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Introduction

An algebraic number field is a finite extension of Q; an algebraic number is an
element of an algebraic number field. Algebraic number theory studies the arithmetic
of algebraic number fields — the ring of integers in the number field, the ideals in
the ring of integers, the units, the extent to which the ring of integers fails to be
have unique factorization, and so on. One important tool for this is “localization”, in
which we complete the number field relative to a metric attached to a prime ideal of
the number field. The completed field is called a local field — its arithmetic is much
simpler than that of the number field, and sometimes we can answer questions by
first solving them locally, that is, in the local fields.

An abelian extension of a field is a Galois extension of the field with abelian Galois
group. Global class field theory classifies the abelian extensions of a number field K
in terms of the arithmetic of K; local class field theory does the same for local fields.

This course is concerned with algebraic number theory. Its sequel is on class field
theory (see my notes CFT).

I now give a quick sketch of what the course will cover. The fundamental theorem of
arithmetic says that integers can be uniquely factored into products of prime powers:
an m �= 0 in Z can be written in the form,

m = upr11 · · · prn
n , u = ±1, pi prime number, ri > 0,

and this factorization is essentially unique.

Consider more generally an integral domain A. An element a ∈ A is said to be a
unit if it has an inverse in A; I write A× for the multiplicative group of units in A.
An element p of A is said to prime if it is neither zero nor a unit, and if

p|ab⇒ p|a or p|b.
If A is a principal ideal domain, then every nonzero nonunit element a of A can be
written in the form,

a = pr11 · · · prn
n , pi prime element, ri > 0,

and the factorization is unique up to order and replacing each pi with an associate,
i.e., with its product with a unit.

Our first task will be to discover to what extent unique factorization holds, or fails
to hold, in number fields. Three problems present themselves. First, factorization in
a field only makes sense with respect to a subring, and so we must define the “ring
of integers” OK in our number field K. Secondly, since unique factorization will in
general fail, we shall need to find a way of measuring by how much it fails. Finally,
since factorization is only considered up to units, in order to fully understand the
arithmetic of K, we need to understand the structure of the group of units UK in OK.
Resolving these three problems will occupy the first five sections of the course.

The ring of integers. Let K be an algebraic number field. Because K is of finite
degree over Q, every element α of K is a root of a monic polynomial

f(X) = Xn + a1X
n−1 + · · ·+ a0, ai ∈ Q.
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If α is a root of a monic polynomial with integer coefficients, then α is called an
algebraic integer of K. We shall see that the algebraic integers form a subring OK of
K.

The criterion as stated is difficult to apply. We shall see that to prove that α is
an algebraic integer, it suffices to check that its minimum polynomial (relative to Q)
has integer coefficients.

Consider for example the field K = Q[
√

d], where d is a square-free integer. The

minimum polynomial of α = a+ b
√
d, b �= 0, a, b ∈ Q, is

(X − (a + b
√
d))(X − (a− b

√
d)) = X2 − 2aX + (a2 − b2d).

Thus α is an algebraic integer if and only if

2a ∈ Z, a2 − b2d ∈ Z.

From this it follows easily that

OK = Z[
√
d] = {m+ n

√
d | m,n ∈ Z} if d ≡ 2, 3 mod 4,

and

OK = {m+ n
1 +
√
d

2
| m,n ∈ Z} if d ≡ 1 mod 4,

i.e., OK is the set of sums m′ + n′
√
d with m′ and n′ either both integers or both

half-integers.

Let ζd be a primitive dth root of 1, for example, ζd = exp(2πi/d), and letK = Q[ζd].
Then we shall see that

OK = Z[ζd] = {
∑

miζ
i
d | mi ∈ Z}.

as one would hope.

Factorization. An element p of an integral domain A is said to be irreducible if it
is neither zero nor a unit, and can’t be written as a product of two nonunits. For
example, a prime element is (obviously) irreducible. A ring A is a unique factorization
domain if every nonzero nonunit element of A can be expressed as a product of
irreducible elements in essentially one way. Is OK a unique factorization domain?
No, not in general!

In fact, we shall see that each element of OK can be written as a product of
irreducible elements (this is true for all Noetherian rings) — it is the uniqueness that
fails.

For example, in Z[
√−5] we have

6 = 2 · 3 = (1 +
√−5)(1−√−5).

To see that 2, 3, 1+
√−5, 1−√−5 are irreducible, and no two are associates, we use

the norm map

Nm : Q[
√−5]→ Q, a+ b

√−5 �→ a2 + 5b2.

For α ∈ OK, we have

Nm(α) = 1 ⇐⇒ αᾱ = 1 ⇐⇒ α is a unit. (*)
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If 1+
√−5 = αβ, then Nm(αβ) = Nm(1+

√−5) = 6. Thus Nm(α) = 1, 2, 3, or 6. In
the first case, α is a unit, the second and third cases don’t occur, and in the fourth
case β is a unit. A similar argument shows that 2, 3, and 1 − √−5 are irreducible.
Next note that (*) implies that associates have the same norm, and so it remains to
show that 1 +

√−5 and 1−√−5 are not associates, but

1 +
√−5 = (a + b

√−5)(1−√−5)
has no solution with a, b ∈ Z.

Why does unique factorization fail inOK? The problem is that irreducible elements
in OK need not be prime. In the above example, 1 +

√−5 divides 2 · 3 but it divides
neither 2 nor 3. In fact, in an integral domain in which factorizations exist (e.g. a
Noetherian ring), factorization is unique if all irreducible elements are prime.

What can we recover? Consider

210 = 6 · 35 = 10 · 21.
If we were naive, we might say this shows factorization is not unique in Z; instead, we
recognize that there is a unique factorization underlying these two decompositions,
namely,

210 = (2 · 3)(5 · 7) = (2 · 5)(3 · 7).
The idea of Kummer and Dedekind was to enlarge the set of “prime numbers” so
that, for example, in Z[

√−5] there is a unique factorization,

6 = (p1 · p2)(p3 · p4) = (p1 · p3)(p2 · p4),
underlying the above factorization; here the pi are “ideal prime factors”.

How do we define “ideal factors”? Clearly, an ideal factor should be character-
ized by the algebraic integers it divides. Moreover divisibility by a should have the
following properties:

a|0; a|a, a|b⇒ a|a± b; a|a⇒ a|ab for all b ∈ OK.
If in addition division by a has the property that

a|ab⇒ a|a or a|b,
then we call a a “prime ideal factor”. Since all we know about an ideal factor is the
set of elements it divides, we may as well identify it with this set. Thus an ideal
factor is a set of elements a ⊂ OK such that

0 ∈ a; a, b ∈ a⇒ a± b ∈ a; a ∈ a⇒ ab ∈ a for all b ∈ OK ;
it is prime if an addition,

ab ∈ a⇒ a ∈ a or b ∈ a.

Many of you will recognize that an ideal factor is what we now call an ideal, and a
prime ideal factor is a prime ideal.

There is an obvious notion of the product of two ideals:

ab|c ⇐⇒ c =
∑

aibi, a|ai, b|bi.
In other words,

ab = {
∑

aibi | ai ∈ a, bi ∈ b}.
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One see easily that this is again an ideal, and that if

a = (a1, ..., am) and b = (b1, ..., bn)

then

a · b = (a1b1, a1b2, ..., aibj, ..., ambn).

With these definitions, one recovers unique factorization: if a �= 0, then there is an
essentially unique factorization:

(a) = pr11 · · · prn
n with each pi a prime ideal.

In the above example,

(6) = (2, 1 +
√−5)(2, 1−√−5)(3, 1 +√−5)(3, 1−√−5).

In fact, I claim

(2, 1 +
√−5)(2, 1−√−5) = (2)

(3, 1 +
√−5)(3, 1−√−5) = (3)

(2, 1 +
√−5)(3, 1 +√−5) = (1 +

√−5)
(2, 1−√−5)(3, 1−√−5) = (1−√−5).

For example, (2, 1 +
√−5)(2, 1 − √−5) = (4, 2 + 2

√−5, 2− 2
√−5, 6). Since every

generator is divisible by 2, (2, 1 +
√−5)(2, 1−√−5) ⊂ (2). Conversely,

2 = 6− 4 ∈ (4, 2 + 2
√−5, 2− 2

√−5, 6)
and so (2, 1 +

√−5)(2, 1 − √−5) = (2). Moreover, the four ideals (2, 1 +
√−5),

(2, 1−√−5), (3, 1 +√−5), and (3, 1−√−5) are all prime. For example

Z[
√−5]/(3, 1−√−5) = Z/(3),

which is an integral domain.

How far is this from what we want, namely, unique factorization of elements? In
other words, how many “ideal” elements have we had to add to our “real” elements
to get unique factorization. In a certain sense, only a finite number: we shall see
that there is a finite set of ideals a1, ..., ah such that every ideal is of the form ai · (a)
for some i and some a ∈ OK . Better, we shall construct a group I of “fractional”
ideals in which the principal fractional ideals (a), a ∈ K×, form a subgroup P of finite
index. The index is called the class number hK of K. We shall see that

hK = 1 ⇐⇒ OK is a principal ideal domain ⇐⇒ OK is a unique factorization domain.

Units. Unlike Z, OK can have an infinite number of units. For example, (1 +
√
2) is

a unit of infinite order in Z[
√
2] :

(1 +
√
2)(−1 +√2) = 1; (1 +

√
2)m �= 1 for m ≥ 1.

In fact Z[
√
2]× = {±(1 +√2)m | m ∈ Z}, and so

Z[
√
2]× ≈ {±1} × {free abelian group of rank 1}.
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In general, we shall show (unit theorem) that the roots of 1 in K form a finite group
µ(K), and that

O×K ≈ µ(K)× Zr (as an abelian group);

moreover, we shall find r.

Applications. I hope to give some applications. One motivation for the development
of algebraic number theory was the attempt to prove Fermat’s last “theorem”, i.e.,
that there are no integer solutions to the equation

Xm + Y m = Zm

when m ≥ 3, except for the obvious solutions.

When m = 3, this can proved by the method of “infinite descent”, i.e., from
one solution, you show that you can construct a smaller solution, which leads to a
contradiction1. The proof makes use of the factorization

Y 3 = Z3 −X3 = (Z −X)(Z2 +XZ +X2),

and it was recognized that a stumbling block to proving the theorem for larger m is
that no such factorization exists into polynomials with integer coefficients. This led
people to look at more general factorizations.

In a very famous incident, the French mathematician Lamé gave a talk at the
Paris Academy in 1847 in which he claimed to prove Fermat’s last theorem using the
following ideas. Let p > 2 be a prime, and suppose x, y, z are nonzero integers such
that

xp + yp = zp.

Write

xp = zp − yp =
∏

(z − ζ iy), 0 ≤ i ≤ p− 1, ζ = e2πi/p.

He then showed how to obtain a smaller solution to the equation, and hence a contra-
diction. Liouville immediately questioned a step in Lamé’s proof in which he assumed
that, in order to show that each factor (z − ζ iy) is a pth power, it suffices to show
that the factors are relatively prime in pairs and their product is a pth power. In
fact, Lamé couldn’t justify his step (Z[ζ] is not always a principal ideal domain), and
Fermat’s last theorem remains unproven to the present day2. However, shortly after
Lamé’s embarrassing lecture, Kummer used his results on the arithmetic of the fields
Q[ζ] to prove Fermat’s last theorem for all “regular primes”.

Another application is to finding Galois groups. The splitting field of a polynomial
f(X) ∈ Q[X] is a Galois extension of Q. In the basic graduate algebra course (see
FT), we learn how to compute the Galois group only when the degree is very small
(e.g., ≤ 3). By using algebraic number theory one can write down an algorithm to
do it for any degree.

1The simplest proof by infinite descent is that showing that
√
2 is irrational.

2Written in 1992.
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A brief history of numbers. Prehistory (??-1600). Basic arithmetic was devel-
oped in many parts of the world thousands of years ago. For example, 3,500 years
ago the Babylonians apparently knew how to construct the solutions to

X2 + Y 2 = Z2.

At least they knew that

(4961)2 + (6480)2 = (8161)2

which could scarcely be found by trial and error. The Chinese remainder theorem was
known in China, thousands of years ago. The Greeks knew the fundamental theorem
of arithmetic, and, of course, Euclid’s algorithm.

Fermat (1601–1665). Apart from his famous last “theorem”, he invented the
method of infinite descent. He also posed the problem of finding integer solutions to
the equation,

X2 − AY 2 = 1, A ∈ Z, (*)

which is essentially the problem3 of finding the units in Z[
√
A]. The English math-

ematicians found an algorithm for solving the problem, but neglected to show that
the algorithm always works.

Euler (1707–1783). Among many other works, he discovered the quadratic reci-
procity law.

Lagrange (1736–1813). He proved that the algorithm for solving (*) always leads
to a solution.

Legendre (1752–1833). He proved the “Hasse principle” for quadratic forms in
three variables over Q: the quadratic form Q(X, Y, Z) has a nontrivial zero in Q if
and only if it has one in R and the congruence Q ≡ 0 mod pn has a nontrivial solution
for all p and n.

Gauss (1777–1855). He found many proofs of the quadratic reciprocity law:(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4, p, q odd primes.

He studied the Gaussian integers Z[i] in order to find a quartic reciprocity law. He
studied the classification of binary quadratic forms over Z which, as we shall see, is
closely related to the problem of finding the class numbers of quadratic fields.

Dirichlet (1805–1859). He proved the following “unit theorem”: let α be a root
of a monic irreducible polynomial f(X) with integer coefficients; suppose that f(X)
has r real roots and 2s complex roots; then Z[α]× is a finitely generated group of
rank r + s− 1. He proved a famous analytic formula for the class number.

Kummer (1810–1893). He made a deep study of the arithmetic of cyclotomic fields,
motivated by a search for higher reciprocity laws. His general result on Fermat’s last
theorem is the most important to date.

Hermite (1822–1901).

Eisenstein (1823–1852).

3The Indian mathematician Bhaskara (12th century) knew general rules for finding solutions to
the equation.
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Kronecker (1823–1891). He developed an alternative to Dedekind’s ideals. He
also had one of the most beautiful ideas in mathematics, the Kronecker liebster Ju-
gendtraum, for generating abelian extensions of number fields.

Riemann (1826–1866). Made the Riemann hypothesis.

Dedekind (1831–1916). He was the first mathematician to formally define fields
— many of the basic theorems on fields in basic graduate algebra courses were proved
by him. He also found the correct general definition of the ring of integers in a
number field, and he proved that ideals factor uniquely into products of prime ideals.
Moreover, he improved the Dirichlet unit theorem.

Weber (1842–1913). Made important progress in class field theory and the Kro-
necker Jugendtraum.

Hensel (1861–1941). He introduced the notion of the p-adic completion of a field.

Hilbert (1862–1943). He wrote a very influential book on algebraic number theory
in 1897, which gave the first systematic account of the theory. Some of his famous
problems were on number theory, and have also been influential.

Takagi (1875–1960). He made very important advances in class field theory.

Hecke (1887–1947). Introduced Hecke L-series.

Artin (1898–1962). He found the “Artin reciprocity law”, which is the main
theorem of class field theory.

Hasse (1898–1979). Proved the Hasse principle for all quadratic forms over number
fields.

Weil (1906–1998). Defined the Weil group, which enabled him to give a common
generalization of Artin L-series and Hecke L-series.

Chevalley (1909–??). The main statements of class field theory are purely al-
gebraic, but all the earlier proofs used analysis. Chevalley gave a purely algebraic
proof.

Iwasawa (1917– ). He introduced an important new approach into the study of
algebraic number theory which was suggested by the theory of curves over finite fields.

Tate (1925– ). With Artin, he gave a complete cohomological treatment of class
field theory. With Lubin he introduced a concrete way of generating abelian exten-
sions of local fields.

Langlands (1936– ). “Langlands’s philosophy” is a vast series of conjectures that,
among other things, contains a nonabelian class field theory.

References. Books on algebraic number theory.

Artin, E., Theory of Algebraic Numbers, Göttingen notes, 1959. Elegant; good exam-
ples; but he adopts a valuation approach rather than the ideal-theoretic approach we
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Borevich, Z. I., and Shafarevich, I. R., Number Theory, Academic Press, 1966.
In addition to basic algebraic number theory, it contains material on diophantine
equations.
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you already know it, but it does contain an enormous amount of material. Covers alge-
braic number theory, and it does class field theory from a highbrow analytic/algebraic
approach.

Marcus, D. Number Fields, Springer, 1977. This is a rather pleasant down-to-earth
introduction to algebraic number theory.

Narkiewicz, W. Algebraic Numbers, Springer, 1990. Encyclopedic coverage of alge-
braic number theory.

Samuel, P., Algebraic Theory of Numbers, Houghton Mifflin, 1970. A very easy treat-
ment, with lots of good examples, but doesn’t go very far.

Serre, J.-P. Corps Locaux, Hermann, 1962 (Translated as Local Fields). A classic. An
excellent account of local fields, cohomology of groups, and local class field theory.
The local class field theory is bit dated (Lubin-Tate groups weren’t known when the
book was written) but this is the best book for the other two topics.

Weil, A., Basic Number Theory, Springer, 1967. Very heavy going, but you will learn
a lot if you manage to read it (covers algebraic number theory and class field theory).
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Weyl, H., Algebraic Theory of Numbers, Princeton Univ. Press, 1940. One of the first
books in English; by one of the great mathematicians of the twentieth century. Id-
iosyncratic — Weyl prefers Kronecker to Dedekind, e.g., see the section “Our disbelief
in ideals”.

Computational Number Theory.

Cohen, H., A Course in Computational Number Theory, Springer, 1993.

Lenstra, H., Algorithms in Algebraic Number Theory, Bull. Amer. Math. Soc., 26,
1992, 211–244.

Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ.
Press, 1989.

The two books provide algorithms for most of the constructions we make in this
course. The first assumes the reader knows number theory, whereas the second de-
velops the whole subject algorithmically. Cohen’s book is the more useful as a sup-
plement to this course, but wasn’t available when these notes were first written, and
so the references are to Pohst and Zassenhaus. While the books are concerned with
more-or-less practical algorithms for fields of small degree and small discriminant,
Lenstra’s article concentrates on finding “good” general algorithms.

Additional references

Atiyah, M.F., and MacDonald, I.G., Introduction to Commutative Algebra, Addison-
Wesley, 1969. I use this as a reference on commutative algebra.

Washington, L., Introduction to Cyclotomic Fields, 1982. This is the best book on
cyclotomic fields.

I will sometimes refer to my other course notes:

GT: Group Theory (594)
FT: Fields and Galois Theory (594)
EC: Elliptic Curves (679).
CFT: Class Field Theory (776).



10

1. Preliminaries from Commutative Algebra

Many results that were first proved for rings of integers in number fields are true
for more general commutative rings, and it is more natural to prove them in that
context.

Basic definitions. All rings will be commutative, and have an identity element (i.e.,
an element 1 such that 1a = a for all a ∈ A), and a homomorphism of rings will map
the identity element to the identity element.

A ring B together with a homomorphism of rings A→ B will be referred to as an
A-algebra. We use this terminology mainly when A is a subring of B. In this case, for
elements β1, ..., βm of B, A[β1, ..., βm] denotes the smallest subring of B containing A
and the βi. It consists of all polynomials in the βi with coefficients in A, i.e., elements
of the form ∑

ai1...imβ
i1
1 ...β

im
m , ai1...im ∈ A.

We also refer to A[β1, ..., βm] as the A-subalgebra of B generated by the βi, and when
B = A[β1, ..., βm] we say that the βi generate B as an A-algebra.

For elements a1, a2, . . . of A, (a1, a2, . . . ) denotes the smallest ideal containing the
ai. It consists of finite sums

∑
ciai, ci ∈ A, and it is called the ideal generated by

a1, a2, . . . . When a and b are ideals in A, we define

a + b = {a + b | a ∈ a, b ∈ b}.
It is again an ideal in A — in fact, it is the smallest ideal containing both a and b. If
a = (a1, ..., am) and b = (b1, ..., bn), then a + b = (a1, ..., am, b1, ..., bn).

Given an ideal a in A, we can form the quotient ring A/a. Let f : A → A/a be
the homomorphism a �→ a+ a; then b �→ f−1(b) defines a one-to-one correspondence
between the ideals of A/a and the ideals of A containing a, and

A/f−1(b)
≈→ (A/a)/b.

A proper ideal a of A is prime if ab ∈ a ⇒ a or b ∈ a. An ideal a is prime if and
only if the quotient ring A/a is an integral domain. An element p of A is said to be
prime if (p) is a prime ideal; equivalently, if p|ab⇒ p|a or p|b.

A proper ideal a in A is maximal if there does not exist an ideal b, a � b � A. An
ideal a is maximal if and only if A/a is a field. Every proper ideal a of A is contained
in a maximal ideal — if A is Noetherian (see below) this is obvious; otherwise the
proof requires Zorn’s lemma. In particular, every nonunit in A is contained in a
maximal ideal.

There are the implications: A is a Euclidean domain ⇒ A is a principal ideal
domain⇒ A is a unique factorization domain (see any good graduate algebra course).

Noetherian rings.

Lemma 1.1. The following conditions on a ring A are equivalent:

(a) Every ideal in A is finitely generated.
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(b) Every ascending chain of ideals

a1 ⊂ a2 ⊂ · · · ⊂ an ⊂ · · ·
becomes stationary, i.e., after a certain point an = an+1 = · · · .

(c) every nonempty set S of ideals in A has a maximal element a, i.e., there is an
ideal a in S that is not contained in any other ideal in S.

Proof. (a)⇒(b): Let a = ∪ai; it is an ideal, and hence is finitely generated, say
a = (a1, . . . , ar). For some n, an will contain all the ai, and so an = an+1 = · · · = a.

(b)⇒(a): Consider an ideal a. If a = (0), then a is generated by the empty set, which
is finite. Otherwise there is an element a1 ∈ a, a1 �= 0. If a = (a1), then a is certainly
finitely generated. If not, there is an element a2 ∈ a such that (a1) � (a1, a2).
Continuing in this way, we obtain a chain of ideals

(a1) � (a1, a2) � · · · .
This process must eventually stop with (a1, . . . , an) = a.

(b)⇒(c): Let a1 ∈ S. If a1 is not a maximal element of S, then there is an a2 ∈ S
such that a1 � a2. If a2 is not maximal, then there is an a3 etc.. From (b) we know
that this process will lead to a maximal element after only finitely many steps.

(c)⇒(b): Apply (c) to the set S = {a1, a2, . . . }.

A ring A satisfying the equivalent conditions of the lemma is said to be Noetherian4

A famous theorem of Hilbert states that k[X1, ..., Xn] is Noetherian. In practice,
almost all the rings that arise naturally in algebraic number theory or algebraic geom-
etry are Noetherian, but not all rings are Noetherian. For example, k[X1, . . . , Xn, . . . ]
is not Noetherian: X1, . . . , Xn is a minimal set of generators for the ideal (X1, . . . , Xn)
in k[X1, . . . , Xn], and X1, . . . , Xn, . . . is a minimal set of generators for the ideal
(X1, . . . , Xn, . . . ) in k[X1, . . . , Xn, . . . ]

Proposition 1.2. Every nonzero nonunit element of a Noetherian integral do-
main can be written as a product of irreducible elements.

Proof. We shall need to use that

(a) ⊂ (b) ⇐⇒ b|a, with equality ⇐⇒ b = a× unit.

The first assertion is obvious. For the second, note that if a = bc and b = ad then
a = bc = adc, and so dc = 1. Hence both c and d are units.

Suppose the statement is false, and choose an element a ∈ A which contradicts
the statement and is such that (a) is maximal among the ideals generated by such
elements (here we use that A is Noetherian). Since a can not be written as a product
of irreducible elements, it is not itself irreducible, and so a = bc with b and c nonunits.
Clearly (b) ⊃ (a), and the ideals can’t be equal for otherwise c would be a unit. From
the maximality of (a), we deduce that b can be written as a product of irreducible
elements, and similarly for c. Thus a is a product of irreducible elements, and we
have a contradiction.

4After Emmy Noether (1882–1935).
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Local rings. A ring A is said to local if it has exactly one maximal ideal m. In this
case, A× = A � m (complement of m in A).

Lemma 1.3 (Nakayama’s lemma). Let A be a local Noetherian ring, and let a be
a proper ideal in A. Let M be a finitely generated A-module, and define

aM = {∑ aimi | ai ∈ a, mi ∈M}.
(a) If aM = M , then M = 0.
(b) If N is a submodule of M such that N + aM = M , then N = M.

Proof. (a) Suppose M �= 0. Among the finite sets of generators for M , choose
one {m1, ..., mk} having the fewest elements. From the hypothesis, we know that we
can write

mk = a1m1 + a2m2 + ...akmk some ai ∈ a.

Then

(1− ak)mk = a1m1 + a2m2 + ... + ak−1mk−1.

As 1−ak is not in m, it is a unit, and so {m1, ..., mk−1} generates M . This contradicts
our choice of {m1, ..., mk}, and so M = 0.

(b) We shall show that a(M/N) = M/N , and then apply the first part of the lemma
to deduce that M/N = 0. Consider m + N , m ∈ M . From the assumption, we can
write

m = n +
∑

aimi, with ai ∈ a, mi ∈M.

Whence

m+N =
∑

aimi +N =
∑

ai(mi +N) (definition of the action of A on M/N),

and so m+N ∈ a(M/N).

The hypothesis that M be finitely generated in the lemma is crucial. For example,
if A is a local integral domain with maximal ideal m �= 0, then mM = M for any field
M containing A but M �= 0.

Rings of fractions. Let A be an integral domain; there is a field K ⊃ A, called the
field of fractions of A, with the property that every c ∈ K can be written in the form
c = ab−1, a, b ∈ A, b �= 0. For example, Q is the field of fractions of Z, and k(X) is
the field of fractions of k[X].

Let A be an integral domain with field of fractions K. A subset S of A is said
to be multiplicative if 0 /∈ S, 1 ∈ S, and S is closed under multiplication. If S is a
multiplicative subset, then we define

S−1A = {a/b ∈ K | b ∈ S}.
It is obviously a subring of K.

Example 1.4. (a) Let t be a nonzero element of A; then

St
df
= {1,t,t2,...}
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is a multiplicative subset of A, and we (sometimes) write At for S
−1
t A. For example,

if d is a nonzero integer,

Zd = {a/dn ∈ Q | a ∈ Z, n ≥ 0}.
It consists of those elements of Q whose denominator divides some power of d.

(b) If p is a prime ideal, then Sp = A � p is a multiplicative set (if neither a nor b
belongs to p, then ab does not belong to p). We write Ap for S

−1
p A. For example,

Z(p) = {m/n ∈ Q | n is not divisible by p}.
Proposition 1.5. Let A be an integral domain, and let S be a multiplicative subset

of A. The map

p �→ S−1p
df
= {a/s | a ∈ p, s ∈ S}

is a bijection from the set of prime ideals in A such that p∩S = ∅ to the set of prime
ideals in S−1A; the inverse map is q �→ q ∩ A.

Proof. It is easy to see that

p a prime ideal disjoint from S ⇒ S−1p is a prime ideal,

q a prime ideal in S−1A⇒ q ∩A is a prime ideal disjoint from S,

and so we only have to show that the two maps are inverse, i.e.,

(S−1p) ∩A = p and S−1(q ∩A) = q.

(S−1p)∩A = p : Clearly (S−1p)∩A ⊃ p. For the reverse inclusion, let a/s ∈ (S−1p)∩A,
a ∈ p, s ∈ S. Consider the equation a

s
· s = a ∈ p. Both a/s and s are in A, and so

at least one of a/s or s is in p (because it is prime); but s /∈ p (by assumption), and
so a/s ∈ p.

S−1(q ∩ A) = q : Clearly S−1(q ∩ A) ⊂ q because q ∩ A ⊂ q and q is an ideal in
S−1A. For the reverse inclusion, let b ∈ q. We can write it b = a/s with a ∈ A, s ∈ S.
Then a = s · (a/s) ∈ q ∩A, and so a/s = (s · (a/s))/s ∈ S−1(q ∩A).

Example 1.6. (a) If p is a prime ideal in A, then Ap is a local ring (because p
contains every prime ideal disjoint from Sp).

(b) We list the prime ideals in some rings:

Z: (2), (3), (5), (7), (11), . . . , (0);

Z2: (3), (5), (7), (11), . . . , (0);

Z(2): (2), (0);

Z42: (5), (11), (13), . . . , (0);

Z/(42): (2), (3), (7).

Note that in general, for t a nonzero element of an integral domain,

{prime ideals of At} ↔ {prime ideals of A not containing t}

{prime ideals of A/(t)} ↔ {prime ideals of A containing t}.
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The Chinese remainder theorem. Recall the classical form of the theorem: let
d1, ..., dn be integers, relatively prime in pairs; then for any integers x1, ..., xn, the
equations

x ≡ xi (mod di)

have a simultaneous solution x ∈ Z; if x is one solution, then the other solutions are
the integers of the form x+md, m ∈ Z, where d =

∏
di.

We want to translate this in terms of ideals. Integers m and n are relatively prime
if and only if (m,n) = Z, i.e., if and only if (m) + (n) = Z. This suggests defining
ideals a and b in a ring A to be relatively prime if a + b = A.

If m1, ..., mk are integers, then ∩(mi) = (m) where m is the least common multiple
of the mi. Thus ∩(mi) ⊃ (

∏
mi) =

∏
(mi). If the mi are relatively prime in pairs,

then m =
∏

mi, and so we have ∩(mi) =
∏
(mi). Note that in general,

a1 · a2 · · · an ⊂ a1 ∩ a2 ∩ ... ∩ an.

These remarks suggest the following statement.

Theorem 1.7. Let a1, ..., an be ideals in a ring A, relatively prime in pairs. Then
for any elements x1, ..., xn of A, the equations

x ≡ xi (mod ai)

have a simultaneous solution x ∈ A; if x is one solution, then the other solutions are
the elements of the form x + a with a ∈ ∩ai; moreover, ∩ai =

∏
ai. In other words,

the natural maps give an exact sequence

0→ a→ A→
n∏
i=1

A/ai → 0

with a = ∩ai =
∏

ai.

Proof. Suppose first that n = 2. As a1 + a2 = A, there are elements ai ∈ ai such
that a1 + a2 = 1. The element x =df a1x2 + a2x1 has the required property.

For each i we can find elements ai ∈ a1 and bi ∈ ai such that

ai + bi = 1, all i ≥ 2.

The product
∏

i≥2(ai + bi) = 1, and lies in a1 +
∏

i≥2 ai, and so

a1 +
∏
i≥2

ai = A.

We can now apply the theorem in the case n = 2 to obtain an element y1 of A such
that

y1 ≡ 1 mod a1, y1 ≡ 0 mod
∏
i≥2

ai.

These conditions imply

y1 ≡ 1 mod a1, y1 ≡ 0 mod aj, all j > 1.

Similarly, there exist elements y2, ..., yn such that

yi ≡ 1 mod ai, yi ≡ 0 mod aj for j �= i.

The element x =
∑

xiyi now satisfies the requirements.
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It remains to prove that ∩ai =
∏

ai. We have already noted that ∩ai ⊃
∏

ai. First
suppose that n = 2, and let a1 + a2 = 1, as before. For c ∈ a1 ∩ a2, we have

c = a1c+ a2c ∈ a1 · a2
which proves that a1∩a2 = a1a2. We complete the proof by induction. This allows us
to assume that

∏
i≥2 ai = ∩i≥2ai. We showed above that a1 and

∏
i≥2 ai are relatively

prime, and so

a1 · (
∏
i≥2

ai) = a1 ∩ (
∏
i≥2

ai) = ∩ai.

The theorem extends to A-modules.

Theorem 1.8. Let a1, ..., an be ideals in A, relatively prime in pairs, and let M be
an A-module. There is an exact sequence:

0→ aM → M →
∏
i

M/aiM → 0

with a =
∏

ai = ∩ai.
This has an elementary proof (see Janusz 1996, p. 9), but I prefer to use tensor

products, which I now review.

Review of tensor products. Let M , N , and P be A-modules. A mapping f : M ×
N → P is said to be A-bilinear if

f(m+m′, n) = f(m,n) + f(m′, n); f(m,n+ n′) = f(m,n) + f(m,n′)

f(am, n) = af(m,n) = f(m, an), a ∈ A, m,m′ ∈M, n, n′ ∈ N,

i.e., if it is linear in each variable. A pair (Q, f) consisting of an A-module Q and
an A-bilinear map f : M × N → Q is called the tensor product of M and N if
any other A-bilinear map f ′ : M × N → P factors uniquely into f ′ = α ◦ f with
α : Q → P A-linear. The tensor product exists, and is unique (up to a unique
isomorphism). We denote it by M ⊗A N , and we write (m,n) �→ m ⊗ n for f .
The pair (M ⊗A N, (m,n) �→ m ⊗ n) is characterized by each of the following two
conditions:

(a) The map M × N → M ⊗A N is A-bilinear, and any other A-bilinear map
M×N → P is of the form (m,n) �→ α(m⊗n) for a unique A-linear map α : M⊗AN →
P ; thus

BilinA(M ×N,P ) = HomA(M ⊗A N,P ).

(b) As an A-module, M ⊗A N generated by the symbols m ⊗ n, m ∈ M , n ∈ N ,
which satisfy the relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n; m⊗ (n+ n′) = m⊗ n +m⊗ n′

am⊗ n = a(m⊗ n) = m⊗ an.

Tensor products commute with direct sums: there is a canonical isomorphism

(⊕iMi)⊗A (⊕jNj)
≈→⊕i,jMi ⊗A Nj, (

∑
mi)⊗ (

∑
nj) �→

∑
mi ⊗ nj .
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It follows that if M and N are free A-modules5 with bases (ei) and (fj) respectively,
then M ⊗A N is a free A-module with basis (ei ⊗ fj). In particular, if V and W are
vector spaces over a field k of dimensions m and n respectively, then V ⊗k W is a
vector space over k of dimension mn.

Let α : M → N and β : M ′ → N ′ be A-linear maps. Then

(m,n) �→ α(m)⊗ β(n) : M ×N →M ′ ⊗A N ′

is A-bilinear, and therefore factors through M × N → M ⊗A N . Thus there is an
A-linear map α⊗ β : M ⊗A N → M ′ ⊗A N ′ such that

(α⊗ β)(m⊗ n) = α(m)⊗ β(n).

Remark 1.9. Let α : km → km and β : kn → kn be two matrices, regarded as a
linear maps. Then α ⊗ β is a linear map kmn → kmn. Its matrix with respect to
the canonical basis is called the Kronecker product of the two matrices. (Kronecker
products of matrices pre-date tensor products by about 70 years.)

Lemma 1.10. If α : M → N and β : M ′ → N ′ are surjective, then so also is

α⊗ β : M ⊗A N →M ′ ⊗A N ′.

Proof. Recall that M ′⊗N ′ is generated as an A-module by the elementsm′⊗n′,
m′ ∈ M ′, n′ ∈ N ′. By assumption m′ = α(m) for some m ∈ M and n′ = β(n) for
some n ∈ N , and so m′ ⊗ n′ = α(m)⊗ β(n) = (α⊗ β)(m⊗ n). Therefore Im(α⊗ β)
contains a set of generators for M ′ ⊗A N ′ and so it is equal to it.

One can also show that if

M ′ → M → M ′′ → 0

is exact, then so also is

M ′ ⊗A P → M ⊗A P → M ′′ ⊗A P → 0.

For example, if we tensor the exact sequence

0→ a→ A→ A/a→ 0

with M , we obtain an exact sequence

a⊗A M →M → (A/a)⊗A M → 0

The image of a⊗M in M is

aM
df
= {∑aimi | ai ∈ a, mi ∈M},

and so we obtain from the exact sequence that

M/aM ∼= (A/aA)⊗A M (1.11).

By way of contrast, if M → N is injective, then M ⊗A P → N ⊗A P need not
be injective. For example, take A = Z, and note that (Z m→ Z) ⊗Z (Z/mZ) equals

Z/mZ m→ Z/mZ, which is the zero map.

5Let M be an A-module. Elements e1, . . . , em form a basis for M if every element of M can
be expressed uniquely as a linear combination of the ei’s with coefficients in A. Then Am → M ,
(a1, . . . , am) �→

∑
aiei, is an isomorphism of A-modules, and M is said to be a free A-module of

rank m.
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Proof of Theorem 1.8. Return to the situation of the theorem. When we ten-
sor the isomorphism

A/a
∼=→ ∏

A/ai

with M , we get an isomorphism

M/aM ∼= (A/a)⊗A M
∼=→ ∏

(A/ai)⊗A M ∼= ∏
M/aiM,

as required.

Extension of scalars. If A→ B is an A-algebra and M is an A-module, then B⊗AM
has a natural structure of a B-module for which

b(b′ ⊗m) = bb′ ⊗m, b, b′ ∈ B, m ∈M.

We say that B ⊗AM is the B-module obtained from M by extension of scalars. The
map m �→ 1 ⊗m : M → B ⊗A M is uniquely determined by the following universal
property: it isA-linear, and for any A-linear map α : M → N fromM into aB-module
N , there is a unique B-linear map α′ : B ⊗A M → N such that α′(1⊗ m) = α(m).
Thus α �→ α′ defines an isomorphism

HomA(M,N)→ HomB(B ⊗A M,N), N a B-module).

For example, A ⊗A M = M . If M is a free A-module with basis e1, . . . , em, then
B ⊗A M is a free B-module with basis 1⊗ e1, . . . , 1⊗ em.

Tensor products of algebras. If f : A→ B and g : A→ C are A-algebras, then B⊗AC
has a natural structure of an A-algebra: the product structure is determined by the
rule

(b⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′

and the map A→ B ⊗A C is a �→ f(a)⊗ 1 = 1⊗ g(a).

For example, there is a canonical isomorphism

a⊗ f �→ af : K ⊗k k[X1, . . . , Xm]→ K[X1, . . . , Xm] (1.12).

Tensor products of fields. We are now able to computeK⊗kΩ ifK is a finite separable
field extension of k and Ω is an arbitrary field extension of k. According to the
primitive element theorem (FT, 5.1), K = k[α] for some α ∈ K. Let f(X) be the
minimum polynomial of α. By definition this means that the map g(X) �→ g(α)
determines an isomorphism

k[X]/(f(X))→ K.

Hence

K ⊗k Ω ∼= (k[X]/(f(X)))⊗ Ω ∼= Ω[X]/(f(X))

by (1.11) and (1.12). Because K is separable over k, f(X) has distinct roots. There-
fore f(X) factors in Ω[X] into monic irreducible polynomials

f(X) = f1(X) · · · fr(X)
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that are relatively prime in pairs. We can apply the Chinese Remainder Theorem to
deduce that

Ω[X]/(f(X)) =

r∏
i=1

Ω[X]/(fi(X)).

Finally, Ω[X]/(fi(X)) is a finite separable field extension of Ω of degree deg fi. Thus
we have proved the following result:

Theorem 1.13. Let K be a finite separable field extension of k, and let Ω be an
arbitrary field extension. Then K⊗kΩ is a product of finite separable field extensions
of Ω,

K ⊗k Ω =
r∏
i=1

Ωi.

If α is a primitive element for K/k, then the image αi of α in Ωi is a primitive
element for Ωi/Ω, and if f(X) and fi(X) are the minimum polynomials for α and αi
respectively, then

f(X) =

r∏
i=1

fi(X).

Example 1.14. Let K = Q[α] with α algebraic over Q. Then

C⊗Q K ∼= C⊗Q (Q[X]/(f(X))) ∼= C[X]/((f(X)) ∼= ∏
C[X]/(X − αi) ≈ Cr.

Here α1, . . . , αr are the conjugates of α in C. The composite of β �→ 1 ⊗ β : K →
C⊗Q K with projection onto the ith factor is

∑
ajα

j �→∑
ajα

j
i .

Finally we note that it is essential to assume in (1.13) that K is separable over k.
If not, there will be an α ∈ K such that αp = a ∈ k but α /∈ k. The ring K ⊗k K
contains an element β = (α ⊗ 1− 1⊗ α) �= 0 such that

βp = a⊗ 1− 1⊗ a = a(1⊗ 1) − a(1⊗ 1) = 0.

Hence K ⊗k K contains a nonzero nilpotent element, and so can’t be a product of
fields.
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2. Rings of Integers

Let A be an integral domain, and let L be a field containing A. An element α of L
is said to be integral over A if it is a root of a monic polynomial with coefficients in
A, i.e., if it satisfies an equation

αn + a1α
n−1 + ... + an = 0, ai ∈ A.

Before proving that the elements of L integral over A form a ring, we need to review
symmetric polynomials.

Symmetric polynomials. A polynomial P (X1, ..., Xr) ∈ A[X1, . . . , Xr] is said to
be symmetric if it is unchanged when its variables are permuted, i.e., if

P (Xσ(1), . . . , Xσ(r)) = P (X1, . . . , Xr), all σ ∈ Symr.

For example

S1 =
∑

Xi, S2 =
∑
i<j

XiXj, . . . , Sr = X1 · · ·Xr,

are all symmetric. These particular polynomials are called the elementary symmetric
polynomials.

Theorem 2.1. (Symmetric function theorem) Let A be a ring. Every symmetric
polynomial P (X1, ..., Xr) in A[X1, ..., Xr] is equal to a polynomial in the symmetric
elementary polynomials with coefficients in A, i.e., P ∈ A[S1, ..., Sr].

Proof. We define an ordering on the monomials in the Xi by requiring that

Xi1
1 Xi2

2 · · ·Xir
r > Xj1

1 Xj2
2 · · ·Xjr

r

if either

i1 + i2 + · · ·+ ir > j1 + j2 + · · · + jr

or equality holds and, for some s,

i1 = j1, . . . , is = js, but is+1 > js+1.

Let Xk1
1 · · ·Xkr

r be the highest monomial occurring in P with a coefficient c �= 0.
Because P is symmetric, it contains all monomials obtained from Xk1

1 · · ·Xkr
r by

permuting the X’s. Hence k1 ≥ k2 ≥ · · · ≥ kr.

Clearly, the highest monomial in Si is X1 · · ·Xi, and it follows easily that the
highest monomial in Sd11 · · ·Sdr

r is

Xd1+d2+···+dr
1 Xd2+···+dr

2 · · ·Xdr
r .

Therefore

P (X1, . . . , Xr)− cSk1−k21 Sk2−k32 · · ·Skr
r < P (X1, . . . , Xr).

We can repeat this argument with the polynomial on the left, and after a finite number
of steps, we will arrive at a representation of P as a polynomial in S1, . . . , Sr.
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Let f(X) = Xn + a1X
n−1 + · · · + an ∈ A[X], and let α1, . . . , αn be the roots of

f(X) in some ring containing A, so that f(X) =
∏
(X − αi) in some larger ring.

Then

a1 = −S1(α1, . . . , αn), a2 = S2(α1, . . . , αn), . . . , an = ±Sn(α1, . . . , αn).

Thus the elementary symmetric polynomials in the roots of f(X) lie in A, and so the
theorem implies that every symmetric polynomial in the roots of f(X) lies in A.

Integral elements.

Theorem 2.2. The set of elements of L integral over A forms a ring.

Proof. I shall give two proofs, first an old-fashioned proof, and later the slick
modern proof. Suppose α and β are integral over A; I’ll prove only that α + β is
integral overA since the same proof works for α−β and αβ. Let Ω be an algebraically
closed field containing L.

We are given that α is a root of a polynomial f(X) = Xm + a1X
m−1 + · · · + am,

ai ∈ A. Write

f(X) =
∏

(X − αi), αi ∈ Ω.

Similarly, β is a root of polynomial g(X) = Xn + b1X
n−1 + · · · + bn, bi ∈ A, and we

write

f(X) =
∏

(X − βi), βi ∈ Ω.

Let γ1, γ2, ..., γmn be the family of numbers of the form αi + βj (or αi − βj, or αiβj).
I claim that h(X) =df

∏
(X − γij) has coefficients in A. This will prove that α+ β is

integral over A because h is monic and h(α+ β) = 0.

The coefficients of h are symmetric in the αi and βj. Let P (α1, ..., αm, β1, ..., βn) be
one of these coefficients, and regard it as a polynomial Q(β1, ..., βn) in the β’s with
coefficients in A[α1, ..., αm]; then its coefficients are symmetric in the αi, and so lie in
A. Thus P (α1, ..., αm, β1, ..., βn) is a symmetric polynomial in the β’s with coefficients
in A — it therefore lies in A, as claimed.

Definition 2.3. The ring of elements of L integral over A is called the integral
closure of A in L. The integral closure of Z in an algebraic number field L is called
the ring of integers OL in L.

Next we want to see that L is the field of fractions of OL; in fact we can prove
more.

Proposition 2.4. Let K be the field of fractions of A, and let L be a field con-
taining K. If α ∈ L is algebraic over K, then there exists a d ∈ A such that dα is
integral over A.

Proof. By assumption, α satisfies an equation

αm + a1α
m−1 + · · ·+ am = 0, ai ∈ K.
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Let d be a common denominator for the ai, so that dai ∈ A for all i, and multiply
through the equation by dm :

dmαm + a1d
mαm−1 + ... + amd

m = 0.

We can rewrite this as

(dα)m + a1d(dα)
m−1 + · · ·+ amd

m = 0.

As a1d, ... , amd
m ∈ A, this shows that dα is integral over A.

Corollary 2.5. Let A be an integral domain with field of fractions K, and let L
be an algebraic extension of K. If B is the integral closure of A in L, then L is the
field of fractions of B.

Proof. The proposition shows that every α ∈ L can be written α = β/d with
β ∈ B, d ∈ A.

Definition 2.6. A ring A is integrally closed if it is its own integral closure in its
field of fractions K, i.e., if

α ∈ K, α integral over A⇒ α ∈ A.

Proposition 2.7. A unique factorization domain (e.g. a principal ideal domain)
is integrally closed.

Proof. Suppose a/b, a, b ∈ A, is an element of the field of fractions of A that is
integral over A. If b is a unit, then a/b ∈ A. Otherwise we may suppose that there
is an irreducible element p of A dividing b but not a. As a/b is integral over A, it
satisfies an equation

(a/b)n + a1(a/b)
n−1 + · · ·+ an = 0, ai ∈ A.

On multiplying through by bn, we obtain the equation

an + a1a
n−1b+ ... + anb

n = 0.

The element p then divides every term on the left except an, and hence must divide
an. Since it doesn’t divide a, this is a contradiction.

Hence it is easy to get examples where unique factorization fails — take any ring
which is not integrally closed, for example, Z[

√
5].

Example 2.8. (a) The rings Z and Z[i] are integrally closed — both are principal
ideal domains.

(b) Let k be a field. I claim that the integral closure of k[S1, ..., Sm] in
k(X1, . . . , Xm) is k[X1, . . . , Xm] (here the Si are the elementary symmetric poly-
nomials).

Let f ∈ k(X1, . . . , Xm) be integral over k[S1, . . . , Sm]. Then f is integral over
k[X1, . . . , Xm], which is a unique factorization domain, and hence is integrally closed
in its field of fractions. Thus f ∈ k[X1, . . . , Xm].

Conversely, let f ∈ k[X1, . . . , Xm]. Then f is a root of the monic polynomial∏
σ∈Symm

(T − f(Xσ(1), . . . , Xσ(m))).
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The coefficients of this polynomial are symmetric polynomials in theXi, and therefore
(see 2.1) lie in k[S1, . . . , Sr].

Proposition 2.9. Let K be the field of fractions of A, and let L be an extension
of K of finite degree. Assume A is integrally closed. An element α of L is integral
over A if and only if its minimum polynomial over K has coefficients in A.

Proof. Assume α is integral over A, so that

αm + a1α
m−1 + ... + am = 0, some ai ∈ A.

Let α′ be a conjugate of α, i.e., a root of the minimum polynomial of α over K. Then
there is an K-isomorphism

σ : K[α]→ K[α′], σ(α) = α′;

see6 FT. On applying σ to the above equation we obtain the equation

α′m + a1α
′m−1 + ... + am = 0,

which shows that α′ is integral over A. Hence all the conjugates of α are integral over
A, and it follows from (2.2) that the coefficients of f(X) are integral over A. They
lie in K, and A is integrally closed, and so they lie in A. This proves the “only if”
part of the statement, and the “if” part is obvious.

Remark 2.10. As we noted in the introduction, this makes it easy to compute
some rings of integers. For example, an element α ∈ Q[

√
d] is integral over Z if and

only if its trace and norm both lie in Z.

Proposition 2.11. Let L be a field containing A. An element α of L is integral
over A if and only if there is a nonzero finitely generated A-submodule of L such that
αM ⊂M (in fact, we can take M = A[α], the A-subalgebra generated by α).

Proof. ⇒: Suppose

αn + a1α
n−1 + ... + an = 0, ai ∈ A.

Then the A-submodule M of L generated by 1, α, ..., αn−1 has the property that
αM ⊂M .

⇐=: We shall need to apply Cramer’s rule. As usually stated (in linear algebra
courses) this says that, if

m∑
j=1

cijxj = di, i = 1, . . . , m,

then

xj = det(Cj)/det(C)

where C = (cij) and Cj is obtained from C by replacing the elements of the jth column
with the dis. When one restates the equation as

det(C) · xj = det(Cj)

6If f(X) is the minimum polynomial of α, hence also of α′, over K, then the map h(X) �→
h(α) : K[X] → K[α] induces an isomorphism τ : K[X]/(f(X)) → K[α]. Similarly, h(X) �→
h(α′) : K[X]→ K[α′] induces an isomorphism τ ′ : K[X]/(f(X)) → K[α′], and we set σ = τ ′ ◦ τ−1.
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it becomes true over any ring (whether or not det(C) is invertible). The proof is
elementary—essentially it is what you wind up with when you eliminate the other
variables (try it for m = 2). Alternatively, expand out

detCj =

∣∣∣∣∣∣
c11 . . . −∑

c1jxj . . . c1m
· · · · · ·

cm1 . . . −∑
cmjxj . . . cmm

∣∣∣∣∣∣
using standard properties of determinants.

Now let M be a nonzero A-module in L such that αM ⊂M , and let v1, . . . , vn be
a finite set of generators for M . Then, for each i,

αvi =
∑

aijvj, some aij ∈ A.

We can rewrite this system of equations as

(α− a11)v1 − a12v2 − a13v3 − · · · = 0

−a21v1 + (α− a22)v2 − a23v3 − · · · = 0

· · · = 0.

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s rule tells
us that det(C) · vi = 0 for all i. Since at least one vi is nonzero and we are working
inside the field L, this implies that det(C) = 0. On expanding out the determinant,
we obtain an equation

αn + c1α
n−1 + c2α

n−2 + · · · + cn = 0, ci ∈ A.

We now give a second proof that if A is a subring of a field L and B is the set of
elements of L that are integral over A, then B is a ring. Let α and β be two elements
of L integral over A, and let M and N be finitely generated A-modules in L such
that αM ⊂ M and βN ⊂ N . Define

MN = {
∑

mini | mi ∈M, ni ∈ N}.
Then:

(a) MN is an A-submodule of L (easy);
(b) it is finitely generated — if {e1, . . . , em} generates M and {f1, . . . , fn} generates

N , then {e1f1, . . . , eifj, . . . , emfn} generates MN ;
(c) it is stable under multiplication by αβ and by α± β.

We can now apply (2.11) to deduce that αβ and α± β are integral over A.

Proposition 2.12. If B is integral over A and finitely generated as an A-algebra,
then it is finitely generated as an A-module.

Proof. First consider the case that B is generated as an A-algebra by a single
element, say B = A[β]. By assumption

βn + a1β
n−1 + · · ·+ an = 0, some ai ∈ A.

Every element of B is a finite sum

c0 + c1β + c2β
2 + · · ·+ cNβ

N ,
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and we can exploit the preceding equality to replace βn (successively) with a linear
combination of lower powers of β. Thus every element of B is of the form

c0 + c1β + c2β
2 + · · ·+ cn−1βn−1,

i.e., 1, β, β2, . . . , βn−1 generate B as an A-module. In order to pass to the general
case, we need a lemma.

Lemma 2.13. Let A ⊂ B ⊂ C be rings. If B is finitely generated as an A-module,
and C is finitely generated as a B-module, then C is finitely generated as an A-module.

Proof. If {β1, ..., βm} is a set of generators for B as an A-module, and {γ1, ..., γn}
is a set of generators for C as a B-module, then {βiγj} is a set of generators for C as
an A-module.

We now complete the proof of (2.12). Let β1, . . . , βm generate B as an A-algebra,
and consider

A ⊂ A[β1] ⊂ A[β1, β2] ⊂ · · · ⊂ A[β1, ..., βm] = B.

We saw above that A[β1] is finitely generated as an A-module. Since A[β1, β2] =
A[β1][β2], and β2 is integral over A[β1] (because it is over A), the same observation
shows that A[β1, β2] is finitely generated as a A[β1]-module. Now the lemma shows
that A[β1, β2] is finitely generated as an A-module. Continuing in this fashion, we
find that B is finitely generated as an A-module.

Proposition 2.14. Consider integral domains A ⊂ B ⊂ C; if B is integral over
A, and C is integral over B, then C is integral over A.

Proof. Let γ ∈ C ; it satisfies an equation

γn + b1γ
n−1 + · · · + bn = 0, bi ∈ B.

Let B ′ = A[b1, ..., bn]. Then B ′ is finitely generated as an A-module (by the last
proposition), and γ is integral over B ′ (by our choice of the bi), and so B ′[γ] is finitely
generated as an A-module. Since γB ′[γ] ⊂ B ′[γ], Proposition 2.11 shows that γ is
integral over A.

Corollary 2.15. The integral closure of A in an algebraic extension L of its field
of fractions is integrally closed.

Proof. Let B be the integral closure of A in L. We know from (2.5) that L is the
field of fractions of B. If γ ∈ L is integral over B, then the proposition shows that it
is integral over A, and so lies in B.

Remark 2.16. In particular, the ring of integers in a number field is integrally
closed. Clearly we want this, since we want our ring of integers to have the best
chance of being a unique factorization domain (see 2.7).

Example 2.17. Let k be a finite field, and let K be a finite extension of k(X).
Let OK be the integral closure of k[X] in K. The arithmetic of OK is very similar to
that of the ring of integers in a number field.
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Review of bases of A-modules. Let M be an A-module. Recall that a set of
elements e1, ..., en is a basis for M if

(a)
∑

aiei = 0, ai ∈ A⇒ all ai = 0, and
(b) every element x of M can be expressed in the form x =

∑
aiei, ai ∈ A.

Let {e1, ..., en} be a basis for M , and let {f1, ..., fn} be a second set of n elements
in M . Then we can write fi =

∑
aijej, aij ∈ A, and fi is also a basis if and only if the

matrix (aij) is invertible in the ring Mn(A) of n × n matrices with coefficients in A
(this is obvious). Moreover (aij) is invertible in Mn(A) if and only if its determinant
is a unit in A, and in this case, the inverse is given by the usual formula:

(aij)
−1 = adj(aij) · det(aij)−1.

In the case that A = Z, the index of N =df Zf1 + Zf2 + · · ·+ Zfn in M is | det(aij)|
(assuming this is nonzero). To prove this, recall from basic graduate algebra that
we can choose bases {e′i} for M and {f ′i} for N such that f ′i = mie

′
i, mi ∈ Z. If

(e′i) = U ·(ei) and (f ′i) = V ·(fi), then (fi) = V −1DU(ei) whereD = diag(m1, . . . , mn),
and

det(V −1DU) = det(V −1) · det(D) · det(U) = ±
∏

mi = ±(M : N).

Review of norms and traces. Let A ⊂ B be rings, and assume that B is a free
A-module of rank n. Then any β ∈ B defines an A-linear map

x �→ βx : B → B,

and the trace and determinant of this map are well-defined. We call them the trace
TrB/A β and norm NmB/A β of β in the extension B/A. Thus if {e1, ..., en} is a basis
for B over A, and βei =

∑
aijej, then TrB/A(β) =

∑
aii and NmB/A(β) = det(aij).

When B ⊃ A is a finite field extension, this agrees with the usual definition. The
following hold:

Tr(β + β ′) = Tr(β) + Tr(β ′); Tr(aβ) = aTr(β); Tr(a) = na (a ∈ A);

Nm(ββ ′) = Nm(β) · Nm(β ′); Nm(a) = an (a ∈ A).

Proposition 2.18. Let L/K be an extension of fields of degree n, and let β ∈ L.
Let f(X) be the minimum polynomial of β over K and let β1 = β, β2, ... , βm be the
roots of f(X). Then

TrL/K β = r(β1 + · · ·+ βm), NmL/K β = (β1 · · · βm)r
where r = [L : K[β]] = n/m.

Proof. Suppose first that L = K[β], and compute the matrix of x �→ βx relative
to the basis {1, β, . . . , βn−1}—one sees easily that it has trace

∑
βi and determi-

nant
∏

βi. For the general case, use the transitivity of norms and traces (see FT,
Proposition 5.37).

Corollary 2.19. Assume L is separable of degree n over K, and let {σ1, ..., σn}
be the set of distinct K-homomorphisms L ↪→ Ω where Ω is some big Galois extension
of K (e.g., the Galois closure of L over K). Then

TrL/K β = σ1β + · · ·+ σnβ, NmL/K β = σ1β · · · σnβ.
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Proof. Each βi occurs exactly r times in the family {σiβ}—see FT §5.9.
Corollary 2.20. Let A be an integrally closed integral domain, and let L be a

finite extension of the field of fractions K of A; if β ∈ L is integral over A, then
TrL/K β and NmL/K β are in A.

Proof. We know that if β is integral, then so also is each of its conjugates. Al-
ternatively, apply 2.9.

Review of bilinear forms. Let V be a finite-dimensional vector space over a field
K. A bilinear form on V is a map

ψ : V × V → K

such that x �→ ψ(x, v) and x �→ ψ(v, x) are both linear maps V → K for all v ∈ V .
The discriminant of a symmetric bilinear form relative to a basis {e1, ..., em} of V is
det(ψ(ei, ej)). If {f1, ..., fm} is a set of elements of V , and fj =

∑
ajiei, then

ψ(fk, fl) =
∑
i,j

ψ(akiei, aljej) =
∑
i,j

aki · ψ(ei, ej) · alj,

and so

(ψ(fk, fl)) = (aki) · (ψ(ei, ej)) · (ajl)tr

(equality of m×m matrices). Hence

det(ψ(fi, fj)) = det(aij)
2 · det(ψ(ei, ej)) (2.21)

The form ψ is said to be nondegenerate if it satisfies each of the following equivalent
conditions:

(a) ψ has a nonzero discriminant relative to one (hence every) basis of V ;
(b) the left kernel {v ∈ V | ψ(v, x) = 0 for all x ∈ V } is zero;
(c) the right kernel of ψ is zero.

Thus if ψ is nondegenerate, the map v �→ (x �→ ψ(v, x)) from V onto the dual vector

space V ∨ df
= Hom(V,K) is an isomorphism. Let {e1, ..., em} be a basis for V , and let

f1, ..., fm be the dual basis in V ∨, i.e., fi(ej) = δij (Kronecker delta). We can use the
isomorphism V → V ∨ given by a nondegenerate form ψ to transfer {f1, ..., fm} to a
basis {e′1, ..., e′m} of V ; it has the property that

ψ(e′i, ej) = δij.

For example, suppose {e1, ..., em} is a basis such that (ψ(ei, ej)) is a diagonal matrix
— the Gram-Schmidt process always allows us to find such a basis — then e′i =
ei/ψ(ei, ei).

Discriminants. If L is a finite extension of K (L and K fields), then

(α, β) �→ TrL/K(αβ) : L× L→ K

is a symmetric bilinear form on L (regarded as a vector space over K), and the
discriminant of this form (relative to any basis for L as a K-vector space) is called
the discriminant of L/K.
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More generally, letB ⊃ A be rings, and assume B is free of rank m as an A-module.
Let β1, ..., βm be elements of B. We define their discriminant to be

D(β1, ..., βm) = det(TrB/A(βiβj)).

Lemma 2.22. If γj =
∑

ajiβi, aij ∈ A, then

D(γ1, ..., γm) = det(aij)
2 ·D(β1, ..., βm).

Proof. See the proof of (2.21).

If the β’s and γ’s both form a basis for B over A, then det(aij) is a unit (see p.
26). Thus the discriminant D(β1, ..., βm) of a basis {β1, ..., βm} of B is well-defined
up to multiplication by the square of a unit in A. In particular, the ideal in A that it
generates is independent of the choice of the basis. This ideal, or D(β1, ..., βm) itself
regarded as an element of A/A×2, is called the discriminant disc(B/A) of B over A.

For example, when we have a finite extension of fields L/K, disc(L/K) is an element
of K, well-defined up to multiplication by a nonzero square in K.

When A = Z, disc(B/A) is a well-defined integer, because 1 is the only square of a
unit in Z.

Warning: We shall see shortly that, when K is a number field of degree m over
Q, the ring of integers OK in K is free of rank m over Z, and so disc(OK/Z) is a
well-defined integer. Sometimes this is loosely referred to as the discriminant of K/Q
— strictly speaking, disc(K/Q) is the element of Q×/Q×2 represented by the integer
disc(OK/Z).

Proposition 2.23. Let A ⊂ B be integral domains and assume that B is a free
A-module of rank m and that disc(B/A) �= 0. Elements γ1, ..., γm form a basis for B
as an A-module if and only if

(D(γ1, ..., γm)) = (disc(B/A)) (as ideals in A).

Proof. Let {β1, ..., βm} be a basis for B as an A-module, and let γ1, ..., γm be
any elements of B. Write γj =

∑
ajiβi, aji ∈ A. Then D(γ1, ..., γm) = det(aij)

2 ·
D(β1, ..., βm) and as we noted in the subsection “Review of bases of A-modules”,
{γ1, . . . , γm} is a basis if and only if det(aij) is a unit.

Remark 2.24. Take A = Z in (2.23). Elements γ1, γ2, . . . , γm generate a submod-
ule N of finite index in B if and only if D(γ1, . . . , γm) �= 0, in which case

D(γ1, . . . , γm) = (B : N)2 · disc(B/Z).

To prove this, choose a basis β1, . . . , βm for B as a Z-module, and write γj =
∑

ajiβi.
Then both sides equal det(aij)

2 ·D(β1, . . . , βm).

Proposition 2.25. Let L be a finite separable extension of the field K of degree
m, and let σ1, ..., σm be the distinct K-homomorphisms of L into some large Galois
extension Ω of L. Then, for any basis β1, ..., βm of L over K,

D(β1, ..., βm) = det(σiβj)
2 �= 0.
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Proof. By direct calculation, we have

D(β1, . . . , βm)
df
= det(Tr(βiβj))
= det(

∑
k σk(βiβj)) (by 2.19)

= det(
∑

k σk(βi) · σk(βj))
= det(σk(βi)) · det(σk(βj))
= det(σk(βi))

2.

Suppose that det(σiβj) = 0. Then there exist c1, ..., cm ∈ Ω such that∑
i

ciσi(βj) = 0 all j.

By linearity, it follows that
∑

i ciσi(β) = 0 for all β ∈ L, but this contradicts the
following result. (Apply it with G = L×.)

Lemma 2.26 (Dedekind’s Lemma). Let G be a group and Ω a field, and let
σ1, ..., σm be distinct homomorphisms G → Ω×; then σ1, ..., σm are linearly indepen-
dent over Ω, i.e., there do not exist ci ∈ Ω such that x �→ ∑

i ciσi(x) : G → Ω is the
zero map.

Proof. See FT, Theorem 5.13 (the proof is easy and elementary).

Corollary 2.27. Let K be the field of fractions of A, and let L be a finite sepa-
rable extension of K of degree m. If the integral closure B of A in L is free of rank
m over A, then disc(B/A) �= 0.

Proof. If {β1, ..., βm} is a basis for B as an A-module, then it follows easily from
(2.4) that it is also a basis for L as a K-vector space. Hence disc(B/A) represents
disc(L/K).

Remark 2.28. (a) The proposition shows that the K-bilinear pairing

(β, β ′) �→ Tr(β · β ′) : L× L→ K

is nondegenerate (its discriminant is disc(L/K)).

(b) The assumption that L/K is separable is essential; in fact, if L/K is not
separable, then disc(L/K) = 0 (see exercises).

Rings of integers are finitely generated. We now show that OK is finitely gen-
erated as a Z-module.

Proposition 2.29. Let A be an integrally closed integral domain with field of
fractions K, and let B the integral closure of A in a separable extension L of K of
degree m. Then B is contained7 in a free A-module of rank m. If A is a principal
ideal domain, then B is itself a free A-module of rank m.

Proof. Let {β1, ..., βm} be a basis for L over K. According to (2.4), there is a
d ∈ A such that d · βi ∈ B for all i. Clearly {d · β1, . . . , d · βm} is still a basis for L
as a vector space over K, and so we can assume that each βi ∈ B. Because the trace

7This implies that B is finitely generated as an A-module — see 3.31 below.
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pairing is nondegenerate, there is a “dual” basis {β ′1, ..., β ′m} of L over K such that
Tr(βi · β ′j) = δij (see the discussion following (2.21)). We shall show that

Aβ1 + Aβ2 + · · · + Aβm ⊂ B ⊂ Aβ ′1 + Aβ ′2 + · · ·+ Aβ ′m. (2.29.1)

Only the second inclusion requires proof. Let β ∈ B. Then β can be written uniquely
as a linear combination β =

∑
bjβ
′
j of the β ′j with coefficients bj ∈ K, and we have

to show that each bj ∈ A. As βi and β are in B, so also is β ·βi, and so Tr(β ·βi) ∈ A
(see 2.20). But

Tr(β · βi) = Tr(
∑
j

bjβ
′
j · βi) =

∑
j

bj Tr(β
′
j · βi) =

∑
j

bj · δij = bi.

Hence bi ∈ A.

If A is a principal ideal domain, then B is free of rank ≤ m as an A-module because
it is contained in a free A-module of rank m (see any basic graduate algebra course),
and it has rank ≥ m because it contains a free A-module of rank m.

Corollary 2.30. The ring of integers in a number field L is the largest subring
that is finitely generated as a Z-module.

Proof. We have just seen that OL is a finitely generated Z-module. Let B be
another subring of L that is finitely generated as a Z-module; then every element of
B is integral over Z (by 2.11), and so B ⊂ OL.

Remark 2.31. (a) The hypothesis that L/K be separable is necessary to con-
clude that B is a finitely generated A-module (we used that the trace pairing was
nondegenerate). However it is still true that the integral closure of k[X] in any finite
extension of k(X) (not necessarily separable) is a finitely generated k[X]-module.

(b) The hypothesis that A be a principal ideal domain is necessary to conclude
from (2.29.1) that B is a free A-module — there do exist examples of number fields
L/K such that OL is not a free OK-module.

(c) Here is an example of a finitely generated module that is not free. Let A =
Z[
√−5], and consider the A-modules

(2) ⊂ (2, 1 +
√−5) ⊂ Z[

√−5].
Both (2) and Z[

√−5] are free Z[
√−5]-modules of rank 1, but (2, 1+

√−5) is not a free
Z[
√−5]-module of rank 1, because it is not a principal ideal (see the Introduction).

In fact, it is not a free module of any rank.

When K is a number field, a basis α1, ..., αm for OK as a Z-module is called an
integral basis for K.

Remark 2.32. We retain the notations of the proposition and its proof.

(a) Let C =
∑

Aβi ⊂ B, with βi a basis for L over K. Define

C∗ = {β ∈ L | Tr(βγ) ∈ A for all γ ∈ C}.
By linearity,

β ∈ C∗ ⇐⇒ Tr(ββi) ∈ A for i = 1, ..., m,
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and it follows that

C∗ =
∑

Aβ ′i.

Thus we have:

C =
∑

Aβi ⊂ B ⊂
∑

Aβ ′i = C∗.

(b) Write L = Q[β] with β ∈ B, and let f(X) be the minimum polynomial of β.
Let C = Z[β] = Z1 + Zβ + · · ·+ Zβm−1. We want to find C∗.

One can show (see Fröhlich and Taylor 1991, p. 128) that

Tr(βi/f ′(β)) = 0 if 0 ≤ i ≤ m− 2, and Tr(βm−1/f ′(β)) = 1

(these formulas go back to Euler). It follows from this that

det(Tr(βi · βj/f ′(β)) = (−1)m
(the only term contributing to the determinant is the product of the elements on the
other diagonal). If β ′1, ..., β

′
m is the dual basis to 1, β, . . . , βm−1, so that Tr(βi · β ′j) =

δij, then

det(Tr(βi · β ′j)) = 1.

On comparing these formulas, one sees that the matrix relating the family
{1/f ′(β), ..., βm−1/f ′(β)} to the basis β ′1, ..., β

′
m has determinant ±1, and so it

is invertible in Mn(A). Thus we see that C∗ is a free A-module with basis
{1/f ′(β), . . . , βm−1/f ′(β)}:

C = A[β] ⊂ B ⊂ f ′(β)−1A[β] = C∗.

Finding the ring of integers. We now assume K to be a field of characteristic
zero.

Proposition 2.33. Let L = K[β] some β, and let f(X) be the minimum polyno-
mial of β over K. Suppose that f(X) factors into

∏
(X − βi) over the Galois closure

of L. Then

D(1, β, β2, . . . , βm−1) =
∏

1≤i<j≤m
(βi − βj)

2 = (−1)m(m−1)/2 · NmL/K(f
′(β)).

Proof. We have

D(1, β, β2, . . . , βm−1) = det(σi(β
j))2 (2.25)

= det(βji )
2

= (
∏

i<j(βi − βj))
2 (Vandermonde)

= (−1)m(m−1)/2 ·∏i(
∏

j �=i(βi − βj))

= (−1)m(m−1)/2 ·∏j f
′(βj)

= (−1)m(m−1)/2Nm(f ′(β)).

The number in (2.33) is called the discriminant of f(X). It can also be defined as
the resultant of f(X) and f ′(X). The discriminant of f lies in K, and it is zero if and
only if f has a repeated root. It is a symmetric polynomial in the βi with coefficients
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in A, and so (by 2.1) it can be expressed in terms of the coefficients of f(X), but the
formulas are quite complicated.

Example 2.34. We compute the discriminant of

f(X) = Xn + aX + b, a, b ∈ K,

assumed to be irreducible and separable. Let β be a root of f(X), and let γ = f ′(β) =
nβn−1 + a. We compute Nm(γ). On multiplying the equation

βn + aβ + b = 0

by nβ−1 and rearranging, we obtain the equation

nβn−1 = −na− nbβ−1.

Hence

γ = nβn−1 + a = −(n− 1)a− nbβ−1.

Solving for β gives

β =
−nb

γ + (n− 1)a
,

from which it is clear that K[β] = K[γ], and so the minimum polynomial of γ over
K has degree n also. If we write

f(
−nb

X + (n− 1)a
) = P (X)/Q(X),

then P (γ)/Q(γ) = f(β) = 0 and so P (γ) = 0. Since

P (X) = (X + (n− 1)a)n − na(X + (n− 1)a)n−1 + (−1)nnnbn−1
is monic of degree n, it must be the minimum polynomial of γ. Therefore Nm(γ) is
(−1)n times the constant term of this polynomial, and so we find that

Nm(γ) = nnbn−1 + (−1)n−1(n − 1)n−1an.

Finally we obtain the formula:

disc(Xn + aX + b) = (−1)n(n−1)/2(nnbn−1 + (−1)n−1(n− 1)n−1an)

For example:

disc(X2 + aX + b) = −4b+ a2,

disc(X3 + aX + b) = −27b2 − 4a3,

disc(X4 + aX + b) = 256b3 − 27a4,

disc(X5 + aX + b) = 55b4 + 44a5.

For any polynomials more complicated than the above, use Maple (or Mathemat-
ica). For example, after starting Maple, type:

discrim(X^3 + a*X^2 + b*X + c, X);

Don’t forget the semicolon at the end! The program displays:

−27c2 + 18cab+ a2b2 − 4a3c− 4b3.

Since it is awkward to write a polynomial in the notation Maple understands, in
future I’ll use normal notation and leave you to insert asterisks and hats. To compute
discriminants with Mathematica, you compute the resultant of f(X) and f ′(X).
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The general strategy for finding the ring of integers of K is to write K = Q[α]
with α an integer in K, and compute D(1, α, ..., αm−1). It is an integer, and if it is
square-free, then {1, α, ..., αm−1} is automatically an integral basis, because (see 2.24)

D(1, α, . . . , αm−1) = disc(OK/Z) · (OK : Z[α])2.

If it is not square-free, {1, α, ..., αm−1}may still be a basis, and sometimes one can tell
this by using Stickelberger’s theorem (see 2.39 below) or by looking at how primes
ramify (see later). If {1, α, ..., αm−1} is not an integral basis, one has to look for
algebraic integers not in

∑
Z · αi (we describe an algorithm below).

Example 2.35. Let α be a root of the polynomial X3 − X − 1. Check that
X3 − X − 1 is irreducible8 in Q[X] (if it factored, it would have a root in Q, which
would be an integer dividing 1). We have

D(1, α, α2) = disc(f(X)) = −23,
which contains no square factor, and so Z[α] is the ring of integers in Q[α] — {1, α, α2}
is an integral basis for Q[α].

Example 2.36. Let α be a root of the polynomial X3+X+1. Then D(1, α, α2) =
disc(f(X)) = −31, which contains no square factor, and so again {1, α, α2} is an
integral basis for Q[α].

Example 2.37. This example goes back to Dedekind. Let K = Q[α], where α is
a root of

f(X) = X3 +X2 − 2X + 8.

Maple computes disc(f(X)) = −4 · 503, but Dedekind showed that OK �= Z[β], and
so disc(O/Z) = −503. In fact Dedekind showed that there is no integral basis of the
form 1, β, β2 (Weiss 1963, p. 170; for another example of this type, see Problems 2,
no. 2.)

Example 2.38. Consider the field Q[α] where α is a root of f(X) = X5 −X − 1.
This polynomial is irreducible, because it is irreducible in F3[X]. The discriminant
of f(X) is 2869 = 19 · 151, and so the ring of integers is Z[α].

Proposition 2.39. Let K be an algebraic number field.

(a) The sign of disc(K/Q) is (−1)s, where 2s is the number of homomorphisms
K ↪→ C whose image is not contained in R.

(b) (Stickelberger’s theorem) disc(OK/Z) ≡ 0 or 1 mod 4.

Proof. (a) Let K = Q[α], and let α1 = α, α2, ..., αr be the real conjugates of α
and αr+1, ᾱr+1..., αr+s, ᾱr+s the complex conjugates. One sees easily that

sign(disc(1, ..., αm−1)) = sign(
∏

1≤i≤s
(αr+i−s − ᾱr+i−s))2

(the other terms are either squares of real numbers or occur in conjugate pairs), and
this equals (−1)s.

(b) Recall that disc(OK/Z) = det(σiαj)
2, where α1, ..., αm is an integral basis.

Let P be the sum of the terms in the expansion of det(σiαj) corresponding to even

8In fact, this is the monic irreducible cubic polynomial in Z[X] with the smallest discriminant.



2. Rings of Integers 33

permutations, and −N the sum of the terms corresponding to odd permutations.
Then

disc(OK/Z) = (P −N)2 = (P +N)2 − 4PN.

If τ is an element of the Galois group of the Galois closure of K over Q, then either
τP = P and τN = N , or τP = N and τN = P . In either case, τ fixes P + N and
PN , and so they are rational numbers. As they are integral over Z, they must in fact
be integers, from which it follows that

disc(OK/Z) ≡ (P +N)2 ≡ 0 or 1 mod 4.

Example 2.40. Consider the field Q[
√
m], where m is a square-free integer.

Case m ≡ 2, 3 mod 4. Here D(1,
√
m) = disc(X2−m) = 4m, and so Stickelberger’s

theorem shows that disc(OK/Z) = 4m, and hence {1,√m} is an integral basis.

Case m ≡ 1 mod 4. First verify that (1 +
√
m)/2 is integral. Then D(1, (1 +√

m)/2) = m, and so {1, (1 +√m)/2} is an integral basis.

Remark 2.41. Let K and K ′ be number fields. If K and K ′ are isomorphic, then
[K : Q] = [K ′ : Q] and disc(OK/Z) = disc(OK′/Z), but the converse is not true. For
example, there are four nonisomorphic cubic number fields with discriminant −4027
(4027 is prime) (see later for two of them).

The curious may wonder why we didn’t give an example of a field generated by an
integral element whose minimum polynomial has discriminant ±1. The reason is that
there is no such polynomial of degree > 1 — see the discussion following Theorem
4.8 below.

Algorithms for finding the ring of integers. By an algorithm I mean a procedure
that could (in principle) be put on a computer and is guaranteed to lead to the answer
in a finite number of steps. Suppose the input requires N digits to express it. A good
algorithm is one whose running time is < N c for some c. For example, there is no
known good algorithm for factoring an integer. By a practical algorithm I mean one
that has been (or should have been) put on a computer, and is actually useful.

The following variant of (2.29) is useful. Let A be a principal ideal domain with field
of fractions K, and let B be the integral closure of A in a finite separable extension
L of K of degree m.

Proposition 2.42. Let β1, ..., βm be a basis for L over K consisting of elements
of B, and let d = disc(β1, ..., βm). Then

A · β1 + ...+ A · βm ⊂ B ⊂ A · (β1/d) + ...+ A · (βm/d).
Proof. Let β ∈ B, and write

β = x1β1 + · · ·+ xmβm, xi ∈ K.

Let σ1, . . . , σm be the distinct K-embeddings of L into some large Galois extension
Ω of K. On applying the σ’s to this equation, we obtain a system of linear equations:

σiβ = x1σiβ1 + x2σiβ2 + · · ·+ xmσiβm, i = 1, . . . , m.
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Hence by Cramer’s rule

xi = γi/δ

where δ = det(σiβj) and γi is the determinant of the same matrix, but with the ith
column replaced with (σiβ). From (2.33), we know that δ2 = d. Thus xi = γiδ/d,
and γiδ is an element of K (because it equals dxi) and is integral over A. Therefore
γiδ ∈ A, which completes the proof.

Thus there is the following algorithm for finding the ring of integers in a number
fieldK. WriteK = Q[α] where α is integral over Q. Compute d = disc(1, α, ..., αm−1).
Then

Z[α] ⊂ OK ⊂ d−1Z[α].

Note that (d−1Z[α] : Z[α]) = dm, which is huge but finite. Each coset β + Z[α],
β ∈ d−1Z[α], consists entirely of algebraic integers or contains no algebraic integer.
Find a set of representatives β1, ..., βn for Z[α] in d−1Z[α], and test each to see whether
it is integral over Z (the coefficients of its minimum polynomial will have denominators
bounded by a power of d, and so it is possible to tell whether or not they are integers
by computing them with sufficient accuracy).

Unfortunately this method is not practical. For example, the polynomial

f(X) = X5 + 17X4 + 3X3 + 2X2 +X + 1

is irreducible 9 and has discriminant 285401001. Hence, if α is a root of f(X) and

K = Q[α], then the index of Z[α] in Z1
d
+Zα

d
+ · · ·+Zα4

d
is (285401001)5 . [Actually,

as luck would have it,

285401001 = 3 · 179 · 233 · 2281
is square-free, and so OK = Z[α].]

Note Maple can compute minimal polynomials over Q. For example,

readlib(lattice);

minpoly(1.41421356,3);

gives the output

X2 − 2.

The first line loads the appropriate library, and the second finds the polynomial (not
necessarily monic) with small integer coefficients of degree ≤ 3 that comes closest to
having 1.414 . . . as a root.

9In Maple, type “factor(f(X));” to factor a polynomial over Q. It is obvious that there is an
algorithm for factoring a polynomial f(X) in Q[X]. First divide through by the leading coefficient
to make f(X) monic. Then proceed as in the proof of (2.4) to obtain a monic polynomial with
coefficients in Z. There is a bound on the absolute value of any root of α of the polynomial in
terms of the degree and the coefficients (if |α| is too big, then the remaining terms can’t cancel
the leading term αm). Therefore there is a bound on the absolute values of the coefficients of the
factors of the polynomial, and since these coefficients are integers, it is possible to simply search for
them. Alternatively, note that two polynomials in Z[X] can be distinguished by looking modulo a
sufficiently large prime. Hence factoring polynomials in Q[X] is something that can be safely left to
the computer.
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I now discuss a practical algorithm for finding OK for small degrees and small
discriminants from Pohst and Zassenhaus 1989 (see the additional references at the
end of this section). The next result will help us get an idea of what should be
possible.

Lemma 2.43. Let (A, δ) be Euclidean domain, and let M be an m × m matrix
with coefficients in A. Then it is possible to put M into upper triangular form by
elementary row operations of the following type:

(i) add a multiple of one row to a second;

(ii) swap two rows.

Proof. By definition δ : A→ Z is a function with the following property: for any
two elements a, b ∈ A, a �= 0, there exist elements q and r such that

b = qa + r, with r = 0 or δ(r) < δ(a).

Apply an operation of type (ii) so that the element of the first column with the
minimum δ is in the (1, 1)-position. If a11 divides all elements in the first column, we
can use operations of type (i) to make all the remaining elements of the first column
zero. If not, we can use (i) to get an element in the first column that has smaller
δ-value than a11, and put that in the (1, 1) position. Repeat — eventually, we will
have the gcd of the original elements in the first column in the (1, 1) position and
zeros elsewhere. Then move onto the next column...

Remark 2.44. (a) The operations (i) and (ii) are invertible in matrices with coef-
ficients in A, and they correspond to multiplying on the left with an invertible matrix
in Mn(A). Hence we have shown that there exists an invertible matrix U in Mn(A)
such that UM is upper triangular.

On taking transposes, we find that for any matrixM ∈Mn(A), there is an invertible
matrix U in Mn(A) such that MU is lower triangular.

(b) Take A = Z (for simplicity), and add the (invertible) operation:

(iii) multiply a row by −1.
Then it is possible to make the triangular matrix T = UM satisfy the following

conditions (assuming det(M) �= 0):

aii > 0 for all i;
the elements aij of the jth column satisfy 0 ≤ aij < ajj.

Then T is unique. It is said to be in Hermite normal form.

Consider the field K = Q[α] generated over Q by the algebraic integer α with
minimum polynomial f(X). Let {ω1, ..., ωn} be a basis for OK as a Z-module, and
write

A = M · Ω
where A = (1, α, ..., αn−1)tr and Ω = (ω1, ..., ωn)

tr. Choose U such that MU is lower
triangular (and in Hermite normal form), and write

A = MU · U−1Ω = T · Ω′.
Here Ω′ =df U−1Ω is again a Z-basis for OK , and Ω′ = T−1 · A with T−1 also lower
triangular (but not necessarily with integer coefficients). Thus
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ω′1 = a111;

ω′2 = a211 + a22α;

etc.,

where d · aij ∈ Z, d = | det(M)| = | det(T )|.
Example 2.45. Let K = Q[

√
m], m square-free, m ≡ 1 (mod 4). The integral

basis

1,
1 +
√
m

2
is of the above form.

In (Pohst and Zassenhaus 1989, 4.6), there is an algorithm that, starting from a
monic irreducible polynomial

f(X) = Xn + a1X
n−1 + · · · + an, an ∈ Z,

constructs an integral basis ω1, ..., ωn, such that

ωi = (
i∑

k=1

aikα
i)/Ni

where

α is a root of f(X), aik ∈ Z, Ni ∈ Z, gcd(ai1, ..., aii) = 1.

In an Appendix, they use it to show that Q[α], where α is a root of

f(X) = X11 + 101X10 + 4151X9 + · · · − 332150625,

has an integral basis

ω1 = 1,

ω2 = (1/2)α + 1/2

ω3 = (1/4)α2 − 1/4

ω4 = (1/8)α3 + (1/8)α2 − (1/8)α − 1/8

...........

ω11 = (1/9103145472000)α10 + · · · − 4064571/49948672.

The discriminant of f is 2130 × 312 × 512 × 2918 × 822316 , and the index of Z[α] in
OK is 256 × 36 × 53 × 299.

The first step is to compute D(1, α, α2, . . . ) = disc(f(X)) and to find its square
factors. Finding the square factors of disc(f(X)) is the most time-consuming part
of the algorithm. The time taken to factor an N -digit number is exponential in the
number of digits of N . Every computer can factor a 25 digit number easily, but after
that it becomes rapidly more difficult. Hundred digit numbers are extremely difficult.
Thus this is not a good algorithm in the above sense. Once one has found the square
factors of disc(f(X)) the algorithm for computing an integral basis of the above form
is good.
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3. Dedekind Domains; Factorization

Presently, we shall define the notion of a Dedekind domain; then we’ll prove:

(i) ideals in Dedekind domains factor uniquely into products of prime ideals;

(ii) rings of integers in number fields are Dedekind domains.

First we consider a local version of a Dedekind domain.

Discrete valuation rings. The following conditions on a principal ideal domain are
equivalent:

(a) A has exactly one nonzero prime ideal;
(b) up to associates, A has exactly one prime element;
(c) A is local and is not a field.

A ring satisfying these conditions is called a discrete valuation ring.

Example 3.1. The ring Z(p) =df {mn ∈ Q | n not divisible by p} is a discrete
valuation ring with prime elements ±p and prime ideal (p).

Later we shall define discrete valuations, and so justify the name.

If A is a discrete valuation ring and π is a prime element in A, then each nonzero
ideal in A is of the form (πm) for a unique m ∈ N. Thus, if a is an ideal in A and
p denotes the (unique) maximal ideal of A, then a = pm for a well-defined integer
m ≥ 0.

Recall that, for an A-module M and an m ∈M , the annihilator of m

Ann(m) = {a ∈ A | am = 0}.
It is an ideal in A, and it is a proper ideal if m �= 0. Suppose A is a discrete valuation
ring, and let c be a nonzero element of A. Let M = A/(c). What is the annihilator
of a nonzero b + (c) of M . Fix a prime element π of A, and let c = uπm, b = vπn

with u and v units. Then n < m (else b+ (c) = 0 in M), and

Ann(b+ (c)) = (πm−n).

Thus, a b for which Ann(b+(c)) is maximal, is of the form vπm−1, and for this choice
Ann(b+ (c)) is a prime ideal generated by c

b
. We shall exploit these observations in

the proof of the next proposition, which gives a criterion for a ring to be a discrete
valuation ring.

Proposition 3.2. An integral domain A is a discrete valuation ring if and only
if

(i) A is Noetherian,

(ii) A is integrally closed, and

(iii) A has exactly one nonzero prime ideal.

Proof. The necessity of the three conditions is obvious, so let A be an integral
domain satisfying (i), (ii), and (iii). We have to show that every ideal in A is principal.
As a first step, we prove that the nonzero prime ideal in principal. Note that the
conditions imply that A is a local ring.
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Choose an element c ∈ A, c �= 0, c �= unit, and consider the A-module M =df A/(c).
For any nonzero m ∈M , the annihilator of m,

Ann(m) = {a ∈ A | am = 0}
is a proper ideal in A. Because A is Noetherian (here we use (i)), we can choose
an m such that Ann(m) is maximal among these ideals. Write m = b + (c) and
p = Ann(b+ (c)). Note that c ∈ p, and so p �= 0, and that

p = {a ∈ A | c|ab}.
I claim that p is prime. If not there exist elements x, y ∈ A such that xy ∈ p but

neither x nor y ∈ p. Then yb+(c) is a nonzero element of M because y /∈ p. Consider
Ann(yb + (c)). Obviously it contains p and it contains x, but this contradicts the
maximality of p among ideals of the form Ann(m). Hence p is prime.

I claim b
c
/∈ A. Otherwise b = c · b

c
∈ (c), and m = 0 (in M).

I claim that c
b
∈ A, and p = ( c

b
). By definition, pb ⊂ (c), and so p · b

c
⊂ A, and

it is an ideal in A. If p · b
c
⊂ p, then b

c
is integral over A (by 2.11, since p is finitely

generated), and so b
c
∈ A (because of condition (ii)), but we know b

c
/∈ A. . Thus

p · b
c
= A (by (iii)), and this implies that p = ( c

b
).

Let π = c
b
, so that p = (π). Let a be a proper ideal of A, and consider the sequence

a ⊂ aπ−1 ⊂ aπ−2 ⊂ . . . .

If aπ−r = aπ−r−1 for some r, then π−1(aπ−r) = aπ−r, and π−1 is integral over A, and
so lies in A — this is impossible (π is not a unit in A). Therefore the sequence is
strictly increasing, and (again because A is Noetherian) it can’t be contained in A.
Let m be the smallest integer such that aπ−m ⊂ A but aπ−m−1 
 A. Then aπ−m 
 p,
and so aπ−m = A. Hence a = (πm).

Dedekind domains. A Dedekind domain is an integral domain A �= field such that

(i) A is Noetherian;

(ii) A is integrally closed;

(iii) every nonzero prime ideal is maximal.

Thus Proposition 3.2 says that a local integral domain is a Dedekind domain if and
only if it is a discrete valuation ring.

Proposition 3.3. Let A be a Dedekind domain, and let S be a multiplicative
subset of A. Then S−1A is either a Dedekind domain or a field.

Proof. Condition (iii) says that there is no containment relation between nonzero
prime ideals of A. If this condition holds for A, then (1.5) shows that it holds for
S−1A. Conditions (i) and (ii) follow from the next lemma.

Proposition 3.4. Let A be an integral domain, and let S be a multiplicative subset
of A.

(a) If A is Noetherian, then so also is S−1A.
(b) If A is integrally closed, then so also is S−1A.
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Proof. (a) Let a be an ideal in S−1A. Then a = S−1(a ∩A) (the proof of this in
1.5 didn’t use that a is prime), and so a is generated by any (finite) set of generators
for a ∩A.

(b) Let α be an element of the field of fractions of A (= field of fractions of S−1A)
that is integral over S−1A. Then

αm + a1α
m−1 + · · ·+ am = 0, some ai ∈ S−1A.

For each i, there exists an si ∈ S such that siai ∈ A. Set s = s1 · · · sm ∈ S, and
multiply through the equation by sm :

(sα)m + sa1(sα)
m−1 + · · ·+ smam = 0.

This equation shows that sα is integral over A, and so lies in A. Hence α = (sα)/s ∈
S−1A.

Corollary 3.5. For any nonzero prime ideal p in a Dedekind domain, Ap is a
discrete valuation ring.

Proof. We saw in (1.6a) that Ap is local, and the proposition implies that it is
Dedekind.

Unique factorization. The main result concerning Dedekind domains is the follow-
ing.

Theorem 3.6. Let A be a Dedekind domain. Every proper nonzero ideal a of A
can be written in the form

a = pr11 · · · prn
n

with the pi distinct prime ideals and the ri > 0; the pi and the ri are uniquely deter-
mined.

The proof will require several lemmas.

Lemma 3.7. Let A be a Noetherian ring; then every ideal a in A contains a product
of nonzero prime ideals.

Proof. (Note the similarity to the proof of 1.2.) Suppose not, and choose a
maximal counterexample a. Then a itself can not be prime, and so there exist elements
x and y of A such that xy ∈ a but neither x nor y ∈ a. The ideals a + (x) and
a+(y) strictly contain a, but their product is contained in a. Because a is a maximal
counterexample to the statement of the lemma, each of a+(x) and a+(y) contains a
product of prime ideals, and it follows that a contains a product of prime ideals.

Lemma 3.8. Let A be a ring, and let a and b be relatively prime ideals in A; for
any m, n ∈ N, am and bn are relatively prime.

Proof. If am and bn are not relatively prime, then they are both contained in
some prime (even maximal) ideal p. But if a prime ideal contains a power of an
element, then it contains the element, and so p ⊃ am ⇒ p ⊃ a and p ⊃ bn ⇒ p ⊃ b.
Thus a and b are both contained in p, and so they are not relatively prime.
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Alternative proof: We are given that there exist elements a ∈ A and b ∈ B such
that a+ b = 1. Consider

1 = (a + b)r = ar +

(
r
1

)
ar−1b+ · · ·+ br.

If r ≥ m + n, then the term on the right is the sum of an element of am with an
element of bn.

If p and p′ are distinct prime ideals of a Dedekind domain, then condition (iii) of
the definition implies that p and p′ are relatively prime, and the lemma shows that
pm and p′n are also relatively prime for all m,n ≥ 1.

Lemma 3.9. Consider a product of rings A × B. If a and b are ideals in A and
B respectively, then a × b is an ideal in A × B, and every ideal in A × B is of this
form. The prime ideals of A× B are the ideals of the form

p× B (p a prime ideal of A), A× p (p a prime ideal of B).

Proof. Let c be an ideal in A×B, and let

a = {a ∈ A | (a, 0) ∈ c}, b = {b ∈ B | (0, b) ∈ c}.
Clearly a × b ⊂ c. Conversely, let (a, b) ∈ c. Then (a, 0) = (a, b) · (1, 0) ∈ a and
(0, b) = (a, b) · (0, 1) ∈ b, and so (a, b) ∈ a× b.

Recall that an ideal c ⊂ C is prime if and only if C/c is an integral domain. The
map

A× B → A/a×B/b, (a, b) �→ (a + a, b+ b)

has kernel a× b, and hence induces an isomorphism

A× B/(a× b) ≈ A/a×B/b.

The product of two nonzero rings always has nonzero zero-divisors, and so in order
for A × B/(a × b) to be prime, we must have a = A or b = B. Suppose the latter
holds. Then A× B/(a× b) ≈ A/a, and this is an integral domain if and only if a is
prime.

Remark 3.10. The lemma extends in an obvious way to a finite product of rings:
the ideals in A1 × · · · × Am are of the form a1 × · · · × am with ai an ideal in Ai;
moreover, a1 × · · · × am is prime if and only if there is a j such that aj is a prime
ideal in Aj and ai = Ai for i �= j.

Lemma 3.11. Let p be a maximal ideal of a ring A, and let q be the ideal it gen-
erates in Ap, q = pAp. The map

a+ pm �→ a + qm : A/pm → Ap/q
m

is an isomorphism.

Proof. We first show that the map is one-to-one. For this we have to show
that qm ∩ A = pm. But qm = S−1pm, S = A − p, and so we have to show that
pm = (S−1pm) ∩ A. An element of (S−1pm) ∩A can be written a = b/s with b ∈ pm,
s ∈ S, and a ∈ A. Then sa ∈ pm, and so sa = 0 in A/pm. The only maximal ideal
containing pm is p (because m ⊃ pm ⇒ m ⊃ p), and so the only maximal ideal in
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A/pm is p/pm; in particular, A/pm is a local ring. As s + pm is not in p/pm, it is a
unit in A/pm, and so sa = 0 in A/pm ⇒ a = 0 in A/pm, i.e., a ∈ pm.

We now prove that the map is surjective. Let a
s
∈ Ap. Because s /∈ p and p is

maximal, we have that (s) + p = A, i.e., (s) and p are relatively prime. Therefore (s)
and pm are relatively prime, and so there exist b ∈ A and q ∈ pm such that bs+q = 1.
Then b maps to s−1 in Ap/q

m and so ba maps to a
s
. More precisely: because s is

invertible in Ap/q
m, a

s
is the unique element of this ring such that sa

s
= a; since

s(ba) = a(1 − q), the image of ba in Ap also has this property and therefore equals
a
s
.

Remark 3.12. Consider an integral domain A and a multiplicative subset S of
A. For an ideal a of A, write ae for the ideal it generates in S−1A; for an ideal a of
S−1A, write ac for a ∩A. Then we have shown (1.5; proof of 3.4; proof of 3.11):

ace = a (all ideals a of S−1A);

aec = a if a is a prime ideal disjoint from S, or if a is a power of a maximal ideal p
and S = A− p.

We now prove that a nonzero ideal a of A can be factored into a product of prime
ideals. According to 3.7 (applied to A), a contains a product of nonzero prime ideals,

b = pr11 · · · prm
m .

We may suppose that the pi are distinct. Then

A/b ≈ A/pr11 × · · · × A/prm
m ≈ Ap1/q

r1
1 × · · · × Apm/q

rm
m

where qi = piApi is the maximal ideal of Api. The first isomorphism is given by the
Chinese Remainder Theorem (and 3.8), and the second is given by (3.11). Under this
isomorphism, a/b corresponds to qs11 /qr11 × · · · × qsm

m /qrm
m for some si ≤ ri (recall that

the rings Api are all discrete valuation rings). Since this ideal is also the image of
ps11 · · · psm

m under the isomorphism, we see that

a = ps11 · · · psm
m in A/b.

Both of these ideals contain b, and so this implies that

a = ps11 · · · psm
m

in A (because there is a one-to-one correspondence between the ideals of A/b and the
ideals of A containing b).

To complete the proof of Theorem 3.6, we have to prove that the above factorization
is unique, but in the course of the proof, we showed that si is determined by the
condition,

aApi = qsi
i , qi the maximal ideal in Api.

Remark 3.13. Note that

si > 0 ⇐⇒ aApi �= Api ⇐⇒ a ⊂ pi.

Corollary 3.14. Let a and b be ideals in A; then

a ⊂ b ⇐⇒ aAp ⊂ bAp

for all ideals nonzero prime ideals p of A. In particular, a = b if and only if aAp = bAp

for all p.
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Proof. The necessity is obvious. For the sufficiency, factor a and b

a = pr11 · · · prm
m , b = ps11 · · · psm

m , ri, si ≥ 0.

Then

aApi ⊂ bApi ⇐⇒ ri ≥ si,

(recall that Api is a discrete valuation ring) and ri ≥ si all i implies a ⊂ b.

Corollary 3.15. Let A be an integral domain with only finitely many prime
ideals; then A is a Dedekind domain if and only if it is a principal ideal domain.

Proof. Assume A is a Dedekind domain. After (3.6), to show that A is principal,
it suffices to show that the prime ideals are principal. Let p1, . . . , pm be these ideals.
Choose an element x1 ∈ p1−p21. According to the Chinese Remainder Theorem (1.7),
there is an element x ∈ A such that

x ≡ x1 mod p21, x ≡ 1 mod pi, i �= 1.

Now the ideals p1 and (x) generate the same ideals in Api for all i, and so they are
equal in A (by 3.14).

Corollary 3.16. Let a ⊃ b �= 0 be two ideals in a Dedekind domain; then a =
b + (a) for some a ∈ A.

Proof. Let b = pr11 ...prm
m and a = ps11 ...psm

m with ri, sj ≥ 0. Because b ⊂ a, si ≤ ri
for all i. For 1 ≤ i ≤ m, choose an xi ∈ A such that xi ∈ psi

i , xi /∈ psi+1
i . By the

Chinese Remainder Theorem, there is an a ∈ A such that

a ≡ xi mod pri
i , for all i.

Now one sees that b + (a) = a by looking at the ideals they generate in Ap for all
p.

Corollary 3.17. Let a be an ideal in a Dedekind domain, and let a be any
nonzero element of a; then there exists a b ∈ a such that a = (a, b).

Proof. Apply (3.16) to a ⊃ (a).

Corollary 3.18. Let a be a nonzero ideal in a Dedekind domain; then there exists
a nonzero ideal a∗ in A such that aa∗ is principal. Moreover, a∗ can be chosen to be
relatively prime to any particular ideal c, and it can be chosen so that aa∗ = (a) with
a any particular element of a (but not both).

Proof. Let a ∈ a, a �= 0; then a ⊃ (a), and so we have

(a) = pr11 · · · prm
m and a = ps11 · · · psm

m , si ≤ ri.

If a∗ = pr1−s11 · · · prm−sm
m , then aa∗ = (a).

We now show that a∗ can be chosen to be prime to c. We have a ⊃ ac, and so (by
3.16) there exists an a ∈ a such that a = ac + (a). As a ⊃ (a), we have (a) = a · a∗
for some ideal a∗ (by the above argument); now, ac + aa∗ = a, and so c + a∗ = A.
(Otherwise c + a∗ ⊂ p some prime ideal, and ac + aa∗ = a(c + a∗) ⊂ ap �= a.)

In basic graduate algebra courses, it is shown that

A a principal ideal domain ⇒ A is a unique factorization domain.
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The converse is false (e.g., k[X, Y ], k a field, is a unique factorization domain but the
ideal (X, Y ) is not principal), but it is true for Dedekind domains.

Proposition 3.19. A Dedekind domain is a unique factorization domain if and
only if it is a principal ideal domain.

Proof. Certainly, a principal ideal domain is Dedekind. Conversely, let A be a
Dedekind domain with unique factorization. It suffices to show that the nonzero
prime ideals are principal—let p be such an ideal. It will contain a nonzero element,
which (because of 1.2) is a product of irreducible elements. Because p is prime, it will
contain one of the irreducible factors π, and we know from (3.18) that there exists an
ideal p∗ such that pp∗ = (π). I will show that p∗ = A, and so p = (π). From (3.18)
we know that there are ideals q and q∗ such that

pq = (a), q + p∗ = A; qq∗ = (b), q∗ + p = A

for some a, b ∈ A. Since (πb) = pp∗qq∗ = (a)p∗q∗, we see that a|πb, and so c = πb
a
∈ A.

Then πb = ac, and because A is a unique factorization domain, this implies that π|a
or π|c.

If π|a, then a
π
∈ A, and ( a

π
)p∗ = q. Thus any prime ideal dividing p∗ will also divide

q, and this is impossible because q and p∗ are relatively prime. Therefore, there is no
such ideal, and p∗ = A in this case.

Similarly, if π|c, then ( c
π
)p = q∗, which is impossible because p does not divide q∗

(q∗ is relatively prime to p). Thus this case does not occur.

The ideal class group. Let A be a Dedekind domain. A fractional ideal of A is a
nonzero A-submodule a of K such that

da =df {da | a ∈ a} ⊂ A

for some d ∈ A (or K), i.e., it is a nonzero A-submodule of K whose elements have a
common denominator. Note that a fractional ideal is not an ideal — when necessary
to avoid confusion, we refer to ideals in A as integral ideals.

Equivalently, a fractional ideal ofA can be defined to be a nonzero finitely generated
A-submodule of K: a common denominator for the generators will be a common
denominator for all the elements of the module, and, conversely, if da is an integral
ideal, it is finitely generated, and this implies that a is finitely generated.

Every nonzero element b of K defines a fractional ideal

(b)
df
= bA

df
= {ba | a ∈ A}.

An fractional ideal of this type is said to be principal.

The product of two fractional ideals is defined in the same way as for (integral)
ideals

a · b = {
∑

aibi | ai ∈ a, bi ∈ b}.
This is again a fractional ideal: it is obviously an A-module, and if da ⊂ A and
eb ⊂ A, then deab ⊂ A. For principal fractional ideals, (a)(b) = (ab).

Example 3.20. Let A be a discrete valuation ring with maximal ideal p and field
of fractions K. Write π for a generator of p. Every nonzero element of K can be
written uniquely in the form a = uπm with u a unit in A and m ∈ Z. Let a be a
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fractional ideal of A. Then da ⊂ A for some d ∈ A, and we can suppose d = πn.
Thus πna is an ideal in A, and so it is of the form (πm) for some m ≥ 0. Clearly,
a = (πm−n). Thus the fractional ideals of A are of the form (πm), m ∈ Z. They form
a free abelian group of rank 1, and the map

m �→ (πm) : Z→ Id(A)

is an isomorphism.

Theorem 3.21. Let A be a Dedekind domain. The set Id(A) of fractional ideals
is a group; in fact, it is the free abelian group on the set of prime ideals.

Proof. We have noted that the law of composition is well-defined. It is obviously
commutative. For associativity, one checks that

(ab)c = {
∑

aibici | ai ∈ a, bi ∈ b, ci ∈ c} = a(bc).

The ring A plays the role of an identity element: aA = a. In order to show that Id(A)
is a group, it remains to show that inverses exist.

Let a be a nonzero integral ideal. According to (3.18), there is an ideal a∗ and an
a ∈ A such that aa∗ = (a). Clearly a · (a−1a∗) = A, and so a−1a∗ is an inverse of a.
If a is a fractional ideal, then da is an integral ideal for some d, and d · (da)−1 will be
an inverse for a.

It remains to show that the group Id(A) is freely generated by the prime ideals, i.e.,
that each fractional ideal can be expressed in a unique way as a product of powers of
prime ideals. Let a be a fractional ideal. Then da is an integral ideal for some d ∈ A,
and we can write

da = pr11 · · · prm
m , (d) = ps11 · · · psm

m .

Thus a = pr1−s11 · · · prm−sm
m . The uniqueness follows from the uniqueness of the fac-

torization for integral ideals.

Remark 3.22. (a) Conversely, E. Noether showed that an integral domain whose
fractional ideals form a group under ideal multiplication is a Dedekind domain (see
Cohn 1991, p. 4.6).

(b) Let S be a multiplicative subset in a Dedekind domain A, and let AS = S−1A.
It is an integral domain with the same field of fractions as A:

A ⊂ AS ⊂ K.

For any fractional ideal a of A, S−1a =df {as | a ∈ a, s ∈ S} is a fractional ideal of
AS. It is the AS-module generated by a. The following hold for any fractional ideals
a and b,

S−1(ab) = (S−1a)(S−1b), S−1a−1 = (aAS)
−1.

For any fractional ideal a, define

a′ = {a ∈ K | aa ⊂ A}.
This is an A-module, and if d ∈ a, d �= 0, then da′ ⊂ A, and so a is a fractional ideal.
From the definition of a′, we see that aa′ is an ideal in A. If it is not equal to A, then
it is contained in some prime ideal p. When we pass to Ap, the inclusion aa′ ⊂ p



3. Dedekind Domains; Factorization 45

becomes bb′ ⊂ q, where b, b′, and q are the ideals in Ap generated by a, a′, and p.
Moreover,

b′ = {a ∈ K | ab ⊂ Ap}.
But q = (π), and b = (πm) = πm · Ap for some m ∈ Z. Clearly b′ = π−mA, and so
bb′ = Ap — we have a contradiction.

We define the ideal class group Cl(A) of A to be the quotient Cl(A) = Id(A)/P(A)
of Id(A) by the subgroup of principal ideals. The class number of A is the order of
Cl(A) (when finite). In the case that A is the ring of integers OK in a number field
K, we often refer to Cl(OK) as the ideal class group of K, and its order as the class
number of K.

One of the main theorems of this course will be that the class number hK of a
number field K is finite. Understanding how the class numbers of number fields vary
remains an interesting problem. For example, the class number of Q[

√−m] for m > 0
and square-free is 1 if and only if m = 1, 2, 3, 7, 11, 19, 43, 67, 163. It not difficult to
show that these fields have class number 1, but it was not until 1954 that it was shown
(by Heegner) that there were no more (and for more than 15 years, no one believed
Heegner’s proof to be correct). We have seen that Z[

√−5] is not a principal ideal
domain, and so can’t have class number 1— in fact it has class number 2. The method
we use to prove that the class number is finite is effective: it provides an algorithm
for computing it. There are expected to be an infinite number of real quadratic fields
with class number one, but this has not been proved. Gauss showed that the class
group of a quadratic field Q[

√
d] can have arbitrarily many cyclic factors of even

order, and the same is expected to be true (but is not proved) for cyclic factors of
order divisible by 3 — see the thesis of M. DeLong (Michigan 1998).

It is known that every abelian group can be realized as the class group of a Dedekind
domain (not necessarily the ring of integers in a number field). See Claborn, L., Every
abelian group is a class group, Pacific J. Math. 18, pp. 219–222.

Example 3.23. Consider the affine elliptic curve

Y 2 = X3 + aX + b, ∆ = −4a3 − 27b2 �= 0.

The associated ring A = C[X, Y ]/(Y 2 − X3 − aX − b) of regular functions on A is
a Dedekind domain, and its class group is uncountable. In fact, it is isomorphic in
a natural way to C/Λ for some lattice Λ in C. (Exercise for those familiar with the
theory of elliptic curves.)

Proposition 3.24. Let A be a Dedekind domain, and let S be a multiplicative set
in A. Then a �→ S−1a defines an isomorphism from the subgroup of Id(A) generated
by prime ideals not meeting S to the group Id(S−1A).

Proof. Immediate consequence of 1.5 and 3.21.

Remark 3.25. Let A be a Dedekind domain with finite ideal class group. There
is then a finite set of ideals a1, ..., am which is a set of representatives for the ideal
classes. Clearly we may take the ai to be integral. Let b be any element in ∩ai, and
let S be the multiplicative set generated by b, S = {1, b, b2, . . .}. I claim that S−1A
is a principal ideal domain.



46 3. Dedekind Domains; Factorization

By assumption, any ideal a ⊂ A can be written a = (a) · ai for some a ∈ K× and i,
1 ≤ i ≤ m. Because the map b �→ S−1b is a homomorphism we have S−1a = (a)·S−1ai
where (a) now denotes the ideal generated by a in S−1A. Since S−1ai contains a unit,
it is the whole ring. Thus S−1a = (a), and we see that every ideal in S−1A of the
form S−1a is principal. According to (3.12), all ideals of S−1A are of this form.

Remark 3.26. The following conditions on an integral domain A are equivalent:

(a) A is a Dedekind domain;
(b) for every prime ideal p of A, Ap is a discrete valuation ring;
(c) the fractional ideals of A form a group;
(d) for every fractional ideal a of A, there is an ideal b such that ab = A.

We have seen that (a) implies (b) and (c), and (d) is certainly implied by (c). The
converses can be found in several books (e.g., Atiyah and MacDonald 1969).

Discrete valuations. Let K be a field. A discrete valuation on K is a nonzero
homomorphism v : K× → Z such that v(a+ b) ≥ min(v(a), v(b)). As v is not the zero
homomorphism, its image is a nonzero subgroup of Z, and is therefore of the form
mZ for some m ∈ Z. If m = 1, then v : K× → Z is surjective, and v is said to be
normalized ; otherwise, x �→ m−1 · v(x) will be a normalized discrete valuation.

Example 3.27. (a) LetM be the field of meromorphic functions on a connected
open subset U of the complex plane (or, better, a compact Riemann surface). For
each P ∈ U and nonzero f ∈ M, define ordP (f) to be −m, m, or 0 according as f
has a pole of order m at P , a zero of order m at P , or neither a pole nor a zero at P .
Then ordP is a normalized discrete valuation onM.

(b) Let A be a principal ideal domain with field of fractions K, and let π be a
prime element of A. Then each element c of K× can be written c = πma

b
with a and b

elements of A relatively prime to π. Define v(c) = m. Then v is a normalized discrete
valuation on K.

(c) Let A be a Dedekind domain and let p be a prime ideal in A. For any c ∈ K×,
let pv(c) be the power of p in the factorization of (c). Then v is a normalized discrete
valuation on K.

In all these examples, we have that v(a + b) = v(b) if v(a) > v(b). This is in fact
a general property of discrete valuations. First note that v(ζ) = 0 for any element
of K× of finite order (v is a homomorphism and Z has no elements of finite order);
hence v(−a) = v(−1) + v(a) = v(a). Therefore, if v(a) > v(b), we have

v(b) = v(a+ b− a)) ≥ min(v(a+ b), v(a)) ≥ min(v(a), v(b)) = v(b),

and so equality must hold throughout, and this implies v(a+ b) = v(b).

We often use “ord” rather than “v” to denote a discrete valuation; for example, we
often use ordp to denote the discrete valuation defined by p in (c).

Example (b) shows that every discrete valuation ring gives rise to a discrete valu-
ation on its field of fractions. There is a converse to this statement.

Proposition 3.28. Let v be a discrete valuation on K, then

A
df
= {a ∈ K | v(a) ≥ 0}
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is a principal ideal domain with maximal ideal

m
df
= {a ∈ K | v(a) > 0}.

If v(K×) = mZ, then the ideal m is generated by any element π such that v(π) = m.

Proof. Routine.

Later we shall see that a discrete valuation ord defines a topology on K for which
two elements x and y are close if ord(x−y) is large. The Chinese Remainder Theorem
can be restated as an approximation theorem.

Proposition 3.29. Let x1, ..., xm be elements of a Dedekind domain A, and let
p1, ..., pm be distinct prime ideals of A. For any integer n, there is an x ∈ A such that

ordpi(x− xi) > n, i = 1, 2, ..., m.

Proof. From (3.8) we know that the ideals pn+1
i are relatively prime in pairs, and

so (1.7) provides us with an element x ∈ A such that

x ≡ xi mod pn+1
i , i = 1, 2, . . . , m,

i.e., such that

ordpi(x− xi) > n, i = 1, 2, ..., m.

Integral closures of Dedekind domains. We now prove a result that implies that
rings of integers in number fields are Dedekind domains, and hence that their ideals
factor uniquely into products of prime ideals.

Theorem 3.30. Let A be a Dedekind domain with field of fractions K, and let
B be the integral closure of A in a finite separable extension L of K. Then B is a
Dedekind domain.

We have to check the three conditions in the definition of a Dedekind domain
(second page of this section).

Let R be a ring (not necessarily an integral domain). An R-module M is said to
be Noetherian if every submodule is finitely generated. (Equivalent conditions: every
ascending chain of submodules becomes stationary; every nonempty set of submodules
contains a maximal element.)

Lemma 3.31. Let R be a Noetherian ring. Then any finitely generated R-module
is Noetherian.

Proof. (Sketch) First show that if

0→M ′ → M → M ′′ → 0

is exact and M ′ and M ′′ are Noetherian, then so also is M ; then use induction on the
number of generators of M.
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We now show that B is Noetherian. In (2.29) we showed that B is contained in
a finitely generated A-module. It follows that every ideal in B is finitely generated
when regarded as an A-module (being a submodule of a Noetherian A-module) and
a fortiori as an ideal (= B-module).

Next B is integrally closed because of (2.15).

It remains to prove that every nonzero prime ideal q of B is maximal. Let β ∈ q,
β �= 0. Then β is integral over A, and so there is an equation

βn + a1β
n−1 + · · ·+ an = 0, ai ∈ A,

which we may suppose to have the minimum possible degree. Then an �= 0. As
an ∈ βB∩A, we have that q∩A �= (0). But q∩A is a prime ideal (obviously), and so
it is a maximal ideal p of A, and A/p is a field. We know B/q is an integral domain,
and the map

a + p �→ a + q

identifies A/p with a subfield of B/q. As B is integral over A, B/q is algebraic over
A/p. The next lemma shows that B/q is a field, and hence that q is maximal.

Lemma 3.32. Any integral domain B containing a field k and algebraic over k is
itself a field.

Proof. Let β be a nonzero element of B — we have to prove that it has an inverse
in B. Because β is algebraic over k, the ring k[β] is finite-dimensional as a k-vector
space, and the map x �→ βx : k[β] → k[β] is injective (because B is an integral
domain). From linear algebra we deduce that the map is surjective, and so there is
an element β ′ ∈ k[β] such that ββ ′ = 1.

This completes the proof of Theorem 3.30.

In fact, Theorem 3.30 is true without the assumption that L be separable over
K — see Janusz 1996, I.6 for a proof of the more general result. The difficulty is
that, without the separability condition, B may fail to be finitely generated as an
A-module, and so the proof that it is Noetherian is more difficult.

Modules over Dedekind domains (sketch). The structure theorem for finitely
generated modules over principal ideal domains has an interesting extension to mod-
ules over Dedekind domains. Throughout this subsection, A is a Dedekind domain.

First, note that a finitely generated torsion-free A-module M need not be free. For
example, every nonzero fractional ideal is finitely generated and torsion-free, but it is
free if and only if it is principal. Thus the best we can hope for is the following.

Theorem 3.33. Let A be a Dedekind domain.

(a) Every finitely generated torsion-free A-module M is isomorphic to a direct sum
of fractional ideals,

M ≈ a1 ⊕ · · · ⊕ am.

(b) Two finitely generated torsion-free A-modules M ≈ a1 ⊕ · · · ⊕ am and N ≈
b1 ⊕ · · · ⊕ bn are isomorphic if and only if m = n and

∏
ai ≡

∏
bi modulo

principal ideals.
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Hence,

M ≈ a1 ⊕ · · · ⊕ am ≈ A⊕ · · · ⊕ A⊕ a1 · · · am.
Moreover, two fractional ideals a and b of A are isomorphic as A-modules if and only
they define the same element of the class group of A.

The rank of a module M over an integral domain R is the dimension of K ⊗R M
as a K-vector space, where K is the field of fractions of R. Clearly the rank of
M ≈ a1 ⊕ · · · ⊕ am is m.

These remarks show that the set of isomorphism classes of finitely generated torsion-
free R-modules of rank 1 can be identified with the class group of A. Multiplication
of elements in Cl(A) corresponds to the formation of tensor product of modules. The
Grothendieck group of the category of finitely generated A-modules is Cl(A)⊕ Z.

Theorem 3.34 (Invariant factor theorem). Let M ⊃ N be finitely generated
torsion-free A-modules of the same rank m. Then there exist elements e1, ..., em of
M , fractional ideals a1, ..., am, and integral ideals b1 ⊃ b2 ⊃ ... ⊃ bm such that

M = a1e1 ⊕ · · · ⊕ amem, N = a1b1e1 ⊕ · · · ⊕ ambmem.

The ideals b1, b2, ..., bm are uniquely determined by the pair M ⊃ N , and are
called the invariant factors of N in M.

The last theorem also yields a description of finitely generated torsion A-modules.

For proofs of the above results, see Curtis, C., and Reiner, I., Representation Theory
of Finite Groups and Associative Algebras, 1962, III, 22, or Narkiewicz 1990, I.3.

Factorization in extensions. Let A be a Dedekind domain with field of fractions
K, and let B be the integral closure of A in a finite separable extension L of K.

A prime ideal p of A will factor in B,

pB = Pe1
1 · · ·Peg

g , ei ≥ 1.

If any of the numbers is > 1, then we say that p is ramified in B (or L). The number
ei is called the ramification index. We say P divides p (written P|p) if P occurs in the
factorization of p in B. We then write e(P/p) for the ramification index and f(P/p)
for the degree of the field extension [B/P : A/p] (called the residue class degree).

Lemma 3.35. A prime ideal P of B divides p if and only if p = P ∩K.

Proof. ⇒: Clearly p ⊂ P ∩K, and P ∩K �= A.

⇐: If p ⊂ P then pB ⊂ P, and we have seen (3.13) that this implies that P occurs
in the factorization of pB.

Theorem 3.36. Let m be the degree of L over K, and let P1, ...,Pg be the primes
dividing p; then

g∑
i=1

eifi = m.

If L is Galois over K, then all the ramification numbers are equal, and all the residue
class degrees are equal, and so

efg = m.
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Proof. To prove the first part of the theorem we shall show that∑
eifi = [B/pB : A/p] = m.

For the first equality, note that B/pB = B/
∏

Pei
i
∼= ∏

B/Pei
i (Chinese Remainder

Theorem), and so we have to show that [B/Pei
i : A/p] = eifi. From the definition

of fi, we know that B/pi is a field of degree fi over A/p. For each r, Pri
i /P

ri+1

i is
a B/Pi-module, and because there is no ideal between Pri

i and P
ri+1

i , it must have
dimension one as a B/Pi-vector space, and hence dimension fi as an A/pi-vector
space. Therefore each quotient in the chain

B ⊃ Pi ⊃ P2
i ⊃ · · · ⊃ Pei

i

has dimension fi over A/p, and so the dimension of B/Pei
i is eifi.

The proof of the second equality is easy if A is a principal ideal domain: a basis
x1, ..., xm for the A-module B is also a basis for the K-vector space L and gives, by
reduction mod p, a basis for B/pB over A/p. [To prove the second statement, note
that to say {x1, ..., xm} is a basis for an A-module M means that

Am→ M, (ai) �→
∑

aixi

is an isomorphism. When we tensor this isomorphism with A/a, we obtain an iso-
morphism

(A/a)m →M/aM, (ai) �→
∑

aix̄i

(see 1.11), and so {x̄1, ..., x̄m} is a basis for M/aM as an A/a-module.]

Now let S be a multiplicative subset of A disjoint from p and such that S−1A
is principal (e.g., S = A − p). Write B ′ = S−1B and A′ = S−1A. Then pB ′ =∏
(piB

′)ei (see 3.24), and so
∑

eifi = [B ′/pB ′ : A′/pA′]; but A′ is principal, and so
[B ′/pB ′ : A′/pA′] = m. This completes the proof of the first part of the theorem.

Now assume L is Galois over K. Clearly B is stable under the action of Gal(L/K),
and if σ ∈ Gal(L/K) and P is a prime ideal of B, then σP is also a prime ideal.
Moreover, if P divides p, then it follows from (3.35) that σP divides p. Clearly
e(σP/p) = e(P/p) and f(σP/p) = f(P/p), and so it remains to show that Gal(L/K)
acts transitively on the prime ideals of B dividing p.

Suppose P and Q both divide p, and suppose Q is not conjugate to P, i.e., that
for all σ ∈ Gal(L/K), σP �= Q. According to the Chinese Remainder Theorem,
we can find an element β ∈ Q such that β /∈ σP for any σ ∈ Gal(L/K). Consider

b = Nm(β)
df
=

∏
σβ. Then b ∈ A, and as β ∈ Q, it also lies in Q; hence b ∈ Q∩A = p.

On the other hand, for all σ ∈ Gal(L/K), β /∈ σ−1P, and so σβ /∈ P; the fact that∏
σβ ∈ p ⊂ P contradicts the primality of P.

The primes that ramify. In this subsection, we obtain a description of the primes
that ramify in an extension.

Theorem 3.37. Let L be a finite extension of a number field K, let A be a
Dedekind domain in K with field of fractions K (e.g., A = OK), and let B be the
integral closure of A in L. Assume that K is a number field and that B is a free
A-module (this is true for example if A is principal ideal domain). Then a prime
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p ramifies in L if and only if p| disc(B/A). In particular, only finitely many prime
ideals ramify.

We obtain this as the consequence of a series of lemmas.

Lemma 3.38. Let A be a ring and let B be a ring containing A and admitting a
finite basis {e1, ..., em} as an A-module. For any ideal a of A, {ē1, ..., ēm} is a basis
for the A/a-module B/aB, and

D(ē1, ..., ēm) ≡ D(e1, ..., em) mod a.

Proof. We noted in the proof of (3.36) that ē1, ..., ēm is a basis for B/aB. The
second assertion is obvious from the definitions.

Lemma 3.39. Let A be a ring and let B1, ..., Bg be rings containing A and free of
finite rank as A-modules. Then

disc((ΠBi)/A) =
∏

disc(Bi/A).

Proof. Choose bases εi for each of the Bi (as A-modules), and compute the
discriminant of B/A using the basis ∪iεi.

An element α of a ring is said to be nilpotent if αm = 0 for some m > 1. A ring is
said to be reduced if it has no nonzero nilpotent elements.

Lemma 3.40. Let k be a perfect field, and let B be a k-algebra of finite dimension.
Then B is reduced if and only if disc(B/k) �= 0.

Proof. Let β �= 0 be a nilpotent element of B, and choose a basis e1, . . . , em for
B with e1 = β. Then βei is nilpotent for all i, and so the k-linear map

x �→ βeix : B → B

is nilpotent. Its matrix is also nilpotent, but a nilpotent matrix has trace zero—its
minimum polynomial (and hence its characteristic polynomial) is of the form Xr—
and so the first row of the matrix (Tr(eiej)) is zero. Therefore its determinant is
zero.

Conversely, suppose B is reduced. We first show that the intersection N of the
prime ideals of B is zero (this, in fact, is true for any reduced Noetherian ring). Let
b ∈ B, b �= 0. Let Σ be the set of ideals of B containing no power of b. Because
b is not nilpotent, Σ contains the zero ideal, and hence is nonempty. Because B is
Noetherian, Σ has a maximal element p. We shall show that p is prime. Since b /∈ p,
this will show that b /∈ N.

Let x, y be elements of B not in p. Then p+(x) and p+(y) strictly contain p, and
so

bm ∈ p + (x), bn ∈ p + (y)

for some m,n, say,

bm = p + cx, bn = p′ + c′y, p, p′ ∈ p, c, c′ ∈ B.

Then bm+n = pp′ + pc′y + p′cx + cc′xy ∈ p + (xy), and so p + (xy) is not in Σ; in
particular, p+ (xy) �= p, and xy /∈ p. Therefore p is prime ideal, which completes the
proof that N = 0.



52 3. Dedekind Domains; Factorization

Let p be a prime ideal of B. Then B/p is an integral domain, algebraic over k, and
hence is a field (by 3.32). Therefore p is maximal. Let p1, p2, . . . , pr be prime ideals
of B. Since they are all maximal, they are relatively prime in pairs. Therefore the
Chinese remainder theorem shows that

B/ ∩ pi =
∏

B/pi (*).

Note that

[B : k] ≥ [B/∩ pi : k] =
∑

[B/pi : k] ≥ r.

Therefore B has only finitely many prime ideals, say p1, . . . , pg where g ≤ [B : k],
and ∩pi = 0. When we take r = g in (*) we find that

B =

g∏
i=1

B/pi.

For each i, B/pi is a field, and it is a finite extension of k. Because k is per-
fect, it is even a separable extension of k. Now we can apply (2.25) to deduce
that disc((B/pi)/k) �= 0, and we can apply the preceding lemma to deduce that
disc(B/k) �= 0.

We now prove the theorem. From the first lemma, we see that

disc(B/A) mod p = disc((B/pB)/(A/p)),

and from the last lemma that disc((B/pB)/(A/p)) = 0 if and only B/pB is not
reduced. Let pB =

∏
Pei
i . Then B/pB ∼= ∏

B/Pei , and∏
B/Pei is reduced ⇐⇒ each B/Pei is reduced ⇐⇒ each ei = 1.

Remark 3.41. (a) In fact there is a precise, but complicated, relation between
the power of p dividing Disc(B/A) and the extent to which p ramifies in B. It implies
for example that ordp(disc(B/A)) ≥∑

fi(ei − 1), and that equality holds if no ei is
divisible by the characteristic of A/p. (See Serre 1962, III 6.)

(b) Let A be the ring of integers in a number field K, and let B be the integral
closure of A in a finite extension L of K. It is possible to define disc(B/A) (as an
ideal) without assuming B to be a free A-module. Let p be an ideal in A, and let
S = A − p. Then S−1A = Ap is principal, and so we can define Disc(S−1B/S−1A).
It is a power (pAp)

m(p) of pAp. Define

disc(B/A) =
∏

pm(p).

The index m(p) is nonzero for only finitely many p, and so this formula does define
an ideal in A. Clearly this definition agrees with the usual one when B is a free
A-module, and the above proof shows that a prime ideal p ramifies in B if and only
if it divides Disc(B/A).

Example 3.42. (For experts on Riemann surfaces.) Let X and Y be compact
connected Riemann surfaces, and let α : Y → X be a nonconstant holomorphic map-
ping. WriteM(X) andM(Y ) for the fields of meromorphic functions on X and Y .
The map f �→ f ◦ α is an inclusionM(X) ↪→M(Y ) which makesM(Y ) into a field
of finite degree over M(X); let m be this degree. Geometrically, the map is m : 1
except at a finite number of branch points.
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Let P ∈ X and let OP be the set of meromorphic functions on X that are holo-
morphic at P — it is the discrete valuation ring attached to the discrete valuation
ordP , and its maximal ideal is the set of meromorphic functions on X that are zero
at P . Let B be the integral closure of OP inM(Y ). Let α−1(P ) = {Q1, ..., Qg} and
let ei be the number of sheets of Y over X that coincide at Qi. Then pB =

∏
qei
i

where qi is the prime ideal {f ∈ B | f(Qi) = 0}.

Finding factorizations. The following result often makes it very easy to factor an
ideal in an extension field. Again A is a Dedekind domain with field of fractions K,
and B is the integral closure of A in a finite separable extension L of K.

Theorem 3.43. Suppose that B = A[α], and let f(X) be the minimum polynomial
of α over K. Let p be a prime ideal in A. Choose monic polynomials g1(X), . . . , gr(X)
in A[X] that are distinct and irreducible modulo p, and such that f(X) ≡ ∏

gi(X)ei

modulo p. Then

pB =
∏

(p, gi(α))
ei

is the factorization of pB into a product of powers of distinct prime ideals. Moreover,
the residue field B/(p, gi(α)) ≈ (A/p)[X]/(ḡi), and so the residue class degree fi is
equal to the degree of gi.

Proof. Our assumption is that the map X �→ α defines an isomorphism

A[X]/(f(X))→ B.

When we divide out by p (better, tensor with A/p), this becomes an isomorphism

k[X]/(f̄(X))→ B/pB, X �→ α.

where k = A/p. The ring k[X]/(f̄) has maximal ideals (ḡ1), ..., (ḡr), and
∏
(ḡi)

ei = 0
(but no product with smaller exponents is zero). The ideal (ḡi) in k[X]/(f̄ ) cor-
responds to the ideal (gi(α)) + pB in B/pB, and this corresponds to the ideal
pi =df (p, gi(α)) in B. Thus p1, ..., pr is the complete set of prime ideals contain-
ing pB, and hence is the complete set of prime divisors of p (see 3.13). When we
write pB =

∏
Pei
i , then the ei are characterized by the fact that pB ⊃∏

Pei
i , but pB

does not contain the product if any ei is replaced with a smaller value. Thus it follows
from the above (parenthetical) statement that ei is the exponent of ḡi occurring in
the factorization of f̄ .

Remark 3.44. When it applies the last theorem can be used to prove (3.36) and
(3.37). For example, m = deg(f), and so the equation m =

∑
eifi is simply the equa-

tion deg(f) =
∑

ei · deg(gi). Also, disc(B/A) = disc(f(X)), and this is divisible by p
if and only if f̄(X) has multiple factors (when regarded as an element of (A/p)[X]),
i.e., if and only if some ei > 0.

Remark 3.45. The conclusion of the theorem holds for a particular prime p of A
under the following weaker hypothesis: disc(1, α, ..., αm−1) = a·Disc(B/A) with a an
ideal of A not divisible by p. To prove this, invert any element of a not in p, and
apply the theorem to the new ring and its integral closure.
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Examples of factorizations. We use Theorem 3.43 to obtain some factorizations.

Example 3.46. Let m �= 1 be a square-free integer. We consider the factoriza-
tion of prime integers in K = Q[

√
m]. Recall that disc(1,

√
m) = 4m, and that

disc(OK/Z) = disc(1,
√
m) if m ≡ 2, 3 mod 4, and that disc(OK/Z) = disc(1,

√
m)/4

if m ≡ 1 mod 4. In both cases, we can use the set {1,√m} to compute the fac-
torization of an odd prime p (see 3.45). Note that (3.36) allows only three possible
factorizations of (p) in OK, namely,

(p) = p2: (p) ramifies, e = 2, f = 1, g = 1;

(p) = p: (p) stays prime, e = 1, f = 2, g = 1;

(p) = p1p2: (p) splits, e = 1, f = 1, g = 2.

One obtains the following result.

(i) If p| disc(OK/Z), then (p) ramifies in OK .
(ii) For an odd prime p not dividing the m, we have

(p) is the product of two distinct ideals ⇐⇒ m is a square mod p, i.e., (m
p
) = 1;

(p) is a prime ideal in Q[
√
m] ⇐⇒ m is not a square mod p, i.e., (m

p
) = −1.

(iii) For the prime 2 when m ≡ 1 mod 4, we have

(p) is the product of two distinct ideals ⇐⇒ m ≡ 1 mod 8;

(p) is a prime ideal in Q[
√
m] ⇐⇒ m ≡ 5 mod 8.

To prove (iii), we must use the integral basis {1, α}, α = (1+
√
m)/2. The minimum

polynomial of α is X2 −X + (1−m)/4. If m ≡ 1 mod 8, this factors as X2 +X =
X(X +1) mod 2, and so (2) = (2, α)(2, 1+α). If m ≡ 5 mod 8, then X2−X +(1−
m)/4 ≡ X2 +X + 1 mod 2, which is irreducible, and so (2) = (2, 1 + α+ α2) = (2).

Example 3.47. It is proved in basic graduate algebra courses that Z[i], the Gauss-
ian integers, is a principal ideal domain. I claim that the following conditions on an
odd prime p are equivalent:

(a) p ≡ 1 mod 4;
(b) (p) splits in Z[i];
(c) there exist integers a and b such that p = a2 + b2.

We know that (p) splits in Z[i] if and only if −1 is a square mod p, but this is so
if and only if Fp contains a 4th root of 1, i.e., if and only if the group F×p contains an
element of order 4. As F×p is a cyclic group (any finite subgroup of the multiplicative
group of a field is cyclic — exercise) of order p − 1, this is so if and only if 4|p − 1.
Thus we have shown that (a) and (b) are equivalent.

Suppose (p) splits in Z[i], say (p) = p1p2. Then p1 and p2 are principal, and if
p1 = (a + ib) then p2 = (a − ib). Therefore a2 + b2 = p up to multiplication by a
unit in Z[i]. But the only units in Z[i] are ±1, ±i, and so obviously10 a2 + b2 = p.
Conversely, if p = a2 + b2 with a, b ∈ Z, then (p) = (a+ ib)(a− ib) in Z[i].

[The fact that every prime of the form 4n+1 is a sum of two squares was stated as
a theorem by Fermat in a letter in 1654. Euler, who was almost certainly unaware of
Fermat’s letter, found a proof. For some history, and a discussion of algorithms for
finding a and b, see Edwards 1977, p. 55.]

10Following the usual convention, we generally take a prime p in Z to be positive.
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Remark 3.48. (a) From (3.43) and (3.45) we see that, for almost all p, factoring
(p) inOK amounts to factoring a polynomial f(X) modulo p into a product of powers
of irreducible polynomials. Clearly, this can always be done, but may require a lot of
hard work (but not much intelligence). Hence it can safely be left to the computer.
In Maple, type:

Factors(f(X)) mod p;

In Mathematica, type:

Factor[f(X), Modulus->p]

(b) In the next section, we shall show, not only that the class group of a number
field is finite, but that it is generated by the prime ideals dividing a certain small
set of prime numbers. Finding the class number therefore involves finding the prime
ideal factors of these prime numbers, and the relations among them.

Example 3.49. Let α be a root of X3 +10X +1. Recall that the discriminant of
the polynomial is −4027, and so the ring of integers in Q[α] is Z + Zα+ Zα2. There
are the following factorizations:

2 (1 +X)(1 +X +X2) (2) = (2, 1 + α)(2, 1 + α+ α2)
3 (2 +X)(2 +X +X2) (3) = (3, 2 + α)(3, 2 + α+ α2)
5 (1 +X)(1 + 4X +X2) (5) = (5, 1 + α)(5, 1 + 4α + α2)
7 (3 +X)(5 + 4X +X2) (7) = (7, 3 + α)(7, 5 + 4α + α2)
11 (6 +X)(2 + 5X +X2) (11) = (11, 6 + α)(11, 2 + 5α+ α2)
13 1 + 10X +X3 (13) = (13, 1 + 10α + α2) = (13)
17 1 + 10X +X3 (17) = prime ideal.
4027 (2215 +X)2(3624 +X) (4027) = (4027, 2215 + α)2(4027, 3624 + α).

Example 3.50. Let α be a root of X3− 8X +15. Here again, the discriminant of
the polynomial is −4027, and so the ring of integers in Q[α] is Z + Zα+ Zα2. There
are the following factorizations:

2 (1 +X)(1 +X +X2) (2) = (2, 1 + α)(2, 1 + α+ α2)
3 X(1 +X2) (3) = (3, α)(3, 1 + α2)
5 X(2 +X2) (5) = (5, α)(5, 2 + α2)
7 (5 +X)(3 + 2X +X2) (7) = (7, α)(7, 3 + 2α + α2)
11 (1 +X)(4 + 10X +X2) (11) = (11, α)(11, 4 + 10α + α2)
13 2 + 5X +X3 (13) = (13)
17 (4 +X)(6 +X)(7 +X) (17) = (17, 4 + α)(17, 6 + α)(17, 7 + α)
4027 (509 +X)(1759 +X)2. (4027) = (4027, 509 + α)(4027, 1759 + α)2

On comparing the factorizations of (17) in the fields in the last two examples, we
see that the fields can’t be isomorphic.

Remark 3.51. When K is a number field, it is interesting to have a description
of the set Spl(K) of prime numbers that split in K. For K = Q[

√
m], this is the

set of p for which (m
p
) = 1, and we shall see later that the quadratic reciprocity law

gives a good description of the set. For any abelian Galois extension K of Q, class
field theory gives a similarly good description, but for an arbitrary extension very
little is known about what sets can occur. There is a theorem that says that two
Galois extensions K and K ′ of Q are isomorphic if and only if Spl(K) =Spl(K ′).
Moreover, this can be made into an effective procedure for determining when fields
are isomorphic. See Theorem 8.38 below.
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Example 3.52. In (2.38), we saw that f(X) = X5−X− 1 is irreducible in Q[X],
and that its discriminant is 19 · 151, which is square-free, and so, if α is a root of
f(X), then Z[α] is the ring of integers in Q[α]. We have

19 (6 +X)2(10 + 13X + 17X2 +X3)

(19) = (19, 6 + α)2(19, 10 + 13α + 17α2 + α3)

151 (9 +X)(39 +X)2 . . .

(151) = (151, 9 + α)(151, 39 + α)2 . . .

4027 (1261 +X)(2592 +X)(790 + 3499X + 174X2 +X3).

Thus (19) and (151) are ramified in Q[α], and 4027 isn’t, which is what Theorem
3.37 predicts.

Example 3.53. According to Maple,

1 +X +X2 +X3 +X4 ≡ (4 +X)4 mod 5

Why is this obvious?

Eisenstein extensions. Recall that Eisenstein’s Criterion says that a polynomial

Xm + a1X
m−1 + · · ·+ am,

such that ai ∈ Z, p|ai all i, and p2 does not divide am, is irreducible in Q[X]. We
will improve this result, but first we need to make two observations about discrete
valuations.

Let A be a Dedekind domain, and let B be its integral closure in a finite extension
L of its field of fractions K. Let p be a prime ideal of A and let p be an ideal of B
dividing p, say pB = Pe · · · . Write ordp and ordP for the normalized valuations on
K and L defined by p and P. Then

ordP|K = e · ordp
because, if (a) = pm · · · in A, then (a) = Pme · · · in B.

Next I claim that if

a1 + · · ·+ an = 0,

then the minimum value of ord(ai) must be attained for at least two i’s. Suppose
not, say ord(a1) < ord(ai) for all i > 1. Then

ord(a2 + a3 + ...+ am) ≥ min(ord(a2), ord(a3 + ...+ am)) ≥ · · · ≥ min
2≤i≤m

(ord(ai)),

but −a1 =
∑

ai implies ord(a1) = ord(
∑

ai), which is a contradiction.

Let A be a Dedekind domain and let p be a prime ideal in A. A polynomial

Xm + a1X
m−1 + · · ·+ am, ai ∈ A,

is said to be Eisenstein relative to p if

ordp(a1) > 0, . . . , ordp(am−1) > 0, ordp(am) = 1.

Proposition 3.54. Let f(X) ∈ A[X] be an Eisenstein polynomial with respect to
p. Then f(X) is irreducible, and if α is a root of f(X), then p is totally ramified in
K[α]; in fact pB = Pm with P = (p, α) and m = deg(f).
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Proof. Let L = K[α] — we have [L : K] ≤ m. Let P be a prime ideal dividing p,
with ramification index e say. Consider the equation

αm + a1α
m−1 + · · ·+ am = 0.

Because f(X) is Eisenstein,

ordP(α
m) = m · ordP(α);

ordP(aiα
m−i) ≥ (m− i) · ordP(α) + e;

ordP(am) = e.

If ordP(α) = 0, then the minimum value of ordP is taken for a single term, namely
αm. This is impossible, and so ordP(α) ≥ 1, and ordP(aiα

m−i) > ordP(am) = e for
i = 1, ..., m. From the remark preceding the proposition, we see that m ·ordP(α) = e.
Then

m · ordP(α) = e ≤ [K[α] : K] ≤ m,

and we must have equalities throughout: ordP(α) = 1, [K(α) : K] = m = e.
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4. The Finiteness of the Class Number

In this section we prove the first main theorem of the course: the class number of
a number field is finite. The method of proof is effective: it gives an algorithm for
computing the class group.

Norms of ideals. Let A be a Dedekind domain with field of fractions K, and let B
be the integral closure of A in a finite separable extension L. We want to define a ho-
momorphism Nm: Id(B)→Id(A) which is compatible with taking norms of elements,
i.e., such that the following diagram commutes:

L× → Id(B)
↓ Nm ↓ Nm (*)
K× → Id(A)

Because Id(B) is the free abelian group on the set of prime ideals, we only have to
define Nm(p) for p prime.

Let p be a prime ideal A, and factor pB =
∏

Pei
i . If p is principal, say p = (π),

then we should have

Nm(pB) = Nm(π · B) = Nm(π) · A = (πm) = pm, m = [L : K].

Also, because Nm is to be a homomorphism, we should have

Nm(pB) = Nm(
∏

Pei
i ) =

∏
Nm(Pi)

ei .

On comparing these two formulas, and recalling (3.36) that m =
∑

eifi, we see that
we should define Nm(Pi) = pfi. We take this as our definition:

Nm(P) = Pf(P/p) where p = P ∩ A and f(P/p) = [B/P : A/p].

To avoid confusion, I sometimes use N to denote norms of ideals.

If we have a tower of fields M ⊃ L ⊃ K, then

NL/K(NM/La) = NM/Ka

because f(Q/P) · f(P/p) = f(Q/p), i.e., [C/Q : B/P] · [B/P : A/p] = [C/Q : A/p]
where C ⊃ B ⊃ A are the integral closures of A in M , L, and K respectively.

Proposition 4.1. Let A ⊂ B and K ⊂ L be as above.

(a) For any nonzero ideal a ⊂ A, NL/K(aB) = am, where m = [L : K].
(b) Suppose L is Galois over K. Let P be a nonzero prime ideal of B and let

p = P ∩ A. Write p · B = (P1 · · ·Pg)
e (cf. 3.36). Then

NP · B = (P1 · · ·Pg)
ef =

∏
σ∈Gal(L/K)

σP.

(c) For any nonzero element β ∈ B, Nm(β) ·A = Nm(β · B) (i.e., (*) commutes).

Proof. (a) It suffices to prove this for a prime ideal p, and for such an ideal we
have that

N (pB) = N (
∏

Pei
i ) =df p

∑
eifi = pm (by 3.36).

(b) Since NPi = pf for each i, the first equality is obvious. In the course of the proof
of (3.36), we showed that Gal(L/K) acts transitively on the set {P1, ...,Pg}, and it
follows that each Pi occurs

m
g
= ef times in the family {σP | σ ∈ Gal(L/K)}.
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(c) Suppose first that L is Galois over K, and let β · B = b. The map a �→
a · B : Id(A) → Id(B) is injective (remember they are free abelian groups on the
nonzero prime ideals), and so it suffices to show that Nm(β) · B = Nm(b) · B. But

Nm(b) · B (b)
=

∏
σb =

∏
(σβ · B) = (

∏
σβ) · B = Nm(β) · B

as required.

In the general case, let E be a finite Galois extension of K containing L, and let
d = [E : L]. Let C be the integral closure of B in E. From (a), the Galois case, and
the transitivity of N we have that

NL/K(β · B)d = NE/K(β · C) = NmE/K(β) · A = NmL/K(β)
d · A.

As the group of ideals Id(A) is torsion-free, this implies thatNL/K(β ·B) = NmL/K(β)·
A.

Let a be a nonzero ideal in the ring of integers OK of a number field K. Then a is
of finite index in OK, and we let Na, the numerical norm of a, be this index:

Na = (OK : a).

Proposition 4.2. Let OK be the ring of integers in a number field K.

(a) For any ideal a in OK, NK/Q(a) = (N(a)); therefore N(ab) = N(a)N(b).
(b) Let b ⊂ a be fractional ideals in K; then

(a : b) = N(a−1b).

Proof. (a) Write a =
∏

pri
i , and let fi = f(pi/pi) where (pi) = Z ∩ pi; then

Nm(pi) = (pi)
fi . From the Chinese remainder theorem, OK/a ≈

∏OK/pri
i , and so

(OK : a) =
∏
(OK : pri

i ). In the course of the proof of (3.36), we showed that OK/pri
i

is a vector space of dimension firi over Fpi, and so (OK : pri
i ) = pfiri

i . On taking the

product over i, we find that (OK : a) =
∏
(pfiri

i ) = NK/Qa. When we identify the
set of nonzero ideals in Z with the set of positive integers, then N becomes identified
with N, and so the multiplicativity of N follows from that of N .

(b) For any nonzero d ∈ K, the map x �→ dx : K → K is an additive isomorphism,
and so (da : db) = (a : b). Since (da)(db)−1 = ab−1, we may suppose that a and b
are integral ideals. The required formula then follows from (a) and the formulas

(OK : a)(a : b) = (OK : b)

and

N(a) · N(a−1b) = N(b).

Statement of the main theorem and its consequences. We now state the main
theorem of this section and discuss some of its consequences.

Theorem 4.3. Let K be an extension of degree n of Q, and let ∆K be the dis-
criminant of K/Q. Let 2s be the number of nonreal complex embeddings of K. Then
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there exists a set of representatives for the ideal class group of K consisting of integral
ideals a with

N(a) ≤ n!

nn

(
4

π

)s

|∆K | 12 .

The number on the right is called the Minkowski bound — we sometimes denote
it by BK . The term CK = n!

nn

(
4
π

)s
is called the Minkowski constant. It takes the

following values:

N r s C
2 0 1 0.636
2 2 0 0.500
3 1 1 0.283
3 3 0 0.222
4 0 2 0.152
4 2 1 0.119
4 4 0 0.094
5 1 2 0.062
5 3 1 0.049
5 5 0 0.038

. . . . . . . . . . . .
100 100 0 0.93× 10−42

Here r is the number of real embeddings of K. We have

K ⊗Q R ≈ Rr × Cs,

and, if K = Q[α] and f(X) is the minimum polynomial of α, then r is the number
of real roots of f(X) and 2s is the number of its nonreal roots. To see that these
descriptions of r and s are agree, apply (1.13).

Before proving (4.3), we give some applications and examples.

Theorem 4.4. The class number of K is finite.

Proof. It suffices to show that there are only finitely many integral ideals a in
OK such that N(a) is less than the Minkowski bound — in fact, we shall show that,
for any integer M , there are only finitely many integral ideals a with N(a) < M . If

a =
∏

pri
i , then N(a) =

∏
prifi
i where (pi) = pi ∩ Q. As N(a) < M , this allows only

finitely many possibilities for the pi (and hence for the pi), and only finitely many
possibilities for the exponents ri.

Let S be the set of integral ideals in K with norm < BK . Then S is a finite set,
and Cl(OK) = S/ ∼, where a ∼ b if one ideal is the product of the other with a
principal (fractional) ideal. There is an algorithm for finding S, and an algorithm for
deciding whether a ∼ b, and so there is an algorithm for finding Cl(OK) (the group,
not just it’s order). To find S, find the prime ideal factors of enough prime numbers,
and form some of their products. To decide whether a ∼ b, one has to decide whether
c = ab−1 is principal. From (4.2b) we know that, for γ ∈ c,

c = (γ) ⇐⇒ Nc = |Nmγ|
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and so we have to solve the equation:

Nm γ = constant.

When we express γ in terms of an integral basis, this becomes a (very special) type
of diophantine equation. For a description of an algorithm for finding Cl(OK), see
Pohst and Zassenhaus 1989, p424.

Example 4.5. Let K = Q[i]. The condition in the theorem is that N(a) ≤ 2
4
4
π
2 <

1.27. There are no such ideals other than Z[i], and so Z[i] is a principal ideal domain.
(Of course, the elementary proof of this shows more, namely, that Z[i] is a Euclidean
domain. Even for rings of integers in number fields, it is not true that all principal
ideal domains are Euclidean domains. For example, Q[

√−19] has class number 1,
but its ring of integers is not a Euclidean domain. For more on such things, see
the survey article: Lemmermeyer, F., The Euclidean algorithm in algebraic number
fields, Exposition. Math., 13 (1995).)

Example 4.6. Let K = Q[
√−5]. Here N(a) ≤ 0.63 × √20< 3. Any ideal

satisfying this must divide (2). In fact, (2) = p2 where p = (2, 1 +
√−5), and

Np2 = N(2) = 4, and so Np = 2. The ideals OK and p form a set of representatives
for Cl(Z[

√−5]). The ideal p can’t be principal because there does not exist an ele-
ment α = m+n

√−5 such that Nm(α) = m2+5n2 = 2, and so Cl(Z[
√−5]) has order

2.

Example 4.7. Let K be a cubic field with discriminant < 0. Since the sign of ∆K

is (−1)s, and [K : Q] = r + 2s, we have s = 1, r = 1. The Minkowski bound is

B < 0.283|∆K | 12 .
For |∆K| ≤ 49, B < 2, and so for cubic fields with −49 ≤ ∆K < 0, the class number
h = 1. For example, this is true for the number fields with discriminants −23 and
−31 discussed earlier (see 2.35, 2.36).

For the field generated by a root of X3 + 10X + 1, the discriminant is −4027, and
the Minkowski bound is < 18. Recall from (3.49) that

(2) = (2, 1 + α)(2, 1 + α + α2).

Let p = (2, 1 + α)—its norm is 2. One can show that it generates the class group,
and that it has order 6 in the class group, i.e., p6 but no smaller power is principal.
Hence the class group is cyclic of order 6. (The proof takes quite a bit of hard work
if you do it by hand — see Artin 1959, pp. 160-162, 170-172.)

An extension L of a number field K is said to be unramified over K if no prime
ideal of OK ramifies in OL.

Theorem 4.8. There does not exist an unramified extension of Q.

Proof. Let K be a finite extension of Q. Since a set of representatives for the
class group must have at least one element, and that element will have numerical
norm ≥ 1, Theorem 4.3 shows that

|∆| 12 ≥ nn

n!

(π

4

)s
≥ nn

n!

(π

4

)n/2
.
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Let an = rhs. Then a2 > 1, and an+1

an
=

(
π
4

) 1
2 (1 + 1

n
)n > 1, and so the sequence an is

monotonically increasing. Hence the discriminant of K has absolute value > 1, and
we know from (3.37) that any prime dividing the discriminant ramifies.

We can now prove that there is no irreducible monic polynomial f(X) ∈ Z[X] of
degree > 1 with discriminant ±1. Let f(X) be such a polynomial, and let α be a root

of f(X). Then disc(Z[α]/Z) = ±1, and so Z[α] is the ring of integers in K
df
= Q[α]

and disc(OK/Z) = ±1, which we have just seen can’t happen.

Remark 4.9. There may exist unramified extensions of number fields other than
Q. In fact, class field theory says that the maximal abelian unramified11 extension
of K (called the Hilbert class field of K) has Galois group canonically isomorphic to
Cl(OK). For example, the theory says that Q[

√−5] has an unramified extension of
degree 2, and one verifies that Q[

√−1,√−5] is unramified over Q[
√−5].

Aside 4.10. Let K1 be a number field with class number hK1 > 1. Its Hilbert
class field is an abelian unramified extension K2 of K1 with Gal(K2/K1) ∼= Cl(K1).
Let K3 be the Hilbert class field of K2, and so on. In this way, we obtain a tower of
fields,

K1 ⊂ K2 ⊂ K3 ⊂ · · ·
It was a famous question (class field tower problem) to decide whether this tower
can be infinite, or must always terminate with a field of class number 1 after a finite
number of steps. It was shown by Golod and Shafarevich in the early 60s that the
tower is frequently infinite. (See the article by Roquette in Cassels and Fröhlich
1967.)

Example 4.11. Let α be a root of f(X) = X5−X +1. As we saw in (2.38) that
f(X) is irreducible and its discriminant is 19 × 151, and so the ring of integers of

K
df
= Q[α] is Z[α].
According to Theorem 4.3, every class of ideals for Q[α] contains an integral ideal

a with N(a) < 0.062 × √19× 151 = 3.3 < 4. If p is a prime ideal with N(p) = 2,
then f(p/(2)) = 1, and f(X) must have a root mod 2, but it doesn’t, and so p can’t
exist. Similarly, there is no prime ideal p with N(p) = 3, and so OK is a principal
ideal domain!

The Galois group of the splitting field M of f(X) is S5 (later we shall see how to
find Galois groups; for the moment type “galois(X5−X +1);” in Maple), and hence
[M : Q] = 120. It is possible to show that M is unramified over Q[

√
19× 151].

Lattices. Let V be a vector space of dimension n over R. A lattice Λ in V is a
subgroup of the form

Λ = Ze1 + · · ·+ Zer

with e1, ..., er linearly independent elements of V . Thus a lattice is the free abelian
subgroup of V generated by elements of V that are linearly independent over R.
When r = n, the lattice is said to be full. At the opposite extreme, Λ = {0} is a

11The Hilbert class field L of K is required to be unramified even at the infinite primes — this
means that every real embedding of K extends to a real embedding of L.
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lattice (generated by the empty set of elements). In terms of tensor products, one
can say that a full lattice in V is a subgroup Λ of V such that∑

ri ⊗ xi �→
∑

rixi, R⊗Z Λ→ V,

is an isomorphism.

Nonexample 4.12. The subgroup Z + Z
√
2 of R is a free abelian group of rank

2 (because
√
2 is not rational), but it is not a lattice in R.

We shall need another criterion for a subgroup Λ of V to be a lattice. The choice
of a basis for V determines an isomorphism of V with Rn, and hence a topology on
V ; the topology is independent of the basis, because any linear automorphism of Rn

is a homeomorphism. A subgroup Λ of V is said to be discrete if it is discrete in the
induced topology. Recall that a topological space is discrete if its points (hence all
subsets) are open. Thus to say that Λ is discrete means that every point α of Λ has
a neighbourhood U in V such that U ∩ Λ = {α}.

Lemma 4.13. The following conditions on a subgroup Λ of a finite-dimensional
real vector space V are equivalent:

(a) Λ is a discrete subgroup;
(b) there is an open subset U of V such that U ∩ Λ = {0};
(c) each compact subset of V intersects Λ in a finite set;
(d) each bounded subset of V intersects Λ in a finite set.

Proof. (a) ⇐⇒ (b). Obviously (a) implies (b). For the converse, note that the
translation map x �→ α + x : V → V is a homeomorphism, and that therefore if U is
a neighbourhood of 0 such that U ∩ Λ = {0}, then α + U is a neighbourhood of α
such that (α+ U) ∩ Λ = {α}.

(a)⇒(c). Condition (a) says that Λ is a discrete space for the induced topology.
Hence, if C is compact, then C ∩Λ is both discrete and compact, and therefore must
be finite.

(c)⇒(d). The closure of a bounded set in Rn (hence in V ) is compact, and so this
is obvious.

(d)⇒(b). Let U be a bounded open neighbourhood of 0. Then S = U ∩ Λ � {0}
is finite and hence closed, and so U � S is an open neighbourhood of {0} such that
(U � S) ∩ Λ = {0}.

Proposition 4.14. A subgroup Λ of V is a lattice if and only if it is discrete.

Proof. Clearly, a lattice is discrete. For the converse, let Λ be a discrete subgroup
of V , and let e1, ..., er be a maximal R-linearly independent subset of Λ. We shall use
induction on r.

If r = 0, Λ = 0, and there is nothing to prove.

If r = 1, then every α ∈ Λ can be written α = ae1, some a ∈ R. Because Λ is
discrete, {ae1 | |a| < M} ∩ Λ is finite, and so there is an f1 ∈ Λ such that, when we
write f1 = ae1, a attains its minimum value > 0. I claim Λ = Zf1. If α ∈ Λ, α /∈ Zf1,
then we can find an integer m such that α − mf1 = bf1 with 0 < b < 1; but then
(α−mf1) = bf1 = abe1, and 0 < ab < a, which contradicts our choice of f1.
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Let Λ′ = Λ ∩ (Re1 + · · ·+ Rer−1). Clearly this is a discrete subgroup of the vector
space V ′ =df Re1+ · · ·+Rer−1 and so, by induction, Λ′ = Zf1+ · · ·+Zfr−1 for some
fi that are linearly independent over R (and hence also form a basis for V ′). Every
α ∈ Λ can be written uniquely

α = a1f1 + · · · + ar−1fr−1 + aer, ai, a ∈ R.

Let ϕ : Λ→ R be the map α �→ a, and let Λ′′ = Im(ϕ). Note that a is also the image
of

(a1 − [a1])f1 + · · ·+ (ar−1 − [ar−1])fr−1 + aer, [∗] = integer part,

and so each element a ∈ Λ′′ in a bounded set, say with 0 ≤ |a| < M , is the image of
an element of Λ in a bounded set,

0 ≤ ai < 1, i = 1, . . . , r − 1, |a| < M.

Thus there are only finitely many such a’s, and so Λ′′ is a lattice in R, say Λ′′ =
Z · ϕ(fr), fr ∈ Λ.

Let α ∈ Λ. Then ϕ(α) = aϕ(fr) for some a ∈ Z, and ϕ(α − afr) = 0. Therefore
α− afr ∈ Λ′, and so it can be written

α − afr = a1f1 + · · ·+ ar−1fr−1, ai ∈ Z.

Hence

α = a1f1 + · · ·+ ar−1fr−1 + afr, ai, a ∈ Z,

which proves that Λ =
∑

Zfi.

Let V be a real vector space of dimension n, and let Λ be a full lattice in V , say
Λ =

∑
Zei. For any λ0 ∈ Λ, let

D = {λ0 +
∑

aiei | 0 ≤ ai < 1}.
Such a set is called a fundamental parallelopiped for Λ. The shape of the parallelopiped
depends on the choice of the basis (ei), but if we fix the basis and vary λ0 ∈ Λ, then
the parallelopipeds cover Rn without overlaps.

Remark 4.15. (a) For a fundamental parallelopiped D of a full lattice

Λ = Zf1 + · · ·+ Zfn

in Rn, the volume of D

µ(D) = | det(f1, · · · , fn)|.
(See any good book on calculus.) If also

Λ = Zf ′1 + Zf ′2 + · · · + Zf ′n,

then the determinant of the matrix relating {fi} and {f ′i} has determinant ±1, and
so the volume of the fundamental parallelopiped doesn’t depend on the choice of the
basis for Λ.

(b) When Λ ⊃ Λ′ are two full lattices Rn, we can choose bases {ei} and {fi} for
Λ and Λ′ such that fi = miei with mi a positive integer. With this choice of bases,
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the fundamental parallelopiped D of Λ is a disjoint union of (Λ : Λ′) fundamental
parallelopipeds D′ of Λ′. Hence

µ(D′)
µ(D)

= (Λ : Λ′) (*).

As we noted above, the choice of a basis for V determines an isomorphism V ≈ Rn,
and hence a measure µ on V . This measure is translation invariant (because the
Lebesgue measure on Rn is translation invariant), and well-defined up to multiplica-
tion by a nonzero constant (depending on the choice of the basis) 12. Thus the ratio
of the measures of two sets is well-defined, and the equation (*) holds for two full
lattices Λ ⊃ Λ′ in V .

Theorem 4.16. Let D0 be a fundamental parallelopiped for a full lattice in V , and
let S be a measurable subset in V . If µ(S) > µ(D0), then S contains distinct points
α and β such that β − α ∈ Λ.

Proof. The set S ∩D is measurable for all fundamental parallelopipeds D, and

µ(S) =
∑

µ(S ∩D)

(sum over translates of D by elements of Λ). For each D, a (unique) translate of
S ∩D by an element of Λ will be a subset of D0. Since µ(S) > µ(D0), at least two of
these sets will overlap, i.e., there exist elements α, β ∈ S such that

α − λ = β − λ′, some λ, λ′ ∈ Λ.

Then β − α ∈ Λ.

Remark 4.17. In the language of differential geometry, the theorem can be given
a more geometric statement. Let M = V/Λ; it is an n-dimensional torus. The
measure µ on V defines a measure on M for which M has measure µ(M) = µ(D).
The theorem says that if µ(S) > µ(M), then the restriction of the quotient map
V → M to S can’t be injective.

Let T be a set such that

α,β ∈ T ⇒ 1

2
(α− β) ∈ T, (*)

and let S = 1
2
T . Then T contains the difference of any two points of S, and so T will

contain a point of Λ other than the origin whenever

µ(D) < µ(
1

2
T ) = 2−nµ(T ),

i.e., whenever

µ(T ) > 2nµ(D).

We say that a set T is convex if, with any two points, it contains the line joining
the two points, and that T is symmetric in the origin if α ∈ T implies −α ∈ T . A
convex set, symmetric in the origin, obviously satisfies (*), and so it will contain a
point of Λ \ {0} if its volume is greater than 2nµ(D).

12The experts will recognize µ as being a Haar measure on V .
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Theorem 4.18 (Minkowski’s). Let T be a subset of V that is compact, convex,
and symmetric in the origin. If

µ(T ) ≥ 2nµ(D)

then T contains a point of the lattice other than the origin.

Proof. Replace T with (1+ε)T , ε > 0. Then µ((1+ε)T ) = (1+ε)nµ(T ) > 2nµ(D),
and so (1+ε)T contains a point of Λ other than the origin (see the preceding remark).
It will contain only finitely many such points because Λ is discrete and (1 + ε)T is
compact. Because T is closed

T = ∩ε>0(1 + ε)T.

If none of the points of Λ ∩ (1 + ε)T is in T , we will be able to shrink (1 + ε)T
(keeping ε > 0) so that it contains no point of Λ other than the origin—which is a
contradiction.

Remark 4.19. Theorem 4.18 was discovered by Minkowski in 1896. Although it
is almost trivial to prove, it has lots of nontrivial consequences, and was the starting
point for the branch of number theory (now almost defunct) called the “geometry
of numbers”. We give one immediate application of it to prove that every positive
integer is a sum of four squares of integers.

From the identity

(a2 + b2+ c2 + d2)(A2 +B2 + C2 +D2) =

(aA− bB − cC − dD)2 + (aB + bA + cD − dC)2 +

(aC − bD + cA + dB)2 + (aD + bC − cB + dA)2,

we see that it suffices to prove that a prime p is a sum of four squares.

Since

2 = 12 + 12 + 02 + 02,

we can suppose that p is odd. I claim that the congruence

m2 + n2 + 1 ≡ 0 mod p

has a solution in Z. As m runs through 0, 1, . . . , p − 1, m2 takes exactly (p + 1)/2
distinct values modulo p, and similarly for −1− n2. For the congruence to have no
solution, all these values, p+ 1 in total, must be distinct, but this is impossible.

Fix a solution m,n to the congruence, and consider the lattice Λ ⊂ Z4 consisting
of (a, b, c, d) such that

c ≡ ma+ nb, d ≡ mb− na mod p.

Then Z4 ⊃ Λ ⊃ pZ4 and Λ/pZ4 is a 2-dimensional subspace of F4
p (the a and b can be

arbitrary mod p, but then c and d are determined). Hence Λ has index p2 in Z4, and
so the volume of a fundamental parallelopiped is p2. Let T be a closed ball of radius
r centered at the origin. Then T has volume π2r4/2, and so if we choose r2 > 1.9p
say, then

µ(T ) > 16µ(D).
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According to Minkowski’s theorem, there is a point (a, b, c, d) ∈ (Λ\{0})∩T . Because
(a, b, c, d) ∈ Λ,

a2 + b2 + c2 + d2 ≡ a2(1 +m2 + n2) + b2(1 +m2 + n2) ≡ 0 mod p,

and because (a, b, c, d) ∈ T ,

a2 + b2 + c2 + d2 < 2p.

As a2 + b2 + c2 + d2 is a positive integer, these conditions imply that it equals p.

This result was stated by Fermat. Euler tried to prove it over a period of 40 years,
and Lagrange succeeded in 1770.

Some calculus. Let V be a finite-dimensional real vector space. A norm on V is a
function ‖ · ‖ : V → R such that

(4.20.1) for all x ∈ V , ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;
(4.20.2) for r ∈ R and x ∈ V , ‖rx‖ = |r|‖x‖;
(4.20.3) (triangle law) for x,y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Let V = Rr × Cs — it is a real vector space of dimension n = r + 2s. Define a
norm on V by

‖x‖ =
r∑
i=1

|xi|+ 2
s∑

i=r+1

|zi|

if x = (x1, ..., xr, zr+1, ..., zr+s).

Lemma 4.21. For any real number t > 0, let

X(t) = {x ∈ V | ‖x‖ ≤ t}.
Then

µ(X(t)) = 2r(π/2)stn/n!.

Proof. Since X(t) is symmetric with respect to the r real axes, we have

µ(X(t)) = 2r · µ(Y (t))

where Y (t) = {x | ‖x‖ ≤ t, x1, ..., xr ≥ 0}. For the complex variables, we make the
change of variable

zj = xj + iyj =
1

2
ρj(cos θj + i sin θj).

The Jacobian of this change of variables is ρj/4. After integrating over the θj, for
0 ≤ θj ≤ 2π, we find that

µ(X(t)) = 2r · 4−s · (2π)s
∫
Z

ρr+1 · · · ρr+sdx1 · · · dxrdρr+1 · · · dρr+s
where

Z = {(x, ρ) ∈ Rr+s | xi, ρi ≥ 0,
∑

xi +
∑

ρi ≤ t}.
The result now follows from the next lemma by taking: m = r+ s; ai = 0, 1 ≤ i ≤ r;
ai = 1, r + 1 ≤ i ≤ m; for then

µ(X(t)) = 2r · 4−s · (2π)s · tn/n!
as required.
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Lemma 4.22. For ai > 0 ∈ R, let

I(a1, ..., am, t) =

∫
Z(t)

xa1
1 · · ·xam

m dx1 · · · dxm,

where Z(t) = {x ∈ Rm | xi ≥ 0,
∑

xi ≤ t}. Then

I(a1, . . . , am; t) = t
∑
ai+m · Γ(a1 + 1) · · ·Γ(am + 1)

Γ(a1 + · · ·+ am +m+ 1)
.

Proof. Recall that, by definition, (e.g., Widder, D., Advanced Calculus, 1961,
Chapter 11),

Γ(x) =

∫ ∞

0+

e−ttx−1dt.

It takes the value Γ(n) = (n− 1)! for n a nonnegative integer.

By making the change of variables x′i = txi in I , we see that

I(a1, . . . , am; t) = t
∑
ai+mI(a1, . . . , am; 1).

Therefore it suffices to prove the formula for t = 1. We prove this case by induction
on m. First, we have

I(a1; 1) =

∫ 1

0

xa1
1 dx1 =

1

a1 + 1
=

Γ(a1 + 1)

Γ(a1 + 2)
.

Let

Z(xm)
′ = {x ∈ Rm−1 | xi ≥ 0,

∑
xi ≤ 1− xm}.

Then

I(a1, ..., am; 1) =

∫ 1

0

xam
m

(∫
Z(xm)′

xa1
1 · · ·xam−1

m−1 dx1 · · · dxm−1
)
dxm,

=

∫ 1

0

xam
m I(a1, ..., am−1; 1− xm)dxm

= I(a1, ..., am−1; 1)
∫ 1

0

xam
m (1− xm)

∑
ai+m−1dxm

= I(a1, ..., am−1; 1)
Γ(am + 1)Γ(a1 + · · ·+ am−1 +m)

Γ(a1 + · · ·+ am +m+ 1)
.

In the last step, we used the standard formula∫ 1

0

xm−1(1− x)n−1dx = B(m,n) =
Γ(m)Γ(n)

Γ(m + n)
.

Example 4.23. (a) Case r = 2, s = 0. Then X(t) is defined by |x|+ |y| ≤ t. It is
a square of side

√
2t, and so µ(X(t)) = 2t2.

(b) Case r = 0, s = 1. Then X(t) is the circle of radius t/2, which has area πt2/4.
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Lemma 4.24. Let a1, . . . , an be positive real numbers. Then

(
∏

ai)
1/n ≤ (

∑
ai)/n;

equivalently, ∏
ai ≤ (

∑
ai)

n/nn.

(The geometric mean is less than or equal to the arithmetic mean.)

Proof. See any good course on advanced calculus.

Finiteness of the class number. Let K be number field of degree n over Q.
Suppose that K has r real embeddings {σ1, . . . , σr} and 2s complex embedding
{σr+1, σ̄r+1, . . . , σr+s, σ̄r+s}. Thus n = r + 2s. We have an embedding

σ : K ↪→ Rr ×Cs, α �→ (σ1α, . . . , σr+sα).

We identify V
df
= Rr × Cs with Rn using the basis {1, i} for C.

Proposition 4.25. Let a be an ideal in OK; then σ(a) is a full lattice in V , and

the volume of a fundamental parallelopiped of σ(a) is 2−s · Na · |∆K| 12 .
Proof. Let α1, . . . , αn be a basis for a as a Z-module. To prove that σ(a) is a

lattice we show that the vectors σ(α1), . . . , σ(αn) are linearly independent, and we
prove this by showing that the matrix A, whose ith row is

(σ1(αi), . . . , σr(αi),&(σr+1αi),'(σr+1αi), . . . )

has nonzero determinant.

First consider the matrix B whose ith row is

(σ1(αi), . . . , σr(αi), σr+1(αi), σr+1(αi), . . . , σr+s(αi)).

We saw in (2.25) that det(B)2 = disc(α1, . . . , αn) �= 0.

What is the relation between the determinants of A and B? Add column r + 2 in
B to column r+1, and then subtract 1/2 column r+1 from column r+2. This gives
us 2&(σr+1(αi)) in column r + 1 and −i'(σr+1(αi)) in column r + 2. Repeat for the
other pairs of columns. These column operations don’t change the determinant of B,
and so

det(B) = (−2i)s det(A),

or

det(A) = (−2i)−s det(B) = (−2i)−s disc(α1, . . . , αn)
1/2 �= 0.

Thus σ(a) is a lattice in V.

Since σ(a) =
∑n

i=1 Zσ(αi), the volume of a fundamental parallelopiped D for σ(a)
is | det(A)|, and from (2.24) we know that

| disc(α1, . . . , αn)| = (OK : a)2 · | disc(OK/Z)|.
Hence

µ(D) = 2−s · | disc(α1, . . . , αn)| 12 = 2−s · Na · |∆K | 12 .
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Proposition 4.26. Let a be an ideal in OK. Then a contains a nonzero element
α of K with

|Nm(α)| ≤ BK · Na =

(
4

π

)s
n!

nn
Na|∆| 12 .

Proof. Let X(t) be as in (4.21), and letD be a fundamental domain for the lattice
σ(a). The set X(t) is compact convex and symmetric in the origin, and so, when we
choose t so large that µ(X(t)) ≥ 2n · µ(D), Minkowski’s Theorem shows that X(t)
contains a point σ(α) �= 0 of σ(a). For this α ∈ a,

|Nm(α)| = |σ1(α)| · · · |σr(α)||σr+1(α)|2 · · · |σr+s(α)|2
≤ (

∑
|σiα| +

∑
2|σiα|)n/nn (by 4.24)

≤ tn/nn.

In order to have µ(X(t)) ≥ 2n · µ(D), we need

2r(π/2)stn/n! ≥ 2n · 2−s · Na · |∆K | 12 ,
i.e.,

tn ≥ n! · 2
n−r

πs
· Na · |∆K | 12 .

When we take tn to equal the expression on the right, we find that

|Nm(α)| ≤ n!

nn
· 2

n−r

πs
· Na · |∆K| 12 .

As n− r = 2s, this is the required formula.

Proof of Theorem 4.3. Let c be a fractional ideal in K — we have to show
that the class of c in the ideal class group is represented by an integral ideal a with

Na ≤ BK
df
=

n!

nn

(
4

π

)s

|∆K| 12 .

For some d ∈ K×, dc−1 is an integral ideal, say (d) · c−1 = b. According to the result
just proved, there is a β ∈ b, β �= 0, with

|Nm(β)| ≤ BK · Nb.

Now βOK ⊂ b⇒ βOK = ab with a integral, and a ∼ b−1 ∼ c. Moreover,

Na · Nb = |NmL/K β| ≤ BK · Nb.

On cancelling Nb, we find that Na ≤ B.

Remark 4.27. Proposition 4.26 can be useful in deciding whether an integral ideal
is principal.
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Binary quadratic forms. The first person to consider class numbers (implicitly)
was Gauss. Rather than working with ideals, which hadn’t been defined then, he
worked with binary quadratic forms.

By a binary quadratic form we mean an expression of the form

Q(X, Y ) = aX2 + bXY + cY 2.

We call the form integral if Q(m,n) is an integer whenever m and n are integers, or,
equivalently, if a, b, c ∈ Z. The discriminant of Q is

dQ = b2 − 4ac.

A form is said to be nondegenerate if its discriminant is nonzero. Two integral
binary quadratic forms Q and Q′ are said to be equivalent if there exists a matrix

A =

(
α β
γ δ

)
∈ SL2(Z) such that

Q′(X, Y ) = Q(αX + βY, γX + δY ).

Clearly, equivalent forms have the same discriminant, but there exist inequivalent
forms with the same discriminant. The question considered by Gauss was to try to
describe the set of equivalence classes of forms with a fixed discriminant. As we shall
explain, this question can be interpreted in terms of ideals.

Let d �= 1 be a square-free integer, let K = Q[
√
d], and let dK = disc(OK/Z).

Define the norm form qK by

qK(X, Y ) = NmK/Q(X + Y
√
d) = X2 − dY 2, if d ≡ 2, 3 mod 4

or

qK(X, Y ) = NmK/Q(X + Y
1 +
√
d

2
) = X2 +XY +

1− d

4
Y 2, if d ≡ 1 mod 4.

In both cases qK has discriminant dK (= 4d or d).

In general, if Q is an integral binary quadratic form, then dQ = dKf
2, some integer

f , where K = Q[
√

dQ]. Moreover, if dQ = dK , then Q is primitive, i.e., gcd(a, b, c) =
1.

Fix a field K = Q[
√
d] and an embedding K ↪→ C. We choose

√
d to be positive if

d > 0 and to have positive imaginary part if d is negative. Set
√
dK = 2

√
d or
√
d.

Write Gal(K/Q) = {1, σ}. If d < 0, define Cl+(K) = Cl(K) (usual class group of K)
and if d > 0, define

Cl+(K) = Id(K)/P+(K)

where P+(K) is the group of principal ideals of the form (α) with α > 0 under every
embedding of K into R.

Let a be a fractional ideal in K, and let a1, a2 be a basis for a as a Z-module. From
(2.24) we know that ∣∣∣∣ a1 a2

σa1 σa2

∣∣∣∣
2

= dKNa2.
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After possibly reordering the pair a1, a2 we will have∣∣∣∣ a1 a2
σa1 σa2

∣∣∣∣ =
√

dKNa.

For such a pair, define

Qa1,a2(X, Y ) = Na−1 · NmK/Q(a1X + a2Y ).

This is an integral binary quadratic form with discriminant dK .

Theorem 4.28. The equivalence class of Qa1,a2(X, Y ) depends only on the image
of a in Cl+(K); moreover, the map sending a to the equivalence class of Qa1,a2 defines
a bijection from Cl+(K) to the set of equivalence classes of integral binary quadratic
forms with discriminant dK .

Proof. See Fröhlich and Taylor 1991, VII.2 (and elsewhere).

In particular, the set of equivalence classes is finite, and has the structure of an
abelian group. This was known to Gauss, even though groups had not yet been
defined. (Gauss even knew it was a direct sum of cyclic groups.)

Remark 4.29. Write hd for the class number of Q[
√
d], d a square-free integer �= 1.

In modern terminology, Gauss conjectured that, for a fixed h, there are only finitely
many negative d such that hd = h. (Actually, because of a difference of terminology,
this is not quite what Gauss conjectured.)

In 1935, Siegel showed that, for every ε > 0, there exists a constant c > 0 such that

hd > c|d| 12−ε, d < 0.

This proves Gauss’s conjecture. Unfortunately, the c in Siegel’s theorem is not effec-
tively computable, and so Siegel’s theorem gives no way of computing the d’s for a
given h.

In 1951, Tatuzawa showed that Siegel’s theorem is true with an effectively com-
putable c except for at most one exceptional d.

It is easy to show that hd = 1 for −d = 1, 2, 3, 7, 11, 19, 43, 67, 163 (exercise!). Thus
in 1951 it was known that there exist these 9 quadratic imaginary number fields with
class number 1, and possibly 1 more.

In 1952 Heegner proved that there was no 10th such field, but his proof was not
recognized to be correct for many years.

More recently (1983), Goldfeld, Gross, and Zagier showed, using completely differ-
ent methods from Siegel, that there is an effective procedure for finding all d < 0 with
hd equal to a given h. For an expository article on this, see Goldfeld, Bull. Amer.
Math. Soc. 13 (1985), 23–37.

By way of contrast, it is conjectured that there are infinitely many real quadratic
fields with class number 1, but this has not been proved.

There are tables of class numbers at the back of Borevich and Shafarevich 1966
(and elsewhere).
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5. The Unit Theorem

In this section we prove the second main theorem of the course.

Statement of the theorem. Recall that a finitely generated abelian group A is
isomorphic to Ators ⊕ Zr for some r where Ators is the (finite) subgroup of torsion
elements of A (i.e., of elements of finite order). The number r is uniquely determined
by A, and is called the rank of A.

Theorem 5.1. The group of units in a number field K is finitely generated with
rank equal to r + s− 1.

The theorem is usually referred to as the “Dirichlet Unit Theorem” although Dirich-
let in fact proved it for rings of the form Z[α] rather than OK.

Write UK (= O×K) for the group of units in K. The torsion subgroup of UK is
(obviously) the group µ(K) of roots of 1 in K.

A set of units u1, . . . , ur+s−1 is called a fundamental system of units if it forms a
basis for UK modulo torsion, i.e., if every unit u can be written uniquely in the form

u = ζum1
1 · · ·umr+s−1

r+s−1 , ζ ∈ µ(K), mi ∈ Z.

The theorem implies that µ(K) is finite (and hence cyclic). This can be proved
directly. In §7, we shall see that, if ζm is a primitive mth root of 1, then Q[ζ] is a
Galois extension of Q with Galois group isomorphic to (Z/mZ)×. Note that

#(Z/mZ)× = #{n | 0 ≤ n ≤ m− 1, gcd(n,m) = 1}
df
= ϕ(m) (Euler ϕ-function)

and

ϕ(m) =
∏

ϕ(pri
i ) =

∏
pri−1
i (pi − 1), for m =

∏
pri
i ,

which increases with m. Since

ζm ∈ K ⇒ Q[ζm] ⊂ K ⇒ ϕ(m)|[K : Q],

this implies that µ(K) is finite.

Lemma 5.2. An element α ∈ K is a unit if and only if α ∈ OK and NmK/Q α =
±1.

Proof. If α is a unit, then there is a β ∈ OK such that αβ = 1, and then Nm(α)
and Nm(β) lie in Z and 1 = Nm(αβ) = Nm(α) · Nm(β). Hence Nmα ∈ Z× = {±1}.

For the converse, fix an embedding σ0 of K into C, and use it to identify K with
a subfield of C. Recall (2.19) that

Nmα =
∏
σ

σα = α ·
∏
σ �=σ0

σα, σ : K ↪→ C.

Let β =
∏

σ �=σ0
σα. If α ∈ OK then β is an algebraic integer. If Nmα = ±1, then

β = ±α−1 and so belongs to K. Therefore, if α satisfies both conditions, it has an
inverse ±β in OK , and so is a unit.

For all real fields, i.e., fields with an embedding into R, µ(K) = {±1}; for “most”
nonreal fields, this is also true.
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Example 5.3. Let K be a quadratic field Q[
√
d]. Then OK = {m+n

√
d | m,n ∈

Z} or {m + n(1 +
√
d)/2 | m,n ∈ Z}. The units in K are given by the solutions of

the equation:

m2 − n2d = ±1, or (2m+ n)2 − dn2 = 4.

When d < 0, these equations (obviously) have only finitely many solutions, and so
UK = µ(K). Note that ζm lies in a quadratic field if and only if ϕ(m) ≤ 2. This only
happens for m dividing 4 or 6. Thus µ(K) = {±1} except for the following fields:

Q[i], µ(K) = {±1,±i};
Q[
√−3], µ(K) = {±1,±ρ,±ρ2}, with ρ = (1 +

√−3)/2).
When d > 0, the theorem shows that there are infinitely many solutions, and that
UK = ±uZ for some element u (called the fundamental unit). As H. Cohn (A Classical
Invitation...) puts it, “the actual computation of quadratic units lies in the realm of
popularized elementary number theory, including devices such as continued fractions.”
The method is surprisingly effective, and yields some remarkably large numbers —
see later.

Example 5.4. Let K = Q[α], where α is a root of X3 + 10X + 1. We know that
the discriminant ∆K = −4027. Since sign(∆K) = (−1)s and r+2s = 3, we must have
r = 1 = s. From its minimum equation, we see that Nmα = −1, and so α is a unit.
Later we shall show that α is a fundamental unit, and so UK = {±αm | m ∈ Z}.
Proof that UK is finitely generated. We first need a simple lemma.

Lemma 5.5. For any integers m and M , the set of all algebraic integers α such
that

(i) the degree of α is ≤ m, and

(ii) |α′| < M for all conjugates α′ of α
is finite.

Proof. The first condition says that α is a root of a monic irreducible polynomial
of degree≤ m, and the second condition implies that the coefficients of the polynomial
are bounded. Since the coefficients are integers, there are only finitely many such
polynomials, and hence only finitely many α’s.

Recall that we previously considered the map

σ : K → Rr ×Cs, α �→ (σ1α, . . . , σrα, σr+1α, . . . , σr+sα)

where {σ1, . . . , σr, σr+1, σ̄r+1, . . . , σr+s, σ̄r+s} is the complete set of embeddings of K
into C. It takes sums to sums. Now we want a map that takes products to sums, and
so we take logarithms. Thus we consider the map:

L : K× → Rr+s, α �→ (log |σ1α|, . . . , log |σrα|, 2 log |σr+1α|, . . . , 2 log |σr+sα|).
It is a homomorphism. If u is a unit in OK , then NmK/Q u = ±1, i.e.,

|σ1α| · · · |σrα||σr+1α|2 · · · |σr+sα|2 = 1.

On taking logs, we see that L(u) is contained in the hyperplane

H : x1 + · · ·+ xr + 2xr+1 + · · ·+ 2xr+s = 0.
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Dropping the last coordinate defines an isomorphism H ≈ Rr+s−1.

Proposition 5.6. The image of L : U → H is a lattice in H, and the kernel of L
is a finite group (hence is µ(K)).

Proof. Let C be a bounded subset of H containing 0, say

C ⊂ {x ∈ H | |xi| ≤ M}.
If L(u) ∈ C , then |σju| ≤ eM for all j, and Lemma 5.5 implies that there are only
finitely many such u’s. Thus L(U)∩C is finite, and this implies that L(U) is a lattice
in H (by 4.14). Since everything in the kernel maps into C , the kernel is finite.

Since the kernel of L is finite, we have

rank(U) = rank(L(U)) ≤ dimH = r + s− 1.

Computation of the rank. We now prove the unit theorem.

Theorem 5.7. The image L(U) of U in H is a full lattice; thus U has rank r+s−1.
Proof. To prove the theorem, we have to find a way to construct units. We work

again with the embedding

σ : K ↪→ Rr × Cs ≈ Rr+2s.

For x = (x1, ..., xr, xr+1, ...) ∈ Rr × Cs, define

Nm(x) = x1 · · · xr · xr+1 · x̄r+1 · · ·xr+s · x̄r+s.
Then Nm(σ(α)) = Nm(α). Note that |Nm(x)| = |x1| · · · |xr||xr+1|2 · · · |xr+s|2.

Recall from (4.25), that σ(OK) is a full lattice in Rr × Cs, and the volume of its

fundamental parallelopiped is 2−s · |∆| 12 ; in more detail, if α1, . . . , αn is a Z-basis for
OK , then we showed that the absolute value of the determinant of the matrix whose
ith row is

σ(αi) = (σ1(αi), . . . ,&(σr+1(αi)),'(σr+1(αi)), . . . )

is 2−s · |∆| 12 . In fact, we showed that we could get this matrix from the matrix whose
ith row is

(σ1(αi), . . . , σr+1(αi), σ̄r+1(αi), . . . )

by some elementary column operations that multiplied the absolute value of the
determinant by 2−s, and we know that the determinant of the second matrix is ±|∆| 12 .

In the rest of the proof, x will be a point of Rr × Cs with

1/2 ≤ |Nm(x)| ≤ 1.

Define

x · σ(OK) = {x · σ(α) | α ∈ OK}.
Since Rr × Cs is a ring, this product makes sense. This is again a lattice in Rr ×Cs,
and the volume of its fundamental parallelopiped is the determinant of the matrix
whose ith row is

(x1σ1(αi), . . . ,&(xr+1σr+1(αi)),'(xr+1σr+1(αi)), . . . ).
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As before, the absolute value of the determinant of this matrix is 2−s times the
absolute value of the determinant of the matrix whose ith row is

(x1σ1(αi), . . . , xr+1 · σr+1(αi), x̄r+1 · σ̄r+1(αi), . . . ),

which is

|∆| 12 · |Nm(x)|.
Therefore x ·σ(OK) is a lattice with 2−s|∆| 12 |Nm(x)| as the volume of its fundamental
domain. Note that as x ranges over our set these volumes remain bounded.

Let T be a compact convex subset of Rr × Cs, which is symmetric in the origin,
and whose volume is so large that, for every x in the above set, Minkowski’s theorem
(4.18) implies there is a point γ of OK , γ �= 0, such that x · σ(γ) ∈ T . The points of
T have bounded coordinates, and hence bounded norms, and so

x · σ(γ) ∈ T ⇒ |Nm(x · σ(γ))| ≤ M,

for some M (depending on T ); thus

|Nm(γ)| ≤M/Nm(x) ≤ 2M.

Consider the set of ideals γ · OK , where γ runs through the γ’s in OK for which
x · σ(γ) ∈ T for some x in our set. The norm N of such an ideal is ≤ 2M , and so
there can only be finitely many such ideals, say γ1 · OK, . . . , γt · OK . Now if γ is any
element of OK with x · σ(γ) ∈ T , some x, then γ · OK = γi · OK for some i, and
so there exists a unit ε such that γ = γi · ε. Then x · σ(ε) ∈ σ(γ−1i ) · T . The set
T ′ = σ(γ−11 ) · T ∪ ... ∪ σ(γ−1t ) · T is bounded, and so we have shown that, for each
x in our set there exists a unit ε such that the coordinates of x · σ(ε) are bounded
uniformly in x (the set T ′ doesn’t depend on x).

We are now ready to prove that L(U) is a full lattice in H. If r + s− 1 = 0, there
is nothing to prove, and so we assume r + s− 1 ≥ 1.

For each i, 1 ≤ i ≤ r + s, we choose an x in our set such that all the coordinates
of x except xi are very large (compared with T ′), and xi is sufficiently small that
|Nmx| = 1. We know that there exists a unit εi such that x · σ(εi) has bounded
coordinates, and we deduce that |σjεi| < 1 for j �= i, and hence that log |σjεi| < 0.

I claim that L(ε1), ..., L(εr+s−1) are linearly independent vectors in the lattice L(U).
For this we have to prove that the matrix whose ith row is

(l1(εi), ..., lr+s−1(εi)), li(ε) = log |σiε|,
is invertible. The elements of the matrix except those on the diagonal are negative,
but the sum

l1(εi) + · · ·+ lr+s−1(εi) + lr+s(εi) = 0,

and so the sum of the terms in the ith row

l1(εi) + · · ·+ lr+s−1(εi) = −lr+s(εi) > 0.

The next lemma implies that the matrix is invertible, and so completes the proof of
Theorem 5.7.

Lemma 5.8. Let (aij) be a real m×m matrix such that

(a) aij < 0 for i �= j;
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(b)
∑

j aij > 0 for i = 1, 2, ..., m.

Then (aij) is invertible.

Proof. If it isn’t, then the system of equations∑
aijxj = 0

has a nontrivial solution. Write x1, ..., xm for such a solution, and suppose i is such
that |xi| = max{|xj|}. We can scale the solution so that xi = 1. Then |xj| ≤ 1 for
j �= i, and the ith equation is

0 =
∑

aijxj = aii +
∑
j �=i

aijxj ≥ aii +
∑
j �=i

aij > 0.

S-units. Let S be a finite set of prime ideals of K, and define the ring of S-integers
to be

OK(S) = ∩p/∈SOp = {α ∈ K | ordp(α) ≥ 0, all p /∈ S}.
For example, if S = ∅, then OK(S) = OK .

Define the group of S-units, to be

U(S) = OK(S)× = {α ∈ K | ordp(α) = 0, all p /∈ S}.
Clearly, the torsion subgroup of U(S) is again µ(K).

Theorem 5.9. The group of S-units is finitely generated with rank r+s+#S−1.
Proof. Let p1, p2, . . . , pt be the elements of S. The homomorphism

u �→ (. . . , ordpi(u), . . . ) : U(S)→ Zt

obviously has kernel U . To complete the proof, it suffices to show that the image of
U(S) in Zt has rank t. Let h be the class number of K. Then phi is principal, say
phi = (πi), and πi is an S-unit with image

(0, . . . , h, . . . , 0) (h in the ith position).

Clearly these elements generate a subgroup of rank t.

For example, if K = Q and S = {(2), (3), (5)} then
U(S) = {±2k3m5n | k,m, n ∈ Z},

and the statement is obvious in this case.

Finding fundamental units in real quadratic fields. An expression

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

is called a continued fraction. We abbreviate the expression on the right as

[a0, a1, a2, . . . ].
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We shall always assume that the ai are integers with a1 > 0, a2 > 0, . . . . The
integers ai are called the quotients, and [a0, a1, ..., an] is called the nth convergent.
Every irrational number α can be expressed in just one way as an infinite continued
fraction, and the continued fraction is periodic if and only if α has degree 2 over Q.
(See any book on elementary number theory, for example, Hardy, G. H., and Wright,
E. M., An Introduction to the Theory of Numbers, Oxford Univ. Press, 1960 (4th
edition), Chapter X.)

Now let d be a square-free positive integer, and let ε be the (unique) fundamental

unit for Q[
√
d] with ε > 1. Let s be the period of the continued fraction for

√
d and

let p/q be the (s− 1)th convergent of it; then

ε = p + q
√
d if d ≡ 2, 3 mod 4, or d ≡ 1 mod 8,

and

ε = p + q
√
d or ε3 = p+ q

√
d otherwise.

Using Maple or Mathematica, it is very easy to carry this out, and one obtains some
spectacularly large numbers.

For example, to find the fundamental unit in Q[
√

94], first compute
√
94 = 9.

6954 . . . . Then compute the continued fraction of
√
94. One gets

{9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18, 1, 2, 3, . . . }.
This suggests the period is 16. Now evaluate the 15th convergent. One gets

2143295

221064

Hence the fundamental unit > 1 is

ε = 2143295 + 221064 · √94.
Compute that

(2143295)2 − (221064)2 · 94 = 1,

which verifies that ε is a unit.

When one carries out this procedure for Q[
√

9199], the first coefficient of the fun-
damental unit has 88 digits! The computer has no problem finding the fundamental
unit — the only problem is counting the length of the period, which is about 180.

Units in cubic fields with negative discriminant. Since the sign of the discrim-
inant is (−1)s (see 2.39), a cubic field K will have negative discriminant if and only
if r = 1 = s. We identify K with a subfield of R using its unique real embedding.
We have ∆ < 0, and the group of units is {±εm} for some ε (fundamental unit). We
want to find ε. Since -ε, −ε−1, and ε−1 are also fundamental units, we may suppose
that ε > 1.

Lemma 5.10. Let K be a cubic extension of Q with negative discriminant, and let
ε be the fundamental unit with ε > 1. Then

|∆K | < 4ε3 + 24.
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Proof. Since ε /∈ Q, it must generate K. The two conjugates of ε (other than ε
itself) must be complex conjugates, and so the product of ε with its conjugates must
be +1 (rather than −1). Write ε = u2, u ∈ R, u > 1. Then the remaining conjugates
of ε can be written

u−1eiθ, u−1e−iθ (0 ≤ θ ≤ π).

Let ∆′ = D(1, ε, ε2) be the discriminant of the minimum equation of ε. Then

∆′
1
2 = (u2 − u−1eiθ)(u2 − u−1e−iθ)(u−1eiθ − u−1e−iθ) = 2i(u3 + u−3 − 2 cos θ) sin θ.

If we set 2ξ = u3 + u−3, then

|∆′| 12 = 4(ξ − cos θ) sin θ,

which, for a given u, has a maximum where

ξ cos θ − cos2 θ + sin2 θ = 0,

or

−g(x) df
= ξx − 2x2 + 1 = 0, |x| ≤ 1, x = cos θ.

We seek a root of g(x) with |x| < 1. But g(1) = 1 − ξ < 0 (because u > 1 implies

ξ = u3−u−3

2
> 1), and g(− 1

2u3 ) =
3
4
(u−6 − 1) < 0. Since g(x) = 2x2 + · · · , it follows

g(x) has one root > 1, and that the desired root x0, with |x0| ≤ 1, is < − 1
2u3 . But

then

x20 >
1

4u6
⇒ u−6 − 4x20 < 0⇒ u−6 − 4x−20 − 4x40 < 0. (*)

This maximum yields

|∆′| ≤ 16(ξ2 − 2ξx0 + x20)(1− x20),

and, on applying the conditions ξx0 = 2x20−1, ξ2x20 = 4x40−4x20+1, and the inequality
(*) we find that

|∆′| ≤ 16(ξ2 + 1− x20 − x40) = 4u6 + 24 + 4(u−6 − 4x20 − 4x40) < 4u6 + 24.

Hence

|∆′| < 4ε3 + 24.

Since ∆′ = ∆K · (square of an integer), this completes the proof.

Example 5.11. Let K = Q[α] where α is a real root of X3 + 10X + 1. Here the

discriminant is −4027, and so ε > 3

√
4027−24

4
> 10 for ε the fundamental unit with

ε > 1. Note that Nm(α) = −1, and so α is a unit. Moreover, α = −0.0999003... and
so β = −α−1 = 10.00998.... Since β is a power of ε, we must have β = ε; i.e., −α−1
is the fundamental unit > 1. Thus

UK = {±αm | m ∈ Z}.
Once one knows ε, it becomes easier to compute the class group. We know (see

3.49) that there is a prime ideal p = (2, 1 + α) such that N(p) = 2. One shows that
p generates the class group, and it then remains to find the order of p. One verifies

that p6 is the ideal generated by (α−1)3
α+2

, and so it remains to show that p2 and p3 are
nonprincipal.
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Suppose p3 = (γ). Then γ2 = ±αm · (α−1)3
α+2

for some m and choice of signs. But

this says that at least one of the numbers α−1
α+2

, −α−1
α+2

, αα−1
α+2

, −αα−1
α+2

is a square. Let β
be that number. If q is a prime ideal such that β ∈ Oq (i.e., such that ordq(β) ≥ 0),
then we can look at β mod q and ask if it is a square.

We first work modulo 29. We have

X3 + 10X + 1 ≡ (X + 5)(X − 3)(X − 2) mod 29.

Take q to be the ideal (29, α − 2). The residue field OK/q is F29 = Z/(29), and the
map Z[α]→ F29 is α �→ 2 (mod 29). Thus

α− 1 �→ 1, α+ 2 �→ 4, (α + 2)−1 �→ 22, −1 �→ −1.
The numbers 1, 4, and −1 ≡ 122 are squares modulo 29, but 2 is not; hence m must
be 0. Since α−1

α+2
< 0 it can’t be a square in K (since it isn’t even in R), and so the

only possibility for β is −α−1
α+2

. We eliminate this by looking mod 7.

Take q = (7, α+ 3) (see 3.49). Then in the map Z[α]→ Z[α]/q = F7,

α �→ −3 = 4, −α− 1

α + 2
�→ −3

6
≡ −1

2
≡ −4 ≡ 3 mod 7,

and 3 is not a square modulo 7. Thus −α−1
α+2

is not a square in Q[α].

Similarly, p2 = (γ) can be shown to be impossible. Thus Cl(OK) is a cyclic group
of order 6.

Finding µ(K). If Q[ζm] ⊂ K, where ζm is a primitive mth root of 1, then
ϕ(m)|[K : Q]. Thus there are only finitely many possibilities for m. For each of them,
use the test in the later section on algorithms to determine whether the minimum
polynomial Φm for ζm has a root in K.

Finding a system of fundamental units. The strategy for finding units in the
general case seems to be to find lots of solutions to equations Nm(α) = m for m a
fixed small number, and then take quotients of solutions. Note that there can be
only finitely many ideals a with N(a) = m; thus if we have lots of elements αi with
Nm(αi) = m, then frequently αi · OK = αj · OK , and this implies that αi and αj
differ by a unit — note that this was the strategy used to prove the unit theorem.
See Pohst and Zassenhaus 1989, Chapter 5.

Regulators. There is one other important invariant that we should define. Let
t = r + s− 1, and let u1, ..., ut be a system of fundamental units. Then the vectors

L(ui)
df
= (log |σ1ui|, ..., log |σrui|, 2 · log |σr+1ui|, . . . , 2 log |σtui|) ∈ Rt

generate the lattice L(U) in Rt. The regulator is defined to be determinant of the
matrix whose ith row is L(ui). Thus, up to sign, the regulator is the volume of a
fundamental domain for L(U) (regarded as a full lattice in Rt).

The regulator plays the same role for the group of units (mod torsion) that the
discriminant plays for OK . One can similarly define the regulator of any set {ε1, ..., εt}
of independent units, and the square of the index of the group generated by the εi
and µ(K) in the full group of units is measured by ratio

|Reg(ε1, . . . , εt)|/|Reg(U)|.
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There are lower bounds for the regulator (see Pohst and Zassenhaus 1989, p 365)
similar to the one we proved for a cubic field with one real embedding.
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Cyclotomic extensions of Q, i.e., extensions generated by a root of 1, provide in-
teresting examples of the theory we have developed, but, more importantly, their
arithmetic has important applications.

The basic results. An element ζ of a field K is said to be a primitive nth root of
1 if ζn = 1 but ζd �= 1 for any d < n, i.e., if ζ is an element of order n in K×. For
example, the nth roots of 1 in C are the numbers e2πim/n, 0 ≤ m ≤ n − 1, and the
next lemma shows that e2πim/n is a primitive nth root of 1 if and only if m is relatively
prime to n.

Lemma 6.1. Let ζ be a primitive nth root of 1. Then ζm is again a primitive nth

root of 1 if and only if m is relatively prime to n.

Proof. This is a consequence of a more general fact: if α is an element of order n
in a group, then αm is also of order n if and only if m is relatively prime to n. Here
is the proof. If d|m,n, then (αm)

n
d = αn

m
d = 1. Conversely, if m and n are relatively

prime, then there are integers a and b such that

am+ bn = 1.

Now αam = α and so (αm)d = 1⇒ αd = (αam)d = 1⇒ n|d.
Let K = Q[ζ], where ζ is a primitive nth root of 1. Then K is the splitting field

of Xn − 1, and so it is Galois over Q. Let G = Gal(Q[ζ]/Q). It permutes the set
of primitive nth roots of 1 in K, and so, for any σ ∈ G, σζ = ζm for some integer
m relatively prime to n; moreover, m is well-defined modulo n. The map σ �→ [m]
is an injective homomorphism G → (Z/nZ)×. In FT, Proposition 5.7, it is proved

that this map is an isomorphism, and so [K : Q] = ϕ(n)
df
= #(Z/nZ)×. We shall give

another proof, and at the same time obtain many results concerning the arithmetic
of Q[ζ].

The cyclotomic polynomial Φn is defined to be,

Φn(X) =
∏

(X − ζm)

where the product runs over a set of representatives m for the elements of (Z/nZ)×,
for example, over the integers m, 0 ≤ m ≤ n−1, relatively prime to n. Alternatively,

Φn(X) =
∏

(X − ζ ′)

where ζ ′ runs over the primitive nth roots of 1. Because G permutes the ζ ′, Φn(X) ∈
Q[X], and clearly Φn(ζ) = 0. Therefore, Φn(X) is the minimum polynomial of ζ if
and only if it is irreducible, in which case [K : Q] = ϕ(n) and the map G→ (Z/nZ)×

is an isomorphism. Hence the following statements are equivalent:

(a) the map Gal(Q[ζ]/Q)→ (Z/nZ)× is an isomorphism;
(b) [Q[ζ] : Q] = ϕ(n);
(c) Gal(Q[ζ]/Q) acts transitively on the set of primitive nth roots of 1 (i.e., they are

conjugates);
(d) Φn(X) is irreducible (and so Φn(X) is the minimum polynomial of ζ).
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We shall see that all these statements are true.

Note that each nth root of 1 is a primitive dth root of 1 for exactly one d|n, and so

Xn − 1 =
∏
d|n

Φd(X) = (X − 1) · · ·Φn(X).

We first examine a cyclotomic extension in the case that n is a power pr of a prime.

Proposition 6.2. Let ζ be a primitive prth root of 1, and let K = Q[ζ].

(a) The field Q[ζ] is of degree ϕ(pr) = pr−1(p− 1) over Q.
(b) The ring of integers in Q[ζ] is Z[ζ].

(c) The element π
df
= 1−ζ is a prime element of OK, and (p) = (π)e with e = ϕ(pr).

(d) The discriminant of OK over Z is ±pc, some c (in fact, c = pr−1(pr − r − 1));
therefore, p is the only prime to ramify in Q[ζ].

Proof. Observe first that Z[ζ] ⊂ OK (obviously).

If ζ ′ is another primitive prth root of 1, then ζ ′ = ζs and ζ = ζ ′t for some integers
s and t not divisible by p, and so Q[ζ ′] = Q[ζ], Z[ζ ′] = Z[ζ]. Moreover,

1− ζ ′

1− ζ
= 1 + ζ + · · ·+ ζs−1 ∈ Z[ζ].

Similarly, (1− ζ)/(1− ζ ′) ∈ Z[ζ], and so (1− ζ ′)/(1− ζ) is a unit in Z[ζ] (hence also
in OK). Note that

Φpr(X) =
Xpr − 1

Xpr−1 − 1
=

tp − 1

t− 1
= 1 + t+ · · ·+ tp−1, t = Xpr−1

,

and so

Φpr(1) = p.

For its definition, we see that

Φpr(1) =
∏

(1− ζ ′) =
∏ 1− ζ ′

1− ζ
(1− ζ) = u · (1− ζ)ϕ(p

r),

with u a unit in Z[ζ]. Therefore we have an equality of ideals in OK ,
(p) = (π)e, π

df
= 1− ζ, e = ϕ(pr),

and so (p) has at least ϕ(pr) prime factors in OK . Now (3.36) implies that [Q[ζ] :
Q] ≥ ϕ(pr). This proves (a) of the Proposition since we know [Q[ζ] : Q] ≤ ϕ(pr).

Moreover we see that π must generate a prime ideal in OK , otherwise, again, (p)
would have too many prime-ideal factors. This completes the proof of (c).

For future reference, we note that, in OK,
(p) = pϕ(p

r), p = (π), f(p/p) = 1.

The last equality means that the map Z/(p)→ OK/(π) is an isomorphism.

We next show that (up to sign) disc(Z[ζ]/Z) is a power of p. Since

disc(OK/Z) · (OK : Z[ζ])2 = disc(Z[ζ]/Z),

this will imply:

(i) disc(OK/Z) is a power of p;
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(ii) (OK : Z[ζ]) is a power of p, and therefore pM (OK/Z[ζ]) = 0 for some M , i.e.,
pMOK ⊂ Z[ζ].

To compute disc(Z[ζ]/Z), we shall use the formula in (2.33), which in our case
reads:

disc(Z[ζ]/Z) = ±NmK/Q(Φ
′
pr(ζ)).

On differentiating the equation

(Xpr−1 − 1) · Φpr(X) = Xpr − 1

and substituting ζ for X, we find that Φ′pr(ζ) = prζp
r−1/(ζp

r−1 − 1). Clearly

NmK/Q ζ = ±1, NmK/Q p
r = (pr)ϕ(p

r) = prϕ(p
r).

We shall show that

NmK/Q(1− ζp
s

) = pp
s

, 0 ≤ s < r,

and so

NmK/QΦ
′
pr(ζ) = ±pc, c = r(p− 1)pr−1 − pr−1 = pr−1(pr − r − 1).

First we compute NmK/Q(1− ζ). The minimum polynomial of 1− ζ is Φpr(1−X),
which has constant term Φpr(1) = p, and so NmK/Q(1− ζ) = ±p.

We next compute NmK/Q(1 − ζp
s
) some s < r. Because ζp

s
is a primitive pr−sth

root of 1, the computation just made (with r replaced by r − s) shows that

NmQ[ζps
]/Q(1− ζp

s

) = ±p.
Using that

NmM/K = NmL/K ◦NmM/L and NmM/Lα = α[M :L] if α ∈ L,

we see that

NmK/Q(1− ζp
s

) = pa where a = [Q[ζ] : Q[ζp
s

]] = ϕ(pr)/ϕ(pr−s) = ps.

This completes the proof of (d).

We are now ready to prove (b). As we observed above the inclusion Z ↪→ OK
induces an isomorphism Z/(p) → OK/(π). Thus

Z + πOK = OK ,
and a fortiori

Z[ζ] + πOK = OK. (*)

On multiplying through by π, we obtain the equality

πZ[ζ] + π2OK = πOK. (**)

Let α ∈ OK ; equation (*) shows that we can write α = α′ + γ with α′ ∈ πOK
and γ ∈ Z[ζ], and (**) shows that we can write α′ = α′′ + γ′ with α′′ ∈ π2OK and
γ′ ∈ Z[ζ]. Hence α = (γ + γ′) + α′′, and so

Z[ζ] + π2OK = OK .
On repeating these arguments, we find that

Z[ζ] + πmOK = OK
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for all m ∈ N. Since πϕ(p
r) = p× (unit), this implies that

Z[ζ] + pm · OK = OK
for all m ∈ N. But for m large enough, we know that pmOK ⊂ Z[ζ], and so it can
be dropped from the equation. Hence Z[ζ] = OK , and this completes the proof of
(b).

Remark 6.3. (a) The sign of the disc(Q[ζ]/Q), ζ any root of 1, can be computed
most easily by using (2.39a). Clearly Q[ζ] has no real embeddings unless ζ = ±1
(and Q[ζ] = Q), and so, except for this case,

sign(disc(Q[ζ]/Q)) = (−1)s, s = [Q[ζ] : Q]/2.

If ζ is a primitive prth root of 1, pr > 2, then

[Q[ζ] : Q]/2 = (p− 1)pr−1/2

which is odd if and only if pr = 4 or p ≡ 3 mod 4.

(b) Let ζ and ζ ′ be primitive prth and qsth roots of 1. If p and q are distinct primes,
then Q[ζ] ∩Q[ζ ′] = Q, because K ⊂ Q[ζ] ⇒ p ramifies totally in K and q does not,
and K ⊂ Q[ζ ′]⇒ q ramifies totally in K and p does not, and these are contradictory
unless K = Q.

Theorem 6.4. Let ζ be a primitive nth root of 1.

(a) The field Q[ζ] is of degree ϕ(n) over Q.
(b) The ring of integers in Q[ζ] is Z[ζ].
(c) If p ramifies in Q[ζ] then p|n; more precisely, if n = pr · m with m relatively

prime to p, then

(p) = (p1 · · · ps)ϕ(pr)

in Q[ζ] with the pi distinct primes in Q[ζ].

Proof. We use induction on the number of primes dividing n. Write n = pr ·m
with m not divisible by p. We may assume the theorem for m. Note that ζpr

df
= ζm

is a primitive prth root of 1, ζm = ζp
r
is a primitive mth root of 1, and that Q[ζ] =

Q[ζpr ] ·Q[ζm]. Consider the fields:

Q[ζ]
� �

Q[ζpr ] Q[ζm].
� �

Q

The prime ideal (p) ramifies totally in Q[ζpr ], say (p) = pϕ(p
r), but doesn’t ramify in

Q[ζm], say (p) =
∏

pi with the pi distinct primes. On comparing the factorization
of (p) in Q[ζ] obtained by going two different ways up the tower, one finds that
[Q[ζ] : Q[ζm]] = ϕ(pr), and that (p) = (

∏
qi)

ϕ(pr), where

piOQ[ζ] = q
ϕ(pr)
i , pOQ[ζ] =

∏
qi.

Again we are using (3.36). Therefore [Q[ζ] : Q[ζm]] = ϕ(pr), and [Q[ζ] : Q] =
ϕ(pr) · ϕ(m) = ϕ(n). The following lemma completes the proof of the theorem
(because it shows that OQ[ζ] = Z[ζpr , ζm] = Z[ζ]).
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Lemma 6.5. Let K and L be finite extensions of Q such that

[KL : Q] = [K : Q] · [L : Q],

and let d = gcd(disc(OK/Z), disc(OL/Z)). Then

OK·L ⊂ d−1OK · OL.
Proof. Let {α1, ..., αm} and {β1, ..., βm} be integral bases forK and L respectively.

Then αiβj is a basis for K · L over Q. Thus every γ ∈ OK·L can be written uniquely
in the form

γ =
∑
ij

aij
r
αiβj, aij, r ∈ Z.

After dividing out any common factors from top and bottom, no prime factor of r
will divide all the aij, and we then have to show that r|d.

Identify L with a subfield of C, and let σ be an embedding of K into C. Then σ
extends uniquely to an embedding of K · L into C fixing the elements of L (to see
this, write K = Q[α]; then K · L = L[α], and the hypothesis on the degrees implies
that the minimum polynomial of α doesn’t change when we pass from Q to L; there
is therefore a unique L-homomorphism L[α] → C sending α to σα). On applying σ
to the above equation, we obtain an equation

σ(γ) =
∑
ij

aij
r
σ(αi)βj.

Write xi =
∑

j(aij/r)βj, and let σ1, σ2, ..., σm be the distinct embeddings of K into
C. We obtain a system of m linear equations∑

i

σk(αi)xi = σk(γ), k = 1, 2, ..., m,

and Cramer’s rule tells us that

Dxi = Di

where D = det(σj(αi)) and Di ∈ OK·L. According to (2.25), D2 = ∆
df
= disc(OK/Z),

and so

∆ · xi = DDi ∈ OK·L.
But ∆xi =

∑ ∆aij

r
βj, and the βjs form an integral basis for OL, and so

∆aij

r
∈ Z.

Hence r|∆aij all i, j, and, because of our assumption on r and the aijs, this implies
that r|∆.

Similarly, r| disc(OL/Z), and so r divides the greatest common divisor of
disc(OK/Z) and disc(OL/Z).

Remark 6.6. (a) Statement (c) of the theorem shows that if p|n then p ramifies
unless ϕ(pr) = 1. Since ϕ(pr) = pr−1(p − 1), this can only happen if pr = 2. Thus
p|n ⇒ p ramifies in Q[ζn] except when p = 2 and n = 2 · (odd number). Note that
Q[ζn] = Q[ζ2n] if n is odd.

(b) In the situation of the lemma,

disc(KL/Q) = disc(K/Q)[L : Q] · disc(L/Q)[K : Q],
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provided the discriminants on the right are relatively prime. The example Q[i,
√
5] =

Q[i] · Q[
√−5] shows that the condition is necessary, because the extensions have

discriminants 4252, 4, and 20 respectively. Using this, one can show that, for ζn a
primitive nth root of 1,

disc(Q[ζn]/Q) = (−1)ϕ(n)/2nϕ(n)/
∏
p|n

pϕ(n)/(p−1).

Class numbers of cyclotomic fields. Let ζ be a primitive pth root of 1, p an odd
prime. It is known that the class number of Q[ζ] grows quite rapidly with p, and that
in fact the class number is 1 if and only if p ≤ 19.

Here is how to prove that Q[ζ] has class number > 1 when p = 23. The Galois
group of Q[ζ] over Q is cyclic of order 22, and therefore has a unique subgroup of
index 2. Hence Q[ζ] contains a unique quadratic extension K of Q. Since 23 is the
only prime ramifying in Q[ζ], it must also be the only prime ramifying in K, and this
implies that K = Q[

√−23]. One checks that (2) splits in Q[
√−23], say (2) = pq,

that p is not principal, and that p3 is principal. Let P be a prime ideal of Z[ζ]
lying over p. Then NP = pf , where f is the residue class degree. Since f divides
[Q[ζ] : Q[

√−23]] = 11, we see that f = 1 or 11 (in fact, f = 11). In either case,
pf is not principal, and this implies that P is not principal, because the norm of a
principal ideal is principal.

Because of the connection to Fermat’s last theorem, primes p such that p does not
divide the class number of Q[ζ] are of particular interest. They are called regular.
Kummer found a simple test for when a prime is regular: define the Bernoulli numbers
Bn by the formula

t

et − 1
=
∞∑
n=0

Bn
tn

n!
, Bn ∈ Q;

then p is regular if and only if p divides the numerator of some Bk with k =
2, 4, . . . , p − 3. It has long between known that (unfortunately) there are infinitely
many irregular primes, and it still not proved that there are infinitely many regu-
lar primes (although the first case of Fermat’s theorem is known for infinitely many
primes). It is expected that 61% of primes are regular and 39% are irregular.

Units in cyclotomic fields. Let ζ be a primitive nth root of 1, n > 2. Define

Q[ζ]+ = Q[ζ + ζ−1].

For example, if ζ = e2πi/n, then Q[ζ]+ = Q[cos 2π
n
]. Under any embedding of Q[ζ]

into C, ζ−1 maps to the complex conjugate of ζ, and therefore the image of Q[ζ]+

is fixed under complex conjugation and hence lies in R. Thus Q[ζ]+ has ϕ(n)/2 real
embeddings (and no nonreal embeddings), whereas Q[ζ] has ϕ(n) nonreal complex
embeddings. Therefore the unit theorem (5.1) shows that the groups of units in Q[ζ]
and Q[ζ]+ have the same rank, and so, if u is a unit in Q[ζ], then um ∈ Q[ζ]+ for
some m. In fact a more precise result is known.

Proposition 6.7. Assume n is a prime power; then every unit u ∈ Q[ζ] can be
written

u = ζ · v
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with ζ a root of unity and v a unit in Q[ζ]+.

Proof. This is not difficult — see Fröhlich and Taylor 1991, VI.1.19, or Washing-
ton 1982.

Fermat’s last theorem. Fermat’s last theorem is known to be true for p a regular
prime. Here we prove a weaker result, known as the first case of Fermat’s last theorem.

Theorem 6.8. Let p be an odd prime. If the class number of Q[ζ] is not divisible
by p, then there is no integer solution (x, y, z) to

Xp + Y p = Zp

with p 
 xyz.

Let (x, y, z) be a solution of Fermat’s equation with p 
 xyz. After removing any
common factor, we may suppose that gcd(x, y, z) = 1.

We first treat the case p = 3. The only cubes modulo 9 are −1, 0, 1, and so

x3 + y3 ≡ −2, 0, 2 mod 9, z3 ≡ −1, 1 mod 9,

which are contradictory. Similarly we may eliminate the case p = 5 by looking modulo
25. Henceforth we assume p > 5.

If x ≡ y ≡ −z mod p, then −2zp ≡ zp and p|3z, contradicting our hypotheses.
Hence one of the congruences can’t hold, and after rewriting the equation xp+(−z)p =
(−y)p if necessary, we may assume that p 
 x− y.

The roots of Xp + 1 are −1,−ζ, . . . ,−ζp−1, and so

Xp + 1 =

p−1∏
i=0

(X + ζ i).

Hence

p−1∏
i=0

(x+ ζ iy) = zp.

The idea of the proof is to exploit this factorization and what we know of the arith-
metic of Q[ζ] to obtain a contradiction.

Let p be the unique prime ideal of Z[ζ] dividing (p); thus (see 6.2) p = (1− ζ i) for
any i, 1 ≤ i ≤ p− 1.

Lemma 6.9. The elements x+ ζ iy of Z[ζ] are relatively prime in pairs.

Proof. We have to show that there does not exist a prime ideal q dividing x+ ζ iy
and x + ζjy for i �= j. Suppose there does. Then q|((ζ i − ζj)y) = py, and q|((ζj −
ζ i)x) = px. By assumption, x and y are relatively prime, and therefore q = p. Thus
x+y ≡ x+ ζ iy ≡ 0 mod p. Hence x+y ∈ p∩Z = (p). But zp = xp+yp ≡ x+y ≡ 0
mod p, and so p|z, which contradicts our hypotheses.

Lemma 6.10. For any α ∈ Z[ζ], αp ∈ Z + pZ[ζ].
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Proof. Write

α = a0 + a1ζ + · · ·+ ap−2ζp−2, ai ∈ Z.

Then

αp ≡ ap0 + ap1 + · · ·+ app−1 mod p,

which lies in Z.

Lemma 6.11. Suppose α = a0 + a1ζ + · · ·+ ap−1ζp−1 with ai ∈ Z and at least one
ai = 0. If α is divisible by an integer n, i.e., if α ∈ nZ[ζ], then each ai is divisible by
n.

Proof. Since 1 + ζ + · · · + ζp−1 = 0, any subset of {1, ζ, . . . , ζp−1} with p − 1
elements will be a Z-basis for Z[ζ]. The result is now obvious.

We can now complete the proof of Theorem 6.8. Consider the equation

p−1∏
i=0

(x+ ζ iy) = (z)p

as an equality of ideals in Z[ζ]. Since the factors on the left are relatively prime in
pairs, each one must be the pth power of an ideal, say

(x+ ζ iy) = api

for some ideal ai in Z[ζ]. This equation says ai has order dividing p in the class group,
but we are assuming that the class group of Z[ζ] is of order prime to p, and so ai
itself is principal, say ai = (αi).

Take i = 1, and omit subscripts. Then we have that x+ ζy = uαp for some unit u
in Z[ζ]. We apply (6.7) to write u = ζrv where v̄ = v. According to (6.10), there is
an a ∈ Z such that αp ≡ a mod p. Therefore

x+ ζy = ζrvαp ≡ ζrva mod p.

Also

x+ ζ̄y = ζ−rvᾱp ≡ ζ−rva mod p.

On combining these statements, we find that

ζ−r(x+ ζy) ≡ ζr(x+ ζ−1y) mod p,

or

x+ ζy − ζ2rx− ζ2r−1y ≡ 0 mod p. (*)

If 1, ζ, ζ2r−1, ζ2r are distinct, then, because p ≥ 5, Lemma 6.11 implies that p divides x
and y, which is contrary to our original assumption. The only remaining possibilities
are:

(a) 1 = ζ2r; but then (*) says

ζy − ζ−1y ≡ 0 mod p,

and Lemma 6.11 implies p|y, which contradicts our original assumption.
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(b) 1 = ζ2r−1; then ζ = ζ2r, and (*) says

(x− y)− (x− y)ζ ≡ 0 mod p,

and Lemma 6.11 implies that p|x − y, which contradicts the choice of x and y
made at the start of the proof.

(c) ζ = ζ2r−1; but then (*) says

x− ζ2x ≡ 0 mod p,

and Lemma 6.11 implies that p|x, which contradicts our original assumption.

This completes the proof.
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7. Valuations; Local Fields

In this section, we define the notion of a valuation and study the completions of
number fields with respect to valuations.

Valuations. A (multiplicative) valuation on a field K is a function x �→ |x| : K → R
such that

(a) |x| > 0 except that |0| = 0;
(b) |xy| = |x||y|
(c) |x+ y| ≤ |x|+ |y| (triangle inequality).

If the stronger condition

(c′) |x+ y| ≤ max{|x|, |y|}
holds, then | | is called a nonarchimedean valuation.

Note that (a) and (b) imply that | | is a homomorphism K× → R>0 (multiplicative
group of positive real numbers). Since R>0 is torsion-free, | | maps all roots of unity
in K× to 1. In particular, | − 1| = 1, and | − x| = |x| for all x.

Example 7.1. (a) For any number field K, and embedding σ : K ↪→ C, we get a
valuation on K by putting |a| = |σa|.

(b) Let ord : K× → Z be an (additive) discrete valuation, and let e be a real number
with e > 1; then

|a| = (1/e)ord(a), a �= 0, |0| = 0

is a nonarchimedean valuation on K. For example, for any prime number p, we have
the p-adic valuation | |p on Q :

|a|p = (1/e)ordp(a).

Usually we normalize this by taking e = p; thus

|a|p = (1/p)ordp(a) = 1/pr if a = a0 · pr with ordp(a0) = 0.

Similarly, for any prime ideal p in a number field K, we have a normalized p-adic
valuation

|a|p = (1/Np)ordp(a).

(c) On any field we can define the trivial valuation: |a| = 1 for all a �= 0. When K
is finite, there is no other (because all nonzero elements of a finite field are roots of
1).

Nonarchimedean valuations. Recall that this means that, instead of the triangle
inequality, we have

|x+ y| ≤ max{|x|, |y|}.
By induction, this condition implies that

|
∑

xi| ≤ max{|xi|}. (*)

Proposition 7.2. A valuation | | is nonarchimedean if and only if it takes bounded
values on {m1 | m ∈ Z}.



92 7. Valuations; Local Fields.

Proof. If | | is nonarchimedean, then, for m > 0,

|m1| = |1 + 1 + · · · + 1| ≤ |1| = 1.

As we noted above, | − 1| = |1|, and so | −m1| = |m1| ≤ 1.

Conversely, suppose |m1| ≤ N for all m. Then

|x+ y|n = |
∑(

n
r

)
xryn−r | ≤

∑
r

|
(

n
r

)
| |x|r|y|n−r.

Clearly |x|r|y|n−r ≤ max{|x|n, |y|n} = max{|x|, |y|}n and

(
n
r

)
is an integer, and so

|x+ y|n ≤ N(n + 1)max{|x|, |y|}n.
On taking nth roots we find that

|x+ y| ≤ N1/n(n+ 1)1/nmax{|x|, |y|}.
When we let n→∞, the terms involving n tend to 1 (to see this, take logs).

Corollary 7.3. If char K �= 0, then K has only nonarchimedean valuations.

Proof. In this case, the set {m · 1 | m ∈ Z} is finite.
Aside 7.4. The classical archimedean axiom states that if a and b are nonzero

elements of K, then there is an n ∈ N such that |b| < |na|. The proposition shows
that the nonarchimedean valuations are precisely those for which the archimedean
axiom fails, whence the name.

As we noted above, a discrete (additive) valuation ord on K determines a valuation
by

|x| = e−ord(x),

any e > 1. Taking logs gives loge |x| = −ord(x), or ord(x) = − loge |x|. This suggests
how we might pass from multiplicative valuations to additive valuations.

Proposition 7.5. Let | | be a nontrivial nonarchimedean valuation, and put
v(x) = − log |x|, x �= 0 (log to base e for any real e > 1). Then v : K× → R
satisfies the following conditions:

(a) v(xy) = v(x) + v(y);
(b) v(x+ y) ≥ min{v(x), v(y)}.
If v(K×) is a discrete in R, then it is a multiple of a discrete valuation ord : K× �

Z ⊂ R.

Proof. That v satisfies (a) and (b) is obvious. For the last statement, note that
v(K×) is a subgroup of R (under addition). If it is a discrete subgroup, then it is a

lattice (by 4.14), which means that v(K×) = Zc for some c. Now ord
df
= c−1 · v is an

additive discrete valuation K× � Z.

We shall say | | is discrete when |K×| is a discrete subgroup of R>0. Note that,
even when |K×| is discrete in R, |K| usually won’t be, because 0 will be a limit point
for the set |K×|. For example, |pn|p = p−n, which converges to 0 as n→∞.
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Proposition 7.6. Let | | be a nonarchimedean valuation. Then

A
df
= {a ∈ K | |a| ≤ 1} is a subring of K, with

U
df
= {a ∈ K | |a| = 1} as its group of units, and

m
df
= {a ∈ K | |a| < 1} as its unique maximal ideal.

The valuation | | is discrete if and only if m is principal, in which case A is a discrete
valuation ring.

Proof. The first assertion is obvious. If | | is discrete, then A and m are the pair
associated (as in 3.28) with the additive valuation − log | |, and so A is a discrete
valuation ring and m is generated by any element π ∈ K× such that |π| is the largest
element of |K×| less than one. Conversely, if m = (π), then |K×| is the subgroup of
R>0 generated by |π|.

Remark 7.7. There do exist nondiscrete nonarchimedean valuations. For exam-
ple, let Qal be an algebraic closure of Q. We shall see later that the p-adic valuation
| |p : Q→ R extends to Qal (in many different ways). Since Qal contains an element
p1/n for all n, we see that |Qal×| * (p−1)1/n = 1/ n

√
p for all n, and 1/ n

√
p → 1 as

n → ∞. In fact, one can show that |Qal×| = {pr | r ∈ Q}, which is not discrete in
R>0.

Equivalent valuations. Note that a valuation | | defines a metric on K, with dis-
tance function

d(a, b) = |a− b|,
and hence a topology on K. In more detail, for a ∈ K, the sets

U(a, ε) = {x ∈ K | |x− a| < ε}, ε > 0,

form a fundamental system of open neighbourhoods of a. A set is open if and only if
it is a union of sets of the form U(a, ε).

For example, for the topology on Q defined by | |p, a and b are close if their
difference is divisible by a high power of p. In particular, the sequence

1, p, p2, . . . , pn, . . .

converges to 0.

The topology defined by the p-adic valuation | |p is called the p-adic topology on
K.

Proposition 7.8. Let | |1, | |2 be valuations on K, with | |1 nontrivial. The
following conditions are equivalent:

(a) | |1, | |2 define the same topology on K;
(b) |α|1 < 1⇒ |α|2 < 1;
(c) | |2 = | |a1 for some a > 0.

Proof. (a) ⇒ (b): Since |αn| = |α|n, clearly αn → 0 if and only if |α| < 1.
Therefore (a) implies that

|α|1 < 1 ⇐⇒ |α|2 < 1.
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(b) ⇒ (c): Because | |1 is nontrivial, there exists a y ∈ K such that |y| > 1. Let

a = log |y|2/ log |y|1,
so that

log |y|2 = a · log |y|1,
or

|y|2 = |y|a1.
Now let x be any nonzero element of K. There is a real number b such that

|x|1 = |y|b1.
To prove (c), it suffices to prove that

|x|2 = |y|b2,
because then

|x|2 = |y|b2 = |y|ab1 = |x|a1.

Let m/n, n > 0, be a rational number > b. Then

|x|1 = |y|b1 < |y|
m
n
1

and so

|xn/ym|1 < 1.

From our assumption (b), this implies that

|xn/ym|2 < 1

and so

|x|2 < |y|
m
n
2 .

This is true for all rational numbers m
n
> b, and so

|x|2 ≤ |y|b2.
A similar argument with rational numbers m

n
< b shows that

|x|2 ≥ |y|b2,
and so we have equality, which completes the proof of (a).

Two valuations are said to be equivalent if they satisfy the conditions of the propo-
sition.
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Properties of discrete valuations. We make some easy, but important, observa-
tions about discrete valuations.

(7.9.1) For an additive valuation, we are given that

ord(a+ b) ≥ min{ord(a), ord(b)}
and we checked (3.27 et seq.) that this implies that equality holds if ord(a) �= ord(b).
For multiplicative valuations, we are given that

|a+ b| ≤ max{|a|, |b|},
and a similar argument shows that equality holds if |a| �= |b|. This has the following
consequences.

(7.9.2) Recall that we define a metric on K by setting d(a, b) = |a− b|. I claim that
if x is closer to b than it is to a, then d(a, x) = d(a, b). For we are given that

|x− b| < |x− a|,
and this implies that

|b− a| = |b− x+ x− a| = |x− a|.
(7.9.3) Suppose

a1 + a2 + · · ·+ an = 0.

Then an argument as in the subsection on Eisenstein extensions (end §3) shows that
the maximum value of the summands must be attained for at least two values of the
subscript.

Complete list of valuations for Q. We now give a complete list of the valuations
on Q (up to equivalence). We write | |∞ for the valuation on Q defined by the usual
absolute value on R, and we say that | |∞ is normalized.

Theorem 7.10 (Ostrowski). Let | | be a nontrivial valuation on Q.

(a) If | | is archimedean, then | | is equivalent to | |∞.
(b) If | | is nonarchimedean, then it is equivalent to | |p for exactly one prime p.

Proof. Let m,n be integers > 1. Then we can write

m = a0 + a1n + · · ·+ arn
r

with the ai integers, 0 ≤ ai < n, nr ≤ m. Let N = max{1, |n|}. By the triangle
inequality,

|m| ≤
∑
|ai||n|i ≤

∑
|ai|N r.

We know

r ≤ log(m)/ log(n),

(log relative to some e > 1) and the triangle inequality shows that

|ai| ≤ |1 + · · ·+ 1| = ai|1| = ai ≤ n.

On putting these into the first inequality, we find that

|m| ≤ (1 + r)nN r ≤ (1 +
logm

logn
)nN

log m
log n .
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In this inequality, replace m with mt (t an integer), and take tth roots:

|m| ≤
(
1 +

t logm

log n

)1
t

n
1
tN

log m
log n .

Now let t→∞. The terms involving t tend to 1, and so

|m| ≤ N
log m
log n . (*)

Case (i): For all integers n > 1, |n| > 1.

In this case N = |n|, and (*) yields:

|m|1/ logm ≤ |n|1/ logn.
By symmetry, we must have equality, and so there is an c > 1 such that

c = |m|1/ logm = |n|1/ logn

for all integers m,n > 1. Hence

|n| = clogn = elog c logn = nlog c, all integers n > 1.

Let a = log c, and rewrite this

|n| = |n|a∞, all integers n > 1,

where | |∞ is the usual absolute value on Q. Since both | | and | |a∞ are homomorphisms
Q× → R>0, the fact that they agree on a set of generators for the group Q× (the
primes and −1) implies that they agree on all of Q×.

Case (ii): For some n > 1, |n| ≤ 1.

In this case, N = 1, and (*) implies |m| ≤ 1 for all integers m. Therefore the
valuation is nonarchimedean. Let A be the associated local ring and m its maximal
ideal. From the definition of A, we know that Z ⊂ A. Then m∩Z is a prime ideal in
Z (because m is a prime ideal), and it is nonzero for otherwise the valuation would
be trivial. Hence m∩Z = (p) for some p. This implies that |m| = 1 if m is an integer
not divisible by p, and so |npr| = |p|r if n is a rational number whose numerator and
denominator are not divisible by p. If a is such that |p| = (1/p)a; then |x| = |x|ap for
all x ∈ Q.

Theorem 7.11 (Product Formula). For p = 2, 3, 5, 7, ...,∞, let | |p be the corre-
sponding normalized valuation on Q. For any nonzero rational number a∏

|a|p = 1 (product over all p including ∞).

Proof. Let α = a/b, a, b ∈ Z. Then |α|p = 1 unless p|a or p|b. Therefore |α|v = 1
for all but finite many v’s, and so the product is really finite.

Let π(a) =
∏ |a|v. Then π is a homomorphism Q× → R×, and so it suffices to

show that π(−1) = 1 and π(p) = 1 for each prime number p. The first is obvious,
because | − 1| = 1 for all valuations | |. For the second, note that

|p|p = 1/p, |p|q = 1, q a prime �= p, |p|∞ = p.

The product of these numbers is 1.
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The primes of a number field. LetK be an algebraic number field. An equivalence
class of valuations on K is called a prime of K.

Theorem 7.12. Let K be an algebraic number field. There exists exactly one
prime of K

(a) for each prime ideal p;
(b) for each real embedding;
(c) for each conjugate pair of complex embeddings.

Proof. See §8.
In each equivalence class of valuations of K we select a normalized valuation13 as

follows:

for a prime ideal p of OK , |a|p = (1/Np)ordp(a) = (Op : (a))−1;
for a real embedding σ : K ↪→ R, |a| = |σa|;
for a nonreal complex embedding σ : K ↪→ C, |a| = |σa|2.

Note that this last is not actually a valuation, because it doesn’t satisfy the triangle
law. There are various ways of getting around this problem the best of which is simply
to ignore it.

Notations. We generally write v for a prime. If it corresponds to a prime ideal p of
OK , then we call it a finite prime, and we write pv for the ideal. If it corresponds
to a (real or nonreal) embedding of K, then we call it an infinite (real or complex)
prime. We write | |v for a valuation in the equivalence class. If L ⊃ K and w and v
are primes of L and K such that | |w restricted to K is equivalent to | |v, then we say
that w divides v, or w lies over v, and we write w|v. For a finite prime, this means
Pw ∩ OK = pv or, equivalently, that Pw divides pv · OL. For an infinite prime, it
means that w corresponds to an embedding σ : L ↪→ C that extends the embedding
corresponding to v (or its complex conjugate).

Theorem 7.13 (Product Formula). For each prime v, let | |v be the normalized
valuation. For any nonzero α ∈ K,∏

|α|v = 1 (product over all primes of K).

Proof. The product formula for a general number field follows from the product
formula for Q and the next result.

Lemma 7.14. Let L be a finite extension of a number field K.

(a) Each prime on K extends to a finite number of primes of L.
(b) For any prime v of K and α ∈ L×,∏

w|v
|α|w = |NmL/K α|v.

13These are the most natural definitions for which the product formula hold. Alternatively, let
Kv be the completion of K with respect to the valuation v, and let µ be a Haar measure on (Kv,+)
— it is uniquely determined up to a nonzero constant. For any nonzero a ∈ Kv, µa(U) df= µ (aU) is
also a Haar measure on (Kv,+), and so µa = c(a)µ for some constant c(a). In fact, c(a) = |a|, the
normalized valuation of a.
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Proof. See §8.
Remark 7.15. The product formula is true in two other important situations.

(a) Let K be a finite extension of k(T ) where k is a finite field. According to
(7.3), the valuations of K are all discrete, and hence correspond to discrete valuation
rings in K. As in the number field case, we can normalize a valuation by setting
|a|v = (1/Nv)ordv(a) where Nv is the number of elements in the residue field of the
discrete valuation ring and ordv : K

× � Z. Then
∏

v |a|v = 1. The proof of this is
easy when K = k(T ), and the general case is obtained by means of a result like (7.14).

(b) Let K be a finite extension of k(T ) where k is an algebraically closed field. In
this case we only look at primes that are trivial when restricted to k. All such primes
are nonarchimedean, and hence correspond to discrete valuations ordv : K

× � Z. Fix
an e > 1, and define |a|v = (1/e)ordv(a) for every v. Then

∏ |a|v = 1 for all a ∈ K×.
This of course is equivalent to the statement

∑
ordv(a) = 0.

For example, let X be a compact Riemann surface, and let K be the field of mero-
morphic functions on X. For each point P of X we have a discrete valuation, defined
by ordP (f) = m or −m according as f has a zero or pole of order m at P . The valu-
ations ordP are precisely the valuations on K trivial on C ⊂ K, and so the product
formula for K is simply the statement that f has as many zeros as poles.

The proof of this runs as follows: the Cauchy integral formula implies that if f is
a nonconstant meromorphic function on an open set U in C, and Γ is the oriented
boundary of a compact set C contained in U , then∫

Γ

f ′(z)
f(z)

dz = 2πi(Z − P )

where Z is the number of zeros of f in C and P is the number of poles of f , both
counted with multiplicities. This formula also holds for compact subsets of manifolds.
If the manifoldM is itself compact, then we can take C = M , which has no boundary,
and so the formula becomes

Z − P = 0,

i.e., ∑
ordP (f) = 0, P ∈M.

Completions. Let K be a field with a nontrivial valuation. A sequence (an) of
elements in K is called a Cauchy sequence if, for every ε > 0, there is an N such that

|an − am| < ε, all m,n > N.

The field K is said to be complete if every Cauchy sequence has a limit in K. (The
limit is necessarily unique.)

Example 7.16. Consider the sequence in Z

4, 34, 334, 3334, . . . .
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As

|am − an|5 = 5−n (m > n),

this is a Cauchy sequence for the 5-adic topology on Q. Note that

3 · 4 = 12, 3 · 34 = 102, 3 · 334 = 1002, 3 · 3334 = 10002, . . .

and so 3 · an − 2→ 0 as n→∞. Thus limn→∞ an = 2/3 ∈ Q.

There is a similar notion of Cauchy series. For example, any series of the form

a−np−n + · · ·+ a0 + a1p+ · · · + amp
m + · · · , 0 ≤ ai < p,

is a Cauchy series in Q for the p-adic topology.

Theorem 7.17. Let K be a field with a valuation | |. Then there exists a complete

valued field (K̂, | |) and a homomorphism K → K̂ preserving the valuation that is
universal in the following sense: any homomorphism K → L from K into a complete
valued field (L, | |) preserving the valuation, extends uniquely to a homomorphism

K̂ → L. The image of K in K̂ is dense.

Proof. (Sketch) The uniqueness of (K̂, | |) is obvious from the universal property.

Let K̄ be the closure of K in K̂. Then K̄ is complete, and so the homomorphism
K → K̄ extends to K̂ — this implies that K̄ = K̂, and so K is dense in K̂.

We now construct K̂. Every point of K̂ will be the limit of a sequence of points
in K, and the sequence will be Cauchy. Two Cauchy sequences will converge to the
same point in K̂ if and only if they are equivalent in the sense that

lim
n→∞
|an − bn| = 0.

This suggests defining K̂ to be the set of equivalence classes of Cauchy sequences in
K. Define addition and multiplication of Cauchy sequences in the obvious way, and
verify that K̂ is a field. There is a canonical map K → K̂ sending a to the constant
Cauchy sequence a, a, a, . . . , which we use to identify K with a subfield of K̂ . We
can extend a homomorphism from K into a second complete valued field L to K̂ by
mapping the limit of a Cauchy sequence in K̂ to its limit in L.

For a prime v of K, we write Kv for the completion of K with respect to v. When
v corresponds to a prime ideal p, we write Kp for the completion, and Ôp for the ring
of integers in Kp. For example, Qp is the completion of Q with respect to the p-adic

valuation | |p. We write Zp (not Ẑp) for the ring of integers in Qp (the ring of p-adic
integers).

Completions in the nonarchimedean case. Let | | be a discrete nonarchimedean
valuation on K, and let π be an element of K with largest value < 1 (therefore π
generates the maximal ideal m in the valuation ring A). Such a π is called a local
uniformizing parameter.

The set of values is

|K| = {cm | m ∈ Z} ∪ {0}, c = |π|.
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Let a ∈ K̂×, and let an be a sequence in K converging to a. Then |an| → |a| (because
| | is a continuous map), and so |a| is a limit point for the set |K×|. But |K×| is
closed (being discrete), and so |a| ∈ |K×|. Thus |K̂| = |K|, and so | | is a discrete

valuation on K̂ also. Let ord : K× � Z be a normalized discrete additive valuation
corresponding to | |; then ord extends to a normalized discrete valuation on K̂.

Note that if an → a �= 0, then |an| → |a| �= 0, and (because |K×| is discrete),
|an| = |a| for all n large enough.

The ring associated with | | in K̂ is

Â = {a ∈ K̂ | |a| ≤ 1}.
Clearly Â is the set of limits of Cauchy sequences in A, and it is therefore the closure
of A in K̂. The maximal ideal in Â is

m̂ = {a ∈ K̂ | |a| < 1}.
Again it is the set of limits of Cauchy sequences in m, and so it is the closure of m.
Similarly, m̂n is the closure of mn. Let π be an element with ord(π) = 1; then π

generates m in A and m̂ in Â.

Lemma 7.18. For any n, the map A/mn → Â/m̂n is an isomorphism.

Proof. Note that

mn = {a ∈ A | |a| ≤ |π|n} = {a ∈ A | |a| < |π|n−1}
is both open and closed in A. Because it is closed, the map is injective; because m̂n

is open, the map is surjective.

Proposition 7.19. Choose a set S of representatives for A/m, and let π generate
m. The series

a−nπ−n + · · · + a0 + a1π + · · ·+ amπ
m + · · · , ai ∈ S

is a Cauchy series, and every Cauchy series is equivalent to exactly one of this form.
Thus each element of K̂ has a unique representative of this form.

Proof. Let sM =
∑M

i=−n aiπ
i. Then

|sM − sN | ≤ |π|M+1, if M < N,

which shows that the sequence sM is Cauchy. Let α ∈ K̂. Because |K̂| = |K|, we can
write α = πnα0 with α0 a unit in Â. From the definition of S, we see that there exists
an a0 ∈ S such that α0− a0 ∈ m̂. Now α0−a0

π
∈ Â, and so there exists an a1 ∈ S such

that α0−a0

π
− a1 ∈ m̂. Now there exists an a2 such that α0−a0−a1π

π2 − a2 ∈ m̂, etc. In
the limit,

α0 = a0 + a1π + · · · , α = πnα0.

Note that

|∑ aiπ
i| = |πm|

if am is the first nonzero coefficient. Therefore
∑

aiπ
i = 0 (if and) only if ai = 0 for

all i. This proves the uniqueness.
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Thus, for example, every equivalence class of Cauchy sequences in Q for | |p has a
unique representative of the form

a−np−n + · · ·+ a0 + a1p+ a2p
2 + · · · , 0 ≤ ai < p.

Note that the partial sums of such a series are rational numbers. It is as easy to work
with such series as with decimal expansions of real numbers — just remember high
powers of p are small, and hence the first to be ignored.

We explain this in more detail. The maps

Z/(pn)→ Z(p)/(p
n)→ Zp/(p

n)

are both bijective (see 3.11 for the first map). Let α ∈ Zp. Because the map is
bijective, for all n, there is an an ∈ Z such that α ≡ an mod pn. Note that, if n < m,
an ≡ am mod pn, which implies that (an) is a Cauchy sequence. Let

an ≡ c0 + c1p+ · · ·+ cn−1pn−1 mod pn, 0 ≤ ci ≤ p− 1;

then

α =
∑
i≥0

cip
i.

Conversely, if α =
∑

cip
i, 0 ≤ ci ≤ p − 1, then c0, c1, . . . is the unique sequence of

integers, 0 ≤ ci ≤ p− 1, such that

α ≡
n−1∑
i=0

cip
i mod pn.

If α ∈ Qp but not Zp, then pmα ∈ Zp for a sufficiently large m, and the above
arguments can be applied to it.

Example 7.20. To illustrate how to work with p-adic numbers, I prove that −1
is a square in Q5. We have to find a series

a0 + a15 + a25
2 + · · · , ai = 0, 1, 2, 3, or 4

such that

(a0 + a15 + a25
2 + ...)2 + 1 = 0.

We first need that

a20 + 1 ≡ 0 mod 5.

Thus we must take a0 = 2 or 3; we choose 2 (choosing 3 would lead to the other root).
Next we need

(2 + a15)
2 + 1 ≡ 0 mod 52,

and so we want

5 + 20a1 ≡ 0 (mod 52).

We must take a1 = 1. Suppose we have found

cn = a0 + a15 + a25
2 + · · ·+ an5

n

such that

c2n + 1 ≡ 0 (mod 5n+1),
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and consider cn + an+15
n+1. We want

(cn + an+15
n+1)2 + 1 ≡ 0 (mod 5n+2),

for which we need that

c2n + 1 + 2cnan+15
n+1 ≡ 0 (mod 5n+2),

or that

2cnan+15
n+1 ≡ (−1− c2n) (mod 5n+2),

or that

2cnan+1 ≡ (−1− c2n)/5
n+1 (mod 5),

or that

4an+1 = (−1− c2n)/5
n+1 (mod 5).

Since 4 is invertible modulo 5, we can always achieve this. Hence we obtain a series
converging to −1.

There is a leisurely, and very detailed, discussion of Qp in the first chapter of N.
Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer, 1977.

Aside 7.21. Those who have taken a course in commutative algebra will know
another method of completing a local ring R, namely

R′ = lim
←

R/mn = {(an) | an ∈ R/mn, an+1 ≡ an mod mn}.
In the case that R is a discrete valuation ring, this definition agrees with the above.
There is an injective homomorphism

R→ R′, a �→ (an), an = a mod πn.

We can define a homomorphism R′ → R̂ as follows: let (an) ∈ R′, and choose a
representative a′n for an in R; then (a′n) is an Cauchy sequence whose equivalence
class is independent of the choices of the a′n, and we can map (an) to (a′n). It is easy
to see that the map R′ → R̂ is surjective, and it follows that it is an isomorphism.

Newton’s lemma. The argument in the above example works much more generally.
Let f(X) = X2+1. Then all we in fact used was that f(X) has a simple root modulo
5.

In the rest of this subsection, A is a complete discrete valuation ring and π generates
its maximal ideal (unless we say otherwise).

Proposition 7.22. Let f(X) ∈ A[X], and let a0 be a simple root of f(X) mod π.
Then there is a unique root a of f(X) with a ≡ a0 mod π.

Proof. Suppose we have found an ≡ a0 mod π such that

f(an) ≡ 0 mod πn+1.

Let an+1 = an + hπn+1, h ∈ A. We want

f(an + hπn+1) ≡ 0 mod πn+2.

Recall (trivial Taylor’s expansion) that, for any polynomial f,

f(c+ t) = f(c) + t · f ′(c) + · · ·
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where f ′(X) is the formal derivative of f(X). Then

f(an + hπn+1) = f(an) + hπn+1 · f ′(an) + · · · ,
which we want ≡ 0 mod πn+2. Hence we must take h so that

h = −f(an)
πn+1

· f ′(an)−1 mod π.

This is possible because πn|f(an) and
f ′(an) ≡ f ′(a0) mod π,

which is nonzero, and hence invertible, mod π.

There is a stronger form of the proposition. Recall Newton’s approximation method
for finding a solution to f(x) = 0, where f is a function of a real variable. Starting
from an a0 such that f(a0) is small, define a sequence a1, a2, ... by putting

an+1 = an − f(an)/f
′(an).

Often an converges to a root of f(x). In the above proof, this is what we did, but the
same argument can be made to work more generally.

Theorem 7.23 (Newton’s lemma). Let f(X) ∈ A[X]. Let a0 ∈ A satisfy

|f(a0)| < |f ′(a0)|2.
Then there is a unique root a of f(X) such that

|a− a0| ≤
∣∣∣∣ f(a0)

f ′(a0)2

∣∣∣∣ .
Proof. Define a sequence a0, a1, . . . by setting

an+1 = an − f(an)

f ′(an)

and prove that it is a Cauchy sequence converging to a root of f(X). See, for example,
EC 2.8. [In fact, it is not necessary to assume that | | is discrete — see Lang 1970, p.
42.]

Proposition 7.22 shows that a simple factor of degree 1 of f(X) mod π lifts to a
factor of f(X). This generalizes.

Theorem 7.24 (Hensel’s lemma). Let k be the residue field of A; for f(X) ∈
A[X], write f̄(X) for the image of f in k[X]. Consider a monic polynomial f(X) ∈
A[X]. If f̄(X) factors as f̄ = g0h0 with g0 and h0 monic and relatively prime (in
k[X]), then f itself factors as f = gh with g and h monic and such that ḡ = g0 and
h̄ = h0. Moreover, g and h are uniquely determined, and (g, h) = A[X].

We first prove that (g, h) = A[X] (such a pair is said to be strictly coprime; in k[X]
strictly coprime just means coprime, i.e., relatively prime).

Lemma 7.25. Let A be a local ring with residue field k. If f, g ∈ A[X] are such
that f̄ and ḡ are relatively prime and f is monic, then (f, g) = A[X].

Proof. Let M = A[X]/(f, g). As f is monic, this is a finitely generated A-
module. As (f̄ , ḡ) = k[X], we have that (f, g) + mA[X] = A[X] and so mM = M .
Now Nakayama’s Lemma (1.3) implies that M = 0.
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We next prove uniqueness of g and h.

Lemma 7.26. Let A be a local ring with residue field k. Suppose f = gh = g′h′

with g, h, g′, h′ all monic, and ḡ = ḡ′, h̄ = h̄′ with ḡ and h̄ relatively prime. Then
g = g′ and h = h′.

Proof. From the preceding lemma we know that (g, h′) = A[X], and so there
exist r, s ∈ A[X] such that gr + h′s = 1. Now

g′ = g′gr + g′h′s = g′gr + ghs,

and so g divides g′. As both are monic and have the same degree, they must be
equal.

Finally, we prove the existence of g and h. We are given that there exist monic
polynomials g0, h0 ∈ A[X] such that

f − g0h0 ∈ π · A[X].

Suppose we have constructed monic polynomials gn, hn such that

f − gnhn ≡ 0 mod πn+1A[X]

and gn ≡ g0, hn ≡ h0 mod πA[X]. We want to find u, v ∈ A[X] such that

f − (gn + πn+1u)(hn + πn+1v) ≡ 0 mod πn+2A[X],

i.e., we want

(f − gnhn)− πn+1(uhn + gnv) ≡ 0 mod πn+2A[X].

Thus we are looking for polynomials u, v in A[X] such that

uhn + gnv ≡ (f − gnhn)/π
n+1 mod πA[X].

From (7.25), we know that hn and gn are strictly coprime, and so we can always find
such polynomials u, v.

Remark 7.27. By induction, the theorem shows that a factorization of f into a
product of relatively prime polynomials in k[X] lifts to a factorization in A[X]. For
example, in Fp[X], Xp−X splits into p distinct factors, and so it also splits in Zp[X].
Hence Zp contains the p − 1st roots of 1. More generally, if K has a residue field k
with q elements, then K contains q roots of the polynomial Xq − X. Let S be the
set of these roots. Then

a �→ ā : S → k,

is a bijection preserving multiplication (but not, of course, addition) – the elements
of S are called the Teichmüller representatives for the elements of the residue field.

Remark 7.28. Theorems 7.23 and 7.24 are both stronger versions of 7.22. There
is in fact a stronger version of 7.23. For a polynomial h =

∑
ciX

i, define

‖h‖ = max |ci|.
Let

f(X) = anX
n + an−1Xn−1 + · · ·+ a0 ∈ A[X]
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have |an| = 1 (i.e., an is a unit). Let g0(X) and h0(X) be polynomials in A[X] with
degrees r and s respectively, and suppose that

‖f(X) − g0(X)h0(X)‖ < |Res(g0(X), h0(X))|2

where Res denotes the resultant. Then f(X) factors in A[X] as the product of a
polynomial of degree r and a polynomial of degree s. The proof follows the same
general lines as the above proofs. In fact, the hypothesis can be replaced by

‖f(X) − g0(X)h0(X)‖ < |disc(f)|.
(For this, see Cassels 1986, p107.)

Note that, this gives an algorithm for factoring polynomials in Qp[X] (for example).
Given f(X), compute disc(f). If this is zero, then f and f ′ have a common factor
(which we can find by the Euclidean algorithm). Otherwise ord(disc(f)) = m for some
m, and it is enough to consider factorizations of f into polynomials with coefficients
in the finite ring Z/pmZ. Apparently the fastest algorithms for factoring polynomials
in Z[X] begin by factoring in Zp[X] for an appropriate prime p — computers seem
to have no problem handling polynomials of degree 200. (But Problems 10, no. 3,
shows that there are irreducible polynomials in Z[X] of arbitrarily large degree that
factor in all the rings Zp[X] into polynomials of low degree.)

Extensions of nonarchimedean valuations. We explain how to extend a valua-
tion to a larger field.

Theorem 7.29. Let K be complete with respect to a discrete valuation | |K, and
let L be a finite separable extension of K of degree n. Then | | extends uniquely to
a discrete valuation | |L on L, and L is complete for the extended valuation. For all
β ∈ L,

|β|L = |NmL/K β|1/nK .

Proof. Let A be the discrete valuation ring in K, and let B be its integral closure
in L. Let p be the maximal ideal of A. We know from (3.30) that B is a Dedekind
domain, and the valuations of L extending | |p correspond to the ideals of B lying
over p.

Suppose that there are distinct prime ideals P1 and P2 in B dividing p. There
will be a β ∈ B such that P1 ∩ A[β] �= P2 ∩ A[β]; for example, choose β ∈ B
such that β ∈ P1, β /∈ P2. Let f(X) be the minimum polynomial of β over K, so
that A[β] ∼= A[X]/(f(X)). Because f(X) is irreducible in A[X] and A is complete,
Hensel’s lemma shows that f̄ (X) (image of f(X) in k[X], k = A/p) must be a power
of an irreducible polynomial. Then

A[β]/pA[β]≈ k[X]/(f̄(X))

is a local ring, which contradicts the fact that A[β] has two prime ideals containing
p.

Hence | |p extends uniquely to a valuation | | on L.

Clearly, | |p also extends uniquely to the Galois closure L′ of L. For each σ ∈
Gal(L/K), consider the map L ↪→ C, β �→ |σβ|. This is again a valuation of L, and
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so the uniqueness implies that |β| = |σβ|. Now

|Nm(β)| = |
∏

σβ| = |β|n

which implies the formula.

Finally, we have to show that L is complete. Let e1, . . . , en be a basis for B as an
A-module, and let (α(m)) be a Cauchy sequence in L. Write α(m) = a1(m)e1+ · · ·+
an(m)en, with ai(m) ∈ K. For each i, ai(m) is a Cauchy sequence, and if ai denotes

its limit, then α
df
= a1e1 + · · ·+ anen is the limit of the sequence α(m).

Remark 7.30. It is obvious from the criterion (7.2) that a nonarchimedean valu-
ation can only extend to a nonarchimedean valuation. It is possible to prove (7.29)
without assuming that the valuation | | on K is discrete or even nonarchimedean, but
the proof is then completely different, and much longer — we shall in fact need this

in the §8, and so I should have included it. The formula |β|L = |NmL/K β|1/nK shows
that | |L is discrete if and only if | |K is discrete.

Corollary 7.31. Let K be as in the theorem, and let Ω be a (possibly infinite)
algebraic extension of Q. Then | | extends in a unique way to a valuation | | on Ω.

Proof. The theorem shows that | | extends in a unique way to any finite subex-
tension of Ω, and hence it extends uniquely to Ω.

Remark 7.32. In the last corollary, the extended valuation is still nonar-
chimedean, but it need not be discrete, and Ω need not be complete. However,
the completion of Ω is again algebraically closed.

For example as we noted in (7.7), the valuation on the algebraic closure Qal
p of Qp is

not discrete, and Problems 10, no. 4, shows that Qal
p is not complete. The completion

of Qal
p is often denoted Cp because it plays the same role for the p-adic valuation on

Q that C plays for the real valuation. (In fact Cp ≈ C as abstract fields because
they are both algebraically closed, and they both have a transcendence basis with
cardinality equal to that of R. The isomorphism is as far from being canonical as it
is possible to get — its construction requires the axiom of choice.)

Corollary 7.33. Let K and L be as in the theorem; then n = ef where n = [L :
K], e is the ramification index, and f is the degree of the residue field extension.

Proof. We know from (3.36) that n =
∑

eifi. In this case, there is only one
prime dividing p and so the formula becomes n = ef.

When e = n, so that pB = pn, we say that L is totally ramified over K; when
f = n, we say that L is unramified over K.

Note that the valuation ring B of L is the integral closure of the valuation ring A
of K.

Many of the results proved above for complete discrete valuation rings hold also
for Henselian local rings (see §4 of my notes on Etale Cohomology).

Remark 7.34. Let K be complete with respect to a discrete valuation, and let L
be a finite extension of K. Let P and p be the maximal ideals in the rings of integers
A and B of K and L. Then pB = Pe where e is the ramification index. Let π and
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Π be generators of p and P. The normalized valuations ordK and ordL on K and L
are characterized by equations:

ordK(π) = 1, ordL(Π) = 1.

Note that π = Πe × unit, and so

ordK = e−1ordL.

If we denote the extension of ordK to L by ord, then

ord(L×) = e−1Z.

This characterizes the ramification index.

Newton’s polygon. Let K be complete with respect to a discrete valuation. Let ord
be the corresponding additive valuation ord : K× � Z, and extend ord to a valuation
ord : Kal× → Q. For a polynomial

f(X) = Xn + a1X
n−1 + · · · + an, ai ∈ K,

define the Newton polygon14 of f(X) to be the lower convex hull of the set of points

Pi
df
= (i, ord(ai)), i = 0, ..., n.

In more detail, rotate the negative y-axis counter-clockwise about P0 = (0, 0) until it
hits a Pi — the first segment of the Newton polygon is the line P0Pi1 where Pi1 is the
point furthest from P0 on the rotated y-axis. Repeat the process rotating about Pi1,
etc.. The resulting polygon starts at P0 and ends at Pn; each of its segments begins
and ends at a Pi; each Pi either lies on the polygon or is above it; any line joining two
points of the polygon has no point that is below the polygon (this is what we mean
by the Newton polygon being lower convex).

Proposition 7.35. Suppose that the Newton polygon of f(X) ∈ K[X] has seg-
ments of x-length ni and slope si. Then f(X) has exactly ni roots α (in Kal) with

ord(α) = si.

Moreover, the polynomial fi(X)
df
= Πord(αi)=si

(X − αi) has coefficients in K.

Proof. In proving the first part, we don’t have to assume that f(X) has coeffi-
cients in K—any finite extension of K will do. Thus it suffices to prove the following
statement: let f(X) =

∏
(X − αj); if exactly ni of the αj ’s have ordsi, then the

Newton polygon of f(X) has a segment of slope si and x-length ni.

We prove this by induction on n = deg(f). If n = 1, then it is obvious. Assume it
for n, and put

g(X) = (X − α)f(X) = Xn+1 + b1X
n + b2X

n−1 + · · ·+ bn+1.

Note that bi = ai − αai−1.
Case (i). ord(α) < s1. Recall ord(a + b) ≥ min{ord(a), ord(b)}, with equality if

ord(a) �= ord(b). Using this, one finds that

14Most people write the polynomial a0 + a1X + · · · + Xn when they define Newton polygons.
This is slightly less convenient than the way I do it, but allows you to define the Newton polygon of
a power series.
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the Newton polygon of g is obtained from that of f by adding a segment of slope
ord(α) and x-length 1, and moving the Newton polygon of f to start at (1, ord(α)).
This is what the proposition predicts.

Case (ii). ord(α) = s1. In this case, the initial segment of slope s1 is lengthened
by 1, and the rest of the polygon is as before. This is what the proposition predicts.

The remaining cases are similar.

We now prove the second statement. Let α be a root of f(X), and let mα(X) be
the minimum polynomial of α. As we saw in the proof of (7.29), ord(α′) = ord(α) for
all conjugates α′ of α, i.e., for all roots of mα(X). Because f(α) = 0, mα(X)|f(X),
and the remark just made implies that in fact mα(X)|fi(X) where si = ord(α).
If β is a root of fi(X)/mα(X), then a similar argument shows that mβ(X)|(fi/mα).
Continuing in this way, we find that fi(X) is a product of polynomials with coefficients
in K.

Example 7.36. Consider the polynomial

f(X)
df
= X3 +X2 + 2X − 8.

By testing ±1, ±2, ±4, ±8 (actually, by asking Maple) one sees that this polynomial
is irreducible over Q. The Newton polygon of f relative to ord2 has slopes 0, 1, 2,
each with x-length 1. Therefore f splits in Q2[X], and it has roots α1, α2, α3 with
ords 0, 1, 2.

Locally compact fields. We now look at the compactness properties of our fields.

Proposition 7.37. Let K be complete with respect to a nonarchimedean discrete
valuation. Let A be the ring of integers in K and let m be the maximal ideal in A.
Then A is compact if and only if A/m is finite.

Proof. Let S be a set of representatives for A/m. We have to show that A is
compact if and only if S is finite.

⇒: Clearly m = {x ∈ K | |x| < 1} is open in K. As A is the disjoint union of the
open sets s+ m, s ∈ S, S must be finite if A is compact.

⇐: Recall that a metric space X is compact if and only if it is complete and totally
bounded (this means that for any r > 0, there is a finite covering of X by open balls
of radius r). But every element of A can be written

s0 + s1π + s2π
2 + · · ·+ snπ

n + · · · , si ∈ S.

For a fixed n, there are only finitely many sums

s0 + s1π + s2π
2 + · · · + snπ

n, si ∈ S,

and every element of A is within |πn+1| of such an element.

Corollary 7.38. Assume that the residue field is finite. Then pn, 1 + pn, and
A× are all compact.

Proof. They are all closed subsets of A.

Definition 7.39. A local field is a field K with a nontrivial valuation | | (as de-
fined at the start of this section) such thatK is locally compact (and hence complete).
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Remark 7.40. It is possible to give a complete classification of local fields.

(a) Let K be a field that is complete with respect to an archimedean valuation
| |; then K is isomorphic to R of C, and the valuation is equivalent to the usual
absolute value (Theorem of Ostrowski, see Janusz 1996, II.4). Thus for archimedean
valuations, completeness implies local compactness.

(b) A nonarchimedean local field K of characteristic zero is isomorphic to a finite
extension of Qp, and the valuation is equivalent to the (unique) extension of the p-adic
valuation. (To prove this, note that, by assumption, K contains Q. The restriction
of | | to Q can’t be the trivial valuation, because otherwise A× wouldn’t be compact.
Therefore (see 7.10) | | induces a valuation on Q equivalent to the p-adic valuation
for some prime number p. The closure of Q in K is therefore Qp. If K has infinite
degree over Qp, it will not be locally compact.)

(c) A nonarchimedean local field K of characteristic p �= 0 is isomorphic to the field
of formal Laurent series k((T )) over a finite field k. The field k((T )) is the completion
of k(T ) for the valuation defined by the ideal (T ) ⊂ k[T ]; it consists of finite-tailed
formal power series:

∞∑
i≥−n

aiT
i.

Unramified extensions of a local field. Again K is a field complete with respect
to a discrete valuation | |. To avoid problems with separability, we assume that K
and the residue field k are both perfect15—of course in the case we are particularly
interested in, K has characteristic zero and k is finite. Let A be the discrete valuation
ring in K corresponding to | |.

If L is an algebraic (possibly infinite) extension of K, we can still define

B = {α ∈ L | |α| ≤ 1}

p = {α ∈ B | |α| < 1}
and call B/p the residue field of L.

Proposition 7.41. Let L be an algebraic extension of K, and let l be the residue
field of L. The map K ′ �→ k′ sending an unramified extension K ′ of K contained in
L to its residue field k′ is a one-to-one correspondence between the sets

{K ′ ⊂ L, finite and unramified over K} ↔ {k′ ⊂ l, finite over k}.
Moreover:

(a) if K ′ ↔ k′ and K ′′ ↔ k′′, then K ′ ⊂ K ′′ ⇐⇒ k′ ⊂ k′′;
(b) if K ′ ↔ k′, then K ′ is Galois over K if and only if k′ is Galois over k, in which

case there is a canonical isomorphism

Gal(K ′/K)→ Gal(k′/k).

15When k is not perfect, we should define L/K to be unramified if (a) the ramification index is
1, and (b) the residue field extension is separable. These conditions imply that L/K is separable.
With this definition, (7.41) continues to hold without K and k being assumed to be perfect
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Proof. Let k′ be a finite extension of k. We can write it k′ = k[a]. Let f0(X) be
the minimum polynomial of a over k, and let f(X) be any lifting of f0(X) to A[X].
As a is a simple root of f0(X), Newton’s lemma (7.22) shows that there is a (unique)
α ∈ L such that f(α) = 0 and α ≡ a mod p. Now K ′ =df K[α] has residue field k′.
Thus K ′ �→ k′ is surjective. Suppose that K ′ and K ′′ are unramified extensions of K
in L with the same residue field k′. Then K ′ · K ′′ is an unramified extension of K
(see 6.5 and 6.6b) with residue field k′. Hence

[K ′ ·K ′′ : K] = [k′ : k] = [K ′ : K],

and so K ′′ = K ′.
Statement (a) is obvious.

Assume K ′ is Galois over K; then Gal(K ′/K) preserves A′ (the valuation ring in
K ′) and its maximal ideal, and so we get a map Gal(K ′/K) → Aut(k′/k). Write
k′ = k[a], and let g(X) ∈ A[X] be such that ḡ(X) ∈ k[X] is the minimum polynomial
of a. Let α ∈ A′ be the unique root of g(X) such that ᾱ = a. Because K ′ is Galois
over K, g(X) splits in A′[X], and this implies that ḡ(X) splits in k′[X], and so k′ is
Galois over k. Let f = [k′ : k] = [K ′ : K], and let α1, . . . , αf be the roots of g(X).
Then

{α1, ..., αf} = {σα | σ ∈ Gal(L/K)}.
Because ḡ(X) is separable, the αi are distinct modulo p, and this shows that the
image of the map Gal(K ′/K)→ Gal(k′/k) has order f , and hence is an isomorphism.
Conversely, suppose k′/k is Galois. Again write k′ = k[a], and α ∈ A′ lift a. It
follows from Hensel’s lemma that A′ contains the conjugates of α, and hence that K ′

is Galois over K.

Corollary 7.42. There is a field K0 ⊂ L containing all unramified extensions
of K in L (called the largest unramified extension of K in L). In fact, it is obtained
from K by adjoining all roots of 1 of order prime to the characteristic of k.

Proof. This is an obvious consequence of the theorem.

Corollary 7.43. The residue field of Kal is kal; there is a subfield Kun of Kal

such that a subfield L of Kal, finite over K, is unramified if and only if L ⊂ Kun.
(Recall that we are assuming k and K to be perfect.)

Proof. Let f0(X) be any polynomial in k[X], and let f(X) be any lift of f0(X)
to A[X]. Then Kal contains all the roots of f(X), and so the residue field k′ of Kal

contains all the roots of f0(X). Hence k′ is algebraic over k, and every polynomial in
k[X] splits in k′, and so it must be the algebraic closure of k.

Remark 7.44. For those familiar with the language of category theory, we can be
a little more precise: there is an equivalence between the category of finite unramified
extensions of K and the category of finite (separable) extensions of k.

Example 7.45. Let K be a local field of characteristic zero (hence a finite exten-
sion of Qp for some p), and let q be the order of the residue field k of K.

Recall from (FT §4.6) that, for each n, there is an extension kn of k of degree n,
and that kn is unique up to k-isomorphism; it is the splitting field of Xqn −X. The
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Galois group Gal(kn/k) is a cyclic group of order n, having as canonical generator
the Frobenius element x �→ xq.

Therefore, for each n, there is an unramified extension Kn of K of degree n, and it
is unique up to K-isomorphism; it is the splitting field of Xqn −X; the Galois group
Gal(Kn/K) is a cyclic group of order n, having as canonical generator the Frobenius
element σ which is determined by the property

σβ ≡ βq (mod p),

all β ∈ B. (Here B is the discrete valuation ring in Kn, and p is the nonzero prime
ideal in B.)

Totally ramified extensions of K. Let K be a complete discretely-valued nonar-
chimedean field, and let π be a local uniformizing parameter for K. A polynomial
f(X) ∈ K[X] is said to be Eisenstein if it is Eisenstein for the maximal ideal of the
ring of integers in K, i.e., if

f(X) = a0X
n + a1X

n−1 + · · ·+ an, with |a0| = 1, |ai| < 1, |an| = |π|.
Equivalently,

ord(a0) = 0, ord(ai) > 0, ord(an) = 1,

for the normalized additive valuation. Equivalently, the Newton polygon of f(X) has
only one segment, which has slope 1

n
, n = deg f . Eisenstein polynomials allow us to

give an explicit description of all totally ramified extensions of K.

Proposition 7.46. Let L be a finite extension of K. Then L/K is totally ramified
if and only if L = K[α] with α a root of an Eisenstein polynomial.

Proof. ⇐: Suppose L = K[α] with α a root of an Eisenstein polynomial f(X)
of degree n. If ord is the extension of the normalized discrete (additive) valuation on
K to L, then ord(α) = 1/n. This implies that the ramification index of L/K is ≥ n.
But it can’t be greater than n, and so it is exactly n — L is totally ramified over K.
(Compare the proof of 6.2.)

⇒: Suppose L is a totally ramified extension of K of degree n. Let α be a generator
of the maximal ideal in the ring of integers in L; thus ord(α) = 1/n if ord extends the
normalized discrete valuation on K. The elements 1, α, ..., αn−1 represent different
cosets of ord(K×) in ord(L×), and so it is impossible to have a nontrivial relation

a0 + a1α + · · ·+ an−1αn−1 = 0, ai ∈ K

(because of 7.9.3). Hence L = K[α]. The elements 1, α, . . . , αn−1, αn are linearly
dependent over K, and so we have a relation:

αn + a1α
n−1 + · · ·+ an = 0, ai ∈ K.

Applying (7.9.3) again, we see that the minimum ord of a summand must be attained
for two terms. The only way this can happen is if ord(ai) > 0 for all i and ord(an) =
ord(αn) = 1, i.e., if

∑
aiX

i is an Eisenstein polynomial.

Remark 7.47. Let L be a finite totally ramified extension of K. Let A and B be
the discrete valuation rings in K and L, and let π and Π be a prime elements in A
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and B. I claim that B = A[Π]. The argument is the same as in the proof of 6.2 (see
also Problems 8, no. 1). Because B and A have the same residue field,

A[Π] + ΠB = B.

The discriminant of 1,Π,Π2, . . . is a unit×πm for some m, and so

pcB ⊂ A[Π] ⊂ B

for some c. As before, these two conditions suffice to imply that B = A[Π].

Ramification groups. Let L be a finite Galois extension of K, and assume that

the residue field k of K is perfect. As we have noted, G
df
= Gal(L/K) preserves the

valuation on L. In particular, it preserves

B = {α ∈ L | |α| ≤ 1}, p = {α ∈ L | |α| < 1}.
Let Π be a prime element of L (so that p = (Π)). We define a sequence of subgroups
G ⊃ G0 ⊃ G1 ⊃ · · · by the condition:

σ ∈ Gi ⇐⇒ |σα− α| < |Π|i, all α ∈ B.

The group G0 is called the inertia group, the group G1 is called the ramification group,
and the groups Gi, i > 1, are called the higher ramification groups of L over K.

Lemma 7.48. The Gi are normal subgroups of G, and Gi = {1} for i large enough.

Proof. (a) For σ, τ ∈ G, we have

|τ−1στα− α| = |σ(τα)− (τα)|
(because |x| = |τx|). As α runs through B, so also does τα, and so τ−1στ ∈ Gi

exactly when σ does.

(b) If σ �= 1, then σα �= α for some α ∈ B. Hence σ /∈ Gi as soon as |σα − α| ≥
|Π|i.

Theorem 7.49. Let L/K be a Galois extension, and assume that the residue field
extension l/k is separable.

(a) The fixed field of G0 is the largest unramified extension K0 of K in L, and

G/G0 = Gal(K0/K) = Gal(l/k).

(b) For i ≥ 1, the group

Gi = {σ ∈ G0 | |σΠ− Π| < |Π|i}.

Proof. (a) Let K0 be the largest unramified extension in L (see 7.42). Then σK0

is also unramified, and so it is contained in K0. Thus K0 is Galois over K, and the
canonical map Gal(K0/K) → Gal(l/k) is an isomorphism (see 7.41). By definition
G0 is the kernel of G→ Gal(l/k), and so K0 is its fixed field.

(b) Let A0 be the discrete valuation ring in K0. Then B = A0[Π] (by 7.45). Since
G0 leavesA0 fixed, in order to check that σ ∈ Gi it suffices to check that |σα−α| < |Π|i
for the element α = Π.
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Corollary 7.50. We have an exhaustive filtration G ⊃ G0 ⊃ · · · such that

G/G0 = Gal(l/k);

G0/G1 ↪→ l×;
Gi/Gi+1 ↪→ l.

Therefore, if k is finite, then Gal(L/K) is solvable.

Proof. Let σ ∈ G0; then σΠ is also a prime element and so σΠ = uΠ with u a
unit in B. The map σ �→ u mod p is a homomorphism G0 → l× with kernel G1.

Let σ ∈ Gi. Then |σΠ − Π| ≤ |Π|i+1, and so σΠ = Π + aΠi+1 some a ∈ B. The
map σ �→ a (mod p) is a homomorphism Gi → l with kernel Gi+1.

An extension L/K is said to be wildly ramified if p|e where p = char(k). Otherwise
it is said to be tamely ramified. Hence for a Galois extension

L/K is unramified ⇐⇒ G0 = {1},
and

L/K is tamely ramified ⇐⇒ G1 = {1}.
Krasner’s lemma and applications. Again let K be complete with respect to
a discrete nonarchimedean valuation | |, and extend the valuation (uniquely) to a
valuation on Kal. It is clear from our discussion of unramified extensions of K that
roots of distinct polynomials f(X) and g(X) will often generate the same extension
of K; in fact, this will be true if f̄ = ḡ and both are irreducible in k[X]. Krasner’s
lemma and its consequences show that the roots of two polynomials will generate the
same extension if they are sufficiently close.

Proposition 7.51 (Krasner’s lemma). . Let α, β ∈ Kal, and assume that α is
separable over K[β]. If α is closer to β than to any conjugate of α (over K), then
K[α] ⊂ K[β].

Proof. Let σ be an embedding of K[α, β] into Kal fixing K[β]. By Galois theory,
it suffices to show that σα = α. But

|σα− β| = |σα− σβ| = |α− β|
because σβ = β and |σ ∗ | = | ∗ |. Hence

|σα− α| = |σα− β + β − α| ≤ |α− β|.
Since σα is a conjugate of α over K, the hypothesis now implies that σα = α.

Now assume K has characteristic zero (to avoid complications). As before, for
h(X) =

∑
ciX

i, we define ‖h‖ = max{|ci|}. Note that if h(X) varies in a family
of monic polynomials for which ‖h‖ remains bounded, then the maximum value of a
root of h is bounded; in fact, if ∑

ciβ
i = 0,

we must have |βn| ≤ |cjβj| for some j < n, and so |β|n−j ≤ |cj|.
Fix a monic irreducible polynomial f(X) in K[X], and let

f(X) =
∏

(X − αi), αi ∈ Kal.
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The αi must be distinct. Let g(X) be a second monic polynomial in K[X], and
suppose that ‖f − g‖ is small. For any root β of g(X), |f(β)| = |(f − g)(β)| is small
(because ‖f − g‖ small implies that ‖g‖ is bounded, and hence |β| is bounded). But

|f(β)| =
∏
|β − αi|.

In order for this to be small, at least one term |β − αi| must be small. By taking
‖f − g‖ small enough, we can force β to be closer to one root αi than αi is to any
other αj . That is, we can achieve:

|β − αi| < |αi − αj|, all j �= i.

In this case, we say that β belongs to αi. Krasner’s lemma then says that K[αi] ⊂
K[β], and because f and g have the same degree, they must be equal. We have
proved:

Proposition 7.52. Let f(X) be a monic irreducible polynomial of K[X], and let
α be a root of f . Then any monic polynomial g(X) ∈ K[X] sufficiently close to f(X)
is also irreducible, and it has a root β that belongs to α. For such a root K[α] = K[β].

Corollary 7.53. Let K be a finite extension of Qp. Then there is a finite exten-
sion L of Q contained in K such that [L : Q] = [K : Qp] and L ·Qp = K.

Proof. Write K = Qp[α], and let f(X) be the minimum polynomial of α over
Qp. Choose g(X) ∈ Q[X] sufficiently close to f(X), and let L = Q[β] for β a root of
g(X) belonging to α.

Now consider two monic polynomials f and g, and write αi for the roots of f and
βi for the roots of g. For ‖f − g‖ sufficiently small, every root of g will belong to a
root of f , and I claim that they will belong to distinct roots, i.e., the roots can be
numbered so that βi belongs to αi. For each choice s of n elements from {α1, ..., αn}
(possibly with repetitions), we form the polynomial fs(X) =

∏
αi∈s(X − αi). If two

roots of g(X) belong to the same root of f(X), then g(X) will be close to fs(X) for
some fs �= f . But if we choose g to be closer to f than f is to any fs, this will be
impossible. We have proved:

Proposition 7.54. Assume K is of characteristic zero. If two monic irreducible
polynomials f and g are sufficiently close, then each root of g will belong to exactly
one root of f , and so

{K[α] | α a root of f} = {K[β] | β a root of g}.
Proposition 7.55. Assume K has characteristic zero and has finite residue field.

Then, up to isomorphism, there are only finitely many totally ramified extensions of
Qp of a given degree.

Proof. We fix an n and show that there are only finite many extensions of degree
≤ n. Each point of

(a1, ..., an) ∈ p× p× p× · · · × A×π

defines an Eisenstein polynomial of degree n, namely,

f(X) = Xn + a1X
n−1 + · · ·+ an,



115

and hence a finite set of totally ramified extensions of degree n, namely, those
generated by the roots of f(X). According to the last proposition, each point of
p × p × p × · · · × A×π has a neighbourhood such that the points in the neighbour-
hood all give the same extensions of K. In (7.38) we showed that the factors of
p × p × p × · · · × A×π are compact, hence the product is compact, and so a finite
number of these neighbourhoods will cover it.

Remark 7.56. We proved above that

(i) every finite extension L of K contains a largest unramified extension of K;

(ii) for each m ≥ 1, there is an unramified extension of degree m of K, and any
two such extensions are K-isomorphic.

Fix an n; then each extension L ofK of degree n can be realized as a totally ramified
extension of degree n/m of the (unique) unramified extension of degree m, some m
dividing n. Clearly there are only finitely many such L’s (up to K-isomorphism).

A Brief Introduction to PARI. Pari is a program designed for computations
in number theory. It was written by H. Cohen and others, and is available
from ftp://megrez.math.u-bordeaux.fr/pub/pari/. See also the Pari home page
http://pari.home.ml.org/. It runs under Windows 95 and other operating sys-
tems. The following are a few commands for version 2 (they have been changed from
version 1.x).

To start PARI on a network, type gp To quit PARI, type \q
nfbasis(f) finds an integral basis for the field generated by a root of f .

nfdisc(f) finds the discriminant of f .

polcyclo(n) finds the nth cyclotomic polynomial.

polgalois(f) finds the Galois group of f (f irreducible of degree ≤ 11).

newtonpoly(f,p) finds the Newton polygon of f .

factor(f) finds the factors of f .

factormod(f,p) factor f modulo p.

quadunit(x) finds the fundamental unit in the real quadratic field with discrimi-
nant x.

The syntax for polynomials is similar to that in Maple, e.g., x^2+3*x+5.
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8. Global Fields

A global field is defined to be an algebraic number field (finite extension of Q) or a
function field in one variable over a finite field (finite extension of Fq(T ) for some q).
We are mainly interested in the number field case.

Extending valuations. LetK be a field with a valuation | | (archimedean or discrete
nonarchimedean), and letL be a finite separable extension ofK. WhenK is complete,
we know that there is a unique extension of | | to L (see 7.29, 7.30), and we want to
understand the extensions when K is not complete.

Write L = K[α], and let f(X) be the minimum polynomial of α over K. Let | |′
be an extension of | | to L. Then we can form the completion L̂ of L with respect to
| |′, and obtain a diagram:

L ↪→ L̂
| |
K ↪→ K̂.

Then L̂ = K̂[α] (because every element ξ of L̂ is the limit of a Cauchy sequence ξ(n)
in L; write ξ(n) =

∑
ai(n)α

n, ai(n) ∈ K; then each ai(n) is a Cauchy sequence in

K, with limit ai say in K̂, and ξ =
∑

aiα
i). Let g(X) be the minimum polynomial

of α over K̂. Since f(α) = 0, g(X)|f(X), and so with each extension of | |, we have

associated an irreducible factor of f(X) in K̂[X].

Conversely, let g(X) be a monic irreducible factor of f(X) in K̂[X], and let K̂[x] =

K̂[X]/(g(X)). Then we obtain a diagram:

L
α �→x→ K̂[x]

| |
K → K̂.

According to (7.29, 7.30), the valuation on K̂ extends uniquely to K̂[x], and this
induces a valuation on L extending | |.

These two operations are inverse, and so we have proved the following result:

Proposition 8.1. Let L = K[α] be a finite separable extension of K, and let
f(X) be the minimum polynomial of α over K. Then there is a natural one-to-one
correspondence between the extensions of | | to L and the irreducible factors of f(X)

in K̂[X].

There is a more canonical way of obtaining the completions of L for the various
extensions of | |.

Proposition 8.2. Let | | be a valuation on K (archimedean or discrete nonar-

chimedean) and let L be a finite separable extension of K. Let K̂ be the completion
of K with respect to | |. Then | | has finitely many extensions | |1, . . . , | |g to L; if Li
denotes the completion of L with respect to the valuation | |i, then

L⊗K K̂ ≈ ∏
Li.
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Proof. Since L is separable over K, L = K[α] ≈ K[X]/(f(X)) for some element

α ∈ L and its minimum polynomial f(X). Suppose f(X) factors in K̂[X] as

f(X) = f1(X) · f2(X) · · · fg(X)

with fi(X) monic and irreducible. Then (see 1.13)

L ⊗K K̂ = K[α]⊗K K̂ ≈ K̂[X]/((f(X)) ≈∏
K̂[X]/(fi(X))

and so the proposition follows from (8.1).

Remark 8.3. Suppose now that K is a number field, that OL = OK [α], and that

| | = | |p for some prime ideal p in OK. Because fi(X) is irreducible in K̂[X], Hensel’s
lemma shows that, modulo p̂, fi(X) is a power of an irreducible polynomial, say,

f̄i(X) = gi(X)ei .

Then

f̄(X) =
g∏
i=1

gi(X)ei ,

and (3.43) tells us that

pOL =
∏

P
ei
i , Pi = (p, gi(α)).

The valuations extending | |p correspond to the primes Pi, and so the two descriptions
of the extensions agree.

Corollary 8.4. In the situation of the Proposition, for any element α ∈ L,

NmL/K(α) =
∏

NmLi/K̂
(α), TrL/K(α) =

∑
TrLi/K̂

(α).

(in the ith factor or summand on the right, α is regarded as an element of Li).

Proof. By definition the norm and trace of α are the determinant and trace of
the K-linear map x �→ αx : L→ L. These don’t change when L is tensored with K̂,
and it easy to see that norms and traces in products break up into products and sums
respectively.

Example 8.5. According to Maple

f(X) = X6 + 5X5 + 5X3 + 25X + 125

is irreducible in Q[X]. Its Newton polygon for ord5 has three segments of x-lengths
3, 2, 1 respectively, and so it has at least three factors in Q5. The discriminant of
f(X) is

24511(59)(365587),

and so according to (7.28), to find the number of factors of f(X) in Q5[X], it suffices
to factor in modulo 511. Better, according to Pari, version 2, f(X) has exactly 3
irreducible factors in Q5[X]. (Type factorpadic(f,p,r) where r is the precision
required.)

Suppose we find a factorization

f(X) = f1(X)f2(X)f3(X)
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(to whatever degree of accuracy we wish). To compute |β|i, map β =
∑

cjα
j to

βi =
∑

cjα
j
i ∈ Li

df
= Q5[αi], αi a root of fi(X), and use that

|β|i = |βi|i = |NmLi/Q5 β|1/deg fi

i .

The product formula. Before proving the product formula for a number field, we
need one extra fact for local fields.

Let K be a local field with normalized valuation | |. Recall that this means that | |
is the usual absolute value if K is R, the square of the usual valuation if K is C, and
|a| = (1/Np)ord(a) if the valuation is defined by a prime ideal p.

Let L be a finite separable extension of K, and let | | be the unique extension of
| | to L. Let ‖ ‖ be the normalized valuation on L corresponding to | |. What is the
relation of ‖ ‖ to | |?

Lemma 8.6. In the above situation, ‖a‖ = |a|n, where n = [L : K].

Proof. When K is archimedean, there are only two cases to consider, and both
are obvious. Thus, assume K is nonarchimedean. Since, by assumption, ‖ ‖ = | |c
for some c, we only have to check that the formula holds for a prime element π of K.
Let Π be a prime element of L, and let P = (Π) and p = (π); then π = (unit)× Πe,
and so

‖π‖ = ‖Πe‖ = (1/NP)e = (1/Np)ef = |π|n,
as required.

Alternatively, use (7.34). For a ∈ K, we have

‖a‖ df
= NP−ordLa 7.34

= (Npf )−e·ordKa = |a|ef = |a|n.

Proposition 8.7. Let L/K be a finite extension of number fields. For any prime
v of K and α ∈ L, ∏

w|v
‖α‖w = ‖NmL/K α‖v.

Here ‖ ‖w and ‖ ‖v denote the normalized valuations for the primes w and v.

Proof. Let | |i, i = 1, 2, . . . , g, be the extensions of ‖ ‖v to L, and let ‖ ‖i be the
normalized valuation corresponding to | |i. Then

‖NmL/K α‖v 8.4
= ‖∏g

i=1 NmLi/K̂
α‖v =

∏g
i=1 ‖NmLi/K̂

α‖v
7.29
=

∏g
i=1 |α|n(i)i

8.6
=

∏g
i=1 ‖α‖w,

where ni = [Li : K̂].

Theorem 8.8 (Product formula). Let K be an algebraic number field; for all
nonzero α ∈ K, ∏

w

‖α‖w = 1,

where the product is over the primes of K and ‖ ‖w is the normalized valuation for
the prime w.
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Proof. We have ∏
w

‖α‖w =
∏
v

(
∏
w|v
‖α‖w) =

∏
v

‖Nmα‖v

where v runs through the primes 2, 3, 5, 7, ...,∞ of Q. The last product is 1 by
(7.11).

Remark 8.9. E. Artin and Whaples (Bull. Amer. Math. Soc. 51 (1946), 469–
492) proved the following characterization of global fields. Let K be a field with a set
V of primes (equivalence classes of valuations) satisfying the following axioms.

Axiom I. There is a set of representatives | |v for the primes such that, for any
nonzero a ∈ K, |a|v �= 1 for only finitely many v and

Πv|a|v = 1 (product over all v ∈ V).

Axiom II. There exists at least one prime v for which Kv is a local field.

Then K is a global field, and V consists of all the primes for K.

Throughout his career, E. Artin promoted the idea that if only one could under-
stand the similarities between function fields and number fields sufficiently well, then
one could transfer proofs from function fields to number fields (e.g. the proof of the
Riemann hypothesis!). This hasn’t worked as well as he hoped, but the analogy has
still been very fruitful. In the above paper, he suggested one should develop number
theory and class field theory as much as possible working only from the axioms.

Decomposition groups. Let L be a finite Galois extension of a number field K,
and let G = Gal(L/K). For a valuation w of L, we write σw for the valuation such
that |σα|σw = |α|w, i.e., |α|σw = |σ−1α|w. For example, if w is the prime defined by
a prime ideal P, then σw is the prime defined by the prime ideal σP, because

|α|σw < 1 ⇐⇒ σ−1α ∈ P ⇐⇒ α ∈ σP.

The group G acts on the set of primes of L lying over a fixed prime v of K, and we
define the decomposition (or splitting) group of w to be the stabilizer of w in G; thus

Gw = {σ ∈ G | σw = w}.
Equivalently, Gw is the set of elements of G that act continuously for the topology
defined by | |w. Each σ ∈ Gw extends uniquely to a continuous automorphism of Lw.
Note that Gτw = τGwτ

−1.

Proposition 8.10. The homomorphism Gw → Gal(Lw/Kv) just defined is an
isomorphism.

Proof. Clearly the map is injective, and so (Gw : 1) ≤ [Lw : Kv]. The valuation
σw has decomposition group σGwσ

−1, which has the same order as Gw, and so we
also have (Gw : 1) ≤ [Lσw : Kv]. The number of distinct w’s dividing v is (G : Gw),
and so

(G : 1) = (G : Gw)(Gw : 1) ≤
∑

σ∈G/Gw

[Lσw : Kv]
(8.2)

≤ [L : K].

Hence equality holds: (Gw : 1) = [Lw : Kv] (and G acts transitively on the primes
dividing v, which we knew already from the proof of 3.36).
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Let D(P) (or G(P)) be the decomposition group of P, so that D(P) =
Gal(LP/Kp), and let I(P) ⊂ D(P) be the inertia group. We have the following
picture:

P L − LP

e | | �
PI LI(P) − L

I(P)
P

− l
f | | | D(P)/I(P)

PD LD(P) − Kp − k
g | �

p K

Here:

PI = P ∩ LI(P), PD = P ∩ LD(P), p = P ∩K;

the fields in the second column are the completions of those in the first;

the fields in the third column are the residue fields of those in the second.

Proposition 8.11. (a) The only prime ideal of L lying over PD is P.

(b) The prime ideal PD is unramified in LI , and f(PI/PD) = f(P/p).

(c) The prime ideal PI is totally ramified in L, and e(P/PI) = e(P/p).

(d) If D(P) is normal in G, then

pOLD =
∏

σPD

where the product is over a set of representatives for G/D(P).

Proof. (a) Because L is Galois over LD(P), its Galois group D(P) acts transitively
on the set of prime ideals of L lying over PD. Thus (a) is obvious from the definition
of D(P).

(b), (c), (d) are similarly straightforward.

The diagram, and the proposition, show that we can construct a chain of fields

L ⊃ LI ⊃ LD ⊃ K

such that all the ramification of P over p takes place in the top extension, all the
residue field extension takes place in the middle extension, and, when LD is normal
over K, all the splitting takes place in the bottom extension. One should be a little
careful about the last assertion when D(P) is not normal in G; all we know in general
is that

p · OLD =
∏

Pei
i , P1 = PD

with e1 = 1 = f1 (i.e., in general p will not split completely in LD).

Remark 8.12. Let L be a Galois extension of Q, with Galois group G. Suppose
that OL = Z[α] for some α ∈ L. Let f(X) be the minimum polynomial of α over
Q, and write f̄ (X) for f(X) modulo p. Choose an irreducible factor g1(X) of f̄(X),
and let g1(X)e1 be the largest power of g1(X) dividing f̄(X). According to Hensel’s
lemma, g1(X)e1 lifts to an irreducible factor f1(X) of f(X) in Qp[X], which can be
found to any desired degree of accuracy by factoring f(X) modulo a high power of
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p (essentially using the method of proof of Hensel’s lemma). Let P1 = (p, h1(α)) for
any lifting h1 of g1 to Z[X]. Then

D(P1) = {σ ∈ G | σP1 = P1},
which can be computed easily (provided G has been found explicitly as a subgroup
of the symmetric group on the set of roots of f(X)). Let ᾱ be the image of α in
OL/P1 = Fp[ᾱ]. Then g1(X) is the minimum polynomial of ᾱ over Fp, and I(P1) is
the subgroup of D(P1) fixing ᾱ. Finally D(P1)/I(P1) = Gal(Fp[ᾱ]/Fp).

Consider a tower of fields

1 M P
|

H L PL

|
G K p

Assume M is Galois over K with Galois group G, and that H is the subgroup of G
fixing L. (Recall D(P) and G(P) are two notations for the same object.)

Proposition 8.13. Let P be a prime ideal in OM , and let PL = P ∩ L.
(a) The decomposition group H(P) of P over L is G(P) ∩H.

(b) Suppose further that H is a normal subgroup of G, so that G/H is the Galois
group of L/K. The decomposition group of PL over K is the image of G(P) in G/H.

Proof. (a) Clearly

H(P) = {σ ∈ G | σ ∈ H, σP = P} = H ∩ G(P).

(b) This is equally obvious.

The Frobenius element. Let L/K be a Galois extension of number fields with
Galois group G. Given an ideal P of L that is unramified in L/K we define the
Frobenius element σ = (P, L/K) to be the element of G(P) that acts as the Frobenius
automorphism on the residue field. Thus σ is uniquely determined by the following
two conditions:

(a) σ ∈ G(P), i.e., σP = P;

(b) for all α ∈ OL, σα ≡ αq mod P, where q is the number of elements the residue
field OK/p, p = P ∩K.

We now list the basic properties of (P, L/K).

8.14. Let τP be a second prime dividing p, τ ∈ G. Then G(τP) = τG(P)τ−1,
and

(τP, L/K) = τ (P, L/K)τ−1.

Proof. Let α ∈ OL; then
τστ−1(α) = τ ((τ−1α)q + a), some a ∈ P, and

τ ((τ−1α)q + a) = αq + τa ≡ αq mod τP.
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Thus if Gal(L/K) is abelian, then (P, L/K) = (P′, L/K) for all primes P, P′

dividing p, and we write (p, L/K) for this element. If Gal(L/K) is not abelian, then

{(P, L/K) | P|p}
is a conjugacy class in G, which (by an abuse of notation) we again denote (p, L/K).
Thus, for a prime p of K, (p, L/K) is either an element of Gal(L/K) or a conjugacy
class depending on whether Gal(L/K) is abelian or nonabelian.

8.15. Consider a tower of fields

M Q
|
L P
|
K p

and assume that Q is unramified over p; then

(Q,M/K)f(P/p) = (Q,M/L).

Proof. Let k(Q) ⊃ k(P) ⊃ k(p) be the corresponding sequence of residue fields.
Then f(P/p) = [k(P) : k(p)], and the Frobenius element in Gal(k(Q)/k(P)) is the
f(P/p)th power of the Frobenius element in Gal(k(Q)/k(p)).

8.16. In (8.15), assume that L is Galois over K; then

(Q,M/K)|L = (P, L/K).

Proof. Obvious.

Let L1 and L2 be Galois extensions of K contained in some field Ω, and let M =
L1 · L2. Then M is Galois over K, and there is a canonical homomorphism

σ �→ (σ|L1, σ|L2) : Gal(M/K) → Gal(L1/K) ×Gal(L2/K)

which is injective.

8.17. Under the above map,

(Q,M/K) �→ (P1, L1/K) × (P2, L2/K).

Proof. This follows from (8.16).

Note that p splits completely in L if and only if (P, L/K) = 1 for one (hence all)
primes P lying over it. Hence, in the situation of (8.17), p splits completely in M if
and only if it splits completely in L1 and L2.

Examples. We find the Frobenius maps for quadratic and cyclotomic fields, and
obtain a surprisingly simple proof of the quadratic reciprocity law.

Example 8.18. Let K = Q[ζn], where ζn is a primitive nth root of 1. If p|n then
p ramifies in K, and (p,K/Q) is not defined. Otherwise σ = (p,K/Q) is the unique
element of Gal(K/Q) such that

σα ≡ αp mod p, for all α ∈ Z[ζn],

for any prime ideal p lying over p.
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I claim that σ is the element of the Galois group such that σ(ζn) = ζpn: let p be a
prime lying over p in Z[ζn]; then modulo p, we have,

σ(
∑

aiζ
i
n) =

∑
aiζ

ip
n ≡

∑
api ζ

ip
n ≡ (

∑
aiζ

i
n)
p

as required.

Note that (p,K/Q) has order f where f is the smallest integer such that n|pf − 1
(because this is the order of p in (Z/(n))×).

Example 8.19. Let K = Q[
√
d], and let p be a prime that is unramified in K.

Identify Gal(K/Q) with {±1}. Then (p,K/Q) = +1 or −1 according as p does,
or does not, split in K, i.e., according as d is, or is not, a square modulo p. Thus
(p,K/Q) = (d

p
).

Application: the quadratic reciprocity law. Let K = Q[ζ], where ζ is a primitive pth

root of 1, p �= 2. Because Gal(K/Q) ∼= (Z/pZ)× is cyclic of order p − 1, it contains
a unique subgroup of order (p − 1)/2 (consisting of the elements of (Z/pZ)× that
are squares), and hence K contains a unique quadratic extension F of Q. If p ≡ 1
mod 4, then p is the only prime ramifying in Q[

√
p], and Q[

√
p] is the only quadratic

field for which this is true. Similarly if p ≡ 3 mod 4, then −p ≡ 1 mod 4, and −p
is the only prime ramifying in Q[

√−p]. Thus F = Q[
√
d] where d = (−1)(p−1)/2 · p.

If q is an odd prime �= p; then

(q,K/Q)(ζ) = ζq.

Thus (q,K/Q) restricts to the identity element of Gal(Q[
√
d]/Q) or not according as

q is a square in (Z/pZ)× or not. Thus (q,K/Q)|Q[
√
d] = ( q

p
). But we know that it is

also equal to (d
q
). Hence

(
q

p
) = (
−1
q

)(p−1)/2 · (p
q
) = (−1)(p−1)(q−1)/4 · (p

q
).

Here we have used that −1 is square in Fq if and only if 4|q − 1, so that (−1
q
) =

(−1)(q−1)/2. The displayed formula, together with the statements

(
−1
p
) = (−1)(p−1)/2, (2

p
) = (−1)(p2−1)/8

constitute the quadratic reciprocity law. (For the last formula, see Serre, Cours
d’Arithmétique I.3.2; the proof of the rest of the reciprocity law there, ibid. 3.3.,
is essentially the above proof, made elementary.)

Computing Galois groups (the hard way). Let f(X) be a polynomial over a
field K, and let α1, . . . , αn be the roots of f(X) in Kal. We want to determine the
Galois group of f as a subgroup of the group of permutations Sn of {α1, . . . , αn}.

Introduce variables t1, . . . , tn. For any σ ∈ Sn and polynomial f(t1, . . . , tn), define
σtf = f(tσ(1), . . . , tσ(n)). Let θ =

∑
αiti, and define a polynomial

F (X, t) =
∏
(X − σtθ) (product over σ ∈ Sn).

The coefficients of this polynomial are symmetric polynomials in the αi, and so lie in
K. Now factor

F (X, t) = F1(X, t) · · ·Fr(X, t)



124 8. Global Fields

in K[X, t1, . . . , tn].

Theorem 8.20. Let G be the set of σ ∈ Sn such that σt fixes F1(X, t); then G is
the Galois group of f.

Proof. See van der Waerden, Algebra, Vol 1, §61 (Calculation of the Galois
group).

This theorem gives an algorithm (unfortunately impractical) for computing the
Galois group of a polynomial f(X) ∈ Q[X]. We may suppose f(X) to be monic
with integer coefficients. First find the roots of f(X) to a high degree of accuracy.
Then compute F (X, t) exactly, noting that this has coefficients in Z. Factor F (X, t),
and take one of the factors F1(X, t). Finally list the elements σ of Sn such that σt
fixes F1(X, t). The problem with this approach is that F (X, t) has degree n!. It will
probably work (on a computer) if n ≤ 5, but otherwise it is like trying to compute a
determinant directly from the definition as a sum of products.

Computing Galois groups (the easy way). We now give a more practical pro-
cedure (also largely in van der Waerden with a more direct proof).

Proposition 8.21. Let f(X) be a monic separable polynomial of degree n over
a field K, and suppose that the Galois group G of f(X) has s orbits (as a group of
permutations of the roots of f) with n1, . . . , ns elements respectively (so that n1 +
n2 + · · ·+ ns = n); then there is a factorization

f(X) = f1(X) · · · fr(X)

with fi(X) an irreducible polynomial in K[X] of degree ni.

Proof. Write f(X) =
∏
(X−αi). For S ⊂ {1, 2, . . . , n}, consider fS =

∏
i∈S(X−

αi). This polynomial divides f(X), and it is fixed under the action of G (and hence
has coefficients in K) if and only if S is stable under G. Therefore the irreducible
factors of f(X) are the polynomials fS with S a minimal subset of {1, . . . , n} stable
under G, but such sets S are precisely the orbits of G in {1, 2, . . . , n}.

Let σ ∈ Sn. In GT, §4, it is proved that σ is a product of disjoint cycles. More
precisely, if

o1 = {m11, . . . , m1n1}, o2 = {m21, · · · , m2n2}, ...

are the orbits of 〈σ〉 acting on {1, 2, ..., n}, numbered in such a way that σmij = mi j+1,
then

σ = (m11 . . . m1n1) · (m21 . . . m2n2) · . . . .
This remark, together with (8.21), gives us the following result.

Corollary 8.22. Let f(X) be a monic separable polynomial of degree n over a
finite field k, and let J be the splitting field of f(X). Suppose that the Frobenius
element σ ∈ Gal(J/k) (when regarded as a permutation of the roots of f(X)) is a
product of disjoint cycles σ = c1 · · · cs with ci of length ni (so that

∑
ni = n). Then

f(X) factors as a product of irreducible polynomials in k[X]

f(X) = f1(X) · · · fr(X)

with fi of degree ni.
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In other words, the type of the cycle decomposition of σ can be read off from the
factorization of f(X).

Theorem 8.23 (Dedekind). Let f(X) be a polynomial of degree n over a number
field K, and let G be the Galois group of f . Assume f(X) ∈ OK [X] and is monic.
Let p be a prime ideal of K, and suppose that

f(X) ≡ f1(X) · · · fr(X) mod p

with the fi distinct irreducible polynomials in k[X] and fi of degree ni, k = OK/p.
Then G contains a permutation σ that is a product of disjoint cycles of length ni.

Proof. Take σ to be the Frobenius element of any prime lying over p — the
hypothesis on the factorization of f(X) mod p implies that p is unramified in the
splitting field (because it implies that p doesn’t divide the discriminant of f).

Remark 8.24. There is a similar statement for real primes, namely, if f(X) =
f1(X) · · · fr(X) in R[X] with f1, . . . , fj of degree 2 and the remainder of the degree
1, then G contains a permutation σ that is a product of disjoint j cycles of length 2.

This suggests the following strategy for factoring a polynomial Q[X]: factor f(X)
modulo many primes p; discard the result if f(X) mod p has multiple factors; continue
until a sequence of, say n, primes has yielded no new cycle types for the elements.
Then attempt to read off the type of the group from tables. We discuss how effective
this is later.

Example 8.25. Let f(X) = X5 − X − 1. Modulo 2 this factors as (X2 + X +
1)(X3+X2+1); modulo 3 it is irreducible. Hence G contains (12345) and (ik)(Jmn)
for some numbering of the roots. It also contains ((ik)(Jmn))3 = (ik), and this implies
that G = S5 (see 8.28 below).

Lemma 8.26. Let H be a subgroup of Sn; if H is transitive (for example, contains
an n-cycle) and contains an (n − 1)-cycle and a transposition, then H = Sn.

Proof. After possibly renumbering, we may suppose that the (n−1)-cycle is (1 2
3 . . . n− 1). By virtue of the transitivity, the transposition can be transformed into
(in), some i ≤ n − 1. Now the (n − 1)-cycle and its powers will transform this into
(1 n), (2 n), . . . , (n− 1 n), and these elements obviously generate Sn (because Sn is
generated by transpositions).

Example 8.27. Select monic polynomials of degree n, f1, f2, f3 with coefficients
in Z such that

(a) f1 is irreducible modulo 2;

(b) f2 =(degree 1)(irreducible of degree n− 1) mod 3;

(c) f3 =(irreducible of degree 2)(product of one or two irreducible polynomials of
odd degree) mod 5. We need to choose f3 to have distinct roots modulo 5.

Take

f = −15f1 + 10f2 + 6f3,

and let G be the Galois group of f . Then

(a′) G is transitive (it contains an n-cycle because of (a));
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(b′) G contains a cycle of length n− 1;

(c′) G contains a transposition (because it contains the product of a transposition
with a commuting element of odd order).

The above lemma shows that G = Sn.

Remark 8.28. There are other criteria for a subgroup H of Sn to be all of Sn.
For example, a subgroup H of Sp, p prime, that contains an element of order p and
a transposition is equal to Sp. (See FT, Lemma 4.12, or Jacobson, Basic Algebra I,
4.10.)

Remark 8.29. In Pohst and Zassenhaus 1989, p. 73, there are suggestions for
constructing irreducible polynomials f(X) of degree n in Fp[X]. A root of such a
polynomial will generate Fq, q = pn, and so every such f(X) will divide Xq−X. One
can therefore find all f(X)s by factoring Xq −X.

For example, consider X125−X ∈ F5[X]. Its splitting field is F125, which has degree
3 over F5. The factors of X125 −X are the minimum polynomials of the elements of
F125. They therefore have degree 1 or 3. There are 5 linear factors, X, X − 1, X − 2,
X − 3, X − 4, and 40 cubic factors, which constitute a complete list of all the monic
irreducible cubic polynomials in F5[X]. (Maple factored X125 − X in 2 seconds and
X625−X in 13 seconds on 1992 notebook computer. PARI version 2 is much slower,
and tends to run out of memory.)

However, if you only want one irreducible polynomial of degree n, it is easier to
write down a polynomial at random, and check whether it is irreducible.

Cubic polynomials. The group S3 has the following subgroups:

order group group elements
1 1 1
2 C2 1× 1 + 1× 2
3 A3 1× 1 + 2× 3
6 S3 1× 1 + 3× 2 + 2× 3.

By the last row, I mean S3 has one 1-cycle, three 2-cycles, and two 3-cycles.

Note that any subgroup of S3 containing cycles of length 2 and 3 is the whole of S3;
thus if f is irreducible modulo some prime and has an irreducible factor of degree 2
modulo a second prime, then its Galois group is S3. On the other hand, if factorizing
f modulo many primes doesn’t turn up a factor of degree 2, but f is irreducible,
then expect the Galois group of f to be A3. This can be checked by seeing whether
disc(f) is a square. For example, the calculations on p. 61 show that the polynomials
X3 + 10X + 1 and X3 − 8X + 15 both have Galois group S3.

To make this more effective (in the technical sense), we need the Chebotarev density
theorem.

Chebotarev density theorem.

Definition 8.30. Let S be a set of finite primes in a number field K, and let P
be the set of all finite primes. We say that S has natural density δ if

lim
N→∞

#{p ∈ S | Np ≤ N}
#{p | Np ≤ N} = δ.
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Theorem 8.31 (Chebotarev density theorem). Let L be a finite Galois extension
of the number field K, with Galois group G, and let C be a conjugacy class in G. The
set of prime ideals p of K such that (p, L/K) = C has density δ = #C/#G.

Proof. See my notes CFT (in fact, normally one proves this result with a slightly
weaker notion of density).

For example, ifG is abelian, then for each σ ∈ G, the set of p such that (p, L/K) = σ
has density 1/#G.

Corollary 8.32. The primes that split in L have density 1/[L : K]. In particu-
lar, there exist infinitely many primes of K not splitting in L.

Remark 8.33. There is a bound for the error in (8.26) (in terms of the discrim-
inant of the polynomial), but it is too large to be of practical importance. How-
ever the existence of the bound has the following consequence: given a polynomial
f(X) ∈ Q[X] (say), there exists a bound B such that, if a given cycle type doesn’t
occur as the Frobenius element of some p ≤ B, then it doesn’t occur at all. [For a
discussion of the effective Chebotarev density theorem, see Lagarias and Odlysko, in
Algebraic Number Fields, ed. A Fröhlich.]

Example 8.34. Let K = Q[ζn]. Then Gal(K/Q) = (Z/nZ)× and (p,K/Q) = [p].
The Chebotarev density theorem says that the primes are equidistributed among the
congruence classes. In other words, each of the arithmetic progression

k, k + n, k + 2n, k + 3n, . . . gcd(k, n) = 1,

contains 1/ϕ(n) of the primes. In particular, each of the arithmetic progressions
contains infinitely many primes. This statement was conjectured by Legendre and
proved by Dirichlet (using Dirichlet series). The proof of the Chebotarev density
theorem is a generalization of that of Dirichlet.

Example 8.35. In a quadratic extension, half the primes split and half the primes
remain prime.

Example 8.36. Let f be a cubic polynomial with coefficients in Q. The Cheb-
otarev density theorem implies the following statements (see the above table):

G = 1: f splits modulo all primes.

G = C2: f splits for 1/2 of the primes and has an irreducible factor of degree 2 for
1/2 of the primes.

G = A3: f splits for 1/3 of the primes and f remains irreducible for 2/3 of the
primes.

G = S3: f splits for 1/6 of the primes, has a factor of degree 2 for 1/2 of the
primes, and remains prime for 1/3 of the primes.

Example 8.37. Let f be a quartic polynomial with no linear factor.

(a) When Disc(f) is a square, the possible Galois groups are:

order group elements
2 C2 1× 1 + 1× 22

4 V4 1× 1 + 3× 22

12 A4 1× 1 + 3× 22 + 8× 3
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(b) When Disc(f) is not a square, the possible Galois groups are:

order group elements
4 C4 1× 1 + 1× 22 + 2× 4
8 D8 1× 1 + 2× 2 + 3× 22 + 2× 4
24 S4 1× 1 + 3× 22 + 6× 2 + 8× 3 + 6× 4

Thus if f is a polynomial of degree 4 with Galois group D8, then it will split
modulo p for 1/8 of the primes, factor as the product of a quadratic and two linear
polynomials for 1/4 of the primes, factor as the product of two quadratics for 3/8 of
the primes, and remain irreducible for 1/4 of the primes.

For a similar table for polynomials of degree 5, see Pohst and Zassenhaus 1989,
p132.

The strategy for determining the Galois group of a polynomial is

(a) test whether f is irreducible over Q;

(b) compute the discriminant of f ;

(c) factor f modulo good primes (i.e., those not dividing the discriminant) until
you seem to be getting no new cycle types;

(d) compute the orbit lengths on the r-sets of roots (these are the degrees of the
irreducible factors in Q[X] of the polynomial whose roots are the sums of r roots of
f);

(e) ad hoc methods.

As late as 1984, it had not been proved that the Mathieu group M11 occurs as a
Galois group over Q (M11 is subgroup of S11 of order 11!/5040 = 7920).

References.
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Theory, ed M. Atkinson, 1984, 291-296.

Soicher and McKay, Computing Galois groups over the rationals, J. Number The-
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Programs for finding the Galois group of a polynomial of degree ≤ 7 are imple-
mented in Maple and in PARI (PARI now claims ≤ 11).

Applications of the Chebotarev density theorem. We now discuss some other
applications of the Chebotarev density theorem.
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For any extension L/K of number fields, write Spl(L/K) for the set of primes that
split completely in L, and write Spl′(L/K) for the set of primes that have at least
one split factor. Then Spl(L/K) ⊂ Spl′(L/K) always, and equality holds if L/K
is Galois, in which case the Chebotarev density theorem shows that Spl(L/K) has
density 1/[L : K].

Theorem 8.38. If L and M are Galois over K, then

L ⊂ M ⇐⇒ Spl(L/K) ⊃ Spl(M/K).

Proof. ⇒: This is obvious.

⇐: We have

Spl(LM/K) = Spl(L/K) ∩ Spl(M/K).

To see this, note that

p ∈ Spl(LM/K) ⇐⇒ (p, LM/K) = 1
⇐⇒ (p, LM/K)|L = 1 and (p, LM/K)|M = 1;

but (p, LM/K)|L = (p, L/K) and (p, LM/K)|M = (p,M/K). Now

Spl(M/K) ⊂ Spl(L/K) ⇒ Spl(LM/K) = Spl(M/K)
8.31⇒ [LM : K] = [M : K]⇒ L ⊂ M.

Corollary 8.39. If L and M are Galois over K, then

L = M ⇐⇒ Spl(M/K) = Spl(L/K).

Proof. Obvious from the Proposition.

Remark 8.40. (a) In fact, L = M if Spl(M/K) and Spl(L/K) differ by at worst
a finite set of primes (or if they differ by at worst a set of primes of density zero).

(b) The effective form of the Chebotarev density theorem shows that (8.38) is
effective: in order to show that L ⊂M it suffices to check that

p splits in M ⇒ p splits in L

for all primes p less than some bound.

(c) Proposition 8.39 is not true without the Galois assumptions: there exist non-
isomorphic extensions L and M of Q such that Spl(L/K) = Spl(M/K). In fact there
exist nonisomorphic extensions L and M of Q of the same degree such that

(i) L and M have the same discriminant;

(ii) a prime p not dividing the common discriminant decomposes in exactly the
same way in the two fields.

(d) It is clear from (8.39) that if a separable polynomial f(X) ∈ K[X] splits into
linear factors mod p for all but finitely many primes p of K, then f(X) splits into
linear factors in K[X]. With a little more work, one can show that an irreducible
polynomial f(X) ∈ K[X] can not have a root mod p for all but a finite number of
primes. This last statement is false for reducible polynomials—consider for example,

(X2 − 2)(X2 − 3)(X2 − 6).

For more on these questions, see Cassels and Fröhlich 1967, Exercise 6, p361.
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Example 8.41. Fix a number field K. According to (8.39), a Galois extension
L of K is determined by the set Spl(L/K). Thus, in order to classify the Galois
extensions of K, it suffices to classify the sets of primes in K that can occur as
Spl(L/K). For abelian extensions of K, class field theory does this — see CFT (they
are determined by congruence conditions). For nonabelian extensions the sets are still
a mystery — they are not determined by congruence conditions — but Langlands’s
conjectures shed some light.

Topics not covered.

More algorithms. Let K be a number field. There is a rather simple algorithm for
factoring a polynomial f(X) ∈ K[X] which involves only:

(a) forming resultants of polynomials over Q, and
(b) factoring polynomials over Q,

both of which Maple and Mathematica can do. However, Maple knows how to
factor polynomials over number fields other than Q.

The Hasse principle for quadratic forms. Consider a quadratic form

Q(X1, . . . , Xn) =
∑

aijXiXj

over a field k. By a nontrivial zero of Q we mean an n-tuple (a1, . . . , an) �= (0, . . . , 0)
such that

Q(a1, . . . , an) = 0.

Theorem 8.42. A quadratic form Q over Q has a nontrivial zero in Q if and only
if it has a nontrivial zero in R and in Qp for each p.

Proof. The necessity is obvious. The key point in the sufficiency is the quadratic
reciprocity law. See Serre, Cours d’Arithmétique, Ch. IV.

The same theorem holds for any number field K, with much the same proof, except
that there is no longer an elementary proof of the quadratic reciprocity law. Instead,
one obtains it as a special case of the Artin reciprocity law, which is proved in CFT
— see CFT VIII.1 for a proof of the theorem over an arbitrary number field.

Algebraic function fields. Appropriately interpreted, everything we have proved for
algebraic number fields also holds for finite extensions of Fp(X).

Suppose K is such a field, and let k be the algebraic closure of Fp in K. It is a finite
field, and it is possible to find an element X ∈ K such that K is a finite separable
extension of k(X). Let OK be the integral closure of k[X] in K. According to (3.30),
it is a Dedekind domain, and one can show that it has finite class number. Moreover,
K× contains only finitely many roots of unity, and the rank of O×K is s − 1 where s
is the “number of primes at infinity”. Let O′K be the integral closure of k[X−1] in K;
then the primes at infinity are those corresponding to the prime ideals in O′K lying
over the prime ideal (X−1) ⊂ k[X−1]. See for example, Cohn 1991. Generally, the
same proofs work in the two cases.

I haven’t discussed function fields in this course from lack of time and because it
is possible to give a more geometric approach in the function field case. Every K
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as above can be realized as the field of algebraic functions on a unique nonsingular
projective algebraic curve C over k, and it is more illuminating to discuss the arith-
metic of K in terms of the geometry of C than to simply translate the proofs from
the number field case.

And after the first year [as an undergraduate at Göttingen] I went
home with Hilbert’s Zahlbericht under my arm, and during the summer
vacation I worked my way through it —without any previous knowledge
of elementary number theory or Galois theory. These were the happiest
months of my life, whose shine, across years burdened with our common
share of doubt and failure, still comforts my soul.

Hermann Weyl, Bull. Amer. Math. Soc. 50 (1944), 612–654.



132

Exercises

During the course, weekly exercise sets were given to the students. Those marked
with an asterisk were not to be handed in. If you would like a dvi-file with the
solutions to the exercises or a copy of the final two-hour exam please e-mail me.

Problems 1. [Introduction, §1, §2]

1. Complete the verification that, in Z[
√−5]

(6) = (2, 1 +
√−5)(2, 1−√−5)(3, 1 +√−5)(3, 1−√−5)

is a factorization of (6) into a product of prime ideals (see the Introduction).

2. Let d be a square-free integer. Show that the ring of integers in Q[
√
d] has the

description in the Introduction.

3. Let A be an integral domain. A multiplicative subset S of A is said to be saturated
if

ab ∈ S ⇒ a and b ∈ S.

(a) Show that S is saturated ⇐⇒ its complement is a union of prime ideals.

(b) Show that given a multiplicative system S, there is a unique smallest saturated
multiplicative system S ′ containing S, and that S ′ = A � ∪p, where p runs over
the prime ideals disjoint from S. Show that S ′−1A = S−1A. Deduce that S−1A is
characterized by the set of prime ideals of A that remain prime in S−1A.

4. Since Z[
√
5] is not integrally closed, it can not be a UFD. Give an example of an

element of Z[
√
5] that has two distinct factorizations into irreducible elements.

5∗. Let A be an integrally closed ring, and let K be its field of fractions. Let
f(X) ∈ A[X] be a monic polynomial. If f(X) is reducible in K[X], show that it is
reducible in A[X].

Problems 2. [§2]
1. Show that if L/K is not separable, then disc(L/K) = 0.

2. Let a = (2, 1 +
√−3) in Z[

√−3]. Show that a �= (2), but a2 = (2)a. Conclude
that ideals in Z[

√−3] do not factor uniquely into prime ideals. (Hence Z[
√−3] is the

wrong choice for the ring of integers in Q[
√−3].)

3. Let A be a subring of a ring B, and let β be a unit in B. Show that every
α ∈ A[β]∩A[β−1] is integral over A. [This has a short solution, but it’s hard to find
it.]

4∗. Let K = Q[
√
7,
√
10], and let α be an algebraic integer in K. The following

argument will show that OK �= Z[α].
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(a) Consider the four algebraic integers:

α1 = (1 +
√
7)(1 +

√
10);

α2 = (1 +
√
7)(1−

√
10);

α3 = (1−√7)(1 +√10);
α4 = (1−√7)(1−√10).

Show that all the products αiαj, i �= j, are divisible by 3 in OK , but that 3 does
not divide any power of any αi. [Hint: Show that αni /3 is not an algebraic integer
by considering its trace: show that Tr(αni ) ≡ (

∑
αnj ) ≡ 4n (mod 3) in Z[α]; deduce

Tr(αni ) ≡ 1 (mod 3) in Z.]

(b) Assume now that OK = Z[α] — we shall derive a contradiction. Let f(X) be
the minimum polynomial of α over Q. For g(X) ∈ Z[X], let ḡ(X) denote the image
of g in F3[X], F3 = Z/(3). Show that g(α) is divisible by 3 in Z[α] if and only if ḡ is
divisible by f̄ in F3[X].

(c) For each i, 1 ≤ i ≤ 4, let fi be a polynomial in Z[X] such that αi = fi(α).
Show that f̄ |f̄if̄j (i �= j) in F3[X], but that f̄ does not divide f̄ni for any n. Conclude
that for each i, f̄ has an irreducible factor which does not divide f̄i but does divide
all f̄j, j �= i.

(d) This shows that f̄ has at least four distinct irreducible factors over F3. On the
other hand, f has degree at most 4. Why is this a contradiction?

Problems 3 [§3]

1. Let k be a field. Is k[X, Y ] a Dedekind domain? (Explain).

2. Show that Z[
√
3] is the ring of integers in Q[

√
3] and Z[

√
7] is the ring of integers

in Q[
√
7], but Z[

√
3,
√
7] is not the ring of integers in Q[

√
3,
√
7]. (Hint: look at

(
√
3 +
√
7)/2.)

3∗. Let k be a field, and let A be the subring k[X2, X3] of k[X].

(a) Show that k[X] is a finitely generated k[X2]-module, and hence is a Noetherian
k[X2]-module. Deduce that A is Noetherian. [This requires facts about modules over
Noetherian rings.]

(b) Show that every nonzero prime ideal of A is maximal, but that A is not a
Dedekind domain.

Hence A satisfies conditions (i) and (iii) to be a Dedekind domain, but fails (ii).
There are also rings that satisfy (ii) and (iii) but fail (i), and rings that satisfy (i)
and (ii) but not (iii) (in fact k[X, Y ]).

Problems 4 [§4]

1. Give an example of an integral domain B, a nonzero prime ideal p in B, and a
subring A of B such that p ∩ A = 0. (Note that this can’t happen if B is integral
over A — see the paragraph preceding 3.32.)
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2. Let F ⊂ K ⊂ L be a sequence of number fields, and let A ⊂ B ⊂ C be their rings
of integers. If Q|P and P|p (prime ideals in C , B, and A respectively), show that

e(Q/P) · e(P/p) = e(Q/p), f(Q/P) · f(P/p) = f(Q/p).

Problems 5 [§§3,4]
1. Let K = Q[α] where α is a root of X3 +X + 1 (see 2.36). According to (3.36),
what are the possible ways that (p) can factor in OK as a product of prime ideals.
Which of these possibilities actually occur? (Illustrate by examples.)

2. Show that Q[
√−23] has class number 3, and that Q[

√−47] has class number 5.

3.∗ Let K be an algebraic number field. Prove that there is a finite extension L of K
such that every ideal in OK becomes principal in OL. [Hint: Use the finiteness of the
class number.]

Problems 6 [§4]
1. Let K = Q[α] where α is a root of X3 − X + 2. Show that OK = Z[α] and
that K has class number 1. [One approach is to consider the square factors of the
discriminant of X3 −X + 2, and show that 1

2
(a+ bα+ cα2) is an algebraic integer if

and only if a, b, and c are all even, but you may be able to find a better one.]

2. Let K = Q[
√−1,√5]. Show that OK = Z[

√−1, 1+
√
5

2
]. Show that the only primes

(in Z) that ramify in K are 2 and 5, and that their ramification indexes are both 2.
Deduce that K is unramified over Q[

√−5]. Prove that Q[
√−5] has class number 2,

and deduce that K is the Hilbert class field of Q[
√−5]. (Cf. 4.9.)

Problems 7 [§5]
1. Fix an m and and M . Is it necessarily true that the set of algebraic integers α in C
of degree < m and with |α| < M is finite? [Either prove, or give a counterexample.]

2. Find a fundamental unit for the field Q[
√
67].

3. Let α be an element of a number field K. Does NmK/Q = ±1 imply that α is unit
in OK . [Either prove, or give a counterexample.]

Problems 8 [§6]
1. Show that X3− 3X +1 is an irreducible polynomial in Q[X] with three real roots.
Let α be one of them, and let K = Q[α]. Compute disc(Z[α]/Z), and deduce that

OK ⊃ Z[α] ⊃ 3mOK
for some m. Show that α and α + 2 are units in Z[α] and OK , and that (α + 1)3 =
3α(α + 2). Deduce that (α + 1) is a prime ideal in OK , and show that OK =
Z[α] + (α+ 1)OK . Use this to show that OK = Z[α]. Show that (2) is a prime ideal
in OK , and deduce that OK is a principal ideal domain.

2. Show that the ring of integers in Q[cos 2π
m
] is Z[2 cos 2π

m
].
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Problems 9 [§7]
1. Let | | be nonarchimedean valuation on a field K.

(a) Define an open disk with radius r and centre a to be

D(a, r) = {x ∈ K | |x− a| < r}.
Prove that D(a, r) = D(b, r) for any b ∈ D(a, r). Deduce that if two disks meet, then
the large disk contains the smaller.

(b) Assume K to be complete. Show that the series
∑

an converges if and only if
an → 0.

(This problem illustrates the weirdness of the topology defined by a nonarchimedean
valuation.)

2. For which a ∈ Z is 7X2 = a solvable in Z7? For which a ∈ Q is it solvable in Q7?

Problems 10 [§7]
1. (a) Show that (X2 − 2)(X2 − 17)(X2 − 34) has a root in Zp for every p.

(b) Show that 5X3 − 7X2 + 3X + 6 has a root α in Z7 with |α− 1|7 < 1. Find an
a ∈ Z such that |α− a|7 ≤ 7−4.

2. Find all the quadratic extensions of Q2. Hint: there are exactly 7 (up to isomor-
phism).

3. Let p1, . . . , pm be distinct prime numbers, and let αi =
√
p. Let K =

Q[α1, . . . , αm]. Show that [K : Q] = 2m. Let γ =
∑

αi. Show that K = Q[γ],
and deduce that the minimum polynomial f(X) of γ over Q has degree 2m. Show
that f(X) factors in Zp[X] into a product of polynomials of degree ≤ 4 (p �= 2) or of
degree ≤ 8 (p = 2).

4∗. Fix an algebraic closure Qal
p of Qp, and for each n prime to p, let ζn be a primitive

nth root of 1. Show that a finite extension K of Qp can contain only finitely many
ζn’s. Deduce that the Cauchy sequence

∑
ζnp

n does not converge to an element of
Qal
p .

Problems 11 [§§7,8]
1. (a) Find two monic polynomials of degree 3 in Q5[X] with the same Newton
polygon, but with one irreducible and the other not.

(b) Find a monic irreducible polynomial in Z[X] of degree 6 which factors in Q5[X]
into a product of 3 irreducible polynomials of degree 2.

2. Let K = Q[α] where α is a root of X3 − X2 − 2X − 8. Show that there are
three extensions of the 2-adic valuation to K. Deduce that 2| disc(Z[α]/Z) but not
disc(OK/Z).
3∗. Let L be a finite Galois extension of the local field K, and let Gi, i ≥ 0, be
the ith ramification group. Let Π generate the maximal ideal in OL. For σ ∈ Gi,
write σΠ = Π + a(σ)Πi+1, and consider the map Gi → l, σ �→ a(σ) mod (Π), where
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l = OL/(Π). Show that this is a homomorphism (additive structure on l) if and only
if i > 0.

4∗. “It is a thought-provoking question that few graduate students would know how
to approach the question of determining the Galois group of, say,

X6 + 2X5 + 3X4 + 4X3 + 5X2 + 6X + 7.”

(a) Can you find it?

(b) Can you find it without using a computer?

5∗. Let K = k(X) where k is a finite field. Assume that every valuation of K comes
from a prime ideal of k[X] or k[X−1], and prove the product formula.

I recommend also Problems 5–38 of Chapter IV of Marcus 1977, which guide the
reader through a proof of the Kronecker-Weber Theorem (every abelian extension of
the rationals is contained in a cyclotomic extension) which is probably close to the
Hilbert’s original proof.

Also, Arakelov theory suggests a different way of viewing the classical results in
algebraic number theory. Sometime I intend to write a sequence of problems illus-
trating this. For the moment, I can only refer the reader to Chapter III of Neukirch,
J., Algebraische Zahlentheorie, Springer 1992.
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extending valuations, 105
factoring primes in an extension, 53
Fermat’s Last, 88
fractional ideals form group, 44
integral closure of Dedekind domain, 47
integral elements form ring, 20
invariant factor, 49
Minkowski bound, 59
modules over Dedekind domain, 48
points in lattice, 65
primes of a number field, 97
primes that ramify, 50
product formula, 96, 97, 118
Stickelberger’s, 32
sum of ef’s is the degree, 49
tensor product of fields, 18
the class number is finite, 60
unique factorization of ideals, 39
unit, 73, 75

topology
p-adic, 93

trace, 25
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valuation
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wildly ramified, 113


