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Preface

The study of two-dimensional analytic geometry has gone in and out of fashion several times
over the past century, however this classic field of mathematics has once again become popular
due to the growing power of personal computers and the availability of powerful mathematical
software systems, such as Mathematica, that can provide an interactive environment for study-
ing the field. By combining the power of Mathematica with an analytic geometry software
system called Descarta2D, the author has succeeded in meshing an ancient field of study with
modern computational tools, the result being a simple, yet powerful, approach to studying
analytic geometry. Students, engineers and mathematicians alike who are interested in ana-
lytic geometry can use this book and software for the study, research or just plain enjoyment
of analytic geometry.

Mathematica provides an attractive environment for studying analytic geometry. Mathe-
matica supports both numeric and symbolic computations, meaning that geometry problems
can be solved numerically, producing approximate or exact answers, as well as producing gen-
eral formulas with variables. Mathematica also has good facilities for producing graphical
plots which are useful for visualizing the graphs of two-dimensional geometry.

Features

Exploring Analytic Geometry with Mathematica, Mathematica and Descarta2D provide the
following outstanding features:

e The book can serve as classical analytic geometry textbook with in-line Mathematica
dialogs to illustrate key concepts.

e A large number of examples with solutions and graphics is keyed to the textual devel-
opment of each topic.

e Hints are provided for improving the reader’s use and understanding of Mathematica
and Descarta2D.

e More advanced topics are covered in explorations provided with each chapter, and full
solutions are illustrated using Mathematica.
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e A detailed reference manual provides complete documentation for Descarta2D, with com-
plete syntax for over 100 new commands.

e Complete source code for Descarta2D is provided in 30 well-documented Mathematica
notebooks.

e The complete book is integrated into the Mathematica Help Browser for easy access and
reading.

e A CD-ROM is included for convenient, permanent storage of the Descarta2D software.

e A complete software system and mathematical reference is packaged as an affordable
book.

Classical Analytic Geometry

Exploring Analytic Geometry with Mathematica begins with a traditional development of an-
alytic geometry that has been modernized with in-line chapter dialogs using Descarta2D and
Mathematica to illustrate the underlying concepts. The following topics are covered in 21
chapters:

Coordinates e Points e Equations e Graphs e Lines e Line Segments e Cir-
cles o Arcs e Triangles o Parabolas e Ellipses @ Hyperbolas e General Conics e
Conic Arcs e Medial Curves e Transformations e Arc Length e Area e Tan-
gent Lines ® Tangent Circles @ Tangent Conics e Biarcs.

Each chapter begins with definitions of underlying mathematical terminology and develops
the topic with more detailed derivations and proofs of important concepts.

Explorations

Each chapter in Exploring Analytic Geometry with Mathematica concludes with more advanced
topics in the form of exploration problems to more fully develop the topics presented in each
chapter. There are more than 100 of these more challenging explorations, and the full solutions
are provided on the CD-ROM as Mathematica notebooks as well as printed in Part VIII of the
book. Sample explorations include some of the more famous theorems from analytic geometry:

Carlyle’s Circle e Castillon’s Problem e Euler’s Triangle Formula e Eyeball The-
orem e Gergonne’s Point e Heron’s Formula e Inversion e Monge’s Theorem e
Reciprocal Polars e Reflection in a Point e Stewart’s Theorem e plus many more.
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Descarta2D

Descarta2D provides a full-scale Mathematica implementation of the concepts developed in
Ezxploring Analytic Geometry with Mathematica. A reference manual section explains in detail
the usage of over 100 new commands that are provided by Descarta2D for creating, manipulat-
ing and querying geometric objects in Mathematica. To support the study and enhancement
of the Descarta2D algorithms, the complete source code for Descarta2D is provided, both in
printed form in the book and as Mathematica notebook files on the CD-ROM.

CD-ROM

The CD-ROM provides the complete text of the book in Abode Portable Document Format
(PDF) for interactive reading. In addition, the CD-ROM provides the following Mathematica
notebooks:

e Chapters with Mathematica dialogs, 24 interactive notebooks

e Reference material for Descarta2D, three notebooks

Complete Descarta2D source code, 30 notebooks

Descarta2D packages, 30 loadable files

e Exploration solutions, 125 notebooks.

These notebooks have been thoroughly tested and are compatible with Mathematica Version
3.0.1 and Version 4.0. Maximum benefit of the book and software is gained by using it in
conjunction with Mathematica, but a passive reading and viewing of the book and notebook
files can be accomplished without using Mathematica itself.

Organization of the Book
Ezxploring Analytic Geometry with Mathematica is a 900-page volume divided into nine parts:

e Introduction (Getting Started and Descarta2D Tour)

e Elementary Geometry (Points, Lines, Circles, Arcs, Triangles)

Conics (Parabolas, Ellipses, Hyperbolas, Conics, Medial Curves)

Geometric Functions (Transformations, Arc Length, Area)

Tangent Curves (Lines, Circles, Conics, Biarcs)

Descarta2D Reference (philosophy and command descriptions)

DescartazD Packages (complete source code)
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e Explorations (solution notebooks)

e Epilogue (Installation Instructions, Bibliography and a detailed index).

About the Author

Donald L. Vossler is a mechanical engineer and computer software designer with more than
20 years experience in computer aided design and geometric modeling. He has been involved
in solid modeling since its inception in the early 1980’s and has contributed to the theoretical
foundation of the subject through several published papers. He has managed the development
of a number of commercial computer aided design systems and holds a US Patent involving
the underlying data representations of geometric models.
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Chapter 1

Getting Started

1.1 Introduction

The purpose of this book is to provide a broad introduction to analytic geometry using the
Mathematica and Descarta2D computer programs to enhance the numerical, symbolic and
graphical nature of the subject. The book has the following objectives:

e To provide a computer-based alternative to a traditional course in analytic geometry.

e To provide a geometric research tool that can be used to explore numerically and sym-
bolically various theorems and relationships of two-dimensional analytic geometry. Due
to the nature of the Mathematica environment in which Descarta2D was written, the
system can be easily enhanced and extended.

e To provide a reference of geometric formulas from analytic geometry that are not gener-
ally provided in more broad-based mathematical textbooks, nor included in mathemat-
ical handbooks.

e To provide a large-scale Mathematica programming tutorial that is instructive in the
techniques of object oriented programming, modular packaging and good overall system
design. By providing the full source code for the Descarta2D system, students and
researchers can modify and enhance the system for their own purposes.

1.2 Historical Background

)

The word geometry is derived from the Greek words for “earth measure.” Early geometers
considered measurements of line segments, angles and other planar figures. Analytic geometry
was introduced by René Descartes in his La Géométrie published in 1637. Accordingly, after
his name, analytic or coordinate geometry is often referred to as Cartesian geometry. It is
essentially a method of studying geometry by means of algebra. Earlier mathematicians had



4 Chapter 1 Getting Started

(c0)

— readme. txt
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"] Book - «.pf files
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"] MathReader - installationfiles

Figure 1.1: Organization of the CD-ROM.

continued to resort to the conventional methods of geometric reasoning as set forth in great
detail by Euclid and his school some 2000 years before. The tremendous advances made in
the study of geometry since the time of Descartes are largely due to his introduction of the
coordinate system and the associated algebraic or analytic methods.

With the advent of powerful mathematical computer software, such as Mathematica, much
of the tedious algebraic manipulation has been removed from the study of analytic geometry,
allowing comfortable exploration of the subject even by amateur mathematicians. Mathe-
matica provides a programmable environment, meaning that the user can extend and expand
the capabilities of the system including the addition of completely new concepts not covered
by the kernel Mathematica system. This notion of expandability serves as the basis for the
implementation of the Descarta2D system, which is essentially an extension of the capabilities
of Mathematica cast into the world of analytic geometry.

1.3 What'’s on the CD-ROM

The CD-ROM supplied with this book is organized as shown in Figure 1.1. Detailed instruc-
tions for installing the software can be found in the chapter entitled “Installation Instructions”
near the end of the book. The file readme.txt on the CD contains essentially the same infor-
mation as the “Installation Instructions” chapter.

There are four folders at the highest directory level on the CD. The folder AcrobatReader
contains Adobe’s Acrobat Reader (used to view *.pdf files) and the folder MathReader con-
tains Wolfram Research’s MathReader (used to view *.nb files). The folder Book contains a
complete copy of the book in Adobe Portable Document Format (PFD).

The folder Descarta2D contains the software described in this book as shown in Figure 1.2.
These files are organized so that they can easily be installed for usage by Mathematica. The
correct placement of these files on your computer’s hard drive is described in the “Installation
Instructions” chapter.
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— Table of Contents.nb
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Figure 1.2: Organization of the Descarta2D folder.

All of the software packages and explorations in this book were developed on a Pentium
Pro computer system using version 4.0 of the Windows N'T operating system and Mathematica
version 3.0.1. Due to the portability of Mathematica, the software should operate identically
on other computer systems, including other Intel-based personal computers, Macintoshes and
a wide range of Unix workstations. The Adobe pdf files on the CD are also portable and
should be readable on a variety of operating systems.

1.4 Mathematica

In this book an assumption is made that you have at least a rudimentary understanding of
how to run the Mathematica program, how to enter commands and receive results, and how to
arrange files on a computer disk so that programs can locate them. A sufficient introduction
to Mathematica would be gained by reading the “Tour of Mathematica” in Stephen Wolfram’s
book Mathematica: A System for Doing Mathematics by Computer.

The syntax Mathematica uses for mathematical operations differs somewhat from tradi-
tional mathematical notation. Since Descarta2D is implemented in the Mathematica pro-
gramming language it follows all the syntactic conventions of the Mathematica system. See
Wolfram’s Mathematica book for more detailed descriptions of the syntax. Once you become
familiar with Mathematica you will begin to appreciate the consistency and predictability of
the system.
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1.5 Starting Descarta2D

All of the underlying concepts of analytic geometry presented in this book are implemented in
a Mathematica program called Descarta2D. Descarta2D consists of a number of Mathematica
programs (called packages) that provide a rich environment for the study of analytic geometry.
In order to avoid loading all the packages at one time, a master file of package declarations
has been provided. You must load this file at the beginning of any Mathematica session that
will make use of the Descarta2D packages. Once the package declarations have been loaded,
all of the additional packages will be loaded automatically when they are needed. To load the
Descarta2D package declarations from the file init.m use the command

In[1]: << Descarta2D

If this is the first command in the Mathematica session, the Mathematica kernel will be loaded
first, and then the declarations will be loaded. Depending on the speed of your computer this
may take a few seconds or several minutes. After the initial start-up, packages will load at
automatically as new Descarta2D functions are used for the first time. When a package is first
loaded, you may notice a delay in computing results; after the package is loaded, results are
computed immediately and the time taken depends on the complexity of the computation.

The examples in this book that illustrate the usage of Descarta2D were chosen primarily for
their simplicity, rather than to correspond to significant calculations in analytic geometry. At
the end of each chapter a section entitled “Explorations” provides more realistic applications
of Descarta2D. All of the examples in this book were generated by running an actual copy of
Mathematica version 3.0.1. The interactive dialogs of each Mathematica session are provided
in the corresponding chapter notebook on the CD, so very little typing is required to replicate
the output and plots in each chapter. If you choose to enter the commands yourself instead
of using the notebook on the CD, you should enter the commands exactly as they are printed
(including all spaces and line breaks). This will insure that you obtain the same results as
printed in the text. Once you become more familiar with Mathematica and Descarta2D, you
will learn what deviations from the printed text are acceptable.

Plotting Descarta2D Objects

Graphically rendering (plotting) the geometric objects encountered in a study of analytic
geometry greatly enhances the intuitive understanding of the subject. Mathematica provides a
wide variety of commands for plotting objects including Graphics, Plot and ParametricPlot.
There are also specialized commands such as ImplicitPlot and PolarPlot. Each of these
commands has a wide variety of options, giving the user detailed control over the plotted
output.

These Mathematica commands can also be used to plot Descarta2D objects, and, in fact,
the figures found in this book were generated using the Mathematica plotting commands
named above. However, the Descarta2D system provides another command, Sketch2D, for
plotting Descarta2D objects. The Sketch2D command has a very simple syntax as illustrated
in the following example.
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Example. Plot these objects using the Sketch2D command: Point2D[{-1, 2}],
Line2D[2, -3, 1] and Circle2D[{1, 0}, 2]. (The meaning of these geometric ob-
jects will be explained in subsequent chapters; for now it is sufficient to understand
that we are plotting a point, a line and a circle.)

Solution. The Descarta2D function Sketch2D [objList] plots a list of geometric
objects.

In[2]: Sket ch2D[{Poi nt 2D[{-1, 2}], Line2D[2, -3, 1], Gircle2D[{1, 0}, 2]}1;

NFP,OFLDNW

_/

1.6 Outline of the Book

The book is divided into nine sections. The first five sections deal with the subject matter
of analytic geometry; the remaining sections provide a reference manual for the use of the
Descarta2D computer program and a listing of the source code for the packages that implement
Descarta2bD, as well as the solutions to the explorations.

Part I of the book serves as an introduction and begins with the material in this chapter
aimed at getting started with the subject; the next chapter continues the introduction by
providing a high-level tour of Descarta2D. Part II introduces the basic geometric objects
studied in analytic geometry, including points and coordinates, equations and graphs, lines,
line segments, circles, arcs and triangles. Part III continues by studying second-degree curves,
parabolas, ellipses and hyperbolas. In addition, Part III provides a more general study of
conic curves by examining general conics, conic arcs and medial curves.

Part IV covers geometric functions including transformations (translation, rotation, scaling
and reflection) and the computation of areas and arc lengths. The subject of tangent curves is
covered in Part V with specific chapters dedicated to tangent lines, tangent circles and tangent
conics. The final chapter in Part V is an overview of biarc circles, which are a special form of
tangent circles. The intent of this chapter is to illustrate how new capabilities can be added
to Descarta2D.
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Generally, the chapters comprising Parts I through V present material in sections with
simple examples. The examples are sometimes supplemented with Descarta2D and Mathe-
matica Hints that illustrate the more subtle usages of the commands. Each chapter ends with
an “Explorations” section containing several more challenging problems in analytic geometry.
The solutions for the explorations are provided as Mathematica notebooks on the CD, as well
as being listed alphabetically in Part VIII.

Parts VI and VII serve as a reference manual for the Descarta2D system. The reference
manual includes a description of the geometric objects provided by Descarta2D, a browser
for quickly finding command syntax and options, and a listing of the error messages that
may be generated. Part VII provides a complete listing, with comments, of all the packages
comprising Descartaz2D.

Part VIII of the book contains reproductions of the notebooks which provide the solutions
to the explorations found at the end of each chapter. The notebooks are listed in alphabetical
order by their file names. The exploration notebook files may also be reviewed directly off the
CD using Mathematica or MathReader.

Part IX contains the instructions for installing Descarta2D on your computer system as
well as a Bibliography and a detailed index.



Chapter 2

Descarta2D Tour

The purpose of this chapter is to provide a tour consisting of examples to show a few of the
things Descarta2D can do. Concepts introduced informally in this chapter will be studied
in detail in subsequent chapters. The tour is not intended to be a complete overview of
Descarta2D, but just a sampling of a few of the capabilities provided by Descarta2D.

2.1 Points

The simplest geometric object is a point in the plane. The location of a point is specified
by a pair of numbers called the 2- and y-coordinates of the point and is written as (z,y).
In Mathematica and Descarta2D point coordinates are enclosed in curly braces as {z, y}. In
Descarta2D a point with coordinates (z,y) is represented as Point2D [{z, y}]. The following
commands are used to plot the points (1,2), (3,—4) and (-2, 3):

1n[1]: Sketch2D[{Poi nt 2D[{1, 2}], Poi nt2D[{3, -4}],
Poi nt 2D[{-2, 3}1}1;

Mathematica allows us to assign symbolic names to expressions. The commands
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In[2]: pl =Point2D[{1, 2}1;
p2 = Poi nt 2D[ {3, -4}1;
p3 = Poi nt 2D[{-2, 3}1;

assign the names p1, p2 and p3 to the points sketched previously. After a name is assigned,
we can refer to the object by using its name.

In[3]: {pl, p2, p3}

out[3] {Point2D[{1, 2}], Point2D[{3, -4}], Point2D[{-2, 3}]}

Descarta2D provides numerous commands for constructing points. These commands have
the name Point2D followed by a sequence of arguments, separated by commas and enclosed
in square brackets. For example, the command

In[4]: p3 = Poi nt 2D[pl = Poi nt 2D[{-3, -2}], p2 = Poi nt 2D[{2, 1}]]

out (4] Point20[{- 2, -2 }]

constructs a point, named p3, that is the midpoint of two other points named p1 and p2.

2.2 Equations

The underlying principle of analytic geometry is to link algebra to the study of geometry.
There are two fundamental problems studied in analytic geometry: (1) given the equation
of a curve determine its shape, location and other geometric characteristics; and (2) given a
description of the plot of a curve (its locus) determine the equation of the curve. Equations
are represented in Mathematica and Descarta2D in a manner that is very similar to standard
algebra. For example, the linear equation 2x + 3y — 4 = 0 is entered using the following
command:

In[5]: dear[X, Y];
2x¥X +3%xy -4 ==

out[5] -4+2x+3y==0

Mathematica Hint. Mathematica uses the double equals sign, ==, to represent
the equality in an equation; the single equals sign, =, as has already been shown,
is used to assign names. Also, notice that Mathematica sorts all output into a
standard order that may be different than the order you typed.

The left side of the equation above is called a linear polynomial in two unknowns. The general
form of a linear polynomial in two unknowns is given by

Az + By + C.
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Since linear polynomials occur frequently in the study of analytic geometry, Descarta2D pro-
vides a special format for linear polynomials which is of the form Line2D[A, B, C] where A
is the coefficient of the x term, B the coefficient of the y term and C' is the constant term.
Descarta2D also provides functions for converting between linear polynomials and Line2D
objects.

n[6]: Cear [X, Y];
11 =Line2D[2, 3, -4];
polyl =2%Xx +3xy -4,

1n[7]: Pol ynom al 2D[l 1, {x, y}]
out[7] -4+2x+3y

1n[8]: Line2D[pol y1, {x, y}]
out[8] Line2D[2, 3, -4]

Frequently we will also be interested in quadratic equations which represent such curves as
circles, ellipses, hyperbolas and parabolas. The algebraic form of a quadratic equation is

Ax? + Bay + Cy* + Dz + Ey + F = 0.
Descarta2D provides a special form for representing a quadratic polynomial which is
Quadratic2D[A4, B, C, D, E, F]
and functions for converting between polynomials and Quadratic2D objects.

In[9]: Clear [X, YI;
polyl =2%xX"2+3*X*xy +3xy"2-4xX-5xy-3;
gl = Quadratic2D[2, 3, 3, -4, -5, -3];

In[10]: Pol ynomi al 2D[ql, {X, Y}]

out[10] -3-4x+2x2-5y+3xy+3y?

In[11]: Quadratic2D[pol y1, {X, y}]

out[11] Quadratic2D[2, 3, 3, -4, -5, -3]

Equations are often constructed so that they may be solved for numbers that make the
equality true. For example, the quadratic equation in one unknown, 2 — 7z + 10 = 0 is solved
when z = 2 or x = 5. Mathematica provides powerful functions for solving equations. For
example, the Solve command can be used to find the solutions to the equation given above.

In[12]: O ear [X];
Solve[x"2-7%x +10 ==0, Xx]

out[12] {{X -2}, {X->5}}
The Solve command returns solutions in the form of Mathematica rules which are useful in

subsequent computations. We will often need to solve equations in order find the solutions to
geometric problems.
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2.3 Lines

Intuitively, a straight line is a curve we might draw with a straightedge ruler. In mathematics,
a line is considered to be infinite in length extending in both directions. We often think of a
line as the shortest path connecting two points, and, in fact, this is one of the many methods
provided by Descarta2D for constructing a line. Mathematically, a line is represented as a
linear equation of the form

Ar+By+C =0

where A, B and C' are called the coefficients of the line and determine its position and direction.
For example, in Descarta2D the line x — 2y + 4 = 0 is represented as Line2D[1, -2, 4]. The
following command constructs a line from two points.

In[13]: |1 =Line2D[pl = Poi nt 2D[{-3, -1}1, p2 = Poi nt 2D[ {3, 2}]]

out[13] Line2D[-3, 6, -3]

This is the line —3xz + 6y — 3 = 0. We can plot the points and the line to get graphical
verification that the line passes through the two points.

In[14]: Sketch2D[{pl, p2, | 1}1;

-4 -2 0 2 4

We might be interested in the angle a line makes measured from the horizontal. The angle
can be determined using

In[15]: al = Angl e2D[l 1] // N,
a2 =al / Degree;
{al, a2}

out[15] {0.463648, 26.5651}

which indicates that the line makes an angle of approximately 0.463648 radians, or about
26.5651 degrees, measured from the horizontal.

/‘\k\ DescartazD Hint. All angles in Descarta2D are expressed in radians. A radian
MN is an angular measure equal to 180/7 degrees (about 57.2958 degrees). The
Mathematica constant Degree has the value 77/180. Dividing an angle in radians
by Degree converts the angle from radians to degrees.
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We may want to construct lines with certain relationships to another line. For example,
the following commands construct lines parallel and perpendicular to a given line through a
given point.

In[16]: pl =Point2D[{2, 1}];
11 =Line2D[3, 1, -2];
{l 2 = Line2D[pl, |1, Parallel2D],
| 3 = Li ne2D[pl, |1, Perpendi cul ar2D] }

out[16] {Line2D[-3, -1, 7], Line2D[1, -3, 1]}

In[17]: Sketch2D[{pl, |1, 12, 13}];

-4 -2 0 2 4

2.4 Line Segments

Perhaps it is more familiar to us that a line has a definite start point and end point. Such a
line is called a line segment and is represented in Descarta2D as

Segment2D [{xzo, Yo}, {1, y1}]

where (2o, y0) and (x1,y1) are the coordinates of the start and end points, respectively, of the
line segment.

n[18]: Sketch2D[{l 1 = Segnent 2D[{-2, 1}, {3, -2}1}1;

1
0.5
0
-0.5
-1
-1.5

-2
-2 -1 0 1 2 3
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We might want to determine the midpoint of a line segment, and we could use the
Point2D [point, point] function to do so, but Descarta2D provides a more convenient func-
tion for directly constructing the midpoint of a line segment.

In[19]: pl = Poi nt 2D[l 1]
out [19] Poi ntZD[{%, ,%H

In[20]: Sketch2D[{l 1, pl}1;

2.5 Circles

A circle’s position is determined by its center point and its size is specified by its radius. The
standard equation of a circle is

(x—h)?*+(y—k)y> =12

where (h,k) are the coordinates of the center point, and r is the radius of the circle. In
Descarta2D a circle is represented as Circle2D[{h, k}, 7].

n[21]: ¢l =Crcle2D[{1, 2}, 2];
Sket ch2D[ {c1, Poi nt2D[c1]}]1;

4
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As demonstrated by the example, the function Point2D [circle] constructs the center point of
the circle. The function Radius2D [circle] returns the radius of a circle.

In[22]: Radi us2D[cl]

out [22] 2

Descarta2D provides many functions for constructing circles. For example, we can construct
a circle that passes through three given points.

In[23]: pl =Point2D[{1, 2}];
p2 = Poi nt 2D[{-1, 2}1;
p3 = Poi nt 2D[ {0, -2}1;
cl=Circle2D[pl, p2, p3]

1

out (23] Gircle2D[{0, &},

17
8 _‘}

8

In[24]: Sketch2D[{pl, p2, p3, cl}];

2.6 Arcs

Just as a line segment is a portion of a line, an arc is a portion of a circle. We can specify
the span of the arc in terms of the angles the arc’s sector sides make with the horizontal. In
Descarta2D an arc can be constructed using Arc2D [point, r, {61, 62}] (this is not the standard
representation of an arc, it is merely one of the ways Descarta2D provides for constructing an
arc).

In[25]: Al = Arc2D[Poi nt 2D[{2, 1}], 3, {Pi /6, 5Pi /6}1;
Sket ch2D[ {Al, Point2D[{2, 1}]1}1;
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As with a circle, we can construct an arc in many ways. For example, we can construct an
arc passing through three points.

In[26]: pl =Point2D[{2, -1}];
p2 = Poi nt 2D[ {1, 2}];
p3 = Poi nt 2D[{-2, 1}1;
al = Arc2D[pl, p2, p3]

out[26] Arc2D[{2, -1}, {-2, 1}, 1]

In[27]: Sketch2D[{pl, p2, p3, al}];
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2.7 Triangles

Triangles are defined by three line segments connecting three points called the vertices of the
triangle. In Descarta2D a triangle is represented as

Triangle2D [{aﬁl, y1} s {332, y2}, {3?3 > ?JS}]-

In[28]: t1="Triangl e2D[{1, 4}, {8, 8}, {6, 1}1;
Sket ch2D[ {t1}];
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We can inscribe a circle inside a triangle, as well as circumscribe one about a triangle. We
can also compute properties such as its center of gravity.

In[29]: {cl=Circle2D[t1, Inscribed2D],
c2=Circle2D[t1, Circunscribed2D],
pl = Poi nt 2D[t 1, Centroi d2D]} // N

out [29] {Gircle2D[{4.83161, 3.95924}, 1.9364], Gircl e2D[{5. 03659, 5.06098}, 4.17369],
Poi nt 2D[ {5., 4.33333}])

In[30]: Sketch2D[{t1, c1, c2, pl}];

2.8 Parabolas

A parabola is the cross-sectional shape required for a reflective mirror to focus light to a
single point. The standard equation of a parabola centered at (0,0) and opening to the right
is y? = 4fx, where f is the focal length, the distance from the vertez point to the focus. We
can apply a rotation, 6, to the parabola to produce a parabola of the same shape, but opening
in a different direction. In Descarta2D the expression Parabola2D[{h, k}, f, 6] is used to
represent a parabola.
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In[31]: pl = Parabol a2D[{1, 0}, 1/2, 0];
p2 = Parabol a2D[{-1, 0}, 1/2, Pi /2];
Sket ch2D[ {p1, p2}1;

P O F, N WH
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2.9 Ellipses

An ellipse is a shape of the path a planet makes as it orbits the sun. The standard equation
for an ellipse is given by
22 g2
ﬁ + b_2 =1
where 2a is the length of the longer major axis, and 2b is the length of the minor axis. Ellipses
in other positions and orientations may be obtained by moving the center point or by rotating
the ellipse. In Descarta2D the expression E11ipse2D[{h, k}, a, b, 6] is used to represent an
ellipse.
In[32]: el =Ellipse2D[{0, 0}, 2, 1, 0];
e2 = Ellipse2D[{2, 1}, 3, 2, Pi /4];
Sket ch2D[ {el, e2}];

P O K N W
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An ellipse has two focus points that can also be plotted.

In[33]: pts = Foci 2D[e2]

e e nt2D[{2+\/§, 1+J%H Poi ntzD[{Z*ﬁv 1*J%H}
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In[34]: Sketch2D[{e2, pts}];

2.10 Hyperbolas

A hyperbola in standard position has an equation similar to an ellipse that is given by

As with the ellipse, the constants a and b represent the lengths of certain axes of the hyperbola.
The hyperbola plot consists of two separate pieces, called branches, both extending to infinity
in opposite directions. The lines bounding the extent of the hyperbola are called asymptotes.
A second hyperbola, closely related to the first, is bounded by the same asymptotes and
is called the conjugate hyperbola. Hyperbolas can also be rotated in the plane and moved
by adjusting their center points. The expression Hyperbola2D[{h, k}, a, b, 0] is used to
represent a hyperbola in Descarta2D.

In[35]: hl = Hyperbol a2D[{0, 0}, 2, 1, 0];
I ns = Asynpt ot es2D[h1];
h2 = Hyper bol a2D[h1, Conj ugat e2Dj;
Sket ch2D[ {l ns}];
Sket ch2D[ {I ns, h1}];
Sket ch2D[{l ns, h2}];

NPk, OEFLNDN
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2.11 Transformations

We can change the position, size and orientation of an object by applying a transformation
to the object. Common transformations include translating, rotating, scaling and reflecting.
A Descarta2D object can be transformed to produce a new object.

In[36]: el =Ellipse2D[{0, 0}, 2, 1, 0];
Sket ch2D[ {e1l,
Transl at e2D[el, {3, 0}1,
Rot at e2D[el, Pi /2],
Scal e2D[el, 2],
Ref | ect 2D[el, Li ne2D[O, 1, -11]1}1;
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2.12 Area and Arc Length

Curves possess certain properties of interest such as area and length. These properties are
independent of the position and orientation of the curve.

n[37]: cl =Crcle2D[{0, 0}, 2];
{Area2D[cl], CGircunference2D[cl]}

out[37] {4, 4}

Additionally, it may be of interest to compute the arc length of a portion of a curve or
areas bounded by more than one curve. Descarta2D has a variety of functions for performing
such computations.



2.13 Tangent Curves 21

2.13 Tangent Curves

When two curves touch at a single point without crossing, the two curves are said to be tangent
to each other. Descarta2D provides a wide variety of functions for computing tangent lines,
circles and other tangent curves. This example produces the circles tangent to a line and a
circle with a radius of 3/8. There are eight circles that satisfy these criteria.
In[38]: |11 =Line2D[0, 1, -17;
cl=Crcle2D[{0, 0}, 21;

t1l=TangentCircles2D[{l 1, cl1}, 3/8];
Sket ch2D[{l 1, c1, t1}];
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This example produces the four lines tangent to two given circles.
In[39]: cl=Circle2D[{2, 0}, 17;
c2=Crcle2D[{-3, 0}, 2];

t 1 = Tangent Li nes2D[c1, c2];
Sket ch2D[ {c1, c2, t1}];

-
SN

4 -2 0 2 4

Conic curves (ellipses, parabolas and hyperbolas) can also be constructed passing through
points or tangent to lines. The following example constructs four ellipses that are tangent to
three lines and pass through two points.

In[40]: 11 =Line2D[1, O, -17;
| 2 = Li ne2D[0, 1, -17;
|3 =Line2D[{10, 0}, {0, 6}1;
pl = Poi nt 2D[ {2, 3}1;
p2 = Poi nt 2D[ {4, 2}];
t1 = Tangent Coni cs2D[{l 1, |2, 13, pl, p2}] // N,
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Po(d, 0)
P,(0, 0) T

x

Figure 2.1: Triangle altitudes theorem.

In[41]: Sketch2D[{l 1, 12, 13, pl, p2, t1},
Pl ot Range -> {{0, 10}, {0, 6}},
CurvelLengt h2D -> 207;

OFR NWhMOUUIO

2.14 Symbolic Proofs

As a final exercise on our tour of Descarta2D we will use the symbolic capabilities of Mathe-
matica to prove a theorem about the perpendicular bisectors of the sides of a triangle. The
symbolic capabilities of Mathematica allow us to derive and prove general assertions in analytic
geometry. Many of the built-in Descarta2D functions were derived using these capabilities.

Triangle Altitudes. The three perpendicular bisectors of the sides of a triangle
are concurrent in one point. Further, this point is the center of a circle that passes
through the three vertices of the triangle.

Without loss of generality, we pick a convenient position for the triangle in the plane as shown
in Figure 2.1. One vertex is located at the origin, the second on the +z-axis and the third is
arbitrarily placed.
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In[42]: Clear [a, b, dI;
P1 = Poi nt 2D[ {0, 0}1;
P2 = Poi nt 2D[{d, 0}];
P3 = Poi nt 2D[{a, b}];

The perpendicular bisectors of the sides of the triangle pass through the midpoint of each side
and are perpendicular to the side. Each of these lines is constructed using the Descarta2D
command Line2D [point, point, Perpendicular2D].

In[43]: L12 = Li ne2D[P1, P2, Perpendi cul ar 2D];
L13 = Li ne2D[P1, P3, Perpendi cul ar 2Dj;
L23 = Li ne2D[P2, P3, Perpendi cul ar 2D];

By including the semicolon, ;, at the end of each statement, we instruct Mathematica to
suppress the output from these statements. Since we are treating these lines symbolically,
we have no need at this point to examine the output. If you are curious about the form of
lines L12, L13 and L23, they can be examined by entering the command {L12, L13, L23}. We
now intersect these lines in pairs to determine the points of intersection using the Descarta2D
function Point2D [line, line] that constructs the point of intersection of two lines.

In[44]: {P4 = Point2D[L12, L13] // Sinplify,
P5 = Poi nt 2D[L12, L23] // Sinplify}

d a?+b%2-ad

d a?+b%2-ad
g st

out [44] {Poi nt 2D[{ }]. Poi nt2D[{7, >
By inspection, the coordinates of these two points are identical, which proves the first part
of the theorem. To prove the second part of the theorem we determine the distance from the
intersection point to each of the vertex points and show that the distance is the same for all

three vertex points.

In[45]: {d1, d2, d3} = Map[Di st ance2D[#, P41& {P1, P2, P3}1;
(d1-d2, d2-d3, d1-d3} //FullSinplify

out [45] {0, 0, O}

Many of the explorations provided at the end of upcoming chapters were developed using
techniques similar to the one outlined above. Using Mathematica and Descarta2D to prove
general assertions in analytic geometry illustrates the power of these computer programs.

2.15 Next Steps

This completes our high-level tour of Descarta2D. Many of the concepts introduced informally
in this chapter will be studied in detail in subsequent chapters. The explorations provided at
the end of each chapter provide additional insight into the subject matter and will give you an
opportunity to learn the techniques for solving problems using Mathematica. Although many
of the chapters can be studied independently, the concepts introduced in earlier chapters are
the underlying tools used in subsequent chapters. Therefore, a sequential reading and study
of the book is recommended for best understanding and continuity.
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Chapter 3

Coordinates and Points

The fundamental concept of analytic geometry is the one-to-one correspondence established
between points in a plane and (z,y) coordinates. This chapter introduces these concepts and
develops some simple functions involving points.

3.1 Numbers

Integers are the whole numbers used for counting, both negative and positive, as well as zero.
Ratios of integers such as 1/2, 5/7, 4/1 and 23/15 are called rational numbers. Numbers that
can be plotted as distances from a fixed point on a line are called real numbers. Examples are
-8, 0, 2.1387, /2, 5/3 and 7.

If a and b represent real numbers and i = \/—1, the expression a + bi is a complex number.
A complex number is the sum of a real number a and a pure imaginary number bi. The two
complex numbers a + bi and a — bi are called conjugate complex numbers.

In general, this book deals with real numbers, but since we are using algebraic techniques to
study geometry, complex numbers naturally arise in the formulations. Mathematica provides
a variety of ways to represent numbers as summarized in Table 3.1.

Table 3.1: Numbers in Mathematica.

TYPE EXAMPLES

Integer -4, 0, 1, 2, 3
Rational | 7/5, 3/4

Real 1.25, 3.0, -45.0
Complex |3 + 2 I, -2.45 - 3.57 1

27
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Table 3.2: Some common constants in Mathematica.

‘ CONSTANT | Mathematica
T~ 3.14159 | Pi
e~ 2.71828 | E
m/180 ~ 0.0174533 | Degree
i=+—-1]T1

Any given number, integer, rational, real or complex, is a constant. Mathematica provides
symbols for some common numbers that are fixed value constants as shown in Table 3.2.
Sometimes we do not wish to specify what the particular constant is and indicate a general
constant by any one of the letters a, b, ¢, ..., A, B, C, ..., and such constants are referred to
as parameters.

3.2 Rectangular Coordinates

The basic idea in analytic geometry is to establish a one-to-one correspondence between the
points of a plane and number pairs (z,y). This correspondence may be established in many
ways, but the one most commonly used is as follows. Consider two perpendicular lines X’ X
and Y'Y intersecting in the point O. The horizontal line X'X is called the z-axis, and the
vertical line Y'Y the y-axis, and together they form a rectangular coordinate system.

These axes divide the plane into four quadrants labeled I, II, III and IV as shown in
Figure 3.1. The point O is called the origin. When numerical scales are established on
the axes, positive distances = are laid off to the right of the origin and are called abscissas;
negative abscissas are laid off to the left. Positive distances y are drawn upwards and are
called ordinates; negative ordinates are drawn downward. Thus OX and OY have positive
sense (or direction) while OX’ and OY” have negative sense. The unit scales on the z-axis
and the y-axis need not be the same, but problems in analytic geometry often assume the
units are equal on both axes.

Clearly such a system of coordinates can be used to describe the positions of points in the
plane. For example, by going out +3 units on the z-axis and +2 units on the y-axis a point
labeled A is located as shown in Figure 3.2. The point A is said to have the pair of numbers
3 and 2 as its coordinates, and it is customary to write A(3,2) or simply (3,2). Similarly, B
has the coordinates (—2, —1) and lies in the third quadrant. It is evident that for the point Py
pictured in the second quadrant, the z-coordinate is negative and the y-coordinate is positive.
We will write Py (z1,y1) as the general representation of a point P; in the plane at coordinates
r=ux1 and y = 1.

The fundamental principle of analytic geometric is that there exists a one-to-one correspon-
dence between number pairs and points in the plane: to each pair of numbers there corresponds
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Figure 3.1: Coordinate axes and quadrants.

P1(X1, y1) .

Figure 3.2: Coordinates specifying positions in the plane.
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one and only one point and, conversely, to each point in the plane there corresponds one and
only one pair of numbers.

Example. Plot the points with the following coordinates: (—2,3), (4,2) and
(—4,-1).

Solution. Descarta2D represents a point (z,y) as Point2D [{xz, y}1. The function
Sketch2D [objList] plots a list of objects.

In[1]: Sket ch2D[{Poi nt 2D[{-2, 3}1,
Poi nt 2D[ {4, 2}1,
Poi nt 2D[{-4, -1}1}1;

P O K N W

The curly brackets surrounding the point’s coordinates are optional and may be
omitted. DescartazD will automatically add the curly brackets when the point’s
abscissa and ordinate are given as two arguments, Point2D [z, y], as shown below.
A symbolic name may be assigned to a point, and this name can be used later to
refer to the point.

n[2]: pl = Point2D[-2, 3]

out[2] Point2D[{-2, 3}]

In[3]: pl

out[3] Point2D[{-2, 3}]

3.3 Line Segments and Distance

Given two points A and B on the z-axis, or on a line parallel to the z-axis, the line segment
AB from point A to point B extends over a certain number of units of length used as the scale
on the z-axis. If the direction from A to B points to the right, we say that AB is a positive
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yA

Figure 3.3: Distance between points.

segment. On the other hand, if the direction from A to B points to the left, we say that AB
is a negative segment. Then we can assign to the segment AB a positive or negative number
indicating the direction and number of units of the segment. This signed number is indicated
by AB. The absolute value of AB, indicated by |E‘, is a positive number called the length
of the line segment. When the context is clear the symbol AB may be used to represent the
line containing the points A and B, the line segment AB, or the length of the segment, |AB].

To calculate the number (positive or negative) of z-units in the segment AB, let 2 be the
abscissa of B and let x1 be the abscissa of A. Then, if B is to the right of A, the number of
z-units in the segment AB is equal to x5 — 1. We define BA to be the negative of segment
AB. Thus

AB =29 — 21 and BA =1 — 2.

In the same fashion we can define a directed segment C'D on, or parallel to, the y-axis, to
be positive or negative depending on whether the arrow from C to D points up (positive
direction) or down (negative direction). Thus

CD =ys—y1 and DC =y, — yo.

Let Pi(x1,y1) and P(z2,y2) be two points lying in the first quadrant and draw line
segments P;@Q and P»(@ parallel to the coordinate axes as shown in Figure 3.3. By subtracting
the abscissas, P1@Q = xo — x1; similarly subtracting ordinates, PoQ) = y» — y1. Making use of
the Pythagorean Theorem on the right triangle P;QP,, we have

(PLPy)? = (2 —21)° + (y2 —11)°
and the positive distance P P», d, is given by
d=/(za —21)2 + (y2 — y1)%.

The same formula holds true regardless of the quadrants in which the points lie and regardless
of the order in which the points are taken.
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Example. Find the distance between the two points (3, —1) and (—4, —2).
Solution. Taking the points in the given order, we have

d=+/(=4-3)2+ (-2 —(-1))2 = V50 =5V2.
Or, taking the points in the opposite order,
d=+/(3—(=4))2 + (-1 - (=2))2 = V50 = 5V2.

The Descarta2D function Distance2D [coord, coord] computes the distance be-
tween two locations given as coordinates. The function Distance2D [point, point]
computes the distance between two points.
1n[4]: {Di stance2D[{3, -1}, {-4, -2}],

Di st ance2D[Poi nt 2D[ {3, -1}], Point2D[{-4, -2}11}
out(4] {52, 52}
The coordinates of the points may be symbolic and the points themselves may be
named points.
n[5]: O ear [x1, y1, x2, y21;

pl = Poi nt 2D[ {x1, y1}]; p2 = Poi nt 2D[ {x2, y2}1;

Di st ance2D[pl, p2]
out [5] \/ (x1-x2)2+ (yl-y2)2
|
Mathematica Hint. The Mathematica function Clear is used in the previous
example and throughout other examples in this book to insure that variable
names used in the examples are not set to some unintended value from a previous
computation.

/‘\k\ DescartazD Hint. There are several Descarta2D functions that are handy for

MN working with points and coordinates. Coordinates2D [point] returns the (x,y)

coordinates of a point as the list {z, y}. The functions XCoordinate2D [point]
and XCoordinate2D [coord] give the z-coordinate, and YCoordinate2D [point]
and YCoordinate2D [coord] give the y-coordinate.
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Figure 3.4: Midpoint between two points.

3.4 Midpoint between Two Points

The midpoint between two points is the point bisecting the line segment connecting the two
points. If the coordinates of the two points are P; (z1,y1) and P» (22, y2) as shown in Figure 3.4,
then the midpoint, P;2, has coordinates

($1+$2 Y1 +y2>

2 72

Example. Find the midpoint between the points (—2,1) and (3, —2).

Solution. The function Point2D [point, point] returns the midpoint of the two
points. Alternatively, the function Point2D [inseg] returns the midpoint of a line
segment.

In[6]: pl =Point2D[{-2, 1}];
p2 = Poi nt 2D[{3, -2}1;
pl2 = Poi nt 2D[p1, p2]

out [6] Poi ntZDH%, -%}]

3.5 Point of Division of Two Points

Given a directed line segment such as P} P>, we wish to find the coordinates of the point
P which divides P, P, into a given ratio r1/rs as illustrated in Figure 3.5. Let P have the
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Pa(x2, y2)

Figure 3.5: Point of division.

coordinates (z,y) which are to be determined. Sense is important here and P must be located
so that PLP/PPs =11 /rs.
Since AP, PQ and APSP, are similar, it follows that (z — z1)/r1 = (z2 — x)/r2. Solving
this equation for x yields
= Dtz ¥ 3am (3.1)
1+ 72

Similarly, N
Y12 + Y21
Yy=—/"—""-

r1+ 1o
To find the midpoint of the segment Py P, the ratio 71 /re must be unity; hence 1 = 79
and Equations (3.1) and (3.2) specialize to

(3.2)

r1 + X2 Y1+ Y2
r=——— and y="——.

2 2
Equations (3.1), (3.2) and (3.3) also have useful physical interpretations. In (3.1) and (3.2),
let x and y be the coordinates of the center of gravity of masses 1 and ry placed at P, and
Ps, respectively. If the masses are equal, the center of gravity lies halfway between them as
indicated by (3.3).

It is of further interest to note the positions of P for various values of the ratio 1 /re. If
this ratio is zero, then P coincides with P;, and if this ratio is a positive number, P is an
internal point of division. As r1/rq — 400, P — P;. For —o0 < 11 /r2 < —1, P is an external
point of division (in the direction of P} P;). For —1 < r1/ry < 0, P is an external point in the
opposite direction with P; P negative and P, P positive.

(3.3)

Example. Find the point that divides the line segment between the points
Pi(—2,5) and P»(4, —1) into the ratio ry/ry = —2.
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Pa(x2, y2)

Figure 3.6: Point offset a distance towards a point.

Solution. The Descarta2D function Point2D [point, point, r1, ro] returns the
point that divides the line segment between the points into the ratio 1 /ro.

1n[7]: Poi nt 2D[Poi nt 2D[{-2, 5}], Point2D[{4, -1}], -2, 1]

out[7] Point2D[ {10, -7}]

al

Notice that it is invalid for r; + r2 to equal zero in Equations (3.1) and (3.2) as this would

tend to generate a point at infinity.

Point Offset a Distance

Given two points P (z1,y1) and Pa(22,y2) we wish to find the point offset a distance, d, from
P in the direction of P,. We can use the point of division formula from the previous section
to determine the coordinates of the offset point. As shown in Figure 3.6 the desired point is
a point of division between Pi(x1,y1) and P(z2,y2) where 1 /re = d/(D12 — d) and D1s is
the distance between P; and P,. Using the point of division function from Descarta2bD yields

n[8]: O ear [x1, y1, x2, y2, d, D12];
Poi nt 2D[Poi nt 2D[ {x1, y1}], Poi nt2D[{x2, y2}], d, D12 -d]

(-d +D12) x1 +d x2 (7d+D12)y1+dy2H

out (8] Poi nt 2D[{ 512 : 55

Rearranging and using standard mathematical notation produces

d d
P (151 + D—m(@ — 1), Y1 + D—u(y2 - yl))

(3.4)

where d is the (possibly negative) offset distance and Djs is the distance between the two

points.
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Example. Find the point offset a distance 2 from the point (3,1) towards the
point (—2,4).

Solution. The Descarta2D function Point2D [point, point, d] returns the point
offset a distance d from the first point to the second point.

In[9]: Poi nt2D[Poi nt 2D[{3, 1}1, Poi nt2D[{-2, 4}1, 2]

3.6 Collinear Points

Three distinct points Py (x1,y1), Pe(x2,y2) and Ps(xs3,ys) are said to be collinear if they lie
on the same straight line. We can construct any point, Ps, on the line P; P, by selecting
an appropriate value for d and applying Equation (3.4). All such points Py, P> and P5 are
obviously collinear by construction. Now consider the value of the determinant

1 oy 1
T2 Y2 1
z3 ys 1

Mathematica provides the Det command for expanding the value of such a determinant.

In[10]: Clear [x1, y1, x2, y2, x3, y3, d, D12];
Det [{{x1, y1, 1}, {x2, y2, 1}, {x3, y3, 1}}] /.
{X3 ->x1+ (x2-x1) «d/D12, y3 ->yl+ (y2-yl)+d/D12} //Sinplify

out[10] O

We see from Mathematica that for any value of d, the determinant given is zero. Therefore,
the necessary and sufficient condition that three points lie on the same line is given by the
determinant equation

1 y1 1
x2 y2 1 |=0,

x3 ys 1

where the coordinates of the points are Py(z1, 1), Pa(22,y2) and Ps(x3,y3).
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Example. Show that the three points (1,2), (7,6) and (4,4) are collinear.

Solution. The Mathematica function Det [elemList] returns the determinant of
the nested list of elements.

In[11]: Det [{{1, 2, 1}, {7, 6, 1}, {4, 4, 1}}]

out[11] O

Descarta2D provides a specific function for determining whether three points are
collinear: IsCollinear2D [point, point, point] returns True if the points are col-
linear; otherwise, it returns False.

In[12]: 1sCol | i near 2D[Poi nt 2D[ {1, 2}], Poi nt2D[{7, 6}], Poi nt 2D[ {4, 4}1]

out[12] True

~N DescartazD Hint. Using IsCollinear2D is preferable to using the Mathematica
%& function Det for determining collinearity because IsCollinear2D accommodates
slight round-off errors that may occur in the floating point arithmetic in the
computer.

In[13]: Sketch2D[{Poi nt 2D[{1, 2}], Poi nt2D[{7, 6}1,
Poi nt 2D[ {4, 4}]1}, Pl otRange -> {{-1, 8}, {-1, 8}}1;
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3.7 Explorations

COLLINEAR POINTS. ... e e ptscol.nb
Show that the three points (3a,0), (0,3b) and (a, 2b) are collinear.
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DISTANCE USING POLAR COORDINATES. ... ttttitettt it e eeeeaeennn polardis.nb

The location of a point in the plane may be specified using polar coordinates, (r,0), where
r is the distance from the origin to the point, and 6 is the angle the ray to the point from the
origin makes with the +z-axis. Show that the distance, d, between two points (r1,61) and
(r9,02), given in polar coordinates, is

d= \/rf + 12 — 2r1r9 cos(f — 6s).

NON-UNIQUENESS OF POLAR COORDINATES ...+t etiteetieeiieeeineennns. polarung.nb
Show that the polar coordinates of a point (r, ) are not unique as all points of the form

(r,0 +2kmr) and (—r,0 + (2k+ 1))

represent the same position in the plane for integer values of k.

STEWART’S THEOREM. . . .ttt ettt ettt et e e e e e e e stewart.nb

m D n
AB=c

Show that for any AABC' as shown in the figure above the relationship between the lengths
of the labeled line segments is given by

a*m + b*n = c(d* + mn).

COLLINEAR POLAR COORDINATES . . ..ttt tttet it ettt polarcol.nb
Show that the points P;(r1,61), Pa(re,02) and Ps(rs, 63) in polar coordinates are collinear
if and only if

—ryrasin(f; — 62) 4+ rirgsin(6; — 63) — rorssin(f — 63) = 0.

HYPOTENUSE MIDPOINT DISTANCE. ... ttttt ittt ettt e e e tridist.nb
Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.



Chapter 4

Equations and Graphs

Using algebraic techniques to solve geometry problems is the difference in approach between
analytic geometry and planar geometry. Use of such techniques links the algebraic concept of
an equation to the graphical representation of geometry shown in a graph or plot. This chapter
introduces some of the simple algebraic techniques for solving equations that are heavily used
in analytic geometry.

4.1 Variables and Functions

A wariable is a quantity to which arbitrary values may be assigned. Let z be a symbol
representing such a variable and let the quantity represented by the symbol y depend on x.
We call y a function of z and say that z is the independent variable, and y the dependent
variable. Using standard mathematical notation, these statements are written as y = f(x)
and is read “y is a function of z.” The value of the function at x = a is written f(a). These
definitions may be expanded so that a variable z depends on two independent quantities x
and y (as in solid analytic geometry), and relationships of this type are written z = f(x,y).

A function y = f(z) is real-valued if y is real when x is real. If there is but one value of
y for a given value of x, y is said to be a single-valued function. If, for a given value of x,
y has more than one value, y is said to be multiple-valued. The function f(x) is periodic if
f(x + P) = f(z) for some period, P. Usually it is assumed that P is the least number for
which this identity is true.

4.2 Polynomials

A mathematical expression consisting of a sum of various positive integer powers of a variable
is called a polynomial. The largest exponent that appears in a polynomial is called the degree
of the polynomial. Polynomials of low-degree have special names as shown in Table 4.1.
Polynomials can involve more than one variable. For example the polynomial = + 2y + 3 is
a linear polynomial in two unknowns and 22 + 3zy + 2y? — 22 + 4 is a quadratic polynomial in
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Table 4.1: Low-degree polynomials.

DEGREE ‘ NAME ‘ EXAMPLE
0 Constant 3
1 Linear xz+1
2 Quadratic | az?+bx+c
3 Cubic =2+ 7
4 Quartic | 3t* — 2t + 17
5 Quintic s°—1

two unknowns. Descarta2D provides special objects, called equation objects, for representing
linear and quadratic polynomials in two unknowns (see Table 4.2).

Example. Convert the polynomials 4z — 2y + 1 and 22 — 3zy + 3z — 2y + 4 into
equivalent Line2D and Quadratic2D objects. Perform the inverse conversions.

Solution. Line2D[poly, {z, y}]1 and Quadratic2D[poly, {z, y}] convert linear
and quadratic polynomials into equivalent Line2D and Quadratic2D objects. The
functions Polynomial2D [line, {z, y}] and Polynomial2D[quad, {z, y}] convert
Line2D and Quadratic2D objects, respectively, into polynomials.

n[1]: O ear [X, Y];

{I1=Line2D[4*x -2xy +1, {X, Y}],
gl =Quadrati c2D[x"2 -3 *x*y +3*X-2%y +4, {X, y}1}

out[1] {Line2D[4, -2, 1], Quadratic2D[1, -3, 0, 3, -2, 4]}

n[2]: {Polynom al 2D[l 1, {x, y}1, Pol ynonm al 2D[g1, {x, Yy}1}

outf2] {1+4x-2y, 4+3x+x?-2y-3xy}

Table 4.2: Descarta2D equation objects.

PoLYNOMIAL

Descarta2D OBJECT

Ax+ By+C

Line2D[A, B, C]

Az? + Bry +Cy*>+ Dz + Ey+ F

Quadratic2D[A, B, C, D, E, F]
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OBJECTS

Line2D[a, b, c]
Quadratic2Dl[a, b, ¢, d, e,

/ ﬂ\\@

axr +by+c ar+by+c==0
ar? +bxy+cy’+de+ey+f || ax? +bry+cy?+de+ey+ f==0

PoLYNOMIALS EQUATIONS

Figure 4.1: Descarta2D objects, polynomials and equations.

4.3 Equations

If a function of a single variable, f(x), is set equal to zero, the relation f(x) = 0 is called an
equation. This equation imposes a condition on the variable x which then can assume only
certain values. For example, if Az + B =0, then x can take on only one value, z = —B/A. If
the equation is sinz = 0, x can assume an unlimited number of values of the form k7, where k
is any integer. The process of finding the values of x that satisfy the equation is called solving
the equation. The values of 2 which satisfy f(z) = 0 are called the solutions or roots of the
equation. All of the real solutions of f(x) = 0 may be represented by points on a line such as
the z-axis. These points constitute the graph of the equation in one dimension.

If a function of two variables, f(z,vy), is set equal to zero the relation f(x,y) = 0 is also
an equation. But this equation permits one of the variables to be independent, while the
other is dependent and a function of the first. For example, f(z,y) = 0 might be solved for
y in terms of z, yielding y = g1(z), indicating that x is the independent variable and y the
dependent variable. Or f(z,y) = 0 might be solved for z yielding = g2(y) interchanging the
independent and dependent variables.

In addition to representing polynomials, the Line2D and Quadratic2D objects may also
be used to represent equations (the implicit assumption is that they represent polynomials
set equal to zero). Figure 4.1 shows the relationships between polynomials, equations and
Descarta2D equation objects. Table 4.3 summarizes the Descarta2D functions that accomplish
the conversions labeled 1 to 4 in Figure 4.1.

Example. Convert the Descarta2D linear equation object Line2D[2, 3, -1] into
an equivalent Mathematica equation. Similarly, convert the Descarta2D quadratric
object Quadratic2D[1, -2, 2, 3, -3, 7] into a Mathematica equation.

Solution. The Descarta2D function Equation2D [line, {z, y}] converts a Line2D
object into a Mathematica equation. The function Equation2D[quad, {z, y}]
converts a Quadratic2D object into a Mathematica equation.
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Table 4.3: Descarta2D conversion functions.

‘ ‘ Descarta2D FUNCTION = RESULT

1 | Line2D[ax + by + ¢, {z, y}]1 = Line2D[a, b, c]

Quadratic2D[az? + bry + cy? +dx +ey + f, {z, y}] =
Quadratic2D[a, b, c, d, €, f]

2 | Polynomial2D[Line2D[a, b, c1, {z, y}] = ax +by+¢

Polynomial2D[Quadratic2Dla, b, ¢, d, e, f1, {z, y}]1 =
ax® + by + cy® + dz + ey + f

3 | Equation2D([Line2D[a, b, ], {z, y}] = ax +by+c==10

Equation2D[Quadratic2Dla, b, ¢, d, ¢, f1, {z, y}1 =
ax? +bxy +cy’ +dr+ey+f==0

4 | Line2D[ax + by + ¢ ==0, {z, y}] = Line2D[a, b, ]

Quadratic2D[az? + bay + cy? +dz + ey + f == 0, {z, y}] =
Quadratic2Dla, b, c, d, €, f]

In(3]: Clear[X, yI;
{Equat i on2D[Li ne2D[2, 3, -11, {X, y}1,
Equati on2D[Quadr ati c2D[1, -2, 2, 3, -3, 7], {X, Y}1}

out[3] {-1+2x+3y==0, 7+3x+x?>-3y-2xy+2y?==0}

4.4 Solving Equations

In our study of analytic geometry we will often need to solve linear and quadratic equations.
We will also need to solve systems of two or more equations. Mathematica provides functions
for solving individual equations and systems of equations, either exactly (the Solve function)
or numerically (the NSolve function). The following subsections illustrate the use of these
Mathematica functions.

One Linear, One Unknown

The equation ax 4+ b = 0 is a linear equation in one unknown. By simple algebra, the solution
to this equation is £ = —b/a. The equation is invalid (or trivial) and has no solution if a = 0.
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Example. Solve the equation 3z + 12 = 0.

Solution. The Mathematica function Solve [egn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

In[4]: O ear [X];
Solve[3x +12 ==0, x]

out[4] {{X > -4}}

One Quadratic, One Unknown

The quadratic equation az? + bz + ¢ = 0 has two solutions

. —b+ Vb2 — dac

2a

The expression under the radical, D = b — 4ac, is called the discriminant of the equation and
determines the type of solutions admitted by the equation. Assuming the coefficients are real
numbers, D > 0 indicates that the equation has two real and distinct solutions; if D = 0 the
equation has two real solutions that are equal; and if D < 0 the equation has two complex
solutions that are conjugates of each other.

Example. Find the solutions of the equation 322 — 4z — 5 = 0.

Solution. The Mathematica function Solve [egn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

1n[5]: O ear [X];
Solve[3x"2-4x-5==0, X]

outrs) ({x» 5 (2-V19)}, (x5 (24+/19)})
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Two Linears, Two Unknowns

A list of two or more equations that are to be solved simultaneously is called a system of
equations. Consider the system of two linear equations

a1z +biy+c1 =0 and asx + by + co = 0.
Simple algebra yields the formulas for x and y that solve the two equations:

blcg — b2(31 agC1 — a1C2

arby — azby arby —agby

If the denominator, a1bs — asby, is equal to zero the equations have no solution and are called
mconsistent.

Example. Find the solution of the two linear equations x — 3y +4 = 0 and
20 +5y—3=0.

Solution. The Mathematica function Solve[eqnList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.

n[6]: Cear[X, Y];
Solve[{x -3y +4==0, 2x+5y-3==0}, {X, y}]

out[6] {{x->-1, y->1}}

One Linear, One Quadratic, Two Unknowns

Consider the linear and quadratic equations

a1z +b1y+c1 =0 and
asx? + boxy + 02y2 + doz + ey + f2 = 0.

In the general case the system of these two equations can be solved by first solving the
linear equation for one of the variables, say x, in terms of the other, y. The expression for
x is then substituted into the quadratic equation, yielding a somewhat more complicated
quadratic equation in y alone. The quadratic equation in one variable is then solved yielding
two values for y which may then be substituted back into the linear equation to determine
the corresponding values of . While this solution technique is straightforward, it produces
somewhat complicated expressions for x and y, and special cases must be handled individually
(for example, if the linear equation has no y term, then the procedure must be altered to solve
for x instead).
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Example. Solve the system of equations
3c4+4y—1=0 and 2224+ 9%+ 62 —4y+1=0

using the Mathematica Solve command.

Solution. The Mathematica function Solve[eqnList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.

In(7]: Clear[X, yI;
ans =Solve[{3x+4y-1==0, 2x"2+y"2+6x-4y+1==0}, {X, y}]

out (7] {{x > gy (-69-4/295 ), y > 4+ (62+3+/295 )},
{xﬁ%(-sngﬁ), ye% (62-3+/295)}}

These somewhat complicated solutions can be approximated by decimal numbers
using the Mathematica N function.

In[8]: N[ans]

out[8] {{X > -3.35859, y >2.76894}, {X - -0.00726205, y 0. 255447} )}

| |

Two Quadratics, Two Unknowns
The system of two quadratic equations in two unknowns

az? +bixy +ecy? +dix+ey+ f1=0 and
asx? + bowy + coy® + dox + €2y + fo =0

can be solved algebraically using a technique involving a pencil of the two quadratic equations.
This technique will be discussed in more detail in later chapters. Even though the technique
can yield a symbolic formula for the solutions, such a formula is of no practical value, and is
riddled with special cases. In spite of these complications, Mathematica can solve such systems
of equations with numerical coefficients, both in exact form and approximated numerically.
These solutions are very useful in the study of conic curves introduced in later chapters.

Example. Find approximate numerical solutions for the system of equations
322 + 22y —4y? — 22— 3y —4=0
22 —dry+ > +3x+4y+1=0

using the Mathematica NSolve command.
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Solution. The Mathematica function NSolve [egnList, varList] returns a list of
numerical solutions for a system of equations in several variables. The solution(s)
are returned in the form of Mathematica rules. The results shown here were
computed using Mathematica Version 3.0.1. Version 4.0 computes the same roots,
but returns them in a different order.

In[9]: Clear[X, yI;
NSol ve[{3X"2 +2Xxy -4y"2-2x-3y-4==0,
XN2-4Xxy +y"2+3X+4y+1==0}, {X, y}]

out[9] {{X > -0.955121, y »0.120031},
(x - 0.476004 - 0. 298543 |, y - -0. 268381 + 0. 9622351 },
(x - 0.476004 + 0. 298543 |, y > -0. 268381 - 0. 9622351 },
(X - 3.81264, y - 3. 46435} }

Notice that in this example two of the solution pairs involve only real numbers,
and two involve complex numbers. The complex solutions are a conjugate pair.

/‘\k\ Descarta2D Hint. Descarta2D provides the function Solve2D to supplement
MM the capabilities of the Mathematica Solve function. It provides specialized capa-
bilities that are useful in the implementation of the Descarta2D packages. Refer
to the Descarta2D references for a detailed description of the Solve2D function.

4.5 Graphs

Consider that F'(z,y) = 0 has been solved for y so that y = f(z). We wish to give a geometric
interpretation to the equation y = f(z). Now if a value, say x1, is assigned to x, then, if f(z)
is single-valued, there will be determined a single value y, say y;. Another value of x, say xo,
will produce a value y2. If f(x) is multiple-valued, there will be several values of y for a given
2. In any event the real number pairs (z1,y1) which satisfy y = f(z) may be plotted in two
dimensions as points in the plane. The aggregate of these points constitutes the graph or plot
of the equation y = f(z) or of the function f(x).

This is one of the central problems in plane analytic geometry: given a function y = f(x),
to plot its graph or to represent it geometrically. We sometimes say that the graph of f(z) is
the locus of f(x). The word locus, in general, carries with it the idea of motion. Thus, the
curve traced by a moving point is called the locus of the point. Such a locus is also referred
to as a curve in the plane.

Through the study of equations much can be learned about the geometric properties of
graphs. Such analysis is one of the roles of analytic geometry. In the study of an equation
y = f(z) there are many analyses that can be made in order to intuitively understand the
behavior of the graph. Mathematica and Descarta2D can be used to aid in this understanding.
Four properties of significant interest in analytic geometry are
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Intercepts The points at which the curve crosses the z- and y-axes.

Extent The regions of the plane to which the curve is confined and regions where it tends to
infinity.

Symmetry The lines in which the reflection of the curve is a mirror image of the curve itself.
Cases of interest include symmetry about the z- or y-axes, symmetry about the origin,
and symmetry about the lines y = z or y = —x.

Asymptotes The behavior of an unbounded curve in the neighborhood of infinity, where
either x, y, or both become infinite. In particular, it may happen that the distance
from a point P on the curve to some fixed line tends to zero. Such a line is called an
asymptote of the curve.

The set of all points which satisfy a given condition is called the locus of that condition.
An equation is called the equation of the locus if it is satisfied by the coordinates of every
point on the locus and by no other points. There are three common representations of the
locus by means of equations:

Rectangular equations which involve the rectangular coordinates (z,y)
Polar equations which involve the polar coordinates (r, 6)

Parametric equations which express x and y (or r and 6) in terms of a third independent
variable called a parameter.

This book focuses on rectangular and parametric equations, with polar equations covered in
the explorations.

4.6 Parametric Equations

It is often advantageous to use two equations to represent a curve instead of one. The z-
coordinate of a point on the curve will be given by one equation expressing x as some function
of a parameter, say 6 or t, and the y-coordinate will be given by another equation express-
ing y as a function of the same parameter. Such equations are called parametric equations.
Upon eliminating the parameter between the two equations the implicit equation, in the form
f(x,y) =0, of the curve may be found. Some loci problems are treated most readily by means
of parametric equations. Parametric equations are also the most natural means for generating
a sequence of points on a curve, such as those needed to plot the curve. Since a parameter
may be chosen in many ways, the parametric equations of a given curve are not unique, and
in some cases they will only represent a portion of a curve.

Example. Find parametric equations of the locus of a point as it “orbits” about
the origin at a distance of 2 units.
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Solution. Let the parameter 8 be the angle measured counter-clockwise from the
~+z-axis that a line segment of length 2 sweeps when anchored at the origin (0, 0).
Using trigonometry the z- and y-coordinates of the end point of the line segment
are given by the parametric equations

xr =2sinf and y = 2cosé.

The locus of these parametric equations is a circle. In Mathematica a parametric
curve may be plotted using ParametricPlot [{z(t), y(t)}, {t, t1, t2}] where x(¢)
and y(t) are the parametric equations of the curve, ¢ is the parameter, and ¢ and
to are the start and end values of the parameter.

In[10]: Clear [t];
ParanetricPlot [{2Sin[t], 2Cos[t]}, {t, O, 2Pi},
Aspect Rati o -> Automatic];

| |
In our study of curves in the plane we will examine both implicit and parametric equations
for the curves.
4.7 Explorations

DETERMINAN TS . ¢ o vttt ettt e e e e e e e e e e e e e e e e e deter.nb

Determinants often provide a concise notation for expressing relationships in analytic geom-
etry. Show that the expanded algebraic form for the 2 x 2 determinant

al b1

az by

is given by —asb; + a1b2. Show that the expanded algebraic form for the 3 x 3 determinant

ar b1 <
az by ¢

a3 bz c3
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is given by —asbaci + asbsci 4+ asbico — a1bsca — asbics + apbacs.

CRAMER’S RULE (TWO EQUATIONS). ..t tttttitei et cramer2.nb
Show that the solution to the system of two linear equations in two unknowns

axr+biy+cs = 0
a2 +by+cy = 0
is given by the determinants
—c1 b a —G
—C2 b q ag —C2
T = ) and y o) )
where
a; b
p—|® 0
ag b2
CRAMER’S RULE (THREE EQUATIONS). ..o\ttt cramer3.nb

Show that the solution to the system of three linear equations in three unknowns

axr+by+ciz+di = 0
a2 +boy +coz+de = 0
asxr +bsy+c3z+ds = 0
is given by the determinants
—d1 b1 C1 aiq —d1 C1 aq b1 —d1
—dg bg C2 a9 —dg C2 a9 bg —dg
—d3 b3 «c3 a3 —d3z c3 a3 bz —ds
T = o) , Y= o) , and z = o)
where
al b1 C1
D= a9 bg C2
a3 bz c3
POLAR EQUATIONS. .. e polareqn.nb

A curve in polar coordinates may have more than one equation. A given point may have
either of two general coordinate representations

(r,0 + 2km),
(_T7 0+ (Zk + 1)7T)a
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for any integer k. Hence a given curve r = f(#) may have either of the two equation forms

r = f(0+2kn),
-r = f(@+ 2k+1)m).

The first equation reduces to r = f(f) when k = 0, but may lead to an entirely different
equation of the same curve for another value of k. Similarly, the second equation may yield
other equations of the curve. Show that in spite of the potential for multiple equations in
polar coordinates, a linear equation Az + By 4+ C' = 0 has only one representation in polar
coordinates given by

r(Acosf + Bsinf) + C = 0.
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Lines and Line Segments

The curve with the simplest equation is a straight line. There are many forms the equation
can exhibit, depending on how we wish to construct the line. This chapter develops in detail
the analytic geometry of a line and its close relation, the line segment.

5.1 General Equation
Every linear equation in two unknowns can be written in the form
Az + By+C=0.

The graph of such a linear equation is a straight line. In Descarta2D the line Az + By+C =0
is represented as Line2D[A, B, C]. Points (z,y) whose coordinates satisfy the equation
Az 4+ By + C = 0 are said to be on the line.

A line segment is the set of points on a line between two points on the line, Py(xo,yo) and
Py(x1,y1). In DescartazD a line segment is represented as Segment2D [coords, coords] where
the coords are lists of the (z,y) coordinates of the start and end points of the line segment.

Example. Plot the lines 2z —3y+1 =0 and x+2y+2 = 0. Plot the line segment
between the points (—1,2) and (3, —1).

Solution. The Descarta2D function Sketch2D [objList] plots a sketch of the ob-
jects in the object list.

In[1]: Sket ch2D[{Li ne2D[2, -3, 1], Line2D[1, 2, 2],
Segment 2D[{-1, 2}, {3, -1}1}1;

51
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NPFPOEFPDMNW

-3

4 -2

Example. Determine which of the points (—1,1), (2,2), (3,1) and (—3,—2) are

on the line 2z — 3y +1 = 0.

Solution. The Descarta2D function Is0n2D [point, line] returns True if the point

is on the line.

n[2]: | 1=Line2D[2, -3, 11;

1n[3]: {IsOn2D[pl = Poi nt 2D[{-1, 1}], | 1],
| sOn2D[p2 = Poi nt 2D[ {2, 5/3}1, |11,
| sOn2D[p3 = Poi nt 2D[ {3, 1}], |17,
I sOn2D[p4 = Poi nt 2D[{-3, -5/3}], 111}

out[3] {Fal se, True, Fal se, True}

In[4]: Sketch2D[{l 1, pl, p3}1;
Sket ch2D[{l 1, p2, p4}];

NF,OFLPDNOW

NF,OFLPDNOW




5.1 General Equation 53

Figure 5.1: Inclination and slope of a line.

Inclination and Slope

The angle, 6, measured counter-clockwise from the +z-axis to a line, is called the inclination
of the line. The tangent of this angle, tan 6, (generally designated by the letter m) is called
the slope of the line. It is evident from Figure 5.1 that the slope of line P; P is given by

Y2 — Y1

m = tanf = .
T2 —T1

The formula is independent of the position and order of the two points involved.
Let L = Az + By + C = 0 be the general equation of a line. It is clear that the points
(=C/A,0) and (0, —C/B) are on the line since they satisfy the equation of the line. Therefore,

the slope of L is given by
_ 0-(=C/B) A

"T=c/A -0 B
and the angle of inclination, § = tan=! (—A/B).
The slope of the line containing a line segment from point (xg,yo) to point (z1,y1) can be
determined directly from the formula given for lines as

Y1 — Yo
m=-—".
1 — o

Example. Find the angle of inclination (in degrees) and the slope of the line
x — 1y +4 = 0. Find the slope of the line segment between the points (—2,1) and
(3,2).

Solution.  The Descarta2D function Angle2D[line] returns the inclination of
a line (in radians); the function Slope2D [line] returns the slope of a line. The
function Slope2D [Inseg] returns the slope of the line containing the line segment.
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n[5]: | 1 =Line2D[1, -1, 4];
{Angl e2D[l 1] / Degree // N, Sl ope2D[l 1],
Sl ope2D[Segnent 2D[ {1, -2}, {3, 2}11}

out (5] (45., 1, 2}

Mathematica Hint. The Mathematica symbol Degree equals the constant
7/180. In the previous example dividing by Degree converts the angle from
radians to degrees. The Mathematica function N[expr] produces a numerical
approximation of an expression. The syntax expr //N is equivalent to N[ezpr].

5.2 Parallel and Perpendicular Lines

If two lines have the same slope they are called parallel lines. If two lines share all their points
they are said to be coincident; coincident lines are also considered to be parallel. Two lines
are perpendicular if the angle between them is a right angle. Let m; = tan6; and mq = tan s
be the slopes of two perpendicular lines. Since

T
62 - 61 i 5
T
tanfs = tan (91 + 5)
my = —cotb;
B 1
o tan 6;
B 1
= o

Therefore, the slopes of two perpendicular lines are negative reciprocals of each other related
by the equation, m; = —1/mg. Descarta2D provides functions for querying whether pairs of
lines are parallel or perpendicular.

Example. Determine which of the following pairs of lines are parallel:
(a) 20 —3y+4=0and -4 +6y—3=0,
(b)x+2y—3=0and -2z 4+y—1=0, and
(¢)3z—4y+2=0and 2z +4y—1=0.

Additionally, determine which pairs are perpendicular.
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Solution. The function IsParallel2D[line, line] will return True if the two
lines are parallel; otherwise, it returns False. IsPerpendicular2D [line, line]
returns True if the two lines are perpendicular; otherwise, it returns False.

In[6]: |1 =Line2D[2, -3, 4]; |2 =Line2D[-4, 6, -3];
| 3 =Line2D[1, 2, -3]; |4 =Line2D[-2, 1, -17;
|5 =Line2D[3, -4, 2]; |6 =Line2D[2, 4, -1];

n[7]: {{lsParallel2D[l 1, |2], |sPerpendicul ar2D[l 1, |2]},
{I sParal |l el 2D[I 3, 1 4], |sPerpendi cul ar2D[l 3, | 4]},
{I sParall el 2D[I 5, 1 6], | sPerpendi cul ar2D[I 5, 16]}}

out[7] {{True, Fal se}, {False, True}, {Fal se, False}}

Therefore, the lines in pair (a) are parallel, the lines in pair (b) are perpendicular,
and the lines in pair (c¢) are neither parallel or perpendicular.

In[8]: Sketch2D[{l 1, |2}];
Sket ch2D[{I 3, | 4}1;
Sket ch2D[{l 5, 1 6}];

NFPORFRNW
NFORFRNW
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5.3 Angle between Lines

The angle between two non-intersecting (parallel or coincident) lines is zero (radians or de-
grees). In the case of two intersecting lines, Ly and Lo, let 612 be the angle between the lines
measured counter-clockwise from L1 to Lo. Since 015 = 65 — 01, it follows that

tanfy — tan @
tan 1o = tan (02 — 61) = 1T tand. tan 6y ta2n 7 tan 912

which, in terms of slopes of the lines, yields

ma — My
tanfig = ——.
1+ mimsg
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Example. Determine the angle (in radians) between the lines « 4+ 3y — 4 = 0 and
—2x+2y+1=0.

Solution. The Descarta2D function Angle2D [line, line] returns the angle between
the two lines (measured in radians from the first line to the second line).

In[9]: Angl e2D[l 1 =Li ne2D[1, 3, -4], | 2 =Line2D[-2, 2, 11] // N
out[9] 1.10715
The result, 1.10715 radians, is approximately 63.4349°.

n[10]: Sketch2D[{l 1, | 2}1;

\
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n[11]: Angle2D[l 2, 11] //N

out[11] 2.03444

The angle between the lines taken in the opposite order is 2.0344 radians (approx-
imately 116.565°) which is the supplement of the first angle (63.435° 4+ 116.565° =
180°).

5.4 Two-Point Form

A line is determined by two distinct points on it, Pi(x1,y1) and Py(z2,y2). Let P(z,y) be
any other point on the line as illustrated in Figure 5.2. Then by similar triangles

Y=y _ Y2
r — X To — X1

which is called the two—point form of a line. The two—point form may also be written as

(. —21)(y — y2) = (. — 22)(y — Y1)
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Figure 5.2: Two—point form of a line.

In general form the line is given by

— (e —y)z+ (z2 — 1)y + 21y2 — 2291 = 0.

In determinant form the equation is given by

r1 Y1 1 = 0.
T2 Y2 1

Example. Determine the line through the points (—2,—1) and (3, 2).

Solution. The Descarta2D function Line2D [point, point] constructs the line
through the two points. Alternately, the function Line2D [Inseg] constructs a line
defined by the start and end points of a line segment.

In[12]: pl =Point2D[{-2, -1}1;
p2 = Poi nt 2D[ {3, 2}1;
{I 1 = Li ne2D[p1, p2], | 2 = Li ne2D[Segnent 2D[p1, p2]]1}

out[12] {Line2D[-3, 5, -1], Line2D[-3, 5, -1]}

In[13]: Sketch2D[{l 1, p1, p2}1;
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The Descarta2D function Line2D[{z1, y1}, {2, y2}] is also provided to allow
construction of a line by specifying two point coordinates.

In[14]: Line2D[{-2, -1}, {3, 2}]

out[14] Line2D[-3, 5, -1]

Collinear Points

In a previous chapter it was demonstrated that the three points P;(z1,y1), Pa(22,y2) and
Ps(x3,ys3) are collinear if their coordinates satisfy the determinant equation

1 oy 1
T2 Y2 1 = 0.

z3 ys 1

This condition may be stated in a more intuitive form using the two—point form of a line.
The line defined by P, and P» must be satisfied by P; yielding the condition

—(y2 —y1)x3 + (x2 — 1) y3 + T1y2 — 2291 = 0

which can be put into the more symmetrical form

y1(xe — x3) + y2(x3 — 1) + y3(z1 — x2) = 0.

5.5 Point-Slope Form

Y2 — 1
T2 — T1

Since m =

, the two—point form of a line can be reduced to the point—slope form

y—y=m(x—x1)
as shown in Figure 5.3. In general form the equation of the line is

mx —y + (y1 —may) = 0.
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P1(x1, Y1)

A |

Figure 5.3: Point—slope form of a line.

A vertical line cannot be represented in point—slope form. In determinant form the point—slope
form is given by

r1 Y1 1|=0.
1 m O

Example. Determine the line through the point (1,2) with a slope of 1/2.

Solution. The Descarta2D function Line2D [point, m] constructs a line through
the point with a given slope, m.
In[15]: | 1 =Line2D[pl = Poi nt 2D[ {1, 2}1, 1/2]

1 3

out[15] Line2D[ 5, -1, ]

In[16]: Sketch2D[{pl, | 1}1;

R O F N W
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Line Through a Point Parallel to a Line
A line through a given point Pj(z1,y1) parallel to a given line
Asx 4+ Boy+Cs =0

would have a slope m = —As/Bs, and using ma — y + (y1 — mz1) = 0 yields

Asx + Bay — (Asx1 + Bayr) = 0.
The equation can also be written

Bo(z —21) = A2(y — y1).
In determinant form the equation is
T Y 1

X1 Y1 1 =0.
By, —As 0

Line Through a Point Perpendicular to a Line
A line through a given point Pj(z1,y1) perpendicular to a given line
Asx 4+ Boy+Cs =0
would have a slope m = —1/mg = Bs/As, and using mz — y + (y1 — mz1) = 0 yields
Bz — Agy + (A2yr — Boxy) =0,

or, in a simpler form,
As(y — 1) = Ba(z — z1).

In determinant form the equation is

r y 1
X1 Y1 1 =0.
As Bs 0

Example. Find the lines through the point (2,1) which are parallel and perpen-
dicular to the line 3z — 2y +1 = 0.

Solution. Line2D [point, line, Parallel2D] constructs a line through the point
and parallel to the line and Line2D [point, line, Perpendicular2D] constructs a
line through the point and perpendicular to the line.
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In[17]: pl =Poi nt2D[{2, 1}1;
|1 =Line2D[3, -2, 1];

In[18]: {l 2 =Line2D[pl, |1, Parall el 2D],
| 3 = Li ne2D[pl, |1, Perpendi cul ar 2D] }

out[18] {Line2D[-3, 2, 4], Line2D[-2, -3, 7]}

n[19]: Sketch2D[{pl, |1, 12, |13}];

-2 0 2 4

N DescartazD Hint. The function Line2D [point, line] returns the same results
\ay as Line2D [point, line, Perpendicular2D]; the keyword Perpendicular2D is op-
tional and may be omitted.

In[20]: Line2D[pl, 11]

out[20] Line2D[-2, -3, 7]

Horizontal and Vertical Lines Through a Point

Given a point P;(z1,y1), a horizontal line whose slope is 0 will have the equation y — y; = 0.
In determinant form the equation is

z y 1
r1 Y1 1 = 0.
1 0 O

Similarly, a vertical line (whose slope is infinite) has the equation z—z; = 0 and its determinant
equation is

r1 Y1 1 |=0.
0 1 0
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Example. Find the horizontal and vertical lines through the point (3,2).

Solution. The function Line2D [point, 0] constructs a horizontal line through the
point. The function Line2D [point, Infinity] constructs a vertical line through
the point.

In[21]: pl = Point2D[{3, 2}];
{I 1 =Line2D[pl, 0], |12 =Line2D[pl, Infinity]}

out[21] {Line2D[O, -1, 2], Line2D[1, 0, -3]}

n[22]: Sketch2D[{pl, |1, 12}7;

“4-20 2 4

5.6 Slope-Intercept Form

Specializing the point P (z1,y1) in the point—slope form of a line to the y-intercept point (0, b)
as shown in Figure 5.4 gives the slope—intercept form of a line y = mxz +b. In general form the
equation of the line is ma — y + b = 0. The slope—intercept form cannot be used to represent
vertical lines. In determinant form the point—slope form is given by

Ty
0 o =0.
1 m

O =

Example. Find the line with a y-intercept of 1 and a slope of 2.

Solution. The Descarta2D function Line2D [point, m] constructs a line through
the point with the given slope.
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y

—~1p,0, b)

“Y

Figure 5.4: Slope-intercept form of a line.

In[23]: |1 =Line2D[pl = Poi nt 2D[ {0, 1}]1, 2]

out[23] Line2D[2, -1, 1]

In[24]: Sketch2D[{pl, | 1}, Pl ot Range -> {{-3, 3}, {-3, 3}}1;

/

-2-101 23

~N DescartazD Hint. The Sketch2D command option
\a 9

PlOtRange_>{{xmin: xmaw}: {ymzn s ymaw}}

used in the example above explicitly sets the minimum and maximum coordi-
nate range along the z-axis and y-axis, overriding the default setting which is
PlotRange->Automatic. The PlotRange option is useful for focusing on a spe-
cific portion of the plot.
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P2(0, b)

P]_(a., 0)

=2

Figure 5.5: Intercept form of a line.

x

5.7 Intercept Form

Specializing the two points in the two—point form to the intercepts (a,0) and (0,b) as shown
in Figure 5.5 gives (y — b)/x = —b/a, or, rearranging, the intercept form
r .y
a + b

In general form the equation of the line is bx 4+ ay — ab = 0; or, dividing Az + By + C =0 by
C (C #0) gives

=1.

BT ]

(=C/4)  (=¢/B)
Thus, in the general equation, the intercepts are given by = —C'/A and y = —C/B. Notice
that a line in intercept form cannot pass through the origin, nor can it be horizontal or vertical.

In determinant form the intercept form is given by

z y 1
a 0 1|=0.
0 b 1

Example. Find the line whose z-intercept is 2 and y-intercept is 1.

Solution. The function Line2D [point, point] constructs a line through the two
points.

In[25]: pl = Point2D[{2, 0}1;
p2 = Poi nt 2D[ {0, 1}];
112 = Li ne2D[pl, p2]

out[25] Line2D[-1, -2, 2]
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In[26]: Sketch2D[{pl, p2, |12}];

5.8 Normal Form

Consider a directed line segment OA of length p starting at the origin O and making an angle
0 with the +z-axis as shown in Figure 5.6. The line L which is perpendicular to OA and
passes through A is completely determined by the parameters p and . We wish to determine
the general equation of the line L. The coordinates of A are (pcosf, psin @) and the slope of L
is — cot 0 since L is perpendicular to OA which has slope tan #. Hence, using the point—slope
form we obtain, as the normal form of the equation of line L,

y — psind = —cotf(xz — pcos)
which reduces to
xcosf+ysinf —p=0.

This form of the equation of a straight line is called the normal form (sometimes the per-
pendicular form) because its coefficients involve the parameters p and 6 associated with the
normal or perpendicular segment OA to the line.

To determine the coefficients of the normal form from the general form

Ax+ By+ C =0,

we divide by ++v/A2 + B? yielding
A L+ B L+ C 0
€T =
+VA? + B? +VA? + 5z’ +VA? + B?
The sign of v/ A2 + B2 is chosen to be opposite to that of C to make the constant term, p,

positive. If C' is zero, the line passes through the origin. The process of dividing a linear
equation by v/ A2 + B2 is called normalizing the line.

Example. Normalize the lines 3x —4y —5=0and 22z +y — 3 =0.
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yh

=Y

Figure 5.6: Normal form of a line.

Solution. The Descarta2D function Line2D [line] constructs a line with normal-
ized coefficients.

In[27]: {Line2D[Li ne2D[3, -4, -5]1, Line2D[Li ne2D[2, 1, -3]1}

3 4 . 2 1 3
= -~ -1], Line2D 1}

out[27] {Line2D|

Example. Find the line 4 units from the origin whose normal makes an angle of
30° with the positive z-axis.

Solution. We apply directly the normal form of a line to determine the coefficients
of the line in general form.

In[28]: Line2D[Cos [30 Degree], Sin[30 Degree], -41 // N

out [28] Line2D[0.866025, 0.5, -4.]

Mathematica Hint. The Mathematica symbol Degree is the constant m/180.
Multiplying an angle in degrees by Degree (as illustrated in the previous exam-
ple) converts the angle to radians; radians are the angular units required in all
Descarta2D functions.
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Point Offset a Distance Along a Line

Given a point Pi(x1,y1) we wish to offset the point a distance d in the direction of a given
line Ly = Asx + Boy + Co = 0. We note that the coefficients of the normalized form of Lo
immediately give us the unit directions to offset P;, so the desired coordinates of the offset

point are

dAs dBs
nt —rm—m=ht s |-
VA5 + Bj VA5 + Bj
If the point P, is on line Ls, then the offset point will also be on Ls; otherwise, the offset
point will be on a line parallel to Lo. The distance d may be positive or negative allowing

offsets in either direction parallel to the line.

Example. Offset the points (—1,1), (1,—1) and (0,0) a distance 2 in both direc-
tions along the line 3z — 4y 4+ 1 = 0.

Solution. The Descarta2D function Point2D [point, line, d] offsets a point along
a line a given distance, d. The distance may be positive or negative.

In[29]:

In[30] :

out [30]

In[31]:

pl = Poi nt 2D[{-1, 1}1;
p2 = Poi nt 2D[ {1, -1}1;
p3 = Poi nt 2D[ {0, 0}];
I1=Line2D[3, -4, 1];

pts = {{Poi nt 2D[p1, |1, 2], Point2D[p1, |1, -2]},

{Poi nt 2D[p2, |1, 2], Point2D[p2, 11, -21},
{Poi nt 2D[p3, |1, 2], Point2D[p3, 11, -21}}

[{Pointzo[ {3, AL}], pointzn[{- 22, L))},
{Poi ntzo[{%, %}}, Poi nKZD[{f%’ 715*1}}}
{Poi ntZD[{%, %}], Poi ntZD[{—%, —%}]}}

Sket ch2D[ {p1, p2, p3, |1, pts}];

3
2 [ ]
1 ) b

0 . =

-1 P4 °

-2 .

-4 -2 0 2
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Line Offset a Distance from a Line

If a line L is parallel to a second line Lo, the two lines will be separated by a constant
distance, d. The process of constructing a line such as Lo which is parallel to L, at a given
distance, d, is called offsetting the line. There are two lines offset a distance d from a line
Ax + By + C = 0. The general equations of these two lines are easily determined from the

normal form as
A B C

+ + +d=0.
VLB ViR VLB

Example. Find and plot the two lines offset a distance of two units from the line
z—3y+1=0.

Solution. The DescartazD function Line2D[line, d] constructs a line offset a
given distance, d, from a line. The distance may be positive or negative yielding
one of the two possible offset lines.

In[32]: 11 =Line2D[1, -3, 1];
{I 2 =Line2D[l 1, 2], |3 =Line2D[l 1, -21}

out[32] {Line2D[1, -3, 1-2+/10], Line2D[1, -3, 1+2+/10]}

In[33]: Sketch2D[{l 1, 12, 13}];

WNFPOFPNW

Distance from a Point to a Line

The normal form of a line provides a convenient method for determining the distance from a
point to a line. Consider a normalized line L = px 4+ qy — r = 0, where p?> + ¢ = 1. A line
M offset a distance d from L clearly has the equation M = pxr + qy — r +=d = 0. Any point
Pi(z1,y1) on M satisfies the equation of M, therefore, px; + qy1 — r £ d = 0. Solving for d
and squaring to remove the ambiguous sign yields

d* = (pr1+ qy1 — 7“)2-
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Thus, the distance d from a point P;(z1,y1) to a line Az + By + C = 0 in general form is

iAﬂ?l + By, +C
VAZ+B?

where the sign is selected to produce the positive result.

d:

Example. Find the distance from the point (3, —2) to the line 3z — 4y + 2 = 0.

Solution. The Descarta2D function Distance2D [point, line] returns the distance
from the point to the line.

In[34]: Di stance2D[Poi nt 2D[{3, -2}], Line2D[3, -4, 2]]
Out [34] 1—9—

5

5.9 Intersection Point of Two Lines

Two lines L1 = A1z + B1y+Cy =0 and Ly = Asx+ Boy+ Cy = 0 may be parallel, coincident,
or intersect in a single point. In the case they where intersect in a single point, the coordinates
of the point may be determined by solving the system of equations

A1$+Bly+01 =0

AQJ?—FBQy—f—CQ =0

for the intersection point P(z,y). The resulting formula for the coordinates of point P is

B1Cy; — BoCy A1Cy — AyCy
AlBQ — AgBl ’ A1B2 — AgBl

> s A1B2 — AgBl 7é 0.

In the case where the denominators are zero, the lines are either parallel or coincident. If the
lines are coincident the ratio of their corresponding coefficients will be a constant

B G
Ay By Oy
and the conditions
A, B — _
1 1 ’ Cl Bl _ O and A1 Cl _ 0
Ay Bs —Cy By Ay —Ch

are sufficient to insure the lines are coincident.
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Example. Find the intersection point of the two lines whose equations are
20 —3y+7=0and 3z + 7Ty —2=0.

Solution. The Descarta2D function Point2D [line, line] constructs the intersec-
tion point of the two lines.

In[35]: pl2 = Poi nt2D[l 1 = Li ne2D[2, -3, 7], |2 =Line2D[3, 7, -2]]

43 25 H

out [35] Poi nt2D[{fﬁ, >3

n[36]: Sketch2D[{l 1, |2, pl2}7];

<

-4 -2 0 2 4
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5.10 Point Projected Onto a Line

A point P is said to be projected onto a point P, on a line Lo, if the line P; P is perpendicular
to Ly. To determine the coordinates of a point projected onto a line, we can build upon con-
cepts and formulas already established. We construct a line through the point, perpendicular
to the given line. This line is then intersected with the given line which yields the desired
projected point. Using Descarta2D, the sequence of commands to project point P;(x1,y1) onto
the line Ly = Asx + Boy + Cy = 0 is as follows:

n[37]: Cear [x1, y1, A2, B2, C2];
pl = Poi nt 2D[{x1, y1}];
| 2 = Li ne2D[A2, B2, C2];
I'1 =Line2D[pl, |2, Perpendi cul ar 2D];
p2 = Point2D[l 1, 12] // Sinplify

B22x1-A2 (C2+B2yl) -B2 (C2+A2x1) +A22yl 1]

out [37] Poi nt2D[{ o7, Bl ' 2072 1 B2
+ +
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In standard mathematical notation the coordinates of the projected point P, are

B3xy — As(Co + Bayr) A3y — Ba(Ca + Agan)
AZ + B3 ’ A% + B3 '

The coordinates of the projected point can also be written in a somewhat more intuitive form
given by
(z1 —ad,y1 — bd)

where
a= A b= B and d——Ax1+Byl+C
VA2 + B VA? + B? VAT B2

Simple algebra confirms that the two forms are equivalent. If the point Pi(z1,y1) is on the
line, then it is clear from the second form that the projected point P» has coordinates (x1,y1)
since d, which is the signed distance from the point to the line, is equal to zero when P is
on Ly. As shown in the next example, Descarta2D provides a specific function that projects a
point onto a line.

Example. Project the point (—3,2) onto the line 5z — 3y +4 = 0.

Solution. The Descarta2D function Point2D [point, line] projects a point onto a
line and returns the projected point.

In[38]: p2 = Poi nt 2D[pl = Poi nt 2D[{-3, 2}], | 2 = Li ne2D[5, -3, 4]]

out [38] Poi ntZD[{fé, %}]

In[39]: Sketch2D[{pl, p2, |2}, PlotRange -> {{-4, 1}, {-1, 4}}1;

P O FP N W b
[ ]

-3-2-10 1
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5.11 Line Perpendicular to Line Segment

Given a line segment bounded by the points Py(xo,yo) and P;(x1,y1), we wish to find the line
that is the perpendicular bisector of the line segment. Using Descarta2D we merely construct
the line perpendicular to the line segment through its midpoint.

In[40]: Cear [x0, y0, x1, y1];

I's = Segnent 2D[ {x0, y0}, {x1, y1}1;
Li ne2D[Poi nt 2D[l s1, Line2D[l s], Perpendi cular2D] // Sinplify

out[40] Line2D[-x0 +x1, -y0 +yl, % (x0% - x1% + y0? - y1?) |
In standard mathematical notation the equation of the line is
2(x1 — o)z + 2(y1 — o)y + g — i +yg — yi = 0.
In determinant form the equation is given by

T Y 1
ro+z1  woty1 2 |=0.
0

Yo — Y1 —(330 - 331)

Example. Find the line that is the perpendicular bisector of the line segment
bounded by the points (=3, —1) and (5, 3).

Solution. The function Line2D [Inseg, Perpendicular2D] constructs the per-
pendicular bisector of the line segment.

In[41]: | s1 = Segnent 2D[{-3, -1}, {5, 3}1;
I'1 =Line2D[l s1, Perpendi cul ar2D]

out [41] Line2D[16, 8, -24]

In[42]: Sketch2D[{ls1, |1, Point2D[{-3, -1}], Poi nt2D[{5, 3}1}1;

v
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/‘\k\ DescartazD Hint. In the previous example, the resulting line 16x+ 8y —24 = 0,
MM can be expressed in a simpler form by dividing the coefficients by 8, resulting in
the equation 2z 4y —3 = 0. The Mathematica function Simplify [expr] (or expr
//Simplify) can be used to simplify the result of any Descarta2D computation.
Be aware, however, that the computation may take a significant amount of time
to complete and, sometimes, no simpler expression is found. The Descarta2D
Line2D object has a special Simplify function that removes common factors
from the coefficients of a line.

In[43]: Line2D[16, 8, -24] // Sinplify

out[43] Line2D[2, 1, -3]

5.12 Angle Bisector Lines

The angle bisectors of two lines Ajxz + Biy + C7 = 0 and Asx 4+ Boy + Cy = 0 are defined
by the locus of points equidistant from the two lines. If P(x,y) is an arbitrary point on the
angle bisectors, then using the distance formula for both lines yields

A B A B
de 1+ 1z+ Biy+Cy and d— 4+ 2T + 2y+02.

Equating the two yields the equation of the angle bisectors given by

Az +Biy+Cr iAzﬂzr+Bzy+Cz

Example. Find and plot the angle bisector lines of the lines © — 3y +2 = 0 and
r+4y—2=0.

Solution. The Descarta2D function MedialLoci2D [{line, line}] returns a list of
two lines that are the angle bisectors of the two given lines.

Tn[44]: 112 = Medi al Loci 2D[{I 1 = Li ne2D[1, -3, 2], |2 = Line2D[1, 4, -21}]

out[44] {Line2D[V/10 -~/17, 4+/10 +3~/17, -2+/10 -2+/17 |,
Li ne2D[/10 ++/17, 4+/10 -3 /17, -2/10 +217 ]}

In[45]: Sketch2D[{l 1, 12, 112}7;
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5.13 Concurrent Lines

Three lines that intersect in a single, common point are called concurrent lines. Using Math-
ematica we will prove that three lines

A1$+Bly+01 =0

AQ(L"FBQZJ'FCQ =0

Asx+ Bsy+C3=0

will be concurrent when the determinant of their coefficients is zero. The determinant equation
is given by

A By (4
A2 BQ CQ =0.
As Bz Cj

We create four points, Py, P;, P3 and Py, where Py will be the common point of the three
lines l1 :1:)0P17 lg :POP2 al’ldlgzpopg.

In[46]: Cear [x0, y0, x1, y1, x2, y2, x3, y31;
p0 = Poi nt 2D[{x0, y0}1;
pl = Poi nt 2D[{x1, y1}1;
p2 = Poi nt 2D[{x2, y2}1;
p3 = Poi nt 2D[{x3, y3}1;
{11, 12, 13} =Mp[Li ne2D[p0, #]1& {pl, p2, p3}]

out[46] {Line2D[y0-yl1, -x0+x1, -x1y0+x0y1l], Line2D[y0-y2, -x0+x2, -x2y0 +x0y2],
Li ne2D[y0 - y3, -x0+x3, -x3y0+x0y3]}

We now extract the coefficients of the lines and apply the postulated determinant.

In[47]: {Al, Bl, Cl} =List eel 1;
{A2, B2, C2} =List eel 2;
{A3, B3, C3} =List eel 3;
Det [{{Al, Bl1, C1},
{A2, B2, C2},
{A3, B3, C3}}1 //Sinplify

out[47] O
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The condition defined by the determinant is therefore necessary; it is also sufficient provided
the slopes of the lines are distinct.

Mathematica Hint. The Mathematica function Apply [f, expr] (or f@@ expr)
replaces the head of expr by f. In the Mathematica statements above, the Apply
function is used to convert a Line2D object into a list of coefficients.

Example. Verify that the three lines given by x —y+6 =0, 2z +y — 5 =0 and
—x — 2y + 11 = 0 are concurrent.

Solution. The function IsConcurrent2D[line, line, line] returns True if the
three lines are concurrent; otherwise, it returns False.

In[48]: | sConcurrent 2D[l 1 = Li ne2D[1, -1, 6],
12 =Line2D[2, 1, -5],
13 =Line2D[-1, -2, 11]]

out [48] True

In[49]: Sketch2D[{l 1, |2, 13}, CurveLength2D->127;

A NODNMOO
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5.14 Pencils of Lines

Pencil of Intersecting Lines

Let L1 = Ajx+ Biy+ C1 =0 and Ly = Asx + Boy + Co = 0 be the equations of two lines in
the plane. Consider the equation L = (1 — k)Lq + kL2 = 0, where k is an arbitrary constant.
L is clearly an equation of the first-degree as it can be written

(1 —k)A1 + kAs)z + (1 — k)B1 + kB2)y + ((1 — k)Cy + kC2) = 0.
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Assume that L; and Lo intersect in some point P(x,y); then, by definition, L (z,y) = 0 and
Lo(z,y) = 0, since P is on both lines. Furthermore, L now represents a family, or system,
of lines passing through P. Such a family of lines is called a pencil of lines. The variable
k can be set to a value in a manner that produces a line in the pencil that will satisfy one
additional condition. This is a useful technique for solving certain types of geometric problems
as demonstrated in the next example.

Example. Find the family (pencil) of lines that pass through the intersection
point of x — 2y +4 = 0 and 22+ 3y —2 = 0. Find the value of k and the associated
member of the family that passes through the point (4, 2).

Solution. Line2D [line, line, k, Pencil2D] constructs a line representing the pen-
cil of lines (1 — k)L1 + kLo. Equation2Dl[line, coords] returns a Mathematica
equation that establishes the condition of the point being on the line.

n[50]: O ear [k];
L3 = Li ne2D[L1 = Li ne2D[1, -2, 4],
L2 = Li ne2D[2, 3, -2], k, Pencil 2D]

out[50] Line2D[1+k, -2 (1-k) +3k, 4 (1-k) -2k]

In[51]: pt = Point2D[ {4, 2}1;
egn = Equati on2D[L3, Coor di nat es2D[pt 1]

out[51] 4 (1-k) -2k +4 (1+k) +2 (-2 (1-k)+3k) ==0
In[52]: ans = Sol ve[eqn]

1
out [52] {{ke——}}

2

In[53]: Sketch2D[{L1, L2, (L3 /. ans[[1]]), pt}I1;

NFPORFRPDNW
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Figure 5.7: Pencil of lines through a point.

Pencil of Lines Through a Point

Consider the equation of a line L passing through points Py(x1,y1) and P(z,y) as shown in
Figure 5.7. L is parameterized by the angle € and the coordinates of P are given by

r=x1+cosf and y =1y +sinb.
The equation of the line as determined by the two—point form is given by
L=—xsinf+ycosf + x1sinf — y; cosf = 0.

Clearly, the point P;(z1,y1) is on L as the coordinates of P; satisfy the equation of L. Also,
since the slope m of L is given by

we can create a line with any given slope. A vertical line, whose slope is infinite, can be
represented using § = w/2. A complete pencil of lines, therefore, can be created for values
0<d<m.

Example. Find the parametric equation of a pencil of lines passing through the
point (2, 3).

Solution. The function Line2D [point, 6, Pencil2D] constructs a line parame-
terized by angle # and passing through the given point.
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In[54]: Clear [t];
I'1 = Li ne2D[Poi nt 2D[ {2, 3}], t, Pencil 2D]

out[54] Line2D[-Sin[t], Cos[t], -3Cos[t]+2Sin[t]]

The following commands plot several members of this pencil of lines.

In[55]: Sketch2D[Map[(I1 /. t ->#)& Pi »Range[0, 10] /10]];

“4-20 2 4 6

A simpler parameterization involves applying the point—slope form of a line and using the
slope, m, as the parameter of the pencil. This approach yields the parameterized pencil of
lines

mx —y+ 1y —maxp =0.

This parameterization, however, cannot represent vertical lines.

5.15 Parametric Equations

We wish to formulate parametric equations for the line Ly = Ajz+ By + C7 = 0. Since there
are an infinite number of valid parameterizations, we will specify that we desire a particular
parameterization with the properties that the point nearest the origin will be at parameter
value ¢t = 0, and the other points on the line will be parameterized by distance along the line.
For example, the parameters ¢ = £2 will generate the pair of points at a distance two from
the point on the line nearest the origin.

Using Descarta2D we can determine the point Fy on L; nearest the origin by projecting
the origin onto L.

n[56]: Clear [Al, Bl, Cl1;
p0 = Poi nt 2D[Poi nt 2D[ {0, 0}], Line2D[Al, B1, Cl]]

Al Cl B1 Cl H

out [56] Poi nt 2D[{- 7 BT A7 B
+ +

Now consider a right triangle with sides at and bt as shown in Figure 5.8. In this triangle

a=A1/\/A? + B? and b = By/\/A? + B?). The hypotenuse of this triangle is obviously of
length t since

2 2
Alt Blt
P+t = e—m—= | +|—=] =%
(a)” + (60) <«/—A§+_Bf> <«/—A§+_Bf>
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@)

Figure 5.8: Parametric equation of a line.

Also the slope is given by

_ (yo —at) —yo a Ay

_($0+bt)—$0_ b_ Bl

which is the slope of the desired line, L. Therefore, the parametric equations of the line are

.~ MG B
A+ B} JAT1 B2
B,Cy Aqt

y = - - :
Ai+BY \JA21B?

Example. Find the coordinates of the points on the line x — 2y + 3 = 0 for
parameter values t = —2, —1,0,1,2. Plot the lines and the points.

Solution. The Descarta2D function Line2D[A, B, C] [{] returns the coordinates
of the point at parameter value ¢ on the line.

n[57]: | 1 =Line2D[1, -2, 3];
coords = Map[l 1[#]& {-2, -1, O, 1, 23] //N

out [57] {{1.18885, 2.09443}, ({0.294427, 1.64721}, {-0.6, 1.2}, {-1.49443, 0.752786},
{-2.38885, 0.305573}}

In[58]: Sketch2D[{l 1, Map[Poi nt 2D[#]&, coords]}];
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P O K N W

Mathematica Hint. The Mathematica function Map[f, expr] (or f /@ expr)
applies to f to each element on the first level in expr. In the previous example
Map is used to evaluate a line using a list of parameter values.

Line Segment

We wish to define the parametric equations for a line segment such that the parameter value
t = 0 produces the coordinates of the start point Py, ¢ = 1 produces the coordinates of the
end point P;, and values 0 < ¢t < 1 produce coordinates of points proportionally spaced in
between Py and P;. Let d be the distance from Py to a general point P(z,y) on the directed
line PyP;. We use Descarta2D to produce the formulas for the coordinates of P:

In[59]: Cear [x1, y1, x2, y2, dJ;
pt = Poi nt 2D[Poi nt 2D[{x1, y1}], Poi nt 2D[{x2, y2}], d]

d (-x1+x2) d(-yl+y2)
2 2’ yl+ 2 2 }
(-x1+x2)+ (-yl+y2) (-X1+%x2)°+ (-yl+y2)

out [59] Point 2D[{x1 +

Let t = d/D where D = \/(xg —21)2 4 (y2 — y1)? is the distance from Py to P;. Solving
for d = tD and substituting d into the Mathematica output above yields the parametric
equations

r = $1+t($2—$1)
= v +ty2—m)

Example. Find the coordinates of the points at parameter values 0, 1/2 and 1
on the line segment whose start and end points are (—2,1) and (1, 0), respectively.
To what point does the parameter value ¢t = —1 correspond? Plot the objects.

Solution. The function Segment2D[{zy, yo}, {71, y1}1[t] returns the coordi-
nates of the point on a line segment at parameter value ¢.
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In[60]: | 1 =Segment 2D[{-2, 1}, {1, 0}];
coords = Map[l 1[#]1& {-1, 0, 1/2, 1}]
1 1
}

outf60] {{-5, 2}, {-2, 1}, {-5. 5}

70 2} (L0

In[61]: Sketch2D[{l 1, Map[Poi nt 2D, coords]}];

2F®
1.5¢
1
0.5 \\ _
0 -5 -4 -3 -2 -1 0\1t
The point at parameter value ¢t = —1 is on the line connecting points Py and P,

at the same distance from Py as Pp, but in the opposite direction.

5.16 Explorations

DISTANCE BETWEEN PARALLEL LINES. ...ttt i Insdst.nb

Demonstrate that the distance, d, between two parallel lines
Ar+ By+Cy =0 and Az + By+Cy=0

is given by

g (G2 C)?
A2+ B2
INTERSECTION OF LINES IN INTERCEPT FORM. ... ... .o intrsct.nb

Show that the point of intersection of the lines

+%:1 and z

(w7 wem)

SRS
<

a

S

is

—~
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EQUATIONS OF PERPENDICULAR LINES. .. ..o lnsperp.nb

Show that the pair of lines ax + by + ¢ = 0 and bx — ay + ¢’ = 0 are perpendicular. Show

that the pair

Y

ar +by+c=0 and f—g+c’:0
a

is also perpendicular.

VERTICAL/HORIZONTAL DISTANCE TO A LINE. ... ..., Indist.nb

Show that the wvertical distance, d,, from a point (z1,y1) to a line whose equation is
Az 4+ By + C =0 is given by

J _‘(Ax1+By1+C)}

B

and the horizontal distance, dy, is given by

‘(Al‘l—l—Byl—f—C)‘
dy, = .

A

LINE GENERAL EQUATION DETERMINANT. . .. ttttt ettt e i e eeieeeeans 1ndet.nb
Show that the general equation of a line Az + By + C' = 0 is coincident with the line

T Y 1
—AC —-BC A2+ B?|=0.
B A 0
given in determinant form.
LINE SEGMENT CUT BY TWO LINES. ... ... i Inlndist.nb

Let Ly and Lo be two intersecting lines and Py a point. Describe a procedure for finding
the lines through Py such that L; and Lo cut off a line segment of length S > 0. Implement
the solution as a numerical Mathematica function.

INTERSECTION POINT OF TWO LINE SEGMENTS. .. ..tntititiniitieneanenennns lnsegpt.nb

Show that the intersection point of the lines underlying two line segments P, P, and P3P,
in terms of the coordinates of the four points is given by

(z2 — 21)(x3y4 — way3) — (¥4 — x3)(T1Y2 — T2y1)
(xa — 23)(y1 — y2) — (v2 — 21) (Y3 — Va)
(y3 — ya)(T19y2 — T211 Y1 — y2)(T3Ya — T4Y3)

y - ) —(
(4 —23)(y1 — y2) — (22 — 1) (Y3 — y4)
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INTERSECTION PARAMETERS OF TWO LINE SEGMENTS. ......cvvviiinenenn.. Insegint.nb

Show that the parameter values, t; and t5, of the intersection point of two line segments
in terms of the end point coordinates is given by

z1(ys — ya) — 23(y1 — ya) + za(y1 — y2)

t1 = D
t, = —21(y2 — y3) + @2 (y1 — y3) — z3(y1 — y2)
- D

where
D= (a?1 —x2)(y3 — ya) — (w3 — 3?4)(?41 - ?J2)-

What is the significance of the values of t; and to with respect to the standard parameter
range for a line segment?






Chapter 6

Circles

The circle is the first curve we will study whose equation is of the second degree. Circles have
been studied since antiquity and there exists an enormous number of interesting properties,
theorems and relationships involving circles. This chapter provides the underlying analytic
geometry of a circle and provides a glimpse at some of the catalog of knowledge about circles.

6.1 Definitions and Standard Equation

A circle is the locus of all points P(x,y) of the plane that have a constant distance r from a
fixed point C'(h,k); C is called the center and r the radius of the circle. Using the formula
for the distance between two points, we find the equation of a circle in standard form to be

(2= B2+ (y— k)2 =1
Two particular cases of this equation occur frequently and deserve special mention. If the

center is at the origin the equation reduces to

2?4y =12,
If the z-axis contains a diameter of the circle, and the y-axis touches the circle at its extremity,
then the equation becomes

2 4 9% = 2rz.

Example. Write the equation of a circle with center at (—1,1) and radius 2. Plot
the circle.

Solution. The equation of the circle is (z + 1)? + (y — 1)? = 4. The Descarta2D
representation of a circle is Circle2D[{h, k}, r1, where {h, k} represents the co-
ordinates of the center point, and r is the radius of the circle.

85
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Figure 6.1: Circle with center at (h, k) and radius 7.

In[1]: Sketch2D[{Circle2D[{-1, 1}, 21},
Pl ot Range -> {{-5, 5}, {-5, 5}}1I;

0

“4-20 2 4

Example. Determine which of the following points are on the circle centered at
(=2, 1) with radius 3: (a) (3,4), (b) (1,1), (c) (—2,4).

Solution. Points whose coordinates satisfy the equation
(x+2%+(x—-1)*=9

are on the circle. The Descarta2D function Is0n2D [point, circle] will return True
if the point is on the circle; otherwise, it returns False.
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In[2]: cl=Circle2D[{-2, 1}, 3];
pl = Poi nt 2D[{3, 4}];
p2 = Poi nt 2D[ {1, 1}];
p3 = Poi nt 2D[{-2, 4}];
{I sOn2D[p1, cl], IsOn2D[p2, cl], IsOn2D[p3, cl]}

out[2] {Fal se, True, True}

Therefore, points (b) and (c¢) are on the circle, and point (a) is not.

In[3]: Sketch2D[{cl1, pl, p2, p3}1;

NFPOFRPNWD
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Two circles are said to be concentric if their center points are coincident. Two circles are
coincident if their center points are coincident and their radii are equal.

Example. Show that the two circles whose equations are (z — 1)? + (y — 2)? =4
and (x — 1)2 + (y — 2)? = 9 are concentric, but not coincident.

Solution. The result is obvious by inspection of the equations. The Descarta2D
function IsConcentric2D [circle, circle]l returns True if the two circles are con-
centric; otherwise, it returns False. IsCoincident2D [circle, circle] returns True
if the two circles are coincident; otherwise, it returns False.

In[4]: cl=Circle2D[{1, 2}, 2]; c2=Crcle2D[{1, 2}, 3];
{I sConcentric2D[cl, c2], |sCoincident2D[cl, c2]}

out [4] {True, Fal se}
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6.2 General Equation of a Circle

By expanding the standard equation of a circle with center point C'(h, k) and radius r the
equation may be written as

22 +y? —2hx —2ky+ (W +k?> —1r%) =0
which is a special case of the general second-degree equation
A2® + Bay+Cy* + Da+ Ey+F =0

where the coefficients of 2 and y? are equal and there is no zy term. Therefore, a necessary
and sufficient condition that Az? + Bxy + Cy? + Dz + Ey + F = 0 represent a circle is that
A = C and B = 0. It is not necessary that A = C' = 1 since the coefficients of 22 and y?
being equal can be divided out, reducing them to one. The equation

24+ +ar+by+c=0

is the general equation of a circle. It can be reduced to standard form by completing the
squares on the x2- and z-terms, then on the y2- and y-terms yielding

2 2 2 12
9 a 9 b a b
- b — _———— =
x+ax+4+y+y+4+c 1 1 0
or ,
( +a)2+ +b A+ b —de
Ty YT3) T VR

This is the equation of a circle whose center is at (—a/2,—b/2) and whose radius is given by
r = 1va® + b% — 4c. The equation will be a real circle only if a?+b%—4c > 0; if a?+b%*—4c =0
the equation represents a single point (a circle of zero radius); and if a? + b* — 4c < 0 there
are no real points in the locus.

Example. Find the center and radius of the circle 222 + 2y% — 5z +4y — 7= 0.

Solution. Descarta2D represents the quadratic equation
Az? + Bry+Cy>*+ Dz +Ey+F =0
as
Quadratic2D[A4, B, C, D, E, F].

The function Loci2D[quad] will convert a quadratic (second-degree) equation to
a list of objects represented by the equation. The function Circle2D [quad] will
return a circle directly if the quadratic is indeed a circle.



6.3 Circle from Diameter 89

In[5]: {cl=Loci2D[gql = Quadratic2D[2, 0, 2, -5, 4, -7]],
Circle2D[gl]}

out [5] {{O’rcleZD[{%, -1}, @}}, O'rcIeZD[{% -1} @H

The center of the circle is (5/4,—1) and the radius is v/97/4. The Descarta2D
function Quadratic2D [circle] converts a circle to a quadratic equation.

In(6]: Quadratic2D[cl[[1]]] //Sinplify

. 5 7
out (6] Quadratic2D[1, 0, 1, o 2, —7}

N DescartazD Hint. The Descarta2D function Simplify[quad] simplifies the
%& coeflicients of a quadratic by multiplying to remove denominators and factoring
to remove common factors. The form quad //Simplify is an equivalent form of
the function.

Mathematica Hint. In Mathematica the elements of a list are indicated by
double square brackets surrounding the index of the element in the list. In the
previous example, c1[[1]] indicates the first element in the list of objects c1.

6.3 Circle from Diameter

Consider two points P;(z1,y1) and Pa(z2,y2) defining the end points of a diameter P, P, of a
circle, C. Clearly the center of the circle, (h, k), must be the midpoint of P; P, and is given
by

r1 + X2 Y1+ Y2

and k 5

h:

and the radius of the circle, r, must be one-half the distance between P; and Ps:

r= %\/(xl —x2)? + (Y1 — y2)%

One equation of the circle C' has a particularly simple form given by

(x—z1)(x—22) + (Y —v1)(y —y2) =0

as can be verified by simplifying the equation of C' in standard form.
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6.4 Circle Through Three Points

Since the equation of a circle has three effective parameters (h, k, r or a, b, ¢), in general
three conditions can be imposed upon the parameters to determine one (or more) circles. In
this section we look at the case of a circle passing through three points. In a later chapter we
will explore a large number of conditions for constructing circles satisfying three conditions.

We can find the equation of a circle passing through three points Py(x1,y1), P2(x2,y2)
and Ps(zs,ys), by substituting the coordinates of the points into the standard equation for a
circle yielding the three equations

(x1 = h)?+ (1 —k)? = »?
(x2 = h)’ + (2 —k)* = 7°
(z3 =h)’ + (ys —k)* = 7°

This system of equations reduces to three linear equations in three unknowns, h, k and r.
Simultaneous solution of the three linear equations gives

h:—%,k:%, and rz%,
where
1 1 1 1 1 1 1 1 1
H=|wy vy ys|, K=|ax1 22 w3 |, D=|11 20 13 |,
$1 S2 83 $1 Sz 83 Y1 Y2 Y3
and

dij = \/(l‘z — J?j)Q + (yi - yj)2 and s; = 1,‘12 + yf

If D = 0 the points are collinear and no circle passes through the three points.

Example. Find the circle passing through the three points (1,2), (—=3,1) and
(Oa _2)

Solution. The Descarta2D function Circle2D [point, point, point] returns a circle
passing through the three points.

1n(7]: cl=Circle2D[pl = Poi nt 2D[ {1, 2}],
p2 = Poi nt 2D[{-3, 1}1,
p3 = Poi nt 2D[ {0, -2}]1]

7 3 17}

out (7] Gircle2D[{- 15 15 ) 53

In[8]: Sketch2D[{pl, p2, p3, cl}];
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The quadratic equation of a circle passing through three points Pi(21,y1), Pa(z2,y2) and
Ps(x3,ys3) is given by the determinant equation

22 + y2 x Y
4y o
T5HYs T2 Yo

3+Y; w3 s

— = e

Example. Find the quadratic equation of the circle passing through the three
points (1,2), (=3,1) and (0, —2) given in the previous example.

Solution. The Descarta2D function Quadratic2D [point, point, point] returns a
quadratic representing the circle passing through the three points.

In[9]: Quadratic2D[pl, p2, p3]

out (9] Quadratic2D[15, 0, 15, 21, -9, -78]

6.5 Intersection of a Line and a Circle

Consider the line Az + By + C = 0 and the circle (z — h)? + (y — k)2 = r2. The points
of intersection of the line and circle can be determined by solving the system of these two
equations in two unknowns. The coordinates of the points of intersection, P; and P, are

given by
Pra (h—ad+bV/r2 =@,k — bd 5 a\/r? — &)
where N . R
a= b= and d = L

VETE VR i B NoeEw:=
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If r2 — d? > 0 (the radius is greater than the distance from the center point to the line), then
there are two distinct intersection points; if 72 — d?> = 0, then the two intersection points are
coincident (the line is tangent to the circle); and if 72 — d? < 0, then the line and the circle
do not intersect.

Example. Find the two points of intersection between the line and the circle
whose equations are 2z —y +3 =0 and (z — 1) + (y — 2)2 = 9.

Solution. The Descarta2D function Points2D [line, circle] returns a list of the
intersection points of the line and the circle.

In[10]: pts = Points2D[l 1 = Li ne2D[2, -1, 3], cl=Circle2D[{1, 2}, 3]]

out (10] {Point2D[{1, 5}], Poi nt2D[{—%, %}}}

n[11]: Sketch2D[{l 1, c1, pts},
Pl ot Range -> {{-3, 5}, {-2, 6}},
CurvelLengt h2D -> 157;

NFPORPNWA,OIO
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6.6 Intersection of Two Circles

Consider two circles (z —h1)% + (y —k1)? = r? and (z — h2)? + (y — k2)? = r3. The coordinates
of the two intersection points, P; and P, of these circles can be determined by solving two
equations in two unknowns. Alternately, the following geometric approach can be applied.
Place the center of a circle with radius 1 at the origin and place the center of a second circle
of radius ro at (D,0) as shown in Figure 6.2. The equations of the two circles in standard
form are clearly given by 22 + 32 = r? and (x — D)? + y? = 72, respectively. Solving the first
equation for y? yields y? = 72 — 2. Substituting this value of 32 into the second equation and
solving for x yields

. D%+ 73 —r3

2D
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<—D

Figure 6.2: Two circles in a special position.

Substituting this value for o back into the first equation and solving for y? yields

s ADME = (D? 413 —13)
4D?

Y .
Let R = D? +r? —r2 and let (z0,y0) designate the coordinates of the intersection points in
this special position. Then

/4D2r2 — R2
o = —= and yozi#.

2D 2D

If the expression under the radical in the expression for yq is positive, then there are two
distinct intersection points; if it is zero, the two intersection points are coincident (the circles
are tangent at this point); and if it is negative, the two circles do not intersect. It is easy to
show algebraically that

4D?*r? — R? = (D* — (r1 +72)%)((r1 — r2)* — D?)

which confirms the intuitive insight that the circles do not intersect if either the sum of the
radii is greater than the distance between the centers, or the difference of the radii is less than
the distance between the centers.

Now consider two circles in arbitrary positions with centers Cy(hy, k1) and Ca(hg, k2) as
shown in Figure 6.3. The x- and y-coordinates of the intersection points can be written in
terms of the distances zy and yy determined from the special position shown in Figure 6.2 and
are given by

r=hy+x1 Ltz and y=4ki +y1 Fyo

where
x1 =xgcosh, xo =ygsinh, y; = zpsind, yo = ygcosb
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G

Figure 6.3: Two circles in arbitrary positions.

and ha —h ks — k
_ha—hy g k2=
cosf = D and sinf DI

Therefore, the coordinates (z,y) of the intersection points of two circles without reference to
trigonometric functions are

(hzl—)hl) 0 (k2l—)k1)
(k2 — k1) (he — h1)

D + Yo D .

h1 + xo

8
Il

y = ki+xo

Example. Find the points of intersection between the two circles
(z—22%+@y—1)%=9 and (z+2)*+ (y+3)? =16

evaluated numerically.

Solution. The Descarta2D function Points?2D [circle, circle] returns a list of the
intersection points of the two circles.

In[12]: pts = Poi nts2D[cl =Circl e2D[{2, 1}, 3],
c2=Circle2D[{-2, -3}, 411 //N

out [12] {Poi nt 2D[ {1. 87228, -1.99728}], Poi nt 2D[ {-0. 99728, 0.87228}]}
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n[13]: Sketch2D[{cl, c2, pts}];
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6.7 Distance from a Point to a Circle

The distance, D, from a point P(xg,%o) to the circle (z — h)? + (y — k)? = r? is given by

D =/r = w0 — 7 + (w0 — F).

The inner radical represents the distance from point P the center of the circle. The validity
of the formula is easily verified by considering separately whether the point is inside, outside
or on the circle.

Example. Find the distance from (2,3) to the circle (z +2)* + (y + 1)? = 1.

Solution. The function Distance2D [point, circle] computes the distance between
a point and a circle.

In[14]: Di stance2D[Poi nt 2D[{2, 3}],
Circle2D[{-2, -1}, 1]]

out[14] -1+4+/2
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6.8 Coaxial Circles

Let Py(x1,y1) and Pa(x2,y2) be the two points of intersection of the two circles

C, = (x—hl)Q—l—(y—kl)Q:r% and
Co = (x—ho)*+(y—k2)? =13

Consider the equation C' = (1 — k)C; + kCy = 0. This equation represents a circle since
it is of the second degree, the coefficients of 22 and y? are the same, and there is no zy
term. Moreover, points P; and P, are on the circle since both points satisfy the equation C.
Therefore, C represents a family (or pencil) of circles through the points of intersection of the
two given circles. A particular member of this family may be determined by specifying that
it satisfy one other condition. Inspection of the equation reveals that C' has a center (H, K)
and radius R, where

H = (1-k)hy+kho

K = (1—-k)k1+kks

Rl = h24k2 -2

Ry = hi4k:-—r2

R = H2+K?2—((1-kK)R,+KRy).

Example. The two circles

C; = (z-2%+(y—-1)>%*=9 and
Cy = (x+22+(@y+3)*=16

determine a family of circles (1 — k)C7 + kC2 = 0 passing through the points of
intersection of C7 and C3. Plot members of the family of circles for values of
k={0,£1,£2,+34+ 4, 4+5}.

Solution. The function Circle2D [circle, circle, k, Pencil2D] returns a circle
parameterized by the variable k representing the pencil of circles passing through
the intersection points of two circles.

In[15]: O ear [k];
cl=Crcle2D[{2, 1}, 31;
c2=Circle2D[{-2, -3}, 41;
cl2 =Circle2D[cl, c2, k, Pencil2D] //Sinplify

out(15] Circle2D[{2-4k, 1-4k}, \/9-25k+32k? |
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6.9

In(16]: famly =Map[(cl2 /. k ->#)& Range[-5, 5]]

out(16] {Circle2D[{22, 21}, /934 |, Grcle2D[({18, 17}, 3+/69 ],

Circle2D[ {14, 13}, 2+/93 ], Circle2D[{10, 9}, v/187 ], Circle2D[(6, 5}, /66 |,
Gircle2D[{2, 1}, 3], Gircle2D[{-2, -3}, 4], Circle2D[{-6, -7}, /87 ],
[
[

Grcle2D[{-18, -19}, 6+/19 |}

n[17]: Sketch2D[{cl, c2, famly}];

40
22 La
- 20 @

- 40
-40-20 0 20 40

Radical Axis

Let C7 and C5 be the equations of two distinct circles as presented in the previous section.
Consider the equation L = C; — Cs. Upon simplification this equation reduces to the linear
equation

This

L=2ho—h))x+2(ky —ki)y+ (h2 +k? —r3) — (h2 + k2 —r2) = 0.

line is called the radical axis of the circles C; and Cs. The radical axis possesses the

following properties which we state without proof.

It is the line of the common chord if the two circles intersect in distinct real points.

It is the common tangent line if the circles intersect in coincident points (are tangent
internally or externally).

It is a real straight line even if the circles do not intersect in real points.

It is the locus of points from which tangents of equal length can be drawn to the two
circles.

It is perpendicular to the line of centers of the two circles.
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e It does not exist (tends to infinity) as the defining circles tend to concentricity.

e The radical axes of three circles, taken in pairs, intersect in a point called the radical
center.

Example. Find the radical axis of the circles (z — 4)? + (y — 1)2 = 16 and
(x — h)? + (y — 1)? = 4 for values of h = {5,6,10,11}.

Solution. The Descarta2D function Line2D [circle, circle] returns the radical axis
of the two circles.

Inf18]: cl=Circle2D[{4, 1}, 4],

In[19]: h={5, 6, 10, 11};
Map[(c2[#] =Circl e2D[{h[[#]], 1}, 2]1)& Range[l, 4]]

out[19] {Gircle2D[{5, 1}, 2], Circle2D[{6, 1}, 2], Gircle2D[{10, 1}, 2],
Circle2D[ {11, 1}, 2]}

In[20]: Map[ (radaxi s[#] = Line2D[cl, c2[#]])& Rangel[l, 4]]
out [20] {Line2D[2, O, -21], Line2D[4, 0, -32], Line2D[12, O, -96], Line2D[14, 0, -117]}

In[21]: Map[Sketch2D[{cl, c2[#], radaxi s[#]},
Pl ot Range -> {{-1, 12}, {-4, 6}}1&,

Range[l, 411,
6 6
4 4
2 m 2
0 0
-2 -2
-4 -4
024 6 81012 024 6 81012
6 6
4 /\ 4
2 N 2 (\
0 0
-2 -2
-4 -4
024 6 81012 024 6 81012

Mathematica Hint. The Mathematica function Range[1,4] returns the list
{1,2,3,4}.
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6.10 Parametric Equations

A circle may be parameterized in terms of the angle, 8, that a ray from the center to the point
at the parameter value makes with the +a-axis. The resulting equations are

r=h+rcosf and y=k+rsinf

where (h, k) is the center of the circle and r is the radius of the circle. Values in the range
0 < 0 < 27 generate a complete locus of points on the circle.

Example. Generate 12 equally spaced points on the circle 2 + y? = 4 using the
parametric equations.

Solution. The Descarta2D function Circle2D[{h, k}, r]1 [t] returns the coordi-
nates of a point at parameter ¢ on the circle.

In[22]: cl =Circle2D[{0, 0}, 27;
pts = Map[Poi nt 2D[c1[#]]& 2 *Pi »Range[0, 12]/12];
Sket ch2D[{c1, pts}];

Alternately, consider the triangle T shown in Figure 6.4. Triangle T is obviously a right
triangle since

(1—t2)% 4+ (2t)% = (1 + t*)2.

Therefore, the rational forms of the trigonometric functions for angle 8 are

1—¢t2
sinf = —— and
14 ¢2
2t
0 = —.
cos e

Substituting these expressions into the parameterization of a circle previously given yields

1—¢2 2t
xzh—l—rm and y:k—l—rm.
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t?2+1

2t

Figure 6.4: Rational sinf and cos#.

These equations are called the rational parameterization of the circle and have the advantage
that they can be evaluated without using trigonometric functions. Parameter values in the
range 0 <t < 1 produce coordinates of points on the circle in the first quadrant, 1 < ¢ < co the
second quadrant, —oo < t < —1 the third quadrant, and —1 < ¢ < 0 in the fourth quadrant.
The point at # = 7 radians cannot be generated using these equations, so they are generally
applied only to coordinates in the first quadrant. Also, notice that the points generated by
these parametric equations do not produce equally spaced points measured by distance along
the circle for equally spaced parameter values.

Example. Plot nine points at equal parameter values on the circle 22 + y2? = 25
in the first quadrant using the rational parametric equations of the circle.

Solution. The points can be generated directly from the equations using para-
5
8

meter values 0, %, %, %, %, %, % and 1.

In[23]: ¢l =Crcle2D[{0, O}, 51;
pts = Map[Poi nt 2D[5 {1 -#"2, 2#}/ (#"2+1)1& Range[0, 8] /8];
Sket ch2D[ {c1, pts}, PlotRange -> {{-1, 6}, {-1, 6}}1;

6
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01 2 3 45 6
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6.11 Explorations

POLAR EQUATION OF A CIRCLE. ..\ttt ettt et i e i polarcir.nb
Show that the polar equation of a circle centered at P(r1,6;) with radius R is given by

r? 4+ 12 — 2rry cos(6 — 0;) = R?.

ANGLE INSCRIBED IN A SEMICIRCLE. .. t\tuttttttttntat ettt rtangcir.nb
Show that an angle inscribed in a semicircle is a right angle.

CHORD LENGTH OF INTERSECTING CIRCLES. . .ttt oo e chdlen.nb

NV AN
A

- D

Show that the distance, d, between the intersection points of two circles is given by

\/—(D e TQ)(D +ri — TQ)(D —r1+ TQ)(D +r + 7“2)
D

where D is the distance between the centers of the circles, and r1 and ro are the radii of the
two circles.

d:

JOHNSON’S CONGRUENT CIRCLE THEOREM. ... o0ttt johnson.nb
Take any three circles C7, Co and C5 which pass through the origin, have equal radii, r,
and intersect in pairs in two distinct points (one of the points is, by construction, the origin).
Prove that the circle passing through the other three points of intersection between the circles
taken in pairs is congruent to the original three circles (that is, this circle has a radius of r).

RADICAL CENTER. . .« ettt ettt e e e e e e e radcntr.nb

Prove that the radical axes of three circles taken in pairs intersect in a common point. This
point is called the radical center of the three circles.
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RADICAL AXIS OF TWO CIRCLES. ..\ttt e e e radaxis.nb

Show that the two circles 22 4+ 4% + ax + by + ¢ = 0 and z2 + y? + bx + ay + ¢ = 0 have the
radical axis x —y = 0.

CIRCLE-POINT MIDPOINT THEOREM. .. ...ttt cirptmid.nb

yh

Po

—
X

C:

Show that the locus of midpoints from a fixed point Py to a circle Cy of radius 71, is a circle
of radius %rl. Furthermore, show that the center point of the locus is the midpoint of the
segment between Py and the center of Cf.

CIRCLE THROUGH THREE POINTS. ...... ... e cir3pts.nb

Show that the equation of the circle through the three points (0,0), (a,0) and (0,b) is
22 +y? —azx — by = 0.

CONSTRUCTION OF TWO RELATED CIRCLES. « .. tttittittie i tnlncir.nb
Prove that if OP and OQ are the tangent lines from (0,0) to the circle

22+ y% + 2924+ 2fy+c=0,
then the equation of circle OPQ is

> +y* + gz + fy=0.

CIRCLE OF APOLLONIUS. . ...ttt et e et e e et e apollon.nb

Show that the locus of a point P(z,y) that moves so that the ratio of its distance from two
fixed points Py (z1,y1) and Pa(x2,y2) is a circle with radius

dk
(=17

T =
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and center

—a1 + Ky —y + Ky
K2-1 7 k2-1
where d = |P; P,|. The locus is called the Circle of Apollonius for the points P; and P, and
the ratio k.

CARLYLE CIRCLE. .ttt ntttt ittt ettt et et e e et e carlyle.nb

Given a circle, C, passing through the three points (0,1), (0, —p) and (s, —p), show that
the z-coordinates of the intersection points Pj(x1,0) and Ps(z2,0) of Cy with the z-axis are
the roots of the quadratic equation 22 — sz — p = 0.

CASTILLON’S PROBLEM. . . .\ttt castill.nb

Let P;, P> and P; be three points inside the circle C; = 22 4+ y? = 1. Describe a method
for inscribing a triangle inside C; such that the sides of the triangle pass through the three
given points.

RADICAL AXIS RATIO. . ..ot raratio.nb
Show that the point of intersection of the radical axis and the line of centers of two circles

of radii 1 and ry divides the segment between the two centers into the ratio
d? + r% — 7"5
d? —r}+r3’

where d is the distance between the centers.
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Arcs

We continue our study of circles by focusing on bounded portions of a circle’s circumference
commonly called arcs. Many of the interesting properties of arcs arise when considering how
their end points and slopes meet with other curves. For example, many mechanical artifacts
use arcs to construct transitions between the primary faces of the object giving a smoother
and more durable design.

In addition to the topics presented in this chapter, a subsequent chapter will discuss
another interesting use of arcs, the so-called biarc configuration of two arcs used to blend
curves together smoothly.

7.1 Definitions

Consider the parametric equations of a circle
r=h+rcosf and y=k+ rsinf

where the point C(h, k) is the center of the circle and r is the radius of the circle. A circle
is defined to be the set of points P(z,y) for all values of 6 such that 0 < 6 < 27 (radians).
Using the same parametric equations, a circular arc may be defined to be the set of points
P(z,y) for all values of 6 such that 6y < 6 < 6y, where 0 < 6y < 27 and 6y < 61 < (6y + 27).
The point Py(zg, yo) where 6 = 6 is called the start point of the arc, and the point P (z1,y1)
where 6 = 6 is called the end point of the arc. The angle the directed line C' Py makes with
the +z-axis is called the start angle of the arc; the angle the directed line C'P; makes with
the +x-axis is called the end angle of the arc. The center point C(h,k) of the circle is also
the center point of the arc, and the radius, r, of the circle is the radius of the arc.

Let CPy and C'P; be the lines determined by the center point C' and the start and end
point of the arc, respectively. The angle between lines CPy and CP; is called the angular
span of the arc. An arc with an angular span of 7 radians (180°) is called a semicircle. The
area bounded by line segments C Py and C'P; and the arc itself is called a sector. The area

105
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Po
N ke
\ 9?
c(h, k)

“Y

Figure 7.1: Definition of an arc.

bounded by the arc and PyP; is called a segment and the line segment PyP; itself is called
the chord of the arc.

Example. Plot the arc centered at the point (—2,1) with a radius 6 and start

angle of 7/6 radians and end angle of 7/2 radians. Include the center point of the
arc in the plot.

Solution. Circle2D[{h, k}, r]1 [{01, 62}] represents an arc of a circle between
parameters 67 and 63 when plotting.

In[1]: pl =Point2D[{-2, 1}1;
al =Circle2D[{-2, 1}, 6][{Pi /6, Pi /2}];
Sket ch2D[ {p1, al}];

T
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Y

Figure 7.2: Bulge factor arc definition.

7.2 Bulge Factor Arc

We now consider an arc representation involving the arc’s start and end points, the so-called
bulge factor arc as illustrated in Figure 7.2. A bulge factor arc is specified by its start and
end points plus an additional number specifying the “bulge” (or fatness) of the desired arc.
More precisely, if Py and P, are the start and end points of the arc, and P, is the midpoint
of the arc, then the bulge factor, B, is defined to be the (non-zero, positive) ratio

o

B
D

where D is the distance between Py and P; and H is the distance from P,, to the chordal
line defined by Py and P;. Thus, an arc with B = 1 will be a semicircle. Closer examination
of the definition of the bulge factor arc reveals that for a given value of B there are two arcs
satisfying the definition. These arcs are mirror images of each other (the line passing through
Py and P; is the reflection line). To distinguish between these two arcs we make the arbitrary
definition that the arc will be traversed counter-clockwise from Py to P;. The mirrored arc is
represented by interchanging the roles of Py and P;.

Radius and Center

In order to determine defining parameters of the circle underlying the bulge factor arc, we need
to determine the radius, r, and the center point, C(h, k), in terms of the points, Py(zo,¥o)
and Pj(x1,y1), and the bulge factor, B. Consider the right triangle C Py Py; where Py is the
midpoint of the chord PyP;. By the Pythagorean Theorem

|CPu[? + | PoPul® = |CR|*
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or

Solving for r and substituting H = BD/2 yields

D 1
Tz(B'f'E)

where r > 0, since B > 0 and D > 0.

To find the coordinates C'(h, k) of the center point of the arc we note that the center is
offset from point Py; a distance (r — H). The direction of the offset is rotated —90 degrees
from the vector Py — P;. Therefore, the equations for C(h, k) are

To + T
2

Yo + 1 .

h = 5

+ k(Yo —y1) and k = K(xo — x1)

1/1
=-(=-B).
=i(5-)

It is clear from the expressions for r and C that if we replace B with 1/B we get an arc
with the same radius and center, whose locus is counter-clockwise from P; to Py. This arc
is the complement of the original arc. The reflection of the original arc in the chord may be
obtained by reversing the roles of Py and P; and using the same value, B, as the bulge factor.

where

Example. Plot the arc with end points (1,0) and (0,1) with a bulge factor of
1/2. Find the mirror image of the arc reflected in the chord.

Solution. The standard representation of an arc in Descarta2D is
Arc2D [coordsy, coords;, Bl

where the start and end point coordinates are given as the first two arguments,
respectively, and the bulge factor is the third argument. The arc reflected in the
chord is constructed by reversing the roles of the start and end points.

In[2]: al = Arc2D[{1, 0}, {0, 1}, 1/2];
a2 = Arc2D[{0, 1}, {1, 0}, 1/2];

In[3]: Sketch2D[{al, a2, Point2D[{1, 0}], Poi nt2D[{0, 1}1}1;
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. N DescartazD Hint. The Descarta2D function Arc2D[arc, Complement2D] con-
\ay structs the complement of an arc.

Angles

Let 0 be the angular span of a bulge factor arc defined by points Py and P; and bulge factor
B. Once again examining the right triangle C' Py Py; reveals that

=) - i

2B
Using the trigonometric identity
2tan A
tan(24) = ————
an(24) (1 —tan? A)
we find that g
B =tan-.
an

From this equation it is clear that if B < 1, the arc is a minor arc whose angular span is in
the range 0 < 0 < m; if B > 1 the arc is a major arc with 7 < 6 < 27.

Let a denote the angle between the initial tangent vector, Vi, and the chord vector,
P, — Py, considered positive when V is clockwise from the chord vector, and negative when
V) is counter-clockwise from the chord. Note that —7 < o < 7 and |&| = /2. Therefore,
B = tan(a/2).

From Equation (7.1) we can derive an expression for B in terms of sina and cosa as

follows
sina ksina s 2B

t = = = - .
A= osa  kcosa ¢ (1- B2?)
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Solving this quadratic for B in terms of s and ¢ yields

s
B = — 7.2
c+Vs2+c? (72)

(The positive root of the quadratic is selected in order to insure that B has the same sign as
s. If B turns out to be negative, then the arc’s start and end points are interchanged and the
absolute value of B is the positive bulge factor.) The constants s and ¢ are some multiple of
sin « and cos a and immediately provide several useful techniques for constructing arcs. These
techniques are illustrated in the “Explorations” section at the end of this chapter.

7.3 Three—Point Arc

Let Py and P; be the start and end points of an arc and let point P be any other point on
the arc. One method for constructing the arc through the three points is to first construct
the underlying circle through the three points and then compute the limiting angles of the
arc from the end points and the center. Alternately, the bulge factor arc form provides an
appealing method for computing the arc. Note that Py and P; are the chord end points
required in the bulge factor arc formulation and in order to fully define the arc, we need to
determine its bulge factor, B. As the third point P traverses the arc the angle subtended at
P by the chord PyP; remains constant at the value (m — ). Thus, using the simpler vector
form,

s = |(P—Py)x (P, —P)
c = (P—Po)(Pl—P)

From s and ¢ we compute B using Equation (7.2).

Example. Find and plot the arc passing through the points (4,2), (—2,4), and
(0, —6).

Solution. The function Arc2D [point, point, point] returns an arc through three
points. The first and third points are assumed to be the end points of the arc
chord.

In[4]: pl =Point2D[{4, 2}1;
p2 = Poi nt 2D[{-2, 4}1;
p3 = Poi nt 2D[ {0, 6}];
al = Arc2D[pl1, p2, p3] // N

out (4] Arc2D[{0, 6.}, {4., 2.}, 1.61803]

In[5]: Sketch2D[{pl, p2, p3, al}];
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7.4 Parametric Equations

One possible set of parametric equations for an arc is very similar to those of a circle since
they both have the same underlying curve. The parameter, ¢, can be scaled in a different
manner so that parameter value t = 0 produces the start point of the arc, and parameter
value t = 1 produces the end point. The resulting parametric equations are

x = h+4rcos(fp+t(01 — b))
= k+rsin(fo+ (01 — o))
where (h, k) is the center of the arc, r is the radius, and 6y and 6; are the start and end angles,

respectively, of the arc.
Alternatively, since the standard form of an arc used in Descarta2D is

Arc2D [{xo, yo}, {$1 s y1}, B,

we seek parametric equations involving only the start and end point coordinates and the bulge
factor. The equations are given by

x = h+ (xg— h)cos(Bt) — (yo — k) sin(5t)
= k+ (2o — h)sin(Bt) + (yo — k) cos(St)

where 3 = 4tan~!(B) is the span of the arc and C(h,k) is the center point of the arc.
Parameter values in the range 0 < ¢ < 1 generate coordinates covering the span of the arc.

Example. Plot eight equally spaced points on the arc between the points (—3,2)
and (2,1) with a bulge factor of 3/2

Solution. The Descarta2D function Arc2D [{xo, yo}, {%0, Yo}, Bl [{] returns the
coordinates at parameter value ¢t on the arc.
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In[6]: al = Arc2D[{-3, 2}, {2, 1}, 3/2];
pts = Map[Poi nt 2D[al[#]]& Range[0, 71/71;
Sket ch2D[{al, pts}];

-3-2-10 1 2

7.5 Points and Angles at Parameters

Using the parametric equations of an arc defined in the previous section we can find the
coordinates of any point on the arc corresponding to an angle 8 in the range 8, < 8 < 6. The
parametric equations for an arc as defined in Descarta2D are normalized so that the parameter
value 0 generates the start point of the arc and the parameter value 1 generates the end point
of the arc. Parametric values ¢, 0 < t < 1, will generate points on the arc between the start
and end points.

Example. For the arc between the points Py(—2,1) and P;(2,2) with a bulge
factor of 3/2, use the parametric definition of an arc to find and plot the start
point, end point and midpoint of the arc.

Solution. The function Arc2D[{zo, yo}, {1, y1}, Bl [t] returns a list of coor-
dinates representing the point on the arc at a given parameter value.

In(7]: al = Arc2D[{-2, 1}, {2, 2}, 3/2];
coords = {al1[0], al[1l/2], al[1]} //N

out(7] {{(-2., 1.}, {0.75, -1.5}, (2., 2.}}

In[8]: Sketch2D[{al, Map[Point2D, coords]}l;
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Whereas the Descarta2D function arc[t] generates the coordinates of the point on
the arc at parameter ¢, the function Angle2D [arc, t] returns the angle (in radians)
on the arc at parameter ¢ with respect to a horizontal line such as the z-axis.

n[9]: Angle2D[al, 1/2] //N

out[9] -1.32582

7.6 Arcs from Ray Points

Sometimes it is more convenient to specify the start and end points of an arc, rather than the
start and end angles. One obvious construction method is to specify the center and radius
along with the start and end points. Let Py(xo,yo) and P;(x1,y1) be the desired start and
end points of an arc centered at C(h, k) with radius r. Using simple trigonometry, the start
and end angles of the arc are given by

6y = tan~* (a:o — h) and #; = tan~! (xl — h) .
Yo — k y1 — k

The arc tangent function used to implement these equations must be sophisticated enough
to assign the proper angle based on which quadrant the points are located in. Mathematica
provides such an arc tangent function that takes the numerator and denominator as separate
arguments and computes the angle in the proper quadrant.

Example. Plot the arc centered at the point (2,1) with radius 1, and with start
and end points of (7,1) and (2, 6).

Solution. The function Arc2D [point, r, {point, point}] returns a bulge factor arc
given the center point, radius, and start and end points.
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In[10]: al = Arc2D[pO0 = Poi nt 2D[ {2, 1}1, 5,
{pl = Poi nt 2D[{7, 1}], p2 = Poi nt 2D[{2, 6}]}]
5

out[10] Arc2D[{7, 1}, {2, 6}, % [77+75§—]}

In[11]: Sketch2D[{al, pO, pl, p2},
Pl ot Range -> {{0, 8}, {0, 8}}1;

1234567

EPNWhAhOIOON00

/‘\k\ Descartazp Hint. The Arc2D function introduced in the previous example
MM allows more flexible input of the arc start and end points than is obvious from
the example. These points may be located at any position on the ray extending
from the center point of the arc to the desired arc start and end points. The
arc will be bounded by the points of intersection between the circle underlying
the arc and the rays defined from the center point to the specified start and end
points.

7.7 Explorations

ARC FROM BOUNDING POINTS AND ENTRY DIRECTION....................... arcentry.nb

Let Py and P; be the start and end points, respectively, of an arc and P be a third point
on the vector tangent to the arc at Py. Show that

s = [(P—Pg)x (P1—Py)|
c = (P—-Py)-(P1—Py)

represent values of s and ¢ useful for computing the bulge factor of the arc.

ARC FROM BOUNDING POINTS AND EXIT DIRECTION..........covviiiinnennnn.. arcexit.nb
Let Py and P; be the start and end points of an arc, respectively, and P be a third point
on the vector tangent to the arc at P;. Show that

s = |(P1—Pg) x (P —Py)
c = (P1—Py)-(P-Py)
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represent values of s and ¢ useful for computing the bulge factor of the arc.

MIDPOINT OF ARC. ...ttt ettt arcmidpt.nb

Po

Show that the midpoint, P of a bulge factor arc between points Py and P; whose bulge factor
is B has coordinates

p ((3?0 +z1) ;B(yo — y1), (yo + 1) +QB($0 - 331)) .

CENTROID OF SEMICIRCULAR ARC. ...ttt arccent.nb
Show that the centroid of the area bounded by a semicircular arc of radius  and its chord
is on the axis of symmetry at a distance

_47“

" 37

H

from the chord of the arc.






Chapter 8

Triangles

Even though a triangle is not easily represented by a single, simple equation, there exist so
many interesting properties of triangles that it is worth devoting a special chapter to them.
Even today, new relationships involving triangles continue to be discovered. Descarta2D imple-
ments the triangle as a named object to enable easy study of the mathematical relationships
arising from the geometry of a triangle.

8.1 Definitions

A triangle is a composite object consisting of the three line segments connecting three non-
collinear points. The line segments are called the sides of the triangle, and the points are
called the wertices of the triangle. The two line segments adjacent to each vertex form an
angle inside the triangle called a vertex angle.

A triangle is isosceles if two sides are equal in length, and the third side is called the base.
In an equilateral triangle all three sides are equal length. A triangle is called acute if all the
interior angles measure less than 90°. A right triangle has one interior angle of 90°, and the
side opposite the right angle is called the hypotenuse. A triangle with an interior angle greater
than 90° is called an obtuse triangle. A triangle with three unequal sides is a scalene triangle.
It is clear from Figure 8.1 that the sum of the interior angles of a triangle is 180 degrees (7
radians).

Example. Plot the triangle connecting the points (—1,—1), (2,0) and (—2,1).
Use Descarta2D functions to retrieve the vertex points and vertex angles of the
triangle (in degrees).

Solution. In Descarta2D a triangle is represented as

Triangle2D [coordsy, coordsy, coordss]

117
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Figure 8.1: Sum of triangle interior angles.

where coordsy, coordsy and coordss are the coordinates of the first, second and
third vertex points, respectively. The Descarta2D function Point2D [triangle, n]
returns a point located at vertex n of the triangle. Angle2D [triangle, n] returns
the vertex angle at vertex n of the triangle.

In[1]: t1 =Triangl e2D[{-1, -1}, {2, 0}, {-2, 1}1;
{Map[Poi nt 2D[t 1, #1& {1, 2, 3}1,
Map [Angl e2D[t 1, #]1& {1, 2, 3}] /Degree // N}

out[1] {{Point2D[{-1, -1}], Point2D[{2, 0}], Point2D[{-2, 1}]},
(98.1301, 32.4712, 49.3987}}

In[2]: Sketch2D[{t1}];

1
N
]
=
o
=
N

Example. Given thelines2x —3y+4 =0, -4z +2y+2=0and4z +5y—2=0
construct the triangle whose sides lie on the lines.
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Solution. The Descarta2D function Triangle2D [line, line, line] returns a trian-
gle defined by three lines.

n[3]: |1 =Line2D[2, -3, 4];
| 2 = Li ne2D[-4, 2, 2];
| 3 = Line2D[4, 5, -21;
tl="Triangle2D[l 1, 12, |3]

out (3] Triangl e2D[{ £, 3} {-4p 10} {5+ 0]
In[4]: pr = PlotRange -> {{-2, 3}, {-1, 3}};
Sketch2D[{l 1, 12, 13}, prl;
Sket ch2D[{t 1}, pr];
3 3
2.5 2.5
2 2
.5 .5
1 1
.5 .5
0 0
-0.5 -0.5
1T o123 Y1012

Example. Find the line segment and the line associated with the side connecting
vertices 2 and 3 of Triangle2D[{2, 3}, {-1, 2}, {-3, 2}1.

Solution. The Descarta2D function Segment2D [triangle, ni, ne] returns the line
segment connecting two vertices of a triangle. Line2D [triangle, ny, no] returns
the line containing the side of a triangle through two vertices.

In[5]: t1="Triangle2D[{2, 3}, {-1, 2}, {-3, 2}1;
{Segnent 2D[t 1, 2, 3], Line2D[t1, 2, 3]}

out [5] {Segment2D[{-1, 2}, {-3, 2}], Line2D[0, -2, 4]}
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v P(a, b)
|
AP ‘<y‘
+
Qd, 0 x
lt—— X2 — X] ——— =]

Figure 8.2: Centroid of a triangle.

8.2 Centroid of a Triangle

The “balance point” of a planar area defined by bounding curves is called the center of gravity
of the area. When the material covering the area has a constant density throughout, and the
formulas for the center of gravity depend purely on the size and shape of the area, the center
of gravity is called the centroid of the area. For symmetric geometric figures such as a square,
circle or ellipse, the centroid is obviously the center point of the figure.

Referring to Figure 8.2 it is intuitively obvious that the triangle will “balance” on some
horizontal line at ordinate . The position of this line can be determined by summing the
moments, AM = D(x2 — x1)Ay, of infinitesimal rectangles on either side of the line. The
value of 7 is the ordinate at which the sum of the moments is equal on both sides of the line.
The usual method for determining 7 is to use integral calculus and the actual derivation is
included as the exploration tricent.nb. The derivation shows that the line is one-third of
the distance from the base of the triangle to the apex, and the coordinates of the centroid, P,
of the triangle are given by

P($1+$2+$3 y1+y2+y3>
3 ’ 3

where (21,y1), (22,y2) and (z3,ys) are the coordinates of the triangle’s vertex points. The
centroid point coordinates can be determined by intersecting a pair of lines offset from the
sides of the triangle one-third of the distance from the side towards the opposite vertex.

The medians of a triangle are the lines connecting the vertices to the midpoints of the
opposite sides. The medians taken in pairs intersect in coincident points, and the point is the
centroid of the triangle as is shown by the following Descarta2D commands:
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1n[6]: O ear [x1, y1, x2, y2, x3, y31;
pl = Poi nt 2D[ {x1, y1}1;
p2 = Poi nt 2D[ {x2, y2}];
p3 = Poi nt 2D[ {x3, y3}1;
pt 1 = Poi nt 2D[Li ne2D[p1, Poi nt2D[p2, p3]1],
Li ne2D[p2, Poi nt2D[pl, p311]1 // Sinplify

out [6] Poi ntzD[{l (X1 +x2 +x3), % <y1+y2+y3>}}

3

Example. Find the centroid of the triangle whose vertices are (—2,—1), (3,1),
and (0,2). Show by plotting that the medians intersect at the centroid.

Solution. The Descarta2D function Point2D [{riangle, Centroid2D] returns the
centroid point of a triangle.

n([7]: t1=Triangl e2D[{-2, -1}, {3, 1}, {0, 2}1;
pt = Poi nt 2D[t 1, Centroi d2D]

7 3

out [7] Poi nt 2D[{

In[8]: {cl1, c2, c3} = {{-2, -1}, {3, 1}, {0, 2}};
s12 = Segnent 2D[c1, c2];
s13 = Segment 2D[c1, c3];
s23 = Segnent 2D[c2, c3];
ml = Segrent 2D[Poi nt 2D[c1], Poi nt 2D[s23]1];
m2 = Segnent 2D[Poi nt 2D[c2], Poi nt 2D[s13]];
B8 = Segnent 2D[Poi nt 2D[c3], Poi nt 2D[s12]];

n[9]: Sketch2D[{t1, pt, nl, n2, nB}];

e
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8.3 Circumscribed Circle

A circle passing through the three vertex points of a triangle is said to be circumscribed
about the triangle. We have already provided in a previous chapter the equation of a circle
passing through three points. Since the sides of the triangle are chords of the circle, and the
perpendicular bisectors of the chords of a circle intersect at the center point, the center of the
circumscribed circle is the intersection point of the perpendicular bisectors of the triangle’s
sides taken in pairs.

Example. Find the circle circumscribing the triangle whose vertices are (1,2),
(—=2,4) and (—3,1). Show by plotting that the perpendicular bisectors of the sides
of the triangle intersect at the center point of the circumscribed circle.

Solution. The function Circle2D [triangle, Circumscribed2D] returns the cir-
cle that circumscribes the triangle.

In[10]: pl = Point2D[{1, 2}1;
p2 = Poi nt 2D[{-2, 4}1;
p3 = Poi nt 2D[{-3, 1}1;
t1l=Triangl e2D[pl, p2, p31;
cl=Circle2D[t1l, Circunscribed2D] // N

out(10] Circle2D[{-1.13636, 2.04545), 2.13685]

In[11]: Sketch2D[{pl, p2, p3, t1, cl1, Point2D[cl],
Li ne2D[pl, p2, Perpendi cul ar2D],
Li ne2D[pl, p3, Perpendi cul ar2D],
Li ne2D[p2, p3, Perpendi cul ar2D]}];

5
4
3
2
1
0
-1
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/‘\k\ DescartazD Hint. Point2D [triangle, Circumscribed2D] directly returns the
AN center point of the circumscribed circle of a triangle.

The radius, R, of the circle circumscribing a triangle whose sides are of length s1, s and
s3 is given by
518283

VPS

where S = s1 + s2 + s3 and P = (—s1 + s2 + s3)(s1 — s2 + s3)(s1 + $2 — s3). This formula is
derived in the exploration trirad.nb.

R:

8.4 Inscribed Circle

A circle inside a triangle that is tangent to all three of the triangle’s sides is said to be
inscribed in the triangle. The center of the inscribed circle must lie on the angle bisectors
of the triangle’s sides because the center must be equidistant from the sides. Therefore, the
point of intersection of a pair of angle bisectors of a triangle is the center of the inscribed
circle. The radius of the inscribed circle is the distance from the center point to any one of
the triangle’s sides. The center (h, k) and radius r of the inscribed circle derived from this
construction yields

h = (s121 + s2x9 + s3x3)/2s
k= (siy1+ s2y2 + s3y3)/2s

ro= V)-8 - )5

where
s1o= V(w2 —23)>+ (y2 — y3)?
ss = (r1—23)2+ (y1 — y3)?
s3 = V(r1—22)2+ (y1 — y2)?
s = (s1+s2+s3)/2.

Example. Find the circle inscribed in the triangle whose vertices are (—3,3),

(3,3) and (1,—3). Show by plotting that the angle bisectors of the sides of the
triangle intersect at the center of the inscribed circle.

Solution. The function Circle2D [t{riangle, Inscribed2D] returns the circle
inscribed in the triangle.
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In[12]: pl =Point2D[{-3, 3}];
p2 = Poi nt 2D[ {3, 3}1;
p3 = Poi nt 2D[ {1, -3}1;
t1l=Triangl e2D[pl, p2, p3];
cl=Crcle2D[tl, Inscribed2D] // N

out [12] G rcle2D[{0. 443274, 1.15722), 1.84278]

In[13]: Sketch2D[{pl, p2, p3, t1, cl1, Point2D[cl],
Medi al Equat i ons2D[ {Li ne2D[p1, p2], Line2D[pl, p3]1}1[[21],
Medi al Equat i ons2D[ {Li ne2D[p2, p3], Line2D[p2, pl]1}]1[I[211],
Medi al Equat i ons2D[ {Li ne2D[p3, pl], Line2D[p3, p2]1}1[[211}];

N
i

4 -2 0

/‘\k\ Descartazp Hint. The function Point2D [t{riangle, Inscribed2D] directly re-
M turns the center point of the inscribed circle of a triangle.

The radius, r, of a circle inscribed in a triangle whose sides are of length s, s2 and s3 is
given by

where S = s1 + $2 + s3 and P = (—s1 + s2 + $3)(81 — S2 + $3)(81 + $2 — s3). This formula is
derived in the exploration trirad.nb.

8.5 Solving Triangles

Clearly, the shape of a triangle, independent of its position and orientation, is determined by its
side lengths and vertex angle magnitudes. Labeling the sides and angles as shown in Figure 8.3
relative to the vertices, we pose the problem of determining all of the configuration parameters
(sn and ay,) given a subset of them. The configuration parameters are always assumed to be
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a3

2 St

aq a

V]_ S3 V2

Figure 8.3: Standard labeling of a triangle’s sides and angles.

positive and the angles less than 7 radians. Generally, a unique triangle is determined by
specifying three of the six configuration parameters, although in two cases (AAA and SSA),
as outlined below, the configuration is ambiguous. The configurations requiring consideration
are enumerated as

A AA Angle-Angle-Angle: Specifying three angles of a triangle determines the shape of a
family of similar triangles, but is ambiguous as to the lengths of the sides.

AAS Angle-Angle-Side: The AAS configuration is specified by two angles and a side not
between them. For example, the configuration parameters ay, as and s1 specify an AAS
configuration. In a valid configuration the sum of the two given angles must be less than
« radians, and such configurations admit a unique solution.

ASA Angle-Side-Angle: The ASA configuration is specified by two angles and the side be-
tween the angles. The configuration parameters a1, s3 and asg, for example, illustrate an
ASA configuration. The ASA configuration allows a unique solution if the sum of the
two angles is less than 7 radians.

SAS Side-Angle-Side: The SAS configuration involves two sides and the angle between them.
The configuration given by s1, ag and ss is an example of an SAS configuration. The SAS
configuration specifies a unique solution for all values of the configuration parameters.

SSA Side-Side-Angle: SSA configurations (s1, s2 and a1, for example) are referred to as the
ambiguous case, because two valid solutions may exist. That is, two different sets of
configuration parameters representing two different triangles may satisfy the configura-
tion. In some cases (right triangles) only one solution may exist, and in other cases the
configuration may be inconsistent allowing no solutions.

SSS Side-Side-Side: Specifying three sides of a triangle determines a unique triangle, or may
be inconsistent if the length of one side is greater than or equal to the sum of the lengths
of the other two sides.
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The process of determining the full set of configuration parameters given one of the cases
above is called solving the triangle. Solving triangles involves the application of three funda-
mental principles. In terms of the configuration parameters these three principles lead to the
following equations:

e Sum of the angles of a triangle is w radians: a; + as + a3 = .
e The Law of Sines (three equations):

S1 52 53

sin(a;)  sin(az)  sin(asz)’

e The Law of Cosines (three equations):

s2 = s34 52— 2s9s3c0s(ar),

52 = 574 52— 2s1s3c08(a),
2 2, .2

s5 = s7+s5;—2s152c0s(ag).

When applying the Law of Sines or the Law of Cosines, care must be taken to properly
handle the ambiguous cases noting that sin(a) = sin(m — a), for example, when applying the
Law of Sines. The Descarta2D package D2DTriangle2D provides details illustrating how to
solve all the triangle configuration cases using these principles.

Example. Find all the configuration parameters for a triangle with s; = 1, so = 2
and ag = m/6 radians. Construct a triangle satisfying this SAS configuration.

Solution. SolveTriangle2D[{{s1, S2, s3}, {a1, a2, az}}] returns a complete
specification a triangle configuration, in the form {{s1, s2, s3}, {a1, a2, as}},
given three of the six configuration parameters. The three parameters to be
found must be omitted (i.e. entered as Null in the configuration). The func-
tion Triangle2D[config]l returns the triangle satisfying the configuration. The
first vertex of the triangle will be the origin and the second vertex will be on the
+x-axis.

In[14]: sa = Sol veTriangl e2D[{{1, 2, Null},
{Nul'l, Null, Pi /6}}] //Sinplify

outr141 ({1, 2, \/5-2+3 1, {Arc(:os[%], ArcCos[_l_:T\/_?’:___], =1

In[15]: Triangl e2D[sa] // Sinplify

ffffffffffff 4-V3 1 H
Vs-2v3  5-2+3
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Descartazp Hint. Triangle2D[{si, s2, s3}] constructs a triangle given the
lengths of the sides only.

Example. Find all configuration parameters for a triangle with s; =1, s = 1.5
and a; = m/6 radians (an SSA case).

Solution. The function SolveTriangle2D [config] returns a complete triangle
configuration given a partial configuration. Since this is an SSA case, there is
a possibility of two solutions. SolveTriangle2D [config, True] will return the
alternate triangle configuration, if one exists.

In[16]: Sol veTriangl e2D[{{1, 1.5, Null},
{Pi /6., Null, Null}}]

out[16] {{1, 1.5, 1.96048), {0.523599, 0.848062, 1.76993})

In[17]: Sol veTriangl e2D[{{1, 1.5, Null},
{(Pi /6., Null, Null}}, True]

out(17] {{1, 1.5, 0.6376}, {0.523599, 2.29353, 0.324463}}

In[18]: {Sketch2D[{Tri angl e2D[{{1, 1.5, Null},
{Pi /6., Null, Null}}1}1,
Sket ch2D[{Tri angl e2D[{{1, 1.5, Null},
{Pi /6., Null, Null}}, Truel}l};

COoO0O0000o
ORrNWAUT O
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8.6 Cevian Lengths

A cevian of a triangle is a line segment connecting a vertex to a point on the line containing
the side of the triangle opposite the vertex. Therefore a cevian may be inside the triangle
(if the point is on the opposite side) or it may be outside the triangle (if the point is on the
extension of the line which contains the opposite side). Common cevians include the altitude
of a triangle which is the cevian perpendicular to the opposite side, the median which connects
the vertex to the midpoint of the opposite side and the angle bisector which bisects the angle
at the vertex.

If a triangle has sides whose lengths are s1, so and s3 opposite vertices V7, V5 and V3, then
the length of the altitude, hq, from V; is given by

VPS

281

hi =

where S = 51+ s2 + s3 and P = (—s1 + s2 + 83)(s1 — S2 + 83) (81 + $2 — s3). The length of the
median, m1, from vertex V; is given by

1
my = 5\/—8% + 2(s3 + 53).

The length of the angle bisector, by, from V; is given by

b — \/58283(—81 +82+83)
e S2 + 83 .

The formulas for the lengths of the cevians from vertices Vo and V3 can be found by cyclic
permutation of the subscripts given in the formulas above. The derivations of these formulas
are provided in the exploration tricev.nb.

8.7 Explorations

CIRCLE INSCRIBED IN A RIGHT TRIANGLE. ...\ttt e rttricir.nb

Show that if r is the radius of a circle inscribed in a right triangle with sides a and b and
hypotenuse ¢, then r = %(a +b—c).

EULER'S TRIANGLE FORMULA. . ..ot trieuler.nb

If T is a triangle, and P and r are the center and radius of the circle inscribed in T, and
@ and R are the center and radius of the circle circumscribing 7', show that

d*=R®>-2rR

where d is the distance from P to Q.
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GERGONNE POINT OF A TRIANGLE. . ..ottt gergonne.nb
Let Q12, @13 and Q23 be the points of contact of the inscribed circle of triangle P, P, P3 with
sides L1o, L13 and Lag, respectively. Show that lines Py Q23, P2QQ13 and P3()12 are concurrent.
The point of concurrency is called the Gergonne Point of the triangle after J.D. Gergonne
(1771-1859), founder-editor of the mathematics journal Annales de Mathematiques.

CENTROID OF A TRIANGLE. ..\ttt ettt e e e e e e tricent.nb
vA P(a, b)
5
T N
—
Qd, 0) x
la—— X2 — X] ———

Show that the centroid of a triangle, as illustrated in the figure, is on a line at a distance
7 = b/3 from the base of the triangle.

ALTITUDE OF A TRIANGLE. « .ttt ittt ettt ettt e et et et et eee e trialt.nb

The altitude from vertex A of AABC is a line segment from A perpendicular to the side
BC (or its extension). Show that the equation of the line containing the altitude from A is

(w3 —x2)x + (Y3 — y2)y — 1 (23 — 22) —y1(yz —y2) =0

where the coordinates of the vertices are A(z1,y1), B(x2,y2) and C(z3,ys).

TRIANGLE ALTITUDE LENGTH. ..\ttt ittt ettt e eeii e i eeiiaeen triallen.nb
Show that the length, L, of a triangle’s altitude (from vertex V3 to side s1) is given by

V/(s1+ 82 — 83)(s1 — 52+ 83)(—81 + 82 + 83) (51 + 52 + 53)
283

L =

where s1, s2 and s3 are the lengths of the triangle’s sides.

CONCURRENT TRIANGLE ALTITUDES. . .ttt vttt triconn.nb

Show that the three altitudes of any AABC' are concurrent in a single point (x,y) whose
coordinates are given by
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where

g =~ —y)(@re +y3) + (1 — ys) (133 + ¥3) — (Y2 — y3) (w223 + Y1)
= +(z1 — 22)(y1y2 + 23) — (21 — x3) (11ys + 73) + (22 — 23)(Y2ys + 27)

and
1 y1 1
D = To Y2 1
x3 ys 1

and the coordinates of the vertices are A(z1,y1), B(2z2,y2) and C(x3,y3). This point is called
the orthocenter of the triangle.

TRIANGLE SIDE LENGTHS FROM ALTITUDES. ..\ttt trisides.nb

Prove that the lengths of a triangle’s sides whose altitudes are of lengths hy, ho and hg are
given by

- 2h1H1 5 — 2h2H2 and sx — 2h3H3
T H 7T H T H
where H1 = hghg, HQ = hlhg and H3 = hlhg, and

S1

H = \/(H, + Hy — H3)(H, — Hy + H3)(—H, + Hy + H3)(H, + Hy + H3).

TRIANGLE RADIL. ..o e trirad.nb
Prove that the radius, r, of a circle inscribed in a triangle is given by

where S = s1 + 5o+ s3, P = (—s1 + s2 + s3)(s1 — s2 + s3)(s1 + s2 — s3) and s1, s2 and s3
are the lengths of the triangle’s sides. Furthermore, prove that the radius, R, of the circle
circumscribing the triangle is given by

TRIANGLE CEVIAN LENGTHS. .ottt ettt ettt ettt et e e tricev.nb

Prove that the length of the altitude, hi, from vertex V; of a triangle to the opposite side
of the triangle (whose length is s1) is given by

VPS

h =
! 281
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where S = 51 4+ 52 + s3 and P = (—s1 + s2 + s3)(s1 — 2 + $3)(81 + $2 — s3). Prove that the
length of the median, my, from vertex V; is given by

1
mp = 5\/—8% +2(s3 + 53).

Prove that the length of the angle bisector, b1, from V; is given by

_ \/Ssas3(—s1 4 52+ s3)

b
! S2 + S3

Also show that the formulas for the lengths of the cevians from vertices Vo and V3 can be
found by cyclic permutation of the subscripts given in the formulas above.
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Chapter 9

Parabolas

In the branch of mathematics known as celestial mechanics it is shown that an object, such as
a comet, that falls toward the sun “from infinity” would, if not deflected by the gravitational
attraction of other bodies, travel in a path whose shape is a parabola with the sun at its focus.
Projectiles in a vacuum on the surface of the earth travel in paths which are nearly parabolic,
and projectiles in the air approximate this path with greater or less precision according to
their speed, shape and weight. Humans also take advantage of the focusing properties of a
parabolic shape in the design of such artifacts as headlights, searchlights and various listening
and broadcasting devices. This chapter develops the underlying mathematics of a parabola.

0.1 Definitions

A parabola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is one. The fixed point, F, is called the focus and the fixed line,
D, the directriz. By definition, the distance from any point P on the parabola to the focus
is equal to its distance to the directrix. The ratio PF/PD is called the eccentricity e and
e = 1. The line F'D through the focus perpendicular to the directrix is called the azis of the
parabola. The midpoint V' of the segment F' D, obviously a point on the locus, is called the
vertex of the parabola. The focal chord perpendicular to the axis is called the latus rectum.

9.2 General Equation of a Parabola

We choose any point F(z1,y1) as the focus and any line D = Ayz + By + C; = 0, where
A2+ B? = 1, as the directrix. The normalized form of the line is used to simplify the derivation.
With reference to these defining elements the equation of the parabola becomes

V(@ —21)?+ (y —)? = £(Aiz + Biy + C1)

135
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Figure 9.1: Definition of a parabola.

which can be written as

—B?2% + 2A1 Bivy — A3y +
2(x1 + A1C1)x +2(y1 + B1C)y + (C1 — 22 —y?) = 0.

This equation is of the form Axz? + Bxy + Cy? + Dz + Ey + F = 0, an equation of the second
degree. One characteristic of the equation is that the second-degree terms in x and y form a
perfect square, so the equation may also be written

—(Byz — Aly)2 +2(z1 + A1C1)x + 2(y1 + B1C1)y + (Ch — x% - y%) =0.

Moreover, it can be verified that B? — 4AC = 0. Therefore a necessary condition that the
equation Az? + Bxy + Cy? + Dz + Ey + F = 0 represent a parabola is that B2 — 4AC = 0.
The general equation of a parabola reveals that if the directrix line is parallel to one of the
coordinate axes then B = 0 since either A; or By will be zero. The equation of a parabola in
this position will have no xy term.

9.3 Standard Forms of a Parabola

The definition of a parabola makes the shape of the curve depend only upon the distance from
the focus to the directrix and not essentially upon the coordinate system. The general equation
is complicated because of the choice of a general point and a general line. By an appropriate
choice of axes this equation can be simplified; but it will then represent only parabolas in
special positions. For example, if axes are chosen so that the focus has coordinates (f,0) and
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the directrix the equation z = — f, then the locus definition yields

v+ = VG IPEP

which reduces to y2 = 4fz. This is one of the standard forms of the equation of a parabola.
It has a vertex V(0,0). If f is positive the parabola opens to the right; if f is negative it
opens to the left. The distance f is called the focal length of the parabola and is the distance
between the focus and the vertex of the parabola.

Generalizing the location of the vertex point to V'(h, k) gives a parabola whose equation is

(y —k)? = 4f(z — h).

This equation is the standard form used in Descarta2D as illustrated in the following example.

Example. Plot the parabola whose vertex is (2,1), focal length is 1/2, and opens
to the right.

Solution. Parabola2D[{h, k}, f, 6] is the standard representation of a parabola
in Descarta2D where the coordinates of the vertex are (h, k), the focal length is f
and the rotation angle (in radians) about the vertex is 6.

In[1]: Sketch2D[{Par abol a2D[{2, 1}, 1/2, 0]}1;

NFPORPNWDS

2345678

|
The axis of the parabola may also be parallel to the y-axis in which case the equation is
(= h)2 = 4f(y — k).

Descarta2D does not directly use this form of the parabola, but instead simply rotates the 3?2
form by the appropriate angle.

Example. Plot the parabola whose vertex is (1,—1), focal length is 1/3, and
opens upward.
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Solution. Use the same command as in the previous example with a rotation
angle of 7/2 radians.

In[2]: Sketch2D[{Parabol a2D[{1, -1}, 1/3, Pi /2]}1;

T P OPFRPDNWKAOOO

2-101 2 3 4

Example. Plot the four parabolas whose vertices are (1,1), (=1,1), (=1,—-1) and
(1,-1), focal length 1/3, and axes aligned with the lines z —y = 0 and x+y = 0.

Solution. The Descarta2D command Parabola2D[{h, k}, f, 6] returns the de-
sired parabolas using the Angle2D [line] command to find the required values for

6.

In[3]: axi sl =Line2D[1, -1, O]; axis2=Line2D[1, 1, O];
t heta = {Angl e2D[axi s1], Angl e2D[axi s2],
Angl e2D[axi s1] + Pi, Angl e2D[axi s2] +Pi };
pts = {{1, 1}, {-1, 1}, {-1, -1}, {1, -1}}
Sket ch2D[ {axi s1, axi s2,
Map [Par abol a2D[pt s[[#]], 1/3, theta[[#]]]1&
Range[1, 4]1}];

ANONMO®O

Se 120276
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9.4 Reduction to Standard Form

The most general equation of a parabola with no zy term present (and hence one whose axis
is parallel to one of the coordinate axes) is one of the two forms

(1) Az?+ Dz + Ey+ F =0, axis parallel to the y-axis;
(2) Cy?*+ Dz + Ey+F =0, axis parallel to the z-axis.

In either case it is easy to reduce this general equation to the corresponding standard form
by the process of completing the square.

Example. Reduce x2 + 4z + 4y — 8 = 0 to the equation of a parabola in standard

form.
L |

Solution. The Descarta2D function Loci2D [quadratic] returns a list of geometric
objects represented by a quadratic equation.

In[4]: crvl = Loci 2D[Quadrati c2D[1, 0, O, 4, 4, -8]1]

out 4] {Parabol a2D[{-2, 3}, 1, 32_”]}

The equation in standard form is (y — 3)% = 4(z + 2), rotated 270° (37/2 radians)
about the point (—2,3).

In[5]: Sketch2D[{crv1}];

NP ORFLDNW

The following example shows how Descarta2D may be used to find the various geometric
objects associated with a parabola.

Example. Find the focus, directrix, vertex, axis and eccentricity of the parabola
represented by the equation x? — 22 — 8y — 15 = 0. Plot the geometric objects.
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Solution. The function Foci2D [parabola] returns a list of one point which is the
focus of the parabola; Directrices2D [parabola] returns a list of one line which
is the directrix of the parabola; Line2D [parabola] returns the axis line of the
parabola; and the function Eccentricity2D [parabola] returns the eccentricity of
a parabola (always 1).

1n[6]: pl =First [Loci 2D[Quadrati c2D[1, 0, 0, -2, -8, -15]1]
out (6] Parabol a2D[{1, -2}, 2, %}
n[7]: {Eccentricity2D[pl],

geom= Map[ (#[pl])&,
{Foci 2D, Directrices2D, Vertices2D, Line2D}]} //Flatten

out (7] {1, Point2D[{1, 0}], Line2D[0, 1, 4], Point2D[{1, -2}], Line2D[-1, 0, 1]}

In[8]: Sketch2D[{pl, geom}];

-2 e

-3

0.5 Parabola from Focus and Directrix

A parabola may be defined in terms of a focus point F(z1,y1) and a directrix line given
by L = Asx + Boy + Cy = 0. Given these two defining elements the parabola’s parameters
(vertex point V'(h, k), focal length f and angle of rotation #) can be determined. Let

B Asz1 + Bayr + Cs
A3+ B3

be the signed distance from the focus F' to the directrix L, D = |d|, and F’ be the projection
of F on L. From a previous chapter the coordinates of F’ are given by (z1 —ad, y1 — bd), where
a = Ay/\/A3 + B and b = By/+\/A% + B3. The vertex point V is obviously the midpoint of
the line segment F'F’ and has coordinates V' (h, k) = (z1 — ad/2,y1 — bd/2). The focal length
fis half of D, f = D/2. The rotation angle 6 is the angle of the line FF".

d
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Example. Determine the parabola in standard form defined by the focus point
F(1,1) and the directrix line z +y = 0.

Solution. The Descarta2D function Parabola2D [point, line] returns the parabola
defined by a focus point and a directrix line.

In[9]: pl = Parabol a2D[Poi nt 2D[ {1, 1}], Line2D[1, 1, 0]]
1 1 1 7T
7} 7

out [9] Par abol aZD[{f, =3t

7

In[10]: {Foci 2D[pl], Directrices2D[pl]} // Sinplify

out[10] {{Point2D[{1, 1}]}, {Line2D[1, 1, 0]}}

9.6 Parametric Equations

The standard form of a parabola used in Descarta2D has the equation

(y— k) =4f(z—h)

where (h, k) is the vertex of the parabola and f is the focal length. The axis of this parabola
is parallel to the z-axis and the parabola opens to the right (when f > 0). Parabolas in other
orientations are obtained by applying a rotation, 6, to the standard parabola. Since only the
y term is quadratic, it is easy to find one set of parametric equations for a parabola. Let
y =k + 2ft be one of the equations; then, solving for ¢ yields

(y — k)
2f

Substituting this into the equation of the parabola and solving for x yields the two parametric
equations

t =

r = h+ ft?
= k+2ft

The parameter value ¢ = 0 produces the vertex point (h, k). Increasing values of ¢ produce
points above and to the right of the vertex. Negative values of ¢t produce points that correspond
to positive t values reflected in the axis of the parabola. Parameter values t = +1 produce
the end points of the focal chord of the parabola.
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Example. Generate seven points on the parabola (y + 1)? = 2(z — 1) at equally
spaced parameter values. Plot the curve using a curve length of 20. Generate a
second plot of the points on the reflected branch of the parabola.

Solution. The Descarta2D command Parabola2D[{h, k}, f, 61 [t] returns the
coordinates at parameter ¢ on the parabola. The option CurveLength2D->n sets
the approximate length of unbounded curves plotted by Descarta2D.

In[11]: pl = Parabol a2D[{1, -1}, 1/2, 0];
ptsl = Map[Poi nt 2D[pl[#/2]]1& Range[0, 6]];
pts2 = Map[Poi nt 2D[p1[#/2]]& Range[-6, 0]];
Sket ch2D[{p1, ptsl}, CurvelLength2D->20];
Sket ch2D[{p1l, pts2}, CurvelLength2D-> 20];

//

0 2 4 6 8 10 0 2 4 6 8 10

Mathematica Hint. Using the CurveLength2D option as part of the Sketch2D
command sets the length of all unbounded curves being plotted. If this option is
not specified, then a default is used. The initial default set by Descarta2D is 10.
To change the default to a new value, n, use the Mathematica command

SetOptions [Sketch2D, CurveLength2D->n].

9.7 Explorations

LENGTH OF PARABOLA FOCAL CHORD. .. ..c.iuititiii i pbfocchd.nb
Prove that the length of the focal chord of a parabola is 4f, where f is the focal length.
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PARABOLA THROUGH THREE POINTS. ... .o pb3pts.nb

Show that the parabola passing through the points (0,0), (a,b) and (b,a) whose axis is
parallel to the z-axis has vertex (h, k) and focal length f given by

2 2\2 2 2
h:(a —|—ab+b),k:a +ab+b and f—— ab .
4ab(a + b) 2(a+b) 4(a+0b)

Furthermore, show that the quadratic representing the parabola is

(a +b)y* + abx — (a® + ab+b*)y = 0.

PARABOLIC ARCH. « ..ttt ittt ettt et e e e e e pbarch.nb

o
X

.~

Find the equation of the parabolic arch of base b and height i as shown in the figure. Assume
that b and h are positive.

PARABOLA DETERMINANT . ¢ .0ttt ettt ettt ettt et e e e e pbdet.nb
Show that the determinant
y x2 =z 1
y1 22 a1 —0
yo a3 a9 1
Y3 a:% rzz 1

represents a parabola Az? + Dz + Ey + F = 0 passing through the points (z1,1), (72,%2)
and (73, y3).
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PARABOLA INTERSECTION ANGLES. .ttt ettt ittt ettt et e pbang.nb
Show that the parabolas y? = ax and 22 = by will cut each other at an angle # given by

1 1
197 +tan~! 203

1 1
3 a3

0 = —tan™

CIRCLE TANGENT TO A PARABOLA. ...ttt ittt e et pbtancir.nb

Any line through the point (—3a,0) cuts the parabola y? = 4ax in the points P and Q.
Prove that the circle through P, @ and the focus is tangent to the parabola.

POLAR EQUATION OF A PARABOLA. .. ...ttt polarpb.nb

Show that the polar equation of a parabola opening to the right with vertex at (0,0) is
given by

4f cosf
r=——
sin” 6
where f is the focal length of the parabola.



Chapter 10
Ellipses

The visible universe is filled with ellipses, or near ellipses, traced by celestial bodies revolving
around each other, such as planets and the sun. The fact that the angle formed by two focal
radii through a point on an ellipse is bisected by the normal to the curve may be used in a device
for re-concentrating sound waves, at illustrated in the acoustics of the Mormon Tabernacle
in Salt Lake City, Utah. Various types of rotating machinery use elliptical components to
generate special types of linear and rotational motions. This chapter develops the mathematics
of an ellipse.

10.1 Definitions

An ellipse is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a positive constant less than one. As with the parabola, a focus,
directrix and eccentricity are associated with the curve as described in Table 10.1.

Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = e/1 there are obviously two points V and V' which divide the (undirected) segment

Table 10.1: Definition of an ellipse.

‘ ELEMENT DESCRIPTION

P(z,y) Point on locus

Fixed point F' Focus

Fixed line D Directrix

Fixed constant e | Eccentricity
e=PF/PD < 1 | Ellipse relationship

145
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v

Figure 10.1: Ellipse definition.

F D, internally and externally respectively, into the ratio of /1. Therefore V' and V' are points
(on the same side of D) on the ellipse; they are called the vertices. The segment V'V’ is called
the major azis. By symmetry there is another point F” and another line D’ such that F’ and
D’ would serve as the definition of this curve. Thus an ellipse has two foci and two directrices
associated in pairs F', D and F’, D’. The midpoint of FF’, which is also the midpoint of V'V,
is called the center C. It is evident that the locus is contained between the vertices, that it
is bounded in all directions and that it is symmetric both with respect to the major axis and
to a line perpendicular to it through C.

The focal chord perpendicular to the major axis is called the latus rectum. The length of
the central chord perpendicular to the major axis is called the minor axis.

Example. Plot the ellipse with center at coordinates (2, 1), major axis length of
6, minor axis length of 2, and rotated 30° (7/6 radians) about the center point.

Solution. E1lipse2D[{h, k}, a, b, 0] is the standard representation of an ellipse
in DescartazD. The ellipse is centered at coordinates {h, k}, has semi-major axis
of a, semi-minor axis of b and is rotated about the center point by an angle 6 (the
semi-magor axis is half the length of the major axis; the semi-minor axis is half
the length of the minor axis).

In[1]: Sketch2D[{El | ipse2D[{2, 1}, 3, 1, Pi /61}1;
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2.5
2
1.5
1
0.5
0
-0.5/

10.2 General Equation of an Ellipse

Take any point F(z1,y1) as focus and any line, D = Ajz + B1y + C1 = 0 as directrix, where
A? 4+ B? = 1. The normalized form of the line is used to simplify the derivation. By definition
the equation of the ellipse is

V(=12 + (y —y1)? = te(Aww + Biy + C1)
which may be expanded to

(A2 — 1)x? + 2e2 A Byxy + (e2B? — 1)y +
2(z1 4 €2A1C1)x 4 2(y1 + €2B1C)y + (2CF — af —yi) = 0.

This is of the form Ax? + Bxy + Cy? + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B? —4AC = 4(e? — 1) < 0 (when e < 1).

Therefore, a necessary condition that Axz? + Bxy + Cy? + Dx + Ey + F = 0 represent an
ellipse is that B2 — 4AC < 0. The general equation reveals that if the defining directrix line
is parallel to one of the coordinate axes then B = 0, since either A; or By will be zero. The
equation of an ellipse in this position will have no xy term.

10.3 Standard Forms of an Ellipse

By an appropriate choice of coordinate axes the general equation of an ellipse can be reduced
to one of the following standard forms.

Major Axis Parallel to the z-Axis

The equation of an ellipse in standard position whose major axis is parallel to the z-axis and
whose center is at the origin is
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—
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Figure 10.2: Ellipse in standard position (z-axis).

Figure 10.3: Ellipse in standard position (y-axis).
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Table 10.2: Ellipse equations (a- and y-axis).

‘ T-axis ‘ y-axis ‘
Equation S Rt UL
Center C(h, k) C(h, k)
Semi-major axis a a
Semi-minor axis b b
Vertices V(hta,k) V(h,k+a)
Foci F(h £ ae,k) F(h,k £ ae)
Directrices x=h=xale y=k=xale
Focal chord length 202 /a 202 /a
Eccentricity e= # <1 e= # <1

where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

(o= h?  (y=h? _

a? b2 1

as shown in Figure 10.2. When an ellipse is in this special position, the formulas for the
important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.

Major Axis Parallel to the y-axis

The equation of an ellipse in standard position whose major axis is parallel to the y-axis and
whose center is at the origin is

2?2

N S

b2 a?
where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

@=1? , (y=kP _

b2 a? 1

as shown in Figure 10.3. When an ellipse is in this special position, the formulas for the
important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.
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10.4 Reduction to Standard Form

The most general equation of an ellipse with no 2y term (and hence one whose axes are parallel
to the coordinate axes) is of the form

Az’ +Cy*+ Dx+ Ey+F =0, AC > 0.

The condition B? —4AC < 0 reduces to AC' > 0 which implies that A and C are of like sign.
This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce 22 4 4y? + 4z = 0 to standard form and plot.

Solution. The Descarta2D function Loci2D [quad] reduces a quadratic equation
to a standard form.

n[2]: crvl = Loci 2D[Quadr ati c2D[1, 0, 4, 4, 0, 0]]

out[2] {Ellipse2D[{-2, 0}, 2, 1, 0]}

2 2 2
The equation in standard form is % + yT =1
In[3]: Sketch2D[{crv1}];
1
0.5
0
-0.5
-1
-4 -3 -2 -1 0

Example. Reduce 522 4+ 932 — 10z — 54y + 41 = 0 to standard form. Find the
center, foci, vertices, directrices, the lengths of the semi-major and semi-minor
axes and the eccentricity. Plot the geometric objects.
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Solution. The function Loci2D[quad] reduces a quadratic equation to a stan-
dard form. The function Point2D [ellipse] returns the center point of an ellipse;
the function Foci2D [ellipse] returns a list of the two foci of an ellipse; the function
Vertices2D [ellipse] returns a list of the two vertex points of an ellipse; the func-
tion Directrices2D [ellipse] returns a list of the two directrix lines of an ellipse;
SemiMajorAxis2D [ellipse] and SemiMinorAxis2D [ellipse] return the lengths of
the semi-major and semi-minor axes of an ellipse, respectively.

In[4]: crvl = Loci 2D[Quadrati c2D[5, 0, 9, -10, -54, 41]]

out[4] {Ellipse2D[{1, 3}, 3, /5, 0]}

—1)2 —3)?
The standard form of the equation is (@ 9 ) + y 5 ) =1.

In[5]: objs =Map[(#[crv1l[[1]1] 1)&
{Poi nt 2D, Foci 2D, Vertices2D, Directrices2D,
Seni Maj or Axi s2D, Sem M nor Axi s2D,
Eccentricity2D}]
out [5] {Poi nt2D[ {1, 3}], {Point2D[{3, 3}], Point2D[{-1, 3}]},
{Poi nt 2D[ {4, 3}], Point2D[{-2, 3}]}, {Line2D[1, O, 7£}, Line2D[1, 0,

2
3.5, 5

N~
=

In[6]: Sketch2D[{crv1l, Drop[objs, -31},
Pl ot Range -> {{-5, 7}, {-1, 6}},
CurvelLengt h2D -> 157;

PORPNWRMUIIO
[ ]
[ ]
[ ]

-4 -2 0 2 4 6

10.5 Ellipse from Vertices and Eccentricity

Suppose we are given the two vertices, V;(z1,y1) and Va(x2,y2), and the eccentricity, e, of an
ellipse and we wish to find the standard equation of the ellipse. The center point (h, k) of the

ellipse is clearly the midpoint between the vertices and is given by

r1+ T2 Y1+ Y2
2 72 '
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The length of the semi-major axis, a, is one-half the distance between the vertices, yielding
a = |V1V3]/2. The eccentricity is given by

JE R

)
a

s0, solving for b gives the length of the semi-minor axis as
b=av1— e
The line through the two vertex points determines the rotation angle of the ellipse as

0 =tan" ' (22 — 21,92 — y1).

Example. Find the ellipse whose vertices are (4,2) and (-2, 1), and whose eccen-
tricity is 7/8.

Solution. The DescartazD function E1lipse2D[{point, point}, €] returns the
ellipse whose vertices are the given points with the specified eccentricity.

n[7]: pl = Point 2D[ {4, 2}1;
p2 = Poi nt 2D[{-2, 1}1;
el =Ellipse2D[{pl, p2}, 7/8] //N

out (7] Ellipse2D[{1., 1.5}, 3.04138, 1.4724, 0.165149]

In[8]: Sketch2D[{pl, p2, el}];

=
CUlPr UIN Ul W

-2 -1 0 1 2 3 4
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10.6 Ellipse from Foci and Eccentricity

It is evident from Table 10.2 that the distance between the foci of an ellipse is |F} Fa| = 2ae
and that the distance between the vertices is |V1Va| = 2a. Therefore, the eccentricity, e, given
by

_ 2ae |1 Fy|

20 ViV
is the ratio of the distance between the foci to the distance between the vertices. This re-
lationship allows us to construct an ellipse by specifying the two foci and the eccentricity.
The semi-major axis length, a, is given by a = |F; F3|/2e and the semi-minor axis length is
b = av/1 — e2. The center point of the ellipse is clearly the midpoint of the two foci and the
angle of rotation is

0= tan’l(xg —T1,Y2 — Y1),

where Fy(z1,y1) and Fa(xa,ys) are the coordinates of the foci.

Example. Find the ellipse whose foci are (—1,—1) and (1,1) and whose eccen-
tricity is 1/2.

Solution. The Descarta2D function E1lipse2D [point, point, €] constructs an
ellipse given the two foci points and the eccentricity.

In[9]: el = Ellipse2D[Poi nt 2D[{-1, -1}1, Point2D[{1, 1}], 1/2]

out 9] Ellipse2D[{0, 0}, 2+/2, /6, %]

In[10]: {Foci2D[el], Eccentricity2D[el]}

[uny

out(10] {{Point2D[{1, 1}], Point2D[{-1, -1}]}, 7}

10.7 Ellipse from Focus and Directrix

Given the focus point F'(z1,y1), the directrix line L = px 4+ qy + r = 0, and the eccentricity,
0 < e < 1, of an ellipse we wish to determine the standard equation of the ellipse. The rotation
angle of the ellipse is the angle the line perpendicular to L makes with the +z-axis and is
given by § = tan~(p,q). The distance, d, from F to L is given by

de \/(zm +ay1 +7)°

P2+ ¢?
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It is clear from Table 10.2 that the distance from F to L is also given by d = a/e —ae. Solving
for a (the length of the semi-major axis) yields

(1—e?)

Table 10.2 shows that the eccentricity, e, is related to the lengths of the semi-major and
semi-minor axes, a and b, respectively, by

a=d

IR

a

b=av1-—e2
Table 10.2 reveals that the distance from the focus F' to the center C(h, k) is given by ae. If F’
is the projection of F' onto L, then we can find the center point C of the ellipse by offsetting F’
in the direction from F to F’ a distance —ae. This computation is easily accomplished using
Descarta2D and is provided in the exploration ell1fd.nb. The resulting defining constants of
the ellipse are given by

e =

Solving this equation for b yields

paeD qaeD
h = _— k =
r1 + d ) Y1 + d )
a=d—" , b=ay1—e2,
(1—e?)

where

de (px1 + qy1 + 1)? and Do Pritayitr
p2+q2 p2+q2 .

Example. Find the ellipse whose focus point is (3, 2), directrix line z —y+2 =0
and eccentricity is 1/4.

Solution. The Descarta2D function E11ipse2D [point, line, e] constructs an el-
lipse for the focus, directrix and eccentricity.

In[11]: el = El |l i pse2D[pl = Poi nt 2D[{3, 2}], |2 = Li ne2D[1, -1, 2], 1/4]

out[11] EIIiPSeZDH%’ %}'

232 3 37
5 10 ' 4

n[12]: {Foci2D[el],

Directrices2D[el],

Eccentricity2D[el]} // Sinplify

. . 16 9

out[12] {{Point2D[(3, 2}], Point2D[{ %~ &}]},

{Line2D[-1, 1, -2], Line2D[-5, 5, 22]}, %}
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10.8 Parametric Equations
The parametric equations for a standard ellipse

@12, (y=h?

a? b2 =1

are very similar to those of a circle, with the exception that the radius is replaced by either
the length of the semi-major axis, a, or the semi-minor axis, b. The appropriate equations are

r=h+acosf and y=~k+bsinfd

where (h, k) is the center of the ellipse, a and b are the lengths of the semi-major and semi-
minor axes, respectively, and parameter values in the range 0 < ¢t < 27 generate a complete
curve. The validity of these equations can be verified by direct substitution.

Example. Plot 16 points on the ellipse
y?

1
+4

>—l|&
ol v

at equally spaced parameter values.

Solution. The DescartazD function E1lipse2D[{h, k}, a, b, 81 [{] returns the
coordinates of a point at parameter value ¢ on the ellipse.

In[13]: el = El|ipse2D[{0, 0}, 4, 2, 0];
pts = Map[Poi nt 2D[el[2 *Pi «#/16]]& Range[0, 15]1];
Sket ch2D[{el, pts}];

2
1

As with the circle, a pair of rational equations may be used as the parametric equations
for an ellipse. The ellipse
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has the parametric equations

1—¢2 2t
v a<1+t2) ey <1+t2)
Values of ¢ in the range 0 < ¢t < 1 generate coordinates on the ellipse in the first quadrant.
The point (—a,0), which is on the ellipse, cannot be generated using these equations.

Example. Plot the ellipse 72/4 + y? = 1 using the rational parametric equations
in the parameter range —10 < ¢t < 10.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.

In[14]: Clear [t1];
ParametricPlot [{2% (1 -t"2)/ (1+t"2), 2%x1xt / (L +t"2)},
{t, -10, 10}, AspectRatio-> Autonatic];

0.5
- 1
[ |
10.9 Explorations
LENGTH OF ELLIPSE FOCAL CHORD. ...ttt elllen.nb

Prove that the length of the focal chord of an ellipse is 2b%/a, where a is the length of the
semi-major axis and b is the length of the semi-minor axis.

SUM OF FOCAL DISTANCES OF AN ELLIPSE. .....ovviiiiiiiiiiiiinanen, ellips2a.nb

Show that the sum of the distances from the two foci to any point on an ellipse is 2a, where
a is the length of the semi-major axis.
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ELLIPSE FROM FOCUS AND DIRECTRIX. ..\ttt ttiie ettt i ie e e ellfd.nb

Show that the ellipse with focus F'(x1,y1), directrix line L = pz+qy+r = 0 and eccentricity,
0 < e < 1, is defined by the constants

paeD qaeD
h = x + ) k= U1 + d )
e _
a:dm, b=av1—e2, 6=tan"*(p,q),
where
2
de (pxm;qyljr) and D= PBLE @Y
P +q p*+q
Focus OF ELLIPSE IS POLE OF DIRECTRIX. ..ottt ittt iiiaaeeea elfocdir.nb

Show that the focus of an ellipse is the pole of the corresponding directrix.

ELripSE Locus, DISTANCE FROM TWO LINES. ... ..., elldist.nb

A point moves so that the sum of the squares of its distances from two intersecting straight
lines is a constant. Prove that its locus is an ellipse.

SIMILAR ELLIPSES. ..ttt ittt ettt e et et et e e e e aas ellsim.nb

All ellipses of equal eccentricity are essentially similar in that by a proper choice of scales
(and axes) they can be made to coincide. Show this property is true for two ellipses of equal
eccentricity centered at the origin.

POLAR EQUATION OF AN ELLIPSE . ...\t polarell.nb

Show that the polar equation of an ellipse with a horizontal major axis and centered at
(0,0) is given by
ab

B \/@2 sin® 6 + b2 cos? 0

where a and b are the lengths of the semi-major and semi-minor axes, respectively.

r

APOAPSIS AND PERIAPSIS OF AN ELLIPSE. ...\ttt ellrad.nb
Show that the greatest (apoapsis) and least (periapsis) radial distance of a point on an

ellipse as measured from a focus point is given by r = a(1 + ¢) and r = a(1 — e), respectively,
where e is the eccentricity and a is the length of the semi-major axis of the ellipse.
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Hyperbolas

The equations of a hyperbola are in many ways similar to those of an ellipse, the forms often
only differing by a + or — sign. The properties and characteristics of a hyperbola, however, are
somewhat less intuitive than an ellipse, possibly because the curve has two disjoint branches or
because it extends to infinity. This chapter describes the detailed mathematics of a hyperbola.

11.1 Definitions

A hyperbola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a constant greater than one. As with the parabola and ellipse,
a focus, directrix and eccentricity are associated with the curve as shown in Table 11.1.
Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = e/1 there are obviously two points V' and V' which divide the (undirected) segment
FD, internally and externally respectively, in the ratio of e/1. Therefore, V and V' are points
(on opposite sides of D) on the hyperbola; they are called the vertices. The segment V'V’ is
called the transverse axis. By symmetry, there is another point F’ and another line D’ such

Table 11.1: Hyperbola definition.

‘ ELEMENT DESCRIPTION

P(z,y) Point on locus

Fixed point F' Focus

Fixed line D Directrix

Fixed constant e | Eccentricity
e =PF/PD > 1 | Hyperbola relationship

159
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Figure 11.1: Hyperbola definition.

that F’ and D’ would serve in the definition of this curve. Thus, a hyperbola has two foci
and two directrices associated in pairs F', D and F’, D’. The midpoint of FF’, which is also
the midpoint of V'V’ is called the center C. There are two tangent lines through C' whose
points of contact are at an infinite distance from C. These are called the asymptotes of the
hyperbola. The focal chord perpendicular to the transverse axis is called the latus rectum.

A line through C perpendicular to the transverse axis does not intersect the hyperbola

in real points. But the portion of it, bisected by C, which is equal in length to the parallel
segment through V' contained between the asymptotes is called the conjugate axis.

Example. Plot the hyperbola with center at coordinates (2,1), transverse axis

length of 1, conjugate axis length of 3/4 and rotated 30° (7/6 radians) about the

center point.

Solution. Hyperbola2D[{h, k}, a, b, 0] is the standard representation of a hy-
perbola in Descarta2D. The hyperbola is centered at coordinates (h, k), has semi-
transverse axis of a, semi-conjugate axis of b and is rotated about the center point
by an angle 6 (the semi-transverse azis is half the length of the transverse axis;
the semi-conjugate axis is half the length of the conjugate axis).

In[1]: Sketch2D[{Hyperbol a2D[{2, 1}, 1, 3/4, Pi /61}1;
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11.2 General Equation of a Hyperbola

Take any point F(z1,y1) as focus and any line, D = Ajz + B1y + C1 = 0 as directrix, where
A? 4+ B? = 1. The normalized form of the line is used to simplify the derivation. By definition
the equation of the hyperbola is

V(=12 + (y —y1)? = te(Aww + Biy + C1)
which may be expanded to

(A2 — 1)x? + 2e2 A Byxy + (e2B? — 1)y +
2(z1 4 €2A1C1)x 4 2(y1 + €2B1C)y + (2CF — af —yi) = 0.

This is of the form Ax? + Bxy + Cy? + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B? —4AC = 4(e?> — 1) > 0 (when e > 1).

Therefore, a necessary condition that Az? + Bxy + Cy? + Dx + Ey + F = 0 represent a
hyperbola is that B2 — 4AC > 0. The general equation reveals that if the defining directrix
line is parallel to one of the coordinate axes then B = 0, since either A; or By will be zero.
The equation of a hyperbola in this position will have no zy term.

11.3 Standard Forms of a Hyperbola

By an appropriate choice of coordinate axes the general equation of a hyperbola can be reduced
to one of the following standard forms.

Transverse Axis Parallel to the x-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the z-axis
and whose center is at the origin is
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Y

N

Figure 11.2: Hyperbola in standard position (z-axis).

D74

V

Figure 11.3: Hyperbola in standard position (y-axis).
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Table 11.2: Hyperbola definition (2- and y-axis).

‘ T-axis ‘ y-axis ‘
Equation (@ ;Qh)z — (y ;2]@)2 =1 - (= gzh)Q + € ;Qk)z =1
Center C(h, k) C(h, k)
Semi-transverse axis a a
Semi-conjugate axis b b
Vertices V(hta,k) V(h,k+a)
Foci F(h £ ae, k) F(h,k £ ae)
Directrices x=h=xale y=k+tale
Asymptotes br+ay— (bh£ak)=0 | axr+by— (ah£bk)=0
Focal chord length 20 /a 20% Ja
Eccentricity e= # >1 e= # >1

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

@ wok?
a? b2

as shown in Figure 11.2. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2.

The lengths of the transverse axis, conjugate axis, focal chord and the value of the eccen-
tricity are independent of the origin and are also given in Table 11.2. Note that the equations
of the asymptotes can be obtained directly from the equation of the hyperbola in standard
form by replacing the one on the right-hand side of the equation with a zero. The left-hand
side of the equation will then factor into two linear terms which are the asymptotes of the
hyperbola.

Transverse Axis Parallel to the y-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the y-axis
and whose center is at the origin is
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Table 11.3: Conjugate hyperbolas.

‘ ‘ TRANSVERSE AXIS ‘ CENTER AT (h, k) ‘
— 2 . 2
H | parallel to z-axis (z Qh) (y—k) 1
a b2
—h 2 —k 2
H' | parallel to y-axis | — (« . ) 4 (y—k) _1
a b2

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

(@—h? , y—k? _

b2 a? 1

as shown in Figure 11.3. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2

The lengths of the semi-transverse axis, semi-conjugate axis, focal chord and the value
of the eccentricity are independent of the origin and are also shown in Table 11.2. These
constants have the same values as a hyperbola whose transverse axis is parallel to the z-axis.

Conjugate and Rectangular Hyperbolas

Two hyperbolas with the same center are conjugate hyperbolas if the transverse axis of one
coincides with the conjugate axis of the other. The equations of two conjugate hyperbolas H
and H' in standard form are shown in Table 11.3. It is evident that if a is the semi-transverse
axis of H, then a is the semi-conjugate axis of H’, and vice versa. Conjugate hyperbolas have
the same asymptotes and their foci lie on a circle with center at the center of the hyperbolas.

Example. Write the equation of the hyperbola whose center is (—2, 1), transverse
axis length 6 (parallel to the z-axis), and conjugate axis length 8. Determine its
eccentricity, foci and vertices. Find the equations of its directrices and asymptotes.
Plot the geometric objects.

Solution. The equation can be written directly using the standard form as

@+2’ -1 _,
9 16 '

In Descarta2D this hyperbola is written as Hyperbola2D[{-2, 1}, 3, 4, 0].
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In[2]: hl = Hyperbol a2D[{-2, 1}, 3, 4, 0];

The Descarta2D function Eccentricity2D [hyperbola] returns the eccentricity of
the hyperbola.

1n[3]: Eccentricity2D[hl]

out [3] %

The Descarta2D function Foci2D [hyperbola] returns a list of the two focus points;
the function Vertices2D [hyperbola]l returns a list of the two vertex points; the
function Directrices2D [hyperbola] returns a list of the two directrix lines; the
function Asymptotes2D [hyperbola] returns a list of the two asymptote lines.

In[4]: objs =Map[(#[hl] )&,
{Foci 2D, Vertices2D, Directrices2D, Asynptotes2D}]

out [4] {{Poi nt2D[ {3, 1}], Point2D[{-7, 1}]}, {Point2D[{1, 1}], Point2D[{-5, 1}]},
19

{Li ne2D[1, O, %}, Li ne2D[1, 0, ?}}, {Line2D[4, 3, 5], Line2D[4, -3, 11]}}

n[5]: Sketch2D[{h1, objs},
Curvelengt h2D -> 40,
Pl ot Range -> {{-14, 10}, {-9, 11}}1;
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Example. Plot the hyperbola whose equation is 422 — y? 4+ 36 = 0 along with its
conjugate.

Solution. The function Loci2D[quad] constructs a list containing the objects
represented by a quadratic equation; Hyperbola2D [hyperbola, Conjugate2D] con-
structs the conjugate of a hyperbola.
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n[6]: {h1l} = Loci 2D[Quadr ati c2D[4, 0, -1, 0, O, 36]]

out (6] {Hyperbol a2D[(0, 0}, 6, 3, 5]}

In(7]: h2 = Hyperbol a2D[h1, Conj ugate2D]

out [7] Hyperbol a2D[ {0, 0}, 3, 6, 0]

m[8]: f = {{fla, f1b} = Foci 2D[h1], {f2a, f2b} = Foci 2D[h2]};
cl =Circle2D[f1la, f1b, f2a]; | sOn2D[f2b, c1]

out [8] True

The statement IsOn2D[£f2b, c1], by returning True, shows that the foci of both
hyperbolas are on a common circle.

n[9]: Sketch2D[{h1, h2, f, cl},
CurvelLengt h2D -> 40,
Pl ot Range -> {{-12, 12}, {-10, 10}}1;
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A rectangular (or equilateral) hyperbola is one in which the transverse and conjugate axes
are equal in length, in which case the asymptotes are at right angles to each other.

11.4 Reduction to Standard Form

The most general equation of a hyperbola with no zy term (and hence one whose axes are
parallel to the coordinate axes) is of the form

Az> +Cy* + Dz + Ey+F =0, AC <0.

The condition B2 — 4AC > 0 reduces to AC < 0 which implies that A and C are of opposite
sign. This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce 22 — y? — 2z — y + 1 = 0 to standard form and plot.
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Solution. The Descarta2D function Loci2D [quad] constructs a list containing the
objects represented by the quadratic.

In[10]: hl = Loci 2D[Quadrati c2D[1, 0, -1, -2, -1, 11]

[N
—
N| =
N| =
N
—

out[10] {Hyperbol a2D[{1, -3},

This is a rectangular hyperbola with a = b = %

In[11]: Sketch2D[{h1}];

P OFRP N WM
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11.5 Hyperbola from Vertices and Eccentricity

Suppose we are given the two vertices, Vi (z1,y1) and Va(za,y2) and the eccentricity, e, of a
hyperbola and we wish to find the standard equation of the hyperbola. The center point (h, k)
of the hyperbola is clearly the midpoint between the vertices and is given by

1+ 22 Y1+ Y2
2 ’ 2 '

The length of the semi-transverse axis, a, is one-half the distance between the vertices, yielding
a = |V1Va]/2. The eccentricity is given by

)
a
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80, solving for b gives the length of the semi-conjugate axis as
b=ave?—1.
The line through the two vertex points determines the rotation angle of the hyperbola as

0 =tan (22 — z1,y2 — y1).

Example. Find the hyperbola whose vertices are (4,2) and (—2,1), and whose
eccentricity is 3/2.

Solution. The Descarta2D function Hyperbola2D [{point, point}, €] returns the
hyperbola whose vertices are the given points with the specified eccentricity.

In[12]: pl = Poi nt 2D[ {4, 2}1;
p2 = Poi nt 2D[{-2, 1}1;
hl = Hyper bol a2D[ {p1, p2}, 3/2] // N

out [12] Hyperbol a2D[{1., 1.5}, 3.04138, 3.40037, 0.165149]

In[13]: Sketch2D[{pl, p2, hl}1;

A N O N b O

-4-2 0 2 4 6

11.6 Hyperbola from Foci and Eccentricity

It is evident from Table 11.2 that the distance between the foci of a hyperbola is given by
|F1F»| = 2ae and that the distance between the vertices is [V1Va| = 2a. Therefore, the

eccentricity, e, given by
- 2ae - |F1F2|

20 NV
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is the ratio of the distance between the foci to the distance between the vertices. This rela-
tionship allows us to construct a hyperbola by specifying the two foci and the eccentricity.
The semi-transverse axis length, a, is given by a = |F; F»|/2e and the semi-conjugate axis
length is b = av/e2 — 1. The center point of the hyperbola is clearly the midpoint of the two
foci and the angle of rotation is arctan(xs — x1,y2 — y1), where Fi(x1,y1) and Fa(z2,y2) are
the coordinates of the foci.

Example. Find the hyperbola whose foci are (—1,—1) and (1,1) and whose
eccentricity is 3/2.

Solution. The function Hyperbola2D [point, point, €] constructs a hyperbola
given the two foci points and the eccentricity.

In[14]: hl = Hyperbol a2D[Poi nt 2D[{-1, -1}], Poi nt2D[{1, 1}], 3/2]

out [14] Hyper bol a2D[ {0, 0}, g\[—z %(L ;H

3
In[15]: {Foci 2D[h1], Eccentricity2D[h1]}

out[15] {{Point2D[{1, 1}], Point2D[{-1, -1}]}, %}

11.7 Hyperbola from Focus and Directrix

Given the focus point F(z1,y1), the directrix line L = px + qy + r = 0 and the eccentricity,
e > 1, of a hyperbola we wish to determine the standard equation of the hyperbola. The
rotation angle of the hyperbola is the angle the line perpendicular to L makes with the
+x-axis and is given by 6 = tan~!(p, ¢). The distance, d, from F to L is given by

de \/(pxl +ay +7)?

P+ ¢

It is clear from Table 11.2 that the distance from F to L is also given by d = ae —a/e. Solving
for a (the length of the semi-transverse axis) yields

e
a—dm

Table 11.2 shows that the eccentricity, e, is related to the lengths of the semi-transverse and
semi-conjugate axes, a and b, respectively, by

a
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Solving this equation for b yields
b=ave?—1.

Table 11.2 reveals that the distance from the focus F' to the center C(h, k) is given by ae. If
F' is the projection of F' onto L, then we can find the center point C(h, k) of the hyperbola
by offsetting I’ in the direction from F to F’ a distance ae. This computation is easily
accomplished using Descarta2D and is provided in the exploration hypfd.nb. The defining
constants of the hyperbola so computed are

D D
h:xl_pae ,k:yl_qae ,
d
a:dL b=avez -1
(2 1)7 )
e2 —

where

de (px1 + qy1 + 1)? and Do Pritayitr
p2+q2 p2+q2 .

Example. Find the hyperbola whose focus is (3, 2), directrix lineisx —y+2=0
and eccentricity is 5.

Solution. The Descarta2D function Hyperbola2D [point, line, e] constructs a hy-
perbola from the focus, directrix and eccentricity.

In[16]: hl = Hyperbol a2D[pl = Poi nt 2D[ {3, 2}], |2 = Line2D[1, -1, 2], 5]

N

out [16] Hyper bol aZD[{%, %} > , 5\/§, %ﬁ]

In[17]: {Foci2D[h1],
Directrices2D[hl],
Eccentricity2D[hl]1} // Sinplify
. 1 41 .
out (177 {{Poi ntZD[{fg, 7}} Poi nt 2D[ {3, 2}]},
{Line2D[-4, 4, -9], Line2D[-1, 1, -2]}, 5}

11.8 Parametric Equations

The standard form of a hyperbola used in Descarta2D has the equation

(e—h)? -k _

a? b2 1
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where (h, k) is the center of the hyperbola, and a and b are the lengths of the semi-transverse
and semi-conjugate axes, respectively. The axis of this hyperbola is parallel to the z-axis and
the hyperbola opens to the right and left. Hyperbolas in other orientations are obtained by
applying a rotation, 6, to the standard hyperbola. The parametric equations for a hyperbola
are similar to those of an ellipse, except hyperbolic functions are used instead of standard
trigonometric functions. The parametric equations are

x =h+cosht and y =k + sinht.

The parameter value t = 0 produces the vertex point on the right branch of the hyperbola.
Increasing values of ¢ produce points above and to the right of this vertex. Negative values
of t produce points that correspond to positive ¢ values reflected in the transverse axis of the
hyperbola. All of the points on the right branch need to be reflected in the conjugate axis of
the hyperbola to produce the left branch of the curve.

In Descarta2D the parametric equations of a hyperbola are scaled by a factor s so that
the end points of the focal chord are at the parameter values —1 and +1. Specifically, the
equations used in Descarta2D are

x = h+acosh(st) and y =k + bsinh(st)

where

s=cosh e

and e is the eccentricity of the hyperbola. The validity of these equations can be verified by
direct substitution.

Example. Plot eight points at equal parameter values on the upper and lower
portions of the right branch of the hyperbola 22/4 — y%/2 = 1.

Solution. The command Hyperbola2D[{h, k}, a, b, 01 [t] returns the coordi-
nates at parameter ¢ on the hyperbola.

In[18]: hl = Hyperbol a2D[{0, 0}, 2, Sqrt [2], OI;
ptsl = Map[Poi nt 2D[h1[#/3]11& Range[0, 7]];
pts2 = Map[Poi nt 2D[h1[#/311& Range[-7, 0]1;
pr = Pl ot Range -> {{-6, 10}, {-5, 5}};
Sket ch2D[ {h1, pts1}, pr];
Sket ch2D[ {h1, pts2}, prl;
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As with the ellipse, a pair of rational equations may be used as the parametric equations
for a hyperbola. The hyperbola

has the parametric equations

142 2t
x_a(l—ﬁ) and y—b<ﬁ).

Values of ¢ in the range 0 < ¢ < 1 generate coordinates on the hyperbola in the first quadrant.
The other portions of the curve can be generated by reflecting the coordinates generated by
these equations.

Example. Plot the hyperbola 22/25 — y?> = 1 using the rational parametric
equations in the parameter range —1/2 <t < 1/2.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.
In[19]: Clear [t1];

ParanetricPlot [{5% (L+t"2)/ (1-t"2), 2%x1xt/ (1-t"2)},
{t, -1/2, 1/2}, AspectRatio->Autonatic];

5,56 6.57 7.5 8
-0.5

-1
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11.9 Explorations

LENGTH OF HYPERBOLA FOCAL CHORD. ..ottt hyplen.nb

Prove that the length of the focal chord of a hyperbola is 2b?/a, where a is the length of
the semi-transverse axis and b is the length of the semi-conjugate axis.

FoCAL DISTANCES OF A HYPERBOLA. . ... ..ttt hyp2a.nb

Show that the difference of the distances from the two foci to any point on a hyperbola is
2a, where a is the length of the semi-transverse axis.

HYPERBOLA FROM FOCUS AND DIRECTRIX........oiviiiiiiiiiiiiiiiann. hypfd.nb

Show that the hyperbola with focus F'(z1,y1), directrix L = pz + qy + r = 0 and eccentric-
ity, e > 1 is defined by the constants

aeD aeD
h:xl_pd ak:yl_qd ’
(& _
a:dm, b=ave?—1, §=tan"*(p,q),
where
g JPritap+r)? o pritaytr
p2 + q2 p2 +q2 '
RECTANGULAR HYPERBOLA DISTANCES. .. .....oiiiiiiiiiiii i hypinv.nb

Show that the distance of any point on a rectangular hyperbola from its center varies
inversely as the perpendicular distance from its polar to the center.

ECCENTRICITIES OF CONJUGATE HYPERBOLAS. « ..\ ttttetiieiieainaeinnn. hypeccen.nb
Show that if e; and ey are the eccentricities of a hyperbola and its conjugate, then

1/(e) +1/(e3) = L.

POLAR EQUATION OF A HYPERBOLA .. ..ottt polarhyp.nb
Show that the polar equation of a hyperbola with a horizontal transverse axis and centered

at (0,0) is given by
ab

a \/b2 cos26 — a2sin? 6

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively.

r

TRIGONOMETRIC PARAMETRIC EQUATIONS . ... ..ot hyptrig.nb
Show that the parametric equations

x=a sec and y=>b tanf
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represent the hyperbola



Chapter 12

General Conics

In previous chapters we have examined specific forms of an equation of the second degree
resulting in a detailed understanding of circles, parabolas, ellipses and hyperbolas. In this
chapter we will study the general second-degree equation itself resulting in a more complete
understanding of the equation.

12.1 Conic from Quadratic Equation

In this section we will present a method for converting a general quadratic equation of the form
Q = Az? + Bxy + Cy? + Dz + Ey + F = 0 to a conic curve in a standard form. The method
involves examining the coefficients of the equation and applying algebraic operations to the
equation which successively simplify the equation until a standard form can be recognized by
inspection. The general approach involves the following steps:

e If the quadratic equation is one of several special forms, then the standard form of the
curve can be determined by inspection. The following curves have a quadratic form that
can be directly recognized: (1) a single point, (2) a single line, (3) two lines (parallel, co-
incident or intersecting), (4) a circle, parabola, ellipse or hyperbola in standard position
and (5) several forms with no real locus (imaginary).

e If the quadratic equation has first-degree terms (D # 0 or E # 0), translate the equation
to a coordinate system that eliminates the x or y terms. Once the curve is identified,
translate the standard curve back to the original position.

e If there is an ay cross-product term in the quadratic equation (B # 0), eliminate it by
applying an appropriate rotation. After the standard curve is identified, rotate it back

to the original position.

The following subsections describe each of these reduction steps in more detail.

175
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Linear Polynomial
Form: Q = Dx+ Ey+ F =0, D and E not both zero.

If the first three coefficients of ) are equal to zero, and coefficients D and E are not both
zero, then the equation @ represents a single straight line Dx + Ey + F' = 0.

Example. Show that Descarta2D will detect a quadratic equation as a line if the
first three coefficients are zero. Use the line x — 2y 4+ 4 = 0 as an example.

Solution. Use the Descarta2D function Loci2D [quad].

In[1]: dear [X, Y];
Loci 2D[Quadrati c2D[x -2y +4 ==0, {X, y}1]

out[1] {Line2D[1, -2, 4]}

Pair of Vertical Lines
Form: Q = A2? + Dz + F =0, A # 0.

If Q takes the form Az? + Dz + F = 0 and A # 0 then @Q can be factored into two linear
terms using the quadratic formula. This yields the two equations

 —D+VD?—4AF
o 24 ’

X

If the discriminant of this equation, d = D? — 4AF, is less than zero, then there are no real
points in the locus represented by (. Otherwise, () represents a pair of vertical lines whose

equations are
24z + (D++Vd) =0 and 24z + (D —Vd) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation z2 + z — 6 = 0 represents two vertical lines.

Solution. Use the Descarta2D function Loci2D [quad].

n[2]: O ear[X, Y];
Loci 2D[Quadrati c2D[x"2 +x -6 ==0, {X, y}I1

out[2] {Line2D[2, O, -4], Line2D[2, O, 6]}
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Pair of Horizontal Lines
Form: Q =Cy?>+ Ey+ F =0, C #0.

If Q takes the form Cy? + Ey+ F = 0 and C' # 0 then Q can be factored into two linear terms
using the quadratic formula. This yields the two equations

)= —E+VE2-ACF
- 2C '

If the discriminant of this equation, d = E? — 4C'F, is less than zero, then there are no real
points in the locus represented by Q). Otherwise, () represents a pair of horizontal lines whose

equations are
20y + (E+Vd) =0 and 2Cy+ (E —Vd) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation 2y? — 11y + 12 = 0 represents two horizontal
lines.

Solution. Use the Descarta2D function Loci2D [quad].

n[3]: Cear[X, Y];
Loci 2D[Quadrati c2D[2y”2-11y +12 ==0, {X, y}1]

out (3] {Line2D[0, 4, -16], Line2D[0, 4, -6])

Intersecting Lines (or a Single Point)
Form: Q = A2? 4+ Cy? =0, A # 0 and C # 0.

If Q consists of 22 and y? terms only its locus is either a single point or a pair of intersecting
lines. If AC' > 0 then the locus is the single point (0,0). If A < 0 and C > 0, then the
equation factors into the two linear terms

(\/—Ax - \/53/) (\/ —Ax + \/53/) =0.
If A> 0 and C < 0, then the equation factors into the two linear terms given by
(\/Zx — \/—Cy) (\/Zx + \/—Cy) =0.

Both of these equations represent a pair of lines that intersect at the origin.
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Example. Show that the equation 922 — 4y = 0 represents a pair of intersecting
lines.

Solution. Use the Descarta2D function Loci2D [quad].

In[4]: O ear [X, Y];
Loci 2D[Quadrati c2D[9x"2 -4y"2 ==0, {X, y}11]

out [4] {Line2D[3, -2, 0], Line2D[3, 2, 0]}
| |

Circle
Form: Q= Az> +Cy? + F=0,A=C,A#0,C#0, F#0.

When the coefficients of the 22 and y? terms of @ are equal and none of the coefficients A, C,
or F' are equal to zero, the equation has no locus if F' > 0; otherwise, when F' < 0, the locus
is a circle centered at the origin with radius v/—F.

Example. Show that the equation 3z2 + 3y? — 12 = 0 is the equation of a circle.

Solution. Use the Descarta2D function Loci2D [quad].
n[5]: O ear[X, Y];

Loci 2D[Quadrati c2D[3x"2+3y"2-12==0, {X, y}11

out[5] {Circle2D[{0, 0}, 2]}
| |

Parabola (Horizontal Axis)
Form: Q =Cy?>+ Dx+ Ey+F =0,C #0 and D # 0.

When @ has a y? term and an z term, and the x? and zy terms are missing, @) represents
a parabola whose axis is horizontal. The vertex, (h, k), and the focal length, f, may be
determined by completing the square and forming the equation

(y—k)*> =4f(z—h)

where E? —ACF E D
hzw, k:—% and f:—E

which is clearly a parabola. The parabola will open to the right if f is positive and it will
open to the left if f is negative.
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Example. Find and plot the parabola whose equation is y? — 8z = 0.

Solution. Use the Descarta2D function Loci2D [quad].

n[6]: O ear[X, Y];
crv = Loci 2D[Quadrati c2D[y"2-8x ==0, {X, y}11]

out [6] {Parabol a2D[{0, 0}, 2, 0]}

In[7]: Sketch2D[crv, CurvelLength2D-> 60];
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Parabola (Vertical Axis)
Form: Q = Az + Dx+ Ey+F =0, A# 0 and E # 0.

When @ has an 22 term and a y term, and the y? and zy terms are missing, () represents a
parabola whose axis is vertical. The vertex, (h, k), and the focal length, f, may be determined
by completing the square and forming the equation

(& —h)*=4f(y — k)

where

D D? — 4AF E
C Y Y AV

which is clearly a parabola. The parabola will open upward if f is positive and it will open
downward if f is negative.
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Example. Find the parabola whose equation is 222 — 8z 4+ 4y — 1 = 0.

Solution. Use the Descarta2D function Loci2D [quad].

1n[8]: O ear [X, Y];
crv = Loci 2D[Quadrati c2D[2x"2-8x+4y -1==0, {X, y}1]

out (8] {Par abol a2D[{2, %} % 327”]}

Central Conic (Ellipse or Hyperbola)
Form: Q= A2+ Cy? + F=0,A#0,C #0, F#0,and A # C.

If Q has non-zero coefficients on the z2, 32, and constant terms, A # C, and all the other
coefficients are zero, then ) can be written in the form

. LA
(-3) (@)
This equation represents an ellipse, a hyperbola or no real locus depending of the values of

—F/A and —F/C. The real loci (ellipses and hyperbolas) are centered at the origin (0,0) and
have sizes and orientations as shown in the following table:

| CONDITION | Locus | a | b 0]
(-£)<o0and (—-£) <0 | nolocus - _ _
(=%) >0and (~¢) <0 | hyperbola E \/g 0
(—%) <0and (~¢) >0 | hyperbola \/E \/g z

(-5 > (-5)>o0 ellipse \/E ﬁ 0
5= (o0 | awme [ J 2 /213

Example. Find and plot the conic curve whose equation is —2% — 4y? + 1 = 0.

Solution. Use the Descarta2D function Loci2D [quad].
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In[9]: Clear[X, yI;
crv = Loci 2D[Quadrati c2D[-x"2-4y"2+1==0, {X, Y}11

outfs) (EI1ipse2D[(0, 0}, 1, 3, 0]}

In[10]: Sketch2D[crv];
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[EnY
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Remove the First-Degree Terms
Form: Q = Az? +Cy> + Dx+ Ey+ F =0, A#0, C # 0, D or E non-zero.

If both the 22 and y? terms are present in Q along with at least one of the x or y terms, then
@ can be simplified by introducing a change in variables. Specifically, if the substitutions

D
/ — _ d / — _ =
T =x 5 A and ¥y =y Ye,
are made in ) a new equation

Q/ = A/x/Q + C/y/Q T F/ -0

will result where

A = 4A%C,
C' = 4AC? and
F' = —CD?—- AE? + 4ACF. (12.1)

Q' is now in a form that can be recognized by inspection. The change in variables translates
the origin of the conic. To restore it to its original position we apply the inverse translation
to the standard form of the conic.

Example. Find the conic whose equation is —z2 + 9y? + 4z — 18y — 4 = 0. Plot
the conic.
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Solution. Use the Descarta2D function Loci2D [quad].

In[11]: Clear [X, Y]I;
crv = Loci 2D[Quadrati c2D[-x"2 +9y"2+4x-18y -4 ==0, {X, y}1]

I}

out[11] {Hyperbol a2D[{2, 1}, 1, 3,

NS

In[12]: Sketch2D[crvi;
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Eliminate the zy Term
Form: Q = Az? + Bay + Cy? + Dz + Ey+ F =0, B # 0.
All quadratic equations with a non-zero zy term coefficient are standard conics in a rotated

position. It can be shown that rotating such an equation by the angle 6, where

B

tan (29) = m,

will produce a new quadratic equation, Q’, whose 'y’ coeflicient B’ will be zero (see explo-
ration elimxy1.nb).
The coefficient of the xy term can also be removed by making the substitutions

¥ =kr+y and v =ky—2

where

k:(C;A)+ (c;A)QH

(see exploration elimxy2.nb). These substitutions are equivalent to a rotation 6 where
1
tanf = —
k

and a scaling by the factor
1

VIFE2
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The equation for Q' resulting from the substitution is given by
AI.T/JQ +C/y/2 +DI.T/J +E/y/+F/ — O
where

A" = Ak? - BEk+C,
C' = Ck*+ Bk+ A,

D' — Dk—E,
E' = FEk+D and
F' = F

as shown in explorations elimxy2.nb and elimxy3.nb. Q' is then a quadratic equation
without an xy term that can be recognized by the previously presented techniques. A scaling
and rotation is applied to the resulting conic returning it to its original position. This approach
is the one implemented in Descarta2D since no trigonometric functions are involved in the
process, except for the final rotation.

Example. Find the conic curve represented by the equation
—42% + 102y — 4y® — 120+ 6y —9 =10

and plot the curve.

Solution. Use the Descarta2D function Loci2D [quad].

In[13]: Clear [X, Y];
crv = Loci 2D[Quadrati c2D[-4Xx"2 +10X*xy -4y"2-12x+6y -9==0, {X, y}1]

out[13] {Hyperbol a2D[(1, 23, 3, 1, %}}

In[14]: Sketch2D[crv];

AN O N M O

-6-4-20 2 4 6 8
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Table 12.1: Classification of conics.

‘ ‘ DEGENERATE CoONIC, D =0 | PROPER CONIC, D # 0 ‘

K < 0 | two intersecting lines hyperbola

J < 0, two parallel lines

K =0 | J =0, two coincident lines parabola

J > 0, no real locus

ID <0, circle (a =b,h =0)
K > 0 | single point ID < 0, ellipse
ID > 0, no real locus

12.2 Classification of Conics

We may desire to determine the type of a conic from the general equation without computing
the defining numerical parameters. This can be accomplished by examining the values of a
set of invariant expressions. For simplicity of the invariant expressions we choose to write the
quadratic equation in the form

ax® 4+ 2hxy + by? + 29z + 2fy +c =0

where the factor 2 is inserted in the xy, x and y terms. For this form of the equation we define

I = a+b,
J = ab+ac+bc— f?— g% —h
K = ab-h?

and
a h g
D=|h b f
g f ¢
Each of the four expressions is invariant under rotation of the coordinate axes; that is, they

are equal respectively to the corresponding expressions after a rotation is performed. The
invariants are useful in the classification of conics as shown in Table 12.1.

12.3 Center Point of a Conic

The center point of a central conic (a circle, ellipse or hyperbola) can be determined directly
from its equation. The center point, (h, k), of ax? + bxy + cy?® + dxr + ey + f = 0 has a rela-
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tively simple form given by

_ 2cd — be and k — 2ae — bd

h=—— —_
b2 — 4ac b2 — 4ac

If b2 — 4ac = 0 then the conic is a parabola and has no center.

Example. Find the center point of 522 — 6zy + 5y% — 142 + 2y + 5 = 0.

Solution. The Descarta2D function Point2D [quad] returns the center point of a
central conic.

In[15]: Clear [X, Y];
Poi nt 2D[Quadr ati c2D[5x"2 -6x*y +5y"2-14x+2y +5==0, {X, y}1]

out[15] Point2D[{2, 1}]

12.4 Conic from Point, Line and Eccentricity

Conic curves may be defined as the locus of a point that moves so that the ratio of its distance
from a fixed point and from a fixed line is a constant. The fixed point is called the focus,
the fixed line the directriz and the constant ratio the eccentricity. In previous chapters is has
been shown that if the eccentricity, e, is a positive number less than one, then the conic curve
is an ellipse, if e = 1 a parabola and if e > 1 the curve is a hyperbola.

Consider a focus point F'(z1,y1) and a (normalized) directrix line Az 4+ py — p = 0 (where
A2 4+ u? = 1). The distance, dy, from a point P(z,y) on the locus to the focus F is given by

dy =/(x—21)2 + (y — )2
and the distance, ds, from point P to the directrix line is given by
dy = £(Az + py — p).
By definition, the equation of the conic curve is

T

or

V@ —21)2+ (y —11)2 = Ze(\x + py — p).
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Squaring both sides and rearranging yields

(€202 — 1)2? + 22 Auzy + (e®u? — 1)y +
2(x1 — Xp)x +2(y1 — e*pp)y + (e*p® — 2F — y7) = 0.

This equation is of the form Az? + Bzxy 4+ Cy? + Dz + Ey + F = 0 and is, therefore, a conic
curve of the second degree. The equation reveals that if the defining directrix line is parallel
to one of the coordinate axes, then B = 0, since either \ or p will be zero and the equation
will have no xy term.

Example. Find the quadratic equation of the curve whose focus is the point (2, 1),
directrix is * — 3y + 3 = 0 and eccentricity is 2. Plot the conic curve.

Solution. The Descarta2D function Quadratic2D [point, line, €] returns a qua-
dratic representing the equation of the conic with the given point as a focus, the
line as a directrix and the given eccentricity.

In[16]: ql = Quadratic2D[pt1l = Poi nt2D[{2, 1}],
Inl=Line2D[1, -3, 3], 2] // Sinplify

out[16] Quadratic2D[-3, -12, 13, 32, -26, -7]

In[17]: Sketch2D[{pt1, | nl, Loci2D[ql]}];
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12.5 Common Vertex Equation

All of the proper conics (circles, ellipses, hyperbolas and parabolas) can be represented by an
equation involving the vertex of the conic. The expression 2p in the equation of the parabola
y? = 2pz is the length of the chord of the parabola perpendicular to the z-axis through the
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Table 12.2: Parameter of a conic.

CURVE ‘ PARAMETER ‘ VERTEX EQUATION ‘
parabola | 2p y? = 2px

ellipse 2p = 2b%/a y? = 2px — (p/a)x?
hyperbola | 2p = 2b%/a y? = 2px + (p/a)z?

focus and represents a measure of the width of the parabola. The expression 2p is called
the parameter of the parabola. This definition can be generalized to the other conics: the
parameter of a conic is defined as the length of the chord perpendicular to the principal axis
through the focus. The length of this chord for each conic is shown in Table 12.2 and is quite
easy to determine from the standard form of each conic.

Consider the equation of an ellipse centered at the origin in standard position

Transforming the origin to the vertex V(—a,0) yields the equation

x—a)? 2
( )+y

a? b2
which can be rearranged into y? = 2b%z/a—b%x?/a?, or, by using the semi-parameter p = b?/a
of the ellipse, into

=1

y* = 2px — (p/a)a’.
The relation to the vertex equation of the parabola y? = 2pz is obvious. The term (p/a)x?
is subtracted from the term 2px to obtain the ellipse. This explains the name ellipse: it is
derived from the Greek term elleipsis meaning a deficiency compared with a parabola.
Similarly, the equation of a hyperbola

referred to by its vertex can be shown to be

y> = 2px + (p/a)z’

where p = b?/a is the semi-parameter of the hyperbola. Compared with the parabola y? = 2pz,
there is a term (p/a)x? in excess of the term 2px. This explains the name hyperbola from the
Greek hyperbole meaning the excess.

By introducing the eccentricity e of the conic, all of the vertex equations can be represented
by the common vertex equation

(y—k)* =2p(x — h) — (1 = e*)(x — h)?
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where (h, k) is the vertex point of the conic, 2p is the parameter of the conic and e is the
eccentricity. The vertex equation also includes the case of a circle by using e = 0 as the
eccentricity.

Example. Plot the four curves represented by the vertex equation
P =2z —1)— (1 —e*)(z—1)>

for the eccentricities e ={0,3/4,1,3/2}.

Solution. The Descarta2D function Loci2D [point, len, e, ] constructs a conic
(circle, ellipse, hyperbola or parabola) from the vertex point, focal chord length,
eccentricity and rotation angle.

In[18]: conl = Map[Loci 2D[Poi nt 2D[ {1, 0}1, 1, #, 0]1& {0, 3/4, 1, 3/2}]

outr18) {{Gircle2n[{3, 0}, 3]}, (Elipse20[ (%>, 0}, 3, % 0]},
{Par abol a2D[ {1, 0}, %, 0]}, {Hyperbol a2D[{%, o}, % % 0]}}

In[19]: Sketch2D[conl, PlotRange -> {{1/2, 5}, {-2, 2}}];
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N DescartazD Hint. The Descarta2D function Quadratic2D [point, len, e, 0] re-
\ay turns a quadratic given the vertex point, focal chord length, eccentricity and
rotation angle.
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12.6 Conic Intersections

Intersecting two curves is most easily accomplished if we can obtain parametric equations
for one of them and an implicit equation for the other. Specifically, suppose that the first
curve has parametric equations = z(t) and y = y(¢) and the second curve has an implicit
equation f(x,y) = 0. By substitution these two curves intersect at values of ¢ satisfying
f(z(t),y(t)) = 0. Once the values for ¢ are known they can be substituted into the parametric
equations to find the (z,y) coordinates of the intersection points.

As a specific application of this technique, suppose we wish to find the intersection points
of a line px + gy + 7 = 0 and a conic curve ax? + bry + cy? + dx + ey + f = 0. We can take
either x or y as the parameter of the equation px + qy +r = 0; suppose we select x (assuming
q # 0), yielding the parametric equations

pr+r

r=x and y=— .
q

Substituting these values into the equation for the conic curve yields a quadratic equation in
the variable = given by

2
az’® 4 bx (_px;—r) +c (_px(;—r) +dr+e (_pxq—f—r) +f=0

which is easy to solve using the quadratic formula. Once the two values for x are known, the
corresponding values for y can be determined using the parametric equations of the line. So,
in the general case, a line and a conic will intersect in two points, the points being real and
distinct, real and coincident (the line being tangent to the conic) or imaginary (the line does
not intersect the conic).

Now consider the case of two intersecting conic curves whose equations are given by

arz® + bixy + C1y2 +dix+ey+fi = 0
aox? + baxy + coy? +dox + ey + fo = 0.

Depending on the values of the coefficients it may or may not be easy to express one of the
equations with a pair of parametric equations; therefore, we look for alternative techniques
for finding the points of intersection. The brute force approach to the problem is to simply
regard it as a problem of solving two non-linear equations in two unknowns. Mathematica
can solve such systems of equations both numerically and symbolically, and this is, in fact,
the method implemented in Descarta2D.

Alternatively, the method of pencils can be used. Suppose we have two curves f(z,y) and
g(x,y). For any given value of A\, we can form the equation f(z,y) + A g(z,y) = 0 which
obviously passes through all the points of intersection of the original two curves. As A varies,
an entire family of curves, called a pencil, will be produced. By selecting an appropriate value
for A we can hope to produce an equation f(z,y) + A g(x,y) = 0 that is particularly simple.
We can then intersect the simpler curve with one of the original curves. This approach works
well for conic curves because there always exists a value for A such that f(z,y)+ A g(z,y) =0



190 Chapter 12 General Conics

represents two straight lines. Intersecting these two lines with either of the original conics
produces the four intersection points (which may be real and distinct, real and coincident
or imaginary). So there may be up to four points of intersection between two conic curves.
Since there exist three pairs of lines passing through four points, there are three values for A
that represent two lines in the equation of the pencil. Finding the three values for A involves
solving a cubic equation, which appears to be easier than solving two non-linear equations
in two unknowns. (Since solving two non-linear equations in two unknowns is equivalent to
solving a fourth-degree equation, and solving a fourth-degree equation reduces to solving a
cubic equation, the two techniques are mathematically similar in complexity.)

Example. Find the points of intersection of the line  — 2y + 2 = 0 with (a) the
circle 22 4+ y? = 4 and (b) the ellipse 2%/9 + y? = 1.

Solution. The Descarta2D function Points2D[curve, curve]l returns a list of
points that are the intersection of the two curves.

In[20]: |11 =Line2D[1l, -2, 2];
cl=Crcle2D[{0, 0}, 21;
el = El li pse2D[{0, 0}, 3, 1, OJ;
pts = {Poi nts2D[l 1, el], Points2D[cl, el]} // N

out [20] {{Poi nt2D[{-2.76923, -0.384615}], Poi nt2D[{0., 1.}]},
(Poi nt 2D[ {-1. 83712, -0.790569}], Poi nt 2D[{-1. 83712, 0.790569}],
Poi nt 2D[ {1. 83712, -0.790569}], Poi nt2D[{1.83712, 0.790569}]}}

In[21]: Sketch2D[{l 1, c1, el, pts}];
3

=
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12.7 Explorations

ELIMINATE CROSS-TERM BY ROTATION. ... ... ...t elimxyl.nb
Show that rotating a quadratic ax? + bzy + cy? + dz + ey + f = 0 through an angle # given
by
b

tan(20) = .




12.7 Explorations 191

will cause the xy term to vanish.

ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES. .........cooiuiuinennnn.. elimxy2.nb
Show that applying the change in variables ' = kx + y and vy’ = ky — x, where

P Gl (C;a>2+1,

to the equation az? + bxy + cy? + dx + ey + f = 0 will cause the xy term to vanish and a new
quadratic with the following coefficients will be formed:

ad = ak?®—bk+ec,
¥ o= 0,
d = ck?®+bk+a,
d = di—e,
e = ek+d and
= r
ELIMINATE CROSS-TERM BY CHANGE IN VARIABLES. ... ...oooeeeinnnnne .. elimxy3.nb

Show that applying the change in variables ' = kx + y and y' = ky — x, where

poe—a) (c—a>2+17

b b

to the equation ax? + bxy + cy? + dx + ey + f = 0 is equivalent to rotating the quadratic by
an angle 6 given by

1
tan = —
an k

and scaling the quadratic by a scale factor

ELIMINATE LINEAR TERMS. ...ttt e elimlin.nb
Show that applying the change in variables

d e
/ — _ d / — -
X X % an Yy Yy 2%
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to the quadratic equation az? + cy? + dx + ey + f = 0 yields the quadratic

2 e

12 2
az’” +cy _E_@_‘_f:
whose linear terms have vanished.
CENTER OF A QUADRATIC. ..\ttt ittt ettt et et et center.nb
Show that applying the change in variables
v— 2cd — be and y =y + 2ae — bd

b2 — 4ac b2 — 4dac

to the quadratic ax? 4 bry + cy? + dz + ey + f = 0 causes the linear terms to vanish, implying
that the center of the conic is

_ 2cd —be b — 2ae — bd

"EP dae "7 W dac
gLAR EQUATION OF A CONIC .. ..o i polarcon.nb
yA bl P
F X

Let the focus F of a conic be at the pole of a polar coordinate system and the directrix D be
perpendicular to the polar axis at a distance p to the left of the pole as shown in the figure.
Show that the polar equation of the conic is

ep

r= -
1—-ecost

where e is the eccentricity of the conic.

PARAMETERIZATION OF A QUADRATIC ...\ttt ettt e e e e pquad.nb
Show that the quadratic Q = ax? +bzy + cy? + dz + ey = 0, that passes through the origin,
can be parameterized by the equations
d+et t(d+et)
=—-—""  and y(t)=———
z(t) a+t(b+ ct) and y(?) a+t(b+ ct)
where —oo < t < 400.



Chapter 13

Conic Arcs

In previous chapters we introduced line segments and circular arcs which are pieces of more
complete curves. In this chapter we introduce a conic arc which is a piece of a conic curve.
As with circular arcs, conic arcs are useful for constructing smoothly connected sequences of
curves as well as pleasing aesthetic shapes.

13.1 Definition of a Conic Arc

Let points Py (2o, yo) and Pi(z1,y1) be the start and end points, respectively, of a segment of
a conic curve, @, and let Pa(x4,y4) be the point of intersection, or apez, of the two tangent
lines to the curve at Py and P; as shown in Figure 13.1. Furthermore, let h equal the maximum
height of the segment measured from the chord PyP; and k be the distance from P4 to the
chord PyP;. The points Py, Py, P4 and the ratio p, given by p = h/k, define a conic arc. The
ratio p is called the projective discriminant of the conic arc, and the point at the maximum
height on the curve is called the shoulder point. The points Py, P, and P4 are called control
points of the conic arc.

Figure 13.1: Definition of a conic arc.
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Example. Plot the conic arc with start and end points (—2,1) and (3, 0), respec-
tively, apex point (1,2) and projective discriminant p = 0.45.

Solution. Descarta2D represents a conic arc as
ConicArc2D[{m, o}, {za, ya}, {z1, y1}, p]

where (29, y0) and (x1,y1) are the coordinates of the start and end points, respec-
tively, (xa,ya) is the apex point and p is the projective discriminant.

In[1]: Sketch2D[{cl = Coni cArc2D[{-2, 1}, {1, 2}, {3, 0}, 0.45]},
Pl ot Range -> {{-3, 3}, {-1, 2}}1;

2

=

©
oo Uk Ul

There are several functions provided by Descarta2D to query conic arcs. The func-
tion Rho2D [cnarc] returns the p value of the conic arc. Point2D [cnarc, Apex2D]
returns the apex control point of a conic arc. The coordinates of points on a conic
arc at a parameter value ¢ are returned by the function cnarc[t], t = 0 returns the
start point coordinates, t = 1 the end point coordinates and ¢ = 1/2 the shoulder
point coordinates.

n[2]: {Rho2D[cl],
Poi nt 2D[c1, Apex2D],
Map[c1l[#]& {0, 1/2, 1}1}

out 2] {0.45, Point2D[{1, 2}], {{-2., 1.}, {0.725, 1.175}, {3., 0}}}

13.2 Equation of a Conic Arc

The curve underlying the conic arc is clearly a conic curve since there are five conditions
imposed on the curve (two points, two tangents and the projective discriminant, p). The
projective discriminant, p, can be interpreted as defining a third line tangent to the curve,
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parallel to the line PyP; at a distance h from PyPj, where h is given by h = pk and k is the
distance from P4 to line PyP;.

In a subsequent chapter we will describe a general procedure for finding the quadratic
equation of a conic constrained by two points and three tangent lines, and we will show that
when the two points are on two of the tangent lines, there is only one quadratic satisfying the
conditions. Specifically, the equation is given by

af =k(1—a—p)?
where,

1— 2

PR 4p2p)

0 — (y —ya)(w1 —za) — (x —24) (Y1 — ya)
(Yo —ya)(z1 —za) — (xo — za) (41 — Ya)

5 = (y —ya)(@o —za) — (@ —2a) (Yo —ya)
(y1 —ya)(wo —2a) — (z1 — a) (Yo — ya)

Example. Find the quadratic associated with the conic arc with start and end
points (0,0) and (3, 0), respectively, apex point (1,2) and projective discriminant
p =1/4. Find the conic curve associated with the conic arc.

Solution. The function Quadratic2D[cnarc] returns the quadratic associated
with a conic arc. The function Loci2D [cnarc] returns a list containing the conic
curve associated with a conic arc.

1n[3]: cal = Coni cArc2D[ {0, O}, {1, 2}, {3, 0}, 1/41;

{gql = Quadratic2D[cal] //Sinplify,
cl = Loci 2D[cal] // N}

out 3] {Quadratic2D[-16, -8, -73, 48, -24, 0],
(El i pse2D[{1.5625, -0.25}, 1.60506, 0.743424, 3.07187]}}

In[4]: Map[Sketch2D[{#}, Pl otRange -> {{-1, 4}, {-2, 1}}1&
{cal, c1}];

1

0.5

0

-0.5 - 0.

-1 -

-1.5 -

-2 -

©

o
N Ol 01O 01
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13.3 Projective Discriminant

In this section we will examine the significance of the value of the projective discriminant, p.
By definition, p may take on values in the range

0<p<l.

Consider the conic arc, S, with start and end points (0,0) and (1,0), respectively, apex
point Pa(za,ya) and projective discriminant p. Clearly, any arbitrary conic arc can be
transformed to coincide with S by applying a proper sequence of translations, rotations and
scaling transformations. Such transformations do not change the type of conic curve associated
with the conic arc. Using Mathematica we can find the quadratic equation underlying S as
shown by the following commands.

n[5]: O ear [XA, YA, pl;
S = Coni cArc2D[{0, 0}, {xA, yA}, {1, 0}, pl;
Q= Quadratic2D[S] //Sinplify

out [5] Quadratic2D[-4p2yA?, 4p2 (-1+2xA) yA -1+2p-p? (1-2xA)?, 4p2yA?
-4 p2xAyA, 0]

As has already been shown in a previous chapter, the specific conic type of the quadratic
equation
az? +bry+cy’ +dr+ey+ f=0

is determined by the discriminant, D = b? — 4ac. For an ellipse D < 0, for a parabola D = 0,
and for a hyperbola D > 0. For the quadratic, @, representing the conic arc S defined above,
D = 16p*(—1 + 2p)y?. It is clear by inspection, that if 0 < p < 1/2 the conic is an ellipse; if
p = 1/2 the conic is a parabola; and for 1/2 < p < 1 the conic is a hyperbola.

13.4 Conic Characteristics

In Section 13.2 we showed that the quadratic equation associated with a conic arc is given by

af =k(1—a-—p)?
where,
_ (1=pp2
k = TPQ
0 — (y —ya)(@1 —xa) — (x —2a)(y1 — ya)
(Yo —ya)(z1 —za) — (o — 2a) (41 — Ya)
5 = (y —ya)(@o —xa) — (v —w4) (Yo — ya)
(y1 —ya)(zo —za) — (21 —24)(Yo — ya)

Therefore, since we know its quadratic equation, all the geometric characteristics of the conic
curve associated with the conic arc can be expressed in terms of the defining elements of the
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conic arc, Py(xo,y0), Pa(za,ya), Pi(z1,y1) and p. Of particular interest is the formula for
the center of a central conic (circle, ellipse or hyperbola), since this formula is used in the next
section to convert a conic into a conic arc. The center point (H, K) is given by

—p*ra+(p—1)%xum

H = 13.1
=3, (13.1)
2 _1\2
K - p*ya+ (p—1)°ym
1-2p

where Pyr(xpr, yar) is the midpoint of the conic arc’s chord and has coordinates

ry = (zo+21)/2 and yu = (yo +y1)/2.

This formula is derived in the exploration cacenter.nb.

Example. Find the center of the conic arc with control points (0,0), (2,1) and
(3,0) and p = 1/4.

Solution. The Descarta2D function Point2D [cnarc] returns the center point of a
conic arc (the underlying conic cannot be a parabola).

1n[6]: cal = Coni cArc2D[{0, 0}, {2, 1}, {3, 0}, 1/41;
Poi nt 2D[cal]

out [6] Poi ntZD[{%g—, f%}]
| ]

Let @@ be a conic and L be a line that intersects () in two distinct points. We wish to
determine the conic arc, S cut by L through @. Clearly, the intersection points of the line L
with @ are the start and end points of S. Also, the line passing through the intersection points
is the polar (line) of the apex point, P4, of S. To complete the definition of the conic arc, we
need to determine p. If the conic is a parabola, then p = 1/2; otherwise, we can assume that
the conic is a central conic. Assume the center of the conic is (h, k). Then, using the formula
for the z-coordinate of the center of a conic arc given in Equation (13.1), we solve to find the

value of p to be
1

1t/ (h—za)/(h—zm)
where Pyr(xar, yar) is the midpoint of PyP;. We choose the plus sign in the denominator
because p has to be less than one and the radical produces a positive number. In certain

configurations, this formula will be indeterminate and we instead use the y-coordinate of the
center of the conic arc yielding

P

1
1t/ (E—ya)/k—ym)

again choosing the plus sign in the denominator.

P
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Example. Find the conic arc cut by the line 22 — 4y = 0 through the ellipse

D) VRS

Plot the original curves and the conic arc separately.

Solution. The Descarta2D function ConicArc2D [line, conic] returns a conic arc
defined by a line cutting a conic curve.

n[7]: |1 =Line2D[2, -4, 0];
el =Ellipse2D[{1, -1}, 3, 2, 0];
cal = Coni cArc2DJ[l 1, el]

w| o
—
—_
N‘-b
oo
%

a

—
00| W

out [7] Coni cArc2D[{-2, -1}, {-2,

In[8]: Map[Sketch2D[{#}, Pl ot Range -> {{-5, 5}, {-3, 3}}1&
{{l 1, el}, cal}y;

3 3
2 2

1 1 —

0 0

1 1 /

-2 -2

3y 2 0 2 4 42 0 2 4

13.5 Parametric Equations

The conic arc defined in this chapter is a special case of a more general curve called a rational
quadratic Bézier. The parametric equations of this simplified formulation are given by

bo(1 — p)zo + bipra + bo(1 — p)ay
bo(1 — p) +bip+ ba(1 — p)

bo(1 — p)yo + bipya + ba(1 — p)ys
bo(1 — p) +bip+ ba(1 — p)
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where p = h/k is the projective discriminant and

bo = (1-1)°
by = 2t(1—1)
by = 2.

It is clear from direct substitution that Py is the point whose coordinates correspond to ¢t = 0,
and P; corresponds to ¢ = 1. The point where the curve intersects the line through the
midpoint of PyP; and P4 is called the shoulder point of the conic arc. The shoulder point
corresponds to the parameter value ¢t = 1/2.

Example. Plot nine points at equal parameter values on the conic arc with (-2, 1)
and (1,2) as start and end point, (0,3) as the apex point and p = 0.45.

Solution. The Descarta2D function cnarc[t] returns the coordinates of a point
on a conic arc at a parameter t.

In[9]: cal = Coni cArc2D[{-2, 1}, {0, 3}, {1, 2}, 0.45];
Sket ch2D[ {cal, Map[Poi nt 2D[cal[#]]& Range[O0, 8]1/81}1;

RN

2.

PEREPE
PNAODONN

-2 -1.5 -1 -0.5 0 0.5 1

13.6 Explorations

CIRCULAR CONIC ARC. ... .t cacircle.nb
Show that the conic arc with control points (0, 0), (a,b) and (2a,0) will be a circular arc if

a(—a+ va? +b?)
b2 '




200 Chapter 13 Conic Arcs

CENTER OF A CONIC ARC. .\ttt et et e et cacenter.nb
Show that the center point (H, K) of a conic arc whose control points are Py(zo,yo),
Pa(xza,ya) and P;(z1,y1) and projective discriminant p is
—p*ra+(p—1)%xum
1-2p
2 2
—p°ya+ (p—1)°ym
1-2p

where Pys(xp, yar) is the midpoint of the conic arc’s chord and has coordinates

H =

K

) —+ 21
T = and yum

_ Yo + Y1
—

TANGENT LINE AT SHOULDER POINT. . ... e catnln.nb

Let P be the point at parameter value ¢ = 1/2 on a unit conic arc, C, whose control points
are Py(0,0), Pa(a,b) and P;(1,0) and whose projective discriminant is p. Let L be the line
tangent to C' at t. Show that L is parallel to the chord PyP; at a distance bp from PyP;. The
point P is called the shoulder point of the conic arc.

COORDINATES OF SHOULDER POINT. ... ... . e shoulder.nb
Show that the coordinates of the shoulder point of a conic arc with control points Py (o, yo),
Pa(xza,ya) and Py (z1,y1) and projective discriminant p are given by
(v +p(xa —2M)ym + p(Ya — ym))
where Pyr(xpr, yar) is the midpoint of the conic arc’s chord and has coordinates
To + X1 Yo + Y1

fr— d = .
T p B an Ym 5

SHOULDER POINT ON MEDIAN. ..\ttt ettt et e e eei e it e camedian.nb

Let C be a conic arc with control points Py(zo,yo0), Pa(za,ya) and Py(x1,y1) and projective
discriminant p. Let P be the point on the median P4 Py associated with vertex P4 of triangle
PyPa Py such that |PPys|/|PaPur| = p (Pay(ar, yar) is the midpoint of PyP;). Show that P
is coincident with the shoulder point of C, having coordinates

(war + p(ra —0r),ynr + p(Ya — ynr)) -

PARAMETRIC EQUATIONS OF A CONIC ARC. ... ..ottt caparam.nb

Show that the parametric equations of a unit conic arc represent the same implicit quadratic
equation as the one underlying the conic as derived from the control points Py(0,0), Pa(a,b)
and Py (1,0) and p.
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Medial Curves

A medial curve is the locus of points equidistant from two loci of points. In this chapter we
will derive the equations of medial curves that are equidistant from two points, a point and a
curve (line or circle) and two curves (lines or circles).

14.1 Point—Point

Consider two distinct points Pj(x1,y1) and Pe(x2,y2) and a point P(z,y). The distance, d;,
from P to P is given by

di =/ (z —21)2+ (y — )2

Likewise, the distance, do, from P to P» is given by
dz = \/(z — 2)* + (y — y2)*.
If point P is on the medial curve defined by P; and P», then d; = ds and
Vi(E—a1)? 4+ (y—y1)? = V(- 22)2 + (y — y2)2.

Squaring both sides of this equation and rearranging yields

2wy —z)z+2(y2 —y1)y + (@7 +45) — (23 +43) =0

which is easily recognized in this form as the general equation of a line. The medial line is
the perpendicular bisector of the line segment joining P; and P,. The derivation is provided
in the exploration mdptpt.nb.

Example. Find the equation of the medial line determined by the two points
(1,2) and (—1, —1). Plot the points and the medial line.

201
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Solution. The function MedialLoci2D [{point, point}] returns a list of one line
that is the medial line determined by the two points.

n[1]: | 12 = Medi al Loci 2D[ {p1 = Poi nt 2D[ {1, 2}],
p2 = Poi nt 2D[{-1, -1}1}]

out[1] {Line2D[-4, -6, 3]}

In[2]: Sketch2D[{pl, p2, |12}1;

\

%S\ DescartazD Hint. The function Point2D [point, point, Perpendicular2D] re-
MNX turns the perpendicular bisector of the line segment joining two points. This
function may also be used.

14.2 Point-Line

Consider the point Py (z1,y1) and the line Ly = Asz + Boy + Co = 0, where A3 + B2 =1 (to
simplify the derivation, the coefficients of the line are normalized because distance is involved).
The distance, d;, from a point P(z,y) to P; is given by

dy = /(z —21)>+ (y — )%
The distance, da, from a point P(x,y) to the normalized line Ly is given by
d2 = i(AQ.]? + Bgy + CQ)

Since P is the locus of points on the medial curve, d; = dz, and by squaring and rearranging
we obtain the quadratic equation

Az? + Bry +Cy*> + Dz + Ey+ F = 0.
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where
A = Bj,
B = —2A4:Bs,
C = 4
D = —2(1‘1 + AQCQ),
E = —2(y1 +B2C2) and
F = 2f+y] - Cs.

These equations are derived in the exploration mdptln.nb.
The definition of a parabola is the locus of points equidistant from a point and a line, so
it is obvious that in the general case the medial curve of a point and a line will be a parabola.

Example. Find the medial curve of the point (—1,—1) and —z —y + 1 =0 and
plot.

Solution. The function MedialLoci2D [{point, line}] returns a list of one curve
that is the medial curve of the point and the line.

In(3]: crvl = Medi al Loci 2D[{p1 = Poi nt 2D[{-1, -1}],
12 =Line2D[-1, -1, 1]}]
1 3 5
} I}

out (3] {Parabol aZD[{ 7h T E

1
T Tah

In[4]: Sketch2D[{pl, |2, crvl}];

4

2

4 -2 0 2 4

If the point Pj is on line Loy, then the medial curve will be a line perpendicular to the defining
line.
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Example. Find the medial curve of the point (1,0) and the line —z —y+1=0
and plot. Notice that the point is on the line.

Solution. The same function, MedialLoci2D [{point, line}], introduced in the
previous example will return a list containing the medial curve, which is a line in
this case.

n[5]: crvl = Medi al Loci 2D[{p1 = Poi nt 2D[ {1, 0}1],
12 =Line2D[-1, -1, 11}]

out(s] {Line2D[2+2, -2+/2, -2+/2]}

In[6]: Sketch2D[{pl, |2, crvl}];

0

-2

-4
-3-2-101234

14.3 Point—Circle

Consider a point P;(z1,y1) and a circle Cy with center (hs, k2) and radius ro. The distance,
dy, from a point P(x,y) to P; is given by

di = /(z —21)2+ (y — )2

The distance, ds, from a point P(z,y) to the circle Cy is given by

I = /o= Rl + (y = F2)? — 72

when P is outside of circle C;. When P is inside C5 the distance, ds, is given by

dy =12 — /(= h2)? + (y — k2)?.
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If P is the locus of points equidistant from P; and Cj, then d; = ds. Squaring both sides
of this equation eliminates the distinction between points P inside the circle and outside the
circle. Rearranging the resulting equation yields the quadratic equation

Az? + Bry+Cy* + Dz +Ey+F =0

where
4((x1 — h2)2 — r%),
= 8(xz1 — h2)(y1 — k2),
= 4 - k2)2 - Tg)a

4 R(J?l — hg) =+ 27‘%1‘1),
= 4(R(y1 — ko) + 2r3y1),
= R?*—4r(2? +y}) and
= (h3+k3) — (] +9i) —r3.

((z1
(
(1
(
(

ST MmO QW
|

This derivation is included in the exploration mdptcir.nb.

If the point P; is outside circle Cs, the medial curve will be a hyperbola. If Pj is inside
C5, the medial curve will be an ellipse. In the special case that P; is on Cs, the medial curve
will be a line containing the center point of Cs. If P is coincident with the center of Cs, then
the medial curve will be a circle centered at P; with a radius of /2.

Example. Find the medial curves of four points (—8,1), (—4,1), (—2,1) and (0,1)
with the circle 22 + (y — 1) = 4. Plot each of the curves separately.

Solution. The Descarta2D function MedialLoci2D [{point, circle}] returns a list
of one object equidistant from the point and the circle.

In[7]: pts = {Poi nt2D[{-8, 1}], Poi nt2D[{-4, 1}],
Poi nt 2D[{-2, 1}], Poi nt2D[{0, 1}1};
c2=Circle2D[{0, 1}, 4];
crvs = Map[Medi al Loci 2D[ {#, c2}]1& pts]

out[7] {{Hyperbol a2D[{-4, 1}, 2, 2+/3, 0]}, {Line2D[0, -128, 128]},
{Ellipse2D[{-1, 1}, 2, +/3, 0]}, {Gircle2D[{0, 1}, 2]}}

In[8]: Map[Sketch2D[{pts[[#]], c2, crvs[[#]1}1& {1, 2, 3, 4}];
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14.4 Line-Line

The locus of points equidistant from two lines

Li=Aiz+Biy+C; =0 and
Lo=Asx+ Boy+Cy=0

are the two angle bisector lines. The equations of these two lines are

Az +Biy+Cp iAgx—f—Bgy—i—Cg

as shown in the exploration mdlnln.nb.

Example. Find the medial lines for 3zt —4y+1 =0 and 2z 4+ 2y —3 =0 and
plot.
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Solution. The function MedialLoci2D [{line, line}] returns a list of lines that
are the medial lines of the two given lines. If the lines are parallel, then the list
will contain one line; otherwise, it will contain two lines.

1n([9]: I ns = Medi al Loci 2D[{l 1 = Li ne2D[3, -4, 1],
| 2 =Line2D[2, 2, -3]}]

out[9] {Line2D[-10+6+/2, -10-8+/2, 15+2+/2],
Line2D[10 +6 /2, 10-8+/2, 715+2\[é}}

n[10]: Sketch2D[{l 1, 12, Ins}];

“4-20 2 4

14.5 Line—Circle

Consider a line Ly = A1z + Byy + C1 = 0, where A? + B = 1 (to simplify the derivation,
the coefficients of the line are normalized because distance is involved), and a circle Cy with
center at (hg, k2) and radius ry. The distance, d;, from a point P(x,y) to line Ly is given by

d1 = i(Alx + Bly + Cl)

The distance, ds, from point P(z,y) to circle Cy is given by

I = /o= Rl + (y = F2)? — 72

when P is outside of circle Co. When P is inside Cs the distance, da, is given by

do = —\/({E — h2)2 + (y — k2)2 —+ 9.

We introduce a sign constant, s, which takes on the values 41, so that we can combine the
two equations for ds yielding

dg:s<\/(x—h2)2+(y—k2)2—7“2).
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If P is the locus of points equidistant from P; and Cs, then d; = d2. Rearranging the resulting
equation yields the quadratic equation

A2® + Bay+Cy* + Da+ Ey+F =0

where
A = B
B = —24,B,
C = 4
D = —=2(he+ A1 (Cy + sr32)),
E = —2(ko+ B1(Cy + sr2)) and
F = h3+ks—ri—C(Cy+ 2sr9).

This derivation is included in mdlncir.nb. If the line intersects the circle in two distinct
points, then the medial curves will be two parabolas, each passing through the points of
intersection of the line and the circle.

Example. Find the curves that are equidistant from the line y = 1 and the circle
22 + (y — 1)? = 4. Plot the curves.

Solution. The function MedialLoci2D [{line, circle}] returns a list of curves
equidistant from a line and a circle.

In[11]: 11 =Line2D[0, 1, -1];
c2=Circle2D[{0, 1}, 21;
crvs = Medi al Loci 2D[{l 1, c2}]

out[11] {Parabol a2D[ {0, 0}, 1, %} Par abol a2D[ {0, 2}, 1, 32—”}}

In[12]: Sketch2D[{l 1, c2, crvs}];

P O P N W
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If the line is tangent to the circle then one of the medial curves will be a parabola, and
the other will be a line passing through the tangency point and the center point of the circle.
Strictly speaking, not all of the points on the line are equidistant from the line and the circle,
unless we consider the distance to be measured both from the closest point on the circle and
the farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 3 and the circle
22 + (y — 1)? = 4 and plot. Notice that the line is tangent to the circle.

Solution. Use the function MedialLoci2D[{line, circle}] introduced in the pre-
vious example.

In[13]: |11 =Line2D[0, 1, -3];
c2=Circle2D[{0, 1}, 21;
crvs = Medi al Loci 2D[{l 1, c2}]

3103

out[13] {Line2D[2, 0, 0], Parabol a2D[ {0, 3}, 2, 5

In[14]: Sketch2D[{l 1, c2, crvs}];

O R, N WA~ O

If the line and the circle do not intersect, then the two medial curves will be parabolas.
Strictly speaking, only one of these parabolas is equidistant from the circle and the line, unless
we consider the distance to be measured both from the closest point on the circle and the
farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 5 and the circle
22 + (y — 1)? = 4. Plot the curves.

Solution. Use the function MedialLoci2D[{line, circle}] as described in the
previous examples.
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In[15]: 11 =Line2D[0, 1, -5];
c2=Circle2D[{0, 1}, 2];
crvs = Medi al Loci 2D[{l 1, c2}]

out[15] {Parabol a2D[ {0, 2}, 1, 32—”}, Par abol a2D[ {0, 4}, 3, 32—”}}

In[16]: Sketch2D[{l 1, c2, crvs}];

5/\
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14.6 Circle—Circle

Consider two distinct circles
Cr=(x—h)? +@y—Fk)?=7? and Cy = (v — h2)? + (y — k2)? = 73.

Using the same distance equating techniques outlined in previous sections, and introducing a
sign constant s = +1, we can obtain the quadratic equation of the curves equidistant from
the two circles

A2® + Bay+Cy? + D+ Ey+F =0

where
A = 4((h —h2)* ~ R),
B = 8(h1 ho)(k1 — ko),
C = 4((k1 —k2)* —R),
D = 4(hi(~ D1+D2+R)+h2(D1 Dy + R)),
E = 4( ( D1+D2—|—R)+k}2(D1 D2+R)) and
F = (Dy—D3)*—2(D; + Dy)R+ R?
and
R = (r1—sr)?
Dy = hi+k,
Dy = hZ+Ek2 and

s = =£l.
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Table 14.1: Medial curves for two circles.

CONFIGURATION, 01/02 ‘ 1 7é T2 ‘ T =T ‘
externally disjoint two hyperbolas | line/hyperbola
externally tangent line/ellipse line/line

intersecting (2 points) | ellipse/hyperbola line/ellipse

internally tangent line/ellipse (impossible)
internally disjoint ellipse/ellipse (impossible)
concentric circle/circle (all points)

This derivation is included in the exploration mdcircir.nb. Table 14.1 summarizes the medial
curves associated with a pair of circles in several configurations taking into consideration
differing radii and equal radii. Strictly speaking, some of the branches of these curves are not
equidistant from the two circles, unless we consider the distance to be measured both from
the closest and the farthest point on the circles.

Example. Find and plot the curves equidistant from the two circles 2 + y?> = 9
and 2% + (y — 2)? = 4.

Solution. Use the function MedialLoci2D [{circle, circle}].

In[17]: ¢l =Crcle2D[{0, O}, 31;
c2=Circle2D[{0, 2}, 21;
crvs = Medi al Loci 2D[{c1, c2}]
out [17] {EIIipseZD[{O, 13, % 7’21 %} Hyper bol a2D[ {0, 13}, % @

I}

(S

n[18]: Sketch2D[{cl, c2, crvs}];

WNPFRPORFRPNWHS
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/‘\k\ Descartazp Hint. The function MedialLoci2D[{obji, obj>}] produces the
M same result as MedialLoci2D[{obj2, obj; }1, that is, the objects may be pro-
vided in any order in the list. In addition, MedialEquations2D[{obji, 0bj2}]
will return a list of lines and/or quadratics representing the medial curves.

14.7 Explorations

MEDIAL CURVE, POINT-POINT. ... ... . mdptpt.nb
Show that the line 2(z2 — z1)z 4+ 2(y2 — y1)y + (2% + y3) — (23 + y3) = 0 is equidistant from
the points Py(z1,y1) and Pa(x2,y2).

MEDIAL CURVE, POINT-LINE. ... e mdptln.nb
Show that the quadratic equation

Ax? + Bay + Cy*> + Dz + Ey + F = 0.
where
= Bj,
_2A2327
= 45
= —2(x1 + A20%),
= —2(y1 +B2C2) and
= a4y —C3

BT QW

is equidistant from the point P;(z1, 1) and the line L = Asx + Bay + C2 = 0, assuming that
L is normalized (A3 + B3 = 1).

MEDIAL CURVE, POINT-CIRCLE. .. ......iuiitiitii i mdptcir.nb
Show that the quadratic equation

A2® + Bay+Cy* + Dz + Ey+F =0

where
A = 4((z1 = ha)® = 13),
B = 8($1 ha)(y1 — k2),
C = 4y —k2)* - 7“3)
D = 4(R( hg) + 27”21)1)
E = 4(R(y1 — k2) + 2r3y1),
F = R?*—4ri(2? +y}) and
R = (h3+k3)—(af+yi) -3
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is equidistant from the point P;(x1,y1) and the circle

(2= ha)? + (y — ko) = 12,
MEDIAL CURVE, LINE-LINE. . ... e mdlnln.nb

Show that the pair of lines whose equations are

Az + Biy+ C4 . iAQl‘—l—Bgy—ﬁ-CQ

JETE  JOi;

is equidistant from the two lines A;x + B1y + C1 = 0 and Asx + By + Co = 0.

MEDIAL CURVE, LINE=CIRCLE. ...ttt ittt

Show that the two quadratics whose equations are given by
Az? + Bry+Cy* + Dz +Ey+F =0
where

= B,
—2A:1 By,
A
—2(ha + A1(C1 + sr2)),
= —2(ky + B1(Ci + sra)),
h3 + k32 —r3 — C1(Cy + 2sr5) and
+1

MmO QW
| I |l

®
\

are equidistant from the line
A1£L'+Bly+01 =0

and the circle
(x = ho)? + (y — ka)® =13,

assuming A} + B = 1.

MEDIAL CURVE, CIRCLE—CIRCLE. . ...ttt ie e i iie e

Show that the two quadratics whose equations are given by

Az? + Bry+Cy* + Dz +Ey+F =0

....... mdlncir.nb

mdcircir.nb
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where

A = 4((h —h2)* = R),

B = 8(h1 ho)(k1 — k2),

C = 4((k1 —k2)” - R),

D = 4( 1( D1+D2+R)+h2(D1 D2+R)),

E = 4( ( D1 +D2+R)+k}2(D1 D2 +R>) and

F = (Dy—D3)?—=2(Dy +D2)R+ R?
and

R = (r1 —sr)?,

Dy = hi+k,
Dy, = hZ+Ek2 and
s = =1

are equidistant from the two circles

MEDIAL CURVE TYPE

(iL' — h1)2

+(y— k1)2 = r% and (z — h2)2 +(y— k2)2 = rg.

........................................................... mdtype.nb

Show that the medial curve equidistant from a point and a circle is a hyperbola when
the point is outside the circle and it is an ellipse when the point is inside the circle. (Hint:
Examine the value of the discriminant B2 — 4AC of the medial quadratic.)
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Chapter 15

Transformations

A transformation is a mathematical operation that changes a function of variables, say f(x,y),
into a new function f’(z’,y") where

o' = fi(z,y) and y' = fo(z,y).

These equations are called the equations of the transformation. Transformations can often be
constructed so that f’ is much simpler than f. In this chapter we will study four transforma-
tions that have useful geometric interpretations: translation, rotation, scaling and reflection.

15.1 Translations
A translation is a transformation that maps coordinates (x,y) into
(z +u,y+v).

When a translation is applied to a locus of points, the resulting locus has the same shape and
orientation as the original one, but its position with respect to the coordinate axes is offset by
distances u in the z-direction and v in the y-direction. The equations of the transformation
are

¥ =x+u and ¥ =y +0.

Example. Determine the coordinates of the point that results from translating
(3,2) by u = —1 and v = =3.

Solution. The function Translate2D[{z, y}, {u, v}] translates a coordinate list
(z,y) by the specified offset (u,v), returning a new coordinate list. The function
Translate2D [point, {u, v}] performs the same translation and returns a trans-
lated point.

217
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In[1]: {Transl ate2D[{3, 2}, {-1, -3}1,
Transl at e2D[Poi nt 2D[ {3, 2}1, {-1, -3}1}

out[1] {{2, -1}, Point2D[{2, -1}]}

|
A translation can also be applied to an equation. For example, if
f(z,y) = Az + By +C

is a linear equation in two variables, we can translate this by making the substitutions
z =12 —wand y =y —v. Mathematica provides powerful functions for performing these
transformations.

In[2]: Clear[x, y, u, v, a, b, cl;
axX+bxy+c /. {X->X-u, y->y-v} //Expand

out[2] c-au-bv+ax+by

In standard mathematical notation the translated equation is

Ax + By — Au— Bv + C.

Mathematica Hint. The Mathematica function Replace, represented by the
/. operator, applies a set of replacement rules to an expression.

In a similar manner a quadratic equation can be translated. Again Mathematica provides
a convenient means for performing the algebraic operations.

n([3]: Cear[x, Yy, u v, a b, c, d, e f1;
a*X"2+bxxxy+cxy"2+dxx+exy+f /.
{X->X-u, y->y-v} //Expand

out(3] f -du+au?-ev+buvs+cvi+dx-2aux-bvx+ax?+ey-buy-2cvy+bxys+cy?

Collecting terms and writing in standard mathematical notation yields the translated qua-

dratic equation
Ar? + Bry+Cy?* + Dz +Ey+F =0

where
A = A
B = B
¢ = C

D' = D—-2Au— Bv
E = E-2Cv- Bu
F' = Au?’+ Buv+Cv?>—Du— Ev+F.
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Using these basic formulas for translations it is easy to translate other objects. The location
of curves, such as circles, ellipses and conic arcs, are defined by points and can be translated
by translating the points themselves. For example, E11ipse2D[{h, k}, a, b, 6] is translated
to Ellipse2D[{h+ u, k + v}, a, b, 0].

Example. Translate the ellipse

(=12, +3? _

1
16 9

by the offsets u = 2 and v = —2. Plot both the original ellipse and the translated
ellipse.

Solution. The function Translate2D [object, {u, v}] translates an object u in
the x-direction and v in the y-direction. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[4]: e2 = Transl ate2D[el = El | i pse2D[ {1, -3}, 4, 3, 0], {2, -2}]

out[4] Ellipse2D[{3, -5}, 4, 3, 0]

In[5]: Sketch2D[{el, e2}];

-2
-4
-6

-2 0 2 4 6

15.2 Rotations

A rotation by an angle § about the origin is a transformation that maps coordinates (z,y)

into (zcosf —ysind,ycosd+ xsinf). The mapping is easily confirmed using trigonometry as
shown in Figure 15.1.

cosa = x/r

sina = y/r
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Figure 15.1: Rotation transformation.

¥ = 0A
= rcos(a+0)
= r(cosacosf — sin asin 0)
= r((z/r)cosf — (y/r)sinh)
= xcos —ysinb.
Similarly, it can be shown that 3’ = ycos6 + z sin6.
In order to rotate about a point (h,k), we first translate the coordinates to the origin,
perform the rotation using the equations above, then apply the inverse translation to restore

the object to its original position with the rotation applied. The general equations of a rotation
so derived are

¥ = h+(z—h)cosh — (y — k)sinf
Y = k+(x—h)sind+ (y —k)cosb.

In order to rotate a linear equation Az + By + C = 0 we need to solve these equations for
x and y so that we can substitute these values into the equation. Solving for # and y in terms
of 2 and 3’ (and making use of the identity sin? @ + cos?f = 1) yields the equations

x = h+ (2 —h)cosh+ (y —k)sinf
y = k—(z'—h)sinf+ (y — k) coséb.

Substituting into Ax + By + C yields the equation
Ar+Bz+C =0
where

A" = Acosf — Bsiné
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B’ = DBcosf+ Asiné
C' — Ah+ Bk+C — (Ah+ Bk)cos0 — (Ak — Bh) sin 6.

Rotating the quadratic equation Q = Ax? + Bxy+ Cy?+ Dz + Ey+ F = 0 is accomplished
in the same manner, by replacing x and y with the proper rotated coordinates. The resulting
expressions for the coefficients of the rotated quadratic equation,

Q =A2>+Bay+Cy>+Dx+Ey+F =0,

are somewhat long, but can be written symbolically as

A" = Acos?0 — Bcosfsind + Csin? 60

B’ = B(cos®6 —sin? ) + 2(A — C) cosfsin §

C'" = Asin?0+ BcosOsinf + C cos>

D' = (—=2Ch+ Bk)sin®6 — (2Ah + Bk) cos® 6 +

2(Bh — (A —C)k)cosfsinf +

(2Ah + Bk + D) cosf — (Bh + 2Ck + E)sin 0
E' = (Bh—2Ak)sin®@ — (Bh + 2Ck) cos® 0 —
2((A = C)h + Bk)cosfsin6 +
Bh +2Ck + E)cos 0 4 (2Ah + Bk + D) sin 6
Ah +Bhk+Cl€2)Cos 0 —
B(h* — k?) — 2(A — C’)hk) cosfsiné +
Ch? — Bhk + Ak?)sin® 0 —
2Ah? + 2Bhk + 2Ck* + Dh + Ek) cos 0 +
Bh? — 2(A — C)hk — Bk* + Eh — Dk)sin 6 +
Ah? 4+ Bhk + Ck* + Dh+ Ek + F.

F =

(
(Ah
(
(
(
(

By applying the formulas for rotating coordinates, linear equations and quadratic equa-
tions, we can now specify how to rotate all of the Descarta2D objects. Points and lines can be
rotated by directly applying the formulas for coordinates and linear equations, respectively.
Curves that are located by points can be rotated by rotating the defining points; addition-
ally, curves that have orientation angles, such as arcs, parabolas, ellipses and hyperbolas, are
rotated by adding the rotation angle, @, to the angle of the curve.

Example. Rotate the ellipse
(z—3)?% ¢

Z 1
1 +4

/2 radians about its center point and about the origin. Plot all three ellipses.




222 Chapter 15 Transformations

Solution. The Descarta2D function Rotate2D [object, 0, {xo, yo}] rotates an ob-
ject by angle 6 about point (zg,yo). The function Rotate2D [object, 8] rotates
an object by angle 6 about the origin. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[6]: el =Ellipse2D[{3, 0}, 2, 1, Pi /2];
{e2 = Rotate2D[el, Pi /2, {3, 0}], e3 =Rotate2D[el, Pi /2]}

out[6] {Ellipse2D[{3, 0}, 2, 1, 0], Ellipse2D[{0, 3}, 2, 1, 0]}

n[7]: Sketch2D[{el, e2, e3}];

4
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15.3 Scaling

A scaling transformation maps coordinates (z, y) to (2/,y’) using the transformation equations
' =h+s(x—h) and v =k +s(y — k).

The scale factor, s > 0, indicates the ratio of corresponding lengths of the scaled object with
respect to the original object. The point (h, k) is called the center of scaling. A point at the
center of scaling does not change coordinates during a scaling transformation.

Solving the scaling transformation equations for (z,y) in terms of (z/,y') yields

) v -k

r=~h-+ and y=Fk+

Substituting the coordinates (x,y) into the linear polynomial Az + By + C' yields the scaled
linear polynomial

Az + By + Ah(s — 1) + Bk(s — 1) + sC.

Similarly, applying a scaling transformation to the quadratic polynomial

Az? + Bry+Cy*+ Dz + Ey+ F
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yields
Az + Bay+C'y?* +D'a+Ey+F =0
where
A = AJs?
B" = B/s?
C' = O/
D' = (D+(1-s)(24h+ Bk))/s
E' = (E+(1-s)(Bh+2Ck))/s
F' (1 —s)*(AR* + Bhk + Ck*) + (1 — s)(Dh + Ek) + F.

The scaling transformation may be applied to Descarta2D geometric objects by apply-
ing the coordinate scaling transformation to the positioning arguments and simultaneously
multiplying the length arguments by the scale factor.

Example. Scale the circle (x —2)? + (y — 1)2 = 1 by a factor of 3/2 about its
center point and the origin. Plot the three circles.

Solution. The function Scale2D [object, s, {h, k}]1 scales the object using scale
factor s about the center of scaling (h, k). Scale2D[object, s] scales the object
about the origin. The object may be a coordinate list, a geometric object or a list
of Descarta2D objects.

n[8]: cl=Circle2D[{2, 1}, 1];
{c2 = Scal e2D[c1, 3/2, {2, 1}], c¢3 = Scal e2D[c1, 3/2]}

outrs) {Grele2D[(2, 1), 3], Grele2d[(3, 3}, ]}

n[9]: Sketch2D[{cl1, c2, c3}];

3
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2
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1
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15.4 Reflections

A reflection transformation maps the coordinates (z,y) to coordinates that are the “mirror”
reflection of the coordinates with respect to a line that represents the position of the mirror.
Consider the point P;(z1,y1) and the reflection line Ly = Asx + Boy + Cy = 0. The following
Descarta2D commands can be used to determine the coordinates of the reflection of point P;
in line Ls.

In[10]: Clear [x1, y1, A2, B2, C2];
pl = Poi nt 2D[ {x1, y1}];
| 2 = Li ne2D[A2, B2, C2];
p2 = Poi nt 2D[p1, Poi nt 2D[p1, | 2],
2 xDi stance2D[pl, 12]1] // Sinplify

“A2?2x1+B22x1-2A2 (C2+B2yl) -2B2 (C2+A2x1) +A2%2y1-B22y1 1]

out (10] Poi nt 2D[{ o7 B : 257, B2
+ +

In standard mathematical notation the coordinates Ps(z2,y2) of the reflected point are given
by the transformation equations

_ 2A5(Asxq + Bayy + C2)

To = I
A3 + B3
p o=y 2B5 (A + Bayy + C2)
2 = Y1 — .
A%+ B2

Solving the transformation equations for P;(z1,y1) in terms of Pa(x2,y2) yields

(B3 — A3)xg — 2A3Boys — 24205
A% + B2

 —2A3Bsxs + (A3 — B3)yz2 — 2B2Cs

neo= A1 B2 '

ry =

Mathematica Hint. While it is feasible to solve these equations manually using
algebra, it is much less effort to let Mathematica do the work using the Solve
function. The command would be of the form

In[11]: Sol ve[{x2 == XCoor di nat e2D[p2],
y2 == YCoor di nat e2D[p2]}, {x1, y1}1 // Sinplify

“A22x2+B22x2 -2 A2 (C2 + B2y2)

-2B2 (C2+A2x2) + A22y2 - B22y2 1}
A2% . B2?

Lyl
yL= A2Z 4 B22

out[11] {{x1-

Substituting the coordinates (x1,y;) into a linear equation Aix + Biy + C; yields the
reflected linear equation
Asx 4+ By + Cs
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where

Ay = A(B: - A3) —2B1AyB,
By = Bi(A2—-B2)—-2A,A:B,
C3 = C1(A2+ B2) —2C5(A1As + B1By).

(
Substituting the coordinates (z1,%1) into a quadratic polynomial
Q=Ax>+Bay+Cy* +Dx+ Ey+ F
yields a quadratic @’ reflected in the line Lo = Asxz + Boy + Cy = 0 of the form
Q =A2*+Bay+C'y?*+Da+FEy+F

where
AI = Aflfg —|— ZBpf4 —|— 4Cp2
B' = 4Apfi+ B(4p* — f7) — 4Cpfs
C' = 4Ap> —2Bpfi+Cfif2
D' = 4Aqfs+2Br(243 + f1) +8CqB; — Dfifs —2Epfs
E' = 8AA%r +2Bq(2B2 — f)) — 4Crfy — 2Dpfs + Efsf4
F' = 4(A¢* + BpC3 + Cr?) — 2f3(Dq + Er) + F f3

and

p=ABy, q=A3Cs, 71 =DB(CY,

fi = (A2 + B»)?, f2 = (A2 — Bs)?,
fs = (A3 + B3), fa= (A3 - Bj).

Reflection of an Angle

What angle does a reflected line make with the +z-axis? Let L be a line that makes an angle
6 with the +x-axis, Lr be a reflection line that makes an angle « with the +x-axis, and L’
the reflection of L in Lgr as shown in Figure 15.2. We wish to determine the angle 6’ that
L' makes with the +z-axis. Using the fact that supplementary angles sum to 7 and that the
interior angles of a triangle sum to m, the angle 8/ = 2a: — #. The relationship also holds true
when « = 6, in which case L and L’ do not intersect. By applying the methods for reflecting
coordinates, equations and angles we are able to reflects all of the geometric objects in the
Descarta2D system.

Example. Reflect the arc centered at (3, 2) with radius 1 and start and end angles
of 7 and 37/2 in the line x + 3y +2 = 0.
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Figure 15.2: A reflected angle.

Solution. The Descarta2D function Reflect2D [object, line] reflects the object
with respect to the line. The object may be a coordinate list, a geometric object,
or a list of objects.

In[12]: a2 = Refl ect 2D[al = Arc2D[Poi nt 2D[{3, 2}], 2, {Pi, 3Pi /2}],
I'1=Line2D[1, 3, 2]]
out[12] Arc2D[{2, -3}, {7%, 715*7}, -1+4/2]

n[13]: Sketch2D[{al, |1, a2}];

2

) \_
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15.5 Explorations

REFLECTION IN A POINT. ... e reflctpt.nb

A point P'(z’,y’) is said to be the reflection of a point P(xz,y) in the point C'(H, K) if C
is the midpoint of the segment PP’. Using this definition show that
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e The transformation equations for a reflection in a point are
¥ =2H —x r=2H -1
y =2K —vy y=2K—1vy.
e The reflection of the line az + by + ¢ = 0 in the point (H, K) is

ar + by — (2aH 4 2bK +¢) = 0.
e The reflection of the quadratic ax? 4+ bzy + cy? + dz + ey + f = 0 in the point (H, K) is
ax? + bry + cy? — (4daH + 20K + d)x — (2bH + 4cK + e)y+
4aH? + 4bHK + 4cK? + 2dH + 2¢K + f = 0.

Also, verify that the reflection in a point transformation is equivalent to a rotation of 7 radians
about the reflection point (H, K).

INVERSION. .« ettt ettt e e e e e inverse.nb

A point P'(2',y’) is said to be the inverse of a point P(z,y) in the circle
C=(x—h)?+@y—k)?=r?
if points O(h, k), P and P’ are collinear and |OP| |OP’| = r%. Using this definition show that
e The coordinates of P'(z',y’) are
r2(z — h) r2(y — k)

(@ —h)>+(y —k)? (@ —h)2+(y —k)*

e If the circle of inversion is 22 + % = 1, the coordinates of P’ are

_y

z? 4+ y?

e If the circle of inversion is 22 + 3% = 1, the inverse of the line L = A1z + Biy + C1 = 0,
assuming L does not pass through the origin, is the circle

e MY (e BLY A Bt
201 YT90y) T Tac?

o If the circle of inversion is #2 + 3% = 1, the inverse of the line L = A1z + B1y + C; = 0,
assuming L passes through the origin (Cy = 0), is L itself.

Z =h+ and 3 =k +

/

f— /_
x RECER and y' =

e If the circle of inversion is 22 4+y? = 1, the inverse of the circle (z — h1)? + (y — k)% = r?

is
hi\® k\? 73
<m——> +<y—5 :51, where D = h? + ki —r?.
e If the circle of inversion is 2 +y? = 1, the inversion of C' = (z — h)?+ (y— k)2 = h3 + k2,
which passes through the origin, is the line L = 2hjx + 2k1y = 1. L is parallel to the
tangent line to C through the origin. The equation of the tangent line is 2h,x+2k;y = 0.

Inversion is clearly a non-rigid transformation.
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Arc Length

Intuitively, arc length is a measure of distance along a curve. For a straight line the distance
is called the length and is easily computed using the distance formula. For some curves the
arc length has other special names such as the perimeter of a triangle or the circumference
of a circle. This chapter discusses methods for computing the arc lengths of simple geometric
curves, such as those provided in Descarta2D.

16.1 Lines and Line Segments

Length of a Line

By definition, a line is a curve of infinite length. We can, however, specify two parameter values
on the line and determine the distance between the points associated with these parameter
values. Since lines in Descarta2D are parameterized by distance, the distance, s, between the
points represented by any two parameter values, ¢ and to, is simply the absolute value of the
difference of the parameter values, s = |ta — t1].

Example. Find the distance between the parameter values —2 and 1 on any line
(assuming the parameterizations defined in the Descarta2D packages).

Solution. The function ArcLength2D [line, {t1, t2}] returns the arc length be-
tween two parameter values on a line.

In(1]: Clear [a, b, cI;
ArcLengt h2D[Li ne2D[a, b, c1, {-2, 1}]

out[1] 3
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Length of a Line Segment

The length of a line segment is the distance between its start and end points. In Descarta2D
the start and end points have parameter values of 0 and 1, respectively. The distance, s,
between any two parameter values, ¢1 and to, is given by |t2 — t1|l, where [ is the length of the
line segment.

Example. Find the length of the line segment connecting the points (1,3) and
(2,4). Find the arc length on the line segment between the parameter values 1/4
and 1/2.

Solution. The function Length2D [Inseg] returns the length of a line segment
(the distance between the start and end points). ArcLength2D [inseg, {t1, t2}]
returns the distance between two parameter values on a line segment.

n[2]: | 1 = Segnent 2D[ {1, 3}, {2, 4}1;
{Lengt h2D[l 1], ArcLength2D[l 1, {1/4, 1/2}]}

out [2] {\/i 2\1/5}

16.2 Perimeter of a Triangle

The sum of the lengths of the sides of a triangle is called the perimeter, s, and is given by
§ = 81 + s3 + s3, where s, is the length of side n of the triangle.

Example. Find the perimeter of a triangle whose vertices are (1,2), (3,4) and
(5,6).

Solution. The Descarta2D function Perimeter2D [{riangle] returns the perimeter
of a triangle.

n[3]: Perimeter2D[Triangl e2D[{1, 2}, {4, 4}, {5, 6}]]

out 3] 4+/2 ++/5 +/13
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Figure 16.1: Circle approximated by an inscribed polygon.

16.3 Polygons Approximating Curves

If we inscribe a polygon in any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter of
the curve. Therefore, when investigating the area or arc length of a curve, we may substitute
for the curve an inscribed or circumscribed polygon with an indefinitely increasing number of
sides. These notions are formalized in the study of calculus, but they can be applied intuitively
in the study of areas and perimeters of simple curves as will be shown in the following sections.

16.4 Circles and Arcs

Circumference of a Circle

Consider the circle shown in Figure 16.1. The length, d, of the perpendicular segment from the
center of the circle to one of the sides of a regular, inscribed polygon is given by d = r sin (%9)
where 7 is the radius of the circle and 6 is angle between adjacent radii connecting the sides
of the polygon. The length of the sides of the polygon, s, is given by s = 2r cos (%9) Clearly,
the perimeter of the inscribed polygon, S, is given by S = ns, where n represents the number

of sides of the polygon. Now consider the ratio of the perimeter of polygons for two circles,
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C1 and C5, which is given by

S1 nsi _ 2nri cos (%9) on

So  nsy  2nro cos (39) Cry

As n increases S and S approach the circumferences of C7 and Cs; therefore, the ratio of
the circumferences of two circles equals the ratio of their radii. Since the radii of the circles
are proportional to their diameters, the ratio of the circumferences to the diameters is also a
constant which has been given the symbol 7. Therefore,

S

D

™

relating the circumference of a circle to its diameter is a constant for all circles; or writing in
a different form, the circumference S of a circle is given by

S =xD =2nr.

Example. Find the circumference of a circle centered at (0,0) with a radius of 2.
Also, find the arc length of 1/4 of the circle’s circumference.

Solution. The function Circumference2D [circle] returns the circumference of
a circle. The function ArcLength2D [circle, {t1, t2}] returns the arc length of a
circle between two parameter values.

In[4]: ¢l =Circle2D[{0, 0}, 2];
{Ci rcunf erence2D[c1], ArcLength2D[cl, {0, Pi /2}]}

out[4] {4 rn, i}

Arc Length of an Arc

The arc length, s, (or span) of an arc is the ratio of the angular span of the arc to the angular
span of a full circle (27) times the circumference of a circle and is given by

0
s= %(27T7“) = (02 — 01)r.

Example. Find the arc length of the sector defined by the arc centered at (0,0)
with radius 2 and start and end angles of 7/4 and 37 /4.
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Solution. The function Span2D [arc] returns the arc length of an arc.

In[5]: Span2D[al = Arc2D[Poi nt 2D[{0, 0}1, 2, {Pi /4, 3Pi /4}]]1 //Sinplify

Out [5] 7t

Example. For the arc defined in the previous example, find the arc length between
the parameter values 0.25 and 0.75.

Solution. The function ArcLength2D [arc, {t1, t2}] returns the arc length of an
arc between two parameter values.

In[6]: ArcLength2D[al, {0.25, 0.75}] //N

out[6] 1.5708

16.5 Ellipses and Hyperbolas

If = fu(t) and y = f,(¢) are the parametric equations of a curve, then the arc length, s, of
the curve between parameter values t; and t5 is given by the integral

= [ V@R @

where 2’ and y’ are the derivatives of the parametric equations of the curve with respect to
t. For many curves this integral is difficult to evaluate in symbolic form, but by using the
numerical integration capabilities of Mathematica we can find an approximate arc length.
Even for the conic curves (except the parabola, which we will discuss subsequently) the
integral for arc length leads to elliptic integrals, a class of integrals that cannot be expressed in
closed form in terms of elementary functions. This does not mean that these integrals do not
exist, but require the definition of non-elementary functions. Fortunately, the elliptic integral
needed to evaluate the arc lengths of ellipses and hyperbolas is built-in to Mathematica as the
EllipticE[phi, m] function, which is written E(¢|m) in traditional mathematical notation.
The arc length, s, in the parameter range 0 < ¢ < 27, of an ellipse in terms of this elliptic

integral is given by
a2
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where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse. Since all elliptic arcs can be expressed as sums or differences of such arcs, the formula
serves to provide a means for expressing the arc length between any pair of parameters.
Similarly, the arc length, s, of a hyperbola, using the parametric equations for a hyperbola
defined in Descarta2D, can be expressed in terms of this elliptic integral and is given by

2 12 2
s=ibE [icos™! Ll t 1+a_
a b2

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively, of
the hyperbola and ¢ = v/—1. Even though complex numbers are present in this formula, the
resulting arc length is a real number.

Example. Find the approximate arc length of the ellipse 22 /9+%2%/4 = 1 between
parameter values 0 and /2.

Solution. The Descarta2D function ArcLength2D [curve, {t1, t2}] returns the arc
length of a curve between two parameter values.

n[7]: el =Ellipse2D[{0, 0}, 3, 2, 0];
ArcLengt h2D[el, {0, Pi /2}] // N

out[7] 3.96636

16.6 Parabolas
Consider a parabola represented by the parametric equations
z = ft? and y = 2ft.

The arc length, s, of such a parabola between two parameters, t; < t2, can be derived in terms
of elementary functions. The derivation is provided in the exploration pbarclen.nb where
the arc length is shown to be s = f(S3 — S1) where

Sy = tu/1+1t2 +sinh ™' (¢,).

Example. Find the arc length of the parabola y? = 42 between parameter values
—2 and 3. Find the arc length cut off by the focal chord of the parabola.
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Solution. The Descarta2D function ArcLength2D [parabola, {t1, t2}] returns the
arc length of the parabola between the two parameter values. The focal chord of
a parabola has end points at parameter values +1.

n[8]: pl = Parabol a2D[{0, 0}, 1, 0];
{ArcLengt h2D[pl, {-2, 3}], ArcLength2D[pl, {-1, 1}]} //N

out (8] {17.2211, 4.59117)

16.7 Chord Parameters

For some curves, such as circles and ellipses, it is fairly easy to determine the parameter value
that corresponds to a particular point on the curve; however, for hyperbolas and parabolas,
whose parametric representation is more complex, it may be difficult to determine the para-
meter values needed to compute the arc length of some specific portion of the curve. The
function Parameters2D provides a more geometric definition of the chord that can be used
with the arc length functions. Essentially, the Parameters2D function computes the parame-
ter values of the points of intersection between a line and a second-degree curve (circle, ellipse,
hyperbola or parabola). This function will also be useful in the area functions introduced in
the next chapter.

Example. Find the arc length of the parabola with vertex at (0,0), focal length
of 1 (opening upward) cut off by the line 2z + 4y — 5 = 0.

Solution. The Descarta2D function Parameters2D [line, curve] returns a list of
the two parameters which are the points of intersection between the line and the
curve. The curve may be a circle, an ellipse, a hyperbola or a parabola.

1n[9]: pl = Parabol a2D[{0, 0}, 1, Pi /2];

|1 =Line2D[2, 4, -5];
t12 = Par anet ers2D[l 1, pl]

ouers) (3 (1-+/6), 3 (1++6))

In[10]: ArcLength2D[pl, t12] // Full Sinplify
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N DescartazD Hint. Only the primary branch of a hyperbola in standard position
X is parameterized (the primary branch is the branch opening to the right when the
hyperbola’s rotation angle is zero); positions on the other branch are generated by
reflecting coordinates on the primary branch. As a result of this parameterization,
the Parameters2D function will only return parameter values if the line intersects
the primary branch of the hyperbola.

-

16.8 Summary of Arc Length Functions

Descarta2D provides a general function, ArcLength2D for computing the arc length of para-
metric curves and several special functions for computing arc lengths of specific curves. The
DescartazD function ArcLength2D[curve, {t1, t2}] can be used to compute the arc length
of any parametric curve in Descarta2D (arcs, lines, line segments, circles, parabolas, ellipses,
hyperbolas and conic arcs). The function Length2D [Inseg] computes the length of a complete
line segment. The function Circumference2D [curve] computes the arc length of a complete
circle or ellipse. The function Span2D [curve] computes the arc length of a complete arc or
conic arc. The function Perimeter2D [triangle] computes the perimeter of a triangle.

16.9 Explorations

ARC LENGTH OF A PARABOLA. ... ... e pbarclen.nb
Show that the arc length, s, of a parabola whose parametric equations are

z=ft? and y=2ft

is given by s = f(S2 — S1) where

Sp =tn/1+182 + sinh_l(tn).

APPROXIMATE ARC LENGTH OF A CURVE. ...\ttt narclen.nb

The arc length of a smooth, parametrically defined curve can be approximated by a polygon
connecting a sequence of points on the curve. Write a Mathematica function of the form
NArcLength2D [crv, {t1, ta}, n] that approximates the arc length of a curve between two
parameter values using a specified number of coordinates at equal parameter intervals between
the two given parameters. Produce a graph illustrating the convergence of the approximation
to the Descarta2D function ArcLength2D[crv, {t1, t2}1 //N.

ARC LENGTH OF A PARABOLIC CONIC ARC. ...ttt caarclen.nb

Using exact integration in Mathematica show that the arc length of a parabolic conic arc
with control points Py(0,0), Pa(a,b), and P;(1,0) can be expressed exactly in symbolic form
in terms elementary functions of a and b.
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Area

Intuitively, area is the measure of the number of unit squares that can be contained inside
a boundary. For a square with sides of length s, the area, A, is given by A = s?. For a
rectangle with sides a and b, A = ab. As the boundary becomes more complex or contains
curved elements, the computation of the area requires more complex considerations. In this

chapter we will derive formulas for the areas of Descarta2D objects.

17.1 Areas of Geometric Figures

Before exploring formulas for computing areas using analytic geometry, we will look at some
formulas from planar geometry. Consider the right triangle ABC shown in Figure 17.1 with
height i and base b. Clearly, the area of AABC is one-half of the area of rectangle ABCD,
so the area, A, of a right triangle is

a=
2

Now consider the acute AABC in the center of Figure 17.1. The area of ABC is given by

Area ABC = Area BCDE — Area ABE — Area ACD

Figure 17.1: Areas of right, acute and obtuse triangles.
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I____ ]

A| by a by |B

Figure 17.2: Area of a trapezoid.

or
Area ABC = bh — % — %

Simplifying and using b = by + by yields

A=
2

The same formula results for the area of an obtuse triangle (using b = bs — b1), as shown on
the right in Figure 17.1.
Now consider the trapezoid ABC'D shown in Figure 17.2. The area of ABCD is given by

Area ABCD = Area ABEF — Area ADF — Area BCE

or
Area ABCD = bh — % — %
Simplifying and using b = a + by + by yields
= (a+b) L

2

These formulas from planar geometry will be useful in upcoming sections for deriving the
formulas using analytic geometry.

Triangular Area

There are several formulas for the area, A, of a triangle that involve lengths associated with
the triangle. The simplest is the familiar A = bh/2, where b is the length of one of the sides
of the triangle (the base) and h is the height of the triangle (the distance from the base to the
opposite vertex).



17.1 Areas of Geometric Figures 239
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Figure 17.3: Area of a triangle by coordinates.

The formula of Heron gives the area of the triangle in terms of the lengths of its sides, s,
alone:

A= \/s(s —51)(s — s2)(s — s3)

where s = (s1 + s2 + s3)/2 is the semi-perimeter. This formula is derived in the exploration
heron.nb.

Since a triangle is represented in Descarta2D by the coordinates of the vertices, we wish to
derive a formula based on the coordinates. Consider the triangle ABC as shown in Figure 17.3,
where the coordinates are A(x1,y1), B(x2,y2) and C(x3,y3). Projecting A, B and C onto the
x-axis produces three points A’(x1,0), B'(x2,0) and C’(x3,0). The area of triangle ABC' is
given by

Area ABC = Area AA'C'C — Area AA'B'B — Area BB'C'C.

The height and base lengths of these trapezoids can be determined as the difference of the
coordinates of the points, yielding

Area ABC = (y1 + y3)2(x3 —z1)  (yt y2)2(x2 —z1)  (y2 + y3)2(x3 - 1'2).

Expanding and rearranging will show that the area of a triangle, A, is given by the determinant

Rl 1
A=+ 5 T2 Y2 1
x3 ys 1

where (21,y1), (z2,y2) and (zs3,ys3) are the coordinates of the vertices of the triangle. The
sign is selected to yield a positive area.

Alternately, if we multiply the length of the line segment joining two of the points, by the
length of the perpendicular line segment on that line from the third point, we have double the
area of the triangle determined by the three points.
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Example. Find the area of a triangle whose vertices are (1,2), (4,4) and (5, 6).

Solution. The function Area2D [triangle] returns the area of a triangle.

n[1]: Area2D[Tri angl e2D[{1, 2}, {4, 4}, {5, 6}1]

out[1] 2

17.2 Curved Areas

If we inscribe a polygon inside any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter
of the curve. Therefore, when investigating the area or perimeter of a closed curve, we may
substitute for the curve an inscribed or circumscribed polygon with an indefinitely increasing
number of sides. These notions are formalized in the study of calculus, but they can be applied
intuitively in the study of areas of simple curves as will be shown in the following sections.

17.3 Circular Areas

To determine the area of a circle, we examine a polygon inscribed in the circle as shown in
Figure 17.4. The area of any triangle in the figure is given by Aan = %sd, and the area of the
entire polygon is given by nAa, because there are n such triangles. As n increases without
limit, we find that ns approaches S = 27r and d approaches r. Therefore, the area of the
polygon approaches %Sr or mr2. Accordingly, the area, A, of a circle is given by A = mr?,

where 7 is the radius of the circle.

Example. Find the area of a circle centered at (0,0) with a radius of 2.

Solution. The Descarta2D function Area2D [circle] returns the area of a circle.

In[2]: Area2D[Circle2D[{0, 0}, 2]]

out[2] 4
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Figure 17.4: Circle approximated by an inscribed polygon.

The area of an arc sector of radius r as shown in Figure 17.5 may be determined as the
ratio of the angular span of the arc to the span of a complete circle (27 radians) times the
area of the circle. Since the area of a complete circle is 72, the area of an arc sector is given

by
2

r
A — 5(92 - 61)

Example. Find the area of the sector defined by the arc centered at (0,0) with
radius 2 and start and end angles of 7/4 and 37 /4.

Figure 17.5: Areas of an arc sector and segment.
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Solution. The Descarta2D function SectorArea2D [circle, {01, 62}]1 returns the
area of the sector defined by an arc of a circle.

1n[3]: Sector Area2D[Circl e2D[{0, 0}, 2], {Pi /4, 3Pi /4}]

Out [3] 7T

The area of an arc segment, which is the area bounded by the arc and the chord connecting
the end points of the arc as shown in Figure 17.5, is calculated as the difference of the areas
of the sector and the triangle whose vertices are the end points and the center. Since the area
of this triangle is A = %72 sin @, the formula for the area of the arc segment is

2
A = mr? (;)—%sinH
i

7“2

= 3 (0 —sin0)

where # = 05 — 61 is the span of the arc, and r is the radius of the arc.

Example. Find the area of the segment defined by the arc centered at (0,0) with
radius 2 and start and end angles of 7/4 and 37 /4.

Solution. The Descarta2D function Area2D [arc] returns the area of the segment
defined by an arc and its chord.
In[4]: Area2D[Arc2D[Poi nt 2D[{0, 0}1, 2, {Pi /4, 3Pi /4}]]1 //Sinplify

out[4] -2+

Notice that if the angle 6 is greater than 7 radians, the formula is still valid because sin 6 will
be negative and the area of the central triangle will be added to the sector area producing the
correct result.

17.4 Elliptic Areas

The area of an ellipse depends only on the lengths of its semi-major and semi-minor axes,
and is independent of its position and orientation. It is shown in calculus that integrating the
equation y = f(z) of the curve between limits on the z-axis produces the area between the
curve and the z-axis. The equation of an ellipse in standard position is given by
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Solving for y yields y = by/1 — 22 /a? for the upper portion of the ellipse. The following steps
outline the integration process that is used to compute the area:

A:/ydx

= / by/1—22/a?dx

_ mab
= <
Therefore, the area of the complete ellipse (both the upper and lower portions) is given by
A =mab

where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse.

2 2
Example. Calculate the area of the ellipse % + LAY

9

Solution. The Descarta2D function Area2D [ellipse] returns the area of an ellipse.
In(5]: Area2DI[Ellipse2D[{0, 0}, 3, 2, Pi /2]]

out[5] 67
|
Consider an ellipse in standard position with the equation
2 2
x y°

as shown in Figure 17.6. The area, A, of a segment of the ellipse bounded by the chord
defined from (a,0) and a general point on the ellipse, (acosf,bsinf), can be determined by
subtracting the area under the chord from the area under the ellipse between limits on the
z-axis. The equation of the line containing the chord is given by
bsinf(a — x)
a(l — cos®)
as can be determined from the two-point form of a line. The area of the segment is determined
using integration as follows:

A = / (y1 — y2) dx

Y2 =

cos 6
“ bsin 6( a—x))
= bv/1—22/a2 - ——————2 | dx
/ac059< / 1_6059)
ab

= 7 (m —2sin""(cos 0) — 2siné) .
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X

N _

Figure 17.6: Areas of an elliptic segment and sector.

The formula is valid for angles € in the range 0 < 6 < 7. Since all segments can be computed
as sums or differences of such segments and simple triangles, the area of all ellipse segments
can be determined using this basic formula.

Example. Find the area of the ellipse segment from 7/6 to w/3 radians for an
ellipse with semi-major axis length of 3 and semi-minor axis length of 1.

Solution. The function SegmentArea2D [ellipse, {1, t2}] returns the area of an
ellipse segment defined by two parameter values.

In[6]: Segment Area2D[El | i pse2D[{0, 0}, 3, 1, 0], {Pi /6, Pi /3}]
out [6] —%+ %
|

The area of an ellipse sector, as illustrated in Figure 17.6, can be found by adding the area
of the triangle formed by the sector sides and the chord of the sector. The area of the triangle
is given by

bh  absind
A = — =
S 2
and the resulting formula for the area of the sector is given by
A= ab (m —2sin""(cos0))
1 .

Example. Find the area of the ellipse sector from 7/6 to 7/3 radians for an ellipse
with semi-major axis length of 3 and semi-minor axis length of 1.
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PZ P2

Py P1

Figure 17.7: Areas of a hyperbolic segment and sector.

Solution. The Descarta2D function SectorArea2D [ellipse, {t1, t2}] returns the
area of an ellipse sector defined by two parameter values.
n[7]: SectorArea2D[El | i pse2D[{0, 0}, 3, 1, 0], {Pi /6, Pi /3}]

out (7] %

17.5 Hyperbolic Areas

Using the integration techniques demonstrated previously for ellipses the areas associated with
hyperbolas can also be computed. Consider the hyperbolic segment as shown in Figure 17.7.
In Descarta2D the parametric equations for the hyperbola are

x = acosh(st) and y = bsinh(st)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
5§ = coshfl(e)7 and e is the eccentricity of the hyperbola. The exploration areahyp.nb uses
calculus to derive the formula for the area of the segment, which is given by

b, .
Asegment = %(Sll’lh(s(tg — tl)) — 5(t2 — tl))

Interestingly, the area does not depend on the values of ¢; and ¢ directly, but only upon the
difference between the two parameters.
Since we know the coordinates of the vertex points of the triangle OP; P, we can compute

its area directly as
b
Ap = % sinh(s(ty — t1)).
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The area of a hyperbolic sector is the difference between the area of the triangle OP; P,
and the hyperbolic segment as illustrated in Figure 17.7. The area of the hyperbolic sector is
given by

Asector = AA - Asegment
abs
= —(ta —t1).
5 (2 = 1)
Example. Find the area of the hyperbolic segment between parameters t; = —2

and t2 = 1 for a hyperbola centered at the origin with @ = 1 and b = 1/2 in
standard position. Also, find the area of the associated hyperbolic sector.

Solution. The Descarta2D function SegmentArea2D [hyperbola, {t1, t2}] returns
the area of a segment of a hyperbola defined by two parameters. The function
SectorArea?2D [hyperbola, {t1, t2}] returns the area of the associated hyperbolic
sector.
In[8]: hl = Hyperbol a2D[{0, 0}, 1, 1/2, 07;

{Segnent Area2D[h1, {-2, 1}1,

Sect or Area2Drh1, {-2, 1}1} // N
out[8] {0.139091, 0.360909}
|

17.6 Parabolic Areas

Consider a parabola in standard position with vertex at (0,0), axis parallel to the z-axis,
focal length of f, and opening to the left as shown in Figure 17.8. Such a parabola can be
represented with the set of parametric equations

z = ft? and y = 2ft.

The area of the chordal area defined by the parameters t; and ¢y can be determined by
subtracting the area between the parabola and the y-axis from the area between the chord
and the y-axis. The end points of the chord are (ft?,2ft1) and (ft3,2ft2), and the line
through these two points is given by

(t1 +t2)y — 2ft1ta
5 .
The appropriate integral is then given by

Y2
A = / (x2 — 1) dy

Y1

_ /y2 (t1+t2)y—2ft1t2_y_2 d
-, 2 ar )
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Figure 17.8: Area of a parabolic segment.

Performing the integration and making the substitutions y; = 2ft; and yo = 2fty yields the
formula for the area, A, of a parabolic segment to be

fP(ta —t1)?
3
where t; and ¢y are the parameters of the end points of the chord defining the segment, and

t1 < to for positive areas. A parabola has no sector area definition because a parabola does
not have a center point.

A:

Example. Find the area between the parabola y?> = x/2 rotated 7/2 radians
about its vertex and its focal chord.

Solution. The function SegmentArea2D [parabola, {t1, t2}]1 returns the area of a
parabolic segment defined by parameters ¢; and t2. In Descarta2D the end points
of the focal chord occur at parameter values t; = —1 and t5 = 1.

n[9]: pl = Parabol a2D[{0, 0}, 1/2, Pi /2];
Segnent Area2D[pl, {-1, 1}]

out [9] %

%S\ DescartazD Hint. Notice that the parabola’s position and orientation have no
M X bearing on the area of a parabolic segment. The area depends solely on the focal
length and the chord position.
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17.7 Conic Arc Area

The area between a conic arc and its chord can also be computed by summing infinitesimal
rectangles through the use of calculus. Consider, for example, a conic arc whose start point
is (0,0), end point is (d,0), apex point is (a,b) and projective discriminant is p. Intuitively,
since the chord of this conic arc is coincident with the x-axis we can imagine subdividing the
area of the conic arc into a large number of horizontal rectangles of very small height. By
summing the areas of these small rectangles we can provide an approximation to the area of
the conic arc. The methods of integral calculus accomplish this summing process, and in the
limit as the height of the rectangles approaches zero, the area approaches the true area of the
conic arc segment. The details of this process are captured in the exploration caareal.nb.
The area of the conic arc segment is found to be

bdp 2 1-p
A= ~1 1
9,3 (pr+( +p) Oge(ﬁr

where r = \/—1 4 2p (assuming b > 0 and d > 0). Notice that the abscissa, a, of the apex
point has no bearing on the area of the segment bounded by the conic arc and its chord.

If the conic arc is a parabola, then p = 1 and the formula for the area given above is
invalid. The formula for a parabola is much simpler and is given by

_ b
T3

A

as shown in the exploration caarea2.nb.

This process can be generalized to find the segment area of any conic arc. Notice that the
position of the conic arc in the plane has no bearing on its chordal area. Therefore, we can
translate the start point to (0,0) and rotate the conic so that the end point is on the z-axis.

Example. Find the area between the conic arc with start point (1,2), end point
(5,0), apex point (3,4) and p = 0.75 and its chord.

Solution. The Descarta2D function Area2D [cnarc] computes the area between a
conic arc and its chord.

In[10]: Area2D[Coni cArc2D[{1, 2}, {3, 4}, {5, 0}, 0.75]11 //N

out[10] 5.34774
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Table 17.1: Descarta2D area functions.

OBJECT ‘ Area2D ‘ SectorArea2D | SegmentArea2D

arc yes no no
circle yes yes yes
conic arc yes no no
ellipse yes yes yes
hyperbola no yes yes
parabola no no yes
triangle yes no no

17.8 Summary of Area Functions

Table 17.1 summarizes the area functions provided by Descarta2b.
Area2D[object] returns the area enclosed by a closed object (circle, ellipse or triangle).
SectorArea2D [object, {t1, t2}] returns the area of a sector defined by two parameters.

SegmentArea2D [object, {t1, t2}] returns the area between a chord and the curve.

17.9 Explorations

HERON’S FORMULA. .. ... e heron.nb
Show that the area, K, of a triangle AABC is given by

K =+/s(s—a)(s —b)(s —¢),

where the semi-perimeter s = (a + b+ ¢)/2, and a, b and ¢ are the lengths of the sides.

AREA OF TRIANGLE CONFIGURATIONS. . .ttt ettt ettt triarea.nb

a4 a
Vi S3 Vo
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For the triangle illustrated in the figure, show that the area, A;, associated with the AAS
(angle-angle-side) configuration whose parameters are a1, as and s7 is given by

52 sin(ag) sin(a; + az)

A= 2sin(aq)

Show that the area, As, associated with the ASA (angle-side-angle) configuration whose pa-
rameters are a1, s3 and as is given by

53 sin(ay) sin(ag)

A =
2 2 sin(a1 + ag)

Show that the area, As, associated with the SAS (side-angle-side) configuration whose para-
meters are s1, as and s3 is given by

s183sin(ag)

Ay = =22

AREA OF TRIANGLE BOUNDED BY LINES. ......ooiuiiiiiiiiiiiiii et triarlns.nb
Show that the area of the triangle bounded by the lines

y=mir+cy, y=moxr+cy and z=0

is given by

a-l la-o)f
2 \/(m1 —ma)

AREAS RELATED TO HYPERBOLAS. ...ttt i hyparea.nb

Referring to Figure 17.7, use calculus to verify that the areas between two parameters 1
and ty of a segment and a sector of a hyperbola are given by

ab .
Asegment = 7(smh(s(t2 — tl)) — S(tg — tl))
abs
Asector = 7 (tg — tl)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s = cosh™'(e), and e is the eccentricity of the hyperbola (assuming the parameterization
Descarta2D uses for a hyperbola).

AREA OF A CONIC ARC (GENERAL) . ...ttt caareal.nb

For the conic arc whose control points are (0,0), (a,b) and (d,0), show that the area
between the conic arc and its chord is given by

_ bdp 2 1-p
A=23 <m’+( 1+p) 10ge<p+r>)
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where 7 = y/—1+ 2p (assuming b > 0 and d > 0).

AREA OF A CONIC ARC (PARABOLA) ...ttt caarea2.nb

Show that the area between a conic arc whose projective discriminant is p = 1 and its

chord is given by

A=l
3

when the control points are (0,0), (a,b) and (d,0).

ONE-THIRD OF A CIRCLE’S AREA ..ttt et circarea.nb

Show that the angle, 6, subtended by a segment of a circle whose area is one-third the area
of the full circle is the root of the equation

E_G—siné

32
Also, show that € is within 1/2 percent of 57/6 radians.

EQUAL AREAS POINT . ... e egarea.nb

Given AABC with vertices A(za,y4), B(zp,ys) and C(zc,yc) show that there are four
positions of a point P, (x,y) such that AAPB, AAPC and ABPC have equal areas. The
coordinates of P, are given by

Po(3(ra +xp+20), 3 (ya + Yy +yc))

P (—xs+xp +2c,—ya+yB +yc)
Py(+x4a —xzp+20,+ya —ys + yo)
Py(+za +2x5 —2xc,+ya+yB — Yo).

Py is the centroid of AABC and AP, P,P3. AABC connects the midpoints of the sides of
AP, P, P;.

AREA OF A TETRAHEDRON’'S BASE ...ttt e tetra.nb

A tetrahedron is a three-dimensional geometric object bounded by four triangular faces.
Given a tetrahedron with vertices O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0, ¢) show that the
areas of the triangular faces are related by the equation

(Aapc)? = (Aaon)? + (Aaoc)* + (Apoc)?

where A,,. is the area of the triangle whose vertices are z, y and z. Note the similarity to
the Pythagorean Theorem for right triangles.
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Chapter 18

Tangent Lines

Let two points, P and @), be taken on any locally smooth convex curve, and let the point
move along the curve nearer and nearer to the point P; then the limiting position of the line
PQ, as @ moves up to and ultimately coincides with P, is called the tangent line to the curve
at point P. The line through P perpendicular to the tangent line is called the normal to the
curve at the point P.

18.1 Lines Tangent to a Circle

Tangent Through a Point On a Circle

Let (x — h)? + (y — k)? = r? be a circle and P;(x1,y1) a point on it as shown in Figure 18.1.
We desire to find the equation of the tangent line at P;. Since the slope of the line joining
the center (h,k) and P; is (y1 — k)/(x1 — h), the slope of the line tangent to the circle will be
the negative reciprocal —(x; — h)/(y1 — k) and the equation of the line tangent to the circle
at point P; becomes (point—slope form)

— ——Ll_h)a:—a:
T k)( 1) (18.1)

Since the point P; is on the circle we also have the equation
(1 — h)* + (y1 — k)? =2 (18.2)
Adding Equation (18.1) to Equation (18.2) results in
(x1 —R)x+ (1 —k)y + (h* + k* —r? —hay —kyy) =0
or, in a factored form that is easier to remember,

(x —h)(x1 —h)+ (y —k)(y1 — k) =2 (18.3)

255
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/

/
P1(x1, Y1)

Y

Figure 18.1: Line tangent to a circle.

If the circle is centered at the origin, 22 + y? = r2, the equation of the tangent line at P; is
T+ Y1y = 2.
If the circle is given in general form,
2?4+ +ar+by+c=0

then the tangent line at P; is

a b
zer+yyr+ 5z +2) + 5y +y) +e=0.

Example. Confirm that the point (3,1 + ‘/75 ) is on the circle
(@=2°+(@y-1)7=1

and find the tangent line at that point.

Solution. The function Is0n2D [point, circle] returns True if the point is on the
circle; otherwise, it returns False. TangentLines2D [point, circle] returns a list
of lines through the point and tangent to the circle.

In[1]: 1sOn2D[pl = Poi nt2D[{5/2, 1 +Sqrt [3] /2}],
cl=Circle2D[{2, 1}, 1]]

out[1] True
In[2]: | ns = Tangent Li nes2D[pl1, c1] // Sinplify

outf2] {Line2D[2, 2+/3, -2 (4++/3)]}
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Q2
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Figure 18.2: Lines through a point, tangent to a circle at the origin.

n[3]: Sketch2D[{pl, cl1, I ns}, PlotRange -> {{0, 4}, {-1, 3}}1;
4
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Tangents Through a Point Outside a Circle

If the point Pj(z1,y1) is outside of the circle (z — h)? + (y — k)? = r? there will be two
tangent lines from P; to the circle. Consider the circle 22 4+ y? = r? and the point D(d,0) in a
convenient position as shown in Figure 18.2. Clearly, the two tangent lines can be determined
directly from the normal form of a line as

xcosh+ysinf —r =0
where
2 _ 12
d
If the point D is rotated by an angle a about the origin, as shown in Figure 18.3, it will have

new coordinates Py(z, yo) and the tangent lines will also be rotated by « resulting in the two
lines

cosf = 2 and sinf = +

xcos(a+0) +ysin(a+60) —r=0
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y ‘ Po(Xo, Yo)

—6

T

“Y

Q

Figure 18.3: Lines through a rotated point, tangent to a circle at the origin.

where
cosq = al and sina = Yo
d d
Using the standard trigonometric formulas for the sine and cosine of the sum of two angles
yields

cos(a¢+6) = cosacosf —sinasinf
ToT Yo EVd? — 12

d d

dd
= % ($07“4:y0\/d2 —7“2)

and

sin(e +60) = cosasinf + cosfsin«

o £Vd? —r? LT

d d dd

1

= = (yor + 20V d? — r2) )

As a final adjustment we translate the geometry so that the center of the circle may be a

general location (h, k) as shown in Figure 18.4. Translating the tangent lines from (0,0) to
(h, k) using g = x1 + h and yo = y1 + k yields

zcos(a+ 0) + ysin(a + 0) — (r + hcos(a+ 0) + ksin(a+ 6)) =0

where cos(a + ) and sin(« + 6) are functions of (z1,y1), (h, k), and r and d is the distance
between (h, k) and (z1,y1). Notice that after the substitutions are performed no trigonometric
functions are present in the formulas.
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q

P1(X1, Y1)

Figure 18.4: Lines through a general point, tangent to any circle.

Tangent Contact Points

Given a circle (z — h)? + (y — k)? = r? and a point P;(x1,y1) outside the circle, as shown in
Figure 18.4, we desire the coordinates of the points of contact between the circle and the two
tangent lines. From the previous section it is clear that when the geometry is in the standard
position the coordinates of the contact points are given by

Q1,2(rcosf,rsinb)
where
2 _ 2
——

If the geometry is rotated and translated to a general position the coordinates of the contact
points are given by

cosf = 2 and sinf = +

Q1,2 (h+rcos(a+6),k+ rsin(a+ 0))

where cos(a + 6) and sin(« + ) have the same formulas as in the previous section.

Example. Find the lines passing through the point (3,—1) and tangent to the

circle (x + 1)% + (y — 1)? = 4. Find the coordinates of the points of tangency and
plot.

Solution. The function TangentLines2D [point, circle] returns a list of lines
through the point and tangent to the circle. TangentPoints2D [point, circle] re-
turns a list of the points of tangency.
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In[4]: pl=Point2D[{3, -1}]; cl=Circle2D[{-1, 1}, 2];
obj s = {Tangent Li nes2D[p1, c1], Tangent Poi nt s2D[pl, c1]}

out[4] {{Line2D[0, -20, -20], Line2D[16, 12, -36]},

{Poi nt2D[{-1, -1}], Poi HIZD[{% isl“}]}}

In[5]: Sketch2D[{pl, c1, objs}];

Tangent Line Segment Length

To find the length of the tangent line segment drawn from a given point, Pj(x1,¥1), to a circle
(x — h)? + (y — k)? = r? without computing the point of tangency, the following method can
be used. Since AOP; P in Figure 18.2 is a right triangle the distance D between P and P is
given by

D2 — 42_ 42
= (w1 =h)>+ (- k) —r*.

Therefore the length of the tangent line segment (squared) is found by substituting the coor-
dinates of the point into the equation of the circle.

Example. Find the length of the tangent line segment from the point (4,3) to
the circle (z +1)%2 + (y +2)? = 4.

Solution. Descarta2D does not have a built-in function to compute the length of a
tangent line segment. However, a few built-in functions can be combined to apply
the technique described in this section. The function Quadratic2D [circle] returns
the quadratic equation of a circle. Polynomial2D[quad, {z, y}] substitutes the
coordinates (x,y) into the quadratic equation.



18.1 Lines Tangent to a Circle 261

/N X

Figure 18.5: Lines tangent to a circle.

n[6]: cl=Circle2D[{-1, -2}, 2];
Sqgrt [Pol ynom al 2D[Quadr ati c2D[c1], {4, 3}1]

out [6] /46

Of course this gives the same result as constructing the tangent points and finding
the distance directly.

1n[7]: Di stance2D[Tangent Poi nt s2D[Poi nt 2D[ {4, 3}], c1]1[[1]11,
Poi nt 2D[ {4, 3}1] // Sinplify

out [7] /46

Tangents Parallel to a Line

The equations of the two lines parallel to the line L = Az + By + C = 0 and tangent to the
circle (z — h)? + (y — k)? = r? as shown in Figure 18.5 are given by

L' = Az + By — (Ah+Bkir\/A2+BQ) —0.

Notice that the constant coeflicient C' of the line is not involved in the equations of the tangent
lines since only the slope is involved in establishing the parallel condition. The formula is
derived by constructing a line L. that passes through the center (h, k) of the circle with slope
m = —A/B. The two tangent lines are then determined by offsetting L. a distance +r. Using
equations the derivation is

L = Az+By+C=0
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L. = Ac+By— (Ah+Bk) =0
ax 4+ by — (ah + bk) =0
L' = ar+by— (ah+bk+7r)=0

Az + By — (Ah + Bk £ rv/ A%2 + B?) = 0.

where

A b
=——— and b= ———
CcVaErrE VA2 + B2

are the normalized coefficients of the line.

Tangents Perpendicular to a Line

To find the equations of the two lines, L”, perpendicular to the line
Az +By+C=0

and tangent to the circle
(x—h)?2+(y—k)?=r?

as shown in Figure 18.5, simply use the line Bz — Ay + C = 0 (which is perpendicular to
the given line) and apply the formula from the previous section. Once again the value of the
constant coefficient C' has no bearing on the equations of the resulting lines.

Example. Find the lines tangent to the circle (x —3)? + (y — 2)? = 1 and parallel
and perpendicular to the line 2z 4+ 3y — 1 = 0 and plot.

Solution. The Descarta2D function TangentLines2D [line, circle, Parallel2D]
returns a list of lines parallel to the line and tangent to the circle. The function
TangentLines2D [line, circle, Perpendicular2D] returns a list of lines perpendic-
ular to the line and tangent to the circle.

n[8]: |1 =Line2D[2, 3, -1]; cl=Circle2D[{3, 2}, 17;
I ns = {Tangent Li nes2D[l 1, c1, Parall el 2D],
Tangent Li nes2D[l 1, c1, Perpendi cul ar2D]}
outrg] {{Line2D[2, 3, -12-+/13 ], Line2D[2, 3, -12++/13 |},
{Line2D[-3, 2, 5-+/13 ], Line2D[-3, 2, 5+13]}}

n[9]: Sketch2D[{l 1, c1, I ns}, PlotRange -> {{-2, 5}, {-2, 5}}1;
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5
4
3
2
1
0
-1
-2
-1012345
| ]
/‘\k\ Descartazp Hint. TangentLines2D [line, circle] returns the same result as
NBY,

TangentLines2D [line, circle, Parallel2D]

because specifying the keyword Parallel2D is optional.

Example. Using the geometric objects from the previous example, find the points
of contact of the four tangent lines.

Solution. The function Point2D [line, circle] will return the point of contact if
the line is tangent to the circle.

In[10]: pts = Map[ (Poi nt 2D[#, Quadratic2D[c1]])&,
Flatten[lns]] 7/ Sinplify

out (10] {Poi nt2D[{3+%, 2+%H, Poi nt2D[{37%, 27%}},
Poi nt2DH3—T%;, 2+A\/%H, Poi nt 2D[ {3 + \/% 27—\/%”}
In[11]: Sketch2D[{l 1, c1, Ins, pts},
Pl ot Range -> {{-2, 5}, {-2, 5}},
Curvelengt h2D -> 207;
5
4
3
2
1
0
-1
-2
-1012345
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Figure 18.6: Lines tangent to two circles.

Tangents to Two Circles

Suppose C7 and Cs are two circles and we wish to determine the equations of the lines tangent
to both circles. We proceed by finding the equations of tangent lines when the circles are in
a special position and then we transform the result to a general position.

Let C; be a circle, with radius 71, centered at the origin with equation 2 + y? = r?, and
let Cs, with radius r2, be positioned so that its center is on the +z-axis a distance d from the
origin with equation (z — d)? +y? = r3. Since C; is centered at the origin any line tangent to
C1 can be written in the form L = Az + By + 1 = 0 because no line tangent to C7 can pass
through the origin.

Let d; and ds be the distances from the center of C; and Cs to L, respectively. If L is
tangent to the circles then d; and ds must equal the radii of the circles, yielding

o Ahyt Bk +1
o VA2 + B2
0 (Ahy + Bk, +1)?
T =
n A2 + B2
r2(A*+ B?) = (Ah,+ Bk, +1)

where hy = 0, k1 = 0, hy = d and k3 = 0. Simplifying, we have the two equations

(A2 4+ B%) = 1
r3(A*+ B?) = (1+ Ad)>

Solving these two equations for A and B produces four pairs of solutions given by

A 71+ S4T9
B = sp\/d?— (1 +5472)2
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where the sign constants s4 ={ —1,—1,1,1} and sp ={1,—1,1, —1} take on the values +1
in pairs as shown in the lists. The first pair of solutions gives the external, or direct, tangents
and the second pair gives the internal, or transverse, tangents.

We now use the special solution given above to find the tangent lines when the circles are
in a general position. Let C; = (z—hy)? + (y—k1)? =72 and Cy = (z — h2)? + (y — k2)? = 13
be the equations of the two circles. To attain a general positioning we first rotate the lines
given in the special solution by an angle 8 where sinf = (hy — hs)/d and cos8 = (k1 — k2)/d.
After the rotation we translate the lines from (0,0) to (h1, k1). Applying these transformations
yields the four lines

(AH — BK)x + (BH + AK)y + d*ry — hi(AH — BK) — ky(BH + AK) =0

where
H:hl—hg and K:kl—kg

and A and B take the values given as before.

Example. Find the four lines tangent to the circles (z — 3)? + 3% = 4 and

(x + 3)%2 + y?> = 4. Sketch the external tangents and the internal tangents in
separate plots.

Solution. The Descarta2D function TangentLines2D [circle, circle] returns a list
of lines tangent to two circles. The first two lines in the list are the external
tangents (if returned); the third and fourth lines in the list (if returned) are the
internal tangents.

n[12]: {11, 12, 13, 14} =

Tangent Li nes2D[cl = Ci rcl e2D[ {3, 0}, 2],
c2=Circle2D[{-3, 0}, 2]]

out[12] {Line2D[0, -36, 72], Line2D[0, 36, 72], Line2D[24, -12+/5, 0],
Line2D[24, 12+/5, 0]}

In[13]: Sketch2D[{cl, c2, |11, |2}, PlotRange -> {{-6, 6}, {-3, 3}}1;
Sket ch2D[{c1, c2, |3, |4}, PlotRange -> {{-6, 6}, {-3, 3}}1;
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18.2 Lines Tangent to Conics

Tangent Through Point on Conic

Suppose we have the general equation of a conic curve given by
az? +bxy 4+ ey’ +de +ey+ f = 0.

The equation of the chord joining any two points, P;(x1,y1) and Py(z2,y2), on the curve may
be written

a(z — z1)(x — 22) + b(z — 21)(y — y2) + c(y —y1)(y — v2)
=ax?+bxy+cy’ +de+ey+ f

as the equation is clearly first-degree in  and y (the terms above first-degree cancel out), and
it is satisfied by the two points P; and P,. Putting 1 = x5 and y; = y2, we get the equation
of the tangent line

a(e —a1)” + b(x — 21)(y — 1) + cly — 11)* = az® + bay + ey’ + dz + ey + f;
or, expanding,
20212 + b(x1y + y12) + 2ey1y + dr + ey + f = axt + briy + ¢y’

Adding dxi + ey; + f1 to both sides will cause the right-hand side to vanish, because P;
satisfies the equation of the curve. Thus the equation of the tangent becomes

e

2(y+y1)+f = 0. (18.4)

b d
a1 + 5 (21y + y12) + ey + S (2 +21) +
This equation is most easily remembered if we compare it with the equation of the curve
and notice that it is derived by replacing z2? and y? with z12 and y1y, zy with %(mly + )
and z and y with 1(2+21) and 3(y 4+ y1). Whether or not P;(z1,y1) is on the curve, the line
represented by Equation (18.4) is called the polar of P; with respect to the curve, and P is
the pole of the line with respect to the curve.
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Example. Find the line tangent to the parabola y? = 4z at the point (4,4).

Solution. The Descarta2D function Line2D [point, conic] returns the polar (line)
of a pole (point) with respect to a conic. If the point is on the conic, then the line
will be tangent to the conic.

In[14]: | 1 = Li ne2D[pl = Poi nt 2D[ {4, 4}1,
crv = Parabol a2D[ {0, 0}, 1, 0]]

out[14] Line2D[-4, 8, -16]

In[15]: Sketch2D[{pl, crv, |1},
Cur veLengt h2D -> 15,
Pl ot Range -> {{-1, 7}, {-1, 5}}1;

5
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Pole Point and Point of Tangency
Given a line L = px + qy + r = 0 and a conic
Q=Az> + Bay+Cy’ + Dz + Ey+F =0

we wish to determine the coordinates of the pole point, Pj(z1,y1), of L with respect to
Q. The equation of the polar (line) of the pole (point) P; is derived in general form from
Equation (18.4) and is given by

(2Az1 + By1 + D)z + (Bz1 +2Cy1 + E)y + (Dz1 + Eyy +2F) = 0.

If this line and line L are the same line, then the coefficients of the polar line must be equal to
some multiple of the coefficients of L yielding the following system of three linear equations
in three unknowns

kp = 2Axz1+ By +D

kq Bxi +2Cy + F
k’l" = D.l?l —|— Eyl —|— 2F



268 Chapter 18 Tangent Lines

Solving theses equations for (z1,y;) and the constant k (k is ignored) gives

Q1 Q2

r1=— and y; = —

Q12 Q12

where

Q1 = p(CF — E*) +¢(DE —2BF) +r(BE —2CD)
Q> = p(DE —2BF)+ q(4AF — D?) +r(BD — 2AE)
Q12 = p(BE—2CD)+ q(BD —2AE) + r(4AC — B?).
If the line L is tangent to @, then (z1,y1) is the point of tangency; otherwise, (z1,y1) is the

pole of the polar L with respect to Q). If Q12 is zero, the coordinates of the pole are invalid.
This condition occurs when the polar L passes through the center of the conic.

Example. Show that the polar (line) found in the previous example corresponds
to the pole (point) of tangency.

Solution. The Descarta2D function Point2D [line, conic] returns the pole (point)
of a polar (line) with respect to a conic.

In[16]: Point2D[l 1, crv]
out[16] Point2D[{4, 4}]

Line Tangent to a Conic Condition

To find the relationship between the coefficients of a line pz + qy + r = 0 and a general conic
Ax? + Bay + Cy? + Dz + Ey + F = 0 such that the line is tangent to the conic we note that
the two intersection points between the line and the conic must be coincident. This condition
is equivalent to

(ACF — E?)p? + (4AF — D?)@ + (4AC — B)r*+
2(BD — 2AE)qr 4+ 2(BE — 2CD)pr + 2(DE — 2BF)pq = 0.

The exploration 1ntancon.nb derives this equation.

Example. Find the value of ¢ such that the line 2z + 5y 4+ ¢ = 0 is tangent to the
conic represented by 2z + zy — 4y? — 2z — 3y + 1 = 0 and plot.
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Solution. The Descarta2D function TangentEquation2D [line, quad] returns an
equation establishing the condition that a line be tangent to the conic represented
by the quadratic. Solve this equation for the unknown coefficient c.

n[17]: Cear [C];
11 =Line2D[2, 5, c];

gl = Quadratic2D[2, 1, -4, -2, -3, 1];
egl = Tangent Equat i on2D[l 1, g1]

out[17] 80+24¢c-33¢c2==0

In[18]: ans = Sol ve[eql, c]
out (18] {{c > g5 (3-VITA)}, {c» 4e (3+IT4)})

In[19]: Sketch2D[{Map[(l 1 /. #)& ans], Loci 2D[ql]},
Pl ot Range -> {{-3, 3}, {-2, 2}}1;

>
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Polar of a Conic

As previously shown, if the point P;(z1,y1) is on the conic curve
Az? + Bay+Cy> + Dz + Ey+F =0
the equation of the tangent line at P; is
2Azx1 + B(ayr + 21y) + 2Cyy1 + D(z + 1) + E(y +y1) + 2F = 0.

This equation expresses a relation between the coordinates (z,y) of any point on the tangent
line, and those of the point of contact (z1,y1). But the equation, being symmetrical with
respect to the coordinates (x,y) and (z1,y1), can be interpreted to represent the line passing
through the points of contact from (x1,y;) when (x1,y1) is not on the curve. Thus the polar,
which has the same equation as the tangent line, passes through the points of tangency (when
they are real) when the point is not on the curve.

Without proof we list the following theorems concerning poles and polars that refer to
Figure 18.7.
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Figure 18.7: Poles and polars.

e If the polar L; of pole P; passes through pole P,, then the polar Ly of P, passes through
Py.

e If the polars of P; and P, intersect at point P, then P is the pole of the line P Ps.

e The polar of an exterior point P; is the line joining the points of contact of the tangents
drawn from P;.

e The polar of an interior point P is the locus of the point of intersection of the tangents
at the extremities of every chord through P.

e The polar of a focus is the corresponding directrix.

e There is no (finite) polar of the center of a conic.

Example. Show the inverse functional relationship between the polar and the pole
(3, —1) with respect to the quadratic equation 222 + 3zy — y? + 4r — 2y + 1 = 0.

Solution. The Descarta2D function Line2D [point, quad] returns the polar line
of the point with respect to the quadratic. The function Point2D [line, quad]
returns the pole (point) of the line with respect to the quadratic.

In[20]: |1 =Line2D[Poi nt 2D[{3, -1}1,
gl = Quadratic2D[2, 3, -1, 4, -2, 1]]

out [20] Line2D[13, 9, 16]
In[21]: pl="Point2D[l 1, ql]

out [21] Point2D[{3, -1}]
| |
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Tangents Parallel to a Line
Once again, consider the conic curve whose equation is
Q= A2’ + Bay+Cy* + Dz + Ey+F =0,
and the equation of the tangent line at the point P;(z1,y1) on the conic whose equation is
2Axx1 + B(ayr + ©1y) +2Cyy1 + D(z+ 1) + E(y+y1) +2F =0
or, in general form,
(2Az1 + By1 + D)z + (Bz1 +2Cy1 + E)y + (Dz1 + Eyy +2F) = 0.

To find the lines tangent to Q and parallel to a line Ly = Ajx + B1y + C1 = 0 the following
technique can be used. Let Ly = Ajx + By + Co = 0 be the desired tangent line (the linear
coefficients A; and B; of Ly are set equal to the corresponding coefficients of L; because the
lines are parallel). If Ly is to be tangent to @, then the pole point P of Ly with respect to
@ must satisfy the equation for (). The coordinates of P are functions in the variable Cj,
therefore, solving this equation for Co gives the coefficients of the desired tangent line(s) L.
The Descarta2D function TangentLines2D [line, quad] implements this technique and can be
used to derive the specialized formulas for lines tangent to conics in standard position as
presented later in this chapter.

Lines Tangent to Two Conics
The equation relating the coefficients of a quadratic equation
Az? + Bry+Cy* + Dz +Ey+F =0
to the coefficients of a line px + qy 4+ r = 0 tangent to the quadratic given previously is
(ACF — E?)p? + (4AF — D?)@® + (4AC — B2)r*+
2(BD — 2AE)qr + 2(BE — 2CD)pr + 2(DE — 2BF)pq = 0.

If we select a suitable translation, we can insure that the tangent line does not pass through
the origin (i.e. r # 0) and the equation of the tangent line can be written in the form

r
]—Dx—l—g—l—— =pr+qdy+1=0.
T ror
Now, given two quadratic equations
Q1 = A2 +Biry+Ciy* + Dz + Eyy+ Fy =0 and
QQ = A2$2 + ngy + C2y2 + Dox + E2y +F,=0
and using Equation (18.2) we can find the coefficients p’ and ¢’ of the lines tangent to the
quadratic by solving two quadratic equations in two unknowns, resulting in equations for four
tangent lines. The formulas can be derived in symbolic form, but the results are too unwieldy

to be of practical use. Descarta2D, however, can be used to construct such tangents when the
problem involves numerical coefficients.
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Example. Find the four lines tangent to the ellipses
22 g2 22 g2 .,
g — L

g il
16+4 and 4+

Plot the ellipses and the tangent lines.

Solution. The Descarta2D function TangentLines2D [curve, curve] returns a list
of lines tangent to the two curves. The following result was computed using Mathe-
matica Version 3.0.1. Version 4.0 produces lines in the same positions with slightly

different coefficients.

In[22]: el =El|ipse2D[{0, 0}, 4, 2, 0];
e2 = El li pse2D[{0, 0}, 3, 2, Pi /2];
I ns = Tangent Li nes2D[el, e2] // N

out[22] {Line2D[-0.542326, -0.840168, -2.74398],
Li ne2D[-0. 542326, 0.840168, -2.74398],

Li ne2D[0. 542326, -0.840168, -2.74398], Line2D[0.542326, 0.840168, -2.74398]}

n[23]: Sketch2D[{el, e2, I ns}];

S4-20 2 4

Line Segments Tangent to Two Conics

Given a line tangent to a conic, the tangent point is the pole point of the line with respect to
the conic. Using this relationship the line segments connecting the points of tangency can be

determined as illustrated in the next example.

Example. Using the geometric objects from the previous example, find the line

segments connecting the contact points of the tangent lines.
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Solution. Use the function TangentSegments2D [curve, curvel to construct a list
of line segments connecting the contact points of the lines tangent to the two curves.
The following result was computed using Mathematica Version 3.0.1. Version 4.0
produces the same line segments, but in a different order.

In[24]: | nSegs = Tangent Segnent s2D[el, e2] // N

out [24] {Segment 2D[ {-3. 16228, -1.22474}, (-0.790569, -2.75568)],
Segnent 2D[ (3. 16228, 1.22474}, {-0.790569, 2. 75568} ],
Segnent 2D[ (3. 16228, -1.22474}, {0.790569, -2. 75568},
Segnent 2D[ (3. 16228, 1.22474}, (0.790569, 2. 75568} ]}

n[25]: Sketch2D[{el, e2, I nSegs}];

1
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1
N
o
N
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18.3 Lines Tangent to Standard Conics

Lines that are tangent to conics in standard position have particularly simple forms. This sec-
tion summarizes the equations for these tangent lines for the parabola, ellipse and hyperbola.

Tangents to a Parabola

A line that is parallel to the axis of a parabola intersects the parabola in only one (finite)
point; all other lines will cut the parabola in two points real and distinct, real and coincident,
or complex. Any line which meets a parabola in two coincident points is a tangent line.
Table 18.1 provides formulas for the line tangent to a parabola in standard form at a point
Py (x1,y1). Table 18.2 provides the formulas for tangents to a parabola in standard form with
a given slope m.

Example. Find the lines through the point (—1,—1) that are tangent to the
parabola (y + 1)? = 2(z — 1) and plot.
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Table 18.1: Tangents to a parabola at a point.

‘ PARABOLA EQUATION ‘ TANGENT AT Pi(x1,91) ‘
y?=4fx yy1 = 2f(x + x1)
a? =4fy zxy =2f(y+y1)

(y—k?=4f(@—h) | (y—k)(y —k) =2f(z + 21— 2h)
(x—h)?=4f(y—k) | (@—h)(z1—h)=2f(y +y1 — 2k)

Solution. The function TangentLines2D [point, curve] returns a list of the lines
through the point and tangent to the curve. The function Point2D [line, curvel
will return the point of tangency for each tangent line.

In[26]: Cear [X, YI;
pl = Poi nt 2D[{-1, -1}];
crvl =First [Loci 2D[Quadrati c2D[(y +1)"2==2 (x-1), {X, y}111;
I ns = Tangent Li nes2D[pl, crvl]

out[26] {Line2D[2, 4, 6], Line2D[-2, 4, 2]}

In[27]: Sketch2D[{pl, crvl, |ns, Map[Poi nt 2D[#, crv1]& |ns]}];

/
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Tangents to an Ellipse

A line that intersects an ellipse in two coincident points is a tangent line. As in the case
of the circle, but unlike that of the parabola, there will be two tangents with a given slope.
Table 18.3 provides formulas for the line tangent to an ellipse in standard form at a point
Py(x1,y1). In the formulas a is the length of the semi-major axis of the ellipse and b is the
length of the semi-minor axis. Table 18.4 provides the formulas for tangents to an ellipse in
standard form with a given slope m.
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Table 18.2: Tangents to a parabola with slope m.

‘ PARABOLA EQUATION ‘ TANGENT WITH SLOPE m ‘

y:=4fx y=mz+ f/m

2 =4fy y=mz — fm?
(y—k?=4f(x—h) | y—k=m(z—h)+ f/m
(x—h?=4f(y—k) | y—k=m(z—h)+ fm?

Example. Find the lines tangent to the ellipse
(z—1)
9

rotated 45° counter-clockwise about its center point and passing through the point
(4,—1) and plot.

+y?=1

Solution. The function TangentLines2D [point, curve] returns a list of lines
through the point tangent to the curve. Point2D [line, curve] will return the
tangent point of the line with respect to the curve.

In[28]: pl =Point2D[{4, -1}];
el =Ellipse2D[{1, 0}, 3, 1, 45Degree] // N,
I ns = Tangent Li nes2D[p1, el] // N

out[28] {Line2D[1.19166, -4.48728, -9.25392], Li ne2D[-2. 94842, -0. 782995, 11.0107]}

In[29]: Sketch2D[{pl, el, I ns, Map[Poi nt 2D[#, el]& Ins]}];
6

4
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Table 18.3: Tangents to an ellipse at a point.

‘ ELLIPSE EQUATION ‘ TANGENT AT Pi(x1,91) ‘
P Tz | Y
2 e~ @ T !
(af—h) (y — k)? (—h)(@—h) (—Fk)y—k)
2 + TR 1 2 + = =1
2
!/ Tr1 | Yy1
! B e !
(@=—m? -k _ | @=h@-h y-ky-—k)
b2 a® b2 + a? B

Table 18.4: Tangents to an ellipse with slope m.

‘ ELLIPSE EQUATION ‘ TANGENT WITH SLOPE m ‘
2 2
%4_‘7;_2:1 y = mx +Va?m?2 + b2
_}2 ’—k2
@M OBy k= ) £ VT R
2 2
b—2+—:1 y = mz £ vVb>m? 4 a?
-1 —k)?
(beL) +(y 2) =1|y—k=m(xz—h)xVb2m2 +a?
a
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Tangents to a Hyperbola

A line that intersects a hyperbola in two coincident points is a tangent line. For the hyperbola
there will be two tangent lines (real and distinct, coincident with an asymptote, or complex)
with a given slope. Table 18.5 provides formulas for the line tangent to a hyperbola in standard
form at a point P;(z1,y1). In the formulas a is the length of the semi-transverse axis of the
hyperbola and b is the length of the semi-conjugate axis. Table 18.6 provides the formulas for
tangents to a hyperbola in standard form with a given slope m. Note that for real tangents
with slope m the quantity under the radical must be positive. If, for a given slope, the tangents
are real for a particular hyperbola, then the tangents are complex for the conjugate hyperbola.

Example. Find the lines tangent to the hyperbola
(-1 (y+1)* _

- =1
9 4

rotated 30° counter-clockwise about its center point passing through the point
(0,0) and plot.

Solution. The function TangentLines2D [point, curve] returns a list of lines
through the point tangent to the curve. Point2D [line, curve] will return the
tangent point of the line with respect to the curve.

In[30]: pl =Point2D[{0, 0}1;
hl = Hyper bol a2D[ {1, -1}, 3, 2, 30 Degree] // N,
I ns = Tangent Li nes2D[p1, h1] // N

out [30] {Li ne2D[5.38369, -1.8453, 0], Line2D[1.04481, 8.2738, 0])

In[31]: Sketch2D[{pl, hl, I ns, Map[Poi nt 2D[#, h1]& | ns]},
CurvelLengt h2D -> 157;

~
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Table 18.5: Tangents to a hyperbola at a point.

HYPERBOLA EQUATION ‘

TANGENT AT P (z1,y1) ‘

YR ) Ty
a2 b a2
(@=—m? =k _ | @G=N@-h G-kHy-k)_,
a? b2 a? b2
P TT | Yy
2 ! 2 T !
(x—h)?*  (y—Fk)? (z=h)(x1—h)  (y—k)(y—k)
I + b2 =1~ a? + b2 =1

Table 18.6: Tangents to a hyperbola with slope m.

‘ HYPERBOLA EQUATION ‘

TANGENT WITH SLOPE m ‘

2

2

x Y
F_b_2:1 y = mx £ vVa2m?2 — b2

— h)2 v—k)?

(xa;) _(be) =1 | y—k=m(z—h)£VaZm? — 62

2 42
ﬁ—i_b_?_l y = mz + Vb2 — a?m?

— )2 v —k)?

a




18.3 Lines Tangent to Standard Conics 279

Parallel and Perpendicular Tangents

Using the equations from the tables in the previous sections in the columns labeled TANGENT
WITH SLOPE m, we can easily construct lines parallel or perpendicular to a given line and
tangent to a given second-degree curve.

Example. Find the lines parallel and perpendicular to the line x 4+ 2y — 2 = 0
and tangent to the ellipse

2  9\2
@+, =2 _,
4 16

and plot.

Solution. The Descarta2D function TangentLines2D [line, curve, Parallel2D]
constructs a list of lines parallel to the given line and tangent to the curve; the
function TangentLines2D [line, curve, Perpendicular2D] returns a list of lines
perpendicular to the given line and tangent to the curve.

n[32]: |1 =Line2D[1, 2, -2];
el =Ellipse2D[{-1, 2}, 4, 2, Pi /2];
I ns = {Tangent Li nes2D[l 1, el, Parall el 2D1,
Tangent Li nes2D[l 1, el, Perpendi cul ar2D] }

out[32] {{Line2D[1, 2, -3-2+/17 ], Line2D[1, 2, -3+2+/17 ]},
{Line2D[-2, 1, 4 (-1-+/2)], Line2D[-2, 1, 4 (-1++2)]}}

In[33]: Sketch2D[{l 1, el, I ns}, PlotRange -> {{-8, 6}, {-5, 7}}1;

A NODNDMO®

W
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18.4 Explorations

LINE TANGENT TO A CIRCLE. ..ottt e Intancir.nb

Show that the line y = m(x — a) + a/1 + m2 is tangent to the circle 22 + 32 = 2ax for all
values of m.

LINE NORMAL TO A QUADRATIC. ..« ettt ettt e e e e e e e aeae lnquad.nb

Show that the normal line passing through the point (x1,y1) on the quadratic whose equa-
tion is Az? + Bxy + Cy? + Dz + Ey + F = 0 is given by

kix — koy — b1z + koy1 =0

where
ki1 =Br1 4+ 2Cy; + F and ke =2Ax1 + Byy + D.

EYEBALL THEOREM. . ...ttt ettt e e e eyeball.nb

The tangents to each of two circles from the center of the other are drawn as shown in the
figure. Prove that the chords illustrated are equal in length.

PERPENDICULAR TANGENTS TO A PARABOLA. ..., pbtnlns.nb

Show that if L; and Lo are two lines tangent to a parabola that intersect on the directrix
of the parabola, then L, and Ly are perpendicular to each other.

TANGENT TO A PARABOLA WITH A GIVEN SLOPE. ..........ooitiiiiinannnnn .. pbslp.nb
Show that the line tangent to the parabola y? = 4px with slope m is y = max + p/m.
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TANGENT TO AN ELLIPSE WITH GIVEN SLOPE. ...ttt ellslp.nb

Show that the lines tangent to the ellipse 22/a? + y?/b*> = 1 with slope m are given by
y = mx £+ vVa2m?2 + b2.

TANGENT TO A HYPERBOLA WITH GIVEN SLOPE. ... t\utiteitainaainaennnnn. hypslp.nb

Show that the lines tangent to the hyperbola 22/a? — y?/b* = 1 with slope m are given
by y = mz & Va?m?2 — b2

TANGENCY POINT ON CIRCLE. ...ttt e e tancirpt.nb

Show that if a line Az + By + C = 0 is tangent to a circle (z — h)? + (y — k)2 = r? then
the coordinates of the point of tangency are

- Ar? o — Br?
Ah+ Bk +C’ Ah+Bk+C /)"

MONGE’S THEOREM. . . ..ottt ettt et et e e e e e e monge .nb

Given three circles and the external tangent lines of the circles taken in pairs, show that
the three intersection points of the three tangent pairs lie on a straight line.

LINE TANGENT TO A CONIC. « ittt ittt e et e Intancon.nb

Show that the relationship between the coefficients of a line px 4 qy + r = 0 tangent to the
conic Az? + Bxy + Cy? + Dx + Ey + F = 0 is given by

(ACF — E2)p? + (4AF — D?)¢? + (4AC — B2)r?+
2(BD —2AFE)qr+ 2(BE —2CD)pr + 2(DE — 2BF)pq = 0.

NORMALS AND MINIMUM DISTANCE. ... ..ottt normal.nb

Given a point Py(zo,yo) and a quadratic @, find point(s) P(z,y) on @ such that the line
PP, is perpendicular to @ at P. Such a line is called a normal to the quadratic. Use the
points P to find the minimum distance from Py to Q. Assume that Py and @ are defined
numerically.
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Tangent Circles

In our study of circles we noted that the equation of a circle
(@ =)+ (y — k) =1

has three parameters, h, k and r, that may be varied independently. A circle, therefore, is
said to have three degrees of freedom (DOF). These degrees of freedom allow us to construct
a circle so that it meets three conditions. Some common conditions and the corresponding
equations that establish the condition are shown in Table 19.1.

By specifying a combination of conditions so that the degrees of freedom add up to three,
we can then solve three simultaneous equations in three unknowns (h, k and r) and determine
the (possibly empty) set of circles that satisfy the conditions. For economy of expression in
the following sections, we will use the convention that a point which is on a circle (i.e. satisfies
the equation of the circle) will be said to be tangent to the circle.

19.1 Tangent Object, Center Point

To construct a circle tangent to an object (a point, line or circle) with a given center point,
we select equations as follows from Table 19.1. To establish the condition that a circle be
tangent to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7];
to establish the condition that a circle have a given center point we select the two equations
from case [1]. Solving these three equations in three unknowns produces the values for the
parameters h, k and 7 of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle 22 + y? = 4 with center
point (—1,0) and plot.

Solution. The function TangentCircles2D [{circle}, point] returns a list of cir-
cles tangent to a circle with a given center point.

283
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Table 19.1: Circle tangency equations.

‘ CASE ‘ CONDITION EQUATION(S) ‘ DOF ‘
(1] Fixed radius r=ry 1
71
(2] Fixed center point h=z1 and k=19 2
(z1,51)
(3] Center on line Aih+Bik+Ci =0 1
Az + Biy+C1 =0
[4] Center on circle (h—h1)?+ (k= k)2 =13 1
(z—h)?+(y—k1)? =13
[5] Through a point (T1 =)+ (1 —k)> =12 1
(z1,91)
6] Tangent to a line (A? + B?)r? = 1
A1z + Biy+Cy =0 (A1h + Bik + C1)?
[7] Tangent to a circle (D — (ry —1)?)x 1
(x —h1)?+ (y — k1)? =i (D= (ri+7)%) =0,
where
D = (hy — h)? + (ky — k)?
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In[1]: cirs = Tangent Circl es2D[{cl = Circl e2D[{0, O}, 2]},
pl=Poi nt2D[{-1, 0}]1]

out[1] {Circle2D[{-1, 0}, 1], Grcle2D[{-1, O}, 3]}
In[2]: Sketch2D[{pl, cl, cirs}];
3
2

-4 -3 -2 -1 0 1

N

/‘\k\ DescartazD Hint. TangentCircles2D[{pt|in| cir}, point] is the general func-
M tion that returns a list of circles tangent to an object (a point, line or circle) with
a given center point. The vertical bar syntax separating the point, line and circle
arguments indicates that a point, line or circle may be specified.

19.2 Tangent Object, Center on Object, Radius

To construct a circle tangent to an object (a point, line or circle) with center point on an
object (a line or circle), with a given radius, we select equations as follows from Table 19.1.
To establish the condition that a circle be tangent to a point, line or circle, we select the
appropriate equation from cases [5], [6] or [7]; to establish the condition that the center of the
circle be on a given line or circle we select the appropriate equation from cases [3] or [4]; to
establish the condition that the circle have a given radius we select the equation from case [1].
Solving these three equations in three unknowns produces the values for the parameters h, k
and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle #2 + y? = 4, center on the
line x — 2y + 1 = 0 and with radius 1 and plot.

Solution. The function TangentCircles2D[{circle}, line, r1 returns a list of
circles tangent to a given circle, with center on a line, with a given radius.
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n[3]: cirs = TangentCircl es2D[{cl = Circl e2D[{0, 0}, 2]},
I1=_Line2D[1, -2, 1], 1]

out(3] {Gircle2D[{-1, 0}, 1],

3 4

2. &) 1], Greled[{£ (-1-4IT), & (1-viI)}, 1],

CircIeZDH% (-1+4+/11), % (1+v11)}, 1]}

Gircle2D[{

In[4]: Sketch2D[{l 1, c1, cirs}];

0
o /
2

-4 -2 0 2 4

%‘ S\ Descartazp Hint. TangentCircles2D[{pt|In| cir}, In| cir, 1] is the general-
N ized function that returns a list of circles tangent to an object (a point, line or
circle) with center on a line or circle, with a given radius, r.

19.3 Two Tangent Objects, Center on Object

To construct a circle tangent to two objects (points, lines or circles) with center point on
an object (a line or circle), we select equations as follows from Table 19.1. To establish the
condition that a circle be tangent to a point, line or circle, we select the appropriate equation
from cases [5], [6] or [7]—this produces two equations (one for each tangent object); to establish
the condition that the center be on a line or circle we select the appropriate equation from
cases [3] or [4]. Solving these three equations in three unknowns produces the values for the
parameters h, k and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles
(x+2)2+9y*=1 and (z—2)*+¢y>=1,

with center point on the line z — 2y + 1 = 0 and plot.

Solution. The function TangentCircles2D [{cir, cir}, line] returns a list of cir-
cles tangent to two circles, with center point on a given line.
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In[5]: cirs = TangentCircl es2D[{cl =Circl e2D[{-2, 0}, 1],
c2=Circle2D[{2, 0}, 11},
I'1=Line2D[1, -2, 1]]
out(5] {Circle2D[{-1, 0}, 2], Gircl ezD[{o, %}, % (72“/17)},
12 26 H

Grele2p[{0, 5}, 5 (2+VI7)], Grele2D]{ 1o 15}, 2o

n[6]: Sketch2D[{l 1, c1, c2, cirs}];

I'I\)II—‘OI—‘I\)(JO
%g

>

-4 -2 0 2 4

/‘\k\ Descartazp Hint. TangentCircles2D[{pt|In| cir, pt|in| cir}, In|cirl is the
M general function that returns a list of circles tangent to two objects (points, lines
or circles) with center point on a line or circle.

19.4 Two Tangent Objects, Radius

To construct a circle tangent to two objects (points, lines or circles) with a given radius, we
select equations as follows from Table 19.1. To establish the condition that a circle be tangent
to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7]—this
produces two equations (one for each tangent object); to establish the condition that the
circle have a given radius we select the equation from case [1]. Solving these three equations
in three unknowns produces the values for the parameters h, k and r of the circles which
satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles
(x+2)%+9y?>=9 and (z—2)2+4*> =09,

with a radius of 1 and plot.

Solution. The function TangentCircles2D [{circle, circle}, r] returns a list of
circles tangent to two circles, with a given radius.
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In[7]: cirs =Tangent Circles2D[{cl =G rcl e2D[{-2, 0}, 3],
c2=Circle2D[{2, 0}, 31}, 1]

out(7] {Gircl eZD[{fg, 7A2——} 1], CircIeZD[{fg, f;_S_} 1],

Gircle2D[{0, 0}, 1], Gircle2D[{0, -2+/3}, 1], Grcle2D[{0, 23}, 1],
S YIS 1) arerean] (3, Y15 1))

CircIeZD[{?, 5

n[8]: Sketch2D[{cl, c2, cirs}];

4

%‘ S\ Descartazp Hint. TangentCircles2D[{pt|in| cir, pt|in| cir}, ] is the gen-
AN X eral function that returns a list of circles tangent to two objects (points, lines or
circles) with a given radius, r.

19.5 Three Tangent Objects

To construct a circle tangent to three objects (points, lines or circles), we select equations
as follows from Table 19.1. To establish the condition that a circle be tangent to a point,
line or circle, we select the appropriate equation from cases [5], [6] or [7]—this produces three
equations (one for each tangent object). Solving these three equations in three unknowns
produces the values for the parameters h, k and r of the circles which satisfy the stated

conditions.

Example. Construct and plot the circle(s) tangent to the three lines t —y+1 = 0,
z+y—1=0andy+1=0.

Solution. Use the function TangentCircles2D[{ln, In, In}] that returns a list
of circles tangent to the three lines.
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In[9]: cirs = Tangent G rcl es2D[{
I1=Line2D[1, -1, 1],
|2 =Line2D[1, 1, -1],
13 =Line2D[0, 1, 1]}] //Sinplify

out[9] {Gircle2D[{0, -3-2+/2}, 2+2+/2], Circle2D[{0, -3+2+/2}, -2+2+/2],
Grcle2D[{-2+/2, 1}, 2], Grcle2D[{2+/2, 1}, 2]}

In[10]: Sketch2D[{l 1, 12, 13, cirs}, PlotRange -> {{-5, 5}, {-5, 5}}1;

4
2
DAL
-2
-4

-4 -2 0 2 4

X~ DescartazD Hint. The function TangentCircles2D[{obj, obj2, 0bj3}] is the
\a 9

general function that returns a list of circles tangent to three objects (points,
lines or circles).

19.6 Explorations

ARCHIMEDES’ CIRCLES. . .« « et ottt et e e e e e archimed.nb

CI/
3

i
r2

“Y
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Draw the vertical tangent line at the intersection point of the two smaller tangent circles, ¢;
and cg, in an arbelos (shoemaker’s knife, see figure). Prove that the two circles C’ and C”
tangent to this line, the large semicircle, c¢s and ¢; and ¢y are congruent (have equal radii).
These circles are known as Archimedes’ Circles.

CIRCLE TANGENT TO CIRCLE, GIVEN CENTER .« .. tuttttnttnenenneneennenn. tancirl.nb
Show that the radii of the two circles centered at (hi, k1) and tangent to the circle

(& = h2)® + (y — k2)* =13

are given by
r=|d+£re]

where d = /(h1 — h2)2 + (k1 — k2)2. This formula is a special case of the Descarta2D function
TangentCircles2D [{pt| In| cir}, point].

CIRCLE TANGENT TO CIRCLE, CENTER ON CIRCLE, RADIUS. ................. tancir2.nb

Show that the centers (h, k) of the two circles passing through the point (1, y1) with center
on the circle 22 + y? = 1 and radius r = 1 are given by

— J2 — ]2
(h,k):@iw y_qgiwxd)

2d; "2 2d;

where d; = \/2?7 + y?. This is a special case of the Descarta2D function
TangentCircles2D[{pt| In| cir}, In| cir, 7]

that constructs a list of circles.

CIRCLE TANGENT TO TWO LINES, RADIUS. ... .ottt tancir3.nb
Show that the centers (h, k) of the four circles tangent to the perpendicular lines

Ajx+ Biy=0 and — Bixz+ A1y=20
with radius r = 1 are given by

(h,k) = (A1 —B1, 41+ By),
A1+ By, — A1 + By),
A1 — Bl,Al — Bl) and

A+ By, —Aq — Bl).

(
(
(
(

Assume that the two lines are normalized, A2 + B? = 1. This construction is a special case of
the Descarta2D function TangentCircles2D[{obji, obja}, 1] when the two objects are lines.
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CIRCLE THROUGH TWO POINTS, CENTER ON CIRCLE. .. ..vtutitinennennnn.. tancir4.nb

Show that the radii of the two circles passing through the points (0,a) and (0, —a) with
centers on the circle 22 + y? = rZ are both given by

r=1/a?+r3.

This is a special case of TangentCircles2D[{obji, obja}, In| cir]l where the two objects are
points.

CIRCLE TANGENT TO THREE LINES.........iuiitiii i tancirb.nb
Show that the radii of the four circles tangent to the lines

r=0,y=0 and Az + By+C =0,

are given by
=

r_‘liAiB

taking all four combinations of signs and assuming the lines are normalized. This is a special
case of the function TangentCircles2D [{obji, obja, 0bjs}] where all three of the objects are
lines.

CIRCLES TANGENT TO AN ISOSCELES TRIANGLE. . .....ovuuutiiiiiinanennnnn. tncirtri.nb

A circle is inscribed in an isosceles triangle with sides a, a and 2b in length. A second,
smaller circle is inscribed tangent to the first circle and to the equal sides of the triangle. Show
that the radius of the second circle is

L Ja—bp
"= T

Assume that a > b.






Chapter 20

Tangent Conics

The most general quadratic equation in two unknowns
Az? + Bry+Cy* + Dz +Ey+F =0

has six coefficients, but since we can divide the coefficients by any non-zero constant, say F,
without altering the equality obtaining

A2> + Bay+C'y?>+ Dz +FEy+1=0

a quadratic equation only has five degrees of freedom. Thus we may specify five conditions (or
constraints) on a quadratic equation. In this chapter we will investigate the construction of
conic curves (circles, parabolas, ellipses and hyperbolas) that satisfy a set of five conditions,
when the conditions are of two specific types: either passing through a given point, or tangent
to a given line. The resulting equations are sufficiently complex that obtaining the solutions
in symbolic, closed form is of no practical value, so we will illustrate the solution techniques
and use the numerical capabilities of Mathematica to compute specific solutions.

20.1 Constraint Equations

As mentioned in previous chapters, if the curve represented by the quadratic equation
Az? + Bry+Cy* + Dz +Ey+F =0

passes through the point Pj(x1,y1), then the point will satisfy the equation yielding the

relationship
Az? + Bxyy, + Cy? + Dxy + Eyy + F = 0. (20.1)

It has also been shown in previous chapters that the line pz + qy +r = 0 will be tangent to
the curve represented by the quadratic equation if the coefficients satisfy the equation
(4CF — E?)p? + (4AF — D*)¢® + (4AC — B*)r?+

20.2
2(BD —2AFE)qr 4+ 2(BE —2CD)pr + 2(DE — 2BF)pq = 0. (20.2)

293
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20.2 Systems of Quadratics

In this section we will outline the general technique for finding quadratics that pass through
the four points of intersection of two quadratic curves. These techniques will be the basis for
subsequent sections wherein we will find quadratics satisfying a variety of conditions.

Two quadratics intersect in four points (four real, two real and two complex, or four
complex) since each equation is of the second degree. If

Q1 = Az?+ Bizy+ Ciy® + Dz + Evy+ F1 =0 and
Q2 Asx® + Boxy + Coy? + Doz + Eay + Fo =0

represent the equations of the two quadratics, then @ = Q1 + kQ2 = 0, for any constant k, is
the equation of a quadratic through the points of intersection of @)1 and Q2. The equation @
is called a system or pencil of quadratics, and placing one additional condition on the equation
for ) allows us to solve for k and find a specific quadratic in the pencil. The equation of the
pencil is sometimes written as @ = (1 — k)Q1 + kQ2 in order to allow the original quadratics,
@1 and Q32, to be in the pencil (for kK = 0 and k = 1, respectively).

Example. Find the quadratic that passes through the intersection of the ellipse
22 + 4y?> — 10z — 39 = 0 and the hyperbola —z? + y?> — 1 = 0 and also passes
through the point (—4,0).

Solution. The equation of the quadratic pencil containing the solutions is
(22 + 4y* — 10z — 39) + k(—2* + 3> = 1) =0,

and this must be satisfied by (—4,0). Hence, solving for k yields k = 1 and the
final equation of the conic sought is 22 4+ 2y — 8 = 0 (a parabola).

In[1]: Sketch2D[{Quadratic2D[1, O, 4, -10, 0, -39],
Quadratic2D[-1, 0, 1, 0, 0, -1],
Quadratic2D[0, 0, 1, -2, 0, -8],

Poi nt 2D[{-4, 0}1},
Curvelengt h2D -> 40,
Pl ot Range -> {{-10, 15}, {-6, 6}}1;

Pz
e

-5 0 5 10 15

DARANONO
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/‘\k\ DescartazD Hint. Quadratic2D[quad, quad, k, Pencil2D] returns a quadratic
MM parameterized by the variable k representing the pencil of quadratics passing
through two quadratics.

A Degenerate Case

If @ = 0 is the equation of a quadratic and L = 0 is the equation of a straight line, then
Q + kL? = 0 is the equation of a quadratic tangent to @ at the intersection points of @ = 0
and L = 0. We may think of L? = 0 as a (degenerate) quadratic (two coincident lines)
intersecting @ = 0 in two pairs of coincident points each.

Example. Find the quadratic tangent to @ = 22 —y? —y+1 = 0 at the points of
intersection of @ and L = 3z — 2y — 1 = 0 and passing through the point (—1,0).

Solution. The equation is of the form
(> =y —y+1)+kBz -2y —-1)*=0.

Substituting (—1,0) into this equation we get k = 1/8, which yields as the equation
of the conic sought

x? —12xy + 12y — 62 + 12y — 7 = 0 (a hyperbola).

In[2]: Sketch2D[{Quadratic2D[1, O, -1, O, -1, 1],
Li ne2D[3, -2, -11,
Quadratic2D[1, -12, 12, -6, 12, -7],
Poi nt 2D[{-1, 0}1}1;

NZARN
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N\
\kp4
Ps
P
I i——
P, ~
K-
AN

Figure 20.1: Quadratic through five points.

20.3 Validity Conditions

In the remainder of this chapter we will outline techniques for finding conics that satisfy five
conditions. The conditions will be of two types: either passing through a given point, or
tangent to a given line. The following assumptions are made with respect to the five points
and/or lines:

e 10 pair of points is coincident,

e 10 pair of lines is coincident,

e 1o triple of points is collinear,

e 1o triple of lines is concurrent,

e 1o triple of lines is mutually parallel,

e no more than one point is on each line, and

e no more than one line passes through each point.

Degenerate conics may exist that satisfy configurations of points and lines that violate these
restrictions, but we will focus our attention on cases that produce proper conics (circles,
parabolas, ellipses and hyperbolas).

20.4 Five Points

Given five points, P, P», P35, Py and Ps, satisfying the validity conditions stated in Sec-
tion 20.3, we wish to find the quadratic that passes through all five points. Consider the
lines Lis, L34, L13 and Loy passing through the points in pairs as shown in Figure 20.1. Let
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Q1 = L12L34 be a (degenerate) quadratic (a pair of lines) passing through Py, P», Ps and Py.
Similarly, let Q2 = Li3L24 = 0 be a second quadratic passing through the same four points.
The equation QQ = Q1 + kQ2 = 0 will then represent the pencil of quadratics parameterized
by the variable k passing through the four points.

Applying Equation (20.1), by substituting the coordinates of the point Ps into the equation
for ), we can solve this linear equation for the value of k, thereby yielding the specific quadratic
in the pencil of quadratics that passes through all five points. Mathematica can be used to
solve for k and form the symbolic equation for @, although the result is quite cumbersome
in expanded form. A determinant can be used to represent the resulting quadratic in a more
convenient and simplified form and is given by

2 2
Ty T4Ys Yy T4 Y4

2
Ts TsYs Ys Ts Ys

22 xy v oz oy 1

21 myn oy ow oy 1

0= a3 Tays Y5 w2 Y2 1
a3 w3y Y3 w3 yz 1

1

1

Example. Find the quadratic passing through the five points (3,0), (3,1), (0, 1),
(=3,0) and (0,—1).

Solution. The function Quadratic2D[pt, pt, pt, pt, pt] returns the quadratic
passing through the five points.

In[3]: pts = {pl =Point2D[{3, 0}], p2 = Poi nt2D[{3, 1}],
p3 = Poi nt 2D[ {0, 1}], p4 = Poi nt 2D[{-3, 0}1,
p5 = Poi nt 2D[ {0, -1}1};
gl = Quadrati c2D[pl, p2, p3, p4, p5]

out (3] Quadratic2D[36, -108, 324, 0, 0, -324]

Example. Find the conic represented by the quadratic found in the previous
example. Plot the points and the conic curve.

Solution. The conic can be determined directly from the result of the previous
example using the function Loci2D [quad]. Descarta2D also provides the function
TangentConics2D [{pt, pt, pt, pt, pt}]1 that constructs a list containing the conic
directly from the five points.
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1n[4]: {Loci 2D[gl], crvl = Tangent Coni cs2D[pts]} // N

out (4] {(Ellipse2D[{0, 0}, 3.51606, 0.985223, 0.179385]},
(Ellipse2D[ {0, 0}, 3.51606, 0.985223, 0.179385]}}

In[5]: Sketch2D[{pts, crvil}];

©
P oo ook

\

~ DescartazD Hint. TangentQuadratics2D[{pt, pt, pt, pt, pt}] constructs a
%& list containing the single quadratic passing through five points. Except for the
fact the TangentQuadratics2D checks for the validity conditions stated in Sec-
tion 20.3, this function is equivalent to Quadratic2D[pt, pt, pt, pt, ptl.

20.5 Four Points, One Tangent Line

In this section we will consider the construction of quadratics and conics passing through four
points and tangent to a line. Two cases are distinguished: the first constructs the quadratic
or conic when none of the given points lie on the tangent line; the second constructs the
quadratic or conic when one of the given points does lie on the tangent line.

Points Not on a Tangent Line

Assume that points P, P5, P3 and P4 and line Ls as shown in Figure 20.2 satisfy the validity
conditions stated in Section 20.3 and that none of the four points lie on Ls. To find the
equation of the quadratic passing through the four points and tangent to the line, we form a
pencil of quadratics passing through the four points parameterized by the variable k that is
given by

Q = LioLss + kLi3Loy = 0.

We now apply the condition that line Ls is tangent to @) by using Equation (20.2) resulting in
a quadratic equation in the variable k. Solving this equation yields two values for k that can
be substituted into the equation for @, giving two quadratics satisfying the stated conditions.
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Figure 20.2: Four points, one line, no points on the line.

Example. Find the quadratics passing through the points (2, 1), (=2,1), (-2, —1)
and (2, —1) and tangent to the line 3z+4y—12 = 0. Plot the conic curves associated

with the quadratics.

Solution. The Descarta2D function TangentQuadratics2D[{pt, pt, pt, pt, In}]
constructs a list of quadratics passing through the four points and tangent to
the line. TangentConics2D[{pt, pt, pt, pt, In}] constructs a list of conic curves
passing through the four points and tangent to the line. Both functions allow the

points and line to be listed in any order.

Inl[é6]:

out [6]

In[7]:

Out [7]

In[8]:

obj s = {Poi nt 2D[ {2, 1}], Poi nt2D[{-2, 1}],
Poi nt 2D[{-2, -1}], Point2D[{2, -1}],
Li ne2D[3, 4, -121};

Tangent Quadr ati cs2D[obj s]

[Quadrat i czo[% (-23-+/385), 0, -2 (-23-+/385 ) - 16 (1 L (23++/385 )|,

8
0,0, 16 1+ 5 (23++/385 )], Quadrati c2D[ 5 (-23+/385 ), 0,

-2 (-23++/385) - 16 (1+% (23-+/385)], 0, 0, 16 (1+% (23-+/385) )]}

crvs = Tangent Coni cs2D[obj s] // N

(Ell'i pse2D[{0, 0}, 2.51549, 2.17963, 1.5708],
Elli pse2D[{0, 0}, 3.67034, 1.19261, 0]}

Sket ch2D[ {obj s, crvs}i;
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Figure 20.3: Four points, one line, one point on the line.

NFRPORNWAO

One Point on Tangent Line

We now examine the case when one of the four points is on the tangent line. Consider the
points Py, P, P3 and P, and the line L; as shown in Figure 20.3 satisfying the validity
conditions stated in Section 20.3, where the point P; is on Lj. Since the desired quadratic
is tangent to Li at P;, we can consider P; to be a pair of coincident intersection points of
the pencil of quadratics passing through the four points Py, P> and P (P; is counted as two
coincident intersection points). We now form the pencil of quadratics parameterized by the
variable k and given by Q = Li2L13 + kL1Loz = 0. The coordinates of the remaining point,
Py, must satisfy the equation of the quadratic, and by applying Equation (20.1) we generate
a linear equation in the variable k£ that can be solved yielding the single quadratic equation
satisfying the stated conditions.

Example. Find the conic curve passing through the points (2,0), (0,1), (-=2,0)
and (0, —1) and tangent to the line y = 1.
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Solution. The function TangentConics2D[{pt, pt, pt, pt, In}] returns a list of
conic curves passing through four points and tangent to a line. The points and
line may be listed in any order.

In[9]: crv = Tangent Coni cs2D[
obj s = {Poi nt2D[{2, 0}], Poi nt2D[{0, 1}1,
Poi nt 2D[{-2, 0}], Point2D[{0, -1}1,
Li ne2D[0, 1, -1]1}]

out[9] {Ellipse2D[{0, 0}, 2, 1, 0]}

In[10]: Sketch2D[{objs, crv}, PlotRange -> {{-3, 3}, {-1.5, 1.5}}1;

1.

©

1
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DescartazDp Hint. In the remaining sections of this chapter we will use the
function TangentConics2D to find the tangent curves satisfying a variety of con-
ditions. The function TangentQuadratics2D is also available in all these cases
and will return a list of quadratics instead of a list of conic curves.

20.6 Three Points, Two Tangent Lines

We now consider the construction of a conic passing through three points and tangent to two

lines.

Three cases need to be considered: the first constructs the conic when none of the given

points lie on either of the tangent lines; the second constructs the conic when one of the given
points lies on one of the tangent lines; and, finally, two points lie on two of the tangent lines.

Points Not on Tangent Lines

Consider three points Py, P, and Ps and two lines L4 and Ls satisfying the validity conditions
stated in Section 20.3. We also assume that none of the points are on either line as shown
in Figure 20.4. The line L45 passing through the points of tangency between lines L4 and Ls
and the desired conic curve can be written in the form

Lis=ax+by—1=0
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Figure 20.4: Three points, two lines, no points on the lines.

assuming we can guarantee that L5 does not pass through the origin. The point P; is clearly
not on L45 because that would imply that the conic passes through three distinct, collinear
points, which clearly violates the validity conditions. Therefore, if we translate all five of the
original objects so that point Pj is at the origin, we can guarantee that Ls5 does not pass
through the origin. Of course we need to perform the inverse translation on the resulting conic
curves to produce the solution for the geometry in its original position.

We now proceed with Lys = ax + by — 1 = 0, a line that does not pass through the origin.
Consider the pencil of quadratics parameterized by the variable k and represented by the
equation

Q= LyLs — kL35 =0.

Solving this equation for k yields
Ly L
k=72
Lis

The right side of this equation is an expression in x and y involving the unknowns a and
b. The expression must produce the same value for k for any point (x,y) on the desired
quadratic. In particular, points Py, P> and Ps; must all produce the same value for k. Using
the expression f[P,] to indicate the expression f evaluated at the point P,, we can write the
system of equations

L4Ls

—z [Nl =
Lis

LiLs
Lis

[P2] =

since all of these expressions must equal k. Rewriting these equations as a system of two
equations and cross-multiplying yields two quadratic equations in two unknowns, a and b,

(La[P])(Ls[P])(L35[Pa]) = (LalP2])(Ls[P2])(L35[P1])
(La[Po))(Ls[P2)(L35[P1]) = (La[Pa))(Ls[P1])(L5[Pa)).-
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Solving these equations for a and b yields four pairs of solutions which can be substituted into

LiL,
k=—7—|P
g

producing four quadratics Q satisfying the stated conditions. The resulting quadratics may
be translated back to the original position of the defining objects by translating the origin
back to P;.

Example. Find the conics passing through (1,0), (0,—1), (1/v2,—1/v/2) and
tangent to the lines x =1 and y = —1.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[11]: objs = {Poi nt 2D[{1, 0}], Poi nt2D[{0, -1}1],
Poi nt 2D[{1/Sqrt [2], -1/Sqrt [2]1}],
Li ne2D[0, 1, -1], Line2D[1, O, 11};
crvs = Tangent Coni cs2D[obj s] // N

out[11] {Circle2D[{0, 0}, 1.7,
El |i pse2D[{0. 135729, -1.32236}, 2.57181, 0.262711, 1.12421],
El | i pse2D[ {0. 600884, -0.600884}, 2.259, 0.150221, 0.785398],
El li pse2D[{1. 32236, -0.135729}, 2.57181, 0.262711, 0.446587]}

In[12]: Map[Sketch2D[{objs, #},
Pl ot Range -> {{-2, 4}, {-4, 2}}1&
crvsl;
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Figure 20.5: Three points, two lines, one point on a line.
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One Point on Tangent Line

We now consider the case where one of the three points is on one of the two tangent lines.
Assume that point P; is on line Lq and points P, and P are on neither line Ly or L4 as shown
in Figure 20.5. Also, we assume the points and lines satisfy the validity conditions stated in
Section 20.3. We form the pencil of quadratics

Q= Li1Los+kLiaLs

where Li3, L13 and Log are the lines passing through points P, and P, P, and P; and P»
and Ps, respectively. We now apply the tangency condition by using Equation (20.2) with Q
and line L4 to form a quadratic equation in the variable k. Solving the equation for k gives
the two quadratics passing through the points and tangent to the lines.

Example. Find the conic curves passing through the points (0,1), (—3,0) and
(0,—1) and tangent to the lines y =1 and z — 2y — 3 = 0.
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Figure 20.6: Three points, two lines, two points on the lines.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of

conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[13]: objs = {Poi nt 2D[{0, 1}], Poi nt2D[{-3, 0}], Poi nt 2D[{0, -1}],
Li ne2D[O, 1, -1], Line2D[1, -2, -3]};
crvs = Tangent Coni cs2D[obj s] // N

out(13] {Ellipse2D[{-2.54874, -1.26827}, 3.8739, 1.32515, 0.530218],
El i pse2D[ {-0. 267309, -0. 00955005}, 2.7504, 1.00402, 0.0412054]}

In[14]: Sketch2D[{objs, crvs}i;
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Two Points on Tangent Lines

Let P, be a point on line Ly, P3 be a point on line L3, and P, a point not on either line as
shown in Figure 20.6 and assume that these points and lines satisfy the validity conditions
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stated in Section 20.3. We form the pencil of quadratics
Q=IL1Ls+kLi;=0

where L3 is the line passing through points P; and P;. We now apply Equation (20.1)
establishing the condition that P, must be on @ and, therefore, the coordinates (z2, y2) must
satisfy (). We can solve this linear equation for £ and determine the coefficients of the quadratic
@ satisfying the stated conditions.

Example. Find the conic curve passing through the points (2,1), (—=2,1) and
(0,2) and tangent to the lines z — 3y +1=0and 22 +y+3 =0.

Solution. The function TangentConics2D[{pt, pt, pt, In, In}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[15]: objs = {Poi nt2D[{2, 1}], Point2D[{-2, 1}], Poi nt 2D[{0, 2}],
Li ne2D[1, -3, 1], Line2D[2, 1, 31};
crvs = Tangent Coni cs2D[obj s] // N

out [15] {Ellipse2D[{0. 463576, 1.37086}, 2.50231, 0.689197, 0.122489])

In[16]: Sketch2D[{objs, crvs}i;
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Notice that a ConicArc2D object is a special case of this construction where the start and
end points are the points P; and P3; and the apex point defines the lines L1 and Ls.

20.7 Conics by Reciprocal Polars

In this section we will introduce the concept of reciprocal polars, and a technique that will
allow us to solve tangent conic problems involving more than two tangent lines. Proofs of all
the concepts involved in these techniques are beyond the scope of this book, but applying the
techniques to solve tangent conic problems is easily grasped.



20.7 Conics by Reciprocal Polars 307

Let C be a circle in the plane and P a point. The reciprocal of P with respect to C' is
simply the polar line of P with respect to C. Similarly, let L be a line. The reciprocal of L
with respect to C' is the pole point of L with respect to C. It is noteworthy that the center
point of the circle has no reciprocal, and any line passing through the center of the circle has
no reciprocal.

If we have any figure consisting of any number of points and straight lines, and we take the
polars of those points and the poles of the lines, with respect to a circle C, we obtain another
figure which is called the polar reciprocal of the former with respect to the auziliary circle C.
When a point in one figure and a line in the reciprocal figure are pole and polar with respect
to the auxiliary circle, C, the point and line are said to correspond to one another.

An important theorem from the analytic geometry of conics states that taking the recip-
rocal of all the points of a conic ( with respect to some auxiliary circle C' will produce an
envelope of lines tangent to another conic @)'. Furthermore, any line tangent to @ will corre-
spond to a point P’ on @', and any line L’ tangent to @’ will correspond to a point P on Q
(always using C as the auxiliary circle).

We use this theorem as follows to find conics tangent to three, four or five lines and passing
through a corresponding number of points so the total number of conditions equals five. First
we apply an arbitrary translation to the objects to insure that none of the points lie at the
origin and that none of the lines pass through the origin. We now take the reciprocal of the
points or lines with respect to a unit circle centered at the origin, thereby producing a new
figure of corresponding lines and points. Note that if there are three or more lines in the
original figure, there will be two or fewer lines in its reciprocal.

We now apply the techniques developed in the previous sections of this chapter to find
the quadratics(s) satisfying the conditions imposed by the elements in the reciprocal figure.
Finally, we find the reciprocal of the resulting quadratic with respect to the auxiliary circle
yielding the sought-after quadratics in the original figure. If the equation of the quadratic in
the reciprocal figure is

Q =ax® +bay+cy’ +dr+ey+f=0
then its equation in the original figure is given by
Q' = (def — €2)a? + (2de — 4bf)zy + (daf — d*)y*+
(4ed — 2be)x + (4ae — 2db)y + (4ac — b*) = 0.

The validity of this relationship is demonstrated in the exploration recquad.nb. The rela-
tionship between @ and @’ is only valid when the auxiliary circle is a unit circle at the origin
(22 +y*=1).

Two Points, Three Tangent Lines

Example. Find the conic curves passing through the points (3, —1) and (1,0) and
tangent to the lines 4z —y—3 =0,z +2y—3 =0and y = —2.
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Solution. The function TangentConics2D[{pt, pt, In, In, In}] returns a list of
conic curves passing through two points and tangent to three lines. The points
and lines may be listed in any order. If neither point is on any of the lines, there
are at most four real conic curves; if one of the points is on one of the lines, then
there are at most two real conic curves; if two of the points are on the tangent
lines, then there is at most one real conic curve.

In[17]: objs = {Point2D[{3, -1}], Poi nt2D[{1, 0}], Line2D[4, -1, -3],
Li ne2D[1, 2, -3], Line2D[O, 1, 21};
crvs = Tangent Coni cs2D[obj s] // N

outf17] {El'lipse2D[{1.79784, -0.811805}, 1.30361, 1.13329, 0.587329],
El i pse2D[ (2. 03133, -0.577222}, 1.71297, 0.620762, 2.21117],
El i pse2D[ (3. 64793, -0.854517), 3.04088, 0.374464, 2. 774691,
El i pse2D[ (3. 77722, -0.99446}, 3.18508, 0.250467, 2.82987])

In[18]: Sketch2D[{objs, crvs},
Cur veLengt h2D -> 20,
Pl ot Range -> {{-1, 8}, {-4, 2}}1;
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One Point, Four Tangent Lines

Example. Find the conic curves passing through the point (—1,1) and tangent
to the lines4de —y—-3=0,2+2y—3=0,z=—-3 and y = —2.

Solution. The function TangentConics2D[{pt, In, In, In, In}] returns a list of
conic curves passing through a point and tangent to four lines. The points and
lines may be listed in any order. If the point is not on any of the lines, there will
be at most two real conic curves; if the point is on one of the lines, then there will
be at most one real conic curve.
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In[19]: objs = {Point2D[{-1, 1}], Line2D[4, -1, -3],
Li ne2D[1, 2, -3], Line2D[1, 0, 3], Line2D[O, 1, 2]1};
crvs = Tangent Coni cs2D[obj s] // N
out[19] {Ellipse2D[{-1.35291, 0.441105}, 2.88243, 0.602889, 2.14575],
El | i pse2D[{-1. 05825, -0.344658}, 2.29656, 1.11191, 0.656401]}

In[20]: Sketch2D[{crvs, objs}, PlotRange -> {{-4, 2}, {-3, 3}}1;
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Five Tangent Lines

Example. Find the conic curve tangent to the five lines z — 2y +3 =0, z = 3,
2z — 3y —2 =0, y =2 and x = —2. Plot the lines and the conic curve.

Solution. The function TangentConics2D[{ln, In, In, In, In}] returns a list of
at most one conic curve tangent to five lines.

In[21]: objs = {Line2D[1, -2, 3], Line2D[1, 0, -3],
Li ne2D[2, -3, -2], Line2D[O, 1, -2], Line2D[1, 0, 2]};
crvs = Tangent Coni cs2D[obj s] // N

out [21] {Ellipse2D[{0.5, 0.833333}, 2.64903, 0.770563, 0.352906]}

In[22]: Sketch2D[{objs, crvs}, PlotRange -> {{-4, 4}, {-2, 3}}1;
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20.8 Explorations

RECIPROCALS OF POINTS AND LINES. ... recptln.nb

Show that the polar reciprocal of Ajz+B1y+C; = 0 in the auxiliary conic C' = 224y =1
is the point (—A4;/C1, —B1/Ch), assuming that the line does not pass through the origin. Also,
show that the line x +y — 1 = 0 is the polar reciprocal of the point (x,y) with respect to C.

RECIPROCAL OF A CIRCLE. ..\t tttt ettt ettt et et e et e e e e e reccir.nb

Given a circle C; = (x — h)? + (y — k)? = r? show that its polar reciprocal in the auxiliary
conic 22 4+ y? = 1 is given by the quadratic

Q = (r* — h®)z? — 2hkay + (r* — k*)y* + 2hx + 2ky — 1 = 0.

Furthermore, show that @ is an ellipse, if the origin (0,0) is inside C; a parabola, if the origin
is on C'; and a hyperbola, if the origin is outside C.

RECIPROCAL OF A QUADRATIC. ... uttttitet et e e e recquad.nb

Given a general quadratic Q = ax? + bxy + cy? +dx + ey + f = 0 show that the reciprocal
of @ is the quadratic

(def — €?)a? + (2de — 4bf)xy + (daf — d?)y*+
(4ed — 2be)x + (4ae — 2bd)y + (4ac — b?) =0

when the auxiliary conic is C = 22 + y? = 1.

PARABOLAS THROUGH FOUR POINTS. ... ... pbé4pts.nb

Describe a method for finding the two parabolas passing through four points. Show that
the technique produces the correct results for the points (2,1), (-=1,1), (=2, —1) and (4, —3)
by plotting the parabolas and the four points.

EQUILATERAL HYPERBOLAS. ...\ttt hyp4pts.nb

Describe a method for finding the equilateral hyperbola(s) passing through four points.
Show that the technique produces the correct results for the points (2,1), (-=1,1), (=2,-1)
and (4, —3) by plotting the hyperbola(s) and the four points.
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Biarcs

In this chapter we will demonstrate some techniques for adding new functions to Descarta2D.
To make the demonstration realistic, we will introduce the mathematics for a new type of
tangent circle construction called a biarc. Biarcs are used in some graphical computer systems
to connect a set of data points with smoothly joined arcs. The mathematics of biarcs is by
itself interesting and will serve as a good example of extending the capabilities of Descarta2D.

21.1 Biarc Carrier Circles

A biarc is a composite curve consisting of two circular arcs, placed end to end with continuity
of slope at the join point. The two circles underlying the arc are called the biarc carrier
circles. The carrier circles may be internally or externally tangent to each other, and the
point of tangency that joins the two arcs is called the knot point of the biarc. Referring
to Figure 21.1, suppose we wish to construct a smooth curve between points Py (xl,yl) and
Pg(xg, Y2) such that the tangents to the curve at P; and P are the unit vectors Tl(ul, v1)
and Tg(ug, va). Pi, Pa, Ty and Tb are called the biarc configuration parameters.
The geometric condition that two circles are tangent can always be expressed as

sum or difference of radii = distance between the centers (21.1)

according to the kind of contact, external (sum of radii) or internal (difference of radii).

We take positive values of 71 and r2 to indicate that the center points of the carrier circles,
Cy and Cy, are offset in the direction of T} and T}, respectively. Tl( v1,u1) and Th(—va, usg)
are unit vectors constructed by rotating tangent vectors Ty and Tp 90° counter-clockwise.
Suppose we now wish to form an expression for the left-hand side of Equation (21.1). It can
be shown that the expressions (11 +72)? and (r1 —r3)? represent all cases for the sum (squared)
and difference (squared) of the biarc radii for all combinations of positive or negative r; and
ro for both internally and externally tangent carrier circles.

We introduce a radius sign constant, s,, which may take on the values +1, in order to

311



312 Chapter 21 Biarcs

Figure 21.1: Biarc configuration parameters.

accommodate internally or externally tangent carrier circles in the same equation,
(sum or difference of radii)? = (1 + s,r9)%. (21.2)

Note that it makes no difference whether we associate s, with 71 or ro, since after squaring
and applying s = 1, the relationship is symmetric,

2 2 2.2 2 2
(r1 + sp1r2)” = r] + 28,1172 + S5 = 1] + 28,1172 + 5.
The carrier circle center points, C7 and Cs, may be written as

Ci = (z1—vr,y +uir) (21.3)

Cy = (mo —vare,ya + uars).

Combining Equations (21.2) and (21.3) as suggested by Equation (21.1), the sum or difference
of the radii (squared) equals the distance (squared) between C; and Co, yields

(r1 4 5,72)% = (22 — vare) — (1 — v171))* + (42 + u2rz) — (y1 +wir))?. (21.4)
When simplifying Equation (21.4), note that the relationships u? +v? =1and ui +0v? =1

can be used, since T and T5 are defined as unit vectors. Rearranging Equation (21.4) and
using the following substitutions

fo = wua+viv
fi = —vi(ze—z1)+ui(y2 —y1)
fo = —va(zo — 1) +u2(y2 — y1)

& = (z2—21)*+ (2 —1)°



21.1 Biarc Carrier Circles 313

produces the equation
2

r1ra(sr + fo) + fir1 — fara = % (21.5)

which establishes the general relationship between the radii, 1 and 79, of the carrier circles.
Constants fo, f1, fo and d are referred to as the biarc defining constants. Geometrically, fo
is the cosine of the angle between the tangent vectors, f1 is the (signed) distance from P, to
the line defined by 77 and Py, fo is the (signed) distance from P; to the line defined by P»
and Ty and d2 is the distance (squared) between points P; and P,. Note that these defining
constants depend only on the relative position of the defining geometry and are independent
of the choice of coordinate axes.

Radii Ratio

If a relationship between the carrier circle radii, 71 and ro, is specified, then Equation (21.5)
can be solved for the radii. We choose to specify the biarc radii ratio, kK = r1/re, as the
defining relationship. Substituting r; = k7o into Equation (21.5) produces the equation

2
k(s + fo)rs + (kfi — fo)rs = %. (21.6)

Solving Equation (21.6) by using the quadratic formula yields

(fo— 6f1) £/ (f2 — £f1)? 4 26d% (s, + fo)

ry = (s + fo) (21.7)
S (f2 — kf1) £/ (fo — £f1)2 + 26d2(s, + fo)
b 2(5, + fo) '

In the special case where the tangent vectors are in the same direction, the denominator
(sr + fo) will equal zero, and the quadratic equation degenerates and the solution of the
resulting linear equation is

kd? d?

“3h g M T wh )

Thus, by specifying a biarc radii ratio, k, and applying Equation (21.7) or (21.8) we
may calculate values for r; and ro. Equation (21.3) allows us to calculate the corresponding
coordinates of the carrier circle centers, C; and Cs. In certain configurations only one arc is
needed to satisfy the position and tangent constraints. In this case, the equations will produce
centers and radii for two identical circles.

T (21.8)

Number of Solutions

Given a specific pair of points, P; and P, and tangent vectors, 77 and T5, we now consider
how many different carrier circle pairs exist for a given radii ratio, k. The solutions may be
enumerated as follows:



314 Chapter 21 Biarcs

e Equations (21.7) or (21.8) may produce negative values for 1 or r. The sign indicates
the directions the center points C7 and C5 should be offset from P; and P, respectively.
As a result, both x and —k may produce valid biarcs with a specified radii ratio.

e The radius sign constant, s,, may take on two different values, +1.

e The quadratic formula yields two different solutions due to the sign preceding the radical
sign as shown in Equation (21.7).

Therefore, as many as 2 X 2 X 2 = 8 unique carrier circle pairs may exist for a given biarc
configuration and radii ratio.

21.2 Knot Point

Suppose we wish to compute the coordinates of the knot point, Py(xo, o), which is the point
of tangency between the two carrier circles. The coordinates of the knot point can be found
by intersecting the two circles and taking advantage of the fact that they intersect in a single
point yielding

(hl + hg)d2 — (hl — hg)R

T o (21.9)
. (k?l + kg)dQ — (kl — kg)R
Yo = 52
where
d® = (hy —ha)*+ (k1 — ko)? and
R = rf — r%.

While it is a simple matter to compute the knot point once we have the two carrier circles,
we might instead want to specify the position of the knot point. We will show in this section
that the knot point cannot be selected arbitrarily, but must lie on one of two specific circles,
called the knot circles. The following theorem and corollary from elementary geometry (which
are stated without proof) will be central to exploring the nature of the knot circles.

Theorem. Angles at the circumference of a circle subtended by the same arc are
equal.

Corollary. Given two fixed points P; and P, and a variable point @, the locus of
Q is a circle if ZP,QP, is a constant.

Consider two internally tangent carrier circles centered at C1(r1,0) and Cy(r2,0) and with
radii 7 and ro, respectively, as shown in Figure 21.2. By construction the two circles are
internally tangent at the origin. Pick two arbitrary points P; and P, on the circles with
coordinates

Py(r1 +r1cosby,rysinfy) and Pa(rg + rocos by, rosinfs).
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Ly

Figure 21.2: Knot point angles.

We will show that the angle o = ZP;OP, is a constant angle for all such points P, and P»
when the angle w is constant, and, having established this fact, we will apply the corollary
stated above to establish that the knot point must be on one of two circles.

The slopes of lines OP; and OP», m; and ms, are given by

r1sin 6 sin @

my = ! o ! :tan(%ﬂl)
r1 + 71 cos by 1+ cos 6
r9 sin 6 sin @

me = 2 2 = 2 —tan(%ﬂg)

r9 + 79 COS O3 14 cosfy
and the angle, «, between OP; and OP is

mo —miy

tan « _—
1+mime

tan (%92) — tan (%6‘1)
1+ tan (%91) tan (%92)
= tan (%(92 —6))
1 —cos(f2 — 61)
1+ cos(f2 — 61)°
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Figure 21.3: Knot circles.

The angle w between the two tangent lines L1 and Ls is given by

LLy— /L7 = w(orm—w)
(02+%)—(01+%) = wlorm—w)
O —0; = w(orm—w).

Notice that since w is a constant, by definition, for any given biarc configuration, 6 — 6 is
also a constant. Since « is a function of 5 — 67 it must also be a constant. Now applying
the corollary, the knot point must be on one of two circles corresponding to the two constant
values of a. Similar proofs hold for other geometric configurations and also for externally
tangent circles.

21.3 Knot Circles

In the previous section it was established that all the valid knot points for a given biarc con-
figuration must lie on either of two circles. These two circles can be constructed geometrically
by considering the limiting cases of the carrier circle radii, 1 and 72, as shown in Figure 21.3.
First, notice that the tangency points P; and P, must be on the knot circles because they
correspond to the knot point in the trivial cases when ;1 = 0 and ro = 0. Now imagine a
circle anchored at Py, tangent to line L, and increasing in radius from zero. At some value
of r1, the circle will become tangent to line Ly at the point labeled P| (or Py, if the circle is
on the opposite side of L1). At this value of r1, 7o will be infinite and the second biarc circle
will become a line. The three points Py, P, and P] determine the first knot circle, and P,
P,, and P/ determine the second knot circle.

Since the construction is symmetrical, we could have increased the radius of the second
carrier circle, ra, from zero and found points P5 and P4’ which are on the same two knot circles
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as those defined by P; and P/'.

The center points of the knot circles can be constructed by intersecting the perpendicular
bisector of P, P, with the angle bisectors of lines L; and Ls. Using simple trigonometric
relationships it can be shown that the radii of the two knot circles, 7’ and r”, are given by

d
r_ " _
" 2 cos (%w) and 7 ZSin(%w)

where d is the distance between P, and P, and w is the angle between L; and L.

21.4 Biarc Programming Examples

Descarta2D does not provide built-in functions for computing biarcs directly, so we will use
the facilities available in Descarta2D along with the programming capabilities provided by
Mathematica to demonstrate how new functions can be added to Descarta2D. In order to
keep the examples simple, we will ignore special cases and possible error conditions. Better
implementations would check for special cases and report errors in the input arguments when
such errors are detected.

Knot Circles

The first example illustrates a Mathematica function that will return a list of two knot circles
given a biarc configuration (tangent points and tangent lines). For simplicity we will use a
triangle to define the biarc configuration with the implicit understanding that the first and
third vertices of the triangle, V1 and V3, are the tangent points, P; and P», and sides V1 V5 and
V5 V3 of the triangle are the tangent lines, L1 and Lo. Using a triangle as an input parameter
has the added advantage that many invalid cases are avoided because they would involve
invalid triangles.

In[1]: (*1%) KnotCircles2D[t1: Triangl e2D[pl: {x1_, y1_},
(%2%) pA: {XA_, YA },
(*3%) p2: {x2_, y2_3}1]1 : =
(*4%) Modul e[ {pt1, pt2},
(#5%) ptl="Point2D[t1, Inscribed2Dj;
(x6%) pt2 = Point 2D[Poi nt 2D[pA], Poi nt 2D[p1],
(%7%) -Di stance2D[p2, pAl];
(*8%) Map[Circl e2D[Poi nt 2D[pl], Poi nt 2D[p2], #]1&,
(%9%) {ptl, pt2}11;

Lines 1, 2 and 3 define a Mathematica function called KnotCircles2D that takes one para-
meter that is required to pattern match a Descarta2D triangle object. Line 4 opens a Module
statement that defines two local variables pt1 and pt2. Line 5 constructs a point at the center
of a circle inscribed in the triangle. Line 6 constructs a point offset from the apex point, pA,
to the tangency point, p1, a negative distance defined by p2 and pA. Lines 8 and 9 construct
two circles from the two tangency points and a third point, pt1 or pt2.
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Example. Construct the two knot circles associated with the triangle whose
vertices are (0,0), (2,1) and (3,0). Plot the geometric objects.

Solution. The function KnotCircles2D [triangle], defined above, returns a list of
two knot circles associated with a triangle.

In[2]: t1 =Triangl e2D[pl = Poi nt 2D[ {0, 0}],
p2 = Poi nt 2D[{2, 1}],
p3 = Poi nt 2D[{3, 0}11;
kc =KnotCircl es2D[t1] // N

outr2] {Gircle2D[{1.5, -2.08114), 2.56537], Gircle2D[{1.5, 1.08114}, 1.84902]}

n[3]: Sketch2D[{pl, p2, p3, t1, kc, Point2D[t1, Inscribed2D]}];

N DescartazD Hint. In the KnotCircles2D function whose implementation is
Eﬁ& shown above, the third point on the second knot circle is constructed following
the technique described earlier in the chapter. However, the third point of the
first knot circle is constructed as the center of the circle inscribed in the triangle.
The exploration knotin.nb at the end of the chapter shows that this point is
actually on the first knot circle. Using this point has the added advantage that
it avoids an error condition that would otherwise occur when P; and P> are
equidistant from the third point of the triangle (an isosceles biarc configuration).

Arc Construction

In this section we will implement functions for constructing bulge factor arcs given defining
points and tangent vectors. These will be used later to construct biarcs. First, we define a
utility function, Cross2D, that computes a vector cross-product in two dimensions.

In[4]: Cross2D[{ul_, v1_3}, {u2_, v2_}]:=ul*v2-u2=vl;
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Now we define an arc construction function that takes the arc’s start and end points, Py
and P;, as input, plus a point associated with the start point indicating the direction of the
tangent to the arc at the start point. The justification for this function is provided in the
exploration arcentry.nb.

In[5]: Arc2D[{Poi nt 2D[p0: {x0_, yO_}], Point2D[p: {X_, Y_3}1},
Poi nt 2D[pl: {x1_, y1_}11:=
Modul e[{v0 = p - p0, chd =pl-p0, s, c},
s = Cross2D[v0, chd];
c = Dot [v0, chd];
Arc2D[p0, pl, s/ (c+Sqrt[c"2+s"2])]1;

The next arc construction function is similar to the previous one, except the point indi-
cating the tangent direction is associated with the end point of the arc. The justification for
this function is provided in the exploration arcexit.nb.

In[6]: Arc2D[Poi nt 2D[p0: {x0_, y0_}],
{Poi nt 2D[pl: {x1_, y1_}], Point2D[p: {X_, Y_}1}]1:=
Modul e[{vl =p -pl, chd =pl-po0, s, c},
s = Cross2D[chd, v1];
c = Dot [chd, v1];
Arc2D[p0, pl, s/ (c+Sqrt[c”r2+s"2])] 1;

Knot Points

Now that we have functions for computing knot circles and constructing arcs involving tangent
vectors, it is fairly easy to construct biarcs. Consider the following Mathematica function:

In[7]: (*1%) Biarc2D[t1: Triangl e2D[p0: {x0_, yO_},
(*2%) pA: {XA_, YA },
(#3%) pl: {x1_, y1_}1,
(%4%) pt K: Point2D[{xk_, yk_3}1]1 : =
(*5%) {Arc2D[{Poi nt 2D[p0], Poi nt 2D[pA]}, ptK],
(#6%) Arc2D[{Poi nt 2D[p1], Poi nt 2D[pAl}, ptKl};

The function Biarc2D takes two arguments, a Descarta2D triangle object defining the biarc
configuration (lines 1-3), and a Descarta2D point object defining the knot point (line 4).
The function Arc2D [{point, point}, point], defined in the previous section, is used twice to
actually construct the biarc which is returned as a list of two arcs (lines 5-6).

Example. Construct the biarc associated with the triangle whose vertices are

(0,0), (2,1) and (3,0) and a knot point on the first knot circle at parameter value
/2. Plot the geometric objects.
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Solution. The function Biarc2D [triangle, point] described above returns a list
of two arcs (a biarc) given a triangle that defines the biarc configuration and the
knot point.

In[8]: t1="Triangl e2D[pl = Poi nt 2D[{0, 0}1],
p2 = Poi nt 2D[ {2, 1}],
p3 = Poi nt 2D[{3, 0}11;
kc =KnotGircl es2D[t1] // N,
bi 1 =Biarc2D[t1, pk = Point2D[kc[[1]1]1[Pi /2]1]1] //N

out (8] {Arc2D[{1.5, 0.484234}, {0, 0}, 0.075838],
Arc2D[{3., 0}, {1.5, 0.484234), 0.241083]}

In[9]: Sketch2D[{pl, p2, p3, t1, pk, bil}];
1
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N DescartazD Hint. The Biarc2D function does not check to insure that the
X knot point provided is a valid knot point. It will erroneously return two arcs that
are not tangent to each other if it is called with a point not on one of the knot
circles. Other errors will occur if the knot point coincides with one of the triangle
vertices.

-

It would be convenient if the biarc construction function computed the knot point internally
as shown in the following Mathematica function:

In[10]: (*1lx) Biarc2D[t1l: Triangl e2D[p0: {x0_, y0_},
(*2%) pPA: {XA_, YA },
(*3%) pl: {x1_, y1_ }1,
(*4x) knot Gi r cl eNunber _I nt eger,
(*5%) knot Poi nt Par amet er _?1sScal ar2D] : =
(x6%) Mbdul e[{kc, ptK},
(%7 %) kc = Knot G rcl es2D[t 1] [ [knot Ci rcl eNunber ]7;
(*8x) pt K = Poi nt 2D[kc [knot Poi nt Paraneter]] // N,
(*9%) Bi arc2D[t 1, ptK] ];

This Biarc2D function takes three arguments, the first being a triangle defining the biarc
configuration, the second an integer equal to 1 or 2 specifying which biarc circle the knot
point should be on, and the third an angle (in radians) specifying the parameter location on
the knot circle for the desired knot point. Lines 1-5 define the function arguments, line 7
computes the knot circle, line 8 computes the knot point, and line 9 computes the biarc.
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Example. Construct the biarc associated with the triangle whose vertices are
(0,0), (2,1) and (3,0) and a knot point on the first knot circle at parameter value
/2.

Solution. The function
Biarc2D[triangle, knotCircleNumber, knotCircleParameter]

as implemented above returns the required biarc.

In[11]: t1 =Triangl e2D[pl = Poi nt 2D[{0, 0}],
p2 = Poi nt 2D[{2, 1}],
p3 = Poi nt 2D[ {3, 0}]1;
bil=Biarc2D[tl, 1, Pi /2] //N

out[11] {Arc2D[{1.5, 0.484234}, {0, 0}, 0.075838],
Arc2D[(3., 0}, {1.5, 0.484234}, 0.241083])

The Biarc2D functions implemented above are restrictive in the sense that the tangent
vectors always point toward the apex point of the triangle and no provision is available to
allow either (or both) of the tangent vectors to point away from the apex. In order to overcome
this restriction we will implement a function that takes two line segments to define the biarc
configuration. The line segments will define a position (the start point of the line segment)
and a direction (from the start point towards the end point).

In[12]: (*1%) Bi arc2D[Segnent 2D[p0: {x0_, yO_}, dO: {uO_, vO_}1],
(*2%) Segnent 2D[pl: {x1_, y1_}, dl: {ul_, v1_}],
(*3%) pt K: Poi nt2D[ {xk_, yk_3}1] : =
(*4%) {Arc2D[{Poi nt 2D[p0], Poi nt 2D[d0]}, ptK],
(*5%) Arc2D[ptK, {Point2D[pl], Point2D[d1]}1};

In[13]: (*1%) Bi arc2D[LO: Segnent 2D[p0: {xO_, yO_3}, dO: {u0_, vO_}],
(%2%) L1: Segnment 2D[pl: {x1_, y1_ 3}, di1: {ul_, vi_}1,
(*3%) knot Gi r cl eNunber _I nt eger,
(*4%) knot Gi rcl ePar aneter _?1sScal ar2D] : =
(x5%) Mdul e[{ptA, t1, kc, ptK},
(%x6%) pt A = Poi nt 2D[Li ne2D[LO], Li ne2D[L1]];
(%7 %) t1 =Triangl e2D[p0, Coordi nat es2D[pt A], pl];
(*8x) kc = Knot Gircl es2D[t 1] [ [knot Ci rcl eNunber 17;
(*9%) pt K = Poi nt 2D[kc [knot G r cl ePar aneter]];
(¥10%) Biarc2D[LO, L1, ptK] 1;

These Biarc2D functions are parallel implementations of the previous two, except two line
segments are used to define the biarc configuration instead of a triangle.
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Example. Given a biarc configuration defined by the line segments from (0, 0) to
(—3,2) and from (3,0) to (4, —2) construct a set of biarcs whose knot points are
on knot circle 1 at parameter values 7/3, 7/2 and 27/3.

Solution. Use the function Biarc2D whose implementation is provided above.
In[14]: | sO = Segnent 2D[{0, 0}, {-3, 2}] // N,

I s1 = Segment 2D[ {3, 0}, {4, -2}1 // N

bi 1 =Mp[(Biarc2D[lsO0, Is1, 1, #]1 //N)& {Pi /6, Pi /2, 5Pi /6}1;

In[15]: Map[ (Sketch2D[{l sO, |s1, #}1;)& bil];

4

P O FRP DNWSH

P OFRP DNWAH

P O FP N

-101 2 3 4 -101 2 3 4 -101 2 3 4

Building on these basic Mathematica programs for computing biarcs, more elaborate con-
struction functions could be provided. For example, we might write a function that attempts
to automatically select the knot point based on some minimization criteria; or we might at-
tempt to construct biarcs that have no reversal of curvature at the knot point (i.e. the carrier
circles are internally tangent to each other). Another interesting exercise is to devise a strategy
for connecting a predefined set of points with a smooth, piecewise curve consisting of biarcs.

21.5 Explorations

INCENTER ON KNOT CIRCLE. ...ttt knotin.nb

Show that the incenter of a triangle (the center point of the circle inscribed in the triangle)
is on one of the knot circles for the biarc configuration defined by the triangle.
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Chapter 22

Technical Notes

This chapter provides an overview of how Descarta2D is implemented using Mathematica.
Descarta2D is an object-oriented application, which means that it provides a collection of
objects (e.g. points, lines, etc.) and a set of methods that compute on these objects. The pro-
grams that comprise Descarta2D are organized into a small number of Mathematica packages
that specify the behavior of the objects.

22.1 Computation Levels

Mathematica provides support for both symbolic and numerical computations. Descarta2D
takes advantage of these capabilities to provide the following four levels of computation:

Symbolic. At the symbolic level, sizes, angles and coefficients are expressed as variables and
general formulas may be derived.

Analytic. At the analytic level variables are replaced with exact numerical quantities that
are not approximated by floating point numbers. Mathematical functions such as square
roots and trigonometric functions are carried without evaluation.

Numerical. At the numerical level numbers and functions are replaced with floating point
representations that are approximations carried to any number of decimal places in
Mathematica. Often, the accuracy is determined by the floating point hardware available
in the computer and is sufficient for such computations.

Approximation. At the approximation level iterative algorithms are used to converge to
an approximation of a value. Generally, the tolerance of the approximation can be
controlled to approach the floating point precision of the computer hardware or better.

Depending on the complexity of the problem, Descarta2D often provides a choice of the level
of computation undertaken for a particular geometric investigation.

325
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Table 22.1: Reserved names in Descarta2D (objects).

Arc2D Hyperbola2D Quadratic2D
Circle2D Line2D Segment2D
ConicArc2D Parabola2D Triangle2D
Ellipse2D  Point2D

22.2 Names

In Mathematica symbolic names containing upper case letters are considered different than
names using corresponding lower case letters (i.e. Mathematica is case-sensitive with respect
to the interpretation of symbolic names). Mathematica uses the convention that system-
defined names always begin with upper case letters or the dollar sign symbol and recommends
that user-defined symbols begin with lower case letters to avoid naming conflicts. Descarta2D
follows the same naming conventions as Mathematica. Descarta2D symbolic names begin
with upper case letters; user symbolic names may contain upper case or lower case letters,
but, generally, the first letter is advised to be lower case to prevent conflicts with built-in
Mathematica functions and Descarta2D functions. In order to prevent conflicts with the names
of Descarta2D functions, this chapter provides suggestions for naming Descarta2D objects
to encourage consistency and clear understanding when using Descarta2D. Following these
conventions will avoid most naming conflicts.

All Descarta2D function names are fully spelled out English words and each name has
the ending 2D appended. If more than one word is used (for example, TangentConics2D, or
FocalLength2D), then the first letter of each word is upper case.

Descarta2D adheres to several syntactic conventions for consistency and ease of use. Func-
tions that return (construct) a Descarta2D object, such as Point2D, will always have the
form

objectNamelarg, , args, ...].

For example, Point2D [point, point] returns the midpoint of two given points. Functions that
return a list of objects are generally plural, such as Points2D, TangentLines2D and Foci2D.

If Descarta2D detects invalid input when constructing an object, it generally displays an
error message and returns the $Failed symbol. Descarta2D functions that return a list of
objects will generally return an empty list, instead of the $Failed symbol (indicating that no
objects can be constructed).

22.3 Descarta2D Objects

In Descarta2D an object is a textual representation of a mathematical concept. Each object is
represented using a Mathematica expression whose head is the name of the object and whose
parameters are the arguments of the expression. Table 22.1 is a list of the object names
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object

—geometry
—coordinates
—point

—curve

—line

—circle
—parabola
—ellipse
—hyperbola
—quadratic
—curve segment
—line segment
—arc

—conic arc
—composite
Ltriangle
—polynomial
—linear

—quadratic

{z, y}

Point2D [{z, y}]

Line2D[A, B, (]
Circle2D[{h, k}, 7]
Parabola2D[{h, k}, f, 0]
Ellipse2D[{h, k}, a, b, 6]
Hyperbola2D[{h, k}, a, b, 6]
Quadratic2D[A, B, C, D, E, F]

conic

Segment2D [{zo, Yo}, {1, y1}]
Arc2D[{zo, yo}, {z1, y1}, Bl
ConicArc2D[{zo, Yo}, {za, ya}, {z1, 11}, ]

Triangle2D [{aﬁl, y1}, {332, yz}, {3?3’ yS}]

Line2D[a, b, c]
axr +by+c

Quadratic2D[a, b, ¢, d, e, f]
ax® + by +cy®> +do +ey + f

Figure 22.1: Descarta2D object hierarchy.
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Figure 22.2: Standard representation of an Arc2D.

built into Descarta2D. The objects are organized into a hierarchy as shown in Figure 22.1.
The hierarchy also includes meta-objects, objects that have no implementation, but serve to
organize the Descarta2D objects. Meta-objects are shown in stalic font. The following sections
provide detailed descriptions of each object provided by Descarta2D. Each section provides the
name of the object, the syntax of the Mathematica expression for the object, names typically
used to refer to the object, a description of the object (using a mathematical equation when
appropriate) and restrictions on the arguments of the object. All objects have the restriction
that their arguments cannot involve complex numbers. The Line2D and Quadratic2D objects
are listed twice in Figure 22.1 because they can be interpreted to represent geometry or
polynomials.

Arc2D

Arc2D[{zo, yo}, {x1, y1}, B] is the standard representation of an arc in Descarta2D as illus-
trated in Figure 22.2. The first and second arguments are the coordinates of the start and
end points of the arc, respectively. The third argument is a positive scalar, B, representing
the bulge factor of the arc. The bulge factor is the ratio of the arc’s height, H, to half the
chord length, D/2; so B=2H/D. The arc is traversed counter-clockwise from Py to P;.

In the argument sequence of a function an arc is shown as arc, as in Radius2D [arc].
arc[0] gives the coordinates of the start point, arc[1] gives the coordinates of the end point
and Bulge2D [arc] gives the bulge factor. Suggested symbolic names for an Arc2D include the
series: (al, a2, ...), (A1, A2, ...) and (arcl, arc2, ...).

The parametric equations of an Arc2D using parameter ¢ are

x(t) = h+ (zg— h)cos(0t) — (yo — k) sin(5t)
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Y

Figure 22.3: Standard representation of a Circle2D.

y(t) = k+ (zo — h)sin(Bt) + (yo — k) cos(Bt)

where (h, k) is the center point of the arc, and § is the angular span of the arc. Both the
center point and the angular span are functions of the defining points and the bulge factor
as described in the “Arcs” chapter. Values of ¢ in the range 0 < t < 1 generate coordinates
on the complete span of the arc. Arc2D[{zo, yo}, {1, y1}, Bl [t] returns the coordinates
of a point on an arc at parameter ¢. The expression Arc2D [{zo, yo}, {1, y1}, Bl [{t1, t2}]
when used in a plotting command, such as Sketch2D, will cause the portion of the arc between
parameters t; and ¢y to be plotted.

Circle2D

Circle2D[{h, k}, 71 is the standard representation of a circle in Descarta2D as illustrated in
Figure 22.3. The center of the circle is given as a coordinate list, {4, k}, and the radius is the
positive scalar, r. The equation of the circle is

(@ = h)* + (y — k) =12,

In the argument sequence of a function, a Circle2D is shown as circle or cir, as in
Radius2D[circle] or Radius2D[cir]. The function Coordinates2D [circle] gives the center
point coordinates of a circle and Radius2D [circle] gives the radius, r. Suggested symbolic
names for a Circle2D include the series: (c1, c2,...), (C1, C2, ...) and (cirl, cir2, ...).

The parametric equations of a Circle2D using parameter 6 are

z(0) = h+rcosd
y(@) = k+rsind.

Values of 0 in the range 0 < 6§ < 27 generate coordinates on the complete circumference of the
circle. Circle2D[{h, k}, 7] [A] returns the coordinates of the point on a circle at parameter
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Figure 22.4: Standard representation of a ConicArc2D.

6. The expression Circle2D[{h, k}, r]1 [01 [{61, 02}] when used in a plotting command, such
as Sketch2D, will cause the arc of the circle between parameters 6; and 6, to be plotted.

Conic Arc

ConicArc2D[{zo, vo}, {4, ya}, {71, 11}, p] is the standard representation of a conic arc in
Descarta2D as illustrated in Figure 22.4. The first and third arguments are the coordinates of
the start and end points of the conic arc, respectively. The second argument is the coordinates
of the apex point of the conic arc (the apex point is the intersection point of the tangent lines
at the start and end points). The fourth argument, p, is a scalar representing the projective
discriminant of the conic arc. Values of p in the range 0 < p < 1/2 are elliptical arcs; values
in the range 1/2 < p < 1 are hyperbolic arcs; and the value 1/2 is a parabolic arc.

In an argument sequence, a ConicArc2D is shown as cnarc, as in Rho2D[cnarc]. The
function Coordinates2D [cnarc, Apex2D] returns the coordinates of the apex point of a conic
arc and Rho2D [cnarc] gives the value of p. ConicArc2D[{zy, yo}, {za, ya}, {z1, 11}, pl [{]
with ¢ = 0 gives the coordinates of the start point and with ¢ = 1 gives the coordinates of the
end point. Suggested symbolic names for a ConicArc2D include the series: (cal, ca2, ...),
(CA1, CA2, ...) and (cnarcl, cnarc2, ...).

The parametric equations of a ConicArc2D using parameter ¢ are

bo(1 — p)xo + bipra 4 ba(1 — p)zs
bo(1 — p) +bip+ba(l —p)

bo(1 — p)yo + bipya + ba2(1 — p)ys
bo(1 —p) +bip+b2(1—p)

xz(t) =

where by = (1 —t)?, by = 2t(1 — t) and by = t2. Values of ¢ in the range 0 < t < 1 generate
coordinates on the complete span of the conic arc. The expression

ConicArc2D[{zo, yo}, {za, ya}, {m, 1}, pl [{t1, t2}]

when used in a plotting command, such as Sketch2D, will cause the portion of the conic arc
between parameters t; and t5 to be plotted.
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Figure 22.5: Standard representation of an E11ipse2D.

Coordinates

Coordinates {z, y} are used to represent an (z,y) position in DescartazD. In an argument
sequence coordinates are shown as coords such as Point2D [coords], or in explicit forms such
as {h, k} or {z, y} as in Point2D [{z, y}]. Suggested symbolic names for coordinates include
the series: (c1, c2,...), (C1,C2,...) and (coordsl, coords2, ...).

Ellipse2D

Ellipse2D[{h, k}, a, b, 0] is the standard representation of an ellipse in Descarta2D as il-
lustrated in Figure 22.5. The first argument, {h, k}, is a list of coordinates representing the
center of the ellipse. The second argument is a positive scalar, a, representing the length of
the semi-major axis. The third argument is a positive scalar, b, representing the length of the
semi-minor axis. In a valid ellipse, the length of the semi-major axis must be greater than
the length of the semi-minor axis, a > b. The fourth argument, 6, is the angle of rotation of
the ellipse measured from the +az-axis counter-clockwise to the major axis of the ellipse and
is normalized to the range 0 < 6 < . The underlying equation of the (non-rotated) ellipse is

(o= h?  (y=h? _

p> = 1.

In an argument sequence, an ellipse is shown as ellipse, as in Angle2D [ellipse]. The func-
tion Coordinates2D [ellipse] returns the center point coordinates of an ellipse; the function

SemiMajorAxis2D [ellipse]

gives the length of the semi-major axis, a, and the function
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Figure 22.6: Standard representation of a Hyperbola2D.

SemiMinorAxis2D [ellipse]l

gives the length of the semi-minor axis, b; and Angle2D [ellipse] gives the angle of rotation,
0. Suggested symbolic names for an E11ipse2D include the series: (el, e2, ...), (E1, E2, ...)
and (elll, ell2, ...).

The parametric equations of a (non-rotated) E11ipse2D using the parameter « are

z(a) = h+acosa

yla) = k+bsina.

Values of « in the range 0 < a < 27 generate coordinates on the complete circumference of the
ellipse. E11ipse2D[{h, k}, a, b, 0] [a] returns the coordinates of the point on an ellipse at
parameter . The expression E11lipse2D[{h, k}, a, b, 01 [{a1, a2}] when used in a plotting
command, such as Sketch2D, will cause an arc of the ellipse between parameters oy and as
to be plotted.

Hyperbola2D

Hyperbola2D[{h, k}, a, b, 6] is the standard representation of a hyperbola in Descarta2D as
illustrated in Figure 22.6. The first argument, {h, k}, is a list of coordinates representing the
center of the hyperbola. The second argument is a positive scalar, a, representing the length
of the semi-transverse axis. The third argument is a positive scalar, b, representing the length
of the semi-conjugate axis. The fourth argument, 6, is the angle of rotation of the hyperbola
measured from the +z-axis counter-clockwise to the transverse axis of the hyperbola and is
normalized to the range 0 < 6 < 7. The underlying equation of the (non-rotated) hyperbola
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is
(x—h)? (y—k)? _
a? b2
In an argument sequence, a hyperbola is shown as hyperbola, as in Angle2D [hyperbola] .
The function Coordinates2D [hyperbolal returns the center point coordinates of a hyperbola;
the function

1.

SemiTransverseAxis2D [hyperbolal
gives the length of the semi-transverse axis, a, and the function
SemiConjugateAxis2D [hyperbolal

gives the length of the semi-conjugate axis, b; and Angle2D [hyperbola] gives the angle of
rotation, §. Suggested symbolic names for a Hyperbola2D include the series: (h1, h2, ...),
(H1, H2, ...) and (hypl, hyp2, ...).

The parametric equations of a (non-rotated) Hyperbola2D using parameter ¢ are

x(t) = h+ acosh(st)
y(t) = k+ bsinh(st)

where s = Cosh_l(e) and e is the eccentricity of the hyperbola. Values of ¢ in the range
—00 < t < oo generate coordinates on the branch of the hyperbola opening to the right in the
non-rotated position. Hyperbola2D[{h, k}, a, b, 81 [¢] returns the coordinates of the point
on a hyperbola at parameter ¢t. The values ¢ = +1 generate coordinates at the ends of the
focal chord of the hyperbola. The expression Hyperbola2D[{h, k}, a, b, 01 [{t1, t2}] when
used in a plotting command, such as Sketch2D, will cause an arc of the hyperbola between
parameters t; and ts to be plotted. If t; < t5, the arc will be on the right branch of the
(non-rotated) hyperbola; if 1 > tg, the arc will be on the left branch of the (non-rotated)
hyperbola.

Line2D

Line2D[A, B, (] is the standard representation of an infinite line Az + By + C' = 0. At least
one of the first two coefficients, A or B, must be non-zero. The parametric equations of a line
using parameter t are

x(t) = ac+ bt and y(t) = bc — at
where

A B C

i vre M T U
The coordinates of the point on the line nearest the origin will be at parameter ¢ = 0 and
other coordinates, parameterized by distance ¢, —oo < t < oo, along the line are given by
Line2D[A, B, C]1[#]. The expression Line2D[A, B, C1 [{t1, t2}] when used in a plotting
command, such as Sketch2D, will cause a segment of the line between parameters t; and to
to be plotted.
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Figure 22.7: Standard representation of a Parabola2D.

In an argument sequence, a Line2D object is shown as line or In, as in Angle2D [line] or
Angle2D[In]. Suggested symbolic names for a Line2D include the series: (11, 12, ...), (L1,
L2, ...) and (1n1, 1n2, ...).

Parabola2D

Parabola2D[{h, k}, f, 6] is the standard representation of a parabola in Descarta2D as il-
lustrated in Figure 22.7. The first argument, {h, k}, is a list of coordinates representing the
vertex of the parabola. The second argument is a positive scalar, f, representing the focal
length of the parabola. The third argument, 6, is the angle of rotation of the parabola mea-
sured from the +x-axis counter-clockwise to the axis of the parabola and is normalized to the
range 0 < 6 < 27. The underlying equation of the (non-rotated) parabola is

(y— k)2 = 4f(x — h).

In an argument sequence, a parabola is shown as parabola, as in Angle2D [parabolal.
The function Coordinates2D [parabola] returns the vertex point coordinates of the parab-
ola; FocalLength2D [parabola] gives the focal length of the parabola; and Angle2D [parabolal
gives the angle of rotation, f. Suggested symbolic names for a Parabola2D include the series:
(p1, p2, ...), (P1, P2, ...) and (pbl, pb2, ...).

The parametric equations of a Parabola2D using parameter ¢ are

z(t) = h+ ft* and y(t) =k + 2ft.

Values of ¢ in the range —oco < t < 0o generate coordinates on the parabola opening to the
right in the non-rotated position. Parabola2D[{h, k}, f, 6] [t] returns the coordinates of the
point on a parabola at parameter ¢. The values ¢t = +1 generate coordinates at the ends of the
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focal chord of the parabola. The expression Parabola2D[{h, k}, f, 61 [{t1, t2}] when used in
a plotting command, such as Sketch2D, will cause an arc of the parabola between parameters
t1 and to to be plotted.

Point2D

Point2D[{z, y}] (which is the same as Point2D [coords]) is the standard representation of a
point. The coordinates define the (z,y) position of the point. In an argument sequence, a
point is shown as point or pt, as in Coordinates2D [point] and Coordinates2D [pt]. Suggested
symbolic names for a Point2D include the series: (p1, p2, ...), (P1, P2, ...) and (pt1, pt2,

XCoordinate2D [point] and YCoordinate2D [point] return the x- and y-coordinate, re-
spectively, of a point. Coordinates2D [point] returns the (z,y) coordinates of a point as a
coordinate list.

Quadratic2D
Quadratic2D[A, B, C, D, E, F] is the standard representation of the quadratic

Az + Bay +Cy> + Dz + Ey+ F = 0.

At least one of the first five coefficients must be non-zero. In general, the quadratic will
represent a conic curve, but certain combinations of coefficients may represent degenerate
conics (lines and points) or no locus at all. In an argument sequence, a Quadratic2D is shown
as quad, as in Point2D[quad]. Suggested symbolic names for a Quadratic2D include the
series: (q1, 92, ...), (Q1, Q2, ...) and (quadl, quad?, ...). Descarta2D provides no parametric
representation for a quadratic (the specific conics have parametric representations).

Segment2D

The form Segment2D[{xo, yo}, {z1, y1}] is the standard representation of a line segment
in Descarta2D. The coordinates {xo, yo} and {z1, y1} are the start and end coordinates,
respectively, of the line segment.

In an argument sequence, a Segment?2D is shown as Inseg, as in Angle2D [Inseg]. Suggested
symbolic names for a Segment2D include the series: (11, 12, ...), (L1, L2, ...) and (1nsegl,
lnseg?2, ...).

The parametric equations of a Segment2D using parameter ¢ are

x(t) = xo+t(r1 — x0)
Yo +t(y1 — yo)-

<

—~
~

~—

Values of t in the range 0 < 6§ < 1 generate coordinates over the complete length of the
line segment. Segment2D[{zo, y0}, {z0, yo}]1 [t] returns the coordinates of the point on a
line segment at parameter ¢t. The parameter value t = 0 generates the coordinates of the
start point of the line segment and the value t = 1 generates the end point coordinates. The
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Figure 22.8: Standard representation of a Triangle2D.

expression Segment2D [{zg, yo}, {1, y1}1[{t1, t2}] when used in a plotting command, such
as Sketch2D, will cause a portion of the line segment between parameters t; and to to be
plotted.

Triangle2D

Triangle2D[{z1, y1}, {z2, y2}, {x3, ys}]1, as illustrated in Figure 22.8, is the standard rep-
resentation of a triangle with vertex points (x1,y1), (z2,y2) and (z3,ys). The vertex points
cannot be coincident or collinear. Coordinates2D [triangle, n] returns the coordinates of
vertex n of a triangle, n = 1,2, 3.

In an argument sequence a Triangle2D is shown as triangle, as in Area2D [triangle]. Sug-
gested symbolic names for a Triangle2D include the series: (t1, t2, ...), (T1, T2, ...) and
(tril, tri2, ...).

Object Queries

Each object in Descarta2D responds to a set of special queries essential to the operation of
Descarta2D. These special queries are listed below:

IsDisplay2D returns True if the object can be displayed using the Sketch2D command.
Is2D returns True if the object’s head is in a given list.

IsValid2D returns True if the object is a Descarta2D object and each of its parameters is of
the proper type and form.

ObjectNames2D returns a list of strings that are the names of all Descarta2D objects.
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Table 22.2: Reserved names in Descarta2D (packages).

D2DArc2D D2DHyperbola2D D2DQuadratic2D
D2DArcLength2D D2DIntersect2D D2DSegment2D
D2DArea2D D2DLine2D D2DSketch2D
D2DCircle2D D2DLoci2D D2DSolve2D
D2DConic2D D2DMaster2D D2DTangentCircles2D
D2DConicArc2D D2DMedial2D D2DTangentConics2D
D2DEllipse2D D2DNumbers2D D2DTangentLines2D
D2DEquations2D D2DParabola2D D2DTangentPoints2D
D2DExpressions2D D2DPencil2D D2DTransform2D
D2DGeometry2D D2DPoint2D D2DTriangle2D

If you add a new object to Descarta2D, the object will need to respond properly to these
queries if you desire that the object behave in an integrated manner. Refer to the source code
listings to determine how each of these queries can be implemented.

22.4 Descarta2D Packages

A relatively small number of Mathematica packages (*.m files) provide support for all the
Descarta2D functions. Your computer system must be set up to allow Mathematica to find
these files before you can use any of the Descarta2D functions. In order to set up Mathematica
to use the Descarta2D package files, you need copy the folder Descarta?2D from the Descarta2D
CD-ROM onto your hard drive. Descarta2D must be copied into a folder that Mathematica
searches when loading packages. Typically, in a standard Mathematica installation, this will
be the folder

c:\Program Files\Wolfram Research\Mathematica\3.0\AddOns\Applications\

although this directory path may be different for your installation of Mathematica. The
master package file for Descarta2D will be loaded by issuing the command <<Descarta2D°.
After this command is entered, Mathematica will automatically find and load all the packages
as required to execute Descarta2D commands.

The package names are listed in Table 22.2. Each package defines symbols that are then
owned by the package. The definitions in each package provide either support for Descarta2D
objects (such as Point2D, Line2D, Circle2D, etc.) or functions (such as Radius2D [circle]
that returns the radius of a circle, or Line2D [point, point] that constructs a line between two
points).
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Table 22.3: Reserved names in Descarta2D (general functions).

Angle2D
ArcLength2D
Area2D
Asymptotes2D
Bulge2D
Centroid2D
Circumference2D
Coordinates2D
Directrices2D
Distance2D
Eccentricity2D
Equation2D
FocalChords2D
FocalLength2D
Foci2D
Length2D
Loci2D

MedialLoci2D
Parameters2D
Perimeter2D
Points2D
Polynomial2D
PrimaryAngle2D
PrimaryAngleRange2D
Radius2D

Reflect2D
ReflectAngle2D
Rho2D

Rotate2D

Scale2D
SectorArea2D
SegmentArea2D
SemiConjugateAxis2D
SemiMajorAxis2D

MedialEquations2D SemiMinorAxis2D

SemiTransverseAxis2D
SimplifyCoefficients2D
Sketch2D

Slope2D
SolveTriangle2D
Span2D
TangentCircles2D
TangentConics2D
TangentEquation2D
TangentLines2D
TangentPoints2D
TangentQuadratics2D
TangentSegments2D
Translate2D
Vertices2D
XCoordinate2D
YCoordinate2D

22.5 Descarta2D Functions

Descarta2D provides geometric computing facilities by introducing a number of general func-
tions and queries whose names are listed in Table 22.3 and 22.4.

Some Descarta2D functions require keywords.

Table 22.5.

A complete list of keywords is listed in

There are a number of low-level functions provided by Descarta2D that are useful for
implementing new functions. These are listed in Table 22.6.

Table 22.4: Reserved names in Descarta2D (general queries).

IsCoincident2D IsConcurrent2D
IsCollinear2D IsOn2D
IsConcentric2D IsParallel2D

IsPerpendicular2D
IsTangent2D
IsTripleParallel2D
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Table 22.5: Reserved names in Descarta2D (keywords).

Apex2D Conjugate2D Parallel2D
Circumscribed2D Inscribed2D Pencil2D
Complement2D MaxSeconds2D Perpendicular2D

22.6 Descarta2D Documentation

This entire book, including the subject matter chapters, reference chapters and exploration
notebooks, is provided on the CD-ROM in two formats. The first format provided is Adobe’s
Portable Document Format (PDF) and is useful for passive reading and printing of typeset
renderings of the book identical to the printed version of the book. PDF files may be viewed
and printed using Adobe’s Acrobat Reader program that can be downloaded at no charge
from Abode’s web site, www.adobe.com. The PDF files can be read directly off the CD-ROM
or they can be copied into any convenient location on your disk drive.

The second format provided is Wolfram Research’s Mathematica notebook format. Note-
books can be viewed interactively using Mathematica itself, or in a passive manner using
Wolfram’s MathReader program. MathReader is available at no charge and can be down-
loaded from Wolfram’s web site, www.wolfram.com. Both Mathematica and MathReader can
print notebook files.

Assuming that the Descarta2D folder has been copied from the CD-ROM into the appropri-
ate Mathematica folder on your system, the documentation notebooks can be fully integrated
into the Mathematica Help Browser. This is accomplished by clicking the Mathematica Front
End menu item Help, Rebuild Help Index.... After the index has been rebuilt, all of the text
and documentation for the book will be available interactively in the Help Browser. The
material will be listed by clicking the AddOn button in the Help Browser and then selecting
the item named Descarta2D. Notebooks whose links are clicked in the Help Browser category
listing windows will be opened in the Help Browser; links clicked in the notebooks themselves

Table 22.6: Reserved names in Descarta2D (low-level functions).

AskCurvelLength2D IsDisplay2D IsZero2D
ChopImaginary2D IsNegative2D IsZeroOrNegative2D
CurveLength2D IsNumeric2D MakePrimitives2D
CurvelLimits2D IsReal2D ObjectNames2D
D2DPath2D IsScalar2D SetDisplay2D

Is2D IsScalarPair2D Solve2D

IsApproximate2D IsTinyImaginary2D
IsComplex2D IsValid2D
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will be opened at live notebooks in the Front End.
For Windows systems, installation files for Adobe Arcrobat Reader and MathReader are
provided on the CD-ROM.
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Command Browser

This chapter is an alphabetical listing of all the commands provided by Descarta2D. The
syntax and usage of each command is described, as well as notes outlining special options
and defaults. Additionally, a cross-reference pointing to related commands is provided in each
section. Commands described as being low-level are used in the internal implementation of
DescartazD. Low-level commands may be used freely, but they are not generally mentioned in
the subject matter chapters of the book. Page numbers enclosed in square brackets indicate
the page in the package listings where the implementation of the command is found.

M Angle2D

Angle2D [line] computes the angle a line makes with the +x-axis, when measured
counter-clockwise from the +x-axis to the line. [460]

Angles in Descarta2D are always specified and returned in radians.
Angle2D[arc] computes the angular span of an arc. [389]

Angle2D[arc, t] computes the angle a radial diameter passing through the point
at parameter ¢ on the arc makes with the +x-axis. [389]

Angle2D[conic] returns the rotation angle of a conic curve. The conic may be an
ellipse [423], hyperbola [448] or parabola [481].

Angle?2D [line, line]l computes the angle measured counter-clockwise from the
first line to the second line. [460]

Angle2D[triangle, n] computes the vertex angle at vertex n of a triangle. [547]

See also: PrimaryAngle2D, PrimaryAngleRange2D, ReflectAngle2D.

W Apex2D

Apex2D is a keyword indicating the construction of the apex control point of a conic arc. [419]

341
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See also: Point?2D.

W Arc2D

Arc2D[{zo, Yo}, {x1, y1}, B] is the standard representation of an arc. The coordinates of
the start point are (zg,yo) and the coordinates of the end point are (z1,y1). The bulge
factor is the positive number B. The arc is traversed counter-clockwise from the start point
to the end point. [387]

The bulge factor, B, is the ratio of the arc’s height, h, to half the chord length,
d/2; so B =2h/d.

Arc2D[{zo, yo}, {z1, y1}, Bl [¢] and arc[t] return the {z, y} coordinates of a
point at parameter ¢t on an arc. Parameter values in the range 0 < ¢ < 1 produce
coordinates covering the complete span of the arc. [388]

Arc2D[{zo, yo}, {z1, y1}, Bl [{t1, t2}] produces graphics primitives for a
portion of an arc between parameters t; and to when plotted. [388]

Arc2D[arc, Complement2D] constructs the complement of an arc. [391]

Arc2D[point, r, {01, 02}] constructs an arc from the center point, radius and
span. The angles, 6; and 65, are measured counter-clockwise from the
+z-axis. [392]

Arc2D [point, r, {point;, pointa}] constructs an arc from the center point, radius
and the start and end points of the span. The start/end points do not need to lie
on the arc, although they cannot be coincident with the center. [393]

Arc2D [point, point, point] constructs an arc passing through three points. The
first and third points define the span of the arc. [393]

Arc2D [{point, 0}, point] constructs an arc from a start point with entry angle
and an end point. [392]

See also: Bulge2D, Complement2D.

W ArcLength2D

ArcLength2D [curve, {t1, t2}] computes the arc length of a curve between two parameter
values.

The curve may be an arc [396], circle [396], ellipse [397], hyperbola [397], line [397],
line segment [397] or parabola [398].

N[ArcLength2D[cnarc, {t1, t2}]1] numerically computes the arc length of a conic
arc between two parameter values. [396]

See also: Circumference2D, Length2D, Perimeter2D, Span2D.

W Area2D

Area2D[curve] computes the area associated with a curve.




Command Browser 343

The curve may be an arc, circle, conic arc, ellipse or triangle.
Area2D[arc] computes the area between an arc and its chord. [399]
Area2D [circle] computes the area of a circle. [400]

Area2D[cnarc] computes the area between a conic arc and its chord. [401]
Area2D[ellipse] computes the area of an ellipse. [401]

Area2D [triangle] computes the area of a triangle. [403]

See also: SectorArea2D, SegmentArea2D.

W AskCurveLength2D

AskCurveLength2D[] is a low-level function that returns the value of the CurveLength2D
option of the Sketch2D command. [513]

See also: CurveLength2D, Sketch2D.

W Asymptotes2D

Asymptotes2D [hyperbolal constructs a list containing the two asymptote lines of a
hyperbola. [413]

W Bulge2D

Bulge2D [arc] returns the bulge factor of an arc. [390]

See also: Arc2D.

B Centroid2D

Centroid2D is a keyword indicating the construction of a triangle’s centroid point. [551]

See also: Point?2D.

B ChopImaginary2D

ChopImaginary2D [expr, tol] is a low-level function that removes insignificant imaginary
parts of complex numbers in an expression. The imaginary part is considered insignificant if
its absolute value is less than the tolerance. [477]

The tolerance, if omitted, defaults to 1071°.

B Circle2D

Circle2D[{h, k}, r] is the standard representation of a circle. The coordinates of the center
point of the circle are {h, k} and the radius is r. [405]
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Circle2D[{h, k}, r1[0] and circle[#] return the {z, y} coordinates of a point at
parameter 6 on a circle. Parameter values in the range 0 < 6 < 27 produce
coordinates covering the complete circumference of the circle. [406]

Circle2D[{h, k}, r1 [{61, 62}]1 produces graphics primitives for the arc of the
circle between parameters 6; and 63 when plotted. [406]

Circle2D [arc] constructs the circle underlying an arc. [391]

Circle2D[circle, circle, k, Pencil2D] constructs a circle, parameterized by the
variable k, that represents the family (pencil) of circles passing through the
intersection points of the two given circles. The family of circles is valid even if
the two circles do not intersect as they will share a common radical axis. [486]

Circle2D[Inseg] constructs the circle whose diameter chord is a given line
segment. [509]

Circle2D[point, r] constructs the circle centered at a point with a given
radius. [409]

Circle2D [point, point] constructs the circle given a center point and a point on
the circle. [409]

Circle2D [point, point, point] constructs a circle through three points. [410]

Circle2D[point, line] constructs a circle with a given center point and tangent
to a line. [409]

Circle2D[quad] constructs the circle associated with a quadratic. [409]

Circle2D [triangle, Circumscribed2D] constructs a circle circumscribed about a
triangle. [553]

Circle2D [triangle, Inscribed2D] constructs a circle inscribed inside a
triangle. [553]

See also: Inscribed2D, Circumscribed2D, Pencil2D, TangentCircles2D.

B Circumference2D

Circumference2D [circle] computes the circumference of a circle. [396]

Circumference [ellipse] computes the circumference of an ellipse. [397]

See also: ArcLength2D.

B Circumscribed2D

Circumscribed2D is a keyword indicating a construction involving a triangle’s circumscribed
circle. [552]

See also: Circle2D, Point2D.
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B Complement2D

Complement?2D is a keyword indicating the construction of an arc’s complement. [391]

See also: Arc2D.

W ConicArc2D

ConicArc2D[{zo, Yo}, {za,ya}, {1, y1}, p] is the standard representation of a conic arc.
The coordinates of the start point are {zg, yo}, the coordinates of the apex point are

{z4, ya} and the coordinates of the end point are {x;, y1}. The projective discriminant is
p. [415]

ConicArc2D[{zo, yo}, {za, ya}, {1, y1}, p1 [t] and cnarclt] return the {z, y}
coordinates of a point at parameter ¢ on a conic arc. Parameter values in the
range 0 < t < 1 produce coordinates covering the entire length of the conic

arc. [416]

ConicArc2D[{zo, Yo}, {za, ya}, {z1, y1}, p] [{t1, t2}] produces graphics
primitives representing the portion of the conic arc between parameters t; and to
when plotted. [416]

ConicArc2D[line, conic] constructs a conic arc defined by a conic (circle, ellipse,
hyperbola or parabola) and a line containing the conic arc’s chord. [419]

B Conjugate2D

Conjugate2D is a keyword indicating the construction of a conjugate hyperbola. [450]

See also: Hyperbola2D.

B Coordinates2D

Coordinates2D [args..] returns the {z, y} coordinates of the point that would be returned
by the function Point2D [args..]. [490]

See also: Point2D, XCoordinate2D, YCoordinate2D.

B CurveLength2D

CurveLength?2D is an option for the Sketch2D command specifying the approximate length
that an unbounded curve should be rendered when plotted. [512]

The initial default, if not specified, is 10. The default can by changed using the
Mathematica SetOptions command.

See also: AskCurveLength2D, Sketch2D.
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B CurvelLimits2D

CurvelLimits2D [coords, curve] is a low-level function that computes a list of two parameter
values on a curve such that the point whose coordinates are given is a distance
CurveLength2D/2 from the points on the curve at the parameter values. [513]

See also: AskCurveLength2D, CurveLength2D, Sketch2D.

M Directrices2D

Directrices2D[conic] returns a list of the directrix line(s) of a conic curve.

The conic may be an ellipse [413], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola there are two directrix lines in the list; if the conic is a
parabola there is one directrix line in the list.

B Distance2D

Distance2D [coords, coords] computes the distance between two positions given by
coordinates. [491]

Distance?2D [point, point] computes the distance between two points. [491]
Distance?2D [point, line] computes the distance between a point and a line. [460]
Distance2D [point, circle] computes the distance between a point and a

circle. [407]

WM Eccentricity2D

Eccentricity2D[conic] computes the eccentricity of a conic.

The conic may be a ellipse [412], hyperbola [412] or parabola [412].

WmEllipse2D

Ellipse2D[{h, k}, a, b, 0] is the standard representation of an ellipse. The coordinates of
the center point are {h, k}, the length of the semi-major axis is a, the length of the
semi-minor axis is b and the angle of rotation, counter-clockwise with respect to the +z-axis,
is 0. [421]

Ellipse2D[{h, k}, a, b, 01 [01] and ellipse[61] return the {z, y} coordinates of
a point at parameter #; on an ellipse. Parameter values in the range 0 < 6; < 27w
produce coordinates covering the complete circumference of the ellipse. [422]
Ellipse2D[{h, k}, a, b, 81 [{61, 02}] produces graphics primitives on the
portion of the ellipse between parameter values 6 and 6 when plotted. [422]

Ellipse2D[point, line, €] constructs an ellipse defined by a focus point, directrix
line and eccentricity. [426]
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Ellipse2D[point, point, €] constructs an ellipse from two focus points and the
eccentricity. [426]

Ellipse2D[{point, point}, €] constructs an ellipse from two vertex points and
the eccentricity. [425]

B Equation2D

Equation2D [line, {z, y}] returns the equation Az + By 4+ C == 0, which is the equation of
the line. [428]

Equation2D[quad, {z, y}] returns Ax? + Bxy + Cy* + Dz + Ey + F == 0,
which is the equation of the quadratic. [428]

See also: Polynomial2D.

B FocalChords2D

FocalChords2D [conic] returns a list containing the focal chords of a conic curve (line
segments).

The conic may be an ellipse [414], hyperbola [414] or parabola [414]. If the conic is
an ellipse or hyperbola the list contains two focal chords (line segments); if the
conic is a parabola the list contains a single focal chord (line segment).

B FocallLength2D

FocalLength2D [parabolal returns the focal length of a parabola. [481]

See also: Parabola?2D.

B Foci2D

Foci2D[conic] returns a list containing the focus point(s) of a conic.

The conic may be an ellipse [412], hyperbola [412] or parabola [412]. If the conic is
an ellipse or hyperbola the list contains two focus points; if the conic is a
parabola the list contains a single focus point.

W Hyperbola2D

Hyperbola2D[{h, k}, a, b, 0] is the standard representation of a hyperbola. The
coordinates of the center point are {h, k}, the length of the semi-transverse axis is a, the
length of the semi-conjugate axis is b and the angle of rotation, counter-clockwise with
respect to the +z-axis, is 6. [445]

Hyperbola2D[{h, k}, a, b, 01 [t] and hyperbola[t] return the {z, y} coordinates
of a point at parameter ¢ on the primary branch of a hyperbola. Parameter
values in the range —oo < t < 400 cover the complete hyperbola branch. The
primary branch opens about the +x-axis when the angle of rotation is zero. [446]
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Hyperbola2D[{h, k}, a, b, 8, Truel [{] returns the {z, y} coordinates of a point
at parameter ¢ on the non-primary (reflected) branch of a hyperbola (used only
for graphics rendering). [446]

Hyperbola2D[{h, k}, a, b, 61 [{t1, t2}] produces graphics primitives for a
portion of the hyperbola between parameters values ¢t; and to when plotting. If
t; < to the parameters represent a portion of the primary branch of the
hyperbola; if t; > t5 the parameters represent a portion of the other branch. [446]

Hyperbola2D [hyperbola, Conjugate2D] constructs the conjugate of a
hyperbola. [450]

Hyperbola2D [point, line, €] constructs a hyperbola defined by a focus point,
directrix line and eccentricity. [451]

Hyperbola2D [point, point, €] constructs a hyperbola from two focus points and
the eccentricity. [450]

Hyperbola2D [{point, point}, el constructs a hyperbola from two vertex points
and the eccentricity. [450]

See also: Conjugate2D.

W Inscribed2D

Inscribed2D is a keyword indicating a construction involving a triangle’s inscribed
circle. [552]

See also: Circle2D, Point2D.

W Is2D

Is2D [object, objHeadList] is a low-level function that returns True if the object is a valid
DescartazD object and its head is included in the head list; otherwise, returns False. [472]

W IsApproximate2D

IsApproximate2D [expr] is a low-level function that returns True if the expression contains
approximate real numbers; otherwise, returns False. [431]

The function will attempt to detect if the pending evaluation will eventually be
approximated using the N[ezpr] function. If this condition is detected the
function will also return True.

W IsCoincident2D

IsCoincident2D [0bj, 0bj] returns True if two objects are of the same type and are
coincident; otherwise, returns False. The objects may be circles, coordinates, lines, points
or quadratics. [439]

The function returns unevaluated if the two objects are of a different type.
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IsCoincident2D [objList] returns True if any pair of objects in a list are of the
same type and are coincident; otherwise, returns False. [440]

MW IsCollinear2D

IsCollinear2D [point, point, point] returns True if three points are collinear; otherwise,
returns False. [440]

IsCollinear2D [ptList] returns True if any triple of points in a list is collinear;
otherwise, returns False. [440]

W IsComplex2D

IsComplex2D [expr, tol] is a low-level function that returns True if the expression, when
evaluated, contains a complex number (a number is considered complex if the absolute value
of its imaginary part is greater than the tolerance); otherwise, returns False. [431]

The tolerance, if omitted, defaults to 10719.

IsComplex2D [exprList, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D [exprList, Or, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D [exprList, And, tol] returns True if all the expressions in a list,
when evaluated, contain complex numbers; otherwise, returns False. [432]

B IsConcentric2D

IsConcentric2D [circle, circle] returns True if two circles are concentric; otherwise, returns
False. [440]

IsConcentric2D [cirList] returns True if any pair of circles in a list are
concentric; otherwise, returns False. [440]

B IsConcurrent2D

IsConcurrent2D [line, line, line] returns True if three lines are concurrent (intersect in a
common point); otherwise, returns False. [441]

IsConcurrent2D [InList] returns True if any triple of lines in a list is concurrent;
otherwise, returns False. [441]

W IsDisplay2D

IsDisplay2D[object] is a low-level function that returns True if the object is a displayable
DescartazD object; otherwise, returns False. [512]
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W IsNegative2D

IsNegative2D [expr, tol] is a low-level function that returns True if the expression, when
evaluated, is negative (a number is considered negative if it is less than zero and its absolute
value is greater than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 1071°.

IsNegative2D [exprList, tol]l returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D [exprList, Or, tol]l returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D [exprList, And, tol] returns True if all the expressions in a list,
when evaluated, are negative; otherwise, returns False. [434]

See also: IsZero2D, IsZeroOrNegative2D.

W IsNumeric2D

IsNumeric2D [expr, tol] is a low-level function that returns True if all the atoms in an
expression can be evaluated to real numbers (a complex number is considered real if the
absolute value of its imaginary part is less than the tolerance); otherwise, returns False. [432]

The tolerance, if omitted, defaults to 107,

IsNumeric2D [expr, funcName, tol] returns True if all the atoms in an
expression can be evaluated to real numbers; otherwise, returns False and
displays a message stating that the function, funcName, requires numerical
arguments. This form is a low-level function and is intended to be used for
argument checking. [432]

W Is0n2D

Is0n2D [point, curve] returns True if a point is on a curve; otherwise, returns False.

The curve may be a line [441], circle [441] or quadratic [441].

Is0n2D [point, Quadratic2D [conic]] returns True if a point is on a conic;
otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola.

W IsParallel2D

IsParallel2D[line, line] returns True if two lines are parallel; otherwise, returns
False. [442]

IsParallel2D[InList] returns True if any pair of lines in a list is parallel;
otherwise, returns False. [442]
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See also: IsTripleParallel2D.

W IsPerpendicular2D

IsPerpendicular2D [line, line] returns True if two lines are perpendicular; otherwise,
returns False. [442]

IsPerpendicular2D[InList] returns True if any pair of lines in a list is
perpendicular; otherwise, returns False. [443]

W IsReal2D

IsReal2D[expr, toll is a low-level function that returns True if the expression, when
evaluated, is a real number (a complex number is considered real if the absolute value of its
imaginary part is less than the tolerance); otherwise, returns False. [433]

The tolerance, if omitted, defaults to 1071,

W IsScalar2D

IsScalar2D[expr] is a low-level function that returns True if the expression appears to be a
scalar quantity—that is, it cannot be recognized as a list, a complex number or a DescartazD
object; otherwise, returns False. [433]

This function is used by Descarta2D for argument checking.

See also: IsScalarPair2D.

W IsScalarPair2D

IsScalarPair2D [{expr, expr}] is a low-level function that returns True if both expressions
appear to be scalar quantities—that is, they cannot be recognized as lists, complex numbers
or Descarta2D objects; otherwise, returns False. [434]

This function is used by Descarta2D for argument checking.

See also: IsScalar?2D.

W IsTangent2D

IsTangent2D [line, circle] returns True if a line is tangent to a circle; otherwise, returns
False. [443]

IsTangent2D [line, quad] returns True if a line is tangent to a quadratic;
otherwise, returns False. [443]

IsTangent2D [line, Quadratic2D [conic]] returns True if a line is tangent to a
conic; otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola. [443]
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IsTangent2D [circle, circle] returns True if two circles are tangent to each other;
otherwise, returns False. [443]

B IsTinyImaginary2D

IsTinyImaginary2D [expr, tol] is a low-level function that returns True if any complex
number in an expression has a tiny imaginary part (the imaginary part is considered tiny if
its absolute value is less than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 107,

B IsTripleParallel2D

IsTripleParallel2D[line, line, line] returns True if three lines are mutually parallel;
otherwise, returns False. [442]

IsTripleParallel2D[inList] returns True if any triple of lines in a list is
mutually parallel; otherwise, returns False. [442]

See also: IsParallel?2D.

W IsValid2D

IsValid2D [object] is a low-level function that returns True if the object is syntactically
valid; otherwise, returns False. [472]

The object may be an arc [389], circle [406], conic arc [417], ellipse [423],
hyperbola [447], line [459], line segment [506], parabola [481], point [490],
quadratic [498] or triangle [546].

W IsZero2D

IsZero2D[expr, tol]l is a low-level function that returns True if the expression, when
evaluated, is zero (a number is considered zero if its absolute value is less than the
tolerance); otherwise, returns False. [435)

The tolerance, if omitted, defaults to 1071°.

IsZero2D [exprList, toll returns True if any expression in a list, when evaluated,
is zero; otherwise, returns False. [435]

IsZero2D[exprList, Or, tol] returns True if any expression in a list, when
evaluated, is zero; otherwise, returns False. [435]

IsZero2D [exprList, And, tol] returns True if all the expressions in a list, when
evaluated, are zero; otherwise, returns False. [435]

See also: IsNegative2D, IsZeroOrNegative2D.
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W IsZeroOrNegative2D

IsZeroOrNegative2D [expr, tol] returns True if the expression, when evaluated, is zero or
negative; otherwise, returns False. [435]

The tolerance, if omitted, defaults to 1071°.

IsZeroOrNegative2D [exprList, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D [exprList, Or, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D [exprList, And, tol] returns True if all the expressions in a
list, when evaluated, are zero or negative; otherwise, returns False. [436]

See also: IsNegative2D, IsZero2D.

W Length2D

Length2D [Inseg] computes the length of a line segment. [507]

See also: ArcLength2D.

B Line2D

Line2D[A, B, (] is the standard representation of the line Az + By + C' = 0. [458]

Line2D[A, B, C1[{] and line[t] return the {z, y} coordinates of a point at
parameter ¢ on a line. Parameter values in the range —oco < t < 400 produce
coordinates covering the complete line. [458]

Line2D[A, B, C][{t1, t2}] produces graphics primitives for the line segment
between parameters ¢; and to when plotting. [458]

Line2D [circle, circle] constructs the radical axis line of two circles. [408]

Line2D [coords, coords] constructs a line through two positions specified by
{z, y} coordinates. [462]

Line2D [ellipse] constructs a line which contains the major axis of an ellipse. [425]

Line2D[egn, {z, y}] constructs a line from the equation
Az + By + C == 0. [458]

Line2D [hyperbola] constructs a line which contains the transverse axis of a
hyperbola. [449]

Line2D [line] constructs a line with normalized coefficients. [461]

Line2D[line, d] constructs a line offset a distance d from a given line. The
distance may be positive or negative producing one of two possible offsets. [462]
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Line2D [line, line, k, Pencil2D] constructs a family of lines (pencil),
parameterized by k, passing through the intersection point of two given
lines. [485]

Line2D [Inseg] constructs a line containing a line segment. [508]

Line2D[Ilnseg, Perpendicular2D] constructs a line that is the perpendicular
bisector of a line segment. [508]

Line2D [parabola] constructs a line which contains the axis of a parabola. [483]

Line2D [point, curvel constructs the polar (line) of a curve given the pole
(point). If the pole (point) is on the curve, then the polar (line) is the tangent to
the curve at the pole (point). The curve may be a circle [408], ellipse [425],
hyperbola [450], parabola [483] or quadratic [463].

Line2D [point, k, Pencil2D] constructs a family of lines (pencil), parameterized
by k, passing through a point. [485]

Line2D [point, line] constructs a line through a point perpendicular to a
line. [463]

Line2D [point, line, Perpendicular2D] also constructs a line through a point
perpendicular to a line. [463]

Line2D [point, line, Parallel2D] constructs a line through a point parallel to a
line. [463]

Line2D [point, m] constructs a line with slope m passing through a point. [462]
Line2D [point, Infinity] constructs a vertical line through a point. [462]
Line2D [point, point] constructs a line through two points. [462]

Line2D [point, point, Perpendicular2D] constructs a line equidistant from two
points. This line is the perpendicular bisector of the line segment defined by the
two points. [463]

Line2D [poly, {z, y}] constructs a line from the polynomial Az + By + C'. [458]

Line2D [triangle, ny, no] constructs a line containing vertices n; and no of a
triangle. [552]

See also: Parallel2D, Pencil2D, Perpendicular2D.

W Loci2D

Loci2D[quad] returns a list of objects represented by a quadratic. The list may contain a
conic, one or two lines, a point or it may be empty. [465]

Loci2D[cnarc] returns a list containing the curve underlying a conic arc. [419]

Loci2D [point, length, €] returns a list containing the conic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The conic is constructed in standard
position. [468]
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Loci2D [point, length, e, 6] returns a list containing the conic defined by the
vertex equation parameters. The point is the vertex point, the length is the focal
length, the constant, e, is the eccentricity and 6 is the angle of rotation. [468]
Loci2D[point, line, e] returns a list containing the conic defined by a focus
point, directrix line and eccentricity. [468]

W MakePrimitives2D

MakePrimitives2D [curve, {t1, t2}] is a low-level function that returns a list of
Mathematica graphics primitives approximating a curve between two parameter values. [513]

The curve may be an arc, circle, conic arc, ellipse, hyperbola, line, line segment
or parabola.

B MaxSeconds2D

MaxSeconds2D is a keyword indicating the maximum number of seconds allowed for solving
equations. [516]

See also: Solve?2D.

B MedialEquations2D

MedialEquations2D[{obj, obj}] returns a list of lines or quadratics equidistant from two
given objects. The given objects may be points, lines or circles. [473]

See also: MedialLoci?2D.

B Medialloci2D

MedialLoci2D[{0bj, obj}] returns a list of objects equidistant from two given objects. The
given objects may be points, lines or circles. [474]

See also: MedialEquations2D.

B ObjectNames2D

ObjectNames2D[] returns a list of strings which are the names of all the Descarta2D
objects. [472]

W Parabola2D

Parabola2D[{h, k}, f, 0] is the standard representation of a parabola. The coordinates of
the vertex point are {h, k}, the focal length is f and the angle of rotation, counter-clockwise
with respect to the +z-axis, is 6. [479]

Parabola2D[{h, k}, f, 01 [¢] and parabolalt] return the {z, y} coordinates of a
point at parameter ¢t on a parabola. Parameter values in the range
—00 < t < 400 produce coordinates covering the complete parabola. [480]
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Parabola2D[{h, k}, f, 01 [{t1, t2}] produces graphics primitives for the portion
of the parabola between parameters ¢; and t, when plotting. [480]

Parabola2D [point, line] constructs a parabola defined by a focus point and a
directrix line. [483]

EMParallel2D

Parallel2D is a keyword indicating a parallel construction. [463]

See also: Line2D, TangentLines2D.

B Parameters2D

Parameters2D [line, curve] computes a list of the two parameters where a line intersects a
curve.

The curve may be a circle [455], ellipse [455], hyperbola [455] or parabola [456].
The list of parameters is useful for computing areas and arc lengths defined by
the line and the curve.

See also: ArcLength2D, SectorArea2D, SegmentArea2D.

B Pencil2D

Pencil2D is a keyword indicating the construction of a pencil of curves. [485]

See also: Line2D, Circle2D, Quadratic2D.

B Perimeter2D

Perimeter2D [triangle] computes the perimeter of a triangle. [398]

See also: ArcLength2D.

W Perpendicular2D

Perpendicular2D is a keyword indicating a perpendicular construction. [463]

See also: Line2D, TangentLines2D.

B Point2D

Point2D[{z, y}] or Point2D [coords] is the standard representation of a point with
coordinates {z, y}. [489]

Point2D[z, y] constructs a point at coordinates (z,y). [492]
Point2D [arc] constructs the center point of an arc. [391]

Point2D [circle] constructs the center point of a circle. [408]
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Point2D [cnarc] constructs the center point of the conic underlying a conic
arc. [419]

Point2D[cnarc, Apex2D] constructs the apex control point of a conic arc. [419]

Point2D [conic] constructs the center point of a central conic. The conic may be
a circle [408], ellipse [424] or hyperbola [449)].

Point2D [curve[#]] constructs a point at a parameter value on a curve.

Point2D[line, curvel constructs the pole (point) of a curve given the polar
(line). If the polar (line) is tangent to the curve, then the pole (point) is the
point of tangency. The curve may be a circle [408], ellipse [425], hyperbola [449],
parabola [482] or quadratic [494].

Point2D[line, line] constructs the intersection point of two lines. [494]
Point2D[Inseg] constructs the midpoint of a line segment. [508]

Point2D [parabola] constructs the vertex point of a parabola. [482]

Point2D [point, line] constructs a point by projecting a point onto a line. [493]

Point2D [point, line, d] constructs a point by offsetting a point a distance, d, in
the direction of a line. The distance may be positive or negative resulting in one
of two possible offset points. [493]

Point2D [point, line, {u, v}] constructs the point with coordinates {u, v} in the
coordinate system defined by a point and a line. The line defines the y-axis and
the point is on the +x-axis. [494]

Point2D [point, point] constructs the midpoint of two points. [493]

Point2D [point, point, d] constructs a point by offsetting a point a distance, d, in
the direction of a second point. If the distance is negative, the point is offset in
the opposite direction. [493]

Point2D [point, point, r1, r2] constructs a point dividing the segment between
two points into the ratio r1/ry. [493)]

Point2D [quad] constructs the center point of a quadratic, assuming the
quadratic is a central conic. [494]

Point2D [triangle, Centroid2D] constructs a point at the centroid of a
triangle. [551]

Point2D [triangle, Circumscribed2D] constructs the center point of a circle
circumscribed about a triangle. [552]

Point2D [triangle, Inscribed2D] constructs the center point of a circle inscribed
inside a triangle. [552]

Point2D [triangle, n] constructs a point at vertex n of a triangle. [552]

See also: Apex2D, Centroid2D, Circumscribed2D, Inscribed2D.
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B Points2D

Points2D [curve, curvel] constructs a list containing the intersection points of two
curves. [453]

The curves may be lines, circles, ellipses, hyperbolas, parabolas or quadratics.

B Polynomial2D

Polynomial2D [line, {z, y}] returns the polynomial Az + By + C, which is the polynomial
of the line. [428]

Polynomial2D[quad, {z, y}] returns Az? + Bxy + Cy? + Dx + Ey + F, which is
the polynomial of the quadratic. [428]

See also: Equation2D.

B PrimaryAngle2D

PrimaryAngle2D[f#] returns a primary angle in the range 0 < ¢ < 27 where
¢ =Mod [0, 27]. [478]

PrimaryAngle2D[#, 27] returns a primary angle in the range 0 < ¢ < 27 where
¢ is given by Mod [6, 27]. [478]

PrimaryAngle2D[#, 7] returns a primary angle in the range 0 < ¢ < m where ¢
is given by Mod [0, 7]. [478]

See also: PrimaryAngleRange2D.

B PrimaryAngleRange2D

PrimaryAngleRange2D [{#;, 02}] returns a list of two primary angles, {¢1, @2}, such that
0<¢1 <2mand ¢1 < ¢ < (P71 + 2m). [478]

PrimaryAngleRange2D [arc] returns a list of two primary angles, {¢1, ¢2}, which
are the spanning angles of the arc. [390]

See also: PrimaryAngle?2D.

W Quadratic2D

Quadratic2D[A4, B, C, D, E, F] is the standard representation of the quadratic given by
Az® 4+ Bay + Cy* + D+ Ey + F = 0. [497]

Quadratic2D [cnarc] constructs the quadratic underlying a conic arc. [416]

Quadratic2D[conic] constructs the quadratic associated with a conic. The conic
may be a circle [405], ellipse [422], hyperbola [446] or parabola [480].

Quadratic2D [coords] constructs the quadratic representing a position specified
by coordinates (a circle of zero radius). [500]
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Quadratic2D[egn, {z, y}]1 constructs a quadratic from an equation given in the
form Ax? + Bxy + Cy? + Dx + Ey + F == 0. [500]

Quadratic2D[line, line] constructs the quadratic representing the product of
two lines. [502]

Quadratic2D[{line, line}, {line, line}, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through the intersection points of four
lines taken in pairs. [486]

Quadratic2D[line, line, line, line, line] constructs the quadratic tangent to five
lines. [501]

Quadratic2D [point] constructs the quadratic representing a point (a circle of
zero radius). [491]

Quadratic2D [point, length, €] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The quadratic is constructed in standard
position. [502]

Quadratic2D [point, length, e, 6] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length,
the constant, e, is the eccentricity and 6 is the angle of rotation. [502]

Quadratic2D [point, line, e] constructs the quadratic defined by a focus point,
directrix line and eccentricity. [502]

Quadratic2D [point, point, point] constructs the quadratic representing the
circle passing through three points. [501]

Quadratic2D [point, point, point, point, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through four points. [487]

Quadratic2D [point, point, point, point, point] constructs a quadratic passing
through five points. [501]

Quadratic2D[poly, {z, y}] constructs a quadratic from the polynomial given in
the form Az? + Bxy + Cy? + Dz + Ey + F. [500]

Quadratic2D[quad] constructs a quadratic with normalized coefficients. [500]

Quadratic2D[quad, quad, k, Pencil2D] constructs a family (pencil) of
quadratics, parameterized by k, and passing through the intersection points of
two quadratics. [486]

See also: Pencil?2D.

B Radius2D

Radius2D [circle] returns the radius of a circle. [407]

Radius2D [arc] returns the radius of an arc. [390]

See also: Arc2D, Circle2D.
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B Reflect2D

Reflect2D [object, line] reflects an object in a line.

The object may be an arc [390], circle [407], conic arc [418], coordinates [540],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [481],
point [492] or triangle [550].

Reflect2D[objList, line] reflects a list of objects in a line, returning a list of
objects. [540]

Reflect2D[egn, {z, y}, line] reflects an equation in a line. [540]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax? + Bxy + Cy? + Dx + Ey + F == 0. [540]

See also: ReflectAngle2D, Rotate2D, Scale2D, Translate2D.

B ReflectAngle2D

ReflectAngle2D[6, line]l computes the reflection of an angle in a line. [540]

If a line L makes an angle 6 with the +x-axis and line L’ is the reflection of L in
the given line (the second argument to the function), then the function computes
the angle ' that L’ makes with the +z-axis.

See also: Reflect?2D.

W Rho2D

Rho2D [cnare] returns the projective discriminant of a conic arc. [417]

See also: ConicArc2D.

M Rotate2D

Rotate2D [object, 0, coords] rotates an object by an angle § (in radians) about a position
whose coordinates are given. If the coordinates are omitted, the default is the origin.

The object may be an arc [389], circle [407], conic arc [418], coordinates [541],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [482] or
triangle [551].

Rotate2D[objList, 6, coords] rotates a list of objects. [541]

Rotate2D[egn, {z, y}, 0, coords] rotates an equation by an angle 6 (in radians)
about a position whose coordinates are given. [541]

The equation may be linear, Ax + By + C == 0, or quadratic,
Az? + Bxy + Cy? + Dz + Ey + F == 0. [541]

See also: Reflect2D, Scale2D, Translate2D.
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W Scale2D

Scale2D [object, s, coords] scales an object from a position given as coordinates. If the
coordinates are omitted, the default is the origin. [541]

The object may be an arc [391], circle [407], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [507], parabola [482] or
triangle [551].

Scale2D[objList, s, coords] scales a list of objects from a position whose
coordinates are given. [542]

Scale2D[egn, {z, y}, s, coords] scales an equation from a position. [542]

The equation may be linear, Ax + By + C == 0, or quadratic,
Az? + Bay + Cy? + Dz + Ey + F == 0. [542)

See also: Reflect2D, Rotate2D, Translate2D.

B SectorArea2D

SectorArea2D [curve, {t1, t2}] computes the area of a sector of a curve between two
parameters.

The curve may be a circle [400], ellipse [401] or hyperbola [402] (the sector is
defined from the center point of the curve to the two points defined by the
parameters on the curve).

See also: Area2D, SegmentArea2D.

B Segment2D

Segment2D [{zo, Yo}, {1, y1}] is the standard representation of a line segment. The
coordinates of the start point are {zg, yo} and the coordinates of the end point are

{J)l N yl}- [505]

Segment2D [{zo, Yo}, {1, y1}1[#] and inseg[t] return the {z, y} coordinates of
a point at parameter ¢ on a line segment. Parameter values in the range
0 <t <1 produce coordinates covering the entire length of the line segment. [505]

Segment2D[A, B, C] [{t1, t2}]1 produces graphics primitives for the line segment
between parameters ¢; and t2 when plotting. [506]

Segment 2D [point, point] constructs a line segment between two points. [508]

Segment?2D [triangle, ny, no] constructs a line segment between vertices n; and
ng of a triangle. [552]

B SegmentArea2D

SegmentArea2D [curve, {t1, t2}] computes the area of a segment of a curve between two
parameters.
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The curve may be a circle [400], ellipse [401], hyperbola [402] or parabola [402]
(the segment is the area between the curve and the chord defined by the two
parameters).

See also: Area2D, SectorArea2D.

B SemiConjugateAxis2D

SemiConjugateAxis2D [hyperbola] returns the length of the semi-conjugate axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiTransverseAxis2D.

W SemiMajorAxis2D

SemiMajorAxis2D [ellipse] returns the length of the semi-major axis of an ellipse. [423]

See also: E11ipse2D, SemiMinorAxis2D.

B SemiMinorAxis2D

SemiMinorAxis2D [ellipse] returns the length of the semi-minor axis of an ellipse. [423]

See also: E1lipse2D, SemiMajorAxis2D.

W SemiTransverseAxis2D

SemiTransverseAxis2D [hyperbola] returns the length of the semi-transverse axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiConjugateAxis2D.

W SetDisplay2D

SetDisplay2D [objPatt, objPrim] is a low-level function that specifies the graphics
primitives to use when plotting a given object pattern. [513]

B SimplifyCoefficients2D

SimplifyCoefficients2D [coefList] is a low-level function that returns a list of coefficients
with common factors removed. [427]

Simplify[line] and FullSimplify [line] use SimplifyCoefficients2D to
simplify the coeflicients of a line.

Simplify[quad] and FullSimplify[quad] use SimplifyCoefficients2D to
simplify the coefficients of a quadratic.

W Sketch2D

Sketch2D [objList, opts] produces a plot of the objects in a list. [513]
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The list of objects may be nested. Any of the options for the Mathematica
Graphics command may be specified.

Sketch2D [objList, CurveLength2D->n, opts] produces a plot of the objects in a
list, using a specified curve length for unbounded curves. [513]

See also: AskCurveLength2D, CurveLength2D.

W Slope2D

Slope2D [line] computes the slope of a line. [460]

Slope2D [Inseg] computes the slope of a line segment. [507]

W Solve2D

Solve2D [egnlList, varList] is a low-level function that solves a list of equations for a list of
variables and returns a list of rules representing the solutions. [516]

Solve2D [egnlist, varList, MaxSeconds2D->n] solves a list of equations for a list
of variables with a time limit of n seconds. [516]

See also: MaxSeconds2D.

B SolveTriangle2D

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, as}}] computes a triangle configuration from
three sides and/or angles. Unspecified arguments should be Null. [548]

SolveTriangle2D[{{s1, s2, s3}, {a1, az, as}}, Truel computes a triangle
configuration from three sides and/or angles, returning an alternate solution, if
one exists. [548]

The configuration is returned in the form {{s1, sa2, s3}, {a1, a2, as}}.

See also: Triangle2D.

W Span2D

Span2D [arc] computes the arc length of the complete span of an arc. [395]

N[Span2D [cnarc]] numerically computes the arc length of the complete span of a
conic arc. [396]

See also: ArcLength2D.

B TangentCircles2D

TangentCircles2D [{pt| In| cir, pt|In| cir, pt|in| cir}] constructs a list of circles tangent
to three objects (points, lines or circles). [522]
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For brevity of expression a circle is said to be tangent to a point if the point is on
the circle.

TangentCircles2D [{pt| In| cir}, pt] constructs a list of circles tangent to an
object (point, line or circle) with a given center point. [521]

TangentCircles2D[{pt|In| cir}, In| cir, r] constructs a list of circles tangent to
an object (point, line or circle), whose center is on a line or circle, with a given
radius. [521]

TangentCircles2D [{pt| In| cir, pt|in| cir}, r] constructs a list of circles
tangent to two objects (points, lines or circles), with a given radius. [522]

TangentCircles2D [{pt]| In| cir, pt|in| cir}, In| cir] constructs a list of circles
tangent to two objects (points, lines or circles), with center on a given line or
circle. [521]

See also: Circle?2D.

B TangentConics2D

TangentConics2D [{pt| In, pt|In, pt|In, pt|in, pt|in}] constructs a list of conics tangent
to five objects (points or lines). [526]

The expressions in the resulting conics can be very complicated and are usually
practical only if evaluated numerically.

See also: TangentQuadratics2D.

B TangentEquation2D

TangentEquation2D [line, quad] returns an equation involving the coefficients of a line and
a quadratic that constrains the two curves to be tangent. [532]

B TangentLines2D

TangentLines2D [curve, curvel] constructs a list of lines tangent to two curves. [533]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

TangentLines2D [line, curve] constructs a list of lines parallel to a line and
tangent to a curve. [532]

TangentLines2D [line, curve, Parallel2D] also constructs a list of lines parallel
to a line and tangent to a curve. [532]

TangentLines2D [line, curve, Perpendicular2D] also constructs a list of lines
perpendicular to a line and tangent to a curve. [532]

TangentLines2D [point, curve] constructs a list of lines from a point and tangent
to a curve. [532]

See also: Parallel2D, Perpendicular2D, TangentSegments2D.
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B TangentPoints2D

TangentPoints2D [point, curve] constructs a list of points that are the points of tangency of
lines from a point to a curve. [537]

The curve may be a circle, ellipse, hyperbola, parabola or quadratic.

B TangentQuadratics2D

TangentQuadratics2D [{pt]| In, pt| In, pt|in, pt|in, pt|in}] constructs a list of quadratics
tangent to five objects (points or lines). [526]

The expressions in the resulting quadratics can be very complicated and are
usually practical only if evaluated numerically.

See also: TangentConics2D.

B TangentSegments2D

TangentSegments2D [curve, curve] constructs a list of line segments tangent to two
curves. [534]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

See also: TangentLines2D.

B Translate2D

Translate2D [object, {u, v}] translates an object delta distance.

The object may be an arc [391], circle [408], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [508], parabola [482],
quadratic [499] or triangle [551].

Translate2D [objList, {u, v}] translates a list of objects. [543]
Translate2D[egn, {z, y}, {u, v}] translates an equation delta distance. [543]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax? + Bxy + Cy? + Dx + Ey + F == 0. [543]

See also: Reflect2D, Rotate2D, Scale2D.

B Triangle2D

Triangle2D[{x1, y1}, {z2, y2}, {z3, y3}] is the standard representation of a triangle
defined by three vertex coordinates. [546]

Triangle2D[{s1, s2, s3}] constructs a triangle from three side lengths. The first
vertex of the triangle will be the origin and the second vertex will be on the
+z-axis. [554]
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Triangle2D[{{s1, s2, s3}, {a1, a2, as}}] constructs a triangle from three sides
and/or angles. Unspecified arguments should be Null. The first vertex of the
triangle will be the origin and the second vertex will be on the +z-axis. [554]

Triangle2D[{{s1, s2, s3}, {a1, az2, ag}}, Truel constructs a triangle from three
sides and/or angles, returning an alternate solution, if one exists. [554]

Triangle2D [line, line, line] constructs a triangle whose sides are specified by
three lines. [553]

Triangle2D [point, point, point] constructs a triangle whose vertices are
specified by three points. [553]

See also: SolveTriangle2D.

W Vertices2D

Vertices2D [conic] returns a list containing the vertex point(s) of a conic curve.

The conic may be an ellipse [412], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola the list contains two vertex points; if the conic is a
parabola the list contains a single vertex point.

W XCoordinate2D

XCoordinate2D [point] returns the z-coordinate of a point. [491]

XCoordinate2D [coords] returns the xz-coordinate of a location. [491]

See also: Coordinates2D, Point2D, YCoordinate2D.

B YCoordinate2D

YCoordinate2D [point] returns the y-coordinate of a point. [491]

YCoordinate2D [coords] returns the y-coordinate of a location. [491]

See also: Coordinates2D, Point2D, XCoordinate2D.



Chapter 24

Error Messages

This chapter is a listing of all the error messages that can be generated by Descarta2D during
computations. Mathematica may generate additional error messages. The messages are listed
alphabetically by message name. The number in square brackets indicates the page where the
error is defined in the packages.

Arc2D

ATC2D: tCOLLAMEAT Lt ottt ettt et [393]
No arc exists; the given points {ptl,ptg, ptg} are collinear.

When specifying an arc through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.

ArcoD: tiMAginary .. ...t e [388]
An invalid arc of the form arc; has been detected; the arguments cannot

be imaginary.

The arguments of an arc cannot involve imaginary numbers. Descarta2D will return the
$Failed symbol whenever the arguments of an object are determined to be invalid.

AT oD : tAnVaALid. ettt e e e e [389]
An invalid arc of the form arc has been detected; the bulge factor must

be positive and the defining points must be distinct.

The bounding points of an arc cannot be coincident and the bulge factor must be positive.
Descarta2D will return the $Failed symbol whenever the arguments of an object are deter-
mined to be invalid.

367
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Arc2D::invalidCoincident........o.iuiuiuiuiii [392]
The defining points are coincident; an arc cannot be constructed.

The defining points of an arc must be distinct. Descarta2D will return the $Failed symbol if
coincident points are detected.

Arc2D: :invalidCoLllimear. . .uuuttt ittt e e [393]
The three defining points are collinear; an arc cannot be constructed.

An arc cannot be constructed through three collinear points. Descarta2D will return the
$Failed symbol if collinear points are detected.

Arc2D: :invalidEntryAngle........o.iuiiiuii [392]
The entry angle of the arc is invalid; the entry angle cannot be an

integer multiple of Pi radiams.

The entry angle of an arc cannot be an integer multiple of w radians. Descarta2D will return
the $Failed symbol if invalid entry angle is detected.

Arc2D: :invalidRadius .. ..ottt [392]

The radius, r, of the arc is invalid; the radius must be positive.

The radius of an arc must be positive. Descarta2D will return the $Failed symbol if a non-
positive radius is detected.

Arc2D: :invalidSPam.. ... ..ot e [392]

The angular span of the arc is invalid; the span cannot be an integer
multiple of 2Pi radians.

The angular span of an arc cannot be a multiple of 27 radians. The $Failed symbol will be
returned when an invalid span is specified.

Circle2D

Circle2D::coinCident .. ......iuiniei i [409]

The points {ptl,ptg} are coincident; no valid circle exists.
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When specifying a circle by two points, the points cannot be coincident. Descarta2D will
return the $Failed symbol if two coincident points are specified.

Circle2D: :COLLamear . o ittt ettt e e e e [410]
The points {ptl,ptg,ptg} are collinear; no valid circle exists.

When specifying a circle through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.

Circle2D: tiMAGIMATY ... ittt ittt ettt e [406]
An invalid circle of the form cir; has been detected; the arguments cannot

be imaginary.

The arguments defining a circle cannot be imaginary numbers. Descarta2D will return the
$Failed symbol if the arguments of an object involve imaginary numbers.

Circle2D: :invalid......oouininiii i [406]
An invalid circle of the form cir; has been detected; the radius must be

positive.

When defining a circle the radius must be a positive number. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

CiTCle2D: thOCITCL@ e ittt ittt ettt et e e e e e e e [409]
The curve represented by quad; is not a circle.

Descarta2D has detected that the curve represented by a Quadratic2D is not a circle. The
$Failed symbol will be returned.

(OB o =321 R [409]
pt; is on Iny; no valid circle exists.

When specifying a circle tangent to a line with a given center point, the point cannot be on the
line. If Descarta2D detects that the point lies on the line, it will return the $Failed symbol.

CArcle2D: tTaGIUS o vttt ettt et e [409]
The radius argument, r, is invalid; the radius must be positive.

When specifying a circle by center point and radius, the radius must be positive. Descarta2D
will return the $Failed symbol if a non-positive radius is specified during a circle construction.
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ConicArc2D

COnICATC2D: 1COIERT ..ottt ettt et [419]

The chord defined by In; passes through the center of crv;; a conic arc
cannot be constructed.

The chord of a conic arc cannot pass through the center of a central conic because this
configuration is invalid. If the line defining the chord passes through the center of the conic,
then the $Failed symbol will be returned.

ConicATC2D: tiMAGIMATY <.ttt ettt ettt ettt e et e e e [416]

An invalid conic arc of the form cnarc; has been detected; the arguments
cannot be imaginary.

The arguments defining a conic arc cannot be imaginary. If Descarta2D detects an invalid
object the $Failed symbol will be returned.

ConicArc2D: inOCROTA. ...ttt [419]

No chord exists between In; and crv;; a conic arc cannot be constructed.

When constructing a conic arc from a line and a conic curve, the line must intersect the conic
in two points that form the chord of the conic arc. If the intersection consists of less than two
points, or it is on opposite branches of a hyperbola, then the $Failed symbol will be returned.

CONICATC2D: i POIMES ..o ottt ettt et e e e e e [417]

An invalid conic arc of the form cnarc; has been detected; the control
points cannot be collinear.

The three control points defining a conic arc cannot be collinear. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

ConicCATC2D: iThO ...t [417]

An invalid conic arc of the form cnarc; has been detected; the value of
rho must be in the range O<rho<1.

The value of p determines the shape and type of the conic arc. When 0 < p < 1/2 an elliptic
conic arc is created, when p = 1/2 a parabolic conic arc is created and when 1/2<p <1 a
hyperbolic conic arc is created. Descarta2D will return the $Failed symbol whenever the
arguments to an object are determined to be invalid.
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D2DExpressions2D

D2DExpressions2D:badTol ........ouiuiuiuiiti i [431]
The tolerance tol is not a valid tolerance specification; the default

tolerance, 10710, will be used.

Tolerance values used to query expressions must be numbers greater than or equal to zero.

D2DMaster$2D

D2DMaster$2D: :10aded ... ...ttt [469]
The package ‘D2DMaster2D’ has already been loaded.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This file only needs to be loaded
once; subsequent requests to load the file will be ignored and will cause no harm.

D2DMaster$2D: :noPath. ... ... [469]
The path to ’D2DMaster2D.m’ cannot be found; unable to initialize

Descarta2D.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This error indicates that the
software has not been installed correctly.

D2DMaster$2D: i tooManyPathis ... .ottt e [469]
More than one path to ’D2DMaster2D.m’ was found; using path-name.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-

age so that they can be loaded automatically when referenced. This error indicates that the

software has found more than one copy of this file and may suggest that the software has not
been installed correctly.

Directrices2D

Directrices2D: :CArCULAT ... .ttt [413]

The ellipse ellipse; is circular; it has no (finite) directrix lines.

An ellipse whose semi-major and semi-minor axes are equal in length has no (finite) directrix
lines. Descarta2D will return an empty list.
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Ellipse2D

E11ipse2D: tiMaGilaATy ... vttt ittt et e e e et e e e e [422]

An invalid ellipse of the form ellipse; has been detected; the arguments of
an ellipse cannot involve imaginary numbers.

When constructing an ellipse Descarta2D verifies that none of the arguments involve imaginary
numbers. Descarta2D will return the $Failed symbol whenever the arguments to an object
are determined to be invalid.

E11ipse2D: :invalid.......ouuiiniititi i [423]

An invalid ellipse of the form ellipse; has been detected; the length of
both the semi-major and semi-minor axes must be positive.

When constructing an ellipse Descarta2D verifies that both the semi-major and semi-minor
axes have positive lengths. Descarta2D will return the $Failed symbol whenever the argu-
ments to an object are determined to be invalid.

E11ipse2D: tinvdef ... ... e [425]

The defining geometry or eccentricity is invalid; the eccentricity of an
ellipse must be in the range 0<e<1l, the foci and vertices cannot be
coincident, and the focus cannot lie on the directrix.

An invalid ellipse was specified and Descarta2D will return the $Failed symbol.

Hyperbola2D

Hyperbola2D: t Magilary ... ...uutn ittt it e ettt e e e e [447]

An invalid hyperbola of the form hyp; has been detected; the arguments
cannot be imaginary.

When constructing a hyperbola the arguments cannot be imaginary. If imaginary arguments
are detected Descarta2D will return the $Failed symbol.

Hyperbola2D: :invalid........uuunininit ittt [447]

An invalid hyperbola of the form hyp1 has been detected; the lengths of
the semi-transverse and semi-conjugate axes must be positive.
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When constructing a hyperbola the lengths of both the semi-transverse and the semi-conjugate
axes must be positive. Descarta2D will return the $Failed symbol whenever the arguments
to an object are determined to be invalid.

Hyperbola2D: :invdef ... ...ttt e [450]

The defining geometry or eccentricity is invalid; the eccentricity of a
hyperbola must be greater than 1, the foci and vertices cannot be coincident
and the focus cannot lie on the directrix.

An invalid hyperbola was specified and Descarta2D will return the $Failed symbol.

IsNumeric2D

IsNUMEeTic2D :nOtNUMETIC ..\t ettt ettt e et et et et et et et e [432]
The funcName function requires numerical arguments; symbolic arguments

are not allowed.

Some Descarta2D functions require that their arguments be numeric. These functions will not
allow symbolic arguments.

Line2D

LAine 2D : 1 COMCOIME AT .ttt ittt et et et e e e e e [408]
The circles {cirl s cirg} are concentric; no radical axis exists.
When specifying the two circles for the construction of a radical axis, the two circles cannot

be concentric. If Descarta2D detects that concentric circles have been specified in the radical
axis construction, it will return the $Failed symbol.

Line2D: tAMAEIMATY .\ttt ettt ettt et e e e e e [459]
An invalid line of the form In; has been detected; the arguments cannot

be imaginary.

The arguments defining a line cannot be imaginary. If Descarta2D detects that an object is
invalid the $Failed symbol will be returned.

Line2D: tinvalid .. ..o [459]

An invalid line of the form [n; has been detected; at least one of the
first two coefficients must be non-zero.
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When defining a line at least one of the first two coefficients, A or B, must be non-zero.
Descarta2D will return the $Failed symbol whenever the arguments to an object are deter-
mined to be invalid.

Line 2D : tMOPOL AT .o vttt [463]

Since pif; is at the center of the conic, no polar line exists.

When creating the polar line of a quadratic with respect to a point, Descarta2D verifies that
the point is not coincident with the center of the conic curve represented by the quadratic.
If the point is at the center of the conic represented by the quadratic Descarta2D returns the
$Failed symbol.

=02 D Lo )T [458]

The expression erpr cannot be recognized as a linear polynomial or
equation in variables z and y.

When converting a polynomial or equation to a line, the expression representing the line
must be recognizable as a linear polynomial or equation. If the expression is not recognizable
Descarta2D returns the $Failed symbol.

Line2D: :8ameCOOTAS ...\ttt ittt et e e [462]
The coordinates {z1, y1} and {z2, y2} are coincident; no valid line can be

constructed.

When creating a line through a pair of coordinates or a pair of points, the positions cannot
be coincident. Descarta2D will return the $Failed symbol if it detects the coordinates are
coincident.

Loci2D

o Yo 2] N T =3 X v - 1 [465]
The quadratic is a central conic, but its type cannot be determined.

Due to the nature of the coefficients of the quadratic, the specific conic type cannot be deter-
mined; an empty list will be returned.

LoCi2D: t@CCOMETICITY « .ttt ittt ettt et [468]

The eccentricity, e, is invalid; the eccentricity must be positive.
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The eccentricity of a conic must be positive; the $Failed symbol will be returned.
JIeYoh 1240 S o) e Yo b = 1A [465]

The quadratic has no real locus.

The equation represented by the quadratic has no real points; an empty list will be returned.

MedialEquations2D

MedialEquations2D: :COINCIAEIE o\ vt tn ettt ettt e [473]

The objects {objl, Objg} are coincident; no finite number of medial curves
exist.

When two objects are identical the medial points include all the points in the plane and no
unique curve locus exists. When this situation occurs Descarta2D will return an empty list
indicating that no unique curves satisfy the geometric constraints specified.

Parabola2D

Parabola2D: i AMAZINATY c.outttt ettt ettt ettt e e e [480]

An invalid parabola of the form parabola; has been detected; the arguments
cannot be imaginary.

The arguments of a parabola cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Parabola2D: :invalid..........oiiuiuininii i [480]
An invalid parabola of the form parabola; has been detected; the focal

length cannot be zero.

The focal length, f, of a parabola cannot be zero. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Parabola2D: tAnVPTLIL. . o . ettt ettt e e e e [483]
The focus pt; is on the directrix In;; no valid parabola can be

constructed.

The focus point of a parabola cannot be on the directrix line. Descarta2D returns the $Failed
symbol when it detects an invalid construction.
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Parameters2D

Parameters2D: inOCROTA ... .ottt [455]
No chord exists between In; and cruvs.

The Parameters2D function requires that the defining line intersect the curve in two points.
If the line does not intersect the chord, Descarta2D will return the $Failed symbol.

Point2D

Point2D::coincident. ...ttt [494]
No unique intersection point exists; lines In; and Iny are coincident.

Coincident lines cannot be intersected. Descarta2D will return the $Failed symbol if it detects
an attempt to intersect coincident lines.

Point2D: tAMAGINATY ..ottt ittt [490]
An invalid point of the form pi?; has been detected; the coordinates of a

point cannot be imaginary.

The coordinates of a point cannot be imaginary. If Descarta2D detects an invalid object the
$Failed symbol will be returned.

POIint2D: tNODIT Lottt e [493]
Points {pt1, pt2} are coincident and do not define a valid direction.

When defining a point that is offset in a direction specified by two points, the direction points
cannot be coincident. Descarta2D returns the $Failed symbol if the two points are coincident.

POANt 2D : tHOP Ol . oottt [494]
Since In; passes through the center of the conic, no pole point exists.
When creating the pole point of a quadratic with respect to a line, Descarta2D verifies that

the line does not pass through the center of the conic curve represented by the quadratic. If
the line does pass through the center Descarta2D returns the $Failed symbol.

Point2D: :noRATIO ..ot [493]

The sum of the ratio numbers {rl, 7“2} cannot be zero.
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When defining a point that divides a segment into a given ratio, the ratio numbers r; and
ro cannot sum to zero. Descarta2D will return the $Failed symbol if the ratio numbers are
invalid.

Point2D: tnotCentral ..ottt ettt [494]

quad is not a central conic; it has no center point.

The quadratic is not a central conic and has no center point. Descarta2D will return the
$Failed symbol.

Point2D: :notCentrall ... ......u.ii ittt [419]
The conic underlying cnarc is not a central conic; it has no center

point.

The conic underlying a conic arc is not a central conic and has no center point. Descarta2D
will return the $Failed symbol.

Point2D: :parallel co. ...ttt e e e e e e [494]
No intersection point exists; lines In; and Iny are parallel.

Parallel lines cannot be intersected. Descarta2D will return the $Failed symbol if its detects
an attempt to intersect parallel lines.

Quadratic2D

Quadratic2D::coincident ... ......oiiiuiuii [487]
Two or more of the points are coincident; no valid quadratic pencil

exists.

When constructing a quadratic pencil from four points, no pair of points may be coincident.
The $Failed symbol with be returned if any pair of points is detected to be coincident.

Quadratic2D: :ecCentriCity ... o.iuiuiii [502]
The eccentricity e is invalid; the eccentricity must be positive.

When defining a quadratic using a point, a line and an eccentricity, Descarta2D will report an
error if the eccentricity is not positive and return the $Failed symbol.
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Quadratic2D: tiMAginaTY ... ..ttt e [461]

An invalid quadratic of the form quad; has been detected; the arguments
cannot be imaginary.

The arguments defining a quadratic cannot be imaginary. If Descarta2D detects that an object
is invalid the $Failed symbol will be returned.

Quadratic2D: :invalid......ouuntit ittt e [498]

An invalid quadratic of the form quad; has been detected; at least one of
the first five coefficients must be non-zero.

At least one of the first five coefficients of a quadratic must be non-zero. The $Failed symbol
is returned whenever the arguments to an object are determined to be invalid.

Quadratic2D: tinVECC. ... ..ot [499]

A negative eccentricity, erpr;, is invalid; no valid quadratic can be
constructed.

The eccentricity of a conic must be non-negative. Descarta2D will return the $Failed symbol
if an invalid eccentricity is specified.

Quadratic2D: tamVL M. ..ottt et [499]

A non-positive focal chord length, ezpr;, is invalid; no valid quadratic
can be constructed.

The length of a conic’s focal chord must be positive. Descarta2D will return the $Failed
symbol if an invalid length is specified.

Quadratic2D: tNOPOLY ...ttt e [500]

The expression erpr cannot be recognized as a quadratic polynomial or
equation in variables z and y.

When converting a polynomial or equation to a quadratic, the expression representing the
quadratic must be recognizable as a quadratic polynomial or equation. If the expression is
not recognizable Descarta2D returns the $Failed symbol.
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Segment2D

Segment2D: tAMAGINATY . .\ttt t ettt ettt e e [506]

An invalid line segment of the form Insegy has been detected; the
arguments cannot be imaginary.

A line segment with imaginary arguments has been detected. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.

Segment2D: :invalid......o.uti e [506]
An invalid line segment of the form Inseg; has been detected; the defining

coordinates cannot be coincident.

In order to be valid, a line segment must have two distinct end points, they cannot be coin-
cident. Descarta2D will return the $Failed symbol whenever the arguments to an object are
determined to be invalid.

Sketch2D

Sketch2D: :invalidLength... . ..ot [512]

Setting CurvelLength2D— n; is invalid; ‘CurveLength2D’ must be positive;
the current value of CurvelLength2D— ns will be retained.

When using the Mathematica SetOptions command, any attempt to set the CurveLength2D
parameter of the Sketch2D function to a non-positive value will be rejected. The current value
of the CurveLength2D parameter will be retained.

SKETCR2D: 100D .. ctet ettt ettt [513]
No valid objects to sketch.

If there are no valid geometric objects in the list of objects to sketch, Descarta2D will output
the Sketch2D: :no0bj message to indicate no graphical output will be plotted.

Sketch2D: 1nOtREAL ... .ttt [513]
n object(s) cannot be sketched.
When plotting objects using the Sketch2D command, Descarta2D will count the number of

objects that have symbolic arguments. Such objects cannot be plotted and will not be included
in the graphics that are displayed.
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Solve2D

Solve2D::infindte ... ...ooii i [516]

An infinite number of solutions exist; only independent solutions will be
returned.

When solving a system of equations some solutions may exist in which the solutions are
interrelated functions of each other. Such solutions will not be returned.

S01ve2D: :invalidTime ... ..ottt [516]

Option MaxSeconds2D->n; is invalid; ’MaxSeconds2D’ must be positive; the
current value of MaxSeconds2D->ns will be retained.

When setting the MaxSeconds2D option of the Solve2D command, the option value must be
positive.

SOLVE2D: thAME ..\ttt ettt e e [516]

The equations could not be solved in MaxSeconds2D->n;, an empty list of
solutions will be returned; using approximate numbers may produce a more
complete list of solutions.

Some equations are too complex to be solved in the time allowed by the Descarta2D Solve2D
command. An empty list of solutions will be returned if the maximum time elapses before a
solution is found. To increase the maximum time allowed use the SetOptions command. For
example,

SetOptions[Solve2D, MaxSeconds2D->60].

will set the time limit to 60 seconds.

SolveTriangle2D

SolveTriangle2D: tAmMDIGUOUS ..\ttt ettt ettt ettt et et [550]

Two valid solutions exist for this configuration; set the alternate
solution option to logical to compute the other configuration.

When computing a triangle configuration, Descarta2D will display this warning if more than
one solution is valid. The logical will either be True or False indicating the setting required
to produce the alternate configuration.
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SolveTriangle2D: :angleSOnLy .......o.uuunttron ettt ittt [549]

The triangle configuration is under-constrained; a valid configuration
with the triangle’s perimeter arbitrarily set to 1 will be computed.

When computing a triangle configuration consisting of angles only, Descarta2D will display
this warning to indicate that the length of the sides are arbitrarily set, being correct for the
given angles.

SolveTriangle2D: : COMSEIAIIL ..o\ttt ittt et et e e e et e e [548]

The triangle configuration is under-constrained; three constraints are
expected.

At least three parameters are needed to compute a triangle configuration. Descarta2D will
return $Failed if a configuration is under-constrained.

SolveTriangle2D: :invVCOMLIg ..o.untu ittt [547]

The configuration of sides and/or angles specified is invalid; no
triangle can be constructed.

An invalid triangle configuration has been specified. Descarta2D will return $Failed.

TangentConics2D

TangentConics2D: :coincident ........ouiuiiiii i [523]

Two or more of the defining points or lines are coincident; no proper
conic can be constructed.

When constructing a tangent conic from defining points, all of the points must be unique; if
any of the points are coincident, Descarta2D will return an empty list.

TangentConics2D: i COLLIMEAT ..ttt ittt et e e e e e [523]

Three or more of the defining points are collinear; no proper conic can
be constructed.

When constructing a tangent conic from defining points, no triple of three points may be
collinear; if any triple is collinear Descarta2D will return an empty list.
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TangentConics2D: : CONCUITEIE ...ttt ittt et [523]

Three or more of the tangent lines are concurrent; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be concurrent
(meet in a point); if any triple is concurrent Descarta2D will return an empty list.

TangentConics2D: :1ineSTRTW ... .vutuiu ittt [523]

One of the points is on more than one of the tangent lines; no proper
conic can be constructed.

When constructing a tangent conic from points and lines, each point is allowed to be on at
most one of the tangent lines; if any point is on more than one line, Descarta2D will return
an empty list.

TangentConics2D: :parallel .. ......iuuuuiiti e [523]

Three or more of the defining lines are parallel; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be parallel; if any
triple is parallel Descarta2D will return an empty list.

TangentConics2D: :pointsSOm . .....iuiuin it [523]

Two or more of the points are on a tangent line; no proper conic can be
constructed.

When constructing a tangent conic from points and lines, each line can have at most one point
on it; if any line has more than one point one it, Descarta2D will return an empty list.

Transform2D

Transform2D: :invalidSCale . ...t r ittt ittt e e e e [542]
The scale factor s is invalid; the scale factor must be positive.

The scale factor, s, for a scaling transformation must be positive. Descarta2D will return the
$Failed symbol if a non-positive scale factor is specified.



Error Messages 383

Triangle2D

Triangle2D: iIMAZINATY c.outnttt ettt et ettt et e et e [546]

An invalid triangle of the form triangle; has been detected; the arguments
cannot be imaginary.

The arguments of a triangle cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Triangle2D: :invalid........u.ininin ittt e [546]

An invalid triangle of the form triangle; has been detected; the vertex
points cannot be collinear.

The vertex points of a triangle cannot be collinear. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.

Triangle2D: iNOTTIAIELE ..t u ettt ettt ettt et e e e e [553]

Two of the lines {ini, lns, Ins} are parallel, or the three are concurrent;
no triangle exists.

When defining a triangle by three lines, the lines must intersect in three distinct points. If any
pair of lines are parallel, or the three lines are concurrent, Descarta2D will return the $Failed
symbol.
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D2DArc2D

The package D2DArc2D implements the Arc2D object.

Initialization
Begi nPackage[ "D2DArc2D ", {"D2DCircle2D ", "D2DExpressions2D ",
" D2DGeonetry2D ", "D2DLine2D' ", "D2DWVaster2D ", "D2DNunbers2D ",
"D2DPoi nt 2D ", "D2DSket ch2D ", "D2DTransfornmD "}];

D2DAr ¢2D: : usage=
"D2DArc2D is a package that inplenents the Arc2D object.";

Arc2D: : usage=
"Arc2D {x0,y0},{x1,y1},B] is the standard formof an arc with start
poi nt (x0,y0), end point (x1,yl) and positive bulge factor 'B .";

Bul ge2D: : usage=
"Bul ge2Df arc] returns the bul ge factor of an arc.";

Conpl erent 2D: : usage=
"Conpl ement2D is a keyword required in Arc2Dfarc, Conpl enent2D].";

Begi n["‘Private' "];

Description

Representation

Arc2D[{zo, Yo}, {z1, y1}, B] M Standard representation of an arc in Descarta2D. The first
argument is a list of coordinates representing the start point of the arc. The second argument
is a list of coordinates representing the end point of the arc. The third argument is a scalar
representing the bulge factor of the arc, B > 0. The arc is traversed counter-clockwise from
Py to P,. The bulge factor is the ratio of the arc’s height, h, to half the chord length, d/2; so
B =2h/d.

387
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Evaluation

Arc2D[{zg, Yo}, {x1, y1}, Bl [{] M Evaluates an arc at a parameter value, ¢, and returns a
list of coordinates {z, y}. Parameters in the range 0 < ¢ < 1 cover the complete span of the
arc.

Arc2D[ {x0_,y0_},{x1_,y1l },B ][t_?IsScalar2D :=
Modul e[ {arc, h, k, bet a},
ar c=Arc2D[ {x0, y0}, {x1, y1}, B];
{h, k} =Coor di nat es2D[ arc] ;
bet a=Angl e2D] arc] ;
{h+(x0-h)*Cos[beta*t]-(y0-k)*Sin[beta*t],
k+(x0-h) *Si n[ bet a*t] +(y0- k) *Cos[ beta*t]}];

Graphics

Provides graphics primitives for an arc by extending the Mathematica Display command.
Executed when the package is loaded.

Set Di spl ay2D{
Arc2D {x0_,y0_},{x1_,yl },B ]J[{t1_7IsScal ar2D,t2_?lsScal ar2D}],
Circl e[ Coordi nat es2D[ Ar c2D[ {x0, y0}, {x1, y1},B]],
Radi us2D] Ar c20f { x0, y0}, {x1, y1},B] ],
Pri mar yAngl eRange2D {
Angl e2Df Arc2D { x0, y0}, {x1, y1},B], t1],
Angl e2D] Arc2D[ {x0, yO}, {x1,y1},B],t2]}]] 1;

Set Di spl ay2D{
Arc2D {x0_,y0_},{x1_,y1 },B],
Circl e[ Coor di nat es2D] Arc2D] { x0, y0}, {x1,y1}, B]],
Radi us2D] Ar c20f { x0, y0}, {x1,y1},B]],
Pri mar yAngl eRange2D[ Ar c2D[ { x0, y0}, {x1,y1},B]]] 1]

Validation

Arc2D[{zo, yo}, {1, y1}, Bl M Detects an arc with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Arc2D: : i nagi nary=
"An invalid arc of the form’Arc2D[‘1', ‘2', ‘3']’ has been detected,
the argunents cannot be imaginary.";

Arc2D{x0_,y0_},{x1_,y1 },B] :=
(Arc2D @@ Chopl nagi nary2D[ Arc$2D[ { x0, yO}, {x1,y1},B]]) /;
(Freeq {x0,y0,x1,y1, B}, Pattern] &&
I sTi nyl magi nary2D[ { X0, y0, x1,y1, B}]);

Arc2D{x0_,y0_},{x1_,y1 },B] :=
(Message[ Arc2D: : i magi nary, {x0, y0}, {x1,y1}, B]; $Fail ed) /;
(Freeq {x0,y0,x1,y1, B}, Pattern] &&
| sConpl ex2Df {x0, y0, x1,y1, B}, 0]);
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Arc2D[{zo, yo}, {x1, y1}, Bl W Detects an arc with a negative bulge factor and returns an
arc with the defining points interchanged and the positive bulge factor.

Arc2D {x0_,y0_},{x1_,yl1 },B ?IsNegative2D :=
Arc2D {x1, y1}, {x0, y0}, - B];

Arc2D[{zo, yo}, {z1, y1}, Bl M Detects an arc with a zero bulge factor and returns the
$Failed symbol.
Arc2D: :invalid=
"An invalid arc of the form’Arc2D[‘1', ‘2‘, ‘3']’ has been detected,

the bul ge factor nmust be positive and the defining points nust be
distinct.";

Arc2D{x0_,y0_},{x1_,y1 },B] :=
(Message[ Arc2D: :invalid, {x0,y0}, {x1,yl}, B]; $Failed) /;
(Freeq {x0,y0,x1,y1, B}, Pattern] &&
| sZero2D[ B, 0] ) ;

Arc2D[{zg, Yo}, {z1, y1}, Bl M Detects an arc whose defining points are coincident and
returns the $Failed symbol.
Arc2D[{x0_,y0_},{x1_,y1 },B] :=
(Message[ Arc2D: :invalid, {x0,y0}, {x1,yl}, B]; $Failed) /;

(Freeq {x0,y0, x1,y1, B}, _Pattern] &&
| sZer 02D] Di st ance2D { x0, y0}, {x1,y1}1]1);

IsValid2D[arc] M Returns True for a syntactically valid arc.

I'sVal i d2D] Arc2D] { x0_7?1 sScal ar 2D, y0_?I sScal ar 2D},
{x1_7?lsScal ar 2D, y1_?l sScal ar 2D},
B_?IsScal ar2D]] := True;

Scalars

Angular Span of an Arc

Angle2D[arc] M Computes the angular span of an arc. The result is returned in radians.

Angl e2D[ Arc2D[ {x0_,y0_},{x1_,y1 },B]] := 4*ArcTan[B];

Angle at Parameter on an Arc

Angle2D[arc, t] M Computes the angle between a line through the arc center parallel to
the 4z-axis and a line through a point at a parameter value, ¢, on the arc. For example,
Angle2D[arc, 0] gives the start angle, 61, and Angle2D[arc, 1] gives the end angle, 6s.

Angl e2D[ A: Arc2D[ {x0_,y0_},{x1_,yl1 },B],t_?lsScalar2D] :=
Modul e[ {h, k, xt, yt},
{h, k} =Coor di nat es2D[ A] ;
{xt,yt}=A[t];
ArcTan[ xt-h,yt-k] 1;
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Bulge Factor of an Arc

Bulge2D[arc] M Returns the bulge factor of an arc.

Bul ge2D Arc2D{ {x0_,y0_},{x1_,y1_},B]] := B;

Primary Angle Range

PrimaryAngleRange2D[arc] M Computes a list of two primary angles measured counter-
clockwise from the +z-axis to the defining points of an arc. The arc is traversed counter-
clockwise from the first angle to the second.

Pri mar yAngl eRange2D[ A: Arc2D[{x0_,y0_},{x1_,y1 },B]] :=
Modul e[ { h, k},
{h, k} =Coor di nat es2D[ A] ;
Pri mar yAngl eRange2D] { Ar cTan[ x0- h, y0- K],
ArcTan[ x1-h,y1-k]}] 1;

Radius of an Arc

Radius2D[arc] W Computes the radius of an arc.

Radi us2D[ Arc2D[ {x0_,y0_},{x1_,y1 },B]] :=
Sqrt[ (x0-x1)~2+(y0-y1l)~2] *(B+1/ B)/ 4;

Transformations

Reflect

Reflect2D[arc, line] M Reflects an arc in a line.

Refl ect 2Df Arc2D[ {x0_,y0_},{x1_,yl1 },B],L:Line2Da_,b_,c_]] :=
Arc2D Refl ect 200 { x1, y1}, L], Ref | ect 20] { x0, y0}, L], B];

Rotate

Rotate2D[arc, 0, coords] M Rotates an arc by an angle 6 about a position given by a coordi-
nate list. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rot at e2Df Arc2D[ {x0_,y0_},{x1_,yl1l },B ], theta_?lsScal ar 2D,
{xc_?l sScal ar 2D, yc_?I sScal ar2D}] : =
Ar c2D] Rot at e2D[ {x0, y0}, t het a, { xc, yc}],
Rot at e2D[ { x1, y1}, thet a, {xc, yc}], B] ;
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Scale

Scale2D[arc, s, coords] M Scales an arc from a position given by coordinates. If the position
is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scal e2D[ Arc2D{ {x0_,y0_},{x1_,y1_},B_],s_?lsScal ar 2D,
{xc_?lsScal ar 2D, yc_?l sScal ar2D}] :=
Arc20 Scal e2D { x0, y0}, s, {xc, yc}],
Scal e2Df {x1, y1}, s, {xc,yc}],B] /;
Not [ | sZer oOr Negat i ve2D[ s] ] ;

Translate

Translate2D[arc, {u, v}] B Translates an arc delta distance.

Transl at e2Df Arc2D[ {x0_,y0_},{x1_,y1 },B],
{u_7?IsScal ar 2D, v_?l sScal ar2D}] :=
Arc2D {x0+u, yO+v}, {x1+u, y1l+v}, B];

Construction

Center Point of an Arc

Point2D[arc] M Constructs the center point of the arc.

Poi nt 2D[ Arc2D[ {x0_,y0_},{x1_,y1 },B]] :=
Modul e[ { K},
K=(1/B-B)/ 4;
Poi nt 2D[ { (x0+x1)/ 2+K*(y0-y1), (yO+yl)/2-K*(x0-x1)}] 1;

Circle from Arc

Circle2D[arc] M Constructs the circle associated with an arc.
Circle2D[ A: Arc2D[ {x0_,y0_},{x1_,y1 },B]] :=
Circl e2D Coor di nat es2D] A] , Radi us2D[ Al ] ;

Complement Arc

Arc2D[arc, Complement2D] M Constructs an arc that is the complement of a given arc.

Arc2D[ Arc2D[ {x0_,y0_},{x1_,yl },B_], Conpl emrent 2D0] :=
Arc20 {x1, y1}, {x0, y0}, 1/ B] ;
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Arc from Center Point, Radius and Span

Arc2D [point, r, {61, 62}] B Constructs an arc from a center point, radius and angular span
range. The arc is defined counter-clockwise from the start point associated with 6; to the end
point associated with 65.

Arc2D: : i nval i dSpan=
"The angul ar span of the arc is invalid; the span cannot be an integer
mul tiple of 2Pi radians.";

Arc2D: :inval i dRadi us=
"The radius, ‘1', of the arc is invalid; the radius nust be positive.";

Arc2D[ Point2D[ c: {h_, k_}], r_?lsZeroOr Negative2D,
{t0_7?IsScal ar2D,t1_7?l sScal ar2D}] :=
(Message[ Arc2D: :inval i dRadi us, r]; $Fai |l ed);

Arc2D Point2D[ c: {h_, k_}], r_?lsScal ar 2D,
{t0_7?IsScal ar2D,t1_?l sScal ar2D}] :=
(Message[ Arc2D: : i nval i dSpan] ; $Fai l ed) /;
I sZero2D{ Di stance2D{ Gircl e2Dc,r][t0],Crcle2Dc, r][t1]]];

Arc2D[ Point2D[ c: {h_, k_}], r_?lsScal ar 2D,
{t0_7?IsScal ar2D,t1_?l sScal ar2D}] :=
Modul e[ { TO, T1, pO, p1,d, pm H, B},
{TO, T1} =Pri mar yAngl eRange2D[ {t 0, t 1} ] ;
p0=Circle2D c, r][TO];
pl=Circle2Dc, r][T1];
d=Di st ance2D] p0, p1];
pmeCircle2D ¢, r][(TO+T1)/2];
H=Di st ance2D[ (p0+pl)/2, pni;
B=2*H d;
Arc2D p0, p1,B] ];

Arc from Defining Points and Entry Angle

Arc2D [{point, 8}, point] M Constructs an arc from the start and end points and the angle
between the chord and the entry vector. The angle cannot be an integer multiple of 7 radians.
The angle is positive for counter-clockwise arcs and negative for clockwise arcs.

Arc2D: :inval i dEntryAngl e=
"The entry angle of the arc is invalid; the entry angle cannot be an
integer multiple of Pi radians.";

Arc2D: :inval i dCoi nci dent =
"The defining points are coincident; an arc cannot be constructed.";
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Ar c2D[ { PO: Poi nt 200 p0: {x0_,y0_}], A _?I sScal ar 2D},
P1: Poi nt 2D[ p1: {x1_,y1_}]] :=
Wi ch[

| sZer o2D] Pri maryAngl e2D{ A, Pi ]],
Message[ Arc2D: ;i nval i dEntryAngl e] ; $Fai | ed,

| sCoi nci dent 20 PO, P1],
Message[ Arc2D: : i nval i dCoi nci dent] ; $Fai | ed,

True,
Arc2D[ pO, p1, Tan[ A 2]] ];

Arc from Three Points

Arc2D [point, point, point] B Constructs an arc through three points. The first and the third
points are the start and end points of the arc, respectively, and the second point is a general

point on the arc. The private function Minor$2D is the 2D vector cross-product.

Arc2D: :invalidCollinear=

"The three defining points are collinear; an arc cannot be constructed.”

M nor$2D[ {ul_,v1_},{u2_,v2_}] := ul*v2-u2*vl;

Ar c2D[ PO: Poi nt 20[ p0: {x0_, y0_}1,
Pon: Poi nt 20[ pon: { xon_, yon_}],
P1: Poi nt 2D p1: {x1_,y1 }]] :=
Modul e[ {s, c, B},
Whi ch[
I sCol | i near 20 PO, Pon, P1],
Message[ Arc2D: :inval i dCol | i near]; $Fai | ed,
True,
s=M nor $200 pon- p0, pl- pon];
c=Dot [ pon- p0, pl-pon];
B=s/ (c+Sqrt[c”r2+s"2]);
Arc2D] po, p1, B]] 1;

Arc from Center, Radius and Ray End Points

Arc2D [point, r, {point, point}] M Constructs an arc given the center point, radius and ray
end points. The ray end points do not have to be on the arc, but they cannot be coincident

with the center point.

Arc2D P: Poi nt 2D { h_, k_}], r_?I sScal ar 2D,
{PO: Poi nt 2D[ {x0_, y0_}1, P1: Poi nt2D[ {x1_,y1 }]1}]
Whi ch[
| sZer oOr Negative2Dr],
Message[ Arc2D: ;i nval i dRadi us, r]; $Fai | ed,

I sCoi nci dent 2D P, PO] || | sCoincident2D[ P, P1],
Message[ Arc2D: : i nval i dCoi nci dent ] ; $Fai | ed,
True,

Arc2D[ Poi nt 2D[ { h, k}1, r,
{ArcTan[ x0- h, yO-k], ArcTan[ x1- h, y1-Kk] }]
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Epilogue

End[ ]; (* end of "*Private" *)
EndPackage[ ]; (* end of "D2DArc2D " *)



D2DArcLength2D

The package D2DArcLength2D provides functions for computing the arc length of Descarta2D
objects.

Initialization
Begi nPackage[ " D2DAr cLengt h2D' ", {"D2DArc2D ", "D2DCircl e2D ",
"D2DConi cArc2D ", "D2DEl | i pse2D ", "D2DExpressions2D ", "D2DGeonetry2D ",
" D2DHyper bol a2D' ", "D2DLi ne2D' ", "D2DNunbers2D ", "D2DParabol a2D ",

"D2DSegnent 2D ", "D2DTri angl e2D "}];

D2DAr cLengt h2D: : usage=
"D2DAr cLengt h2D is a package for computing the arc length of curves."”;

ArcLengt h2D: : usage=
"ArcLengt h2D[ curve, {t0,t1}] conputes the arc length of a curve between
two paraneters.”;

Ci rcunf erence2D: : usage=
"Circunference2D[circle] conputes the circunference of a circle.
Circunference2D[ el | i pse] conmputes the circunference of an ellipse.";

Peri met er 2D: : usage=
"Perimeter2D[triangle] conputes the perineter of a triangle.";

Span2D: : usage=
"Span2Df arc] conputes the span (arc length) of an arc; N Span2D]cnarc]]
nunerically conputes the span (arc length) of a conic arc.";

Begin[ "' Private'"];

Arc Length

Arc

Span2D[arc] M Computes the arc length of a complete span of an arc.
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Span2D[ A: Arc2D[ {x0_,y0_},{x1_,y1 },B]] :=
Modul e[ {t het al, t het a2},
{thetal, t het a2} =Pri mar yAngl eRange2Df A] ;
Radi us2D[ A] *(t heta2-thetal) ];

ArcLength2D [arc, {61, 62}]1 W Computes the arc length of an arc between two parameters.

ArcLengt h2D[ A: Arc2D[ {x0_,y0_},{x1_,y1 },B],
{t1_7?IsScal ar2D,t2_?l sScal ar2D}] :=
Modul e[ { T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[ { Angl e2Df A, t 1] , Angl e2D[ A, t 2] }];
Radi us2D[ A] *(T2-T1) ];

Circle
Circumference2D [circle] B Computes the circumference of a circle.

Crcunference2D[Crcle2D[{h_,k_},r_]] := 2*Pi*r;

ArcLength2D [circle, {61, 62}]1 B Computes the arc length of a circle between two parameters.

ArcLength2D[ Circle2D[{h_,k_},r_],{t1_7?IsScal ar2D,t2_?IsScal ar2D}] :=
Modul e[ {T1, T2},
{T1, T2} =Pri mar yAngl eRange2D[ {t 1, t 2}];
r*(T2-T1) 1;

Conic Segment

Span2D[cnarc] //N B Computes the arc length of a complete span of a conic arc numerically.

N[ Span2D[ C1: Coni cArc2D[ {x0_,y0_}, {xA_ ,yA },{x1_,y1 },p_111 :=
NAr cLengt h$2D[ C1, {0, 1}, $Machi nePreci sion] /;
I sNumeri c2D] C1, Span2D] ;

N[ Span2D[ C1: Coni cArc2D{ {x0_, y0_},{xA ,yA },{x1_,y1 },p_1]1,n_] :=
NAr cLengt h$2D[ C1, {0, 1},n] /;
I sNumeri c2D] C1, Span2D] ;

ArcLength2D[cnarc, {61, 62}] //N B Computes the arc length of a conic arc between two
parameters numerically.

N[ ArcLengt h2D[ C1: Coni cArc2D[ {x0_,y0 },{xA ,yA },{x1_,y1 },p_ 1],
{t1_7?1sScal ar2D,t2_?l sScal ar2D}]] :=
NAr cLengt h$2D[ C1, {t 1, t 2}, $Machi nePreci sion] /;
I sNumeric2D[ {C1,t1,t2}, ArcLengt h2D) ;

N[ ArcLengt h2D[ C1: Coni cArc2D[ {x0_,y0_},{xA_,yA },{x1_,y1_},p_1,
{t1_?lsScal ar 2D, t2_?l sScal ar 2D}],
n_] :=
NAr cLengt h$2D[ C1, {t1,t2},n] /;
I sNumeric2D {C1,t1,t2}, ArcLengt h2D) ;
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Ellipse
Circumference2D [ellipse] M Computes the circumference of an ellipse.

Circunference2D E1: El l i pse2D[{h_,k_},a_,b_,theta_]] :=
ArcLengt h2D[ E1, {0, 2Pi }];

ArcLength2D[ellipse, {01, 62}]1 M Computes the arc length of an ellipse between two para-
meters.

ArclLength2D[ El | i pse2D[{h_,k_},a_,b_,theta_],
{t1 _?lIsScal ar2D,t2_?lsScal ar2D}] :=
Modul e[ {T1, T2, L},
{T1, T2} =Pri mar yAngl eRange2D[ {t 1, t 2}];
L=b*(El'lipticE[ T2, 1-a*2/b"2]-EllipticE[T1, 1-a"2/b"2]);
If[IsNegative2D[L],-L,L] ];

Hyperbola

The private function ArcLengthHyperbola$2D [hyperbola, {0, t}]1 computes the arc length
of a hyperbola between parameter values 0 and ¢. The result may be positive or negative,
depending on the value given for .

Ar cLengt hHyper bol a$2D[ Hyper bol a2D[ {h_, k_},a_,b_,theta_],{0,t_}] :=
Re[-1*b*El lipticE[|*ArcCosh[ Sqrt[a”2+b”"2]/a] *t, 1+a"2/b"2]];

ArcLength2D [hyperbola, {01, 62}]1 M Computes the arc length of a hyperbola between two
parameters.

ArcLengt h2D H1: Hyper bol a2D0({h_,k_},a_,b_, theta
{t1_?lsScal ar2D, t 2_?l sScal ar 2D} ]
Modul e[ { L},
L=Ar cLengt hHyper bol a$2D[ H1, {0, t 2}] -
Ar cLengt hHyper bol a$2D[ H1, {0, t 1}];
If[IsNegative2D[L],-L,L] ];

Line
ArcLength2D [line, {t1, t2}]1 M Computes the arc length of a line between two parameters.

ArcLength2D Line2D[a_,b_,c_],{t1_?IsScal ar2D, t2_?l sScal ar2D}] :=
Modul e[ { L},
L=t2-t1;
If[IsNegative2D[L],-L,L] ];

Line Segment

ArcLength2D [inseg, {t1, t2}] M Computes the arc length of a line segment between two
parameters. The function Length2D [Inseg] computes the length of a complete line segment
(defined in package D2DSegment2D).
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ArcLengt h2D] Segnent 200 {x0_, y0_}, {x1_,y1_}],
{t1 _?lIsScal ar2D,t2_?lsScal ar2bD}] :=
Modul e[ {L},
L=(t2-t1)*Sqrt[(x0-x1)"2+(y0-yl1l)"2];
If[IsNegative2D[L],-L,L] ];

Parabola

ArcLength2D [parabola, {t1, t2}] M Computes the arc length of a parabola between two
parameter values.

Ar cLengt h2D[ Par abol a2D[ {h_, k_},f_,t_],
{t1 _?lIsScal ar2D,t2_?lsScal ar2D}] :=
Modul e[ { S1=Sqrt [ 1+t 172], S2=Sqrt[ 1+t 2°2] },
L=f*( (S2*t2+Log[2*f"2(S2+t2)]) -
(S1*t 1+Log[ 2*f~2(S1+t1)]) )
If[IsNegative2D[L],-L,L] ];

Triangle
Perimeter2D [triangle] M Computes the perimeter of a triangle.

Perimeter2D Triangl e2D[ {x1_,y1 },{x2_,y2 },{x3_,y3_}]] :=
Sgrt[(x1-x2)"2+(yl-y2)"2] +
Sgrt[ (x1-x3)"2+(yl-y3)"2] +
Sqrt[ (x2-x3)"2+(y2-y3)"2];

Arc Length (Numerical)

Parametric Curves

The private function NArcLength$2D [curve, {t1, t2}] numerically computes the arc length of
a parametric curve between two parameter values. The function uses numerical integration,
so the arguments of the function must be numerical. The third argument, n, specifies the
numerical precision.

NArcLengt h$2D[ obj _, {t1_,t2_},n_] :=
Modul e[ {t, Dx, Dy, L},
{Dx, Dy} =Map[ D #, t] & obj [t]];
L=NI ntegrate[ Sqrt[ Dx"2+Dy~2], {t,t1,t 2}, Wrki ngPreci si on->n];
If[IsNegative2D[L],-L,L] ];

Epilogue

End[ ]; (* end of "'Private" *)
EndPackage[ ]; (* end of "D2DArcLength2D " *)



D2DArea2D

The package D2DArea2D computes areas associated with Descarta2D objects.

Initialization
Begi nPackage[ " D2DAr ea2D ", {"D2DArc2D ", "D2DCircl e2D ", "D2DConi cArc2D ",
"D2DEl | i pse2D ", "D2DExpressions2D ", "D2DCGeonetry2D ", "D2DHyperbol a2D ",
"D2DLi ne2D' ", "D2DNunbers2D ", "D2DParabol a2D ", "D2DPoi nt2D ",

"D2DTri angl e2D "}];

D2DAr ea2D: : usage=
"D2DArea2D is a package for conputing areas.";

Area2D: : usage=
" Area2D[ obj ect] conputes the area of a closed object”;

Sect or Area2D: : usage=
"Sect or Area2D[ obj ect, {t1,t2}] conputes the area of a sector of an
obj ect.";

Segnent Ar ea2D: : usage=
" Segnent Area2D[ obj ect, {t1,t2}] conputes the area of a segnent of an
obj ect.";

Begin["‘Private' "];

Areas Associated with an Arc

Area
Area2D[arc] M Compu