional proof which
relies on direct methods alone.

Readers still unfamiliar with the notation used here should recognize
the result in the form

3.

/A = ai + axj

Py |y comstant 0Py | constant Xk a
Example 7.2 This example develops the elementary theory of

cog-of-living indices. Condder a consumer With given tastes Fix a
utility level u which forms the standard of living chosen as the basis of
comparison. For each price vector p, we can calculate the amount of
expenditure necessary in order to attain this standard quite simply gs
m= E(p, u).

Now consider two situations, the initial or base period with prices p’
and the final or current period with prices p”, and suppose the
corresponding expenditures arem’ and m”. It is natural to say that the
cog of living hes gone up if more expenditure is necessary jp oOrder to
attain the target utility level in the current period than in the base
period, and that it has gone down if the reverse istrue. We are looking
for criteriato judge thisin terms of observable prices and quantities.
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We know that the expenditure function is concave Assuming it to be
differentiable, changesin it are overestimated by linear approximations
bassd on tangents Moreover, the vector of denivatives a any point is
simply the vector of compensated demands there. Write X' = £,(p’, u)
and %"= E,,(p", u); note that p being arow vector, £,(p, ) isacolumn
vector.  Then we have

mfl _ ml =E(p", u) —E@T, u) g(p!.’ _ pl’)f!,

and m -m" = E@p',u) - E@". u) < (' -p"x"
From these, we obtain the following sufficient conditions.

If @" pE <o, then m" <m' and
if (p' - p"E" <0, then m'<m".

In the fird case the cost of living has falen, while in the second case it
has risen. A dight change enables us to write these in the dandard index
number form as

If p'Ep'E <1, then  m"<m and
if p"f",fp'f" > 1, then m' < m".

The two ratios ook very much like the Laspeyres (base quantity
weighted) and Paasche (current quantity weighted) price indices. But
we must remember that the quantities which appear here are the
compensated demands at the specified utility level u, which neednot
have any relation to the actual demands or utilities in either period. In
normal use, the standard of comparison will be the actual utility level in
one of the situations, and the quantities the actual demands in that
stuation. This enables us to draw conclusions that depend only on
observable prices and quantities. Thus, if the Laspeyres price index is

less than one the current Studtion has lower cost of living as judged hy
the base period utility standard, while if the Paasche priceindex is
greater than one, then the base period situation has the lower ¢ost of
living a judged by the current period utility standard.

These are really rather weak statements, for they say nothing about a
very wide range of other posshiliies. However, there is no way Out Of
this, and price and quantity data alone permit only avery limited setof
welfare comparisons. Besides, further complications arise when we try
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to take account of changes in tastes, or of distributive concerns when
there are many consumers.

Example 7.3 In this example we consider aspects of production
theory using methods similar to those used for consumer theory in
Example 7.1

The cost function for a producer has been defined in Exercise 3.2 gg
the mintmum cost of production given the factor prices and the target
output level. It isclear that it should have the same properties asthe
expenditure function. Thusit should be a" increasing function of all
arguments, and for each fixed output level it should be homogeneous of
degree zero in the factor prices, and a concave function of them. This
last property is areflection of substitution in production: with no
substitution, the cost function will be linear in the factor prices, and the
greater the substitution possibility, the greater its concavity. Finally, its
partial derivatives are the cost-minimizing input demands, i.e. in the
notation of Exercise 3.2,

x=Cylw, y). (19)

Remember once again that, by the convention established in Chapter 1,
the argument being arow vector, the partial derivatives form acolumn
vector.

This leaves open the determination of output, and in the example |
shdl outline one posshility. Suppose there are condant returns to  cde,
80 the cost function can be written in the form y({w), where ({w) is
now the minimum cost of producing one “nit of output. The size of the
firm is indeterminate when there are constant returns to scale, and we
may take thisto be the industry cost function withy as the industry
output, and the corresponding factor demands for the industry will be

x =yCylw). (7.10)

Consider a competitive equilibrium. If pis the output price, each firm’s
profit-maximization decision will be to equate marginal cost to price.
Under constant returns to scale, thisisthe same as equating the average
cost and price, i.e.

P = O(w). (7.12)
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Finaly, for market-clearing, we must have
v =D(p), (7.12)

where [) istheindustry demand function. Successive substitution from
these into (7.10) will define the derived factor demands as functions of
the factor prices alone.

Asanillustration of the use of this model, suppose we want toknow
how the various factor demands change as wjy changes, the remaining
factor prices being unchanged. A simple differentiation gives

axflawk =yC}k + Dr(p)CkC',

where the arguments of the derivatives of Care omitted for brevity. It
is more instructive to write thisas a” elasticity. After some simplifica-
tion, we fiid

(wi/x;)0xfowy = 8ok — 1), (7.13)
where nisthe elasticity of the industry demand curve,
0y = (wiexp)(C)
is the share of the factor kin total factor cost, and
0k = (CGRICCR)-

Thus the effect of achange inw). is composed of two parts. The
first is the substitution effect: as relative prices of factorschange, the
cost-minimizing factor proportions change. As inconsumer theory, the
own substitution effect is unambiguous, since Cis a concave function,
and therefore Cy 4 0. However, for / # k, the effect depends on
whether the factors j and k are substitutes or complements. The other
term gives the output effect. An increese in Wy rases the whole
marginal cost schedule, thus reducing the profit-maximizing output and
thereby the demand for all factors. Of course, Constant returns to scale
imply that this effect is equi-proportional for all factors. In general,
there can even beinferior factors for which the demand rises as output
fdls
The output effect in production theory should be distinguished from

the income effect in consumer theory. The former arises becauseit is

desrable to produce less as codts increase, ie roughly from the dde of
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the objective function. The ldter aises becaise it is necessay to
consume less a cods increase, e on account of the congrant.

Both the substitution effect and the output effect in (7.13) contain
the factor 6y . Roughly, thisis because if afactor accountsfor only a
andl fraction of cod, then a given percentage change in 1ts price cdls
for only asmall adjustment on either count.

The expressions g are called the partial elasticities of substitution
for the production process, for any pair j # k. For the case j = k, itis
better to write (7.13) differently. Since C is homogeneous of degree
one, each of its patid derivaives C, is homogeneous of degree zero,
and by Eule’s theorem we have

a

Z W]'Ckf =0.
J=1

This can be written equivdently as

R
E B}"Ujk =0.
i=t

Then (7.13) becomes

R
(Wil )ax [Bwe =0,m + 3 0,05 (7.14)
¥

This shows that the numerical value of the own price elasticity of
demand for afactor is aweighted average (since the #; sum to one) of
various elasticities. The cost share of the factor in question multiplies
the elasticity of product demand, and each remaining cost share
multiplies the partial elasticity of substitution between the pair of
factors involved.

Thisis an example of aprecise model for formalizing Marshall’s
various laws of derived demand.

Example 7.4 Congder an economy with H households and G goods.
Labour is chosen a numéraire, and the prices of the goods in wage
units are pg forg = 1, 2, G. There is no income-leisure choice, and
the labour supplies of the households are fixed at g, for
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h=1,2, H. Wage income, of course, contributes to indirect utility.
This function for household h is (cf. Exercise 3.3) given by

Vh(Py ) = log & = Zyapg log Pg» (7.15)

where, for each h, 40y, = 1. The demand for good g by household h is
eesly seen to be

X"5(p, %) = apgylpg- (7.16)
Then the aggregate demands are
xg(p, le* ’QH)= Ehahgﬁh/pg. (7.17)

The production of one unit of good g needsc; units of labour.
Therefore a production plan (xy, x,, X¢) is feasible if

Egchg < Ehgh- (718)

The government can choose the prices of the goods, and wishes to
choose afeasible production plan by doing so in order to maximize the
sum of the households’ utilities. Since the ,, are constant, itSmaximand
can be seen from (7.15) to be

F(p) = —Eg(Ehahg) lOg Pg- (719)
Using (7.17) and(7.18), the constraint becomes
Zece(Znongin)ipg < Znln (7.20)

The problem mentioned in the text can now be seen in an explicit
context. The objective function is not concave. We know it to be quasi-
convex in generd; in this case it is in fact convex. The condraint
function is convex, and since the rel ative convexity, or more precisely,
the concavity of the Lagrange expresson, is what redly maters we
still have some hope of proving sufficiency. Fortunately, in the special
case Of thee functions a smple change of vaiales reduces the
problem to standard form. Writing g¢ =1/pg, and introducing the
convenient abbreviations

A = Zpapg, By = Zpotpefy, Q= Zply, (7.21)
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the problem becomes =
maximize ZeAg log g (7.19)
subject to ZgeeBeqy < Q (7.20)

Now the maximand is concave and the condraint convex, and the
Lagrangean conditions are sufficient. Introducing a multiplier 11, we
have

Aglqe = megB,. (7.22)

Substituting into the constraint, we see that # = 0 would not be
permissible. Then the constraint must hold with equality, and

I/TT = QngAg = Q/Egzhahg = Q’/Eh | = Q/H
Finally, using thisin{7.22), we have the solution
pg/cg = HBg/(i?Ag). (7.23)

A quesion of mgor interest is the classfication of goods into those
for which p, exceeds the cost of production¢,, i.e. those that are
subject to atax, and those for which pg < ¢, I.€. those which are
subsidized. After spme tedious algebra, we fiid that those goods are
taxed for which there is a positive covariance across h between g, and
Otyg. Since £, are household incomes and ay, ¢ their budget shares for
good g, we see that good g istaxed if, on the average, it iSmore
important in the budgets of the rich, and subsidized if on the average
it ismore important in the budgets of the poor. Thus we have a model
to show how commodity taxation gives some redistributive
leverage

EXERCISES

7.1 For the consumer demand model of Example 7.1, prove that (a)
substitution effects are symmetric, i.e.

Cd (o, u) = G (p. w),

ad (b) a Giffen good, ie one with a postivdy doped uncompensated
demand curve, must be an inferior good, i.e. one with a negative income
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derivative of demand, orin symbols,

if  D/(p,m)>0, then  Dp/(p,m) <o0.

Is the converse true?

7.2 Express the Slutsky-Hicks equation (7.8) in elasticity form.

73 Consider the production problem of Example 7.3, with n = 2. Let
wy increase, but suppose that w, instead of remaining unchanged,
adjusts to equate the supply and demand for the second factor. Show
that the elasticity of derived demand for factor 1is given by

{e12(n+e2) +0 62(n—013)l/[n+ ey —0,(n—0,7)] (7.24)

where ¢, isthe elasticity of supply of factor 2, and the other symbols
are as before. Can you obtain (7.14) as a special case of (7.24)?
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8. Second-Order Conditions

In this chapter we shall turn to some further results in comparative
statics, and their relation to second order conditions for optimization.
As explaned a the end of the previous chepter, this approach relies on
the differentiation of first order conditions and the constraints, and is
therefore confined to problems with equality constraints. However, it
can dso be used in problems with inequaity condraints provided we
confine the variaions to a range whee one and the same st of
congraints holds with equdities, and the rest, being not hinding, can
be disregarded.

The general theory is quite complicated. | shall first illustrate the
relationship between comparative statics and second-order conditions
in amuch simpler context, then derive the conditionsin avery simple
constrained maximization problem, and finally state the general result
and gve some agpplications of it

Let us begin with the simplest maximization problem, with one
choice variable and no constraints. For x to maximize F(x), the first.
order necessary condition is

Fi(®)=0. (8.1)
Now consider the Taylor series for F{(x) carried beyond the first-order
terms:

Fx) = Fx) + Fuol®) (x = X) + 7F (%) (x = 3)* +
Using (8.1), we have

Fo(ox ) FE=4F ) (x4 (8.2)

For x near enough to.?, the quadratic term will dominate the higher
order ones. Therefore, if F,,(¥)is positive, we will be ableto find anx
near enough to x for which F(x) > F(X). Then  will not yield a
maximum of F{x)in any small neighbourhood of ¥, and hence a fortiori
over the whole range of variation of x. The former would be classed as a
local maximum and the latter as a global maximum. Thus we have
found the secondurder condition necessary for both types of maxima:

Fx(®)<0. ©3)
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On the other hand, if this second-order derivative is negetive the
quadratic termin (8.2) will be negative, and therefore in a small enough
intevd aound & we will have F(x) — F(¥) negaive irespective of the
dgns of the higher order terms. Thus, given that (8.1) holds,

F.,(®) <0 (84)

is a scond-order condition that is sufficient for ¥ to give a locd
maximum of F(X). It is possible tofind global sufficient conditions
usng second-order derivatives, but this involves some messy
calculations.

Note the difference between (8.3) and (8.4): apart from the obvious
difference of aweak and a strong inequality, the former appliesto local
and to global maxima, while the latter applies only to local maxima.
Similar remarks will apply to second-order conditions in more general
contexts, when 1 dhal concentraie on the locd sufficient conditions and
leave the readers to state the corresponding necessary ones.

A local maximum satisfying the second-order sufficient conditions is
sometimes called a regular maximum. For an irregular maximum, when
Fy (%) iszero, we have to look at further derivatives. Even that may
not work if the function F is non-analytic (i.e. if Taylor'stheoremis
not valid for it.) | shall not consider these problems further.

Now suppose the problem involves a parameter b. The first-order
condition is F,.(X, b) =0, so differentiating this, we have

F. (% b)dt+F.,(% b) do=0
or
dx/db = — xb(fr b)/Fxx(fu b). (85)

For aregular maximum, the denominator on the right hand side is
negdive, and then the sign of dx/db is the same as tha of F,(%, b).
We se d& once how the second-order condition helps us in asessng the
qualitative effects of parametric changes on the optimum choice.

Asasimpleillustration of this, consider a profit-maximizing firm
whose demend curve, and hence revenue cuve, shifts If R{x, b) is the
revenue curve where x is the output and b a paameter that increeses
for the demand curve to shift to theright (i.e. Rp(x, b) isalways
positive) then according to (8.5) the shift will lead to a higher optimum
output level if and only if R,p(X, b) is postive This requires the
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parameric  shift to caie an increese in the margind revenue R (x, b) at
X. Thisiswhat underlies those fond paradoxes in microeconomics
where an outward shift of demand leadsto afall in output, for it is easy
to arange a hift that is an increese in average Tevenue but a decresse in
marginal revenue at the point in question.

For a problem with many choice variables but no constraints, the
second-order termsin the Taylor series are

Ve

0y
2

n
P2 kgl Fie®) (= %) (1 — %) = 30 = B F (B (x - %) (8.6)
where F, ,(¥) is the symmetric square matrix of the second-order
patid  derivaives F (%), ad the supersript T indicates the trangpose
of amatrix. Since(x ~ X¥) is a column vector, itstransposeis arow
vector, and thus (8.6) is a quadratic form. Second-order sufficient
conditions will then correpond to this aways having a negetive sSgn for
x F X, i.e. the conditions will be that the quadratic form, or its
associated matrix, be negative definite. The corresponding necessary
condition will require it to be negative semi-definite. Now it iswell
known that a matrix is negative definite if a principal minor of it
formed by taking any m rows and the same m columns has the sign of
(~1)™. Such conditions are once again useful in doing comparative
statics, snce the analogue of (8 .5) for the cese of many choice variables is

d%/db = —Fy (% b) " ' F (% D). (8.7)

The inverse of a negdive ddfinite marix is adso negaive definite, and
the information about the signs of its minors can be combined with the
knowledge of ¥, in specific problems to obtain some results
concerning the effects of changes in parameters on choice variables.
Some applications of thiswill be considered in the examples.

Let us turn to second-order conditions for optimization problems
with constraints. Once again, necessary conditions concern non-
positiveness of secondader terms, and local sufficient conditions
concern their negativeness. However, these now concern the
Lagrangean, and need only hold for dl x near ¥ and satisfying the
constraints. For this we have to consider the theory of definiteness of
guadratic forms subject to (locally) linear constraints. The general
theory needs some formidable mathematical machinery, and |
illustrate the principlesinvolved only in a simple geometric context
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and then genedize the result. Consder the case where we have two
choice variables and one congrant, and whee F and G in the uxd
notation are both increasing functions of both choice variables. There
are now three possihilities, as shown in Figure 1 .I (or 4.1) and the two
cases of Figure 4.2. Regard x; as afunction of x along each of the
constraint curve and the level curve of the objective function through
¥. Thetwo have equal slopes at X, and alocal maximum will be assured
if the former function is more concave, or less convex, than the latter,
i.e if d>x,/dx; * along the constraint curve is (algebraically) less than
that dong the levd curve, It remans to express these second-order
derivatives in tems of the underdying functions. This is merdy carying
the differentiation of implicit functions to the second order,
remembering the earlier result for the first order. Thus, for the level
curve, we have

d%x,/dx,? = d(—F [F,)/dx;

_ FyFyy +Fip dxgfdxy) — Fi{(Fay + Fag dxgfdxy)
F,?

= (FyF ) — 2F\FaF 1y + F{ P Fp)Fy,

where the agument ¥ a which dl thee derivatives are to be evauated
has been suppressed for brevity. An exactly smilar expresson can be
derived for the constraint curve. Finally, using the first-order conditions
F, =nG,and F, =7G,, and remembering that we are considering a

cae where dl the F; and G; ae postive, the second-order sufficient
condition for alocal maximum can be written as

“GLA(F, (161 +26,Gy(F1g —7C12) — Gy} (Faz  1Gyq) >0,
The corresponding necessary condition is obtained by weakening the
inequality.

It is much neater to express the sufficient condition using a
determinant as

Fip —aGyy Fip —7Gys -Gy
det Fy1 —nGgy Fay — G2 -Gy >0. (8.8)
e
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The conditions for the general problem with 5 choice variables and
m constraints are direct generalizations of this. In the matrix notation
already established, we form the partitioned matrix

evdluated, of courss & X. Condder its diagond submatrices which are
formed by the last j rows and columns. We can let j range from | to
(mtn), and the submatrix for thislast value of j will be thewhole
matrix. For low values of j, the submatrices will be singular on account
of the large number of zeroesin the bottom right hand corner. But the
last (n = m), i.e. those withj equal to (2m + 1) or higher, will not
necessarily be singular. Sufficient conditions for alocal maximum then
impose redrictions on the dgns of ther determinants. The dgns are
required to alternate, that of the first one (i.e. that formed from the last
(2m + 1) rows and columns) being the sign of (—1)™ *1 |tisnow easy
to see that (8.8) isa special case of this. Withp =2 and m = 1, thereis
only one submatrix involved, namely the whole matrix, since 2m + 1=
n+m=3. Thesign of its determinant is then required to be that of
(—1)}*1,i.e postive.

Note that the successive submatrices start from the lower right hand
corner, not the top left. Thus (Fy, #G,) is not involved, and
(F 7G) need not be concave. For the restricted variations dx
compatible with the constraints, we can have dxT(F, , - 71G ) dx
negative without such concavity, and tha is dl we need. Thus we see
that the sufficient conditions of Chapter 6, which use such concavity,
can be ovely drong, dthough they ae sometimes more convenient to
use and lead to global maxima. If ¥ is a maximizing choice but (F, , -
7G .} is not definite or even semidefinite there, we will have a case
where x does not maximize the Lagrange expression, but merely gives
some other kind of stationary point of it. This was mentioned as a
posshility in Chapter 6, and we can now see how it arises.

As usud, the second-order conditions ae closly related to quetions
of comparative statics. Consider the standard maximization problem
with equality constraints, but involving parametersin the maximand
and the constraints, i.e. to maximize F{x, b) subject toG(x,b) = 0. The
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solution is found by solving the equations
F (% b) =nG (%, b) = 0, (8.9)
G(x b = 0 (8.10)

The optimum choice ¥ and the multipliersy can both change in
reponse to a change db in the paametes b. In developing the generd
theory, it is smpler to let al these changes occur & once and this is
done by taking the total differentials of the above equations. For the
/M equation in(8.9), we have

zn: (BzF/axjaxk) d.fk + E (azF/ax‘,-abr) dbr
k=1 r=1

- )'f‘, 17,-{ Y (3%G'[ax;dx) A%y + Y (32 G'fox;0b,) db,}
i=1 k=1 r=1

m
. ¥ dnaGiax; = 0.
i=1

This formidable expression, and a somewhat simpler one for (8.10), can
both be stated in a muchmore compact form using vectors and
matrices. In the standard notation, we find

Frx — MGy _GxT dx ~Fyp 7Gxy
= db.

Gy 0 dn” Gy

Of courss it is underdood that all the derivatives ae to be evduded &
(%, b).

It should be no surprise that the partitioned matrix on the left hand
Sde is the same as the one involved in the second-order conditions.
These conditions once agan give us some information about the
solutions. Their use is not essy to demondrate in the absract, but some
applicationsto particular problemswill be discussed in the examples.

Finally, let us examine what happens to the envel ope properties of
maximum val ue functions when we consider second-order terms. Recall
the discussion in Chapter 3, where we compared two situations with
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different degrees of choice. With all variables free, the optimum choice
18 ¥ =Y(b) andZ = Z(b) as afunction of the parameters, and the
maximum vaue is

V(b) = F(Y(), Z(b}, b). (3.8)

When the set of variables y is held fixed, the optimum choice is Z(y, b)
and the maximum value

V(y,b) = F(y, Z(y, b),b). (39)
In particular, ify is held fixed a 7, then Z(5, b) = 7 and

V(7. b) = V(b) } a1z

V(#,b +db) < V(b + db).
Finally, assuming differentiability, we have the fist-order result
Vi (7, b) = Vi (b). (3.14)
To |llustrate second-order results, condder the case where there s

only one scalar parameter b, and it affects only the objective function.
Then we know from (3.2) that

Vo(P, &) = Fu(p, Z(7, b), b) }

8.12)
Vy(b) = Fp(Y(h), Z(b), b).

Now consider the Taylor expansion of the inequality i (3.12). We have
- _ _ 1
V{7, b) + Vs(P, b) db + 4V, (7, b) db? = Viop (7, b) db* +
S V(B) + V,(b) db +5V,(b) db? +% Vaps(b) db®
Using (3.12) and (3.14) and cancelling db2 , this becomes

_ 1 _ 1
Vos 0, 8) « 5 Vipp(, B db + <V p(b) t3 Vo(b) db 4
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If thisis to hold for all db small enough, we must have
Vo7, b) S Vpp(b). (8.13)

This is the basic secondurder envelope result. The geometric reason
behind it should be clear from Figure 3.1. If there are several
parameters, we can consider them one at atime to establish inequalities
like (8.13) for the second-order partial derivatives with respect to each
one. If we consider them all at once, we will establish the negative semi-
definiteness of the matrix {Vy (7, b) = V5 ()] . However, this will not
generally yield any useful conditions concerning particular secondurder
cross partial derivatives. For suitable ‘regular’ maxima, we canfind a
strict inequality like (8.13): | shall not pursue this refinement.

We can use (8.12) to express (8.13) in terms of the underlying
functions. A smple application of the chain rule gives

Fyo (5, 2, BY2p (3, D) < Foy(7, 2, )Y (D) * Foz (7, Z, B)2p(h).  (8.14)

The importance of thisresult isthat it yields a simple comparison
between the responses of the actual optimum choices to parameter
changes in the two situations. In particular, if we compare the situation
where all the variablesx ={y, z} are free with the one where they are all
fixed at their initial optimum levelsx, we can write this as

Fpy(%, B)X5(5) 2 0. (8.15)

Thee inequdities have severd useful  gpplications.

The enveope propeties discussed here and in Chapter 3 can essly
be generalized. The essential comparison is between one optimization
problem and another with added constraints which happen to be
satisfied at the optimum for the first corresponding to one value of the
parameter. Clearly the maximum value attainable when there are more
constraints can never exceed that when there are fewer constraints, but
will just equal the latter at the particular Initial point. This gives us
(3.12), and the rest follows The type of condraints which fix a subset
of vaidles ae a secid cae of this May of the rests tha follow
from comparisons of maximization problems with differing degrees of
constraints have been referred to as examples of Le Chatelier’s Principle;
we shall meet one such result of economic importance in the examples
that follow.
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EXAMPLES
Example 81 Consider a firm which buys a vector x of inputs,

when the corresponding row vector of input prices isw, to produce
output ¢ =Q(x) and sell it to obtain revenue R(q). Its profits are

F(x) = R(Q(x)) wx. Suppose we have a regular maximum, i.e. one
satisfying the second-order sufficient condition, for the choice . Now
the vector of parametersb being the column vector w! , we find on
assembling components that F,, = —] where | isthe (n-by-n) identity
matrix. Then (8.7) becomes

d% = F (% w)~'dwT, (8.16)

For aregular maximum, £, (¥, w) and its inverse are both symmetric
and negdive definite, This yields two results.
Fird, we have

dw df =dw F, (% w)"'dwT <0,

and in particular, for each f, 8x;/dw; < 0. Thus each factor demand
curve slopes downward.

Secondly, for any j and k, ax,./awk = axk/aw,., i.e. the cross effects
on factor demands are symmetric.

The techniques of Chapter 7 would dso have led to such relts on
defining a profit function and examining its properties; in fact a
somewhat different case of a competitive industry under constant
returns to scale was considered there. One differenceis that the new
assumption of aregular maximum enables us to obtain strict
inequalities for the own substitution effects.

Example 8.2 Consider a ¢onsumer minimizing the expenditure
required to attain atarget utility level. Using (8.11) it istrivial to show
the symmetry of the cross-substitution effects and not difficult to show
the negativity of the own ones A new and interesting result can be
found from the second-order envelope properties, particularly in the
form (8.14). Take any one price, say p,, as the parameter b. Now the

maximand is—px, and the vector F, has a component -1 correspond-

ing to the first good and zeroes edsewhere. This gives a paticulaly

simple form to (8.14). Compare two problems, in both of which x, is

Second-Order  Conditions 93

among the choice vaiables z, but in the second of which some good,
say x,,isfixed at its optimum level corresponding to aparticular value
of p, Now consider small changesin p, from this value. We have

0y [ap, # —08x,0p,
x4 free | X fixed

8.17)

Further, comparing each problem with the trivial one where all the x,-’s
ae fixed, udng (8.15), we se tha exch of the above expressons is non-
negaive Thus we have the reallt tha the absolute vaue of the response
of any compensated demand to the price of that good is greater when
the remaining goods are free to vary to their new optimum levels than
when one {or more) of them are held fixed. Thisis an example of the
Le Chatelier Principle. It leads usto the presumption that when some
goods are rationed, the demands for the remaining goods will become
more inelastic.

Unfortunately, the general Le Chatelier Principle seemsto be too
dusve a concept to be dated precisdy.

EXERCISES

8.1  State the second-order sufficient conditions for a ‘regular’
minimization problem.

82 Consider the compensated demands of a consumer, taking the
price of good 1 to be the only relevant parameter. Derive the
appropriate form of (8.11), and solve it using Cramer’s Rule. Use the
second-order sufficient conditions to show that the own substitution
effect for good 1 is negative. How can you use the same method to
obtan the same result for the remaning goods?

83 Illustrate the Le Chaterlier Principle using Example 8.1.

FURTHER READING

The jocus classicus for the use of second-order conditionsin deriving
meaningful economic theorems is

SAMUELSON, P. A. Foundations of Economic Analysis, Harvard
Universty Press, Cambridge, Mass, 1947.
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For further reflections on these, including a discussion of theLe
Chatelier Principle, see Samuelson’s Nobel Prize Lecture, reprinted as

SAMUELSON, P. A. ‘Maximum Principlesin Analytical Economics,
American Economic Review, LXII(3), June 1972, pp. 249-62.

For an extension of this principle, with applications, see

SILBERBERG, E. ‘The Le Chatelier Principle as a Corollary to a
Generalized Envelope Theorem’, Journal of Economic Theory, 3{2),
June 1971, pp. 146-55.
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9. Optimization Over Time

Inaformal sense, the general theory of optimum choice involving
time requires no new principles. The reason isthat we are now
consdering only the taking of one such decison. The vaigbles to be
chosen will pertain to different dates, but we can always stack them
together in one large vector x, and the problem will remain one of
maximizing a function F{x) subject to some constraintsG(x) < c. At
the time when the decision is taken, the knowledge of future tastes and
technology may be very imperfect. There may also be someirreducible
uncertainty about events. But dl this does not change the gructure of
the problem. We must take account of the lack of knowledge and the
other uncertainties and of our attitudes to risk in setting up the
functions F and G. Flexibility in the light of alternative eventualities as
we now see them may become a desirable feature of plans. But once the
functions ae st up, the formaism takes over. Previous decisons may
have to be revised as the future unfolds, experience may tell us more
about the problem, and the outcome of a sequence of such decisions
may look different from what we would have expected at the outset.
However, these issues ae outside our present limited scope, namdy the
methods of taking one decision that is regarded as optimum at the time
it istaken, in the light of some criterion agreed upon at that time and of
the posshiliies as visudized then.

The reason for dudying optimization involving time a a sepaae
topic, therefore, is not that it requires any basically new theory. Rather,
it is tha such problems often have a gpecid dructure which enables us
to say more about their solutions. The most important aspect of this
specid  structure is the exisgence of <ock-flow reaionships among the
constraints. Some of the dated variables, whichI henceforth label y
with the appropriate date subscript or argument, have dimensions of a
stock. Others, labelled z, have the dimensions of aflow. Thinking in
terms of the usual production interpretation, economic activity in one
period determines the changes in stocks from that period to the next.
The feasble activity levls depend both on the docks and the flows
during this period. This gives rise to condrants of the form

Yer1 — Ve S QU 21, 1)
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The simplest illustration would be one where y; is the amount of
inventory in stock at timet, If a proportion & of this stock spoils each
year, then Q(v,, z,,t) would equal the survivals from existing stocks,
(1 8)y,, plus net new stockbuilding, z,.1alow the date ¢ to affect Q
separately. This may happen, for example, asimprovementsin storage
methods make § a decreasing function oft. Another example is one
where y, isavector of capital good stocks, which produce net outputs
Qv,, t), and then Q(v,, z¢,1) = G(¥ 1, £) = 24, Where z; is a vector of
consumption flows, Again ¢ can affect Q separately, representing
technical progress.

In addition to condraints which govern changes in docks, there may
be condraints which bind all the variables pertaning to one dae such
as

Gy, 2, 1) <0. 9.2)

An example would be a constraint which says that consumption cannot
exceed gross output. Non-negativity constraints on stocks and flows are
also included in (9.2).

Another special feature that often occurs in such problems is that the
criterion function separates as a sum of functions, each of which
depends on the choice variables pertaining to only one date. Thus it can
be written as

T
Zo F(yt}zra t) (93)

For example, a firm maximizing the discounted present value of its
stream of profits would have such an objective, and time would enter
the function explicitly in the form of discount factors (1 + #)~* where
isthe rate of interest. On the other hand, (9.3) is a debatable
requirement if it isimposed on the decisions of a consumer, for it
implies arestriction vividly expressed as ‘the marginal rate of
substitution between lunch and dinner being independent of the
amount of breakfast’, known as the Wan-Brezski example. However, the
separable form of the objective simplifies the theory a great deal, for it
implies akind of separability in the decision process aswell. [ shall
assume thisform in this elementary exposition, and refer the interested
reader to afew articlesthat dispense with it.
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Up to now | have trested time as passng in a discrete successon of
periods. For most of the work, it turns out to be much more convenient
to think of it as a continuous variable. There is no real theoretical
reason for preferring the one or the other. Some modifications of (9.1)
to (9.3) are necessary for a continuous treatment. For example, (9.3) is
a sum of afinite number of terms. Treating time continuously islike
dividing the total span of time from O to T into more and more but
shorter and shorter intervals, and letting this process go to the limit. In
this limit, the sum of an infinite number of terms, each of whichis
infinitesimally small, is exactly what is called an integral of the
function over the range [0, T] Readers who are unfamiliar with
integration should at this point consult some elementary definitions and
operations; references for this are cited in the list of Further Reading
following Chapter 1. For much of the work, it will suffice to think of
integrals exactly like sums, only in adifferent notation. Also, with
continuous time, it is conventional to write y(t) instead of y,;. Then the
criterion can be written

J. o), 20,9 0. 04

The stock-flow constraints will have to be modified, introducing
raes of change of gocks in continuous time Derivatives are designed to
dojust that. However, it is conventional to write derivatives with
respect to time by means of dots over the corresponding function
inteed of daches after, ie asj(t) instead of y'(f) which would be used
if t were not time. Thus

YOS O0(), (1), 1), 9.5)
and finally, (9.2) merely needs to be rewritten as
Gv(t), 2(0), 1) <0, (9.6)

There is a deeper mathematical problem in treating time asa
continuous  varigble. Al of our ealier theory was developed with a
finite number of choice variables When time is beng treated
continuously, the choice variables y(t) and z(t) for all t over 0S¢t T
amount to a continuoudy infinite number. We now have to use
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separation theorems in infinite-dimensional spaces, and there are serious
difficulties in ensuring tha one of the sds being separated has a non-
empty interior. To give arigorous treatment of this needs some very
powerful mathematical machinery. But the result is very ssimple, and

the theory of Chapters 4 to 6 can be applied without any noticeable
change. | shall proceed to apply it, and cite further readings for
interested readers.

In much of the discussion of optimization in a static context, [ used
a production example for constant illustration. | shall have asimilar
standard interpretation for the problem defined by (9.4) to (9.6),
taking y(f) to be stocks of capital goods and z(¢) to be the current
activity levels, including consumption flows. Thus F can depend on
both stocks and flows. Following Irving Fisher, it has become
customary to emphasize that it is the consumption stream that is the
real aim of economic activity, and 1 shall later specialize to an example
where F isindependent of the stocks. | shall call the value of F the
utility flow, and the criterion (9.4) the utility integral.

With afinite number of constraints, we would introduce a Lagrange
multiplier for each and form the Lagrange expression in the standard
form. Exactly the same thing is done here, except of course that
integrals replace sums. Writing the multipliers for (9.5) as=(¢) and
those for (9.6) as p(f), we have the expression

T
[ { o0, w0B6) 000,20,0)

= p(NGA1), z(2), 1)) dt. 9.7

There may be other constraints, pertaining to the end-points. For the
moment, | shall assume a very simple form for these. Suppose T is
fixed, and we have an initial stock vector bq and atarget terminal
stock vector by, Thus the added constraints are

WO <bo,  yD)Zby. (9.8)

Writing these in the standard form, and using multipliers ¢, and r
respectively for the two, we must add

=0 [M(0) — bo] +or (T —br]
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to (9.7) to obtain the final Lagrange expression for the problem. The
first-order conditions would be found by equating to zero the partial
derivatives of this expresson with respect to exch choice vaiable There
will of course be a continuous infinity of such conditions.

The task is made somewhat more complicated by the appearance of
J(¢)in (9.7). This has an analogue in the discrete case of (9.1), where
each y, would appear in two constraints corresponding to two adjacent
periods. The andogue dso shows what can be done about the problem,
for we can rearrange the sum so that each y, appearsin only one term
in the Lagrange expresson. Thus we write

Ty —Yo) tmi(ya —yi) ¥ . Har_ (v —yr-1)

=~tg¥g — (M — o1~ ~ (Tp_y —Tr 272t U7 Y7,

T-1 T-1
Z T(Vee1 — Vi) =mp_ Y7 — To¥o — Z (me—me e
=1

t=0
When thisisdonein smaller stepsin time, we have in the limit

T

T
J, T30 4t =x(T(T) = 1 Op0) = | PO (0.9

Note that 7.,y is replaced by m(T)(T), asit should bein the limit
when the length of each period isnot 1, but an infinitesimal duration.

The equation (9.9) is known as the formula for integration by parts.
Note that when usng it, we have to assume that the Lagrange
multipliers #{#) are such that 7 regarded as a function of time is
differentiable. It is possible to do without this restriction, but the
arguments become tedious and the extension is not of much use for our
present purpose.

Suppose the optimum choiceis (r), Zr). Assuming that the
appropriate constraint qualification is met, the first order conditions
will be sdtisfied. Moreover, if Fis a concave function, Q is a vector
concave function and G is a vector convex function, the conditions will
be sufficient.
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After integration by parts, the Lagrange expression becomes
T
J{ 010,200, + 500 + w0600, 203,

= p()G((1), (1), 1) dt —n(TI(T) + m(O)w(0)

— o [P(0) — bol tor[W(T) - br] (9.10)

When we differentiate this, we must be careful about the end-points.
#0) and »(T) contribute terms to the derivative both from within the
integral and from outside it. The former are infinitesmal, and when
they occur together with finite terms like the latter, they can be
neglected. Thus the derivatives with respect toy(O) and y(7) produce
the conditions

—m(T)+¢r=0,  m0)—yy=0

or
'JT(T) = ¥r, W(O) = - (911)

Using this, the complementary slackness conditions for the constraints
(9.8) can be written

m0)bo - #0)]=0,  aI)P(T)-br)=0. (912

Now m(0) and =(T’) have a ready interpretation. As usua, regard by and
by as parameters of the problem, and consider the maximum utility
integral as a function of them, say ¥(b,, b7). Then

AVjaby=yo=mn0), and  —aV/dbr=gr=n(T). (9.1

In other words, #(0) is the extra benefit we can secure from having
another unit of initiadl stocks, and n(T) is the loss we have to suffer in
order to meet a termina requirement that is more stringent by one unit.
We shal see later that an extension of this is possible for interpreting all
n(t). The complementary dlackness conditions have the obvious
meaning.

The remaining first order conditions are found by differentiating the
terms in the integral:

Fy((t), (1), 1) + (1) + m(DQ, (0(21), 2(2), ) = p(1)G,(F(2), 2(1), ) = 0
(9.14)
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Fo(7(0), K1), 1) + w(0)Q,(P(1), 2(2), 1) — p()G(F(1), £(2), £) =0 (9.15)

However, these can dso be thought of as the first-order conditions
for #(¢), Z(r} to maximize F(y, z, £} + #(£)y + n(t)Xy, z, f) subject to
the constraints G(y, z, t) < 0 for each ¢. Let us examine what this
implies. It is clear that in order to maximize the utility integral, we
would not want to maximize F(y, z, t) subject to G(y, z, ¢) for each ;
this would be far too short-sighted. The choice a any point in time
affects the possihilities for al subsequent points through (9.5). For
example, a big splurge of consumption now would leave a much smaller
capitd stock tomorrow, and then a lower utility flow at subsequent
dates would result. This could leed to a lower utility integral. and
therefore we must balance present gains against future ones a the
margin in order to attain an intertemporal optimum.

We are by now used to handling gains or losses arising on account of
congtraints by modifying the objective function by the appropriate
shadow values. In (9.15), for example, p(1)G.(3#(t), Z(t), f) represents
the margina cost of z considering the constraints (9.6) which apply to
the variables at time ¢. This suggests that the other term, m(£)@,(#(f),
#(t), t), must represent a similar margina shadow gain from congtraints
(9.5). This is in fact the case. We shall soon see that, in the natural
sense, N(t) is the shadow price of stocks at time ¢. Now an extra unit of
z leads to @, more units of stock a unit of time later, and thus the
future consequences of the choice of z are taken into account by adding
the margind shadow vaue term w{),.

Interpretation of the choice ofy would be similar except for the
term #(¢). It seems tempting to think of it as the rate of accrua of
extra capital gains from having another unit of stock. However, this is
not a very good way of looking a the problem. It is amost never
optimum to keep the inequality in (9.5) strict: an addition to stock will
be desrable in dl the problems we shal meet. Then there is no rea
choice of the stock levels open to us. The choice of z(t) at any instant,
S0 to speak, fixes the stocks a the next ingtant through (9.5) holding as
an equdity. This is emphasized in the technica language of the subject
by caling y(t) the state variables and z(r) the control variables. The
dtate variables are then built from the initiad conditions and the choice
of the control variables. It is therefore better to think of the stocks as
passive, and to give an active role to the shadow prices: it is () that
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takes on the right value to satisfy (9.15). The condition isthen
interpreted as saying that on the optimum time path the shadow prices
changein such away that the marginal benefits from holding &
additional unit of stocks at any point in time, including the current and
future shadow scarcity costs and the capitd gans as wel as the utility
flow, are zero. In other words, producers who have to bear the shadow
costs and gan the shadow profits in a decentrdized economy of this
kind, will bein equilibrium when holding the stocks which the past
optimum flow decisions have produced. Thisis anatural extension of
the usual role of pricesin decentralization to the case of @’
intertemporal economy.

It is now convenient to introduce some new notation. Defined
function H, called the Hamiltonian, as follows:

Hy, z,m,t)= F(y, z, 1) + 1Q(p, z, 1)

Now (9.15) gives the first order conditions for Z(¢) to maximize H(¥(?),
z, n(t), ¢) subject to the constraints G@(t), z, #) < 0. The Lagrangean
for this static maximization problem is

LD, z, 1(0), p(1), 1) = H(F(2), 2, 7(£), 2) — PG ((2), 2, ©).

The maximizing choice £(¢) is naturally a function of #(¢}, n(f) and ¢ it
is called the policy function. Substituting in the Hamiltonian, the
maximum value function, or the maximized Hamiltonian, is obtained.
It is written as H*@(t), n(¢), 1).

Now (9.14) can be written as

ir(t) = _Ly(y(t): Z_(t), Tf(t), p(t)s t)

In the static maximization problem, ¥{f) and m(¢) are parameters
affecting the criterion and the constraints. We can therefore use (3.3) to
write

(9.16)

(9.17)

() = —H, *(7(2), 7(0), 1), (0.18)
Further, using the same theorem, we have H,* = L, = Q evaluated at
the optimum. This enables usto write(9.5), now assumed to hold as &
equation, in a form that is more symmetric to (9.18) as

F(t) = HoX(3(1), 7(t), 1), (9.19)
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These two differential equations, along with the conditions for the
end-points, enable us tofind the functions 7(¢) and n(¢). Suppose we
knew 7(0) and m(0). Then it would be a simple matter in principle to
solve the two differential equations. There are existence theorems and
andyticd methods that we do not need; a the word we can use these
equations as gving approximate rates of change over smdl discrete
intervals t and cal cul ate approximate solutions by iteration. As a matter
of fact, we do notknow 7(0) and n(O), but the complementary
slackness conditions (9.12) usually contain just enough information to
enable us to complete the solution. We can, for example, try different
vdues of 7(0) and n(0), and from the resuling pahs, just one will yield
a pair (7)) and m(T) such that (9.12) holds. Again, in practice, more
direct methods will be available, making such tedioustrial-and-error
techniques unnecessary.  Findly, having found J(¢) ad n(), we can
easily find the optimum policy path z(¢).

When F and Q ae concave and G is convex, the fird-order conditions
are also sufficient for a maximum of the utility integral. The proof is
messy, and does not introduce awy new concepts beyond the ddic case
So | shall omit it, and merely state the results so far in a collected form
for reference

If p(¢), 2(z) maximize (9.4) subject to (9.5}, (9.6) and (9 8),
and if the appropriate constraint qualification is satisfied, then
there exist non-negative functions n(f) such that

(i) 2(t) maximizes H(7(¢), z, n(¢), ) subject to G(#(2),z, 1)< 0,
(i) 7(t) and =(r) satisfy the differential equations (9.18) and
(9.19},
(iii) the complementary slackness conditions (9.12) hold.

If F is concave Q is (vector) concave and G is (vector)
convex, then (i)-{(iii) are together also sufficient.

Thisresult is commonly called the Maximum Principle, and was put
in this framework by Pontryag” and his assocides Since it gives Such
Prominence to the associated shadow prices it tumns out to be very
useful and instructive for solving many economic problems. Some such
goplications will be discussed in Chapter 11,

Thereisone special case of the Maximum Principle that isworth a
Separate mention, both because it can lead to simple solutions, and
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because it was historically the earlier technique used for optimization
involving time. Thisisthe case where (v, z,1) =z, i.e. where therates
of change of the docks ae themsdves the control varigbles  Suppose
there are no other constraints like (9.6). Then, replacing z by »
everywhere, the condition for the maximization of the Hamiltonian is

Fy(3(0), (1), y+n(r) =0
Then (9.17) can be written as a differential equation involving i/{¢)
alone:

% [F3 (), 3, )] = F (30, #(t), 1) (9.20)

This is cdled the Eule-Lagrange equation. The totd derivative on the
left hand side, when evaluated using the chain rule, will produce the
second order time derivative of #(¢); thus the equation is a second order
differential equation. It can always be solved in terms of two
parameters, and then, subject to some tricky cyclic exceptions, the
parameters can be adjusted to satisfy the end-point conditions.

This method is most useful when one integral of (9.20) can be found
at once, thus reducing the problem to that of solving one first-order
differential equation and determining a constant from initial conditions.
This can be done when any one of the threearguments y, ¥ and! is
absent from F.If 3 does not affect F, we have F,(3(), f) = 0. However,
there is nothing of specifically intertemporal interest in the problemin
this case: it reduces to separate optimizations at each instant. The other
two cases are of greater interest. If y does not affect £, (9.20) integrates
directly toyield

Fy(i(t), V() ¢} = constant. (9.21)
The value of the constant is to be determined from the end-point
conditions. Finaly, if f does not affect £ directly, we find

% {FW“)’«*:’(!» — HOF; (), ;(o)}

=Fuy + F3§ — 7Fy - dFy/dz =0
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using (9.20), whereit is understood that the derivatives are evaluated at
the optimum. Therefore

F@), 76) JOFKD), 7)) = constant,

whichisagain afirst-order differential equation once the constant has
been determined.

Thislast case has aparallel that isvalid in the earlier, more general,
context. Suppose we have a problem in which the forces of technical
progress, discounting  etc. are absent, so that time does not enter
explicitly as an argument in any of the functions. Then the maximized
Hamiltonian H* dso does not involve  as a Separate argument on its
own. Then we have

dH¥(F(2), m(0))/de = Hy*F(), 7)) 372 + H,*@(), 7(D)r(t) = 0

using (9.18) and (9.19). Therefore the maximized Hamiltonian is
constant along the optimum path. If we know the functional form of
H*, we can draw its contoursin the(y, #) space, and one of these
contours will be the optimum path of y and 1. The end-point conditions
will then help us select it. Such a contour diagram is called a Phase
Diagram, and we shall meet an example of it in Chapter {1,

9.22)

EXAMPLES

Example 9.1 This example is to illustrate how saving decisions
over alifetime can be handled using the Maximum Principle. Consider a
worker with aknown span of life T, over which he will earn wages at a
constant rate w, and receive interest at a constant rate r on accumulated
savings, or pay the same on accumulated debts. Thus, when his capitd
is k, hisincomeis(w + k). If he consumes., capital accumulation will
be given by

k=w+rk—c. (9.23)

Thus k is the date vaiable and ¢ the control varigble Suppose there are
no inheritances “I bequests, so that the end-point conditions are

k(0) = 0= K(T). (9.24)
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Suppose there are no other constraints on the choice, and the
maximand is

T
I log ce=%" dr. (9.25)
0

To use the Maximum Principle we write down the Hamiltonian
H=logce™ +mw+rk —c). (9.26)
The condition for the choice of ¢ maximizing H is
cle ™ _g=0, (9.27)

and, substituting in (9.26), the maximized Hamiltonian becomes

H* = —(log 71 + ef)e™ ' 4 a(w +rk) e~ %%, (9.28)

The differential equations for k and « become
k=aH*an=w+rk —n~' e ™ (9.29)
n=—30H*[ok = —rn (9.30)

It iseasy to solve (9.30) to obtain
a(ty=mpe ™t (9.31)
where , is a constant to be determined. Substituting in(9.29), itis
posshle to integrate this by recognizing
dk e ")dr = (k —rk)e " =we " = my e,

Then the value of y, can be found using (9.24) and the solution
completed. However, some economically important facts can be found
without doing this. From {9.27), we find

o) = mo =t el -t 9.32)

Thus, along the optimum plan, consumption grows over the worker’s
lifeif r > a. Since consumption and wages must balance over his whole
liftime in the snse of having equa discounted present vaues, this
must mean that ¢ < w over the earlier years and ¢ > w for the later
yeas j.e. the consumer saves ealy on and laer runs down his savings
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The opposite would happen ifr < a. Of course some institutional
constraints may prevent him from having negative assets by dissaving a
the beginning of his life ad of course an economy could not be in
equilibrium with all consumers attempting to do so, with the result that

r would change However, thee ae sgparde isues. In the gpecid case
r = a, the wage stream would itself constitute the optimum

consumption stream and there would be exactly zero saving.

This problem is even exser to solve usng the Euler-Lagrange
equation. Write the maximand &

T
f log (W + rk = k) e~f dt.
0

Then egn (9.20) becomes

d  —e ™ ) _ re”™
{dt wrrk—k| wtrk—k

[n terms of c, this becomes

a 1 —at

e e +e lae ™ = lre

or
¢le=r-ua

Thisintegratesto aform like {9.32}, and it remains to determine the
constant using the end-point conditions.

Fxample 92  This example has no economic content, but has the
great merit that the answer is known at the outset, enabling us to follow
the techniques that much better. Also, it illustrates the point that
dthough the independent varigble ¢ in the theory hes a naurd
interpretation as time, any other vaisble such as space saving the same
formal role fitsinto the same theory.

We will find the path of minimum length between the points {0, 0)
and (1, 0} in the plane. Choose the horizontal coordinate ast and the
vertical one asy. It is clear that any path which loops or winds cannot
be of minimum length, since we can simply omit aloop or an s-shapeto
have a dhorter pah. We can therefore redrict dissusson to a case where
y is a (dnglevdued) function of #. The distance between the adjacent
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points (¢, y) and (r + dr, y +dy) being [(dr)* + (dy)*]*, our problem is
to maximize

1
[ ~a+3ya,
1]
withy(O) = 0 = (1),
Let us begin with the Euler-Lagrange approach. Since the integrand
F is independent ofy, we have the integrd (9.21), which reduces to

y = constant, or j(f) = ¢; + ¢;¢ in terms of two undetermined constants.

Using the end-point conditions, we find ¢; =0 = ¢,, 01 (f) =0 for al 1,
which of course gives us the draight line joining the two points in
question.

To use the Maximum Principle, write }» =z and define the
Hamiltonian

H=-(1 +2)" + nz.

To maximize this asafunction of z, we set H, = 0 and solve to obtain

5= Tf/(l . 1[2)1/1’
The two differential equations are
J=a/(1 — )", 7=0. (9.34)

Thus 7 is congant, a concluson we could aso have drawn by noting
that since H does not involve time explicitly, #* must be constant.
Then j; is constant, and an integration and use of the end-point
conditions complete the solution as before.

HE = (1= )", (9.33)

EXERCISES
9.1  Solvethe saving problem of Example 9.1 with the maximand
changed to

T
_[ Ulc) e~ dr,
0

where Ue)y=c' =11 ~ ), e>0.
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9.2 Solvethe saving problem of Exercise 9.1 for arentier, who has no
wage income but begins his life with an inherited capital kp and plansto
leave @ bequet of kr. How lage can k7 be before a solution becomes
impossible?
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10. Dynamic Programming

In the previous chapter we sav how the vaue m0) could be
interpreted as the vector of shadow prices of theinitial stocks. It was
also stated that all the n(t) could beinterpreted as shadow prices of the
stocks at ¢, The simplest way to see thisisto use that earlier result, and
thisis done by setting up a problem in which n(t) become the shadow
prices of initial stocks. For this, we must take t to be the starting point
of the optimization problem. Consider any particular valuet' of ¢, and
consider the problem of maximizing an integral exactly like {9.4), but
extending over the smaller interval [¢, 7| , subject to the constraints
(9.5) and (9.6) over the same interval. Leave the terminal conditions
¥(T) = by unchanged, and allow a more general initial condition
Mt) <y',wherey’ is some parametric vector. The maximum value for
this problem will depend, among other parameters, ont' and y’; write it
as V(' v).

Now suppose the problem of Chapter 9 for the whole interval [0, T]
has been solved, and the optimum paths 7(¢), (f) and #(f) obtained.
Now set y' = 5(¢). It is easy to see that the same paths truncated and
considered only over theinterval [¢', T] satisfy all the first order
conditions of the Maximum Principle gver thisinterval. Subject to the
concavity assumptions, they are sufficient to ensure the optimality of
the truncated paths.

Similarly, we could have chosen aterminal time¢” short of T, and
imposed a terminal stock requirement v" = #(¢"), and the portion of the
optimum for the full problem would remain optimum for the
subproblem. In other words, if we truncate an optimum path to any
subinterval, we have an optimum path for the truncated optimization
problem gver the same subinterval with the end-point conditions
defined by the vaues of the date vaidbles a the points chosn for
truncation. This is a conseguence of the spedid dructure of Sseparability
of the maximand and the constraints.

Now we can use our earlier result and interpret
(") =V (¢', 7(1')) as the shadow prices of initial stocksin the
subproblem. Each component of m(t") thus shows the addition to the
utility integral over [¢', T] that would result from a unit increase in the
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initial stocks ¥ = #(¢"). Thisis not yet the same as the addition to the
utility integral over [0, T] that would result from an increase in the
stocks at ¢, for in this latter case we could anticipate such an increase
and adjust the utility flows over [0, ¢'] suitably. But an envelope
theorem agument agan saves us from having to do this recaculaion
explicitly. Treating the addition to stocks at ¢ as parametric, the fact
that the utility flows were arranged to be optimum in theinitial setting
enables us to say that to the first order a readjustment would make no
difference. Since the particular value ¢' could have been chosen
arbitrarily, this completes the interpretation of #(¢) as the shadow
prices of the stocks at time £, for every ¢ in [0, T

The function V' has other uses besides helping to establish this
interpretation. In fact we can develop the whole theory of
intertemporal optimization and obtain methods of solution based on
this function. This method is called Dynamic Programming. | shall
derive the badc realts of it usng the Maximum Principle aready
edtablished, but the two approaches ae equivdent, and it is posshle to
develop the argument the other way.

Asusual, y(t),z(t} and n(t) will denote the optimum paths of the
relevant variables over the whole interval [0, T'], Fix any t within this
range, and consider ¥, j(r)). Take avery short timeinterval ¢t and
write, to first order,

e +dr)=3(1) + Q((r), 20), 1) dr.

Over theinterval from ¢ to (¢ + dt), the contribution to the utility
integral is F(7(¢), #(¢), 1) d¢. Thereafter, the path continues as the
truncation of the full optimum to the interval [¢ + dr, T], and henceis
the optimum over thisinterval when theinitial stocks are j(¢ + dt).
Thus the remaining utility integral equals¥{t +dz, y(¢ + dt)). Hence

Vit j(t) = F(2), 2(t), o) of +V(z +de, 5(r +dD), (10.0)
to first order. Now consider any value of z satisfying C@(t), z,7) $0.
If this had been chosen at ¢, we would have, tofirst order,
y(t +dt) = () + Q(F(t), 2, 1) dr.

With this, we would have a contribution F(3(¢), z, t) d¢ over this
interval, and at most V(¢ + dt, y(¢ + dt)) thereafter to the utility
integral. Further, the sum of these two can never exceed ¥{t, j(t)), for
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if it did, we would have found afeasible policy that performed better
than the one we began with as the optimum. Thus we must have

Wt i) = FG@), 2, ) de # V(i + de, (e + d). (102
Combining (10.1) and {10.2), we conclude that
Vit, p(£)) = ™2% (F((r), 2, f) de + V(e + de, p(r + d1)}  (103)

the maximum being subject to the constraints G@(t), z, ) < O.
We can simplify (10.3) by taking alinear approximation to the value
of V ontheright hand side. We have, to first order,

V(t +de, 7(r) + QG(0), 2, 1) db)

=Vt 7(O) + Vi, 7(1) dr + Vo6, FO)0(0), 2, ) dt

On substituting thisin (10.3), we find that ¥{(t, j{t)) cancels. Then we
can divide by dt, and finally note that the term ¥,(¢, j(1)) does not
involve 7 and can therefore be moved outside the maximization
operator. This leaves us with

0=V, 3D+ "2 FF0), 2, 1) +V, (¢, HNAF(D), 2, 1)} (1'34)

Notice that the maximand looks exactly like the Hamiltonian of
(9.16), except that ¥, (¢, #(1)) replaces n(t). And there could not be a
more natural substitution, since our shadow price interpretation of m(z)
shows that these two are equal. The maximization is subject to the same
constraints as before, and this produces the maximum value
Hamiltonian H*. We can therefore write

Ve, 7(0) + HY (), V (8, (), 1) = 0

This is the fundamentalequation of Dynamic Programming.

This equation adso provides us an dtenative method for solving the
intertemporal optimization problem. We start, of course, without
knowledge of the function¥. But a purely static optimization gives us
the functional form of A*. Now we know that ¥ must satisfy the
partial differential equation ¥V, + H*(y, ¥, f) = 0. We can solve this in
terms of various undetermined constants. and then use the end-point
conditions to determine the vaues of these condants. This is not easy
in practice, since the functional form of H*will in genera be quite
complex, and solution of partial differential equationsis not atrivial

(105)
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matter in ay cae For these reasons andytic soluions can be found
only in some vey smple caes, and numericd solution depends on good
computing facilities. Conseguently Dynamic Programming has

proved somewhat less useful than the Maximum Principle in  solving
economic problems, especially in economic theory where closed form
solutions are often sought. It does, however, produce some Sshadow
price results very quickly. Also, it becomesmore useful in problems
involving uncertainty.

The discusson so far has kept the termind time T and the associated
target stock requirement b fixed, allowing the initial time and stock to
vay. The revase is dso posshle, and lesds to an equation very much
like (10.5). Write W(#, y) as the maximum utility integral over [0, ¢]
with a fixed stock endowment &g at 0 and the requirement y at ¢. Now
the shadow price interpretation becomes n(t) =—W,(z, #1)). The
change of dgn is naurd snce having to meet a larger requirement
reduces the posshle utility flows Also, we must now split W(z, F(t))
into a utility flow over [t = dt, 1] and W(¢ dt, (¢ - dr)). This causes
another  change of sign. The result is

W e, p(0)) — H¥(FQ@), =W, (1, 7)), 1) = 0.

This alternative approach is suitable for extending our discussion of
optimization pver time to allow more general end-point conditions. Our
choice of theinitial condition fixing the time and stock availability isa
very natural one, but forms of the terminal conditions other than a
fixed dae and stock requirement ae concevable. Thus we may have a
fixed target for stocks, and may wish to attain itin the shortest possible
time. Now T itself isthe choice variable, and the maximand can be
written as [ (1) dt. Again, there may be some flexibility both in the
terminal time and stocks, with alonger time being allowed in return for
meeting a more stringent requirement. A general form of such
condraints can bhe given by

JT, yI)<0. (10.7)

We can solve such a problem in two stages. First we fix Tandy(T), and
solve the earlier problem with the corresponding terminal conditions.
This produces a value W(T, y(T7) for the criterion. Among all pairs

(T, y(T)) satisfying (10.7), we then have to choose the one which
maximizesthis. The second stage is a static problem, for which we have

(10.6)
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aLagrange multiplier ¢ such that the optimum choice (7', »(7))
satisfies the first order conditions

WAT, yTN = §(T. (D),  Wy(T, 5T = §/,(T, »(T))-
Using (10.6) and the shadow price interpretation, this becomes

~1(T) = &/, (T, (1)) }
H*@-(T)’ TT(T’), T') = EJI(T’ y(T))'

So long as & is postive, this says that the vector (H*, — )} should be
parallel to the vector (J,, J,) when both are evaluated at the optimum.
Since the latter is perpendicular to the surface defined by J(¢, y) =0,

the former should also be perpendicular to this surface. For this reason,
the conditions (10.8) are cdled the trgnsversality conditions. As an
example, consider the minimum-time problem mentioned before. There
T does not enter explicitly in the terminal conditions defined by (10.7).
Thus J, is identiclly zero, and the transversdlity conditions reduce to
H* =0 at the optimum. On the other hand, if T is fixed but the
terminal stock istotally unconstrained, we have J, identically zero and
the transversality conditions yieldn(T)= 0.

Dynamic Programming, the Maximum Principle, and in specia cases
the Euler-Lagrange equation provide us three alternative and equivalent
means of solving optimization problems involving time.  They have
different advantages and disadvantages, and are all useful in some
economic applications. Incidentally, physicists have long been
formulating laws of motion in away that isformally very similar to
economic optimization over time. All three of these approaches
originate in physics. For example, physicists know (9.18) and (9.19) as
the Hamiltonian canonical equation of motion, and (10.5) as the
Hamilton-Jacobi  equation. The varidbles y and 7 usudly have the
physical interpretations of position and momentum respectively. Itis
well worth the effort to read and compare the treatment of these
problems in physics and in economics.

There is one more extension of the basic intertemporal optimization
problem that is important in many economic problems. Often there is
no natural way to specify aterminal date for decisions. In fact, we can
rarely fix adate in advance and claim that considerations beyond it can

(10.8)
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be totally disregarded. This may be aminor problem for an individual,
but becomes more and more important as we consider wider and wider
contexts of decision-making. It may seem that the terminal stock
requirement in afinite-time problem is designed to take account of the
indefinite future, for the role of such stocksisimplicitly to provide
utility flows beyond the terminal date. But it is precisely this that

mekes such a procedure very inadequate. The levd of the target dock
requirement will have to be fixed in a purely arbitrary way without an
explicit analysis of the subsequent utility flows. But such an explicit
account means solving a problem very much like the original one but
with alonger time horizon. Of course, thereis no logical stopping point
to this argument. This forces us to allow an infinite time horizon.

We run into some technicd problems when we condder decisons
over an infinite time horizon. First, there is the possibility that the
utility integrals may not always be finite. If twoor more feasible plans
each yield an infinite utility integral, we cannot directly say whichis
preferable. Thusour old definition of an optimum as aplan providing
the highest utility integra becomes usdess Compaisons between  two
infinite integrals can only be made partially and in a roundabout way.
The simplest method is to compare the integral s taken over the same
finite horizon and then take limits as the common horizon goesto
infinity. Thus, for two plans(¥(t), z(r)) and (»'(t), z'(t)) over the
infinite future, and for each T, we calculate

T T
f Fy(0), (1), 1) dt—'f FO'(),2'(), 1) de, (109)
0 0

and take the limit of this difference as T goesto infinity. If thelimitis
non-negative, we sy that the plan (¥(t), z(f)) overtakes (y'(1), z'(e)). If
afeasible plan overtakes all other feasible plans, it is an optimum.

In a situation with convergent utility integrals thismust reduce to
the old definition of an optimum, for then the limit of the differenceis
the difference between the limits. Thus the overtaking criterionis no
less generd. But the postive advantage from using it is only patiad. We
cannot compare all pairs of infinite utility integrals using it, for itis
quite possble to have cases where the difference (10.9) goes on
oscillating repeatedly between positive and negative values. Nothing can
be sad about the rdaive merits of such plans using the overtaking
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concept. Still, there are cases where the approach helps, and it, or some
subtle variations of it, have become common.

There is another reason why an optimum may fail to exist.
Discontinuities provide a resson why no pah can ovetske dl othes
thus we may be able tofind a sequence of paths each of which
overtakes its predecessor, but such that the limiting path of the
sequence, indead of being optimum, is very undesirable A typicd
example of this situation is the following. Let consumption and
investment be perfect substitutes in production. Suppose the marginal
productivity of investment is constant and equal to b, and suppose we
wish to maximize the integral of consumption discounted back to time
0 at a discount rater, with r <b. If we divert a unit of output from
consumption to investment at time 0 and let it compound up to time T,
the added amount of consumption available will be exp(bT), and its
discounted present value will be exp(® r)T. This exceeds the
opportunity cost of the investment, namely 1. Thus any investment
increases the utility integral, and we can find a sequence of more
investment allowed to mature longer, yielding progressively higher
values of the criterion. The limit of such a sequence would be all
investment and no consumption ever, which is the wotst of all policies.

There are other, more subtle, kinds of discontinuities, but it seems
best to leave those to more advanced expositions.

We can now consider the conditions for an optimum. It is clear that
the principle that a portion of an optimum path must remain optimum
for the appropriately formulated subproblem is till valid. For any finite
subproblem, moreover, we can use our earlier definition of optimality
and the corresponding conditions such as the Maximum Principle or
Dynamic Programming. Using the former, for example, we see that the
control variables should maximize the Hamiltonian at each instant in
time and the date vaiables and the shadow prices should sdtisfy the
differential equations (9.18) and (9.19). But the transversality
conditions present a problem. Over any finite interval with the
appropriate stock constraints at its end-points we will have the standard
complementary slackness conditions, and thus the condition
corresponding to the initial point ¢ = 0 will remain valid. However, there
is no terminal stock requirement at ¢ = =, We might think that
something could be gained from a constraint that stocks must be non-
negative at each point in time. Thus we might set up afinite time
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horizon problem where the target stock has to be at least zero, i.e.
b= 0. Then the transversality condition is #{Zy(T) = 0. Hence we
might conjecture that for the infinite horizon problem the terminal
condition would be

lim w(£)p(t) = 0. (10.10)
t—)oc

However, in generd this condition is not necessary. It is only for
problemsin a somewhat limited range that it can be shown to bea
necessary condition. It has a much more important and generally valid
rule as a sufficient condition when taken together with the standard
concavity requirements and the other two ¢onditong of Hamiltonian-
maximization and the differential equations. The proof isasimple
qoplication of dl the techniques ussd s far and of the overtaking
definition, but it has little economic interest, and | relegate it to an
example following this chapter.

EXAMPLES

Example 10. 1 Asanillustration of Dynamic Programming and
transversality conditions, consider the minimum-distance problem of
Example 9.2, modified so that the terminal point is alowed to lie
anywhere onthelinet = 1. Asexplained in the text, this can bedone in
two parts. First we find the path of minimum length from (0, Q) to some
point (1, ¥{ 1)). Thisleads to equations (9.33) and (9.34) as before, and

it remains to find the value of 7 from the equation

(1 — 7Y = p(1). (10.12)

Finally, to determine the choice of y(1), we employ the transversality
condition. From (10.8) and the fact that the terminal constraint is
independent ofy, the condition becomes #(1) = 0, and then from
(10.11) we have y(1) = 0. Thus we choose the terminal point and the
path in such away that at this point the path is perpendicular to the
cuve on which the point is condraned to lie

The problem can in fact be tackled from first principles, combining
the two stagesinto one. Define F(t, y) as the shortest distance from the
point (¢, y) to the linet = 1. Exactly the same argument as in the text
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establishes (10.5) for this case, where H* isdefined asin (9.33). Thus
we have

v, —(1 v,h)* =o. (10.12)

This s subject to the obvious boundary condition that V( 1, ¥)=0for
aly.

While the general methods for solving partial differential equations
are quite hard, it is easy to verify in this instance that ¥{z, y) =1t is
the desred solution, given the approprite choice of the sgn of the
square root. Of ¢ourse this value of the distance is attained by the
perpendicular from the point (¢, y) on to the line t = 1.

Example 10.2 This example sketches the proof of sufficiency in
the infinite context, in the sense of the overtaking criterion. Suppose
that for eacht, regarding {y, z) as one vector argument, F isaconcave
function, Q avector concave function, and (; avector convex function.
Suppose further that there exist non-negative multipliersm(¢) and p(t)
such that, omitting time arguments for brevity where no ambiguity is
possble, we have

Fy. 5,0+ 7 +1Qu(7, £,0) = 0Gy(7, 5,6y = O (914
F,(7, 20+ 70,7, £, 1) pG,(7, £ ) = 0 (9.15)

for eacht,and
lim #(T)#(T) = O (10.10)

Then #(¢), Z(r) yield the overtaking optimum of

j " F(). 2(0), £) dt
0

abject to a gven y(0), ad
y=00.2,1) (95)
Gy, zn <0 (9.6)

Note that we have subsumed the differential equations (9.18) and
(9.19) in (9.5) and (9.14) here
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Further, (9.6) subsumes non-negativity conditions.

To prove the result, begin by observing that for each¢, F + fiy + nQ
isaconcave function of (v, z). Thus, from the sufficiency result of
Chapter 6, we have in (9.14) and (9.15) the necessary and sufficient
conditions for (y, £) to maximize this subject to the constraints (9.6)
involving the convex function G. Therefore, for any (y, z) satisfying
thes, we have

Fy,z 0+ av+ 00,2, 0= Fy, 2. ) iy + 100y, 2, )
Now suppose we have (#(t), z() satisfying (9.5) aswell. Then
F(5, 2, ) +ip +ap 2 F(y, z, 1) + 7y + 7.

This holds for eacht, and can beintegrated from 0 to T, Since we have
d(my)/dt =7y + 7p, etc, thisyields

T
| | FG.2,8) de + n(Ty() — (07 (0) >

ff F(y, z, t) dt + n(TW(T) - a(0)(0).

Usng the fact that 37(0) = y(0), and the nonnegativity of 7 and y, and
finally the transversality condition (10.10), we have on taking limits

T T
lim j F),20).1) dt = | FOA), 2(r), 1) de > 0.
T—owo v () '0

Since (¥{¢), z(t)) could be any feasible policy, this provesthe result.

EXERCISES

10.1  Consider the rentier of Exercise 9.2, now planning gver an
infinite horizon, starting with capital stock k at timet. Show that

[a —r(: —e)]—f k'

Wt k)= l—ee

solves the fundamental equation of Dynamic Programming for his
optimization problem. Deduce that his optimum policy is one of saving
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aconstant fraction of hisincome at al times. Under what restrictions
on the parameters will the transversality condition be satisfied?

202  Solve the problem of Example 10.1 by defining W(t, ¥} as the
shortest distance from (€, 0) to (¢, »), and using (10.6).
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11. Some Applications

This chapter is devoted to an exposition of two examples of
economic models using the techniques developed in the previous
chapters, and a statement of some others as exercises and further
readings.

EXAMPLES

Example 11.1 This example considers the problem of optimum
saving in amanner similar to that of Exercise 9.1, but from the point of
view of sociy as a whole This produces two new fedures Fird, there
isno logical terminal da;e to the plan. Secondly, the rate of return to
saving cannot be taken to be fixed by exogenous market forces, but will
depend on accumulated capital.

The smples case of this occurs in a one-good modd, where physicd
capitd  dock k condss of accumulated savings. Output flow is then
F(k), where F isan increasing and strictly concave function, with
F(0) = 0and F'(0) =, Capital depreciates at arate §. If consumption
flows take place at arate ¢, then capital accumulation is given by

k=F(k) - 8k — c. (11.1)
The initid capitd stock &(Q) is given. Suppose there ae no other
constraints, and suppose the aim of the plan isto maximize
[ Ueyearar (112)
1]

in the ovetaking sense where [/is an increasing drictly concave
function. Detailed comments on these assumptions can be found in
economic texts cited later.

This alows a straightforward application of the Maximum Principle.
We define the multipliers over time, n(t), and the Hamiltonian

H=U(c) e + 7(f) FK) - 8k = ¢). (11.3)
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AU the concavity conditions are satisfied, so the first-order conditions
are necessary and, along with transversality, sufficient. Henceforth 1
shall consider al variables only at their optimum values, and drop the
bas diginguishing them as such for ske of brevity.

Maximization of the Hamiltonian yields, for each?,

U@e *=n. (114
The differential equation satisfied by wis
7 =-n(FKk) - 6). (115)

We could use (11.4) to substitute for ¢ in(11.1) to obtain a pair of
differential equations for k and 7. However, inthiscaseit is easier to do
the reverse, i.e. substitute for 7 in (11.5) to give a pair of differential
equations ink and ¢, We have

U'c)e e U'le)a e = -U'() e *(F(k) - ).
To simplify this, define
E(C) = —cU () U {c). (11.6)
This enables us to write
efe = [F(K) = (a +8)] 7e(c). (1.7

Observe that Example 9.1 and Exercise 9.1 had a formally identical
structure, with F’(k) constant and equal to ¢, and e{c) constant (equal
to 1in Example 9.1 and to ¢ in Exercise 9,1),This is why they share the
convenient property of a constant rate of growth of consumption along
the optimum path.

The pair of equations (11.1) and (11.7) has the convenient property
that ¢ does not enter explicitly on the right hand side. Thus, if we are
given any pair (k, ¢), we shall be able tofind the rates of change (k, &)
from these equations. In the (k, ¢) plane thee velocities can be shown
by asmall vector arrow attached to the point (k, ¢}, If we dothis for all
points, we can join successive arrows together tofind all paths (k(t),
¢(#)) which satisfy the two differential equations, both necessary
conditions for optimality. No two such paths can cross, since the
direction of motion is unique given the starting point. If, from among
all such paths, for a givenk(0) we are able to find ac(0) such that the
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pah dating there <didfies the transversdity condition, we will  have
found an optimum.

Figure 11 .1 shows this diagram. The easet way to understand it is
to think of the plane as being split into regions where the directions of
change of the vaidles ae the same, Snce exth of the two vaidles k
ad ¢ cn incese or decresse, we have four posshle combinaions, and
indeed in this case there are four regions. From (11.1), we see that k
increases if ¢ <F(k) — 6k, which isthe region below the curve

N

c=Fk)- 8k

LT~

Kk* k
FIG. 111

¢ = F(k) Sk in the diagram. This curve has its peak where F(k) = §k is
maximum, i.e. fork = k’ defined by F'(k") = § Turning to (11,7), we see
that ¢ increasesif F'(k) >« + 8, since E(C) is positive when/ "(c) is
negative. Now define the vertical line k = k* by F'(k*) = ¢ + §, SO that ¢
incressss to its left and decresses to its right. Since F is a concave
function, we have k* < k' whena > 0. It is then easy to verify that all
possible paths satisfying the two differential equations fall into one of
the patterns shown by the arrows.

Writing ¢* = F(k*) - §k*, we see that there are exactly two of these
paths which converge to (k*, ¢*), and that for each (0}, thereis exactly
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one ¢(0} providing the initial point on one of these two. Suppose we
make this choice. Thenin the limit, k(¢) goes to k*, and n(t) goes to
U'(c*) e %', Provided ais positive, the transversality condition is
satisfied and the choice is optimum.

Had we usd the vaiadles k and w, the diagram would have been a
proper phase diag:am in the sense explained in Chapter 9. In fact
economids often cdl a diagran involving soluions to a par of
differential equations that do not involve time explicitly a phase
diagram even when the two variables do not stand in the relation of a
Quantity and its shadow price However, in this case the eguations in k
and 7 do involve time explicitly through the discount factor. In the case
of exponential discounting, a very simple change of variables eliminates
this. Define y(t) by

(t) = Y(r) e,

Comparing thiswith {11 .4), we see thaty:(¢) i s the undiscounted
shadow price of k{#). Now amechanical differentiation shows
= FK) @ *9) (118)
and
k=FK) - 8k - V(¥), (11.9)

where V, the inverse function toU", is a decreasing function since ' is.
It is now easy to draw the phase diagram in termsof k and y:. Sincec
and y are inversely related, this looks exactly like Figure 11.1but
reflected upside down. Thisisleft asasimple exercise.

The study of optimum saving policy forms an obviously important
part of growth theory. Only the very briefest sketch of the simplest
such model can be accommodated here, but the interested reader has a
very extensive literature available for pursuing further developemnts. A
sample of such work islisted at the end of the chapter.

Example 11.2 Here | shall outline avery simple model of the
optimum arrangement of roads and housing in the residential belt of a
circular city. It gives an interesting economic application of the
techniques of Chapters 9 and 10 in which the independent variableis
not time.
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The centrd busness digrict of the city occupies a cirde of given
radius ¢. Theresidential belt spreads from there to a bigger circle of
given radius b. We ae dso gven the number of reddents &, and the
amount of housing space to be allotted to each, 2nh, The factor 2x is
chosen to simplify notation later, and s is not a shadow price, but
3.14159 , the ratio of the circumference of a circle to its diameter.
So long as2nhN <m(h? - 4?), there will be land |eft over for roads.

The roads are used by commuters to travd to the centrd business
digrict and back, and the problem is to arange roads and housing in
auch a way a to minimize the congestion costs of this travel. Suppose
tha we have a lage number of evenly spaced radid roads <o tha the
trips necessary to reach the nearest one can be neglected, and attention
concentrated on the trips radidly to the centrd busness digrict and
back.

Suppose N(r) residents live betweenr and b. Then there are -N'(r)
dr living in asmall ring located between the radii r and (r +dr), shown
in Figure11,2, These occupy —2wAN'(r) dr units of land, leaving the
rest out of the total area of 2q7 dr in the ring to roads. Thus, along the

circumference of the ring, such roads occupy awidth of 2x[r+ hN'(r)]
Snce these roads ae used for commuting by the N(r) resdents living
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farther away, the traffic density along them is proportional to

N(r){Ir + M’ ()], There are M(r) dr man-yards of travel at this density
in each direction. Omitting factors of proportionality, suppose the
congestion cost element contributed by these is

(N {r + ”RN'A X NG dr = N1 e [r+ V()] F

where k isapositive constant. In practice we find that k exceeds 2.
Thus our problem isto choose the function N(r), subject to the end-
point conditions N(a) = N and N(b) = O, to minimize

Ni k+1
f [+ ;(,33 oY (1110

This is most essly tackled usng the Eule-Lagrange eguation. Simple
differentiation gives
x¥L1 i
4 {khN(r) G Ve (1113
rlre BNV T [r + AN
This looks quite formidable, but a simple substitution makes it

manageable. Define D(r) = N(1)/ [r + AN'(r}], which is the traffic density
at r except for a constant of proportionality. Then (11.1) becomes

—kh dD** Ydr = (k+ 1) D*

or
dD/dr = - 1/(kh). (1112)

This shows at once that traffic density in the optimum arrangement

fallslinearly with distance. In terms of an undetermined constant ¢y,
we have

D(r) = (¢; = P)/(kh). (11.13)

Recalling the definition of D(r), we have a first-order differential
equation for N(r) which can be solved, introducing another constant of
integration ¢, , After some tedious calculation, it is possible to show

that

N(r) = (¢, = Nk {c; - %J: rie, - rk dr} (11149

Some Applications 127

The end-point conditions can then be used to determine ¢; and ¢, This
can be computed numerically.

Interesting qualitative features can be found by examining the width
of roads. Within a constant of proportionality, define W(r) =7+ hN'(r).
Obvioudy we must have W() =r. We hae the differentid eguation

W' (r) = [(k + DY) — kr] (e — ). (11.15)

The solution can be examined geometricaily, asin Figure 11.3. Clearly
W(b) =0, asthereisno reason to provide roads for zero traffic. Now

W=ikrj(1+k)

HG. 113

W' (r) has the same sign as[W(r) - kr/(k +1)], and we can trace the
solution  backwards garting & bh. We fmd three posshiliies The first
has W(r) decreasing all the way from atob. This occurs when N issmal}
relative to the maximum valueit is allowed to attain, i.e. for sparsely
populated cities. For more congeted cities we have the second case
whee W(r) incresses for a while and then decresses For very heavily
congested cities, the solution traced backward hitsthe linel =p,
showing that there is a range near g where the entire aea hes to be
devoted to roads To solve this properly, of course we have to
formulate the problem allowing for such inequality constraints. Thisis
more difficult, but the feature of the solution is clear. However, if ¢
were a choice variable, we would not allow the third case to occur, for
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it would be desirable to expand the central business district to occupy
the spece that is being wasted on roads just outside a.

The last remark is just one example of the way in which the model
could be and indeed hes been, generdized. Once again, such
refinements must be left to be pursued by the interested readers. These
changes, however, leave the basic qualitative features of the allocation
of spae to roads in the resdentid bdt unchanged.

EXERCISES

11.1 Consider afirm which faces a demand curve
q(t) = a = x(t) — bp(t)

at timet, Hereg and b are positive constants, p(t) and g{t) are
respectively the price and the quantity demanded at , and x(¢) equals
the sdes of its competitors a f. Thee sdes ae govemed by the
differential equation

x(t)=k[p(r) - p*],

where k and p* are positive constants. This shows that competitors
enter or expand if they see this firm charging a price above the ‘ limit
pricé  p*. The average cods of producion are condant and equd to ¢
at all times, and there is a constant rate of interest 7. The firm wishesto
maximize

[ @) -clat e ot

with x(0) given.

Apply the Maximum Principle to solve this problem, taking x as the
state variable and p as the control variable. Construct the diagram in
(x, p) space showing the possible solution paths of the appropriate
differential equations. Hence find the qualitative features of the
optimum pricing policy of the firm over time. Assume that p* = ¢, and
obtain the conditions on the parameters of the problem which must be
satisfied if the competing firms retain positive salesin the limit.

11.2  Aneconomy beginsits planning at time 0, when it has a stock

4
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3¢ of an exhaustible resource. It chooses a plan of depletion at arate
R(t) as afunction of time, subject to the feasibility requirement

[ RGyar<s,.
0

The plan aims to maximize

| vy et o,
0
where

UR)=R'"[(1 -,
a ad ¢ being postive congants.

Taking S(r), thestock of the resource that remains at ¢, as the state
variable, and R(t) =-S§() as the control variable, show that the
multiplier n(t) obatined from the Maximum Principle is constant over
time. Hence deduce that the optimum depletion plan is given by

R(r) = (aSg/e) e~(@/e),

Solve the problem using the Euler-Lagrange equation. Set up the
Dynamic Programming equation and guess a solution to it a5 in Exercise
10.1.

What problems aise if ¢ equds zeo?

FURTHER READING

For relatively simple expositions of optimum saving theory, see

SOLOW, R. M. Growth Theory.. An Exposition, Clarendon Press,
Oxford, 1970, Chapter 5.

DIXIT, A. K. The Theory of Equilibrium Growth, Oxford University
Press, 1976, chs. 5, 7.

For a more advanced treatment, see Intriligator, op. cit. (p. 68)
ch. 16. Heal op. cit., chs. 12, 13. See also

WAN, H. Y. J. Economic Growth, Harcourt Brace Jovanovich, New
York, 1971, chs. 9—11.

An important related branch is the theory of optimum depletion of
exhaustible resources. See the special symposium issue of the Review of
Economic Studies, 1974. Exercise 11.2 is the simplest case of the
problem.
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For richer models of the optimum size and organization of cities, see

MILLS, E. S. and DE FERRANTI, D. M. ‘Market Choices and
Optimum City Size’, American Economic Review, LXI(2), May 1971,

. 340-S.
PP DIXIT, A. K. *The Optimum Factory Town’, The Bell Journal of
Economics and Management Science, 4(2), Autumn 1973, pp, 637-S 1.

For details of the problem of Exercise 11.1, see

GASKINS, D. W. Jr., ‘Dynamic Limit Pricing: Optimal Pricing under
Threat of Entry’, Journal of Economic Theory, 3(3), September 1971,
pp. 30622, and comment by N. J. IRELAND, Journal of Economic

Theory, 3{2), October 1972, pp. 303-S.

Models of optimum capital accumulation which use an objective
more general than (I | .2) can be found in

RYDER, H. E. J. and HEAL, G. M., ‘Optimum growth with
intertemporally dependent preferences’, Review of Economic Studies.
XL(), January 1973, pp. |-31.

WAN, H. Y. Jr., ‘Optimal saving programs under intertemporally
dependent preferences’, fnrernational Economic Review, | [{2),
October 1970, pp. §21—47.

Concluding Comments

I hopethat | have provided sufficient theory and applicationsin this
book to give the generd economic theoris a good working understanding
of optimization methods. However, readers who wish to specialize have
large areas for further reading and thought available. The books by
Malinvaud, Heal, Intriligator and Luenberger cited frequently in
individual chapter reading listswill provide an excellent start. | have
listed them here roughly in increasing order of mathematical
sophistication.

One large and important area concerning optimization that | have
omitted completely isthat of decision-making under uncertainty. As
with time, optimization under uncertainty does not introduce radically
new badc theories but the dructure that aises when the vaious
functions are expected values under spme probability distributions leads
to richer results. A useful treatment even at avery cursory level would
add far too much to the bulk of this book. | shall therefore merely
uggest some readings Thee ae

ARROW, K. J. Essays in the Theory OF Risk-bearing, North-Holland,
Amsterdam, 1970, especialy chs. 1 and 3,

DE GROOT, M. H. Optimal Statistical Decisions, McGraw-Hill, New
York, 1970.
and aforthcoming collection of articles edited by P. A. DIAMOND and
M. ROTHSCHILD.
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