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Chapter 1 ii

Introduction

Two of the best known of Hecke’s achievements are his theory of L-functions with grdssen-
charakter, which are Dirichlet series which can be represented by Euler products, and his theory of the
Euler products, associated to automorphic formson G L(2). Since a grossencharakter is an automorphic
form on GL(1) one is tempted to ask if the Euler products associated to automorphic forms on GL(2)
play a role in the theory of numbers similar to that played by the L-functions with grossencharakter.
In particular do they bear the same relation to the Artin L-functions associated to two-dimensional
representations of a Galois group as the Hecke L-functions bear to the Artin L-functions associated
to one-dimensional representations? Although we cannot answer the question definitively one of the
principal purposes of these notes is to provide some evidence that the answer is affirmative.

The evidence is presented in §12. It come from reexamining, along lines suggested by a recent
paper of Weil, the original work of Hecke. Anything novel in our reexamination comes from our point
of view which is the theory of group representations. Unfortunately the facts which we need from the
representation theory of GL(2) do not seem to be in the literature so we have to review, in Chapter I,
the representation theory of GL(2, F') when F is a local field. §7 is an exceptional paragraph. It is not
used in the Hecke theory but in the chapter on automorphic forms and quaternion algebras.

Chapter 1 is long and tedious but there is nothing hard in it. Nonetheless it is necessary and
anyone who really wants to understand L-functions should take at least the results seriously for they
are very suggestive.

69 and §10 are preparatory to the Hecke theory which is finally taken up in §11. We would like to
stress, since it may not be apparent, that our method is that of Hecke. In particular the principal tool is
the Mellin transform. The success of this method for GL(2) is related to the equality of the dimensions
of a Cartan subgroup and the unipotent radical of a Borel subgroup of PG L(2). The implication is that
our methods do not generalize. The results, with the exception of the converse theorem in the Hecke
theory, may.

The right way to establish the functional equation for the Dirichlet series associated to the
automorphic forms is probably that of Tate. In §13 we verify, essentially, that this method leads to the
same local factors as that of Hecke and in §14 we use the method of Tate to prove the functional equation
for the L-functions associated to automorphic forms on the multiplicative group of a quaternion
algebra. The results of §13 suggest a relation between the characters of representations of GL(2) and
the characters of representations of the multiplicative group of a quaternion algebra which is verified,
using the results of §13, in §15. This relation was well-known for archimedean fields but its significance
had not been stressed. Although our proof leaves something to be desired the result itself seems to us
to be one of the more striking facts brought out in these notes.

Both §15 and §16 are after thoughts; we did not discover the results in them until the rest of the
notes were almost complete. The arguments of §16 are only sketched and we ourselves have not verified
all the details. However the theorem of §16 is important and its proof is such a beautiful illustration
of the power and ultimate simplicity of the Selberg trace formula and the theory of harmonic analysis
on semi-simple groups that we could not resist adding it. Although we are very dissatisfied with the
methods of the first fifteen paragraphs we see no way to improve on those of §16. They are perhaps
the methods with which to attack the question left unsettled in §12.

We hope to publish a sequel to these notes which will include, among other things, a detailed
proof of the theorem of §16 as well as a discussion of its implications for number theory. The theorem
has, as these things go, a fairly long history. As far as we know the first forms of it were assertions about
the representability of automorphic forms by theta series associated to quaternary quadratic forms.
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As we said before nothing in these notes is really new. We have, in the list of references at
the end of each chapter, tried to indicate our indebtedness to other authors. We could not however
acknowledge completely our indebtedness to R. Godement since many of his ideas were communicated
orally to one of us as a student. We hope that he does not object to the company they are forced to keep.

The notes™ were typed by the secretaries of Leet Oliver Hall. The bulk of the work was done by

Miss Mary Ellen Peters and to her we would like to extend our special thanks. Only time can tell if the
mathematics justifies her great efforts.

New York, N.Y. August, 1969
New Haven, Conn.

* that appeared in the SLM volume



Chapter I: Local Theory

§1 Weil representations.  Before beginning the study of automorphic forms we must review the repre-
sentation theory of the general linear group in two variables over a local field. In particular we have to
prove the existence of various series of representations. One of the quickest methods of doing this is
to make use of the representations constructed by Weil in [1]. We begin by reviewing his construction
adding, at appropriate places, some remarks which will be needed later.
In this paragraph F will be a local field and K will be an algebra over F' of one of the following
types:
(i) The directsum F' & F.
(i) A separable quadratic extension of F.
(iii) The unique quaternion algebra over F'. K is then a division algebra with centre F'.

(iv) The algebra M (2, F') of 2 x 2 matrices over F.
In all cases we identify F' with the subfield of K consisting of scalar multiples of the identity. In
particular if K = F @ F we identify F' with the set of elements of the form (z, ). We can introduce an
involution ¢ of K, which will send z to z*, with the following properties:

(i) It satisfies the identities (z + y)* = z* 4+ y* and (zy)" = y'z".
(ii) If z belongs to F' then z = x*.
(iii) Forany z in K both 7(z) = x 4+ 2* and v(x) = za* = x'x belong to F.
If K =F @ Fandxz = (a,b) wesetz* = (b,a). If K is a separable quadratic extension of F' the
involution ¢ is the unique non-trivial automorphism of K over F'. In this case 7(x) is the trace of z and

v(z) is the norm of z. If K is a quaternion algebra a unique ¢ with the required properties is known to
exist. 7 and v are the reduced trace and reduced norm respectively. If K is M (2, F') we take ¢ to be the

involution sending
_(a b
T=\e d

()

Then 7(z) and v(z) are the trace and determinant of .
If ¢b = ¢ isa given non-trivial additive character of F'then ¢y = ¢ r o7 isanon-trivial additive
character of K. By means of the pairing

to

(z,y) = Yi (zy)

we can identify K with its Pontrjagin dual. The function v is of course a quadratic form on K which is
a vector space over F' and f = ¢ o v is a character of second order in the sense of [1]. Since

v(z+y) —v(x) —v(y) = 7(zy")

and
fla+y)f @) (y) = (=,9)

the isomorphism of K with itself associated to f isjust «. In particular v and f are nondegenerate.
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Let S(K) be the space of Schwartz-Bruhat functions on K. There is a unique Haar measure dx
on K such that if ¢ belongs to S(K') and

' (z) = /K D (y) Vi (zy) dy

then

The measure dx, which is the measure on K that we shall use, is said to be self-dual with respect to ¢ .
Since the involution ¢ is measure preserving the corollary to Weil’s Theorem 2 can in the present
case be formulated as follows.

Lemma 1.1. There is a constant v which depends on the ¥g and K, such that for every function ®
in 8(K)

[ (@ D) victyr) dy =) 2'(2)
K

® x f is the convolution of ® and f. The values of  are listed in the next lemma.
Lemmal2 (i) If K=F®&F or M(2,F) then v=1.

(i) If K s the quaternion algebra over F' then v = —1.
@) If F=R, K =C, and

then

(iv) If F' is non-archimedean and K is a separable quadratic extension of F' let w be the quadratic
character of F* associated to K by local class-field theory. If Ug is the group of units of F™*
let m = m(w) be the smallest non-negative integer such that w is trivial on

Ut ={a€Up|a=1(modp})}

and let n = n(yr) be the largest integer such that ¢p is trivial on the ideal pi". If a is any
generator on the ideal p'p™ then

fUF w () Yr(aa™t) da '
fUF w(a) Yp(aat) da

'Y:w(a)‘

The first two assertions are proved by Weil. To obtain the third apply the previous lemma to the
function
O(z2) = e 2"

We prove the last. It is shown by Weil that |y| = 1 and that if £ is sufficiently large -y differs from

) Yp(za') dx

P
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by a positive factor. This equals
/ Y (@) ol d¥o = / v (@) |eat|p d*
Pr Pr

if d*x is a suitable multiplicative Haar measure. Since the kernel of the homomorphism v is compact
the integral on the right is a positive multiple of

/( 7@)1#1:(33) |z|p d*z.
v(pg

Set k = 2¢ if K/F is unramified and set k = / if K/F is ramified. Then v(px’) = pz* Nv(K).
Since 1 + w is twice the characteristic function of v( K *) the factor ~ is the positive multiple of

/p;k Yp(z)dr + /p;k Yp(z)w(z) de.

For ¢ and therefore k sufficiently large the first integral is 0. If K/ F is ramified well-known properties
of Gaussian sums allow us to infer that the second integral is equal to

[ e (&) w(2) da

Since w = w ™! we obtain the desired expression for ~ by dividing this integral by its absolute value. If
K/ F is unramified we write the second integral as

.jo(—l)j—k {/kaH Yr(r)de — /ka:+;‘+1 V() dx}

J

In this case m = 0 and

/p’fﬂ‘ Yr(z)de

F

is0if k — j > n butequals ¢* =7 if k — j < n, where g is the number of elements in the residue class
field. Since w(a) = (—1)™ the sum equals

q

w(a){ g™ + 2(—1)]’@-1‘ <1 _ 1)

. . m1 . . L
A little algebra shows that this equals % so that v = w(a), which upon careful inspection is

seen to equal the expression given in the lemma.
In the notation of [19] the third and fourth assertions could be formulated as an equality

It is probably best at the moment to take this as the definition of A\(K/F, ¢p).
If K is not a separable quadratic extension of F' we take w to be the trivial character.



Chapter 1 4

Proposition 1.3 There is a unique representation r of SL(2,F) on S(K) such that

0 (5 o) ) o = et ol aea)

(67

@ r( (o §))e0 =vrrtanew

(i) r< <_(1) é) ><I)(x) — A (2).

If 8(K) is given its usual topology, r is continuous. It can be extended to a unitary representation
of SL(2,F) on L*(K), the space of square integrable functions on K. If F is archimedean and ®
belongs to S(K) then the function r(g)® is an indefinitely differentiable function on SL(2, F) with
values in §( K).

This may be deduced from the results of Weil. We sketch a proof. SL(2, F') is the group generated
by the elements (a ao_1>, (1 z) and w = ( 0 1) with o in F* and z in F subject to the

0 0 1 -1 0
relations

(a) (5 0 )= (% o)
(b) = (3 %)
© (o )= S0 7))

together with the obvious relations among the elements of the form (g a(ll ) and <(1) 'i) Thus

the unigueness of r is clear. To prove the existence one has to verify that the mapping specified by
(i), (i), (iii) preserves all relations between the generators. For all relations except (a), (b), and (c) this
can be seen by inspection. (a) translates into an easily verifiable property of the Fourier transform. (b)
translates into the equality 42 = w(—1) which follows readily from Lemma 1.2.

If a = 1 the relation (c) becomes

| ¥ o) ) dy = e (-v(@) [ Sl)vr(-v)y.~a") dy (13.1)
K K
which can be obtained from the formula of Lemma 1.1 by replacing ®(y) by ®'(—y*) and taking the
inverse Fourier transform of the right side. If a is not 1 the relation (c) can again be reduced to (1.3.1)
provided ¢ is replaced by the character x — ¥z (ax) and vy and dz are modifed accordingly. We refer
to Weil’s paper for the proof that r is continuous and may be extended to a unitary representation of
SL(2,F)in L*(K).

Now take F' archimedean. It is enough to show that all of the functions r(g)® are indefinitely
differentiable in some neighborhood of the identity. Let

T € F}

{0 1)
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ae={(§ L) |aer}

Then NrpwAprNp is a neighborhood of the identity which is diffeomorphic to Ng x Ar x Ng. Itis
enough to show that

and let

é(n,a,ny) = r(nwan)®

is infinitely differentiable as a function of n, as a function of a, and as a function of n; and that
the derivations are continuous on the product space. For this it is enough to show that for all @ all
derivatives of 7(n)® and r(a)® are continuous as functions of n and ® or a and ®. This is easily done.

The representation r depends on the choice of ¢x. If a belongs to F'* and ¢z (z) = ¢ (ax) let
r’ be the corresponding representation. The constant v = w(a)~.

Lemma1.4 (i) The representation v’ is given by

T’(Q)ZT<<8 (1)>9<a(_)1 (D)

(ii) If b belongs to K* let A\(b)®(x) = ®(b~'x) and let p(b)®(z) = ®(xb). If a = v(b) then

and
r'(9)p(b) = p(b)r(g).
In particular if v(b) = 1 both \(b) and p(b) commute with r.

We leave the verification of this lemmato the reader. Take K to be a separable quadratic extension
of F' or a quaternion algebra of centre F. In the first case v(K*) is of index 2 in F'*. In the second case
v(K*)is F* if F is non-archimedean and v(K*) has index 2 in F* if F'is R.

Let K’ be the compact subgroup of K* consisting of all z with v(z) = xz* = 1 and let G be the
subgroup of GL(2, F') consisting of all g with determinant in v(K™). G4 hasindex2or1in GL(2, F).
Using the lemma we shall decompose r with respect to K’ and extend r to a representation of G .

Let Q2 be afinite-dimensional irreducible representation of & * in a vector space U over C. Taking
the tensor product of  with the trivial representation of SL(2, F') on U we obtain a representation on

$(K) @c U = $(K,U)

which we still call » and which will now be the centre of attention.

Proposition 1.5 (i) If 8(K, Q) is the space of functions ® in §(K,U) satisfying
®(xh) = Q1 (h)®(x)

for all h in K’ then 8(K,Q) is invariant under r(g) for all g in SL(2, F).
(i) The representation v of SL(2,F) on 8(K,Q) can be extended to a representation rq of G4

satisfying
wl (5 7))o =miemen

if a = v(h) belongs to v(K™).
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(iii) If n is the quasi-character of F* such that

Q(a) =n(a)l

(5 0)) =wt@nr

(iv) The representation rq is continuous and if F is archimedean all factors in S(K,Q) are
infinitely differentiable.

(v) IfU is a Hilbert space and Q is unitary let L?(K,U) be the space of square integrable functions
from K to U with the norm

for a in F* then

o2 = / 1®() 2 de

If L*(K,Q) is the closure of 8(K,Q) in L*(K,U) then rq can be extended to a unitary
representation of Gy in L?(K, Q).

The first part of the proposition is a consequence of the previous lemma. Let H be the group of
matrices of the form
a 0
0 1

with a in v(K™). Itis clear that the formula of part (ii) defines a continuous representation of H on
S(K, ). Moreover G is the semi-direct of H and SL(2, F') so that to prove (ii) we have only to show

" (s el D) (G D) ()

Let « = v(h) and let ' be the representation associated ¢.(z) = 1 r(ax). By the first part of the
previous lemma this relation reduces to

ro(9) = p(h) ralg) p~ ' (h),

which is a consequence of the last part of the previous lemma.

To prove (iii) observe that
a 0\ [(a* 0 a”l 0
00 a) \0 1 0 1

and that a® = v(a) belongs to v(K*). The last two assertions are easily proved.
We now insert some remarks whose significance will not be clear until we begin to discuss the
local functional equations. We associate to every ® in §( K, (2) a function

Wa(g) = ralg) (1) (1.5.1)

pa(a) = We <<8 ?)) (1.5.2)

on v(K*). The both take values in U.

on G4 and a function
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It is easily verified that

wa (o 1)) =vr@malo

If g € G+ and F'is a function on G let p(g) F be the function h — F'(hg). Then

/0(9) We = WTQ (g)(I)

(6 7)

with a in v(K ™). Let £ be the representation of B, on the space of functions on (K *) with values in

U defined by
e((5 1)) e =va)

() ECRCED!

The application ® — g, and therefore the application ® — Wy, is injective because

Let B be the group of matrices of the form

and

Then for all b in B

pa(v(h)) = |h[}L* Q(h) @ (h). (1.5.4)

Thus we may regard rq as acting on the space V' of functions pg, ® € S(K,Q2). The effect of a

matrix in B is given by (1.5.3). The matrix <a 2) corresponds to the operator w(a)n(a)l. Since

0
G is generated by B, the set of scalar matrices, and w = _01 (1) the representation r on V' is
determined by the action of w. To specify this we introduce, formally at first, the Mellin transform of
Y =P
If 11 is a quasi-character of F'* let
= [ elaua)da (1.5.5)
v(KX)

Appealing to (1.5.4) we may write this as

~ ~ 2

Fol) = B = [ W) 001) B(1) . (156)

If \ is a quasi-character of F'* we sometimes write \ for the associated quasi-character A o v of K'*.
The tensor product A ® 2 of X and (2 is defined by

AR Q)(h) = A(h) Q(h).
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If a : h — |h|k is the module of K then

apl* 1@ Qh) = [ n(v(h)) Q(h).

We also introduce, again in a purely formal manner, the integrals

Z(Q,(I)):/KX Q(h) ®(h) d*h

and
Z(Q7 ®) :/ Q1 (h) ®(h) d*h
KX
so that s
Bln) = Z(noyl* © 0, ). (1.5.7)

Now let ¢ = ¢, (w)» and let @’ be the Fourier transform of @ so that ro(w) ®(z) = y®'(z*). If
Ho = wn

G ut)=2 (u‘luala}f ® Q,m(w)@)

which equals
Y /K i i () QUR) @ () d* .

Since po(v(h)) =n(v(h)) = Q(h*h) = Q(h*)Q(h) this expression equals

v [ Tt (h)Q (W) @' (h') d*h = 7/ p=H(v(h)Q 7 (h) @' (h) d*h
K K
so that

(gt =12 (u‘la}f ® 0, <I>’> : (1.5.8)

Take 11 = pi a3 where p; is a fixed quasi-character and s is complex number. If K is a separable
guadratic extension of F' the representation 2 is one-dimensional and therefore a quasi-character. The
integral defining the function

Z(,uoz}(/Q ®Q,P)

is known to converge for Re s sufficiently large and the function itself is essentially a local zeta-function
in the sense of Tate. The integral defining

Z(n oy’ © 071 @)

converges for Re s sufficiently small, that is, large and negative. Both functions can be analytically
continued to the whole s-plane as meromorphic functions. There is a scalar C'(x) which depends
analytically on s such that

Z(posl? @ 0,8) = C(w) Z(p 'aj? @ Q71 &),

All these assertions are also known to be valid for quaternion algebras. We shall return to the verification
later. The relation

() =7""C(W& (g ")
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determines ¢’ in terms of .
If X is a quasi-character of F'* and ; = A ® Q then §(K,€Q;) = §(K,2) and

0, (9) = A(detg)ra(g)

so that we may write
rQ, =AQTrQ

However the space V; of functions on (K *) associated to rq, is not necessarily V. In fact
Vi={\lpeV}

and ro, (g) applied to A, is the product of A(detg) with the function A-7q(g),. Given 2 one can always
find a A such that \ ® € is equivalent to a unitary representation.
If Q is unitary the map ® — g is an isometry because

2 X 2 X7 9
[ oo Testenaa= [ i et = [ o)

if the measures are suitably normalized.

We want to extend some of these results to the case K = F' & F'. We regard the element of K
as defining a row vector so that K becomes a right module for M (2, F'). If ® belongs to §(KX') and g
belongs to GL(2, F'), we set

p(g) ®(x) = ®(zg).
Proposition 1.6 (i) If K = F @ F then r can be extended to a representation r of GL(2,F) such

that 0 0
a a
() x=((5 1))
for a in F*.

(i) IfEI; is the partial Fourier transform

B(a,b) = /F ®(a,y) dp(by) dy

and the Haar measure dy is self-dual with repsect to g then

for all @ in §(K) and all g in Gp.

It is easy to prove part (ii) for g in SL(2, F'). In fact one has just to check it for the standard
generators and for these it is a consequence of the definitions of Proposition 1.3. The formula of part (ii)
therefore defines an extension of » to GL(2, ') which is easily seen to satisfy the condition of part (i).

Let 2 be a quasi-character of K *. Since K* = F'* x F'* we may identify Q with a pair (w;,ws)
of quasi-characters of F'*. Then rq will be the representation defined by

ra(g) = |detg|} *wi (detg)r(g).



Chapter 1 10

If x belongs to K* and v(x) = 1 then z is of the form (¢,¢~!) with ¢ in F*. If ® belongs to §(K)
set

«9(9,(1)):/FX Q(t,t7h)) ®((t,t7 1)) d*t.

Since the integrand has compact support on F* the integral converges. We now associate to ¢ the
function
Wa(g) = 0(2,ra(g)®) (1.6.1)

pa(a) = We <<8 ?)) (1.6.2)

p(g)Wq;. =Wy, (g)(I),

— a €z X
BF_{(O 1) la € F ,:L'GF}

and if the representations & of Br on the space of functions on F'* is defined in the same manner as
the representation ¢ of B then

on GL(2, F') and the function

on F*. We still have

§(b)ps = Prov)a

for b in Br. The applications ® — W3 and ® — ¢4 are no longer injective.
If g is the quasi-character defined by

then

It is enough to verify this for g = e.

(6 2))=o(on (5 2))7)

and
so that

Consequently

which is the required result.
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Again we introduce in a purely formal manner the distribution
Z(Q, (I)) = Z(wl,wg@) = /(I)(Jfl, JJQ) wl(.’Eg) WQ(JJQ) dXxQ Xm‘Q.
If 11 is a quasi-character of F'* and ¢ = w4 We set
2= [ wla (e)d*a
The integral is
a 0 «
/ ,u(a)@(Q,rQ<< ))@) d* o
Fx 0 1
a 0 — x x
:/ ,u(a){/ TQ<< ))@(ac,x Jwi(x)wy *(z)d x} d*«a
Fx FXx 0 1
which in turn equals
1/2 -1 -1 X X
/ pla)wr (a)|al # {/ O(ax, 2™ )wi(x)w, () d x} d*a.
Fx FXx
Writing this as a double integral and then changing variables we obtain
1/2 5% gx
/ / O (a, z) pwn () pwo () |ox |~ d* ad™ x
Fx JFx
so that
P(u) = Z (Wla}/z,uwza}”, <1>) . (1.6.3)
Let o' = 0 (w)a- Then
gt = Z (7w g p wr al? ra(w) @)
which equals
// ' (y, 2) " wy (@) wr @)yl A e dy
so that o o
P g h) = Z(p  wr ol p T wy tagl 2, @), (1.6.4)

Suppose u = o where g is a fixed quasi-character and s is a complex number. We shall see that
the integral defining the right side of (1.6.3) converges for Re s sufficiently large and that the integral
defining the right side of (1.6.4) converges for Re s sufficiently small. Both can be analytically continued
to the whole complex plane as meromorphic functions and there is a meromorphic function C () which

is independent of ® such that

Z(,uwloz;/Q, ,uwgoz};/Q) = C(M)Z(M_lwfla}ﬂ, u_lwgla}ﬂ, ).

Thus
P = C(W@ (n g )
The analogy with the earlier results is quite clear.
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§2 Representations of GL(2, F') in the non-archimedean case. In this and the next two paragraphs
the ground field F' is a non- archimedean local field. We shall be interested in representations 7 of
Gr = GL(2, F) on a vector space V over C which satisfy the following condition.

(2.1) For every vector v in V the stabilizer of v in G is an open subgroup of Gp.

Those who are familiar with such things can verify that this is tantamount to demanding that the
map (g,v) — 7(g)vof G x V into V' is continuous if V' is given the trivial locally convex topology in
which every semi-norm is continuous. A representation of G satisfying (2.1) will be called admissible
if it also satisfies the following condition

(2.2) For every open subgroup G’ of GL(2,0F) the space of vectors v in V stablizied by G’ is
finite-dimensional.

Or is the ring of integers of F.

Let Hr be the space of functions on G which are locally constant and compactly supported.
Let dg be that Haar measure on G which assigns the measure 1 to GL(2, Or). Every f in Hr may be
identified with the measure f(g) dg. The convolution product

f1* fa(h) = ; f1(9) f2(g~"h) dg

turns Hp into an algebra which we refer to as the Hecke algebra. Any locally constant function
on GL(2,0Fr) may be extended to G by being set equal to 0 outside of GL(2,Op) and therefore
may be regarded as an element of Hg. In particular if m;, 1 < ¢ < r, is a family of inequivalent
finite-dimensional irreducible representations of GL(2, Or) and

&i(g) = dim(m;) trmi(g™")

for g in GL(2,0F) we regard &; as an element of H . The function

£=> &
i=1

is an idempotent of Hx. Such an idempotent will be called elementary.
Let 7 be a representation satisfying (2.1). If f belongs to H and v belongs to V' then f(g) 7(g)v
takes on only finitely many values and the integral

f(g)m(g)vdg = 7(f)v

Gr

may be defined as a finite sum. Alternatively we may give V the trivial locally convex topology and use
some abstract definition of the integral. The result will be the same and f — 7(f) is the representation
of Hr on V. If g belongs to G then \(g) f is the function whose value at h is f(g~1h). Itis clear that

m(A(g)f) = m(g) 7 (f).

Moreover
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(2.3) For every v in V there is an f in Hp such that 7f(v) = v.

In fact f can be taken to be a multiple of the characteristic function of some open and closed
neighborhood of the identity. If 7 is admissible the associated representation of Hg satisfies

(2.4) For every elementary idempotent & of Hp the operator (&) has a finite-dimensional range.

We now verify that from a representation « of H g satisfying (2.3) we can construct a represen-
tation 7 of G satisfying (2.1) such that

By (2.3) every vector v in V' is of the form

T

v= Zﬂ-(fi) Vi

i=1

with v; in V and f; in Hg. If we can show that
Zﬂ(fi)vi =0 (2.3.1)

implies that

is 0 we can define 7(g)v to be
> 7w (Mg)fi)vs
=1
« will clearly be a representation of G satisfying (2.1).
Suppose that (2.3.1) is satisifed and choose f in Hp so that 7(f)w = w. Then

r

w = Zﬂ(f * Xg) fi)vi.

i=1

If p(g)f(h) = f(hg) then
fXg) fi=plg ") * f;

so that

3

w=) w(plg)f* fi)vi =7 (p(g™")[) {Zﬂ-(fi)vi} = 0.
=1 =1

It is easy to see that the representation of G satisfies (2.2) if the representation of JH{ satisfies
(2.4). A representation of Hp satisfying (2.3) and (2.4) will be called admissible. There is a complete
correspondence between admissible representations of Gr and of H . For example a subspace is
invariant under G if and only if it is invariant under Hr and an operator commutes with the action
of G if and only if it commutes with the action of Hpg.
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>From now on, unless the contrary is explicitly stated, an irreducible representation of G or Hg
is to be assumed admissible. If 7 is irreducible and acts on the space V then any linear transformation
of V commuting with Hg is a scalar. In fact if V' is assumed, as it always will be, to be different
from 0 there is an elementary idempotent £ such that 7(§) # 0. Its range is a finite-dimensional space
invariant under A. Thus A has at least one eigenvector and is consequently a scalar. In particular there
is a homomorphism w of F'* into C such that

(5 ))--o

for all ¢ in . By (2.1) the function w is 1 near the identity and is therefore continuous. We shall
refer to a continuous homomorphism of a topological group into the multiplicative group of complex
numbers as a quasi-character.

If x is a quasi-character of F'* then g — x(detg) is a quasi-character of Gp. It determines a
one-dimensional representation of G which is admissible. It will be convenient to use the letter x to
denote this associated representation. If 7 is an admissible reprentation of Gg on V then y ® 7w will be
the reprenentation of G on V' defined by

(x ®)(g) = x(detg)m(g).
It is admissible and irreducible if 7 is.
Let 7 be an admissible representation of Gr on V and let V* be the space of all linear forms on
V. We define a representation 7* of Hr on V* by the relation

(v, 7" (f)v*) = (7 (f)v,v")
where fu(g) = f(g~"). Since 7* will not usually be admissible, we replace V* by V= ™ (Hp)V*.

The space V is invariant under Hp. For each f in Hg there is an elementary idempotent £ such that
&x f = fand therefore the restriction 7 of 7* to V satisfies (2.3). Itis easily seen that if £ is an elementary

idempotent so is £&. To show that 7 is admissible we have to verify that

V(E) =7V =" (V"
is finite-dimensional. Let V(£) = m({)V and let V. = (1 —(€)) V. V is clearly the direct sum of V (),
which is finite-dimensional, and V.. Moreover ‘7(5) is orthogonal to V. because

(v=m(&)v,7(§)v) = (7(§)v — 7(§)v,v) = 0.
It follows immediately that V() is isomorphic to a subspace of the dual of V(£) and is therefore
finite-dimensional. It is in fact isomorphic to the dual of V' (€) because if v* annihilates V. then, for all
vinV,

(v, 7 (§)v") = (v,v") = =(v = w(§)v,v") =0
so that 7* (§)v* = v*.

7 will be called the representation contragradient to . It is easily seen that the natural map of
V into V* is an isomorphism and that the image of this map is 7 (J{F)f/* so that = may be identified
with the contragredient of 7.

If V1 is an invariant subspace of V and 1, = V; \ V we may associate to 7 representations 7, and
mo 0n V4 and V5. They are easily seen to be admissible. It is also clear that there is a natural embedding
of V5 in V. Moreover any element v; of V4 lies in ‘71(5) for some £ and therefore is determined by its
effecton V; (€). Itannihilates (I —7(€)) V4. There is certainly a linear function o on V which annihilates
(I —7(€))V and agrees with V1 on V4 (€). Uis necessarily in V so that V; may be identified with V5 \ V.
Since every representation is the contragredient of its contragredient we easily deduce the following
lemma.
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Lemma25 (a). Suppose Vi is an invariant subspace of V. If‘~/2 is the annshilator of Vi in V then

V1 is the annihilator of Vo in V.
(b) m is irreducible if and only if T is.

Observe that for all g in Gp

(m(g)v,7) = (v, 7(g~")0).

If 7 is the one-dimensional representation associated to the quasi-character x then 7 = x~!. Moreover
if x is a quasi-character and 7 any admissible representation then the contragredient of y @ wis x ' @ 7.

Let V' be a separable complete locally convex space and 7 a continuous representation of Gg
on V. The space V, = w(H )V is invariant under G and the restriction 7, of 7 to 1} satisfies (2.1).
Suppose that it also satisfies (2.2). Then if 7 is irreducible in the topological sense m is algebraically
irreducible. To see this take any two vectors v and w in V; and choose an elementary idempotent & so
that 7(£)v = v. v is in the closure of 7(Hr)w and therefore in the closure of 7(Hg)w N w(£)V. Since,
by assumption, 7(£)V is finite dimensional, v must actually lie in 7(Hg)w.

The equivalence class of 7 is not in general determined by that of m,. It is, however, when
m is unitary. To see this one has only to show that, up to a scalar factor, an irreducible admissible
representation admits at most one invariant hermitian form.

Lemma 2.6 Suppose w1 and my are irreducible admissible representations of Ggp on Vi and Vs re-
spectively. Suppose A(vy,va) and B(v1,vs) are non-degenerate forms on Vi x Vo which are linear
in the first variable and either both linear or both conjugate linear in the second variable. Suppose
moreover that, for all g in Gp

A(mi(g)v1, ma(g)va) = A(v1,v2)

and
B(7T1 (g)v1, o (g)vg) = B(vy,v2)

Then there is a complex scalar \ such that
B(vy,v2) = AA(v1,v2)
Define two mappings S and T of V5 into Vi by the relations
A(vy,v9) = (v1, Sva)

and
B(vlv UQ) = <’U1, TU2>7

Since S and T are both linear or conjugate linear with kernel 0 they are both embeddings. Both take
V5 onto an invariant subspace of 171 Since 171 has no non-trivial invariant subspaces they are both
isomorphisms. Thus S~!T is a linear map of V5 which commutes with G and is therefore a scalar \I.
The lemma follows.

An admissible representation will be called unitary if it admits an invariant positive definite
hermitian form.

We now begin in earnest the study of irreducible admissible representations of Gr. The basic
ideas are due to Kirillov.
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Proposition 2.7.  Let m be an irreducible admissible representation of Gg on the vector space V.
(a) If V is finite-dimensional then V is one-dimensional and there is a quasi-character x of F*
such that
m(g) = x(detg)

(b) If V is infinite dimensional there is no nonzero vector invariant by all the matrices (é :lv),
e F.

If 7 is finite-dimensional its kernel H is an open subgroup. In particular there is a positive
number e such that
1 z
0 1

belongs to H if || < e. If  is any element of F' there is an a in F'* such that |az| < €. Since

(o )G )G )=
(b 1)

belongs to H for all z in F'. For similar reasons the matrices

()

do also. Since the matrices generate SL(2, F') the group H contains SL(2, F'). Thus 7(g1)7(g2) =
m(g2)m(g1) for all g1 and g, in Gp. Consequently each m(g) is a scalar matrix and 7(g) is one-
dimensional. In fact

the matrix

m(g9) = x(detg)l

where x is a homorphism of F* into C*. To see that x is continuous we need only observe that

(R

Suppose V contains a nonzero vector v fixed by all the operators

(7))

Let H be the stabilizer of the space Cv. To prove the second part of the proposition we need only verify
that H is of finite index in Gg. Since it contains the scalar matrices and an open subgroup of G it will
be enough to show that it contains SL(2, F'). In fact we shall show that Hy, the stabilizer of v, contains
SL(2,F). Hy is open and therefore contains a matrix

(¢ 0)
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with ¢ # 0. It also contains

1 —ac™! a b 1 —de7'\ _ [0 b —w
0 1 c d)\o 1 “\e o) 7"
1 0\ 1 z\ 4
y 1)~ " 0o 1)%

also belongs to Hy. As before we see that H, contains SL(2, F).
Because of this lemma we can confine our attention to infinite-dimensional representations. Let
1) = ¢ be a nontrivial additive character of F'. Let By be the group of matrices of the form

=6 1)

with a in F* and z in F. If X is a complex vector space we define a representation &, of B on the
space of all functions of F'* with values in X by setting

(£s (D)) () = W(az)p(aa).

&y leaves the invariant space S(F*,X) of locally constant compactly supported functions. &, is
continuous with respect to the trivial topology on S(F*, X).

Ifx = b?oythen

Proposition 2.8.  Let w be an infinite dimensional irreducible representation of Ggp on the space V.
Let p = pr be the mazimal ideal in the ring of integers of F', and let V' be the set of all vectors v

in V' such that
1 =z
/p_n Yp(—z)T <<O 1>> vdr =0
for some integer n. Then

(i) The set V' is a subspace of V.
(ii) Let X =V'\'V and let A be the natural map of V onto X. If v belongs to V let ¢, be the

function defined by
- )

The map v — @, is an injection of V into the space of locally constant functions on F* with
value in X.

(iii) If b belongs to Br and v belongs to V' then
Pr(b)yo = fw(b)(pv

If m > n so that p~™ contains p~" then

/,, Rk ((3 ﬂf»vdag
£ soor((s D) eon((3 7)o

yEp—m/pm
Thus if the integral of the lemma vanishes for some integer n it vanishes for all larger integers. The
first assertion of the proposition follows immediately.
To prove the second we shall use the following lemma.

is equal to



Chapter 1 18

Lemma2.8.1 Letp~" be the largest ideal on which v is trivial and let f be a locally constant function
on p~t with values in some finite dimensional complex vector space. For any integer n < { the
following two conditions are equivalent

(i) f is constant on the cosets of p~™ in p~*

(ii) The integral

| vt sy ae

is zero for all a outside of p~™T™.

Assume (i) and let a be an element of F* which is not in p~™*". Then x — (—ax) is a
non-trivial character of p~" and

[ o) fwas = S wan{ [ tonar} s =0

yep—*t/p—m

f may be regarded as a locally constant function on F with support in p—*. Assuming (ii) is
tantamount to assuming that the Fourier transform £’ of f has its support in p~™"". By the Fourier
inversion formula

f(z) = / b(—zy) f'(y) dy.
p—m+n

If y belongs to p~™*" the function z — ¢ (—xy) is constant on cosets of p~". It follows immediately
that the second condition of the lemma implies the first.

To prove the second assertion of the proposition we show that if ¢, vanishes identically then v
is fixed by the operator 7((, 7)) for all z in F' and then appeal to Proposition 2.7.

Take

The restriction of f to an ideal in F' takes values in a finite-dimensional subspace of V. To show that
f is constant on the cosets of some ideal p~™ it is enough to show that its restriction to some ideal p—*
containing p~" has this property.

By assumption there exists an ng such that f is constant on the cosets of p~™°. We shall now
show that if f is constant on the cosets of p~"*! it is also constant on the cosets of p~™. Take any ideal
p~*¢ containing p~—". By the previous lemma

/p  (-a2) f(z)dr =0

if a is not in p~™*"~1 We have to show that the integral on the left vanishes if a is a generator of
p—m—i—n—l.

If Ur is the group of units of O the ring of integers of F' there is an open subgroup U; of Up

such that
b 0 B
T 0 1 v =0
for bin U;. For such b

(80, s oo (§ D)=(( )
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is equal to

(3 5))e (8 2)en Lo

Thus it will be enough to show that for some sufficiently large ¢ the integral vanishes when a is taken
to be one of a fixed set of representatives of the cosets of U in the set of generators of p~™*"~!, Since
there are only finitely many such cosets it is enough to show that for each a there is at least one ¢ for
which the integral vanishes.

By assumption there is an ideal a(a) such that

(3 )6 )
oo (5 ) Lo 1)

so that ¢ = ¢(a) could be chosen to make

But this integral equals

=a'a(a).

To prove the third assertion we verify that

A <7r ((é ?1/>> v> — b(y) A(v) (2.8.2)

for all vin V and all y in F'. The third assertion follows from this by inspection. We have to show that

Ly
m <<0 1)) v —(y)v
isin V' or that, for some n,

[ (o 1) 7 ((6 1)) var= [ vt (( 7)) v

is zero. The expression equals

[ ovcon((y 770 va [ sernn((§ 7)) v

If p~™ contains y we may change the variables in the first integral to see that it equals the second.
It will be convenient now to identify v with ¢, so that V' becomes a space of functions on F'*
with values in X. The map A is replaced by the map ¢ — ¢(1). The representation 7 now satisfies

m(b)p = &y (D)
if bisin Bgr. There is a quasi-character wg of F'* such that

(3 2) -
(1)

the representation is determined by w, and 7(w).
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Proposition 2.9 (i) The space V' contains
Vo =8(F*, X)

(il) The space V is spanned by Vo and w(w)Vjy.

For every o in V there is a positive integer n such that

(5 7))o=

if z and @ — 1 belong to p”. In particular ¢(aa) = ¢(a) if a belongs to F* and a — 1 belongs to p".
The relation

Y(ar)p(a) = ¢(a)

for all z in p” implies that ¢(«) = 0 if the restriction of i) to ap™ is not trivial. Let p~"" be the largest
ideal on which ¢ is trivial. Then ¢(«) = O unless |a| < |w|~™~ " if w is a generator of p.

Let Vj be the space of all @ in V' such that, for some integer ¢ depending on ¢, ¢(a) = 0 unless
la| > | |*. To prove (i) we have to show that 1V = §(F*, X). Itis at least clear that §(F*, X) contains
Vb. Moreover for every ¢ in V and every x in F' the difference

men((s D)

¢'(a) = (1 —(ax))p(a)

is identically zero for z = 0 and otherwise vanishes at least on z—'p~™. Since there is no function in
V invariant under all the operators
- 1 z
0 1
the space V} is not 0.

Before continuing with the proof of the proposition we verify a lemma we shall need.

isin V. To see this observe that

Lemma 2.9.1 The representation &, of Br in the space S(F*) of locally constant, compactly sup-
ported, complex-valued functions on F* is irreducible.

For every character ;. of Ur let ¢, be the function on F which equals . on Ur and vanishes off
Ur. Since these functions and their translates span 8(F*) it will be enough to show that any non-trivial
invariant subspace contains all of them. Such a space must certainly contain some non-zero function ¢
which satisfies, for some character v of Ur, the relation

plae) = v(e) p(a)

for all  in F* and all € in Ur. Replacing ¢ by a translate if necessary we may assume that ¢(1) # 0.
We are going to show that the space contains ¢, if u is different from v. Since Ur has at least two
characters we can then replace ¢ by some ¢,, with ;. different from v, and replace v by p and . by v to
see it also contains ¢,,.
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#= foos (@ 9))s (o 1) e

where z is still to be determined. p is to be different form v. ¢’ belongs to the invariant subspace and

Set

¢'(ae) = p(e)¢’(a)

forall a in F* and all € in Ur. We have

#'(a) = p(a) /U i (e)w(e) (aze) de

The character i~ v has a conductor p™ with n positive. Take z to be of order —n — m. The integral,

which can be rewritten as a Gaussian sum, is then, as is well-known, zero if a is not in Ur but different
from zero if a is in Up. Since ¢(1) is not zero ¢’ must be a nonzero multiple of ¢,,.

To prove the first assertion of the proposition we need only verify that if u belongs to X then |
contains all functions of the form o« — n(a)u with n in S(F*). There isa ¢ in V such that ¢(1) = u.

Take z such that ¢)(x) # 1. Then
I 1 =«

isin Vp and ¢'(1) = (1 — ¢(z))u. Consequently every w is of the form (1) for some ¢ in V5.
If v is a character of Ur let V(1) be the space of functions ¢ in 1} satisfying

p(ae) = p(e)p(a)
forall ain F* and all ein Up. Vj is clearly the direct sum of the space V(). In particular every vector
w in X can be written as a finite sum
u=_ i)
where ¢; belongs to some Vo ().
If we make use of the lemma we need only show that if u can be written as u = (1) where ¢ is

in V5 (v) for some v then there is at least one function in 14 of the form o — 7n(«)u where 7 is a nonzero
function in §(F*). Choose p different from v and let p™ be the conductor of .~ 1v. We again consider

oo o (0 ) 1)

where z is of order —n — m. Then
@) =la) | i Ovevn(aae) de
F

The properties of Gaussian sums used before show that ¢’ is a function of the required kind.
The second part of the proposition is easier to verify. Let Pr be the group of upper-triangular
matrices in Gg. Since Vj is invariant under Pr and V is irreducible under G the space V' is spanned

by Vo and the vectors
/ 1 =z (w)
0 1
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with ¢ in V4. But
o' ={¢ —m(w)e} + m(w)e
and as we saw, ¢’ — 7(w)p is in V. The proposition is proved.
To study the effect of w we introduce a formal Mellin transform. Let o be a generator of p. If

is a locally constant function on £ with values in X then for every integer n the function ¢ — ¢(ew™)
on Uy takes its values in a finite-dimensional subspace of X so that the integral

/ plem™w(e) = Bu(v)
Ur

is defined. In this integral we take the total measure of U to be 1. Itis a vector in X. @(v,t) will be
the Formal Laurent series
> t"En(v)
t

If p isin V the series has only a finite number of terms with negative exponent. Moreover the series
(v, t) is different from zero for only finitely many v. If ¢ belongs to 1} these series have only finitely
many terms. It is clear that if ¢ is locally constant and all the formal series @ (v, t) vanish then ¢ = 0.

Suppose ¢ takes values in a finite-dimensional subspace of X, w is a quasi-character of F'*, and
the integral

/ w(a)p(a)d™a (2.10.1)
Fx

is absolutely convergent. If &’ is the restriction of w to U this integral equals

S [ etenguae= 32 aw)

n

if z = w(w). Consequently the formal series ¢(w’,t) converges absolutely for ¢t = 2z and the sum is
equal to (2.10.1). We shall see that X is one dimensional and that there is a constant ¢y = ¢o(¢) such
that if |w(w)| = |w|® with ¢ > ¢, then the integral (2.10.1) is absolutely convergent. Consequently all
the series p(v, t) have positive radii of convergence.

If v = ¢ isagiven non-trivial additive character of F', x any character of Ur, and x any element
of F' we set

0 z) = /U (e) (ex) de

The integral is taken with respect to the normalized Haar measure on Ur. If g belongs to G, ¢ belongs
to V,and ¢’ = 7(g)¢ we shall set

m(9) B(v,t) = &' (v,1).
Proposition 2.10 (i) If § belongs to Ur and £ belongs to Z then

7r (( 57g£ (1)>> B(v,t) = v 1(8) B(1, 1)

(ii) If © belongs to F' then

(3 1) p0-Se{Sweonin)
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where the inner sum s taken over all characters of Up
(iii) Let wg be the quasi-character defined by

(5 £

fora in F*. Let vy be its restriction to Up and let zg = wo(w). For each character v of Up

there is a formal series C(v,t) with coefficients in the space of linear operators on X such
that for every ¢ in Vj

m << 0 é)) B t) = Clu,t) v vyt 7025,

s-o((5 )

@'(v,t) = Zt”/U v(e) p(w™ ) de.

Set

Then

Changing variables in the integration and in the summation we obtain the first formula of the propo-

sition.
P 1 =z

P (v, t) = Zt” U Y(w"ex) v(e) p(w™e) de.

Now set

Then

By Fourier inversion

p(@"e) = Bulp) ' (e).

The sum on the right is in reality finite. Substituting we obtain

Pty =) t {Z/U p v(e) Y(ew"x) de %(M)}

as asserted.

Suppose v is a character of Ur and ¢ in Vj is such that 3(u,t) = 0 unless u = v~ 'y, *. This
means that

p(a€) = vuo(e) p(a)

(I

or that
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forall e in Up. If ¢’ = m(w)yp then

(5 ) ==((5 ) mtwe=rtwm((} 2))e
(C9) R (C9) 1 (Ga9)

the expression on the right is equal to

Since

v e)m(w)p = v (e)¢,
so that @' (u,t) = 0 unless u = v.
Now take a vector u in X and a character v of Ur and let ¢ be the function in 1;; which is zero
outside of Ur and on Uy is given by

o(€) = v(e) vo(e)u. (2.10.2)
If o' = m(w)y then &), is a function of n, v, and u which depends linearly on u and we may write
Pn(v) = Cn(v)u
where C,,(v) is a linear operator on X.
We introduce the formal series

Cv,t) = t"Cu(v).
We have now to verify the third formula of the proposition. Since ¢ is in 1§ the product on the right
is defined. Since both sides are linear in ¢ we need only verify it for a set of generators of V5. This
set can be taken to be the functions defined by (2.10.2) together with their translates of power w. For

functions of the form (2.10.2) the formula is valid because of the way the various series C(v,t) were
defined. Thus all we have to do is show that if the formula is valid for a given function ¢ it remains

valid when ¢ is replaced by
wt 0
Wo 1))%
By part (i) the right side is replaced by
O, ) pv g Lt ).

(5 )o-r((s o

and 7(w)@(v, t) is known we can use part (i) and the relation
1 0\ (= 0 @t 0
0 @) \0 & 0 1
to see that the left side is replaced by

2t m(w)P(v, t) = 25t°C(v, ) (v gt t g ).
For agiven v in X and a given character v of Ur there must exist a ¢ in V' such that

B(v,t) = t"Cr(v)u

Consequently there is an ng such that C,(v)u = 0 for n < ng. Of course ny may depend on v and
v. This observation together with standard properties of Gaussian sums shows that the infinite sums
occurring in the following proposition are meaningful, for when each term is multiplied on the right
by a fixed vector in X all but finitely many disappear.

Since
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Proposition 2.11  Let p~—¢ be the largest ideal on which v is trivial.
(i) Let v and p be two characters of Ur such that vpvy is not 1. Let p'™ be its conductor. Then

S o™ v (o))

s equal to
n(y_lp_lyo_lv w_m_e)z(r)n—MVPVO(_I)Cn—m—ﬂ(y)cp—m—é(p)

for all integers n and p.
(ii) Let v be any character of Ugp and let v = V_lyo_l. Then

S n(o " w07, wp) Cpn(0)

s equal to

ZgVO(_l)én,p'i‘(’w’ - 1)_lz£+lcn—1—f( p—1-0(V Z 27" Crgr (V) Cpir (V)
—2—0

for all integers n and p.

The left hand sums are taken over all characters o of Ur and d,, ,, is Kronecker’s delta. The

B S T T B S T (i)
r (5 D) rwre i (5 ) er (3 7))

for all ¢ in V{. Since m(w)p is not necessarily in Vj, we write this relation as

wtw) {x (g 1)) e -t} + w2 =ne-0m (5 7)) mwn (5 7))

The term 72 (w)¢ is equal to vo(—1)¢.
We compute the Mellin transforms of both sides

(6 - fgei)

rw (5 7)) P = S om0t

so that the Mellin transform of the right side is

—) Y S o v —m (e oyt~ )2 P Clin (0) B (0). (211.1)

n DP,p,0

implies that

and
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On the other hand

" 7 (o 1)) 78000 =S X s =G (9B
so that ’ v

7((o 1)) @000 - n(w)pen)
is equal to

>t 2P In(prv, @) = 6(prin)|Crrn(p™ v ) Bp(p)-

Here §(pviy) is 1 if priy is the trivial character and 0 otherwise. The Mellin transform of the left hand
side is therefore

SN " (o @) ~0(pr )] Cotr (V) Cpir (0™ g DB (0) F10(~1) Y "B (). (211.2)

DTyp
The coefficient of t”gﬁp(p) in(2.11.1) is
Zn =@ n(p o vy = @)z Cpin(0) (2.11.3)
and in (2.11.2) it is
S vt @) = 8(pr 20" Cor () Copir (07 v ) + (= 1)8 b NI (2.114)

r

These two expressions are equal for all choice of n, p, p, and v.
If p # v and the conductor of vp~! is p™ the gaussian sum n(pv
Thus (2.11.4) reduces to

—1 w")iszerounlessr = —m—/.

1 —m—é)z

n(pr—", @ Ve g h).

0 n—m—t(V)Cp—m—e(p” 1
Since

n(p, =) = p(=1) n(p, )
the expression (2.11.3) is equal to

DLl @l ) o)

Replacing p by p‘lyo_ we obtain the first part of the proposition.
If p = v then §(pr—1) = 1. Moreover, as is well-known and easily verified, n(pr—!, @") = 1 if
r> -/,
n(pr =@ ) = Jo|(|lw| - 1)

and n(pr—t, @w™) = 0ifr < —¢ — 2. Thus (2.11.4) is equal to

VO(_I)‘Sn,pI"‘(’w’_1)_120_p+g+10n—€—1(y)0n e—1( 207 Char( )Cn-l-r(y_lyo_l)'
r=—~¢—2

The second part of the proposition follows.
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Proposition(2.12) (i) For every n, p, v and p
Cn(v)Cp(p) = Cp(p)Cn(v)

(ii) There is no non-trivial subspace of X invariant under all the operators Cy(v).
(iii) The space X is one-dimensional.

Suppose privy # 1. The left side of the first identity in the previous proposition is symmetric in
the two pairs (n,v) and (p, p). Since (n_lp_lz/o_l, @ ~™~%) is not zero we conclude that

Cn—m—e(v) Cp—m—ﬁ(p) = Cp—m—ﬁ(p) Cnm—e(V)

for all choices of n and p. The first part of the proposition is therefore valid in p # v.

Now suppose p = . We are going to that if (p, n) is a given pair of integers and u belongs to X

then

Crger (V) Cpgr (V)1 = Copgr (V) Crpr (V)
for all r in Z. If »r < 0 both sides are 0 and the relation is valid so the proof can proceed by induction
on r. For the induction one uses the second relation of Proposition 2.11 in the same way as the first was
used above.

Suppose X is a non-trivial subspace of X invariant under all the operators C,,(v). Let V; be
the space of all functions in V5 which take values in X; and let V/ be the invariant subspace generated
by V1. We shall show that all functions in V] take values in X; so that V/ is a non-trivial invariant
subspace of V. This will be a contradiction. If ¢ in V takes value in X; and g belongs to Pr then 7(g)p
also takes values in X;. Therefore all we need to do is show that if ¢ is in V; then m(w)y takes values
in X;. This follows immediately from the assumption and Proposition 2.10.

To prove (iii) we show that the operators C,, () are all scalar multiples of the identity. Because
of (i) we need only show that every linear transformation of X which commutes with all the operators
C,(v) is a scalar. Suppose T is such an operator. If ¢ belongs to V' let T, be the function from F* to
X defined by

To(a) =T(e(a)).
Observe that T'p is still in V. This is clear if ¢ belongs to Vj and if ¢ = 7(w)yo we see on examining
the Mellin transforms of both sides that

Ty = m(w)Tpo.

Since V = Vy +7(w)Vj the observation follows. T therefore defines a linear transformation of ¥ which
clearly commutes with the action of any g in Pr. If we can show that it commutes with the action of w
it will follow that it and, therefore, the original operator on X are scalars. We have to verify that

m(w) T = Tr(w)g
at least for ¢ on 1{, and for ¢ = 7(w)yo with ¢q in V. We have already seen that the identity holds for
@ in Vy. Thus if ¢ = 7(w)pg the left side is
m(w)Tr(w)po = 7 (w)Tpo = vo(—1)Tpg
and the right side is
Tr?(w)po = vo(—1)Tpo.

Because of this proposition we can identify X with C and regard the operators C,, (v) as complex
numbers. For each r the formal Laurent series C(v, t) has only finitely many negative terms. We now
want to show that the realization of 7 on a space of functions on F* is, when certain simple conditions

are imposed, unique so that the series C(v, t) are determined by the class of = and that conversely the
series C(v, t) determine the class of 7.
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Theorem 2.13 Suppose an equivalence class of infinite-dimensional irreducible admissible represen-
tations of G is given. Then there exists exactly one space V' of complex-valued functions on F*
and exactly one representation m of Gg on V which is in this class and which is such that

m(b)p = &y (b)e
if b is in Br and @ is in V.

We have proved the existence of one such V and 7. Suppose V' is another such space of functions
and 7’ a representation of G on V' which is equivalent to . We suppose of course that

7' (b)o = &y(b)e

if bisin Bp and pisin V'. Let A be an isomorphism of V with V’ such that An(g) = 7'(g)A for all g.
Let L be the linear functional

onV. Then

so that A is determined by L. If we could prove the existence of a scalar A such that L(¢) = Ap(1) it
would follow that

Ap(a) = Ap(a)

for all a such that Ay = Ap. This equality of course implies the theorem.

Observe that
L <7r <<é "f)) (p) - <<(1) f)) Ap(1) = () L(). (2.13.1)

Thus we need the following lemma.

Lemma2.13.2 If L is a linear functional on V satisfying (2.13.1) there is a scalar X such that

L(p) = Ap(1).
This is a consequence of a slightly different lemma.

Lemma 2.13.3 Suppose L is a linear functional on the space S(F*) of locally constant compactly
supported functions on F* such that

(e ((y 7))e) =vere

for all ¢ in S(F*) and all x in F. Then there is a scalar A such that L(p) = Ap(1).

Suppose for a moment that the second lemma is true. Then given a linear functional L on V
satisfying (2.13.1) there is a A such that L(¢) = Ap(1) forall ¢ in Vj = 8§(F*). Take x in F' such that
Y(x) # 1land ¢ in V. Then

er=c(e-x((o 7))e)+2(=((o 7))%):
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Since

is in Vj the right side is equal to

Ap(1) = A (2)p(1) + () L(p)

so that
(1= (@) L{p) = A1 —9(2)) (1)

which implies that L(y) = Ap(1).

To prove the second lemma we have only to show that ¢(1) = 0 implies L(¢) = 0. If we set
©(0) = 0 then ¢ becomes a locally constant function with compact support in F'. Let ¢/ be its Fourier
transform so that

p(a) = /sz(ba) ¢’ (—b) db.

Let € be an open compact subset of F'* containing 1 and the support of ¢. There is an ideal a in F’
so that for all a in §2 the function ¢/(—b)(ba) is constant on the cosets of a in F'. Choose an ideal b
containing a and the support of /. If S is a set of representatives of b/a and if ¢ is the measure of a

then
p(a) =Y p(ba)e' (D).

beS

If g is the characteristic function of € this relation may be written
1 b
o= n6 (o 1))
bes

with A\, = c’(=b). If (1) = 0 then
D (b)) =0

bes

p=> X {fw <<(1) l{)) ®o — ¢(b)¢o}
Itis clear that L(y) = 0.

The representation of the theorem will be called the Kirillov model. There is another model
which will be used extensively. It is called the Whittaker model. Its properties are described in the next
theorem.

so that
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Theorem 2.14 (i) For any ¢ in V set

W,(9) = (m(g9)p)(1)

so that W, is a function in Gp. Let W (1) be the space of such functions. The map ¢ — W, is
an isomorphism of V. with W (m,1). Moreover

Wﬂ(g)so = P(Q)W<p

(i) Let W (v) be the space of all functions W on G such that

w((o 7))o= v

for all x in F and g in G. Then W(m, 1) is contained in W (1)) and is the only invariant
subspace which transforms according to m under right translations.

(i D)= (5 2) )0

the function W, is 0 only if ¢ is. Since

Since

p(g)W (h) = W (hg)

the relation
Wrig)e = p(g)We

is clear. Then W (m, ) is invariant under right translation and transforms according to .

o (5 1)9) = (=((5 1)) wtore) @ = st@mtarea)

the space W (m, 1)) is contained in W (v). Suppose W is an invariant subspace of 1 (1)) which trans-
forms according to 7. There is an isomorphism A of V with W such that

A((9)¢) = p(9)(Agp).

Let
Since

the map A is determined by L. Also

t(=((5 1))¢)=4¢((5 7)) = v@ae = v

so that by Lemma 2.13.2 there is a scalar A such that
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Consequently Ap = AW, and W = W (m, ).

The realization of = on W (m, ) will be called the Whittaker model. Observe that the repre-
sentation of G on W () contains no irreducible finite-dimensional representations. In fact any such
representation is of the form

m(g9) = x(detg).

If = were contained in the representation on W (¢) there would be a nonzero function W on G such
that

w((g 7)9) = vl

In particular taking g = e we find that

However it is also clear that

(3 )3 -

so that ¢)(z) = 1 for all z. This is a contradiction. We shall see however that 7 is a constituent of the
representation on W (v). That is, there are two invariant subspaces W, and W5 of W (1)) such that W,
contains W5 and the representation of the quotient space W, /W5 is equivalent to 7.

Proposition 2.15 Let m and 7" be two infinite-dimensional irreducible representations of G g realized
in the Kirillov form on spaces V. and V'. Assume that the two quasi-characters defined by

() R R

are the same. Let {C(v,t)} and {C'(v,t)} be the families of formal series associated to the two
representations. If

C(y,t) = C'(v,t)
for all v then 7 = 7.

If ¢ belongs to S(F'*) then, by hypothesis,

m(w)@(v,t) = 7' (w) (v, 1)

so that m(w)p = 7’ (w)ep. Since V is spanned by S(F*) and 7(w)S(F*) and V" is spanned by S(F*)
and 7' (w)8(F*) the spaces V and V' are the same. We have to show that

m(g9)p = 7' (g9)¢

for all ¢ in V and all g in Gg. This is clear if g is in Pr so it is enough to verify it for ¢ = w.
We have already observed that 7(w)py = 7' (w)pg if o is in 8(F*) so we need only show that
7(w)p = 7' (w) if  is of the form 7(w) e With g in §(F>). But m(w)p = 72(w)pe = w(—1)¢pe and,
since m(w)po = ' (w)po, 7' (W) = w'(=1)¢po.
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Let N be the group of matrices of the form

(0 7)

with z in F' and let B be the space of functions on G invariant under left translations by elements
of Ng. B is invariant under right translations and the question of whether or not a given irreducible
representation 7 is contained in B arises. The answer is obviously positive when © =  is one-
dimensional for then the function g — x(detg) is itself contained in B.

Assume that the representation 7 which is given in the Kirillov form acts on B. Then there is a
map A of V into B such that

If L(¢) = Ap(1) then

(e ((5 1))¢) -1 (2.15.1)

forall o in V and all z in F'. Conversely given such a linear form the map ¢ — A defined by

satisfies the relation An(g) = p(g)A and takes V' into B. Thus = is contained in B if an only if there is
a non-trivial linear form L on V which satisfies (2.15.1).

Lemma 2.15.2 If L is a linear form on S(F*) which satisfies (2.15.1) for all x in F and for all ¢
in 8(F*) then L is zero.

We are assuming that L annihilates all functions of the form

“f(a D)

so it will be enough to show that they span S(F*). If ¢ belongs to S(F*) we may set ¢(0) = 0 and
regard ¢ as an element of §(F'). Let ¢’ be its Fourier transform so that

p(x) = /Fcp’(—bw(bx) db.

Let €2 be an open compact subset of F'* containing the support of ¢ and let p~™ be an ideal containing
Q. There is an ideal a of F' such that ¢’ (—b)1(bx) is, as a function of b, constant on cosets of a for all
in p~™. Let b be an ideal containing both a and the support of . If S is a set of representatives for the
cosets of a in b, if ¢ is the measure of a, and if g is the characteristic function of €2 then

p(z) =Y Atp(bx)po()

bes

s )

if \p = c’(—b). Thus
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Since ¢(0) = 0 we have

so that

p=> X {ﬁw <<(1) Z{)) o — 900}
b
as required.

Thus any linear form on V' verifying (2.15.1) annihilates 8(£*). Conversely any linear form on
V annihilating S(F*) satisfies (2.15.1) because

“f(a D)

isin S(F*) if ¢ isin V. We have therefore proved

Proposition 2.16  For any infinite-dimensional irreducible representation w the following two prop-
erties are equivalent:

(i) 7 is mot contained in B.
(i) The Kirillov model of 7 is realized in the space S(F™).

A representation satisfying these two conditions will be called absolutely cuspidal.

Lemma 2.16.1 Let w be an infinite-dimensional irreducible representation realized in the Kirillov
form on the space V.. Then Vo = 8(F*) is of finite codimension in V.

We recall that V' = Vj 4+ m(w)Vp. Let V; be the space of all ¢ in Vj with support in Ur. An
element of 7(w) V) may always be written as a linear combination of functions of the form

(T 1)

with ¢ in V; and p in Z. For each character p of Up let ¢, be the function in V; such that ¢, (€) =
wu(e)vo(e) for e in Up. Then
Pulv,t) = d(vuwy)

and
W(w)(ﬁu(yv t) = 5(”:‘1'_1)0(”7 t).

Let 7, = m(w)y,. The space V' is spanned by V; and the functions

(7 5)m

For the moment we take the following two lemmas for granted.
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Lemma 2.16.2 For any character p of ﬁp there is an integer ng and a family of constants \;,
1 < <p, such that

forn > ng.

Lemma 2.16.3 There is a finite set S of characters of Up such that for v not in S the numbers
Cn(v) are 0 for all but finitely many n.

If 1 is not in S the function 7, is in V. Choose 1 in S and let V, be the space spanned by the

functions
wP 0
™o 1))

and the functions ¢ in Vj satisfying ¢(ae) = ¢(a)u"t(¢) for all a in F* and all € in Ug. It will be
enough to show that V,/V,, N Vj is finite-dimensional.

If pisinV, then ¢(v,t) = 0 unless v = p and we may identify ¢ with the sequence {&,, (1) }.
The elements of V,, NV} are the elements corresponding to sequences with only finitely many nonzero
terms. Referring to Proposition 2.10 we see that all of the sequences satisfying the recursion relation

Buli) = 3" NaPcila)

for n > ny. The integer n; depends on .
Lemma 2.16.1 is therefore a consequence of the following elementary lemma whose proof we
postpone to Paragraph 8.

Lemma 2.16.4 Let A\;, 1 < i < p, be p complex numbers. Let A be the space of all sequences {ay},
n € Z for which there exist two integers ny and no such that

an = E Aiafn—i

1<i<p

form > ny and such that a, =0 forn < ng. Let Ag be the space of all sequences with only a finite
number of nonzero terms. Then A/Ay is finite-dimensional.

We now prove Lemma 2.16.2. According to Proposition 2.11

S o v @ (0 5. 5P) Cra(0)

is equal to
2pv0(—1)0np + (|| — 1)_1Z£+10n—1—€(V)Cp—l—ﬁ(g) - Z 20 Cngr (V) Cpgr (V).
—2—/

Remember that p—* is the largest ideal on which 1/ is trivial. Suppose first that 7 = v.
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Take p = —¢and n > —¢. Then 6(n — p) = 0 and

-1 1

ne™ v,@")n(e” v,@") =0

unless o = v. Hence

Cot(v) = (l| = 1) 267 Crm1 e (V) Cz0 1 ( Z 2o " Crpr (V) C—pir (V)

—2—/

which, since almost all of the coefficients C_,,.(v) in the sum are zero, is the relation required.
If v # vtake p > —¢and n > p. Then n(c~'v,w™) = O unless 0 = v and n(oc~ v, @?) = 0
unless 0 = v. Thus

(‘w‘_l)_lzg+10n—l—é( )Cp—1-e(v ZZO ntr (V) Cpir (V) = 0. (2.16.5)

There is certainly at least one i for which C;(v) # 0. Take p — 1 — £ > 4. Then from (2.16.5) we deduce
a relation of the form

n+7‘ Z )\ Cn+r z

where r is a fixed integer and n is any integer greater than p.
Lemma 2.16.3 is a consequence of the following more precise lemma. If p™ is the conductor of a
character p we refer to m as the order of p.

Lemma 2.16.6 Let mg be of the order vy and let mq be an integer greater than mqg. Write vy in any
manner in the form vy = V1_1V2_1 where the orders of v1 and vy are strictly less than my. If the
order m of p is large enough

m—E)

- e p@
Com_oe(p) = vyt p(=1)zg™*
2m—2 (ﬂ) 2 P( ) 0 U(VQP @ m_g)

and Cp(p) =0 if p # —2m — 2L.

Suppose the order of p is at least m;. Then pvi1y = p1/2_1 is still of order m. Applying

Proposition 2.11 we see that
Z (o~ v, wn+m+£)77(o'_lﬂa wp+m+£)cp+n+2m+2€ (o)

is equal to
n(yl—lp—lyo—l’w—m—ﬂ) gH_ZleVO(_I)Cn—m—ﬂ(y)cp—m—é(p)

for all integers n and p. Choose n such that C,, (1) # 0. Assume also that m + n + ¢ > —/ or that
m > —20 —n. Then n(o~tvy, @ *™+¢) = 0 unless o = v; so that

Ny p, T Cpingama2e(v1) = n(vep™ @™ 2 M v prg (= 1) C (1) Gy ().
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Since yflp is still of order m the left side is zero unless p = —2m — 2¢. The only term on the right side
that can vanish is C,(p). On the other hand if p = —2m — 2¢ we can cancel the terms C,, (1) from both
side to obtain the relation of the lemma.

Apart from Lemma 2.16.4 the proof of Lemma 2.16.1 is complete. We have now to discuss its
consequences. If w; and w are two quasi-characters of F'* let B(w;,w2) be the space of all functions
 on G g which satisfy

(i) Forallgin Gg, ay,as in F*,and zin F

(0 1)9) —etarentan

(if) There is an open subgroup U of GL(2,OF) such that ¢(gu) = ¢(g) for all win U.
Since

1/2
CLl/

o~ ©(g)-

GF = Np AF GL(2,OF)

where A is the group of diagonal matrices the elements of B(w;, w2 ) are determined by their restric-
tions to GL(2, Or) and the second condition is tantamount to the condition that ¢ be locally constant.
B(w1,ws) is invariant under right translations by elements of G so that we have a representation
p(wi,ws) of Gg on B(wy,ws). Itis admissible.

Proposition 2.17  If 7 is an infinite-dimensional irreducible representation of Gp which is not abso-
lutely cuspidal then for some choice of u1 and pg it is contained in p(py, fi2).

We take 7 in the Kirillov form. Since 1} is invariant under the group Pr the representation m
defines a representation o of Pr on the finite-dimensional space V/Vj. It is clear that o is trivial on
Nr and that the kernel of ¢ is open. The contragredient representation has the same properties. Since
Pr /Ny is abelian there is a nonzero linear form L on V/V} such that

) (( mor )) L = 17 (o) Haa)

for all aq, as, and z. py and us are homomorphisms of F* into C* which are necessarily continuous.
L may be regarded as a linear form on V. Then

c(= (% 5))¢) = mi@matai.

If o isin V let Ap be the function
Ap(g) = L(n(g9))

on Gp. Ais clearly an injection of V' into B(u4, 2) which commutes with the action of Gp.

Before passing to the next theorem we make a few simple remarks. Suppose 7 is an infinite-
dimensional irreducible representation of G and w is a quasi-character of F'*. Itis clear that W(w ®
m, 1) consists of the functions

g — W(g)w(detg)

with W on W (). If V is the space of the Kirillov model of 7 the space of the Kirillov model of w ® 7
consists of the functions a — ¢(a)w(a) with ¢ in V. To see this take 7 in the Kirillov form and observe
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first of all that the map A : ¢ — ¢w is an isomorphism of V' with another space V' on which G acts
by means of the representation 7’ = A(w @ m)A~L. If

a T
(5 7)
belongs to Br and ¢’ = ¢pw then

™ (b)¢'(a) = w(a){w(a)(az)p(aa)} = Y(az)y’(aa)
so that 7' (b) ¢’ = &,(b)¢’. By definition then 7’ is the Kirillov model of w @ 7. Let w; be the restriction
of wto Up and let z; = w(w). If ¢’ = gw then

~/

o (v,t) = p(vwy, z1t).

Thus
7' () (v,t) = T(w)P(vwy, z1t) = C(vwy, 211)P(v wi g b, 2o tey ).

The right side is equal to

Clvwy, 21t)@ (v vy twrh 2 te 2t )

so that when we replace ™ by w ® m we replace C'(v,t) by C(vws, 21t).
Suppose ¢/ (x) = (bx) with b in F'* is another non-trivial additive character. Then W (/)

consists of the functions
, - b 0
with W in W(r, ).

The last identity of the following theorem is referred to as the local functional equation. It is the
starting point of our approach to the Hecke theory.

Theorem 2.18 Let w be an irreducible infinite-dimensional admissible representation of Gg.
(i) If w is the quasi-character of Gp defined by

(5 2)) =

then the contragredient representation 7 is equivalent to w™' @ .

(il) There is a real number sy such that for all g in Gg and all W in W (m, 1)) the integrals

/ w(( O)g) a2 d%a = (g, 5, W)
- 0 1

[ (2 0)o) e m

converge absolutely for Res > sg.

(iii) There is a unique Euler factor L(s,m) with the following property: if

U(g,s,W) = L(s,m)®(g,s, W)
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then ®(g,s, W) is a holomorphic function of s for all g and all W and there is at least one
W in W (m, 1) such that
d(e,s,W)=a’

where a s a positive constant.

(iv) If N _
U(g,s,W) = L(s,7)®(g,5 W)

there is a unique factor e(s,m, 1) which, as a function of s, is an exponential such that

d ((_01 é) g,1 —S,W) = e(s,m,)B(g,s, W)

for all g in Gg and all W in W (m, ).

To say that L(s, ) is an Euler product is to say that L(s, 7) = P~(¢q~*) where P is a polynomial
with constant term 1 and ¢ = |w|~! is the number of elements in the residue field. If L(s,7) and
L’ (s, ) were two Euler factors satisfying the conditions of the lemma their quotient would be an entire
function with no zero. This clearly implies uniqueness.

If ¢ is replaced by ¢’ where ¢/ (z) = (bz) the functions T are replaced by the functions W’

with
W'(g) =W <<8 (1)> g>
and
U(g,s, W) = [b]/*~*U(g, s, W)
while

U(g,s,W') = [b|"/>~*w(b)¥(g, s, W).
Thus L(s, ) will not depend on . However
e(s,m,0") = w(b) [B|* " e(s, m, ).
According to the first part of the theorem if 1 belongs to W (, ) the function
W(g) = W(g)w™" (detg)

isin W (m,). Itis clear that
U(g,s, W) = w(detg)¥(g,s, W)

so that if the third part of the theorem is valid when = is replaced by 7 the function 5(97 s,W)is a
holomorphic function of s. Combining the functional equation for 7 and for 7 one sees that

e(s,m)e(l —s,m,1¢) = w(—1).

Let V' be the space on which the Kirillov model of 7 acts. For every W in W (m, ) there is a

unique ¢ in V such that
a 0
(6 1)) e
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If 7 is itself the canonical model

et =w ((§ 1) w)
S

If x is any quasi-character of F'* we set

where

200 = [ el ae

if the integral converges. If g is the restriction of x to Ur then

~

2(x) = &(x0, x(@))-

Thus if ap is the quasi-character ax(x) = |x| and the appropriate integrals converge

Ule,s, W) = Blaf %) = B(1,4/* )

U(e,s,W) = Blap w™) = 8y % q*)
if 1y is the restriction of w to Ur and 2y = w(y). Thus if the theorem is valid the series ¢(1,¢) and
@(Vo_l, t) have positive radii of convergence and define functions which are meromorphic in the whole
t-plane.

It is also clear that
U(w,1—s,W) =m(w)@(vy 25 '¢" /).

If v belongs to 1j then
w(w)@(vy 25 a7 = Clg bz a7 A B(1L gAY,

Choosing ¢ in Vj such that $(1,¢) = 1 we see that C(1; ', t) is convergent in some disc and has an
analytic continuation to a function meromorphic in the whole plane.
Comparing the relation

>, L1, —1 — S — -1/2 S\ —S
m(w)Bvy 25 e 2e%) = Clog tzg P07V 2¢%)3(1, 4" 20 7)
with the functional equation we see that

L(1 — s,m)e(s, m, 1)

o) . (2.18.1)

Clyg oz ta q) =

Replacing 7 by x ® 7w we obtain the formula

L(1—s,x ' @m)e(s,x @7,¢)
L(s,x ®m) '

C(VO_IXEIa Zo—lzl—lq—l/qu) —

Appealing to Proposition 2.15 we obtain the following corollary.



Chapter 1 40

Corollary 2.19 Let m and 7" be two irreducible infinite-dimensional representations of Gg. Assume
that the quasi-characters w and w' defined by

() R

are equal. Then m and @' are equivalent if and only if

L —-s,x '@mes,x@m9¥) LA —sx ' @7 )e(s,x®7',9)

L(s,x ® ) L(s,x ® ')

for all quasi-characters.

We begin the proof of the first part of the theorem. If o; and 5 are numerical functions on F'*
we set

(p1,p2) = /@1(a)<p2(—a)dxa.

The Haar measure is the one which assigns the measure 1 to Up. If one of the functions is in 8(F™)
and the other is locally constant the integral is certainly defined. By the Plancherel theorem for Ur

(o) =) v(=1)Za)Z,(v7Y).

The sum is in reality finite. It is easy to se that if b belongs to B

(o (B, €y (D))} = (0, ")

Suppose 7 is given in the Kirillov form and acts on V. Let 7/, the Kirillov model of w=! ® ,
act on V’. To prove part (i) we have only to construct an invariant non-degenerate bilinear form 3 on
V x V' If ¢ belongs to V; and ¢’ belongs to V"’ or if ¢ belongs to V' and ¢’ belongs to V we set

Blp,¢") = (w0, ¢').

If o and ¢’ are arbitrary vectors in V and V' we may write ¢ = @1 + 7(w)p2 and ¢’ = @1 + 7' (w) ¢}
with ¢, g9 in Vg and ¢}, ¢, in V. We want to set

B, ") = (p1, 1) + (01, 7 (0)p3) + (T(w)pa, p1) + (P2, 5)-

The second part of the next lemma shows that 5 is well defined.

Lemma 2.19.1 Let ¢ and ¢’ belong to Vi and V{ respectively. Then
(i)
(m(w)e,¢') = vo(=1){p, 7' (w)¢")

(ii) If either m(w)yp belongs to Vo or w'(w)g’ belongs to V| then

(m(w)p, 7' (w)g") = (¢, ¢).



Chapter 1 41

The relation
()P t) =Y "> Crgp()Bp(v 5 2
n D
implies that
(m(w)p, ') = > U(=1)Crip(1)Bp(v 15 2g "8 (), (2.19.2)
n,p,v

Replacing 7 by 7' replaces w by w™!, vy by 155!, 20 by 25 %, and C (v, t) by C(viy !, 25 ). Thus

(o, m(w)e') = Y v(=1)Crip(rrg 2o " @ (v 0)Palv ™). (2.19.3)

n,p,v

Replacing v by vy in (2.19.3) and comparing with (2.19.2) we obtain the first part of the lemma.
Because of the symmetry it will be enough to consider the second part when 7(w) belongs to
V4. By the first part
(m(w)p, 7' (w)¢') = vo(=1)(m*(w)p, ') = (p,¢').

It follows immediately from the lemma that
B(r(w)ep, 7' (w)e') = Ble, ¢')
so that to establish the invariance of 5 we need only show that
B(r(p)e, (p)¢") = By, ¢')
for all triangular matrices p. If ¢ isin 1{ or ¢’ is in V{ this is clear. We need only verify it for ¢ in

m(w)Vp and ¢’ in 7' (w) Vy.
If pisinVj, ¢ isin V and p is diagonal then

B(r(p)m(w)e, (p)r' (w)g') = B(m(w)m(pr)e, 7' (w)n' (p1)¢’)
where p; = w™'pw is also diagonal. The right side is equal to
B(r(pr)e, 7' (p1)¢") = Bw, @) = B(m(w)ep, 7' (w)p').

Finally we have to show that*

(O I ) R

forallzin FFand all pand ¢'. Let p;, 1 < i < r,generate V modulo V; and let ¢, 1 < j < r’, generate
V'’ modulo Vj. There certainly is an ideal a of F' such that

(3 D)omr

* The tags on Equations 2.19.2 and 2.19.3 have inadvertently been repeated.
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and

for all 2 and j if x belongs to a. Then

(3 o (6 7)) o

Since 2.19.2 isvalid if z isin aand g is in 1 or ¢’ isin Vj it is valid for all ¢ and ¢’ provided that x is
in a. Any y in F' may be written as ax with ¢ in F* and z in a. Then

o 1)=G )G )
and it follows readily that
(3 )= (D))

Since Zis invariant and not identically zero it is non-degenerate. The rest of the theorem will now
be proved for absolutely cuspidal representations. The remaining representations will be considered
in the next chapter. We observe that since W (m,v) is invariant under right translations the assertions
need only be established when g is the identity matrix e.

If 7 is absolutely cuspidal then V =V, = §(F*) and W (({ ])) = ¢(a) is locally constant with

)
compact support. Therefore the integrals defining ¥ (e, s, W) and \Il(e W) are absolutely convergent
for all values of s and the two functions are entire. We may take L(s,7) = 1. If ¢ is taken to be the
characteristic function of Up then ®(e, s, W) = 1.
Referring to the discussion preceding Corollary 2.19 we see that if we take

e(s,m ) =Clvy ' 2 a2 q)

the local functional equation of part (iv) will be satisfied. It remains to show that (s, 7, 1)) is an
exponential function or, what is at least ast strong, to show that, for all v, C(v,t) is a multiple of a
power of t. It is a finite linear combination of powers of ¢ and if it is not of the form indicated it has a
zero at some point different form 0. C(vyy !, 25 't ~1) is also a linear combination of powers of ¢ and
so cannot have a pole except at zero. To show that C(v, t) has the required form we have only to show
that

C,t)Cw vyt 25t 1) = vp(—1). (2.19.3)

Choose ¢ in 1 and set ¢’ = m(w)y. We may suppose that ¢’ (v,t) # 0. The identity is obtained by
combining the two relations

P (v,t) =Cr,t)p(vtyy b 25ttt

and
w(-D@ vy ) =Clv vy L@ (v 2 ).

We close this paragraph with a number of facts about absolutely cuspidal representations which
will be useful later.
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Proposition 2.20 Let m be an absolutely cuspidal representation of Gp. If the quasi-character w

defined by
(5 1)

1$ actually a character then m is unitary.

As usual we take 7 and 7 in the Kirillov form. We have to establish the existence of a positive-

definite invariant hermitian form on V. We show first that if ¢ belongs to V' and ¢ belongs to V' then
there is a compact set €2 in G such that if

(o 2) o)

the support of (7(g)p, ), a function of g, is contained in ZpQ. If A is the group of diagonal matrices
Gr = GL(2,0r) Ar GL(2,0pF). Since v and ¢ are both invariant under subgroups of finite index in
GL(2,0p) itis enough to show that the function (7 (b)¢, ¥) on Ap has support in a set Zp) with

compact. Since
7 (5 2)1) e @@

it is enough to show that the function
a 0 ~
(m <<0 1)) : 0)

has compact support in F'*. This matrix element is equal to

| elan)z-oyda

Since  and ¢ are functions with compact support the result is clear.
Choose ¢y # 0in V and set

(1, 02) = /Z @) BTG B dy

This is a positive invariant hermitian form on V.
We have incidentally shown that 7 is square-integrable. Observe that even if the absolutely
cuspidal representation 7 is not unitary one can choose a quasi-character y such that y ® 7 is unitary.
If 7 is unitary there is a conjugate linear map A : V — V defined by

(¢1,p2) = (1, Apa).
Clearly A&, (b) = &y (b)Aforall bin Bp. The map Ay defined by

Aop(a) =p(—a)

has the same properties. We claim that
A= MAg

with A in C*. To see this we have only to apply the following lemma to AglA.
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Lemma 2.21.1. Let T be a linear operator on S(F*) which commutes with &;(b) for all b in Bp.
Then T' is a scalar.

Since &, is irreducible it will be enough to show that 7" has an eigenvector. Let p~— ¢ be the largest
ideal on which ¢/ is trivial. Let u be a non-trivial charcter of Ur and let p” be its conductor. T'commutes

with the operator
_ 0 1 w ™
5= [, ros (5 9) (6 7107))
. @& lo 1)l 1

and it leaves the range of the restriction of S to the functions invariant under U invariant. If ¢ is such
a function

Se(a) = (a) /U () (aem ") de.

The Gaussian sum is 0 unless a lies in Ur. Therefore Sy is equal to ¢(1) times the function which is
zero outside of Ur and equals i on Ur. Since T' leaves a one-dimensional space invariant it has an
eigenvector.

Since A = AA, the hermitian form (¢1, 2) is equal to

A /F e(@F(e) o

Proposition 2.21.2.  Let 7 be an absolutely cuspidal representation of G for which the quasi-character

w defined by
a 0
(3 2) -
18 a character.
(i) If m is in the Kirillov form the hermitian form

| ez aa
18 tnvariant.
(i) If |z| =1 then |C(v,z)| =1 and if Res = 1/2
le(s,m, )| = 1.

Since |zg| = 1 the second relation of part (ii) follows from the first and the relation
e(s,m, ) = Clvg ', q* 225,
If nisin Z and v is a character of Uy let

p(ew™) = 6 mr(€)vo(€)

| leta)da=1
FX
If o' = m(w)p and C(v,t) = Cy(v)t* then
—-n ,—1

O (e@™) = 0r—n.mCe(V)zg "V (€).

forminZand e in Ur. Then

Since |z9| =1
| ¢ @l de=1ciP

Applying the first part of the lemma we see that, if |z| = 1, both |C;(v)|?> and |C(v, 2)|? = |Ce(v)|? |2|?*
are 1.
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Proposition 2.22.  Let m be an irreducible representation of Gp. It is absolutely cuspidal if and only
if for every vector v there is an ideal a in F such that

[((¢ £)ras

It is clear that the condition cannot be satisfied by a finite dimensional representation. Suppose
that 7 is infinite dimensional and in the Kirillov form. If ¢ isin V then

[ (o 7)) eae=

o(a) / blaw) do =0

for all a. If this is so the character x — 1(ax) must be non-trivial on a for all a in the support of ¢. This
happens if and only if ¢ is in S(F*). The proposition follows.

if and only if

Proposition 2.23. Let m be an absolutely cuspidal representation and assume the largest ideal on
which v is trivial is Op. Then, for all characters v, Cp,(v) =0 if n > —1.

Take a character v and choose n; such that C,,, (v) # 0. Then C,,(v) = 0 for n # ny. If
v = v~ 'y, ! then, as we have seen,

C,t)C([@,t 25 ") = (1)

so that
Cn(v)=0

for n #£ ny and
Cnl (V)Cnl (ﬁ) = VO(_l)Zgl'

In the second part of Proposition 2.11 take n = p = n; + 1 to obtain

Y onlo @™ (o 0, @™ ) Cony2(0) = 25 o (—1) + ([0 = 1) 20Cn, () Cn, (7).

The right side is equal to

(1) -

e -1

Assumen; > —1. Then (o~ v, @™ 1) isOunless o = vand n(oc 17, w™ 1) is O unless o = v. Thus
the left side is 0 unless v = v. However if v = v the left side equals C5,,, +2(v). Since this cannot be
zero 2n, + 2 must be equal nq so that n; = —2. This is a contradiction.
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§3. The principal series for non-archimedean fields. In order to complete the discussion of the previous
pragraph we have to consider representations which are not absolutely cuspidal. This we shall now
do. We recall that if i1, o is a pair of quasi-characters of F'* the space B(u1, u12) consists of all locally
constant functions f on Gr which satisfy

f((%l ;2>9> = pa(a1)pz(az) Z—;

forall gin Gp, a1, az, in F*,and z in F. p(p1, pio) is the representation of Gr on B(puq, fi2).
Because of the Iwasawa decomposition G = PrGL(2,0F) the functions in B(u1, pus2) are
determined by their restrictions to GL(2,Op). The restriction can be any locally constant function on

GL(2,0p) satisfying
F((% 2)s) = mlawataro

a2

f(9) (3.1)

forall gin GL(2,0F), a1,az in Up,and x in Op. If U is an open subgroup of GL(2, O) the restriction
of any function invariant under U is a function on GL(2,Or)/U which is a finite set. Thus the space
of all such functions is finite dimensional and as observed before p(u1, p2) is admissible.

Let F be the space of continuous functions f on Gr which satisfy

(5 2)9)-
12 —1/2

forall g in Gp, a1, az in F*, and z in F. We observe that F contains B(a; ", ar '"). Gp actson J.
The Haar measure on G if suitably normalized satisfies

f<g>dg=/ / /

Gr Np JAR GL(Q,OF)
. a1 0
a_<0 )

/ f(k) di
GL(2,0r)

is a G p-invariant linear form on &. There is also a positive constant ¢ such that

pr(g)dg:c/NF/AF/NF _1f<na<_01 é)m)dndadm,
/GL(ZOF)J”(k)dk:c/Ff((_Ol 3) <(1) "’f))m

If 1 belongs to B(yu1, 12) and ¢, belongs to B(u; *, uy ') then ¢; ¢, belongs to F and we set

ai

—1 f(9)

a2

-1

f(nak) dn dadk

ax
a2

It follows easily from this that

ax
a2

Consequently

(p1,902) = / v1(k) pa(k) dk.
GL(2,0p)
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Clearly
(p(9)1,p(9)w2) = (p1,@2)

so that this bilinear form is invariant. Since both ¢; and - are determined by their restrictions to
GL(2,0r) itis also non-degenerate. Thus p(u; ', u5 ) is equivalent to the contragredient of p(j1, 2.

In Proposition 1.6 we introduced a representation r of G and then we introduced a representa-
tion rq = r,, ., Both representations acted on S(F?). If

5 (a,b) = /F B(a, ) by) dy

is the partial Fourier transform
[r(9)®]” = p(g)®~ (3.1.1)
and
P (9) = pa(detg) [detg|'/r(g). (3.1.2)

We also introduced the integral

Ol i) = [ (s (e 8 ¢

and we set
Wa(g) = 0(p1, p23 Ty 112 (9)P)- (3.1.3)

The space of functions W is denoted W (pu1, pi2; ).
If wis a quasi-character of F* and if |w(w)| = |w|® with s > 0 the integral

z2(w, @) = /Fx (0, t)w(t) d*t

is defined for all ® in §(F2). In particular if |1 (@) u; ' (w)| = |@|® with s > —1 we can consider the
function

fo(9) = i (detg) |detg|'*2(arpps*, p(9)P)
on Gr. Recall that ar(a) = |a|. Clearly
p(h)fs = fu (3.1.4)
if
U =y (deth) |deth|'/2p(h)®.
We claim that fg belongs to B(u1, p2). Since the stabilizer of every ® under the representation

g — p1(detg) |detg|*/?p(g) is an open subgroup of G the functions fg are locally constant. Since the
space of functions fg is invariant under right translations we need verify (3.1) only for g = e.

(3 2) - (emora (5 ) 8)somion

By definition the right side is equal to

pr(ara)laras]? [ (O (01 2(0,a2t) ¢

Changing variables we obtain

0 |12
pr(anns(an) |52 [ (00" 0t 8(0.1) "¢

The integral is equal to fs(e). Hence our assertion.
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Proposition 3.2.  Assume |u1(w)uy (@)| = |@|® with s > —1.

(i) There is a linear transformation A of W (juy, p2; ) into By, uz) which for all ® in §(F?),
sends We to fg~.

(ii) A 1is bijective and commutes with right translations.

To establish the first part of the proposition we have to show that fz~ is 0 if Wg is. Since

NFAF<0 1

_q O> Ny is a dense subset of G i this will be a consequence of the following lemma.

Lemma3.2.1. If the assumptions of the proposition are satisfied then, for all ® in S$(F?), the function

o — '@l (6 )

1s tntegrable with respect to the additive Haar measure on F' and

[we((5 9)) @l 2onaa= s (7 5 (5 7))

By definition
e (035 7)) = o mmanm e

while
wa (5 1))@l =@ @ [ @@t w0 322)
After a change of variable the right side becomes
[ ot o 0@t

Computing formally we see that

Jwe (5 9)) " @al 2 (a) da

is equal to

/Fi/J(ax) {/F @(t,at—l)ul(t)ﬂgl(t)dxt} da = /F pr () g L () {/Fq)(t,at_l)l/J(ax) da} d*t

which in turn equals

[ muzt @] [ eeaveama} ee= [ e wanmon o
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Our computation will be justified and the lemma proved if we show that the integral

/Fx /F |(t,at™ ") (t)| d*t da

/ / B (t, a)| [E}*+ d*tda
FX JF

which is finite because s is greater than —1.

To show that A is surjective we show that every function f in B(uy, p2) is of the form fg for
some ® in §(F?). Given f let ®(z,y) be 0 if (z,y) is not of the form (0, 1)g for some g in GL(2,Or)
but if (z,v) is of this form let ®(x,y) = u; ' (detg)f(g). It is easy to see that ® is well-defined and
belongs to 8(F2). To show that f = f3 we need only show that f(g) = fs(g) for all g in GL(2,0F).
If g belongs to GL(2,0F) then ®((0,t)g) = 0 unless ¢ belongs to Uy so that

is convergent. It equals

fa(g) = o (detg) /U B((0, £)g)n (£)y13 (1) dt.

Since
0((0,0)9) = (0 @eta) (7)) =" Ovalons @) o)

the required equality follows.
Formulae (3.1.2) to (3.1.4) show that A commutes with right translations. Thus to show that A is
injective we have to show that Wg (e) = 0 if f ~is 0. It follows from the previous lemma that

()

is zero for almost all a if f,~is 0. Since Wo ((g ?)) is a locally constant function on F* it must

vanish everywhere.
We have incidentally proved the following lemma.

Lemma 3.2.3 Suppose |1 (w)py (@)| = |w|® with s > —1 and W belongs to W (1, po;eb). If
a 0
{6 1)

Theorem 3.3 Let py and uo be two quasi-characters of F*.

for all a in F* then W is 0.

(i) If neither pypy* nor py *po is ap the representations p(py, p2) and p(ua, p2) are equivalent
and irreducible.

@i If ulugl = ap write pp = Xa},ﬂ, o = Xa;1/2. Then B(u1, u2) contains a unique proper
invariant subspace Bg(p1, o) which is irreducible. B(usg, p1) also contains a unique proper
invariant subspace By¢(pg, p1). It is one-dimensional and contains the function x(detg).
Moreover the Gr-modules Bg(p1,p12) and B(uz, p1)/B(pe, 1) are equivalent as are the
modules B(p1, p2)/Bs(p1, pa) and By (pz, p1).

We start with a simple lemma.



Chapter 1 50

Lemma3.3.1 Suppose there is a non-zero function f in B(u1, pe) invariant under right translations

1/ 1/2

by elements of Np. Then there is a quasi-character x such that p, = xop * and po = xop~ and

f is a multiple of x.

Since NFAF(? _Ol)NF is an open subset of G the function f is determined by its value at
). Thus if 47 and po have the indicated form it must be a multiple of .
If ¢ belongs to F'* then

(e )=Co )@ o)

Thus if f exists and w = pop; "o’

() =eer (@ 9)

Since f is locally constant there is an ideal a in F' such that w is constant on a — {0}. It follows
immediately that w is identically 1 and that p; and o have the desired form.
The next lemma is the key to the theorem.

0-1
10

Lemma 3.3.2. If |pu1p2(w)| = |w|® with s > —1 there is a minimal non-zero invariant subspace X
of B(u1, p2). For all f in B(uy,pe) and all n in Ng the difference f — p(n)f belongs to X.

By Proposition 3.2 it is enough to prove the lemma when B(u,us) is replaced by
W (1, pro;1p). Associate to each function W in W (uy, pe; 1) a function

(3 )

on F*. If pis0sois W. We may regard m = p(u1, 12) as acting on the space V' of such functions. If b
isin Bp
m(b)e = &y (b)p-

Appealing to (3.2.2) we see that every function ¢ in V' has its support in a set of the form
{aGFXHa\gc}

where ¢ = ¢(y) is a constant. As in the second paragraph the difference ¢ — m(n)p = ¢ — &y(n)pis
in §(F*) for all n in Np. Thus VN 8(F ) is not 0. Since the representation &, of Bp on §(F*) is
irreducible, V' and every non-trivial invariant subspace of ' contains 8(F™). Taking the intersection
of all such spaces we obtain the subspace of the lemma.

We first prove the theorem assuming that |u;(w)u; ()| = |w|® with s > —1. We have
defined a non-degenerate pairing between B (1, p12) and B(uy !, 5 ). All elements of the orthogonal
complement of X are invariant under Ng. Thus if ulugl is not ar the orthogonal complement is 0 and
X is B(ju1, 12) so that the representation is irreducible. The contragredient representation p(i; *, 5 )
is also irreducible.

If ulugl = ap We write y; = Xal/z, Lo = Xa;”? In this case X is the space of the functions
orthogonal to the function x ™ in B(u; ',y ). We set By (1, o) = X and we let By(ui ', ;') be
the space of scalar multiples of x~!. The representation of G on B,(u1, u2) is irreducible. Since
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B (11, p2) is of codimension one it is the only proper invariant subspace of B(uy, u2). Therefore
Br(uy', puyt) is the only proper invariant subspace of B(u; ', 115 ").

If |1 () py H(w)| = |w|® then |y ! (@) pa(w)| = ||~ and either s > —1 or —s > —1. Thus if
uflﬂg is neither ar nor a}l the representation m = p(u1, i11) is irreducible. If w = pq ps then

(5 2) -

so that 7 is equivalent to w ® 7 or tow®p(u1—1, ugl). Itis easily seen thatw®p(u1_1, ugl) is equivalent
to p(wpy wpy t) = plpg, p).

If ,ul,ugl = ap and 7 is the restriction of p to B,(u1, p2) then 7 is the representation on
Bluy g ')/ By(uyt, uyt) defined by p(uyt, '), Thus m is equivalent to the tensor product of

w = w1 e and this representation. The tensor product is of course equivalent to the representation on
B(paz, 1) /B s (piz, ). 1 iy = xad” and o = xag"/? the representations on B(u, i2) /B (j11, fi2)

and B ¢(u2, p1) are both equivalent to the representations g — x/(detg).
The space W (1, 1123 1) has been defined for all pairs pi1, ps.

Proposition 3.4 (i) For all pairs p1, po

W (a1, pr2; ¢) = W(M%Ml; V)

(i) In particular if pips " # a}l the representation of Ggp on W(u1,ua; ¥) is equivalent to
p(p, piz)-

If ® is a function on F? define ®* by
(z,y) = (y, ).
To prove the proposition we show that, if ® is in §(F?),
w1 (detg) ]detg\l/QG(,ul,,ug; T(g)@b) = po(detg) ‘detgylﬂe(ﬂ%ﬂﬁ T(g)@)'

If g is the identity this relation follows upon inspection of the definition of (14, uo; ®*). Itisalso easily
seen that

r(g)® = [r(g)®]"
if gisin SL(2, F) so that it is enough to prove the identity for

(5 7))

pa(a) [ (ot (O () 4t = pafa) [ Blat.t stz (0 a7

It reduces to

The left side equals
(@) [ (a6 "t

which, after changing the variable of integration, one sees is equal to the right side.
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If py 5 is not o or ozt so that p(pu, po) is irreducible we let 7(j1, 112 ) be any representation
in the class of p(u1, p2). If p(u1, pe) is reducible it has two constituents one finite dimensional and one
infinite dimensional. A representation in the class of the first will be called 7 (4, 112). A representation
in the class of the second will be called o (1, 112). Any irreducible representation which is not absolutely
cuspidal is either a 7(uy, o) or a o(pg, p2). The representations o (uq, 12) which are defined only for
certain values of x; and p are called special representations.

Before proceeding to the proof of Theorem 2.18 for representations which are not absolutely
cuspidal we introduce some notation. If w is an unramified quasi-character of F'* the associated

L-function is )

Ko T e

It is independent of the choice of the generator w of p. If w is ramified L(s,w) = 1. If ¢ belongs to
S(F) the integral
Zwao) = [ pla)la) jal* a*a

is absolutely convergent in some half-plane Re s > sy and the quotient

Z(wap, ¢)
L(s,w)

can be analytically continued to a function holomorphic in the whole complex plane. Moreover for a
suitable choice of ¢ the quotient is 1. If w is unramified and

/ d*a=0
Ur

one could take the characteristic function of Or. There is a factor (s, w, ) which, for a given w and
1, is of the form ab® so that if ¢ is the Fourier transform of ¢

Z(w‘la}?_s, Q)

Z(wag, ¢)
L(1—s,w™1)

=e(s,w, ) L(s.2)

If w is unramified and Op is the largest ideal on which 4 is trivial (s, w,¥) = 1.

Proposition 3.5 Suppose 1 and po are two quasi-characters of F* such that neither ul_l,ug nor
pipiyt is ap and T is (1, o). Then

W(m, ) = W(u, po; )

and if
L(Svﬂ) = L(Sv:ul) L(Sv:UQ)
L(s, &) = L(s,p7 ") L(s, p13 ")
E(S,?T,TZJ) = 6(8=H17¢)€(8=H27¢)

all assertions of Theorem 2.18 are valid. In particular if |pi(w)| = |w| ™% and |p2(w)| = |w| =52
the integrals defining ¥(g,s, W) are absolutely convergent if Re s > max{sy,s2}. If p1 and ps are
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unramifed and Op 1is the largest ideal of F' on which 1 is trivial there is a unique function Wy in
W (m, 1) which is invariant under GL(2,0F) and assumes the value 1 at the identity. If

/ d*a=1
Ur

That W (m,v) = W (1, pe; ) is of course a consequence of the previous proposition. As we
observed the various assertions need be established only for g = e. Take ® in §(F?) and let W = Wy
be the corresponding element of W (x, ). Then

o= (7))

belongs to the space of the Kirillov model of 7. As we saw in the closing pages of the first paragraph

Ve, s, W) :/ 17,7 ((8 (1)>> la]*~ V2 d%a = @(a;_l/g)
FX

then ®(e, s, Wy) = 1.

is equal to
Z (1, pr20fe, ®)
if the last and therefore all of the integrals are defined.

Also _
Ule,s,W) = Z(py o, i "o, @).

Any function in §(F?) is a linear combination of functions of the form

®(z,y) = p1(x)p2(y).

Since the assertions to be proved are all linear we need only consider the functions ® which are given
as products. Then

Z(:U'la%v M2a%‘7 (I)) = Z(Mla%H (pl)Z(:U'QOC%H 902)

so that the integral does converge in the indicated region. Moreover

Z(Mglaiﬁ :U’l_lasF7 (I)) = Z(Hgla%a Qpl)Z(Hl_laSF7 802)
also converges for Re s sufficiently large. ®(e, s, W) is equal to

Z(pag, p1) Z(peay, p2)
L(S,Ml) L(S7/’L2)

and is holomorphic in the whole complex plane. We can choose ¢; and ¢ so that both factors are 1.

It follows from the Iwasawa decomposition Gr = Pp GL(2,0p) that if both p; and uo are
unramified there is a non-zero function on B(u, 2) which is invariant under GL(2, Or) and that it
is unique up to a scalar factor. If the largest ideal on which v is trivial is O, if ® is the characteristic
function of O%, and if @y is the partial Fourier transform introduced in Proposition 1.6 then &) = .
Consequently

Tp1,pe (g)(I)O = (I)O
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forall g in GL(2,0pF). If Wy = Wg, then, since @ is the product of the characteristic function of Op
with itself, ®(e, s, W) = 1 if
/ d*a = 1.
Ur

The only thing left to prove is the local functional equation. Observe that
%(w, s, W)= ‘5(6, &p(w)W),

that if W = W then p(w)W = W, ()3, and that r (w)®(z,y) = ®'(y, x) if @’ is the Fourier transform
of ®. Thus if ®(z,y) is a product ¢; () p2(y)

Z(,U,l_lOé%, @1) Z(H2_IO[SF7 9/52)

&J(w,S,W) = — a
L(Snu’l 1) L(87H21)

The functional equation follows immediately.
If ups ' is ap or az' and m = (g, p12) we still set

L(Sv’”) = L(Svul) L(87M2)

and

5(87 T, ¢) = 5(87 M1, ¢) 6(87 H2, ¢)

Since 7 is equivalent to 7(u; ", py )

L(Svﬁ-) = L(Svul_l)L(Svugl)'

Theorem 2.18 is not applicable in this case. It has however yet to be proved for the special representa-

tions. Any special representation o is of the form o (uy, o) with p; = Xa}/Q and po = Xa;1/2. The

contragredient representation of & is o(uz_l, Ml_l). This choice of 11 and ps is implicit in the following
proposition.

Proposition 3.6 W (o,1)) is the space of functions W = Wg in Wy, pa; ¥) for which

/F@(x,()) dz = 0.

Theorem 2.18 will be valid if we set L(s,0) = L(s,0) = 1 and e(s,0,v) = &(s, u1, ) €(s, p2, )
when x is ramified and we set L(s,0) = L(s, 1), L(s,5) = L(s, 5 "), and

L(l - 87”1_1)

e(s,0,9) = e(s, u1,9) (s, p2, ) L(s, ji2)

when x is unramified.

W (o, 1) is of course the subspace of W (111, p12; 1) corresponding to the space B (u1, i2) under
the transformation A of Proposition 3.2. If W = Wy then A takes W to the function f = fg~ defined
by

F(9) = 2(papy "or, p(g) @) i (detg) |detg|'/?.
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f belongs to B (u1, o) if and only if

/ Y1 (9)f(g) dg = 0.
GL(2,0F)

As we observed this integral is equal to a constant times

frr G )G D) o0 D)
Joermon(s D)) em [{fceonia)

The double integral does converge and equals, apart from a constant factor,

//(I)”(t,tx) It| dt dw = //@N(t,x) dt d
/(I)(t,o) dt.

We now verify not only the remainder of the theorem but also the following corollary.

which equals

which in turn equals

Corollary 3.7 (i) If m = mw(p1, o) then

L(1—-s,0) L(1—s,7)
5(57071/]) L(S,U) _5(877771/}) L(S,’/T)

(i) The quotient

L(s,m)

L(s,0)

is holomorphic
(iii) For all ® such that
/CD(:E, 0)dz =0

the quotient
Z(Hla%v H2O‘%7 (I))
L(s,0)

is holomorphic and there exists such a ® for which the quotient is one.

The firstand second assertions of the corollary are little more than matters of definition. Although
W (i1, 21)) is not irreducible we may still, for all W in this space, define the integrals

U(g,s,W) = /W ((8 ?) g> a1/ d%a
T(g,s,W) = /W ((O ?) g> la[*" 2w (a) d*a.

Q
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They may be treated in the same way as the integrals appearing in the proof of Proposition 3.5. In
particular they converge to the right of some vertical line and if W = W5

U(e,s, W) = Z(u1ak, paag, ®)
\Tl(e,s, W) = Z(Mz_lai“yﬂfla%v D).

Moreover
U(g,s, W)
L(s, )
is a holomorphic function of s and
‘?[;(gv 1- 87W) — 6(8 T ¢)‘I/(Q,S,W)
L(1—s,7) T L(s,m)
Therefore o W)
g? 87
O(g,s, W) = “Lis,0)
and -
~ U(g,s, W)
O(g,5, W) = TL(s5)

are meromorphic functions of s and satisfy the local functional equation

D(wg,1 — s, W) =e(s,0,9) ®(g,5,W).

To compete the proof of the theorem we have to show that (s, o, ¢) is an exponential function of
s and we have to verify the third part of the corollary. The first point is taken care of by the observation
that u; ' (w) || = py (@) so that

L= sih) 1 (=)=l
L(s, ji2) 1—pi N (w) ||t

If x is ramified so that L(s,0) = L(s, ) the quotient part (iii) of the corollary is holomorphic.
Moreover a ® in §(F?) for which

Z(MIO&NMQOC%?(D) = L(S,O’) =

can be so chosen that
®(ex,ny) = x(en)®(z,y)

/F@(x,()) dz = 0.

Now take x unramified so that x(a) = |a|” for some complex number r. We have to show that if

for e and n in Ugr. Then

/F<I>(x,0) d = 0
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then
Z(p1ag, oo, )
L(S, /J/l)
is a holomorphic function of s. Replacing s by s — r 4+ 1/2 we see that it is enough to show that

(1=l [[ @t ol o dy

is a holomorphic function of s. Without any hypothesis on ® the integral converges for Res > 0 and
the product has an analytic continuation whose only poles are at the roots of |cw|* = 1. To see that these
poles do not occur we have only to check that there is no pole at s = 0. For a given ® in §(F?) there is
an ideal a such that

O(z,y) = ®(x,0)
for y in a. If @’ is the complement of a

// B(z,y) | |yl* ¥ w dy

/ / B(x,y) |2+ |y &z &y
F Ja’

which has no pole at s = 0 and a constant times

{/F@(x,()) |x\8dx} {Aw\scﬂy}

If a = p™ the second integral is equal to

is equal to the sum of

| (1 = |w|*) ™

/F@(x,()) dzw =0

the first term, which defines a holomorphic function of s, vanishes at s = 0 and the product has no
pole there.
If g is the characteristic function of O set

®(z,y) = {po(2) — @ po(@™ @)} wo(y).

Then
/ ®(x,0)dr =0
F
and
Z (10, paap, @)
is equal to

{ [ tate) = 191 nt ) i@ et @ b { [ ol nato o @y
The second integral equals L(s, u2) and the first equals
(1= (@) |@w*™) L(s, 1)
so their product is L(s, u1) = L(s,0).
Theorem 2.18 is now completely proved. The properties of the local L-functions L(s, ) and the

factors (s, 7, 1) described in the next proposition will not be used until the paragraph on extraordinary
representations.
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Proposition 3.8 (i) If 7 is an irreducible representation there is an integer m such that if the order
of x is greater than m both L(s,x ® ) and L(s,x ® 7) are 1.
(ii) Suppose w1 and wy are two irreducible representations of Gr and that there is a quasi-
character w such that

(s ) () e

Then there is an integer m such that if the order of x is greater than m

5(87X® 7T17¢) = 5(87X®7T271/])

(iii) Let w be an irreducible representation and let w be the quasi-character defined by

(3 1)

Write w in any manner as w = uipo. Then if the order of x is sufficiently large in comparison
to the orders of 1 and o

e(s,x @ m,p) = (s, xp1, ) €(s, xpi2, V).

It is enough to treat infinite-dimensional representations because if 0 = o(uy,u2) and © =
(1, o) are both defined L(s,x ® 0) = L(s,x @), L(s,x ® ) = L(s,x ® 7), and (s, x ® 0,v) =
(s, x ® m, 1) if the order of y is sufficiently large.

If 7 is not absolutely cuspidal the first part of the proposition is a matter of definition. If 7 is
absolutely cuspidal we have shown that L(s, x ® 7) = L(s,x ® 7) = 1 for all .

According to the relation (2.18.1)

e(s,x ® m,¢) = C’(Vo_lyl_l,zalzl_lq_lﬂz_l)

if the order of  is so large that L(s,x ® 7) = L(s,x ' ® ) = 1. Thus to prove the second part we
have only to show that if {C} (v,t)} and {C5(v,t)} are the series associated to m; and 75 then

Cy(v,t) = Co(v,t)

if the order of v is sufficiently large. This was proved in Lemma 2.16.6. The third part is also a
consequence of that lemma but we can obtain it by applying the second part to m = 7 and to
Ty = w(p, p2).

We finish up this paragraph with some results which will be used in the Hecke theory to be
developed in the second chapter.
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Lemma 3.9 The restriction of the irreducible representation m to GL(2,0F) contains the trivial
representation if and only if there are two unramified characters py and po such that m = 7w(py, p2).

This is clear if 7 is one-dimensional so we may as well suppose that 7 is infinite dimensional.
If 7 = m(u1, o) we may let @ = p(u1,u2). It is clear that there is a non-zero vector in B(uq, p2)
invariant under GL(2,Or) if and only if y; and po are unramified and that if there is such a vector
it is determined up to a scalar factor. If 7 = o(uq, o) and ul,ugl = a We can suppose that 7 is the
restriction of p(ju1, p2) to Bs (1, p2). The vectors in B(uq, p2) invariant under GL(2, Or) clearly do
not lie in B, (11, 12) so that the restriction of 7 to GL(2, Or) does not contain the trivial representation.
All that we have left to do is to show that the restiction of an absolutely cuspidal representation to
GL(2,0p) does not contain the trivial representation.

Suppose the infinite-dimensional irreducible representation 7 is given in the Kirillov form with
respect to an additive character + such that Op is the largest ideal on which ¢ is trivial. Suppose the
non-zero vector ¢ is invariant under GL(2, Op). Itis clear that if

(5 2)) =

then w is unramified, that ¢(v,¢) = 0 unless v = 1 is the trivial character, and that ¢ (v, ¢) has no pole
at t = 0. Suppose 7 is absolutely cuspidal so that ¢ belongs to 8§(F). Since m(w)y = ¢ and the
restriction of w to Up is trivial

(1L,t) = C(L1) 31,7t )

if zo = w(w). Since C(1,1) is a constant times a negative power of ¢ the series on the left involves no
negative powers of ¢t and that on the right involves only negative powers. This is a contradiction.

Let H, be the subalgebra of the Hecke algebra formed by the functions which are invariant under
left and right translations by elements of GL(2, Or). Suppose the irreducible representation 7 acts on
the space X and there is a non-zero vector z in X invariant under GL(2, Or). If f is in H, the vector
7(f)x has the same property and is therefore a multiple A(f)z of z. The map f — A(f) is a non-trivial
homomorphism of H; into the complex numbers.

Lemma 3.10 Suppose m = (1, o) where py and po are unramified and X is the associated homo-
morphism of Hy into C. There is a constant ¢ such that

A < e /G 1£(9)] dg (3.10.1)

for all f in H if and only if 1z is a character and |p1(w)py *(w)| = || with —1 < s < 1.
Let # act on X and let 7 in X be such that (x,x) # 0. Replacing = by

/ 7(g)zT dg
GL(2,0F)

if necessary we may suppose that z is invariant under GL(2, Or). We may also assume that (z,z) = 1.
Ifn(g) = (7(g)x, ) then

() n(g) = /G n(gh) £ (h) dh
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for all f in Hy. In particular

A(f) = /G n(h) f(h) dh.

If [n(h)| < cfor all h the inequality (3.10.1) is certainly valid. Conversely, since 7 is invariant under
left and right translations by GL(2, Or) we can, if the inequality holds, apply it to the characteristic
functions of double cosets of this group to see that |n(h)| < ¢ for all h. Since

o((5 0)n) = m@sate am)

the function 7 is bounded only if u; po is a character as we now assume it to be. The finite dimensional
representations take care of themselves so we now assume = is infinite-dimensional.

Since m and 7 are irreducible the function (7 (g)z, ) is bounded for a given pair of non-zero
vectors if and only if it is bounded for all pairs. Since Gp = GL(2,0r) Ap GL(2,0F) and ujp2 is a
character these functions are bounded if and only if the functions

B

are bounded on F*. Take 7 and 7 in the Kirillov form. If ¢ isin V and @ isin V then

w((5 1)) wrwa

e (5 9)) oo =m@m@ < (1)) 5w

Thus 7(g) is bounded if and only if the functions

(3 3

are bounded for all ¢ in V and all g in S(F™>).

It is not necessary to consider all ¢ in S(F*) but only a set which together with its translates by
the diagonal matrices spans $(F*). If u is a character of Ur let ¢, be the function on F* which is 0
outside of Ur and equals . on Up. It will be sufficient to consider the functions ¢ = ¢, and all we

need show is that
w™ 0
{m << 0 1 )) 5 Pu) (3.10.2)

is a bounded function of n for all ; and all ¢. The expression (3.10.2) is equal to @, (). If ¢ belongs
to S(F'*) the sequence {$, ()} has only finitely many non-zero terms and there is no problem. If
» = m(w)go then

is equal to

D Balwt™ = C(u,t)n(t)
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where 7)(t) depends on ¢( and is an arbitrary finite Laurent series. We conclude that (3.10.1) is valid if
and only if iy 10 is a character and the coefficients of the Laurent series C'(u, t) are bounded for every
choice of .

It follows from Proposition 3.5 and formula (2.18.1) that, in the present case, the series has only
one term if p is ramified but that if y is trivial

(1= pa(@)t™1) (1 = pa(w)t™t)
=125 (@) [@10) (1= 123 () [ )

C (w2 py (@) iy (w)t) = (

The function on the right has zeros at ¢t = y;(w) and ¢t = po(ww) and poles at t = 0, t = ||~ g (w),
and t = || tus(w). A zero can cancel a pole only if o (w) = || L1 (@) or 1 (w) = || tus(w).
Since pq and po are unramified this would mean that ufluz equals ap or agl which is impossible
when 7 = 7w (u1, p2) is infinite dimensional.

If C'(u, t) has bounded coefficients and 1 i is a character the function on the right has no poles
for |t| < |o|~'/2 and therfore |y (w)| > |w|'/? and |y ()| > |w|'/2. Since

(@) g (@)] = (@) = |uy ™ (w) 2

where p1 po is a character these two inequalities are equivalent to that of the lemma. Conversely if these
two inequalities are satisifed the rational function on the right has no pole except that at 0 inside the
circle |t| = |e|~'/2 and at most simple poles on the circle itself. Applying, for example, partial fractions
to find its Laurent series expansion about 0 one finds that the coefficients of C'(u, t) are bounded.

Lemma 3.11 Suppose py and po are unramified, pqpo is a character, and m = w(py, u2) is infinite
dimensional. Let |p1(w)| = |w|" where r is real so that |p2(w)| = |w|™". Assume Op is the
largest ideal on which 1 is trivial and let Wy be that element of W (1)) which is invariant under
GL(2,0F) and takes the value 1 at the identity. If s > |r| then

[ (5 0))

if the Haar measure is so normalized that the measure of Up is one.

1
(1 =@l )1 = |w|*7")

‘a’s—l/Q d*a <

If @ is the characteristic function of O% then

W ((0 ?)) —m(@lal? [ @t )yt @t

/ W ((8 ?))‘ \ays—mdxag//@(at,t—l)\aysmt\%dxam.
FX

Changing variables in the left-hand side we obtain

1
lal*tTb]*~" d*ad™ b = .
/oF /oF (1= Jew[**7)(A = |w|*=7)
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§4. Examples of absolutely cuspidal representations In this paragraph we will use the results of the
first paragraph to construct some examples of absolutely cuspidal representations.

First of all let K be a quaternion algebra over F'. K is of course unique up to isomorphism.
As in the first paragraph Q will denote a continuous finite-dimensional representation of K* the
multiplicative group of K. If y is a quasi-character of F* and v is the reduced norm on K we denote
the one-dimensional representation g — X(V(g)) of K* by x also. If Q is any representation y ® Q is
the representation g — x(g) Q(g). If  is irreducible all operators commuting with the action of K*
are scalars. In particular there is a quasi-character €2 of £ such that

Qa) =w(a)l

for all a in F* which is of course a subgroup of K*. If Q is replaced by x ® ) then w is replaced by
Xw. Q will denote the representation contragredient to ().

Suppose (2 is irreducible, acts on V, and the quasi-character w is a character. Since K*/F* is
compact there is a positive definite hermitian form on V invariant under K*. When this is so we call
Q) unitary.

Itis a consequence of the following lemma that any one-dimensional representation of K* is the
representation associated to a quasi-character of F'*.

Lemma4.1l Let K; be the subgroup of K* consisting of those x for which v(z) = 1. Then K; is the
commutator subgroup, in the sense of group theory, of K*.

K certainly contains the commutator subgroup. Suppose x belongs to K;. If x = z* then
2?2 = xz* = 1 so that x = +1. Otherwise 2 determines a separable quadratic extension of F. Thus,
in all cases, if xx* = 1 there is a subfield L of K which contains x and is quadratic and separable over
L. By Hilbert’s Theorem 90 there isa y in L such that z = yy~*. Moreover there is an element ¢ in K
such that czo~! = 2* forall zin L. Thus x = yoy~'o~! is in the commutator subgroup.

In the first paragraph we associated to (2 a representation rq of agroup G, on the space S( K, 2).
Since F' is now non-archimedean the group G isnow Gp = GL(2, F).

Theorem 4.2 (i) The representation rq is admissible.
(i) Let d = degree). Then rq is equivalent to the direct sum of d copies of an irreducible
representation mw(€2).
(iii) If Q is the representation associated to a quasi-character x of F* then

1/2 ~1/2
7() = o(xal?, xaz'"?).
(iv) If d > 1 the representation w(2) is absolutely cuspidal.

If n is a natural number we set
G, ={9€ GL(2,0F)|g=I(modp™)}

We have first to show that if ® is in (K, §2) there is an n such that 7o (g)® = @ if g is in G,, and that
for a given n the space of ® in §(K, ) for which ro(g)® = @ for all g in G,, is finite dimensional.

Any
_(a b
I9=\¢ a

_ 1 0\[(a ¥V
9=\ eat 1 0 d

in G,, may be written as
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and both the matrices on the right are in GG,,. Thus G, is generated by the matrices of the forms

G G @) o 1)

with ¢ = 1 (modp™) and z = 0 (mod p™). It will therefore be enough to verify the following three
assertions.

(4.2.1) Given ® there isan n > 0 such that
0
(s 2)e-e
ifa =1 (modp™)

(4.2.2) Given ® there isan n > 0 such that

(o 7))o=
if 2 = 0 (mod p™).

(4.2.3) Givenn > 0 the space of ® in S( K, 2) such that

(o 1)e=e
ratw e ((§ 7)) ratwe -

for all x in p™ is finite-dimensional.

If a = v(h) then
ro <<8 (1)>> O = W32 Q(h) ®(zh).

Since ® has compact suport in K and is locally constant there is a neighborhood U of 1 in K* such that

and

Q(h) ®(xh) |h[/* = ®(x)

for all A in U and all z in K. The assertion (4.2.1) now follows from the observation that v is an open
mapping of K* onto F'*.
We recall that

(6 7))o =vleve) o)

Let p—* be the largest ideal on which 1 is trivial and let py be the prime ideal of K. Since v(p7) = p'p

(s e

for all x in p™ if and only if the support of @ is contained in p;(”_z. With this (4.2.2) is established.

® satisfies the two conditions of (4.2.3) if and only if both ® and r(w)® have support in p;(”‘é
or, since r(w)® = —&’, if and only if ® and &', its Fourier transform, have support in this set. There
is certainly a natural number % such that ¢(7(y)) = 1 for all y in p.. Assertion (4.2.3) is therefore a
consequence of the following simple lemma.
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Lemma 4.2.4 If the support of ® is contained in p" and ¢(T(y)) =1 for all y in p% the Fourier

transform of ® is constant on cosets of p]?'".

Since

the lemma is clear.

We prove the second part of the theorem for one-dimensional {2 first. Let €2 be the representation
associated to x. S(K,2) is the space of ® in §(K) such that ®(zh) = ®(x) for all in K;. Thus to
every ¢ in 8( K, 2) we may associate the function pg on F'* defined by

ea(a) = B Q) ®(h)
if a = v(h). The map ® — g is clearly injective. If ¢ belongs to 8( ) the function ® defined by
(k) = |l Q7 () o (v(h)
if h # 0 and by
®(0) =0

belongs to §(K,2) and ¢ = pg. Let 8y(K, §2) be the space of functions obtained in this way. It is the
space of functions in 8( K, Q) which vanish at 0 and therefore is of codimension one. If ® belongs to
So(K, ), is non-negative, does not vanish identically and ¢’ is its Fourier transform then

'(0) = /<I>(x) dz 0.

Thus rq(w)® does not belong to 8y( K, Q2) and 8y (K, 2) is not invariant. Since it is of codimension one
there is no proper invariant subspace containing it.
Let V be the image of S( K, w) under the map ® — 4. We may regard rq as acting in V. >From
the original definitions we see that
ra(b)y = &y (b)y

if bisin Bg. If V1 is a non-trivial invariant subspace of V' the difference

e-ra((y 1))

isin Vo N Vy for all pin V4 and all = in F. If ¢ is not zero we can certainly find an x for which the
difference is not zero. Consequently V N V7 is not 0 so that V; contains V; and hence all of V.

rq Is therefore irreducible and when considered as acting on V' it is in the Kirillov form. Since
Vo is not V' it is not absolutely cuspidal. It is thus a 7(u, p2) or a o(us, 12). To see which we have to
find a linear form on V which is trivial on V4. The obvious choice is

if o = ¢g. Then




Chapter 1 65

To see this we have only to recall that

and that

where a = v(h) so that |h[}/* = |a|2 and Q(h) = x(a)I. Thus if
Ap(g) = L(ra(g)¢)

A is an injection of V into an irreducible invariant subspace of B(XaF/z,XaFl/z). The only such

subspace is B (XaF/Q, XaFl/ ) and rq is therefore o(xa},/Q, XaF1/2).

Suppose now that (2 is not one-dimensional. Let Q2 act on U. Since K; is normal and K/ K is
abelian there is no non-zero vector in U fixed by every element of K;. If ¢ is in §( K, ) then

d(zh) = Q1 (h) ()

for all hin K. In particular ®(0) is fixed by every element in K and is therefore 0. Thus all functions
in $(K, ) have compact supports in K= and if we associate to every @ in $( K, 2) the function

ea(a) = B> QR) B(R)
where a = v(h) we obtain a bijection from 8(K,Q2) to S(F*,U). It is again clear that
po, = &y (0)pa

if bisin Bp and ®; = rq(b)®.

Lemma4.25 Let Q) be an irreducible representation of K* in the complex vector space U. Assume
that U has dimension greater than one.

(i) For any ® in S(K,U) the integrals
Z(ay@Q,0) = / \a!s/z Q(a) ®(a)d*a
K
Zar o0 0) = [ |l 07 (@) 9(a) d*a

are absolutely convergent in some half-plane Re s > sg.
(i) The functions Z(a% @ Q,®) and Z(ah @ Q7L ®) can be analytically continued to functions
meromorphic in the whole complex plane.
(iii) Given w in U there is a @ in S(K,U) such that
Z(ap ®0,P) = u.
(iv) There is a scalar function (s,Q, ) such that for all ® in S(K,U)

Z( 27‘/2 ° ® Q_lyq)/) = _5(57971/]) Z(Oéi:_l/Q ® Q’(I))
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if ® is the Fourier transform of ®. Moreover, as a function of s, £(s,9,1) is a constant
times an exponential.

There is no need to verify the first part of the lemma. Observe that ar (v(z)) = |v(z)|p = \x|}(/2

so that ,
(af © Q)(x) = [2]3L° Q).

If & belongs to 8(K, U) set
B1 () :/ Q(h) B(xh).
K1

The integration is taken with respect to the normalized Haar measure on the compact group K;. ®,
clearly belongs to $(K,U) and

Z(a% ® Q,8) = Z(ah ® Q, &;) (4.2.6)

and the Fourier transform @ of ®, is given by
P (z) = / Q(h™) @' (ha)
K

The function @/ (z*) belongs to S( K, 2) and
Z(as @0 1) = Z(ah Q7 @)). (4.2.7)
Since ®; and ¢/ both have compact support in K the second assertion is clear.
If wis in U and we let &, be the function which is O outside of Uy, the group of units of O,

and on Uy is given by &, (z) = Q7! (z)u then

Z(ap @ Q,0,) =cu

c:/ d*a.
Uk

If o belongs to S(K ) let A(y) and B() be the linear transformations of U defined by
AU = Z(ap"* 0 0,0")
Blpyu=Z(ap" ™ 0 071 g'u)

where ¢’ is the Fourier transform of ¢. If A\(h) ¢(h) = ¢(h~tx) and p(h) p(x) = p(xh) then
AAhe) = B0k Ae)

and
Alp(h)p) = bl >~ A(p)Q7 ().

Since the Fourier transform of A(h)e is |h|lkp(h)¢’ and the Fourier transform of
p(h)g is |h| ' M(h)¢', the map ¢ — B(y) has the same two properties. Since the kernel of Q is
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open it is easily seen that A(¢) and B() are obtained by integrating ¢ against locally constant func-
tions o and 3. They will of course take values in the space of linear transformations of U. We will
have

a(ha) = [A[*F/*Q(k) ala)

and
a(ah™t) = |nl* " ala) Q7 (h)

G will satisfy similar identities. Thus

a(h) = W2 Qh) a(1)
B(h) =[R2 0(n) (1)

a(1) is of course the identity. However §(1) must commute with Q(h) for all  in K* and therefore it
is a scalar multiple of the identity. Take this scalar to be —z(s, €2, ).

The identity of part (iv) is therefore valid for ® in S(K*,U) and in particular for ® in (K, ).
The general case follows from (4.2.6) and (4.2.7). Since

1 —s
e(s,Q9) = — 2@ @0 @)

the function £(s, 2, ¢) is a finite linear combination of powers | |° if w is a generator of p . Exchanging
the roles of ®,, and ®/, we see that e~ (s, Q, 1) has the same property. (s, 2, 1) is therefore a multiple
of some power of |w|®.

We have yet to complete the proof of the theorem. Suppose ¢ = ¢4 belongs to S(F*,U) and
©' = Oro(w)s- We saw in the first paragraph that if y is a quasi-character of F* then

P(x) = Z(arx ®Q, ) (4.2.8)
and, if Q(a) = w(a)I forain F*,
Px o) = ~Zlapx @ Q7). (4.2.9)

Suppose Uy is a subspace of U and ¢ takes its values in Uy. Then, by the previous lemma, ¢(x)
and @'(x~lw™1) also lie in Uy for all choices of x. Since ¢’ lies in §(F*,U) we may apply Fourier
inversion to the multiplicative group to see that ¢/ takes values in U.

We may regard rq as acting on 8(F*,U). Then 8(F*,Uy) is invariant under rq(w). Since
ro(b)p = &, (b)yp for bin By it is also invariant under the action of By. Finally o (($9))e = w(a)e
so that S(F'*,Up) is invariant under the action of G itself. If we take U, to have dimension one
then 8(F*,Uy) may be identified with §(F*) and the representation rq restricted to 8(£*,Up) is
irreducible. From (4.2.8) and (4.2.9) we obtain

Blaf ' *x) = Z(a3 Px 0 0, ®)
Blop™ Py o) = ~Z(ap Py e 07 @)

so that o o
P (a0 = e(s,x © 0 9) Bla ).
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Thus if 7 is the restriction of rq to S(F*, Uy)

so that my = 7(12) is, apart from equivalence, independent of U,. The theorem follows.
Let 2 be any irreducible finite-dimensional representation of K> and let 2 act on U. The

contragredient representation Q) acts on the dual space UofU. Ifu belongs to U and u belongs to U
(u, UR)T) = (Q  (h)u, W)

If & belongs to $(K) set

Z(as @ 0, B u, @) :/ (B[ B(R) (h)u, i) d*h
KX

and set

Z(a @ O, ®;u, ) :/ (B[ B(R) (u, O(h)ii) d* h.

KX

Theorem 4.3 Let  be an irreducible representation of K> in the space U.

(i) For any quasi-character x of F'*
T(x® Q) =x@7(Q).

(i) There is a real number sy such that for all u, uw and ® and all s with Re s > sq the integral
defining Z (o5 @ Q, ®;u,u) is absolutely convergent.
(iii) There is a unique Euler factor L(s,Q) such that the quotient

Z(a}+1/2 ®Q, D, u,u)
L(s,Q)

18 holomorphic for all u, w, ® and for some choice of these variables is a non-zero constant.
(iv) There is a functional equation

Z(ozij_l/2 ®Q, P, u,u)
L(s,Q)

Z(aiﬂ_s ®Q, ' u, w)
L(1—5,Q)

= —¢(s, 7))

where e(s,Q,1) is, as a function of s, an exponential.
V) If Q(a) = w(a)I for ain F* and if m = w(Q) then

Moreover L(s,m) = L(s,Q), L(s, %) = L(s,Q) and (s, m,¢) = (s, 2, 1)).
The first assertion is a consequence of the definitions. We have just proved all the others when €2
has a degree greater than one. Suppose then that 2(h) = X(V(h)) where Yy is a quasi-character of F'*.

Then7(Q2) = W(Xa}/Q, Xagl/Q) and if the last part of the theorem is to hold L(s, §2), which is of course
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uniquely determined by the conditions of part (iii), must equal L(s,7) = L(s,xoz},/z). Also L(s,ﬁ)
must equal L(s, ) = L(s,x *a}/?).
In the case under consideration U = C and we need only consider
Z(ap @Q,0;1,1) = Z(ar @ Q, ).
As before the second part is trivial and

Z(a5 © Q,8) = Z(a} © 2, 0)

B (z) = /K B(zh).

The Fourier transform of ®; is

&' (z) = /K () = /K R0

Z(a% @ Q, @) = Z(ah @ Q,P)).

It is therefore enough to consider the functions in §( K, Q).
If ¢ = @ is defined as before then o lies in the space on which the Kirillov model of 7 acts and

Blap?) = A0 @9, 9).

The third assertion follows from the properties of L(s, 7). The fourth follows from the relation

and

Bloy* W) = 2T w07 @),
which was proved in the first paragraph, and the relation

~ 1/2—s _1q ~ s—1/2
Plap™ w) _ plar )
L(1—s,7) e(s,m ) L(s,m) ’

which was proved in the second, if we observe that Q(h) = Q~1(h). ¢ is of course 7(w) .

Corollary 4.4 If m = w(QQ) then 7 = w(§2).
This is clear if Q if of degree one so suppose it is of degree greater than one. Combining the

identity of part (iv) with that obtained upon interchanging the roles of {2 and Q and of ® and & we
find that

5(87 Qv ¢) 6(1 - S, ﬁa ¢) = w(_l)'
The same considerations show that

e(s,m ) e(1—s,m,1¢) =w(—1).

Consequently

e(s, 1) = (s, Q2,1).
Replacing €2 by x ® €2 we see that
5(87 X_l ® 7}7¢) = E(va_l ® §7¢) = 5(87X_17T(§)7¢)

for all quasi-characters x. Since 7 and 7(£2) are both absolutely cuspidal they are equivalent.
There is a consequence of the theorem whose significance we do not completely understand.
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Proposition 4.5 Let Q be an irreducible representation of K> on the space U and suppose that the
dimension of U is greater than one. Let U be the dual space of U. Let w be the Kirillov model of
m(Q), let @ lie in S(F™), and let ¢’ = w(w)p. If u belongs to U and u belong to U the function ®
on K which vanishes at 0 and on K* is defined by

B(x) = ¢(v(2)) (@)~ (u, Q()a)

is in 8(K) and its Fourier transform ® wvanishes at 0 and on K* is given by

¥'(2) = —¢'(v(2)) [v(@)| " o V(@) (Uz)u, T)
if Qa) = w(a)l for ain F*.
It is clear that ® belongs not merely to S(K) butin fact to S(K ). So does the function ®; which
we are claiming is equal to ®’. The Schur orthogonality relations for the group K7 show that ®'(0) = 0

so that @’ also belongs to S(K ™).
We are going to show that for every irreducible representation of ¥ of K*

/ (I>1(:E), <u”§’(x)ﬂ’> ‘y(x)‘3/2—8 d*z _ _/ 5(37Q,7¢) <I>(:E) (Q'(:E)u’,ﬁ'> ]y(x)]SJrl/z d*x
L(1—s,Q) L(s, Q)

for all choices of v’ and @’. Applying the theorem we see that

/ (81(x) — @ (2)} (o, ' (2)) () /2 d¥x = 0

for all choices of (¥, v/, @/, and all s. An obvious and easy generalization of the Peter-Weyl theorem,
which we do not even bother to state, shows that ®; = @'.

If
U(z) = /K (u, Q(ha)@) (Y (ha)u', @) dh
then
O (2)(Y (), ') () |2 d¥ e = / p(v(@)) (@)~ W (z) d*x
KX K* /K,

while

/ Oy () (W' (2), W) [v(@)[*?~* d*w = —/ ¢ (v(@) w ! (v(@)) p(@)2 7 W) d e

KX K* /K,

If ¥ is 0 for all choice of v’ and @’ the required identity is certainly true. Suppose then ¥ is different
from 0 for some choice v’ and @’.
Let U be the intersection of the kernels of 2’ and Q. It is an open normal subgroup of K* and
H = U K; F* isopen, normal, and of finite index in K. Suppose that {2 (a) = w’(a)I for ain F'*. If
h belongs to H
U(xh) = xo(h) U(x)

where Y is a quasi-character of H trivial on U and K; and equal to w’w~! on F'*. Moreover x, extends
to a quasi-character y of K * so that

x may of course be identified with a quasi-character of F'*.
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Lemma 4.5.1 If

[ et 2o
KX Fx

then Q' is equivalent to x @ .
) and x ® €2 agree on F* and

/ (1, X ® Q(a)) (O (@), @) # 0.
KX JFX

The lemma follows from the Schur orthogonality relations.
We have therefore only to prove the identity for ' = xy ® €. Set

Fla) = /K (u, Q)i (Qha)ed, T dh.

u' and @’ now belong to the spaces U and U. There is a function f on F* such that

The identity we are trying to prove may be written as

J¢' (@) x @) w ' (a) f(a™") [a]'/*"* d"a
L(A—-s,x1®7)

J¢(a) x(a) f(a) |a]*~ /2 d*a

Lo @) (4.5.2)

=¢e(s,x ®m, 1)

Let H be the group constructed as before with U taken as the kernel of Q. The image F’ of H under v
is a subgroup of finite index in F’* and f, which is a function on £ /F’, may be written as a sum

fla) = 3" Mexita)

where {x1,- -, X, } are the characters of F'*/F’ which are not orthogonal to f. By the lemma 2 is
equivalent to y; ® Q for 1 < i < p and therefore 7 is equivalent to y; ® w. Consequently

5(37X ® 7T,¢) = €(S7XX’i & 7T,¢)
and

Jpx #'(@)x"M(a) xi (@) w (a) o]~ d¥a
Li—s,x ' ©7)

)fpx ¢(a) x(a) xi(a) |a]*~1/2 d*a.

:E(S,X®7T,¢ L(SX@TF)

The identity (4.5.2) follows.

Now let K be a separable quadratic extension of F'. We are going to associate to each quasi-
character w of K* an irreducible representation 7(w) of Gg. If G is the set of all g in G whose
determinants belong to v (K *) we have already, in the first paragraph, associated to w a representation
r, of G,. To emphasize the possible dependence of r,, on ) we now denote it by m(w,1). G is of
index 2 in Gp. Let m(w) be the representation of G induced from m(w, ).
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Theorem 4.6 (i) The representation w(w, ) is irreducible.
(ii) The representation w(w) is admissible and irreducible and its class does not depend on the

choice of 1.

(iii) If there is no quasi-character x of F* such that w = xov the representation m(w) is absolutely
cuspidal.

(iv) If w = xov and n is the character of F* associated to K by local class field theory then m(w)
is (X, Xn)-

It is clear what the notion of admissibility for a representation of G should be. The proof that
m(w, 1) is admissible proceeds like the proof of the first part of Theorem 4.2 and there is little point in
presenting it.

To every ® in 8( K, w) we associate the function g on F. = v(K *) defined by

pa(a) = w(h) [h]L* o(h)

if a = v(h). Clearly oo = 0 if and only if & = 0. Let V. be the space of functions on F’. obtained in
this manner. V. clearly contains the space S(F.) of locally constant compactly supported functions on
F. In fact if ¢ belongs to S(F.) and

®(h) = w L () |Al""* (v (h))

then ¢ = pg. If the restriction of w to the group K3 of elements of norm 1 in K is not trivial so that
every element of (K, w) vanishes at 0 then V., = S§(F.). Otherwise 8(F ) is of codimension one in
V.

Let B be the group of matrices of the form

a X

0 1
with a in 'y and z in F. In the first paragraph we introduced a representation £ = &, of B, on the
space of functions on F... It was defined by

(5 1)) o=t
(5 1)) e = vt 50

We may regard m(w, 1) as acting on V. and if we do the restriction of m(w, ) to By is &.

and

Lemma 4.6.1 The representation of Bp induced from the representation &, of By on 8(Fy.) is the
representation &y, of Br. In particular the representation &y, of B is irreducible.

The induced representation is of course obtained by letting Br act by right translations on the
space of all functions ¢ on B with values in 8§(F;) which satisfy

P(b1b) = &y (b1) p(b)
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for all b, in B,. Let L be the linear functional in () which associates to a function its value at 1.
Assaciate to ¢ the function

wor=r (2 ({6 )= 0 3)) o)

The value of 5((§ 7)) atcwin F is

c(e((5 )= (6 )T 1)
stz (3 (( 1)) = vtanetaa)

Since F'*/Fy is finite it follows immediately that ¢ is in S(F*) and that ¢ is 0 if ¢ is. It also shows
that o can be any function in §(F*) and that if ¢’ = p(b) ¢ then ¢’ = £(b) ¢ for all b in Bg. Since
a representation obtained by induction cannot be irreducible unless the original representation is, the
second assertion follows from Lemma 2.9.1.

If the restriction of w to K is not trivial the first assertion of the theorem follows immediately. If
it is then, by an argument used a number of times previously, any non-zero invariant subspace of V.
contains S(F.) so that to prove the assertion we have only to show that S(F.) is not invariant.

As before we observe that if ¢ in §(K,w) = 8§(K) is taken to vanish at 0 but to be non-negative
and not identically 0 then

ro(w) ®(0) = ’y/ O(x)dr #0
K

so that g is in 8(F}) but ¢, ()4 IS NOL.

The representation 7(w) is the representation obtained by letting G- act to the right on the space
of functions ¢ on G with values in Vi which satisfy

p(hg) = m(w,¥)(h) ¢(9)

for h in G. Replacing the functions ¢ by the functions

s=5((3 1))

we obtain an equivalent representation, that induced from the representation

rs(3 2)0(% )

of G. It follows from Lemma 1.4 that this representation is equivalent to 7w (w, /) if ¢/ (z) = ¢ (ax).
Thus 7(w) is, apart from equivalence, independent of 1.

Since
a 0
sz{g<0 1>|g€G+,a€FX}

¢ is determined by its restrictions to Br. This restriction, which we again call @, is any one of the
functions considered in Lemma 4.6.1. Thus, by the construction used in the proof of that lemma, we
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can associate to any ¢ a function ¢ on F’*. Let V' be the space of functions so obtained. We can regard
m = m(w) as acting on V. Itis clear that, for all ¢ in V/,

m(b)p = &y (b)p

if bisin Br. Every function on F'. can, by setting it equal to 0 outside of F',, be regarded as a function

F*. Since
(5 1)@=t

V' is the space generated by the translates of the functions in V.. Thusif V., = §(F) then V = §(F*)
and if S(F}.) is of codimension one in V4. then 8§(F*) is of codimension two in V.
It follows immediately that 7 (w) is irreducible and absolutely cuspidal if the restriction of w to
K is not trivial.
The function ¢ in V. corresponds to the function ¢ which is 0 outside of G and on G is givne
by
P(g) = m(w,¥)(g)e.

It is clear that
T(W)(9)e = m(w,¥)(9)¢

if g isin G4. Any non-trivial invariant subspace of V will have to contain S(F*) and therefore S(F.).
Since 7(w, ) is irreducible it will have to contain V. and therefore will be V' itself. Thus m(w) is
irreducible for all w.

If the restriction of w to K7 is trivial there is a quasi-character y of F'* such that w = y ov. To
establish the last assertion of the lemma all we have to do is construct a non-zero linear form L on V/
which annihilates §(F*) and satisfies

L (w (( %1 6?2 )) s0> = x(a1a2) n(az)

if 7 = m(w). We saw in Proposition 1.5 that

y <<g 2))  =x"(a) n(a)e

1/2
L(p)

ax

a2

so will only have to verify that

If o = g isin V. we set

sothatif aisin Fl
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If ¢ isin F'* but not in F; any function ¢ in V' can be written uniquely as

o=etn((5 1))

L(p) = L(p1) + x(e) L(p2)-

Theorem4.7 (i) If m = w(w) then © = m(w") if w'(a) = w(a), 7 = 7(w™?t) and x @ © = 7w(wy') if
X s a quasi-character of F* and ' = xov.
(i) If a is in F* then

with 1 and ¢y in V.. We set

(i) L(s,m) = L(s,w) and L(s,7) = L(s,w™"). Moreover if Y (z) = ¢ (&(z)) for z in K and
if \(K/F,vyr) is the factor introduced in the first paragraph then

e(s,mp) =e(s,w, V) MK/F,{r)

It is clear that x ® m(w, 1) of G. However by its very construction y ® 7(w, ) = m(wyx/, ).

The relation
(65 1)) =wt@nar

is a consequence of part (iii) of Proposition 1.5 and has been used before. Since 1/ = n o v is trivial and
w(v(a)) = w(a)w*(a)

f=wlnleor=nw™)

To complete the proof of the first part of the theorem we have to show that 7(w) = 7(«*). Itis enough
to verify that 7(w,¢) = w(w*,v). If & belongs to S(K) let ®*(z) = ®(z*). & — P is a bijection of
8(K,w) with 8§( K, w") which changes m(w, 1) into w(w*,1). Observe that here as elsewhere we have
written an equality when we really mean an equivalence.

We saw in the first paragraph that if ¢ = g isin V. then

Pl ?) = Z(ajw, @)

and that if ¢/ = m(w)p and &’ is the Fourier transform of ® then, if wy(a) = w(a) n(a) for ain F*,

~ -1 _s—1/2 —s —
P wylay ) = vZ(af W )

if v = A(K/F, ). Thus for all ¢ in V; the quotient

—~ s—1/2
plas?)

L(s,w)

has an analytic continuation as a holomorphic function of s and for some ¢ it is a non-zero constant.

Also
P05 OE) e ) (5,00 )
L(l-sw ) e

Blay ")

L(s,w)
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To prove the theorem we have merely to check that these assertions remain valid when ¢ is
allowed to vary in V. In fact we need only consider functions of the form

L

where ¢q isin Vi and € is not in F.. Since

~ S—l 2 —8 ~ S—l 2
Play %) = [e[/275 Go(ain )

the quotient
~; s—1/2
P(ap / )
L(s,w)

is certainly holomorphic in the whole plane. Since
~ — 1/2—s — — 5 — 1/2—s 1 g~ — 1/2—s
B (wy il ?7") = wole) wy (&) el B lwy o P = el B (wy g 1)

the functional equation is also satisfied.
Observe that if w = x o v then m(w) = 7(x, xy,) So that

L(s,w) = L(s,x) L(s,xn)

and
5(57(‘)71/]K) A(K/Fv ¢F) = 5(57X7¢F) 5(57X777¢F)

These are special cases of the identities of [19].
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§5. Representations of GL(2,R). We must also prove a local functional equation for the real and
complex fields. In this paragraph we consider the field R of real numbers. The standard maximal
compact subgroup of GL(2,R) is the orthogonal group O(2,R). Neither GL(2,R) nor O(2,R) is
connected.

Let H(; be the space of infinitely differentiable compactly supported functions on GL(2,R) which
are O(2,R) finite on both sides. Once a Haar measure on Gg = GL(2,RR) has been chosen we may
regard the elements of H; as measures and it is then an algebra under convolution.

fix falg) = [ fi(gh™") f2(h) dh.

Gr

On O(2,R) we choose the normalized Haar measure. Then every function £ on O(2,R) which is a finite
sum of matrix elements of irreducible representations of O(2,R) may be identified with a measure on
O(2,R) and therefore on GL(2,R). Under convolution these measures form an algebra H,. Hg will
be the sum of H; and H,. Itis also an algebra under convolution of measures. In particular if £ belongs
to Hs and f belongs to H;

€% f(g) = /O o S0 S g)

and
fre@= [ flgu gt du
O(2,R)
If 0;, 1 < i < p,isafamily of inequivalent irreducible representations of O(2,R) and
¢i(u) = dim oy traceo;(u™t)
then

is an idempotent of Hg. Such an idempotent is called elementary.
It is a consequence of the definitions that for any f in JH; there is an elementary idempotent £
such that

Exf=fxE=1F

Moreover for any elementary idempotent £
ExHy xE=E+CF(Gr) x €

is a closed subspace of C2°(Gg), in the Schwartz topology. We give it the induced topology.
A representation 7 of the algebra Hg on the complex vector space V' is said to be admissible if
the following conditions are satisfied.

(5.1) Every vector v in V' is of the form

T

v = Zﬂ-(fi)vi

=1

with f; in H; and v; in V.
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(5.2) For every elementary idempotent ¢ the range of 7(&) is finite dimensional.

(5.3) For every elementary idempotent £ and every vector v in 7(§)V the map f — =(f)v of
&FH, € into the finite dimensional space (&) V is continuous.

If v = > I, 7(fi)v; we can choose an elementary idempotent £ so that £f; = f;§ = f; for
1 <i<r. Thenn({)v = v. Let {p} be a sequence in C°(Gr) which converges, in the space of
distributions, towards the Dirac distribution at the origin. Set ¢, = £ * ¢,, * £. For each i the sequence
{¢}, * fi} converges to f; in the space £¢H;£. Thus by (5.3) the sequence {7 (¢),)v} converges to v in
the finite dimensional space 7(£)v. Thus v is in the closure of the subspace 7(£3H;&)v and therefore
belongs to it.

As in the second paragraph the conditions (5.1) and (5.2) enable us to define the representation
7 contragredient to 7. Up to equivalence it is characterized by demanding that it satisfy (5.1) and (5.2)

and that there be a non-degenerate bilinear formon V' x 1% satisfying

(m(f)v,0) = (v, 7(f)v)

for all f in Hp. V is the space on which 7 acts and f is the image of the measure f under the map
g — g~ '. Notice that we allow ourselves to use the symbol f for all elements of Hp. The condition
(5.3) means that for every v in V and every v in V the linear form

f—=(x(f)v,0)

is continuous on each of the spaces £, £. Therefore 7 is also admissible.

Choose ¢ so that 7(£)v = vand 7(§)v = v. Then for any fin H;

(m(f)v,0) = (x(£fE)v,v).

There is therefore a unique distribution p on Gg such that

u(f) = (w(f)v,v)
for fin 3(;. Choose ¢ in {3, £ so that w(p)v = v. Then

p(fp) = u(€fes) = p(&fép) = (r(fEp)v,v) = (7 (§fE)v, V)

so that i(f) = u(f). Consequently the distribution y is actually a function and it is not unreasonable
to write it as ¢ — (m(g)v,v) even though = is not a representation of Gg. For a fixed g, (w(g)v,v)
depends linearly on v and v. If the roles of 7 and 7 are reversed we obtain a function (v, 7(g)v). Itis
clear from the definition that

(n(g)v,0) = (v, 7 (g~ ")0).

Let g be the Lie algebra of G and let gc = g @ C. Let 2 be the universal enveloping algebra
of gc. If we regard the elements of 2 as distributions on Gy with support at the identity we can take
their convolution product with the elements of C2°(Gg). More precisely if X belongs to g

X * f(g) = %f(eXP(_tX))L:o

and

f*X(g) = %f(g exp(—tX))|t:0
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If f belongsto H;sodo f* X and X x f.
We want to associate to the representation 7 of Hg on V a representation 7 of 2( on V such that

m(X)7(f) = 7(X + f)

and
m(f)m(X) = =(f * X)
forall X inAandall fin 3. Ifv =) 7(f;)v; we will set

m(X)v = Z?T(X * fi)v;

7
and the first condition will be satisfied. However we must first verify that if

Zﬂ-(fi)vi =0

)

then

w = Z?T(X * fi)v;

i

is also 0. Choose f so that w = 7(f)w. Then

w = Zﬂ(f)w(X*fi)vi = ZW(f*X*fi)Ui :W(f*X){ZW(fi)UZ’} =0.

% %

>From the same calculation we extract the relation

m(f) {ZW(X*fi)%} =m(f*X) {Zﬂ-(fi)vi}

%

for all f sothat w(f)m(X) = n(f*X).

If g isin Gr then X(g) f = 0,4 * f if §4 is the Dirac function at g. If g isin O(2,R) or in Zg, the
groups of scalar matrices, , * f is in H; if f is, so that the same considerations allow us to associate
to 7 a representation = of O(2,R) and a representation 7 of Zg. It is easy to see that if & is in either of
these groups then

7(AdhX) = n(h) n(X) 7(h™1).
To dispel any doubts about possible ambiguities of notation there is a remark we should make. For

any finJ;
(m(f)v,0) = [ flg){m(g)v,v)dyg.

Gr
Thus if hisin O(2,R) or Zg

(m(f * On)v,0) = ; f(g) (w(gh)v,v) dg
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and

so that
(m(gh)v,v) = (m(g) m(h)v, V).

A similar argument shows that
((hg)v, D) = (n(g)v, 7(h™').

It is easily seen that the function (7(g)v,v) takes the value of (v,v) at ¢ = e. Thus if h belongs to
O(2,R) or Zg the two possible interpretations of (7(h)v,v) give the same result.

Itis not possible to construct a representation of Gk on V' and the representation of 2l is supposed
to be a substitute. Since G is not connected, it is not adequate and we introduce instead the notion of
a representation 7, of the system {2, ¢} where

(-1 0
e=ly9 1/
It is a representation 7; of 20 and an operator 7 (¢) which satisfy the relations
2(e) =1
and
Wl(AdEX) == 7T1(5)7T1(X) 7T1(€_1).

Combining the representation 7 with 20 with the operator (<) we obtain a representation of the system

{2, e}
There is also a representation 7 of 2 associated to 7 and it is not difficult to see that

(r(X)v,0) = (v, 7(X)V)
if X — X is the automorphism of 2 which sends X in g to —X.

Let
©(g) = (m(g9)v, ).

 is certainly infinitely differentiable. Integrating by parts we see that

F(g)e+ X (g) dg = / £+ X(9) plg) dg
Gr Gr

The right side is

(m(f)m(X)v,0) = | fg){m(g) m(X)v,D)

Gr
so that
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Assume now that the operators 7(X) are scalar if X is in the centre 3 of 2. Then the standard
proof, which uses the theory of elliptic operators, shows that the functions ¢ are analytic on Gg. Since

pxX(e) = <7T(X)v7?>

p* X(e) = (n(e) m(X)v,7)

and Gg hasonly two components, onqcontaining e and the other containing €. The function ¢ vanishes
identically if (7 (X)v,v) and (7 () 7(X)v,v) are 0 for all X in2(. Any subspace V; of V' invariant under
20 and ¢ is certainly invariant under O(2, R) and therefore is determined by its annihilator inV. If v is

in V4 and v annihilates V; the function (7 (g)v, v) is 0 so that
(m(f)v,0) =0

forall fin 3. Thus w(f)visalsoin V;. Since Hs clearly leaves V; invariant this space is left invariant
by all of Hg.

By the very construction any subspace of V' invariant under Hy is invariant under 2( and ¢ so
that we have almost proved the following lemma.

Lemma5.4 The representation m of Hg is irreducible if and only if the associated representation w
of {AU,e} is.

To prove it completely we have to show that if the representation of {2, ¢} is irreducible the
operator 7(X) is a scalar for all X in 3. As 7(X) has to have a non-zero eigenfunction we have only
to check that 7w(X') commutes with 7(Y") for Y in 2 with (). It certainly commutes with 7(Y). X is
invariant under the adjoint action not only of the connected component of G but also of the connected
component of GL(2,C). Since GL(2,C) is conected and contains ¢

m(e) m(X) n (e) = m(Ade(X)) = 7(X).

Slight modifications, which we do not describe, of the proof of Lemma 5.4 lead to the following
lemma.

Lemma 5.5 Suppose m and 7' are two irreducible admissible representations of Hg. m and 7' are
equivalent if and only if the associated representations of {2, e} are.

We comment briefly on the relation between representations of Gy and representations of Hp.
Let V' be a complete separable locally convex topological space and 7 a continuous representation of
GronV. Thusthe map (g,v) — 7(g)vof Gr x V to V is continuous and for f in C2°(Gr) the operator

m(f) = [ [flz)w(x)de

Gr

is defined. So is 7(f) for f in H,. Thus we have a representation of Hg on V. Let 1 be the space
of O(2,R)-finite vectors in V. It is the union of the space 7(£)V as & ranges over the elementary
idempotents and is invariant under Hg. Assume, as is often the case, that the representation my of Hy
on V} is admissible. Then 7 is irreducible if and only if 7 is irreducible in the topological sense.

Suppose 7’ is another continuous representation of G in a space V' and there is a continuous
non-degenerate bilinear form on V' x V"’ such that

(m(g)v,v') = (v, 7' (g~ ')
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Then the restriction of this form to 4 x V{ is non-degenerate and

(7r(f)v,v’> = <’U,7T/(f)v/>

forall fin Hg, vin Vp, and v in V. Thus 7 is the contragredient of 7. Since

(mo(flo,v") = [ fg) (n(g)v,v")
Gr

we have
<7TO(g)/U7 U/> = (W(g)va fU/>'
The special orthogonal group SO(2, R) is abelian and so is its Lie algebra. The one-dimensional

representation
cosf) sinf ;
i N ezn@
—ginf cosf

of SO(2,R) and the associated representation of its Lie algebra will be both denoted by «,. A
representation 7w of 2 or of {2, ¢} will be called admissible if its restrictions to the Lie algebra of
SO(2,R) decomposes into a direct sum of the representations x,, each occurring with finite multiplicity.
If 7 is an admissible representation of Hg the corresponding representation of {2, ¢} is also admissible.
We begin the classification of the irreducible admissible representations of g and of {2, ¢} with the
introduction of some particular representations.

Let i1 and po be two quasi-characters of F'*. Let B(u1, p2) be the space of functions f on Gy
which satisfy the following two conditions.

0

F((% 2)e) = mi@ e |2

forall g in Gg, a1, as inR*, and z in R.
(i) fis SO(2,R) finite on the right.
Because of the Iwasawa decomposition

f(g)

Gr = Ng Ag SO(2,R)

these functions are complete determined by their restrictions to SO(2,R) and in particular are infinitely
differentiable. Write
m;
“(5)
i

where s; is a complex number and m; is 0 or 1. Set s = s; — so and m = |m; — mg| so that

p py () = |t (ﬁ) . If n has the same parity as m let ¢,, be the function in B (1, o) defined by

pi(g) =t

1/2

ﬂ einB'

1 =z ap 0 cosf) sinf — i (ar) ia(as)
rilo 1 0 as —sin® cosp ) ) M\ K22 as

The collection {,, } is a basis of B(u1, p2).
For any infinitely differentiable function f on Gg and any compactly supported distribution g
we defined A(u) f by

M) f(g) = i(p(9)f)
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and p(p) f by

If, for example, p is a measure

Aw)f(g) = ; f(h™'g) du(h)

and

p(r)f(g)= [ f(gh)du(h).

Gr

In all cases A\(u)f and p(u)f are again infinitely differentiable. For all f in Hg the space B(u1, 2)

is invariant under p(f) so that we have a representation p(uy, p2) of Hg on B(uq, u2). Itis clearly

admissible and the associated representation p(ju1, p2) of {24, £} is also defined by right convolution.
We introduce the following elements of g which is identified with the Lie algebra of 2 x 2 matrices.

0 1 1 0 1 -

o=(Go) (o) we( ) (G )
0 1 0 0

X+_<o o)’ X__<1 o)’ 4

Il
VR
O =

=
—_
N~

as well as
Z2
D == X+X_ + X_X+ + 7,
which belongs to 2.
Lemma 5.6 The following relations are valid
() p(U)en = ingy (i) ple)en = (=1)" ¢

(iii) p(Vi)on = (s + 1+ n)pnio (V) p(V_)on = (s + 1 —=n)pn—2

V) p(D)pn = £520,, i) p(J)pn = (51 + 52)¢n

The relations (i), (ii), and (vi) are easily proved. It is also clear that for all ¢ in B(uy, i2)
p(Z) p(e) = (s +1) p(e)

and
p(X4) p(e) = 0.

cosf sinf 20
Ad <<—sin9 cosH)) Vi =eVy

Ad ([ cost  snON)y  viny,
—sinf cosd

The relations

and
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show that p(V, )y, is a multiple of ¢, ;o and that p(V_)¢,, is a multiple of ¢,,_5. Since
Vi =2—iU+2iX,

and
Vo=72+4+U - 21X,

the value of p(V, )y, at the identity e is s + 1 + n and that of p(V_)y,, = s + 1 — n. Relations (iii) and
(iv) follow.
It is not difficult to see that D belongs to 3 the centre of . Therefore p(D)y = A(D)yp = A(D)¢

since D = D. If we write D as ,

Z
2X_ Xy + 2+

and observe that A\(X)p = 0and A(Z)p = —(s+ 1)@ if pisin B(u1, pu2) we see that

(s +1)2 !
9 Y= 9 Pn-

p(D)pn = {—<s 1+

Lemma5.7 (i) If s —m is not an odd integer B(uy, pu2) is irreducible under the action of g.
(i) If s —m is an odd integer and s > 0 the only proper subspaces of B(u1, o) invariant under

g are
By(pr,p2) = Y, Copn
n>s+1
n=s+1(mod 2)
Bo(pr,p2) = Y,  Coy
n—s—1

n=s+1(mod 2)

and, when it is different from B(u1, u2),

Bis(p1, p2) = Bi(pr, p2) + Bo (1, p2)-

(iii) If s —m is an odd integer and s < 0 the only proper subspaces of B(u1, pu2) invariant under
g are

Bl(,U/DHZ) = Z Con

n>s+1
n=s+1(mod 2)

Bo(pa, ) = >, Cop

n—s—1
n=(s+1)(mod 2)

and
By, p2) = Bi(pa, p2) N Ba(pr, pa).

Since a subspace of B(u1, p2) invariant under g is spanned by those of the vectors ¢, that it
contains this lemma is an easy consequence of the relations of Lemma 5.6.
Before stating the corresponding results for {2, ¢} we state some simple lemmas.
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Lemma 5.8 If 7 is an irreducible admissible representation of {2, e} there are two possibilities:
(i) The restriction of ™ to 2 is irreducible and the representations X — w(X) and X —
7(Ade(X)) are equivalent.
(i) The space V' on which ™ acts decomposes into a direct sum Vi @ Vo where Vi and Vo are both
mwvariant and irreducible under 2A. The representations w1 and wo of A on Vi and Vo are not
equivalent but my is equivalent to the representation X — W(AdE(X)).

If the restriction of 7 to 2 is irreducible the representations X — 7(X)and X — 7(Ade(X)) are
certainly equivalent. Ifitis notirreducible let ; be a proper subspace invariant under 2. If V, = 7()V;
then V1 NV, and V; + V5 are all invariant under {2, e}. Thus Vi NV, ={0}tand V =V, & VL. If 1}
had a proper subspace V] invariant under 2( the same considerations would show that V = V] & VJ
with Vj = 7(e)V/. Since this is impossible V; and V% are irreducible under .

|f’L)1 isin Vi

mo(X) w(e)vy = m(e) m (ade(X))vy

so that the representations X — m(X) and X — 7 (Ade(X)) are equivalent. If 7, and > were
equivalent there would be an invertible linear transformation A from V; to V5 so that Am(X) =
WQ(X)A If V1 isin Vi

A7 m(e) m(X)vr = A7 ma(ade(X)) w(e) v1 = 71 (Ade(X)) A7 w(e) vy

Consequently { A~ !7(¢)}? regarded as a linear transformation of V; commutes with 2( and is therefore
a scalar. There is no harm in supposing that it is the identity. The linear transformation

V1 4+ ve — A" vy + Ay

then commutes with the action of {2, ¢}. This is a contradiction.
Let x beaquasi-character of R* and let x(¢) = ¢ for ¢ positive. For any admissible representation
« of % and therefore of g we define a representation xy ® 7 of g and therefore 2 by setting

x@m(X)= g trace X + m(X)
if X isin g. If 7 is a representation of {2, c} we extend x ® 7 to {2, ¢} by setting

x®@m(e) =x(-1)n(e)
If 7 is associated to a representation w of Hy then y ® 7 is associated to the representation of Hy defined
by
x@n(f)=m(xf)

if x f is the product of the functions x and f.

Lemma 5.9 Let wy be an irreducible admissible representation of A. Assume that mg is equivalent
to the representation X — my (Ads(X)). Then there is an irreducible representation © of {A, e}
whose restriction to A is mg. If n is the non-trivial quadratic character of R* the representations
m and n® 7 are not equivalent but any representatin of {A, e} whose restriction to A is equivalent
to o is equivalent to one of them.

Let mo act on V. There is an invertible linear transformation A of V' such that Am(X) =
mo(Ade(X))A for all X in 2. Then A% commutes with all m(X) and is therefore a scalar. We may
suppose that A2 = I. If we set 7(e) = A and m(X) = 7o(X) for X in 2 we obtain the required
representation. If we replace A by —A we obtain the representation n ® 7. 7 and n ® 7 are not
equivalent because any operator giving the equivalence would have to commute with all of the 7(X)
and would therefore be a scalar. Any representation 7’ of {2, £} whose restriction to 2l is equivalent to
7o can be realized on Vj in such a way that 7/ (X) = m(X) forall X. Then /() = £A.
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Lemma5.10 Let w1 be an irreducible admissible representation of A. Assume that w1 and ws, with
mo(X) = m (Ade(X)), are not equivalent. Then there is an irreducible representation @ of {2, e}
whose restriction to A is the direct sum of m1 and 7. Every irreducible admissible representation
of {2, e} whose restriction to A contains w1 is equivalent to 7. In particular n ® w is equivalent
to .

Let 7y act on V;. To construct m we set V = V; & V5, and we set
7T(X) (Ul D UQ) = 7T1(X)’U1 D WQ(X)UQ

and
m(e) (11 B va) = vy B vy,

The last assertion of the lemma is little more than a restatement of the second half of Lemma 5.8.

Theorem 5.11 Let puy and po be two quasi-characters of F*.

M If ,ul,uz_l is not of the form t — tPsgnt with p a non-zero integer the space B(uq, pa) is
irreducible under the action of {U,e} or Hg. w(p1,p2) is any representation equivalent to
p(p1, p2)-

(ii) If pipy ' (t) = tPsgnt, where p is a positive integer, the space B(uyi,p2) contains exactly
one proper subspace Bg(p1, p2) invariant under {A,e}. It is infinite dimensional and any
representation of {2, e} equivalent to the restriction of p(u1, p2) to Bs(p1, ua) will be denoted
by o(p1, pe). The quotient space

By(pa, po) = B(pa, p2) /By, p2)

is finite-dimensional and (1, p2) will be any representation equivalent to the representation
of {A, e} on this quotient space.

(iii) If popy L (t) = tP sgnt, where p is a negative integer, the space B(u1, po) contains exactly one
proper subspace B y(p1, pi2) invariant under {A,e}. It is finite-dimensional and m(py, f12)
will be any representation equivalent to the restriction of p(p1, p2) to B(pr, p2). o(p1, p2)
will be any representation equivalent to the representation on the quotient space

Bs(p1, p2) = Bpa, p2) /By, po).

(iv) A representation (1, p2) is never equivalent to a representation o(u}, ub).

(V) The representations (1, p2) and w(uy, ph) are equivalent if and only if either (uy, p2) =
(115 p3) or (pa, p2) = (p, ph)-

(vi) The representations o(u1, pe) and o(p), ph) are equivalent if and only if (u1,u2) is one of

the four pairs (uy, ), (12: 1), (B47, 1am), or (Han; pyn)-
(vii) Every irreducible admissible representation of {2, e} is either a w(p1, u2) or a o(py, p2).

Let iz ' () = [t]*(75)™. s —misan odd integer if and only if s is an integer p and 15" (1) =
tP sgnt. Thus the first three parts of the lemma are consequences of Lemma 5.6 and 5.7. The fourth
follows from the observation that 7(u1, u2) and o (), 1) cannot contain the same representations of
the Lie algebra of SO(2,R).

We suppose first that s — m is not an odd integer and construct an invertible transformation 7T’
from B (1, p2) to B(ue, 1) which commutes with the action of {2, c}. We have introduced a basis
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{e©n} of B(u1,u2). Let {],} be the analogous basis of B(us, i11). T will have to take ,, to a multiple
ane, of ! . Appealing to Lemma 5.6 we see that it commutes with the action of {2, ¢} if and only if

(s+1+n)ay2=(—s+1+n)a,
(s+1—n)ap—2=(—s+1—n)a,

and
an = (=1)"a_,.

These relations will be satisfied if we set

—s+1+n
|yt

an = an(s) = I‘(Tl;r”)

Since n = m(mod 2) and s — m — 1 is not an even integer all these numbers are defined and different
from 0.
If s < 0and s —m is an odd integer we set

an(s) = lim a,(2)

The numbers a,(s) are still defined although some of them may be 0. The associated operator T’
maps B (1, p2) into B(us, 1) and commutes with the action of {,e}. If s = 0 the operator T is
non-singular. If s < 0 its kernel is Bf(ul,/@) and it defines an invertible linear transformation from
B (1, p2) 10 Bs(ua, p1). If s > 0and s — m is an odd integer the functions a,,(z) have at most simple
poles at s. Let
bu(s) = I (= — 5) n(2)

The operator 7" associated to the family {b,,(s)} maps B(u1, pi2) into B(usa, 1) and commutes with
the action of {2, c}. It kernel is Bs(u1, i2) so that it defines an invertible linear transformation from
B(p1, 12) to Br(pe, 11). These considerations together with Lemma 5.10 give us the equivalences of
parts (v) and (vi).

Now we assume that 7 = 7(u1, p2) and " = w(p), pb) or m = o(p1, p2) and " = o (), pb)
are equivalent. Let 1;(T') = [t[* (r5;)™ and let y(t) = |t Sé(ﬁ)mi. Let s = s — 83, m = |my — ma|,
s’ =s) — sh, m' = |m} —mi]|. Since the two representations must contain the same representations of
the Lie algebra of SO(2,R) the numbers m and m' are equal. Since 7(D) and 7’ (D) must be the same
scalar Lemma 5.6 shows that s = £s. 7(J) and 7’(.J) must also be the same scalar so s + s5 = s1 + s2.
Thus if n(t) = sgnt the pair (i, u2) must be one of the four pairs (1], 11h), (ph, i), (i, nub),
(nh,nuy). Lemma 5.9 shows that 7 (u) i) and 7(nuy, nus) are not equivalent. Parts (v) and (vi) of
the theorem follow immediately.

Lemmas 5.8, 5.9, and 5.10 show that to prove the last part of the theorem we need only show
that any irreducible admissible representation 7 of 2 is, for a suitable choice of 1; and s, a constituent
of p(p1, ne). That is there should be two subspace B, and Bo of B(uq,u2) invariant under 2 so
that B; contains B, and 7 is equivalent to the representation of 20 on the quotient By /B,. If x is
a quasi-character of F'* then 7 is a constituent of p(uq, u2) if and only if x ® 7 is a constituent of
p(xp1, xp2). Thus we may suppose that «(.J) is 0 so that 7 is actually a representation of 2, the
universal enveloping algebra of the Lie algebra of Zg \ Gg. Since this group is semi-simple the desired
result is a consequence of the general theorem of Harish—-Chandra [6].
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It is an immediate consequence of the last part of the theorem that every irreducible admissible
representations of {2, ¢} is the representation associated to an irreducible admissible representation of
Hg. Thus we have classifed the irreducible admissible representations of {2,e} and of Hg. We can
write such a representation of Hg as 7(u1, o) or o(py, p2).

In the first paragraph we associated to every quasi-character w of C* a representation of r,, of
G, the group of matrices with positive determinant. r,, acts on the space of functions ® in $(C') which
satisfy

®(xh) = w(h) ®(x)

for all h such that hh = 1. All elements of §(C,w) are infinitely differentiable vectors for r,, so that r,,
also determines a representation, again called r,, of 2. r,, depended on the choice of a character of R.
If that character is

w(x) — e27ruaci

then
ro(X4) @(2) = 2muzzi)®(2).

Lemma5.12 Let 8o(C,w) be the space of functions ® in §(C,w) of the form
B(z) = e 2 UEZp (4 3)

where P(z,Z) is a polynomial in z in Z. Then S§¢(C,w) is invariant under A and the restriction of
rw to 80(C,w) is admissible and irreducible.

It is well known and easily verified that the function e~ 27//2% is its own Fourier transform
provided of course that the transform is taken with respect to the character

Ye(z) = P(z + 2)

and the self-dual measure for that character. From the elementary properties of the Fourier transform
one deduces that the Fourier transform of a function

O(z) = e > P(z, %)
where P is a polynomial in z and Z is of the same form. Thus r,,(w) leaves 8,(C,w) invariant. Recall

that
(0 1
w = _1 O .

8o(C,w) is clearly invariant under r,,(X ). Since X_ = Adw(X) it is also invariant under X. But
Xy X_ —X_ X, = Zsothatitisalso invariant under Z. We saw in the first paragraph that if wy is

the restriction of w to R* then
a 0
Tw (( 0 a>> = (sgna)wy(a)l

thusr,(J) = cl ifwg(a) = a* fora positive a. In conclusion 8y(C, w) is invariant under g and therefore
under 2L.
If
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where r is a complex number and m and n are two integers, one 0 and the other non-negative, the

functions
(I)p(Z) _ e—27r\u|zz Sntp Zm—&-p’

with p a non-negative integer, form a basis of 8y(C,w). Suppose as usual that 2 = 1 -2 4 L a% and

o _ 198 1 9 ; / o i
that o= = 5 5. — o Py Then the Fourier transform @, of ®,, is given by
n-+ m-+
o’ (Z) — 1 gnre o gmTe —27|u|zZ
P (2miu)mtnt2p gzntr gzmtp
which is a function of the form
p—1
(i sgn u)m+n+2pe—2ﬂ'|u\z2 En—&—p Zm—i—p + Z aqe—2ﬂ'|u\z2 En—&-q Zm—&—q.
q=0

Only the coefficient a,,_; interests us. It equals

(isgnu)mtntr-l
1 — 1)}

S {p(n+m+14p-1)}
Since

ro(w) ®(2) = (isgnu) ®'(z)
and

ro(X_) = (=1)" " vy (w) ro (X 1) r(w)
while
o (X4 )®p = (2mui)Ppiq

we see that

p—1
ro(X_)®, = 2mut)®pyq1 — (isgnu)(n+m+2p+ 1)@, + quq)q.
q=0

Since U = X} — X_ we have

p—1
ro(U), = (isgnu)(n+m+2p+1)®, — Y b, P,
1=0

and we can find the functions ¥, p = 0,1, - - -, such that

p—1
Uy, =0, + Z%qq)q
q=0

while
ro(U)¥p = (isgnu)(n+m+2p+ 1)V,

These functions form a basis of 8§,(C, w). Consequently r,, is admissible.
If it were not irreducible there would be a proper invariant subspace which may or not contain
®q. In any case if 8, is the intersection of all invariant subspaces containing ®; and S is the sum of all
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invariant subspaces which do not contain ®; both §; and S, are invariant and the representation m; of
200n 81/82 N &y isirreducible. If the restriction of 7 to the Lie algebra of SO(2,R) contains «, it does
not contain x_,. Thus 7 is not equivalent to the representation X — m (Ads(X)). Consequently
the irreducible representation 7w of {2} whose restriction to 2 is m; must be one of the special
representations o (11, 1u2) Or a representation 7 (uy, pon). Examining these we see that since = contains
kg With ¢ = sgnu(n + m + 1) it contains all the representations «, with ¢ = sgnu(n +m +2p + 1),
p = 0,1,2,---. Thus §; contains all the functions ¥,, and 8, contains none of them. Since this
contradicts the assumption that 8,(C, w) contains a proper invariant subspace the representation r, is
irreducible.

For the reasons just given the representation = of {2, ¢} whose restriction to 2 contains 7, is
either a o (1, o) or a m(py, uan). Itisan(uy, pin) if and only if n + m = 0. Since

(6 1)) =wt@smar = (@

we must have ju1 15 = won in the first case and p? = wy in the second. wy is the restriction of w to R*.
Since the two solutions u? = wy differ by 7 they lead to the same representation. If n + m = 0 then
pi = wo if and only if w(z) = 1 (v(2)) for all z in C*. Of course v(z) = 2.

Suppose n + m > 0 so that 7 is a o(u1, p2). Let u;(t) = |t Si(ﬁ)mi. Because of Theorem 5.11
we can suppose that m; = 0. Let s = s1 — s3. We can also suppose that s is non-negative. If
m = |my — mz| then s — m is an odd integer so m and my are determined by s. We know what
representations of the Lie algebra of SO(2, R) are contained in 7. Appealing to Lemma 5.7 we see that
s = n + m. Since s = nwo we have s; + so = 2r. Thus s; = r + mTJr” and sy = r — ’H'Tm In all
cases the representation 7 is determined by w alone and does not depend on . We refer to it as 7 (w).
Every special representation o (u1, p2) is a m(w) and 7(w) is equivalent to 7(w’) if and only if w = W/
orw'(z) = w(2).

We can now take the first step in the proof of the local functional equation.

Theorem 5.13 Let w be an infinite-dimensional irreducible admissible representation of Hg. If 1 is
a non-trivial additive character of R there exists exactly one space W (mw, ) of functions W on Gg

with the following properties
1 =z
w((y 1)e)=s@w
for all x in F.

(i) If W is in W(m, 1)) then
(ii) The functions W are continuous and W (m,) is invariant under p(f) for all f in Hg.
Moreover the representation of Hg on W (m, 1) is equivalent to 7.
(iii) If W is in W (m, 1)) there is a positive number N such that

(5 1)

We prove first the existence of such a space. Suppose m = 7 (w) is the representation associated
to some quasi-character w of C*. An additive character v being given the restriction of 7 to 2{ contains
the representation r,, determined by w and . For any ® in §(C, w) define a function W4 on G by

as |t| — oo.
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Since p(g) We = W, (4)s the space of such functions is invariant under right translations. Moreover

wa (o 1)) =@ Walo

Every vector in §(C,w) is infinitely differentiable for the representation r,,. Therefore the functions
W are all infinitely differentiable and, if X isin %,

p(X)Ws =W, (x)5-

In particular the space W (m, ) of those Wy for which @ is in 8,(C,w) is invariant under 2. We set
Wg equal to 0 outside of G and regard it as a function on Gg.

We want to take W (m, ) to be the sum of Wi (7, v) and its right translate by . If we do it
will be invariant under {2, ¢} and transform according to the representation 7 of {2, ¢}. To verify the
second condition we have to show that it is invariant under Hg. For this it is enough to show that
So(C,w) is invariant under the elements of Hr with support in G,.. The elements certainly leave the
space of functions in §(C,w) spanned by the functions transforming according to a one-dimensional
representation of SO(2,R) invariant. Any function in §(C,w) can be approximated uniformly on
compact sets by a function in §y(C,w). If in addition it transforms according to the representation
kn Of SO(2,R) it can be approximated by functions in 8y(C,w) transforming according to the same
representation. In other words it can be approximated by multiples of a single function in 8,(C, w) and
therefore is already in 8y(C,w).

The growth condition need only be checked for the functions Wy in Wy (m, ). If a is negative

SR

B(z) = e 2UEEp (4 3)

but if a is positive and

itis equal to
e—27r\u|ap(a1/2’a1/2) w(a) ‘a’1/2’

and certainly satisfies the required condition.
We have still to prove the existence of W (7, 1) when m = 7(u1, p2) and is infinite dimensional.
As in the first paragraph we set

0(ju1, 12, ®) = / (O (OB d

for ® in §(R*) and we set

Wa(g) = m (detg) |detg|'/? 6 (1, 2, v(9) @)
= H(Mlv 25 Ty e (g)(I))
Tu1 1. 1S the representation associated to the quasi-character (a,b) — pi(a) po(b) of R* x R*. If X is
in2A
p(X)Wa(g) =W,, . (x)8(9)

Let W (p1, ;1) be the space of those W4 which are associated to O (2, R)-finite functions ®. W (uy, p2; )
is invariant under {2(, £} and under Hx.
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Lemma 5.13.1 Assume py(x) uy - (z) = |z|® (‘—g)m with Res > —1 and m equal to 0 or 1. Then
there exists a bijection A of W (1, po; 1) with B(u1, pe) which commutes with the action of {A,e}.

We have already proved a lemma like this in the non-archimedean case. If ® is in §(R?) and w
is a quasi-character of R* set

2w, ) = /@(o,t)w(t)dX(t)

The integral converges if w(t) = |t|"(sgnt)™ with r > 0. In particular under the circumstances of the
lemma

fo(g) = pi(detg) |detg|? 2 (11 py tar, p(g) @)

is defined. As usual ag(z) = |z|. A simple calculation shows that

(0 )9) = mlan) nata) |27 o).

asz ao

If ®~ is the partial Fourier transform of ® introduced in the first paragraph then

p(g) fo~ = far
if &1 =7, 4, (f)®. Asimilar relation will be valid for a function f in Hg, that is
p(f)fa~ = for

if &1 =71, 4, (f)®. Inparticular if fo~ is O(2, R)-finite there is an elementary idempotent & such that
p(§)fo~ = fo~. Thus, if &1 =1, ,,(§)®, fo~ = fe~ and @7 is O(2,R) finite. Of course fo~ is
O(2, R)-finite if and only if it belongs to B (11, p2).

We next show that given any f in B(uy, po) there is an O(2, R)-finite function @ in §(IR?) such
that f = fp~. According to the preceding observation together with the self-duality of §(IR?) under
Fourier transforms it will be enough to show that for some ® in §(R?), f = fs. In fact, by linearity, it
is sufficient to consider the functions (,, in B(u1, u2) defined earlier by demanding that

cosf  sinf _ gind
P\ —sing cosh)) ~

n must be of the same parity as m. If § = sgnn set

O(x,y) = 6_”(z2+y2)(35 + iéy)‘”'

cosf sinf  ind
p((—sin& cos@))q)_e ®

Since p(g) fo = fp(g)» When detg = 1 the function fs is a multiple of ¢,,. Since

Then

oo

f@(e) _ (2)n|/ e—nt2t|n\+s+1 d*t

—00

—(Inl+s+1)
2

plnl+s+1)
2 2
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which is not 0, the function f3 is not 0.

The map A will transform the function Wg to fe~. It will certainly commute with the action of
{2, e}. That A exists and is injective follows from a lemma which, together with its proof, is almost
identical to the statement and proof of Lemma 3.2.1.

The same proof as that used in the non-archimedian case also shows that W (uy, p2;v) =
W (e, p1;9) for all ip. To prove the existence of W (m,¢) when m = m(u1,u2) and is infinite-
dimensional we need only show that when p; and us satisfy the condition the previous lemma the
functions W in W (uq, uo; ) satisfy the growth condition of the theorem. We have seen that we can
take W = W with

O~ (2,y) = e " HI Pz, y)

where P(z,y) is a polynomial in z and y. Then
®(z,y) = e " EHIQ(z, y)

where Q(x,y) is another polynomial. Recall that ¢)(x) = €*™“*, Then

Wa ((0 ?)) =)ol 2 [ TGt ) o (st a7

The factor in front certainly causes no harm. If § > 0 the integrals from —oo to —9 and from § to oo
decrease rapidly as |a| — oo and we need only consider integrals of the form

)
/ 6—7r(a2t2+u2t72)t7‘ dt
0

where 7 is any real number and w is fixed and positive. If v = 5 then u? = v? + % and e~ imwt T
is bounded in the interval [0, §] so we can replace u by v and suppose r is 0. We may also suppose that
a and v are positive and write the integral as

é
—1y2
e—27rav/ e—ﬂ(at—l-vt ) dt.
0

The integrand is bounded by 1 so that the integral is O(1). In any case the growth condition is more
than satisfied.

We have still to prove uniqueness. Suppose Wi (m, ) is a space of functions satisfying the first
two conditions of the lemma. Let «,, be a representation of the Lie algebra of SO(2,R) occurring in 7
and let 1/, be a function in Wy (, ) satisfying

cosf) sinf _ ind
e <g<—sin9 (3089))_6 Wi(9)-

_ e O
=1 << 0 7
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the function W is completely determined by ;. It is easily seen that

iz 0
p(U)W1 <( MO 1 )) =inei(t)
IRE
t 0 d
2wy ([ T =gt 221
/0( ) 1 << 0 ‘tﬁ/z dt
iz O
p(X)Wh (( MO 1 )) =iutpi(l).
‘t‘l/z

Thus if p] and o] correspond to p(V, )Wy and p(V_)W;

d
p1(t) = 215% — (2ut —n) ¢
t
and p
o1 (t) = 2t—:§1 + (2ut — n) 1 ().
Since )
1 U
D=-V._V, —iU - —
2V Vi —iU 5
p(D)W; corresponds to
d dp1 dp2 2,2
2% — |t — — 2t — 2 -2 .
tdt<tdt tdt>+(nut u’t?)py

Finally p(¢)W; corresponds to ¢ (—t).

Suppose that 7 is either (1, o) OF o(p1, po). Let pypuy t(t) = |t|*(sgnt)™. If s —m is an
odd integer we can take n = |s| + 1. From Lemma 5.6 we have p(V_)W; = 0 so that ¢, satisfies the
equation

d
2t % + (2ut — n)p1 = 0.
If the growth condition is to be satisfied ; must be 0 for ut < 0 and a multiple of |t|*/2e~* for ut > 0.
Thus W is determined up to a scalar factor and the space W () is unique.

Suppose s — m is not an odd integer. Since p(D)W; = 822_1W1 the function ¢, satisfies the
equation
d%p1 , nu  (1—s?)
— - =0
T B R T R

We have already constructed a candidate for the space W (m, ). Let’s call this candidate W ().
There will be a non-zero function s in it satisfying the same equation as ¢;. Now ¢; and all of
its derivatives go to infinity no faster than some power of |t| as ¢ — oo while as we saw ¢, and its
derivations go to 0 at least exponentially as |¢| — co. Thus the Wronskian

dox _ dpr
P1 dt P2 o
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goes to 0 as |t| — oo. By the form of the equation the Wronskian is constant. Therefore it is identically
0and ¢1(t) = apa(t) fort > 0and ¢ (t) = [ ¢a(t) for t < 0 where o and 3 are two constants. The
unigueness will follow if we can show that for suitable choice of n we have a = 3. If m = 0 we can
take n = 0. If py(¢) = [t|** (sgnt)™ then 7(e)W; = (—1)™2W; so that ¢1(—t) = (—1)™ ¢4 (¢) and
pa(—t) = (—=1)™2pq(t). Thus a = B. If m = 1 we can take n = 1. From Lemma 5.6

m(V_1)Wy = (=1)™ sm(e)W;

so that
dp1

2 2L 4 (2ut = r(t) = (—1)™ 1 ().
Since 4 satisfies the same equation o = .
If 11 is a quasi-character of R* and w is the character of C* defined by w(z) = u(zZz) then
m(w) = w(p, un). We have defined W (m(w), ) in terms of w and also as W (1, p2; 7). Because of the
uniqueness the two resulting spaces must be equal.

Corollary5.14 Let m and n be two integers, one positive and the other 0. Let w be a quasi-character
of C* of the form
w(z) = (ZZ)T_mTMzm zZ"

and let 1 and po be two quasi-characters of R* satisfying pipe(z) = |z|*"(sgnz)™+"*! and
papy t(x) = 2™ sgnax so that w(w) = o(py, u2). Then the subspace Bg(uy, po) of Bluy, ) is
defined and there is an isomorphism of B(pu1, pro) with W (u1, pa; 1) which commutes with the action
of {~A,e}. The image Wy(p1, pa; ) of Bs(p1, u2) is W(m(w), ). If ® belongs to §(R?) and Wy
belongs to W (1, pa; ) then We belongs to Wy (s, no; ) if and only if

/ ' —®(x,0)dz =0
o Oy
for any two non-negative integers i and j withi+j=m+n— 1.

Only the last assertion is not a restatement of previously verified facts. To prove it we have to
show that fg~ belongs to B, (u1, o) if and only if @ satisfies the given relations. Let f = fp~. Itis
in B, (u1, u2) if and only if it is orthogonal to the functions in By (p; ", iy '), Since Bp(uy ', pg ') is
finite-dimensional there is a non-zero vector f; in it such that p(X ) fo = 0. Then

s (3 1)) -

and f is orthogonal to f, if and only if

/Rf<w<(1) ?)) dy =0. (5.14.1)

The dimension of B (u; ', 115 ?) is m + n. It follows easily from Lemmas 5.6 and 5.7 that the vectors
p(Xf_) p(w) fo,0 <p <m+mn—1spanit. Thus fisin Bs(u1,u2) if and only if each of the functions
p(X%) p(w) f satisfy (5.14.1). For f itself the left side of (5.14.1) is equal to

/{/(I)N <(O’t)w<(1) f))“l(t)uz_l(t)ltldxt} da.
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Apart from a positive constant which relates the additive and multiplicative Haar measure this equals

/ / —t, —tx)t™ " sgnt dt dx
1)m+”—1//<1>~(t, o)ttt dt da

(—1ymn-t / B(t,0) ™+ g, (5.14.2)

which is

or, in terms of @,

By definition
’r,ul,,uz (w) q)(l‘, y) = q)/(yv .’E)
and an easy calculation based on the definition shows that
Tﬂl:#Q (Xf-) (I)(JJ, y) = (22.7Tuxy)p CI)(.’IZ, y)

Thus 7, ., (XE) 74, 4, (w) @ is a non-zero scalar times

o2p
oxP OyP

' (y, )

For this function (5.14.2) is the product of a non-zero scalar and

821) / m+n—1
//8331’83/1’ 0,z)x dzx.

or —&'(0,z) 2™ P dg
dyp ’

Integrating by parts we obtain

except perhaps for sign. If we again ignore a non-zero scalar this can be expressed in terms of ® as

am—i—n—p—l
O (x,0) 2P du.

aym—l-n—p—l
The proof of the corollary is now complete.

Before stating the local functional equation we recall a few facts from the theory of local zeta-
functions. If F'is R or C and if ® belongs to S(F") we set

Z(was, ®) = /‘IJ(a) w(a) |a|3 d*a.

w is a quasi-character. The integral converges in a right half-plane. One defines functions L(s,w) and
(s, w, ¥ ) with the following properties:
(a) For every ® the quotient
Z(wak, ®)
L(s,w)
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has an analytic continuation to the whole complex plane as a holomorphic function. Moreover
for a suitable choice of @ it is an exponential function and in fact a constant.
(b) If @’ is the Fourier transform of ® with respect to the character v then

Z(w tap @)
L(1—s,w™1)

Z(was, @)
L(s,w)

= 5(87 W, ¢F>

If F =Rand w(z) = |z|g(sgnx)™ with m equal to 0 or 1 then

L(s,w) = m—3(s47+m) F<7s + r2+ m)
and if () = e2mive
. m s—i—r—%
e(s,w,p) = (isgnu)™ |ulg .

If ¥ =Cand

w(z) = [z]g 2™z"

where m and n are non-negative integers, one of which is 0, then
L(s,w) = 2(2m) " 6T Tm+)D (s 4 4+ m + n).

Recall that |z|c = zZ. If ¢p(z) = etmiRe(w2)

e(s,w,Pp) =i w(w) |w (‘E_l/Q.
These facts recalled, let 7 be an irreducible admissible representation of Hg. If 7 = 7(u1, p2) we
set
L(Sv 7T) = L(Sv Ml) L(Sv MQ)
and

5(87 , wR) = 5(57 M1, 1/]R) 5(87 H2, wR)

and if 7 = m(w) where w is a character of C* we set
L(s,m) = L(s,w)
and

5(87 Up ¢R) = )\(C/Rv ¢R) 6(87 w, Qb(C/R)

if Yo /r(2) = Yr(2 + Z). The factor A\(C/R, ¥r) was defined in the first paragraph. It is of course neces-
sary to check that the two definitions coincide if 7(w) = 7(u1, u2). This is an immediate consequence
of the duplication formula.
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Theorem 5.15 Let m be an infinite-dimensional irreducible admissible representation of Hgr. Let w
be the quasi-character of R* defined by

(5 %)=

If W is in W (m, 1)) set

\I!(g,s,W):/RXW<<8 (1)>g> la[*~1 % d%a
basw)= [ w((§ 0)a)e @l

and let
V(g,s,W) = L(s,m) ®(g,s,W)

U(g,s,W) = L(s,7) ®(g, s, W).

(i) The integrals defined ¥(g,s, W) and \Il(g, s, W) are absolutely convergent in some right half-
plane. B
(i) The functions ®(g,s, W) and ®(g,s, W) can be analytically continued to the whole complex
plane as meromorphic functions. Moreover there exists a W for which ®(e,s, W) is an
exponential function of s.
(iii) The functional equation

P(wg,1 -5, W) =e(s,m,9) ®(g,s, W)

1s satisifed.

(iv) If W is fized V(g,s, W) remains bounded as g varies in a compact set and s varies in the
region obtained by removing discs centred at the poles of L(s, ) from a vertical strip of finite
width.

We suppose first that m = 7 (1, p2). Then W(m, o) = W (p1, po;1p). Each Win Wy, po; 1) is
of the form W = Wg where s s
®(x,y) = e " TV P, y)

with P(z,y) a polynomial. However we shall verify the assertions of the theorem not merely for W in
W (7, 1) but for any function W = Ws with @ in §(R?). Since this class of functions is invariant under
right translations most of the assertions need then be verified only for g = e.

A computation already performed in the non-archimedean case shows that

‘Il(ea S, W) = Z(:U'laﬁgb M2aﬁg§v (I))

the integrals defining these functions both being absolutely convergent in a right half-plane. Also for
s in some left half-plane

U(w,1—s,W)=Z(uy "oy, p3 oy *, @)

if &’ is the Fourier transform of ®.

Since ® can always be taken to be a function of the form ®(z, y) = ®;(z) ®2(y) the last assertion
of part (ii) is clear. All other assertions of the theorem except the last are consequence of the following
lemma.
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Lemma5.15.1 For every ® in §(R?) the quotient
Z(nod , pol?, ®)
L(s, 1) L(s, p2)
is a holomorphic function of (s1,s2) and
Z(pytag o py oy 2, @)
L(1 = sy, 17 ") L(1 = 52, 113 )

s equal to
Z(Hlaf&l > /1’2055&2 > (I))
L(s1, 1) L(s2, p2) '
We may as well assume that p; and o are characters so that the integrals converge for Re s; > 0
and Re so > 0. We shall show that when 0 < Res; <1and 0 < Resy; <1

e(s1, p1,v) e(s2, 2, )

Z(mag', poo?, ®) Z(py tag ™, py tag 2 W)
is equal to
Z(py o "ty oy ) Z(pagt, paai?, 0)
if ® and ¥ belong to §(IR?).
The first of these expressions is equal to

Joemteom(E)n()

if we assume, as we may, that d*z = |z|~! dz. Changing variables we obtain

[ i@ uatlel o { [ @) wiw o dudo| aaary

The second expression is equal to

/ufl(x) py () |l [yl {/‘P'(xu,yv)‘l’(u,v) dudv} d*zdy

which equals

[ (@) 2t 517 o1 { [l @y ) W) dudv} Pz d*y,

Since the Fourier transform of the function (u,v) — ®(xu,yv) is the function |zy|~1®’(z = u,y~1v)
the Plancherel theorem implies that

/@(:Eu,yv) U (u,v) dudv = /\xy]_lq)/(x_lu,y_lv) U (u,v) dudv.

The desired equality follows.
Choose ®; and @5 in S(R) such that

L(s, pi) = Z(piag, ;)
and take U(z,y) = ®1(z) P2(y). The functional equation of the lemma follows immediately if 0 <
s1 < land 0 < sy < 1. The expression on one side of the equation is holomorphic for 0 < Re s; and
0 < Re sy. The expression on the other side is holomorphic for Re s; < 1 and Re s; < 1. Standard and
easily proved theorems in the theory of functions of several complex variables show that the function

they define is actually an entire function of s; and s,. The lemma is completely proved.
For m = 7(u1, p2) the final assertion of the theorem is a consequence of the following lemma.
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Lemma5.15.2 Let Q2 be a compact subset of $(R?) and C a domain in C? obtained by removing balls
about the poles of L(s1, 1) L(se, pe) from a tube a; < Resy < by, az < Resy < by. Then

S1 So
Z(MlaR ) /J/QOCR 9 (I))
remains bounded as ® varies in Q and (s1,s2) varies in C.

The theorems in the theory of functions alluded to earlier show that it is enough to prove this
when either both a; and as are greater than 0 or both b; and b, are less than 1. On a region of the first
type the functions Z(uia, peog, ®) is defined by a definite integral. Integrating by parts as in the
theory of Fourier transforms one finds that

Z(pag " ppag? T @) = O(rf +13) 7"

as 712 + 722 — oo uniformly for ® in Q and a; < o1 < by, as < 02 < by which is a much stronger
estimate than required. For a region of the second type one combines the estimates just obtained with
the functional equation and the known asymptotic behavior of the I"-function.

Now let w be a quasi-character of C* which is not of the form w(z) = x(2z) with x a quasi-
character of R* and let 7 = m(w). W (m,) is the sum of Wi (m, ) and its right translate by . It is
easily seen that

(I)(ga 5, p(E)W) = w(_l) @(5_1957 S5, W)

and that B B
®(wg, s, p()W) = w(—1) P(we ™" ge, 5, W)

Thus it will be enough to prove the theorem for W in 1 (7, ¢). Since
O(eg,s,W) = ®(g,s, W)

and

&J(wsg,s,W) = %(wg,s,W)
we can also take g in G. Wi(w,) consists of the functions Wg with @ in 8§,(C,w). We prove the
assertions for functions Ws with @ in §(C,w). Since this class of functions is invariant under right
translations by elements of G, we may take g = e.
As we observed in the first paragraph we will have

U(e,s, W) = Z(wag, )
U(w,1 -5, W)= ANC/R,9) Z(w ol &)

in some right half plane and the proof proceeds as before. If w(z) = (22)"2™2z" and p — ¢ = n — m the
function
CI)(Z) _ e—27r\u|zizpzq

belongs to §¢(C,w) and

o
Z(wal, ®) = 27r/ e~ 22 (s 4 r 4 p+m) dt
0

= (2 |ul)"EHFPEM D (s 4 4 p +m)

Taking p = n we obtain an exponential times L(s,w). The last part of the theorem follows from an
analogue of Lemma 5.15.2.

The local functional equation which we have just proved is central to the Hecke theory. We
complete the paragraph with some results which will be used in the paragraph on extraordinary
representations and the chapter on quaternion algebras.
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Lemma 5.16 Suppose py1 and pe are two quasi-characters for which both m = w(uy, u2) and o =
o(p1, p2) are defined. Then
L(1—s,0)e(s,0,v) L(1—s,7)e(s,m, 1)
L(s,0) L(s,m)

and the quotient

s an exponential times a polynomial.
Interchanging y; and yu if necessary we may suppose that y 5 ' () = |z|*(sgnz)™ with s > 0.
According to Corollary 5.14, W (o, ) is a subspace of W (1, p2,%). Although W (u1, pe, ) is not

irreducible it is still possible to define W (g, s, W) and ¥(g, s, W) when W lies in W (ju1, 12, ) and to
use the method used to prove Theorem 5.15 to show that

U(wg,1— s, W)
L(1—s,7)

is equal to
¥(g, s, W)

L(s, )
Applying the equality to an element of W (o, ¢) we obtain the first assertion of the lemma. The second
is most easily obtained by calculation. Replacing p; and po by pak and psak is equivalent to a
translation in s so we may assume py is of the form ps(x) = (sgnx)™2. There is a quasi-character
w of C* such that 0 = 7(w). If w(z) = (22)"2™z" then py(z) = |z|> T+ (sgng)mtntmetl
pi(z) = ™t (sgnz)™2*! so that r = 0. Apart from an exponential factor L(s,o) is equal to
I'(s +m + n) while L(s, ) is, again apart from an exponential factor,

F<s+m+2n+m1> F<8+2m2> (5.16.1)

(s, m)

where m; = m + n + mgy + 1 (mod 2). Since m + n > 0 the number
1
k:§(m+n+1+m1—m2)—1

is a non-negative integer and mg + 2k = m +n +m; — 1. Thus

-1

k

s+ mgo 1 . s+tm+n+m+1

I‘< 5 >: 2k+1H(8+m2+2]) I‘< 5 )
§=0

By the duplication formula the product (5.16.1) is a constant times an exponential times
I(s+m+n+m)
[T _o(s +ma + 25)

If mq = 0 the lemma follows immediately. If m; =1

Fis+m+n+my)=(s+m+n)I'(s+m+n)

and msy + 2k = m + n. The lemma again follows.
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Lemma 5.17 Suppose w(z) = (22)"2™2" is a quasi-charaacter of C* with mn =0 and m +n > 0.
Suppose ju1 and pig are two quasi-characters of F* with puypa(z) = |27 2™ sgna and ppy ' (x) =
x™ " sgnx. Then for every ® in §(R?) such that

07D

'——(x,0)dz =0
8y]( )

fori>0,5>0,and i+ j+1=m+n the quotient

Z(pragy, proory, @)
L(S,ﬂ'(’w))

is a holomorphic function of s and for some ® it is an exponential.

If Wo belongs to W (1, u2, 1) this is a consequence of Corollary 5.14 and Theorem 5.15. Unfor-
tunately we need the result for all ®. The observations made during the proof of Lemma 5.16 show
that if m = m(u1, o) the quotient

Z(ula%, M2af§7 (I))
L(s,m)

is holomorphic. Since L(s, ) and L(s, o) have no zeros we have only to show that the extra poles of
L(s, ) are not really needed to cancel poles of Z(ujag, poag, ®). As in the proof of Lemma 5.16 we
may take r = 0. We have to show that Z (105, poag, ®) is holomorphicat s = —mg — 25,0 < j < k
ifmgy =0andats = —mo — 25,0 < 5 < kifm; = 1. We remark first that if yy and po are two
quasi-characters of R, ® belongs to §(R?), and Re s is sufficiently large then, by a partial integration,

1 0P
[ @ nato) ol ot (o) a7 @y =~ [ (e o) ) bl ol G ()

if n(y) = sgny. Integrating by parts again we obtain

0%
/mumwaﬂWHgyuwmﬁw@.

/Ml(x)/w(y) |2|* [y]* ®(z,y)d zd*y = s(s+1)

If ® belongs to §(IR?) the function defined by
[ o) ol e ¥ aary (5.17.1)

is certainly holomorphic for Re s > 0. We have to show that if

/CD(:E,O) da = 0

it is holomorphic for Re s > —1. Suppose first that ®(x,0) = 0. Since

0P Y 0P
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the function )
U(z,y) = J O(z,y)

is dominated by the inverse of any polynomial. Thus (5.17.1) which equals

[ ) el ) ¥y
is absolutely convergent for Re s > —1. In the general case we set
®(z,y) = {®(x,y) — B(z,0)e ¥ } + (z,0)e
=& (z,y) + Pa(z,y).
Since @4 (z,0) = 0 we need only consider
[ B2t 00 ol ¥ aay

which is the product of a constant and

r(3) /q>2(x,0) 2]* da.

The integral defines a function which is holomorphic for Re s > —1 and, when the assumptions are
satisfied, vanishes at s = 0.

We have to show that if 0 < j7 < m +n — 1 and j — my is even then Z(uj03, oo, ®) is
holomorphic at —j. Under these circumstances the function Z (o, o, ®) is equal to

/n(x)ml n(y)™ ™ |z |y|* @ (x,y) d*zd”y

which equals

(_1)j my s+m+n s+j 83@ X X
m n(z)™" |z |yl w(%?/) d>xzd”y.
The factor in front is holomorphicat s = —j. If
107
_ ,mt+n—j3—1
‘Il(xvy) =T ayj (xay)

the integral itself is equal to
[l )
Since, by assumption,
/\Il(x,O) dr =0,

it is holomorphic at s = —j.
We observe that if m + n is even
O(x,y) = e_“(z2+y2)xym+”

satisfies the conditions of the lemma and, if » = 0 and mg = 0, Z(u105%, peagy, ®) is equal to
/e—ﬂ(az2+y2) ‘x|m+n+s+1 |y‘m+n+s dx$dxy

which differs by an exponential from I'(s + m + n) and L(S,W(w)). If mo = 1 we take ®(z,y) =

e~ (@*+y?) y™*T7*1 to obtain the same result. If m + n is odd and my = 0 the polynomial factor will
be y™ "1 but if m + n is odd and my = 1 it will again be xy™ ™.
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Proposition 5.18 Suppose ™ and 7' are two infinite-dimensional irreducible admissible representa-
tions of Hr such that, for some quasi-character w of F'*,

() R

L-sx o)
L(s,x @)

It
L-sx o7

L(s,x ® )

e(s,x @ m,1p) = e(s,x @', 1)

for all quasi-characters x and ™ and 7' are equivalent.

Suppose m = m(p1, p2) Or o(p, ). From Lemma 5.16 and the definitions the expression on
the left is equal to

(g p (teppm)

(i sgn u)m1+m2 ‘u|25+51 +s2—1, 2s+s1+s2—1

T (s+r12+m1 ) T (s+r22+mz )

if x is trivial and p;(x) = |z|" (sgnz)™* . If x(x) = sgnx and n; is 0 or 1 while m; + n; = 1 (mod 2)

the quotient is

D (o) r (tpetn)

I (0 T ()

(i sgn u)m1+m2 ‘u|28+51+52_1ﬂ-25+81+82—1

If we let 7" be 7(p}, ph) or o(py, p15) we obtain similar formulae with r; replaced by r; and m; by m/.

Consider first the quotients for . The first has an infinite number of zeros of the form —r; —
mq — 2p where p is a non-negative integer and an infinite number of the form —ry — mo — 2p where pis
a non-negative integer, but no other zeros. Similarly the zeros of the second are at points —r; —n; —2p
or —rg —ng — 2p. Thus if the quotients are equal 71 +m; = 3 +ny = r2 +mo + 1 (mod 2). Moreover
if 1 +mqy = ro +mo + 1 (mod2) then 7 = o(u1, 12) and, as we saw in Theorem 5.11, o (p1n, pan) =
o (1, u2) so that the two quotients are equal. As a result either r; + my = ro + mo + 1 (mod 2) and
ri +my =15 +mb 4+ 1 (mod 2) or neither of these congruences hold.

Suppose first that 7 = 7(u1, u2) and «(ufy, 1b). Then the first quotient for 7 has zeros at the
points —ry — mq, —r1 —my — 2,---and —ry — ma, —7r9 — Mo — 2, --- While that for 7’/ has zeros at
—ry —my, —ri —=m} —2,---and —ry, — mb, —ry —m, —2,--.. Thus either r; + my = rj +m] or
r1 +mq = rh + mj. Interchanging ; and pf if necessary we may assume that the first of these two
alternatives hold. Then o + ms = 5 + mj. Moreover | +ro = r} + 75 and |my — ma| = |m} — mb|.
If m; = m] it follows immediately that 41 = pf and ps = ph. Suppose that m; # m). Examining
the second quotient we see that either 1 + ny = ] + n} or 11 + ny = rh + nf. The first equality
is incompatible with the relations r, +m; = r} +m} and m; # m/. Thus 1 +ny = 75 + n). For
the same reason ry + n2 = r} + n}. Interchanging the roles of y1, uo and i, 15 if necessary we may
suppose that m; = 0 and m{ = 1. Thenry = ] + 1. Since ry + o = r} + r5 we have ry = 75 — 1
so that mo = 1, m5 = 0. Thus n; = n), = 1and r; = r4 so that r, = 7. It follows that ; = pf, and
f2 = ph-

Finally we suppose that m = o (u1, pu2) and @’ = o(pf, 5). Then there are quasi-characters w;
and w} of C* such that 7 = 7(wy) and 7’ = w(w}). Replacing w; by the quasi-character z — w1 (2)
does not change 7(w;) So we may suppose that wy(z) = (22)"2™ while ) (z) = (22)” 2™ . Since
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wy and w} must have the same restriction to R* the numbers 2r + m and 27’ + m’ are equal while
m =m’ (mod 2). Apart from a constant and an exponential factor the quotient
L(1—s,7)
e(s,m, 1) L)
is given by
rfi—s—mr)
L(s+7r+m)
whose pole furthest to the left is at 1 — r. Consequently » = v/ and m = m/.

Corollary5.19 Suppose © and 7’ are two irreducible admissible representations of Hg. Suppose there
is a quasi-character w of R™ such that

() R ()

If for all quasi-characters x, L(s,x ® 7) = L(s,x ® 7), L(s,x ' @ 7) = L(s,x ' @ 7'), and
e(s,x @m, ) =e(s,x @7’ ,1) then m and 7’ are equivalent.

Combining Lemma 5.16 with the previous propositon we infer that there is a pair of quasi-
characters p; and po such that both 7 and #’ are one of the representations (g, o) or o (i1, p2).
However the computations made during the proof of Lemma 5.16 show that L(s, X @71, Hz)) differs
from L(s, x ® o(u1, p2)) for a suitable choice of y.

Let K be the quaternion algebra of R. We could proceed along the lies of the fourth paragraph
and associate to every finite-dimensional irreducible representation 2 of K a representation 7(£2) of
GRr. Since we have just classified the representations of GGz we can actually proceed in a more direct
manner.

We identify K with the algebra of 2 x 2 complex matrices of the form

Then
Lo C:L _b
== \b a

and v(z) = z* is the scalar matrix (|a|? + |b|?)I while 7(z) is the scalar matrix (a + @ + b+ b)I. Let
p1 be the two dimensional representation of K> associated to this identification and let p, be the nth
symmetric power of p;. Any irreducible representation is equivalent to a representation of the form
X ® pn Where x is a quasi- character of R*. Thus

(X ® pu)(h) = X (v(h)) pu(h)

Since v(h) is always positive we may suppose that y is of the form y(z) = |z|".
Let € be a finite dimensional representation and let 2 act on U. In the first paragraph we
introduced the space S(K, U). Itis clear that if ® is in (K, U) the integrals

Z(05 @ Q,®) = /K Q(h) |v(h)|* (k) d*h

and
Z(ag Q71 @) = / Q1 (h) [v(h)|* ®(h)d*h
KX
converge absolutely in some right half-plane.
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Proposition 5.20 Suppose x(x) = |z|" and Q@ = x ® p,. Let w be the character of C* defined by
w(z) = (22)7" Y2271 Set L(s,9Q) = L(s,w) and

(s, 2, ¢r) = AMC/R,¢yr) e(s, w, ¢(C/R)

The quotient
Z(a5™? 2 Q, )
L(s, Q)

can be analytically contained to the whole complex plane as a holomorphic function. Given u in U
there exists a ® in 8(K,U) such that

20052, 3)
L(s,Q)

= a’u.

For all ® the two functions
22 a1 @)
L(1—s,Q)

and
Z(a5™? 2 Q, @)
L(s,Q)

—5(8, Q, ¢R)

are equal. Finally Z(oz]‘f%—i_l/2 ® Q, ®) is bounded in any region obtained by removing discs about the
poles L(s,Q2) from a vertical strip of finite width.

Suppose K is the subgroup of K* formed by the elements of reduced norm one. Let ¢, be the
function on R defined by

Oy (t) = /K Q(h) (th) dh

®, belongs to §(R) and if wy is the quasi-character of R* defined by Q(¢) = wq(¢)I the function
wo(t)®1(t) is even. Moreover if the multiplcative Haar measures are suitably normalized

Z(QJSRH/Q ®Q,®) = Z(ax  wo, P1).

Since wo(t) = [t|?"t™ we can integrate by parts as in the proof of Lemma 5.17 to see that for any
non-negative integer m
" Py
otm

—1 m
Z(Oéﬂ%s—‘rl('do7 (1)1) — ( ) /U(t)m+n ‘t‘2s+2r+m+n+1 dXt.

[ (2s+2r +n+j+1)
The integral is holomorphic for Re(2s + 2r + m +n) > —1 and, if 22 vanishes at ¢ = 0, for
Re(2s 4+ 2r + m + n) > —2. Thus the function on the left has an analytic continuation to the whole
complex plane as a meromorphic function with simple poles. Since

1
L(s,9) = 2(2m) "G+ AT (5 4 gt 5)
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we have to show that its poles occur at the points s +7+n +% +7=0withj =0,1,2,---. Since 35;31

vanishes at 0 if m 4+ n is odd its only poles are at the points 2s 4+ 2r +2n + 254+ 1 = 0 withn 4+ 25 > 0.
To exclude the remaining unwanted poles we have to show that a;:il =0at0if m < n. If we expand
® in a Taylor’s series about 0 we see that 3;;?;1 = 0 at 0 unless the restriction of p,, to K is contained
in the representation on the polynomials of degree m on K. This can happen only if m > n.

Since Q is equivalent to the representation h — Q~!(h*) the quotient

2@ o @)
L(1—s,Q)

is also holomorphic. The argument used to prove Lemma 5.15.1 shows that there is a scalar A\(s) such
that, for all @,
Z(a%h—s Q Q_l’(I)/) ( ) Z(Q&—H/Z ® Q,(I))
=~ = S
L(1—5,Q) L(s, Q)

We shall used the following lemma to evaluate A(s).

Lemma5.20.1 Let ¢ be a function in 8(C) of the form
p(z) = e ™ P(, )

where P is a polynomial in x and Z. Suppose o(xu) = p(z)w™t(u) if uti = 1. Define the function
d in K* by L
D(z) = p(a) wla) (aa) > (u, Q(2)u)

if v(z) = aa. Then ® extends to a function in S(K) and its Fourier transform is given by

¥'(2) = —A\(C/R,¥) ¢'(a) (@) (ad) " *(Q2)u, &)

if ¢’ is the Fourier transform of ¢.

By linearity we may assume that ¢ is of the form

QO(I) — e—QWma‘c(Ij)pjn—&-l
where p is a non-negative integer. We may suppose that the restriction of p,, to the elements of norm
one is orthogonal and identify the space U on which its acts with its dual U. Then Q = az"™" ® py,.

Thus if

the value of ® at z is
e~ 2m(08+00) (4 4 bb) TP (4, Q(2)T) = e 274D (ag + bb)P (u, py (2)0)

The expression on the right certainly defines a function in S(K).
We are trying to show that if
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when z = aa then the Fourier transform of F'is given by
F'(2) = =A\(C/R,¢Rr) ¢ () w™ () (a&)_% Q(z). (5.20.2)

If h1 and ho have norm one
F(h1zhg) = Q(hy ") F(2) Q(hy)

and therefore
F'(hizhs) = Q(hy) F'(2) Q(h2)

In particular if z is a scalar in K the operator F'(z) commutes with the elements of norm one and is
therefore a scalar operator. The expression Fj(z) on the right of (5.20.2) has the same properties so that
all we need do is show that for some pair of vectors « and w which are not orthogonal

(F'(2)u, @) = (Fi(2)u, 1)

for all positive scalars z.
If we only wanted to show that F”(z) = ¢ F;(z) where cis a positive constant it would be enough
to show that
(F'(2)u,u) = c(Fy(2)u, ). (5.20.3)

Once this was done we could interchange the roles of ¢ and ¢/ and ® and @' to show that ¢> = 1. To
obviate any fuss with Haar measures we prove (5.20.3).
Recall that if

then, apart from a positive constant,

is equal to
(u,&)/ sin(n + 1) sin 6 f(a(9)) do
0

if f isaclass function on K7, the group of elements of norm one. The equality is of course a consequence
of the Weyl character formula and the Schur orthogonality relations.
If  is a positive scalar in K then, apart from a positive constant, &’'(x) is given by

/KX B(2) e (r(22)) (=) 2 d" =

which is a positive multiple of

/OOO 20 {/Kl (u, k)W) Yr (zt7(k)) dk:} ey

Since 7(k) is a class function this expression is a positive multiple of

u, U T " in(n in T X
(u, >/0 tso(t){/o sin(n + 1) sin 6 g (2 tcos@)d@}dt
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Integrating the inner integral by parts we obtain

- 1
(o, )t

/OOO t2o(t) {/Oﬂ cos(n + 1)0 g (22t cos ) dg} d*t.

dmiux

On the other hand if z, which is a positive real number, is regarded as an element of C then ¢/(x)
is a positive multiple of

/ o(2) Yr(7(22))22d” 2
%

00 27
/ t2p(t) {/ e~ D0y (2t cos 0) d@)} d*t.
0 0

or of

Since )
/ e—i(n+1)9¢R(xt cos ) df = 2/ cos(n + 1)0 Yr(xtcos ) do
0 0

and A\(C/R) = isgn u the identity (5.20.3) follows for any choice of v and .
To evaluate \(s) we choose ¢ as in the lemma and compute

(Z(alF @0, v), ) = /cp(z) ()| 3 (=)0, ) 4>

and . B
(Z(ad ™ @0, v), ) = /<I>(z) ()| 3 (v, O(2)7) d* ».

The first is equal to

/Kx o R { /K 9(k) (k). ) dk} a*.

/ ()0, B) (u, k) 70) d
K

Since

is, by the Schur orthogonality relations, equal to

1

@ (v, u)(u, v)

the double integral is equal to

D) [ pla)ule) (aaya*:

where aa = v(z). If the Haar measure on C* is suitably chosen the integral here is equal to Z (wa, ¢).
The same choice of Haar measures lead to the relation

—MC/R, ¢r)

§—S — ~
<Z(a1§ ®Q 17¢),U)7U>: degQ

(v, u){u, 5>Z(w_1aé_s, o).
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Since L(s, Q) = L(s,w) and L(s,Q) = L(s,w™") we can compare the functional equation for
Z(wag, ) with that for Z(Ozf;l/Q ® Q, Pv) to see that

A(s) = —AC/R, ¥r) e(s,w, Yc/r)

as asserted.
If

—27xXT

plx) =e

then Z(agw, ¢) is an exponential times L(s,w) so that Z(af;l/z ® €, Pv) is, with a suitable choice of

v and u, a non-zero scalar times an exponential times L(s,w)u. The last assertion of the proposition is
proved in the same way as Lemma 5.15.2.

We end this paragraph with the observation that the space W (, ) of Theorem 5.13 cannot exist
when 7 is finite-dimensional. If W = W (x, ) did exist the contragredient representation 7 on the
dual space W would also be finite dimensional and 7(X4) would be nilpotent. However if X is the
linear functional ¢ — ¢(e) then T(X )\ = —2ima if () = ™2,
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§6. Representations of GL(2,C). In this paragraph we have to review the representation theory of
Gc = GL(2,C) and prove the local functional equation for the complex field. Many of the definitions
and results of the previous paragraph are applicable, after simple modifications which we do not
always make explicit, to the present situation.

The standard maximal compact subgroup of GL(2, C) is the group U (2, C) of unitary matrices.
H; will be the space of infinitely differentiable compactly supported functions on G¢. 3y will be
the space of functions on U(2,C) which are finite linear combinations of the matrix elements of
finite dimensional representations. H¢ = H; ® Hs can be regarded as a space of measures. Under
convolution it forms an algebra called the Hecke algebra. The notion of an elementary idempotent and
the notion of an admissible representation of H are defined more or less as before.

Let g be the Lie algebra of the real Lie group of GL(2,C) and let gc = g ®g C. 2 will be
the universal enveloping algebra of gc. A representation of 2( will be said to be admissible if its
restriction to the Lie algebra of U(2, C) decomposes into a direct sum of irreducible finite dimensional
representations each occurring with finite multiplicity. There is a one-to-one correspondence between
classes of irreducible admissible representations of JH¢ and those of 2. We do not usually distinguish
between the two. The representation 7 contragredient to m and the tensor product of © with a quasi-
character of C* are defined as before.

If 4y and po are two quasi-characters of C* we can introduce the space B (1, u2) and the
representation p(gq, p2) of He or of 2 on B(uq, o). In order to study this representation we identify
gc with g,(2,C) @ g,(2,C) in such a way that g corresponds to the elements of X @ X. If 2 is the
universal enveloping algebra of g,(2, C) we may then identify 2 with 2; @ 2.

In the previous paragraph we introduced the elements D and J of 2. Set D1 = D ® 1,
Dy=1®D,J; =J®1,and J, = 1® J. These four elements lie in the centre of 2. A representation
of 2 is admissible if its restriction to the Lie algebra of the group SU(2,C) of unitary matrices of
determinant one decomposes into the direct sum of irreducible finite dimensional representations each
occurring with finite multiplicity.

The first part of the next lemma is verified by calculations like those used in the proof of
Lemma 5.6. The second is a consequence of the Frobenius reciprocity law applied to the pair SU (2, C)
and its subgroup of diagonal matrices.

Lemma6.1. Let

pn(2) = (z2)" 2 (b0 o g

and )
papy ' (2) = p(z) = (22)°2@F0) 080

where a;, b;, a, and b are non-negative integers and a;b; = ab = 0.
(i) On B(p1,p2) we have the following four relations

o0 = H{(o+ 25 1)1

o9 = H{(o+ 57 1)1

. al—bl +(12—b2
p(J1) = {(51 + s92) + 5 }I

bl—al—;bg—az}]

p(Js) = {(51 ¥ s) +
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(i) p(p1, p2) is admissible and contains the representation p, of the Lie algebra of SU(2,C) if
and only if n > a+b and n = a+ b (mod2) and then it contains it just once.

pn 1S the unique irreducible representation of SU (2, C) of degree n + 1. Let B(u1, p2, pn) be the
space of functions in B(u1, p2) transforming according to p,,.

Theorem 6.2. (i) If p is not of the form z — 2Pz or z — z7Pz7% with p > 1 and q > 1 then
p(ua, po) is irreducible. A representation equivalent to p(py1, pua) will be denoted by (1, o),
(i) If p(z) = 2Pz% withp > 1, ¢ > 1 then

By(m,p) = D> Blu,pz,pn)

n>p+q
n=p+q (mod2)

is the only proper invariant subspace of B(p1, p2). o(u1, ne) will be any representation equiv-
alent to the representation on Bg(u1, na2) and w(u1, ue) will be any representation equivalent
to the representation on the quotient space

By(pa, po) = B(pr, p2) /By, p2)

(iii) If p(z) = 27Pz79 withp > 1, ¢ > 1 then

Br(p,pe) = Y Blu1,pa,pn)

[pP—ql<n<p+q
n=p+q (mod?2)

is the only proper invariant subspace of B(p1,p2). w(p1,une) will be any representation
equivalent to the representation B ¢(pu1, p2) and o(p1, po) will be any representation equivalent
to the representation on the quotient space

Bs(p1, p2) = Bpa, p2) /By, po).

(V) 7(j11, i2) is equivalent to m(u, ) if and only if (i, 2) = (1o ) or (s, o) = (s, ).
(V) If o(p1, p2) and o(py, ph) are defined they are equivalent if and only if (p1, pe) = (ph, ph) or
(p1, p2) = (pg, ph)-
(Vi) If u(z) = 2Pz% with p > 1, ¢ > 1 there is a pair of characters vy,vy such that pips = vive
and V1V2_1 = 2Pz79 and o(u1, pe2) s equivalent to m(vy,ve).
(vii) Every irreducible admissible representation of He or A is a w(p1, u2) for some choice of uq
and po.

The proofs of the first three assertions will be based on two lemmas.

Lemma6.2.1. If there exists a proper invariant subspace V' of B(p1, 2) which is finite dimensional
then pypy *(2) = 27 P29 withp > 1, ¢ > 1 and V = B (1, pi2)-

Lemma 6.2.2. Let V be a proper invariant subspace of B(pu1,ue) and let ng be the smallest integer
such that some subspace of V' transforms according to the representation py,, of the Lie algebra of

SU(2,C). FEither
V=" B(u, k2, pn)

n>ngo
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or'V contains a finite-dimensional invariant subspace.

Grant these lemmas for a moment and let V' be a proper invariant subspae of B(u, p2). As in
the case of the non-archimedean and real fields there is an invariant non-degenerate bilinear form on
B, p2) x B(uy*, py ). The orthogonal complement V- of V in B(u; ', 5 ) is a proper invariant
subspace. By Lemma 6.2.1 they cannot both contain an invariant finite dimensional subspace. Therefore
by Lemma 6.2.2 one of them is of finite codimension. The other must be of finite dimension. If V
is finite-dimensional then 5 ' (2) = 277279 and V = B(u1, pa). If VL is finite dimensional
then puy 15 ' (2) = 2PZ9. Since the orthogonal complement of B (u1, u2) is B (p1, p12) We must have
V= Bs(p, p2).

We shall now show that B¢ (p1, u2) is invariant when g ps *(2) = 27221, It will follow from
duality that B (u1,u2) is invariant when ulugl(z) = 2zPz4. Every irreducible finite-dimensional
representation 7 of 2l determines a representation 7w of G¢. If 7 acts on X there is a nonzero vector g

in X such that
z x mzn
W((O Z_1>>’U0:Z VAN

for all z in C* and all = in C. vy is determined up to a scalar factor and m and n are non-negative
integers. Moreover there is a quasi-character wg of C* such that

()
(3 1) w-wtetn

where w1w2—1(z) = 2™Zz". 7 is determined up to equivalence by w; and ws so we write 7 = k(wy,ws).
As long as wyw, *(z) = 2™ 2" with non-negative integers m and n the representation (w;, wy ) exists.
By the Clebsch—-Gordan formula the restriction of x(w;,w2) or its contragredient to SU (2, C) breaks up
into the direct sum of the representations p; with |m —n| <i<m+mnand 1 =m +n (mod2). Letw
be rx(w1,w2) and let 7, the contragredient representation, act on X. To each vector 7 in X we associate

the function
©(g9) = (vo, 7(g)V)

on G¢. The map v — ¢ is linear and injective. Moreover 7(g)v — p(g)y while

(3 2)9) =ereows el

so that if y; = wy a(gl/Q and po = w;l oc(lc/Q the function ¢ belongs to B(u1, p2). As we vary w; and
wo the quasi-characters p1 and po vary over all pairs such that um;l(z) = z7Pz79withp > 1 and
q=>1

We have still to prove the two lemmas. Suppose V' is a proper finite-dimensional subspace of
B(p1, p2). The representation of 2 on V' is certainly a direct sum of irreducible representations each
occurring with multiplicity one. Let V’ be an irreducible subspace of V" and let V' be the dual space of
V. Let A be the linear functional A : ¢ — ¢(e) on V', If 7 is the representation of 2l or of G¢ on V'
then

Thus

1

(3 D)) r = ot e (a5

z2
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Thusifw; = it a(gl/z and wy = py " a(lc/z the representation 7 is x(wy,ws). It follows immediately

that i35 ' is of the form py ;' (2) = 27PZ~2 with p > 1 and ¢ > 1 and that V' and therefore V is

By, p2).
To prove the second lemma we regard g as the real Lie algebra of 2 x 2 complex matrices. Then

~{(3 £) e
={( ) aersec)

is the Lie algebra of SU(2,C). If
a b
g—{(b _a>\aeR,beC}

then u & g is the Cartan decomposition of the Lie algebra of the special linear group. The space
gc = g ®g C is invariant under the adjoint action of u on gc. Moreover u acts on g¢ according to the
representation p,. One knows that ps ® p,, is equivalent to p,12 ® p, O pn_o if n > 2, that p» ® p; is
equivalent to ps @ p; and, of course, that ps ® pg is equivalent to po. The map of gc ® B(u1, p2, pn)
into B(u1, pe) which sends X ® f to p(X)f commutes with the action of u. Thus p(X) f is contained
in

is the centre of g and

B(p1; ph2; prt2) © B, p, pn) © B, p2, pr—2)-

It is understood that B (1, pa, pe) = 0if £ < 0.
Now let V' be a proper invariant subspace of B(u, p2). Let ng be the smallest non-negative
integer n for which V' contains B (1, u2, pr). 1f n > ng set

Vi(n) = Z B(p1, 12, pr)

n>k>ng
k=ng (mod2)

If V contains every V' (n) there is nothing to prove so assume that there is a largest integer n; for which
V contains V' (n;). All we need do is show that V'(n;) is invariant under g. It is invariant under a and
u by construction so we need only verify that if X lies in gc then p(X) takes V(ny) into itself. It is
clear that p(X) takes V(n; — 2) into V(n1) so we have only to show that it takes B (1, 2, pn, ) into
V(n1). Take fin B(p1, 2, pn,) and let p(X) f = f1 + fo with f1in V(n1) and fo in By, p2, pry42).
Certainly f liesin V. Since

VN Bk, p25 pryt2)

is either 0 or B (1, p2, pn, +2) and since, by construction, it is not B(u1, p2, pn, +2) the function f; is 0.

The first three assertions of the theorem are now proved and we consider the remaining ones.
We make use of the fact that D, D5, J; and J, generate the centre of 2 as well as a result of Harish-
Chandra to be quoted later. Suppose 7w and 7’ are two irreducible representations of 20 which are
constituents of p(u1, o) and p(p), ph) respectively. Assume 7 and 7’ contain the same representations
of the Lie algebra of SU(2,C) and are associated to the same homomorphism of the centre of 2 into
C. Comparing the scalars 7(.J;) and 7 (J;) with 7/(J1) and 7/(J2) we find that uipe = pjub. Let
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’ a’+b/

papy t(2) = (zi)s_%%zaéb and let 1" (2) = (22)¥ "2 2%z . Comparing 7(D;) and 7 ()
with 7/ (D7) and 7’ (D2) we see that

(s+95) = (++ 552

( +b—a)2_<,+b’—a’)2
S 9 = 1S 9 .

and

These relations will hold if ulugl = MIIMIZ_I or puy g = MIIMIZ_I and therefore, when g o = 1 i,
(1, p2) = (ph, phy) or (ua, po) = (b, pf). If neither of these alternatives hold we must have

a - , a—b

9 5T Ty

S =

or
b —ad , b—a

2 ST T

Since 1o = pjubh the integers a + b and o’ + b’ must have the same parity. Let u = ulugl and
i = bt Inthe first case py/ is of the form pu/(z) = 22P and py’ " is of the form z2¢ and in the
second ' (z) = z2P while /™' (2) = 224. Since {1, po} is not {14}, b} neither p nor ¢ is 0. In the
first case u = 2Pz% and p/ = 2Pz~ 7 and in the second i = 29z while p/ = 27927,

In conclusion we see that 7 and 7’ contain the same representations of the Lie algebra of SU (2, C)
and are associated to the same homomorphism of the centre of 2l into C if and only if one of the following
alternatives holds.

(i) Forsome pair of quasi-characters 14 and v» we have {7, 7'} = {m(v1,v2), m(v1,12)} or {m, 7'} =

{W(Vlv V2)77T(V27 l/l)}'

(ii) For some pair of quasi-characters v and v5 we have {7, 7'} = {o(v1,12),0(v1,v2)}or {m, 7'} =

{o(v1,12),0(v2,11)}.

(iii) For some pair of quasi-characters 11 and v with ulyz_l(z) = 2Pz% wherep > 1, ¢ > 1 we have

{m, 7'} = {o(v1, 1), 7(V},4)} where vy = 1/} and /v~ (2) is either 2Pz~ or P74,

(iv) For some pair of quasi-characters 14, and v with ylyz_l(z) =z Pz 9%wherep > 1,q > 1 we
have {m, 7'} = {o(v1,v2), 7(V},v4)} Where vy vy = Vb and v}~ ' (2) is either 2Pz~ or 2~ P4,

The remaining assertions are now all consequences of a theorem of Harish-Chandra which, in
the special case of interest to us, we may state in the following manner.

S =

Lemma 6.2.3. If m is an irreducible admissible representation of 2 there exists a pair of quasi-
characters p1 and ps such that p(py, u2) and ™ contain at least one irreducible representation of
the Lie algebra of SU(2,C) in common and are associated to the same homomorphism of the centre
of A into C. When this is so 7 is a constituent of p(u1, fi2).

As before x @ (1, p2) is T(xp1, xp2) and x ® o (pa, p2) is o (xpr, xpe). If

(3 2) -

then 7 = wy ' @ 7.
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Theorem 6.3. Let m be an infinite dimensional irreducible admissible representation of He and let
¥ be a non-trivial additive character of C. There is exactly one space W (m, 1) of functions on G¢

which satisfies the following three conditions.
(i) Every function W in W (m, 1) satisifies

w <<(1) "’f) g) = b(@) W ()

(i) The functions in W (m, 1) are continuous and W (1)) is invariant under the operators p(f)
for f in Hc. Moreover the representation of He on W (m, 1) is equivalent to .
(iii) If W is in W (m,4) there is a positive number N such that

(6 1)

Since every T is of the form 7 = 7(u1, p2) the existence is rather easy to prove. If @ is in §(C?)

as [t| — oo.

let
iz, ®) = [ @647 a(0) " ()4

We let W (1, u2, 1) be the space of functions on G¢ of the form

W(g) = Wal(g) = m (detg) [detgld” 6(ui1, pia, 7(9) ®)

where @ in §(C?) is SU(2, C)-finite under the action defined by r. It is clear that W (uy, pio,v) =
W (ua, 1, %) and that W (uq, pe2, 1) is invariant under right translations by elements of H¢ and of 2.
The existence of W (, 1) will, as before, be a consequence of the following analogue of Lemma5.13.1.

a+b

Lemma 6.3.1 Suppose puips *(t) = (t£)*~ "= t%® with Res > —1. Then there is a bijection A of
W (p, pro, ) with B(ua, p2) which commutes with the action of He.

As before A associates to W the function

fa~(g) = p1 (detg) |detg|t!* (5 Lac, p(g) @)

The proof of course proceeds as before. However we should check that A is surjective. Theorem 6.2
shows that, under the present circumstances, there is no proper invariant subspace of B (1, 12) con-
taining B (1, t2, pa+b) SO that we need only show that at least one nonzero function in B(1u4, t2, Pa+b)
is of the form fs where @ is in §(C?) and SU (2, C)-finite under right translations.
If
(I)(x’y) — e—27r(za’:+yﬂ)gayb

then, since a + b = 0, ® transforms under right translations by SU (2, C) according to p,j So we need
only check that fg is not 0. Proceeding according to the definition we see that

fa(e) = /(CX @(O,t)(tf)s—aT%tafb A%t

(CX
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Apart from a constant which depends on the choice of Haar measure this is

a b
(2m) T (145 + —a; )

and is thus not 0.
Just as in the previous paragraph W (u1, ps,) is spanned by functions Wg where @ is of the
form
CI)(.’IZ, y) _ e—27‘r(ma‘c+uﬁy§)xquymgn

where p, ¢, m, and n are integers. u is determined by the relation ¢(z) = e*™*Reu= \We can show that

t 0
(o 7))
decreases exponentially as |t| — oc.

To prove the uniqueness we will use a differential equation as in the previous chapter. This time
the equations are a little more complicated. Suppose W () is a space of functions satisfying the
first two conditions of the theorem. We regard p,, as acting on the space V,, of binary forms of degree
n according to the rule

P <<CCL Z)) o(z,y) = p(az + cy, bx + dy)

plr,y) = Y rasthash
kl<n

n_ 1.7
> keZ

then " is called the £*" coordinate of ¢. On the dual space V,, we introduce the dual coordinates.
If p,, is contained in 7 there is an injection A of V,, into Wy (7, v) which commutes with the action
of SU(2,C). Let ®(g) be the function on G¢ with values in V,, defined by

(¢, @(9)) = Ap(g).

It is clear that W (7,1)) is determined by ® which is in turn determined by W (7, 1) up to a scalar
factor. The function ®(g) is determined by the function

)

on the positive real numbers. If ©*(t) is the k*" coordinate of (t) and if 7 is a constituent of p(u, f12)
the differential equations
(D)) = 1{( + a_b>2 1}e
p\L1)P = 5 S 5

= (o4 5) 1)

may, if our calculations are correct, be written as

N

1r,d 2 |u|? n e 1 a—b\2
ir.a _1] k42 k (_ ) klz_( ) k
Q[tdt—l—k %) t—2<p—|— 2—i—ktw<p 23—1— 5 %)
1r.d 2 |u|? n 1 b—a\2
—t——k—l} kg2 lul” k_(__k)t-— k+1:_( ) k
Z[dt 7 2 ¥ 2 e Pt ) ¥
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We have set ¥ = 0 if |[k| > n/2. Recall that ¢(z) = e*™*Re“= These equations allow one to solve for
all ©* in terms of ©™/2 or p="/2.
For k = 3 the second equation may be written as

1 d?pn/? 1 n ldtp”/2 ul>  (2+1)2*) , b—a\2? ,
<____>__ {_u+27}(p/2:(8_ )@/2‘ (+)

2 dt2 2 2/t dt 2 212 2

If we have two independent solutions of this equation their Wronskian W (¢) is a non-trivial solution
of the equation
dW — (n+1)
.t
and therefore a non-zero multiple of "1, Since we already have shown the existence of a solution of
() which decreases exponentially we see that there cannot be another solution which is bounded by a
power of t as t — oco. The uniqueness of the space W (m, ) follows
Every irreducible admissible representation of Hc¢ is of the form = = 7(u1,u2). Moreover

(1, p2) = m(py, py) ifand only if {1, po} = {44, p3 }. Thus we may set
L(Sv'ﬂ) = L(Svul) L(87M2)

w

and
6(87 T, ¢) = 6(87 K1, Qb) 6(87 H2, Qb)
Then
L(s,7) = L(s, Hl_l) L(s, /1’2_1)'
The local functional equation which is proved just as in the real case read as follows.

Theorem 6.4. Let w be an infinite-dimensional irreducible admissible representation of He. Let w
be the quasi-character of C* defined by

(3 1)

fora in C*. If W is in W (m, 1) the integrals

vt = [ (5 )

bsw) = [ w((§ 0)a) ol e @ara

converge absolutely in some right half-plane. Set
U(g,s,W) = L(s,m) ®(g,s, W),
U(g,s,W) = L(s,7) ®(g, s, W).
The functions ®(g,s, W) and <T>(g, s, W) can be analytically continued to the whole complex plane

as holomorphic functions of s. For a suitable choice of W the function ®(e,s, W) is an exponential
function of s. The functional equation

O(wg,1— 5, W) = e(s,m, 1) B(g,s,W)

is satisfied. Moreover, if W is fized |V(g, s, W)| remains bounded as g varies over a compact subset
of G¢ and s varies in a vertical strip of finite width from which discs about the poles of L(s, )
have been removed.

The following lemma can be verified by an explicit computation. The first assertion may also be
proved by the method of Lemma 5.16.
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Lemma6.5 If o = o(u1,p2) and m = w(uy, u2) are defined then

L(1—s,0)€(s,0,v) L(1—s,7)e(s,m, 1))

L(s,0) L(s,m)

and the quotient
L(s,x®0)

L(s,x @)

1 the product of a constant, a polynomial, and an exponential. Moreover the polynomial is of
positive degree for some choice of the quasi-character x.

We verify the last assertion. There is no harm in supposing that o = 7(11, ) and that yu4 (2) =
2P0 o (2) = 2920, xvi(2) = 22P2Y, and ywo(z) = 29219 p > 1and ¢ > 1 are integers.
Varying y is equivalent to varying a and b through all the integers. If my is the largest of a + p and
b+ q and my, is the largest of ¢ and b while n; is the largest of a + p and b and ny, is the largest of a and
b + q the quotient

L(s,x® o)
L(s,x @)
differs from
I'(s+mn1) (s + ng)
I'(s+m1) (s + mo)

by a constant times an exponential. It is clear that n; and ny are both greater than or equal to my and
that either ny or ns is greater than or equal to m;. Thus the quotient is a polynomial. If p > ¢ choose a
and bsothatb+ q > a > b. Thenny = m + 1 and ny > my so that the quotient is of positive degree.
If ¢ > pchooseaand bsothata +p > b > a. Then ng = my and ny > mo.

Lemma 6.6. Let m and ' be two infinite-dimensional irreducible representations of He. Suppose
there is a quasi-character w of C* such that

(5 2o
({3 ) -

L1 —s,x @7
L(s,x® )

and

for all a in C*. If

L —-s,xt®7)
L(s,x ®)

6(8,X®7T/,'¢) = 6(8,X®7T,'¢)

or all quasi-characters x then m and 7' are equivalent.
q X q

Let m = m(u1, uo) and let ©" = (), ph). We let
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and .
R =

with a; and a] in Z. By assumptions s; + so = s} + s5 and a; + a2 = a) + af. Choose

0= {m)

with n in Z. The quotient on the right has the same zeros and poles as

I‘(l—s—sl—i—]%\) F(l_S_SQ“F’L;QD

D(s+ s1+ 252 D(s+ 594|252

A pole of the numerator can cancel a pole of the denominator if and only if there are two
non-negative integers ¢ and m such that

s1— s =10 m | PR 4 |12
or N N
so—s1=1+0+m+ | 2‘”\ E 2@2‘.

This can happen only if 115 ! is of the form pip5 ' (2) = 2729 or pyps *(2) = 2 PZ~9 where p > 1
and ¢ > 1 are integers. Since 7(u1, u2) is infinite-dimensional it cannot be of either these forms and no
poles cancel.

Consequently for every integer n, {s1 + |252|, 5o + [2522 |} = {s] + \”za/l |, 85 + ]"Jg“/? |}. This
can happen only if s; = s}, a; = d}, s2 = s}, and ay = a}, or s; = s, a1 = aly, so = s}, and ay = a}.
Thus 7 and 7’ are equivalent.

The following proposition is an easy consequence of these two lemmas.

Proposition 6.7.  Suppose ™ and 7' are two irreducible admissible representations of He. Suppose
there is a quasi-character w of C* such that

(3 1)
(3 )

If L(s,x@m) =L(s,x®7'), L(s,x ' ®@@) = L(s,x ' ® @) and

and

6(87 X &®m, ¢) = €(s,x ® 7r/7 V)

for all quasi-characters x the representations m and 7' are equivalent.
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§7. Characters. If F'is a non-archimedean local field and 7 is an admissible representation of G the
operator 7( f) is of finite rank for every f in 3 and therefore ha a trace Tr 7( f). In this paragraph we
prove that if 7 is irreducible there is a locally integrable function x, on G; such that

Trm(f) = ; f(9) x=(g) dg.

Although Tr 7 (f) depends on the choice of the Haar measure the function y,. does not.
The following simple lemma shows that x,. determines the class of 7.

Lemma7.1 If {m,---,mp} is a set of inequivalent irreducible admissible representations of Hp the
set of linear forms Trmy, Trmo,- -+, Trm, is linearly independent.

Let 7; act on V; and let ¢ be an elementary idempotent such that none of the spaces ;(£)V;,
1 < i < p,are0. Let 7; be the representaion of £} ¢ on the finite dimensional space 7;(£)V; = V;(§).
Suppose 7; and 7; are equivalent. Then there is an invertible linear map A from V; (&) to V; (&) which
commutes with the action of {J{r£. Choose a non-zero vector v; in V;(§) and let v; = Av;. We are
going to show that 7; and 7; are equivalent. It is enough to show that, for any f in Mg, m;(f)v; =0
if and only if w;(f)v; = 0. But m;(f)v; = 0 if and only if 7;(§ * h)m;(f)v; = 0 for all hin Hp. Since
m(Exh)mi(flvi=mi(Exhx fx&v;and x h* f x £ isin EHpE the assertion follows.

Thus the representations 7, - - -, T, are inequivalent. Using this we shall show that the linear
forms Tr 7y, -- -, Tr 7, on EH € are linearly independent. The lemma will then be proved. Take 7 in
EHp&. Since 7; is irreducible and finite-dimensional Tr 7;(hf) = 0 for all f in £H g€ if and only if
7i(h) = 0. Suppose we had hy, - - -, b, in {H £ so that for at least one ¢ the operator 7;(h;) was not 0
while

p
Z Tr7;i(hif) =0
=1

for all f in £Hp&  There must then be at least two integers j and k such that 7;(h;) # 0 and
7i(hi) # 0. Since 7; and 7, are not equivalent we can find an i in £Hg¢ such that 7;(h) = 0 while
7 (h) is invertible. Replacing h; by h;h we obtain a relation of the same type in which the number of ¢
for which 7;(h;) = 0 has been increased. By induction we see that no such relation is possible. Since
EH g€ contains a unit the required independence follows.

For most of these notes the existence of y is irrelevant. It is used only toward the end. The
reader who is more interested in automorphic forms than in group representations will probably want
to take the existence of x, for granted and, for the moment at least, skip this paragraph. To do so will
cause no harm. However he will eventually have to turn back to read the first few pages in order to
review the definition of the Tamagawa measure.

Choose a non-trivial additive character ¢ of F'. If X is an analytic manifold over F' and w is a
differential form of highest degree on X we can associate to w a measure on X which is denoted by
|w|F or sometimes simply by w. If X = F and w = dz is the differential of the identity application
the measure |w|r = dx is by definition the Haar measure on F' which is self-dual with respect to . In
general if p belongs to X and z!, - - -, 2™ are local coordinates near p so that

w=a(z, -, 2")dz" A A da™

then, if f is a continuous real-valued functions with support in a small neighborhood of p,

/f‘w’F:/f(xlv"'axb) ’a(xlv"'axb)’dxl'“dxn'
X
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The absolute value |a(z!, - - -, 2™)| is the normalized absolute value in the field F'. To prove the existence
of the measure w one has to estabish the usual formula for a change of variable in a multiple integral.
For this and other facts about these measures we refer to the notes of Weil [12].

If G is an algebraic group over F' then G is an analytic space. If w is a left-invariant form of
highest degree on G the measure |w|r is a Haar measure on G. It is called the Tamagawa measure.
It depends on w and 1.

If M is the algebra of 2 x 2 matrices over F' the additive group of M is an algebraic group. If a
typical element of M is

then
w=daANdbAdcAdd

is an invariant form of highest degree and || = dx is the additive Haar measure which is self-dual
with respect to the character 1/ (z) = ¢p (7(z)) if 7 is the trace of z.
On the multiplicative group G of M we take the form w(x) = (detz)~2?u(x). The associated
Haar measure is
lw(z)| = |detz|z? do = |z, da.

An element of G is said to be regular if its eigenvalues are distinct. The centralizer in Gy of a
regular element in G is a Cartan subgroup of Gr. Such a Cartan subgroup B is of course abelian.
There seems to be no canonical choice for the invariant forms on Br. However the centralizer of Br in
M is an algebra E of degree two over F'. Itis either isomorphic to the direct sum of F' with itself or it
is a separable quadratic of F'. B is the multiplicative group of E. In the first paragraph we introduced
amap v from E to F. Once a form pg on E which is invariant for the additive group has been chosen
we can set ug(z) = v(z) tug(x). pp is an invariant form on Br. The associated measure is invariant
under all automorphisms of E over F. We should also recall at this point that two Cartan subgroups
Bp and B, are conjugate in G if and only if the corresponding algebras are isomorphic.

Once g and therefore up has been chosen we can introduce on Br \ G which is also an
analytic manifold the form wp which is the quotient of w by pp. Then

[ 1g)eto) - | . { [ sta) uB<b>} wi(g).

The centre of the algebra of My is isomorphic to F' and the centre Zr of G is isomorphic to F'*. On
F* we have the form z~! dz. We take y 7 to be the corresponding form on Zr. 1% will be the quotient
of up by pz and w will be the quotient of w by yz. The corresponding integration formulae are

RCICE i { [ s MZ(Z)} 0

and

1G)wto) = [

ZF\GF

{ [ fea) pzl)} ).

GFr

If g belongs to G its eigenvalues a; and «» are the roots of the equation

X2 —1(g)X +v(9)=0
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and ) )
(a1 —ag)®  {7(g9)}* —4v(g)
03e%) v(g)
belongs to F'. Set
2
og) = (=02
109 F

Since g isregular ifand only if §(g) # 0the set @F of regular elementsis open in G and its complement
has measure zero.

There are two more integration formulae that we shall need. Their proof proceeds as for
archimedean fields. Choose a system S of representatives of the conjugacy classes of Cartan sub-
groups of Gr. Then

1 -1
ROEOED S / F 5<b>{ / R bg)wB(g)}uB(b) (7.2.1)

BreS
0/ .\ _ 1 . .
/ZF\GF f(g) ¢ (g) B Z 2 /ZF\BF 5(b) {/BF\GF f(g bg) B(g)} HB(b) (722)

BreS

if f is an integrable function on Gr or Zr \ Gr. Notice that the sum on the right is not necessarily
finite. Let B = B NG and let

Eg = {g_lbg | be EF, g e GF}

Then CAJF is the disjoint union
J B%.
BresS
There is a simple lemma to be verified.
Lemma7.2 (i) For any Cartan subgroup Bp the set Eg s open.

(i) The set C:?F s open.
(iii) The set Gg of g in Gr whose eigenvalues do not belong to F' is open.

The second statement is a consequence of the first. If Br corresponds to the separable quadratic
extension E then Eg is the set of matrices with distinct eigenvalues in E and if Br splits and therefore
corresponds to the direct sum of F" with itself, Eg is the set of matrices with distinct eigenvalues in F'.
Thus the first assertion is a consequence of the following lemma which is a form of Hensel’s lemma or
of the implicit function theorem.

Lemma7.2.1 Let E be a separable extension of F. Assume the equation
XP+ a1 XP7 4o 4a, =0

with coeficients in F' has a simple root A in E. Given € > 0 there is a § > 0 such that whenever
by, -+ ,b, are in F and |b; — a;|p < § for 1 <i <p the equation

XP 4+ by XP 44+ b, =0
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has a root p in E for which |\ — u|lgp < e.

There is no need to prove this lemma. To prove the third assertion we have to show that the set
of matrices with eigenvalues in F' is closed. Suppose g, — ¢ and g,, has eigenvalues \,, and p,, in
F. Then \,, + p, — 7(g9) and A\, — v(g). If A,, and p,, did not remain in a compact subset of F’*
then, since their product does, we would have, after passing to a subsequence, |\, | — 0, |x,| — oo or
[An| — oo, |pn| — 0. Ineither case A, + u.,, could not converge. Thus, again passing to a subsequence,
we have \,, — X and u,, — p. A and p are the eigenvalues of g.

If the characteristic of F' is not two the sets CA}F and (~¥F are the same. We now introduce a
function on G which plays an important role in the discussion of characters. If By is a split Cartan
subgroup we set ¢(Br) = 1 but if By is not split and corresponds to the quadratic extension E we set

w is a generator of pr and p’}“ is the discriminant of £ over F. If g in (A?F belongs to the Cartan

subgroup Br we set
£(g) = c(Br)d~*(g).

If g is singular we set {(g) = oo. The factor ¢(Bp) is important only in characteristic two when there
are an infinite number of conjugacy classes of Cartan subgroups.

Lemma 7.3 The function £ is locally constant on @F and bounded away from zero on any compact
subset of Gg. It is locally integrable on Zrp \ Gr and on Gp.

It is of course implicit in the satement of the lemma that £ is constant on cosets of Zz. The two
previous lemmas show that € is locally constant on @F. To prove the remaining assertions we recall
some facts about orders and modules in separable quadratic extensions of non-archimedean fields.

If E is a separable quadratic extension of F' an order R of E is a subring of Og which contains
Or and a basis of E. A module I in E is a finitely generated Or submodule of E which contains a
basis of E. If I is a module the set

{a € E|lal C I}

is an order R;. Itis clear that an order is a module and that Rg = R. Two modules I and J are said to
be equivalent if there isan «in E* sothat J = al. Then R; = R;.

Suppose the module [ is contained on Og and contains 1. Since I/Op is a torsion-free Op
module the module I has a basis of the form {1,5}. Since ¢ is integral 62 belongs to I. Therefore I is
an order and R; = I. Since any module is equivalent to a module which contains 1 and lies in Og the
collection of modules I for which R; = R forms, for a given order R, a single equivalence class.

As observed any order has a basis, over O, of the form {1,6}. The absolute values of the
numbers § occurring in such bases are bounded below. A basis {1,¢} is said to be normal if § has
the smallest possible absolute value. It is easily seen, by considering the ramified and unramified
extensions separately, that if {1,J} is normal

R=0fr+00g.

Thus R determines and is determined by |d|g. It is easily seen that if E/F is unramified |d| is any
number of the form |wg|} with n > 0. wg is a generator of pp. We set n = w(R). If E/F is ramified,
|6|  is any number of the form |wg |2 ™! with n > 0. We set w(R) = n. In the ramified case

[EX : F*(Ug N R)] = 2|awp|z~".
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In the unramified case n
[E* : F*(Up N R)) = |wp|* P (1 + |wr|r)

unless w(R) = 0 and then
[EX : F*(UsNR)] = 1.

Itis clear that R’ contains R if and only if w(R') < w(R). Thus w(R) + 1 is the number of orders
which contain R. If v belongs to Og but not to O let R(~y) be the order with basis {1,~} and let

w(y) = w(R(y)).
Lemma7.3.1 Let 7 be the conjugate of v in E and let

O =71 = e 7.
If pg‘l 1s the discriminant of E and v belongs to Ok but not to Op then

miy) =wiy) + S

2
Let {1,5} be a normal basis of R(). Then v = a + bd with a and b in Or. Moreover § = ¢ + d~y
with cand d in Op. Thus v = (a + be) + bdy so that a + be = 0. and bd = 1. Therefore b is a unit and
|y — 4| = |§ — §|. We can thus replace « by &. Suppose first that E/F is unramified so that ¢ + 1 = 0.
We take § = eww? where n = w(R(7)) and ¢ is a unit of O. Since

§—6=(c—&)wh

we have only to show that € — € is a unit. ¢ is not congruent to an element of Or modulo pg and
therefore {1,c} determines a basis of Og/pg. Since the Galois group acts faithfully on Og/pg the
number e — gisnotin pg.

If E/F is ramified we may take 6 = wiwpg with n = w(J). Itis well-known that

g — @l = |ws|y !

Thus

< 91/2 <11/2 1 +
16— 8)21° = 10— 01" = |we [ |oxlE = |orlp *

The lemma follows.
There are two more lemmas to be proved before we return to the proof of Lemma 7.3.

Lemma 7.3.2 Let C be a compact subset of Zrp \ Gp and let xc be the characteristic function of
C and of its inverse image in Gg. There is a constant ¢ such that for every b in Gp which is
contained in an anisotropic Cartan subgroup

/ xc(g™1bg) () < c&(b).
Zrp\Gr

The assertion is trivial unless b is regular. Then the assumption is that its eigenvalues are distinct
and do not lie in F. Any h in G can be written as

p
Wg
g1 92
( w%)
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where g, and g2 belongs to GL(2,0r) and p < ¢q. The numbers w’. and w¥. are the elementary
divisors of h. Let T;. be the set of all those h for which ¢ — p < r. T, is the inverse image of a compact
subset 7). of Zr \ G . If r is sufficiently large C' is contained in 7). Thus we may replace x¢ and x,
the characteristic function of 7.

If h belongs to GL(2,0F) then h—1g~tbgh belongs to T, if and only if g~ bg belongs to T;.. Thus
the integral is the product of the measure of GL(2,0r) N Zr \ GL(2, OF) by the number of right cosets
of Zr GL(2,0r) whose elements g are such that g~'bg belong to 7,.. If H is such a coset and Bp is
the Cartan subgroup containing b then for any ¥ in By the coset ¥’ H has the same property. Thus the
integral equals

measure(GL(2,0r) N Zr \ GL(2,0r)) Y [BrgGL(2,0r) : Zr GL(2,0p)].

The sum is over a set of representatives of the cosets in Br \ Gr/GL(2,0F).

Let Br correspond to the separable quadratic extension E. Choose a basis of O over Op. It
will also be a basis of E over F'. By means of this basis we identify G with the group of invertible
linear transformations of E over F'. GL(2,Op) is the stabilizer of Og. Every v in E* determines a
linear transformation b, :  — ~x of E. The set of all such linear transformations is a Cartan subgroup
conjugate to By and with no loss of generality we may assume that it is Br. Choose v so that b = b,.

Every module is of the form ¢Og with g in Gr. Moreover g;Og and g-Opg are equivalent if
and only if g; and g» belong to same double coset in Br \ Gr/GL(2,0F). Thus there is a one-to-
one correspondence between the collection of double cosets and the collection of orders of E. Let
BrgGL(2,0F) correspond to the order R. The index

is equal to
[Br : Br N Zp gGL(2,0r)g™ ]
Two elements b; and b; in By belong to the same coset of B N Zp g GL(2, Op)g‘1 if and only if there
isazin Zpandan hin GL(2,0r) such that
b1g = bazgh
This can happen if and only if
b1g0p = byzgOpg.

Let I = gOg and let b; = b.,. If we identify Z and F'* so that z may be regarded as an element of
F* the last relation is equivalent to

Yl =22l
ory; 'v92 € RN Ug. Thus
Let |detb|r = |y|x = |wp|®. Let wh and w’ with p < ¢ be the elementary divisors of g~ 'bg.

Certainly p + ¢ = m. The matrix g~ 'bg belongs to 7. ifand only if g — p = m — 2p < r. If s is the
integral part of =™ this is so if and only if w9~ 1bg has integral coefficients, that is if and only if

@i g 'bgOp C Op
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orwyy € R.
Our integral is therefore equal to

measure(GL(2,0r) N Zp \ GL(2,0r)) > [E*: F*(RNUg). (%)

wiYVER

The sum is over all orders of £ which contains wf.y. @y does not lie in F. If it does not lie in Ok
the sume is zero. If it lies in Ok then w3y belongs to R if and only if w(R) < w(w?}y). In this case the
expression (x) is bounded by

2 measure(GL(Q, Or)NZp \ GL(2, OF)) Z |WF|1?,f

0<k<w(w$y)
This in turn is bounded by a constant, which is independent of Br and r, times

’wF ’;W(WSF’Y)

t4+1

We have ¢(Br) = |wp|2 , m(wpy) = s+ m(y) < 552 +m(y), and

—\211/2

(v = %) —m/2,_ m
S(B)/? = i = ek " e [
‘77 F

To prove the lemma we have only to show that

m t+1

—m(y) + 5 + —— +w(@p)

is bounded above by a constant which depends only on r. By the previous lemma

t+1
w(@wpy) = m(@py) — —5—
so that P41
m s T—m m T
m(y) + ) + 5 + w(wiy) < 5 + 5 5

Suppose the Cartan subalgebra By corresponds to the algebra E. Once the measure yg on E
has been chosen we can form the measure x5 on Br and the measure wp on Br \ Gr. Once ug and
therefore up and wp are chosen we let n(Br) be that constant which makes n(Bp)ug self-dual with
respect to the character z — (7(z)) on E.
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Lemma7.3.3 Ifr is a non-negative integer there is a constant d, such that for any Cartan subgroup
Br and any b in Bp

|l b)wnlo) < don(Br) 50)
We may again suppose that b belongs to EF. If Br is anisotropic the left side is equal to

1
measure(Zp \ Br)

/ xr (g~ "bg) W’ (9).
Zp\GF

Suppose By corresponds to the quadratic extension E. If £//F' is unramified

1
n(Br)

measure(Zs \ Bp) = (1+|wr|)

because n(Br)ug assigns the measure 1 to Og. If E/F is ramified n(Bp)ug assigns the measure
\wF\% to Og and

|wp| 2 = c(BF)

measure(Zp \ Br) = n(Br)

In these cases the assertion is therefore a consequence of the previous lemma.

If the inequality of the lemma is true for one Cartan subgroup it is true for all conjugate subgroups.
To complete the proof we have to verify it when By is the group Ag of diagonal matrices. Since we are
now dealing with a fixed Cartan subgroup the choice of Haar measure on Br \ G is not important.
Moreover GL(2,0r) T, GL(2,0Fr) = T, so that, using the lwasawa decomposition and the associated
decomposition of measures, we may take the itnegral to be

Joe(lo )G 5)Go))
= (5 5)
(550G ")

Changing the variables in the integral we obtain

g foe (5 5) (0 7)) e

Let |a| = wr|, |B| = |@r|™ and |z| = |r|™. With no loss of generality we may suppose |a| > |3|.

If n > 0 the elementary divisors of
a 0 1 =z
0 g 0 1

The argument in the integrand is
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are wh. and w? so that it is in 7;. if and only if m — £ < r. If n < 0 its elementary divisors are ™"

and wy " " sothatitisin 7, if and only if m — ¢ — 2n < r. Thus the integral is at most

m—L—r

measure{z | |z| < |wp|” 2}

which is, apart from a factor depending on the choice of the Haar measure, |cwop| == Since

m—~L—r

el = |2 o

and

the lemma follows.

We return to Lemma 7.3 and prove first that £ is bounded away from zero on each compact
subset C'. In other words we show that there is a positive constant ¢ such that £(h) > con C. There is
a z in Z such that every matrix in zC has integral entries. Since £(zh) = £(h) we may as well assume
that every matrix in C'itself has integral entires. There is a constant ¢; > 0 such that

\deth\}/Q >

on C'and a constant ¢, such that
[7(h)? = 4v(h)[/? < c3
on C. T and v are the trace and determinant of A. Thus

5—1/2(h) > ﬁ
C2

on C. £(h) is certainly bounded away from 0 on the singular elements and the preceding inequality
shows that it is bounded away from 0 on the regular elements in C' which lie in a split Cartan subalgebra.
Suppose h is regular and lies in the anisotropic Cartan subgroup Br. Let Br correspond to the field £
and let h have eigenvalues v and 7 in E. Then

_ 1 +
(v = 9)2(7% e(Br) = || [wp| T = |wp| 0
Since w(y) > 0 we have £(h) > ¢;.

The function ¢ is certainly measurable. It is locally integrable in G if and only if it is locally
integrable on Zr \ Gr. Let C be acompact setin Zr \ Gr. We have to show

/ xe(9) €9)«°(9)
Zp\Gr

is finite. As usual it will be enough to show that

/ 2o (9) €(9) < (9)
Zp\GF



Chapter 1 130

is finite for every non-negative integer r. According to formula (7.2.2) this integral is the sum of

1 -1
§/ZF\AF &(a)é(a) {/AF\GF Xr(9~ " ag) wA(g)} 1 ()

and
1

b . /ZF\BF §(b) 4(b) {/BF\GF xr(97"bg) wB(g)} 15 (D).

BpeS’

It is easy to see that there is a compact set Cy in Zr \ Ag such that x,.(g71ag) = 0 for all g unless
the projection of a lies in Cj. Thus the first integral need only be taken over Cy. The inner integral is
at most d,n(Ar) §(a)~/2. Since £(a) §(a) §(a)~/? = 1 on Ap the first integral causes no trouble. We
can also use Lemma 7.3.3 to see that the sum over S’, which is by the way a set of representatives for
the conjugacy classes of anisotropic Cartan subgroups, is less than or equal to

S Y den(Br)e(Br) / 19, (5).

BreS’ ZF\BF

If the characteristic is not two this sum is finite and there is no problem.

In general if Br corresponds to the field £ and p}E“ is the discriminant of E we have ¢(Bp) =

tp+
2

| p| * and

n(Br) / 10, (B) < 2foop| (52
ZF\BF

To complete the proof we have to show that

D Jwrl=

E

is finite if F' has characteristic 2. The sum is over all separable quadratic extensions of F'. Let M (t) be
the number of extensions E for which ¢ = t. Associated to any such F is a quadratic character of F'*
with conductor pit. Thus

M(t) < [F* - (F*)*(1+pg )] = 2[Up : Up(1 +p5 )]

ift > 0. Of course M (—1) = 1. Any element of Ur is congruent modulo 1 + p%* to an element of the
form
ag +a1wp + - —l—atw%.

Such a number is a square if a; = 0 for ¢ odd. Thus

t41

M(t) = 0(jewr|[~7=")

and the series converges.
We can now begin the study of characters.
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Proposition 7.4 The character of an absolutely cuspidal representation exists as a locally integrable
function whose absolute value is bounded by a multiple of &. It is continuous on Gp U Gp.

If the character . of 7 exists and x is a quasi-character of F'* then the characterof 7’ = xy @ 7
also exists and x./(g9) = x(detg) xx(g). Thus the proposition has only to be proved for unitary
representations m. 7 is then square integrable and we can make use of the following lemma for which,
although it is well-known, we provide a proof.

Lemma 7.4.1 Let f belong to Hpr and let u be a vector of length one in the space on which the
absolutely cuspidal unitary representation m acts. Then

Ten(f) = d(e) | » { [ 1) (rla g an} dg

if d(m) is the formal degree of .
Let @) be the operator
w(f)= [ Fh)ym(hydn.

GFr

Let {v; } be an orthonormal basis of the space on which 7 acts. All but a finite number of the coefficients
Qij = (Qui,vj)

are zero. We have
(m(g™") Qm(9)u, u) = (Qm(9)u, 7(g)u)
The right side equals

> (Qn(g)u, vi) (vi, m(g)u)

%

ZZ u , Uy sz(vza (g)u)

In both series there are only a finite number of non-zero terms. Thus

which in turn equals

/ZF\GF (m(g™") Qm(9)u, u) dg = ;jS / (7(g)u, v;) (vi, 7(g)u) dg

ZF\GF

The integrals on the right exist because the representation is square-integrable. Applying the Schur
orthogonality relations we see that the right side is equal to

ZQZ] ’UZ,U] ZQ’L’L: —TI‘?T(f)

Since

(n(g™) Qn(gu.u) = [ f(h) (x(g™") (k) w(g)u, u) dh

GFr

the lemma follows.
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Observe that the integral of the lemma is an iterated and not a double integral. It is the limit as
r approaches infinity of

/ ; { [ 100 (vt ko) dh} dg

Since T is compact this integral is absolutely convergent and equals

/GF fh) { /T; (w(g " hg)u,u) dg} dh.

To prove the first part of the proposition we show that the sequence of functions
orlh) = [ (x(g " hg)usu)dg
T

is dominated locally by a multiple of £ and converges almost everywhere on Gr. We shall set

Xr(h) =d(m) lim ¢, (h)

T—00

whenever the limit exists.
When proving the second part of the proposition we shall make use of the following lemma.

Lemma7.4.2 Let Cy be a compact subset of ép and let Cy be a compact set in Gp. The image in

Zr \GF of
{9€Gr|g 'Cign ZrCy # 0}

18 compact.

The set is clearly closed so we have only to show that it is contained in some compact set. We
may suppose that GL(2,0r) Co GL(2,0F) = Cs. Let

(o oz B 0
g‘(Ol)(OLﬁh
g 'CigN ZpCy # 0

a z\ " a oz

(5 ) e (s D)nmeren

We have to show that this condition forces « to lie in a compact subset of £ and x to lie in a compact
subset of F'. Since

with hin GL(2,0F). Then

if and only if

det(g cg) = dete

we may replace Zr Cy by the compact set

C3 = {h € ZrCy ‘ deth € detC’l}.
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(¢ 0)

be a typical element of C';. The entry c is never 0 on C; and therefore its absolute value is bounded

below,
~1
o T a b a z\  [a—zxc Y
<0 1) <c d)(() 1>_< co C:U—i-d)'

The number y is of no interest. The matrix on the right cannot lie in C; unless |cz + d| is bounded
above by some number depending on Cs. Since |d| is bounded above and |c| is bounded below z is
forced to lie in some compact set Q2 of F'. If C} is the compact set

{<é-f>h<éj>\xeghecg

we have finally to show that if
a0 a 0
<o 1>@<o1>ﬂ@#0

then « is forced to lie in a compact subset of F'*. We now let

(¢ 4)

be a typical element of Cy. On C, both |b| and |c| are bounded blow. Since

a 0 a b a0\ _[a bla
0 1 ¢ d 0 1) \eca d
and all matrix entries are bounded above in absolute value on Cj5 the absolute value |«| must indeed
be bounded above and below.
If m acts on V' then for any w in V' the support of the function (7(g)u, u) has been shown, in the

second paragraph, to be compact modulo Zr. Let C be its compact image in Zr \ Gp. Let C; be a
compact subset of G . By the previous lemma the set of g in G such that

(W(g_lhg)u, u) #0

for some h in Cy has animage in Zr \ G which is contained in a compact set C,. Therefore the integral

Let

/ (W(g_lhg)u,u) dg = / (W(g_lhg)u,u) dg
Zp\GF

Ca

is convergent for i in C;. Moreover if r is large enough 7} contains C> and
ol = [ (g hg)u,u)dg.
Z\GF

Therefore the sequence {¢, } converges uniformly on any compact subset of G- and its limit d— () x (h)
is continuous on G'r. We may state the following proposition.
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Proposition 7.5 If h belongs to ép then

/ (m(9~ " hg)u,u) dg

exists and is equal to d=* () xx(h).

Since
[(7(g)u,u)| < xc(g)
it follows from Lemma 7.3.2 that, for some constant c,

lor(h)] < c€(h)

on (~¥F. The set @F — @F is /T%f which is open. To complete the proof of Proposition 7.4 we show that
on the intersection of /Tﬁ with a compact subset of G the sequence {,.} is dominated by a multiple
of £ and that it converges uniformly in a compact subset of Eg.

Let C5 be a compact subset of Gg. Any hin /Alp may be written in the form

_ 1 —=z a 0 1 =z
et (o ) (6 5) (0 )

where h; belongs to GL(2,0F) and a # (3. In C3 N 22:‘ the absolute values of « and 3 are bounded
above and below. If C5 is contained in A% the absolute value of 1 — g is also bounded above and below

on C'3. Since
()G D6 D-GRE )

the absolute value of x will be bounded above.
Since GL(2,0r) T, GL(2,0F) = T, the integral which defines ¢,.(h) is equal to

/T/ (ﬂ'(g_lh'g)u,u) dg

T

(3 )3 )

and we may as well assume that A itself is of this form. We are going to show that there is a constant ¢
such that

(i)l < e - 2|

for all  and all such h and that the sequence {, } converges uniformly if z remains in a compact subset
of Fand o, fand 1 — g remain in a compact subset of F'*. Then the proof of the proposition will be
complete.

The stabilizer of u is some open subgroup U of GL(2,0F). Let hy,---,h, be a set of coset
representatives for GL(2,0r)/U and let u; = w(h;)u. apart from an unimportant factor coming from

the Haar measure ,.(h) is given by
p
> wi(h)
=1
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N (CRUNCRD NP

The integral is taken over the set of all those v and x; for which

7T
0 1
belongs to 7... Since

o) G )= )

we can change variables in the integral to obtain

T ()| CR ) o PP

The integration is now taken over all those x; and ~ for which

<g (- ?—1“”1> (7.4.4)

with

isinT,.

Let |1 — Z| = |wp[', |y| = |wr|™ and |z| = |wF|". Let wh and @ be the elementary divisors
of the matrix (7.4.4). We now list the possibilities for p and ¢ together with the condition that the matrix
belong to T, that is that ¢ — p be at most r.

@m>0,—-t+m+n>0,p=0,g=m:0<m<r

by m>0,-t+m+n<0p=—t+m+ng=n—t:—r<m+2n—2t¢

e m<0,—t+m+n<mp=—t+m+ng=n—=t:—r<m+2n-—-2¢

d m<0,—t+m+n>m,p=m,q=0:—r <m<0.
These conditions amount to the demand —r < m < r and that 2n > 2t — r — m. On the other hand
we know that there is an integer s such that

T
|z|<|wrl|
forl1 <i:<pifj <s.

Thusif |y| = |[wwp|™ the integral

a 0 1 7—1(1—§)”+:’“’1 o
JE(G5) 6 0w an
taken over all x1 for which
v (1-2)n
0 1

isin T, is zero if 2t — r —m < 2s. Therefore in (7.4.3) we need only take the integral over those v and z
m-4r

for which |y| = |wp|™ with 0 < m, < 2(t — s) and |z| < |wp|'~ "2 . We should also have m < r but
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since we are about to replace the integrand by its absolute value that does not matter. For each such

the integration with respect to x gives a result which is bounded in absolute value by a constant times
\wF\t‘mTM. Integrating with respect to v we obtain a result which is bounded in absolute value by a

constant times
2(t—s)—1

o
_k k
jwrl' > el <|wp* ) |wr|?

k=0 k=0
The right side depends on neither r nor t.
The value of |1 — 2|pi(h) is

[l )8 =709 o s

The integration is taken over those v and x; for which |y| = |wp|™ with 0 < m < 2(t — s) and
|z| < |wr|t~%. Of course |1 — §| = |wr|t. Since we are now interested in a set of o and 3 on which
t takes only a finite number of values we may as well assume it is constant. Then the integral is taken
over a fixed compact subset of F' x F'*. The integrand converges uniformly on this set uniformly in
the «, 8 and z under consideration as r approaches infinity.

We have still to prove the existence of the character of a representation which is not absolutely

cuspidal. Most of them are taken care of by the next proposition.

Proposition 7.6 Let j11 and gz be a pair of quasi-characters of F*. Let X, u, be the function which
is 0 on Gp N GR, undefined on the singular elements, and equal to
af 1/2

{pa(a) pa(B) + p2(8) pa() } (a— B)2

at an element of g of ﬁg with eigenvalues o« and 3. Then X, ., 5 continuous on @F and s
dominated in absolute value by some multiple of §. Moreover if m = p(pu1, pi2)

Tra(f) = /G X o (9) 1() dg

for all f in Hp.

Only the last assertion requires verification. Since the absolute value of x,,, ,, is bounded by a
multiple of £ the function x,, ,., is locally integrable. Suppose f belongs to H{z. When applied to the
function x,, ., f the relation (7.2.1) shows that

/ X2 (9) f(g) dg (7.6.1)

F

is equal to
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Since x,, ., is a class function this may be written as

! {1 () pa(B) + p2(a) pa(B)}

2 Jap

(o — B)?
af

- {/AF\GF flg™ <g g) 9) dg} da

Since a is conjugate to

we have

Joa? (6 5)0) =], 167 (5 2)5) o0

Thus (7.6.1) is equal to
1/2 o 0
{/A \G f <g_1 <0 5) g> dg} da. (7.6.2)

As long as the measure on Ar \ G is the quotient of the measure on Gz by that on A the
choice of Haar measure on Ar and G is not relevant. Thus we may write (7.6.2) as
(a—p)?

1/2 0
3 <f (k;—ln—l (g‘ ﬁ> nk) dkdn} da.

The inner integral is taken over GL(2,0p) X Np. If

(o 1)
(5 )05 6 M)

Changing variables in the last integral we obtain

/AF pa (@) p2(6) !% 12 {/f <k:‘1 <‘5‘ g) nk) dkdn} da. (7.6.3)

To evaluate Tr 7( f) we observe that if ¢ belongs to B(u1, 12) then, if k1 isin GL(2,0F)

(o —B)?

[, m@ ) |

/ 1 () 12 (9)
Afp

then

w(f) k) = / o(k19) f(g) dg.

GFr

Replacing g by kl_lg and writing the integral out in terms of the Haar measure we have chosen we

obtain
/GL@,OF) o) {/f(kl_l (g g) nkz)pa(a) m(ﬂ)\%w? dadn} dks.
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The inner integral is taken over Ar x Ng. We have of course used the relation

e (6 5) ) = mi@me)15 2ot

_ 0 o 1/2
K(ky,ke) = /f (kl ! <g 5) nk2> w1 () pe () ‘E / da dn
then
wOeth) = [ Kl ke) () di,
GL(2,0F)

B(p1,pn2) may be regarded as a space of functions on GL(2,0r). Then 7(f) is the integral
operator with kernel K (k;, k). It is easily seen that this operator, when allowed to act on the space
of all GL(2, Op)-finite functions on GL(2,OF), has range in B(u1, u2). Thus the trace of = (f) is the
same as the trace of the integral operator which is of course

/ K (k, k) dk.
GL(2,0F)

When written out in full this integral becomes (7.6.3).

Theorem 7.7 Let w be an irreducible admissible representation of Hp. There is a function X which
is continuous on G and locally bounded in absolute value of Gg by a multiple of & such that

Ten(f) = /G x=(9) (g) dg

for all f in Hp.

The theorem has only to be verified for the one-dimensional and the special representations. If ©
is a one-dimensional representation associated to the quasi-character x we may take x(g) = x(detg).
X~ is locally bounded and therefore, by Lemma 7.3, locally bounded by a multiple of €.

Suppose 71, ™o and w3 are three admissible representations of F' on space Vi, V5, and V3
respectively. Suppose also that there is an exact sequence

0—-Vi—-Vo—>V3 -0
of Hp-modules. If f isin H all the operators 71 (f), m2(f) and 73 ( f) are of finite rank so that

Trmo(f) = Trmi(f) + Trms(f).

Thus if xr, and x,, exist so does x,. Applying this observation to w5 = o (1, p2), m2 = p(u1, ),
and m; = m(u1, o) We obtain the theorem.

If I is taken to be the real or complex field Theorem 7.7 is a special case of a general and difficult
theorem of Harish-Chandra. The special case is proved rather easily however. In fact Proposition 7.6
is clearly valid for archimedean fields and Theorem 7.7 is clearly valid for archimedean fields if 7 is
finite-dimensional. There remains only the special representations and these are taken care of as before.
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§8. Odds and ends  In this paragraph various facts which will be used in the discussion of the constant
term in the Fourier expansion of an automorphic form are collected together. If H is a locally compact
abelian group a continuous complex-valued function f on H will be called H-finite or simply finite if
the space spanned by the translates of f is finite dimensional.
Let H be a group of the form
H=HyxZ" xR"

where H, is compact. We regard Z™ x R™ as a subgroup of R™*". The projection

& th=(ho,T1, , Tmgn) — T

may be regarded as a function on H with values in R. If p;, -+, py4+n IS @ Sequence of non-negative
integers and Y is a quasi-character we may introduce the function

m+n

x [[ &
=1

on H.

Lemma 8.1 For any sequence pi,--+,Pmin and any quasi-character x the function XH?:{” & s

continuous and finite. These functions form a basis of the space of continuous finite functions on
H.

If x is a fixed quasi-character of H and p is a non-negative integer let V(x,p) be the space

m—+n

spanned by the functions x [];-}" &7 with 0 < p; < p. Since it is finite-dimensional and invariant
under translations the first assertion of the lemma is clear.
To show that these functions are linearly independent we shall use the following simple lemma.

Lemma8.1.1 Suppose Fq,---, E,. arer sets and Fy,---F, are linearly independent sets of complex-
valued functions on FEn,---, E, respectively. Let F be the set of functions

(@1, 20) = fi(@) fo(za) -+ frlzr)

on E1 X -+ X E,.. Here f; belongs to F;. Then F is also linearly independent.

Any relation

Z a(fla"'7f’r‘)f1(xl) fr(ﬂfr) =0
flv"'vf’r

leads to
Z Z (I(f17"‘7fr) fl(xl) fr—1($r—1) fr(l“r) =0
fr f17'”7f’r‘71

As F,. is linearly independent this implies that

Yo alfi fo) Aulan) o froa(@eo) =0
fiyfroa

and the lemma follows by induction.
m-+n

To show that the functions x []/]" & span the space of continuous finite functions we use
another simple lemma.
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Lemma 8.1.2. Let Hy and Hy be two locally compact abelian groups and let H = Hy X Hy. Then
every continuous finite function f on H is a finite linear combination of the form

f(z,y) = Z)‘i vi(z) Yi(y)

where the w; and Y; are continuous functions on Hi and Hy respectively.

Let V' be any finite dimensional space of continuous functions on H. We associate to any point
€ in H the linear functional f — f(£) on V. Since no function but zero is annihilated by all these
functionals we can choose &1, - - -, §,, so that the corresponding functionals form a basis of the dual of
V. Then we can choose a basis fi, - - -, f, of V so that f;(§;) = d;;.

Now suppose V is invariant under translations. It could for example be the space spanned by
the translates of a single finite continuous function. The space V; of functions ¢ on H; defined by
o(z) = f(x,0) with f in V is finite dimensional and translation invariant. Therefore the functions
in it are finite and of course continuous. We define V5 in a similar manner. If f is in V the function
h — f(g+ h)is, forany gin H,also in V. Thus

flg+h)= Z)\i(g) fi(h).

Since

Xilg) = flg+&)
the function \; belongs to V. If p;(x) = A\;(z,0) and ¥;(y) = fi(0,y) then

Fla,y) = wilx) vily)

as required.

These two lemmas show that we need prove the final assertions of Lemma 8.1 only for H
compact, H = Z,or H = R.

Suppose H is compact. If we have a non-trivial relation

Z ai xi(h) =0
i=1
we may replace h be g + h to obtain
Z a; xi(g) xi(h) = 0.
=1

If such a relation holds we must have r > 2 and at least two coefficients say a; and a, must be different
from zero. Choose g so that x1(g) # x2(g). Multiplying the first relation by x; (¢g) and subtracting the
second relation from the result we obtain a relation

=2
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Since ba = {x1(g9) — x2(g) a2 the new relation is non-trivial. The independence of the quasi-characters
can therefore be proved by induction on r.

To prove that when H is compact the quasi-characters span the space of finite continuous
functions we have just to show that any finite-dimensional space V' of continuous functions which is
translation invariant is spanned by the quasi-characters it contains. Choose a basis { f;} of " as before

and let
p(g) fi = Xij(g) £

We saw that the functions \;;(g) are continuous. Thus the action of H on V' by right translations is
continuous and V' is the direct sum of one-dimensional translation invariant spaces. Each such space
is easily seen to contain a character.

When applied to a locally compact abelian group the argument of the previous paragraph leads
to weaker conclusions. We can then find subspaces V4, - - -, V,. of V and quasi-characters x;, - - -, x,- of

H such that .
V=> eV
=1

and, for every hin H, _
{p(h) = xi(R)} Y

annihilates V;. Now we want to take H equal to Z or R. Then H is not the union of a finite number
of proper closed subgroups. Suppose w1, -- -, o are quasi-characters of H and for every h in H the
operator

[T{p(n) = pa(n)} (8.1.3)
=1
on V is singular. Then for every h in H there isan i and a j such that 1;(h) = x;(h). If

Hij = {h|pi(h) = x;(h)}

then H;; is a closed subgroup of H. Since the union of these closed subgroups is H there must be an
vand a j such that H,;; = H and p; = x;. If the operator (8.1.3) were zero the same argument would
show that for every j there is an ¢ such that ;; = x;.

If u is a quasi-character of H, now taken to be Z or R, we let V'(u, p) be the space spanned by the
functions 1 &%, with 0 < i < p. £ is the coordinate function on H. Itis clear that V (1, p) is annihilated
by {p(h) — p(h)}P™1 for all hin H. Suppose u, 1, - - - , ji2 are distinct and

s

V =V(u,p) Z V(pispi)

=1
is not zero. Decomposing V' as above we see that x1, - - -, x,- must all be equal to 1 on one hand and

on the other that every p; is a x;. This is a contradiction. Thus if there is any non-trivial relation at all
between the functions y £ where x is any quasi-character and ¢ is a non-negative integer there is one

of the form .
Z a; Hfi = 0.
i=0

Since the polynomial Zf:o a; £ would then have an infinite number of zeros this is impossible.
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To prove the functions & span the space of finite continuous functions we have only to show
that if y is a given quasi-character and V is a finite-dimensional space of continuous functions which is
invariant under translations and annihilated by {p(h) — x(h)}¥™V for all 4 in H then every function
in V is the product of y and a polynomial. Since we can always multiply the functions in V by y~*
we may as well suppose that x is trivial. We have only to observe that any function f annihilated by
the operator {p(h) — 1}" for all h in H is a polynomial of degree at most n. This is clear if n = 1 so
by induction we can assume that p(h)f — f is a polynomial Z?:_Ol a;(h) &', We can certainly find a
polynomial f’ of degree n such that

and we may as well replace f by f — f’. The new f satisfies p(1)f = f. It is therefore bounded.
Moreover p(h) f — f isabounded polynomial function and therefore a constant ¢(h). ¢(h) is a bounded
function of h and satisfies ¢(hy + ha) = c¢(h1) + c(h2). Itis therefore zero and the new f is a constant.

Lemma 8.1 is now completely proved. Although it is trivial it is important to the notes and we
thought it best to provide a proof. We might as well prove Lemma 2.16.4 at the same time. Let B be
the space of all functions f on Z such that for some n, depending on f we have f(n) = 0 for n < ny.
Let Ay be the space of functions on Z which vanish outside a finite set. Z acts on B and on Ay by
right translations and therefore it also acts on B = B/A,. In particular let D = p(1). We have merely
to show that if P is a polynomial with leading coefficient 1 then the null space of P(D) in B is finite
dimensional. If

P(X)=J[(X - a;)”
=1
the null space of P(D) is the direct sum of the null spaces of the operators (D — ;). The null space
of (D — «)? is the image in B of the functions in B which are zero to the left of 0 and of the form

n—a"Q(n)

to the right of 0. @ is a polynomial of degree at most p.

Lemma 8.1 is certainly applicable to the direct product of a finite number of copies of the
multiplicative group of a local field F. If H = (F*)™ any finite continuous function on H is a linear
combination of functions of the form

flwy,---w) = [ [{a(es) (log ] #)™ ).
=1
Let B = Br be the space of continuous functions f on Gz which satisfy the following three
conditions.
(i) f is finite on the right under the standard maximal compact subgroup K of Gr.
(ii) f isinvariant on the left under Ng.
(iii) fis Ap-finite on the left.
B is invariant under left translations by elements of Agr. If f isin Bg let V be the finite-dimensional
space generated by these left translates. Choose g1, - - - , g, in G so that the linear functions ¢ — ¢(g;)
are a basis of the dual of V and let fi, - - -, f, be the dual basis. If a is Ar we may write

p

fla,g) = Zei(a) fi(g)-

i=1
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Then
0i(a) = f(ag;)
so that

f] bgz

||M~a

Thus the functions 6; are continuous and finite. We may write them in the form

=D o Hl1) v(az) (log |ar )™ (log az|)"

@ = aq 0
- 0 (05)] ’

The sum is over all quasi-characters x and v of F* and all non-negative integers m and n. Of course
only a finite number of the coefficients ¢ are different from zero.

m,n, vV
1/2

We may replace ;. by o " and v by aFl/Qu in the sum. Thus if

P
fm,n,u,u - cm,n,/,L,V fZ
i=1

we have

aq

p~ Zum ) (log a1 )™ (10g |02)" Fonmop (). (8.2)

flag) =

Let M be a non-negative integer and S a finite set of pairs of quasi-characters of F*. B(.S, M) will be
the sset of f in for which the sum in (8.2) need only be taken over those m, n, i1, v for whichm+n < M
and (u,v) belong to S. Observe that the functions f,, , ... are determined by f. B is the union of the
spaces B(S, M); if S consists of the single pair (y1, i2) we write B(p1, pio, M) instead of B(S, M). If
Fisin (uy, 2, M)

1/2

pi(en) pa(az) D (loglar|)™ (log az])™ fmn(9)-

€3]

flag) = |—

Qo

The space B (1, 2, 0) is just B(uq, p2).

The functions f,, ... are uniquely determined and by their construction belong to the space
spanned by left translates of f by elements of Ar. Thus if f belongs to B(.S, M) so do the functions
fm,mup- We want to verify that f; o .., belongs to B(u, v, M). If

- (5 4)
0 f
and we replace a by ab in the relation (8.2) we find that

o
— Zu ar) v(az) (loglaa|)™ (loglaz])™) fim,np.

Qg
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is equal to

1/2

UL S i Br) s B2) (og o | + 1og | B2l)™ (10g aa| + 108 [B2])" Fonn o (9):

o 3o

Fix b and g are regard this equality as an identity in the variable a. Because of Lemma 8.1 we can
compare the coefficients of the basic finite functions. The coefficient of 1(a1)v(a2) on one side is
f0,0,,-(bg). On the other it is

Bi |

% Y u(Br)v(Ba) (log|Bi))™ (log|B2)" funnua(9).

m+n<M

The resulting identity is the one we wanted to verify.
Taking a = 1 in (8.2) we see that

f(g) = Z J0,0,,0(9)-

(n,v)eSs

Therefore
B(S,M)= > B(p,v,M).

(n,v)€S

The sum is direct.
It is fortunately possible to give a simple characterization of B.

Proposition 8.3 Let ¢ be a continuous function on Gr. Assume ¢ is K-finite on the right and
invariant under Np on the left. Then @ belongs to B if and only if the space

{p(f) e f € HF}

18 finite dimensional for every elementary idempotent in Hp.

We have first to show that if ¢ belongs to B

{p(&f)e| f e Hr}

is finite dimensional. ¢ belongs to some B(S, M). Both B and B(S, M) are invariant under right
translations by elements of 5. Thus we have only to show that the range of p(&) as an operator on
B(S, M) is finite dimensional. This is tantamount to showing that any irreducible representation of K
occurs with finite multiplicity in the representation of B(S, M).

Let o be such a representation and let V' be the space of continuous functions on K which
transform according to o under right translations. V' is finite dimensional. If f isin B(S, M) we may
write
aq

1/2
f(ag) > u(ar) v(az) (loglax])™) (loglaz])™ fum,n.puu(9)

Qo
The restriction of f,, , .. to K liesin V. Call this restriction f,, ,, ,..,. Moreover f is determined by its
restriction to A K. Thus

F= Y. Ofmmpuw

(pn,v)es
m4n<M
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is an injection of the space of functions under consideration into the direct sum of a finite number of
copies of V.

The converse is more complicated. Suppose ¢ is K-finite on the right, invariant under Nz on
the left, and the space

{p(&f) e| f € Hr}

is finite dimensional for every elementary idempotent £. Choose ¢ so that p(e)¢ = ¢. There is actually
a function f in ¢H & such that p(f)e = . If F is non-archimedean ¢ is itself a function so this is clear.
If £ is archimedean we observe that if f; is an approximation to the d-function then p( f;) is close to
. Then if f{ = & x f1 = £ the function f] is in EH & and p(f])y is also close to . The existence of
f then follows from the fact that p({Hr&)p is finite dimensional. This argument was used before in
Paragraph 5.

Take F' to be archimedean. Then ¢ must be an infinitely differentiable function on Gr. Let 3 be
the centre of the universal enveloping algebra of the Lie algebra of Gg. If Z isin 3 then

p(Z2)p = p(Z) p(f)p = p(Z* f)p

and Z x fisstill in EHr&. Thus ¢ is also 3-finite. For the rest of the proof in the archimedean case we
refer to Chapter | of [11].

Now take F' non-archimedean. We may replace £ by any elementary idempotent & for which
&'¢ = £ Inparticular if we choose n to be a sufficiently large positive integer and let K’ be the elements
of K which are congruent to the identity modulo p™ we may take

§=> &

where the sum is over all elementary idempotents corresponding to irreducible representations of K
whose kernel contains K’. Notice that n is at least 1. Then £J £ is the space of functions on G which
are constant on double cosets of K’.

Let V' be the space spanned by the functions p(k)p with & in K. It is finite dimensional and all
the functions in V satisfy the same conditions as ¢. Let ;, 1 <7 < p, be a basis of V. If k belongs to

K we may write
p

p(gk) = 0i(k) or(g)

i=1
and ¢ is determined by the functions 6; and the restrictions of the functions ¢; to Ar. To show that ¢
is Ap-finite on the left we have merely to show that the restriction of each ¢; to A is finite. We may
as well just show that the restriction of ¢ to Ap is finite.
Suppose fisin {Hpg and p(f)e = ¢. If aisin Zp then

Ma)p = pla™')p = p(8,-1 % [

if §,-1 is the §-function at a=. Since §, -1 * f is still in £H £ the function ¢ is certainly Zx-finite and
so is its restriction ¢ to Ap. If « and 3 are units and oo = 3 = 1(mod p”) then

(6 5)e=e
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Thus the translate of ¢ by the elements of A; N K span afinite dimensional space and if z is a generator
of p we have only to show that the translates of ¢ by the group

(3 Hlber

span a finite-dimensional space. Suppose the span W of

P ) ele=of
(% 0)

maps W into itself and annihilates no vector but zero so that it has an inverse on W which must be
w 0
(5 0)

Thus W is invariant under H and ¢ is finite.
To show that W is finite dimensional we show that if

(@ 0
“=\ o 1

with p > 0 there is a function f, in £ € such that

is finite dimensional. Then

Ma)p =&’

if o = p(fa)p. Thereisan f in EHpE such that

If f1(h) = f(ah) the integral is equal to

/ (b fo(h) dh.
GFr

If f1 were in £H & we would be done. Unfortunately this may not be so. However f;(hk) =
fi(h) if k belongs to K. If
_ (o 0
b <7 5)
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Fi(kh) = f <<w<;;7 w;%) ah>.

Thus fi(kh) = fi(h)ifa =6 =1 (mod p™), v = 0 (mod p™), and 3 = 0 (mod p™*?). Set

(DR

where the Haar measure is so chosen that the measure of the underlying space p™/p™*? is 1. Since
p(bnh) = p(bh) for all n in Np

then

Aa) @(b) = /G (B1) folh) dh.

We show that f5 lies in EH €.
Certainly fo(hk) = fo(h) if kisin K'. Moreover, because of its construction, fo(kh) = fa(h) if

- (5 2)

with « = § =1 (mod p™) and 3 = 0 (mod p™). Since every element of K’ is a product

()6 )

where both terms lie in K’ we have only to show that f; is invariant under the first factor. If

10
k_<v 1)
1
_(1 o0 oy 0

r(p e (3 )

f1(k1(x)g) = fi(g)-

1 z
// f1<<0 1>kh> dn
o (6 7))
pn/pnte 0 1

with v = 0 (mod p™) and

then

Moreover if z isin Op

Thus f2(kg) which is given by

is equal to



Chapter 1 148

Sincethe map z — lfm is a one-to-one map of the finite set p™ /p™ 7 onto itself it is measure preserving
and the above integral is equal to fa(h).

Analyzing the above proof one sees that in the non-archimedean case the left translates of ¢ are
contained in the space X obtained by restricting the functions in p((Hr&)p to Ap. Thus if Y is the
space of the functions on K/ K’ the left translates of ¢ by elements of A are contained in the space of

functions on Np \ G of the form

¢'(ak) = 0i(k) pi(a)

with 6; in Y and ¢; in X.

In the archimedean case Y is the space of continuous functions 6 on K for which §x& = £x60 = 6.
It is again finite dimensional. X is defined in the same way. In this case there are a finite number of
invariant differential operators Dy, - -, D, on A such that the left translates of p by elements of Ar
are contained in the space of functions Ny \ Gz of the form

¢'(ak) = 0i(k) pi(a)

with 0; inY and ¢; in 377, D; X.

There is a corollary of these observations. Let Fi, - - -, F;, be a finite collection of local fields. Let
G; =Gp,, N; = Np,, A; = Ap,, and let K; be the standard maximal compact subgroup of GG;. We set
G =11"-,Gi, N =[[—, N; and so on. If H; = Hp, we let KX = ®;3;. H may be regarded as an
algebra of measures on G.

Corollary 8.4 Let ¢ be a continuous function on N \ G which is K -finite on the right. If for every
elementary idempotent £ in H the space

{p(Ef)pl f eI}

is finite dimensional @ is A-finite on the left.

If © satisfies the conditions of the lemma so does any left translate by an element of A. Thus we
need only show that ¢ is A;-finite on the left for each i. If g is in G we write g = (g;, g;) where g; isin
G;and G isin G; = [1;. G- We may suppose that there is a ¢’ of the form ¢’ = ®;£; where £ is an
elementary idempotent of H; such that p({')¢ = . By means of the imbedding f — f ® [];, §; the
algebra H; becomes a subalgebra of J{. The left translates of o by A; all lie in the space of functions of
the form

plaiki, g1) = Z 0; (ki) ¢(ai, g1)
J

where 6, lie in a certain finite dimensional space determined by &, and the ¢, lie in the space obtained
by restricting the functions in p(&3;)p to A; X C:*i or, in the archimedean case, the space obtained from
this space by applying certain invariant differential operators. & is a certain elementary idempotent
which may be different from &!.

With the odds taken care of we come to the ends.
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Proposition 8.5  Let B(u,v,00) = U 50 B(w, v, M). If an irreducible admissible representation m of
Hr is a constituent of the representation p(u,v,00) on B(u,v,00) it is a constituent of p(p,v).

There are two invariant subspaces V; and V; of B(u, v, 00) such that V; contains V5 and 7 is
equivalent to the representation on Hz on V; /V5. Choose M so that V4 N B(u, v, M) is not contained
in V5. Since  is irreducible

Vi =Va+ (Vi N B(u,v, M))

and
Vi/Va={Vat+ (ViNB(u,v, M))}/Vz

is isomorphic as an Hr module to
ViNB(u,v, M)/Vo B(u,v, M)

so that we may as well suppose that V; is contained in B(u, v, M).
Given 7 we choose M as small as possible. If M = 0 there is nothing to prove so assume M is
positive. If @ isin B(u, v, M) we can express

(5 0)o)

plar) vlaz) D~ (loglar))™ (loglaz))" wm,n(9)
m4n<M

(5 0) (5 4)9)

in two ways because the second factor can be absorbed into the first or the third. One way we obtain

1/2M(a1)u(a2) Z (log’al\)m(log’m‘)nwm’"<<%1 502>9>

m+n<M

as
a1

@2

We can express

aq

Q2
and the other way we obtain

1/2
S| neipviass) Y (oglar]+log|5i])" (logas] +log|Ge]"or.n9)

m4n<M

On comparing coefficients we see that if m +n = M

Pm,n <<ﬂol ﬂo2> g) = b

Bs
so that ¢, ,, isin B(p, v). Consider the map
p= D Pmn

m-+n=M

@ B(p,v).
m+n=M
Its kernel is V4 N B(u, v, M — 1). Since Vo + (V1 N B(p, v, M — 1)) cannot be V; the image of V4 is not
the same as the image of V;. Since the map clearly commutes with the action of H  the representation
 is a constituent of @, ,,_»; p(11, V).
Proposition 8.5 is now a consequence of the following simple lemma.

1/2

1(B1) v(B2) em.n(9)

of V] into
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Lemma8.6 Suppose 7 is an irreducible representation of an algebra H. Suppose p is a representation
of H of which w is a constituent and that p is the direct sum of the representations px, A € €.
Then m is a constituent of at least one of the py.

Let p) act on X, and let p act on X the direct sum of X . Supose that Y; and Y5 are invariant
subspaces of X and that the representation on the quotient Y; /Y3 is equivalent to 7. There is a finite
subset Ay of A such that

Yin( Z X»)

AEAQ

is not contained in Y2. We may as well replace Y1 by Y1 N (3, o, Xa)and Ya by Yo N (30,5, X») and
suppose that A is finite. If A = {\;,---, A, } we have only to show that  is a constituent of p,, or of
P, & -+ @ py, for we can then use induction. Thus we may as well take p = 2. If the projections of Y}
and Y, on X, are not equal we can replace Y; and Y5 by these projections to see that 7 is a constituent
of p,. If they are equal Y7 = Y5 + (Y7 N X,,) and we can replace Y; and Y5 by Y1 N X, and Yo N X,
to see that 7 is a constituent of p,,.
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Chapter II: Global Theory

§9. The global Hecke algebra.  Let F' be a global field, that is, an algebraic number field of finite degree
over the rationals or a function field in one variable over a finite field. A will be the acele ring of F.
Before studying the representations of GL(2,A) or, more precisely, the representations of a suitable
group algebra of GL(2, A) we introduce some simple algebraic notions.

Let {V\ |\ € A} be a family of complex vector spaces. Suppose that for all but a finite number
of A we are given a non-zero vector ey in Vy. Let V0 be the set of all z = HA Ty in HA V such that
x = ey for al but a finite number of . Let C' be the free vector space with complex coefficients over
V0 and let D be the subspace generated by vectors of the form

{(aYH +0Z,) x H x>\} —a{yu X H x>\} - b{zu X H x,\}.
AFp AFp AFEp

a and b belong to C and p is any element of A. The quotient of C' by D is called the tensor product of
the V,, with respect to the family e, and is written

V= ®6>\V,\

or simply ®V). It has an obvious universal property which characterizes it up to isomorphism. The
image of [ [« in V is written ®x.
If A’ is a subset of A with finite complement we may form the ordinary tensor product

®rer—ar Vi

and we may form
®@xearVa

with respect to the family e). Then ®,ca V), is canonically isomorphic to

{ @ren—n } @ { @ren Va}
If S is a finite subset of A let
Vs = ®@xesV

If S is so large that ey, is defined for A not in S let g be the map of Vs into V' which sends ® yc sz to
{®xreszr} @ {®@agsen}. If S’ contains S there is a unique map ¢g g of Vg into Vs which makes

¥s,s’ ,
Vo ——— Vi

%S\ /SOS’
\%4

commutative. If we use these maps to form the inductive limit of the spaces Vg we obtain a space
which the layman is unable to distinguish from V.

Suppose that for every A we are given a linear map B, of V) into itself. If By ey = ey forall but a
finite number of A there is exactly one linear transformation B of ®V) such that

B :®x)y — ®B)x)
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B isdenoted by ® B,.
For example if Ay, A € A is a family of associative algebras, which may or may not have a unit,
and if, for almost all A, &, is a given idempotent of A, one may turn

A= ®§/\A)\

into an algebra in such a way that
(®a>\)(®b,\) = ®(a,\ b,\).

Let Vi, A € A, be an A, module. If for almost all A a vector ey such that £ ey = e, is given we
may turn V = ®,, V) into an A = ®¢, Ay module in such a way that

(®CL,\)(®$)\) = ®(CL,\ Ji)\)

Suppose the family {e, } is replaced by a family {€/, } but that, for all but a finite number of A, €\, = ) ey
where v is a non-zero scalar. Suppose for example that €}, = «, e, if A is not in the finite set S. There
is a unique map of ®,, V, to ®e; V> which sends

{ ®res 95)\} ® { Xrgs 96,\}

to
{ ®res JJ,\} ® { Xags ax l‘x}

Itis invertible and commutes with the action of A. Moreover apart from a scalar factor itis independent
of S.

Now suppose F' is a global field. A place of F' is an equivalence class of injections, with dense
image, of F' into a local field. If \; takes F' into I} and ), takes F' into F; they are equivalent if there
is a topological isomorphism ¢ of F; with F, such that Ay = ¢ o A\;. The symbol for a place will be v.
If v contains the imbedding A; and a belongs to F' we set |a|, = |\1(a)|. To be definite we let F), be
the completion of F' with respect to the absolute value a — |a|,. v is archimedean or non-archimedean
according to the nature of F,,. Non-archimedean places will sometimes be denoted by p.

If Gr = GL(2, F') we set

G, =Gp, = GL(2,F,).

K, will be the standard maximal compact subgroup of G,,. then G, = GL(2, A) is the restricted direct
product of the groups G,, with respect to the subgroups K,,.

If v is non-archimedean we set O, = Of, and U,, = Ug,. O, is the ring of integers of F;, and U,
is the group of units of O,. Suppose M is a quaternion algebra over F. Let M}, = M, = M' ®@F F,.
For almost all v the algebra M) is split, that is, there is an isomorphism

0, : M, — M(2,F,)
where M (2, F,) is the algebra of 2 x 2 matrices over F,,. For every place v at which M is split we want
to fix such an isomorphism 6,,. Let B be a basis of M over F and let L, be the O, module generated in

M, by B. We may and do choose 6, so that for almost all v

0,(Ly) = M(2,0,).
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If B’ is another basis and {6, } a family of isomorphism associated to B’ then for every place v at
which M splits thereisa g, in GL(2, F,) such that

0,0," =gyag,’

forall a in M (2, F,)). Moreover g, belongs to K, for all but a finite number of v.
Suppose the family of isomorphisms 6, has been chosen. If M/ is split we define a maximal
compact subgroup K/ of G/, the group of invertible elements of M, by the condition
0,(K)) = K,.

If M is not split we set
K, ={x € M;|v(z)|, =1}.

This group is compact. In any case K7, is defined for all v. Since many of the constructions to be made
depend on the family K which in turn depends on the family of 6,, it is very unfortunate that the family
of 6, is not unique. We should really check at every stage of the discussion that the constructions are,
apart from some kind of equivalence, independent of the initial choice of 6,,. We prefer to pretend that
the difficulty does not exist. As a matter of fact for anyone lucky enough not to have been indoctrinated
in the functorial point of view it doesn’t. We do however remark that any two choices of the family of
K lead to the same result for almost all v. G/, is the restricted direct product of the groups G/, with
respect to the subgroups K.

We have now to introduce the Hecke algebras 3{ and H’ of G4 and G/. Let 3, be Hp,. If
M is split G/, isomorphic, by means of 6,, to G, and we let I be the algebra of measures on G/,
corresponding to .. Suppose M is not split. If v is non-archimedean H, is the algebra of measures
defined by the locally constant compactly supported functions on G.. If v is archimedean 3, will
be the sum of two subspaces, the space of measuures defined by infinitely differentiable compactly
supported functions on G/, which are K -finite on both sides and the space of measures on K, defined
by the matrix coeffients of finite-dimensional representations of K.

Let ¢, and €/, be the normalized Haar measures on K, and K. ¢, is an elementary idempotent of
H, and £, is an elementary idempotent of . We set

H= ®sv g{v

and
j‘(:/ = ®6;j{;

If S is the finite set of places at which M/ does not split we may write
H= { Quves :}Cv} b2y { ®U€S :H:U} = :}Cs ®j:fs

and
H = { Rves }C;} 02 { ®v€5’ f}f;} = J—C; ® j:(,s

By construction, if M, is split, 3, and ] are isomorphic in such a way that ¢, and £, correspond.
Using these isomorphism we may construct an isomorphism of 3, and H’. We may also write

Ga={]] G} x{[] Gv} =G5 xGs

veS vegS
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and

a, = { I}« {1 ¢} = G x G

veS v€gS

The second factor is in both cases a restricted direct product. There is an isomorphism 6 : @g — @S

defined by
0(1] 9) =11 069

vgS vgS

We will interpret UTCS and }Ac's as algebras of measures on @S and (A}fg and then the isomorphism between
them will be that associated to 6.

We can also interpret the elements of H and H’ as measures on G and G’,. For example any
element of H is a linear combination of elements of the form f = ®, f,. Let T be a finite set of places
and suppose that f, = &, for v notin T If T’ contains T, on the group

Gaery = { [I Go} x { I K.}

veT’ vET'

we can introduce the product of the measures f,,. Since G4 is the union of these groups and the
measures on them are consistent we can put the measure together to form a measure f on G,. If each
fu is the measure associated to a function then f is also. Such measures form a subalgebra H; and H.
The notion of an elementary idempotent of H or H’ is defined in the obvious way. If £ is an
elementary idempotent of JH there is another elementary idempotent &; of the form & = ®,£, where
&, is an elementary idempotent of H, and &, = ¢, for almost all v so that £, = &.
We shall now discuss the representations of H. A representation « of H on the vector space V'
over C will be called admissible if the following conditions are satisifed
(i) Every w in V is a linear combination of the form > 7 (f;) w; with f; in J;.
(i) If € is an elementary idempotent the range of 7(&) is finite dimensional.
(iii) Let vy be an archimedean place. Suppose that for each v an elementary idempotent &, is given
and that &, = ¢, for almost all v. Let £ = ®,&,. Ifw isin V the map

foo = 7 (fuo @ { Bupay &} )

of £, Ho,&u, iNto the finite dimensional space 7(£)V is continuous.

Suppose that an admissible representation 7, of Hy on V,, is given for each v. Assume that for
almost all v the range of 7, (c,) is not zero. Assume also that the range of 7,(s,) has dimension one
when it is not zero. As we saw in the first chapter this supplementary condition is satisified if the
representations , are irreducible. Choosing for almost all v a vector e, such that 7, (e,) e, = e, we
may formV = ®. V,. Letw be the representation ®,m, on V. Because of the supplementary condition
it is, apart from equivalence, independent of the choice of the e,

7 will be admissible. To see this observe first of all that condition (i) has only to be verified for
vectors of the form w = ®, w,. Suppose w, = e, when v is not in the finite set T" which we suppose
contains all archimedean places. If visnotin T let f, = ¢, so that w, = 7(f,) w,. Ifvisin T let

Wy = Zﬂv(ff;) w-

Then o
w = { ®UET Zﬂv(f;) wfz} ® { ®U€T W(fv)/wv}'
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Expanding the right hand side we obtain the desired relation. The second condition has only to be
verified for elementary idempotents of the form £ = ®,&,. Then

W(f) V= ®7r(€v) |

Since 7(&,)V, is finite dimensional for all v and 7 (&,)V, = w(e,)V,, which has dimension one, for
almost all v the right side is finite dimensional. The last condition results from the admissibility of 7, .

7 cannot be irreducible unless each 7, is. Suppose however that each ., is irreducible. If £, is an
elementary idempotent of 3(, and if 7,(§,) # 0 we have a representation m¢, of &, 3, &, on 7, (&,) Vi,
Since it is irreducible 7¢, determines a surjective map

g, - fv j{v fv - L(&))

if L(&,) is the ring of linear transformations of V'(§,) = m,(&,)V,. To show that 7 is irreducible we
have only to show that for every elementary idempotent of the form ¢ = ®, &, the representation of
EHEon V(&) = w(§)V isirreducible. Suppose that &, = ¢, if visnotinT. Then

is isomorphic to ®,c7V (€,). The full ring of linear transformations of this space is

®’U€TL(€’U)

and therefore the full ring of linear transformations of V' (¢) is

{ RuveT L(&))} ® { QugT 777)(57))}-

This is the image under 7 of
{ QuveT gv g{v 51;} ® { ®UQT Ev}

which is contained in £HE.
An admissible representation equivalent to one constructed by tensor products is said to be
factorizable.

Proposition 9.1 Fvery irreducible admissible representation of H is factorizable. The factors are
unique up to equivalence.

Suppose 7 is such a representation. Let I be the set of elementary idempotents of the form £ = ®¢,
for which 7w (£) is not 0. I is certainly not empty. Let V(§) = w(£)V if V is the space on which 7 acts. If
¢ and ¢’ are elementary idempotents we write £ < &' if £’ = €. Then £ & will also equal €. If £ = ®¢,
and ¢’ = ®¢, then¢ < ¢ifandonly if &, & = ¢ &, =&, forallv. If £ < ¢ and £ belongs to I so does
¢'. €HE is a subalgebra of &HE'. Let o(€', €) be the corresponding injection and let L(§) and L(¢') be
the spaces of linear transformations of V' (£) and V' (¢'). There is exactly one map

p(€,€) + L(&) — L(&')

which makes
u(€,8)
§HE —— §HE

d
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commutative.

There is a map of &,3{,&, into (3¢ which sends f, to f, ® {®.£,&w }. Composing this map with
m¢ wWe obtain a map ¢ of {, 3¢, onto a subalgebra L, (£) of L(¢). L(§) and L, (&) have the same unit,
namely ¢ (§). If v # w the elements of L, (£) commute with those of L,,(&). If we form the tensor
product of the algebras L, (£) with respect to the family of units there is a map from ®,, L, (&) to L(&)
which sends ®, A, to [ [, A\»,. Moreover we may identify ®, &,H,&, and £3(¢. Since the diagram

@ & Holo — §HE

S
®o Ly(§)  —  L(§)

is commutative the bottom arrow is surjective.
Lemma9.1.1 The algebras L, (&) are simple and the map ®,L,(§) — L(§) is an isomorphism.

To show that L, (§) is simple we need only show that the faithful L, (£)-module V(&) is spanned
by a family of equivalent irreducible submodules. Let M be any irreducible submodule. Then the
family {T'M} where T' runs over the image of 1, ® {®,L.(§)} spans V (£) and each T'M is 0 or
equivalent to M because 7' commutes with the elements of L, (£). 1, is the unit of L, (§). We have only
to show that ®, L, () — L(&). Since ®,L, (&) is the inductive limit of ®,c7rL,(§), where T'is a finite
set, we have only to show that the map is injective on these subalgebras. As they are tensor products
of simple algebras they are simple and the map is certainly injective on them.

If £ < ¢ there is a commutative diagram

L€ 6) e
Ry fv :}Cv fv — Qu fv :}Cv fv

&, Lf@ &, Lf@’)
G IR 7%

Moreover if ¢, (¢, ) is the imbedding of &, &, into & 3£, then «(£,€) = Ryt (&, €). We want
to verify that a horizontal arrow ®,¢,(£’,&) can be inserted in the middle without destroying the
commutativity. To do this we have only to show that if f, is in £,%,&, and therefore in & 3£, then
m¢(fo) = 0ifandonly if 7, (f,) = 0. LetU = w¢(f,) and let T = w§, (fo,). If

B =g (& ®{ @urotu})

then
TE = ¢ (fo ® { Quzo &0} )

is determined by its restriction to /(&) and that restriction is U.
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Itis clear that if S is a sufficiently large finite set the map ®y,csLw(§") — L(&’) is an isomorphism.
We suppose that S contains v. E belongs to the image M of 1, ® {®uwxvLw(§')}. Since M is simple
and E isnot O there are A4;, B; 1 < i < rin M such that

N
ZAiEBizl
=1

Thus
T:ZTAiEBi :ZAiTEBi

andT =0ifandonly if U = 0.

Since the necessary compatibility conditions are satisifed we can take inductive limits, over I, to
the left and right. The inductive limit of the £¢HH¢ is H and that of the & H,&, is H,,. Let L,, be that of
L,(§)and L that of L({). Thereisamap 7¥ : H, — L, and, for almost all v, 7¥(e,) = u, is not zero.
We have a commutative diagram

QH, — H
@Wvl l
X Lv — L

in which the rows are isomophisms. Moreover L acts faithfully on V' and the representation of H{ on V
can be factored through L.

If A is an algebra with a minimal left ideal .J then any faithful irreducible representation of A on a
vector space X is equivalent to the representation on J. In fact we can choose zy in X so that Jxg # 0.
The map j — jxo of J to X gives the equivalence. Thus to prove that 7 is factorizable it will be enough
to show that L has a minimal left ideal, that the representation of L on this minimal left ideal is a tensor
product of representations o, of L,,, and that o, o 7% is admissible.

Suppose A is a simple algebra and J is a left ideal in A. If ain A is not 0 and aJ = 0 then
Aa AJ = AJ = 0. If Jis not 0 this is impossible. Suppose e is an idempotent of A and A; = eAe. Let
J1 be a minimal left ideal of A; and let J = AJ;. If J were not minimal it would properly contain a
non-zero ideal J’. J' N A; would have to be 0. Since Je = J we must have eJ = eJe = 0. Since this
is a contradiction .J is minimal. Suppose for example that A is the union of a family { A} of matrix
algebras. Suppose that for each A there is an idempotent ey in A such that Ay = e) Aey and that given
A1 and A there is a A3 such that Ay, contains Ay, and A,,. Then A is certainly simple and, by the
preceding discussion, contains a minimal left ideal.

The algebras L and L, satisfy these conditions. In fact, speaking a little loosely, L is the union of
the L(£) and L, is the union of L, (£). Choose £ so that V(&) # 0 and let J, be a minimal left ideal
in L, (£). Since L, (&) is one-dimensional for almost all v the ideal J, = L, () for almost all v. Thus
J = ®J, exists and is a minimal left ideal of L({). Thus LJ = ®L,J,. LJ is a minimal left ideal of L
and L, Jy is a minimal left ideal of L,. The representation of L on LJ is clearly the tensor product of
the representations ¢, of L, on L, Jy .

Thus 7 is equivalent to the tensor product of the representations =, = o, ow". The representations
m, are irreducible. Since it is easily seen that a tensor product ®m, is admissible only if each factor is
admissible we may regard the first assertion of the proposition as proved.

If 7 is an admissible representation of J{ on V' and v is a place we may also introduce a represen-
tation of H,, on V which we still call 7. If u isin V' we choose £ = ®,,&,, so that 7(£)u = u. Then if f
belongs to H,, we set

w(fyu =7 (€& { Bupo u} u

The second part of the proposition is a consequence of the following lemma whose proof is immediate.
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Lemma9.1.2 Suppose m = QT . Lhen the representation m of H, is the direct sum of representa-
tions equivalent to m,.

Let S, be the set of archimedean primes. One can also associate to an admissible representation
m of H{ on V a representation of CA}SG, the group formed by the elements of G 4 whose components at
every archimedean place are 1, on V. If v is archimedean one can associate to 7 a representation of 2,
the universal enveloping algebra of the Lie algebra of GG,,, on V. Finally 7 determines a representation
of the group Z, of scalar matrices in GL(2,A). If = is irreducible there is a quasi-character 7 of I the

group of idéles such that
a 0
(5 2) =t

forall a in I. If 7, is associated to n, and m = ®,, 7, then 7 is associated to the quasi-character n defined
by
n(a) = an(av)'
v

One may define the contragredient of 7 and the tensor product of = with a quasi-character of 1. All the
expected formal relations hold. In particular 7 is equivalent to ! ® 7 if 7 is irreducible.

The above discussion applies, mutatis mutandis, to the algebra H’. The next proposition, which
brings us a step closer to the theory of automorphic forms, applies to H alone.

Proposition 9.2 Let m = ®m, be an irreducible admissible representation of H. Suppose that w, is
infinite dimensional for all v. Let v be a non-trivial character AJF. There is exactly one space
W, ) of continuous functions on G with the following properties:

(i) If W is in W (m, 1) then for all g in Gp and all x in A

W((é f>g> = ¥(@) W(g)

(i) W (m, ) is invariant under the operators p(f), f € H, and transforms according to the repre-
sentation w of H. In particular it is irreducible under the action of H.
(iii) If F is a number field and v an archimedean place then for each W in W (m, 1)) there is a real

number N such that
a 0 N
w (5 1)) =0t

In the last assertion F* is regarded as a subgroup of /. F), is a subgroup of A and the restriction
1, of ¢ to F, is non-trivial. Thus for each place v the space W (m,, 1) is defined and we may suppose
that 7, acts on it. Moreover for almost all v the largest ideal of F}, on which 1, if trivial is O, and
7, contains the trivial representation of K,. Thus by Proposition 3.5 there is a unique function 2 in
W (74,10, ) such that ©9(g, k,,) = ¢2(g,) for all k, in K, and ¢©%(I) = 1. Then ¢ (k,) = 1 for all k, in
K,. mactson

as a — oo in FX.

® 0 W("Tva Vy)

If g is in G4 and ®¢, belongs to this space then ¢,(g,) = 1 for almost all v so that we can define a
function ¢ on G by

o(9) =[] ev(90)-
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The map ®¢, — ¢ extends to a map of @W (m,, 1, ) into aspace W (7, 1) of functions on G,. W (7, )
certainly has the required properties. We have to show that it is characterized by these properties.

Suppose M is another space with these properties. There is an isomorphism T of QW (m,,,,)
and 99t which commutes with the action of H. All we have to do is show that there is a constant ¢ such
that if p = ®¢, then

To(g) = c [ [ olg0)-
Let S be a finite set of places and let

Ws = @uesW (my, ¥u)
and

Ws = Ruts W (g, ).

Then .
X W(”vﬂﬂv) = WS X WS-

We first show that if .S is given there is a function cg on CA}S X ﬁ/\s such that if
f= T({ Qves 907)} ® 90)

with ¢ in W then
f(gh) = cs(h, o) [T ev(g0)
vES
if gisin Gg and hisin Gs. . ~
Suppose that S consists of the single place v. If ¢ belongs to W and h belongs to Gg associate to
every function ¢, in W (m,,,) the function

‘P;(gv) = f(guh)

on G,. fisT (¢, ® ¢). By construction, if ¢, is replaced by p(f. )y, with f, in H, the function ¢/, is
replaced by p(f,)¢.,. Moreover if z isin F,

@y <<(1) Qf) gv> = Yo (@) ¢y (90)-

Since any conditions on rates of growth can easily be verified we see that the functions ¢, are either all
zero or they fill up the space W(m,,,). In both cases the map ¢, — ¢, is a map of W (m,,,) into
itself which commutes with the action of JH,, and therefore consists merely of multiplication by a scalar

cS(h7 SO)
Now suppose that S’ is obtained by adjoining the place w to S and that our assertion is true for S.

Take h in @s' and ¢ in /WS/. If
f= T({ Qves’ (Pv} ® (,0)

then, for g in Gg, and g,, in G,

F(gguwh) = cs(guh, o @ @) [] 2u(g0)-
veS
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The argument used before shows that for a given h and ¢ the function

gw = ¢s(guwh, puw @ @)
is a multiple cg (h, ) of .
To prove the existence of ¢ we obseve first that if S is the disjoint union of .S; and S5 we may write
any hy in Gg, as hy = h]],cg, ho With hin Gs. Suppose ¢1 = {®yes, Yo} © @ With  in Wy is in

—

Wg,. Then
Cs, (h1,(,01) = { H @v(hv)} CS’(h7 30) (9'2'1)

vESH

because the right hand side has all the properties demanded of the left. If S is large enough that ¢?
exists for v not in S; then, by its definition, cs, (h, ®,¢s, ¢?) has a constant ¢(.S;) on

11 &
v€ZS,

The formula (9.2.1) shows that ¢(S) = ¢(51) if S contains S;. We take ¢ to be the common value of
these constants. Given ¢ = ® ¢,, and g = [] g, we choose S so that ¢, = cpg and g, € K, forvnotin

S. Then
T@(g) = C( H v, ®U€S()0U) H (Pv(gv)
v@s veS

= CH @v(gv)'

We observed that if m, is finite dimensional the space W (m,,1,) cannot exist if v is non-
archimedean or real. Although we neglected to mention it, the argument used for real field also
shows that W (m,, 1,,) cannot exist if v is complex. The proof of Proposition 9.2 can therefore be used,
with minor changes, to verify the next proposition.

Proposition 9.3 If m = ®m, is given and if one of the representations m, is finite dimensional there
can exist no space W (w, ) satisfying the first two conditions of the previous proposition.

An admissible representation 7 of 3{ on the space V' is said to be unitary if there is a positive
definite hermitian form (vy,v2) on V such that, if f*(g) = f(g7 '),

(7 (v, v2) = (v1, 7 (f*)v2)
forall fin .

Lemma9.4 If 7 is unitary and admissible then V is the direct sum of mutually orthogonal invariant
wrreducible subspaces.

The direct sum of the lemma is to be taken in the algebraic sense. We first verify that if V4 is an
invariant subspace and V4 is its orthogonal complement then V' = V; @ V5. Certainly V; NV, = 0. Let
¢ be an elementary idempotent and let V (), V1(§), Va(€) be the ranges of w(£) in V, Vi, and V4. let
Vi (€) be the range of 1 — 7(€) acting on V4. Then V (¢) and V- (&) are orthogonal and

Vi=Vi(§) @ Vit (€).
Thus V5 (€) is just the orthogonal complement of V4 (§) in V(€). Since V (§) is finite dimensional
V(&) = Vi(&) ® Va(§).

Since every element of V' is contained in some V (£) we have V = V; + V4.
To complete the proof we shall use the following lemma.
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Lemma 9.4.1 If w is a unitary admissible representation of H on the space V' then V contains a
minimal non-zero tnvariant subspace.

Choose an idempotent ¢ so that V(£) = 7(§)V # 0. Since V(§) is finite dimensional amongst
all the non-zero subspaces of it obtained by intersecting it with an invariant subspace of V' there is
a minimal one N. Let M be the intersection of all invariant subspaces containing N. If M is not
irreducible it is the direct sum of two orthogonal invariant subspaces M; and M,. Then

N = MNV(E) = 7(6) M = (€) My & (€) My

The right side is
{(MinV(©}e MV ()}

so that one of My NV (&) and My NV (§) is N. Then M, or M, contains M. This is a contradiction.
Let A be the set consisting of families of mutually orthogonal invariant, and irreducible subspaces
of V. Each member of the family is to be non-zero. Let {V)\} be a maximal family. Then V' = @, V). If
not let V3 = @&, V). The orthogonal complement of V; would be different from zero and therfore would
contain a minimal non-zero invariant subspace which when added to the family {14} would make it
larger.
If T is a finite set of places most of the results of this paragraph are valid for representatlons m of

CHT For example 7 is factorizable and W (7, 1) exists as a space of functions on GT



Chapter 2 200

§10. Automorphic Forms. In this paragraph F' is still a global field. We shall begin by recalling a
simple result from reduction theory. If v is a place of A and a is in A then |a|, is the absolute value of
a, the vth component of a. If aisin I

jal = [T lal

(2

Lemma 10.1 There is a constant cg such that if g belongs to Gy there is a v in G for which

1
[ [ max{clo.d].} < coldetg]>
v

_(a b
Pyg_cd

If I is a number field let O be the ring of integers in £’ and if F' is a function field take any
transcendental element x of F' over which F' is separable and let O be the integral closure in F' of the
ring generated by 1 and x. A place v will be called finite if |a|, < 1 for all a in O; otherwise it will be

called infinite. If S is a finite set of places which contains all the infinite places let

A(S)={a€Allal, <1ifv# S}
I(S)={a€I||a|, =1ifv# S}

Then A = F + A(S) and if S is sufficiently large I = F*I(.S). We first verify that if I = F*I(S) then
Ga = GFr Gys)

where G (s) = GL(Z, A(S)). If v is not in S then v is non-archimedean and we can speak of ideals of
F,. Any element of G, may be written as a product

qEIE

K:HKU

and therefore to G (s). It will be sufficient to show that the first factor isin Gr G (g). If @ = a2 and
v = 7172 With ag and 1 in F* and a3 and s in I(S)

a [ _ (o 0 1 B/arvye as 0

0 ~ 0 m/\0 1 0 7
The first factor is in G/ and the third in G (s). Since %’Yz belongs to '+ A(.S) the second factor is in
G G(s) and the assertion follows.

There is certainly a u in O such that |u|, < 1 atall finite places in S. Enlarging S if necessary we
may assume that a finite place v belongs to S if and only if |u|, < 1. Then

in which the second factor belongs to

FNAS) = {-— |2 €Op, meL}.
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We identify the prime ideals of O with the places corresponding to them. By the theory of rings of
quotients the proper ideals of F' N A(SS) are the ideals of the form

(Fna®) [Tem

pgS

Since I = F'*1(S) every such ideal is principal. Thus F' N A(S) is a principal ideal domain.
To prove the lemma we show that there is a constant ¢, such that if g belongs to G () there is a
in G'pna(s) such that

[T max{lclo. [} < coldetg|

veS
_[a b
Wg'_ c d .

Fix a Haar measure on the additive group A(S). This determines a measure on A(S) @ A(S).
The group L = (F N A(S)) & (F N A(S)) is a discrete subgroup of A(S) @& A(S) and the quotient
A(S) @ A(S)/Lis compact and has finite measure c;. If g belongs to G () the lattice Lg is also discrete
and the quotient A(S) & A(S)/Lg has measure ¢;|detg|.

Suppose (m,n) = (u,v)g belongs to Lg. If a # 0 belongs to F' N A(S) then

[ max{laml., lanl,} = (T] lalo) ( ] ] max{lcls, |dl}).

ves veS veS
Since
=TT lalo = (T lal) (TT lalu)
v vES v#£S

the product [ ], ¢ |al, is at least 1 and

H max{|am|,, |an|,} > H max{|m/y,|n|,}-

veS veS

Let R be a positive number and consider the set

E={(m,n) € Lg| H max{|m|,, |n|,} < R}.
veS

The previous inequality shows that if I contains a non-zero element of Lg it contains one (m,n) =
(s, v)g for which i and v are relatively prime. Then we may choose x and A in F'N A(S) so that

Ky — A =1.If
KA
' <M V)

then ~ belongs to G N A(S) and if
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then ¢ = m and d = n so that

[ max{iclv, d].} < R.

vES

To prove the lemma we have to show that there is a constant ¢, such that if g is in G5y and

R = co|detg]|= the set E is not reduced to {0}. We will show in fact that there is a constant ¢, such that
for all ¢ there is a non-zero vector (m,n) in Lg with

L
2s

sup max{|m/,, |n|, } < co|detg
vES

if s is the number of elements in .S. There is certainly a positive constant cs such that the measure of
{(m,n) € A(S) ® A(9) | sug max{|m|,, |n|,} < R}
ve
is, for any choice of R, at least c3 R%*. Choose c; so that
Cq\ L
Coy > 2(—1) 2
c3

If Lg contained no non-zero vector satisfying the desired inequality the set
#)

would intersect none of its translates by the elements of Lg. Therefore its measure would not be
changed by projection on A(S) @ A(S)/Lg and we would have

{(m,n) c A, @ Ag ‘ sup max{|m|,, |n|,} < %Q\detg
vES

C2\2s
c1 < 03(52)
which is impossible.
Choose some place v of F' which is to be archimedean if F' is a number field. If c is any positive
constant there is a compact set C' in I such that

{aGIHa|Zc}

is contained in
{abla € F), |a| > ¢, be C}

If wy is a compact subset of A, w, a compact subset of I, and c a positive constant we may introduce
the Siegel domain & = &(wy, w2, ¢, v) consisting of all

()G 0 )

with z inwy, ain I, binws, by in F with |by| > ¢,and kin K. Then Z,& = &. If we use the Iwasawa
decomposition of G to calculate integrals we easily see that the projection of G on Z, \ G, has finite
measure. Moreover it follows readily from the previous lemma that, for a suitable choice of wy, w9, and
Cl

Gy =Gr6G.
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Thus Z, Gr \ G, has finite measure.

Let ¢ be a continuous function on G \ G,. Ifitis Z4-finite the space V' spanned by the functions
p(a) ¢, a € Z,, is finite dimensional. We may choose a finite set of points g, -, g, and a basis
@1, ,pp of V sothat p;(g;) = d;;. Then

Since \;(a) = ¢(ag;) the function \; are continuous and finite as functions on Z, or Zr \ Z,. Since
Zp \ Z, is isomorphic to F* \ I it satisfies the hypothesis of Lemma 8.1 and ); is a finite linear
combination of functions of the form

(5 9)) = x(@ toglaly

where x is a quasi-character of £’ \ I.
A continuous function ¢ on G \ G which is Z-finite will be called slowly increasing if for any
compact set €2 in G, and any ¢ > 0 there are constants M; and M5 such that

| <<g (1)>9> | < My a|™

for gin Q, ain I, and |a| > c. If such an inequality is valid, with suitable choice of M, for any M; we
will say, for lack of a better terminology, that ¢ is rapidly decreasing.

Suppose ¢ is a continuous function on Gr \ Ga. Assume it is K -finite on the right and that for
every elementary idempotent £ in H the space

{p(cf)e| f € H}

is finite dimensional. An argument used more than once already shows that there isa ¢ and an f in
EH, & such that p(f)p = ¢. If a belongs to Z,

pla)p = p(da* f) e
so that ¢ is Z-finite. Thus we can make the following definition.

Definition 10.2 A continuous function ¢ on G \ G, is said to be an automorphic form if
(i) Itis K-finite on the right
(ii) For every elementary idempotent ¢ in JH the space

{p(&f)e]| f € H}

is finite dimensional.
(iii) If F'is a number field ¢ is slowly increasing.

We observe, with regret, in passing that there has been a tendency of late to confuse the terms
automorphic form and automorphic function. If not the result it is certainly the cause of much misun-
derstanding and is to be deplored.

Let A be the vector space of automorphic forms. If v isin A and f is in 3 then p(f)p isin A so
that 3 operates on A. A continuous function on ¢ on Gr \ G is said to be cuspidal if

Jrur (6 1)o) =0

for all g inG,. An automorphic form which is cuspidal is called a cusp form. The space Ay of cusp
forms is stable under the action of .
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Proposition 10.3 Let F' be a function field and let ¢ be a function on Gg \ Ga. If ¢ satisfies the
following three conditions it is a cusp form.
(i) ¢ is K-finite on the right.
(if) o s cuspidal.
(iii) There is a quasi-character n of F* \ I such that

@((8 2)9)2 (@) ¢(9)

If £ is an elementary idempotent of JH there is an open subgroup K’ of K such that ¢ is invariant
under translations on either side by the elements of K’. Therefore the functions p(& f) are invariant
under right translations. To prove the proposition we show that if K is a given open subgroup of K
and 7 is a given quasi-character of F'* \ I then the space V' of all continuous functions ¢ on G \ G
which are cuspidal and satisfy p(gk) = ¢(g) for all k in K’ as well as

@ ((8 2) g> =n(a) ¢(g)

for all @ in F* \ I is finite-dimensional.

We shall show that there is a compact set C'in G such that the support of every ¢ in V' is contained
in GrZ7zC'. Then the functions in V' will be determined by their restrictions to C. Since C'is contained
in the union of a finite number of left translates of K’ they will actually be determined by their values
on a finite set and V' will be finite dimensional.

Choose a Siegel domain & = &(w;,ws, ¢, v) sothat Gy = Gp6. If

6’:{<(1) 313> (bgl (1)>k:|x6w1,bem, by € FY, \b1]20,keK}

we have just to show that the support in & of every ¢ in V' is contained in a certain compact set which
is independent of . In fact we have to show the existence of a constant c; such that  vanishes on

(o D) (%)

as soon as |by| > ¢;. Let kq,---,k, be a set of representatives of the cosets of K /K’ and let ;(g) =
©(gk;). If k belongs to k; K’ then o(gk) = ¢;(g) and it will be enough to show that there is a constant

co such that, for 1 < <n,
' 1 =z a 0 —0
Yi\lo 1)\o 1))~

if z belongs to A and |a| > ¢,. Itis enough to show this for a single, but arbitrary, ;. Since ¢; satisifes
the same hypothesis as ¢, perhaps with a different group K’, we just prove the corresponding fact for

®.

for all a in 1.

We use the following lemma which is an immediate consequnce of the theorem of Riemann-Roch
as described in reference [10] of Chapter I.



Chapter 2 205

Lemma 10.3.1 Let X be an open subgroup of A. There is a constant co such that A =F +aX if a
belongs to I and |a| > ca.

Ly

0 1

()6 ) = (G 1) 6 )
(0 )6 D)=+ D)

if z isin aX. The equation also holds for z in F and therefore for all z in A if |a| > . Then

(6 7)) = s Lo (0 1) (6 1))

which by assumption is zero.
There is a corollary.

Let X be the set of all y for which

belongs to K. Since

we have

Proposition 10.4  Suppose ¢ is a cusp form and for some quasi-character n of F* \ I

@ <<3 2) g) =n(a) ¢(g)

for all a in I. Then ¢ is compactly supported modulo Gg \ Zy. Moreover the function
0 — a 0
Z\lo 1
The first assertion has just been verified. We know moreover that there is a constant c such that
a 0
7\\o 1
w— 0 1
S \-1 0

and ¢’'(g) = ¢(gw) then ¢’ is also a cusp form. Since

(G B Gl O D RS (W)

there is also a constant ¢; such that it vanishes for |a| < ¢;.

on F*\ I is compactly supported.

is 0 for|a| > c. If
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Proposition 10.5 Let F' be a function field and n a quasi-character of F* \ I. Let Ag(n) be the space

of cusp forms o for which
a 0
¥ <<0 a) g) = n(a) (9)

for all a in I. The representation of H on Ag(n) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

The proof of Proposition 10.3 showed that the representation 7 of H on Ay(n) is admissible. Let
7' () = |n(a)|"n(a). The map ¢ — ¢’ is an isomorphism of Aq () with Aq(n') which replaces 7 by
m @ mif ni(a) = |n(a)|~/2. Thus we may as well suppose that 7 is a character. Then if ¢; and ¢,
belong to Ay (n) the function ¢33 is a function on G Z, \ G. Since it has compact support we may
set

(sompz):/c e ©1(9) p2(g) dg-

It is easily seen that

(p(fe1,02) = (e1,p(f*)p2)

sothat, by Lemma9.4, 7 is the direct sum of irreducible admissible representations. Since 7 isadmissible
the range of = (¢) is finite dimensional for all £ so that no irreducible representation occurs an infinite
number of times.

The analogue of this proposition for a number field is somewhat more complicated. If ¢ is a
continuous function on Gy, if v is a place of F', and if f, belongs to J{, we set

p(f)e = / o(ghs) fulhs) dh.

v

Since f,, may be a measure the expression on the right is not always to be taken literally. If v is
archimedean and if the function ¢(hg,) on G, is infinitely differentiable for any h in G then for any
X in 2, the universal enveloping algebra of G, we can also define p(X ). If S is a finite set of places
we can in a similar fashion let the elements of

g_cs = ®U€S}C’U
or, if every place in S is archimedean,
221S’ = ®v€$’mv

acton . It is clear what an elementary idempotent in Hg is to be. If S = S, is the set of archimedean
places we set H, = Hs.

Proposition 10.6 ~ Suppose F' is a number field. A continuous function ¢ on Gg \ Gy is a cusp form
if it satisfies the following five conditions.
(i) ¢ is K-finite on the right.
(il) ¢ is cuspidal.
(iii) There is a quasi-character n of F* \ I such that

@ ((8 2)9) =n(a) ¢(9)

for alla in I.
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(iv) For any elementary idempotent & in H, the space

{p&f) | f € Ha}

s finite dimensional.
(V) ¢ s slowly increasing.

There is a £ in H, such that p(£)¢ = ¢. Because of the fourth condition ¢ transforms according
to a finite dimensional representation of £JH,& and the usual argument shows that there is a function
finH, such that p(f) ¢ = .

Since ¢ is invariant under right translations by the elements of an open subgroup of vasa K,
this implies in turn the existence of another function f in 3 such that p(f)y = ¢. From Theorem 2 of
[14] one infers that  is rapidly decreasing.

As before we may assume that n is a character. Then ¢ is bounded and therefore its absolute value
is square integrable on G Z, \ G, which has finite measure. Let L?(n) be the space of measurable

functions h on G \ G, such that
a 0
h ((o a) g) = n(a) h(g)

/ Ih(g)? dg < oo,
GrZa\Ga

According to a theorem of Godement (see reference [11] to Chapter 1) any closed subspace of L?(7)
which consists entirely of bounded functions is finite dimensional.
What we show now is that if £ is an elementary idempotent of JH{ the space

V={p&f)e|fer}
is contained in such a closed subspace. The functions in V itself certainly satisfy the five conditions
of the proposition and therefore are bounded and in L?(n). Replacing ¢ by a larger idempotent if
necessary we may suppose that £ = £, ® fa where &, is an elementary idempotent in H,. There is
a two-sided ideal a in £,H,&, such that p(f)e = 0 if f belongs to a. The elements of a continue
to annihilate V and its closure in L?*(n). Approximating the §-function as usual we see that there is
a function f; in 3{, and a polynomial P with non-zero constant term such that P(f;) belongs to a.
Therefore there is a function f> in 3{, such that f, — 1 belongs to a. To complete the proof of the
proposition we have merely to refer to Theorem 2 of [14] once again.
For a number field the analogue to Proposition 10.4 is the following.

forall gin Gy and all o in I and

Propositon 10.7  Suppose ¢ is a cusp form and for some quasi-character n of F* \ I

@ <<3 2) g) =n(a) ¢(g)

for all a in I. Then for any real number M, there is a real number My such that

(5 2)

for all a in I. Moreover the absolute value of ¢ is a square integrable on GpZy \ Ga.

< My |a|™

We need another corollary of Proposition 10.6. To prove it one has just to explain the relation
between automorphic forms on G, and Gg, which is usually assumed to be universally known, and
then refer to the first chapter of reference [11] to Chapter I. It is perhaps best to dispense with any
pretence of a proof and to rely entirely on the reader’s initiative. We do not however go so far as to
leave the proposition itself unstated.
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Proposition 10.8 Let 3, be the centre of ™A, and let T be an ideal of finite codimension in 3 =
Ques, v Let € be an elementary idempotent of H and n a quasi-character of F* \ I. Then the
space of infinitely differentiable functions ¢ on G \ Ga which satisfy the following five conditions
1$ finite dimensional.

(i) ¢ is cuspidal.

(i) p(e = ¢.
(iii) If a is in I then

(iv) p(X)p =0 forall X inJ
(V) @ is slowly increasing.

Proposition 10.9  Let n be a quasi-charcter of F* \ I and let Ao(n) be the space of cusp forms ¢ for

which
v <<8 2) g> =¢(9)

for all a in I. The representation of H on Ag(n) is the direct sum of irreducible admissible
representations each occurring with finite multiplicity.

Every element of Ay(n) is annihilated by some ideal of finite codimension in 3. If J is such an
ideal let Ay(n,J) be the space of functions in A(n) annihilated by J. It is enough to prove the first
part of the proposition for the space Aq(n,J). Then one may use the previous proposition and argue
as in the proof of Proposition 10.5. To show that every representation occurs with finite multiplicity
one combines the previous proposition with the observation that two functions transforming under the
same representation of JH are annihilated by the same ideal in 3.

H acts on the space A. An irreducible admissible representation = of JH is a constituent of the
representation on A or, more briefly, a constituent of A if there are two invariant subspaces U and V' of
A such that U contains V' and the action on the quotient space U/V is equivalent to 7. A constituent
of Ay is defined in a similar fashion. The constituents of Ay are more interesting than the constituents
of A which are not constituents of Aj.

Theorem 10.10 Let m = ®m, be an irreducible admissible representation of H which is a constituent
of A but not of Ag. Then there are two quasi-characters p and v of F* \ I such that for each place
v the representation m, is a constituent of p(piy, Vy)-

Ly is the restriction of 1 to F*. Let B be the space of all continuous functions ¢ on G satisfying
the following conditions.
(i) Forall zin A

(ii) Forall ¢« and 3 in F*

(iii)  is K-finite on the right.
(iv) For every elementary idempotent & in JH the space

{p(&f)e]| f € H}

is finite dimensional.
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Lemma 10.10.1 A continuous function @ on Gp which satisfies the first three of these conditions
satisfies the fourth if and only if it is Ax-finite on the left.

A is the group of diagonal matrices. Since ¢ is a function on Ar \ G, itis A, finite if and only if
itis Ap \ Ax finite. Ifitis Ap \ A, finite there is a relation of the form

o(ag) = Z Ai(a) @i(g)

where the )\; are finite continuous functions on Ar \ Aa. Since Ap \ Ay is isomorphic to the direct
product of F* \ I with itself it is a group to which Lemma 8.1 can be applied. Thus there is a unique
family ©,,, .., Of functions on G such that

ay 0 o
1% O a9 9| =
The functions ¢, ., also satisfy the first three conditions. Moreover there is a finite set .S of pairs

(u,v) and anon-negative integer M such that ¢y, ,, ..., is 0 if (11, ) does not belong to S or m+mn > M.
Given S and M let B(S, M) be the space of continuous functions f on G which satisfy the first

three conditions and for which
f ay 0
0 ag g

" S ) (a2) (g far )™ (10 a])™ Fon v (9)

Z_; Zﬂ(m) v(az) (log |ai|)™ (log|a2])"™ ©m.nuv(9)

can be expanded in the form

ai
a2

where the sum is taken only over the pairs (, v) in S the pairs (m, n) for whichm +n < M. B(S, M)
is invariant under 3. To show that if ¢ is Ar \ A, finite it satisfies the fourth condition we show that
the range of p(&) on B(S, M) is finite dimensional.

A function f in B(S, M) is determined by the restriction of the finitely many functions f,,, ,, ... to
K. If fisinthe range of p(&) these resrictions lie in the range of p(¢) acting on the continuous functions
on K. That range is finite dimensional.

We have also to show that if ¢ satisifes the fourth condition it is A, finite. The space V' spanned
by the right translates of (¢ by the elements of K is finite dimensional and each element in it satisfies
all four conditions. Let o1, - - -, ¢, be a basis of V. We can express ¢(gk) as

p

> ilk) pilg)-

i=1

Because of the lwasawa decomposition G, = Ny A, K it is enough to show that the restriction of each
p; to A, is finite. Since (p; satisfies the same conditions as ¢ we need only consider the restriction of .
Since ¢ is K finite there is a finite set S of places such that ¢ is invariant under right translations
by the elements of [ ], ¢ K,. Let
Ig = H EFX.

veES



Chapter 2 210

We regard Ig as a subgroup of I. If we choose S so large that I = F*I(.S) then every element « of [ is
a product of & = ayapag with a1 in F*, ap in Is, and as in I(.S) such that its component at any place
in S'is 1. If 3in I is factored in a similar fashion

(G5 =% )

Thus we need only show that the restriction of  to

A5:{<g 2) ‘Oé,ﬂEIS}

is finite. This is a consequence of Corollary 8.4 since the restriction of ¢ to Gg clearly satisfies the
conditions of the corollary.
The next lemma explains the introduction of B.

Lemma 10.10.2 If 7 is a constituent of A but not of Ag then it is a constituent of B.

If © belongs to A the functions

P = D /F\A (D

belongs to B. The map ¢ — o commutes with the action of H and its kernel is Ag. Suppose U and V
are two invariant subspaces of A and 7 occurs on the quotient of U by V. Let U; be the image of U and
Vo be the image of V' in B. Since = is irreducible there are two possibilities. Either Uy # V4 in which
case 7 is equivalent to the representation on Uy /V, and is a constituent of B or Uy = V. In the latter
case

U=V +UnNA

and m is equivalent to the representation on
UnNAy/V NAy

which is precisely the possibility we have excluded.

Lemma 10.10.3 If 7 is a constituent of B then there is a pair of quasi-characters p, v and a non-
negative integer M such that w is a constituent of B(u,v, M).

If S consists of the single pair (u, ) then, by definition, B(u, v, M) = B(S, M ). Suppose 7 occurs
on the quotient of U by V. Choose the finite set S of pairs of quasi-characters and the non-negative
integer M so that U N B(S, M) is different from V' N B(S,M). Then m occurs on the quotient of
UNB(S,M) by VNB(S,M)and we may as well assume that U is contained in B(S,M). The
argument used in the eighth paragraph in an almost identical context shows that

B(S, M) = @(u,u)ES‘B(:U'v v, M)

so that the lemma is a consequence of Lemma 8.6.
The next lemma is proved in exactly the same way as Proposition 8.5
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Lemma 10.10.4 If 7 is a constituent of B(u,v, M) for some M then it is a constituent of B(u,v) =
B(p,v,0).

Let 1, and v, be the restrictions of 1 and v to F,. For almost all v the quasi-characters y, and v,
are unramifed and there is a unique function ¥ in B(j,, v,,) such that ©2(g,k,) = ©%(g,) for all k,, in
K, while ©9(e) = 1. We can form

®¢BB(NU7 V)

There is clearly a linear map of this space into B(u, ) which sends ®¢, to the function
0(9) =[] ev(90)

Itis easily seen to be surjective and is in fact, although this is irrelevant to our purposes, an isomorphism.
In any case an irreducible constituent of B(u, v) is a constituent of &, p(tty, vy ).
With the following lemma the proof of Theorem 10.10 is complete.

Lemma 10.10.5 If the irreducible admissible representation m = ®,m, s a constituent of p = Qp,,
the tensor product of admissible representations which are not necessarily irreducible, then, for each
v, T, 1§ a constituent of p,.

As in the ninth paragraph 7 and p determine representations 7 and p of J(,. The new 7 will be a
constituent of the new p. By Lemma 9.12 the representation 7 of JH, is the direct sum of representations
equivalent to m,. Thus 7, is a constituent of = and therefore of p. Since p is the direct sum of
representations equivalent to p,,, Lemma 8.6 shows that 7, is a constituent of p,,.

The considerations which led to Proposition 8.5 and its proof will also prove the following propo-
sition.

Proposition 10.11  If 7 is an irreducible constituent of the space Ay then for some quasi-character n
it is a constituent of Ay(n).

Observe that if 7 is a constituent of Ay(n) then

(R

for all ¢ in I. There are two more lemmas to be proved to complete the preparations for the Hecke
theory.

Lemma 10.12 Suppose there is a continuous function ¢ on G with the following properties.
(i) ¢ is K finite on the right.
(i) For all o and B in F* and all x in A

(3 )0

(i) There is a quasi-character n of F* \ I such that

@ ((8 2)9) =n(a) ¢(g)

for alla in I.
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(iv) There is a finite set S of non-archimedean places such that the space
V =p(Hs)e

transforms under ﬂ/:fg according to the irreducible admissible representation m = Qg5 .
Then V' is a subspace of B and there are two quasi-characters p and v of F* \ I such that m,
is a constituent of p(y,vy) for all v not in S.

If one observes that there is a finite set T" of places which is disjoint from S such that I = F* I
one can proceed as in Lemma 10.10.1 to show that ¢ is A-finite on the right. Thus there is a finite set R
of pairs of quasi-characters and a non-negative integer M such that V' is contained in B(R, M). The
same reduction as before shows that 7 is a constituent of the representation ofﬂfCS on some B(u,v) and
that , is a constituent of p(u,, ) if visnotin S.

Lemma10.13 Let ¢ be a continuous function on G\ Ga. If ¢ satisfies the four following conditions
it is an automorphic form.

(i) ¢ is K finite on the right.

(il) There is a quasi-character n of F* \ I such that

v ((8 2) g) = n(a) p(9)
for alla in 1.

(iii) There is a finite set S of non-archimedean places such that p(f(g)(p transforms according to

an irreducible admissible representation of ﬂffs.
(iv) If F is a number field o is slowly increasing.

We have to show that for every elementary idempotent £ in H the space p({H) is finite dimen-
sional. If f is a continuous function on Gr \ G, let

o0) = oA /F\A (5 7)9)

The map f — fy commutes with the action of H or of CIA{S. Consquently ¢, satisfies the conditions
of the previous lemma and belongs to a space B(R, M) invariant under H on which p(§) has a finite
dimensional range.

We need only show that

V={feplEH)p|fo=0}

is finite dimensional. If F' is a function field then, by Proposition 10.3, V' is contained in Ay(n).
More precisely it is contained in the range of p(£), as an operator on Ay(n), which we know is finite
dimensional. Suppose F' is a number field. Since every place of S is non-archimedean the third
condition guarantees that ¢ is an eigenfunction of every element of 3. In particular there is an ideal J of
finite codimension in 3 which annihilates ¢ and therefore every element of p(¢3H ). By Proposition 10.6
the space V' is contained in A (7n) and therefore in Aq(n,J). By Proposition 10.8 the range of p(&) in
Ao (n,TJ) is finite dimensional.
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§11. Hecke theory. The preliminaries are now complete and we can broach the central topic of these
notes. Let ) be a non-trivial character of F'\ A. For each place v the restriction v, of i) to F), is
non-trivial. Let m = ®,m, be an irreducible admissible representation of . The local L-functions
L(s,m,) and the factors ¢(s, m,, ¢, ) have all been defined. Since for almost all v the representation ,
contains the trivial representation of K, and O, is the largest ideal on which , is trivial almost all of
the factor (s, m,, 1) are identically 1 and we can form the product

e(s,m) = Hs(s, Ty Yy)-

In general it depends on . Suppose however that

and that n is trivial on F*. If ¢ is replaced by the character z — ¥ (ax) with acin F* then &(s, 7y, ¢,)
is multiplied b 1, (a)|a|2*~! so that (s, 7) is multiplied by

[Tn(@) ™" = n@)al*~" =1
v

The product

HL(s,m,)

does not converge and define a function L(s, ) unless 7 satisfies some further conditions.

Theorem 11.1 Suppose the irreducible admissible representation m = ®m, s a constituent of A.
Then the infinite products defining L(s,m) and L(s,T) converge absolutely in a right half-plane and
the functions L(s,m) and L(s,7T) themselves can be analytically continued to the whole complex
plane as meromorphic functions of s. If w is a constituent of Ay they are entire. If F' is a number
field they have only a finite number of poles and are bounded at infinity in any vertical strip of
finite width. If F' is a function field with field of constants F, they are rational functions of ¢~*°.
Finally they satisfy the functional equation

L(s,m) =¢e(s,m) L(1 — s,7).

Observe that if 1 = ®, 7, then 7 = ®,7,. Consider first a representation 7 which is a constituent
of A but not of Ay. There are quasi-characters pand v of F*\ I such that r, is a constituent of p(,, (i)
for all v. Since 7, has to contain the trivial representation of K, for all but a finite number of v it is
equal to 7(u,, v,) for almost all v.

Consider first the representation 7’ = ®,7(u,, v, ). Recall that

L(s,m(po, ) = L(s, ) L(s, 1)
L(Svﬁ(ﬂvvl/v)) L(Svﬂgl)L(svyv_l)

and

5(577T(Hv7 Vv)7¢v) = 5(57/1’7)71/]7)) 5(57 Vvﬂ/]?))
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If x is any quasi-character of F'* \ I the product
112G x0)

is known to converge in a right half plane and the funtion L(s, x) it defines is known to be analytically
continuable to the whole plane as a meromorphic function. Moreover if

£(x) = [ (s x0t0)

the functional equation
L(Su X) = 5(57 X) L(l -5, X_l)

is satisifed. Since
L(s,7") = L(s,u) L(s,v)

and
L(s,7') = L(s, 5~ ") L(s,v™Y)

they too are defined and meromorphic in the whole plane and satisfy the functional equation
L(s,7’") =¢e(s,n") L(1 — s,7").

The other properties of L(s,7’) demanded by the lemma, at least when =’ is a constituent of A, can be
inferred from the corresponding properties of L(s, ) and L(s, ) which are well known.
When 7, is not 7( iy, fy ) itis o(p,, v,,). We saw in the first chapter that

L(57 O-(Hvy Vv))
L(Sv (4o, Vv))

is the product of a polynomial and an exponential. In particular it is entire. If we replace 7 (1, v, ) by
m, we change only a finite number of the local factors and do not disturb the converge of the infinite
product. If S is the finite set of places v at which 7, = o(p,, v, ) then

— S 71" M
L(s,m) = L(s, )vlgg L(S,?T(,Um’/v))

and therefore is meromorphic with no more poles that L(s, 7). For L(s, 7) the corresponding equation

IS
L(s,o(py vy )
L(s,ﬂ'(,u;l, I/U_l)) '

L(s,7) = L(s, @) [ [

vES
The functional equation of L(s, ) is a consequence of the relations

L(Saa(ﬂ1za Vv)) . 5(87 U(,U'va Vv)alpv) L(l - 870—(”;17 Vv_l))

L(s,w(uv, Vv)) s(s,w(,uv, Vv),lpv) L(l — s, (o, 1/1,_1))




Chapter 2 215

which were verified in the first chapter. It also follows from the form of the local factors that L(s, )
and L(s, ) are rational functions of ¢—* when F is a function field. If F' is a number field L(s, ) is
bounded in vertical strips of finite width in a right half-plane and, because of the functional equation,
in vertical strips in a left half-plane. Its expression in terms of L(s,7’) prevents it from growing very
fast at infinity in any vertical strip of finite width. The Phragmen-Lindelof principle implies that it is
bounded at infinity in any such strip.

Now suppose 7 is a constituent of Ay. It is then a constituent of A (n) if

(5 ) -

for a in 1. Since the representation of H in Ag(n) is the direct sum of invariant irreducible subspaces
there is an invariant subspace U of Ay(n) which transforms according ot . Let ¢ belong to U. If g is

in Gy
¢q(z) =<p<<(1) f>g>

is a function on F'\ A. Since ¢, is continuous it is determined by its Fourier series. The constant term

IS
___ / Lo dx
measure '\ A /g 4 ?\\o 1)9

which is 0 because ¢ is a cusp form. If ¢ is a given non-trivial character of F' \ A the other non-trivial
characters are the functions z — v (ax) with o in F*. Set

o0 g o (4 1)9) o

Since @ is a function on G \ G,.

o (5 9)9) = sz L2 (4 3)9) vcamas

if a belongs to F'*. Thus, formally at least,

ORTACESY %((3 2)9)-

aEFX
In any case it is clear that 5 is not 0 unless ¢ is.
Let
Uy ={¢1|peU}
Since the map ¢ — 3 commutes with the action of J{ the space U; is invariant and transforms
according to w under right translation by H. Moreover

1 ((é f) g) =) p1(9)

if zisin A. If F'is a number field ¢ is slowly increasing. Therefore if {2 is a compact subset of G there

is a real number M such that
a 0 o M
e((5 9)9) =0t

as |a| — oo for all g in €. Propositions 9.2 and 9.3 imply that all 7, are infinite dimensional and that
Uy is W (m, ). Therefore U is completely determined by 7 and ¢» and U is completely determined by
. We have therefore proved the following curious proposition.
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Proposition 11.1.1 If an irreducible represntation of H is contained in Ag(n) it is contained with
multiplicity one.

For almost all v there is in W (,,,) a function ¢! such that ©%(g,k,) = ©%(g,) for all k, in K,
while ¢Y(e) = 1. W (%) is spanned by functions of the form

p1(9) = [ [ #ol90) (11.1.2)

where ¢, is in W (m,, 1, ) for all v and equal to ¢ for almost all .

Suppose ¢ corresponds to a function ¢; of the form (11.1.2). Suppose ¢ = ¢ so that 7, contains the
trivial representation of K. If ¢, is the normalized Haar measure on K, let A, be the homomorphism
of e, H,€, into C associated to . If f, isin e, H,e, then

M) olg) = /G o(gh) fu(h) dh

and if X is the homomorphism associated to |n,|~/? ® =,

X,(f2) In(detg)| % o(g)

is equal to
/G in(detgh)|~* o(gh) f.(h) dh.

Since ¢ is a cusp form the function |n(detg)|~'/2 (g) is bounded and X, satisifies the conditions of
Lemma 3.10. Thus if 7w, = 7(uy, v, ) both u,, and v, are unramified and

if w, is the generator of the maximal ideal of O,. Consequently the infinite products defining L(s, 7)
and L(s, ) converge absolutely for Re s sufficiently large.
We know that for any v and any ¢, in W (m,, v,) the integral

a, 0 sl x
SO’U gv a/v 2 d a"U
/FUX << 0 1) > o

converges absolutely for Re s large enough. Suppose that, for all a in I, |n(a)| = |a|" with r real.
Applying Lemma 3.11 we see that if s + r > % and ¢! is defined

Ll((x 9
FX v 0 1 v
1

1 2"
<1 - ‘w1)‘s+r_§)

lay|*% d”a,

is, for g, in K, at most
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Thus if ¢, is of the form (11.1.2) the integral

a 0 o1
‘I’(g,s,wl)Z/w«O 1)9) la*"% d%a
1

is absolutely convergent and equal to

T ¥(90:5,00)

for Re s sufficiently large. Since ®(g,, s, ¢, ) is, by Proposition 3.5, equal to 1 for almost all v we can set
g,Sng H@gvasgpv

so that
\Ij(gv S, 901) = L(S,’/T) (I)(g’ S, (Pl)'

U(g,s, 1) = /I<P1 ((8 (1)> g) n " (a)|al*" 7 d¥a

\AI//(g’ S, ()01) = L(svﬁ) &)(gv S, 901)

We can also introduce

and show that

(g, s, 1) H‘I) (9u: 5, 00)-

Lemma 11.1.3 There is a real number so such that for all 1 in W (m, 1) the integrals

‘1’(9,57801)2/1601 <<g ?)g) la|*~% d¥a
wsen=[on((§ 1)o) @l aa

are absolutely convergent for Res > sg. The functions V(g,s,p1) and ‘Al;(g,s,gpl) can both be
extended to entire functions of s. If F' is a number field they are bounded in vertical strips and if
F is function field they are rational functions of ¢=°. Moreover

[an

\Ij(w.gv 1- 87901) = ql(.gvsa()pl)'

We have seen that the first assertion is true for functions of the form (11.1.2). Since they form a
basis of W (m, 1) itis true in general. To show that

olg)= ) @1((3 (1)>9>

a€eFX
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we need only show that the series on the right is absolutely convergent. We will do this later on in this
paragraph. At the moment we take the equality for granted. Then, for all ¢;, ¥ (g, s, ¢1) which equals

/FX\I{ Z %1 ((Oé)a ?>g>}|a\s—%dxa

acFXx

a 0 sl ax
@ g lal” 2d%a
/FX\I <<0 1) >| ‘

for Re s sufficiently large. Also \Tl(g, s, 1) is equal to

/FX\,@ <<3 (1)> 9) n'(a)[a]*" d"a.

We saw in the previous paragraph that, for a given g and any real number M,

(5 )9)|-oms

as |a| approaches 0 or oo. Thus the two intregals define entire functions of s which are bounded in
vertical strips. If F'is a function field the function

(5 7)0)

has compact support on F* \ I so that the integral can be expressed as a finite Laurent series in ¢~ *.
The function ¥(wg, 1 — s, 1) is equal to

/‘p<<g ?)l"g) n(a)lal2 ™" da.

Since w is in G the equality p(wh) = ¢(h) holds for all & in G and this integral is equal to

[o((4 0)o) ri@m-raa
()= )

we can change variables in the integral to obtain

a 0 s—1
Jol(o V)] et
which is U(g, s, ¢1).

If we choose ¢, of the form (11.1.2) we see that L(s, ) ®(g, s, 1) is entire and bounded in vertical
strips of finite width. For almost all v the value of ®(g,, s, ©?) at the identity e is 1 and for such v we

is equal to

Since
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choose ¢, = . At the other places we choose ¢, so that ®(e, s, ¢, ) is an exponential e*** with real
a,. Then ®(e, s, 1) is an exponential. Consequently L(s, ) is also entire and bounded in vertical
strips of finite width. If F' is a number field ®(e, s, 1) will be a power of ¢—° so that L(s, 7) will be a
finite Laurent series in ¢~ °. Similar considerations apply to L(s, 7).

To prove the functional equation we start with the relation

L(s,m) H (e, s, py) = L(1 — s,7) H B(w,1— s, 0,).
By the local functional equation the right hand side is

L(1—s,7) H {e(s,mp, 1by) Ple,s,04)}

Cancelling the term [ [, ®(e, s, ¢,,) we obtain
L(s,m) =¢(s,m) L(1 — s,7).

Corollary 11.2  Suppose m = ®,m, is a constituent of A. For any quasi-character w of F* \ I the
products

H L(s,w, @ my)

v

and

H L(s,w;' @ 7,)
v

are absolutely convergent for Res sufficiently large. The functions L(s,w ® 7) and L(s,w™! @ 7)
they define can be analytically continued to the whole complex plane as meromorphic functions
which are bounded at infinity in vertical strips of finite width and have only a finite number of
poles. If F' is a function field they are rational functions of ¢~°. If m is a constituent of Ay they
are entire. In all cases they satisfy the functional equation

Ls,w®7) =¢(s,w®@7)L(1 —s5,w™ ' ®7)

E(S,W & 7T) = HE(Sawv & vawv)'

If 7 = ®,m, is a constituent of A or Ay and w is a quasi-character of F* \ I so isw ® 7. Moreover
WRT = Qy(wy @ my).

The converses to the corollary can take various forms. We consider only the simplest of these. In
particular, as far as possible, we restrict ourselves to cusp forms.
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Theorem 11.3 Let m = ®m, be a given irreducible representation of . Suppose that the quasi-

character n of I defined by
a 0
(5 2) =

is trivial on F*. Suppose there is a real number r such that whenever w, = m(uy, v, ) the inequalities
@0 ™" < o (@) < @0l

and
|| ™" < vp(w0)] < @yl

are satisfied. Then for any quasi-character w of F* \ I the infinite products

L(s,w®m) = H L(s,w, ® my)

and

Ls,w l@7) = l_IL(s,qu_1 ® )

are absolutely convergent for Res large enough. Suppose L(s,w ® ) and L(s,w™! ® 7) are, for all
w, entire functions of s which are bounded in vertical strips and satisfy the functional equation

Ls,w®m) =¢e(s,w®@m) L1 —s,w™ ' @)

If the m, are all infinite dimensional 7 is a constituent of Ag.

The absolute convergence of the infinite products is clear. We have to construct a subspace U of
Ao which is invariant under H and transforms according to the representation 7. W (m, ) transforms
according to 7. If ¢ belongs to W (m, 1)) set

#(9) :a;:x o1 <<g (1)> g)

We shall see later that this series converges absolutely and uniformly on compact subsets of G,. Thus
pisacontinuous function on G . Since the map ¢; — ¢ commutes with right translations by elements
of JH{ we have to show that, for all ¢, ¢ isin A and that ¢ is not zero unless ¢ is.

Since ® is a character of F'\ A
v <<(1) §> g) =¢(9)

(o 2)o)

is a function on F'\ A. The constant term of its Fourier expansion is

_ / Lz dx
measure F'\ A F\A(’O 0o 1)9 '

forall £ in F'. Thus, for each g,
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2L ()6 1)) e

o1 <<8‘ ?)g) [ peayaz=o

In particular ¢ is cuspidal. Another simple calculation shows that if 3 belongs to £

1 1 2
s o, e (5 1)) vty

6 0
P1 <<0 1 gl-
a 0
if «isin . Moreover, for all ¢ in I,

¢ <<3 2) g) = n(a) ¢(9)-

If a isin F'* the right side is just ¢(g). Thus ¢ is invariant under left translations by elements of Pr,
the group of super-triangular matrices in Gr. Since G is generated by Pr and w = (_01 é) all we
need do to show that ¢ is a function on G \ G, is to show that

The integral is equal to

A typical term of this sum is

is equal to

Thus ¢, is zero if @ is.
By construction

p(wg) = ¢(g).

By linearity we need only establish this when ¢; has the form (11.1.2). The hypothesis implies as
in the direct theorem that the integrals

‘I’(Qasysﬁl):/lsﬂl <<8 ?)g) la|*~2 d¥a
U(g,s,¢1) :/I<P1 <<8 (1)>g> n(a)|al*~ 7 d¥a

converge absolutely for Re s sufficiently large. Moreover

and

\Ij(gasa(pl) = qu(gv787(p1z) = L(S,TF) Hq)(gvasa(pv)-
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Almost all factors in the product on the right are identically one so that the product, and therefore
U(g,s, 1), is an entire function of s. In the same way

\/17(97 S, 901) = L(Svﬁ-) H (/I;(gv, S, Spv)

v

and is entire. Since

CI)(wgva 1- S, (pv) = 5(877%,1%) (I)(gva S, 901))
the function \T/(wg, 1 —s,p1)isequal to

L(1—s,m)e(s,m) H ®(gy, S, Pv)

v

which, because of the functional equation assumed for L(s, ), is equal to ¥(g, s, ¢1).

>From its integral representation the function ¥(g, s, 1) is bounded in any vertical strip of finite
width contained in a certain right half-plane. The equation just established shows that itis also bounded
in vertical strips of a left half-plane. To verify that it is bounded in any vertical strip we just have to
check that it grows sufficiently slowly that the Phragmen-Lindelof principle can be applied,

U(g,s,01) = L(s,7) [ [ (g0, 5, 00)-

The first term is bounded in any vertical strip by hypothesis. Almost all factors in the infinite product
are identically 1. If v is non-archimedean ®(g,, s, ¢,) is a function of |w,|* and is therefore bounded
in any vertical strip. If v is archimedean

\Ij(gva S, (pv)

@(gv,s,gov) = L(S T )

We have shown that the numerator is bounded at infinity in vertical strips. The denominator is, apart
from an exponential factor, a I'-function. Stirling’s formula shows that it goes to 0 sufficiently slowly

at infinity.
aa 0 s 1
> @1((0 1)9) ja|*"2 d*a

If Re s is sufficiently large
acFXx

U(g,s,p1) =/
FX\T

a 0 o1 oy
© g lal” 2 d”a.
Jro? (5 5) )

This integral converges absolutely when Re s is sufficiently large. If Re s is large and negative

=~ a 0 _ 1
‘I’(wg,l—s,tm):/ w((o 1>wg> 0~ (a)]al?7" d%a
FX\I

1 0 1 15 %
plw g) n " (a)lal27%d*a.
/FX\I ( (0 a) ) (a)la

which is

which equals
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()-GO Y

and changing variables we see that this integral is equal to

a 0 s—1 %
pl|lw g lal” 2 d”a.
/FX\I ( <0 1) )‘ |

so=o((3 1))
D!

We are trying to show that for any g the functions f; and f5 are equal. The previous discussion applies
tow ® mas well as to 7. If ¢y isin W (m, ) the function

Using the relation

Set

and

¢1(9) = w(detg) ¢1(g)
isin W(w ® m,1). When ¢ is replaced by ¢ the function ¢ is replaced by

¢'(g9) = w(detg) ¢(9)

and f; is replaced by
fila) = w(detg) w(a) fi(a).

Thus for any quasi-character w of F'* \ I the integral
/ fi(a)w(a)|al*~7 d*a
FX\I
is absolutely convergent for Re s sufficiently large and the integral

| nl)e@laltaa
FX\I

is absolutely convergent for Re s large and negative. Both integrals represent functions which can be
analytically continued to the same entire function. This entire function is bounded in vertical strips of
finite width.

The equality of f; and f5 is a result of the following lemma.
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Lemmal1l.3.1 Let f1 and fo be two continuous functions on F*\ 1. Assume that there is a constant
¢ such that for all characters of w of F* \ I the integral

| h@e@laP e
FX\T
is absolutely convergent for Res > ¢ and the integral
| R@e@F
FX\T

is absolutely convergent for Res < —c. Assume that the functions represented by these integrals
can be analytically continued to the same entire function and that this entire function is bounded
in vertical strips of finite width. Then fi1 and fo are equal.

Let Iy be the group of idéles of norm 1. Then F* \ I is compact. It will be enough to show that
for each b in I the functions f;(ab) and f2(ab) on F* \ I, are equal. They are equal if they have the
same Fourier expansions. Since any character of F'* \ I, can be extended to a character of F'* \ I we
have just to show that for every character w of F* \

Fr(w,b) = w(b) / fu(ab) w(a) da

FX\I,

is equal to

M%@zMML”fMMWWMM.

These two functions are functions on I \ I which is isomorphic to Z if F' is a number field and to R if
F'is a function field.
If Fis a function field we have only to verify the following lemma.

Lemma 11.3.2 Suppose {a1(n)|n € Z} and {az(n)|n € Z} are two sequences and q > 1 is a real

number. Suppose
D ai(n)g
n

converges for Res sufficiently large and
> as(n)g ™
n

converges absolutely for Re s large and negative. If the functions they represent can be analytically
continued to the same entire function of s the two sequences are equal.

Once stated the lemma is seen to amount to the uniqueness of the Laurent expansion. If F'is a
number field the lemma to be proved is a little more complicated.
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Lemma 11.3.3 Suppose g1 and go are two continuous functions on R. Suppose there is a constant c
such that

gl(S)z/Rgl(x) e** dx

converges absolutely for Res > ¢ and

§2(8)=/Rg2($) e** dx

converges absolutely for Res < —c. If g1 and go represent the same entire function and this
function is bounded in vertical strips then g1 = go.

All we need do is show that for every compactly supported infinitely differentiable function g the
functions g * g; and g * go are equal. If

i(s) = [ gla)er do
R
is the Laplace transform of g the Laplace transform of g * g; is g(s) g;(s). By the inversion formula

1 b+ioco
g% gi(z) = —— /b 3(s) 6i(s) == ds

271 Jp_ioo

where b > cifi = 1and b < —cif i« = 2. The integral converges because g goes to 0 faster than the
inverse of any polynomial in a vertical strip. Cauchy’s integral theorem implies that the integral is
independent of b. The lemma follows.

To complete the proof of Theorem 11.3, and Theorem 11.1, we have to show that for any ¢, in

W (7, 4)) the series
> (6 1))

a€FX

is uniformly absolutely convergent for g in a compact subset of G and that if ¢(g) is its sum then, if
is a number field, for any compact subset €2 of G and any ¢ > 0 there are constants M; and M- such

that
a 0
(3 2)0) <

for g in Q and |a] > ¢. We prefer to prove these facts in a more general context which will now be
described.
For us a divisor is just a formal product of the form

D=]]»m.

It is taken over all non-archimedean places. The integers m, are non-negative and all but a finite
number of them are 0. Let .S be a finite set of non-archimedean places containing all the divisors of D,
that is, all places p for which m, > 0.

If a belongs to I we can write a in a unique manner as a product agag where the components of
ag outisde S are 1 and those of ag inside S are 1. ag belongs to I, = HUGS F). Let Ig be the set of
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idéles a such that, for any p in S, a, is a unit which satisfies a, = 1(mod p™»). Then I = F* I3 and
F>*\ I isisomorphic to F* NI\ I3,

a b

c d

Ifpisin S let K” be the subgroup of all
in K, for which ¢ = 0 (modp™»). Let f(,? be the subgroup of such matrices for which a = d =
1(mod p™>). Set

D D
K¢ =] &,
peS
and set
7>D 7>D
Ke =] K,
peS

KL is anormal subgroup of K2 and the quotient K2 /K2 is abelian.
Let G% be the set for all g in G4 such that g, is in the group K]? forall pin S. Any g in G, may
be written as a product gsgs where gg has component 1 outside of S and gs has component 1 inside

S. G is the set of gg and G is the set of §g. In particular
G =KE-Gs.
It is easily seen that
Gy =Gp G%.

In addition to D and S we suppose we are given a non-trivial character ) of '\ A, two characters
e and & of KP/KZE, two complex valued functions « — a, and o — G, on F*, an irreducible

~

representation m of Hg = ®,¢53,, and a quasi-character n of "> \ 1.
There are a number of conditions to be satisifed. If

(6 3)
(62 =6 2)

If « belongs to F* and 3 belongs to F* N I3

belongs to K £ then

and
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The functions o« — a, and o — a,, are bounded. Moreover a,, = a, = 0 if for some v in S the number
« regarded as an element of F,, does not lie in the largest ideal on which ), is trivial. If v belongs to .S

and a isa unitin O,
- a 0 — ()
0 a = )

Ty ((g 2)) =ny(a) I.

Because of these two conditions 7 is determined by 7w and . There is a real number r such that if

Ty = W(Hva V’U)

Let m = ®yggm,. Then for ain

|wo|" < o (@0)] < |wo| ™"

and
|@o|" < vy ()| < | ™"

Finally we suppose that 7, is infinite dimensional for all v not in S.

These conditions are rather complicated. Nonetheless in the next paragraph we shall find ourselves
in a situation in which they are satisifed. When S is empty, D = 0, a, = a, = 1 for all o they reduce
to those of Theorem 11.3. In particular with the next lemma the proof of that theorem will be complete.
We shall use the conditions to construct a space U of automorphic forms on G4 such that U transforms

under JA{S according to m while each ¢ in U satisifes

@(gh) =¢e(h) p(9)

for hin KL If U is such a space then for any ¢ in U and any a in T

¢ <<g 2) g) = n(a) ¢(9)-

This is clear if a belongs ot I3, and follows in general from the relation [ = F* I3,
Recall that W (7, ) is the space of functions on G's spanned by functions of the form

v1(9) = [T olo0)

vgS

where ¢, belongs to W (m,,, 1, for all v and is equal to ! for almost all v.

Lemma 11.4 Suppose p1 belongs to W (mw, ).
(i) For any g in G% the series

e(g) = Z aa €(gs) ¢1 <<%S ?)Qs)

a€FX

T s
converges absolutely. The convergence is uniform on compact subsets of G*,.
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(i) The function ¢ defined by this series is invariant under left translation by the matrices in

Gr N G?3 of the form
o f
0 ¢)°

(iii) Suppose F' is a number field. Let ) be a compact subset of G%. Then there are positive
constants My and Ms such that

lp(9)] < Mi{la] + a7}

o= (5 1) (6 1)

with h in Q, a in I3, and (éf) in G.

It is enough to prove these assertions when ¢ has the form

901(9) = H (pv(gv)'

vgS

To establish the first and third assertions we need only consider the series

> s I] |e ((8‘ ?)%)‘ (11.4.1)

aeFXx vgS
where §(a) = 0 if for some v in S the number « regarded as an element of F, is not the largest ideal on
which v, is trivial and 6(«) = 1 otherwise.
We need only consider compact sets €2 of the form

Q=KF ] % (11.4.2)
vgS

where (2, is a compact subset of GG, and €2, = K, for almost all v.

Lemma 11.4.3 Suppose Q is of the form (11.4.2). There is a positive number p such that for each
non-archimedean place v which is not in S there is a constant M, such that

o0 ((g ?) h)' < MyJa]~*

for a in F) and h in Q, and a constant c, such that

(5 )=
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if la| > ¢, and h is in Q,. Moroever one may take M, = ¢, = 1 for almost all v.

Since ¢, is invariant under an open subgroup of K, for all v and is invariant under K, for almost
all v while Q,, = K, for almost all v it is enough to prove the existence of M, ¢,, and p such that these
relations are satisifed when h = 1. Since the function

()

belongs to the space of the Kirillov model the existence of ¢, is clear. ¢, can be taken to be 1 when O,
is the largest ideal of F,, on which 1), is trivial and ¢, = 9.

The existence of M, for a given v and sufficiently large p, is a result of the absolute convergence
of the integral defining ¥ (e, s, ¢, ). Thus all we need do is show the existence of a fixed p such that the

inequality
a 0 _p
(5 9)]=w

is valid for almost all v. For almost all v the representation , is of the form = (., v,,) with p, and v,
unramified, O, is the largest ideal of F,, on which 1, is trivial, and ¢, = <p2. Thus, for such v,

(5 )=+ (G D)

So((F 1)) =l - rem)

If p, = o (wy) and o, = vy ()

if cisaunitin O, and

1 1

Hom) = 0 ) = oulmnl)

Since |p,| < |w,| " and |oy| < |w,| 7"

(5 D)

Since |w,| < 3 there is a constant ¢ > 0 such that

n+1l _

m-41
Py v

g

< (n+1) |, ™
Pv — Oy

(n+1) < @[~
forall vandall n > 0.

If v is archimedean the integral representations of the functions in W (m,, 1,,) show that there are
positive constants ¢, d,,, and M,, such that

a O —Co
cpv<<0 1>h>'§Mv\a| exp(—dv|a

forain F, and hin Q,. €, is 1 if v is real and % if v is complex.

Ev
v
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Since we want to prove not only the first assertion but also the third we consider the sum

(0= S oot (5 4)0)

a€F'X vgS
where g lies in the set (11.4.2) and b is an idele such that b, = 1 for all non-archimedean v. We also
suppose that there is a positive number ¢ such that b, = ¢ for all archimedean v. If Aisaset of o in F
for which |a|, < ¢, for all non-archimedean v not in S and 6(«) # 0 then

_ (2 2)9)

ST Molatly e exo(—dotlali) 3 T Molawl ™)

SN
‘;#0 vES, vgSUS,

is bounded by

If F'is a function field A is a finite set and there is nothing more to prove. If it is a number field
choose for each v in S a constant ¢, such that 6(«) = 0 unless |a|, < ¢,. Since

H lafy = 1,
IT lel? < {T] s} IT lelt)-

vg€SUS, veES VES,

Thus our sum is bounded by a constant times the product of [ [, t=¢v/%» and

S° 1T {lale exp (= dutlals) -

aeN peS,
a#0

The product [, . |af, is bounded below on A — {0}. Multiplying each term by the same sufficiently
high power of [ [, ||, we dominate the series by another series

> I {ledfr exp(=dut|alin)}

aEANvES,

in which the exponents p, are non-negative. This in turn is dominated by Hvesa t=Pv/%v times

Z H exp (_gvt \a|‘f}”).

aEANVES,

A may be regarded as a lattice in HvESa F,. if A\, ---, )\, is abasis of A there is a constant d such that

Ifa:ZaZ)\,
dy
> 5 lal >d) ai.

VES,
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(o 7))

is dominated by some power of ¢ times a multiple of

{ i 6—dt|a|}"

a=—00

Thus

which is bounded by a multiple of (1 + 1)"

The first assertion is now proved and the third will now follow from the second and the observation
that every element of IIS; is the product of an element of F'*, an idéle whose components are 1 at all
non-archimedean places and equal to the same positive number at all archimedean places, and an idéle
which lies in a certain compact set.

1 ¢
(o )

Suppose € isin F'and
belong to G). Then ¢ is integral at each prime of S and v, (af) = 1 if a, # 0. If g belongs to G, and

(3 )
then e(hg) = e(gs) and if visnotin S
%((3 ?)hv>=wv(a€)s@v<<g ?)gq)).

T ¢o(0d) = [ vo(ag) =1.

vgS

(3 )9

Ifa, #0

Consequently

If b belongs to I3 then

and

so that
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If 3 belongs to F* N I3 and

then

and o (h) is equal to

Since

we can change variables in the summation to see that (k) = ¢(g).
The lemma is now proved. The function

can be treated in the same fashion.

Theorem 11.5 If w is a quasi-characters of F* \ I such that

a, 0Y) _
wv(av)€<< 0 1)) =1
for all units a,, of O, set

A(s,w) ={ Z aq w(ag) |as]®™ }HLSLJU@WU

FXOIZ\FX vgS

~f(a, 0Y) _
for all units a, in O, set

Asw)={ > aawlas)lasl* 2} J] L(s,wo ® 7).

FXNIS\FX vgs

If

Then A(s,w) and IA\(S,w) are defined for Res sufficiently large. Suppose that whenever w is such

that A(s,w) or ZA\(S,w) is defined they can be analytically continued to entire functions which are
bounded in vertical strips. Assume also that there is an A in F'* such that |Al, = |wy|™* for any

pin S and

va ) A~ 1/2}{ Hs(s,wv®7rv,wv)}x(1—s,77_1w_1)

veS vegS
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whenever A(s,w) is defined. Then for any p1 in W (m, 1) there is an automorphic form ¢ on Gy

such that
e(g) = Zaa e(gs) ¢1 <<689 (1)> Qs)

s
on Gp.

The infinite products occurring in the definition of A(s,w) and /A\(s, w) certainly converge for Re s
sufficiently large. To check that the other factors converge one has to check that

D ol

converges for Re s sufficiently large if the sum is taken over those elements « of a system of coset
representatives of £'* N IE, \ F'* for which |a|, < ¢, for vin S. This is easily done.
Ag is the idele whose components are 1 outside of S and A in S. Since

(26 DE )0
(2 o)

normalizes ng). In particular if g belongs to G% so does
0 1 0 Ag'
A4 0)9\1 o )
Lemma 11.5.1 If oy is in W(m, %) and g is in G3, then, under the hypotheses of the theorem,
({0 1 0 Ag'\) _

Let ¢'(g) be the function on the left. As before all we need do is show that for every character w
of F*X N I3\ I3 and every g in G, the integral

the matrix

/ © ((a O) g) w(a)|al*"2 d*a (11.5.2)
FXAIS\IS 0 1
is absolutely convergent for Re s large and positive. The integral
/ a 0 s—1 g%
/ ® << )g) w(a)lal®"2d*a (11.5.3)
FXAIS\IS 0 1

is absolutely convergent for Re s large and negative, and they can be analytically continued to the same
entire function which is bounded in vertical strips.

If for any v in .S the character
a — wy(a)e a 0
Y 0 a
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on the group of units of O, is not trivial the integrals are 0 when they are convergent. We may thus

assume that
a 0
(3 9)-+
for all unitsin O, ifvisin S.

We discuss the first integral in a formal manner. The manipulations will be justified by the final
result. The integrand may be written as a double sum

S5 ane (75 §) ) (575 1)) s

The inner sum is over y in F* N I2 and the outer over a set of coset representatives o of F* N 15\ F.

ine (1)) =me (757 9))

w(a) |a*"% = w(ya) [yal*~*

and

the integral is equal to £(gg) times the sum over « of

o (5 D) ((5 D)o

Since 12 is the direct product of

S
D

jSZ{GEI‘aszl}

and a compact group under which the integrand is invariant the previous expression is equal to

A 0\ . o1
o [ o (%" 7)ds) w@iartaa
Is

Changing variables to rid ourselves of the &g in the integrand and taking into account the relation
1= w(@) o]’ * = w(as)w(as) las|** |as|*2

we can see the original integral is equal to

(o) L aowlos) sl [ o ((§ 1) ds) wl@lat e

There is no harm in supposing that ¢, is of the form

(PI(QS) = H @v(gv)'

vgS
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We have already seen that, in this case,

[ (2 %)) ot

is convergent for Re s large and positive and is equal to
a, 0 _1
H / Pv << 0 1) gv> wy(ay) lay|*"2 d*ay.
F><
vgS v

If ©] is the function
0, (h) = wy (h) u(h)

in W(w, ® m,,1,) this product is

H {L(s,wv @ my) D(go, s, L) wv_l(detgv)}.
vgS

Thus the integral (11.5.2) is absolutely convergent for Re s large and positive and is equal to

e(gs) w(detgs) A(s,w) [ ] (g0, 5.4)).
vgS

The argument used in the proof of Theorem 11.3 shows that this function is entire.

(GG )
E(hs) =€ <<a69 ?)95)-

Thus the integrand in (11.5.3) is equal to

then

Z&a5<<a69 (1)>95> ©1 <<%S (1)> </§)S (1)> (dos (1)>§s> w(a)la]*~%.

The sum can again be written as a double sum over v and «a. Since

w=e((5 ) )5 )

s (7520 9))
A0 ) (80 (5 9)e)

which equals

and
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(3 (4 D0 )

we can put the sum over F* N I3 and the integration over F* N I3 \ I3 together to obtain £(gs) times
the sum over F* N I3\ F* of

. as 0 as 0 0 1 as 0\ . 1
aa/IJgE((O 1)) <P1<<O 1) <As 0><0 1>gg> w(a) |al d*a.
We write
ag 0 0 1 as 0\ (0 1 as 0 _dglAS&S 0
0 1 Ag 0 0o 1) \=1 0 0 ag 0 1

and then change variables in the integration to obtain the product of w(—Ag) |Ag|*~ = and

o (as)w™ (ag) Jas]2 /fs ©1 <<_01 é) (8 (1)> Qs) w(a)|al*~? d*a.

Replacing a by a~! and making some simple changes we see that the integral is equal to

/fs 7 ((8 (1)> <_01 é)?]s) 0 s)w (@) a2 d”a

which converges for Re s large and negative and is equal to

is equal to

H {L(1 = s,y  wyt @ my) ®(wge, 1 — s, ¢),) wy(detg,) }.
vgS

Thus the integral 11.5.3 is equal to

e(gs) w(detgs) w(—Ag) [As[* 2 A1 — 5,77 w™) [] ®(wg,1-5,¢,)
vgS

which is entire.
Since

q)(wgva 1—s, 902;) = E(Sawv & 7Tv,¢) CD(gva S, (P;)

the analytic continuations of (11.5.2) and (11.5.3) are equal. We show as in the proof of Theorem 11.3
that the resultant entire function is bounded in vertical strips of finite width.
There is now a simple lemma to be proved.
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Lemma 11.5.3 The group Gg N G% 1s generated by the matrices in it of the form
a p
0 o
a 0
v 6)°
This is clear if S is empty. Suppose that S is not empty. If
_(a B
- <v 5 )
belongs to G N G, and |af, = 1 for all vin S then

[« 0 1%
g_’yé—% 0 1

and both matrices belong to G N G%. In general if gisin Gp N G% then, foreach v in S, |, < 1,
|7]» < 1 and either |af, or |v|, is 1. Choose ¢ in F so that, for every v in S, |§,| = 1if |o|, < 1 and

&, < 1if |a], = 1. Then
L&Y (a BY_(a+&y B+E
0 1)\y ¢/ 7y )

and |« + &v|, = 1 forall v in S. The lemma follows.
We know that if

and

isin Gr N G%. Then

o((55)a)=e((30) (5 5)s(V %))

Since the argument on the right can be written

(%) (o) (%)

and the first term of this product lies in G N G2, the right side is equal to

(5 0)s (1 75)) e
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Thus ¢ is invariant under G N G%. Since G, = Gp G% the function ¢ extends in a unique
manner to a function, still denoted ¢, on G \ Ga. Itis clear that ¢ is K -finite and continuous and that

v ((8 2) g) = n(a) (g)

for all a in I. Itis not quite so clear that ¢ is slowly increasing. If €2 is a compact subset of G, there is a
finite set 1, - - -, v¢ in G such that

Q=U_,0n~1GP.
What we have to show then is that if v belongs to Gz and ¢ > 0 is given there are constants M; and
M, such that for all gin QN ~~1 G, and all a in I for which |a| > ¢

(5 7)9)

If v is a place of F’, which is not in S and is archimedean if F' is a number field, there is a compact
set C'in I such that

S Ml\a]MQ.

{ael|la] >c} C F*{ae F)|la| > c}C
Thus the inequality has only to be verified for a in F;* — of course at the cost of enlarging €. If

_(a B
= %)
a 0 _(a =z
withz = (1 — a)% and the conclusion results from Lemma 11.4 and the relation
By = (BA N GF) (BA N G%)

BA—{<8 1>€GA}
COICH ]
) (5 (0 1)

then

Otherwise we write

(5 )= 1) (5 5
(5 0) (0 7)o

lies in a certain compact set which depends on €2, ¢, and . The required inequality again follows from
Lemma 11.4 R

The space U of functions ¢ corresponding to ¢; in W (m,1) transforms under Hg according to
m. Lemma 10.13 implies that every element of U is an automorphic form. If it is not contained in Ay,
Lemma 10.12 applied to the functions

@0(9):;/ o((F 7)g)de
measure F'\ A Jp\ 4 0 1

with ¢ in U shows that there are two quasi-characters p and v on F* \ I such that m, = 7(p,, v,) for
almost all v.

The matrix
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Corollary 11.6 Suppose there does not exist a pair p, v of quasi-characters of F* \ I such that
Ty = Ty, Vy) for almost all v. Then there is a constituent ©’" = @) of Ay such that 7, = 7} for
all v not in S.

Since U transforms under UA{S according to it is, if v is not in S, the direct sum of subspaces
transforming under H,, according to m,. By assumption U is contained in Ay and therefore in Ay (7).
Ao (n) isthe direct sum of subspaces invariant and irreducible under . Choose one of these summands
V' so that the projection of U on V is not 0. If 7’ = ®/ is the representation of H on V it is clear that
m = m, ifvisnotin S,

Another way to guarantee that U lies in the space of cusp forms and therefore that the conclusion
of the corollary holds is to assume that for at least one v not in S the representation m, is absolutely
cuspidal.
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§12. Some extraordinary representations. In [18] Weil has introduced a generalization of the Artin
L-functions. To define these it is necessary to introduce the Weil groups. These groups are discussed
very clearly in the notes of Artin—-Tate but we remind the reader of their most important properties. If
Fisalocal field let Cr be the multiplicative group of F' and if F'is a global field let Cr be the idele class
group I\ I. If K is a finite Galois extension of F' the Weil group Wi, is an extension of &(K/F),
the Galois group of K/ F, by Cx. Thus there is an exact sequence

1—>CK—>WK/F—>®(K/F)—>1.

If L/F is also Galois and L contains K there is a continous homomorphism 7,z i/ of W1,/ onto
Wi, p. Itis determined up to an inner automorphism of Wi, by an element of Cx. In particular
Wg,r = Cr and the kernel of 7,/ is the commutator subgroup of Wy . Also if ' C F C K
we may regard Wy, r as a subgroup of Wy, p. If I is global and v a place of I we also denote by v
any extension of v to K. There is a homomorphism «, of W/, into Wy, r which is determined up
to an inner automorphism by an element of C'x.

A representation o of Wy, r is a continuous homomorphism of Wy, into the group of invertible
linear transformations of a finite-dimensional complex vector space such that o (w) is diagonalizable for
all win Wi, . If K is contained in L then o o7y, i/ is @ representation of Wy, ,» whose equivalence
class is determined by that of . In particular if w is a generalized character of Cr then w o 7/ g p/p IS
a one-dimensional representation of W, r which we also call w. If o is any other representation w ® o
has the same dimensionaso. If F'C E C K and p is a representation of W, on X let Y be the space
of functions ¢ on Wy, r with values in X which satisfy

p(uw) = p(u) p(w)
forall uin Wy p. Ifv € Wk, pand ¢ € Y let o(v)p be the function
W — p(wo)
o(v)y also belongs to Y and v — o(v) is a representation of W, . We write
o =IndWk,r, Wi/, p)-

If F'is global and o is a representation of W, then, for any place v, 0, = oo« isarepresentation
of Wk, /r, Whose class is determined by that of o.

Now we remind ourselves of the definition of the generalized Artin L-functions. Since we are
going to need a substantial amound of detailed information about these functions the best reference is
probably [19]. In fact to some extent the purpose of [19] is to provide the background for this chapter
and the reader who wants to understand all details will need to be quite familiar with it. If F'is a local
field then to every representation o of Wy, we can associate a local L-function L(s, o). Moreover if
1 is a non-trivial additive character of F' we can define a local factor (s, o, ¢r). The L-function and
the factor (s, 0,9 r) depend only on the equivalance class of o.

If F'is a global field we set

L(s,0) = H L(s,0y)
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The product converges in a right half-plane and L(s, o) can be analytically continued to a function
meromorphic in the whole complex plane. If ¢z is a non-trivial character of '\ A the functions
(s, 04,1, ) are identically 1 for all but a finite number of v. If

e(s,0) = H5(570m¢v)

and ¢ is the representation contragredient to o the functional equation
L(s,0) =¢(s,0) L(1 —s,0)
is satisfied. For all but finitely many places v the representation o, is the direct sum of d, the dimension

of o, one-dimensional representations. Thus there are generalized characters y, - - - u4 of Cr, such
that o, is equivalent to the direct sum of the one dimensional representations

w — ,uf, (TKU/Fv | Fy (w)) .

Moreover, for all but finitely many of these v, pil, - - - , u¢ are unramified and there is a constant r, which
does not depend on v, such that

’Mi(wv)’ < |@y!" 1<i<d.
If I is a global or a local field and o is a representation of Wx,p then w — deto(w) is a one-
dimensional representation and therefore corresponds to a generalized character of Cr. We denote this
character by deto.

If £ is a local field, o is a two-dimensional representation of Wx,r, and ¢r is a non-trivial
additive character of F' then, as we saw in the first chapter, there is at most one irreducible admissible

representation w of Hy such that
a 0
T << 0 o )) = deto(a) I

and, for all generalized characters w of Cr,

L(s,w®m) = L(s,w® o)
L(s,w™ ' ®@%) = L(s,w ' ®0)
5(87W®W7¢F) = 6(87w®07¢F)'

If % (x) = ¢Yp(Bx) then

e(s,w® 0, Y) = detw @ o(B) e(s,w @ 0,¢F)

™ ((‘8‘ 2)) = deto(a) I

e(s,w @, Yp) = detw ® o(B) e(s,w ® T, YF).

and, since

one also has
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Thus m, if it exists at all, is independent of 1 r. We write 7 = (o).

There are a number of cases in which the existence of 7(o) can be verified simply by comparing
the definitions of the previous chapter with those of [19]. If x and v are two quasi-characters of Cr and
o is equivalent to the representation

W — (M(TK/F,F/F(W)) 0 )
0 v(Tr ) rr (W)

then 7(o) = m(u,v). If K/F is aseparable quadratic extension, x is a quasi-character of Crr = Wi /k,
and

o=IndWgk/r, Wk /K, X)

then 7(o) = m(). Observe that 7(x) is alway infinite-dimensional.
Suppose F'isaglobal field and K is a separable quadratic extension of F'. Let y be a quasi-character
of C'k and let

o= Ind(WK/F, WK/Kv X)
If v does not split in K
Oy = Ind(WKv/Fv 5 WK“/K“ 9 Xv)v

but if v splits in K the representation o, is the direct sum of two one-dimensional representations
corresponding to quasi-characters y,, and v, such that p, v, ! is a character. Thus (o, ) is defined and
infinite-dimensional for all v.

Proposition 12.1  If there is no quasi-character u of Cr such that x(a) = p(Ng/pa) for all a in Cx
the representation ®,m(0y,) is a constituent of Agy.

If w is a generalized character of F' then
(WR )y =wy @ 0y

Define a generalized charcter wg, r of Cx by

LAJK/F(OC) = W(NK/F(OC))
Then
w®o=IndWg,r, Wik wK/rX)

and
L(va ® U) = L(vaK/FX)'

The L-function on the right is the Hecke L-function associated to the generalized character wg,rx of
Ck. Itis entire and bounded in vertical strips unless there is a complex number r such that
wi/p(a) x(@) = |a|” = |Nk/pal".
But then
x(@) = w ' (Ng pa) [Ng/pal”
which is contrary to assumption. The function

L(s,w™' ©5) = L(s,wgypXx ")

is also entire and bounded in vertical strips. It follows immediately that the collection {x (0, )} satisfies
the conditions of Theorem 11.3.
This proposition has a generalization which is one of the principal results of these notes.
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Theorem 12.2 Suppose F' is a global field and o is a two-dimensional representation of Wy p.
Suppose also that for every generalized character w of Cr both L(s,w ® o) and L(s,w™ ® &) are
entire functions which are bounded in vertical strips. Then w(o,) exists for every place v and
®q7(0y) is a constituent of Ay.

We observe that the converse to this theorem is an immediate consequence of Theorem 11.1.

We are going to apply Corollary 11.6. There are a large number of conditions which must be
verified. We know that (o) is defined for all but a finite number of v. In particular it is defined for
v archimedean for then o, is either induced from a quasi-character of a quadratic extension of F}, or is
the direct sum of two one-dimensional representations. If o, is equivalent to the direct sum of two one-
dimensional representations corresponding to quasi-charcters ., and v, then p, v, ! is a character so
that 7(o, ) is infinite-dimensional. Let S be the set of places for which (o) is infinite-dimensional. Let
S be the set of places for which 7 (o, ) is not defined or, since this is still conceivable, finite dimensional.
We are going to show that .S is empty but at the moment we are at least sure that it is finite. If v is not
in Ssetm, =m(oy,).

If v isin S the representation o, must be irreducible so that

L(s,wy ® 0y) = L(s,wv_l ®ao,) =1

for every generalized character w, of F,*. The Artin conductor p;"* of o, is defined in the Appendix to
[19]. There is a constant c¢,,, depending on o, such that if w,, is unramifed

5(57(*)7) ® O-’Ua ¢’U) = C’U wv(wv)m7’+2” |wv|(m'w+2nv)(8—%)

if p,; v is the largest ideal on which 1, is trivial. 1, is the restriction to I, of a given non-trivial
character of F'\ A.
We take

D:Hpmp

pes

e <<% bo )) = detoy (b,)
P << o b(j} )) _ detoy(ay)

if v belongs to S and a,, and b, are units of O,. If a belongs to F* and |a|, = |w,|~ " forevery vin S
we set a, = 1 and aq = [[,c g co deto, (a); otherwise we set a,, = a, = 0.
The function A(s,w) of Theorem 11.5 is defined only if w, is unramified at each place of S and

then it equals
{ H wy (o, ™) ‘wv‘—nv(s—a)} { H L(s,w, ® m,)}
veS v€gS

{ H wy(m, ™)

veS

and n = deto. We define ¢ and ¢ by

and

which is )
wv‘—nu(s—i)} L(s,w ® O').
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~

A(s,w™1n~1) is also defined if w, is unramifed at each place of S and is equal to

{Hcvwv oY ey | T (5 2)}L 1 ®0).

vES

Choose A in F* so that |A4,| = |w,|™ forevery vin S. Then

[Two(=4) 1412 = [] wol@)™

veS veES

oo ‘mq,(s

The functional equation asserts that L(s,w ® o) is equal to

{ H e(s,wy ® UU,¢1,)}{ H e(s,wy, ® av,wv)}L(l — 5w ®0).

veS vgS

The first factor is equal to
{TT cown(@)®™ f 2D [T wo(—4) 4172},
vES veS
Therefore A(s,w) is equal to
s—x N — —
{TT @D 1ARZH{ [ e(ss w0 @ 00, 900) AL = 5,07 ' ).
vES vegS

The assumptions of Theorem 11.5 are now verified. It remains to verify that of Corollary 11.6. It
will be a consequence of the following lemma.

Lemma 12.3 Suppose F' is a global field, K is a Galois extension of F, and p and o are two
representations of the Weil group Wy p. If for all but a finite number of places v of F' the local
representations p, and o, are equivalent then p and o are equivalent.

= HL(S, Op)-
p

The product is taken over all non-archimedean places. We first prove the following lemma.

We set

Lemma12.4 If o is unitary the order of the pole of Lo(s,0) at s =1 is equal to the multiplicity with
which the trivial representation is contained in o.

Therearefields Ey, - - -, E. lying between F'and K, characters xg, , - - -, XE,., and integersmyq, - - - , m,.
such that ¢ is equivalent to

©i—ymi nd(Wg,p, W5, XE;)

Let 9; = 1if xg, is trivial and 0 otherwise. Since

r
U) = H LO(Sv XEz)mz
=1
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the order of itspole at s = 1 is Z;zl m; 0;. However

IndWgk/r, Wk /E, XE;)

contains the trivial representation if and only if xz, is trivial and then it contains it exactly once. Thus
> i1 m; d; is also the number of times the trivial representation occurs in o.
Observe that if T is any finite set of non-archimedean primes the order of the pole of

H L(s,op)

pgT

at s = 1 is the same as that of Ly (s, o).

The first step of the proof of Lemma 12.3 is to reduce it to the case that both p and o are unitary.
Then p and ¢ certainly have the same degree d. Let pacton X and let o acton Y. Under the restriction p
to C'k the space X decomposes into the direct sum of invariant one-dimensional subspaces X, ---, X4
which transform according to quasi-characters p!, - - -, u¢ of Ck. If a is a real number let

M(a) = {i| |u*(a)| = |a|* for all a in Crc}

and let

X(a)= > X;

i€M(a)

X (a)isinvariant under Wy pand X = ©X(a). Let p(a) be the restriction of p to X (a). Replacing
pby o and X by Y we can define v*,-- -, v% and Y (a) in a similar fashion.

We now claim that if p, is equivalent to o, then p,(a) is equivalent o, (a) for each a. To see this
we need only verify that any linear transformation from X to Y which commutes with the action of
Wk, /r, or even of Uk, takes X (a) to Y (a). Observe that under the restriction of p, to C, the space
X; transforms according to the character ! and that | (a)| = |a|* for all « in Ck, if and only if
|pi(@)| = |a|® for all a in C. Thus X (a) and Y (a) can be defined in terms of p, and o, alone. The
assertion follows.

Thus we may as well assume that for some real number a

()] = v (a)| = |a”

for all ¢ and all « in Ck. Replacing o by a — |a| 7% o(«) and p by o — || ™% p(«) if necessary we
may even assume that ¢ = 0. Then p and ¢ will be equivalent to unitary representations and we now
suppose them to be unitary:.

If 7 is irreducible and p ~ 7 @ p/ and o ~ 7 @ o’ then p) is equivalent to o/, whenever p, is
equivalent to o,. Since we can use induction on d it is enough to show that if 7 is irreducible and
unitary and contained in p then it is contained in ¢. Let p and & be the representations contragredient
to p and o. Certainly (p ® 7), = p, ® 7, is equivalent to (¢ ® 7), for all but a finite number of v.
Moreover p® T contains 7 ® 7 which contains the identity. If & ® 7 contains the identity then, as is well-
known and easily verified, o contains 7. On the other hand the orders of the poles of Ly(s, p ® 7) and
Lo(s,0c ®T) at s = 1 are clearly equal so that, by Lemma 12.4, ¢ ® T contains the trivial representations
if p ® 7 does.
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We return to the proof of Theorem 12.2. It follows from Lemma 12.3 that if the assumptions of
Corollary 11.6 are not satisfied ¢ is equivalent to the direct sum of two one-dimensional representations
associated to quasi-characters p and v of C'r. Then

L(s,w®c) = L(s,wp) L(s,wv).

The two functions on the right are Hecke L-functions. The function on the left is entire for every choice
of w. Taking w = p~1 and w = v~! we see that L(s, u~'v) and L(s,v~11) have a zero at s = 1. Let
ptv(a) = |a|” x(a) where x is a character. Then

L(s,p~'v) = L(s +1,X)
L(Su V_llu’) = L(S - X_l)'

Now neither L(s,x) nor L(s,x ') has a zero in the set Res > 1. Therefore 1 +r < land 1 —r < 1.
This is impossible.

We can now apply Corollary 11.6 to assert that there is a constituent @’ = [[, ®, of A such that
7, = (o) for v not in S. To prove the theorem we need only show that 7, = (o, ) for vin S. Taking
the quotient of the two functional equations

Ls,w®0) = {He(s,wv ®av,¢v}L(1 —s,w ! ® o)

e L(s,w@n’) = { Hs(s,wv @, Py)} L(1 = s,w™ ' @ 7'),
v

we find that

H (s, wy ®0’v)

s L(s,w, @)
is equal to

{H e(s,wy @ opthy) } {H L(1-sw;'®ad,) }
ays e(s,wy @, 1hy) s Ll—swy,t@7) [’

We need one more lemma. If v is a non-archimedean place and w, is a quasi-character of F*
let m(w,) be the smallest non-negative integer such that w, is trivial on the units of O, congruent to
1 modulo pm(w”)

Lemma 12.5 Suppose S is a ﬁm’te set of non-archimedean places and vg € S. Suppose that we are
given a quasi-character X, of ) and for each v # v in S a non-negative integer m,. Then there
is a quasi-character w of Cp such that wy,, = X, and m(w,) > m, if v # vy belongs to S.

Suppose Xy, (@) = |alf, Xvo( o) where x;, is a character. If ' is a character of Cr and w;, | = Xvo
while m(w)) > m, for v # vy in S we may take w to be the generalized character o — |a|" W' («)
of C'r. In other words we may assume initially that x,,, is a character. Let A be the group of idéles
whose component at places not in S is 1, whose component of a place v ¢ v, in S is congruent to
1 modulo p}**, and whose component at v, is arbitrary. Certainly F* N A = {1}. We claim that F'* A
isclosed in I. Indeed if o € I there is a compact neighborhood X of a on which the norm is bounded
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above by 1/¢ and below by ¢ where ¢ is a positive constant. If 5 € F* and v € A then |3| = |v|.
Moreover

1
A={yeAle<hl<2)

is compact. Since F'* is discrete F'*A, is closed. Since any point has a compact neighborhood whose
intersection with F'* A is closed the set F'*A is itself closed.

We can certainly find a character of A which equals xvy on F;S and, for any v # v in S, is
non-trivial on the set of units in O, congruent to 1 modulop]**. Extend this character to F'’* A by
setting it equal to 1 on F'*. The result can be extended to a character of I which is necessarily 1 on F'*.
We take w to be this character.

Let 7, (% o)) = nu(ew). 1 n(a) = T, m(ay) then n is a quasi-character of F \ I. Since, by

construction, n = deto on I}, the quasi-characters 1 and deto are equal. Therefore 7, = deto,, for all
v. We know that if m(w,) is sufficiently large

L(s,wv ® UU) = L(Sawv ® 77;) =1

and
L(1-sw,'®5,)=L(1-s,w,' ®7,) =1.

Moreover, by Proposition 3.8
£(8, Wy ® Ty, ) = €(8, Wy, Pu) €(8, W, o).
It is shown in the Appendix of [19] that if m(w,) is sufficiently large
E(S,wy ® 0y, y) = (8, wydetay, V) e(s, wy, Py).

Applying Lemma 12.5 and the equality preceding it we see that if v is in S and w, is any quasi-
character of £

L(s,w, ® 0y) s(s,wv®0v,¢v)} L(1-s,w;'®a)
L(s,wy @m,)  \e(s,wy@m,4n) | L0 —s,wit@7,) )

Recalling that
L(s,w, ®0,) = L(1 — s,w;'®37,) =1

for v in S we see that
L(l—s,wv_1®7ﬂ,) . 5(57wv®ava¢v)
L(S,u)v ®7T;}) N 5(7(")7) ® 7T1,;7¢’U) '

The theorem wiill follow if we show that

(12.5.1)

L(s,w, @7) =L(1 —s,w;'@n) =1

for all choices of w,,.
If not, either =], is a special representation or there are two quasi-characters p,, and v,, of F* such
that 7/, = (., v,,). According to (12.5.1) the quotient

L1 —s,wyt @)
L(s,w, ® )
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is an entire function of s for every choice of w,. If 7/, = m(u., v, ) and m(u, v,) is positive

L= s,u®7) _ 1- [
L' ©m)  1— @

which hasapoleat s = 1. If m(u, 'v,) =0

L(l—S,Mv®7};}) :{ 1—’@1}‘5 }{ 1—[1/1711/1;(731))‘@1)‘5 }

L(Saﬂgl ® ) 1 — | |1 s 1 — py Vv_l(wv)‘wv‘l_s

which has a pole at s = 1 unless yi, v, ' (w,) = |w,|. Butthen it has a pole at s = 2. If 7 is the special
representation associated to the pair of quasi-characters

a—pp(a)|alf o — p(a)|al7E

of £ then
L(l — 8,y & 7};) _ 1- ’wv‘s+%
L(s,us ' ®7,) 1 |w,|2—*

which has a pole at s = 1.

There is a consequence of the theorem which we want to observe.
Proposition 12.6  Suppose E is a global field and that for every separable extension F' of E, every
Galois extension K of F, and every irreducible two-dimensional representation o of Wi, p the
function L(s,o) is entire and bounded in vertical strips. Then if Fy is the completion of E at some
place, K; 1is a Galois extension of Fy, and o1 is a two-dimensional representation of Wy ,p, the
representation m(oy) exists.

We begin with a simple remark. The restriction of o; to Ck, is the direct sum of two one-
dimensional representations corresponding to generalized characters x; and s of Ck,. If 7 belongs
to G = &(K,/Fy) either x1 (7(a)) = x1(e) for all o in Cx or x1 (7(a)) = x2(e) for all o in Ck. If
the representation o is irreducible there is at least one 7 for which x; (T(a ) = x2(a). If x1 # X2, the
fixed field L, of

H={re@|u(r(a) =)}

is a quadratic extension of F'. The restriction of oy to Wi, /1, is the direct sum of two one-dimensional
representations and therefore is trivial on the commutator subgroup WIC<1/L1 which is the kernel of
TK,/F,L./F, - With no loss of generality we may suppose that K7 equals L; and is therefore a quadratic
extension of F3. Then oy is equivalent to the representation

Ind(Wk, /s Wk, /i, X1)-

If o1 isreducible 7(oq ) is defined. The preceding remarks show that it is defined if oy is irreducible
and o1 («) is not a scalar matrix for some « in Cg,. The proposition will therefore follow from
Theorem 12.2 and the next lemma.
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Lemma12.7 Suppose Fy is the completion of the field E at some place, Ky is a Galois extension of
Fi, and oy is an irreducible two-dimensional representation such that o1(«) is a scalar matriz for
all o in Ck,. Then there is a separable extension F' of E, a Galois extension K of F', a place v of
K, and isomorphism ¢ of K, with Ky which takes F, to Fy, and an irreducible two-dimensional
representation o of Wi p such that o, is equivalent to oy o ¢.

Observe that the existence of o forces F} to be non-archimedean. We establish a further sequence
of lemmas.

Lemma 12.8 Suppose V' is a finite dimensional real vector space, G is a finite group of linear
transformations of V', and L is a lattice in V invariant under G. If x is a quasi-character of L
invariant under G there is a quasi-character X' of V invariant under G and a positive integer m
such that the restrictions of X' and x to mL are equal.

Let V be the dual of V and XA/C its complexification. There isa y in 17@ such that x(z) = e2mi{z.)
for all z in L. If z belongs to V- the generalized character z — €27*{*+2) is trivial on L if and only if z

belongs to % L is the lattice
{ve ‘A/| (x,v) € Z forall zin L}.

Let G be the group contragredient to (G. We have to establish the existence of an m and a z in % such
that y — z is fixed by G lfo belongs to G then oy —y = w, belongs to L. Clearly cw, + ws, = wy,. Set

1
z = meT.

T

If m is taken to be [G : 1] this is the required element.

Lemma 12.9 Suppose F is a global field, K is a Galois extension of it, and v is a place of K.
Suppose also that [K, : F,] = [K : F] and let x, be a quasi-character of Ck, invariant under
G =6(K,/F,) =&(K/F). There is a closed subgroup A of finite index in Cx which is invariant
under G and contains Cx, and a quasi-character x of A invariant under G whose restriction to
Ck, 5 Xov-

Suppose first that the fields have positive characteristic. We can choose a set of non-negative
integers n,,, w # v, all but a finite number of which are zero, so that the group

B=Ck, x [[ Uz
WAV

Ny

is invariant under G and contains no element of K> except 1. Uy is the group of units of Ok, which
are congruent to 1 modulo p?gﬂ. We extend ., to B by setting it equal to 1 on

Ny

KU}
wWHV

and thento A = K*B/K* by setting it equal to 1 on K*.
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Now let the fields have characteristic 0. Divide places of K different from v into two sets, S,
consisting of the archimedean places, and T, consisting of the non-archimedean ones. Choose a
collection of non-negative integers 7/, w € T, all but a finite number of which are zero, so that

_B’::(h@,x II Ck% X II U;%.

weS weT

is invariant under GG and contains no roots of unity in K except 1. If w is archimedean let Uy, be the
elements of norm 1 in K, and set

B, =[] Uk, x [ Up.

weS weT

B’/ B is isomorphic to the product of C, and

V= 1] Ox./Ux,

weS

which is a vector group. The projection L of
M =By (B'NnK*)/B;

on V isa lattice in V' and the projection is an isomorphism. Define the quasi-character x4 of L so that if
m in M projects to m; in Ck, and to my in V then

Xo(mi) p(mz) = 1.

w is invariant under G. Choose a quasi-character i/ of V and an integer n so that n/ and . are equal
on nL. Let v be the quasi-character obtained by lifting x, x p’ from Ck, x V to B’. It follows
from a theorem of Chevalley ([20] Theorem 1) that we can choose a collection of non-negative ingegers
{n. | w € T} all but a finite number of which are zero so that n,, > n/, for all w in T, so that

B =Ck, x HCwa HU}}’;

weS weT

is invariant under G, and so that every element of BN K> is an nth power of some element of B’ N K *.
The restriction v of v/ to Bistrivialon BNK*. Wetake A = K * B/K* and let x be the quasi-character
whichis 1 on K* and v on B.

Lemma12.10 Suppose Fy is a completion of the global field 2, Ky is a finite Galois extension of Fy
with Galois group G, and Xk, s a quasi-character of Ck, invariant under Gy. There is a separable
extension F' of E, a Galois extension K of F, a place v of K such that [K, : F,] = [K : F], an
isomorphism ¢ of K, with Ki which takes F, to Fy, and a quasi-character x of Cx invariant
under g(K/F') such that x, = Xk, © .

We may as well suppose that F; = FE,,, where w is some place of E. It is known ([8], p.31) that
there is a polynomial with coefficients in £ such that if ¢ is a root of this polynomial E,(0)/E,, is
isomorphic to K /F;. Let L be the splitting field of this polynomial and extend w to a place of L.
The extended place we also call w. Replacing E by the fixed field of the decomposition group of w if
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necessary we may suppose that ¥} = E,,, K; = L, and [L,, : E,,] = [L : E]. Now set x,, = xx, and
extend ., to a quasi-character x’ of A as in the previous lemma.

Let K be the abelian extension of L associated to the subgroup A. Since A is invariant under
&(L/E) the extension K/E is Galois. Let v be a place of K dividing the place w of L. Since A
contains Cp,,, the fields K, and L,, are equal. Let F' be the fixed field of the image of &(K,/E,,) in
&(K/E). Let v also denote the restriction of v to F'. The fields F,, and E,, are the same. The mapping
Nk : Cx — Cp maps Ck into A. Let x = x’ o N,z Then x is clearly invariant under &(K/F).
Since N/, restricted to K, is an isomorphism of K, with L,, which takes F;, onto E,, the lemma is
proved.

To prove Lemma 12.7 we need only show that if I is a global field, K is a Galois extension of F/,
X is a quasi-character of C'x invariant under & (K /F), v is a place of K such that [K : F| = [K, : F],
and o is an irreducible two-dimensional representation of W ,, such that o,(a) = x,(a)I for all
ain Cg, then there is a two-dimensional representation o of Wi, such that o, is equivalent to o;. o
will be irreducible because o7 is.

Let oy acton X. Let p, be the right regular representation of Wy ,r, on the space V, of functions
fonWg, ,p, satisfying

flaw) = xo(@) f(w)
forall ain Cg, and all w in Wy /g, . If Xis a non-zero linear functional on X the map from x to the

function (o1 (w)z) isa Wk, ,p, -invariant isomorphism of X with a subspace Y of V.
Let V' be the space of all functions f on Wy, satisfying

flaw) = x(a) f(w)

forall v in Cx and all w in Wi p. Since [K : F| = [K, : F,] the groups &(K/F) and &(K,/F,) are
equal. Therefore
Wk/r = Ck Wk, /F,

Moreover Cx, = Cx N Wk, /F,. Thus the restriction of functions in V to Wy ,r, is an isomorphism
of V with V,,. For simplicity we identify the two spaces. Let p be the right regular representation of
W r on V. If a belongs to C'k then

flwa) = x(waw™) f(w) = x(a) f(w)

because x is &(K/F) invariant. Therefore p(a) = x(c) I and a subspace V' is invariant under W p
if and only if it is invariant under Wy ,r, . If we take for o the restriction of p to Y then o, will be
equivalent to ;.
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Chapter lll: Quaternion Algebras

§13. Zeta-functions for M (2, F'). In this paragraph F' is again a local field and A = M (2, F) is the
algebra of 2 x 2 matrices with entries from F'. The multiplicative group A* of Aisjust Gr = GL(2, F).
If g isin Gr we set
lgla = aa(g) = |detg|F.
Let m be an admissible representation of JH{r on the space V. Let the contragredient representation
7actononV. Ifv belongs to V and v to V the function

(m(g)v,0) = (v,7(g~")?)
is characterized by the relation

/ (n(gh), v,5) f(h)dh = (x(g) 7(f)v,5)

forall fin Hp. _
If & belongs to the Schwartz space $(A) and v belongs to V and © to V' we set

Z(m, ,0,7) = /G B(g) (n(g)v,7) d*g

and
27,005 = [ lg) (w0.7(0)0) g
GFr
The choice of Haar measure is not important provided that it is the same for both integrals.
If w is a quasi-character of F'*

Zw@m, ®v,0)= /G ®(g) w(detg)(m(g)v,v)d*g

The purpose of this paragraph is to prove the following theorem.

Theorem 13.1 Let 7 be an irreducible admissible representation of Hp and 7 its contragredient. Let
mactonV and®onV.
(i) For everyv inV, v inV, and ® in 8(A) the integrals defining Z(a% @ w, ®,v,0) and Z(af ®
T, ®,v,0) converge absolutely for Re s sufficiently large.
(ii) Both functions can be analytically continued to functions which are meromorphic in the whole
plane and bounded at infinity in vertical strips of finite width.
(iii) If
1
Z(aij_Q @, ®,v,0) = L(s,7) E(s, P, v,0)
and ) _
Z(a5T2 @7, ®,0,0) = L(s, %) Z(s, ®,0,7)

then Z(s, ®,v,0) and é(s,@,v,’ﬁ) are entire.
(iv) There exist ¢, v1,---,v, and 01, , 0, such that > . =(s, ®,v;,0;) is of the form a e’ with
a # 0.
(v) If ® is the Fourier transform of ® with respect to the character vz (x) = ¢Yp(trz) then
E(1—s,9" 0v,0) =¢e(s,m,¢r),=(s, ®,v,0).

We suppose first that F' is non-archimedean and 7 is absolutely cuspidal. Then we may take 7 in
the Kirillov form so that V' is just S(F*). Since an additive character ¢ = 1) is given we will of course
want to take the Kirillov model with respect to it. The next lemma is, in the case under consideration,
the key to the theorem.



Lemma 13.1.1 If ¢ belongs to S(F*), v belongs to V', and © belongs to V set

®(g) = p(detg) (v, 7(g)D) |detg| "

if g belongs to G and set ®(g) =0 if g in A is singular. Then ® belongs to 8(A) and its Fourier
transform is given by

' (g) = ¢ (detg)(m(g)v, D) |[detg|z" n~ " (detg)

if g belongs to Gg and
?'(g) =0

if g is singular. Here n is the quasi-character of F* defined by

(5 2)) =
I EE

This lemma is more easily appreciated if it is compared with the next one which is simpler but
which we do not really need.

and

Lemma 13.1.2 Let 8o(A) be the space of all ® in S(A) that vanish on the singular elements and

satisfy
/¢><g1 <(1) T>92> dz =0

for g1 and g2 in Gp. If ® is in So(A) so is its Fourier transform.

Since 8y (A) is stable under left and right translations by the elements of G it is enough to show

(3 8)-
RS

To verify these relations we just calculate the left sides!

“((50)) = e o5 5))

The right side is a positive multiple of

/GF ®(g) tha <g<8 8)) |detg|? d* g
[ (o (5 0))wson L2 (o3 7)) oo}

for a in I and that

which equals
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This is 0 because the inner integral vanishes identically.

foor (o 3) e
/{/q)((i g)) br(a+ 6+ yw) dadfdy ds} do

which, by the Fourier inversion fomula, is equal to

/q> ((3‘ ?)) Yp(a+ 6) dods dB
/Ial¢p(a+5){¢<<g‘ g) (é f)) dﬂ}dadé
and this is 0.

We return to the proof of Lemma 12.1.1 for absolutely cuspidal 7. Since (v, 7(g)?v) has compact
support on Gr modulo Z the function ®(g) belongs to §(A). Moreover

Joo oo 3)r) e

o(detgh) |detgh| 5! / (r(g1v, 7 <<(1) "f)) #(h)v) da.

Since 7 is absolutely cuspidal this integral is 0. Thus ® belongs to 8y(A) and, in particular, ® vanishes
at the singular elements.
Suppose we can show that for all choice of ¢, v, and ©

is equal to

which equals

is equal to

P (e) = ¢ (e) (v, v). (13.1.3)
If h belongs to G set ®1(g) = ®(h™1g). If a = deth, p1(z) = |a| p(a ), and v; = w(h) v,

©1(g) = p1(detg) (v, 7(g)) [detg| "

Then @/ (e) is equal to
() (v1,v).

di=ntw=lntn (% 1))

(5 2) <[ 8o

Thus ®’(h), which equals ®/ (e) [deth| =2, is

On the other hand

which equals

@' (deth)(m(h) v, o) n~* (deth) |deth|~*.

The formula (13.1.3) will be a consequence of the next lemma.
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Lemma 13.1.4 Let de be the normalized Haar measure on the group U = Up. If v is a character of
U set

n(v,x) = /UI/(E) Y(ex)de

if ¢ is in F. Let dx be the Haar measure on F' which s self-dual with respect to 1. Then

/ (v, zw™) P(ax)de =0
F

unless |a| = |w|™ but if a = Cw™ with ¢ in U

[ ntvow™) vlan) do = v(=0) ] e
F

if ¢ is the measure of U with respect to dx.

The general case results from the case n = 0 by a change of variable; so we suppose n = 0. In this
case the formulae amount to a statement of the Fourier inversion formula for the function which is 0
outside of U and equal to ¢~ v(¢) on U.

Suppose we could show that there is a positive constant d which does not depend on 7 such that
for all p, v, and v

?'(e) = dy¢'(e) (v, 7).

Then we would have
@' (g) = dy'(detg) (w(g)v, 0) n~ " (detg).

Exchanging = and 7 and recalling that # = = ® 7 we see that ®”, the Fourier transform of &', is
given by
" (g) = d*¢" (detg) (v, 7(g)?) |detg| ' n(detg),

where ¢ = 7(w)y1 if p1(a) = ¢'(a)n~(a). According to the remarks preceding the statement of
Theorem 2.18, " is the product of (w) ¢’ = n(—1) p and n~!(detg). Thus

0" (g) = n(—1) d*p(detg) (v, 7(g)7) |detg| "

Since " = ®(—g) = n(—1) ®(g) the numbers d? and d are both equal to 1. The upshot is that in
the proof of the formula (13.1.3) we may ignore all positive constants and in particular do not need to
worry about the normalizaton of Haar measures.

Moreover it is enough to prove the formula for ¢, v, © in a basis of the spaces in which they
are constrained to lie. Oddly enough the spaces are all the same and equal to S(F*). Assume
p1 = v, Y3 = 0, and  are supported respectively by ™ U, w™ U, and w"U and that, for all ¢ in U,
o1(w™e) = vy t(e), po(w™2e) = vy (e) and p(w"e) = v (¢). v, v; and 1, are three characters of U.

The formal Mellin transforms of these three functions are @ (u1,t) = d(uvy )™, Ga(p,t) =
§(pvg )2, and $(p, t) = d(pur—1)t". Recall that, for example,

P(u,t) = Zt"/ljgo(wns)u(s) de.



Chapter 3 257

The scalar product (1, ¢2) is equal to

/tpl(a) pa(—a)d*a = §(v1v) 6(ny — na) va(—1).

If n(ew™) = wvy(e) 24 then
P (p,t) = Clu,t) (™ g Ltz h)

which equals
d(vuvg) Z Co (v g ™2y ™.

Consequently
¢'(1) = Cn(V_IVo_l) Z

Thus the formula to be proved reads
d'(e) = C’n(y_lyo_l) 2y " va(—1) §(v1va) 6(ny — na).

Almost all g in A can be written in the form

=(0 )G )E NGOG

with ¢ and bin F* and x and y in F'. The additive Haar measure dg on A may be written as
dg = |detg|% d*g = |b*| d*bdx|a| d*a dy

and for any g of this form

Ya(g) = vr(b(z —y))
while ®(g) is equal to

cowtsvon((§ ) (5 G D)ne(G 1)

Let f1 and f5 be the two functions which appear in the scalar product. Their formal Mellin
transforms can be calculated by the methods of the second paragraph,

Filut) = vo(=1) Cp,t) (e vy oy ™a) g Q) 2 e

ifa = (¢" and A
folp t) = n(uwy ' w"y) 2.

The scalar product of f; and fs is equal to

[ hita) fa(-a) a7
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which, by the Plancherel theorem for F'*, is equal to

1 27 N . “ .
DonDg [ falne) falnh e ) db.
7

A typical integral is equal to the product of vy(—1) u~ vy ' (¢)z, "™ and

27
/ C(p,e'®) e trtmtn)l =ty ™) p(p vy b w"y) do
0

which equals

1 1 1

27 Cyy s (1) (™ g oy -

yw'tr)n(p” e, w™y).

Also ifa = ("
1= (0) [bPal Tt p(b*a) = p(0Pw") v () 0 (B) 67 el T

If we put all this information together we get a rather complicated formula for ®(g) which we
have to use to compute ®’(e). ®’(e) is expressed as an integral with respect to a, b, z, and y. We will
not try to write down the integrand. The integral with respect to a is an integration over ( followed
by a sum over r. The integrand is a sum over u. The integration over ¢ annihilates all but one term,
that for which priyy = 1. We can now attempt to write down the resulting integrand, which has to be
integrated over b, z, and y, and summed over r. It is the product of

n0) P v(=1) 207" @(0*@") Cren s (V557

and

1

n(vvy -, w"x) 77(1/V0V2_1, w"?y) g (b(az — y))

The second expression can be integrated with respect to z and y. Lemma 13.1.4 shows that the
result is 0 unless |b| = |w|™ = |w|™2. In particular ®'(e) = 0 if ny # ny. If ny = ny the integration
over b need only be taken over @™ U. Then the summation over r disappears and only the term for
which r + 2n; = n remains. Apart from positive constants which depend only on the choices of Haar
measure ®’(e) is equal to

Since

the proof of Lemma 13.1.1 is complete.
Since L(s, ) = L(s7) = 1 if  is absolutely cuspidal the first three assertions of the theorem are,
for such m, consequences of the next lemma.
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Lemma 13.1.5 Suppose ® belongs to S(A), v belongs to V, and v belongs to V. If m is absolutely
cuspidal the integral

[ e ma)e. o) et g
is absolutely convergent for Re s sufficiently large and the functions it defines can be analytically
continued to an entire function.

Suppose the integral is convergent for some s. If £ isan elementary idempotent such that 7(£)v = v
the integral is not changed if ® is replaced by

Since 7 is absolutely cuspidal it does not contain the trivial representation of GL(2,Or) and we can
choose ¢ to be orthogonal to the constant functions on GL(2,0r). Then ®;(0) = 0. Thus, when
proving the second assertion of the lemma we can suppose that ¢(0) = 0.

The support of (7(g)v, ) is contained in a set ZpC with C' compact. Moreover there is an
open subgroup K’ of GL(2, Or) such that the functions ®(g) and (7 (g)v, ) are invariant under right
translations by the elements of K. If

C - UpzlgiK/

)

the integral is equal to

> trta oy laciad [ o (5 0) ) niw)lap ata

i=1 B

if each of the integrals in this sum converges. They are easily seen to converge if Re s is sufficiently
large and if ®(0) = 0 they converge for all s. The lemma is proved.
Now we verify a special case of the fifth assertion.

Lemma 13.1.6 Suppose ¢ is in S(F*) and
®(g) = p(detg) (v, 7 (g)?) |detg| "
Then for all w in 'V and all @ in 1%
E(l — 8,9 u,u) =e(s,m ) Z(s, P, u, ).

The expression Z(s, @, u, @) is the integral over G of

|detg|*~2 p(detg) (m(g)u, @) (v, 7(g)7).

The integral
| b)) to(gh)o) di
SL(2,F)

depends only on detg. Setit equal to F'(detg). Then Z(s, ®,u, a) is equal to

/ o(a) F(a) a]*~* d*a.
Fx
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By Lemma 13.1.1
®'(g) = ¢'(detg) |detg| ' ™" (detg) (7 (g)v, D)

so that =(s, ®’, u, w) is equal to

| d@F@lal iyt @da
FX

Fla) / (u, #(gh)i) (=(gh)v, 5) dh
SL(2,F)

whenever a = detg. Since the integrand is not changed when g is replaced by

(5 2)s

we have F(b2a) = F(a) and F(a) = F(a~'). The same relations are valid for F. Also F(a) = F(a™})

sothat FF = F.
We remind ourselves that we are now trying to show that

/ o/ (a) F(a) " (a) ot~ d¥a
FX

is equal to
csm) [ el F@lal d'a
EFX

If U’ is an open subgroup of U such that

(s )=
(s )

for ¢ in U’ then F and F are constant on cosets of (¥ )2U’ which is of finite index in F*. Write

and

F(a) = Z cixi(a)

1=

—_

where y; are characters of F'* /(F*)2U’. We may assume that all ¢; are different from 0. Then

Fla™) =) cixila™).

i=1

The factor (s, ™ ® xi, 1) was defined so that

[ @t @ el da
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would be equal to

(s, x: ® W,w)/ o(a) xi(a) |a|*~2 d*a.

FX
All we need do is show that m and x; ® 7 are equivalent, so that

e(s,xi @m, ) = e(s,m ).
A character y is one of the ; if and only if y is trivial on (F*)? and

/ F(a)x(a)d*a # 0.
FX/(FX)2
This integral is equal to
| @)oo 7(9)7) dg
Gr/Zr
which equals
| el .70 ds.
GF/ZF

The integral does not change if 7 is replaced by w ® w. Thus the Schur orthogonality relations imply
that it is non-zero only if 7 and y ® 7 are equivalent.

If ® belongs to Sy(A) the functions ®(g) |detg|**2 belongs to H ;> and we can form the operator

T(s,®) = /G B(g) |detg|** Fr(g) d* g.

If ® has the form of the previous lemma the functional equation may be written as
T(1—s,®) =c¢(s,m)T(s,®).
Lemma 13.1.7 Given a non-zero w in V, the set of all w in V' such that for some ® of the form
®(g) = p(detg) (v, 7(g)0) |detg| "
the vector T(s,®)w is of the form e**u is a set that spans V.
If the function @ is of this form so is the function ¢’ (g) = ®(hg) and
T(s,®")w = |deth|" T2 a(h=1) T(s, ) w
Since  is irreducible we need only show that there is at least one non-zero vector in the set under
consideration. Moreover there is an r such that o/, ® 7 is unitary and we may as well suppose that 7
itself is unitary. Let (u,v) be a positive invariant form on V.
Choose v = w and © so that (u,v) = (u,w) for all u. Let ¢ be the characteristic function of Up.
Then

®(g) = (w,m(g)w)
if |detg| = 1 and is 0 otherwise. If
H ={g € Gp||detg| = 1}
then
T(s,®)w :/ (w, 7(g)w) m(g)wd*g
H

is independent of s and is non-zero because

(T'(s, ®)w, w) :/H|(7r(g)w,w)|2dxg.

The fourth assertion follows immediately and the fifth will now be a consequence of the following
lemma.
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Lemma 13.1.8 Suppose ® belongs to S(A) and ¥ belongs to 8¢(A). There is a vertical strip in which
the integrals

J[ 2@ ¥ ) (rlg)0. (05 [detgl  fdethl e agdh

and
// &' (9) U(h) (m~ " (g)v, 7 (h 1)) |detg) 3~ |deth|** ¥ " g d*

exist and are equal.

A little juggling shows that there is no harm in supposing that the quasi-character n defined by

(R

is a character. Fix v and ©. Let C' be a compact subset of G which contains the support of ¥ and ¥’.
The set
{7(h)o|heC}

is finite. Thus there is a compact set in G such that for any A in C the function

g — (m(g)v, 7(h)0)

has its support in Zr C’. Moreover these functions are uniformly bounded. The first integral is
therefore absolutely convergent for Re s > —%. The second is convergent for Re s < %
If —% < Res < % the first integral is equal to

/\If’(h) ]deth]%_s{/<I>(g)(7r(g)v,7~r(h)27> (detg[**} g} d*h.
Replacing g by hg we obtain
/\II’(h) deth]?{ /@(gh)(ﬂ(g)v,’b) (detg|**} g} d*h.
If we take the additive Haar measure to be dh = |deth|? d* h this may be written as

[ wta.5) detgl* H{ [ @(hg) W) an}ag.

The second integral is

/\ll(h) |deth|s+%{/@’(g)wl(g)v,ﬁ—l(h)m |detg|%_sdxg} d*h.

After a change of variables this becomes

[ @) et { [ @/ (gn) wii dnfas.
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Replacing g by ¢g—! we obtain

/(W(g)’l},@) ydetg\s+%{\detg\-2/cb’(g-lh) w(hydn}yd*g.

Since
/ B(hg) U'(h) dh
is equal to
|detg|_2/<l>’(g_1h)\ll(h) dh

the lemma follows.

The theorem is now proved when 7 is absolutely cuspidal. Suppose that it is a constituent of
7 = p(u1, pe2). In this case the field may be archimedean. Although T is not necessarily irreducible it is
admissible and its matrix coefficients are defined. The contragredient representation 7 is p(ufl, ,U«g_l)
and the space of 7 is B(u1, u2) While that of 7 is B(u; ', 5 ). If f belongs to B(u1, u2) and f belongs
to B(u; "t pyt) then

(r(9)f. ) = /K F(kg) (k) di

and

(7 (9) ) = /K £ (k) F(kg) di

if K is the standard maximal compact subgroup of Gp.

If we set
L(57T) = L(Svul) L(87H2)

L(S,;) = L(Svul_l) L(sv:u’Q_l)

and

5(877—7 7/}) = 5(87H177/]) 5(87/@77/])

the theorem may be formulated for the representation 7. We prove it first for 7 and then for the
irreducible constituents of .

We use a method of R. Godement. If ® belongs to §(A) then for brevity the function x — ®(gxh)
which also belongs to S(A) will be denoted by h®g. Also let

@@(alﬂz):/Fq)((%l ;;)) dx

where dz is the measure which is self dual with respect to . g belongs to $(F?2). The map ® — ¢g
of §(A) into §(F?) is certainly continuous.
We are now going to define a kernel K¢ (h, g,s) on K x K. We set

Kg(e,e,s) = Z(pi10g, oy, 93).

Recall that the right-hand side is

// po(ar, az) i (ar) [ar|® pa(az) Jasl? 4 ay % az.
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In general
Kg(h,g,5) = Kyon-1(e,e,5).
We also set B
Ko(e,e,s) = Z(py o, iy 0, 0a)
and

I?Q(h,g, s) = I?gqm—l (e,e,s).

The kernels are defined for Re s sufficiently large and are continuous in h, g, and s and, for fixed h and
g, holomorphic in s.
We now make some formal computations which will be justified by the result. The expression

1 ~
Z(a5? @1,®, f, f)isequal to

/GF @(9){/}(1’(%9) (k) dk}‘detg’w%dxg

which is

/Kf(k){/ ®(g) f(kg) |detg|*t2 dxg} ks

Gr
Changing variables in the inner integral we obtain

J Fw{ [ @019 sl detni*t ag

Gr

Using the lwasawa decomposition to evaluate the integral over Gr we see that this is equal to

/ Ko (ki, ko, s) f(ks) f(k1) dky dks.
KxK

Since we could have put in absolute values and obtained a similar result all the integals are convergent
and equal for Re s sufficiently large. A similar computation shows that

Z(ay 2 @7, @, f, f)
is equal to
/ Kokt kas) f(kv) F(ks) dky dis
KxK

if Re s is large enough.
s+% s

If ¢ is an elementary idempotent such that 7(£) f = f and 7(&)f = f then Zag > @1,Q,f,f)is
not changed if ® is replaced by

B1(g) = // Bkighy ") € (ky) (k) iy dis.

Thus, at least when proving the second and third assertions, we may suppose that ® is K -finite on both
sides and, in fact, transforms according to a fixed finite set of irreducible representations of K. Then,
as s varies, the functions

K@(kl, kg, S)
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stay in some fixed finite dimensional space U of continuous functions on K x K. The map

F — //F(k‘l, k’g) f(k‘Q) f(k‘l) dk‘l dk‘g

is a linear form on this space and we can find ¢;,---,9, and hq,---,h, in K such that it can be
represented in the form

F — Z Ai F(gi, hz)
=1
Thus 1
sl -
Z(OlF 2 ®T,(I),f, f) = Z)\Z Kq)(gi,hi,s).
Thus to prove the second and third assertions we need only show that for each g and h in K the

function
K@(g7 ha S)
L(s,7)

is entire and Kg4(g, h, s) itself is bounded at infinity in vertical strips. There is certainly no harm in
supposing that g = h = e so that

Kq’(ev €, 3) = Z(:U'la%v M2ast <P<I>)

Thus the desired facts are consequences of the results obtained in paragraphs 3, 5, and 6 when proving
the local functional equation for constituents of 7. Replacing 7 by its contragredient representation we

1 ~
obtain the same results for Z(of;r 27,0, 1, f).
To prove the functional equation we have to see what happens to the Fourier transform when we
pass from the function ® to to ®;. The answer is simple:

¥ (g) = // & (kaghy ™) (k) € (ko) dky diy.

Thus in proving the functional equation we may suppose that ® is K-finite on both sides. We may

1 ~
also suppose that if F'(ky, ko) is in U so is F'(k1,ke) = F(k2,k1). Then Z(oﬁ;r2 RT,Y f, f) =
> Xi Ko/ (hi, gi,s). To prove the functional equation we have to show that

E@’(hﬂg7 1— S)
L(1—s,7)

Ka(g,h,s)
L(s, 1)

=e(s,7,7)

for any h and g in K. Since the Fourier transform of g®h~! is h®’g it will be enough to do this for
h = g = e. Then the equality reduces to

Z(:U'l_la;_sﬂuz_la}r_sv()p@’) _ 6(8 . 1/}) Z(MlaSF‘7ﬂ2aSF7SD‘1>)
L(1—s,7) Y L(s,T)

and is a result of the facts proved in the first chapter and the next lemma.
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Lemma 13.2.1 The Fourier transform of the function pg is the function pg .

(3 %)

/<I> <<x g)) Y(ax + Bz + vy + 0t) de dy dz dt

z

The value of @’ at

if dz, dy, dz, and dt are self-dual with respect to 1. Thus ¢4/ («, §) is equal to

/{/q’ ((i ?)) Y(ax + 6t) ¥(Bz) dxdydzdt} dg

Applying the Fourier inversion formula to the pair of variables 3 and z we see that this is equal to

/@ <<g i{)) Y(ax + 6t) do dy dt

which is the value of the Fourier transform of ¢4 at (o, 6).

The theorem, with the exception of the fourth assertion, is now proved for the representation 7.
We will now deduce it, with the exception of the fourth assertion, for the constituents of . We will
return to the fourth assertion later.

If  is a constituent of T either m = m(py, o) or m = o (1, o). In the first case there is nothing left
to prove. In the second only the third assertion remains in doubt. If F'is the complex field even it is
alright because we can always find another pair of quasi-characters 1 and p, such that m = 7(u}, p15).
We ignore this case and suppose that F' is real or non-archimedean.

1
First take F' to be non-archimedean. We may suppose that ;; and . are the form p; = xaz and

_1
p2 = xag?. The one-dimensional representation g — x(detg) is contained in 7 = p(u; ', 5 ') and
acts on the function g — x(detg). The matrix elements for 7 are the functions

g — (1) f, f) = (m(a)f, )

where f belongs to B(u; !, ;') and

/ F(k) x(deth) dk = 0.

For such an f there is an elementary idempotent £ such that 7(£) f = f while

/ (k) dk = 0
K
s+

The value of Z(a 3 R, f, f) is not changed if we replace ® by

B1(g) = /K B(gh") £(h) dh.
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Lemma 13.2.2 If g1 and g2 belong to G then

oo 8)) s

It will be enough to prove this when g, is the identity. Let

o= (i 1)

If g1 is the identity then, after a change of variables, the integral becomes

Idetgzl_l//cp(w,y) dx dy

so that we can also assume g5 is the identity. Then the integral equals

/K {//(D ((g g) ’“) dwdy b €(k™) dk.

Changing variables as before we see that the inner integral does not depend on K. Since

/K EkHdk =0

the lemma follows.
To establish the third assertion for the representation 7 all we need do is show that for any g and
hin K the function
K<I>(gv ha 8)

L(s,m)

o (o s 1)) o=

for all g; and g» in Gr. As usual we need only consider the case that ¢ = h = e. Since

is entire provided

/%(x,()) de =0

and
Kq’(ev €, 3) = Z(:U'la%v M2ast <P<I>)

we need only refer to Corollary 3.7.

If F'is the field of real numbers the proof is going to be basically the same but a little more
complicated. We may assume that p 5 * () = |«|?T1=™(sgnz)™, where p is a non-negative integer
and m is 0 or 1, and that 7 acts on Bg(u1, p2). The restriction of 7 to SO(2,R) contains only those
representations r,, for which n = 1 —m (mod2) and |n| > 2p +1 — m. Let &, be the elementary
idempotent corresponding to the representation x,,. As before we may suppose that

/ O(xk ™ H &, (k)dk =0 (13.2.3)
SO(2,R)

if x,, does not occur in the restriction of 7 to SO(2,R).
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Lemma13.2.4 If ® satisfies (13.2.3), if g1 and g2 belong to G, and ¢ = ¢4, a4, then

/xa—y]cpx()d =0

ift>0,5>0andi+j=2p—m.
We may assume that go = e. If ¢ = @ let

L(®) :/ aayjj (x,0)dz

and let
F(g) = L(g?®).

We have to show that, under the hypothesis of the lemma, F'(¢g) = 0 for all g. However F'is defined
for all ® in §(A) and if @ is replaced by h® the function F' is replaced by F'(gh). Thus to establish the

identity
F ((0 : )g) = 1 (2) m(a2) F(g)

a2

where 71 (a1) = a7 |ag|~* and 2 (az) = a |az| !, we need only establish it for g = e.

Let
o a1 z
= (3 2).
(s 2)-+((3 =)
0 y 0 asy

If o = po and @1 = e then @1 (z,y), which is given by
P axr Tz -+ axu du
0 asy ’
[ (5 ) du=laal ™ etarz.can)

Moreover F'(h) is equal to

Then

is equal to

which equals

as required.
Finally if
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and ¢ = p4o then F(g) is equal to

- oar +yu P+ du
@(x,y)—/@« " " >> du.

Since we can interchange the orders of differentiation and integration,

and

J
0) = Z Ay oo / on(ax + yu, Bz + ou) du

on(z,y) = 373;%«5 g))

and the number \,, are constants. Thus F'(g) is a linear combination of the functions

where

,yn(;j—n//xi on(ax + yu, fx + du) dx du.

If o # 0 we may substitute 2 — 5 for z to obtain

A6 ”// cpn ox ﬂx-i—%) dz du

where A = detg. Substituting v — "‘Kﬂx for u we obtain

A
S ”// —i——x—ﬂ) <pn<ax,—u> dx du.
2 2
After one more change of variables this becomes
ATHAIT! 7”5j_”/ (62 — yu)" o, (z,u) dz du.

In conclusion F'(g) is a function of the form

a A -1
F((’Y 5)) =A ’A‘ P(%B,%@
where P is a polynomial.

Thus the right translates ofF by the elements of G span afinite-dimensional space. In particular it

isO(2,R) finiteand ifn; = :U'laF while n, = uQaF it liesin afinite-dimensional invariant subspace of

B(1d;, pb). Thus it lies in B (p), 1b). Since p i, = puy 2 no representation of SO(2, R) occurring
in 7(u}, ph) can oceur in m = o(u1, p2). If F is not zero then for at least one such representation ,,

Fi(g) = / Flgk™Y) Ea(k) dk
SO(2,R)
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is not identically 0. But F; is the result of replacing ¢ by

#(a) = [ oy T 80

in the definition of F'. In particular if ® satisfies the conditions of the lemma both ®; and F} are zero.
Therefore F' is also zero and the lemma is proved.

The third assertion can now be verified as in the non-archimedean case by appealingto Lemma5.17.
The fourth has still to be proved in general.

If F is the real field let 8, (A) be the space of functions of the form

® ((Z Z)) =exp (—m(a® +b* + 4+ d°)) P(a,b,c,d)
where P is a polynomial. If F'is the complex field S; (A) will be the space of functions of the form

P ((‘CL Z)) = exp (—m(aa + bb + cc + dd)) P(a,a,b,b,c,¢,d,d)

where P is again a polynomial. If F' is non-archimedean 8;(A) will just be 8§(A). The space 8;(F?) is
defined in a similar manner.

Lemma 13.2.5 Suppose ¢ belongs to $1(F?). Then there is a ® in 81(A) such that
Ko(e,€,8) = Z(pap, p2ok, )

and f1,-++, fn in B(u1, pe) together with frooeey [ in B(uy ', ps ') such that
Z/ Ka(h,g,5) fi(g) fi(h) dgdh = Ka(e,e,s).
i—1 Y EXK
Since there is a ¢ in 8;(F?) such that

Z(:U'last /-J/QasFa (p) = a‘ebs L(Sv 7—)

this lemma will imply the fourth assertion for the representation 7.
Given ¢ the existence of ® such that ¢ = ¢4 and therefore

K@(e, €, 5) = Z(,Ulla%alLZO[SFW 30‘1))

is a triviality and we worry only about the existence of fi,-- -, fnand fi, -, fn.
It is easily seen that if
ap x
(5 o)

by vy
0 by

and
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a; x by y
(5 n)m (5 i)e)

pi1(ay) paaz) py t (b1) py ' (b2) Ko (h, g).

belong to K then

is equal to

Also
Kg(hhi,991,s) = Ko on (h,g,s).

Since ® belongs to 8;(A) it is K -finite on the left and right. Thus there is a finite set S of irreducible
representations of K such that if U; is the space of functions F' on K which satisfy

F ((O g ) h) — p(ar) ia(aa) F ()

ag
ap x
0 ag

in K and can be written as a linear combination of matrix elements of representations in .S and U5 is
the space of functions F’ on K which satisfy

for all

P )0 = ) s ) P

a2

and can be written as a linear combination of matrix elements of representations in S then, for every s,
the function
(ha g) - K@(h,g, 8)

belongs to the finite dimensional space U spanned by functions of the form (h, g) — F(h) F'(g) with
FinU; and F’ in Us.
Choose F},---, F,, and FY,---, F so that for every function F'in U

Flee) =3 A [ Fhg) Fih) Filg) dnd.

Since Fj is the restriction to K of an element of B(u; ', uy ') while F/ is the restriction to K of an
element of B(u1, p2) the lemma follows.

Unfortunately this lemma does not prove the fourth assertion in all cases. Moreover there is a
supplementary condition to be verified.
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Lemma 13.2.6 Suppose F' is non-archimedean and m is of the form m = w(u1, p2) with py and peo
unramified. Suppose ® is the characteristic function of M(2,0r) in M(2,F). If v and ¥ are
invariant under K = GL(2,0F) and if
/ d*g=1
K

then )
Z(a3T* @ m,®,0,5) = L(s, ) (v,7).

Suppose f belongs to B(u1, 12) and is identically 1 on K while f belongs to B(u; !, 5 1) and is
identically 1 on K. Then

(f7f>=/Kf(k:)f(k)dk;:1

and if 7 = p(u1, pe) we are trying to show that

Z(a3? @@, f, f) = L(s, 7).

The left side is equal to
| Kalg.s) $0) fg)dnds,
KxK

Since @ is invariant on both side under K this is equal to

K‘I’(eﬂ €, 8) = Z(Hla%a MZQ%W 90)

= fo((3 5

Since we have so normalized the Haar measure on G that

/GFF(g)dg:/K{/F«%l £2> <(1) f>k> Do d*az o'} di

where dk is the normalized measure on K, dx is the measure on F' which assigns the measure 1 to O,
and d*a is the measure on F'* which assigns the measure 1 to Ur the function ¢ is the characteristic
function of Or x O and

Z(p 0, p2cip, ) = L(s, p1) L(s, p2)

as required.

This lemma incidentally proves the fourth assertion for the one-dimensional representation g —
x(detg) if x is unramified. If x is ramified and 7 corresponds to x then © = m(uq, ps2) if p1(a) =
x(a)]a|z and pa(a) = x(a) |a|~2. Thus L(s,m) = 1. If & is the restriction of the function x~* to K
then

Z(m,®,0,7) = (v,f))/ d*g

K
and the fourth assertion is verified in this case.
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Take p1 and ps of this form with x possibly unramified and suppose that 7 = o (4, p2). Suppose
first that  is unramified. Let g be the characteristic function of Op in F'and let

p1(x) = po(x) — |w ™ po(w ™).

It has O for support. Set

o ((4 1)) =@t we)n(@,

It has M (2, OF) for support and depends only on the residues of a, b, ¢, and d modulo pg. If
K'={ke K|k =e(modp)}

then K¢ (h, g, s) depends only on the cosets of 4 and g modulo K. Also

1 =z
Kg <e,w<0 1>,8> =0

if z isin Op. To see this we observe first that if

er=s (o )
[l ) o

800(a2)800(a293)/0 ©1(y) polar — zy) dy.

then ¢o, (a1, as) is equal to
which equals

Since x is in O the function ¢y (a1 — zy) equals g (aq) for y in OF and this expression is 0 because

/OF ¢1(y) dy = 0.

We choose f in Bg(u1, o) so that f(gk) = f(g) if k belongs to K7, f(e) = 1, and

o0 (0 1)

z€0F /p

We choose f in B(ju1, si2) so that f(gk) = f(g) if k belongs to K, f(e) = 1, and

if z belongs to Or. Then
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is equal to
| Kale.g.9) £(9) dg = Kale.c.5)
K

which equals
Z(HlaSF7 M2a8F7 SD‘?)

Moreover
pa(ar,az) = p1(a)po(asz)

so that, as we saw when proving Corollary 3.7, L(s, ) is a constant times Z (i a5, o5, 9o ).

If x is ramified L(s,7) = 1. If ® has support in K then Z(ostJrl/2 ®m, ®,v,7) is equal to

/ o (k) (n(k)v, 7) dk
K

and we can certainly choose v, v and ® so that this is not 0.

We are not yet finished. We have yet to take care of the representations not covered by Lemma 13.2.5
when the field is archimedean. If I is the complex field we have only the finite dimensional repre-
sentations to consider. There is a pair of characters ;1 and ps such that 7 is realized on the subspace
B (1, p2) of B, p2). There will be positive integers p and ¢ such that pipy t(2) = 27Pz79. The
representations o = pj,_p of SU(2,C) which is of degree |¢ — p| + 1 is contained in the restriction
of w to SU(2,C). In particular B (1, p2) contains all functions f in B(u, pe) whose restrictions to

SU(2,C) satisfy
(% o)) = man) palaa) 10

ag

and transform on the right according to o.
We are going to use an argument like that used to prove Lemma 13.2.5. Suppose we can find a
function ® in §; (A) such that

Z (1, 20, 9a)
differs from L(s, ) by an exponential factor and such that ® transforms on the right under SU (2, C)
according to the representation o. Then K¢ (h, g, s) will satisfy the same conditions as in Lemma 13.2.5.

Moreover the functions F” in the space we called U; can be supposed to transform on the right under
SU (2, C) according to o so that the functions F; will correspond to functions f; in B ¢ (41, it2). Then

~ S-‘r% ~
/ Ko(h,g,5) fi(h) fi(g) dhdg = Z(a} * & 7,0, i, )
KxK
is equal to
Z(O[SF—i_a & T, (pu (U ﬂ’b)

if v; = f; and v is the restriction of f, regarded as a linear functional, to B (u1, f12).
There are four possible ways of writing p; and pe.

(i) p1(z) = 2M(22)%1, pa(z) = 2™M2(22)%2, my —ma = q — p.
(i) pi(z) = 2™ (22)°, pa(z) = 2M2(22)°2, m1 + mg = q — p.
(iii) pa(z) = 2m1(22)%, pa(z) = 2M2(22)%2, —my —ma2 =q —p
(iv) pa(z) = 2m1(22)%, pa(z) = 2M2(22)*2, me —my = q —p
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In all four cases m; and m; are to be non-negative integers. @ is the product of exp(—m(aa + bb +
cc+ dJ)) and a polynomial. We write down the polynomial in all four cases and leave the verifications
to the reader.

(i.a) my > my : @™ ~™2(ad — be)™2.
(i.b) my < mq : (ad — be)™dnz—m,
(i) a™* d™=2.
(iii) a™* d™2.
(iva) my > mg: a™ "2 (ad — be)™2.
(ivb) mo > my : (ad — bc)™ d"27™1,

For the real field the situation is similar. Suppose first that # = 7(p, p2) is finite dimensional. If

u1p2(—1) = 1 then 7 contains the trivial representation of SO(2,R) and if y;pua(—1) = 1 it contains

the representation
o [ cos 6 sin6 L it
"\ —sinf cosf )

We list the four possibilities for 11 and 11, and the polynomial P by which exp ( — 7 (a? + b% + ¢ 4 d?))
is to be multiplied to obtain .
() pa(=1) = p2(—1) = 1: P(a,b,c,d) = 1.
(ii) p1(—=1) = po(—=1) = 1: P(a,b,c,d) = ad — be.
(iii) p1(—=1) =1, pua(—1) = —1: P(a,b,c,d) = c —id.
(iv) p1(=1), p2(—1) = 1: P(a,b,c,d) = a — ib.
Only the special representations remain to be considered. We may suppose that = = o (u1, p2)
where 1 and yu; are of the form p1(z) = |27+ % and py(z) = |z|"~ 2 (sgnt)™ with ¢ = 2p+ 1 —m and
with p a non-negative integer. Moreover m is 0 or 1. L(s, ) differs from

F<s+r+%)r<s+r+%+1>
2 2

by an exponential as does
Z(:U’la%a NZO‘?N 90)

2 2
- q+1
pla,az) =e m(ai+a3) ad’.

Since the representation of . occurs in the restriction of 7 to SO(2,R) we may take

® ((i Z)) =exp (—m(a® + b + ¢ +d?)) (c +id)TH.
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§14. Automorphic forms and quaternion algebras. Let F' be a global field and let M’ be a quaternion
algebra over F. The multiplicative group G’ of M’ may be regarded as an algebraic group over F.
In the ninth paragraph we have introduced the group G, and the Hecke algebra H’. A continuous
function ¢ on G’ \ G, is said to be an automorphic form if for every elementary idempotent £ in H’
the space

{p(&f) ¢ | feH}

is finite dimensional.

If  is an automorphic form it is Z, finite on the left if Z’ is the centre of G’. Let A’ be the space
of automorphic forms on G’; and if 7 is a quasi-character of F'* \ I let A’(n) be the space of ¢ in A’
for which ¢'(ag) = n(a) ¢’'(g) for all a in Z) which, for convenience, we identify with I. The first
assertion of the following lemma is easily proved by the methods of the eighth paragraph. The second
is proved by the methods of the tenth. The proof is however a little simpler because G%»Z} \ G is
compact. Since, at least in the case of number fields, the proof ultimately rests on general facts from
the theory of automorphic forms nothing is gained by going into details.

Lemma 14.1 (i) If an irreducible admissible representation © of H' is a constituent of A’ then for

some n it is a constituent of A'(n).

(i) The space A’'(n) is the direct sum of subspaces irreducible and invariant under H'. The rep-
resentation of H' on each of these subspaces is admissible and no representation occurs more
than a finite number of times in A’'(n).

Now we have to remind ourselves of some facts whose proofs are scattered throughout the
previous paragraphs. Suppose m = ®,, is an irreducible admissible representation of H'. For each v
the representation 7, of 3, is irreducible and admissible. Suppose 1 is a non-trivial additive character
of F'\ Aand 1, is its restriction to F,,. We have defined L(s, ), L(s,7T,), and (s, my, ¥ ). If u, isin
the space of w,, and u,, in the space of 7, we have set

s—i—l ~
Z(aF 2 ®7TU,(I),UU,UU)

equal to
[ #0) trugu ) o) %,
Fy
We know that
Z(Oéij_% ® Tr’U’ ¢7 u’l)) ﬂ’u)
L(s,my)

hv 5(37 T, ¢v)

is entire and equals

1

Z(OCIE:_S ® Ty, D, Uy, ﬂv)
L(1 - s,7,) '

The factor h, is 1 of G’ is isomorphic to GL(2, F,) and is —1 otherwise. The case that G’ is
isomorphic to GL(2, F,,) was treated in the previous paragraph. The other cases were treated in the
fourth and fifth paragraphs.
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Theorem 14.2 Suppose 7 is a constituent of the space of automorphic forms on G. The infinite
products

HL(S,WU)

v

and

[Tz %)

are absolutely convergent for Res sufficiently large. The functions L(s,m) and L(s,7) defined by
them can be analytically continued to the whole complex plane as meromorphic functions. If F' is a
number field they will have only a finite number of poles and will be bounded at infinity in vertical
strips of finite width. If

e(s,m) = H5(577Tm¢v)

the functional equation
L(s,m) =¢e(s,m) L(1 — s,7)

will be satisfied.

We may suppose that 7 acts on the subspace V' of A’(n). Let ¢ be a non-zero function in V. For
almost all v the algebra M, = M’ ®r F, issplitand G’ = G, is isomorphic to GL(2, F,,). Moreover
for almost all such v, say for all v not in S, ¢ is an eigenfunction of the elements of }, = 3%, which
are invariant on both sides under translations by the elements of K. Thus if f is such an element and
©(g) # 0 the corresponding eigenvalue A, (f) is

() = olg) ! /G o(gh) (k) dh.

/7
v

To prove the absolute convergence of the infinite products we have only to refer to Lemma 3.11 as in
the proof of Theorem 11.1.
The representation 7 contragredient to  can be defined. If 7 = ®m, actson V' = ®,0V, then

7 =@, actson V = ®u31~/v where @ is, for almost all v, fixed by K/ and satisfies (u), %) = 1. The
pairing between V and V is defined by

<®uv7 ®2~Lv> = H<uv7av>'

v

Almost all terms in the product are equal to 1. If wis in V and @ is in V the matrix element (7 (g)u, @)
can also be introduced. If f isin H’

(m(fu,w) = [ f(g) (n(g)u, ) d*g.

Gi

If F'(g) is a linear combination of such matrix elements and @ belongs to the Schwartz space on 4, we
set*

2@ 0.0) = [ 80 F@) o)+ %
A

* Unfortunately the symbol F' plays two quite different roles on this page!
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The function F(g) = F(¢g~') is a linear combination of matrix coefficients for the representation 7. We
set

2(575,0.F) = | a9 Flg) (o)™ %9,

Before stating the next lemma we observe that if x isa quasi-character of '\ I the one dimensional
representation g — X(V(g)) is certainly a constituent of A’.

Lemma 14.2.1 If w is a constituent of A’ the integrals defining Z(a;_%,@,F) and Z(a;_%,@,ﬁ)
are absolutely convergent for Res large enough. The two functions can be analytically continued
to the whole complex plane as meromorphic functions with only a finite number of poles. If 7 is
not of the form g — X(l/(g)) they are entire. If F' is a number field they are bounded at infinity in
vertical strips of finite width. In all cases they satisfy the functional equation

Z(a}?, 8, F) = Z(a} & F)

if ® is the Fourier transform of ®.

There is no harm in assuming that F is of the form

F(g) = H< gv uvauv HF gv

v

and that @ is of the form

= H (I)v(xv)

where, for almost all v, ®, is the characteristic function of M/ (2,0,). Recall that for almost all v we
have fixed an isomorphism 6, of M/ with M (2, F},).
We know that each of the integrals

/, (I)U(gv) Fv(gv) !V(gv)]SJr? Cng1

converges absolutely for Re s sufficiently large. Let S be a finite set of primes which contains all
archimedean primes such that outside of S the vector u,, i ISu , the vector u,, |Su0 d,, is the characteristic
function of M (2,0,), and 7, = 7, (i, v,,) Where p,, and v, are unramified. Let 7w, = m, (|t ], [v0]). If
visnotin S the integral

// ‘I)(gv) Fv(gv) |I/(gv)‘s+% ngU —1

v

and ifc = Res

[ 12u@l1Fulg)] ()" @,

v

is, as we see if we regard T, as acting on B (1, v,, ), at most

// (I)U(gv) <7T;)(gv) fva ]Ev> ‘V(gv)|a+% CngU

v



Chapter 3 279

if f, and f, are the unique K -invariant elements in B (||, [, |) and B (||, |lvy| 1) which take the
value 1 at the identity. We suppose that the total measure of K is 1 so that (f,, f,) = 1. According to
Lemma 13.2.6 the integral is equal to L(o, 7} ). Since

H L(o,m)

veES

1
is absolutely convergent for o sufficiently large the integral defining Z(oﬁ;r 2 &, F)isalso and is equal
to
1
[12(a5 7 ® 7. @00, i)
v

and to
L(S,W)HE(S,@U,UU,’ELU).

v

1 ~
Notice that Z(s, ®,,, u,, U, ) is identically 1 for almost all v. Z(aif? , ®, F') may be treated in a similar
fashion. If we take 7 to be the trivial representation we see that

/ B(g) [v(g)|*+F d"g
G

A
is absolutely convergent for Re s sufficiently large.

It will be enough to prove the remaining assertions of the lemma when 7 is a character. We may
also assume that if 7 is of the form n(a) = |a|” then » = 0. We have identified V' with a subspace of
A’(n). We may take V' to be {@ | ¢ € V}. To see this observe that this space is invariant under ' and
that

(@1, p2) = / ©1(9) w2(g9) dg
GRZ\G)

is a non-degenerate bilinear form. Here (o belongs to V and (5 belongs to V. The remaining assertions
need only be verified for functions of the form

Flo)= [ olhg) o(h) dn

WG

with pin Vand @in V.
1
For such an F' the function Z(ozj);r 2 @, F)isequal to

[ o] [ ethg) ety an} wig)p+ axs.

Since p and ¢ are bounded this double integral converges absolutely for Re s sufficiently large.
We first change variables by substituting =g for g. The integration with respect to ¢ can then be
carried out in three steps. We first sum over G-, then we integrate over Z}. \ Zj which we identify
with F'* \ I, and finally we integrate over G»Z} \ G. Thus if Kg(hq, he, s) is

PO ) [ S0 k) (el o
G



Chapter 3 280

1
the function Z (a2, ®, F) is equal to

// (ha) @(h1) Ko (hi, ha, s) dhy dhs.

The integrations with respect to 7, and h,, are taken over G'» Z} \ G’;. A similar result is of course valid
1 ~ ~
for Z(a' 2, ®, F). If Kg(hy, hy, s) is

) ) [ L S ) 2

1 ~
then Z(a5 %, ®, F) is equal to

// (ha) @(h2) Kq>(h1,h2, s) dhy dhs.

We first study
0(s, ®) :/ > @(¢a)n(a) ozt d¥a
FX\I ¢
and

(s, ® :/ ®(¢a)n (a)|a|=t! d¥a.
(s, @) sz a) |alz

€40

The sums are taken over G the set of non-zero elements of A/’. Choose two non-negative continuous
functions Fyy and F} on the positive real numbers so that Fy(t) + Fy(t) = 1, Fy(t) = Fo(t~1), and so
that Fy vanishes near zero while F; vanishes near infinity. If

Qi(s,fb):/ S 0(&a) n(a) | Fi(lal) da
X\ g0

we have
O(s,®) = bo(s,®) + 0:1(s, D).

In the same way we may write
0(s,®) = Oo(s, )+ 01(s, @)

0o(s, ®) and 50(5, ®) are entire functions of s which are bounded in vertical strips.
Applying the Poisson formula we obtain

0)+ > @(¢a) = lalz* {@'(0) + Y @'(¢a) .
§#0 £#£0
Thus, for Re s sufficiently large, 6 (s, ®) is equal to the sum of

/F Z@/(ga—l)n(a)‘a’%—‘& Fl(\a])dxa,

“Moezo
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which, after the substitution of a~! for a, is seen to equal 50(1 —s5,9'),and
[ B0 = 80} n(@) o Fi(la) da
FX\T

Thus if
Als) = / lal* 7(a) Fy(jal) d%a
FX\I

the function (s, ®) is equal to

0o (s, ®) + O (1 — 5, ®") 4+ ®'(0) A(25 — 3) — ®(0) A(2s + 1).

A similar result is valid for 6(s, ®). The function
Oo(s,®) + p(1 — s, D)

is entire and bounded in vertical strips and does not change when s and ® are replaced by 1 — s and
Ol

If 1 is not of the form 7n(a) = |a|” the function \(s) vanishes identically. If n is trivial and I, is the
group of ideles of norm 1

A(s) = / a2+ Fy(Ja]) d*a.
FX\I

It is shown in [10] that this function is meromorphic in the whole plane and satisfies A(s) + A\(—s) = 0.
If F'is a number field, its only pole is at s = 0 and is simple. Moreover it is bounded at infinity in
vertical strips of finite width. If F'is a function field its poles are simple and lie at the zeros of 1 — ¢~ *.
Here ¢ is the number of elements in the field of constants. _
Thus 6(s, ®) is meromorphic in the whole plane and is equal to (1 — s, ®'). If h®g is the function

x — ®(gxh) then

Ko (ha, ha, s) = [v(hy )77 [v(he) |72 0(s, ha®hy )
while N

Ko (h, ha,5) = |p(hi I**# [v(he) 7% 0(s, ha®hi ).

Since the Fourier transform of hy®h; * is
[ (h2)[ 72 v (ha) |* ha @Dy !
we have "
K‘I’(h17 h27 8) = K(I)’(h27 h17 S)'

The functional equation of the lemma follows. So do the other assertions except the fact that the

1 1 ~
functions Z(aSF+2,<I>,F) and Z(aSF+2,<I>,F) are entire when 7 is trivial and 7 is not of the form
g — X(l/(g)). In this case the functions ¢ and ¢ are orthogonal to the constant functions and the

kernels K¢ (h1, ho, s) and I~(q>(h1, ho, s) may be replaced by

K (hi, ha,s) = Ko (hy, ha, s) + ®(0) A(2s + 1) — ' (0) A\(2s — 3)
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and
K (h1, ha, s) = Ko (h1, ha, s) + ©'(0) A(25 + 1) — (0) A(2s — 3).

The functional equation of the kernels is not destroyed but the poles disappear.
The theorem follows easily from the lemma. In fact suppose that the finite set of places S is so
chosen that for v notin .S
Z(s,®%, 0, 70) =1

vy vy v

if <I>8 is the characteristic function of M (2, O,). If visin S choose @’ u b, 1 < i< n,,sothat

v v

Ty

5" (o, Byl 1) —

i=1

where b, is real. If « is a function from S to the integers and, for each v in S, 1 < «a(v) < n,, set

) ={TT ®: ) } { TT #5090}

veS veS
and set
Fulg) = { TT(mugu)us®, as) } { TT tmolg0)u, i) }-
veS vgs
Then

S Z(ay @, Fy) = ¢ Ls,7)

where b is real. The required analytic properties of L(s, ) follow immediately.
To prove the functional equation choose for each v the function ®, and the vectors u,, and @, SO
that
(s, @y, Uy, Uy)

is not identically 0. We may suppose that, for almost all v, ®, = ®9, u,, = u{, and @, = @. Let

= H Dy (gv)

and let
F(g) = H(Wv(gv)uv uv>
v
Then )
Z(ay 2, ®,F) = L(s,m) [ E(s, ®o, up, @)

v

and s N B
Z(a ", @ F)=L(1—s,7) [[2(1 - 5, ¥}, u, 1iy).

v

Since

E(l -5 @;,uv,ﬂv) = hv{‘:(saﬂ'vﬂ/}v) E(S, (I)vauvaﬂv)

the functional equation of the lemma implies that
{ H ey } L(1—s,7).

Since, by a well-known theorem, the algebra 1/’ is split at an even number of places the product [ ], .,
equals 1.
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Corollary 14.3 If 7 is a constituent of A’ which is not of the form g — X(V(g)) then for any quasi-
character w of F* the functions L(s,w @ m) and L(s,w™' ® 7) are entire and bounded in vertical
strips of finite width. Moreover they satisfy the functional equation

Ls,w®@7) =¢(s,w®@m) L(1 — 5,0t @7).

We have only to observe that if 7 is a constituent of A’ then w ® = is also.

Now we change the notation slightly and let 7’ = ®] be an irreducible admissible representation
of H’. We want to associate to it a representation 7 = ®m, of H the Hecke algebra of GL(2, A). If M is
split then m, is just the representation corresponding to 7, by means of the isomorphism 6,, of G, and
G, . If M}, is not split 7, is the representation m, () introduced in the fourth and fifth paragraphs.
In both cases 7, is defined unambiguously by the following relations

L(s,w, ® m,) = L(s,w, @)
L(s,w, @ 7,) = L(s,w, @ 7))
e(s,wy ® my,1hy) = €(s,wy @, ¢hy)

which holds for all quasi-characters w, of F*.
Applying the previous corollary and Theorem 11.3 we obtain the following theorem.

Theorem 14.4 If v’ is a constituent of A’ and w, is infinite dimensional at any place where M’ splits
then m is a constituent of Ag.

Some comments on the assumptions are necessary. If 7’ is a constituent of A’ we can always
find a quasi-character of w of F'* \ I such that w ® 7’ is unitary. If 7’ = ®m=] the same is true of the
representations 7,. In particular if M’ splits at v the representation 7/, will not be finite dimensional
unless it is one dimensional. Various density theorems probably prevent this from happening unless
7’ is of the form g — X(V(g)). If 7’ is of this form then all but a finite number of the representations m,
are one dimensional. But if M’ does not split at v the representation , is infinite dimensional. Thus
7 cannot act on a subspace of A. However it can still be a constituent of A. This is in fact extremely
likely. Since the proof we have in mind involves the theory of Eisenstein series we prefer to leave the
guestion unsettled for now.
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§15. Some orthogonality relations. Itis of some importance to characterize the range ofthemap n’ — 7w
from the constituents of A’ to those of A discussed in the last chapter. In this paragraph we take up the
corresponding local question. Suppose F'is a local field and A/” is the quaternion algebra over F. G’»
is the group of invertible elements of M’. We know how to associate to every irreducible admissible
representation 7’ of H’. an irreducible admissible representation = = 7 (7’) of Hr the Hecke algebra
of GL(2, F).

Theorem 15.1 Suppose F is non-archimedean. Then the map ©' — w is injective and its image is
the collection of special representations together with the absolutely cuspidal representations.

The proof requires some preparation. We need not distinguish between representations of G’ and
H'- or between representations of Gp and Hp. An irreducible admissible representation = of G is
said to be square-integrable if for any two vectors u; and us in the space of = and any two vectors u;
and s in the space of 7 the integral

[ tatgun i) G g1 dy
Zrp\Gr

is absolutely convergent. Since 7 is equivalent to n~! ® 7 if

this is equivalent to demanding that

/ [(r(g)ur, i) |7~ (detg) | dg
Zp\GF

be finite for every u; and us.

If 7 is square-integrable and w is a quasi-character of F'* then w ® = is square integrable. We can
always choose w so that w?7 is a character. If i) is a character choose v different from 0 in the space V'
of . Then

(u1,u2) = /ZF\GF (m(g)ur,uo) (m(g)uz,uo) dg

is a positive-definite form on the space V' of 7 so that « is unitary and square-integrable in the usual
sense.
The Schur orthogonality relations when written in the form

u m(g)u - Uz, Uy ) (U1, U
[ ) (o )] dy = s () )

are valid not only for representations which are square-integrable in the usual sense but also for
represntations which are square-integrable in our sense. The formal degree d(7) depends on the choice
of Haar measure. Notice that d(w ® 7) = d(m).

The absolutely cuspidal representations are certainly square-integrable because their matrix ele-
ments are compactly support modulo Zg.
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Lemma 15.2 The special representations are square-integrable.
11
Suppose 0 = o(aj, o). Since

1

X®o = U(Xal%ﬂ,xoz;ﬁ)

1 1
it is enough to show that o is square-integrable. If ¢ belongs to Bs(a /., ar>) and ¢ belongs to

11
B(ap?,ap)then

f(g) = {.p(g7 ")

_1 1
is the most general matrix coefficient of 0. B(«a 2, %) is the space of locally constant functions on
1 _1
NpAp \ Grand B,(a}, ap?) is the space of locally constant functions ¢ on G that satisfy

w((%l £>g> Z‘Z—; (9)

and

Since

we can choose the Haar measure on Zr \ G so that

/ 1f(9)* dg
Zp\GF

3o [l (%7 1))

c(n) =q" (1 + é)

is equal to
2

dky dko

where ¢(0) = 1 and

ifn > 0. Here ¢ = ||~ L. Since f is K -finite on both sides and its translates are also matrix coefficients

we need only show that
> w " 0
()
n=0

is finite. It will be more than enough to show that

v@ =7 (( 1)) =0t

2
n

q

asa — oQ.
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We recall that

The function

is integrable and the function

is bounded and locally constant. Moreover

@(a):/le(x) wg(a_lx) dzx.

Suppose @2 (z) = p2(0) for || < M. If |a| > 1

v1(x) dr + /{w’ i) o1(z) p2(a™ ) da.

B(a) = ¢2(0) |

{2 |2|<|alM}

Since

/F(pl(as) dz = 0

2(a™z) — 2(0)) 1 (z) da.

®(a) is equal to

{z | |o|>]al M}

The function s is bounded so we need only check that

o1 ()| dz = O(la| ™)
{o||e[>la>}

as |a| — oo. The absolute value of the function ¢ is certainly bounded by some multiple of the function

/ a; T ai
k) = (—
v ((0 a?) ) az
if kisin GL(2,0p). Since

oo D)= ()= D6 )

withyin Fand kin GL(2,0F) if |z| > 1

1
2

o' inB(ak,ap’) defined by

o0

pr@lde=0( Y |=l*) = 0= ™).

(2| |2]>|w|-"} ettt
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Since we need to compare orthogonality relations on the two groups Gr = GL(2,F) and G’z
we have to normalize their Haar measure simultaneously. There are two ways of doing this. We first
describe the simplest. Choose a non-trivial additive character ) of F. Then ¢y, (z) = ¢ (trz) and
Y (@) = ¥(7(x)) are non-trivial additive characters of M = M (2, F) and M’. Let dz and da’ be the
Haar measures on M and M’ self-dual with respect to ¢/, and v5,/. Then

d*x = |z|y} de = |detz|* dx

and
d*a’ = |2’y da’ = |v(2))| 52 da’

are Haar measure on G and G'.

The second method takes longer to describe but is more generally applicable and for this reason
well worth mentioning. Suppose G and G’ are two linear groups defined over F and suppose there is
an isomorphism ¢ of G’ with G defined over the finite Galois extension K. Suppose the differential
form w on G is defined over F'. In general the form o’ = ¢,w on G’ is not defined over F. Suppose
however that w is left and right invariant and under an arbitrary isomorphism it is either fixed or
changes sign. Suppose moreover that for every o in &(K /F) the automorphism o (¢)¢~! of G is inner.
Then

a(W) = o(p)row=0(p)w = pu(0(p) p7') 0w = puw =
and w’ is also defined over F'. If £ is another such isomorphism of G’ with G then

§i(w) = ‘P*(&P_l)*w = F+pw = Fu’

and the measures associated to ¢, w and &,w are the same. Thus a Tamagawa measure on G determines
one on G'.
We apply this method to the simple case under consideration. If

=(¢a)

w=daANdbAdcAdd

is a typical element of M then

is a differential form invariant under translations and the associated measure is self-dual with respect
to Y. If w = (detx) 2y then w is an invariant form on G and the associated measure is d* z.

If K is any separable quadratic extension of F' we may imbed K in both M and M’. Let o be
the non-trivial element of (K /F). Thereisa u in M and a «/ in M’ such that M = K + Ku and
M’ = K + Ku/ while uzu~! = 27 and v/zv/~ ' = 2° forall z in K. 2 isasquare in F* and «/* = v is
an element of I’ which is not the norm of any element of K. We may suppose that u> = 1. If we let K
act to the right the algebra L = K ®r K isan algebra over K. ¢ acts on L through its action on the first
factor. There is an isomorphism L — K @ K which transforms o into the involution (z,y) — (y,x).
In particular every element of K ® 1 is of the form §5 with ¢ in L. Choose § so that v = §467. If

Mgy =M @r K=L® Lu

and
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let © be the linear map from M, to My which sends = + yu' to « + ydu. ¢ is easily seen to be an
isomorphism of M}- and M as algebras over K. o(p)p ! takes = + yu to

x4+ ys%5 tu ="z + yu)d

and is therefore inner. Thus ¢ determines an isomorphism of G’ the multiplicative group of M’ with G
the multiplicative group of M. ¢ is defined over K and o ()¢~ ! isinner. Let |o’| be the Haar measure
on G associated to the Haar measure |w| = d*z of Gr. We want to show that |o/| is just d* .

Let 6 be an invariant form on K. The obvious projections of M = K & Kwu on K define differential
forms 6; and 6 on M. Let 6; A 03 = cu. In the same way the projections of M’ = K & Ku' on K
define differential forms 6] and 65 on M’. If we extend the scalars from F' to K we can consider the
map x — 6 of L into itself. 6 is a form on L and its inverse image is N ()6 = 6. Thus

(01 N b)) =~07 A 65
Thus if 1/ = . (p)
cp’ =07 N 0.

Suppose ¢, |¢| is self-dual with respect to the character 1x (z) = 1 (7(x)) on K. Then

J{ ] #abyvnctas+ w7y 6@ 601} 66) 610 = i 2 (0.0)

and

ol [ { [ @@ vuctas -+ by7) 6Ga) 0(0)] } 1660 1000)| = 5 (0,0,

If x + yu belongs to M with x and y in K then, since 7(u) = 0,

T(z +yu) = 7(x) = Trg/p(x).

In the same way
T(z +yu') = Tr ().
Thus
1/JM((95 +yu)(a+ bu)) = Y (xa + yb?)
Y (@4 yu')(a + bu')) = P (za + yb7y).

Thus c?|0; A 05 is self-dual with respect to 15, and c?|y|r [0] A 5] is self-dual with respect to 1.
Since ¢? = |c|r the measure || is self-dual with respect to . Finally o’ = v(z')~2 dz’ so that ||
is just d*z’. Thus the two normalizations lead to the same result.

If bisin M or M’ the eigenvalues of b are the roots «; and a» of the equation

X2~ 7(b) X + v(b) = 0.

If bisin G or G itis said to be regular of «; and ay are distinct; otherwise it is singular. We set
(a1 — ag)?
a1

5(b) =

F
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The set of singular elements is of measure 0. If b is regular the subalgebra of M or M’ generated by b is
a separable quadratic extension E of F' and the multiplicative group of E is a Cartan subgroup of Gr
or G’z. To obtain a set of representatives for the conjugacy classes of Cartan subgroups of G or G’ we
choose once and for all a set S’ of representatives for the classes of separable quadratic extensions of
F. We also choose for each E in S” an imbedding of E in M and in M’. The multiplicative group of £
may be regarded as a Cartan subgroup B of either G or G’. S” will also stand for the collection of
Cartan subgroups obtained in this way. It is a complete set of representatives for the conjugacy classes
of Cartan subgroups of G’.. If S is the result of adjoining to S’ the group Ar of diagonal matrices then
S is a complete set of representatives for the conjugacy classes of Cartan subgroups of Gg. If Br isin
S” we choose the Tamagawa measure iz on B as in the seventh paragraph. The analogue for G of
the formula (1.2.2) is

/Z;,\G’ J(g)wo Z /ZF\BF /BF\G/F f(g‘lbg)wﬁg(g)}u%(b)-

Let EF be the set of regular elements in Br and let
C=|JZr\Br.
S/

We may regard C' as the discrete union of the spaces Zp \ Bp. We introduce on C' the measure p(c)

defined by
1 1 0
JRCECES > o7\ B AR CLORO!

Lemma 15.3 Let n be a quasi-character of F* and let Q' (n) be the set of equivalence classes of
irreducible representations m of G such that w(a) = n(a) for a in Zy, which we identify with F*.
If my and 72 belong to ' (n) and

f(9) = X (9) X7,(9)

/C F(e) u(e) =
/C £(e) p(c) =

Since Z%: \ G is compact we may apply the Schur orthogonality relations for characters to see

where xr(g) = Trm(g) then
if m1 and Ty are not equivalent and

if they are.

that
1

/ /
measure Zp \ G'x J 77 \a1,

f(9)wo(9)

is 0 if m; and w5 are not equivalent and is 1 if they are. According to the integration formula remarked
above this expression is equal to

1 1

e Z Oy 22 [, 050) mensune B \ ) ).

Since
measure Zp \ G = (measure Zr \ Br)(measure Br \ G')

the lemma follows. Observe that Zr and Z}, tend to be confounded.
There is form of this lemma which is valid for Gp.
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Lemma 15.4 Let n be a quasi-character of F*. Let Qy(n) be the set of equivalence classes of ir-
reducible admissible representations w of Gg which are either special or absolutely cuspidal and
satisfy w(a) = n(a) for all a in Zp. Suppose w1 and wy belong to Qo(n). Let f = fr, .r, be the
function

f(B) = Xy (b) X, ()

/C 7€) le)

is 1 if my and 7y are equivalent and O otherwise.

on C. Then f is integrable and

It is enough to prove the lemma when 7 is a character. Then x; is the complex conjugate of x
and f . is positive. If the functions f . are integrable then by the Schwarz inequality all the functions
fr1.m, are integrable.

Let £2(n) be the set of irreducible admissible representations 7 of G such that 7(a) = n(a) for a
in Zg. If pisalocally constant function on G such that

p(ag) =n~"(a) p(g)

for a in Zr and such that the projection of the support of ¢ on Zp \ G is compact then we define (),
if misin Q(n), by

() = /Z 0, PO 0)

Itiseasily seen that 7(¢) is an operator of finite rank and that the trace of 7w(¢) is given by the convergent
integral

/ ©(9) xx(9)w’(g).
Zp\Gr

In fact this follows from the observation that there is a ¢ in H g such that

e1(g) = / o1(ag) n(a) piz(a)

and the results of the seventh paragraph.
Suppose 7 is absolutely cuspidal and unitary and acts on the space V;. Suppose also that
m1(a) = n(a) for a in Zp. Choose a unit vector u; and V; and set

¢(g9) = d(m) (U177T1(9)U1)~

Since 7 is integrable it follows from the Schur orthogonality relations that m () = 0 if w2 in Q(n) is
not equivalent to m; but that m () is the orthogonal projection on Cu, if 73 = 1. In the first case
Tr 71 (p) = 0 and in the second Tr 2 (¢) = 1.

On the other hand

Trma(p) = / X0 0)0)

We apply formula (7.2.2) to the right side to obtain

35 AR CIULULY M e O
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If Br belongs to .S’ the inner integral is equal to

1
measure Zp \ Bp

d(ﬁ)/ZF\GF (w1, m1(9™ " bg)ur) wi(9)

which by Proposition 7.5 is equal to

1
measure Zp \ Bp

X1 (b)

If Br is A the group of diagonal matrices the inner integral is, apart from a constant relating Haar
measures, the product of d(7;) and the integral over GL(2, OF) of

/F<7T1<<(1) _1x>b<(1) f)) Wl(k)uhm(k)ul)dx.
=% o)
_1/F (Wl(b) m (((1) 316>> 7T1(k)u1,7r1(k)u1) dx

which we know is 0. Collecting these facts together we see that f = f., , is integrable on C' if m; is
absolutely cuspidal and that its integral has the required value.

this is

1 1
To complete the proof all we need do is show that if 7 = o(x3,, X ?>) is a special representation
then f = f - is integrable on C and

/C F(e) ple) = 1.

If 7’ is the one-dimensional representation g — X(V(g)) of G’ then © = 7(n’). To prove the existence
of x» we had to show in effect that if Br was in S’ and b was in B then

X (b) = =X (D).

Thus fr » = f= »~ and the assertion in this case follows from the previous lemma.
The relation just used does not seem to be accidental.

Proposition 15.5 Suppose 7’ is an irreducible admissible representation of G’ and m = w(n') the
corresponding representation of Gg. If Br is in S’ and b is in Bp

X (0) = =X= (D).

We may suppose that 7’ is not one-dimensional and that 7 is absolutely cuspidal. We may also
suppose that they are both unitary. We take 7 in Kirillov form with respect to some additive character

. If pisin S(F*) the function
; 0 1
Y =7 —1 0 1%

is also.
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Since the measure i and 1 are self-dual with respect to the characters 1y, and 15, Lemma 13.1.1
and Proposition 4.5 show us that for any A in F*

| tdets) (m(a ™) et (3g) (o) (15.5.1)
is equal to
o' (A~ (A A2
and that
[ etdetg) (g ' ) ldetg] o (0g) ' (9) (155.2)
is equal to

o' (W) () A2
Here w is a unit vector in the space of 7 and v/ a unit vector in the space 7. In any case (15.5.1) is just

the negative of (15.5.2).
If we use formula (7.2.1) to express the integral (15.5.1) as a sum over S we obtain

32 moe 7 g [ Pt et X 60) s (0) s 1)
S’ F

The contribution from Ag vanishes as in the previous lemma. The other integrals have been simpli-
fied by means of Proposition 7.5. There is of course an obvious analogue for the group G of the
formula (7.2.1). If we apply it we see that (15.5.2) is equal to

% ; measurelZF \ Br /BF ipldetd) [v(b) W 0(b) Yarr (Ab) i (0)

if v(b) is the reduced norm. Of course on By the functions v(b) and detb are the same. Choose B in
S’ and by in BY%. We shall show that

Xﬂ/(bal) _ _Xﬂ(bal)
d(m’) d(m)

The orthogonality relations of the previous two lemmas will show that d(7) = d(#') and we will
conclude that

X (b5 ) = =xx(bg ")
The norm and the trace of by are the same whether it is regarded as an element of M or of M’. In
fact if BY is the multiplicative group of E in S’ the norm and the trace are in both cases the norm and

the trace of b, as an element of E. Since by and its conjugate in E are conjugate in Gy and G’ we can
choose an open set U in E* containing both by and its conjugate so that

[ (b)| xar (671) 6(b) = [v(bo)| xw (b5 ) (Do)
if bisin U. Lemma 7.4.2 shows that  is locally constant in E%. Thus we can also suppose that

|detb] xx(b~") 6(b) = |detbo| xx(bg ') 5(bo)
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if bisin U. Suppose ag and 3y are the trace and norm of by. We can choose a positive integer m so that
if o« — g and 3 — [y belong to p% the roots of

X2 —aX +0b

belong to E and in fact lie in U.
Let £(\) be the expression (15.5.1) regarded as a function of \. Keeping in mind the fact that

Yar(Ab) = Yar (Ab) = (A trd),

we compute

: —m—n /mn 5()‘) ¢(_)‘a0) dA (1553)
p

measure p -

where p." is the largest ideal on which ) is trivial. Since

! — /pmn 1/1()\(trb — ao)) dA

measure p -

is 0, unless trb — g belongs to p’= when itis 1, the integral (15.5.3) is equal to

! ! X (b~
2 ; measure Zp \ Bp /V(BF) p(detb) |detd| d(m) 6(b) up(b)

V(BF) = {b € Bp ‘ trb—ap € ]JY}?}
If we take ¢ to be the characteristic function of
{BeF|B—pocrpF}

the summation disappears and we are left with

1 1 <(by
- \detbo\ X ( 0 )
2 measure Zp \ Bp d(m)

o) | o, £ 50)

If we replace £()\) by the expression (15.5.2) the final result will be

1 1 Xn/(b(Tl) /
— - bo)| =—=—=3(b detb b).
2 measure Zp \ Bp [vbo) d(m) (bo) V(B%)QO( otb) 115 ()
Since these differ only in sign the proposition follows.

We are now in a position to prove Theorem 15.1. The orthogonality relations and the previous
lemma show that the map ©' — 7 is injective because the map takes ©'(n) into Qo (n). It is enough to
verify that V is surjective when 7 is unitary. Let £2(n) be the space of all measurable functions f on

US’EF
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such that f(ab) = n(a) f(b) ifaisin Zr and

/ O ule)
C

is finite. By the Peter-Wey! theorem the set of functions x,.-, #’ € €'(n), form an orthonormal basis of
L2%(n). The family x., ™ € Qq(n), is an orthonormal family in £2(n). By the previous proposition the
image of '(n) in Qy(n) is actually an orthonormal basis and must therefore be the whole family.

We observe that it would be surprising if the relation d(w) = d(#’) were not also true when 7/
is one-dimensional. The facts just discussed are also valid when F' is the field of real numbers. They
follow immediately from the classification and the remarks at the end of the seventh paragraph.

We conclude this paragraph with some miscellaneous facts which will be used elsewhere. F'is
again a non-archimedean field. Let K = GL(2,0r) and let K, be the set of all matrices

a b

c d
in K for which ¢ = 0(modpr). Suppose 7 is an irreducible admissible representation of G in the
space V. We are interested in the existence of a non-zero vector v in V' such that

w ((CC‘ 2)) v = wi(a)ws(d)v
(¢ e

wy is a constant and w; and w, two characters of Ug. w is a generator of px. Since

()0 0)-(a 70

such a vector can exist only if w; = wy, = w.

for all matrices in Ky while

Lemma 15.6 Suppose w and wo are given. Let m be p(u1, pio) which may not be irreducible. There
is a non-zero vector ¢ in B(uy, p2) satisfying the above conditions if and only if the restrictions of
w1 and po to U, the group of units of O, are equal to w and

wy = p(—@) pa(—w)
Moreover o if it exists is unique apart from a scalar factor.

It is easily seen that K is the disjoint union of K and

0 1
KO (_1 0) KO = Ko’wKO

Let 1 be the function which is 0 on KqgwK, and on Ky is given by

a(z £)-wen
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Let - be the function which is 0 on K|, and takes the value w(a’d’ad) at
a v 0 1 a b
d d -1 0 c d)’
a b
v (( . d)) v =w(ad)p

for all matrices in K, then the restrictions of ¢ to K must be a linear combination of ¢; and 5. This
already implies that w is the restriction of py and s to Up. Suppose ¢ = apy + bps. Since

(2 5)) o= =l m@) a1 e

If o in B(u1, pe) satisfies

w 0

(2 5))e= 1ol mal-=)e

while 1 (—1) = p2(—1) = w(—1), we have

and

wob = |@|* 1 (—w)a
and )
woa = [@| 72 pa(~w)b

Apart from scalar factors there is at most one solution of this equation. There is one non-trivial solution
if and only if w? = p1 (—w@) pa(—w).

Lemma15.7 Suppose m = o (1, j12) is the special representation corresponding to the quasi-chacters
1

1 1
1 = xop° and pp = xag. There is a non-zero vector v in the space of m such that

()
(2 D)o

if and only if w is the restriction of x to Up and wg = —x(—w). If v exists it is unique apart from
a scalar.

for all matrices in Kq while

We first let m act on B (us, p2) a subspace of B(usa,11). The condition on w follows from the
previous lemma which also shows that wy must be £x(—w). If we take the plus sign we see that v
must correspond to the function whose restriction to K is constant. Since this function does not lie in
B (12, p1) only the minus sign is possible. To see the existence we let 7 act on

B, p2) = Blpa, po)/By(pa, po)

In B(u1, u2) there are two functions satisfying the conditions of the lemma. One with wy = —x(—w)
and one with wy = x(—w). One of the two, and we know which, must have a non-zero projection on
Bs(p1, p2)-

The above lemmas together with the next one sometimes allow us to decide whether or not a given
representation is special.
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Lemma 15.8 If the absolutely cuspidal representation w acts on V' there is no non-zero vector v in

V' such that
0 1 _
T = 0 v = wov

and

for all matrices in K.

We may suppose that 7 is the Kirillov form with respect to an additive character ) such that Or
is the largest ideal on which 1) is trivial. Then v is a function ¢ in S(F). If aisin Ur and b is in F'*
we must have p(ab) = w(a) ¢(b). Moreover if bisin F'* and z isin O then ¢(b) = ¥ (xb) ¢(b). Thus
©(b) = 0if bis notin Op. Consequently ¢(v,t) is 0 if v # w™! but p(w1,¢) is a polynomial of the
form
amt™ + o+ apt”

with a,,a, # 0. If ¢1(b) = ¢(—wb) then

Let

and let v be the restriction of 7 to Ur while z, = n(w). The character v, will have to be equal to w?.

The relation
_ 0 1 _ 0 1
wop =T o 0 Y= -1 0 P2

wop(w ™) = Clw ™ ) w(—1) 2ot pw™, 25 1t 1),

implies that

By Proposition 2.23, C(w™!,t) is of the form ¢t = with ¢ > 2. Thus the right side has a pole at 0 not
shared by the left. This is a contradiction.
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§16. An application of the Selberg trace formula. In the fourteenth paragraph we saw that if 7’ = ®, 7.,
is a constituent of A’ and 7’ is not of the form g — X(V(g)) where x is a quasi-character of % \ I then
T = Ry, With m, = 7(7}), is a constituent of Ay. Let S be the set of places at which the quaternion
algebra M’ does not split. Given the results of the previous paragraph it is tempting to conjecture that
the following theorem is valid.

Theorem 16.1 Suppose m = Qm,, is a constituent of Ag. If for every v in S the representation m,
is special or absolutely cuspidal then for every v there is a representation . such that m, = m(w))
and ©’' = @, is a constituent of A’.

The existence of 7/, has been shown. What is not clear is that 7’ is a constituent of A’. It seems
to be possible to prove this by means of the Selberg trace formula. Unfortunately a large number of
analytical facts need to be verified. We have not yet verified them. However the theorem and its proof
seem very beautiful to us; so we decided to include a sketch of the proof with a promise to work out the
analytical details and publish them later. We must stress that the sketch is merely a formal argument
so that the theorem must remain, for the moment, conjectural.

We first review some general facts about traces and group representations. Suppose ( is a locally
compact unimodular group and Z is a closed subgroup of the centre of G. Let 7 be a character of Z.
We introduce the space L!(n) of all measurable functions f on G which satisfy f(ag) = n~'(a) f(9)
for all @ in Z and whose absolute values are integrable on Z \ G. If f; and f» belong to L!(n) so does
their product f; x fo which is defined by

fi % falg) = /Z o) fan

If f belongs to L' (n) let f* be the function f*(g) = f(g~"'). Italso belongs to L' (n). A subalgebra B
of L'(n) will be called ample if it is dense and closed under the operation f — f*.

Let 7 be a unitary representation of G on the Hilbert space H such that 7(a) = 7(a) I for all a in
Z. We do not suppose that = is irreducible. If f belongs to L*(n) we set

m(f) f(g)m(g)dg
Z\G

If w(f) is compact for all f in some ample subalgebra B then m decomposes into the direct sum of
irreducible representations no one of which occurs more than a finite number of times.

Lemma16.1.1 Suppose w1 and wy are two unitary representations of G such that w1 (a) = n(a) I and
ma(a) = n(a) I for all a in Z. Suppose there is an ample subalgebra B of L'(n) such that w1 (f)
and mo(f) are of Hilbert-Schmidt class for all f in B.
() If for every f in B
tracem (f) m1(f*) > tracema(f) ma(f™)

then o is equivalent to a subrepresentation of my.
@ii) If for every f in B
tracemy (f) m1(f*) = tracema(f) ma(f™)

then o is equivalent to .

Let m; act on H; and let m, act on Hsy. A simple application of Zorn’s lemma shows that we
can choose a pair of closed invariant subspaces M; and M, of Hy and H- respectively, such that the
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restrictions of m; to M; and w5 to M> are equivalent and such that the pair M7, M> is maximal with
respect to this property. Replacing H; and H, by the orthogonal complements of M; and Ms; we may
suppose that M; = 0 and that M5 = 0. To prove the first assertion of the lemma we have to show that
with this assumption Hy = 0. If the second condition is satisfied we can reverse the roles of m; and o
to see that H; is also 0.

Before beginning the proof we make a simple remark. Suppose o is an irreducible unitary rep-
resentation of G on L and o, o € A, is an irreducible unitary representaion of G on L. Suppose
that o(a) = n(a) I for all a in Z and o,(a) = n(a) I for all a in Z and all « in A. Suppose that o is
equivalent to none of the ¢, and that a non-zero vector = in L and vectors z,, in L, are given. Finally

suppose that
> lloalf) zal?

is finite for every f in B. Then if ¢ is any positive number there is an f in B such that
> _lloa(fzall? < clo(fz]*

Suppose the contrary and let L’ be the closure in ®,L,, of

{®0a(f) Lo ‘ f € B}

L'’ is invariant under G and the map

@Ua(f)xa - O(f)l‘

may be extended to a continuous G-invariant map A’ of L’ into L. If A" were 0 then o(f)x = 0 for all
f in B which is impossible. Let A be the linear transformation from &L, to L which is A’ on L’ and 0
on its orthogonal complement. A commutes with G and is not 0. Let A,, be the restriction of A to L,,.
A, is a G-invariant map of L, into L and is therefore 0. Thus A is 0. This is a contradiction.

Suppose Hs is not 0. There is an h in B such that m (h) # 0. If f = h *x h* then w2 (f) is positive
semi-definite and of trace class. It has a positive eigenvalue and with no loss of generality we may
suppose that its largest eigenvalue is 1. Let my = ®7r§, where 7r§ actson Hf, be a decomposition of m;
into irreducible representations. There is a §y and a unit vector z in Hg" such that mo(f)z = . Let
m = @n{, where 7§ acts on H{*, be a decomposition of 7r; into irreducible representations. Choose an
orthogonal basis {x®7 \ v € 'y} of H{* consisting of eigenvectors of 71 (f). Since

tracem (f) > tracema(f)

the largest eigenvalue of 71 (f) is positive. Let it be .
If f, belongs to B,
SO () )
a v

is the Hilbert-Schmidt norm of 7 (f1) and is therefore finite. By assumption 75° is not equivalent to
any of the representations 7{* so that we can apply our earlier remark to the vector x and the family of
representations 77”7 = 7{* together with the family of vectors z*” to infer the existence of an f; in B
such that

S S Im() a0 < o ma( ) ol
a v
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Then
tracem1 (f1f) 71 (f1f) = traceny (fif) m1i(f1f)

is equal to

Do lm () m) P < AN llm(f) a7
Y S204

The right side is less than
1 1
slma(f)el? = Slim(fuf) 2l

which is at most

%traeewz(ﬁf) 75 (f1f)-

This is a contradiction.
The next lemma is a consequence of the results of [35].

Lemma 16.1.2 Suppose 0 is trivial so that L'(n) = LY(Z \ G). Suppose that B is an ample subal-
gebra of L'(n) which is contained in L*(Z \ G). If there is a positive constant v and a unitary
representation m of Z \ G such that w(f) is of Hilbert—Schmidt class for all f in B and

trace(f) w(f™) Z’Y/Z\G‘f(g)|2dg

then Z \ G is compact.

In proving the theorem it is better to deal with representations in the adele groups than to deal
with representations of the global Hecke algebras. We have to assume that the reader is sufficiently
well acquainted with the theory of group representations to pass back and forth unaided between the
two viewpoints.

If F'is a global field, A is the adele ring of F', G = GL(2), and 7 is a character of the idéle class
group F* \ I the space A(n) of all measurable functions ¢ on Gy \ G4 that satisfy

v <<8 2) g) = n(a) p(g)

for all @ in I and whose absolute values are square-integrable on Gr Z, \ G, is a Hilbert space. If ¢

belongs to this space
/ ¢(ng) dn
Np\Ny

is defined for almost all g. If it is O for almost all g the function ¢ is said to be a cusp form. The space
Ap(n) of all such cusp forms is closed and invariant under Gy. It is in fact the closure of Ag(n). It
decomposes in the same way but now into a direct sum of closed orthogonal subspaces V' on which
Gp acts according to an irreducible representation m = ®m,. Thus V is now isomorphic to a tensor
product of Hilbert spaces. Of course the same representations occur now as occurred before. Similar
remarks apply to the multiplicative group G’ of quaternion algebra M’ over F.

It will be enough to prove the theorem when 7 is a constituent of some A (n) or Ap(n) and 7 is a
character because we can always take the tensor product of 7 with a suitable quasi-character. Suppose
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n is given. Let S be the set of places at which M’ does not split. Suppose that for each v in S we are
given an irreducible unitary representation o, of G%. = G, such that

for all @ in Fy which we identify with Z, = Z}. . Let 0, = m(0;) be the representation of G,
corresponding to o/,. We may take o, unitary. Let o, act on U, and let o], act on U, . Fix a unit vector
u,, in U, and a unit vector w, in U, which is K,-finite. u) is automatically K -finite.

Write Ay(n) as the direct sum, in the Hilbert space sense, of mutually orthogonal invariant irre-
ducible subspaces V1, V2, ... Let the factorization of the representation 7* on V% be @7i. Let 7! act
on Vi. For simplicity of notation we identify V* with @V.*. We also suppose that if v isin S and 7¢ is
equivalent to o, then U, = V! and 7!, = o,,. Let X be the set of all 7 such that 7! = o, forall vin S
and if 7 belongs to X let

M = {®v€5’uv} & {@vES‘/vZ}-

M is invariant and irreducible under the action of
Gs = {9 = (9v) | gy = 1forallvin S}.

Let |
M = @ieXMZ.

M is a Hilbert space and @S acts on M. If at least one of the representations ¢/, v € S, is not one-
dimensional set N = M. If they are all one-dimensional let N be the subspace of Aj(7) spanned, in
the Hilbert space sense, by M and the functions g — x(detg) where x is a character of £’ \ I such that
x? =nand d)(g9) = xu (V(g)) forall g in G/, if visin S. If v is non-archimedean this last condition
determines y, uniquely. If v is real it only determines it on the positive numbers.

Let A’(n) be the space of all measurable functions ¢ on G’ \ G, that satisfy ¢(ag) = n(a) ¢(g)
for all a in I and whose absolute values are square integrable on G Z; \ G',. Replacing o, by o and
u, by ul we define N’ in the same way as we defined M. If at least one of the representations o/,
v € S, is not one-dimensional we set M’ = N’. However if they are all one-dimensional and y is a
character of F* \ I such that x*> = nand o/,(g) = x.(v(g)) forall G in G}, if v is in S then the function
g — x(v(g)) belongs to N'. We let M’ be the orthogonal complement in Nof the set of such functions.
The group (A}fg acts on M’ and N’. However by means of the local isomorphisms 6,, we can define an
isomorphism of @5 and (A}fg. Thus (A}S acts on M and M’. To prove the theorem we need only show
that the representations on these two spaces are equivalent. To do this we combine Lemma 16.1.1 with
the Selberg trace formula.

To apply Lemma 16.1.1 we have to introduce an algebra B. B will be the linear span of By, the set

of functions f on CA}S of the form

f(g) = H fv(gv)

vgS

where the functions f,, satisfy the following conditions.
(i) If a, belongs to F then

f’U(aUg’U) = 777)_1(0’7)) f’U(gU)'

(i) f., is K,-finite on both sides and the projection of the support of f, on Z, \ G, is compact.
(iii) If v is archimedean f, is infinitely differentiable.
(iv) If vis non-archimedean f, is locally constant.



Chapter 3 301

(v) For almost all non-archimedean v the functions f, is 0 outside of Z, K, but on Z, K, is given by

fo(g) = w, ' (detg)

where w, is unramified and satisfies wg = 1y.
We introduce B’ in the same way. We may identify B and B’ and to verify the conditions of the
lemma we need only show that if f = f; * fo with f; and f5 in By then

traceo(f) = traceo’(f)

if o is the representation on M and ¢’ that on A’. Let 7 be the representation on N and 7/ that on N,
Since

traceT(f) = traceo(f) + Z /A x(9) f(g)dg

Zs\Gs

and

trace ' (f) = traced’(f) + E /A _x(9) f(g)dg

Zs\Gs

we need only show that
trace 7(f) = tracer’(f).

Before beginning the proof we had better describe the relation between the Haar measures on the
groups Z, \ G and Zj \ G',. Choose a non-trivial character ¢ of F'\ A. If wy is any invariant form
of maximal degree on Z \ G defined over F' and therefore over each F;, we can associate to w, and v,

a Haar measure wo(v) on Z, \ G,. Then [], .5 wo(v) determines a Haar measure wo on Zs\ Gg and
[ I, wo(v) determines a Haar measure wy on Z, \ G. The measure on Z, \ G4 is independent of +) and
is called the Tamagawa measure. As in the previous paragraph we can associate to wy(v) a measure
wy(v) on Z! \ G' and therefore to wy a measure w(, on Z’g \ (A}fg or Z, \ G.

We first take f = f1 * f2 in B’ and find a formula for trace 7/( f). Let d(o?,) be the formal degree
of o/, with respect to the measure w(,(v) and let &/, be the function

&u(g) = d(oy,) (o7,(g)us, uf)

on G,. Let &' = @', be the function

(g) = { [T € (9.} f(35)

veES

on G,. Here gg is the projection of g on @g. If p’ is the representation of G/, on A’(n) the restriction of
P (®)to N is 7'(f) and p/(®) annihilates the orthogonal complement of N’. Thus

trace p’ (®') = trace 7' (f).

If pisin A’(n) then p/(®’) ¢(g) is equal to

/ o(gh) @' () wh(h) = / () ® (g~ By wh(h).
ZN\Gy, ZH\GYy
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The integration on the right can be performed by first summing over Z. \ G’ and then integrating
over ZyG% \ G),. If
®'(g,h) = D (g 'vh)

Zp\Gr
the result is

/ o(h) @ (g, h) wh(h).
Z,GR\G}

Thus the trace of p/(®) is equal to

/ ®'(g,9) dg.
Z, Gp\GYy,

If we write out the integrand and perform the usual manipulations (cf [29]) we see that this integral

Z measure (Z, Gp(v) \ G4(7)) / ' (g7 vg). (16.1.3)
{7} G (MG

The sum is over a set of representatives of the conjugacy classes in G=. G’ (7) is the centralizer of v in
G’y and G'x(7) is its centralizer in G5

Let Q' be a set of representatives for the equivalence classes of quadratic extensions E of F such
that £ @ F, isafield for all v in S. For each E in )’ fix an imbedding of E in the quaternion algebra
M'. Let Br = Bp(FE) be the multiplicative group of E, considered as a subalgebra of M’, or what is
the same the centralizer of E in G%. Let By = B, (FE) be the centralizer of E in G,. Let Q) be the
separable extensions in Q" and @, the inseparable ones if they exist. Then (16.1.3) is the sum of

measure(Z, G \ G) @' (e), (16.1.4)
if e is the identity,
1
52 Y measure(Z, Br \ By) / ' (g vg) wp(g) (16.1.5)
Q) 1€z, \Bfp Ba\Ga
VEZY,
and
> ) measure(Z, Bp \ By) / ' (g7 vg) wa(g). (16.1.6)
QL €z, \Bfp Ba\Ga
YE€Z R

The last sum is deceptive because 0, has at most one element. wp is the quotient of the measure on
Z; \ Gy by thaton Z}, \ By. The choice of the measure on Z} \ B, is not too important. We do suppose
that it is a product measure.*

The expression (16.1.4) is equal to

measure(Z, Gy \ Gg){ [ d)} o).

vES

* In (16.1.5) the factor % is not quite correct. If we want to leave it in, both ~ and its conjugate must
be counted, even if they differ only by an element of F'.
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The integrals of (16.1.5) and (16.1.6) are equal to the product

H Xo!, (’7_1)
s measure(Z! \ By)

and

/A _ g g ws.

Bs\G/y
Now regard f = f; x fo as an element of B. We can still introduce for each v in S the function
u(g) = d(av)(gv (g)uvuv)

on G,. d(o,) is the formal degree of o, with respect to the measure wy(v). If o, is not one-dimensional
&, isintegrable and we can use it to define a function ® to which we can hope to apply the trace formula.
When o/, is one-dimensional the function &, is not even integrable so it is of no use to us. However in
this case we can find an integrable function ¢, with the following properties.

(i) Forall ain F,
Co <<g 2) g) =1, " (a) Gu(9)-

(i) For asuitable choice of u, the operator o, ((,) is the orthogonal projection on the space Cu,.
(iii) If x, is a character of F)* such that 2 = 7, then

/ xo(detg) G, (g) wo(v)
Z,\Gy

is —1if o}, (h) = xu(v(h)) for all hin G/, and is 0 otherwise.
(iv) If m, is a unitary infinite-dimensional irreducible admissible representation of G, which is not

equivalent to o, but satisfies
a O

trace m,((,) = 0.

forall a in F then

If v is real we cannot describe (,, without a great deal more explanation than is desirable at present.
However after a few preliminary remarks we will be able to describe it when v is non-archimedean.
Suppose 7, (9) = Xo (V(g)) for g in G/, and 7, is a representation of GG, such that

Ty <<8 2)) =ny(a)l

for all a in FX. Applying Lemma 3.9 to y, ! ® 7, we see that the restriction of 7, to K, contains the
representation k — x,(detk) if and only if m, = 7(uy, vy ), oy = 1y, and the restrictions of y, and
v, to Uy, the group of units of F,, are both equal to the restriction of x,. Let ¢/ be the function on G,
which is 0 outside of Z, K, but on K, is equal to

1
measure(Z, \ Z, K,)

X, (detg).
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Let H, be the group generated by Z,,, the matrices
a b
c d
0 1
w, 0/)°

Let w, be the character w,(a) = (—1)" xy(a) if |a| = |@,|™. According to the concluding lemmas of
the previous paragraph there is a non-zero vector u in the space of =, such that

in K, for which ¢ = 0(modp, ), and

Ty (g) u = wy(detg) u

for all g in H, if and only if 7, is equivalent to o, m, = 7(uy, 1) is infinite-dimensional, v, = n,,
and the restrictions of u, and v, to U, are equal to the restriction of x,, or m, is the one-dimensional
representation

g — wy(detg).

Let ¢!/ be the function which is 0 outside of H, and equal to

)

1 1
~(det
measure Z, \ H, wy ' (detg)

on H,. We may take
Co = ¢ — Gy

There are some consequences of the four conditions on ¢, which we shall need. If x,, and v, are
two characters of £, such that p, v, = 1, the trace of p((,, ., V) is @ multiple of
«

/ZU\A’/M(O&) l/u(ﬂ)‘E %{/N’/KU (v(k:_lank) dndk}da

-3

Since this is 0 for all possible choice of ., and v,

/ / Co(k~tank) dkdn =0
N, JK,

for all a. We also observe that if o/, is not one-dimensional then

/ / & (k™ tank) dkdn = 0
N’U K?}

for all a.
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If m, is special or absolutely cuspidal trace 7, ((,) is therefore equal to

Since trace m,((,) is 1 if 7, is equivalent to o, and 0 otherwise the orthogonality relations imply that

—1
measure Z, \ B,

/ Colg™ bg) wp(v) = Xou (571
B, \Gy

for all regular b and therefore, by continuity, for all b whose eigenvalues do not lie in F;,. It probably also
follows from the Plancherel theorem that (,(e) = d(o,). We do not need this but we shall eventually
need to know that ¢,(e) = d(o7). For the moment we content ourselves with observing that if w, is a
character of F,* and o7, is replaced by w,, ® o/, the formal degree does not change and ¢, is replaced by
the function g — w; ! (detg) ¢, (g) so that ¢, (e) does not change. Thus the relation ¢,(e) = d(o’,) need
only be proved when ¢, is trivial.

Let S; be the subset of v in .S for which ¢!, is one-dimensional and let S; be the complement of Sy
in S. Given f = fi * fo in B we set

() = { IT Gl }{ I &(9)} £(as).

vES, vESH

Let pg be the representation of G, on Ag (n) the sum, in the Hilbert space sense, of Ay(n) and
the functions x : g — x(detg) where y is a character of F* \ I such that x> = 7 and let p be
the representation on A(n). If at least one of the representations g/, is not one-dimensional p; (®)
annihilates the orthogonal complement of Ay(n). If they are all one-dimensional we apply the third
condition on the functions (, together with the fact that the number of places in S is even to see that
pg (@) x = 0 unless o/, (h) = x, (v(h)) forall h in G} and all v in S but that if this is so

Recall that Ay (n) is the direct sum of spaces V' on which G acts according to representations 7 = @’
If at least one of the representations o/, is not one-dimensional pd (®) is equal to o(f) on M and
annihilates the orthogonal complement of M in Ay(n). Suppose they are all one-dimensional. If 4
belongs to X the restrictions of pj (®) and o(f) or 7(f) to M? are equal and pJ (®) annihilates the
orthogonal complement of M? in V. If i is not in X the trace of the restriction of g} (®) to V? is

{ H trace Wi(Q,)}{tI’&CQ 7L (f)}

vES

v, v € S, are all infinite-dimensional and for at least one such v the
representation m;, is not equivalent to o,

in 1, = ®ugsms. Since !

H trace 7 (¢,) = 0.

veS

We conclude that
trace p (®) = trace 7(f).
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To show that
trace7(f) = trace ' (f)

we have to apply the trace formula to find a suitable expression for trace g} (®). In order to describe
the formula we need to state some results in the theory of Eisenstein series.

Consider the collection of pairs of character u, v of F* \ I such that pv = 7. To such pairs, p,v
and p/, " are said to be equivalent if there is a complex number 7 such that i/ = pao’p and v/ = vag".
If @ belongs to I then o (a) = |a|". Let P be a set of representatives for these equivalence classes.

Suppose (i, v) belongs to P. If s is a complex number the space B(ua? ya;%) of functions on
Ny \ G, is defined as in the tenth paragraph. Since the functions in this space are determined by their
restrictions to K we may think of it as a space of functions on K in which case it is independent of s.
Thus we have isomorphisms

Ts: B(,uozlé, Va;%) — B(u,v).

The theory of Eisenstein series provides us with a function (¢, s) — E(¢g, s) from B(u,v) x C to
A(n). E(g, ¢, s) is the value of E(p, s) at g. For a given ¢ the function E(g, ¢, s) is continuous in g
and meromorphic in s. Moreover there is a discrete set of points in C such that outside of this set it is

holomorphic in s for all g and ¢. If s is not in this set the map ¢ — E(T;p, s) of B(uaé, ua;%) into
A(n) commutes with the action of K.
If the total measure of N \ N, is taken to be 1 the integral

/ E(ng,Tsp,s)dn
NF\NA

is equal to
e(g) + (M(s)p)(9)-

M (s) isalinear transformation from 23(;@?3, 1/04;% )to B(l/oz;% , uafi) which commutes with the action
of H. It is mermorphic in the sense that

(M(S)Ts_lsph Ts_1¢2>
is meromorphic if ¢; belongs to B(y, ) and @5 belongs to B(v~!, u~1). The quotient of M (s) by

L(s, v~
L(1+ s,pv1)

L(1—s,vu™t)

=e(1— -1
L(1+s,pv1) el —svu)

is holomorphic for Re s > 0. Since the analytic behavior of E(g, ¢, s) is controlled by that of M (s) it
should be possible, as we observed before, to use the Eisenstein series to show that a constituent of

B(uaé, 1/04;%) is also a constituent of A(7).
To indicate the dependence of M (s) on p and v we write M (u, v, s). Then

M(u,v,s)M (v, p,—s) = 1.

If s is purely imaginary we can introduce the inner product

%wﬁjLwW%W%
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on 3(;;04?, Va;% ). Let B(Maé, Va;%) be its completion with respect to this inner product. B(,uof,, ya;% )
may be thought of as a function space on GG, on which G acts by right translations. The representation
of G4 on B(ua%, z/a;f?) is unitary. Let g correspond to the operator p(g, i1, v, s) and if f isin L*(n) let

p(fpav.8) = / £(9) plg. 1 v, 8) wo(g)

Zu\Ga

T, extends to an isometry, from B(,ua?p, ya;%) to B(u,v) and M (u, v, s) extends to an isometry from
B(pak,vap?)to B(vap?, paf). In particular

M*(M,V,S) = M(Vﬂu'a _S)'

Suppose (p,v) is in P and, for some r, v = paf and p = vag". Replacing p by ua}% and v by

vag 2 if necessary we may suppose that 4 = v. We may also suppose that if (x,») is in P and is not
equivalent to (v, 1) then (v, i) isalso in P. Let L be the Hilbert space sum

@PB(Mv V)
and let £ be the algebraic sum

@PB(Mv V)'
If we define L(s) to be

s

@B (pary vorp )
and L(s) to be
©pB(pag,vap?)

we can introduce the map
T : L(s) — L.

The representation g — p(g, s) is the representation
g — ®p(g, s v, 5)

on L(s). M (s) will be the operator on L(s) which takes @&y (u, v) to &g (u, v) with

p1(v,p) = M(p,v,8) o(p,v).

It is unitary.
If F has characteristic O let H be the space of all square integrable functions ¢ from the imaginary
axis to L such that

“op(=s) = M(s) T p(s)

c 100
¢ / ()l dls|
T

—1%00

with the norm
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c is a positive constant relating various Haar measures. It will be defined more precisely later. If F'is
a function field with field of constants IF, the functions in H are to be periodic of period 1‘;%1' and the

norm is to be ,
clogu [Tosq
JAN IR
m 0

On the whole we shall proceed as though F' had characteristic O merely remarking from time to time
the changes to be made when the characteristic is positive.
If o = p(p,v)isin L we set

E(g,0,8) =Y _E(g,¢(,v),s).
If o in H takes values in L

N ~
Jim o= [ B(gels).5) disl = ¢lo)
exists in A(n). The map ¢ — ¢ extends to an isometry of H with a subspace A;(n) of A(n). If gisin
G, and ¢’ is defined by

©'(s) =Ts plg,s) Ty ()

then ¢’ is p(g)@.
The orthogonal complement of A, (n) is Al (). Thus if E is the orthogonal projection of A(n) on
A1 (n) the trace of p (®) is the trace of p(®) — Ep(®) which, according the the Selberg trace formula,
is the sum of the following expressions which we first write out and then explain.
0)
measure(Zy Gp \ Ga) ®(e).

(i)
% %1: WEZZF;BF measure(Zy Br \ Ba) /BA\GA ®(g~'vg) wa(g)-
(iii) o
%2: WEZZF;BF measure(Z, Br \ Ba) /BA\GA ®(gvg) w(g).
(iv) o
- WEZ;AF Z { g)w(% fw)} w(Y, fo)-
i

(V)

e[2 TT000. £) + A1 {300, £) T 000, fu)}]-

w#Y
(vi) If F'isa number field
1
~1 trace M (0) p(®,0),

but

log q s T
_ trace M(0) p(®,0) + t M( ) (<1>, )
i { race M (0) p(®,0) + trace g p g
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if F'is a function field.
(vii) If F'isa number field ‘
1 100
yym tracem ™ (s) m/(s) p(®, s) d|s|,
7I

—100

but

27
1 Tog q
qu/ tracem ™~ !(s) m/(s) p(®, s)d|s|
47T 0

if F'is a function field.
(viii) The sum over (u,v) and v of

1 100

in {trR_l(:U'vv Vy, S) R,(Mva Vuy 8) ([ fhos Vo, 3)}{ H tr p(fus Hows Vaws 3)} d|s|

—1300 w#Y

if I’ is a number field and of

log q e B
e /0 {tI‘R l(ﬂvaVvus)R/(nyyvas)p(fuuvaVvys)}{ Htrp(fw,,uw,yw,s)}d\s\
wH#v

if I is a function field.
The function ® is of the form

(I)(g) = H fv(gv)'

Let () be a set of representatives for the equivalence clases of quadratic extensions of F'. For each E in
Q fix an imbedding of E in the matrix algebra M = M (2, F'). Let Br = Bp(F) be the multiplicative
group of E, considered as a subalgebra of M. By is the centralizer of £ in Gp. Let By = Ba(F) be
the centralizer of £ in GG5. Q1 is the collection of separable extensions in () and (- is the collection of
inseparable extensions. A is the group of diagonal matrices in G.

Choose on N, that Haar measure which makes the measure of Nz \ N, equal to 1. Choose on K
the normalized Haar measure. On the compact group H obtained by taking the quotient of

{(§ 5)anliol =11}

by Z4 Ar choose the normalized Haar measure. H is the kernel of the map

< o 0 > — log ‘g
0 3
of Ap Zs \ Ap onto R or loggZ. On R one has the standard measure dz and on log ¢ Z one has the
standard measure which assigns the measure 1 to each point. The measureson H and on H \ (Ap Z \

A,) together with the measure on Z, \ Ar Z4 which assigns the measure 1 to each point serve to
define a measure da on Z, \ A,. The constant c is defined by demanding that

/ £(9) wolg)
Zi\Ga

1
2
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c/ / /f(ank:) da dn dk
Zi\An I N, JK

if f is an integrable function on Z \ G4. We may suppose that the measures on Z, \ Aa, Na, and K
are given as product measures and in particular that

/ dk, =1
K,

/ X(ny)dn, =1
N,

for almost all v if  is the charcteristic function of

(1) lecon).

The factors w(7, f,) and w1 (7, f,) appearing in the fourth expression are defined by

be equal to

and

W, fo) = / / Folky 0y k) dny d,

and
w1 (7, fo) —/ / folky n ankv) log A(n,) dn., dk,.
If /
<_01 é) n = <% g,) n'k’
then )
(6%
A(n) = ‘ﬁ"
Set 0(s, f,) equal to
1 a —1—8
T /1 . 14 N v k_l o vkv - d v dkv
L(1+s,1,) /zq,\Aq, /1<1,f (k" noauky) B ¢
where
a, 0
“wlo 8
and

(11
n0—01

1, is the trivial character of F,*. Then (s, f,) is analytic at least for Res > —1. It derivative at 0 is

0'(0, f,). If
L(1+s,1p) = HL (1+s,1,)
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the Laurent expansion of L(1 + s, 1r) about s = 0 is

Al
_1_|_)\0_|_...'
S

The operator m(s) is the operator on L(s) which for each (u,v) multiplies every element of
Bluakvaz?) by
L1 —s,vu™t)
L1+ s, 1)

[N

We may represent B(uaz, | Va;%) as

s

®vB(NvO‘IE«1, ) Vvo‘;f )

when s is purely imaginary. If Res > 0 let R(u,, vy, s) be the operator from B(uva?;v,uva}v%) to
B(uva;f Mva%) defined by setting
Ry, vy, 5) 0(9)

_ L1+ s,uvyv_l 0o 1
5(1_57/1’7)1”077/]7)) (L(S L V_l) )/N P <<_1 O) ng) dn.

These operators can be defined for s purely imaginary by analytic continuation. They are then scalar
multiples of unitary operators and for a given i, v are in fact unitary for almost all v. Thus R(4, vy, S)

can be defined as an operator B(u,a ,v,ap”) when s is purely imaginary and

equal to

L(l B SaVM_l)

M(S) = Z {®v R(NWVIHS)} L(l—i—s,,uu_l)'

(k,v)

Set
N(s)=TsM(s)Tg!

and if N'(s) is the deriviative of N(s) set
M'(s)=T;*N'(s) T,
Define R’ (py, vy, $) in a similar fashion. Then
trace M 1 (s) M'(s) p(®, s)
is the sum of
tracem ™ (s) m/(s) p(®, s)

and
Z Z{tI'R_l(/J,U,l/U,S) R,(MU,VU,S) p(fvvuvvyvvs)}{ H trp(fwvuwaywvs)}v
(p,v) v wH#v

s

where p(fu, o, Vs, 8) is the restriction of p(f,) to B(uvaa Vo).
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If E(u,v,s) is the projection of L(s) on B(Wé? ya;%) we can write

m(s) = a(p,v,s) E(u,v,s)
where the a(u, v, s) are scalars. Thus
tracem ™ (s) m/(s) p(®, s)

is equal to

Z M{ Htracep(meva75)}~

a(p,v,s)

We can also write
M(0) =" a(p,v) E(n,v,0)

so that
trace M (0) p(®,0)

is equal to

3 au){ [ trace plfus st .0}

v

M< il >:ZB(,U,,V)E(M,I/, il )

log ¢q log q

If ' is a function field

/ / fo(k™tank) dndk =0 (16.1.7)
K, J N,
forall ain A, = Ap, then w(~, f,) = 0forall v, 6(0, f,) =0, and

trace p(fu, fo, Vy, ) =0

for all u,, v,, and s. In particular if (16.1.7) is satisifed for at least two v the expressions (iv) to (viii)
vanish and the trace formula simplifies considerably.
We now apply this formula to the function

o(g) = { TT o) }{ TT o)} £(3s)

vES1 vES>2

where f = f; * fo with f; and fs in B is of the form

f(gs) = H fol(go)-

vgS

Since S has at least two elements and the functions (, and &, satisfy (16.1.7) only the expressions (i) to
(iii) do not vanish identically. The expression (i) is now equal to

{ TI c@}{ IT dt)} #(e)

vES1 vES>2
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We recall that d(o,) = d(o),) if visin Ss.
We may suppose that @ is equal to ) and that )} is a subset of Q;. If E'isin Q; or Q3 and ~ is
in Bp = Bp(F) butnotin Zp

/ (g " vg) wp(g)
By\Ga

is equal to the product of

H /B o Y9v) H / o 790) wB(v)}

vES1 w\Go vES>

and

/A [l g ws

Bs\Gs

IfvisinSand F ®p F, is not a field so that B, is conjugate to A, the corresponding factor in the first
of these two expressions vanishes. Thus the sum in (ii) need only be taken over Q}. If E'isin Q] or Q2
the first of these two expressions is equal to

H Xoy (7_1)
g measure Zy\ By’

Thus, in the special case under consideration, (ii) is equal to (16.1.5) and (iii) is equal to (16.1.6) so

trace7(f) — { I1 (_:U(e)}{ I1 d(a)} measure(Zs Gp \ Ga) f(e)

vEST vES>

that

is equal to
trace ' (f) — { H d((f;)} measure(Zy G \ G) f(e).

vES

We may take 7 to be trivial and apply Lemmas 16.1.1 and 16.1.2 to see that, in this case,
trace(f) = trace ' (f)
and

{ H d(ag)} measure(Zy G \ G,)

veS

{ H Cv(e)}{ H d(av)} measure(Zy Gr \ Gp).

vES1 vES?2

is equal to

Still taking 7 trivial we choose the o7, so that none of them are one-dimensional and conclude that
measure(Z, G \ G) = measure(Z, Gr \ Gy). (16.1.8)
Then we take exactly one of them to one-dimensional and conclude that (,(e) = d(o.). Thus ¢,(e) =

d(o},) and
trace 7(f) = trace 7' (f)
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in general.

The relation (16.1.8) is well-known. One can hope however that the proof of it just given can
eventually be used to show that the Tamagawa numbers of two groups which differ only by an inner
twisting are the same or at least differ only by an explicitly given factor. Since the method of [33] can
probably be used to evaluate the Tamagawa numbers of quasi-split groups the problem of evaluating
the Tamagawa numbers of reductive groups would then be solved. However a great deal of work on
the representation theory of groups over local fields remains to be done before this suggestion can be
carried out.

To complete our formal argument we need to sketch a proof of the trace formula itself. One must
use a bootstrap method. The first step, which is all we shall discuss, is to prove it for some simple class
of functions ®. We take ® of the form ® = f" x f” with

OB BACD)

and

(9 =119

where f/ and f]/ satisfy the five conditions on page 325. The function f,, is f, x f/.

Suppose ¢ is a K-finite compactly supported function in A(n). For each purely imaginary s define
&(s) in L by demanding that
1

2c Gr Zy\Gx

©(9) E(g,¢',s)wol(g) = (@(s),¢")

be valid for all ¢’ in £. The map ¢ — ¢(s) extends to a continuous map of A(n) onto H. ¢(s) is the
function in H corresponding to Ep in A;(n).

For each (u, v) in P choose an orthonormal basis {; (u, )} of B(u, ). We may suppose that any
elementary idemotent in JH annihilates all but finitely many elements of this basis. If

B(s) =D ai(pv.s) i)
(pv) i
then

) =50 [ o) Bloeimn). ) ento)

Let

p(0,8) T @il v) = pji( @, 11, v,8) Tg " i (,v).
J

For all but finitely many 1, v, i and j the functions p;;(®, i1, v, s) vanish identically. Ep(®)¢ is equal to
fim S5 [ i @) 050, B0, 10).5) s
A typical one of these integrals is equal to the integral over Gr Z, \ G, of the product of ¢(g) and

T
/ pij((puu7 v, S)E(g7 wi(lh V),S) E(h7 @](lh V),S) d‘S‘

—iT
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Thus the kernel of E p(®) is the sum over (u,v) and 4, j of

1 100

plj((bnu’a v, S)E(gvgpl(lh V),S) E(ha%@](lh V),S) d‘S‘

are J_ioo

The kernel of p(®) is
O(g,h) = Y ®(g 'vh).

ZF\GF

To compute the trace of p(®) — E p(®) we integrate the difference of these two kernels over the diagonal.
The function ®(g, g) may be written as the sum of

YY) gy, (16.2.1)

5EPF\GF YENFE
y#e
where Pr is the group of super-triangular matrices in G,

% > > (g7 ), (16.2.2)

YEZp\AFR (SEAF\GF
YE€Z R

where A is the group of diagonal matrices in G,

%Z Y. D ®gTo ) (16.2.3)

Q1 "CZp\Br §€Br\GFr
YEZ R

and

Yood Y glig) (16.2.4)

Q2 V1€Zp\Bp 5€BF\GF
YEZp

together with
d(e). (16.2.5)

The constant ®(e) can be integrated over Gr Z, \ G 4 immediately to give the first term of the
trace formula. The standard manipulations convert (16.2.3) and (16.2.4) into the second and third terms
of the trace formula.

The expressions (16.2.1) and (16.2.2) have to be treated in a more subtle fashion. We can choose a

constant e; > 0 so that if
(1 =z a 0 i
9=%o 1/)\o B

with z in A, o and § in I such that ]%] > c1,and k in K and if

1 2 o 0 ,
w=(p 1)(5 #)r

withyin Gg, 2/ in A, o/ and 3’ in I such that \g—:] > ¢1,and k£’ in K then ~ belongs to Pr. Let x be the

characteristic function of
1 =« a 0 o
—| >
10 )5 5)ell5lzal



Chapter 3 316

The expression (16.2.2) is the sum of

% ST (g0 09) (x(99) + x(£(1)59))

5€PF\GF YEZp\PR
YE€ZpNp

and
1 Y Y (g yeg) (1 — x(89) — x((7)d9)).

(SEPF\GF YEZp\ PR
YE¢Zp Np

Here () is any element of G not in Pr such that

e(v)ve ' (7) € Pp.

There is always at least one such (). The integral of the second sum over Gr Z, \ G converges. It
is equal to

1 /Z > @9 v9) (1 - x(9) — x(e(7)g)) wolg)-

2 Pr\Ga yczp\Pp
YE€ZpNp

Every ~ occurring in the sum can be written as § '~y with «o in A and § in Pr. Then

(67"e(70)8) (6 08) (6~ e(70)d) gt (e(v0)v0e "  (70))6

so that we can take () = §~1e(0)d. We take
0 1

X(6~ wég) = x(wdg)

Since x(dg) = x(g) and

the integrand is

S > (g ) (1 - x(5g) — x(wdg)).

YEZR\AR 5€AF\PF
YE€Zp
The integral itself is equal to

3 X 0 - x(g) eolo)

YEZRp\Ap
YE€Zp

All but a finite number of the integrals in this sum are 0.
It is convenient to write each of them in another form. If

(i )
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then x(g) is 1if [3] = c; and is 0 if [ ] < cy. If

/
wn = <06 g,) n'k’

and \(n) is |%_:\ then x(wg) is 1if [F] < % andis0if || > %T) It is easily seen that A\(n) < 1. Thus

if c; > 1, as we may suppose, one of x(g) and x(wg) is always 0. The integral

n)

/ (g ) (1 - x(9) — x(wg)) wo(g)
ZyAr\Ga

is equal to
c/ / @(k_ln_lfynk) (2 log ¢y — log )\(n)) dn dk
Ny JK

which we write as the sum of
2clog ¢ / / ®(k~'n"tynk) dndk (16.2.6)
Ny JK

and

—Zc/ /(P(k_ln_lfynk:) log M(ny) dn dk.
v Na /K

if we express each of the integrals in the second expression as a product of local integrals we obtain the
fourth term of the trace formula. All but a finite number of the integrals are 0 so that the sum is really
finite. We will return to (16.2.6) later. If I’ is a function field over I, it is best to take c; to be a power
of ¢" of q. Then 2log c; is replaced by 2n — 1.

The expression (16.2.1) is the sum of

> Y ®(geyeg) x(g)

6€PF\GF YENR
y#e

and

S Y e(g7 e yeg) (1 - x(89)).

5ePr\GFr "€NF
y#e

The integral of the second expression over Gr Z, \ Ga converges. It is equal to

/P > @97 9) (1= x(9)) wolg)-

Z\Ga ~enp
y#e

(11
=10 1

> B(g 0 nodg) (1 - x(69))

NpZp\Pr

the integrand is equal to
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so that the integral itself is equal to

/ ® (g~ nog) (1 — x(9)) wo(g)
NpZ\Ga

which is

/ZA\AA/ ‘a” noak) (1 X(a))‘%‘_ldadk

()

The integrand vanishes outside of a compact set. Thus the integral is the limit as s approaches 0 from

above of L
c/ / ®(k'a 'ngak) (1 — x(a)) ‘g‘ da dk,
Zi\Ap J K B

which is the difference of
« —1—s
c/ / @(k—la—lnoak)(—( da dk
Zi\Ax JK B

/ / Lo~ noakz‘ ‘ a) da dk.
Zi\An B

The first of these two expressions is equal to

and

—1—s

—ta- Qy
c{ lg[/Zv\Aq, /K«, fo(k, lap ln[)avkv) E da, dkv}
which is
cL(1+s, 1F){H9(Safy)}- (16.2.7)

Observe that if v is non-archimedean and f,, is 0 outside of Z,, K,, and is 1 on the elements of Z, K, of

determinant 1 then
/ / fv a noav U)
Zs\ A,

is the product of the measure of
a 0
{(§ 5) ez lial=1a]

o0
Sl = L(L+ s, 1,),
n=0

—1-s

day, dk,

and

so that

H0(57 fv) = 0(57 (I))
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is analytic for Re s > —1 and its derivative at 0 is
>0, £ { TT 05 fu) }-
v wH#v
The function (16.2.7) has a simple pole at s = 0. The constant term in its Laurent expansion is
C[)\O Hg(ova) + )\—1{ ZH 0 fv H 9 O fw }:|
v wH#v

which is the fifth term of the trace formula.

The expression
—1-—s
c/ / @(k_la_lnoak)‘g‘ x(a) dadk
Z\\Ar VK 5

c/ \ / Z 1a_1’yak:)‘% o x(a) dadk.
ZuAp\Ax

YENE
y#e

is equal to

Choose a non-trivial character ¢ of F'\ A and let

U(y,g) = /A@ <g‘1 <(1) f)g) Y(zy) da.

Bt (o
o = [2] 8 (G0).
(y,a9) = |~ 59
Moreover by the Poisson summation formula

Z ®(k~ta " 'yak)
YENp
y#e

Then

is equal to

12 o)« 2] o -
#£0

The integral

qu( )}dadk

ZpyAr\Ax

is a holomorphic function of s and its value at s = 0 approaches 0 as ¢; approaches oco. Since we shall

eventually let ¢; approach oc it contributes nothing to the trace formula. If ' is a number field

gAmWALLH

1+s c%"_s

) x(a) da dk

is a multiple of
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which is defined at s = 0. Its value there approaches 0 as ¢; approaches co. Finally

IARWALLLE

<[ w(0, k) dk.

S
§€ JK

—S

x(a) da dk

is equal to

The pole of this function at s = 0 must cancel that of (16.2.7). Consequently

/ W(0, k) dk = Ay 0(0, ).
K

The constant term in its Laurent expansion about 0 is

—clogcl/ U(0, k) dk.
K

Not this expression but its negative

clog ¢y / (0, k) dk (16.2.8)
K
enters into the integral of the kernel of p(®) — £ p(®) over the diagonal. If F'is a function field %< is
1

to be replaced by

—_ns

cq
1—qgs

and logc; by n — %
The Poisson summation formula can be used to simplify the remaining part of (16.2.1). We recall

that it is
o> @975 ydg) x(69).
(5EPF\GF ngpF

We subtract from this

> ¥(0,89) x(69)

6ePr\GF

> D U(y,89) x(59)

§€ Pr\GFr y#0

to obtain the difference betwen

and

> @(e) x(dg).

6ePr\Gr

The integrals of both these functions over Z, G \ G converge and approach 0 as ¢; approaches co.
They may be ignored.
The remaining part of (16.2.2) is the sum of

% Yoo > g7 dg) x(dg)

6€Pr\GFr "€ZF\PFp
YE€ZpNp
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and 1
= S a7l eg) w(=(+)dg).

(SEPF\GF YEZR\PR
V¢Zp NFp

These two sums may be written as

% YD @96 yd9) x(d9)

YEZR\AFR AF\GF
YE€Z R

and
1

5 2. 2. ®(g7'07"0g) x(wdg).
VGZQF\AF AF\GF
YEZ R

Replacing § by w4 in the second sum we see that the two expressions are equal. Their sum is equal
to twice the first which we write as

> Yo D> ®(g 0 209) x(59).

11€Zrp\AF §€ Pr\GF 72€NF
Y1€ZFp
For a given @ all but finitely many of the sums

Yo D g6 m2d9) x(09) (16.2.9)

0€ePr\GFr 72€NF

U(y,1.9) = /A@ <g‘171 <(1) gf)g) Y(zy) dx.

The expression (16.2.9) is the sum of

are zero. Set

> > Uy, m,09) x(0g)

6€Pr\GF y#0

and

> B(0,m,89) x(5g).
0ePr\GFr

The first of these two expressions is integrable on Gy Z; \ G, and its integral approaches 0 as ¢;
approaches oc.
Since ¥ (0,g) = ¥(0, e, g) we have expressed ®(g, g) as the sum of

Yo > W(0,7,69) x(69) (16.2.10)

0€Pr\GFr YEZR\AF

and a function which can be integrated over Gy Z, \ G to give the first five terms of the trace formula,
the sum of (16.2.8) and one-half of the sum over y in Zp \ Ar but notin Z of (16.2.6) which is

cloge; Y. //(I)(k:_lynk)dndk:, (16.2.11)
Ny JK

YEZr\AF
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and an expression which goes to 0 as ¢; approaches oco.
Now we discuss the kernel of E p(®) in the same way. Set H (g; i1, v, 1, j, s) equal to

Pij(‘l)al% v, S)E(g7 SD'L-(M7 V)78) E(g7 @j(lh V),S).

On the diagonal the kernel of E p(®) is equal to

224—“ B H(g; p,v,i,7,s) d|s]

if I is a number field and to

27
logq [Togd ..
S [T Hgsrigis)dls
wc Jo

[INZ2N ]

if F'is a function field. We set E (g, ¢, s) equal to

> AT @(69) + M(s) Ts " (3g) } x(3g)
Pr\GFr

and let
E2(97 2 8) = E(gaCPaS) - El(g7 2 8)'

If, form=1,2,n=1,2, Hy,(g; p,v,1,7,5) is

pij(q)vuv v, S) Em(gv %(Ma V),S) En(gvgpj(,u'ay)as)

and ®,,,,(g) is, at least when F' is a number field,

the kernel of E p(®) is

on the diagonal.
Ifmornis2

/ Pyn(g) wo(g)
Gr Zy\Ga

Y

RN

is equal to

Hop (9,1, 5) wo (9) } dls. (16.2.12)
Gr Zy\Ga

Take first m = n = 2. If F'is a number field a formula for the inner product

/ Es(g, 01, 5) Ealg, 03, 5) wo(9)
Gr Zy\Ga



Chapter 3 323

can be inferred from the formulae of [26] and [27]. The result is the sum of
1 _
clim = {e}' (p1,02) = ¢ (N(t + )1, N(t + 5)2) },

where N (t + s) = Ty M(t + s) T,;, and

1
elim o {cf* (1, N(t + 8)p2) — e 2 (N(t + 5)p1, 02) }.

The second expression is equal to

A (P2, N(s)ga) — e (N ()1, 02) ).

The first is the sum of
2clog c1 (1, 92)

and
C _ —
— LIV () V()1 02) + (101, N1 () N' () 2) }.
If F'is a function field over I, and c¢; = ¢"the inner product is the sum of
1-¢"+q7° n-1)s , 1 —=q¢ "+ ¢ “2(n—1)s
cloggq {1—7q_25 (01, N(8)p2) " 1° + T (N(s)¢1,p2) g2V
and
(2n = 1)c(p1, p2)
and

—g{(N_l(S) N'(s)¢1,02) + (1, N 7' (s) N'(s) 2) }.
Certainly

ST i (11,1, 8) (04(1, ), 05 (1, v)) = trace p(®, s)

MV 3,J

> /. A / - | @ ank) ) ()|

> / A / " [ X et enbae) o3

YEZR\AF
a 0
0 g

1 100
— trace p(®, s) d|s| (16.2.13)

4re

which equals
s+1

* dndadk

or

2

Thus if H is the set of all

in Zy Ap \ A, for which |a| = ||

—100
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is equal to
1 1
2 ;/H/NA/K;@(% aynk) p(er) v(B) dn dk da

which is

1
—/ /‘IJ(k_lfynk)dndk.
2 Jn, Jk

When multiplied by 2clog ¢y the effect of this is to cancel the term (16.2.11). If F'is a function field
(16.2.13) is said to be replaced by

27
1 lo
qu/ gq‘cracep(<1>,5)d|s|
47TC 0

but the conclusion is the same.
The expression

DD 0@, vs) (i), N(s)o; (1))

MV 5,
is equal to
trace M 1 (s) p(®, s)

when s is purely imaginary and

Z Zpij(q)v v, 3) (N(S)(Pi(ﬂ, V)v Pj (:U'v V))

MV %,

is equal to
trace M (s) p(®, s).
Since M (0) = M~1(0)
1 ("1
lim — / 3 {c?S trace M~ (s) p(®, s) — ¢ 2 trace M (s) p(®, s)}dls|

c1—00 T oo

is equal to
1
B trace M (0) p(®,0).

When multiplied by —1 this is the sixth term of the trace formula. For a function field it is to be replaced
by

ki%{ trace M (0) p(®,0) + tlraceM(logq> p<q)’ é> }

When s is purely imaginary

(N1(s) N'(3) 1, 02) = (01, N1 (s) N'(s) 2).

Moreover

Z Zpij(q)vuv v, S) (N_l(s) N,(S) %’(Ma V)v (Pj(:u'v V))

TN
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is equal to
trace M~ *(s) M'(s) p(®, s).

Thus

1 100

e trace M1 (s) M'(s) p(®, s) d|s|
s

—1%00
is to be added to the trace formula. It gives the seventh and eighth terms.

Next we consider (16.2.12) when m = 2and n = 1. If ¢, = T s and ¢l = M (s) T, s the
integral

/ E2(g7 80178) El(g7 80278) wO(g) (16214)
GrZy\Ga

is the sum of
/‘ Ea(g,1,5) #(9) X(9) wolg)
PrZ\Ga

and
/‘ Ea(g,¢1,5) 84(9) X(9) wolg).
Pr Zy\Ga

Since ¢}, ¢ and x are all functions on Zy Ny Pr \ G4 while, as is known,

x(9) Es(ng,¢1,8)dn =0
Ny

when c; is sufficiently large, the integral (16.2.14) is 0. Thus (16.2.12) is 0 when m = 2and n = 1 and
alsowhenm =1andn = 2.
Set

F(g,¢,5) =Ty " o(g) + M(s) T, (g)
and set Hy(g, p, v, 1, j, s) equal to
pij(q)vuv v, S) F(gv @Z(Ma V)v 8) F(ga (pj(:u'v V)v 8) X(g)

If ¢; is so large that x(d19) x(d29) = 0 when ¢; and J, do not belong to the same coset of Pr the
function @, 1 (g) is equal to

ZZ Z 4L7TC H0(597:U’7V7i7j75)d|5|.

v 4,5 Pp\Gr oo

If (g, 11, v) is the value of T ¢; (11, v) at g then

Zﬂij(q),,u, v, S) (P;(h,l% V) @;’(gulh V)

2]

is the kernel of p(®, i, v, s) which is

C/NA /ZA\AA @(g_lanh)‘%‘%l,u(a) v((3) dnda.
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If we set h = g, divide by 4m¢, integrate from —ico to 200, and then sum over p and v we obtain

> > w0)

YEZR\AF

If 7 (g, i, v) is the value of M (s) Ts_l ©i(p,v)atg

Z Pij ((1)7 K, v, S) (p;/(h, H V) @;/(ga M, V)

1,7
is the kernel of
M(,u,u,s)p(fl),u,u,s)M(z/,u, _8) = p((I),l/,/J,, _8)'
Thus @1 1(g) is the sum of

Yo > (0,7,69) x(d9) (16.2.15)

0€Pr\Gr YEZR\AF

and

(69)
>0 2 X47ri / {H1(3g, p,v, i, j, 8) + Ha(0g, p1,v,3, . 5) } ] s]

w,v 4,5 Pp\GFp

where Hy(g, p, v, 1,3, $) is
Pij (®, i, v, 8) 03 (gs 11, v) P (g, s V)

and HQ(gvuv vy, ], S) is
pij(q)nu’v v, S) @él(gauy V) 85;'(9,,% V)~

The expression (16.2.15) cancels (16.2.10). If g = nak with

P 0
=0 5)
Hiy(g, p,v,1,j,s) isequal to

s+1

pis (@ s u(5) 5] el @ k).

The functions p;; (®, u, v, s) are infinitely differentiable on the imaginary axis. Thus

1 100

Hq(g, p,v,14,5,5) d|s|

dme J_joo

is, O(|5|™) as |§| — oo for any real M. Thus if this expression is multiplied by x(g) and averaged
over Pr \ G theresultis integrable on Z, G \ G4 and its integral approaches 0 as ¢; approaches oco.
Thus it contributes nothing to the trace. Nor do the analogous integrals for Hy(g, 11, v, 4, j, S).
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