
A Calculus Approach to

Matrix Eigenvalue Algorithms

Habilitationsschrift

der Fakultät für Mathematik und Informatik

der Bayerischen Julius-Maximilians-Universität Würzburg

für das Fach Mathematik vorgelegt von

Knut Hüper

Würzburg im Juli 2002

2

Meiner Frau Barbara

und unseren Kindern Lea, Juval und Noa gewidmet

Contents

1 Introduction 5

2 Jacobi-type Algorithms and Cyclic Coordinate Descent 8

2.1 Algorithms . 8

2.1.1 Jacobi and Cyclic Coordinate Descent 9

2.1.2 Block Jacobi and Grouped Variable Cyclic Coordinate

Descent . 10

2.1.3 Applications and Examples for 1-dimensional Optimiza-

tion . 12

2.1.4 Applications and Examples for Block Jacobi 22

2.2 Local Convergence Analysis 23

2.3 Discussion . 31

3 Refining Estimates of Invariant Subspaces 32

3.1 Lower Unipotent Block Triangular Transformations 33

3.2 Algorithms . 37

3.2.1 Main Ideas . 37

3.2.2 Formulation of the Algorithm 40

3.2.3 Local Convergence Analysis 44

3.2.4 Further Insight to Orderings 48

3.3 Orthogonal Transformations 52

3.3.1 The Algorithm . 57

3.3.2 Local Convergence Analysis 59

3.3.3 Discussion and Outlook 62

4 Rayleigh Quotient Iteration, QR-Algorithm, and Some Gen-

eralizations 63

4.1 Local Cubic Convergence of RQI 64

CONTENTS 4

4.2 Parallel Rayleigh Quotient Iteration or Matrix-valued Shifted

QR-Algorithms . 69

4.2.1 Discussion . 72

4.3 Local Convergence Properties of the Shifted QR-Algorithm . . 73

Chapter 1

Introduction

The interaction between numerical linear algebra and control theory has cru-

cially influenced the development of numerical algorithms for linear systems

in the past. Since the performance of a control system can often be mea-

sured in terms of eigenvalues or singular values, matrix eigenvalue methods

have become an important tool for the implementation of control algorithms.

Standard numerical methods for eigenvalue or singular value computations

are based on the QR-algorithm. However, there are a number of compu-

tational problems in control and signal processing that are not amenable to

standard numerical theory or cannot be easily solved using current numerical

software packages. Various examples can be found in the digital filter design

area. For instance, the task of finding sensitivity optimal realizations for

finite word length implementations requires the solution of highly nonlinear

optimization problems for which no standard numerical solution algorithms

exist.

There is thus the need for a new approach to the design of numerical

algorithms that is flexible enough to be applicable to a wide range of com-

putational problems as well as has the potential of leading to efficient and

reliable solution methods. In fact, various tasks in linear algebra and system

theory can be treated in a unified way as optimization problems of smooth

functions on Lie groups and homogeneous spaces. In this way the powerful

tools of differential geometry and Lie group theory become available to study

such problems.

Higher order local convergence properties of iterative matrix algorithms

are in many instances proven by means of tricky estimates. E.g., the Jacobi

method, essentially, is an optimization procedure. The idea behind the proof

6

of local quadratic convergence for the cyclic Jacobi method applied to a

Hermitian matrix lies in the fact that one can estimate the amount of descent

per sweep, see Henrici (1958) [Hen58]. Later on, by several authors these

ideas where transferred to similar problems and even refined, e.g., Jacobi

for the symmetric eigenvalue problem, Kogbetliantz (Jacobi) for SVD, skew-

symmetric Jacobi, etc..

The situation seems to be similar for QR-type algorithms. Looking first at

Rayleigh quotient iteration, neither Ostrowski (1958/59) [Ost59] nor Parlett

[Par74] use Calculus to prove local cubic convergence.

About ten years ago there appeared a series of papers where the authors

studied the global convergence properties of QR and RQI by means of dy-

namical systems methods, see Batterson and Smillie [BS89a, BS89b, BS90],

Batterson [Bat95], and Shub and Vasquez [SV87]. To our knowledge these

papers where the only ones where Global Analysis was applied to QR-type

algorithms.

From our point of view there is a lack in studying the local convergence

properties of matrix algorithms in a systematic way. The methodologies

for different algorithms are often also different. Moreover, the possibility of

considering a matrix algorithm atleast locally as a discrete dynamical system

on a homogenous space is often overseen. In this thesis we will take this

point of view. We are able to (re)prove higher order convergence for several

wellknown algorithms and present some efficient new ones.

This thesis contains three parts.

At first we present a Calculus approach to the local convergence analysis

of the Jacobi algorithm. Considering these algorithms as selfmaps on a man-

ifold (i.e., projective space, isospectral or flag manifold, etc.) it turns out,

that under the usual assumptions on the spectrum, they are differentiable

maps around certain fixed points. For a wide class of Jacobi-type algo-

rithms this is true due to an application of the Implicit Function Theorem,

see [HH97, HH00, Hüp96, HH95, HHM96]. We then generalize the Jacobi

approach to socalled Block Jacobi methods. Essentially, these methods are

the manifold version of the socalled grouped variable approach to coordinate

descent, wellknown to the optimization community.

In the second chapter we study the nonsymmetric eigenvalue problem

introducing a new algorithm for which we can prove quadratic convergence.

These methods are based on the idea to solve lowdimensional Sylvester equa-

tions again and again for improving estimates of invariant subspaces.

7

At third, we will present a new shifted QR-type algorithm, which is some-

how the true generalization of the Rayleigh Quotien Iteration (RQI) to a full

symmetric matrix, in the sense, that not only one column (row) of the matrix

converges cubically in norm, but the off-diagonal part as a whole. Rather

than being a scalar, our shift is matrix valued. A prerequisite for studying

this algorithm, called Parallel RQI, is a detailed local analysis of the classi-

cal RQI itself. In addition, at the end of that chapter we discuss the local

convergence properties of the shifted QR-algorithm. Our main result for this

topic is that there cannot exist a smooth shift strategy ensuring quadratic

convergence.

In this thesis we do not answer questions on global convergence. The

algorithms which are presented here are all locally smooth self mappings of

manifolds with vanishing first derivative at a fixed point. A standard argu-

ment using the mean value theorem then ensures that there exists an open

neighborhood of that fixed point which is invariant under the iteration of

the algorithm. Applying then the contraction theorem on the closed neigh-

borhood ensures convergence to that fixed point and moreover that the fixed

point is isolated. Most of the algorithms turn out to be discontinous far away

from their fixed points but we will not go into this.

I wish to thank my colleagues in Würzburg, Gunther Dirr, Martin Kleins-

teuber, Jochen Trumpf, and Piere-Antoine Absil for many fruitful discussions

we had. I am grateful to Paul Van Dooren, for his support and the discus-

sions we had during my visits to Louvain. Particularly, I am grateful to Uwe

Helmke. Our collaboration on many different areas of applied mathematics

is still broadening.

Chapter 2

Jacobi-type Algorithms and

Cyclic Coordinate Descent

In this chapter we will discuss generalizations of the Jacobi algorithm well

known from numerical linear algebra text books for the diagonalization of

real symmetric matrices. We will relate this algorithm to socalled cyclic

coordinate descent methods known to the optimization community. Under

reasonable assumptions on the objective function to be minimized and on

the step size selection rule to be considered, we will prove local quadratic

convergence.

2.1 Algorithms

Suppose in an optimization problem we want to compute a local minimum

of a smooth function

f : M → R, (2.1)

defined on a smooth n-dimensional manifold M . Let denote for each x ∈M

{γ(x)
1 , . . . , γ(x)

n } (2.2)

a family of mappings,

γ
(x)
i : R →M,

γ
(x)
i (0) = x,

(2.3)

2.1 Algorithms 9

such that the set {γ̇(x)
1 (0), . . . , γ̇

(x)
n (0)} forms a basis of the tangent space

TxM . We refer to the smooth mappings

Gi : R ×M →M,

Gi(t, x) := γ
(x)
i (t)

(2.4)

as the basic transformations.

2.1.1 Jacobi and Cyclic Coordinate Descent

The proposed algorithm for minimizing a smooth function f : M → R

then consists of a recursive application of socalled sweep operations. The

algorithm is termed a Jacobi-type algorithm.

Algorithm 2.1 (Jacobi Sweep).

Given an xk ∈M define

x
(1)
k := G1(t

(1)
∗ , xk)

x
(2)
k := G2(t

(2)
∗ , x

(1)
k)

...

x
(n)
k := Gn(t(n)

∗ , x
(n−1)
k)

where for i = 1, . . . , n

t(i)∗ := arg min
t∈R

(f(Gi(t, x
(i−1)
k))) if f(Gi(t, x

(i−1)
k)) 6≡ f(x

(i−1)
k)

and

t(i)∗ := 0 otherwise.

2.1 Algorithms 10

Thus x
(i)
k is recursively defined as the minimum of the smooth cost function

f : M → R when restricted to the i-th curve

{Gi(t, x
(i−1)
k) | t ∈ R} ⊂M.

The algorithm then consists of the iteration of sweeps.

Algorithm 2.2 (Jacobi-type Algorithm on

n-dimensional Manifold).

• Let x0, . . . , xk ∈M be given for k ∈ N0.

• Define the recursive sequence x
(1)
k , . . . , x

(n)
k as

above (sweep).

• Set xk+1 := x
(n)
k . Proceed with the next sweep.

2.1.2 Block Jacobi and Grouped Variable Cyclic Co-

ordinate Descent

A quite natural generalization of the Jacobi method is the following. In-

stead of minimizing along predetermined curves, one might minimize over

the manifold using more than just one parameter at each algorithmic step.

Let denote

TxM = V
(x)
1 ⊕ · · · ⊕ V (x)

m (2.5)

a direct sum decomposition of the tangent space TxM at x ∈ M . We will

not require the subspaces V
(x)
i , dimV

(x)
i = li, to have equal dimension. Let

denote

{γ(x)
1 , . . . , γ(x)

m } (2.6)

a family of smooth mappings smoothly parameterized by x,

γ
(x)
i : R

li →M,

γ
(x)
i (0) = x,

(2.7)

2.1 Algorithms 11

such that for all i = 1, . . . ,m, for the image of the derivative

im D γ
(x)
i (0) = V

(x)
i (2.8)

holds. Again we refer to

Gi : R
li ×M →M,

Gi(t, x) := γ
(x)
i (t)

(2.9)

as the basic transformations. Analogously, to the one-dimensional case above,

the proposed algorithm for minimizing a smooth function f : M → R then

consists of a recursive application of socalled grouped variable sweep opera-

tions. The algorithm is termed a Block Jacobi Algorithm.

Algorithm 2.3 (Block Jacobi Sweep).

Given an xk ∈M . Define

x
(1)
k := G1(t

(1)
∗ , xk)

x
(2)
k := G2(t

(2)
∗ , x

(1)
k)

...

x
(m)
k := Gm(t(m)

∗ , x
(m−1)
k)

where for i = 1, . . . ,m

t(i)∗ := arg min
t∈R

li

(f(Gi(t, x
(i−1)
k))) if f(Gi(t, x

(i−1)
k)) 6≡ f(x

(i−1)
k)

and

t(i)∗ := 0 otherwise.

Thus x
(i)
k is recursively defined as the minimum of the smooth cost function

f : M → R when restricted to the i-th li-dimensional subset

2.1 Algorithms 12

{Gi(t, x
(i−1)
k) | t ∈ R

li} ⊂M.

The algorithm then consists of the iteration of sweeps.

Algorithm 2.4 (Block Jacobi Algorithm on Man-

ifold).

• Let x0, . . . , xk ∈M be given for k ∈ N0.

• Define the recursive sequence x
(1)
k , . . . , x

(m)
k as

above (sweep).

• Set xk+1 := x
(m)
k . Proceed with the next sweep.

The formulation of the above algorithms suffer from several things. With-

out further assumptions on the objective function as well as on the mappings

which lead to the basic transformations one hardly can prove anything.

For the applications we have in mind the objective function is always

smooth. The art to choose suitable mappings γ
(x)
i leading to the basic trans-

formations often needs some insight into and intuition for the problem under

consideration. For instance, if the manifold M is noncompact and the ob-

jective function f : M → R
+ is smooth and proper a good choice for the

mappings γ
(x)
i is clearly that one which ensures that the restriction f |

γ
(x)
i (R)

is also proper for all i and all x ∈ M . Moreover, if M = G is a compact

Lie group, say G = SOn, a good choice for γ
(x)
i : R → SOn is one which

ensures γ
(x)
i ([0, 2π]) ∼= S1 ∼= SO2. More generally, one often succeeds in

finding mappings γ
(x)
i such that optimizing the restriction of f to the image

of these mappings is a problem of the same kind as the original one but of

lower dimension being solvable in closed form. All these situations actually

appear very often in practise. Some of them are briefly reviewed in the next

subsection.

2.1.3 Applications and Examples for 1-dimensional Op-

timization

If M = R
n and Gi(t, x) = x + tei, with ei the i-th standard basis vector

of R
n, one gets the familiar coordinate descent method, cf. [AO82, BSS93,

2.1 Algorithms 13

Lue84, LT92].

Various tasks in linear algebra and system theory can be treated in a

unified way as optimization problems of smooth functions on Lie groups and

homogeneous spaces. In this way the powerful tools of differential geometry

and Lie group theory become available to study such problems. With Brock-

ett’s paper [Bro88] as the starting point there has been ongoing success in

tackling difficult computational problems by geometric optimization meth-

ods. We refer to [HM94] and the PhD theses [Smi93, Mah94, Deh95, Hüp96]

for more systematic and comprehensive state of the art descriptions. Some

of the further application areas where our methods are potentially useful

include diverse topics such as frequency estimation, principal component

analysis, perspective motion problems in computer vision, pose estimation,

system approximation, model reduction, computation of canonical forms and

feedback controllers, balanced realizations, Riccati equations, and structured

eigenvalue problems.

In the survey paper [HH97] a generalization of the classical Jacobi method

for symmetric matrix diagonalization, see Jacobi [Jac46], is considered that is

applicable to a wide range of computational problems. Jacobi-type methods

have gained increasing interest, due to superior accuracy properties, [DV92],

and inherent parallelism, [BL85, Göt94, Sam71], as compared to QR-based

methods. The classical Jacobi method successively decreases the sum of

squares of the off-diagonal elements of a given symmetric matrix to compute

the eigenvalues. Similar extensions exist to compute eigenvalues or singular

values of arbitrary matrices. Instead of using a special cost function such

as the off-diagonal norm in Jacobi’s method, other classes of cost functions

are feasible as well. In [HH97] a class of perfect Morse-Bott functions on

homogeneous spaces is considered that are defined by unitarily invariant

norm functions or by linear trace functions. In addition to gaining further

generality this choice of functions leads to an elegant theory as well as yielding

improved convergence properties for the resulting algorithms.

Rather than trying to develop the Jacobi method in full generality on

arbitrary homogeneous spaces in [HH97] its applicability by means of exam-

ples from linear algebra and system theory is demonstrated. New classes of

Jacobi-type methods for symmetric matrix diagonalization, balanced realiza-

tion, and sensitivity optimization are obtained. In comparison with standard

numerical methods for matrix diagonalization the new Jacobi-method has the

advantage of achieving automatic sorting of the eigenvalues. This sorting

2.1 Algorithms 14

property is particularly important towards applications in signal processing;

i.e., frequency estimation, estimation of dominant subspaces, independant

component analysis, etc.

Let G be a real reductive Lie group and K ⊂ G a maximal compact

subgroup. Let

α : G × V → V, (g, x) 7→ g · x (2.10)

be a linear algebraic action of G on a finite dimensional vector space V . Each

orbit G·x of such a real algebraic group action then is a smooth submanifold of

V that is diffeomorphic to the homogeneous space G/H, with H := {g ∈ G|g ·
x = x} the stabilizer subgroup. In [HH97] we are interested in understanding

the structure of critical points of a smooth proper function f : G · x → R
+

defined on orbits G · x. Some of the interesting cases actually arise when

f is defined by a norm function on V . Thus given a positive definite inner

product 〈 , 〉 on V let ‖x‖2 = 〈x, x〉 denote the associated Hermitian norm.

An Hermitian norm on V is called K−invariant if

〈k · x, k · y〉 = 〈x, y〉 (2.11)

holds for all x, y ∈ V and all k ∈ K, for K a maximal compact subgroup

of G. Fix any such K−invariant Hermitian norm on V . For any x ∈ V we

consider the smooth distance function on G · x defined as

φ : G·x→ R
+, φ(g ·x) = ‖g ·x‖2. (2.12)

We then have the following result due to Kempf and Ness [KN79]. For an

important generalization to plurisubharmonic functions on complex homoge-

neous spaces, see Azad and Loeb [AL90].

Theorem 2.1. 1. The norm function φ : G·x→R
+, φ(g ·x)=‖g ·x‖2, has

a critical point if and only if the orbit G ·x is a closed subset of V .

2. Let G · x be closed. Every critical point of φ : G · x → R
+ is a global

minimum and the set of global minima is a single uniquely determined

K−orbit.

3. If G · x is closed, then φ : G · x→ R
+ is a perfect Morse-Bott function.

The set of global minima is connected. ¤

Theorem 2.1 completely characterizes the critical points of K−invariant

Hermitian norm functions on G−orbits G·x of a reductive Lie group G. Similar

2.1 Algorithms 15

results are available for compact groups. We describe such a result in a special

situation which suffices for the subsequent examples. Thus let G now be a

compact semisimple Lie group with Lie algebra g. Let

α : G × g → g, (g, x) 7→ g ·x = Ad(g)x (2.13)

denote the adjoint action of G on its Lie algebra. Let G·x denote an orbit of

the adjoint action and let

(x, y) := − tr(adx ◦ ady) (2.14)

denote the Killing form on g. Then for any element a ∈ g the trace function

fa : G·x→ R
+, fa(g ·x) = − tr(ada ◦ adg·x) (2.15)

defines a smooth function on G·x. For a proof of the following result, formu-

lated for orbits of the co-adjoint action, we refer to Atiyah [Ati82], Guillemin

and Sternberg [GS82].

Theorem 2.2. Let G be a compact, connected, and semisimple Lie group

over C and let fa : G ·x→ R
+ be the restriction of a linear function on a

co-adjoint orbit, defined via evaluation with an element a of the Lie algebra.

Then

1. fa : G ·x→ R is a perfect Morse-Bott function.

2. If fa : G ·x→ R has only finitely many critical points, then there exists

a unique local=global minimum. All other critical points are saddle

points or maxima. ¤

Suppose now in an optimization exercise we want to compute the set of

critical points of a smooth function φ : G · x→ R
+, defined on an orbit of a

Lie group action. Thus let G denote a compact Lie group acting smoothly

on a finite dimensional vector space V . For x∈ V let G·x denote an orbit.

Let {Ω1, . . . ,ΩN} denote a basis of the Lie algebra g of G, with N =dimG.
Denote by exp(tΩi), t ∈ R, the associated one parameter subgroups of G.
We then refer to G1(t),. . . ,GN(t) with Gi(t, x) = exp(tΩi) · x as the basic

transformations of G as above.

Into the latter frame work also the Jacobi algorithm for the real sym-

metric eigenvalue problem from text books on matrix algorithms fits, cf.

2.1 Algorithms 16

[GvL89, SHS72]. If the real symmetric matrix to be diagonalized has dis-

tinct eigenvalues then the isospectral manifold of this matrix is diffeomorphic

to the orthogonal group itself. Some advantages of the Jacobi-type method

as compared to other optimization procedures one might see from the fol-

lowing example. The symmetric eigenvalue problem might be considered

as a constrained optimization task in a Euclidian vector space embedding

the orthogonal group, cf. [Chu88, Chu91, Chu96, CD90], implying rela-

tively complicated lifting and projection computations in each algorithmic

step. Intrinsic gradient and Newton-type methods for the symmetric eigen-

value problem were first and independently published in the Ph.D. theses

[Smi93, Mah94]. The Jacobi approach, in contrast to the above- mentioned

ones, uses predetermined directions to compute geodesics instead of direc-

tions determined by the gradient of the function or by calculations of second

derivatives. One should emphasize the simple calculability of such directions:

the optimization is performed only along closed curves. The bottleneck of the

gradient-based or Newton-type methods with their seemingly good conver-

gence properties is generally caused by the explicit calculation of directions,

the related geodesics, and possibly step size selections. The time required

for these computations may amount to the same order of magnitude as the

whole of the problem. For instance, the computation of the exponential of a

dense skew-symmetric matrix is comparable to the effort of determining its

eigenvalues. The advantage of optimizing along circles will become evident

by the fact that the complete analysis of the restriction of the function to that

closed curve is a problem of considerably smaller dimension and sometimes

can be solved in closed form. For instance, for the real symmetric eigenvalue

problem one has to solve only a quadratic.

A whole class of further examples are developed in [Kle00] generalizing

earlier results from [Hüp96]. There, generalizations of the conventional Ja-

cobi algorithm to the problem of computing diagonalizations in compact Lie

algebras are presented.

We would like two mention two additional applications, namely, (i) the

computation of signature symmetric balancing transformations, being an im-

portant problem in systems and circuit theory, and (ii), the stereo matching

problem without correspondence, having important applications in computer

vision. The results referred to here are developed more detailed in [HHM02],

respectively [HH98].

2.1 Algorithms 17

Signature Symmetric Balancing

From control theory it is well konwn that balanced realizations of symmet-

ric transfer functions are signature symmetric. Wellknown algorithms, e.g.,

[LHPW87, SC89], however, do not preserve the signature symmetry and they

may be sensible to numerical perturbations from the signature symmetric

class. In recent years there is a tremendous interest in structure preserv-

ing (matrix) algorithms. The main motivation for this is twofold. If such

a method can be constructed it usually (i) leads to reduction in complexity

and (ii) often coincidently avoids that in finite arithmetic physically mean-

ingless results are obtained. Translated to our case that means that (i) as

the appropriate state space transformation group the Lie group O+
pq of spe-

cial pseudo-orthogonal transformations is used instead of GLn. Furthermore,

(ii) at any stage of an algorithm the computed transformation should corre-

spond to a signature symmetric realization if one would have started with

one. Put into other words, the result of each iteration step should have some

physical meaning. Let us very briefly review notions and results on balancing

and signature symmetric realizations. Given any asymptotically stable linear

system (A,B,C), the continuous-time controllability Gramian Wc and the

observability Gramian Wo are defined, respectively, by

Wc =

∞∫

0

etABB′ etA′

d t,

Wo =

∞∫

0

etA′

C ′C etA d t.

(2.16)

Thus, assuming controllability and observability, the Gramians Wc,Wo are

symmetric positive definite matrices. Moreover, a linear change of variables

in the state space by an invertible state space coordinate transformation T

leads to the co- and contravariant transformation law of Gramians as

(Wc,Wo) 7→
(
TWcT

′, (T ′)−1WoT
−1
)
. (2.17)

Let p, q ∈ N0 be integers with p + q = n, Ipq := diag(Ip,−Iq). A realization

(A,B,C) ∈ R
n×n × R

n×m × R
m×n is called signature symmetric if

2.1 Algorithms 18

(AIpq)
′ = AIpq,

(CIpq)
′ = B

(2.18)

holds. Note that every strictly proper symmetric rational (m ×m)-transfer

function G(s) = G(s)′ of McMillan degree n has a minimal signature sym-

metric realization and any two such minimal signature symmetric realizations

are similar by a unique state space similarity transformation T ∈ Opq. The

set

Opq := {T ∈ R
n×n|TIpqT

′ = Ipq}
is the real Lie group of pseudo-orthogonal (n × n)-matrices stabilizing Ipq

by congruence. The set O+
pq denotes the identity component of Opq. Here

p − q is the Cauchy-Maslov index of G(s), see [AB77] and [BD82]. For any

stable signature symmetric realization the controllability and observability

Gramians satisfy

Wo = IpqWcIpq. (2.19)

As usual, a realization (A,B,C) is called balanced if

Wc = Wo = Σ = diag (σ1, . . . , σn) (2.20)

where the σ1, . . . , σn are the Hankel singular values. In the sequel we assume

that they are pairwise distinct.

Let

M(Σ) := {TΣT ′ |T ∈ O+
pq}, (2.21)

with Σ as in (2.20) assuming pairwise distinct Hankel singular values. Thus

M(Σ) is an orbit of O+
pq and therefore a smooth and connected manifold.

Note that the stabilizer subgroup of a point X ∈M(Σ) is finite and therefore

M(Σ) is diffeomorphic to O+
pq which as a pseudo-orthogonal group of order

n = p+ q has dimension n(n− 1)/2.

Let N := diag (µ1, . . . , µp, ν1, . . . , νq) with 0 < µ1 < · · · < µp and 0 <

ν1 < · · · < νq. We then consider the smooth cost function

fN : M(Σ)→ R,

fN(W) := tr (NW).
(2.22)

2.1 Algorithms 19

This choice is motivated by our previous work on balanced realizations [HH00],

where we studied the smooth function tr (N(Wc+Wo)) with diagonal positive

definite N having distinct eigenvalues. Now

tr (N(Wc +Wo)) = tr (N(Wc + IpqWcIpq))

= 2tr (NWc)

by the above choice of a diagonal N . The following result summarizes the

basic properties of the cost function fN .

Theorem 2.3. Let N := diag (µ1, . . . , µp, ν1, . . . , νq) with 0 < µ1 < · · · < µp

and 0 < ν1 < · · · < νq. For the smooth cost function fN : M(Σ) → R,

defined by fN(W) := tr (NW), the following holds true.

1. fN : M(Σ)→ R has compact sublevel sets and a minimum of fN exists.

2. X ∈ M(Σ) is a critical point for fN : M(Σ) → R if and only if X is

diagonal.

3. The global minimum is unique and it is characterized by X = diag (σ1,

. . ., σn), where σ1 > · · · > σp and σp+1 > · · · > σn holds.

4. The Hessian of the function fN at a critical point is nondegenerate.

¤

The constraint set for our cost function fN : M(Σ)→ R is the Lie group

O+
p,q with Lie algebra opq. We choose a basis of opq as

Ωij := eje
′
i − eie

′
j (2.23)

where 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n holds and

Ωkl := ele
′
k + eke

′
l (2.24)

where 1 ≤ k ≤ p < l ≤ n holds. These basis elements are defined via

the standard basis vectors e1, . . . , en of R
n. Thus exp(tΩij) is an orthogonal

rotation with (i, j)−th sub matrix

[
cos t − sin t

sin t cos t

]
(2.25)

2.1 Algorithms 20

and exp(tΩkl) is a hyperbolic rotation with (k, l)−th sub matrix

[
cosh t sinh t

sinh t cosh t

]
. (2.26)

Let N as in Theorem 2.3 above and let W be symmetric positive definite.

Consider the smooth function

φ : R → R,

φ(t) := tr
(
N etΩW etΩ′

) (2.27)

where Ω denotes a fixed element of the above basis of opq. We have

Lemma 2.1. 1. For Ω = Ωkl = (Ωkl)
′ as in (2.24) the function φ : R → R

defined by (2.27) is proper and bounded from below.

2. A minimum

tΩ := arg min
t∈R

φ(t) ∈ R (2.28)

exists for all Ω = Ωij = −(Ωij)
′ where 1 ≤ i < j ≤ p or p + 1 ≤

i < j ≤ n holds, and exists as well for all Ω = Ωkl = (Ωkl)
′ where

1 ≤ k ≤ p < l ≤ n holds.

¤

In [HHM02] the details are figured out. Moreover, a Jacobi method is

presented for which local quadratic convergence is shown.

A Problem From Computer Vision

The Lie group G under consideration is the semidirect product G = R n R
2.

Here G acts linearly on the projective space RP 2. A Jacobi-type method is

formulated to minimize a smooth cost function f : M → R.

Consider the Lie algebra

g :=



B =



b1 b2 b3
0 0 0

0 0 0


 ; b1, b2, b3 ∈ R



 (2.29)

2.1 Algorithms 21

with Lie bracket the matrix commutator. Exponentiating a general B ∈ g

gives us the representation of a general Lie group element

exp(B) = I3 + h(b1)B with h(b1) :=





eb1 −1

b1
for b1 6= 0

1 for b1 = 0

. (2.30)

A one-parameter subgroup of

G = {A ∈ R
3×3|A = I3 + h(b1)B,B ∈ g} (2.31)

is the smooth curve

exp(tB) = I3 + t · h(t · b1)B. (2.32)

Given a 3× 3-matrix N = N ′ > 0 and let M = {X = ANA′|A ∈ G}. Then

M is a smooth and connected manifold. The tangent space of M at X ∈M
is TXM = {BX +XB′|B ∈ g}.

The stereo matching problem without correspondences can be formulated

mathematically in the following way. Given two symmetric matrices X,Q ∈
R

3×3

X =
k∑

i=1



x1,i

y1,i

1


 [x1,i, y1,i, 1],

Q =
k∑

i=1



x2,i

y2,i

1


 [x2,i, y2,i, 1].

(2.33)

In the sequel we will always assume that X and Q are positive definite.

This assumption corresponds to a generic situation in the stereo matching

problem. In the noise free case one can assume that there exists a group

element A ∈ G such that

Q− AXA′ = 03. (2.34)

Our task then is to find such a matrix A ∈ G. A convenient way to do so is

using a variational approach as follows. Define the smooth cost function

2.1 Algorithms 22

f : M → R,

f(X) = ‖Q−X‖2,
(2.35)

where ‖Y ‖2 :=
3∑

i,j=1

y2
ij. The critical points of f are given by

Lemma 2.2. The unique global minimum Xc of the function f : M →
R, f(X) = ‖Q − X‖2 is characterized by Q = Xc. There are no further

critical points. ¤

Following the above approach we fix a basis of the Lie algebra g =

〈B1, B2, B3〉 with corresponding one-parameter subgroups of G

Ai(t) = etBi , t ∈ R, i = 1, 2, 3. (2.36)

Using an arbitrary ordering of the A1(t), A2(t), A3(t) the proposed algorithm

then consists of a recursive application of sweep operations. In [HH98] it

is shown that under reasonable assumptions this algorithm will converge

quadratically. Moreover, numerical experiments indicate that only about

five iterations are enough to reach the minimum.

2.1.4 Applications and Examples for Block Jacobi

If M = R
n one gets the socalled grouped variable version of the cyclic coor-

dinate descent method, cf. [BHH+87].

For applications with M = On · x or M = (On × Om) · x, cf. [Hüp96].

There, Kogbetliantz algorithms for singular value decompositions (2-dim-

ensional optimization) and Block Jacobi for the real skewsymmetric eigen-

value problem (4-dimensional optimization) are considered. In contrast to the

socalled onesided Jacobi methods for singular value computations, twosided

methods essentially solve in each iteration step an optimization problem with

two parameters. Similarly, as for the real symmetric eigenvalue problem, the

subsets the cost function is restricted to in each step are compact, more-

over, solving the restricted optimization problem is possible in closed form.

The same holds true if one goes one step further, cf. [Hac93, Lut92, Mac95,

Meh02, Paa71, RH95] or section 8.5.11 on Block Jacobi procedures in [GvL89]

and references cited therein. The idea behind applying Block Jacobi methods

2.2 Local Convergence Analysis 23

to matrix eigenvalue problems is the following. Instead of zeroing out exactly

one offdiagonal element (resp. two in the symmetric case) in each step, one

produces a whole block of zeroes simultaneously outside the diagonal. More-

over, each such block is visited once per sweep operation. For all the papers

cited above there exits a reinterpretation by the grouped variable approach,

but this will not figured out here.

2.2 Local Convergence Analysis

We now come to the main result (Theorem 2.4) of this chapter, giving, under

reasonable smoothness assumptions, sufficient conditions for a Jacobi-type

algorithm to be efficient, i.e., being locally at least quadratically convergent.

Assumption 2.1. 1. The cost function f : M → R is smooth. The cost

f has a local minimum, say xf , with nondegenerate Hessian at this

minimum. The function f attains an isolated global minimum when

restricting it to the image of the mappings γ
(x)
i .

2. All the partial algorithmic steps of the algorithm have xf as a fixed

point.

3. All the partial algorithmic steps are smooth mappings in an open neigh-

borhood of the fixed point xf . For this we require the (multi-)step size

selection rule, i.e., computation of the set of t-parameters, to be smooth

around xf .

Remark 2.1. In the sequel of this chapter we will not assume less than C∞-

smoothness properties on mappings involved. This would sometimes obscure

notation, moreover, for applications we have in mind, C∞-smoothness is often

guaranteed.

Theorem 2.4. Consider the Block Jacobi Algorithm 2.4. Assume that As-

sumption 2.1 is fulfilled. Then this algorithm is locally quadratically conver-

gent if the vector subspaces Vi from the direct sum decomposition

Txf
M = V1 ⊕ · · · ⊕ Vm

are mutually orthonormal with respect to the Hessian of the cost function f

at the fixed point xf .

2.2 Local Convergence Analysis 24

Proof. The Block Jacobi Algorithm is defined as

s : M →M,

s(x) = (rm ◦ · · · ◦ r1)(x),

i.e., a sweep consists of block minimzation steps, m in number. To be more

precise, each partial algorithmic step is defined by a basic transformation

x 7→ ri(x) = Gi(t, x)|t=t
(i)
∗
. (2.37)

For each partial step ri : M →M the fixed point condition holds

ri(xf) = xf , i = 1, . . . ,m. (2.38)

The smoothness properties of each ri around the fixed point xf allows us

to do analysis on M around xf . The derivative of a sweep at x ∈ M is the

linear map

D s(x) : TxM → Ts(x)M (2.39)

assigning to any ξ ∈ TxM by the chain rule the value

D s(x) · ξ = D rm

(
(rm−1 ◦ . . . ◦ r1)(x)

)
· . . . ·D r1(x) · ξ. (2.40)

That is, by the fixed point condition

D s(xf) : Txf
M → Txf

M,

D s(xf) · ξ = D rm(xf) · . . . ·D r1(xf) · ξ
(2.41)

holds. Let us take a closer look to the linear maps

D ri(xf) : Txf
M → Txf

M. (2.42)

Omitting for a while any indexing, consider as before the maps of basic

transformations

2.2 Local Convergence Analysis 25

G : R
l ×M →M,

G(t, x) := γ(x)(t).
(2.43)

Now

D r(xf) · ξ =
(

D1G(t, x) ·D t(x) · ξ + D2G(t, x) · ξ
)

x=xf , t=t(xf)
. (2.44)

Consider the smooth function

ψ : R
li ×M → R

li ,

ψ(t, x) : =




∂
∂t1
...
∂

∂tli


 f(G(t, x)).

(2.45)

By definition of the multi-step size selection rule it follows that

ψ(t(x), x) ≡ 0. (2.46)

Applying the Implicit Function Theorem to (2.46) one can get an expression

for the derivative of the multi-step size, D t(xf) · ξ. We will use the following

abbreviations:

ξ̃j := γ̇
(xf)
j (0) for all j = 1, . . . , li,

H(ξ̃j, ξ̃i) := D2 f(xf) · (ξ̃j, ξ̃i),

H :=
(
hij

)
, hij := H(ξ̃i, ξ̃j).

Finally, we get, using a hopefully not too awkward notation,

2.2 Local Convergence Analysis 26

D ri(xf) · ξ = ξ −
li∑

j=1

ξ̃j(H−1)j−th row ·




H(ξ̃1, ξ)
...

H(ξ̃li , ξ)




=


id−

[
ξ̃1 . . . ξ̃li

]
H−1




H(ξ̃1, (·))
...

H(ξ̃li , (·))







︸ ︷︷ ︸
=:Qi

ξ

(2.47)

Note that ξ̃i := γ̇
(xf)
i (0) ∈ V (xf)

i ⊂ Txf
M . Therefore, by the chain rule,

the derivative of one sweep acting on an arbitrary tangent vector ξ ∈ Txf
M

evaluated at the fixed point (minimum) xf is as

D s(xf) · ξ = Qm · . . . ·Q1 · ξ. (2.48)

For convenience we will switch now to ordinary matrix vector notation,

ξ̃l1 , ξ ∈ Txf
M ←→ ξ̃l1 , ξ ∈ R

n,

D2 f(xf) : Txf
M × Txf

M → R ←→ H = H
> ∈ R

n×n,

id : Txf
M → Txf

M ←→ In.

That is, rewriting the right hand side of (2.47)

Qiξ =


In −

[
ξ̃1 . . . ξ̃li

]

︸ ︷︷ ︸
=:eΞi




H(ξ̃1, ξ̃1) · · · H(ξ̃1, ξ̃li)
...

...

H(ξ̃li , ξ̃1) · · · H(ξ̃li , ξ̃li)




−1 


H(ξ̃1, (·))
...

H(ξ̃li , (·))





 ξ

=
(
In − Ξ̃i(Ξ̃

>
i HΞ̃i)

−1Ξ̃>
i H

)
ξ.

We want to examine under which conditions D s(xf) = 0, i.e., we want to

examine to which conditions on the subspaces V
(xf)
i the condition

Qm · . . . ·Q1 ≡ 0

2.2 Local Convergence Analysis 27

is equivalent to. It is easily seen that for all i = 1, . . . ,m

Pi := H
1
2QiH

− 1
2

= In − (H
1
2 Ξ̃i)

(
(H

1
2 Ξ̃i)

>(H
1
2 Ξ̃i)

)−1

(H
1
2 Ξ̃i)

>,
(2.49)

are orthogonal projection operators, i.e.,

Pi = P 2
i = P>

i , for all i = 1, . . . ,m, (2.50)

holds true. Therefore,

Qm · . . . ·Q1 = 0 ⇔ Pm · . . . · P1 = 0. (2.51)

To proceed we need a lemma.

Lemma 2.3. Consider R
n with usual inner product. Consider orthogonal

projection matrices Pi = P>
i = P 2

i , i = 1, . . . ,m with m ≤ n. We require

rkPi = n− ki and
m∑

j=1

kj = n. (2.52)

Then the following holds true

Pm · Pm−1 · . . . · P2 · P1 = 0 (2.53)

⇔

kerPi⊥ kerPj for all i 6= j.

Proof of Lemma 2.3. We prove the “only if”-part, the “if”-part is immediate.

Each projection matrix can be represented as

Pi = In −XiX
>
i (2.54)

with Xi ∈ Stki,n, i.e., a full rank matrix Xi ∈ R
n×ki with orthonormal

columns, X>
i Xi = Iki

.

2.2 Local Convergence Analysis 28

Claim 2.1. The equation (2.53)

Pm · Pm−1 · . . . · P2 · P1 = 0

holds if and only if there exists Θ ∈ On, such that

P̃i = ΘPiΘ
>, for all i = 1, . . . ,m, (2.55)

satisfy

1.

P̃m · . . . · P̃1 = 0, (2.56)

2.

P̃i =

[
∗ 0

0 In−k1−...−ki

]
. (2.57)

Proof of Claim 2.1. Without loss of generality (2.57) holds for i = 1. To see

that (2.57) holds also for i = 2 consider an orthogonal matrix Θ2 ∈ On of

block diagonal form

Θ2 :=

[
Ik1 0

0 U2

]
,

with orthogonal submatrix U2 ∈ On−k1 . Clearly, such a Θ2 stabilizes P̃1, i.e.,

Θ2P̃1Θ
>
2 = P̃1. (2.58)

Moreover, Θ2, (respectively, U2) can be chosen such as to block diagonalize

P2 as

Θ2P2Θ
>
2 = In −Θ2X2X

>
2 Θ>

2 =

[
∗ 0

0 In−k1−k2

]
= P̃2, (2.59)

by requiring the product Θ2X2 to be as

Θ2X2 =

[
Ik1 0

0 U2

]
X2 =

[
∗

0(n−k1−k2)×(k2)

]
∈ Stk2,n . (2.60)

Recall that n− k1 ≥ k2. Now proceeding inductively using

2.2 Local Convergence Analysis 29

ΘlXl =

[
Ikl−1

0

0 Ul

]
Xl =

[
∗

0(n−k1−···−kl)×(kl)

]
∈ Stkl,n (2.61)

for l = 3, . . . ,m − 1, with suitably chosen Ul ∈ On−k1−···−kl−1
proves (2.57).

By defining Θ ∈ On as

Θ := Θm−1 · · ·Θ1

where

Θ1P1Θ
>
1 =

[
0k1 0

0 In−k1

]
= P̃1,

Claim 2.1 follows.

Proof of Lemma 2.3 continued. By Claim 2.1 the product P̃m−1 · . . . · P̃1 takes

the block diagonal form

P̃m−1 · · · P̃1 =

[
∗ 0

0 In−k1−···−km−1

]
· . . . ·

[
∗ 0

0 In−k1−k2

]
·
[
0k1 0

0 In−k1

]

=

[
∗ 0

0 In−k1−···−km−1

]

=

[
∗ 0

0 Ikm

]
.

(2.62)

Recall that rk P̃m = n− km. Therefore we have the implications

P̃m · (P̃m−1 · · · P̃1) = 0⇒ P̃m =

[
∗ 0

0 0km

]

⇒ P̃m =

[
In−km

0

0 0km

]
.

(2.63)

Now we proceed by working off the remaining product P̃m−1 · (P̃m−2 · · · P̃1)

from the left.

2.2 Local Convergence Analysis 30

Analogously to (2.62) we have

P̃m−2 · · · P̃1 =



∗ 0 0

0 Ikm−1 0

0 0 Ikm


 , (2.64)

and similarly to (2.63) we have the implications

P̃m−1(P̃m−2 · · · P̃1) =

[
0n−km

0

0 Ikm

]
⇒ P̃m−1 =



∗ 0 0

0 0km−1 0

0 0 Ikm




⇒ P̃m−1 =



Ik1+...+km−2 0 0

0 0km−1 0

0 0 Ikm


 .

The result of Lemma 2.3 follows then by induction, i.e.,

P̃i =



Ik1+...+ki−1

0 0

0 0ki
0

0 0 Iki+1+...+km




holds true for all i = 2, . . . ,m− 1,

P̃1 =

[
0k1 0

0 In−k1

]
,

and

P̃m =

[
In−km

0

0 0km

]
.

Proof of Theorem 2.4 continued. Finishing the proof of our theorem we

therefore can state that

D s(xf) · ξ = D rm(xf) · . . . ·D r1(xf) = 0

holds true if the direct sum decomposition

2.3 Discussion 31

Txf
M = V1 ⊕ · · · ⊕ Vm

is also orthonormal with respect to the Hessian of our objective function

f at the fixed point (minimum) xf . The result follows by the Taylor-type

argument

‖xk+1 − xf‖ ≤ sup
z∈U

‖D2 s(z)‖ · ‖xk − xf‖2.

2.3 Discussion

From our point of view there are several advantages of the calculus approach

we have followed here. It turns out that the ordering partial algorithmic steps

are worked off do not play a role for the quadratic convergence. Forinstance

for the symmetric eigenvalue problem several papers have been published

to show that row-cyclic and column-cyclic strategies both ensure quadratic

convergence. Our approach now shows that the convergence properties do

not depend on the ordering in general.

Exploiting the differentiability properties of the algorithmic maps offers

a much more universal methodology for showing quadratic convergence than

sequences of tricky estimates usually do. It is e.g. often the case that es-

timates used for On-related problems may not be applicable to GLn-related

ones and vice versa. On the other hand computing the derivative of an algo-

rithm is always the same type of calculation. But the most important point

seems to be the fact that our approach shows quadratic convergence of a ma-

trix algorithm itself. If one looks in text books on matrix algorithms usually

higher order convergence is understood as a property of a scalar valued cost

function (which can even just the norm of a subblock) rather than being a

property of the algorithm itself considered as a selfmap of some manifold.

Chapter 3

Refining Estimates of Invariant

Subspaces

We are interested in refining estimates of invariant subspaces of real non-

symmetric matrices which are already “nearly” block upper triangular. The

idea is the following. The Lie group of real unipotent lower block triangular

(n × n)-matrices acts by similarity on such a given nearly block upper tri-

angular matrix. We will develop several algorithms consisting on similarity

transformations, such that after each algorithmic step the matrix is closer

to perfect upper block triangular form. We will show that these algorithms

are efficient, meaning that under certain assumptions on the starting ma-

trix, the sequence of similarity transformed matrices will converge locally

quadratically fast to a block upper triangular matrix. The formulation of

these algorithms, as well as their convergence analysis, are presented in a

way, such that the concrete block sizes chosen initially do not matter. Espe-

cially, in applications it is often desirable for complexity reasons that a real

matrix which is close to its real Schur form, cf. p.362 [GvL89], is brought

into real Schur form by using exclusively real similarities instead of switching

to complex ones.

In this chapter we always work over R. The generalization to C is im-

mediate and we state without proof that all the results from this chapter

directly apply to the complex case.

The outline of this chapter is as follows. After introducing some nota-

tion we will focus on an algorithm consisting on similarity transformations

by unipotent lower block triangular matrices. Then we refine this approach

by using orthogonal transformations instead, to improve numerical accuracy.

3.1 Lower Unipotent Block Triangular Transformations 33

The convergence properties of the orthogonal algorithm then will be an im-

mediate consequence of the former one.

3.1 Lower Unipotent Block Triangular Trans-

formations

Let denote V ⊂ R
n×n the subvector space of real block upper triangular

(n× n)−matrices

V := {X ∈ R
n×n|Xij = 0ni×nj

∀ 1 ≤ j < i ≤ r}}, (3.1)

i.e., an arbitrary element X ∈ V looks like

X =




X11 · · · · · · X1r

0
. . .

...
...

.
...

0 · · · 0 Xrr




(3.2)

the diagonal subblocks Xii ∈ R
ni×ni , i = 1, . . . , r, being square and therefore

r∑

i=1

ni = n.

Let denote Ln the Lie group of real unipotent lower block triangular (n×n)-

matrices with partitioning according to V

Ln :=

{
X ∈ R

n×n

∣∣∣∣
Xkk = Ink

∀ 1 ≤ k ≤ r,

Xij = 0ni×nj
∀ 1 ≤ i < j ≤ r

}
, (3.3)

i.e., an arbitrary element X ∈ Ln looks like

X =




In1 0 · · · 0

X21
. . .

...
...

. 0

Xnr,1 · · · Xnr ,nr−1 Inr



. (3.4)

Given a real block upper triangular matrix

3.1 Lower Unipotent Block Triangular Transformations 34

A =




A11 · · · · · · A1r

0
. . .

...
...

.
...

0 · · · 0 Arr




(3.5)

consider the orbit MLn
of A under similarity action σ of Ln.

σ : Ln × V → R
n×n,

(L,X) 7→ LXL−1,
(3.6)

and

MLn
:= {X ∈ R

n×n |X = LAL−1, L ∈ Ln}. (3.7)

In this chapter we will make the following assumptions:

Assumption 3.1. Let A as in (3.5). The spectra of the diagonal subblocks

Aii, for i = 1, . . . , r, of A are mutually disjoint.

Our first result shows that any matrix lying in a sufficiently small neigh-

borhood of A which fulfils Assumption 3.1, is then element of an Ln-orbit of

some other matrix, say B, which also fulfils Assumption 3.1.

Let A ∈ R
n×n fulfil Assumption 3.1. Consider the smooth mapping

σ : Ln × V → R
n×n,

σ(L,X) = LXL−1.
(3.8)

Lemma 3.1. The mapping σ defined by (3.8) is locally surjective around

(I, A).

Proof. Let denote ln the Lie algebra of real lower block triangular (n × n)-

matrices

ln :=

{
X ∈ R

n×n

∣∣∣∣
Xkk = 0nk

∀ 1 ≤ k ≤ r,

Xij = 0ni×nj
∀ 1 ≤ i < j ≤ r

}
, (3.9)

i.e., an arbitrary element X ∈ ln looks like

3.1 Lower Unipotent Block Triangular Transformations 35

X =




0n1 0 · · · 0

X21
. . .

...
...

. 0

Xnr,1 · · · Xnr,nr−1 0nr



. (3.10)

It is sufficient to show that the derivative

Dσ(I, A) : ln × V → R
n×n (3.11)

is locally surjective. For arbitrary l ∈ ln and for arbitrary a ∈ V the following

holds true

D σ(I, A) · (l, a) = lA− Al + a. (3.12)

We show that for any h ∈ R
n×n the linear system

lA− Al + a = h (3.13)

has a solution in terms of l ∈ ln and a ∈ V . By decomposing into block

upper triangular and strictly block lower triangular parts

h = hbl.upp. + hstr.bl.low. (3.14)

and because a ∈ V is already block upper triangular it remains to show that

the strictly lower block triangular part of (3.13)

(lA− Al)str.bl.low = hstr.bl.low. (3.15)

can be solved for l ∈ ln. We partition into “blocks of subblocks”

l =

[
l11 0

lf21 lf22

]
,

A =

[
A11 Af12
0 Af22

]
,

hstr.low.bl. =

[
(h11)str.low.bl. 0

hf21 (hf22)str.low.bl.

]
,

accordingly, i.e., A11 ∈ R
n1×n1 and l11 = 0n1 as before. Thus one has to solve

for lf21 and lf22. Considering the (2̃1)−block of (3.15) gives

3.1 Lower Unipotent Block Triangular Transformations 36

lf21A11 − Af22lf21 = hf21, (3.16)

By Assumption 3.1, the Sylvester equation (3.16) can be solved uniquely

for lf21, i.e., the block lf21 is therefore fixed now. Applying an analogous

argumentation to the (2̃2)−block of (3.15)

lf22Af22 − Af22lf22 = −lf21Af12 + (hf22)str.low., (3.17)

and by continuing inductively (l := lf22, A := Af22, etc.) by partitioning into

smaller blocks of subblocks of the remaining diagonal blocks Aii, i = 2, . . . , r,

gives the result.

Let A ∈ R
n×n fulfil Assumption 3.1. Let

MLn
:=
{
X ∈ R

n×n|X = LAL−1, L ∈ Ln

}
. (3.18)

The next lemma characterizes the Ln-orbit of the matrix A.

Lemma 3.2. MLn
is diffeomorphic to Ln.

Proof. The set MLn
is a smooth manifold, because it is the orbit of a semi-

algebraic group action, see p.353 [Gib79]. We will show that the stabilizer

subgroup stab(A) ⊂ Ln equals the identity {I} in Ln, i.e., the only solution

in terms of L ∈ Ln for

LAL−1 = A ⇐⇒ [L,A] = 0 (3.19)

is L = I. Partition L into blocks of blocks

L =

[
In1 0

Lf21 Lf22

]

where the second diagonal block Lf22 ∈ Ln−n1 . Let

A =

[
A11 Af12
0 Af22

]

be accordingly to L partitioned. The (2̃1)−block of the equation [L,A] = 0

is as

Lf21A11 − Af22Lf21 = 0. (3.20)

3.2 Algorithms 37

By Assumption 3.1 on the spectrum of A, equation (3.20) implies Lf21 = 0.

By recursive application of this argumentation to the (2̃2)−block of (3.19)

the result follows. Therefore, L = I implies stab(A) = {I} and hence

MLn
∼= Ln/ stab(A) = Ln (3.21)

3.2 Algorithms

3.2.1 Main Ideas

The algorithms presented in this chapter for the iterative refinement of in-

variant subspaces of nonsymmetric real matrices are driven by the following

ideas.

Let the matrix A be partitioned as in

A =




A11 · · · · · · A1r

0
. . .

...
...

. . .
...

0 · · · 0 Arr




(3.22)

and fulfilling Assumption 3.1. Consider an X ∈ MLn
, MLn

the A-orbit of

the similarity action by Ln. Assume X is sufficiently close to A, i.e.,

‖X − A‖ < ∆λ (3.23)

holds, where ‖Z‖ :=
√

tr(ZZ>) and ∆λ denotes the absolute value of the

smallest difference of two eigenvalues of A which correspond to different

diagonal subblocks of A. Obviously,

span






0(n1+...+ni−1)×ni

Ini

0(ni+1+...+nr)×ni




 (3.24)

is then for all i = 1, . . . , n a good approximation for an ni-dimensional right

invariant subspace of X, because by assumption (3.23) on X, for all j > i

‖Xji‖ is small. (3.25)

3.2 Algorithms 38

Consider an L(α) ∈ Ln of the following partitioned form

L(α) :=




In1

. . .

Inα

p(α+1,α) . . .
...

. . .

p(r,α) Inr




, (3.26)

where empty blocks are considered to be zero ones. We want to compute

P (α) :=



p(α+1,α)

...

p(r,α)


 ∈ R

(nα+1+...+nr)×nα , (3.27)

such that

LαXL
−1
α =



In1+...+nα−1 0 0

0 Inα
0

0 P (α) Inα+1+...+nr


X



In1+...+nα−1 0 0

0 Inα
0

0 −P (α) Inα+1+...+nr




= Z,

(3.28)

where Z is of the form

Z =




Z11 · · · · · · · · · · · · · · · Z1,r

...
. . .

...
... Zα−1,α−1

...
...

... Zα,α

...
...

... 0 Zα+1,α+1
...

...
...

...
...

. . .
...

Zr1 · · · Zr,α−1 0 Zr,α+1 · · · Zr,r




, (3.29)

i.e., the blocks below the diagonal block Zα,α are zero. For convenience we

assume for a while without loss of generality that r = 2. Therefore, we want

to solve the (21)-block of

3.2 Algorithms 39

[
I 0

P (1) I

]
·
[
X11 X12

X21 X22

]
·
[

I 0

−P (1) I

]
=

[
Z11 Z12

0 Z22

]
(3.30)

in terms of P (1), i.e., we want to solve the matrix valued algebraic Riccati

equation

P (1)X11 +X21 − P (1)X12P
(1) −X22P

(1) = 0. (3.31)

As a matter of fact, (3.31) is in general not solvable in closed form. As

a consequence authors have suggested several different approaches to solve

(3.31) iteratively. See [Cha84] for Newton-type iterations on the noncompact

Stiefel manifold and [DMW83, Ste73] for iterations like

Pi+1X11 −X22Pi+1 = PiX12Pi −X21, P0 = 0. (3.32)

Moreover, see [Dem87] for a comparison of the approaches of the former three

papers. For quantitative results concerning Newton-type iterations to solve

Riccati equations see also [Nai90].

A rather natural idea to solve (3.31) approximately is to ignore the second

order term, −P (1)X12P
(1), and solve instead the Sylvester equation

P (1)X11 +X21 −X22P
(1) = 0. (3.33)

Note that by Assumption 3.1 equation (3.33) is uniquely solvable.

Now we switch back to the general case where the number r of invariant

subspaces to be computed is not necessarily equal to 2. Having in mind

sweep-type algorithms it is natural to formulate an algorithm which solves

an equation like (3.33) for P (1), respecting (3.26)-(3.29), say, then transform

X according to X 7→ L1XL
−1
1 , do the same for P (2), and so forth. One

can show that such an algorithm would be a differentiable map around A.

Moreover, local quadratic convergence could be proved by means of analysis.

But the story will not end here as we will see now.

Instead of solving a Sylvester equation for

P (α) =



p(α+1,α)

...

p(r,α)


 , (3.34)

3.2 Algorithms 40

i.e., solving for the corresponding block of (3.28), one could refine the algo-

rithm reducing complexity by solving Sylvester equations of lower dimen-

sion in a cyclic manner, i.e., perform the algorithm block wise on each

p(ij) ∈ R
ni×nj . In principle one could refine again and again reaching fi-

nally the scalar case but then, not necessarily all Sylvester equations could

be solved, because within a diagonal block we did not assume anything on

the spectrum. On the other hand, if the block sizes were 1 × 1, e.g., if one

already knew that all the eigenvalues of A were distinct, then the resulting

scalar algebraic Riccati equations were solvable in closed form, being just

quadratics. We would like to mention that such an approach would come

rather close to [BGF91, CD89, Ste86] where the authors studied Jacobi-type

methods for solving the nonsymmetric (gerneralized) eigenvalue problem.

3.2.2 Formulation of the Algorithm

The following algorithm will be analyzed. Given an X ∈MLn
and let A fulfil

Assumption 3.1. Assume further that X is sufficiently close to A. Consider

the index set

I := {(ij)}i=2,...,r;j=1,...,r−1 (3.35)

and fix an ordering, i.e., a surjective map

β : I →
{

1, . . . ,

(
r

2

)}
. (3.36)

For convenience we rename double indices in the discription of the algorithm

by simple ones by means of Xij 7→ Xβ(ij) respecting the ordering β.

3.2 Algorithms 41

Algorithm 3.1 (Sylvester Sweep).

Given an X ∈MLn
. Define

X
(1)
k := L1XL

−1
1

X
(2)
k := L2X

(1)
k L−1

2

...

X
(r
2)

k := L(r
2)
X

(r
2)−1

k L−1

(r
2)

where for l = 1, . . . ,
(

r

2

)
, the transformation matrix Ll ∈

Ln differs from the identity matrix In only by the ij-th

block, say pl.

Here pl ∈ R
nj×ni , β((ij)) = l, and pl solves the Sylvester

equation

pl

(
X

(l−1)
k

)
jj
−
(
X

(l−1)
k

)
ii
pl +

(
X

(l−1)
k

)
ij

= 0.

The overall algorithm then consists of the iteration of sweeps.

Algorithm 3.2 (Refinement of Estimates of Sub-

spaces).

• Let X0, . . . , Xk ∈MLn
be given for k ∈ N0.

• Define the recursive sequence X
(1)
k , . . . , X

(r
2)

k as

above (sweep).

• Set Xk+1 := X
(r
2)

k . Proceed with the next sweep.

For convenience let us write down one sweep for r = 3. Fixing the ordering

3.2 Algorithms 42

β
(
(21)

)
= 1, β

(
(31)

)
= 2, β

(
(32)

)
= 3, (3.37)

we have for

A =



A11 A12 A13

0 A22 A23

0 0 A33


 , X =



X11 X12 X13

X21 X22 X23

X31 X23 A33


 ,

X1 =



I 0 0

p1 I 0

0 0 I


X



I 0 0

−p1 I 0

0 0 I


 ,

X2 =



I 0 0

0 I 0

p2 0 I


X1



I 0 0

0 I 0

−p2 0 I


 ,

X3 =



I 0 0

0 I 0

0 p3 I


X2



I 0 0

0 I 0

0 −p3 I


 .

In contrast to our Jacobi approach in Chapter 2, where the analysis showed

that the ordering, the partial algorithmic steps where worked off, did not

influence the quadratic convergence properties, the ordering in the present

case will do.

For the index set

I := {(ij)}i=2,...,r;j=1,...,r−1

we fix the following two different orderings. The first one is as

3.2 Algorithms 43

βcol : I →
{

1, . . . ,

(
r

2

)}
,

βcol

(
(r1)

)
= 1,

...

βcol

(
(21)

)
= r − 1,

βcol

(
(r2)

)
= r,

...

βcol

(
(32)

)
= r − 1 + r − 2 = 2r − 3,

...

...

βcol

(
(r, r − 2)

)
=

(
r

2

)
− 2,

βcol

(
(r − 1, r − 2)

)
=

(
r

2

)
− 1,

βcol

(
(r, r − 1)

)
=

(
r

2

)
,

clarified by the following diagram

r-1

.

.

. 2r−3

.

.

.
.
.
.

. . .

↑ ↑ ↑
`
r
2

´
−1

1 r · · ·
`
r
2

´
−2

`
r
2

´

.

The second ordering is as

βrow : I →
{

1, . . . ,

(
r

2

)}
,

3.2 Algorithms 44

`
r
2

´

`
r
2

´
−2

`
r
2

´
−1

.

.

. →
. . .

r → · · · 2r−3

1 → · · · · · · r−1

.

Obviously, the two orderings are mapped into each other by just trans-

posing the diagrams with respect to the antidiagonal.

3.2.3 Local Convergence Analysis

The next result shows that our algorithm is locally a smooth map.

Theorem 3.1. Algorithm 3.2

s : MLn
→MLn

(3.38)

is a smooth mapping locally around A.

Proof. The algorithm is a composition of partial algorithmic steps

ri : MLn
→MLn

, (3.39)

with ri(A) = A for all i. It therefore suffices to show smoothness for each ri

around the fixed point A. Typically, for one partial iteration step one has to

compute the subblock p of the unipotent lower block triangular matrix

L =

[
I 0

p I

]

fulfilling the equality

LXL−1 =

[
I 0

p I

]
·
[
X11 X12

X21 X22

]
·
[
I 0

−p I

]
=

[
∗ ∗

−pX12p ∗

]

i.e., p has to solve the Sylvester equation

pX11 +X21 −X22p = 0.

3.2 Algorithms 45

By assumption on the spectra of X11 and X22, respectively, the solution of

this Sylvester equation exists and is unique. Moreover, applying the Implicit

Function Theorem to the function

(X, p) 7→ f(X, p),

f(X, p) = pX11 +X21 −X22p = 0
(3.40)

implies that X 7→ p(X) is smooth around A. Hence all partial iteration steps

are smooth, the result follows.

The above Theorem 3.1 justifies to use calculus for proving higher order

convergence of our algorithm. We show next that the first derivative of

our algorithm s at the fixed point A vanishes identically implying quadratic

convergence if the chosen ordering is either βrow or βcol.

Theorem 3.2. Algorithm 3.2 converges locally quadratically fast if as an

ordering βrow or βcol is chosen.

Proof. We will show that the first derivative D s(A) of the algorithm s at the

fixed point A vanishes identically if βcol or βrow is chosen. By the chain rule

we therefore have to compute the D rij(A) for all i > j with 2 ≤ i ≤ l and

1 ≤ j ≤ m− 1. To be more precise, we have to study the effect of applying

the linear map

D rij(A) : TAMLn
→ TAMLn

to those tangent vectors [l, A] ∈ TAMLn
onto which the “earlier” linear maps

D rpq(A) have been already applied to

D s(A) · [l, A] = D rlast(A) · . . . ·D rfirst(A) · [l, A], l ∈ ln.

Notice that A is not only a fixed point of s but also one of each individual r.

For simplicity but without loss of generality we may assume that the

partitioning consists of 5 by 5 blocks. Typically, an rij(X) = LijXL
−1
ij looks

like

rij(X) =




I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 pij 0 I 0

0 0 0 0 I



·X ·




I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 −pij 0 I 0

0 0 0 0 I



. (3.41)

3.2 Algorithms 46

Therefore,

D rij(A) · [l, A] = D(LijXL
−1
ij) · [l, X]|X=A = [L′

ij, A] + [l, A]

where

L′
ij := DLij(A) · [l, A],

and typically

L′
ij =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 p′ij 0 0 0

0 0 0 0 0




with

p′ij := D pij(X) · [l, X]|X=A.

We already know that pij solves a Sylvester equation, namely

pij(X)Xjj +Xij −Xiipij(X) = 0, (3.42)

with

pij(X)|X=A = 0. (3.43)

Taking the derivative of the Sylvester equation (3.42) acting on [l, X] evalu-

ated at X = A gives

p′ij(A)Ajj + [l, A]ij − Aiip
′
ij(A) = 0. (3.44)

An easy computation verifies that the commutator [L′
ij, A] is of the following

form

[L′
ij, A] =




0 ∗ 0 0 0

0 ∗ 0 0 0

0 ∗ 0 0 0

0 p′ijAjj − Aiip
′
ij ∗ ∗ ∗

0 0 0 0 0



,

3.2 Algorithms 47

i.e., it differs from zero only by the (ij)-th block as well as by those blocks,

which are to the right to, or which are above to this (ij)-th block. Therefore

by (3.44), for the derivative of the (ij)-th partial step rij we get

D rij(A) · [l, A] =




0 ∗ 0 0 0

0 ∗ 0 0 0

0 ∗ 0 0 0

0 p′ijAjj − Aiip
′
ij ∗ ∗ ∗

0 0 0 0 0




︸ ︷︷ ︸
[L′

ij ,A]

+




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ [l, A]ij ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




︸ ︷︷ ︸
[l,A]

.

That is, by (3.44) the first derivative annihilates the (ij)−th block, altering

those blocks which are above or to the right to this (ij)−th block, but it

leaves invariant all the other remaining blocks. Apparently, both ordering

strategies now ensure, that after a whole iteration step all those blocks of the

tangent vector [l, A] lying below the main diagonal of blocks are eliminated.

We therefore can conclude that

D rij(A) · [l, A] =




∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗



. (3.45)

But we can even conclude more, namely

D rij(A) · [l, A] = 0. (3.46)

This is easily proved following the argumentation in the proof of Lemma 3.2.

Essentially, Assumption 3.1 ensures that the only Lie algebra element of ln,

which commutes with A into a block upper triangular matrix like A itself, is

the zero matrix.

The result follows by the Taylor-type argument

‖Xk+1 − A‖ ≤ sup
Z∈U

‖D2 s(Z)‖ · ‖Xk − A‖2.

3.2 Algorithms 48

3.2.4 Further Insight to Orderings

Quite naturally one might ask if the two orderings βrow and βcol are the only

possible ones ensuring quadratic convergence. The answer is no, because

somehow “mixtures” of both strategies will also suffice as we will demonstrate

by a few low dimensional examples.

Example 3.1. For r = 3 there are two possible orderings ensuring quadratic

convergence for Algorithm 3.2:

3

1 2

and
2

1 3

.

Example 3.2. For r = 4 there are eight possible orderings together with

its “conjugate” counterparts (transposing with respect to the antidiagonal)

ensuring quadratic convergence for Algorithm 3.2:

6

4 5

1 2 3

,
5

4 6

1 2 3

,
6

3 5

1 2 4

,
5

3 6

1 2 4

,

5

3 4

1 2 6

,
6

3 4

1 2 5

,
4

3 5

1 2 6

,
4

3 6

1 2 5

.

Remark 3.1. The possible orderings are related to Young tableaux, or to be

more precise, to standard tableaux. See [Ful97] for the connections between

geometry of flag manifolds, representation theory of GLn, and calculus of

tableaux.

3.2 Algorithms 49

Consequently, as a corollary of Theorem 3.2 we get the following result.

Corollary 3.1. Algorithm 3.2 is quadratic convergent if the ordering is spec-

ified by the following two rules. The integers 1, . . . ,
(

r

2

)
to be filled in

1. are strictly increasing across each row,

2. are strictly increasing up each column.

¤

We did not comment yet on orderings which are definitely not leading to

quadratic convergence. It seems to be a cumbersome combinatorial problem

to decide weather some ordering which does not respect Corollary 3.1 is

always bad. To answer this question one needs also information on the fixed

point as we see now by some further examples.

For the following series of examples let the fixed point be given by

A :=



a11 a12 a13

0 a22 a23

0 0 a33


 . (3.47)

The partitioning will be according to n = r = 3, i.e., the block sizes are

always 1 × 1. Therefore, an arbitrary tangent element ξ ∈ TAML3 is of the

form

ξ = [l, A]

=



− (a12 l21)− a13 l31 − (a13 l32) 0

a11 l21 − a22 l21 − a23 l31 a12 l21 − a23 l32 a13 l21
a11 l31 − a33 l31 a12 l31 + a22 l32 − a33 l32 a13 l31 + a23 l32




with

l :=




0 0 0

l21 0 0

l31 l32 0


 . (3.48)

Example 3.3. Here we study explicitly the effect of the ordering

3.2 Algorithms 50

1

2 3

We get

D r1(A)ξ =


−
(

(a11 a13−a13 a22+a12 a23) l31
a11−a22

)
− (a13 l32) 0

0 a23 (a12 l31+(−a11+a22) l32)
a11−a22

a13 a23 l31
a11−a22

(a11 − a33) l31 a12 l31 + (a22 − a33) l32 a13 l31 + a23 l32


 ,

D r2(A) D r1(A)ξ =




a12 a23 l31
−a11+a22

− (a13 l32) 0

a23 l31
a23 (a12 l31+(−a11+a22) l32)

a11−a22

a13 a23 l31
a11−a22

0 (a22 − a33) l32 a23 l32


 ,

D r3(A) D r2(A) D r1(A)ξ =




a12 a23 l31
−a11+a22

0 0

a23 l31
a12 a23 l31
a11−a22

a13 a23 l31
a11−a22

0 0 0




6= 0.

But if one assumes that for the entry a23 of the fixed point A

a23 = 0 (3.49)

holds, then even this ordering results in a quadratic convergent algorithm.

¤

Example 3.4. Here quadratic convergence is ensured according to Theorem

3.2:

2

1 3

3.2 Algorithms 51

We get

D r1(A)ξ =



− (a12 l21) − (a13 l32) 0

(a11 − a22) l21 a12 l21 − a23 l32 a13 l21
0 (a22 − a33) l32 a23 l32


 ,

D r2(A) D r1(A)ξ =




0 − (a13 l32) 0

0 − (a23 l32) 0

0 (a22 − a33) l32 a23 l32


 ,

D r3(A) D r2(A) D r1(A)ξ =




0 0 0

0 0 0

0 0 0


 .

¤

Example 3.5. This is another example which ensures quadratic convergence

only under additional assumptions on the structure of the fixed point.

1

3 2

We get

D r1(A)ξ =


−
(

(a11 a13−a13 a22+a12 a23) l31
a11−a22

)
− (a13 l32) 0

0 a23 (a12 l31+(−a11+a22) l32)
a11−a22

a13 a23 l31
a11−a22

(a11 − a33) l31 a12 l31 + (a22 − a33) l32 a13 l31 + a23 l32


 ,

D r2(A) D r1(A)ξ =



−
(

(a11 a13−a13 a22+a12 a23) l31
a11−a22

)
a12 a13 l31
a22−a33

0

0 a12 a23 (a11−a33) l31
(a11−a22) (a22−a33)

a13 a23 l31
a11−a22

(a11 − a33) l31 0 (−(a12 a23)+a13 (a22−a33)) l31
a22−a33


 ,

3.3 Orthogonal Transformations 52

D r3(A) D r2(A) D r1(A)ξ =




a12 a23 l31
−a11+a22

a12 a13 l31
a22−a33

0

a23 l31
a12 a23 (a11−a33) l31
(a11−a22) (a22−a33)

a13 a23 l31
a11−a22

0 − (a12 l31)
a12 a23 l31
−a22+a33




6= 0.

But if one assumes that

a23 = a12 = 0 (3.50)

holds, then even this ordering results in a quadratic convergent algorithm.

¤

3.3 Orthogonal Transformations

For numerical reasons it makes more sense to use orthogonal transformations

instead of unipotent lower triangular ones. We therefore reformulate Algo-

rithm 3.2 in terms of orthogonal transformations. The convergence analysis

for this new algorithm will greatly benefit from the calculations we already

did.

For convenience we assume for a while that r = 5. Given

L =




I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 p 0 I 0

0 0 0 0 I



,

a quite natural idea is to use instead of L the orthogonal Q-factor from L

after performing Gram-Schmidt, i.e., L = RQ, to the rows of subblocks of L.

We have

R =




I 0 0 0 0

(I + p>p)−
1
2 0 p>(I + pp>)−

1
2 0

I 0 0

(I + pp>)
1
2 0

I




(3.51)

3.3 Orthogonal Transformations 53

and

Q =




I 0 0 0 0

0 (I + p>p)−
1
2 0 −(I + p>p)−

1
2p> 0

0 0 I 0 0

0 (I + pp>)−
1
2p 0 (I + pp>)−

1
2 0

0 0 0 0 I



. (3.52)

Before we proceed to formulate the orthogonal version of Algorithm 3.2

we need some preliminaries. Namely we have to fix the manifold such an

algorithm is “living” on.

Consider an “Iwasawa Decomposition” of the Lie group Ln. The set of

orthogonal matrices Q coming from an RQ-decomposition as in (3.51) do in

general not generate an orthogonal group with group operation the ordinary

matrix product. To see this we look at the simple 2× 2-case

[
1 0

p 1

]
=

[
(I + p>p)−

1
2 p>(I + pp>)−

1
2

0 (I + pp>)
1
2

]
·
[

(I + p>p)−
1
2 −(I + p>p)−

1
2p>

(I + pp>)−
1
2p (I + pp>)−

1
2

]
.

(3.53)

Obviously, the set of orthogonal Q-matrices does not include

Q̃ :=

[
0 −1

1 0

]
. (3.54)

Note that

lim
p→±∞

L /∈ L2. (3.55)

Nevertheless, we are able to construct atleast locally the space an orthogonal

version of Algorithm 3.2 can be defined on. This construction will then allow

us to use again analysis to prove quadratic convergence.

Consider an arbitrary element L ∈ Ln in a sufficiently small neighbor-

hood ULn
(In) of the identity In in Ln, such that L can be parameterized by

exponential coordinates of the second kind, cf. p.86, [Var84]. Let

L = L(r
2)
· . . . · L1

= R(r
2)
Q(r

2)
· . . . ·R1Q1.

(3.56)

3.3 Orthogonal Transformations 54

Here the Li are defined as in (3.41). Each Li, for i = 1, . . . ,
(

r

2

)
, is represented

as

Li = eli (3.57)

with, e.g., using βrow as an ordering,

l1 =




0 · · · · · · 0
...

. . .
...

0
. . .

...

p1 0 · · · 0



, l2 =




0 · · · · · · · · · 0
...

. . .
...

0
. . .

...

0 p2 0 · · · 0



, etc. . . . (3.58)

We can therefore study the map

σ : Ln ⊃ ULn
(In)→ SOn,

L 7→ Q(r
2)

(L) · . . . ·Q1(L).
(3.59)

Note that

Qi(In) = In for all i = 1, . . . ,

(
r

2

)

holds true. The following series of lemmata characterizes the mapping σ.

Lemma 3.3. The mapping σ defined by (3.59) is smooth.

Proof. See the explicit form of the Qi given as in (3.51).

Lemma 3.4. The mapping σ defined by (3.59) is an immersion at In.

Proof. We have to show that the derivative

D σ(In) : ln → son

is injective.

For arbitrary l =
(r
2)∑

i=1

li ∈ ln the following holds true

Dσ(In) · l =

(r
2)∑

i=1

DQi(In) · li

=

(r
2)∑

i=1

(li − l>i)

= l − l>,

(3.60)

3.3 Orthogonal Transformations 55

where we have used

d

d ε
(I + ε2p>p)−

1
2

∣∣∣∣
ε=0

= 0

and

d

d ε
(I + ε2pp>)−

1
2

∣∣∣∣
ε=0

= 0.

Equation (3.60) implies injectivity in an obvious manner.

Now we can apply the Immersion Theorem, cf. [AMR88] p.199.

Lemma 3.5. The mapping σ as defined by (3.59) is a diffeomorphism of

ULn
(In) onto the image σ(ULn

(In)). ¤

Consider the isospectral manifold

MSOn
:= {X ∈ R

n×n |X = QAQ>, Q ∈ SOn} (3.61)

with A as in (3.5) fulfilling Assumption 3.1. Define

α : σ(ULn
(In))→MSOn

,

Q 7→ QAQ>.
(3.62)

Lemma 3.6. The mapping α defined as in (3.62) is smooth.

Proof. The result follows by the explicit construction of an arbitrary Q by

using exponential coordinates of the second kind.

Lemma 3.7. The mapping α defined as in (3.62) is an immersion at In.

Proof. We have to show that the derivative

Dα(In) : TIn
σ(ULn

(In))→ TAMSOn

is injective. Arbitrary elements of the tangent space TIn
σ(ULn

(In)) have the

form

(r
2)∑

i=1

(li − l>i) = l − l>,

3.3 Orthogonal Transformations 56

whereas those of the tangent space TAMSOn
look like

[l − l>, A].

To show injectivity of

Dα(In) : TIn
σ(ULn

(In))→ TAMSOn
,

l − l> 7→ [l − l>, A],

we partition l − l> accordingly to A, i.e.,

A =



A11 · · · Arr

. . .
...

Arr


 , l − l> =




0 −p>21 · · · −p>r1
p21

. . .
...

...
. . . −p>r,r−1

pr1 · · · pr,r−1 0



.

Note that

[l − l>, A]r1 = pr1A11 − Arrpr1.

Assume the converse, i.e.,

[l − l>, A] = [l̃ − l̃>, A] (3.63)

holds for some l̃ 6= l with

l̃ :=




0

p̃21
. . .

...
. . .

p̃r1 · · · p̃r,r−1 0



∈ ln.

Looking at the (r1)-block of (3.63) implies

(pr1 − p̃r1)A11 − Arr(pr1 − p̃r1) = 0. (3.64)

By Assumption 3.1 on the spectra of A11 and Arr, respectively, (3.64) implies

pr1 = p̃r1.

3.3 Orthogonal Transformations 57

Now by induction on the subdiagonals of blocks, i.e., going from the lower

left corner block of (3.63) to the first subdiagonal of blocks, and continuing

to apply recursively the same arguments on the (r − 1, 1)-block of (3.63), as

well as on the (r2)-block of (3.63), then imply

pr2 = p̃r2 and pr−1,1 = p̃r−1,1.

Finally, we get

[l − l>, A] = [l̃ − l̃>, A] =⇒ l = l>,

a contradiction. Therefore, Dα(In) is injective, hence α is an immersion at

In.

Consequently, we have

Lemma 3.8. The composition mapping α ◦ σ : ULn
(In)→MSOn

is a diffeo-

morphism of ULn
(In) onto the image (α ◦ σ)(ULn

(In)).

¤

3.3.1 The Algorithm

The following algorithm will be analyzed. Given an X ∈ (α ◦ σ)(ULn
(In))

and let A fulfil Assumption 3.1. For convenience we abbreviate in the sequel

M := (α ◦ σ)(ULn
(In)). (3.65)

Consider the index set

I := {(ij)}i=2,...,r;j=1,...,r−1 (3.66)

and fix an ordering β. For convenience we again rename double indices in

the description of the algorithm by simple ones by means of Xij 7→ Xβ(ij)

respecting the ordering β.

3.3 Orthogonal Transformations 58

Algorithm 3.3 (Orthogonal Sylvester Sweep).

Given an X ∈ (α ◦ σ)(ULn
(In)) = M . Define

X
(1)
k := Q1XQ

>
1

X
(2)
k := Q2X

(1)
k Q>

2

...

X
(r
2)

k := Q(r
2)
X

(r
2)−1

k Q>

(r
2)

where for l = 1, . . . ,
(

r

2

)
the transformation matrix Ql ∈ SOn differs from

the identity matrix In only by 4 subblocks. Namely, the

jj − th block is equal to (I + p>p)−
1
2

ji− th block is equal to − (I + p>p)−
1
2p>

ij − th block is equal to (I + pp>)−
1
2p

ii− th block is equal to (I + pp>)−
1
2 .

Here pl ∈ R
nj×ni , β((ij)) = l, and pl solves the Sylvester equation

pl

(
X

(l−1)
k

)
jj
−
(
X

(l−1)
k

)
ii
pl +

(
X

(l−1)
k

)
ij

= 0.

The overall algorithm then consists of the iteration of orthogonal sweeps.

Algorithm 3.4 (Orthogonal Refinement of Estimates of Sub-

spaces).

• Let X0, . . . , Xk ∈M be given for k ∈ N0.

• Define the recursive sequence X
(1)
k , . . . , X

(r
2)

k as above (sweep).

• Set Xk+1 := X
(r
2)

k . Proceed with the next sweep.

3.3 Orthogonal Transformations 59

3.3.2 Local Convergence Analysis

Analogously to Theorem 3.1 we have

Theorem 3.3. Algorithm 3.4

s : M →M (3.67)

is a smooth mapping locally around A.

Proof. The algorithm is a composition of partial algorithmic steps ri. Smooth-

ness of these partial algorithmic steps follows from the smoothness of each

pi already shown.

Theorem 3.4. Algorithm 3.4 converges locally quadratically fast if for work-

ing off the partial algorithmic steps an ordering is chosen which respects

Corollary 3.1.

Proof. We will compute D rij(A) for all i > j with 2 ≤ i ≤ l and 1 ≤ j ≤ m−
1. Without loss of generality we may assume that the partitioning consists of

5 by 5 blocks. Typically, a transformation matrix Qij for rij(X) = QijXQ
>
ij

looks like

Qij(X) =




I 0 0 0 0

0 Sij(X) 0 −Sij(X)p>ij(X) 0

0 0 I 0 0

0 Tij(X)pij(X) 0 Tij(X) 0

0 0 0 0 I



, (3.68)

where

Sij(X) = S>
ij (X) :=

(
I + p>(X)p(X)

)− 1
2

and

Tij(X) = T>
ij (X) :=

(
I + p(X)p>(X)

)− 1
2
.

Moreover,

Sij(A) = Ini

3.3 Orthogonal Transformations 60

and

Tij(A) = Inj
.

An arbitrary

Ω ∈ son/(son1 ⊕ . . .⊕ sonr
)

looks like

Ω =




0 −Ω>
21 · · · −Ω>

r1

Ω21
. . .

...
...

. . . −Ω>
r,r−1

Ωr1 · · · Ωr,r−1 0



.

The derivative of one partial algorithmic step acting on [Ω, A] ∈ TAM is as

D rij(A) · [Ω, A] = [Q′
ij, A] + [Ω, A],

where

Q′
ij := DQij(A) · [Ω, A],

and typically

Q′
ij =




0 0 0 0 0

0 S ′
ij(A) 0 −(p>ij)

′(A) 0

0 0 0 0 0

0 p′ij(A) 0 T ′
ij(A) 0

0 0 0 0 0




with

p′ij(A) := D pij(X) · [Ω, X]|X=A.

We already know that pij solves a Sylvester equation, namely

pij(X)Xjj +Xij −Xiipij(X) = 0, (3.69)

with

pij(X)|X=A = 0. (3.70)

3.3 Orthogonal Transformations 61

Taking the derivative of the Sylvester equation (3.69) acting on [Ω, A] gives

p′ij(A)Ajj + [Ω, A]ij − Aiip
′
ij(A) = 0. (3.71)

An easy computation verifies that the commutator [Q′
ij, A] is of the following

form

[Q′
ij, A] =




0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0



,

i.e., the (ij)-th block equals p′ijAjj − Aiip
′
ij and columns of blocks to the

left as well as rows of blocks below are zero. Therefore by (3.71), for the

derivative of the (ij)-th partial step rij we get

D rij(A) · [Ω, A] =




0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 p′ijAjj − Aiip

′
ij ∗ ∗ ∗

0 0 0 0 0




︸ ︷︷ ︸
[Q′

ij ,A]

+




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ [Ω, A]ij ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




︸ ︷︷ ︸
[Ω,A]

.

That is, by (3.71) the first derivative annihilates the (ij)−th block, altering

eventually those blocks which are above, to the right, or a combination of

both, to this (ij)−th block, but it leaves invariant all the other remaining

blocks. Apparently, all ordering strategies respecting Corollary 3.1 ensure,

that after a whole iteration step all those blocks lying below the main diagonal

of blocks are eliminated. We therefore can conclude that

D rij(A) · [Ω, A] =




∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗



. (3.72)

Again we can even conclude more, namely

D rij(A) · [Ω, A] = 0. (3.73)

3.3 Orthogonal Transformations 62

Following the argumentation in the proof of Lemma 3.2, essentially, As-

sumption 3.1 ensures that the only element of son/(son1 ⊕ . . .⊕ sonr
), which

commutes with A into a block upper triangular matrix, is the zero matrix.

This can also be seen from the fact that the above Ω equals an l − l> where

l ∈ ln.

The result follows by the Taylor-type argument

‖Xk+1 − A‖ ≤ sup
Z∈U

‖D2 s(Z)‖ · ‖Xk − A‖2.

3.3.3 Discussion and Outlook

Consider a nearly upper triangular matrix over C with distinct eigenvalues.

Assume n = r, i.e., we have to solve
(

n

2

)
scalar Sylvester equations per

sweep. Our algorithm leads then to an extremely efficient algorithm for

refining estimates of eigenvectors. Each partial algorithmic step requires just

the solution of a scalar linear equation.

We would like to mention that the methods from this chapter can also be

applied to generalized eigenproblems in a completely straight forward way.

Instead of one Riccati or one Sylvester equation one has to solve a system of

two coupled ones. Everything works fine under a reasonable assumption on

the spectra of subblocks.

It is a challenge to apply our methods also to more structured generalized

eigenvalue problems, say Hamiltonian ones.

If the matrix for which we would like to compute invariant subspaces is

symmetric, our method is related to [Göt95]. There, socalled approximate

Givens (or Jacobi) transformations are developed which essentially approx-

imate an exact rotation to zero out a matrix entry. Such an approach has

advantages if one is interested in VLSI-implementations.

Nevertheless, it is an open problem if our algorithm has a reinterpretation

as a Jacobi-type method in the general nonsymmetric case, i.e., if there is a

cost function which is minimized in each step.

Chapter 4

Rayleigh Quotient Iteration,

QR-Algorithm, and Some

Generalizations

A wellknown algorithm for computing a single eigenvector-eigenvalue pair of a

real symmetric matrix is the Rayleigh Quotient Iteration. It was initially used

to improve an approximate eigenvector, see [Par80] and references therein.

Local cubic convergence was firstly shown in a series of papers by Ostrowski,

cf. [Ost59].

The QR-algorithm for the symmetric eigenvalue problem is known to

be closely related to RQI, see e.g., p. 441 in [GvL89]. The QR-algorithm is

known to be one of the most efficient algorithms. The reason for this is mainly

that one can exploit a banded structure of the matrices under consideration

and furthermore one is able to bring a given matrix in a finite number of steps

to such a banded form. Nevertheless, from our point of view the convergence

analysis of the QR-algorithm is far from being easy to understand. Moreover,

the fact that in the symmetric tridiagonal case QR using Rayleigh Quotient

shifts or socalled Wilkinson shifts converges locally cubically is somewhat

misleading because it is not the algorithm itself which is converging fast,

merely it is a submatrix or some entry which converges cubically in norm.

Essentially, deflating then is necessary to make the algorithm efficient.

In this chapter we will start showing cubic convergence of the classi-

cal Rayleigh Quotient iteration by means of Calculus. Then we will de-

velop a new algorithm which we call parallel RQI, because its relation to the

RQI is closer than the relation between QR-algorithm and RQI. Essentially,

4.1 Local Cubic Convergence of RQI 64

parallel RQI is an algorithm which is under some mild assumptions locally

well defined, moreover, ulimately it converges in a way that all eigenvalue-

eigenvector pairs converge simultaneously cubically.

In the last section we take a closer look to the local convergence proper-

ties of the shifted QR-algorithm when applied to a real symmetric matrix.

We will show that there exists no smooth shift strategy which ensures that

the algorithm itself, considered as a selfmap on the orthogonal group On,

converges quadratically.

4.1 Local Cubic Convergence of RQI

Given a nonsingular A = A> ∈ R
n×n with distinct eigenvalues the iteration

xk+1 =
(A− x>k AxkIn)−1xk

‖(A− x>k AxkIn)−1xk‖
(4.1)

is known to be locally cubically convergent around each eigenvector of A,

cf. [Ost59, Par80]. Usually, one proves cubic convergence by using tricky

estimates. The differentiability properties of the map

x 7→ (A− x>AxIn)−1x

‖(A− x>AxIn)−1x‖ (4.2)

are not exploited for the proof. The main reason for this lack might be that

the map

f̃ : Sn−1 → Sn−1

x 7→ (A− x>AxIn)−1x

‖(A− x>AxIn)−1x‖
(4.3)

has discontinuities at the fixed points of the corresponding dynamical system,

namely at the normalized eigenvectors of A.

By a rather simple idea we remove this discontinuities by defining another

iteration, which we call again Rayleigh Quotient Iteration. Consider the map

f : Sn−1 → Sn−1

x 7→ adj(A− x>AxIn)x

‖ adj(A− x>AxIn)x‖ .
(4.4)

4.1 Local Cubic Convergence of RQI 65

Iterating (4.4) obviously has roughly the same dynamics as iterating (4.3).

The difference is just in the sign of the determinant of (A − x>AxIn). The

big advantage of looking at (4.4) instead of (4.3) is that both have the same

fixed points but (4.4) is smooth around the eigenvectors.

Theorem 4.1. Let A = A> be nonsingular having distinct eigenvalues. The

mapping f defined by (4.4) is smooth around any eigenvector of A.

Proof. Without loss of generality we may assume that A is diagonal, i.e.,

A = diag(λ1, . . . , λn).

The denominator in (4.4), namely

‖ adj(A− x>AxIn)x‖
is equal to zero, if and only if x lies in the kernel of adj(A − x>AxIn). If x

is an eigenvector, namely x = ei, with ei a standard basis vector of R
n, it

follows that x>Ax is the corresponding eigenvalue and therefore A−x>AxIn
is singular.

Nevertheless,

adj(A− λiIn) · ei =
∏

j 6=i

(λj − λi)ei

6= 0

holds true. For x 6= ei lying in a sufficiently small neighborhood of ei the

“Rayleigh Quotient” x>Ax is never an eigenvalue. The result follows.

By the next result we show that RQI is cubically convergent. For this we

will use the differentiability properties of (4.4).

Theorem 4.2. Let A = A> be nonsingular having distinct eigenvalues. At

any eigenvector x ∈ Sn−1 of A, the first and second derivatives of f defined

by (4.4) vanish.

Proof. Again without loss of generality we assume A to be diagonal. Define

F : Sn−1 → Sn−1

F (x) = adj(A− x>AxIn)x,
(4.5)

4.1 Local Cubic Convergence of RQI 66

and therefore

f(x) =
F (x)

‖F (x)‖ . (4.6)

Furthermore, define

G : R
n → R

n

G(x) = adj(A− x>AxIn)x,
(4.7)

and

g(x) =
G(x)

‖G(x)‖ . (4.8)

That is

F = G|Sn−1 , f = g|Sn−1 .

Now for real α 6= 0

D g(x)ξ|x=αei
=
(

id−g(αei)g
>(αei)

)DG(αei)ξ

‖G(αei)‖
(4.9)

where

g(αei) =

∏
j 6=i

(λj − λi)αei

‖
∏
j 6=i

(λj − λi)αei‖

= ei sign(α
∏

j 6=i

(λj − λi)).

(4.10)

Therefore,

id−g(αei)g
>(αei) = id−eie

>
i . (4.11)

Moreover,

DG(x)ξ|x=αei
= D(adj(A− x>AxIn)x)ξ|x=αei

= adj(A− x>AxIn)ξ|x=αei
+ (D(adj(A− x>AxIn))ξ)x|x=αei

.

(4.12)

4.1 Local Cubic Convergence of RQI 67

The first summand on the right hand side of the last line of (4.12) gives

adj(A− x>AxIn)ξ|x=αei
=
∏

j 6=i

(λj − λiα
2)ξiei

= K1ei

(4.13)

with constant K1 ∈ R.

The second summand of (4.12) is as

(D(adj(A− x>AxIn))ξ)x|x=αei
= D




Q
j 6=1

(λj − x>Ax)

. . . Q
j 6=n

(λj − x>Ax)


ξ

∣∣∣∣∣∣∣
x=αei

αei

= D
∏

j 6=i

(λj − x>Ax)ξ|x=αei
αei

= K2ei

(4.14)

with constant K2 ∈ R. Hence,

D g(x)ξ|x=αei
=

id−eie
>
i

‖G(αei)‖
(K1 +K2)ei

= 0.

(4.15)

That is, we have the implication

D g(ei) = 0 =⇒ D f(ei) = 0. (4.16)

Now we compute the second derivative. For h ∈ R
n we have

D2 g(x)(h, h)|x=αei
= D

id−g(x)g>(x)

‖G(x)‖ h ·DG(x) · h|x=αei
+

+
id−g(x)g>(x)

‖G(x)‖ ·D2G(x) · (h, h)|x=αei
.

(4.17)

4.1 Local Cubic Convergence of RQI 68

We claim that the first summand in (4.17) is zero. By a tedious computation

one gets that

D
id−g(x)g>(x)

‖G(x)‖ h|x=αei
= const · (id−eie

>
i). (4.18)

But we already know that

DG(ei) · h = const · ei, (4.19)

therefore the claim is true.

The Hessian of f = g|Sn−1 at ei as a symmetric bilinear form on Tei
Sn−1×

Tei
Sn−1 can now be defined as

D2 f(ei)(µ, µ) =
id−eie

>
i

‖F (ei)‖
·D2G(ei)(µ, µ). (4.20)

It will turn out from the following calculation that

D2 f(ei)(µ, µ) = 0. (4.21)

For this let us first evaluate for h ∈ R
n the second derivative of the extended

function G : R
n → R

n defined by (4.7). A lengthy computation gives

D2G(x)(h, h)|x=αei
= 2(D adj(A− x>AxIn) · h) · h|x=αei

+

+ D2 adj(A− x>AxIn)(h, h) · x|x=αei
.

(4.22)

Note that the last summand in (4.22) lies in the kernel of id−eie
>
i , therefore

D2 g(x)(h, h)|x=ei
= 2

id−eie
>
i

‖G(ei)‖
· (D adj(A− x>AxIn) · h) · h|x=ei

= −4e>i h
id−eie

>
i

‖G(ei)‖
∏

j 6=i

(λj − λi)




P
k 6=1

1
λk−λi

. . . P
k 6=n

1
λk−λi


·h.

(4.23)

For all µ ∈ Tei
Sn−1 it holds

D2 g(ei)(µ, µ) = 0

4.2 Parallel Rayleigh Quotient Iteration or Matrix-valued Shifted
QR-Algorithms 69

because on the n-sphere e>i µ = 0. The theorem is proved now.

Equation (4.23) is interesting for the following reasons. Firstly, it shows

cubic convergence for the RQI considered as a dynamical system on the

sphere. Secondly, for arbitrary vectors h 6∈ Tei
Sn−1 the second order deriva-

tive of g is not equal to zero.

As a consequence we can state that RQI considered as a dynamical system

on R
n is only quadratically convergent. An even more tedious calculation

shows that a third variant

xk+1 =
adj

(
A− x>

k
Axk

x>
k

xk

)
xk

∥∥∥adj
(
A− x>

k
Axk

x>
k

xk

)
xk

∥∥∥
(4.24)

is again cubically convergent. These subtleties may have consequences to

the numerical implementation. For RQI considered as an iteration on R
n

nonspherical second order perturbations near an equilibrium point may dis-

turb cubic convergence. Whereas for the iteration (4.24) they will not. All

these considerations may convince the programmer how important correct

normalization might be.

4.2 Parallel Rayleigh Quotient Iteration or

Matrix-valued Shifted QR-Algorithms

A quite natural question one may raise is, if one is able to formulate a QR-

type algorithm which is somehow the true generalization of RQI to a full

matrix. By this we mean an algorithm which ultimately does RQI on each

column individually and even simultaneously. The idea is as follows.

4.2 Parallel Rayleigh Quotient Iteration or Matrix-valued Shifted
QR-Algorithms 70

Algorithm 4.1 (Parallel Rayleigh Quotient Iteration on Stn,k).

Given a nonsingular A = A> ∈ R
n×n with distinct eigenvalues and an

X ∈ Stn,k.

1. Solve for Z ∈ R
n×k

AZ − Z Diag(X>AX) = X

where Diag(A) := diag(a11, . . . , ann) denotes the diagonal part of

A.

2. Set X = (Z)Q, where (Z)Q denotes the Q-factor from a QR-

decomposition of Z, with Q ∈ Stn,k and go to 1.

Obviously, for k = 1 this iteration is RQI. For k = n one can interpret this

algorithm as a QR-type algorithm on the orthogonal group On performing

matrix valued shifts, i.e., each column of Z is differently shifted. For n >

k ≥ 1 this algorithm is closely related to the recent work, [AMSD02]. One

of the main differences between Algorithm 4.1 and the iteration presented in

[AMSD02] is that we just take the orthogonal projection on the diagonal, see

step 1. in Algorithm 4.1, whereas Absil et al. need a diagonalization instead.

Moreover, we are able to show that our iteration is well defined even in the

case n = k.

Let us analyze the local convergence properties of parallel RQI. Firstly,

we want to get rid of the discontinuities at the fixed points. It is easily

seen that the fixed points of the parallel RQI are those X ∈ Stn,k where

X>AX is diagonal, or equivalently, those points X, the colunmns of which

are eigenvectors of A. We will use the same idea as for standard RQI, see

above.

Let X = [x1, . . . , xk], and Z = [z1, . . . , zk]. If the i−th diagonal entry of

X>AX is not equal to an eigenvalue of A, the shifted matrix A−(X>AX)iiIn
is invertible and therefore

AZ − Z Diag(X>AX) = X ⇐⇒ zi = (A− (X>AX)iiIn)−1xi (4.25)

for all i = 1, . . . , k. For our analysis we will therefore use for all i

4.2 Parallel Rayleigh Quotient Iteration or Matrix-valued Shifted
QR-Algorithms 71

zi = adj(A− (X>AX)iiIn)xi. (4.26)

Scaling a column zi by the determinant det(A − (X>AX)iiIn) is not

necessary because this can be incorporated into the triangular factor R of

the QR-decomposition of Z in the second step of the algorithm.

As a consequence of the RQI analysis from the last section we have

Theorem 4.3. Parallel RQI considered as an iteration on the compact Stiefel

manifold Stn,k using (4.26)

1. is a well defined iteration in an open neighborhood of any fixed point

X,

2. is smooth around such an X,

3. converges locally cubically fast to such an X.

Proof. Without loss of generality we assume A = diag(λ1, . . . , λn). To see

that the algorithm is locally well defined it is enough to prove that the matrix

Z has full rank at a fixed point, but this is trivial because each fixed point

itself is of full rank. Note that for any vector x ∈ R
n being sufficiently close

to an eigenvector ei of A the expression (adj(A − x>AxIn))x never equals

zero and therefore the second part of the theorem follows also. To prove the

third part we need to compute the derivative of

Z(X) = Q(Z(X)) ·R(Z(X)). (4.27)

Here

Z : Stn,k → R
n×k,

Q : R
n×k → Stn,k,

R : R
n×k → Uk,

(4.28)

where Uk denotes the Lie group of upper triangular (k × k)-matrices having

positive diagonal entries. The algorithm Parallel RQI can be described by

the map

X 7→ Q(Z(X)). (4.29)

4.2 Parallel Rayleigh Quotient Iteration or Matrix-valued Shifted
QR-Algorithms 72

To prove higher order convergence we therefore need to compute

DQ(Z(Xf)) : TXf
Stn,k → TXf

Stn,k (4.30)

which can be done by taking the derivative of (4.27). Using the chain rule

and exploiting the fact that Z(Xf) = Q(Xf) = Xf and R(Xf) = Ik we get

DZ(Xf)ξ =
(
DQ(Xf) ·DZ(Xf) · ξ

)
R(Xf) +Q(Xf)

(
DR(Xf) ·DZ(Xf) · ξ

)
.

As a matter of fact

DZ(Xf) = 0 (4.31)

holds true because each “column” of DZ(Xf)·ξ is equal to zero being just the

derivative of an individual RQI on the corresponding column of X evaluated

at Xf . Hence

DQ(Z(Xf)) ·DZ(Xf) = 0. (4.32)

Consequently it makes perfectly sense also to define second derivatives. The

argumentation is the same and the details are therefore omitted. The result

follows.

4.2.1 Discussion

Each iteration step of parallel RQI requires a solution of a Sylvester equation.

Problems will occur if these solutions will not have full rank. As a conse-

quence the QR-decomposition in the second step of the algorithm would not

be unique. Even worse, the iteration itself would not be well defined. The

following counterexample shows that the property of being well defined does

not globally hold.

Example 4.1. Consider the tridiagonal symmetric matrix

A =




1
√

2 0√
2 1 1

0 1 0


 , (4.33)

with eigenvalues λ1 = −1 and λ2,3 = 3
2
±
√

5
4
. If one starts the parallel

Rayleigh Quotient Iteration for k = 3 with the identity matrix I3 the columns

of the matrix Z are computed as

4.3 Local Convergence Properties of the Shifted QR-Algorithm 73

z1 = adj(A− a11I3)e1 =



−1√

2√
2


 ,

z2 = adj(A− a22I3)e2 =




√
2

0

0


 ,

z3 = adj(A− a33I3)e3 =




√
2

− 1

− 1


 .

(4.34)

That is

Z =



−1

√
2
√

2√
2 0 −1√
2 0 −1


 , (4.35)

which clearly has only rank 2.

4.3 Local Convergence Properties of the Shifted

QR-Algorithm

We consider the QR-algorithm with any smooth shift strategy. GivenA = A>

with distinct eigenvalues. Consider the following mapping on the orthogonal

similarity orbit of A

A 7→ (A− µ(A)In)>Q(A− µ(A)In)(A− µ(A)In)Q. (4.36)

Iterating the mapping (4.36) is usually referred to as the shifted QR-algorithm

with shift strategy µ. Alternatevely, one might consider two closely related

versions of the shifted QR-algorithm living on On

X 7→
(
(A− µ(X)In)X

)
Q

(4.37)

and

4.3 Local Convergence Properties of the Shifted QR-Algorithm 74

X 7→
(
(A− µ(X)In)−1X

)
Q
. (4.38)

Rewrite (4.38) into

σ : X 7→
(
adj(A− µ(X)In)X

)
Q
. (4.39)

Without loss of generality we assume A = diag(λ1, . . . , λn). Assume further

that the dynamical system defined by iterating (4.39) on On converges to

X = In. Then for ξ ∈ TIOn
∼= son a tedious calculation shows that

D σ(In)ξ = D
(

adj(A− µ(X)I)X
)

Q
· ξ
∣∣∣∣
X=In

=
(

D
(
(adj(A− µ(X)I)X

)
· ξ
)

skewsym.

∣∣∣∣
X=In

=







∏
i6=1(λi − µ(In))

. . . ∏
i6=n(λi − µ(In))


 · ξ




skewsym.

,

(4.40)

where (Z)skewsym. denotes the skewsymmetric summand from the unique ad-

ditive decomposition of Z into skewsymmetric and upper triangular part.

Obviously, there cannot exist a smooth function µ : On → R, such that

Dσ(In) = 0, because this would require that
∏

i6=j(λi − µ(In)) = 0 for all

j = 1, . . . , n, being clearly impossible. We therefore have proved

Theorem 4.4. There exists no smooth scalar shift strategy to ensure quadratic

convergence for the QR-algorithm. ¤

This theorem indicates that either deflation or a matrix valued shift strat-

egy is necessary for the shifted QR-algorithm to be efficient.

Bibliography

[AB77] B.D.O. Anderson and R.R. Bitmead. The matrix Cauchy index:

Properties and applications. SIAM J. Appl. Math., 33:655–672,

1977.

[AL90] H. Azad and J.J. Loeb. On a theorem of Kempf and Ness. Ind.

Univ. Math. J., 39(1):61–65, 1990.

[AMR88] R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor

Analysis, and Applications. Springer, New York, second edition,

1988.

[AMSD02] P.-A. Absil, R. Mahony, R. Sepulchre, and P. Van Dooren. A

Grassmann–Rayleigh quotient iteration for computing invariant

subspaces. SIAM Review, 44(1):57–73, 2002.

[AO82] T. Abatzoglou and B. O’Donnell. Minimization by coordinate

descent. J. of Optimization Theory and Applications, 36(2):163–

174, February 1982.

[Ati82] M.F. Atiyah. Convexity and commuting Hamiltonians. Bull.

London Math. Soc., 14:1–15, 1982.

[Bat95] S. Batterson. Dynamical analysis of numerical systems. Numer-

ical Linear Algebra with Applications, 2(3):297–309, 1995.

[BD82] C.I. Byrnes and T.W. Duncan. On certain topological invariants

arising in system theory. In P.J. Hilton and G.S. Young, editor,

New Directions in Applied Mathematics, pages 29–72. Springer,

New York, 1982.

BIBLIOGRAPHY 76

[BGF91] A. Bunse-Gerstner and H. Fassbender. On the generalized Schur

decomposition of a matrix pencil for parallel computation. SIAM

J. Sci. Stat. Comput., 12(4):911–939, 1991.

[BHH+87] J.C. Bezdek, R.J. Hathaway, R.E. Howard, C.A. Wilson, and

M.P. Windham. Local convergence analysis of a grouped variable

version of coordinate descent. J. of Optimization Theory and

Applications, 1987.

[BL85] R.P. Brent and F.T. Luk. The solution of singular value and

symmetric eigenvalue problems on multiprocessor arrays. SIAM

J. Sci. Stat. Comput., 6(1):69–84, 1985.

[Bro88] R.W. Brockett. Dynamical systems that sort lists, diagonalize

matrices, and solve linear programming problems. In Proc. IEEE

of the 27th Conference on Decision and Control, pages 799–803,

Austin, TX, 12 1988. See also Lin. Algebra & Applic., 146:79-91,

1991.

[BS89a] S. Batterson and J. Smillie. The dynamics of Rayleigh quotient

iteration. SIAM J. Num. Anal., 26(3):624–636, 1989.

[BS89b] S. Batterson and J. Smillie. Rayleigh quotient iteration fails for

nonsymmetric matrices. Appl. Math. Lett., 2(1):19–20, 1989.

[BS90] S. Batterson and J. Smillie. Rayleigh quotient iteration for non-

symmetric matrices. Math. of Computation, 55(191):169–178,

1990.

[BSS93] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Pro-

gramming. John Wiley & Sons, New York, second edition, 1993.

[CD89] J.-P. Charlier and P. Van Dooren. A Jacobi-like algorithm for

computing the generalized Schur form of a regular pencil. Journal

of Computational and Applied Mathematics, 27:17–36, 1989.

[CD90] M.T. Chu and K.R. Driessel. The projected gradient method for

least squares matrix approximations with spectral constraints.

SIAM J. Num. Anal., 27(4):1050–1060, 1990.

BIBLIOGRAPHY 77

[Cha84] F. Chatelin. Simultaneous Newton’s iteration for the eigenprob-

lem. Computing, Suppl., 5:67–74, 1984.

[Chu88] M.T. Chu. On the continuous realization of iterative processes.

SIAM Review, 30:375–387, 1988.

[Chu91] M.T. Chu. A continuous Jacobi-like approach to the simultaneous

reduction of real matrices. Lin. Algebra & Applic., 147:75–96,

1991.

[Chu96] M.T. Chu. Continuous realization methods and their applica-

tions, March 1996. Notes prepared for lecture presentations given

at ANU, Canberra, Australia.

[Deh95] J. Dehaene. Continuous-time matrix algorithms systolic algo-

rithms and adaptive neural networks. PhD thesis, Katholieke

Universiteit Leuven, October 1995.

[Dem87] J. Demmel. Three methods for refining estimates of invariant

subspaces. Computing, 38:43–57, 1987.

[DMW83] J.J. Dongarra, C.B. Moler, and J.H. Wilkinson. Improving the

accuracy of computed eigenvalues and eigenvectors. SIAM J.

Num. Anal., 20(1):23–45, 1983.

[DV92] J. Demmel and K. Veselić. Jacobi’s method is more accurate

than QR. SIAM J. Matrix Anal. Appl., 13:1204–1245, 1992.

[Ful97] W. Fulton. Young Tableaux. LMS Student Texts 35. Cambridge

Univ. Press, 1997.

[Gib79] C.G. Gibson. Singular points of smooth mappings. Pitman,

Boston, 1979.

[Göt94] J. Götze. On the parallel implementation of Jacobi’s and Kog-

betliantz’s algorithms. SIAM J. Sci. Stat. Comput., 15(6):1331–

1348, 1994.

[Göt95] J. Götze. Orthogonale Matrixtransformationen, Parallele Al-

gorithmen, Architekturen und Anwendungen. Oldenbourg,

München, 1995. in German.

BIBLIOGRAPHY 78

[GS82] V. Guillemin and S. Sternberg. Convexity properties of the mo-

ment mapping. Inventiones Math., 67:491–513, 1982.

[GvL89] G. Golub and C. F. van Loan. Matrix Computations. The Johns

Hopkins University Press, Baltimore, 2nd edition, 1989.

[Hac93] D. Hacon. Jacobi’s method for skew-symmetric matrices. SIAM

J. Matrix Anal. Appl., 14(3):619–628, 1993.

[Hen58] P. Henrici. On the speed of convergence of cyclic and quasicyclic

Jacobi methods for computing eigenvalues of Hermitian matrices.

J. Soc. Indust. Appl. Math., 6(2):144–162, 1958.

[HH95] K. Hüper and U. Helmke. Geometrical methods for pole as-

signment algorithms. In Proc. IEEE of the 34th Conference on

Decision and Control, New Orleans, USA, 1995.

[HH97] U. Helmke and K. Hüper. The Jacobi method: A tool for compu-

tation and control. In C.I. Byrnes, B.N. Datta, C.F. Martin, and

D.S. Gilliam, editors, Systems and Control in the Twenty-First

Century, pages 205–228, Boston, 1997. Birkhäuser.

[HH98] K. Hüper and U. Helmke. Jacobi-type methods in computer

vision: A case study. Z. Angew. Math. Mech., 78:S945–S948,

1998.

[HH00] U. Helmke and K. Hüper. A Jacobi-type method for computing

balanced realizations. Systems & Control Letters, 39:19–30, 2000.

[HHM96] K. Hüper, U. Helmke, and J.B. Moore. Structure and conver-

gence of conventional Jacobi-type methods minimizing the off-

norm function. In Proc. IEEE of the 35th Conference on Decision

and Control, pages 2124–2128, Kobe, Japan, 1996.

[HHM02] U. Helmke, K. Hüper, and J.B. Moore. Computation of signature

symmetric balanced realizations. Journal of Global Optimization,

2002.

[HM94] U. Helmke and J.B. Moore. Optimization and Dynamical Sys-

tems. CCES. Springer, London, 1994.

BIBLIOGRAPHY 79

[Hüp96] K. Hüper. Structure and convergence of Jacobi-type methods for

matrix computations. PhD thesis, Technical University of Mu-

nich, June 1996.

[Jac46] C.G.J. Jacobi. Über ein leichtes Verfahren, die in der Theo-

rie der Säcularstörungen vorkommenden Gleichungen numerisch

aufzulösen. Crelle’s J. für die reine und angewandte Mathematik,

30:51–94, 1846.

[Kle00] M. Kleinsteuber. Das Jacobi-Verfahren auf kompakten Lie-

Algebren, 2000. Diplomarbeit, Universität Würzburg.

[KN79] G. Kempf and L. Ness. The length of vectors in representation

spaces. Lect. Notes in Math. 732, pages 233–243, 1979.

[LHPW87] A.J. Laub, M.T. Heath, C.C. Paige, and R.C. Ward. Computa-

tion of system balancing transformations and other applications

of simultaneous diagonalization algorithms. IEEE Transactions

on Automatic Control, 32(2):115–122, 1987.

[LT92] Z.Q. Luo and P. Tseng. On the convergence of the coordinate

descent method for convex differentiable minimization. J. of Op-

timization Theory and Applications, 72(1):7–35, January 1992.

[Lue84] D. G. Luenberger, editor. Linear and nonlinear programming.

Addison-Wesley, Reading, 2nd edition, 1984.

[Lut92] A. Lutoborski. On the convergence of the Euler-Jacobi method.

Numer. Funct. Anal. and Optimiz., 13(1& 2):185–202, 1992.

[Mac95] N. Mackey. Hamilton and Jacobi meet again: Quaternions and

the eigenvalue problem. SIAM J. Matrix Anal. Appl., 16(2):421–

435, 1995.

[Mah94] R. Mahony. Optimization algorithms on homogeneous spaces.

PhD thesis, Australian National University, Canberra, March

1994.

[Meh02] C. Mehl. Jacobi-like algorithms for the indefinite generalized Her-

mitian eigenvalue problem. Technical Report 738-02, Technische

Universität Berlin, Institut für Mathematik, June 2002.

BIBLIOGRAPHY 80

[Nai90] M.T. Nair. Computable error estimates for Newton‘s iterations

for refining invariant subspaces. Indian J. Pure and Appl. Math.,

21(12):1049–1054, December 1990.

[Ost59] A.M. Ostrowski. On the convergence of the Rayleigh quotient

iteration for the computation of characteristic roots and vectors.

Arch. rational Mech. Anal., 1-4:233–241,423–428,325–340,341–

347,472–481,153–165, 1958/59.

[Paa71] M.H.C. Paardekooper. An eigenvalue algorithm for skew-

symmetric matrices. Num. Math., 17:189–202, 1971.

[Par74] B.N. Parlett. The Rayleigh quotient iteration and some gen-

eralizations for nonnormal matrices. Math. of Computation,

28(127):679–693, 1974.

[Par80] B.N. Parlett. The symmetric eigenvalue problem. Prentice Hall,

1980.

[RH95] N.H. Rhee and V. Hari. On the cubic convergence of the

Paardekooper method. BIT, 35:116–132, 1995.

[Sam71] A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel

computer. Math. of Computation, 25:579–590, 1971.

[SC89] M.G. Safonov and R.Y. Chiang. A Schur method for balanced-

truncation model reduction. IEEE Transactions on Automatic

Control, 34(7):729–733, 1989.

[SHS72] H.R. Schwarz, H.Rutishauser, and E. Stiefel. Numerik sym-

metrischer matrizen. B.G. Teubner, Stuttgart, 1972.

[Smi93] S.T. Smith. Geometric optimization methods for adaptive filter-

ing. PhD thesis, Harvard University, Cambridge, May 1993.

[Ste73] G.W. Stewart. Error and perturbation bounds for subspaces

associated with certain eigenvalue problems. SIAM Review,

15(4):727–764, October 1973.

[Ste86] G.W. Stewart. A Jacobi-like algorithm for computing the Schur

decomposition of a nonhermitian matrix. SIAM J. Sci. Stat.

Comput., 6(4):853–864, October 1986.

BIBLIOGRAPHY 81

[SV87] M. Shub and A.T. Vasquez. Some linearly induced Morse-Smale

systems, the QR algorithm and the Toda lattice. Contemporary

Math., 64:181–194, 1987.

[Var84] V.S. Varadarajan. Lie Groups Lie Algebras, and Their Repre-

sentations. Number 102 in GTM. Springer, New York, 1984.

