
Bose–Einstein Condensation in Dilute Gases

In 1925 Einstein predicted that at low temperatures particles in a gas could
all reside in the same quantum state. This peculiar gaseous state, a Bose–
Einstein condensate, was produced in the laboratory for the first time in 1995
using the powerful laser-cooling methods developed in recent years. These
condensates exhibit quantum phenomena on a large scale, and investigating
them has become one of the most active areas of research in contemporary
physics.

The study of Bose–Einstein condensates in dilute gases encompasses a
number of different subfields of physics, including atomic, condensed matter,
and nuclear physics. The authors of this textbook explain this exciting
new subject in terms of basic physical principles, without assuming detailed
knowledge of any of these subfields. This pedagogical approach therefore
makes the book useful for anyone with a general background in physics,
from undergraduates to researchers in the field.

Chapters cover the statistical physics of trapped gases, atomic properties,
the cooling and trapping of atoms, interatomic interactions, structure of
trapped condensates, collective modes, rotating condensates, superfluidity,
interference phenomena and trapped Fermi gases. Problem sets are also
included in each chapter.
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Preface

The experimental discovery of Bose–Einstein condensation in trapped
atomic clouds opened up the exploration of quantum phenomena in a qual-
itatively new regime. Our aim in the present work is to provide an intro-
duction to this rapidly developing field.

The study of Bose–Einstein condensation in dilute gases draws on many
different subfields of physics. Atomic physics provides the basic methods
for creating and manipulating these systems, and the physical data required
to characterize them. Because interactions between atoms play a key role
in the behaviour of ultracold atomic clouds, concepts and methods from
condensed matter physics are used extensively. Investigations of spatial and
temporal correlations of particles provide links to quantum optics, where
related studies have been made for photons. Trapped atomic clouds have
some similarities to atomic nuclei, and insights from nuclear physics have
been helpful in understanding their properties.

In presenting this diverse range of topics we have attempted to explain
physical phenomena in terms of basic principles. In order to make the pre-
sentation self-contained, while keeping the length of the book within reason-
able bounds, we have been forced to select some subjects and omit others.
For similar reasons and because there now exist review articles with exten-
sive bibliographies, the lists of references following each chapter are far from
exhaustive. A valuable source for publications in the field is the archive at
Georgia Southern University: http://amo.phy.gasou.edu/bec.html

This book originated in a set of lecture notes written for a graduate-
level one-semester course on Bose–Einstein condensation at the University
of Copenhagen. We have received much inspiration from contacts with our
colleagues in both experiment and theory. In particular we thank Gordon
Baym and George Kavoulakis for many stimulating and helpful discussions
over the past few years. Wolfgang Ketterle kindly provided us with the

xi



xii Preface

cover illustration and Fig. 13.1. The illustrations in the text have been
prepared by Janus Schmidt, whom we thank for a pleasant collaboration.
It is a pleasure to acknowledge the continuing support of Simon Capelin
and Susan Francis at the Cambridge University Press, and the careful copy-
editing of the manuscript by Brian Watts.

Copenhagen Christopher Pethick Henrik Smith
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Introduction

Bose–Einstein condensates in dilute atomic gases, which were first realized
experimentally in 1995 for rubidium [1], sodium [2], and lithium [3], provide
unique opportunities for exploring quantum phenomena on a macroscopic
scale.1 These systems differ from ordinary gases, liquids, and solids in a
number of respects, as we shall now illustrate by giving typical values of
some physical quantities.

The particle density at the centre of a Bose–Einstein condensed atomic
cloud is typically 1013–1015 cm−3. By contrast, the density of molecules
in air at room temperature and atmospheric pressure is about 1019 cm−3.
In liquids and solids the density of atoms is of order 1022 cm−3, while the
density of nucleons in atomic nuclei is about 1038 cm−3.

To observe quantum phenomena in such low-density systems, the tem-
perature must be of order 10−5 K or less. This may be contrasted with
the temperatures at which quantum phenomena occur in solids and liquids.
In solids, quantum effects become strong for electrons in metals below the
Fermi temperature, which is typically 104–105 K, and for phonons below
the Debye temperature, which is typically of order 102 K. For the helium
liquids, the temperatures required for observing quantum phenomena are of
order 1 K. Due to the much higher particle density in atomic nuclei, the
corresponding degeneracy temperature is about 1011 K.

The path that led in 1995 to the first realization of Bose–Einstein con-
densation in dilute gases exploited the powerful methods developed over the
past quarter of a century for cooling alkali metal atoms by using lasers. Since
laser cooling alone cannot produce sufficiently high densities and low tem-
peratures for condensation, it is followed by an evaporative cooling stage, in

1 Numbers in square brackets are references, to be found at the end of each chapter.

1



2 Introduction

which the more energetic atoms are removed from the trap, thereby cooling
the remaining atoms.

Cold gas clouds have many advantages for investigations of quantum phe-
nomena. A major one is that in the Bose–Einstein condensate, essentially all
atoms occupy the same quantum state, and the condensate may be described
very well in terms of a mean-field theory similar to the Hartree–Fock theory
for atoms. This is in marked contrast to liquid 4He, for which a mean-field
approach is inapplicable due to the strong correlations induced by the inter-
action between the atoms. Although the gases are dilute, interactions play
an important role because temperatures are so low, and they give rise to
collective phenomena related to those observed in solids, quantum liquids,
and nuclei. Experimentally the systems are attractive ones to work with,
since they may be manipulated by the use of lasers and magnetic fields. In
addition, interactions between atoms may be varied either by using different
atomic species, or, for species that have a Feshbach resonance, by changing
the strength of an applied magnetic or electric field. A further advantage
is that, because of the low density, ‘microscopic’ length scales are so large
that the structure of the condensate wave function may be investigated di-
rectly by optical means. Finally, real collision processes play little role, and
therefore these systems are ideal for studies of interference phenomena and
atom optics.

The theoretical prediction of Bose–Einstein condensation dates back more
than 75 years. Following the work of Bose on the statistics of photons [4],
Einstein considered a gas of non-interacting, massive bosons, and concluded
that, below a certain temperature, a finite fraction of the total number of
particles would occupy the lowest-energy single-particle state [5]. In 1938
Fritz London suggested the connection between the superfluidity of liquid
4He and Bose–Einstein condensation [6]. Superfluid liquid 4He is the pro-
totype Bose–Einstein condensate, and it has played a unique role in the
development of physical concepts. However, the interaction between helium
atoms is strong, and this reduces the number of atoms in the zero-momentum
state even at absolute zero. Consequently it is difficult to measure directly
the occupancy of the zero-momentum state. It has been investigated ex-
perimentally by neutron scattering measurements of the structure factor at
large momentum transfers [7], and the measurements are consistent with a
relative occupation of the zero-momentum state of about 0.1 at saturated
vapour pressure and about 0.05 near the melting curve [8].

The fact that interactions in liquid helium reduce dramatically the oc-
cupancy of the lowest single-particle state led to the search for weakly-
interacting Bose gases with a higher condensate fraction. The difficulty with
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most substances is that at low temperatures they do not remain gaseous,
but form solids, or, in the case of the helium isotopes, liquids, and the
effects of interaction thus become large. In other examples atoms first com-
bine to form molecules, which subsequently solidify. As long ago as in 1959
Hecht [9] argued that spin-polarized hydrogen would be a good candidate
for a weakly-interacting Bose gas. The attractive interaction between two
hydrogen atoms with their electronic spins aligned was then estimated to
be so weak that there would be no bound state. Thus a gas of hydrogen
atoms in a magnetic field would be stable against formation of molecules
and, moreover, would not form a liquid, but remain a gas to arbitrarily low
temperatures.

Hecht’s paper was before its time and received little attention, but his
conclusions were confirmed by Stwalley and Nosanow [10] in 1976, when im-
proved information about interactions between spin-aligned hydrogen atoms
was available. These authors also argued that because of interatomic inter-
actions the system would be a superfluid as well as being Bose–Einstein
condensed. This latter paper stimulated the quest to realize Bose–Einstein
condensation in atomic hydrogen. Initial experimental attempts used a
high magnetic field gradient to force hydrogen atoms against a cryogeni-
cally cooled surface. In the lowest-energy spin state of the hydrogen atom,
the electron spin is aligned opposite the direction of the magnetic field (H↓),
since then the magnetic moment is in the same direction as the field. Spin-
polarized hydrogen was first stabilized by Silvera and Walraven [11]. Interac-
tions of hydrogen with the surface limited the densities achieved in the early
experiments, and this prompted the Massachusetts Institute of Technology
(MIT) group led by Greytak and Kleppner to develop methods for trapping
atoms purely magnetically. In a current-free region, it is impossible to create
a local maximum in the magnitude of the magnetic field. To trap atoms by
the Zeeman effect it is therefore necessary to work with a state of hydrogen
in which the electronic spin is polarized parallel to the magnetic field (H↑).
Among the techniques developed by this group is that of evaporative cooling
of magnetically trapped gases, which has been used as the final stage in all
experiments to date to produce a gaseous Bose–Einstein condensate. Since
laser cooling is not feasible for hydrogen, the gas is precooled cryogenically.
After more than two decades of heroic experimental work, Bose–Einstein
condensation of atomic hydrogen was achieved in 1998 [12].

As a consequence of the dramatic advances made in laser cooling of alkali
atoms, such atoms became attractive candidates for Bose–Einstein conden-
sation, and they were used in the first successful experiments to produce
a gaseous Bose–Einstein condensate. Other atomic species, among them
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noble gas atoms in excited states, are also under active investigation, and
in 2001 two groups produced condensates of metastable 4He atoms in the
lowest spin-triplet state [13, 14].

The properties of interacting Bose fluids are treated in many texts. The
reader will find an illuminating discussion in the volume by Nozières and
Pines [15]. A collection of articles on Bose–Einstein condensation in various
systems, prior to its discovery in atomic vapours, is given in [16], while
more recent theoretical developments have been reviewed in [17]. The 1998
Varenna lectures describe progress in both experiment and theory on Bose–
Einstein condensation in atomic gases, and contain in addition historical
accounts of the development of the field [18]. For a tutorial review of some
concepts basic to an understanding of Bose–Einstein condensation in dilute
gases see Ref. [19].

1.1 Bose–Einstein condensation in atomic clouds

Bosons are particles with integer spin. The wave function for a system
of identical bosons is symmetric under interchange of any two particles.
Unlike fermions, which have half-odd-integer spin and antisymmetric wave
functions, bosons may occupy the same single-particle state. An order-
of-magnitude estimate of the transition temperature to the Bose–Einstein
condensed state may be made from dimensional arguments. For a uniform
gas of free particles, the relevant quantities are the particle mass m, the
number density n, and the Planck constant h = 2π�. The only energy
that can be formed from �, n, and m is �

2n2/3/m. By dividing this energy
by the Boltzmann constant k we obtain an estimate of the condensation
temperature Tc,

Tc = C
�

2n2/3

mk
. (1.1)

Here C is a numerical factor which we shall show in the next chapter to
be equal to approximately 3.3. When (1.1) is evaluated for the mass and
density appropriate to liquid 4He at saturated vapour pressure one obtains
a transition temperature of approximately 3.13 K, which is close to the
temperature below which superfluid phenomena are observed, the so-called
lambda point2 (Tλ= 2.17 K at saturated vapour pressure).

An equivalent way of relating the transition temperature to the parti-
cle density is to compare the thermal de Broglie wavelength λT with the

2 The name lambda point derives from the measured shape of the specific heat as a function of
temperature, which near the transition resembles the Greek letter λ.
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mean interparticle spacing, which is of order n−1/3. The thermal de Broglie
wavelength is conventionally defined by

λT =
(

2π�
2

mkT

)1/2

. (1.2)

At high temperatures, it is small and the gas behaves classically. Bose–
Einstein condensation in an ideal gas sets in when the temperature is so low
that λT is comparable to n−1/3. For alkali atoms, the densities achieved
range from 1013 cm−3 in early experiments to 1014–1015 cm−3 in more re-
cent ones, with transition temperatures in the range from 100 nK to a few
µK. For hydrogen, the mass is lower and the transition temperatures are
correspondingly higher.

In experiments, gases are non-uniform, since they are contained in a trap,
which typically provides a harmonic-oscillator potential. If the number of
particles is N , the density of gas in the cloud is of order N/R3, where the
size R of a thermal gas cloud is of order (kT/mω2

0)
1/2, ω0 being the angu-

lar frequency of single-particle motion in the harmonic-oscillator potential.
Substituting the value of the density n ∼ N/R3 at T = Tc into Eq. (1.1),
one sees that the transition temperature is given by

kTc = C1�ω0N
1/3, (1.3)

where C1 is a numerical constant which we shall later show to be approx-
imately 0.94. The frequencies for traps used in experiments are typically
of order 102 Hz, corresponding to ω0 ∼ 103 s−1, and therefore, for parti-
cle numbers in the range from 104 to 107, the transition temperatures lie
in the range quoted above. Estimates of the transition temperature based
on results for a uniform Bose gas are therefore consistent with those for a
trapped gas.

In the original experiment [1] the starting point was a room-temperature
gas of rubidium atoms, which were trapped and cooled to about 10 µK
by bombarding them with photons from laser beams in six directions –
front and back, left and right, up and down. Subsequently the lasers were
turned off and the atoms trapped magnetically by the Zeeman interaction
of the electron spin with an inhomogeneous magnetic field. If we neglect
complications caused by the nuclear spin, an atom with its electron spin
parallel to the magnetic field is attracted to the minimum of the magnetic
field, while one with its electron spin antiparallel to the magnetic field is
repelled. The trapping potential was provided by a quadrupole magnetic
field, upon which a small oscillating bias field was imposed to prevent loss
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of particles at the centre of the trap. Some more recent experiments have
employed other magnetic field configurations.

In the magnetic trap the cloud of atoms was cooled further by evapora-
tion. The rate of evaporation was enhanced by applying a radio-frequency
magnetic field which flipped the electronic spin of the most energetic atoms
from up to down. Since the latter atoms are repelled by the trap, they es-
cape, and the average energy of the remaining atoms falls. It is remarkable
that no cryogenic apparatus was involved in achieving the record-low tem-
peratures in the experiment [1]. Everything was held at room temperature
except the atomic cloud, which was cooled to temperatures of the order of
100 nK.

So far, Bose–Einstein condensation has been realized experimentally in
dilute gases of rubidium, sodium, lithium, hydrogen, and metastable helium
atoms. Due to the difference in the properties of these atoms and their
mutual interaction, the experimental study of the condensates has revealed
a range of fascinating phenomena which will be discussed in later chapters.
The presence of the nuclear and electronic spin degrees of freedom adds
further richness to these systems when compared with liquid 4He, and it gives
the possibility of studying multi-component condensates. From a theoretical
point of view, much of the appeal of Bose–Einstein condensed atomic clouds
stems from the fact that they are dilute in the sense that the scattering
length is much less than the interparticle spacing. This makes it possible to
calculate the properties of the system with high precision. For a uniform
dilute gas the relevant theoretical framework was developed in the 1950s and
60s, but the presence of a confining potential – essential to the observation
of Bose–Einstein condensation in atomic clouds – gives rise to new features
that are absent for uniform systems.

1.2 Superfluid 4He

Many of the concepts used to describe properties of quantum gases were
developed in the context of liquid 4He. The helium liquids are exceptions to
the rule that liquids solidify when cooled to sufficiently low temperatures,
because the low mass of the helium atom makes the zero-point energy large
enough to overcome the tendency to crystallization. At the lowest temper-
atures the helium liquids solidify only under a pressure in excess of 25 bar
(2.5 MPa) for 4He and 34 bar for the lighter isotope 3He.

Below the lambda point, liquid 4He becomes a superfluid with many re-
markable properties. One of the most striking is the ability to flow through
narrow channels without friction. Another is the existence of quantized vor-
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ticity, the quantum of circulation being given by h/m (= 2π�/m). The
occurrence of frictionless flow led Landau and Tisza to introduce a two-fluid
description of the hydrodynamics. The two fluids – the normal and the
superfluid components – are interpenetrating, and their densities depend
on temperature. At very low temperatures the density of the normal com-
ponent vanishes, while the density of the superfluid component approaches
the total density of the liquid. The superfluid density is therefore generally
quite different from the density of particles in the condensate, which for liq-
uid 4He is only about 10 % or less of the total, as mentioned above. Near the
transition temperature to the normal state the situation is reversed: here
the superfluid density tends towards zero as the temperature approaches the
lambda point, while the normal density approaches the density of the liquid.

The properties of the normal component may be related to the elemen-
tary excitations of the superfluid. The concept of an elementary excitation
plays a central role in the description of quantum systems. In an ideal gas
an elementary excitation corresponds to the addition of a single particle in
a momentum eigenstate. Interactions modify this picture, but for low ex-
citation energies there still exist excitations with well-defined energies. For
small momenta the excitations in liquid 4He are sound waves or phonons.
Their dispersion relation is linear, the energy ε being proportional to the
magnitude of the momentum p,

ε = sp, (1.4)

where the constant s is the velocity of sound. For larger values of p, the
dispersion relation shows a slight upward curvature for pressures less than
18 bar, and a downward one for higher pressures. At still larger momenta,
ε(p) exhibits first a local maximum and subsequently a local minimum. Near
this minimum the dispersion relation may be approximated by

ε(p) = ∆ +
(p− p0)2

2m∗ , (1.5)

where m∗ is a constant with the dimension of mass and p0 is the momen-
tum at the minimum. Excitations with momenta close to p0 are referred
to as rotons. The name was coined to suggest the existence of vorticity
associated with these excitations, but they should really be considered as
short-wavelength phonon-like excitations. Experimentally, one finds at zero
pressure that m∗ is 0.16 times the mass of a 4He atom, while the constant
∆, the energy gap, is given by ∆/k = 8.7 K. The roton minimum occurs at
a wave number p0/� equal to 1.9 × 108 cm−1 (see Fig. 1.1). For excitation
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p
0

∆

p

ε

Fig. 1.1. The spectrum of elementary excitations in superfluid 4He. The minimum
roton energy is ∆, corresponding to the momentum p0.

energies greater than 2∆ the excitations become less well-defined since they
can decay into two rotons.

The elementary excitations obey Bose statistics, and therefore in thermal
equilibrium the distribution function f0 for the excitations is given by

f0 =
1

eε(p)/kT − 1
. (1.6)

The absence of a chemical potential in this distribution function is due to the
fact that the number of excitations is not a conserved quantity: the energy of
an excitation equals the difference between the energy of an excited state and
the energy of the ground state for a system containing the same number of
particles. The number of excitations therefore depends on the temperature,
just as the number of phonons in a solid does. This distribution function
Eq. (1.6) may be used to evaluate thermodynamic properties.

1.3 Other condensates
The concept of Bose–Einstein condensation finds applications in many sys-
tems other than liquid 4He and the clouds of spin-polarized boson alkali
atoms, atomic hydrogen, and metastable helium atoms discussed above. His-
torically, the first of these were superconducting metals, where the bosons
are pairs of electrons with opposite spin. Many aspects of the behaviour of
superconductors may be understood qualitatively on the basis of the idea
that pairs of electrons form a Bose–Einstein condensate, but the properties
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of superconductors are quantitatively very different from those of a weakly-
interacting gas of pairs. The important physical point is that the binding
energy of a pair is small compared with typical atomic energies, and at the
temperature where the condensate disappears the pairs themselves break up.
This situation is to be contrasted with that for the atomic systems, where
the energy required to break up an atom is the ionization energy, which is of
order electron volts. This corresponds to temperatures of tens of thousands
of degrees, which are much higher than the temperatures for Bose–Einstein
condensation.

Many properties of high-temperature superconductors may be understood
in terms of Bose–Einstein condensation of pairs, in this case of holes rather
than electrons, in states having predominantly d-like symmetry in contrast
to the s-like symmetry of pairs in conventional metallic superconductors.
The rich variety of magnetic and other behaviour of the superfluid phases
of liquid 3He is again due to condensation of pairs of fermions, in this case
3He atoms in triplet spin states with p-wave symmetry. Considerable exper-
imental effort has been directed towards creating Bose–Einstein condensates
of excitons, which are bound states of an electron and a hole [20], and of
biexcitons, molecules made up of two excitons [21].

Bose–Einstein condensation of pairs of fermions is also observed exper-
imentally in atomic nuclei, where the effects of neutron–neutron, proton–
proton, and neutron–proton pairing may be seen in the excitation spec-
trum as well as in reduced moments of inertia. A significant difference
between nuclei and superconductors is that the size of a pair in bulk nu-
clear matter is large compared with the nuclear size, and consequently the
manifestations of Bose–Einstein condensation in nuclei are less dramatic
than they are in bulk systems. Theoretically, Bose–Einstein condensation
of nucleon pairs is expected to play an important role in the interiors of
neutron stars, and observations of glitches in the spin-down rate of pul-
sars have been interpreted in terms of neutron superfluidity. The possibility
of mesons, either pions or kaons, forming a Bose–Einstein condensate in
the cores of neutron stars has been widely discussed, since this would have
far-reaching consequences for theories of supernovae and the evolution of
neutron stars [22].

In the field of nuclear and particle physics the ideas of Bose–Einstein
condensation also find application in the understanding of the vacuum as
a condensate of quark–antiquark (uū, dd̄ and ss̄) pairs, the so-called chiral
condensate. This condensate gives rise to particle masses in much the same
way as the condensate of electron pairs in a superconductor gives rise to the
gap in the electronic excitation spectrum.
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This brief account of the rich variety of contexts in which the physics of
Bose–Einstein condensation plays a role, shows that an understanding of
the phenomenon is of importance in many branches of physics.

1.4 Overview

To assist the reader, we give here a ‘road map’ of the material we cover.
We begin, in Chapter 2, by discussing Bose–Einstein condensation for non-
interacting gases in a confining potential. This is useful for developing un-
derstanding of the phenomenon of Bose–Einstein condensation and for ap-
plication to experiment, since in dilute gases many quantities, such as the
transition temperature and the condensate fraction, are close to those pre-
dicted for a non-interacting gas. We also discuss the density profile and the
velocity distribution of an atomic cloud at zero temperature. When the ther-
mal energy kT exceeds the spacing between the energy levels of an atom in
the confining potential, the gas may be described semi-classically in terms of
a particle distribution function that depends on both position and momen-
tum. We employ the semi-classical approach to calculate thermodynamic
quantities. The effect of finite particle number on the transition temperature
is estimated, and Bose–Einstein condensation in lower-dimensional systems
is discussed.

In experiments to create a Bose–Einstein condensate in a dilute gas the
particles used have been primarily alkali atoms and hydrogen, whose spins
are non-zero. The new methods to trap and cool atoms that have been
developed in recent years make use of the basic atomic structure of these
atoms, which is the subject of Chapter 3. There we also study the energy
levels of an atom in a static magnetic field, which is a key element in the
physics of trapping, and discuss the atomic polarizability in an oscillating
electric field.

A major experimental breakthrough that opened up this field was the de-
velopment of laser cooling techniques. In contrast to so many other proposals
which in practice work less well than predicted theoretically, these turned
out to be far more effective than originally estimated. Chapter 4 describes
magnetic traps, the use of lasers in trapping and cooling, and evaporative
cooling, which is the key final stage in experiments to make Bose–Einstein
condensates.

In Chapter 5 we consider atomic interactions, which play a crucial role
in evaporative cooling and also determine many properties of the condensed
state. At low energies, interactions between particles are characterized by
the scattering length a, in terms of which the total scattering cross section
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at low energies is given by 8πa2 for identical bosons. At first sight, one
might expect that, since atomic sizes are typically of order the Bohr radius,
scattering lengths would also be of this order. In fact they are one or two
orders of magnitude larger for alkali atoms, and we shall show how this may
be understood in terms of the long-range part of the interatomic force, which
is due to the van der Waals interaction. We also show that the sign of the
effective interaction at low energies depends on the details of the short-range
part of the interaction. Following that we extend the theory to take into
account transitions between channels corresponding to the different hyper-
fine states for the two atoms. We then estimate rates of inelastic processes,
which are a mechanism for loss of atoms from traps, and present the theory
of Feshbach resonances, which may be used to tune atomic interactions by
varying the magnetic field. Finally we list values of the scattering lengths
for the alkali atoms currently under investigation.

The ground-state energy of clouds in a confining potential is the subject of
Chapter 6. While the scattering lengths for alkali atoms are large compared
with atomic dimensions, they are small compared with atomic separations
in gas clouds. As a consequence, the effects of atomic interactions in the
ground state may be calculated very reliably by using a pseudopotential pro-
portional to the scattering length. This provides the basis for a mean-field
description of the condensate, which leads to the Gross–Pitaevskii equation.
From this we calculate the energy using both variational methods and the
Thomas–Fermi approximation. When the atom–atom interaction is attrac-
tive, the system becomes unstable if the number of particles exceeds a critical
value, which we calculate in terms of the trap parameters and the scattering
length. We also consider the structure of the condensate at the surface of
a cloud, and the characteristic length for healing of the condensate wave
function.

In Chapter 7 we discuss the dynamics of the condensate at zero temper-
ature, treating the wave function of the condensate as a classical field. We
derive the coupled equations of motion for the condensate density and ve-
locity, and use them to determine the elementary excitations in a uniform
gas and in a trapped cloud. We describe methods for calculating collective
properties of clouds in traps. These include the Thomas–Fermi approxima-
tion and a variational approach based on the idea of collective coordinates.
The methods are applied to treat oscillations in both spherically-symmetric
and anisotropic traps, and the free expansion of the condensate. We show
that, as a result of the combined influence of non-linearity and dispersion,
there exist soliton solutions to the equations of motion for a Bose–Einstein
condensate.
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The microscopic, quantum-mechanical theory of the Bose gas is treated in
Chapter 8. We discuss the Bogoliubov approximation and show that it gives
the same excitation spectrum as that obtained from classical equations of
motion in Chapter 7. At higher temperatures thermal excitations deplete the
condensate, and to treat these situations we discuss the Hartree–Fock and
Popov approximations. Finally we analyse collisional shifts of spectral lines,
such as the 1S–2S two-photon absorption line in spin-polarized hydrogen,
which is used experimentally to probe the density of the gas, and lines used
as atomic clocks.

One of the characteristic features of a superfluid is its response to ro-
tation, in particular the occurrence of quantized vortices. We discuss in
Chapter 9 properties of vortices in atomic clouds and determine the criti-
cal angular velocity for a vortex state to be energetically favourable. We
also calculate the force on a moving vortex line from general hydrodynamic
considerations. The nature of the lowest-energy state for a given angular
momentum is considered, and we discuss the weak-coupling limit, in which
the interaction energy is small compared with the energy quantum of the
harmonic-oscillator potential.

In Chapter 10 we treat some basic aspects of superfluidity. The Landau
criterion for the onset of dissipation is discussed, and we introduce the two-
fluid picture, in which the condensate and the excitations may be regarded
as forming two interpenetrating fluids, each with temperature-dependent
densities. We calculate the damping of collective modes in a homogeneous
gas at low temperatures, where the dominant process is Landau damping.
As an application of the two-fluid picture we derive the dispersion relation
for the coupled sound-like modes, which are referred to as first and second
sound.

Chapter 11 deals with particles in traps at non-zero temperature. The
effects of interactions on the transition temperature and thermodynamic
properties are considered. We also discuss the coupled motion of the con-
densate and the excitations at temperatures below Tc. We then present
calculations for modes above Tc, both in the hydrodynamic regime, when
collisions are frequent, and in the collisionless regime, where we obtain the
mode attenuation from the kinetic equation for the particle distribution
function.

Chapter 12 discusses properties of mixtures of bosons, either different
bosonic isotopes, or different internal states of the same isotope. In the
former case, the theory may be developed along lines similar to those for
a single-component system. For mixtures of two different internal states
of the same isotope, which may be described by a spinor wave function,
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new possibilities arise because the number of atoms in each state is not
conserved. We derive results for the static and dynamic properties of such
mixtures. An interesting result is that for an antiferromagnetic interaction
between atomic spins, the simple Gross–Pitaevskii treatment fails, and the
ground state may be regarded as a Bose–Einstein condensate of pairs of
atoms, rather than of single atoms.

In Chapter 13 we take up a number of topics related to interference and
correlations in Bose–Einstein condensates and applications to matter wave
optics. First we describe interference between two Bose–Einstein condensed
clouds, and explore the reasons for the appearance of an interference pattern
even though the phase difference between the wave functions of particles in
the two clouds is not fixed initially. We then demonstrate the suppression
of density fluctuations in a Bose–Einstein condensed gas. Following that
we consider how properties of coherent matter waves may be investigated
by manipulating condensates with lasers. The final section considers the
question of how to characterize Bose–Einstein condensation microscopically.

Trapped Fermi gases are considered in Chapter 14. We first show that
interactions generally have less effect on static and dynamic properties of
fermions than they do for bosons, and we then calculate equilibrium prop-
erties of a free Fermi gas in a trap. The interaction can be important if
it is attractive, since at sufficiently low temperatures the fermions are then
expected to undergo a transition to a superfluid state similar to that for elec-
trons in a metallic superconductor. We derive expressions for the transition
temperature and the gap in the excitation spectrum at zero temperature,
and we demonstrate that they are suppressed due to the modification of
the interaction between two atoms by the presence of other atoms. We also
consider how the interaction between fermions is altered by the addition of
bosons and show that this can enhance the transition temperature. Finally
we briefly describe properties of sound modes in a superfluid Fermi gas,
since measurement of collective modes has been proposed as a probe of the
transition to a superfluid state.

Problems

Problem 1.1 Consider an ideal gas of 87Rb atoms at zero temperature,
confined by the harmonic-oscillator potential

V (r) =
1
2
mω2

0r
2,
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where m is the mass of a 87Rb atom. Take the oscillator frequency ω0 to be
given by ω0/2π = 150 Hz, which is a typical value for traps in current use.
Determine the ground-state density profile and estimate its width. Find the
root-mean-square momentum and velocity of a particle. What is the density
at the centre of the trap if there are 104 atoms?

Problem 1.2 Determine the density profile for the gas discussed in Prob-
lem 1.1 in the classical limit, when the temperature T is much higher than
the condensation temperature. Show that the central density may be written
as N/R3

th and determine Rth. At what temperature does the mean distance
between particles at the centre of the trap become equal to the thermal de
Broglie wavelength λT ? Compare the result with the transition temperature
(1.3).

Problem 1.3 Estimate the number of rotons contained in 1 cm3 of liquid
4He at temperatures T = 1 K and T = 100 mK at saturated vapour pressure.
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[20] K. E. O’Hara, L. Ó Súilleabháin, and J. P. Wolfe, Phys. Rev. B 60, 10 565
(1999).

[21] A. Mysyrowicz, in Ref. [16], p. 330.
[22] G. E. Brown, in Ref. [16], p. 438.



2

The non-interacting Bose gas

The topic of Bose–Einstein condensation in a uniform, non-interacting gas
of bosons is treated in most textbooks on statistical mechanics [1]. In the
present chapter we discuss the properties of a non-interacting Bose gas in a
trap. We shall calculate equilibrium properties of systems in a semi-classical
approximation, in which the energy spectrum is treated as a continuum.
For this approach to be valid the temperature must be large compared with
∆ε/k, where ∆ε denotes the separation between neighbouring energy levels.
As is well known, at temperatures below the Bose–Einstein condensation
temperature, the lowest energy state is not properly accounted for if one
simply replaces sums by integrals, and it must be included explicitly.

The statistical distribution function is discussed in Sec. 2.1, as is the
single-particle density of states, which is a key ingredient in the calculations
of thermodynamic properties. Calculations of the transition temperature
and the fraction of particles in the condensate are described in Sec. 2.2. In
Sec. 2.3 the semi-classical distribution function is introduced, and from this
we determine the density profile and the velocity distribution of particles.
Thermodynamic properties of Bose gases are calculated as functions of the
temperature in Sec. 2.4. The final two sections are devoted to effects not
captured by the simplest version of the semi-classical approximation: cor-
rections to the transition temperature due to a finite particle number (Sec.
2.5), and thermodynamic properties of gases in lower dimensions (Sec. 2.6).

2.1 The Bose distribution

For non-interacting bosons in thermodynamic equilibrium, the mean occu-
pation number of the single-particle state ν is given by the Bose distribution

16
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function,

f0(εν) =
1

e(εν−µ)/kT − 1
, (2.1)

where εν denotes the energy of the single-particle state for the particular
trapping potential under consideration. Since the number of particles is
conserved, unlike the number of elementary excitations in liquid 4He, the
chemical potential µ enters the distribution function (2.1). The chemical
potential is determined as a function of N and T by the condition that
the total number of particles be equal to the sum of the occupancies of
the individual levels. It is sometimes convenient to work in terms of the
quantity ζ = exp(µ/kT ), which is known as the fugacity. If we take the zero
of energy to be that of the lowest single-particle state, the fugacity is less
than unity above the transition temperature and equal to unity (to within
terms of order 1/N , which we shall generally neglect) in the condensed state.
In Fig. 2.1 the distribution function (2.1) is shown as a function of energy
for various values of the fugacity.

At high temperatures, the effects of quantum statistics become negligible,
and the distribution function (2.1) is given approximately by the Boltzmann
distribution

f0(εν) � e−(εν−µ)/kT . (2.2)

For particles in a box of volume V the index ν labels the allowed wave
vectors q for plane-wave states V −1/2 exp(iq·r), and the particle energy is
ε = �

2q2/2m. The distribution (2.2) is thus a Maxwellian one for the velocity
v = �q/m.

At high temperatures the chemical potential is much less than εmin, the
energy of the lowest single-particle state, since the mean occupation number
of any state is much less than unity, and therefore, in particular, exp[(µ −
εmin)/kT ] � 1. As the temperature is lowered, the chemical potential rises
and the mean occupation numbers increase. However, the chemical potential
cannot exceed εmin, otherwise the Bose distribution function (2.2) evaluated
for the lowest single-particle state would be negative, and hence unphysical.
Consequently the mean occupation number of any excited single-particle
state cannot exceed the value 1/{exp[(εν − εmin)/kT ] − 1}. If the total
number of particles in excited states is less than N , the remaining particles
must be accommodated in the single-particle ground state, whose occupation
number can be arbitrarily large: the system has a Bose–Einstein condensate.
The highest temperature at which the condensate exists is referred to as the
Bose–Einstein transition temperature and we shall denote it by Tc. As we
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Fig. 2.1. The Bose distribution function f0 as a function of energy for different
values of the fugacity ζ. The value ζ = 1 corresponds to temperatures below the
transition temperature, while ζ = 0.5 and ζ = 0.25 correspond to µ = −0.69kT
and µ = −1.39kT , respectively.

shall see in more detail in Sec. 2.2, the energy dependence of the single-
particle density of states at low energies determines whether or not Bose–
Einstein condensation will occur for a particular system. In the condensed
state, at temperatures below Tc, the chemical potential remains equal to
εmin, to within terms of order kT/N , which is small for large N , and the
occupancy of the single-particle ground state is macroscopic in the sense that
a finite fraction of the particles are in this state. The number of particles
N0 in the single-particle ground state equals the total number of particles N
minus the number of particles Nex occupying higher-energy (excited) states.

2.1.1 Density of states

When calculating thermodynamic properties of gases it is common to replace
sums over states by integrals, and to use a density of states in which details
of the level structure are smoothed out. This procedure fails for a Bose–
Einstein condensed system, since the contribution from the lowest state is
not properly accounted for. However, it does give a good approximation
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to the contribution from excited states, and we shall now calculate these
smoothed densities of states for a number of different situations.

Throughout most of this book we shall assume that all particles are in
one particular internal (spin) state, and therefore we generally suppress the
part of the wave function referring to the internal state. In Chapters 12–14
we discuss a number of topics where internal degrees of freedom come into
play.

In three dimensions, for a free particle in a particular internal state, there
is on average one quantum state per volume (2π�)3 of phase space. The
region of momentum space for which the magnitude of the momentum is
less than p has a volume 4πp3/3 equal to that of a sphere of radius p and,
since the energy of a particle of momentum p is given by εp = p2/2m, the
total number of states G(ε) with energy less than ε is given by

G(ε) = V
4π
3

(2mε)3/2

(2π�)3
= V

21/2

3π2

(mε)3/2

�3
, (2.3)

where V is the volume of the system. Quite generally, the number of states
with energy between ε and ε+dε is given by g(ε)dε, where g(ε) is the density
of states. Therefore

g(ε) =
dG(ε)
dε

, (2.4)

which, from Eq. (2.3), is thus given by

g(ε) =
V m3/2

21/2π2�3
ε1/2. (2.5)

For free particles in d dimensions the corresponding result is g(ε) ∝ ε(d/2−1),
and therefore the density of states is independent of energy for a free particle
in two dimensions.

Let us now consider a particle in the anisotropic harmonic-oscillator po-
tential

V (r) =
1
2
(K1x

2 +K2y
2 +K3z

2), (2.6)

which we will refer to as a harmonic trap. Here the quantities Ki denote
the three force constants, which are generally unequal. The corresponding
classical oscillation frequencies ωi are given by ω2

i = Ki/m, and we shall
therefore write the potential as

V (r) =
1
2
m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2). (2.7)
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The energy levels, ε(n1, n2, n3), are then

ε(n1, n2, n3) = (n1 +
1
2
)�ω1 + (n2 +

1
2
)�ω2 + (n3 +

1
2
)�ω3, (2.8)

where the numbers ni assume all integer values greater than or equal to
zero.

We now determine the number of states G(ε) with energy less than a
given value ε. For energies large compared with �ωi, we may treat the ni

as continuous variables and neglect the zero-point motion. We therefore
introduce a coordinate system defined by the three variables εi = �ωini, in
terms of which a surface of constant energy (2.8) is the plane ε = ε1+ε2+ε3.
Then G(ε) is proportional to the volume in the first octant bounded by the
plane,

G(ε) =
1

�3ω1ω2ω3

∫ ε

0
dε1

∫ ε−ε1

0
dε2

∫ ε−ε1−ε2

0
dε3 =

ε3

6�3ω1ω2ω3
. (2.9)

Since g(ε) = dG/dε, we obtain a density of states given by

g(ε) =
ε2

2�3ω1ω2ω3
. (2.10)

For a d-dimensional harmonic-oscillator potential, the analogous result is

g(ε) =
εd−1

(d− 1)!
∏d

i=1 �ωi

. (2.11)

We thus see that in many contexts the density of states varies as a power
of the energy, and we shall now calculate thermodynamic properties for
systems with a density of states of the form

g(ε) = Cαε
α−1, (2.12)

where Cα is a constant. In three dimensions, for a gas confined by rigid
walls, α is equal to 3/2. The corresponding coefficient may be read off from
Eq. (2.5), and it is

C3/2 =
V m3/2

21/2π2�3
. (2.13)

The coefficient for a three-dimensional harmonic-oscillator potential (α = 3),
which may be obtained from Eq. (2.10), is

C3 =
1

2�3ω1ω2ω3
. (2.14)

For particles in a box or in a harmonic-oscillator potential, α is equal to half
the number of classical degrees of freedom per particle.
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2.2 Transition temperature and condensate fraction

The transition temperature Tc is defined as the highest temperature at which
the macroscopic occupation of the lowest-energy state appears. When the
number of particles, N , is sufficiently large, we may neglect the zero-point
energy in (2.8) and thus equate the lowest energy εmin to zero, the minimum
of the potential (2.6). Corrections to the transition temperature arising from
the zero-point energy will be considered in Sec. 2.5. The number of particles
in excited states is given by

Nex =
∫ ∞

0
dεg(ε)f0(ε). (2.15)

This achieves its greatest value for µ = 0, and the transition temperature
Tc is determined by the condition that the total number of particles can be
accommodated in excited states, that is

N = Nex(Tc, µ = 0) =
∫ ∞

0
dεg(ε)

1
eε/kTc − 1

. (2.16)

When (2.16) is written in terms of the dimensionless variable x = ε/kTc, it
becomes

N = Cα(kTc)α
∫ ∞

0
dx
xα−1

ex − 1
= CαΓ(α)ζ(α)(kTc)α, (2.17)

where Γ(α) is the gamma function and ζ(α) =
∑∞

n=1 n
−α is the Riemann

zeta function. In evaluating the integral in (2.17) we expand the Bose func-
tion in powers of e−x, and use the fact that

∫ ∞
0 dxxα−1e−x = Γ(α). The

result is ∫ ∞

0
dx
xα−1

ex − 1
= Γ(α)ζ(α). (2.18)

Table 2.1 lists Γ(α) and ζ(α) for selected values of α.
From (2.17) we now find

kTc =
N1/α

[CαΓ(α)ζ(α)]1/α
. (2.19)

For a three-dimensional harmonic-oscillator potential, α is 3 and C3 is given
by Eq. (2.14). From (2.19) we then obtain a transition temperature given
by

kTc =
�ω̄N1/3

[ζ(3)]1/3
≈ 0.94�ω̄N1/3, (2.20)

where

ω̄ = (ω1ω2ω3)1/3 (2.21)
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Table 2.1. The gamma function Γ and the Riemann zeta function ζ for
selected values of α.

α Γ(α) ζ(α)

1 1 ∞
1.5

√
π/2 = 0.886 2.612

2 1 π2/6 = 1.645
2.5 3

√
π/4 = 1.329 1.341

3 2 1.202
3.5 15

√
π/8 = 3.323 1.127

4 6 π4/90 = 1.082

is the geometric mean of the three oscillator frequencies. The result (2.20)
may be written in the useful form

Tc ≈ 4.5
(

f̄

100 Hz

)
N1/3 nK, (2.22)

where f̄ = ω̄/2π.
For a uniform Bose gas in a three-dimensional box of volume V , corre-

sponding to α = 3/2, the constant C3/2 is given by Eq. (2.13) and thus the
transition temperature is given by

kTc =
2π

[ζ(3/2)]2/3
�

2n2/3

m
≈ 3.31

�
2n2/3

m
, (2.23)

where n = N/V is the number density. For a uniform gas in two dimensions,
α is equal to 1, and the integral in (2.17) diverges. Thus Bose–Einstein
condensation in a two-dimensional box can occur only at zero temperature.
However, a two-dimensional Bose gas can condense at non-zero temperature
if the particles are confined by a harmonic-oscillator potential. In that case
α = 2 and the integral in (2.17) is finite. We shall return to gases in lower
dimensions in Sec. 2.6.

It is useful to introduce the phase-space density, which we denote by %.
This is defined as the number of particles contained within a volume equal
to the cube of the thermal de Broglie wavelength, λ3

T = (2π�
2/mkT )3/2,

% = n
(

2π�
2

mkT

)3/2

. (2.24)

If the gas is classical, this is a measure of the typical occupancy of single-
particle states. The majority of occupied states have energies of order kT
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or less, and therefore the number of states per unit volume that are oc-
cupied significantly is of order the total number of states per unit volume
with energies less than kT , which is approximately (mkT/�2)3/2 according
to (2.3). The phase-space density is thus the ratio between the particle
density and the number of significantly occupied states per unit volume.
The Bose–Einstein phase transition occurs when % = ζ(3/2) ≈ 2.612, ac-
cording to (2.23). The criterion that % should be comparable with unity
indicates that low temperatures and/or high particle densities are necessary
for condensation.

The existence of a well-defined phase transition for particles in a harmonic-
oscillator potential is a consequence of our assumption that the separation of
single-particle energy levels is much less than kT . For an isotropic harmonic
oscillator, with ω1 = ω2 = ω3 = ω0, this implies that the energy quantum
�ω0 should be much less than kTc. Since Tc is given by Eq. (2.20), the
condition is N1/3 � 1. If the finiteness of the particle number is taken into
account, the transition becomes smooth.

2.2.1 Condensate fraction

Below the transition temperature the number Nex of particles in excited
states is given by Eq. (2.15) with µ = 0,

Nex(T ) = Cα

∫ ∞

0
dεεα−1 1

eε/kT − 1
. (2.25)

Provided the integral converges, that is α > 1, we may use Eq. (2.18) to
write this result as

Nex = CαΓ(α)ζ(α)(kT )α. (2.26)

Note that this result does not depend on the total number of particles.
However, if one makes use of the expression (2.19) for Tc, it may be rewritten
in the form

Nex = N
(
T

Tc

)α

. (2.27)

The number of particles in the condensate is thus given by

N0(T ) = N −Nex(T ) (2.28)

or

N0 = N
[
1−

(
T

Tc

)α]
. (2.29)



24 The non-interacting Bose gas

For particles in a box in three dimensions, α is 3/2, and the number of
excited particles nex per unit volume may be obtained from Eqs. (2.26) and
(2.13). It is

nex =
Nex

V
= ζ(3/2)

(
mkT

2π�2

)3/2

. (2.30)

The occupancy of the condensate is therefore given by the well-known result
N0 = N [1− (T/Tc)3/2].

For a three-dimensional harmonic-oscillator potential (α = 3), the number
of particles in the condensate is

N0 = N

[
1−

(
T

Tc

)3
]
. (2.31)

In all cases the transition temperatures Tc are given by (2.19) for the ap-
propriate value of α.

2.3 Density profile and velocity distribution

The cold clouds of atoms which are investigated at microkelvin temperatures
typically contain of order 104–107 atoms. It is not feasible to apply the usual
techniques of low-temperature physics to these systems for a number of rea-
sons. First, there are rather few atoms, second, the systems are metastable,
so one cannot allow them to come into equilibrium with another body, and
third, the systems have a lifetime which is of order seconds to minutes.

Among the quantities that can be measured is the density profile. One
way to do this is by absorptive imaging. Light at a resonant frequency
for the atom will be absorbed on passing through an atomic cloud. Thus
by measuring the absorption profile one can obtain information about the
density distribution. The spatial resolution can be improved by allowing the
cloud to expand before measuring the absorptive image. A drawback of this
method is that it is destructive, since absorption of light changes the internal
states of atoms and heats the cloud significantly. To study time-dependent
phenomena it is therefore necessary to prepare a new cloud for each time
point. An alternative technique is to use phase-contrast imaging [2, 3]. This
exploits the fact that the refractive index of the gas depends on its density,
and therefore the optical path length is changed by the medium. By allowing
a light beam that has passed through the cloud to interfere with a reference
beam that has been phase shifted, changes in optical path length may be
converted into intensity variations, just as in phase-contrast microscopy.
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The advantage of this method is that it is almost non-destructive, and it is
therefore possible to study time-dependent phenomena using a single cloud.

The distribution of particles after a cloud is allowed to expand depends
not only on the initial density distribution, but also on the initial velocity
distribution. Consequently it is important to consider both density and
velocity distributions.

In the ground state of the system, all atoms are condensed in the lowest
single-particle quantum state and the density distribution n(r) reflects the
shape of the ground-state wave function φ0(r) for a particle in the trap since,
for non-interacting particles, the density is given by

n(r) = N |φ0(r)|2, (2.32)

where N is the number of particles. For an anisotropic harmonic oscillator
the ground-state wave function is

φ0(r) =
1

π3/4(a1a2a3)1/2
e−x2/2a2

1e−y2/2a2
2e−z2/2a2

3 , (2.33)

where the widths ai of the wave function in the three directions are given
by

a2i =
�

mωi
. (2.34)

The density distribution is thus anisotropic if the three frequencies ω1, ω2

and ω3 are not all equal, the greatest width being associated with the lowest
frequency. The widths ai may be written in a form analogous to (2.22)

ai ≈ 10.1
(

100 Hz
fi

1
A

)1/2

µm, (2.35)

in terms of the trap frequencies fi = ωi/2π and the mass number A, the
number of nucleons in the nucleus of the atom.

In momentum space the wave function corresponding to (2.33) is obtained
by taking its Fourier transform and is

φ0(p) =
1

π3/4(c1c2c3)1/2
e−p2

x/2c21e−p2
y/2c22e−p2

z/2c
2
3 , (2.36)

where

ci =
�

ai
=

√
m�ωi. (2.37)

The density in momentum space corresponding to (2.32) is given by

n(p) = N |φ0(p)|2 =
N

π3/2c1c2c3
e−p2

x/c21e−p2
y/c22e−p2

z/c
2
3 . (2.38)
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Since c2i /m = �ωi, the distribution (2.38) has the form of a Maxwell distri-
bution with different ‘temperatures’ Ti = �ωi/2k for the three directions.

Since the spatial distribution is anisotropic, the momentum distribution
also depends on direction. By the uncertainty principle, a narrow spatial
distribution implies a broad momentum distribution, as seen in the Fourier
transform (2.36) where the widths ci are proportional to the square root of
the oscillator frequencies.

These density and momentum distributions may be contrasted with the
corresponding expressions when the gas obeys classical statistics, at temper-
atures well above the Bose–Einstein condensation temperature. The density
distribution is then proportional to exp[−V (r)/kT ] and consequently it is
given by

n(r) =
N

π3/2R1R2R3
e−x2/R2

1e−y2/R2
2e−z2/R2

3 . (2.39)

Here the widths Ri are given by

R2
i =

2kT
mω2

i

, (2.40)

and they therefore depend on temperature. Note that the ratio Ri/ai equals
(2kT/�ωi)1/2, which under typical experimental conditions is much greater
than unity. Consequently the condition for semi-classical behaviour is well
satisfied, and one concludes that the thermal cloud is much broader than
the condensate, which below Tc emerges as a narrow peak in the spatial
distribution with a weight that increases with decreasing temperature.

Above Tc the density n(p) in momentum space is isotropic in equilibrium,
since it is determined only by the temperature and the particle mass, and
in the classical limit it is given by

n(p) = Ce−p2/2mkT , (2.41)

where the constant C is independent of momentum. The width of the mo-
mentum distribution is thus ∼ (mkT )1/2, which is ∼ (kT/�ωi)1/2 times
the zero-temperature width (m�ωi)1/2. At temperatures comparable with
the transition temperature one has kT ∼ N1/3

�ωi and therefore the factor
(kT/�ωi)1/2 is of the order of N1/6. The density and velocity distributions
of the thermal cloud are thus much broader than those of the condensate.

If a thermal cloud is allowed to expand to a size much greater than its orig-
inal one, the resulting cloud will be spherically symmetric due to the isotropy
of the velocity distribution. This is quite different from the anisotropic shape
of an expanding cloud of condensate. In early experiments the anisotropy of
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clouds after expansion provided strong supporting evidence for the existence
of a Bose–Einstein condensate.

Interactions between the atoms alter the sizes of clouds somewhat, as we
shall see in Sec. 6.2. A repulsive interaction expands the zero-temperature
condensate cloud by a numerical factor which depends on the number of
particles and the interatomic potential, typical values being in the range
between 2 and 10, while an attractive interaction can cause the cloud to
collapse. Above Tc, where the cloud is less dense, interactions hardly affect
the size of the cloud.

2.3.1 The semi-classical distribution

Quantum-mechanically, the density of non-interacting bosons is given by

n(r) =
∑
ν

fν |φν(r)|2, (2.42)

where fν is the occupation number for state ν, for which the wave function is
φν(r). Such a description is unwieldy in general, since it demands a knowl-
edge of the wave functions for the trapping potential in question. However,
provided the de Broglie wavelengths of particles are small compared with
the length scale over which the trapping potential varies significantly, it is
possible to use a simpler description in terms of a semi-classical distribution
function fp(r). This is defined such that fp(r)dpdr/(2π�)3 denotes the mean
number of particles in the phase-space volume element dpdr. The physical
content of this approximation is that locally the gas may be regarded as
having the same properties as a bulk gas. We have used this approximation
to discuss the high-temperature limit of Boltzmann statistics, but it may
also be used under conditions when the gas is degenerate. The distribution
function in equilibrium is therefore given by

fp(r) = f0
p(r) =

1
e[εp(r)−µ]/kT − 1

. (2.43)

Here the particle energies are those of a classical free particle at point r,

εp(r) =
p2

2m
+ V (r), (2.44)

where V (r) is the external potential.
This description may be used for particles in excited states, but it is inap-

propriate for the ground state, which has spatial variations on length scales
comparable with those over which the trap potential varies significantly.
Also, calculating properties of the system by integrating over momentum
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states does not properly take into account the condensed state, but prop-
erties of particles in excited states are well estimated by the semi-classical
result. Thus, for example, to determine the number of particles in excited
states, one integrates the semi-classical distribution function (2.43) divided
by (2π�)3 over p and r. The results for Tc agree with those obtained by the
methods described in Sec. 2.2 above, where the effect of the potential was
included through the density of states. To demonstrate this for a harmonic
trap is left as an exercise (Problem 2.1).

We now consider the density of particles which are not in the condensate.
This is given by

nex(r) =
∫

dp
(2π�)3

1
e[εp(r)−µ]/kT − 1

. (2.45)

We evaluate the integral (2.45) by introducing the variable x = p2/2mkT
and the quantity z(r) defined by the equation

z(r) = e[µ−V (r)]/kT . (2.46)

For V (r) = 0, z reduces to the fugacity. One finds

nex(r) =
2√
πλ3

T

∫ ∞

0
dx

x1/2

z−1ex − 1
, (2.47)

where λT = (2π�
2/mkT )1/2 is the thermal de Broglie wavelength, Eq. (1.2).

Integrals of this type occur frequently in expressions for properties of ideal
Bose gases, so we shall consider a more general one. They are evaluated by
expanding the integrand in powers of z, and one finds∫ ∞

0
dx

xγ−1

z−1ex − 1
=

∞∑
n=1

∫ ∞

0
dxxγ−1e−nxzn

= Γ(γ)gγ(z), (2.48)

where

gγ(z) =
∞∑

n=1

zn

nγ
. (2.49)

For z = 1, the sum in (2.49) reduces to ζ(γ), in agreement with (2.18).
The integral in (2.47) corresponds to γ = 3/2, and therefore

nex(r) =
g3/2(z(r))
λ3

T

. (2.50)

In Fig. 2.2 we show for a harmonic trap the density of excited particles in
units of 1/λ3

T for a chemical potential equal to the minimum of the potential.
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Fig. 2.2. The spatial distribution of non-condensed particles, Eq. (2.50), for an
isotropic trap, V (r) = mω2

0r
2/2, with R = (2kT/mω2

0)1/2. The dotted line is a
Gaussian distribution, corresponding to the first term in the sum (2.49).

This gives the distribution of excited particles at the transition temperature
or below. For comparison the result for the classical Boltzmann distribution,
which corresponds to the first term in the series (2.49), is also exhibited for
the same value of µ. Note that in the semi-classical approximation the
density has a cusp at the origin, whereas in a more precise treatment this
would be smoothed over a length scale of order λT . For a harmonic trap
above the transition temperature, the total number of particles is related to
the chemical potential by

N = g3(z(0))
(
kT

�ω̄

)3

, (2.51)

as one can verify by integrating (2.45) over space.

2.4 Thermodynamic quantities

In this section we determine thermodynamic properties of ideal Bose gases
and calculate the energy, entropy, and other properties of the condensed
phase. We explore how the temperature dependence of the specific heat
for temperatures close to Tc depends on the parameter α characterizing the
density of states.
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2.4.1 Condensed phase

The energy of the macroscopically occupied state is taken to be zero, and
therefore only excited states contribute to the total energy of the system.
Consequently in converting sums to integrals it is not necessary to include an
explicit term for the condensate, as it is when calculating the total number
of particles. Below Tc, the chemical potential vanishes, and the internal
energy is given by

E = Cα

∫ ∞

0
dεεα−1 ε

eε/kT − 1
= CαΓ(α+ 1)ζ(α+ 1)(kT )α+1, (2.52)

where we have used the integral (2.18). The specific heat C = ∂E/∂T is
therefore given by1

C = (α+ 1)
E

T
. (2.53)

Since the specific heat is also given in terms of the entropy S by C =
T∂S/∂T , we find

S =
C

α
=
α+ 1
α

E

T
. (2.54)

Note that below Tc the energy, entropy, and specific heat do not depend on
the total number of particles. This is because only particles in excited states
contribute, and consequently the number of particles in the macroscopically
occupied state is irrelevant for these quantities.

Expressed in terms of the total number of particles N and the transition
temperature Tc, which are related by Eq. (2.19), the energy is given by

E = Nkα
ζ(α+ 1)
ζ(α)

Tα+1

Tα
c

, (2.55)

where we have used the property of the gamma function that Γ(z + 1) =
zΓ(z). As a consequence, the specific heat is given by

C = α(α+ 1)
ζ(α+ 1)
ζ(α)

Nk

(
T

Tc

)α

, (2.56)

while the entropy is

S = (α+ 1)
ζ(α+ 1)
ζ(α)

Nk

(
T

Tc

)α

. (2.57)

Let us compare the results above with those in the classical limit. At high
1 The specific heat C is the temperature derivative of the internal energy, subject to the condition

that the trap parameters are unchanged. For particles in a box, C is thus the specific heat at
constant volume.



2.4 Thermodynamic quantities 31

temperatures, the Bose–Einstein distribution becomes a Boltzmann distri-
bution, and therefore

N = Cα

∫ ∞

0
dεεα−1e(µ−ε)/kT (2.58)

and

E = Cα

∫ ∞

0
dεεαe(µ−ε)/kT . (2.59)

On integrating Eq. (2.59) by parts, we obtain

E = αNkT, (2.60)

which implies that the high-temperature specific heat is

C = αNk. (2.61)

For a homogeneous gas in three dimensions, for which α = 3/2, the result
(2.61) is C = 3Nk/2, and for a harmonic-oscillator potential in three dimen-
sions C = 3Nk. Both these results are in agreement with the equipartition
theorem. The ratio of the specific heat in the condensed state to its value
in the classical limit is thus given by

C(T )
αNk

= (α+ 1)
ζ(α+ 1)
ζ(α)

(
T

Tc

)α

. (2.62)

At Tc the ratio is approximately 1.28 for a uniform gas in three dimensions
(α = 3/2), and 3.60 for a three-dimensional harmonic-oscillator potential
(α = 3).

For later applications we shall require explicit expressions for the pressure
and entropy of a homogeneous Bose gas. For an ideal gas in three dimen-
sions, the pressure is given by p = 2E/3V , irrespective of statistics. For
the condensed Bose gas this result may be derived by using the fact that
p = −(∂E/∂V )S , with the energy given by (2.55) for α = 3/2. According
to Eq. (2.23) Tc scales as n2/3, and one finds

p = nk
ζ(5/2)
ζ(3/2)

T 5/2

T
3/2
c

= ζ(5/2)
( m

2π�2

)3/2
(kT )5/2. (2.63)

From Eq. (2.57), the entropy per particle is seen to be

S

N
= k

5
2
ζ(5/2)
ζ(3/2)

(
T

Tc

)3/2

. (2.64)

These results will be used in the discussion of sound modes in Sec. 10.4.
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2.4.2 Normal phase

Let us now consider the leading corrections to the classical result (2.61) for
the specific heat. The general expression for the total number of particles is

N = Cα

∫ ∞

0
dεεα−1 1

e(ε−µ)/kT − 1
, (2.65)

while that for the total energy is

E = Cα

∫ ∞

0
dεεα

1
e(ε−µ)/kT − 1

. (2.66)

At high temperatures the mean occupation numbers are small. We may
therefore use in these two equations the expansion (ex − 1)−1 � e−x + e−2x

valid for large x, and obtain

N � Cα

∫ ∞

0
dεεα−1[e(µ−ε)/kT + e2(µ−ε)/kT ] (2.67)

and

E � Cα

∫ ∞

0
dεεα[e(µ−ε)/kT + e2(µ−ε)/kT ], (2.68)

from which we may eliminate the chemical potential µ by solving (2.67) for
exp(µ/kT ) and inserting the result in (2.68). This yields

E

αNkT
� 1− ζ(α)

2α+1

(
Tc

T

)α

, (2.69)

where we have used (2.19) to express N/Cα in terms of Tc. The specific heat
is then given by

C � αNk
[
1 + (α− 1)

ζ(α)
2α+1

(
Tc

T

)α]
. (2.70)

This approximate form is useful even at temperatures only slightly above Tc.

2.4.3 Specific heat close to Tc

Having calculated the specific heat at high temperatures and at tempera-
tures less than Tc we now determine its behaviour near Tc. We shall see
that it exhibits a discontinuity at Tc if α exceeds 2. By contrast, for a
uniform Bose gas (for which α equals 3/2) the specific heat at constant vol-
ume is continuous at Tc, but its derivative with respect to temperature is
discontinuous.

We shall consider the energy E as a function of the two variables T and
µ. These are constrained by the condition that the total number of particles
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be equal to N . The change in energy, δE, may then be written as δE =
(∂E/∂T )µδT + (∂E/∂µ)T δµ. The term proportional to δT is the same just
above and just below the transition, and therefore it gives contributions
to the specific heat that are continuous at Tc. The source of the singular
behaviour is the term proportional to δµ, since the chemical potential µ is
identically zero for temperatures less than Tc and becomes non-zero (in fact,
negative) above the transition. To determine the nature of the singularity it
is sufficient to consider temperatures just above Tc, and evaluate the change
(from zero) of the chemical potential, δµ, to lowest order in T − Tc. The
non-zero value δµ of the chemical potential results in a contribution to the
internal energy given by (∂E/∂µ)δµ. The derivative may be calculated by
taking the derivative of Eq. (2.66) and integrating by parts, and one finds
∂E/∂µ = αN . The discontinuity in the specific heat is therefore

∆C = C(Tc+)− C(Tc−) = αN
∂µ

∂T

∣∣∣∣
T=Tc+

, (2.71)

where the derivative is to be evaluated for fixed particle number.
We determine the dependence of µ on T just above Tc by calculating the

derivative (∂µ/∂T )N , using the identity(
∂µ

∂T

)
N

= −
(
∂µ

∂N

)
T

(
∂N

∂T

)
µ

= −
(
∂N

∂T

)
µ

(
∂N

∂µ

)−1

T

, (2.72)

which follows from the fact that

dN =
(
∂N

∂T

)
µ

dT +
(
∂N

∂µ

)
T

dµ = 0 (2.73)

when the particle number is fixed. The derivatives are evaluated by differ-
entiating the expression (2.65) which applies at temperatures at or above Tc

and integrating by parts. The results at Tc are(
∂N

∂µ

)
T

=
ζ(α− 1)
ζ(α)

N

kTc
(2.74)

and (
∂N

∂T

)
µ

= α
N

Tc
, (2.75)

which yield (
∂µ

∂T

)
N

= −α ζ(α)
ζ(α− 1)

k. (2.76)

We have assumed that α is greater than 2, since otherwise the expansion is
not valid.
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Fig. 2.3. The specific heat C, in units of αNk, as a function of the reduced tem-
perature T/Tc for different values of α.

For T − Tc � Tc this yields

µ � −α ζ(α)
ζ(α− 1)

k(T − Tc), (2.77)

which, when inserted into Eq. (2.71), gives the specific heat discontinuity

∆C = −α2 ζ(α)
ζ(α− 1)

Nk. (2.78)

For a harmonic-oscillator potential, corresponding to α = 3, the jump in the
specific heat is

∆C = −9
ζ(3)
ζ(2)

Nk ≈ −6.58Nk. (2.79)

For α ≤ 2, the expansion given above is not permissible, and the in-
vestigation of the specific heat for that case is the subject of Problem 2.4.
We exhibit in Fig. 2.3 the temperature-dependent specific heat for different
values of α. Note that the specific heat of an ideal, uniform Bose gas at
constant pressure diverges as the temperature approaches Tc from above
(Problem 2.5).
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2.5 Effect of finite particle number

For a cloud of N bosons in a three-dimensional harmonic trap the transition
temperature as given by (2.20) is proportional to N1/3. We now consider
the leading correction to this result due to the finiteness of the number of
particles. As we shall see, this is independent of N , and is therefore of rela-
tive order N−1/3. For a cloud containing 106 atoms it lowers the transition
temperature by about 1%, while for 104 atoms the effect is somewhat larger,
of order 5%.

The correction to Tc originates in the zero-point motion, which increases
the energy of the lowest single-particle state by an amount (see Eq. (2.8))

∆εmin =
�

2
(ω1 + ω2 + ω3) =

3�ωm

2
, (2.80)

where

ωm = (ω1 + ω2 + ω3)/3 (2.81)

is the algebraic mean of the frequencies. Thus the shift in the chemical
potential at the transition temperature is

∆µ = ∆εmin. (2.82)

To determine the shift ∆Tc in the transition temperature for particles
trapped by a three-dimensional harmonic-oscillator potential we use the in-
verse of the result (2.76) to relate the shift in transition temperature to the
change in the chemical potential. When condensation sets in, the chemi-
cal potential is equal to the expression (2.82) when the zero-point energy is
taken into account. Since α = 3 for the three-dimensional harmonic trap,
the shift in transition temperature is

∆Tc = − ζ(2)
3ζ(3)

∆µ
k

= − ζ(2)
2ζ(3)

�ωm

k
. (2.83)

Inserting Tc from (2.20) we obtain the result

∆Tc

Tc
= − ζ(2)

2[ζ(3)]2/3
ωm

ω̄
N−1/3 ≈ −0.73

ωm

ω̄
N−1/3, (2.84)

which shows that the fractional change in the transition temperature is
proportional to N−1/3.

For an anisotropic trap with axial symmetry, where ω3 = λω1 = λω2,
the ratio ωm/ω̄ becomes (2 + λ)/3λ1/3. Since λ may be as small as 10−3,
anisotropy can enhance significantly the effects of finite particle number.
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2.6 Lower-dimensional systems

There are physical situations where some degrees of freedom are frozen out,
and quantum gases behave as one- or two-dimensional systems. Here we
shall briefly describe some of them. One example of a two-dimensional
system is spin-polarized hydrogen adsorbed on a liquid 4He surface at tem-
peratures low enough that atoms are in the lowest-energy state for motion
perpendicular to the surface. To investigate whether or not Bose–Einstein
condensation occurs, we calculate the number of particles in excited states
when the chemical potential is equal to the energy εmin of the single-particle
ground state. This is given by

Nex =
∑

i(εi>εmin)

1
e(εi−εmin)/kT − 1

. (2.85)

In two dimensions, the smoothed density of states is g(ε) = L2m/2π�
2,

where L2 is the surface area. If we replace the sum in Eq. (2.85) by an
integral and take the lower limit to be zero, the integral does not exist be-
cause of the divergence at low energies. This shows that we cannot use
the simple prescription employed in three dimensions. In a two-dimensional
box, the ground state has energy εmin ∼ �

2/mL2, since its wavelength is
comparable to the linear extent of the area. Also, the separation of the low-
est excited state from the ground state is of the same order. To estimate the
number of excited particles, we replace the sum in Eq. (2.85) by an integral,
and cut the integral off at an energy εmin. This gives

Nex ∼
kT

εmin
ln

(
kT

εmin

)
. (2.86)

The number of excited particles becomes equal to the total number of par-
ticles at a temperature given by

kTc ∼
�

2

mL2

N

lnN
= �

2 σ

m lnN
, (2.87)

where σ = N/L2 is the number of particles per unit area. The transition
temperature is therefore lower by a factor ∼ lnN than the temperature at
which the particle spacing is comparable to the thermal de Broglie wave-
length. If we take the limit of a large system, but keep the areal density
of particles constant, the transition temperature tends to zero. Despite the
fact that fluctuations tend to destroy Bose–Einstein condensation in two-
dimensional systems, many fascinating phenomena have been found for he-
lium adsorbed on surfaces, among them the Kosterlitz–Thouless transition
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[4]. Research on spin-polarized hydrogen on surfaces is being pursued at a
number of centres, and a review is given in Ref. [5].

Another possibility for realizing systems that are effectively one- or two-
dimensional is to use gases in very anisotropic traps [6]. Imagine an
anisotropic harmonic trap, with ω3 � ω1, ω2, and let us assume that the
thermal energy kT is small compared with �ω1 and �ω2. Particles are then
in the lowest-energy states for motion in the x and y directions, and when
the chemical potential is equal to the energy of the ground state, the number
of particles in excited states for motion in the z direction is given by

Nex =
∞∑

n=1

1
en�ω3/kT − 1

. (2.88)

Like the sum for the two-dimensional Bose gas above, this expression would
diverge if one replaced it by an integral and took the lower limit on n to be
zero. However, since the lowest excitation energy is �ω3, a better estimate
is obtained by cutting the integral off at n = 1, which corresponds to an
energy �ω3. In this approximation one finds

Nex �
kT

�ω3
ln

(
kT

�ω3

)
, (2.89)

which is the same as Eq. (2.86), except that εmin there is replaced by �ω3.
The temperature at which the number of particles in excited states must
become macroscopic is therefore given by equating Nex to the total number
of particles N , and therefore

kTc � �ω3
N

lnN
. (2.90)

As N increases, Tc increases if the properties of the trap are fixed. This is
similar to what would happen if one increased the number of particles in a
two-dimensional ‘box’ of fixed area.

A wide range of physical phenomena are predicted to occur in very
anisotropic traps. Recent experiments where low-dimensional behaviour has
been observed in such traps are described in Ref. [7], where references to
earlier theoretical and experimental work may be found.

Problems

Problem 2.1 Use the semi-classical distribution function (2.43) to calcu-
late the number of particles in the condensate for an isotropic harmonic-
oscillator potential. Indicate how the calculation may be generalized to an
anisotropic harmonic oscillator.
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Problem 2.2 Consider a gas of N identical bosons, each of mass m, in
the quadrupole trap potential

V (x, y, z) = A(x2 + y2 + 4z2)1/2,

where A is a positive constant (the physics of this trap will be explained
in Sec. 4.1). Determine the density of single-particle states as a function
of energy and calculate the transition temperature, the depletion of the
condensate as a function of temperature, and the jump in the specific heat
at the transition temperature.

Problem 2.3 Determine the Bose–Einstein condensation temperature and
the temperature dependence of the depletion of the condensate for N iden-
tical bosons of mass m in an isotropic potential given by the power law
V (r) = Crν , where C and ν are positive constants.

Problem 2.4 Prove that the discontinuity in the specific heat at Tc, ob-
tained in (2.78) for α > 2, disappears when α < 2 by using the identity

N − CαΓ(α)ζ(α)(kT )α = Cα

∫ ∞

0
dεεα−1

[
1

e(ε−µ)/kT − 1
− 1
eε/kT − 1

]

at temperatures just above Tc. [Hint: Simplify the integrand by using the
approximation (ex − 1)−1 � 1/x.]

Problem 2.5 Consider a uniform non-interacting gas of N identical
bosons of massm in a volume V . Use the method employed in Problem 2.4 to
calculate the chemical potential as a function of temperature and volume at
temperatures just above Tc. Show that the specific heat at constant pressure,
Cp, diverges as (T −Tc)−1 when the temperature approaches Tc from above.
[Hint: The thermodynamic identity Cp = CV − T (∂p/∂T )2V /(∂p/∂V )T may
be useful.]
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3

Atomic properties

Atomic properties of the alkali atoms play a key role in experiments on cold
atomic gases, and we shall discuss them briefly in the present chapter. Basic
atomic structure is the subject of Sec. 3.1. Two effects exploited to trap and
cool atoms are the influence of a magnetic field on atomic energy levels, and
the response of an atom to radiation. In Sec. 3.2 we describe the combined
influence of the hyperfine interaction and the Zeeman effect on the energy
levels of an atom, and in Sec. 3.3 we review the calculation of the atomic
polarizability. In Sec. 3.4 we summarize and compare some energy scales.

3.1 Atomic structure

The total spin of a Bose particle must be an integer, and therefore a boson
made up of fermions must contain an even number of them. Neutral atoms
contain equal numbers of electrons and protons, and therefore the statistics
that an atom obeys is determined solely by the number of neutrons N : if
N is even, the atom is a boson, and if it is odd, a fermion. Since the alkalis
have odd atomic number Z, boson alkali atoms have odd mass numbers A.
In Table 3.1 we list N , Z, and the nuclear spin quantum number I for some
alkali atoms and hydrogen. We also give the nuclear magnetic moment µ,
which is defined as the expectation value of the z component of the magnetic
moment operator in the state where the z component of the nuclear spin,
denoted by mI�, has its maximum value, µ = 〈I,mI = I|µz|I,mI = I〉.
To date, essentially all experiments on Bose–Einstein condensation have
been made with states having total electronic spin 1/2, and the majority
of them have been made with states having nuclear spin I = 3/2 (87Rb,
23Na, and 7Li). Successful experiments have also been carried out with
hydrogen (I = 1/2) and 85Rb atoms (I = 5/2). In addition, Bose–Einstein

40
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Table 3.1. The proton number Z, the neutron number N , the nuclear spin
I, the nuclear magnetic moment µ (in units of the nuclear magneton

µN = e�/2mp), and the hyperfine splitting νhf = ∆Ehf/h for hydrogen and
some alkali isotopes. For completeness, the two fermion isotopes 6Li and

40K are included.

Isotope Z N I µ/µN νhf (MHz)
1H 1 0 1/2 2.793 1420
6Li 3 3 1 0.822 228
7Li 3 4 3/2 3.256 804
23Na 11 12 3/2 2.218 1772
39K 19 20 3/2 0.391 462
40K 19 21 4 −1.298 −1286
41K 19 22 3/2 0.215 254
85Rb 37 48 5/2 1.353 3036
87Rb 37 50 3/2 2.751 6835
133Cs 55 78 7/2 2.579 9193

condensation has been achieved for 4He atoms, with nuclear spin I = 0, in
a metastable electronic state with S = 1.

The ground-state electronic structure of alkali atoms is simple: all elec-
trons but one occupy closed shells, and the remaining one is in an s orbital in
a higher shell. In Table 3.2 we list the ground-state electronic configurations
for alkali atoms. The nuclear spin is coupled to the electronic spin by the
hyperfine interaction. Since the electrons have no orbital angular momen-
tum (L = 0), there is no magnetic field at the nucleus due to the orbital
motion, and the coupling arises solely due to the magnetic field produced
by the electronic spin. The coupling of the electronic spin, S = 1/2, to
the nuclear spin I yields the two possibilities F = I ± 1/2 for the quantum
number F for the total spin, according to the usual rules for addition of
angular momentum.

In the absence of an external magnetic field the atomic levels are split by
the hyperfine interaction. The coupling is represented by a term Hhf in the
Hamiltonian of the form

Hhf = AI·J, (3.1)

where A is a constant, while I and J are the operators for the nuclear
spin and the electronic angular momentum, respectively, in units of �. The
operator for the total angular momentum is equal to

F = I + J. (3.2)
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Table 3.2. The electron configuration and electronic spin for selected
isotopes of alkali atoms and hydrogen. For clarity, the inner-shell

configuration for Rb and Cs is given in terms of the noble gases Ar,
1s22s22p63s23p6, and Kr, (Ar)3d104s24p6.

Element Z Electronic spin Electron configuration

H 1 1/2 1s
Li 3 1/2 1s22s1
Na 11 1/2 1s22s22p63s1
K 19 1/2 1s22s22p63s23p64s1
Rb 37 1/2 (Ar)3d104s24p65s1
Cs 55 1/2 (Kr)4d105s25p66s1

By squaring this expression we may express I·J in terms of the quantum
numbers I, J , and F determining the squares of the angular momentum
operators and the result is

I·J =
1
2

[F (F + 1)− I(I + 1)− J(J + 1)]. (3.3)

Alkali and hydrogen atoms in their ground states have J = S = 1/2. The
splitting between the levels F = I + 1/2 and F = I − 1/2 is therefore given
by

∆Ehf = hνhf = (I +
1
2
)A. (3.4)

Measured values of the hyperfine splitting are given in Table 3.1.
As a specific example, consider an alkali atom with I = 3/2 in its ground

state (J = S = 1/2). The quantum number F may be either 1 or 2,
and I·J = −5/4 and 3/4, respectively. The corresponding shifts of the
ground-state multiplet are given by E1 = −5A/4 (three-fold degenerate) and
E2 = 3A/4 (five-fold degenerate). The energy difference ∆Ehf = E2 − E1

due to the hyperfine interaction (3.1) is thus

∆Ehf = 2A, (3.5)

in agreement with the general expression (3.4).
A first-order perturbation treatment of the magnetic dipole interaction

between the outer s electron and the nucleus yields the expression [1, §121]

∆Ehf =
µ0

4π
16π
3
µBµ

(I + 1/2)
I

|ψ(0)|2. (3.6)

The quantity µB = e�/2me (the Bohr magneton) is the magnitude of the



3.1 Atomic structure 43

magnetic moment of the electron, and µ is the magnetic moment of the nu-
cleus, which is of order the nuclear magneton µN = e�/2mp = (me/mp)µB.
Here me is the electron mass and mp the proton mass. Throughout we
denote the elementary charge, the absolute value of the charge of the elec-
tron, by e. The quantity ψ(0) is the valence s-electron wave function at the
nucleus. It follows from Eq. (3.6) that for atoms with a positive nuclear
magnetic moment, which is the case for all the alkali isotopes listed in Table
3.1 except 40K, the state with lowest energy has F = I − 1/2. For negative
nuclear magnetic moment the state with F = I + 1/2 has the lower energy.

The hyperfine line for the hydrogen atom has a measured frequency of
1420 MHz, and it is the famous 21-cm line exploited by radio astronomers.
Let us compare this frequency with the expression (3.6). For hydrogen, µ
is the proton magnetic moment µp ≈ 2.793µN and |ψ(0)|2 = 1/πa30, where
a0 = �

2/mee
2
0 is the Bohr radius, with e20 = e2/4πε0. Thus (3.6) becomes

∆Ehf =
32
3
µ0

4π
µBµp

a30
. (3.7)

The magnitude of ∆Ehf is of order (me/mp)αfs in atomic units (a. u.), where
αfs = e20/�c, c being the velocity of light, is the fine structure constant and
the atomic unit of energy is e20/a0. The calculated result (3.7) differs from
the experimental one by less than 1%, the bulk of the difference being due to
the reduced-mass effect and the leading radiative correction to the electron
g factor, g = 2(1 + αfs/2π).

For multi-electron atoms, Eq. (3.6) shows that the hyperfine splitting de-
pends on the electron density at the nucleus due to the valence electron
state. If interactions between electrons could be neglected, the electron or-
bitals would be hydrogenic, and the hyperfine interaction would scale as
(Z/n)3, where n is the principal quantum number for the radial wave func-
tion of the outermost s electron. However, the electrons in closed shells
screen the charge of the nucleus, and the outermost electron sees a reduced
charge. As a consequence the hyperfine splitting increases less rapidly with
Z, as is illustrated for alkali atoms in Table 3.1.

The variation in hyperfine splitting exhibited in Table 3.1 may be roughly
understood in terms of the measured nuclear magnetic moment µ and the
valence electron probability density at the nucleus. If Z is large compared
with unity, but still small compared with α−1

fs , the inverse fine structure
constant, so that relativistic effects may be neglected, one may show within
the quasi-classical WKB approximation that the characteristic scale of den-
sities for the outermost electron at the origin is proportional to Z [1, §71].
An empirical measure of the valence electron density at the nucleus may be
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obtained by dividing νhf by µ(I + 1/2)/I. This ratio is independent of nu-
clear properties, since the hyperfine splitting is proportional to µ(I+1/2)/I.
If one divides further by a factor of Z, one finds from Table 3.1 that the
resulting ratios differ by no more than 20 % for the elements from sodium
to cesium, in good agreement with the result of the quasi-classical method.

3.2 The Zeeman effect

To take into account the effect of an external magnetic field on the energy
levels of an atom we must add to the hyperfine Hamiltonian (3.1) the Zeeman
energies arising from the interaction of the magnetic moments of the electron
and the nucleus with the magnetic field. If we take the magnetic field B to
be in the z direction, the total Hamiltonian is thus

Hspin = AI·J + CJz +DIz. (3.8)

The constants C and D are given by

C = gµBB, (3.9)

and

D = −µ
I
B, (3.10)

where in writing Eq. (3.9) we have assumed that the electronic orbital angu-
lar momentum L is zero and its spin S is 1/2. For 87Rb, µ equals 2.751µN,
and D = −1.834µNB, according to Table 3.1. Since |C/D| ∼ mp/me ≈
2000, for most applications D may be neglected. At the same level of ap-
proximation the g factor of the electron may be put equal to 2.

Because of its importance we first consider a nuclear spin of 3/2. In order
to obtain the level scheme for an atom in an external magnetic field, we
diagonalize Hspin in a basis consisting of the eight states |mI ,mJ〉, where
mI = 3/2, 1/2,−1/2,−3/2, and mJ = 1/2,−1/2. The hyperfine interaction
may be expressed in terms of the usual raising and lowering operators I± =
Ix ± iIy and J± = Jx ± iJy by use of the identity

I·J = IzJz +
1
2
(I+J− + I−J+). (3.11)

The Hamiltonian (3.8) conserves the z component of the total angular mo-
mentum, and therefore it couples only states with the same value of the
sum mI +mJ , since the raising (lowering) of mJ by 1 must be accompanied
by the lowering (raising) of mI by 1. This reflects the invariance of the
interaction under rotations about the z axis.
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The energies of the states |3/2, 1/2〉 and |−3/2,−1/2〉 are easily calcu-
lated, since these states do not mix with any others. They are

E(
3
2
,
1
2
) =

3
4
A+

1
2
C +

3
2
D (3.12)

and

E(−3
2
,−1

2
) =

3
4
A− 1

2
C − 3

2
D, (3.13)

which are linear in the magnetic field.
Since the Hamiltonian conserves the z component of the total angular mo-

mentum, the only states that mix are pairs like |mI ,−1/2〉 and |mI − 1, 1/2〉.
Therefore to calculate the energies of the other states we need to diagonal-
ize only 2×2 matrices. Let us first consider the matrix for mI +mJ = 1,
corresponding to the states |3/2,−1/2〉 and |1/2, 1/2〉. The matrix elements
of the Hamiltonian (3.8) are


−3

4
A− 1

2
C +

3
2
D

√
3

2
A

√
3

2
A

1
4
A+

1
2
C +

1
2
D


,

and the eigenvalues are

E = −A
4

+D ±
√

3
4
A2 +

1
4
(A+ C −D)2. (3.14)

In the absence of a magnetic field (C = D = 0) the eigenvalues are seen
to be −5A/4 and 3A/4, in agreement with the energies of the F = 1 and
F = 2 states calculated earlier. For the states |−3/2, 1/2〉 and |−1/2,−1/2〉
the matrix is obtained from the one above by the substitution C → −C and
D → −D. The matrix for the states |1/2,−1/2〉, |−1/2, 1/2〉 is

 −1
4
A+

1
2
(C −D) A

A −1
4
A− 1

2
(C −D)


,

and the eigenvalues are

E = −A
4
±

√
A2 +

1
4
(C −D)2. (3.15)

The eigenvalues resulting from the matrix diagonalization are plotted in
Fig. 3.1. As we remarked earlier, |D| is much less than both C and |A| at the
fields attainable. Therefore to a good approximation we may set D equal to
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Fig. 3.1. Energies of hyperfine levels of an alkali atom with I = 3/2 and A > 0
in a magnetic field. The energy is measured in units of A = ∆Ehf/2, and the
dimensionless magnetic field b = C/A = 4µBB/∆Ehf (see Eq. (3.16)).

zero, and we also set g = 2. The dimensionless magnetic field b is defined
for arbitrary nuclear spin by

b =
C

A
=

(2I + 1)µBB

∆Ehf
. (3.16)

The two straight lines correspond to the energies of the states |3/2, 1/2〉 and
|−3/2,−1/2〉, which do not mix with other states.

When D is neglected, the energy levels are given for mI +mJ = ±2 by

E(
3
2
,
1
2
) = A

(
3
4

+
b

2

)
and E(−3

2
,−1

2
) = A

(
3
4
− b

2

)
, (3.17)

for mI +mJ = ±1 by

E = A

(
−1

4
±

√
3
4

+
1
4
(1 + b)2

)
(3.18)

and

E = A

(
−1

4
±

√
3
4

+
1
4
(1− b)2

)
, (3.19)
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and for mI +mJ = 0 by

E = A

(
−1

4
±

√
1 +

b2

4

)
. (3.20)

At high magnetic fields, b� 1, the leading contributions to these expressions
are ±Ab/2 = ±C/2 corresponding to the energy eigenvalues ±µBB associ-
ated with the electronic spin. These calculations may easily be generalized
to other values of the nuclear spin.

Many experiments on alkali atoms are carried out in relatively low mag-
netic fields, for which the Zeeman energies are small compared with the
hyperfine splitting. To first order in the magnetic field, the energy may be
written as

E(F,mF ) = E(F ) +mF gFµBB, (3.21)

where gF is the Landé g factor and E(F ) is the energy for B = 0. For
F = I + 1/2, the electron spin is aligned essentially parallel to the total
spin, and therefore the g factor is negative. Consequently the state with
mF = F has the highest energy. For F = I − 1/2, the electron spin is
predominantly antiparallel to the total spin, and the state with mF = −F
has the highest energy. Calculation of the g factors is left as an exercise,
Problem 3.1.

One state of particular importance experimentally is the doubly polarized
state |mI = I,mJ = 1/2〉, in which the nuclear and electronic spin compo-
nents have the largest possible values along the direction of the magnetic
field. Another is the maximally stretched state, which corresponds to quan-
tum numbers F = I − 1/2,mF = −(I − 1/2) in zero magnetic field. These
states have negative magnetic moments and therefore, according to the dis-
cussion in Sec. 4.1, they can be trapped by magnetic fields. In addition, they
have long inelastic relaxation times, as we shall explain in Sec. 5.4.2. For a
nuclear spin 3/2 the doubly polarized state is |mI = 3/2,mJ = 1/2〉, which
has F = 2,mF = 2, and in zero magnetic field the maximally stretched state
is F = 1,mF = −1.

For hydrogen, the nuclear spin is I = 1/2. The eigenvalues of (3.8) are
determined in precisely the same manner as for a nuclear spin I = 3/2, and
the result is

E(
1
2
,
1
2
) = A

(
1
4

+
b

2

)
and E(−1

2
,−1

2
) = A

(
1
4
− b

2

)
, (3.22)
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Fig. 3.2. Energies of the ground-state multiplet of a hydrogen atom as a function
of the magnetic field.

and for the states with mI +mJ = 0

E = −A
(

1
4
± 1

2

√
1 + b2

)
. (3.23)

For I = 1/2, A is equal to the hyperfine splitting ∆Ehf , and the dimen-
sionless magnetic field b = C/A = 2µBB/∆Ehf according to (3.16). The
energies, converted to equivalent temperatures, are plotted as functions of
the magnetic field B in Fig. 3.2.

The four states corresponding to these eigenvalues are conventionally la-
belled a, b, c, and d in order of increasing energy. When expressed in terms
of the basis |mI ,mJ〉 they are

|a〉 = cos θ |1
2
,−1

2
〉 − sin θ |−1

2
,
1
2
〉, (3.24)

|b〉 = |−1
2
,−1

2
〉, (3.25)

|c〉 = cos θ |−1
2
,
1
2
〉+ sin θ |1

2
,−1

2
〉, (3.26)

and

|d〉 = |1
2
,
1
2
〉. (3.27)



3.3 Response to an electric field 49

The dependence of the mixing angle θ on the magnetic field is given by
tan 2θ = 1/b = ∆Ehf/2µBB.

3.3 Response to an electric field

When an atom is subjected to an electric field E it acquires an electric dipole
moment, and its energy levels are shifted. This effect is exploited extensively
in experiments on cold dilute gases for trapping and cooling atoms using
the strong electric fields generated by lasers. Such electric fields are time
dependent, but to set the scale of effects we begin by considering static
fields. For the hydrogen atom we may estimate the order of magnitude
of the polarizability by arguing that the average position of the electron
will be displaced by an amount comparable to the atomic size ∼ a0 if an
external electric field comparable in strength to the electric field in the
atom E ∼ e/(4πε0a20) is applied. Here a0 = �

2/mee
2
0 is the Bohr radius and

e20 = e2/4πε0. The polarizability α relates the expectation value <d> of
the electric dipole moment to the electric field according to the definition

<d> = αE, (3.28)

and therefore it is given in order of magnitude by

α ∼ ea0
e/4πε0a20

= 4πε0a30. (3.29)

More generally, the polarizability is a tensor, but for the ground states of
alkali atoms and hydrogen, which are S states, it is a scalar, since it does
not depend on the direction of the field. In order to avoid exhibiting the
factor of 4πε0 we define the quantity

α̃ =
α

4πε0
. (3.30)

The estimate (3.29) then leads to the result

α̃ ∼ a30. (3.31)

The energy of an atom in an electric field may be evaluated quantitatively
using perturbation theory. In an electric field which is spatially uniform on
the scale of the atom, the interaction between the atom and the electric field
may be treated in the dipole approximation, and the interaction Hamiltonian
is

H ′ = −d·E, (3.32)
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where

d = −e
∑
j

rj (3.33)

is the electric dipole moment operator for the atomic electrons. Here the rj

are the position operators for the electrons relative to the atomic nucleus,
and the sum is over all electrons in the atom. In the absence of external
fields, most atomic states are eigenstates of the parity operator to a very
good approximation, since the only deviations are due to the weak interac-
tion, which violates parity. From symmetry it then follows that the dipole
moment of the atom in the absence of a field vanishes, and consequently the
first-order contribution to the energy also vanishes. The first non-vanishing
term in the expansion of the energy in powers of the electric field is of second
order, and for the ground state this is given by

∆E = −
∑
n

|〈n|H ′|0〉|2
En − E0

. (3.34)

In this expression the energies in the denominator are those for the unper-
turbed atom, and the sum is over all excited states, including those in the
continuum. Because all energy denominators are positive for the ground
state, the second-order contribution to the ground-state energy is negative.

The energy of the state may also be calculated in terms of the polarizabil-
ity. To do this we make use of the fact that the change in the energy due to
a change in the electric field is given by

dE = −<d> · dE, (3.35)

and therefore, when the expectation value of the dipole moment is given by
(3.28), the field-dependent contribution to the energy is

∆E = −1
2
αE2. (3.36)

Comparing Eqs. (3.34) and (3.36) we see that

α = −∂
2∆E
∂E2

=
∑
n

2|〈n|di|0〉|2
En − E0

, (3.37)

where for definiteness we have taken the electric field to be in the i direction.
For hydrogen the polarizability may be calculated exactly, and it is given

by α̃ = 9a30/2, in agreement with our qualitative estimate above and with
experiment. Upper and lower bounds on the polarizability may be obtained
by simple methods, as described in Problem 3.3.
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The polarizabilities of alkali atoms are larger than that of hydrogen by
factors which range from 30 to 90. To understand the magnitude of the
numerical factor and its variation throughout the alkali series in simple terms
we introduce the concept of the oscillator strength for a transition from a
state k to a state l. This dimensionless quantity is defined by

f i
kl =

2me(Ek − El)
e2�2

|〈k|di|l〉|2 (3.38)

for the i component of the dipole moment. This is the squared modulus of
the dipole matrix element measured in terms of the electronic charge and
a length equal to 1/2π times the wavelength of a free electron with energy
equal to that of the transition. The polarizability of an atom in its ground
state may then be written as

α = 4πε0α̃ =
e2

me

∑
n

f i
n0

ω2
n0

, (3.39)

where ωn0 = (En−E0)/�. In atomic units (a30 for α̃ and e20/a0 for energies)
this result may be written

α̃ =
∑
n

f i
n0

(En − E0)2
. (3.40)

For an atom with Z electrons the oscillator strengths obey the Thomas–
Reiche–Kuhn or f sum rule [2, p. 181]∑

n

fn0 = Z. (3.41)

In alkali atoms, by far the main contribution to the polarizability comes
from the valence electron. Electrons in other states contribute relatively
little because the corresponding excitations have high energies. In addition,
for the valence electron the bulk of the oscillator strength is in the resonance
lines in the optical part of the spectrum. These are due to nP–nS transi-
tions, which are doublets due to the spin–orbit interaction. The best-known
example is the 3P to 3S transition in sodium, which gives the yellow Fraun-
hofer D lines in the spectrum of the Sun. To an excellent approximation,
the valence electron states are those of a single electron moving in a static
potential due to the nucleus and the electrons in the core. The contribution
to the sum rule from the valence electron transitions is then unity. If we
further neglect all transitions except that for the resonance line, the total
oscillator strength for the resonance line is unity, and the polarizability is
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Table 3.3. Wavelengths and energies of resonance lines of alkali atoms and
hydrogen. The wavelengths of both members of the doublet are given, and
for H and Li they are the same to within the number of figures quoted in
the table. The energies given correspond to the average of the energies for

the transitions to the spin–orbit doublet, weighted according to their
statistical weights (4 for P3/2 and 2 for P1/2).

Atom Wavelength ∆Eres ∆Eres

(nm) (eV) (a.u.)

H 121.6 10.20 0.375
Li 670.8 1.848 0.0679
Na 589.0, 589.6 2.104 0.0773
K 766.5, 769.9 1.615 0.0594
Rb 780.0, 794.8 1.580 0.0581
Cs 852.1, 894.3 1.432 0.0526

given by

α̃ ≈ 1
(∆Eres)2

, (3.42)

where ∆Eres is the energy difference associated with the resonance line mea-
sured in atomic units (e20/a0 ≈ 27.2 eV). In Table 3.3 we list values of the
wavelengths and energy differences for the resonance lines of alkali atoms
and hydrogen.

The measured value of α̃ for Li is 164 in atomic units, while (3.42) yields
217. For Na the measured value is 163 [3], while Eq. (3.42) gives 167.
For K, Rb, and Cs the measured values are 294, 320, and 404, and Eq.
(3.42) evaluated using the energy of the resonance line averaged over the
two members of the doublet yields 284, 297, and 361, respectively. Thus we
see that the magnitude of the polarizability and its variation through the
alkali series may be understood simply in terms of the dominant transition
being the resonance line.

The resonance lines in alkali atoms have energies much less than the
Lyman-α line in hydrogen because they are due to transitions between va-
lence electron states with the same principal quantum number, e.g., 3P–3S
for Na. If the potential in which the electron moved were purely Coulom-
bic, these states would be degenerate. However the s-electron wave function
penetrates the core of the atom to a greater extent than does that of the p
electron, which is held away from the nucleus by virtue of its angular mo-
mentum. Consequently screening of the nuclear charge by core electrons is
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more effective for a p electron than for an s electron, and as a result the s
state has a lower energy than the p state.

For the heavier alkali atoms, the experimental value of the polarizability
exceeds that given by the simple estimate (3.42), and the difference increases
with increasing Z. This is because core electrons, which have been neglected
in making the simple estimate, contribute significantly to the polarizability.
For hydrogen, the line that plays a role analogous to that of the resonance
line in the alkalis is the Lyman-α line, whose energy is (3/8)e20/a0, and the
estimate (3.42) gives a polarizability of 64/9 ≈ 7.1. This is nearly 60% more
than the actual value, the reason being that this transition has an oscillator
strength much less than unity. The estimate for Li is 30% high for a similar
reason.

Oscillating electric fields

Next we turn to time-dependent electric fields. We assume that the electric
field is in the i direction and varies in time as E(t) = E0 cosωt. Therefore
the perturbation is given by

H ′ = −diE0 cosωt = −diE0
2

(eiωt + e−iωt). (3.43)

By expanding the wave function ψ in terms of the complete set of unper-
turbed states un with energies En,

ψ =
∑
n

anune
−iEnt/�, (3.44)

we obtain from the time-dependent Schrödinger equation the usual set of
coupled equations for the expansion coefficients an,

i�ȧn =
∑
k

〈n|H ′|k〉ak(t)eiωnkt, (3.45)

where ωnk = (En − Ek)/�, and the dot on a denotes the derivative with
respect to time.

Let us consider an atom initially in an eigenstate m of the unperturbed
Hamiltonian, and imagine that the perturbation is turned on at time t = 0.
The expansion coefficients an for n �= m are then obtained to first order in
the perturbation H ′ by inserting (3.43) into (3.45) and replacing ak on the
right hand side by its value δkm when the perturbation is absent,

an
(1) = − 1

2i�

∫ t

0
dt′〈n|diE0|m〉[ei(ωnm+ω)t′ + ei(ωnm−ω)t′ ]. (3.46)

For simplicity we assume here that the frequency is not equal to any of
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the transition frequencies. In Sec. 4.2 we shall relax this assumption. By
carrying out the integration over time one finds

an
(1) =

〈n|diE0|m〉
2�

[
ei(ωnm+ω)t − 1
ωnm + ω

+
ei(ωnm−ω)t − 1
ωnm − ω

]
(3.47)

for n �= m. To determine the coefficient am for the initial state, which yields
the energy shift, we write it as am = eiφm , where φm is a complex phase,
and we insert (3.47) into (3.45). To second order in the perturbation the
result is

�φ̇m = 〈m|di|m〉E0 cosωt

+
E2

0

2�

∑
n�=m

|〈n|di|m〉|2e−iωnmt cosωt
[
ei(ωnm+ω)t − 1
ωnm + ω

+
ei(ωnm−ω)t − 1
ωnm − ω

]
. (3.48)

On the right hand side of (3.48) we have replaced e−iφm by unity, since we
work only to second order in the strength of the electric field. The matrix
element 〈m|di|m〉 vanishes by symmetry when the state m is an eigenstate
of the parity operator.

The shift in the energy is given by � times the average rate at which the
phase of the state decreases in time. We therefore average (3.48) over time
and obtain

�<φ̇m>t =
E2

0

4�

∑
n

(
1

ωnm + ω
+

1
ωnm − ω

)
|〈n|di|m〉|2. (3.49)

Here < · · ·>t denotes an average over one oscillation period of the electric
field. We write the time-averaged energy shift ∆E = −�<φ̇m>t for the
ground state of the atom (m = 0) in a form analogous to Eq. (3.36) for
static fields,

∆E = −1
2
α(ω)<E(t)2>t, (3.50)

with <E(t)2>t = E2
0/2. The frequency-dependent polarizability is thus

α(ω) =
∑
n

|〈n|di|0〉|2
(

1
En − E0 + �ω

+
1

En − E0 − �ω

)

=
∑
n

2(En − E0)|〈n|di|0〉|2
(En − E0)2 − (�ω)2

(3.51)

or

α(ω) =
e2

me

∑
n

f i
n0

ω2
n0 − ω2

. (3.52)

In the limit ω → 0 this agrees with the result (3.39) for static fields.
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Table 3.4. Characteristic atomic energies Ei for sodium together with the
corresponding frequencies Ei/h, and temperatures Ei/k. The quantity

∆Eres is the energy of the resonance line due to the transition between the
3P and 3S levels, ∆Eso is the spin–orbit splitting in the 3P doublet, ∆Ehf

the hyperfine splitting in the ground state, �Γe the linewidth of the
resonance line, while µBB and µNB are the Zeeman energies. The

magnetic field has been chosen to be B = 0.1 T.

Quantity Energy Frequency Temperature
(eV) (Hz) (K)

∆Eres 2.1 5.1× 1014 2.4× 104

∆Eso 2.1× 10−3 5.2× 1011 2.5× 101

∆Ehf 7.3× 10−6 1.8× 109 8.5× 10−2

µBB 5.8× 10−6 1.4× 109 6.7× 10−2

�Γe 4.1× 10−8 1.0× 107 4.8× 10−4

µNB 3.2× 10−9 7.6× 105 3.7× 10−5

3.4 Energy scales

As a prelude to our discussion in Chapter 4 of trapping and cooling processes
we give in the following some characteristic atomic energy scales.

Since the Zeeman energies µBB and µNB differ by three orders of magni-
tude, the interaction of the nuclear spin with the external field may generally
be neglected. The magnitude of the hyperfine splitting, ∆Ehf , is comparable
with the Zeeman energy µBB for B = 0.1 T.

As we shall see in the next chapter, laser cooling exploits transitions be-
tween atomic levels which are typically separated by an energy of the order
of one electron volt (eV). The two resonance lines in sodium are due to tran-
sitions from the 3P level to the 3S level with wavelengths of 589.0 nm and
589.6 nm corresponding to energy differences ∆Eres of 2.1 eV (cf. Table 3.3).
The splitting of the lines is due to the spin–orbit interaction. The spin–orbit
splitting ∆Eso involves – apart from quantum numbers associated with the
particular states in question – an average of the derivative of the potential.
For hydrogen one has ∆Eso ∼ �

2e20/m
2
ec

2a30 = α2
fse

2
0/a0 ∼ 10−3 eV, where

αfs is the fine structure constant. For sodium the splitting of the resonance
line doublet is 2.1×10−3 eV.

Yet another energy scale that plays a role in the cooling processes is the
intrinsic width of atomic levels. An atom in an excited state decays to
lower states by emitting radiation. The rate of this process may be deter-
mined by using second-order perturbation theory, the perturbation being
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the interaction between the atom and the quantized radiation field. Al-
ternatively, within a semi-classical approach, one may calculate the rate of
absorption and stimulated emission of photons by treating the electric field
classically. From this, the rate of spontaneous emission processes is obtained
by using the relationship between the Einstein A and B coefficients. For a
state n whose decay is allowed in the dipole approximation the rate of decay
Γnm to state m by spontaneous emission is found to be [2, p. 168]

Γnm =
4
3
ω3

nm

∑
i |〈n|di|m〉|2

4πε0�c3
, (3.53)

where �ωnm is the energy difference between the levels in question, while
〈n|di|m〉 is the dipole matrix element. This result is identical with the
damping rate of a classical electric dipole moment of magnitude equal to
the square root of

∑
i |〈n|di|m〉|2 and oscillating with frequency ωnm. The

total decay rate of an excited state n is therefore given by

Γe =
∑
m

Γnm, (3.54)

where the sum is over all states m with energy less than that of the initial
state. Estimating (3.53) for the 2P–1S Lyman-α transition in hydrogen,
with ωnm ≈ e20/�a0 and |〈n|di|m〉| ≈ ea0, yields

Γe ≈
(
e20
�c

)3
e20

�a0
. (3.55)

The rate of spontaneous emission is thus a factor of order (αfs)3 or 4× 10−7

times atomic transition frequencies.
For the resonance lines in alkali atoms, the possible final states are all

members of the ground-state multiplet, and therefore we may write the
decay rate (3.54) as

Γe ≈
2
3
fres
e20
�c

�ω2
res

mec2
, (3.56)

where ωres = ∆Eres/� is the resonance-line frequency and fres is the total
oscillator strength from the excited state to all members of the ground-
state multiplet. This strength, like the total strength from a member of the
ground-state multiplet to all members of the excited-state multiplet, is close
to unity, and for similar reasons, and therefore the decay rate of the excited
state is given approximately by

Γe ≈
2
3
e20
�c

�ω2
res

mec2
. (3.57)
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For the resonance line in sodium, ωres = 3.2 × 1015 s−1 and the estimate
(3.57) gives Γe = 6.4 × 107 s−1, which agrees closely with the measured
value Γe = 6.3× 107 s−1.

In Table 3.4 (see p. 55) we list for sodium the characteristic energies,
frequencies, and temperatures discussed above.

Problems

Problem 3.1 Calculate the Zeeman splitting of the hyperfine levels for
the 87Rb atom in low magnetic fields and determine the Landé g factors.

Problem 3.2 Use a high-field perturbation treatment to obtain explicit
expressions for the Zeeman-split hyperfine levels of 87Rb and 133Cs in a
strong magnetic field and compare the results with Fig. 3.1.

Problem 3.3 The static polarizability of a hydrogen atom in its ground
state may be calculated in an approximate way from Eq. (3.34). First include
only the unperturbed states |nlm〉 associated with the next-lowest unper-
turbed energy level, which has n = 2, and show that if the electric field
is in the z direction, the only non-vanishing matrix element is 〈210|z|100〉.
Calculate the matrix element and use it to obtain an upper bound on the
second-order correction to the energy, ∆E. Determine a lower bound on ∆E
by replacing all the energy differences En−E0 in Eq. (3.34) by the difference
between the energy of the lowest excited state and that of the ground state,
and use closure to evaluate the sum. The exact expression, valid to second
order in E , is ∆E/4πε0 = −(9/4)a30E2.
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4

Trapping and cooling of atoms

The advent of the laser opened the way to the development of powerful new
methods for manipulating and cooling atoms which were exploited in the
realization of Bose–Einstein condensation in alkali atom vapours. To set the
stage we describe a typical experiment, which is shown schematically in Fig.
4.1 [1]. A beam of sodium atoms emerges from an oven at a temperature
of about 600 K, corresponding to a speed of about 800 m s−1, and is then
passed through a so-called Zeeman slower, in which the velocity of the atoms
is reduced to about 30 m s−1, corresponding to a temperature of about 1 K.
In the Zeeman slower, a laser beam propagates in the direction opposite
that of the atomic beam, and the radiation force produced by absorption
of photons retards the atoms. Due to the Doppler effect, the frequency
of the atomic transition in the laboratory frame is not generally constant,
since the atomic velocity varies. However, by applying an inhomogeneous
magnetic field designed so that the Doppler and Zeeman effects cancel, the
frequency of the transition in the rest frame of the atom may be held fixed.
On emerging from the Zeeman slower the atoms are slow enough to be
captured by a magneto-optical trap (MOT), where they are further cooled
by interactions with laser light to temperatures of order 100 µK. Another
way of compensating for the changing Doppler shift is to increase the laser
frequency in time, which is referred to as ‘chirping’. In other experiments
the MOT is filled by transferring atoms from a second MOT where atoms
are captured directly from the vapour. After a sufficiently large number of
atoms (typically 1010) have accumulated in the MOT, a magnetic trap is
turned on and the laser beams are turned off: the atoms are then confined
by a purely magnetic trap. At this stage, the density of atoms is relatively
low, and the gas is still very non-degenerate, with a phase-space density
of order 10−6. The final step in achieving Bose–Einstein condensation is

58
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Fig. 4.1. A typical experiment to cool and trap alkali atoms.

evaporative cooling, in which relatively energetic atoms leave the system,
thereby lowering the average energy of the remaining atoms.

In this chapter we describe the physics of cooling and trapping atoms. We
begin with magnetic traps (Sec. 4.1). Subsequently, as a prelude to a discus-
sion of laser cooling and trapping, we consider the effects of laser radiation
on atoms and describe optical traps (Sec. 4.2). We then discuss, in Sec. 4.3,
the simple theory of laser cooling and, in Sec. 4.4, the magneto-optical trap.
In Sec. 4.5 an account is given of the Sisyphus cooling process. Section 4.6
is devoted to evaporative cooling. Atomic hydrogen is different from alkali
atoms, in that it cannot be cooled by lasers, and the final section, Sec. 4.7,
is devoted to experiments on hydrogen. For a more extensive description
of many of the topics treated in this chapter, see Ref. [2]. Another useful
source is the summer school lectures [3].

4.1 Magnetic traps

Magnetic trapping of neutral atoms is due to the Zeeman effect, which we
described in Chapter 3: the energy of an atomic state depends on the mag-
netic field, and therefore an atom in an inhomogeneous field experiences a
spatially-varying potential. For simplicity, let us begin by assuming that the
energy of a state is linear in the magnetic field. As one can see from our
earlier discussion in Chapter 3 (see, e.g., Fig. 3.1), this is true generally for
the doubly polarized states, and for other states it is a good approximation
provided the level shifts produced by the magnetic field are either very small
or very large compared with the hyperfine splitting. The energy of an atom
in a particular state i may then be written as

Ei = Ci − µiB, (4.1)
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where µi is the magnetic moment of the state and Ci is a constant. The
magnetic contribution to the energy thus provides a potential energy −µiB

for the atom. If the magnetic moment is positive, the atom experiences a
force tending to drive it to regions of higher field, while if it is negative,
the force is towards regions of lower field. For this reason, states with a
positive magnetic moment are referred to as high-field seekers, and those
with a negative one as low-field seekers.

The energy depth of magnetic traps is determined by the Zeeman en-
ergy, µiB. Atomic magnetic moments are of order the Bohr magneton,
µB = e�/2me, which in temperature units is approximately 0.67 K/T. Since
laboratory magnetic fields are generally considerably less than 1 tesla, the
depth of magnetic traps is much less than a kelvin, and therefore atoms
must be cooled in order to be trapped magnetically.

The task of constructing a magnetic trap is thus to design magnetic field
configurations with either a local minimum in the magnitude of the magnetic
field, or a local maximum. The latter possibility is ruled out by a general
theorem, published surprisingly recently, that a local maximum in |B| is im-
possible in regions where there are no electrical currents [4]. Thus the case of
interest is that of a local minimum, and consequently the only atomic states
that can be trapped by magnetic fields alone are low-field seekers. Magnetic
field configurations with a local minimum in |B| have been important over
the past few decades for trapping charged particles as a step in the continu-
ing quest to realize nuclear fusion in hot plasmas. Then the trapping results
not from the intrinsic magnetic moment of the particle, but rather from the
magnetic moment associated with its cyclotron motion. However, despite
the very different physical conditions in the two cases, the requirements in
terms of the magnetic field configuration are quite similar, and the design of
traps for cold atoms has been significantly influenced by work on plasmas.
Field configurations with a minimum in |B| may be divided into two classes:
ones where the minimum of the field is zero, and those where it is non-zero.
We shall now describe these in turn.

4.1.1 The quadrupole trap

A simple magnetic field configuration in which the magnetic field vanishes
at some point is the standard quadrupole one, in which the magnetic field
varies linearly with distance in all directions. Such a magnetic field may be
produced by, e.g., a pair of opposed Helmholtz coils, as in standard focusing
magnets. For definiteness, let us consider a situation with axial symmetry
about the z direction. If we denote the magnetic field gradients along the
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x and y axes by B′, the gradient along the z axis must be −2B′, since the
divergence of the magnetic field vanishes, ∇·B = 0. The magnetic field in
the vicinity of the minimum, whose position we choose to be at the origin
of the coordinate system, is thus given by

B = B′(x, y,−2z). (4.2)

The magnitude of the field is given by B = B′(x2 + y2 + 4z2)1/2, and thus
it varies linearly with distance from the minimum, but with a slope that
depends on direction.

The quadrupole trap suffers from one important disadvantage. In the
above discussion of the effective potential produced by a magnetic field, we
assumed implicitly that atoms remain in the same quantum state. This is
a good approximation provided the magnetic field experienced by an atom
changes slowly with time, since the atom then remains in the same quantum
state relative to the instantaneous direction of the magnetic field: it is said to
follow the magnetic field variations adiabatically. However, a moving atom
experiences a time-dependent magnetic field, which will induce transitions
between different states. In particular, atoms in low-field seeking states may
make transitions to high-field seeking ones, and thereby be ejected from the
trap. The effects of the time-dependent magnetic field become serious if its
frequency is comparable with or greater than the frequencies of transitions
between magnetic sublevels. The latter are of order µBB, and therefore
vanish if B = 0. Thus trap losses can be appreciable in the vicinity of
the zero-field point: the quadrupole trap effectively has a ‘hole’ near the
node in the field, and this limits the time for which atoms can be stored
in it.

This disadvantage of the simple quadrupole trap may be circumvented in
a number of ways. One of these is to ‘plug the hole’ in the trap. In the first
successful experiment to realize Bose–Einstein condensation this was done
by applying an oscillating bias magnetic field, as we shall explain in the next
subsection. An alternative approach, adopted by the MIT group of Ketterle
and collaborators in early experiments [5], is to apply a laser field in the
region of the node in the magnetic field. The resulting radiation forces repel
atoms from the vicinity of the node, thereby reducing losses. The physics of
this mechanism will be described in Sec. 4.2. Instead of using traps having
a node in the magnetic field, one can remove the ‘hole’ by working with
magnetic field configurations that have a non-zero field at the minimum.
These will be described in Sec. 4.1.3.
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4.1.2 The TOP trap

As mentioned in Chapter 1, Bose–Einstein condensation in dilute gases was
first achieved in experiments using a modified quadrupole trap known as the
time-averaged orbiting potential (TOP) trap. In this trap one superimposes
on the quadrupole field a rotating, spatially-uniform, magnetic field [6]. For
definiteness we consider the geometry used in the original experiment, where
the oscillating magnetic field has components B0 cosωt in the x direction,
and B0 sinωt in the y direction [7]. The instantaneous field is therefore given
by

B = (B′x+B0 cosωt,B′y +B0 sinωt,−2B′z). (4.3)

Thus the effect of the oscillating bias field is to move the instantaneous
position of the node in the magnetic field. The frequency of the bias field
is chosen to be low compared with the frequencies of transitions between
magnetic substates. This condition ensures that an atom will remain in
the same quantum state relative to the instantaneous magnetic field, and
therefore will not undergo transitions to other hyperfine states and be lost
from the trap. Under these conditions the effect of the bias field may be
described in terms of an oscillatory component of the energy of an atom.
If the frequency of the bias field is chosen to be much greater than that of
the atomic motions, an atom moves in an effective potential given by the
time average of the instantaneous potential over one rotation period of the
field. In experiments, frequencies of atomic motions are typically ∼ 102 Hz,
frequencies of transitions between magnetic substates are of order ∼ 106

Hz or more, and the frequency of the bias field is typically in the kilohertz
range.

To determine the effective potential we first evaluate the instantaneous
strength of the magnetic field, which is given by

B(t) = [(B0 cosωt+B′x)2 + (B0 sinωt+B′y)2 + 4B′2z2]1/2

� B0 +B′(x cosωt+ y sinωt)

+
B′2

2B0
[x2 + y2 + 4z2 − (x cosωt+ y sinωt)2], (4.4)

where the latter form applies for small distances from the node of the quadru-
pole field, r � |B0/B

′|. The time average, <B>t, of the magnitude of the
magnetic field over a rotation period of the field is defined by

<B>t =
ω

2π

∫ 2π/ω

0
dtB(t). (4.5)
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By performing the time average, we find from (4.4) that

<B>t � B0 +
B′2

4B0
(x2 + y2 + 8z2). (4.6)

The important feature of this result is that the time-averaged field never
vanishes, and consequently there is no longer a ‘hole’ in the trap. The
magnetic contribution to the energy of an atom in a magnetic substate i is
thus given for small r by

Ei(<B>t) � Ei(B0)− µi(B0)(<B>t −B0)

� Ei(B0)− µi(B0)
B′2

4B0
(x2 + y2 + 8z2), (4.7)

where

µi = −∂Ei

∂B

∣∣∣∣
B0

(4.8)

is the projection of the magnetic moment in the direction of the magnetic
field. For doubly polarized states, in which the nuclear and electron spins
have the largest possible projections on the magnetic field direction and are
in the same direction, the magnetic moment is independent of the magnetic
field (see Sec. 3.2). The oscillating bias field thus converts the linear de-
pendence of magnetic field strength on distance from the node in the orig-
inal quadrupole field to a quadratic one, corresponding to an anisotropic
harmonic-oscillator potential. The angular frequencies for motion in the
three coordinate directions are

ω2
x = ω2

y = −µi
B′2

2mB0
, (4.9)

and

ω2
z = 8ω2

x = −8µi
B′2

2mB0
. (4.10)

Different choices for the rotation axis of the bias field give traps with different
degrees of anisotropy (see Problem 4.3).

Another force which can be important in practice is gravity. This gives
rise to a potential which is linear in distance. If the potential produced by
the TOP trap were purely harmonic, the only effect of gravity would be to
displace the minimum in the harmonic-oscillator potential. However, the
harmonic behaviour of the TOP trap potential extends only to a distance
of order l = B0/|B′| from the origin, beyond which the bias magnetic field
has little effect. If the gravitational force is strong enough to displace the
minimum a distance greater than or of order B0/|B′|, the total potential no
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longer has the form (4.7) when expanded about the new minimum. Gravity
modifies the trapping potential appreciably if the gravitational force mg,
where g is the acceleration due to gravity, exceeds that due to the magnetic
trap at a distance B0/|B′| from the origin. From Eq. (4.7) one sees that
the force constant of the trap is of order |µi|B′2/B0, and therefore the force
at a distance B0/|B′| from the origin is of order |µiB

′|. Thus gravity is
important if

|µiB
′| � mg. (4.11)

By appropriate choice of magnetic field strengths and of the direction of
the axis of a magnetic trap relative to that of the gravitational force it is
possible to make the minimum of the potential due to both magnetic and
gravitational forces lie at a point such that the force constants of the trap
are not in the usual ratio for a TOP trap in the absence of gravity.

4.1.3 Magnetic bottles and the Ioffe–Pritchard trap

An inhomogeneous magnetic field with a minimum in the magnetic field at a
non-zero value may be generated by a configuration based on two Helmholtz
coils with identical currents circulating in the same direction, in contrast to
the simple quadrupole field, which is generated by Helmholtz coils with the
currents in the two coils in opposite directions. Let us investigate the form
of the magnetic field in the vicinity of the point midway between the coils
on their symmetry axis, which we take to be the origin of our coordinate
system. We denote the coordinate in the direction of the symmetry axis
by z, and the distance from the axis by ρ. Since there are no currents in
the vicinity of the origin, the magnetic field may be derived from a scalar
potential Φ, B = −∇Φ. We assume the current coils to be rotationally
symmetric about the z axis, and thus the magnetic field is independent of
the azimuthal angle. Since the field is an even function of the coordinates,
the potential must be an odd one, and therefore an expansion of the potential
in terms of spherical harmonics Ylm can contain only terms with odd order l.
Because of the rotational invariance about the symmetry axis, the potential
is a function only of the distance from the origin, r = (z2 + ρ2)1/2, and
of cos θ = z/r. The potential satisfies Laplace’s equation, and it may be
written simply as

Φ =
∑

l

Alr
lPl(z/r), (4.12)

where the Pl are Legendre polynomials and the Al are coefficients. There
can be no terms with inverse powers of r since the field is finite at the origin.
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In the immediate vicinity of the origin we may restrict ourselves to the first
two terms in this expansion, and therefore one has

Φ = A1rP1(cos θ) +A3r
3P3(cos θ) (4.13)

= A1z +A3(
5
2
z3 − 3

2
zr2) (4.14)

= A1z +A3(z3 −
3
2
zρ2), (4.15)

and the magnetic field has components

Bz = −A1 − 3A3(z2 −
1
2
ρ2), Bρ = 3A3zρ, and Bϕ = 0, (4.16)

where ϕ is the azimuthal angle. If A1 and A3 have the same sign, the
magnetic field increases in magnitude with increasing |z|. Such a field con-
figuration is referred to as a ‘magnetic bottle’ in plasma physics. Provided
its energy is not too high, a charged particle gyrating about the field will be
reflected as it moves towards regions of higher field, and thereby contained.
Neutral particles, unlike charged ones, can move freely perpendicular to the
direction of the magnetic field, and therefore to trap them magnetically the
magnetic field must increase in directions perpendicular to the magnetic
field as well as parallel to it. To second order in z and ρ the magnitude of
the magnetic field is given by

B = A1 + 3A3(z2 −
1
2
ρ2), (4.17)

and therefore the magnetic field does not have a local minimum at the origin.
The problem of creating a magnetic field with a local minimum in B arose

in the context of plasma physics, and one way of doing this was proposed by
Ioffe [8]. It is clear from the expansion of the potential given above that this
cannot be done if the magnetic field is axially symmetric: there are only two
adjustable coefficients, and there is no way to create a local minimum. The
suggestion Ioffe made was to add to the currents creating the magnetic bottle
other currents that break the rotational invariance about the symmetry axis
of the bottle. In plasma physics the configuration used is that shown in Fig.
4.2, where the additional currents are carried by conductors parallel to the
symmetry axis (so-called ‘Ioffe bars’). If the magnitude of the current is the
same for each bar, it follows from symmetry under rotation about the axis
of the system that the potential produced by the currents in the bars must
correspond to a potential having components with degree m equal to 2 or
more. Thus the lowest-order spherical harmonics that can contribute are
Y2,±2 ∝ (ρ/r)2e±i2ϕ, and the corresponding solutions of Laplace’s equation
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Fig. 4.2. Currents that generate the Ioffe–Pritchard configuration for the magnetic
field.

are r2Y2,±2 ∝ ρ2e±i2ϕ. The leading term in the expansion of the potential
near the origin must therefore be of the form

Φ =
ρ2

2
[
Cei2ϕ + C∗e−i2ϕ

]
, (4.18)

since terms with higher values of l have higher powers of r. Here C is a
constant determined by the current in the bars and their geometry. If the
zero of the azimuthal angle is taken to lie midway between two adjacent
conductors, C must be real, and by symmetry the potential function must
be proportional to x2 − y2, since on the x and y axes the magnetic field
lies along the axes. The components of the field due to the Ioffe bars are
therefore

Bx = −Cx, By = Cy, and Bz = 0. (4.19)

When this field is added to that of the magnetic bottle the magnitude of
the total magnetic field is given to second order in the coordinates by

B = A1 + 3A3(z2 −
1
2
ρ2) +

C2

2A1
ρ2, (4.20)

and consequently the magnitude of the field has a local minimum at the
origin if C2 > 3A1A3, that is for sufficiently strong currents in the bars. A
convenient feature of this trap is that by adjusting the current in the coils
relative to that in the bars it is possible to make field configurations with
different degrees of curvature in the axial and radial directions.

The use of such magnetic field configurations to trap neutral atoms was
first proposed by Pritchard [9], and in the neutral atom literature this
trap is commonly referred to as the Ioffe–Pritchard trap. A variant of it
which is convenient in practice is the clover-leaf trap, where the non-axially-
symmetric field is produced by coils configured as shown in Fig. 4.3 [1]. The
windings look very different from the Ioffe bars, but since the azimuthal
symmetry of the currents corresponds to m = 2 or more, as in the Ioffe
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Fig. 4.3. Schematic view of the currents in the clover-leaf trap.

case, the field near the origin must have the same symmetry. To first order
in the coordinates the component of the magnetic field in the axial direc-
tion vanishes, and the first non-vanishing contributions are of third order.
A virtue of the clover-leaf configuration relative to the original Ioffe one is
that experimental access to the region near the field minimum is easier due
to the absence of the current-carrying bars.

4.2 Influence of laser light on an atom

Many techniques for trapping and cooling atoms exploit the interaction of
atoms with radiation fields, especially those of lasers. As a prelude to the
applications later in this chapter, we give here a general description of the
interaction of an atom with a radiation field. In Sec. 3.3 we calculated the
polarizability of atoms with non-degenerate ground states, and here we shall
generalize the treatment to allow for the lifetime of the excited state, and
arbitrary directions for the electric field.

The interaction between an atom and the electric field is given in the
dipole approximation by

H ′ = −d·E, (4.21)

where d is the electric dipole moment operator and E is the electric field
vector. In a static electric field the change ∆Eg in the ground-state energy
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Fig. 4.4. Diagrammatic representation of second-order contributions to the energy
of an atom in its ground state for (a) a static electric field and (b) a time-dependent
field. The straight lines correspond to the atom and the wavy ones to the interaction
with the electric field.

of an atom is given to second order in the electric field by

∆Eg = −
∑
e

|〈e|H ′|g〉|2
Ee − Eg

= −1
2
αE2, (4.22)

where

α = 2
∑
e

|〈e|d·ε̂|g〉|2
Ee − Eg

(4.23)

is the atomic polarizability. Here ε̂ is a unit vector in the direction of the
electric field, and we label the ground state by g and the excited states
by e. This contribution to the energy may be represented by the diagram
shown in Fig. 4.4 (a). The interaction vertices give factors 〈e|(−d·E)|g〉 and
〈g|(−d·E)|e〉, and the line for the intermediate atomic state gives a factor
1/(Ee − Eg) to the summand, as one may confirm by comparing with the
explicit calculation in Sec. 3.3. To describe a time-dependent electric field
with frequency ω we write the electric field as E(r, t) = Eωe

−iωt + E−ωe
iωt.

Since the electric field is real, the condition

E−ω = E∗
ω (4.24)

must be satisfied. In Sec. 3.3 we calculated the energy shift due to this
time-dependent electric field by conventional perturbation theory. It is in-
structive, however, to derive the result (3.50) in an alternative fashion, by
use of diagrammatic perturbation theory. The second-order contribution
to the energy may be expressed as the sum of two terms which are repre-
sented by the diagrams shown in Fig. 4.4 (b). These are identical apart
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from the reversal of the order in which the dipolar perturbations with posi-
tive and negative frequencies occur. The term varying as e−iωt corresponds
in a quantum-mechanical description of the radiation field to absorption of
a photon, and that varying as eiωt to emission. The terms where either the
positive-frequency component of the field or the negative-frequency one act
twice do not contribute to the energy shift, since the final state differs from
the initial one by the addition or removal of two photons (these are the
terms which averaged to zero in the perturbation calculation of Sec. 3.3).
By generalizing the approach used above for a static field, one finds for the
energy shift

∆Eg =
∑
e

〈g|d·Eω|e〉
1

Eg − Ee + �ω
〈e|d·E−ω|g〉

+
∑
e

〈g|d·E−ω|e〉
1

Eg − Ee − �ω
〈e|d·Eω|g〉

=
∑
e

|〈e|d·ε̂|g〉|2
(

1
Eg − Ee − �ω

+
1

Eg − Ee + �ω

)
|Eω|2

= −α(ω)|Eω|2

= −1
2
α(ω)<E(r, t)2>t, (4.25)

where < · · ·>t denotes a time average, and the dynamical polarizability is
given by

α(ω) =
∑
e

|〈e|d·ε̂|g〉|2
(

1
Ee − Eg + �ω

+
1

Ee − Eg − �ω

)

=
∑
e

2(Ee − Eg)|〈e|d·ε̂|g〉|2

(Ee − Eg)2 − (�ω)2
, (4.26)

in agreement with Eqs. (3.50) and (3.51). Note that the only difference from
the static case is that the intermediate energy denominators are shifted by
±�ω to take into account the non-zero frequency of the electric field.

In many situations of interest the frequency of the radiation is close to
that of an atomic resonance, and it is then a good approximation to ne-
glect all transitions except the resonant one. In addition, in the expression
for the polarizability one may take only the term with the smallest energy
denominator. The polarizability then reduces to a single term

α(ω) ≈ |〈e|d·ε̂|g〉|2
Ee − Eg − �ω

. (4.27)

In the above discussion we implicitly assumed that the excited state has
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an infinitely long lifetime. However, in reality it will decay by spontaneous
emission of photons. This effect can be taken into account phenomenologi-
cally by attributing to the excited state an energy with both real and imag-
inary parts. If the excited state has a lifetime 1/Γe, corresponding to the
e-folding time for the occupation probability of the state, the corresponding
e-folding time for the amplitude will be twice this, since the probability is
equal to the squared modulus of the amplitude. If, in the usual way, the
amplitude of the excited state is taken to vary as exp(−iEet/�), exponential
decay of the amplitude with a lifetime 2/Γe corresponds to an imaginary
contribution to the energy of the state equal to −i�Γe/2. The polarizability
is then

α(ω) ≈ |〈e|d·ε̂|g〉|2
Ee − i�Γe/2− Eg − �ω

. (4.28)

Quite generally, the energy of the ground state is a complex quantity, and
we shall write the energy shift as

∆Eg = Vg − i�Γg/2. (4.29)

This has the form of an effective potential acting on the atom, the real part
corresponding to a shift of the energy of the state, and the imaginary part
to a finite lifetime of the ground state due to transitions to the excited state
induced by the radiation field, as described above. The shift of the energy
level is given by

Vg = −1
2
α′(ω)<E(r, t)2>t, (4.30)

where

α′(ω) ≈ (Ee − Eg − �ω)|〈e|d·ε̂|g〉|2
(Ee − Eg − �ω)2 + (�Γe/2)2

(4.31)

is the real part of α. These shifts are sometimes referred to as ac Stark
shifts, since the physics is the same as for the usual Stark effect except that
the electric field is time-dependent.

It is convenient to introduce the detuning, which is the difference between
the laser frequency and the frequency ωeg = (Ee − Eg)/� of the atomic
transition:

δ = ω − ωeg. (4.32)

Positive δ is referred to as blue detuning, and negative δ as red detuning.
The energy shift is given by

Vg =
�Ω2

Rδ

δ2 + Γ2
e/4
. (4.33)
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Here we have introduced the Rabi frequency, which is the magnitude of the
perturbing matrix element |〈e|d·Eω|g〉| expressed as a frequency:

ΩR = |〈e|d·Eω|g〉|/�. (4.34)

Ground-state energy shifts are thus positive for blue detuning and negative
for red detuning.

The rate of loss of atoms from the ground state is given by

Γg = −2
�

Im ∆Eg =
1
�
α′′(ω)<E(r, t)2>t, (4.35)

where α′′ is the imaginary part of α,

α′′(ω) ≈ �Γe/2
(Ee − Eg − �ω)2 + (�Γe/2)2

|〈e|d·ε̂|g〉|2. (4.36)

Thus the rate of transitions from the ground state has a Lorentzian depen-
dence on frequency in this approximation.

The perturbative treatment given above is valid provided the admixture
of the excited state into the ground state is small. To lowest order in the
perturbation, this admixture is of order the matrix element of the perturba-
tion divided by the excitation energy of the intermediate state. If the decay
of the intermediate state may be neglected, the magnitude of the energy de-
nominator is |�(ωeg − ω)| = �|δ| and, with allowance for decay, the effective
energy denominator has a magnitude �(δ2 + Γ2

e/4)1/2. The condition for
validity of perturbation theory is therefore |〈e|d·Eω|g〉| � �(δ2 + Γ2

e/4)1/2

or ΩR � (δ2 + Γ2
e/4)1/2. For larger electric fields it is necessary to go be-

yond simple perturbation theory but, fortunately, under most conditions
relevant for experiments on Bose–Einstein condensation, electric fields are
weak enough that the perturbative approach is adequate.

4.2.1 Forces on an atom in a laser field

Experiments on clouds of dilute gases exploit the forces on atoms in a laser
field in a variety of ways. Before discussing specific applications, we describe
the origin of these forces. The energy shift of an atom may be regarded as
an effective potential V in which the atom moves. This way of viewing
the problem is sometimes referred to as the dressed atom picture, since the
energy of interest is that of an atom with its accompanying perturbations
in the radiation field, not just an isolated atom. It is the analogue of the
concept of an elementary excitation, or quasiparticle, that has been so pow-
erful in understanding the properties of solids and quantum liquids. If the
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time-averaged electric field varies with position, the shift of the energy due
to the field gives rise to a force

Fdipole = −∇V (r) =
1
2
α′(ω)∇<E(r, t)2>t (4.37)

on an atom. Here < · · · >t denotes a time average. This result may be
understood as being due to the interaction of the induced dipole moment
of the atom with a spatially-varying electric field, and it is often referred
to as the dipole force. More generally, terms due to higher moments of the
electric charge distribution such as the quadrupole moment will also give
rise to forces, but these will usually be much less than the dipole force.

At low frequencies the polarizability is positive, and the dipole moment
is in the same direction as the electric field. However, at frequencies above
those of transitions contributing importantly to the polarizability, the in-
duced dipole moment is in the opposite direction, as one can see by in-
spection of Eq. (4.31). It is illuminating to consider a frequency close to a
resonance, in which case we may use the approximate form (4.31) for the real
part of the polarizability. From this one can see that for frequencies below
the resonance the force is towards regions of higher electric field, while for
ones above it the force is towards regions of lower field. As can be seen from
Eqs. (4.37) and (4.31), the magnitude of the force can be of order ωeg/Γe

times larger than for static fields of the same strength.
As we remarked above, the radiation force repelling atoms from regions

of high electric field at frequencies above resonance has been used to reduce
loss of atoms at the centre of a quadrupole trap [5]. A blue-detuned laser
beam passing through the trap centre gave a repulsive contribution to the
energy of atoms, which were thereby prevented from penetrating into the
dangerous low-field region, where spin flips could occur.

The change in sign of the force at resonance may be understood in terms
of a classical picture of an electron moving in a harmonic potential under the
influence of an electric field. The equation of motion for the atomic dipole
moment d = −er, where r is the coordinate of the electron, is

d2d
dt2

+ ω2
0d =

e2

me
E, (4.38)

with ω0 being the frequency of the harmonic motion. For an electric field
which oscillates in time as exp(−iωt), we then obtain

(−ω2 + ω2
0)d =

e2

me
E. (4.39)

This shows that the polarizability, the ratio of the dipole moment to the
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electric field, is

α(ω) =
e2

me(ω2
0 − ω2)

, (4.40)

which becomes negative for frequencies ω that exceed ω0. If we compare
this result with the quantum-mechanical one, Eq. (3.52), we see that it
corresponds to having oscillator strength unity for a single transition at the
oscillator frequency.

In addition to the contribution to the force on an atom due to energy-level
shifts, which are associated with virtual transitions between atomic states,
there is another one due to real transitions. Classically this is due to the
radiation pressure on the atom. In quantum-mechanical language it is a
consequence of the momentum of a photon being imparted to or removed
from an atom during an absorption or an emission process. The rate of
absorption of photons by an atom in the ground state is equal to the rate of
excitation of the ground state, given by (4.35). Therefore, if the radiation
field is a travelling wave with wave vector q, the total force on the atom due
to absorption processes is

Frad = �qΓg. (4.41)

As we shall describe, both this force and the dipole force (4.37) play an
important role in laser cooling.

4.2.2 Optical traps

By focusing a laser beam it is possible to create a radiation field whose
intensity has a maximum in space. If the frequency of the light is detuned
to the red, the energy of a ground-state atom has a spatial minimum, and
therefore it is possible to trap atoms. The depth of the trap is determined
by the magnitude of the energy shift, given by Eq. (4.33).

One advantage of optical traps is that the potential experienced by an
alkali atom in its ground state is essentially independent of the magnetic
substate. This is due to the outermost electron in the ground state of alkali
atoms being in an s state. The situation is quite different for trapping by
magnetic fields, since the potential is then strongly dependent on the mag-
netic substate. With magnetic traps it is difficult to investigate the influence
of the interaction energy on the spin degrees of freedom of an atomic cloud
since the energy is dominated by the Zeeman term. By contrast, optical
traps are well suited for this purpose.

Optical traps are also important in the context of Feshbach resonances.
As we shall describe in Sec. 5.4.2, in the vicinity of such a resonance the
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effective interaction is a strong function of the magnetic field, and therefore
it is desirable that the magnetic field be homogeneous. This may be achieved
by applying a uniform magnetic field to atoms in an optical trap, but it is not
possible with magnetic traps, since without inhomogeneity of the magnetic
field there is no trapping.

To reduce heating of atoms by absorption of photons, the laser frequency
in optical traps must be chosen to be away from atomic resonances. For
example, a Bose–Einstein condensate of Na atoms has been held in a purely
optical trap by Stamper-Kurn et al. [10]. The laser had a wavelength of 985
nm while that of the atomic transition is 589 nm. The resulting optical traps
are shallow, with depths of order µK in temperature units (see Problem 4.4),
and therefore atoms must be precooled in other sorts of traps before they
can be held by purely optical forces.

4.3 Laser cooling: the Doppler process

The basic idea that led to the development of laser cooling may be under-
stood by considering an atom subjected to two oppositely directed laser
beams of the same angular frequency, ω, and the same intensity. Imagine
that the frequency of the laser beams is tuned to lie just below the frequency,
ωeg, of an atomic transition between an excited state |e〉 and the ground state
|g〉. For definiteness we assume that the laser beams are directed along the
z axis.

To estimate the frictional force, we assume that the radiation field is
sufficiently weak that the absorption may be calculated by perturbation
theory. From Eqs. (4.35) and (4.36), the rate dNph/dt at which a single
atom absorbs photons from one of the beams is given by

dNph

dt
= CL(ω), (4.42)

where

C =
π

�2
|〈e|d·ε̂|g〉|2<E(r, t)2> (4.43)

and L is the Lorentzian function

L(ω) =
Γe/2π

(ω − ωeg)2 + (Γe/2)2
, (4.44)

which is normalized so that its integral over ω is unity. The lifetime of
an atom in the ground state in the presence of one of the laser beams is
1/CL(ω). An atom initially at rest will absorb as many left-moving photons
as right-moving ones, and thus the total momentum change will be zero
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Fig. 4.5. Rate of absorption of photons from the two red-detuned laser beams as
functions of the atomic velocity.

on average. However, for an atom moving to the right with velocity vz,
the frequency of the right-moving photons in the rest frame of the atom
is decreased due to the Doppler effect, and to lowest order in the velocity
it is given by ω − vzq, where q = ω/c is the wave number of the photons.
The frequency thus lies further from the atomic resonance than it would for
an atom at rest, and consequently the rate of absorption of right-moving
photons is reduced, and is given approximately by

dNright

dt
= CL(ω − vzq). (4.45)

For photons moving to the left the story is the opposite: the frequency
of the photons in the rest frame of the atom is increased to ω + vzq, and
consequently absorption of these photons is increased:

dNleft

dt
= CL(ω + vzq). (4.46)

The situation is represented schematically in Fig. 4.5, where we show the
absorption of photons from the two beams as functions of the velocity of the
atom.

Since the absorption of a photon is accompanied by transfer to the atom of
momentum �q in the direction of propagation of the photon, the absorption
of photons from the two laser beams produces a frictional force on the atom.
The net rate of transfer of momentum to the atom is given by

dpz
dt

= −γvz, (4.47)

where the friction coefficient γ is defined by

γ =
�qC

vz
[L(ω + vzq)− L(ω − vzq)] � 2�q2C

dL(ω)
dω

, (4.48)
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and in the second form we have assumed that the atom moves sufficiently
slowly that the Doppler shift is small compared with the larger of the
linewidth and the detuning. The characteristic braking time, which de-
termines the rate of loss of momentum by an atom, is given by

1
τfric

= − 1
pz

dpz
dt

=
γ

m
. (4.49)

For narrow lines, dL/dω can be very large in magnitude if the detuning is of
order Γe, and the frictional force is correspondingly large. Because of this,
the configuration of oppositely directed laser beams is referred to as optical
molasses. The frictional force is strong only for a limited range of velocities
because, if the velocity of the atom exceeds the larger of Γe/q and |δ|/q, the
linear expansion fails, and the force is reduced.

We now estimate the lowest atomic kinetic energies that one would ex-
pect to be attainable with the configuration described above. Absorption
of photons by atoms, as well as giving rise to the frictional force, also heats
them. An atom at rest is equally likely to absorb photons from either of
the beams and, since absorption events are uncorrelated with each other,
the momentum of the atom undergoes a random walk. In such a walk, the
mean-square change in a quantity is the total number of steps in the walk
times the square of the step size. The total number of photons absorbed per
unit time is given by

dNph

dt
= 2CL(ω), (4.50)

since for small velocities the Doppler shifts may be neglected, and therefore
the momentum diffusion coefficient, which is the rate of change of the mean-
square momentum p2z of the atom due to absorption of photons, is given by

dp2z
dt

∣∣∣∣∣
abs

= 2CL(ω)(�q)2. (4.51)

The emission of photons as the atom de-excites also contributes to the ran-
dom walk of the momentum. Just how large this effect is depends on detailed
assumptions about the emission pattern. If one makes the somewhat arti-
ficial assumption that the problem is purely one-dimensional, and that the
photons are always emitted in the direction of the laser beams, the step size
of the random walk for the z momentum of the atom is again �q, and the
total number of photons emitted is equal to the number absorbed. Thus the
rate of change of the mean-square momentum is precisely the same as for
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absorption,

dp2z
dt

∣∣∣∣∣
em

=
dp2z
dt

∣∣∣∣∣
abs

. (4.52)

The total momentum diffusion coefficient, Dp, due to both absorption and
emission of photons is thus given by

Dp =
dp2z
dt

∣∣∣∣∣
heat

= 4CL(ω)(�q)2. (4.53)

The kinetic energy of the atom in a steady state is determined by balancing
the heating rate (4.53) with the cooling due to the frictional force which,
from (4.47) and (4.49), is given by

dp2z
dt

∣∣∣∣∣
fric

= −2
p2z
τfric
. (4.54)

One thus arrives at the equation

p2z =
1
2
Dpτfric, (4.55)

which shows that the root-mean-square momentum in a steady state is,
roughly speaking, the momentum an atom would acquire during a random
walk of duration equal to the braking time τfric of an atom in the ground
state. Thus the mean kinetic energy and temperature T associated with the
motion of the atom in the z direction are given by

mv2z = kT = �L(ω)
(
dL(ω)
dω

)−1

. (4.56)

The lowest temperature attainable by this mechanism is obtained by mini-
mizing this expression with respect to ω, and is found from (4.44) to be

kT =
�Γe

2
. (4.57)

For other assumptions about the emission of photons from the excited state,
the limiting temperature differs from this result by a numerical factor. In
terms of the detuning parameter δ = ω − ωeg, the minimum temperature is
attained for δ = −Γe/2, corresponding to red detuning. For blue detuning,
the atom is accelerated rather than braked, as one can see from the general
formula for the force.

As an example, let us estimate the lowest temperature that can be
achieved by laser cooling of sodium atoms. Since the width Γe corresponds
to a temperature of 480 µK according to Table 3.4, we conclude that the
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minimum temperature attainable by the Doppler mechanism is ∼ 240 µK.
In our discussion above we have shown how cooling is achieved for one veloc-
ity component. With three pairs of mutually opposed laser beams all three
components of the velocity may be cooled.

As we mentioned in the introduction to this chapter, in some experiments
atoms are passed through a so-called Zeeman slower to reduce their velocities
to values small enough for trapping in a magneto-optical trap to be possible.
In the Zeeman slower a beam of atoms is subjected to a single laser beam
propagating in the direction opposite that of the atoms. As we have seen
earlier in this section, absorption and subsequent re-emission of radiation
by atoms transfers momentum from the laser beam to the atoms, thereby
slowing the atoms. However, if the frequency of the laser beam is resonant
with the atomic frequency when atoms emerge from the oven, the slowing
of the atoms and the consequent change of the Doppler shift will cause
the transition to become non-resonant. Thus the velocity range over which
laser light will be maximally effective in decelerating atoms is limited. In the
Zeeman slower the effect of the decreasing atomic velocity on the frequency
of the atomic transition is compensated by a Zeeman shift produced by an
inhomogeneous magnetic field.

4.4 The magneto-optical trap

Radiation pressure may also be used to confine atoms in space. In the
magneto-optical trap (MOT) this is done with a combination of laser beams
and a spatially-varying magnetic field. The basic physical effect is that,
because atomic energy levels depend on the magnetic field, the radiation
pressure depends on position. By way of illustration, consider an atom with
a ground state having zero total angular momentum, and an excited state
with angular momentum quantum number J = 1. For simplicity we neglect
the nuclear spin. Consider, for example, the quadrupole magnetic field (4.2).
On the z axis, the magnetic field is in the z direction and it is linear in z.
The magnetic substates of the excited state are specified by the quantum
number m, in terms of which the projection of the angular momentum of
the state along the z axis is m�. Circularly polarized laser beams with equal
intensity and frequency are imposed in the positive and negative z directions.
The polarization of both beams is taken to be clockwise with respect to the
direction of propagation, which means that the beam directed to the right
(σ+) couples the ground state to the m = +1 excited substate. On the other
hand, the polarization of the beam directed to the left has the opposite sense
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Fig. 4.6. (a) The magneto-optical trap. (b) The relevant transitions. (c) Influence
of a spatially-varying magnetic field on the atomic transitions. (After Ref. [11].)

(σ−) with respect to the z axis, and thus induces transitions to the m = −1
substate. The situation is shown schematically in Fig. 4.6.

Let us assume that the laser frequency is detuned to the red. At z = 0
the two laser beams are absorbed equally by the atom, and thus there is
no net radiation force on the atom. However, if the atom is displaced to
positive values of z, the frequency of the transition to the m = −1 substate
is reduced, and is thus closer to the laser frequency, while the reverse holds
for the m = +1 substate. This results in an increased absorption rate for σ−
photons, which are moving to the left, and a decreased rate for σ+ photons,
which are moving to the right. Consequently there is a force towards the ori-
gin, where the two transitions have the same frequency. Similar arguments
apply for negative z. By applying six laser beams, two counterpropagating
beams along each axis, one can make a three-dimensional trap.

The use of MOT’s is a universal feature of experiments on cold alkali
atoms. Not only do they trap atoms, but they also cool them, since the
Doppler mechanism described above and the Sisyphus process described
below operate in them. The fact that the atomic frequency depends on
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position, due to the inhomogeneous magnetic field, implies that efficient
cooling is possible for atoms with a range of velocities.

In practice, MOT’s are more complicated than the simple schematic model
described above. One reason for this is that the ground state of an alkali
atom has more than one hyperfine state. As an example let us consider
Na, which has F = 2 and F = 1 hyperfine levels of the 3S1/2 ground state.
The excited 3P3/2 state has hyperfine levels with total angular momentum
quantum numbers F ′ = 0, 1, 2, and 3. If laser light resonant with the
F = 2 → F ′ = 3 transition is applied, some atoms will be excited non-
resonantly to the F ′ = 2 state, from which they will decay either to the
F = 2 or F = 1 levels of the ground state. Since there is no radiation
resonant with the F = 1 → F ′ = 2 transition, the net effect is to build
up the population of atoms in the F = 1 level compared with that in the
F = 2 level. This process is referred to as optical pumping. If this depletion
of atoms in the F = 2 level is not hindered, the MOT will cease to work
effectively because of the small number of atoms in the F = 2 level, referred
to as the bright state, which is the one involved in the transition the MOT is
working on. To remove atoms from the F = 1 level radiation resonant with
the F = 1→ F ′ = 2 transition is applied. This is referred to as repumping.

As we shall explain below, for evaporative cooling to be effective it is
necessary to achieve a sufficiently high density of atoms. In a standard
MOT there are a number of effects which limit the density to values too
low for evaporative cooling to be initiated. One of these is that the escap-
ing fluorescent radiation produces a force on atoms which counteracts the
trapping force of the MOT. A second is that if the density is sufficiently
high, the cloud becomes opaque to the trapping light. Both of these can be
mitigated by reducing the amount of repumping light so that only a small
fraction of atoms are in the substate relevant for the transition the MOT
operates on. This reduces the effective force constant of the MOT, but the
density that can be attained with a given number of atoms increases. In
the experiment of Ketterle et al. [12] repumping light was applied prefer-
entially in the outer parts of the cloud, thereby giving rise to strong fric-
tional forces on atoms arriving from outside, while in the interior of the
cloud radiation forces were reduced because of the depletion of atoms in the
bright state. Such a trap is referred to as a dark-spot MOT, and densities
achievable with it are of order 100 times higher than with a conventional
MOT. The dark-spot MOT made it possible to create clouds with densities
high enough for evaporative cooling to be efficient, and it was a crucial ele-
ment in the early experiments on Bose–Einstein condensation in alkali atom
vapours.
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4.5 Sisyphus cooling

It was encouraging that the temperatures achieved in early experiments on
laser cooling appeared to agree with the estimates made for the Doppler
mechanism. However, subsequent studies showed that temperatures below
the Doppler value could be realized, and that this happened for large de-
tunings, not for a detuning equal to Γe/2 as the Doppler theory predicts.
This was both gratifying, since it is commonly the case that what can be
achieved in practice falls short of theoretical prediction, and disquieting,
since the measurements demonstrated that the cooling mechanisms were
not understood [13]. In addition, experimental results depended on the po-
larization of the laser beams. This led to the discovery of new mechanisms
which can cool atoms to temperatures corresponding to a thermal energy of
order the so-called recoil energy,

Er =
(�q)2

2m
. (4.58)

This is the energy imparted to an atom at rest when it absorbs a photon of
momentum �q, and it corresponds to a temperature

Tr =
Er

k
=

(�q)2

2mk
. (4.59)

These temperatures lie several orders of magnitude below the lowest tem-
perature achievable by the Doppler mechanism, since the recoil energy is
�

2ω2/2mc2. The atomic transitions have energies on the scale of elec-
tron volts, while the rest-mass energy of an atom is ∼ A GeV, where
A is the mass number of the atom. The recoil energy is therefore
roughly 5 × 10−10(�ω/1eV)2/A eV, and the corresponding temperature is
∼ 6× 10−6(�ω/1eV)2/A K, which is of order 0.1–1 µK.

The new cooling mechanisms rely on two features not taken into account
in the Doppler theory. First, alkali atoms are not simple two-level systems,
and their ground states have substates which are degenerate in the absence
of a magnetic field, as we saw in Chapter 3. Second, the radiation field
produced by two opposed laser beams is inhomogeneous. To understand
how one of these mechanisms, the so-called Sisyphus process, works, consider
two counterpropagating linearly-polarized laser beams of equal intensity. For
definiteness, we assume that the beam propagating in the positive z direction
is polarized along the x axis, while the one propagating in the negative z
direction is polarized in the y direction. The electric field is thus of the form

E(z, t) = E(z)e−iωt + E∗(z)eiωt, (4.60)
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Fig. 4.7. Dipole transitions between a doublet ground state and a quadruplet ex-
cited state. The numbers indicate the square of the Clebsch–Gordan coefficients
for the transitions.

where

E(z) = E0(êxeiqz + êye−iqz). (4.61)

In writing this equation we have chosen the origin of the coordinate system to
eliminate the arbitrary phase difference between the two counterpropagating
beams. Thus the polarization of the radiation field varies with z, and the
polarization vector is

ε̂ =
1√
2
(êx + êye−2iqz). (4.62)

This varies regularly in the z direction with a period π/q, which is one-half
of the optical wavelength, λ = 2π/q. At z = 0 the electric field is linearly
polarized at 45◦ to the x axis, and at z = λ/4 it is again linearly polarized,
but at an angle −45◦ to the x axis. At z = λ/8 the electric field is circularly
polarized with negative sense (σ−) about the z axis, while at z = 3λ/8 it
is circularly polarized with positive sense (σ+). At an arbitrary point the
intensities of the positively and negatively circularly-polarized components
of the radiation field vary as (1 ∓ sin 2qz)/2, as may be seen by expressing
(4.62) in terms of the polarization vectors (êx ± iêy)/

√
2.

As a simple example that illustrates the physical principles, consider now
the energy of an atom with a doublet (Jg = 1/2) ground state coupled to
a quadruplet (Je = 3/2) excited state, as shown schematically in Fig. 4.7.
This would correspond to the transition from a 2S1/2 to a 2P3/2 state for
an alkali atom if the nuclear spin were neglected. Due to interaction with
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Fig. 4.8. Energy of substates of an atom as a function of position for a red-detuned
radiation field (δ < 0). The zero of the energy scale is taken to be the energy of
the atom in the absence of radiation.

the laser field, the energies of the substates are shifted. For each sublevel
of the ground state there are two contributions to the energy shift, one for
each of the two circularly-polarized components of the radiation field. The
contribution of a particular transition to the energy shift is proportional to
the product of the intensity of the appropriate component of the radiation
field times the square of the corresponding Clebsch–Gordan coefficient. The
latter factors are indicated on the diagram. Since the intensities of the
two circularly-polarized components of the radiation field vary in space, the
energy shifts induced by the radiation field do so too. Thus at z = 0 the
shifts of the two lower substates are the same, while at z = λ/8, where
the radiation is completely circularly-polarized in the negative sense, the
g+ state couples only to the upper substate with magnetic quantum number
−1/2 (with the square of the Clebsch–Gordan coefficient equal to 1/3), while
the g− state couples only to the upper substate with magnetic quantum
number −3/2 (with the square of the Clebsch–Gordan coefficient equal to
1). The shift of the g− substate is thus three times as large as that of the
g+ substate. At a general point in space the energy shift of an atom is

V ± = V0(−2± sin 2qz), (4.63)

as sketched in Fig. 4.8. The magnitude of V0 is found by adding the con-
tributions from the two transitions illustrated in Fig. 4.7: the energy shifts
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V ± of the two states g± are proportional to

Ω2
R(1∓ sin 2qz) +

1
3
Ω2

R(1± sin 2qz) =
2
3
Ω2

R(2∓ sin 2qz), (4.64)

where ΩR is the Rabi frequency of the transition from the g+ sublevel to
the m = 3/2 excited level at z = 0. Combining this with Eq. (4.33) one sees
that the prefactor in (4.63) is given by

V0 = −2
3

�Ω2
Rδ

δ2 + Γ2
e/4
, (4.65)

which is positive for red detuning. The periodic potential acting on an atom
subjected to counterpropagating laser beams is referred to as an optical
lattice.

A second key ingredient in understanding cooling in this configuration is
that the rate at which atoms are optically pumped between the two lower
substates depends on position. Consider a point where the radiation is
circularly polarized in the positive sense. Under the influence of the radiation
field, an atom in the g+ substate will make transitions to the upper substate
with m = 3/2, from which it will decay to the g+ state again, since there are
no other possibilities for dipole transitions. By contrast, an atom in the g−
substate will be excited to the m = 1/2 upper substate, from which it can
decay by dipole radiation either to the g− substate, with probability 1/3,
or to the g+ substate, with probability 2/3. The net effect is thus to pump
atoms from the g− substate, which at this point has the higher energy of the
two substates, into the g+ one. Where the radiation field is linearly polarized
there is no net pumping, while where it is circularly polarized with negative
sense, atoms are pumped into the g− substate. At any point, the rate of
pumping atoms from the g− substate to the g+ substate is proportional
to the intensity of the circularly-polarized component of the radiation with
positive sense, that is to (1− sin 2qz)/2, and the rate of pumping from the
g+ substate to the g− substate is proportional to (1 + sin 2qz)/2. For red
detuning, pumping thus tends to move atoms from the substate with higher
energy to that with lower energy, while, for blue detuning, pumping rates
and energy shifts are anticorrelated and atoms tend to accumulate in the
higher-energy substate. We assume that the radiation field is sufficiently
weak that spontaneous emission processes from the excited state to the
ground state are more rapid than the corresponding induced process, and
consequently the characteristic time τp for pumping is of order the time for
the radiation field to excite an atom, which we estimated earlier (see (4.35)
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and (4.36)):

1
τp
∼ Ω2

RΓe

δ2 + Γ2
e/4
. (4.66)

The cooling mechanism may be understood by considering atoms with a
thermal spread of velocities. Where the radiation is linearly polarized, there
is no net tendency to pump atoms between the two substates. However, if
an atom is moving in a direction such that its energy increases, the rate at
which it is pumped to the other substate also increases. Thus there is a
tendency for atoms in the substate with the higher energy to be pumped
into the substate with lower energy. Consider an atom moving away from a
point where the energies of the two substates are equal. If it is moving into a
region where its radiation-induced energy shift is greater, it will, by virtue of
conservation of the total energy of the atom, tend to lose kinetic energy. In
addition, there will be an increasing tendency for the atom to be pumped into
the other substate. Conversely, if an atom is moving into a region where its
energy shift is smaller, it tends to gain kinetic energy, but the rate of optical
pumping to the higher-energy substate is reduced. Because of the correlation
between pumping rates and energy shifts, there is a net tendency for an
atom to lose kinetic energy irrespective of its direction of motion. Since
optical pumping tends to repopulate the lower-energy substate at any point
in space, the process of losing kinetic energy followed by optical pumping
will be repeated, thereby leading to continual cooling of the atoms. This
mechanism is referred to as Sisyphus cooling, since it reminded Dalibard and
Cohen-Tannoudji of the Greek myth in which Sisyphus was condemned to
eternal punishment in Tartarus, where he vainly laboured to push a heavy
rock up a steep hill.

The friction coefficient

To estimate temperatures that can be achieved by this process we adopt an
approach analogous to that used in the discussion of Doppler cooling, and
calculate a friction coefficient, which describes energy loss, and a momentum
diffusion coefficient, which takes into account heating [14]. If in the charac-
teristic pumping time an atom moved from a point where the radiation field
is linearly polarized to one where it is circularly polarized, the rate of energy
loss would be dE/dt ∼ −V0/τp. However, for an atom moving with velocity
v, the distance moved in a time τp is vτp, and we shall consider the situation
when this is small compared with the scale of modulations of the radiation
field, the optical wavelength λ = 2π/q. For an atom starting at z = 0, the
net pumping rate is reduced by a factor ∼ vτp/λ, while the extra energy
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lost due to the motion of the atom from its original position is ∼ V0vτp/λ.
The total energy loss rate is thus reduced by a factor ∼ (vτp/λ)2 compared
with the naive estimate. The energy loss rate averaged over possible starting
points is reduced by a similar factor, as the kinetic theory calculation below
will demonstrate. Such factors are familiar from the kinetic theory of gases,
where rates of dissipation processes in the hydrodynamic regime are given
by the typical collision rate reduced by a factor proportional to the square
of the mean free path of an atom divided by the length scale over which the
density, temperature, or velocity of the gas vary. Thus the effective energy
loss rate is

dE

dt
∼ −V0v

2τp
λ2

= − E

τcool
, (4.67)

where
1
τcool

∼ V0τp
λ2m

(4.68)

is a characteristic cooling time. As we shall show below, this result may also
be obtained from kinetic theory. Substituting the expressions (4.33) and
(4.66) into this equation one finds

1
τcool

∼ −δ
Γ
Er

�
, (4.69)

where the recoil energy is defined in (4.58). A noteworthy feature of the
cooling rate is that it does not depend on the strength of the radiation field:
the energy shift is proportional to the intensity, while the pumping time is
inversely proportional to it. This should be contrasted with the Doppler
process, for which the cooling rate is proportional to the intensity.

Kinetic theory approach

It is instructive to derive this result in a more formal manner starting from
the kinetic equation for the atoms. The evolution of the distribution function
is governed by the Boltzmann equation:

∂f±p
∂t

+
∂εp
∂p

·
∂f±p
∂r

− ∂εp
∂r
·
∂f±p
∂p

=
∂f±p
∂t

∣∣∣∣∣
pump

, (4.70)

where the Hamiltonian for the particle, its energy, is given by εp = p2/2m+
V , the potential being that due to the radiation field. The right hand side
of this equation, usually referred to as the collision term, takes into account
pumping of atoms between substates by the radiation field. These may be
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written
∂f+

p

∂t

∣∣∣∣∣
pump

= −
∂f−p
∂t

∣∣∣∣∣
pump

= −Γ−+f
+
p + Γ+−f

−
p . (4.71)

Here f±p is the distribution function for atoms in the substates + and −
as a function of the atomic momentum p = mv, and Γ−+ and Γ+− are
the pumping rates, which depend on the velocity of the atom. The first
equality in (4.71) follows from the fact that an atom lost from one substate
is pumped to the other one.

Let us first assume that the intensity of the radiation is independent of
space. In a steady state the Boltzmann equation reduces to ∂f±p /∂t

∣∣
pump

=
0, and therefore

f+
p

f−p
=

Γ+−
Γ−+

(4.72)

or
f+
p − f−p
f+
p + f−p

=
Γ+− − Γ−+

Γ+− + Γ−+
. (4.73)

In this situation the average energy of the atoms remains constant, because
the net pumping rate vanishes. However, when the radiation field is in-
homogeneous, the distribution function will change due to atoms moving
between points where the radiation field is different. Provided the radiation
field varies little over the distance that an atom moves in a pumping time,
the distribution function will remain close to that for a steady state locally,
which we denote by f̄±p . This is given by Eq. (4.72) evaluated for the spatial
dependence of the pumping rates given above, that is

f̄+
p − f̄−p
f̄+
p + f̄−p

= − sin 2qz, (local steady state). (4.74)

For z = λ/8, atoms are pumped completely into the g− state, while for
z = −λ/8, they are pumped into the g+ state.

To calculate the deviation of the distribution function from the local equi-
librium result we make use of the fact that under experimental conditions the
pumping time τp is short compared with the time it takes an atom to move
a distance λ, over which the population of atoms varies significantly. We
may then insert the local steady-state solution (4.74) on the left hand side of
the Boltzmann equation (4.70), just as one does in calculations of transport
coefficients in gases. The last term on this side of the equation, which is
due to the influence of the ‘washboard’ potential (4.63) on the atoms, is of
order V ±/kT times the second term, which comes from the spatial gradient
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of the local equilibrium distribution function. As we shall show, the lowest
temperatures attainable are such that kT � |V ±|, and therefore we shall
neglect this term. We now linearize the right hand side of the Boltzmann
equation about the local steady state, and write δf±p = f±p − f̄±p . Thus the
deviations from the local steady-state solution satisfy the equation

v ·∇(f̄+
p − f̄−p ) = −(Γ+− + Γ−+)(δf+

p − δf−p ). (4.75)

On the right hand side of the equation we have omitted a term proportional
to the deviation δf+

p + δf−p of the total density from its local steady-state
value since this is small as a consequence of the requirement that the pressure
be essentially constant. Thus the deviation of the distribution function from
its steady-state value is given by

δf+
p − δf−p = −v ·∇(f̄+

p − f̄−p )τp = 2qvzfpτp cos 2qz, (4.76)

since the characteristic pumping time is given by 1/τp = Γ+− + Γ−+. Here
fp = f+

p + f−p is the distribution function for atoms irrespective of which
sublevel they are in.

We now evaluate the average force on an atom. For an atom in a particular
sublevel the force is −∇V ±, and therefore the total force on atoms with
momentum p is −∇V +f+

p −∇V −f−p = −2qV0(f+
p −f−p )ẑ cos 2qz. Since the

local steady-state result for the distribution function (4.74) varies as sin 2qz,
the spatial average of the force vanishes for this distribution, and the leading
contributions to the force come from the deviations from the local steady
state, Eq. (4.76). One then finds that the spatial average of the force on an
atom is

Fz|av = −2q2V0vzτp = −4πqV0
vzτp
λ
. (4.77)

The latter expression indicates that this is of order the force due to atomic
energy shifts, ∼ qV0, reduced by a factor of the mean free path for pumping,
vτp, divided by the wavelength of light, which gives the spatial scale of
variations in the distribution function. The average rate of change of the
energy of an atom is therefore given by Fz|avvz = −2q2V0v

2
zτp and the

characteristic cooling rate is thus

1
τcool

=
4q2V0τp
m

, (4.78)

in agreement with our earlier estimate (4.68). The remarkable effective-
ness of Sisyphus cooling is a consequence of the almost complete reversal of
sublevel populations on a short length scale, the optical wavelength.
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Temperature of atoms

There are a number of effects contributing to the energy diffusion coefficient,
among them fluctuations in the number of photons absorbed from the two
beams, and the different directions of the emitted photons which we con-
sidered in the discussion of Doppler cooling. In Sisyphus cooling there is
an additional effect due to the fact that the periodic potential accelerates
atoms, and this is the dominant contribution. The force on an atom is of
order 2qV0 = 4πV0/λ, and therefore the momentum imparted to an atom in
the characteristic pumping time, which plays the role of a mean free time in
this process, is ∼ 4πV0τp/λ. Diffusion coefficients are of order the square of
the step size divided by the time for a step, and therefore the momentum
diffusion coefficient is of order

D ∼
(

4πV0τp
λ

)2 1
τp

=
(4π)2V 2

0 τp
λ2

. (4.79)

The mean-square momentum in a steady state is of order that produced by
the diffusion process in a characteristic cooling time, where τcool is given by
(4.78), that is p2z ∼ Dτcool. Thus the characteristic energy of an atom in a
steady state is of order

E ∼ Dτcool/m ∼ V0. (4.80)

This remarkably simple result would appear to indicate that by reduc-
ing the laser power atoms could be cooled to arbitrarily low temperatures.
However, there are limits to the validity of the classical description of the
atomic motion. We have spoken as though atoms have a definite position
and velocity, but according to Heisenberg’s uncertainty principle the mo-
mentum of an atom confined to within a distance l, has an uncertainty of
magnitude ∼ �/l, and thus a kinetic energy of at least ∼ �

2/2ml2. The
energy of an atom confined to within one minimum of the effective poten-
tial is of order �

2/2mλ2 ∼ Er. If this exceeds the depth of modulation of
the washboard potential produced by the radiation, a classical treatment
fails. A quantum-mechanical calculation shows that for V0 � Er the en-
ergy of the atoms rises with decreasing radiation intensity, and thus the
minimum particle energies that can be achieved are of order Er. Detailed
one-dimensional calculations confirm the order-of-magnitude estimates and
scaling laws given by our simplified treatment. For example, in the limit of
large detuning, |δ| � Γe, the minimum kinetic energy achievable is of order
30Er [15]. The existence of substantial numerical factors should come as no
surprise, since in our simple approach we were very cavalier and neglected
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all numerical factors. The single most important source of the large nu-
merical factor is the proper quantum-mechanical treatment of the motion of
atoms in the periodic potential, which shows that the lowest temperatures
are attained for V0 ∼ 50Er. The theory has been extended to higher dimen-
sions, and for three-dimensional optical lattices Castin and Mølmer find a
minimum kinetic energy of about 40Er [16].

To conclude this section, we remark that methods have been developed
to cool atoms to kinetic energies less than the recoil energy. This is done by
collecting atoms in states weakly coupled to the laser radiation and having a
small spread in velocity [15]. None of these methods have yet been exploited
in the context of Bose–Einstein condensation.

4.6 Evaporative cooling

The temperatures reached by laser cooling are impressively low, but they
are not low enough to produce Bose–Einstein condensation in gases at the
densities that are realizable experimentally. In the experiments performed
to date, Bose–Einstein condensation of alkali gases is achieved by using evap-
orative cooling after laser cooling. The basic physical effect in evaporative
cooling is that, if particles escaping from a system have an energy higher
than the average energy of particles in the system, the remaining particles
are cooled. Widespread use of this effect has been made in low-temperature
physics, where evaporation of liquified gases is one of the commonly used
techniques for cooling. In the context of rarefied gases in traps it was first
proposed by Hess [17]. For a more extensive account of evaporative cooling
we refer to the review [18]. Imagine atoms with a thermal distribution of
energies in a trap, as illustrated schematically in Fig. 4.9. If one makes a
‘hole’ in the trap high up on the sides of the trap, only atoms with an energy
at least equal to the energy of the trap at the hole will be able to escape.
In practice one can make such a hole by applying radio-frequency (rf) ra-
diation that flips the spin state of an atom from a low-field seeking one to
a high-field seeking one, thereby expelling the atom from the trap. Since
the resonant frequency depends on position as a consequence of the Zeeman
effect and the inhomogeneity of the field, as described in Chapter 3, the
position of the ‘hole’ in the trap may be selected by tuning the frequency of
the rf radiation. As atoms are lost from the trap and cooling proceeds, the
frequency is steadily adjusted to allow loss of atoms with lower and lower
energy.

A simple example that illustrates the effect is to imagine a gas with atoms
which have an average energy ε̄. If the average energy of an evaporated
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Fig. 4.9. Evaporative cooling. The curve on the left shows the equilibrium Maxwell–
Boltzmann distribution proportional to exp(−ε/kT ). The energy εev is the thresh-
old value for evaporation, see Eq. (4.93).

particle is (1+β)ε̄, the change in the average particle energy may be obtained
from the condition that the total energy of all particles be constant. If the
change in the number of particles is denoted by dN , the energy removed by
the evaporated particles is (1+β)ε̄dN . For particle loss, dN is negative. By
energy conservation, the total energy of the atoms remaining in the trap is
E + (1 + β)ε̄dN and their number is N + dN . Thus the average energy per
atom in the trap after the evaporation is

ε̄+ dε̄ =
E + (1 + β)ε̄dN

N + dN
, (4.81)

or
d ln ε̄
d lnN

= β. (4.82)

Thus, if β is independent of N ,

ε̄

ε̄(0)
=

(
N

N(0)

)β

, (4.83)

where ε̄(0) and N(0) are initial values. In this simple picture, the average
energy per particle of the gas in the trap decreases as a power of the particle
number.

The relationship between the average energy and the temperature depends
on the trapping potential. To obtain simple results, we consider potentials
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which are homogeneous functions of the coordinates with degree ν,

V (r) = K(r̂)rν , (4.84)

where K(r̂) is a coefficient which may depend on direction. A further vari-
able is the effective dimensionality d of the trap, which specifies the number
of dimensions for which the trapping potential is operative. For example, a
potential V = mω2

⊥(x2 + y2)/2, with no restoring force in the z direction,
has d = 2. The discussion of magnetic traps given in Sec. 4.1 shows that the
assumption of homogeneity is reasonable for many traps used in practice.
For an ideal gas one can show that (Problem 4.7)

2ε̄kin =
3
d
νV , (4.85)

where εkin is the kinetic energy of a particle, and V is the trapping potential.
The bar denotes a thermal average. Throughout most of the evaporation
process, the effects of quantum degeneracy are modest, so we may treat the
gas as classical. Thus

ε̄kin =
3
2
kT, (4.86)

and

ε̄ =
(

3
2

+
d

ν

)
kT. (4.87)

This shows that the temperature of the gas depends on the particle number
in the same way as the average energy, and it therefore follows from Eq.
(4.82) that

d lnT
d lnN

= β. (4.88)

This result shows that the higher the energy of the evaporating particles, the
more rapidly the temperature falls for loss of a given number of particles.
However, the rate of evaporation depends on the energy threshold and on
the rate of elastic collisions between atoms in the gas, since collisions are
responsible for scattering atoms into states at energies high enough for evap-
oration to occur. Thus the higher the threshold, the lower the evaporation
rate. The threshold may not be chosen to be arbitrarily high because there
are other processes by which particles are lost from the trap without cooling
the remaining atoms. These limit the time available for evaporation, and
therefore the threshold energy must be chosen as a compromise between the
conflicting requirements of obtaining the greatest cooling per particle evap-
orated, and at the same time not losing the sample by processes other than
evaporation.
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One of these other processes is collisions with foreign gas atoms. A sec-
ond is inelastic collisions, in which two atoms collide and are scattered to
other hyperfine states. As we shall explain in greater detail in Sec. 5.4.1,
some processes can proceed via the central part of the two-body interac-
tion, and the loss rate due to them is generally so high that one must work
with hyperfine states such as the doubly polarized state and, for atoms
with a positive nuclear magnetic moment, the maximally stretched state
(F = I − 1/2,mF = −F ) which cannot decay by this route. However, even
these states can scatter inelastically via the magnetic dipole–dipole interac-
tion between electron spins. Experiments with Bose–Einstein condensation
in atomic hydrogen in magnetic traps are performed on states of H↑, and
dipolar losses are a dominant mechanism for loss of atoms and heating, as
we shall describe in the following section. In experiments on alkali atoms
dipolar losses are generally less important, and then formation of diatomic
molecules can be a significant loss mechanism. Two atoms cannot com-
bine directly because it is impossible to get rid of the binding energy of
the molecule. The most effective way of satisfying the conservation laws for
energy and momentum under typical experimental conditions is for a third
atom to participate in the reaction.

A simple model

To estimate the cooling that may be achieved by evaporation, we consider a
simple model [19]. We assume that the rate at which particles are removed
from the trap by evaporation is given by

dN

dt

∣∣∣∣
ev

= − N
τev
, (4.89)

and that the rate of particle loss due to other processes is

dN

dt

∣∣∣∣
loss

= − N

τloss
, (4.90)

where τev and τloss are decay times for the two types of mechanisms. De-
pending upon which particular other process is dominant, the loss rate 1/τloss
depends on the density in different ways. For scattering by foreign gas atoms
it is independent of the density n of atoms that are to be cooled, and pro-
portional to the density of background gas. For dipolar losses, it varies as
n, and for three-body ones, as n2. If we further assume that the average
energy of particles lost by the other processes is the same as the average
energy of particles in the gas and neglect heating of the gas by inelastic
processes, only particles lost by evaporation change the average energy of
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particles remaining in the trap. The fraction of particles lost by evaporation
is

dN

dt

∣∣∣∣
ev

/ (
dN

dt

∣∣∣∣
ev

+
dN

dt

∣∣∣∣
loss

)
=

1/τev
1/τev + 1/τloss

=
τloss

τloss + τev
, (4.91)

and therefore the temperature change is obtained by multiplying the expres-
sion (4.88) in the absence of losses by this factor. Thus

d lnT
d lnN

= β
τloss

τloss + τev
≡ β′. (4.92)

As we argued earlier, the evaporation time increases rapidly as the av-
erage energy of the evaporated particles increases, and therefore there is a
particular average energy of the evaporated particles for which the temper-
ature drop for loss of a given number of particles is maximal. To model
the evaporation process, we assume that any atom with energy greater than
some threshold value εev is lost from the system. The evaporation rate is
therefore equal to the rate at which atoms are scattered to states with en-
ergies in excess of εev. We shall assume that εev is large compared with kT
and, therefore, in an equilibrium distribution the fraction of particles with
energies greater than εev is exponentially small. The rate at which particles
are promoted to these high-lying states may be estimated by using the prin-
ciple of detailed balance, since in a gas in thermal equilibrium it is equal to
the rate at which particles in these states are scattered to other states. The
rate at which atoms with energy in excess of εev collide in an equilibrium
gas is

dN

dt

∣∣∣∣
coll

=
∫
dr

∫
εp>εev

dp
(2π�)3

∫
dp′

(2π�)3
fpfp′ |vp − vp′ |σ, (4.93)

where σ is the total elastic cross section, which we assume to be independent
of the particle momenta. For εev � kT we may replace the velocity difference
by vp, and the distribution functions are given by the classical Maxwell–
Boltzmann result

fp = e−(p2/2m+V −µ)/kT . (4.94)

The integral over p′ gives the total density of particles at the point under
consideration, and the remaining integrals may be evaluated straightfor-
wardly. The leading term for εev � kT is given by

dN

dt

∣∣∣∣
ev

= −dN
dt

∣∣∣∣
coll

= −Nn(0)σv̄
( εev
kT

)
e−εev/kT . (4.95)

Here n(0) is the particle density at the centre of the trap, where V = 0,
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while v̄ is the mean thermal velocity given by

v̄ =

∫ ∞
0 dvv3 exp(−mv2/2kT )∫ ∞
0 dvv2 exp(−mv2/2kT )

=
(

8kT
πm

)1/2

. (4.96)

It is convenient to introduce the collision time τel for elastic collisions,
which we define by

1
τel

= n(0)σv̄rel, (4.97)

where v̄rel is the mean relative velocity of particles in a gas, given by v̄rel =√
2v̄. In experiments, the elastic collision time is typically a few orders of

magnitude less than the loss time. By combining Eqs. (4.89), (4.95), and
(4.97) we conclude that the decay time for evaporation is given by

1
τev

=
1
τel

(
εev√
2kT

)
e−εev/kT . (4.98)

Since the occupancy of single-particle states falls off rapidly at energies
large compared with the thermal energy kT , the majority of particles leaving
the cloud by evaporation have energies close to the threshold energy εev,
and it is a good approximation to replace the average energy (1 + β)ε̄ of an
evaporated particle by εev. We may therefore write Eq. (4.92) as

d lnT
d lnN

=
(εev
ε̄
− 1

) (
1 +

τel
τloss

√
2kT
εev

eεev/kT

)−1

. (4.99)

This function first increases as the threshold energy increases above the
average particle energy, and then falls off when the evaporation rate be-
comes comparable to the loss rate. The optimal choice of the threshold
energy may easily be estimated by maximizing this expression, and it is
given to logarithmic accuracy by εev ∼ kT ln(τloss/τel). This condition
amounts to the requirement that the evaporation time and the loss time
be comparable.

It is also of interest to investigate how the degree of degeneracy devel-
ops as particles are lost. In a trap with a power-law potential, the spatial
extent of the cloud is ∼ T 1/ν for each dimension for which the potential is
effective, and therefore the volume varies as ∼ T d/ν , where d is the effective
dimensionality of the trap, introduced above Eq. (4.85). The mean thermal
momentum varies as ∼ T 1/2, and therefore the volume in momentum space
varies as ∼ T 3/2. Thus the phase-space volume scales as T d/ν+3/2, and the
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phase-space density % scales as N/T d/ν+3/2. Thus

−d ln%
d lnN

= β′
(
d

ν
+

3
2

)
− 1. (4.100)

This shows that the attainment of a large increase in phase-space density for
loss of a given number of particles is aided by use of traps with low values
of ν, and thus linear traps are better than harmonic ones.

In experiments, it is desirable that the elastic scattering time decrease
as the evaporation proceeds. In this case one realizes what is referred to
as runaway evaporation. In the opposite case, the rate of elastic collisions
becomes less, and evaporation becomes relatively less important compared
with losses. The scattering rate scales as the atomic density times a thermal
velocity (∝ T 1/2), since the cross section is essentially constant, and thus
one finds that

d ln τel
d lnN

= β′
(
d

ν
− 1

2

)
− 1. (4.101)

For runaway evaporation, this expression should be positive, and this sets
a more stringent condition on β′ than does the requirement of increasing
phase-space density.

4.7 Spin-polarized hydrogen

As we described in Chapter 1, the first candidate considered for Bose–
Einstein condensation in a dilute gas was spin-polarized hydrogen. How-
ever, the road to the experimental realization of Bose–Einstein condensa-
tion in hydrogen was a long one, and the successful experiment combined
techniques from low-temperature physics with ones from atomic and optical
physics.

The initial appeal of spin-polarized hydrogen was its having no two-body
bound states. However, as has been strikingly demonstrated by the exper-
iments on spin-polarized alkali gases, the absence of bound states is not a
prerequisite for Bose–Einstein condensation. Polarized alkali atoms have
many molecular bound states, but the rate at which molecules are produced
is slow. This is because, as we described in the previous section, molecule
formation is a three-body process and may thus be reduced by working at
low enough densities. What is essential in realizing Bose–Einstein conden-
sation in dilute systems is that the polarized atoms have a sufficiently long
lifetime, irrespective of which particular loss processes operate.

Working with spin-polarized hydrogen presents a number of formidable
experimental challenges. One is that laser cooling is impractical, since the
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lowest-frequency optical transition for the hydrogen atom in its ground
state is the Lyman-α line (1S–2P), which has a wavelength of 122 nm
in the ultraviolet. Even if it were practical, the temperatures attainable
by laser cooling would not be particularly low because both the excited
state linewidth and the recoil temperature (Eq. (4.59)), which determine
the minimum temperatures for cooling by the Doppler and Sisyphus pro-
cesses, are large due to the high frequency of the transition and the low
mass of the hydrogen atom. In the experiments on hydrogen, the gas was
first cooled cryogenically by heat exchange with a cold surface, and conden-
sation was achieved by subsequent evaporative cooling, as described in Sec.
4.6.

The level structure of the ground state of hydrogen has been described in
Sec. 3.2 (see Fig. 3.2). As we mentioned in Chapter 1, early experiments
on spin-polarized hydrogen, in which hydrogen atoms were pressed against
a surface by a spatially-varying magnetic field, employed states with the
electron spin aligned opposite the direction of the magnetic field. These are
the high-field seeking states (H↓) labelled a and b in Fig. 3.2. The limited
densities that could be obtained by these methods led to the development
of purely magnetic traps. Since it is impossible to make a magnetic field
with a local maximum in a current-free region, trapping is possible only if
the electron spin is in the same direction as the field, H↑, corresponding to
states c and d in the figure.

The experimental techniques are described in detail in the review article
[20] and the original papers [21, 22]. The heart of the experiment is a mag-
netic trap of the Ioffe–Pritchard type enclosed in a chamber whose walls can
be cooled cryogenically. Atomic hydrogen is generated in an adjoining cell
by applying an rf discharge to gaseous molecular hydrogen. The magnetic
field in the source cell is higher than in the experimental cell, so atoms in the
low-field seeking states c and d are driven into the experimental cell, where
they can be trapped magnetically. The experimental chamber also contains
helium gas. The helium atom has no electronic magnetic dipole moment
and is unaffected by the magnetic field of the trap. Thus the helium acts as
a medium for transporting heat away from the hydrogen gas in the trap to
the cold walls of the experimental cell.

The state d is a doubly polarized one, and consequently, as we mentioned
in Sec. 4.6 and will be elaborated in Sec. 5.4.1, it is relatively unaffected
by atomic collisions, the only allowed processes being ones mediated by
the magnetic dipole–dipole interaction. In the trapped gas, spin-exchange
collisions c+ c→ d+ b can occur, and the b atoms produced by this process,
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being high-field seekers, will return to the source. Thus the gas in the trap
will consist only of d atoms.

After the hydrogen gas in the trap has been cooled, it is thermally iso-
lated by removing the helium gas. This is done by cooling the walls of
the experimental cell to a temperature less than 80 mK, so low that any
atom arriving at the surface will be absorbed but will not subsequently be
desorbed.

The gas in the trap is cooled further by evaporation, as described in
Sec. 4.6. The scattering length for hydrogen atoms is typically 1–2 orders of
magnitude smaller than for the alkalis, and therefore to achieve rapid enough
evaporation it is necessary to use higher atomic densities for hydrogen than
for alkalis. However, this is not a problem, since traps may be loaded to
higher densities using cryogenic methods than is possible with MOT’s. Bose–
Einstein condensation sets in at a temperature of about 50 mK, which is
higher than in experiments with alkalis because of the lower atomic mass
and the higher atomic densities.

The main process for the destruction of d atoms is the dipolar one d+d→
a+a. Due to the heat which this generates, for hydrogen it is more difficult to
realize condensates containing a large fraction of the total number of atoms
than it is for alkali atoms, and in the first experiments the fraction of atoms
in the condensate was estimated to be around 5%. However, the number
of condensed particles (109), the peak condensate density (5 × 1015 cm−3),
and the size of the condensed cloud (5 mm long, and 15 µm in diameter)
are impressive.

Detection of the condensate represented another challenge. Time-of-flight
methods could not be used, because of the low condensate fraction. The
technique employed was to measure the frequency shift of the 1S–2S tran-
sition (at the same frequency as the Lyman-α line), as illustrated schemat-
ically in Fig. 4.10. A great advantage of this line is that it is very narrow
because the transition is forbidden in the dipole approximation. For the
same reason it cannot be excited by a single photon, so the method em-
ployed was to use two-photon absorption of radiation from a laser operating
at half the frequency of the transition. Absorption of one photon mixes into
the wave function of the 1S state a component of a P state, which by ab-
sorption of a second photon is subsequently converted to the 2S state. The
shift of the line is proportional to the density of hydrogen atoms, and thus
the density of condensed atoms could be determined. By this method it was
possible to identify components of the line due to the condensate and others
due to the thermal cloud. We shall consider the theory of the line shift in
Sec. 8.4.
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Fig. 4.10. Level scheme of the hydrogen atom to illustrate detection of atomic
hydrogen by two-photon absorption.

Problems

Problem 4.1 Consider two circular coils, each of radius a and with N
turns. The coils have a common axis, which we take to be the z axis, and
their centres are at z = ±d/2. The current I in each coil has the same
magnitude, but the opposite direction. Calculate the magnetic field in the
vicinity of the origin.

Problem 4.2 Find the classical oscillation frequencies for a 87Rb atom
in the state |3/2, 1/2〉 moving in the time-averaged magnetic field given by
(4.6). The magnitude of the rotating magnetic field is B0 = 1 mT, while
the value of the radial field-gradient B′ is 1.2 T m−1. Compare your result
with the value ω/2π = 7.5 kHz for the frequency of the rotating magnetic
field used experimentally [6].

Problem 4.3 Find the time average of the magnitude of the magnetic field
close to the origin for a TOP trap in which the quadrupole field is of the
form B′(x, y,−2z) and the bias field has the form (B0 cosωt, 0, B0 sinωt).
Contrast the result with Eq. (4.6) for the original TOP trap.

Problem 4.4 Estimate the depth of an optical trap for Na atoms produced
by a 5-mW laser beam of wavelength 1 µm when focused to a circular cross
section of minimum diameter 10 µm.

Problem 4.5 Determine the force constant of a magneto-optical trap us-
ing the simple model described in Sec. 4.4.
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Problem 4.6 Show that the lowest temperatures attainable by the Sisy-
phus process are of order (me/m)/(e20/�c) times those for the Doppler pro-
cess. How large is the numerical prefactor?

Problem 4.7 Consider an ideal gas in three dimensions in a potential
V (r) which is a homogeneous function of the coordinates of degree ν, that
is, V (λr) = λνV (r). Assume that ν is positive. The effective dimensionality
of the trap is denoted by d, and, for example, for the anisotropic harmonic
oscillator potential (2.7), d is the number of the frequencies ωi which are non-
zero. By using the semi-classical distribution function, show for a classical
gas that

2d
3
ε̄kin = νV ,

where the bar denotes a thermal average. The result also holds for degen-
erate Bose and Fermi gases, and is an example of the virial theorem.
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5

Interactions between atoms

From a theoretical point of view, one of the appealing features of clouds of
alkali atom vapours is that particle separations, which are typically of order
102 nm, are large compared with the scattering length a which characterizes
the strength of interactions. Scattering lengths for alkali atoms are of the
order of 100a0, where a0 is the Bohr radius, and therefore alkali atom vapours
are dilute, in the sense that the dominant effects of interaction are due to
two-body encounters. It is therefore possible to calculate properties of the
gas reliably from a knowledge of two-body scattering at low energies, which
implies that information about atomic scattering is a key ingredient in work
on Bose–Einstein condensates.

An alkali atom in its electronic ground state has several different hyperfine
states, as we have seen in Secs. 3.1 and 3.2. Interatomic interactions give
rise to transitions between these states and, as we described in Sec. 4.6, such
processes are a major mechanism for loss of trapped atoms. In a scattering
process, the internal states of the particles in the initial or final states are
described by a set of quantum numbers, such as those for the spin, the atomic
species, and their state of excitation. We shall refer to a possible choice of
these quantum numbers as a channel .1 At the temperatures of interest for
Bose–Einstein condensation, atoms are in their electronic ground states, and
the only relevant internal states are therefore the hyperfine states. Because
of the existence of several hyperfine states for a single atom, the scattering
of cold alkali atoms is a multi-channel problem.

Besides inelastic processes that lead to trap loss, coupling between chan-
nels also gives rise to Feshbach resonances, in which a low-energy bound
state in one channel strongly modifies scattering in another channel. Fesh-
bach resonances make it possible to tune both the magnitude and the sign
1 Other authors use the word channel in a different sense, to describe the physical processes

leading from one particular internal state (the initial state) to another (the final one).
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of the effective atom–atom interaction, and they have become a powerful
tool for investigating cold atoms.

For all but the very lightest atoms, it is impossible from theory alone to
evaluate scattering properties of cold atoms because the atom–atom inter-
action potentials cannot be calculated with sufficient accuracy. In addition,
many properties relevant for cold-atom studies are not directly accessible to
experiment. Consequently, in deriving information about two-body scatter-
ing it is usually necessary to extract information about the interaction from
one class of measurements, and then to use theory to predict properties of
interest. Following the development of laser cooling, understanding of low-
energy atomic collisions has increased enormously. In particular the use of
photoassociation spectroscopy and the study of Feshbach resonances have
made it possible to deduce detailed information on scattering lengths.

In the present chapter we give an introduction to atom–atom scattering.
For further details we refer the reader to the review [1], the lectures [2], and
the original literature. We first give dimensional arguments to show that,
because of the van der Waals interaction, scattering lengths for alkali atoms
are much larger than the atomic size (Sec. 5.1). We then review elements
of scattering theory for a single channel, and discuss the concept of effective
interactions (Sec. 5.2). In Sec. 5.3 we determine the scattering length for
a simple model potential consisting of a hard-core repulsion and a long-
range van der Waals attraction, which varies as r−6, where r is the atomic
separation. To describe transitions between different spin states requires a
more general formulation of the scattering problem as a multi-channel one.
We consider the general theory of scattering between different channels,
describe rates of inelastic processes, and show how Feshbach resonances
arise in Sec. 5.4. In the final section, Sec. 5.5, we describe experimental
techniques for investigating atom–atom interactions and summarize current
knowledge of scattering lengths for hydrogen and for alkali atoms.

5.1 Interatomic potentials and the van der Waals interaction

Interactions between polarized alkali atoms are very different from those
between unpolarized atoms. To understand why this is so, we recall that
interactions between atoms with electrons outside closed shells have an at-
tractive contribution because two electrons with opposite spin can occupy
the same orbital. This is the effect responsible for covalent bonding. How-
ever, if two electrons are in the same spin state, they cannot have the same
spatial wave function, and therefore the reduction in energy due to two
electrons sharing the same orbital is absent. To illustrate this, we show in
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Fig. 5.1. Sketch of the interaction potentials U(r) as functions of the atomic sepa-
ration r for two ground-state rubidium atoms with electrons in singlet and triplet
states.

Fig. 5.1 the interactions for two rubidium atoms in their ground state when
the two valence electrons are in the singlet spin state and in the triplet one.
For small separations the interactions are dominated by a strong repulsive
core due to the overlapping of electron clouds, but at greater separations the
attractive well is very much deeper for the singlet state than for the triplet
state. The singlet potential has a minimum with a depth of nearly 6000 K
in temperature units when the atoms are about 8a0 apart. By contrast, the
depth of the minimum of the triplet potential that occurs for an atomic sep-
aration of about 12a0 is only a few hundred K. For large atomic separations
there is an attraction due to the van der Waals interaction, but it is very
weak compared with the attractive interactions due to covalent bonding.

While the van der Waals interaction is weak relative to covalent bonding,
it is still strong in the sense that the triplet potential has many molecular
bound states, as we shall see later from more detailed calculations. We re-
mark that the electronic spin state for a pair of atoms in definite hyperfine
states is generally a superposition of electronic triplet and singlet contri-
butions, and consequently the interaction contains both triplet and singlet
terms.

Two-body interactions at low energies are characterized by their scatter-
ing lengths, and it is remarkable that for polarized alkali atoms these are
typically about two orders of magnitude greater than the size of an atom,
∼ a0. Before turning to detailed calculations we give qualitative arguments
to show that the van der Waals interaction can give rise to such large scat-
tering lengths. The van der Waals interaction is caused by the electric
dipole–dipole interaction between the atoms, and it has the form −α/r6,
where r is the atomic separation. The length scale r0 in the Schrödinger
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Table 5.1. Calculated values of the van der Waals coefficient C6. The value
for Li is from Ref. [3] and those for other alkali atoms from Ref. [4].

Element C6

H–H 6.5
Li–Li 1393

Na–Na 1556
K–K 3897

Rb–Rb 4691
Cs–Cs 6851

equation at zero energy, which sets the basic scale for the scattering length,
may be estimated by dimensional arguments. The kinetic energy is of order
�

2/mr20, where m is the atomic mass, and the van der Waals interaction is
of order α/r60. Equating these two energies gives the characteristic length
r0, which is of order (αm/�2)1/4. On dimensional grounds, the coefficient α
must be of the form of a typical atomic energy, e20/a0, times the sixth power
of the atomic length scale a0, that is α = C6e

2
0a

5
0, where the dimensionless

coefficient C6 gives the strength of the van der Waals interaction in atomic
units. Thus the length scale is given by

r0 ≈ (C6m/me)1/4a0. (5.1)

This gives the general magnitude of scattering lengths but, as we shall see in
Sec. 5.3, the sign and numerical value of the scattering length are determined
by the short-range part of the interaction. The large scattering lengths for
alkali atoms are thus a consequence of two effects. First, atomic masses are
of order 103A times the electron mass, A being the mass number, which
gives more than a factor of 10 in the length scale. Second, van der Waals
coefficients for alkali atoms lie between 103 and 104, as one can see from the
theoretical values of C6 listed in Table 5.1. A number of the measurements
that we shall describe in Sec. 5.5 provide information about C6 and, for
example, a study of Feshbach resonances for 133Cs gives C6 = 6890 ± 35
[5, 6]. The large values of C6 give a further increase in the length scale by
almost one order of magnitude, so typical scattering lengths are of order
102a0.

The 1/r6 contribution to the potential is the leading term in an expansion
of the long-range part of the two-body interaction U(r) in inverse powers of
r. If quantities are measured in atomic units the expansion is given more
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generally by

U(r) = −C6

r6
− C8

r8
− C10

r10
+ · · · . (5.2)

The higher-order coefficients C8 and C10 are typically 102C6 and 104C6,
respectively, and therefore at distances of order r0 a pure 1/r6 potential is
a good first approximation.

Magnitude of the van der Waals interaction
The large van der Waals interactions for alkali atoms, like the large polar-
izabilities (see Sec. 3.3), are a consequence of the strong resonance lines in
the optical spectrum of these atoms. To derive a microscopic expression
for C6 we recall that the van der Waals interaction is due to the electric
dipole–dipole interaction between atoms, which has the form

Ued =
1

4πε0r3
[d1·d2 − 3(d1·r̂)(d2·r̂)], (5.3)

where r̂ = r/r, r being the vector separation of the two atoms. The ground
states of atoms are to a very good approximation eigenstates of parity, and
consequently diagonal matrix elements of the electric dipole operator vanish.
The leading contribution to the interaction energy is of second order in the
dipole–dipole interaction and has the form [7, §89]

U(r) = − 6
(4πε0)2r6

∑
n,n′

|〈n|dz|0〉|2|〈n′|dz|0〉|2
En + En′ − 2E0

, (5.4)

where the factor 6 comes from using the fact that, for atoms with L = 0 in
the ground state, the sum is independent of which Cartesian component of
the dipole operator is chosen. Expressing the result in terms of the oscillator
strength (see Eq. (3.38)) and measuring excitation energies in atomic units
one finds

C6 =
3
2

∑
n,n′

fz
n0f

z
n′0

(En − E0)(En′ − E0)(En + En′ − 2E0)
. (5.5)

Just as for the polarizability, which we discussed in Sec. 3.3 (see Eq. (3.42)),
the dominant contribution to the sum comes from the resonance line, and if
we assume that the total oscillator strength for transitions from the ground
state to all sublevels of the resonance doublet is unity and neglect all other
transitions, one finds

C6 ≈
3

4(∆Eres)3
. (5.6)

Here ∆Eres is the energy of the resonance line in atomic units. For alkali
atoms this is less than 0.1 atomic units, and therefore the values of C6
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are more than 103, in agreement with more detailed calculations and with
experiment. As an example consider sodium. The resonance line energy is
0.0773 atomic units, and therefore Eq. (5.6) yields C6 ≈ 1620, while detailed
calculations give 1556, according to Table 5.1. For the heavier alkali atoms,
electrons other than the valence one contribute significantly to the sum, and
consequently C6 is greater than the estimate (5.6). The simple formula (5.6)
enables one to understand why the trend in the magnitude of C6 for alkali
atoms is similar to the variation of the atomic polarizabilities discussed in
Sec. 3.3. For hydrogen the simple estimate evaluated using the Lyman-α
energy is C6 = 128/9 ≈ 14.2, which is larger than the actual value ≈ 6.5
since the oscillator strength for the transition is significantly less than unity.

We note that to calculate the interatomic potential at large distances
the dipolar interaction may not be treated as static, and retardation of the
interaction must be taken into account. The interaction is then found to
vary as 1/r7, rather than 1/r6. This effect becomes important when the
separation between atoms is comparable to or larger than the wavelength of
a photon with energy equal to that of the resonance transition. The latter
is of order 103a0 or more, which is larger than the distances of importance
in determining the scattering length. Consequently retardation plays little
role.

5.2 Basic scattering theory

Here we review aspects of scattering theory for a single channel and introduce
the scattering length, which characterizes low-energy interactions between a
pair of particles. More extensive treatments may be found in standard texts
(see, e.g., [7, §123]). Consider the scattering of two particles of mass m1 and
m2, which we assume for the moment to have no internal degrees of freedom.
We shall further assume here that the two particles are distinguishable, and
the effects of identity of the particles will be described later. As usual, we
transform to centre-of-mass and relative coordinates. The wave function for
the centre-of-mass motion is a plane wave, while that for the relative motion
satisfies a Schrödinger equation with the mass equal to the reduced mass
mr = m1m2/(m1 + m2) of the two particles. To describe scattering, one
writes the wave function for the relative motion as the sum of an incoming
plane wave and a scattered wave,2

ψ = eikz + ψsc(r), (5.7)

2 We shall use plane-wave states eik·r without an explicit factor of 1/V 1/2.
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where we have chosen the relative velocity in the incoming wave to be in the z
direction. At large interatomic separations the scattered wave is an outgoing
spherical wave f(k) exp(ikr)/r, where f(k) is the scattering amplitude and
k specifies the wave vector of the scattered wave. We shall assume that
the interaction between atoms is spherically symmetric, and the scattering
amplitude f(θ) then depends on direction only through the scattering angle
θ, which is the angle between the directions of the relative momentum of
the atoms before and after scattering. The wave function for large r is thus

ψ = eikz + f(θ)
eikr

r
. (5.8)

The energy of the state is given by

E =
�

2k2

2mr
. (5.9)

At very low energies it is sufficient to consider s-wave scattering, as we
shall argue below. In this limit the scattering amplitude f(θ) approaches a
constant, which we denote by −a, and the wave function (5.8) becomes

ψ = 1− a
r
. (5.10)

The constant a is called the scattering length. It gives the intercept of the
asymptotic wave function (5.10) on the r axis.

In the following we discuss the connection between the scattering length
and the phase shifts, which in general determine the scattering cross section.
The differential cross section, that is the cross section per unit solid angle,
is given by

dσ

dΩ
= |f(θ)|2. (5.11)

For scattering through an angle between θ and θ + dθ, the element of solid
angle is dΩ = 2π sin θ dθ. Since the potential is spherically symmetric, the
solution of the Schrödinger equation has axial symmetry with respect to the
direction of the incident particle. The wave function for the relative motion
therefore may be expanded in terms of Legendre polynomials Pl(cos θ),

ψ =
∞∑
l=0

AlPl(cos θ)Rkl(r). (5.12)

The radial wave function Rkl(r) satisfies the equation

R′′
kl(r) +

2
r
R′

kl(r) +
[
k2 − l(l + 1)

r2
− 2mr

�2
U(r)

]
Rkl(r) = 0, (5.13)
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where U(r) is the potential, and the prime denotes a derivative with respect
to r. For r → ∞ the radial function is given in terms of the phase shifts δl
according to the equation

Rkl(r) �
1
kr

sin(kr − π
2
l + δl). (5.14)

By comparing (5.12) and (5.14) with (5.8) and expanding the plane wave
exp(ikz) in Legendre polynomials one finds that Al = il(2l + 1)eiδl and

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(ei2δl − 1)Pl(cos θ). (5.15)

The total scattering cross section is obtained by integrating the differential
cross section over all solid angles, and it is given by

σ = 2π
∫ 1

−1
d(cos θ)|f(θ)|2. (5.16)

When (5.15) is inserted in this expression, and use is made of the fact that
the Legendre polynomials are orthogonal, one obtains the total cross section
in terms of the phase shifts:

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl. (5.17)

For a finite-range potential the phase shifts vary as k2l+1 for small k. For
a potential varying as r−n at large distances, this result is true provided
l < (n − 3)/2, but for higher partial waves δl ∝ kn−2 [7, §132]. Thus for
potentials that behave as 1/r6 or 1/r7, all phase shifts become small as k
approaches zero. The scattering cross section is thus dominated by the l = 0
term (s-wave scattering), corresponding to a scattering amplitude f = δ0/k.
If one writes the l = 0 component of the asymptotic low-energy solution
(5.14) at large distances as

R0 � c1
sin kr
kr

+ c2
cos kr
r
, (5.18)

where c1 and c2 are coefficients, the phase shift for k → 0 is given by

δ0 =
kc2
c1
. (5.19)

From the definition of the scattering length in terms of the wave function
for k → 0 given by (5.10), one finds that

δ0 = −ka, (5.20)
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which shows that a is determined by the coefficients in the asymptotic so-
lution (5.18),

a = − c2
c1

∣∣∣∣
k→0

. (5.21)

In this limit the total cross section, Eq. (5.17), is determined only by a. It
is

σ =
4π
k2
δ20 = 4πa2. (5.22)

Let us now consider scattering of identical particles in the same internal
state. The wave function must be symmetric under interchange of the coor-
dinates of the two particles if they are bosons, and antisymmetric if they are
fermions. Interchange of the two particle coordinates corresponds to chang-
ing the sign of the relative coordinate, that is r→ −r, or r → r, θ → π − θ
and ϕ → π + ϕ, where ϕ is the azimuthal angle. The symmetrized wave
function corresponding to Eq. (5.8) is thus

ψ = eikz ± e−ikz + [f(θ)± f(π − θ)]e
ikr

r
. (5.23)

The amplitude for scattering a particle in the direction specified by the polar
angle θ is therefore f(θ)± f(π − θ), and the differential cross section is

dσ

dΩ
= |f(θ)± f(π − θ)|2, (5.24)

the plus sign applying to bosons and the minus sign to fermions.
The physical content of this equation is that the amplitude for a particle to

be scattered into some direction is the sum or difference of the amplitude for
one of the particles to be scattered through an angle θ and the amplitude
for the other particle to be scattered through an angle π − θ. The total
cross section is obtained by integrating the differential cross section over all
distinct final states. Because of the symmetry of the wave function, the state
specified by angles θ, ϕ is identical with that for angles π − θ, ϕ + π, and
therefore to avoid double counting, one should integrate only over half of the
total 4π solid angle, for example by integrating over the range 0 ≤ θ ≤ π/2
and 0 ≤ ϕ ≤ 2π. Thus if scattering is purely s-wave, the total cross section
is

σ = 8πa2 (5.25)

for identical bosons, and it vanishes for identical fermions.
In Sec. 5.3 we shall derive an explicit expression for the scattering length

for a model of the interaction potential for alkali atoms. Before doing that
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we introduce the concept of an effective interaction and demonstrate how it
is related to the scattering length.

5.2.1 Effective interactions and the scattering length

Interactions between atoms are strong, but they occur only when two atoms
are close together. In dilute gases this is rather unlikely, since interactions
are very small for typical atomic separations. For most configurations of the
system, the many-body wave function varies slowly in space, but when two
atoms approach each other, there are rapid spatial variations. To avoid hav-
ing to calculate short-range correlations between atoms in detail, it is con-
venient to introduce the concept of an effective interaction. This describes
interactions among long-wavelength, low-frequency degrees of freedom of a
system when coupling of these degrees of freedom via interactions with those
at shorter wavelengths has been taken into account. The short-wavelength
degrees of freedom are said to have been ‘integrated out’. In recent years this
approach has found applications in numerous branches of physics, ranging
from critical phenomena to elementary particle physics and nuclear physics.

To make these ideas quantitative, consider the problem of two-particle
scattering again, this time in the momentum representation. The particles
are assumed to have equal masses m, and therefore mr = m/2. The wave
function in coordinate space is given by (5.7), which in the momentum
representation is3

ψ(k′) = (2π)3δ(k′ − k) + ψsc(k′), (5.26)

where the second term on the right hand side of this equation is the Fourier
transform of the scattered wave in (5.7). The wave function (5.26) satisfies
the Schrödinger equation, which is4(

�
2k2

m
− �

2k′2

m

)
ψsc(k′) = U(k′,k) +

1
V

∑
k′′

U(k′,k′′)ψsc(k′′), (5.27)

3 A function F (r) and its Fourier transform F (q) are related by

F (r) =
1

V

∑
q

F (q)eiq·r =

∫
dq

(2π)3
F (q)eiq·r,

where V is the volume. Thus F (q) =
∫

drF (r)e−iq·r.
4 We caution the reader that there are different ways of normalizing states in the continuum.

In some of the atomic physics literature it is common to use integrals over energy rather than
sums over wave numbers and to work with states which differ from the ones used here by a
factor of the square root of the density of states. Matrix elements of the potential are then
dimensionless quantities, rather than ones with dimensions of energy times volume, as they are
here.
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where �
2k2/m (= E) is the energy eigenvalue and U(k′,k′′) = U(k′ − k′′)

is the Fourier transform of the bare atom–atom interaction. The scattered
wave is thus given by

ψsc(k′) =
(

�
2k2

m
− �

2k′2

m
+ iδ

)−1
(
U(k′,k) +

1
V

∑
k′′

U(k′,k′′)ψsc(k′′)

)
,

(5.28)
where we have in the standard way introduced the infinitesimal imaginary
part δ to ensure that only outgoing waves are present in the scattered wave.
This equation may be written in the form

ψsc(k′) =
(

�
2k2

m
− �

2k′2

m
+ iδ

)−1

T (k′,k; �2k2/m), (5.29)

where the scattering matrix T satisfies the so-called Lippmann–Schwinger
equation

T (k′,k;E) = U(k′,k) +
1
V

∑
k′′

U(k′,k′′)
(
E − �

2k′′2

m
+ iδ

)−1

T (k′′,k;E).

(5.30)
The scattered wave at large distances and for zero energy (E = k = 0) may
be calculated from Eq. (5.29). Using the Fourier transform∫

dk′

(2π)3
eik

′·r

k′2
=

1
4πr
, (5.31)

we find

ψsc(r) = −mT (0, 0; 0)
4π�2r

. (5.32)

We have replaced the argument k′ in the T matrix by zero, since the values
of k′ of importance in the Fourier transform are of order 1/r. The expression
(5.32) may thus be identified with (5.10), which implies that the scattering
matrix at zero energy and the scattering length are related by the expression

a =
m

4π�2
T (0, 0; 0) (5.33)

or

T (0, 0; 0) =
4π�

2a

m
. (5.34)

More generally the scattering amplitude and the T matrix are related by
the equation

f(k,k′) = − m

4π�2
T (k′,k;E = �

2k2/m). (5.35)
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In the Born approximation, which is obtained by taking only the first term
on the right hand side of the Lippmann–Schwinger equation, the scattering
length is given by

aBorn =
m

4π�2
U(0) =

m

4π�2

∫
drU(r), (5.36)

corresponding to |k− k′| = 0. Thus the scattering matrix, T , may be re-
garded as an effective interaction, in the sense that when inserted into the
Born-approximation expression for the scattered wave function it gives the
exact result when the atoms are far apart. All the effects of short-wavelength
components of the wave function that reflect the correlations between the
two particles have been implicitly taken into account by replacing U(0) by
T .

To obtain further insight into effective interactions we now adopt another
point of view. Let us divide the intermediate states in the Lippmann–
Schwinger equation into two groups: those with energy greater than some
cut-off value εc = �

2k2
c/m, and those with lower energy. We can perform

the summation over intermediate states in (5.30) in two stages. First we
sum over all intermediate states with energy in excess of εc, and then over
the remaining states. The first stage leads to a quantity Ũ(k′,k;E) which
satisfies the equation

Ũ(k′,k;E) = U(k′,k)

+
1
V

∑
k′′,k′′>kc

U(k′,k′′)
(
E − �

2k′′2

m
+ iδ

)−1

Ũ(k′′,k;E), (5.37)

and the second stage builds in the correlations associated with lower-energy
states:

T (k′,k;E) = Ũ(k′,k;E)

+
1
V

∑
k′′,k′′<kc

Ũ(k′,k′′;E)
(
E − �

2k′′2

m
+ iδ

)−1

T (k′′,k;E). (5.38)

The latter equation shows that if one uses Ũ as the interaction in a scattering
problem in which intermediate states with energies in excess of εc do not
appear explicitly, it produces the correct scattering matrix. In this sense
it is an effective interaction, which describes interactions between a limited
set of states. The difference between the effective interaction and the bare
one is due to the influence of the high-momentum states. It is important
to observe that the effective potential depends explicitly on the choice of
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the energy εc. However, the final result for the scattering amplitude is, of
course, independent of this choice.

If one takes the limit kc → 0, the effective interaction reduces to the
scattering matrix. For small kc, that is for describing interactions between
very-long-wavelength excitations and at low energies, the effective interac-
tion becomes simply

Ũ(0, 0; 0)|kc→0 =
4π�

2a

m
≡ U0. (5.39)

We shall make extensive use of this effective interaction, which is also
referred to as a pseudopotential, for calculating properties of dilute gases.
The key point is that the effective interaction may be used to make precise
calculations for dilute systems without the necessity of calculating short-
range correlations. This implies that the Born approximation for scattering,
and a mean-field approach such as the Hartree or Hartree–Fock ones for
calculating energies give the correct results provided one uses the effective
interaction rather than the bare one.

Later, in discussing the microscopic theory of the dilute Bose gas, we
shall need an expression for the effective interaction for small but non-zero
kc. This may be found from (5.38) and is

Ũ(k′,k;E) � T (k′,k;E)

− 1
V

∑
k′′,k′′<kc

T (k′,k′′;E)
(
E − �

2k′′2

m
+ iδ

)−1

T (k′′,k;E). (5.40)

In the opposite limit, kc → ∞, the effective interaction is the bare interac-
tion, because no degrees of freedom are integrated out.

5.3 Scattering length for a model potential

As we have described earlier, the interaction between two alkali atoms at
large separation is dominated by the van der Waals attraction. We now
evaluate the scattering length for a model potential which has the van der
Waals form ∼ 1/r6 at large distances, and which is cut off at short distances
by an infinitely hard core of radius rc [8, 9]:

U(r) =∞ for r ≤ rc, U(r) = − α
r6

for r > rc. (5.41)

This simplified model captures the essential aspects of the physics when the
potential has many bound states, as it does for alkali atoms. The core radius
is to be regarded as a way of parametrizing the short-distance behaviour of
the potential, rather than as a realistic representation of it.
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The Schrödinger equation (5.13) for the relative motion is conveniently
written in terms of the function χ = rR,

χ′′(r) +
[
k2 − l(l + 1)

r2
− 2mr

�2
U(r)

]
χ(r) = 0. (5.42)

Since we consider low-energy s-wave scattering, we set k and l equal to zero
in (5.42), which results in

χ′′(r) +
2mrα

�2r6
χ(r) = 0, for r > rc. (5.43)

Due to the presence of the hard core, χ must vanish at r = rc.
Our strategy is to use (5.43) to determine χ at large r, where it has the

form

χ = c1r + c2, (5.44)

in terms of which the scattering length is given by a = −c2/c1 (compare
(5.18) above). First we introduce the dimensionless variable x = r/r0, where

r0 =
(

2mrα

�2

)1/4

. (5.45)

This is the length scale we derived in Sec. 5.1 from qualitative arguments,
except that here we have allowed for the possibility of the masses of the two
atoms being different. The Schrödinger equation then becomes

d2χ(x)
dx2

+
1
x6
χ(x) = 0. (5.46)

In order to turn the differential equation (5.46) into one whose solutions are
known, we write

χ = xβf(xγ) (5.47)

and try to choose values of β and γ which result in a known differential
equation for f = f(y) with y = xγ . We obtain

d2χ(x)
dx2

= β(β − 1)y(β−2)/γ f(y) + [γ(γ − 1) + 2βγ]y1+(β−2)/γ df(y)
dy

+ γ2y2+(β−2)/γ d
2f(y)
dy2

(5.48)

and
1
x6
χ(x) = y(β−6)/γf(y). (5.49)
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If we choose β = 1/2 and γ = −2, introduce the new variable z = y/2, and
write f(y) = g(z), we find

d2g

dz2
+

1
z

dg

dz
+ (1− 1

16z2
)g = 0, (5.50)

which is Bessel’s equation. The general solution of (5.50) may be written as
a linear combination of the Bessel functions J1/4(z) and J−1/4(z),

g = AJ1/4(z) +BJ−1/4(z), (5.51)

where

z =
r20
2r2
. (5.52)

Since χ must vanish at r = rc, the coefficients satisfy the condition

A

B
= −

J−1/4(r20/2r
2
c )

J1/4(r20/2r2c )
. (5.53)

In terms of the original variables, the radial function χ(r) = rR(r) is given
by

χ(r) = A(r/r0)1/2
[
J1/4(r

2
0/2r

2)−
J1/4(r20/2r

2
c )

J−1/4(r20/2r2c )
J−1/4(r

2
0/2r

2)

]
. (5.54)

This function is plotted in Fig. 5.2 for different values of the parameter
r20/2r

2
c .

For alkali atoms, the interatomic potentials become repulsive for r � 10a0,
and therefore an appropriate choice of rc is of this magnitude. Since r0 ∼
100a0 the condition

r0 � rc, (5.55)

is satisfied, which implies that the potential has many bound states, as we
shall argue below. We may then evaluate (5.53) by using the asymptotic
expansion

Jp(z) �
√

2
πz

cos
[
z − (p+

1
2
)
π

2

]
(5.56)

valid for large z. We find from (5.53) that

A

B
= − cos(r20/2r

2
c − π/8)

cos(r20/2r2c − 3π/8)
. (5.57)

To determine the scattering length we must examine the wave function
χ at large distances r � r0, that is for small values of z. In this limit the
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Fig. 5.2. The radial wave function χ as a function of r/r0 for selected values of
Φ = r20/2r

2
c . From top to bottom, the three curves correspond to core radii

rc ≈ 0.121 59 r0, 0.120 97 r0, and 0.118 95 r0, and illustrate the sensitivity of the
wave function to small changes in the short-range part of the potential. The nor-
malization constant has been chosen to make the wave function at large r positive,
and as a consequence the wave function for r → rc has the opposite sign for case
(c) compared with the other two cases.
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Fig. 5.3. The scattering length a as a function of the hard core radius rc. Both
are measured in units of r0. a© to c© correspond to the three values of rc used to
generate curves (a) to (c), respectively, in Fig. 5.2; for case (b) a is −186.0r0.

leading term in the Bessel function is

Jp(z) �
zp

2pΓ(1 + p)
, (5.58)

and therefore the radial wave function has the form

χ � A 1√
2Γ(5/4)

+B
√

2
Γ(3/4)

r

r0
. (5.59)

By comparing this result with the general expression (5.33) for the wave
function at large distances we conclude that

a = −r0
Γ(3/4)

2 Γ(5/4)
A

B
. (5.60)

The scattering length obtained from (5.53) and (5.60) is plotted in Fig. 5.3
as a function of the hard core radius. Inserting the ratio A/B from (5.57)
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we arrive at the expression

a = r0
Γ(3/4) cos(r20/2r

2
c − π/8)

2 Γ(5/4) cos(r20/2r2c − 3π/8)
, (5.61)

which may alternatively be written as

a = r0
Γ(3/4)

2
√

2 Γ(5/4)
[1− tan(Φ− 3π/8)] ≈ 0.478r0[1− tan(Φ− 3π/8)], (5.62)

where Φ = r20/2r
2
c .

From Eq. (5.62) we can draw a number of important conclusions. First,
the scale of scattering lengths is set by the quantity r0, in agreement with
the dimensional arguments made at the beginning of this section. Second,
the scattering length can be either positive (corresponding to a repulsive ef-
fective interaction) or negative (corresponding to an attractive one). Third,
the scattering length depends on the details of the short-range part of the
interaction (in this case the parameter rc), and therefore it is impossible on
the basis of this simple model to obtain realistic estimates of the scattering
length. This is due to the fact that the sign of the effective interaction at
zero energy depends on the energy of the highest bound state. One may
estimate the number of bound states by imagining slowly increasing the
strength of the potential from zero to its physical value. A bound state ap-
pears whenever the scattering length tends to minus infinity and therefore
the number Nb of bound states is given by the integer part of (Φ/π − 3/8)
or

Nb ≈
r20

2πr2c
=

Φ
π
, (5.63)

if Φ is large.
One can make statistical arguments about the relative likelihood of attrac-

tive and repulsive interactions by assuming that all values of Φ in a range
much greater than π are equally probable. According to (5.62) the scattering
length a is positive unless Φ−3π/8−νπ lies in the interval between π/4 and
π/2, with ν being an integer. Since the length of this interval is π/4, there is
a ‘probability’ 1/4 of the scattering length being negative and a ‘probability’
3/4 of it being positive. Thus, on average, repulsive interactions should be
three times more common than attractive ones.

The van der Waals potential plays such an important role in low-energy
scattering of alkali atoms because, in the range of atomic separations for
which it dominates the interaction, it is so strong that it can cause many
spatial oscillations of the zero-energy wave function. The qualitative con-
clusions we have arrived at using the simple model apply for more general
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forms of the short-range part of the potential, as may be demonstrated by
using the semi-classical approximation [8].

5.4 Scattering between different internal states

In treating atom–atom scattering we have so far neglected the internal de-
grees of freedom of the atoms due to the nuclear and electronic spins. These
give rise to the hyperfine and Zeeman splittings, as discussed in Chapter 3.
For an alkali atom in its ground state, the electronic spin is 1/2 and the total
number of nuclear spin states is 2I +1, where I is the nuclear spin. For two
alkali atoms in their ground states the total number of hyperfine states is
thus [2(2I + 1)]2, and we shall label them by indices α and β which specify
the hyperfine states of each of the atoms. Two atoms initially in the state
|αβ〉 may be scattered by atom–atom interactions to the state |α′β′〉 and, as
a consequence, scattering becomes a multi-channel problem. In this section
we indicate how to generalize the theory of scattering to this situation.

In the absence of interactions between atoms, the Hamiltonian for two
atoms consists of the kinetic energy associated with the centre-of-mass mo-
tion, the kinetic energy of the relative motion, and the hyperfine and Zeeman
energies, Eq. (3.8). As in the single-channel problem, the centre-of-mass
motion is simple, since the corresponding momentum is conserved. We can
therefore confine our attention to the relative motion, the Hamiltonian for
which is

Hrel = H0 + U, (5.64)

where

H0 =
p̂2

2mr
+Hspin(1) +Hspin(2). (5.65)

Here the first term in H0 is the kinetic energy operator for the relative mo-
tion, p̂ being the operator for the relative momentum, Hspin is the Hamilto-
nian (3.8), the labels 1 and 2 refer to the two atoms, and U is the atom–atom
interaction. The eigenstates of H0 may be denoted by |αβ,k〉, where �k is
the relative momentum. If the eigenvalues of the spin Hamiltonian are given
by

Hspin|α〉 = εα|α〉, (5.66)

the energies of the eigenstates of H0 are

Eαβ(kαβ) =
�

2k2
αβ

2mr
+ εα + εβ. (5.67)
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The scattering amplitude is now introduced by generalizing (5.8) to allow
for the internal states. The asymptotic form of the wave function corre-
sponding to (5.8) is thus

ψ = eikαβ ·r|αβ〉+
∑
α′β′

fα′β′

αβ (kαβ ,k′
α′β′)

e
ik′

α′β′r

r
|α′β′〉, (5.68)

where �kαβ is the relative momentum in the incoming state, which is referred
to as the entrance channel. The scattered wave has components in different
internal states α′β′ which are referred to as the exit channels.

It is important to note that if the entrance and exit channels are different,
their hyperfine and Zeeman energies are generally different, and therefore
the magnitude of the relative momentum �k′

α′β′ in the exit channel α′β′

is different from that in the entrance channel. The two relative momenta
are related by the requirement that the total energy E be conserved, E =
Eαβ(kαβ) = Eα′β′(k′α′β′), and thus the condition on the wave numbers for
the relative motion is

�
2k′2α′β′

2mr
=

�
2k2

αβ

2mr
+ εα + εβ − εα′ − εβ′ . (5.69)

If k′2α′β′ ≤ 0, the channel is said to be closed, since there is insufficient energy
for the pair of atoms to be at rest far from each other, and the corresponding
term should not be included in the sum. Another way of expressing this is
that a channel α′β′ is closed if the energy in the relative motion as given by
the Hamiltonian Eq. (5.65) is less than a threshold energy Eth(α′β′) given
by

Eth(α′β′) = εα′ + εβ′ . (5.70)

For many purposes it is convenient to work in terms of the T matrix rather
than the scattering amplitude. This is defined by a Lippmann–Schwinger
equation analogous to that for the single-channel problem, Eq. (5.30), which
we write formally as

T = U + UG0T, (5.71)

where the propagator for the pair of atoms in the absence of interactions
between them is given by

G0 = (E −H0 + iδ)−1. (5.72)

The scattering amplitude is related to the matrix element of the T matrix
by the same factor as for a single channel. This is given in Eq. (5.35) for
two particles of equal mass, and the generalization to unequal masses is



122 Interactions between atoms

straightforward, amounting to the replacement of m by 2mr. We therefore
get

fα′β′

αβ (kαβ ,k′
α′β′) = − mr

2π�2
〈α′β′|T (k′

α′β′ ,kαβ ;E)|αβ〉. (5.73)

The central part of the interaction

To estimate rates of processes we need to invoke the specific properties of
the interatomic interaction. The largest contribution is the central part
U c, which we discussed in Sec. 5.1. This depends on the separation of the
atoms, and on the electronic spin state of the two atoms. For alkali atoms
and hydrogen, the electronic spin is 1/2, and therefore the electronic spin
state of a pair of atoms can be either a singlet or a triplet. One therefore
writes the interaction in terms of the electron spin operators S1 and S2. By
expressing the scalar product S1·S2 in terms of the total spin by analogy
with (3.3) one sees that S1·S2 has eigenvalues 1/4 (for triplet states) and
−3/4 (for singlet states). Consequently the interaction may be written in
the form

U c = UsP0 + UtP1 =
Us + 3Ut

4
+ (Ut − Us)S1·S2, (5.74)

where P0 = 1/4−S1·S2 and P1 = 3/4+S1·S2 are projection operators for the
two-electron singlet and triplet states, respectively. At large distances the
singlet and triplet potentials are dominated by the van der Waals interaction.
The interaction (5.74) is invariant under rotations in coordinate space, and
therefore it conserves orbital angular momentum. However, it can exchange
the spins of the atoms, flipping one from up to down, and the other from
down to up, for example. Because it is invariant under rotations in spin
space, it conserves the total electronic spin angular momentum.

The magnetic dipole–dipole interaction

Some transitions are forbidden for the central part of the interaction, and
under such circumstances the magnetic dipole–dipole interaction between
electronic spins can be important. This has a form analogous to the electric
dipole–dipole interaction (5.3) and it may be written as

Umd =
µ0(2µB)2

4πr3
[S1·S2 − 3(S1·r̂)(S2·r̂)]. (5.75)

This is independent of nuclear spins and is invariant under simultaneous
rotations in coordinate space and electron spin space, and therefore it con-
serves the total angular momentum. However, it does not conserve sepa-
rately orbital angular momentum and electronic spin angular momentum.
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The interaction transforms as spherical tensors of rank 2 in both coordinate
space and spin space, and it may be written in the form

Umd = −
(

24
5π

)1/2 µ0µ
2
B

r3

2∑
µ=−2

Y ∗
2µ(r̂)Σ2,µ, (5.76)

where Ylm(r̂) is a spherical harmonic and Σ2,µ is a spherical tensor of rank
2 made up from the two spin operators. Its components are

Σ2,0 = −
√

3
2
(S1zS2z − S1 · S2/3),

Σ2,±1 = ±1
2
(S1zS2± + S1±S2z),

and
Σ2,±2 = −1

2
S1±S2±. (5.77)

This interaction can induce transitions in which the orbital angular momen-
tum quantum number l changes by −2, 0, or +2. Two incoming atoms in
an s-wave state can thus be scattered to a d-wave state, the angular mo-
mentum being taken from the electronic spins. As we shall show, typical
non-vanishing matrix elements of the dipole–dipole interaction are roughly
one or two orders of magnitude less than those for spin exchange, which
involve the S1 · S2 term in (5.74).

Low-energy collisions

The scattering amplitude is determined by solving the Schrödinger equa-
tion in essentially the same way as was done for a single channel. It is
convenient to work in a basis of angular-momentum eigenstates of the form
|lmαβ〉. The quantum number l specifies the total orbital angular mo-
mentum due to the relative motion of the atoms, and m its projection on
some axis. Expressing the state in terms of this basis corresponds to the
partial wave expansion in the single-channel problem supplemented by the
channel label αβ specifying the electronic and nuclear spin state of the two
atoms. The result is a set of coupled second-order differential equations
for the different channels specified by the quantum numbers l,m, α, and
β. The picture of a low-energy collision that emerges from such calcu-
lations is that the two incoming atoms are initially in single-atom states
obtained by diagonalizing the hyperfine and Zeeman terms in Eq. (5.65). If
we forget for the moment about the dipole–dipole interaction, the interac-
tion at large separations is dominated by the van der Waals term, which



124 Interactions between atoms

does not mix different hyperfine states. However, for smaller separations
the central part of the interaction is different for triplet and singlet elec-
tronic spin states. As a simple model, let us assume that for separations
greater than some value R0 the interaction may be taken to be indepen-
dent of hyperfine state and therefore there is no mixing of the different
hyperfine states. At smaller separations, where the dependence of the in-
teraction on the electronic spin state becomes important, we shall neglect
the hyperfine interaction, and therefore the interaction depends only on the
electronic spin state. The wave function for the incoming particles at R0

may be expressed in terms of electronic singlet and triplet states, and then
for r < R0 the singlet and triplet states propagate in different ways. Fi-
nally, the outgoing wave at r = R0 must be re-expressed in terms of the
hyperfine states for two atoms. Because the potential for r < R0 depends
on the electronic spin state this will generally give rise to an outgoing wave
function with a hyperfine composition different from that of the incoming
state. In practice, a multi-channel calculation is necessary to obtain reli-
able quantitative results because the transition between the outer and inner
regions is gradual, not sharp. For a more detailed account, we refer to
Ref. [2].

A convenient way of summarizing data on low-energy scattering is in
terms of ficticious singlet and triplet scattering lengths, which are the scat-
tering lengths as for the singlet part of the central potential and at for
the triplet when the hyperfine splittings and the dipole–dipole interac-
tion are neglected. Since the long-range part of the interaction is well-
characterized, from these quantities it is possible to calculate scattering
lengths for arbitrary combinations of hyperfine states and the rates of in-
elastic collisions.

If both atoms occupy the same doubly polarized state F = Fmax = I+1/2
and mF = ±Fmax, the electron spins are either both up or both down.
Consequently the electronic spin state of the two atoms is a triplet, and
only the triplet part of the interaction contributes. For pairs of atoms in
other hyperfine states the electronic spin state is a superposition of singlet
and triplet components, and therefore both triplet and singlet parts of the
interaction play a role, and in particular they will mix different channels.

The coupling of channels has two effects. First, atoms can be scattered
between different magnetic substates. Since the trap potential depends on
the magnetic substate, this generally leads to loss of atoms from the trap,
as described in Sec. 4.6. Second, the elastic scattering amplitude and the
effective interaction are altered by the coupling between channels. We now
discuss these two topics in greater detail.
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5.4.1 Inelastic processes

Rates of processes may be calculated in terms of the scattering amplitude.
The differential cross section is the current per unit solid angle in the final
state divided by the flux in the initial state. With the wave function (5.68)
the flux in the entrance channel is the relative velocity vαβ = �kαβ/mr,
and the current in the exit channel is |fα′β′

αβ (kαβ ,k′
α′β′)|2v′α′β′ per unit solid

angle. The differential cross section is therefore

dσα′β′

αβ

dΩ
= |fα′β′

αβ (kαβ ,k′
α′β′)|2

v′α′β′

vαβ
= |fα′β′

αβ (kαβ ,k′
α′β′)|2

k′α′β′

kαβ
. (5.78)

The rate at which two atoms in states α and β and contained within a
volume V are scattered to states α′ and β′ is given by Kα′β′

αβ /V , where

Kα′β′

αβ = vαβ

∫
dΩ
dσα′β′

αβ

dΩ

=
2π
�
Nα′β′(E)

∫
dΩ
4π
|〈α′β′|T (k′

α′β′ ,kαβ ;E)|αβ〉|2. (5.79)

Here

Nα′β′(E) =
m2

rv
′
α′β′

2π2�3
(5.80)

is the density of final states of the relative motion per unit energy and per
unit volume. Equation (5.80) is equivalent to Eq. (2.5) for a single particle,
but with the mass of an atom replaced by the reduced mass and the particle
momentum by the relative momentum mrv

′
α′β′ . The relative velocity in the

final state is given by

v′α′β′ =
�k′α′β′

mr
=

[
2(E − εα′ − εβ′)

mr

]1/2

. (5.81)

In the Born approximation one replaces the T matrix by the potential itself,
and the result (5.79) then reduces to Fermi’s Golden Rule for the rate of
transitions. If either the incoming atoms are in the same internal state, or
the outgoing ones are in the same state, the T matrix must be symmetrized
or antisymmetrized according to the statistics of the atoms, as we described
earlier for elastic scattering (see Eq. (5.24)).

In a gas at temperatures high enough that the effects of quantum degen-
eracy can be neglected, the total rate of a process is obtained by multiplying
the rate (5.79) for a pair of particles by the distribution functions for atoms
in internal states α and β and then integrating over the momenta of the
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particles. This leads to equations for the rate of change of the densities of
atoms:

dnα

dt
=
dnβ

dt
= −dnα′

dt
= −dnβ′

dt
= −Kα′β′

αβ nαnβ. (5.82)

When the effects of degeneracy become important, statistical factors must
be included for the final states to take into account induced emission for
bosons and Pauli blocking for fermions.

The rate coefficients K are temperature dependent and are defined by

Kα′β′

αβ = Kα′β′

αβ =
2π
�
|〈α′β′|T |αβ〉|2Nα′β′(E) = σα′β′

αβ (E)vαβ , (5.83)

where the bar indicates an average over the distribution of the relative ve-
locities v of the colliding atoms and over angles for the final relative mo-
mentum. These coefficients have the dimensions of volume divided by time,
and a typical lifetime for an atom in state α to be lost by this process is
given by τα = 1/Kα′β′

αβ nβ.

Spin-exchange processes

To estimate the rate of processes that can proceed via the central part of the
interaction, we use the fact that the interaction may be written in the form
(5.74). If we adopt the simplified picture of a collision given earlier and
also neglect the hyperfine and magnetic dipole–dipole interactions during
the scattering process we may write the effective interaction for the spin
degrees of freedom as

Uex(r) =
4π�

2(at − as)
m

S1 ·S2 δ(r), (5.84)

which has the usual form of an exchange interaction. Here we have replaced
Ut −Us in (5.74) by the difference between the corresponding pseudopoten-
tials, following the same line of argument that led to Eq. (5.39). The matrix
elements of the T matrix are therefore given by

〈α′β′|T |αβ〉 =
4π�

2(at − as)
m

〈α′β′|S1·S2|αβ〉. (5.85)

For incoming atoms with zero kinetic energy the rate coefficient (5.83) is
therefore

Kα′β′

αβ = 4π(at − as)2v′α′β′ |〈α′β′|S1·S2|αβ〉|2. (5.86)

For hydrogen, the difference of the scattering lengths is of order a0, and
therefore for atoms in the upper hyperfine state, the rate coefficient is of
order 10−13 cm3 s−1 if the spin matrix element is of order unity. For alkali
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atoms the corresponding values are of order 10−11 cm3 s−1 because of the
larger scattering lengths. Since typical densities in experiments are of order
1013 cm−3 or more, the estimates for rate coefficients indicate that atoms
will be lost by exchange collisions in a fraction of a second. For atoms in
the lower hyperfine multiplet in low magnetic fields the rate coefficients are
generally smaller because of the reduced amount of phase space available to
the outgoing atoms.

The fact that rates of spin-exchange processes vary as (at − as)2 makes
it possible to deduce information about scattering lengths from data on the
lifetimes of atoms in traps. As we shall describe in Sec. 5.5, the lifetime of
a double condensate of 87Rb atoms was found to be unexpectedly long, and
this provided evidence for the triplet and singlet scattering lengths being
roughly equal.

Dipolar processes

Some transitions cannot occur via the central part of the interaction because
of angular momentum selection rules. For example, two atoms which are
both in the doubly polarized state |F = I + 1/2,mF = F 〉 cannot scatter to
any other channel because there are no other states with the same projection
of the total spin angular momentum. Consider next two atoms which are
both in the maximally stretched state |F = I − 1/2,mF = −F 〉 in a low
magnetic field. This state is partly electronic spin triplet and partly singlet.
Consequently, the central part of the interaction does have matrix elements
to states other than the original one. However if the nuclear magnetic mo-
ment is positive, as it is for the bosonic alkali isotopes we consider, these
other states have F = I + 1/2, and therefore they lie above the original
states by an energy equal to the hyperfine splitting. Therefore, for temper-
atures at which the thermal energy kT is less than the hyperfine splitting,
transitions to the upper hyperfine state are suppressed. Clouds of atoms con-
taining either the doubly polarized state or the maximally stretched state
can, however, decay via the magnetic dipole–dipole interaction, but rates
for dipolar processes are typically 10−2–10−4 times those for spin-exchange
processes, as we shall explain below. Similar arguments apply for the states
|F = I + 1/2,mF = −F 〉 and |F = I − 1/2,mF = F 〉. The doubly po-
larized state |F = I + 1/2,mF = F 〉 and the maximally stretched state
|F = I − 1/2,mF = −F 〉 have low inelastic scattering rates and, since they
can be trapped magnetically, these states are favoured for experiments on
dilute gases.

Polarized gases in which all atoms are either in the doubly polarized state
or the maximally stretched state with F = I−1/2 can decay via the magnetic



128 Interactions between atoms

dipole–dipole interaction. We shall estimate rate coefficients for dipole–
dipole relaxation of two incoming atoms with zero relative momentum using
the Born approximation, in which one replaces the T matrix in Eq. (5.83) by
the matrix element of the magnetic dipole–dipole interaction (5.75) between
an incoming state with relative momentum zero and an outgoing one with
relative momentum k′

α′β′ whose magnitude is defined by Eq. (5.81) for E =
εα + εβ.

If the relative momentum of the incoming atoms is zero, the result is

Kα′β′

αβ =
m2

4π�4
|〈α′β′|Umd(k′

α′β′ , 0)|αβ〉|2 v′α′β′ , (5.87)

where the bar denotes an average over directions of the final relative mo-
mentum. The wave function for the initial state, which has zero momentum,
is unity, and that for the final state is exp ik′

α′β′ ·r, and therefore the matrix
element of the magnetic dipole–dipole interaction (5.75) is

Umd(k′
α′β′ , 0) =

∫
drUmd(r)e

−ik′
α′β′ ·r, (5.88)

and it is an operator in the spin variables. A plane wave is given in terms
of spherical waves by [7, §34]

eik·r = 4π
∑
lm

iljl(kr)Y ∗
lm(k̂)Ylm(r̂), (5.89)

where jl is the spherical Bessel function and k̂ denotes a unit vector in
the direction of k. The expression (5.76) for the magnetic dipole–dipole
interaction shows that it has only contributions corresponding to an orbital
angular momentum l = 2, and consequently the matrix element reduces to

Umd(k′
α′β′ , 0) =

(
24
5π

)1/2

µ0µ
2
B

(∫
dr
j2(k′α′β′r)

r3

)∑
µ

Y ∗
2µ(k̂′

α′β′)Σ2,µ.

(5.90)
The integral containing the spherical Bessel function may easily be evaluated
using the fact that

jl(x) = (−1)lxl

(
1
x

d

dx

)l sinx
x
, (5.91)

and it is equal to 4π/3. The matrix element is thus

Umd(k′
α′β′ , 0) = 4π2

(
8

15π

)1/2
�

2re
me

∑
µ

Y ∗
2µ(k̂′

α′β′)Σ2,µ, (5.92)

since µ0µ
2
B = π�

2re/me, where re = e20/mec
2 = α2

fsa0 is the classical electron
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radius. We have introduced the length re so that the expression for the
matrix element resembles the effective interaction 4π�

2a/m for the central
part of the potential.

It is striking that this result is independent of the magnitude of the rela-
tive momentum in the final state. This is because of the slow fall-off of the
dipole–dipole interaction at large distances. By contrast the matrix element
for a short-range interaction having the same tensor structure as the mag-
netic dipole–dipole interaction depends on k′ and is proportional to k′2 for
small k′. The suppression of the matrix element in that case is due to the re-
duction by the centrifugal barrier of the wave function at atomic separations
less than the wavelength λ ∼ 1/k′ corresponding to the relative momentum
of the outgoing atoms. The matrix element for the dipole–dipole interaction
remains constant at small relative momenta because the main contribution
to the integral comes from separations of order λ ∼ 1/k′ where the magni-
tude of the Bessel function has its first (and largest) maximum. While the
value of the interaction is of order µ0µ

2
Bλ

−3 ∝ k′3 and therefore tends to
zero as k′ → 0, the volume of space in which the integrand has this magni-
tude is of order λ3, and the integral is therefore of order µ0µ

2
B ∼ �

2re/me,
which is independent of k′. The matrix element for spin-exchange processes
is of order 4π�

2(at− as)/m, and therefore the ratio of the magnitude of the
dipole matrix element to that for spin exchange is∣∣∣∣Umd

Uex

∣∣∣∣ ∼ Amp

me
α2

fs

a0
|at − as|

≈ A

10
a0

|at − as|
, (5.93)

if one neglects differences between the matrix elements of the spin operators.
This ratio is of order 10−1 for hydrogen, and for the alkalis it lies between
10−1 and 10−2 since scattering lengths for alkali atoms are of order 100 a0.

The rate coefficient for dipolar transitions is obtained by inserting the
matrix element (5.92) into the expression (5.79), and, because of the orthog-
onality of the spherical harmonics, for incoming particles with zero relative
momentum it is given by

Kα′β′

αβ =
m2v′α′β′

4π�4

∫
dΩ
4π
|〈α′β′|Umd(k′

α′β′ , 0)|αβ〉|2

=
32π2

15

(
mre
me

)2

v′α′β′

∑
µ

|〈α′β′|Σ2,µ|αβ〉|2. (5.94)

The states of greatest interest experimentally are the doubly polarized
state and, for atoms with a positive nuclear magnetic moment, the maxi-
mally stretched lower hyperfine state, since these cannot decay via the rel-
atively rapid spin-exchange processes. Detailed calculations for hydrogen
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give dipolar rate coefficients of order 10−15 cm3 s−1 or less depending on
the particular transition and the magnetic field strength [10]. Estimates for
alkali atoms are comparable for the doubly polarized state [11]. Dipolar
rates can be much greater or much less than the typical values cited above
because coupling between channels can give resonances, and also because
of phase-space limitations. The latter are important for atoms initially in
the lower hyperfine multiplet, for example a maximally stretched state. The
phase space available is reflected in the factor v′α′β′ in Eq. (5.94). In this case
the relative velocity in the final state is due solely to the Zeeman splitting,
and not the hyperfine interaction as it is for collisions between two doubly
polarized atoms. Since v′α′β′ ∝ B1/2 for small fields, the dipole rate vanishes
in the limit of low magnetic fields. Consequently, these states are attrac-
tive ones for experimental study. In experiments on alkali atoms, dipolar
processes do not generally limit the lifetime. However, for hydrogen the den-
sities achieved are so high that the characteristic time for the dipolar process
is of order one second, and this process is the dominant loss mechanism, as
we mentioned in Sec. 4.7. For the hydrogen atom, which has nuclear spin
1/2, there is only one lower hyperfine state (F = 0) and it is a high-field
seeker. Consequently, for hydrogen, dipolar losses in magnetic traps cannot
be avoided by working with a state in the lower hyperfine multiplet.

In the heavier alkalis Rb and Cs, relativistic effects are important and they
provide another mechanism for losses [12]. This is the spin–orbit interaction,
which acting in second order gives rise to transitions like those that can occur
via the magnetic dipole–dipole interaction. The sign of the interaction is
opposite that of the dipolar interaction. In Rb, the second-order spin–orbit
matrix element is smaller in magnitude than that for the dipole process, and
the result is that the inelastic rate coefficient for the doubly polarized and
maximally stretched states are decreased compared with the result for the
dipolar interaction alone. For Cs, with its higher atomic number, spin–orbit
effects are larger and, while still of opposite sign compared with the dipolar
interaction, they are so large that they overwhelm the dipolar contribution
and give an increased inelastic scattering rate. To date, these losses have
thwarted attempts to observe Bose–Einstein condensation of cesium atoms.

Three-body processes

Thus far in this section we have only considered two-body reactions, but as
we indicated in Chapter 4, three-body recombination puts stringent limits
on the densities that can be achieved in traps. The rate of this process is
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given by the equation
dn

dt
= −Ln3, (5.95)

where L is the rate coefficient and n is the density of the atomic species. The
rate is proportional to the third power of the density because the process is a
three-body one, and the probability of three atoms being close to each other
varies as n3. The rate coefficients L for alkali atoms have been calculated by
Moerdijk et al. [13], who find them to be 2.6× 10−28 cm6 s−1 for 7Li, 2.0×
10−28 cm6 s−1 for 23Na and 4×10−30 cm6 s−1 for 87Rb. The magnitude of the
three-body rates for the alkalis may be crudely understood by noting that
for a three-body process to occur, three atoms must be within a volume r30,
where r0 is the distance out to which the two-body interaction is significant.
The probability of an atom being within a volume r30 is of order nr30, and
thus the rate of three-body processes compared with that of two-body ones
is roughly given by the same factor, if we forget about differences between
phase space for the two processes. Therefore the rate coefficient for three-
body processes is of order r30 compared with the rate coefficient for two-body
processes, that is L ∼ Kr30, assuming that all processes are allowed to occur
via the central part of the interaction. In Sec. 5.1 we showed for the alkalis
that r0 ∼ 102a0, which, together withK ∼ 10−11 cm3 s−1 (see below (5.86)),
gives a crude estimate of the three-body rate coefficient of order 10−30 cm6

s−1. For hydrogen, the rate is very much smaller, of order 10−38 cm6 s−1,
because of the much weaker interatomic potential. Consequently, three-body
processes can be important in experiments with alkali atoms, but not with
hydrogen. Rates of three-body interactions, like those of two-body ones, are
affected by the identity of the atoms participating in the process. In Sec.
13.2 we shall demonstrate how the rate of three-body processes is reduced
by the appearance of a condensate.

5.4.2 Elastic scattering and Feshbach resonances

A qualitative difference compared with the single-channel problem is that the
scattering amplitude is generally not real at k = 0 if there are other open
channels. However, this effect is rather small under typical experimental
conditions for alkali atoms at low temperatures because the phase space
available for real transitions is small, and to a very good approximation
elastic scattering can still be described in terms of a real scattering length,
as in the single-channel theory. Another effect is that elastic scattering in one
channel can be altered dramatically if there is a low-energy bound state in a
second channel which is closed. This phenomenon, which is referred to as a
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Feshbach resonance, was first investigated in the context of nuclear physics
[14]. These resonances have become an important tool in investigations of
the basic atomic physics of cold atoms, and, because they make it possible
to tune scattering lengths and other quantities by adjusting an external
parameter such as the magnetic field, they have applications in experiments
on trapped gases.

Feshbach resonances appear when the total energy in an open channel
matches the energy of a bound state in a closed channel, as illustrated in
Fig. 5.4. To first order in the coupling between open and closed channels the
scattering is unaltered, because there are, by definition, no continuum states
in the closed channels. However, two particles in an open channel can scatter
to an intermediate state in a closed channel, which subsequently decays to
give two particles in one of the open channels. Such second-order processes
are familiar from our earlier treatments of the atomic polarizability in Sec.
3.3, and therefore from perturbation theory one would expect there to be a
contribution to the scattering length having the form of a sum of terms of
the type

a ∼ C

E − Eres
, (5.96)

where E is the energy of the particles in the open channel and Eres is the
energy of a state in the closed channels. Consequently there will be large
effects if the energy E of the two particles in the entrance channel is close
to the energy of a bound state in a closed channel. As one would expect
from second-order perturbation theory for energy shifts, coupling between
channels gives rise to a repulsive interaction if the energy of the scattering
particles is greater than that of the bound state, and an attractive one if
it is less. The closer the energy of the bound state is to the energy of
the incoming particles in the open channels, the larger the effect on the
scattering. Since the energies of states depend on external parameters, such
as the magnetic field, these resonances make it possible to tune the effective
interaction between atoms.

Basic formalism

We now describe the general formalism for treating Feshbach resonances.
The space of states describing the spatial and spin degrees of freedom may
be divided into two subspaces, P , which contains the open channels, and Q,
which contains the closed ones. We write the state vector |Ψ〉 as the sum of
its projections onto the two subspaces,

Ψ = |ΨP 〉+ |ΨQ〉, (5.97)
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Fig. 5.4. Schematic plot of potential energy curves for two different channels that
illustrate the formation of Feshbach resonances. Eth is the threshold energy,
Eq. (5.70), for the entrance channel, and Eres is the energy of a state in a closed
channel.

where |ΨP 〉 = P|Ψ〉 and |ΨQ〉 = Q|Ψ〉. Here P and Q are projection oper-
ators for the two subspaces, and they satisfy the conditions P +Q = 1 and
PQ = 0.

By multiplying the Schrödinger equation H|Ψ〉 = E|Ψ〉 on the left by
P and Q we obtain two coupled equations for the projections of the state
vector onto the two subspaces:

(E −HPP )|ΨP 〉 = HPQ|ΨQ〉 (5.98)

and

(E −HQQ)|ΨQ〉 = HQP |ΨP 〉, (5.99)

where HPP = PHP, HQQ = QHQ, HPQ = PHQ and HQP = QHP.
The operator HPP is the Hamiltonian in the P subspace, HQQ that in the
Q subspace, and HPQ and HQP represent the coupling between the two
subspaces. The formal solution of (5.99) is

|ΨQ〉 = (E −HQQ + iδ)−1HQP |ΨP 〉, (5.100)

where we have added a positive infinitesimal imaginary part δ in the denom-
inator to ensure that the scattered wave has only outgoing terms. When Eq.
(5.100) is inserted into (5.98), the resulting equation for |ΨP 〉 becomes(

E −HPP −H ′
PP

)
|ΨP 〉 = 0. (5.101)
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Here

H ′
PP = HPQ(E −HQQ + iδ)−1HQP (5.102)

is the term that describes Feshbach resonances. It represents an effective
interaction in the P subspace due to transitions from that subspace to the Q
subspace and back again to the P subspace. In agreement with our earlier
qualitative arguments, it has a form similar to the energy shift in second-
order perturbation theory, and corresponds to a non-local potential in the
open channels. Due to the energy dependence of the interaction, it is also
retarded in time.

It is convenient to divide the diagonal partsHPP +HQQ of the Hamiltonian
into a term H0 independent of the separation of the two atoms, and an
interaction contribution. Here H0 is the sum of the kinetic energy of the
relative motion and the hyperfine and Zeeman terms, Eq. (3.8). We write

HPP = H0 + U1, (5.103)

where U1 is the interaction term for the P subspace. Equation (5.101) may
be rewritten as

(E −H0 − U) |ΨP 〉 = 0, (5.104)

where the total effective atom–atom interaction in the subspace of open
channels is given by

U = U1 + U2 (5.105)

with

U2 = H ′
PP . (5.106)

A simple example

For the purpose of illustration, let us begin by considering the T matrix
when there is no interaction in the open channels if the open and closed
channels are not coupled. We also treat U2 in the first Born approximation,
which corresponds to calculating the matrix element of U2 for plane-wave
states. The diagonal element of the T matrix in the channel αβ may be
evaluated by using the identity 1 =

∑
n |n〉〈n|, where the states |n〉 form

a complete set.5 If one takes for the states the energy eigenstates in the
absence of coupling between channels, the result for two atoms with zero

5 In the sum there are both bound states and continuum states. The normalization condition
for the bound states is

∫
dr|ψn(r)|2 = 1, and the continuum states are normalized as usual.
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relative momentum in the incoming state is

〈αβ, 0|T |αβ, 0〉 =
∑
n

|〈n|HQP |αβ, 0〉|2
Eth(αβ)− En + iδ

. (5.107)

Here Eth(αβ) is the threshold energy (5.70), and we denote the eigenstates
of the Hamiltonian HQQ by En and the state vectors by |n〉. This result has
the form anticipated, and it shows how the scattering length can be large if
the energy of the two scattering particles is close to the energy of a state in
a closed channel.

General solution

Before deriving more general results, we describe their key features. The ex-
pression for the scattering length retains essentially the same form when the
interaction U1 is included, the only difference being that the open-channel
plane-wave state |αβ, 0〉 is replaced by a scattering state which is an energy
eigenstate of the Hamiltonian including the potential U1. When higher-
order terms in U2 are taken into account, the energy of the resonant state is
shifted, and the state may acquire a non-zero width due to decay to states
in the open channels.

To solve the problem more generally we calculate the T matrix corre-
sponding to the interaction given in Eq. (5.101). As before, Eqs. (5.71) and
(5.72), we write the Lippmann–Schwinger equation (5.30) as an operator
equation

T = U + UG0T. (5.108)

The quantity G0 is given by

G0 = (E −H0 + iδ)−1, (5.109)

where H0 is the Hamiltonian (5.65). It represents the free propagation of
atoms, and is the Green function for the Schrödinger equation. The formal
solution of (5.108) is

T = (1− UG0)−1U = U(1−G0U)−1. (5.110)

The second equality in (5.110) may be proved by multiplying (1−UG0)−1U

on the right by G0G
−1
0 and using the fact that UG0 commutes with (1 −

UG0)−1, together with the identities

UG0(1− UG0)−1G−1
0 = U [G0(1− UG0)G−1

0 ]−1 = U(1−G0U)−1. (5.111)

By inserting (5.109) into the first equality in (5.110) we obtain

T = (E + iδ −H0)(E + iδ −H0 − U)−1U. (5.112)
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Putting A = E + iδ −H0 − U and B = U2 in the matrix identity

(A−B)−1 = A−1(1 +B(A−B)−1) (5.113)

one finds

(E+iδ−H0−U)−1 = (E+iδ−H0−U1)−1[1+U2(E+iδ−H0−U)−1], (5.114)

which when inserted into Eq. (5.112) gives the useful result

T = T1 + (1− U1G0)−1U2(1−G0U)−1. (5.115)

Here T1, which satisfies the equation T1 = U1 + U1G0T1, is the T matrix in
the P subspace if transitions to the Q subspace are neglected.

Let us now interpret the result (5.115) by considering its matrix elements
between plane-wave states with relative momenta k and k′:

〈k′|T |k〉 = 〈k′|T1|k〉+ 〈k′|(1− U1G0)−1U2(1−G0U)−1|k〉. (5.116)

The scattering amplitude is generally a matrix labelled by the quantum
numbers of the entrance and exit channels, but for simplicity we suppress the
indices. Acting on a plane-wave state for the relative motion |k〉 the operator
ΩU = (1−G0U)−1 generates an eigenstate of the Hamiltonian H0+U , as one
may verify by operating on the state with the Hamiltonian. This result is
equivalent to Eqs. (5.26) and (5.27) for the single-channel problem. At large
separations the state ΩU |k〉 consists of a plane wave and a spherical wave,
which is outgoing because of the iδ in G0. We denote this state by |k;U,+〉,
the plus sign indicating that the state has outgoing spherical waves. The
operators U1 and H0 are Hermitian and therefore (1− U1G0)† = 1−G−

0 U1

for E real, where G−
0 = (E −H0 − iδ)−1 is identical with G0 defined in Eq.

(5.109) except that the sign of the infinitesimal imaginary part is opposite.
We may thus write

〈k′|(1− U1G0)−1 = [(1−G−
0 U1)−1|k′〉]† ≡ [|k′;U1,−〉]†. (5.117)

As a consequence of the difference of the sign of δ, the state contains incom-
ing spherical waves at large distances, and this is indicated by the minus
sign in the notation for the eigenstates.6 The scattering amplitude (5.116)
may therefore be written as

〈k′|T |k〉 = 〈k′|T1|k〉+ 〈k′;U1,−|U2|k;U,+〉. (5.118)

This is the general expression for the scattering amplitude in the P subspace.
6 If the relative velocity of the incoming particles is zero and provided real scattering between

different open channels may be neglected, scattering states with ‘outgoing’ spherical waves are
the same as those with ‘incoming’ ones since there are no phase factors ∼ e±ikr, and therefore
both functions behave as 1 − a/r at large distances.
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Tuning effective interactions

We now apply the above results, and we begin by considering the contri-
bution of first order in U2. This is equivalent to replacing U by U1 in Eq.
(5.116), which gives

T � T1 + (1− U1G0)−1U2(1−G0U1)−1. (5.119)

The matrix elements between plane-wave states are given by

〈k′|T |k〉 = 〈k′|T1|k〉+ 〈k′;U1,−|U2|k;U1,+〉. (5.120)

This result differs from the simple example with U1 = 0 that we considered
above in two respects: the interaction in the P subspace gives a contribu-
tion T1 to the T matrix, and the contribution due to the U2 term is to be
evaluated using scattering states that take into account the potential U1,
not plane waves.

Let us now neglect coupling between the open channels. The scattering in
a particular channel for particles with zero relative velocity is then specified
by the scattering length, which is related to the T matrix by the usual factor.
As explained in footnote 5, we may then neglect the difference between the
scattering states with incoming and outgoing spherical waves and we shall
denote the state simply by |ψ0〉. We again evaluate the matrix element of
U2, defined in Eqs. (5.102) and (5.106), by inserting the unit operator and
find

4π�
2

m
a =

4π�
2

m
aP +

∑
n

|〈ψn|HQP |ψ0〉|2
Eth − En

, (5.121)

where the sum is over all states in the Q subspace and aP is the scattering
length when coupling between open and closed channels is neglected.

If the energy Eth is close to the energy Eres of one particular bound state,
contributions from all other states will vary slowly with energy, and they,
together with the contribution from the potential U1, may be represented
by a non-resonant scattering length anr whose energy dependence may be
neglected. However in the resonance term the energy dependence must be
retained. The scattering length may then be written as

4π�
2

m
a =

4π�
2

m
anr +

|〈ψres|HQP |ψ0〉|2
Eth − Eres

. (5.122)

This displays the energy dependence characteristic of a Feshbach resonance.
Atomic interactions may be tuned by exploiting the fact that the energies

of states depend on external parameters, among which are the strengths of
magnetic and electric fields. For definiteness, let us consider an external
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magnetic field. We imagine that the energy denominator in Eq. (5.122)
vanishes for a particular value of the magnetic field, B = B0. Expanding
the energy denominator about this value of the magnetic field we find

Eth − Eres ≈ (µres − µα − µβ)(B −B0), (5.123)

where

µα = −∂εα
∂B

and µβ = −∂εβ
∂B

(5.124)

are the magnetic moments of the two atoms in the open channel, and

µres = −∂Eres

∂B
(5.125)

is the magnetic moment of the molecular bound state. The scattering length
is therefore given by

a = anr

(
1 +

∆B
B −B0

)
(5.126)

where the width parameter ∆B is given by

∆B =
m

4π�2anr

|〈ψres|HQP |ψ0〉|2
(µres − µα − µβ)

. (5.127)

This shows that the characteristic range of magnetic fields over which the
resonance significantly affects the scattering length depends on the magnetic
moments of the states, and on the coupling between channels. Consequently,
measurement of Feshbach resonances provides a means of obtaining infor-
mation about interactions between atoms. Equation (5.126) shows that in
this approximation the scattering length diverges to ±∞ as B approaches
B0. Because of the dependence on 1/(B − B0), large changes in the scat-
tering length can be produced by small changes in the field. It is especially
significant that the sign of the interaction can be changed by a small change
in the field.

Higher-order contributions in U2 may be included, and the exact solution
(5.116) may be expressed in the form

T = T1 +(1−U1G0)−1HPQ(E−HQQ−H ′
QQ)−1HQP (1−U1G0)−1, (5.128)

where

H ′
QQ = HQP (E −HPP )−1HPQ. (5.129)

By comparing this result with the earlier one (5.119) we see that the only
effect of higher-order terms in U2 is to introduce an extra contribution H ′

QQ

in the Hamiltonian acting in the Q subspace. This effective interaction
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in the Q subspace takes into account the influence of coupling to the open
channels, and it is therefore the analogue of the interaction H ′

PP in the open
channels. Physically it has two effects. One is to shift the energies of the
bound states, and the second is to give them a non-zero width �Γres if decay
into open channels is possible. The width leads to a scattering amplitude of
the Breit–Wigner form ∼ 1/(Eth−Eres + i�Γres/2). For |Eth−Eres| � �Γres

the scattering amplitude shows the 1/(Eth−Eres) behaviour predicted by the
simpler calculations. For |Eth − Eres| � �Γres the divergence is cut off and
the scattering amplitude behaves smoothly. However, the width of resonant
states close to the threshold energy in the open channel is generally very
small because of the small density of final states, and Feshbach resonances
for cold atoms are consequently very sharp.

Detailed calculations of Feshbach resonances have been made for lithium
and sodium, using the methods outlined above, by Moerdijk et al. [15]. Fesh-
bach resonances have been investigated experimentally for 23Na [16], 85Rb
[17, 18] and 133Cs [5]. Level shifts due to the interaction of atoms with a
laser field can also induce Feshbach resonances, as has recently been observed
in sodium [19]. As we shall describe in Sec. 5.5, Feshbach resonances are
becoming a key tool in extracting information about interactions between
atoms. In addition they provide a means of varying the scattering length
almost at will, and this allows one to explore properties of condensates
under novel conditions. For example, in the experiment by Cornish et al.
on 85Rb described in Ref. [18] the effective interaction was changed from
positive to negative by varying the magnetic field, and this caused the cloud
to collapse.

5.5 Determination of scattering lengths

In this section we survey the methods used to determine scattering lengths
of alkali atoms. Most experiments do not give directly the value of the
scattering length, but they give information about atom–atom interactions,
from which scattering lengths may be calculated. The general framework in
which this is done was described immediately preceding Sec. 5.4.1.

Measurement of the collision cross section

For identical bosons, the cross section for elastic collisions at low energy
is given by 8πa2, and therefore a measurement of the elastic cross section
gives the magnitude of the scattering length, but not its sign. In Sec. 11.3
we shall describe how the scattering length is related to the damping rate
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Fig. 5.5. Schematic representation of potential energy curves to illustrate the
method of photoassociative spectroscopy.

for collective modes and temperature anisotropies. One difficulty of this
technique is that it requires knowledge of the particle density.

Molecular spectra

Measurements of the frequencies of transitions between molecular bound
states of two polarized atoms give information about the interaction po-
tential. However, this method is not particularly sensitive to the long-range
part of the interaction, which is crucial for determining the scattering length.

Photoassociative spectroscopy

The understanding of interactions between cold atoms has advanced rapidly
over the past decade due to the use of photoassociative spectroscopy, in
which one measures the rate at which two interacting ground-state atoms
in an unbound state are excited by means of a laser to a molecular state
in which one of the atoms is in a P state. The principle of the method is
illustrated in Fig. 5.5. For two atoms in the ground state, the potential is of
the van der Waals form (∼ r−6) at large distances, as described in Sec. 5.1.
This is represented by the lower curve, labelled “S + S”. When one atom is
excited to a P state, the electric dipole interaction, Eq. (5.3), gives a first-
order contribution to the energy because the state with one atom excited
and the other in the ground state is degenerate with the state in which the
two atoms are interchanged, and this varies as r−3 at large distances, as
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does the dipole interaction itself. Its sign can be either positive or negative,
depending on the symmetry of the excited state of the two atoms. The
potentials for this case are labelled in the figure by “S + P”.

The long-range part of the potential when one atom is excited is very much
stronger than the van der Waals interaction and, consequently, the excited-
state potential, when attractive, has many bound states, some of which
have sizes much greater than those of the bound states for the ground-state
potential. The transition rate to an excited molecular state is given in terms
of the matrix element of the perturbation due to the laser, between the state
with two ground-state atoms and the excited state. The spatial variation of
the ground-state wave function is generally slow compared with that of the
excited molecular state, since the excited-state potential is much stronger.
Consequently, the largest contribution to the matrix element comes from
the region where the relative momentum of the two atoms in the excited
state is small, that is near the classical turning points of the motion. In
regions where the relative momentum is larger, the product of the two wave
functions oscillates rapidly in space, and, when integrated over space, gives
little contribution to the matrix element. Thus the transition probability
depends sensitively on the magnitude of the ground-state wave function near
the turning point of the motion in the excited molecular state. The position
of the turning point depends on the molecular state under consideration, and
therefore the variation of the strengths of transitions to different molecular
states, which have different energies and are therefore resonant at different
laser frequencies, shows strong features due the oscillations in the ground-
state wave function for two atoms. From a knowledge of the excited-state
potential and the transition rates for a number of molecular excited states
it is possible to deduce properties of the ground-state wave function and
scattering length.

Excited molecular states may decay to give atoms which have kinetic ener-
gies high enough that they can overcome the trapping potential. Therefore,
one way of detecting transitions to excited molecular states is by measuring
trap loss. Alternatively, a second light pulse may be used to excite the atom
further, possibly to an ionized state which is easily detectable. Extensive
discussions of the method and developments of it are given in Refs. [1] and
[2].

Other methods

Other measurements give information about atomic interactions. Since rates
of inelastic processes are sensitive to the atomic interaction, especially to
differences between singlet and triplet scattering lengths, measurement of
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them can give information about the potential. This has been particularly
important for 87Rb. Surprisingly, it was found experimentally that a double
condensate of atoms in the F = 2,mF = 2 and F = 1,mF = −1 states
lived much longer than suggested by an order-of-magnitude estimate of the
lifetime due to exchange collisions based on Eq. (5.86) with the assumption
that |at−as| is comparable to |at|. The explanation for this is that the triplet
and singlet scattering lengths are nearly equal. This means physically that
the singlet and triplet components of the wave function are essentially in
phase again when the two particles have been scattered, and consequently
they reconstruct the initial hyperfine state, with only a small admixture of
other hyperfine states.

As explained in Sec. 5.4.2, the positions of Feshbach resonances and the
width ∆B, Eq. (5.127), are sensitive to the interatomic interaction. There-
fore by studying these resonances it is possible to deduce properties of inter-
atomic potentials. Techniques that make use of the properties of Feshbach
resonances are becoming increasingly important in extracting information
about potentials, as is exemplified by the discussion of results for Rb isotopes
and 133Cs given below.

5.5.1 Scattering lengths for alkali atoms and hydrogen

Below we list current values of the scattering lengths for hydrogen and the
members of the alkali series. The reader is referred to Ref. [2] and the original
literature for further discussion. The triplet scattering length is denoted by
at, the singlet one by as, and that for two atoms in the maximally stretched
lower hyperfine state F = I − 1/2,mF = −(I − 1/2) by ams. All scattering
lengths are given in atomic units (1 a.u. = a0 = 4πε0�2/mee

2 ≈ 0.0529 nm).

Hydrogen

The hydrogen atom is sufficiently simple that scattering lengths may be
calculated reliably from first principles. Recent calculations give at = 1.2
[20] and as = 0.41 [21].

Lithium

Scattering lengths for the lithium isotopes have been reported by Abraham
et al. [22], who employed photoassociative spectroscopy.

6Li For this fermion they obtained as = 45.5± 2.5 and at = −2160± 250,
the latter exceeding by more than one order of magnitude the estimate based
on the dimensional arguments of Sec. 5.1.
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7Li They found as = 33 ± 2 and at = −27.6 ± 0.5. As we shall see in
Chapter 6, the negative value of the triplet scattering length for 7Li prevents
the formation of a condensate with more than a few thousand atoms.

Sodium
23Na Scattering lengths have been derived by Tiesinga et al. [23] from
photoassociative spectroscopy data. They found at = 85 ± 3 and ams =
52±5. A more recent analysis of different types of data gives at = 65.3±0.9,
as = 19.1± 2.1, and ams = 55.4± 1.2 [24].

Potassium

Scattering lengths for potassium isotopes have been derived from photoas-
sociative spectroscopy by Bohn et al. [25]. Their results are:

39K at = −17± 25, as = 140+3
−6, and ams = −20+42

−64.

40K at = 194+114
−35 and as = 105+2

−3.

41K at = 65+13
−8 , as = 85± 2, and ams = 69+14

−9 .

The results are somewhat different from earlier ones obtained from molecular
spectroscopy [26, 27].

Rubidium
85Rb From photoassociative spectroscopy and study of a Feshbach reso-
nance, Roberts et al. found at = −369± 16 and as = 2400+600

−350 [18]. Vogels
et al. found ams = −450± 140 from photoassociative spectroscopy [28].

87Rb All the scattering lengths are closely equal. Roberts et al. found
at = 106± 4 and as = 90± 1 from the same kinds of data as they used for
the lighter isotope [18]. From inelastic scattering data obtained with the
double condensate and from photoassociative spectroscopy Julienne et al.
found ams = 103± 5 [29].

Cesium
133Cs The cross section for the scattering of 133Cs atoms in the doubly
polarized state, F = 4,mF = 4, was measured by Arndt et al. [30] in the
temperature range from 5 to 60 µK. It was found to be inversely propor-
tional to the temperature, characteristic of resonant scattering (|a| → ∞).
Since the cross section did not saturate at the lowest temperatures, the
measurements yield only a lower bound on the magnitude of the scattering
length, |at| ≥ 260. Chin et al. [5] have made high-resolution measurements
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of a large number of Feshbach resonances, from which Leo et al. [6] deduced
the values at = 2400 ± 100 and as = 280 ± 10. The calculations of Ref.
[6] indicate that for some choices of the magnetic field, the ratio of elastic
scattering cross sections to inelastic ones can be large enough that the possi-
bility of Bose–Einstein condensing Cs atoms by evaporative cooling cannot
be ruled out.

Problems

Problem 5.1 Use the model of Sec. 5.3 to determine the value of rc/r0 at
which the first bound state appears. In the light of this calculation, discuss
why two spin-polarized hydrogen atoms in a triplet electronic state do not
have a bound state. (The triplet-state potential for hydrogen is positive for
distances less than approximately 7a0.)

Problem 5.2 Calculate the rate of the process d + d → a + a for hy-
drogen atoms at zero temperature. This process was discussed in Sec. 4.7,
and expressions for the states are given in Eqs. (3.24)–(3.27). Use the Born
approximation and take into account only the magnetic dipole–dipole inter-
action. Give limiting results for low magnetic fields (B � ∆Ehf/µB) and
high magnetic fields.

Problem 5.3 Make numerical estimates of rates of elastic scattering, and
inelastic two- and three-body processes for hydrogen and alkali atoms at low
temperatures under typical experimental conditions.
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6

Theory of the condensed state

In the present chapter we consider the structure of the Bose–Einstein con-
densed state in the presence of interactions. Our discussion is based on the
Gross–Pitaevskii equation [1], which describes the zero-temperature prop-
erties of the non-uniform Bose gas when the scattering length a is much
less than the mean interparticle spacing. We shall first derive the Gross–
Pitaevskii equation at zero temperature by treating the interaction between
particles in a mean-field approximation (Sec. 6.1). Following that, in Sec.
6.2 we discuss the ground state of atomic clouds in a harmonic-oscillator
potential. We compare results obtained by variational methods with those
derived in the Thomas–Fermi approximation, in which the kinetic energy
operator is neglected in the Gross–Pitaevskii equation. The Thomas–Fermi
approximation fails near the surface of a cloud, and in Sec. 6.3 we calculate
the surface structure using the Gross–Pitaevskii equation. Finally, in Sec.
6.4 we determine how the condensate wave function ‘heals’ when subjected
to a localized disturbance.

6.1 The Gross–Pitaevskii equation

In the previous chapter we have shown that the effective interaction between
two particles at low energies is a constant in the momentum representation,
U0 = 4π�

2a/m. In coordinate space this corresponds to a contact interac-
tion U0δ(r− r′), where r and r′ are the positions of the two particles. To
investigate the energy of many-body states we adopt a Hartree or mean-field
approach, and assume that the wave function is a symmetrized product of
single-particle wave functions. In the fully condensed state, all bosons are
in the same single-particle state, φ(r), and therefore we may write the wave
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function of the N -particle system as

Ψ(r1, r2, . . . , rN ) =
N∏

i=1

φ(ri). (6.1)

The single-particle wave function φ(ri) is normalized in the usual way,∫
dr|φ(r)|2 = 1. (6.2)

This wave function does not contain the correlations produced by the inter-
action when two atoms are close to each other. These effects are taken into
account by using the effective interaction U0δ(r − r′), which includes the
influence of short-wavelength degrees of freedom that have been eliminated,
or integrated out, as described in Sec. 5.2.1. In the mean-field treatment, we
shall not take into account explicitly interactions between degrees of free-
dom corresponding to length scales less than the interparticle spacing, and
therefore we can effectively set the cut-off wave number kc to zero. The
effective interaction is thus equal to U0, the T matrix at zero energy, and
the effective Hamiltonian may be written

H =
N∑

i=1

[
p2

i

2m
+ V (ri)

]
+ U0

∑
i<j

δ(ri − rj), (6.3)

V (r) being the external potential. The energy of the state (6.1) is given by

E = N
∫
dr

[
�

2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 +

(N − 1)
2

U0|φ(r)|4
]
. (6.4)

In the Hartree approximation, all atoms are in the state whose wave func-
tion we denote by φ. In the true wave function, some atoms will be in states
with more rapid spatial variation, due to the correlations at small atomic
separations, and therefore the total number of atoms in the state φ will be
less than N . However, as we shall demonstrate in Sec. 8.1 from microscopic
theory for the uniform Bose gas, the relative reduction of the number of
particles in the condensate, the so-called depletion of the condensate due
to interactions, is of order (na3)1/2, where n is the particle density. As a
measure of the particle separation we introduce the radius rs of a sphere
having a volume equal to the average volume per particle. This is related
to the density by the equation

n =
1

(4π/3)r3s
. (6.5)

The depletion is thus of order (a/rs)3/2 which is typically of order one per
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cent or less in experiments performed to date, and therefore depletion of the
condensate due to interactions may be neglected under most circumstances.

We begin by considering the uniform Bose gas. In a uniform system of
volume V , the wave function of a particle in the ground state is 1/V 1/2, and
therefore the interaction energy of a pair of particles is U0/V . The energy
of a state with N bosons all in the same state is this quantity multiplied by
the number of possible ways of making pairs of bosons, N(N − 1)/2. In this
approximation, the energy is

E =
N(N − 1)

2V
U0 ≈

1
2
V n2U0, (6.6)

where n = N/V . In writing the last expression we have assumed that
N � 1.

It is convenient to introduce the concept of the wave function of the con-
densed state,

ψ(r) = N1/2φ(r). (6.7)

The density of particles is given by

n(r) = |ψ(r)|2, (6.8)

and, with the neglect of terms of order 1/N , the energy of the system may
therefore be written as

E(ψ) =
∫
dr

[
�

2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1
2
U0|ψ(r)|4

]
. (6.9)

To find the optimal form for ψ, we minimize the energy (6.9) with respect
to independent variations1 of ψ(r) and its complex conjugate ψ∗(r) subject
to the condition that the total number of particles

N =
∫
dr|ψ(r)|2 (6.10)

be constant. The constraint is conveniently taken care of by the method
of Lagrange multipliers. One writes δE − µδN = 0, where the chemical
potential µ is the Lagrange multiplier that ensures constancy of the particle
number and the variations of ψ and ψ∗ may thus be taken to be arbitrary.
This procedure is equivalent to minimizing the quantity E − µN at fixed µ.
Equating to zero the variation of E − µN with respect to ψ∗(r) gives

− �
2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r), (6.11)

1 ψ is given in terms of two real functions, its real and imaginary parts. In carrying out the
variations, the real and imaginary parts should be considered to be independent. This is
equivalent to regarding ψ and ψ∗ as independent quantities.
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which is the time-independent Gross–Pitaevskii equation. This has the form
of a Schrödinger equation in which the potential acting on particles is the
sum of the external potential V and a non-linear term U0|ψ(r)|2 that takes
into account the mean field produced by the other bosons. Note that the
eigenvalue is the chemical potential, not the energy per particle as it is for
the usual (linear) Schrödinger equation. For non-interacting particles all in
the same state the chemical potential is equal to the energy per particle, but
for interacting particles it is not.

For a uniform Bose gas, the Gross–Pitaevskii equation (6.11) is

µ = U0|ψ(r)|2 = U0n, (6.12)

which agrees with the result of using the thermodynamic relation µ =
∂E/∂N to calculate the chemical potential from the energy of the uniform
state, Eq. (6.6).

6.2 The ground state for trapped bosons

We now examine the solution of the Gross–Pitaevskii equation for bosons
in a trap [2]. For definiteness, and because of their experimental relevance,
we shall consider harmonic traps, but the formalism may easily be applied
to more general traps.

Before embarking on detailed calculations let us consider qualitative prop-
erties of the solution. For simplicity, we neglect the anisotropy of the oscil-
lator potential, and take it to be of the form V = mω2

0r
2/2. If the spatial

extent of the cloud is ∼ R, the potential energy of a particle in the oscillator
potential is ∼ mω2

0R
2/2, and the kinetic energy is of order �

2/2mR2 per par-
ticle, since a typical particle momentum is of order �/R from Heisenberg’s
uncertainty principle. Thus in the absence of interactions, the total energy
varies as 1/R2 for small R and as R2 for large R, and it has a minimum
when the kinetic and potential energies are equal. The corresponding value
of the radius of the cloud is of order

aosc =
(

�

mω0

)1/2

, (6.13)

which is the characteristic quantum-mechanical length scale for the harmonic
oscillator. This result is what one would anticipate, because we have made
what amounts to a variational calculation of the ground state of a single
particle in an oscillator potential.

We now consider the effect of interactions. A typical particle density
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is n ∼ N/R3, and the interaction energy of a particle is therefore of or-
der nU0 ∼ U0N/R

3. For repulsive interactions, the effect of an additional
contribution to the energy varying as R−3 shifts the minimum of the total
energy to larger values of R, and consequently, for increasing values of Na,
the kinetic energy term becomes less important. It is instructive to investi-
gate a strong-coupling limit, in which the kinetic energy may be neglected.
The equilibrium size is found by minimizing the sum of the potential and
interaction energies, and this occurs when the two contributions to the en-
ergy are of the same order of magnitude. By equating the two energies, one
finds the equilibrium radius to be given by

R ∼ aosc
(

Na
aosc

)1/5

, (6.14)

and the energy per particle is

E

N
∼ �ω0

(
Na
aosc

)2/5

. (6.15)

The quantity Na/aosc is a dimensionless measure of the strength of the inter-
action, and in most experiments performed to date for atoms with repulsive
interactions it is much larger than unity, so the radius R is somewhat larger
than aosc. For |a| ∼ 10 nm and aosc ∼ 1 µm (see Eq. (2.35)), with N between
104 and 106, the ratio R/aosc is seen to range from 2.5 to 6. In equilibrium,
the oscillator and interaction energies are both proportional to R2 and there-
fore the ratio between the kinetic energy, which is proportional to R−2, and
the potential (or interaction) energy is proportional to (aosc/Na)4/5. This
confirms that the kinetic energy is indeed negligible for clouds containing a
sufficiently large number of particles.2

Let us now turn to attractive interactions. For a small number of parti-
cles, the total energy as a function of R is similar to that for non-interacting
particles, except that at very small R the energy diverges to −∞ as −1/R3.
Consequently, for a sufficiently small number of particles the energy has
a local minimum near that for non-interacting particles, but at a smaller
radius. This state is metastable, since for small departures from the mini-
mum, the energy increases, but for small R the energy eventually varies as
−1/R3 and becomes less than that at the local minimum. With increas-
ing particle number, the local minimum becomes shallower, and at a critical
particle number Nc it disappears. For larger numbers of particles there is no
metastable state. As one might expect, the critical number is determined by
2 As we shall see from the detailed calculations in Sec. 6.3, the leading term is of order

(aosc/Na)4/5 ln(Na/aosc).
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the condition that the dimensionless coupling parameter be of order −1, that
is Nc ∼ aosc/|a|. For 7Li the (triplet) scattering length is −27.6a0 = −1.46
nm, and therefore in traps with frequencies of order 100 Hz, corresponding
to aosc of order microns, the critical number is of order 103, which is what
is found experimentally [3].

We now consider the problem quantitatively. We shall determine the
ground-state energy for a gas trapped in an anisotropic three-dimensional
harmonic-oscillator potential V given by

V (x, y, z) =
1
2
m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2), (6.16)

where the three oscillator frequencies ωi (i = 1, 2, 3) may differ from each
other. Many traps used in experiments have an axis of symmetry, so that
two of the frequencies are equal, but we shall consider the general case.
The Gross–Pitaevskii equation (6.11) may be solved directly by numerical
integration, but it is instructive to derive some analytical results. We begin
with a variational calculation based on a Gaussian trial function and then
go on to the Thomas–Fermi approximation.

6.2.1 A variational calculation

In the absence of interparticle interactions the lowest single-particle state
has the familiar wave function,

φ0(r) =
1

π3/4(a1a2a3)1/2
e−x2/2a2

1e−y2/2a2
2e−z2/2a2

3 , (6.17)

where the oscillator lengths ai (i = 1, 2, 3) are given by a2i = �/mωi accord-
ing to Eq. (2.34). The density distribution n(r) = Nφ0(r)2 is thus Gaussian.
Interatomic interactions change the dimensions of the cloud, and we adopt
as our trial function for ψ the same form as (6.17),

ψ(r) =
N1/2

π3/4(b1b2b3)1/2
e−x2/2b21e−y2/2b22e−z2/2b23 , (6.18)

where the lengths bi are variational parameters. The trial function satisfies
the normalization condition (6.10). Substitution of (6.18) into (6.9) yields
the energy expression

E(b1, b2, b3) = N
∑

i

�ωi

(
a2i
4b2i

+
b2i
4a2i

)
+

N2U0

2(2π)3/2b1b2b3
. (6.19)

If we evaluate (6.19), putting the bi equal to their values ai in the absence
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of interaction, one finds

E ≈ N
∑

i

�ωi

2
+

N2U0

2(2π)3/2a1a2a3

= N
∑

i

�ωi

2
+
N2

2
〈00|v|00〉, (6.20)

where

〈00|v|00〉 =
4π�

2a

m

∫
dr|φ0(r)|4 (6.21)

is the interaction energy for two particles in the ground state of the oscil-
lator. The result (6.20) corresponds to a perturbation theory estimate, and
it is a good approximation as long as the interaction energy per particle is
small compared with any of the zero-point energies. If the magnitudes of the
three oscillator frequencies are comparable (ωi ∼ ω0), the ratio of the inter-
action energy to the zero-point energy of the oscillator is of order Na/aosc,
which, as we argued above, is a dimensionless measure of the strength of
the interaction. It gives the ratio of the interaction energy to the oscillator
energy �ω0 when the wave function is that for the particles in the ground
state of the oscillator. The condition Na/aosc ∼ 1 marks the crossover be-
tween the perturbative regime and one where equilibrium is determined by
competition between the interaction energy and the potential energy due to
the trap.

As the interaction becomes stronger, the cloud expands, and the optimal
wave function becomes more extended, corresponding to larger values of the
lengths bi. It is convenient to introduce dimensionless lengths xi defined by

xi =
bi
ai
. (6.22)

Minimizing E with respect to the variational parameters xi (i = 1, 2, 3) then
yields the three equations

1
2

�ωi(x2
i −

1
x2

i

)− 1
2(2π)3/2

NU0

ā3
1

x1x2x3
= 0. (6.23)

Here we have introduced the characteristic length

ā =

√
�

mω̄
(6.24)

for an oscillator of frequency

ω̄ = (ω1ω2ω3)1/3, (6.25)
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the geometric mean of the oscillator frequencies for the three directions. In
the general case we obtain the optimal parameters for the trial function by
solving this set of coupled equations. Let us here, however, consider the
simpler situation when the number of particles is sufficiently large that the
interaction energy per particle is large compared with �ωi for all ωi. Then
it is permissible to neglect the kinetic energy terms (proportional to 1/x2

i )
in (6.23). By solving for xi we find

x5
i =

(
2
π

)1/2 Na

ā

(
ω̄

ωi

)5/2

, (6.26)

or

bi =
(

2
π

)1/10 (
Na

ā

)1/5 ω̄

ωi
ā, (6.27)

and the leading contribution to the energy per particle is given by

E

N
=

5
4

(
2
π

)1/5 (
Na

ā

)2/5

�ω̄. (6.28)

According to the variational estimate (6.28) the energy per particle is pro-
portional to N2/5 in the limit when the kinetic energy is neglected, and is of
order (Na/ā)2/5 times greater than the energy in the absence of interactions.
As we shall see below, this is also true in the Thomas–Fermi approximation,
which is exact when the particle number is large.

In Fig. 6.1 we illustrate for an isotropic oscillator the dependence of E/N
on the variational parameter b (= b1 = b2 = b3) for different values of the
dimensionless parameter Na/aosc. We have included examples of attractive
interactions, corresponding to negative values of the scattering length a. As
shown in the figure, a local minimum exists for negative a provided N is
less than some value Nc, but for larger values of N the cloud will collapse.
The critical particle number is found from the condition that the first and
second derivatives of E/N with respect to b are both equal to zero, which
gives [4]

Nc|a|
aosc

=
2(2π)1/2

55/4
≈ 0.67. (6.29)

The minimum energy per particle (in units of �ω0) is plotted in Fig. 6.2 as a
function of Na/aosc within the range of stability −0.67 < Na/aosc <∞. For
comparison, we also exhibit the result of the Thomas–Fermi approximation
discussed in the following subsection. A numerical integration of the Gross–
Pitaevskii equation gives Nc|a|/aosc ≈ 0.57 [5].

If the kinetic energy is included as a perturbation, the total energy per
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Fig. 6.1. Variational expression for the energy per particle for an isotropic harmonic
trap as a function of the variational parameter b, for different values of the dimen-
sionless parameter Na/aosc. The dotted curve corresponds to the critical value,
approximately −0.67, at which the cloud becomes unstable.

particle contains an additional term proportional to (Na/aosc)−2/5 (Problem
6.1). In Sec. 6.3 we shall calculate the kinetic energy more accurately for
large Na/aosc and show that it is proportional to (Na/aosc)−2/5 ln(Na/aosc).

6.2.2 The Thomas–Fermi approximation

For sufficiently large clouds, an accurate expression for the ground-state
energy may be obtained by neglecting the kinetic energy term in the Gross–
Pitaevskii equation. As we have seen for a harmonic trap in the preceding
subsection, when the number of atoms is large and interactions are repulsive,
the ratio of kinetic to potential (or interaction) energy is small. A better
approximation for the condensate wave function for large numbers of atoms
may be obtained by solving the Gross–Pitaevskii equation, neglecting the
kinetic energy term from the start. Thus from Eq. (6.11) one finds[

V (r) + U0|ψ(r)|2
]
ψ(r) = µψ(r), (6.30)

where µ is the chemical potential. This has the solution

n(r) = |ψ(r)|2 = [µ− V (r)] /U0 (6.31)
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Fig. 6.2. Variational estimate of the energy per particle for an isotropic harmonic
trap as a function of the dimensionless parameter Na/aosc. The dotted line is the
result in the Thomas–Fermi approximation.

in the region where the right hand side is positive, while ψ = 0 outside this
region. The boundary of the cloud is therefore given by

V (r) = µ. (6.32)

The physical content of this approximation is that the energy to add a par-
ticle at any point in the cloud is the same everywhere. This energy is given
by the sum of the external potential V (r) and an interaction contribution
n(r)U0 which is the chemical potential of a uniform gas having a density
equal to the local density n(r). Since this approximation is reminiscent of
the Thomas–Fermi approximation in the theory of atoms, it is generally
referred to by the same name. For atoms, the total electrostatic potential
takes the place of the trapping potential, and the local Fermi energy that of
the mean-field energy U0|ψ|2 = U0n.

In the Thomas–Fermi approximation the extension of the cloud in the
three directions is given by the three semi-axes Ri obtained by inserting
(6.16) into (6.32),

R2
i =

2µ
mω2

i

, i = 1, 2, 3. (6.33)
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The lengths Ri may be evaluated in terms of trap parameters once the
chemical potential has been determined. The normalization condition on ψ,
Eq. (6.10), yields a relation between the chemical potential µ and the total
number of particles N . For a harmonic trap with a potential given by Eq.
(6.16) one finds

N =
8π
15

(
2µ
mω̄2

)3/2 µ

U0
, (6.34)

as may be seen by scaling each spatial coordinate by (2µ/mω2
i )

1/2 and inte-
grating over the interior of the unit sphere. Solving (6.34) for µ we obtain
the following relation between µ and �ω̄:

µ =
152/5

2

(
Na

ā

)2/5

�ω̄. (6.35)

The quantity R̄ = (R1R2R3)1/3 is a convenient measure of the spatial extent
of the cloud. By combining (6.33) and (6.35) we obtain

R̄ = 151/5

(
Na

ā

)1/5

ā ≈ 1.719
(
Na

ā

)1/5

ā, (6.36)

which implies that R̄ is somewhat greater than ā under typical experimen-
tal conditions. In Fig. 6.3 we compare wave functions for the variational
calculation described in the previous section and the Thomas–Fermi ap-
proximation.

Since µ = ∂E/∂N and µ ∝ N2/5 according to Eq. (6.35) the energy per
particle is

E

N
=

5
7
µ. (6.37)

This is the exact result for the leading contribution to the energy at large N ,
and it is smaller than the variational estimate (6.28) by a numerical factor
(3600π)1/5/7 ≈ 0.92. The central density of the cloud is n(0) = µ/U0 within
the Thomas–Fermi approximation.

In order to see how the total energy is distributed between potential and
interaction energies we insert the Thomas–Fermi solution given by (6.31)
into (6.9) and evaluate the last two terms, neglecting the kinetic energy.
The calculation is carried out most easily by scaling the spatial coordinates
so that the potential V (r) and the Thomas–Fermi solution both become
spherically symmetric. The ratio between the interaction energy Eint and
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Fig. 6.3. The ground-state wave function in the Gaussian variational approxi-
mation (full line) and in the Thomas–Fermi approximation (dotted line) for an
isotropic harmonic-oscillator potential. The wave functions are given in units of
N1/2/(βaosc)3/2, and β = (Na/aosc)1/5.

the potential energy Epot then becomes

Eint

Epot
=

∫ 1
0 drr

2(1− r2)2/2∫ 1
0 drr

4(1− r2)
=

2
3
. (6.38)

This result is an expression of the virial theorem, see Problem 6.2. The
interaction energy in the Thomas–Fermi approximation is thus equal to
2/5 times the total energy. Since the total energy per particle is 5µ/7 we
conclude that the interaction energy per particle and the chemical potential
are related by

Eint

N
=

2
7
µ. (6.39)

We shall return to this result in Chapter 11 when calculating the effect of
interactions on properties of clouds at non-zero temperature.

The Thomas–Fermi approximation gives an excellent account of the gross
properties of clouds when Na/ā is large compared with unity. However,
in a number of important problems of physical interest, the kinetic energy
plays a crucial role. In the next section we consider the surface structure of
clouds, and in Sec. 9.2 vortex states.
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6.3 Surface structure of clouds

The Thomas–Fermi approach is applicable provided the order parameter
varies sufficiently slowly in space. It fails near the edge of the cloud, as one
may see by estimating the contributions to the energy functional for the
Thomas–Fermi wave function. The density profile is n(r) = [µ− V (r)]/U0,
and if we expand the external potential about a point r0 in the surface,
which is given by V (r0) = µ, this becomes n(r) = F · (r− r0)/U0, where

F = −∇V (r0) (6.40)

is the force that the external potential exerts on a particle at the surface.
The condensate wave function is given by

ψ(r) =
[
F · (r− r0)

U0

]1/2

. (6.41)

If we denote the coordinate in the direction of ∇V (r0) by x, and denote the
position of the surface by x = x0, the interior of the cloud corresponds to
x ≤ x0. The Thomas–Fermi wave function for the cloud varies as (x0−x)1/2
for x ≤ x0, and therefore its derivative with respect to x is proportional to
(x0−x)−1/2. Consequently, the kinetic energy term in the energy functional
behaves as 1/(x0 − x), and the total kinetic energy per unit area of the
surface, which is obtained by integrating this expression over x, diverges as
− ln(x0−x), as x approaches x0 from below. To estimate the distance from
the surface at which the kinetic energy term becomes important, we observe
that the kinetic energy contribution to the energy functional is of order

�
2|dψ/dx|2
2m|ψ|2 ∼ �

2

2m(x0 − x)2
, (6.42)

per atom. The difference between the chemical potential and the external
potential is

µ− V (r) � F (x0 − x), (6.43)

where F is the magnitude of the trapping force acting on a particle at the
surface of the cloud. Thus the kinetic energy term dominates for x0−x � δ,
where

δ = (�2/2mF )1/3, (6.44)

which is the same length scale as occurs in the quantum mechanics of a
free particle in a linear potential. For an isotropic harmonic potential V =
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mω2
0r

2/2, F is mω2
0R, where R is the radius of the cloud, and therefore

δ =
(
a4osc
2R

)1/3

=
(

�ω0

µ

)2/3 R

2
, (6.45)

where aosc = (�/mω0)1/2 and in writing the second expression we have used
the fact that µ = mω2

0R
2/2. Consequently, the fraction of the volume of

the cloud where the Thomas–Fermi approximation is poor is proportional
to (aosc/R)4/3, which is small for a large enough number of particles.

We now study the surface region starting from the Gross–Pitaevskii equa-
tion. If the external potential varies slowly on the length scale δ, we may
expand the potential about the position of the surface as we did above, and
the problem becomes essentially one-dimensional [6, 7]. In terms of the coor-
dinate x introduced above, and with the origin chosen to be at the position
of the surface, the Gross–Pitaevskii equation is[

− �
2

2m
d2

dx2
+ Fx+ U0|ψ(x)|2

]
ψ(x) = 0. (6.46)

In the discussion above we identified the length scale δ associated with the
surface structure and, as one would expect, the Gross–Pitaevskii equation
simplifies if one measures lengths in units of δ. In addition, it is convenient
to measure the wave function of the condensate in terms of its value b =
(Fδ/U0)1/2 in the Thomas–Fermi theory at a distance δ from the edge of
the cloud. After introducing a scaled length variable y = x/δ and a scaled
wave function given by Ψ = ψ/b we obtain the equation

Ψ′′ = yΨ + Ψ3, (6.47)

where the prime denotes differentiation with respect to y. The solution in
the Thomas–Fermi approximation is

Ψ =
√
−y for y ≤ 0, Ψ = 0 for y > 0. (6.48)

First let us consider the behaviour for x � δ, corresponding to y � 1.
Since the condensate wave function is small we may neglect the cubic term.
The resulting equation is that for the Airy function, and its asymptotic
solution is

Ψ � C

y1/4
e−2y3/2/3. (6.49)

Deep inside the cloud, corresponding to y � −1, the Thomas–Fermi solu-
tion Ψ � √−y is approximately valid. To determine the leading correction
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to the wave function, we write Ψ = Ψ0 + Ψ1 and linearize (6.47), thereby
finding

−Ψ′′
1 + yΨ1 + 3Ψ2

0Ψ1 = Ψ′′
0. (6.50)

Using Ψ0 = (−y)1/2 from (6.48) and neglecting Ψ′′
1 in (6.50) since it con-

tributes to terms of higher order in 1/y, we arrive at the result

Ψ1 � −
1

8y2
√−y . (6.51)

The asymptotic solution is thus

Ψ =
√
−y

(
1 +

1
8y3

)
. (6.52)

Equation (6.47) may be solved numerically and this enables one to evaluate
the coefficient C in Eq. (6.49), which is found to be approximately 0.3971
[7].

We now evaluate the kinetic energy per unit area perpendicular to the x
axis,

<p2>

2m
=

�
2

2m

∫
dx|∇ψ|2. (6.53)

Let us first use the Thomas–Fermi wave function (6.48) which we expect to
be valid only in the region x � −δ. Since the integral diverges for x → 0,
as we discussed at the beginning of this section, we evaluate the integral for
x less than some cut-off value −l. We take the lower limit of the integration
to be −L, where L is large compared with δ. We expect that the kinetic
energy will be given approximately by the Thomas–Fermi result if the cut-
off distance is chosen to be ∼ −δ, the distance at which the Thomas–Fermi
approximation fails,

<p2>

2m
=

�
2

2m

∫ −l

−L
dx(ψ′)2 � �

2

8m
F

U0
ln
L

l
. (6.54)

We now compare this result with the kinetic energy per unit area calculated
numerically using the true wave function,

<p2>

2m
=

�
2

2m

∫ ∞

−L
dx(ψ′)2 ≈ �

2

8m
F

U0
ln

4.160L
δ

, (6.55)

which is valid for large values of ln(L/δ).
We conclude that one obtains the correct asymptotic behaviour of the

kinetic energy if one uses the Thomas–Fermi approach and cuts the integral
off at x = −l, where

l = 0.240δ. (6.56)
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As we shall demonstrate below, the same effective cut-off may be used for
calculating the kinetic energy in more general situations.

We now turn to the system of physical interest, a cloud ofN atoms trapped
in a three-dimensional harmonic-oscillator potential. For simplicity, we con-
sider only the isotropic case, where the potential is V (r) = mω2

0r
2/2. The

Gross–Pitaevskii equation for the ground-state wave function is[
− �

2

2mr2
d

dr
(r2
d

dr
) +

1
2
mω2

0r
2 +

4π�
2a

m
|ψ(r)|2

]
ψ(r) = µψ(r). (6.57)

By the substitution χ = rψ we obtain

− �
2

2m
d2χ

dr2
+

1
2
mω2

0(r
2 −R2)χ(r) +

4π�
2a

mr2
|χ(r)|2χ(r) = 0, (6.58)

since µ = mω2
0R

2/2. The Thomas–Fermi solution is

χTF = r
(
R2 − r2
8πaa4osc

)1/2

. (6.59)

By expanding about r = R in Eq. (6.58) we arrive at an equation of the
form (6.47), with the length scale δ given by Eq. (6.45).

To calculate the kinetic energy, we use the Thomas–Fermi wave function
and cut the integral off at a radius R− l, where l is given by the calculation
for the linear ramp, Eq. (6.56). The result is

Ekin

N
=

�
2

2m

∫ R−l
0 drr2(dψ/dr)2∫ R

0 drr
2ψ2

� �
2

2mR2

(
15
4

ln
2R
l
− 5

2

)
. (6.60)

This expression agrees well with the numerical result [7] for ln(R/δ) greater
than 3, the relative difference being less than 2.5%.

6.4 Healing of the condensate wave function

In the previous section we considered the condensate wave function for an
external potential that varied relatively smoothly in space. It is instructive
to investigate the opposite extreme, a condensate confined by a box with
infinitely hard walls. At the wall, the wave function must vanish, and in the
interior of the box the condensate density approaches its bulk value. The
distance over which the wave function rises from zero at the wall to close to
its bulk value may be estimated from the Gross–Pitaevskii equation, since
away from the wall the wave function is governed by competition between
the interaction energy term ∼ nU0 and the kinetic energy one. If one denotes
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the spatial scale of variations by ξ, the kinetic energy per particle is of order
�

2/2mξ2 and the two energies are equal when

�
2

2mξ2
= nU0, (6.61)

or

ξ2 =
�

2

2mnU0
=

1
8πna

=
r3s
6a
, (6.62)

where the particle separation rs is defined in Eq. (6.5). Since in experiments
the distance between atoms is typically much larger than the scattering
length, the coherence length is larger than the atomic separation. The length
ξ is referred to in the condensed matter literature as the coherence length,
where the meaning of the word ‘coherence’ is different from that in optics.
Since it describes the distance over which the wave function tends to its bulk
value when subjected to a localized perturbation, it is also referred to as the
healing length.

To investigate the behaviour of the condensate wave function quantita-
tively, we begin with the Gross–Pitaevskii equation (6.11), and assume that
the potential vanishes for x ≥ 0, and is infinite for x < 0. The ground-
state wave function is uniform in the y and z directions, and therefore the
Gross–Pitaevskii equation is

− �
2

2m
d2ψ(x)
dx2

+ U0|ψ(x)|2ψ(x) = µψ(x). (6.63)

For bulk uniform matter, the chemical potential is given by Eq. (6.12), and
thus we may write µ = U0|ψ0|2 where ψ0 is the wave function far from the
wall, where the kinetic energy term becomes negligible. The equation then
becomes

�
2

2m
d2ψ(x)
dx2

= −U0(|ψ0|2 − |ψ(x)|2)ψ(x). (6.64)

When ψ is real, one may regard ψ as being a spatial coordinate and x as
being the ‘time’. Then (6.64) has the same form as the classical equation
of motion of a particle in a potential ∼ ψ2

0ψ
2 − ψ4/2. The equation may be

solved analytically, subject to the boundary conditions that ψ(0) = 0 and
ψ(∞) = ψ0, with the result

ψ(x) = ψ0 tanh(x/
√

2ξ). (6.65)

This confirms that the wave function approaches its bulk value over a dis-
tance ∼ ξ, in agreement with the qualitative arguments above.
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Problems

Problem 6.1 Consider N bosons interacting via repulsive interactions
in an isotropic harmonic trap. Use the Gaussian trial function (6.18) to
calculate the kinetic energy per particle of a cloud in its ground state when
Na/aosc is large.

Problem 6.2 Consider a condensate which is trapped by a potential which
is a homogeneous function of degree ν of the radial coordinate but with arbi-
trary dependence on the angular coordinates (V (λr) = λνV (r)). In equilib-
rium, the energy of the condensate must be unchanged by a small change in
the wave function from its value in the ground state, subject to the number
of particles being constant. By considering a change of spatial scale of the
wave function, with its form being unaltered, show that the kinetic, trap
and interaction energies, which are given by Ekin = (�2/2m)

∫
dr|∇ψ(r)|2,

Etrap =
∫
drV (r)|ψ(r)|2, and Eint = 1

2U0

∫
dr|ψ(r)|4 satisfy the condition

2Ekin − αEtrap + 3Eint = 0,

which is a statement of the virial theorem for this problem. Show in addition
that the chemical potential is given by

µN = Ekin + Etrap + 2Eint,

and determine the ratio between the chemical potential and the total energy
per particle in the limit when the kinetic energy may be neglected.

Problem 6.3 Consider a cloud of 105 atoms of 87Rb in an isotropic
harmonic-oscillator potential with the oscillation frequency ω0 given by
ω0/2π = 200 Hz. Take the scattering length a to be 100a0 and calculate the
total energy, the chemical potential µ, the radius R, the coherence length
ξ at the centre of the cloud, and the length δ giving the scale of surface
structure.
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7

Dynamics of the condensate

The time-dependent behaviour of Bose–Einstein condensed clouds, such as
collective modes and the expansion of a cloud when released from a trap, is
an important source of information about the physical nature of the conden-
sate. In addition, the spectrum of elementary excitations of the condensate
is an essential ingredient in calculations of thermodynamic properties. In
this chapter we treat the dynamics of a condensate at zero temperature
starting from a time-dependent generalization of the Gross–Pitaevskii equa-
tion used in Chapter 6 to describe static properties. From this equation
one may derive equations very similar to those of classical hydrodynamics,
which we shall use to calculate properties of collective modes.

We begin in Sec. 7.1 by describing the time-dependent Gross–Pitaevskii
equation and deriving the hydrodynamic equations. We then use the hydro-
dynamic equations to determine the excitation spectrum of a homogeneous
Bose gas (Sec. 7.2). Subsequently, we consider modes in trapped clouds
(Sec. 7.3) within the hydrodynamic approach, and also describe the method
of collective coordinates and the related variational method. In Sec. 7.4
we consider surface modes of oscillation, which resemble gravity waves on
a liquid surface. The variational approach is used in Sec. 7.5 to treat the
free expansion of a condensate upon release from a trap. Finally, in Sec.
7.6 we discuss solitons, which are exact one-dimensional solutions of the
time-dependent Gross–Pitaevskii equation.

7.1 General formulation

In the previous chapter we saw that the equilibrium structure of the conden-
sate is described by a time-independent Schrödinger equation with a non-
linear contribution to the potential to take into account interactions between
particles. To treat dynamical problems it is natural to use a time-dependent
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generalization of this Schrödinger equation, with the same non-linear inter-
action term. This equation is the time-dependent Gross–Pitaevskii equation,

− �
2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + U0|ψ(r, t)|2ψ(r, t) = i�

∂ψ(r, t)
∂t

, (7.1)

and it is the basis for our discussion of the dynamics of the condensate.
The time-independent Gross–Pitaevskii equation, Eq. (6.11), is a non-

linear Schrödinger equation with the chemical potential replacing the en-
ergy eigenvalue in the time-independent Schrödinger equation. To ensure
consistency between the time-dependent Gross–Pitaevskii equation and the
time-independent one, under stationary conditions ψ(r, t) must develop in
time as exp(−iµt/�). The phase factor reflects the fact that microscopically
ψ is equal to the matrix element of the annihilation operator ψ̂ between the
ground state with N particles and that with N − 1 particles,

ψ(r, t) = 〈N − 1|ψ̂(r)|N〉 ∝ exp[−i(EN − EN−1)t/�], (7.2)

since the states |N〉 and |N − 1〉 develop in time as exp(−iEN t/�) and
exp(−iEN−1t/�). For large N the difference in ground-state energies
EN−EN−1 is equal to ∂E/∂N , which is the chemical potential. There-
fore this result is basically Josephson’s relation for the development of the
phase φ of the condensate wave function

dφ

dt
= −µ

�
. (7.3)

Both for formal reasons as well as for applications a variational formu-
lation analogous to that for static problems is useful. The time-dependent
Gross–Pitaevskii equation (7.1) may be derived from the action principle

δ

∫ t2

t1

Ldt = 0, (7.4)

where the Lagrangian L is given by

L =
∫
dr
i�

2

(
ψ∗∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− E

=
∫
dr

[
i�

2

(
ψ∗∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− E

]
. (7.5)

Here E is the energy, Eq. (6.9), and the energy density is given by

E =
�

2

2m
|∇ψ|2 + V (r)|ψ|2 +

U0

2
|ψ|4. (7.6)

In the variational principle (7.4) the variations of ψ (or ψ∗) are arbitrary,
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apart from the requirement that they vanish at t = t1, t = t2, and on
any spatial boundaries for all t. With a physically motivated choice of
trial function for ψ, this variational principle provides the foundation for
approximate solutions of dynamical problems, as we shall illustrate in Sec.
7.3.3.

The physical content of the Gross–Pitaevskii equation (7.1) may be re-
vealed by reformulating it as a pair of hydrodynamic equations, which we
now derive.

7.1.1 The hydrodynamic equations

Under general, time-dependent conditions we may use instead of (7.1) an
equivalent set of equations for the density, which is given by |ψ|2, and the
gradient of its phase, which is proportional to the local velocity of the con-
densate.

To understand the nature of the velocity of the condensate, we derive the
continuity equation. If one multiplies the time-dependent Gross–Pitaevskii
equation (7.1) by ψ∗(r, t) and subtracts the complex conjugate of the result-
ing equation, one arrives at the equation

∂|ψ|2
∂t

+ ∇ ·
[

�

2mi
(ψ∗∇ψ − ψ∇ψ∗)

]
= 0. (7.7)

This is the same as one obtains from the usual (linear) Schrödinger equa-
tion, since the non-linear potential in the Gross–Pitaevskii equation is real.
Equation (7.7) has the form of a continuity equation for the particle density,
n = |ψ|2, and it may be written as

∂n

∂t
+ ∇ · (nv) = 0, (7.8)

where the velocity of the condensate is defined by

v =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗)

|ψ|2 . (7.9)

The momentum density j is given by

j =
�

2i
(ψ∗∇ψ − ψ∇ψ∗), (7.10)

and therefore the relation (7.9) is equivalent to the result

j = mnv, (7.11)

which states that the momentum density is equal to the particle mass times
the particle current density.
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Simple expressions for the density and velocity may be obtained if we
write ψ in terms of its amplitude f and phase φ,

ψ = feiφ, (7.12)

from which it follows that

n = f2, (7.13)

and the velocity v is

v =
�

m
∇φ. (7.14)

From Eq. (7.14) we conclude that the motion of the condensate corresponds
to potential flow, since the velocity is the gradient of a scalar quantity,
which is referred to as the velocity potential. For a condensate, Eq. (7.14)
shows that the velocity potential is �φ/m. Provided that φ is not singular,
we can immediately conclude that the motion of the condensate must be
irrotational, that is1

∇×v =
�

m
∇×∇φ = 0. (7.15)

The possible motions of a condensate are thus much more restricted than
those of a classical fluid.

The equations of motion for f and φ may be found by inserting (7.12)
into (7.1) and separating real and imaginary parts. Since

i
∂ψ

∂t
= i
∂f

∂t
eiφ − ∂φ

∂t
feiφ (7.16)

and

−∇2ψ = [−∇2f + (∇φ)2f − i∇2φf − 2i∇φ ·∇f ]eiφ, (7.17)

we obtain the two equations

∂(f2)
∂t

= − �

m
∇ · (f2∇φ) (7.18)

and

−�
∂φ

∂t
= − �

2

2mf
∇2f +

1
2
mv2 + V (r) + U0f

2. (7.19)

Equation (7.18) is the continuity equation (7.8) expressed in the new

1 Note that this result applies only if φ is not singular. This condition is satisfied in the examples
we consider in this chapter, but it fails at, e.g., the core of a vortex line. The properties of
vortices will be treated in Chapter 9.
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variables. To find the equation of motion for the velocity, given by Eq.
(7.14), we take the gradient of Eq. (7.19), and the resulting equation is

m
∂v
∂t

= −∇(µ̃+
1
2
mv2), (7.20)

where

µ̃ = V + nU0 −
�

2

2m
√
n
∇2√n. (7.21)

Equation (7.19) may be expressed in terms of the functional derivative2

δE/δn,
∂φ(r, t)
∂t

= −1
�

δE

δn(r)
. (7.22)

The quantity δE/δn(r) is the energy required to add a particle at point r,
and therefore this result is the generalization of the Josephson relation (7.3)
to systems not in their ground states. Under stationary conditions µ̃+ 1

2mv
2

is a constant, and if in addition the velocity is zero, that is φ is independent
of position, µ̃ is a constant, which is precisely the time-independent Gross–
Pitaevskii equation (6.11).

The quantity nU0 in Eq. (7.21) is the expression for the chemical potential
of a uniform Bose gas, omitting contributions from the external potential.
At zero temperature, changes in the chemical potential for a bulk system are
related to changes in the pressure p by the Gibbs–Duhem relation dp = ndµ,
a result easily confirmed for the uniform dilute Bose gas, since µ = nU0 and
p = −∂E/∂V = n2U0/2 (see Eqs. (6.12) and (6.6), respectively). Equation
(7.20) may therefore be rewritten in the form

∂v
∂t

= − 1
mn

∇p−∇
(
v2

2

)
+

1
m

∇
(

�
2

2m
√
n
∇2√n

)
− 1
m

∇V. (7.23)

Equations (7.8) and (7.23) are very similar to the hydrodynamic equations
for a perfect fluid. If we denote the velocity of the fluid by v, the continuity
equation (7.8) has precisely the same form as for a perfect fluid, while the
analogue of Eq. (7.23) is the Euler equation

∂v
∂t

+ (v ·∇)v +
1
mn

∇p = − 1
m

∇V, (7.24)

2 The functional derivative δE/δn(r) of the energy is defined according to the equation δE =∫
dr[δE/δn(r)]δn(r), and it is a function of r with the dimension of energy. It is given in terms

of the energy density (7.6), which is a function of n and ∇n, by

δE

δn(r)
=

δE
δn

=
∂E
∂n

−
∑

i

∂

∂xi

∂E
∂(∂n/∂xi)

,

where the sum is over the three spatial coordinates.
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or

∂v
∂t
− v × (∇× v) = − 1

mn
∇p−∇

(
v2

2

)
− 1
m

∇V. (7.25)

Here the pressure p is that of the fluid, which generally has a form different
from that of the condensate.

There are two differences between equations (7.23) and (7.25). The first
is that the Euler equation contains the term v×(∇×v). However, since
the velocity field of the superfluid corresponds to potential flow, ∇×v = 0,
the term v × (∇× v) for such a flow would not contribute in the Euler
equation. We shall comment further on this term in the context of vortex
motion at the end of Sec. 9.4. The only difference between the two equations
for potential flow is therefore the third term on the right hand side of Eq.
(7.23), which is referred to as the quantum pressure term. This describes
forces due to spatial variations in the magnitude of the wave function for
the condensed state. Like the term ∇v2/2, its origin is the kinetic energy
term �

2|∇ψ|2/2m = mnv2/2 + �
2(∇f)2/2m in the energy density, but the

two contributions correspond to different physical effects: the first is the
kinetic energy of motion of particles, while the latter corresponds to ‘zero-
point motion’, which does not give rise to particle currents. If the spatial
scale of variations of the condensate wave function is l, the pressure term in
Eq. (7.23) is of order nU0/ml, while the quantum pressure term is of order
�

2/m2l3. Thus the quantum pressure term dominates the usual pressure
term if spatial variations of the density occur on length scales l less than
or of order the coherence length ξ ∼ �/(mnU0)1/2 (see Eq. (6.62)), and it
becomes less important on larger length scales.

As we have seen, motions of the condensate may be specified in terms
of a local density and a local velocity. The reason for this is that the only
degrees of freedom are those of the condensate wave function, which has
a magnitude and a phase. Ordinary liquids and gases have many more
degrees of freedom and, as a consequence, it is in general necessary to em-
ploy a microscopic description, e.g., in terms of the distribution function for
the particles. However, a hydrodynamic description is possible for ordinary
gases and liquids if collisions between particles are sufficiently frequent that
thermodynamic equilibrium is established locally. The state of the fluid may
then be specified completely in terms of the local particle density (or equiv-
alently the mass density), the local velocity, and the local temperature. At
zero temperature, the temperature is not a relevant variable, and the motion
may be described in terms of the local density and the local fluid velocity,
just as for a condensate. The reason that the equations of motion for a
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condensate and for a perfect fluid are so similar is that they are expressions
of the conservation laws for particle number and for total momentum. How-
ever, the physical reasons for a description in terms of a local density and a
local velocity being possible are quite different for the two situations.

7.2 Elementary excitations

The properties of elementary excitations may be investigated by considering
small deviations of the state of the gas from equilibrium and finding periodic
solutions of the time-dependent Gross–Pitaevskii equation. An equivalent
approach is to use the hydrodynamic formulation given above, and we begin
by describing this. In Chapter 8 we shall consider the problem on the basis
of microscopic theory. We write the density as n = neq+δn, where neq is the
equilibrium density and δn the departure of the density from its equilibrium
value. On linearizing Eqs. (7.8), (7.20), and (7.21) by treating the velocity
v and δn as small quantities, one finds

∂δn

∂t
= −∇ · (neqv) (7.26)

and

m
∂v
∂t

= −∇δµ̃, (7.27)

where δµ̃ is obtained by linearizing (7.21). Taking the time derivative of
(7.26) and eliminating the velocity by means of (7.27) results in the equation
of motion

m
∂2δn

∂t2
= ∇ · (neq∇δµ̃). (7.28)

This equation describes the excitations of a Bose gas in an arbitrary poten-
tial. To keep the notation simple, we shall henceforth in this chapter denote
the equilibrium density by n. Note that n is the density of the condensate,
since we neglect the zero-temperature depletion of the condensate. In Chap-
ter 10, which treats the dynamics at finite temperature, we shall denote the
condensate density by n0, in order to distinguish it from the total density,
which includes a contribution from thermal excitations.

A uniform gas

As a first example we investigate the spectrum for a homogeneous gas,
where the external potential V is constant. In the undisturbed state the
density n is the same everywhere and it may therefore be taken outside
the spatial derivatives. We look for travelling-wave solutions, proportional
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to exp(iq · r− iωt), where q is the wave vector and ω the frequency. From
Eq. (7.21) the change in µ̃ is seen to be equal to

δµ̃ =
(
U0 +

�
2q2

4mn

)
δn (7.29)

and the equation of motion becomes

mω2δn =
(
nU0q

2 +
�

2q4

4m

)
δn. (7.30)

To make contact with the microscopic calculations to be described later,
it is convenient to work with the energy of an excitation, εq, rather than
the frequency. Non-vanishing solutions of (7.30) are possible only if the
frequency is given by ω = ±εq/�, where

εq =
√

2nU0ε0q + (ε0q)2. (7.31)

Here

ε0q =
�

2q2

2m
(7.32)

is the free-particle energy. This spectrum was first derived by Bogoliubov
from microscopic theory [1]. In the following discussion we shall adopt the
convention that the branch of the square root to be used is the positive one.

The excitation spectrum (7.31) is plotted in Fig. 7.1. For small q, εq is a
linear function of q,

εq � s�q, (7.33)

and the spectrum is sound-like. The velocity s is seen to be

s =
√
nU0/m. (7.34)

This result agrees with the expression for the sound velocity calculated from
the hydrodynamic result s2 = dp/dρ = (n/m)dµ/dn, where ρ = nm is the
mass density. The repulsive interaction has thus turned the energy spec-
trum at long wavelengths, which is quadratic in q for free particles, into
a linear one, in agreement with what is observed experimentally in liquid
4He. As we shall see in Chapter 10, the linear spectrum at long wavelengths
provides the key to superfluid behaviour, and it was one of the triumphs
of Bogoliubov’s pioneering calculation. In the hydrodynamic description
the result is almost ‘obvious’, since sound waves are well-established excita-
tions of hydrodynamic systems. What is perhaps surprising is that at short
wavelengths the leading contributions to the spectrum are

εq � ε0q + nU0, (7.35)
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Fig. 7.1. Excitation spectrum of a homogeneous Bose gas (full line) plotted as a
function of the wave number expressed as the dimensionless variable �q/ms, where
the sound velocity s is given by Eq. (7.34). The expansion (7.35) for high wave
number is shown as a dotted line.

which is also shown in Fig. 7.1. This is the free-particle spectrum plus a
mean-field contribution. The transition between the linear spectrum and
the quadratic one occurs when the kinetic energy, �

2q2/2m, becomes large
compared with the potential energy of a particle ∼ nU0, or in other words
the ‘quantum pressure’ term dominates the usual pressure term. This occurs
at a wave number ∼ (2mnU0)1/2/�, which is the inverse of the coherence
length, ξ, Eq. (6.62). The coherence length is related to the sound velocity,
Eq. (7.34) by ξ = �/

√
2ms. On length scales longer than ξ, atoms move

collectively, while on shorter length scales, they behave as free particles.
The spectrum of elementary excitations in superfluid liquid 4He differs from
that for a dilute gas because of the strong short-range correlations. The
first satisfactory account of the roton part of the spectrum was given by
Feynman [2].

As a generalization of the above approach one may calculate the re-
sponse of the condensate to a space- and time-dependent external potential
V (r, t) = Vq exp(iq · r − iωt). There is then an additional term Vq in the
equation for δµ̃, and one finds

m

(
ω2 −

ε2q
�2

)
δn = nq2Vq, (7.36)
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or

δn = χ(q, ω)Vq, (7.37)

where

χ(q, ω) =
nq2

m(ω2 − ε2q/�2)
(7.38)

is the density–density response function for the condensate. Thus the re-
sponse diverges if the frequency of the external potential is equal to the
frequency of an elementary excitation of the condensate. In the final chap-
ter we shall use the expression for the response function to calculate how the
interaction between two fermions is affected by the presence of a condensate
of bosons.

The Bogoliubov equations

An alternative route to calculating the excitation spectrum is to start from
the Gross–Pitaevskii equation directly, without introducing the hydrody-
namic variables. This approach complements the hydrodynamic one since
it emphasizes single-particle behaviour and shows how the collective effects
at long wavelengths come about. Let us denote the change in ψ by δψ.
Linearizing the Gross–Pitaevskii equation (7.1), one finds

− �
2

2m
∇2δψ(r, t) + V (r)δψ(r, t)+ U0[2|ψ(r, t)|2δψ(r, t) + ψ(r, t)2δψ∗(r, t)]

= i�
∂δψ(r, t)
∂t

(7.39)

and

− �
2

2m
∇2δψ∗(r, t) + V (r)δψ∗(r, t) + U0[2|ψ(r, t)|2δψ∗(r, t) + ψ∗(r, t)2δψ(r, t)]

= −i�∂δψ
∗(r, t)
∂t

. (7.40)

Here ψ(r, t) is understood to be the condensate wave function in the un-
perturbed state, which we may write as ψ =

√
n(r)e−iµt/�, where n(r) is

the equilibrium density of particles and µ is the chemical potential of the
unperturbed system. To avoid carrying an arbitrary phase factor along in
our calculations we have taken the phase of the condensate wave function
at t = 0 to be zero. We wish to find solutions of these equations which are
periodic in time, apart from the overall phase factor e−iµt/� present for the
unperturbed state. We therefore search for solutions of the form

δψ(r, t) = e−iµt/�
[
u(r)e−iωt − v∗(r)eiωt

]
, (7.41)
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where u(r) and v(r) are functions to be determined. The overall phase
factor e−iµt/� is necessary to cancel the effects of the phases of ψ(r, t)2 and
ψ∗(r, t)2 in Eqs. (7.39) and (7.40), and thereby ensure that the equations
can be satisfied for all time. The choice of the sign in front of v is a matter
of convention, and we take it to be negative so that u and v will have the
same sign. Since the equations couple δψ and δψ∗, they cannot be satisfied
unless both positive and negative frequency components are allowed for. By
inserting the ansatz (7.41) into the two equations (7.39) and (7.40) we obtain
the following pair of coupled equations for u(r) and v(r):[

− �
2

2m
∇2 + V (r) + 2n(r)U0 − µ− �ω

]
u(r)− n(r)U0v(r) = 0 (7.42)

and[
− �

2

2m
∇2 + V (r) + 2n(r)U0 − µ+ �ω

]
v(r)− n(r)U0u(r) = 0, (7.43)

which are referred to as the Bogoliubov equations.
We now apply this formalism to the uniform Bose gas, V (r) = 0. Because

of the translational invariance the solutions may be chosen to be of the form

u(r) = uq
eiq·r

V 1/2
and v(r) = vq

eiq·r

V 1/2
, (7.44)

where we have introduced the conventional normalization factor 1/V 1/2 ex-
plicitly, V being the volume of the system.

The chemical potential for the uniform system is given by nU0 (Eq. (6.12)),
and thus the Bogoliubov equations are(

�
2q2

2m
+ nU0 − �ω

)
uq − nU0vq = 0 (7.45)

and (
�

2q2

2m
+ nU0 + �ω

)
vq − nU0uq = 0. (7.46)

The two equations are consistent only if the determinant of the coefficients
vanishes. With the definition (7.32) this leads to the condition

(ε0q + nU0 + �ω)(ε0q + nU0 − �ω)− n2U2
0 = 0, (7.47)

or

(�ω)2 = (ε0q + nU0)2 − (nU0)2 = ε0q(ε
0
q + 2nU0), (7.48)

which agrees with the spectrum (7.31) obtained earlier from the hydrody-
namic approach.
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The nature of the excitations may be elucidated by investigating the be-
haviour of the coefficients uq and vq. Here we shall consider the case of
repulsive interactions. For the positive energy solutions, one has

vq =
nU0

εq + ξq
uq, (7.49)

where

ξq = ε0q + nU0 (7.50)

is the energy of an excitation if one neglects coupling between uq and vq.
The normalization of uq and vq is arbitrary, but as we shall see from the
quantum-mechanical treatment in Sec. 8.1, a convenient one is

|uq|2 − |vq|2 = 1, (7.51)

since this ensures that the new operators introduced there satisfy Bose com-
mutation relations. The Bogoliubov equations are unaltered if uq and vq are
multiplied by an arbitrary phase factor. Therefore, without loss of generality
we may take uq and vq to be real. With this choice one finds that

u2
q =

1
2

(
ξq
εq

+ 1
)

(7.52)

and

v2q =
1
2

(
ξq
εq
− 1

)
. (7.53)

In terms of ξq, the excitation energy is given by

εq =
√
ξ2q − (nU0)2. (7.54)

The coefficients uq and vq are exhibited as functions of the dimensionless
variable �q/ms in Fig. 7.2.

For the positive energy solution, vq tends to zero as 1/q2 for large q,
and in this limit δψ = ei(q·r−ωqt)/V 1/2, with ωq = εq/�. This corresponds
to addition of a single particle with momentum �q, and the removal of
a particle in the zero-momentum state, as will be made explicit when the
quantum-mechanical theory is presented in Chapter 8. At smaller momenta,
excitations are linear superpositions of the state in which a particle with mo-
mentum �q is added (and a particle in the condensate is removed) and the
state in which a particle with momentum −�q is removed (and a parti-
cle added to the condensate). At long wavelengths uq and vq diverge as
1/q1/2, and the two components of the wave function are essentially equal
in magnitude.
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Fig. 7.2. The coefficients uq and vq given by Eqs. (7.52)–(7.53) as functions of the
wave number, expressed as the dimensionless variable �q/ms.

The algebraic expressions for the excitation spectrum and the factors
uq and vq are completely analogous to those for a superconductor in the
Bardeen–Cooper–Schrieffer (BCS) theory, apart from some sign changes due
to the fact that we are here dealing with bosons rather than fermions. In
the BCS theory, which we shall describe in Sec. 14.3 in the context of the
transition to a superfluid state for dilute Fermi gases, the dispersion relation
for an elementary excitation is εq =

√
ξ2q + ∆2, where ξq is the normal-state

energy of a particle measured with respect to the chemical potential, as for
the boson problem we consider, and ∆ is the superconducting energy gap.
Thus one sees that for bosons the excitation energy is obtained by replacing
∆2 in the BCS expression by −(nU0)2.

Attractive interactions

If the interaction is attractive, the sound speed is imaginary, which indicates
that long-wavelength modes grow or decay exponentially in time, rather
than oscillate. This signals an instability of the system due to the attractive
interaction tending to make atoms clump together. However at shorter
wavelengths modes are stable, since the free-particle kinetic energy term
dominates in the dispersion relation. The lowest wave number qc for which
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the mode is stable is given by the condition that its frequency vanish. Thus
from Eq. (7.31)

ε0qc + 2nU0 = 0 (7.55)

or

q2c = −4mnU0

�2
= 16πn|a|, (7.56)

where we have used Eq. (5.39) to express U0 in terms of the scattering
length a. This shows that the spatial scale of unstable modes is greater than
or of order the coherence length, Eq. (6.62), evaluated using the absolute
magnitude of the scattering length.

It is instructive to relate these ideas for bulk matter to a cloud in a trap.
For simplicity, we consider the trap to be a spherical container with radius
R0. The lowest mode has a wave number of order 1/R0, and the density is
n ∼ N/R3

0. Thus according to (7.56) the lowest mode is stable if the number
of particles is less than a critical value Nc given by 1/R2

0 ∼ Nc|a|/R3
0 or

Nc ∼
R0

|a| , (7.57)

and unstable for larger numbers of particles. The physics of the instability
is precisely the same as that considered in Chapter 6 in connection with the
energy of a cloud: for sufficiently large numbers of particles, the zero-point
energy of atoms is too small to overcome the attraction between them. In the
present formulation, the zero-point energy is the kinetic energy of the lowest
mode in the well. To make contact with the calculations for a harmonic-
oscillator trap in Chapter 6, we note that the estimate (7.57) is consistent
with the earlier result (6.29) if the radius R0 of the container is replaced by
the oscillator length.

7.3 Collective modes in traps

Calculating the properties of modes in a homogeneous gas is relatively
straightforward because there are only two length scales in the problem,
the coherence length and the wavelength of the excitation. For a gas in a
trap there is an additional length, the spatial extent of the cloud, and more-
over the coherence length varies in space. However, we have seen in Chapter
6 that static properties of clouds may be calculated rather precisely if the
number of atoms is sufficiently large, Na/ā � 1, since under these condi-
tions the kinetic energy associated with the confinement of atoms within
the cloud, which gives rise to the quantum pressure, may be neglected. It is
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therefore of interest to explore the properties of modes when the quantum
pressure term in the equation of motion is neglected. For such an approx-
imation to be reliable, a mode must not be concentrated in the boundary
layer of thickness ∼ δ, and must vary in space only on length scales large
compared with the local coherence length. In this approach one can describe
collective modes, but not excitations which are free-particle-like.

The basic equation for linear modes was derived earlier in Eq. (7.28).
When the quantum pressure term is neglected, the quantity µ̃ reduces to
nU0 + V , and therefore

δµ̃ = U0δn. (7.58)

Inserting this result into Eq. (7.28), we find that the density disturbance
satisfies the equation

m
∂2δn

∂t2
= U0∇ · (n∇δn). (7.59)

If we consider oscillations with time dependence δn ∝ e−iωt, the differential
equation (7.59) simplifies to

−ω2δn =
U0

m
(∇n ·∇δn+ n∇2δn). (7.60)

The equilibrium density is given by

n =
µ− V (r)
U0

, (7.61)

and therefore the equation (7.60) reduces to

ω2δn =
1
m
{∇V ·∇δn− [µ− V (r)]∇2δn}. (7.62)

In the following two subsections we discuss solutions to (7.62) and the asso-
ciated mode frequencies [3].

7.3.1 Traps with spherical symmetry

First we consider an isotropic harmonic trap (λ = 1). The potential is

V (r) =
1
2
mω2

0r
2, (7.63)

and in the Thomas–Fermi approximation the chemical potential and the
radius of the cloud are related by the equation µ = mω2

0R
2/2. It is natural
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to work in spherical polar coordinates r, θ, and ϕ. Equation (7.62) then
becomes

ω2δn = ω2
0r
∂

∂r
δn− ω

2
0

2
(R2 − r2)∇2δn. (7.64)

Because of the spherical symmetry, the general solution for the density de-
viation is a sum of terms of the form

δn = D(r)Ylm(θ, ϕ), (7.65)

where Ylm is a spherical harmonic. In a quantum-mechanical description, l
is the quantum number for the magnitude of the total angular momentum
and m that for its projection on the polar axis.

One simple solution of Eq. (7.64) is

δn = CrlYlm(θ, ϕ), (7.66)

where C is an arbitrary constant. With increasing l these modes become
more localized near the surface of the cloud, and they correspond to surface
waves. They will be studied in more detail in Sec. 7.4. Since the function
(7.66) satisfies the Laplace equation, the last term in Eq. (7.64) vanishes,
and one finds ω2 = lω2

0. The l = 0 mode is trivial, since it represents a
change in the density which is constant everywhere. The resulting change
in the chemical potential is likewise the same at all points in the cloud,
and therefore there is no restoring force, and the frequency of the mode is
zero. The three l = 1 modes correspond to translation of the cloud with
no change in the internal structure. Consider the l = 1,m = 0 mode. The
density variation is proportional to rY10 ∝ z. In equilibrium, the density
profile is n(r) ∝ (1 − r2/R2), and therefore if the centre of the cloud is
moved in the z direction a distance ζ, the change in the density is given by
δn = −ζ∂n/∂z ∝ z. The physics of the l = 1 modes is that, for a harmonic
external potential, the centre-of-mass and relative motions are separable for
interactions that depend only on the relative coordinates of the particles.
The motion of the centre of mass, rcm, is that of a free particle of mass
Nm moving in an external potential Nmω2

0r
2
cm/2, and this has the same

frequency as that for the motion of a single particle. These modes are
sometimes referred to as Kohn modes. They represent a general feature
of the motion, which is unaffected by interactions as well as temperature.
Modes with higher values of l have larger numbers of nodes, and higher
frequencies.

To investigate more general modes it is convenient to separate out the
radial dependence due to the ‘centrifugal barrier’, the l(l + 1)/r2 term in
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the Laplacian, by defining a new radial function G(r) = D(r)/rl, and to
introduce the dimensionless variable

ε =
ω2

ω2
0

. (7.67)

The differential equation for the radial function G(r) is

εG(r) = lG(r) + rG′(r)− 1
2
(R2 − r2)

[
G′′(r) +

2(l + 1)G′(r)
r

]
, (7.68)

where a prime denotes a derivative. To solve this eigenvalue problem we first
introduce the new variable u = r2/R2. The differential equation satisfied by
G(u) is seen to be

u(1− u)G′′(u) +
(

2l + 3
2

− 2l + 5
2
u

)
G′(u) +

(ε− l)
2

G(u) = 0, (7.69)

which is in the standard form for the hypergeometric function F (α, β, γ, u),

u(1− u)F ′′(u) + [γ − (α+ β + 1)u]F ′(u)− αβF (u) = 0. (7.70)

For the function to be well behaved, either α or β must be a negative integer,
−n. The hypergeometric function is symmetrical under interchange of α and
β, and for definiteness we put α = −n. Comparing Eqs. (7.69) and (7.70),
one sees that β = l + n+ 3/2, γ = l + 3/2, and that the eigenvalue is given
by ε− l = 2n(l + n+ 3/2) or

ω2 = ω2
0(l + 3n+ 2nl + 2n2). (7.71)

The index n specifies the number of radial nodes.
The normal modes of the cloud are therefore given by

δn(r, t) = CrlF (−n, l + n+ 3/2, l + 3/2, r2/R2)Ylm(θ, ϕ)e−iωt, (7.72)

C being an arbitrary constant. Solutions for low values of n and l may be
evaluated conveniently by using the standard series expansion in powers of
u = r2/R2 [4]:

F (α, β, γ, u) = 1 +
αβ

γ

u

1!
+
α(α+ 1)β(β + 1)

γ(γ + 1)
u2

2!
+ · · · . (7.73)

As an alternative, the solutions may be written in terms of the Jacobi poly-
nomials J (0,l+1/2)

n (2r2/R2 − 1).
For n = 0, the modes have no radial nodes and they are the surface

modes given by Eq. (7.66). The velocity field associated with a mode may
be obtained from Eqs. (7.27) and (7.58). The mode with l = 0 and n = 1 is
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Fig. 7.3. Excitation frequencies of a condensate in an isotropic harmonic trap ac-
cording to Eq. (7.71) (full lines). The dotted lines indicate the result in the absence
of interactions. The degeneracy occurring at ω = ω0 for l = 1 is due to the fact
that these modes correspond to pure centre-of-mass motion.

spherically symmetric and the radial velocity has the same sign everywhere.
It is therefore referred to as the breathing mode.

The low-lying excitation frequencies in the spectrum (7.71) are shown in
Fig. 7.3. For an ideal gas in a harmonic trap, mode frequencies correspond
to those of a free particle if the mean free path is large compared with the
size of the cloud, and these are shown for comparison. The results exhibit
clearly how mode frequencies of the condensate differ from those of an ideal
gas.

7.3.2 Anisotropic traps

Next we consider anisotropic traps. Most experimental traps are harmonic
and anisotropic, but with an axis of symmetry which we shall take to be the
z axis. We write the potential in the form

V (x, y, z) =
1
2
mω2

0ρ
2 +

1
2
mω2

3z
2 =

1
2
mω2

0(ρ
2 + λ2z2), (7.74)

where ρ2 = x2 + y2. The anisotropy parameter λ = ω3/ω0 is unity for
a spherically symmetric trap, and

√
8 for the TOP trap discussed in Sec.

4.1.2. For traps of the Ioffe–Pritchard type, λ can be adjusted continuously
by varying the currents in the coils.

For such a trap the equilibrium density is given in the Thomas–Fermi
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approximation by

n =
µ

U0

(
1− ρ

2

R2
− λ

2z2

R2

)
, (7.75)

where the radius R of the cloud in the xy plane is given by µ−V (R, 0, 0) = 0
or

R2 =
2µ
mω2

0

. (7.76)

Note that the central density n(r = 0) equals µ/U0. Equation (7.62) for the
mode function is thus

ω2δn = ω2
0(ρ

∂

∂ρ
+ λ2z

∂

∂z
)δn− ω

2
0

2
(R2 − ρ2 − λ2z2)∇2δn. (7.77)

Because of the axial symmetry there are solutions proportional to eimϕ,
where m is an integer. One simple class of solutions is of the form

δn ∝ ρl exp(±ilϕ) = (x± iy)l ∝ rlYl,±l(θ, ϕ), (7.78)

which is the same as for surface modes of an isotropic trap. Since ∇2δn = 0,
the frequencies are given by

ω2 = lω2
0. (7.79)

Likewise one may show (Problem 7.2) that there are solutions of the form

δn ∝ z(x± iy)l−1 ∝ rlYl,±(l−1)(θ, ϕ), (7.80)

whose frequencies are given by

ω2 = (l − 1)ω2
0 + ω2

3 = (l − 1 + λ2)ω2
0. (7.81)

Low-lying modes

In the following we investigate some of the low-lying modes, since these are
the ones that have been observed experimentally [5]. As we shall see, the
modes have velocity fields of the simple form v = (ax, by, cz), where a, b
and c are constants. One example is δn ∝ ρ2 exp(±i2ϕ) = (x± iy)2, which
corresponds to Eq. (7.78) for l = 2. The mode frequency is given by

ω2 = 2ω2
0. (7.82)

A second is ρz exp(±iϕ) = z(x± iy) ∝ r2Y2,±1(θ, ϕ) with a frequency given
by ω2 = (1 + λ2)ω2

0. For traps with spherical symmetry these two types of
modes are degenerate, since they both have angular symmetry correspond-
ing to l = 2, but with different values of the index m equal to ±2 and ±1,
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respectively. There is yet another mode, with l = 2,m = 0, which is degen-
erate with the others if the trap is spherically symmetric, but which mixes
with the lowest l = 0,m = 0 mode, the breathing mode, if the spherical sym-
metry is broken. To see this explicitly we search for a solution independent
of ϕ of the form

δn = a+ bρ2 + cz2, (7.83)

where a, b and c are constants to be determined. Upon insertion of (7.83)
into (7.77) we obtain three linear algebraic equations for a, b and c, which
may be written as a matrix equation. The condition for the existence of non-
trivial solutions is that the determinant of the matrix vanish. This yields
ω2 = 0 (for δn = constant) and

(ω2 − 4ω2
0)(ω

2 − 3λ2ω2
0)− 2λ2ω4

0 = 0, (7.84)

which has roots

ω2 = ω2
0

(
2 +

3
2
λ2 ± 1

2

√
16− 16λ2 + 9λ4

)
. (7.85)

For λ2 = 8 the smaller root yields

ω = ω0

(
14− 2

√
29

)1/2
≈ 1.797ω0. (7.86)

Both thism = 0 mode and the l = 2,m = 2 mode with frequency
√

2ω0 given
by (7.82) have been observed experimentally [5]. The two mode frequencies
(7.85) are shown in Fig. 7.4 as functions of the anisotropy parameter λ.

The density variations in all modes considered above exhibit a quadratic
dependence on the cartesian coordinates. The associated velocity fields are
linear in x, y, and z according to the acceleration equation (7.27). The
motion of the cloud therefore corresponds to homologous stretching of the
cloud by a scale factor that depends on direction.

The scissors mode

In the Thomas–Fermi approximation there are modes having a simple ana-
lytical form also for a general harmonic trap

V (r) =
1
2
m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2), (7.87)

where the frequencies ω1, ω2 and ω3 are all different. For traps with rota-
tional symmetry about the z axis we have seen that there exist modes with
a density variation proportional to xz or yz, the associated frequency being
given by ω2 = ω2

0(1+λ2). These modes are linear combinations of r2Y2,1 and
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Fig. 7.4. The mode frequencies (7.85) as functions of λ.

r2Y2,−1, which are degenerate eigenstates. In addition there is a mode with
frequency given by ω2 = 2ω2

0 and a density variation proportional to xy,
which is a linear combination of the modes with l = 2,m = ±2. Modes with
density variations proportional to xy, yz or zx are purely two-dimensional,
and also exist for a general harmonic trap with a potential given by (7.87).
Let us consider a density change given by

δn = Cxy, (7.88)

where C is a coefficient which we assume varies as e−iωt. In order to derive
the velocity field associated with this mode we start with the hydrodynamic
equations in their original form. In the Thomas–Fermi approximation, δµ̃ =
U0δn (see Eq. (7.58)) and therefore from Eq. (7.27) the velocity is given by

−imωv = −U0∇(Cxy) = −U0C(y, x, 0). (7.89)

Since ∇·v = 0, the continuity equation (7.26) reduces to

−iωδn = −(∇n) · v. (7.90)

We now use the condition for hydrostatic equilibrium of the unperturbed
cloud, ∇n = −∇V/U0 and insert v from (7.89) on the right hand side of
(7.90) which becomes C(ω2

1 + ω2
2)xy/iω. This shows that the equations of
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motion are satisfied provided

ω2 = ω2
1 + ω2

2. (7.91)

Corresponding results are obtained for density variations proportional to yz
and zx, with frequencies given by cyclic permutation of the trap frequencies
in (7.91).

The mode (7.88) is sometimes called a scissors mode. The reason for this
may be seen by considering the density change when the equilibrium cloud
in the trap is rotated. The equilibrium density profile is proportional to
1 − x2/R2

1 − y2/R2
2 − z2/R2

3, where the lengths Ri are given by (6.33). A
rotation of the cloud by an angle χ about the z axis corresponds to the
transformation x→ x cosχ− y sinχ, y → x sinχ+ y cosχ. The correspond-
ing change in the density for small χ is proportional to xy. The density
change in the mode is thus the same as would be produced by a rigid ro-
tation of the cloud. However, the velocity field varies as (y, x, 0), and it is
therefore very different from that for rigid rotation about the z axis, which
is proportional to (−y, x, 0). The velocity of the condensate must be ir-
rotational, and therefore the latter form of the velocity is forbidden. The
scissors mode has recently been observed experimentally in a Bose–Einstein
condensate [6]. Its name is taken from nuclear physics: in deformed nuclei,
the density distributions of neutrons and protons can execute out-of-phase
oscillations of this type which resemble the opening and closing of a pair
of scissors. We note that the scissors modes are purely two-dimensional,
and therefore their form and their frequencies do not depend on how the
trapping potential varies in the third direction, provided it has the general
form m(ω2

1x
2 + ω2

2y
2)/2 + V (z).

7.3.3 Collective coordinates and the variational method

In general it is not possible to solve the equations of motion for a trapped
Bose gas analytically and one must resort to other approaches, either numeri-
cal methods, or approximate analytical ones. In this section we consider low-
lying excitations and describe how to calculate properties of modes within
two related approximate schemes. We shall illustrate these methods by ap-
plying them to the breathing mode of a cloud in a spherically-symmetric
trap, with a potential

V (r) =
1
2
mω2

0r
2. (7.92)

In the notation of Sec. 7.3.1, this mode has l = 0 and radial index n = 1.
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Collective coordinates

When interactions play little role, most modes of a many-body system re-
semble those of single particles. However, in the modes examined above in
the Thomas–Fermi approximation the interaction between particles plays
an important role, and the motion is highly collective. The idea behind
the method of collective coordinates is to identify variables related to many
particles that may be used to describe the collective behaviour. A simple
example is the centre-of-mass coordinate, which may be used to describe
the modes of frequency ωi in a harmonic trap. In Chapter 6 we showed how
the width parameter R of a cloud may be used as a variational parameter
in determining an approximate expression for the energy. We now extend
this approach to calculate the properties of the breathing mode.

Let us assume that during the motion of the cloud, the density profile
maintains its shape, but that its spatial extent depends on time. Rather
than adopting the Gaussian trial wave function used previously, we shall
take a more general one

ψ(r) =
AN1/2

R3/2
f(r/R)eiφ(r), (7.93)

where f is an arbitrary real function, and A, a number, is a normalization
constant. The total energy of the cloud obtained by evaluating Eq. (6.9)
may be written as

E = Eflow + U(R). (7.94)

Here the first term is the kinetic energy associated with particle currents,
and is given by

Eflow =
�

2

2m

∫
dr|ψ(r)|2(∇φ)2. (7.95)

The second term is an effective potential energy, and it is equal to the
energy of the cloud when the phase does not vary in space. It is made up
of a number of terms:

U(R) = Ezp + Eosc + Eint, (7.96)

where

Ezp =
�

2

2m

∫
dr

(
d|ψ|
dr

)2

= czpR−2 (7.97)

is the contribution from the zero-point kinetic energy,

Eosc =
1
2
mω2

0

∫
drr2|ψ|2 = coscR2 (7.98)
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is that from the harmonic-oscillator potential, and

Eint =
1
2
U0

∫
dr|ψ|4 = cintR

−3 (7.99)

is that due to interactions.3 The coefficients c, which are constants that
depend on the choice of f , are defined by these equations. The equilibrium
radius of the cloud R0 is determined by minimizing the total energy. The
kinetic energy contribution (7.95) is positive definite, and is zero if φ is con-
stant, and therefore the equilibrium condition is that the effective potential
be a minimum,

dU

dR

∣∣∣∣
R=R0

= 0, (7.100)

or, since the contributions to the energy behave as powers of R as shown in
Eqs. (7.97)–(7.99),

R
dU

dR

∣∣∣∣
R=R0

= −2Ezp + 2Eosc − 3Eint = 0. (7.101)

WhenR differs from its equilibrium value there is a force tending to change
R. To derive an equation describing the dynamics of the cloud, we need to
find the kinetic energy associated with a time dependence of R. Changing
R from its initial value to a new value R̃ amounts to a uniform dilation of
the cloud, since the new density distribution may be obtained from the old
one by changing the radial coordinate of each atom by a factor R̃/R. The
velocity of a particle is therefore equal to

v(r) = r
Ṙ

R
, (7.102)

where Ṙ denotes the time derivative of R. The kinetic energy of the bulk
motion of the gas is thus given by

Eflow =
m

2
Ṙ2

R2

∫
drn(r)r2

=
1
2
meffṘ

2, (7.103)

where

meff = Nm
r2

R2
. (7.104)

Here r2 =
∫
drn(r)r2/

∫
drn(r) is the mean-square radius of the cloud. Note

3 Note that the total kinetic energy equals Ezp + Eflow.
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that meff is independent of R. For a harmonic trap the integral here is
identical with that which occurs in the expression (7.98) for the contribution
to the energy due to the oscillator potential, and therefore we may write

Eflow =
Ṙ2

ω2
0R

2
Eosc (7.105)

or

meff =
2

ω2
0R

2
Eosc. (7.106)

The total energy of the cloud may thus be written as the sum of the energy
of the static cloud Eq. (7.96) and the kinetic energy term Eq. (7.103),

E =
1
2
meffṘ

2 + U(R), (7.107)

which is the same expression as for a particle of mass meff moving in a one-
dimensional potential U(R). From the condition for energy conservation,
dE/dt = 0, it follows that the equation of motion is

meffR̈ = −∂U(R)
∂R

. (7.108)

This equation is not limited to situations close to equilibrium, and in Sec.
7.5 below we shall use it to determine the final velocity of a freely expanding
cloud. However, as a first application we investigate the frequency of small
oscillations about the equilibrium state. Expanding the effective potential
to second order in R−R0, one finds

U(R) = U(R0) +
1
2
Keff(R−R0)2, (7.109)

where

Keff = U ′′(R0) (7.110)

is the effective force constant. Therefore the frequency of oscillations is given
by

ω2 =
Keff

meff
. (7.111)

This result is in fact independent of the trapping potential, but we shall now
specialize our discussion to harmonic traps. From the expressions (7.97)–
(7.99) one sees that

R2U ′′ = 6Ezp + 2Eosc + 12Eint

= 8Eosc + 3Eint, (7.112)
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where the latter form follows from the first by using the virial condition Eq.
(7.101) to eliminate the zero-point energy. Thus the frequency is given by

ω2 = ω2
0

[
4 +

3
2
Eint(R0)
Eosc(R0)

]
. (7.113)

In Sec. 14.2 we shall apply this result to fermions.
Let us examine a number of limits of this expression. First, when in-

teractions may be neglected one finds ω = ±2ω0, in agreement with the
exact result, corresponding quantum-mechanically to two oscillator quanta.
This may be seen from the fact that the Gross–Pitaevskii equation in the
absence of interactions reduces to the Schrödinger equation, and the energy
eigenvalues are measured with respect to the chemical potential, which is
3�ω0/2. The lowest excited state with spherical symmetry corresponds to
two oscillator quanta, since states having a single quantum have odd parity
and therefore cannot have spherical symmetry.

Another limit is that of strong interactions, Na/aosc � 1. The zero-point
energy can be neglected to a first approximation, and the virial condition
(7.101) then gives Eint(R0) = 2Eosc(R0)/3 and therefore

ω2 = 5ω2
0. (7.114)

This too agrees with the exact result in this limit, Eq. (7.71) for n = 1, l = 0.
It is remarkable that, irrespective of the form of the function f , the mode

frequency calculated by the approximate method above agrees with the exact
result in the limits of strong interactions and of weak interactions. This
circumstance is a special feature of the harmonic-oscillator potential, for
which the effective mass is simply related to the potential energy due to the
trap.

The method may be applied to anisotropic traps by considering pertur-
bations of the cloud corresponding to transformations of the form x, y, z →
αx, βy, γz, where the scale factors may be different. This gives three cou-
pled equations for α, β and γ. For an axially-symmetric trap this leads to
Eqs. (7.82) and (7.85) for the mode frequencies. Likewise the properties of
the scissors modes may be derived by considering displacements of the form
x→ x+ ay, y → y + bx, z → z and cyclic permutations of this.

Variational approach

The calculation of mode frequencies based on the idea of collective coordi-
nates may be put on a more formal footing by starting from the variational
principle Eq. (7.4). The basic idea is to take a trial function which depends
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on a number of time-dependent parameters and to derive equations of mo-
tion for these parameters by applying the variational principle [7]. As an
example, we again consider the breathing mode of a cloud in a spherical
trap. The amplitude of the wave function determines the density distribu-
tion, while its phase determines the velocity field. For the amplitude we
take a function of the form we considered above in Eq. (7.93). In the cal-
culation for the breathing mode we assumed that the velocity was in the
radial direction and proportional to r. Translated into the behaviour of the
wave function, this implies that the phase of the wave function varies as
r2, since the radial velocity of the condensate is given by (�/m)∂φ/∂r. We
therefore write the phase of the wave function as βmr2/2�, where β is a
second parameter in the wave function. The factor m/� is included to make
subsequent equations simpler. The complete trial wave function is thus

ψ(r, t) =
AN1/2

R3/2
f(r/R)eiβmr2/2�. (7.115)

We now carry out the integration over r in (7.5) and obtain the La-
grangian as a function of the two independent variables β and R and the
time derivative β̇,

L = −[U(R) +
meffR

2

2
(β2 + β̇)]. (7.116)

From the Lagrange equation for β,

d

dt

∂L

∂β̇
=
∂L

∂β
(7.117)

we find

β =
Ṙ

R
. (7.118)

This is the analogue of the continuity equation for this problem, since it
ensures consistency between the velocity field, which is proportional to β
and the density profile, which is determined by R. The Lagrange equation
for R is

d

dt

∂L

∂Ṙ
=
∂L

∂R
, (7.119)

which reduces to ∂L/∂R = 0, since the Lagrangian does not depend on Ṙ.
This is

meffR(β̇ + β2) = −∂U(R)
∂R

. (7.120)

When Eq. (7.118) for β is inserted into (7.120) we arrive at the equation of
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motion (7.108) derived earlier. The results of this approach are equivalent to
those obtained earlier using more heuristic ideas. However, the variational
method has the advantage of enabling one to systematically improve the
solution by using trial functions with a greater number of parameters.

Finally, let us compare these results for the breathing mode with those
obtained in Sec. 7.3.1 by solving the hydrodynamic equations with the quan-
tum pressure term neglected. The hydrodynamic equations are valid in the
limit Ezp � Eint, and therefore in the results for the collective coordinate
and variational approaches we should take that limit. The lowest l = 0 mode
is trivial: it corresponds to a uniform change in the density everywhere and
has zero frequency because such a density change produces no restoring
forces. This corresponds to the index n being zero. The first excited state
with l = 0 corresponds to n = 1, indicating that it has a single radial node
in the density perturbation. According to Eq. (7.71) the frequency of the
mode is given by ω2 = 5ω2

0, in agreement with the result of the collective co-
ordinate approach, Eq. (7.114). The nature of the mode may be determined
either from the general expression in terms of hypergeometric functions or
by construction, as we shall now demonstrate.

The s-wave solutions to (7.64) satisfy the equation

ω2δn = ω2
0r
d

dr
δn− ω2

0

(R2 − r2)
2r

d2

dr2
(rδn). (7.121)

Following the method used earlier for anisotropic traps, let us investigate
whether there exists a solution of the form

δn = a+ br2, (7.122)

where a and b are constants to be determined. This function is the analogue
of Eq. (7.83) for a mode with spherical symmetry (b = c). Inserting this
expression into (7.121), we find from the terms proportional to r2 that

ω2 = 5ω2
0. (7.123)

Thus the frequency of the mode agrees with the value calculated by other
methods. Equating the terms independent of r yields the condition

b = −5
3
a

R2
. (7.124)

The density change δn is thus given by

δn = a
(

1− 5r2

3R2

)
. (7.125)

This is identical with the density change of the equilibrium cloud produced
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by a change in R. To show this, we use the fact that in the Thomas–
Fermi approximation, when the zero-point kinetic energy is neglected, the
equilibrium density is given by

n =
C

R3

(
1− r

2

R2

)
, (7.126)

where C is a constant. From (7.126) it follows that a small change δR in
the cloud radius R gives rise to a density change

δn = − C
R4

(
3− 5

r2

R2

)
δR, (7.127)

which has the same form as Eq. (7.125). The corresponding velocity field
may be found from the continuity equation (7.8), which shows that v ∝∇δn,
which is proportional to r. Thus the velocity field is homologous, as was
assumed in our discussion of modes in terms of collective coordinates.

7.4 Surface modes

In the previous section we showed that in a spherically-symmetric trap there
are modes which are well localized near the surface of the cloud. To shed
light on these modes, we approximate the potential in the surface region
by a linear function of the coordinates, as we did in our study of surface
structure in Sec. 6.3, and write

V (r) = Fx, (7.128)

where the coordinate x measures distances in the direction of ∇V . This ap-
proximation is good provided the wavelength of the mode is small compared
with the linear dimensions of the cloud. Following Ref. [8] we now inves-
tigate surface modes for a condensate in the linear ramp potential (7.128).
Because of the translational invariance in the y and z directions the solution
may be chosen to have the form of a plane wave for these coordinates. We
denote the wave number of the mode by q, and take the direction of propaga-
tion to be the z axis. Provided the mode is not concentrated in the surface
region of thickness δ given by Eq. (6.44), we may use the Thomas–Fermi
approximation, in which the equilibrium condensate density n is given by
n(x) = −Fx/U0 for x < 0, while it vanishes for x > 0. Equation (7.62) for
the density oscillation in the mode has a solution

δn = Ceqx+iqz, (7.129)

C being an arbitrary constant. This describes a wave propagating on the
surface and decaying exponentially in the interior. For the Thomas–Fermi
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approximation to be applicable the decay length 1/q must be much greater
than δ. Since (7.129) satisfies Laplace’s equation, ∇2δn = 0, we obtain by
inserting (7.129) into (7.62) the dispersion relation

ω2 =
F

m
q. (7.130)

This has the same form as that for a gravity wave propagating on the surface
of an incompressible ideal fluid in the presence of a gravitational field g =
F/m.

The solution (7.129) is however not the only one which decays exponen-
tially in the interior. To investigate the solutions to (7.62) more generally
we insert a function of the form

δn = f(qx)eqx+iqz, (7.131)

and obtain the following second-order differential equation for f(y),

y
d2f

dy2
+ (2y + 1)

df

dy
+ (1− ε)f = 0, (7.132)

where ε = mω2/Fq. By introducing the new variable z = −2y one sees that
Eq. (7.132) becomes the differential equation for the Laguerre polynomials
Ln(z), provided ε− 1 = 2n. We thus obtain the general dispersion relation
for the surface modes

ω2 =
F

m
q(1 + 2n), n = 0, 1, 2, . . . . (7.133)

The associated density oscillations are given by

δn(x, z, t) = CLn(−2qx)eqx+iqz−iωt, (7.134)

where C is a constant.
Let us now compare the frequencies of these modes with those given in

Eq. (7.71) for the modes of a cloud in an isotropic, harmonic trap. For l
much greater than n, the dispersion relation becomes ω2 = ω2

0l(1 + 2n).
Since the force due to the trap at the surface of the cloud is F = ω2

0R per
unit mass and the wave number of the mode at the surface of the cloud is
given by q = l/R, it follows that ω2

0l = Fq/m and the dispersion relation
ω2 = ω2

0l(1 + 2n) is seen to be in agreement with the result (7.133) for the
plane surface. For large values of l it is thus a good approximation to replace
the harmonic-oscillator potential by the linear ramp. The surface modes are
concentrated within a distance of order (2n + 1)R/l from the surface, and
therefore provided this is smaller than R, it is permissible to approximate
the harmonic-oscillator potential by the linear ramp. It should be noted
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that the frequencies of the n = 0 modes for the linear ramp potential agree
with the frequencies of the nodeless radial modes (corresponding to n = 0)
for a harmonic trap at all values of l. For modes with radial nodes (n �= 0),
the two results agree only for l� n.

The results above were obtained in the Thomas–Fermi approximation,
which is valid only if the depth to which the mode penetrates is much greater
than the scale of the surface structure δ, Eq. (6.44). At shorter wavelengths,
there are corrections to the dispersion relation (7.130) which may be related
to an effective surface tension due to the kinetic energy of matter in the
surface region [8]. Finally, we note that the properties of surface excita-
tions have recently been investigated experimentally by exciting them with
a moving laser beam [9].

7.5 Free expansion of the condensate

The methods described above are not limited to situations close to equilib-
rium. One experimentally relevant problem is the evolution of a cloud of
condensate when the trap is switched off suddenly. The configuration of the
cloud after expansion is used as a probe of the cloud when it is impossible
to resolve its initial structure directly. For simplicity, we consider a cloud
contained by an isotropic harmonic trap, V (r) = mω2

0r
2/2, which is turned

off at time t = 0. We employ a trial function of the form (7.115) with
f(r/R) = exp(−r2/2R2). As may be seen from Eq. (6.19), the zero-point
energy is given by

Ezp =
3N�

2

4mR2
(7.135)

and the interaction energy by

Eint =
N2U0

2(2π)3/2R3
. (7.136)

For the Gaussian trial function the effective mass (Eq. (7.106)) is meff =
3Nm/2. The energy conservation condition therefore yields

3mṘ2

4
+

3�
2

4mR2
+

1
2(2π)3/2

NU0

R3
=

3�
2

4mR(0)2
+

1
2(2π)3/2

NU0

R(0)3
, (7.137)

where R(0) is the radius at time t = 0.
In the absence of interactions (U0 = 0) we may integrate (7.137) with the

result

R2(t) = R2(0) + v20t
2, (7.138)
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where v0, which is equal to the root-mean-square particle velocity, is given
by

v0 =
�

mR(0)
. (7.139)

Thus the expansion velocity is the velocity uncertainty predicted by
Heisenberg’s uncertainty principle for a particle confined within a dis-
tance ∼ R(0). The initial radius, R(0), is equal to the oscillator length
aosc = (�/mω0)1/2, and therefore the result (7.138) may be written as

R2(t) = R2(0)(1 + ω2
0t

2). (7.140)

This result is the exact solution, as one may verify by calculating the evo-
lution of a Gaussian wave packet.

When interactions are present, the development of R as a function of time
may be found by numerical integration. However, the asymptotic behaviour
for t→∞ may be obtained using the energy conservation condition (7.137),
which yields a final velocity given by

v2∞ =
�

2

m2R(0)2
+

U0N

3(2π3)1/2mR(0)3
. (7.141)

When Na/aosc is large, the initial size of the cloud may be determined by
minimizing the sum of the oscillator energy and the interaction energy. Ac-
cording to (6.27) the result for an isotropic trap is

R(0) =
(

2
π

)1/10 (
Na

aosc

)1/5

aosc. (7.142)

At large times, the cloud therefore expands according to the equation

R2(t)
R2(0)

� U0N

3(2π3)1/2mR(0)5
t2 =

2
3
ω2

0t
2, (7.143)

since the final velocity is dominated by the second term in (7.141).

7.6 Solitons

In the dynamical problems addressed so far, we have obtained analyti-
cal results for small-amplitude motions, but have had to rely on approx-
imate methods when non-linear effects are important. However the time-
dependent Gross–Pitaevskii equation has exact analytical solutions in the
non-linear regime. These have the form of solitary waves, or solitons, that is,
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localized disturbances which propagate without change of form.4 The sub-
ject of solitons has a long history, starting with the observations on shallow
water waves made by the British engineer and naval architect John Scott
Russell in the decade from 1834 to 1844. Soliton solutions exist for a num-
ber of non-linear equations, among them the Korteweg-de Vries equation,
which describes the properties of shallow water waves, and the non-linear
Schrödinger equation, of which the Gross–Pitaevskii equation (7.1) is a spe-
cial case.

The physical effects that give rise to the existence of solitons are non-
linearity and dispersion. Both of these are present in the Gross–Pitaevskii
equation, as one can see by examining the Bogoliubov dispersion relation
given by (7.30), ω2 = (nU0/m)q2+�

2q4/4m2 , which exhibits the dependence
of the velocity of an excitation on the local density and on the wave number.
Solitons preserve their form because the effects of non-linearity compensate
for those of dispersion. Before describing detailed calculations, we make
some general order-of-magnitude arguments. For definiteness, let us consider
a spatially-uniform condensed Bose gas with repulsive interactions. If a
localized disturbance of the density has an amplitude ∆n and extends over
a distance L, it may be seen from the dispersion relation that the velocity
of sound within the disturbance is different from the sound velocity in the
bulk medium by an amount ∼ s(∆n)/n due to non-linear effects. One can
also see that, since q ∼ 1/L, dispersion increases the velocity by an amount
∼ sξ2/L2, where ξ is the coherence length, given by (6.62). For the effects of
non-linearity to compensate for those of dispersion, these two contributions
must cancel. Therefore the amplitude of the disturbance is related to its
length by

∆n
n
∼ − ξ

2

L2
. (7.144)

The velocity u of the disturbance differs from the sound speed by an amount
of order the velocity shifts due to dispersion and non-linearity, that is

|u− s| ∼ s ξ
2

L2
. (7.145)

Note that solitons for this system correspond to density depressions, whereas
for waves in shallow water, they correspond to elevations in the water level.
This difference can be traced to the fact that the dispersion has the opposite
sign for waves in shallow water, since ω2 � ghq2[1− (qh)2/3], where g is the
4 In the literature, the word ‘soliton’ is sometimes used to describe solitary waves with special

properties, such as preserving their shapes when they collide with each other. We shall follow
the usage common in the field of Bose–Einstein condensation of regarding the word ‘soliton’ as
being synonymous with solitary wave.
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acceleration due to gravity and h the equilibrium depth of the water. The
non-linearity has the same sign in the two cases, since the velocity of surface
waves increases with the depth of the water, just as the speed of sound in a
condensed Bose gas increases with density.

For repulsive interactions between particles, the simplest example of a
soliton is obtained by extending to the whole of space the stationary solution
to the Gross–Pitaevskii equation at a wall found in Sec. 6.4 (see Eq. (6.65)),

ψ(x) = ψ0 tanh
(
x√
2ξ

)
(7.146)

with

ξ =
�

(2mn0U0)1/2
(7.147)

being the coherence length far from the wall. This solution is static, and
therefore corresponds to a soliton with velocity zero. It is also referred to
as a kink, since the phase of the wave function jumps discontinuously by π
as x passes through zero.

The hydrodynamic equations (7.8) and (7.20) possess one-dimensional
soliton solutions that depend on the spatial coordinate x and the time t only
through the combination x−ut. We look for solutions for which the density
n approaches a non-zero value n0 when x→ ±∞. Since ∂n/∂t = −u∂n/∂x,
the continuity equation may be rewritten as

∂

∂x
(un− vn) = 0, (7.148)

which upon integration and use of the boundary condition that v = 0 at
infinity becomes

v = u
(
1− n0

n

)
. (7.149)

Since ∂v/∂t = −u∂v/∂x we may rewrite (7.20) as

−mu∂v
∂x

= − ∂
∂x

(
nU0 +

1
2
mv2 − �

2

2m
√
n

∂2

∂x2

√
n

)
. (7.150)

The result of integrating (7.150) is (Problem 7.5)

n(x, t) = nmin + (n0 − nmin) tanh2[(x− ut)/
√

2ξu], (7.151)

where the width, which depends on velocity, is

ξu =
ξ

(1− (u/s)2)1/2
. (7.152)
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The velocity u is related to the density ratio nmin/n0 by

u2

s2
=
nmin

n0
, or u2 =

nminU0

m
, (7.153)

where s = (n0U0/m)1/2 is the velocity of sound in the uniform gas. The ve-
locity of the soliton is therefore equal to the bulk sound velocity evaluated
at the density nmin. When u = 0 the minimum density in the soliton van-
ishes, and the density profile (7.151) reduces to that associated with (7.146).
These analytical results, which were derived by Tsuzuki more than thirty
years ago [10], confirm the qualitative estimates (7.144) and (7.145) arrived
at earlier.

Another quantity of importance for these solitons is the change in phase
across them. This may be found by integrating the expression for the su-
perfluid velocity, since v(x) = (�/m)∂φ/∂x. Thus from Eqs. (7.149) and
(7.151) one finds

φ(x→∞)− φ(x→ −∞) = −mu
�

∫ ∞

−∞
dx

n0 − nmin

n0 cosh2(x/
√

2ξu)− (n0 − nmin)

= −2 cos−1

(√
nmin

n0

)
. (7.154)

For a soliton moving in the positive x direction the phase change is negative.
Physically this is because the wave is a density depression, and consequently
the fluid velocity associated with it is in the negative x direction. In Sec.
13.3 we shall discuss how solitons may be generated experimentally by ma-
nipulating the phase of the condensate.

In one spatial dimension there are also soliton solutions for attractive
interactions (U0 < 0), the simplest of which is

ψ(x, t) = ψ(0)e−iµt/�
1

cosh[(2m|µ|/�2)1/2x]
, (7.155)

where the chemical potential µ is given by

µ =
1
2
U0|ψ(0)|2. (7.156)

These are self-bound states which are localized in space in the x direction,
since ψ vanishes for large |x|.

Solitons are also observed in non-linear optics, and the intensity of the
light plays a role similar to that of the condensate density in atomic clouds.
By analogy, the word dark is used to describe solitons that correspond to
density depressions. This category of solitons is further divided into black
ones, for which the minimum density is zero, and grey ones, for which it



200 Dynamics of the condensate

is greater than zero. Solitons with a density maximum are referred to as
bright.

Dark solitons in external potentials behave essentially like particles if the
potential varies sufficiently slowly in space [11]. To determine the soliton
velocity, we argue that, if the potential varies sufficiently slowly in space,
the soliton moves at the same rate as it would in a uniform medium. The
energy of the soliton may be calculated by assuming that the velocity field
and the deviation of the density from its equilibrium value are given by the
expressions for a background medium with uniform density. It is convenient
to consider the quantity E − µN rather than the energy itself to allow for
the deficit of particles in the soliton. The contribution to this quantity from
the soliton consists of four parts. One is the change in the energy due to
the external potential, since when a soliton is added, particles are removed
from the vicinity of the soliton. The density depression gives rise to a lo-
cal increase of the fluid velocity, and this leads to the second contribution
which is due to the extra kinetic energy that arises because of this. Another
effect is that the density reduction leads to a change in the interparticle
interaction energy, and this gives the third contribution. The fourth con-
tribution is due to the spatial variation of the magnitude of the condensate
wave function. When all these terms are added, one finds that the energy
of the soliton, per unit area perpendicular to the direction of propagation,
is given by

E =
4�

3
√
mU0

[µ−V (xs)−nmin(xs)U0]3/2 =
4�

3
√
mU0

[µ−V (xs)−mu2(xs)]3/2,

(7.157)
where xs is the position of the centre of the soliton, which depends on time.
In writing the second form, we have used the fact that the velocity u(xs)
of the soliton is equal to the sound velocity at the minimum density in the
soliton, u2(xs) = nmin(xs)U0/m. It is interesting to note that the energy of
a soliton decreases as its velocity increases, whereas for an ordinary particle
it increases.

From Eq. (7.157) we can immediately derive a number of conclusions.
Since, in the Thomas–Fermi theory, the chemical potential and the external
potential are related to the local density n0(xs) in the absence of the soliton
by Eq. (6.31), µ = V (xs)+n0(xs)U0, it follows that the energy of the soliton
is proportional to [n0(xs) − nmin(xs)]3/2. The requirement of energy con-
servation therefore implies that solitons move so that the depression of the
density, with respect to its value in the absence of the soliton, is a constant.
From the second form of Eq. (7.157) one sees that for energy to be conserved,
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the quantity µ−V (xs)−mu2(xs) must be constant, or V (xs)+mu2(xs) must
be constant. The latter expression is the energy of a particle of mass 2m.
Consequently, we arrive at the remarkable conclusion that the motion of a
soliton in a Bose–Einstein condensate in an external potential is the same
as that of a particle of mass 2m in the same potential. Thus, for a potential
having a minimum, the period of the motion of a soliton is

√
2 times that of

a particle of mass m in the potential, the energy of the particle being equal
to the value of the external potential at the turning points of the motion.

Because of the inhomogeneity of the potential, the form of the velocity
that we have adopted is not an exact solution of the equation of motion, and
as the soliton accelerates due to the external potential, it will emit sound
waves in much the same way as a charged particle emits electromagnetic
radiation when accelerated. However, this effect is small if the potential
varies sufficiently slowly. Dissipation tends to make the soliton less dark,
that is to reduce the depth of the density depression. In a condensate of
finite extent, such as one in a trap, emission of phonons is suppressed by the
discrete nature of the spectrum of elementary excitations.

In bulk matter, purely one-dimensional solitons are unstable to perturba-
tions in the other dimensions. This may be shown by studying small depar-
tures of the condensate wave function from its form for a soliton, just as we
earlier investigated oscillations of a condensate about the ground-state solu-
tion. The corresponding equations are the Bogoliubov equations (7.39) and
(7.40) with ψ(r, t) put equal to the solution for a soliton. For dark solitons in
a condensate with repulsive interactions, this instability was demonstrated
in Ref. [12]. When the instability grows, solitons break up into pairs of vor-
tices. Bright solitons in a medium with attractive interactions are unstable
with respect to a periodic spatial variation in the transverse direction [13].
This corresponds to a tendency to break up into small clumps, since the
attractive interaction favours more compact structures, as discussed in Sec.
6.2.

Problems

Problem 7.1 Derive the hydrodynamic equations (7.8) and (7.19) directly
from the action principle (7.4) with the Lagrangian (7.5), by varying the
action with respect to the magnitude and the phase of the condensate wave
function ψ(r, t) = f(r, t)eiφ(r,t).

Problem 7.2 Show that for a harmonic trap with an axis of symmetry



202 Dynamics of the condensate

there exist collective modes of the form (7.80), and verify the result (7.81)
for their frequencies.

Problem 7.3 Consider a trap with axial symmetry, corresponding to the
potential (7.74) with λ �= 1. Use the variational method with a trial function
of the form

ψ = Ce−ρ2/2R2
e−z2/2Z2

eiαρ2m/2�eiβz2m/2�,

R, Z, α and β being variational parameters, to obtain equations of motion
for R and Z and identify the potential U(R,Z). Determine the frequencies
of small oscillations around the equilibrium state and compare the results
with the frequencies (7.85) obtained by solving the hydrodynamic equations
in the Thomas–Fermi approximation.

Problem 7.4 Use the trial function given in Problem 7.3 to study the free
expansion of a cloud of condensate upon release from an axially-symmetric
trap of the form (7.74) with λ �= 1, by numerically solving the coupled
differential equations for R and Z. Check that your numerical results satisfy
the energy conservation condition.

Problem 7.5 Show that the equation (7.150) may be integrated to give

�
2

2m

(
∂
√
n

∂x

)2

= (nU0 −mu2)
(n− n0)2

2n
,

and use this result to derive Eqs. (7.151)–(7.153).

References
[1] N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947), reprinted in D. Pines, The

Many-Body Problem, (W. A. Benjamin, New York, 1961), p. 292.
[2] R. P. Feynman, Phys. Rev. 91, 1301 (1953); 94, 262 (1954).
[3] S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
[4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,

Fifth edition, (Academic Press, 1994), 9.100.
[5] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,

Phys. Rev. Lett. 77, 420 (1996).
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8

Microscopic theory of the Bose gas

In Chapter 7 we studied elementary excitations of the condensate using the
Gross–Pitaevskii equation, in which the wave function of the condensate is
treated as a classical field. In this chapter we develop the microscopic the-
ory of the Bose gas, taking into account the quantum nature of excitations.
First we discuss the excitation spectrum of a homogeneous gas at zero tem-
perature (Sec. 8.1) within the Bogoliubov approximation and determine the
depletion of the condensate and the change in ground-state energy. Follow-
ing that we derive in Sec. 8.2 the Bogoliubov equations for inhomogeneous
gases, and also consider the weak-coupling limit in which particle interac-
tions may be treated as a perturbation. Excitations at non-zero tempera-
tures are the subject of Sec. 8.3, where we describe the Hartree–Fock and
Popov approximations, which are mean-field theories. Interactions between
atoms change the frequencies of spectral lines. Such shifts are important in
atomic clocks, and an important example in the context of Bose–Einstein
condensation is the shift of the 1S–2S transition in hydrogen, which is used
to measure the atomic density. Collective effects not taken into account in
the Hartree–Fock theory and the other mean-field theories mentioned above
are important for understanding these shifts, as will be described in Sec. 8.4.

The starting point for our calculations is the Hamiltonian (6.3). In terms
of creation and annihilation operators for bosons, ψ̂†(r) and ψ̂(r) respec-
tively, it has the form

H =
∫
dr

[
−ψ̂†(r)

�
2

2m
∇2ψ̂(r) + V (r)ψ̂†(r)ψ̂(r) +

U0

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
.

(8.1)
In the Gross–Pitaevskii equation one works not with creation and annihi-
lation operators but with the wave function for the condensed state, which
is a classical field. The Gross–Pitaevskii approach is thus analogous to the

204
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classical theory of electrodynamics, in which a state is characterized by clas-
sical electric and magnetic fields, rather than by creation and annihilation
operators for photons.

To take into account quantum fluctuations about the state in which all
atoms are condensed in a single quantum state it is natural to write1

ψ̂(r) = ψ(r) + δψ̂(r). (8.2)

If the fluctuation term δψ̂(r) is neglected, the Hamiltonian is equivalent to
the energy expression which leads to the Gross–Pitaevskii equation.

8.1 Excitations in a uniform gas

As a first illustration we consider a uniform gas of interacting bosons con-
tained in a box of volume V . The Hamiltonian (8.1) then becomes

H =
∑
p

ε0pa
†
pap +

U0

2V

∑
p,p′,q

a†p+qa
†
p′−qap′ap , (8.3)

where ε0p = p2/2m. Here the operators ap and a†p that destroy and create
bosons in the state with momentum p satisfy the usual Bose commutation
relations

[ap, a
†
p′ ] = δp,p′ , [ap, ap′ ] = 0, and [a†p, a

†
p′ ] = 0. (8.4)

We assume that in the interacting system the lowest-lying single-particle
state is macroscopically occupied, that is N0/N tends to a non-zero value in
the thermodynamic limit when N and V tend to infinity in such a way that
the density N/V remains constant. In the unperturbed system we have

a†0|N0〉 =
√
N0 + 1|N0 + 1〉 and a0|N0〉 =

√
N0|N0 − 1〉, (8.5)

and in the Hamiltonian we therefore replace a0 and a†0 by
√
N0, as was first

done by Bogoliubov [1]. This is equivalent to using Eq. (8.2) with the wave
function for the condensed state given by ψ =

√
N0φ0, where φ0 = V −1/2 is

the wave function for the zero-momentum state.
Within the Bogoliubov approach one assumes that δψ̂(r) is small and

retains in the interaction all terms which have (at least) two powers of ψ(r)
or ψ∗(r). This is equivalent to including terms which are no more than

1 In this chapter we use the notation ψ̂ to distinguish the annihilation operator from the wave
function ψ. When ambiguities do not exist (as with the annihilation operator ap) we omit the
‘hat’.
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quadratic in δψ̂(r) and δψ̂†(r), that is in ap and a†p for p �= 0. One finds

H =
N2

0U0

2V
+

∑
p(p�=0)

(ε0p +2n0U0)a†pap +
n0U0

2

∑
p(p�=0)

(a†pa
†
−p +apa−p), (8.6)

where n0 = N0/V is the density of particles in the zero-momentum state.2

The first term is the energy of N0 particles in the zero-momentum state,
and the second is that of independent excitations with energy ε0p + 2n0U0,
which is the energy of an excitation moving in the Hartree–Fock mean field
produced by interactions with other atoms. To see this it is convenient to
consider an interaction U(r) with non-zero range instead of the contact one,
and introduce its Fourier transform U(p) by

U(p) =
∫
dr U(r) exp(−ip·r/�). (8.7)

When the operators a0 and a†0 in the Hamiltonian are replaced by c numbers,
the term in the interaction proportional to N0 is

∑
p(p�=0)

n0[U(0) + U(p)]a†pap +
1
2

∑
p(p�=0)

n0U(p)(a†pa
†
−p + apa−p). (8.8)

The a†pap term has two contributions. The first, n0U(0), is the Hartree
energy, which comes from the direct interaction of a particle in the state
p with the N0 atoms in the zero-momentum state. The second is the ex-
change, or Fock, term, in which an atom in the state p is scattered into
the zero-momentum state, while a second atom is simultaneously scattered
from the condensate to the state p. These identifications will be further
elucidated in Sec. 8.3.1 below where we consider the Hartree–Fock approx-
imation in greater detail. For a contact interaction the Fourier transform
of the interaction U(p) is independent of p, and therefore the Hartree and
Fock terms are both equal to n0U0. The final terms in Eqs. (8.6) and (8.8)
correspond to the scattering of two atoms in the condensate to states with
momenta ±p and the inverse process in which two atoms with momenta ±p
are scattered into the condensate.

The task now is to find the eigenvalues of the Hamiltonian (8.6). The
original Hamiltonian conserved the number of particles, and therefore we
wish to find the eigenvalues of the new Hamiltonian for a fixed average

2 In this chapter and the following ones it is important to distinguish between the condensate
density and the total density, and we shall denote the condensate density by n0 and the total
density by n.
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particle number. The operator for the total particle number is given by

N̂ =
∑
p

a†pap, (8.9)

which on treating the zero-momentum-state operators as c numbers becomes

N̂ = N0 +
∑

p(p�=0)

a†pap. (8.10)

Expressed in terms of the total number of particles, the Hamiltonian (8.6)
may be written

H =
N2U0

2V
+

∑
p(p�=0)

[
(ε0p + n0U0)a†pap +

n0U0

2
(a†pa

†
−p + apa−p)

]
, (8.11)

where in the first term we have replaced N̂ by its expectation value. This
is permissible since the fluctuation in the particle number is small. Since
we consider states differing little from the state with all particles in the
condensed state it makes no difference whether the condensate density or
the total density appears in the terms in the sum. The reduction of the
coefficient of a†pap from ε0p + 2n0U0 to ε0p + n0U0, is due to the condition
that the total number of particles be fixed. In the classical treatment of
excitations in Chapter 7 this corresponds to the subtraction of the chemical
potential, since for the uniform Bose gas at zero temperature, the chemical
potential is n0U0, Eq. (6.12).

The energy ε0p+n0U0 does not depend on the direction of p, and therefore
we may write the Hamiltonian (8.11) in the symmetrical form

H =
N2U0

2V
+

∑
p(p�=0)

′
[(ε0p + n0U0)(a†pap + a†−pa−p) + n0U0(a†pa

†
−p + apa−p)],

(8.12)
where the prime on the sum indicates that it is to be taken only over one
half of momentum space, since the terms corresponding to p and −p must
be counted only once.

8.1.1 The Bogoliubov transformation

The structure of the Hamiltonian is now simple, since it consists of a sum
of independent terms of the form

ε0(a†a+ b†b) + ε1(a†b† + ba). (8.13)
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Here ε0 and ε1 are c numbers. The operators a† and a create and annihilate
bosons in the state with momentum p, and b† and b are the corresponding
operators for the state with momentum −p.

The eigenvalues and eigenstates of this Hamiltonian may be obtained by
performing a canonical transformation, as Bogoliubov did in the context of
liquid helium [1]. This method has proved to be very fruitful, and it is used
extensively in the theory of superconductivity and of magnetism as well as
in other fields. We shall use it again in Chapter 14 when we consider pairing
of fermions. The basic idea is to introduce a new set of operators α and β
such that the Hamiltonian has only terms proportional to α†α and β†β.

Creation and annihilation operators for bosons obey the commutation
relations

[a, a†] = [b, b†] = 1, and [a, b†] = [b, a†] = 0. (8.14)

We introduce new operators α and β by the transformation

α = ua+ vb†, β = ub+ va†, (8.15)

where u and v are coefficients to be determined. We require that also these
operators satisfy Bose commutation rules,

[α, α†] = [β, β†] = 1, [α, β†] = [β, α†] = 0. (8.16)

Since the phases of u and v are arbitrary, we may take u and v to be real.
By inserting (8.15) into (8.16) and using (8.14) one sees that u and v must
satisfy the condition

u2 − v2 = 1. (8.17)

The inverse transformation corresponding to (8.15) is

a = uα− vβ†, b = uβ − vα†. (8.18)

We now substitute (8.18) in (8.13) and obtain the result

H = 2v2ε0 − 2uvε1 + [ε0(u2 + v2)− 2uvε1](α†α+ β†β)

+ [ε1(u2 + v2)− 2uvε0](αβ + β†α†). (8.19)

The term proportional to αβ + β†α† can be made to vanish by choosing u
and v so that its coefficient is zero:

ε1(u2 + v2)− 2uvε0 = 0. (8.20)

The sign of u is arbitrary, and if we adopt the convention that it is positive,
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the normalization condition (8.17) is satisfied by the following parametriza-
tion of u and v,

u = cosh t, v = sinh t, (8.21)

which in turn implies that the condition (8.20) may be written as

ε1(cosh2 t+ sinh2 t)− 2ε0 sinh t cosh t = 0, (8.22)

or

tanh 2t =
ε1
ε0
. (8.23)

From this result one finds

u2 =
1
2

(ε0
ε

+ 1
)

and v2 =
1
2

(ε0
ε
− 1

)
, (8.24)

where

ε =
√
ε20 − ε21. (8.25)

It is necessary to choose the positive branch of the square root, since other-
wise u and v would be imaginary, contrary to our initial assumption. Solving
for u2 + v2 and 2uv in terms of the ratio ε1/ε0 and inserting the expressions
into (8.19) leads to the result

H = ε(α†α+ β†β) + ε− ε0. (8.26)

The ground-state energy is ε− ε0, which is negative, and the excited states
correspond to the addition of two independent kinds of bosons with energy
ε, created by the operators α† and β†. For ε to be real, the magnitude of
ε0 must exceed that of ε1. If |ε1| > |ε0|, the excitation energy is imaginary,
corresponding to an instability of the system.

8.1.2 Elementary excitations

We may now use the results of the previous subsection to bring the Hamil-
tonian (8.12) into diagonal form. We make the transformation

ap = upαp − vpα†−p, a−p = upα−p − vpα†p, (8.27)

where ap corresponds to a in the simple model, a−p to b, αp to α, and α−p

to β. The result is

H =
N2U0

2V
+

∑
p(p�=0)

εpα
†
pαp −

1
2

∑
p(p�=0)

(
ε0p + n0U0 − εp

)
(8.28)
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with

εp =
√

(ε0p + n0U0)2 − (n0U0)2 =
√

(ε0p)2 + 2ε0pn0U0. (8.29)

The energy spectrum (8.29) agrees precisely with the result (7.48) derived
in the previous chapter. For small p the energy is εp = sp, where

s2 =
n0U0

m
. (8.30)

The operators that create and destroy elementary excitations are given
by

α†p = upa
†
p + vpa−p. (8.31)

The coefficients satisfy the normalization condition

u2
p − v2p = 1 (8.32)

corresponding to Eq. (8.17) and are given explicitly by

u2
p =

1
2

(
ξp
εp

+ 1
)

and v2p =
1
2

(
ξp
εp
− 1

)
, (8.33)

where ξp = ε0p + n0U0 is the difference between the Hartree–Fock energy of
a particle and the chemical potential, Eq. (6.12).

Thus the system behaves as a collection of non-interacting bosons with
energies given by the Bogoliubov spectrum previously derived from classical
considerations in Chapter 7. In the ground state of the system there are no
excitations, and thus αp|0〉 = 0.

Depletion of the condensate

The particle number is given by Eq. (8.10) which, rewritten in terms of α†p
and αp, has the form

N̂ = N0 +
∑

p(p�=0)

v2p +
∑

p(p�=0)

(u2
p + v2p)α

†
pαp

−
∑

p(p�=0)

upvp(α†pα
†
−p + α−pαp). (8.34)

In deriving this expression we used the Bose commutation relations to re-
order operators so that the expectation value of the operator terms gives
zero in the ground state. The physical interpretation of this expression is
that the first term is the number of atoms in the condensate. The second
term represents the depletion of the condensate by interactions when no real
excitations are present. In the ground state of the interacting gas, not all
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particles are in the zero-momentum state because the two-body interaction
mixes into the ground-state components with atoms in other states. Con-
sequently, the probability of an atom being in the zero-momentum state is
reduced. The last terms correspond to the depletion of the condensate due to
the presence of real excitations. For states which contain a definite number
of elementary excitations, the expectation value of α†pα

†
−p and its Hermitian

conjugate vanish, and therefore the number operator may equivalently be
written as

N̂ = N0 +
∑

p(p�=0)

v2p +
∑

p(p�=0)

(u2
p + v2p)α

†
pαp. (8.35)

This shows that when an excitation with non-zero momentum p is added to
the gas, keeping N0 fixed, the number of particles changes by an amount

νp = u2
p + v2p =

ξp
εp
, (8.36)

where, as before, ξp = ε0p +n0U0. Thus, when an excitation is added keeping
the total number of particles fixed, N0 must be reduced by the corresponding
amount. At large momenta the particle number associated with an excita-
tion tends to unity, since then excitations are just free particles, while for
small momenta the effective particle number diverges as ms/p.

The depletion of the ground state at zero temperature may be calculated
by evaluating the second term in Eq. (8.34) explicitly and one finds for the
number of particles per unit volume in excited states3

nex =
1
V

∑
p(p�=0)

v2p =
∫

dp
(2π�)3

v2p =
1

3π2

(ms
�

)3
, (8.37)

which is of order one particle per volume ξ3, where ξ is the coherence length,
Eq. (6.62). Physically this result may be understood by noting that v2p is
of order unity for momenta p ∼ �/ξ, and then falls off rapidly at larger
momenta. The number density of particles in excited states is thus of order
the number of states per unit volume with wave number less than 1/ξ, that
is, 1/ξ3 in three dimensions. The depletion may also be expressed in terms
of the scattering length by utilizing the result (8.30) with U0 = 4π�

2a/m,
and one finds

nex

n
=

8
3
√
π

(na3)1/2. (8.38)

In deriving this result we have assumed that the depletion of the condensate
3 When transforming sums to integrals we shall use the standard prescription

∑
p . . . =

V
∫

dp/(2π�)3 . . . .
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is small, and (8.38) is therefore only valid when the particle spacing is large
compared with the scattering length, or nex � n. In most experiments that
have been carried out, the ground-state depletion is of the order of one per
cent. Recent experiments on 85Rb near a Feshbach resonance achieved very
large values of the scattering length corresponding to a depletion of 10%,
thus opening up the possibility of measuring effects beyond the validity of
the mean-field approximation [2].

Ground-state energy

The calculation of higher-order contributions to the energy requires that
one go beyond the simple approximation in which the effective interaction
is replaced by U0 = 4π�

2a/m. The difficulty with the latter approach is
seen by considering the expression for the ground-state energy E0 that one
obtains from Eq. (8.28),

E0 =
N2U0

2V
− 1

2

∑
p

(
ε0p + n0U0 − εp

)
. (wrong!) (8.39)

Formally the sum is of order U2
0 , as one can see by expanding the summand

for large p. However, the sum diverges linearly at large p: the leading terms
in the summand are of order 1/p2, and the sum over momentum space when
converted to an integral gives a factor p2dp. This difficulty is due to the
fact that we have used the effective interaction U0, which is valid only for
small momenta, to calculate high-momentum processes. In perturbation
theory language, the effective interaction takes into account transitions to
intermediate states in which the two interacting particles have arbitrarily
high momenta. If the sum in Eq. (8.39) is taken over all states, contributions
from these high-energy intermediate states are included twice. To make a
consistent calculation of the ground-state energy one must use an effective
interaction U(pc) in which all intermediate states with momenta in excess of
some cut-off value pc are taken into account, and then evaluate the energy
omitting in the sum in the analogue of Eq. (8.39) all intermediate states
with momenta in excess of this cut off. The ground-state energy is therefore

E0 =
N2U(pc)

2V
− 1

2

∑
p(p<pc)

(
ε0p + n0U0 − εp

)
. (8.40)

The effective interaction Ũ = U(pc) for zero energy E and for small values of
pc may be obtained from (5.40) by replacing T by U0, which is the effective
interaction for pc = 0 and E = 0. The imaginary part of the effective
interaction, which is due to the iδ term in the energy denominator in (5.40),
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is proportional to E1/2, and therefore it vanishes at zero energy. The effective
interaction for small pc and zero energy is thus given by

U(pc) = U0 +
U2

0

V

∑
p(p<pc)

1
2ε0p
. (8.41)

With this expression for the effective interaction U(pc) one finds

E0 =
N2U0

2V
− 1

2

∑
p(p<pc)

[
ε0p + n0U0 − εp −

(nU0)2

2ε0p

]
. (8.42)

If one chooses the cut-off momentum to be large compared with ms but
small compared with �/a the result does not depend on pc, and, using the
fact that n0 � n, one finds

E0

V
=

n2U0

2
+

8
15π2

(ms
�

)3
ms2

=
n2U0

2

[
1 +

128
15π1/2

(na3)1/2
]
. (8.43)

The first form of the correction term indicates that the order of magnitude
of the energy change is the number of states having wave numbers less than
the inverse coherence length, times the typical energy of an excitation with
this wave number, as one would expect from the form of the integral. This
result was first obtained by Lee and Yang [3].

States with definite particle number

The original microscopic Hamiltonian (8.3) conserves the total number of
particles. The assumption that the annihilation operator for a particle has a
non-zero expectation value, as indicated in Eq. (8.2), implies that the states
we are working with are not eigenstates of the particle number operator. In
an isolated cloud of gas, the number of particles is fixed, and therefore the
expectation value of the particle annihilation operator vanishes. Assuming
that the annihilation operator for a particle has a non-zero expectation value
is analogous to assuming that the operator for the electromagnetic field due
to photons may be treated classically. In both cases one works with coherent
states, which are superpositions of states with different numbers of particles
or photons. It is possible to calculate the properties of a Bose gas containing
a definite particle number by introducing the operators [4]

ãp = a†0(N̂0 + 1)−1/2ap, ã†p = a†p(N̂0 + 1)−1/2a0, (p �= 0), (8.44)

where N̂0 = a†0a0 is the operator for the number of particles in the zero-
momentum state. By evaluating the commutators explicitly, one can show
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that these operators obey Bose commutation relations when they act on any
state which has a non-vanishing number of particles in the zero-momentum
state. In the presence of a Bose–Einstein condensate, components of the
many-particle state having no particles in the zero-momentum state play
essentially no role, so we shall not consider this restriction further. In ad-
dition, the operator ã†pãp is identically equal to a†pap for p �= 0. Retaining
only terms no more than quadratic in the operators ãp and ã†p, one may
write the Hamiltonian for states that deviate little from the fully-condensed
state containing a definite number of particles N as

H=
N(N − 1)U0

2V
+

∑
p(p�=0)

′
{

(ε0p +
N̂0

V
U0)(ã†pãp + ã†−pã−p)

+
U0

V
[(N̂0 + 2)1/2(N̂0 + 1)1/2ã†pã

†
−p + ãpã−p(N̂0 + 2)1/2(N̂0 + 1)1/2]

}
.

(8.45)

When one replaces N̂0 by its expectation value N0 and neglects terms of
relative order 1/N0 and 1/N , this equation becomes identical with Eq. (8.12)
apart from the replacement of ap and a†p by ãp and ã†p. In terms of new
operators defined by

α̃†p = upã
†
p + vpã−p = upa

†
p(N̂0 + 1)−1/2a0 + vpa

†
0(N̂0 + 1)−1/2a−p, (8.46)

which is analogous to Eq. (8.31), the Hamiltonian reduces to Eq. (8.28),
but with the operators α̃p instead of αp. This shows that the addition of
an elementary excitation of momentum p is the superposition of the addi-
tion of a particle of momentum p together with the removal of a particle
from the condensate, and the removal of a particle with momentum −p ac-
companied by the addition of a particle to the condensate. The fact that
the total number of particles remains unchanged is brought out explicitly.
The physical character of long-wavelength excitations may be seen by using
the fact that up � vp in this limit. Therefore, for large N0, α̃

†
p is propor-

tional to a†pa0 +a†0a−p, which is the condensate contribution to the operator∑
p′ a

†
p+p′ap′ that creates a density fluctuation. This confirms the phonon

nature of long-wavelength excitations.

8.2 Excitations in a trapped gas

In Chapter 7 we calculated properties of excitations using a classical ap-
proach. The analogous quantum-mechanical theory can be developed along
similar lines. It parallels the treatment for the uniform system given in
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Sec. 8.1 and we describe it here. Instead of starting from a functional for
the energy as we did in the classical case, we consider the Hamiltonian op-
erator (8.1) and the expression (8.2) which corresponds to separating out
the condensed state. Also, since we wish to conserve particle number on
average, it is convenient to work with the operator K = H − µN̂ , rather
than the Hamiltonian itself. The term with no fluctuation operators is the
Gross–Pitaevskii functional (6.9). The terms with a single fluctuation op-
erator vanish if ψ satisfies the time-independent Gross–Pitaevskii equation
(6.11), since the latter follows from the condition that the variations of the
energy should vanish to first order in variations in ψ. To second order in
the fluctuations, the Hamiltonian may be written

K = H − µN̂ = E0 − µN0 +
∫
dr

(
−δψ̂†(r)

�
2

2m
∇2δψ̂(r)

+ [V (r) + 2U0|ψ(r)|2 − µ]δψ̂†(r)δψ̂(r)

+
U0

2
{ψ(r)2[δψ̂†(r)]2 + ψ∗(r)2[δψ̂(r)]2}

)
, (8.47)

which should be compared with the similar expression (8.11) for the en-
ergy of a gas in a constant potential. To find the energies of elementary
excitations we adopt an approach similar to that used in Sec. 7.2, where
we calculated the properties of excitations from the time-dependent Gross–
Pitaevskii equation. The equations of motion for the operators δψ̂ and δψ̂†

in the Heisenberg picture are

i�
∂δψ̂

∂t
= [δψ̂,K] and i�

∂δψ̂†

∂t
= [δψ̂†,K], (8.48)

which upon substitution of K from (8.47) become

i�
∂δψ̂

∂t
=

[
− �

2

2m
∇2 + V (r) + 2n0(r)U0 − µ

]
δψ̂ + U0ψ(r)2δψ̂† (8.49)

and

−i�∂δψ̂
†

∂t
=

[
− �

2

2m
∇2 + V (r) + 2n0(r)U0 − µ

]
δψ̂† + U0ψ

∗(r)2δψ̂. (8.50)

In order to solve these coupled equations we carry out a transformation
analogous to (7.41)

δψ̂(r, t) =
∑

i

[ui(r)αie
−iεit/� − v∗i (r)α

†
ie

iεit/�], (8.51)

where the operators α†i and αi create and destroy bosons in the excited state
i. In the ground states we may take ψ(r) to be real, and therefore we may
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write ψ(r)2 = ψ∗(r)2 = n0(r). By substitution one sees that ui and vi must
satisfy the Bogoliubov equations[

− �
2

2m
∇2 + V (r) + 2n0(r)U0 − µ− εi

]
ui(r)− n0(r)U0vi(r) = 0 (8.52)

and[
− �

2

2m
∇2 + V (r) + 2n0(r)U0 − µ+ εi

]
vi(r)− n0(r)U0ui(r) = 0, (8.53)

just as in the classical treatment. The only difference compared with Eqs.
(7.42) and (7.43) is that we have replaced the classical frequency by εi/�.
By a generalization of the usual discussion for the Schrödinger equation, one
may show that the eigenstates with different energies are orthogonal in the
sense that ∫

dr[ui(r)u∗j (r)− v∗i (r)vj(r)] = 0. (8.54)

The sign difference between the u and v terms reflects the fact that the
energy εi occurs with different signs in the two Bogoliubov equations. The
requirement that α†i and αi satisfy Bose commutation relations gives the
condition ∫

dr[|ui(r)|2 − |vi(r)|2] = 1. (8.55)

This choice of normalization agrees with that of u(r) and v(r) in the classical
theory for the uniform system, as given by Eqs. (7.44) and (7.51). Once the
eigenvalues εi and the associated solutions ui and vi have been determined
we may express the operator K in terms of them, and the result is K =∑

i εiα
†
iαi + constant.

The system has also a trivial zero-energy mode. When the overall phase
of the condensate wave function is changed, the energy is unaltered, and
therefore there is no restoring force. Thus this mode has zero frequency. It
corresponds to a change of the condensate wave function δψ = iψδφ, where
δφ is the change in phase.

8.2.1 Weak coupling

The theory of collective modes developed above is quite general, but ana-
lytical results can be obtained only in limiting cases. The hydrodynamic
theory described in Chapter 7 is applicable provided interactions are strong
enough that the Thomas–Fermi approximation for the static structure is
valid. This requires that Na/ā be large compared with unity. In addition
the method is restricted to modes that are mainly in the interior of the
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cloud, since the Thomas–Fermi method fails in the boundary layer of thick-
ness δ at the surface of the cloud (Sec. 6.3). In the opposite limit, when
Na/ā� 1, properties of modes may be investigated by perturbation theory,
and we now describe this approach. This regime has not yet been explored
experimentally, but theoretical study of it has brought to light a number of
interesting results.

For simplicity, let us consider atoms in a harmonic trap with no axis of
symmetry and assume the effective interaction between the atoms to be of
the contact form, U(r−r′) ∝ δ(r−r′). In the ground state in the absence of
interactions, all atoms are in the lowest level of the oscillator. Elementary
excitations of the system correspond to promoting one or more atoms to
excited states of the oscillator. If the oscillator frequencies are not com-
mensurate, excitations associated with motions along the three coordinate
directions are independent if the interaction is weak. The simplest excita-
tion one can make is to take one atom from the ground state of the oscillator
and put it into, say, the state with n oscillator quanta for motion in the z
direction. If we suppress the x and y degrees of freedom, the ground state
may be written as |0N 〉 and the excited state by |0N−1n1〉. The expectation
value of the total energy in the ground state is given to first order in the
interaction by

E0 =
N

2
�(ω1 + ω2 + ω3) +

N(N − 1)
2

〈00|U |00〉, (8.56)

where 〈ij|U |kl〉 is the matrix element of the two-body interaction between
oscillator states, see Eq. (8.70). The energy in the excited state may be
evaluated directly, and it is

En =
N

2
�(ω1 + ω2 + ω3) + n�ω3 +

(N − 1)(N − 2)
2

〈00|U |00〉

+ 2(N − 1)〈0n|U |0n〉. (8.57)

The factor of 2 in the last term on the right hand side of (8.57) appears
because, for a contact interaction, the Hartree and Fock terms contribute
equal amounts, as explained in more detail in Sec. 8.3.1 below (see Eq.
(8.72)). The excitation energy is therefore

εn = En − E0 = n�ω3 + (N − 1)(2〈0n|U |0n〉 − 〈00|U |00〉). (8.58)

A simple calculation gives

〈01|U |01〉 =
1
2
〈00|U |00〉, and 〈02|U |02〉 =

3
8
〈00|U |00〉. (8.59)

Thus the frequency of the n = 1 excitation is the same as in the absence of
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interactions. This is because this mode corresponds to an excitation of the
centre-of-mass motion alone, as we have seen earlier. For the n = 2 mode
one finds for N � 1

ε2 = 2�ω3 −
N

4
〈00|U |00〉. (8.60)

This result may also be obtained by using the collective coordinate ap-
proach which we illustrated in Sec. 7.3.3 for the breathing mode. In the
weak-coupling limit the mode corresponds to a uniform dilation along the z
direction.

In the treatment above we have not taken into account the degeneracy of
low-lying excitations in the absence of interactions. For example, the states
|0N−121〉 and |0N−212〉 are degenerate. Interactions break this degeneracy,
but they shift the excitation energy by terms which are independent of N .
When the number of particles is large, these contributions are negligible
compared with the leading term, which is proportional to N . When many
excitations are present the problem becomes more complex. In Chapter 9 we
shall develop this approach to consider the properties of a weakly-interacting
Bose gas under rotation.

8.3 Non-zero temperature

At non-zero temperatures, elementary excitations will be present. At tem-
peratures well below the transition temperature their number is small and
interactions between them may be neglected. In equilibrium, the distribu-
tion function for excitations is thus the usual Bose–Einstein one evaluated
with the energies calculated earlier for the Bogoliubov approximation. An
important observation is that addition of one of these excitations does not
change the total particle number and, consequently, there is no chemical
potential term in the Bose distribution,

fi =
1

exp(εi/kT )− 1
, (8.61)

where i labels the state. In this respect these excitations resemble phonons
and rotons in liquid 4He. From the distribution function for excitations we
may calculate the thermodynamic properties of the gas. For example, for a
uniform Bose gas the thermal contribution to the energy is

E(T )− E(T = 0) = V
∫

dp
(2π�)3

εpfp, (8.62)
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and the thermal depletion of the condensate density is given by

nex(T )− nex(T = 0) =
∫

dp
(2π�)3

ξp
εp
fp, (8.63)

since according to (8.35) and (8.36) the addition of an excitation keeping
the total number of particles fixed reduces the number of particles in the
condensate by an amount ξp/εp. When the temperature is less than the
characteristic temperature T∗ defined by

kT∗ = ms2 � nU0, (8.64)

the excitations in a uniform gas are phonon-like, with an energy given by
ε = sp. In this limit the thermal contribution to the energy, Eq. (8.62), is
proportional to T 4, as opposed to the T 5/2 behaviour found for the non-
interacting gas, Eq. (2.55) with α = 3/2. Likewise the entropy and specific
heat obtained from (8.62) are both proportional to T 3, while the corre-
sponding result for the non-interacting gas is T 3/2. Due to the fact that the
particle number ξp/εp becomes inversely proportional to p for p � ms, the
thermal depletion of the condensate density obtained from (8.63) is propor-
tional to T 2 which should be contrasted with the T 3/2 behaviour of nex for
a non-interacting gas exhibited in Eq. (2.30).

8.3.1 The Hartree–Fock approximation

In the calculations described above we assumed the system to be close to its
ground state, and the excitations we found were independent of each other.
At higher temperatures, interactions between excitations become important.
These are described by the terms in the Hamiltonian with lower powers of
the condensate wave function. Deriving expressions for the properties of a
Bose gas at arbitrary temperatures is a difficult task, but fortunately there is
a useful limit in which a simple physical picture emerges. In a homogeneous
gas not far from its ground state, the energy of an excitation with high
momentum is given by Eq. (7.50). This approximate form is obtained from
the general theory by neglecting v: excitations correspond to addition of a
particle of momentum ±p and removal of one from the condensate. The
wave function of the state is a product of single-particle states, symmetrized
with respect to interchange of the particle coordinates to take into account
the Bose statistics. The neglect of v is justifiable if the a†a† and aa terms
in the Bogoliubov Hamiltonian are negligible for the excitations of interest.
This requires that ε0p � n0U0. Expressed in terms of the temperature, this
corresponds to T � T∗, Eq. (8.64).
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To explore the physics further, consider a Bose gas in a general spatially-
dependent potential. Let us assume that the wave function has the form of
a product of single-particle states symmetrized with respect to interchange
of particles:

Ψ(r1, r2, . . . , rN ) = cN
∑
sym

φ1(r1)φ2(r2) . . . φN (rN ). (8.65)

Here the wave functions of the occupied single-particle states are denoted by
φi. If, for example, there are Nα particles in the state α, that state will occur
Nα times in the sequence of single-particle states in the product. The sum
denotes symmetrization with respect to interchange of particle coordinates,
and

cN =
(∏

iNi!
N !

)1/2

(8.66)

is a normalization factor. This wave function is the natural generalization
of the wave function (6.1) when all particles are in the same state. To bring
out the physics it is again helpful to consider a non-zero-range interaction
U(r− r′), where r and r′ are the coordinates of the two atoms, rather than
a contact one (cf. Eq. (8.7)). In the expression for the interaction energy
for the wave function (8.65) there are two sorts of terms. The first are ones
which would occur if the wave function had not been symmetrized. These
are the so-called direct, or Hartree, terms and they contain contributions of
the form

UHartree
ij =

∫
drdr′U(r− r′)|φi(r)|2|φj(r′)|2, (8.67)

which is the energy of a pair of particles in the state φi(r)φj(r′). The second
class of terms, referred to as exchange or Fock terms, arise because of the
symmetrization of the wave function, and have the form

UFock
ij =

∫
drdr′U(r− r′)φ∗i (r)φ

∗
j (r

′)φi(r′)φj(r). (8.68)

For fermions, the Fock term has the opposite sign because of the antisymme-
try of the wave function. Calculation of the coefficients of these terms may
be carried out using the wave function (8.65) directly, but it is much more
convenient to use the formalism of second quantization which is designed
expressly for calculating matrix elements of operators between wave func-
tions of the form (8.65). The general expression for the interaction energy
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operator in this notation is [5]

U =
1
2

∑
ijkl

〈ij|U |kl〉a†ia
†
jalak, (8.69)

where

〈ij|U |kl〉 =
∫
drdr′U(r− r′)φ∗i (r)φ

∗
j (r

′)φl(r′)φk(r) (8.70)

is the matrix element of the two-body interaction. To evaluate the potential
energy we thus need to calculate the expectation value of a†ia

†
jalak. Since

the single-particle states we work with are assumed to be orthogonal, the
expectation value of this operator vanishes unless the two orbitals in which
particles are destroyed are identical with those in which they are created.
There are only two ways to ensure this: either i = k and j = l, or i = l and
j = k. The matrix element for the first possibility is Ni(Nj − δij), δij being
the Kronecker delta function, since for bosons ai (a†i ) acting on a state with
Ni particles in the single-particle state i yields

√
Ni (

√
Ni + 1) times the

state with one less (more) particle in that single-particle state. For fermions
the corresponding factors are

√
Ni and

√
1−Ni. The matrix element for the

second possibility is NiNj if we exclude the situation when all four states
are the same, which has already been included in the first case. For bosons,
the expectation value of the interaction energy is therefore

U =
1
2

∑
ij

〈ij|U |ij〉Ni(Nj − δij) +
1
2

∑
ij(i�=j)

〈ij|U |ji〉NiNj

=
1
2

∑
i

〈ii|U |ii〉Ni(Ni − 1) +
∑
i<j

(〈ij|U |ij〉+ 〈ij|U |ji〉)NiNj .

(8.71)

The contributions containing 〈ij|U |ij〉 are direct terms, and those containing
〈ij|U |ji〉 are exchange terms.

For a contact interaction, the matrix elements 〈ij|U |ij〉 and 〈ij|U |ji〉 are
identical, as one can see from Eq. (8.70), and therefore the interaction energy
is

U =
1
2

∑
i

〈ii|U |ii〉Ni(Ni − 1) + 2
∑
i<j

〈ij|U |ij〉NiNj . (8.72)

For bosons, the effect of exchange is to double the term proportional to
NiNj , whereas for fermions in the same internal state, the requirement of
antisymmetry of the wave function leads to a cancellation and the total
potential energy vanishes for a contact interaction.
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Let us now turn to the homogeneous Bose gas. From translational invari-
ance it follows that the single-particle wave functions must be plane waves.
The matrix elements of the interaction are U0/V , provided the initial and
final states have the same total momentum, and the energy of a state of the
form (8.65) is

E =
∑
p

ε0pNp +
U0

2V

∑
p,p′

Np(Np′ − δp,p′) +
U0

2V

∑
p,p′(p�=p′)

NpNp′ (8.73)

=
∑
p

ε0pNp +
U0

2V
N(N − 1) +

U0

2V

∑
p,p′(p�=p′)

NpNp′ (8.74)

=
∑
p

ε0pNp +
U0

V

(
N2 − 1

2

∑
p

N2
p −

N

2

)
. (8.75)

If the zero-momentum state is the only macroscopically-occupied one and
we take only terms of order N2, the interaction energy is (N2−N2

0 /2)U0/V .
Thus for a system with a given number of particles, the interaction energy
above Tc is twice that at zero temperature, due to the existence of the
exchange term, which is not present for a pure condensate.

The energy εp of an excitation of momentum p is obtained from (8.75)
by changing Np to Np + 1, thereby adding a particle to the system. It is

εp = ε0p +
N

V
U0 +

N −Np

V
U0. (8.76)

The first interaction term is the Hartree contribution, which represents the
direct interaction of the added particle with the N particles in the original
system. The second interaction term, the Fock one, is due to exchange, and
it is proportional to the number of particles in states different from that of
the added particle, since there is no exchange contribution between atoms
in the same single-particle state.4

Let us now calculate the energy of an excitation when one state, which
we take to be the zero-momentum state, is macroscopically occupied, while
all others are not. To within terms of order 1/N we may therefore write

εp=0 = (2n− n0)U0 = (n0 + 2nex)U0, (8.77)

where n is the total density of particles, n0 is the density of particles in the

4 The interaction that enters the usual Hartree and Hartree–Fock approximations is the bare
interaction between particles. Here we are using effective interactions, not bare ones, and the
approximation is therefore more general than the conventional Hartree–Fock one. It is closer
to the Brueckner–Hartree–Fock method in nuclear physics, but we shall nevertheless refer to it
as the Hartree–Fock approximation.
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condensate, and nex = n−n0 is the number of non-condensed particles. For
other states one has

εp = ε0p + 2nU0. (8.78)

We shall now apply these results to calculate equilibrium properties.

Thermal equilibrium

To investigate the thermodynamics in the Hartree–Fock approximation we
follow the same path as for the non-interacting gas, but with the Hartree–
Fock expression for the energy rather than the free-particle one. The way
in which one labels states in the Hartree–Fock approximation is the same
as for free particles, and therefore the entropy S is given by the usual result
for bosons

S = k
∑
p

[(1 + fp) ln(1 + fp)− fp ln fp], (8.79)

where fp is the average occupation number for states with momenta close to
p. The equilibrium distribution is obtained by maximizing the entropy sub-
ject to the condition that the total energy and the total number of particles
be fixed. The excitations we work with here correspond to adding a single
atom to the gas. Thus in maximizing the entropy, one must introduce the
chemical potential term to maintain the particle number at a constant value.
This is to be contrasted with the Bogoliubov approximation where we im-
plemented the constraint on the particle number explicitly. The equilibrium
distribution is thus

fp =
1

exp[(εp − µ)/kT ]− 1
, (8.80)

where the excitation energies are given by the Hartree–Fock expressions
(8.77) and (8.78).

For the zero-momentum state to be macroscopically occupied, the energy
to add a particle to that state must be equal to the chemical potential, to
within terms of order 1/N . Thus according to Eq. (8.77),

µ = (n0 + 2nex)U0, (8.81)

and the average occupancy of the other states is given by

fp =
1

exp[(ε0p + n0U0)/kT ]− 1
. (8.82)
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For consistency the number of non-condensed particles must be given by

N −N0 =
∑

p(p�=0)

fp

=
∑

p(p�=0)

1
exp[(ε0p + n0U0)/kT ]− 1

. (8.83)

This provides a self-consistency condition for the number of particles in the
condensate, since n0 = N0/V occurs in the distribution function.

Above the transition temperature energies of all states are shifted by the
same amount, and consequently the thermodynamic properties of the gas are
simply related to those of the non-interacting gas. In particular the energy
and the free energy are the same as that of a perfect Bose gas apart from
an additional term N2U0/V . Since this does not depend on temperature,
interactions have no effect on the transition temperature.

We now formulate the theory in terms of creation and annihilation oper-
ators. If the zero-momentum state is the only one which is macroscopically
occupied, the terms in the Hamiltonian (8.3) that contribute to the ex-
pectation value (8.73) of the energy for a state whose wave function is a
symmetrized product of plane-wave states may be written as

H =
N2

0U0

2V
+

∑
p(p�=0)

(ε0p + 2n0U0)a†pap +
U0

V

∑
pp′(p,p′ �=0)

a†papa
†
p′ap′ , (8.84)

where we have neglected terms of order 1/N .
We now imagine that the system is in a state close to one with average

occupation number fp, and ask what the Hamiltonian is for small changes
in the number of excitations. We therefore write

a†pap = fp + (a†pap − fp), (8.85)

and expand the Hamiltonian to first order in the fluctuation term. As we
did in making the Bogoliubov approximation, we neglect fluctuations in the
occupation of the zero-momentum state. The result is

H =
N2

0U0

2V
− U0

V

∑
pp′(p,p′ �=0)

fpfp′ +
∑

p(p�=0)

(ε0p + 2nU0)a†pap. (8.86)

This shows that the energy to add a particle to a state with non-zero mo-
mentum is ε0p+2nU0, which is the Hartree–Fock expression for the excitation
energy derived in Eq. (8.78).

It is also of interest to calculate the chemical potential, which is the energy
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to add a particle, the entropy being held constant:

µ =
∂E

∂N

∣∣∣∣
S

. (8.87)

The entropy associated with the zero-momentum state is zero, and there-
fore a simple way to evaluate the derivative is to calculate the energy change
when a particle is added to the condensate, keeping the distribution of ex-
citations fixed:

µ =
∂E

∂N0

∣∣∣∣
fp(p�=0)

= (n0 + 2nex)U0. (8.88)

This result agrees with Eq. (8.81).
Since the energy εp of an excitation tends to 2nU0 for p→ 0, the excitation

energy measured with respect to the chemical potential has a gap n0U0 in
this approximation. The long-wavelength excitations in the Hartree–Fock
approximation are particles moving in the mean field of the other particles,
whereas physically one would expect them to be sound waves, with no gap
in the spectrum, as we found in the Bogoliubov theory. We now show how
to obtain a phonon-like spectrum at non-zero temperatures.

8.3.2 The Popov approximation

To go beyond the Hartree–Fock approximation one must allow for the mixing
of particle-like and hole-like excitations due to the interaction, which is
reflected in the coupling of the equations for u and v. This effect is important
for momenta for which ε0p is comparable with or less than n0U0. A simple
way to do this is to add to the Hartree–Fock Hamiltonian (8.86) the terms in
the Bogoliubov Hamiltonian (8.6) that create and destroy pairs of particles.
The Hamiltonian is therefore5

H =
N2

0U0

2V
− U0

V

∑
pp′(p,p′ �=0)

fpfp′ +
∑

p(p�=0)

(ε0p + 2nU0)a†pap

+ n0U0

∑
p(p�=0)

′
(a†pa

†
−p + apa−p). (8.89)

This approximation is usually referred to as the Popov approximation [6].
Rather than working with the Hamiltonian itself, we consider the quantity
5 In this approximation the effect of the thermal excitations on the ‘pairing’ terms proportional

to a†pa†−p + apa−p has been neglected. More generally one could replace in the last term of

(8.89) n0 by n0 + V −1
∑

p�=0 Ap where Ap is the average value of apa−p, which is non-zero

when excitations are present. However, this approximation suffers from the disadvantage that
the energy of a long-wavelength elementary excitation does not tend to zero.
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H −µN̂ to take care of the requirement that particle number be conserved.
One finds

H − µN̂ = −N
2
0U0

2V
− 2N0NexU0

V
− N

2
exU0

V

+
∑

p(p�=0)

′ [
(ε0p + n0U0)(a†pap + a†−pa−p) + n0U0(a†pa

†
−p + apa−p)

]
,

(8.90)

where

Nex =
∑

p(p�=0)

< a†pap > (8.91)

is the expectation value of the number of excited particles. Remarkably, the
form of the Hamiltonian is identical with the Bogoliubov one for zero tem-
perature, Eq. (8.12), except that the c-number term is different. Also, the
occupancy of the zero-momentum state must be determined self-consistently.
The spectrum is thus given by the usual Bogoliubov expression, with the
density of the condensate being the one at the temperature of interest,
not the zero-temperature value. Again the long-wavelength excitations are
phonons, with a speed s given by

s(T )2 =
n0(T )U0

m
, (8.92)

and the coherence length that determines the transition to free-particle be-
haviour is given by

ξ(T ) =
[

�
2

2mn0(T )U0

]1/2

=
�√

2ms(T )
. (8.93)

This is to be contrasted with the Hartree–Fock spectrum, where the exci-
tation energy at long wavelengths differs from the chemical potential by an
amount n0U0.

8.3.3 Excitations in non-uniform gases

The Hartree–Fock and Popov approximations may be applied to excitations
in trapped gases. In the Hartree–Fock approximation the wave function φi

for an excited state satisfies the equation[
− �

2

2m
∇2 + V (r) + 2n(r)U0

]
φi(r) = εiφi(r), (8.94)
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and the corresponding equation for the wave function φ0 for the condensed
state is{

− �
2

2m
∇2 + V (r) + [n0(r) + 2nex(r)]U0

}
φ0(r) = µφ0(r), (8.95)

the absence of a factor of 2 in the condensate density term reflecting the
fact that there is no exchange term for two atoms in the same state. Here
n0(r) = N0|φ0(r)|2 is the density of atoms in the condensed state and
nex(r) =

∑
i�=0Ni|φi(r)|2 is the density of non-condensed particles. The

wave functions and occupation numbers are determined self-consistently
by imposing the conditions Ni = {exp[(εi − µ)/kT ] − 1}−1 for i �= 0 and
N = N0 +

∑
i�=0Ni.

The equations for the Popov approximation are[
− �

2

2m
∇2 + V (r) + 2n(r)U0 − µ− εi

]
ui(r)− n0(r)U0vi(r) = 0 (8.96)

and[
− �

2

2m
∇2 + V (r) + 2n(r)U0 − µ+ εi

]
vi(r)− n0(r)U0ui(r) = 0, (8.97)

for the excitations. The wave function for the condensed state satisfies the
generalized Gross–Pitaevskii equation{

− �
2

2m
∇2 + V (r) + [n0(r) + 2n(r)]U0 − µ

}
φ0(r) = 0, (8.98)

in which there is an extra contribution to the potential due to interaction
of the condensate with the non-condensed particles. The density of non-
condensed particles is given by nex(r) =

∑
i�=0Ni(|ui(r)|2 + |vi(r)|2).

In the Hartree–Fock and Popov approximations the only effect of interac-
tions between particles is to provide static mean fields that couple either to
the density of particles or create or destroy pairs of particles. A difficulty
with this approach may be seen by considering a cloud of gas in a harmonic
trap. This has collective modes associated with the motion of the centre of
mass of the cloud, and they have frequencies which are sums of multiples of
the oscillator frequencies. In the Hartree–Fock and Popov approximations
the corresponding modes have different frequencies since the static poten-
tial acting on the excitations is affected by particle interactions. To cure
these difficulties it is necessary to allow for coupling between the motion of
the condensate and that of the thermal excitations. We shall describe this
effect for uniform systems in Sec. 10.4, where we consider first and second
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sound. A related effect is that at non-zero temperature the effective two-
body interaction is affected by the other excitations. This is connected with
the problem mentioned in footnote 5 of how to treat ‘pairing’ terms con-
sistently. These effects can be important for low-lying excitations, but are
generally of little consequence for higher-energy excitations. For a discussion
of them we refer to Refs. [7] and [8].

8.3.4 The semi-classical approximation

In Sec. 2.3.1 we showed how the properties of a trapped cloud of non-
interacting particles may be described semi-classically. This approxima-
tion holds provided the typical de Broglie wavelengths of particles are small
compared with the length scales over which the trapping potential and the
particle density vary significantly. Locally the gas may then be treated as
uniform. Properties of non-condensed particles may be calculated using a
semi-classical distribution function fp(r) and particle energies given by

εp(r) =
p2

2m
+ V (r). (8.99)

When particles interact, the properties of the excitations may still be de-
scribed semi-classically subject to the requirement that spatial variations
occur over distances large compared with the wavelengths of typical excita-
tions. The properties of the condensed state must generally be calculated
from the Gross–Pitaevskii equation generalized to allow for the interaction
of the condensate with the thermal excitations. With a view to later ap-
plications we now describe the semi-classical versions of the Hartree–Fock,
Bogoliubov, and Popov approximations.

Within Hartree–Fock theory, the semi-classical energies are given by

εp(r) = p2/2m+ 2n(r)U0 + V (r), (8.100)

where we have generalized the result (8.78) by adding to it the potential
energy V (r). In determining thermodynamic properties, the energy of an
excitation enters in the combination εi − µ. A simple expression for this
may be found if the Thomas–Fermi approximation is applicable for the con-
densate, which is the case if length scales for variations of the condensate
density and the potential are large compared with the coherence length. In
the Thomas–Fermi approximation the chemical potential is given by adding
the contribution V (r) to the result (8.88) and is

µ = V (r) + [n0(r) + 2nex(r)]U0. (8.101)
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The semi-classical limit of the Bogoliubov approximation is obtained by
replacing in the coupled differential equations (8.52) and (8.53) the kinetic
energy operator by p2/2m. The energies εp(r) are found by setting the
determinant equal to zero, with the result

εp(r) =
{
[p2/2m+ 2n0(r)U0 + V (r)− µ]2 − [n0(r)U0]2

}1/2
. (8.102)

Here the chemical potential µ is that which enters the zero-temperature
Gross–Pitaevskii equation. In the Thomas–Fermi approximation (see Sec.
6.2.2) the chemical potential is obtained by neglecting the kinetic energy
in the Gross–Pitaevskii equation, which yields µ = V (r) + n0(r)U0. The
semi-classical Bogoliubov excitation energies are therefore

εp(r) =
[
(p2/2m)2 + (p2/m)n0(r)U0

]1/2
. (8.103)

Finally, the semi-classical limit of the Popov approximation is obtained by
generalizing the equations (8.52) and (8.53) to higher temperatures. Inspec-
tion of the Hamiltonian (8.89) shows that the term 2n0(r)U0, which occurs
in both (8.52) and (8.53), should be replaced by 2n(r)U0. The semi-classical
energies within the Popov approximation therefore become

εp(r) =
(
[p2/2m+ 2n(r)U0 + V (r)− µ]2 − [n0(r)U0]2

)1/2
, (8.104)

where the condensate density n0 is to be determined self-consistently. If
the Thomas–Fermi expression (8.101) for the chemical potential is valid, the
excitation spectrum is identical with the result of the Bogoliubov theory, Eq.
(8.103), except that the condensate density n0 now depends on temperature.
Note that in the Hartree–Fock approximation the excitations correspond to
addition of a particle, while in the Bogoliubov and Popov ones the excitation
energies given above are evaluated for no change in the total particle number.
If the term [n0(r)U0]2 in Eqs. (8.102) and (8.104) is neglected, the excitation
energy becomes equal to the Hartree–Fock result for εp(r)− µ.

The density of non-condensed atoms is given in the Bogoliubov approxi-
mation by

nex(r) =
∫

dp
(2π�)3

p2/2m+ 2n0(r)U0 + V (r)− µ
εp(r)

1
eεp(r)/kT − 1

, (8.105)

in the Hartree–Fock approximation by

nex(r) =
∫

dp
(2π�)3

1
e(εp(r)−µ)/kT − 1

, (8.106)
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and in the Popov approximation by

nex(r) =
∫

dp
(2π�)3

p2/2m+ 2n(r)U0 + V (r)− µ
εp(r)

1
eεp(r)/kT − 1

. (8.107)

The factors multiplying the distribution functions in the Bogoliubov and
Popov approximations are the numbers of non-condensed particles associ-
ated with an excitation. In the Hartree–Fock and Popov approximations
the density of non-condensed atoms and the number of particles in the con-
densate must be determined self-consistently. Applications of the results of
this section to atoms in traps will be described in Chapters 10 and 11.

8.4 Collisional shifts of spectral lines

Because interactions between atoms depend on the internal atomic states,
the frequency of a transition between two different states of an atom in a
dilute gas differs from the frequency for the free atom. These shifts are
referred to as collisional shifts or, because the accuracy of atomic clocks is
limited by them, clock shifts. The basic physical effect is virtual scattering
processes like those that give rise to the effective interaction U0 used earlier
in our discussion of interactions between two bosons in the same internal
state, and the magnitude of the effect is proportional to atomic scattering
lengths. This is to be contrasted with the rate of real scattering processes,
which is proportional to U2

0 .
As described in Sec. 4.7, the collisional shift of the 1S–2S transition ex-

cited by absorption of two photons is used to measure the gas density in
experiments on spin-polarized hydrogen. We now describe the physics of
collisional shifts, using this transition as an example. The theory of them
was originally developed in the context of hydrogen masers [9]. To un-
derstand the effect it is necessary to go beyond the Hartree–Fock picture
described above and consider collective effects, but to set the stage we shall
describe Hartree–Fock theory.

Hartree–Fock theory

For simplicity, we assume the gas to be uniform. In the spirit of the Hartree–
Fock approximation, we take the initial state of the gas before excitation of
one of the hydrogen atoms to the 2S state to be a symmetrized product
of single-particle states, as given by Eq. (8.65), where we shall take the
particle states to be plane waves, φp(r) = V −1/2 exp(ip · r/�). If we denote
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the momenta of the particles by pa . . .pl, the wave function is

Ψ(r1, r2, . . . , rN ) = cN
∑
sym

φpa(r1)φpb
(r2) . . . φpl

(rN ), (8.108)

and the energy of the initial state in the Hartree–Fock approximation is
given by Eq. (8.74).

Next we consider a state with one atom in the 2S state and the remainder
in the 1S state, and we shall assume that the momenta of the atoms are the
same as in the state (8.108). To be specific we assume that the momentum
of the 2S atom is pa. In the Hartree–Fock approximation the wave function
for the gas is the wave function for the 2S atom multiplied by that for N −1
1S atoms, Eq. (8.108), but with N replaced by N − 1:

Ψ (r1; r2, . . . , rN ) = φ2S
pa

(r1)cN−1

∑
sym

φpb
(r2) . . . φpl

(rN ). (8.109)

Here, the coordinate r1 before the semicolon is that of the 2S atom, and
r2, . . . , rN are the coordinates of the 1S atoms. The momenta of the single-
particle states are denoted by pa,pb, . . . ,pl, just as for the state with N 1S
atoms.

The Hamiltonian for a mixture of 1S and 2S atoms is given by the sum of
the energies of the isolated atoms at rest, the kinetic energy of the atoms,
the interaction energy of the 1S atoms with each other, and the interaction
between 1S and 2S atoms. Since we shall consider weak excitation of the
gas, the density of 2S atoms is much lower than that of 1S atoms, and the
interaction between two 2S atoms will not enter. The relative difference
between the mass m of a 1S atom and that of a 2S one is of order one
part in 108, and this may be neglected in evaluating the kinetic energy. We
shall take the interaction between the 2S atom and the 1S ones to be of the
contact form similar to that between like atoms,

H12 = U12

∫
drψ̂†(r)ψ̂†

2S(r)ψ̂2S(r)ψ̂(r), (8.110)

where U12 = 4π�
2a12/m, a12 being the scattering length for interactions

between a 1S atom and a 2S one, and the operators ψ̂†
2S(r) and ψ̂2S(r)

create and destroy 2S atoms. At the end of the section we shall comment
on the validity of this approximation.

The energy E′ of the state (8.109) may be calculated by the methods used
earlier for a single component. Measured with respect to the energy of N
stationary, isolated atoms, one in the 2S state and the others in the 1S state,
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it is

E′ = Ekin +
U0

2V
(N − 1)(N − 2) +

U0

2V

∑
p�=p′

NpNp′

−U0

V
(N −Npa) + (N − 1)

U12

V
. (8.111)

Note that, while pa is the momentum of the 2S atom, Npa is the number of
1S atoms with the same momentum pa as that of the 2S atom. The first and
third terms are the kinetic energy and the exchange energy of the original
state with N 1S atoms, and the second term is the Hartree energy of N − 1
1S atoms. The last term is the Hartree energy due to the interaction of
the single 2S atom with N − 1 1S atoms, and the next-to-last term is the
reduction of the exchange energy due to replacing one 1S atom by a 2S one.
The energy difference between the states (8.109) and (8.108) is therefore
the difference between the rest-mass energies of a 2S atom and a 1S one,
which is the energy of the transition in an isolated atom, plus the differences
between Eqs. (8.111) and (8.74), which is given by

∆E = nU12 − U0(2n−
Npa

V
), (8.112)

where we have neglected terms of relative order 1/N . The quantity ∆E
represents the energy shift of the line due to interactions between atoms.
The first term here is the interaction contribution to the Hartree energy of
the added 2S atom, and the second term is the reduction of the Hartree and
Fock energies due to removal of a 1S atom.

It is instructive to consider limiting cases of this expression. For a pure
condensate with all atoms initially in the zero-momentum state, only atoms
in that state can be excited and therefore Npa = N0 = N . The energy
difference is then given by

∆Econd = n(U12 − U0). (8.113)

This is the difference of the Hartree energies. Exchange terms are absent
for 1S–1S interactions, since all 1S atoms are in the same momentum state.
There are also no exchange contributions for 1S–2S interactions because
1S atoms and 2S ones are in different internal states, and are therefore
distinguishable. In the opposite limit, when there is no condensate, we find
an energy difference

∆EHF
nc = n(U12 − 2U0), (8.114)

the extra factor of 2 for the U0 term being due to exchange interactions
between the 1S atoms.
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Collective effects

At first sight one might expect the line shift to be given by the energy
difference calculated above. This is not true for the thermal gas, since the
product wave function is then a bad approximation for the final state after
optical excitation of an atom in the gas. To understand why this is so, we
describe the excitation process in greater detail. In the experiments, two
counterpropagating laser beams with frequencies equal to one-half that of
the 1S–2S transition are applied. Excitation may occur by absorption of two
photons propagating either in the same direction, or in opposite directions.
We focus attention on the latter process, which is particularly important
because the total momentum of the two photons is zero, and consequently
the line has no first-order Doppler shift. It is therefore very sharp, and
relatively small frequency shifts can be measured.

The effective two-photon interaction is local in space: it destroys a 1S
atom and creates a 2S one at essentially the same point. Also, for absorption
of two photons propagating in opposite directions, the effective interaction
is independent of position, because the phase factors e±iq·r from the two
photons cancel. The effective coupling between the atom and the photons is
spatially independent, and it may therefore be represented by an operator
which in second-quantized notation may be written as

O =
∫
drψ̂†

2S(r)ψ̂(r) (8.115)

apart from a multiplicative constant. When this operator acts on a state
with N 1S atoms, it generates N terms, one for each way of assigning the
point r to one of the particle coordinates. If the initial state is of the
form of a symmetrized product of single-particle states, each of these terms
individually will be of the form of a single-particle wave function for the 2S
atom, multiplied by the wave function for N − 1 atoms in the 1S state. For
definiteness, let us denote the state with N ground-state atoms by

|Ψ〉 = |{Npi}〉. (8.116)

The operator O acting on this state gives a linear combination of states,

O|Ψ〉 =
∑ √

Np′ |p′;Npa , . . . , Np′ − 1, . . .〉, (8.117)

where the sum is over all momenta which correspond to occupied single-
particle states initially. This demonstrates that two-photon absorption in
general produces a state which is not a simple product state of the form
assumed in Hartree–Fock theory, but rather a linear combination of such
states. In the language of quantum optics, it is an entangled state.
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To find the energy eigenvalues for a 2S atom in the presence of N − 1
1S atoms we must diagonalize the Hamiltonian in a basis of states of the
form |p′;Npa , . . . , Np′ − 1, . . .〉. The problem is trivial if all atoms in the
initial state are in the same single-particle state, since then the sum in Eq.
(8.117) reduces to the single configuration with the N − 1 1S atoms and the
2S atom in the zero-momentum state. The energy of this state is given by
the Hartree result, and the difference between the energies of the initial and
final states is given by Eq. (8.113).

The other situation that is simple to analyse is when there is no conden-
sate. Remarkably, the state (8.117) is then an energy eigenstate, but its
energy is not equal to the Hartree–Fock energy. We may write the Hamil-
tonian for the 1S and 2S atoms as

H =
∑
p

ε0p(a
†
pap + ā†pāp) +

U0

2V

∑
p,p′,q

a†p+qa
†
p′−qap′ap

+
U12

V

∑
p,p′,q

ā†p+qa
†
p′−qap′ āp, (8.118)

where the operators ā†p and āp, which are the Fourier transforms of ψ̂†
2S(r)

and ψ̂2S(r), create and destroy 2S atoms in momentum states. It is left as
an exercise (Problem 8.4) to show that the state (8.117) is an eigenstate of
the energy in the limit of a large number of particles, provided no state is
macroscopically occupied, and here we shall simply calculate the expectation
value of the energy.

In the expectation value of the energy of the state (8.117) two sorts of
terms arise, diagonal ones in which the 2S atom remains in the same state,
and cross terms in which the states of the 2S atom are different. The first
class of terms gives the Hartree–Fock result above, Eq. (8.114). The others
are interference terms, which arise because the initial state containing N
identical bosons is symmetric under interchange of the coordinates of the
atoms. The two-photon perturbation creates a state of one 2S atom and
N − 1 1S atoms which is symmetric under interchange of all N coordinates,
irrespective of whether a coordinate refers to a 1S atom or a 2S one. There
is no general symmetry requirement legislating that the wave function for
bosons in different internal states be symmetric under interchange of coor-
dinates. The interference terms have precisely the same structure as the
Fock terms for identical particles. The off-diagonal matrix elements of the
interaction Hamiltonian are

〈p′;Npa , . . . , Np′−1, . . . |H|p;Npa , . . . , Np−1, . . .〉 =
U12

V

√
NpNp′ , (8.119)
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and the interference terms contribute to the expectation value of the inter-
action energy between 1S and 2S atoms an amount

〈Ψ|O†HO|Ψ〉
〈Ψ|O†O|Ψ〉

∣∣∣∣
interference

=
U12

NV

∑
p�=p′

NpNp′ . (8.120)

If no state is macroscopically occupied, the result (8.120) reduces to nU12

for large N . The total energy difference between the two states of the gas
when there is no condensate is obtained by adding this to the Hartree–Fock
result, and is

∆Enc = 2n(U12 − U0). (8.121)

Comparison of this result with that for a condensate, Eq. (8.113), shows
that the frequency shift of the line in a gas with no condensate is twice
that for a fully Bose–Einstein condensed gas of the same density. As we
shall explain in Sec. 13.2, this reflects the fact that for a Bose gas with no
condensate, the probability of finding two atoms at the same point is twice
that for a pure condensate of the same density. The energies (8.113) and
(8.121) are equal to the changes of the expectation values of the energy
of the system when a 1S atom is replaced by a 2S one, keeping the wave
function otherwise unchanged. The difference between the results for a
condensate and a thermal gas was first brought out clearly in the work of
Oktel and Levitov [10]. In the limits considered here, their calculation using
the random phase approximation is equivalent to the one described above.

The origin of the change in the energy shift compared with the Hartree–
Fock result is a collective effect that arises because the state created by the
excitation of a 1S atom consists of a superposition of many single-particle
configurations. A similar effect in the electron gas is responsible for the long-
wavelength density fluctuation spectrum being dominated by plasmons, not
single particle–hole pairs. The calculation above is analogous to the one for
the schematic model for collective motion in nuclei [11].

For intermediate situations, when both condensed and non-condensed par-
ticles are present, Oktel and Levitov showed that there are two excitation
frequencies. These correspond to two coupled modes of the condensate and
the non-condensed particles that result from the interaction between the 1S
and 2S atoms hybridizing the two modes discussed above for a pure conden-
sate and a gas with no condensate.

A basic assumption made in the calculations above is that atomic inter-
actions are well approximated by pseudopotentials. This is expected to be
good as long as the distance between atoms is much greater than both the
magnitude of the scattering length and the distance out to which the bare
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atom–atom interaction is important. However, an atom can be excited when
it is close to another atom, in which case the line shifts may be substantial.
As a consequence, the absorption spectrum is expected to have a sharp peak,
due to transitions occurring when atoms are far apart, and an incoherent
background due to excitations when atoms are close together. Even though
at any given frequency the incoherent background is small, its contribution
to the frequency-weighted sum rule analogous to Eq. (3.41) is comparable
with that from the sharp peak. A more detailed consideration of the prob-
lem shows that the results derived above using the pseudopotential are a
good approximation for the shift of the sharp part of the line [12].

The above results for the frequency shift are not specific to two-photon
transitions, and they agree with those obtained from the standard theory
of collisional shifts [9], which uses the quantum kinetic equation. An im-
portant application is to one-photon transitions, such as hyperfine lines in
alkali atoms and hydrogen that are used as atomic clocks. The advances
in understanding of interactions between cold alkali atoms have led to the
conclusion that, because of their smaller collisional shifts, the rubidium iso-
topes 85Rb and 87Rb offer advantages for use as atomic clocks compared
with 133Cs, the atom currently used [13]. This has recently been confirmed
experimentally for 87Rb [14].

Problems

Problem 8.1 The long-wavelength elementary excitations of a dilute, uni-
form Bose gas are phonons. Determine the specific heat at low temperatures
and compare the result with that obtained in Chapter 2 for the ideal, uni-
form Bose gas at low temperatures. Estimate the temperature at which the
two results are comparable.

Problem 8.2 Calculate the sound velocity in the centre of a cloud of 104

atoms of 87Rb in a harmonic-oscillator trap, V (r) = mω2
0r

2/2, for ω0/2π =
150 Hz. Evaluate the characteristic wave number at which the frequency
of an excitation changes from a linear to a quadratic dependence on wave
number.

Problem 8.3 Calculate the thermal depletion of the condensate of a uni-
form Bose gas at temperatures well below Tc. Give limiting expressions for
temperatures T � nU0/k and T � nU0/k and interpret the results in terms
of the number of thermal excitations and their effective particle numbers.

Problem 8.4 Show that if no single-particle state is macroscopically occu-
pied, the many-particle state Eq. (8.117) is an eigenstate of the Hamiltonian
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(8.118), with an energy different from that of the original state by an amount
given by Eq. (8.121).
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9

Rotating condensates

One of the hallmarks of a superfluid is its response to rotation, or for charged
superfluids, to a magnetic field [1]. The special properties of superfluids
are a consequence of their motions being constrained by the fact that the
velocity of the condensate is proportional to the gradient of the phase of
the wave function. Following the discovery of Bose–Einstein condensation
in atomic gases, much work has been devoted to the properties of rotating
condensates in traps, and these developments have been reviewed in [2]. We
begin by demonstrating that the circulation around a closed contour in the
condensate is quantized (Sec. 9.1). Following that we consider properties
of a single vortex line (Sec. 9.2). In Sec. 9.3 we then study conditions for
equilibrium for a condensate in a rotating trap. The next section is devoted
to vortex motion and includes a derivation of the Magnus force (Sec. 9.4).
Finally we consider clouds of bosons with weak interactions, and develop a
picture of the response to rotation in terms of elementary excitations with
non-zero angular momentum (Sec. 9.5).

9.1 Potential flow and quantized circulation

The fact that according to Eq. (7.14) the velocity of the condensate is the
gradient of a scalar,

v =
�

m
∇φ, (9.1)

has far-reaching consequences for the possible motions of the fluid. From
Eq. (9.1) it follows immediately that

∇×v = 0, (9.2)

that is, the velocity field is irrotational, unless the phase of the order pa-
rameter has a singularity. Possible motions of the condensate are therefore
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very restricted. Quite generally, from the single-valuedness of the conden-
sate wave function it follows that around a closed contour the change ∆φ in
the phase of the wave function must be a multiple of 2π, or

∆φ =
∮

∇φ · dl = 2πJ, (9.3)

where J is an integer. Thus the circulation Γ around a closed contour is
given by

Γ =
∮

v · dl =
�

m
2πJ = J

h

m
, (9.4)

which shows that it is quantized in units of h/m. The magnitude of the
quantum of circulation is approximately (4.0× 10−7/A) m2 s−1 where A is
the mass number.

As a simple example of such a flow, consider purely azimuthal flow in a
trap invariant under rotation about the z axis. To satisfy the requirement
of single-valuedness, the condensate wave function must vary as ei;ϕ, where
ϕ is the azimuthal angle. If ρ is the distance from the axis of the trap, it
follows from Eq. (9.4) that the velocity is

vϕ = J
h

2πmρ
. (9.5)

The circulation is thus Jh/m if the contour encloses the axis, and zero oth-
erwise. If J �= 0, the condensate wave function must vanish on the axis
of the trap, since otherwise the kinetic energy due to the azimuthal motion
would diverge. The structure of the flow pattern is thus that of a vortex line.
Quantized vortex lines were first proposed in the context of superfluid liquid
4He by Onsager [3]. Feynman independently proposed quantization of cir-
culation in liquid 4He and investigated its consequences for flow experiments
[4].

For an external potential with axial symmetry, and for a state that has
a singularity only on the axis, each particle carries angular momentum J�

about the axis, and therefore the total angular momentum L about the axis
is NJ�. If the singularity in the condensate wave function lies off the axis
of the trap, the angular momentum will generally differ from NJ�. For a
state having a density distribution with axial symmetry, the quantization
of circulation is equivalent to quantization of the angular momentum per
particle about the axis of symmetry. However, for other states circulation
is still quantized, even though angular momentum per particle is not. The
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generalization of Eq. (9.2) to a state with a vortex lying along the z axis is

∇×v = ẑ
Jh

m
δ2(ρ), (9.6)

where δ2 is a two-dimensional Dirac delta function in the xy plane, ρ =
(x, y), and ẑ is a unit vector in the z direction. When there are many
vortices, the right hand side of this equation becomes a vector sum of two-
dimensional delta functions on planes perpendicular to the direction of the
vortex line. The strength of the delta function is a vector directed along the
vortex line and with a magnitude equal to the circulation associated with
the vortex. We now turn to a more detailed description of single vortices.

9.2 Structure of a single vortex

Consider a trap with axial symmetry, and let us assume that the wave func-
tion varies as ei;ϕ. If we write the condensate wave function in cylindrical
polar coordinates as

ψ(r) = f(ρ, z)ei;ϕ, (9.7)

where f is real, the energy Eq. (6.9) is

E =
∫
dr

{
�

2

2m

[(
∂f

∂ρ

)2

+
(
∂f

∂z

)2
]

+
�

2

2m
J2
f2

ρ2
+ V (ρ, z)f2 +

U0

2
f4

}
.

(9.8)
The only difference between this result and the one for a condensate with
a phase that does not depend on position is the addition of the 1/ρ2 term.
This is a consequence of the azimuthal motion of the condensate which gives
rise to a kinetic energy density mf2v2ϕ/2 = �

2J2f2/2mρ2. The equation for
the amplitude f of the condensate wave function may be obtained from the
Gross–Pitaevskii equation (6.11). It is

− �
2

2m

[
1
ρ

d

dρ

(
ρ
df

dρ

)
+
d2f

dz2

]
+

�
2

2mρ2
J2f + V (ρ, z)f + U0f

3 = µf. (9.9)

Alternatively, Eq. (9.9) may be derived by inserting Eqs. (9.7) and (9.8)
into the variational principle δ(E − µN) = 0. It forms the starting point
for determining the energy of a vortex in a uniform medium as well as in a
trap.

9.2.1 A vortex in a uniform medium

First we consider an infinite medium with a uniform potential, which we
take to be zero, V (ρ, z) = 0. In the ground state the wave function does not
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depend on z, so terms with derivatives with respect to z vanish. Because
of the importance of vortex lines with a single quantum of circulation we
specialize to that case and put J = 1. At large distances from the axis the
radial derivative and the centrifugal barrier term ∝ 1/ρ2 become unimpor-
tant, and therefore the magnitude of the condensate wave function becomes
f = f0 ≡ (µ/U0)1/2. Close to the axis the derivative and centrifugal terms
dominate, and the solution regular on the axis behaves as ρ, as it does for a
free particle with unit angular momentum in two dimensions. Comparison
of terms in the Gross–Pitaevskii equation (9.9) shows that the crossover be-
tween the two sorts of behaviour occurs at distances from the axis of order
the coherence length in matter far from the axis, in agreement with the
general arguments given in Chapter 6. It is therefore convenient to scale
lengths to the coherence length ξ defined by (see Eq. (6.61))

�
2

2mξ2
= nU0 = µ, (9.10)

where n = f2
0 is the density far from the vortex, and we introduce the

new variable x = ρ/ξ. We also scale the amplitude of the condensate wave
function to its value f0 far from the vortex by introducing the variable
χ = f/f0. The energy density E then has the form

E = n2U0

[(
dχ

dx

)2

+
χ2

x2
+

1
2
χ4

]
, (9.11)

and the Gross–Pitaevskii equation (9.9) becomes

−1
x

d

dx

(
x
dχ

dx

)
+
χ

x2
+ χ3 − χ = 0. (9.12)

This equation may be solved numerically, and the solution is shown in Fig.
9.1.

Let us now calculate the energy of the vortex. One quantity of interest
is the extra energy associated with the presence of a vortex, compared with
the energy of the same number of particles in the uniform state. The energy
ε per unit length of the vortex is

ε =
∫ b

0
2πρdρ

[
�

2

2m

(
df

dρ

)2

+
�

2

2m
f2

ρ2
+
U0

2
f4

]
. (9.13)

The second term in the integrand is the kinetic energy of the azimuthal
motion, and it varies as f2/ρ2. Consequently, its integral diverges logarith-
mically at large distances. This is similar to the logarithmic term in the
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Fig. 9.1. The condensate wave function for a singly-quantized vortex as a function
of radius. The numerical solution is given by the full line and the approximate
function x/(2 + x2)1/2 by the dashed line.

electrostatic energy of a charged rod. In order to obtain well-defined an-
swers, we therefore consider the energy of atoms within a finite distance b
of the vortex, and we shall further take b to be large compared with ξ.

To find the energy associated with the vortex, we must subtract from the
total energy that of a uniform gas with the same number of particles ν per
unit length contained within a cylinder of radius b. The energy per unit
volume of a uniform gas is ñ2U0/2, where ñ = ν/πb2 is the average density.
The average density in the reference system is not equal to the density far
from the axis in the vortex state, since the vortex state has a ‘hole’ in the
density distribution near the axis. Because the number of particles is the
same for the two states, the density of the vortex state at large distances
from the axis is greater than that of the uniform system. The number of
particles per unit length is given by

ν =
∫ b

0
2πρdρf2 = πb2f2

0 −
∫ b

0
2πρdρ(f2

0 − f2). (9.14)

Thus the energy per unit length of the uniform system is given by

ε0 =
1
2
πb2f4

0U0 − f2
0U0

∫ b

0
2πρdρ(f2

0 − f2), (9.15)



9.2 Structure of a single vortex 243

where we have neglected terms proportional to the square of the last term in
(9.14). These are of order f4

0U0ξ
4/b2 and are therefore unimportant because

of the assumption that b � ξ. Thus εv, the total energy per unit length
associated with the vortex, is the difference between Eqs. (9.13) and (9.15)
and it is given by

εv =
∫ b

0
2πρdρ

[
�

2

2m

(
df

dρ

)2

+
�

2

2m
f2

ρ2
+
U0

2
(f2

0 − f2)2
]

(9.16)

=
π�

2

m
n

∫ b/ξ

0
xdx

[(
dχ

dx

)2

+
χ2

x2
+

1
2
(1− χ2)2

]
. (9.17)

If this expression is evaluated for the numerical solution of the Gross–
Pitaevskii equation one finds

εv = πn
�

2

m
ln

(
1.464

b

ξ

)
. (9.18)

This result was first obtained by Ginzburg and Pitaevskii in the context
of their phenomenological theory of liquid 4He close to Tλ [5]. The mathe-
matical form of the theory is identical with that of Gross–Pitaevskii theory
for the condensate at zero temperature, but the physical significance of the
coefficients that appear in it is different.

The expression (9.17) may be used as the basis for a variational solution
for the condensate wave function. In the usual way, one inserts a trial form
for f and minimizes the energy expression with respect to the parameters
in the trial function. For example, if one takes the trial solution [6]

χ =
x

(α+ x2)1/2
, (9.19)

which has the correct properties at both small and large distances, the opti-
mal value of α is 2, and this solution is also shown in Fig. 9.1. We comment
that minimizing the energy of the vortex, Eq. (9.17), is equivalent to mini-
mizing the quantity E − µN , keeping the chemical potential µ fixed. Here
E is the total energy. For the variational solution (9.19) with α = 2 one
finds the result εv = π(n�

2/m) ln(1.497b/ξ) which is very close to the exact
result (9.18).

With the condensate wave function (9.7), each particle carries one unit
of angular momentum, and therefore the total angular momentum per unit
length is given by

L = ν�. (9.20)

We caution the reader that the simple expression for the angular momentum



244 Rotating condensates

for this problem is a consequence of the rotational symmetry. As we shall
see later, for a cloud with a vortex not on the axis of the trap, the angular
momentum depends on the position of the vortex. Also, for a trap which is
not rotationally invariant about the axis of rotation, the angular momentum
is not conserved, and therefore does not have a definite value.

Multiply-quantized vortices

One may also consider vortices with more than one quantum of circulation,
|J| > 1. The only change in the Gross–Pitaevskii equation is that the cen-
trifugal potential term ∼ 1/x2 must be multiplied by J2. The velocity field at
large distances from the centre of the vortex varies as J�/mρ, and therefore
the kinetic energy of the azimuthal motion is

εv ≈ J2πn
�

2

m
ln
b

ξ
(9.21)

to logarithmic accuracy. To calculate the numerical factor in the logarithm
one must determine the structure of the vortex core by solving the Gross–
Pitaevskii equation, which is Eq. (9.12) with the second term multiplied by
J2. For small ρ the condensate wave function behaves as ρ|;|, as does the
wave function of a free particle in two dimensions with azimuthal angular
momentum J�. The result (9.21) indicates that the energy of a vortex with
more than one unit of circulation is greater than the energy of a collection
of singly-quantized vortices with the same total circulation. This suggests
that vortices with more than a single unit of circulation will not exist in
equilibrium. To make this argument more convincingly one must allow for
the effects of interaction between vortices. For example, for two parallel
vortex lines with J1 and J2 units of circulation separated by a distance d,
the energy of interaction per unit length is given to logarithmic accuracy by
(see Problem 9.3)

εint =
2πJ1J2�2n

m
ln
R

d
, (9.22)

where R is a measure of the distance of the vortices from the boundary of the
container. This expression holds provided R � d and d � ξ. We therefore
conclude that the interaction energy is small compared with the energy of
two isolated vortex lines provided their separation is small compared with
the size of the container. It should be mentioned that for a rotationally
invariant system we should compare energies of states with the same angular
momentum to determine the most stable state. However, in practice this
latter constraint does not alter the conclusion.
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We stress that the considerations given above assume that the vortices
appear in an otherwise uniform medium, and the conclusions may therefore
change when inhomogeneity is allowed for. Multiply-quantized vortices can
be energetically favourable, if the extent of the gas perpendicular to the
rotation axis is less than or comparable with the coherence length, or if the
condensate is multiply-connected due to a repulsive potential applied in the
vicinity of the rotation axis.

9.2.2 A vortex in a trapped cloud

We now calculate the energy of a vortex in a Bose–Einstein condensed cloud
in a trap, following Ref. [7]. This quantity is important for estimating the
lowest angular velocity at which it is energetically favourable for a vortex
to enter the cloud. We consider a harmonic trapping potential which is
rotationally invariant about the z axis, and we shall imagine that the number
of atoms is sufficiently large that the Thomas–Fermi approximation gives a
good description of the non-rotating cloud. The radius of the core of a vortex
located on the z axis of the trap, which is determined by the coherence length
there, is then small compared with the size of the cloud. This may be seen
from the fact that the coherence length ξ0 at the centre of the cloud is given
by Eq. (9.10), which may be rewritten as

�
2

2mξ20
= µ, (9.23)

where µ = n(0)U0 is the chemical potential, n(0) being the density at the
centre in the absence of rotation. In addition, the chemical potential is
related to the radius R of the cloud in the xy plane by Eq. (6.33), which for
a harmonic oscillator potential is

µ = mω2
⊥R

2/2, (9.24)

where ω⊥ is the oscillator frequency for motions in the plane. Combining
Eqs. (9.23) and (9.24), we are led to the result

ξ

R
=

�ω⊥
2µ
. (9.25)

This shows that the coherence length is small compared with the radius
of the cloud if the chemical potential is large compared with the oscillator
quantum of energy, a condition satisfied when the Thomas–Fermi approxi-
mation holds. Outside the vortex core the density varies on a length scale
∼ R. Thus the energy of the vortex out to a radius ρ1 intermediate between
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the core size and the radius of the cloud (ξ � ρ1 � R) may be calculated
using the result (9.18) for the energy of a vortex in a uniform medium. At
larger radii, the density profile is essentially unaltered compared with that
for the cloud without a vortex, but the condensate moves with a velocity
determined by the circulation of the vortex. The extra energy in the region
at large distances is thus the kinetic energy of the condensate, which may
be calculated from hydrodynamics.

To begin, let us consider the two-dimensional problem, in which we neglect
the trapping force in the z direction. The cloud is cylindrical, with radius
ρ2, and the energy per unit length is then given by

εv = πn0
�

2

m
ln

(
1.464

ρ1
ξ0

)
+

1
2

∫ ρ2

ρ1

mn(ρ)v2(ρ)2πρdρ. (9.26)

Here n0 is the particle density for ρ→ 0 in the absence of a vortex, while ξ0
is the coherence length evaluated for that density. Since the magnitude of
the velocity v is v = h/2πρm, and the density in a harmonic trap varies as
1− ρ2/R2 in the Thomas–Fermi approximation, one finds

εv = πn0
�

2

m

[
ln

(
1.464

ρ1
ξ0

)
+

∫ ρ2

ρ1

ρdρ

ρ2
(1− ρ

2

ρ22
)
]

� πn0
�

2

m

[
ln

(
1.464

ρ2
ξ0

)
− 1

2

]
, (9.27)

where the integral has been evaluated for ρ1 � ρ2, with terms of higher order
in ρ1/ρ2 being neglected. The logarithmic term is the result for a medium
of uniform density, while the −1/2 reflects the lowering of the kinetic energy
due to the reduction of particle density caused by the trapping potential.
Thus the energy per unit length is given by an expression similar to (9.18)
but with a different numerical constant 1.464/e1/2 ≈ 0.888,

εv = πn0
�

2

m
ln

(
0.888

ρ2
ξ0

)
. (9.28)

The angular momentum L per unit length is � times the total number of
particles per unit length. For ρ2 � ξ the latter may be evaluated in the
Thomas–Fermi approximation, and one finds

L = n0�

∫ ρ2

0

(
1− ρ

2

ρ22

)
2πρdρ =

1
2
n0πρ

2
2�. (9.29)

Let us now consider the three-dimensional problem. If the semi-axis, Z,
of the cloud in the z direction is much greater than the coherence length,
one may estimate the energy of the cloud by adding the energy of horizontal
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slices of the cloud, thus neglecting the kinetic energy term due to the vertical
gradient of the condensate wave function. The total energy is then given by
(9.28), integrated over the vertical extent of the cloud,

E =
π�

2

m

∫ Z

−Z
dzn0(z) ln

[
0.888

ρ2(z)
ξ(z)

]
. (9.30)

For a harmonic trap the density on the z axis is n0(z) = n(0)(1 − z2/Z2),
while ρ2(z) = R(1−z2/Z2)1/2 and ξ(z) = ξ0[n(0)/n0(z)]1/2, where ξ0 is now
the coherence length at the centre of the cloud. The energy is then given by

E =
π�

2n(0)
m

∫ Z

−Z
dz

(
1− z

2

Z2

)
ln

[
0.888

R

ξ0
(1− z

2

Z2
)
]
. (9.31)

Using the fact that
∫ 1
0 dy(1− y2) ln(1− y2) = (12 ln 2− 10)/9, we obtain the

final result

E =
4πn(0)

3
�

2

m
Z ln

(
0.671

R

ξ0

)
, (9.32)

which is in very good agreement with numerical calculations for large clouds
[8].

The total angular momentum is

L = �

∫
drn(r) = n(0)�

∫ Z

−Z
dz

∫ ρ2(z)

0
2πρdρ(1− ρ

2

R2
− z

2

Z2
)

=
8π
15
n(0)R2Z�. (9.33)

These results will be used in Sec. 9.3.2 below to discuss the critical angular
velocity for a vortex state.

9.2.3 Off-axis vortices

The angular momentum of a state with a vortex line parallel to the axis of
the trap, but not coincident with it, generally is not an integral number of
quanta per particle. To demonstrate this explicitly, consider a vortex line
with a single quantum of circulation in a condensate confined by a cylindrical
container whose cross section is a circle of radius R. To begin with, imagine
that the density is constant everywhere, except in a small region in the core
of the vortex. The angular momentum per unit length about the axis of the
cylinder is given by

L = nm
∫
ρdρdϕvϕρ. (9.34)
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The angular integral is ∫
dϕvϕρ =

∮
v · dl, (9.35)

which is the circulation. This is equal to h/m if the vortex line lies within
the contour, and is zero otherwise. Thus, if the centre of the vortex line is
at a distance b from the axis of the cylinder, the angular momentum per
unit length is given by

L = nh
∫ R

b
ρdρ = ν�

(
1− b2

R2

)
, (9.36)

where ν = πR2n is the number of particles per unit length. When the
density depends on ρ, as it does for a dilute gas in a trap, the dependence
of L on b will be different.

Next we calculate the energy of the state. The flow pattern for the ve-
locity may be calculated from the hydrodynamic equations. If the density
is constant except in the core of the vortex, it follows from the equation of
continuity that ∇·v = 0. Consequently, the phase of the condensate wave
function obeys Laplace’s equation. At the cylinder the radial component
of the velocity must vanish. The problem is therefore equivalent to that of
determining the electrostatic potential due to a charged rod inside a con-
ducting cylinder and parallel to the axis of the cylinder. This may be solved
by the method of images, by introducing a second vortex with the opposite
circulation at a distance R2/b from the axis of the cylinder at the same az-
imuthal angle as the original vortex. The total velocity field is thus obtained
by superimposing that due to a vortex with circulation κ at radius b and
that due to a vortex of circulation −κ at radius R2/b. The total kinetic
energy per unit length is thus given by

εkin =
1
2

∫
ρdρdϕnmv2. (9.37)

To take into account the reduction of the density in the vortex core we cut
off the integral at a distance ξ from the centre of the vortex. Evaluation of
the integral gives (see Problem 9.4)

εv =
mnκ2

4π
[ln(R/ξ) + ln(1− b2/R2)], (9.38)

where only the leading logarithmic dependence on R/ξ has been retained.
Using a more detailed model of the core of the vortex changes only the
coefficient of R/ξ in the logarithm. We shall use this result to discuss motion
of an off-axis vortex in Sec. 9.4.
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9.3 Equilibrium of rotating condensates

The equilibrium state of a rotating condensate depends on the symmetry of
the trap. In the following we first discuss traps with axial symmetry, which
implies that the component of the angular momentum about the symmetry
axis is conserved. Subsequently we consider traps with no axis of symmetry.

9.3.1 Traps with an axis of symmetry

The calculations above show that one way to add angular momentum to a
condensate of bosons in a trap with an axis of symmetry is to put all atoms
into a state with non-zero angular momentum (the vortex state). In Sec.
7.3.1 we found that another way to add angular momentum to a cloud is
to create elementary excitations, such as surface waves. In general, more
complicated states may be created by combining the two processes by, e.g.,
adding elementary excitations to a vortex state. An interesting question is
what the lowest-energy state is for a given angular momentum. Following
nuclear physics terminology, this state is sometimes referred to as the yrast
state.1

We begin by considering a cloud with angular momentum much less than
� per atom. Intuitively one would expect the state to be close to that
of the non-rotating ground state, and therefore it is natural to anticipate
that the lowest-energy state would be the ground state plus a number of
elementary excitations. Let us assume for the moment that the interaction
is repulsive. If the number of particles is sufficiently large that the Thomas–
Fermi approximation is valid, excitation energies may be calculated from
the results of Sec. 7.3.1. For a harmonic trap, the lowest-energy elementary
excitations with angular momentum l� are surface waves. Their energies
�ω may be obtained from the frequencies for modes obtained in Chapter
7: for isotropic traps by Eq. (7.71) for n = 0 and for anisotropic ones by
Eq. (7.79). The energies are therefore in both cases equal to �ω0l

1/2. Thus
the energy per unit angular momentum is ω0/l

1/2. The lowest energy cost
per unit angular momentum is achieved if modes with high l are excited.
However with increasing l, the modes penetrate less and less into the bulk
of the cloud, and the simple hydrodynamic picture of modes developed in
Chapter 7 fails when the penetration depth of the surface wave, 1/q ∼ R/l
(see Sec. 7.4) becomes comparable with the thickness of the surface, δ, given
by Eq. (6.45). At higher values of l, the modes become free-particle like,
with an energy approaching �

2q2/2m ∝ l2, and the energy per unit angular

1 The word yrast is the superlative of yr, which in Swedish means ‘dizzy’.
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Centre-of-mass
motion

Vortex Surface mode

Fig. 9.2. Schematic representation of ways of adding angular momentum to a Bose–
Einstein condensed cloud in a trap.

momentum increases. Consequently, the lowest energy cost per unit angular
momentum is for surface waves with wave numbers of order 1/δ, or l ∼ R/δ,
and has a value

εl
l�
∼ ω0

(
δ

R

)1/2

∼ ω0

(aosc
R

)2/3
, (9.39)

since δ ∼ a4/3osc /R1/3 with aosc = (�/mω0)1/2.
For L ≈ N�, states like the vortex state for one quantum of circulation are

energetically most favourable. As the angular momentum increases further,
states with a pair of vortices, or a vortex array have the lowest energy.
Explicit calculations within the Gross–Pitaevskii approach may be found in
Refs. [9] and [10] for weak coupling.

When the interparticle interaction is attractive, the picture is completely
different. In the lowest-energy state for a given value of the angular mo-
mentum all the angular momentum is associated with the centre-of-mass
motion of the cloud, and all internal correlations are identical with those
in the ground state. This corresponds to excitation of a surface mode with
l = 1. The dependence of properties on the sign of the interaction is due to
the fact that the lowest-energy state with a fixed, non-zero angular momen-
tum undergoes a phase transition as the interaction passes through zero.
This will be demonstrated explicitly in Sec. 9.5.

In summary, for repulsive interactions the lowest-energy state of a Bose–
Einstein condensate in a trap is generally a superposition of vortices and
elementary excitations, especially surface waves. When the interaction is
attractive, the lowest energy is achieved by putting all the angular mo-
mentum into the centre-of-mass motion. The three ways of adding angular
momentum to a cloud are illustrated schematically in Fig. 9.2.
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9.3.2 Rotating traps

In the previous discussion we assumed that the trap has an axis of symmetry,
and therefore the angular momentum about that axis is conserved. Another
situation arises for traps which have no axis of symmetry, since angular
momentum is then not conserved. As an example one may consider an
anisotropic trap rotating about some axis. The question we now address is
what the equilibrium state is under such conditions.

The difficulty with rotating traps is that in the laboratory frame the
trapping potential is generally time-dependent. It is therefore convenient to
approach the problem of finding the equilibrium state by transforming to the
frame rotating with the trapping potential, since in that frame the potential
is constant in time, and thus the standard methods for finding equilibrium
may be employed. According to the well-known result from mechanics, in
the frame rotating with the potential the energy E′ of a cloud of atoms is
given in terms of the energy E in the non-rotating frame by [11]

E′ = E − L ·Ω, (9.40)

where L is the angular-momentum vector and Ω is the angular-velocity
vector describing the rotation of the potential. In a trap with no axis of
symmetry, angular momentum about the axis of rotation is not conserved,
and therefore the angular momentum L of the system must be identified
with the quantum-mechanical expectation value of the angular momentum.
The problem is then to find the state with lowest energy in the rotating
frame, that is, with the lowest value of E′.

An important conclusion may be drawn from Eq. (9.40). If a state with
angular-momentum component L along the rotation axis has energy EL,
it will be energetically favourable compared with the ground state if the
angular velocity of the trap exceeds a critical value Ωc, given by

Ωc =
EL − E0

L
. (9.41)

The value of Ωc depends on the character of the excited state. For the
vortex state in a cloud with a number of particles large enough that the
Thomas–Fermi approximation is valid, the energy of the vortex state relative
to the ground state is given by (9.32), while L is given by (9.33). Their ratio
determines Ωc according to (9.41), and we therefore obtain a critical angular
velocity given by

Ωc =
5
2

�

mR2
ln

(
0.671

R

ξ0

)
=

5
2
ω0

(aosc
R

)2
ln

(
0.671

R

ξ0

)
. (9.42)
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Apart from the logarithmic term and a numerical factor, this is the angular
velocity of a particle at the edge of the cloud with angular momentum �.
Since the minimum value of the ratio of energy to angular momentum for
surface waves is given by Eq. (9.39), the critical angular velocity for such
waves is given by

Ωc ∼ ω0

(aosc
R

)2/3
. (9.43)

Thus in the Thomas–Fermi regime, vortex states can be in equilibrium in
a rotating trap with an angular velocity lower than that required for sur-
face waves. The smallest value of the critical angular velocity allowing for
all sorts of possible excitations is referred to as the lower critical angular
velocity. Below this angular velocity, the non-rotating ground-state has the
lowest energy in the rotating frame, while at higher angular velocities, other
states are favoured. It is usually denoted by Ωc1, by analogy with the lower
critical magnetic field in type II superconductors, at which the Meissner
state ceases to be energetically favourable. At higher magnetic fields, flux
lines, the charged analogues of vortices in uncharged systems, are created.
As the angular velocity increases past Ωc1, the angular momentum of the
equilibrium state changes discontinuously from zero to � per particle.

As the rotation rate is increased, the nature of the equilibrium state
changes, first to a state with two vortices rotating around each other, then
to three vortices in a triangle, and subsequently to arrays of more and more
vortices. Calculations of such structures for a trapped Bose gas with weak
interaction have been carried out in Ref. [9]. All the vortices have a single
quantum of circulation since, as argued in Sec. 9.2.1, vortices with multiple
quanta of circulation are unstable with respect to decay into vortices with
a single quantum.

For a bulk superfluid in rotation at an angular velocity high compared with
the minimum angular velocity Ωc1 at which it is energetically favourable to
have a vortex, the state with lowest energy in the rotating frame has a
uniform array of vortices arranged on a triangular lattice [12]. For a Bose–
Einstein condensed gas in a trap, one would expect a similar conclusion to
hold provided the density of the fluid does not vary appreciably on a length
scale equal to the spacing between vortices.

Let us contrast the velocity field for an array of vortices with that for
an ordinary fluid. For a fluid in equilibrium in a frame rotating at angular
velocity Ω, the velocity locally is that for uniform rotation, that is v =
Ω× r. Therefore ∇× v is uniform and equal to 2Ω. The velocity field for
a condensate can be made similar to this if it contains an array of vortices
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aligned in the direction of the angular velocity. If the number nv of vortices
per unit area in the plane perpendicular to Ω is uniform and equal to

nv =
2mΩ
h
, (9.44)

the average circulation per unit area in the condensate is 2Ω. However,
because the quantum of circulation is non-zero, it is impossible to create a
velocity field v = Ω× r everywhere simply from an array of vortices, since
the velocity diverges in the immediate vicinity of a vortex.

The importance of quantized vortices as a direct manifestation of the
quantum nature of a Bose–Einstein condensate has stimulated a number
of experimental investigations of rotating condensates. The basic idea in
most such experiments is to use a laser beam to ‘stir’ the condensate. Due
to the interaction of atoms with radiation, as described in Sec. 4.2, a laser
beam, whose axis has a fixed direction and whose centre rotates in space,
creates a rotating potential for atoms. Since the spatial scale of a vortex
core in a trapped cloud is typically less than 1 µm, it is impossible to re-
solve structures optically. To magnify the spatial scale of vortex structure
it is therefore common to switch off the trap and allow clouds to expand
ballistically before examining them optically. This method has been applied
in a number of experiments on one-component condensates. However, the
first observation of vortices in dilute gases was made using a two-component
condensate [13].

The idea of using two-component condensates arose because of concerns
about the time required to reach equilibrium in one-component condensates,
and the specific technique was proposed by Williams and Holland [14]. The
experiment was performed with 87Rb atoms, and the two components cor-
responded to atoms in the two hyperfine states |F = 1,mF = −1〉 and
|F = 2,mF = +1〉. In brief, the basic idea is to use a laser-beam stirrer, as
described above, together with a spatially-uniform microwave field, which
couples the two hyperfine states by a two-photon transition. When the
two perturbations operate on, say, a non-rotating condensate in the state
|F = 1,mF = −1〉, they can produce a rotating condensate in the state
|F = 2,mF = +1〉. If the frequency of the microwave field and the rotation
frequency are chosen appropriately, atoms from the non-rotating condensate
are transferred resonantly to a vortex state of atoms in the second hyperfine
state. In the first experiment, the core of the vortex contained a non-rotating
condensate of atoms in the state |F = 1,mF = −1〉. Because of the repulsive
interaction between atoms in unlike hyperfine states, the vortex core was so
large that it could be imaged directly, without ballistic expansion. In sub-
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sequent experiments, the condensate of non-rotating atoms was removed,
thereby yielding a rotating condensate in a one-component system [15].

The difficulties with nucleating vortices in single-component condensates
turned out not to be serious. Single vortices and vortex arrays have been
created by using laser beams to stir a gas of 87Rb atoms [16], and the angular
momentum of a rotating Bose–Einstein condensed state has been measured
[17]. Recently, regular triangular arrays containing up to 130 vortices have
been observed in a condensate of 23Na atoms [18]. These results confirm
the basic picture of the equilibrium states of rotating superfluids described
above.

The study of rotating Bose–Einstein condensates in traps has given new
insights into the behaviour of vortex lines in inhomogeneous systems, and
for further details we refer to Ref. [2]. There are many outstanding prob-
lems, among them understanding quantitatively the response of a rotating
superfluid to perturbations, such as the presence of thermal excitations. A
particular example is the decay of vortex states. In the experiments reported
in Ref. [18], the number of vortices had decreased markedly after 10 s, but
individual vortices were sometimes present near the axis of rotation after as
long as 40 s.

9.4 Vortex motion

One of the remarkable results of the classical hydrodynamics of an ideal fluid
is the law of conservation of circulation, or Kelvin’s theorem. This states
that the circulation around a contour moving with the fluid is a constant in
time [19, §8]. Expressed in terms of the motion of vortex lines, the theorem
states that vortex lines move with the local fluid velocity.

As a first example, consider an off-axis vortex in an incompressible fluid
contained in a cylinder, as discussed in Sec. 9.2.3. As a consequence of the
interaction between the vortex and its image vortex, the azimuthal angle
of their positions will change, their radial coordinates remaining constant.
The angular velocity may be determined by classical mechanics, since this
is given by

ϕ̇ = Ω =
∂E

∂L
. (9.45)

Since the energy (9.38) and the angular momentum (9.36) both depend
parametrically on b, the distance of the vortex line from the axis of the
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cylinder, the frequency is given by

Ω =
∂E

∂L
=
∂E/∂b

∂L/∂b
=

�

mR2

1
1− b2/R2

=
1
b

�

m(R2/b− b) . (9.46)

Thus the velocity of the vortex at radius b from the axis is �/m(R2/b− b).
The fluid velocity at the position of the original vortex is due to the image
vortex, and it is equal to �/md, where d = R2/b− b is the separation of the
two vortices. Thus the velocity at which the vortex advances is precisely the
flow velocity of the fluid at the position of the vortex, in agreement with
Kelvin’s theorem.

9.4.1 Force on a vortex line

Insight into Kelvin’s theorem may be gained by considering the force acting
on a vortex line. We do this by calculating the flux of momentum into the
region in the vicinity of the vortex line. Consider a surface surrounding the
vortex line, and moving with it. The momentum flux inwards across the
surface is given by2

Fi = −
∫
dSjΠij , (9.47)

where Πij is the momentum flux density tensor, and the element of area of
the surface, considered as a vector in the direction of the outward normal,
is denoted by dSj .

We imagine that the surface lies well outside the core of the vortex, so
terms in the momentum flux density tensor involving the gradient of the
amplitude of the condensate wave function may be neglected. We shall also
neglect the effect of external potentials. Thus the momentum flux density
tensor is [19, §7]

Πij = pδij + nmvivj , (9.48)

where p is the pressure, and the force is

Fi = −
∫
dSj(pδij + nmvivj). (9.49)

The force thus comes partly from pressure variations over the surface, and
partly from transport of momentum by the bulk motion of fluid crossing
the surface. Due to the presence of the vortex, the velocity field close to
2 We use here the Einstein convention of summing over repeated indices.
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the vortex line has a component varying inversely as the distance from the
vortex line. In addition, there is a contribution to the velocity field which
varies smoothly with position outside the core of the vortex, and we shall
denote this by u. We remark that at distances of order the coherence length
ξ from the vortex there are ‘backflow’ contributions to the velocity field due
to the fact that the deficit of particles in the core behaves as an obstacle, but
at distances much greater than ξ from the vortex line these are negligible.
Thus on the surface we consider we may treat u as constant.

In the frame moving with the vortex, the flow is stationary and therefore
the fluid velocity satisfies the Bernoulli equation which follows from Eq.
(7.20),

µ+
1
2
m(v − u)2 = µ0 +

1
2
mu2, (9.50)

where µ0 is the chemical potential far from the vortex core.
The change in the chemical potential is

δµ = µ− µ0 =
1
2
m[u2 − (v − u)2] = mv·u− 1

2
mv2. (9.51)

The change in pressure is related to the change in the chemical potential
by the thermodynamic relationship valid at zero temperature dp = ndµ.
To calculate the momentum flux across a contour moving with the fluid,
we transform the momentum flux density tensor to the frame in which the
vortex is stationary, where the fluid velocity is v − u. The change in the
momentum flux density tensor to first order in u is

δΠij = nm(v·uδij − uivj − viuj). (9.52)

The total momentum transported out over the boundary is given by inte-
grating the scalar product of the momentum flux density tensor and the
element of surface area of the boundary. The force acting on the vortex
is the negative of this quantity. For definiteness, we take u to be in the x
direction, u = (ux, 0, 0). Per unit length of the vortex, the components of
the force are then given by

Fx = ux

∮
nm(vxex + vyey)dl, (9.53)

and

Fy = ux

∮
nm(vyex − vxey)dl, (9.54)

where dl is the line element of the contour in the xy plane, and ê is the
unit vector in the direction of the outward normal to the surface. The
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integrand on the right hand side of Eq. (9.53) is the net flux of mass across
the contour, which must vanish. Thus the force in the x direction vanishes.
This is an example of d’Alembert’s paradox, that in potential flow past a
body there is no drag force. Since the line element on the contour is given
by dl = dl(−ey, ex), the integral in Eq. (9.54) is the circulation around the
contour,

κz =
∮

(vyex − vxey)dl =
∮

v·dl. (9.55)

The force in the z direction vanishes by symmetry, and therefore if one
regards the circulation as a vector in the direction of the vortex line, the
total force per unit length of the vortex may be written as

F = nmκ× u, (9.56)

where κ is the circulation of the vortex, its direction being that of the vortex
line. This force is usually referred to as the Magnus force. Note that the force
is independent of conditions inside the surface considered. In particular, the
result holds even if a solid object, such as the wing of an aircraft, is present
there; this force provides the lift responsible for flight.

From the result (9.56) one can draw the important conclusion that in
steady flow a vortex moves with the local fluid velocity if there are no other
forces acting on the vortex. If this were not so, there would be unbalanced
forces. If the vortex is subjected to other forces, they must exactly cancel
the Magnus force. We draw attention to the fact that the ‘carrying vorticity
with the fluid’ effect is not present in the equations of motion we derived in
Sec. 7.1 , where it was assumed that ∇× v = 0, and therefore there was no
vorticity. To include these effects requires a careful treatment of the regions
near the vortex lines, and these give rise to terms like the v × (∇× v) one
in Eq. (7.25), which was derived from the Euler equation for an ideal fluid,
without assuming that the flow was irrotational.

9.5 The weakly-interacting Bose gas under rotation

The weakly-interacting Bose gas, whose equilibrium properties and excita-
tion spectrum were considered in Chapters 6 and 8, provides an instructive
model for studies of rotation. Consider N identical bosons in a harmonic-
oscillator potential which is axially symmetric about the z axis. The ground
state of the system has been considered before and, provided the interaction
energy is small compared with the oscillator quantum of energy, the energy
of the state may be estimated by perturbation theory, and is given in Eq.
(6.20). Properties of vibrational modes were considered in Sec. 8.2.1. Let
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us now turn to states with non-zero angular momentum about the z axis.
Our discussion closely follows Ref. [20]. The difference between this prob-
lem and the one considered earlier is that the oscillator frequencies for the
x and y directions are the same, and therefore the modes for oscillations
in the two directions are mixed by the interaction. To solve this problem
we work in terms of states with definite angular momentum about the z
axis, rather than states with definite numbers of quanta of motion in the
x and y directions. The wave function for the motion in the z direction
plays no role in our discussion, so we shall suppress it and consider a purely
two-dimensional problem. The energy levels of an isotropic two-dimensional
oscillator are given by

E = (nx + ny + 1)�ω⊥, (9.57)

where nx and ny are the numbers of quanta for the two directions, and ω⊥
is the oscillation frequency in the xy plane. Energy levels with more than
a single quantum are degenerate, and one may construct combinations of
states with the same energy that have simple properties under rotations
about the z axis. The spectrum may be expressed in terms of the angular
momentum quantum number m of the state and the number nρ of radial
nodes of the wave function as

E = (|m|+ nρ + 1)�ω⊥. (9.58)

The lowest-energy single-particle state with angular momentum m� has an
excitation energy |m|�ω⊥ relative to the ground state. This state corre-
sponds classically to a circular orbit in the xy plane. For a given angular
momentum L, the lowest-energy states of the many-body system in the ab-
sence of interactions are obtained by populating states with no radial nodes,
and with the angular momentum of the particle having the same sense as
L. For definiteness, it is convenient to take L to be positive. If one denotes
the number of atoms in a single-particle state with angular momentum m�

and no radial nodes by Nm, the angular momentum is given by

L = �

∑
m≥0

mNm (9.59)

and the energy by

EL − E0 = Lω⊥. (9.60)

For L = �, the state is unique, since it has N − 1 particles in the ground
state of the oscillator, and one particle in the state with one unit of angular
momentum. We shall denote this state by |0N−111〉. For higher values of
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the angular momentum the lowest-energy state is degenerate. For example,
for L = 2�, the state |0N−121〉, which has N−1 particles in the ground state
and one in the state with m = 2, is degenerate with the state |0N−212〉 with
N − 2 particles in the ground state and two in the state with m = 1. The
degeneracy increases rapidly with L.

Let us now investigate the effect of interactions on the energies of states
with small angular momentum. The simplest states to consider are ones in
which N−1 particles are in the ground state, and one particle is in the state
with angular momentum m�. The expectation value of the energy of the
state is (cf. Eq. (8.58))

Em = E0 + �|m|ω⊥ − (N − 1)(〈00|U |00〉 − 2〈0m|U |0m〉). (9.61)

The fact that the interaction mixes the state |0N−1m1〉 with ones such as
|0N−|m|1m〉 does not affect the contribution to the energy of order N (see
Problem 9.5).

The matrix elements of the interaction may be calculated straightfor-
wardly since the wave function of the state with angular momentum m� is
proportional to ρ|m|eimϕ. One finds

〈0m|U |0m〉 =
1

2|m| 〈00|U |00〉. (9.62)

The excitation energies are therefore given by

Em = E0 + �|m|ω⊥ −N〈00|U |00〉(1− 1/2|m|−1), (9.63)

where in the interaction term we have replaced N − 1 by N . Notice that
the interaction energy is unchanged for |m| = 1. This is due to the fact that
the angular momentum of the excited state considered is associated purely
with the centre-of-mass motion and, consequently, all correlations between
atoms are precisely the same as in the ground state. This effect is analogous
to that for vibrational motion along one of the coordinate axes, which we
considered in Chapter 7. Now let us consider higher multipole excitations.

Repulsive interactions

For repulsive interactions the excitation energy is reduced compared to that
for non-interacting particles. The energy cost per unit angular momentum
is given by

Em − E0

|m|� = ω⊥ −N〈00|U |00〉(1− 1/2|m|−1)
|m|� , (9.64)
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and it is therefore lowest for quadrupole (|m| = 2) and octupole (|m| = 3)
modes, and in this approximation the value is the same for these two sorts
of excitation [20].

To determine the least energetic state for a non-zero value of the angular
momentum per particle one must take into account interactions between the
elementary excitations considered above, and one finds that at low angular
momentum the lowest-energy state is achieved by exciting quadrupole modes
[10]. The change in the interaction energy is negative because the single-
particle wave function in an excited state is more spread out than in the
ground state, and therefore the expectation value of the interaction energy is
less. The results here fit nicely with the ones deduced for the Thomas–Fermi
regime (Sec. 9.3.1), where for small total angular momentum (L � N�)
the lowest-energy excitations per unit angular momentum were found to be
surface waves with angular momentum of order (R/aosc)4/3�. In the weak-
coupling limit, R and aosc are comparable in magnitude, and therefore one
would expect the most favourable angular momentum of excitations to be
of order unity, as we found by explicit calculation.

Attractive interactions

For attractive interactions the situation is different: generally the energy
required to excite an atom from the ground state is greater than the free-
particle value because some of the attractive energy is lost due to particles
being further apart. An exception is the centre-of-mass excitation, for which
there is no interaction contribution to the excitation energy. Thus the most
energetically economical way to add angular momentum to the cloud is to
excite motion of the centre of mass, without disturbing the internal correla-
tions of the ground state [21]. This result is general, even though we have
demonstrated it only for weak interactions and small angular momenta. An-
gular momentum can be added partly to the centre-of-mass motion, which
leaves the interaction energy unchanged, or may be put into internal excita-
tions, which will increase the interaction energy. Thus, exciting the centre-
of-mass motion is the most energetically favourable way of giving angular
momentum to a cloud of atoms with attractive interactions.

From the above example we see that the behaviour under rotation of a
cloud of atoms with attractive interactions is qualitatively different from that
for repulsive ones: the system undergoes a phase transition when the cou-
pling passes through zero. This may be illustrated by considering the model
discussed above for a state with more than one unit of angular momentum.
As we have shown above, in the absence of interactions the ground state
is degenerate. For weak interactions the eigenvalues are obtained by diag-
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Fig. 9.3. Schematic plot of energies of many-atom eigenstates with a given non-zero
angular momentum as a function of interaction strength for weak coupling between
atoms.

onalizing the interaction Hamiltonian in the subspace of degenerate states.
All the matrix elements are proportional to the strength of the potential,
and therefore the eigenvalues are linear functions of the strength. Thus the
behaviour of the eigenvalues is as shown schematically in Fig. 9.3. From this
one sees that the lowest-energy state changes character as the strength of
the interaction passes through zero. The calculations above have shown that
the state corresponding to exciting only the centre-of-mass degree of freedom
is the lowest-energy one for attractive interactions, and thus, for repulsive
interactions, it has the highest energy among the states in the manifold.

Problems

Problem 9.1 Calculate the condensate wave function for a vortex in a
uniform Bose gas in the Thomas–Fermi approximation, in which one neglects
the term in the energy containing radial gradients of the wave function.
Show that the condensate wave function vanishes for ρ ≤ |J|ξ where J is the
number of quanta of circulation of the vortex, and ξ is the coherence length
far from the vortex. Show that to logarithmic accuracy the vortex energy
per unit length is π�

2(n/m)J2 ln(R/|J|ξ), n being the density far from the
vortex. Compare this result with the exact one for a vortex line with a
single quantum of circulation. When the radial gradient terms are included
in the calculation, particles tunnel into the centrifugal barrier at small radii,
yielding a condensate wave function which for small ρ has the ρ|;| behaviour
familiar for free particles.
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Problem 9.2 Calculate the vortex energy from (9.17) using the trial so-
lution given by (9.19), and show that it is a minimum for α = 2.

Problem 9.3 Consider two parallel vortices with circulations J1 and J2
separated by a distance d within a cylindrical container of radius R. The
mass density of the medium is uniform, ρ = nm. Show that the interaction
energy per unit length of the vortices is given in terms of their velocity fields
v1 and v2 as

εint = ρ
∫
d2r v1·v2 =

2πJ1J2�2n

m
ln
R

d
,

where the final expression holds for R� d and d� ξ.

Problem 9.4 Calculate the energy of a rectilinear vortex in a uniform
fluid contained in a cylinder of radius R when the vortex is coaxial with
the cylinder and at a distance b from the axis of the cylinder. [Hint: The
problem is equivalent to that of evaluating the capacitance of two parallel
cylindrical conductors of radii R and ξ whose axes are displaced with respect
to each other by an amount b. See, e.g., Ref. [22].]

Problem 9.5 Consider the state |0N−121〉, in which one particle is in
the state ρ|m|eimϕe−ρ2/2a2

osc for m = 2 which is a solution of the Schrödin-
ger equation for the isotropic harmonic oscillator in two dimensions. The
interaction can induce transitions to the state with two atoms in the m = 1
state and the remainder in the m = 0 one. Show that the shift of the energy
of the state |0N−121〉 due to this process is independent of N and of order
〈00|U |00〉 when the interaction is weak.
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10

Superfluidity

The phenomena of superfluidity and superconductivity are intimately con-
nected with the existence of a condensate, a macroscopically occupied quan-
tum state. Such condensates occur in a variety of different physical systems,
as described in Chapter 1. The foundation for the description of superflu-
idity is a picture of the system as being comprised of a condensate and
elementary excitations. In Chapter 8 we have seen how physical properties
such as the energy and the density of a Bose–Einstein condensed system may
be expressed in terms of a contribution from the condensate, plus one from
the elementary excitations, and in this chapter we shall consider further de-
velopments of this basic idea to other situations. As a first application, we
determine the critical velocity for creation of an excitation in a homogeneous
system (Sec. 10.1). Following that, we show how to express the momentum
density in terms of the velocity of the condensate and the distribution func-
tion for excitations. This provides the basis for a two-component description,
the two components being the condensate and the thermal excitations (Sec.
10.2). In the past, this framework has proved to be very effective in describ-
ing the properties of superfluids and superconductors, and in Sec. 10.3 we
apply it to dynamical processes.

To describe the state of a superfluid, one must specify the condensate
velocity, in addition to the variables needed to characterize the state of an
ordinary fluid. As a consequence, the collective behaviour of a superfluid
is richer than that of an ordinary one. Collective modes are most simply
examined when excitations collide frequently enough that they are in local
thermodynamic equilibrium. Under these conditions the excitations may
be regarded as a fluid, and a hydrodynamic description is possible. This is
referred to as the two-fluid model. As an illustration, we show in Sec. 10.4
that, as a consequence of the additional macroscopic variable, there are two

264
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sound-like modes, so-called first and second sound, rather than the single
sound mode in an ordinary fluid.

When collisions are so infrequent that local thermodynamic equilibrium is
not established, the dynamics of the excitations must be treated microscop-
ically. In Sec. 10.5 we illustrate this approach by considering the damping
and frequency shift of low-frequency collective modes of the condensate due
to coupling to thermal excitations.

10.1 The Landau criterion

Consider a uniform Bose–Einstein condensed liquid in its ground state.
Imagine that a heavy obstacle moves through the liquid at a constant veloc-
ity v, and let us ask at what velocity it becomes possible for excitations to
be created. In the reference frame in which the fluid is at rest, the obstacle
exerts a time-dependent potential on the particles in the fluid. To simplify
the analysis it is convenient to work in the frame in which the obstacle is
at rest. If the energy of a system in one frame of reference is E, and its
momentum is p, the energy in a frame moving with velocity v is given by
the standard result for Galilean transformations,

E(v) = E − p·v +
1
2
Mv2, (10.1)

where M = Nm is the total mass of the system. Thus in the frame moving
with the obstacle the energy of the ground state, which has momentum zero
in the original frame, is

E(v) = E0 +
1
2
Nmv2, (10.2)

E0 being the ground-state energy in the frame where the fluid is at rest.
Consider now the state with a single excitation of momentum p. In the

original frame the energy is

Eex = E0 + εp, (10.3)

and therefore the energy in the frame moving with the obstacle is

Eex(v) = E0 + εp − p·v +
1
2
Nmv2. (10.4)

Consequently, the energy needed to create an excitation in the frame moving
with the obstacle is εp−p·v, the difference between (10.4) and (10.2). In the
frame of the obstacle, the potential produced by it is static, and therefore
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the obstacle is unable to transfer energy to the fluid. Thus at a velocity

v =
εp
p
, (10.5)

that is, when the phase velocity of the excitation is equal to the velocity
of the fluid relative to the obstacle, it becomes possible kinematically for
the obstacle to create an excitation with momentum parallel to v. For
higher velocities, excitations whose momenta make an angle cos−1(εp/pv)
with the velocity vector v may be created. This process is the analogue of
the Cherenkov effect, in which radiation is emitted by a charged particle
passing through a material at a speed in excess of the phase velocity of
light in the medium. The minimum velocity at which it is possible to create
excitations is given by

vc = min
(
εp
p

)
, (10.6)

which is referred to as the Landau critical velocity. For velocities less than
the minimum value of εp/p, it is impossible to create excitations. There is
consequently no mechanism for degrading the motion of the condensate, and
the liquid will exhibit superfluidity.

Equation (10.6) shows that the excitations created at the lowest velocity
are those with the lowest phase velocity. In a uniform, Bose–Einstein con-
densed gas, for which the spectrum is given by the Bogoliubov expression
(8.29), the phase velocity may be written as s[1 + (p/2ms)2]1/2. There-
fore the lowest critical velocity is the sound speed, and the corresponding
excitations are long-wavelength sound waves. This situation should be con-
trasted with that in liquid 4He. If the relevant excitations were those given
by the standard phonon-roton dispersion relation (Fig. 1.1), which is not
convex everywhere, the lowest critical velocity would correspond to creation
of rotons, which have finite wavelengths. However, the critical velocity ob-
served in experiments is generally lower than this, an effect which may be
accounted for by the creation of vortex rings, which have a phase velocity
lower than that of phonons and rotons. We remark in passing, that for
the non-interacting Bose gas, the critical velocity is zero, since the phase
velocity of free particles, p/2m, vanishes for p = 0. For this reason Lan-
dau argued that the picture of liquid 4He as an ideal Bose gas was inad-
equate for explaining superfluidity. As the Bogoliubov expression (7.31)
for the excitation spectrum of the dilute gas shows, interactions are cru-
cial for obtaining a non-zero critical velocity. In a recent experiment a
critical velocity for the onset of a pressure gradient in a Bose–Einstein con-
densed gas has been measured by stirring the condensate with a laser beam
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[1], but a detailed theoretical understanding of the results remains to be
found.

Another way of deriving the Landau criterion is to work in the frame in
which the fluid is at rest and the obstacle is moving. Let us denote the
potential at point r due to the obstacle by V (r −R(t)), where R(t) is the
position of some reference point in the obstacle. For uniform motion with
velocity v, the position of the obstacle is given by R(t) = R(0) + vt, and
therefore the potential will be of the form V (r−vt−R(0)). From this result
one can see that the Fourier component of the potential with wave vector
q has frequency q·v. Quantum-mechanically this means that the potential
can transfer momentum �q to the liquid only if it transfers energy �q·v.
The condition for energy and momentum conservation in the creation of an
excitation leads immediately to the criterion (10.6).

In the discussion above we considered a fluid with no excitations present
initially. However the argument may be generalized to arbitrary initial
states, and the critical velocity is given by the same expression as before,
except that the excitation energy to be used is the one appropriate to the
initial situation, allowing for interactions with other excitations.

10.2 The two-component picture
The description of superfluids and superconductors in terms of two interpen-
etrating components, one associated with the condensate and the other with
the excitations, is conceptually very fruitful. In an ordinary fluid, only the
component corresponding to the excitations is present and, consequently,
that component is referred to as the normal component. That associated
with the condensate is referred to as the superfluid component. The two
components do not correspond to physically distinguishable species, as they
would in a mixture of two different kinds of atoms. The expression (8.35) is
an example of the two-component description for the particle density. We
now develop the two-component picture by considering flow in a uniform sys-
tem and calculating the momentum carried by excitations in a homogeneous
gas.

10.2.1 Momentum carried by excitations

In the ground state of a gas the condensate is stationary, and the total
momentum is zero. Let us now imagine that excitations are added without
changing the velocity of the condensate. The total momentum per unit
volume is thus equal to that carried by the excitations,

jex =
∫

dp
(2π�)3

pfp. (10.7)
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Now let us perform a Galilean transformation to a reference frame moving
with a velocity −vs, in which the condensate is therefore moving with ve-
locity vs. Under the Galilean transformation the total momentum changes
by an amount Nmvs, and therefore the total momentum density in the new
frame is

j = ρvs + jex = ρvs +
∫

dp
(2π�)3

pfp, (10.8)

where ρ = nm is the mass density. For a system invariant under Galilean
transformations, the momentum density is equal to the mass current density,
which enters the equation for mass conservation.

10.2.2 Normal fluid density

The expression (10.8) for the momentum density forms the basis for the
introduction of the concept of the normal density. We consider a system in
equilibrium at finite temperature and ask how much momentum is carried
by the excitations. We denote the velocity of the condensate by vs. The gas
of excitations is assumed to be in equilibrium, and its velocity is denoted by
vn. From the results of Sec. 10.1 one can see that the energy of an excitation
in the original frame is εp + p·vs. The distribution function is that for exci-
tations in equilibrium in the frame moving with velocity vn, and therefore
the energy that enters the Bose distribution function is the excitation energy
appropriate to this frame. This is the energy in the original frame, shifted
by an amount −p · vn, and therefore the equilibrium distribution function
is

fp =
1

exp{[εp − p·(vn − vs)]/kT} − 1
. (10.9)

By inserting this expression into Eq. (10.8) one finds the momentum density
of the excitations to be

jex =
∫

dp
(2π�)3

pfp = ρn(|vn − vs|)(vn − vs), (10.10)

where

ρn(v) =
∫

dp
(2π�)3

p·v
v2

1
exp[(εp − p·v)/kT ]− 1

. (10.11)

For small velocities one finds

ρn =
∫

dp
(2π�)3

(p·v̂)2
(
−
∂f0

p

∂εp

)
=

∫
dp

(2π�)3
p2

3

(
−
∂f0

p

∂εp

)
, (10.12)
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where f0
p = [exp(εp/kT )− 1]−1. The temperature-dependent quantity ρn is

referred to as the density of the normal fluid, or simply the normal density.
For a dilute Bose gas, the spectrum of elementary excitations is the Bogoliu-
bov one, Eq. (8.29). At temperatures low compared with T∗ = ms2/k, Eq.
(8.64), the dominant excitations are phonons, for which εp � sp. Substitu-
tion of this expression into Eq. (10.12) gives

ρn =
2π2

45
(kT )4

�3s5
. (10.13)

At a temperature T , the typical wave number of a thermal phonon is ∼
kT/�s, and therefore the density of excitations is of order (kT/�s)3, the
volume of a sphere in wave number space having a radius equal to the
thermal wave number. Thus a thermal excitation behaves as though it has
a mass ∼ kT/s2, which is much less than the atomic mass if T � T∗.
As the temperature approaches T∗, the mass becomes of order the atomic
mass. In the other limiting case, T � T∗, the energy of an excitation is
approximately the free-particle energy p2/2m. If one integrates by parts the
expression (10.12) for the normal density, one finds

ρn = mnex, (10.14)

where nex = n−n0 is the number density of particles not in the condensate,
given by

nex = n
(
T

Tc

)3/2

. (10.15)

The simple result for T � T∗ is a consequence of the fact that the excitations
are essentially free particles, apart from the Hartree–Fock mean field, and
therefore, irrespective of their momenta, they each contribute one unit to
the particle number, and the particle mass m to the normal density. Note
that the density of the normal component is not in general proportional to
nex (see Problem 10.3).

According to (10.8) the total momentum density is then obtained by
adding ρvs to jex,

j = ρn(vn − vs) + ρvs. (10.16)

If we define the density of the superfluid component or the superfluid density
as the difference between the total and normal densities,

ρs = ρ− ρn, (10.17)

the momentum density may be expressed as

j = ρsvs + ρnvn, (10.18)
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which has the same form as for two interpenetrating fluids. There are how-
ever important differences between this result and the corresponding one for
a fluid containing two distinct species. The density of the normal component
is defined in terms of the response of the momentum density to the velocity
difference vn−vs. It therefore depends both on temperature and on vn−vs.

10.3 Dynamical processes

In the previous section we considered steady-state phenomena in uniform
systems. In this section we treat dynamical phenomena, taking into account
spatial non-uniformity. The most basic description of dynamical processes
is in terms of the eigenstates of the complete system or, more generally, in
terms of the density matrix. However, for many purposes this approach is
both cumbersome and more detailed than is necessary. Here we shall as-
sume that spatial variations are slow on typical microscopic length scales.
It is then possible to use the semi-classical description, in which the state
of the excitations is specified in terms of their positions ri and momenta
pi or equivalently their distribution function fp(r), as we did earlier in the
description of equilibrium properties in Sec. 2.3. The superfluid is charac-
terized by the condensate wave function ψ(r, t).

The condensate wave function is specified by its magnitude and its phase,
ψ = |ψ|eiφ. The condensate density equals |ψ|2, while the superfluid velocity
is given in terms of φ by the relation vs = �∇φ/m. For many purposes it
is convenient to eliminate the magnitude of the condensate wave function
in favour of the local density n(r, t), and use this and the phase φ(r, t)
of the condensate wave function as the two independent variables. One
advantage of working with the total density, rather than the density |ψ|2 of
the condensate, is that collisions between excitations alter the condensate
density locally, but not the total density. Another is that, as we shall see,
φ(r, t) and the total density n(r, t) are canonical variables. In Sec. 7.1 we
showed how a pure condensate is described in these terms, and we now
generalize these considerations to take into account excitations.

Consider first a uniform system. Its state is specified by the number of
particles N , the occupation numbers Np for excitations, and the condensate
velocity vs. The condensate wave function is the matrix element of the
annihilation operator between the original state and the state with the same
number of excitations in all states, but one fewer particles. Thus the phase
of the condensate wave function varies as

dφ

dt
= −E(N, {Np},vs)− E(N − 1, {Np},vs)

�
� −1

�

∂E

∂N
, (10.19)
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where {Np} indicates the set of occupation numbers for all momentum
states. In generalizing this result to non-uniform systems we shall confine
ourselves to situations where the energy density E(r) is a local function of
the particle density n(r), the condensate velocity vs, and the distribution
function for excitations, fp(r). The rate of change of the phase locally is
therefore given by generalizing (10.19) to spatially varying situations,

∂φ(r, t)
∂t

= −1
�

δE

δn(r)
= −1

�

∂E
∂n
. (10.20)

Formally this result, which at zero temperature is identical with (7.22), is
an expression of the fact that the density n and the phase φ times � are
canonically conjugate variables.

For slow variations the form of the Hamiltonian density may be deter-
mined from Galilean invariance, since the local energy density is well ap-
proximated by that for a uniform system. It is convenient to separate the
energy density of the system in the frame in which the superfluid is at rest
into a part due to the external potential V (r) and a part E(n, {fp}) coming
from the internal energy of the system. Examples of this energy functional
are the expressions for the ground-state energy density within Bogoliubov
theory obtained from Eq. (8.43), and for the Hartree–Fock energy density
which one obtains from Eq. (8.73). In the frame in which the superfluid has
velocity vs, the energy density may be found from the standard expression
(10.1) for the total energy, and is

Etot = E(n, {fp}) + jex·vs +
1
2
ρv2s + V (r)n. (10.21)

In the long-wavelength approximation we have adopted, the energy density
depends locally on the density, and therefore the equation of motion for the
phase is simply

�
∂φ

∂t
= −(µint + V +

1
2
mv2s ). (10.22)

In this equation µint = ∂E(n, {fp})/∂n is the contribution to the chemical
potential due to the internal energy, and the two other terms are due to the
external potential and the kinetic energy associated with the flow. From this
relationship one immediately finds the equation of motion for the superfluid
velocity

m
∂vs

∂t
= −∇(µint + V +

1
2
mv2s ). (10.23)

This result has the same form as Eq. (7.20), but the quantum pressure term
proportional to spatial derivatives of the density is absent because it has
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been neglected in the long-wavelength approximation made here. However,
it is important to note that the chemical potential µint in Eq. (10.23) contains
the effects of excitations, unlike the one in Eq. (7.20).

We next consider variations of the density. As we have noted already,
the number of particles in the condensate is not conserved when excitations
are present, but the total number of particles is. For a Galilean-invariant
system, the total current density of particles is equal to the momentum
density divided by the particle mass, and the momentum density has already
been calculated, Eq. (10.8). Therefore the condition for particle number
conservation is

∂n

∂t
+

1
m

∇·j = 0. (10.24)

One may also derive this result from the Hamiltonian formalism by using
the second member of the pair of equations for the canonical variables n and
�φ (Problem 10.4).

It is important to notice that the equations of motion for vs and n both
contain effects due to excitations. In Eq. (10.23) they enter through the de-
pendence of the chemical potential on the distribution of excitations, which
gives rise to a coupling between the condensate and the excitations. The
energy of an excitation depends in general on the distribution of excitations
and also on the total density and the superfluid velocity. The distribution
function for the excitations satisfies a kinetic equation similar in form to
the conventional Boltzmann equation for a dilute gas which we employ in
Sec. 11.3. The important differences are that the equations governing the
motion of an excitation contain effects of the interaction, while the collision
term has contributions not only from the mutual scattering of excitations,
as it does for a gas of particles, but also from processes in which excitations
are created or annihilated due to the presence of the condensate.

It is difficult to solve the kinetic equation in general, so it is useful to ex-
ploit conservation laws, whose nature does not depend on the details of the
collision term. We have already encountered the conservation law for mass
(or, equivalently, particle number). The momentum and energy conserva-
tion laws are derived by multiplying the kinetic equation by the momentum
and energy of an excitation, respectively, and integrating over momenta. In
general, these equations have terms which take into account transfer of a
physical quantity between the excitations and the condensate. However, if
one adds to these equations the corresponding ones for the condensate con-
tributions to the physical quantities, one arrives at conservation laws which
do not include explicitly the transfer term. Using the Einstein convention of
summation over repeated indices, we may write the condition for momentum
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conservation as
∂ji
∂t

= −∂Πik

∂xk
− n∂V

∂xi
, (10.25)

where Πik is the momentum flux density, and that for energy conservation
as

∂E
∂t

= −∂Qk

∂xk
− 1
m
ji
∂V

∂xi
, (10.26)

where Q is the energy flux density. The last terms in Eqs. (10.25) and (10.26)
represent the effects of the external potential. In the following section we
consider the forms of Πik and Q under special conditions and we shall use the
conservation laws when discussing the properties of sound modes in uniform
Bose gases.

10.4 First and second sound

A novel feature of a Bose–Einstein condensed system is that to describe the
state of the system, it is necessary to specify the velocity of the superfluid, in
addition to the variables needed to describe the excitations. This new degree
of freedom gives rise to phenomena not present in conventional fluids. To
illustrate this, we now consider sound-like modes in a uniform Bose gas. Let
us assume that thermal excitations collide frequently enough that they are
in local thermodynamic equilibrium. Under these conditions, the state of
the system may be specified locally in terms of the total density of particles,
the superfluid velocity vs, the temperature T , and the velocity vn of the
excitations. The general theory of the hydrodynamics of superfluids is well
described in standard works [2].

Basic results

The mass density ρ and the mass current density j satisfy the conservation
law

∂ρ

∂t
+ ∇·j = 0. (10.27)

The equation of motion for j involves the momentum flux density Πik ac-
cording to (10.25). We shall neglect non-linear effects and friction, in which
case the momentum flux density is Πik = pδik, where p is the pressure. In
the absence of friction and external potentials the time derivative of the
mass current density is thus

∂j
∂t

= −∇p. (10.28)
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By eliminating j we then obtain

∂2ρ

∂t2
−∇2p = 0, (10.29)

which relates changes in the density to those in the pressure. Since, in
equilibrium, the pressure depends on the temperature as well as the density,
Eq. (10.29) gives us one relation between density changes and temperature
changes. To determine the frequencies of modes we need a second such
relation, which we now derive.

The acceleration of the superfluid is given by Eq. (10.23). In the absence
of an external potential, and since the non-linear effect of the superfluid
velocity is neglected, the quantity µint is just the usual chemical potential µ
and therefore

m
∂vs

∂t
= −∇µ. (10.30)

In local thermodynamic equilibrium, a small change dµ in the chemical
potential is related to changes in pressure and temperature by the Gibbs–
Duhem relation

Ndµ = V dp− SdT, (10.31)

where S is the entropy and N the particle number. When written in terms
of the mass density ρ = Nm/V and the entropy s̃ per unit mass, defined by

s̃ =
S

Nm
, (10.32)

the Gibbs–Duhem relation (10.31) shows that the gradient in the chemical
potential is locally related to the gradients in pressure and temperature
according to the equation

∇µ =
m

ρ
∇p− s̃m∇T. (10.33)

It then follows from (10.33), (10.30) and (10.28) together with (10.18) that

∂(vn − vs)
∂t

= −s̃ ρ
ρn

∇T. (10.34)

In the absence of dissipation the entropy is conserved. Since entropy is
carried by the normal component only, the conservation equation reads

∂(ρs̃)
∂t

+ ∇·(ρs̃vn) = 0. (10.35)

The linearized form of this equation is

s̃
∂ρ

∂t
+ ρ
∂s̃

∂t
+ s̃ρ∇·vn = 0. (10.36)
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By using the mass conservation equation (10.27) in (10.36) we find that

∂s̃

∂t
= s̃
ρs
ρ

∇·(vs − vn). (10.37)

After combining (10.37) with (10.34) we arrive at the equation

∂2s̃

∂t2
=
ρs
ρn
s̃2∇2T, (10.38)

which relates variations in the temperature to those in the entropy per unit
mass. Since the entropy per unit mass is a function of density and tem-
perature, this equation provides the second relation between density and
temperature variations.

The collective modes of the system are obtained by considering small
oscillations of the density, pressure, temperature and entropy, with spatial
and temporal dependence given by exp i(q·r − ωt). In solving (10.29) and
(10.38) we choose density and temperature as the independent variables
and express the small changes in pressure and entropy in terms of those in
density and temperature. Denoting the latter by δρ and δT we obtain from
(10.29) the result

ω2δρ− q2
[(
∂p

∂ρ

)
T

δρ+
(
∂p

∂T

)
ρ

δT

]
= 0, (10.39)

and from (10.38) that

ω2

[(
∂s̃

∂ρ

)
T

δρ+
(
∂s̃

∂T

)
ρ

δT

]
− q2 ρs

ρn
s̃2δT = 0. (10.40)

In terms of the phase velocity u = ω/q of the wave, the condition for the
existence of non-trivial solutions to the coupled equations (10.39) and (10.40)
is a quadratic equation for u2,

(u2 − c21)(u2 − c22)− u2c23 = 0. (10.41)

The constant c1 is the isothermal sound speed, given by

c21 =
(
∂p

∂ρ

)
T

, (10.42)

while c2, given by

c22 =
ρss̃

2T

ρnc̃
, (10.43)
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is the velocity of temperature waves, if the density of the medium is held
constant. Here c̃ denotes the specific heat at constant volume, per unit mass,

c̃ = T
(
∂s̃

∂T

)
ρ

. (10.44)

If one uses the Maxwell relation(
∂p

∂T

)
ρ

=
(
∂S

∂V

)
T

= −ρ2
(
∂s̃

∂ρ

)
T

, (10.45)

the quantity c3, which is a measure of the coupling between density and
temperature variations, is given by

c23 =
(
∂p

∂T

)2

ρ

T

ρc̃
. (10.46)

The sound velocities are the solutions of Eq. (10.41), and are given ex-
plicitly by

u2 =
1
2
(c21 + c22 + c23)±

[
1
4
(c21 + c22 + c23)

2 − c21c22
]1/2

. (10.47)

Thus in a Bose–Einstein condensed system there are two different sound
modes, which are referred to as first and second sound, corresponding
to the choice of positive and negative signs in this equation. The ex-
istence of two sound speeds, as opposed to the single one in an ordi-
nary fluid, is a direct consequence of the new degree of freedom associ-
ated with the condensate. The combination c21 + c23 has a simple phys-
ical interpretation. From the Maxwell relation (10.45) and the identity
(∂p/∂T )V = −(∂p/∂V )T (∂V /∂T )p, which is derived in the same manner
as (2.72), it follows that c21 + c23 = (∂p/∂ρ)s̃, which is the square of the
velocity of adiabatic sound waves.

The ideal Bose gas

To understand the character of the two modes we investigate how the sound
velocities depend on temperature and the interparticle interaction. First
let us consider the non-interacting gas. By ‘non-interacting’ we mean that
the effect of interactions on thermodynamic properties may be neglected.
However, interactions play an essential role because they are responsible
for the collisions necessary to ensure that thermodynamic equilibrium is
established locally. They are also important in another respect, because in
Sec. 10.1 we argued that the critical velocity for creating excitations in an
ideal Bose gas is zero. By considering the equilibrium of an ideal Bose gas
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one can see that there is no equilibrium state in which the velocity of the
condensate is different from that of the excitations. However, if the particles
interact, the excitations at long wavelengths are sound waves, and the critical
velocity is non-zero. Consequently, there is a range of flow velocities for
which the system is superfluid.

The pressure and the entropy density ρs̃ of an ideal Bose–Einstein con-
densed gas depend on temperature but not on density. Therefore c1, Eq.
(10.42), vanishes, the first-sound velocity is

u1 =
√
c22 + c23, (10.48)

and the second-sound velocity vanishes, while ∂s̃/∂ρ = −s̃/ρ. Substituting
this result into Eq. (10.45) and using Eq. (10.46) and the fact that ρs+ρn = ρ
(Eq. (10.17)), one finds from Eq. (10.48) that

u2
1 =

s̃2

c̃

ρ

ρn
T. (10.49)

The specific heat and the entropy per unit mass may be found from Eqs.
(2.62) and (2.64), respectively, and the normal density is obtained from Eqs.
(10.14) and (10.15), and therefore the first-sound speed is given by

u2
1 =

5ζ(5/2)
3ζ(3/2)

kT

m
. (10.50)

The numerical prefactor is approximately equal to 0.856. With the use
of Eq. (2.63) for the pressure, this result may also be written in the form
u2

1 = (5/3)(p/ρn) = dp/dρn, which is precisely what one would expect for a
‘sound’ wave in the excitation gas.

Properties of sound in ideal Bose gases can be determined more directly,
and this is left as an exercise (Problem 10.5). The picture that emerges is
simple, since the motion of the condensate and that of the excitations are
essentially uncoupled: in first sound, the density of excited particles varies,
while in second sound, the density of the condensate varies. The velocity of
the latter mode is zero because a change in the density of condensate atoms
produces no restoring force.

The interacting Bose gas

As a second example, let us consider an interacting Bose gas in the low-
temperature limit, T → 0. Since the ground-state energy is E0 = N2U0/2V ,
the pressure is given by

p = −∂E0

∂V
=

1
2
U0n

2 =
U0ρ

2

2m2
. (10.51)
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According to (10.42) we then find c21 = nU0/m. At low temperatures, the
entropy is that associated with the Bogoliubov excitations and therefore
varies as T 3. This implies that c23 approaches zero as T tends to zero. The
constant c2, however, tends to a finite value, given by c22 = nU0/3m, since
the entropy and specific heat of the phonons are related by s̃ = c̃/3, while c̃
may be expressed in terms of the normal density (10.13), c̃ = 3ρns2/Tρ. In
this limit the velocity u1 of first sound is therefore given by

u2
1 = c21 =

nU0

m
= s2, (10.52)

while that of second sound is given by

u2
2 = c22 =

nU0

3m
=
s2

3
. (10.53)

In this limit, first sound is a pure density modulation, and it corresponds to
a long-wavelength Bogoliubov excitation in the condensate. Second sound,
which has a velocity 1/

√
3 times the first-sound velocity, corresponds to a

variation in the density of excitations, with no variation in the total particle
density; it is a pure temperature wave.

As a final example, we consider situations when the Hartree–Fock theory
described in Sec. 8.3.1 applies. The condition for this is that T � T∗ =
nU0/k. The velocity of second sound is zero when interactions are neglected,
and we shall now calculate the leading corrections to this result due to
interactions. In the absence of interactions, modes of the condensate are
completely decoupled from those of the excitations. Since the modes are
non-degenerate, the leading corrections to the mode frequencies may be
estimated without taking into account the coupling between the modes.
The coupling is at least of first order in the interaction and, consequently,
the frequency shift due to coupling between modes must be of higher order
than first in the interaction. We therefore look for the frequencies of modes
of the condensate when the distribution function for the excitations does
not vary. When the Hartree–Fock theory is valid, the total mass density is
given by

ρ = mn0 +mnex, (10.54)

and the momentum density by

j = mn0vs +mnexvn. (10.55)

When the normal component does not move, the continuity equation (10.24)
becomes

∂n0

∂t
+ ∇·(n0vs) = 0. (10.56)
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According to (8.85) the chemical potential is given by

µ = (n0 + 2nex)U0, (10.57)

and therefore the change in the chemical potential is δµ = U0δn0, and
Eq. (10.30) for the acceleration of the condensate is

m
∂vs

∂t
= −U0∇δn0. (10.58)

Combining Eqs. (10.56) and (10.58) and linearizing, one finds

∂2δn0

∂t2
=
n0U0

m
∇2δn0. (10.59)

Not surprisingly, this equation has precisely the same form as Eq. (7.30) for
the modes of a pure condensate in the long-wavelength limit q → 0, except
that n0 appears instead of the total density n, and the velocity of the mode
is given by

u2
2 =

n0U0

m
. (10.60)

When coupling between the condensate and the excitations is taken into
account, the interaction between condensate particles is screened by the
thermal excitations. For a repulsive interaction this reduces the effective
interaction, but this effect is of higher order in U0 than the effect we have
considered.

By similar arguments one can show that the changes in the first-sound
velocity due to the interaction are small provided the total interaction energy
is small compared with the thermal energy.

Let us now summarize the results of our calculations. In the cases ex-
amined, the motions of the condensate and of the thermal excitations are
essentially independent of each other. The condensate mode is a Bogoliubov
phonon in the condensate, with velocity u = [n0(T )U0/m]1/2. This is the
second-sound mode at higher temperatures, and the first-sound mode for
temperatures close to zero. The mode associated with the thermal excita-
tions is first sound at high temperatures, and second sound at low temper-
atures. First and second sound change their character as the temperature
changes because the motion of the condensate is strongly coupled to that
of the thermal excitations for temperatures at which the velocities of the
modes are close to each other, and this leads to an ‘avoided crossing’ of the
two sound velocities. A more extensive discussion of first and second sound
in uniform Bose gases may be found in Ref. [3].

In experiments on collective modes in dilute atomic gases, local thermody-
namic equilibrium is usually not established, and therefore the calculations
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above cannot be applied directly to experiments sensitive to the normal
component. They are, however, relevant for modes of the condensate, be-
cause these are generally only weakly coupled to the motion of the thermal
excitations.

It is instructive to compare dilute Bose gases with liquid 4He. At all
temperatures below the lambda point Tλ, the potential energy due to in-
terparticle interactions dominates the thermal energy. As a consequence,
modes corresponding to density fluctuations have higher velocities than do
modes corresponding to temperature fluctuations. The coupling between
the two sorts of modes, which is governed by the quantity c3, Eq. (10.46), is
small because (∂p/∂T )V is small, except very close to Tλ. At low tempera-
tures the dominant thermal excitations are phonons, and therefore u1 is the
phonon velocity and u2 = u1/

√
3 as for a dilute gas.

10.5 Interactions between excitations

In the preceding section we discussed sound modes in the hydrodynamic
limit, when collisions are sufficiently frequent that matter is in local thermo-
dynamic equilibrium. We turn now to the opposite extreme, when collisions
are relatively infrequent. Mode frequencies of clouds of bosons at zero tem-
perature were calculated in Chapter 7, and we now address the question of
how thermal excitations shift the frequencies, and damp the modes. If, af-
ter performing the Bogoliubov transformation as described in Chapter 8, we
retain in the Hamiltonian only terms that are at most quadratic in the cre-
ation and annihilation operators, elementary excitations have a well-defined
energy and they do not decay. However, when terms with a larger number
of creation and annihilation operators are taken into account (see below),
modes are coupled, and this leads to damping and to frequency shifts.

We begin by describing the processes that can occur. The full Hamil-
tonian, when expressed in terms of creation and annihilation operators for
excitations, has contributions with differing numbers of operators. Those
with no more than two operators correspond to non-interacting excitations
as we saw in Sec. 8.1. It is convenient to classify the more complicated
terms by specifying the numbers a and b of excitations in the initial and
final states, respectively, and we use the shorthand notation a–b to label
the process. The next more complicated terms after the quadratic ones are
those cubic in the creation and annihilation operators. These give rise to
1–2 processes (in which one excitation decays into two), 2–1 processes (in
which two incoming excitations merge to produce a third), and 0–3 and 3–0
processes (in which three excitations are created or annihilated). The re-
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maining terms are quartic in the creation and annihilation operators, and
correspond to 2–2, 1–3, 3–1, 0–4, and 4–0 processes. Since the energy of
an excitation is positive by definition, the 0–3, 3–0, 0–4, and 4–0 processes
are forbidden by energy conservation. In a normal gas, the excitations are
particles and, consequently, the only processes allowed by particle number
conservation are the 2–2 ones. These correspond to the binary collisions of
atoms taken into account in the kinetic theory of gases.

At zero temperature, an elementary excitation can decay into two or three
other excitations. The excitations in the final states must have energies less
than that of the original excitation, and consequently for a low-energy initial
excitation, the final-state phase space available is very restricted, and the
resulting damping is small. Likewise, for phase-space reasons, decay of a
low-energy excitation into two excitations is more important than decay
into three. This process is referred to as Beliaev damping [4].

When more than one excitation is present, modes can decay by processes
other than the 1–2 and 1–3 ones. At low temperatures, the 2–1 process and
the related 1–2 one are more important than those with three excitations in
the initial or final state, and the damping they give rise to was first discussed
in the context of plasma oscillations by Landau, and is referred to as Landau
damping. It plays a key role in phenomena as diverse as the anomalous skin
effect in metals, the damping of phonons in metals, and the damping of
quarks and gluons in quark–gluon plasmas. In the context of trapped Bose
gases, it was proposed as a mechanism for damping of collective modes in
Ref. [5]. We shall now calculate its rate for a low-energy, long-wavelength
excitation.

10.5.1 Landau damping

Consider the decay of a collective mode i due to its interaction with a thermal
distribution of excitations. The 2–1 process in which an excitation i merges
with a second excitation j to give a single excitation k is shown schematically
in Fig. 10.1.

The rate at which quanta in the state i are annihilated by absorbing a
quantum from the state j and creating one in the state k may be evaluated
from Fermi’s Golden Rule, and is given by

dfi
dt

∣∣∣∣
2−1

= −2π
�

∑
jk

|Mij,k|2fifj(1 + fk)δ(εi + εj − εk), (10.61)

where f denotes the distribution function for excitations, whileMij,k denotes
the matrix element for the process. The factors fi and fj express the fact
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k

j

i

Fig. 10.1. Diagram representing the decay of a collective mode.

that the rate of the process is proportional to the numbers of incoming
excitations, and the factor 1+fk takes account of the fact that for bosons the
scattering rate is enhanced by the presence of excitations in the final state.
The first term, 1, corresponds to spontaneous emission, and the second, fk,
to induced emission. This is to be contrasted with the blocking factor 1−fk
that occurs for fermions.

Excitations in the state i are created by the process which is the inverse
of the one above, and its rate is given by

dfi
dt

∣∣∣∣
1−2

=
2π
�

∑
jk

|Mij,k|2fk(1 + fi)(1 + fj)δ(εi + εj − εk), (10.62)

where we have used the fact that |M |2 is the same for the forward and
inverse processes. The total rate of change of the distribution function is

dfi
dt

= −2π
�

∑
jk

|Mij,k|2[fifj(1+fk)−fk(1+fi)(1+fj)]δ(εi+εj−εk). (10.63)

In equilibrium the rate vanishes, as may be verified by inserting the equilib-
rium Bose distribution fi = f0

i into this expression.
When the number of quanta fi in state i is disturbed from equilibrium,

while the distribution function for other states has its equilibrium value, we
may rewrite (10.63) as

dfi
dt

= −2
(fi − f0

i )
τamp
i

, (10.64)

where
1
τamp
i

=
π

�

∑
jk

|Mij,k|2(f0
j − f0

k )δ(εi + εj − εk). (10.65)

The quantity τamp
i is the decay time for the amplitude of the mode, as

we shall now explain. According to Eq. (10.64), the time for the excess
number of quanta in the collective mode to decay by a factor e is τamp

i /2.
In experiments, the decay of modes is often studied by exciting a mode, for
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example a long-wavelength collective mode, to a level far above the thermal
equilibrium one, so the f0

i term in Eq. (10.64) may be neglected. Since the
energy in the mode varies as the square of the amplitude, the decay time for
the amplitude, which is the quantity generally measured experimentally, is
τamp
i .
The general expression for the matrix element may be found by extracting

the term proportional to α†kαjαi in the Bogoliubov Hamiltonian, as was done
by Pitaevskii and Stringari [6], and it is given by

Mij,k = 2U0

∫
drψ(r)[ui(uju

∗
k + vjv∗k − vju∗k)− vi(uju

∗
k + vjv∗k − ujv

∗
k)]

= 2U0

∫
drψ(r)[(ui − vi)(uju

∗
k + vjv∗k −

1
2
(vju∗k + ujv

∗
k))

−1
2
(ui + vi)(vju∗k − ujv

∗
k)]. (10.66)

The latter form of the expression is useful for interpreting the physical origin
of the coupling, since the combinations ui − vi and ui + vi are proportional
to the density and velocity fields, respectively, produced by the collective
mode.

To proceed further with the calculation for a trapped gas is complicated, so
we shall consider a homogeneous gas. The excitations are then characterized
by their momenta, and their total momentum is conserved in collisions. We
denote the momenta of the excitations i, j and k by q,p and p + q. The
decay rate (10.65) is then given by

1
τamp
q

=
π

�

∑
p

|Mqp,p+q|2(f0
p − f0

p+q)δ(εp + εq − εp+q). (10.67)

Rather than calculating the matrix element (10.66) directly from the expres-
sions for the coefficients u and v, we shall evaluate it for a long-wavelength
collective mode using physical arguments. Provided the wavelength h/q
of the collective mode is large compared with that of the thermal excita-
tions, h/p, we may obtain the matrix elements for coupling of excitations
to the collective mode by arguments similar to those used to derive the
long-wavelength electron–phonon coupling in metals, or the coupling of 3He
quasiparticles to 4He phonons in dilute solutions of 3He in liquid 4He [7].
When a collective mode is excited, it gives rise to oscillations in the local
density and in the local superfluid velocity. For disturbances that vary suf-
ficiently slowly in space, the coupling between the collective mode and an
excitation may be determined by regarding the system locally as being spa-
tially uniform. In the same approximation, the momentum of an excitation
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may be regarded as being well-defined. The energy of the excitation in the
reference frame in which the superfluid is at rest is the usual result, εp(n0),
evaluated at the local condensate density, and therefore, by Galilean invari-
ance, the energy in the frame in which the superfluid moves with velocity
vs is εp(n0) + p·vs. The modulation of the energy of the excitation due to
the collective mode is therefore

δεp =
∂εp
∂n0

δn0 + p·vs (10.68)

to first order in δn0.
In a sound wave, the amplitudes of the density oscillations and those of the

superfluid velocity are related by the continuity equation for pure condensate
motion, ∂δn0/∂t = −∇·(n0vs), which implies that εqδn0 = sqδn0 = n0q·vs.
Since the velocity field is longitudinal, the superfluid velocity is parallel to
q, and therefore vs = sq̂δn0/n0. Consequently, the interaction is

δεp =
(
∂εp
∂n0

+
s

n0
p·q̂

)
δn0. (10.69)

The final step in calculating the matrix element is to insert the expression
for the density fluctuation in terms of phonon creation and annihilation
operators. The density operator is (see Eq. (8.2))

ψ̂†ψ̂ � ψ∗ψ + ψ∗δψ̂ + ψδψ̂†. (10.70)

The fluctuating part δψ̂ of the annihilation operator expressed in terms of
phonon creation and annihilation operators is given by (see (8.51) and
(7.44))

δψ̂(r) =
1
V 1/2

∑
q

(uqαq − v∗qα
†
−q)eiq·r/�, (10.71)

and therefore we may write the density fluctuation as

δn0 =
N

1/2
0

V
[(uq − vq)αq + (u∗q − v∗q )α

†
−q]eiq·r/�. (10.72)

At long wavelengths uq − vq � (εq/2ξq)1/2 � (q/2ms)1/2. The q1/2 depen-
dence is similar to that for coupling of electrons to long-wavelength acoustic
phonons in metals. The matrix element for absorbing a phonon is thus

M =
(
∂εp
∂n0

+
s

n0
p·q̂

) ( q

2ms

)1/2 N
1/2
0

V
. (10.73)

To carry out the integration over the momentum of the incoming thermal
excitation we make use of the fact that for a given value of p, the angle
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between p and q is fixed by energy conservation. Since by assumption
q � p, one finds p̂·q̂ = s/vp, where vp = ∂εp/∂p is the group velocity of the
excitation. Thus the matrix element is given by

M =
(
∂εp
∂n0

+
s2

n0

p

vp

) ( q

2ms

)1/2 N
1/2
0

V
. (10.74)

The results here are quite general, since they do not rely on any particular
model for the excitation spectrum. For the Bogoliubov spectrum (8.29) the
velocity is given by

vp =
ξp
εp

p

m
, (10.75)

where ξp = ε0p + n0U0. The velocity (10.75) tends to the sound velocity for
p� ms, and to the free-particle result p/m for p� ms. Thus the momenta
of phonon-like thermal excitations that can be absorbed are almost collinear
with the momentum of the collective mode, while those of high-energy ones,
which behave essentially as free particles, are almost perpendicular. Since
∂εp/∂n0 = U0p

2/2mεp and ms2 = n0U0, the total matrix element is

M = U0

(
p2

2mεp
+
εp
ξp

) ( q

2ms

)1/2 N
1/2
0

V
. (10.76)

The p-dependent factor here is 2 at large momenta, with equal contributions
from the density dependence of the excitation energy and from the interac-
tion with the superfluid velocity field. At low momenta the factor tends to
zero as 3p/2ms, the superfluid velocity field contributing twice as much as
the density modulation.

The damping rate may be found by substituting the matrix element
(10.76) into the expression (10.67), and using the delta function for en-
ergy conservation to perform the integral over the angle between p and q.
If we further assume that �ωq � kT , we may write

f0
p − f0

p+q � −(εp+q − εp)∂f0/∂εp = −�ωq∂f
0/∂εp (10.77)

in Eq. (10.67) and the result is

1
τamp
q

= π1/2(n0a
3)1/2ωq

∫ ∞

0
dεp

(
−∂f

0(εp)
∂εp

) (
p2

2mξp
+
ε2

ξ2p

)2

. (10.78)

This integral may be calculated analytically in two limiting cases. First,
when the temperature is low compared with T∗ = n0U0/k, the dominant ex-
citations are phonons, and one may use the long-wavelength approximation
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in evaluating the matrix element and put εp = sp. One then finds

1
τamp
q

=
27π
16
ρn
ρ
ωq =

3π9/2

5
(n0a

3)1/2
T 4

T 4
∗
ωq, (10.79)

where ρn is the normal density given in Eq. (10.13). Second, at temperatures
large compared with T∗, the result is

1
τamp
q

=
3π3/2

4
(n0a

3)1/2
T

T∗
ωq ≈ 2.09

a1/2

n
1/2
0 λ2

T

ωq, (10.80)

where λT is the thermal de Broglie wavelength given by Eq. (1.2).
As one can see from the energy conservation condition, transitions occur

if the group velocity of the thermal excitation is equal to the phase velocity
of the collective mode. By ‘surf-riding’ on the wave, a thermal excitation
may gain (or lose) energy, since the excitation experiences a force due to the
interaction with the wave. Whether gain or loss is greater depends on the
distribution function for excitations, but for a thermal distribution ∂f0/∂ε

is negative and therefore there is a net loss of energy from the wave.
In addition to damping the collective mode, the interaction with ther-

mal excitations also changes the frequency of the mode. The shift may be
calculated from second-order perturbation theory. There are two types of
intermediate states that contribute. The first are those in which there is one
fewer quanta in the collective mode, one fewer excitations of momentum p
and one more excitation with momentum p + q. This gives a contribution
to the energy

∆E2−1 =
∑
qp

|M |2 fqfp(1 + fp+q)
εq + εp − εp+q

. (10.81)

This term corresponds to the 2–1 term in the calculation of the damping,
and the distribution functions that occur here have the same origin. The
second class of terms correspond to the inverse process, and they are the
analogue of the 1–2 term in the damping rate. An extra quantum is created
in each of the states p and q, and one is destroyed in state p+q. The energy
denominator is the negative of that for the 2–1 term, and the corresponding
energy shift is

∆E1−2 =
∑
qp

|M |2 (1 + fq)(1 + fp)fp+q

εp+q − εp − εq
. (10.82)

The total energy shift is obtained by adding Eqs. (10.81) and (10.82). It
has a term proportional to the number of quanta in the mode fq, and the
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corresponding energy shift of a quantum is therefore given by

∆εq =
∑
p

|M |2
(
fp(1 + fp+q)
εq + εp − εp+q

+
fp+q(1 + fp)
εp+q − εp − εq

)

= V

∫
dp

(2π�)3
|M |2 fp − fp+q

εq + εp − εp+q
. (10.83)

For long-wavelength phonons the matrix element is given by (10.73), and
the frequency shift ∆ωq = ∆εq/� may be written in the form

∆ωq

ωq
= −(n0a

3)1/2F (T/T∗), (10.84)

where F (T/T∗) is a dimensionless function. The evaluation of the frequency
shift at temperatures greater than T∗ is the subject of Problem 10.6, and
one finds that ∆ωq ∝ T 3/2.

Landau damping also provides the mechanism for damping of sound in
liquid 4He at low temperatures. For pressures less than 18 bar, the spectrum
of elementary excitations for small p has the form εp = sp(1 + γp2), where
γ is positive, and therefore Landau damping can occur. However for higher
pressures γ is negative, and the energy conservation condition cannot be
satisfied. Higher-order effects give thermal excitations a finite width and
when this is taken into account Landau damping can occur for phonons
almost collinear with the long-wavelength collective mode.

To calculate the rate of damping in a trap, the starting point is again Eq.
(10.65), where the excitations i, j, and k are those for a trapped gas. The
damping rate has been calculated by Fedichev et al. [8]. Results are sensitive
to details of the trapping potential, since they depend on the orbits of the
excitations in the trap. For the traps that have been used in experiments,
the theoretical damping rates for low-lying modes are only a factor 2–3 larger
than those given by Eq. (10.80).

Problems

Problem 10.1 Show that the critical velocity for simultaneous creation of
two excitations can never be less than that for creation of a single excitation.

Problem 10.2 Determine at temperatures much less than ∆/k, where ∆
is the minimum roton energy, the normal density associated with the roton
excitations in liquid 4He discussed in Chapter 1.

Problem 10.3 Demonstrate for the uniform Bose gas that ρn � mnex

and nex � n(T/Tc)3/2 at temperatures T much higher than T∗ = ms2/k.



288 Superfluidity

Determine the number of excitations nex at low temperature (T � T∗) and
compare the result with ρn/m, Eq. (10.13).

Problem 10.4 Derive the continuity equation (10.24) from the Hamilto-
nian equation

∂n

∂t
=

1
�

δE
δφ
.

[Hint: The result
δE
δφ

= − ∂

∂xi

∂E
∂(∂φ/∂xi)

that follows from Eq. (10.21) and the relation vs = �∇φ/m may be useful.]

Problem 10.5 Use Eq. (10.29) to calculate the velocity of the hydrody-
namic sound mode of a homogeneous ideal Bose gas below Tc when the
condensate density is held fixed and the superfluid velocity is zero. Show
that the velocity of the resulting mode, which is first sound, is given by
Eq. (10.50). Demonstrate that the velocity of sound u in a homogeneous
ideal Bose gas just above Tc is equal to the velocity of first sound just be-
low Tc. Next, consider motion of the condensate and show that Eq. (10.30)
for the acceleration of the superfluid immediately leads to the conclusion
that modes associated with the condensate have zero frequency. [Hint: The
chemical potential is constant in the condensed state.]

Problem 10.6 Determine the function F (T/T∗) that occurs in the expres-
sion (10.84) for the shift of the phonon frequency, and show that the shift
becomes proportional to (T/T∗)3/2 for T � T∗.
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11

Trapped clouds at non-zero temperature

In this chapter we consider selected topics in the theory of trapped gases at
non-zero temperature when the effects of interactions are taken into account.
The task is to extend the considerations of Chapters 8 and 10 to allow for the
trapping potential. In Sec. 11.1 we begin by discussing energy scales, and
then calculate the transition temperature and thermodynamic properties.
We show that at temperatures of the order of Tc the effect of interactions
on thermodynamic properties of clouds in a harmonic trap is determined
by the dimensionless parameter N1/6a/ā. Here ā, which is defined in Eq.
(6.24), is the geometric mean of the oscillator lengths for the three principal
axes of the trap. Generally this quantity is small, and therefore under many
circumstances the effects of interactions are small. At low temperatures,
thermodynamic properties may be evaluated in terms of the spectrum of
elementary excitations of the cloud in its ground state, which we considered
in Secs. 7.2, 7.3, and 8.2. At higher temperatures it is necessary to take into
account thermal depletion of the condensate, and useful approximations for
thermodynamic functions may be obtained using the Hartree–Fock theory
as a starting point.

The remainder of the chapter is devoted to non-equilibrium phenomena.
As we have seen in Secs. 10.3–10.5, two ingredients in the description of col-
lective modes and other non-equilibrium properties of uniform gases are the
two-component nature of condensed Bose systems, and collisions between
excitations. For atoms in traps a crucial new feature is the inhomogeneity
of the gas. This in itself would not create difficulties if collisions between ex-
citations were sufficiently frequent that matter remained in thermodynamic
equilibrium locally. However, this condition is rarely satisfied in experiments
on dilute gases. In Sec. 11.2 we shall first give a qualitative discussion of
collective modes in Bose–Einstein-condensed gases. To illustrate the effects
of collisions we then consider the normal modes of a Bose gas above Tc in

289



290 Trapped clouds at non-zero temperature

the hydrodynamic regime. This calculation is valuable for bringing out the
differences between modes of a condensate and those of a normal gas. Sec-
tion 11.3 contains a calculation of the damping of modes of a trapped Bose
gas above Tc in the collisionless regime, a subject which is both theoretically
tractable and experimentally relevant.

11.1 Equilibrium properties

To implement the finite-temperature theories of equilibrium properties of
trapped gases described in Chapter 8 is generally a complicated task, since
the number of particles in the condensate and the distribution function for
the excitations must be determined self-consistently. We begin by estimat-
ing characteristic energy scales, and find that under many conditions the
effects of interactions between non-condensed particles are small. We then
investigate how the transition temperature is changed by interactions. Fi-
nally, we discuss a simple approximation that gives a good description of
thermodynamic properties of trapped clouds under a wide range of condi-
tions.

11.1.1 Energy scales

According to the Thomas–Fermi theory described in Sec. 6.2, the interac-
tion energy per particle in a pure condensate Eint/N equals 2µ/7 where,
according to (6.35), the chemical potential is given by

µ =
152/5

2

(
Na

ā

)2/5

�ω̄. (11.1)

Using the expression (11.1) for the zero-temperature chemical potential we
conclude that the interaction energy per particle corresponds to a tempera-
ture T0 given by

T0 =
Eint

Nk
=

152/5

7

(
Na

ā

)2/5
�ω̄

k
. (11.2)

This quantity also gives a measure of the effective potential acting on a
thermal excitation, and it is the same to within a numerical factor as the
temperature T∗ = nU0/k evaluated at the centre of the trap. When the
temperature is large compared with T0, interactions of excitations with the
condensate have little effect on the properties of the thermal excitations,
which consequently behave as non-interacting particles to a first approxi-
mation. The result (11.2) expressed in terms of the transition temperature



11.1 Equilibrium properties 291

Tc for the non-interacting system, Eq. (2.20), is

T0 = 0.45

(
N1/6a

ā

)2/5

Tc. (11.3)

The quantity N1/6a/ā is a dimensionless measure of the influence of interac-
tions on the properties of thermal excitations. Later we shall find that it also
arises in other contexts. The corresponding quantity governing the effect of
interactions on the properties of the condensate itself at T = 0 is Na/ā, as
we saw in Sec. 6.2. At non-zero temperatures, the corresponding parameter
is N0a/ā where N0 is the number of atoms in the condensate, not the total
number of atoms. While Na/ā is large compared with unity in typical ex-
periments, N1/6a/ā is less than unity, and it depends weakly on the particle
number N . As a typical trap we consider the one used in the measurements
of the temperature dependence of collective mode frequencies in 87Rb clouds
[1]. With N = 6000 and ω̄/2π = 182 Hz we obtain for the characteristic
temperature (11.3) T0 = 0.11Tc. For N = 106 the corresponding result is
T0 = 0.15Tc.

At temperatures below T0, thermodynamic quantities must be calculated
with allowance for interactions between the excitations and the conden-
sate, using, for example, the semi-classical Bogoliubov excitation spectrum
(8.102). However, since T0 is so low, it is difficult experimentally to explore
this region. At temperatures above T0, one may use the Hartree–Fock de-
scription, and interactions between excited particles may be neglected to a
first approximation. This will form the basis for our discussion of thermo-
dynamic properties in Sec. 11.1.3.

As another example, we estimate the effects of interaction at tempera-
tures close to Tc or above, T � Tc. To a first approximation the gas may
be treated as classical, and therefore the mean kinetic energy of a parti-
cle is roughly 3kT/2. The maximum shift of the single-particle energies in
Hartree–Fock theory (Sec. 8.3) is 2n(0)U0. The density is given approx-
imately by the classical expression, Eq. (2.39), and at the trap centre the
density is n(0) ∼ N/R1R2R3, where Ri = (2kT/mω2

i )
1/2, Eq. (2.40), is much

greater than ai = (�/mωi)1/2, when kT � �ωi. The effects of interaction
are thus small provided

U0N � R1R2R3kT. (11.4)

The inequality (11.4) may be written in terms of the transition temperature
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Tc for the non-interacting system as(
T

Tc

)5/2

� N1/6a

ā
, (11.5)

or

T

Tc
�

(
N1/6a

ā

)2/5

. (11.6)

Again the factor N1/6a/ā appears, and because it is small, the inequalities
are always satisfied at temperatures of order Tc and above. By similar
arguments one can show that interactions between non-condensed particles
are small if T � T0.

11.1.2 Transition temperature

The estimates given above lead one to expect that interactions will change
the transition temperature only slightly. We shall now confirm this by calcu-
lating the shift in the transition temperature to first order in the scattering
length [2]. The calculation follows closely that of the shift of transition tem-
perature due to zero-point motion (Sec. 2.5), and to leading order the effects
of zero-point motion and interactions are additive.

At temperatures at and above Tc, the single-particle energy levels are
given within Hartree–Fock theory by Eq. (8.100)

εp(r) =
p2

2m
+ V (r) + 2n(r)U0 (11.7)

in the semi-classical approximation. The trapping potential V (r) is assumed
to be the anisotropic harmonic-oscillator one (2.7).

When the semi-classical approximation is valid, the thermal energy kT is
large compared with �ωi, and the cloud of thermal particles has a spatial ex-
tent Ri in the i direction much larger than the oscillator length ai, implying
that the size of the thermal cloud greatly exceeds that of the ground-state
oscillator wave function. In determining the lowest single-particle energy
ε0 in the presence of interactions we can therefore approximate the density
n(r) in (11.7) by its central value n(0) and thus obtain

ε0 =
3
2

�ωm + 2n(0)U0, (11.8)

where ωm = (ω1 + ω2 + ω3)/3 is the algebraic mean of the trap frequencies.
Bose–Einstein condensation sets in when the chemical potential µ becomes
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equal to the lowest single-particle energy, as in the case of non-interacting
particles.

The Bose–Einstein condensation temperature Tc is determined by the con-
dition that the number of particles in excited states be equal to the total
number of particles. By inserting (11.8) in the expression for the number of
particles in excited states, which is given by

Nex =
∫
dr

∫
dp

(2π�)3
1

e(ε−ε0)/kT − 1
, (11.9)

we obtain an equation determining the critical temperature,

N =
∫
dr

∫
dp

(2π�)3
1

e(ε−ε0)/kTc − 1
, (11.10)

analogous to that for the non-interacting case discussed in Sec. 2.2. When
interactions are absent and the zero-point motion is neglected, this yields the
non-interacting particle result (2.20) for the transition temperature, which
we denote here by Tc0. By expanding the right hand side of (11.10) to first
order in ∆Tc = Tc − Tc0, ε0, and n(r)U0, one finds

0 =
∂N

∂T
∆Tc +

∂N

∂µ

[
3
2

�ωm + 2n(0)U0

]
− 2U0

∫
drn(r)

∂n(r)
∂µ

, (11.11)

where the partial derivatives are to be evaluated for µ = 0, T = Tc0, and
U0 = 0. The last term in Eq. (11.11) represents the change in particle
number due to the interaction when the chemical potential is held fixed,
and it may be written as −(∂Eint/∂µ)T .1

The partial derivatives in (11.11) were calculated in Sec. 2.4, Eqs. (2.74)
and (2.75). For α = 3 they are ∂N/∂T = 3N/Tc and ∂N/∂µ =
[ζ(2)/ζ(3)]N/kTc. The last term in (11.11) may be evaluated using Eq.
(2.48) and it is

−∂Eint

∂µ
= − 2S

ζ(3)
NU0

λ3
Tc
kTc
, (11.12)

where

S =
∞∑

n,n′=1

1
n1/2

1
n′3/2

1
(n+ n′)3/2

≈ 1.206, (11.13)

1 That the result must have this form also follows from the theorem of small increments [3].
Small changes in an external parameter change a thermodynamic potential by an amount
which is independent of the particular thermodynamic potential under consideration, provided
the natural variables of the thermodynamic potential are held fixed. For the potential Ω =
E−TS−µN associated with the grand canonical ensemble, the natural variables are T and µ.
It therefore follows that (δΩ)T,µ = (δE)S,N . The change in the energy when the interaction is
turned on is the expectation value Eint of the interaction energy in the state with no interaction.
Since the particle number is given by N = −∂Ω/∂µ, the change in the number of particles due
to the interaction when µ and T are held fixed is given by ∆N = −(∂Eint/∂µ)T .
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and the thermal de Broglie wavelength at Tc is given by λTc =
(2π�

2/mkTc)1/2, Eq. (1.2). After collecting the numerical factors we ob-
tain

∆Tc

Tc
≈ −0.68

�ω̄

kTc
− 3.43

a

λTc

≈ −0.73
ωm

ω̄
N−1/3 − 1.33

a

ā
N1/6. (11.14)

That repulsive interactions reduce the transition temperature is a conse-
quence of the fact that they lower the central density of the cloud. Such
an effect does not occur for the homogeneous Bose gas, since the density
in that case is uniform and independent of temperature. The influence of
interactions on the transition temperature of the uniform Bose gas has been
discussed recently in Ref. [4], which also contains references to earlier work.
The relative change in Tc is of order n1/3a and positive, and it is due to
critical fluctuations, not the mean-field effects considered here.

11.1.3 Thermodynamic properties

The thermodynamic properties of a non-interacting Bose gas were discussed
in Chapter 2, and we now consider an interacting Bose gas in a trap. We
shall assume that clouds are sufficiently large and temperatures sufficiently
high that the semi-classical theory developed in Sec. 8.3.3 holds.

Low temperatures

At temperatures low enough that thermal depletion of the condensate is
inappreciable, the elementary excitations in the bulk are those of the Bo-
goliubov theory, given in the Thomas–Fermi approximation by (8.103). For
small momenta the dispersion relation is linear, ε = s(r)p, with a sound
velocity that depends on position through its dependence on the conden-
sate density, s(r) = [n0(r)U0/m]1/2. Provided kT � ms2(r) the number
density of phonon-like excitations is given to within a numerical constant by
{kT/�s(r)}3, and therefore phonons contribute an amount ∼ (kT )4/[�s(r)]3

to the local energy density. Near the surface, however, the sound velocity
vanishes, and there the majority of the thermal excitations are essentially
free particles. For such excitations the number density varies as (mkT/�2)3/2

(see Eq. (2.30)) and therefore, since the energy of an excitation is ∼ kT , the
energy density is proportional to T 5/2 and independent of the condensate
density. The volume in which the free-particle term dominates the thermal
energy density is a shell at the surface of the cloud extending to the depth
at which thermal excitations become more like phonons than free particles.
The density at the inner edge of this shell is therefore determined by the
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condition kT ≈ n0(r)U0. Since in the Thomas–Fermi approximation the
density varies linearly with distance from the surface, the thickness of the
surface region where free-particle behaviour dominates the thermodynamic
properties is proportional to T , and therefore the total thermal energy due
to excitations in the surface varies as T 7/2. Free-particle states in the region
outside the condensate cloud contribute a similar amount. The phonon-like
excitations in the interior of the cloud contribute to the total energy an
amount ∼

∫
drT 4/n0(r)3/2, where the integration is cut off at the upper

limit given by n0(r)U0 ≈ kT . This integral is also dominated by the upper
limit, and again gives a contribution ∼ T 7/2. Thus we conclude that the
total contribution to the thermal energy at low temperatures varies as T 7/2

[5]. Evaluating the coefficient is the subject of Problem 11.1.
Let us now estimate the thermal depletion of the condensate at low tem-

peratures. The number of particles associated with thermal excitations is
given by an expression of the form (8.63), integrated over space,

Nex(T )−Nex(T = 0) =
∫
dr

∫
dp

(2π�)3
ξp
εp
fp. (11.15)

The thermal phonons in the interior of the cloud each contribute an amount
ms(r)/p ∼ ms(r)2/kT to the depletion. The number density of excitations
was estimated above, and therefore the total depletion of the condensate due
to phonon-like excitations is ∼

∫
drT 2/n0(r)1/2. This integral converges as

the surface is approached, and therefore we conclude that excitations in the
interior dominate the thermal depletion. Consequently, the total thermal
depletion of the condensate varies as T 2. Arguments similar to those for the
energy density in the surface region show that the number of excitations in
the surface region, where kT � n0U0, scales as T 5/2. Since the effective
particle number associated with a free-particle-like excitation is essentially
unity, the thermal depletion due to excitations in the surface region varies
as T 5/2, and it is therefore less important than the interior contribution in
the low-temperature limit.

Higher temperatures

The low-temperature expansions described above are limited to tempera-
tures below T0. At higher temperatures one can exploit the fact that ex-
citations are free particles to a good approximation. Within Hartree–Fock
theory excitations are particles moving in an effective potential given by (see
Eq. (8.94))

Veff(r) = V (r) + 2n(r)U0, (11.16)
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where n(r) is the total density, which is the sum of the condensate density
n0(r) and the density of excited particles, nex(r),

n(r) = n0(r) + nex(r). (11.17)

For T � T0 the thermal cloud is more extended than the condensate and
has a lower density than the central region of the condensate, except very
near Tc. To a first approximation we may neglect the effect of interactions
on the energies of excited particles and approximate Veff(r) by V (r), since
interactions have little effect on particles over most of the region in which
they move.

Interactions are, however, important for the condensate. In the conden-
sate cloud the density of thermal excitations is low, so the density profile
of the condensate cloud is to a good approximation the same as for a cloud
of pure condensate, as calculated in Sec. 6.2, except that the number N0

of particles in the condensate enters, rather than the total number of parti-
cles, N . If N0 is large enough that the Thomas–Fermi theory is valid, the
chemical potential is given by Eq. (6.35),

µ(T ) ≈ 152/5

2

(
N0(T )a
ā

)2/5

�ω̄. (11.18)

This equation provides a useful starting point for estimating the influence
of interactions on thermodynamic quantities such as the condensate fraction
and the total energy [5].

The value of the chemical potential is crucial for determining the distribu-
tion function for excitations, which therefore depends on particle interactions
even though the excitation spectrum does not. The excitations behave as
if they were non-interacting particles, but with a shifted chemical potential
given by (11.18).

Since the interaction enters only through the temperature-dependent
chemical potential, µ(T ), we can use the free-particle description of Chapter
2 to calculate the number of excited particles, Nex = N −N0. For particles
in a three-dimensional trap, the parameter α in the density of states (2.12)
equals 3. Consequently Nex is given by

Nex = C3

∫ ∞

0
dεε2

1
e(ε−µ)/kT − 1

. (11.19)

Typical particle energies are large compared with the chemical potential
(11.18), and we may therefore expand this expression about its value for
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µ = 0, and include only the term linear in µ:

Nex(T, µ) ≈ Nex(T, µ = 0) +
∂Nex(T, µ = 0)

∂µ
µ. (11.20)

The first term on the right hand side is the expression for the number of
excited particles for a non-interacting gas, and is given by Nex(T, µ = 0) =
N(T/Tc)3, Eq. (2.27). We have calculated ∂N/∂µ for free particles in a trap
at Tc before (see Eq. (2.74)), and more generally for any temperature less
than Tc the result is

∂Nex

∂µ
=
ζ(2)
ζ(3)

Nex

kT
. (11.21)

We thus find

Nex = N
[
t3 +

ζ(2)
ζ(3)

t2
µ

kTc

]
, (11.22)

where we have defined a reduced temperature t = T/Tc. Substituting Eq.
(11.18) for µ(T ) in this expression and using the fact that Nex +N0(T ) = N
gives the result

Nex = N

{
t3 +

152/5ζ(2)
2ζ(3)

[
(N −Nex)a

ā

]2/5
�ω̄

kTc
t2

}
, (11.23)

which, with the use of the result kTc = N1/3
�ω̄/[ζ(3)]1/3, Eq. (2.20), gives

Nex

N
≈ t3 + 2.15

(
N1/6a

ā

)2/5 (
1− Nex

N

)2/5

t2. (11.24)

This exhibits explicitly the interaction parameter N1/6a/ā, and it shows
that the effects of interactions on Nex are small as long as N1/6a/ā is small,
as one would expect from the qualitative arguments made in Sec. 11.1.1. It
is consequently a good approximation to replace Nex on the right hand side
of Eq. (11.24) by its value for the non-interacting gas, and one finds

Nex

N
≈ t3 + 2.15

(
N1/6a

ā

)2/5

t2(1− t3)2/5. (11.25)

By similar methods one may derive an approximate expression for the
energy. This consists of two terms. One is the contribution of the condensed
cloud, which is 5N0(T )µ(T )/7 by analogy with the zero-temperature case
discussed in Chapter 6. The other is due to the thermal excitations and is
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obtained by expanding E to first order in µ/kT , as we did earlier for Nex in
deriving Eq. (11.22). The result is (Problem 11.2)

E

NkTc
= 3
ζ(4)
ζ(3)

t4 +
5 + 16t3

7
µ(T )
kTc

. (11.26)

To obtain a result analogous to Eq. (11.25), we replace µ(T ) on the right
hand side by (11.18), using the value N0 = N(1 − t3) appropriate to the
non-interacting gas, and find

E

NkTc
= 2.70t4 + 1.12

(
N1/6a

ā

)2/5

(1 + 3.20t3)(1− t3)2/5. (11.27)

The results (11.23) and (11.27) for the condensate depletion and the energy
are in good agreement with more elaborate calculations based on the Popov
approximation over most of the temperature range of interest [5].

Measurements of the ground-state occupation have been made for con-
densed clouds of 87Rb atoms [6], and the results agree well with the predic-
tions for the non-interacting Bose gas. Since the number of particles used
in the experiments was relatively small, this is consistent with the results of
the present section.

11.2 Collective modes

In this section and the following one we take up a number of topics in the
theory of collective modes in traps at non-zero temperature. Our approach
will be to extend the results of Chapter 7, where we discussed collective
modes of a pure condensate in a trap at zero temperature, and of Chapter
10, where we considered examples of modes in homogeneous systems when
both condensate and thermal excitations are present.

An important conclusion to be drawn from the calculations in Secs. 10.4
and 10.5 for uniform systems is that, under many conditions, the motion
of the condensate is only weakly coupled to that of the excitations. As we
saw in the calculations of first and second sound, this is untrue only if the
modes of the condensate and those of the thermal excitations have velocities
that are close to each other. We would expect this conclusion to hold also
for traps, and therefore to a first approximation the motions of the conden-
sate and the excitations are independent. At low temperatures there are few
thermal excitations, and consequently the modes of the condensate are those
described in Sec. 7.3, but with the number of particles N0 in the condensate
replacing the total number of particles N . With increasing temperature,
the condensate becomes immersed in a cloud of thermal excitations, and to
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the extent that the thermal excitations do not participate in the motion,
their only effect is to provide an extra external potential in which the con-
densate oscillates. However, the potential produced by the thermal cloud
is of order nexU0. This is small compared with the potential due to the
condensate ∼ n0U0, since nex � n0 except very close to Tc. Consequently,
we expect the modes of the condensate to have frequencies given to a first
approximation by the results in Sec. 7.3. When the number of particles in
the condensate is sufficiently large that the Thomas–Fermi approximation
is valid, the mode frequencies depend only on the trap frequencies and are
therefore independent of temperature. This result should hold irrespective
of how frequently excitations collide, since there is little coupling between
condensate and excitations. It is confirmed theoretically by calculations for
the two-fluid model, in which the excitations are assumed to be in local
thermodynamic equilibrium [7]. Experimentally, the mode frequencies ex-
hibit some temperature dependence even under conditions when one would
expect the Thomas–Fermi approximation to be valid [1], and this is a clear
indication of coupling between the condensate and the thermal cloud. Suf-
ficiently close to Tc the number of particles in the condensate will become
so small that the Thomas–Fermi approximation is no longer valid, and the
frequencies of the modes of the condensate will then approach the result
(11.28) for free particles given below.

Now, let us consider thermal excitations. In Sec. 10.4 we studied modes
under the assumption that the excitations are in local thermodynamic equi-
librium, and one can extend such calculations to traps, as was done in Ref.
[7]. Under most conditions realized in experiment, thermal excitations col-
lide so infrequently that their mean free paths are long compared with the
size of the cloud. In a uniform system the modes associated with excita-
tions are not collective because interactions between excitations are weak.
In traps, however, the motion of excitations can resemble a collective mode.
Consider a gas in a harmonic trap at temperatures large compared with T0.
The excitations are to a first approximation free particles oscillating in the
trap, and therefore mode frequencies are sums of integer multiples of the
frequencies ωi for single-particle motion in the trap,

ω =
3∑

i=1

νiωi, (11.28)

where the νi are integers. Classically, the period for motion parallel to one
of the principal axes of the trap is independent of the amplitude. Conse-
quently, the motion of many particles may appear to be collective because,
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for example, after a time T = 2π/ω1, particles have the same x coordinates
as they did originally. For initial configurations with symmetry the par-
ticle distribution can return to its original form after an integral fraction
of T . When the effects of the condensate are taken into account, the mo-
tion of the excitations will be less coherent because the potential in which
the excitations move is no longer harmonic. Consequently, the periods of
the single-particle motion will depend on amplitude, and motions of a large
number of excitations will not have a well-defined frequency.

We turn now to the damping of modes, beginning with those associated
with the condensate. In Chapter 10 we calculated the rate of Landau damp-
ing of collective modes in a uniform Bose gas. Strictly speaking, the result
(10.80) does not apply to collective modes in a trap, but it is interesting
to compare its magnitude with the measured damping [1]. In doing this
we identify the condensate density and the sound velocity with their values
at the centre of the cloud, as calculated within the Thomas–Fermi approx-
imation at T = 0. With kT∗ = ms2 = n0(0)U0 and the zero-temperature
Thomas–Fermi result n0(0) = µ/U0, the damping rate (10.80) may be writ-
ten in the form

1
τamp
q

= 0.91ωq

(
N1/6a

ā

)4/5
T

Tc
, (11.29)

where the transition temperature Tc is given by Eq. (2.20). When the ex-
perimental parameters N = 6000 and a/ā = 0.007 are inserted into (11.29),
the theoretical values of 1/τamp are in fair agreement with the measured
magnitude and temperature dependence of the damping rate [1]. The lin-
ear temperature dependence of the damping rate (11.29) is a consequence
of our replacing the condensate density by its zero-temperature value. At
higher temperatures other processes, such as the 1–3, 3–1, and 2–2 processes
described in Sec. 10.5 become important.

In the following subsection we consider modes associated with the exci-
tations. These are damped by collisions, which also couple the excitations
and the condensate. The general theory is complicated, so we illustrate
the effects of collisions by considering the example of a gas above Tc, when
there is no condensate. The study of modes under these conditions provides
physical insight into the effects of collisions, and is also relevant experimen-
tally, since measurements of the decay of modes above Tc are used to deduce
properties of interatomic interactions. The two problems we consider are the
nature of modes in the hydrodynamic regime, and the damping of modes
when collisions are infrequent.
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11.2.1 Hydrodynamic modes above Tc

As we have seen, for a gas in a harmonic trap in the absence of collisions,
motions parallel to the axes of the trap are independent of each other, and
the frequencies of normal modes are given by Eq. (11.28). Collisions couple
the motions, thereby changing the character of the normal modes, damping
them and changing their frequencies. One measure of the effect of collisions
is the mean free path l, which is given by

l =
1
nσ
, (11.30)

where n is the particle density and σ = 8πa2 is the total scattering cross
section. The typical time τ between collisions is thus given by

1
τ
≈ nσv̄, (11.31)

where v̄ is the average particle velocity. If the mean free path is small
compared with the typical length scale of the mode, and if the collision
time is small compared with the period of the mode, particles will remain
in local thermodynamic equilibrium, and the properties of the mode will
be governed by classical hydrodynamics. Since the wavelength of a mode
is less than or of order the linear size of the system, a necessary condition
for hydrodynamic behaviour is that the mean free path be small compared
with the size of the cloud,

l� R. (11.32)

In an isotropic harmonic-oscillator trap the characteristic size of the cloud is
of order R ≈ (kT/mω2

0)
1/2. Thus a characteristic density is of order N/R3,

and, with the use of Eq. (11.30), one finds

l

R
=

1
nσR

≈ R2

Nσ
. (11.33)

To be in the hydrodynamic regime, the condition R/l � 1 must apply,
which amounts to Nσ/R2 = 8πN(a/R)2 � 1. Using the fact that N ≈
(kTc/�ω0)3, we may rewrite this condition as

8π

(
N1/3a

aosc

)2
Tc

T
� 1. (11.34)

At temperatures of order Tc the importance of collisions is determined
by the dimensionless quantity N1/3a/aosc, which is intermediate between
N1/6a/aosc which is a measure of the importance of interactions on the en-
ergy of the thermal cloud at Tc and Na/aosc which is the corresponding



302 Trapped clouds at non-zero temperature

quantity at T = 0. This result shows that more than 106 particles are
required for local thermodynamic equilibrium to be established for typical
traps. Most experiments have been carried out in the collisionless regime,
but conditions approaching hydrodynamic ones have been achieved in some
experiments. We note that hydrodynamics never applies in the outermost
parts of trapped clouds. The density becomes lower as the distance from
the centre of the cloud increases and, eventually, collisions become so rare
that thermodynamic equilibrium cannot be established locally.

General formalism

We now calculate frequencies of low-lying modes in a trapped gas above Tc

in the hydrodynamic limit, when collisions are so frequent that departures
from local thermodynamic equilibrium may be neglected, and there is no
dissipation. The calculation brings out the differences between the collec-
tive modes of ordinary gases, for which the pressure comes from the thermal
motion of particles, and those of a Bose–Einstein condensate, where interac-
tions between particles provide the pressure. The equations of (single-fluid)
hydrodynamics are the continuity equation and the Euler equation. The
continuity equation has its usual form,

∂ρ

∂t
+ ∇·(ρv) = 0. (11.35)

For simplicity, we denote the velocity of the fluid by v, even though in a two-
fluid description it corresponds to vn, the velocity of the normal component.
The continuity equation is Eq. (10.27), with the mass current density given
by the result for a single fluid, j = ρv. The Euler equation was given in Eq.
(7.24), and it amounts to the condition for conservation of momentum. It is
equivalent to Eq. (10.25) if the superfluid is absent, and the momentum flux
density tensor is replaced by its equilibrium value Πik = pδik + ρvivk where
p is the pressure. To determine the frequencies of normal modes we linearize
the equations about equilibrium, treating the velocity and the deviation of
the mass density from its equilibrium value ρeq as small. The linearized
Euler equation is

ρeq
∂v
∂t

= −∇p+ ρf , (11.36)

where f is the force per unit mass, given by

f = − 1
m

∇V. (11.37)
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The linearized continuity equation is

∂ρ

∂t
+ ∇·(ρeqv) = 0. (11.38)

According to the Euler equation (11.36), the pressure peq and density ρeq in
equilibrium must satisfy the relation

∇peq = ρeqf . (11.39)

We now take the time derivative of (11.36), which yields

ρeq
∂2v
∂t2

= −∇
(
∂p

∂t

)
+
∂ρ

∂t
f . (11.40)

As demonstrated in Sec. 11.1, the effects of particle interactions on equilib-
rium properties are negligible above Tc. Therefore we may treat the bosons
as a non-interacting gas. Since collisions are assumed to be so frequent that
matter is always in local thermodynamic equilibrium, there is no dissipation,
and the entropy per unit mass is conserved as a parcel of gas moves. The
equation of state of a perfect, monatomic, non-relativistic gas under adia-
batic conditions is p/ρ5/3 = constant. In using this result it is important to
remember that it applies to a given element of the fluid, which changes its
position in time, not to a point fixed in space. If we denote the displacement
of a fluid element from its equilibrium position by ξ, the condition is thus

p(r + ξ)
ρ(r + ξ)5/3

=
peq(r)
ρeq(r)5/3

, (11.41)

or

p(r) = peq(r− ξ)
[

ρ(r)
ρeq(r− ξ)

]5/3

. (11.42)

Small changes δp in the pressure are therefore related to ξ and small changes
δρ in the density by the expression

δp =
5
3
peq
ρeq

(δρ+ ξ·∇ρeq)− ξ·∇peq. (11.43)

By taking the time derivative of (11.43) and using (11.38) together with
(11.39) and v = ξ̇ we obtain

∂p

∂t
= −5

3
peq∇·v − ρeqf ·v. (11.44)

Inserting this equation into Eq. (11.40) we find

ρeq
∂2v
∂t2

=
5
3
∇(peq∇·v) + ∇(ρeqf ·v)− f ∇·(ρeqv). (11.45)
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From Eq. (11.39) it follows that f and ∇ρeq are parallel, and therefore
(f ·v)∇ρeq = f(v·∇)ρeq. With this result and Eq. (11.39) for the pressure
gradient, we may rewrite Eq. (11.45) in the convenient form

∂2v
∂t2

=
5
3
peq
ρeq

∇(∇·v) + ∇(f ·v) +
2
3
f(∇·v). (11.46)

This is the general equation of motion satisfied by the velocity field v. In
the context of Bose gases the result was first derived from kinetic theory [8].

In the absence of a confining potential (f = 0), the equation has longitudi-
nal waves as solutions. These are ordinary sound waves, and have a velocity
(5peq/3ρeq)1/2. For temperatures high compared with Tc, the velocity be-
comes (5kT/3m)1/2, the familiar result for the adiabatic sound velocity of
a classical monatomic gas. For T = Tc, the velocity agrees with that of
first sound, Eq. (10.50). For transverse disturbances (∇ · v = 0) there is no
restoring force and, consequently, these modes have zero frequency. When
dissipation is included they become purely decaying modes.

Low-frequency modes

Let us now consider an anisotropic harmonic trap with a potential given by
Eq. (2.7). The force per unit mass, Eq. (11.37), is given by

f = −(ω2
1x, ω

2
2y, ω

2
3z). (11.47)

We shall look for normal modes of the form

v = (ax, by, cz), (11.48)

where the coefficients a, b, and c depend on time as e−iωt. The motion
corresponds to homologous expansion and contraction of the cloud, with a
scaling factor that may depend on the coordinate axis considered. We note
that ∇×v = 0, and therefore the flow is irrotational. Since the divergence of
the velocity field is constant in space (∇·v = a+b+c), Eq. (11.46) becomes

−ω2v = ∇(f ·v) +
2
3
f(∇·v). (11.49)

For a velocity field of the form (11.48), this equation contains only terms
linear in x, y or z. Setting the coefficients of each of these equal to zero, we
obtain the following three coupled homogeneous equations for a, b and c,

(−ω2 +
8
3
ω2

1)a+
2
3
ω2

2b+
2
3
ω2

3c = 0, (11.50)

(−ω2 +
8
3
ω2

2)b+
2
3
ω2

3c+
2
3
ω2

1a = 0, (11.51)

and
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(−ω2 +
8
3
ω2

3)c+
2
3
ω2

1a+
2
3
ω2

2b = 0. (11.52)

For an isotropic oscillator, ω1 = ω2 = ω3 = ω0, there are two eigenfrequen-
cies, given by

ω2 = 4ω2
0 and ω2 = 2ω2

0. (11.53)

The 2ω0 oscillation corresponds to a = b = c. The velocity is thus pro-
portional to r. Since the radial velocity has the same sign everywhere, the
mode is a breathing mode analogous to that for a condensate discussed be-
low Eq. (7.73) and in Sec. 7.3.3. The density oscillation in the breathing
mode is independent of angle, corresponding to the spherical harmonic Ylm

with l = m = 0, and the mode frequency is the same as in the absence
of collisions. There are two degenerate modes with frequency

√
2ω0, and

a possible choice for two orthogonal mode functions is a = b = −c/2 and
a = −b, c = 0. These modes have angular symmetry corresponding to l = 2.
From general principles, one would expect there to be 2l + 1 = 5 degener-
ate modes having l = 2. The other three have velocity fields proportional
to ∇(xy) = (y, x, 0) and the two other expressions obtained from this by
cyclic permutation, and they are identical with the scissors modes in the
condensate considered in Sec. 7.3.2.

For anisotropic traps one obtains from Eqs. (11.50)–(11.52) a cubic equa-
tion for ω2 with, in general, three different roots. There are also three
transverse scissors modes of the type v ∝ ∇(xy) with different frequencies
given by ω2 = ω2

1 +ω2
2 and the corresponding expressions obtained by cyclic

permutation.
For a trap with axial symmetry, the force constants in the xy plane are

equal and differ from that in the z direction, ω1 = ω2 = ω0, ω3 = λω0.
Due to the axial symmetry, the mode with a = −b, c = 0 and frequency
ω =

√
2ω0 found for an isotropic trap is still present, since in it there is no

motion in the z direction. For the two other frequencies one finds

ω2 = ω2
0

(
5
3

+
4
3
λ2 ± 1

3

√
25− 32λ2 + 16λ4

)
, (11.54)

which are plotted in Fig. 11.1.
The method we have used here can also be applied to calculate the frequen-

cies of modes of a trapped Bose–Einstein condensate when the number of
particles is sufficiently large that the Thomas–Fermi approximation may be
used. The only difference is that the equation of state for a zero-temperature
condensate must be used instead of that for a thermal gas. One may derive
an equation for the velocity field analogous to Eq. (11.46), and calculate
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Fig. 11.1. Frequencies of low-lying hydrodynamic modes for an axially-symmetric
harmonic trap, as a function of the anisotropy parameter λ. The full lines corre-
spond to Eq. (11.54), while the dotted line (ω =

√
2ω0) corresponds to the mode

with a = −b, c = 0, which is degenerate with the xy scissors mode.

the frequencies of low-lying modes corresponding to a homologous scaling
of the density distribution. The results agree with those derived in Sec. 7.3
by considering the density distribution (see Problem 11.3).

The results of this subsection show that the frequencies of modes for
trapped gases depend on the equation of state, since the results obtained
for a thermal gas differ from those for a pure condensate. For a thermal
gas the mode frequencies also depend on collisions, since the modes in the
hydrodynamic limit differ from those in the collisionless limit, which are
given by Eq. (11.28). This demonstrates how properties of collective modes
may be used as a diagnostic tool for probing the state of a gas.

11.3 Collisional relaxation above Tc

As we indicated above, in most experiments on oscillations in trapped alkali
gases collisions are so infrequent that the gas is not in local thermodynamic
equilibrium, so now we consider the opposite limit, when collisions are rare.
The modes have frequencies given to a first approximation by Eq. (11.28),
and collisions damp the modes. Such dissipation processes in trapped Bose
gases have been investigated experimentally in a variety of ways. One is
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to measure the damping of collective oscillations. The atomic cloud is ex-
cited at the frequency of the normal mode of interest by means of a weak
external perturbation, and the damping of the mode is then extracted from
the measured time dependence of the oscillation amplitude in the absence of
the perturbation [9]. Another way is to study the relaxation of temperature
anisotropies in a gas in a harmonic trap [10, 11]. In a harmonic trap the mo-
tion of a free particle is separable since the Hamiltonian may be written as a
sum of independent terms corresponding to the motions parallel to each of
the axes of the trap. Thus if an atomic cloud is prepared in a state in which
the average particle energy for motion parallel to an axis of the trap is not
the same for all axes, these energies do not depend on time in the absence of
collisions. Such a state corresponds to a particle distribution with different
effective temperatures along the various axes of the trap. However, because
of collisions, temperature anisotropies decay in time. The dimensions of the
cloud along the principal axes of the trap depend on the corresponding tem-
peratures, and therefore anisotropy of the temperature may be monitored
by observing how the shape of the cloud depends on time.

Most experiments on collisional relaxation have been carried out in the
collisionless regime, where the mean free path is large compared with the
size of the cloud. In the following we shall therefore consider the collisionless
regime in some detail, and comment only briefly on the hydrodynamic and
intermediate regimes. For simplicity, we limit the discussion to temperatures
above the transition temperature.

We have already estimated the mean free time τ for collisions, Eq. (11.31).
This sets the characteristic timescale for the decay of modes, but the de-
cay time generally differs from τ by a significant numerical factor which
depends on the mode in question. The reason for this difference is that
collisions conserve particle number, total momentum, and total energy. As
a consequence, collisions have no effect on certain parts of the distribution
function.

The Boltzmann equation

For temperatures T greater than Tc, the thermal energy kT is large com-
pared with the separation between the energy eigenvalues in the harmonic-
oscillator potential, and consequently the semi-classical Boltzmann equation
provides an accurate starting point for the calculation of relaxation rates.
In addition, we may neglect the mean-field interactions with other atoms,
since even when T is as low as the transition temperature, the energy nU0

is typically no more than a few per cent of kT . The resulting Boltzmann
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equation for the distribution function fp(r, t) is

∂f

∂t
+

p
m
·∇f −∇V ·∇pf = −I[f ], (11.55)

where V is the external potential and I[f ] the collision term. In the spirit of
the semi-classical approach adopted here, we replace the collision term by
the expression for a bulk gas,

I[f ] =
∫

dp1

(2π�)3

∫
dΩ
dσ

dΩ
|v − v1|

× [ff1(1 + f ′)(1 + f1′)− (1 + f)(1 + f1)f ′f1′]. (11.56)

In the above expression we have introduced the differential cross section
dσ/dΩ, where Ω is the solid angle for the direction of the relative momen-
tum p′−p′

1. In general, the differential cross section depends on the relative
velocity |v−v1| of the two incoming particles, as well as on the angle of the
relative velocities of the colliding particles before and after the collision, but
for low-energy particles it tends to a constant, as we saw in Sec. 5.2. Because
collisions are essentially local, the spatial arguments of all the distribution
functions in the collision integral are the same. The first term on the second
line of Eq. (11.56) is the out-scattering term, in which particles with mo-
menta p and p1 are scattered to states with momenta p′ and p′

1, while the
second term is the in-scattering term, corresponding to the inverse process.
The two sorts of processes, as well as the enhancement factors 1 + f due to
the Bose statistics, are familiar from the calculation of Landau damping in
Sec. 10.5.1.

Since the atoms are bosons, their distribution function f0 in equilibrium
is

f0
p(r) =

1
e(p2/2m+V −µ)/kT − 1

, (11.57)

where µ is the chemical potential. To investigate small deviations from equi-
librium, we write f = f0 +δf , where f0 is the equilibrium distribution func-
tion and δf is the deviation of f from equilibrium. In equilibrium the net col-
lision rate vanishes, because f0f0

1 (1 + f0′)(1 + f0
1
′) = (1 + f0)(1 + f0

1 )f0′f0
1
′

as a consequence of energy conservation. Linearizing Eq. (11.55) and intro-
ducing the definition

δf = f0(1 + f0)Φ, (11.58)

we find
∂δf

∂t
+

p
m
·∇δf −∇V ·∇pδf = −I[δf ], (11.59)
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where the linearized collision integral is

I[δf ] =
∫

dp1

(2π�)3

∫
dΩ
dσ

dΩ
|v − v1|(Φ + Φ1 − Φ′ − Φ′

1)

× f0f0
1 (1 + f0′)(1 + f0

1
′). (11.60)

For the calculations that follow it is convenient to separate out a factor
f0(1 + f0) and define the operator

Γ̂[Φ] =
I[δf ]

f0(1 + f0)
. (11.61)

The conservation laws imply that the collision integral (11.60) vanishes for
certain forms of Φ. The simplest one, which reflects conservation of particle
number, is Φ = a(r), where a(r) is any function that does not depend on
the momentum. Since momentum is conserved in collisions, the collision
integral (11.60) also vanishes for Φ = b(r)·p where b(r) is a vector inde-
pendent of p. Finally, since collisions are local in space, they conserve the
kinetic energy of particles. This implies the vanishing of the collision integral
when Φ = c(r)p2, for any function c(r) that is independent of momentum.
These collision invariants will play an important role in the calculations of
damping described below. To understand their significance we consider the
distribution function for particles in equilibrium in a frame moving with a
velocity v. This is

fp(r) =
1

e(p2/2m+V −p·v−µ)/kT − 1
. (11.62)

Since the derivative of the equilibrium distribution function with respect to
the particle energy ε = p2/2m is given by

∂f0

∂ε
= −f

0(1 + f0)
kT

, (11.63)

the change in f for small values of v and for small changes in the chemical
potential and the temperature is

δf =
[
δµ+ p · v + (

p2

2m
+ V − µ)δT

T

]
f0(1 + f0)
kT

. (11.64)

Thus the deviation function Φ, Eq. (11.58), for local thermodynamic equi-
librium is a sum of collision invariants.

The general approach for finding the frequencies and damping rates of
modes is to evaluate the eigenvalues of the linearized Boltzmann equa-
tion. When collisions are infrequent, the modes are very similar to those
in the absence of collisions. One can use this idea to develop a systematic
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method for determining properties of modes. We illustrate the approach by
finding approximate solutions to the problems of relaxation of temperature
anisotropies and the damping of oscillations.

11.3.1 Relaxation of temperature anisotropies

Consider a cloud of atoms in an anisotropic harmonic trap and imagine that
the distribution function is disturbed from its equilibrium form by making
the temperature Tz associated with motion in the z direction different from
that for motion in the x and y directions, T⊥. The distribution function
may thus be written

fp(r) =
[
exp

(
p2z/2m+ Vz

kTz
+
p2⊥/2m+ V⊥

kT⊥
− µ

kT

)
− 1

]−1

, (11.65)

where Vz = mω2
3z

2/2, V⊥ = m(ω2
1x

2 +ω2
2y

2)/2, and p2⊥ = p2x + p2y. As usual,
the temperature T and the chemical potential are chosen to ensure that the
total energy and the total number of particles have their actual values. For
small temperature anisotropies, the deviation function has the form

Φ =
p2z/2m+ Vz

kT 2
δTz +

p2⊥/2m+ V⊥
kT 2

δT⊥, (11.66)

where δTz = Tz − T and δT⊥ = T⊥ − T . From the condition that the total
energy correspond to the temperature T it follows that δTz = −2δT⊥, the
factor of two reflecting the two transverse degrees of freedom. We therefore
obtain from Eq. (11.66) that

Φ =
(

3p2z − p2
4m

+ Vz −
1
2
V⊥

)
δTz

kT 2
. (11.67)

The distribution function corresponding to this is a static solution of the
collisionless Boltzmann equation. This result follows from the fact that Φ
is a function of the energies associated with the z and transverse motions,
which are separately conserved. It may be confirmed by explicit calculation.

When the collision time for a particle is long compared with the periods
of all oscillations in the trap we expect that the solution of the Boltzmann
equation will be similar to Eq. (11.67). We therefore adopt as an ansatz the
form

δf = f0(1 + f0)ΦT g(t), (11.68)

where

ΦT = p2z −
p2

3
+

4m
3

(Vz −
1
2
V⊥), (11.69)



11.3 Collisional relaxation above Tc 311

and g(t) describes the relaxation of the distribution function towards its
equilibrium value. We insert (11.68) in the Boltzmann equation (11.59),
multiply by ΦT , and integrate over coordinates and momenta. The result is

< Φ2
T >

∂g

∂t
= − < ΦT Γ̂[ΦT ] > g(t), (11.70)

where < · · ·> denotes multiplication by f0(1+f0) and integration over both
coordinate space and momentum space. The integral operator Γ̂ is defined
in Eq. (11.61).

The solution of (11.70) is thus

g(t) = g(0)e−ΓT t, (11.71)

where the relaxation rate is

ΓT =
<ΦT Γ̂[ΦT ]>
<Φ2

T >
. (11.72)

The physical content of this equation is that the numerator is, apart from
factors, the rate of entropy generation times T , and therefore gives the
dissipation. The denominator is essentially the excess free energy associated
with the temperature anisotropy. The rate of decay is therefore the ratio
of these two quantities. The expression thus has a form similar to that for
the decay rate of modes in the hydrodynamic regime [12]. The source of
dissipation in both the hydrodynamic and collisionless regimes is collisions
between atoms, but in the hydrodynamic regime the effect of collisions may
be expressed in terms of the shear and bulk viscosities and the thermal
conductivity.

If one replaces the collision integral by a naive approximation for it, Γ̂[Φ] =
−Φ/τ(r), the damping rate is Γ = <Φ2

T /τ(r)>/<Φ2
T >. However, this is

a poor approximation, since the potential energy terms in ΦT are collision
invariants, and therefore the collision integral gives zero when acting on
them. Thus we may write

Γ̂[ΦT ] = Γ̂[p2z − p2/3]. (11.73)

Since the collision integral is symmetric (<AΓ̂[B]> = <BΓ̂[A]>), the only
term in the collision integral which survives is <(p2z − p2/3)Γ̂[p2z − p2/3]>.
After multiplication and division by <(p2z − p2/3)2> the decay rate may be
written as

ΓT =
<(p2z − p2/3)Γ̂[p2z − p2/3]>

<(p2z − p2/3)2>
<(p2z − p2/3)2>

<Φ2
T >

. (11.74)

In this equation, the first factor is an average collision rate for a distribution
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function with Φ ∝ p2z − p2/3, and the second factor is the ratio of the excess
free energy in the part of ΦT varying as p2z − p2/3, and the total excess free
energy. An explicit evaluation shows that the second factor is 1/2. This
reflects the fact that in a harmonic trap, the kinetic and potential energies
are equal. However, collisions relax directly only the contributions to ΦT

that are anisotropic in momentum space, but not those that are anisotropic
in coordinate space. The time to relax the excess free energy in the mode
is therefore twice as long as it would have been if there were no potential
energy contributions to ΦT .

The first factor in Eq. (11.74) gives the decay rate for a deviation function
Φ ∝ p2z − p2/3, which is spatially homogeneous and is proportional to the
Legendre polynomial of degree l = 2 in momentum space. Since the collision
integral is invariant under rotations in momentum space, the decay rate is
the same for all disturbances corresponding to l = 2 in momentum space
which have the same dependence on p. In particular, it is the same as
for Φ ∝ pxvy. Disturbances of this form arise when calculating the shear
viscosity η of a uniform gas in the hydrodynamic regime. To a very good
approximation, the solution to the Boltzmann equation for a shear flow in
which the fluid velocity is in the x direction and varies in the y direction is
proportional to pxpy. One may define a viscous relaxation time τη by the
equation

η = τη
∫

dp
(2π�)3

(pxpy
m

)2
(
−∂f

0

∂ε

)
. (11.75)

This definition implies that for a classical gas η = nkTτη. In the simplest
variational approximation the viscous relaxation time is given by [13]

1
τη(r)

=
<pxpyΓ̂[pxpy]>p

<(pxpy)2>p
=
<(p2z − p2/3)Γ̂[p2z − p2/3]>p

<(p2z − p2/3)2>p
, (11.76)

where the subscript p on < · · ·> indicates that only the integral over mo-
mentum space is to be performed. The difference between the approximate
result (11.76) and the result of more exact calculations is small, and we shall
neglect it. For classical gases with energy-independent s-wave interactions
it is less than two per cent.

The final result for the damping rate of temperature anisotropies, Eq.
(11.74), may therefore be rewritten as

ΓT =
1
2
<p4τ−1

η (r)>
<p4>

, (11.77)

since the angular integrals in momentum space can be factored out.
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The classical limit

Let us now consider the classical limit. In the averages, the quantity
f0(1 + f0) reduces to the Boltzmann distribution. The momentum and
space integrals then factorize, and one finds

ΓT =
1

2τav
, (11.78)

where
1
τav

=

∫
drn(r)τ−1

η (r)∫
drn(r)

, (11.79)

which is the density-weighted average of 1/τη over the volume of the cloud.
We have previously estimated the relaxation rate, Eq. (11.31), and we

shall now be more quantitative. In a uniform classical gas, the average
collision rate 1/τ is obtained by averaging the scattering rate for particles
of a particular momentum over the distribution function,

1
τ

=

∫
dpdp1σ(|v − v1|)|v − v1|f0

pf
0
p1

(2π�)3
∫
dpf0

p

. (11.80)

Here v − v1 is the relative velocity of the two colliding particles,
while σ(|v − v1|) denotes the total scattering cross section. For energy-
independent s-wave scattering the total scattering cross section is a con-
stant, equal to σ. The integrals over p and p1 in (11.80) are then car-
ried out by introducing centre-of-mass and relative coordinates and using
f0
p ∝ exp(−p2/2mkT ). The result is that the average collision rate in a

homogeneous classical gas is given by

1
τ

= nσ
√

2v̄, (11.81)

where v̄ is the mean thermal velocity of a particle (cf. (4.96)),

v̄ =
(

8kT
πm

)1/2

. (11.82)

Equation (11.81) differs from the earlier estimate (11.31) by a factor of
√

2
because it is the relative velocity that enters the scattering rate, not just the
velocity of the particle.

Finally, we must relate the viscous relaxation rate to the average colli-
sion rate. These differ because the viscous relaxation time determines how
rapidly an anisotropy in momentum space having l = 2 symmetry relaxes.
This depends not only on the total collision rate but also on how effectively
collisions reduce momentum anisotropies. To take an extreme example, if
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the scattering cross section vanished except for a range of scattering an-
gles close to zero, collisions would be ineffective in relaxing anisotropies in
momentum space because the momenta of the two final particles would be
essentially the same as those of the two initial particles. For an isotropic and
energy-independent cross section the differences between the two relaxation
times are less marked, and for a classical gas one finds [13]

1
τη

=
4
5τ
, (11.83)

where τ is given by (11.81). Thus collisions are on average only 80% effective
in relaxing momentum anisotropies of the form p2z−p2/3 or similar ones with
l = 2 symmetry.

In a harmonic trap the averaged relaxation rate 1/τav in the classical limit
is therefore obtained by combining (11.79), (11.81) and (11.83). The spatial
integral is carried out using the fact that for a harmonic potential∫

drn2(r)∫
drn(r)

=
ncl(0)
23/2

, (11.84)

where ncl(0) = Nω̄3[m/2πkT ]3/2 is the central density (cf. (2.39) and (2.40)).
We conclude that the rate (11.78) is

ΓT =
1
5
ncl(0)σv̄, (11.85)

where σ = 8πa2 for identical bosons.
The calculation described above can be extended to take into account the

effects of quantum degeneracy at temperatures above the transition tem-
perature. The leading high-temperature correction to the classical result
(11.85) is given by [14]

ΓT �
1
5
ncl(0)σv̄

[
1 +

3ζ(3)
16

T 3
c

T 3

]
, (11.86)

while at lower temperatures the rate must be calculated numerically.
Throughout our discussion we have assumed that the deviation function is

given by Eq. (11.67). Actually, the long-lived mode does not have precisely
this form, and one can systematically improve the trial function by exploiting
a variational principle essentially identical to that used to find the ground-
state energy in quantum mechanics. This always reduces the decay rate,
and in such a calculation for the classical limit the decay rate was found to
be 7% less than the estimate (11.85) [14].



11.3 Collisional relaxation above Tc 315

11.3.2 Damping of oscillations

The above approach can also be used to investigate the damping of oscil-
lations. Consider an anisotropic harmonic trap with uniaxial symmetry,
ω1 = ω2 �= ω3. To begin with we study an oscillation corresponding to an
extension of the cloud along the z axis. In the absence of collisions, the
motions in the x, y, and z directions decouple. If the cloud is initially at
rest but is more extended in the z direction than it would be in equilibrium,
it will begin to contract. The kinetic energy of particles for motion in the z
direction will increase. Later the contraction will halt, the thermal kinetic
energy will be a maximum, and the cloud will begin to expand again to-
wards its original configuration. Physically we would expect the deviation
function to have terms in p2z, corresponding to a modulation of the tem-
perature for motion in the z direction, a function of z to allow for density
changes, and a term of the form pz times a function of z, which corresponds
to a z-dependent mean particle velocity. The combination pz + imω3z is
the classical equivalent of a raising operator in quantum mechanics, and it
depends on time as e−iω3t. Consequently, we expect that a deviation from
equilibrium proportional to (pz + imω3z)2 will give rise to an oscillatory
mode at the frequency 2ω3. We therefore use the deviation function2

Φ = Φosc = C(pz + imω3z)2e−i2ω3t, (11.87)

where C is an arbitrary constant. That this is a solution of the collisionless
Boltzmann equation may be verified by inserting it into (11.59) with I = 0.
We note that the trial function we used for temperature relaxation may be
written as a sum of terms such as (pz + imω3z)(pz − imω3z) ∝ Ez which, as
we saw, have frequency zero in the absence of collisions.

We now consider the effect of collisions, and we look for a solution of the
form

Φ = Φosce
−i2ω3tg(t), (11.88)

where g(t) again describes the relaxation of the distribution function. We
insert (11.88) in the Boltzmann equation (11.59) and use the fact that

I[(pz + imω3z)2] = I[p2z] = I[p2z − p2/3], (11.89)

because of the existence of the collision invariants discussed above. Multi-
plying by Φ∗

osc, integrating over coordinates and momenta, and solving the

2 In this section we choose to work with a complex deviation function. We could equally well
have worked with a real function, with terms depending on time as cos 2ω3t and sin 2ω3t. The
dissipation rate then depends on time, but its average agrees with the result obtained using a
complex deviation function.
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resulting differential equation for g one finds

g(t) = e−Γosct, (11.90)

where

Γosc =
<Φ∗

oscΓ̂[Φosc]>
< |Φosc|2>

=
<(p2z − p2/3)Γ̂[p2z − p2/3]>
<(p2z + (mω3z)2)2>

=
<(p2z − p2/3)Γ̂[p2z − p2/3]>

<(p2z − p2/3)2>
<(p2z − p2/3)2>

<(p2z + (mω3z)2)2>
. (11.91)

This expression has essentially the same form as that for the decay rate of
temperature anisotropies. The second factor, reflecting the fraction of the
free energy in the form of velocity anisotropies, may be evaluated directly,
and is equal to 1/6. Following the same path as before, we find for the decay
rate

Γosc =
1
6
<p4τ−1

η (r)>
<p4>

, (11.92)

which reduces in the classical limit to

Γosc =
1
15
ncl(0)σv̄. (11.93)

Let us now consider modes in the xy plane. We shall again restrict our-
selves to modes having a frequency equal to twice the oscillator frequency,
in this case the transverse one ω⊥. In the absence of interactions the modes
corresponding to the deviation functions (px+imω⊥x)2 and (py+imω⊥y)2

are degenerate. To calculate the damping of the modes when there are colli-
sions, one must use degenerate perturbation theory. Alternatively, one may
use physical arguments to determine the form of the modes. The combina-
tions of the two mode functions that have simple transformation properties
under rotations about the z axis are (px + imω⊥x)2 ± (py + imω⊥y)2. The
plus sign corresponds to a mode which is rotationally invariant, and the
minus sign to a quadrupolar mode. Because of the different rotational sym-
metries of the two modes, they are not mixed by collisions. The damping
of the modes may be calculated by the same methods as before, and the
result differs from the earlier result only through the factor that gives the
fraction of the free energy in the mode that is due to the l = 2 anisotropies
in momentum space. For the rotationally invariant mode the factor is 1/12,
while for the quadrupole mode it is 1/4, which are to be compared with the
factor 1/6 for the oscillation in the z direction [14].
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The relaxation rates given above may be compared directly with exper-
iment. It is thereby possible to obtain information about interactions be-
tween atoms, because uncertainties in the theory are small. The results also
provide a useful theoretical testing ground for approximate treatments of
the collision integral.

The hydrodynamic and intermediate regimes

The calculations above of damping rates were made for the collisionless
regime. However, in some experiments collision frequencies are comparable
with the lowest of the trap frequencies. Let us therefore turn to the opposite
limit in which the oscillation frequency ω is much less than a typical collision
rate. When the hydrodynamic equations apply, the attenuation of modes,
e.g., of the type (11.48), may be calculated using the standard expression for
the rate of loss of mechanical energy [12]. One finds that the damping rate
1/τ is proportional to an integral of the shear viscosity η(r) over coordinate
space, 1/τ ∝

∫
drη(r). Since the viscosity of a classical gas is independent of

density, the damping rate would diverge if one integrated over all of space.
This difficulty is due to the fact that a necessary condition for hydrodynam-
ics to apply is that the mean free path be small compared with the length
scale over which the density varies. In the outer region of the cloud, the den-
sity, and hence also the collision rate, are low, and at some point the mean
free path becomes so long that the conditions for the hydrodynamic regime
are violated. Consequently, the dissipation there must be calculated from
kinetic theory. Strictly speaking, a hydrodynamic limit does not exist for
clouds confined by a trap, since the conditions for hydrodynamic behaviour
are always violated in the outer region. An approximate solution to this
problem is obtained by introducing a cut-off in the hydrodynamic formula
[15].

There are no experimental data for conditions when ω3τ � 1, but there
are experiments on the damping of oscillations for the intermediate regime
when ω3τ is close to unity [9]. A good semi-quantitative description of the
intermediate regime may be obtained by interpolating between the hydro-
dynamic and collisionless limits. A simple expression for ω2 that gives the
correct frequencies ωC in the collisionless limit and ωH in the hydrodynamic
regime and has a form typical of relaxation processes is

ω2 = ω2
C −

ω2
C − ω2

H

1− iωτ̃ , (11.94)

where τ̃ is a suitably chosen relaxation time which is taken to be indepen-
dent of frequency. In the collisionless limit the leading contribution to the
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damping rate of the mode is (1 − ω2
H/ω

2
C)/2τ̃ , while in the hydrodynamic

limit the damping is not given correctly because of the difficulties at the
edge of the cloud, described above. The form (11.94) predicts a definite
relationship between the frequency of the mode and its damping which is in
good agreement with experiments in the intermediate regime [9].

Problems

Problem 11.1 Calculate the thermal contribution to the energy of a cloud
ofN bosons in an isotropic harmonic trap with frequency ω0 at temperatures
low compared with T0. You may assume that Na/aosc � 1.

Problem 11.2 Verify the result (11.27) for the energy of a trapped cloud
at non-zero temperature and sketch the temperature dependence of the asso-
ciated specific heat. Use the same approximation to calculate the energy of
the cloud after the trapping potential is suddenly turned off. This quantity
is referred to as the release energy Erel. It is equal to the kinetic energy of
the atoms after the cloud has expanded so much that the interaction energy
is negligible.

Problem 11.3 Consider linear oscillations of a Bose–Einstein condensate
in the Thomas–Fermi approximation. Show that the Euler equation and the
equation of continuity lead to the following equation for the velocity field,

∂2v
∂t2

= 2
peq
ρeq

∇(∇·v) + ∇(f ·v) + f(∇·v),

where peq/ρeq = n(r)U0/2m. This result is equivalent to Eq. (7.62), which is
expressed in terms of the density rather than the velocity. It is the analogue
of Eq. (11.46) for a normal gas in the hydrodynamic regime. Consider
now a condensate in an anisotropic harmonic trap. Show that there are
solutions to the equation having the form v = (ax, by, cz), and calculate
their frequencies for a trap with axial symmetry. Compare them with those
for the corresponding hydrodynamic modes of a gas above Tc.

Problem 11.4 Show that for a gas above Tc in an isotropic trap V =
mω2

0r
2/2 there exist hydrodynamic modes with a velocity field of the form

v(r) ∝ ∇[rlYlm(θ, φ)], and evaluate their frequencies. Compare the results
with those for a pure condensate in the Thomas–Fermi limit which were
considered in Sec. 7.3.1. Determine the spatial dependence of the associated
density fluctuations in the classical limit.

Problem 11.5 Determine for the anisotropic harmonic-oscillator trap
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(2.7) the frequencies of hydrodynamic modes of a Bose gas above Tc with
a velocity field given by v(r) ∝ ∇(xy). Compare the result with that for a
condensate in the Thomas–Fermi limit. Show that a local velocity having
the above form corresponds in a kinetic description to a deviation function
Φ ∝ ypx + xpy if, initially, the local density and temperature are not dis-
turbed from equilibrium. Calculate how a deviation function of this form
develops in time when there are no collisions, and compare the result with
that for the hydrodynamic limit. [Hint: Express the deviation function in
terms of px ± imω1x, etc., which have a simple time dependence.]
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12

Mixtures and spinor condensates

In preceding chapters we have explored properties of Bose–Einstein conden-
sates with a single macroscopically-occupied quantum state, and spin de-
grees of freedom of the atoms were assumed to play no role. In the present
chapter we extend the theory to systems in which two or more quantum
states are macroscopically occupied.

The simplest example of such a multi-component system is a mixture of
two different species of bosons, for example two isotopes of the same ele-
ment, or two different atoms. The theory of such systems can be developed
along the same lines as that for one-component systems developed in earlier
chapters, and we do this in Sec. 12.1.

Since alkali atoms have spin, it is also possible to make mixtures of the
same isotope, but in different internal spin states. This was first done ex-
perimentally by the JILA group, who made a mixture of 87Rb atoms in
hyperfine states F = 2,mF = 2 and F = 1,mF = −1 [1]. Mixtures of
hyperfine states of the same isotope differ from mixtures of distinct iso-
topes because atoms can undergo transitions between hyperfine states, while
transitions that convert one isotope into another do not occur under most
circumstances. Transitions between different hyperfine states can influence
equilibrium properties markedly if the interaction energy per particle is com-
parable with or larger than the energy difference between hyperfine levels. In
magnetic traps it is difficult to achieve such conditions, since the trapping po-
tential depends on the particular hyperfine state. However, in optical traps
(see Sec. 4.2.2) the potential is independent of the hyperfine state, and the
dynamics of the spin can be investigated, as has been done experimentally
[2, 3]. To calculate properties of a condensate with a number of hyperfine
components, one may generalize the treatment for the one-component sys-
tem to allow for the spinor nature of the wave function. We describe this
in Sec. 12.2. While this theory is expected to be valid under a wide range

320
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of experimental conditions, we shall show in Sec. 12.3 that in the absence
of a magnetic field the ground state for atoms with an antiferromagnetic
interaction is very different from that predicted by the Gross–Pitaevskii
theory. This has important implications for understanding Bose–Einstein
condensation.

12.1 Mixtures

Let us begin by considering a mixture of two different bosonic atoms. The
generalization of the Hartree wave function (6.1) to two species, labelled 1
and 2, with N1 and N2 particles respectively, is

Ψ(r1, . . . , rN1 ; r
′
1, . . . , r

′
N2

) =
N1∏
i=1

φ1(ri)
N2∏
j=1

φ2(r′j), (12.1)

where the particles of species 1 are denoted by ri and those of species 2
by r′j . The corresponding single-particle wave functions are φ1 and φ2. The
atomic interactions generally depend on the species, and we shall denote the
effective interaction for an atom of species i with one of species j by Uij .
For a uniform system, the interaction energy is given by the generalization
of Eq. (6.6),

E =
N1(N1 − 1)U11

2V
+
N1N2U12

V
+
N2(N2 − 1)U22

2V
. (12.2)

If we introduce the condensate wave functions for the two components ac-
cording to the definitions ψ1 = N1/2

1 φ1 and ψ2 = N1/2
2 φ2, the energy func-

tional corresponding to Eq. (6.9) for a one-component system is

E =
∫
dr

[
�

2

2m1
|∇ψ1|2 + V1(r)|ψ1|2 +

�
2

2m2
|∇ψ2|2 + V2(r)|ψ2|2

+
1
2
U11|ψ1|4 +

1
2
U22|ψ2|4 + U12|ψ1|2|ψ2|2

]
, (12.3)

where we have neglected effects of order 1/N1 and 1/N2, which are small
when N1 and N2 are large. Here mi is the mass of an atom of species i, and
Vi is the external potential. In a magnetic trap, the potential depends on the
energy of an atom as a function of magnetic field, and therefore it varies from
one hyperfine state, isotope, or atom to another. The constants U11, U22

and U12 = U21 are related to the respective scattering lengths a11, a22 and
a12 = a21 by Uij = 2π�

2aij/mij (i, j = 1, 2), where mij = mimj/(mi +mj)
is the reduced mass for an atom i and an atom j.
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The interaction conserves separately the numbers of atoms of the two
species. To minimize the energy functional subject to the constraint that
the number of atoms of each species be conserved, one therefore introduces
the two chemical potentials µ1 and µ2. The resulting time-independent
Gross–Pitaevskii equations are

− �
2

2m1
∇2ψ1 + V1(r)ψ1 + U11|ψ1|2ψ1 + U12|ψ2|2ψ1 = µ1ψ1, (12.4)

and

− �
2

2m2
∇2ψ2 + V2(r)ψ2 + U22|ψ2|2ψ2 + U12|ψ1|2ψ2 = µ2ψ2. (12.5)

These will form the basis of our analysis of equilibrium properties of mix-
tures.

12.1.1 Equilibrium properties

Let us first examine a homogeneous gas, where the densities ni = |ψi|2 of the
two components are constant. For each component, the energy is minimized
by choosing the phase to be independent of space, and the Gross–Pitaevskii
equations become

µ1 = U11n1 + U12n2 and µ2 = U12n1 + U22n2, (12.6)

which relate the chemical potentials to the densities.

Stability

For the homogeneous solution to be stable, the energy must increase for
deviations of the density from uniformity. We imagine that the spatial scale
of the density disturbances is so large that the kinetic energy term in the
energy functional plays no role. Under these conditions the total energy E
may be written as

E =
∫
drE(n1(r), n2(r)), (12.7)

where E denotes the energy density as a function of the densities n1 and
n2 of the two components. We consider the change in total energy arising
from small changes δn1 and δn2 in the densities of the two components. The
first-order variation δE must vanish, since the number of particles of each
species is conserved, ∫

drδni = 0, i = 1, 2. (12.8)
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The second-order variation δ2E is given by the quadratic form

δ2E =
1
2

∫
dr

[
∂2E
∂n2

1

(δn1)2 +
∂2E
∂n2

2

(δn2)2 + 2
∂2E
∂n1∂n2

δn1δn2

]
. (12.9)

The derivative of the energy density with respect to the particle density,
∂E/∂ni, is the chemical potential µi of species i (i = 1, 2). The quadratic
form (12.9) is thus positive definite, provided

∂µ1

∂n1
> 0,

∂µ2

∂n2
> 0, (12.10)

and
∂µ1

∂n1

∂µ2

∂n2
− ∂µ1

∂n2

∂µ2

∂n1
> 0. (12.11)

Since ∂µ1/∂n2 = ∂2E/∂n1∂n2 = ∂µ2/∂n1, the condition (12.11) implies that
(∂µ1/∂n1)(∂µ2/∂n2) > (∂µ1/∂n2)2 ≥ 0, and therefore a sufficient condition
for stability is that Eq. (12.11) and one of the two conditions in (12.10) be
satisfied, since the second condition in (12.10) then holds automatically. For
the energy functional (12.3),

E =
1
2
n2

1U11 +
1
2
n2

2U22 + n1n2U12, (12.12)

and therefore
∂µi

∂nj
= Uij . (12.13)

Consequently the stability conditions (12.10) and (12.11) become

U11 > 0, U22 > 0, and U11U22 > U
2
12. (12.14)

The first condition ensures stability against collapse when only the density
of the first component is varied, and therefore it is equivalent to the re-
quirement that long-wavelength sound modes in that component be stable.
Similarly, the second condition ensures stable sound waves in the second
component if it alone is perturbed. The final condition ensures that no dis-
turbance in which the densities of both components are varied can lower the
energy.

The stability conditions may be understood in physical terms by observing
that the last of the conditions (12.14) is equivalent to the requirement that

U11 −
U2

12

U22
> 0, (12.15)

since U22 > 0 by the second of the conditions (12.14). The first term is the so-
called direct interaction between atoms of species 1, and it gives the change
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in energy when the density of the second species is held fixed. The term
−U2

12/U22, which is referred to as the induced interaction, corresponds to an
interaction mediated by the atoms of the second species. Such effects will be
discussed in greater detail in Secs. 14.3.2 and 14.4.1 in the context of Fermi
systems and mixtures of bosons and fermions. The result (12.15) states that
the total effective interaction, consisting of the direct interaction U11 and
the induced interaction, must be positive for stability. The argument may
also be couched in terms of the effective interaction between two atoms of
the second species. If U2

12 > U11U22 and U12 is negative, the gas is unstable
to formation of a denser state containing both components, while if U12

is positive, the two components will separate. One can demonstrate that
the conditions (12.14) also ensure stability against large deviations from
uniformity [4].

Density profiles

Now we consider the density distributions in trapped gas mixtures. We shall
work in the Thomas–Fermi approximation, in which one neglects the kinetic
energy terms in Eqs. (12.4) and (12.5), which then become

µ1 = V1 + U11n1 + U12n2, (12.16)

and
µ2 = V2 + U22n2 + U12n1. (12.17)

These equations may be inverted to give

n1 =
U22(µ1 − V1)− U12(µ2 − V2)

U11U22 − U2
12

, (12.18)

and

n2 =
U11(µ2 − V2)− U12(µ1 − V1)

U11U22 − U2
12

. (12.19)

The denominator is positive, since it is necessary that U11U22 > U
2
12 for

stability of bulk matter, as we saw in Eq. (12.14).
The solutions (12.18) and (12.19) make sense only if the densities n1 and

n2 are positive. When one component is absent, the other one obeys the
Gross–Pitaevskii equation for a single component. The chemical potentials
µ1 and µ2 must be determined self-consistently from the condition that the
total number of particles of a particular species is given by integrating the
density distributions over space.

Let us now give a specific example. We assume that the trapping po-
tentials are isotropic and harmonic, V1(r) = m1ω

2
1r

2/2, and that V2 =
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m2ω
2
2r

2/2 = λV1, where λ = m2ω
2
2/m1ω

2
1 is a constant. We define lengths

R1 and R2 according to the equation

µi =
1
2
miω

2
iR

2
i , i = 1, 2. (12.20)

After inserting the expressions for Vi and µi into (12.18) and (12.19) we may
write the densities as

n1 =
µ1

U11

1
1− U2

12/U11U22

[
1− U12

U22

µ2

µ1
− r

2

R2
1

(1− λU12

U22
)
]
, (12.21)

and

n2 =
µ2

U22

1
1− U2

12/U11U22

[
1− U12

U11

µ1

µ2
− r

2

R2
2

(1− U12

λU11
)
]
. (12.22)

In the absence of interaction between the two components of the mixture
(U12 = 0), the densities (12.21) and (12.22) vanish at r = R1 and r = R2,
respectively. Quite generally, if one of the densities, say n1, vanishes in a
certain region of space, one can see from Eq. (12.17) that the density n2 of
the other component will be given by the Gross–Pitaevskii equation for that
component alone, U22n2 = µ2− V2, and therefore the density profile in that
region is given by

n2 =
µ2

U22

(
1− r

2

R2
2

)
, (12.23)

provided r is less than R2. This agrees with the density obtained from
(12.22) by setting U12 equal to zero. In all cases, the density profiles are
linear functions of r2, the specific form depending on whether or not two
components coexist in the region in question. For more general potentials,
the density profiles are linear functions of the potentials for the two species.

The density distributions are given by (12.21) and (12.22) where the two
components coexist, by (12.23) when n1 = 0, and by an analogous expression
for n1 when n2 = 0. The chemical potentials µ1 and µ2 are determined by
requiring that the integrals over space of the densities of the components be
equal to the total numbers of particlesN1 andN2. Depending on the ratios of
the three interaction parameters, the two components may coexist in some
regions of space, but remain separated in others [5]. When the numbers
of the two kinds of particles are comparable, the mixture will generally
exhibit a fairly large region where the two components coexist, provided the
conditions (12.14) for stability of bulk mixed phases are satisfied. If one
adds a small number of, say, 2-atoms to a cloud containing a large number
of 1-atoms, the 2-atoms tend to reside either at the surface or in the deep
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Fig. 12.1. Density profiles of a mixture of two condensates for the isotropic model
discussed in the text. The values of the parameters are µ1/µ2 = 1.5, λ = 2,
U12 = 0.9U11, and U22 = 1.08U11. The corresponding ratio of the numbers of
particles is N1/N2 = 2.4.

interior of the cloud, depending on the ratio of the interaction parameters.
In Fig. 12.1 we illustrate this by plotting the density profiles for a specific
choice of parameters.

12.1.2 Collective modes

The methods used in Chapter 7 to describe the dynamical properties of a
condensate with one component may be extended to mixtures. The natu-
ral generalization of the time-independent Gross–Pitaevskii equations (12.4)
and (12.5) to allow for time dependence is

i�
∂ψ1

∂t
=

[
− �

2

2m1
∇2 + V1(r) + U11|ψ1|2 + U12|ψ2|2

]
ψ1, (12.24)

and

i�
∂ψ2

∂t
=

[
− �

2

2m2
∇2 + V2(r) + U22|ψ2|2 + U12|ψ1|2

]
ψ2. (12.25)

By introducing the velocities and densities of the two components one
may write the time-dependent Gross–Pitaevskii equations as hydrodynamic
equations, as was done for a single component in Sec. 7.1.1. As an illus-
tration let us calculate the frequencies of normal modes of a mixture of



12.1 Mixtures 327

two components. By generalizing the linearized hydrodynamic equations
(7.26)–(7.28) we obtain the coupled equations

m1ω
2δn1 + ∇·(n1∇δµ̃1) = 0 (12.26)

and

m2ω
2δn2 + ∇·(n2∇δµ̃2) = 0, (12.27)

where δµ̃i is obtained by linearizing the expressions

µ̃i = Vi −
�

2

2mi

1√
ni
∇2√ni +

∑
j

Uijnj , (12.28)

which correspond to Eq. (7.21).
The first example we consider is a homogeneous system, and we look for

travelling wave solutions proportional to exp(iq · r− iωt). From (12.26) and
(12.27) it follows that

miω
2δni = niq

2δµ̃i, i = 1, 2. (12.29)

The change in the chemical potentials is given to first order in δn1 and δn2

by

δµ̃1 =
(
U11 +

�
2q2

4m1n1

)
δn1 + U12δn2 (12.30)

and

δµ̃2 =
(
U22 +

�
2q2

4m2n2

)
δn2 + U12δn1. (12.31)

The expressions (12.30) and (12.31) are now inserted into (12.29), and the
frequencies are found from the consistency condition for the homogeneous
equations for δni. The result is

(�ω)2 =
1
2
(ε21 + ε22)±

1
2

√
(ε21 − ε22)2 + 16ε01ε

0
2n1n2U2

12. (12.32)

Here we have introduced the abbreviations

ε21 = 2U11n1ε
0
1 + (ε01)

2 and ε22 = 2U22n2ε
0
2 + (ε02)

2, (12.33)

where ε0i = �
2q2/2mi is the free-particle energy as in Chapter 7. The en-

ergies ε1 and ε2 are those of the Bogoliubov modes of the two components
when there is no interaction between different components. This interac-
tion, which gives rise to the term containing U12, hybridizes the modes. At
short wavelengths, the two mode frequencies approach the free-particle fre-
quencies �q2/2m1 and �q2/2m2. As U2

12 approaches U11U22, one of the two
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frequencies tends to zero in the long-wavelength limit q → 0, signalling an
instability of the system, in agreement with the conclusions we reached from
static considerations, Eq. (12.14). Equation (12.32) has been used to study
theoretically [6] the growth of unstable modes of a two-component system
observed experimentally [7].

We next turn to particles in traps. In Sec. 7.3 we obtained the collective
modes in a trap by making the Thomas–Fermi approximation, in which the
contribution of the quantum pressure to δµ̃ is neglected. The generalization
of Eq. (7.58) to a two-component system is

δµ̃1 = U11δn1 + U12δn2 and δµ̃2 = U22δn2 + U12δn1. (12.34)

In order to solve the coupled equations for δni (i = 1, 2) one must determine
the equilibrium densities ni for given choices of the interaction parameters
and insert these in the equations. The situation when the two condensates
coexist everywhere within the cloud is the simplest one to analyze. This
is the subject of Problem 12.1, where coupled surface modes in the two
components are investigated. When the two components do not overlap
completely, solutions in different parts of space must be matched by imposing
boundary conditions.

In summary, the properties of mixtures may be analyzed by generalizing
the methods used in previous chapters for a single condensate. We have
treated a mixture with two components, but it is straightforward to ex-
tend the theory to more components. We turn now to condensates where
the components are atoms of the same isotope in different hyperfine states.
These exhibit qualitatively new features.

12.2 Spinor condensates

In the mixtures considered above, the interaction conserves the total number
of particles of each species. This is no longer true when condensation occurs
in states which are different hyperfine states of the same isotope. As we
noted in the previous section, overlapping condensates with atoms in two
different hyperfine states have been made in magnetic traps [1], and the
development of purely optical traps has made it possible to Bose–Einstein
condense Na atoms in the three magnetic sublevels, corresponding to the
quantum numbers mF = 0,±1, of the hyperfine multiplet with total spin
F = 1 [2]. Let us for definiteness consider magnetic fields so low that the
states of a single atom are eigenstates of the angular momentum, as we
described in Sec. 3.2. Because of its experimental relevance and simplicity
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we consider atoms with F = 1, but the treatment may be extended to higher
values of F .

In the mixtures described in Sec. 12.1, the number of particles of each
component was strictly conserved. For the three hyperfine states this is no
longer so, since, e.g., an atom in the mF = 1 state may scatter with another
in themF = −1 state to give two atoms in themF = 0 state. Let us begin by
considering the interaction between atoms. Rotational invariance imposes
important constraints on the number of parameters needed to characterize
the interaction. Two identical bosonic atoms with F = 1 in an s state of
the relative motion can couple to make states with total angular momentum
F = 0 or 2 units, since the possibility of unit angular momentum is ruled out
by the requirement that the wave function be symmetric under exchange of
the two atoms. The interaction is invariant under rotations, and therefore it
is diagonal in the total angular momentum of the two atoms. We may thus
write the effective interaction for low-energy collisions as U0 = 4π�

2a(0)/m

for F = 0 and U2 = 4π�
2a(2)/m for F = 2, where a(0) and a(2) are the corre-

sponding scattering lengths. For arbitrary hyperfine states in the hyperfine
manifold in which there are two atoms with F = 1, the effective interaction
may therefore be written in the form

U(r1 − r2) = δ(r1 − r2)(U0P0 + U2P2), (12.35)

where the operators PF project the wave function of a pair of atoms on a
state of total angular momentum F . It is helpful to re-express this result
in terms of the operators for the angular momenta of the two atoms, which
we here denote by S1 and S2.1 The eigenvalues of the scalar product S1·S2

are 1 when the total angular momentum quantum number F of the pair
of atoms is 2, and −2 when F = 0. The operator that projects onto the
F = 2 manifold is P2 = (2 + S1·S2)/3, and that for the F = 0 state is
P0 = (1 − S1·S2)/3. The strength of the contact interaction in Eq. (12.35)
may therefore be written as

U0P0 + U2P2 =W0 +W2S1·S2, (12.36)

where

W0 =
U0 + 2U2

3
and W2 =

U2 − U0

3
. (12.37)

Equation (12.36) has a form analogous to that for the exchange interaction
between a pair of atoms when the nuclear spin is neglected, see Eq. (5.74).
1 In Chapter 3 we denoted the angular momentum of an atom by F but, to conform with the

convention used in the literature on spinor condensates, in this section we denote it by S even
though it contains more than the contribution from the electron spin. Thus S · S = F (F + 1).
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For larger values of F the interaction may be written in a similar form but
with additional terms containing higher powers of S1·S2.

In second-quantized notation, the many-body Hamiltonian for atoms with
the effective interaction (12.36) is

Ĥ =
∫
dr

(
�

2

2m
∇ψ̂†

α·∇ψ̂α + V (r)ψ̂†
αψ̂α + gµBψ̂

†
αB·Sαβψ̂β

+
1
2
W0ψ̂

†
αψ̂

†
α′ψ̂α′ψ̂α +

1
2
W2ψ̂

†
αψ̂

†
α′Sαβ ·Sα′β′ψ̂β′ψ̂β

)
. (12.38)

Here we have included the Zeeman energy to first order in the magnetic
field, and g is the Landé g factor introduced in Chapter 3. Repeated indices
are to be summed over, following the Einstein convention. The external
potential V (r) is assumed to be independent of the hyperfine state, as it is
for an optical trap. In the following subsection we treat the Hamiltonian
(12.38) in the mean-field approximation.

12.2.1 Mean-field description

A direct extension of the wave function (12.1) to three components has a
definite number of particles in each of the magnetic sublevels and, conse-
quently, it does not take into account the effect of processes such as that
in which an atom with mF = 1 interacts with one with mF = −1 to give
two atoms in the mF = 0 state. It is therefore necessary to consider a more
general wave function, as was done in Refs. [8] and [9]. Instead of gener-
alizing the Hartree wave function for a single component as we did in Sec.
12.1, we imagine that all particles are condensed in a state φα(r) which is a
superposition of the three hyperfine substates,

φα(r) = φ1(r)|1, 1〉+ φ0(r)|1, 0〉+ φ−1(r)|1,−1〉, (12.39)

where we have used Dirac notation for the spin degrees of freedom. The
wave function for the state where all particles are in the same single-particle
quantum state with wave function φα(r) is then written as

Ψ(r1, α1; . . . ; rN , αN ) =
N∏

i=1

φαi(ri), (12.40)

where αi = 0,±1 specifies the spin state of particle i. The state (12.40) does
not have a definite number of particles in a given hyperfine state, since it
has components in which all particles are in, e.g., the mF = 1 state. How-
ever, the probability distribution for the number of particles in a particular
hyperfine state is sharply peaked about some value. Interestingly, when a
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wave function of the type (12.40) is applied to the problem of mixtures of
two different atoms or isotopes considered in Sec. 12.1, it leads to results
which agree with those for the wave function (12.1) if the number of particles
is large. To demonstrate this is the subject of Problem 12.2.

Provided we are interested only in contributions to the energy which are of
order N2, working with the wave function (12.40) is equivalent to using the
Gross–Pitaevskii or mean-field prescription of treating the operator fields ψ̂
as classical ones ψ, which we write in the form

ψ̂α ≈ ψα =
√
n(r)ζα(r), (12.41)

where n(r) =
∑

α |ψα(r)|2 is the total density of particles in all hyperfine
states, and ζα(r) is a three-component spinor, normalized according to the
condition

ζ∗αζα = 1. (12.42)

The total energy E in the presence of a magnetic field is therefore given
by

E − µN =
∫
dr

[
�

2

2m
(∇
√
n)2 +

�
2

2m
n∇ζ∗α·∇ζα

+(V − µ)n+ gµBnB ·<S>+
1
2
n2(W0 +W2<S>2)

]
(12.43)

with

<S> = ζ∗αSαβζβ. (12.44)

It is convenient to use an explicit representation of the angular momentum
matrices, and we shall work with a basis of states |F = 1,mF 〉 referred to
the direction of the applied magnetic field. In the representation generally
used, the angular momentum matrices are written as

Sx =
1√
2


 0 1 0

1 0 1
0 1 0


, Sy =

1√
2


 0 −i 0
i 0 −i
0 i 0


, and Sz =


 1 0 0

0 0 0
0 0 −1


.

Let us examine the ground state when there is no magnetic field. Apart
from theW2 term, the energy then has essentially the same form as for a one-
component system. If W2 is negative, the energy is lowered by making the
magnitude of <S> as large as possible. This is achieved by, e.g., putting all
particles into the mF = 1 state. Typographically, row vectors are preferable
to column ones, so it is convenient to express some results in terms of the
transpose of ζ, which we denote by ζ̃, and in this notation the state is
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ζ̃ = (1, 0, 0). The state is ferromagnetic. Any state obtained from this one by
a rotation in spin space has the same energy since the interaction is invariant
under rotations. The reason for the ferromagnetic state being favoured is
that, according to Eq. (12.37), W2 is negative if the F = 0 interaction
exceeds the F = 2 one. By putting all atoms into the mF = 1 state, all
pairs of atoms are in states with total angular momentum F = 2, and there
is no contribution from the F = 0 interaction. This may be confirmed by
explicit calculation, since <S>2 = 1 and therefore the interaction term in
the energy (12.43) becomes

1
2
(W0 +W2)n2 =

1
2
U2n

2. (12.45)

In a trap, the density profile in the Thomas–Fermi approximation is therefore
given by

n(r) =
µ− V (r)
U2

. (12.46)

When W2 > 0, the energy is minimized by making <S> as small as
possible. This is achieved by, e.g., putting all particles into the mF = 0
substate, since then <S> = 0. Equivalently ζ̃ = (0, 1, 0). Again, states
obtained from this one by rotations in spin space have the same energy.
The density profile in the Thomas–Fermi approximation is consequently
obtained by replacing U2 in (12.46) by W0. Investigating the influence of a
magnetic field is the subject of Problem 12.4.

The collective modes of spinor condensates may be obtained by linearizing
the equations of motion in the deviations of ψ from its equilibrium form. It
is convenient to start from the operator equations of motion, which in the
absence of an external magnetic field are

i�
∂ψ̂α

∂t
= − �

2

2m
∇2ψ̂α +[V (r)−µ]ψ̂α +W0ψ̂

†
α′ψ̂α′ψ̂α +W2ψ̂

†
α′Sα′β·Sαβ′ψ̂β′ψ̂β.

(12.47)
By writing ψ̂α = ψα+δψ̂α and linearizing (12.47) in δψ̂α about the particular
equilibrium state (12.41) one obtains three coupled, linear equations for δψ̂α.
The form of these equations depends on the sign of W2. For particles with
an antiferromagnetic interaction (W2 > 0) in a harmonic trap one finds
in the Thomas–Fermi approximation that the frequencies of density modes
are independent of the interaction parameters and are exactly the same as
those obtained in Chapter 7 for a single-component condensate, while the
frequencies of the spin–wave modes are related to those of the density modes
by a factor (W2/W0)1/2. For a ferromagnetic interaction, the frequencies of
the density modes remain the same, while the low-energy spin–wave modes
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are confined in the region near the surface of the cloud [8]. The spinor nature
of the condensate wave function also allows for the presence of textural
defects similar to those that have been studied extensively in superfluid 3He
[10].

12.2.2 Beyond the mean-field approximation

A surprising discovery is that the ground state of the Hamiltonian (12.38)
in zero magnetic field is completely different from the mean-field solution
just described [11, 12]. Consider a homogeneous spin-1 Bose gas in a mag-
netic field, with interaction parameters W0 (> 0) and W2. The parameter
W2 is negative for a ferromagnetic interaction and positive for an antifer-
romagnetic interaction. The field operators ψ̂α(r) may be expanded in a
plane-wave basis,

ψ̂α(r) =
1
V 1/2

∑
k

ak,αe
ik·r. (12.48)

As long as we may neglect depletion of the condensate, it is sufficient to
retain the single term associated with k = 0,

ψ̂α =
1
V 1/2

aα, (12.49)

where we denote ak=0,α by aα. The corresponding part of the Hamiltonian
(12.38) is

Ĥ0 = gµBa
†
αB·Sαβaβ +

1
2V
W0a

†
αa

†
α′aα′aα +

1
2V
W2a

†
αa

†
α′Sαβ ·Sα′β′aβ′aβ.

(12.50)
To find the eigenstates of the Hamiltonian we introduce operators

N̂ = a†αaα (12.51)

for the total number of particles and

Ŝ = a†αSαβaβ (12.52)

for the total spin. The operator defined by (12.52) is the total spin of the
system written in the language of second quantization. Consequently, its
components satisfy the usual angular momentum commutation relations.
Verifying this explicitly is left as an exercise, Problem 12.3.

The spin–spin interaction term in Eq. (12.50) would be proportional to
Ŝ2, were it not for the fact that the order of the creation and annihilation
operators matters. In the earlier part of the book we have generally ignored
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differences between the orders of operators and replaced operators by c num-
bers. However, the energy differences between the mean-field state and the
true ground state is so small that here we must be more careful than usual.
The Bose commutation relations yield

a†αa
†
α′aβ′aβ = a†αaβa

†
α′aβ′ − δα′βa

†
αaβ′ . (12.53)

The second term on the right hand side of (12.53) produces a term in the
Hamiltonian proportional to Sαβ ·Sββ′a†αaβ′ . The matrix Sαβ ·Sββ′ is diago-
nal and equal to F (F + 1)δαβ′ for spin F . Since we are considering F = 1,
the Hamiltonian (12.50) may be rewritten as

Ĥ0 = gµBB·Ŝ +
W0

2V
(N̂2 − N̂) +

W2

2V
(Ŝ2 − 2N̂). (12.54)

Let us now consider the nature of the ground state of the Hamiltonian
(12.54), taking the number of particles N to be even. The allowed values
of the quantum number S for the total spin are then 0, 2, . . . , N . For a
ferromagnetic interaction (W2 < 0), the ground state has the maximal spin
S = N . This is the state in which the spins of all particles are maximally
aligned in the direction of the magnetic field, a result which agrees with the
conclusions from mean-field theory.

We now consider an antiferromagnetic interaction (W2 > 0). In zero
magnetic field the ground state is a singlet, with total spin S = 0. The
ground-state energy E0 is seen to be

E0 = N(N − 1)
W0

2V
−NW2

V
, (12.55)

which differs from the mean-field result N(N − 1)W0/2V by the term
NW2/V . The factor N(N − 1)/2 in (12.55) is the number of ways of mak-
ing pairs of bosons. Within the mean-field Gross–Pitaevskii approach we
have usually approximated this by N2/2, but we do not do so here since the
energy differences we are calculating are of order N .

An alternative representation of the ground state is obtained by intro-
ducing the operator âx that destroys a particle in a state whose angular
momentum component in the x direction is zero and the corresponding op-
erators ây and âz for the y and z directions. In terms of the operators that
destroy atoms in states with given values of mF these operators are given
by

ax =
1√
2
(a−1 − a1), ay =

1
i
√

2
(a−1 + a1), and az = a0. (12.56)
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The combination

Â = a2x + a2y + a2z = a20 − 2a−1a1 (12.57)

is rotationally invariant. When Â† acts on the vacuum it creates a pair
of particles with total angular momentum zero. Thus the state (Â†)N/2|0〉
is a singlet, and it is in fact unique. Physically it corresponds to a Bose–
Einstein condensate of N/2 composite bosons, each of which is made up by
coupling two of the original spin-1 bosons to spin zero. This state may thus
be regarded as a Bose–Einstein condensate of pairs of bosons, and it is very
different from the simple picture of a Bose–Einstein condensate of spinless
particles described earlier. In Sec. 13.5 we shall discuss the properties of this
singlet ground state further in relation to the criterion for Bose–Einstein
condensation.

The physical origin of the lowering of the energy is that the interaction
acting on the Hartree wave function (a†0)

N |0〉, which is the mean-field ground
state, can scatter particles to the mF = ±1 states. The correlations in the
singlet ground state are delicate, since they give rise to a lowering of the
energy of order 1/N compared with the total energy of a state described by
a wave function of the product form (12.40).

The singlet state is the ground state when the interaction is antiferro-
magnetic, W2 > 0, and the magnetic field is zero. It differs in a number
of interesting ways from a condensate in which all atoms occupy the same
state. One of these is that the mean number of particles in each of the three
hyperfine states is the same, and equal to N/3, while the fluctuations are
enormous, of order N . In the presence of a magnetic field the singlet state
is no longer the ground state, and the fluctuations are cut down drastically
[12]. Because of the small energy difference between the singlet state and
the state predicted by mean-field theory, which becomes a good approxi-
mation even for very small magnetic fields, detecting the large fluctuations
associated with the singlet state is a challenging experimental problem.

Problems

Problem 12.1 Consider a mixture of two components, each with par-
ticle mass m, trapped in the isotropic potentials V1(r) = mω2

1r
2/2 and

V2(r) = mω2
2r

2/2, with λ = ω2
2/ω

2
1 = 2. The ratio N1/N2 of the particle

numbers N1 and N2 is such that R1 = R2 = R. Determine the equilibrium
densities (12.21) and (12.22) in terms of the interaction parameters, trap
frequencies and particle numbers. In the absence of coupling (U12 = 0), sur-
face modes with density oscillations proportional to rlYll(θ, φ) ∝ (x + iy)l
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have frequencies given by ω2 = lω2
i , with i = 1, 2 (cf. Sec. 7.3.1 and 7.3.2).

Calculate the frequencies of the corresponding surface modes when U12 �= 0,
and investigate the limit U2

12 → U11U22.

Problem 12.2 Consider a wave function of the form (12.40) for a mixture
of two different spinless bosonic isotopes,

Ψ(r1, α1; . . . ; rN , αN ) =
N∏

i=1

φαi(ri),

where the label α = 1, 2 now refers to the species. Show that for the
choice φα(r) = (Nα/N)1/2χα(r), where χ satisfies the normalization con-
dition

∫
dr|χα(r)|2 = 1, the average number of particles of species α is Nα.

Calculate the root-mean-square fluctuations in the particle numbers in this
state, and show that it is small for large Nα. Calculate the expectation
value of the energy of the state and show that it agrees to order N2 with
the result of using the wave function (12.1).

Problem 12.3 Show that the operators Ŝz and Ŝ± = Ŝx ± iŜy defined in
Eq. (12.52) are given by

Ŝ+ =
√

2(a†1a0 + a†0a−1), Ŝ− = (Ŝ+)†, Ŝz = (a†1a1 − a
†
−1a−1),

where the operators a1, a0, and a−1 annihilate particles in states withm = 1,
m = 0, and m = −1. Verify that these operators satisfy the commuta-
tion relations [Ŝ+, Ŝ−] = 2Ŝz and [Ŝz, Ŝ±] = ±Ŝ± for angular momentum
operators.

Problem 12.4 Determine from (12.54) for an antiferromagnetic interac-
tion the lowest-energy state in the presence of a magnetic field and compare
the result with the mean-field solution.
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13

Interference and correlations

Bose–Einstein condensates of particles behave in many ways like coherent
radiation fields, and the realization of Bose–Einstein condensation in dilute
gases has opened up the experimental study of many aspects of interactions
between coherent matter waves. In addition, the existence of these dilute
trapped quantum gases has prompted a re-examination of a number of the-
oretical issues. This field is a vast one, and in this chapter we shall touch
briefly on selected topics.

In Sec. 13.1 we describe the classic interference experiment, in which two
clouds of atoms are allowed to expand and overlap. Rather surprisingly,
an interference pattern is produced even though initially the two clouds
are completely isolated. We shall analyse the reasons for this effect. The
marked decrease in density fluctuations in a Bose gas when it undergoes
Bose–Einstein condensation is demonstrated in Sec. 13.2. Gaseous Bose–
Einstein condensates can be manipulated by lasers, and this has made pos-
sible the study of coherent matter wave optics. We describe applications of
these techniques to observe solitons, Bragg scattering, and non-linear mix-
ing of matter waves in Sec. 13.3. The atom laser and amplification of matter
waves is taken up in Sec. 13.4. How to characterize Bose–Einstein conden-
sation microscopically is the subject of Sec. 13.5, where we also consider
fragmented condensates.

13.1 Interference of two condensates

One of the striking manifestations of the wave nature of Bose–Einstein con-
densates is the observation of an interference pattern when two condensed
and initially separated clouds are allowed to overlap [1]. An example is
shown in Fig. 13.1. The study of the evolution of two expanding clouds has
given a deeper understanding of the conditions under which interference can

338
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Fig. 13.1. Interference pattern formed by two overlapping clouds of sodium atoms.
(From Ref. [1]).

arise. We begin by considering two clouds whose relative phase is locked,
and then compare the result with that for two clouds with a fixed number of
particles in each. Quite remarkably, an interference pattern appears even if
the relative phase of the two clouds is not locked, as demonstrated in Refs.
[2] and [3]. The presentation here follows unpublished work by G. Baym, A.
J. Leggett, and C. J. Pethick.

13.1.1 Phase-locked sources

When the phase difference between two radio stations transmitting at the
same frequency is fixed, the intensity of the signal at any point exhibits an
interference pattern that depends on the position of the receiver. Since in
a quantum-mechanical description electromagnetic waves are composed of
photons, the interference pattern arises as a result of interference between
photons from the two transmitters.

For two Bose–Einstein-condensed clouds a similar result holds if the rel-
ative phase of the two clouds is locked. Let us imagine that particles in
the two clouds, which are assumed not to overlap initially, are described by
single-particle wave functions ψ1(r, t) and ψ2(r, t), where the labels 1 and 2
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refer to the two clouds.1 If there is coherence between the clouds, the state
may be described by a single condensate wave function, which must be of
the form

ψ(r, t) =
√
N1ψ1(r, t) +

√
N2ψ2(r, t), (13.1)

where N1 and N2 denote the expectation values of the numbers of particles
in the two clouds. For electromagnetic radiation the analogous result is that
the electromagnetic field at any point is the sum of the fields produced by
the two sources separately. Upon expansion the two condensates overlap
and interfere, and if the effects of particle interactions in the overlap region
can be neglected, the particle density at any point is given by

n(r, t) = |ψ(r, t)|2 = |
√
N1ψ1(r, t) +

√
N2ψ2(r, t)|2

= N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2 + 2
√
N1N2 Re[ψ1(r, t)ψ∗

2(r, t)],

(13.2)

where Re denotes the real part. As a consequence of the last term in this
expression, the density displays an interference pattern due to the spatial
dependence of the phases of the wave functions for the individual clouds.
For example, if the clouds are initially Gaussian wave packets of width R0

centred on the points r = ±d/2 and if the effects of particle interactions and
external potentials can be neglected, the wave functions are

ψ1 =
eiφ1

(πR2
t )3/4

exp
[
−(r− d/2)2(1 + i�t/mR2

0)
2R2

t

]
(13.3)

and

ψ2 =
eiφ2

(πR2
t )3/4

exp
[
−(r + d/2)2(1 + i�t/mR2

0)
2R2

t

]
, (13.4)

where m is the particle mass. Here φ1 and φ2 are the initial phases of the
two condensates, and the width Rt of a packet at time t is given by

R2
t = R2

0 +
(

�t

mR0

)2

. (13.5)

The results (13.3) and (13.4) are solutions of the Schrödinger equation for
free particles, and correspond to the problem described in Sec. 7.5 when
particle interactions may be neglected.

The interference term in Eq. (13.2) thus varies as

2
√
N1N2 Re[ψ1(r, t)ψ∗

2(r, t)] ∼ A cos
(

�

m

r·d
R2

0R
2
t

t+ φ1 − φ2

)
, (13.6)

1 In this chapter we denote the single-particle wave functions by ψ1 and ψ2 rather than by φ, as
we did in Chapter 6.
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where the prefactor A depends slowly on the spatial coordinates. Lines of
constant phase are therefore perpendicular to the vector between the centres
of the two clouds. The positions of the maxima depend on the relative phase
of the two condensates, and if we take d to lie in the z direction, the distance
between maxima is

∆z = 2π
mR2

tR
2
0

�td
. (13.7)

If the expansion time t is sufficiently large that the cloud has expanded to
a size much greater than its original one, the radius is given approximately
by Rt � �t/mR0, and therefore the distance between maxima is given by
the expression

∆z � 2π�t

md
. (13.8)

Physically this is the de Broglie wavelength associated with the momentum
of a free particle that would travel the distance between the centres of the
two clouds in the expansion time.

In the experiment [1] interference patterns were indeed observed. The
expression (13.6) predicts that maxima and minima of the interference pat-
tern will be planes perpendicular to the original separation of the two clouds,
which is precisely what is seen in the experiments, as shown in Fig. 13.1.
However, the existence of an interference pattern does not provide evidence
for the phase coherence of the two clouds, since interference effects occur
even if the two clouds are completely decoupled before they expand and
overlap. Before explaining this we describe the above calculation in terms
of many-particle states.

Phase states

The description in terms of the wave function of the condensed state is
equivalent to the Hartree approximation, where all particles are in the same
single-particle state. It is convenient to introduce states in which the phase
difference between the single-particle wave functions for the two clouds has
a definite value φ:

ψφ(r) =
1√
2
[ψ1(r)eiφ/2 + ψ2(r)e−iφ/2]. (13.9)

The state used in the discussion above corresponds to the choice φ = φ1−φ2.
The overall phase of the wave function plays no role, so we have put it equal
to zero. The many-particle state with N particles in the state ψφ may be
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written as

|φ,N〉 =
1

(2NN !)1/2
(a†1e

iφ/2 + a†2e
−iφ/2)N |0〉, (13.10)

where the operators a†1 and a†2 create particles in states for the clouds 1 and
2,

a†i =
∫
drψi(r)ψ̂†(r). (13.11)

If we neglect interactions between particles in one cloud with those in the
other during the evolution of the state, the wave function at time t is given
by

|φ,N, t〉 =
1√
N !

[∫
drψφ(r, t)ψ̂†(r)

]N

|0〉, (13.12)

where the time evolution of the wave functions is to be calculated for each
cloud separately.

The phase states form an overcomplete set. The overlap between two
single-particle states with different phases is given by

〈φ′, N = 1|φ,N = 1〉 =
∫
drψ∗

φ′(r, t)ψφ(r, t). (13.13)

The integrand is

ψ∗
φ′(r, t)ψφ(r, t) =

1
2
|ψ1(r, t)|2ei(φ−φ′)/2 +

1
2
|ψ2(r, t)|2e−i(φ−φ′)/2

+ Re[ψ1(r, t)ψ∗
2(r, t)e

i(φ+φ′)/2]

=
1
2
[|ψ1(r, t)|2 + |ψ2(r, t)|2] cos[(φ− φ′)/2]

+
i

2
[|ψ1(r, t)|2 − |ψ2(r, t)|2] sin[(φ− φ′)/2]

+ Re[ψ1(r, t)ψ∗
2(r, t)e

i(φ+φ′)/2]. (13.14)

The overlap integral is obtained by integrating this expression over space.
The last term in the integrand varies rapidly because of the spatial depen-
dence of the phases of ψ1 and ψ2, and therefore it gives essentially zero on
integration. The sin[(φ − φ′)/2] term vanishes because of the normaliza-
tion of the two states. Thus one finds for the overlap integral between two
single-particle states

〈φ′, N = 1|φ,N = 1〉 = cos[(φ− φ′)/2]. (13.15)

This has a maximum for φ = φ′, but there is significant overlap for |φ−φ′| ∼
π/2.
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The overlap integral for N -particle phase states is the product of N such
factors, and is therefore given by

〈φ′, N |φ,N〉 = cosN [(φ− φ′)/2]. (13.16)

As N increases the overlap falls off more and more rapidly as φ − φ′ de-
parts from zero. By using the identity limN→∞(1− x/N)N = e−x one sees
that the overlap integral falls off as exp[−N(φ − φ′)2/8] for phase differ-
ences of order 1/N1/2. Thus, while the overlap integral for a single particle
depends smoothly on φ − φ′, that for a large number of particles becomes
very small if the phase difference is greater than ∼ N−1/2. Consequently,
states whose phases differ by more than ∼ N−1/2 are essentially orthogonal.
This property will be very important in the next section, where we consider
the relationship between phase states and states with a definite number of
particles in each cloud initially.

As an example, let us evaluate the expectation value of the density op-
erator in a phase state. Since the many-particle state (13.12) is properly
normalized, the removal of a particle from it gives the normalized single-
particle wave function ψφ times the usual factor

√
N ,

ψ̂(r)|φ,N, t〉 =
√
Nψφ(r, t)|φ,N − 1, t〉. (13.17)

The expectation value of the particle density n(r) in the state |φ,N, t〉 is
therefore given by the product of (13.17) and its Hermitian conjugate,

n(r, t) = 〈φ,N, t|ψ̂†(r)ψ̂(r)|φ,N, t〉 =
N

2
|ψ1(r, t)eiφ/2 + ψ2(r, t)e−iφ/2|2,

(13.18)
which contains an interference term

2
√
N1N2 Re[ψ1(r, t)ψ∗

2(r, t)e
iφ] ∼ A cos

(
�

m

r·d
R2

0R
2
t

t+ φ
)

(13.19)

like that in Eq. (13.6).

13.1.2 Clouds with definite particle number

Let us now consider an initial state in which the numbers of particles N1

and N2 in each of the two clouds are fixed. The corresponding state vector
is

|N1, N2〉 =
1√
N1!N2!

(a†1)
N1(a†2)

N2 |0〉, (13.20)

which is referred to as a Fock state.
To begin with, we again consider the particle density. We calculate the
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expectation value of the density operator by using an identity analogous to
(13.17),

ψ̂(r)|N1, N2, t〉 =
√
N1ψ1(r, t)|N1 − 1, N2, t〉+

√
N2ψ2(r, t)|N1, N2 − 1, t〉.

(13.21)
In the state |N1, N2, t〉 the expectation value of the density is therefore ob-
tained by multiplying (13.21) by its Hermitian conjugate,

n(r) = 〈N1, N2, t|ψ̂†(r)ψ̂(r)|N1, N2, t〉 = N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2,
(13.22)

which has no interference terms. However, this does not mean that there are
no interference effects for a Fock state. The experimental situation differs
from the one we have just treated in two respects. First, experiments on
interference between two expanding clouds are of the ‘one-shot’ type: two
clouds are prepared and allowed to expand, and the positions of atoms are
then observed after a delay. However, according to the usual interpretation
of quantum mechanics, a quantum-mechanical expectation value of an op-
erator gives the average value for the corresponding physical quantity when
the experiment is repeated many times. A second difference is that many
particles are detected in experiments on condensates. Many-particle prop-
erties can exhibit interference effects even when single-particle properties
do not, the most famous example being the correlation of intensities first
discovered by Hanbury Brown and Twiss for electromagnetic radiation [4].

As an example of how interference effects appear even for states with a
given number of particles in each cloud initially, we calculate the two-particle
correlation function, which gives the amplitude for destroying particles at
points r and r′, and then creating them again at the same points. The
correlation function is evaluated as before by expressing ψ̂(r)ψ̂(r′)|N1, N2, t〉
in terms of Fock states. This gives a linear combination of the orthogonal
states |N1−2, N2, t〉, |N1−1, N2−1, t〉 and |N1, N2−2, t〉, and the resulting
correlation function is

〈N1, N2, t|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|N1, N2, t〉 =

[N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2][N1|ψ1(r′, t)|2 +N2|ψ2(r′, t)|2]
− N1|ψ1(r, t)|2|ψ1(r′, t)|2 −N2|ψ2(r, t)|2|ψ2(r′, t)|2

+ 2N1N2 Re[ψ∗
1(r

′, t)ψ1(r, t)ψ∗
2(r, t)ψ2(r′, t)]. (13.23)

The correlation found by Hanbury Brown and Twiss is expressed in the last
term in this expression. This result demonstrates that coherence between
sources is not a prerequisite for interference effects.

As a simple example, let us assume that the amplitudes of the two wave
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functions are the same, but that their phases may be different:

ψi(r, t) = ψ0e
iφi(r,t). (13.24)

The result (13.23) then becomes

〈N1, N2, t|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|N1, N2, t〉 =

N(N − 1)|ψ0|4 + 2N1N2|ψ0|4 cos[∆(r, t)−∆(r′, t)], (13.25)

where N = N1 +N2 and

∆(r, t) = φ1(r, t)− φ2(r, t). (13.26)

Let us now consider the expectation value of a more general operator O
in a Fock state [3]. In order to relate results for this state to those for a
phase state we expand the Fock state in terms of the phase states (13.9). In a
phase state the component of the wave function having N1 particles in cloud
1 and N2 particles in cloud 2 has a phase factor (N1 −N2)φ/2. To project
this component out we multiply the phase state (13.9) by e−i(N1−N2)φ/2 and
integrate over φ:

|N1, N2〉 ∝
∫ 2π

0

dφ

2π
e−i(N1−N2)φ/2|φ,N〉. (13.27)

From the normalization condition for a Fock state, 〈N1, N2|N1, N2〉 = 1,
one may calculate the constant of proportionality in the relation (13.27),
and for N large and even, we may write the Fock state with equal numbers
of particles in the two wells as

|N/2, N/2〉 =
(
πN

2

)1/4 ∫ 2π

0

dφ

2π
|φ,N〉. (13.28)

Let us now express the expectation value of an operator O in the Fock
state in terms of the phase states. This gives

〈N/2, N/2|O|N/2, N/2〉 =
(
πN

2

)1/2 ∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π
〈φ′, N |O|φ,N〉.

(13.29)
The matrix element (13.29) may be written as

〈N/2, N/2|O|N/2, N/2〉 =
∫ 2π

0

dφ

2π
O(φ) (13.30)

where

O(φ) =
(
πN

2

)1/2 ∫ 2π

0

dφ′

2π
〈φ′, N |O|φ,N〉. (13.31)
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For many physically important operators the matrix elements
〈φ′, N |O|φ,N〉 between phase states have the property that they, like the
overlap integral (13.16), are essentially diagonal in φ. As an example, we
consider the operator O to be the correlation function for k particles being
detected at different points r1, . . . , rk:

O =
k∏

i=1

ψ̂†(ri)ψ̂(ri). (13.32)

The matrix element is given by

〈φ′, N |
k∏

i=1

ψ̂†(ri)ψ̂(ri)|φ,N〉 = Nk
k∏

i=1

ψ∗
φ′(ri)ψφ(ri)

N∏
j=k+1

∫
drjψ

∗
φ′(rj)ψφ(rj)

= Nk cosN−k[(φ− φ′)/2]
k∏

i=1

ψ∗
φ′(ri)ψφ(ri).

(13.33)

Apart from the factor Nk, this matrix element is identical with the overlap
integral, except that the k coordinates of the particles that are detected
must not be integrated over. The product of single-particle wave functions
is given by Eq. (13.14), and therefore for small phase differences the matrix
element (13.33) falls off rapidly when |φ − φ′| increases from zero, just as
does the integrated result that gives the overlap integral for many-particle
states.

This result is remarkable, because it implies that, when the number of
particles N is large, operators of the type we have considered are almost
diagonal in the phase. Note that this property does not hold for all operators.
For example, the non-local operator

O =
N∏

i=1

∫
driψ̂

†(ri + a)ψ̂(ri) (13.34)

that translates all particles by a constant amount a will generally not have
a maximum for zero phase difference.

We now return to operators of the type given in Eq. (13.32). What we
shall now argue is that when the positions of a large number of particles are
measured in a single-shot experiment, their distribution will correspond to
that for a phase state. Imagine that a particle is detected at point r1. The
action of the annihilation operator on a Fock state is given by

ψ̂(r1)|N〉 =
∫ 2π

0

dφ

2π
ψφ(r1, t)|φ,N − 1〉. (13.35)
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The phase states which are weighted most heavily in this expression are
those for which |ψφ(r1, t)| has the largest value. Let us denote this value
by φ0. When just one particle is detected, the distribution in phase of the
states is very broad, and the width in φ is comparable to π. If the wave
functions ψ1 and ψ2 are equal in the overlap region, the amplitude varies as
cos{[∆(r1, t) + φ]/2}. When a second particle is detected, there is a higher
probability that it too will have a distribution corresponding to the phase
states which are weighted most strongly in the state (13.35). Thus it will
tend to be at points at which the modulus of the single-particle phase states
with φ ≈ φ0 is largest. When more particles are detected, the distribution
in phase becomes narrower and narrower, in essentially the same way as it
did in our discussion of the overlap integral. Thus the greater the number
of particles detected, the smaller the spread in phase of the final state, even
though the initial state had a completely random distribution of phases.
In a given shot of the experiment, the phase of the state becomes better
and better defined as the number of detected particles increases. However,
the particular value of the phase about which the components of the state
are centred is random from one shot to another. Detailed calculations that
exhibit this effect quantitatively may be found in Refs. [2] and [3].

A close parallel is provided by the Stern–Gerlach experiment. Atoms from
an unpolarized source pass through an inhomogeneous magnetic field. Sub-
sequent detection of the atoms shows that they always have projections of
the magnetic moment along the magnetic field that correspond to eigenval-
ues of the component of the magnetic moment operator in that direction.
Similarly, measurement of a many-particle correlation function in the inter-
ference experiment will always give a result corresponding to an eigenvalue
of the corresponding operator. The eigenfunctions of the many-particle cor-
relation operators are well localized in phase, and therefore the correlation
function measured in a single-shot experiment corresponds with high prob-
ability to a state made up of phase states with a narrow distribution in
phase.

We therefore conclude that the distribution of particles detected in a one-
shot experiment in which two initially isolated clouds with definite numbers
of particles are allowed to overlap corresponds to the distribution for a state
with two clouds having a well-defined phase difference. To be able exper-
imentally to demonstrate the difference between the theoretical results for
a Fock state and those for two clouds with a definite phase difference, it
is necessary to be able to control the relative phase of two coupled clouds,
and to measure accurately the positions of the maxima in the interference
pattern.
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The above results are important because they demonstrate that many
results for Fock states are essentially the same as those for a phase state.
In calculations it is common to work with states that correspond to phase
states and to talk about a broken gauge symmetry of the condensate. In
the above example the gauge angle is the relative phase of the two clouds.
However, the above discussion demonstrates that, for the class of operators
considered, results for Fock states are equivalent to those for phase states
when the number of particles is large. The discussion of the excitations of
the uniform Bose gas in Sec. 8.1 is another example that illustrates this
point. The traditional approach to the microscopic theory is to assume that
the expectation value of the particle creation and annihilation operators
have non-zero values. This corresponds to using phase states. However, the
discussion at the end of Sec. 8.1 showed that essentially the same results are
obtained by working with states having a definite particle number. In the
context of quantum optics, Mølmer arrived at similar conclusions regarding
the equivalence of results for phase states and Fock states [5].

13.2 Density correlations in Bose gases

In the previous section we considered the properties of states in which there
were no thermal excitations, and we turn now to non-zero temperatures.
There are striking differences between density correlations in a pure Bose–
Einstein condensate and in a thermal gas. An example of this effect has
already been discussed in Sec. 8.3, where we showed that the interaction
energy per particle in a homogeneous thermal gas above the Bose–Einstein
transition temperature is twice its value in a pure condensate of the same
density. To understand this result, we express it in terms of the two-particle
correlation function used in the discussion of the interference experiment,
and we write the interaction energy as

Eint =
U0V

2
<ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)>. (13.36)

Here < · · ·> denotes an expectation value in the state under consideration.2

The correlation function is a measure of the probability that two atoms are
at the same point in space. Its relationship to the density–density correlation

2 The correlation functions considered in this section are ones which contain the effects of the
interparticle interactions only in a mean-field sense, as in the Hartree and Hartree–Fock ap-
proaches. The true correlation functions have a short-distance structure that reflects the be-
haviour of the wave function for a pair of interacting particles and, for alkali atoms, for which
there are many nodes in the two-body zero-energy wave function, this gives rise to rapid oscil-
lations of correlation functions at short distances.
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function may be brought out by using the commutation relations for creation
and annihilation operators to write

<ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)> =

<ψ̂†(r)ψ̂(r)ψ̂†(r′)ψ̂(r′)>−<ψ̂†(r)ψ̂(r)>δ(r− r′). (13.37)

This relation expresses the fact that the pair correlation function is obtained
from the instantaneous density–density correlation function (the first term
on the right hand side) by removing the contribution from correlations of
one atom with itself (the second term on the right hand side).

As a dimensionless measure of correlations between different atoms we
introduce the pair distribution function g2(r, r′). For a spatially uniform
system this is defined by the equation

g2(r, r′) =
V 2

N(N − 1)
<ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)>, (13.38)

where V is the volume of the system. The normalization factor reflects
the fact that the integral of the pair distribution function over both co-
ordinates is N(N − 1). For large |r − r′|, correlations are negligible and
therefore <ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)> → (N/V )2 where N/V is the average
density. Consequently, g2 tends to 1 to within terms of order 1/N , which
may be neglected in the following discussion since N is large.

Thus, from the difference by a factor of two in the interaction energies of
a condensate and of a gas above Tc we conclude that for small spatial sep-
arations the pair distribution function in the non-condensed state is twice
that for a pure condensate of the same density. This result may be under-
stood by examining the expectation value in the two situations. For a pure
condensate,

<ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)> = N(N − 1)|φ(r)|4 =
N(N − 1)
V 2

� n2
0 = n2.

(13.39)
For a gas above Tc one may use the Hartree–Fock approximation or neglect
interactions altogether, and we therefore expand the field operators in terms
of creation and annihilation operators for atoms in plane-wave states. By
the methods used in Sec. 8.3.1 one finds that

<ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)> = 2n2, (13.40)

where we have neglected terms of relative order 1/N . The factor of 2 is due
to there being both direct and exchange contributions for a thermal gas, as
we found in the calculations of the energy in Sec. 8.3.1.
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More generally, if both a condensate and thermal excitations are present,
one finds in the Hartree–Fock approximation that

<ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)> = n2
0 + 4n0nex + 2n2

ex. (13.41)

For temperatures below T0 ∼ nU0/k the correlations of thermal excitations
must be calculated using Bogoliubov theory rather than the Hartree–Fock
approximation, but at such temperatures the contributions of thermal exci-
tations to the pair distribution function are small.

Many-particle distribution functions are also affected by Bose–Einstein
condensation. As an example, we consider the rate of three-body processes
discussed in Sec. 5.4.1 [6]. At low temperatures it is a good approximation
to ignore the dependence of the rate of the process on the energies of the
particles, and therefore the rate is proportional to the probability of finding
three bosons at essentially the same point, that is

g3(0) = <(ψ̂†(r))3(ψ̂(r))3>. (13.42)

This may be evaluated in a similar way to the density–density correlation
function, and for the condensed state it is

g3(0) = n3
0 = n3, (13.43)

while above Tc it is

g3(0) = 6n3. (13.44)

The factor 6 here is 3!, the number of ways of pairing up the three creation
operators with the three annihilation operators in g3(0). The calculation
of g3(0) for the more general situation when both condensate and thermal
particles are present is left as an exercise (Problem 13.1). The results (13.43)
and (13.44) show that, for a given density, the rate of three-body processes
in the gas above Tc is 6 times that in a pure condensate. This reflects the
strong suppression of correlations in the condensed phase. Such a reduction
in the rate of three-body recombination was found in experiments on 87Rb
[7].

For the general correlation function gν = <(ψ̂†(r))ν(ψ̂(r))ν>, the dif-
ferences between results for the condensed and non-condensed states are a
factor ν!, and therefore even more dramatic for large values of ν.

13.3 Coherent matter wave optics

A wide range of experiments has been carried out on Bose–Einstein con-
densates to explore properties of coherent matter waves. Forces on atoms
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due to laser light described in Sec. 4.2 are an essential ingredient in most of
them, and in this section we describe briefly a number of applications. One
is phase imprinting. By applying a laser pulse whose intensity varies over
the atomic cloud, one may modulate the phase of the condensate, and this
effect has been used to generate solitons. A second effect is Bragg diffraction
of matter waves by a ‘lattice’ made by two overlapping laser beams. The
final example is non-linear mixing of matter waves.

Phase imprinting

To understand how the phase of a condensate may be altered, consider
illuminating a condensate with a pulse of radiation whose intensity varies
in space. As described in Chapters 3 and 4, the radiation shifts the energy
of an atom, and thereby causes the phase of the wave function to advance
at a rate different from that in the absence of the pulse. It follows from the
equation of motion for the phase, Eq. (7.19), that the extra contribution
∆φ(r, t) to the phase of the wave function satisfies the equation

∂∆φ(r, t)
∂t

= −V (r, t)
�

, (13.45)

where V (r, t) is the energy shift produced by the radiation field, Eq. (4.30).
In writing this equation we have neglected the contribution due to the veloc-
ity of the atoms, and this is a good approximation provided the duration τ
of the pulse is sufficiently short, and provided that the velocity is sufficiently
small initially. The additional phase is then given by

∆φ(r) = −1
�

∫ τ

0
dtV (r, t), (13.46)

where we have assumed that the pulse starts at t = 0. Since the potential
energy of an atom is proportional to the intensity of the radiation, spatial
variation of the intensity of the radiation field makes the phase of the wave
function depend on space. Phase imprinting does not require a condensate,
and it works also for atoms that are sufficiently cold that their thermal
motion plays a negligible role.

Phase imprinting has been used to create solitons in condensates. As
we have seen in Sec. 7.6 the non-linear Gross–Pitaevskii equation has solu-
tions in which a disturbance moves at constant speed u without changing
its form, see (7.151). The phase difference across the soliton is given by
Eq. (7.154) and most of the phase change occurs over a distance ξu, given
by (7.152), from the centre of the soliton. Such an abrupt change in the
phase of the condensate wave function may be produced by illuminating an
initially uniform condensate with a pulse of laser light whose intensity is
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spatially uniform for, say, x > 0 and zero otherwise. The phase of the con-
densate wave function for x > 0 will be changed relative to that for x < 0,
and the magnitude of the phase difference may be adjusted to any required
value by an appropriate choice of the properties of the pulse. The distance
over which the change in phase occurs is determined by how sharply the
illumination can be cut off spatially. Immediately after applying the pulse
the behaviour of the phase is therefore similar to that in the soliton whose
centre is on the plane x = 0. However the density is essentially uniform,
without the dip present in the soliton solution. The velocity distribution
immediately following the laser pulse is proportional to the gradient of the
phase imprinted. This leads to a density disturbance that moves in the pos-
itive x direction if the energy shift is negative. In addition, there is a soliton
that moves towards negative values of x. Solitons have been generated by
the above methods in experiments at the National Institute of Standards
and Technology (NIST) [8] and in Hannover [9].

Our discussion in the previous section was appropriate for radiation fields
produced by propagating electromagnetic waves, and one may ask what
happens if a standing wave is applied. If the intensity of the wave varies
as sin2 qz, this gives an energy shift of the form sin2 qz according to Eq.
(3.50). For short pulses, this will impose on the condensate a phase vari-
ation proportional to sin2 qz and therefore a velocity variation equal to
(�/m)∂φ/∂z ∝ sin 2qz. With time this velocity field will produce density
variations of the same wavelength. For longer pulses, a density wave is cre-
ated with an amplitude that oscillates as a function of the duration of the
pulse (Problem 13.3). These density fluctuations behave as a grating, and
may thus be detected by diffraction of light, as has been done experimentally
[10].

Bragg diffraction of matter waves

The phenomenon of Bragg diffraction of electromagnetic radiation is well
known and widely applied in determining crystal structures. We now con-
sider its analogue for particles. Imagine projecting a Bose–Einstein conden-
sate at a periodic potential produced by a standing electromagnetic wave.
This gives rise to a diffracted wave with the same wave number as that of
the particles in the original cloud, and its direction of propagation is deter-
mined by the usual Bragg condition. In practice, it is more convenient to
adopt a method that corresponds to performing a Galilean transformation
on the above process. One applies to a cloud of condensate initially at rest
a potential having the form of a travelling wave produced by superimposing
two laser beams with wave vectors q1 and q2 and frequencies ω1 and ω2.
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The amplitudes of the electric fields in the two beams are proportional to
cos(q1·r−ω1t) and cos(q2·r−ω2t), where we have omitted arbitrary phases.
The effective potential acting on an atom may be calculated by second-order
perturbation theory, just as we did in the discussion of Sisyphus cooling in
Chapter 4. It contains the product of the amplitudes of the two waves and
therefore has components with frequencies and wave vectors given by

ω = ω1 ± ω2 and q = q1 ± q2. (13.47)

The term proportional to cos[(q1 − q2) · r− (ω1 − ω2)t] describes a Raman
process in which one photon is emitted and one of another frequency ab-
sorbed. It has the important property that its frequency and wave vector
may be tuned by appropriate choice of the frequencies and directions of
propagation of the beams. When the frequencies of the two beams are the
same, the potential is static, as we described in detail in Chapter 4, while
the time-dependent potential has a wave vector q1 − q2 and moves at a
velocity (ω1−ω2)/|q1−q2|. This can act as a diffraction grating for matter
waves. The term with the sum of frequencies was considered in the study of
two-photon absorption in Sec. 8.4. It is of very high frequency, and is not
of interest here.

Let us, for simplicity, consider a non-interacting Bose gas. Bragg diffrac-
tion of a condensate with momentum zero will be kinematically possible if
energy and momentum can be conserved. This requires that the energy dif-
ference between the photons in the two beams must be equal to the energy
of an atom with momentum �(q1 − q2), or

�(ω1 − ω2) =
�

2(q1 − q2)2

2m
. (13.48)

This result is equivalent to the usual Bragg diffraction condition for a static
grating. When interactions between atoms are taken into account, the free-
particle dispersion relation must be replaced by the Bogoliubov one εq, Eq.
(7.31) for q = q1 − q2. This type of Bragg spectroscopy has been used to
measure the structure factor of a Bose–Einstein condensate in the phonon
regime [11].

By the above method it is possible to scatter a large fraction of a con-
densate into a different momentum state. Initially the two components of
the condensate overlap in space, but as time elapses, they will separate as
a consequence of their different velocities. This technique was used in the
experiment on non-linear mixing of matter waves that we now describe.
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Four-wave mixing

By combining laser beams with different frequencies and different directions
it is possible to make condensed clouds with components having a number of
different momenta. For example, by making two gratings with wave vectors
qa and qb one can make a cloud with components having momenta zero
(the original cloud), ±�qa and ±�qb. As a consequence of the interaction
between particles, which is due to the term U0|ψ(r)|4/2 in the expression
for the energy density, there is a non-linear mixing of matter waves. In par-
ticular the three overlapping components above can produce a fourth beam.
For example, two atoms with momenta zero and �qa can be scattered to
states with momenta �qb and �(qa − qb), thereby producing a new beam
with the latter momentum. This is a four-wave mixing process analogous
to that familiar in optics. For the process to occur, the laser frequencies
and beam directions must be chosen so that energy and momentum are con-
served. Such experiments have been performed on Bose–Einstein condensed
clouds, and the fourth beam was estimated to contain up to 11% of the total
number of atoms [12]. This yield is impressive compared with what is possi-
ble in optics, and it reflects the strongly non-linear nature of Bose–Einstein
condensates.

13.4 The atom laser

The phrase ‘atom laser’ is used to describe sources of coherent matter waves.
In the first such sources, a coherent beam of particles was extracted from a
Bose–Einstein condensate either as a series of pulses [13, 14] or continuously
[15]. This way of producing a coherent beam is referred to as output coupling.
The optical analogue of these devices is a resonant cavity highly excited in
one mode, and from which radiation is allowed to leak out, thereby gener-
ating a coherent beam of photons. In optical terminology the latter device
would hardly be called a laser, and thus when applied to matter waves the
word ‘laser’ is used in a broader sense than in optics.

Phase-coherent amplification of matter waves is an effect somewhat closer
to what occurs in an optical laser, and this has been observed experimen-
tally [16]. A fundamental difference between atom lasers and optical lasers
is related to the fact that the number of atoms is conserved, while the
number of photons is not. The active medium of a matter-wave amplifier
must therefore include a reservoir of atoms. In the experiment described in
Ref. [16] phase-coherent amplification was achieved using a Bose–Einstein
condensate of sodium atoms. The moving coherent matter wave to be am-
plified, the input wave, was generated by Bragg diffraction, as described in
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Sec. 13.3. This was done by applying a pulse of radiation in two mutually
perpendicular laser beams with wave vectors q1 and q2, which transferred a
small fraction (less than 1%) of the condensate atoms into the input matter
wave, whose wave vector is q1−q2. To ensure that the energy conservation
condition (13.48) for Bragg diffraction is satisfied, the frequency of one of
the laser beams was detuned slightly with respect to the other.

The input matter wave is amplified by applying another pulse from one of
the two laser beams used to produce the input wave. The effect of this second
pulse on the part of the condensate at rest is to mix into the condensate
wave function a component in which atoms are in the excited state, and have
momentum equal to that of the absorbed photon. By emitting a photon, this
excited-state component can decay to give ground-state atoms with a range
of momenta, provided the Bragg frequency condition is satisfied. Final states
in which the momentum of the atom is equal to that of the input beam will
be favoured because of stimulated emission, which arises because the matrix
element for an atom in the excited state to make a transition to the ground
state with momentum p = �q is proportional to the matrix element of the
creation operator for an atom with momentum p. This matrix element is√
Np + 1, where Np denotes the occupation number. Therefore the rate of

the process is proportional to Np + 1. It is thus enhanced as a consequence
of the Bose statistics, and the input beam is amplified. Transitions to other
momentum states are not correspondingly enhanced.

13.5 The criterion for Bose–Einstein condensation

Since the discovery of Bose–Einstein condensation in dilute gases, renewed
attention has been given to the question of how it may be characterized mi-
croscopically. For non-interacting particles, the criterion for Bose–Einstein
condensation is that the occupation number for one of the single-particle
energy levels should be macroscopic. The question is how to generalize this
condition to interacting systems.

A criterion for bulk systems was proposed by Penrose [17] and Landau
and Lifshitz [18], and subsequently elaborated by Penrose and Onsager [19]
and by Yang [20]. Consider the one-particle density matrix3

ρ(r, r′) ≡ <ψ̂†(r′)ψ̂(r)>, (13.49)

which gives the amplitude for removing a particle at r and creating one at
r′. Bose–Einstein condensation is signalled by ρ(r, r′) tending to a constant
3 With this definition, the density matrix satisfies the normalization condition

∫
drρ(r, r) = N .

Note that other choices of normalization exist in the literature.
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as |r − r′| → ∞. For the uniform ideal Bose gas, the eigenstates are plane
waves eip·r/�/V 1/2 with occupancy Np, and the one-particle density matrix
is given by

ρ(r, r′) =
1
V

∑
p

Npe
ip·(r−r′)/�. (13.50)

For large |r − r′|, the only term that survives is the one for the zero-
momentum state, since the contribution from all other states tends to zero
because of the interference between different components, and therefore

lim
|r−r′|→∞

ρ(r, r′) =
N0

V
. (13.51)

For an interacting system, the energy eigenstates are not generally eigen-
states of the operator for the number of zero-momentum particles, but one
can write

lim
|r−r′|→∞

ρ(r, r′) =
<N0>

V
, (13.52)

where <N0> denotes the expectation value of the occupation number of
the zero-momentum state.

In finite systems such as gas clouds in traps, it makes no sense to take the
limit of large separations between the two arguments of the single-particle
density matrix, so it is customary to adopt a different procedure and expand
the density matrix in terms of its eigenfunctions χj(r), which satisfy the
equation ∫

dr′ρ(r, r′)χj(r′) = λjχj(r). (13.53)

Since the density matrix is Hermitian and positive definite, its eigenvalues
λj are real and positive and

ρ(r, r′) =
∑
j

λjχ
∗
j (r

′)χj(r). (13.54)

For a non-interacting gas in a potential, the χj are the single-particle wave
functions, and the eigenvalues are the corresponding occupation numbers.
At zero temperature, the eigenvalue for the lowest single-particle state is N ,
and the others vanish. For interacting systems, the natural generalization
of the condition for the non-interacting gas that the occupation number of
one state be macroscopic is that one of the eigenvalues λj be of order N ,
while the others are finite in the limit N →∞.
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13.5.1 Fragmented condensates

In bulk systems, one usually regards Bose–Einstein condensation as being
characterized by the macroscopic occupation of one single-particle state.
As a simple example of a more complicated situation in which two single-
particle states are macroscopically occupied, consider atoms in two potential
wells so far apart that the wave functions of particles in the two traps do not
overlap. If there are N1 particles in the ground state of the first well, and
N2 in the ground state of the second one, two single-particle states, one in
each well, are macroscopically occupied. The state is given by Eq. (13.20),
and the density matrix for it is

ρ(r, r′) = N1ψ
∗
1(r

′)ψ1(r) +N2ψ
∗
2(r

′)ψ2(r), (13.55)

which has two large eigenvalues, assuming N1 and N2 are both large. Here
ψ1(r) and ψ2(r) are the ground-state single-particle wave functions for the
two wells.

One may ask whether there are more general condensates with properties
similar to the two-well system considered above. One example arose in
studies of possible Bose–Einstein condensation of excitons [21], but it is of
interest more generally. The energy of a uniform system of bosons in the
Hartree–Fock approximation, Eq. (8.74), is

E =
∑
p

ε0pNp +
U0

2V
N(N − 1) +

U0

2V

∑
p,p′(p�=p′)

NpNp′ . (13.56)

This shows that for a repulsive interaction the lowest-energy state of the
system has all particles in the zero-momentum state, since the Fock term,
the last term in (13.56), can only increase the energy. However, for an
attractive interaction the Fock term, which is absent if all particles are in
the same state, lowers the energy, rather than raises it as it does for repulsive
forces. The interaction energy is minimized by distributing the particles over
as many states as possible [21].4 Nozières and Saint James referred to such
a state as a fragmented condensate. However, they argued that fragmented
condensates are not physically relevant for bulk matter because such states
would be unstable with respect to collapse.

Another example of a fragmented condensate is the ground state of the
dilute spin-1 Bose gas with antiferromagnetic interactions. This problem
can be solved exactly, as we have seen in Sec. 12.2.2. The ground state for
N particles is N/2 pairs of atoms, each pair having zero angular momen-
tum. All particles have zero kinetic energy. The pairing to zero total spin
4 Note that according to Eq. (8.75) the interaction energy is minimized for U0 < 0, when

∑
p N2

p

is made as small as possible.
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is physically understandable since the energy due to the antiferromagnetic
interaction is minimized by aligning the spins of a pair of atoms oppositely.
The ground state is

|Ψ〉 ∝ (Â†)N/2|0〉, (13.57)

where Â is given by (12.57). This state cannot be written in the form
(α̂†)N |0〉, where α̂† is the creation operator for an atom in some state, and
therefore it is quite different from the usual Bose–Einstein condensate of
atoms in the same internal state. Rather, it is a Bose–Einstein condensate
of pairs of atoms in the state with zero momentum. The state resembles
in this respect the ground state of a BCS superconductor, but whereas the
two electrons in a pair in a superconductor are correlated in space, the two
bosons in a pair are not. The one-particle density matrix for the original
bosons has three eigenvalues equal to N/3, and therefore the state is a
fragmented condensate (Problem 13.2).

The study of rotating Bose gases in traps has brought to light a number
of other examples of fragmented condensates [22]. The simplest is the Bose
gas with attractive interactions in a harmonic trap with an axis of symme-
try. In the lowest state with a given angular momentum, all the angular
momentum is carried by the centre-of-mass motion (the dipole mode), while
the internal correlations are the same as in the ground state (see Sec. 9.3.1).
The one-particle density matrix for this state generally has a number of
large eigenvalues, not just one. One might be tempted to regard it as a
fragmented condensate, but since the internal correlations are identical with
those in the ground state, this conclusion is surprising. Recently it has been
shown that a one-particle density matrix for this state defined using coordi-
nates of particles relative to the centre of mass, rather than the coordinates
relative to an origin fixed in space, has a single macroscopic eigenvalue [23].
This indicates that caution is required in formulating a criterion for Bose–
Einstein condensation. It is also noteworthy that in a number of cases for
which a fragmented condensate is more favourable than one with a single
macroscopically-occupied state, the energy difference between the two states
is of order 1/N compared with the total energy, and consequently the cor-
relations in the fragmented condensate are very delicate.

The examples given above illustrate that Bose–Einstein condensation is
a many-faceted phenomenon. The bosons that condense may be single par-
ticles, composite bosons made up of a pair of bosonic atoms, as in a gas
of spin-1 bosons with antiferromagnetic interaction, or pairs of fermions, as
in a superconductor. In addition, the eigenvalues of the one-particle den-
sity matrix for particles under rotation in a harmonic trap depend on the
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coordinates used. The above discussion indicates how the study of dilute
Bose gases has deepened our understanding of some fundamental theoretical
issues in Bose–Einstein condensation.

Problems

Problem 13.1 Show that in the Hartree–Fock approximation the three-
particle correlation function Eq. (13.42) is given by

g3(0) = n3
0 + 9n2

0nex + 18n0n
2
ex + 6n3

ex.

Problem 13.2 Consider the ground state of an even number of spin-1
bosons with antiferromagnetic interactions for zero total spin. The state is
given by (13.57). Show that the eigenvalues of the single-particle density
matrix are N/3.

Problem 13.3 In the electric field created by two opposed laser beams of
the same frequency ω and the same polarization propagating in the ±z di-
rections, the magnitude of the electric field varies as E0 cosω(t− t0) cos qz.
What is the effective potential acting on an atom? [Hint: Recall the re-
sults from Secs. 3.3 and 4.2.] Treating this potential as small, calculate
the response of a uniform non-interacting Bose–Einstein condensate when
the electric field is switched on at t = t0 and switched off at t = t0 + τ ,
and show that the magnitude of the density wave induced in the condensate
varies periodically with τ . Interpret your result for small τ in terms of phase
imprinting and the normal modes of the condensate.
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14

Fermions

The laser cooling mechanisms described in Chapter 4 operate irrespective
of the statistics of the atom, and they can therefore be used to cool Fermi
species. The statistics of a neutral atom is determined by the number of
neutrons in the nucleus, which must be odd for a fermionic atom. Since
alkali atoms have odd atomic number Z, their fermionic isotopes have even
mass number A. Such isotopes are relatively less abundant than those with
odd A since they have both an unpaired neutron and an unpaired proton,
which increases their energy by virtue of the odd–even effect. To date, 40K
[1] and 6Li atoms [2] have been cooled to about one-quarter of the Fermi
temperature.

In the classical limit, at low densities and/or high temperatures, clouds of
fermions and bosons behave alike. The factor governing the importance of
quantum degeneracy is the phase-space density % introduced in Eq. (2.24),
and in the classical limit % � 1. When % becomes comparable with unity,
gases become degenerate: bosons condense in the lowest single-particle state,
while fermions tend towards a state with a filled Fermi sea. As one would
expect on dimensional grounds, the degeneracy temperature for fermions –
the Fermi temperature TF – is given by the same expression as the Bose–
Einstein transition temperature for bosons, apart from a numerical factor
of order unity.

As we described in Chapter 4, laser cooling alone is insufficient to achieve
degeneracy in dilute gases, and it must be followed by evaporative cool-
ing. The elastic collision rate, which governs the effectiveness of evaporative
cooling, behaves differently for fermions and bosons when gases become de-
generate. For identical fermions, the requirement of antisymmetry of the
wave function forces the scattering cross section to vanish at low energy
(see Eq. (5.23)), and therefore evaporative cooling with a single species of
fermion, with all atoms in the same internal state, cannot work. This dif-
ficulty may be overcome by using a mixture of two types of atoms, either
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two different fermions, which could be different hyperfine states of the same
fermionic isotope, or a boson and a fermion. In the experiments on 40K,
the two species were the two hyperfine states |9/2, 9/2〉 and |9/2, 7/2〉 of the
atom [1], and both species were evaporated. In the lithium experiments [2],
the second component was the boson 7Li. The 6Li atoms were cooled by
collisions with 7Li atoms which were cooled evaporatively, a process referred
to as sympathetic cooling.

The rate of collisions is influenced not only by the statistics of the atoms,
but also by the degree of degeneracy. Due to stimulated emission, degeneracy
increases collision rates for bosons. This is expressed by factors 1 + fp′ for
final states in the expressions for rates of processes. For fermions the sign of
the effect is opposite, since the corresponding factors are 1−fp′ , which shows
that transitions to occupied final states are blocked by the Pauli exclusion
principle. Consequently, it becomes increasingly difficult to cool fermions
by evaporation or by collisions with a second component when the fermions
become degenerate.

In this chapter we describe selected topics in the physics of trapped
Fermi gases. We begin with equilibrium properties of a trapped gas of
non-interacting fermions in Sec. 14.1. In Sec. 14.2 we consider interactions,
and demonstrate that under most conditions they have little effect on ei-
ther static or dynamic properties of trapped fermions. However, there are
conditions under which the effects of interactions can be large. One of the
exciting possibilities is that a gaseous mixture of two sorts of fermions with
an attractive interaction between the two species could undergo a transition
to a superfluid phase similar to that for electrons in metallic superconduc-
tors. One promising candidate is 6Li, for which the two-body interaction in
the electronic triplet state is large and negative, see Sec. 5.5.1. For other
species, Feshbach resonances may make it possible to tune the interaction to
a large, negative value. In Sec. 14.3 we calculate the transition temperature
to the superfluid phase, and the gap in the excitation spectrum. Section 14.4
deals with mixtures of bosons and fermions, and we discuss the interaction
between fermions mediated by excitations in the boson gas. The study of
collective modes is a possible experimental probe of superfluidity in Fermi
gases, and in Sec. 14.5 we give a brief introduction to collective modes in
the superfluid at zero temperature.

14.1 Equilibrium properties

We begin by considering N fermions in the same internal state. The kinetic
energy due to the Fermi motion which results from the requirement that
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no two particles occupy any single-particle state gives a major contribution
to the total energy. Interactions are essentially absent at low temperature
because there is no s-wave scattering for two fermions in the same internal
state. This is in marked contrast to a Bose–Einstein condensate, for which
the interaction energy dominates the kinetic energy under most experimental
conditions. A very good first approximation to the properties of trapped
Fermi gases may be obtained by treating the fermions as non-interacting
[3].

In Sec. 2.1.1 we introduced the function G(ε), the number of states with
energy less than ε. In the ground state of the system all states with energy
less than the zero-temperature chemical potential are occupied, while those
with higher energy are empty. Since each state can accommodate only one
particle we have

G(µ) = N, (14.1)

where µ denotes the zero-temperature chemical potential. For a power-law
density of states, g(ε) = Cαε

α−1, the relation (14.1) yields

g(µ) =
αN

µ
. (14.2)

For a particle in a box (α = 3/2), the total number of states with energy
less than ε is given by Eq. (2.3), G(ε) = V (2mε)3/2/6π2

�
3. According

to (14.1) the Fermi energy, which equals the chemical potential at zero
temperature, and the particle number are therefore related by the condition

V
(2mεF)3/2

6π2�3
= N, (14.3)

and the Fermi temperature TF = εF/k is given by

kTF =
(6π2)2/3

2
�

2

m
n2/3 ≈ 7.596

�
2

m
n2/3. (14.4)

The density of states g(ε) is given by Eq. (2.5). We introduce the density of
states per unit volume by N(ε) = g(ε)/V , which is

N(ε) =
g(ε)
V

=
m3/2ε1/2√

2π2�3
(14.5)

and therefore at the Fermi energy it is

N(εF) =
g(εF)
V

=
3n
2εF
. (14.6)

in agreement with the general relation (14.2).



364 Fermions

For a three-dimensional harmonic trap, the total number of states with
energy less than ε is given by Eq. (2.9),

G(ε) =
1
6

( ε
�ω̄

)3
, (14.7)

where ω̄3 = ω1ω2ω3, and from (14.1) we then obtain the chemical potential
µ and the equivalent Fermi temperature TF as

µ = kTF = (6N)1/3�ω̄. (14.8)

A very good approximation for the density distribution of a trapped cloud
of fermions in its ground state may be obtained by use of the Thomas–
Fermi approximation, which we applied to bosons in Sec. 6.2.2. According
to this semi-classical approximation, the properties of the gas at a point r
are assumed to be those of a uniform gas having a density equal to the local
density n(r). The Fermi wave number kF(r) is related to the density by the
relation for a homogeneous gas,

n(r) =
k3

F(r)
6π2

, (14.9)

and the local Fermi energy εF(r) is given by

εF(r) =
�

2k2
F(r)

2m
. (14.10)

The condition for equilibrium is that the energy required to add a particle
at any point inside the cloud be the same everywhere. This energy is the
sum of the local Fermi energy and the potential energy due to the trap, and
it is equal to the chemical potential of the system,

�
2k2

F(r)
2m

+ V (r) = µ. (14.11)

Note that the chemical potential is equal to the value of the local Fermi en-
ergy in the centre of the cloud, µ = εF(0). The density profile corresponding
to (14.11) is thus

n(r) =
1

6π2

{
2m
�2

[µ− V (r)]
}3/2

, (14.12)

if V (r) < µ and zero otherwise. In a cloud of fermions the density profile
is therefore more concentrated towards the centre than it is for a cloud of
bosons, for which the density varies as µ−V (r) (Eq. (6.31)). The boundary
of the cloud is determined by the condition V (r) = µ. Therefore for an
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anisotropic harmonic-oscillator potential of the form (2.7) the cloud extends
to distances R1, R2 and R3 along the three axes of the trap, where

R2
i =

2µ
mω2

i

, i = 1, 2, 3, (14.13)

and in general the cloud is aspherical.
As a measure of the linear dimensions of the cloud we use R̄ =

(R1R2R3)1/3, the harmonic mean of the Ri. This may be estimated from
(14.8) and (14.13) to be

R̄ = 481/6N1/6ā ≈ 1.906N1/6ā, (14.14)

where ā = (�/mω̄)1/2. By contrast, the size of a cloud of bosons depends
on the strength of the interaction, and ranges from ā for Na/ā � 1 to
approximately 151/5(Na/ā)1/5ā for Na/ā � 1. For typical trap parameters
and scattering lengths, a cloud of fermions is therefore generally a few times
larger than one with the same number of bosons.

The total number of particles is obtained by integrating the density over
the volume of the cloud, and one finds

N =
π2

8
n(0)R̄3, (14.15)

or

n(0) =
8
π2

N

R̄3
, (14.16)

where n(0) is the density at the centre of the cloud. Thus

kF(0) =
(48N)1/3

R̄
= 481/6N

1/6

ā
≈ 1.906

N1/6

ā
, (14.17)

which shows that the maximum wave number is of order the average inverse
interparticle separation, as in a homogeneous gas. The momentum distri-
bution is isotropic as a consequence of the isotropy in momentum space of
the single-particle kinetic energy p2/2m (Problem 14.1).

The Thomas–Fermi approximation for equilibrium properties of clouds
of fermions is valid provided the Fermi wavelength is small compared with
the dimensions of the cloud, or kF(0)Ri ∼ N1/3 � 1. This condition is
generally less restrictive than the corresponding one for bosons, Na/ā� 1.
The Thomas–Fermi approximation fails at the surface, and it is left as a
problem to evaluate the thickness of this region (Problem 14.2).

We turn now to thermodynamic properties. The distribution function is



366 Fermions

given by the Fermi function1

f =
1

e(ε−µ)/kT + 1
, (14.18)

and the chemical potential µ depends on temperature. The total energy E
is therefore given by

E(T ) =
∫ ∞

0
dεεg(ε)f(ε), (14.19)

where g(ε) is the single-particle density of states. We again consider power-
law densities of states g(ε) = Cαε

α−1. At zero temperature the distribution
function reduces to a step function, and one finds E(0) = [α/(α+ 1)]Nµ,
where µ is given by (14.8). Therefore for fermions in a three-dimensional
harmonic trap

E(0) =
3
4
Nµ, (14.20)

while for particles in a box (α = 3/2) the numerical coefficient is 3/5.
Properties of the system at temperatures less than the Fermi tempera-

ture may be estimated by carrying out a low-temperature expansion in the
standard way. For the energy one finds the well-known result

E � E(0) +
π2

6
g(µ)(kT )2, (14.21)

where µ is the zero-temperature chemical potential, given by Eq. (14.1).
For temperatures high compared with the Fermi temperature one may cal-

culate thermodynamic properties by making high-temperature expansions,
as we did for bosons in Sec. 2.4.2. The energy E tends towards its classical
value αNkT , as it does for bosons, and the first correction due to degeneracy
has the same magnitude as that for bosons, but the opposite sign.

14.2 Effects of interactions

As we have argued above, interactions have essentially no effect on low-
temperature properties of dilute Fermi systems if all particles are in the
same internal state. However, they can play a role for a mixture of two
kinds of fermions, but their effects are generally small. Consider as an
example a uniform gas containing equal densities of two kinds of fermions,
which we assume to have the same mass. The kinetic energy per particle
is of order the Fermi energy εF = (�kF)2/2m. The interaction energy per
1 In this chapter all distribution functions are equilibrium ones, so we shall denote them by f

rather than f0.
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particle is of order nU0, where n is the particle density for one component
and U0 = 4π�

2a/m is the effective interaction between two unlike fermions,
a being the corresponding scattering length. Since the density is given by
n = k3

F/6π
2, the ratio of the interaction energy to the Fermi energy is

nU0

εF
=

4
3π
kFa, (14.22)

which is of order the scattering length divided by the interparticle spacing.
This is typically ∼ 10−2. For two 6Li atoms in a triplet electronic state
the scattering length is negative and exceptionally large in magnitude, and
the ratio can be of order 10−1. An equivalent dimensionless measure of the
coupling strength is N(εF)U0 = 3nU0/2εF. For trapped clouds, the Fermi
wave number is of order N1/6/ā, and therefore the ratio of the interaction
energy to the Fermi energy is of order N1/6a/ā. This dimensionless quantity
is familiar from Sec. 11.1, where it was shown to give the ratio of interac-
tion energy to kinetic energy for a Bose gas at a temperature of order Tc.
The fact that it determines the ratio of these two energies also for Fermi
systems at low temperatures reflects the similarity between the momentum
distribution for a Bose gas near Tc and that for a Fermi gas at or below
the Fermi temperature. We therefore expect particle interactions to have
little influence on thermodynamic properties of trapped clouds of fermions,
except when the magnitude of the scattering length is exceptionally large.

Equilibrium size and collective modes

Let us first consider the equilibrium size of a cloud of fermions in a harmonic
trap. For simplicity, we neglect the anisotropy of the potential and take it
to be of the form V (r) = mω2

0r
2/2. If the spatial extent of the cloud

is ∼ R, the potential energy per particle is of order mω2
0R

2/2, while the
kinetic energy per particle is of order N2/3

�
2/2mR2, according to (14.10)

and (14.17). Observe that this kinetic energy is a factor N2/3 larger than
the kinetic energy ∼ �

2/2mR2 for a cloud of condensed bosons of the same
size. In the absence of interactions the total energy thus varies as N2/3/R2

at small radii and as R2 at large radii, with a minimum when R is of order
N1/6(�/mω0)1/2 = N1/6aosc, in agreement with (14.14).

Let us now consider the effect of interactions. If the cloud contains an
equal number N of each of two fermion species, the interaction energy per
particle is of order U0N/R

3. As discussed for bosons in Sec. 6.2, interactions
shift the equilibrium size of the cloud, tending to increase it for repulsive
interactions and reduce it for attractive ones. For fermions the shift is
generally small, since the ratio of the interaction energy to the kinetic energy
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is of order N1/6a/aosc, as argued above. From these considerations it is
natural to expect that interactions will have little effect on collective modes.
This may be demonstrated explicitly by calculating the frequency of the
breathing mode of a cloud containing equal numbers of two different fermion
species of equal mass in an isotropic harmonic trap. The method of collective
coordinates described in Sec. 7.3.3 may be applied to fermions if one works in
terms of the density distribution rather than the condensate wave function.
We parametrize the density distribution n(r) for a single species as

n(r) =
AN

R3
h(r/R), (14.23)

where A, a pure number, is a normalization constant. The quantity corre-
sponding to the zero-point energy Ezp given in (7.97) is the kinetic energy.
Due to the Pauli exclusion principle, particles occupy excited single-particle
states and, consequently, there is a kinetic contribution to the total energy.
We may estimate this energy using the Thomas–Fermi approximation. The
energy per particle for a free Fermi gas scales as the Fermi energy, which
varies as n2/3, and therefore the contribution to the total energy scales as
R−2, just as does the kinetic energy of a condensed cloud of bosons. The
calculation of the frequency of the breathing mode goes through as before,
with the kinetic energy due to the Pauli principle replacing the zero-point
energy. The expression (7.113) for the frequency of the monopole mode does
not contain the zero-point energy explicitly, and it is therefore also valid for
clouds of fermions:

ω2 = 4ω2
0

[
1 +

3
8
Eint(R0)
Eosc(R0)

]
. (14.24)

This result was earlier derived from sum rules in Ref. [4].
The ratio Eint/Eosc is easily calculated within the Thomas–Fermi approx-

imation, for which the density profile is given by (14.12), since

Eint = U0

∫
drn2(r), (14.25)

the density of each species being n(r). The energy due to the trap is

Eosc = mω2
0

∫
drr2n(r). (14.26)

Apart from a numerical constant, the ratio of the two energies is equal to
n(0)U0/mω

2
0R

2 ≈ N1/6a/aosc. Thus

ω2 = 4ω2
0

(
1 + c1N1/6 a

aosc

)
, (14.27)
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where c1 is a numerical constant to be determined in Problem 14.5. The
result (14.27) shows that interactions have little effect on mode frequencies.

According to Eq. (14.27), frequencies of collective modes in a trap depend
linearly on the interaction strength for N1/6|a| � aosc. This is to be con-
trasted with the situation for homogeneous gases, where a weak repulsive
interaction between two species of fermions (say, spin-up and spin-down)
of the same density gives rise to the zero-sound mode. The velocity of zero
sound differs from the Fermi velocity vF = pF/m by an amount proportional
to vF exp[−1/N(εF)U0], which is exponentially small for weak coupling. Here
N(εF) is the density of states (for one species) per unit volume at the Fermi
energy. The reason for this qualitative difference is that the strong degen-
eracy of the frequencies for single-particle motion in a harmonic trap leads
to larger collective effects.

Stability of uniform matter

If interactions are sufficiently strong, a uniform mixture of fermions may
be unstable. To investigate the problem quantitatively we use the stability
conditions (12.10) and (12.11). The energy density of a uniform mixture of
two kinds of fermions, labelled a and b, is given in the Hartree approximation
by

E =
3
5
naεFa +

3
5
nbεFb + U0nanb, (14.28)

where ni is the density of component i(= a, b), εFi is the Fermi energy,
and U0 is the effective interaction between two unlike atoms. The stability
conditions (12.10) are always satisfied, because ∂2E/∂n2

i = 1/Ni(εFi), where
Ni(ε) is the density of states per unit volume (14.5) for species i at energy
ε. The stability condition (12.11) is

1
Na(εFa)Nb(εFb)

> U2
0 . (14.29)

For a mixture with equal densities of two species having the same mass,
the densities of states occurring in Eq. (14.29) are both equal to N(εF) =
mkF/2π2

�
2. The condition (14.29) then becomes

N(εF)|U0| =
2
π
kF|a| < 1. (14.30)

This approximation predicts that for an attractive interaction the mixture
becomes unstable with respect to collapse if a < −π/2kF, while for repulsive
interactions it becomes unstable with respect to phase separation if a >
π/2kF. However, when N(εF)|U0| becomes comparable with unity the mean-
field approach becomes invalid, and the properties of a mixture of fermions
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with N(εF)|U0| ∼ 1 is at present an open problem. We shall comment more
on this aspect in the next section.

14.3 Superfluidity

While the effects of particle interactions are generally small, they can be
dramatic if the effective interaction is attractive. The gas is then predicted
to undergo a transition to a superfluid state in which atoms are paired in
the same way as electrons are in superconducting metals. The basic theory
of the state was developed by Bardeen, Cooper, and Schrieffer (BCS) [5],
and it has been applied widely to atomic nuclei and liquid 3He as well as to
metallic superconductors. It was used to estimate transition temperatures
of dilute atomic vapours in Ref. [6].

The properties of mixtures of dilute Fermi gases with attractive inter-
actions are of interest in a number of contexts other than that of atomic
vapours. One of these is in nuclear physics and astrophysics, where dilute
mixtures of different sorts of fermions (neutrons and protons with two spin
states each) are encountered in the outer parts of atomic nuclei and in the
crusts of neutron stars [7, 8]. Another is in addressing the question of how,
as the strength of an attractive interaction is increased, the properties of
a Fermi system change from those of a BCS superfluid for weak coupling
to those of a system of diatomic (bosonic) molecules [9]. The possibility of
altering the densities of components and the effective interaction between
them indicates that dilute atomic gases may be useful systems with which
to explore this question experimentally.

A rough estimate of the transition temperature may be obtained by using
a simplified model, in which one assumes the interaction between fermions
to be a constant −|U | for states with energies within Ec of the Fermi energy,
and zero otherwise. The transition temperature is predicted to be given in
order of magnitude by

kTc ∼ Ece
−1/N(εF)|U |. (14.31)

For electrons in metals, the attractive interaction is a consequence of ex-
change of phonons, and the cut-off energy Ec is comparable with the maxi-
mum energy of an acoustic phonon �ωD, where ωD is the Debye frequency.
In dilute gases, the dominant part of the interaction is the direct interaction
between atoms. The effective interaction between particles at the Fermi sur-
face is given by the usual pseudopotential result, and thus for U we take U0.
Since, generally, the interaction between atoms is not strongly dependent
on energy, we take the cut-off to be the energy scale over which the density
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of states varies, namely εF. This leads to the estimate

kTc ∼ εFe−1/N(εF)|U0|. (14.32)

Later we shall confirm this result and evaluate the numerical coefficient.
The dimensionless interaction strength λ = N(εF)|U0| at the centre of a

harmonic trap may be written as

λ = N(εF)|U0| =
2
π
kF(0)|a| ≈ 1.214

N1/6|a|
ā

. (14.33)

Since |a| is generally much less than ā, λ is small, and estimated transition
temperatures are therefore much less than the Fermi temperature.

In the remaining part of this section we describe the quantitative theory
of the condensed state. We first calculate the temperature of the transition
to the condensed state. For two-body scattering in vacuo, the existence of
a bound state gives rise to a divergence in the T matrix at the energy of the
state. For example, a large, positive scattering length indicates that there
is a bound state at a small negative energy. Similarly, for two particles in
a medium, the onset of pairing is signalled by a divergence in the two-body
scattering, and we calculate the transition temperature by determining when
the scattering of two fermions in the medium becomes singular. Following
that, we describe how to generalize Bogoliubov’s method for bosons to the
condensed state of fermions. Subsequently, we demonstrate how induced
interactions affect estimates of properties of the condensed state.

14.3.1 Transition temperature

To understand the origin of the pairing phenomenon we investigate the scat-
tering of two fermions in a uniform Fermi gas. In Sec. 5.2.1 we studied scat-
tering of two particles in vacuo, and we now extend this treatment to take
into account the effects of other fermions. Since there is no scattering at low
energies for fermions in the same internal state, we consider a mixture of
two kinds of fermions, which we denote by a and b. As described in the in-
troduction to this chapter, the two fermions may be different internal states
of the same isotope. For simplicity, we shall assume that the two species
have the same mass, and that their densities are equal. We shall denote the
common Fermi wave number by kF.

The medium has a number of effects on the scattering process. One is that
the energies of particles are shifted by the mean field of the other particles.
In a dilute gas, this effect is independent of the momentum of a particle.
Consequently, the equation for the T matrix will be unaltered, provided that
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Fig. 14.1. Diagrams representing two-particle (a) and two-hole (b) intermediate
states in two-particle scattering. The thin and thick lines correspond to the two
kinds of fermions, and the dashed lines to the bare interaction. Time is understood
to advance from left to right. Consequently, internal lines directed to the left
represent holes, and those directed to the right, particles.

energies are measured relative to the mean-field energy of the two incoming
particles. A second effect is that some states are occupied, and therefore,
because of the Pauli exclusion principle, these states are unavailable as in-
termediate states in the scattering process. In the Lippmann–Schwinger
equation (5.30) the intermediate state has an a particle with momentum p′′

and a b particle with momentum −p′′. This process is represented diagram-
matically in Fig. 14.1(a). The probabilities that these states are unoccupied
are 1 − fp′′ and 1 − f−p′′ , and therefore the contribution from these inter-
mediate states must include the blocking factors. They are the analogues of
the factors 1 + f that enhance rates of processes for bosons. Generally the
distribution functions for the two species are different, but for the situation
we have chosen they are the same, and therefore we omit species labels on
the distribution functions. Modifying the Lippmann–Schwinger equation in
this way gives

T (p′,p;E) = U(p′,p) +
1
V

∑
p′′

U(p′,p′′)
(1− fp′′)(1− f−p′′)
E − 2ε0p′′ + iδ

T (p′′,p;E).

(14.34)
Here ε0p = p2/2m is the free-particle energy, and we work in terms of particle
momenta, rather than wave vectors as we did in Sec. 5.2.1.

A third effect of the medium is that interactions between particles can ini-
tially excite two fermions from states in the Fermi sea to states outside, or,
in other words, two particles and two holes are created. The two holes then
annihilate with the two incoming particles. This process is represented in
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Fig. 14.1(b). The contribution to the Lippmann–Schwinger equation from
this process differs from that for two-particle intermediate states in two
respects. First, holes can be created only in occupied states, and the prob-
ability of this is f±p′′ for the two states. Thus the thermal factors for each
state are f±p′′ instead of 1−f±p′′ . Second, the energy to create a hole is the
negative of that for a particle and, consequently, the energy denominator
changes sign. The equation including both particle–particle and hole–hole
intermediate states is

T (p′,p;E)

= U(p′,p) +
1
V

∑
p′′

U(p′,p′′)
(1− fp′′)(1− f−p′′)− fp′′f−p′′

E − 2ε0p′′ + iδ
T (p′′,p;E)

= U(p′,p) +
1
V

∑
p′′

U(p′,p′′)
1− fp′′ − f−p′′

E − 2ε0p′′ + iδ
T (p′′,p;E). (14.35)

This result may be derived more rigourously by using finite-temperature
field-theoretic methods [10].

Equation (14.35) shows that the greatest effect of intermediate states is
achieved if E = 2µ = p2F/m, since the sign of 1− fp′′ − f−p′′ is then always
opposite that of the energy denominator and, consequently, all contributions
to the sum have the same sign. For other choices of the energy there are
contributions of both signs, and some cancellation occurs. In future we shall
therefore put the energy equal to 2µ.

When the T matrix diverges, the first term on the right hand side of Eq.
(14.35) may be neglected, and one finds

T (p′,p; 2µ) = − 1
V

∑
p′′

U(p′,p′′)
1− 2fp′′

2ξp′′
T (p′′,p; 2µ), (14.36)

where ξp = p2/2m−µ. It is no longer necessary to include the infinitesimal
imaginary part since the numerator vanishes at the Fermi surface. The right
hand side depends on temperature through the Fermi function that occurs
there, and this equation determines the temperature at which the scattering
diverges.

Eliminating the bare interaction

Atomic potentials are generally strong, and they have appreciable matrix
elements for transitions to states at energies much greater than the Fermi
energy. If one replaces the bare interaction by a constant, the sum on
the right hand side of Eq. (14.36) for momenta less than some cut-off, pc ,
diverges as pc → ∞. To remove this dependence on the high momentum
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states we eliminate the bare potential in favour of the pseudopotential, as
was done in our discussion for bosons. We write Eq. (14.36) formally as

T = UGMT, (14.37)

where GM is the propagator for two particles, the subscript indicating that
it applies to the medium. The T matrix in free space and for energy E = 2µ,
which we here denote by T0, is given by

T0(p′,p; 2µ) = U(p′,p)− 1
V

∑
p′′

U(p′,p′′)
1

2ξp′′ − iδ T0(p′′,p; 2µ), (14.38)

which we write formally as

T0 = U + UG0T0, (14.39)

where G0 corresponds to propagation of two free particles in vacuo. The
infinitesimal imaginary part takes into account real scattering to intermedi-
ate states having the same energy as the initial state. It gives contributions
proportional to the density of states, which varies as pF. These are small
at low densities. Thus we shall neglect them and interpret integrals as
principal-value ones. Solving for U , we find

U = T0(1 +G0T0)−1 = (1 + T0G0)−1T0, (14.40)

where the second form follows from using an identity similar to that used in
deriving Eq. (5.110).

Equation (14.37) may therefore be rewritten as

T = (1 + T0G0)−1T0GMT. (14.41)

Multiplying on the left by 1 + T0G0 one finds

T = T0(GM −G0)T, (14.42)

or

T (p′,p; 2µ) =
1
V

∑
p′′

T0(p′,p′′; 2µ)
fp′′

ξp′′
T (p′′,p; 2µ). (14.43)

The quantity fp′′/ξp′′ is appreciable only for momenta less than or slightly
above the Fermi momentum. This is because contributions from high-
momentum states have now been incorporated in the effective interaction.
We may therefore replace T0 by its value for zero energy and zero momen-
tum, U0 = 4π�

2a/m. Consequently T also depends weakly on momentum
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for momenta of order pF, and Eq. (14.43) reduces to

U0

V

∑
p

fp
ξp

= U0

∫ ∞

0
dεN(ε)

f(ε)
ε− µ = 1, (14.44)

where f(ε) = {exp[(ε− µ)/kT ] + 1}−1 and N(ε) is the density of states per
unit volume for a single species, which is given by (14.5).

Analytical results

At zero temperature the integral diverges logarithmically as ε → µ, and
at non-zero temperatures it is cut off by the Fermi function at |ξp| ∼ kT .
Thus for an attractive interaction (U0 < 0) there is always a temperature
Tc at which Eq. (14.44) is satisfied. Introducing the dimensionless variables
x = ε/µ and y = µ/kTc, we may write Eq. (14.44) as

1
N(εF)|U0|

= −
∫ ∞

0
dx
x1/2

x− 1
1

e(x−1)y + 1
. (14.45)

Since N(εF)|U0| � 1, transition temperatures are small compared with the
Fermi temperature, so we now evaluate the integral in (14.45) at low tem-
peratures, kTc � µ, which implies that µ � εF. We rewrite the integrand
using the identity

x1/2

x− 1
=

1
x1/2 + 1

+
1

x− 1
. (14.46)

The first term in (14.46) has no singularity at the Fermi surface in the limit
of zero temperature, and the integral containing it may be replaced by its
value at zero temperature (y →∞), which is∫ 1

0

dx

x1/2 + 1
= 2(1− ln 2). (14.47)

The integrand involving the second term in Eq. (14.46) has a singularity at
the Fermi surface, and the integral must be interpreted as a principal value
one. We divide the range of integration into two parts, one from 0 to 1− δ,
and the second from 1 + δ to infinity, where δ is a small quantity which we
allow to tend to zero in the end. Integrating by parts and allowing the lower
limit of integration to tend to −∞ since Tc � TF, we find∫ ∞

0

dx

x− 1
1

e(x−1)y + 1
=

∫ ∞

0
dz ln(z/y)

1
2 cosh2 z/2

= − ln
2yγ
π
. (14.48)

Here γ = eC ≈ 1.781, where C is Euler’s constant. By adding the contribu-
tions (14.47) and (14.48) one finds that the transition temperature is given
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by

kTc =
8γ
πe2
εFe

−1/N(εF)|U0| ≈ 0.61εFe−1/N(εF)|U0|. (14.49)

This result, which has been obtained by a number of groups working in
different areas of physics [6–9], confirms the qualitative estimates made at
the beginning of this section. However, it is not the final answer because it
neglects the influence of the medium on the interaction between atoms. In
Sec. 12.1.1 we introduced the concept of induced interactions in discussing
the stability of mixtures of bosons, and we now describe induced interactions
in mixtures of fermions. They significantly reduce the transition tempera-
ture.

14.3.2 Induced interactions

In our description of boson–boson mixtures we saw how the interaction be-
tween two species led to an effective interaction between members of the
same species. Likewise the interaction between two fermions is affected by
the other fermions, and thus the interaction between two fermions in the
medium differs from that between two fermions in vacuo. Long ago Gorkov
and Melik-Barkhudarov calculated the transition temperature of a dilute
Fermi gas allowing for this effect [11], and the results are interpreted in sim-
ple physical terms in Ref. [12]. Rather surprisingly, the induced interaction
changes the prefactor in the expression (14.49). Consider an a fermion with
momentum p and a b fermion with momentum −p that scatter to states
with momenta p′ and −p′ respectively. Up to now we have assumed that
this can occur only via the bare two-body interaction between particles.
However, another possibility in a medium is that the incoming a fermion
interacts with a b fermion in the medium with momentum p′′ and scatters
to a state with a b fermion with momentum −p′ and an a fermion with
momentum p + p′ + p′′. The latter particle then interacts with the other
incoming b fermion with momentum −p to give an a fermion with momen-
tum p′ and a b one with momentum p′′. The overall result is the same as for
the original process, since the particle from the medium that participated
in the process is returned to its original state. A diagram illustrating this
process is shown in Fig. 14.2(a), and one for the related process in which
the b particle interacts first with an a particle in the Fermi sea is shown in
Fig. 14.2(b). For systems of charged particles, processes like these screen
the Coulomb interaction.

The change in the effective interaction due to the medium may be cal-
culated by methods analogous to those used to calculate the energy shift
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Fig. 14.2. Diagrams representing contributions to the induced interaction (see text).
The notation is the same as in Fig. 14.1.

and Landau damping of an excitation in a Bose gas in Sec. 10.5.1. Due
to the factor 1/(ε − µ) in the integrand in Eq. (14.44), interactions be-
tween particles close to the Fermi surface play an especially important role
in pairing, and it is sufficient to consider the interaction between particles
with momentum equal to the Fermi momentum and with energies equal
to the chemical potential. The change in the effective interaction may be
calculated by second-order perturbation theory, including the appropriate
thermal factors. It is given by

Uind(p,p′) = − 1
V

∑
p′′

U2
0

[
fp′′(1− fp+p′+p′′)
εp′′ − εp+p′+p′′

+
fp+p′+p′′(1− fp′′)
εp+p′+p′ − εp′′

]

=
∫

dp′′

(2π�)3
U2

0

fp′′ − fp+p′+p′′

εp+p′+p′′ − εp′′
= U2

0L(|p′ + p|). (14.50)

The minus sign in the first of Eqs. (14.50) is necessary because in the process
considered one of the particles in the final state is created before that in the
initial state is destroyed. Expressed in terms of creation and annihilation
operators a†, a, b†, and b for the two species, the effective interaction would
correspond to the combination of operators a†p′b−pb

†
−p′ap for the diagram in

Fig. 14.2(a), and to b†−p′apa
†
p′b−p for Fig. 14.2(b). To get the operators in

the standard order a†p′b
†
−p′b−pap a minus sign is required because fermion

creation and annihilation operators anticommute. Expressed more formally,
the minus sign is due to the fact that the general rules for evaluating dia-
grams for fermions require a factor −fp for every hole line. The quantity
L(q) is the static Lindhard screening function, which occurs in the theory
of the electron gas [13]. It is given by

L(q) =
∫

dp
(2π�)3

fp − fp+q

εp+q − εp
� N(εF)

[
1
2

+
(1− w2)

4w
ln

∣∣∣∣1 + w
1− w

∣∣∣∣
]
, (14.51)
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where w = q/2pF. The temperatures of interest are much less than the Fermi
temperature, and the second expression is the result for T = 0. The Lind-
hard function is the negative of the density–density (or spin–spin) response
function χ(q) for a one-component Fermi gas, L(q) = −χ(q). The medium-
dependent contribution to the interaction is an example of an induced in-
teraction. Its sign is positive, corresponding to a repulsive interaction, and
therefore pairing is suppressed. Solving Eq. (14.36) with the induced inter-
action included as a perturbation, one finds that Tc is given by Eq. (14.49),
but with U0 replaced by U0+<Uind>, where < · · ·> =

∫ 1
−1 . . . d(cos θ)/2 de-

notes an average over the Fermi surface. Here θ is the angle between p and
p′. Thus from Eq. (14.50) one finds

U0 +<Uind> � U0 − U2
0 <χ(q)>, (14.52)

and therefore
1

U0 +<Uind>
� 1
U0

+<χ(q)>. (14.53)

Since p = p′ = pF, one has q2 = 2p2F(1+cos θ). The integral of the Lindhard
function over angles is proportional to∫ 1

0
dw 2w

[
1
2

+
1

4w
(1− w2) ln

1 + w
1− w

]
=

2
3

ln 2 +
1
3

= ln(4e)1/3, (14.54)

and therefore the transition temperature is given by

kTc =
(

2
e

)7/3 γ

π
εFe

−1/N(εF)|U0| ≈ 0.28εFe−1/N(εF)|U0|. (14.55)

The induced interaction thus reduces the transition temperature by a factor
(4e)1/3 ≈ 2.22. An examination of the microscopic processes contributing to
Uind shows that the dominant effect is exchange of ‘spin’ fluctuations, where
by ‘spin’ we mean the variable associated with the species labels a and b
[12]. Such processes suppress pairing in an s state, an effect well established
for magnetic metals and liquid 3He.

14.3.3 The condensed phase

At the temperature Tc the normal Fermi system becomes unstable with re-
spect to formation of pairs, and below that temperature there is a condensate
of pairs in the zero-momentum state. The formation of the pairs in a BCS
state is an intrinsically many-body process, and is not simply the formation
of molecules made up of two fermions. If the simple molecular picture were
correct, molecules would be formed as the temperature is lowered, and when
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their density became high enough they would form a Bose–Einstein conden-
sate in the zero-momentum state. In the BCS picture, pair formation and
condensation of pairs into the state with zero momentum occur at the same
temperature.

To make a quantitative theory of the condensed state we again consider
a uniform gas with equal densities of two species of fermions. The calcula-
tions can be carried out for unequal densities of the two components, but
the transition temperatures are lower for a given total density of particles.
Interactions between like particles play little role in the pairing of unlike
ones, and therefore we neglect these terms. The Hamiltonian for interacting
fermions is

H =
∑
p

ε0p(a
†
pap + b†pbp) +

1
V

∑
pp′q

U(p,p′,q)a†p+qb
†
p′−qbp′ap , (14.56)

where the operators a†, a, b†, and b create and destroy particles of the two
species. Because the two interacting particles belong to different species,
there is no factor of 1/2 in the interaction term, as there would be for a
single species. The Hamiltonian has essentially the same form as for bosons,
except that the creation and annihilation operators obey Fermi commutation
rules

{ap, a†p′} = {bp, b†p′} = δp,p′

and
{ap, bp′} = {a†p, bp′} = {ap, b†p′} = {a†p, b

†
p′} = 0, (14.57)

where {A,B} denotes the anticommutator. As in Sec. 8.2 for bosons, it is
convenient to work with the operator K = H−µN̂ , where µ is the chemical
potential, which is chosen to keep the average number of particles fixed.
This is given by

K =
∑
p

(ε0p−µ)(a†pap+b†pbp)+
1
V

∑
pp′q

U(p,p′,q)a†p+qb
†
p′−qbp′ap . (14.58)

In the dispersion relation for elementary excitations of a Bose system,
the Hartree and Fock terms played an important role. For a dilute Fermi
system, they change the total energy of the system but they have little
influence on pairing. The Hartree and Fock contributions to the energy
of an excitation are independent of momentum. However, the chemical
potential is changed by the same amount, and therefore the energy of an
excitation measured relative to the chemical potential is unaltered. In the
Hartree–Fock approximation, K is shifted by a constant amount which we
shall neglect.
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Elementary excitations

In Chapters 7 and 8 we described the Bogoliubov method for calculating
properties of a gas of bosons, and we now generalize it to describe a conden-
sate of pairs of fermions. For a Bose gas, the Bogoliubov approach amounts
to assuming that the creation and annihilation operators may be written as
a classical part, which is a c number, and a fluctuation term. We now make
an analogous approximation for fermions. However, since the condensate
consists of pairs of fermions, the quantities we assume to have a c-number
part are operators that create or destroy pairs of particles. For a condensate
with total momentum zero, the two fermions that make up a pair must have
equal and opposite momenta. Also they must be in different internal states,
otherwise there is no interaction between them. We therefore write

b−pap = Cp + (b−pap − Cp), (14.59)

where Cp is a c number. Since the relative phases of states whose particle
numbers differ by two is arbitrary, we shall choose it so that Cp is real. As in
the analogous calculations for bosons, we substitute this expression into Eq.
(14.58) and retain only terms with two or fewer creation and annihilation
operators. This leads to

K =
∑
p

(ε0p − µ)(a†pap + b†−pb−p) +
∑
p

∆p(a†pb
†
−p + b−pap)

− 1
V

∑
pp′

U(p,p′)CpCp′ , (14.60)

where we have omitted the Hartree–Fock contribution. Here

∆p =
1
V

∑
p′

U(p,p′)Cp′ (14.61)

and, for simplicity, we omit the final argument in the interaction and write

U(p,−p,p′ − p) = U(p,p′). (14.62)

The quantity Cp must be determined self-consistently, just as the mean
particle distribution function is in Hartree–Fock theory. Thus

Cp = <b−pap> = <a†pb
†
−p>, (14.63)

where < · · ·> denotes an expectation value.
The Hamiltonian now has the same form as that for bosons in the Bogoli-

ubov approximation in Sec. 8.1, and it is a sum of independent terms of the
type,

H = ε0(a†a+ b†b) + ε1(a†b† + ba), (14.64)
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where a = ap and b = b−p satisfy Fermi commutation rules. As in Sec. 8.1,
we introduce new operators α and β defined by

α = ua+ vb† and β = ub− va†, (14.65)

where u and v are real, and demand that they too satisfy Fermi commutation
rules,

{α, α†} = {β, β†} = 1, {α, β†} = {β, α†} = 0. (14.66)

When (14.65) is inserted into (14.66) one obtains the condition

u2 + v2 = 1, (14.67)

which differs from the analogous result (8.17) for bosons only by the sign of
the v2 term. Inverting the transformation (14.65), one finds

a = uα− vβ†, and b = uβ + vα†. (14.68)

The subsequent manipulations follow closely those for bosons. We insert
(14.68) into (14.64), and the result is

H = 2v2ε0 − 2uvε1 + [ε0(u2 − v2) + 2uvε1](α†α+ β†β)

− [ε1(u2 − v2)− 2uvε0](αβ + β†α†). (14.69)

To eliminate the term proportional to αβ+β†α†, we choose u and v so that

ε1(u2 − v2)− 2uvε0 = 0. (14.70)

The condition (14.67) is satisfied by writing

u = cos t, v = sin t, (14.71)

where t is a parameter to be determined. Equation (14.70) then becomes

ε1(cos2 t− sin2 t)− 2ε0 sin t cos t = 0 (14.72)
or

tan 2t =
ε1
ε0
. (14.73)

Solving for u2 − v2 = cos 2t and 2uv = sin 2t, one finds

u2 − v2 =
ε0√
ε20 + ε21

and 2uv =
ε1√
ε20 + ε21

, (14.74)

which on insertion into Eq. (14.69) give the result

H = ε(α†α+ β†β) + ε0 − ε, (14.75)

where

ε =
√
ε20 + ε21. (14.76)
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We choose the positive sign for the square root to ensure that α† and β†

create excitations with positive energy. The excitation energy (14.76) has
the same form as for bosons, Eq. (8.25), except that the ε21 term has the
opposite sign.

To diagonalize the Hamiltonian (14.60) we therefore introduce the opera-
tors

αp = upap + vpb
†
−p and β−p = upb−p − vpa†p. (14.77)

The normalization condition is

u2
p + v2p = 1, (14.78)

and terms of the type αβ or β†α† in the Hamiltonian vanish if we choose

upvp =
∆p

2εp
. (14.79)

Here the excitation energy is given by

ε2p = ∆2
p + ξ2p, (14.80)

where

ξp = ε0p − µ. (14.81)

Close to the Fermi surface, ξp is approximately (p−pF)vF, where vF = pF/m
is the Fermi velocity, and therefore the spectrum exhibits a gap ∆ equal to
∆p for p = pF . Excitations behave as free particles for p− pF � ∆/vF.
The momentum ∆/vF corresponds in Fermi systems to the momentum
ms at which the excitation spectrum for Bose systems changes from be-
ing sound-like to free-particle-like. The length scale �vF/∆, which depends
on temperature, is the characteristic healing length for disturbances in the
Fermi superfluid, and it is the analogue of the length ξ for bosons given by
Eq. (6.62).

The expressions for the coefficients u and v are

u2
p =

1
2

(
1 +

ξp
εp

)
and v2p =

1
2

(
1− ξp

εp

)
. (14.82)

The Hamiltonian (14.60) then assumes the form

K =
∑
p

εp(α†pαp+β†pβp)−
∑
p

(εp−ε0p+µ)− 1
V

∑
pp′

U(p,p′)CpCp′ , (14.83)

which describes non-interacting excitations with energy εp.
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The gap equation

The gap parameter ∆p is determined by inserting the expression for Cp into
Eq. (14.61). Calculating the average in Eq. (14.63) one finds

Cp = < (upβ−p + vpα†p)(upαp − vpβ†−p) >

= −[1− 2f(εp)]
∆p

2εp
, (14.84)

and therefore the equation (14.61) for the gap becomes

∆p = − 1
V

∑
p′

U(p,p′)
1− 2f(εp′)

2εp′
∆p′ , (14.85)

since the thermal averages of the operators for the numbers of excitations
are given by

<α†pαp> = <β†pβp> = f(εp) =
1

exp(εp/kT ) + 1
. (14.86)

At the transition temperature the gap vanishes, and therefore the excita-
tion energy in the denominator in Eq. (14.85) may be replaced by the result
for ∆p = 0, that is εp = |ε0p − µ|. The equation then becomes

∆p = − 1
V

∑
p′

U(p,p′)
1− 2f(|ε0p′ − µ|)

2|ε0p′ − µ|
∆p′

= − 1
V

∑
p′

U(p,p′)
1− 2f(ε0p′ − µ)

2(ε0p′ − µ)
∆p′ , (14.87)

where the latter form follows because [1 − 2f(ε)]/ε is an even function of
ε. The equation is identical with Eq. (14.36), which gives the temperature
at which two-particle scattering in the normal state becomes singular. The
formalism for the condensed state appears somewhat different from that for
the normal one because in the condensed state it is conventional to work
with excitations with positive energy, irrespective of whether the momentum
of the excitation is above or below the Fermi surface. For the normal state,
one usually works with particle-like excitations. These have positive energy
relative to the Fermi energy above the Fermi surface, but negative energy
below. The positive-energy elementary excitations of a normal Fermi system
for momenta below the Fermi surface correspond to creation of a hole, that
is, removal of a particle. As Tc is approached in the condensed state, the
description naturally goes over to one in which excitations in the normal
state are particles for p > pF and holes for p < pF.
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The gap at zero temperature

As an application of the formalism, we determine the gap at T = 0. Again
it is convenient to express the bare interaction in terms of the T matrix for
two-particle scattering in free space. Forgetting the effects of the induced
interaction for a moment, one finds

∆p = −U0

V

∑
p′

[
1

2εp′
− 1

2(ε0p′ − µ)

]
∆p′ . (14.88)

First, we see that ∆p is independent of the direction of p, and therefore it
corresponds to pairing in an s-wave state. Second, since the main contribu-
tions to the integral now come from momenta of order pF, we may replace
the gap by its value at the Fermi surface, which we have denoted by ∆. The
result is

1 = −U0

2V

∑
p

[
1

(ξ2p + ∆2)1/2
− 1
ξp

]

= −U0N(εF)
2

∫ ∞

0
dxx1/2

[
1

[(x− 1)2 + (∆/εF)2]1/2
− 1
x− 1

]
.

(14.89)

As we did when evaluating the integrals in the expression for Tc, we split
the integral into two by writing x1/2 = (x1/2−1)+1. The integral involving
the first term is well behaved for small ∆ and may be evaluated putting
∆ = 0. The second part of the integral may be evaluated directly, and since
∆/εF � 1, one finds

∆ =
8
e2
εFe

−1/N(εF)|U0|. (14.90)

When the induced interaction is included, the gap is reduced by a factor
(4e)−1/3, as is the transition temperature, and thus

∆ =
(

2
e

)7/3

εFe
−1/N(εF)|U0|. (14.91)

The ratio between the zero-temperature gap and the transition temperature
is given by

∆(T = 0)
kTc

=
π

γ
≈ 1.76 . (14.92)

The pairing interaction in dilute gases is different from the phonon-
exchange interaction in metals. The latter extends only over an energy
interval of order the Debye energy �ωD about the Fermi surface, whereas in
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dilute gases the interaction is of importance over a range of energies in excess
of the Fermi energy. Often, when treating superconductivity in metals one
adopts the BCS schematic model, in which there is an attractive interaction
of constant strength for momenta such that εF − �ω0 < ε

0
p < εF + �ω0, and

one neglects the momentum dependence of the density of states. This yields
an energy gap at zero temperature equal to ∆ = 2�ω0 exp (−1/N(εF)|U0|).
To obtain the same results in the schematic model with an effective inter-
action Ũ as from the full treatment given above, the cut-off energy must,
according to (14.90), be chosen to be �ω0 = (4/e2)εF ≈ 0.541εF. In the
weak-coupling limit the relation (14.92) is a general result, which is also
obtained within the BCS schematic model.

The reduction of the energy due to formation of the paired state may be
calculated from the results above, and at zero temperature it is of order
∆2/εF per particle, which is small compared with the energy per particle in
the normal state, which is of order εF. Consequently, the total energy and
pressure are relatively unaffected by the transition, since ∆/εF is expected
to be small.

When the dimensionless coupling parameter N(εF)|U0| becomes compa-
rable with unity it is necessary to take into account higher order effects than
those considered here. Such calculations predict that the maximum tran-
sition temperature will be significantly lower, and generally no more than
about 0.02TF [14]. However, we stress that at present no reliable theory
exists for N(εF)|U0| ∼ 1.

14.4 Boson–fermion mixtures

The experimental techniques that have been developed also open up the pos-
sibility of exploring properties of mixtures of bosons and fermions. These
systems are the dilute analogues of liquid mixtures of 3He and 4He, and
just as the interaction between two 3He atoms is modified by the 4He, the
interaction between two fermions in a dilute gas is modified by the bosons.
The calculation of Tc for two fermion species illustrated how induced inter-
actions can have a marked effect. However, the modification of the effective
interaction there was modest, because for fermions the interaction energy is
generally small compared with the Fermi energy. For mixtures of fermions
and bosons the effects can be much larger, because the boson gas is very
compressible.
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14.4.1 Induced interactions in mixtures

Consider a uniform mixture of a single fermion species of density nF and
bosons of density nB at zero temperature. The energy per unit volume is
given by

E =
1
2
n2

BUBB + nBnFUBF +
3
5
εFnF, (14.93)

where UBB is the effective interaction between two bosons and UBF is that
between a boson and a fermion. Let us now calculate the change in energy
when a long-wavelength, static density fluctuation is imposed on the densi-
ties of the two components, just as we did in deriving the stability condition
for binary boson mixtures in Sec. 12.1.1. The contribution of second order
in the density fluctuations is

δ2E =
1
2

∫
dr

[
2εF
3nF

(δnF)2 + UBB(δnB)2 + 2UBFδnFδnB

]
. (14.94)

We wish to calculate the effect of the response of the bosons to the presence
of the fluctuation in the fermion density. At long wavelengths the Thomas–
Fermi approximation is valid, so in equilibrium the chemical potential µB of
the bosons is constant in space. The chemical potential is given by

µB =
∂E
∂nB

= UBBnB + UBFnF, (14.95)

and therefore in equilibrium the boson and fermion density fluctuations are
related by the expression

δnB = − 1
UBB

δVB, (14.96)

where

δVB = UBFδnF (14.97)

is the change in boson energy induced by the change in fermion density.
Substituting this result into Eq. (14.94) one finds

δ2E =
1
2

∫
dr

(
2εF
3nF

− U
2
BF

UBB

)
(δnF)2. (14.98)

The second term shows that the response of the bosons leads to an extra
contribution to the effective interaction between fermions which is of exactly
the same form as we found in Sec. 12.1.1 for binary boson mixtures.

The origin of the induced interaction is that a fermion density fluctuation
gives rise to a potential UBFδnF acting on a boson. This creates a boson
density fluctuation, which in turn leads to an extra potential UBFδnB acting



14.4 Boson–fermion mixtures 387

on a fermion. To generalize the above calculations to non-zero frequencies
and wave numbers, we use the fact that the response of the bosons is given
in general by

δnB = χB(q, ω)δVB, (14.99)

where χB(q, ω) is the density–density response function for the bosons. Thus
the induced interaction is

Uind(q, ω) = U2
BFχB(q, ω). (14.100)

This result is similar to those discussed in Sec. 14.3.2 for the induced inter-
action between two species of fermions. This interaction is analogous to the
phonon-induced attraction between electrons in metals, and it is attractive
at low frequencies, irrespective of the sign of the boson–fermion interaction.
In a quantum-mechanical treatment, the wave number and frequency of the
density fluctuation are related to the momentum transfer �q and energy
change �ω of the fermion in a scattering process.

In the Bogoliubov approximation, the density–density response function
of the Bose gas is given by (7.38)

χB(q, ω) =
nBq

2

mB(ω2 − ω2
q )
, (14.101)

where the excitation frequencies are the Bogoliubov ones

�ωq =
[
ε0q(ε

0
q + 2nBUBB)

]1/2
. (14.102)

In the static limit, and for q → 0 the response function is χB(q → 0, 0) =
−1/UBB, and therefore the effective interaction reduces to the result

Uind(q → 0, 0) = −U
2
BF

UBB
. (14.103)

The static induced interaction for general wave numbers is

Uind(q, 0) = −U2
BF

nB

nBUBB + �2q2/4mB
. (14.104)

In coordinate space this is a Yukawa, or screened Coulomb, interaction

Uind(r) = −mBnBU
2
BF

π�2

e−
√

2r/ξ

r
, (14.105)

where ξ is the coherence (healing) length for the bosons, given by (6.62),

ξ2 =
�

2

2mBnBUBB
. (14.106)
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A noteworthy feature of the induced interaction is that at long wave-
lengths it is independent of the density of bosons. In addition, its value
−U2

BF/UBB is of the same order of magnitude as a typical bare interaction
if the boson–boson and boson–fermion interactions are of comparable size.
The reason for this is that even though the induced interaction involves two
boson–fermion interactions, the response function for the bosons at long
wavelengths is large, since it is inversely proportional to the boson–boson
interaction. At wave numbers greater than the inverse of the coherence
length for the bosons, the magnitude of the induced interaction is reduced,
since the boson density–density response function for q�1/ξ has a magni-
tude ∼ 2nB/ε

0
q where ε0q = (�q)2/2mB is the free boson energy. The induced

interaction is thus strongest for momentum transfers less than mBsB, where
sB = (nBUBB/mB)1/2 is the sound speed in the boson gas. For momentum
transfers of order the Fermi momentum, the induced interaction is of order
the ‘diluteness parameter’ kFa times the direct interaction if bosons and
fermions have comparable masses and densities, and the scattering lengths
are comparable.

We have calculated the induced interaction between two identical
fermions, but the mechanism also operates between two fermions of dif-
ferent species (for example two different hyperfine states) when mixed with
bosons. When bosons are added to a mixture of two species of fermions, the
induced interaction increases the transition temperature to a BCS superfluid
state [12, 15]. The effect can be appreciable because of the strong induced
interaction for small momentum transfers.

14.5 Collective modes of Fermi superfluids

One issue under current investigation is how to detect superfluidity of a
Fermi gas experimentally. The density and momentum distributions of a
trapped Fermi gas are very similar in the normal and superfluid states,
because the energy difference between the two states is small. Consequently,
the methods used in early experiments to provide evidence of condensation
in dilute Bose gases cannot be employed.

One possibility is to measure low-lying oscillatory modes of the gas. In the
normal state, properties of modes may be determined by expressions similar
to those for bosons, apart from the difference of statistics. If interactions
are unimportant, mode frequencies for a gas in a harmonic trap are sums
of multiples of the oscillator frequencies, Eq. (11.28). When interactions
are taken into account, modes will be damped and their frequencies shifted,
as we have described for bosons in Secs. 11.2–11.3 and for fermions in Sec.
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14.2.1. In a superfluid Fermi system, there are two sorts of excitations.
One is the elementary fermionic excitations whose energies we calculated
from microscopic theory in Sec. 14.3.3. Another class is collective modes
of the condensate, which are bosonic degrees of freedom. These were not
allowed for in the microscopic theory above because we assumed that the
gas was spatially uniform. We now consider the nature of these modes at
zero temperature, first from general considerations based on conservation
laws, and then in terms of microscopic theory.

At zero temperature, a low-frequency collective mode cannot decay by
formation of fermionic excitations because of the gap in their spectrum. For
a boson to be able to decay into fermions, there must be an even number
of the latter in the final state, and therefore the process is forbidden if the
energy �ω of the collective mode is less than twice the gap ∆. In addition,
since no thermal excitations are present, the only relevant degrees of freedom
are those of a perfect fluid, which are the local particle density n and the
local velocity, which we denote by vs, since it corresponds to the velocity of
the superfluid component. The equations of motion for these variables are
the equation of continuity

∂n

∂t
+ ∇·(nvs) = 0, (14.107)

and the Euler equation (7.24), which when linearized is

∂vs

∂t
= − 1

mn
∇p− 1

m
∇V = − 1

m
∇µ− 1

m
∇V. (14.108)

In deriving the second form we have used the Gibbs–Duhem relation at
zero temperature, dp = ndµ, to express small changes in the pressure p
in terms of those in the chemical potential µ. Since this relation is valid
also for a normal Fermi system in the hydrodynamic limit at temperatures
low compared with the Fermi temperature, the equations for that case are
precisely the same [16, 17].

We linearize Eq. (14.107), take its time derivative, and eliminate vs by
using Eq. (14.108), assuming the time dependence to be given by exp(−iωt).
The result is

−mω2δn = ∇·
[
n∇

(
dµ

dn
δn

)]
. (14.109)

This equation is the same as Eq. (7.59) for a Bose–Einstein condensate in the
Thomas–Fermi approximation, the only difference being due to the specific
form of the equation of state. For a dilute Bose gas, the energy density is
given by E = n2U0/2 and dµ/dn = U0, while for a Fermi gas the effects of
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interactions on the total energy are small for kF|a| � 1 and therefore we may
use the results for an ideal gas, E = (3/5)nεF ∝ n5/3 and dµ/dn = 2εF /3n.
The density profile is given by Eq. (14.12), and for an isotropic harmonic
trap Eq. (14.109) may therefore be written as

−ω2δn =
ω2

0R
2

3
∇ ·

{
(1− r2/R2)3/2∇

[
(1− r2/R2)−1/2δn

]}
= ω2

0

[
1− r

3
∂

∂r
+

1
3
(R2 − r2)∇2

]
δn. (14.110)

The equation may be solved by the methods used in Sec. 7.3.1, and the
result is [16, 17]

δn = Crl(1− r2/R2)1/2F (−n, l + n+ 2, l + 3/2, r2/R2)Ylm(θ, ϕ), (14.111)

where C is a constant and R = 481/6N1/6aosc is the radius of the cloud for
an isotropic trap (see Eq. (14.14)). Here F is the hypergeometric function
(7.73). The mode frequencies are given by

ω2 = ω2
0

[
l +

4
3
n(2 + l + n)

]
, (14.112)

where n = 0, 1, . . . . Thus the frequencies of collective oscillations of a su-
perfluid Fermi gas differ from those of a normal Fermi gas except in the
hydrodynamic limit. Consequently, measurements of collective mode fre-
quencies provide a way of detecting the superfluid transition, except when
the hydrodynamic limit applies to the normal state. In addition, the damp-
ing of collective modes will be different for the normal and superfluid states.

We return now to microscopic theory. In Chapters 6 and 7 we saw that
the wave function of the condensed state is a key quantity in the theory of
condensed Bose systems. In microscopic theory, this is introduced as the c-
number part or expectation value of the boson annihilation operator.2 The
analogous quantity for Fermi systems is the expectation value of the operator
ψ̂b(r − ρ/2)ψ̂a(r + ρ/2) that destroys two fermions, one of each species, at
the points r ± ρ/2. In the equilibrium state of the uniform system, the
average of the Fourier transform of this quantity with respect to the relative
coordinate corresponds to Cp in Eq. (14.59). If a Galilean transformation
to a frame moving with velocity −vs is performed on the system, the wave
function is multiplied by a factor exp(imvs·

∑
j rj/�), where the sum is over

2 By assuming that the expectation value is non-zero, we work implicitly with states that are
not eigenstates of the particle number operator. However, we showed at the end of Sec. 8.1
how for Bose systems it is possible to work with states having a definite particle number, and
similar arguments may also be made for fermions. For simplicity we shall when discussing
fermions work with states in which the operator that destroys pairs of fermions has a non-zero
expectation value, as we did in describing the microscopic theory.
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all particles. Thus the momentum of each particle is boosted by an amount
mvs and <ψ̂b(r−ρ/2)ψ̂a(r+ρ/2)> is multiplied by a factor exp i2φ, where
φ = mvs · r/�. The velocity of the system is thus given by vs = �∇φ/m,
which has the same form as for a condensate of bosons, Eq. (7.14). An
equivalent expression for the velocity is vs = �∇Φ/2m, where Φ = 2φ is the
phase of <ψ̂b(r−ρ/2)ψ̂a(r+ρ/2)>. The change in the phase of the quantity
<ψ̂b(r−ρ/2)ψ̂a(r+ ρ/2)> is independent of the relative coordinate ρ, and
henceforth we shall put ρ equal to zero.

We turn now to non-uniform systems, and we shall assume that the spa-
tial inhomogeneities are on length scales greater than the coherence length
�vF/∆. Under these conditions the system may be treated as being uniform
locally, and therefore the natural generalization of the result above for the
superfluid velocity is

vs(r) =
�

m
∇φ(r), (14.113)

where 2φ(r) is the phase of <ψ̂b(r)ψ̂a(r)>, and also the phase of the local
value of the gap, given by Eq. (14.61), but with ∆ and Cp both dependent
on the centre-of-mass coordinate r. For long-wavelength disturbances, the
particle current density may be determined from Galilean invariance, and it
is given by j = n(r)vs(r). Unlike dilute Bose systems at zero temperature,
where the density is the squared modulus of the condensate wave function,
the density of a Fermi system is not simply related to the average of the
annihilation operator for pairs.

At non-zero temperature, thermal Fermi excitations are present, and the
motion of the condensate is coupled to that of the excitations. In the hy-
drodynamic regime this gives rise to first-sound and second-sound modes,
as in the case of Bose systems. The basic formalism describing the modes
is the same as for Bose systems, but the expressions for the thermodynamic
quantities entering are different.

Problems

Problem 14.1 Determine the momentum distribution for a cloud of
fermions in an anisotropic harmonic-oscillator potential at zero tempera-
ture and compare the result with that for a homogeneous Fermi gas.

Problem 14.2 Consider a cloud of fermions in a harmonic trap at zero
temperature. Determine the thickness of the region at the surface where the
Thomas–Fermi approximation fails.

Problem 14.3 By making a low-temperature expansion, show that the
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chemical potential of a single species of non-interacting fermions in a har-
monic trap at low temperatures is given by

µ � εF
(

1− π
2

3
T 2

T 2
F

)
.

Determine the temperature dependence of the chemical potential in the
classical limit, T � TF. Plot the two limiting forms as functions of T/TF

and compare their values at T/TF = 1/2.

Problem 14.4 Verify the expression (14.21) for the temperature depen-
dence of the energy at low temperatures. Carry out a high-temperature
expansion, as was done for bosons in Sec. 2.4.2, and sketch the dependence
of the energy and the specific heat as functions of temperature for all values
of T/TF.

Problem 14.5 Consider a cloud containing equal numbers of two different
spin states of the same atom in an isotropic harmonic-oscillator potential.
Use the method of collective coordinates (Sec. 7.3.3) to show that the shift
in the equilibrium radius due to interactions is given by

∆R ≈ 3
8
Eint

Eosc
R,

and evaluate this for the Thomas–Fermi density profile. Prove that the
frequency of the breathing mode can be written in the form (14.27), and
determine the value of the coefficient c1.
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Appendix. Fundamental constants and conversion
factors

Based on CODATA 1998 recommended values. (P. J. Mohr and B. N. Tay-
lor, Rev. Mod. Phys. 72, 351 (2000).) The digits in parentheses are the
numerical value of the standard uncertainty of the quantity referred to the
last figures of the quoted value. For example, the relative standard uncer-
tainty in � is thus 82/1 054 571 596 = 7.8× 10−8.

Quantity Symbol Numerical value Units

Speed of light c 2.997 924 58× 108 m s−1

2.997 924 58× 1010 cm s−1

Permeability of vacuum µ0 4π × 10−7 N A−2

Permittivity of vacuum ε0 = 1/µ0c
2 8.854 187 817 . . .× 10−12 F m−1

Planck constant h 6.626 068 76(52)× 10−34 J s
6.626 068 76(52)× 10−27 erg s

hc 1.239 841 857(49)× 10−6 eV m

(Planck constant)/2π � 1.054 571 596(82)× 10−34 J s
1.054 571 596(82)× 10−27 erg s

Inverse Planck constant h−1 2.417 989 491(95)× 1014 Hz eV−1

Elementary charge e 1.602 176 462(63)× 10−19 C

Electron mass me 9.109 381 88(72)× 10−31 kg
9.109 381 88(72)× 10−28 g

mec
2 0.510 998 902(21) MeV

Proton mass mp 1.672 621 58(13)× 10−27 kg
1.672 621 58(13)× 10−24 g

mpc
2 938.271 998(38) MeV

Atomic mass unit mu = m(12C)/12 1.660 538 73(13)× 10−27 kg
muc

2 931.494 013(37) MeV

394
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Quantity Symbol Numerical value Units

Boltzmann constant k 1.380 6503(24)× 10−23 J K−1

1.380 6503(24)× 10−16 erg K−1

8.617 342(15)× 10−5 eV K−1

k/h 2.083 6644(36)× 1010 Hz K−1

20.836 644(36) Hz nK−1

Inverse Boltzmann constant k−1 11 604.506(20) K eV−1

Inverse fine structure constant α−1
fs 137.035 999 76(50)

Bohr radius a0 0.529 177 2083(19)× 10−10 m
0.529 177 2083(19)× 10−8 cm

Classical electron radius e2/4πε0mec
2 2.817 940 285(31)× 10−15 m

Atomic unit of energy e2/4πε0a0 27.211 3834(11) eV

Bohr magneton µB 9.274 008 99(37)× 10−24 J T−1

µB/h 13.996 246 24(56)× 109 Hz T−1

µB/k 0.671 7131(12) K T−1

Nuclear magneton µN 5.050 783 17(20)× 10−27 J T−1

µN/h 7.622 593 96(31)× 106 Hz T−1

µN/k 3.658 2638(64)× 10−4 K T−1
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internal energy 30–33
internal states 120–122
Ioffe bars 65, 66
Ioffe–Pritchard trap 64–67, 97
irrotational flow 168, 238

Josephson relation 166, 169

Kelvin’s theorem 254
kinetic theory 86–88, 272, 307–317
kink 198
Kosterlitz–Thouless transition 36

Lagrange equation 191
Lagrange multiplier 148
Lagrangian 166, 191
lambda point 4, 6, 280
Landau criterion 265–267
Landau damping 281–287
Laplace equation 64, 180, 194
laser beams 78–79

circularly polarized 78
laser cooling 1, 55, 74–78, 71–90, 96, 97
Legendre polynomials 64, 108
length scales

of anisotropic cloud 153, 156
of spatial variation 162
of spherical cloud 150
of surface structure 158, 159

lifetime
of cold atomic clouds 24
of excited state 67, 70, 71

lift 257
linear ramp potential 158, 193
line shift 98, 230–236
linewidth 55–57, 70, 71, 76–78, 81
Lippmann–Schwinger equation 112, 121, 372
liquid helium, see helium
lithium 1, 6, 40–42, 52, 53, 105, 131, 139, 142,

143, 151, 361, 362
Lorentzian 71, 74
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low-field seeker 60, 61, 97
Lyman-α line 52, 56, 97, 98

macroscopic occupation 18
magnetic bottle 65
magnetic field 44–49, 55, 58–67, 73

critical 252
magnetic moment 40, 41, 43, 44, 59, 60, 138

nuclear 40, 41
magnetic trap 38, 59–67, 73, 97
magneto-optical trap (MOT) 58, 78–80

dark-spot MOT 80
Magnus force 257
mass number 25, 40, 81, 361
matter waves 350–355
maximally stretched state 47, 93, 127, 142, 143
Maxwellian distribution 17
Maxwell relation 276
mean field 2, 11, 146, 307, 330, 331
mean free path 182, 301
mean occupation number 17, 27
mixtures 320–328, 361, 385–388
momentum density 167, 267–270, 278
momentum distribution 25, 26
momentum flux density 255, 302
MOT, see magneto-optical trap

neutron number 41, 361
neutron scattering 2
normal component 267
normal density 7, 269
normalization conditions 107, 111, 134, 147,

148, 176, 208, 210, 355
normal modes, see collective modes
nuclear magnetic moment 40, 41
nuclear magneton 41, 395
nuclear spin 40, 41

occupation number 17, 220–222, 270
one-particle density matrix 355–358
optical lattice 84, 90
optical path length 24
optical pumping 80
optical trap 73, 74, 320, 328
oscillator strength 51–54, 56, 73, 106

pair distribution function 349
pairing 8, 9

in atomic gases 370–385
in liquid 3He 9
in neutron stars 9
in nuclei 9
in superconductors 8, 370

parity 50
particle number

operator for 207, 210
states with definite 213, 390

Pauli exclusion principle 362, 372
permeability of vacuum 394
permittivity of vacuum 394
phase imprinting 351, 352

phase shift 109
phase space 19, 27
phase-space density 22, 96, 361
phase state 341–348
phase velocity 266
phonons 7, 201, 279–281, 287

in solids 1, 370
photoassociative spectroscopy 103, 140–143
Planck constant 4, 394
plane wave 17

expansion in spherical waves 128
plasmas 60, 65, 281
polarizability 49

dynamic 53–54, 68–73
static 49–53, 56, 107

Popov approximation 225–230, 298
potassium 41–43, 52, 105, 143, 361, 362
potential flow 168, 170, 238
pressure 31, 169, 273

in ideal fluid 255
quantum 170, 271

projection operators 122, 133, 329
propagator, see Green function
proton mass 394
proton number 41
pseudopotential 114, 235, 370
pumping time 84–88

quadrupole trap 38, 60–64, 72
quark–antiquark pairs 9
quasi-classical approximation 43
quasiparticle 71

Rabi frequency 71
radiation pressure 73, 78
random phase approximation 235
recoil energy 81, 90
reduced mass 107
resonance line 51, 52, 55, 107
retardation 107
Riemann zeta function 21, 22
rotating traps 251–254
roton 7, 8, 173, 266
rubidium 1, 5, 6, 40–42, 44, 52, 104, 105, 127,

131, 139, 142, 143, 212, 236, 253, 254,
291, 298, 320

s-wave scattering 108
scattering

as a multi-channel problem 118
basic theory of 107–114
real 230
virtual 230

scattering amplitude 106–110, 121
Breit–Wigner form of 139
for identical particles 110

scattering length
definition of 106
for alkali atoms 102, 142–144
for a r−6-potential 114–120
for hydrogen 98, 142
scale of 105
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scattering theory 107–140
Schrödinger equation 133, 149, 166

for relative motion 108, 115
scissors mode 184–186, 305
second quantization 220, 221
semi-classical approximation 16, 27–29, 43,

120, 228–230
Sisyphus 85
Sisyphus cooling 81–90, 97
singlet

ground state 334
potential 104, 122

sodium 1, 6, 40–42, 51, 52, 55, 57, 58, 74, 77,
105, 107, 131, 139, 143, 254, 328, 354

solitary wave 197
solitons 196–201, 351, 352

bright 200
dark 199
energy of 200
velocity of 199

sound 7, 172, 173, 200, 273–280
first 226, 277, 278, 391
second 278, 391
velocity of 172, 210, 219, 226, 275, 304

specific heat 30–34, 38, 219
speed of light 394
spherical harmonics 64, 123
spherical tensor 123
spin 4

electronic 40
nuclear 40–48
operators 123, 331
total 40–42

spin-exchange collisions 97, 122, 126–127, 129
spinor 331

condensates 328–335
spin–orbit interaction 51, 55, 130
spin waves 332
spontaneous emission 56
stability 150, 322, 369

of mixtures 322–324
Stern–Gerlach experiment 347
stimulated emission 56
strong-coupling limit 150
superconductors 8, 9, 252, 370, 385
superfluid component 267
superfluid density 7, 269
superfluid helium, see helium
superfluidity 264–287, 370–385, 388–391
surface structure 158–161
surface tension 195
surface waves 180, 183, 193–195, 249, 250
sympathetic cooling 362

T matrix 112–114, 134–138, 371–374
Tartarus 85
temperature wave 276
thermal de Broglie wavelength 5
thermodynamic equilibrium 170
thermodynamic properties

of interacting gas 218, 219, 294–298

of non-interacting gas 29–34
Thomas–Fermi approximation 155–157, 228,

229, 245, 246, 342, 364, 365
three-body processes 93, 130, 131, 350
threshold energy 94, 121
TOP trap 62–64
transition temperature 4

Bose–Einstein, see Bose–Einstein transition
temperature

for pairing of fermions 370–379
trap frequency 25
trap loss 61, 92–96, 141
traps

Ioffe–Pritchard 64–67
magnetic 59–67, 320
optical 73, 74, 320
TOP 62–64

triplet potential 104, 122
triplet state 4
two-component condensates 253, 321–328
two-fluid model 7, 267–270
two-photon absorption 98, 99, 230, 233

uncertainty principle 26, 89, 196

vacuum permeability 394
vacuum permittivity 43, 394
van der Waals coefficients, table of 105
van der Waals interaction 103–107
variational calculation 148, 151–154, 191
variational principle 166, 190
velocity

critical 266
mean relative 95
mean thermal 95, 313
of condensate 167, 268–271, 274, 391
of expanding cloud 196
of normal component 268, 274, 302
of sound, see sound velocity

velocity distribution 24
virial theorem 100, 157, 163
viscosity 311–313
viscous relaxation time 312
vortex 168, 239

angular momentum of 243, 246, 247
energy of 240–243, 246, 247
force on a 255–257
in trapped cloud 245–247
lattice 252
multiply-quantized 244, 245
off-axis 247, 248
quantized 7, 239

water waves 194, 197
wave function

as product of single-particle states 147, 321
in Hartree–Fock theory 220
of condensed state 148, 205

weak coupling 152, 216–218, 257–261
WKB approximation 43, 120
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Yukawa interaction 387

Zeeman effect 44–49, 55
Zeeman energy 55
Zeeman slower 58, 78

zero-momentum state 2, 205
occupancy of 2

zero-point kinetic energy 187
zero-point motion 20, 35
zeta function 21, 22


