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1 Introduction

It is widely accepted that the catalytic properties of enzymes are a consequence of
binding energy differences between reactants and transition state (TS), arising from
the arrangement of residues in the active site. There are two versions of this concept,
both of which have experimental support. In the TS binding picture,1 the config-
uration that binds most strongly to the enzyme is assumed to be at the top of the
uncatalyzed barrier to reaction. This binding releases energy that stabilizes the
TS, lowering the energetic barrier to reaction. In the ground state destabilization
picture2 the role of the enzyme is to make the reactants less stable, leading again to a
lower barrier to reaction.

In the last few years it has been suggested by us and other groups that enzyme
dynamics may play a role in catalysis. We do not claim that these dynamical effects
contribute more to catalysis than the standard binding energy effects, but that
they should be taken into account in the interpretation of, for example, kinetic
isotope effects (KIE) measurements3 and that they may provide insight to some
puzzling data. In particular, our work on the relation between catalysis and enzyme
dynamics originated in the effort to understand some unusual properties of the
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following three systems:
1.
 It is now widely accepted that for some enzymes (e.g., liver alcohol dehydrogenase,
thermophilic alcohol dehydrogenase, etc.) proton transfer proceeds through quan-
tum tunneling. The high activation barriers in these systems were consistent with
tunneling. However, the KIE were modest, when tunneling would seem to imply
high KIE.
2.
 The enzyme lactate dehydrogenase (LDH) catalyzes the interconversion of lactate
to pyruvate. There are two isoforms in the body to accommodate different
substrates. Despite the fact that the active site is identical in these two isoforms,
one favors the production of lactate and the other production of pyruvate.
3.
 Crystal structures of human purine nucleoside phosphorylase with several TS
analogs showed an unusual geometric arrangement of three oxygens, lying in a
close stack. One may question whether this geometry serves a catalytic purpose.

We will show that the answers to all the three of these puzzles involve the dynamics
of the enzyme. There has recently been a disagreement among some authors
regarding the meaning of the term ‘‘dynamical’’, with some suggesting that the
term should be reserved for non-equilibrium motions, while others would use it for
equilibrium motions. For clarity, we will define the meaning we give to the term
‘‘dynamical’’ in this review.

Let us assume that a variable A(t) is coupled to the reaction coordinate and that
(A) is its mean value. If a measurement of some property P depends on (A), but not
on the particular details of the time dependence of A(t), then we will call it a
‘‘statistical’’ dependence. If the property P depends on particular details of the
dynamics of A(t) we will call it a ‘‘dynamical’’ dependence. Note that in this defi-
nition it is not the mode A(t) alone that causes dynamical effects, but it also depends
on the timescale of the measured property P. Promoting vibrations (to be discussed
in Sections 2–4) are a ‘‘dynamic’’ effect in this sense, since their dynamics is coupled
to the reaction coordinate and have similar timescales. Conformation fluctuations
that enhance tunneling (to be discussed in Section 5) are a ‘‘statistical’’ effect: the
reaction rate is the sum of transition state theory (TST) rates for barriers corre-
sponding to some configuration, weighted by the probability that the system reaches
that configuration. This distinction between dynamic and statistical phenomena in
proteins was first made in the classic paper of Agmon and Hopfield.4

We will discuss three kinds of motions:
1.
 ‘‘Rate-promoting’’ quasi-harmonic motions, a fast sub-ps effect we and other
have proposed (Section 3).
2.
 Other kinds of sub-ps motions that involve correlated motions of several residues
(Section 4).
3.
 Conformation fluctuations (Section 5).

The structure of this review is as follows. In Section 2 we will review the concept of
‘‘rate-promoting’’ vibrations. We will first need to review briefly the theory of
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quantum hydrogen/hydride transfer, because it is the large proton mass (relative to
an electron) that makes the reaction rate very sensitive to motions that modulate its
transfer distance. We will then identify the experimental and computational signa-
tures of these promoting vibrations. We will close with investigating some objections
to the possibility of existence of such promoting vibrations. In Section 3 we will
apply the theory of Section 2 to the three enzymatic systems that we mentioned
earlier in the Introduction.

In Section 4 we will use two theoretical techniques (transition path sampling
(TPS) and essential dynamics (ED)) to analyze molecular dynamics trajectories. We
will explain how we were able to identify in atomic detail collective motions that
affect catalysis.

Finally, in Section 5 we will briefly discuss recent work by Truhlar, Brooks, and
Hammes-Schiffer on the relation of conformation fluctuations and catalysis in
dihydrofolate reductase (DHFR) and we will propose a new method for studying
much slower motions (such as conformation fluctuations) that may affect catalysis.

This review is not meant to be comprehensive of all work on enzyme dynamics
and catalysis. The emphasis will be on the work done by our group, mainly on fast
sub-ps enzyme motions, while other groups have studied mostly conformational
fluctuations. When necessary, we will provide brief descriptions and references to the
current work by other groups.
2 Proton transfer and rate-promoting vibrations

We first identified rate-promoting vibrations in enzymatic systems where proton
transfer proceeds via quantum tunneling (in this theoretical section, we will use the
terms hydrogen, hydride, proton as if they were equivalent). In order to understand
why systems with proton tunneling are good candidates for identifying promoting
vibrations, we must review the modern theory of quantum charge transfer in con-
densed phase, which will be the subject of this section.

Excellent recent reviews of the experimental work in tunneling in enzymes have
been written by Scrutton,5 Romesberg and Schowen,6 and Kohen.7
QUANTUM THEORY OF PROTON TRANSFER

The reaction rate of proton transfer in condensed phases depends on several para-
meters: temperature, potential barrier height, transfer distance, reactant frequency,
strength of coupling to the environment. For different values of these parameters,
different physical mechanisms dominate which have been described by different
theoretical models, in the chronological order they were studied, the parameter re-
gions were:

Region I: The dynamics is over the barrier (as described by TST) or just below the
barrier (small quantum corrections).

Region II: The dynamics takes place by tunneling from excited energy states in the
reactant well (moderate to large quantum effects).
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Region III: The dynamics takes place by tunneling from the ground state in the
reactant well (large quantum effects).

Special care must be taken if one attempts to draw conclusions from the tem-
perature dependence of the rate, because the rate has Arrhenius form in all the three
regions, but the activation energy has different meaning in each regime.

Region I: Small quantum corrections

This region is often studied with the methods described in the book by Bell,8 even
though it is not really correct to use gas-phase approaches in condensed phase
reactions. An assumption is made that there are several energy levels below the top
of the barrier and that over the barrier transfer is described by classical dynamics.
The TST result for the transfer rate is:

k ¼
kBT

2p
1

Z0
e�bV (1)

where b ¼ 1/kBT is the inverse temperature and Z0 is the partition function for an
oscillator of frequency oH. If we describe the motion at the reactant well quantum
mechanically (QM), then

1

Z0
¼ 2sinh

boH

2

� �
(2)

If boH/251, one arrives at the familiar textbook TST result for the transfer rate,
k ¼ (oH/2p) exp(�bV). However, a typical frequency for a proton–carbon bond
vibration is 3000 cm–1, so in the present case the opposite limit boH/2b1 is relevant.
In this limit 1/Z0Cexp(boH/2) and the semiclassical result for the rate is obtained by:

k ¼ AHe
�bðV�oH=2Þ (3)

Equation (3) predicts a KIE (assuming AH ¼ AD):

ln
kH

kD
¼

b
2
ðoH � oDÞ ¼

b
2

1�

ffiffiffiffiffiffiffi
mH

mD

r� �
oH (4)

For C–H bond cleavage, Equation (4) predicts a KIE equal to kH/kD�7 at room
temperature. In the limit where the semiclassical theory is valid, experimentalists
measure the Schaad–Swain exponent, ln(kH/kT)/ln(kD/kT). In the special case that the
pre-Arrhenius factor AL is the same for all isotopes (which is not true in most cases)
then semiclassical theory predicts for this exponent a value 3.26. Deviations from this
value are often interpreted as signs of increased tunneling, but in our opinion this line
of argument is based on an oversimplified model of quantum transfer in condensed
phases. Note that in tunneling reactions where the ratio AH/AD6¼1, the semiclassical
theory predicts an exponent that is not equal to 3.26 and is temperature dependent.

Region III: Large quantum effects
When the energetic barrier is very high, tunneling takes place from the ground

state. In this limit, the Marcus–Levich–Dogonadze theory9 has been used in the
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study of electron transfer in solution and biomolecules. It is assumed that the en-
vironment can be described by a 1-dimensional (1-D) coordinate (a questionable
assumption when details of environment dynamics are important) and one exploits
the fact that in the deep tunneling limit the tunneling matrix element D can be used
as a small parameter in a perturbative approach and find a transfer rate equal to:

k � D2e�bðErþ�Þ2=4Er (5)

where Er is the reorganization energy of the environment, e is the exothermicity and
D is the tunneling matrix element. Note that the quantum result Equation (5) pre-
dicts an Arrhenius form for the rate, similarly to the TST result. In this theory, the
KIE is equal to kH=kD � D2

H=D
2
D, which in the deep tunneling limit has a value of

the order 103–104, much larger than the measured KIE in biological systems. How-
ever, we will see later in this section that the Marcus theory approach, while valid for
electron transfer, has to be modified for proton transfer.

Region II: Moderate quantum effects
This is the case when tunneling takes place from excited states, but not close to the

barrier top, and had eluded solution for decades because there is no small parameter
available (as in the previous two cases). Finally, this problems was numerically
solved in the mid 1990s10 and the solution was analytically verified with a different
method by our group.11

It is instructive to have a feeling for when and how the semiclassical theory fails.
In Table 1 we compare some exact results10 with the predictions of the semiclassical
model Equation (3). There is a range of values for the exact result, because the rate
depends on friction (an effect that cannot be captured in the semiclassical model).
We note that when the reactant frequency becomes large, the semiclassical theory of
the rate fails (we should note that despite the failure in predicting the rate, the
semiclassical model gives reasonably good prediction for the KIE).

We will briefly describe how it became possible in the 1990s to describe QM this
region of moderate quantum effects. One assumes that the classical charge transfer
problem is adequately described by the Langevin equation:12

m€s ¼ �
dV ðsÞ

ds
�

Z t

0

dt0gðt � t0Þ_s þ F envðtÞ (6)

where s is the reaction coordinate and V(s) is the potential energy surface (PES). The
influence of the enzymatic environment in Equation (6) is represented by the random
force Fenv(t), which is related to the friction g(t) through the fluctuation–dissipation
theorem.13
Table 1 The ratio of rates kexact/ksemiclassical

o/R/kBT Exact Semiclassical

3.2 0.8–1.8 1.5
4.8 2.0–3.8 2.3
9.6 30–1000 12.9
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A most important result in rate theory was the proof14 that the classical dynamics
of s governed by the Hamiltonian equation:

H ¼
p2

s

2ms

þ V ðsÞ þ
X

k

P2
k

2mk

þ
X

k

1

2
mko2

k qk �
cks

mko2
k

� �2

(7)

is described by Equation (6). The harmonic oscillators ok constitute a fictitious
effective environment that is constructed to generate the correct friction kernel g(t).
We must emphasize that there is no approximation in using harmonic oscillators to
describe an anharmonic environment, since these oscillators are an effective medium
that is really a Fourier decomposition of the friction kernel g(t), and are only in-
directly related to protein dynamics. The approximation lies in assuming that the
Langevin equation is a good approximation for describing the classical charge
transfer. The advantage of casting the problem in terms of the Hamiltonian Equa-
tion (7) is that there are many tools for solving quantum Hamiltonians that have
harmonic terms, while there are no methods for solving the quantum version of the
Langevin equation.

The beautiful point of this formulation is that the Marcus–Levich–Dogonadze
result Equation (5) is the solution of the Hamiltonian Equation (7) in the deep
tunneling limit. In addition, the solution of the Hamiltonian Equation (7) in the
classical limit reproduces the TST result, corrected for recrossings of the barrier and
for memory effects.12 These results mean that the Zwanzig Hamiltonian provides a
unified description of proton transfer reactions in all the three parameter regions
defined earlier in this section.

Finally, we should mention that the approach described above is not the only
possible for studying quantum proton transfer in condensed phases. Truhlar and
coworkers have followed a different methodology, based on variational TST, sum-
marized in detail recently by Truhlar.15 An advantage of that methodology is that its
inputs are related naturally to quantities that are obtained in quantum chemistry
calculations. On the other hand, because of its phenomenological character, one
cannot easily understand when its approximations are justified.
RATE-PROMOTING VIBRATIONS

The theory outlined in the previous subsection is appropriate for electron transfer,
but has to be modified for proton transfer. In this section we will describe the
physical justification and mathematical formalism that incorporates these effects.

Hynes’ theory of promoting vibrations

In the early 1990s, in their studies of proton transfer in solution using Marcus’ rate
theory Equation (5), Hynes and coworkers16,17 noticed the following limitation. If Q

is the tunneling distance, it can be shown that the tunneling matrix element that
appears in Equation (5) has the form D�e�aQ. For typical electron transfer reactions
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a C1 Å–1, while for typical proton transfer reactions aC30 Å–1. This means that
while electron transfer rates are insensitive to variations of the tunneling distance Q,
proton transfer rates, because of the large value of a, depend strongly on motions
that possibly reduce the transfer distance Q.

Hynes assumed that the deviation dQ of the transfer distance from its equilibrium
value has a harmonic time dependence, dQ ¼ dQ0 cos(Opvt), and calculated the rate
using Fermi’s golden rule (i.e. the same level of approximation as Marcus’ theory).
He found for the rate:

k ¼ D2
0 e�bEM e2a

2=bMpvO2
pv (8)

where D0 is the tunneling splitting that corresponds to the equilibrium transfer
distance, EM is the activation energy of the ordinary Marcus theory and Mpv, Opv

are, respectively, the mass and frequency of the promoting vibration.
In the previous section we mentioned that Marcus’ theory is not a plausible model

for describing proton transfer because it predicts a KIE kH=kD ¼ D2
H=D

2
D, that is

very large, since the tunneling splittings decrease exponentially with the square root
of the mass. This problem is remedied by Hynes’ work, since the KIE in the presence
of a promoting vibration becomes:

kH

kD
¼

D2
H

D2
D

exp �
a2D � a2H
bMpvO

2
pv

( )
(9)

Since a scales like
ffiffiffiffi
m

p
, the exponential in Equation (9) reduces significantly the KIE.

Recently, Hynes reviewed18 his approach, with emphasis on applications to enzymes.
Benderskii’s theory of promoting vibrations

Hynes’ formulation is intuitively very appealing, but there are some drawbacks. The
environment is described by a 1-D coordinate and the promoting vibration is an
artifact that was introduced to modulate the tunneling splitting. In a series of papers
on gas-phase proton transfer,19–21 Benderskii had examined the same effect, tun-
neling rate modulated by fluctuations of transfer distance, using a Hamiltonian
formalism. We will briefly summarize his approach.

Let us assume a symmetric double well PES, V(s) ¼ as4�bs2. Its barrier height is
b2/4a and the transfer distance

ffiffiffiffiffiffiffiffiffiffi
2b=a

p
: Let us assume that a harmonic mode Q(t)

is coupled to s through a term cs2Q. Effectively, the parameter b of the original PES
is replaced by b�cQ(t). As Q(t) oscillates, the transfer distance also oscillates around
its equilibrium value. In addition, when the transfer distance decreases, the barrier
height is lowered. In summary, the simple, symmetric with respect to s, functional
form cs2Q of the coupling reproduces the desired behavior of a PES whose barrier is
lowered as the transfer distance decreases.

Benderskii managed to solve this problem in the deep tunneling limit using the
instanton method. Roughly speaking, an instanton is the most probable among the
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Fig. 1 The PES surface in Benderskii’s model. The dark circles are the reactant/product
minima and the open circle is the saddle point. The double line is the MEP. The solid line is
the instanton tunneling path for H, and the dashed line for D. Because D is heavier, it tunnels
closer to the saddle point where the barrier is lower. As a result, the KIE is relatively low, even
though the reaction proceeds through tunneling.
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possible classical trajectories when one solves the problem QM. We summarize
Benderskii’s results in Fig. 1.

The double line represents the minimum energy path (MEP), which is the reaction
path assumed by TST. The single line represents the instanton trajectory for proton
tunneling and the dashed line the instanton trajectory for deuteron tunneling. The
heavier deuteron tunnels closer to the MEP, where the barrier is lower. These dis-
tinct instanton paths are the reason for the lowering of the KIE by the promoting
vibration that we mentioned earlier.

There are other important features in this seemingly simple diagram. The instan-
ton trajectories cross the TS parallel to the s-axis, which means that tunneling is
happening instantaneously in the timescale of the promoting vibration. But this does
not mean that the frequency of the promoting vibration does not play a role! In fact,
the result depends on the ratio of the promoting vibration frequency over the barrier
frequency Opv/ob. We have to distinguish between the following limits:22
�
 When 2Opv/ob51, we are in the ‘‘fast-flip’’, or ‘‘sudden approximation’’, or ‘‘cor-
ner-cutting’’, or ‘‘large curvature’’ limit, where the reaction coordinate follows
theMEP, but before it reaches the saddle point it tunnels along the s coordinate in
a time that is short compared to the timescale of the Q vibration.
�
 When 2Opv/obb1, we are in the ‘‘slow-flip’’, or ‘‘adiabatic’’, or ‘‘small curvature’’
limit, where the Q vibration adiabatically follows the s coordinate and transfer
takes place along the MEP path (i.e. at the saddle point).

Therefore very fast promoting vibrations do not affect the rate, and we should
expect to see an effect when 2Opv/ob51, i.e. when Opv is smaller than roughly
500 cm–1, which explains why we mentioned earlier that we studied sub-ps motions.

Theory of promoting vibrations in condensed phase

The formulation of promoting vibrations by Benderskii is very satisfactory because
it formulated the problem in a Hamiltonian language. On the other hand, the Hynes
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formulation, even though it uses an ensatz for the promoting vibration, has the
advantage that includes interaction with the environment (with the limitation of the
Marcus model, i.e. that the environment is represented by a single degree of free-
dom). We can incorporate these two theories into the Zwanzig Hamiltonian equa-
tion (7) and obtain a theoretically satisfying framework for the description of proton
transfer in condensed phases, coupled to a promoting vibration.22

We add a term cs2Q þ 1
2
MQ O2

pv in Equation (7), to obtain the Hamiltonian:

p2
s

2ms

þ V ðsÞ þ cs2Q þ
1

2
MQO

2
pv þ

X
k

P2
k

2mk

þ
X

k

1

2
mko2

k qk �
cks

mko2
k

� �2

(10)

This incorporates the advantages of Benderskii’s and Hynes’ ideas, and in ad-
dition contains a more realistic description of the environment. One important
difference is that Hynes and Benderskii studied systems in which the oscillator Q was
a bond vibration, while in Equation (10) Q(t) can be any variable that modulates the
PES, for example, it can be a distance between the donor and a nearby residue that
changes in time because of equilibrium fluctuations of the enzyme.

To establish a relationship between the Hamiltonian equation (10) and the actual
enzymatic system one performs a molecular dynamics simulation to obtain the force
F(t) acted upon the reaction coordinate. Then the force autocorrelation function
/F(t)F(0)S, which is proportional to the friction kernel g(t), is related to the
parameters of the fictitious medium of Equation (10) through

gðtÞ ¼
1

kBT
hF ðtÞF ð0Þi �

XN

k¼1

c2k
mko2

k

cosðoktÞ (11)

This equation permits the mapping of the computed force F(t) to the parameters
of our Hamiltonian.

To obtain some insight into the behavior of the solutions of the Hamiltonian
equation (10), we performed a numerical simulation of a model system:23 we
assumed that V(s) is a symmetric double well, we coupled s to 1000 harmonic
oscillators ok with frequencies ranging from 10 to 1000 cm–1, and symmetrically to
one oscillator Opv. Even though the simulation is completely classical, we obtained
instructive results that illustrate several of the points we have mentioned in this
section.

The next two figures show results for proton transfer in a symmetric double well
potential that has barrier height equal to 6 kcalmol�1 and transfer distance 1 Å; the
proton is coupled symmetrically to an oscillator of frequency 300 cm�1. In Fig. 2
we show the progress of the reaction coordinate from reactants to products. The
very fast oscillations are bond oscillations in the reactant/product wells. The slower
oscillation that envelopes the bond oscillations is the promoting vibration. Note that
the promoting vibration is fast enough that the time the barrier is lowered is not long
enough for a reactive event to occur, i.e. it requires several oscillations of the pro-
moting vibration for the charge transfer to occur. Once the crossing over the barrier
happens though, it is practically instantaneous in the timescale of the promoting
vibration.
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Fig. 2 An example of a reactive trajectory. The TS is at the s ¼ 0 line and the reactant/
product wells at the s ¼ � 1 lines.
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Fig. 3 A histogram of the values of the promoting vibration coordinate Q, as the reactive
trajectories cross the TS. The dashed line corresponds to the location of the saddle point.
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In Fig. 3 we plot a statistics of the values of the promoting vibration coordinate as
the reactive trajectories cross the TS. The saddle point in Fig. 1 corresponds to the
value of Q shown with a dashed line in Fig. 3. We note that the reactive trajectories
do not pass through the saddle point, but rather through a broad region centered at
the saddle point. This picture shows that the dynamics cannot be described by a
single TS. The deeper reason for this is that the assumption of separability fails:24

the promoting vibration is strongly coupled to the reaction coordinate in the TS
region and the frequency of the promoting vibration is comparable to the inverted
barrier frequency, so there is no separation of timescales.
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Finally, in our opinion, there is an open question in quantum theories of proton
transfer. The theories we have been discussing use a mean field potential as the PES.
This is undoubtedly correct when the environment relaxes quickly in the timescale of
the reaction. However, the transfer step in quantum tunneling is very fast, and it is
not certain that all the configurations that enter the mean field potential are sam-
pled. This point was first raised by Hynes25 and implemented in studying proton
transfer in solution by Hynes and Wilson.26
COMPUTATIONAL SIGNATURE OF PROMOTING VIBRATIONS

In a realistic system there are many other motions present, so there is no guarantee
that the effect of the promoting vibration will not be masked by other interactions
that are present in an enzyme. We need a diagnostic that when we perform a
computer simulation of the dynamics of an enzyme, will allow us to identify whether
a promoting vibration is present.

We have found27 such a computational signature in the framework of the
Langevin equation (6). Let us recall that if we compute from a simulation the force
F(t) on the reaction coordinate, then the friction kernel g(t) is proportional to the
autocorrelation of that force. We have shown that if we add a term cs2Q þ 1

2
MQO

2
pv

to the Langevin equation, and allowing the promoting vibration to be coupled to the
environment with coupling strength z, the friction kernel becomes

gpvðtÞ ¼ gðtÞ þ
4c2

MO2
pv

sðtÞsð0Þ cosð ~OpvtÞ þ
z

2 ~Opv

sinð ~OpvtÞ

" #
e�zt=2 (12)

Here g(t) is the friction of the original Langevin equation and ~Opv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

pv � z2=4
q

is the effective frequency of the promoting vibration, modified due to its coupling to
the environment.

Equation (12) provides the diagnostic we have been looking for. Note that the
correction to the friction kernel due to the promoting vibration is proportional to
s(t)s(0). Suppose we perform a simulation where we have imposed constraints
to keep the transferred proton fixed, so that the correction term is proportional to
s(0)2. If we keep the proton fixed near the TS, s ¼ 0, the correction term will be
very small. If we keep it fixed away from the TS (most simply, at the reactant or
product configuration), the correction term will be nonzero. In addition, if we take
the Fourier transform of Equation (12), the presence of the trigonometric terms in
the correction term will produce large peaks at the frequency of the promoting
vibration.

In conclusion, if we perform simulations with the transferred proton fixed near
and away the TS, and then take a Fourier transform of the calculated friction kernel,
if we see sharp peaks for the latter simulation that are absent when the proton is held
fixed near the TS, then we have evidence that a promoting vibration is present, and
the position of the peak is an indication of its frequency. In the next section we will
discuss examples of enzyme simulations where this diagnostic was successful.
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EXPERIMENTAL SIGNATURE OF PROMOTING VIBRATIONS

The discussion in this section has suggested a clear experimental signature for the
presence of promoting vibrations. Hynes’ formalism, Benderskii’s formalism and
our quantum calculations using the Hamiltonian equation (10) all predict a low
KIE, i.e. much lower than what one would expect for transfer through tunneling. In
fact, the initial resistance to accepting that tunneling can occur in enzymes was
exactly the low values of KIE. As mentioned earlier, Hynes has recently reviewed18

the topic of influence of promoting vibrations on KIE, but with a perspective
different than ours.

Furthermore, the tunneling rate depends exponentially on the reorganization
energy of the environment, which for an enzymatic system depends strongly on the
rigidity of the enzyme. This raises some intriguing possibilities for the interpretation
of certain experiments on thermophilic enzymes. Thermophilic enzymes show low
enzymatic activity at mesophilic temperatures, and the conservation of the active site
structure and chemical mechanisms suggests that the same chemical mechanism is
present at both thermophilic and mesophilic temperatures. One possible interpre-
tation focuses on the temperature-dependent motions of proteins, because exper-
iments have shown that the rigidity of thermophilic proteins is less at thermophilic
rather than at mesophilic temperatures.28

The work that is of interest with respect to promoting vibrations is a study29 of
hydrogen tunneling in alcohol dehydrogenase from Bacillus stearothermophilus. The
unusual features of this system are (i) the activation energy is smaller in the thermo-
philic regime, which in a naive interpretation would imply that tunneling is enhanced
with increasing temperature; (ii) the primary KIE is small and temperature-
independent in the thermophilic regime, but larger and temperature-dependent in
the mesophilic regime. We have shown30 that by assuming the presence of a pro-
moting vibration in the thermophilic regime, and assuming that it freezes out in the
mesophilic regime, one is able to reproduce all the trends mentioned earlier in this
paragraph. Reproducing trends is not definite proof, but at the very least it is a
reminder that the presence of a minimal dynamical element makes the problem
sufficiently complex, that conclusions derived by studying Arrhenius plots should
not be trusted.

Anomalous values of the secondary KIE have been interpreted as indications of
tunneling. The reader should consult the arguments regarding secondary KIEs in
reviews of experimental literature.6,7
FOUR OBJECTIONS TO PROMOTING VIBRATIONS

The real protein dynamics is not harmonic

‘‘Proteins are very anharmonic systems, so what is the justification of modeling the
protein environment as a set of harmonic oscillators in Equation (10)?’’ The real
approximation we have made is modeling the proton transfer by the Langevin
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equation (6). One expects this to be a good approximation for the short timescales
relevant for barrier crossing. Within the Langevin equation, the effect of the en-
vironment on the proton is captured through the friction kernel, which is the force
autocorrelation function. No approximation is made regarding this friction kernel, it
is what is obtained from a simulation. This time-dependent friction kernel can be
decomposed into Fourier components, which are the harmonic oscillators appearing
in Equation (10). That is, these oscillators are fictitious quantities introduced to
reproduce the exact form of the friction kernel, therefore no simplification regarding
the protein anharmonic dynamics is made.
The promoting vibration is quickly dephased

‘‘If we embed a harmonic oscillator in a medium, it will be very quickly dephased.

Therefore, the identification in an enzyme of a promoting vibration with a definite

frequency is not plausible.’’ Here, the misunderstanding is that the promoting
vibration is not a harmonic oscillator embedded in the enzymatic environment.

The motion of a protein on its PES can be described as anharmonic motions near
local minima (i.e. conformations), with rare hops between conformations. While the
system executes this motion, we can record, for example, the distance Q(t) between
two residues. If the Fourier transform of Q(t) is relatively peaked, then the distance
between these residues varied in time like a damped harmonic motion. The quantity
Q(t) is not an oscillator with energy levels, that is embedded in the enzyme, rather it
is an internal distance of, for example, residues that participate in the equilibrium
fluctuations of the enzyme.

In simple model calculations we can mimic this effect by writing a Hamiltonian
like Equation (10) in which Q(t) appears as an independent oscillator, but it must be
understood that this Hamiltonian is a simplified model designed to produce a fluc-
tuating PES, and Q(t) is a quantity that parametrizes this fluctuation. However, it is
true that one cannot assume beforehand that the distance Q(t) is harmonic, one has
to calculate it, Fourier transform it and check whether it is peaked at some fre-
quency, as we will do in the examples in the next section.

Parenthetically, we would like to use this opportunity to correct a misunder-
standing that is common in enzymatic literature. Highly anharmonic potentials do
not necessarily exclude harmonic dynamics! An example is water: the interatomic
potential is extremely anharmonic (hard spheres), but water supports harmonic
waves (sound). The resolution of the paradox is that the variable that describes
sound waves (density) is not the variable that enters the anharmonic interatomic
potentials, so it is possible for equilibrium fluctuations, like sound, to have harmonic
dynamics.
The promoting vibration is much faster than the turnover rate

‘‘The turnover rate for enzymes has timescales ms– ns, but the promoting vibration has

ps-timescale, therefore they can’t be related.’’ This argument is correct for some gas-
phase reactions, but it is not valid for condensed phase reactions.
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Let us look at a simple condensed phase reaction, electron transfer in liquids,
which is described by Marcus’ theory equation (5). As is well known, electron
tunneling takes place only when the interaction with the solvent symmetrizes the
PES. The reorganization energy required for the solvent to reach its configuration
that will symmetrize the PES of the electron, is the activation energy appearing in
Equation (5). Once the PES is symmetrized, the probability that the electron will
transfer is proportional to the square D2 of the tunneling matrix element. Therefore,
even for simple transfer reactions in condensed phases, several events of widely
varying timescales contribute to reaction and the turnover rate is not simply related
to the timescale of a single event.

The method was designed to identify ps-timescale motions

‘‘The reason this method identified promoting vibrations for some systems is that

by construction it searches only for fast ps motions, and therefore it cannot identify

e.g., slower conformational motions that possibly affect the reaction rate.’’ This crit-
icism is absolutely correct, if there are conformations that bring donor and acceptor
close together thus enhancing tunneling, they are outside the grasp of a method that
is based on Langevin equation. In Section 5 we will outline some ideas for searching
the conformation space for configurations that affect the reaction rate.
3 Examples of rate-promoting motions in enzymatic systems

We will now present examples of enzymatic systems where we applied the ideas
and formalism of the previous section, and we were able to identify rate-promoting
vibrations.
HORSE LIVER ALCOHOL DEHYDROGENASE

The first system in which we identified a promoting vibration was horse liver alcohol
dehydrogenase (HLADH).31 The active site and surrounding residues are shown in
Fig. 4. The suspicion that dynamics may play a role existed because two specific
mutations had been identified, Val203-Ala and Phe93-Trp, which significantly
affect enzyme kinetics. Both residues are located at the active site. Val203 impinges
directly on the face of the nicotinamide ring in the nicotinamide adenine dinucleo-
tide (NAD) cofactor distal to the alcohol substrate. Additionally, there is evidence
from molecular dynamics simulations,32 that Val203 forces the nicotinamide ring of
NAD+ into closer proximity to the substrate, thus facilitating the hydride transfer
to produce the corresponding aldehyde. These facts suggest that motions of these
residues may play an important role in catalysis.

In the previous section we found a computational signature for the existence of
promoting vibrations: fix the transferred proton at the TS and away from it, and
compare the magnitude of the Fourier transform of the forces on the proton, as it is



Fig. 4 Active site of HLADH: Val203, the NAD cofactor and the alcohol substrate.
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held fixed at different positions. Since the location of the TS is unknown, we tried
several intermediate positions and selected the one for which the spectral density is
smallest, i.e. a position of minimum coupling.

We shall present results from simulations for three configurations – reactants (R),
products (P), and minimal coupling (MC):
�
 The R configuration consists of NAD+ and the deprotonated benzyl alcohol
(PhCH2O

�).

�
 The P consists of NADH and benzaldehyde.

�
 In the third configuration MC, we have NAD+ and PhCH2O

� with the pro-R
hydrogen restrained so that it is equidistant from the hydroxyl a-carbon (hydride
donor) and the C4 carbon (hydride acceptor) in the nicotinamide ring.

We performed a 30-ps simulation and saved the time series for several distances
between atoms. In Fig. 5 we plot, for all three configurations, the Fourier transform
of the donor–acceptor distance. We see a peak at ca. 100 cm�1, common to all three
configurations, signifying that the two motions appear to be in resonance.

The Fourier transform of the force on the reaction coordinate is shown in the
right panel of Fig. 5. Again, the peak at ca. 100 cm�1 is common to both config-
urations. This is a strong indication that the motion of the transferred proton is
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Fig. 5 Left: the spectral density for the donor–acceptor relative motion in the wild type; it
monitors the donor–acceptor distance. Right: the spectral density for the reaction coordinate,
in the wild type. The three lines represent the reactants configuration (R), the products
configuration (P), and the minimal coupling configuration (MC).
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coupled to the relative motion between the alcohol and the nicotinamide ring. On
the scale of the graph, the spectral density for MC appears as the flat line close to the
horizontal axis, which shows that the spectral density is position-dependent, as
predicted by Equation (12). Furthermore, if we had shown the MC line in mag-
nification we would see that although the high frequency peaks in the P and C are
still present in MC, the peak at ca. 100 cm�1 is almost absent in MC. These results
strongly suggest that the reaction coordinate is coupled to an oscillation of fre-
quency ca. 100 cm�1.

In view of our earlier analysis, our results indicate that the reaction coordinate is
coupled to the alcohol-NAD motion, which in turn is coupled to Val203, whose side
chain impinges directly on the face of the nicotinamide ring. It is thus shown that in
HLADH this dynamic coupling is central to the catalytic process. Finally, we should
point out that Cui and Karplus33 used our concept of symmetrically coupled
vibrations and performed a simulation on HLADH following a different method,
and found results that are in agreement with the results presented here.
LACTATE DEHYDROGENASE

The next system we studied was the isoforms of human LDH. The first part of
the calculation was similar to HLADH. However, we encountered interesting com-
plications.

LDH catalyzes the interconversion of lactate and pyruvate with the coenzyme
NAD (see Fig. 6). This enzyme plays a fundamental role in respiration, and multiple
isozymes have evolved to enable efficient production of substrate in different mi-
croenvironments. Two main subunits, referred to as heart and muscle, are combined
in the functional enzyme as a tetramer, and subunit combinations range from pure
heart to pure muscle. The kinetic properties of the heart and muscle isoforms are



Fig. 6 Diagram of the binding site of LDH with bound NADH and pyruvate showing
hydrogen bonds between the substrate and key catalytically important residues of the protein.
The catalytic event involves the hydride transfer of the C4 hydrogen of NADH from the pro-
R side of the reduced nicotinamide ring to the C2 carbon of pyruvate and protein transfer
from the imidazole group of His-193 to pyruvate’s keto oxygen.
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distinct: the heart favors production of lactate and the muscle of pyruvate. Despite
this difference, the domain structure, subunit association, and amino acid content
of the active sites of the two isoforms are almost identical, leading to the puzzle
of what is the cause of their difference in activity. We propose that placement of the
TS, coupled with a promoting vibration, can influence kinetic control of hydride
transfer.

Results will be presented for the following configurations: the heart and muscle
isoform each with lactate and NAD+ bound; the heart and muscle isoform each
with pyruvate and NADH bound; two simulations of the heart isoform with lactate
and NAD+ bound where the hydride distance was restrained at a point between
donor and acceptor carbons. In the following figures, in the language of the previous
subsection, the reactant configuration for the heart isoform is the line ‘‘lactate’’ and
the product configuration is the line ‘‘pyruvate.’’ And vice versa, the reactant con-
figuration for the muscle isoform is the line ‘‘pyruvate’’ and the product configu-
ration is the line ‘‘lactate.’’

In Fig. 7 we show results for the heart LDH isoform: (1) the Fourier transform of
the force on the transferred hydride (left); (2) the Fourier transform of the relative
motion between the substrate C2 carbon and carbon C4N of the nicotinamide ring
of the cofactor NAD+/NADH (right). In Fig. 8 we show the corresponding figures
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Fig. 7 Wild-type heart LDH isoform: Fourier transform of the force on the reaction co-
ordinate (left) and Fourier transform of relative donor–acceptance distance (right).
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Fig. 8 Wild-type muscle LDH isoform: Fourier transform of the force on the reaction
coordinate (left) and Fourier transform of relative donor–acceptance distance (right).
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for the muscle LDH isoform. Similarly, to the HLADH simulation we found clear
evidence of the presence of a promoting vibration:
(1)
 The spectral density is much lower when the hydride is near the TS, as predicted
by Equation (12) (line MC in the Figure).
(2)
 The peaks of the Fourier transform of the force on the hydride, are in resonance
with the peaks of the Fourier transform of the relative donor–acceptor motion.
These results show strong evidence for the presence of a promoting vibration, but
they are symmetric for both isoforms, so they don’t resolve the paradox why one
isoform favors the production of pyruvate and the other of lactate. However, there is
a hint: in the left panels of Figs 7 and 8, the pyruvate peak is higher for the heart
isoform and the lactate peak higher for the muscle isoform. Recall that the height
of the spectral density is proportional to the force on the reaction coordinate.
According to Equation (12), what may lead to bigger force, is bigger s(t), i.e. bigger
deviation from the TS. Since the lines ‘‘lactate’’ and ‘‘pyruvate’’ in Figs 7 and 8
correspond to the hydride bound to the donor/acceptor (and vice versa for the other
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Fig. 9 Donor–acceptor distance for the wild-type human heart LDH isoform (left) and the
muscle isoform (right).

Effect of enzyme dynamics on catalytic activity 333
isoform), it would be interesting to see what is the average distance of donor–ac-
ceptor in the two isoforms.

In Fig. 9 we show the results of a 30-ps simulation for the donor–acceptor
distance, i.e. the distance between the C2 carbon of substrate and carbon C4N of the
nicotinamide ring of the cofactor NAD+/NADH. Fig. 9 shows that the average
donor–acceptor distance is shorter for the heart isoform when lactate and NAD+

are bound, and for the muscle isoform when pyruvate and NADH are bound. We
propose that the different kinetic activity of the two isoforms is due to the reduced
donor–acceptor distance when lactate is bound to the heart isoform and pyruvate is
bound to the muscle isoform.

The next question is to identify residues near the active site that may modulate the
donor–acceptor distance. In Fig. 10 we show the active site and some nearby res-
idues. In the spirit of the previous results, in order to predict the degree that the
motion of these residues is correlated with the donor–acceptor motion, we can
calculate the Fourier transform of the autocorrelation of the residue motion, and
then order the residues according to the height of the peak of the spectral density.34

In Fig. 11 we show one result, the spectral densities for the motion, projected first
along the residue–donor axis and then along the donor–acceptor direction, of three
residues, two of them strongly correlated and one not correlated.

Finally, to bring our argument to its logical conclusion, we can test for the con-
sistency of our interpretation: we substituted residue 31, Valine, with a less bulky
one, Alanine. If our interpretation is correct, we expect that the Fourier transform of
the force on the hydride would have a higher peak in the wild type than in the
mutant, since the bulkier Valine is more efficient in pushing the nicotinamide ring of
the NAD+, and as a result the average donor–acceptor distance would be smaller
for the wild type than in the mutant. In Fig. 12, we show the results of the simu-
lation, which are consistent with our prediction. As we mentioned earlier, the peak
of the spectral density can be lowered either because the coupling to the reaction
coordinate is weaker, or because the reaction coordinate is fixed closer to the TS.
The right panel of Fig. 12 shows that the average donor–acceptor distance is larger
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Fig. 11 Spectral density of motion of three residues in the wild-type human heart LDH
isoform with lactate and NAD+ bound: residue 238 is the most strongly correlated residue, 31
is strongly correlated and substituted in the mutagenesis simulation, and residue 193, the
essential active site histidine, is poorly correlated.

Fig. 10 The structure of the heart isoform with lactate and NAD+ bound.
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uration where residue 31 is Valine, and the dashed line is the mutant configuration where
residue 31 is Alanine. Right, donor–acceptor distance for the wild type and mutant human
heart LDH isoform with lactate and NAD+ bound: the solid line represents the wild-type
configuration where residue 31 is Valine and the dashed line represents the mutant config-
uration where residue 31 is Alanine.

Effect of enzyme dynamics on catalytic activity 335
for the mutant result, therefore the lower peak of the spectral density in the left panel
necessarily means that the coupling is weaker for the less bulky Alanine.
HUMAN PURINE NUCLEOSIDE PHOSPHORYLASE

Up to this point, all the examples we discussed, concerned protein motions that
affect reactions that involve a light particle transfer. However, rate-promoting
enzymatic motions can also exist in other types of reactions. For example, we have
shown35 that such motions can influence catalysis by acting through electron density
fluctuations caused by geometrical changes. The system we investigated is human
purine nucleoside phosphorylase (hPNP), which catalyzes reversible bond cleavage
of 6-oxopurine nucleosides to form phosphorylated a-D-ribose products in the
presence of phosphate, as seen in Fig. 13.

The cleavage of the C-10–N-9 ribosidic bond (for atom terminology see Fig. 14)
occurs in a dissociative mechanism that forms a TS with a substantial oxycarbenium
ion character. The phosphate provides an electrostatic stabilization of this oxy-
carbenium ion, encouraging TS formation.36,37 As the N-ribosidic bond is cleaved,
electron density is expelled by the oxygen-stack compression towards the purine
ring, and improves electrostatic interactions with nearby residues and facilitates the
abstraction of a proton from a close-by proton donor, making the purine a better
leaving group and accelerating catalysis. In summary, oxycarbenium stabilization,
increased phosphate ionization and purine ring activation, contribute in concert to
catalytic acceleration. Crystallographic data of several hPNP complexes with TS
analogs, showed an unusual geometric arrangement of the atoms O-50, O-40, and OP,
lying in a close threeoxygen stack (Fig. 14), which was later corroborated by
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extensive experimental KIE analysis.38 We have shown35 that protein motions in
hPNP and its substrates cause the O-50, O-40, and OP oxygens to squeeze together
and push electrons towards the purine ring, stabilizing the oxycarbenium character
of the TS.

The starting point of our computations was the 2.5 Å resolution structure of hPNP
complexed with the TS analog ImmH and phosphate. Following standard compu-
tational procedures for enzymes we performed both classical molecular dynamics
simulations and hybrid quantum/molecular simulations.35

The enzymatic system was divided into two concentric zones. These consisted of
the QM region, containing the atoms being treated QM, and the molecular mechanics
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(MM) region, in which the atoms were treated with a MM potential. In the case
of the simulation of the E?S complex, the QM region contained the substrates
guanosine and phosphate, and the conserved catalytic water. For the E?I complex,
the QM region contained ImmG, phosphate and a catalytic water. The AM1 semi-
empirical Hamiltonian was employed as the QM potential, and the all-atom force
field of CHARMM22 was used to describe the atoms in the MM region.

For example, for the E?S complex, we chose the QM/MM model shown sche-
matically in Fig. 15. The residues N243 and E201 are actively involved in catalysis
by stabilization of the TS, but since they are not directly involved in the acid
catalysis, they were not included in the QM region due to computational limitations
of QM/MM methods. However, their contribution to the stabilization of the TS
structure is introduced by the QM/MM electrostatic term of the Hamiltonian. We
were interested in the last step of the reaction, the cleavage of the N-ribosidic bond
and protonation of the purine ring to yield the protonated guanine and phosphory-
lated a-D-ribose. It is essential that a good reaction coordinate be used in order
to represent the enzymatic reaction properly to obtain meaningful PESs. After in-
vestigating a variety of reaction coordinates, we found that a suitable reaction co-
ordinate to describe the phosphorolysis reaction was the interatomic C-10–N-9 and
C-10–OP distances (Fig. 15).
Fig. 15 QM/MM model used to obtain the PES. The reaction coordinate used to produce
these surfaces is shown with dashed lines in the figure.
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Results: dynamics

During the classical MD simulation we saved the values of the O-50–O-40 and
O-40–OP distances. We found that these distances are quite stable, deviating only up
to 0.3 Å from their average value. This implies that the O-50–C-50–C-40–O-40 dihedral
is not rotating freely as it does in aqueous solution, but is restricted by the enzymatic
environment. We show the time series for that dihedral in both the enzymatic en-
vironment and in aqueous solution in Fig. 16. We note that the mean value in each
case is different, and that there is a higher deviation from the mean value in solution,
verifying that this dihedral’s motion is restricted in the enzyme.

In Table 2 we show the average O-50–O-40 and O-40–OP distances and standard
deviations, for the WT and for several mutants of hPNP complexed with guanosine
and phosphate (the maximum fluctuation of the O-50–O-40 distance is 0.6 Å, there-
fore a difference of, for example, 0.2 Å in the average distance is substantial). For
each mutation the changes in compression of the oxygen stack were different. For
example, we found that for the H257G mutant, the average O-50–O-40 distance was
considerably higher than that of the WT, meaning that the residue H257 plays a role
in keeping the two oxygens compressed.

We now move to a dynamical analysis of the time series for these distances. In the
left panel of Fig. 17, we show the Fourier transforms of the O-50–O-40 distance
autocorrelation function, and of the O-50–O-40, O-40–OP distance–distance correla-
tion function. The spectra are very similar, indicating that O-50�O-40 and O-40–OP
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Fig. 16 O-50�C-50�C-40�O-40 dihedral (degrees) of the ribose ring during the WT classical
MD simulation in aqueous solution and in the E?S complex.

Table 2 Average O-50�O-40 and O-40�OP distances (Å) for the WT and mutated hPNPs

Distance WT E201G V260G H257G

O-50�O-40 2.8170.08 2.8870.11 2.7870.08 3.0470.08
O-40�OP 4.3470.10 6.5870.11 3.9070.11 4.6970.10
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oscillate at the same frequencies: 125 and 465 cm�1 in the enzyme environment. In
the right panel of Fig. 17, we compare the Fourier transforms of the classical and
mixed quantum/classical MD simulations, and find that they are similar.

Next we examine whether these vibrations are unique in the enzymatic environ-
ment or they are inherent in the substrates. In the left panel of Fig. 18 we compare
the calculation in the enzyme with a simulation of the substrates in aqueous so-
lution, in the absence of hPNP. The spectrum of the O-50�O-40 distance autocor-
relation function of the classical MD of solvated substrates showed a peak at
330 cm�1, and of the unsolvated substrates at 285 cm�1, i.e. distinct from the peaks
in the presence of the enzyme, revealing that hPNP is directly affecting the way in
which these oxygens naturally vibrate.

In order to assess the effect of the mutation of nearby residues on the three oxygen
stack electronic interaction, we performed classical simulations of mutated hPNPs.
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We studied whether changes in protein structure have an influence on the pattern of
spectra discussed above for WT hPNP. In particular, we mutated F200G, E201G,
H257G, H257A, V260G, and L261G. The spectrum of the O-50�O-40 motion for the
F200G, E201G, V260G, and L261G mutated hPNPs was very similar to that of the
WT. However, as can be seen in the left panel of Fig. 18, the H257G was very similar
to that of the unsolvated substrates, giving further evidence that H257 is responsible
for modifying the power spectrum in the E?S complex.

Results: energetic barrier

We turn our attention to the coupling of the rate-promoting motion we have been
describing, to the reaction coordinate. We used the hybrid QM/MM method de-
scribed earlier to obtain the PES for the phosphorolysis reaction for various E?S
complexes, for a range of O-50�O-40 and O-40–OP interatomic distances. We have
presented elsewhere35 detailed results for the activation energies (kcalmol�1) as a
function of oxygen interatomic distances of the E?S complex and the E?TS
complex. This is collection of structures covered a wide range of geometries, with
O-50�O-40 ranging from 2.78 to 3.64 Å and O-40�OP ranging from 3.35 to 4.30 Å.
Thus, these structures were sufficient to represent the different E?S geometries that
can be found in the PES.

To quantify this correlation between lower activation energy and compression of
the oxygen distances, we fitted the results for the activation energies to a function
that had up to quadratic terms, as seen in Fig. 19 (a parabolic fitting had smaller w2

than the also plausible linear fitting). The parabolic dependence of the activation on
energy on distance may have a simple interpretation: as the distances between the
oxygen increases the energy rises as carbocation stabilization is lost, but at shorter
distances, as we approach distances equal to twice the van der Waals radius, elec-
tron–electron repulsion will compete with the stabilization and there is a point where
there are no further reduction of the activation energy. From the values of the
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curvature of the parabolic fittings we can obtain a spring constant, and by using a
mass equal to the reduced mass of O�O, we can obtain an effective harmonic
frequency associated with the parabolic fittings shown in Fig. 19. This effective
frequency was equal to 180 cm�1, in surprising agreement with the position of the
peaks of the spectra of the oxygen motions.

In conclusion, the protein motion that compresses the oxygen stack, is one of the
factors which makes the reaction possible, leading up to a 20% decrease in barrier
height.
Results: charge fluctuations

In addition, we have studied39 charge fluctuations in the ribose and purine groups
of the enzyme-bound ribonucleoside. If these fluctuations are resonant with the
oxygen-stack promoting motion, it would further validate the hypothesis that the
promoting motion pushes electrons across the ribosidic bond.

Partial charge calculations were employed to follow changes in electron density
in the substrate guanosine, using Gaussian98 at the B3LYP level of theory with
the 6-31G(d,p) basis set. Partial charges for each atom were calculated using the
CHELPG algorithm. Charges for the ribose and purine ring components of
the ribonucleoside substrate were calculated by adding up the partial charges of the
constituent atoms of each.

We generated time series for the partial charges, and as usual took the Fourier
transforms, shown in the left panel of Fig. 20. The two spectra nearly overlap,
demonstrating that the charge fluctuations in the ribose are resonant with the charge
fluctuations in the purine ring, with a dominant peak at 450 cm�1 and a smaller peak
at 160 cm�1. Recalling that the spectrum of the oxygen-stack compression motion
had peaks 125 and 465 cm�1, we note that the partial charge spectra are clearly
resonant with those of the oxygen motion.

In addition, we probed fluctuations across the N9-C10 ribosidic bond, since this is
the bond that is broken in this reaction. The spectra are shown in the right panel of
Fig. 20. They are resonant with each other and with the spectra for ribose and purine
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ring, and also feature peaks at 160 and 450 cm�1, i.e. they contain the signature peaks
of the oxygen-stack compression spectra. These results confirm that the oxygen-stack
compression is the cause of these partial charge fluctuations.
4 Description in atomic detail of correlated protein motions

In this section we will examine other kinds of correlated protein motions (with ps- or
ns-timescales) and methods that can identify them. The rate-promoting vibrations we
examined in the previous section are just one example of correlated protein motions.
Because promoting vibrations involve residues in the immediate vicinity of donor and
acceptor, it was relatively easy to identify them. In the more general case of extended
correlated motions, it would be a challenge to identify residues that take part in them.
In this section we describe two methods that have been successfully used for iden-
tifying atomic motions of interest, the TPS and the ED method. We will apply them
to two enzymes we already studied in the previous section, LDH and PNP.
TRANSITION PATH SAMPLING

TPS was originally developed for studying rare reactive events. The most difficult
problem in studying reactive events, which is hidden by the wide acceptance of TST,
is to define an appropriate reaction coordinate and find the location of the TS. In
addition, if one tries to simulate rare reaction events using a molecular dynamics
simulation, most of the trajectories that start from the reactants will not cross to
the products, and as a consequence the calculation becomes computationally not
feasible, because the time step that must be used in the MD simulation is much
smaller than the timescale of interest.

TPS40,41 addresses these problems by performing a Monte Carlo search in the
trajectory space. It can simulate rare events without the knowledge of a reaction
coordinate or the TS. TPS needs another algorithm (molecular dynamics) to gen-
erate trajectories, while TPS itself is an algorithm for searching the trajectory space.
The essence of TPS is that the chaotic nature of classical multi-dimensional systems
guarantees a fast Monte Carlo search of the trajectory space.

A brief description of the algorithm follows. Let us assume a transition between R
and P (i.e. reactants and products). Since R and P are long-lived states, they can
accommodate equilibrium fluctuations, and can be characterized by a variable,
called ‘‘order parameter’’, which can be used as a criterion for deciding whether
the system is localized in R or P. Let us further assume that we somehow know one
reactive trajectory that starts from R and ends in P. In the TPS algorithm we
randomly select a time slice along this reactive trajectory, we perturb slightly all
momenta at that time slice, and starting from that time slice and using the new
momenta, we propagate (‘‘shoot’’) forward and backward in time, examining
whether the new trajectory is reactive or not. In the usual Monte Carlo fashion, the
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new trajectory is accepted or not, according to some probability distribution.
Because of the ergodicity of classical dynamics, new trajectories are guaranteed to
quickly deviate from old ones, leading to a fast sampling of the trajectory space.
An ensemble of reactive trajectories in LDH

We have applied42 the TPS algorithm to LDH, i.e. to the enzyme in which we
identified a rate-promoting vibration, as discussed in the previous section. This work,
along with a paper by Schlick43 were the first that applied the TPS algorithm to a
realistic protein. By finding common features in all the harvested trajectories, one can
get insights for defining an appropriate reaction coordinate, and for identifying ex-
perimental targets for future studies. Recall that LDH catalyzes the interconversion
of the hydroxy-acid lactate and the keto-acid pyruvate with the coenzyme NAD. The
reaction involves a double transfer: a proton transfer between the active site histidine
and the C2 substrate oxygen and a hydride transfer between NC4 of the coenzyme
and C2 of the substrate (see Fig. 6). In fact, there was a controversy regarding
whether the transfer steps are concerted or sequential, that our study was able to
resolve. Since the reaction involves bond cleavage we must use a quantum potential
for describing the reactive potential surface. The details of our choice for the quan-
tum description are explained elsewhere.42 Below we briefly define the variables and
concepts that our TPS simulation used.

Definition of the order parameter. The first step in the TPS algorithm is to define an
‘‘order parameter,’’ i.e. a variable that describes whether the system is in the re-
actants, products or in an intermediate region, as shown schematically in Fig. 21.
The pyruvate and lactate regions were defined by the values of the appropriate bond
lengths.42

Decorrelation of trajectories. The goal of TPS is to generate reactive trajectories
that span the whole trajectory space. We must ensure that the ensemble of trajectories
Fig. 21 Schematic representation of the TPS algorithm. The shaded regions are identified by
the order parameter as reactants and products. The solid line is a reactive trajectory. A
‘‘shooting’’ move is shown: a time slice was chosen along the reactive trajectory, momenta
were perturbed, and then the system was propagated forward and backward in time, resulting
in a non-reactive trajectory shown with the dashed line.
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we generated do not lie ‘‘near each other’’ in the trajectory space. The variable that
monitors this is an autocorrelation function of the appropriate variable. This auto-
correlation function is shown in Fig. 22. As can be seen, the trajectories became
uncorrelated after about 30 successful iterations of the algorithm.

Results: atomic description of relevant catalytic motions

A compression of residues facilitates catalysis. We have identified a compression–
relaxation sequence of residue motions that facilitates catalysis. These are the res-
idues 31 and 65, located behind the cofactor and transferring hydride, and 106 and
195, located on the acceptor side behind the substrate, as seen in Fig. 23.

In Fig. 24 we plot various distances that reveal a compression of several residues
that occurs close to the reaction event. These are taken from a trajectory with a
concerted hydride and proton transfer. All graphs are plotted in the pyruvate to
lactate reaction direction.
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Fig. 22 Autocorrelation function for trajectories, plotted versus the number of reactive
trajectories that have been generated after a given trajectory. The figure shows a decorrelation
of reactive trajectories generated by TPS.

Fig. 23 Three snapshots of the compression of residues that leads to a reactive event.
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Fig. 24 Comparison of motions of donor–acceptor and surrounding residues reveals a
compression-relaxation motion. See text for description of the panels.
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The panels of Fig. 24 describe the following:
(a)
 Plots the distance of the hydride from the cofactor reactive carbon and the
distance of the proton from the histidine reactive nitrogen. At time ¼ 6100 fs the
atoms begin to transfer to the substrate.
(b)
 Plots the donor–acceptor distance for the hydride. The minimum distance of the
donor–acceptor distance, and the distance of residues Valine 31 and Arginine
106 from the active site are marked by solid circles. The hydride donor–acceptor
distance reaches its minimum at time ¼ 6132 fs. A similar plot can be drawn for
the proton transfer.
(c)
 Plots the distance of residues 31 and 65 from the active site. They are located
behind the cofactor and transferring hydride.
(d)
 Plots the distance of residues 31 and 106 from 4 to 8 ps. Residue 106, responsible
for polarization of the substrate carbonyl bond via hydrogen bonding, initially
compresses towards the active site reaching a minimum distance at 6043 fs
(marked by solid circle). By 6153 fs (marked by solid circle) residue 31 has
reached its minimal compression towards the active site.
The compression towards the active site revealed in Fig. 24 is what causes the
donor–acceptor distances for the hydride and proton transfers to reach their mini-
mum. When they reach their minimum, interactions across the donor, transfer-
ring atom, and acceptor are initiated. The events that occur next are critical for



D. ANTONIOU ET AL.346
completion of the reaction. The continued compression of the donor side residues
towards the active site, are not only involved with bringing the donor–acceptor
distance closer together, but also with shifting the entire enzyme. While the do-
nor–acceptor distances increase again, it will be the motion of the surrounding
residues that ultimately determine whether the atoms transfer. In particular, the
compression of the donor side residues cause the acceptor side residues to relax away
and the reaction to complete.

Concerted vs. stepwise transfers. We now address the question of whether the
hydride and proton transfers are concerted, or whether the hydride transfer precedes
the proton in the pyruvate to lactate reaction direction. Our TPS study showed that
both mechanisms are possible. In Fig. 25 we show the distribution of the time lag
between the hydride and proton transfer for all reactive trajectories. We note that
both concerted and sequential transfers are possible, and that 74% of the trajectories
have a time lag greater than 10 fs, indicating that the majority of reactive trajectories
have sequential transfer steps.

Figure 26 compares two trajectories: one for concerted hydride and proton
transfers with one for sequential transfers, as seen in panel (a). In panel (b) we can
see that the donor–acceptor distance for the stepwise trajectory reaches its minimum
first, due to the earlier combined compression of residues 31 and 106. Why does the
proton take longer to transfer? If we look at panel (c) at the distance of residue 31
after it reaches its minimum, it jumps back away from the active site causing a delay
in the relaxation of residue 106, as seen in panel (d), and a delay in the increase of the
proton donor–acceptor distance. Soon after, panel (d) shows that residue 106 relaxes
away from the active site while the donor–acceptor distance increases, completing
the reaction.

Perturbation of the donor– acceptor axis and compression reaction coordinate. We
will now demonstrate the effects of disrupting the compression–relaxation of the
donor–acceptor axis residues close to the reactive event. For the perturbation we
used the coordinates and velocities of a time slice 160 fs away from the reactive event
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Fig. 25 Distribution of the time lag between the hydride and proton transfer.
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Fig. 26 Comparison of motions of donor–acceptor and surrounding residues reveals when
the double transfer is sequential and when it is concerted. See text for description of the
panels. The circles in the residue trajectories in the lower panels, highlight the moment the
transfer event happens.
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of a concerted transfer trajectory. The momenta of residue 31 were perturbed along
the residue-active site axis, 1 Å away from the active site.

Figure 27 contrasts the original reactive trajectory to the perturbed one, shown in
panel (a). Panel (b) shows that after a delay, the hydride donor–acceptor distance
begins to deviate from the original reactive trajectory, unable to reach its minimum
without the full compression of the donor side residues, i.e. 65 shown in panel (c) and
the perturbed 31 (not shown). Additionally, the absence of the compression prevents
the relaxation of the acceptor side residues, for example, of 106 shown in panel (d).
The donor–acceptor distance comes closer, since at that time residue 106 is still
compressing and the perturbed residue 31 has a weaker, delayed compression. Due to
this, the hydride starts to transfer. However, since the compression–relaxation tran-
sition does not occur, the reaction is not completed.
ESSENTIAL DYNAMICS

ED (or principal component analysis), is a method commonly used for identifying
large scale motions in proteins, e.g., protein folding or substrate binding. A sum-
mary of the method follows. Let ~R ¼ ðR1;x;R1;y; . . . ;RN ;zÞ be the positions of the
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Fig. 27 How perturbation of a residue makes a trajectory nonreactive.
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protein atoms. One assumes that the solution of Newton’s equation of motion can
be written in the following approximate form:

~RðtÞ ’
X3N

m¼1

amðtÞ~Zm (13)

One then tries to find the coefficients and basis functions am, ~Zm that provide
the best approximation (in a least-squares sense) of ~RðtÞ to the exact solution of
Newton’s equation of motion. This condition is satisfied by choosing the spatial
basis set ~Zm to be the eigenfunctions of the covariance matrix

Cij ¼ hðRi � hRiiÞ ðRj � hRjiÞi (14)

where h� � �i denotes time average over the entire MD trajectory. When a few eigen-
values of the covariance matrix are much bigger than the rest, the corresponding
eigenvectors dominate the dynamics. When sorted by their eigenvalues, the ED
modes are sorted according to their contribution to the total mean-square fluctu-
ation. These few dominant modes are designed to provide a good fitting to the
trajectory. In a protein, there may be concerted motions of groups of atoms (e.g.,
loop motions) which provide a significant number of covariant matrix elements Cij,
and therefore dominate the principal eigenvectors of the covariant matrix. In this
case, ED separates the conformational space into an essential subspace containing
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only a few dominant collective modes, and a remaining space which contains ran-
dom atomic fluctuations.44,45

In Section 3, we found that protein motions in hPNP accelerate the chemical step.
Now we will present an application of the ED method, used to identify protein
motions that increase turnover by creating substrate binding affinity. In particular,
we have studied46 the conformational change in the 241–265 loop, and identify
variations in its orientation, which is crucial in determining the substrate accessi-
bility to the active site.

Substrate binding in PNP

As a reference for the discussion below, in Fig. 28 show a plot of the active site
of PNP. We will present the experimental reasons that led us to focus our attention
on the 241–265 loop. If one assumes that each X-ray crystal structure represents
a possible conformation in solution, considering several crystals and their relative
atomic B-factors presents an experimental view of the conformational flexibility of
the protein at an atomic resolution. The relative B-factors of the Ca atoms of apo
hPNP, and hPNP complexed with the TS analog Immucillin-H show that the loop
residue E250 is the centroid of highly mobile region, while residues G63 and E183
are centroids of more localized mobile regions. Additionally, from the structural
differences between the crystal pairs of apo hPNP–hPNP � guanine (formation of the
Michaelis complex), and apo hPNP–hPNP � ImmH (formation of the TS analog
Fig. 28 Active site of hPNP with the TS analog ImmH and the phosphate nucleophile.
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complex), it has been questioned whether correlated motions exist to allow the
necessary conformational change of the 241–265 loop for substrate binding and
turnover. It is accepted that reorganization of this flexible loop, which makes up
part of the active site, is essential for allowing different substrates/inhibitors to enter
the active site.47 The loop displacement is conjectured to push the substrates towards
the active center favoring more reactive configurations. In Fig. 29 we show the
root-mean-square deviation of the Ca geometric difference between the apo
hPNP–hPNP � guanine, and the apo hPNP–hPNP � ImmH pairs. The same geometri-
cal difference trend appears for any combination of two apo hPNP structures
with six substrate/TS analogs, confirming the substantial loop rearrangement upon
substrate analog/TS analog binding.

We used principal component analysis to identify correlated motions in different
forms of hPNP, namely, its apo and complexed forms, and assess whether they
facilitate the 241–265 loop rearrangement prior to the subsequent phosphorolysis
reaction. We compared the principal components for the apo and complexed hPNP
simulations, and examined the different correlated motions for each form of the
enzyme, comparing directly to the crystallographic B-factors. Finally, via experimen-
tal site-directed mutagenesis, several residues implicated in the correlated motion were
mutated, and the kinetic constants kcat and KM (fingerprints of catalytic efficiency),
were measured to weigh the impact of these residues in the phosphorolytic efficiency.
Results: mobile residues in the active site

We performed molecular dynamics simulations for the APO, ES, and EI-APO
models. The objective of the EI-APO simulation is to capture putative concerted



Effect of enzyme dynamics on catalytic activity 351
motions in hPNP during the loop conformational change taking place upon
going from an ‘‘E?I geometry’’ towards an ‘‘apo hPNP geometry’’, which revers-
ibly translates into existing motions in hPNP during substrate binding and TS
formation.

For the APO simulations, from the first few eigenvectors, we observed prominent
correlated motions in the neighboring residues F159 and P150, adjacent to the
purine substrate. Moreover, it is not surprising that G63 and E183 also show strong
motions, granted their large B-factors. Additionally, to a lesser extent, the active site
residues S33, H84, H86, and F200 display high mobilities. These concerted motions
were observed both in a 1-ns vacuum simulation and in a solvated simulation.
Overall, the most significant feature of the APO simulations is the correlated mo-
tions found in the spatially neighboring F159 and P150 residues.

In the case of the ES simulations, we found that there exist correlated motions
around the F200 and E250 residues, the latter being the epicenter of the loop
dynamics. To a lesser extent, residues S33 and P150 also showed concerted behavior.
It is not surprising that residues H183 and N121 are involved in dynamics granted
their high mobilities implied by its high B-factors. We found differences in the
concerted motions between the APO and ES models of hPNP: the APO model
presents concerted dynamics around the F159 and P150 residues, while for the
simulation of the Michaelis complex (ES), concerted motions are mostly found
around the active site residue F200 and loop residue E250. This in turn suggested
that dynamics in the apo enzyme is concentrated around the residues F159 and
P150, though once the substrate enters the active site, these become dormant, and
active site residue F200 and loop residue E250 (embracing the purine substrate),
come into action.

For the EI-APO simulations, the correlated motions were again found around the
neighboring residues F159 and P150, as well as around F200, E250, and S33. This
behavior resembles a combination of the APO and ES models. These results suggest
these residues are coordinated in the enzyme so that it can successfully accommodate
the substrate in the active site and achieve TS formation.

We observe that the three computational models (APO, ES, and EI-APO) present
distinct characteristics in their correlated motions. Some similarities are found, for
example, in the high mobilities of G63 and E183, in agreement with their high
crystallographic B-factors. However, other residues which had not been seen as
highly mobile based on their B-factors (namely F159, P150, H230, and F200), have
been found to have correlated dynamics. This implies that observation of crystallo-
graphic structures alone may not be enough to infer important dynamic behavior in
proteins, and that additional MD studies are needed to identify correlated dynami-
cal modes. Finally, we have been able to successfully recognize correlated motions
on the 241–265 loop, particularly present in the simulations of the Michaelis com-
plex, and in a lesser extent in the EI-APO simulations. This suggests that the loop
may have a favorable role in capturing the substrate as well as in the chemical step.
Fig. 30 highlights the residues that were identified by the principal component
analysis: note the presence of residues F159 and F200, whose involvement in binding
was not obvious from B-factors alone.



Fig. 30 hPNP with marked residues that show correlated motions: S33 (brown), H64
(brown), H86 (brown), P150 (magenta), F159 (blue), H230 (pink) and 241–265 loop (red).

Table 3 Experimental kinetic parameters for different mutants which show correlated mo-
tions in hPNP

Mutant WT F200G F159G H230G N121G

KM (mM) 76.8 1580 2260 145 64.9
kcat (s

–1) 32.4 3.8 2.3 2.6 33.0
kcat/KM (105s�1M�1) 4.2 0.024 0.01 0.1 5.0
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Experimental site-directed mutagenesis

The X-ray crystal structures indicate that all direct contacts between hPNP and the
substrates guanosine and phosphate are through amino acid side chains. Our site-
directed mutagenesis strategy replaced each residue with glycine in order to assess
the contribution of the residue’s side chain to substrate binding and/or catalysis.
Results from the kinetic studies (Table 3) indicate that substrate binding affinity was
most sensitive to the F159G and F200G mutations. In the phosphorolytic direction,
an increase of ca. 400-fold in KM (and modest change in kcat) is observed for the
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F159G mutant. Loss of the herringbone-type interaction between the b-face of the
ribose and the hydrophobic surface created by this residue is important for substrate
binding, thus essential for hPNP activity. Additionally, the H230G mutant showed
modest changes in both KM and kcat, unexpectedly given its long distance from the
active site. Finally, the N121G mutant, did not show any relevant change in catalytic
efficiency, regardless of proving substantial concerted dynamic behavior during the
Michaelis complex simulation.
5 Conformational fluctuations

The motions we examined in the previous sections had ps- or ns-timescales, therefore
they were accessible with ordinary molecular dynamic simulations. However, it is
well known that conformation fluctuations are sometimes coupled to the reaction
coordinate. From a computational point of view, such effects are practically
impossible to study directly. To understand the reason, let us recall the shape of the
energy landscape of a protein (a description of the modern energy landscape view of
biomolecules can be found in the recent textbook of Wales48). It consists of a very
large number of local minima (conformations), separated by barriers whose height
ranges from moderate to high (left panel of Fig. 32). The time evolution of the
system in this landscape consists of relatively long periods of oscillations in the local
minima, separated by hops between conformations (Fig. 31).

The rate-promoting vibrations we examined earlier are fluctuations within a
single conformation. The problem we want to address is, whether there are some
conformations which favor catalysis, for example, because in them the average
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Fig. 31 A 100 ps MD trajectory of PNP, plotted in the plane of the two largest principal
components. The two darker regions, where the trajectory fluctuates locally, are two con-
formations. If we are interested in sampling many conformations, the long time the system
spends in local fluctuations in a given conformation, is a waste of resources.
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donor–acceptor distance is shorter. To study this problem, we would like to have
our molecular dynamics trajectory visit as many conformations as possible. How-
ever, the system spends most of its time in fluctuations within a conformation local
minimum, and only rarely hops to a different conformation minimum. Therefore,
MD simulations may be useful for studying other problems, but they are not a
practical tool for searching the conformation space. However, there are other tech-
niques that may be useful. In the rest of this section, we will first briefly review recent
work on conformation fluctuations that enhance tunneling in DHFR; we will close
with a computational scheme we propose for studying this class of problems.
DIHYDROFOLATE REDUCTASE

DHFR catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofo-
late (THF) through the oxidation of the coenzyme NADPH. DHFR has been
studied extensively due to its role in maintaining intracellular pools of THF, which is
an important component of several metabolic pathways. The reaction catalyzed by
DHFR is thought to involve transfer of a proton followed by a hydride to DHF.

It has been shown through nuclear magnetic resonance (NMR) studies49,50 that
the catalytic cycle involves conformational changes of the M20 loop. This mobile
loop is close to the active site and is assumed to play an important role in binding of
the cofactor and substrate to DHFR. Also, mutational studies have identified distal
residues51 that affect catalysis. These studies strongly suggest that conformational
changes are related to catalysis.

In addition, classical MD simulations52 have identified correlated domain motions
in the reactant DHF complex but not in product complexes, indicating they are
related to catalysis. These domains are in the same regions highlighted by the NMR
studies.

We will only present a very brief review of theoretical studies on this system and
refer to reader to publications of the groups that have studied it.53–55 Since the
catalytic step involves a hydride transfer, a major difficulty is how to treat quantum
effects. These works followed different paths.

Truhlar, Gao, and Garcia-Viloca53 use a geometric reaction coordinate, the
difference between acceptor-hydrogen and donor-hydrogen distances. The system is
divided into a small primary zone at the active site, and a secondary zone. The
results are averaged over several secondary zone configurations. Electronic quantum
effects are included with a semi-empirical QM/MM potential that is augmented with
a valence bond term, parametrized to fit the experimental free energies. The free
energy profile is calculated with an umbrella sampling along the above reaction
coordinate. Brooks and Thorpe,55 also used a semi-empirical QM/MM potential.
Only structures from the reactant side were used, and those with donor–acceptor
distance smaller than 2.5 Å were used in the QM/MM calculations. For each of
these configurations, a QM/MM optimization was performed for a series of fixed
hydrogen-acceptor distances. Only atoms within 10 Å from the transferring hydro-
gen, were allowed to move. Hammes-Schiffer54 used as a reaction coordinate the
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energy difference between reactant and product diabatic states, averaged over the
ground state of the vibrational wavefunction of the transferred hydrogen. Electronic
quantum effects are included through an EVB potential, parametrized to fit exper-
imental free energies of activation. The free energy profile is generated by sampling
over the entire range of that collective reaction coordinate. Once the energy profile
is found, they used TST to calculate the reaction rate. Note that in real time
the protein dynamics may need e.g., 1 ms to move along the reaction pathway of
the reactive coordinate used in these works, so the generation of the energy profile
allowed them to describe an event that requires time longer than any feasible mole-
cular dynamics trajectory.

There is a long-standing debate whether approaches that calculate the free energy
barrier using a geometric reaction coordinate can sufficiently sample protein con-
formations and whether methods that use the energy gap as the reaction coordinate
are superior. In the present system, it has been shown53 that the two methods gen-
erate equivalent results. In fact both methods produced similar free energy profiles.

Coming back to the work of Truhlar and coworkers,53 and Hammes-Schiffer,54

after they generated a free energy profile along their choice of reaction coordinate,
the next step was to examine the ensemble of conformations used to generate a point
on the energy profile, and generate statistics and comparisons for various geometric
characteristics along the energy profile. They both found a correlation of structural
changes as the system approaches the TS, which show a tightening of some hydro-
gen bonds and of the donor–acceptor distance.

We should emphasize that the structural changes found in those works were not
motions in real time. Even if it is true that conformational changes affect catalysis, it
is not clear if the enhancement of the rate is due to a coupling to the motion of the
hydride, or due to different thermodynamic averages, for example, because the
transfer distance became shorter. The fact that in the calculations of Thorpe and
Brooks,55 most of the enzyme was held fixed, is an indication that the effect is
structural rather than dynamical. In this last work, a wide range of barrier heights
was found, which led to questioning whether approaches that are based on mean
field potentials can capture the range of protein conformations that led to that range
of energy profiles. Various opinions on these questions can be found in the original
papers.

To avoid semantic confusion we should clarify that Hammes-Schiffer uses the term
‘‘promoting motion’’ to describe an ensemble of conformations that, for example,
have a shorter donor–acceptor distance. The ‘‘motion’’ in her case is the implied
intra-conversion among these conformations. The ‘‘promoting vibration’’ we de-
scribed earlier refers to fluctuations within a single conformation. The two effects are
different and occur in separate timescales.

The identification of the way conformation fluctuations in DHFR affect parti-
cular distances at the TS, is a significant achievement. There are some details that
maybe improved, but we should emphasize that the point we will make this is not a
criticism of those works, but rather of the limitations of simulations that are cur-
rently possible. These simulations identified distances that change in the TS, but they
can’t distinguish if they must change in a particular order (e.g., as found with TPS in
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LDH). Also, they generated an ensemble of conformations near the TS, but since
they have no notion of time, they cannot give details of how the system samples the
conformations. In the next section we will propose a scheme that may provide a
starting point for a discussion that will address these questions.
A PROPOSED SCHEME FOR SEARCHING THE CONFORMATION SPACE

It would be desirable to have a more systematic method for searching for confor-
mation fluctuations that are coupled to the reaction coordinate. In the rest of this
section, we will propose a computational scheme that tries to address this problem.
This scheme is unpublished work. It consists of three elements:
(1)
Fig.

the
The topological structure of the conformation space.

(2)
 A computational scheme (kinetic Monte Carlo) for describing dynamics in the

conformation space.

(3)
 An algorithm (string method) for calculating energetic barriers between confor-

mations.
The topological structure of conformation space

It is well known that conformations that have similar geometries have similar
energies, but the opposite is not true, conformations that are unrelated may acci-
dentally have similar energies. In addition, long MD runs that visit several confor-
mations, sample geometrically similar conformations. The above observations suggest
that conformations populate their configuration space in some structured way. The
structure of the conformation space was studied by Berry and Kunz,56 Becker and
Karplus,57 and Becker.58 They termed it ‘‘topological’’ structure because the key in
the description is neither geometrical similarity nor energy, but rather a connectivity
concept, i.e. given a conformation, which other conformations are accessible to it, and
how many saddle points are crossed by the pathway that connects them.

Their main conclusions are summarized in Fig. 32. In the left panel, we see a free
energy profile. At the energy level marked as ‘‘–1,’’ the conformations that are
E
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32 The topological structure of conformation space. Left: the energetic profile. Middle:
connectivity graph. Right: the clustering of conformations into basins.



Effect of enzyme dynamics on catalytic activity 357
clustered under A are accessible to each other by crossing a single saddle point. The
same is true for the conformations under B and under C. At the energy level marked
as ‘‘0,’’ one can go from A to B by crossing one saddle point. A group of con-
formations like the ones clustered A or B, is called a ‘‘basin.’’ There are three basins
visible in the diagram: A, B, and C. At the energy level marked as ‘‘+1,’’ one can go
from A to B, but to go from basin B to basin C, one has to cross another saddle
point. We say that A and B belong to the same ‘‘superbasin,’’ but C belongs to a
different superbasin. The above structure is depicted in the ‘‘connectivity graph’’
shown in the middle panel, that shows how the various conformations and saddle
points are connected. An easier to understand schematic picture is shown in the right
panel: the solid dots are conformations and they are grouped in their basins. Solid
lines represent transitions through a single saddle point, possible either between
conformations in the same basin, or between basin A and B. Basins A and B
are connected to basin C by a dashed line, in order to signify that they belong to
a different superbasin and one has to cross 2 saddle points instead of 1, for a
transition to C.

Becker and Karplus57 classified in this manner all the minima and saddle points
of a small peptide, met-enkephalin, and found the topological structure shown in
Fig. 32. It should be noted that Frauenfelder and Wolynes,59 from their analysis of
experimental data, had predicted earlier that the energy landscape of proteins would
have the topological structure shown in Fig. 32. In addition, they found that con-
formations that belong to the same basin are separated by low barriers of a few kBT.
Basins are separated from each other by a high barrier. That is, a basin consists of
geometrically similar conformations that are separated by low barriers, and is sep-
arated from another basin by a high barrier. This structure explains the observations
mentioned at the beginning of this section. A constellation of basins can have var-
ious structures,48 one of which corresponds to the well-known ‘‘funnel’’ landscape of
proteins.60

From the dynamic point of view, the system frequently hops among conforma-
tions in the same basin, and it rarely hops to a different basin.
Basin hopping in the conformation space

In the beginning of this section we mentioned that even an MD trajectory that is
several ns long, can sample only a few conformations. With the help of the basin
picture, we now realize that the conformations sampled by MD run, all lie in the
same basin. The reason is that, by definition, only these conformations are separated
by low barriers, which can be overcome in the timescale accessible to MD runs. A
simple corollary is that the MD run would be able to sample more conformations, if
it could somehow be able to hop to a neighboring basin.

Now, imagine that we have two conformations that belong to different basins,
and that we know the height of the barrier that separates these two conformations.
Things become more interesting if we recall that the conformations that belong
to the same basin are geometrically and energetically similar to each other, therefore
we can pick any conformation as representative of that basin. We can make the
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following assumption, first suggested by Berry56 (he recently applied it to a study of
small peptide61): each basin is represented by any conformation in it, and hopping
among basins can be approximated by transitions among their representative con-
formations. In our case, one can use TST to describe these transitions.

This is a summary of the proposed scheme for studying dynamics in conformation
space:
(1)
 Generate many protein conformations.

(2)
 Classify them into basins, and keep one representative conformation for each

basin.

(3)
 Find the energetic barriers between these representative conformations (see next

subsection).

(4)
 Once a set of conformations and the rates of conversions among them have been

determined, we can use a standard algorithm (e.g., kinetic Monte Carlo62) to
describe the dynamics of hopping in the conformation space.
What we gained compared to standard MD simulations, is that the extremely long
trajectories required until the system hops to a different basin, have been replaced by
a transition described by TST and kinetic Monte Carlo. In this way, one is able to
sample many more conformations than with an ordinary MD simulation.

To connect these abstract concepts with the subject of this review paper, let us
imagine that in an enzyme where proton is transferred through tunneling, there are
some conformations that have donor–acceptor distance that is on average closer
than other conformations. Then, conformation fluctuations that bring the protein
towards these favorable for reaction conformations, will strongly enhance the rate.
Unlike the rate-promoting vibrations we discussed earlier, whose timescale were so
fast that several oscillations were needed before the proton is transferred, once the
protein reaches a conformation in which donor and acceptor are close, it stays in
that conformation for long enough time that tunneling takes place in that con-
figuration of donor–acceptor.

The string method for finding reaction pathways

In order to implement the algorithm suggested in the previous subsection, we need a
method for identifying the energetic barrier between two conformations. This is a
specific case of a more general problem: given two states that lie in local minima of
the energy landscape, find the MEP that connects them. This is a difficult problem
that has attracted a lot of activity in the last decade.

The most successful method for identifying the MEP and energetic barrier
between two stable states, is the ‘‘nudged elastic band’’ method.63 This elastic band
is a collection of system images that connect in configuration space the initial and
final stable states. Adjacent system images are connected with fictitious harmonic
strings. If this elastic band lies along the MEP, the force on it is equal to zero. If it is
displaced from the MEP, then the forces acting on it (arising from the protein
potential) will tend to return it towards the MEP. If there were no fictitious springs
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that connected the adjacent system images, the images would relax towards either
the initial or final stable states, i.e. the function of the springs is to keep the system
images well separated. The presence of the fictitious springs guarantees that the
elastic band will slide towards the MEP. The computational procedure is concep-
tually simple (but difficult to implement in practice): interpolate a few images be-
tween initial and final states; connect them with fictitious springs; use the protein
potential to calculate the forces on the system images; Newton’s equations of motion
will make the elastic band slide towards the MEP.

The elastic band method has been applied with remarkable success.63,64 However,
it cannot be applied to problems that have rugged energy landscapes, like proteins.
Recently, a similar method has been developed, that was designed to be applicable
to rugged landscape systems. It is called the ‘‘finite-temperature string method’’.65

The difference with respect to the nudged elastic band method is the following:
again, a chain of system images that connect the initial and final stable states is
formed, but instead of connecting them with fictitious springs, the system images are
assumed to be elements of a string of uniform density. Similarly to the elastic band,
Newtonian dynamics using the protein potential makes the string slide towards the
MEP, and during its descent it stretches, while keeping its property of uniform
density.

The advantage of setting up the chain of images as a string rather as an elastic
band, is that while for the elastic band the dynamics of the fictitious springs have to
be solved explicitly (causing difficulties in rugged landscapes where the springs get
stuck), the string dynamics that keeps its density uniform can be implemented with
the standard SHAKE algorithm of molecular dynamics.

Recently, the string algorithm was used for finding the transition path in Alanine
dipeptide. If one can apply it successfully to a large protein, then this will be the final
missing link in the scheme outlined above for studying dynamics in conformation
space.
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