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Preface

This pamphlet on calculus of variations and optimal control theory contains the most impor-
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Overview

This a high level methods course centred on the establishment of a calculus appropriate to 
optimisation problems in which the variable quantity is a function or curve. Such a curve might 
describe the evolution 
over continuous time of the state of a dynamical system. This is typical of models of consumption 
or production in economics and financial mathematics (and for models in many other disciplines 
such as engineering and physics). 
The emphasis of the course is on calculations, but there is also some theory.  

Aims

The aim of this course is to introduce students to the types of problems encountered in optimal 
control, to provide techniques to analyse and solve these problems, and to provide examples of 
where these techniques are used in practice.

Learning Outcomes

After having followed this course, students should

    * have knowledge and understanding of important definitions, concepts and results, 
       and how to apply these in different situations;
    * have knowledge of basic techniques and methodologies in the topics covered below;
    * have a basic understanding of the theoretical aspects of the concepts and methodologies 
covered;
    * be able to understand new situations and definitions;
    * be able to think critically and with sufficient mathematical rigour;
    * be able to express arguments clearly and precisely. 

The course will cover the following content:

1. Examples of Optimal Control Problems.

2. Normed Linear Spaces and Calculus of Variations.

3. Euler-Lagrange Equation.

4. Optimal Control Problems with Unconstrained Controls.

5. The Hamiltonian and Pontryagin Minimum Principle.

6. Constraint on the state at final time. Controllability.

7. Optimality Principle and Bellman's Equation.
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Chapter 1

Introduction

1.1 Control theory

Control theory is application-oriented mathematics that deals with the basic principles underlying
the analysis and design of (control) systems. Systems can be engineering systems (air conditioner,
aircraft, CD player etcetera), economic systems, biological systems and so on. To control means
that one has to influence the behaviour of the system in a desirable way: for example, in the case
of an air conditioner, the aim is to control the temperature of a room and maintain it at a desired
level, while in the case of an aircraft, we wish to control its altitude at each point of time so that
it follows a desired trajectory.

1.2 Objects of study in control theory

The basic objects of study are underdetermined differential equations. This means that there is
some freeness in the choice of the variables satisfying the differential equation. An example of
an underdetermined algebraic equation is x + u = 10, where x, u are positive integers. There is
freedom in choosing, say u, and once u is chosen, then x is uniquely determined. In the same
manner, consider the differential equation

dx

dt
(t) = f(x(t), u(t)), x(ti) = xi, t ≥ ti, (1.1)

1
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x(t) ∈ R
n, u(t) ∈ R

m. So written out, equation (1.1) is the set of equations

dx1

dt
(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(ti) = xi,1

...
dxn

dt
(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(ti) = xi,n,

where f1, . . . , fn denote the components of f . In (1.1), u is the free variable, called the input, which
is usually assumed to be piecewise continuous1. Let the class of R

m-valued piecewise continuous
functions be denoted by U. Under some regularity conditions on the function f : R

n × R
m → R

n,
there exists a unique solution to the differential equation (1.1) for every initial condition xi ∈ R

n

and every piecewise continuous input u:

Theorem 1.2.1 Suppose that f is continuous in both variables. If there exist K > 0, r > 0 and
tf > ti such that

‖f(x2, u(t)) − f(x1, u(t))‖ ≤ K‖x2 − x1‖ (1.2)

for all x1, x2 ∈ B(xi, r) = {x ∈ R
n | ‖x − xi‖ ≤ r} and for all t ∈ [ti, tf ], then (1.2) has a

unique solution x(·) in the interval [ti, tm], for some tm > ti. Furthermore, this solution depends
continuously on xi for fixed t and u.

Remarks.

1. Continuous dependence on the initial condition is very important, since some inaccuracy
is always present in practical situations. We need to know that if the initial conditions are
slightly changed, the solution of the differential equation will change only slightly. Otherwise,
slight inaccuracies could yield very different solutions.

2. x is called the state and (1.1) is called the state equation.

3. Condition (1.2) is called the Lipschitz condition.

The above theorem guarantees that a solution exists and that it is unique, but it does not give
any insight into the size of the time interval on which the solutions exist. The following theorem
sheds some light on this.

Theorem 1.2.2 Let r > 0 and define Br = {u ∈ U | ‖u(t)‖ ≤ r for all t}. Suppose that f is
continuously differentiable in both variables. For every xi ∈ R

n, there exists a unique tm(xi) ∈
(ti, +∞] such that for every u ∈ Br, (1.1) has a unique solution x(·) in [ti, tm(xi)).

For our purposes, a control system is an equation of the type (1.1), with input u and state
x. Once the input u and the intial state x(ti) = xi are specified, the state x is determined. So
one can think of a control system as a box, which given the input u and intial state x(ti) = xi,
manufactures the state according to the law (1.1); see Figure 1.1.

If the function f is linear, that is, if f(x, u) = Ax + Bu for some A ∈ R
n×n and B ∈ R

n×m,
then the control system is said to be linear.

Exercises.

1By a R
m-valued piecewise continuous function on an interval [a, b], we mean a function f : [a, b] → R

m

such that there exist finitely many points t1, . . . , tk ∈ [a, b] such that f is continuous on each of the intervals
(a, t1), (t1, t2), . . . , (tk−1, tk), (tk , b), the left- and right- hand limits limt↗tl

f(t) and limt↙tl
f(t) exist for all l ∈

{1, . . . , k}, and limt↙a f(t) and limt↗tb
f(t) exist.
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plant

ẋ(t) = f(x(t), u(t))
x(ti) = xi

u x

Figure 1.1: A control system.

1. (Linear control system.) Let A ∈ R
n and B ∈ R

n×m. Prove that if u is a continuous
function, then the differential equation

dx

dt
(t) = Ax(t) + Bu(t), x(ti) = xi, t ≥ ti (1.3)

has a unique solution x(·) in [ti, +∞) given by

x(t) = e(t−ti)Axi + etA

∫ t

ti

e−τABu(τ)dτ.

2. Consider the scalar Riccati equation

ṗ(t) = γ(p(t) + α)(p(t) + β).

Prove that

q(t) :=
1

p(t) + α

satisfies the following differential equation

q̇(t) = γ(α − β)q(t) − γ.

3. Solve
ṗ(t) = (p(t))2 − 1, t ∈ [0, 1], p(1) = 0.

A characteristic of underdetermined equations is that one can choose the free variable in a
way that some desirable effect is produced on the other dependent variable. For example, if with
our algebraic equation x + u = 10 we wish to make x < 5, then we can achieve this by choosing
the free variable u to be strictly larger than 5. Control theory is all about doing similar things
with differential equations of the type (1.1). The state variables x comprise the ‘to-be-controlled’
variables, which depend on the free variables u, the inputs. For example, in the case of an aircraft,
the speed, altitude and so on are the to-be-controlled variables, while the angle of the wing flaps,
the speed of the propeller and so on, which the pilot can specify, are the inputs.

1.3 Questions in control theory

1. How do we choose the control inputs to achieve regulation of the state variables?

For instance, we might want the state x to track some desired reference state xr, and there
must be stability under external disturbances. For example, a thermostat is a device in
an air conditioner that changes the input in such a way that the temperature tracks a
constant reference temperature and there is stability despite external disturbances (doors
being opened or closed, change in the number of people in the room, activity in the kitchen
etcetera): if the temperature in the room goes above the reference value, then the thermostat
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(which is a bimetallic strip) bends and closes the circuit so that electricity flows and the air
conditioner produces a cooling action; on the other hand if the temperature in the room
drops below the reference value, the bimetallic strip bends the other way hence breaking the
circuit and the air conditioner produces no further cooling. These problems of regulation
are mostly the domain of control theory for engineering systems. In economic systems, one
is furthermore interested in extreme performances of control systems. This naturally brings
us to the other important question in control theory, which is the realm of optimal control
theory.

2. How do we control optimally?

Tools from calculus of variations are employed here. These questions of optimality arise
naturally. For example, in the case of an aircraft, we are not just interested in flying from
one place to another, but we would also like to do so in a way so that the total travel time
is minimized or the fuel consumption is minimized. With our algebraic equation x+u = 10,
in which we want x < 5, suppose that furthermore we wish to do so in manner such that
u is the least possible integer. Then the only possible choice of the (input) u is 6. Optimal
control addresses similar questions with differential equations of the type (1.1), together with
a ‘performance index functional’, which is a function that measures optimality.

This course is about the basic principles behind optimal control theory.

1.4 Appendix: systems of differential equations and e
tA

In this appendix, we introduce the exponential of a matrix, which is useful for obtaining explicit
solutions to the linear control system (1.3) in the exercise 1 on page 3. We begin with a few
preliminaries concerning vector-valued functions.

With a slight abuse of notation, a vector-valued function x(t) is a vector whose entries are
functions of t. Similarly, a matrix-valued function A(t) is a matrix whose entries are functions:⎡

⎢⎣
x1(t)

...
xn(t)

⎤
⎥⎦ , A(t) =

⎡
⎢⎣

a11(t) . . . a1n(t)
...

...
am1(t) . . . amn(t)

⎤
⎥⎦ .

The calculus operations of taking limits, differentiating, and so on are extended to vector-valued
and matrix-valued functions by performing the operations on each entry separately. Thus by
definition,

lim
t→t0

x(t) =

⎡
⎢⎣

limt→t0 x1(t)
...

limt→t0 xn(t)

⎤
⎥⎦ .

So this limit exists iff limt→t0 xi(t) exists for all i ∈ {1, . . . , n}. Similiarly, the derivative of
a vector-valued or matrix-valued function is the function obtained by differentiating each entry
separately:

dx

dt
(t) =

⎡
⎢⎣

x′
1(t)
...

x′
n(t)

⎤
⎥⎦ ,

dA

dt
(t) =

⎡
⎢⎣

a′
11(t) . . . a′

1n(t)
...

...
a′

m1(t) . . . a′
mn(t)

⎤
⎥⎦ ,

where x′
i(t) is the derivative of xi(t), and so on. So dx

dt
is defined iff each of the functions xi(t) is

differentiable. The derivative can also be described in vector notation, as

dx

dt
(t) = lim

h→0

x(t + h) − x(t)

h
. (1.4)
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Here x(t + h) − x(t) is computed by vector addition and the h in the denominator stands for
scalr multiplication by h−1. The limit is obtained by evaluating the limit of each entry separately,
as above. So the entries of (1.4) are the derivatives xi(t). The same is true for matrix-valued
functions.

A system of homogeneous, first-order, linear constant-coefficient differential equations is a
matrix equation of the form

dx

dt
(t) = Ax(t), (1.5)

where A is a n × n real matrix and x(t) is an n dimensional vector-valued function. Writing out
such a system, we obtain a system of n differential equations, of the form

dx1

dt
(t) = a11x1(t) + · · · + a1nxn(t)

. . .
dxn

dt
(t) = an1x1(t) + · · · + annxn(t).

The xi(t) are unknown functions, and the aij are scalars. For example, if we substitute the matrix[
3 −2
1 4

]

for A, (1.5) becomes a system of two equations in two unknowns:

dx1

dt
(t) = 3x1(t) − 2x2(t)

dx2

dt
(t) = x1(t) + 4x2(t).

Now consider the case when the matrix A is simply a scalar. We learn in calculus that the
solutions to the first-order scalar linear differential equation

dx

dt
(t) = ax(t)

are x(t) = ceta, c being an arbitrary constant. Indeed, ceta obviously solves this equation. To
show that every solution has this form, let x(t) be an arbitrary differentiable function which is a
solution. We differentiate e−tax(t) using the product rule:

d

dt
(e−tax(t)) = −ae−tax(t) + e−taax(t) = 0.

Thus e−tax(t) is a constant, say c, and x(t) = ceta. Now suppose that analogous to

ea = 1 + a +
a2

2!
+

a3

3!
+ . . . , a ∈ R,

we define

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . , A ∈ R

n×n. (1.6)

Later in this section, we study this matrix exponential, and use the matrix-valued function

etA = I + tA +
t2

2!
A2 +

t3

3!
A2 + . . .

(where t is a variable scalar) to solve (1.5). We begin by stating the following result, which shows
that the series in (1.6) converges for any given square matrix A.
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Theorem 1.4.1 The series (1.6) converges for any given square matrix A.

We have collected the proofs together at the end of this section in order to not break up the
discussion.

Since matrix multiplication is relatively complicated, it isn’t easy to write down the matrix
entries of eA directly. In particular, the entries of eA are usually not obtained by exponentiating
the entries of A. However, one case in which the exponential is easily computed, is when A is
a diagonal matrix, say with diagonal entries λi. Inspection of the series shows that eA is also
diagonal in this case and that its diagonal entries are eλi .

The exponential of a matrix A can also be determined when A is diagonalizable , that is,
whenever we know a matrix P such that P−1AP is a diagonal matrix D. Then A = PDP−1, and
using (PDP−1)k = PDkP−1, we obtain

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . .

= I + PDP−1 +
1

2!

2

PD2P−1 +
1

3!
PD3P−1 + . . .

= PIP− + PDP−1 +
1

2!

2

PD2P−1 +
1

3!
PD3P−1 + . . .

= P

(
I + D +

1

2!
D2 +

1

3!
D3 + . . .

)
P−1

= PeDP−1

= P

⎡
⎢⎣

eλ1

0
. . .

eλn

⎤
⎥⎦P−1,

where λ1, . . . , λn denote the eigenvalues of A.

Exercise. (∗) The set of diagonalizable n × n real matrices is dense in the set of all n × n real
matrices, that is, given any A ∈ R

n×n, there exists a B ∈ R
n×n arbitrarily close to A (meaning

that |bij − aij | can be made arbitrarily small for all i, j ∈ {1, . . . , n}) such that B has n distinct
eigenvalues.

In order to use the matrix exponential to solve systems of differential equations, we need to
extend some of the properties of the ordinary exponential to it. The most fundamental property
is ea+b = eaeb. This property can be expressed as a formal identity between the two infinite series
which are obtained by expanding

ea+b = 1 + (a+b)
1! + (a+b)2

2! + . . . and

eaeb =
(
1 + a

1! + a2

2! + . . .
) (

1 + b
1! + b2

2! + . . .
)

.
(1.7)

We cannot substitute matrices into this identity because the commutative law is needed to obtain
equality of the two series. For instance, the quadratic terms of (1.7), computed without the
commutative law, are 1

2 (a2 + ab + ba + b2) and 1
2a2 + ab+ 1

2b2. They are not equal unless ab = ba.
So there is no reason to expect eA+B to equal eAeB in general. However, if two matrices A and
B happen to commute, the formal identity can be applied.

Theorem 1.4.2 If A, B ∈ R
n×n commute (that is AB = BA), then eA+B = eAeB.
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The proof is at the end of this section. Note that the above implies that eA is always invertible
and in fact its inverse is e−A: Indeed I = eA−A = eAe−A.

Exercises.

1. Give an example of 2 × 2 matrices A and B such that eA+B 	= eAeB.

2. Compute eA, where A is given by

A =

[
2 3
0 2

]
.

Hint: A = 2I +

[
0 3
0 0

]
.

We now come to the main result relating the matrix exponential to differential equations.
Given an n × n matrix, we consider the exponential etA, t being a variable scalar, as a matrix-
valued function:

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + . . . .

Theorem 1.4.3 etA is a differentiable matrix-valued function of t, and its derivative is etA.

The proof is at the end of the section.

Theorem 1.4.4 (Product rule.) Let A(t) and B(t) be differentiable matrix-valued functions of t,
of suitable sizes so that their product is defined. Then the matrix product A(t)B(t) is differentiable,
and its derivative is

d

dt
(A(t)B(t)) =

dA(t)

dt
B(t) + A(t)

dB(t)

dt
.

The proof is left as an exercise.

Theorem 1.4.5 The first-order linear differential equation

dx

dt
(t) = Ax(t), t ≥ ti, x(ti) = xi

has the unique solution x(t) = e(t−ti)Axi.

Proof
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The optimal control problem

2.1 Introduction

Optimal control theory is about controlling the given system in some ‘best’ way. The optimal
control strategy will depend on what is defined as the best way. This is usually specified in terms
of a performance index functional.

As a simple example, consider the problem of a rocket launching a satellite into an orbit about
the earth. An associated optimal control problem is to choose the controls (the thrust attitude
angle and the rate of emission of the exhaust gases) so that the rocket takes the satellite into its
prescribed orbit with minimum expenditure of fuel or in minimum time.

We first look at a number of specific examples that motivate the general form for optimal
control problems, and having seen these, we give the statement of the optimal control problem
that we study in these notes in §2.4.

2.2 Examples of optimal control problems

Example. (Economic growth.) We first consider a mathematical model of a simplified economy
in which the rate of output Y is assumed to depend on the rates of input of capital K (for example
in the form of machinery) and labour force L, that is,

Y = P (K, L)

where P is called the production function. This function is assumed to have the following ‘scaling’
property

P (αK, αL) = αP (K, L).

With α = 1
L

, and defining the output rate per worker as y = Y
L

and the capital rate per worker

as k = K
L

, we have

y =
Y

L
=

1

L
P (K, L) = P

(
K

L
,
L

L

)
= P (k, 1) = Π(k), say.

A typical form of Π is illustrated in Figure 2.1; we note that Π(k) > 0, but Π′′(k) < 0. Output is
either consumed or invested, so that

Y = C + I,

9
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Π

k

Figure 2.1: Production function Π.

where C and I are the rates of consumption and investment, respectively.

The investment is used to increase the capital stock and replace machinery, that is

I(t) =
dK

dt
(t) + μK(t),

where μ is called the rate of depreciation. Defining c = C
L

as the consumption rate per worker, we
obtain

y(t) = Π(k(t)) = c(t) +
1

L(t)

dK

dt
(t) + μk(t).

Since
d

dt

(
K

L

)
=

1

L

dK

dt
− k

L

dL

dt
,

it follows that

Π(k) = c +
dk

dt
+

L̇

L
k + μk.

Assuming that labour grows exponentially, that is L(t) = L0e
λt, we have

dk

dt
(t) = Π(k(t)) − (λ + μ)k(t) − c(t),

which is the governing equation of this economic growth model. The consumption rate per worker,
namely c, is the control input for this problem.

The central planner’s problem is to choose c on a time interval [0, T ] in some best way. But
what are the desired economic objectives that define this best way? One method of quantifying
the best way is to introduce a ‘utility’ function U ; which is a measure of the value attached
to the consumption. The function U normally satisfies U ′′(c) ≤ 0, which means that a fixed
increment in consumption will be valued increasingly highly with decreasing consumption level.
This is illustrated in Figure 2.2. We also need to optimize consumption for [0, T ], but with some
discounting for future time. So the central planner wishes to maximize the ‘welfare’ integral

W (c) =

∫ T

0

e−δtU(c(t))dt,

where δ is known as the discount rate, which is a measure of preference for earlier rather than
later consumption. If δ = 0, then there is no time discounting and consumption is valued equally
at all times; as δ increases, so does the discounting of consumption and utility at future times.

The mathematical problem has now been reduced to finding the optimal consumption path
{c(t), t ∈ [0, T ]}, which maximizes W subject to the constraint

dk

dt
(t) = Π(k(t)) − (λ + μ)k(t) − c(t),
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U

c

Figure 2.2: Utility function U .

and with k(0) = k0. 


Example. (Exploited populations.) Many resources are to some extent renewable (for example,
fish populations, grazing land, forests) and a vital problem is their optimal management. With
no harvesting, the resource population x is assumed to obey a growth law of the form

dx

dt
(t) = ρ(x(t)). (2.1)

A typical example for ρ is the Verhulst model

ρ(x) = ρ0x

(
1 − x

xs

)
,

where xs is the saturation level of population, and ρ0 is a positive constant. With harvesting,
(2.1) is modified to

dx

dt
(t) = ρ(x(t)) − h(t)

where h is the harvesting rate. Now h will depend on the fishing effort e (for example, size of nets,
number of trawlers, number of fishing days) as well as the population level, so that we assume

h(t) = e(t)x(t).

Optimal management will seek to maximize the economic rent defined by

r(t) = ph(t) − ce(t),

assuming the cost to be proportional to the effort, and where p is the unit price.

The problem is to maximize the discounted economic rent, called the present value V , over
some period [0, T ], that is,

V (e) =

∫ T

0

e−δt(pe(t)x(t) − ce(t))dt,

subject to

dx

dt
(t) = ρ(x(t)) − e(t)x(t),

and the initial condition x(0) = x0. 
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2.3 Functionals

The examples from the previous section involve finding extremum values of integrals subject to a
differential equation constraint. These integrals are particular examples of a ‘functional’.

A functional is a correspondence which assigns a definite real number to each function be-
longing to some class. Thus, one might say that a functional is a kind of function, where the
independent variable is itself a function.

Examples. The following are examples of functionals:

1. Consider the set of all rectifiable plane curves1. A definite number associated with each such
curve, is for instance, its length. Thus the length of a curve is a functional defined on the
set of rectifiable curves.

2. Let x be an arbitrary continuously differentiable function defined on [ti, tf ]. Then the formula

I(x) =

∫ tf

ti

(
dx

dt
(t)

)2

dt

defines a functional on the set of all such functions x.

3. As a more general example, let F (x, x′, t) be a continuous function of three variables. Then
the expression

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt,

where x ranges over the set of all continuously differentiable functions defined on the interval
[ti, tf ], defines a functional.

By choosing different functions F , we obtain different functionals. For example, if

F (x, x′, t) =
√

1 + (x′)2,

then I(x) is the length of the curve {x(t), t ∈ [ti, tf ]}, as in the first example, while if

F (x, x′, t) = (x′)2,

then I(x) reduces to the case considered in the second example.

4. Let f(x, u) and F (x, u, t) be continuously differentiable functions of their arguments. Given
a continuous function u on [ti, tf ], let x denote the unique solution of

dx

dt
(t) = f(x(t), u(t)), x(ti) = xi, t ∈ [ti, tf ].

Then I given by

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt

defines a functional on the set of all continuous functions u on [ti, tf ]. 

1In analysis, the length of a curve is defined as the limiting length of a polygonal line inscribed in the curve

(that is, with vertices lying on the curve) as the maximum length of the chords forming the polygonal line goes to
zero. If this limit exists and is finite, then the curve is said to be rectifiable.
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Exercise. (A path-independent functional.) Consider the set of all continuously differentiable
functions x defined on [ti, tf ] such that x(ti) = xi and x(tf ) = xf , and let

I(x) =

∫ tf

ti

(
x(t) + t

dx

dt
(t)

)
dt.

Show that I is independent of path. What is its value?

Remark. Such a functional is analogous to the notion of a constant function f : R → R, for
which the problem of finding extremal points is trivial: indeed since the value is constant, every
point serves as a point which maximizes/minimizes the functional.

2.4 The general form of the basic optimal control problem

The examples discussed in §2.2 can be put in the following form. As mentioned in the introduction,
we assume that the state of the system satisfies the coupled first order differential equations

dx1

dt
(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(t0) = xi,1

...
dxn

dt
(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(t0) = xi,n,

on [ti, tf ], and where the m variables u1, . . . , um form the control input vector u. We can conve-
niently write the system of equations above in the form

dx

dt
(t) = f(x(t), u(t)), x(ti) = xi, t ∈ [ti, tf ].

We assume that u ∈ (C[ti, tf ])m, that is, each component of u is a continuous function on [ti, tf ].

It is also assumed that f1, . . . , fn possess partial derivatives with respect to xk, 1 ≤ k ≤ n and
ul, 1 ≤ l ≤ m and these are continuous. (So f is continuously differentiable in both variables.)
The initial value of x is specified (xi at time ti), which means that specifying u(t) for t ∈ [ti, tf ]
determines x (see Theorem 1.2.1).

The basic optimal control problem is to choose the control u ∈ (C[ti, tf ])m such that:

1. The state x is transferred from xi to a state at terminal time tf where some (or all or none)
of the state variable components are specified; for example, without loss of generality2 x(tf )k

is specified for k ∈ {1, . . . , r}.
2. The functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt

is minimized3.

A function u∗ that minimizes the functional I is called an optimal control, the corresponding state
x∗ is called the optimal state, and the pair (x∗, u∗) is called an optimal trajectory. Using the
notation above, we can identify the two optimal control problem examples listed in §2.2.

2Or else, we may shuffle the components of x.
3Note that a maximization problem for Ixi can be converted into a minimization problem by considering the

functional −Ixi instead of Ixi .
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Example. (Economic growth, continued.) We have

n = 1,

m = 1,

x = k,

u = c,

f(x, u) = Π(x) − (λ + μ)x− u,

F (x, u, t) = e−δtU(u).






Chapter 3

Calculus of variations

3.1 Introduction

Before we attempt solving the optimal control problem described in Section 2.4 of Chapter 2,
that is, an extremum problem for a functional of the type described in item 4 on page 12, we
consider the following simpler problem in this chapter: we would like to find extremal curves x for
a functional of the type described in item 3 on page 12. This is simpler since there is no differential
equation constraint.

In order to solve this problem, we first make the problem more abstract by considering the
problem of finding extremal points x∗ ∈ X for a functional I : X → R, where X is a normed linear
space. (The notion of a normed linear space is introduced in Section 3.4.) We develop a calculus
for solving such problems. This situation is entirely analogous to the problem of finding extremal
points for a differentiable function f : R → R:

Consider for example the quadratic function f(x) = ax2 + bx + c. Suppose that one wants
to know the points x∗ at which f assumes a maximum or a minimum. We know that if f has
a maximum or a minimum at the point x∗, then the derivative of the function must be zero at
that point: f ′(x∗) = 0. See Figure 3.1. So one can then one can proceed as follows. First find
the expression for the derivative: f ′(x) = 2ax + b. Next solve for the unknown x∗ in the equation
f ′(x∗) = 0, that is,

2ax∗ + b = 0 (3.1)

and so we find that a candidate for the point x∗ which minimizes or maximizes f is x∗ = − b
2a

,
which is obtained by solving the algebraic equation (3.1) above.

x xx∗x∗

ff

Figure 3.1: Necessary condition for x∗ to be an extremal point for f is that f ′(x∗) = 0.

We wish to do the above with functionals. In order to do this we need a notion of derivative of
a functional, and an analogue of the fact above concerning the necessity of the vanishing derivative

15
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at extremal points. We define the derivative of a functional I : X → R in Section 3.4, and also
prove Theorem 3.4.2, which says that this derivative must vanish at an extremal point x∗ ∈ X .

In the remainder of the chapter, we apply Theorem 3.4.2 to the concrete case where X com-
prises continuously differentiable functions, and I is a functional of the form

I(x) =

∫ tf

ti

F (x(t), x′(t), t)dt. (3.2)

We find the derivative of such a functional, and equating it to zero, we obtain a necessary condi-
tion that an extremal curve should satisfy: instead of an algebraic equation (3.1), we now obtain
a differential equation, called the Euler-Lagrange equation, given by (3.9). Continuously differen-
tiable solutions x∗ of this differential equation are then candidates which maximize or minimize
the functional I. Historically speaking, such optimization problems arising from physics gave birth
to the subject of ‘calculus of variations’. We begin this chapter with the discussion of one such
milestone problem, called the ‘brachistochrone problem’ (brachistos=shortest, chronos=time).

3.2 The brachistochrone problem

The calculus of variations originated from a problem posed by the Swiss mathematician Johann
Bernoulli (1667-1748). He required the form of the curve joining two fixed points A and B in a
vertical plane such that a body sliding down the curve (under gravity and no friction) travels from
A to B in minimum time. This problem does not have a trivial solution; the straight line from A

to B is not the solution (this is also intuitively clear, since if the slope is high at the beginning,
the body picks up a high velocity and so its plausible that the travel time could be reduced) and
it can be verified experimentally by sliding beads down wires in appropriate shapes.

To pose the problem in mathematical terms, we introduce coordinates as shown in Figure 3.2,
so that A is the point (0, 0), and B corresponds to (x0, y0). Assuming that the particle is released

A (0, 0)

B (x0, y0)

gravity

y0

x0

x

y

Figure 3.2: The brachistochrone problem.

from rest at A, conservation of energy gives

1

2
mv2 − mgy = 0, (3.3)

where we have taken the zero potential energy level at y = 0, and where v denotes the speed of
the particle. Thus the speed is given by

v =
ds

dt
=

√
2gy, (3.4)

where s denotes arc length along the curve. From Figure 3.3, we see that an element of arc length,
δs is given approximately by ((δx)2 + (δy)2)

1
2 . Hence the time of descent is given by
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δy

δx

δs

Figure 3.3: Element of arc length.

T =

∫
curve

ds√
2gy

=
1√
2g

∫ y0

0

⎡
⎢⎣1 +

(
dx
dy

)2

y

⎤
⎥⎦

1
2

dy.

Our problem is to find the path {x(y), y ∈ [0, y0]}, satisfying x(0) = 0 and x(y0) = x0, which
minimizes T .

3.3 Calculus of variations versus extremum problems of

functions of n real variables

To understand the basic meaning of the problems and methods of the calculus of variations, it is
important to see how they are related to the problems of the study of functions of n real variables.
Thus, consider a functional of the form

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt, x(ti) = xi, x(tf ) = xf .

Here each curve x is assigned a certain number. To find a related function of the sort considered
in classical analysis, we may proceed as follows. Using the points

ti = t0, t1, . . . , tn, tn+1 = tf ,

we divide the interval [ti, tf ] into n + 1 equal parts. Then we replace the curve {x(t), t ∈ [ti, tf ]}
by the polygonal line joining the points

(t0, xi), (t1, x(t1)), . . . , (tn, x(tn)), (tn+1, xf ),

and we approximate the functional I at x by the sum

In(x1, . . . , xn) =
n∑

k=1

F

(
xk,

xk − xk−1

hk

, tk

)
hk, (3.5)

where xk = x(tk) and hk = tk − tk−1. Each polygonal line is uniquely determined by the ordinates
x1, . . . , xn of its vertices (recall that x0 = xi and xn+1 = xf are fixed), and the sum (3.5) is
therefore a function of the n variables x1, . . . , xn. Thus as an approximation, we can regard the
variational problem as the problem of finding the extrema of the function In(x1, . . . , xn).

In solving variational problems, Euler made extensive use of this ‘method of finite differences’.
By replacing smooth curves by polygonal lines, he reduced the problem of finding extrema of a
functional to the problem of finding extrema of a function of n variables, and then he obtained
exact solutions by passing to the limit as n → ∞. In this sense, functionals can be regarded
as ‘functions of infinitely many variables’ (that is, the infinitely many values of x(t) at different
points), and the calculus of variations can be regarded as the corresponding analog of differential
calculus of functions of n real variables.
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3.4 Calculus in function spaces and beyond

In the study of functions of a finite number of n variables, it is convenient to use geometric
language, by regarding a set of n numbers (x1, . . . , xn) as a point in an n-dimensional space. In
the same way, geometric language is useful when studying functionals. Thus, we regard each
function x(·) belonging to some class as a point in some space, and spaces whose elements are
functions will be called function spaces.

In the study of functions of a finite number n of independent variables, it is sufficient to consider
a single space, that is, n-dimensional Euclidean space R

n. However, in the case of function spaces,
there is no such ‘universal’ space. In fact, the nature of the problem under consideration determines
the choice of the function space. For instance, if we consider a functional of the form

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt,

then it is natural to regard the functional as defined on the set of all functions with a continuous
first derivative.

The concept of continuity plays an important role for functionals, just as it does for the ordi-
nary functions considered in classical analysis. In order to formulate this concept for functionals,
we must somehow introduce a notion of ‘closeness’ for elements in a function space. This is most
conveniently done by introducing the concept of the norm of a function, analogous to the concept
of the distance between a point in Euclidean space and the origin. Although in what follows we
shall always be concerned with function spaces, it will be most convenient to introduce the concept
of a norm in a more general and abstract form, by introducing the concept of a normed linear
space.

By a linear space (or vector space) over R, we mean a set X together with the operations of
addition + : X × X → X and scalar multiplication · : R × X → X that satisfy the following:

1. x1 + (x2 + x3) = (x1 + x2) + x3 for all x1, x2, x3 ∈ X .

2. There exists an element, denoted by 0 (called the zero element) such that x + 0 = 0 + x = x

for all x ∈ X .

3. For every x ∈ X , there exists an element, denoted by −x such that x+(−x) = (−x)+x = 0.

4. x1 + x2 = x2 + x1 for all x1, x2 ∈ X .

5. 1 · x = x for all x ∈ X .

6. α · (β · x) = (αβ) · x for all α, β ∈ R and for all x ∈ X .

7. (α + β) · x = α · x + β · x for all α, β ∈ R and for all x ∈ X .

8. α · (x1 + x2) = α · x1 + α · x2 for all α ∈ R and for all x1, x2 ∈ X .

A linear functional L : X → R is a map that satisfies

1. L(x1 + x2) = L(x1) + L(x2) for all x1, x2 ∈ X .

2. L(α · x) = αL(x) for all α ∈ R and for all x ∈ X .
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The set ker(L) = {x ∈ X | L(x) = 0} is called the kernel of the linear functional L.

Exercise. (∗) If L1, L2 are linear functionals defined on X such that ker(L1) ⊂ ker(L2), then
prove that there exists a constant λ ∈ R such that L2(x) = λL1(x) for all x ∈ X .

Hint: The case when L1 = 0 is trivial. For the other case, first prove that if ker(L1) 	= X , then
there exists a x0 ∈ X such that X = ker(L1) + [x0], where [x0] denotes the linear span of x0.
What is L2x for x ∈ X?

A linear space over R is said to be normed, if there exists a function ‖ · ‖ : X → [0,∞) (called
norm), such that:

1. ‖x‖ = 0 iff x = 0.

2. ‖α · x‖ = |α| ‖x‖ for all α ∈ R and for all x ∈ X .

3. ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ for all x1, x2 ∈ X . (Triangle inequality.)

In a normed linear space, we can talk about distances between elements, by defining the distance
between x1 and x2 to be the quantity ‖x1 − x2‖. In this manner, a normed linear space becomes
a metric space. Recall that a metric space is a set X together with a function d : X × X → R,
called distance, that satisfies

1. d(x, y) ≥ 0 for all x, y in X , and d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x) for all x, y in X .

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in X .

Exercise. Let (X, ‖ · ‖) be a normed linear space. Prove that (X, d) is a metric space, where
d : X × X → [0,∞) is defined by d(x1, x2) = ‖x1 − x2‖, x1, x2 ∈ X .

The elements of a normed linear space can be objects of any kind, for example, numbers,
matrices, functions, etcetera. The following normed spaces are important for our subsequent
purposes:

1. C[ti, tf ].

The space C[ti, tf ] consists of all continuous functions x(·) defined on the closed interval
[ti, tf ]. By addition of elements of C[ti, tf ], we mean pointwise addition of functions: for
x1, x2 ∈ C[ti, tf ], (x1 + x2)(t) = x1(t) + x2(t) for all t ∈ [ti, tf ]. Scalar multiplication is
defined as follows: (α ·x)(t) = αx(t) for all t ∈ [ti, tf ]. The norm is defined as the maximum
of the absolute value:

‖x‖ = max
t∈[ti,tf ]

|x(t)|.

Thus in the space C[ti, tf ], the distance between the function x∗ and the function x does not
exceed ε if the graph of the function x lies inside a strip of width 2ε ‘bordering’ the graph
of the function x∗, as shown in Figure 3.4.

2. C1[ti, tf ].
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ti tf

x∗
x

t

Figure 3.4: A ball of radius ε and center x∗ in C[ti, tf ].

The space C1[ti, tf ] consists of all functions x(·) defined on [ti, tf ] which are continuous and
have a continuous first derivative. The operations of addition and multiplication by scalars
are the same as in C[ti, tf ], but the norm is defined by

‖x‖ = max
t∈[ti,tf ]

|x(t)| + max
t∈[ti,tf ]

∣∣∣∣dx

dt
(t)

∣∣∣∣ .

Thus two functions in C1[ti, tf ] are regarded as close together if both the functions themselves
as well as their first derivatives are close together. Indeed this is because ‖x1−x2‖ < ε implies
that

|x1(t) − x2(t)| < ε and

∣∣∣∣dx1

dt
(t) − dx2

dt
(t)

∣∣∣∣ < ε for all t ∈ [ti, tf ], (3.6)

and conversely, (3.6) implies that ‖x1 − x2‖ < 2ε.

Similarly for d ∈ N, we can introduce the spaces (C[ti, tf ])d, (C1[ti, tf ])d, the spaces of functions
from [ti, tf ] into R

d, whose each component belongs to C[ti, tf ], C1[ti, tf ], respectively.

After a norm has been introduced in a linear space X (which may be a function space), it is
natural to talk about continuity of functionals defined on X . The functional I : X → R is said to
be continuous at the point x∗ if for every ε > 0, there exists a δ > 0 such that

|I(x) − I(x∗)| < ε for all x such that ‖x − x∗‖ < δ.

The functional I : X → R is said to be continuous if it is continuous at all x ∈ X .

Exercises.

1. (∗) Show that the arclength functional I : C1[0, 1] → R given by

I(x) =

∫ 1

0

√
1 + (x′(t))2dt

is not continuous if we equip C1[0, 1] with any of the following norms:

(a) ‖x‖ = maxt∈[0,1] |x(t)|, x ∈ C1[0, 1].

(b) ‖x‖ = maxt∈[0,1]

(|x(t)| + ∣∣dx
dt

(t)
∣∣).

Hint: One might proceed as follows: consider the curves xε(t) = ε2 sin
(

t
ε

)
for ε > 0,

and prove that ‖xε‖ → 0, while I(xε) → ∞ as ε → 0.

2. Prove that any norm defined on a linear space X is a continuous functional.

Hint: Prove that
∣∣‖x‖ − ‖y‖

∣∣ ≤ ‖x − y‖ for all x, y in X .
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At first it might seem that the space C[ti, tf ] (which is strictly larger than C1[ti, tf ]) would
be adequate for the study of variational problems. However, this is not true. In fact one of the
basic functionals

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt

is continuous if we interpret closeness of functions as closeness in the space C1[ti, tf ]. For example,
arc length is continuous if we use the norm in C1[ti, tf ], but not1 continuous if we use the norm
in C[ti, tf ]. Since we want to be able to use ordinary analytic operations such as passage to the
limit, then, given a functional, it is reasonable to choose a function space such that the functional
is continuous.

So far we have talked about linear spaces and functionals defined on them. However, in
many variational problems, we have to deal with functionals defined on sets of functions which
do not form linear spaces. In fact, the set of functions satisfying the constraints of a given
variational problem, called the admissible functions is in general not a linear space. For example,
the admissible curves for the brachistochrone problem are the smooth plane curves passing through
two fixed points, and the sum of two such curves does not in general pass through the two points.
Nevertheless, the concept of a normed linear space and the related concepts of the distance between
functions, continuity of functionals, etcetera, play an important role in the calculus of variations.
A similar situation is encountered in elementary analysis, where, in dealing with functions of n

variables, it is convenient to use the concept of the n-dimensional Euclidean space R
n, even though

the domain of definition of a function may not be a linear subspace of R
n.

Next we introduce the concept of the (Frechét) derivative of a functional, analogous to the
concept of the derivative of a function of n variables. This concept will then be used to find
extrema of functionals.

Recall that for a function f : R → R, the derivative at a point x∗ is the approximation of f

around x∗ by an affine linear map. See Figure 3.5.

f(x∗)

x∗
x

Figure 3.5: The derivative of f at x∗.

In other words,
f(x∗ + h) = f(x∗) + f ′(x∗)h + ε(h)|h|

with ε(h) → 0 as |h| → 0. Here the derivative f ′(x∗) : R → R is simply the linear map of
multiplication. Similarly in the case of a functional I : R

n → R, the derivative at a point is a
linear map I ′(x∗) : R

n → R such that

I(x∗ + h) = I(x∗) + (I ′(x∗))(h) + ε(h)‖h‖,
with ε(h) → 0 as ‖h‖ → 0. A linear map L : R

n → R is always continuous. But this is not true in
general if R

n is replaced by an infinite dimensional normed linear space X . So while generalizing

1For every curve, we can find another curve arbitrarily close to the first in the sense of the norm of C[ti, tf ],
whose length differs from that of the first curve by a factor of 10, say.
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the notion of the derivative of a functional I : X → R, we specify continuity of the linear map
as well. This motivates the following definition. Let X be a normed linear space. Then a map
L : X → R is said to be a continuous linear functional if it is linear and continuous.

Exercises.

1. Let L : X → R be a linear functional on a normed linear space X . Prove that the following
are equivalent:

(a) L is continuous.

(b) L is continuous at 0.

(c) There exists a M > 0 such that |L(x)| ≤ M‖x‖ for all x ∈ X .

Hint. The implication (1a)⇒(1b) follows from the definition and (1c)⇒(1a) is easy to prove
using a δ < ε

M
. For (1b)⇒(1c), use M > ε

δ
and consider separately the cases x = 0 and

x 	= 0. In the latter case, note that with x1 :=
ε

M

‖x‖x, there holds that ‖x1‖ < δ.

Remark. Thus in the case of linear functionals, remarkably, continuity is equivalent to
continuity at only one point, and this is furthermore equivalent to proving an estimate of
the type given in item 1c.

2. Let tm ∈ [ti, tf ]. Prove that the map L : C[ti, tf ] → R given by L(x) = x(tm) is a continuous
linear functional.

3. Let α, β ∈ C[ti, tf ]. Prove that the map L : C1[ti, tf ] → R given by

L(x) =

∫ tf

ti

[
α(t)x(t) + β(t)

dx

dt
(t)

]
dt

is a continuous linear functional.

We are now ready to define the derivative of a functional. Let X be a normed linear space
and I : X → R be a functional. Then I is said to be (Frechét) differentiable at x∗ (∈ X) if there
exists a continuous linear functional, denoted by I ′(x∗), and a map ε : X → R such that

I(x∗ + h) = I(x∗) + (I ′(x∗))(h) + ε(h)‖h‖, for all h ∈ X,

and ε(h) → 0 as ‖h‖ → 0. Then I ′(x∗) is called the (Frechét) derivative of I at x∗. If I is
differentiable at every point x ∈ X , then it is simply said to be differentiable.

Theorem 3.4.1 The derivative of a differentiable functional I : X → R at a point x∗ (∈ X) is
unique.

Proof First we note that if L : X → R is a linear functional and if

L(h)

‖h‖ → 0 as ‖h‖ → 0, (3.7)

then L = 0. For if L(h0) 	= 0 for some nonzero h0 ∈ X , then defining hn = 1
n
h0, we see that

‖hn‖ → 0 as n → ∞, but

lim
n→∞

L(hn)

‖hn‖ =
D(h0)

‖h0‖ 	= 0,
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which contradicts (3.7).

Now suppose that the derivative of I at x∗ is not uniquely defined, so that

I(x∗ + h) = I(x∗) + L1(h) + ε1(h)‖h‖,
I(x∗ + h) = I(x∗) + L2(h) + ε2(h)‖h‖,

where L1, L2 are continuous linear functionals, and ε1(h), ε2(h) → 0 as ‖h‖ → 0. Thus

(L1 − L2)(h)

‖h‖ = ε2(h) − ε1(h) → 0 as ‖h‖ → 0,

and from the above, it follows that L1 = L2.

Exercises.

1. Prove that if I : X → R is differentiable at x∗, then it is continuous at x∗.

2. (a) Prove that if L : X → R is a continuous linear functional, then it is differentiable.
What is its derivative at x ∈ X?

(b) Let tm ∈ [ti, tf ]. Consider the functional I : C[ti, tf ] → R given by

I(x) =

∫ tf

tm

x(t)dt.

Prove that I is differentiable, and find its derivative at x ∈ C[ti, tf ].

3. (∗) Prove that the square of a differentiable functional I : X → R is differentiable, and find
an expression for its derivative at x ∈ X .

4. (a) Given x1, x2 in a normed linear space X , define

ϕ(t) = tx1 + (1 − t)x2.

Prove that if I : X → R is differentiable, then I ◦ ϕ : [0, 1] → R is differentiable and

d

dt
(I ◦ ϕ)(t) = [I ′(ϕ(t))](x1 − x2).

(b) Prove that if I1, I2 : X → R are differentiable and their derivatives are equal at every
x ∈ X , then I1, I2 differ by a constant.

In elementary analysis, a necessary condition for a differentiable function f : R → R to have
a local extremum (local maximum or local minimum) at x∗ ∈ R is that f ′(x∗) = 0. We will
prove a similar necessary condition for a differentiable functional I : X → R. We say that a
functional I : X → R has a local extremum at x∗ (∈ X) if I(x) − I(x∗) does not change sign in
some neighbourhood of x∗.

Theorem 3.4.2 Let I : X → R be a functional that is differentiable at x∗ ∈ X. If I has a local
extremum at x∗, then I ′(x∗) = 0.

Proof To be explicit, suppose that I has a minimum at x∗: there exists r > 0 such that
I(x∗ + h) ≥ I(x∗) for all h such that ‖h‖ < r. Suppose that [I ′(x∗)](h0) 	= 0 for some h0 ∈ X .
Define

hn = − 1

n

[I ′(x∗)](h0)

|[I ′(x∗)](h0)|h0.
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We note that ‖hn‖ → 0 as n → ∞, and so with N chosen large enough, we have ‖hn‖ < r for all
n > N . It follows that for n > N ,

0 ≤ I(x∗ + hn) − I(x∗)

‖hn‖ = −|[I ′(x∗)](h0)|
‖h0‖ + ε(hn).

Passing the limit as n → ∞, we obtain −|[I ′(x∗)](h0)| ≥ 0, a contradiction.

Remark. Note that this is a necessary condition for the existence of an extremum. Thus a the
vanishing of a derivative at some point x∗ doesn’t imply extremality of x∗!

3.5 The simplest variational problem. Euler-Lagrange equa-

tion

The simplest variational problem can be formulated as follows:

Let F (x, x′, t) be a function with continuous first and second partial derivatives with respect to
(x, x′, t). Then find x ∈ C1[ti, tf ] such that x(ti) = xi and x(tf ) = xf , and which is an extremum
for the functional

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt. (3.8)

In other words, the simplest variational problem consists of finding an extremum of a functional
of the form (3.13), where the class of admissible curves comprises all smooth curves joining two
fixed points; see Figure 3.6. We will apply the necessary condition for an extremum (established

ti tf
t

xi

xf

Figure 3.6: Possible paths joining the two fixed points (ti, xi) and (tf , xf ).

in Theorem 3.4.2) to the solve the simplest variational problem described above. This will enable
us to solve the brachistochrone problem from §3.2.

Theorem 3.5.1 Let I be a functional of the form

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt,

where F (x, x′, t) is a function with continuous first and second partial derivatives with respect to
(x, x′, t) and x ∈ C1[ti, tf ] such that x(ti) = xi and x(tf ) = xf . If I has an extremum at x∗, then
x∗ satisfies the Euler-Lagrange equation:

∂F

∂x

(
x∗(t),

dx∗

dt
(t), t

)
− d

dt

(
∂F

∂x′

(
x∗(t),

dx∗

dt
(t), t

))
= 0, t ∈ [ti, tf ]. (3.9)



3.5. The simplest variational problem. Euler-Lagrange equation 25

(This equation is abbreviated by Fx − d
dt

Fx
′ = 0.)

Proof The proof is long and so we divide it into several steps.

Step 1. First of all we note that the set of curves in C1[ti, tf ] satisfying x(ti) = xi and x(tf ) = xf

do not form a linear space! So Theorem 3.4.2 is not applicable directly. Hence we introduce a
new linear space X , and consider a new functional Ĩ : X → R which is defined in terms of the old
functional I.

Introduce the linear space

X = {h ∈ C1[ti, tf ] | h(a) = h(b) = 0},

with the C1[ti, tf ]-norm. Then for all h ∈ X , x∗+h satisfies (x∗+h)(ti) = xi and (x∗+h)(tf) = xf .

Defining Ĩ(h) = I(x∗+h), we note that Ĩ : X → R has an extremum at 0. It follows from Theorem
3.4.2 that Ĩ ′(0) = 0. Note that by the 0 in the right hand side of the equality, we mean the zero
functional, namely the continuous linear map from X to R, which is defined by h �→ 0 for all
h ∈ X .

Step 2. We now calculate Ĩ ′(0). We have

Ĩ(h) − Ĩ(0) =

∫ tf

ti

F ((x∗ + h)(t), (x∗ + h)′(t), t) dt −
∫ tf

ti

F (x∗(t), x
′
∗(t), t) dt

=

∫ tf

ti

[F (x∗(t) + h(t), x′
∗(t) + h′(t), t) dt − F (x∗(t), x

′
∗(t), t)]dt.

Recall that from Taylor’s theorem, if F possesses partial derivatives of order 2 in some neighbour-
hood N of (x0, x

′
0, t0), then for all (x, x′, t) ∈ N , there exists a Θ ∈ [0, 1] such that

F (x, x′, t) = F (x0, x
′
0, t0) +

(
(x − x0)

∂

∂x
+ (x′ − x′

0)
∂

∂x′
+ (t − t0)

∂

∂t

)
F

∣∣∣∣
(x0,x′

0,t0)

+

1

2!

(
(x − x0)

∂

∂x
+ (x′ − x′

0)
∂

∂x′
+ (t − t0)

∂

∂t

)2

F

∣∣∣∣∣
(x0,x′

0,t0)+Θ((x,x′,t)−(x0,x′

0,t0))

.

Hence for h ∈ X such that ‖h‖ is small enough,

Ĩ(h) − Ĩ(0) =

∫ tf

ti

[
∂F

∂x
(x∗(t), x

′
∗(t), t) h(t) +

∂F

∂x′
(x∗(t), x

′
∗(t), t) h′(t)

]
dt +

1

2!

∫ tf

ti

(
h(t)

∂

∂x
+ h′(t)

∂

∂x′

)2

F
∣∣∣
(x∗(t)+Θ(t)h(t),x′

∗
(t)+Θ(t)h′(t),t)

dt.

It can be checked that there exists a M > 0 such that∣∣∣∣∣ 1

2!

∫ tf

ti

(
h(t)

∂

∂x
+ h′(t)

∂

∂x′

)2

F
∣∣∣
(x∗(t)+Θ(t)h(t),x′

∗
(t)+Θ(t)h′(t),t)

dt

∣∣∣∣∣ ≤ M‖h‖2,

and so Ĩ ′(0) is the map

h �→
∫ tf

ti

[
∂F

∂x
(x∗(t), x

′
∗(t), t) h(t) +

∂F

∂x′
(x∗(t), x

′
∗(t), t) h′(t)

]
dt. (3.10)
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Step 3. Next we show that if the map in (3.10) is the zero map, then this implies that (3.9)
holds. Define

A(t) =

∫ t

ti

∂F

∂x
(x∗(τ), x′

∗(τ), τ) dτ.

Integrating by parts, we find that∫ tf

ti

∂F

∂x
(x∗(t), x

′
∗(t), t) h(t)dt = −

∫ tf

ti

A(t)h′(t)dt,

and so from (3.10), it follows that Ĩ ′(0) = 0 implies that∫ tf

ti

[
−A(t) +

∂F

∂x′
(x∗(t), x

′
∗(t), t)

]
h′(t)dt = 0 for all h ∈ X.

Step 4. Finally we will complete the proof by proving the following.

Lemma 3.5.2 If K ∈ C[ti, tf ] and

∫ tf

ti

K(t)h′(t)dt = 0

for all h ∈ C1[ti, tf ] with h(ti) = h(tf ) = 0, then there exists a constant k such that K(t) = k for
all t ∈ [ti, tf ].

Proof Let k be the constant defined by the condition∫ tf

ti

[K(t) − k] dt = 0,

and let

h(t) =

∫ t

ti

[K(τ) − k]dτ.

Then h ∈ C1[ti, tf ] and it satisfies h(ti) = h(tf ) = 0. Furthermore,

∫ tf

ti

[K(t) − k]
2
dt =

∫ tf

ti

[K(t) − k]h′(t)dt =

∫ tf

ti

K(t)h′(t)dt − k(h(tf ) − h(ti)) = 0.

Thus K(t) − k = 0 for all t ∈ [ti, tf ].

Applying Lemma 3.5.2, we obtain

−A(t) +
∂F

∂x′
(x∗(t), x

′
∗(t), t) = k for all t ∈ [ti, tf ].

Differentiating with respect to t, we obtain (3.10). This completes the proof of Theorem 3.5.1.

Since the Euler-Lagrange equation is in general a second order differential equation, it solu-
tion will in general depend on two arbitrary constants, which are determined from the boundary
conditions x(ti) = xi and x(tf ) = xf . The problem usually considered in the theory of differen-
tial equations is that of finding a solution which is defined in the neighbourhood of some point
and satisfies given initial conditions (Cauchy’s problem). However, in solving the Euler-Lagrange
equation, we are looking for a solution which is defined over all of some fixed region and satisfies
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given boundary conditions. Therefore, the question of whether or not a certain variational problem
has a solution does not just reduce to the usual existence theorems for differential equations.

Note that the Euler-Lagrange equation is only a necessary condition for the existence of an
extremum. This is analogous to the case of f : R → R given by f(x) = x3, for which f ′(0) = 0,
although f clearly does not have a minimum or maximum at 0. See Figure 3.7 and also the
Exercise 1 on page 27. However, in many cases, the Euler-Lagrange equation by itself is enough to
give a complete solution of the problem. In fact, the existence of an extremum is sometimes clear
from the context of the problem. From example, in the brachistochrone problem, it is clear from
the physical meaning. Similarly in the problem concerning finding the curve with the shortest
distance between two given points, this is clear from the geometric meaning. If in such scenarios,
there exists only one critical curve2 satisfying the boundary conditions of the problem, then this
critical curve must a fortiori be the curve for which the extremum is achieved.

x

y = x3

y

0

Figure 3.7: The derivative vanishes at 0, although it is not a point at which the function has a
maximum or a minimum.

The Euler-Lagrange equation is in general a second order differential equation, but in some
special cases, it can be reduced to a first order differential equation or where its solution can be
obtained entirely by evaluating integrals. We indicate some special cases in Exercise 2 on page ,
where in each instance, F is independent of one of its arguments.

Exercises.

1. Consider the functional I given by

I(x) =

∫ 1

0

(x(t))3dt,

defined for all x ∈ C1[0, 1] with x(0) = 0 = x(1). Using Theorem 3.5.1, find the critical
curve x∗ for this functional. Is this a curve which maximizes or minimizes the functional I?

2. Prove that:

(a) If F does not depend in x, then the Euler-Lagrange equation becomes

∂F

∂x′
(x(t), x′(t), t) = c,

where c is a constant.

(b) If F does not depend in x′, then the Euler-Lagrange equation becomes

∂F

∂x
(x(t), x′(t), t) = 0.

2The solutions of the Euler-Lagrange equation are called critical curves.
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(c) If F does not depend in t and if x∗ ∈ C2[ti, tf ], then the Euler-Lagrange equation
becomes

F (x(t), x′(t), t) − x′(t)
∂F

∂x′
(x(t), x′(t), t) = c,

where c is a constant.

Hint: What is d
dt

(
F (x(t), x′(t), t) − x′(t) ∂F

∂x′
(x(t), x′(t), t)

)
?

Example. (Brachistochrone problem, continued.) Determine the minimum value of the functional

I(y) =
1√
2g

∫ x0

0

(
1 + (x′(y))2

y

) 1
2

dy,

with x ∈ C1[0, y0] and x(0) = 0, x(y0) = x0. Here3

F (x, x′, t) =

(
1 + x′2

t

) 1
2

is independent of x, and so the Euler-Lagrange equation becomes

d

dy

(
x′(y)√

1 + (x′(y))2
1√
y

)
= 0.

Integrating with respect to y, we obtain

x′(y)√
1 + (x′(y))2

1√
y

= c,

where c is a constant. It can be shown that the general solution of this differential equation is
given by

x(Θ) =
1

2c2
(Θ − sin Θ) + c̃,

y(Θ) =
1

2c2
(1 − cosΘ),

where c̃ is another constant. The constants are chosen so that the curve passes through the points
(0, 0) and (x0, y0). This curve is known as a cycloid, and in fact it is the curve described by a
point P in a circle that rolls without slipping on the x axis, in such a way that P passes through
(x0, y0); see Figure 3.8. 


(0, 0)

(x0, y0)

x

y

Figure 3.8: The cycloid through (0, 0) and (x0, y0).

3Strictly speaking, the F here does not satisfy the demands made in Theorem 3.5.1. Notwithstanding this fact,
with some additional argument, the solution given here can be fully justified.
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Example. Among all the curves joining two given points (x0, y0) and (x1, y1), find the one which
generates the surface of minimum area when rotated about the x axis. The area of the surface of
revolution generated by rotating the curve y about the x axis is

S(y) = 2π

∫ x1

x0

y(x)
√

1 + (y′(x))2dx.

Since the integrand does not depend explicitly on x, the Euler-Lagrange equation is

F (y(x), y′(x), x) − y′(x)
∂F

∂y′
(y(x), y′(x), x) = c,

where c is a constant, that is,

y
√

1 + (y′)2 − y
(y′)2√

1 + (y′)2
= c.

Thus y = c
√

1 + (y′)2, and it can be shown that this differential equation has the general solution

y(x) = c cosh

(
x + c1

c

)
. (3.11)

This curve is called a catenary. The values of the arbitrary constants c and c1 are determined
by the conditions y(x0) = y0 and y(x1) = y1. It can be shown that the following three cases are
possible, depending on the positions of the points (x0, y0) and (x1, y1):

1. If a single curve of the form (3.11) passes through the points (x0, y0) and (x1, y1), then this
curve is the solution of the problem; see Figure 3.9.

x0 x1

y0

y1

Figure 3.9: The catenary through (x0, y0) and (x1, y1).

2. If two critical curves can be drawn through the points (x0, y0) and (x1, y1), then one of the
curves actually corresponds to the surface of revolution if minimum area, and the other does
not.

3. If there does not exist a curve of the form (3.11) passing through the points (x0, y0) and
(x1, y1), then there is no surface in the class of smooth surfaces of revolution which achieves
the minimum area. In fact, if the location of the two points is such that the distance between
them is sufficiently large compared to their distances from the x axis, then the area of the
surface consisting of two circles of radius y0 and y1 will be less than the area of any surface of
revolution generated by a smooth curve passing through the points; see Figure 3.10. This is
intuitively expected: imagine a soap bubble between concentric rings which are being pulled
apart. Intially we get a soap bubble between these rings, but if the distance separating the
rings becomes too large, then the soap bubble breaks, leaving a soap films on each of the two
rings. This example shows that a critical curve need not always exist in the class of curves
under consideration. 
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x0 x1

y0

y1

Figure 3.10: The polygonal curve (x0, y0) − (x0, 0) − (x1, 0) − (x1, y1).

Exercises.

1. Find the curve which has minimum length between (0, 0) and (1, 1).

2. Find critical curves for the following functionals, where in each case x(0) = 0 and x(1) = 1:

(a) I(x) =
∫ 1

0 x′(t)dt.

(b) I(x) =
∫ 1

0 x(t)x′(t)dt.

(c) I(x) =
∫ 1

0 (x(t) + tx′(t))dt. (See the Exercise on page 2.3.)

3. Find critical curves for the functional I(x) =
∫ 2

1 t3(x′(t))2dt where x(1) = 5 and x(2) = 2.

4. Find critical curves for the functional I(x) =
∫ 2

1
(x′(t))3

t2
dt where x(1) = 1 and x(2) = 7.

5. Find critical curves for the functional I(x) =
∫ 1

0

[
2tx(t) − (x′(t))2 + 3x′(t)(x(t))2

]
dt where

x(0) = 0 and x(1) = −1.

6. Find critical curves for the functional I(x) =
∫ 1

0

[
2(x(t))3 + 3t2x′(t)

]
dt where x(0) = 0 and

x(1) = 1. What if x(0) = 0 and x(1) = 2?

7. A strip-mining company intends to remove all of the iron ore from a region that contains
an estimated Q tons over a fixed time interval [0, T ]. As it is extracted, they will sell it for
processing at a net price per ton of

p(x(t), x′(t)) = P − αx(t) − βx′(t)

for positive constants P , α, and β, where x(t) denotes the total tonnage sold by time t. (This
pricing model allows the cost of mining to increase with the extent of the mined region and
speed of production.)

(a) If the company wishes to maximize its total profit given by

I(x) =

∫ T

0

p(x(t), x′(t))x′(t)dt, (3.12)

where x(0) = 0 and x(T ) = Q, how might it proceed?

(b) If future money is discounted continuously at a constant rate r, then we can assess the
present value of profits from this mining operation by introducing a factor of e−rt in
the integrand of (3.12). Suppose that α = 4, β = 1, r = 1 and P = 2. Find an optimal
mining operation.
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3.6 Free boundary conditions

Besides the simplest variational problem considered in the previous section, we now consider the
variational problem with free boundary conditions (see Figure 3.11):

Let F (x, x′, t) be a function with continuous first and second partial derivatives with respect to
(x, x′, t). Then find x ∈ C1[ti, tf ] which is an extremum for the functional

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt. (3.13)

ti tf
t

Figure 3.11: Free boundary conditions.

Theorem 3.6.1 Let I be a functional of the form

I(x) =

∫ tf

ti

F

(
x(t),

dx

dt
(t), t

)
dt,

where F (x, x′, t) is a function with continuous first and second partial derivatives with respect to
(x, x′, t) and x ∈ C1[ti, tf ]. If I has an extremum at x∗, then x∗ satisfies the Euler-Lagrange
equation:

∂F

∂x

(
x∗(t),

dx∗

dt
(t), t

)
− d

dt

(
∂F

∂x′

(
x∗(t),

dx∗

dt
(t), t

))
= 0, t ∈ [ti, tf ], (3.14)

together with the transversality conditions

∂F

∂x′

(
x∗(t),

dx∗

dt
(t), t

)∣∣∣∣
t=ti

= 0 and
∂F

∂x′

(
x∗(t),

dx∗

dt
(t), t

)∣∣∣∣
t=tf

= 0. (3.15)

Proof

Step 1. We take X = C1[ti, tf ] and compute I ′(x∗). Proceeding as in the proof of Theorem 3.5.1,
it is easy to see that

(I ′(x∗))(h) =

∫ tf

ti

[
∂F

∂x
(x∗(t), x

′
∗(t), t) h(t) +

∂F

∂x′
(x∗(t), x

′
∗(t), t)h′(t)

]
dt,

h ∈ C1[ti, tf ]. Theorem 3.4.2 implies that this linear functional must be the zero map, that is,
(I ′(x∗))(h) = 0 for all h ∈ C1[ti, tf ]. In particular, it is also zero for all h in C1[ti, tf ] such that
h(ti) = h(tf ) = 0. But recall that in Step 3 and Step 4 of the proof of Theorem 3.5.1, we proved
that if ∫ tf

ti

[
∂F

∂x
(x∗(t), x

′
∗(t), t) h(t) +

∂F

∂x′
(x∗(t), x

′
∗(t), t) h′(t)

]
dt = 0 (3.16)
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for all h in C1[ti, tf ] such that h(ti) = h(tf ) = 0, then this implies that he Euler-Lagrange equation
(3.14) holds.

Step 2. Integration by parts in (3.16) now gives

(I ′(x∗))(h) =

∫ tf

ti

[
∂F

∂x
(x∗(t), x

′
∗(t), t) −

d

dt

(
∂F

∂x′
(x∗(t), x

′
∗(t), t)

)]
h(t)dt + (3.17)

∂F

∂x′
(x∗(t), x

′
∗(t), t)h(t)

∣∣∣∣
t=tf

t=ti

= 0 +
∂F

∂x′
(x∗(t), x

′
∗(t), t)

∣∣∣∣
t=tf

h(tf ) − ∂F

∂x′
(x∗(t), x

′
∗(t), t)

∣∣∣∣
t=ti

h(ti).

The integral in (3.17) vanishes since we have shown in Step 1 above that (3.14) holds. Thus the
condition I ′(x∗) = 0 now takes the form

∂F

∂x′
(x∗(t), x

′
∗(t), t)

∣∣∣∣
t=tf

h(tf ) − ∂F

∂x′
(x∗(t), x

′
∗(t), t)

∣∣∣∣
t=ti

h(ti) = 0,

from which (3.15) follows, since h is arbitrary. This completes the proof.

Exercises.

1. Find all curves y = y(x) which have minimum length between the lines x = 0 and the line
x = 1.

2. Find critical curves for the following functional, when the values of x are free at the endpoints:

I(x) =

∫ 1

0

1

2

[
(x′(t))2 + x(t)x′(t) + x′(t) + x(t)

]
dt.

Similarly, we can also consider the mixed case (see Figure 3.12), when one end of the curve is
fixed, say x(ti) = xi, and the other end is free. Then it can be shown that the curve x satisfies
the Euler-Lagrange equation, the transversality condition

∂F

∂x′
(x∗(t), x

′
∗(t), t)

∣∣∣∣
t=ti

h(ti) = 0

at the free end point, and x(ti) = xi serves as the other boundary condition.

We can summarize the results by the following: critical curves for (3.13) satisfy the Euler-
Lagrange equation (3.14) and moreover there holds

∂F

∂x′
(x∗(t), x

′
∗(t), t) = 0 at the free end point.

Exercises.

1. Find the curve y = y(x) which has minimum length between (0, 0) and the line x = 1.

2. Find critical curves for the following functionals:

(a) I(x) =
∫ π

2

0

[
(x(t))2 − (x′(t))2

]
dt, x(0) = 0 and x

(
π
2

)
is free.

(b) I(x) =
∫ π

2

0

[
(x(t))2 − (x′(t))2

]
dt, x(0) = 1 and x

(
π
2

)
is free.

(c) I(x) =
∫ 1

0
cos(x′(t))dt, x(0) = 0 and x(1) is free.
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Figure 3.12: Mixed cases.

3.7 Generalization

The results in this chapter can be generalized to the case when the integrand F is a function of
more than one independent variable: if we wish to find extremum values of the functional

I(x1, . . . , xn) =

∫ tf

ti

F

(
x1(t), . . . , xn(t),

dx1

dt
(t), . . . ,

dxn

dt
(t), t

)
dt,

where F (x1, . . . , xn, x′1, . . . , x
′
n, t) is a function with continuous partial derivatives of order ≤ 2,

and x1, . . . , xn are independent functions of the variable t, then following a similar analysis as
before, we obtain n Euler-Lagrange equations to be satisfied by the optimal curve, that is,

∂F

∂xk

(x1∗(t), . . . , xn∗(t), x
′
1∗(t), . . . , x

′
n∗(t), t)−

d

dt

(
∂F

∂x′k
(x1∗(t), . . . , xn∗(t), x

′
1∗(t), . . . , x

′
n∗(t), t)

)
=0,

for t ∈ [ti, tf ], k ∈ {1, . . . , n}. Also at any end point where xk is free,

∂F

∂x′k

(
x1∗(t), . . . , xn∗(t),

dx1∗

dt
(t), . . . ,

dxn∗

dt
(t), t

)
= 0.

Exercise. Find critical curves of the functional

I(x1, x2) =

∫ π
2

0

[
(x′

1(t))
2 + (x′

2(t))
2 + 2x1(t)x2(t)

]
dt

such that x1(0) = 0, x1

(
π
2

)
= 1, x2(0) = 0, x2

(
π
2

)
= 1.

Remark. Note that with the above result, we can also solve the problem of finding extremal
curves for a functional of the type

I(x) :

∫ tf

ti

F

(
x(t),

dx

dt
(t), . . . ,

dnx

dtn
(t), t

)
dt,

for over all (sufficiently differentiable) curves x defined on an interval [ti, tf ], taking values in R.
Indeed, we may introduce the auxiliary functions

x1(t) = x(t), x2(t) =
dx

dt
(t), . . . , xn(t) =

dnx

dtn
(t), t ∈ [ti, tf ],
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and consider the problem of finding extremal curves for the new functional Ĩ defined by

Ĩ(x1, . . . , xn) =

∫ tf

ti

F (x1(t), x2(t), . . . , xn(t), t)dt.

Using the result mentioned in this section, we can then solve this problem. Note that we eliminated
high order derivatives at the price of converting the scalar function into a vector-valued function.
Since we can always do this, this is one of the reasons in fact for considering functionals of the
type (3.2) where no high order derivatives occur.



Chapter 4

Optimal control

4.1 The simplest optimal control problem

In this section, we wish to find the functions u that give extremum values of

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

where x is the unique solution of the differential equation

ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi.

We prove the following result.

Theorem 4.1.1 Let F (x, u, t) and f(x, u) be continuously differentiable functions of each of their
arguments. Suppose that u∗ ∈ C[ti, tf ] is an optimal control for the functional Ixi

: C[ti, tf ] → R

defined as follows: If u ∈ C[ti, tf ], then

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

where x(·) denotes the unique solution to the differential equation

ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi. (4.1)

If x∗ denotes the state corresponding to the input u∗, then there exists a p∗ ∈ C1[ti, tf ] such that

∂F

∂x
(x∗(t), u∗(t), t) + p∗(t)

∂f

∂x
(x∗(t), u∗(t)) = −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0, (4.2)

∂F

∂u
(x∗(t), u∗(t), t) + p∗(t)

∂f

∂u
(x∗(t), u∗(t)) = 0, t ∈ [ti, tf ]. (4.3)

Proof The proof can be divided into three main steps.

Step 1. In this step we consider an associated function Iξ2 : R → R (defined below) that is
defined in terms of the functional I. Using the optimality of u∗ for I, we then conclude that the
function Iξ2 must have an extremum at 0 (∈ R). Thus applying the necessity of the condition

35
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that the derivative must vanish at extremal points (now simply for a function from R to R!), we
obtain a certain condition, given by equation (4.6).

Let ξ2 ∈ C[ti, tf ] be such that ξ2(ti) = ξ2(tf ) = 0. Define uε(t) = u∗(t) + εξ2(t), ε ∈ R. Then
from Theorem 1.2.2, for all ε such that |ε| < δ, with δ small enough, there exists a unique xε(·)
satisfying

ẋε(t) = f(xε(t), uε(t)), t ∈ [ti, tf ], xε(ti) = xi. (4.4)

Define ξ1 ∈ C1[ti, tf ] by

ξ1(t) =

{
xε(t)−x∗(t)

ε
if ε 	= 0,

0 if ε = 0.

Then ξ1(ti) = 0, and xε(t) = x∗(t) + εξ1(t) for all ε ∈ (−δ, δ). Let

Iξ2(ε) =

∫ tf

ti

F (xε(t), uε(t), t)dt =

∫ tf

ti

F (x∗(t) + εξ1(t), u∗(t) + εξ2(t), t)dt.

It thus follows that Iξ2 : (−δ, δ) → R is differentiable (differentiation under the integral sign can
be justified!), and from the hypothesis that u∗ is optimal for Ixi

, it follows that the function Iξ2

has an extremum for ε = 0. As a consequence of the necessity of the condition that the derivative

must vanish at extremal points, there must hold that
dIξ2

dε
(0) = 0. But we have

dIξ2

dε
(ε) =

∫ tf

ti

[
∂F

∂x
(xε(t), uε(t), t)ξ1(t) +

∂F

∂u
(xε(t), uε(t), t)ξ2(t)

]
dt,

and so we obtain∫ tf

ti

[
∂F

∂x
(x∗(t), u∗(t), t)ξ1(t) +

∂F

∂u
(x∗(t), u∗(t), t)ξ2(t)

]
dt = 0. (4.5)

Differentiating (4.4) with respect to ε, we get

∂f

∂x
(xε(t), uε(t))ξ1(t) +

∂f

∂u
(xε(t), uε(t))ξ2(t) − ξ̇1(t) = 0.

In particular, with ε = 0,

∂f

∂x
(x∗(t), u∗(t))ξ1(t) +

∂f

∂u
(x∗(t), u∗(t))ξ2(t) − ξ̇1(t) = 0. (4.6)

Step 2. We now introduce an function p in order to rewrite (4.6) in a different manner, which
will eventually help us to conclude (4.2) and (4.3).

Let p ∈ C1[ti, tf ] be an unspecified function. Multiplying (4.6) by p, we have that for all
t ∈ [ti, tf ], there holds

p(t)

[
∂f

∂x
(x∗(t), u∗(t))ξ1(t) +

∂f

∂u
(x∗(t), u∗(t))ξ2(t) − ξ̇1(t)

]
= 0. (4.7)

Thus adding the left hand side of (4.7) to the integrand in (4.5) does not change the integral.
Consequently,∫ tf

ti

[(
∂F

∂x
(x∗(t), u∗(t), t) + p(t)

∂f

∂x
(x∗(t), u∗(t))

)
ξ1(t)+(

∂F

∂u
(x∗(t), u∗(t), t) + p(t)

∂f

∂u
(x∗(t), u∗(t))

)
ξ2(t) − p(t)ξ̇1(t)

]
dt = 0.
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Hence ∫ tf

ti

[(
∂F

∂x
(x∗(t), u∗(t), t) + p(t)

∂f

∂x
(x∗(t), u∗(t)) + ṗ(t)

)
ξ1(t)+(

∂F

∂u
(x∗(t), u∗(t), t) + p(t)

∂f

∂u
(x∗(t), u∗(t))

)
ξ2(t)

]
dt + p(t)ξ1(t)

∣∣∣t=tf

t=ti

= 0. (4.8)

Step 3. In this final step, we choose the ‘right p’: one which makes the first summand in the
integrand appearing in (4.8) vanish (in other other words a solution of the differential equation
in (4.5)) and impose a boundary condition for this special (denoted by p∗) in such a manner that
the boundary term in (4.8) also disappears. With this choice of p, (4.8) allows one to conclude
that (4.3) holds too!

Now choose p = p∗, where p∗ is such that

∂F

∂x
(x∗(t), u∗(t), t) + p∗(t)

∂f

∂x
(x∗(t), u∗(t)) + ṗ∗(t) = 0, t ∈ [ti, tf ], p∗(tf ) = 0. (4.9)

(It is easy to verify that

p∗(t) =

∫ tf

t

∂F

∂x
(x∗(s), u∗(s), s)e

R
s

t

∂f
∂x

(x∗(τ),u∗(τ))dτds

satisfies (4.9).) Thus (4.8) becomes∫ tf

ti

(
∂F

∂u
(x∗(t), u∗(t), t) + p(t)

∂f

∂u
(x∗(t), u∗(t))

)
ξ2(t)dt = 0.

Since the choice of ξ2 ∈ C[ti, tf ] satisfying ξ2(ti) = ξ2(tf ) = 0 was arbitrary, it follows that (4.3)
holds: Indeed, if not, then the left hand side of (4.3) is nonzero (say positive) at some point in
[ti, tf ], and by continuity, it is also positive in some interval [t1, t2] contained in [ti, tf ]. Set

ξ2(t) =

{
(t − t1)(t2 − t) if t ∈ [t1, t2],
0 if t 	∈ [t1, t2].

Then ξ2 ∈ C[ti, tf ] and ξ2(ti) = ξ2(tf ) = 0. However,∫ tf

ti

(
∂F

∂u
(x∗(t), u∗(t), t) + p(t)

∂f

∂u
(x∗(t), u∗(t))

)
ξ2(t)dt

=

∫ t2

t1

(
∂F

∂u
(x∗(t), u∗(t), t) + p(t)

∂f

∂u
(x∗(t), u∗(t))

)
(t − t1)(t2 − t)dt

> 0,

a contradiction. This completes the proof of the theorem.

Remarks.

1. Let X = {x ∈ C1[ti, tf ] | x(ti) = 0} and U = C[ti, tf ]. Consider the functional Ĩ : X×U → R

defined by

Ĩ(x, u) =

∫ tf

ti

[
F (x(t), u(t), t) + p∗(t)

(
dx

dt
(t) − f(x(t), u(t))

)]
dt.

Then it can be shown that (4.2) and (4.3) imply that Ĩ ′(x∗, u∗) = 0. This is known as the
relative stationarity condition. It is analogous to the Lagrange multiplier theorem encoun-
tered in constrained optimization problems in finite dimensions: a necessary condition for
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x∗ ∈ R
n to be an extremum of F : R

n → R subject to G : R
n → R

k is that F̃ ′(x∗) = 0,
where F̃ = F + p�∗ G for some p∗ ∈ R

k. The role of the Lagrange multiplier p∗ ∈ R
k, which

is vector in the finite-dimensional vector space R
k, is now played by the function p∗, which

is a vector in an infinite-dimensional vector space.

2. It should be emphasized that Theorem 4.1.1 provides a necessary condition for optimality.
Thus not every u∗ that satisfies (4.2) and (4.3) for some p∗, with x∗ being the unique solution
to (4.1), needs to be optimal. (Such a u∗ satisfying is called a critical control.) However, if
we already know that an optimal solution exists and that there is a unique critical control,
then this critical control is obviously optimal.

4.2 The Hamiltonian and Pontryagin minimum principle

With the notation from Theorem 4.1.1, define

H(p, x, u, t) = F (x, u, t) + pf(x, u). (4.10)

H is called the Hamiltonian and Theorem 4.1.1 can be equivalently be expressed in the following
form.

Theorem 4.2.1 Let F (x, u, t) and f(x, u) be continuously differentiable functions of each of their
arguments. If u∗ ∈ C[ti, tf ] is an optimal control for the functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

subject to the differential equation

ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi,

and if x∗ denotes the corresponding state, then there exists a p∗ ∈ C1[ti, tf ] such that

∂H

∂x
(p∗(t), x∗(t), u∗(t), t) = −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0, and (4.11)

∂H

∂u
(p∗(t), x∗(t), u∗(t), t) = 0, t ∈ [ti, tf ]. (4.12)

Note that the differential equation ẋ∗ = f(x∗, u∗) with x∗(ti) = xi can be expressed in terms
of the Hamiltonian as follows:

∂H

∂p
(p∗(t), x∗(t), u∗(t), t) = ẋ∗(t), t ∈ [ti, tf ], x∗(ti) = xi. (4.13)

The equations (4.11) and (4.13) resemble the equations arising in Hamiltonian mechanics, and
these equations together are said to comprise a Hamiltonian differential system. The function
p∗ is called the co-state, and (4.11) is called the adjoint differential equation. This analogy with
Hamiltonian mechanics was responsible for the original motivation of the Pontryagin minimum
principle, which we state below without proof.

Theorem 4.2.2 (Pontryagin minimum principle.) Let F (x, u, t) and f(x, u) be continuously dif-
ferentiable functions of each of their arguments. If u∗ ∈ C[ti, tf ] is an optimal control for the
functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,
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subject to the differential equation

ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi,

and if x∗ denotes the corresponding state, then there exists a p∗ ∈ C1[ti, tf ] such that

∂H

∂x
(p∗(t), x∗(t), u∗(t), t) = −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0,

and for all t ∈ [ti, tf ],

H(p∗(t), x∗(t), u(t), t) ≥ H(p∗(t), x∗(t), u∗(t), t) (4.14)

holds.

The fact that the optimal input u∗ minimizes the Hamiltonian (inequality (4.14)) is known as
Pontryagin minimum principle. Equation (4.12) is then a corollary of this result.

Exercises.

1. Find a critical control of the functional

Ix0(u) =

∫ 1

0

[
(x(t))2 + (u(t))2

]
dt

subject to ẋ(t) = u(t), t ∈ [0, 1], x(0) = x0.

2. Find a critical control uT∗ and the corresponding state xT∗ of the functional

Ix0(u) =

∫ T

0

1

2

(
3(x(t))2 + (u(t))2

)
dt

subject to ẋ(t) = x(t) + u(t), t ∈ [0, T ], x(0) = x0. Show that there exists a constant k such
that1

lim
T→∞

uT∗(t) = k lim
T→∞

xT∗(t)

for all t. What is the value of k?

Example. (Economic growth, continued.) The problem is to choose the consumption path c ∈
C[0, T ] which maximizes the welfare integral

Wk0(c) =

∫ T

0

e−δtU(c(t))dt

whilst satisfying the growth equation

k̇(t) = Π(k(t)) − (λ + μ)k(t) − c(t), t ∈ [0, T ], k(0) = k0,

k being the capital, Π the production function, λ, μ positive constants, δ the discount factor. The
Hamiltonian is given by

H(p, k, u, t) = e−δtU(c) + p(Π(k) − (λ + μ)k− c).

1A control of the type u(t) = kx(t) is said to be a static state-feedback.
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From Theorem 4.2.1, it follows that any optimal control input u∗ and the corresponding state k∗

satisfies
∂H

∂c
(p∗(t), k∗(t), c∗(t), t) = 0, t ∈ [0, T ],

that is,

e−δt dU

dc
(c∗(t)) − p∗(t) = 0, t ∈ [0, T ]. (4.15)

The adjoint equation is

∂H

∂x
(p∗(t), k∗(t), c∗(t), t) = −ṗ∗(t), t ∈ [0, T ], p∗(T ) = 0,

that is,

p∗(t)

(
dΠ

dk
(k∗(t)) − (λ + μ)

)
= −ṗ∗(t), t ∈ [0, T ], p∗(T ) = 0. (4.16)

From (4.15) and (4.16), we obtain

ċ∗(t) =
dU
dc

(c∗(t))
d2U
dc2

(c∗(t))

(
dΠ

dk
(k∗(t)) − (λ + μ + δ)

)
, t ∈ [0, T ],

dU

dc
(c∗(T )) = 0.

So the equations governing the optimal path are the following coupled, first order, nonlinear
differential equations:

k̇∗(t) = Π(k(t)) − (λ + μ)k(t) − c(t), t ∈ [0, T ], k(0) = k0,

ċ∗(t) =
dU
dc

(c∗(t))
d2U
dc2

(c∗(t))

(
dΠ

dk
(k∗(t)) − (λ + μ + δ)

)
, t ∈ [0, T ],

dU

dc
(c∗(T )) = 0.

In general, it is not possible to solve these equations analytically, and instead one finds an approx-
imate solution numerically on a computer. 


4.3 Generalization to vector inputs and states

In the general case when x(t) ∈ R
n and u(t) ∈ R

m, Theorem 4.2.1 holds with p∗ now being a
function taking its values in R

n:

Theorem 4.3.1 Let F (x, u, t) and f(x, u) be continuously differentiable functions of each of their
arguments. If u∗ ∈ (C[ti, tf ])m is an optimal control for the functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

subject to the differential equation

ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi,

and if x∗ denotes the corresponding state, then there exists a p∗ ∈ (C1[ti, tf ])n such that

[
∂H

∂x
(p∗(t), x∗(t), u∗(t), t)

]�

= −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0, and

∂H

∂u
(p∗(t), x∗(t), u∗(t), t) = 0, t ∈ [ti, tf ],

where H(p, x, u, t) = F (x, u, t) + p�f(x, u).
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Example. (Linear systems and the Riccati equation.) Let A ∈ R
n×n, B ∈ R

n×m, Q ∈ R
n×n

such that Q = Q� ≥ 0 and R ∈ R
m×m such that R = R� > 0. We wish to find2 optimal controls

for the functional

Ixi
(u) =

∫ tf

ti

1

2

[
x(t)�Qx(t) + u(t)�Ru(t)

]
dt

subject to the differential equation

ẋ(t) = Ax(t) + Bu(t), t ∈ [ti, tf ], x(ti) = xi.

The Hamiltonian is given by

H(p, x, u, t) =
1

2

[
x�Qx + u�Ru

]
+ p� [Ax + Bu] .

From Theorem 4.3.1, it follows that any optimal input u∗ and the corresponding state x∗ satisfies

∂H

∂u
(p∗(t), x∗(t), u∗(t), t) = 0,

that is, u∗(t)
�R + p∗(t)

�B = 0. Thus u∗(t) = −R−1B�p∗(t). The adjoint equation is

[
∂H

∂x
(p∗(t), x∗(t), u∗(t), t)

]�

= −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0,

that is,

(x∗(t)
�Q + p∗(t)

�A)� = −ṗ∗(t), t ∈ [ti, tf ], p∗(tf ) = 0.

So we have

ṗ∗(t) = −A�p∗(t) − Qx∗(t), t ∈ [ti, tf ], p∗(tf ) = 0.

Consequently,

d

dt

[
x∗(t)
p∗(t)

]
=

[
A −BR−1B�

−Q −A�

] [
x∗(t)
p∗(t)

]
, t ∈ [ti, tf ], x∗(ti) = xi, p∗(tf ) = 0. (4.17)

This is a linear, time-invariant differential equation in (x∗, p∗). If we would only have to deal with
initial boundary conditions exclusively or final boundary conditions exclusively, then we could
easily solve (4.17). However, here we have combined initial and final conditions, and so it is not
clear how we could solve (4.17). It is unclear if (4.17) has a solution at all! We now prove the
following.

Theorem 4.3.2 Let P∗ be a solution of the following Riccati equation

Ṗ∗(t) = −P∗(t)A − A�P∗(t) + P∗(t)BR−1B�P∗(t) − Q, t ∈ [ti, tf ], P∗(tf ) = 0.

Let x∗ be the solution of

ẋ∗(t) =
[
A − BR−1B�P∗(t)

]
x∗(t), t ∈ [ti, tf ], x∗(ti) = xi,

and let

p∗(t) = P∗(t)x∗(t).

Then (x∗, p∗) above is the unique solution of (4.17).

2This is called the linear quadratic control problem or LQ problem.
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Proof We have

d

dt

[
x∗(t)
p∗(t)

]
=

[
(A − BR−1B�P∗(t))x∗(t)

Ṗ∗(t)x∗(t) + P∗(t)ẋ∗(t)

]

=

⎡
⎣ Ax∗(t) − BR−1B�p∗(t)(−P∗(t)Ax∗(t) − A�P∗(t)x∗(t) + P∗(t)BR−1B�P∗(t)x∗(t) − Qx∗(t)+

P∗(t)Ax∗(t) − P∗(t)BR−1B�P∗(t)x∗(t)
)

⎤
⎦

=

[
Ax∗(t) − BR−1B�p∗(t)
−Qx∗(t) − A�p∗(t)

]

=

[
A −BR−1B�

−Q −A�

] [
x∗(t)
p∗(t)

]
.

Furthermore, x∗ and p∗ satisfy x(ti) = xi and p∗(tf ) = P (tf )x∗(tf ) = 0x∗(tf ) = 0. So the pair
(x∗, p∗) satisfies (4.17).

The uniqueness can be shown as follows. If (x1, p1) and (x2, p2) satisfy (4.17), then x̃ = x1−x2,
p̃ = p1 − p2 satisfy

d

dt

[
x̃(t)
p̃(t)

]
=

[
A −BR−1B�

−Q −A�

] [
x̃(t)
p̃(t)

]
, t ∈ [ti, tf ], x̃(ti) = 0, p̃(tf ) = 0. (4.18)

This implies that

0 = p̃(tf )�x̃(tf ) − p̃(ti)
�x̃(ti)

=

∫ tf

ti

d

dt

(
p̃(t)�x̃(t)

)
dt

=

∫ tf

ti

[
˙̃p(t)�x̃(t) + p̃(t)� ˙̃x(t)

]
dt

=

∫ tf

ti

[
(−Qx̃(t) − A�p̃(t))x̃(t) + p̃(t)�(Ax̃(t) − BR−1B�p̃(t))

]
dt

=

∫ tf

ti

[
x̃(t)�Qx̃(t) + p̃(t)�BR−1B�p̃(t)

]
dt.

Consequently Qx̃(t) = 0 and R−1B�p̃(t) = 0 for all t ∈ [ti, tf ]. From (4.18), we obtain

˙̃x(t) = Ax̃(t), t ∈ [ti, tf ], x̃(ti) = 0, and

˙̃p(t) = −A�p̃(t), t ∈ [ti, tf ], p̃(tf ) = 0.

Thus x̃(t) = 0 and p̃(t) = 0 for all t ∈ [ti, tf ].

So we see that the optimal trajectories (x∗, u∗) are governed by

ẋ∗(t) =
[
A − BR1−B�P∗(t)

]
x∗(t), t ∈ [ti, tf ], x∗(ti) = xi,

u∗(t) = −R−1B�P∗(t)x∗(t), t ∈ [ti, tf ],

where P∗ is the solution of the Riccati equation

Ṗ∗(t) = −P∗(t)A − A�P∗(t) + P∗(t)BR−1B�P∗(t) − Q, t ∈ [ti, tf ], P∗(tf ) = 0.

Note that the optimal control has the form of a (time-varying) state-feedback law; see Figure 4.1.



Exercise. Let Q ∈ R
n×n be such that Q = Q� ≥ 0. Show that if x ∈ R

n is such that x�Qx = 0,
then Qx = 0.
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plant

controller

ẋ = Ax + Bu

u(t) = −R−1B�P∗(t)x(t)

u∗ x∗

Figure 4.1: The closed loop system.

4.4 Constraint on the state at final time. Controllability

In many optimization problems, in addition to minimizing the cost, one may also have to satisfy
a condition for the final state x(tf ); for instance, one may wish to drive the state to zero. This
brings us naturally to the notion of controllability. For the sake of simplicity, we restrict ourselves
to linear systems:

ẋ(t) = Ax(t) + Bu(t), t ≥ ti. (4.19)

The system (4.19) is said to be controllable if for every pair of vectors xi, xf in R
n, there exists a

tf > ti and a control u ∈ (C[ti, tf ])m such that the solution x of (4.19) with x(ti) = xi satisfies
x(tf ) = xf . Controllability means that any state can be driven to any other state using an
appropriate control.

Example. (A controllable system.) Consider the system

ẋ(t) = u(t),

so that
A = 0, B = 1.

Then given xi, xf ∈ R, with any tf > tf , define u ∈ C[ti, tf ] to be the constant function

u(t) =
xf − xi

tf − ti
, t ∈ [ti, tf ].

By the fundamental theorem of calculus,

x(tf ) = x(ti) +

∫ tf

ti

ẋ(τ)dτ = xi +

∫ tf

ti

u(τ)dτ = xi +
xf − xi

tf − ti
(tf − ti) = xf .

Note that

rank
[

B AB . . . An−1B
] (n=1)

= rank
[

B
]

= rank
[

1
]

= 1 = n,

the dimension of the state space (R). 


Example. (An uncontrollable system.) Consider the system

ẋ1(t) = x1(t) + u(t), (4.20)

ẋ2(t) = x2(t), (4.21)
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so that

A =

[
1 0
0 1

]
, B =

[
1
0

]
.

The equation (4.21) implies that x2(t) = et−tix2(ti), and so if x2(ti) > 0, then x2(t) > 0 for all
t ≥ ti. So a final state with the x2-component negative is never reachable by any control. Note
that

rank
[

B AB . . . An−1B
] (n=2)

= rank
[

B AB
]

= rank

[
1 1
0 0

]
= 1 	= 2 = n,

the dimension of the state space (R2). 

The following theorem gives an important characterization of controllability.

Theorem 4.4.1 The system (4.19) is controllable iff rank
[

B AB . . . An−1B
]

= n, the
dimension of the state space.

Exercises.

1. For what values of α is the system (4.19) controllable, if

A =

[
2 1
0 1

]
, B =

[
1
α

]
?

2. (∗) Let A ∈ R
n×n and B ∈ R

n×1. Prove that the system (4.19) is controllable iff every
matrix commuting with A is a polynomial in A.

The following theorem tells us how we can calculate the optimal control when x(tf ) is specified,
in the case of controllable linear systems.

Theorem 4.4.2 Suppose that the system

ẋ(t) = Ax(t) + Bu(t), t ≥ ti

is controllable. Let F (x, u, t) be a continuously differentiable function of each of their arguments.
If u∗ ∈ (C[ti, tf ])m is an optimal control for the functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

subject to the differential equation

ẋ(t) = Ax(t) + Bu(t), t ∈ [ti, tf ], x(ti) = xi, x(tf )k = xf,k, k ∈ {1, . . . , r},
and if x∗ denotes the corresponding state, then there exists a p∗ ∈ (C1[ti, tf ])n such that

[
∂H

∂x
(p∗(t), x∗(t), u∗(t), t)

]�

= −ṗ∗(t), t ∈ [ti, tf ], p∗(tf )k = 0, k ∈ {r + 1, . . . , n}, and

∂H

∂u
(p∗(t), x∗(t), u∗(t), t) = 0, t ∈ [ti, tf ],

where H(p, x, u, t) = F (x, u, t) + p�(Ax + Bu).
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We will not prove this theorem. Note that for a differential equation to have a unique solution,
there should not be too few or too many initial and final conditions to be satisfied by that solution.
Intuitively, one expects as many conditions as there are differential equations. In Theorem 4.4.2,
we have, in total, 2n differential equations (for x∗ and p∗). We also have the right number of
conditions: n + r for x∗, and n − r for p∗.

Exercises.

1. Find a critical control for the functional

I(u) =

∫ 1

0

(u(t))2dt

subject to ẋ(t) = −2x(t) + u(t), t ∈ [0, 1], x(0) = 1 and x(1) = 0. Is this control unique?

2. Find a critical control for the functional

I(u) =

∫ T

0

(u(t))2dt

subject to ẋ(t) = −ax(t) + u(t), t ∈ [0, T ], x(0) = x0 and x(T ) = 0. Find an expression for
the corresponding state. Prove that the critical control can be expressed as a state-feedback
law: u(t) = k(t, T, a)x(t). Find an expression for k(t, T, a).

3. Find a critical control for the functional

I(u) =

∫ T

0

[
(xT − x(t))2 + (u(t))2

]
dt

subject to ẋ(t) = −ax(t) + u(t), t ∈ [0, T ], x(0) = x0 and x(T ) = xT .

4. Find a critical control for the functional

I(u) =

∫ 1

0

1

2
(u(t))2dt

subject to

ẋ1(t) = x2(t),

ẋ2(t) = −x2(t) + u(t)

t ∈ [0, 1] and

x1(0) = 1, x2(0) = 1,

x1(1) = 0, x2(1) = 0.

5. (Higher order differential equation constraint.) Find a critical control for the functional

I(u) =

∫ T

0

1

2
(u(t))2dt

subject to the second order differential equation

ÿ(t) + y(t) = u(t), t ∈ [0, T ], y(0) = y0, ẏ(0) = v0, y(T ) = ẏ(t) = 0.

Hint: Introduce the state variables x1(t) = y(t), x2(t) = ẏ(t).



Chapter 5

Optimality principle and

Bellman’s equation

Bellman and his co-workers pioneered a different approach for solving optimal control problems.
So far we have considered continuous inputs and we have established necessary conditions for the
existence of an optimal control. We now consider a larger class of control inputs, namely piecewise
continuous functions, and in Theorem 5.2.1 we give sufficient conditions for the existence of an
optimal control.

5.1 The optimality principle

The underlying idea of the optimality principle is extremely simple. Roughly speaking, the opti-
mality principle simply says that any part of an optimal trajectory is optimal.

We denote the class of piecewise continuous R
m valued functions on [ti, tf ] by U[ti, tf ].

Theorem 5.1.1 (Optimality principle.) Let F (x, u, t) and f(x, u) be continuously differentiable
functions of each of their arguments. Let u∗ ∈ U[ti, tf ] be an optimal control for the functional

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

subject to
ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi. (5.1)

Let x∗ be the corresponding optimal state. If tm ∈ [ti, tf ), then the restriction of u∗ to [tm, tf ] is
an optimal control for the functional

Ĩx∗(tm)(u) =

∫ tf

tm

F (x(t), u(t), t)dt,

subject to
ẋ(t) = f(x(t), u(t)), t ∈ [tm, tf ], x(tm) = x∗(tm). (5.2)

Furthermore,

min
u∈U[ti,tf ]

subject to (5.1)

Ixi
(u) =

∫ tm

ti

F (x∗(t), u∗(t), t)dt + min
u∈U[tm,tf ]

subject to (5.2)

Ĩx∗(tm)(u). (5.3)

47
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Proof We have

Ix∗(tm)(u∗) =

∫ tf

ti

F (x∗(t), u∗(t), t)dt

=

∫ tm

ti

F (x∗(t), u∗(t), t)dt +

∫ tf

tm

F (x∗(t), u∗(t), t)dt. (5.4)

From Theorem 1.2.1, it follows that the solution x1 to

ẋ(t) = f
(
x(t), u∗|[tm,tf ](t)

)
, t ∈ [tm, tf ], x(tm) = x∗(tm),

is simply the restriction of x∗ to [tm, tf ]. Thus the second term in (5.4) is the cost Ĩx∗(tm)

(
u∗|[tm,tf ](t)

)
subject to (5.2).

Suppose that there exists a ũ ∈ U[ti, tf ] such that∫ tf

tm

F (x̃(t), ũ(t), t)dt = Ĩx∗(tm)(ũ) < Ĩx∗(tm)

(
u∗|[tm,tf ](t)

)
=

∫ tf

tm

F (x∗(t), u∗(t), t)dt.

where x̃ is the solution to (5.2) corresponding to ũ. Define u ∈ U[ti, tf ] by

u(t) =

{
u∗(t) for t ∈ [ti, tm),
ũ(t) for t ∈ [tm, tf ],

and let x be the corresponding solution to (5.1). From Theorem 1.2.1, it follows that

x|[ti,tm] = x∗|[ti,tm].

Hence we have

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt

=

∫ tm

ti

F (x(t), u(t), t)dt +

∫ tf

tm

F (x(t), u(t), t)dt

=

∫ tm

ti

F (x∗(t), u∗(t), t)dt +

∫ tf

tm

F (x̃(t), ũ(t), t)dt

=

∫ tm

ti

F (x∗(t), u∗(t), t)dt + Ĩx∗(tm)(ũ)

<

∫ tm

ti

F (x∗(t), u∗(t), t)dt + Ĩx∗(tm)

(
u∗|[tm,tf ](t)

)

=

∫ tm

ti

F (x∗(t), u∗(t), t)dt +

∫ tf

tm

F (x∗(t), u∗(t), t)dt

= Ixi
(u∗),

which contradicts the optimality of u∗. This proves that an optimal control for Ĩx∗(tm) subject
to (5.2) exists and it is given by the restriction of u∗ to [tm, tf ]. From (5.4), it follows that (5.3)
holds.

Note that we have shown that

min
u∈U[tm,tf ]

subject to (5.2)

Ĩx∗(tm)(u) = Ĩx∗(tm)

(
u∗|[tm,tf ](t)

)
.

So the theorem above says that if you are on an optimal trajectory, then the best thing you can
do is to stay on that trajectory. See Figure 5.1.
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ti tm tf

xi

x∗(tm)

u∗|[ti,tm]

ũ

u∗|[tm,tf ]

Figure 5.1: Optimality principle.

5.2 Bellman’s equation

In this section we will prove Theorem 5.2.1 below, which gives a sufficient condition for the ex-
istence of an optimal control in terms of the existence of an appropriate solution to Bellman’s
equation (5.6). However, we first provide a heuristic argument that leads one to Bellman’s equa-
tion: we do not start by asking when the optimal control problem has a solution, but rather
we begin by assuming that the optimal control problem is solvable and study the so-called value
function, which will lead us to Bellman’s equation.

Let tm ∈ [ti, tf ). Define the value function V : R
n × [ti, tf ] → R by

V (xm, tm) = min
u∈U[tm,tf ]

∫ tf

tm

F (x(t), u(t), t)dt, (5.5)

where x(·) is the unique solution to

ẋ(t) = f(x(t), u(t)), t ∈ [tm, tf ], x(tm) = xm.

With this notation, in Theorem 5.1.1, we have shown that

V (x∗(tm), tm) = min
u∈U[tm,tf ]

∫ tf

tm

F (x(t), u(t), t)dt =

∫ tf

tm

F (x∗(t), u∗(t), t)dt.

Consequently

V (x∗(tm + ε), tm + ε) − V (x∗(tm), tm) = −
∫ tm+ε

tm

F (x∗(t), u∗(t), t)dt.

It is tempting to divide by ε on both sides and let ε tend to 0. Formally, the left hand side would
become

∂V

∂t
(x∗(tm), tm) +

∂V

∂x
(x∗(tm), tm)f(x∗(tm), u∗(tm)),

while the right hand side would become

−F (x∗(tm), u∗(tm), tm).

Thus we would obtain the equation

∂V

∂t
(x∗(tm), tm) +

∂V

∂x
(x∗(tm), tm)f(x∗(tm), u∗(tm)) + F (x∗(tm), u∗(tm), tm) = 0.

This motivates the following result.
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Theorem 5.2.1 Let F (x, u, t) and f(x, u) be continuously differentiable functions of each of their
arguments. Suppose that there exists a function W : R

n × [ti, tf ] → R such that:

1. W is continuous on R
n × [ti, tf ].

2. W is continuously differentiable in R
n × (ti, tf).

3. W satisfies Bellman’s equation

∂W

∂t
(x, t) + min

u∈Rm

[
∂W

∂x
(x, t)f(x, u) + F (x, u, t)

]
= 0, (x, t) ∈ R

n × (ti, tf ). (5.6)

4. W (x, tf ) = 0 for all x ∈ R
n.

Then the following implications hold:

1. If tm ∈ [ti, tf ) and u ∈ U[tm, tf ], then

∫ tf

tm

F (x(t), u(t), t)dt ≥ W (xm, tm),

where x is the unique solution to ẋ(t) = f(x(t), u(t)), x(tm) = xm, t ∈ [tm, tf ].

2. If there exists a function υ : R
n × [ti, tf ] → R

m such that:

(a) For all (x, t) ∈ R
n × (ti, tf ),

∂W

∂x
(x, t)f(x, υ(x, t)) + F (x, υ(x, t), t) = min

u∈Rm

[
∂W

∂x
(x, t)f(x, u) + F (x, u, t)

]
.

(b) The equation

ẋ(t) = f(x(t), υ(x(t), t)), t ∈ [ti, tf ], x(ti) = xi,

has a solution x∗.

(c) u∗ defined by u∗(t) = υ(x∗(t), t), t ∈ [ti, tf ] is an element in U[ti, tf ].

Then u∗ is an optimal control for the cost functional Ixi
defined by

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt,

where x is the unique solution to ẋ(t) = f(x(t), u(t)), t ∈ [ti, tf ], x(ti) = xi, and furthermore,

Ixi
(u∗) =

∫ tf

ti

F (x∗(t), u∗(t), t)dt = W (xi, ti). (5.7)

3. Let υ be the function from part 2. If for every tm ∈ [ti, tf ) and every xm ∈ R
n, the equation

ẋ(t) = f(x(t), υ(x(t), t)), t ∈ [tm, tf ], x(tm) = xm,

has a solution, then W is the value function V defined in (5.5).



5.2. Bellman’s equation 51

Proof 1. We have∫ tf

tm

F (x(t), u(t), t)dt =

∫ tf

tm

[
∂W

∂x
(x(t), t)f(x(t), u(t)) + F (x(t), u(t), t)

]
dt −

∫ tf

tm

∂W

∂x
(x(t), t)f(x(t), u(t))dt

≥
∫ tf

tm

min
u∈Rm

[
∂W

∂x
(x(t), t)f(x(t), u) + F (x(t), u, t)

]
dt −

∫ tf

tm

∂W

∂x
(x(t), t)f(x(t), u(t))dt

=

∫ tf

tm

[
−∂W

∂t
(x(t), t) − ∂W

∂x
(x(t), t)f(x(t), u(t))

]
dt

= −
∫ tf

tm

(
d

dt
W (x(·), ·)

)
(t)dt

= −W (x(tf ), tf ) + W (x(tm), tm)

= W (xm, tm).

2. Let x∗ be a solution of ẋ(t) = f(x(t), υ(x(t), t)), t ∈ [ti, tf ], x(ti) = xi. Then we proceed as in
part 1:

∫ tf

ti

F (x∗(t), u∗(t), t)dt =

∫ tf

ti

[
∂W

∂x
(x∗(t), t)f(x∗(t), υ(x∗(t), t)) + F (x∗(t), υ(x∗(t), t), t)

]
dt −

∫ tf

ti

∂W

∂x
(x∗(t), t)f(x∗(t), υ(x∗(t), t))dt

=

∫ tf

ti

min
u∈Rm

[
∂W

∂x
(x∗(t), t)f(x∗(t), u) + F (x∗(t), u, t)

]
dt −

∫ tf

ti

∂W

∂x
(x∗(t), t)f(x∗(t), υ(x∗(t), t))dt

=

∫ tf

ti

[
−∂W

∂t
(x∗(t), t) − ∂W

∂x
(x∗(t), t)f(x∗(t), υ(x∗(t), t))

]
dt

= −
∫ tf

ti

(
d

dt
W (x∗(·), ·)

)
(t)dt

= W (xi, ti).

But from part 1 (with tm = ti), we know that if u ∈ U[ti, tf ], then

Ixi
(u) =

∫ tf

ti

F (x(t), u(t), t)dt ≥ W (xi, ti).

This shows that u∗(·) = υ(x∗(·), ·) is an optimal control and (5.7) holds.

3. We simply repeat the argument from part 2 for the time interval [tm, tf ]. This yields

V (x, tm) = min
u∈U[tm,tf ]

∫ tf

tm

F (x(t), u(t), t)dt = W (x, tm).
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In the following example, we show how Theorem 5.2.1 can be used to calculate an optimal
control.

Example. Consider the following linear system with state space R:

ẋ(t) = u(t), t ∈ [0, 1], x(0) = x0,

with cost criterion

Ix0(u) =

∫ 1

0

[
(x(t))2 + (u(t))2

]
dt.

For this system, Bellman’s equation is given by

∂W

∂t
(x, t) + min

u∈R

[
∂W

∂x
(x, t)u + x2 + u2

]
= 0, (x, t) ∈ R × (0, 1), W (x, 1) = 0.

It is easy to see that the minimum in the above is assumed for

u = υ(x, t) = −1

2

∂W

∂x
(x, t).

Thus we obtain

∂W

∂t
(x, t) + x2 − 1

4

(
∂W

∂x
(x, t)

)2

= 0, (x, t) ∈ R × (0, 1), W (x, 1) = 0.

This is a nonlinear partial differential equation. It is easy to see that if (x∗, u∗) is an optimal
trajectory with initial state x0, then for every λ ∈ R, (λx∗, λu∗) is an optimal trajectory with
respect to the initial state λx0. Therefore the value function is quadratic in x: W (λx, t) =
λ2W (x, t). In particular,

W (x, t) = x2W (1, t) = x2p∗(t),

where p∗(t) := W (1, t). Consequently,

x2ṗ∗(t) + x2 − 1

4
(2x)2(p∗(t))

2 = 0, (x, t) ∈ R × (0, 1), p∗(1) = 0.

Dividing by x2, we obtain the Riccati equation

ṗ∗(t) = (p∗(t))
2 − 1, t ∈ (0, 1), p∗(1) = 0.

This has the solution

p∗(t) =
e−t+1 − et−1

e−t+1 + et−1
.

(See the exercise on page 3.) Thus

W (x, t) = x2 e−t+1 − et−1

e−t+1 + et−1
.

Also the linear time varying differential equation

ẋ(t) = υ(x(t), t) = −x(t)p∗(t), t ∈ [0, 1], x(0) = x0

has the solution
x∗(t) = x0e

−
R

t

0
p∗(τ)dτ . (5.8)

We note that all the conditions from Theorem 5.2.1 are satisfied, so the optimization problem is
solvable. The optimal input is given by

u∗(t) = υ(x∗(t), t) = −x∗(t)p∗(t),
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where x∗ is the optimal state given by (5.8). Note that the optimal control is given in the form of
a (time-varying) state feedback. The value function is given by V (x, t) = x2p∗(t). 


Exercise.

Its good to keep in mind that not every optimal control problem is solvable. Prove that for
the following problem, there is no minimizing input u ∈ U[ti, tf ]:

ẋ(t) = u(t), t ∈ [0, 1], x(0) = 1,

with the cost function Ix0(u) =
∫ 1

0
(x(t))2dt.
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1 (a) Let X be a linear space over R. Give the definition of a norm on X .

(b) If I : X → R is a functional on a normed linear space X , when is I said to be contin-
uous at x∗ ∈ X?

(c) Is the linear functional I : C[0,1]→ R defined by

I(x) =

Z 1

0
x(t)dt for x ∈C[0,1],

continuous at 0? Here the linear space C[0,1] is equipped with the usual norm

‖x‖ = sup
t∈[0,1]

|x(t)|.

2 (a) Regarding the left hand side of the obvious inequality
Z t f

ti
(x1(t)+ rx2(t))

2dt � 0

as a quadratic function of r, prove the Cauchy-Schwarz inequality:�
Z t f

ti
(x1(t))

2dt

��
Z t f

ti
(x2(t))

2dt

�
�

�
Z t f

ti
x1(t)x2(t)dt

�2

for all x1,x2 ∈C[ti, t f ].

HINT: The minimum value of the quadratic function Q(r) = Ar2 + Br +C with
A > 0 is given by 4AC−B2

4A .

(b) Consider the linear functional I defined by

I(x) =
Z 1

0
e−2t

�
d
dt

x(t)

�2

dt

for x ∈C1[0,1] with x(0) = 0 and x(1) = 1. Using the result from part (a), show that

I(x) � 2
e2 �1

.

HINT: Use the Cauchy-Schwarz inequality with x1(t) = e2t and x2 = e−2t d
dt x(t).

(c) Using the Euler-Lagrange equation, find a critical curve x∗ for I, and find I(x∗).
Using part (b) show that x∗ indeed minimizes the functional I.

3 Consider the functional I given by

I(x) =
Z 2

0

[
1
2

�
d
dt

x(t)

�2

+ x(t)
d
dt

x(t)+
d
dt

x(t)+ x(t)

]
dt

defined for all x ∈C1 [0,2].

(a) Write the Euler-Lagrange equation for this problem.
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(b) Write the transversality conditions at the endpoints t = 0 and t = 2.

(c) Determine the solution of the Euler-Lagrange equation found in part (a) that satisfies
the transversality conditions from part (b).

4 Consider the functional I : C[0,1]→ R defined by

I(u) =

Z 1

0
[3(x(t))2 +(u(t))2]dt (1)

where x denotes the unique solution to

d
dt

x(t) = �x(t)+u(t), t ∈ [0,1], x(0) = 1. (2)

(a) Using the Hamiltonian method, write down the equations that govern an optimal
control for (1) subject to (2).

(b) Find an equation that describes the evolution of the state x∗ and the co-state p∗ and
specify the boundary conditions x∗(0) and p∗(1).

(c) Solve the equations from part (b) and determine a critical control.

5 (a) Consider the controllable linear system

d
dt

x(t) = Ax(t)+Bu(t), t � ti, (3)

where A∈R
n×n and B∈R

n×m. Suppose that Q = Q> ∈R
n be a positive semidefinite

matrix and let R = R> ∈ R
m be a positive definite matrix. Let I : (C[ti, t f ])

m → R

defined by

I(u) =
Z t f

ti

1
2

[
x(t)>Qx(t)+u(t)>Ru(t)

]
dt, (4)

where x is the solution to (3) on the time interval [ti, t f ] with x(ti) = xi ∈ R
n and

x(t f ) = x f ∈ R
n. Using the Hamiltonian theorem on optimal control, write down the

differential equations for the optimal state x∗ and the co-state p∗ for I given by (4)
subject to (3).

(b) Give a necessary and sufficient condition for controllability of the system (3) in
terms of A and B.

(c) Show that if the system described by (3) is controllable, then for every λ that is an
eigenvalue of A> with eigenvector v, there holds that B>v 6= 0.

6 Consider the cost functional I : C[0,1] → R defined by

I(u) =
Z 1

0
[3(x(t))2 +(u(t))2]dt (5)

where x denotes the unique solution to

d
dt

x(t) = �x(t)+u(t), t ∈ [0,1], x(0) = 1. (6)
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(a) Write Bellman’s equation associated with the above functional.

(b) Assuming that the solution W to Bellman’s equation in part (a) is quadratic in x:
W (x, t) = x2W (1, t), find a solution W to Bellman’s equation.

(c) Find the optimal state x∗ and the optimal control u∗ for I given by (5) subject to (6).
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