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PREFACE

This book follows closely a lecture course I gave entitled ‘Astronomical
Spectroscopy’ to third-year undergraduate students at University College
London between 1998 and 2003. The students who attended had done
a prior introductory course on Quantum Mechanics which covered the
hydrogen atom but no further atomic physics or spectroscopy. A similar
level of prior knowledge is assumed in the current work.

There are many people whose help have been essential for the comple-
tion of this book. First I must thank Bill Somerville who inaugurated the
course Astronomical Spectroscopy and taught it for two years before me.
He selflessly shared his lecture notes and other materials with me. I would
like to thank Ceinwen Sanderson for turning my hand-scrawled lecture
notes into LATEX, and my colleagues Tony Lynas-Gray, Bill Somerville, Peter
Storey and Jeremy Yates for their extensive comments on the draft of the
book. I owe a debt of gratitude to my graduate students Bob Barber and
Natasha Doss who checked all the problems and found many errors. I
thank all of them for the corrections; any errors that remain are all mine.

I must also thank the students who attended my Astronomical Spec-
troscopy course. It was great fun to teach, not least because the latest
developments in astrophysics often fed straight into the lectures. Partic-
ular thanks are due to the class of 2003 who made a number of helpful
comments and suggestions on the contents of the book.

A book on spectroscopy thrives on good illustrations and I have
shamelessly plundered the literature and other sources for spectra to illus-
trate this one. I must thank Xiaowei Liu for help with digitising many
of the published spectra, my student Iryna Rozum, my son Matthew,
and especially David Rage for their help with the other illustrations.
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I thank the journal publishers and the many authors who greeted my
requests to reproduce their work with prompt enthusiasm, especially
those authors who adapted figures at my request. Each journal and author
is individually acknowledged in the figure captions.

Finally I must acknowledge the UCL astronomers of the past and
present who have answered my many questions on astrophysics with a
patience their frequent stupidity probably did not deserve. Particularly
high on this list are Pete Storey and Mike Barlow, but the rest of the varied
lunch crew should not be forgotten. Without you my knowledge of things
astronomical would be the same as it was the day I arrived at UCL —
nothing.

Jonathan Tennyson
London,
July 2004
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C H A P T E R O N E

WHY RECORD SPECTRA OF
ASTRONOMICAL OBJECTS?

‘ We will never know how to study by any means the chemical
composition (of stars), or their mineralogical structure’

– Auguste Comte (1835)

1.1 A Historical Introduction

In the first part of the 19th century, astronomers began to make paral-
lax measurements which revealed for the first time how distant even the
closest stars are from us. Since travel to the stars was, and still is, impossi-
ble with foreseeable technology, many scientists believed that the compo-
sition and character of the stars would forever remain a mystery. This view
is pithily summarised by the quote from the positivist French philosopher
Auguste Comte (1798–1857) given above.

Today, the composition of stars, and indeed of the diffuse material in
the large spaces in between the stars, is well known. How did this situation
come about? In fact the first steps to finding the solution to the problem
had been taken even before Comte began writing.

In 1814, Joseph von Fraunhofer (1787–1826) used one of the high-
quality prisms he had manufactured to diffract a beam of sunlight, taken
from a slit in his shutters, onto a whitewashed wall. Besides the character-
istic colours of the rainbow, which had been observed in this fashion since
Newton, he saw many dark lines (see Fig. 1.1). He meticulously catalogued
the exact wavelength of each dark line — which are still known today as

1
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Fig. 1.1. The solar spectrum as recorded by Fraunhofer.

Fraunhofer lines — and labelled the strongest of them with letters. Many
of these labels, such as the sodium D lines (see Sec. 6.4) are still used
today. Fraunhofer not only recorded the first astronomical spectrum, he
recorded the first-ever high-resolution spectrum. Fraunhofer’s spectrum
was the first to resolve discrete line transitions.

Fraunhofer did not know what caused the dark lines he observed.
However he performed a similar experiment using light from the nearby
red-star Betelgeuse and found that the pattern of dark lines he observed
changed significantly. Fraunhofer concluded correctly that most of those
features were somehow related to the composition of the object he was
observing. In fact some of the lines were due to the Earth’s atmosphere,
the so-called telluric lines. For example, the features Fraunhofer marked
A and B in his solar spectrum are actually due to molecular oxygen in our
own atmosphere.

The first real step in understanding Fraunhofer’s observations came in
the middle of the 19th century with the experiments of Gustav Kirchhoff
(1824–1887) and Robert Bunsen (1811–1899). These scientists studied the
colour of the light emitted when metals were burnt in flames. They found
that in certain cases the wavelength of the emitted light gave an exact
match with the Fraunhofer lines. The sodium D lines, which give sodium
street lights their characteristic orange colour, were one such example.
These experiments demonstrated that the Fraunhofer lines were a direct
consequence of the atomic composition of the Sun.

Any understanding of how these lines came about had to wait
until the arrival of the 20th century with the revolution of scientific the-
ory represented by quantum mechanics. The developments of quantum
mechanics and spectroscopy have always been closely linked. As it is
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through the study of spectra that we have learnt of many of the riches
in the Universe around us, the development of astrophysics has also been
closely linked to that of spectroscopy and quantum mechanics. This book
aims to give an introduction to the spectroscopy of atoms and molecules
that are important for astrophysics. This book is not a text on quantum
mechanics, and indeed, some basic knowledge of quantum mechanics is
assumed, for it is not possible to understand or interpret spectra without
some understanding of quantum mechanics.

Hearnshaw (1986) gives a fascinating historical view of the relation-
ship between astronomy, spectroscopy and the technical developments in
both fields (see further reading).

1.2 What One Can Learn from Studying Spectra

Essentially all information about astronomical objects outside the solar
system comes through the study of electromagnetic radiation (light) as
it reaches us. This light can contain much detailed information which
is only obtained by careful analysis. Generally speaking, one can clas-
sify the information obtained by observing light according to the spec-
tral resolution; that is the degree of sensitivity to different wavelengths,
used to make the observation. One can classify such observations using
the following general categories.

When one looks at the night sky with the naked eye, most astronom-
ical bodies appear white. White light is actually light that is composed
of many wavelengths which are not resolved into their different colours.
Monitoring white light gives the positions of objects in the night sky. It can
be used to construct maps of stars and galaxies. It can also be used to plot
the movements of heavenly bodies such as comets through the night sky.

If one looks carefully at some celestial objects, such as the planets Mars
and Jupiter, or stars such as Betelgeuse, one can see that these objects are
tinged with a certain colour. Using instruments with low resolving power,
it is possible to separate the light arriving at Earth into broad band colours.
Observing colours tells us something about temperatures. For example,
blue stars are hotter than red ones; objects that emit X-rays, such as the
solar corona, are very hot, whereas cold objects may only emit light of
very long wavelengths such as radio waves.

The most detailed astrophysical information is only obtained from
high-resolution studies which involve detecting the light arriving at the
earth as a function of its component wavelengths. This allows detailed
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spectroscopic features to be identified separately from broad band features
such as colour. At the highest resolution, such studies not only yield the
central wavelength of any feature, often referred to as a line, but also the
shape of the feature. Such studies can yield significant extra information
and this book is largely devoted to the physical basis of this information
and how it can be interpreted.

To interpret an astronomical spectrum, one needs considerable knowl-
edge of atomic and molecular physics. This knowledge usually comes
from laboratory studies which provide the basic physical parameters
necessary for understanding the astronomical spectrum. There is a direct
relationship between these physical parameters and the astronomical
information that can be obtained by observing spectra. Thus for any line
observed in an astronomical spectrum, one can potentially use laboratory
data to extract the following information.

The composition of the object being observed can be inferred
by knowing which atom (or ion or molecule) produces the observed
transition.

The temperature and other physical conditions can be deduced from
assigning the actual transition being observed to precise energy levels in
the atom. Transitions take place between many different states in a partic-
ular atom. Knowing which states are involved gives direct information on
the degree of excitation of the system. This can be used to determine the
physical conditions, such as the temperature or density of the environment
local to the system.

The abundance of the species undergoing the transition can only be
determined if the intrinsic strength of the transition being observed is
known. Line strengths can be hard to determine in the laboratory. Astro-
nomically, the strength of a transition is directly related to the number of
atoms undergoing the transition under suitable conditions of optical depth
(see below). Knowledge of the intensity of transitions is therefore impor-
tant for determining the abundance of any species.

Motions of the species being observed relative to the earth, or indeed
the whole region containing the species, lead to a shift in the wavelength
of the line; this shift is known as the Doppler shift. The Doppler shift is the
change in the line position from the position measured in the laboratory.
This shift is given by the Doppler formula,

v
c

=
∆λ

λ
, (1.1)
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where v is the velocity of the source in a direction away from us,
c = 2.99792458× 108 m · s−1 is the speed of light, λ is the rest wavelength
of the transition and ∆λ is the change in wavelength, known as the Doppler
shift. Application of this formula requires laboratory measurement of the
rest wavelength to high accuracy. Formula (1.1) is for non-relativistic
motions. When an object is moving towards us, the transition is shifted
to shorter wavelengths (‘blue-shifted’), and when the object is moving
away from us, it is shifted to longer wavelengths (‘red-shifted’). It was
through the monitoring of Doppler shifts of spectra of hydrogen atoms
that allowed Edwin Hubble (1889–1953) to show in 1929 that our universe
is uniformly expanding and so started from a single point or Big Bang.

The pressure or density of the environment local to the species under-
going the transitions can be monitored by observing the line profile.
Such observations require particularly high resolutions. Spectral lines are
broadened by collisions between species; the more frequent these col-
lisions are, the greater the broadening. This process is called ‘pressure
broadening’. Lines are also broadened by the thermal motions according to
the Doppler formula. Doppler broadening arises because hot species move
about faster than cold ones. Both of these reveal information about the
physical environment of the species being observed. However, the com-
bined effects of pressure and temperature on the line profile can only be
resolved using ultrahigh resolution observations.

Any magnetic field present can be monitored as certain spectral lines
will be split into more than one component. Energy levels of states which
possess angular momentum are split in the presence of a magnetic field.
The result is that a single transition can become two or more distinct tran-
sitions. The degree of separation between these component lines depends
directly on the strength of the local magnetic field. Such splittings, if
observed, can therefore provide a measurement of this field.

The information obtained from such observations is the key to most
astronomical knowledge. However, to interpret any astronomical spec-
tra requires detailed information about the intrinsic properties of atomic
spectra. For each atom or ion or molecule being observed, one needs to
know:

(1) Its important spectral lines: these are often summarised using figures
called Grotrian diagrams (see Sec. 5.4).

(2) Its energy level structure: also summarised on Grotrian diagrams.
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(3) The intrinsic line strength of the transition(s) being observed.
(4) The precise rest (i.e. laboratory) wavelength of any transition

observed.

Additional information is required to interpret pressure broadening of
spectral lines and splitting in magnetic fields, however these topics will
not be pursued in this book. Understanding and use of all this detailed
spectroscopic information requires considerable knowledge of quantum
mechanics.

At all wavelengths there are observed spectral lines which have yet
to be identified (see for example Figs. 6.8 and 7.6). A particularly long-
running current example are the diffuse interstellar bands or DIBs. This
means that laboratory astrophysics, the study of astrophysical processes
in the laboratory, based on either experiment or theory (or both), remains
an active area of research.

Problems

Answers to problems are given at the end of the book.

1.1 While observing stars in a distant galaxy, Edwin Hubble observed dis-
crete line emissions at 411.54 nm, 435.50 nm, 487.75 nm and 658.47 nm.
There are H-atom transitions with rest wavelengths of 410.17 nm,
434.05 nm, 486.13 nm and 656.28 nm. Verify that these lines are all
Doppler-shifted by the same amount. What is the speed of the distant
star relative to earth? Is it moving towards us or away from us?
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C H A P T E R T W O

THE NATURE OF SPECTRA

‘ We all know what light is;
but it is not easy to tell what it is.’

– Samuel Johnson, quoted by Boswell (1776)

2.1 Transitions

All atoms have a series of discrete, quantised energy levels. In fact there
are infinitely many of them. A spectral line can be obtained when a
jump between two of these levels with different energies occurs with
light of the correct wavelength. This wavelength, λ, corresponds to the
exact energy difference, E, between the energy levels via the Planck
relationship

E = hν =
hc
λ

, (2.1)

where ν is the frequency of the light and c is the speed of light. h is Planck’s
constant, 6.626068 × 10−34 J · s, and hν gives the energy carried by each
particle of light, known as a photon.

Each atom absorbs light at a series of characteristic wavelengths.
While individual transitions belonging to different species may acciden-
tally coincide, the whole series of lines is unique for each atom, and indeed,
every ionisation stage of each atom. It is often said that the spectrum of an
atom gives a unique fingerprint for that atom which distinguishes it from
all others. A closer analogy is that of the barcode used by supermarkets
and elsewhere to uniquely tag their products. The spectrum of an atom is

7
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a barcode which, if we can read it, yields much detailed information about
the atom.

2.2 Absorption and Emission

An atom can either absorb light, jumping to a higher-lying energy level, or
emit light, dropping to a lower energy level (see Fig. 2.1). Not all tran-
sitions are equally likely; each transition is therefore characterised not
only by a precise wavelength but also by a probability of that transition
occurring.

Any level in an atom can absorb light, but it requires light of the
correct wavelength from another source to make the atom jump to a
higher energy level and for the photon to be absorbed. This is rela-
tively easy to arrange in the laboratory but will not occur in all astro-
nomical environments. A typical situation where an absorption spectra
is observed comes from the atmospheres of stars, where the core of
the star provides a continuum light source (see Fig. 2.2). This light
source is approximately a black body curve with the temperature of the
star. Species in the photosphere of the star are observed in absorption
against this curve. This is the nature of Fraunhofer’s solar spectrum (see
Fig. 1.1). Absorption in the interstellar medium against a more distant star
can also be observed given a suitable arrangement of the astronomical
bodies.

Absorption Emission
Level 3

Level 2

Level 1

hνhν

Fig. 2.1. Emission and absorption in a schematic three-level system.
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Interior

Photosphere

(cooler)
Hot stellar

Fig. 2.2. The spectrum of a star: spectral lines appears as absorption against a
continuous black body curve.

Emission requires that the atom involved starts in an excited state.
Under such circumstances the atom can spontaneously emit a photon. The
intensity of an emission spectrum from level j to level i is given by

N jhν jiA ji , (2.2)

where N j is the number of atoms in state j per unit volume, and hν ji gives
the energy difference between the levels. A ji is called the Einstein A coef-
ficient for spontaneous emission and it gives the number of transitions
per second of an atom from excited state j to state i. This is an impor-
tant quantity for measuring the likelihood of a particular transition. The
Einstein A coefficient, which is usually given in units of s−1, will be used
throughout this book to establish both transition strengths and timescales
for transitions.

The intensity with which an atom in level i absorbs light to jump to
level j is given by

Nihν jiBi jρν , (2.3)

where Ni is the number of atoms in state i, and ρν is the density of radiation
with frequency ν. Bi j is the transition probability for absorption, called the
Einstein B coefficient.

Einstein proved that

Bi j =
c3

8πhν3
ji

g j

gi
A ji , (2.4)
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where g j and gi are the statistical weights, also known as degeneracies, of
states j and i respectively. This proof can be found in standard textbooks
such as Bransden and Joachain (2003) (see further reading).

2.3 Other Measures of Transition Probabilities

The Einstein A ji and Bi j coefficients can be calculated using the wave-
functions of states i and j. Although Einstein A coefficients will be used
throughout this book to quantify transition probabilities, there are a num-
ber of other ways of doing this.

One often-used quantity is the oscillator strength:

fi j =
4πε0me

e2π
hν jiBi j , (2.5)

where me is the mass of an electron and e is the charge on an electron.
The factor 4πε0, where ε0 is the permittivity of a vacuum, enters when the
expression is given in SI units.

If gi is the degeneracy of level i, it can be shown that

g j fi j = −gi f ji , (2.6)

where the convention that f is positive for absorption and negative for
emission has been used. f has the advantage of being dimensionless, so
it can be tabulated unambiguously. Furthermore, oscillator strengths also
have interesting sum rule properties which can be used, for example, to
quantify missing absorption. For more information see Woodgate (1983) in
further reading. Laboratory data for atomic systems are usually presented
as f -values.

2.4 Stimulated Emission

Figure 2.3 shows a third way in which an atom can undergo a transition.
This is a stimulated rather than a spontaneous emission. To get a stimu-
lated emission, a photon of the correct wavelength is required to initiate
the emission of the photon. The two outgoing photons are coherent and
travel in the same direction. If there are a significant number of atoms in
a particular excited state, then stimulated emission can provoke a cascade
of photons which can result in laser (Light Amplification by Stimulated
Emission of Radiation) action.
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Fig. 2.3. Stimulated emission leading to laser action in a schematic three-level
system.

To achieve laser action it is necessary to not only get stimulated emis-
sion but to also get population inversion: a greater population in the
upper state than the lower state. The original laboratory lasers, reported
by Townes and Schawlov in 1954, worked in the microwave. Maser
(Microwave Amplification by Stimulated Emission of Radiation) action is
also important astronomically. Specific astronomical examples will be dis-
cussed in Secs. 3.10 and 10.5.

2.5 Optical Depth

If many, many atoms of a certain species lie in the line of sight of a par-
ticular observation, then all the atoms may not be required to absorb all
the light of the wavelength under study. To quantify this situation it is
usual to define a quantity called the optical depth, τ , which is a measure
of transparency of the medium. The optical depth is defined by

τ =
Z

K dz , (2.7)

where the integral runs over the path of the light being absorbed. The
extinction coefficient, K, represents the product of the number density
of the atoms and their opacity at the wavelength in question, where the
opacity is a measure of a material’s ability to absorb or block photons.

If the optical depth is large (τ � 1), then a transition is classed as opti-
cally thick. Under these circumstances, it will not require all the atoms to
absorb all the light at that wavelength. In this case the total absorption
observed is not directly related to the number of absorbers, usually called
the column density. Conversely, in the limit of only a few photons being
absorbed, the optical depth is small (τ � 1). In this case the line is optically
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thin and the intensity of the observed spectrum is directly proportional to
the number of absorbers. Under these circumstances, the spectrum can be
used to measure the column density directly.

To obtain column densities and other related information from spec-
tra, it is important to know the optical depth of the observed transitions.
Sometimes it is readily apparent that a particular transition is saturated, or
optically thick (see the central feature in Fig. 3.9 for an example). However,
it is often not obvious for a given observation whether a particular line is
optically thin or not. In some cases a knowledge of atomic physics can be
used to resolve this problem. An important example of this is discussed
in Sec. 6.4.

The transport of radiation through astronomical objects is a compli-
cated issue. It is dealt with more thoroughly by Emerson (1996) (see fur-
ther reading).

2.6 Critical Density

From a spectroscopic point of view, whether a particular emission behaves
as if the emitting species is in thermodynamic equilibrium with its local
environment depends on something called the critical density. For den-
sities above the critical density, emissions are thermal in origin, whereas
below this density, each collision leads to an emission. The critical den-
sity nc thus depends on the ratio of the timescale for decay by emission
to collisional de-excitation. Specifically, the critical density for level j is
given by

nc =
∑i< j A ji

∑i �= j q ji
, (2.8)

where A ji is the Einstein A coefficient and the sum runs over all pos-
sible emissions, and q ji is the rate for collisional de-population of level
j, summed over all possible processes. This expression often simplifies
to the ratio of two numbers, since for many systems and environments
there is a single important route for emission and a dominant collisional
de-excitation process.

The critical density is the density of collision partners, often elec-
trons, above which the collisional de-excitation from the upper level
occurs more quickly than the radiative de-excitation. In this case the
emissions behave as if they are thermal and can be used as a measure of
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temperature. Below the critical density, each collisional excitation leads to
an emission and, given knowledge of both the line strength and the colli-
sion cross section, the emissions can provide information on the density of
the collision partners.

Much of the matter in the Universe is not in local thermodynamic
equilibrium (LTE), as determined by the critical density. In non-LTE condi-
tions, the concept of temperature is of limited use, although the free elec-
trons are still usually thermalised to some temperature; such media are
often characterised by the electron temperature Te.

This definition of critical density is distinct from the cosmologi-
cal critical density which determines whether the Universe is open or
closed.

2.7 Wavelength or Frequency?

Measurements of spectra obtained in the laboratory are usually reported
in frequency units such as Hz (which are s−1) or the related wavenum-
ber unit of cm−1. Frequencies and wavenumbers are directly propor-
tional to the energy jump of the transition. They are therefore much
more amenable to physical understanding and interpretation. For this
reason, most of the discussion presented below will be given in the
energy/frequency/wavenumber domain.

Conversely, astronomers, at least in the infrared, visible and ultravi-
olet, tend to use wavelengths, typically µm, nm or Å (equal to 10−6, 10−9

and 10−10 m, respectively). Spectrographs on telescopes work naturally in
wavelengths. Indeed, the spectral resolution of an instrument is given by
its resolving power R, as

R =
λ

∆λ
, (2.9)

where ∆λ is the smallest wavelength difference that can be resolved. The
ratio c

R gives the velocity resolution. Thus a resolving power of R = 30000
can resolve velocities in excess 10 km · s−1.

The dichotomy between working in the wavelength or frequency
domain means frequent application of the standard formula

λ =
c
ν

. (2.10)
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When working in wavenumbers I find it helpful to remember that

λ(µm) =
10000

ν(cm−1)
. (2.11)

At some wavelengths, particularly at radio frequencies, it is stan-
dard practice for astronomers to present spectra as Doppler shifts from
the (known) rest (that is laboratory) wavelength λ0. This works via the
Doppler formula:

vr = c
∆λ

λ0
, (2.12)

where ∆λ represents a shift in wavelength. c is the speed of light and vr is
the velocity of the source away from us; both usually given in km · s−1. This
method provides a convenient way of showing the velocity structure of the
object(s) under study. Indeed, using velocity shifts means that several tran-
sitions from the same object can be shown on the same frequency scale;
Figures 3.17, 3.22 and 10.19 are three of several examples given in this
book. However, one note of caution must be exercised. This representa-
tion assumes that all transitions in a particular observational window have
the same rest frequency λ0. This means that transitions that are nearby in
frequency but due to physically distinct processes will appear in the spec-
trum as velocity shifts. Examples of this are quite common: see for instance
the top panel in Fig. 3.17 where the transition labelled H50β is not given
relative to its rest wavelength.

2.8 The Electromagnetic Spectrum

Figure 2.4 gives an overview of the electromagnetic spectrum. The most
tightly defined and smallest region in the electromagnetic spectrum is the
visible region, which covers wavelengths between 4000 Å and 7000 Å. For
astronomical studies, it is important to have an appreciation of the differ-
ent regions of the electromagnetic spectrum for a number of reasons.

At the theoretical level, different physical processes occur at different
energies, which can then be directly associated with particular regions of
the spectrum. Astronomically there is also a correlation between wave-
length and temperature, particularly for emission spectra. Thus, for exam-
ple, very hot regions are bright at short, X-ray wavelengths, whereas
cold interstellar clouds are extensively studied at long, microwave wave-
lengths, often referred to as radio waves.
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Fig. 2.4. The electromagnetic spectrum.

From an astronomical perspective there are also practical reasons for
understanding the electromagnetic spectrum. All ground-based observa-
tions are necessarily made through the earth’s atmosphere. The atmosphere
is largely transparent at visible and radio wavelengths. Observations are
possible through several infrared ‘windows’ in the atmosphere. These win-
dows lie at wavelengths between regions where water vapour, and other
atmospheric species absorb much of the incoming light. However in all
wavelength regions there are atmospheric species which cause isolated
absorptions known as ‘telluric’ lines. One can seek to reduce the effects
of the atmosphere by the choice of good observing sites, such as the high,
dry, near-equatorial sites in Hawaii and Chile, which are both home to
clusters of telescopes. However there are many wavelength regions where
ground-based observations are simply impossible (see Fig. 2.5).
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Fig. 2.5. Absorption of light of different wavelengths in the Earth’s atmosphere.
Gray areas show strong telluric absorption.

The development of satellite technology over the last quarter-century
means that there have now been space missions flown which study all
wavelengths. Observing from space is very expensive and observing
time is therefore necessarily limited. Furthermore, state-of-the-art satellite
observations usually yield much poorer spectral and spatial resolutions
than is obtainable on the ground because it is not practical to fly such large
telescopes or such good spectrometers. Large telescopes and long integra-
tion times are also needed to observe faint objects.

Problem

2.1 The top panel of Fig. 3.17 in Chapter 3 shows two emission features
labelled H40α and H50β. The velocity scale is relative to the rest fre-
quency of H40α, which is at 99.023 GHz. Estimate the rest frequency
of the H50β transition.
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C H A P T E R T H R E E

ATOMIC HYDROGEN

‘ The two most common things in the Universe are Hydrogen and Stupidity.’

– Harlan Ellison (1934)

3.1 Overview

Spectra of atomic hydrogen, H, are of paramount astronomical impor-
tance. This is because approximately 90% of atomic matter by number is
hydrogen. This occurs in a variety of forms: H+ or protons, H atoms, H2

molecules and indeed the molecular ions H+
2 and H+

3 . The spectral lines of
hydrogen are prominent in a great variety of astronomical objects and are
much studied. All aspects of hydrogen spectroscopy therefore need to be
considered in detail.

The spectrum of atomic hydrogen also plays an important role in the
theory of quantum mechanics. Hydrogen is the simplest atom, comprising
a single electron and a proton. It is the only atom for which exact quantum
mechanical solutions can be found for its energy levels and wavefunctions.
These solutions will be used extensively here but will not be derived. Such
derivations are a standard part of most introductory courses in quantum
physics [see Rae (2002) in further reading].

3.2 The Schrödinger Equation of
Hydrogen-Like Atoms

Any atom comprising a single electron orbiting a nucleus of charge Z can
be described as hydrogen-like. The Hamiltonian operator for this system

17
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can be written

Ĥ =
−�

2

2µ
∇2 − Ze2

4πε0r
, (3.1)

where r is a vector, of length r, linking the electron to the nucleus. This
Hamiltonian comprises two terms. The first term, given by the Laplacian
operator, is the kinetic energy operator for the electron. The second term
is the potential energy term, in this case the Coulomb attraction between
the electron, charge −e, and the nucleus, charge +Ze.

The Hamiltonian (3.1) contains a number of constants. It is often given
in terms of atomic units, which scale the dimensions of the problem to the
atomic scale. In atomic units (see Sec. 3.4 for details), the charge on an
electron e, the mass of an electron me, � = h

2π and 4πε0 all equal one. This
simplifies the Hamiltonian to:

Ĥ = − 1
2µ

∇2 − Z
r

. (3.2)

In general the Schrödinger equation for a system of energy E and with
wavefunction ψ is written

Ĥψ = Eψ . (3.3)

For the particular case of the hydrogen-like atom in atomic units, the
explicit form of the Schrödinger equation is therefore[

− 1
2µ

∇2 − Z
r
− E

]
ψ(r) = 0 . (3.4)

3.3 Reduced Mass

The hydrogen atom is actually a two-particle problem, concerning the
motion of an electron of mass me and a nucleus of mass M. To solve for the
internal motion of this system it is necessary to rewrite the equations-of-
motion of the system into one equation representing the overall translation
of the whole system, with mass M + me, in space, and a second equa-
tion representing the internal motions. The Schrödinger equation (3.4) is
the quantum mechanical equation representing this internal motion of the
hydrogen atom once the equations governing the translational motion of
the whole system through space have been separated. In this Schrödinger
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equation, the effective mass of the reduced system is denoted µ and is
known as the reduced mass.

For a system with two particles of mass m1 and m2,

µ =
m1m2

m1 + m2
. (3.5)

Clearly, if m = m1 = m2, then µ = m
2 .

For the case of the hydrogen-like atom,

µ =
meM

M + me
. (3.6)

In the limit of an infinite nuclear mass, i.e. M = ∞, µ = me. In practice,
M is very much bigger than me. For example, for H itself, M is about
1836 me. Under these circumstances the reduced mass is very close to me.
However, as discussed in Secs. 3.7 and 3.11, the small shift implied by a
correct treatment of the reduced mass is important for astronomical obser-
vations as it means that hydrogen and deuterium give distinct spectra that
can be distinguished at moderate resolution.

3.4 Atomic Units

Atomic units provide a complete integrated unit system in the manner
of SI units but with quantities scaled to the dimensions of the atom. In
atomic units:

Unit of mass is the electron mass, me = 1.6605402× 10−27 kg,

Unit of electric charge is the electron charge, e = 1.602188× 10−19 C,

Unit of length, the Bohr radius a0 = 4πε0�
2

me2 = 5.29177249× 10−11 m,

Planck’s constant divided by 2π, � = 1 a.u. = 1.05457× 10−34 J · s,

Similarly 4πε0 = 1.

In this unit system, the atomic unit of energy is known as the Hartree and
is denoted Eh. 1Eh = 2R∞ = 27.2113661 eV = 4.3597482× 10−18 J, where
R∞ is the Rydberg constant (see Sec. 3.7). The atomic unit of time is
2.41884× 10−17 s and the speed of light c is 137.03599 a.u.

Atomic units are often denoted a.u. and must be carefully distin-
guished from the somewhat larger Astronomical Unit, AU, or indeed the
less well-defined ‘arbitrary units’.
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3.5 Wavefunctions for Hydrogen

The Schrödinger equation (3.4) can be solved analytically by working in
spherical polar coordinates, i.e. r = (r, θ, φ). In these coordinates the wave-
function is separable into radial and angular solutions

ψ(r, θ, φ) = Rnl(r)Ylm(θ, φ) . (3.7)

The radial solutions, Rnl, can be expressed analytically in terms of
Laguerre polynomials [see Rae (2002) in further reading]. Figure 3.1 shows
both the wavefunctions and the probability distribution of the lowest few
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Fig. 3.1. Wavefunctions (left) and probability distribution (right) for the radial
coordinate of the hydrogen atom. (T.S. Monteiro, private communication.)
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Fig. 3.2. Wavefunctions for the angular motions of the hydrogen atom which are
given in terms of spherical harmonics, Yl, m(θ, φ). Plots are for the x–z plane except
for the l = 2, m = 2 plot for which the x–y plane is shown. The plots give the abso-
lute value of the spherical harmonic as a distance from the origin for each angle; the
signs indicate the sign of the wavefunction in each region. (S.A. Morgan, private
communication.)

radial solutions. An important feature of these wavefunctions is the nodes
which are the points where the wavefunctions pass through zero.

The angular solutions for the hydrogen atoms, Ylm, are called spherical
harmonics. These functions are complex for m �= 0. Figure 3.2 depicts the
first few of these spherical harmonics. Readers familiar with chemistry
will recognise these shapes as the s, p and d orbitals used to represent
atomic structure and chemical bonds.

3.6 Energy Levels and Quantum Numbers

For bound states, the solutions of the Schrödinger equation (3.4) occur
with discrete energies given by the formula

En = −µZ2e4

8h2ε2
0

1
n2 = −R

Z2

n2 , (3.8)
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where the zero of energy is taken to be a completely separated electron and
nucleus with zero kinetic energy. The constant R in Eq. (3.8) is the Rydberg
constant discussed in the next section.

Each bound state of the H atom is usually characterised by a set of
four quantum numbers (n, l, m, sz). Each of these is defined below, along
with a fifth quantum number s.

n is the principal quantum number. It takes the values n = 1, 2, 3, . . . , ∞.
n determines the energy of the atom according to Eq. (3.8).

l is the electron orbital angular momentum quantum number. The
actual angular moment is given by �[l(l + 1)]

1
2 . l can take the values

0, 1, 2, . . . , n− 1. By convention, the values of l are usually designated
by letters (see Table 3.1).

m is the magnetic quantum number, so called because it determines the
behaviour of the energy levels in the presence of a magnetic field. m�

is the projection of the electron orbital angular momentum, given by l,
along the z-axis of the system. It can take (2l + 1) values −l, −l +
1, . . . , 0, . . . , l − 1, l.

s is the electron spin quantum number. The electron spin angular
momentum is given by �[s(s + 1)]

1
2 which, for a one-electron system,

equals
√

3
2 �, since an electron always has spin one-half.

sz gives the projection of the electron spin angular momentum, given
by s, along the z-axis of the system. This projection is actually �sz. In
general, sz can take (2s + 1) values given by −s, −s + 1, . . . , s − 1, s.
For a one-electron system, this means sz can take one of two values:
− 1

2 or + 1
2 .

The simplest notations for the various states of H is to denote each state
by its nl quantum numbers. Thus the ground state is denoted 1s; the first
excited states are 2s and 2p; the n = 3 states are 3s, 3p and 3d. (See Fig. 3.3.)
These notations leave the m and sz quantum numbers unspecified since
these quantum numbers are really only significant for H in the presence
of an external field. This means that each nl configuration is 2(2l + 1)-fold

Table 3.1. Letter designations for orbital
angular momentum quantum number l.

0 1 2 3 4 5 6 7 8 . . .
s p d f g h i k l . . .
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Fig. 3.3. Schematic energy levels of the hydrogen atom with various series iden-
tified. [Adapted from P.W. Merrill, Lines of the Chemical Elements in Astronomical
Spectra (Carnegie Institute of Washington Publications, 1956).]

degenerate. Such configurations are used to build up basic atomic struc-
ture (see Sec. 4.4). More complete and complicated spectroscopic notations
used to denote states of H and other atoms are discussed in Sec. 4.8.

3.7 H-Atom Discrete Spectra

The spectrum of the hydrogen atom comes from electrons jumping
between different levels in the atom. Given that the energy levels depend
only on the quantum number n, this means that the electronic spectrum
of the H atom comes from changes in n. The wavelengths, λ, for these
transitions are given by the Rydberg formula:

1
λ

=
1
hc

(En1 − En2) = RH

(
1
n2

1
− 1

n2
2

)
, n1 < n2 . (3.9)

This formula was constructed by the Swedish physicist Johannes Rydberg
(1854–1919) to model the experimental observations of Balmer and others.
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Of course, the formula agrees perfectly with the energy differences that
one obtains using the quantum mechanical expression for the energy
levels given in Eq. (3.8). In this expression, R is the Rydberg constant.
This constant takes slightly different values for different H-like atoms
since it incorporates the reduced mass µ (see Sec. 3.3). For hydrogen itself,
RH is particularly well-determined experimentally; it takes the value
109677.581 cm−1.

The Rydberg constant for a system of infinite nuclear mass is denoted
by R∞ and is related to RH by

RH =
µ

me
R∞ =

(
MH

MH + me

)
R∞ , (3.10)

where R∞ = 109737.31 cm−1. Rydberg constants for other species such as
deuterium, can be derived using the formula above with the appropriate
reduced mass.

The spectrum of H is divided into a number of series linking different
upper levels n2 with a single lower level n1 value. Each series is denoted
according to its n1 value and is named after its discoverer. Table 3.2 sum-
marises the six main H-atom series.

The range of each H-atom series is given by the lowest frequency tran-
sition, between the levels n1 and n2 = n1 + 1, and the series limit, which is
the transition between n1 and n2 = ∞. As discussed in Sec. 3.8.1, the series
limit is not always observable. Table 3.2 gives the spectral region in which
each series is observed. As the Balmer series lies in the visible region, it
is particularly easy to observe from Earth. As a result, Balmer lines have
been particularly important in the study of H-atom spectra.

Table 3.2. Spectral series of the H atom. Each series comprises the transitions
n2 − n1, where n1 < n2 < ∞.

Range/cm−1

n1 Name Symbol Spectral region n2 = n1 + 1 n2 = ∞

1 Lyman Ly ultraviolet 82257 – 109677
2 Balmer H visible 15237 – 27427
3 Paschen P infrared 5532 – 12186
4 Brackett Br infrared 2468 – 6855
5 Pfund Pf infrared 1340 – 4387
6 Humphreys Hu infrared 808 – 3047
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Within a given series, individual transitions are labelled by Greek
letters. These letters denote the change in n or ∆n. In this notation:

∆n = 1 is α,
∆n = 2 is β,
∆n = 3 is γ,
∆n = 4 is δ,
∆n = 5 is ε.

Thus Lyα is the transition between n1 = 1 and n2 = 2, and Hγ is that
between n1 = 2 and n2 = 5. Greek letters are usually only used for the
most important transitions with low ∆n. Transitions with high ∆n are com-
monly labelled by the number n2. Thus, H15 is the Balmer series transition
between n1 = 2 and n2 = 15.

The wavelength of each individual transition can be predicted using
the Rydberg formula. For example Lyα lies at

1
λ

= RH

(
1 − 1

4

)
=

3
4

RH = 82258.2 cm−1 , (3.11)

meaning that

λ = 1.21568× 10−5 cm = 1215.68 Å = 121.168 nm.

All hydrogen series transitions between bound states are described as
bound–bound transitions. Figures 3.4, 3.5, 3.6 and 3.7 give sample H-atom
spectra recorded in very different astronomical environments. Figure 3.4
shows an optical spectrum of the B-type star Θ1 B Ori. Absorption by
the Balmer series up to H14 (n2 = 14) is clearly visible. Figure 3.5
shows Lyman series absorption in a shell of gas expanding about a hot,
Wolf-Rayet star. Figure 3.6 shows higher members of the Paschen series
recorded in absorption in a spectrum from a soft X-ray transient binary
star. Figure 3.7 shows infrared emissions due to Pfund and Brackett lines
recorded in the gas ejected from supernova 1987a.

The reduced mass factor means that deuterium spectral lines are
shifted with respect to H-atom spectra. In principle, one can detect D and
H together (see Fig. 3.8). However, the cosmic abundance of deuterium is
about 2 × 10−5 that of hydrogen. This makes it difficult to measure abun-
dance ratios directly using neighbouring transitions as the H transitions
are likely to be optically thick if those of D can be observed. Figure 3.9
shows high-resolution simultaneous observations of heavily red-shifted
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Fig. 3.4. Spectrum of B-type star Θ1 B Ori showing Balmer series absorptions
recorded at the Anglo-Australian Telescope. (X-W. Liu, private communication.)

Fig. 3.5. Satellite spectrum recorded from shell nebula GRB 021004. The doublet
structure in the Lyman series absorptions is caused by Doppler effects in the shell.
[Adapted from N. Mirabel et al., Astrophys. J. 595, 935 (2003).]

H and D Lyα lines. These data need to be interpreted very carefully since
H absorptions with a different Doppler shift to the main peak, such as
the peak on the left of the figure, can be confused with absorptions by
D. This particular spectrum was taken as part of a systematic study of
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Fig. 3.6. Spectrum soft X-ray transient (SRT) binary star GRO J1655-40 recorded
with the Anglo-Australian Telescope, showing higher members of the Paschen
series. P13, P15 and P16 are blended with the Ca II triplet transitions discussed
in Sec. 6.5. [Adapted from R. Soria, K. Wu and R.W. Hunsted, Astrophys. J. 539, 445
(2000).]

Fig. 3.7. Infrared spectrum of supernova 1987a taken using the Anglo-Australian
Telescope 192 days after the initial explosion. Strong Brackett and Pfund emissions
from atomic hydrogen are clearly visible. This spectrum gave the first-ever detec-
tion of the molecule H+

3 outside the solar system; its spectrum is modelled by the
solid line. The structure in the spectrum about 3.2 µm is due to telluric effects in
this region. [Analysis reported by S. Miller et al., Nature 355, 420 (1992).]
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Fig. 3.8. Lyman absorption spectrum for hydrogen and deuterium recorded
using the FUSE satellite along a line of sight towards B-type star HD 191877.
[Adapted from C.G. Hoopes et al., Astrophys. J. 586, 1094 (2003).]

the absorption of light from distant quasars which has firmly established
the primordal D to H ratio, one of the fundamental parameters of the Big
Bang. It should be noted that since deuterium is heavier, its lines should
have smaller Doppler width.

Worked Example: H-atom Hα emission occurs at 15237 cm−1. At what
wavenumber is the corresponding transition for the D atom?
The Rydberg formula for Hα gives:

15237 cm−1 = RH

(
1
4
− 1

9

)
. (3.12)

The Rydberg constant for deuterium, RD, is given by

RD =
µD

µH
RH , (3.13)
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Fig. 3.9. Hubble Space Telescope spectrum of Lyα absorption against quasar QSO
1009+2956 which lies at redshift z = 2.5. The continuous lines give the results of
models which fit several Ly series absorptions. The vertical lines give line centres;
the three lines near 4258 Å are due to D; other absorption features are all due to H.
[Adapted from S. Burles and D. Tytler, Astrophys. J. 507, 732 (1998).]

where µH and µD are the reduced masses of the hydrogen and deuterium
atom, respectively.

µH

µD
=

MH + me

MHme

MDme

MD + me
=

(MH + me)MD

(MD + me)MH
= 1.00027 , (3.14)

where the masses MH = 1836.1 me and MD = 3670.4 me have been
used. Using these numbers gives Hα for D as 15233 cm−1, compared to
15237 cm−1 for H.

Although the Rydberg constant is known very precisely, the wave-
lengths of various transitions in hydrogen do not coincide completely
with the values predicted by the Rydberg formula. It should be noted
that this formula is only correct within certain assumptions which neglect
small effects due to relativity and the finite size of the hydrogen nucleus.



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch03

30 Astronomical Spectroscopy

For this reason, the measured wavelengths should be used if high accuracy
is desired.

3.8 H-Atom Spectra in Different Locations

3.8.1 Balmer series

Balmer series lines are the most studied H-atom lines since they are in the
visible. Indeed, Hα emissions at 6563 Å can be clearly seen with the naked
eye as the red light surrounding the Sun during a total eclipse. In fact,
Hα and Hβ lines were labelled C and F respectively in Fraunhofer’s solar
spectrum (see Fig. 1.1).

Stellar envelopes are fairly high density environments. This means
that the population of the different atomic energy levels is thermal and
given by the Boltzmann distribution:

Pi =
gi

Q
exp

(
−∆Ei

kT

)
, (3.15)

where Pi is the population of the ith level given as a proportion of the
atoms in level i. Pi can therefore take values between zero, meaning no
atoms in level i, and one, meaning all the atoms are in level i. In Eq. (3.15),
gi is the degeneracy (statistical weight) of level i, and the energy above the
ground state is ∆Ei. Q is the partition function which ensures that the sum
over all populations is unity. k is Boltzmann’s constant. When analysing
spectra, it is useful to remember that k = 0.695 cm−1 K−1.

However the temperature, T, varies between stars, which results in
very different spectral characteristics. Since the centre of the star generates
bright radiation, spectral lines are seen in absorption. The strength of these
absorptions depends on the spectral type of the star.

Hydrogen Balmer lines are strongest for A0 stars which have a tem-
perature of about 10000 K. Few other transitions are seen in these stars.
Cooler stars have less population in the n = 2 level of H, so the Balmer
line absorption diminishes. Indeed, in the coolest stars (T < 5000 K),
molecules form and little atomic H remains. For stars significantly hot-
ter than 10000 K, H atoms become increasing ionised and the strength of
the Balmer series drops again.

This discussion illustrates a general point. Atoms lose electrons to
become ions. As the environment gets hotter, the degree of ionisation
increases. Since this is essentially a thermal effect, for every atom, there is a
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particular ionisation stage which is dominant at a particular temperature.
At this temperature, the spectral lines of this ion will be at their strongest.
Furthermore, successive ions of particular atoms have spectra quite unlike
each other; for example H ions are protons which have no spectrum at all!

Figure 3.10 shows the temperature distribution of iron ions. The
Roman numerals in this figure are used to designate ionisation stages.
Thus, Fe I corresponds to neutral iron Fe; Fe II to singly ionised iron Fe+;
Fe III to Fe2+, and so forth. Fe XXVI denotes Fe25+ which is H-like, i.e. it
has one electron. Fe XXVII is a bare iron nucleus. Strictly speaking, Roman
numerals label a spectrum, but they are often used to indicate an ion.

For hydrogen, it is usual to talk of H I regions where H is neutral.
Often, no optical H-atom spectrum is seen from these regions. Conversely,
in H II regions, the H atoms are ionised. As discussed below, H I recombi-
nation spectra are seen from H II regions.

Spectra are sensitive to pressure effects. The width of spectral lines
depends on pressure, and information on the luminosity class of a star can

Fig. 3.10. Abundance of iron ions with different ionisation stages as a function
of temperature. These results are taken from the coronal model of J.M. Schull.
[Adapted from A. Dalgarno and D. Layzer (eds.), Spectroscopy of Astrophysical Plas-
mas (Cambridge University Press, 1987).]
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be obtained by measuring these line-widths. If the pressure is low, higher
members of the Balmer series can be seen (see Fig. 3.4). However, the com-
plete series is never observed in stars and the spectrum shows a discon-
tinuity known as the Balmer jump (see Fig. 3.11). The jump occurs
at the point where continuous (bound-free) absorption switches on. The
position of the Balmer discontinuity shifts to longer wavelengths at higher
pressure.

To understand why, it is necessary to consider the physical size of the
H atom. The approximate radius of the electron orbit in the Bohr atom, rn,
is given by the formula:

rn = n2 4πε0�
2

m2
e Z

=
n2

Z
a0 , (3.16)

where for H(1s), r1 = 1 and a0 = 0.529 × 10−10 m. At high pressure, the
mean atom–atom distance will be smaller than some rn, and higher orbits
will not be found since they will be destroyed by atom–atom collisions.

Fig. 3.11. Model spectrum of an A5-type star showing both the Balmer and
Paschen discontinuities. (R.J. Sylvester, private communication.)
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Worked Example: The Sun has a number density, N, of about 1017 cm−3.
What is the highest H-atom n level that one would expect to find?
The approximate radius of an electron orbit in the H atom is:

rn = n2 × 0.529× 10−10 m.

Therefore the approximate volume of an H atom in state n is

Vn ≈ 4
3
πr3

n ≈
4
3
πn6 × 1.48× 10−31 m3.

On the surface of the Sun, N ≈ 1017 cm−3 = 1023 m−3. This means that each
atom occupies a maximum volume of about 10−23 m3.
Assuming that the highest n value corresponds to the maximum volume
allowed for each atom gives

4
3
πn6 × 1.48× 10−31 ≈ 10−23 ,

which gives n ≈16 as the highest level that one would expect on the Sun.

3.8.2 Lyman series

The Lyman series is expected to be strong in absorption spectra of hot
stars which have significant ultraviolet continuum. However, there are a
number of technical issues that need to be considered as it is not possible
to observe such ultraviolet transitions from the ground.

So far, only a few satellites with the capability of recording spectra this
far into the ultraviolet have been launched. The Hubble Space Telescope,
for example, does not possess this capability; its best region for spec-
troscopy is given by λ ≥ 1300 Å, whereas Lyα lies at 1216 Å. The highly
successful International Ultraviolet Explorer (IUE) satellite, which oper-
ated for 19 years starting from 1978, covered Lyα but no higher Lyman
lines. However, this situation changed with the launch of NASA’s FUSE
(Far Ultraviolet Spectroscopic Explorer) satellite in June 1999 (see Fig. 3.8).
FUSE covers λ = 900–1200 Å at good resolution and sensitivity. FUSE’s
range thus extends below the Ly series limit at 912 Å.

Lyman absorption comes from the H-atom ground state. It is thus
dominated by a strong interstellar component. See Fig. 3.9 for an exam-
ple. Interstellar H atoms are all in their ground states, and are thus only
sensitive to Ly wavelengths. This complicates the interpretation of any
Ly emission spectrum.
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Fig. 3.12. Schematic Lyman α emission line showing geocoronal emission and, in
the wings, absorption against starlight from the interstellar medium.

Spectra taken in the locality of the earth are contaminated by strong
geocoronal Lyα emission (see Fig. 3.12). Such emissions are present in IUE
spectra, which were taken in geosynchronous orbit, and also some Hubble
Space Telescope spectra, for which Fig. 7.7 gives an example. Figure 10.13,
which was recorded with FUSE, shows the clear signature of geocoronal
Lyβ emission.

Lyα can be used as a probe of the Universe at earlier epochs. Quasars
emit ultraviolet light with a quasi-continuous distribution. Absorption of
this light by H atoms via the Lyα transition can be monitored with differ-
ent epochs being distinguished by their differing redshifts.

Figure 3.13 shows a high-resolution spectrum of a high redshift
quasar. The strong and broad Lyman α emission line is observed at a
wavelength of 5622 Å, indicating that the quasar is at a redshift z = 3.625.
The spectrum of the quasar at shorter wavelengths is eaten away by a
great number of narrow absorption lines. Most of these are single Lyα lines
formed in gas located between the quasar and us; they therefore appear at
many discrete redshifts between z = 3.625 and 0. These absorption lines
are collectively known as the Lyman α forest. They are a powerful probe of
physical conditions in galaxies and the intergalactic medium at early times
in the evolution of the universe.

3.8.3 Infrared lines

The H-atom series higher than Balmer absorb and emit in the infrared.
These can be seen in a number of locations. For example, Fig. 3.7 shows the
spectrum of the outer expanding shell of supernova 1987a taken 192 days
after the initial supernova explosion. This spectrum was used to report the
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Fig. 3.13. Spectrum of the high redshift QSO Q1422+231, obtained with the
High Resolution Echelle Spectrograph on the Keck telescope in Hawaii showing
numerous Lyα absorptions by the intervening interstellar medium. These absorp-
tions are known collectively as the Lyα forest. (M. Pettini, private communication.)

discovery of the H+
3 molecular ion in the expanding gas, however it also

shows strong Brα emission and several Pfund series lines.

3.9 H-Atom Continuum Spectra

3.9.1 Processes

The continuum of a proton and an electron is not quantised. Therefore an
H atom in its 1s state can be ionised by any photon with λ < 912 Å, i.e.
beyond the Lyman series limit.

H(1s) + hν → H+ + e− . (3.17)

This process is called photoionisation; it is a bound-free transition. Simi-
larly, the Balmer continuum is observed for λ < 3646 Å (see Fig. 3.11). The
probability of photoionisation is greatest when near threshold and drops
away as λ decreases. See Fig. 3.14 which illustrates bound–bound and
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Balmer series absorption lines

Balmer series limit

Balmer continuum

Blackbody spectrum

f (λ)

λ365 nm

Fig. 3.14. Schematic stellar spectrum showing the hydrogen Balmer lines and
continuum. There is a large departure from a black body spectrum at ultraviolet
wavelengths below the Balmer series limit.

bound–free (photoionisation) spectra for Balmer lines absorbing against
the black body radiation curve of a star.

The reverse process,

H+ + e− → H(nl) + hν , (3.18)

is called radiative recombination; it is a free–bound transition. The probabil-
ity that an electron will emit a photon as it passes the proton is low, so this
is a very unlikely process. However, the chances increase if the electron is
travelling slowly, i.e. near threshold.

Radiative recombination is essential, if inefficient, for cooling. For
example the recombination era, which started about 300000 years after the
Big Bang and lasted for about 1 million years, was the period in which
neutral H and He formed in the early Universe. This is the earliest epoch
of our Universe for which it is theoretically possible to record spectra.

3.9.2 H-atom emission in H II regions

Figure 3.15 shows many higher Balmer lines recorded in Orion. These
emissions come from H II regions — ionised regions around hot stars where
there are strong ultraviolet fluxes and gases with temperatures of about
10000 K. Under these conditions any H atom will be rapidly photoionised.

Although the recombination of an electron and a proton to produce
an H atom is an inefficient process, it still happens continually in H II
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Fig. 3.15. Spectrum of the Orion nebula (M42) recorded using the ESO 1.52 m
telescope in Chile. The vertical scale gives the observed flux in units of 10−16 ergs ·
cm−2 · s−1 · Å−1 · arcsec−2. Also shown are are polynomial fits to the continuum
bluewards and redwards of the Balmer jump at 3646 Å. These can be used to
determine the temperature of the nebula. [Adapted from X.-W. Liu et al., Astrophys.
J. 450, L59 (1995).]

Fig. 3.16. Recombination spectra start with the emission of a continuum photon
followed by a cascade of emission lines known as recombination lines.

regions. This produces continuum emissions and a small proportion of
neutral H atoms. Typically, about 1% of the protons are in the form of neu-
tral atomic H. Recombination can occur at different levels of the atom. If
the atom is formed in an excited level, it can decay by a series of emis-
sion lines (see Fig. 3.16). Since the emission lines follow in a series, the
process is sometimes referred to as a cascade. Different routes are possi-
ble and which is preferred depends on the relative values of the different
Einstein A coefficients. The ratio of the A coefficients, which determine the
relative importance of the competing pathways, are known as branching
ratios.
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H-atom lines from H II regions occur as a result of recombination from
the continuum. They are called recombination lines.

Collisional excitation of H in lower energy levels is not important in
H II regions — a ground state atom is much more likely to be photoionised.
Populations of different levels are therefore determined by radiative pro-
cesses and not a Boltzmann distribution.

Recombination and collisional excitation thus form competing mech-
anisms for driving emission spectra. In H II regions, the most common
situation is that while the H-atom spectra are dominated by recombination
lines, the spectra of the other atomic species present are driven by collisional
excitation. This means that by careful study of both types of emission spec-
tra, one can obtain a measure of both the density and the temperature of
the nebula, as well as the strength of the radiation field which drives the
ionisation process. This means that by studying spectra one can get infor-
mation on both the nebula and the central star that powers it.

3.10 Radio Recombination Lines

As discussed in Sec. 3.8.1, the Balmer series is truncated in the atmo-
spheres of stars by pressure effects. This means that the long wavelength
transitions between higher levels cannot be observed. Densities in plan-
etary nebulae are much lower, about 103−104 cm−3, compared to about
1017 cm−3 at the Sun’s surface region, or about 1019 cm−3 in the Earth’s
atmosphere at sea level. At very low densities, bound states with large
n can exist. The Bohr radius for an H atom with n = 137 is approximately
1 µm, meaning that atoms in this state can only survive at densities signif-
icantly less than 1012 particles · cm−3.

Recombination lines, transitions between neighbouring high values
of n, can be detected at radio wavelengths. These transitions are labelled
using a high n version of the series notation described in Sec. 3.7.

Transitions n ← n + 1 are called ‘Hnα’,

Transitions n ← n + 2 are called ‘Hnβ’,

and so forth. It should be noted that ‘H’ here stands for hydrogen and not
Balmer. The transition to state n is strongest when ∆n = 1, i.e. the Hnα tran-
sition (see Fig. 3.17). Table 3.3 gives wavelengths and lifetimes for some
radio-frequency transitions.
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Fig. 3.17. Millimeter wavelength hydrogen radio recombination lines observed
toward the very luminous, peculiar star η Carinae using the SEST telescope. Note
that the intensity is given by the antennae temperature, TA, which is conventional
in radio astronomy. [Reproduced from P. Cox et al., Astron. Astrophys. 295, L39
(1995).]

Transitions with very high n have been observed, such as H766α,
where the size of the H atom involved approaches 0.1 mm. Certain lines
are observed more than others. For example, the transitions H109α and
H137β both have wavelengths near 6 cm and can be observed at the same
time. The H166α line is near 21 cm, where many detectors are available for
observing the so-called 21 cm transition (see Sec. 3.14).
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Table 3.3. Wavelengths, λ, and Einstein A coeffi-
cients for some typical radio frequency hydrogen
atom transitions.

H50α H50β H50γ H150α

λ 5.9 mm 3.0 mm 2.1 mm 15.5 cm
A/s−1 18 9.4 6.1 0.008

Radio recombination of H atoms can lead to population inver-
sion. Population inversion is one of the conditions necessary for maser
(microwave amplified stimulated emission of radiation) action (see
Sec. 2.4), a process physically similar to that of a laser. In fact, H atoms
can mase in dense H II regions. Such masing has been observed from
MCW 349 via the nα lines. In this location, maser action has been observed
for all transitions with 7 ≤ n ≤ 90. However, molecular masers are much
more common and important than those seen in atomic sources. Molecular
masers will be discussed in Sec. 10.5.

3.11 Radio Recombination Lines for Other Atoms

An important feature of spectroscopy is that any atom, ion or molecule has
a unique spectrum by which it can be readily identified. An exception to
this general rule are the radio recombination lines. When a single electron
is promoted to a state with a very high principal quantum number, n, the
electron experiences a potential due to the ion core which feels like that
due to a single point charge such as a proton. This is because this electron
is so far away from the nucleus that the nucleus and the other electrons
appear to it as if they occupy a single point.

Under these circumstances the energy levels of the outer electron
satisfy the H-atom formula, Eq. (3.8), with an effective nuclear charge,
Zeff, equal to one. Note that a more sophisticated treatment uses quantum
defect theory and replaces n2 in Eq. (3.8) with (n − µ)2, where µ is known
as the quantum defect. Quantum defect theory is discussed in Sec. 6.1.

Within the confines of the H-atom formula, the only difference
between the high n energy levels, and hence the radio recombination spec-
trum, of different atoms arises from the different nuclear masses. These
different masses give rise to reduced masses, and Rydberg constants,
which depend on the atom in question in a fairly simple fashion. The
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reduced-mass factor differs because the nuclear masses, M, differ between
atoms, giving a scaled Rydberg formula

En = −R∞
n2

M
M + me

. (3.19)

Figure 3.18 gives a sample radio recombination spectrum showing
lines from hydrogen, helium and carbon. Radio recombination lines of
H and He atoms have been observed from many ionised locations. Lines
of heavier atoms such as C have also been detected. Traces of heavier ele-
ments, which could be S or Mg, can also be detected sometimes. However
as the atoms get heavier, the frequencies of the recombination lines con-
verge (see Table 3.4), making it very difficult to conclusively identify the
species involved. Note that in Fig. 3.18 the relative strengths and profiles
of He and C lines differ. This is because recombination and hence the emis-
sion lines arise from different regions. Helium is only ionised in an inner
zone of the H II region which has energetic photons, so it is hot. As a result,
the line is strongly Doppler broadened. Conversely, carbon is ionised in
cooler regions where even the H is neutral (see Fig. 3.19), so the line is
much narrower.

How does the energy balance work in the H II regions from which the
recombination emissions are observed? The heating comes from incoming

Fig. 3.18. Radio recombination lines of hydrogen, helium and carbon observed
in the gaseous nebula W3. [Adapted from A. Dalgarno and D. Layzer (eds.),
Spectroscopy of Astrophysical Plasmas (Cambridge University Press, 1987).]
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Table 3.4. Frequencies, f , for the 50α radio recom-
bination lines of hydrogen, helium, carbon and an
atom with an infinite nuclear mass. The frequencies
of the heavier atoms converge on this value.

H 50α He 50α C 50α M = ∞ 50α

f /MHz 51,072 51,092 51,097 51,099

H H

He

H

He

C

H+

+ +
+ +

He2+

13.624.654.4 1.3 eV1

H II H I

Star

Fig. 3.19. Layers of ionised gas about a central hot star. The figures in eV give the
energy required to maintain the ions indicated, and hence the maximum energy of
the ultraviolet radiation, found outside each sphere.

radiation, usually from a central star, which is ‘captured’ by photoionisa-
tion in a bound–free transition:

H + hν → H+ + e− . (3.20)

This is balanced by outgoing radiation, generally at longer wavelengths.
This comes in the form of continuum photons formed by recombination,
the reverse process to Eq. (3.20), and the resulting cascade emissions. It
also comes from emissions from heavier atoms and from ‘bremsstrahlung’.
Bremsstrahlung, a German word meaning ‘braking radiation’, is gener-
ated by electrons changing velocities as they pass close to charged nuclei
(see Fig. 3.20). Bremsstrahlung photons are not quantised; they can thus
form a continuous distribution in frequency. Such transitions are classified
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Fig. 3.20. Bremsstrahlung (‘braking radiation’) is emitted when a fast electron is
slowed down by passing a charged nucleus.

as being free–free transitions as both the upper and lower states are not
bound.

3.12 Angular Momentum Coupling in the
Hydrogen Atom

One-electron atoms such as hydrogen contain several sources of angular
momentum:

• Electron orbital angular momentum l;
• Electron spin angular momentum s;
• Nuclear spin angular momentum i.

The nuclear spin arises from the spin coupling of the various nucleons:
protons and neutrons both have an intrinsic spin of a half. For atomic spec-
tra it is not necessary to consider the spin of individual nucleons, just their
total spin represented by the quantum number i. For many-electron atoms
however, one has to consider the l and s quantum number for each electron
in the system. This situation will be considered in Sec. 4.7.

As in classical mechanics, only the total angular momentum is a con-
served quantity. It is therefore necessary to combine angular momenta
together. This is best done by adding two angular momenta at a time. The
order in which this is done is referred to as a coupling scheme. The choice
of coupling scheme usually reflects the strength of the actual couplings:
the strongest couplings are considered first.

For hydrogen, the usual coupling scheme is to combine l and s to give
the total electron angular momentum j. These are added vectorially as

l + s = j . (3.21)
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One then combines the total electron and nuclear spin angular momenta
to give the final angular momentum f :

j + i = f . (3.22)

To do this one needs to know the rules for addition of angular momenta.
This is based on the use of vector addition. Note that angular momentum
is a vector as it has both a magnitude and an orientation.

In classical mechanics, adding vector a and vector b gives a vector c ,
whose length must lie in the range

|a − b| ≤ c ≤ a + b , (3.23)

where a, b and c are the lengths of their respective vectors. This is some-
times known as the triangulation condition since the lengths of the vectors
must allow them to form a triangle.

In quantum mechanics a similar rule applies except that the results
are quantised. The allowed values of the quantised angular momentum,
c, which arise from adding a and b, span the range from the sum to the
difference of a and b in steps of one:

c = |a − b| , |a − b|+ 1 , . . . , a + b − 1 , a + b . (3.24)

For example, add the two angular momenta l1 = 2 and l2 = 3 together to
give L. This is usually written in vector form

L = l1 + l2 , (3.25)

and the result is:

L = |l1 − l2|, |l1 − l2|+ 1 , . . . , l1 + l2 − 1, l1 + l2,

= 1, 2, 3, 4, 5 .

3.13 The Fine Structure of Hydrogen

Electron spin arises as part of a relativistic treatment of quantum mechan-
ics. Relativistic effects couple electron orbital angular momentum, l, and
electron spin, s, to give the so-called fine structure in the energy lev-
els which are split according to the value of the total electron angular
momentum j.
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Table 3.5. Fine structure effects in the hydrogen atom: splitting of
the nl orbitals due to fine structure effect for l = 0,1, 2, 3. The result-
ing levels are labelled using H atom, and the more general spectro-
scopic notation of terms and levels (see Sec. 4.8).

Configuration l s j H atom Term Level

ns 0 1
2

1
2 ns 1

2
n 2S n 2S 1

2

np 1 1
2

1
2 , 3

2 np 1
2
, np 3

2
n 2Po n 2Po

1
2
, n 2Po

3
2

nd 2 1
2

3
2 , 5

2 nd 3
2
, nd 5

2
n 2D n 2D 3

2
, n 2D 5

2

nf 3 1
2

5
2 , 7

2 nf 5
2
, nf 7

2
n 2Fo n 2Fo

5
2
, n 2Fo

7
2

For hydrogen, s = 1
2 so that, except for the l = 0 case, j = l ± 1

2 (see
Table 3.5). This table labels the resulting levels with the common H-atom
notation nl j, where l is given by its letter designations, s, p, d, etc., and
by spectroscopic notation for which labels of the (2S+1)LJ are used. A full
discussion of spectroscopic notation can be found in Sec. 4.8.

Table 3.5 shows the fine structure levels of the H atom. This table
shows that the states with principal quantum number n = 2 give rise to
three fine-structure levels. In spectroscopic notation, these levels are 2 2S 1

2
,

2 2Po
1
2

and 2 2Po
3
2
.

So far the discussion on H-atom levels has assumed that all those with
the same principal quantum number, n, have the same energy. In other
words, the energy does not depend on l or j. This is not correct: inclusion
of relativistic (or magnetic) effects split these levels according to the total
angular momentum quantum number j. This splitting, called ‘fine struc-
ture’, has been well-studied in the laboratory. An even more subtle effect
called the Lamb shift, which is due to quantum electrodynamics, can also be
observed. Values of these splittings for the n = 2 levels are given in Fig. 3.21.

0.365 cm–1

0.035 cm–1
2 2P1/2

2
2
S1/2

2
2
P3/2

Fig. 3.21. Splitting in the n = 2 levels of atomic hydrogen. The larger splitting is
the fine structure and the smaller one the Lamb shift.
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For hydrogen, fine-structure and Lamb-shift splittings are too small
to be important for most astronomical applications. The fine structure is,
however, of great importance for complex atoms and will be discussed
further in Chapters 4 and 6.

3.14 Hyperfine Structure in the H Atom

There is one more source of angular momentum in the H atom which has
not yet been included. This is the nuclear spin, i; for H, i = 1

2 . Coupling i
to the total electron angular momentum, j, gives the final angular momen-
tum, f [see Eq. (3.22)]. For H this means

f = j ± 1
2

. (3.26)

The ground state of H is 1s 1
2

or 2S 1
2

and has j = 1
2 . This means that

nuclear spin coupling can split this state into two levels with f = 0 or 1.
There is a very small, 6 × 10−5 eV, splitting between the lower f = 0
and higher f = 1 levels of H caused by magnetic effects. The f = 0 – 1
transition between these levels has a frequency of 1420.406 MHz which
corresponds to a wavelength of 21 cm. The 21 cm line is probably the sin-
gle most important line in astronomy. It is used to map H-atom densities
throughout the ISM (see Fig. 3.22 for example).

Fig. 3.22. 21-cm-line profiles observed with the Very Large Array for two galac-
tic lines of sight recorded as part of a study which constructed a face-on galactic
map of the H II region complexes. The vertical axis of the spectra represents the
observed line-to-continuum intensity, which is equivalent to exp(−τline). [Adapted
from M.A. Kolpak et al., Astrophys. J. 582, 756 (2003).]
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The 21 cm line is a powerful tool because:

(1) Displacement of the line gives the line-of-sight velocity;
(2) Its intensity gives the number of atoms. Note that the line is very weak,

its Einstein A coefficient is 2.9× 10−15 s−1 which corresponds to a life-
time of 10 million years, so it is always optically thin;

(3) The line profile can be used to deduce the temperature of the gas. Thus,
for example, Fig. 3.22 suggests that location G23.437–0.207 is much
cooler that G43.172+0.006, where the lines appear to be significantly
Doppler broadened.

(4) The Zeeman splitting of the transition can be used to measure the mag-
netic fields.

Note that the line is seen in both emission and absorption and its analysis
can be complicated by the presence of several clouds along any particular
line of sight.

3.15 Allowed Transitions

For hydrogen, transitions which correspond to any change in the principal
quantum number, ∆n, are allowed. However transitions are not observed
between all states of the H atom or indeed complex atoms. Transitions
are governed by selection rules which determine whether they can occur.
The selection rules can be derived rigorously using the rules of quan-
tum mechanics [see Schiff (1969) in further reading], but will simply be
stated here.

Strong transitions are driven by electric dipoles. Weaker transitions,
driven by both electric quadrupoles and magnetic dipoles, are observed
astronomically (see Sec. 5.2), but are not important for hydrogen. Rigorous
quantum mechanical analysis shows that for electric dipole transitions in
hydrogen:

∆n any;
∆l = ±1;
∆s = 0, (for H this is always satisfied as s = 1

2 for all states);
∆ j = 0 , ± 1;
∆m j = 0 , ± 1.

The last selection rule on m j is only important in a magnetic field.
Thus if one considers the Hα transition which corresponds to n = 2−3,

the ∆l = ±1 condition shows that not all transitions between sub-levels
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occur. Specifically, the transitions 2s – 3p, 2p – 3s and 2p – 3d are allowed
whereas the transitions 2s – 3s, 2p – 3p and 2s – 3d are not allowed.

If fine structure effects are considered, then the selection rules can
give further constraints. Considering only the Hα transitions designated
allowed above, the selection rule on j shows that

2s 1
2

– 3p 1
2

is allowed;

– 3p 3
2

is allowed;

2p 1
2

– 3d 5
2

is not allowed;

– 3s 1
2

is allowed;

– 3d 3
2

is allowed;

2p 3
2

– 3s 1
2

is allowed;

– 3d 3
2

is allowed;

– 3d 5
2

is allowed .

3.16 Hydrogen in Nebulae

Hydrogen atom emissions in H II regions and planetary nebulae are very
similar but the latter are generally brighter, which means that more weak
line emissions can be observed. In particular, lines belonging to the Balmer
series are often seen strongly in emission. Indeed, the characteristic red
colour seen in many nebulae comes from Hα.

Balmer or other spectral series are obtained from excited atoms spon-
taneously emitting photons. Every excited state has a half-life τ , similar to
that encountered in radioactive decay, which is related to the strength of
emission. Thus excited states which decay only by weak line emission are
long-lived and those which decay via strong transitions are short-lived.
However, most excited states can emit to more than one other state.

The lifetime of excited state i is given by

τi =

(
∑

j
Ai j

)−1

, (3.27)

where Ai j is the Einstein A coefficient (see Sec. 2.2).
Lifetimes for allowed atomic transitions are short, perhaps a few times

10−9 s. Table 3.6 gives some examples for the H atom. A glaring exception
in Table 3.6 is the lifetime of the 2s level of H. This state has a lifetime of
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Table 3.6. Lifetimes, τ , for decay by spontaneous emission for
low-lying excited states of the hydrogen atom.

Level 2s 2p 3s 3p 3d

τ/s 0.14 1.6× 10−9 1.6 × 10−7 5.4× 10−9 2.3× 10−7

1s

2s

Fig. 3.23. Decay of the metastable 2s state of hydrogen giving two continuum
photons.

∼ 0.14 s, i.e. it lives 108 times longer than the 2p state. This is because the
transition 2s → 1s is strongly forbidden. The 2s state is metastable which
means that on the atomic scale, it is long-lived.

So how does the 2s state decay? By the process of two-photon emis-
sion, which is an inefficient process and in this case has an Einstein A
coefficient of 7 s−1 which can be compared to A(2p → 1s) = 6.3× 108 s−1.
The combined energy of the photons emitted must correspond to the
energy difference E(2s) − E(1s) but the photons themselves can take any
energy within this constraint (see Fig. 3.23). The photons thus appear as
continuous emission radiation. Indeed the two-photon decay of the H 2s
state is responsible for approximately one half the continuum emission
observed from H II regions.

Problems

3.1 Give an expression for the energy levels of the hydrogen atom in terms
of the Rydberg constant RH. Assuming a value RH = 109677.58 cm−1,
derive a wavenumber for the Lyα transition of atomic hydrogen
in cm−1. Explain why the Rydberg constant, R∞ = 109737.31 cm−1,
is more appropriate than RH for a heavy one-electron atom. Hence
obtain an estimate for the wavenumber of the Lyα transition of
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hydrogen-like iron, Fe25+. From what astronomical environments
would such transitions occur and how might they be observed?

3.2 A proton and an electron recombine to form atomic hydrogen in its
4p state. At what wavelengths will recombination lines be observed?
Label each wavelength by its standard series notation. How would the
observed emissions differ if the atoms had recombined to the 4s level?

3.3 Hydrogen Hα has a rest wavelength of 6564.71 Å. At what rest wave-
length would you expect to observe deuterium Hα? What telescope
resolution (R = λ

∆λ ) would be required to resolve this difference?
How does this compare to the resolution required to resolve H and
D Lyα transitions? Given a high enough resolution telescope, what
other problems do you anticipate in obtaining the D

H abundance by
observing a single spectral line such as Hα? The mass of H is 1836.1
and D is 3670.4 in atomic units. In these units the mass of an electron
is one.

3.4 A typical star has a number density, N, of about 1016 cm−3, while in
an H II region the number density is more typically 104 cm−3. In each
case what is the highest level of atomic hydrogen that is likely to be
occupied? State any assumptions made in obtaining this answer. The
partition function for atomic hydrogen can be written as:

z =
∞
∑
n=1

2n2 exp
(
− RH

n2kT

)
.

This series cannot be summed as it diverges. Can you suggest why, in
practice, the partition function for the H atom is finite?

3.5 Use the Rydberg formula to obtain the wavelength of the 80α radio
line for an atom of infinite mass. Hence, taking the mass of the hydro-
gen nucleus to be 1836.1 electron masses, obtain the frequency of the
80α transition of atomic hydrogen. What resolving power would be
required to separate the two transitions?
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COMPLEX ATOMS

‘ The truth is rarely pure and never simple.’

– Oscar Wilde, The Importance of Being Earnest (1895)

4.1 General Considerations

Consider an atom with N electrons and nuclear charge (atomic number) Z.
It is straightforward to write down the non-relativistic Schrödinger equa-
tion for this system:[

N

∑
i=1

(
− �

2

2me
∇2

i −
Ze2

4πε0ri

)
+

N−1

∑
i=1

N

∑
j=i+1

e2

4πε0|ri − r j|
− E

]

×ψ(r1,r2, . . . , rN) = 0 , (4.1)

where ri is the coordinate of the ith electron, with its origin at the nucleus.
The first sum in Eq. (4.1) contains a kinetic energy operator for the

motion of each electron and the Coulomb attraction between that electron
and the nucleus. The second summation contains the electron–electron
Coulomb repulsion term. The Coulomb repulsion between pairs of elec-
trons means the above equation is not analytically soluble, even for the
simplest case, the helium atom, for which N = 2. This is how all atoms
with two or more electrons justify their label ‘complex’. To make progress
on understanding these systems it is therefore necessary to introduce
approximations.

51
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4.2 Central Field Model

The easiest simplification of the complex atom problem is to try and regain
a single particle problem, which is similar in spirit to the hydrogen atom
problem and for which relatively easy solutions can be found. In general
such solutions depend on allowing the electrons to move in a potential
which does not depend on their angular position about the nucleus. Such
potentials, which include the hydrogen atom potential, generate a central
field since the force acting on each electron only depends on its distance
from the nucleus at the centre.

Let us assume that each electron moves in its own angle-independent
(central) potential given by Vi(ri) for electron i. Within this model the
Schrödinger equation (4.1) can be separated into N single electron equa-
tions. This gives a simplified Schrödinger equation for the motion of the
ith electron: [

− �
2

2me
∇2

i + Vi(ri)
]
φi(ri) = Eiφi(ri) . (4.2)

Using this model, the total energy of the system is given by the sum of
single electron energies

E = ∑
i

Ei . (4.3)

The solutions of Eq. (4.2), φi(ri), are known as orbitals. Since much
of the discussion on atomic structure is done in terms of such orbitals, it
is important to emphasise that the exact solution to complex atom prob-
lems cannot be written as products of orbitals and that orbitals only exist
with a central field or independent particle model. For this reason, this
model is also often known as the orbital approximation.

Within the orbital approximation, each atomic orbital can be written
as the product of a radial and an angular function, similar to hydrogen
[see Eq. (3.7)].

φi(r1) = Rni li
(ri)Ylimi

(θi,φi) . (4.4)

The angular part of each wavefunction is independent of the other elec-
trons and is therefore simply a spherical harmonic Ylimi

(θi,φi).
So far no attempt has been made to specify the form of the central

potential, Vi(ri). The standard choice is to consider the motion of each
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electron in the average field of all the other electrons. With this choice

Vi(ri) =
−Ze2

4πε0ri
+ ∑

j �=i

〈
e2

4πε0|ri − r j|

〉
, (4.5)

where the notation 〈. . .〉 represents an average. With this form of the cen-
tral potential, the radial part, Rni li

(ri), of orbital (4.4) depends on all the
other electrons. It therefore cannot be obtained in analytic form and has
to be evaluated numerically using computers. As V also depends on the
orbitals of the other electrons, the usual method of solution is iterative.
An initial guess for the orbitals is used to generate the potential, solving
Eq. (4.2) gives improved orbitals which then give a new potential, and so
on, until self-consistency is reached. See Bransden and Joachain (2003) in
further reading for a detailed discussion on the self-consistent field (SCF)
problem.

It is standard to use the hydrogen atom orbital labels, n, l and m, to
label the orbitals of other atoms. The angular behaviour, given by l and m,
is indeed the same, but this is not so for the radial functions. In this case,
orbitals designated by a certain n, l and m do not have the same radial
structure as those given in Fig. 3.1 for hydrogen-like atoms. However they
do have the same number of nodes.

Within the orbital approximation presented above, the total wavefunc-
tion for the system would be written

ψ(r1, r2, . . . , rN) = φ1(r1)φ2(r2), . . . , φN(rN) . (4.6)

However this expression ignores the fact that one cannot distinguish
between electron i and electron j. Before considering the indistinguisha-
bility of electrons, it is necessary to explicitly consider the role of electron
spin.

To consider spin it is necessary to generalise the definition of an orbital
to that of a spin-orbital:

Φi( j) = φi(r j, σ j) , (4.7)

where Φi( j) means that spin-orbital i is a function of the space-spin coordi-
nates of electron j. In Eq. (4.7), σ j is a spin coordinate variable; it will not be
necessary to explicitly define these. The four dimensions of the space-spin
variable of a single particle are similar to the four vectors used to represent
relativistic behaviour of a single body in classical systems.
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The space-spin wavefunction for the total system can now be written:

Ψ(1, 2, . . . , N) = Φ1(1)Φ2(2) · · ·ΦN(N) . (4.8)

For non-relativistic treatments, such as that given by Eq. (4.1), the energy
given by this wavefunction is the same as that given by ψ in Eq. (4.6).

4.3 Indistinguishable Particles

Consider a system with two identical particles. These particles can be any
microscopic particles such as electrons, protons, neutrons, and so forth. If
the wavefunction of these particles is Ψ(1, 2) and the particles are indistin-
guishable, then what property must this wavefunction have?

Of course it is not the wavefunction but the probability distribution,
|Ψ|2, which is physically observable. If the particles are truly indistinguish-
able, this distribution cannot be altered by interchanging the particles. This
means that

|Ψ(1, 2)|2 = |Ψ(2, 1)|2 , (4.9)

i.e. the probability distribution is unaltered by the interchange of particle
1 and particle 2. Equation (4.9) has two possible solutions. There is the
symmetric solution

Ψ(1, 2) = +Ψ(2, 1) (4.10)

or the antisymmetric solution

Ψ(1, 2) = −Ψ(2, 1) . (4.11)

To explain the observed electronic structure of atoms, the German
physicist Wolfgang Pauli (1900–1958) postulated that:

Wavefunctions are antisymmetric with respect to interchange of
identical Fermions.

Fermions are any particles with half-integer spin such as electrons, protons
or neutrons. This statement is known as the Pauli Principle and should
not be confused with the less general Pauli exclusion principle discussed
below. The Pauli Principle means that for any many-electron system the
wavefunction must satisfy Eq. (4.11) for each pair of electrons.
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Within the orbital approximation, a two-electron wavefunction which
obeys the Pauli Principle can be written

Ψ(1, 2) =
1√
2

[Φa(1)Φb(2)−Φa(2)Φb(1)] = −Ψ(2, 1) , (4.12)

where the factor of 1√
2

is included to keep the wavefunction normalised.
The Pauli exclusion principle arises naturally from this expression for

a two-electron wavefunction. If the two spin-orbitals, Φa and Φb, are the
same, i.e. Φa = Φb, then the total wavefunction, Ψ(1, 2), is zero. This solu-
tion is not allowed as it cannot be normalised. Hence solutions which
have the two particles occupying the same spin-orbital are inadmissible
or excluded. The Pauli exclusion principle is often summarised as:

No two electrons can occupy the same spin-orbital.

This exclusion is of course the key to atomic structure and accounts
naturally for the shell structures of atoms, and indeed nuclei. It also pro-
vides the degeneracy pressure which holds up the gravitational collapse
of white dwarfs and neutron stars.

4.4 Electron Configurations

For a hydrogen-like atom, the energy of the individual orbitals is deter-
mined only by principal quantum number n. The energy ordering is

E(1s) < E(2s) = E(2p) < E(3s) = E(3p) = E(3d) < E(4s) · · ·
For complex atoms the situation is not so simple. The degeneracy on

the orbital angular momentum quantum number l is lifted. This is because
electrons in low l orbits ‘penetrate’, i.e. get inside orbitals with lower
n-values. Penetration by the low l electrons means that they spend some of
their time nearer the nucleus experiencing an enhanced Coulomb attrac-
tion. This lowers their energy relative to higher l orbitals which penetrate
less or not at all. Figure 3.1 illustrates the greater penetration of s orbitals.
As a result of this effect, the orbitals of complex atoms follow a revised
energy ordering:

E(1s) < E(2s) < E(2p) < E(3s) < E(3p) < E(3d) � E(4s) · · ·
Following the Pauli exclusion principle, each orbital labelled nl actu-

ally consists of orbitals with 2l + 1 different m values, each with two possi-
ble values of sz. Thus the nl orbital can hold a maximum 2(2l +1) electrons.
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As an example, a p orbital, for which l = 1, can hold up to six electrons,
since the following combinations of magnetic and spin quantum numbers
are possible:

(
m = +1, sz = +

1
2

)
;

(
m = +1, sz = −1

2

)
;

(
m = 0, sz = +

1
2

)
;

(
m = 0, sz = −1

2

)
;

(
m = −1, sz = +

1
2

)
;

(
m = −1, sz = −1

2

)
.

An atomic configuration is given by distributing electrons amongst
the orbitals. The lowest energy or ground state configuration involves fill-
ing the atomic orbitals in energy order from the lowest energy orbitals
upwards.

For example, carbon has six electrons which give the following ground
state configuration:

1s22s22p2 ,

where the superscript on the orbital gives the number of electrons in that
orbital. No superscript is often used to denote a single electron. In car-
bon, the 2p orbital contains only two electrons, which means that it is not
full. Partially-filled shells usually give rise to several states with the same
distribution of electrons between orbitals or configuration. This ‘open
shell’ structure introduces complications which will be discussed further
in Sec. 4.10.

The neon atom has ten electrons and its ground state configuration is

1s22s22p6 .

All the occupied orbitals are full and this is known as a closed shell con-
figuration. A closed shell or sub-shell (such as 2p6) makes no contribution
to the total orbital or spin angular momentum i.e. L or S. This property
greatly simplifies the calculation of total angular momenta for complex
atoms.

Atomic ions which have the same number of electrons form what are
called isoelectronic series. These ions have the same ground state con-
figuration. Thus, for example, all ions with ten electrons are described as
neon-like. Hence Fe XVII (or Fe16+) is called neon-like iron.
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4.5 The Periodic Table

The periodic structure of the elements was originally proposed by the
Russian chemist Dmitry Ivanovich Mendeleyev (1834–1907) on the basis
of careful study of the chemical properties of each element. The structure
of the periodic table can be understood in terms of the configurations of
the individual atoms.

Table 4.1 gives the configurations of the first twenty elements in the
periodic table. In this table, closed shells have be designated using the
standard shell notation which labels the n = 1 orbitals as K, n = 2 as L,
n = 3 as M, n = 4 as N, and so forth. Note that for potassium and calcium
the M shell is not full since the 3d orbital is empty. The elements immedi-
ately after calcium, known as the transition metals, begin to progressively

Table 4.1. Atomic configurations of the first 20 elements
in the periodic table. Z is the atomic number which corre-
sponds to the charge on the nucleus.

Atom Z Configuration

hydrogen H 1 1s
helium He 2 ls2

lithium Li 3 K 2s
beryllium Be 4 K 2s2

boron B 5 K 2s22p
carbon C 6 K 2s22p2

nitrogen N 7 K 2s22p3

oxygen O 8 K 2s22p4

fluorine F 9 K 2s22p5

neon Ne 10 K 2s22p6

sodium Na 11 K L 3s
magnesium Mg 12 K L 3s2

aluminium Al 13 K L 3s23p
silicon Si 14 K L 3s23p2

phosphorus P 15 K L 3s23p3

sulphur S 16 K L 3s23p4

chlorine Cl 17 K L 3s23p5

argon Ar 18 K L 3s23p6

potassium K 19 K L 3s23p6 4s
calcium Ca 20 K L 3s23p6 4s2
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fill up the 3d orbital. These elements, which include the astronomically
important iron, have particularly complicated electronic structures and
associated optical properties.

Atoms with the same electron configuration outside a closed shell
share similar chemical and optical properties. Indeed it was the observa-
tion of patterns in chemical behaviour which led to Mendeleev’s original
proposal of the periodic structure of the elements in 1871.

For example, lithium, sodium and potassium all have a single elec-
tron outside a closed shell. These atoms, known as the alkali metals, all
have very similar optical properties. The spectra of alkali metals will be
discussed in detail in Chapter 6.

Electronically-excited states of atoms usually arise when one of the
outermost electrons jumps to a higher orbital. These excited states can be
written as configurations. Such excited states for helium might include
1s2s, 1s2p or 1s3s. It should be noted that each of the configurations actu-
ally gives rise to more than one excited state.

States with two electrons simultaneously excited are possible but are
less important. For many systems, all of these states are unstable. They
have sufficient energy to autoionise by spontaneously ejecting an electron.
For example, the lowest two-electron excited state of helium has the con-
figuration 2s2. This state spontaneously decays to the 1s ground state of
the He+ ion and a free electron.

4.6 Ions

A neutral atom has the same number of electrons as the charge on the
nucleus in atomic units. If an atom is not charge neutral it is called an ion.
Under these circumstances the number of electrons, N, is not equal to the
nuclear charge, Z, and the system carries a net charge of Z − N.

Positive ions have N < Z. Ions with the same number of electrons, N,
and different nuclear charge, Z, are called isoelectronic (see Fig. 4.1). Iso-
electronic ions have similar structure and spectra, and are often referred
to using the neutral atom at the head of the series, such as the example
neon-like iron for Fe16+ discussed above. The spectrum of members of the
sequence is modified by the different effective charge Zeff. For example, a
single outer electron may feel an effective charge of Zeff = Z − N + 1. The
energies of individual levels, and hence the transition frequencies between
the levels, shift in proportion to Z2

eff.
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                               Li           Be           B            C            N            O            F            Ne

                                             Be           B            C            N            O            F             Ne

                2+          2+           2+          2+           2+           2+          2+          2+            2+

H            He           Li           Be           B            C            N            O            F            Ne

H           He         Li            Be             B            C            N            O            F            Ne

               He           Li           Be           B            C            N            O            F            Ne
                              3+           3+          3+           3+           3+          3+          3+            3+

                                         4+          4+          4+           4+          4+           4+            4+

+              +             +             +           +             +             +            +             +             +

H-like ions

Li-like ions

Bare nuclei: no spectrum

He-like ions

Fig. 4.1. Isoelectronic series for low Z atoms.

In the one-electron case, the ‘hydrogen-like’ ion transition frequencies
scale closely with Z2. For complex ions there are considerable differences
in detail between spectra of ions belonging to the same isoelectronic
sequence.

Negative ions have N > Z, although in practice only N = Z + 1 is
important. Even then not all atoms can bind an extra electron to form a
stable negative ion. Hydrogen, carbon and oxygen can bind an electron
while helium and nitrogen cannot. Furthermore, most negative ions have
only one stable level, and so possess no line (‘bound–bound’) spectrum.
This means that the only possible transitions are continous bound-free
absorption, also known as photoionisation.

In general, negative ions are much less astronomically important than
positive ones. However the hydrogen anion, H−, is a major source of opac-
ity in cool stars including our Sun. The second electron is only bound by
0.75 eV, in contrast to the first electron which is bound by 13.6 eV. It can
therefore be photoionised by all light with wavelengths less than 1.6 µm,
which lies in the infrared.

4.7 Angular Momentum in Complex Atoms

Complex atoms contain more than one electron and thus have several
sources of angular momentum. In particular, the ith electron has orbital
angular momentum li, and spin angular momentum si, which equals
1
2 . There is only one conserved angular momentum in the atom. Ignor-
ing nuclear spin effects, this angular momentum is the total (spin plus
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orbital) angular momentum for all electrons, J. Note that above and else-
where the convention is followed that single electron angular momenta
are represented by lower case letters, l, s, j, etc., and many electron angu-
lar momenta are represented by upper case letters, L, S, J, etc.

There are two coupling schemes or ways of summing the individual
electron angular momenta to give the total angular momentum.

4.7.1 L–S or Russell–Saunders coupling

In Russell–Saunders coupling, the orbital and spin angular momenta
of the electrons are added separately to give the total orbital angular
momentum, L,

L = ∑
i

l i , (4.13)

and the total electron spin angular momentum, S,

S = ∑
i

si . (4.14)

These are then added to give J

J = L + S . (4.15)

It is useful to remember that, as a result of the Pauli Principle, closed shells
and sub-shells, such as ls2 or 2p6, have both L = 0 and S = 0. This means
that it is only necessary to consider ‘active’ electrons, those in open or
partially-filled shells. In most cases this means only one or two electrons.
When more than two angular momenta need to be added together, they
should be added in pairs. The result is independent of the order in which
the addition is performed.

Worked Example: Consider O III with the configuration: ls22s22p3d.
1s2 and 2s2 are closed, so contribute no angular momentum.
For the 2p electron l1 = 1 and s1 = 1

2 ;
for the 3d electron l2 = 2 and s2 = 1

2 .
L = l1 + l2 ⇒ L = 1, 2, 3;
S = s1 + s2 ⇒ S = 0, 1.
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Combining these using all possible combinations of L and S, and the rules
of vector addition, gives:

L S J Level
J = L + S ⇒ 1 0 1 1Po

1
1 1 0, 1, 2 3Po

0 , 3Po
1 , 3Po

2
2 0 2 1Do

2
2 1 1, 2, 3 3Do

1 , 3Do
2 , 3Do

3
3 0 3 1Fo

3
3 1 2, 3, 4 3Fo

2 , 3Fo
3 , 3Fo

4 .

Each state of an atom or ion is characterised by a unique combination
of L, S and J, known as a ‘level’, the notation for which is explained in
Sec. 4.8. Thus twelve levels arise from the configuration 1s22s22p3d. Note
that although some values of J appear several times, they all correspond
to distinct states of the ion and it is important to retain them all.

4.7.2 j–j coupling

An alternative scheme for coupling angular momenta is to consider the
total angular momentum, ji, for the ith electron by combining li and si:

j
i
= li + si , (4.16)

and then coupling these j’s together to give the total angular momentum.

J = ∑
i

j
i
. (4.17)

This scheme is known as j– j coupling. Again J = 0 for closed shells and
sub-shells.

Worked Example: Again consider O III with configuration ls22s22p3d.
For the 2p electron l1 = 1 and s1 = 1

2 , j
1
= l1 + s1, giving j1 = 1

2 , 3
2 ;

for the 3d electron l2 = 2 and s2 = 1
2 , j

2
= l2 + s2, giving j2 = 3

2 , 5
2 .

Combining these gives:

j1 j2 J

J = j
1
+ j

2
⇒ 1

2
3
2 1, 2

3
2

3
2 0, 1, 2, 3

1
2

5
2 2, 3

3
2

5
2 1, 2, 3, 4
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These correspond to exactly the same twelve J values, or levels, obtained
with L–S coupling.

4.7.3 Why two coupling schemes?

Given that L–S and j– j coupling schemes give the same results for J, why
is it necessary to have two different schemes? The answer is that the two
methods are used under different circumstances.

In the non-relativistic formulation of atomic problem, as represented
by the Schrödinger equation (4.1), all states with same values for L and
S have the same energy. In practice, relativistic effects split this degener-
acy and these effects are usually introduced as a perturbation of the non-
relativistic treatment.

For light atoms, which generally mean atoms lighter than iron, rela-
tivistic effects are weak. Under these circumstances the values of L and S
are approximately conserved quantities, and the L–S coupling scheme is
the most appropriate.

For heavy atoms, those beyond iron for example, relativistic effects
are much stronger. Under these circumstances, L and S are no longer con-
served quantities and j– j coupling is more appropriate.

Light atoms are much more prevalent in astronomical spectra, so
only L–S coupling is considered in any detail in this book. However it
is important to remember that L and S are only approximately conserved
quantities.

4.8 Spectroscopic Notation

Atoms with many active electrons can have a number of different energy
levels arising from a single configuration. The splitting of configurations
according to their L, S and J values requires a new method of denoting
the different states. The standard notation is called spectroscopic notation
and works within L–S coupling. Using this notation, states can be labelled
as either ‘terms’ or ‘levels’.

A ‘term’ is a state of a configuration with a specific value of L and S. It
is denoted

2S+1L(o) .

The leading superscript gives the spin multiplicity, i.e. the degeneracy of
the spin state. A state with S = 0 is a ‘singlet’ as 2S + 1 = 1; a state with
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S = 1
2 is a ‘doublet’; one with S = 1 is a ‘triplet’, and so forth. The value of

the orbital angular momentum, L, is given using a capital letter using the
standard letter designation (see Table 3.1). Thus S represents a state with
L = 0, P a state with L = 1, D means L = 2, and so forth. Historically, this
notation arises from analysis of the sodium spectrum (see Sec. 6.1).

The trailing superscripted ‘o’ in the term means ‘odd parity’. Even
parity terms are usually written without a superscript. The parity of a par-
ticular term, which is the same for all terms arising from a particular con-
figuration, is defined in the following section.

Worked Example: The O III ion with configuration 1s22s22p3d can have
L = 1, 2 or 3 and S = 0 or 1 (see Sec. 4.7.1). Taking all combinations of L
and S, this gives rise to terms

1Po, 3Po, 1Do, 3Do, 1Fo and 3Fo .

It should be noted that the splitting of configurations into terms with
different energies arises even in the non-relativistic (Schrödinger) formula-
tion. However, inclusion of relativistic effects splits these terms into levels
according to their J value. A level is denoted

2S+1L(o)
J ,

where the only difference from the term notation is the addition of the
subscript, J, which represents the total electron angular momentum.

Thus, for example, a 3Fo term, such as the one arising from the
1s22s22p3d configuration of O III, splits into three levels with J = 2, 3 and
4. These levels are designated 3Fo

2 , 3Fo
3 and 3Fo

4 .
For completeness it is worth noting that for each level, characterised

by a particular value of J, there are 2J + 1 sub-levels. These are called
states and are designated by the total magnetic quantum number
MJ which takes values

MJ = −J, − J + 1, . . . ,J − 1, J .

These states are degenerate in the absence of an external field. The splitting
of levels into states in a magnetic field is generally known as the Zeeman
effect.
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4.9 Parity of the Wavefunction

The parity of the wavefunction is determined by how the wavefunc-
tion behaves upon inversion. Inversion is the operation of reflecting the
wavefunction through the origin, here the atomic nucleus, and is equiv-
alent to replacing vector r with −r. Given the symmetry of the atom, the
square of the wavefunction, i.e. the probability distribution of the elec-
trons, must be unchanged by this operation. Neglecting spin, this means

ψ(r1, r2, . . . , rN) = ±ψ(−r1, − r2, . . . , − rN) . (4.18)

Even parity states are given by +ψ and odd parity states are given by −ψ.
In practice the parity of all terms and levels arising from a particular

configuration can be determined simply by summing the orbital angular
momentum quantum numbers for each of the electrons. With this simple
rule, the parity is given by

(−1)l1+l2+···lN . (4.19)

As closed shells and sub-shells have an even number of electrons, it is
again only necessary to explicitly consider the active electrons.

Thus for the O III configuration ls22s22p3d, it is only necessary to con-
sider the sum l(2p) = 1 and l(3d) = 2. This gives (−1)1+2 = −1, which
explains why all the terms and levels arising from this configuration were
all labelled odd above.

The parity of a configuration is important since it leads to a rigorous
dipole selection rule known as the Laporte rule. The Laporte rule states:

All electric dipole transitions connect states of opposite parity.

In other words (strong) transitions can only link configurations with even
to those with odd parity, and vice versa.

4.10 Terms and Levels in Complex Atoms

A single configuration can lead to several terms. These terms have differ-
ent energies. It is worth considering a few examples.

Example 1: The helium atom.

(1) The ground state is 1s2.
This is a closed shell, with L = 0 and S = 0, hence it gives rise to a
single, even parity term 1S, and level 1S0.
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(2) The first excited configuration is 1s2s.
This has l1 = l2 = 0 and hence L = 0,
but s1 = s2 = 1

2 giving both S = 0 (singlet) or S = 1 (triplet) states. The
energy ordering of atomics states is given by Hund’s rules. Hund’s
first rule governs ordering of terms with different spin multiplicities:

For a given configuration, the state with the maximum spin multiplicity
is lowest in energy.

So the 3S term (3S1 level) is lower in energy than the 1S term (1S0 level).
In practice the splitting between these terms is 0.80 eV.

(3) The next excited configuration is 1s2p, which has odd parity.
This has l1 = 0 and l2 = 1, giving L = 1;
again s1 = s2 = 1

2 , giving both S = 0 and S = 1 terms.
Following the rule above, the 3Po term is lower than the 1Po term,
in this case by 0.25 eV. The 3Po is also split into three levels: 3Po

0 , 3Po
1

and 3Po
2 .

Figure 5.2 depicts the energy levels of helium in a form known as a Gro-
trian diagram. The layout of these diagrams is discussed in Sec. 5.4.

Example 2: The carbon atom.

Start by considering the excited state configuration ls22s22p3p.
It is only necessary to consider the outer two electrons for which:

l1 = 1, s1 = 1
2 ,

l2 = 1, s2 = 1
2 .

These give L = 0, 1, 2 and S = 0, 1, which give rise to the following terms,
all with even parity: 1S, 3S,1P, 3P, 1D and 3D.

Now consider the ground state configuration of carbon ls22s22p2.
This configuration also has l1 = 1, s1 = 1

2 and l2 = 1, s2 = 1
2 .

However the Pauli Principle restricts which terms are allowed. For exam-
ple the term 3D includes the state:(

l1 = 1, m1 = +1, s1 = 1
2 , s1z = + 1

2

)
(
l2 = 1, m2 = +1, s2 = 1

2 , s2z = + 1
2

)
which is allowed when n1 = 2, n2 = 3, but is forbidden when n1 = 2, n2 = 2
by the Pauli exclusion principle since both electrons have precisely the
same quantum numbers.
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There are general methods of determining which terms are allowed
for a configuration with a multiply occupied open shell [see Bransden and
Joachain (2003) in further reading]. However there is a rule of thumb which
suffices for present purposes. It turns out that for systems with equivalent
electrons, that is, electrons which have the same n and l values, then the
sum L + S for these electrons must be even for the Pauli Principle to be
satisfied.

The ground state configuration of carbon, C I, thus gives terms 1S, 3P
and 1D. The 3P term has the highest spin and is thus the ground state term.
The other two terms have however, the same spin multiplicity, so which is
lower in energy? Hund’s second rule states:

For a given configuration and spin multiplicity, the state with the maximum
orbital angular momentum is the lowest in energy.

In the case of the ground state configuration of carbon, the 1D state
lies 1.42 eV lower in energy than the 1S state, but is 1.26 eV above the
3P state.

The examples above have only considered terms and have neglected
splitting according to J where it arises. This fine-structure splitting
becomes increasingly important for high Z (i.e. heavy) atoms.

The 3P ground state of carbon has L = 1 and S = 1, which lead to
J = 0, 1, 2. Allowed levels are thus 3P0, 3P1 and 3P2.
The energy order of these is given by Hund’s third rule:

The lowest energy is obtained for lowest value of J in the normal case and
for highest J value in the inverted case.

The normal case is a shell which is less than half filled, for example 2p2 as
in carbon. The inverted case is a shell which is more than half full such as
the 2p4 found in the ground state of atomic oxygen, which also has a 3P
ground state.

Thus for carbon one gets the energy order:

3P0 < 3P1 < 3P2 ,

whereas for oxygen, one gets

3P2 < 3P1 < 3P0 .

It should be noted that this situation does not arise for configurations
with half-filled shells since the lowest energy term, the only one for which
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Hund’s rules apply rigorously, always has L = 0 so that there is only a
single level.

To summarise the energy ordering of levels given by Hund’s rules:

(1) For a given configuration, the term with maximum spin multiplicity
lies lowest in energy;

(2) For a given configuration and spin multiplicity, the term with the
largest value of L lies lowest in energy;

(3) For atoms with less than half-filled shells, the level with the lowest
value of J lies lowest in energy;

(4) For atoms with more than half-filled shells, the level with the highest
value of J lies lowest in energy.

It should be noted that Hund’s rules are only applicable within L–S cou-
pling. Furthermore, they are only rigorous for ground states. However
they are in practice almost always followed for all states of atoms and
ions. They are therefore also useful for determining the energy ordering of
excited states.

Problems

4.1 What is the ground state configuration, term and level of the beryllium
atom, Be? One of the outer electrons in Be is promoted to the 3d orbital.
What terms and levels can this configuration have?

4.2 An excited helium atom has the configuration 3d2. What values of the
total orbital angular momentum quantum number, L, and total spin
angular momentum quantum number, S, are allowed? Use spectro-
scopic notation to give the terms which arise from the combinations
of L and S allowed under the Pauli exclusion principle. Use Hund’s
rules to suggest the energy order in which these terms are likely to
occur. For each term deduce the allowed values of the total angular
momentum quantum number, J. Hence give the full designation of
each level, including parity, using spectroscopic notation. Which level
has the lowest energy?

4.3 The symbol for a particular level is quoted as 4Fo
7
2
. What are the values

of L, S and J for this level? How many states does it have? What are
the other levels for this term?
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Use the value of S to determine the minimum number of electrons that
could give rise to this term. Suggest a possible configuration that could
give this term.

4.4 Symbols for particular levels of three different atoms are written as
1D1, 0D 5

2
and 3P 3

2
. Explain in each case why the symbol must be wrong.

4.5 The lithium atom Li has three electrons. For each of the following
configurations, what terms will be present: (a) 1s22p, (b) 1s2s3s, and
(c) 1s2p3p?

4.6 The 1s22s22p63s23p63d5p configuration of Ca is formed during recom-
bination. Derive the terms that arise from this configuration and
explain which you would expect to be lowest in energy. What levels
can arise from the lowest energy term?
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C H A P T E R F I V E

HELIUM SPECTRA

‘ Born of the Sun.’

– Stephen Spender, I Think Continually (1933)

5.1 He I and He II Spectra

Helium is the second-most abundant element after hydrogen compris-
ing more than 25% of the Universe’s atomic matter by weight. Helium
can exist in its atomic form, He I, as singly ionised He II, or as doubly
ionised He III. He III is of course the base helium nucleus He2+, which is
also the α particle formed during radioactive decay, and which has no
spectrum.

The He+ ion is a one-electron system. It therefore has a hydrogen-like
spectrum except that the binding of the energy levels and the transition
frequencies are scaled by a factor of Z2, where for helium, Z = 2.

Thus for example, the n = 2 – 1 Lyα for hydrogen is observed at
a wavelength of 1216 Å. The corresponding transition in He II, which
is also referred to as Lyα, is observed at 304 Å. This transition is
observable in absorption in the interstellar medium (ISM) where it is
difficult to measure helium abundances by other means. Such obser-
vations have been made from the extreme ultraviolet explorer (EUVE)
satellite.

As discussed in Chapter 3, hydrogen lines occur at

1
λ

= RH

(
1
n2

1
− 1

n2
2

)
. (5.1)

69
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For the Balmer series, n1 = 2, n2 = 3, 4, 5, . . . . For He II, similar lines in the
visible occur at

1
λ

= 4RHe

(
1
n2

1
− 1

n2
2

)
= RHe

[
1( n1
2

)2 − 1( n2
2

)2

]
, (5.2)

where RHe is the Rydberg constant for He+, which is intermediate in value
between RH and R∞ (see Sec. 3.7). Lines with n1 = 4 and n2 = 6, 8,10, . . .
are therefore almost coincident with the Balmer series. The shift due to the
reduced mass factor in the Rydberg constant can only be seen at high reso-
lution. However, intermediate lines with n2 = 5, 7, 9, . . . are also observed.
It was originally thought that this spectrum, which is known as the
Pickering series, was due to atomic hydrogen with half-integer quantum
numbers! The Pickering series can be observed in the spectra of O-stars.
Indeed the classification of O-stars depends on the relative strength of the
absorption by He II and He I in their atmosphere (see Fig. 5.1).

Emission lines of He II are also observed among the recombination
line series in a nebulae. However these emissions only come from the

Fig. 5.1. Spectra of early (O4 star HDE 269698), mid (O7 star AzV 232) and late
(O9 star Sk-66◦169) type O-supergiant stars showing the sensitivity of the subtypes
to the ratio of He I 4471 Å to He II 4542 Å absorptions. The spectra were recorded
using the Very Large Telescope (VLT) by P.A. Crowther et al. [see Astrophys. J. 579,
774 (2002)]. (P.A. Crowther, private communication.)
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region of nebula close to the central star where there are sufficient high-
energy, ultraviolet photons to ionise He+. He+ requires 54.4 eV, compared
to 13.6 eV which is needed to ionise H. He I recombination spectra also
come from a smaller physical region than the H II region as the ionisation
potential of He is 24.6 eV.

Strong He I emissions are observed from nebulae including the lines:

4471 Å 1s2p – 1s4d 3Po – 3D ,

5875 Å 1s2p – 1s3d 3Po – 3D ,

6678 Å 1s2p – 1s3d 1Po – 1D .

The 5875 Å line lies in the yellow and absorbs in the Sun. Observa-
tion of this previously unknown line in the Sun during the solar eclipse
of 1868 led Sir James Lockyer (1836–1920) to postulate the presence of
a new element: helium. He was widely ridiculed for his boldness but
was vindicated when Sir William Ramsay (1852–1916) isolated helium
in his laboratory at University College London more than twenty years
later.

Like hydrogen, transitions involving the ground state of He lie far
in the ultraviolet. For example, the He I 1s2 – 1s2p 1S – 1Po transition lies
at 584 Å. This transition is known as the He I resonance line. The phrase
‘resonance line’ is used to denote the longest wavelength, dipole-allowed
transition arising from the ground state of a particular atom or ion.

5.2 Selection Rules for Complex Atoms

Strong transitions are driven by electric dipoles. Electric dipole selection
rules are of two types: rigorous rules which must always be obeyed,
and propensity rules which, when violated, lead to weaker (forbidden)
transitions.

The rigorous selection rules which all electric dipole transitions, even
so-called forbidden ones, must satisfy are:

(1) ∆J must be 0 or ±1 with J = 0 ↔ 0 forbidden.
(2) ∆MJ = 0, ± 1.
(3) Parity changes i.e. even ↔ odd. This is the Laporte rule (Sec. 4.9).

All electric dipole transitions must obey these rules. There is an additional,
and more complex set of rules, which is satisfied by systems with a single
electron but not rigorously by complex atoms. Failure to satisfy these rules,



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch05

72 Astronomical Spectroscopy

which I will call propensity rules, does not completely rule out a transition
but generally makes it much weaker.

The propensity rules for electric dipole transitions, which lead to
stronger transitions if satisfied, are:

(4) The spin multiplicity is unchanged, ∆S = 0.
(5) Only one electron jumps, i.e. the configuration of the two states must

differ by only the movement of a single electron. This movement is
governed by the rules ∆n any and ∆l = ±1, thus:

2s2 ↔ 2s2p is allowed ;

2s2 ↔ 2s3d or 2s2 ↔ 3p2 is forbidden .

Configuration interaction (CI) weakens this rule since CI means that
the real wavefunction is a (small) mixture of different configurations.
For example, the ground state of Be, whose configuration is usually
written 1s22s2, is more precisely represented by 95% 1s22s2 mixed with
about 5% of the same symmetry configuration 1s22p2.

(6) ∆L = 0, ± 1, L = 0 ↔ 0 forbidden, thus:

1S ↔1 Po or 3D ↔ 3Po are allowed ;
1S ↔1 So or 3S ↔ 3Do are forbidden .

Note that it is possible to change l and not L, for example, 2p3p 1P ↔
2p3d 1Po is allowed. Such a transition is observed for C I.

A full list of selection rules are given in Table 5.1.
Electric dipole transitions which satisfy all the rigorous selection rules

as well as the propensity rules are referred to as allowed transitions. These
transitions are generally strong and have Einstein A coefficients which are
typically bigger than 106 s−1.

Photons do not change spin, so transitions usually occur between
terms with the same spin state, as expressed by the rule ∆S = 0. However,
relativistic effects mix spin states, particularly for high Z atoms or ions.
As a result of relativistic effects one can get (weak) spin changing transi-
tions; these are called intercombination lines. Intercombination lines are
denoted by one square bracket, for example:

C III] 2s2 1S – 2s2p 3Po at 1908.7 Å .

This transition is important because the C2+ 2s2p 3Po state is metastable,
i.e. it has no allowed radiative decay so that this transition determines the
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Table 5.1. Selection rules for atomic spectra. Rules 1, 2 and 3 must always
be obeyed. For electric dipole transitions, intercombination lines violate
rule 4 and forbidden lines violate rule 5 and/or 6. Electric quadrupole and
magnetic dipole transitions are also described as forbidden.

Electric dipole Electric quadrupole Magnetic dipole

1. ∆J = 0, ± 1 ∆J = 0, ± 1, ± 2 ∆J = 0, ± 1
Not J = 0 − 0 Not J = 0 − 0, 1

2 − 1
2 , 0 − 1 Not J = 0− 0

2. ∆MJ = 0, ± 1 ∆MJ = 0, ± 1, ± 2 ∆MJ = 0, ± 1

3. Parity changes Parity unchanged Parity unchanged

4. ∆S = 0 ∆S = 0 ∆S = 0

5. One electron jumps One or no electron jumps No electron jumps
∆n any ∆n any ∆n = 0
∆l = ±1 ∆l = 0, ± 2 ∆l = 0

6. ∆L = 0, ± 1 ∆L = 0, ± 1, ± 2 ∆L = 0
Not L = 0 − 0 Not L = 0 − 0, 0 − 1

lifetime of this state. Actually, the situation is more subtle than this. The 3Po

term splits into three levels: 3Po
0 , 3Po

1 and 3Po
2 . The electric dipole intercom-

bination line at 1908.7 Å is actually 1S0 – 3Po
1 . It has an A value of 114 s−1.

The transition 1S0 – 3Po
2 , which occurs at 1906.7 Å, is completely for-

bidden by dipole selection rules as ∆J = 2. It only occurs via a very weak
magnet quadrupole transition. The 1906.7 Å line is 105 times weaker than
the already-weak line at 1908.7 Å; it has an A value of 0.0052 s−1. These
two lines can be used to give information on the electron density, as dis-
cussed in Sec. 7.1. Finally the transition 1S0 – 3Po

0 is a J = 0 –0 transition,
which is completely forbidden by both dipole and quadrupole selection
rules. This transition is not observed.

Electric dipole transitions which violate the propensity rules 5 and/or
6 are called forbidden transitions. These are labelled by square brackets.
For example,

1906.7 Å [C III] 2s2 1S0 – 2s2p 3Po
2 ;

322.57 Å [C III] 2s2 1S0 – 2p3s 1Po
2 ;

are both forbidden lines of C2+. The former is a magnetic transition while
the latter is an electric dipole transition involving the movement of two
electrons. Forbidden transitions are generally weaker than intercombina-
tion lines.
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It is also possible to get transitions driven by higher electric multi-
poles or magnetic moments. The only important ones of these are electric
quadrupole and magnetic dipole transitions. The selection rules for these
transitions are also given in Table 5.1. Even when all the rules are satisfied,
electric quadrupole and magnetic dipole transitions are both much weaker
than the allowed electric dipole transitions. They are thus also referred to
as forbidden transitions.

Typical lifetimes, that is inverse Einstein A coefficients, for allowed
decays via each mechanism are

τdipole ∼ 10−8s, τmagnetic ∼ 10−3s, τquadrupole ∼ 1s .

These timescales mean that states only decay by forbidden transitions
when there are no decay routes via allowed transitions.

Finally it should be noted that even the rigorous selection rules given
above can be modified when nuclear spin effects are taken into considera-
tion. These result in rigorous selection rules for electric dipole transitions
based on the final angular momentum. In particular:

∆F must be 0 or ± 1 with F = 0 ↔ 0 forbidden .

It is only very rarely necessary to consider this.

5.3 Observing Forbidden Lines

States decaying only via forbidden lines live for a long time on an
atomic, if not an astronomical, timescale. Such states are called metastable
states.

Forbidden lines are often difficult to study in the laboratory as
collision-free conditions are needed to observe metastable states. In this
context it must be remembered that laboratory ultrahigh vacuums are sig-
nificantly denser than so-called dense interstellar molecular clouds. Astro-
physically, low density environments are common. In these environments
the time between collisions is very long and an atom in an excited state
has time to radiate even when it is metastable.

Emissions due to forbidden lines are important in hot, low density
regions such as H II regions, planetary nebulae, the solar corona and the
Earth’s aurora. Observing them gives direct information on the popula-
tions of excited levels. As the transitions are weak they have low optical
depth and therefore give reliable population information.
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Forbidden transitions are usually only important when an excited
state cannot decay via an allowed transition, i.e. when this state is
metastable. For this reason, forbidden lines are normally only important
for low-lying states since higher states nearly always have possible radia-
tive decay routes via allowed transitions. For neutral atoms or ones with
low ionisation, this means that forbidden transitions are often observed in
the infrared. Of course, this wavelength shifts with the level of ionisation
so that forbidden lines for ions occur throughout the visible, ultraviolet
and even at X-ray wavelengths (see Sec. 5.6).

One common source of forbidden transitions in the infrared arises
from the relaxation of excited terms within the ground state configuration
and levels within the ground state term. Such transitions are completely
dipole-forbidden by the Laporte rule and hence undergo weak magnetic
transitions instead.

5.4 Grotrian Diagrams

The German astrophysicist Walter Grotrian (1890–1954) invented a simple
diagrammatic means of representing the many states and transitions of
atoms and ions. These are called Grotrian diagrams and several of them
can be found in this book.

The standard structure of a Grotrian diagram is as follows:

(1) The vertical scale is energy. It starts from the ground state at zero,
and extends to the first ionisation limit. Sometime the binding energy,
expressed relative to the first ionisation limit, is given as the right-hand
vertical scale. Terms (levels) are represented by horizontal lines.

(2) States with the same term, or sometimes the same level if fine structure
effects are large, are stacked vertically and labelled by the principal
quantum number n of the outer electron. For example, He I singlet
states (see Fig. 5.2), with configuration 1snd appear in the column
headed 1D and are labelled by n = 3, 4, 5, . . . .

(3) Terms are grouped by spin multiplicity.
(4) States are linked by observed transitions with numbers giving the

wavelength of the transition, usually as an integer, in Å. Thicker lines
denote stronger transitions and forbidden transitions are given by
dashed lines.

There are some variations on this structure of the diagram accord-
ing to the composer and the system being considered. Grotrian diagrams
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Fig. 5.2. Grotrian diagram for He I. The running numbers denote the principal
quantum number of the active electron. The left-hand side of the figure is for ‘para’
singlet helium and the right-hand side is for ‘ortho’ triplet helium.

are useful for getting a feel for a particular spectrum but not suitable for
detailed or high accuracy work. A particularly comprehensive and useful
series of Grotrian diagrams for each element and ionisation stage has been
compiled by Bashkin and Stoner (see further reading).

Figure 5.2 gives the Grotrian diagram for He I. This diagram splits
into two: the left-hand side gives singlet (‘Para’) He, while the right corre-
sponds to triplet (‘Ortho’) He. The terms ortho and para, short for ‘ortho-
dox’ and ‘paradox’, arise from the spin multiplicity of the atom with the
ortho or orthodox states being three, 2S + 1 = 3, times as likely as the
2S + 1 = 1 para or paradox states. This terminology is not used for other
atomic systems but has been adopted for molecular spectra where it is the
nuclear rather than the electron spin multiplicities which give rise to dif-
fering weights in the spectrum.

The ortho and para states of He I are linked by very weak intercom-
bination lines, two of which are shown in Fig. 5.2. In particular, the 2 3S
state can only decay to the 1 1S ground state. This transition is dipole-for-
bidden by the Laporte rule. It decays via a magnetic dipole transition. The
transition is weaker than an allowed magnetic dipole transition since it is
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both spin-forbidden, as ∆S = 1, and involves an electron jump. It has A =
1.2× 10−4 s−1 which means the helium 1s2s 3S state has a lifetime of 8000 s.

5.5 Potential Felt by Electrons in Complex Atoms

In the orbital approximation, each electron moves in an effective potential,
Vi(ri) (see Sec. 4.2). Vi is complicated but aspects of its general form can be
understood by considering its behaviour as ri → 0 and as ri →∞.

Consider an atom or ion with N electrons and nuclear charge +Ze.
For simplicity assume that N ≤ Z. As the coordinate of the ith electron
gets very large (ri →∞), there are N − 1 electrons left near the nucleus. In
this regime the potential felt by this outer electron is given by:

Vi(ri)
r→∞−→ −Z

ri
+

(N − 1)
ri

= − (Z − N + 1)
ri

. (5.3)

For a neutral atom N = Z, and Vi(ri) →−r−1
i . Conversely as the ith electron

gets very close to the nucleus (ri → 0), the electron moves inside all the
other electrons and therefore feels the full nuclear charge.

Vi(ri)
ri→0−→−Z

ri
. (5.4)

This analysis does not solve the problem of the form of Vi(ri) but it
does give its limits:

−Z
r

< V(r) < −
(

Z − N + 1
r

)
. (5.5)

This is shown schematically in Fig. 5.3. It is tempting to interpolate
between the two limits shown on the figure but this would be wrong. In
practice, the shell structure of the atom introduces fluctuations into the
potential felt by the individual electrons at intermediate values of r.

If the outermost electron of an atom or ion lay entirely outside the
other electrons it would be quasi-hydrogenic and its binding energy
would be given by the expression

Enl � −R∞
Z2

eff

n2 , Zeff = Z − N + 1 . (5.6)

However penetration makes the potential more attractive. As discussed
in Sec. 4.4 and illustrated by Fig. 3.1, penetration is the ability of an outer
electron to penetrate the charge cloud of the inner electrons. This can be
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Average location of other (N−1) electrons

rV(r)

−(Z−N+1)

−Z

r

V(r) structured due to electron shells

Fig. 5.3. Approximate shape of the potential felt by a single electron in a complex
atom with N electrons. The vertical axis represents rV(r).

thought of as raising the value of Zeff felt by the outer electron, but it is bet-
ter to think of penetration as lowering the principal quantum number n:

Enl � −R∞
Z2

eff

ν2
nl

, (5.7)

where ν is known as the effective quantum number. It is useful to define
the effective quantum number in terms of n, and something called the
quantum defect, µnl, via the expression

νnl = n − µnl . (5.8)

As s orbitals penetrate more than p, p orbitals penetrate more than d, and
so forth, one finds in general that

Eno < En1 < En2 . . . ,

which means that

µn0 > µn1 > µn2 . . . .

Quantum defects are discussed in more detail in Sec. 6.1.

5.6 Emissions of Helium-Like Ions

Any ion with only two electrons is known as a helium-like ion. It turns
out that spectra of helium-like or K shell ions have become an important
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diagnostic because their characteristic spectra can give important physical
information about a hot environment. If a helium-like ion has one electron
excited to its n = 2 level, then the various states, which are all fairly close
in energy, can decay by the following routes:

W 1s2p – 1s2 1Po
1 – 1S0, resonance line,

X 1s2p– 1s2 3Po
2 – 1S0, magnetic quadrupole line,

Y 1s2p– 1s2 3Po
1 – 1S0, intercombination line,

Z 1s2s – 1s2 3S1 – 1S0, forbidden transition .

The letters are the standard labels for these transitions, an example of
which is given for O VII in Fig. 5.4; note that lines X and Y are close together
and are usually not separately resolved.

Careful monitoring of the relative intensities of these lines can give
information both on the temperature and density of the environment and
the ionisation mechanism involved. In particular the critical density nc (see
Sec. 2.6) of the transitions increases strongly with the nuclear charge, Z.
So, for example, nc of Si XIII is about 10000 times greater than nc of the
isoelectronic C V. This means that a large range of electron densities can be
studied by monitoring a variety of helium-like ions.

Figure 5.5 gives a simple Grotrian diagram for O VII which is helium-
like, and one of the species commonly observed. Its spectrum is also
observed in solar flares. The O VII resonance line lies at 21.6 Å, which is
in the X-ray region of the spectrum. At these wavelengths the transitions
depicted in the figure appear as a triplet as the intercombination doublet is
usually not resolved. These transitions lie close enough together for their
spectra to be recorded simultaneously by instruments on board satellites
such as the XMM-Newton. X-ray spectra are discussed in Chapter 8 where
Fig. 8.3 shows emission from He-like iron or Fe XXV.

Fig. 5.4. Helium-like oxygen, O VII, triplet X-ray spectra from the coronae of the
stars Procyon (left) and Capella (right). See the text for an explanation of the labels
for each line. Spectra were recorded using the satellite Chandra. [Adapted from
S.M. Kahn et al., Philos. Trans. R. Soc. Lond., Ser A 360, 1923 (2002).]
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23Po 

Fig. 5.5. Term diagram showing for helium-like oxygen, O VII, showing transi-
tions from the 1s2l states.

Problems

5.1 A transition of hydrogen-like helium, 4He+, is observed close to
hydrogen Hα. Between which states of He+ is this transition? Estimate
the wavenumber of this transition, stating any assumptions made.

5.2 Emission of He II are observed at 1640 Å. To what transitions does
this radiation correspond to? What other emission lines must also be
present in the spectrum?

5.3 A nebula is composed only of hydrogen and helium, and consists of
four shells around a hot, central star. In shell A, closest to the star,
all atoms are fully ionised; in shell B, helium and hydrogen are both
singly ionised; shell C is an H II region with neutral helium; shell D,
which is furthest from the central star, is an H I region. Explain what
(if any) recombination line spectra you would expect to observe from
each region.

5.4 The helium-like ion N VI is formed in the hot intergalactic medium
with configurations 1s2s and 1s2p. What levels can be formed from
these configurations? By what mechanism would you expect each
level to emit to the 1s2 ground state? Order each of these transitions
according to its approximate strength.

5.5 The lithium atom, Li, has three electrons. Consider the following con-
figurations of Li: (a) 1s22p, (b) 1s2s3s, (c) 1s2p3p. By considering the
configurations only, state which of the three sets of transitions between
the configurations (a), (b) and (c) are electric dipole allowed and elec-
tric dipole forbidden transitions?
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C H A P T E R S I X

ALKALI ATOMS

Lithium, sodium, potassium and rubidium all have ground state electronic
structures which consist of one electron in an s orbital outside a closed
shell. This single ‘optically active’ electron gives these atoms, the alkali
metals, similar chemical behaviour and fairly simple spectra. Even so, the
presence of the inner or core electrons lead to a number of complications
which are not present in the spectrum of simple one-electron atoms.

6.1 Sodium

Sodium, Na, has Z = 11 and a ground state configuration of 1s22s22p63s1.
If the outer 3s electron was completely screened then it would feel an effec-
tive nuclear charge Zeff = 11− 10 = 1 and its energy levels would obey the
Rydberg formula. In practice, the 3s electron penetrates and reduces the
effective quantum number of the electron giving a revised formula:

Enl = −R∞
Z2

eff

(n − µnl)2 , (6.1)

where µnl is the quantum defect. The quantum defect formula was origi-
nally proposed by Rydberg. Unlike his hydrogenic formula, Eq. (3.9), this
depends on l as the degree of electron penetration is l-dependent: in par-
ticular, electrons with low l penetrate more and hence have lower energy.
An advantage of this form is that usually µnl only depends weakly on n,
allowing values of the quantum defect to be transfered between states with
different n but the same l. Table 6.1 gives values of the quantum defect for
low-lying states of sodium. Note the µ43 ≈ 0 means that there is effectively
no penetration for f electrons; this is also true for electrons with l greater

81
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Table 6.1. Quantum defects µnl for sodium.

l n = 3 n = 4 n = 5 n = 6 n = ∞

0 s 1.373 1.357 1.353 1.351 1.348
1 p 0.883 0.867 0.862 0.857 0.855
2 d 0.012 0.013 0.014 0.014 0.015
3 f — 0.000 0.000 0.000 0.000
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Fig. 6.1. Grotrian diagram for sodium. Transitions are labelled with more than
one wavelength due to the effects of fine structure.

than 3. Use of the quantum defects for sodium gives a hydrogen-like level
structure with splitting on l (and J) see Fig. 6.1.

Worked Example: The spectrum of S VI, sodium-like sulphur, shows a
series of ns – 3p transitions with the series limit at 604310 cm−1. The first
two transitions in this series lie at 257109 cm−1 and 398238 cm−1. Estimate
where the third transition in the series should lie.
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3p
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ns 2S np 2Po

3s

?

257109 cm-1

398238 cm-1

Series limit
604310 cm-1

Fig. 6.2. Simplified Grotrian diagram for S VI showing transitions discussed in
the worked example.

This data is best shown diagrammatically as can be seen from Fig. 6.2.
Using this figure, the energy of the 4s level, E(4s) is 257109 − 604310 =
−347201 cm−1 and E(5s) = 398238−604310 =−206072 cm−1. For the outer
electron in S5+, Zeff = 6, so the quantum defects are given by the expression

µ(ns) = n − 6

√
R∞

−E(ns)
.

Using the values of E(4s) and E(5s) determined above gives µ(4s) = 0.627
and µ(5s) = 0.622. Assuming µ(6s) � 0.62 gives E(6s) =−136487 cm−1 and
hence the 6s – 3p transition at 467823 cm−1. In practice, this transition is
observed at 467949 cm−1. Note that E(ns) is negative since it is binding
energy which goes to zero at the ionisation limit.

The Grotrian diagram for sodium, Fig. 6.1, shows that transitions with
∆l = ±1 and ∆L = ±1 dominate the spectrum. However, as implied by the
multiple wavelengths given for most transitions, these lines are actually
split into components.
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Table 6.2. Spectral series of sodium.

Series name Transitions n values Multiplicity

Sharp n 2S 1
2
→ 3 2Po

3
2 , 1

2
n = 4, 5, 6, . . . doublets

Principal n 2Po
3
2 , 1

2
→ 3 2S 1

2
n = 3, 4, 5, . . . doublets

Diffuse n 2D 5
2 , 3

2
→ 3 2Po

3
2 , 1

2
n = 3, 4, 5, . . . triplets

Fundamental n 2Fo
7
2 , 5

2
→ 3 2D 5

2 , 3
2

n = 4, 5, 6, . . . triplets

Consider the spectrum of sodium and, in particular, emissions into
the n = 3 shell of sodium. The spectral series, most of whose transitions
lie in the visible, are given in Table 6.2. These series are named after their
spectral appearance rather than their discoverers. Note the initial letters of
the names of each series; these gave rise to the use of the notations s, p,
d and f for orbital angular momentum states l = 0,1, 2 and 3 respectively,
which of course, are the corresponding orbital angular momenta of the
emitting states. Orbitals with l > 3 are simply labelled alphabetically, with
the omission of the letter j.

As noted in Table 6.2, each member of each series is split into more
than one line. These splittings are large enough to be resolved with a high-
resolution spectrograph and, as discussed later in this chapter, are very
important observationally. However before discussing their astronomical
importance it is necessary to understand the physics that gives rise to the
different multiplets, and in particular why some series give two lines (dou-
blets) and others three lines (triplets).

6.2 Spin-Orbit Interactions

Both the orbital angular momentum L and spin angular momentum S
give rise to an internal magnetic field within the atom. It is the magnetic
interactions between the spin and orbital motions of the electrons which
split terms into levels.

The most important interaction is between the spin magnetic moment
of an electron which is given by

µ
s
= −2

µB

�
ŝ , (6.2)

and the magnetic field due to the orbital motion of the electron. This is the
only source of spin-orbit interaction considered here.
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Equation (6.2) defines the spin magnetic moment in terms of the Bohr
magneton µB, where

µB =
e�

2me
=

1
2

a.u. = 9.27× 10−24 JT−1 .

The Bohr magneton is the basic unit, or quantum, of magnetic moment.
The magnetic field due to the orbital motion of an electron is

B =
�

2

2
v × r
c2r

dV
dr

, (6.3)

where V(r) is the potential experienced by the electron. As the orbital
angular momentum can be defined in terms of the velocity v by the
expression

l = mer × V , (6.4)

B = −�
2

2
l

merc2

dV
dr

. (6.5)

The factor of c−2 means that the resulting magnetic field, and hence the
energy shift, is small.

The energy shift due to interactions is given by −µ ·B. The spin-orbit
interaction contribution to the Hamiltonian operator can be considered as
a perturbation to the standard atomic Hamiltonian used in Eq. (4.1). It can
be written as

ĤSO = + f (r)l̂ · ŝ . (6.6)

For a many-electron atom one can write

ĤSO =
A(L, S)

�2 L̂ · Ŝ , (6.7)

where L̂ and Ŝ are the total orbital and spin angular momentum operators.
A(L, S) is a constant for a given term, that is a given configuration and
values of L and S. The spin-orbit coupling is still proportional to r−1 dV

dr ,
which becomes r−3 for a pure Coulomb potential. This means that A is
largest for states with small n.

The energy shifts which result from spin-orbit interaction can be eval-
uated by considering the expectation value of the spin-orbit Hamiltonian:

∆ESO =
Z

Ψ∗ĤSOΨdτ , (6.8)
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where the integral runs over all space and spin coordinates of the
electronic wavefunction Ψ. The wavefunction Ψ for a complex atom is
usually not known. However within a non-relativistic framework, the
quantum numbers E, L, S, J and MJ are constants of motion and can
therefore be taken as known. In particular the angular momentum quan-
tum numbers are obtained as eigenvalues of the following operator
equations:

L̂2Ψ = L(L + 1)�2Ψ ,

Ŝ2Ψ = S(S + 1)�2Ψ , (6.9)

Ĵ2Ψ = J(J + 1)�2Ψ .

Furthermore, by definition the angular momentum operators obey the
relationship

Ĵ = L̂ + Ŝ . (6.10)

This means that

Ĵ
2 = (L̂ + Ŝ) · (L̂ + Ŝ)

= L̂
2 + Ŝ

2 + 2L̂ · Ŝ

∴ L · S =
1
2
(

Ĵ
2 − L̂2 − Ŝ2) . (6.11)

One can use this operator relationship to evaluate the effect of L̂ · Ŝ acting
on the wavefunction:

L̂ · ŜΨ =
1
2
(

Ĵ2 − L̂2 − Ŝ2)Ψ

=
�

2

2
[J(J + 1)− L(L + 1)− S(S + 1)]Ψ . (6.12)

The expression for the energy shift due to spin-orbit coupling is therefore

∆ESO =
A(L, S)

2
[J(J + 1) − L(L + 1)− S(S + 1)] . (6.13)

This derivation follows the work of Alfred Landé (1888–1976).
Note that Hund’s third rule (see Sec. 4.10), means that A(L, S) is posi-

tive for an atom with a less than half-full shell, such as sodium, and nega-
tive for an atom whose shell is more than half full. Use of Eq. (6.13) is best
illustrated by example.
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∆E = +A/2

∆E = -A

Level

Fig. 6.3. Spin-orbit effects in the 3 2P term of sodium. ∆E gives the shift of the
level relative to the term.

Worked Example 1: The Sodium D Lines.
The transitions 3 2Po

1
2 , 3

2
→ 3 2S 1

2
in Na I lie in the orange part of the visible

spectrum. The 3p (3 2P) term in sodium is split by spin-orbit interaction,
as given in Fig. 6.3.

The sodium D lines are so called because they were so labelled by
Fraunhofer in his original solar spectrum (see Fig. 1.1). However, the D line
is actually a doublet and the components are usually labelled:

D2 5890 Å 3p – 3s 3 2P 3
2

– 3 2S 1
2

,

D1 5896 Å 3p – 3s 3 2P 1
2

– 3 2S 1
2

.

Worked Example 2: The ground state of carbon.
The ground state of carbon has the term 3P (see Sec. 4.10), and levels given
by J = 0,1, 2. The spin-orbit terms are evaluated in Table 6.3. As A is pos-
itive for C I, this gives the energy ordering 3P2 > 3P1 > 3P0. Figure 6.4
illustrates the observed splittings.

It can be seen from Fig. 6.4 that the splittings are not exactly in the 2:1
ratio implied by the values in Table 6.3. This is because the treatment given
above is highly simplified. There are many other small (magnetic) interac-
tions which need to be considered in a full treatment. However, for low
Z atoms and ions, the splitting between the levels approximately follow
the intervals given by Eq. (6.13) or what is called the Landé interval rule.

Table 6.3. Spin-orbit interaction terms in the ground
state 3P term of the carbon atom.

Level L S J 1
2 [J(J + 1) − L(L + 1) − S(S + 1)]

3P2 1 1 2 +1
3P1 1 1 1 −1
3P0 1 1 0 −2
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∆Ε = −Α

∆Ε = +Α

Observed splittingLevel

Fig. 6.4. Spin-orbit effects in the ground 3P term of carbon. ∆E gives the shift of
the level relative to the term as predicted by Landé theory; splittings measured in
the laboratory are given for comparison.

The value of A increases rapidly with ion charge, approximately as
Z4

eff. Thus, for example, the ground state of C I, considered above, has
A ≈ 16 cm−1, whereas the isoelectronic O III ion has A ≈ 95 cm−1 in its
3P ground state.

6.3 Fine Structure Transitions

The different transitions between components of spin-orbit states are
called ‘fine structure transitions’. The important selection rule for these
transitions is ∆J = 0, ± 1 with the exception that J = 0 ↔ 0 transitions are
not allowed.

Following this rule, the transition Na 3 2D 5
2 , 3

2
→ 3 2Po

3
2 , 1

2
has three com-

ponents because:

2D 5
2
→ 2Po

3
2
, 2D 3

2
→ 2Po

3
2

and 2D 3
2
→ 2Po

1
2

are all allowed but
2D 5

2
→ 2Po

1
2

is not .

The three allowed transitions give rise to a triplet structure (see Fig. 6.5).
The strength of the individual fine structure transitions is given by a

degeneracy factor times the line strength. Within a non-relativistic treat-
ment, the line strength is determined completely by the terms involved
and is therefore the same for all the fine structure transitions. Thus the
degeneracy factor gives the relative strength of the fine structure individ-
ual components. The actual formula for these degeneracy factors depends
on the angular momentum quantum numbers of the upper and lower lev-
els. A general formulation is fairly complicated and only specific answers
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Fig. 6.5. The sodium 3 2D – 3 2Po triplet, g = 2J + 1 gives the statistical weight of
each level.

will be quoted here. Tables giving the ratios for all cases can be found in
Allen’s Astrophysical Quantities (see further reading).

Using these tables the relative strength of the triplet 2D 5
2 , 3

2
→ 3 2Po

3
2 , 1

2

transition discussed above is

2D 5
2
→ 2Po

3
2

: 2D 3
2
→ 2Po

3
2

: 2D 3
2
→ 2Po

1
2

of 10 : 4 : 2

This corresponds to a ratio of 5:2:1. Any spectrum observed in optically-
thin conditions should show these ratios. If the spectrum is optically
thick then a ratio closer to 1:1:1 will be observed. Thus the intensity ratio
between these transitions give direct information on the optical depth of
the spectrum.

6.4 Astronomical Sodium Spectra

The sodium resonance line, Na I 3s – 3p, is prominent in absorption in
the solar spectrum (see Fig. 6.6), and is known as the sodium D spec-
trum. For an S–P doublet the intrinsic ratio of line intensities is always
2:1. When unsaturated, or optically thin, the strength of the absorption
by the doublet that make up this line should be such that the D1 line is
twice as strong as the D2 line (see Fig. 6.7). This ratio is approximately
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reproduced in Fig. 6.6 which implies that the lines are optically thin in the
Sun. The sodium D lines are also observed in absorption against starlight
in the interstellar medium. The D lines are usually very saturated in such
spectra.

Fig. 6.6. A solar spectrum reflected from the Moon just before a lunar
eclipse taken at the University of London Observatory. (S.J. Boyle, private
communication.)

D2 D1

g =  4 

g = 2

g = 2 

32P3/2

5896 Å  5890 Å  

o

32P1/2

32S1/2

o

Fig. 6.7. The sodium D lines, g = 2J + 1, give the statistical weight of each level.



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch06

Alkali Atoms 91

Figure 6.8 shows the sodium D lines recorded in absorption. This
spectrum shows interstellar medium (ISM) sodium ground state atoms
absorbing against light from reddened stars. The example shown is
strongly saturated as the intensity ratio for the two D lines is almost equal.

Figure 6.8 also shows two features which are called diffuse inter-
stellar bands (DIBs). DIBs are ubiquitous ISM absorption features which
are present in all reddened lines of sight. They are broader than atomic
lines and therefore are almost certainly molecular in origin. There have
been many proposed assignments for these features, most of which have
been proved to be incorrect and none of which are completely accepted.
DIBs have been observed since the 1920’s and the long-running failure to
resolve the DIBs problem has been described by Patrick Thaddeus as ‘the
scandal of modern astronomy’.

Besides the sodium D lines, the Na I 3s – 4p doublet at 3302 Å can also
be observed in absorption in the ISM. These transitions are much weaker

Fig. 6.8. Interstellar absorption by the sodium D lines recorded towards
HD 97950 which is the central object in compact galactic cluster NGC 3603,
recorded using the Anglo-Australian Telescope. Note the two unassigned absorp-
tion features which are due to diffuse interstellar bands. [Reproduced from
W.B. Somerville and J.C. Blades, Mon. Not. R. Astron. Soc. 192, 719 (1980).]
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than the D lines, A(3s – 4p) = 2.8× 106 s−1, compared to A(3s – 3p) = 6.2×
107 s−1. This means that the 3s – 4p doublet can be used when D lines are
saturated. However they lie in a difficult spectral region where there are
many telluric (i.e. atmospheric) features due to ozone.

Higher transitions of sodium are often also observed and provide
important spectral markers in the atmosphere of cool stars. Figure 6.9 shows
the spectrum of an L-subdwarf star, a cool star with a mass about 8% of our
Sun. Absorption features due to Na I, K I and Rb I are clearly visible in the
spectrum along with much more complicated molecular features.

All the alkali metal features appear to be doublets. In fact the Na I

absorption features arise from a triplet 3p – 3d transition:

8183.26 Å 3 2Po
1
2

– 3 2D 3
2

;

8194.79 Å 3 2Po
3
2

– 3 2D 3
2

;

8194.82 Å 3 2Po
3
2

– 3 2D 5
2
.

Fig. 6.9. Spectrum of the L-subdwarf star LSR 1610–0400 showing clear spectral
features due to Na I, K I and Rb I as well as diatomic molecules CaH, TiO, CrH and
FeH, and water. [Reproduced from S. Lépine, R.M. Rich and M.M. Shara, Astrophys.
J. 591, L49 (2003).]
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This appears as a doublet since the splitting in the upper 3 2D term is too
small to be resolved.

The K I and Rb I transitions both belong to the resonance line which is
a doublet in each case:

K I 7664.91 Å 4 2S 1
2

– 4 2Po
3
2

;

K I 7698.97 Å 4 2S 1
2

– 4 2Po
1
2
.

Rb I 7800.27 Å 5 2S 1
2

– 4 2Po
3
2

;

Rb I 7947.60 Å 5 2S 1
2

– 4 2Po
1
2
.

The significantly larger splitting in the Rb I resonance line is due to the
larger spin-orbit effects in this heavy atom. Indeed the transitions of all
three species give a nice illustration of the variation of spin-orbit effects
with principal quantum number n, and atomic number Z.

6.5 Other Alkali Metal-Like Spectra

There are a number of astronomically important ions whose ground states
consist of a single s electron outside a closed shell. These ions have spectra
similar to those of the alkali metals. Examples include:

Ca II or potassium-like calcium

The transitions

H line: 4 2S 1
2

– 4 2Po
1
2

at 3968.47 Å,

K line: 4 2S 1
2

– 4 2Po
3
2

at 3933.66 Å,

are seen in the solar spectrum. Indeed the labels ‘H’ and ‘K’ are due to
Fraunhofer. These lines absorb strongly in cool stars (see Fig. 6.10). The H
line is often blended with the hydrogen Balmer line Hε at 3970.07 Å. High-
resolution studies of the structure of K line absorption profiles observed in
the Sun can give detailed information on the vertical distribution of Ca+

in the solar chromosphere.
Calcium has an ionisation potential of 6.1 eV, significantly lower than

hydrogen. This means that Ca+ is found in the ISM, where it can be
observed unblended with Hε, since Hε involves a transition between two
excited states, where such excited state lines are not present in the cold ISM.
The unsaturated intensity ratio of the K to H line in absorption is 2 to 1, as
found for the Na D lines, as this is a general property of S–P doublets.
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Fig. 6.10. High-resolution spectrum of the cool, hydrogen-rich white dwarf star
WD 1633+4333 showing Ca II H and K lines, recorded using the Keck Telescope.
[Adapted from B. Zuckerman et al., Astrophys. J. 596, 477 (2003).]

Ca II also has a strong triplet transition in the red, sometimes referred to as
the Ca T lines. These lines are:

8498.0 Å 4 2Po
3
2

– 3 2D 3
2

,

8542.1 Å 4 2Po
3
2

– 3 2D 5
2

,

8662.1 Å 4 2Po
1
2

– 3 2D 3
2
.

Absorptions due to the Ca T lines are clearly visible in the atmosphere of
cool stars where they are used as an important diagnostic test of metallic-
ity, the proportion of atomic species heavier than helium (see Fig. 6.11).

Mg II or sodium-like magnesium

The transitions:

2802.7 Å 3 2S 1
2

– 3 2Po
1
2

,

2795.5 Å 3 2S 1
2

– 3 2Po
3
2

,

lie in the ultraviolet and so have to be observed by satellite. These lines
can be routinely monitored by the Hubble Space Telescope (see Fig. 6.12).
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Fig. 6.11. Ca II triplet red absorption spectra in stars HD 115444 (upper) and
HD 102870 (lower) recorded at the Observatoire de Haute Provence. HD 102870
is an F-type star and has a significantly higher abundance of metals than K-star
HD 115444. These give rise to the other weaker features. [Reproduced from
T.P. Idiart, F. Thévenin and J.A. de Freitas Pachieco, Astron. J. 113, 1066 (1997).]

Fig. 6.12. Ultraviolet interstellar Mg II absorption-line measurements for the sight
line towards O-star µ Columbae, obtained with the Hubble Space Telescope.
[Adapted from J.C. Howk, B.D. Savage and D. Fabian, Astrophys. J. 525, 253 (1999).]
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Mg II lines are observed as strong absorptions in stellar atmosphere and
in the ISM, and as emissions from circumstellar shells. If these lines are
saturated, the weaker transitions

1240.4 Å 3 2S 1
2

– 4 2Po
1
2

,

1239.9 Å 3 2S 1
2

– 4 2P 3
2

,

can be monitored instead.

C IV or lithium-like carbon

The transitions

1550.8 Å 2 2S 1
2

– 2 2Po
1
2

,

1548.2 Å 2 2S 1
2

– 2 2Po
3
2

,

were also extensively studied by the International Ultraviolet Explorer
(IUE) (see Fig. 6.13). These lines are very prominent in emission from cir-
cumstellar shells and quasars, and can also be seen in absorption.

Fig. 6.13. C IV emission and absorption lines towards Q 00135.01–4001 recorded
using the International Ultraviolet Explorer satellite. This figure illustrates three
types of absorption lines found in quasi-stellar objects (QSOs). Type A, the
broad trough about λ4230; Type B, the sharp pair of lines at z ∼ 1.86; and four
Type C doublets at Z = 1.62, 1.76, 1.78 and 1.83. [Adapted from R.J. Weymann,
R.F. Carswell and M.G. Smith, Ann. Rev. Astron. Astrophys. 19, 41 (1981).]
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All the above lines show the characteristic fine structure patterns of
the alkali metals. This fine structure behaviour has itself been the sub-
ject of extensive recent studies to try and address the question of whether
physical constants remain constant with time. The fine structure splittings
all depend on a dimensionless physical constant called the ‘fine structure
constant’, whose value, in atomic units, is simply the inverse of the speed
of light. By measuring fine structure splittings for a large range of red-
shifts, it is possible to determine the value of the fine structure constant
at different epochs. The present evidence point towards a gradual change
in this constant with time suggesting that the physical constants in our
Universe did not always have today’s values. However this result awaits
confirmation.

Problems

6.1 By considering the levels that arise from the following configurations
and dipole selection rules, determine what spectral lines would be
produced in the following transitions:

(a) Na I 3p – 4d,
(b) Na I 3d – 5f,
(c) Na I 4s – 4d,
(d) K I 4s – 4p.

Comment on the possible observability of these transitions in different
astronomical locations.

6.2 A series of transitions in atomic potassium consists of emissions
from several np levels to the 4s atomic ground state. Transitions
are observed at 12985 cm−1 when n = 4; 24701 cm−1 when n = 5;
28999 cm−1 when n = 6. The series limit, which can be assumed to
be the same as the ionisation potential of the 4s level, is at 35010 cm−1.
Calculate the quantum defects of the 4p, 5p and 6p levels. Hence esti-
mate the wavenumber of the corresponding n = 7 transition.

6.3 The potassium transitions shown in Fig. 6.9 are a doublet linking
the ground state to the 4 2Po

3
2

and 4 2Po
1
2

levels. The two lines lie at
764.494 nm and 769.901 nm, respectively. Use this information to
calculate the constant of proportionality, A(L, S), in the expression for
the spin-orbit interaction energy, Eq. (6.13).

6.4 Observations are made of atomic sodium emitting from its
1s22s22p64d configuration to its 1s22s22p63p configuration. At high
resolution, three transitions are observed. Label these transitions using
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spectroscopic notation. A lower resolution survey spectrum only
resolves the Na 4d – 3p emission as a single line. What other Na emis-
sion lines must be present in the spectrum? Suggest an astronomical
location where the Na 4d – 3p transitions might be observed. An astro-
nomical observation resolves all three transitions in absorption but
finds them to be of approximately equal intensity. Can one determine
the column density of Na atoms?

6.5 Configurations of triply ionised carbon, C3+, can be written 1s2nl1. In
terms of R∞ and the quantum defect, give an expression for the energy
levels of this system. Briefly explain the physical significance of the
quantum defect and how it depends on n and l.
The ionisation energy of C3+ is 520178 cm−1 in its 1s22s1 ground state
and is 217329 cm−1 in the 1s23s1 state. Estimate the ionisation energy
of the 1s24s1 state of C3+.

6.6 The 1s22s22p3 ground state configuration of O+ (oxygen-like nitrogen)
leads to three terms: 4So, 2Po and 2Do .

(a) What energy order would you expect the terms to be in?
(b) Give the levels for each term in full spectroscopic notation.
(c) Assuming a spin-orbit splitting constant A′ = 30 cm−1, sketch the

pattern of level splitting for each of the doublet terms.

6.7 In spectroscopic notation an atom has a level which is designated 3Fo
2 .

Explain the meaning of this symbol and give values for the angular
momenta it represents. What other levels arise from the same term?
Suggest a configuration of atomic carbon that could give rise to this
level.
The 3Fo

2 level can emit to levels 3P2, 3Po
2 , 1D3 and 3D3. Assuming elec-

tric dipole selection rules, order these transitions by their probable
strength, giving your reasons.
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SPECTRA OF NEBULAE

‘ Apparelled in celestial light’

– William Wordsworth, Intimations of Immortality (1807)

Nebulae often have particularly rich spectra (see Figs. 7.1 and 7.2 for exam-
ples). The spectra contain a wealth of information and can allow pictures
to be built up of the different regions involved. The spectra of nebulae
largely involve atomic emissions. These emissions are driven by a number
of different physical mechanisms which are responsible for creating atoms
and ions in excited states which allow them to emit. Each mechanism has
a different spectral signature. The primary mechanisms are:

Electron collisions: electron collisions largely populate low-lying excited
states. Excitations are essentially thermal in nature and depend on the elec-
tron temperature Te.
Recombination: the cascade of emissions following the recombination of
an electron with an ion leads to emissions from more highly-excited states
than electron collisions.
Optical pumping (or resonance-fluorescence): a special mechanism which
depends on the detailed physics of the system being observed. As discussed
below, optical pumping is characterised by rather specific line emissions.

7.1 Nebulium

In 1918, extensive studies of the emission spectra of nebulae found a series
of lines which had not been observed in the laboratory. Particularly strong

99
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Fig. 7.1. Optical spectra of NGC 6153 from 3540 to 7400 Å, obtained for a deep
(10-minute) exposure using the ESO 1.52 m telescope in Chile. The two spectra
plotted are (a) obtained by uniformly scanning the long-slit across the entire neb-
ula, and (b) taken with a fixed slit centred on the central star. [Reproduced from
X.-W. Liu et al., Mon. Not. R. Astron. Soc. 312, 585 (2000).]

were features at 4959 Å and 5007 Å. For a long time this pair could not
be identified and, inspired by Lockyer’s success with helium, these lines
were attributed to a new element, ‘nebulium’.

Ten years after their original observation, Ira Bowen (1898–1973) found
the true explanation. Bowen realised that in the diffuse conditions found
in nebulae, atoms and ions could survive a long time without undergoing
collisions. Indeed, under typical nebula conditions the mean time between
collisions is in the range 10–10000 s. This means that there is sufficient
time for excited, metastable states to decay via weak, forbidden line emis-
sions. These lines could not be observed in the laboratory where it was not
possible to produce collision-free conditions over this long timeframe.

Bowen identified the doublet as transitions within the 1s22s22p2

ground state configuration of O2+:

5006.84 Å [O III] 1s22s22p2 1D2 – 3P2 ,

4958.91 Å [O III] 1s22s22p2 1D2 – 3P1 .
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Fig. 7.2. Continuum-subtracted spectra of planetary nebula NGC 6153 from 4000
to 4960 Å obtained using the ESO 1.52 m telescope in Chile. The spectra show the
rich recombination-line spectra from C, N, O and Ne ions. The upper spectrum
was obtained by uniformly scanning the entire nebular surface using a narrow
long-slit, and the lower one was obtained with a fixed slit centred on the central
star. The spectra were normalised such that the flux of Hβ = 100. [Reproduced
from X.-W. Liu et al., Mon. Not. R. Astron. Soc. 312, 585 (2000).]
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Such transitions are strongly forbidden for electric dipoles by the Laporte
rule. They only occur as weak magnetic dipole transitions. Even for
magnetic dipole lines these transitions are weak as they are also spin-
changing, intercombination transitions. They have Einstein A coefficients
of 1.8× 10−10 s−1 and 6.2× 10−11 s−1, respectively. The line

4931.23 Å [O III] 1s22s22p2 1D2 – 3P0

is even weaker since this is magnetic dipole-forbidden and occurs as an
electric quadrupole transition with A = 2.4× 10−14 s−1.

Other ‘nebulium’ lines turned out to be due to [O II] and [N II] forbid-
den transitions.

The forbidden spectrum of the O2+ ion, [O III], are often strong in neb-
ulae. There are a number of [O III] transitions within the ground state con-
figuration of O2+ 1s22s22p2 (see Fig. 7.3). As shown in Sec. 4.10, 2p2 has
terms 3P, 1D, 1S in that energy order. All transitions between these terms

λ4959λ5007

λ4363

λ2321

1D2

1S0

J = 2
1
051.8 µm

88.44 µm 3PJ

Fig. 7.3. [O III] transitions within the O2+ ground state configuration 1s22s22p2.
All transitions are electric dipole-forbidden by the Laporte rule.
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are strongly dipole-forbidden by the Laporte rule. The observed transi-
tions are therefore electric quadrupole or magnetic dipole ones.

The excited terms associated with the ground state configuration are
populated by electron collisions. The 1S term is higher in energy and there-
fore requires collisions with more energetic electrons to be populated. This
line decays via an electric quadrupole transition emitting green light famil-
iar from the earth’s aurora

4363.2 Å [O III] 1s22s22p2 1S0 – 1D2 .

The emission rate from 1D relative that to 1S depends directly on the
electron temperature Te. To interpret these data it is necessary to know
from laboratory studies not only the relevant transition probabilities for
the observed lines but also the branching ratios, which give the propor-
tion of ions which decay via these transitions as opposed to the alter-
native decay routes which also exist. With this information the ratio of
the unsaturated, observed line strengths can be used to give a mea-
sure of Te.

[N II] is also C-like and therefore has a similar structure to [O III]. [N II]
can also be used to measure Te. In the [O III] and [N II] examples, the upper
states have different energies but similar lifetimes. Together they provide
a useful thermometer. Other transitions can provide a measure of electron
density.

A good example of this is the C III doublet at 1907 and 1909 Å.
These two transitions both involve the same configurations but while the
stronger transition,

1908.73 Å C III] 2s2 1S0 – 2s2p 3Po
1

is an intercombination line with Einstein A coefficient of 114 s−1, the other
weaker line,

1906.68 Å [C III] 2s2 1S0 – 2s2p 3Po
2

is completely electric dipole-forbidden as ∆J = 2. This transition occurs as
a very weak magnetic quadrupole transition with A = 0.005 s−1. The huge
difference in lifetime for the two transitions is reflected in their critical
density and hence the relative strength of the two lines can be used as a
sensitive probe of electron density.
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7.2 The Bowen Mechanism

In Planetary Nebulae (PN), many emission lines of O III can be observed at
visible wavelengths. Some of these transitions are between excited states
of O2+ which are far too high in energy to be populated by collisions. In
particular there is a whole series of lines in the 3100–3800 Å region (see
Fig. 7.5). These correspond to electric dipole allowed transitions of O III

but between high-lying states.
The 3s – 3p lines which lie in the 3100–3800 Å region follow as a result

of a cascade from 3p – 3d transitions. There therefore has to be some non-
thermal mechanism whereby the 1s22s22p3d configuration is preferen-
tially populated. Bowen realised that the 3Po

2 level of this configuration
can be populated through an accidental resonance. The He II Lyα line is at
303.78 Å; the transition

303.80 Å O III 2p2 3P2 – 2p3d 3Po
2

(note that the closed shell 1s22s2 is assumed) lies at almost the same wave-
length as He II Lyα. The small difference is covered by thermal (Doppler)
shifts within nebula.

Helium can be doubly ionised in hot nebulae and hence the recombi-
nation spectrum of He II leads to a plentiful supply of Lyα photons. These
then excite O2+, specifically its 2p3d 3Po

2 level. This level then decays by
emission. This mechanism is depicted schematically in Fig. 7.4.

The Bowen mechanism is an example of a physical process known
as optical pumping or resonance-fluorescence. Although such processes rely
on an accidental coincidence in level spacing between different species, a
number of such occurrences are now known to be astronomically impor-
tant. For example hydrogen Lyβ photons at 1025.72 Å can pump the
transition:

1025.77 Å O I 2p4 3P2 – 2p3(4So)3d 3Do .

In this case, unlike O III, the fine structure splitting in the upper level is so
small that all three 3Do levels are populated.

In an ordinary H II region, there are fewer high-energy, ultraviolet
photons so there are very little He2+. Under these circumstances, O2+

ions are still present and the forbidden [O III] lines are seen. However the
Bowen mechanism cannot operate and the allowed lines are not observed.

O2+ transitions can also be observed in the infrared, see Fig. 7.6. In
this figure note also the Balmer transitions H12α and H13α. The O2+ lines
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He II

2p    P

O III
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λ303.62λ303.78

λ303.80
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λ374.44

2p3p   S
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1   S2

3
32p3p   P
32p3p   D

2p3d    P3   o

Fig. 7.4. Schematic partial energy level diagram of O III and He II showing the
coincidence of He II Lyα and O III 2p2 3P2 – 2p3d 3Po

2 transitions. The Bowen
resonance-fluorescence lines in the visible and ultraviolet are indicated by the
solid lines.

are two forbidden fine structure transitions within the 2p2 ground state
configuration:

51.8 µm [O III] 2p2 3P1 – 3P2 ;

88.4 µm [O III] 2p2 3P0 – 3P1 .

These are weak magnetic dipole transitions. These infrared transitions
could not be seen from the ground but were observed by the Infrared
Space Observatory (ISO).

It should be noted that the spectrum of NGC 7027 (Fig. 7.6) contains
transitions assigned to various molecules and molecular ions; the spec-
tra of these species are discussed in Chapter 10. The planetary nebula
NGC 7027 has a particularly rich chemistry and the spectrum contains a
number of lines whose identity is either unknown or uncertain.
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Fig. 7.5. O III emission lines excited by the Bowen mechanism from planetary
nebula NGC 3242, recorded using the Isaac Newton Telescope at La Palma.
[Adapted from X.-W. Liu and J. Danziger, Mon. Not. R. Astron. Soc. 261, 465 (1993).]

Fig. 7.6. Infrared spectrum of planetary nebula NGC 7027 recorded using the
Infrared Space Observatory (ISO). The spectrum is observed on a rapidly vary-
ing background, as shown in the insert, and the detailed line spectrum is obtained
after subtracting a polynomial fit to the continuum part of the spectrum. [Repro-
duced from X.-W. Liu et al., Astron. Astrophys. 315, L257 (1996).]
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Fig. 7.7. Ultraviolet spectra of planetary nebulae in the Large Magellanic Cloud
recorded using the Hubble Space Telescope. The Lyα emissions are geocoronal in
origin. [Adapted from E. Vassiliadis et al., Astrophys. J. Suppl. Ser. 114, 237 (1998).]

O2+ transitions are also observed in the ultraviolet (see Fig. 7.7). The
O III] doublet near 1663 Å are a pair of intercombination lines, as shown
by the single bracket, meaning that the electric dipole selection rules are
all satisfied except for spin conservation, i.e. ∆S �= 0. These transitions link
the lowest quintet state to the ground state, which is a triplet:

1660.81 Å O III] 1s22s22p2 3P1 – 1s22s2p3 5So
2 .

1666.15 Å O III] 1s22s22p2 3P2 – 1s22s2p3 5So
2 .

The upper level is just a little higher in energy than the ground configura-
tion 1S. It can therefore be populated by collisions with energetic electrons.
Other terms with the configuration 2s2p3 are 3So, 3Do, 3Po, 1Po and 1Do.
These all have higher energy and so the lines linking them to the ground
state are at still shorter wavelengths. These transitions can be used to mon-
itor still higher electron temperatures.
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7.3 Two Valence Electrons

The previous chapter considered the spectra of alkali metals and alkali
metal-like ions which all have a single optically-active electron. The pres-
ence of two outer shell electrons introduces important new physical
processes.

The calcium atom will be used to illustrate these processes. The
ground state of calcium has two 4s electrons outside a closed shell:

1s22s22p63s23p64s2 .

Astronomical spectra of Ca I can be understood entirely in terms of
these two outer electrons, which are called valence or optically-active elec-
trons. One can therefore safely assume that the other electrons are inactive
and remain frozen in their ground state orbitals.

Excitation of one 4s electron gives the configuration 4snl which can
have spin S = 0 or 1, except for the 4s2 configuration itself which gives
rise to S = 0 only. The orbital angular momentum possessed by these
states is L = l. The resulting energy level diagram for the 4snl states of
Ca is given by Fig. 7.8. For these states, the ionisation limit, represented

4s2 (1S only)

4s5s

4s6s

4s4p

4s6p

4s3d

4s4d

4s5d

4s5p

1S,3S 1P,3P 1D,3D

E
ne

rg
y

Fig. 7.8. Main branch energy level diagram of calcium. The diagram gives 4snl
configurations of the outer two electrons. These converge to Ca+ in its 4s ground
state plus a continuum electron.
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by n → ∞, is Ca+ in its 4s configuration, which is the ground state of the
ion. The diagram represents what is called the ‘main branch’ of the Ca I

spectrum. However it is not sufficient to give all the observed transitions
of Ca I.

To explain how the other transitions arise it is necessary to con-
sider bound states of the calcium atom which have both outer elec-
trons excited. For example, consider the case where one electron is in
the 3d orbital and the other electron jumps, giving a configuration 3dnl.
This gives rise to many new electronic states which involve excitation
of two electrons. These are depicted in Fig. 7.9. The 3dnl states go to
an ionisation limit as n → ∞ of Ca+ in its first excited 3d configura-
tion. A complete understanding of the spectrum of Ca I also requires
4pnl configurations going to the Ca+ 4p configuration at their ionisation
limit.

Structure of this sort is important in spectra of nearly all complex
atoms. An exception is helium for which all states with two excited elec-
trons are unbound.

Ca     4s+

4s5s

4s6s

4s4p

4s6p

4s5p

4s2

4s3d

4s4d

4s5d

3d4s

3d5s

3d6s

Ca     3d+

3d6p

3d5p

3d4p

E
ne

rg
y

Fig. 7.9. Energy level diagram of calcium. The diagram gives 4snl and 3dnl con-
figurations of the outer two electrons. These converge to Ca+ in its 4s ground state
and Ca+ in its 3d first excited state respectively, plus a continuum electron.
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7.4 Autoionisation and Recombination

As illustrated by the various series for calcium, each series of energy levels
converges towards its relevant continuum level. That is, at the ionisation
limit for each series, there remains an ion in some state and an electron
in the continuum. However, series involving two-electron excited states,
i.e. ones which are not on the main branch, result in ion states which are
also excited states. As illustrated by Fig. 7.9, the higher states of such series
lie in the continuum of the ground state of the ion. In other words, there
are states with two excited electrons which lie above the first ionisation
threshold. Such states have the same energy as a state of the ion plus a free
electron. Free electrons lie in the continuum since their energy levels are
not quantised.

When there is resonance between two states with the same energy, the
system goes rapidly from one state to the other and back. ‘Bound’ states in
the continuum are therefore called ‘resonances’ since they (always) lie at
the same energy as an unbound, continuum state. The states of radioactive
nuclei are also resonances; these states of the nucleus are ones which spon-
taneously decay with emissions of radioactive particles or rays. Similarly,
electronic resonances can change spontaneously from being a doubly-
excited state to an ionised state and an free electron:

A∗∗ → A+ + e− . (7.1)

This process is called autoionisation and is illustrated schematically
by Fig. 7.10. It is a radiationless transition in which one electron jumps
to a lower level and the other electron escapes to the continuum
simultaneously.

Transition probabilities between bound states and resonances obey the
same selection rules as transitions between truly bound states. However
resonances do not have a precise energy but have some width or spread of
energies, ∆E. This is a consequence of Heisenberg’s Uncertainty Principle:
as the resonance has a finite lifetime, τ , it cannot have a definite energy.
The Uncertainty Principle gives

∆E ·τ ≥ �

2
. (7.2)

Allowed transitions between bound states are generally much
stronger than bound-free transitions. This leads to the resonant enhance-
ment of autoionisation (see Fig. 7.11). As allowed transitions to resonances
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core

Fig. 7.10. A schematic representation of autoionisation: a radiationless process
whereby a system with two excited electrons loses one to the continuum while the
other simultaneously jumps to a lower energy level.
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Fig. 7.11. Resonance-enhanced ionisation involves an allowed transition from a
bound to a resonance state followed by a radiationless transition to the continuum.

are also stronger, the presence of a suitable resonance can increase signifi-
cantly the overall ionisation rate in a given radiation field. See Fig. 7.12 for
example.

Resonances therefore play an important role in photoionisation. Astro-
nomically they play an even more important role in recombination. As
discussed in Sec. 3.9, recombination is an important source of emission in
regions where some or all of the atoms are ionised. For complex atoms
there are two possible recombination mechanisms:

(1) ‘Direct’ radiative recombination, as discussed for H-like atoms in Sec. 3.9.
(2) Dielectronic recombination: this can be thought of as the reverse of res-

onant photoionisation. A continuum electron with the correct energy
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Fig. 7.12. Photoionisation cross section, in units of 10−22 m2, for the 2s2p2 2D
excited term of C+ as a function of photon energy calculated by A.R. Davey,
P.J. Storey and R. Kisielius, Astron. Astrophys. Suppl. Ser. 142, 85 (2000). The rate
of this process is dominated by the near-threshold resonance. (P.J. Storey, private
communication.)

forms a resonance by undergoing a radiationless transition. This reso-
nance can then decay by autoionisation or it can become a truly bound
state by the emission of a photon.

The process radiative recombination can thus be written as

A+ + e− → A∗∗ → A∗ + hν

→ A+ + e− . (7.3)

As autoionisation is a rapid process, only dipole-allowed radiative tran-
sitions can compete with it. As the resonance is a two-electron excited
state, dielectronic recombination often results in different transitions, i.e.
photons with different wavelengths, than direct radiative recombination
which only goes via the main branch (see Fig. 7.13).

Dielectronic recombination relies on the presence of resonances which
are low-lying enough to be accessible by thermal electrons. Whether such
resonances exist is a property of the physics of the particular ion in
question. Dielectronic recombination is particularly important in some
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Fig. 7.13. Dielectronic and direct (or radiative) recombination.

cases, such as C+. C+ has a very large and low-lying resonance (see
Fig. 7.12), formed by the temporary capture of an electron by C2+. C II

recombination spectra are completely dominated by lines from dielec-
tronic recombination.

Snapshot spectra, which only survey the strongest lines, show neb-
ula emissions dominated by hydrogen recombination lines plus a few
atomic (ion) transitions. However deep spectra which probe weak tran-
sitions can show a huge number of lines. See Fig. 7.2 for example. These
lines generally arise from atomic recombination spectra. But why are
there so many of them? This question is best answered by considering an
example.

The strong C II line at 4267 Å in Fig. 7.2 is due to the recombination
spectrum of C II. The C2+ core is a closed shell with the configuration
1s22s2(1S). The resulting recombination lines are due to transitions of the
form

C II 1s22s2(1S) nl – 1s22s2(1S) n′l′ .

Thus the line at 4267 Å is a 3d – 4f transition. This transition is seen as only
a single line as the (triplet) fine structure is not resolved.

Figure 7.2 shows a large number of weaker O II recombination lines.
These lines also arise from the 3d ← 4f recombination transition but occur
at many wavelengths. The ground state of O2+, which gives rise to the
main branch recombination lines, is an open shell: 1s22s22p2 (3P). When
recombined with an extra electron, the open core can couple with the extra
electron to form a number of different terms as both the core and the extra
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electron have spin and orbital angular momenta. Thus

3P plus 4f 2F gives 6 separate terms and 18 distinct levels;
3P plus 3d 2D also gives 6 terms and 16 distinct levels.

There are therefore a large number of possible transitions between the dif-
ferent terms and/or levels. Which transition is the strongest? Since for
a given atom or ion all 3d ← 4f transitions have similar line strengths,
the relative strength of the transitions are given by considering statistical
weights. For the O II example above, the strongest emission lines which
come from the 4f configuration arise from the 4Go term which has a sta-
tistical weight of g = (2L + 1) × (2S + 1) = 9 × 4 = 36. In contrast the 2Do

term has a statistical weight of only g = 5 × 2 = 10.

Problems

7.1 By considering the levels which arise from the following configura-
tions and dipole selection rules, determine what spectral lines would
be produced in the following transitions:

(a) Ca I 4s2 – 4s4p,
(b) Ca I 4s4f – 4s5d?

Comment on the possible observability of these transitions in different
astronomical locations.

7.2 Give the ground state configuration of the N+ ion and explain which
of its terms you would expect to have the lowest energy.
A series of N I recombination transitions can occur as a result of radia-
tive recombination of ground state N+ ions and an electron. Many
optical 5f – 4d transitions are observed. Explain why so many transi-
tions are seen. Neglecting fine structure effects, how many allowed
transitions would you expect? Which one is likely to be the strongest?

7.3 Use Figs. 7.3 and 7.4 to construct a partial energy level diagram for the
O2+ ion, with energies in eV.
What is the statistical weight of the atomic level 2S+1LJ? Give the sta-
tistical weight for the O2+ ion states in your diagram.
Assuming the population of the 2p2 3P0 ground state to be 1, use the
Boltzmann distribution for thermal populations, and a temperature of
T = 10000 K, to give the occupation of the other O2+ levels in your
diagram relative to the ground state.
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Discuss the significance of this result in relation to the observed O III

spectrum in a nebula with Te = 10000 K.

The following will be useful:
1 cm−1 = 1.23985× 10−4 eV,
Boltzmann’s constant, k = 8.62× 10−5 eV ·K−1.
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X-RAY SPECTRA

X-rays are high-energy photons which have shorter wavelengths than
those in the ultraviolet. X-rays can be produced as a result of transitions
involving an inner shell in heavy atoms and their name was initially asso-
ciated with this particular process. Indeed X-rays produced in this fashion
in X-ray tubes as a result of some heavy metal being bombarded by high-
energy electrons remain important for routine medical inspections of
bones inside living people.

Photons with even higher energies than X-rays are called γ-rays. Like
X-rays, γ-rays were originally associated only with the process that pro-
duced them. In the case of γ-rays this was the radioactive emissions from
nuclei. However the terms X-ray and γ-ray are now just used to label parts
of the electromagnetic spectrum. Indeed astronomically neither of the two
original processes are major sources of high-energy photons.

The previous chapters have considered spectra associated with the
movements of outer electrons which result in a so-called ‘optical’ spec-
trum. For an atom, with (fairly) high Z, transitions which involve move-
ments of inner shell electrons occur at much shorter wavelengths. In
principle, so long as only one electron jumps, there is no difference
between the two cases and much of the theory already outlined still
applies. In particular, X-ray transitions obey the dipole selection rules
given in Table 5.1.

If an inner shell electron is removed from an atom by any pro-
cess including high-energy electron impact, a vacancy is created. This
inner shell vacancy can then filled by an outer electron jumping down
(see Fig. 8.1). Such transitions give rise to characteristic X-ray emission
lines.

116
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Fig. 8.1. X-ray line spectrum caused by the removal of an inner shell electron by
electron impact followed by the subsequent relaxation of an outer shell electron
with emission of an X-ray photon. This is how X-rays are usually produced in the
laboratory.

Transitions involving K shell (n = 1 electrons, see Table 4.1) involve
most energy: ‘hard’ X-rays or about 105 eV for heavy atoms. These energies
correspond to wavelengths, λ, of about 0.1 Å. Higher shells give progres-
sively ‘softer’ X-rays, with wavelengths up to tens of Å. Wavelengths
between about 100 Å and 1000 Å are often described as the ‘extreme ultra-
violet’ or EUV.

In fact, most X-rays produced in astronomical sources are not asso-
ciated with particular transitions but are part of the continuum spec-
trum produced in high-energy environments such as active galactic nuclei
(AGN). For example, it is thought that AGN generate X-rays from the
atoms being accreted by a central massive black hole. These spectra can
be extremely bright, producing more radiation than the rest of the entire
galaxy; they give direct information on the distribution of accreted mate-
rial. The solar corona provides a nearby source of X-ray spectra. Spectral
lines come largely, not from inner shells of neutral atoms, but from highly
ionised atoms. See Fig. 8.2 for example.

Consider the spectrum of Fe XXVI as an example. Fe25+ is a one-
electron system with Z = 26. This means that its spectrum is similar to
hydrogen but with all energies and transition frequencies scaled by Z2.
For H, the Lyα photon has an energy of 10.2 eV, while for Fe XXVI, Lyα
has an energy of 10.2 × (26)2 eV � 7 keV. Emission of Fe XXVI Lyα can
be seen in the X-ray emission coming from intergalactic plasma which
lies within clusters of galaxies. The continuum emission from this plasma
is thermal emission with a temperature in the region of 108 K. At this
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Fig. 8.2. X-ray spectrum of the entire solar disk recorded using a rocket-based
experiment. [Adapted from M. Malinovsky and L. Heroux, Astrophys. J. 181, 1009
(1973).]

temperature, iron is predominantly ionised to Fe25+ (see Fig. 3.10). This
spectral region also contains lines from other highly-ionised species such
as Fe XXV (see Fig. 8.3). This figure also shows the spectral signature of
Fe I Kα transitions. These transitions arise from ionisation of a 1s electron
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Fig. 8.3. X-ray spectrum of Seyfert galaxy NGC 7314 showing various iron tran-
sitions recorded using satellite Chandra [see T. Yaqoob et al., Astrophys. J. 596, 85
(2003)]. (T. Yaqoob, private communication.)

in Fe and then relaxation of a high-lying electron which emits at one
of these characteristic wavelengths. As discussed above, such transitions
have long been observed in the laboratory but had been thought to be
unimportant astronomically until the recent batch of satellite-borne X-ray
experiments.

Astronomical X-rays cannot be observed from ground. Early obser-
vations were made from rockets but now several satellites have been
deployed. Recent space missions include SOHO and XMM-Newton
launched by ESA and Chandra launched by NASA. Other space satellites
are planned. These missions have substantially changed our view of the
high-energy regions of the Universe as they have opened up many objects
for detailed observations of X-ray spectra which previously could only be
performed on the Sun, which has a very large flux of X-rays.

8.1 The Solar Corona

The visible spectrum of the solar corona shows a number of strong emis-
sion lines which for a long time could not be identified. These emissions
were labelled ‘coronium’, although they were not generally thought to
belong to a new element.

Seventy years after their original observation in 1869, the Swedish
astronomer Bengt Edlen (1906–1993) showed that the lines were due to
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forbidden transitions in a number of highly-ionised atoms. The three most
prominent lines are:

6374 Å [Fe X] 3s23p5 2Po
3
2

– 2Po
1
2

,

5302 Å [Fe XIV] 3s23p 2Po
1
2

– 2Po
3
2

,

5694 Å [Ca XV] 2s22p2 3P0 – 3P1 .

These transitions all occur within a single configuration and, indeed,
within a single term. They are thus all strongly forbidden by electric dipole
selection rules as they do not satisfy the Laporte rule. The transitions are
all weak magnetic dipole fine structure lines. The green [Fe XIV] line at
5302 Å is the strongest of these coronal lines.

Transitions involving highly-ionised atoms such as Fe9+, Fe13+ and
Ca14+ will occur at high temperatures. Inspection of Fig. 3.10 suggests
temperatures in the region of one million Kelvin. This temperature is
much higher than the assumed temperature of the solar corona so Edlen’s
assignments were at first very controversial. However his analysis is now
accepted but the mechanism for heating the corona remains not fully
understood.

Many other coronal lines from highly-ionised metals can be observed
in the solar spectrum in the extreme ultraviolet (EUV) and X-ray. Figure 8.4
shows the X-ray spectrum of the nearby star Capella, which is a G-star like
the sun. It shows many emission features due to highly-ionised ions.

8.2 Isotope Effects

As discussed in Sec. 3.3, the energy levels of an atom depend on the
reduced mass of the atom. For a hydrogen-like atom with nuclear mass M,
the reduced mass is:

µ =
Mme

M + me
. (8.1)

Isotopes have the same atomic number Z and the same electronic struc-
ture, but have different nuclear masses, as expressed by the atomic
weight, A. For example, deuterium is an isotope of hydrogen. In standard
notation, the integer atomic mass (i.e. the total number of protons and
neutrons) is given as a leading superscript on the atomic symbol. Thus
hydrogen is 1H and deuterium, often designated D, should more correctly
be given as 2H.
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Fig. 8.4. X-ray spectrum of binary star Capella recorded using the XMM-Newton
satellite [see M. Audard et al., Astron. Astrophys. 365, L329 (2001)]. (M. Audard,
private communication.)
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For H-like atoms, the energy levels and frequencies simply scale
according to the reduced mass factor [see Eq. (3.8)]. For complex atoms
the situation is not so simple. There is no longer a single scale factor as the
mass effects of several electrons have to be allowed for simultaneously.
The effect is also smaller than in hydrogen and immeasurably small for
atoms with Z beyond about 30.

The measurement of the isotopic composition of a particular environ-
ment is important as it varies with the age of the Universe and the nuclear
reactions occurring in a particular star. Isotopes thus provide an important
measure of local nuclear reactions. For example, deuterium was formed in
the early Universe but is burnt early in the life of all but lightest stars. The
abundance of deuterium thus decreases with the age of the Universe and
its presence can be used as an indicator that a brown dwarf lies below the
critical mass necessary to burn D. Similar analyses can be conducted with
other isotopes, although these are generally made rather than destroyed
by stellar nuclear synthesis.

For most elements the best way of determining isotopic abundance is
via molecular spectra; methods to do this are discussed in Sec. 10.1.1. For
very heavy atoms, however, the effect of nuclear size becomes important.

So far we have always treated the nucleus as a point charge. Although
very small, a factor of about 105 smaller than a typical atom, the nucleus
does have a finite size. Furthermore the nucleus slightly distorts the elec-
tronic wavefunction and associated energy levels. This distortion is par-
ticularly important for electrons in s (l = 0) orbitals as these orbitals have
nonzero densities at the nucleus (see Fig. 3.1) and for heavy elements
which have larger nuclei.

An example is the element mercury, Hg, which has Z = 80, and so is
heavier than iron and is therefore only present in significant quantities in
chemically peculiar stars. Mercury can exist in one of seven stable isotopic
forms with atomic weight A equal to 196, 198, 199, 200, 201, 202 and 204.
Hg+ has a prominent line:

3984 Å Hg II 5d96s2 – 5d106p 2D 5
2

– 2Po
3
2
.

Note that this transition is formally forbidden as it is a two-electron tran-
sition, but in practice, strong configuration interaction (CI) effects ensure
that it is actually strong. The change in the occupancy of the 6s orbital in
this transition makes it sensitive to nuclear size effects, since all s orbitals
have some probability of the electron overlapping the nucleus. When
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observed at very high resolution, the 3984 Å line can be separated into
different wavelength components ranging from 3983.77 Å for 196Hg+ to
3984.07 for 204Hg+, allowing the isotopic composition to be determined.
On earth the commonest isotopes of mercury are 200Hg and 202Hg; yet
for no star are the terrestrial abundances of mercury isotopes observed.
Instead, chemically peculiar stars show a range of isotopic compositions
but with a tendency for the heaviest isotope 204Hg to be the most
abundant.

The analysis of mercury spectra discussed above is complicated by the
fact that the spectrum of each isotope has its own hyperfine structure due
to nuclear spin effects. Isotopes differ not only in their atomic weights but
also in their nuclear spin, I. For example hydrogen, 1H, is a single proton
and therefore has I = 1

2 , but deuterium, 2H, has I = 1. Similarly the nucleus
of 4He, which is an alpha particle, has zero spin, I = 0, but 3He has I = 1

2 .
For heavy elements, I can be larger and values up to 7 or 8 are found.

As discussed for hydrogen (see Sec. 3.14), coupling the nuclear spin,
I, with the total (electronic) angular momentum, J, leads to the ‘final’
angular momentum quantum number, F:

F = I + J . (8.2)

Weak splittings of transitions according the value of F are called the hyper-
fine structure. The hyperfine structure gives isotopic information, but in
practice, is only fully resolved in ultrahigh-resolution spectra and is there-
fore not generally astronomically useful. Use of such structure for different
isotopes also requires very detailed laboratory data which is not always
readily available.

Problems

8.1 Give an expression for the energy levels of the hydrogen-like atom
of nuclear charge Z in terms of the Rydberg constant R∞. Obtain
the wavenumber of the Lyα transition of hydrogen-like oxygen, O7+.
From what astronomical environments would such transitions occur
and how might they be observed?

8.2 Mercury has atomic number Z of 80. Give the full configuration of the
5d96s2 2D 5

2
state of Hg+. The ground state of Hg+ has the configura-

tion 5d106s. Obtain the term and level for this state. Why is the 5d96s2

2D 5
2

state metastable?
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MOLECULAR STRUCTURE

‘ Ban dihydrogen monoxide’

– Spoof webpage www.circus.com/∼nodhmo/ (2004)

It is easy to record the astrophysical spectra of atoms and ions since
they are present in the atmospheres of hot stars which shine brightly.
Molecules, conversely, are found in cooler and less active regions which
can make them more difficult to observe. Nonetheless, molecules can be
found in many different astronomical environments. These range from
planetary atmospheres and comets to cool stars and sunspots; from cold,
giant interstellar clouds to planetary nebulae and even the tori which form
round active galactic nuclei.

The spectra of molecules are studied at wavelengths from the ultra-
violet to the radio. However it was the development of radio astronomy
that led to the realisation that substantial portions of our galaxy, and hence
the Universe, are dominated by molecular processes, indeed complicated
ones. So far over 120 molecules have been detected in the interstellar
medium by direct observation of their spectra. These molecules contain
up to 13 atoms and their spectroscopy is rich and complex. There have
also been claimed detections of significantly larger molecules, but these
are harder to verify.

The introduction to molecular structure and spectroscopy presented
here will largely be restricted to diatomic (two-atom) molecules as they
show most of the key features of molecular spectra. For a discussion
of the spectroscopy of larger (polyatomic) molecules, see Banwell and
McGrath (1994), or Bernath (1995) in further reading. Both these textbooks
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give a more advanced and a more general treatment of the laboratory
spectroscopy of molecules.

9.1 The Born–Oppenheimer Approximation

Molecules formed from two atoms are called diatomics while those
formed from more than two atoms are described as polyatomic. Because
molecular binding energies are relatively small, i.e. generally less than
ionisation energies, molecules are only found in cooler, or less active, astro-
nomical environments. Polyatomic molecules are only a significant com-
ponent of matter at temperatures below about 4000 K. Diatomic systems
can survive to somewhat higher temperatures and may be found in envi-
ronments with temperatures up to about 8000 K. Of course, these figures
are a rule of thumb with details depending on the molecule in question
and the physical conditions of the environment.

The structure, and hence the spectra, of molecules are more compli-
cated than atoms in two ways:

(1) There is no single charge centre about which electrons move. The elec-
tronic wavefunctions therefore have lower symmetry, making them
harder to calculate and harder to work with.

(2) The nuclei themselves move, giving rise to both rotational and vibra-
tional motions of the atoms within the molecule. These motions give
rise to discrete spectra.

To a very good approximation, known as the Born–Oppenheimer
approximation, the motions of the electrons and the nuclei can be com-
pletely separated. The validity of this approximation relies on the fact that
the electrons are much lighter than the nuclei. For hydrogen, which is
the worst case, MH � 1836 me. This means that the electrons move very
much faster than the nuclei and can be considered to relax instantly to any
change in the positions of the nuclei. To use an everyday scale analogy, it
is like flies buzzing round an elephant — as the elephant moves the flies
move with it.

Within the Born–Oppenheimer approximation, one separates the
wavefunction for the motions of electrons from the wavefunction for the
motions of the nuclei [see Eq. (9.7)]. One can then consider the electronic
wavefunction separately for each position of the nuclei, as if the nuclei are
held fixed. The electronic energy associated with each of these electronic
wavefunctions gives the familiar potential energy curves which show the
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interactions between two atoms. Such curves, examples of which are given
in Fig. 9.2, only exist within the Born–Oppenheimer approximation.

To a less good approximation, one can also consider separately the
two types of nuclear motion: vibration and rotation. The energies of these
motions are such that the energy associated with motion of the electrons
(the electronic energy) is always very much greater than the energy con-
tained in vibrational motion which, in turn, is greater than the energy of
rotation. This ordering is very useful when considering molecular struc-
ture but it is important to remember that in molecular spectra a particular
transition can involve changes in more than one type of motion. For exam-
ple, one gets rotational structure on vibrational transitions, and electronic
transitions have vibrational structure and also fine structure due to simul-
taneous changes in rotational motion. The rotational fine structure in elec-
tronic transitions produces many lines close together. This fine structure
can only be resolved at very high resolution which is often not available
for astronomical spectra. If the rotational fine structure is not resolved,
then the result is characteristic molecular band spectra.

9.2 Electronic Structure of Diatomics

Within the Born–Oppenheimer approximation, consider the electronic
state of a diatomic molecule as a function of the separation, R, between
the two atoms. Figure 9.1 shows typical coordinates for a diatomic, AB,
where the atoms have nuclear charges ZA and ZB respectively. For clar-
ity only two electrons are shown explicitly, so this figure can be taken to
represent molecular hydrogen, H2.

When considering the electronic state of the molecule AB as a function
of R, the following considerations come into play:

As R → 0, at very small R the overall interactions are strongly
repulsive. There is repulsion due to nuclear–nuclear interaction

A B

e1 e2

R

r12

rB2

rA1

rB1 rA2

Fig. 9.1. Coordinates for a diatomic molecule, AB, with two electrons.
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whose potential depends on ZAZB
R . There is also repulsion due

to the electron–electron interactions, which also behave approxi-
mately as R−1. However the most important interaction at small R
in a many-electron molecule is due to exchange forces. Exchange
interactions arise as a direct consequence of the Pauli Principle
(see Sec. 4.3), which strongly forbids any attempt to force the two
electrons to occupy the same space. This behaviour is similar to
that found in collapsed stars where degeneracy pressure is a con-
sequence of the Pauli Principle. It is the exchange forces that cause
the atoms in molecules to behave almost as hard spheres when the
molecule is compressed. The repulsion due to exchange forces at
small R increases approximately as an exponential. It is therefore
best modelled as eaR, where a is a system-dependent constant.

As R →∞, the molecule is pulled apart and it separates into
atoms in a process known as dissociation. The energy of the system
at dissociation is clearly just the sum of the atomic energies.

At intermediate R, to get binding there must be some region
of R where the molecular energy is less than the sum of the
atomic energies. In this case the electronic state is described as
‘attractive’ and there is a minimum in the potential energy curve.
The attraction can arise from interactions such as the increase
in the electron–nuclear attraction brought about by bringing the
atoms together. States can also be purely repulsive. Such states are
referred to as ‘dissociative’ since they do not support bound states
and will always lead to dissociation.

Figure 9.2 gives potential energy curves for the lower-lying electronic
states of molecular hydrogen. The scheme used to derive labels for these
curves is discussed in the next section. Note that the electronic potential
is by convention denoted V. Two important quantities for the curves in
Fig. 9.2 are the equilibrium bondlength and the dissociation energy. Re,
the equilibrium internuclear separation is defined by

dV
dR

∣∣∣∣
Re

= 0 , (9.1)

that is Re is the value of R at the minimum of the potential. De is the dis-
sociation energy of the molecule. It is the minimum energy required to
fragment a molecule. For a diatomic molecule it can be defined by

De = V(Re) − V(R = ∞) . (9.2)
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Fig. 9.2. Potential energy curves for the lowest seven electronic states of molecu-
lar hydrogen, H2. The lowest two curves both dissociate to two ground states, 1s
hydrogen atoms; the higher curves dissociate to one H atom in its 1s ground state
and the other into either a 2s or a 2p excited state. [Reproduced from D.T. Stibbe,
PhD thesis, University of London (1997).]

9.2.1 Labelling of electronic states

Electronic states of atoms are labelled according to the so-called spectro-
scopic notation (see Sec. 4.8). The notation for electronic states of molecules
follows a similar system but is more complicated because of their lower
symmetry. In general terms the labelling scheme used is based on the
symmetry of the molecule in question. Here only diatomic molecules will
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be considered. Of course, all diatomic molecules are linear molecules and
only two separate symmetry cases need to be considered:

Homonuclear diatomics, where both atoms are the same, e.g. H2, N2, O2.

Heteronuclear diatomics, where the atoms are different, e.g. CO, HF, CH.

As the electron spin is usually not strongly coupled to the frame of the
molecule, the treatment of spin follows very much the same principles as
in the atomic case. Each electron has its individual spin angular momen-
tum, si. These can be summed to give a total spin angular momentum,
S, again remembering that paired electrons in closed shells make zero
contribution to this sum. The electronic states of molecules are designated
by their spin multiplicity, 2S + 1, which is given as a leading superscript,
exactly as in the atomic case.

In an atom the treatment of the individual orbital angular momenta,
li, follows along similar lines to the treatment of spin. However molecules
are not spherical and the orbital angular momentum of the individual
electrons is no longer a conserved quantity. For diatomic molecules, the
total orbital angular momentum L is strongly coupled to the nuclear axis.
It is therefore necessary to consider the components of L, designated Λ,
along the diatomic nuclear axis which, by convention, is taken to define
the z-axis of the system. What this means is that while the value of the
total orbital angular momentum in a diatomic molecule can change, its
projection onto the diatomic axis is conserved. As the projection of L onto
z-axis can be either positive or negative, states with Λ �= 0 are
twofold degenerate while Σ states, which have Λ = 0, are singly
degenerate.

Electronic states are labelled by their value of Λ rather than L. Values
of Λ are denoted using the Greek letter equivalent of the Latin letter
used to denote L (see Table 9.1), thus Σ, Π, ∆ are equivalent to the atomic

Table 9.1. Letter designations for projected
total orbital angular momentum quantum
number, Λ.

Λ = 0 1 2 3 4 . . .
Orbitals σ π δ φ γ . . .
States Σ Π ∆ Φ Γ . . .
Degeneracy 1 2 2 2 2 . . .
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symbols S, P, D. Again, uppercase letters are used to denote many electron
states and single electron orbitals are labelled using lowercase versions of
the same symbols.

This means that:

1Σ denotes a state with S = 0 and Λ = 0 ,
3Π denotes a state with S = 1 and Λ = 1 , etc.

For most (stable) diatomics, the electronic ground state is a closed shell,
meaning that it is 1Σ. Examples include H2, N2 and most other homonu-
clear diatomics. The exception is O2 which has a 3Σ ground state. CO and
many other heteronuclear diatomics with an even number of electrons
also have 1Σ ground states. Diatomics with an odd number of electrons
usually have S = 1

2 . For example H+
2 , CH+ and CN all have 2Σ ground

states. Ground states need not have Λ = 0 (Σ), just as some atoms have
ground states with L > 0. Examples include CH, OH and NO which all
have 2Π ground states. Molecules in electronic states with Λ > 0, and in
particular those with Λ = 1, have extra lines in their spectra due to a pro-
cess called Λ-doubling. This is a significant extra complication which will
be discussed in Sec. 10.4 because of the astronomical importance of the
CH and OH molecules. Indeed, CH was one of the first molecules to be
detected outside our solar system.

9.2.2 Symmetry

There are two symmetry properties of certain diatomics which are similar
to the parity of an atom. These contribute to electronic selection rules and
hence are included in the electronic state designation.

Homonuclear diatomics have identical nuclei. This means that all
properties must be unchanged with respect to swapping the two nuclei.
The usual way of treating this is to consider the behaviour of the electronic
wavefunction when the molecule is inverted through its centre-of-gravity.

Consider an electronic wavefunction, ψe(RA, RB), where RA is the vec-
tor connecting the molecular centre-of-gravity with nucleus A, and RB
connects the centre-of-gravity with nucleus B. As the two nuclei are iden-
tical the probability distribution of the electronic wavefunction must be
unchanged with respect to inverting the molecule A – B → B – A, which
has the effect of interchanging the nuclei:

|ψe(RA, RB)|2 = |ψe(−RA, −RB)|2 . (9.3)
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This equation has two solutions

ψe(RA, RB) = ±ψe(−RA, −RB) . (9.4)

Both solutions are acceptable. Electronic states which are positive with
respect to interchange are known as ‘gerade’, the German word for ‘sym-
metric’, or more simply ‘g’. Electronic states whose wavefunctions change
sign upon inversion are known as ‘ungerade’, or ‘u’. The g/u label is
given as a trailing subscript on the symbol used to designate the elec-
tronic state. Thus, for example, the ground state of H2 is of 1Σ+

g sym-
metry while the next two stable states are 1Σ+

u and 3Πu which lie above
the repulsive 3Σ+

u state. It should be noted that the g/u label applies not
just to diatomic molecules but to all molecules with a centre-of-symmetry
and that this label is not related to the total angular momentum of the
system.

For Σ states only, there is an extra symmetry that needs to con-
sidered. This is the reflection of the wavefunction through any mir-
ror plane containing the nuclei. Again, the electronic wavefunction Ψe

either does or does not change sign with respect to this reflection.
This parity is denoted by a trailing superscript for Σ states only, that
is states are denoted either Σ+ or Σ−. Nearly all states are Σ+, which
are sometimes written simply as Σ. The one notable exception is the
oxygen molecule which has a ground state configuration 1σ2

g1σ2
u2σ2

g2σ2
u

3σ2
g1π4

u1π2
g which gives the lowest electronic state of symmetry 3Σ−

g .
This reflection symmetry is hard to visualise since it requires two elec-
trons in an open non-σ orbital, such as the 1π2

u orbital in O2, to get a
Σ− state.

The discussion above has focused on the overall label for the electronic
state which is of course a many-electron property. Molecular orbitals,
which are one-electron functions, have symmetry labels similar to those
used for the states. Thus orbitals are labelled σ, π, δ, . . . according to the
projection, λ, of the (single-electron) orbital angular momentum onto
the molecular axis. As in the atomic case, lowercase letters are used
for one-electron properties. For homonuclear systems the orbital labels
are subscripted g or u following the prescription given above. Thus
the ground state configuration of H2 is 1σ2

g. It should be noted that
the σ-orbital does not have a + or − superscript. This is because a
one-electron state can only have symmetric parity and all σ-orbitals are
assumed to be +.
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9.2.3 State labels

Giving an electronic state a symmetry designation such as 1Σ+
g is not

unique. In fact there is likely to be an infinite number of states with this
symmetry for a given molecule. In atoms it is common, if not univer-
sal practice, to precede the spectroscopic term value with n, the principal
quantum number of the outer electron. For molecules this system would
still not give a unique set of labels, so a different, rather more ad hoc system
is used.

Each electronic state is proceeded by a letter. The following convention
is used to assign the appropriate letter:

X labels the ground electronic state;
A, B, C, . . . label states of same spin multiplicity as the ground state;
a, b, c, . . . label states of different spin multiplicity to the ground state.

In principle, states are labelled alphabetically in ascending energy
order. In practice there many exceptions. For example, the lowest triplet
state of H2 is the b 3Σ+

u with the a 3Σ+
g lying somewhat higher. Sim-

ilarly there is a higher singlet state, which has a double minimum,
labelled E, F 1Σ+

g . The reasons for these various mislabellings are usually
historical.

9.3 Schrödinger Equation

The Schrödinger equation for a diatomic molecule with nucleus A, of mass
MA and nuclear charge ZA, and nucleus B, of mass MB and nuclear charge
ZB, and N electrons can be written as

(
− �

2

2MA
∇2

A − �
2

2MB
∇2

B −
�

2

2me

N

∑
i=1

∇2
i + Ve − E

)
Ψ(RA, RB, ri) = 0 , (9.5)

where the first two terms are the kinetic energy operators for the motions
of nuclei A and B respectively, the third term gives the kinetic energy oper-
ator for the electrons, and Ve is the potential. The potential is given by the
various Coulomb interactions within the molecule:

Ve =
e2

4πε0

(
−

N

∑
i=1

ZA

rAi
−

N

∑
i=1

ZB

rBi
+

N

∑
i=2

i−1

∑
j=1

1
ri j

+
ZAZB

R

)
. (9.6)



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch09

Molecular Structure 133

These terms represent respectively the attraction of the electrons by
nucleus A, the attraction of the electrons by nucleus B, the electron–
electron repulsion and the nuclear–nuclear repulsion. The coordinates
used in this expression are defined in Fig. 9.1.

Within the Born–Oppenheimer approximation, one writes the wave-
function as a product of electronic, ψe, and nuclear, ψn, wavefunctions:

Ψ(RA, RB, ri) = ψe(ri)ψn(RA, RB) . (9.7)

In this case the electronic wavefunction satisfies the simpler Schrödinger
equation (

− �
2

2me

N

∑
i=1

∇2
i + Ve − Ee

)
ψe(ri) = 0 . (9.8)

This equation is solved separately for each value of the internuclear sep-
aration, R. The resulting eigenvalue, Ee, is the electronic energy at each R
and gives the electronic potential V(R) upon which the nuclei move.

The nuclear wavefunction satisfies the Schrödinger equation(
− �

2

2MA
∇2

A − �
2

2MB
∇2

B + V(R)− E
)

ψn(RA, RB) = 0 , (9.9)

where E, the eigenvalue, is the total energy of the system.
Solving the Schrödinger equation (9.9) to obtain the total energy E is

actually not very useful. This is because the equation deals with all the
motions of the nuclei: vibrations, rotations and the translation of the whole
system through space. The energy of the translational motion gives a con-
tinuum and including it in the total energy would obscure the remaining
discrete spectrum of energy levels. However Eq. (9.9) is a two-body equa-
tion which can be separated — just as in the H-atom problem — into an
equation for the translational motion of the centre-of-mass of the system
plus an equation for the internal motion of the molecule. For a diatomic,
this latter equation represents the motion of one body in a ‘central’ poten-
tial, a potential which depends on the distance between the particles but
not their orientation. The effective mass of this one-body problem is the
reduced mass, µ, where

µ =
MA MB

MA + MB
. (9.10)
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Unlike the H-atom problem (see Sec. 3.3), the reduced mass differs signifi-
cantly from the mass of the individual nuclei. For example, for a homonu-
clear system, MA = MB and µ = MA

2 .
If one neglects the translational motion, the Schrödinger equation for

nuclear motion becomes[
− �

2

2µ
∇2 + V(R)− E

]
ψn(R) = 0 , (9.11)

where coordinate R = (R, θ, φ) is a vector giving the internuclear sepa-
ration R plus the orientation (θ, φ) of the molecular axis relative to the
laboratory z-axis.

The vibrational and rotational motion cannot be separated rigorously.
However such a separation, which gives a good first approximation, can
be written as

ψn(R) = ψv(R)ψr(θ, φ) . (9.12)

Considering first the angular or rotational motion, one obtains{
− �

2

2µR2

[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
+

1
sin2 θ

d2

dφ2

]
− Er

}
ψr(θ, φ) = 0 , (9.13)

where the differential, kinetic energy operator is the angular part of the
Laplacian operator ∇2, which has been written using spherical polar
coordinates.

Equation (9.13) is a Schrödinger equation with a zero-potential. It is
actually the same equation as the angular part of the H-atom problem.
The solutions are therefore the same ones satisfied by the angular wave-
functions of the H atom:

Ψr(θ, φ) = YJMJ (θ, φ) , (9.14)

where YJMJ is a spherical harmonic (see Fig. 3.2), and

Er =
�

2

2µR2 J(J + 1) , (9.15)

where the rotational angular momentum quantum number J takes inte-
ger values, J = 0, 1, 2, . . .. The projection of J onto the molecular axis is
denoted MJ . It takes values MJ = −J, − J + 1, . . .0, . . . J − 1, J. There are
a total of 2J + 1 possible values of MJ , which represents the degeneracy



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch09

Molecular Structure 135

of the rotational state. As in atoms, the MJ states split in the presence of a
magnetic field.

If the molecule is taken to rotate as a rigid body, which is the simplest
approximation to molecular rotation, then R can be fixed at some value
such as R0. Within this rigid rotor model, the moment of inertia of the
molecule is I0 = µR2

0 and one can write the rotational energy expression as

Er =
�

2

2I0
J(J + 1) = B0 J(J + 1) , (9.16)

where B0 is known as the rotational constant of the molecule. Note the
subscript denotes a vibrational level [see Eq. (9.30)]. In practice, molecules
are not rigid: atoms move apart as a molecule rotates faster (J increases),
giving rise to centrifugal distortion terms which can be used to correct the
expression (9.16).

It should be noted that if J = 0 then Er = 0. This means that there is no
rotational zero point energy.

Measurement of the rotational spectrum of a molecule gives a value
for B0. The rotational constant B0 can in turn be used to give an accu-
rate determination of the average bondlength of the molecule. Laboratory
spectroscopy, particularly of pure rotational spectra, is the main source of
accurate data on the geometric structure of molecules.

The radial equation arising from separating Eq. (9.11) is[
− �

2

2µ

d2

dR2 + V(R)− Ev

]
ψv(R) = 0 , (9.17)

where, for simplicity, the dependence on the rotational energy Er has been
neglected. Within this assumption the energy of the system is given by

E = Ev + Er . (9.18)

In Eq. (9.17), V(R) is not a simple function of R, so the equation has no
general algebraic solution. However, for low values of Ev, V(R) can be
approximated by a parabola

VH0(R) = V0 +
1
2

k(R − Re)2 , (9.19)

where the curvature of the potential about its minimum is given by

k =
d2V
dR2

∣∣∣∣
R=Re

, (9.20)
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where k is known as the force constant. This parabolic form of the potential
is the one which gives simple harmonic motion. Figure 9.4 compares a
harmonic potential with a more realistic one.

Setting the zero of energy at the minimum of the potential well, V0 =
V(R = Re) = 0, Eq. (9.17) becomes[

− �
2

2µ

d2

dR2 +
1
2

k(R − Re)2 − Ev

]
ψv(R) = 0 . (9.21)

This is the quantum mechanical equation of the harmonic oscillator which
is solved in most introductory texts on quantum mechanics. See Rae (2002)
in further reading for example.

The quantum mechanical solution for energy levels of the harmonic
oscillator model is

Ev = �ω

(
v +

1
2

)
, (9.22)

where the vibrational quantum number v takes integer values v =
0, 1, 2, . . ., meaning that the vibrational levels supported by a harmonic
potential are evenly spaced (see Fig. 9.3). In Eq. (9.22) ω is the angular
frequency. It is standard to quote �ω in wavenumber units of cm−1. The

Ev

v = 0 

v = 1 

v = 2 

v = 3 

v = 4 

v = 5 

Re

VHO (R)

Fig. 9.3. Evenly-spaced energy levels supported by a harmonic potential. Note
the zero point energy.
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frequency is related to the constants in Eq. (9.21) by the expression

ω =
(

k
µ

) 1
2

. (9.23)

The dependence on the reduced mass µ of this expression is important
for studies of molecules with different isotopic composition. This will be
discussed in Sec. 10.1.1.

It should be noticed that the vibrating molecule cannot exist at the
bottom of the potential well. The minimum energy is called the zero point
energy (zpe). For a diatomic harmonic oscillator the zero point energy
equals 1

2 �ω. This zero point energy is a direct consequence of Heisenberg’s
Uncertainty Principle relating the position and the momentum. Because
the potential has a minimum, a state with zero energy would be located
precisely at Re with no energy and hence no momentum; this would
violate the uncertainty condition

∆x∆px ≥ �

2
. (9.24)

The zero point energy also means that the actual dissociation energy, D0,
is less than De defined by Eq. (9.2) above. The difference is given by

D0 = De − zpe . (9.25)

In other words the amount of energy taken to pull a diatomic molecule
apart is reduced by the amount of the zero point energy.

9.4 Fractionation

The zero point energy of molecules has an important influence on the
chemistry of the cold interstellar medium (ISM). Consider the simple deu-
terium substitution reaction:

H2 + D ↔ HD + H. (9.26)

At high temperatures, the ratio between n(HD) and n(H2) will be similar
to that of n(D) to n(H), where n(X) is the number density of species X. At
the very low temperatures, below 20 K, found in giant molecular clouds in
the ISM, this is not true due to zero point energy effects.
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Consider the above example. The harmonic frequency of H2 is
4396 cm−1, implying a zpe of 2198 cm−1. Mass scaling using Eq. (9.23)
gives

ω(HD)
ω(H2)

=
(

µH2

µHD

) 1
2

, (9.27)

if one assumes that the force constant k does not change with isotopic
substitution, which is true within the Born–Oppenheimer approximation.
However

µH2 =
MH

2
, µHD =

MH MD

MH + MD
� 2

3
MH .

Assuming MD � 2MH and substituting into Eq. (9.27) gives

ωHD � ωH2

(
MH

2
× 3

2MH

) 1
2

=
√

3
2

ωH2 = 3807 cm−1.

zpe(HD) =
1
2
× 3807 = 1903 cm−1.

(9.28)

A more accurate treatment gives ωHD = 3817 cm−1 and a zpe of 1909 cm−1.
The energy change for reaction (9.26) is given by

∆E = zpe(HD) − zpe(H2) � −289 cm−1 � 420 K .

The lower zero point energy of HD compared to H2 means that at low
temperature, this reaction, and other similar ones, strongly favour HD for-
mation over H2. This effect, which can lead to between a hundred and
10000 times more D being observed in molecules than would be expected
on abundance grounds, is termed ‘deuterium fractionation’. It is observed
in many species, including H2/HD, HCO+/DCO+ and H+

3 /H2D+.
One can get fractionation of other isotopes such as 13C over 12C. How-

ever, the effect is less extreme as the mass differences are smaller.

9.5 Vibration–Rotation Energy Levels

Within the harmonic oscillator approximation all energy levels are evenly
spaced. Real molecules are not harmonic oscillators. Their potential is elas-
tic but the repulsion at short bondlengths is stronger than the attraction at
long bondlengths, so a parabola is only the first approximation to V(R).
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Fig. 9.4. Comparison of a harmonic potential (dashed line) with a more realistic
one (full line) for a diatomic molecule with a fairly shallow potential well.

This approximation is reasonable near Re but becomes increasingly poor
at larger displacements which correspond to higher energies.

Figure 9.4 gives a qualitative comparison between the levels in a
harmonic oscillator potential and those supported by a more realistic
potential, one which actually leads to dissociation. Potentials which are
not harmonic are referred to as anharmonic. Unlike the evenly-spaced har-
monic energy levels, the energy levels get closer together as v increases.
Also, the harmonic oscillator potential supports an infinite number of
energy levels, whereas in reality the discrete levels stop at dissociation.
Thus, for example, H2 supports 14 vibrational levels in its ground elec-
tronic state. The precise number of levels depends on the well depth, cur-
vature and the reduced mass involved.

A more complete expression for the energy of a vibration–rotation
state above the bottom of the well for a 1Σ (S = 0, Λ = 0) diatomic molecule
is given by

EVR = ωe

(
v +

1
2

)
+ Be J(J + 1)− ωexe

(
v +

1
2

)2

−De J2(J + 1)2 − αe

(
v +

1
2

)
J(J + 1) + · · · , (9.29)
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where the signs are chosen so that each constant, defined below, is
positive. In Eq. (9.29), the expansion constants, known as spectroscopic
constants, are:

ωe, the harmonic frequency;
Be, the rotational constant;
wexe, the leading anharmonic correction;
De, the centrifugal distortion (not the dissociation energy);
αe, which gives variation of Be with vibrational state.

Thus the rotational constant for vibrational state v is given by

Bv = Be − αe

(
v +

1
2

)
+ · · · . (9.30)

The constants are all usually positive and given in cm−1. They are usually
determined empirically by analysing observed laboratory spectra and are
different for each electronic state of a given molecule. Huber and Herzberg
(1979) provide an extensive tabulation of these constants for the observed
electronic states of diatomic molecules.

Values of spectroscopic constants for H2, CO and the molecular ion
CH+ are given in Table 9.2. It is notable that even for hydrogen which is a
relatively non-rigid system, the energy expressions, at least for low levels
of excitation, are dominated by the harmonic oscillator, rigid rotor terms.
In other words, the use of only ωe and Be gives quite a good representation
of the actual energy levels. It should also again be noted that the rotational
energies are much smaller than vibrational energies.

Table 9.2. Spectroscopic constants for the
vibration–rotation levels of the ground
electronic state of molecular hydrogen, car-
bon monoxide, and the CH+ molecular
ion. Values, which are all in cm−1, are taken
from Huber and Herzberg (1979).

Constant H2 CO CH+

ωe 4401.21 2170 2740
ωexe 121.33 13.5 64.0
Be 60.853 1.93 14.177
De 0.0471 6 × 10−6 0.0014
αe 3.062 0.017 0.492
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9.6 Temperature Effects

Before considering temperature effects in detail it is useful to give a sum-
mary of the energy scales found in molecules. Figure 9.5 gives the energies
in the H2/H+

2 system. Note that the rotational energy differences are too
small to be visible on the scale given.

As molecules have many closely-spaced energy levels, they act as a
useful thermometer in a variety of environments. To understand this it
is necessary to consider the population of the various levels in a typical
molecule as a function of temperature.

9.6.1 Rotational state populations

Consider the Boltzmann distribution for a diatomic molecule rotating as a
rigid rotor. For simplicity take the J = 0 level as the zero of energy. Define
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Fig. 9.5. Energy scales in hydrogen molecule. Zero is taken as the H2(v = 0)
ground state. I represents the ionisation potential and D the dissociation energy.
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P(J) as the probability of finding the molecule in level J. To avoid having
to evaluate the partition function, let us consider the ratio of P(J) to the
probability of finding the molecule in its rotational ground state, P(0):

P(J)
P(0)

=
gJ

g0
exp

(−EJ

kT

)
, (9.31)

where gJ is the degeneracy factor which is (2J + 1) for a heteronuclear
diatomic. Note that for homonuclear diatomics there is an additional fac-
tor caused by nuclear spin effects and ortho/para states, but this is beyond
the scope of the present book. The energy levels of a rigid rotor are
EJ = BJ(J + 1), therefore

P(J)
P(0)

= (2J + 1) exp
[−BJ(J + 1)

kT

]
. (9.32)

For a typical diatomic, B � 1 cm−1, and in these units it useful to remember
that Boltzmann’s constant, k, equals 0.695 cm−1 ·K−1. For a temperature of
T = 300 K, these values give

P(1)
P(0)

= 3 exp
( −1 × 2

0.695× 300

)
= 3e−0.0096 = 2.97 ,

which means that there are more molecules in the J = 1 level than in the
J = 0 level. In fact P(0) � P(28) for this example.

For a diatomic rigid rotor with rotational constant B, the rotational
level with the largest population is given by the approximate relationship:

J =
(

kT
2B

) 1
2

− 1
2

. (9.33)

At room temperature many rotational levels of a molecule are occu-
pied. Even at cold interstellar medium temperatures of 10–20 K, most
molecules have several levels occupied. Indeed, one of the earliest
molecules observed in the interstellar medium, CN, was found in the
early 1940s. The Nobel Prize-winning molecular spectroscopist Gerhard
Herzberg (1904–1999) commented on this work that ‘from the inten-
sity ratio of the lines. . . a rotational temperature of 2.3 K follows, which
has of course a very restricted meaning’. It is not as restricted as he
thought, as Arno Penzias and Robert Wilson received a Nobel Prize
for their 1963 demonstration of the existence of the cosmic microwave
background radiation with a temperature of 2.7 K. The CN rotational
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temperature measurement was actually the first observational evidence of
the cosmic microwave background radiation. The spectrum of CN is now
used as one means of measuring this background temperature in different
locations.

The rotational level populations of molecules such as CO and CN can
be used to determine temperature in a particular region. However in many
diffuse environments, the rotational levels of heteronuclear diatomics, or
indeed any molecule with a permanent dipole moment, are usually not
thermally occupied as the radiative lifetime, given by A−1

i f , is less than the
mean time between collisions. That means the molecules exist in an envi-
ronment which is below their critical density. The molecular emissions in
planetary nebula NGC 7027 (Fig. 7.6) are like this.

9.6.2 Vibrational state populations

Vibrational energy separations are larger than rotational ones and are
therefore only sensitive to higher temperatures. To illustrate this, consider
the probability, P(v), of finding a diatomic molecule in vibrational level v.
For simplicity, assume that the diatomic is a harmonic oscillator and set
the zero of energy at the v = 0 level. Again taking the ratio of the vth state
to the vibrational ground state gives

P(v)
P(0)

= exp
(−�ωv

kT

)
. (9.34)

It should be noted that there are no degeneracy factors associated with the
vibrational motion.

Diatomic vibrational frequencies range from 500 cm−1 for a heavy sys-
tem to 4000 cm−1 for H2. 1000 cm−1 is a typical value so taking this for a
temperature of 300 K gives

P(1)
P(0)

= exp
( −1000

0.695× 300

)
� 0.0083 ,

which means that less than 1% of the molecules are in their v = 1 vibra-
tional level.

So at low temperatures, molecules are vibrationally cold with only
the vibrational ground state significantly occupied. However, hot environ-
ments can lead to thermal emissions from vibrationally excited molecules.
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This is quite often found for H2 such as in Figs. 7.6 and 10.10 for
example.

9.6.3 Electronic state populations

For most molecules the dissociation energy is less than the lowest elec-
tronic excitation energy. This means that electronically-excited states are
not thermally occupied as the molecules are destroyed instead. Emission
from electronically-excited states are still observed but these emissions
are usually not thermal. For example, emissions are observed in plane-
tary aurora, from electronically-excited H2 in Jupiter and Saturn, and from
other diatomics on Earth. These emissions are the direct consequence of
excitation by collisions with electrons.

Astronomically there is one important exception to this rule. The
atmospheres of cool stars, such as M-dwarfs, which have temperatures in
the 2200–3700 K range, contain molecules. In these stars the most impor-
tant diatomic molecules are H2 and CO. However, a number of molecules,
such as TiO, FeH, ZrO and VO, are formed which contain a transition
metal atom. These molecules have open shells which result in many low-
lying electronic states. These states are thermally occupied in the atmo-
spheres of cool stars. These molecules have dense spectra which are often
a significant source of opacity as they absorb radiation from the interior
of the star over a wide range of wavelengths. The spectra of the molecules
are very complicated. They are often poorly understood and in many cases
remain completely uncharacterised. Figure 6.9 gives an example which
shows that the absorptions in small, cool stars are dominated by molecular
absorptions. The spectra of these open shell species will not be considered
further here.

Problems

9.1 A sample of a diatomic molecule with rotational constant B, is in ther-
modynamic equilibrium at temperature T. Show that the ratio of the
number of molecules in rotational level J to the number in rotational
level zero is a maximum for the level with

J =
(

kT
2B

) 1
2

− 1
2

,

where k is Boltzmann’s constant, which has a value 0.695 cm−1 ·K−1.
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9.2 For the molecule CO, B0 = 1.93 cm−1. Which are the most-occupied
rotational states of CO at

(a) the ISM temperature of T = 20 K,
(b) room temperature, T = 300 K,
(c) the temperature of a typical M-dwarf star of 3000 K?

Assuming a harmonic frequency ω(CO) = 2170 cm−1, what proportion
of the molecules are in the v = 1 vibrational state compared to v = 0 at
each of these temperatures?

9.3 The fundamental vibrational frequency of the 12CH+ molecular ion
is ω = 2075.5 cm−1. Estimate the zero point energy of 12CH+ and,
assuming integer values for the atomic masses, estimate the zero
point energy of the less-abundant 13CH+ ion. Why might one want to
observe spectra of the less-abundant 13CH+ species instead of 12CH+?
CH+ ions are found in giant molecular clouds. How would you expect
the ratio n(13CH+) : n(12CH+) to compare to the ratio n(13C) : n(12C),
where n(X) represents the number density of species X?
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MOLECULAR SPECTRA

The astronomical spectra of molecules give rise to three distinct types
of transitions, which have to be considered separately.

Pure rotational transitions lie at long wavelengths ranging from radio
frequencies for heavy polyatomic molecules, through the microwave, to
the far-infrared for light hydrogen containing diatomics.

Vibrational transitions are important at mid-infrared wavelengths.
Electronic transitions lie at similar wavelengths to the allowed transi-

tions of neutral atoms: the visible and ultraviolet. The wavelengths quoted
are only typical ones. In each case the precise spectral region depends
on the spectroscopic constants of the molecule in question. Each of the
transition types, and their associated selection rules are considered in
turn below.

10.1 Selection Rules: Pure Rotational Transitions

For a diatomic to undergo a pure rotation transition, it must have a
permanent dipole moment, µ. Actually for any molecule to have a dipole-
allowed rotational spectrum it must have an asymmetric charge dis-
tribution giving a permanent dipole moment. Heteronuclear diatomics
possess a permanent dipole moment but homonuclears, such as H2, do
not. Molecular hydrogen therefore does not have a dipole-allowed rota-
tional spectrum.

The strength of a rotational transition depends on µ2, therefore
molecules with large permanent dipoles have intense transitions. This
means that molecules such as sodium chloride, Na+ – Cl−, which have
very large dipole moments as a result of the almost complete charge

146
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separations, have particularly intense rotational transitions. This has
greatly aided the astronomical detection of such species even at very small
concentrations or column densities (see Fig. 10.1).

For diatomic molecules in Σ symmetry electronic states, dipole-
allowed transitions obey the following selection rule:

∆J = ±1 . (10.1)

Within the rigid rotor approximation it is therefore straightforward to
obtain the energy of the rotational transitions:

∆Erot = B0
[
J ′(J ′ + 1) − J ′′(J ′′ + 1)

]
, (10.2)

where the standard convention for molecular spectra has been followed —
that ′ is used to denote the upper state and ′′ means the lower state.

As the selection rule gives J ′ = J ′′ + 1,

∆Erot = 2B0 J ′ . (10.3)

This means that the rigid rotor approximation leads directly to very reg-
ular pure rotational spectra where the transitions are regularly spaced by
2B. Thus the transition J ′ – J ′′ = 1 – 0 is at 2B, 2 – 1 at 4B, 3 – 2 at 6B, and
so forth. It should be noted that, in contrast to atomic transitions, molecu-
lar transitions are generally denoted upper – lower. Sometimes an arrow is
inserted so that J ′ ← J ′′ denotes absorption and J ′ → J ′′ denotes emission.

Centrifugal distortion leads to a slight narrowing of the gap between
neighbouring transitions as J increases, however the regular progression
is still clearly seen. Figure 10.2 gives a sample pure rotational spectrum
of CO recorded in the laboratory. The regular spacing of the spectrum
for both the most-abundant species, 12C16O, and isotopically-substituted
species is easily seen. Astronomical pure rotational spectra are, of course,
also regularly spaced when plotted using a frequency scale. However it
unusual for a single astronomical spectrum in the radio or far-infrared
to span a wide range. The more usual representation for series of astro-
nomical rotational lines are given in Fig. 10.1 for NaCl and Fig. 10.3
for CO.

Carbon monoxide, CO, is a particularly important species for astro-
nomical observations. CO is the most stable diatomic molecule. It has
a dissociation energy D0 of 11.1 eV, which is more than double the D0

value found for most other diatomics. As a result, in astronomical envi-
ronments where molecules form, C and O usually combine to form CO,
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Fig. 10.1. Five spectra observed towards IRC+10216 with the IRAM 30 m
telescope showing the J = 7 – 6 to J = 12 – 11 rotational transitions of NaCl.
[Reproduced from J. Cernicharo and M. Guélin, Astron. Astrophys. 183, L10 (1987).]
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Fig. 10.2. Laboratory far-infrared absorption spectrum of CO. [Reproduced from
P.F. Bernath, Spectra of Atoms and Molecules (Oxford University Press 1995).]

which is very stable and long-lived. Any surplus C or O is then available
for other chemistries. CO is thus the second most abundant molecule in
the Universe after H2.

For CO, the rotational constant of the ground vibrational state, B0,
is 1.93 cm−1. The wavelengths of the first few rotational transitions are
1 – 0 at λ = 2.60 mm, 2 – 1 at 1.30 mm, and 3 – 2 at 0.87 mm. Examples of
low J transitions are shown in Fig. 10.3. Much higher rotational levels can
also be observed in warm objects such as the planetary nebula NGC 7027
(see Fig. 7.6).

The J = 1 – 0 transition of CO is the second most important spectral
line in radio astronomy after the hydrogen 21 cm line. CO is widely dis-
tributed in the interstellar medium and maps of the CO J = 1 – 0 transition
are a standard tool for investigating the ISM. One reason for this is that
cold H2 is very difficult to observe directly because its pure rotational tran-
sitions are not only very weak but lie in the near-infrared where ground-
based observations are not possible. The abundance of CO is therefore
often used to estimate the total amount of molecular gas present in a
given environment. It is generally assumed that the number density of
CO, n(CO), is approximately 10−4 n(H2).
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Fig. 10.3. Comparison of profiles from CO 2 – 1 and 1 – 0 absorption against
extragalactic sources observed with the Plateau de Bure interferometer. The 2 – 1
spectra are displaced vertically by +1 for clarity. CO temperatures can be obtained
by comparing the two absorption profiles. [Reproduced from R. Lucas and H.S.
Liszt, in Molecules in Astrophysics: Probes and Processes, ed. E.F. van Dishoeck
(Kluwer, 1997).]

If, as often happens, the CO 1 – 0 line is optically thick, one can use
higher transitions such as the CO 2 – 1 line instead. These higher lines,
at millimetre wavelengths, can be observed using telescopes such as the
James Clerk Maxwell Telescope on Mauna Kea, Hawaii. Figure 10.3 gives
an example of monitoring both the 1 – 0 and 2 – 1 lines together, which
can be used for temperature determination. Another option to avoid the
effects of optical thickness is to observe isotopically-substituted CO, which
is present with much lower densities and whose transitions are therefore
much less optically thick. As discussed below, isotopic substitution has
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a particularly marked effect on molecular spectra, making such observa-
tions fairly straightforward.

It should be noted that CO actually has a rather small permanent
dipole of only 0.12 Debye. This means that even though the rotational
spectrum is driven by this electric dipole, the Einstein A coefficient is
actually fairly small for the pure rotational transitions of CO. For exam-
ple A1−0 = 7 × 10−8 s−1. Note that the factor ν−3 in the definition of the
Einstein A coefficient [see Eq. (2.4)], means that the radiative lifetime of
rotationally-excited states is in any case significantly longer than those
generally found for electronically-excited states of atoms or molecules
whose transitions lie at much higher frequencies.

10.1.1 Isotope effects

Isotopic substitution means the replacement of an atom in a molecule by
another isotope of that atom. Thus in CO, whose normal form is 12C16O,
one can replace 12C by 13C, giving 13C16O. This change leaves the chem-
istry unaltered, except for the fractionation effects discussed in Sec. 9.4,
but leads to changes in the spectrum due to mass effects.

The rotational constant for CO is

B0 =
�

2

2µr2
0

, µ =
MCMO

MC + MO
. (10.4)

Replacing 12C by 13C leads to an increase in the reduced mass µ and
hence an increase in the moment of inertia, I, assuming that the effective
bondlength r0 is unchanged upon substitution. This leads to decreased
rotational constant, B, for 13C16O and hence a smaller separation between
the rotational transitions. This change in transition frequency is significant
and can easily be resolved even with moderate resolution. Thus the 1 – 0
transition is at 2.60 mm for 12C16O, at 2.67 mm for 12C17O, and at 2.72 mm
for 13C16O.

The spectrum of 13C16O can easily be observed. See Fig. 10.3 for exam-
ple. In fact, astronomical spectra of all versions of isotopically-substituted
CO have been recorded.

10.1.2 Rotational spectra of other molecules

There are presently over 120 different molecules whose spectra have been
observed in the interstellar medium; this number is growing steadily by
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about 3 species per year. Most of these molecules have been detected
by the observation of rotational transitions at radio frequencies. Radio
spectra of giant molecular clouds are rich in features, particularly if one
probes deeply by using long integration times and sensitive detectors.
Figures 10.4 and 10.5 show a survey and a close-up spectrum recorded
looking at the nearby massive star-forming region in Orion. Such studies

Fig. 10.4. Radio spectrum spanning the 138.3 to 150.7 GHz region obtained
towards Orion-KL. Strong lines are designated their molecular identifications.
‘U’ marks unidentified lines. [Reproduced from C.W. Lee, S.-H. Cho and S.-M. Lee,
Astrophys. J. 551, 333 (2001).]

Fig. 10.5. Detailed radio spectrum spanning obtained towards Orion-KL. Lines
are designated by their molecular identifications. [Reproduced from C.W. Lee,
S.-H. Cho and S.-M. Lee, Astrophys. J., 551, 333 (2001).]
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highlight the large difference in intensity scales of the various transitions
that can be observed. That there are molecules still waiting to be found
is beyond doubt because there are many unidentified spectral features.
See for example the strong lines marked ‘U’ in Fig. 10.4. Higher-resolution
studies reveal many, many more such features. Most often such features
are assigned as a result of detective work based on spectroscopic studies
performed in the laboratory.

Interstellar medium molecules are most often observed in emission,
but can also be sometimes found in absorption. Indeed, there are a num-
ber of cases where molecules have been observed in absorption against the
cosmic microwave background; these observations imply that the absorb-
ing molecule is at a temperature below 2.7 K as measured by its rota-
tional population. As in the atomic case, observation of high-resolution
line profiles can yield further information: Doppler shifts can give rela-
tive motion, Doppler broadening can give the (translation) temperature,
and so forth. Figure 10.6 gives an example of self-absorption by the carbon
monosuphide molecule, CS. Light from further away is absorbed by the
molecules nearer to us. In this case the nearer molecules are cooler as their
absorption profiles are significantly narrower. These particular observa-
tions are interpreted as evidence for the collapse of the dark molecular
cloud Barnard 335 as a precursor to star formation.

Fig. 10.6. Rotational transitions of the CS molecule observed towards the cen-
tre of massive dark cloud Barnard 335. The dashed lines are from a model fit.
The J = 2 – 1 and J = 3 – 2 show self-absorbed profiles with stronger blue peaks.
This behaviour is typical of in-falling gas. [Reproduced from S. Zhou, Molecules in
Astrophysics: Probes and Processes, ed. E.F. van Dishoeck (Kluwer, 1997).]
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10.1.3 Rotational spectra of molecular hydrogen

H2 is a homonuclear diatomic and therefore does not have a permanent
electric dipole moment or an allowed rotational spectrum. It should be
noted that the molecule HD does have a dipole but only a very small one
of 0.0008 Debye. This leads to an Einstein A coefficient of only 3× 10−8 s−1

for the lowest J = 1 – 0 rotational transition.
However the abundance of H2 in many locations in the Universe

means that electric quadrupole transitions can be observed. These transi-
tions are weak, like the forbidden quadrupole transitions found in atomic
spectra. For diatomic molecules, the selection rule for pure rotational spec-
tra driven electric quadrupoles are

∆J = ±2 . (10.5)

The H2 molecule is very light so that B0 = 62 cm−1, meaning that the rota-
tional transitions of H2 lie at infrared wavelengths. For example, the low-
est 2 – 0 line is at λ = 28 µm. These transitions are about a billion times
weaker than dipole-allowed rotational transitions. The Einstein A value
for the 2 – 0 transition is very small, 3 × 10−11 s−1, which corresponds to a
radiative lifetime against spontaneous emission of about 1000 years.

H2 quadrupole rotational transitions can be seen in the warm ISM in
emission (see Fig. 10.7). Such transitions have been extensively studied in

Fig. 10.7. Quadrupole rotational emission spectra of molecular hydrogen
towards the warm photon-dominated region (PDR) S140 recorded using the
Infrared Space Observatory (ISO). The observations probe the warm, dense
molecular gas adjacent to the S140 H II region. The flux density (vertical scale)
is given in Jansky (= 10−23 erg s−1 · cm−2 ·Hz−1). Dashed lines give the laboratory
wavelengths for the transition indicated. [Adapted from R. Timmermann et al.,
Astron. Astrophys. 315, L281 (1996).]
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Orion; indeed higher rotational transitions have been observed in Orion,
up to S(17) or J = 19 – 17, than those detected in the laboratory. In the lab-
oratory, getting a sufficient pathlength of light through a sample of H2 to
observe these very weak transitions is a major challenge.

10.2 Vibrational Transitions

Within the harmonic oscillator approximation, there is a simple and rigor-
ous electric dipole selection rule:

∆v = ±1 . (10.6)

This leads directly to

∆Ev = �ω

(
v + 1 +

1
2

)
− �ω

(
v +

1
2

)
= �ω , (10.7)

where ω is known as the fundamental frequency.
For anharmonic molecules any change in ∆v is allowed in principle,

but in practice, ∆v = ±1 always leads to much stronger transitions. The
intensity of individual transitions falls off rapidly with increasing ∆v.
Vibrational transitions which change v by more than one quantum are gen-
erally called overtones.

Vibrational transitions are usually accompanied by a change in rota-
tional state. For electric dipole transitions within a Σ electronic state, the
additional selection rule on rotational motion is

∆J = ±1 . (10.8)

For non-Σ states and polyatomic molecules, transitions with ∆J = 0 can
also occur. To get dipole-allowed vibrational excitation, one must have a
change in the dipole moment

dµ

dQ
�= 0 , (10.9)

where Q is the vibrational coordinate undergoing excitation.
For homonuclear diatomics, µ = 0 for all internuclear separations,

so vibrational transitions are all dipole-forbidden. This is not true, how-
ever, for symmetric polyatomic linear molecules such as carbon dioxide.
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CO2 does not have a dipole moment in its equilibrium geometry but
distortions from this can give an instantaneous dipole moment. Hence
some CO2 vibrational transitions are dipole-allowed. It is these vibrational
transitions which contribute to the greenhouse effect both here on earth
and on Venus, where the super-abundance of CO2 in the atmosphere is
responsible for maintaining a huge greenhouse effect.

For heteronuclear diatomics, such as CO, the derivative of the dipole
with respect to bondlength, dµ

dR , is only zero by accident. So heteronuclear
diatomic molecules all have allowed vibrational spectra.

10.2.1 Structure of the spectrum

For simplicity the discussion will be confined to rotation–vibration spec-
tra in Σ symmetry electronic states. Consider the so-called fundamental
transition given by v′ = 1 − v′′ = 0 centred on the the fundamental fre-
quency, ω. The rotational selection rules are ∆J = ±1, meaning that the
vibrational band has two branches. Assuming the rigid rotor approxima-
tion this gives:

R-branch: ∆J = +1, i.e. J ′ = J ′′ + 1

∆EVR = �ω + J ′(J ′ + 1)B1 − J ′′(J ′′ + 1)B0 � �ω + 2B(J ′′ + 1) (10.10)

for J ′′ = 0,1, 2, . . . . It has been assumed that B1 � B0, which is generally
a good approximation, and is about as reliable as neglecting the effects of
centrifugal distortion.

P-branch: ∆J = −1, i.e. J ′ = J ′′ − 1

∆EVR = �ω + J ′(J ′ + 1)B1 − J ′′(J ′′ + 1)B0 � �ω − 2BJ ′′ (10.11)

for J ′′ = 1, 2, 3, . . . but not J ′′ = 0 as it would imply J ′ = −1. In standard
notation the transitions for the two branches are labelled R(J ′′) and P(J ′′),
where J ′′ is the rotational quantum number associated with the lower
vibrational state.

This series of transitions give a characteristic spectral pattern as
depicted in Fig. 10.8. The rotational selection rules lead to a series of lines
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Fig. 10.8. Stick spectrum showing the structure of a vibrational band for a
diatomic molecule with a Σ symmetry electronic state.

which are evenly spaced, 2B apart. The exception is at the centre of the
band where no line is observed.

Figure 10.9 shows a CO absorption spectrum recorded looking
towards the massive young stellar object AFGL 4176, which is embed-
ded in a dense molecular cloud. The symmetric structure of the P- and
R-branches, and the band centre, which can be pinpointed by the missing
line, are all clearly visible. The shorter wavelength feature due to solid
carbon dioxide shows how different these largely structureless condensed
phase spectra are. The 4.7 µm region is heavily obscured by the earth’s
atmosphere. This spectrum was recorded by a satellite, the Infrared Space
Observatory (ISO).

Besides the structure of the lines, the vibration–rotation spectra of
diatomics also have a characteristic shape. The intensity of individual lines
is directly proportional to the rotational population in the initial state of
the molecule. This means that this intensity distribution can be used to
measure the (rotational) temperature of the molecule. The temperature can
then be estimated from a spectrum using formula (9.33), although a more
reliable result can usually be obtained by fitting the whole spectrum to a
temperature-dependent rotational population.

For diatomic molecules not in a Σ electronic state, that is, ones with
Λ > 0, and for polyatomic molecules, the rotational selection rule (10.8) is
generalised to

∆J = 0, ± 1, not J = 0 ↔ 0 . (10.12)
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Fig. 10.9. Spectra obtained towards the massive young stellar object AFGL 4176
using the Infrared Space Observatory (ISO). The strong, largely structureless band
absorption at 4.27µm is due to solid CO2, whereas the characteristic vibration–
rotation P- and R-branch structure between 4.4 and 4.9µm is due to the pres-
ence of warm, gaseous CO along the line of sight. [Reproduced from E.F. van
Dishoeck, in The Molecular Astrophysics of Stars and Galaxies, eds. T.W. Hartquist
and D.A. Williams (Clarendon Press, Oxford, 1998).]

The extra ∆J = 0 transitions form what is known as a Q-branch. Within the
rigid rotor approximation, all Q-branch transitions in a vibration–rotation
spectrum lie at the same frequency, giving the spectrum a characteristic
sharp peak at the band origin. Effects beyond the rigid rotor model can
introduce slight shifts in these transitions but it is common for the indi-
vidual Q-branch transitions to not be resolved even with high resolution.

Vibrational spectra can be seen in emission from hotter regions of the
ISM and of planetary atmospheres particularly from auroral regions. They
are seen in absorption in the atmospheres of cool stars and brown dwarfs.
Absorption spectra of cold ISM molecules can be seen against the light of a
suitable, more distant infrared source. Such observations, which are often
necessary to identify interstellar molecules which do not have a perma-
nent dipole, can be difficult.
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10.2.2 Isotope effects

Isotopic substitution alters vibrational frequencies as well as rota-
tional ones. However, whereas the rotational transition frequency shifts
according to the inverse of the reduced mass µ (see Sec. 10.1.1), the vibra-
tional band origin shifts as µ− 1

2 . This can be seen from Eq. (9.23) which is
based on the harmonic approximation. A further assumption, valid within
the Born–Oppenheimer approximation, is that the force constant, k, does
not change with isotopic substitution. Thus for 13C16O the band origin is
shifted to 2096 cm−1 from 2143 cm−1 found for 12C16O. Such shifts are suf-
ficient to be detectable with a spectrograph of moderate resolution.

10.2.3 Hydrogen molecule vibrational spectra

Like its rotational spectrum, H2 only undergoes very weak electric
quadrupole-induced transitions for its vibrational spectrum. For these
transitions, vibrational state changes with ∆v = ±1 are still dominant,
although transitions with ∆v > 1 are observed astronomically. The rota-
tional selection rules for these quadrupole transitions are:

∆J = 0, ± 2, not J = 0 ↔ 0 . (10.13)

This leads to a new set of labels for the different branches. Transitions
with ∆J = 2 form the S-branch; ∆J = 0 form the Q-branch; ∆J = −2 form
the O-branch. Transitions are labelled S(J ′′), Q(J ′′) and O(J ′′), where J ′′

is the rotational quantum number of the lower rotational state involved
in the transition.

Despite the extreme weakness of the transitions — they are approxi-
mately 109 times weaker than electric dipole-allowed vibration–rotation
transitions — emissions from vibrationally excited H2 are bright from
a number of astronomical sources. These include planetary atmospheres
(Fig. 10.10), planetary and reflection nebulae (Fig. 10.11) and hot regions
of the ISM. H2 emissions can be particularly bright from merging galaxies,
which contain huge quantities of hot hydrogen molecules.

Both Figs. 10.10 and 10.11 show effects due to the earth’s atmosphere,
the so-called telluric effects. This is a common problem with observing in
the infrared. In particular, the gap between 1.8 and 2.0 µm in Fig. 10.11 due
to atmospheric effects separates the H-band (1.4–1.8µm) from the K-band
(2.0–2.4 µm).
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Fig. 10.10. Continuum-subtracted, infrared K-band spectrum of Uranus recorded
using the UK Infrared Telescope (UKIRT) by Trafton and co-workers [see
Astrophys. J. 405, 761 (1993)]. The H2 quadrupole emission lines are prominent,
especially in the Q-branch. Weak emission features from the overtone band of the
hydrogenic molecular ion H+

3 can also be seen. The structure in the spectrum near
2.01µm and long-wards of 2.45µm is caused by telluric features.

Fig. 10.11. Infrared spectra of reflection nebula NGC 7023. The wavelengths of
molecular hydrogen lines have been labelled above the spectrum. The intensity
has been normalised to the peak 1 – 0 S(1) intensity. [Reproduced from P. Martini,
K. Sellgren and J.L. Hora, Astrophys. J. 484, 296 (1997).]
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10.3 Electronic Transitions

Electronic transitions involve a jump from one potential energy curve to
another curve (see Fig. 10.12). The most common situation is that the equi-
librium bondlength of the excited electronic state, R′

e, is bigger than that of
the ground state, R′′

e , as electronic excitation usually weakens the bonding
in a molecule. The potential energy curves of H2 (see Fig. 9.2), illustrate
this behaviour.

Electronic spectra are significantly more complicated than the pure
rotational and vibration–rotation spectra considered above. This is
because it is necessary to consider changes in the electronic, vibrational
and rotational state of the molecule for each possible change in electronic
state.

10.3.1 Selection rules

Nearly all electronically-excited states of molecules contain enough energy
to dissociate the molecule. For this reason it is usually only necessary
to consider electronic transitions which obey electric dipole selection
rules. Table 10.1 gives the selection rules for electric dipole transitions
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E
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Fig. 10.12. Electronic transitions involve a jump from one potential to another.



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch10

162 Astronomical Spectroscopy

Table 10.1. Selection rules for spectra of diatomic molecules
undergoing allowed electric dipole transitions.

Rotations ∆J = ±1 for Λ = 0 – 0,
∆J = 0, ± 1 not J = 0 – 0, for other ∆Λ.

Vibrations ∆v any.
Spin ∆S = 0.
Orbital ∆Λ = 0, ± 1.
Σ states Σ+ ↔ Σ+,

Σ− ↔ Σ−.
Symmetry g ↔ u Homonuclear molecules only.

for diatomic molecules. In principle these selection rules apply to all
transitions of a diatomic molecule, but in practice the table is of most
use for considering electronic transitions as these have the most compli-
cated selection rules. The simplified versions of the selection rules given
above for pure rotation and vibration–rotation transitions are sufficient for
these cases.

For all molecules, allowed electric dipole transitions obey the spin con-
serving selection rule

∆S = 0 . (10.14)

For diatomic molecules the projection of the total electron orbital angular
momentum along the diatomic axis, Λ, obeys the rule:

∆Λ = 0, ± 1 , (10.15)

which means that Σ – Σ, Σ – Π and Π – ∆ transitions are allowed but a Σ – ∆
transition is forbidden.

Molecules with a centre-of-symmetry, which include homonuclear
diatomics, must change symmetry when undergoing an electric dipole
transition. Thus transitions must link g and u electronic states; transitions
which are u ↔ u and g ↔ g are forbidden. This rule is the molecular equiv-
alent of the Laporte rule encountered in atomic spectra. Its application
explains why there are no dipole-allowed rotation or vibration–rotation
spectra for homonuclear diatomics since such transitions all occur within
a single electronic state and therefore leave the symmetry of the state
unchanged.
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Fig. 10.13. Spectrum towards the star DI 1388 recorded with the Far-Ultraviolet
Space Explorer (FUSE). The interstellar atomic and molecular lines arising in the
Galaxy (MW) and the Magellanic Bridge (MB), a region between the large and
small Magellanic clouds, are identified. [Reproduced from N. Lehner, Astrophys. J.
578, 126, (2002).]

Figures 10.13 and 10.14 show ultraviolet spectra of molecular hydro-
gen recorded by observing starlight passing through the interstellar
medium. Prominent electronic transitions shown for H2 are the

Werner band: C 1Πu – X 1Σ+
g at about 1100 Å;

Lyman band: B 1Σ+

u – X 1Σ+

g at about 1010 Å.

These transitions are described as bands and do not occur at a precise
wavelength because within each electronic transition there are a series of
vibrational and rotational transitions. These are considered in turn below.

10.3.2 Vibrational selection rules

There are no rigorous selection rules which govern the change in vibra-
tional quantum numbers during an electronic transition. The chance of a
particular vibrational transition occurring depends on the squared overlap
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Fig. 10.14. Spectrum recorded towards O-star ζ Oph using the satellite
Copernicus. [Reproduced from L. Spitzer Jr. and E.B. Jenkins, Ann. Rev. Astron.
Astrophys. 13, 133 (1975).]

of the vibrational wavefunctions from the two potentials involved:

∣

∣

∣

∣

Z

ψ′v(v′)∗ψ′′v (v′′)dR
∣

∣

∣

∣

2

. (10.16)

This factor, which takes a value between zero and one, is called a
Franck–Condon factor. It is derived following the Franck–Condon prin-
ciple, which can be thought of as an extension of the Born–Oppenheimer
approximation as it assumes that electronic transitions occur too rapidly
for the nuclei to move during them. See Bransden and Joachain (2003) in
further reading for a full discussion of the Franck–Condon principle.

It is common practice to denote vibrational bands within an electronic
transition by (v′, v′′). So (4, 0) means a transition between vibrational state
v′ = 4 in the upper state and v′′ = 0 in the lower state.

10.3.3 Rotational selection rules

The rotational selection rule for an electronic transition is

∆J = 0, ± 1 , not J = 0↔ 0 , (10.17)

except that ∆J = 0 transitions are not allowed for transitions between
Σ electronic states. These selection rules lead to P-branch (J ′ – J ′′ = −1),
Q-branch (J ′= J′′) if allowed, and R-branch (J ′ – J ′′= +1) transitions. How-
ever, unlike vibrational spectra, these branches do not display a regular
structure.
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Table 10.2. Spectroscopic constants, in cm−1, for the electronic states of
molecular hydrogen involved in the Lyman and Werner bands.

State Te ωe ωexe Be αe De

C 1Πu 100089.8 2443.77 69.524 31.362 1.644 0.0223
B 1Σ+

u 91700.0 1358.09 20.888 20.015 1.185 0.0163
X 1Σ+

g 0 4401.21 121.33 60.853 3.062 0.0471

The rotational constant associated with each electronic state involved
in a transition is different, i.e. B′ �= B′′; in fact they are often substantially
different. This is because although the reduced mass of the system stays
constant during a transition, the equilibrium bondlength, Re, does not. The
most common situation is that R′

e > R′′
e so that B′ < B′′. Table 10.2 gives

the molecular constants which can be used to determine the wavelength
of individual transitions in the Werner and Lyman bands. This shows that
Be for the X 1Σ+

g ground state is substantially bigger than Be for the two
electronically-excited states.

The difference in rotational constants means that the rotational ‘fine
structure’ lines are not evenly spaced. Furthermore the transitions often
pile up on top of each other leading to a band head where many rotational
transitions occur very close together. Band heads occur at the red end of
the band, if B′ < B′′, which is the most common situation, or at the blue
end of the band, if B′ > B′′.

10.3.4 Transition frequencies

The energy difference, ∆E, for an electronic transition contains contribu-
tions from each of the electronic, vibrational and rotational energies. The
difference is most conveniently written

∆E = Te + E′
VR − E′′

VR , (10.18)

where Te is the adiabatic electronic excitation which is defined as the
energy difference between the minima in the potential energy curves of
the two states involved (see Fig. 10.12). By convention the minimum of
the ground state curve is taken as the energy zero. The vibration–rotation
energy levels within each curve, EVR, are usually obtained in terms of stan-
dard molecular constants. Expressions for them are given in Eq. (9.29).
The relevant constants for the Lyman and Werner bands of H2 are given
in Table 10.2; a general tabulation of spectroscopic constants for diatomic
molecules can be found in Huber and Herzberg (1979).
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Worked Example: A cold interstellar column of H2 absorbs light in the
B 1Σ+

u – X 1Σ+
g Lyman band. This band does not have a Q-branch. Assum-

ing that the H2 molecule is entirely in its vibrational ground state and
J ′′ = 0 and 1 rotational states, what wavenumber of light will be absorbed to
populate vibrational states with v′ = 0 and 1 in the upper electronic state?

Solution: Denote the energy levels EX(v′′, J ′′) and EB(v′, J ′) for the ground
and excited electronic states respectively. Then, using spectroscopic con-
stants for the appropriate electronic state taken from Table 10.2,

EX(0, 0) =
w′′

e

2
− w′′

e x′′
e

4
= 2170.3 cm−1 ,

EX(0, 1) = EX(0, 0) + 2B′′
e − 4D′′

e − α′′
e = 2288.8 cm−1 ,

EB(0, 0) = Te +
w′

e

2
− w′

ex′
e

4
= 92690.1 cm−1 ,

EB(0, 1) = EB(0, 0) + 2B′
e − 4D′

e − 2α′
e = 92726.5 cm−1 ,

EB(0, 2) = EB(0, 0) + 6B′
e − 36D′

e − 6α′
e = 92798.9 cm−1 ,

EB(1, 0) = EB(0, 0) + w′
e − 2w′

ex
′
e = 93721.5 cm−1 ,

EB(1, 1) = EB(0, 1) + w′
e − 2w′

ex
′
e − α′

e = 93762.0 cm−1 ,

EB(1, 2) = EB(0, 2) + w′
e − 2w′

ex
′
e − 3α′

e = 93842.7 cm−1 .

The conditions specified only give six transitions. They are:

(0, 0) R(0) at ω = EB(0, 1)− EX(0, 0) = 90242.3 cm−1 ,

(0, 0) P(1) at ω = EB(0, 0)− EX(0, 1) = 90085.0 cm−1 ,

(0, 0) R(1) at ω = EB(0, 2)− EX(0, 1) = 90200.9 cm−1 ,

(1, 0) R(0) at ω = EB(1, 1) − EX(0, 0) = 91156.2 cm−1 ,

(1, 0) P(1) at ω = EB(1, 0)− EX(0, 1) = 91401.3 cm−1 ,

(1, 0) R(1) at ω = EB(1, 2)− EX(0, 1) = 91510.1 cm−1 .

10.3.5 Astronomical spectra

Most astronomical electronic spectra of molecules are observed in absorp-
tion. Recent observations by the Far-Ultraviolet Space Explorer (FUSE)
satellite have extensively monitored the Werner and Lyman bands of H2

in absorption in the ISM. Such observations provide a direct observational
handle on cold molecular hydrogen in the ISM. These bands are observed
in absorption against starlight. See Fig. 10.13 for example.
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Figure 10.14 shows part of the Lyman band of H2. This transition is
B 1Σ+

u – X 1Σ+
g and is electric dipole-allowed. Absorption for the vibrational

ground state starts at about 1100 Å and runs to shorter wavelengths. The
abundance of H2 is so great in interstellar clouds that absorption from the
lowest rotational level, J = 0, is optically thick. Despite the large B con-
stant of H2, and the relatively small Einstein A coefficient for the transition,
absorption from several rotationally excited levels can be seen. The spec-
trum also shows a line due to HD, which is shifted due to mass effects that
influence the vibration–rotation energies in both electronic states. Deu-
terium fractionation effects at cold temperatures mean that although a
ratio of HD to H2 can be obtained from this spectrum, this does not give
directly the ratio of D to H abundances.

Electronic spectra can be observed in emission from both comets and
planetary aurorae. In both these cases the emissions are the result of non-
thermal excitations. For example, Jupiter’s aurorae emit strongly in both
the Lyman and Werner bands as a result of electrons travelling down the
magnetic field lines in the polar regions and exciting the H2 gas which
makes up most of Jupiter’s atmosphere.

Except for H2, whose rotational fine structure transitions are widely
spaced, the rotational structure of the electronic transitions are often not
fully resolved, leading to band structures. However the bands have char-
acteristic profiles, for example containing band heads, which allow them
to be identified as molecular in origin.

Molecules in giant molecular clouds and other cold interstellar envi-
ronments do not possess sufficient energy for their electronic spectra to be
observed in emission. However, molecular absorptions can be seen against
suitable light from a more distant star. As these molecules exist at low tem-
peratures, only the ground vibrational state and a few rotational levels are
occupied. For light molecules only one rotational state may be occupied.
These species give rise to fairly simple spectra with transitions to several
vibrational states of the upper electronic state, each with a few, maybe
even only one, rotational fine structure line.

The first three molecules observed in the ISM were CH, CH+ and
CN. These somewhat unusual species were all detected by their electronic
spectra which lie in the visible. Figure 10.15 compares term diagrams,
which can be thought of as the molecular equivalent of Grotrian diagrams,
for these three species. CH and CH+ are light species so only transitions
from their rotational ground states are usually observed. The CN ‘violet’
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Fig. 10.15. Term diagrams giving the rotational structure only of the strongest
electronic interstellar bands of the CN, CH and CH+ molecules. Note the
more complicated structure of CH is caused by Λ-doubling in both the ground
and excited electronic states. [Reproduced from P. Thaddeus, Ann. Rev. Astron.
Astrophys. 10, 305 (1972).]

band has a larger transition dipole and CN is heavier and so has smaller
rotational constants. Two or three rotational levels may be occupied, which
leads to either three or five rotational fine structure transitions for each
vibrational band. Figure 10.16 gives an example where only the J ′′ = 0
and 1 levels of CN are occupied. The population of CN rotational levels
are sensitive to the local temperature of the environment and can be used
to measure the local microwave background, as discussed in Sec. 9.6.1.
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Fig. 10.16. Optical spectrum recorded towards ζ Oph showing rotationally-
resolved absorption due to the CN ‘violet’ band. Absorption by the R(2) line is not
observed. Adapted from P. Thaddeus [Ann. Rev. Astron. Astrophys. 10, 305 (1972).]

10.4 Non-1Σ Electronic States

Molecules which do not have 1Σ (i.e. S = 0, Λ = 0) electronic states have
more complicated spectra. In this case it is necessary to consider the cou-
pling of the rotational motion to the spin and/or orbital angular momenta.

This can get fairly complicated as, in particular, there is more than one
way to do this. The choice of coupling scheme depends on the molecu-
lar species and even the electronic state in question. These different cou-
pling schemes are known as Hund’s cases. Here only one astronomically,
and atmospherically important species will be considered: the hydroxyl
molecule, OH.

The ground state of OH is X 2Π which means that S =
1
2 and Λ = 1. This

system is treated using Hund’s case (a) which starts by coupling the spin
projection along the molecular axis, Σ, to the electron orbital projection on
this axis. The resulting projection of the total electron angular momentum,
Ω, can take two values as this is not vector addition but the addition of two
projections which either point in the same direction or opposite directions.
The total projection can thus take the values

Ω = |Λ− Σ|, Λ + Σ . (10.19)

For the case of 2Π electronic state, therefore, Ω equals 1
2 and 3

2 .
The X 2Π electronic state of OH is split into two states which are des-

ignated 2Π 3
2

and 2Π 1
2
, or indeed sometimes 2Π+ and 2Π−. The separation

between these two states is due to relativistic interactions and therefore



May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch10

170 Astronomical Spectroscopy

completely equivalent to the fine structure found in atomic levels. For OH
the 2Π 3

2
is the lower of the two states.

The extra complication for molecular spectra arises from the addi-
tional coupling to the rotational motion which is strictly represented by
the quantum number N. Note that N equals J in the usual case when
S = Λ = 0. However for states with Λ �= 0, the electronic angular momen-
tum couples with N to give J. This coupling to the rotational motion splits
each of the energy levels into a ‘+’ or ‘−’ component. The result is known
as Λ-doubling. Λ-doubling effects are particularly strong for molecules such
as OH which have Λ = 1. The structure of the low-lying energy levels of
OH, and the resulting transitions between them, is given in Fig. 10.17.
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Fig. 10.17. Low-lying energy levels of the OH molecule showing the wavelengths
of allowed radio and near-infrared transition. The expanded portion shows the
hyperfine splitting of the lowest levels and the frequencies of the associated hyper-
fine transitions.
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Transitions between the Λ-doublets are allowed. The lowest of these
lies at radio frequencies with a wavelength of 18 cm. Observation of this
transition in 1963 led to OH becoming the fourth molecule observed in the
interstellar medium and the second species observed at radio frequencies.

To add one more layer of angular momentum coupling, the Λ-doublets
are themselves split by hyperfine coupling, which couples the rotational
motion quantum number J to the total nuclear spin quantum number I. In
the case of OH, 16O has a zero nuclear spin and the hyperfine effects arise
from coupling J to the i = 1

2 of the H nucleus. Hyperfine effects cause the
18-cm line to split into four components (see the inset in Fig. 10.17). These
lines can be observed in high-resolution studies.

10.5 Maser Emissions

Microwave amplification stimulated emission of radiation (maser) action
is observed from at least 36 molecules including SiO, OH and water, usu-
ally at infrared or microwave frequencies. The population inversion nec-
essary to cause maser action can be created by a number of mechanisms
including optical pumping, radiation trapping in certain long-lived levels
and selective collisional excitation of the masing molecule.

Figure 10.18 depicts a simplified case of a maser driven by collisional
excitation. In this figure the levels are vibration–rotation levels of the elec-
tronic ground state. If level A is excited in some collision process, such as

A

B

Ground state

Rapid
emission

maser actionCollisional
excitation

Fig. 10.18. Typical scheme for a three-level masing system driven by selective
collisional excitation.
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scattering with H2, and level B is not, then the population of level A can be
greater than the population of level B. This situation gives a non-thermal
population and can lead to maser action which, by its nature, is highly
directional.

The detailed mechanism which causes masing in each system can be
regarded as an accident of the physics for that species. Molecules such
as SiO have been observed masing in over 400 stars. OH and water are
observed to mase in the ISM. Such maser action is often very time variable
and — since masing is very dependent on the detailed physics — carries a
lot of information about the local environment. Indeed the original obser-
vations of what turned out to be OH masers were so puzzling that they
were dubbed ‘mysterium’. Instead of being a possible new element, it was
considered possible that these emission lines with strong, wildly fluctuat-
ing intensities were due to an alien lifeform. However it was demonstrated
that simple physical phenomena giving maser action could give rise to
such effects. The masing hyperfine lines of OH are now widely studied.
Figure 10.19 gives an example of maser emission from a variable late-type
supergiant star. Water and SiO maser lines can both be observed from this
object. The velocity structure of the masing line displayed in Fig. 10.19
indicates that the emissions are coming from an expanding shell of gas at
constant velocity.

Fig. 10.19. Velocity profile of OH 1612 MHz maser emission from the variable,
late-type supergiant star VX Sagitarii, observed using the Lovell 76 m antenna.
(A.M.S. Richards, private communication.)
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Problems

10.1 Interstellar CO is observed absorbing infrared radiation at 2134.63,
2138.46, 2146.16, 2150.03 and 2153.94 cm−1. Identify the transitions
observed in this spectrum and explain what astrophysical information
might be obtained from its study. Where might one expect to observe
an infrared spectrum of CO in (a) absorption and (b) emission?

10.2 One wishes to observe the molecules 12C16O and 13C16O. How do
(a) the J = 1 – 0 rotational transition frequency and (b) the v = 1 – 0
fundamental vibrational frequency depend on the reduced mass of
the system? For 12C16O, the J = 1 – 0 transition lies at 3.86 cm−1 and
the fundamental frequency lies at 2170 cm−1. Assuming integer val-
ues for the atomic masses, estimate these quantities for 13C16O. Why
might it be necessary to observe different transitions for 12C16O than
13C16O to determine their relative abundances?

10.3 Observations are planned of CO pure rotational emission spectra
using the J = 5 – 4 and J = 20 – 19 transitions. Assuming CO is a rigid
rotor with rotational constant B = 1.93 cm−1, estimate the transition
frequency of the two transitions. Explain which of these estimates
will be more accurate.

10.4 The 12CH+ molecular ion has a rotational constant B = 11.94 cm−1

and a fundamental vibrational frequency of ω = 2075.5 cm−1. A cold,
interstellar column of 12CH+ in its J = 1 rotational state is observed
in (a) the far-infrared and (b) the mid-infrared. Give the quantum
numbers and wavenumber (in cm−1) of the transitions you would
expect to observe.

10.5 Assign quantum numbers transitions labelled CO in Fig. 7.6. You can
assume these are all pure rotational transitions.

10.6 Figure 10.9 shows a vibrational spectrum of CO. Estimate the wave-
length of the band origin of CO from this spectrum. Starting at the
band origin, assign rotational quantum numbers as far as the maxima
in the two branches of the spectra. Hence obtain an estimate of the tem-
perature of the CO gas involved in the absorption. You may assume
that CO is a rigid rotor with a rotational constant B = 1.93 cm−1.

10.7 Estimate the wavenumber in cm−1 at which cold interstellar H2 will
absorb in the Werner band. Assume H2 is a rigid rotor and a harmonic
oscillator, and use the constants Be, ωe and Te given in Table 10.2. Only
consider absorption to the three lowest vibrational states, v′ = 0, 1, 2,
in the excited, C 1Πu, electronic state.
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SOLUTIONS TO MODEL PROBLEMS

Several solutions below give precise numerical answers to problems for
which an estimate was requested. For these problems, indicated * below,
correct working may yield answers differing slightly from those given.

Chapter 1

1.1 v = c ∆λ
λ .

Line 1: v = 411.54−410.17
410.17 × 2.998× 108 = 100.1 km s−1;

Line 2: v = 435.50−434.05
434.05 × 2.998× 108 = 100.1 km s−1;

Line 3: v = 487.75−486.13
487.75 × 2.998× 108 = 99.9 km s−1;

Line 4: v = 658.47−656.28
656.28 × 2.998× 108 = 100.0 km s−1;

All lines show a Doppler shift of 100 km s−1 which is the speed the star
is moving away from earth as the shift is positive.

Chapter 2

2.1* Doppler shift, measuring vr as approximately −600 km s−1, is

∆ν =
vr

c
ν =

6 × 105

3 × 108 × 99.023 = 0.198 GHz.

Hence ν = 99.023 + 0.198 = 99.221 GHz. The laboratory frequency for
H50β is 99.223 GHz.

Chapter 3

3.1 En = − RH
n2 . Lyα is n = 2 – 1 so

E1 − E2 = RH

(
1 − 1

4

)
= 109677.58× 3

4
= 82258.19 cm−1.

174
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R∞ is defined for a one-electron atom with an infinite nuclear mass.
Iron is a heavy atom, so the reduced mass for an electron plus an iron
nucleus is very close to the mass of an electron, me, which is the mass
used in defining R∞. Lyα for Fe25+ therefore lies close to 262 × 0.75×
109737.31 = 5.564× 107 cm−1. Such transitions will only be observed
from very hot environments such as intergalactic plasma.

3.2 Selection rules: ∆l = ±1, ∆n any. Observed emissions:

4 – 3 Pα at 18751 Å;
4 – 2 Hβ at 4861 Å;
4 – 1 Lyγ at 972 Å;
3 – 2 Hα at 6563 Å;
2 – 1 Lyα at 1215 Å.

Starting from the 4s level, 3 – 1 Lyβ at 1026 Å will be observed, but
not Lyγ.
The cascade of emission from the H 4p level can be depicted as:

3.3 λ−1 = R
hc

(
1
n2

1
− 1

n2
2

)
for Hα n1 = 2, n2 = 3. Only the Rydberg constant R

changes between H and D, via the reduced mass, so:

λD

λH
=

RH

RD
=

µH

µD
=

MHme

MH + me
× MD + me

MDme
,

λD

λH
=

1836.1
1837.1

× 3671.4
3670.4

= 0.999728 .

Therefore λD(Hβ) = 6561.00 Å.

R =
λ

∆λ
=

λH

λH − λD
=

R−1
H

R−1
H − R−1

H
=

1
1 − RH/RD

,
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so the resolving power R is independent of n1 or n2.

R =
1

1− 0.999728
� 3700 .

Note that telescope resolving powers are usually given to one digit
and a power of ten. It is meaningless to specify the resolving power
to significantly more digits than this.
Since R is independent of n1 and n2, the same resolving power is
required for Lyα. The main problem with observing both H and D
transitions together is that if there is approximately 105 more H than
D, then if the D transition is observable, the H one is likely to be
optically thick.

3.4* From Sec. 3.8.1, the volume of an H atom with principal quantum
number n is

Vn ≈ 4
3
πn6 × 1.48× 10−31 m3.

(a) Star with N = 1016 cm−3 = 1022 m−3, so each atom can occupy up
to about 10−22 m3. Equating gives:

4
3
πn6 × 1.48× 10−31 � 10−22

which gives n � 23.
(b) H II region N = 104 cm−3 = 1010 m−3, so each atom can occupy up

to about 10−10 m3. Equating with Vn gives n � 2300.
The partition function sum is finite since in any environment the
H atom is confined in a finite volume. This truncates the sum at
some maximum value of n, e.g. 23 for the star and 2300 for H II

region considered above.

3.5* λ−1 = R
(

1
n2

1
− 1

n2
2

)
. For 80α, n1 = 80 and n2 = 81 which gives

λ = 2.37668 using R∞ and λ = 2.37797 using RH. The resolving
power

R =
λ

∆λ
=

2.377
2.37797− 2.37668

≈ 1800 .

A one-digit estimate of the resolving power gives R = 2000.

Chapter 4

4.1 Be has 4 electrons; its ground state configuration is 1s22s2. Both orbitals
are fully occupied, giving a term 1S and a level 1S0.
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The excited state has configuration 1s22s13d1 giving l(2s) = 0, s(2s) = 1
2

and l(3d) = 2, s(3d) = 1
2 . Adding these gives L = 2 and S = 0 or 1. These

correspond to terms 1D, 3D, and levels 1D2, 3D1, 3D2, 3D3.
4.2 4d2 means l1 = 2, s1 = 1

2 and l2 = 2, s2 = 1
2 . Adding these L = l1 + l2 =

0, 1, 2, 3,4 and S = s1 + s2 = 0, 1. Without the Pauli Principle the terms
1S, 1P, 1D, 1F, 1G, 3S, 3P, 3D, 3F and 3G would be possible, but the Pauli
Principle imposes the rule that for indistinguishable electrons the sum
of L + S must be even. Applying this rule gives 1S, 3P, 1D, 3F and 1G
only. If Hund’s rules are obeyed for this configuration then the energy
order would be 3F, 3P, 1G, 1D, 1S, going from lowest to highest.

Term L S J = |L − S|, . . . , L + S
1S 0 0 0
3P 1 1 0, 1, 2
1D 2 0 2
3F 3 1 2, 3, 4
1G 4 0 4

giving 3F2, 3F3, 3F4, 3P0, 3P1, 3P2, 1G4, 1D2, 1S0. 3F2 should be lowest in
energy. All terms are even parity since (−1)l1+l2 = (−1)2+2 = 1.

4.3 4Fo
7
2

means S = 3
2 , L = 3, J = 7

2 . It will have 2J + 1 = 8 states (which

are MJ sublevels). The other levels are given by J = L + S = 3
2 , 5

2 , 7
2 , 9

2
which gives 4Fo

3
2
, 4Fo

5
2

and 4Fo
9
2

in addition to 4Fo
7
2
.

As S = 3
2 , the system must contain at least 3 electrons. A possible three-

electron configuration could be 1s2p3d. Other configurations are also
possible, but not 2p3 which cannot give 4Fo by the Pauli Principle.

4.4 1D has L = 2 and S = 0 so it can exist only for J = 2 i.e. 1D2, not 1D1;
0D 5

2
would mean 2S + 1 = 0, i.e. S = − 1

2 but S must be ≥ 0;
3P means S = L = 1 giving integer J values of 0, 1 or 2 but not 3

2 . Half-
integer J’s mean odd numbers of electrons and 2S + 1 even.

4.5 (a) 1s22p: one open shell electron which has l = 1, s = 1
2 and term 2Po.

(b) 1s2s3s: 3 open shell electrons, all with l = 0 so L = 0. All have s = 1
2 ,

adding them sequentially S12 = 0 or 1, so S = S12 + s = 1
2 , 1

2 , 3
2 (note

the two separate values of S = 1
2 ). The terms are 2S, 2S and 4S.

(c) 1s2p3p also has 3 open shell electrons. The spin coupling is the
same as (b), giving S = 1

2 , 1
2 , 3

2 . Coupling l1 = 0, l2 = 1 and l3 = 1
gives L = 0, 1 and 2 since l1 does not contribute. So the resulting
terms are 2S, 2S, 4S, 2P, 2P, 4P, 2D, 2D and 4D.
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4.6 Only the 3d5p electrons need to be considered as the others are all
in closed shells. These have l1 = 1, s1 = 1

2 and l2 = 2, s2 = 1
2 , giving

L = 1, 2, 3 and S = 0, 1. The terms are therefore 1P, 1D, 1F, 3P, 3D and 3F.
The lowest is 3F which has levels 3F2, 3F3 and 3F4.

Chapter 5

5.1 Hα is n = 2 – 3. He II has Z = 2 which means the transition will be
scaled by a factor Z2 compared to H I. This means that He II n = 4 – 6
lies close to Hα and that this transition satisfies:

1
λ

= 4RHe

(
1
n2

1
− 1

n2
2

)
,

where RHe =
(

MHe
MHe + me

)
R∞. Assuming MHe = 4MH gives RHe =

109722.4 cm−1 and a wavenumber of 15239.22 cm−1 or λ = 6562.0 Å.
5.2 1640 Å corresponds to a He II Balmer α transition with n = 3 – 2. If

n = 3 – 2 emissions are observed then Lyman β, n = 3 – 1 at 256 Å and
Lyman α, n = 2 – 1 at 304 Å.

5.3 Shell A: H I and He II recombination spectra.
Shell B: H I and He I recombination spectra.
Shell C: H I recombination spectra only.
Shell D: no recombination spectra will be observed as there are no ions.

5.4 (a) 1s2s has l1 = l2 = L = 0 and s1 = s2 = 1
2 , giving 1S0 and 3S1.

(b) 1s2p has l1 = 0, l2 = 1, so L = 1 and s1 = s2 = 1
2 , so S = 0 or 1.

This gives 1P1 and 3P0, 3P1 and 3P2.
Decays in approximate order of strength (strongest first):

1s2p – 1s2 1Po
1 – 1S0, resonance line,

1s2p – 1s2 3Po
1 – 1S0, intercombination line,

1s2p – 1s2 3Po
2 – 1S0, magnetic quadrupole line,

1s2s – 1s2 3S1 – 1S0, spin-forbidden magnetic transition.

The two J = 0 levels cannot decay to the ground state since transitions
with J = 0 – 0 do not occur for any selection rules.

5.5 (a)–(b) 1s22p – 1s2s3s is a forbidden transition: parity changes
(odd to even) but two electrons jump.

(a)–(c) 1s22p – 1s2p3p is allowed.
(b)–(c) 1s2p3p – 1s2s3s is rigorously forbidden by the Laporte rule.

Chapter 6

6.1 (a) Na 3p is 2Po
1
2
, 2Po

3
2
; 4d is 2D 3

2
, 2D 5

2
;

Allowed transitions are 2Po
1
2

– 2D 3
2
, 2Po

3
2

– 2D 3
2
, 2Po

3
2

– 2D 5
2
.
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(b) Na 3d is 2D 3
2
, 2D 5

2
; 5f is 2Fo

5
2
, 2Fo

7
2
;

Allowed transitions are 2D 3
2

– 2Fo
5
2
, 2D 5

2
– 2Fo

5
2
, 2D 5

2
– 2Fo

7
2
.

(c) Na 4s is 2S 1
2
; 4d is 2D 3

2
, 2D 5

2
;

Both are even parity so no electric dipole transitions possible.
Electric quadrupole transitions have ∆J = 0, ± 1, ± 2, parity con-
served. Both 2S 1

2
– 2D 3

2
and 2S 1

2
– 2D 5

2
are quadrupole-allowed.

(d) K 4s is 2S 1
2
; 4p is 2Po

1
2
, 2Po

3
2
;

Allowed transitions are 2S 1
2

– 2Po
1
2
, 2S 1

2
– 2Po

3
2
.

All the allowed transitions should be observable in absorption in stel-
lar atmospheres of suitable temperature. Only (d) K 4s – 4p is a possible
interstellar absorption feature as all others are between excited states.

6.2* E(4s) = −35010 cm−1; E(4p)= −35010 + 12985 = −22025 cm−1;
E(5p) = −35010 + 24701 = −10309 cm−1; E(6p) = −35010 + 28999 =
−6011 cm−1.
The quantum defect, µnl is given by:

E(nl) = − R∞
(n − µnl)2 ,

so µ(4p) = 1.768; µ(5p) = 1.737; µ(6p) = 1.727 .
Assuming µ(7p) = 1.72 gives E(7p) = −3936 cm−1 and 4s – 7p at
31074 cm−1. These transitions correspond to the 4 2S 1

2
– n 2Po

1
2

series;

for this series the 4s – 7p transition is observed at 31070 cm−1.
6.3 Need the splitting ∆E = 13080.5− 12988.7 = 91.8 cm−1.

Level L S J 1
2 [J(J + 1)− L(L + 1)− S(S + 1)]

4 2Po
1
2

1 1
2

3
2 + 1

2

4 2Po
1
2

1 1
2

1
2 −1

So 3
2 A′ = 91.8 cm−1; A′ = 61.2 cm−1.

6.4 4d has L = 2, S = 1
2 so J = 3

2 or 5
2 ; 3p has L = 1, S = 1

2 so J = 1
2

or 3
2 . The selection rule is ∆J = 0, ± 1 so the allowed transitions are

2D 5
2
→ 2Po

3
2
, 2D 3

2
→ 2Po

3
2

and 2D 3
2
→ 2Po

1
2

(see Fig. 6.5).
If 4d emits to 3p, then the following cascade emissions must also fol-
low: 4p – 4s, 4s – 3p, 3p – 3s and 4p – 3s.
The triplet emissions should have different intensities according
to their statistical weight. If all three transitions have the same
intensity, they are optically thick and column density of Na cannot
be determined from this observation.



May 17, 2005 14:57 WSPC/SPI-B267: Astronomical Spectroscopy solution

180 Astronomical Spectroscopy

6.5*

E(nl) = − R∞Z2
eff

(n − µnl)2 ,

where Zeff = 4. The quantum defect gives the departure of the energy
levels of the outer electron from the pure hydrogenic case. It is largely
determined by penetration effect, with the values generally decreas-
ing with l; for a given l it usually only depends weakly on n.
Using E = 520178 cm−1 and n = 2 gives µ(2s) = 0.163; E =
217329 cm−1 and n = 3 gives µ(3s) = 0.158. So using µ(4s) = 0.155
and n = 4 gives E(4s) = 118763 cm−1. Observed value is 118830 cm−1.

6.6 (a) Hund’s rules give 4So lowest, then 2Do and 2Po highest.
(b) Levels are 4So

3
2
, 2Do

3
2
, 2Do

5
2
, 2Fo

5
2

and 2Fo
7
2
.

Level L S J 1
2 [J(J + 1)− L(L + 1)− S(S + 1)]

2Do
3
2

2 1
2

3
2 −1.5

2Do
5
2

2 1
2

5
2 +1

2Fo
5
2

3 1
2

5
2 −2

2Fo
7
2

3 1
2

7
2 +1.5

6.7 3Fo
2 means S = 1, L = 3, J = 2 and odd parity. 3Fo term also gives

3Fo
3 and 3Fo

4 . The term could arise from the configuration 1s22s22p3d
(other answers are possible).
In order of diminishing strength:
3Fo

2 – 3D3 is dipole-allowed and will be strong.
3Fo

2 – 1D3 has ∆S �= 0 and is an intercombination line.
3Fo

2 – 3P2 has ∆L = 2 and is a forbidden transition.
3Fo

2 – 3Po
2 does not change parity so is completely dipole-

forbidden by the Laporte rule.
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Chapter 7

7.1 (a) 4s2 gives 1S0; 4s4p gives 1Po
1 , 3Po

0 , 3Po
1 and 3Po

2 . Decays in approxi-
mate order of strength (strongest first):

4s4p – 4s2 1Po
1 – 1S0, resonance line,

4s4p – 4s2 3Po
1 – 1S0, intercombination line,

4s4p – 4s2 3Po
2 – 1S0, magnetic quadrupole line.

3Po
0 does not have an allowed decay to the 4s2 1S0 ground state.

(b) 4s4f gives 1Fo
3 , 3Fo

2 , 3Fo
3 and 3Fo

4 ; 4s5d gives 1D2, 3D1, 3D2 and 3D3.
Allowed dipole transitions:

1Fo
3 – 1D2, 3Fo

2 – 3D1, 3Fo
2 – 3D2, 3Fo

2 – 3D3, 3Fo
3 – 3D2, 3Fo

3 – 3D3,
3Fo

4 – 3D3.

All the allowed transitions could be observed in emission as part of the
Ca I recombination spectra in H II regions. The transitions (a) could be
seen in absorption from the ISM.

7.2 N+ is C-like: 1s22s22p2. Gives terms 3P, 1D and 1S as C. Hund’s rule (1)
means 3P will be the ground state.
Transitions 1s22s22p2(3P)5f → 4d. Need to consider coupling between
3P core and the extra electron.

Upper state: 3P gives L = 1, S = 1; 5f gives l = 3, s = 1
2 . So L = 2, 3, 4;

S = 1
2 , 3

2 giving 2Do, 4Do, 2Fo, 4Fo, 2Go and 4Go.

Lower state: 3P gives L = 1, S = 1; 4d gives l = 2, s = 1
2 . So L = 1, 2, 3;

S = 1
2 , 3

2 giving 2P, 4P, 2D, 4D, 2F and 4F.

Allowed transitions, 12 in total:
2Do → 2P, 2Do → 2D, 2Do → 2F, 2Fo → 2D, 2Fo → 2F, 2Go → 2F,
4Do → 4P, 4Do → 4D, 4Do → 4F, 4Fo → 4D, 4Fo → 4F, 4Go → 4F.

(In fact inclusion of fine structure effects leads to 71 distinct transi-
tions.) The strongest transition is 4Go → 4F as:

(a) 4Go has the highest statistical weight and therefore occupancy;
(b) 4Go only emits to 4F. Terms Do and Fo have competing decay

routes.

7.3 The transitions lead to the following energies relative to the 2p2 3P0

ground level:
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Level Energy (eV) g Population, T = 10000 K

2p2 3P0 0.000 1 1.000
2p2 3P1 0.014 3 2.958
2p2 3P2 0.038 5 4.814
2p2 1D2 2.514 5 0.405
2p2 1S0 5.356 1 0.0047
2p3p 3P2 40.849 5 9.1× 10−18

Note that several of these levels can be calculated in different ways
which provides a consistency and accuracy check. The level 2S+1LJ has
statistical weight g = 2J + 1; individual degeneracies are given in the
table. Population relative to the ground state is given by Boltzmann’s
distribution g exp(− E

kT ), where it has been assumed that for the ground
state E = 0 and g = 1. Results for T = 10000 K are given in the
table. At a typical nebular temperature of 10000 K the fine struc-
ture levels of 3P are populated almost in proportion to their sta-
tistical weights, so the populations of these levels are not a good
indicator of temperature. The 1D2 and 1S0 levels have reasonable ther-
mal populations, which are temperature sensitive, so these levels will
give reasonably strong transitions which can be used to determine
temperature.
The thermal population of 2p3p 3P0 is negligible; this level can only be
populated by some other mechanism.

Chapter 8

8.1

En = −R∞
Z2

n2 .

O VIII Lyα is at 4032846 cm−1, which corresponds to 500 eV. This
lies in the X-ray and such transitions can only be observed using
satellites.

8.2 1s22s22p63s23p63d104s24p64d104f145s25p65d96s2. Hg+ 5d106s gives term
2S and level 2S 1

2
. Both this configuration and the 5d96s2 configuration

are even parity so dipole transitions between them are forbidden by the
Laporte rule. The 5d96s2 2D 5

2
state is metastable since it cannot decay

by a dipole transition.
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Chapter 9

9.1 Boltzmann’s distribution gives the probability, PJ , of being in level J

PJ

P0
= (2J + 1) exp

(
−BJ(J + 1)

kT

)
.

For a maximum:

d PJ
P0

dJ
= 2 exp

[
−BJ(J + 1)

kT

]
− (2J + 1)2 B

kT
exp

[
−BJ(J + 1)

kT

]
= 0 .

(2J + 1)2 =
2kT

B
, J =

(
kT
2B

) 1
2

− 1
2
.

9.2 Using the formula derived in answer 9.1:
(a) J = 1; (b) J = 7; (c) J = 22 or 23.
Using Eq. (9.34):
(a) Effectively zero; (b) 0.003%; (c) 35%.

9.3 Zero point energy = �ω
2 = 1037.8 cm−1. Within the harmonic approxi-

mation ω =
(

k
µ

) 1
2
, so:

ω13 = ω12

(
µ12

µ13

) 1
2

= 2075.5
(

12
12 + 16

· 13 + 16
13

) 1
2

= 2069.4 cm−1 .

Zero point energy is = �ω
2 = 1014.7 cm−1. This assumes that k is the

same for both 12CH+ and 13CH+.
13CH+ may be optically thin when 12CH+ is optically thick.
At low temperature, fractionation effects will increase the ratio
n(13CH+) to n(12CH+) compared to n(13C) to n(12C) since 13CH+ has
the lower zero point energy.

Chapter 10

10.1 The gaps between the lines are 3.83, 7.70, 3.87 and 3.91 cm−1, which
correspond (approximately) to 2B, 4B, 2B, 2B. The 4B gap is the band
centre and the transitions are therefore P(2), P(1), R(0), R(1) and R(2),
respectively. CO will absorb in the infrared both in the ISM and in
the atmosphere of cool stars. CO infrared emissions are less common
but can occur in the warm ISM (e.g. shocked regions or nebulae).

10.2 (a) Assuming a rigid rotor, the J = 1 – 0 transition at 2B and
B ∝ µ−1.
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(b) Assuming a harmonic oscillator, the v = 1 – 0 transition is at �ω
and ω ∝ µ− 1

2 .

µ12 =
M12 MO

M12 + MO
; µ13 =

M13MO

M13 + MO
;

µ12

µ13
=

M12(M13 + MO)
M13(M12 + MO)

= 0.9560 ,

assuming M12 = 12, M13 = 13 and MO = 16 u. J = 1 – 0 for 13C16O
will be at 3.86× 0.9560 = 3.69 cm−1.
�ω for 13C16O will be at 2170×√

0.9560 = 2122 cm−1.
The abundance of 13C is much lower than that of 12C so observable
lines for 13C16O may well be optically thick for 12C16O.

10.3 Rigid rotor transitions at 2BJ ′ so J = 5 – 4 will be at 10B = 19.3 cm−1

and J = 20 – 19 will be at 40B = 77.2 cm−1. The estimate for J = 5 – 4
will be more accurate since the contribution from centrifugal distor-
tion will be lower.

10.4 (a) Far-infrared, rotational spectrum:

In emission: J = 1 – 0 at 2B = 23.88 cm−1;
In absorption: J = 2 – 1 at 4B = 47.76 cm−1.

(b) Mid-infrared, vibration–rotation transitions, observed only in
absorption:

P(1) at ω − 2B = 2051.6 cm−1; R(1) at ω + 4B = 2123.3 cm−1.

10.5* Even for J � 30, CO behaves as a near rigid rotor with transitions
spaced by 2B0 � 3.8 cm−1. Measuring approximate wavelengths
from Fig. 7.6 gives:

λ (µm) �ω (cm−1) J ′ − J ′′

186 53.8 14 – 13
174 57.5 15 – 14
162 61.7 16 – 15
153 65.4 17 – 16
145 68.9 18 – 17
138 72.5 19 – 18
131 76.3 20 – 19
123 81.3 21 – 20
118 84.7 22 – 21
113 88.5 23 – 22
108 92.6 24 – 23
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10.6* Figure 10.9: central feature (where a line is missing) at λ0 � 4.66. The
R-branch lies at λ < λ0 with lines up to the R(0), R(1), R(2), R(3), R(4),
R(5) up to the maximum at R(6). The P-branch lies at λ > λ0 with
lines P(1), P(2), P(3), P(4) up to the maximum at P(5). R(6) means
J ′ – J ′′ = 7 – 6 i.e. J ′′ = 6; P(5) means J ′ – J ′′ = 4 – 5 so J ′′ = 5. So the
highest occupied level in the absorbing gas is J ′′ = 5 or 6. Using the
formula derived in answer 9.1 gives T ≈ 168 K for Jmax = 5 or 235 K
for Jmax = 6.
Note: this is very approximate. A reliable temperature estimate can
be obtained by a fit to the intensity of all the transitions in the band.

10.7 Denote the energy levels EX(v′′, J ′′) and EB(v′, J ′) for the ground and
excited electronic states only. As the H2 is cold, only J ′′ = 0 or 1 will
be occupied. Then, using constants for the appropriate electronic
state taken from Table 10.2,

EX(0,0) =
w′′

e

2
= 2200.6 cm−1 ,

EX(0,1) = EX(0,0) + 2B′′
e = 2322.3 cm−1 ,

EC(0,0) = Te +
w′′

e

2
= 101311.7 cm−1 ,

EC(0,1) = EC(0, 0) + 2B′
e = 101374.4 cm−1 ,

EC(0,2) = EC(0, 0) + 6B′
e = 101499.9 cm−1 ,

EC(1,0) = EC(0, 0) + w′
e = 103755.5 cm−1 ,

EC(1,1) = EC(0, 1) + w′
e = 103818.2 cm−1 ,

EC(1,2) = EC(0, 2) + w′
e = 103943.6 cm−1 ,

EC(2,0) = EC(1, 0) + w′
e = 106199.2 cm−1 ,

EC(2,1) = EC(1, 1) + w′
e = 106261.9 cm−1 ,

EC(2,2) = EC(1, 2) + w′
e = 106387.4 cm−1 .

The conditions specified give twelve transitions. These occur at:

(0, 0) Q(1) at ω = EC(0, 1)− EX(0,1) = 99052.1 cm−1 ,
(0, 0) R(0) at ω = EC(0, 1)− EX(0,0) = 99173.8 cm−1 ,
(0, 0) P(1) at ω = EC(0, 0)− EX(0,1) = 98989.4 cm−1 ,
(0, 0) R(1) at ω = EC(0, 2)− EX(0,1) = 99177.6 cm−1 ,
(1, 0) Q(1) at ω = EC(1, 1)− EX(0,1) = 101495.9 cm−1 ,
(1, 0) R(0) at ω = EC(1, 1)− EX(0,0) = 101617.6 cm−1 ,
(1, 0) P(1) at ω = EC(1, 0)− EX(0,1) = 101 433.2 cm−1 ,
(1, 0) R(1) at ω = EC(1, 2)− EX(0,1) = 101621.3 cm−1 ,
(2, 0) Q(1) at ω = EC(2, 1)− EX(0,1) = 103939.6 cm−1 ,
(2, 0) R(0) at ω = EC(2, 1)− EX(0,0) = 104061.3 cm−1 ,
(2, 0) P(1) at ω = EC(2, 0)− EX(0,1) = 103876.9 cm−1 ,
(2, 0) R(1) at ω = EC(2, 2)− EX(0,1) = 104065.1 cm−1 .
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Λ-doubling, 130, 168, 170
η Carinae, 39
γ-ray, 116
µ Columbae, 95

AAT, 26, 27, 91
absorption, 9
active galactic nuclei, 117
AFGL 4176, 157, 158
alien, 172
alkali metal, 58, 81
allowed transition, 47, 72
angular frequency, 136
angular momentum

addition of, 44
coupling, 43, 59
final, 44, 123
nuclear spin, 43
orbital, 22, 43, 64, 108, 129, 131,

162, 169
rotational, 134, 169
spin, 43, 129, 169
total, 43, 45, 56, 63, 169

anharmonic effect, 139, 140, 155
atomic number, 120
atomic unit, 18, 19
atomic weight, 120, 122
aurora, 74, 103, 158, 167
autoionisation, 58, 110, 111
AzV 232, 70

Balmer
jump, 32, 37
series, 24, 26, 30, 36, 38, 48,

70, 93
transition, 104

Balmer α, 50
band, 126, 157, 173
band head, 165
Barnard 335, 153
beryllium, 67, 72
Betelgeuse, 2, 3
Big Bang, 5, 28, 36
black body, 8, 36
black hole, 117
Bohr atom, 32
Bohr magneton, 85
Bohr radius, 38
Boltzmann

constant, 30, 115, 142
distribution, 30, 38, 114, 141

bondlength, 165
Born–Oppenheimer approximation,

125, 126, 133, 138, 159, 164
Bowen mechanism, 104–106
Bowen, Ira, 100, 104
Brackett α, 35
Brackett series, 24, 27
branching ratio, 37, 103
bremsstrahlung, 42, 43
brown dwarf, 122, 158
Bunsen, Robert, 2
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CaH, 92
calcium, 57, 68, 93, 108–110

triplet, 27, 94
Capella, 79, 120, 121
carbon, 41, 56, 65, 66, 72, 87, 88, 96,

101, 103, 113
cascade, 37
central field model, 52
centrifugal distortion, 135, 140, 147,

156
CH, 129, 167, 168
CH+, 130, 140, 145, 167, 168
Chandra, 79, 119
chemically peculiar star, 123
circumstellar shell, 96
closed shell, 56, 60, 64, 129, 130
CN, 130, 142, 143, 167–169
CO, 129, 130, 140, 143, 144, 149–151,

156, 159, 173
CO2, 156–158

solid, 157, 158
collisional excitation, 12, 38, 99, 171
column density, 12, 147
comet, 167
complex atom, 51–67, 109
Comte, Auguste, 1
configuration, 22, 55, 56, 58, 62, 64, 67,

68, 80, 97, 98, 108, 131
configuration interaction, 72, 122
Copernicus, 164
core electron, 81
corona, 74, 79, 117, 119, 120
coronium, 119
cosmic microwave background, 143,

153, 168
Coulomb interaction, 132
coupling scheme, 43, 60, 62
CrH, 92
critical density, 12, 79, 103, 143
CS, 153

degeneracy pressure, 55, 127
deuterium, 19, 25, 28, 29, 50, 120, 122,

123, 137, 167
dielectronic recombination, 111–113

diffuse interstellar band, 6, 91
dipole moment, 146
dipole transition, 47, 73, 151, 155, 161,

162
dissociation energy, 127, 137, 141
dissociative state, 127, 128
Doppler broadening, 28, 41, 47, 153
Doppler formula, 14
Doppler shift, 4, 14, 26, 104, 153

Edlen, Bengt, 119
effective quantum number, 78
Einstein A coefficient, 9, 12, 37, 40, 47,

48, 72, 74, 102, 103, 151, 154, 167
Einstein B coefficient, 9
electromagnetic spectrum, 14, 116
electron collision, 13, 99, 103
electron density, 103
electron temperature, 13, 103
electronic potential, 127, 133
electronic spectra, 146, 161, 167
electronic state label, 128
emission, 48

spontaneous, 9
stimulated, 10

equilibrium bondlength, 127
equivalent electron, 66
EUVE, 69
exchange, 127
extinction coefficient, 11
extreme ultraviolet, 117, 120

F-star, 95
FeH, 92, 144
Fermion, 54
final angular momentum, 44, 74, 123
fine structure, 44, 45, 66, 82, 88, 97, 120,

126, 170
fine structure constant, 97
fine structure transition, 105
forbidden transition, 73, 74, 79, 100,

102, 105, 120
force constant, 136, 138, 159
fractionation, 137, 138, 167
Franck–Condon principle, 164
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Fraunhofer, 2, 8, 30, 87, 93
Fraunhofer, Joseph von, 1
frequency, 13
fundamental frequency, 155, 156, 173
FUSE, 28, 33, 163, 166

G-star, 120
geocoronal emission, 34, 107
gerade, 131
giant molecular cloud, 145, 152, 167
GRB 021004, 26
greenhouse effect, 156
Grotrian diagram, 5, 65, 75, 76, 82, 167
Grotrian, Walter, 75

H I region, 31
H II region, 31, 36, 41, 48–50, 74, 104
H+

2 , 130
H+

3 , 27, 138, 160
half-life, 48
Hamiltonian, 18, 85
harmonic approximation, 159
harmonic frequency, 140
harmonic oscillator, 136, 138–140, 143,

155
Hartree, 19
HCO+, 138
HD 102870, 95
HD 115444, 95
HD 191877, 28
HDE 269698, 70
He II, 69
Heisenberg’s Uncertainty Principle,

110
helium, 41, 51, 58, 64, 67, 69, 71, 104,

109, 123
Herzberg, Gerhard, 142
heteronuclear, 129, 143, 156
HF, 129
homonuclear, 129, 130, 134, 154
Hubble Space Telescope, 29, 33, 94, 95,

107
Hubble, Edwin, 5, 6
Humphreys series, 24
Hund’s cases, 169

Hund’s rules, 65–67, 86
hydrogen, 17–50, 55, 123

21 cm line, 39, 46, 149
hydrogen anion, 59
hydrogen molecule, 126–130, 132, 138,

140, 141, 144, 146, 149, 154, 159–161,
163, 165–167, 173

hyperfine structure, 46, 123, 171
hyperfine transition, 170, 172

independent particle model, 52
indistinguishable particles, 53, 54
infrared, 146
intercombination line, 72, 73, 79, 102,

103, 107
intergalactic medium, 80, 117
inversion, 64, 130
ion, 42, 58
ionisation, 111
ionisation potential, 141
IRC+10216, 148
iron, 31, 58, 62, 117, 119
Isaac Newton Telescope, 106
ISM, 8, 69, 91, 93, 96, 137, 145, 149, 151,

153, 154, 158, 159, 163, 166, 167, 172,
173

ISO, 105, 106, 154, 157, 158
isoelectronic series, 56, 58, 59
isotope, 120, 122, 123, 137, 138, 147,

150, 151, 159
isotopic substitution, 150, 151, 159
IUE, 33, 96

j–j coupling, 61
James Clerk Maxwell Telescope, 150
Jupiter, 144, 167

K-star, 95
Keck Telescope, 94
Kirchhoff, Gustav, 2

L–S coupling, 60, 62, 67
L-subdwarf, 92
Laguerre polynomials, 20
Lamb shift, 45
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Landé interval rule, 87, 88
Laplacian operator, 18, 134
Laporte rule, 64, 71, 75, 76, 102, 103,

162
Large Magellanic Cloud, 107
laser, 10
level, 45, 61–63, 67, 68, 114
lifetime, 47, 48, 74
line strength, 6, 88
lithium, 58, 68, 80, 81
Lockyer, Sir James, 71, 100
LSR 1610-0400, 92
LTE, 13
Lyman

geocoronal emission, 34, 107
series, 24–26, 28, 33, 35

Lyman α, 29, 34, 49, 69, 117, 123
Lyman α forest, 34, 35
Lyman β, 104
Lyman band, 163, 165–167

M42, 37
M-dwarf star, 144, 145
magnesium, 41, 94, 95
magnetic field, 5, 47, 135
magnetic interaction, 84, 87
magnetic moment, 84, 85
magnetic quantum number, 22, 56, 63
magnetic transition, 47, 73–76, 79, 102,

103, 105, 120
main branch, 108, 109, 112
maser, 11, 40, 171, 172
MCW 349, 40
Mendeleyev, Dmitry, 57, 58
mercury, 122, 123
merging galaxies, 159
metallicity, 94
metastable, 49, 72, 74, 100, 123
microwave, 11, 14, 146
mirror plane, 131
molecular orbital, 131
mysterium, 172

NaCl, 146, 148
nebulae, 38, 48, 70, 99–114

nebulium, 99, 102
neon, 56, 101
neutron star, 55
NGC 3242, 106
NGC 3603, 91
NGC 6153, 100, 101
NGC 7023, 160
NGC 7027, 105, 106, 143, 149
NGC 7314, 119
nitrogen, 101, 103, 114
nitrogen molecule, 129, 130
node, 21
nuclear mass, 120
nuclear reaction, 122
nuclear size, 29, 122
nuclear spin, 43, 46, 74, 76, 123, 142
nuclear synthesis, 122
number density, 137, 145, 149

O-branch, 159
O-star, 70, 95
OH, 169–172
opacity, 11, 59, 144
open shell, 56, 60, 144
optical depth, 12, 89, 150
optical pumping, 99, 104, 171
orbital angular momentum, 22, 43, 55,

59, 64, 84, 108, 129, 131, 162, 169
orbital approximation, 52, 55, 77
orbital, 52, 131
Orion, 36, 152, 155
Orion nebula, 37
Orion-KL, 152
ortho helium, 76
oscillator strength, 10
overtone, 155, 160
oxygen, 66, 79, 88, 99, 101, 104, 113, 123
oxygen molecule, 129–131
ozone, 92

P-branch, 156, 157, 164
para helium, 76
parity, 63, 64, 130
partition function, 30, 50
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Paschen
jump, 32
series, 24, 25, 27

Pauli exclusion principle, 55, 65, 67
Pauli Principle, 54, 60, 65, 127
Pauli, Wolfgang, 54
PDR, 154
penetration, 55, 77, 81
Penzias, Arno, 142
periodic table, 57
Pfund series, 24, 27, 35
photoionisation, 35, 42, 59, 111
Pickering series, 70
Planck’s constant, 7, 19
Planck’s Law, 7
planetary nebulae, 38, 48, 74, 101, 104,

106, 124, 143, 159
population inversion, 11, 40, 171
potassium, 57, 58, 81, 92, 97
potential energy curve, 127, 128, 139,

161
pressure broadening, 5, 32
principal quantum number, 22, 40, 55,

75, 78, 132
Procyon, 79
propensity rule, 72

Q-branch, 158, 159, 164
QSO, 96
QSO 1009 + 2956, 29
quadrupole transition, 47, 73, 74, 102,

103, 154, 159, 160, 178, 180
quantum defect, 40, 78, 81, 98, 178, 179
quantum electrodynamics, 45
quasar, 28, 29, 34, 96

R-branch, 156, 157, 164, 183
radiation trapping, 171
radiative lifetime, 143, 151, 154
radiative recombination, 36, 111, 113,

114
radio, 14, 152, 171
radio recombination line, 38, 39, 41, 42
radioactivity, 110
Ramsay, Sir William, 71

recombination, 38, 68, 99, 110, 111
dielectronic, 111–113
line, 50, 70, 80, 101, 113, 114
radiative, 36, 111, 113, 114
radio, 38, 40
spectra, 31

reduced mass, 18, 24, 40, 120, 133, 138,
151, 159, 165, 173

reflection nebula, 159, 160
reflection symmetry, 131
relativistic effect, 44, 45, 62, 63
resolving power, 13, 50
resonance, 110–112
resonance line, 71, 79, 89, 93
resonance-fluorescence, 99, 104, 105
rest wavelength, 14
rigid rotor, 135, 140, 142, 147, 156, 158,

173
rotational angular momentum, 134,

169
rotational constant, 135, 140, 142, 144,

151, 173
rotational motion, 134
rotational population, 141, 157, 168
rotational spectra, 146, 147, 152, 154
rubidium, 81, 92
Russell–Saunders coupling, 60
Rydberg constant, 19, 22, 24, 29, 40, 49,

70, 123
Rydberg formula, 23, 41, 50, 81
Rydberg, Johannes, 23, 81

S-branch, 159
S140, 154
satellite observation, 16, 33, 119
Saturn, 144
Schrödinger equation, 18, 51, 52,

132–134
selection rule, 47, 64, 71, 73, 97, 114,

116, 146, 147, 154, 155, 157, 159,
161–164

Self Consistent Field (SCF), 53
Seyfert galaxy, 119
shell notation, 57
SiO, 171, 172
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sodium, 58, 63, 81–84, 88, 89, 92, 97
sodium D line, 2, 87, 89–91
SOHO, 119
solar chromosphere, 93
solar corona, 74, 117, 119, 120
solar flare, 79
solar spectrum, 2, 89
spectroscopic constant, 140, 146, 165,

166
spectroscopic notation, 45, 62, 98, 128
speed of light, 19
spherical harmonics, 21, 52, 134
spin, 22, 43, 44, 53, 56, 59, 62, 129, 132,

162
spin angular momentum, 22, 43, 84,

129, 169
spin orbital, 53
spin-orbit interaction, 84, 85, 87, 93, 98
state, 63, 65, 67
statistical weight, 10, 30, 114, 142
stellar atmosphere, 8, 30, 124, 144, 158
sulphur, 41
Sun, 2, 33, 38, 59, 71, 90, 93, 119
sunspot, 124
supernova SN1987a, 27, 34

telluric effect, 2, 15, 16, 27, 92, 159, 160
term, 45, 62, 64, 68, 114
term diagram, 167, 168
terrestrial abundance, 123
Thaddeus, Patrick, 91
thermodynamic equilibrium, 12
TiO, 92, 144
total angular momentum, 56, 61, 63,

169
transition metal, 57, 144
transition probability, 10
triangulation condition, 44
two-photon emission, 49

UKIRT, 160
ultra high vacuum, 74
ultraviolet, 146
Uncertainty Principle, 110, 137
ungerade, 131
Uranus, 160

vector addition, 43, 44, 61
Venus, 156
Very Large Array, 46
vibration–rotation energy, 138–140
vibrational population, 143
vibrational quantum number, 136
vibrational spectra, 146, 155–159
visible, 146
VLT, 70
VO, 144
VX Sagitarii, 172

W3, 41
water, 92, 171, 172
wavelength, 13
wavenumber unit, 13, 136
Werner band, 163, 165–167, 173
white dwarf, 55, 94
white light, 3
Wilson, Robert, 142
Wolf-Rayet star, 25

X-ray, 14, 116, 117
X-ray spectra, 79, 119, 120
XMM-Newton, 79, 119, 121

young stellar object, 157, 158

Zeeman effect, 47, 63
zero point energy, 135–137, 145
ZrO, 144
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