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remote sensing of objects in our Solar System through studies of infrared radiation. Fully revised since
publication of the first edition in 1992, it now incorporates the latest technologies, new mission results,
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made in this field during the past ten years.
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on the measurement of the emerging radiation field. Finally, techniques that allow the retrieval of
atmospheric and surface parameters from observations are examined. There are plenty of examples
from ground-based and space observations that demonstrate the methods of finding temperatures, gas
compositions, and certain parameters of the solid surface. All planets from Mercury to Pluto, many
of their satellites, asteroids, and comets are discussed.
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at the NASA–Goddard Space Flight Center to produce a definitive account of what can be learned
from infrared studies of our planetary system.
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Introduction to first edition

The advent of spaceflight has ushered in a new era of Solar System exploration. Man
has walked on the Moon and returned with soil samples. Instrumented probes have
descended through the atmospheres of Venus and Mars. The Mariner, Pioneer,
Venera, Viking, and Voyager space flight programs have provided opportunities
to study the planets from Mercury to Neptune and most of the satellites. Remote
sensing investigations have been conducted with unprecedented spatial and spectral
resolutions, permitting detailed examinations of atmospheres and surfaces. Even
for the Earth, space-borne observations, obtained with global coverage and high
spatial, spectral, and temporal resolutions, have revolutionized weather forcasting,
climate research, and the exploration of natural resources.

The collective study of the various atmospheres and surfaces in the Solar System
constitutes the field of comparative planetology. Wide ranges in surface gravity,
solar flux, internal heat, obliquity, rotation rate, mass, and composition provide a
broad spectrum of boundary conditions for atmospheric systems. Analyses of data
within this context lead to an understanding of physical processes applicable to
all planets. Once the general physical principles are identified, the evolution of
planetary systems can be explored.

Some of the data needed to address the broader questions have already been
collected. Infrared spectra, images, and many other types of data are available in
varying amounts for Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
and many of their satellites. It is now appropriate to review and assess the techniques
used in obtaining the existing information. This will not only provide a summary of
our present capabilities, but will also suggest ways of extending our knowledge to
better address the issues of comparative planetology and Solar System evolution.

Remote sensing is an interdisciplinary task. Theories of radiative transfer, molec-
ular quantum mechanics, atmospheric physics, photochemistry, and planetary geol-
ogy overlap with the design of advanced instrumentation, complex data processing,
and a wide range of analysis methods. The purpose of this book is to bring many
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xii Introduction to first edition

of these disciplines together with emphasis on the acquisition and interpretation of
thermal infrared data. We address the advanced student and active researcher in the
field. It is our intent to examine the basic principles in some depth. To meet this goal
we strive to develop a consistent and essentially self-contained review. It is neces-
sary to be highly selective in choosing illustrative cases because the development
of each is fairly complex.

Although some in situ measurements have been made, planetary investigations
have largely been restricted to remote sensing of emitted and reflected radiation.
Planets emit most of their thermal radiation in the middle and far infrared while re-
flected sunlight dominates their visible and near infrared spectra. Planetary spectra,
recorded from orbiting or fly-by spacecraft, make it possible to simultaneously ob-
tain good horizontal and vertical resolutions of both atmospheric composition and
thermal structure. These quantities and their gradients lead to a description of ener-
getic and dynamical processes characteristic of each atmosphere. High resolution
images at visible and infrared wavelengths display cloud patterns, which manifest
this dynamical activity and provide highly complementary information to the spec-
tral data. Ground-based astronomy has contributed additional information, with the
significant advantage of providing observations over relatively long time spans.

Emitted and reflected radiation fields can be regarded as coded descriptions of
planetary atmospheres and surfaces. Radiative transfer theory provides a means of
transforming the codes into intelligible terms. This approach requires an under-
standing of electromagnetic radiation and its interaction with matter. Chapters 1
through 3 are directed towards these ends. A review of Maxwell’s equations, wave
propagation, polarization, reflection, refraction, and the Planck function is under-
taken in Chapter 1. In Chapter 2 the equation of radiative transfer is derived in a
form suitable for remote sensing from space, and various solutions of the transfer
equation are obtained. In Chapter 3 we examine the interaction of radiation with
matter. Quantum mechanical concepts, the principles of vibrational and rotational
spectra, and other tools necessary to understand planetary spectra are developed.
Investigation of matter in condensed phases – solid surfaces, ice crystals, and liquid
droplets – requires an understanding of the emission and reflection of radiation at
surfaces characterized by a complex index of refraction and such topics as the Mie
theory.

With the tools developed in Chapters 1 through 3, it is possible to construct mod-
els of the emission and reflection of gas layers over a solid surface. Such models,
with increasing complexity, including scattering, are the subject of Chapter 4. How-
ever, it is impossible to separate a study of planetary systems by remote sensing
from the instruments which record the data. Inferences of atmospheric and surface
parameters require the analysis of observed spectra, which have been subjected
to modifications characteristic of the instruments used. In Chapter 5 we consider
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concepts of remote sensing instruments. The discussion of certain principles and
techniques is supplemented with specific examples of instruments, such as the The-
matic Mapper and the Voyager infrared spectrometer. Special attention is given to
radiometric calibration. Examination of scientific objectives and instrumental tech-
niques leads to a discussion of trade-offs between spatial and spectral resolution,
signal-to-noise ratio, data rate, and other parameters.

In Chapter 6 we consider instrumental effects, such as spectral resolution and
signal-to-noise ratio, and discuss data from the terrestrial and the giant planets in a
qualitative manner. In Chapter 7 we examine methods for interpreting spectroscopic
and radiometric data produced by real instruments in terms of physical properties of
atmospheres and surfaces. Emphasis is placed on the retrieval of thermal structure,
gas composition and cloud properties of the atmospheres, and thermal properties
and texture of surfaces. Limitations on the information content inherent in measured
quantities are assessed.

In Chapter 8 we associate measured quantities with the underlying physical pro-
cesses. The connection between thermal equilibrium and the vertical temperature
profile is investigated. Dynamical regimes are explored with emphasis on wind
fields and circulations. Certain aspects of Solar System composition, internal heat
sources, and the concept of global energy balance are discussed in the context of
planetary evolution.

In Appendix 1 we list some of the properties of vectors and mathematical func-
tions used in the text. Important physical constants are listed in Appendix 2. The
most important planetary and satellite parameters, such as dimensions and compo-
sition, are summarized in Appendix 3.

Throughout the book we adopt the International System (SI), with the basic
units of meter, kilogram, second, ampere, mole, and kinetic temperature (kelvin).
However, we make exceptions in deference to common usage. For example, in
atmospheric physics and specifically in meteorology the bar and millibar are firmly
entrenched in the literature as units of pressure; we retain these here. The corre-
sponding SI unit, the pascal (newton per square meter, or N m−2), which equals
10−5 bar, is only slowly gaining acceptance in the planetary literature.

The SI unit of intensity, the candela, is defined (1985) as the luminous intensity
in a given direction of a source that emits at 540 × 1012 hertz (Hz) and has a
radiant intensity in that direction of 1/683 watt per steradian (W sr−1). Although
the candela should be a convenient unit in the discussion of radiative processes,
it is not used in planetary astronomy or in the field of remote sensing. Hence we
follow tradition and express the spectrally integrated intensity in W cm−2 s−1; the
spectral intensity itself is then expressed in W cm−2 sr−1/cm−1 (we prefer to retain
this explicit expression rather than use the equivalent term W cm−1 sr−1). The term
spectral radiance is synonymous with specific or spectral intensity.
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Another exception concerns the units of wavenumber and wavelength. Radio
astronomy is a rather modern branch of science and has easily adopted the SI
(e.g., flux in W m−2), while spectroscopy is an old discipline of physics. The
roots of spectroscopy lie deep in the nineteenth century, when the Gaussian system
ruled with the centimeter as the unit of length. The common spectroscopic unit of
wavenumber is, therefore, cm−1; wavelength is usually measured in µm. We follow
that tradition.

In writing this book the authors gained from numerous discussions with many
colleagues and friends. Several have made specific comments on the manuscript. We
would like to acknowledge contributions from W. Bandeen, G. Birnbaum, R. Born,
M. Flasar, P. Gierasch, G. Hunt, T. Kostiuk, V. Kunde, J. Mangus, J. Mather, J. Pearl,
and D. Reuter. J. Guerber and L. Mayo helped with computer programming. We
also appreciate the encouragement and patience of the editor S. Mitton and his staff
at Cambridge University Press.

The following journals and publishers have given permission to reproduce
figures:

Applied Optics. Optical Society of America, Washington DC: Figs. 5.2.10, 5.3.2,
5.8.2, 5.8.3, 5.8.9, 5.8.10, and 5.8.12.

The Astrophysical Journal. The University of Chicago Press, Chicago IL: Figs.
3.8.2, 7.3.4, and 7.3.5.

Icarus. Academic Press, Orlando FL: Figs. 5.9.1, 6.2.2, 6.2.9, 7.3.3, 7.5.1, 8.2.2,
and 8.2.3.

Journal of Atmospheric Sciences. American Metereological Society, Boston MA:
Fig. 8.2.4.

Journal of Geophysical Research. American Geophysical Union, Washington
DC: Figs. 6.2.5, 6.2.6, 6.2.7, and 6.4.1.

Nature. Macmillan Magazines Ltd, London: Figs. 5.12.5, 6.4.2, 6.4.3, and 6.5.1.
Proceedings of the Twenty-first Astronautical Congress. North Holland Publish-

ing Co.: Fig. 6.2.4.
Canadian Journal of Physics. National Research Council of Canada: Fig. 3.3.6.
Science. American Association for the Advancement of Science. Washington

DC: Figs. 6.2.8, 6.2.11, 6.3.3, and 7.5.2.
Spectrometric Techniques III. Academic Press, Orlando FL: Fig. 5.8.5.
Satellites of Jupiter. University of Arizona Press, Tucson AZ: Fig. 6.5.4.
We also thank the authors for making this material available.
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Since the first edition of this book appeared in print, infrared observations have been
responsible for a number of significant new results from many objects in the Solar
System. Besides highly sophisticated ground-based measurements, instruments on
space probes such as Galileo, Mars Global Surveyor, Vega, Giotto, Phobos-2, the
Infrared Space Observatory, and others have produced new data leading to interest-
ing conclusions. Even the spectacular impact of comet Shoemaker–Levy 9 yielded
unique information on the atmosphere of Jupiter as well as on the structure of
comets. More refined analyses of older data sets have also contributed new insight.

Clearly, an identical reprint of the first edition would have been out of date. To
bring the book up to the present state of the art it was necessary to incorporate the
latest results. Although discussion of the Solar System bodies has been broadened
by including Pluto, comets, and asteroids, the basic format and structure of the book
has been preserved. The first four chapters, dealing primarily with fundamental as-
pects, radiative transfer theory, molecular physics, and modeling of atmospheric
spectra, have not been affected by new information. Only minor changes have been
made to the text, in some cases to correct errors, in others to clarify certain points.
The latest results have been added primarily to Chapters 5 through 9. Some new
instrumental techniques needed to be included. More recent information on atmo-
spheric composition and structure had to be compared to older results. Although
the Galileo probe data are in situ measurements, the composition of the Jovian
atmosphere cannot be treated without referring to them. Therefore, we made an
exception and included results from the helium-to-hydrogen detector and the mass
spectrometer along with the remote sensing information. A new chapter (7) dealing
with trans-Neptunian objects and asteroids has been inserted. In some cases, the
treatment of earlier work was shortened to make room for interesting newer findings.

We are grateful to Dr Heidi Hammel and her colleagues at the Massachusetts
Institute of Technology, who have used the first edition as part of a course. They
have pointed out errors, misprints, and several areas where changes might benefit

xv



xvi Introduction to second edition

the reader. We thank also other reviewers for their suggestions. Again, we would like
to thank authors, editors, and publishers for permission to use recently published
figures. We also appreciate the support and patience of S. Mitton and his staff at
Cambridge University Press.

The following journals and publishers have given permission to reproduce figures:
Applied Optics. Optical Society of America, Washington DC: Figs. 5.2.10; 5.3.2;
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Astronomy and Astrophysics. Springer Verlag, New York: Figs. 5.7.5; 5.7.6; and

6.3.4b.
The Astrophysical Journal. The University of Chicago Press, Chicago, IL:
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Geophysical Research Letters. American Geophysical Union, Washington, DC:
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1

Foundation of radiation theory

In this chapter we review the physical foundation of remote sensing. Except for
possible gravitational effects, information accessible to a distant observer must be
sensed as electromagnetic radiation, either in the form of reflected or refracted solar
or stellar radiation, or in the form of thermal or nonthermal emission. We restrict
the discussion to passive techniques. Active methods, involving the generation of
electromagnetic radiation (radar, lidar), are not explicitly treated. However, the
physical principles discussed in this text are equally applicable to passive and
active methods. In either case a discussion of the measurement and interpretation
of remotely sensed data must be based on electromagnetic theory. In Section 1.1
we begin with that theory by reviewing Maxwell’s equations. The application of
the principle of energy conservation to Maxwell’s equations leads to the Poynting
theorem with the Poynting vector describing radiative energy transport; this is
discussed in Section 1.2. However, the Poynting vector does not characterize more
complex phenomena, such as reflection, refraction, polarization, or interference; all
of these phenomena play significant roles in many aspects of remote sensing. Their
study requires, first, a derivation of the wave equation from Maxwell’s formulas,
and second, finding appropriate solutions for the electric and magnetic field vectors;
this is the subject of Section 1.3. Polarization is briefly reviewed in Section 1.4.
Effects of electromagnetic waves striking an interface between two media and the
conditions that must be satisfied at the boundary are treated in Section 1.5. The
derived conditions are then applied to the boundary to find expressions for reflected
and refracted waves. These expressions, the Fresnel equations, are discussed in
Section 1.6. The same boundary conditions are used again in Section 5.6 to describe
the behavior of thin films employed in many ways in remote sensing instruments.
The Planck function is introduced in Section 1.7. In Section 1.8, we return to the
Poynting vector in a discussion of quantities used in the theory of radiative transfer,
such as spectral intensity and radiative flux.
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2 Foundation of radiation theory

1.1 Maxwell’s equations

Electromagnetic radiation between the red limit of the visible spectrum and the
microwave region is called the infrared. In round numbers the infrared covers the
spectral range from 1 to 1000 µm. Although only the range from 0.35 to 0.75 µm
is truly visible to the human eye, the region between 0.75 and 1 µm is often
considered as a part of the ‘visible’ spectrum because many detectors common to
that spectral domain, such as conventional photomultipliers, photographic film, and
charge-coupled silicon devices, work well up to about 1 µm. At the far end of the
infrared spectrum, tuned circuits, waveguides, and other elements associated with
radio and microwave technology become the commonly employed detection tools.

Whatever the wavelength, electromagnetic radiation obeys the laws expressed by
Maxwell’s equations. These equations describe the interrelationship of electric and
magnetic quantities by field action, in contrast to action at a distance, which up to
Maxwell’s time (1873) was the generally accepted point of view. The field concept
goes back to Michael Faraday. In all likelihood, the concept suggested itself to him
in experiments with magnets and iron filings in which lines of force become almost
an observable reality. However, it was left to James Clerk Maxwell to give the field
concept a far-reaching and elegant mathematical formulation. Fifteen years after
the publication of Maxwell’s treatise (1873), Heinrich Hertz (1888) discovered
electromagnetic waves, an experimental verification of Maxwell’s theory.

In differential form, using the rationalized system and vector notation, the first
pair of Maxwell’s equations is (e.g. Sommerfeld, 1952):

Ḋ + J = ∇ × H (1.1.1)

and

Ḃ = −∇ × E, (1.1.2)

where D and B are the electric displacement and magnetic induction, and E and
H the electric and magnetic field strengths, respectively; J is the current density.
The dot symbolizes differentiation with respect to time. Definitions of the curl
(∇×) and the divergence (∇ ·) operators are given in Appendix 1. The concept of
the electric displacement was introduced by Maxwell. The first equation includes
Ampère’s law and the second represents Faraday’s law of induction.

Besides the main equations (1.1.1) and (1.1.2), two more expressions are tradi-
tionally considered part of Maxwell’s equations,

∇ · D = ρ (1.1.3)
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and

∇ · B = 0. (1.1.4)

Equation (1.1.3) defines the electric charge density, ρ, while Eq. (1.1.4) states the
nonexistence of magnetic charges or monopoles. Strictly from symmetry consider-
ations of Maxwell’s equations one may be led to postulate the existence of magnetic
charges, but despite many attempts none has been found.

By applying the divergence operator to Eq. (1.1.1) and substituting ρ for ∇ · D,
one arrives at the electric continuity equation,

ρ̇ + ∇ · J = 0, (1.1.5)

which states the conservation of electric charge: a change in the charge density
of a volume element must be associated with a current flow across the boundary
of that arbitrarily chosen element. The continuity equation in fluid dynamics is an
analogous expression of the conservation of mass.

In order to study the interaction of matter with electric and magnetic fields, three
material constants are introduced: the electric conductivity, σ ,

J = σE, (1.1.6)

the dielectric constant, ε,

D = εE, (1.1.7)

and the magnetic permeability, µ,

B = µH. (1.1.8)

Equation (1.1.6) is a form of Ohm’s law. Since J is the current density (A m−2)
and E the electric field strength (V m−1), σ is expressed in �−1 m−1. The inverse
conductivity is the resistivity. In the rationalized system the dielectric constant is
conveniently written

ε = ε0εrel, (1.1.9)

where ε0 is the dielectric constant of free space (see Appendix 2 for numerical
values) and εrel is a dimensionless quantity, which is unity for free space and which
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has the same value as the dielectric constant in the Gaussian system of units. The
permeability is

µ = µ0µrel, (1.1.10)

where µ0 represents the permeability of free space. The relative permeability is
unity for free space, larger than unity for paramagnetic materials, and less than
unity for diamagnetic substances.

Maxwell’s equations are linear. However, the parameters that describe material
properties may become nonlinear in exceptionally strong fields, such as in power-
ful lasers. In these cases nonlinear terms have to be included. The linear material
equations, Eqs. (1.1.6) to (1.1.8), are not applicable to ferroelectric or ferromag-
netic substances where the relationship between the electric field strength, E, and
the electric displacement, D, or between the magnetic field strength, H, and the
magnetic induction, B, are not only nonlinear, but show hysteresis effects as well.
In any case, Maxwell’s equations are the foundation of electromagnetism, which
includes optics and infrared physics.

1.2 Conservation of energy and the Poynting vector

The Poynting theorem expresses the conservation of energy in electromagnetism.
If one takes the scalar product of Eq. (1.1.1) with E and of Eq. (1.1.2) with H, and
adds the results one finds

H · Ḃ + E · Ḋ + E · J = E · (∇ × H) − H · (∇ × E). (1.2.1)

With the vector identity

E · (∇ × H) − H · (∇ × E) ≡ −∇ · (E × H) (1.2.2)

and the definition

S = E × H (1.2.3)

one obtains

H · Ḃ + E · Ḋ + E · J + ∇ · S = 0. (1.2.4)

This is the Poynting theorem; S is the Poynting vector. The first two terms in
Eq. (1.2.4) represent rate of change of the magnetic and electric energy densities
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in the field. The third term, E · J, describes the energy dissipated by the motion of
electric charges. Generally, this motion results in Joule heating and, therefore, in
losses to the energy stored in the field. The last term, ∇ · S, represents the net flow
of electromagnetic energy across the boundaries of the chosen volume. All terms
of Eq. (1.2.4) are measured in J m−3 s−1, which is energy per unit volume and unit
time. Since the divergence operator corresponds to a differentiation with respect to
space coordinates, the units of S are J m−2 s−1 or W m−2, thus S is an energy flux
through a surface element.

The definition of the Poynting vector, Eq. (1.2.3), requires that S be orthogonal
to both E and H. In order to better visualize the relative orientation of these three
vectors, we align a Cartesian coordinate system so that the x-axis coincides with
the direction of the Poynting vector. The components of S along the y- and z-axes,
as well as the components of E and H in the direction of the x-axis, must then
be zero: Sy = Sz = Ex = Hx = 0. The vectors E and H do not have components
in the direction of energy transport represented by S. Electromagnetic waves are
transverse, in contrast to sound waves, which are longitudinal. To investigate the
relative orientation between E and H, we use the second of Maxwell’s equations
(Eq. 1.1.2) and the explicit expression of the curl operator (see Appendix 1). With
the assumption that µ is constant and Ex and Hx equal zero, one obtains one scalar
equation for each of the ĵ- and k̂-directions (î, ĵ, and k̂ are the unit vectors in the
x-, y-, and z-directions):

µ
∂ Hy

∂t
= ∂ Ez

∂x
; µ

∂ Hz

∂t
= −∂ Ey

∂x
. (1.2.5)

Except for a static field, which is not of interest in this context, Eq. (1.2.5) indicates
that Hy must be zero if Ez vanishes and, conversely, Hz must disappear when Ey

is zero. These conditions require E and H to be at right angles to each other; E, H,

and S form a right-handed, orthogonal system of vectors.

1.3 Wave propagation

In an isotropic, stationary medium, the material constants σ, ε, and µ are uniform
and constant scalars. The first pair of Maxwell’s equations may then be stated:

εĖ + σE = ∇ × H (1.3.1)

and

µḢ = −∇ × E. (1.3.2)
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If one differentiates Eq. (1.3.1) with respect to time and multiplies by µ, one obtains

εµË + σµĖ = µ
∂

∂t
(∇ × H). (1.3.3)

Application of the curl operator to Eq. (1.3.2) yields

µ∇ × Ḣ = −∇ × (∇ × E). (1.3.4)

For a medium at rest the order of differentiation with respect to space and time may
be interchanged. Applying the vector identity

∇ × (∇ × E) ≡ ∇(∇ · E) − ∇2E (1.3.5)

and assuming the medium to be free of electric charges [(∇ · E) = 0] leads to

εµË + σµĖ = ∇2E. (1.3.6)

The Laplace operator, ∇2, is defined in Appendix 1. This partial differential equa-
tion characterizes wave and relaxation phenomena. Again, we assume the x-axis
to be aligned with the Poynting vector, so that Ex = 0. To simplify matters fur-
ther, we rotate the coordinate system around the x-axis until the y-axis coincides
with the direction of the electric field strength, so that Ez = 0 also. Only the y-
component of E remains and Eq. (1.3.6) becomes a scalar equation for the unknown
Ey(x, t),

εµË y + σµĖ y = E ′′
y . (1.3.7)

We denote differentiation with respect to time by a dot and with respect to a space co-
ordinate (in this case with respect to x) by a prime. The assumption Ey = T (t)X (x)
separates the variables,

εµ
T̈

T
+ σµ

Ṫ

T
= X ′′

X
= −k2. (1.3.8)

Since the left side depends only on the variable t and the middle part only on the
variable x , Eq. (1.3.8) can only be satisfied if the left and the middle part equal a
constant, −k2. The reason for choosing a negative square and the physical meaning
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of k will become apparent later. With the introduction of k, Eq. (1.3.8) yields two
ordinary differential equations:

εµT̈ + σµṪ + k2T = 0 (1.3.9)

and

X ′′ + k2 X = 0. (1.3.10)

A solution of Eq. (1.3.10) is readily shown to be

X = A e±ikx . (1.3.11)

The amplitude A is not defined by Eq. (1.3.10); it is determined by boundary condi-
tions. For convenience we use notation with complex arguments in the treatment of
wave phenomena. To simplify notation we omit the amplitudes but reintroduce them
when needed. To solve Eq. (1.3.9) one may assume a solution of exponential form,

T = ept , (1.3.12)

which yields a characteristic equation for p,

εµp2 + σµp + k2 = 0. (1.3.13)

We make two choices for p. In the first case we find the roots of Eq. (1.3.13) for
p, assuming the coefficients ε, µ, σ , and k to be real quantities. Later, we will be
interested in periodic solutions of Eq. (1.3.12), which imply p = ± iω. In that case,
if σ �= 0, at least one of the coefficients must be complex. The roots of Eq. (1.3.13)
for p are

p = − σ

2ε
±
(

σ 2

4ε2
− k2

εµ

) 1
2

. (1.3.14)

The parameter p is complex because the term with σ 2 in the parentheses is
generally smaller than the term containing k2,

Ey = exp

[
− σ t

2ε
± i

(
k2

εµ
− σ 2

4ε2

) 1
2

t

]
exp (± ikx). (1.3.15)
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Ey is an oscillating function of t and x . Before we discuss the physical content
of Eq. (1.3.15) we consider the meaning of some of the quantities involved.
It is convenient to introduce new terms pertinent to the description of optical
phenomena in the infrared. Consider the inverse product ε−1µ−1, which has the
dimension of the square of a velocity, m2 s−2. This is the propagation velocity, v,
of electromagnetic waves in a medium with dielectric constant ε and permeability
µ. For free space this velocity is the velocity of light, c. We have

v = (εµ)−
1
2 ; c = (ε0µ0)−

1
2 . (1.3.16)

Consequently

c

v
=
(

εµ

ε0µ0

) 1
2

= (εrelµrel)
1
2 = n. (1.3.17)

The ratio of the propagation velocity of free space to that of a medium is the
refractive index, n, of the medium. In this case both n and k are real quantities.
Since µrel is nearly unity for most materials of importance in the infrared, the
refractive index can often be approximated by n ∼ (εrel)

1
2 .

The constant k has the dimension of inverse length; it is the number of radians
per meter, the angular wavenumber. Therefore,

kλ = 2π, (1.3.18)

where λ is the wavelength in meters. The angular frequency, ω, measured in radians
per second, is then

ω = kv. (1.3.19)

The frequency, f , in hertz (cycles per second), and the wavenumber, ν, in m−1, are

f = ω

2π
; ν = k

2π
. (1.3.20)

Even for a wavelength of 1000 µm the frequency is approximately 3 × 1011 Hz, a
very high frequency compared with radio waves. The FM broadcast band is about
100 MHz or 108 Hz, for comparison. The term k2/εµ in Eq. (1.3.15) is simply ω2
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and the solution for Ey becomes:

Ey = exp

(
− σ t

2ε

)
exp

{
±iω

[
1 −

(
σ

2εω

)2
] 1

2

t

}
exp (±ikx). (1.3.21)

As required for a second order differential equation, Eq. (1.3.21) represents two
solutions, indicated by the ± signs. One solution describes a wave traveling in
the direction of x (outgoing wave, opposite signs, + − or − +), and the other,
a wave traveling in the opposite direction (incoming wave, equal signs, + + or
− −). If the amplitudes of these waves are equal, only a standing wave exists.
For a nonconductive medium, where σ is zero, the solution for the outgoing wave
simplifies to

Ey(σ = 0) = e±i(kx−ωt), (1.3.22)

which is a plane, unattenuated wave traveling in the x-direction. This case is shown
in Fig. 1.3.1 by the periodic curve marked ‘0’.

For a weakly conducting material – dry soil or rocks, for example – two effects
may be noted. First, due to the factor exp (−σ t/2ε) in Eq. (1.3.21), the
amplitudes of the waves diminish exponentially with time. Materials with good
optical transmission properties must, therefore, be electrical insulators, but not
all insulators are transparent. For many substances the frequency dependence of
the refractive index is due to quantum mechanical resonances. Equation (1.3.17)
is valid for low frequencies where v and n can be determined from the static
values of ε and µ, but not necessarily at infrared or visible wavelengths. The
second effect to be noted in Eq. (1.3.21) concerns a frequency shift by the factor
[1 − (σ/2εω)2]

1
2 . As long as σ is small compared with 2εω, as in the case marked

0.05 in Fig. 1.3.1, the frequency shift is negligible, but it becomes noticeable for
the case σ/2εω = 0.2. If σ is equal to or larger than 2εω – that is, if the conduction
current is comparable to or larger than the displacement current, as in metals – then
the square root in Eq. (1.3.21) becomes zero or imaginary; in either case periodic
solutions disappear and only an exponential decay exists, shown by curve 1 of
Fig. 1.3.1.

Now we return to the choice of p in Eq. (1.3.12). With the assumption p = ±iω
the solution for T becomes

T = e±iωt , (1.3.23)
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Fig. 1.3.1 Amplitudes of electromagnetic waves propagating in a medium. The parameter
refers to the ratio of conduction to displacement current. If this ratio is zero the material is
transparent. If this ratio is one or larger, such as in metals, only an exponential decay exists.

but in this case k is complex. We have

k = (εµω2 + iσµω)
1
2 = ω

c
(nr + ini), (1.3.24)

where nr is the real and ni the imaginary part of the refractive index, n. Squaring
Eq. (1.3.24) and setting the real and imaginary parts of both sides equal leads to
equations for the real part of k,

ωnr

c
= ω

(
εµ

2

{[
1 +

(
σ

εω

)2
] 1

2

+ 1

}) 1
2

, (1.3.25)
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and for the imaginary part,

ωni

c
= ω

(
εµ

2

{[
1 +

(
σ

εω

)2
] 1

2

− 1

}) 1
2

. (1.3.26)

Therefore, Ey may also be expressed by

Ey = e±iω(nr+ini)x/ce±iωt . (1.3.27)

The term n = nr + ini is the complex refractive index, a concept that is used in
the discussion of the interaction of radiation with solid matter (Sections 3.7.b
and 3.8).

So far we have concerned ourselves with the electric field strength, E. Now we
return to the magnetic field strength, H. Following a similar procedure for H as for
E leads to analogous equations. After multiplication by ε and differentiation with
respect to time of Eq. (1.3.2), one obtains

εµḦ = −ε
∂

∂t
(∇ × E). (1.3.28)

If one applies the curl operator to Eq. (1.3.1) one finds

ε
∂

∂t
(∇ × E) + σ (∇ × E) = ∇ × (∇ × H). (1.3.29)

Multiplication of Eq. (1.3.2) by σ and substitution of this as well as Eq. (1.3.29)
into Eq. (1.3.28) yields

εµḦ + σµḢ = ∇2H, (1.3.30)

which is identical in form with Eq. (1.3.6) for the electrical field strength. The
solution for H is, therefore, analogous to that for E. For σ = 0, and for the E vector
in the y-direction only, a component of H in the z-direction exists. With the help
of Eq. (1.3.22), Eq. (1.3.2) reduces to

µ
∂ Hz

∂t
= −∂ Ey

∂x
= −ike±i(kx−ωt). (1.3.31)

For a periodic function, integration with respect to time is accomplished by dividing
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by (−iω) and, since kµ−1ω−1 equals ε
1
2 µ− 1

2 ,

Hz = k

µω
e±i(kx−ωt) =

(
ε

µ

) 1
2

Ey = m Ey. (1.3.32)

The factor m has the dimension of a conductance or, equivalently, of a reciprocal re-
sistance. This resistance is called the wave resistance or, more generally, the optical
wave impedance of the medium. For free space the wave resistance is ∼377 �. For
maximum efficiency transmitting and receiving antennas must be matched to that
impedance. Similarly, electrical transmission lines must be terminated by their con-
jugate wave impedances to avoid reflections. In optics an analogous situation exists.
No reflection takes place at the interface of two media if their wave impedances are
matched, a consideration important for the design of antireflection coatings.

A wave (σ = 0) traveling in the x-direction, such as described by Eq. (1.3.22),
is displayed in Fig. 1.3.2. The electric field strength E has a component only in the
y-direction and the magnetic vector H has one only in the z-direction. The Poynting
vector S lies along the x-axis. In the time dt the whole pattern moves the distance
dx with velocity v in the direction of S.

The case shown in Fig. 1.3.2 is for a nonabsorbing medium. To find the relation-
ship between Hz and Ey for an absorbing medium we apply the solution for Ey

(Eq. 1.3.27) to the second of Maxwell’s equations (Eq. 1.3.2) and find

µ
∂ Hz

∂t
= −∂ Ey

∂x
= −i

ω

c
(nr + ini)Ey, (1.3.33)

which leads after integration (division by −iω) to

Hz = (nr + ini)

µc
Ey. (1.3.34)

Fig. 1.3.2 Electric (Ey) and magnetic (Hz) vectors in a linearly polarized electromagnetic
wave propagating along the x-axis.
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Since (nr + ini) can be expressed by an amplitude, (n2
r + n2

i )
1
2 , and a phase angle,

γ = arctg ni/nr, we obtain

Hz = ± 1

µc

(
n2

r + n2
i

) 1
2 eiγ Ey. (1.3.35)

In a conductive material Ey and Hz are still at right angles to each other and to S, but
they are phase shifted by an angle γ , and not in phase as shown for a nonabsorbing
medium in Fig. 1.3.2.

1.4 Polarization

Now we return to waves in nonabsorbing media. The wave shown in Fig. 1.3.2
is linearly polarized in the y-direction. Traditionally, the direction of the electric
field strength, E, and the Poynting vector define the plane of polarization. Linearly
polarized waves are also possible in the z-direction or at any angle in the y–z plane.
The vector E may be decomposed into its y- and z-components,

E = ĵEy + k̂Ez. (1.4.1)

A linearly polarized wave with an arbitrary plane of polarization may be visualized
as the superposition of two waves of the same frequency and phase, one linearly
polarized in the y- and the other in the z-direction. But what is the consequence
when two waves, Ey and Ez , of the same frequency, both linearly polarized, but
with a distinct difference in phase and with different amplitudes, are superimposed?
By phase difference we mean differences between the E vectors and not between
E and H, which occur only in absorbing media. Since Maxwell’s equations are
linear, the corresponding vectors, Ey and Ez , of the two waves must be added. The
resulting vector sum, E, is then the combined field strength. The same applies to the
H vectors; E and H are still orthogonal. However, the tip of E does not describe a
strictly sinusoidal curve in a plane, as shown in Fig. 1.3.2, but rather a curve in space
that progresses uniformly along the x-axis; the projection in the y–z plane is not a
straight line but an ellipse. We call such a wave elliptically polarized (Fig. 1.4.1).
Conversely, an elliptically polarized wave may be decomposed into two linearly
polarized waves. If the amplitudes of both superimposed waves are equal, the ellipse
becomes a circle and we speak of circular polarization. In that case the end point of
the E vector travels on a spiral of constant radius around the x-axis. The end point
of a circularly or elliptically polarized wave can form a right- or a left-handed spiral.
Unfortunately, according to tradition, a right-handed spiral is called a left-handed
polarization because in the nineteenth century right- and left-handedness was judged
by the observer facing the beam of light. Polarization phenomena play important



14 Foundation of radiation theory

Fig. 1.4.1 Electric vector in an elliptically polarized wave propagating in the x-direction.
The magnetic vector is orthogonal to the electric vector.

roles in instrument design, in the theory of reflection and refraction, and in theories
of scattering of radiation by particles.

1.5 Boundary conditions

So far we have discussed electromagnetic phenomena in a homogenous medium;
now we consider two media and the conditions at their interface. We restrict the
discussion to transparent substances. In the media (medium 1 above and medium 0
below the boundary) there exist electric and magnetic fields. In this section the index
zero does not refer to free space. At the dividing surface between both domains
the fields can be decomposed into two components normal and tangential to the
boundary. Consider first the normal component of B. To deal with the discontinuity
in ε and µ across the dividing surface we consider a small volume that contains
a small region of the surface between media 1 and 0 (Fig. 1.5.1). The area of this
volume element exposed to medium 1 is δA1 plus the circumference, s, times δh/2.
The area exposed to medium 0 is δA0 plus the other half of the circumferential area.
Instead of the abrupt change at the boundary we let Bn change gradually from the
value B(1)

n at the surface δA1 to the value B(0)
n at the surface δA0. Applying Gauss’

theorem to this volume yields

∫
Volume

(∇ · B) dV =
∫

Surface
B · dA. (1.5.1)
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Fig. 1.5.1 Surface element of the boundary of two media of different electromagnetic
properties. One half of the volume element is in medium 1, and the other half is in medium 0.

Since (∇ · B) is zero [Eq. (1.1.4)] the integrals in Eq. (1.5.1) must also be zero.
The right side may be expressed by

∫
B · dA = B(1)

n · δA1 − B(0)
n · δA0 + (B(1)

t + B(0)
t

)
s
δh

2
= 0. (1.5.2)

Let δh become very small; the contribution from the circumferential area dimin-
ishes. Since the areas δA1 and δA0 are equal

B(1)
n − B(0)

n = 0. (1.5.3)

At the interface the normal components of the induction are identical in both media;
Bn is continuous across the boundary.

The behavior of the component of D normal to the boundary may be treated sim-
ilarly, except that the integrals are not necessarily zero. In this case the charge
density ρ must be taken into account. In the transition from the volume ele-
ment to the surface element, the volume density becomes a surface density, ρsurf,
given by

D(1)
n − D(0)

n = ρsurf. (1.5.4)

In the presence of a surface charge the normal component of the electric displace-
ment changes abruptly. In the absence of a surface charge, Dn is continuous across
the boundary.

To investigate the tangential components of E and H consider a closed loop
(Fig. 1.5.2). The loop consists of the elements δs1, δs0, and two short connectors,
each of length δh. The surface normal of the loop dA is in the direction of unit
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Fig. 1.5.2 Loop at the interface between two media. The vectors n, t, and b indicate the
directions normal to the interface surface, tangential to the surface, but in the plane of the
loop, and the orthogonal direction, also tangential to the interface, but normal to the loop
area.

vector b. Applying Stokes’ theorem to the loop, one finds

∫
loop area

(∇ × E) · dA =
∫

contour
E · ds. (1.5.5)

The integration path of the contour integral is along δs1, δh, δs0, and δh, as indicated
in Fig. 1.5.2. By replacing the contour integral by its elements, the second of
Maxwell’s equations, Eq. (1.1.2), yields

−
∫

Ḃb δs δh = E (1)
t δs1 − En δh + E (0)

t δs0 + En δh. (1.5.6)

Upon once again letting δh approach zero, the integral over the area of the loop
vanishes (Ḃ is assumed to be finite) and, considering that δs1 and δs0 are opposite
in sign, we find

E (1)
t − E (0)

t = 0. (1.5.7)

The tangential component of the electric field strength is continuous across the
boundary. Following a similar procedure for the tangential component of H one
finds:

H (1)
t − H (0)

t = jsurf. (1.5.8)

The tangential component of the magnetic field strength changes abruptly in
the presence of a surface current, but it is continuous in the absence of such a
current.
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1.6 Reflection, refraction, and the Fresnel equations

With the boundary conditions established, one may examine an electromagnetic
wave striking the interface between two media. As before, we assume both media
to be nonconductive and located above and below a flat surface, which we choose
to be the x–z plane. The dividing surface between both media is assumed to be
free of charges and currents, which implies that the normal components of D and
B and the tangential components of E and H are continuous across the boundary.
Medium 1 has the dielectric constants ε1 and the permeability µ1; medium 0 has
the properties ε0 and µ0. We consider a plane wave with Poynting vector S incident
on the interface; the plane containing S and the normal to the interface is called the
plane of incidence. Here, we assume this is the x–y plane (Sz = 0), and that the
electric field vector is perpendicular to this plane; later we consider the case where
the electric vector lies in the plane of incidence. The incident wave will be split at
the interface into a reflected and a transmitted (refracted) wave. In medium 1 the
superposition of the incoming and the reflected wave is

Ez(y ≥ 0) = B1 eik1(x sin φ1−y cos φ1) + C1 eik1(x sin φ′
1+y cos φ′

1). (1.6.1)

The refracted wave in the lower half-space is

Ez(y ≤ 0) = B0 eik0(x sin φ0−y cos φ0). (1.6.2)

The factor exp (iωt) has been omitted for simplicity, but the amplitudes, B1, C1, and
B0 have been written explicitly. At y = 0, continuity of the tangential component,
Ez , across the boundary requires

B1 eik1x sin φ1 + C1 eik1x sin φ′
1 = B0 eik0x sin φ0 . (1.6.3)

Since this equation must be valid for all values of x , all exponentials must be the
same, which leads to two conditions:

φ1 = φ′
1, (1.6.4)

which expresses the law of reflection, and

k1 sin φ1 = k0 sin φ0 (1.6.5)
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or

sin φ1

sin φ0
= k0

k1
=
(

ε0µ0

ε1µ1

) 1
2

= n0

n1
= n10, (1.6.6)

which is the law of refraction; n10 is the relative refractive index between media
1 and 0. For these conditions, Eq. (1.6.3) reduces to

B1 + C1 = B0. (1.6.7)

The tangential component of H provides another set of equations for the amplitudes
B1, C1, and B0. According to Eq. (1.3.32), the amplitude of H can be found by
multiplying E by ± m. The right-hand rule for the vectors E, H, and S determines
the choice of sign of m.

Hx (y ≥ 0) = m1 cos φ1 eik1x sin φ1 (−B1 e−ik1 y cos φ1 + C1 eik1 y cos φ1 ) (1.6.8)

and

Hx (y ≤ 0) = −m0 cos φ0 eik0x sin φ0 B0 e−ik0 y cos φ0 . (1.6.9)

For y = 0 the tangential components of H must be the same for both media, which
leads to

m1 cos φ1(−B1 + C1) = −m0 cos φ0 B0, (1.6.10)

where m1 and m0 are the conductances of medium 1 and 0, respectively [see
Eq. (1.3.32)]. Combining Eqs. (1.6.10) and (1.6.7) permits elimination of B0

or C1. The relative amplitudes of the transmitted (T⊥ = B0/B1) and reflected
(R⊥ = C1/B1) waves are

T⊥ = 2m1 cos φ1

m1 cos φ1 + m0 cos φ0
(1.6.11)

and

R⊥ = m1 cos φ1 − m0 cos φ0

m1 cos φ1 + m0 cos φ0
. (1.6.12)
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Now we consider the case of the magnetic vector normal to the plane of incidence;
i.e., only Hz exists. E is orthogonal to H and, therefore, in the plane of incidence.
The polarization of this wave is orthogonal to that of the first case. With similar con-
siderations one finds B1 + C1 = m10 B0 and B1 − C1 = B0 cos φ0/ cos φ1. Solving
for T‖ = B0/B1 and R‖ = C1/B1 yields in this case

T‖ = 2m1 cos φ1

m0 cos φ1 + m1 cos φ0
(1.6.13)

and

R‖ = m0 cos φ1 − m1 cos φ0

m0 cos φ1 + m1 cos φ0
. (1.6.14)

The transmitted and the reflected fractional amplitudes of the incident radiation
polarized perpendicular to the plane of incidence are T⊥ and R⊥, respectively. The
components polarized in the plane are T‖ and R‖, respectively. Equations (1.6.11)
through (1.6.14) are the Fresnel equations (Fresnel, 1816).

Since the emissivity of a surface is one minus the square of the amplitude ratio,
(R⊥)2 or (R‖)2, the thermal emissivity depends also on the refractive index and
the emission angle. Consider the case of a nonmagnetic homogeneous layer of
refractive index n0 = n bounded by a vacuum, n1 = 1. With the help of Eq. (1.6.6)
we can eliminate φ0 from the reflection ratios, Eqs. (1.6.12) and (1.6.14); calling
φ1 = φ we obtain for the emissivities

ε⊥ = 1 − (R⊥)2 = 1 −
[

cos φ − (n2 − sin2 φ)
1
2

cos φ + (n2 − sin2 φ)
1
2

]2

(1.6.15)

and

ε‖ = 1 − (R‖)2 = 1 −
[

n2 cos φ − (n2 − sin2 φ)
1
2

n2 cos φ + (n2 − sin2 φ)
1
2

]2

. (1.6.16)

The emissivities of substances with refractive indices of 2 or 4, bordered by a
vacuum, are shown in Fig. 1.6.1 for both planes of polarization as functions of the
emission angle, φ. The emitted radiation from a smooth surface is polarized, except
for the case of normal incidence. The emission maximum of ε‖ corresponds to the
reflection minimum at the Brewster angle. To find the hemispherical emissivity one
has to integrate ε‖ and ε⊥ over the whole hemisphere and average the results for
both planes of polarization.
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Fig. 1.6.1 Emissivity of a smooth flat surface with an index of refraction, n, as a function
of emission angle. Both planes of polarization are shown for n equal to 2 (dashed lines) and
4 (solid lines).

For normal incidence (cos φ1 = cos φ0 = 1) and nonmagnetic materials
(m1/m0 = n1/n0) the Fresnel equations simplify to

T⊥ = T‖ = 2n1

n1 + n0
(1.6.17)

and

R⊥ = −R‖ = n1 − n0

n1 + n0
. (1.6.18)

If the second medium is metal the same equations are valid; however, n0 becomes
complex [see Eq. (1.3.24)]. For n1 = 1 and n0 = nr + ini the ratio of amplitudes
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in Eq. (1.6.18), is

R = 1 − nr − ini

1 + nr + ini
. (1.6.19)

Again, nr is the real part and ni the imaginary part of the complex refractive index,
n. Since the intensity is proportional to the square of the amplitude, the reflectivity,
r , is given by the equation

r = |R|2 = (nr − 1)2 + n2
i

(nr + 1)2 + n2
i

= 1 − 4nr

(nr + 1)2 + n2
i

. (1.6.20)

For a good conductor σ is large and both nr and ni approach a common limit [see
Eqs. (1.3.25) and (1.3.26)],

nr(σ→∞) = ni(σ→∞) = c

(
µσ

2ω

) 1
2

, (1.6.21)

which implies both nr and ni become large. Consequently, |R|2 approaches unity for
a good conductor. A gold surface, evaporated onto a well-polished substrate, may
have a reflectivity as high as 0.98, which corresponds to nr ∼ ni ∼ 100. Since silver
and copper have higher conductivities than gold, their far infrared reflectivities are
even higher. However, since silver and copper tend to tarnish in the atmosphere and
gold is stable, gold is generally preferred as a reflecting surface layer throughout
the infrared. In the visible (and near infrared), however, these metals behave differ-
ently, as also is evident from their colors. Recent progress in the manufacturing of
superconductive materials for operation at temperatures of almost 100 K opens the
possibility of constructing totally reflecting mirrors. If superconducting coatings
can be found for operation at ambient temperature, a major impact is expected on
the design of optical instruments.

1.7 The Planck function

Maxwell’s equations describe the propagation of electromagnetic radiation as waves
within the framework of classical physics; however, they do not describe emission
phenomena. The search for the law that defines the energy distribution of radiation
from a small hole in a large isothermal cavity gave rise to quantum theory. The
function that describes the frequency distribution of blackbody radiation was the
first result of that new theory (Planck, 1900, 1901).
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Measurements of the total emission from a small hole in a heated cavity showed
thermal radiation to be proportional to the fourth power of the cavity temperature
(Stefan, 1879); Boltzmann (1884) derived this power law from thermodynamic con-
siderations. Nine years later, Wien (1893) found that the product of the wavelength
at the radiation maximum and the cavity temperature was the same for a wide
range of temperatures; he also proposed an exponential radiation law, which was in
good agreement with available measurements at short wavelengths (Wien, 1896).
Shortly thereafter, Lummer and Pringsheim (1897, 1899) made fairly precise mea-
surements of blackbody emission between 100 ◦C and 1300 ◦C. By the end of the
nineteenth century an extensive set of experimental evidence was available on the
spectral distribution and temperature dependence of blackbody radiation.

At the same time the theoretical understanding of that type of radiation was
lagging. Based on concepts of classical physics, a theory was developed by Rayleigh
(1900) and Jeans (1905). They started by counting the number of possible modes
of standing electromagnetic waves in a cube with opaque and reflecting walls. The
walls of the cube and possible small specks of dust inside (to facilitate energy
exchange between individual modes) are assumed to be in thermal equilibrium at a
temperature, T . If one considers all three dimensions of the cube, and both planes
of polarization, the number, N ( f ), of all possible modes in the range between f
and f + d f , is

N ( f ) d f = 8πV f 2

c3
d f, (1.7.1)

where V is the volume of the cavity and f = cν the frequency in hertz. Although
Eq. (1.7.1) has been derived for a cubical volume with reflecting walls, it is equally
valid for a cavity of arbitrary shape with partially absorbing walls. To find the
energy density, ρ( f, T ), inside the cavity one has to multiply the number of standing
waves per frequency interval by the energy of each wave and divide by the volume.
According to the classical equipartition law, the total (kinetic and potential) energy
per degree of freedom is kT , where k is the Boltzmann constant. A standing wave
inside the cube can be regarded as a harmonic oscillator of frequency f with one
degree of freedom. The energy density in an isothermal cavity is then, according
to classical theory,

ρ( f, T ) d f = 8π f 2kT

c3
d f. (1.7.2)

The energy density in this expression increases with the square of frequency, con-
trary to common experience that shows that blackbodies at a few hundred degrees
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Fig. 1.7.1 Spectral intensity of a blackbody of 300 K as a function of wavenumber. The
solid curve is the Planck function, the dashed curve the Rayleigh–Jeans, and the dash-dot
curve the Wien approximation.

kelvin do not emit visible light, while they emit strongly in the infrared, at lower
frequencies. Furthermore, the integral of the energy density over all frequencies
must be a finite value and not infinite as an integration of Eq. (1.7.2) would imply.
At the turn of the century it was quite clear that the classical theory of radiation was
in conflict with experimental results. As shown in Fig. 1.7.1, neither the classical
Rayleigh–Jeans law nor the radiation law of Wien is valid over the whole fre-
quency range, although both seem to be good approximations at opposite ends of
the spectrum.

Planck realized that the equipartition law, which assigns equal energy to each
standing wave, could not be valid; he also realized that the roll-off in the energy
distribution at high frequencies could be obtained with the assumption that the
energy of a harmonic oscillator cannot take on any value, as is assumed in the
classical equipartition law, but that it is quantized; a harmonic oscillator can absorb
and emit energy only in finite steps,


E = nh f, (1.7.3)
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where n is an integer and h is now called the Planck constant. Planck (1900,
1901) postulated this rather reluctantly, only after he had exhausted all possible
explanations based on classical theory. With the assumption of energy quantization
the energy density inside the cavity becomes

ρ( f, T ) d f = 8πh f 3

c3(eh f/kT − 1)
d f. (1.7.4)

To obtain the spectral distribution of thermal emission emerging at velocity c from
a blackbody into a steradian, the energy density must be multiplied by c/4π ,
yielding

B( f, T ) d f = 2h f 3

c2(eh f/kT − 1)
d f, (1.7.5)

where B( f, T ) is the Planck function. It has been found to be in excellent agreement
with measurement over wide ranges of temperature and wavenumber. More detailed
derivations of the Planck law and that of Rayleigh–Jeans can be found in the
published lectures of Planck (1913) or in textbooks on quantum mechanics such as
that by Eisberg & Resnick (1974).

By permitting either h or f to approach zero in Eq. (1.7.4) the classical solution
of the energy density according to the Rayleigh–Jeans law, Eq. (1.7.2), is obtained.
By permitting f in Eq. (1.7.4) to approach very high values the Wien distribu-
tion function results and the energy density approaches zero as required by energy
conservation. Integration of the Planck function over all frequencies leads to the
Stefan–Boltzmann fourth power relationship, and multiplication of the wavelength
at the radiation maximum by the blackbody temperature yields a constant, ex-
pressing the displacement law of Wien. The Planck formula includes all previously
found radiation laws as special cases; moreover, the empirical factors that appeared
in these older laws could now be expressed in terms of physical constants containing
the Planck constant (h), the velocity of light (c), and the Boltzmann constant (k).
Despite this success it was only gradually appreciated that the quantum concept
was a major revolution in physics. Today it is fully accepted as a more general
framework in which classical physics appears as a special case that is valid only
when the small but finite energy steps, given by the value of h, can be considered
a continuum.

If one replaces the frequency f by the wavenumber ν ( f = cν) the Planck func-
tion takes the form

B(ν, T ) dν = 2hc2ν3

(ehcν/kT − 1)
dν. (1.7.6)



1.8 The Poynting vector, specific intensity, and net flux 25

The Planck function can also be expressed in terms of wavelength (λν = 1; λ dν +
ν dλ = 0)

B(λ, T ) dλ = 2hc2

λ5(ehc/λkT − 1)
dλ. (1.7.7)

The Planck function appears in many aspects of the theory of radiative transfer and
the design of infrared instrumentation, as is discussed in forthcoming chapters.

1.8 The Poynting vector, specific intensity, and net flux

The energy flux of a plane, monochromatic wave is represented by the Poynting
vector as discussed in Section 1.2. In this section we relate the Poynting vector
to other quantities used in the description of the radiative transfer of energy in
planetary atmospheres and from surfaces.

Strictly monochromatic radiation propagating in a unique direction (e.g., from a
point source) is never realized. A monochromatic wave implies a periodic process of
infinite duration. Such waves do not exist, although the signal from a stable, single-
mode laser provides a fair approximation. Ordinary incoherent radiation emitted
and reflected from real atmospheres and surfaces consists of individual wave packets
of finite length and duration; a few meters and ∼10−8 seconds are typical values.
Similarly, point sources are replaced by extended sources in practice. Radiation
from such sources tends to be incoherent and covers a range of frequencies and
directions. Thus, it is more convenient to work with a distribution of plane waves
and their associated Poynting vectors.

Consider radiation incident on an element of area da with unit normal vector n̂ as
shown in Fig. 1.8.1. The radiation can be regarded as an incoherent superposition
of plane waves, each with an associated Poynting vector S(ν, k̂) where ν is the
wavenumber of the wave and k̂ is a unit vector defining the direction of propaga-
tion. Let N (S, ν, k̂) dS dν dω be the number of plane waves with Poynting vector

Fig. 1.8.1 Element of solid angle, dω, in direction of unit vector k̂ inclined with respect to
surface normal n̂ of area element da.
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magnitude between S and S + dS, wavenumber between ν and ν + dν, and within
solid angle dω in direction k̂. The net energy in wavenumber interval dν passing
through da in time dt from the direction k̂ is then

dEν =
∫ ∞

0
dS N (S, ν, k̂)S(ν, k̂) · n̂ dω dν da dt

=
∫ ∞

0
dS N (S, ν, k̂)S(ν, k̂) cos θ dω dν da dt. (1.8.1)

The second form is obtained by noting from Fig. 1.8.1 that S(ν, k̂) = S(ν, k̂)k̂ and
k̂ · n̂ = cos θ . This suggests introducing the definition

Iν(k̂) =
∫ ∞

0
dS N (S, ν, k̂)S(ν, k̂) (1.8.2)

so that Eq. (1.8.1) can be written

dEν = Iν cos θ dω dν da dt. (1.8.3)

Thus Iν is the rate at which radiant energy confined to a unit solid angle and unit
wavenumber interval crosses unit surface area normal to the direction of incidence,
and is called the specific intensity. Typical units are W cm−2 sr−1/cm−1.

Another important quantity is the monochromatic net flux, π Fν , which is the rate
at which energy per unit wavenumber interval flows across a surface of unit area in
all directions,

π Fν =
∫

4π

Iν cos θ dω, (1.8.4)

where the integration is performed over all solid angles. In effect, Eq. (1.8.4) gives
the difference between the upward and downward fluxes across a horizontal surface
of unit area. The net flux plays an important role in determining the magnitudes of
radiative heating and cooling rates, as will be discussed in Section 9.1.



2

Radiative transfer

Various physical processes modify a radiation field as it propagates through an
atmosphere. The rate at which the atmosphere emits depends on its composition
and thermal structure, while its absorption and scattering properties are defined by
the prevailing molecular opacity and cloud structure.

Independently of whether the radiation field is generated internally or is im-
posed externally, the study of how it interacts with the atmosphere is embodied
in the theory of radiative transfer. Many authors have dealt with this theory in
various contexts. Monographs include those by Kourganoff (1952), Woolley &
Stibbs (1953), Goody (1964), and Goody & Yung (1989). A standard text is by
Chandrasekhar (1950), which treats the subject as a branch of mathematical physics.
The emphasis is on scattered sunlight in planetary atmospheres and on various
problems of astrophysical interest.

Our own approach is somewhat different and emphasizes spectra produced by
thermal emission from planetary atmospheres, especially as observed from space
platforms. In order to demonstrate the connection between the thermal radiation
giving rise to these spectra and the physical state of the atmosphere under consid-
eration, it is necessary to examine how the transport of this radiation is effected.
Only then is it possible to have a clear understanding of how the structure of an at-
mosphere leads to its spectral appearance, a topic considered at length in Chapter 4.
Once this is accomplished a reversal of the procedure is feasible, and in Chapters 6
through 9 we demonstrate how the observed characteristics of the radiation field
imply the underlying physical structure and the state of the interacting atmosphere.

Our aim in this chapter is to develop the mathematical formalism that serves as
the foundation for all our analyses involving the radiation field in sufficient depth to
be essentially autonomous, though our indebtedness to some of the procedures de-
veloped by Chandrasekhar (1950) is obvious. The equation of transfer is derived in
Section 2.1, and formal solutions are found in Section 2.2. Very general techniques
for solving the transfer equation numerically are developed in Section 2.3. Though

27
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powerful, these techniques are often cumbersome, and Section 2.4 discusses the
simplifications permitted when multiple scattering is unimportant. Finally, an ap-
proximate analytic solution for thick, scattering atmospheres, which can be very
useful where physical insight is needed, is developed in Section 2.5.

2.1 The equation of transfer

a. Definitions and geometry

Because radiation tends to be modified when it interacts with matter, it is possible to
infer certain physical properties of planetary atmospheres and surfaces by studying
their reflected and emitted radiation. Although these modifications are macroscopic
in nature (they are manifested over an extended volume), their origins are contained
in the processes of absorption, scattering, and emission of radiant energy on a micro-
scopic scale. A quantitative assessment of the relation between these interactions
and the resulting radiation field is known as the theory of radiative transfer. It is
the purpose of this section to develop the equation central to this theory.

We begin by considering a volume element, dV , containing N0 particles, either
cloud particles or molecules in the vapor phase, located a distance z above the planet-
ary surface. Directions at dV are specified by µ (the cosine of the zenith angle θ) and
the azimuthal angle φ (Fig. 2.1.1). The emission angle θ is measured positively from
zero (the zenith) to π (the nadir); the corresponding range for µ is from +1 to −1.
The azimuthal angle φ is measured through 2π radians in the plane of stratification

Fig. 2.1.1 Illustration of the relation between the scattering angle � and the coordinate
angles θ, θ ′, φ, and φ′. Radiation is incident on the volume element dV in the direction
(µ, φ) and scattered by dV through the angle � into the direction (µ′, φ′), where µ = cos θ
and µ′ = cos θ ′.
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from an arbitrary angle φ0. Directions are specified by the symbol (µ, φ). For exam-
ple, I (z, µ, φ) is the intensity of radiation at dV (at a level z) in the direction (µ, φ).

The specific intensity, also known as the spectral radiance, has been defined by
Eq. (1.8.3). Another parameter of interest is the phase function for single scatter-
ing, p(cos �), which describes the angular distribution of radiation scattered once
through the angle �. If Eν represents the fraction of energy per unit time incident
on dV in the direction (µ, φ) that is either absorbed or scattered in all directions,
and dEν is that fraction of Eν scattered into the direction (µ′, φ′) contained in the
solid angle dω′, then p(cos �) is defined by

dEν(z, µ′, φ′)
Eν(z, µ, φ)

= p(cos �)
dω′

4π
, (2.1.1)

where � is the angle between the directions of incidence (µ, φ) and scattering
(µ′, φ′). The explicit relation between � and the variables µ, φ, µ′, φ′ is found
from spherical trigonometry (see Fig. 2.1.1) to be

cos � = µµ′ + (1 − µ2)
1
2 (1 − µ′2)

1
2 cos (φ′ − φ). (2.1.2)

The phase function can be written

p(cos �) = p(µ′, φ′; µ, φ), (2.1.3)

where radiation originally in the direction (µ, φ) has been scattered into the direction
(µ′, φ′). It should be noted from Eq. (2.1.2) that p(µ′, φ′; µ, φ) is symmetric in the
pair of variables µ, φ; i.e.,

p(µ, φ; µ′, φ′) = p(µ′, φ′; µ, φ). (2.1.4)

If the albedo for single scattering, ω̃0, is defined to be the ratio of radiant power
scattered in all directions to that extinguished (absorbed plus scattered), we have,
from Eqs. (2.1.1) and (2.1.3),

ω̃0 = 1

Eν(z, µ, φ)

∫
dEν(z, µ′, φ′) =

∫ 4π

0
p(µ′, φ′; µ, φ)

dω′

4π
. (2.1.5)

b. Microscopic processes

Two points of view are possible in describing radiation–matter interactions on a
microscopic scale. In the Lagrangian point of view the movements of individual
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photons are followed as they interact with matter contained in the volume ele-
ment dV . ‘Monte Carlo’ programs are computer versions of the Lagrangian method.
However, the observable parameter of interest, the specific intensity, Iν , is a field of
these photons, and we are interested in following the time-averaged variations of
this field as it interacts with the matter in dV . For this purpose it is more practical to
study local variations of Iν without regard to the individual history of each photon;
this is the Eulerian point of view. In our development we examine both viewpoints
and illustrate their equivalence.

Consider the photons of wavenumber ν interacting with dV to be classified ac-
cording to the interactions they undergo as well as upon the intrinsic characteristics
of the photons themselves. We restrict ourselves to one field at a time, which in
essence is the same as restricting our attention to one photon of this field at a time.
Thus the field from the Lagrangian point of view (in a looser sense of the phrase)
is followed.

Since each photon behaves by definition like every other photon in the field,
certain criteria must be met. Each photon must be identical with every other photon
of this class, and the system of particles with which this class of photons interacts
must be composed of exactly the same kind of individual particles (in terms of
dimensions, refractive index, etc.) in order that the separate interactions be identical.
If more than one interaction per photon takes place, the order, number, and character
of these interactions must be the same for each photon. In order to circumvent the
inordinate complexity imposed by the last requirement, the volume element, dV ,
must be restricted to dimensions considerably smaller than the mean free path of
an individual photon, so that only single interactions are possible in dV .

Construct a convex closed surface, δS, around dV such that the volume enclosed
by δS is large compared with dV but small otherwise (see Figs. 2.1.2 and 2.1.3). Let

Fig. 2.1.2 Elements of solid angle dω and dω′ subtended at the volume element dV by dA
and dA′, elements of the convex bounding surface δS.
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dσ

dσ'

(µ ,φ)

(µ' ,φ
')dA'

dα'

dα

dA

dV

(µ ,φ)

δS

Fig. 2.1.3 Illustration of the elements of solid angle dα and dα′ subtended at dA and dA′,
respectively, and by dσ and dσ ′ cross sections of dV in the directions (µ, φ) and (µ′, φ′).

dA and dA′ be elements of δS such that the direction from dA to dV is (µ, φ) and
the direction from dV to dA′ is (µ′, φ′). Further let dω and dω′ be respectively the
elements of solid angle containing dA and dA′ as seen from dV , and let dα and dα′

be the elements of solid angle containing dV as seen respectively from dA and dA′.
Consider that system of photons where each photon is contained in the wavenum-

ber range (ν, ν + dν) and interacts with a particle of homogeneous composition hav-
ing an extinction (absorption plus scattering) cross section in the range (χ, χ + dχ ).
The cross section is generally wavenumber dependent and, if the particle is not
spherical, may depend on direction as well. We divide the system of photons under
consideration into four classes in the sense defined above, where the classes are
distinguishable only through the types of interactions they undergo (see Figs. 2.1.2
and 2.1.3). The classes are:

(1) That class of photons incident on dV in a time dt and in the direction (µ, φ) contained in
the solid angle dα that is singly scattered into the solid angle dω′ in the direction (µ′, φ′)
by interactions in dV with particles in the cross section range (χ, χ + dχ ). This process
can be considered either as a scattering of a certain fraction of the number of incident
photons into dω′, or as a redirection of a fraction of the incident energy into dω′.

(2) That class of photons incident on dV in a time dt in the direction (µ, φ) that is absorbed
by the particles under consideration in dV . This process can be considered either as an
absorption of a certain fraction of incident photons or as a diminution of the incident
energy by some fractional amount.

(3) That class of photons incident on dV in a time dt in the direction (µ′, φ′) that is singly
scattered into the solid angle dω in the direction (µ, φ). Again, this process can be
considered either as a scattering of a certain fraction of incident photons into dω, or a
redirection of a fraction of the incident energy into dω.
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(4) That class of photons thermally emitted from the particles under consideration in
dV into the solid angle dω in the direction (µ, φ) in a time dt . This process can
be considered either as an emission of many individual photons in the wavenumber
range (ν, ν + dν), or as a source of energy emitted into dω in the direction (µ, φ) in
a time dt . Nonthermal emission is also possible, though generally is not significant in
the investigations considered in this book.

The first two classes of photons are lost from the radiation field in the direction
(µ, φ) by scattering and absorption. The last two classes consist of photons gained
by the radiation field in the direction (µ, φ) by scattering and emission. These are not
all the losses and gains of the radiation field, however, since only interactions with
particles in the cross section range (χ, χ + dχ ) have been considered. Integrations
over cross section and orientation remain to be performed.

Referring to Figs. 2.1.2 and 2.1.3 and Eq. (1.8.3), it is seen that the amount of
energy δEν(z, µ, φ) in the wavenumber range (ν, ν + dν) crossing dV in a time dt ,
which has originated outside δS and has also crossed dA, is

δEν(z, µ, φ) = Iν(z, µ, φ) µ1dA dα dν dt, (2.1.6)

where µ1 is the cosine of the angle between the direction (µ, φ) and the normal
to dA. Of all the energy crossing dA in a time dt contained in the solid angle dα,
a certain fraction is singly scattered by dV into the solid angle dω′. Analogous to
Eqs. (2.1.1) and (2.1.3) this fraction is

d[δEν(z, µ′, φ′)]
δEν(z, µ, φ)

= P(χ ) pχ (µ′, φ′; µ, φ)
dω′

4π
, (2.1.7)

where P(χ ) is the probability that any one photon incident on dV is extinguished
(either absorbed or scattered) by a particle of cross section χ , and pχ (µ′, φ′; µ, φ)
is a function of χ and is normalized to ω̃0(χ ) [cf. Eq. (2.1.5)].

Now P(χ) is just the ratio of the total available effective extinction cross section
of all particles in the cross section range (χ, χ + dχ) contained in dV to the
geometrical cross section dσ of dV as seen in the direction (µ, φ), and this is
given by

P(χ) = N (χ )χdχdV

dσ
, (2.1.8)

where N (χ) is the number of particles per unit volume per unit cross section range
centered about χ . Equation (2.1.8) is valid so long as there is no ‘shadow’ effect;
i.e., the probability that any one particle is screened off from any other particle is
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negligible. This requires that only single interactions occur in dV , or, put another
way, P(χ ) � 1. Collecting Eqs. (2.1.6) through (2.1.8) yields

d[δEν(z, µ′, φ′)] = N (χ)χdχdV

dσ
Iν(z, µ, φ)µ1 dA dα dν dt pχ (µ′, φ′; µ, φ)

dω′

4π
.

(2.1.9)

In the following we indicate losses and gains of the intensity by the symbols δ−
and δ+, respectively. Clearly, there must be a loss of intensity d[δ− IS(z, µ, φ)] from
the direction (µ, φ) associated with the loss of energy from this same direction,
which in turn corresponds to the energy gain d[δEν(z, µ′, φ′)] in the direction
(µ′, φ′), and this, according to Eq. (2.1.6), is

d[δEν(z, µ′, φ′)] = d[δ− IS(z, µ, φ)]µ1dA dα dν dt. (2.1.10)

Comparing Eqs. (2.1.9) and (2.1.10) we obtain

d[δ− IS(z, µ, φ)] = N (χ )χdχdV

dσ
Iν(z, µ, φ)pχ (µ′, φ′; µ, φ)

dω′

4π
. (2.1.11)

This equation is valid for the scattering of incident photons in the wavenumber
range (ν, ν + dν) into the solid angle dω′ by particles in the cross section range
(χ, χ + dχ ). In order to obtain the scattering loss into all directions by particles
of all sizes, Eq. (2.1.11) must be integrated over all ω′ and χ . Implicit in the χ

integration is averaging over orientation for particles lacking spherical symmetry.
Thus, the total intensity in the wavenumber range (ν, ν + dν) and in the direction
(µ, φ), which is lost from this direction by scattering in dV , is

δ− IS(z, µ, φ) = N0dV

dσ
Iν(z, µ, φ)

∫ ∞

0

∫ 4π

0
D(χ )χpχ (µ′, φ′; µ, φ)

dω′

4π
dχ,

(2.1.12)

where N0 is the total number of particles per unit volume and D(χ) is the normalized
distribution function of particle cross sections; i.e., N (χ ) = N0 D(χ ).

Consider now the second class of photons defined previously. From Eqs. (2.1.6)
and (2.1.7) and the related discussion it follows that the energy in the wavenumber
range (ν, ν + dν) crossing dA (in Fig. 2.1.2) in a time dt , which is absorbed by
particles in the cross section range (χ, χ + dχ ), is

d[δEν(z, µ, φ)] = PA(χ) Iν(z, µ, φ)µ1 dA dα dν dt, (2.1.13)
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where PA(χ), the probability of absorption of a photon in the wavenumber range
(ν, ν + dν), is

PA(χ ) = [1 − ω̃0(χ )]P(χ ) = [1 − ω̃0(χ )]N (χ )χdχdV

dσ
. (2.1.14)

By analogy with Eq. (2.1.9), the loss d[δ− IA(z, µ, φ)] of the intensity Iν(z, µ, φ)
incident on dV in the direction (µ, φ) is given by

d[δEν(z, µ, φ)] = d[δ− IA(z, µ, φ)]µ1 dA dα dν dt. (2.1.15)

Intercomparing Eqs. (2.1.13) through (2.1.15) yields

d[δ− IA(z, µ, φ)] = [1 − ω̃0(χ)]N (χ )χdχdV

dσ
I (z, µ, φ), (2.1.16)

and this integrated over all particle cross sections becomes

δ− IA(z, µ, φ) = N0dV

dσ
Iν(z, µ, φ)

∫ ∞

0
[1 − ω̃0(χ )]D(χ )χdχ. (2.1.17)

This equation expresses the total intensity in the wavenumber range (ν, ν + dν)
lost from the direction (µ, φ) by absorption in dV .

In order to establish the gain to the radiation field by scattering of the third class
of photons into the direction (µ, φ), it is necessary only to reverse the initial and
final directions of the radiation field. By once again tracing out the consequences
of the scattering process it is evident that Eqs. (2.1.6) through (2.1.9) remain valid
upon an interchange of the primed and unprimed quantities. Thus, the gain of
energy d[δEν(z, µ, φ)] in a time dt and in the direction (µ, φ) contained in the
solid angle dω, which has resulted from a scattering of the energy by particles in
the cross section range (χ, χ + dχ ) contained in dV , and which was originally in
the direction (µ′, φ′) and contained in the solid angle dα′ is

d[δEν(z, µ, φ)] = N (χ)χdχdV

dσ ′ Iν(z, µ′, φ′)µ′
1 dA′ dα′ dν dt pχ (µ, φ; µ′, φ′)

dω

4π
.

(2.1.18)

Here dσ ′ is the geometrical cross section of dV as seen in the direction (µ′, φ′), dα′

is the solid angle subtended by dσ ′ at dA′, and µ′
1 is the cosine of the angle contained

between the direction (µ′, φ′) and the normal to dA′.
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The corresponding gain in intensity at dV in the direction (µ, φ) must be given by

d[δEν(z, µ, φ)] = d[δ+ IS(z, µ, φ)] dσ dω dν dt, (2.1.19)

since d[δEν(z, µ, φ)] is just the energy in a time dt that crosses normal to the
surface element dσ at dV and is contained in dω. Comparing Eqs. (2.1.18) and
(2.1.19) we obtain

d[δ+ IS(z, µ, φ)] = N (χ )χdχdV

dσ
Iν(z, µ′, φ′)pχ (µ, φ; µ′, φ′)

µ′
1 dA′ dα′

4πdσ ′ .

(2.1.20)

If the distance between dV and dA′ is denoted by r , then, from the geometry,

µ′
1dA′ = r2dω′ (2.1.21)

and

dσ ′ = r2dα′. (2.1.22)

With the aid of Eqs. (2.1.21) and (2.1.22), Eq. (2.1.20) becomes

d[δ+ IS(z, µ, φ)] = N (χ )χdχdV

dσ
pχ (µ, φ; µ′, φ′) Iν(z, µ′, φ′)

dω′

4π
. (2.1.23)

In order to obtain the total contribution to the intensity in the direction (µ, φ) by
scattering from dV , Eq. (2.1.23) must be integrated over all solid angles ω′ and all
particle cross sections χ [see Eq. (2.1.12)];

δ+ IS(z, µ, φ) = N0dV

dσ

∫ ∞

0

∫ 4π

0
D(χ ) χpχ (µ, φ; µ′, φ′) Iν(z, µ′, φ′)

dω′

4π
dχ.

(2.1.24)

The fourth class of photons describes the contribution to the radiation field by
thermal emission from dV . In order to calculate this contribution, consider the
surface δS in Fig. 2.1.2 to be a perfectly insulating enclosure maintaining the part-
icles in dV at a constant temperature,T .Since the radiation field within the enclosure
is in equilibrium with its surroundings and is isotropic, the amount of energy in
the wavenumber interval (ν, ν + dν) that would be emitted by particles in the cross
section range (χ, χ + dχ ) into the direction (µ, φ) contained in the solid angle
dω, upon an instantaneous removal of the enclosure, is given by [cf. Eqs. (2.1.13)
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and (2.1.14)]

d[δEν(z, µ, φ)] = Bν(T )N (χ )[1 − ω̃0(χ )] χ dχ dV dω dν dt, (2.1.25)

where Bν(T ) is the Planck function. The term [1 − ω̃0(χ )]χ in Eq. (2.1.25) is an
emission cross section, which is identical to the absorption cross section, as required
by the first law of thermodynamics.

Corresponding to previous arguments we must also have [see Eq. (2.1.15)]

d[δEν(z, µ, φ)] = d[δ+ IE (z, µ, φ)] dσ dω dν dt, (2.1.26)

where d[δ+ IE (z, µ, φ)] refers to the gain in intensity in the direction (µ, φ) due to
thermal emission from dV . If the total number of particles of all sizes and shapes
per unit volume is N0, and the cross section distribution in dV is given as before
by D(χ ), then the total contribution in the direction (µ, φ) contained in the solid
angle dω of radiation thermally emitted from all the particles in dV according to
Eq. (2.1.25) is

∫
Eν

d[δEν(z, µ, φ)] = N0 Bν(T ) dV dω dν dt
∫ ∞

0
[1 − ω̃0(χ )]D(χ ) χ dχ.

(2.1.27)

Comparing Eqs. (2.1.26) and (2.1.27) yields

δ+ IE (z, µ, φ) =
∫

IE

d[δ+ IE (z, µ, φ)]

= N0dV

dσ
Bν(T )

∫ ∞

0
[1 − ω̃0(χ )] χ D(χ ) dχ. (2.1.28)

If the enclosure is not replaced, dV will be subjected to the local anisotropic radi-
ation field of arbitrary energy density. What happens now is largely a function of
the relative importance of: (1) collisions between molecules, either in the gaseous
or condensed state, compared with (2) interactions between these molecules and the
radiation field, as a cause of molecular absorptions and emissions. If interactions
with the radiation field dominate, the emission will consist essentially of spont-
aneous emission of photons from excited molecules, and induced emission through
perturbations due to the radiation field. The latter type of emission is proportional to
the incident intensity and is therefore anisotropic in the same sense as the surround-
ing radiation field. The molecules are excited through the absorption of incident
radiation, and the local temperature depends mainly on the photon density. Thus
the radiation emitted from dV cannot be isotropic because of the contribution from
induced emission unless the radiation field itself is strictly isotropic.
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At the other extreme collisional battering of molecules dominates, and ther-
mal (isotropic) emission far outweighs emission induced by the radiation field.
This occurs where the density of molecules is high enough so that the frequency
of encounters among molecules is much larger than the frequency of encounters
between molecules and incident photons. Such a condition should always occur
inside liquid and solid particles. However, if the particles are molecules in the gas
phase, greater care is required where N0 is sufficiently small that induced emission
becomes important.

If collisions between molecules dominate, Eq. (2.1.28) is acceptable as it stands
upon a removal of the enclosure. The temperature depends only upon the energy
available through collisions, and the radiation field does not have to be in equilib-
rium with the surrounding medium. The limiting case where scattering becomes
negligible [ω̃0(χ) = 0] is sometimes referred to as the condition of local thermo-
dynamic equilibrium.

c. The total field

We are now in a position to evaluate the net change in intensity in the direction
(µ, φ) due to the presence of the volume element dV . Adding all gains and losses
from Eqs. (2.1.12), (2.1.17), (2.1.24), and (2.1.28) yields

δ Iν(z, µ, φ) = −δ− IS(z, µ, φ) − δ− IA(z, µ, φ) + δ+ IS(z, µ, φ) + δ+ IE (z, µ, φ)

= − N0dV

dσ
Iν(z, µ, φ)

∫ ∞

0

∫
ω′

D(χ ) χ pχ (µ′, φ′; µ, φ)
dω′

4π
dχ

− N0dV

dσ
Iν(z, µ, φ)

∫ ∞

0
[1 − ω̃0(χ)]D(χ ) χ dχ

+ N0dV

dσ

∫ ∞

0

∫
ω′

D(χ )χpχ (µ, φ; µ′, φ′) Iν(z, µ′, φ′)
dω′

4π
dχ

+ N0dV

dσ
Bν(T )

∫ ∞

0
[1 − ω̃0(χ )]D(χ ) χdχ. (2.1.29)

The terms on the right side of Eq. (2.1.29) are negative or positive depending on
whether they are, respectively, losses or gains.

Equation (2.1.29) can be simplified by defining a normalized effective phase
function, p0(µ, φ; µ′, φ′), by

p0(µ, φ; µ′, φ′)
∫ ∞

0
ω̃0(χ ) D(χ ) χdχ =

∫ ∞

0
D(χ ) χpχ (µ, φ; µ′, φ′) dχ.

(2.1.30)
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Upon multiplying both sides of Eq. (2.1.30) by dω′/4π , integrating over all solid
angles, and remembering that

∫
ω′ pχ (µ, φ; µ′, φ′) dω′/4π = ω̃0(χ ), we infer

∫ 4π

0
p0(µ, φ; µ′, φ′)

dω′

4π
= 1. (2.1.31)

Substituting in Eq. (2.1.29) according to Eq. (2.1.30) and using Eq. (2.1.31) we
obtain

δ Iν(z, µ, φ)

− N0dV

dσ

∫ ∞

0
D(χ ) χ dχ

= Iν(z, µ, φ) −

∫ ∞

0
ω̃0(χ )D(χ ) χ dχ∫ ∞

0
D(χ) χ dχ

×
∫

ω′
p0(µ, φ; µ′, φ′) Iν(z, µ′, φ′)

dω′

4π

−

∫ ∞

0
[1 − ω̃0(χ )]D(χ ) χ dχ∫ ∞

0
D(χ ) χ dχ

Bν(T ). (2.1.32)

Further simplifications of the terms in Eq. (2.1.32) are possible. We define an
effective extinction cross section χE and an effective single scattering albedo ω̃0 of
dV by

χE =
∫ ∞

0
D(χ) χ dχ (2.1.33)

and

ω̃0

∫ ∞

0
D(χ ) χ dχ =

∫ ∞

0
ω̃0(χ )D(χ) χ dχ, (2.1.34)

respectively, and a single scattering phase function p(µ, φ; µ′, φ′) normalized to
ω̃0 such that

p(µ, φ; µ′, φ′) = ω̃0 p0(µ, φ; µ′, φ′). (2.1.35)

If the atmosphere is plane-parallel (infinitely extended in the x- and y-directions
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and variable in the z-direction only), a volume element cylinder dV of height dz
and base area dσz is given by

dV = dσzdz. (2.1.36)

If the linear dimensions of dσz are made arbitrarily much larger than dz, but still
small enough so that dσz remains an element of surface area, then the sides of the
cylinder can be neglected relative to dσz in determining the effective cross section
of dV as seen along a slant-path in the direction (µ, φ). The geometric cross section
dσ of dV is

dσ = µdσz, (2.1.37)

and the denominator of the left side of Eq. (2.1.32) can be reduced to

− N0dV

dσ

∫ ∞

0
D(χ )χdχ = − 1

µ
N0χE dz. (2.1.38)

At this point it is convenient to define a normal optical depth τν measured from the
top of the atmosphere inward such that

dτν = −N0χE dz. (2.1.39)

Thus dτν is the optical cross section of dV in the z-direction.
Upon collecting Eqs. (2.1.33) through (2.1.39), introducing the relations µ =

cos θ and dω = sin θ dθ dφ (Fig. 2.1.1), and letting the ratio δ Iν(z, µ, φ)/dτν

approach its limit as dτν → 0, Eq. (2.1.32) becomes

µ
dI (τν, µ, φ)

dτν

= I (τν, µ, φ)

− 1

4π

∫ 2π

0

∫ +1

−1
p(µ, φ; µ′, φ′) I (τν, µ

′, φ′) dµ′ dφ′

− (1 − ω̃0) Bν(T ). (2.1.40)

This is the equation of transfer for an arbitrary, monochromatic field of radiation.
In practice this field consists of a diffuse component that originates from thermal
emission of the atmosphere and the planetary surface, as well as a component (both
diffuse and direct) that originates from the Sun. The former component dominates
in the middle and far infrared, whereas the latter component is the sole contributor
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at visible wavelengths. Both components are important in a transition range in the
near infrared.

d. The diffuse field

Upon solving the transfer equation in the context of various physical problems
it is evident that the intensity of the diffuse radiation field is the quantity most
easily handled in the equation, because the boundary conditions are much simpler
to impose than for the case in which the intensity of the total radiation field is the
dependent variable. In particular it is convenient to distinguish between the reduced
incident radiation field from the Sun, which penetrates to the level τν without
suffering any scattering or absorption processes, and the diffuse field, which has
arisen as a result of one or more scattering and emission processes.

In order to separate the diffuse field from the directly transmitted radiation we
consider a collimated beam of radiation (sunlight is a fair approximation) of flux
π F0 crossing a unit surface area normal to the beam. The magnitude of the flux
in the downward direction crossing a unit area contained in a plane at the top of
the atmosphere is µ0 πF0, where µ0 is the cosine of the zenith angle of the point
source, and this is [see Eq. (1.8.4)],

µ0 πF0 =
∫ 2π

0

∫ +1

−1
µI (0, µ, φ) dµ dφ, (2.1.41)

where I (0, µ, φ) is the downward intensity of radiation in the direction (µ, φ)
at τν = 0. Since the only contribution from the point source is in the direction
(−µ0, φ0), the intensity I (0, µ, φ) should be of the form

I (0, µ, φ) = Cδ(µ + µ0) δ(φ − φ0), (2.1.42)

where δ(µ + µ0) and δ(φ − φ0) are Dirac δ-functions and C is a normalization
constant. Substituting Eq. (2.1.42) into Eq. (2.1.41) readily yields the value C =
π F0.

The total intensity I (τν, µ, φ) associated with Eq. (2.1.40) is the sum of the in-
tensity ID(τν, µ, φ) arising from the diffuse radiation field and the intensity directly
transmitted from the point source to the level τν . By analogy with Eq. (2.1.42) and
the related discussion this latter intensity may be expressed by

IT(τν, µ, φ) = πF0 δ(µ + µ0) δ(φ − φ0) h(τν), (2.1.43)

where h(τν) is a function of τν alone yet to be determined. After some reduction,
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Eq. (2.1.40) becomes

µ
dID(τν, µ, φ)

dτν

+ πF0 µδ(µ + µ0) δ(φ − φ0)
dh(τν)

dτν

= ID(τν, µ, φ) + πF0 δ(µ + µ0) δ(φ − φ0) h(τν)

− 1

4π

∫ 2π

0

∫ +1

−1
p(µ, φ; µ′, φ′) ID(τν, µ

′, φ′) dµ′ dφ′

− F0

4
h(τν) p(µ, φ; −µ0, φ0) − (1 − ω̃0) Bν(T ). (2.1.44)

We suppose that dh(τν)/dτν and h(τν) are in general non-zero. Then, when
µ = −µ0 and φ = φ0, Eq. (2.1.44) reduces to

−µ0 δ(µ + µ0) δ(φ − φ0)
dh(τν)

dτν

= δ(µ + µ0) δ(φ − φ0) h(τν), (2.1.45)

yielding

h(τν) = C0 e−τν/µ0, (2.1.46)

where C0 is the constant of integration. Upon replacing h(τν) in Eq. (2.1.43) with its
equivalent in Eq. (2.1.46) and letting τν → 0, we find C0 = 1. Equation (2.1.46) is
equivalent to what is sometimes referred to as Beer’s law of exponential attenuation.

Upon dropping the subscripts D and ν, Eq. (2.1.44) for the diffuse radiation field
becomes

µ
dI (τ, µ, φ)

dτ
= I (τ, µ, φ) − 1

4π

∫ 2π

0

∫ +1

−1
p(µ, φ; µ′, φ′) I (τ, µ′, φ′) dµ′ dφ′

− F0

4
e−τ/µ0 p(µ, φ; −µ0, φ0) − (1 − ω̃0)B(τ ), (2.1.47)

where B(T ) has been replaced with B(τ ) to emphasize that the temperature is a
function only of optical depth in plane-parallel atmospheres. It remains understood
that the various parameters are in general functions of ν.

Equation (2.1.47) is the basic equation of transfer considered in this book. Solu-
tions to Eq. (2.1.47) are sought in the context of specific problems as they appear
in the course of investigation. In the remainder of this chapter we first derive for-
mal solutions, and then examine explicit solutions that are possible, either because
certain approximations are invoked or because at some point numerical procedures
are introduced.
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2.2 Formal solutions

A first-order linear integro-differential equation, such as Eq. (2.1.47), can be solved
formally by finding an appropriate integrating factor. Multiplying both sides of
Eq. (2.1.47) by e−τ/µ, transferring the first term on the right side to the left, and
gathering terms yields

µ
d
[
e−τ/µ I (τ, µ, φ)

]
dτ

= − 1

4π
e−τ/µ

∫ 2π

0

∫ +1

−1
p(µ, φ; µ′, φ′) I (τ, µ′, φ′) dµ′ dφ′

− F0

4
exp

[
−
(

1

µ
+ 1

µ0

)
τ

]
p(µ, φ; −µ0, φ0)

− (1 − ω̃0)e−τ/µ B(τ ). (2.2.1)

Integrating between τ and τ1, where τ1 is the optical depth at the surface (or lower
boundary), and rearranging terms yields the upward intensity at τ (multiplied by
the integrating factor e−τ/µ);

I (τ, µ, φ) e−τ/µ = I (τ1, µ, φ) e−τ1/µ

+ 1

4πµ

∫ τ1

τ

e−τ ′/µ
∫ 2π

0

∫ +1

−1
p(µ, φ; µ′, φ′) I (τ ′, µ′, φ′) dµ′ dφ′ dτ ′

+ F0

4µ

∫ τ1

τ

exp

[
−
(

1

µ
+ 1

µ0

)
τ ′
]

p(µ, φ; −µ0, φ0) dτ ′

+ 1

µ

∫ τ1

τ

(1 − ω̃0) e−τ ′/µ B(τ ′) dτ ′. (2.2.2)

This is only a formal solution, since the unknown intensity is itself contained in
this solution. By analogy with our treatment of direct sunlight in Section 2.1, it is
useful to separate the intensity arising from the lower boundary from the rest of
the radiation field. The direct contribution to I (τ ′, µ′, φ′) from the surface is the
intensity I (τ1, µ

′, φ′), attenuated along the path length (τ1 − τ ′)/µ′ by the factor
exp[(τ1 − τ ′)/µ′]. Thus Eq. (2.2.2) can be written

I (τ, µ, φ) =
(1) I (τ1, µ, φ) e−(τ1−τ )/µ

(2) + 1

4πµ

∫ τ1

τ

∫ 2π

0

∫ 1

0
e−(τ ′−τ )/µ e−(τ1−τ ′)/µ′

p(µ, φ; µ′, φ′) I (τ1, µ
′, φ′) dµ′ dφ′ dτ ′

(3) + F0

4µ

∫ τ1

τ

e−τ ′/µ0 e−(τ ′−τ )/µ p(µ, φ; −µ0, φ0) dτ ′
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(4) + 1

µ

∫ τ1

τ

(1 − ω̃0) e−(τ ′−τ )/µ B(τ ′) dτ ′

(5) + 1

4πµ

∫ τ1

τ

∫ 2π

0

∫ +1

−1
e−(τ ′−τ )/µ p(µ, φ; µ′, φ′) I (τ ′, µ′, φ′) dµ′ dφ′ dτ ′ (2.2.3)

where the diffuse field I (τ ′, µ′, φ′) is zero in the upward directions along the
boundary (τ ′ = τ1).

The various terms for the upward intensity in the direction (µ, φ) at a level τ

represent:

(1) radiation originating directly from the lower boundary (generally the surface or a com-
pact cloud deck) that is attenuated by the overlying atmosphere between the levels τ

and τ1;
(2) radiation originating from the lower boundary in the direction (µ′, φ′) that is scattered

at τ ′ into the direction (µ, φ);
(3) radiation from the Sun that has penetrated to the level τ ′ before undergoing a scattering

process;
(4) radiation that is thermally emitted at the level τ ′; and
(5) radiation that has undergone one or more scattering processes before being scattered at

τ ′ into the direction (µ, φ).

The downward intensity can be treated in like manner. The integration is now
from τ = 0 to τ , and the formal solution to Eq. (2.2.1) becomes [cf. Eq. (2.2.3)]

I (τ, −|µ|, φ) =

(1)
1

4π |µ|
∫ τ

0
e−(τ−τ ′)/|µ|

∫ 2π

0

∫ +1

−1
p(−|µ|, φ; µ′, φ′) I (τ ′, µ′, φ′) dµ′ dφ′dτ ′

(2) + F0

4|µ|
∫ τ

0
e−τ ′/µ0e−(τ−τ ′)/|µ| p(−|µ|, φ; −µ0, φ0) dτ ′

(3) + 1

|µ|
∫ τ

0
(1 − ω̃0) e−(τ−τ ′)/|µ| B(τ ′) dτ ′, (2.2.4)

where −|µ| replaces µ as a reminder that downward directions are being consid-
ered. The terms for the downward intensity in the direction (−|µ|, φ) at a level τ

represent:

(1) radiation that has undergone one or more scattering processes before being scattered at
τ ′ into the direction (−|µ|, φ);

(2) radiation from the Sun that has penetrated to the level τ ′ before undergoing a scattering
process; and

(3) radiation thermally emitted at τ ′.
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Downward intensity terms at the upper boundary (τ = 0) analogous to the upward
intensity terms at the lower boundary [τ = τ1; see Eq. (2.2.4)] do not exist, because
the diffuse field is zero in all downward directions at τ = 0.

Reduction of the formal solutions to explicit solutions is complicated, and no
known analytic solutions exist in the general case. The major difficulty centers
around terms (5) in Eq. (2.2.3) and (1) in (2.2.4), which contain the unknown inten-
sity field and arise as a result of multiple scattering. Three approaches are possible:
(1) direct numerical solutions, (2) approximate analytic solutions, and (3) exact
analytic solutions for thin layers (where multiple scattering is unimportant), cou-
pled with numerical procedures for developing solutions for thick layers from the
starting analytic solutions.

Wherever possible we have chosen the latter two approaches in this book in
order to associate the solutions more directly with physical processes. Explicit
representation of the parameters involved enables the reader to follow the qualitative
way in which changes in the physical state of a system affect the appearance of
the outgoing radiation field. Where an accurate quantitative assessment is required
we supplement analytic solutions with numerical methods. The remainder of this
chapter is directed toward these ends.

2.3 Invariance principles

a. Definitions

A very useful concept for arriving at more explicit solutions to the transfer equation
is that of the invariance of the radiation field emerging from a layer of finite thickness
to the nature of the incoming radiation field at the layer boundaries. For example,
the angular distribution of intensity and the net flux of the outgoing radiation field
at the top of the atmosphere do not depend on the explicit nature of the underlying
surface. It could be either a solid surface or a vacuum, as long as the upwelling
radiation fields at τ = τ1 are identical, regardless of the sources of those fields.

We apply this concept first to a single layer, then to two layers, and finally we
generalize to many layers with arbitrary thermal and scattering properties. Ulti-
mately, this leads to a procedure for computing the outgoing radiation field from
any vertically inhomogeneous atmosphere.

Consider an atmospheric layer that absorbs, emits, and scatters radiation, and that
is bounded above and below by the intensity fields I (τ0, −µ, φ) and I (τ1, µ, φ),
respectively. Define a scattering function S(τ1 − τ0; µ, φ; µ′, φ′) such that the in-
tensity of diffusely reflected radiation in the direction (µ, φ) at τ = τ0, which arises
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as a result of the presence of the radiation field I (τ0, −µ′, φ′), is given by

IS(τ0, µ, φ) = 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1 − τ0; µ, φ; µ′, φ′) I (τ0, −µ′, φ′) dµ′ dφ′.

(2.3.1)

Also define a transmission function T (τ1 − τ0; µ, φ; µ′, φ′) such that the intensity
of diffusely transmitted radiation in the direction (−µ, φ) at τ = τ1, which arises
as a result of this same downward radiation field at τ = τ0, is given by

IT (τ1, −µ, φ) = 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1 − τ0; µ, φ; µ′, φ′) I (τ0, −µ′, φ′) dµ′ dφ′.

(2.3.2)

Further let S̃ and T̃ be the corresponding scattering and transmission functions
when the layer is illuminated from below. Thus the intensity of diffusely reflected
radiation in the direction (−µ, φ) at τ = τ1, and the intensity of diffusely transmitted
radiation in the direction (µ, φ) at τ = τ0, are given respectively by

IS(τ1, −µ, φ) = 1

4πµ

∫ 2π

0

∫ 1

0
S̃(τ1 − τ0; µ,φ; µ′,φ′) I (τ1, µ

′, φ′) dµ′ dφ′ (2.3.3)

IT (τ0, µ, φ) = 1

4πµ

∫ 2π

0

∫ 1

0
T̃ (τ1−τ0; µ,φ; µ′,φ′) I (τ1, µ

′, φ′) dµ′ dφ′. (2.3.4)

The total outgoing intensities at the top and bottom of the layer are given by

I (τ0, µ, φ) = IE(τ0, µ, φ) + IS(τ0, µ, φ) + IT (τ0, µ, φ) (2.3.5)

and

I (τ1, −µ, φ) = IE(τ1, −µ, φ) + IS(τ1, −µ, φ) + IT (τ1, −µ, φ), (2.3.6)

where IE is the intensity of radiation thermally emitted from the layer itself.

b. The stacking of layers

Now consider two stacked layers of thicknesses τ0 and τ1 − τ0, the scattering prop-
erties of which are generally different. Let the radiation fields incident on either side
of the composite, I (0, −µ, φ) and I (τ1, µ, φ), be identically zero. By analogy with
Eqs. (2.3.1) through (2.3.6), the upward and downward intensities at the common
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boundary τ0 are given by

I (τ0, µ, φ) = IE(τ0, µ, φ) + 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1 − τ0; µ, φ; µ′, φ′)

× I (τ0, −µ′, φ′) dµ dφ′, (2.3.7)

and

I (τ0, −µ, φ) = IE(τ0, −µ, φ) + 1

4πµ

∫ 2π

0

∫ 1

0
S̃(τ0; µ, φ; µ′, φ′)

× I (τ0, µ
′, φ′) dµ dφ′. (2.3.8)

Equations (2.3.7) and (2.3.8) are coupled integral equations defining the intensi-
ties I (τ0, ±µ, φ), and can be solved numerically provided IE, S, and S̃ are known
functions. By analogy with Eq. (2.2.3), part (1), and Eqs. (2.3.1) through (2.3.6),
the outgoing emitted intensities from the two-layer composite at the top (τ = 0)
and bottom (τ = τ1) are, respectively,

I (0, µ, φ) = IE(0, µ, φ) + e−τ0/µ I (τ0, µ, φ)

+ 1

4πµ

∫ 2π

0

∫ 1

0
T̃ (τ0; µ, φ; µ′, φ′) I (τ0, µ

′, φ′) dµ′ dφ′ (2.3.9)

and

I (τ1, −µ, φ) = IE(τ1, −µ, φ) + e−(τ1−τ0)/µ I (τ0, −µ, φ)

+ 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1 − τ0; µ, φ; µ′, φ′) I (τ0, −µ′, φ′) dµ′ dφ′.

(2.3.10)

The first term on the right side of Eq. (2.3.9) is due to thermal emission from the layer
defined by the boundaries τ = 0 and τ = τ0. The second and third terms are due,
respectively, to direct and diffuse transmission through the same layer. Analogous
interpretations with respect to the layer defined by the boundaries τ = τ0 and τ = τ1

are valid for Eq. (2.3.10).
Equations (2.3.9) and (2.3.10) define the outgoing upward and downward radia-

tion fields emitted from a composite inhomogeneous layer. Repeated applications
of the procedure admit solutions for an atmosphere composed of any finite number
of layers with individually different thermal and scattering properties. It is also
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necessary, however, to obtain values for IE for single layers and develop an algo-
rithm for determining S, S̃, T , and T̃ for both single and composite layers.

c. Composite scattering and transmission functions

Consider the two original individually homogeneous layers with thicknesses τ0 and
τ1 − τ0. Let an outside point source of intensity πF0 δ(µ − µ0)δ(φ − φ0) irradiate
the composite from above, and ignore all thermally emitted radiation. By analogy
with Eqs. (2.1.43), (2.1.46), and (2.3.1), the intensity at τ0 in the direction (µ, φ),
in the absence of thermal emission, is given by

I (τ0, µ, φ) = F0

4µ
e−τ0/µ0 S(τ1 − τ0; µ, φ; µ0, φ0)

+ 1

4πµ

∫ 2π

0

∫ 1

0
S(τ1 − τ0; µ, φ; µ′, φ′) I (τ0, −µ′, φ′) dµ′ dφ′,

(2.3.11)

where the exponential in the first term on the right side is due to attenuation of
directly transmitted radiation through the upper layer.

The intensity at τ0 in the direction (−µ, φ) is given by

I (τ0, −µ, φ) = F0

4µ
T (τ0; µ, φ; µ0, φ0)

+ 1

4πµ

∫ 2π

0

∫ 1

0
S̃(τ0; µ, φ; µ′, φ′) I (τ0, µ

′, φ′) dµ′ dφ′, (2.3.12)

where the first term on the right side arises from radiation from the point source that
is diffusely transmitted through the upper layer, and the second term denotes radi-
ation diffusely reflected by the upper layer into the direction (−µ, φ). Eqs. (2.3.11)
and (2.3.12) are coupled integral equations that can be solved numerically for
I (τ0, ±µ, φ).

Finally, in the absence of thermal emission, the outgoing radiation fields at either
boundary of the composite are given by

I (0, µ, φ) = F0

4µ
S(τ0; µ, φ; µ0, φ0) + e−τ0/µ0 I (τ0, µ, φ)

+ 1

4πµ

∫ 2π

0

∫ 1

0
T̃ (τ0; µ, φ; µ′, φ′) I (τ0, µ

′, φ′) dµ′ dφ′ (2.3.13)
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and

I (τ1, −µ, φ) = F0

4µ
e−τ0/µ0 T (τ1 − τ0; µ, φ; µ0, φ0) + e−(τ1−τ0)/µ I (τ0, −µ, φ)

+ 1

4πµ

∫ 2π

0

∫ 1

0
T (τ1 − τ0; µ, φ; µ′, φ′) I (τ0, −µ′, φ′) dµ′ dφ′.

(2.3.14)

The terms on the right side of Eq. (2.3.13) refer to: (1) the diffuse reflection from the
upper layer of radiation originating with the point source, and (2) the direct and (3)
diffuse transmission through the upper layer of the diffuse radiation field originating
at the level τ0 and directed into the upper hemisphere. The terms on the right side
of Eq. (2.3.14) from left to right refer to: (1) the diffuse transmission through the
lower layer of radiation originating with the point source that has been directly
transmitted through the upper layer, and (2) the direct and (3) diffuse transmission
through the lower layer of the diffuse radiation field originating at the level τ0 that
is directed into the lower hemisphere.

On the other hand, for an outside point source of intensity πF0 δ(µ − µ0)
δ(φ − φ0), it is seen by analogy with Eqs. (2.3.1) and (2.3.2) that the diffuse scatter-
ing and transmission functions for a two-layer composite of total thickness τ = τ1

can be defined by

I (0, µ, φ) = F0

4µ
S(τ1; µ, φ; µ0, φ0) (2.3.15)

and

I (τ1, −µ, φ) = F0

4µ
T (τ1; µ, φ; µ0, φ0). (2.3.16)

Thus, according to Eqs. (2.3.11) through (2.3.16), the S and T functions for any
two-layer composite can be found if the S, T, S̃, and T̃ functions are known for the
individual layers. Clearly the same holds true for the composite S̃ and T̃ functions;
the point source is positioned below the composite and the process repeated. In this
way the scattering and transmission functions for any combination of individual
layers can be determined.

Summarizing the adding process, scattering and transmission functions are ob-
tained from Eqs. (2.3.11) through (2.3.16). Emission intensities are built up from
Eqs. (2.3.1) through (2.3.10). The outgoing intensity fields for a plane-parallel at-
mosphere of any degree of vertical complexity can thus be calculated. All that is
required as input are values for IE, S, S̃, T , and T̃ for the individual layers.
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d. Starting solutions

The connection between these functions and the microphysical properties of the
layers can be found by returning to the original formal solutions of the transfer
equation, Eqs. (2.2.3) and (2.2.4). If the layer is thin enough, the Planck intensity
B is essentially constant throughout, and the diffuse field becomes vanishingly
small. Hence term (4) in Eq. (2.2.3), and term (3) in Eq. (2.2.4), suffice to describe
the emitted radiation fields in the upward and downward directions, respectively.
Letting ω̃0 and B be independent of τ (valid for a sufficiently thin layer), the solution
for Eq. (2.2.3) becomes

I (τ, µ, φ) = (1 − ω̃0) B
[
1 − e−(τ1−τ )/|µ|], (2.3.17)

and the solution to Eq. (2.2.4) is

IE(τ, −|µ|, φ) = (1 − ω̃0) B(1 − e−τ/|µ|). (2.3.18)

The solutions for the outgoing radiation fields are obtained by setting τ = 0 in
Eq. (2.3.17) and τ = τ1 in Eq. (2.3.18). Thus the outgoing intensities emitted from
a thin layer are

IE(0, µ, φ) = IE(τ1, −|µ|, φ) = (1 − ω̃0) B(1 − e−τ1/|µ|). (2.3.19)

These values can be used as starting values for IE in the repeated applications of
Eqs. (2.3.7) through (2.3.10).

On the other hand, the solution to Eq. (2.2.3) for a thin layer in the presence of
an outside point source of radiation is given by

IS(τ, µ, φ) = F0

4µ

∫ τ1

τ

e−τ ′/µ0 e−(τ ′−τ )/µ p(µ, φ; −µ0, φ0) dτ ′, (2.3.20)

which, because p is essentially independent of τ ′ across this layer, reduces to

IS(τ, µ, φ) = F0

4
p(µ, φ; −µ0, φ0)

µ0

µ + µ0

[
e−τ/µ0 − e−τ1/µ0 e−(τ1−τ )/µ

]
.

(2.3.21)

Upon letting τ = 0, the solution for the upwelling radiation field is:

IS(0, µ, φ) = F0

4

µ0

µ + µ0
p(µ, φ; −µ0, φ0)

{
1 − exp

[
−
(

1

µ
+ 1

µ0

)
τ1

]}
.

(2.3.22)
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By analogy with Eq. (2.3.15), the scattering function for a thin homogeneous layer is

S(τ1; µ, φ; µ0, φ0) = µµ0

µ + µ0
p(µ, φ; −µ0, φ0)

{
1 − exp

[
−
(

1

µ
+ 1

µ0

)
τ1

]}
.

(2.3.23)

In like manner, from Eq. (2.2.4), upon letting τ = τ1, and by analogy with
Eq. (2.3.16), the transmission function for a thin homogeneous layer is found to be

T (τ1; µ, φ; µ0, φ0) = |µ|µ0

|µ| − µ0
p(−|µ|, φ; −µ0, φ0) (e−τ1/|µ| − e−τ1/µ0 ).

(2.3.24)

Comparable expressions for S̃ and T̃ are readily developed merely by inverting the
layer and repeating the process. It is found, by virtue of the layer being homogen-
eous, that S = S̃ and T = T̃ , although some care is required in defining the sign of
µ. This completes the discussion of how the macroscopic properties of the outgoing
radiation field can be inferred for any atmosphere with vertically inhomogeneous
microscopic scattering and emission properties. The surface can be treated as a
semi-infinite layer with its own characteristic properties.

2.4 Special cases

a. Nonscattering atmospheres

The general solution of the transfer equation is highly complicated. Most of that
complexity arises from the inclusion of scattering processes. Fortunately, at least
in the thermal part of the spectrum where absorption and emission by atmospheric
gases dominate and solar radiation is negligible, scattering processes can often be
neglected and the solution simplifies considerably. If the atmosphere is nonscatter-
ing, the solution for the outgoing radiation field at the top of the atmosphere reduces
to [see Eq. (2.2.3)]

I (0, µ, φ) = I (τS, µ, φ) e−τS/µ +
∫ τS

0
e−τ/µ B(τ )

dτ

µ
, (2.4.1)

where τS is the optical depth at the planetary surface.
It is interesting to compare this result with that obtained by repeated application

of Eq. (2.3.9). Imagine an atmosphere divided into many thin layers. The top layer
has an optical thickness τ1 (not to be confused with the total optical thickness of
the atmosphere in this context), the top two layers have a composite thickness τ2,
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and so on. According to Eq. (2.3.17) the emitted intensity from the i th layer is

IE(τi−1, µ) = B(τi )
[
1 − e−(τi −τi−1)/µ

]
, (2.4.2)

where the azimuth-independent nature of the solution is indicated by deleting φ

from the notation. It readily follows by repeated application of Eq. (2.3.9) that the
outgoing intensity at the top of an atmosphere composed of n layers is

I (0, µ) = IE(τn, µ) e−τn/µ +
n∑

i=1

IE(τi−1, µ) e−τi−1/µ, (2.4.3)

or, from Eq. (2.4.2),

I (0, µ) = B(τn) e−τn/µ +
n∑

i=1

e−τi−1/µ B
(
τi− 1

2

)[
1 − e−(τi −τi−1)/µ

]
, (2.4.4)

where τ0 = 0, B(τi− 1
2
) is a mean value between τi and τi−1, τn corresponds to τS

in Eq. (2.4.1), and B(τn) is the Planck intensity of the surface. Eq. (2.4.4) is the
finite difference counterpart of Eq. (2.4.1). We use these simpler equations or their
equivalent for nonscattering atmospheres in this book, although there are occasions
when scattering is important and more extended solutions are necessary.

b. Optically thin atmospheres

Another special case is the restriction of the general solution to objects that do not
possess an atmosphere at all or that have only thin atmospheres that are transparent
in some spectral regions. Examples of the first group are Mercury, the Moon, and
most planetary satellites, although Titan is an important exception. Examples of
the second group are Mars and to some degree the Earth; both have more or less
transparent atmospheric transmission windows over restricted wavenumber ranges.
Sometimes the emissivity of the surface is less than unity because partial reflection
takes place. The outgoing intensity at the surface then is

I (τn−1, µ, φ) = B(τn−1)

[
1 − 1

4πµ

∫ 2π

0

∫ 1

0
S(τn; µ, φ; µ′, φ′) dµ′ dφ′

]

+ F0

4µ
e−τn−1/µS(τn; µ, φ; µ0, φ0)

+ 1

4πµ

∫ 2π

0

∫ 1

0
S(τn; µ, φ; µ′ , φ′) I (τn−1, −µ′, φ′) dµ′ dφ′,

(2.4.5)
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where S is a scattering function describing reflection from the surface. The first term
on the right side is the product of the Planck intensity and the surface emissivity.
The form for the emissivity arises from the requirement that the sum of emissivity
and reflectivity equals unity. The second term accounts for the reflection of reduced
incident sunlight, while the third term refers to backscattering of diffuse atmospheric
radiation. For planetary satellites without atmospheres only the first two terms are
appropriate, with τn−1 = 0.

2.5 Scattering atmospheres; the two-stream approximation

a. Single scattering phase function

Up to this point, exact analytic expressions for thin layers have been developed,
as well as numerical procedures for extending these solutions to thick layers. A
straightforward procedure for solving the transfer equation for thick nonscattering
atmospheres has been developed. It remains to find a satisfactory approximate
solution for thick scattering atmospheres, since exact analytic solutions do not
exist.

The two-stream approximation is just such a solution. The continuous radiation
field is replaced by two directed beams, one up and one down. Because the solution
is analytic, it is helpful to separate the azimuthal and polar angles. We write the
phase function [cf. Eq. (2.1.3)] as a finite series of Legendre polynomials:

p(cos �) =
N∑

λ=0

ω̃λ Pλ(cos �), (2.5.1)

where the coefficients ω̃λ are constants. Integrating Eq. (2.5.1) over all solid angles
yields

∫
ω

p(cos �)
dω

4π
= 1

4π

∫ 2π

0

∫ π

0

[
N∑

λ=0

ω̃λ Pλ(cos �)

]
sin � d� dβ, (2.5.2)

where � is the polar angle, and the azimuthal angle β is the angle of rotation about
the axis of symmetry defined by � = 0. Using the relation (Appendix 1)

1

2
(2λ + 1)

∫ +1

−1
Pm(α)Pλ(α) dα = δm,λ, (2.5.3)
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we establish the identity

∫
ω

p(cos �)
dω

4π
= ω̃0, (2.5.4)

where, from Eq. (2.1.5), ω̃0 is the single scattering albedo. Expanding P(cos �) =
Pλ[µµ′ + (1 − µ2)

1
2 (1 − µ′2)

1
2 cos(φ′ − φ)] in accordance with the addition theo-

rem of spherical harmonics we infer

p(µ, φ; µ′, φ′) =
N∑

λ=0

ω̃λ

[
Pλ(µ)Pλ(µ′) + 2

λ∑
m=1

(λ − m)!

(λ + m)!

×Pm
λ (µ)Pm

λ (µ′) cos m(φ′ − φ)

]
. (2.5.5)

Inverting the order of summation yields

p(µ, φ; µ′, φ′) =
N∑

m=0

(2 − δ0,m)
N∑

λ=m

ω̃m
λ Pm

λ (µ)Pm
λ (µ′) cos m(φ′ − φ), (2.5.6)

where

ω̃m
λ = ω̃λ

(λ − m)!

(λ + m)!
. (2.5.7)

b. Separation of variables

We try a relation for I (τ, µ, φ) of the form

I (τ, µ, φ) =
N∑

m=0

I (m)(τ, µ) cos m(φ0 − φ). (2.5.8)

With the aid of the relation

∫ 2π

0
cos k(φ′ − φ) cos n(φ0 − φ′) dφ′ =




0 (k �= n)
π cos n(φ0 − φ) (k = n �= 0)

2π (k = n = 0)



(2.5.9)

we find, upon substituting Eqs. (2.4.1) and (2.5.9) into Eq. (2.1.47) and requiring
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that Eq. (2.1.47) be valid for all φ, that Eq. (2.1.47) separates into the (N + 1)
independent equations:

µ
dI (m)(τ, µ)

dτ
= I (m)(τ, µ) − 1

2

N∑
λ=m

ω̃m
λ Pm

λ (µ)
∫ +1

−1
Pm

λ (µ′) I (m)(τ, µ′) dµ′

− 1

4
F0e−τ/µ0 (2 − δ0,m)

N∑
λ=m

ω̃m
λ Pm

λ (µ)Pm
λ (−µ0)

− δ0,m(1 − ω̃0)B(τ ) (m = 0, . . . , N ). (2.5.10)

c. Discrete streams

In the two-stream approximation the continuous radiation field is replaced by one
traveling in only two directions. Hence the integral in Eq. (2.5.10) is replaced by a
sum,

∫ +1

−1
Pm

λ (µ′) I (m)(τ, µ′) dµ′ ∼
∑

j

a j Pm
λ (µ j )I (m)(τ, µ j ), (2.5.11)

where j = ±1. If Gaussian quadrature is used, a1 = a−1 = 1 and

µ1 = −µ−1 = 1√
3
. (2.5.12)

It can be shown in the two-stream approximation that we should restrict N to ≤ 1.
Hence, from Eqs. (2.5.6) and (2.5.7),

p(cos �) = ω̃0 + ω̃1µµ′ + ω̃1(1 − µ2)
1
2 (1 − µ′2)

1
2 cos(φ′ − φ). (2.5.13)

In the thermal infrared the radiation field tends to be axially symmetric because
no off-axis localized sources (such as the Sun) contribute significantly. Thus, only
the azimuth-independent (m = 0) transfer equation is required. We have, from
Eqs. (2.5.10) through (2.5.13),

µi
dI (τ, µi )

dτ
= I (τ, µi ) − 1

2

∑
j

(ω̃0 + ω̃1µiµ j ) I (τ, µ j )

− 1

4
F0 e−τ/µ0 (ω̃0 − ω̃1µiµ0) − (1 − ω̃0) B(τ ) ( j = ±1).

(2.5.14)
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d. Homogeneous solution

Consider first the homogeneous part of Eq. (2.5.14),

µi
dI (τ, µi )

dτ
= I (τ, µi ) − 1

2

∑
j

(ω̃0 + ω̃1 µiµ j ) I (τ, µ j ). (2.5.15)

The appearance of Eq. (2.5.15) suggests a relation of the form

I (τ, µi ) = Lg(µi ) e−kτ , (2.5.16)

where L and k are constants. Substituting into Eq. (2.5.15) we find

g(µi ) = c0 + cµi

1 + kµi
, (2.5.17)

where

c0 = 1

2
ω̃0

∑
j

g(µ j ); c = 1

2
ω̃1

∑
j

µ j g(µ j ) ( j = ±1). (2.5.18)

Substituting Eq. (2.5.17) into Eq. (2.5.18) yields the pair of equations [cf.
Eq. (2.5.12)]

c0 = ω̃0

(
c0 − ckµ2

1

1 − k2µ2
1

)
; c = µ2

1ω̃1

(
c − c0k

1 − k2µ1

)
. (2.5.19)

Reduction of Eqs. (2.5.19) leads to

k = ±
[

3(1 − ω̃0)

(
1 − 1

3
ω̃1

)] 1
2

. (2.5.20)

Because Eqs. (2.5.19) are linear and homogeneous, c0 and c are not both uniquely
defined. Choosing

c0 = ω̃0, (2.5.21)

we find

c = ∓ ω̃1√
3


 1 − ω̃0

1 − 1

3
ω̃1




1
2

, (2.5.22)

depending on the sign of k. According to Eq. (2.5.20) k is double-valued. Hence,
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from Eqs. (2.5.16) and (2.5.17),

I (τ, µi ) =
∑

α

Lα

c0 + cαµi

1 + kαµi
e−kατ (i = ±1; α = ±1), (2.5.23)

where

k1 = −k−1 = [3(1 − ω̃0)
(
1 − 1

3 ω̃1
)] 1

2

c1 = −c−1 = − ω̃1√
3

(
1 − ω̃0

1 − 1
3 ω̃1

) 1
2


 . (2.5.24)

The arbitrary constants Lα (α = ±1) are determined by the boundary conditions in
the context of specific problems as they arise.

e. Outside point source

Particular integrals associated with the two inhomogeneous terms in Eq. (2.5.14)
are also required to complete the solution. Before a specific analytic solution can
be found for the integral containing the Planck intensity, it is necessary to specify
the explicit form of B(τ ). This is deferred to the appropriate sections where such
specific forms are required.

The integral containing F0 can be dealt with immediately. Writing Eq. (2.5.14)
without the Planck intensity term yields

µi
dI (τ, µi )

dτ
= I (τ, µi ) − 1

2

∑
j

(ω̃0 + ω̃1µiµ j ) I (τ, µ j )

− 1

4
F0e−τ/µ0 (ω̃0 − ω̃1µiµ0) ( j = ±1). (2.5.25)

We try a solution of the form

I (τ, µi ) = 1

4
F0 h(µi ) e−τ/µ0 (i = ±1). (2.5.26)

Substituting Eq. (2.5.26) into Eq. (2.5.25) we find

h(µi ) = µ0
γ0 + γ1µi

µi + µ0
(i = ±1), (2.5.27)

where the constants γ0 and γ1 are given by

γ0 = ω̃0

[
1 + 1

2

∑
j

h(µ j )

]
(2.5.28)
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and

γ1 = ω̃1

[
−µ0 + 1

2

∑
j

µ j h(µ j )

]
( j = ±1). (2.5.29)

Substituting Eq. (2.5.27) into Eqs. (2.5.28) and (2.5.29) yields, after some reduction,

γ0
[(

µ2
0 − µ2

1

)− ω̃0µ
2
0

]+ γ1 ω̃0 µ0µ
2
1 = ω̃0

(
µ2

0 − µ2
1

)
(2.5.30)

and

γ0 ω̃1µ0µ
2
1 + γ1

[(
µ2

0 − µ2
1

)− ω̃1µ
2
0 µ2

1

] = −ω̃1µ0
(
µ2

0 − µ2
1

)
. (2.5.31)

Further reduction yields

γ0 = ω̃0
(
µ2

0 − µ2
1

)
µ2

0(1 − ω̃0)
(
1 − µ2

1ω̃1
)− µ2

1

(2.5.32)

and

γ1 = − ω̃1(1 − ω̃0) µ0
(
µ2

0 − µ2
1

)
µ2

0(1 − ω̃0)
(
1 − µ2

1ω̃1
)− µ2

1

. (2.5.33)

Therefore Eq. (2.5.27) becomes

h(µi ) = µ2
0 − µ2

1

µ2
0(1 − ω̃0)

(
1 − µ2

1ω̃1
)− µ2

1

µ0

µ0 + µi
[ω̃0 − µiµ0 ω̃1(1 − ω̃0)]

(i = ±1), (2.5.34)

which allows the solution for Eq. (2.5.26).
Summarizing this chapter, we have derived both analytic and numerical pro-

cedures for calculating the emerging radiation field provided we can specify the
vertical distributions of the temperature as well as the gas and particle compositions.
It is also necessary to know the absorption and scattering properties of atmospheric
volume elements on a microscopic scale. In the next chapter we discuss these prop-
erties before proceeding with the task of computing the intensity of the outgoing
radiation field.
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Interaction of radiation with matter

The discussions of the equation of transfer and the solution of this equation in
Chapter 2 rest entirely on concepts of classical physics. Such treatment was possible
because we considered a large number of photons interacting with a volume element
that, although it was assumed to be small, was still of sufficient size to contain a large
number of individual molecules. But with the assumption of many photons acting
on many molecules we have only postponed the need to introduce quantum theory.
Single photons do interact with individual atoms and molecules. The optical depth,
τ (ν), depends on the absorption coefficients of the matter present, which must fully
reflect quantum mechanical concepts. The role of quantum physics in the derivation
of the Planck function has already been discussed in Section 1.7. Both the optical
depth and the Planck function appear in the radiative transfer equation (2.1.47).

The interaction of radiation with matter can take many forms. The photoelectric
effect, the Compton effect, and pair generation–annihilation are processes that occur
at wavelengths shorter than those encountered in the infrared. Infrared photons can
excite rotational and vibrational modes of molecules, but they are insufficiently
energetic to excite electronic transitions in atoms, which occur mostly in the vis-
ible and ultraviolet. Therefore, a discussion of the interaction of infrared radiation
with matter in the gaseous phase needs to consider only rotational and vibrational
transitions, while in the solid phase lattice vibrations in crystals must be included.

In the following sections on the interaction of radiation with gas molecules we be-
gin with an overview of the physical principles of radiative transitions in molecules
in Sections 3.1 and 3.2, proceed to discussions of the properties of diatomic and
polyatomic molecules in Sections 3.3 and 3.4, and, finally, examine line strengths
in Section 3.5 and line shapes in Section 3.6. Interactions of radiation with solid
and liquid surfaces, as well as cloud particles, are the subject of Sections 3.7 and
3.8. For further information on molecular spectroscopy we refer the reader to text
books, such as Pauling & Wilson (1935), Herzberg (1939, 1945, 1950), Townes &
Schawlow (1955), or Steinfeld (1974). The book by Murcray & Goldman (1981) is

58
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an excellent reference showing many laboratory spectra of planetary interest. The
reader may also consult the compendium of infrared spectra by Sadtler (1972).

3.1 Absorption and emission in gases

a. The old quantum theory

Gas molecules can alter their states of vibration and rotation by exchanging energy
with the radiation field. This exchange occurs in discrete quantities, resulting in
modifications to the field at specific frequencies associated with resonances in
the molecular structure. As a consequence, molecules absorb and emit radiation
in a complex pattern of discrete lines that deviate significantly from a blackbody
spectrum. Because each type of molecule has a unique structure and, therefore,
unique energies of motion, the pattern of observed lines is characteristic of the
matter present.

Remote sensing by means of spectroscopy began early in the nineteenth century
when Josef Fraunhofer (1817) observed dark lines in the solar spectrum. Although
the visible spectra of many substances were known to be unique for each element
(Bunsen & Kirchhoff, 1861, 1863), the origin of the lines was not fully understood
until the early twentieth century. Now we know the lines reveal the presence of
certain atomic gases, including hydrogen, sodium, calcium, and magnesium, in
cooler regions of the solar atmosphere.

Niels Bohr (1913) provided the first successful explanation of the atomic hydro-
gen spectrum. Hydrogen has one proton and one electron, and exhibits a relatively
simple pattern of spectral lines. By postulating that the energy of the atom is quan-
tized, and that the atom absorbs and emits radiation by making transitions among
the quantized energy levels, Bohr was able to explain the narrowness of the lines and
their regular pattern. These lines coincide with the discrete energy differences, 
E ,
among the levels, with the frequency of the emitted or absorbed radiation given by
f = 
E/h, where h is the Planck constant. In analogy with the Solar System, Bohr
proposed a model of the hydrogen atom with a proton in the center and an electron
traveling around in the field of a central Coulomb force, −e2/4πε0r2, where e is
the charge of the electron, ε0 the dielectric constant (permittivity) of free space,
and r the radius of the electron orbit. By introducing the additional assumption that
the angular momentum of the electron, L , can only take on integral multiples of
h/2π ,

L = mvr = h

2π
n (n = 1, 2, 3, . . .), (3.1.1)

where m and v are the electron mass and velocity, respectively, Bohr derived the
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energy levels of atomic hydrogen and calculated the hydrogen spectrum with good
accuracy.

In his thesis Louis de Broglie (1924) recognized that the condition that the
electron angular momentum must be an integral multiple of h/2π implied the
electron motion to be governed by a wave, similar to that for a photon. He postulated
that a moving particle with momentum p and energy E has wavelike characteristics
with wavelength λ = h/p and frequency f = E/h. The Bohr angular momentum
of the electron in a hydrogen atom is then

L = pr = h

λ
r = h

2π
n, (3.1.2)

which gives

2πr = nλ. (3.1.3)

The Bohr rule that the angular momentum must be an integral multiple of h/2π can,
therefore, be interpreted as a requirement that the electron orbital circumference
must equal an integral number of wavelengths. In other words, after each orbital
revolution the wave that describes the electron motion must constructively interfere
with itself. This is a strong indication that the motion of material particles has
wavelike properties.

The Bohr theory, and its interpretation in terms of waves by de Broglie, was
successful in accounting for the spectra of atoms with only one electron, and it
worked approximately for alkali elements (Li, Na, Rb, Cs). However, it could not be
applied to complex systems, such as molecules, and it did not constitute a dynamical
theory of particle motion, nor did it provide an understanding of the interaction of
radiation with matter. It did, however, set the stage for the development of modern
quantum theory.

b. The Schrödinger equation

Major progress in quantum theory came with the formulation of wave mechanics by
Erwin Schrödinger (1926). An equivalent matrix theory of quantum mechanics was
simultaneously developed by Werner Heisenberg (1925). Schrödinger accepted de
Broglie’s postulate that the motion of a particle is governed by a wave; his aim was
to find a form of the wave equation applicable to quantum physics. Schrödinger
began with the classical expression of the total energy, E , of a particle being the
sum of kinetic and potential energy,

E = p2

2m
+ V, (3.1.4)
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where p is the momentum and m the mass of the particle. A de Broglie wave
traveling in the x-direction with wavelength λ = h/p and frequency f = E/h can
be expressed by a wave function

�(x, t) = ei(2π/h)(px−Et). (3.1.5)

The form of this function suggests the following associations between differential
operators and the particle momentum and energy:

∂�

∂x
= i

2π

h
p� → p = −i

h

2π

∂

∂x
(3.1.6)

and

∂�

∂t
= − i

2π

h
E� → E = i

h

2π

∂

∂t
. (3.1.7)

Substituting these operators in Eq. (3.1.4) produces a wave equation

ih

2π

∂�

∂t
= − h2

8π2m

∂2�

∂x2
+ V (x, t)�. (3.1.8)

This equation of motion of a particle moving in one dimension subject to a potential
V can be generalized to three dimensions:

ih

2π

∂�

∂t
= − h2

8π2m
∇2� + V (x, y, z, t)�. (3.1.9)

The Laplace operator, ∇2, is defined in Appendix 1.
Schrödinger derived Eq. (3.1.9), although in a different way, as the equation of

motion of a microscopic particle under the influence of a force with potential V .
This equation provides complete dyamical constraints on the particle. The wave
function �(x, y, z, t) that satisfies this equation describes the particle motion in
the sense, proposed by Max Born (1926, 1927), that the square of its absolute
value |�|2 = �∗� represents a probability distribution. The asterisk denotes the
complex conjugate value. The probability of finding the particle within a small
volume 
x
y
z is

�∗(x, y, z, t)�(x, y, z, t)
x
y
z, (3.1.10)
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provided the wave function is normalized such that

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
�∗� dx dy dz = 1. (3.1.11)

This normalization is necessary because the particle must be found somewhere
within all space with certainty.

This approach to quantum mechanics constitutes a comprehensive physical the-
ory, eliminating the shortcomings of the older Bohr theory. It applies to all physical
systems, including many-electron atoms and polyatomic molecules. Importantly,
because the Schrödinger equation is time-dependent, it treats the rates of physical
processes, including the interaction between matter and radiation. Therefore, the
strengths of spectral lines can be predicted by quantum mechanics.

c. Energy levels and radiative transitions

If the potential V is time-independent, wave functions satisfying the Schrödinger
equation can be factored into a space function and one periodic in time,

�n(x, y, z, t) = ψn(x, y, z) e−i(2π/h)Ent , (3.1.12)

where the energy, En , is constant. Each ψn describes a stationary state. The probabil-
ity density, |ψn|2, has a spatial distribution, but is constant in time. Substituting ψn

in Eq. (3.1.9) and writing V = V (x, y, z) yields the time-independent Schrödinger
equation

− h2

8π2m
∇2ψn + V (x, y, z)ψn = Enψn. (3.1.13)

To find a time-dependent solution of the Schrödinger equation we apply per-
turbation theory. We assume that a transition between two energy levels is caused
by a time-dependent influence, which we represent as a small additive potential,
v(x, y, z, t). The Schrödinger equation is then

ih

2π

∂�

∂t
= − h2

8π2m
∇2� + V (x, y, z)� + v(x, y, z, t)�. (3.1.14)

The time-dependent wave function, �, can be expressed as a linear combination of
the �n in Eq. (3.1.12). The integral

∫
ψ∗

n v(x, y, z, t)ψm dτ = Vnm(t); dτ = dx dy dz (3.1.15)
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is a time-dependent perturbation matrix that causes transitions between energy
levels Em and En . The ψn are the time-independent wavefunctions. The perturbation
represents a coupling between the radiation field and the molecule or atom. This
matrix element is used later to identify allowed transitions and to find their rates.

To examine the behavior during a transition, consider a molecule that is initially
in state ψ1. What is the probability of finding the molecule in another state ψ2 at
a later time t? In a radiation field the molecule will be subjected to an oscillating
electric field,

E(t) = E0 cos 2π f t. (3.1.16)

E and E0 are vectors in x, y, and z. The interaction energy is given by the scalar
product of this field and the electric dipole moment, M, of the molecule,

v(t) = M · E0 cos 2π f t. (3.1.17)

The dipole moment is defined as

M =
∑

i

qi ri , (3.1.18)

where qi and ri are the charges and position vectors of all nuclei and electrons in
the molecule. The matrix element, Eq. (3.1.15), also called the transition moment,
is then

V21(t) =
∫

ψ∗
2 v(t)ψ1 dτ = E0

(∫
ψ∗

2 Mψ1 dτ

)
cos 2π f t

= E0 · R21 cos 2π f t. (3.1.19)

The quantity R21, thus defined, is the electric dipole moment matrix. The probability
of finding the molecule in state ψ2 with energy E2 after time t is given by (see
Steinfeld, 1974),

P21(t) = 4π2

h2
I |R21|2

sin2
(

1
2 W t

)
W 2

, (3.1.20)

where I = |E0|2 and

W = 2π

[
f − 1

h
|E1 − E2|

]
. (3.1.21)
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The probability only reaches large values when W 2 is near zero, that is, when
f =|E1−E2|/h. This is just the emission frequency given by Bohr’s original theory.
Usually the observed transition rate T21 = P21/t is an average over frequency,

T21 = 1

t

∫ +∞

−∞
P21( f, t) d f = 8π3

h2
I |R21|2; (3.1.22)

T21 times t is the probability of finding the molecule in ψ2 after time t when the
radiation energy is distributed uniformly over a range of frequencies. The transition
rate T21 is, therefore, proportional to the intensity of the radiation field and the square
of the dipole moment matrix. The lifetime of the transition, or time per transition,
is the reciprocal of T21.

Two types of transition have rates described by Eq. (3.1.22), depending on the
intensity and the square of the dipole moment matrix. One is absorption, where
the molecule goes from a lower to an upper state with removal of a photon, and
the other is stimulated emission, where the molecule changes from an upper to a
lower state under influence of the radiation field with the generation of a photon.
A third type of transition, spontaneous emission, is not described by Eq. (3.1.22).
In this process, a molecule in an upper state decays to a lower state and emits a
photon. The rate of spontaneous emission is independent of the radiation field. The
relationships among the three types of transition are treated in the discussion of line
strength in Section 3.5.

Electric dipole transitions, that is, transitions resulting from the interaction of the
radiation field with the molecular electric dipole moment, are the most common
transitions encountered in planetary spectra. There are other, generally weaker,
types of transitions, however. The molecule might have an electric quadrupole
moment or magnetic dipole moment, both of which interact with the radiation field.
In particular, electric quadrupole transitions are important in diatomic molecules
of identical atoms, since these have no dipole moment. Magnetic dipole transitions
are rare in planetary spectra. Weak electric dipoles can also be induced in molecules
during collisions with other molecules, and these are treated in Subsection 3.3.d.

3.2 Vibration and rotation of molecules

A molecule can be visualized as an aggregate of atoms bound together by a balance
of mutually attractive and repulsive forces. Individual atoms vibrate with respect to
one another while the molecule as a whole rotates about any spatial axis. Both types
of motion occur simultaneously, and transitions between pairs of vibration–rotation
states create the characteristic patterns of infrared spectra.

Sharing of valence electrons, that is, electrons in the outer shell among their
orbitals, binds atoms into a molecular structure. Electronic binding forces create a



3.2 Vibration and rotation of molecules 65

three-dimensional potential energy distribution in which the atoms move. Although
the electronic structure of a molecule may be in one of many states, thermal
excitation encountered by the molecule in a planetary atmosphere almost always
leaves the molecule in the ground electronic state. All motions of a given molecule
occur, therefore, within the same ground state potential distribution. Because elec-
trons travel much faster than nuclei, the assumption is usually made (called the
adiabatic approximation) that the electronic energy depends only on the positions
of the nuclei and not on their own velocities. The potential energy distribution is
then a function of the internuclear distances alone. The potential energy has a mini-
mum at locations where the attractive binding forces balance repulsive internuclear
forces. A typical potential energy curve for a diatomic molecule (hydrogen chloride,
HCl) is shown in Fig. 3.2.1. Without vibration the atoms are at the minimum and
the molecule is in its equilibrium configuration with internuclear separation re.

For small displacements from equlibrium a molecule can be regarded as a group
of atomic or nucleonic masses linked by springs; the atoms behave as a set of coupled
harmonic oscillators. Each atom is in a part of the potential that is approximately
parabolic and nearly obeys Hooke’s law. The potential energy, V , is then

V = 1
2 k(q − qe)2, (3.2.1)

where k is the force constant, q is a molecular coordinate such as an interatomic
separation or an angle between atomic bonds, and qe is the equilibrium value of the
coordinate. The overall vibration of the molecule is a linear combination of several
fundamental, or ‘normal’ modes of vibration, each having a well-defined vibration
frequency. These frequencies can be estimated from a knowledge of the potential

Fig. 3.2.1 Potential energy for hydrogen chloride (HCl). The curve is approximately
parabolic near minimum and deviates from this harmonic dependence as the nuclear sep-
aration is increased or decreased.
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curve shown in Fig. 3.2.1. Although this figure is for a diatomic molecule, the forces
encountered in a polyatomic configuration are similar in shape and magnitude. From
the change of slope of the curve with increasing displacement the force constant k
is found to be of the order 1015 electron-volts per square meter, or about 1028 atomic
mass units per square second. The frequency, ω = 2π f (in radians per second), of
a simple harmonic oscillator with this force constant is

ωv = (k/m)
1
2 , (3.2.2)

where m is an effective mass for the oscillator, and is similar in magnitude to the
atomic masses. Vibration wavenumbers of molecular modes normally fall in the
range 50–5000 cm−1.

As for rotation, if the molecule is regarded as a rigid aggregate of atoms rotating
as a unit, its angular momentum is

L = Iωr, (3.2.3)

where I is the moment of inertia about the rotation axis and ωr is the rotation
frequency. The Bohr quantum theory (Eq. 3.1.1) requires the angular momentum
to be an integral multiple of h/2π . Therefore, the rotation frequency can take on
values

ωr = n
h

2π I
(n = 1, 2, 3, . . .). (3.2.4)

The moment of inertia, I , is of the order of the molecular mass multiplied by the
square of the molecular radius, or about 10−46 kg m2. At temperatures commonly
found in planetary atmospheres molecules only reach the lower levels of n. Typical
rotation wavenumbers range from 1 to 300 cm−1, which is generally below the range
of vibration wavenumbers. Rotational levels form a low-energy series beginning
at zero, and also create a series within each vibrational energy level. The infrared
spectrum of a molecule appears as a set of bands corresponding to changes in
vibration states, with a fine structure of lines within each band due to changes in
rotation states. Vibration and rotation of molecules are first discussed in Section 3.3
for diatomic and then in Section 3.4 for polyatomic molecules.

3.3 Diatomic molecules

The simplest type of molecule is the diatomic configuration, where two atoms, either
of the same element (H2, N2) or of different elements (HCl, CO), join together. The
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derivation of spectral characteristics of diatomic molecules is an elementary, but
nevertheless important, application of the Schrödinger equation because diatomic
species are abundant in planetary atmospheres. Indeed, the atmospheres of the Earth,
the giant planets, and Titan have diatomic molecules as their major constituents
(H2, N2, O2).

a. Vibration

In a diatomic molecule all vibratory motion takes place along the line joining both
atoms. The vibration can be understood as oscillations of the two nuclei in one
dimension, as shown in Fig. 3.3.1. Choosing this dimension to be the x-axis and
designating the masses of the nuclei m1 and m2, the time-independent Schrödinger
Eq. (3.1.13) for the motion of the nuclei is

− h2

8π2

(
1

m1

∂2

∂x2
1

+ 1

m2

∂2

∂x2
2

)
ψ + V (x2 − x1)ψ = Eψ. (3.3.1)

The potential energy V is a function of only one parameter, r = x2 − x1, the dis-
tance between the nuclei. Near the equilibrium distance, re, when the molecule is at
the bottom of the potential well (Fig. 3.2.1), the potential is approximately parabolic,
and the vibration approximates that of a harmonic oscillator, just as if the nuclei
were connected by a linear spring. If we write q = r − re for the displacement from
equilibrium, Eq. (3.3.1) becomes

h2

8π2µ

∂2ψ

∂q2
+ (E − 1

2 kq2
)
ψ = 0, (3.3.2)

Fig. 3.3.1 Oscillation of a diatomic molecule. The vibration can be described by a single
parameter, r , the nuclear separation. The separation re is the equilibrium distance, where
the net force is zero.
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where µ is the reduced mass,

µ = m1m2

m1 + m2
. (3.3.3)

The problem of two masses coupled by a springlike force has thus been transformed
into the equivalent problem of a single mass, µ, moving on the same potential curve
with its position coordinate equal to the displacement of the two atoms from their
equilibrium distance.

Equation (3.3.2) can be solved for the vibration energy levels accessible to any
diatomic molecule undergoing simple harmonic motion. The solution proceeds by
trying wavefunctions of the form

ψ(q) = Ae−αq2/2 H
(
α

1
2 q
)

(3.3.4)

where

α = 2π

h
(µk)

1
2 (3.3.5)

and A is a constant. Substituting Eq. (3.3.4) into Eq. (3.3.2) produces an equation
for H , which turns out to be the Hermite differential equation, whose solution may
be found in textbooks (e.g., Courant & Hilbert, 1931). The equation is satisfied
by a set of functions Hv(α

1
2 q), called Hermite polynomials (v = 0, 1, 2, . . .), each

of which gives a corresponding solution ψv(q) to Eq. (3.3.2). The coefficient A
is chosen to normalize ψv so that

∫ |ψv|2 dq = 1. The energies E(v), which are
eigenvalues associated with the ψvs, have the discrete values

E(v) = h

2π

(
k

µ

) 1
2 (

v + 1
2

) = h

2π
ω
(
v + 1

2

)
. (3.3.6)

The coefficient ω = 2π f corresponds to the classical oscillation frequency of the
vibration in radians per second. The vibrational quantum number, v, can only be
zero or a positive integer. The energy levels form a series,

1

4π
hω,

3

4π
hω,

5

4π
hω, . . . , (3.3.7)

located at half-integer units of hω/2π . The zero-point energy atv = 0 is not zero but
hω/4π . The energy levels of a simple harmonic oscillator are shown in Fig. 3.3.2.
Table 3.3.1 lists the vibration frequencies of several diatomic molecules.
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Table 3.3.1 Vibration frequencies and rotation
constants of several diatomic molecules

Molecule ν(cm−1) B(cm−1)

H2 4395 60.8
N2 2360 2.01
O2 1580 1.45
CO 2170 1.93
SiO 1242 0.73
SO 1124 0.71
HCl 2990 10.6

Fig. 3.3.2 Energy levels of a simple harmonic oscillator. The potential energy for harmonic
motion is parabolic. The internuclear distance, re, is the equilibrium separation.

A molecule in one state can make a transition to another state by emitting or
absorbing a photon. For a purely harmonic oscillator this can only occur in units of
hω/2π . This selection rule follows from the way the interaction energy couples two
states of the molecule. The interaction energy is E · M, where E is the electric field
vector of the radiation and M is the electric dipole moment, M = �en · Xn . The sum
is over all charged particles in the system, each with charge en and coordinate vector
Xn . If the molecular axis is chosen to be the x-axis, then My = Mz = 0 and, to a good
approximation, Mx = M0 + M1q . This is an approximate expression for the dipole
moment consisting of a constant, M0, and a linear term, M1q , which represents the
change in dipole moment with nuclear displacement q. The probability of a radiative
transition between ψv′ and ψv′′ is proportional to the electric dipole moment matrix
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[compare with Eq. (3.1.19)]. Only the x-components are nonzero in our simplified
case, so the matrix elements are (setting M = Mx )

Rv′v′′ =
∫

ψ∗
v′ Mxψv′′ dq = M0

∫
ψ∗

v′ψv′′ dq + M1

∫
qψ∗

v′ψv′′ dq. (3.3.8)

A transition is allowed if Rv′v′′ �= 0. The orthogonality of the terms ψv′ and ψv′′

makes the first integral nonzero only if v′ = v′′; therefore, the first term with M0

does not couple different states. However, the properties of the Hermite polynomials
make the second term nonzero only if v′ = v′′ ± 1. This selection rule, 
v = ±1,
holds strictly for a harmonic oscillator when Mx = M0 + M1q.

A diatomic molecule consisting of dissimilar atoms has a permanent dipole
moment M0 and a dipole moment derivative M1. In general, the more dissimilar
the electronegativities (abilities to attract a shared electron pair) of the atoms, the
larger M0 and M1, and the stronger the observed transitions tend to be; for instance,
HCl absorbs more radiation per molecule than does CO. Moreover, a homonuclear
diatomic molecule has a completely symmetric structure and no dipole moment,
that is, M0 and M1 are zero. Therefore, H2, N2, and O2 do not normally exhibit
infrared spectra due to electric dipole transitions. However, if the molecular number
density is sufficiently high, they can undergo transitions resulting from collisionally
induced dipoles. This is important in the H2 atmospheres of the giant planets, as
discussed in Section 3.3.d. Homonuclear diatomic molecules can also undergo
much weaker (by 10−7–10−9) electric quadrupole transitions. The derivation of the
vibrational selection rule for these transitions follows analogously to that for the
electric dipole case. Substituting the quadrupole moment in Eq. (3.3.8) leads to the
same result: 
v = ±1.

A simulated vibrational spectrum of carbon monoxide is shown in Fig. 3.3.3.
The strong fundamental transition at ν0 = 2143 cm−1 corresponds to a change
in vibrational quantum number from 1 to 0. If carbon monoxide were a per-
fect harmonic oscillator, all transitions of the type v = 2–1, 3–2, etc. would fall
exactly at that position, rather than being offset slightly as they appear in mea-
sured spectra. In addition, the overtone transitions at 2ν0 and 3ν0 corresponding to

v = ±2 and ± 3, would not be allowed by the harmonic selection rule.

Because the transition at ν0 dominates the spectrum, the harmonic oscillator
seems to be a valid approximation for diatomic molecules, but it is clear from
Fig. 3.3.3 that anharmonic effects will have to be included if we wish to reproduce
observed spectra in detail. In all diatomic molecules the deviation of their potential
energy curve from a strictly parabolic shape causes the departure from harmonicity.
The curve for HCl in Fig. 3.2.1 is only approximately parabolic near minimum and
deviates more so at large nuclear displacements. Indeed, a parabola cannot describe
the actual curve; as the nuclear separation is increased indefinitely the molecule
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splits into two isolated atoms and the potential energy approaches a dissociation
limit, whereas the parabola goes to infinity.

When the potential energy function, V , is generalized, the vibration energies
given in Eq. (3.3.6) become

E(v) = hω/2π
[(

v + 1
2

)− a
(
v + 1

2

)2 + b
(
v + 1

2

)3 + · · · ], (3.3.9)

where successive terms in the series diminish rapidly in magnitude. The coefficient
a is written with a minus sign because the second-order term generally subtracts
from the energy in real molecules. Only a few terms are needed in Eq. (3.3.9) to
describe observed spectra to within experimental accuracies. The coefficients in
Eq. (3.3.9) are commonly found by measuring the precise frequencies of spectral
lines and then deriving the energy levels.

The energy levels given by Eq. (3.3.9) are not equally spaced, as in the harmonic
case. They are separated by intervals slightly less than hω/2π , which become
smaller as v increases. In the CO spectrum shown in Fig. 3.3.3, the weaker lines
near the fundamental at ν0 = 2143 cm−1 form a series toward lower wavenumbers.

Fig. 3.3.3 Simulation of the vibrational spectrum of carbon monoxide (CO). Only the posi-
tions of the vibration frequencies are shown (without rotational structure). The wavenumber
scale has been segmented to more clearly show the effects of anharmonicity. Purely rota-
tional transitions with 
v = 0 all occur at zero wavenumber, while 
v = 1, 2, 3, . . . are
split by anharmonic motion. Intensities as shown are not intended to be accurate.



72 Interaction of radiation with matter

The transitions v = 1–0, 2–1, 3–2, . . . correspond to progressively smaller
changes in energy. This also occurs in the overtones (v = 2–0, 3–1, 4–2, . . .
and v = 3–0, 4–1, 5–2, . . . ).

The overtones, which were strictly forbidden in the harmonic oscillator, are
allowed in the anharmonic case because small transition probabilities now exist
between any two states. The selection rule on 
v becomes relaxed to include


v = ±1, ±2, ±3, . . . . (3.3.10)

As can be seen from the relative transition intensities in Fig. 3.3.3, the fundamental

v = ±1 is far more intense than the overtones, indicating that the vibration of the
molecule is close to harmonic.

b. Rotation

Rotation of a diatomic molecule can be treated approximately by regarding the
molecule as two masses m1 and m2 at a fixed separation re. In this model the
molecule rotates about an axis perpendicular to the line joining the nuclei. If r1 and
r2 are the distances of m1 and m2 from the center of mass, and ω is the rotation
frequency, the classical expression for the energy is

E = L2

2I
, (3.3.11)

where L = Iω is the angular momentum and I = m1r2
1 + m2r2

2 is the moment of
inertia about the rotation axis. The moment of inertia can also be expressed in terms
of re = r1 + r2 and the reduced mass, µ,

I = m1m2

m1 + m2
r2

e = µr2
e . (3.3.12)

Although in classical theory E and ω can assume any value, in quantum mech-
anics the rigid rotator can only exist in discrete energy states. To find these we
use the time-independent Schrödinger equation (3.1.13), which we now write for
the nuclei and without a potential energy term (the masses are assumed to have a
fixed separation),

h2

8π2

(
1

m1
∇2

1 + 1

m2
∇2

2

)
ψ + Eψ = 0. (3.3.13)

Similar to the treatment of the harmonic oscillator, this equation of motion can be
transformed into one for a mass µ moving at radius re = (x2 + y2 + z2)

1
2 about the
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origin. The orientation of the molecule can be specified in polar coordinates θ and
φ. In these coordinates the Schrödinger equation is

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂φ2
+ 8π2µr2

e

h2
Eψ = 0. (3.3.14)

The solutions to this equation are

ψJ M =
[

(2J + 1)(J − |M |)!
4π (J + |M |)!

] 1
2

eimφ P |M |
J (cos θ ), (3.3.15)

where M and J are integers obeying |M | ≤ J ; J is always positive or zero. The P |M |
J

are associated Legendre polynomials. The corresponding energies of the rotating
molecule are

E = h2

8π2µr2
e

J (J + 1) (J = 0, 1, 2, . . .). (3.3.16)

Comparison with Eq. (3.3.11) shows that the classical angular momentum L in-
creases approximately as J . J can be identified as the quantum number for the
angular momentum while M can be regarded as the projection of J on the polar
axis. Thus, the angular momentum is

L = h

2π
[J (J + 1)]

1
2 ∼ h

2π
J, (3.3.17)

which is similar to the axiom of the Bohr quantum theory, Eq. (3.1.1). It differs
from the Bohr version in that [J (J + 1)]

1
2 is not an integer, and J and L can be

zero. The classical rotation frequency ω is related to the quantum number J by

ω = L

µr2
e

= h[J (J + 1)]
1
2

2πµr2
e

, (3.3.18)

demonstrating a nearly linear dependence of ω on J . In units of cm−1 the energy
expression, Eq. (3.3.16), is

F(J ) = E

hc
= B J (J + 1), (3.3.19)



74 Interaction of radiation with matter

where B is called the rotational constant,

B = h

8π2cµr2
e

= h

8π2cI
. (3.3.20)

The selection rule for a transition between one state J ′ and another J ′′ can be
derived from the wavefunctions given by Eq. (3.3.15). Again the interaction energy
between two states is proportional to the dipole moment M, which is constant for
a rigid molecule. The selection rule on J is found from the electric dipole moment
matrix [see Eq. (3.1.19)],

RJ ′ M ′ J ′′ M ′′ =
∫

ψ∗
J ′ M ′MψJ ′′ M ′′ dτ. (3.3.21)

Relationships among the associated Legendre functions contained in the ψJ M

terms [see Eq. (3.3.15)] cause the integral in Eq. (3.3.21) to be nonzero only if
J ′ = J ′′ ± 1. This selection rule, 
J = ±1, means that the angular momentum
can only change in units of h/2π .

The selection rule for electric quadrupole transitions, the strongest allowed for
homonuclear diatomic molecules, can be derived using a similar, though more
complex, approach. The result is 
J = ±2; the odd- and even-J levels do not mix.

Applying the selection rule 
J = 1 for purely rotational transitions to the
rotational energy [Eq. (3.3.19)], the allowed transition wavenumbers are

ν = F(J ′) − F(J ′′) = F(J + 1) − F(J ) = 2B(J + 1), (3.3.22)

where J refers to the lower state. This series begins with a transition at 2B and
continues at equal intervals; it is the spectrum of a rigid rotator. Figure 3.3.4 shows
the pattern formed by the purely rotational transitions in carbon monoxide. The
spectrum appears as nearly equally spaced lines increasing in intensity to a maxi-
mum and then decreasing gradually to zero as J becomes large. The distribution
of intensities in rotational spectra are discussed in Section 3.5.

The line spacing, 2B for a particular diatomic molecule, can be estimated from
Eq. (3.3.18) by substituting the atomic masses and separations. In general, heav-
ier molecules will have smaller rotational B constants and smaller line spacings.
Table 3.3.1 lists the rotational constants for several diatomic molecules.

Although the rigid rotator model predicts a line structure that agrees reasonably
well with observed spectra, a detailed comparison shows that the resemblance is not
perfect. In Fig. 3.3.4 the lines appear equally spaced, but in reality decrease slightly
in spacing as J increases. This is not surprising, since the molecule is not perfectly
rigid, but stretches slightly in response to centrifugal forces. The rotational energy
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Fig. 3.3.4 Simulation of the purely rotational spectrum of carbon monoxide. The relative
line intensities are approximately correct for a temperature of 300 K. The rotational quantum
number J is for the lower state of the transition.

levels corrected for centrifugal effects are given by

F(J ) = E

hc
= B J (J + 1) − D J 2(J + 1)2. (3.3.23)

The coefficient D is called the centrifugal distortion constant. The negative sign
preceding D is conventionally written explicitly to yield positive values of D. The
effect of D is to lower each energy level slightly as compared to that of a rigid
rotator. A single correction term is usually sufficient to describe rotational structure
observed in moderate resolution spectra, but at high resolution a higher order term
in J 4(J + 1)4 is often needed.

c. Vibration–rotation interaction

So far we have treated the vibration and rotation of a diatomic molecule as two sepa-
rate motions. Vibration and rotation occur simultaneously, of course, and transitions
between energy levels can involve changes in both vibration and rotation quantum
numbers, v and J . The vibration–rotation combination gives rise to observed
spectra with not only the expected vibration transitions, but also rotational fine struc-
ture around each of the vibrational wavenumbers. Calculation of vibration–rotation
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structure is the final step in predicting the detailed positions of lines in observed
spectra.

As a first approximation the rotational energy simply adds to the vibrational en-
ergy. With anharmonicity and centrifugal distortion, the energy in wavenumbers is

F(v, J ) = E

hc
= ν0

(
v + 1

2

)− ν0a
(
v + 1

2

)2 + B J (J + 1) − D J 2(J + 1)2,

(3.3.24)

where ν0 = ω/2πc is the classical vibration wavenumber. To be completely valid,
however, the energy expression for combined vibration and rotation also must
include interaction between both types of motion. To see why, consider the conse-
quences to the rotational constant B as the vibrational state is changed. As discussed
earlier, the frequency of vibration is typically much higher than that of rotation,
so that the B value results from an average molecular configuration and moment
of inertia, as the dimensions change during vibration. B is therefore a function
of vibrational state, and will be progressively smaller as the vibrational quantum
number v increases. B(v) can be approximated as a linear function of (v + 1

2 ),

B(v) = Be − α
(
v + 1

2

)
. (3.3.25)

Be is the equilibrium value of the rotational constant corresponding to the
equilibrium internuclear separation re. The coefficient α is small compared to Be

because the displacement during vibration is generally a small fraction of re. The
negative sign is conventionally used to make α positive; B(v) is never equal to
Be, even in the ground vibrational state v = 0.

A similar dependence on vibrational state applies to the centrifugal distortion
constant D. As the molecule rotates the ‘stretching’ distortion of the internuclear
separation is characterized by D, and this effect will change from one vibrational
state to another. This vibrational dependence can again be approximated as a linear
function of (v + 1

2 )

D(v) = De + β
(
v + 1

2

)
. (3.3.26)

Again, β is much smaller than the equilibrium distortion constant De.
By introducing B(v) and D(v) into Eq. (3.3.24) we obtain the vibration–rotation

energy, including interactions between vibration and rotation

F(v, J ) = ν0
(
v + 1

2

)− ν0a
(
v + 1

2

)2
+ Be J (J + 1) − α

(
v + 1

2

)
J (J + 1)

− De J 2(J + 1)2 − β
(
v + 1

2

)
J 2(J + 1)2. (3.3.27)
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This expression combines the overall dependence of the energy levels on both
vibration and rotation. The pattern of energy levels can be thought of as a ladder
of widely spaced vibration energies, identified by v, each split into a more closely
spaced ladder of rotation energies, identified by J .

As can be seen from the last two terms in Eq. (3.3.24), the rotational energy
level structure in each vibrational state resembles that for the vibrationless nonrigid
rotator in Eq. (3.3.23). The rotational ladder in each vibration state begins (for
J = 0) at the energy given by the first two, purely vibrational terms in Eq. (3.3.24).
The rotational levels within each vibrational level follow a pattern similar to that
described by Eq. (3.3.23), except that the rotational coefficients are now assigned
their vibrationally dependent values B(v) and D(v). This overall vibration–rotation
dependence is embodied in Eq. (3.3.27).

A transition between two vibration–rotation energy levels will be accompanied
by emission or absorption of a photon at wavenumber

ν = E ′

hc
− E ′′

hc
= F(v′, J ′) − F(v′′, J ′′), (3.3.28)

where F(v, J ) is given by Eq. (3.3.27). The selection rules 
J = ±1 and

v = 0, ±1, ± 2, . . . apply in the case of combined vibration–rotation, where

v = 0 is for pure-rotation transitions. Each transition appears in the spectrum
as a band, or set of lines corresponding to the many rotational transitions that may
accompany a vibrational transition. The separations between rotational lines are
generally much smaller than the separations between vibration bands. Each band is
centered at its vibrational wavenumber νi ∼ ν0(v′ − v′′), and is composed of two
series of rotational lines. These are described approximately by

ν = νi + 2B(J + 1) for 
J = +1 (3.3.29)

and

ν = νi − 2B(J + 1) for 
J = −1. (3.3.30)

The series produced by 
J = +1 transitions extends to higher wavenumbers and
is referred to as the R-branch. The 
J = −1 transitions form a series toward
lower wavenumbers and is called the P-branch. Lines in the P and R branches are
separated by approximately 2B. Figure 3.3.5 shows the v = 1–0 spectrum of carbon
monoxide. The variation in strength among the rotational lines will be discussed in
Section 3.5.
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Fig. 3.3.5 Simulation of the v = 1–0 band of carbon monoxide. The band center is at
2143 cm−1, and the P- and R-branch rotational series extend toward lower and higher
wavenumbers. The rotational quantum number shown (J ) is for the lower state of the
transition. The line intensities are approximately correct for 300 K.

d. Collision-induced transitions

Homonuclear diatomic molecules (H2, N2, O2) have no permanent dipole moment,
and, therefore, no electric dipole transitions. However, at high pressure and long path
length, electric dipole absorption is observed. This absorption results from a short-
time collisional interaction between molecules. Radiative transitions among rot-
ational, vibrational, and translational states of colliding pairs of molecules can take
place, even though they are not allowed in the isolated molecules. This process is es-
pecially important in the atmospheres of the giant planets, where collision-induced
absorption by molecular hydrogen dominates the far infrared spectrum (Trafton,
1966). This spectrum has been studied in the laboratory by Birnbaum (1978) and
Bachet et al. (1983), and has been characterized by Birnbaum & Cohen (1976).

During a collision a transient dipole moment arises as the electron distribution
is distorted by long-range forces or overlapping charge densities. The magnitude
of the dipole moment is extremely small: 10−3–10−2 in units of ea0, the product
of the charge of the electron and the Bohr radius of the hydrogen atom. The shape
and intensity of observed spectra are determined by the induced dipole moment
µ(R, r1, r2), and the interaction potential V (R, r1, r2) where R is the intermolecular
separation and ri are the vibrational coordinates of molecule i . Both µ and V depend
on the orientations of the molecules. Collision-induced transitions arise from free
pairs and from bound pairs (dimers). The induced dipole moment can arise in
collisions between two molecules (H2–H2, H2–N2, H2–CH4), a molecule and an
atom (H2–He), or between two dissimilar atoms (He–Ar).
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Fig. 3.3.6 The collision-induced spectrum of H2 at a temperature of 195 K. Experimental
data are shown with + marks. The ordinate is in units of absorption strength per density
squared. Computed curves are shown for the translational spectrum, and for the pure-rotation
J = 0 → 2, 1 → 3, 2 → 4, and 3 → 5 lines (after Bachet et al., 1983).

Collision-induced absorption from free pairs of molecules appear as broad lines
or bands located at the wavenumbers of the pure-rotation or vibration–rotation
transitions in the participating individual molecules. Figure 3.3.6 shows the spec-
trum for H2–H2 collisions (Bachet et al., 1983) [see also Courtin (1988)]. In the far
infrared (below 200 cm−1) a weak translational band is also present. In H2 the promi-
nent features in planetary atmospheres occur at the pure-rotation J = 0 → 2 and
1 → 3 transitions located at 354 and 587 cm−1. The widths of collision-induced
features are extremely large, about 100 cm−1 or more, because the time during
the collision in which the partners are interacting is very short (∼10−12 seconds
or less). The width of a spectral line is related to the reciprocal of the collision
duration.

The details of interaction between two molecules or an atom and molecule are
complex, and depend on the minimum separation of the partners during a col-
lision. If the separation is small enough to allow temporarily some van der Waals
binding of the partners, a longer-lived molecular complex, a dimer, is formed.
In contrast to the free pair case, the partners in a dimer arrange in a quasi-
stable geometry and the complex behaves similarly to a large molecule. The
interaction time increases giving rise to much narrower (∼1 cm−1) lines. These
may appear near the centers of the free pair induced-dipole lines. Such lines in
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H2–H2 have been observed on Jupiter and Saturn (McKellar, 1984; Frommhold
et al., 1984).

The absorption in the collision-induced features, both from free pairs and dimers,
grows in proportion to both the number of molecules per volume element and
the number of collision partners. Therefore, collision-induced absorption depends
on the product of the densities of the partners. When the partners are the same
(H2–H2, N2–N2), the absorption depends on the square of the density. The absorp-
tion strength also increases at lower gas temperatures, since this corresponds to
higher densities at a given pressure, and because the molecules are thermally dis-
tributed over fewer energy levels. The theory and spectroscopy of collision-induced
absorption have been reviewed by Welsh (1972) and by Birnbaum (1985).

3.4 Polyatomic molecules

Molecules with three or more atoms exhibit spectra of greater complexity than
those with only two, but much of the overall structure of polyatomic spectra can be
understood by generalizing the basic principles developed for the diatomic case.
For example, the polyatomic molecule can be viewed in first approximation as a
set of masses linked by springs undergoing simple harmonic oscillations while its
rotation can be approximated by that of a rigid aggregate of atoms, just as with the
diatomic molecules. Moreover, anharmonic effects and centrifugal distortion arise
in polyatomic molecules for similar reasons as in diatomic molecules. Following
the approach of Section 3.3 we begin with the classical picture of vibration and
rotation and then introduce quantum mechanics to derive the true appearance of
molecular spectra.

a. Vibration

Whereas the diatomic molecule has only one fundamental oscillation frequency,
the polyatomic molecule generally vibrates in several modes, each with a different
frequency. The number of possible vibration modes depends on the number of
nuclei. Each of the N nuclei can move in the x-, y-, and z-directions, giving a total
of 3N degrees of freedom. Six of those degrees, however, correspond to the motion
of the molecule as a whole. These are, for instance, the three coordinates of its
center of mass and the three angles defining its orientation in space. Therefore, the
total number of degrees of freedom available for vibration is 3N − 6. For a linear
molecule only two angles are needed to specify its orientation, so the number of
vibrational degrees of freedom is 3N − 5 in that case. This rule also applies to
diatomic molecules, which are linear by definition, and have only 3 × 2 − 5 = 1
degree of freedom.
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As an example consider ammonia (NH3), which is a nonlinear molecule consist-
ing of four atoms. The relative positions of the three hydrogen nuclei are specified
by the three distances between H–H pairs, and the position of the nitrogen nucleus
is given by the three N–H distances. This permits a total of 3 × 4 − 6 = 6 vibra-
tional degrees of freedom. An example of a simple linear molecule is hydrogen
cyanide (HCN) with three atoms. Here the relative positions of the three nuclei
during vibration are given by the H–C and C–N separations, plus the projections
of the H–C–N angle on two fixed orthogonal planes intersecting on the H–C axis.
The result is four vibrational degrees of freedom; as discussed below, two of these
have the same frequency.

The number of degrees of freedom equals the number of normal modes of vi-
bration. The normal modes, also called fundamental modes, are a set of harmonic
motions, each independent of the others and each having a distinct frequency. It
is possible for two or more of the frequencies to be identical, and the correspond-
ing modes are said to be degenerate. However, the total number of modes in the
individual degenerate states are counted separately and still total 3N − 6 for non-
linear and 3N − 5 for linear molecules. A set of coordinates can be defined, each of
which gives the displacement in one of the normal modes of vibration. The normal
coordinates can be expressed as combinations of the x-, y-, and z-coordinates of
the individual nuclei.

Consider now carbon dioxide (CO2), a linear triatomic molecule. Figure 3.4.1
shows the 3 × 3 − 5 = 4 normal modes of vibration. The directions and relative
amplitudes of displacements in the four modes are indicated by arrows. In the first
mode the carbon nucleus is stationary while the two oxygen nuclei oscillate sym-
metrically. Because this symmetric motion does not generate a dipole moment,
infrared transitions to this state are forbidden. In the second and third modes the
molecule bends in two, orthogonal planes. The second and third modes are, there-
fore, degenerate. The last mode has the carbon nucleus moving alternately toward
one and then the other of the two oxygen nuclei. The normal modes are convention-
ally labeled ν1, ν2, and ν3, respectively, with ν2 referring to the combination of the
two degenerate bending modes. The water molecule (H2O) provides an example
of a nonlinear triatomic molecule. Figure 3.4.2 shows the 3 × 3 − 6 = 3 normal
modes of vibration. No analog exists here to the degenerate modes in CO2. Again,
the modes are conventionally labeled ν1, ν2, and ν3.

The important characteristic of a normal mode is the harmonic motion of each
nucleus; the overall motion of the molecule in each mode is then also harmonic. The
classical picture of the molecule is, therefore, a set of independent harmonic oscil-
lators. Each oscillator has its own frequency, ωi , which, by analogy with Eq. (3.2.2),
can be related to an effective mass, mi , and spring constant, ki , by ωi = (ki/mi )

1
2 .

The effective mass is related to the nuclear masses, and the spring constant arises
from the strengths of the interatomic bonds. The time dependence of the normal
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Fig. 3.4.1 The normal modes of vibration of carbon dioxide (CO2). This molecule has two
stretching modes, ν1 and ν3, and two degenerate bending modes, ν2. The upper component
shown for ν2 has motion into (+) and out of (©) the plane of the paper.

coordinate qi for a particular mode can be written

qi = q0
i cos(ωi t + δi ), (3.4.1)

where q0
i is the maximum displacement from the equilibrium position and δi is a

phase.
Normal molecular modes of vibration are found classically by treating the equa-

tions of motions of all nuclei as a set of linear differential equations. When ex-
pressed in normal coordinates the equations of motion are decoupled, and each
can be written in terms of only one coordinate. However, this approach is limited
to strictly harmonic cases. In a real molecule these oscillators are somewhat an-
harmonic. Then the normal oscillators are coupled, giving rise to oscillations with
combinations of the fundamental vibration frequencies.

In degenerate modes only the displacements and phases of the motions differ.
Therefore, when two or more of these modes are excited, the nuclei move together
in a simple normal mode. For this reason degenerate modes are conventionally
referred to as a single mode and given a single designation, such as with ν2 in CO2

in the above example. Because the relative phases among the component modes
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Fig. 3.4.2 The normal modes of vibration of water vapor (H2O). Since H2O is nonlinear
there are only three modes, and none is degenerate.

can vary continuously, a combined degenerate mode, such as in CO2, describes an
infinite variety of motions. A special case exists when the two component modes
are in phase and the combined motion is a bending in a plane other than the two
shown in Fig. 3.4.1. In another interesting case the two component modes differ in
phase by 90◦. The motion is then an apparent rotation of the bent molecule, with
each nucleus describing a circle or ellipse. In this type of motion vibration actually
produces angular momentum and must be given an angular momentum quantum
number. Nonlinear molecules and molecules with more than three nuclei can also
have vibrational angular momentum as the result of phased degenerate vibrations.

Observedvibrational spectracanonlybedescribedby introducingquantummech-
anics. To do this, the normal modes are regarded as a set of harmonic oscillators,
each obeying a wave equation of the form

h

8π2µi

d2ψi

dq2
i

+ (Ei − 1
2 ki q2

i

)
ψi = 0. (3.4.2)

Here µi and ki are the effective reduced mass and spring constants for the modes.
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Fig. 3.4.3 Energy levels of hydrogen cyanide (HCN). The vibrational quantum numbers for
the three normal modes are v1, v2, and v3. Only levels below 7000 cm−1 with three or fewer
vibrational quanta are shown. Heavy lines mark the fundamental energy levels. Energies
are shown as differences from the lowest level v1 = v2 = v3 = 0.

This equation is similar to Eq. (3.3.2) for the diatomic molecule. The quantum
mechanical energy levels of each mode are given by eigenvalues of Eq. (3.4.2),

Ei = h

2π
ωi
(
vi + 1

2

)
(vi = 0, 1, 2, . . .). (3.4.3)

Here ωi is the oscillation frequency of mode i and vi is the vibrational quantum
number. The total vibrational energy of the molecule is the sum of the energies of
the individual normal modes,

E(v1, v2, . . .) = h

2π

∑
i

ωi
(
vi + 1

2

)
. (3.4.4)

Even a simple triatomic molecule, such as HCN, with only three normal modes
(two degrees of freedom are degenerate) can take on a complex variety of energies
as shown in Fig. 3.4.3. Not only can each normal mode be excited into a series of
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Fig. 3.4.4 Spectrum of methyl acetylene (C3H4) showing the structure of vibrational bands.
The sample was placed in a 3 cm long cell at 47 mbar. The spectral resolution is 2 cm−1.
Detailed shapes of the vibrational bands are due to unresolved rotational lines.

levels when the other two normal modes are in the vi = 0 level, but all three modes
can assume vi �= 0 simultaneously. The lowest level, when all vi = 0, is the zero-
point vibrational energy, similar to the diatomic case. The zero-point energy is
generally ignored because only energy differences are of interest.

The vibrational selection rule for the harmonic oscillator, 
vi = ±1, applies to
polyatomic molecules just as it did to diatomic molecules. Vibrational energy can,
therefore, change in units of hωi/2π . Transitions in which one of the three normal
modes of energy changes by 
vi = +1 (for example: v1 = 0 → 1, v2 = v3 = 0; or
v1 = 1, v2 = 3, v3 = 2 → 3) result from absorption of a photon having one of three
fundamental frequencies of the molecule. In the actual case, anharmonicities also
allow transitions with 
vi = ± 2, ± 3, . . . so that, for example, weak absorption
also occurs at 2ωi , 3ωi , etc. and at ωi + ω j , 2ωi + ω j , etc. These weaker vibrational
transitions often play major roles in planetary spectroscopy.

For larger polyatomic molecules the vibrational motions can become very
complicated, with dozens of normal modes contributing to the observed spectra.
However, the basic principles outlined here apply, at least as a first order approx-
imation, to the motion of molecules as large as methyl acetylene (C3H4), shown
in Fig. 3.4.4, and propane (C3H8), shown in Fig. 3.4.5. For some large molecules
with simple structures, such as ring-shaped benzene (C6H6), the observed spectra
are often quite simple (see, for example, Sadtler, 1972).

Small changes in the atomic masses in a molecule can cause great changes in
the appearance of spectra. These are the effects of isotopic substitution, such as
deuterium for hydrogen or 13carbon for 12carbon. Vibrations that involve a motion
of the substituted atom will change frequency, and changes in molecular symmetry
may alter the appearance of spectra drastically or cause the emergence of new lines
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Fig. 3.4.5 Spectrum of propane (C3H8) showing the structure of vibrational bands. The
sample was placed in a 3 cm long cell at 400 mbar. The spectral resolution is 2 cm−1.
Detailed shapes of the vibrational bands are due to unresolved rotational lines.

where none were originally. Changes in spectra among the isotopic variants of a
molecule provide a powerful tool for identifying isotopic constituents.

b. Rotation

As stated earlier, in considering rotation of polyatomic molecules we can follow
the approximation used for diatomic molecules, that the rotation can be treated as
independent of vibration. Much of the structure of rotational spectra of polyatomic
molecules can be understood by using as a model an aggregate of nuclear masses
connected rigidly at their equilibrium positions. In contrast to diatomic molecules
where only one axis of rotation is required, in polyatomic molecules we must
consider rotation about any axis.

The moment of inertia of the rigid molecule about axis α is

Iα =
∑

i

mir
2
i , (3.4.5)

where mi is the mass and ri the distance of nucleus i from the axis. If the axis α is an
arbitrary axis through the center of mass of the molecule and the direction of α is var-
ied, we find three mutually orthogonal directions in which the moment of inertia, I ,
has a local extremum. These principal axes form a natural internal coordinate system
for the molecule. The moments about these axes are the principal moments of inertia.

If the molecule has an axis of symmetry, it will always be a principal axis.
An axis of symmetry is one about which the molecule can be rotated by some
rational fraction of 360◦ (180◦, 120◦, 90◦, etc.) and thereby returned to its original
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configuration. H2O has such an axis for 180◦ rotations and NH3 has one for 120◦.
Similarly, a reflection plane of symmetry, one in which the molecule can be reflected
and thereby returned to itself, will always contain two principal axes.

A molecule for which the three principal moments of inertia are different is
called an asymmetric rotor or an asymmetric top. Examples of asymmetric rotors
are water (H2O), ozone (O3), and propane (C3H8). If two of the principal moments
are identical, the molecule is a symmetric rotor. Examples of symmetric rotors are
ammonia (NH3), deuterated methane (CH3D), ethane (C2H6), and methyl acetylene
(C3H4). These molecules each have a threefold (120◦) axis of symmetry, and the
other two axes have equal moments of inertia. A molecule with all moments equal
is called a spherical rotor; examples are methane (CH4) and germane (GeH4).
Finally, there is the case of linear molecules such as carbon dioxide (CO2), acetylene
(C2H2), and cyanogen (C2N2). Linear molecules have one zero moment of inertia,
corresponding to the axis through the nuclei, while the other two moments are equal.

The classical rotational energy is given by

E = 1
2 Iaω

2
a + 1

2 Ibω
2
b + 1

2 Icω
2
c . (3.4.6)

By convention Ia ≤ Ib ≤ Ic. To obtain the quantum mechanical formulation re-
place the energy and angular momenta by their corresponding operators. For our
purposes the important quantum mechanical properties are: first, the square of the
total angular momentum, L2 = L2

a + L2
b + L2

c , has the values

L2 = h2

4π2
J (J + 1) (3.4.7)

and, second, the angular momentum along a symmetry axis has the values

Lα = h

2π
K . (3.4.8)

The rotational quantum numbers J and K can have integral values 0, 1, 2, . . . with
both ±K allowed. The quantum numbers obey the constraint |K | ≤ J .

The rotational energy levels of a linear molecule are given by setting Ia = 0 and
Ib = Ic = I in Eq. (3.4.6). The total angular momentum is then L2 = L2

b + L2
c and

has the quantum mechanical values given by Eq. (3.4.7). The rotational energy is,
therefore,

E(J )

hc
= B J (J + 1), (3.4.9)
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where

B = h

8π2cI
. (3.4.10)

The same expressions have been obtained for diatomic molecules [see Eqs. (3.3.19)
and (3.3.20)]. The molecule rotates around any axis perpendicular to the line through
the nuclei and passing through the center of mass. As with a diatomic molecule, the
nonrigid nature of the molecule requires a small correction term due to centrifugal
distortion, D J 2(J + 1)2, to be subtracted from the right side of Eq. (3.4.9).

The rotational energy of a spherical top molecule is found from Eq. (3.4.6) by
setting Ia = Ib = Ic = I . By using Eq. (3.4.7) for the total angular momentum, the
energy levels are found to be identical to Eq. (3.4.9). A spherical molecule can
rotate about any axis that passes through the center of mass. The correction due to
centrifugal distortion is again −D J 2(J + 1)2. Some of the degeneracy of spherical
tops is split, which gives rise in moderate resolution spectra to multiple spectral
lines for each J value.

The form of the energy level expression for symmetric top molecules is different
from that of linear and spherical molecules. It follows again from the classical energy
of a rigid rotor, Eq. (3.4.6). However, for the symmetric top Ia = IA and Ib = Ic =
IB (prolate case) or Ic = IC and Ia = Ib = IB (oblate case). The angular momenta
can be written in terms of the total angular momentum L2 = L2

a + L2
b + L2

c and
the component of angular momentum in the axial direction L2

a or L2
c . Thus, for the

prolate case

E = L2
a

2IA
+ L2

b + L2
c

2IB
= L2

2IB
+
(

1

2IA
− 1

2IB

)
L2

a, (3.4.11)

and if L2 and L2
a are replaced with quantum mechanical operators, their values are

given by Eqs. (3.4.7) and (3.4.8). The energy levels are, therefore,

E(J, K )

hc
= B J (J + 1) + (A − B)K 2, (3.4.12)

where

B = h

8π2cIB
and A = h

8π2cIA
. (3.4.13)

The oblate forms of Eqs. (3.4.11) through (3.4.13) are obtained by substituting C
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for A and c for a. For the prolate symmetric top the second term in Eq. (3.4.12)
adds energy in the K series. For the oblate case the second term subtracts energy
in the K series. Because both ±K are allowed, the levels are twofold degenerate.
Methyl acetylene (C3H4) is an example of a prolate top and ammonia (NH3) is an
oblate top. When the nonrigid effects of centrifugal distortion are included, extra
terms must be added to the energy of the form

−DJ J 2(J + 1)2 − DJ K J (J + 1)K 2 − DK K 4. (3.4.14)

The contribution of these terms is usually small compared with the rigid-rotor
energy in Eq. (3.4.12), but produces observable effects in moderately resolved
spectra.

For an asymmetric rotor, Ia �= Ib �= Ic in Eq. (3.4.7), and, therefore, no simplifi-
cation of the energy expression is possible. Although the total angular momentum
is constant and has the quantum mechanical values of Eq. (3.4.7), no principal axis
of the molecule exists along which the projection of angular momentum is con-
stant. This complicates the quantitative treatment of the energy levels. A qualitative
understanding can be arrived at, however, by considering the limits in which asym-
metric molecules approach axial symmetry as the moments of inertia are varied.
Since, by convention, the magnitudes of the moments of inertia have the relation-
ship Ia < Ib < Ic, the molecule is approximately a symmetric top when Ib ∼ Ia or
Ib ∼ Ic. The former case is the oblate and the latter the prolate limit. In these limits
the energy level expression for symmetric rotors Eq. (3.4.12) holds approximately.
For the oblate limit it is

E(J, K )

hc
= B J (J + 1) + (C − B)K 2, (3.4.15)

and for the prolate limit

E(J, K )

hc
= B J (J + 1) + (A − B)K 2. (3.4.16)

Here, A, B, and C are related to the moments of inertia in the manner of Eq. (3.4.13).
As Ib is varied between Ia and Ic the J + 1 twofold degenerate rotational levels of
the symmetric top for each J (K = 0, ±1, ± 2, . . . , ±J ) split into 2J + 1 levels;
each level with K �= 0 splits into two levels. Quantitative treatments of the general
asymmetric rotor have been presented by Wang (1929) and Ray (1932) and reviewed
by Herzberg (1945). We refer the reader to these references for more detailed
discussions of asymmetric rotors.
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c. Vibration–rotation transitions

The motion of a molecule involves vibration and rotation simultaneously. As in the
diatomic case, the overall energy of a polyatomic molecule is approximately the
sum of the vibration and rotation energies (expressed in wavenumbers F = E/hc)

F(v, J, K ) = Fvib(v) + Frot(J, K ) (3.4.17)

where Fvib and Frot are those given in Subsections 3.4.a and 3.4.b. The vibration
energy Fvib is a sum over all normal modes. The rotation energy Frot may be a
function of J only, as in the cases of linear and spherical top molecules, or both
J and K , as in symmetric top molecules. In asymmetric top molecules K is not
a good quantum number, but can still be used near the oblate and prolate limits.
If higher order terms are included in Eq. (3.4.17) the energy cannot be divided
into separate vibration and rotation parts. In particular, the values of the rotational
constants B, D, etc. depend slightly on vibrational state.

The vibrational term Fvib in Eq. (3.4.17) is to first order just the summation

Fvib(v) =
∑

i

νi

(
vi + gi

2

)
(3.4.18)

where the νi are the normal vibration wavenumbers and the gi are the mode degen-
eracies (g = 1 for nondegenerate, g = 2 for doubly degenerate, etc.). This expres-
sion serves approximately for all types of polyatomic molecules.

The rotational term Frot in Eq. (3.4.17) is different for each type of molecule as
discussed in Subsection 3.4.b above. The forms of Frot for linear, spherical, sym-
metric, and asymmetric molecules can be constructed using Eqs. (3.4.9), (3.4.12),
(3.4.15), and (3.4.16), with the addition in each case of the appropriate centrifugal
distortion terms. The rotation constants A, B, C and centrifugal distortion constant
D are functions of the vibrational state. In practice, higher order interactions among
motions within the molecule cause perturbations of the rotational energy, which
changes the simple form of these equations. The perturbations introduce additional
terms in the energy expressions, which may produce relatively large effects.

A transition between two vibration–rotation levels in a polyatomic molecule
causes emission or absorption of a photon at wavenumber

ν = F(v′, J ′, K ′) − F(v′′, J ′′, K ′′), (3.4.19)

where F(v, J, K ) is given by Eq. (3.4.17). Again, as in diatomic molecules, the
change in vibrational energy is usually much greater than the change in rotational
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energy. This gives rise to a pattern of bands, each centered near the wavenumber
of a vibrational transition, with the rotational transitions forming a series of lines
spreading out from the band center. The selection rules for polyatomic molecules are

vi = 0, ±1, ± 2, . . . and 
J = 0, ±1 (with 
K = 0, ±1 for symmetric rotors).
The 
J selection rule permits not only R- and P-branches for 
J = ±1, as there
were for diatomic molecules, but also series with 
J = 0, called Q-branches,
clustered near the center of each band.

Bands of linear and spherical molecules have this general appearance, with a
central Q-branch, and P- and R-branch wings. At high resolution each line in the
P-, Q-, and R-branches of a spherical top is separated into several lines by higher
order interactions. Spectra of acetylene (C2H2) and methane (CH4) are shown in
Figs. 3.4.6 and 3.4.7.

Symmetric rotors have two types of bands, corresponding to 
K = 0 and 
K =
±1. If each set of P-, Q-, and R-branches for a single value of K is called a sub-band,
then all sub-bands in a 
K = 0 type band are centered at the same location. These

Fig. 3.4.6 The ν5 vibration–rotation band of acetylene (C2H2) recorded at high spectral
resolution (0.003 cm−1). The P-, Q-, and R-branches are indicated, and the lower-state
J value is shown for lines in the P- and R-branches. The sample was in a 1 cm cell at
0.162 mbar and 296 K. Structure in the continuum level is due to variations in the response
of the spectrometer. Lines of CO2 in the optical path appear in the 666–690 cm−1 region.
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Fig. 3.4.7 The ν4 vibration–rotation band of methane (CH4) recorded at high spectral
resolution (0.003 cm−1). The P-, Q-, and R-branches are indicated, and the lower-state
J value is shown for lines in the P- and R-branches. The sample was in a 2.4 m cell at
0.079 mbar and 296 K. Structure in the continuum level is due to variations in the response
of the spectrometer. Broadened lines are due to H2O in the optical path.

are called parallel bands. In the 
K = ±1 type bands, called perpendicular bands,
the sub-band centers are spread out in a series under the influence of Coriolis
forces. Parallel and perpendicular bands have distinctly different appearances, with
parallel bands exhibiting a single prominent Q-branch composed of all the overlap-
ping sub-band Q-branches, and perpendicular bands appearing as a regular series
of Q-branches extending over tens of wavenumbers. In both cases the P- and
R-branches are also present. A perpendicular band of ethane (C2H6) is shown in
Fig. 3.4.8.

The spectral bands of asymmetric rotors are classified in three types labeled
A, B, and C. These designations correspond to differences in symmetry selection
rules arising from the orientation of the transition moment with respect to the
molecular moments of inertia. Type A bands can appear similar to either parallel
or perpendicular bands depending on the moments of inertia (that is, parallel for
the prolate and perpendicular for the oblate limit). Type C bands are analogous to
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Fig. 3.4.8 The ν9 vibration–rotation band of ethane (C2H6) recorded at high spectral res-
olution (0.003 cm−1). This is a perpendicular band, having a series of regularly-spaced
Q-branches. The band is centered at 822 cm−1, and the Q-branch series is visible in the
790–850 cm−1 region. P- and R-branch lines are most clearly visible in the wings of the
band. The sample was in a 1.5 m cell at 2.05 mbar and 296 K.

type A bands. Type B bands appear similar to perpendicular bands, with a series of
Q-branches spread across the band. A type C band of propane (C3H8) is shown in
Fig. 3.4.9.

3.5 Line strength

Both line positions and line strengths must be understood in order to interpret the
structure of observed spectra and derive abundances and temperatures of contribut-
ing molecules. Following Planck (1901) and Einstein (1906b), we treat radiation as
composed of photons with energy E = hcν, where h is the Planck constant and cν
is the frequency of the radiation in hertz. The intensity is proportional to the arrival
rate of photons. If these photons originate from molecules in a small volume, the
intensity is proportional to the number of molecules in the optical path undergoing
transitions at that frequency.
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Fig. 3.4.9 The ν21 vibration–rotation band of propane (C3H8) recorded at high spectral
resolution (0.003 cm−1). This is a type C band with a parallel-like structure, having apparent
P-, Q-, and R-branches. The sample was in a 1.5 m cell at 3.95 mbar and 296 K. Structure
in the continuum level is due to variations in the response of the spectrometer.

The electric dipole transition rate between two energy levels of a molecule, En

and Em , depends on the probability per second that a molecule in En will make the
transition to Em , and on the number of molecules in the initial state. The strengths
of emission or absorption lines between an upper level, En , and a lower level, Em ,
are given by

Iem = Nn Anmhcν = Nn
64π4cν4

3
|Rnm |2 (3.5.1)

Iabs = I0 Nm Bmnhν = I0 Nm
8π3ν

3hc
|Rnm |2. (3.5.2)

Anm and Bmn are the Einstein coefficients for spontaneous emission and for ab-
sorption and stimulated emission, respectively. The Einstein coefficients are de-
fined here in terms of the square of the electric dipole moment matrix, |Rnm |2
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[see Eq. (3.1.19)], and the wavenumber ν; Nn and Nm are the populations of the
states. Strictly speaking, Eq. (3.5.2) gives the intensity absorbed per unit length in
a thin layer, so that Iabs � I0. The absorption in a thick layer may be obtained by
integrating through that layer, as discussed in Subsection 2.4.a.

The number of molecules Ni in the initial state depends on the total number
of molecules, the distribution of energy levels, the degeneracy of individual levels
(number of levels of identical energy), and the temperature of the gas. In equilibrium
the initial state population is

Ni = Ndi

Q(T )
e−Ei /kT , (3.5.3)

where N is the total number of molecules, di the degeneracy, Ei the energy of the
level, T the absolute temperature, and k the Boltzmann constant. The exponential
exp(−Ei/kT ) is the Boltzmann factor. Q(T ) is the partition function,

Q(T ) =
∞∑

n=0

dn e−En/kT , (3.5.4)

which is the sum of Boltzmann factors weighted by their degeneracies.
We illustrate the main characteristics of line strength by considering diatomic

molecules. The vibrational states (without rotation) are all nondegenerate, so
dn = 1. Ignoring anharmonicities, vibrational energies are given by Eq. (3.3.6),

E(v) = h

2π
ω
(
v + 1

2

)
(v = 0, 1, 2, . . .). (3.5.5)

If we eliminate a factor exp(−hω/4πkT ) from both numerator and Q(T ) in
Eqs. (3.5.3) and (3.5.4) the number of molecules in state v of a diatomic molecule
is then

Nv = N

Qvib(T )
e−(h/2π )(ωv/kT ); (3.5.6)

where the partition function is now written

Qvib(T ) =
∞∑

v=0

e−(h/2π )(ωv/kT ) = [1 − e−(h/2π )(ω/kT )
]−1

. (3.5.7)

Equation (3.5.6) has several implications. At high temperatures Qvib(T ) is larger
than unity and the Boltzmann factor decreases gradually, so that several levels are
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populated. At low temperatures Qvib(T ) is ∼1 and the fraction of molecules
in v = 0 approaches unity; very few molecules are in v = 1 and higher levels.
For example, in carbon monoxide (CO) at 300 K the fractions of molecules
in v = 1 and v = 2 are about 10−5 and 10−9, respectively. At the much higher
temperature of the Sun (∼5000 K), fractions in these states are 0.29 and 0.18,
respectively.

The expression for Nv can be generalized by including the rotational energy and
the rotational partition function in Eq. (3.5.6). The rotational energies of a diatomic
molecule, given for the rigid rotator by Eq. (3.3.19), are

E(J ) = hcB J (J + 1); J = 0, 1, 2, . . . . (3.5.8)

The degeneracy of level J is d = 2J + 1. Since we are discussing electric dipole
transitions, the diatomic molecule must be heteronuclear. The population in the
initial state is then

Nv,J = N (2J + 1)

Qvib(T )Qrot(T )
e−h[(ωv/2π )+cB J (J+1)]/kT . (3.5.9)

The rotational partition function can be approximated by an integral

Qrot(T ) �
∫ ∞

0
(2J + 1)e−hcB J (J+1)/kT dJ = kT

hcB
. (3.5.10)

The level populations, therefore, have the dependence

Nv,J �
[

1

Qvib(T )
e−(h/2π)(ωv/kT )

]
N

hcB

kT
(2J + 1) e−hcB J (J+1)/kT . (3.5.11)

The factor in brackets gives the fractional population in a given vibrational level,
and the factor outside the brackets gives the distribution over rotational levels within
that vibration state. Qvib(T ) can be set to unity at planetary temperatures.

The degeneracy factor (2J + 1) in Eq. (3.5.11) has a strong influence on the rot-
ational population distribution within a vibrational level. At a particular temperature
the degeneracy factor causes the population to be proportional to hcB/kT at J = 0,
and to increase for small J . As J increases further the effect of the exponential form
of the Boltzmann factor becomes more and more dominant, causing the population
to approach zero for high J values. Figure 3.5.1 shows this distribution of rotational



3.5 Line strength 97

Fig. 3.5.1 Fractional populations N (v, J )/NTOTAL of the v = 0 state of rotational levels in
carbon monoxide at 100, 200, and 300 K. The lower scale is the rotational quantum number
J . The upper scale is the energy in cm−1 for the rotational levels.

populations for the ground vibrational (v = 0) state of CO at 100, 200, and 300 K.
The peak value of J is given by

Jmax �
(

kT

2hcB

) 1
2

. (3.5.12)

Therefore, by observing the rotational line structure an estimate of the temperature
in the line forming region may be obtained. The temperature so derived is called the
rotational temperature. The strengths of emission and absorption lines are obtained
by substituting the initial state population [Eq. (3.5.11)], in Eqs. (3.5.1) and (3.5.2):

Iem = Fem

Qrot(T )
ν4(2J + 1) e−hcB J (J+1)/kT (3.5.13)

Iabs = I0
Fabs

Qrot(T )
ν(2J + 1) e−hcB J (J+1)/kT . (3.5.14)

Here Fem and Fabs are factors containing the dipole moment matrix for the vi-
brational transition, and the population of the initial vibrational level. These
factors depend only weakly on J and can be considered approximately constant
for all rotational lines within each vibrational transition. The J quantum number
in Eqs. (3.5.13) and (3.5.14) refers to the initial rotational level.

The overall strength of a vibrational transition is determined by the transition
matrix and the level population; the strength is distributed among the rotational lines
within the vibrational transition, producing the intensity pattern in the vibrational



98 Interaction of radiation with matter

band. The selection rules on J for a diatomic molecule together with the degeneracy
and Boltzmann factors in Eqs. (3.5.13) and (3.5.14) produce the observed shape of
the band.

When the diatomic molecule makes an electric dipole transition from one vibra-
tional state, v, to another state, v′, the rotational quantum number J can change by

J = ±1. If v = v′, that is, if the transition is purely rotational, a series of lines
is formed that begins at 2B wavenumbers with a separation between lines of ap-
proximately 2B. In the case of absorption all transitions are 
J = +1, while for
emission 
J = −1 applies. The pattern is shown for CO with v = 0 in Fig. 3.3.4.
The strengths of the lines increase as the degeneracy increases up to Jmax, given by
Eq. (3.5.12), and then decrease as the Boltzmann population decreases. If v �= v′,
where the vibrational state changes along with the rotational state, the change in
rotational quantum number can be either 
J = +1 or −1 in both absorption and
emission. This gives rise to a series of lines centered at ν = F(v′, 0) − F(v, 0). In
emission, the lower wavenumber series corresponds to 
J = +1 from the upper to
a lower state and is called the P-branch. The higher wavenumber 
J = −1 series
is called the R-branch. The pattern is shown for CO v′ = 1 and v = 0 in Fig. 3.3.5.
Again, lines are separated by about 2B, and J increases away from the band center.
The line strengths increase until Jmax [see Eq. (3.5.12)] is reached and then decrease
with the Boltzmann factor.

For polyatomic molecules, line strengths in the vibration–rotation spectra follow
the general behavior of those in diatomic molecules. The position of lines and bands
of polyatomic molecules are determined by the energy levels and selection rules
described in Section 3.4. The theory predicting line intensities is similar to that
described above for diatomic molecules, in that the intensity is proportional to the
population in the initial state and the square of the electric dipole moment matrix.
The level population is again a product of level degeneracy and Boltzmann factor.
The P-, Q-, and R-branches each have line strengths that increase with rotational
quantum number up to a maximum, and then decrease and gradually approach zero.
The appearance of a polyatomic spectrum is more complex than that of a diatomic
molecule, because a polyatomic molecule has more internal degrees of freedom
and, therefore, has more modes of vibration. Also additional rotational quantum
numbers exist with associated selection rules. Moreover, symmetries in molecules
cause some vibrational bands to be absent in the infrared, or some rotational lines to
be missing. Also, mixing among rotation–vibration states that lie close together in
energy can greatly modify line intensities and frequencies for transitions involving
those levels. The various types of polyatomic molecules – linear, spherical top,
symmetric top, and asymmetric top – each have their characteristic band structures.
Detailed discussions of line strengths in polyatomic molecules can be found in
Allen & Cross (1963), for example.
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3.6 Line shape

Thus far, we have discussed the processes that determine the spectral positions
of lines and their strengths. Another important characteristic is line shape, which
must be understood if one wishes to interpret measured planetary spectra. The
line shape determines the wavenumber dependence of a spectral feature in the
vicinity of the line position. Even if perfectly resolved by a spectrometer, a line is
spread over a finite wavenumber range and does not appear as an infinitely narrow
feature. Several mechanisms are responsible for that; some are of a fundamental
quantum mechanical nature (natural line broadening) and some are functions of
the environment of the emitting or absorbing molecules (collision and Doppler
broadening). In this section we discuss the most important of these mechanisms. A
more complete treatment of line shapes is given by Goody & Yung (1989).

Natural line broadening is usually much smaller than the broadening seen in
planetary spectra, but it is of fundamental importance as the ultimate limit of the
narrowness of a spectral line. Natural line broadening arises from the finite co-
herence length of the wave train associated with a transition. Fourier analysis of
radiation composed of a wave train of finite time, 
t , shows a frequency spread,

 f , that is related to this time by


 f 
t ∼ 1. (3.6.1)

The line width 
 f is just the range of radiation frequencies that have a high prob-
ability of interacting with the molecule. The time 
t can be understood as the
spontaneous emission lifetime of the transition discussed in Section 3.5. The spon-
taneous decay has an exponential dependence, and therefore the line shape due to
natural line broadening is Lorentzian. The natural line width,

wn = 1
2
ν ∼ 1

c
t
, (3.6.2)

thus varies according to the decay time of the interaction. For a molecular transition
near 1000 cm−1 the natural line width can be of the order 10−7 cm−1. This is much
narrower than the other line broadening processes that we discuss. Natural line
broadening in the infrared is only observed under special laboratory conditions.
From the strong spectral dependence of spontaneous emission, as shown by the
Einstein coefficient [see Eq. (3.5.1)], the natural line width is much larger in the
visible or ultraviolet spectral region.

From a practical point of view collision broadening is a more important mech-
anism. If one molecule in the process of a transition collides with another molecule,
the phase continuity of the transition is interrupted, thereby reducing 
t in
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Eq. (3.6.1) from the natural lifetime of the transition to the mean time between
collisions, leading in this case to a larger line width, 
ν = wc. Under atmospheric
conditions of interest, the time between collisions is usually much shorter than the
natural transition lifetime. Collision broadening in the infrared can thus be orders
of magnitudes larger than natural line broadening. The line profile generated by
collisions is

I (ν) = K
wc

(ν − ν0)2 + w2
c/4

(3.6.3)

where K is the spectrally integrated line intensity. In Eq. (3.6.3) I (ν) is the line
intensity at wavenumber v, wc is the full-width of the line at half-maximum, and
ν0 is the line center. The collision shape, also called Lorentzian line shape, is
shown along with other line shapes in Fig. 3.6.1. The collision line width increases
with density as the mean time between collisions decreases. Therefore, at a given
temperature, wc is proportional to pressure, P , which leads to the definition of a

Fig. 3.6.1 Collision, Voigt, and Doppler line shapes. All three are shown with the same
maximum amplitude, and with the same width at half maximum amplitude. The Voigt line
shape is one of a continuum of profiles between Gaussian and Lorentzian, depending on
the degree of collision broadening.
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collision broadening coefficient

γ = wc/P. (3.6.4)

The collision broadening coefficient varies among molecules and collision part-
ners, but is usually close to 3 gigahertz (0.1 cm−1) at one bar. Under typical condi-
tions found in planetary tropospheres and stratospheres pressure broadening usually
dominates other forms of line broadening.

Natural and collision broadening are examples of homogeneous broadening, that
is, a process where each molecule contributes to all frequencies under the distri-
bution function. An important example of an inhomogeneous broadening effect is
Doppler broadening. In that case the overall line shape consists of contributions
from many molecules, or many segments of trajectories between collisions of one
molecule, some moving towards and some away from the observer.

The frequency at which a particular transition interacts with the radiation is
thereby shifted slightly by


 f

f0
= −
v

c
, (3.6.5)

where f0 is the rest frequency of the transition, 
v is the component of the velocity
along the line of sight, and c is again the speed of light. The velocity components
along any line of sight have a Maxwellian distribution, which results in the observed
line having a Gaussian shape,

I (ν) = K
2(ln 2)

1
2

πwD
e−4 ln 2(ν−ν0)2/w2

D, (3.6.6)

where the symbols have the same meanings as in Eq. (3.6.3). This is called the
Doppler line shape. The width, wD, is determined by the spread in velocities in
the Maxwellian distribution and these depend on the temperature T of the gas and
the molecular weight, M. The Doppler line width, or full width at half-maximum
intensity of the Gaussian profile, is given by (see Townes & Shawlow, 1955),

wD = ν

c

(
8 ln 2k N0

T

M

) 1
2

= 7.16 × 10−7

(
T

M

) 1
2

ν. (3.6.7)

Here k is the Boltzmann constant and N0 is the Avogadro number. Whereas collision
broadening is independent of the location of the line in the spectrum, Doppler
broadening is proportional to wavenumber. For a particular molecule, at a low
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wavenumber the Doppler width can be narrower than the collision width, while at
higher wavenumbers the opposite may be true. The Doppler width for methane at a
temperature of 200 K is 3.3 × 10−3 cm−1 at 1300 cm−1 and 7.6 × 10−3 cm−1 at
3300 cm−1. An example of a Doppler broadened line is also shown in Fig. 3.6.1.

In most cases in which line profiles are completely resolved by the infrared
spectrometer both collision and Doppler broadening contribute to the line shape.
The function that describes the composite line profile is a convolution of a Gaussian
and a Lorentzian function,

I (ν) =
∫

ν ′
G(ν)L(ν − ν ′) dν ′. (3.6.8)

The width of the Gaussian function, G(ν), is the Doppler width, wD, and that of
the Lorentzian function, L(ν − ν ′), is the collision width, wc. This generalized line
shape, introduced by Voigt (1912), has no analytical expression, but it can easily be
computed numerically using the convolution represented in Eq. (3.6.8). Its shape is
shown in Fig. 3.6.1. An empirical expression relating wD and wc to the total Voigt
width, wV, has been introduced by Whiting (1968),

wV = wc

2
+
(

w2
c

4
+ w2

D

) 1
2

. (3.6.9)

The Voigt line shape closely describes line profiles measured under most laboratory
and atmospheric conditions.

Other processes also alter the observed line shape in planetary spectra. For exam-
ple, a line that forms at different altitudes will have a profile with a broad base due to
higher pressure at lower altitudes, and a narrow center corresponding to the lower
pressure at higher altitudes. Similarly, scattering due to cloud particles in a real
planetary atmosphere can affect the line shape. Examples of scattering effects are
discussed in Chapter 4. Another example is Doppler broadening of a line due to
planetary rotation. This phenomenon can be observed at high spectral resolution
when the field of view of the instrument covers an area on the planet with a range
of velocities.

Finally, we should mention the effect of far-wing absorption, an important but
poorly understood aspect of line shape. Collision-induced opacity is observed in
spectral regions well-separated by as much as 10 to 100 cm−1 from the line center.
This very weak absorption is not described by the wings of a simple Lorentz
line shape discussed above; it shows an exponentially decreasing dependence on
the separation from the line center (see, e.g., Birnbaum, 1979). The anomalous
far-wing absorption is due to inadequacies in the hard-sphere collision model used
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in the derivation of the Lorentz line shape, which assumes instantaneous interaction.
Far-wing absorption usually produces measurable effects only in spectral regions
that are relatively free of absorption lines, so-called windows, but where many
strong lines are not far away. Examples are the atmospheric window between 800
and 1250 cm−1 in the Earth atmosphere, where numerous strong water vapor and
carbon dioxide lines contribute to a continuum opacity, and the 5 µm window at
Jupiter, where many nearby lines of ammonia and methane have a noticeable effect.

3.7 Solid and liquid surfaces

a. Solid and liquid phases

The study of the interaction of electromagnetic radiation with solid or liquid matter
requires some understanding of these phases. In the discussion of the interaction
of radiation with gases it is generally sufficient to consider the energy levels of
an individual molecule of a particular gas. Collision-induced phenomena, where at
least two gas molecules are involved in a transition, provide an important exception
to this rule (Subsection 3.3.d). However, in most cases the interaction of radiation
with a gas can be adequately understood by considering quantum processes involv-
ing only one molecule. Such is not the case in interactions of radiation with solids
or liquids.

In a solid body atoms are often arranged in a well-ordered crystal structure.
The motion of each atom in the crystal lattice is not isolated, but is coupled to
that of all other atoms in the structure, though the influence of each atom is felt
most strongly in its immediate neighborhood. The entire crystal is a set of coupled
oscillators. In addition to the previously discussed vibration of the molecule as a
whole, the atoms or groups of atoms oscillate about an equilibrium position in the
crystal structure, giving rise to quantized lattice modes. The coupling within the
crystal also perturbs the individual molecular vibration modes. Coupling within
the crystal and the absence of rotation cause a loss of the sharp line features so
characteristic of the gas phase.

The coupling of the individual oscillators complicates the theoretical treatment
of solid matter. Further complexity arises in the treatment of crystal boundaries
and of other disturbances of the structure. Lattice periodicity may be interrupted
by imperfections or impurities. However, where the crystal periodicity is well-
preserved, certain simplifications are permitted in the theoretical treatment. Unfor-
tunately, on real planetary or satellite surfaces matter is rarely found in the form of
large crystals. In surface rocks the structure usually consists of small, sometimes
minute crystals. Very small dust particles of micrometer size are frequently formed
by meteoritic impact and by erosion resulting from thermal stresses, wind, or water.
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Good examples of dusty surfaces are found on Mars and the Moon. The theoretical
treatment of amorphous substances and liquids is even more difficult. There the
periodic lattice structure does not exist at all, but the interaction among molecules
is nevertheless strong.

Solids can be classified according to the dominant binding forces that hold them
together. Molecules are attracted to each other by these forces, but intermolecular,
short-range repulsion prevents collapse of matter beyond a certain packing density.
In this densely packed state the energy per unit volume has a minimum. Addi-
tional energy must be supplied if further compression is to be accomplished or if
molecules are to be separated. A stable configuration results with a well-defined
energy minimum that is not too different in concept from the situation found in gas
molecules (see Fig. 3.2.1).

The weakest bond is that of van der Waals forces in which molecules are attracted
by fluctuations in dipole moments. Ices of hydrogen and the noble gases (except
helium) are examples of van der Waals binding. Since the forces are relatively
weak (inverse seventh power in the separation distance) these ices are mechanically
relatively fragile, with their strength increasing as temperature drops far below
the triple point. In the fluctuating dipoles that create the van der Waals attraction
electrons stay attached to the individual molecules; therefore, ices are relatively poor
conductors of heat or electricity. Another example of a weak bond is the hydrogen
bond, which holds together the molecules of water ice. Tough weakly bound, water
ice can form mountain ridges of considerable height at low temperatures and in a
low-gravity environment. Steep cliffs nearly 15 km high on Miranda (Fig. 5.4.12),
are believed to be of water ice.

In ionic crystals the main binding force is electrostatic attraction between ions of
opposite polarity. A good example is sodium chloride, which forms a cubic crystal
of alternating positive sodium and negative chlorine ions. Since electric forces are
stronger than van der Waals forces, ionic crystals are generally more rigid and have
higher melting temperatures than ices. With their electrons tightly bound to the
anions they are electric insulators and poor heat conductors. Once melted or in
aqueous solutions, however, ionic materials may conduct electricity well.

Covalent solids are formed by sharing valence electrons among atoms in a crys-
tal. The resulting forces are quite analogous to the binding forces in covalent gas
molecules. The covalent bond is very strong, which accounts for the high mechani-
cal strength and high melting point of such crystals. Most such crystals are insulators
and poor thermal conductors. Important examples of covalent solids are quartz and
rock-forming silicates in general. Some covalent substances, such as germanium or
silicon, can become semiconductive, particularly if the regular crystal structure is
interrupted by impurities. In other cases of covalent binding, outer-shell electrons
move freely in the lattice of positive ions. Such substances are called metals, and
are good conductors of electric current and heat. The high electric conductivity
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Fig. 3.7.1 Typical phase diagram. Below the triple point matter exists only as a solid or a
gas. Between the triple point and the critical point a liquid phase may also exist. Above the
critical point matter is in a fluid phase.

(large σ ; see Chapter 1) also makes metals good reflectors of electromagnetic
radiation. Metals are essential to the construction of instruments, but are very
rarely found in pure form on planetary surfaces. Metallic hydrogen exists in the
interiors of Jupiter and Saturn, and iron, nickel, and other metals are expected to
exist in all planetary cores.

All solid matter can change phase if heated to sufficiently high temperatures
at low enough pressures. At high temperature, the energy of molecular thermal
agitation may exceed the crystal binding energy, so that molecules may leave the
crystal formation. A schematic phase diagram is shown in Fig. 3.7.1. Below the
triple point pressure, changes occur between the solid and the gaseous phases only.
Above the triple point pressure a solid may melt first, and with further heating may
reach a second boundary between the liquid and gaseous phases. However, above
the critical pressure liquid and gas are not separated by a phase transition; in this
condition the material is in a fluid state. For example, the critical point of hydrogen
is at 33 K and 13 bar. Therefore, it is more precise to speak of a fluid envelope
for the bulk of the giant planets, rather than a gaseous one. On the other hand, the
critical temperature and pressure of nitrogen are at 126 K and 33.9 bar, so that the
atmospheres of Earth and Titan are properly called gaseous. At very high pressures
many substances undergo further phase transitions. Water ice, for example, has at
least seven phases. The phase changes of hydrogen–helium mixtures, so important
for the study of the interior of the giant planets, are discussed by Stevenson (1982).

b. Complex refractive indices

To gain an understanding of the interaction of radiation with solids and liquids we
use the complex index of refraction, n, introduced in Section 1.3. The real part
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of the index is defined as the ratio of the speed of light in a vacuum to that in the
material, or nr = c/v [see Eq. (1.3.17)]. Its value for a vacuum is unity, and for other
media it is larger than one, except for the case of anomalous dispersion discussed
later. According to Maxwell’s theory, n is related to the dielectric constant ε and
magnetic permeability µ of the material by n2 = εrelµrel. As pointed out before,
µrel is close to unity for all substances of interest in remote sensing.

Equations (1.3.24) to (1.3.26) express the real and imaginary parts of the complex
index of refraction in terms of the electric conductivity σ , the dielectric constant ε,
and the magnetic permeability µ of the medium. The real part of the index is called
the propagation constant and the imaginary part the absorption constant. Neither
nr nor ni are true constants, but are functions of wavenumber. The electric field of
radiation traveling in the x-direction is [see Eq. (1.3.27)]

E = E0 e(iω/c)[(nr+ini)x−ct] (3.7.1)

= E0 e−(ω/c)nix e(iω/c)(nrx−ct). (3.7.2)

The second exponential in Eq. (3.7.2) is the usual wave function; the first exponential
represents an attenuation of the wave amplitude as it travels through the medium.
Since exponentially increasing amplitudes are not allowed on physical grounds,
only positive values of ni are accepted for positive values of x (although a negative
ni is sometimes used to represent gain in a medium, such as a laser). For the
case of ni = 0 in Eq. (3.7.2) the wave function corresponds to propagation in a
transparent medium, whereas the case of ni > 0 corresponds to attenuation in an
absorbing medium. The coefficient ωni/c in Eq. (3.7.2) is called the extinction
coefficient.

Since the index of refraction is known to be a function of wavenumber, the
dielectric constant, ε, also depends on wavenumber. This follows from the atomic
and molecular composition of matter. The material consists of molecules or atoms
in which the charges are bound, and therefore acts as a collection of oscillators.
Consider the case of charges in the molecules and atoms subjected to polarized
radiation traveling in the x-direction with electric field E = E0 eiωt . Each molecule
experiences a force due to the radiation field of the form F = qE0 cos ωt , where q
is the electric charge. This force causes small displacements, r, of the charges, and
thereby gives rise to a polarization of the material. The total polarization, P, is the
volume sum of all individual dipole moments pi = qi ri generated by the field,

P =
N∑

i=1

pi = Nqr, (3.7.3)
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where in the right-most part the summation has been eliminated by assuming that
the individual qs and rs are the same. Solution of the equations of motion for the
oscillating charges, including damping (due to collisions, radiative losses, etc.),
yields

r = q

m

E

ω2
0 − ω2 − iωd

, (3.7.4)

where m is the mass of the displaced particle and d is called the damping parameter.
The resonance frequency, ω0, of the oscillating charge depends on the physical
properties of the material. According to Eqs. (3.7.3) and (3.7.4) the polarization in
the material is related to the electric field,

P = Nq2

m

E

ω2
0 − ω2 − iωd

. (3.7.5)

Moreover, the polarization and electric field are related through the dielectric con-
stant by P = (ε − ε0)E, so that Eq. (3.7.5) also gives the dielectric constant in terms
of frequency.

Maxwell’s equations for a polarized medium lead to the wave equation

∇2E = 1

c2

[
∂2E
∂t2

+ 1

ε0

∂2P
∂t2

]
. (3.7.6)

For a plane wave travelling in the x-direction, and with the help of Eq. (3.7.5),
Eq. (3.7.6) reduces to

∂2E
∂x2

= 1

c2

(
1 + Nq2

mε0

1

ω2
0 − ω2 − iωd

)
∂2E
∂t2

. (3.7.7)

The solution to this equation is given by Eq. (3.7.1) or (3.7.2). Recognizing that the
coefficient of the time-derivative term is n2/c2, we arrive at the expression for the
complex index of refraction,

n = nr + ini =
[

1 + Nq2

mε0

(
1

ω2
0 − ω2 − iωd

)] 1
2

. (3.7.8)

Since the damping term, −iωd , results in a complex quantity inside the parentheses,
the square root is also complex, and yields formulas for nr and ni comparable to
Eqs. (1.3.25) and (1.3.26).
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Fig. 3.7.2 Behavior of the real, nr, and imaginary, ni, parts of the refractive index with fre-
quency. The real part generally increases with frequency, but goes through a rapid decrease
in the vicinity of ω0. The imaginary part is maximum at ω0.

Figure 3.7.2 shows the typical dependence of nr and ni on radiation frequency.
The imaginary part of the index of refraction is symmetrical and has a maximum
at the resonance frequency, ω0. The real part of n goes through a narrow, sharp
inflection close to ω0. An increase of nr with ω is the usual case and corre-
sponds to higher wavenumbers being refracted more than lower wavenumbers.
However, in the region near ω0 where nr decreases with ω, the opposite is true
and the material is said to exhibit anomalous dispersion. Anomalous dispersion
can be observed if the absorption is not too high at ω0, and can be interpreted
as due to phase velocities exceeding the speed of light in vacuum. Figure 3.7.3
shows measured curves of nr and ni for potassium bromide obtained by Bell
(1971).

The limit of n for ω approaching zero yields the static dielectric constant of the
material. As can be seen from Eq. (3.7.8), the static constant is real (iωd = 0), and
has the form

n0 =
(

1 + Nq2

mε0ω
2
0

) 1
2

. (3.7.9)
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Fig. 3.7.3 The real, nr, and imaginary, ni, parts of the refractive index of potassium bromide.
Anomalous dispersion exists in nr near ω0, where ni is near maximum (Bell, 1971).

A material typically has many resonance frequencies, ω j , associated with the
bound charges. To account for these frequencies the theory must be generalized by
modifying Eq. (3.7.8) to include a summation over these frequencies. Thus

n =
(

1 + Nq2

mε0

∑
j

s j

ω2
j − ω2 − iωd j

) 1
2

. (3.7.10)

The quantities s j are the oscillator strengths, and each is the fraction of the harmonic
oscillators which have frequency ω j . The damping parameters, d j , are also different
for each oscillator frequency.

If the damping parameters are small, the index of refraction is nearly real, i.e.,

n ∼ nr ∼
(

1 + Nq2

mε0

∑
j

s j

ω2
j − ω2

) 1
2

. (3.7.11)

For many transparent materials the measured index of refraction can be fitted to
a curve of this form quite well. The dependence of nr on frequency is called the
dispersion relation and is often written in terms of wavelength λ j ,

n2
r − 1 =

∑
j

A j
λ2

λ2 − λ2
j

. (3.7.12)

Tables of A j and λ j are given by Wolfe & Zissis (1978), for example.
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If either the propagation constant nr or the absorption constant ni is known over
a wide wavenumber range, the other parameter can be calculated numerically using
relations between real and imaginary parts of a function developed by Kramers
and Kronig (see for example, Landau & Lifshitz, 1960). These relations follow
from the causal restriction that the group velocity of radiation cannot exceed
the speed of light in vacuum. The Kramers–Kronig relations provide a powerful
method for deriving the complex index of refraction from spectrometric measure-
ments. An alternative technique, illustrated in Fig. 3.7.3, uses amplitude Fourier
transform spectroscopy to produce both nr and ni simultaneously (Bell, 1971;
Bell, 1972).

For the case of conducting materials (metals) Eq. (3.7.8) can be applied by noting
that unbound charges correspond to ω0 = 0. The square of the complex index of
refraction is then

n2 = εrel = 1 − ω2
p

ω2 + iω/τ
, (3.7.13)

where

ωp =
(

Nq2

mε0

) 1
2

(3.7.14)

is the plasma frequency, and the damping parameter d has been replaced by the
reciprocal of the relaxation time, τ , in the medium. The frequency dependence of the
coefficients nr and ni in metals is completely determined by the plasma frequency
and the relaxation time. We will not pursue the optical theory of conductors, since
virtually all solid and liquid materials encountered in planetary environments are
dielectrics. Further discussions of the complex index of refraction appear in texts
such as Born & Wolf (1959) and Strong (1958).

3.8 Cloud and aerosol particles

a. Asymptotic scattering functions

Cloud particles are assemblages of molecules, large enough to treat from classical
theory, yet small enough to require considerations of size and shape. If a given parti-
cle is much smaller than the wavelength of incident plane-polarized electromagnetic
radiation, the particle can be treated as though it were in an applied homogeneous
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electric field, E0 e−iωt , at any instant in time. The resulting induced dipole moment
is given by

p e−iωt = αE0 e−iωt , (3.8.1)

where α is the polarizability of the particle. If the particle is spherical and homo-
geneous, α is a scalar.

The oscillating dipole radiates in all directions, and the resulting emission is
called Rayleigh scattering. If p is perpendicular to the plane of scattering, the
amplitude |a| of scattered radiation is independent of the scattering angle �. If p is
contained in the plane of scattering, |a| is proportional to the absolute value of the
projection of p onto the direction of scattering; i.e., |a| ∝ | cos �|. The scattered
flux is proportional to

∑ |a|2, averaged over all polarization states.
For incident unpolarized radiation, a complete analysis leads to

F = 8

(
π2α

λ2r

)2

(1 + cos2 �)F0, (3.8.2)

where πF0 and πF are respectively the fluxes of incident and scattered radiation.
The quantities r and � refer respectively to the distance and direction from the
scattering center. In particular (1 + cos2 �) is the unnormalized phase function for
single scattering. This factor does not depend on wavelength as long as the particle
radius a � λ, although the familiar inverse fourth power wavelength dependence
of scattered radiation enters the complete equation.

At the other extreme the particle is large compared with the wavelength (a � λ)
and the concepts employed in geometric optics and Fraunhofer diffraction theory
can be used to advantage. Let a beam of parallel radiation be incident on any surface
element of the spherical particle, and require the width D of the beam to be much
larger than λ and much smaller than a; i.e., λ � D � a. In geometric optics such
a beam is called a ray.

If incidence is grazing, Fraunhofer diffraction will occur around the edge of the
particle. Because D � λ, the diffracted radiation will be concentrated in a very
narrow cone, the axis of which is along the direction of incidence. On the other
hand, if the point of incidence is not near the edge of the particle, diffraction is
unimportant and only refraction and reflection in accordance with Snell’s laws
[Eqs. (1.6.4) and (1.6.6)] with certain modifications need be considered.

Figure 3.8.1 illustrates the geometry. A particle of radius a is irradiated by a
ray in the direction � = 0. Upon contact with the surface of the particle, part
of the incident radiation is reflected into a new direction � = �0, designated in
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Fig. 3.8.1 Reflected and refracted components of a ray incident on a homogeneous particle
of radius a � λ in the direction � = 0. The components of the scattered radiation field are
labeled j = 0, 1, 2, 3, . . . in the order of scattering.

the figure by the component j = 0. According to Snell’s law of reflection the
angles of incidence and reflection (relative to the surface normal at the point of
contact) are equal for this component. The remainder of the ray is directed ac-
cording to Snell’s law for refraction into another direction � = �′

0, and travels
through the particle with some loss due to absorption until it again contacts the
particle’s surface. Again, part of the ray is refracted into the direction � = �1

(denoted by j = 1 in the figure) and part is internally reflected into the direction
� = �′

1. This process is repeated until all the radiation has been absorbed by or
lost from the particle. The components j = 0, 1, 2, . . . comprise the ‘scattered’
radiation.

In practice a few corrections to this procedure are required. The simple theory
fails at a focus or focal line, and phase shifts occur throughout the process. If these
phase shifts do not average out (i.e., if the coherence of all rays is not completely
destroyed), interference between outgoing rays will disallow a simple addition of
outgoing fluxes. In order to minimize this complication it is necessary to introduce
the further requirement that a(nr − 1) � λ, where nr is the real part of the refractive
index.

Cloud particles are basically dielectrics and thus tend to be rather poor reflec-
tors. Hence, even in the absence of strong absorption, only the lower values of
j will contribute significantly to the scattered radiation field. From the figure it
would appear that the component j = 1 plus Fraunhofer diffraction contribute al-
most all the radiation at small scattering angles (forward directions), and that the
components j = 0, 2 contribute most of the scattered radiation at other angles. It
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would also seem that the component j = 1 dominates all other components in the
amount of radiation contributed to the scattered field, and that the ‘spread’ of the
forward peak of scattered radiation is governed primarily by the refractive index;
i.e., the larger the real part of the refractive index, the larger the spread will be.
Since Fraunhofer diffraction contributes at least half the scattered radiation field,
there should be a very intense ‘spike’ to the angular scattering pattern around
� = 0 in addition to the forward scattering lobe contributed by the component
j = 1.

b. Rigorous scattering theory; general solution

Particles of intermediate size are too large to treat as being entirely contained in a
homogeneous periodic electric field, and too small to neglect the radius of curva-
ture of a surface element, where such an element is also large enough to contain
an optical ray. In addition, Fraunhofer diffraction cannot be separated from refrac-
tion and reflection because of mutual interference effects, and phase shifts inside
the particle also contribute substantially to interference. A rigorous solution using
Maxwell’s equations is required, subject to the appropriate boundary conditions.
Such a solution for spherical particles was obtained by Mie (1908). An excellent
detailed account of the Mie theory is given in Born & Wolf (1959). Below we sketch
out the basic principles involved, expanding somewhat on the procedure followed
by van de Hulst (1957).

The problem is cast in spherical coordinates in order to ensure the surface of
the particle coincides with one of the coordinate surfaces, making it much easier
to impose the boundary conditions correctly. Solutions to the scalar wave equation
are then used to derive two vector fields, linear combinations of which satisfy
Maxwell’s equations. Particular integrals are found by requiring continuity of the
field components across the particle surface. The scattered field at large distances
from the particle is then evaluated, leading to explicit expressions for particle cross
sections and the single scattering phase function.

We assume the particle is imbedded in a nonconducting medium, so that the
applied electromagnetic field of circular frequency ω is given by

E = E0 e−iωt (3.8.3)

and

H = H0 e−iωt , (3.8.4)
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where E0 and H0 are independent of time. From Eqs. (1.3.1) and (1.3.2) it follows
that

∇ × H0 = −iω

(
ε + i

σ

ω

)
E0 (3.8.5)

and

∇ × E0 = iωµH0. (3.8.6)

Because the particles under consideration are spherical, solutions to Eqs. (3.8.5)
and (3.8.6) are sought in spherical coordinates (r, θ, φ) with the origin at the particle
center. We have

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ


 . (3.8.7)

The components of any vector A are related in the two systems by

Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ

Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ

Aφ = −Ax sin φ + Ay cos φ


 . (3.8.8)

Let ψ be a solution to the scalar wave equation

1

r

∂2(rψ)

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2
+ k2ψ = 0, (3.8.9)

where the propagation constant k is given by Eq. (1.3.24). Equation (3.8.9) is
separable and has elementary single-valued solutions of the form

ψmn ∼
{

cos mφ

sin mφ

}
Pm

n (cos θ )zn(kr ) (n ≥ m ≥ 0), (3.8.10)

where the Pm
n are associated Legendre polynomials and the zn , given by

d2(r zn)

dr2
+
[

k2 − n(n + 1)

r2

]
r zn = 0, (3.8.11)
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are generalized spherical functions derived from the ordinary cylindrical (Bessel,
Neumann, and Hankel) functions Zn+ 1

2
by the relation

zn(ρ) =
(

π

2ρ

) 1
2

Zn+ 1
2
(ρ). (3.8.12)

Now consider the vector

A(ψ) = ∇ × (rψ). (3.8.13)

The curl of any vector

A = r̂Ar + θ̂Aθ + φ̂φAφ (3.8.14)

in spherical coordinates is given by (see Appendix 1)

∇ × A = r̂
r2 sin θ

[
∂

∂θ
(r Aφ sin θ ) − ∂

∂φ
(r Aθ )

]

+ θ̂

r sin θ

[
∂

∂φ
(Ar ) − ∂

∂r
(r Aφ sin θ)

]

+ φ̂φ

r

[
∂

∂r
(r Aθ ) − ∂

∂θ
(Ar )

]
, (3.8.15)

where r̂, θ̂, and φ̂φ are the basis vectors. Hence, from Eqs. (3.8.13) and (3.8.15),

A(ψ) = θ̂
1

sin θ

∂ψ

∂φ
− φ̂φ

∂ψ

∂θ
(3.8.16)

and

∇ × A(ψ) = − r̂
r sin θ

[
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ ∂

∂φ

(
1

sin θ

∂ψ

∂φ

)]

+ θ̂

r

∂

∂r

(
r
∂ψ

∂θ

)
+ φ̂φ

r sin θ

∂

∂r

(
r
∂ψ

∂φ

)
, (3.8.17)

or, from Eq. (3.8.9),

∇ × A(ψ) = r̂
[

∂2

∂r2
(rψ) + k2rψ

]

+ θ̂

r

∂

∂r

(
r
∂ψ

∂θ

)
+ φ̂φ

r sin θ

∂

∂r

(
r
∂ψ

∂φ

)
. (3.8.18)
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Applying the curl operator to both sides of Eq. (3.8.18) yields, after some
reduction,

∇ × [∇ × A(ψ)] = θ̂

sin θ
k2 ∂ψ

∂φ
− φ̂φk2 ∂ψ

∂θ
. (3.8.19)

For any vector q, ∇ · (∇ × q) ≡ 0. Thus [see Eq. (3.8.13)]

∇ · A(ψ) ≡ 0. (3.8.20)

Hence, from Eqs. (1.3.5), (3.8.16), and (3.8.19),

∇2A(ψ) + k2A(ψ) = 0, (3.8.21)

i.e., A(ψ) is a solution of the vector wave equation.
In like manner the vector

kC(ψ) = ∇ × A(ψ) (3.8.22)

can also be shown to be a solution of Eq. (3.8.21), leading to

kA(ψ) = ∇ × C(ψ), (3.8.23)

as can be verified directly by applying the curl operator to both sides of Eq. (3.8.22)
and comparing with Eq. (3.8.21). In making the comparison, we use Eqs. (1.3.5),
(3.8.20), and

∇ · C(ψ) ≡ 0, (3.8.24)

which follows immediately from Eq. (3.8.22).
Thus, if ψ = u and ψ = v are two independent solutions of the scalar wave

equation (3.8.9), the associated vector fields are A(u), C(u), A(v), and C(v). Direct
substitution using Eqs. (1.3.24), (3.8.5), (3.8.6), (3.8.22), and (3.8.23) demonstrates
that

E0 = −ωµ[A(v) + iC(u)] (3.8.25)

and

H0 = k[−A(u) + iC(v)] (3.8.26)
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are solutions to Maxwell’s equations. The full vector components are [see
Eqs. (3.8.16), (3.8.18), and (3.8.22)]

Ar (ψ) = 0; kCr (ψ) = ∂2(rψ)

∂r2
+ k2rψ

Aθ (ψ) = 1

r sin θ

∂(rψ)

∂φ
; kCθ (ψ) = 1

r

∂2(rψ)

∂r∂θ

Aφ(ψ) = −1

r

∂(rψ)

∂θ
; kCφ(ψ) = 1

r sin θ

∂2(rψ)

∂r∂φ




. (3.8.27)

This demonstrates that the components of E0 and H0 can be expressed in terms of
the scalars u and v [see Eq. (3.8.10)] and their first and second derivatives.

c. Particular solutions and boundary conditions

Now let the origin of the coordinate system be the particle center, and the direction
of propagation of the incident radiation be along the z- (or θ = 0) axis in the positive
direction. Further, let the electric vibration of the incident wave be in the x−z plane
(φ = 0◦), and k1 and k2 be the propagation constants outside and inside the particle
of radius a, respectively.

It is useful to think of the total field (E0, H0) as being composed of three par-
tial fields: an incident and a scattered field outside the particle, as well as a field
within the particle. Solutions for these fields can be expressed as expansions in u
and v with undetermined coefficients, each term representing a particular integral.
The coefficients can then be determined from the boundary conditions, which are
that the four tangential components of the total field E0θ , E0φ, H0θ , and H0φ re-
main continuous across the spherical surface r = a even though the propagation
constant k and magnetic permeability µ are discontinuous. The conditions that the
radial components E0r and H0r are also continuous across the surface then follow
automatically from Maxwell’s equations.

We recall from Eqs. (3.8.3) and (3.8.4) and the related discussion that E0 and
H0 of the incident field are independent of time, and define the amplitude of the
electric vector to be normalized to unity. Because of the coordinate system chosen,
the Poynting vector is along the positive z-direction and E0 is in the x−y plane.
Hence, from Eq. (3.8.3), the electric field for the incident wave is [see Eq. (1.3.22)]

E = îeik1z−iωt . (3.8.28)

With the aid of Eqs. (3.8.7) and (3.8.8), the time-independent component of E in
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the radial direction is

E0r = eik1r cos θ sin θ cos φ. (3.8.29)

Differentiation of the identity

eik1r cos θ =
∞∑

n=0

in(2n + 1)Pn(cos θ ) jn(k1r ) (3.8.30)

with respect to θ leads to

E0r = −cos φ
1

k1r

∞∑
n=1

in+1(2n + 1)P1
n (cos θ ) jn(k1r ), (3.8.31)

where we use the relations

∂Pn(cos θ)

∂θ
= −P1

n (cos θ ); P1
0 (cos θ ) = 0. (3.8.32)

On the other hand, from Eqs. (3.8.25) and (3.8.27) we also find

E0r = − iωµ1

k1

[
∂2(ru)

∂r2
+ k2

1(ru)

]
. (3.8.33)

Let

u =
∞∑

n=1

αnu1n, (3.8.34)

where the αn are undetermined coefficients. From the forms of Eqs. (3.8.10),
(3.8.11), (3.8.31), and (3.8.33) we find

E0r = − iωµ1

k1

∞∑
n=1

n(n + 1)

r
αnu1n, (3.8.35)

where

u1n = cos φP1
n (cos θ ) jn(k1r ) (3.8.36)
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and

∂2(ru1n)

∂r2
+ k2

1(ru1n) = n(n + 1)

r
u1n. (3.8.37)

Solving for αn yields

αn = in

ωµ1

2n + 1

n(n + 1)
, (3.8.38)

leading to

u = 1

ωµ1
cos φ

∞∑
n=1

in
2n + 1

n(n + 1)
P1

n (cos θ ) jn(k1r ). (3.8.39)

Returning to Eqs. (3.8.6) and (3.8.28), and using Eqs. (3.8.7) and (3.8.8), it
follows that the radial component of the magnetic field for the incident wave is

H0r = k1

ωµ1
eik1r cos θ sin θ sin φ. (3.8.40)

An analysis of H0r completely analogous to that just undertaken for E0r reveals
that

v = − 1

ωµ1
sin φ

∞∑
n=1

in
2n + 1

n(n + 1)
P1

n (cos θ ) jn(k1r ). (3.8.41)

Equations (3.8.39) and (3.8.41) together suffice to describe the complete incident
field.

From the form of the solutions for the incident wave, and considerations of
conditions that the radial components E0r and H0r of the scattered wave must obey,
it appears that the scattered field can be constructed from the functions

u = − 1

ωµ1
cos φ

∞∑
n=1

anin
2n + 1

n(n + 1)
P1

n (cos θ )h(1)
n (k1r ) (3.8.42)

and

v = 1

ωµ1
sin φ

∞∑
n=1

bnin
2n + 1

n(n + 1)
P1

n (cos θ)h(1)
n (k1r ). (3.8.43)
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The spherical Hankel function of the first kind has been chosen because of its
asymptotic behavior as r → ∞, which is

h(1)
n (x) = (−i)n+1

x
eix , (3.8.44)

and this, when multiplied by e−iωt , represents an outgoing spherical wave as re-
quired. The constants an and bn are coefficients to be determined by the boundary
conditions.

The field inside the particle can be constructed from

u = 1

ωµ2
cos φ

∞∑
n=1

cnin
2n + 1

n(n + 1)
P1

n (cos θ ) jn(k2r ) (3.8.45)

and

v = − 1

ωµ2
sin φ

∞∑
n=1

dnin
2n + 1

n(n + 1)
P1

n (cos θ ) jn(k2r ). (3.8.46)

The choice of the spherical Bessel function jn is based on the requirements that k2

and the fields be finite at the origin. The undetermined coefficients cn and dn can
be expressed in terms of an and bn .

The conditions at r = 0 and r = ∞have just been imposed, which is equivalent to
imposing general conditions on E0r and H0r at these locations. The remaining four
conditions needed for a complete solution are the requirements that E0θ , E0φ, H0θ ,
and H0φ be continuous across the boundary r = a. From Eqs. (3.8.25), (3.8.26),
and (3.8.27), these components are found to be

E0θ = − ω

sin θ

∂

∂φ
[µv] − iω

r

∂

∂θ

[
µ

k

∂(ru)

∂r

]

E0φ = ω
∂

∂θ
[µv] − iω

r sin θ

∂

∂φ

[
µ

k

∂(ru)

∂r

]

H0θ = − 1

sin θ

∂

∂φ
[ku] + i

r

∂

∂θ

[
∂(rv)

∂r

]

H0φ = ∂

∂θ
[ku] + i

r sin θ

∂

∂φ

[
∂(rv)

∂r

]




. (3.8.47)

The quantities in brackets must each be continuous across the boundary r = a. The
form of the equations for u and v then guarantees that the derivatives of the brackets
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with respect to the angular coordinates (θ, φ) are also continuous at r = a, which,
according to Eq. (3.8.47), is sufficient to satisfy the boundary conditions.

Let:

x = k1a; y = k2a

ψn(z) = z jn(z); ψ ′
n(z) = ∂[z jn(z)]

∂z

ζn(z) = zh(1)
n (z); ζ ′

n(z) = ∂
[
zh1

n(z)
]

∂z




. (3.8.48)

In order for the tangential components of the fields inside and outside the particle
to match at the surface, it is found from Eqs. (3.8.39), (3.8.41), (3.8.42), (3.8.43),
(3.8.45), and (3.8.46) that continuity of the bracketed quantities in Eq. (3.8.47)
requires

[µv]:
1

k1
ψn(x) − bn

1

k1
ζn(x) = dn

1

k2
ψn(y)

[
µ

k

∂(ru)

∂r

]
:

1

k1
ψ ′

n(x) − an
1

k1
ζ ′

n(x) = cn
1

k2
ψ ′

n(y)

[ku]:
1

µ1
ψn(x) − an

1

µ1
ζn(x) = cn

1

µ2
ψn(y)

[
∂(rv)

∂r

]
:

1

µ1
ψ ′

n(x) − bn
1

µ1
ζ ′

n(x) = dn
1

µ2
ψ ′

n(y)




. (3.8.49)

Eliminating cn and dn leads to

an = µ1k2ψn(y)ψ ′
n(x) − µ2k1ψn(x)ψ ′

n(y)

µ1k2ψn(y)ζ ′
n(x) − µ2k1ζn(x)ψ ′

n(y)
(3.8.50)

and

bn = µ1k2ψn(x)ψ ′
n(y) − µ2k1ψn(y)ψ ′

n(x)

µ1k2ζn(x)ψ ′
n(y) − µ2k1ψn(y)ζ ′

n(x)
, (3.8.51)

completing the solution for the scattered field.
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d. The far field; phase function and efficiency factors

The scattered field as r → ∞ is the one that is measured. From Eqs. (3.8.42),
(3.8.43), (3.8.44), (3.8.47), and the relations

πn(cos θ ) = 1

sin θ
P1

n (cos θ)

τn(cos θ ) = d

dθ
P1

n (cos θ )


 , (3.8.52)

we find that, as r → ∞,

E0θ = ωµ1

k1
H0φ = i

k1r
eik1r cos φS2(θ )

−E0φ = ωµ1

k1
H0θ = i

k1r
eik1r sin φS1(θ)


 , (3.8.53)

where

S1(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θ ) + bnτn(cos θ )]

S2(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[anτn(cos θ ) + bnπn(cos θ )]




. (3.8.54)

The radial components (E0r , H0r ) are of order (1/r2) as r → ∞, and thus do
not contribute; that is, the scattered wave becomes transverse at large r . In order to
obtain the single-scattering phase function we are interested only in relative fluxes,
and can set the flux equal to the square of the real amplitude of the electric vector.
The two polarization components of the flux are

πF1 = |E0φ|2 = 1

k2
1r2

sin2 φ|S1(θ )|2

πF2 = |E0θ |2 = 1

k2
1r2

cos2 φ|S2(θ )|2




. (3.8.55)

Averaging over all states of polarization and adding yields (since 〈cos2 φ〉 =
〈sin2 φ〉 = 1

2 )

πF = 〈πF1〉 + 〈πF2〉 = 1

2k2
1r2

[|S1(θ )|2 + |S2(θ )|2] (3.8.56)
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for the total scattered flux in the direction θ . The single scattering phase function
then becomes

cp(cos θ ) = |S1(θ )|2 + |S2(θ )|2, (3.8.57)

where c is a normalization constant.
The value for c is determined as follows. Let π F0 be the incident flux and π F be

the scattered flux at a distance r � a from the particle. According to Eq. (3.8.28),
the magnitude of the incident flux is

πF0 = |E0z|2 = 1. (3.8.58)

The fraction of πF0 scattered by a particle of effective scattering cross section
χs is χsπF0. This flux is scattered in all directions, and the fraction crossing a
differential area dA normal to the direction of propagation along r is πFr2 dω,
where dω = sin θ dθ dφ is the element of solid angle subtended at the particle by
dA. Hence, by the law of the conservation of energy,

χs F0 =
∫

ω

r2 F dω, (3.8.59)

where the integration is over all solid angles.
We define the efficiency factors for extinction, scattering, and absorption by,

respectively,

QE = χEπa2

QS = χSπa2

QA = χAπa2


 , (3.8.60)

where the χ j ( j = E, S, A) are the corresponding cross sections. By definition

QE = QS + QA, (3.8.61)

since the fraction of flux extinguished by the particle is just the sum of the fractions
absorbed and scattered.

It follows from Eqs. (3.8.56), (3.8.58), (3.8.59), and (3.8.60) that

QS = 1

k2
1a2

∫ π

0
[|S1(θ )|2 + |S2(θ )|2] sin θ dθ. (3.8.62)
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Though somewhat detailed, it can be shown from Eqs. (3.8.52) and (3.8.54) that
Eq. (3.8.62) reduces to

QS = 2

k2
1a2

∞∑
n=1

(2n + 1)
(|an|2 + |bn|2

)
. (3.8.63)

Integration over doubly infinite series are involved, although orthogonality relations
between πn and τn result in most of the integrations over products being equal to
zero. Integration of Eq. (3.8.57), with the aid of Eqs. (2.1.5), (3.8.62), and the
relation ω̃0 = QS/QE, then yields

c = 1
2 k2

1a2 QE. (3.8.64)

The last quantity to be determined is QE [QA then follows immediately from
Eq. (3.8.61)]. Because the incident field consists of a beam of radiation parallel to
the z-axis [see Eq. (3.8.28)] the flux, in the absence of the particle, is a constant inde-
pendent of z. If the particle is then inserted into the beam, the fractional amount by
which the flux is decreased at large z is equal to χE, the cross section for extinction.

However, the incident and scattered fields along the z-axis (θ = 0) are not com-
pletely incoherent. In addition to absorption and Fresnel reflection and refraction, in-
terference effects are important, and it is necessary to add the field amplitudes before
computing the flux loss due to extinction by the particle. According to Eqs. (3.8.8),
the component E i

0θ of the incident wave, given by Eq. (3.8.28), is (for θ = 0)

E i
0θ = eik1z cos φ, (3.8.65)

while that for the scattered wave E s
0θ is given approximately by [see Eq. (3.8.53)]

E s
0θ = i

k1z
eik1r cos φS(0), (3.8.66)

where

S(0) = S1(0) = S2(0) = 1

2

∞∑
n=1

(2n + 1)(an + bn). (3.8.67)

Equation (3.8.66) is very accurate for small, nonzero values of θ , as long as
cos θ ∼ 1. However, even though z ∼ r for slightly off-axis waves, important
interference effects require that the distinction be maintained in the exponentials.
Consider a plane normal to the z-axis and intersecting it at large z. Let the intersec-
tion be the origin of an (x, y) coordinate system in the plane. Restrict the limits of
both x and y to ±D, where D is small compared with z but large compared with
z tan θ0, where θ0 is the scattering angle within which interference between the
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incident and scattered waves is basically contained. Then, to a sufficient degree of
approximation,

r ∼ z

(
1 + x2 + y2

2z2

)
(3.8.68)

over the range of x and y of interest.
From Eqs. (3.8.65) through (3.8.68), the total θ -component of the time-

independent electric field at large z, with θ ≤ θ0, is

E0θ = E i
0θ + E s

0θ = cos φeik1z

[
1 + i

k1z
S(0)eik1(x2+y2)/2z

]
. (3.8.69)

In like manner it is readily demonstrated that the φ-component of this field is

E0φ = E i
0φ + E s

0φ = −sin φ eik1z

[
1 + i

k1z
S(0) eik1(x2+y2)/2z

]
. (3.8.70)

Both the real and imaginary parts of the complex quantity containing S(0) in the
brackets are small compared with unity. Hence, from Eqs. (3.8.55) and (3.8.56),
the flux at large z is very nearly

πF = 1 + 2

k1z
Re
[
iS(0)eik1(x2+y2)/2z

]
. (3.8.71)

From the previous discussion it is apparent that

χE =
∫ D

−D

∫ D

−D
(πF0 − πF) dx dy, (3.8.72)

where the integrations are extended over large enough ranges to include all inter-
ference effects. Substituting Eqs. (3.8.58) and (3.8.71) into Eq. (3.8.72) yields

χE = − 2

k1z
Re

[
iS(0)

∫ D

−D

∫ D

−D
eik1(x2+y2)/2z dx dy

]
. (3.8.73)

Letting D → ∞ is now legitimate because, by postulate, almost all interference
phenomena have been accounted for within the limits ±D, and extending these
limits without bound adds almost nothing to this integral. The value of each integral
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becomes ∫ ∞

−∞
eik1x2/2z dx = (i + 1)

(
π z

k1

) 1
2

. (3.8.74)

Substituting into Eq. (3.8.73) according to Eqs. (3.8.60) and (3.8.74), we finally
obtain

QE = 4

k2
1a2

Re[S(0)]. (3.8.75)

Expressions have been derived for QS, QE, and p(cos �). These are the main
single-scattering parameters needed, along with the molecular absorption coef-
ficients considered earlier in this chapter, to put the theory of radiative transfer
developed in Chapter 2 on a quantitative basis. In reviewing the various formulas
developed, it is clear that the quantity ka, given by

ka = 2πa

λ
n, (3.8.76)

where n = nr + ini is the complex refractive index [cf. Eq. (1.3.24)], plays a central
role in scattering theory. The factor 2πa/λ is sometimes called the size parameter.

Figure 3.8.2 illustrates two phase functions, one for water drops large compared
with the wavelength of incident radiation, and one for smaller aerosol particles. The
one for large water drops shows several interesting features: (1) the strong, narrow
Fraunhofer diffraction ‘aureole’ near � = 0◦, (2) the broader forward scattering
lobe covering the range 5◦ < � < 80◦, (3) the rainbow, centered about � = 140◦,
and (4) the back scattering ‘glory’ near � = 180◦.

The j = 1 component in Fig. 3.8.1 is basically responsible for the forward scat-
tering lobe outside the aureole, while the j = 2 component gives rise to the rainbow.
In the latter case there is a minimum deviation of the once internally reflected ray
near � = 140◦, and this varies with changing refractive index. Much of the radiation
comprising the j = 2 component passes close to this angle of minimum deviation,
leading to an enhanced intensity around this angle. The changing refractive index
with wavelength gives rise to the colors observed.

The aureole and glory are both due primarily to interference, although there
are basic differences. The aureole depends on the interference of waves diffracted
around the particle, whereas the glory is constructed from the interference of waves
undergoing refraction. Edifying discussions of the physical principles can be found
in van de Hulst (1957).

Figures 3.8.3 and 3.8.4 are plots of the efficiency factors QE and QA as functions
of the size parameter 2πa/λ for two different refractive indices. The difference
between QE and QA is QS. The latter figure represents a much more absorbing
medium than the former.
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Fig. 3.8.2 Single scattering functions for a water cloud and an aerosol haze, each associated
with a real refractive index n = 1.33. The cloud and haze particle size distributions peak
at particle radii a ∼ 4.0 and a ∼ 0.05 µm, respectively. Computations were made for a
wavelength λ = 0.8189 µm (after Hansen, 1969).

Fig. 3.8.3 Efficiency factors for extinction, QE, and absorption, QA, for weakly absorbing
particles.

Several interesting features are evident in Fig. 3.8.3. The limiting value for QE for
a � λ is QE = 2. This is because the radiation diffracted around the particle is in-
cluded in the computation for QE, and this comprises half the extinguished radiation
for particles large compared with the wavelength of incident radiation. A second
feature is that several large-scale maxima and minima occur in the extinction curve,
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decreasing in amplitude with increasing a/λ. The maxima are due to constructive
interference between diffracted and transmitted radiation, while the minima are
due to destructive interference. Comparable periodic fluctuations do not occur in
Fig. 3.8.4, because the transmitted radiation is strongly attenuated in the more
absorbing medium, reducing interference to a negligible effect.

Another interesting feature of the Q-functions in Fig. 3.8.3 is a small-amplitude
‘ripple’ superimposed on each of the main curves. This ripple appears to be the
result of interference between the Fraunhofer diffraction peak and a surface wave
that takes occasional short-cuts through the particle just under the outer boundary.
Because this phenomenon depends on unattenuated transmission to maximize the
amplitude of the ripple, the strongly absorbing medium in Fig. 3.8.4 fails to show
a corresponding effect.

For particle compositions of interest to us there appears to be at least one maxi-
mum in QE. It is a general rule that the first maximum is defined by

πa

λ
|n − 1| ∼ 1 + ε, (3.8.77)

where ε � 1. For particle radii considerably smaller than the value contained in
Eq. (3.8.77), extinction cross sections decrease dramatically, and much simpler
expressions than required by the Mie theory can often be used to describe the
extinction characteristics with adequate precision.

Fig. 3.8.4 Efficiency factors for extinction, QE, and absorption, QA, for strongly absorbing
particles.
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The emerging radiation field

The last chapter dealt with the interaction of radiation with matter, mostly in the
gaseous, but also in the liquid and solid phases. Absorption coefficients of infrared
active gases, emission and scattering properties of surfaces, and single scattering
albedos and phase functions of aerosols were considered. Applications of these
concepts, along with the principles of radiative transfer discussed in Chapter 2,
enable us to calculate the emerging radiation field of a planet or satellite.

In this chapter we examine how the physical state of an emitting medium gives
rise to the general spectral characteristics of the outgoing radiation field. We begin
in Section 4.1 by considering the behavior of a single spectral line in an isothermal
atmosphere, both with and without scattering. In Section 4.2 we introduce nonscat-
tering atmospheric models having a more complicated thermal structure, but still
consider only a single line. Finally, in Section 4.3 we conclude our investigation of
nonscattering models using realistic molecular parameters. Our aim in this chapter
is to illustrate the principles behind the analysis of remotely sensed data, especially
with regard to how scattering, atmospheric abundances, and thermal structures af-
fect the appearance of the observed spectrum. Later, in Chapter 6, we apply these
principles to the descriptions of real planetary spectra.

4.1 Models with one isothermal layer

a. Without scattering

The first model considered consists of a nonscattering gas layer at constant pres-
sure and temperature adjacent to a solid surface of unit emissivity. This model is
illustrated in Fig. 4.1.1. We consider the absorbing gas to have only one spectral
line. Such a line is not perfectly monochromatic, but, as discussed in Section 3.6,
is broadened by various effects. In this section we assume that the gas pressure is
sufficiently high and the temperature sufficiently low so that collisional broadening

129
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dominates and the line has a Lorentz shape. Other line shapes would serve equally
well. For a Lorentz line the normal optical thickness of the gas layer is given by
[see Eq. (3.6.3)]

τ (ν) = N χ̄α
z

π [(ν − ν0)2 + α2]
, (4.1.1)

where N is the molecular number density, χ̄ the mean cross section per molecule
multiplied by the effective line width, 
z the layer thickness, and α the line width
appropriate for the assumed pressure and temperature. At the line center (ν = ν0)
the optical path is maximum.

According to our postulate, scattering does not occur in the layer. If we assume
a surface emissivity of unity, the outgoing monochromatic radiation field is given
by Eq. (2.4.4), with n = 1. Thus τ0 = 0 and

Iν(0, ν) = Bν[τ1/2(ν)]
[
1 − e−τ1(ν)/µ

]+ Bν(TS) e−τ1(ν)/µ, (4.1.2)

where TS is the surface temperature at τ1. The first term corresponds to IE in
Fig. 4.1.1, and the second to ID. Upon substituting Bν(TA) for Bν[τ1/2(ν)], where
TA is the gas temperature, Eq. (4.1.2) can be written

Iν(0, ν) = Bν(TA) − [Bν(TA) − Bν(TS)] e−τ1(ν)/µ. (4.1.3)

Fig. 4.1.1 Simple nonscattering model. Radiation of intensity IE is emitted by an isothermal
layer of temperature TA in the direction µ. An underlying surface of unit emissivity and
temperature TS also radiates with its characteristic blackbody intensity B(TS). After partial
absorption a reduced fraction ID is transmitted through the layer in the same direction. The
sum of IE and ID is the total outgoing intensity.
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Fig. 4.1.2 Lorentz lines in absorption in a homogeneous isothermal atmosphere, generated
according to the model illustrated in Fig. 4.1.1. Normal viewing (µ = 1) is assumed, with
surface and atmospheric temperatures of TS = 150 K and TA = 90 K, respectively. The line
width α in Eq. (4.1.1) is 1 cm−1, and the line center is at ν0 = 400 cm−1. The product χ̄
z
is 8 cm2 per particle, and the particle number density is assigned the four values N = 0.1,
1, 20, and 500 particles per cm3. Planck functions for T = 150 K and 90 K serve as limiting
boundaries for the lines.

As τ1(ν)/µ increases, Iν(0, µ) increases if the temperature difference TA − TS is
positive, or decreases if the difference is negative. Thus spectral lines are seen either
in emission or absorption depending on whether TA > TS or TA < TS. If TA = TS

the line disappears; only the blackbody continuum Bν(TA) is seen.
These principles are illustrated in Figs. 4.1.2 and 4.1.3, which show how absorp-

tion or emission lines are formed when TA is, respectively, less than or greater than
TS. The figures show different line strengths depending on the number density of
absorbing molecules. In order to illustrate how the line wings blend into the Planck
continuum we have adopted line widths much larger than those associated with
real molecules, although exceptions can occur under special circumstances, such
as when lines are formed by collision-induced absorption.

If the optical path length at the line center, τ1(ν0)/µ, is sufficiently small, the line
is relatively weak and the area under the curve (defined relative to the continuum)
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Fig. 4.1.3 As Figure 4.1.2, except the lines are in emission because the surface and atmo-
spheric temperatures are reversed, with TS = 90 K and TA = 150 K, respectively.

is proportional to the column density. Physically this occurs because very few
molecules along the line-of-sight are obstructed by other molecules, and almost
all contribute to the opacity. As τ1(ν)/µ becomes large, most of the molecules
are masked by others, especially near the line center, where the cross section per
molecule is largest. The line approaches saturation and the area under the curve
becomes proportional to some fractional power of the column density. The core of
the line flattens out because the layer becomes opaque there, and the temperature
contrast between the layer and the surface no longer affects the intensity near
the line center (the surface cannot be seen). Only in the wings of the line, where the
cross section per molecule is still small enough to permit the surface to contribute,
does a variation of intensity with wavenumber occur.

b. With scattering

Certain modifications of the line shape and strength occur when scattering is in-
troduced. Figure 4.1.4 illustrates the physical process, and should be contrasted
with the nonscattering model shown in Fig. 4.1.1. A useful analytic representation
follows from the two-stream approximation developed in Chapter 2. Considering
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Fig. 4.1.4 Simple scattering model. Radiation of intensity IE is emitted in the direction µ
by an isothermal layer of temperature TA. Because of multiple scattering, many photons
emitted by the layer have originated within the layer from other directions. An underlying
surface of unit emissivity and temperature TS also emits in all directions. Some of the
radiation is backscattered by the layer and is reabsorbed by the non-reflecting surface. A
component IT is diffusely transmitted through the layer by multiple scattering and another,
ID, is directly transmitted. The total outgoing intensity in the direction µ is the sum of
IE, IT, and ID.

only internal sources, Eq. (2.5.14) becomes

µi
dI (τ, µi )

dτ
= I (τ, µi ) − 1

2

∑
j

(ω̃0 + ω̃1µiµ j ) I (τ, µ j ) − (1 − ω̃0)B(τ )

(i, j = ±1). (4.1.4)

In an isothermal layer the Planck function, B, is a constant. In this case it can be
shown by direct substitution that

I (τ, µi ) = B (4.1.5)

is a particular integral of Eq. (4.1.4). Hence, upon adding this integral to the general
solution [Eq. (2.5.23)], the complete solution becomes [note also Eqs. (2.5.21),
(2.5.22), and (2.5.24)]

I (τ, µi ) =
∑

α

Lα

ω̃0 + cαµi

1 + kαµi
e−kατ + B (α, i = ±1). (4.1.6)

The integration constants Lα can be determined from the boundary conditions

I (0, − µ1) = 0; I (τ1, µ1) = cB, (4.1.7)
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where [see Eq. (4.1.3) and the related discussion]

c = B(TS)/B(TA). (4.1.8)

Thus

L1
ω̃0 − c1µ1

1 − k1µ1
+ L−1

ω̃0 + c1µ1

1 + k1µ1
= −B

L1
ω̃0 + c1µ1

1 + k1µ1
e−k1τ1 + L−1

ω̃0 − c1µ1

1 − k1µ1
ek1τ1 = (c − 1)B


 . (4.1.9)

Define

f =
(

1 − ω̃0

1 − 1
3 ω̃1

) 1
2

. (4.1.10)

With the aid of Eqs. (2.5.21), (2.5.22), and (2.5.24) we find that

ω̃0 − c1µ1

1 − k1µ1
= 1 + f (4.1.11)

and

ω̃0 + c1µ1

1 + k1µ1
= 1 − f. (4.1.12)

Reduction of Eqs. (4.1.9) then yields

L1 = −B
(c − 1)(1 − f ) e−k1τ1 + (1 + f )

(1 + f )2 − (1 − f )2 e−2k1τ1
(4.1.13)

and

L−1 = −Be−k1τ1
(c − 1)(1 + f ) + (1 − f ) e−k1τ1

(1 + f )2 − (1 − f )2 e−2k1τ1
. (4.1.14)

Hence, from Eq. (4.1.6), the outgoing intensity becomes

I (0, µ1) = 2 f B
(1 + f ) + 2(c − 1) e−k1τ1 + (1 − f ) e−2k1τ1

(1 + f )2 − (1 − f )2 e−2k1τ1
. (4.1.15)
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The physical meanings of the parameters c, B, ω̃0, and τ1, either explicitly or im-
plicitly contained in Eq. (4.1.15) [see Eqs. (2.5.24) and (4.1.8)], are clear, but ω̃1

requires a little more discussion. From Eq. (2.5.1) and (2.5.3) we find

∫
ω

cos � p(cos �)
dω

4π
= 1

3 ω̃1. (4.1.16)

With the aid of Eq. (2.5.4) we can define an asymmetry factor

〈cos �〉 =

∫
ω

cos � p(cos �)
dω

4π∫
ω

p(cos �)
dω

4π

= ω̃1

3ω̃0
, (4.1.17)

which expresses the degree to which radiation is singly scattered into the forward
(plus) or backward (minus) directions. The more directionally extreme the scatter-
ing, the greater |〈cos �〉| is. The full range is −1 ≤ 〈cos �〉 ≤ 1, although if only
two terms are included in p(cos �) [Eq. (2.5.1)], the phase function itself will be
negative over certain ranges of � if |cos �| > 1

3 .
Rewriting Eq. (4.1.17) yields

1
3 ω̃1 = ω̃0〈cos �〉. (4.1.18)

For a given single scattering albedo ω̃0, the greater the forward scattering, the larger
ω̃1 will be. Either ω̃1 or 〈cos �〉 can be used to describe the degree of forward (or
backward) scattering, though we favor 〈cos �〉.

After this digression we return to Eq. (4.1.15). Four limiting cases are of particular
interest for explaining the principles of line formation in scattering atmospheres:
the cases τ1 = 0 and τ1 = ∞, and the cases ω̃0 = 0 and ω̃0 = 1.

Case 1: If the atmospheric layer disappears (τ1 = 0) we have

lim
τ1→0

I (0, µ1) = cB, (4.1.19)

i.e., the atmosphere is transparent and the upwelling intensity is just the Planck
intensity of the surface.

Case 2: If the atmosphere becomes very deep (τ1 → ∞) Eq. (4.1.15) reduces to

lim
τ1→∞ I (0, µ1) = 2 f

1 + f
B, (4.1.20)
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where

ε = 2 f

1 + f
= 2

[
1 +

(
1 − ω̃0〈cos �〉

1 − ω̃0

) 1
2

]−1

(4.1.21)

is the atmospheric emissivity.
Case 3: If the particles are completely absorbing (ω̃0 = 0), Eq. (4.1.15), with the aid of

Eqs. (2.5.24) and (4.1.10), reduces to [note from Eq. (4.1.18) that ω̃1 → 0 as
ω̃0 → 0]

I (0, µ1) = B[1 + (c − 1)e−√
3τ1 ]. (4.1.22)

This is identical with Eq. (4.1.3), with µ = µ1 = 1/
√

3.
Case 4: If the particles are fully reflecting (ω̃0 = 1), both f and k are zero and Eq. (4.1.15)

becomes indeterminate. If we let ω̃0 approach unity in such a way that, for
any τ1, k1τ1 � 1, we can approximate exp(−nk1τ1) with (1 − nk1τ1). After some
reduction Eq. (4.1.15) becomes

lim
ω̃0→1

I (0, µ1) = lim
ω̃0→1


B

c − (c − f )k1τ1

2 + (1 − f )2
k1τ1

f


 , (4.1.23)

or, because

k1

f
= √

3(1 − ω̃0〈cos �〉) (4.1.24)

(which is true independently of the value of ω̃0), we finally obtain

lim
ω̃0→1

I (0, µ1) = cB

1 +
√

3

2
(1 − 〈cos �〉)τ1

. (4.1.25)

The curves in the upper parts of Figs. 4.1.5 and 4.1.6 illustrate the formation of ab-
sorption lines for moderate to small optical path lengths. If τ1 is small, Eqs. (4.1.22)
and (4.1.25) respectively reduce to

lim
ω̃0→0

I (0, µ1) ∼ cB

[
1 −

(
1 − 1

c

)√
3τ1

]
(4.1.26)

and

lim
ω̃0→1

I (0, µ1) ∼ cB

[
1 −

√
3

2
(1 − 〈cos �〉)τ1

]
. (4.1.27)

Hence, for a given (small) value of τ1, a nonscattering medium will give rise to a
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Fig. 4.1.5 Lorentz lines generated in a partially scattering, homogeneous, isothermal
medium, illustrated by the model in Fig. 4.1.4. The direction cosine of viewing is µ = 1/

√
3.

Surface and atmospheric temperatures are TS = 180 K and TA = 150 K, respectively. Two
components contribute to the total optical thickness of the atmosphere: (1) τM(ν), due
to a purely absorbing molecular medium, given by Eq. (4.1.1), and (2) a wavenumber-
independent component, τp, due to a uniformly mixed medium of scattering aerosol par-
ticles. The line width of the molecular component is α = 1 cm−1, and the product N χ̄
z
varies between 2 and 2 × 107 cm−1; the line center is at ν0 = 500 cm−1. The two compo-
nents of normal optical thickness at line center are indicated by [πτM(ν0), πτp]; the factor
π is introduced to eliminate it from the right side of Eq. (4.1.1). Single scattering albedos
of the aerosol particles are ω̃

p
0 = 0 for the dot-dash curves and ω̃

p
0 = 1 otherwise. Volume

element single scattering albedos (gas plus aerosol) vary with wavenumber for the dashed
and solid curves, being smallest at line center. Models for which the asymmetry factor
〈cos �〉 = 0, 0.5, and 0.8 are illustrated by the long dashed, short dashed, and solid curves,
respectively. The slanted line separating emission from absorption features is the Planck
intensity for a 150 K blackbody. (2 E 5 = 2 × 105.)

greater or lesser intensity than a scattering medium depending on whether (1 − 1/c)
is respectively less than or greater than 1

2 (1 − 〈cos �〉).
The far wings of the lines in the upper parts of Figs. 4.1.5 and 4.1.6 best

demonstrate this point. Here τ1 is smallest and ω̃0 approaches unity in the scat-
tering model. In both figures c ∼2, and in Fig. 4.1.5 〈cos �〉 = 0.5. Hence the
wings of the line formed by the scattering aerosol are about midway in intensity
between those formed by the absorbing aerosol and those formed in the absence
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Fig. 4.1.6 As Fig. 4.1.5, except for the absence of models for which (1) ω̃
p
0 = 0 and (2)

〈cos �〉 = 0.5. The normal optical thicknesses τM(ν0) and τp in the lower part of the
figure are a factor 10−5 of those in Fig. 4.1.5. As before, models for which the asym-
metry factors are 〈cos �〉 = 0 and 0.8 are illustrated by the long dashed and solid curves,
respectively.

of any aerosol, where τ1 ∼0. In this case more radiation is diffusely transmitted
through the medium with ω̃0 ∼1 than is emitted by the medium with ω̃0 = 0.
The corresponding intensity components are IT in Fig. 4.1.4 and IE in Fig. 4.1.1,
respectively.

On the other hand these same components become comparable when 〈cos �〉 =
0. This can be seen by comparing Eqs. (4.1.26) and (4.1.27) as well as the relevant
curves in Figs. 4.1.5 and 4.1.6. The physical reason is illustrated in Fig. 4.1.4; as
〈cos �〉 becomes smaller, more radiation emitted by the surface is scattered by the
layer back to the surface, and not so much is diffusely transmitted upward through
the medium by multiple scattering in the forward direction.

The lower curves in Fig. 4.1.5 show the consequences of τ1 becoming extremely
large [πτM(ν0) = 2 × 105 and 2 × 107, and πτP = 107]. Because the atmosphere
is effectively semi-infinite and isothermal, no thermal contrast is possible, and the
line shapes are due solely to variations in multiple scattering. As indicated by
Eqs. (4.1.20) and (4.1.21), the emissivity is everywhere less than unity, leading to
intensities less than the Planck intensity. At the line centers ω̃0 is smallest because
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Fig. 4.1.7 Scattering model in thermodynamic equilibrium. An opaque slab is placed over
an isothermal semi-infinite partially scattering medium. Both the slab and the medium
are held at the same temperature TA. Radiation from the slab is incident on the medium
in all downward directions, and a component of intensity IS is diffusely reflected by the
medium into the direction µ. The intensity of radiation thermally emitted by the medium
into the direction µ is IE. Because the space between the slab and medium is equivalent to
a blackbody cavity (see Section 1.7), the sum of IS and IE is the Planck intensity B(TA).

gaseous absorption is strongest at these wavenumbers, leading to maximum emis-
sivities. As the distance from the line center increases, absorption decreases, leading
to larger values of ω̃0 and correspondingly smaller values for ε. This results in a
line shape that resembles emission from a warmer medium above a cooler surface,
even though no temperature contrast actually exists.

The strength of the line is also affected by the shape of the phase function for
single scattering. From Eq. (4.1.21) we see that ε increases as 〈cos �〉 increases.
This effect is illustrated in the lower part of Fig. 4.1.5. The physical reason can be
understood with the aid of Fig. 4.1.7. Radiation from an overlying slab is incident
on a partially scattering semi-infinite medium. If single scattering is predominantly
in the forward direction (〈cos �〉 ∼ 1), any given photon tends to penetrate rather
deeply into the medium, even after several scattering events, before being turned
around by scattering into a backward direction. Conversely, if single scattering is
isotropic (〈cos �〉 = 0), a given photon is just as likely as not to be backscattered
in any given single scattering interaction. The average path length in the medium
is larger in the former case than in the latter, leading to a greater likelihood of
absorption; i.e., IS will decrease as 〈cos �〉 increases.

If the slab is now removed, only

IE = εB(TA) = B(TA) − IS (4.1.28)
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will contribute to the outgoing intensity in Fig. 4.1.7, and IE must increase as
〈cos �〉 increases. This accounts for the differences with 〈cos �〉 in the lower part
of Fig. 4.1.5.

As an interesting aside, the local reflectivity (or albedo) is given by

a = 1 − ε = IS

B(TA)
. (4.1.29)

From Eqs. (4.1.21) and (4.1.29) it is easily deduced that

1 − a

1 + a
=
(

1 − ω̃0

1 − ω̃0〈cos �〉
) 1

2

, (4.1.30)

a relationship connecting the local albedo with the single scattering properties of a
homogeneous semi-infinite medium in the two-stream approximation.

Thick, finite media, while exhibiting many characteristics similar to those of
semi-infinite media, do show some differences. Comparisons between the lower
portions of Figs 4.1.5 and 4.1.6 illustrate these differences. Although the cores of
the lines in the cases shown are almost identical, the wings of the lines in finite
media manifest relatively larger intensities than those in semi-infinite media. This is
because the single scattering albedo is very high far from the line center, and diffuse
transmission through the medium is effective. Equation (4.1.25) is the quantitative
expression of this statement in the limiting case ω̃0 = 1, and demonstrates how
forward scattering enhances diffusion through the medium, a fact also illustrated
by the lower portion of Fig. 4.1.6. Remarkably thick atmospheres can transmit
some radiation if ω̃0 is close to unity because almost no absorption per scattered
event takes place, and on the average many such events will occur before any given
photon is absorbed. Forward scattering is more effective in transmitting radiation
than isotropic scattering because it is more directed, and the total path length a
multiply scattered photon traverses through the medium is shorter. In the limit, as
〈cos �〉 → 1, radiation remains undeviated and is effectively unscattered.

4.2 Models with a vertical temperature structure

A more thermally complex system involves an atmosphere that is vertically variable
in temperature and in hydrostatic equilibrium under the force of gravity. The vertical
pressure gradient in such an atmosphere is given by

dP

dz
= −gm N , (4.2.1)
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where P, N , m, and g are, respectively, the pressure, molecular number density,
mean molecular weight, and acceleration due to gravity at the level z. Assuming
that the perfect gas law is sufficiently accurate, we also have

P = NkT, (4.2.2)

where k is the Boltzmann constant and T the temperature. Upon differentiating
Eq. (4.2.2) and substituting into Eq. (4.2.1), we obtain

dN

dz
= −N

(
mg

kT
+ 1

T

dT

dz

)
. (4.2.3)

a. Single lapse rate

The simplest example of a nonisothermal atmosphere is one with a single lapse
rate,

� = −dT

dz
= const. (4.2.4)

This is also physically realistic for planetary atmospheres over moderate ranges
of altitude. Substituting into Eq. (4.2.3), replacing z with T as the independent
variable, and integrating, yields

N = Nr

(
T

Tr

)−(1−mg/k�)

, (4.2.5)

where the subscript r refers to any arbitrary reference level. An integration of
Eq. (4.2.4) provides the relation between temperature and altitude,

T = Tr − �(z − zr). (4.2.6)

To calculate the outgoing intensity, we apply the multilayer model of Subsec-
tion 2.4.a [see Eq. (2.4.4)]. The relation between optical and geometric thicknesses
of the individual layers is given by [cf. Eq. (4.1.1)]

τi − τi−1 = Ni χ̄αi (zi − zi−1)

π
[
(ν − ν0)2 + α2

i

] . (4.2.7)

Each layer is assumed to be individually isothermal; hence, from the kinetic theory
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Fig. 4.2.1 Lorentz lines in absorption in an atmosphere with a constant, positive lapse
rate. Normal viewing (µ = 1) is assumed. The temperature at the surface and base of the
atmosphere is T = 150 K, while the temperature at the top of the atmosphere is T = 90 K.
The line width α is 1 cm−1, and the line center is at 400 cm−1. The product χ̄
z is 8 cm2

per particle, and the particle number density at the base (reference level) is assigned the
four values Nr = 1, 10, 100, and 500 particles per cm3. Planck functions for T = 150 K
and 90 K serve as limiting boundaries for the lines.

of gases we have

αi

αr
= Ni

Nr

(
Ti

Tr

) 1
2

(4.2.8)

where Ni is an appropriate mean number density and Ti is the temperature for the
i th layer. The relations between Ni , Ti , and zi follow from Eqs. (4.2.5) and (4.2.6).

Figures 4.2.1 and 4.2.2 illustrate the effect of a constant lapse rate on the spectrum.
A positive lapse rate (negative temperature gradient) is considered in the first figure,
and a negative one in the second. The lines are seen, respectively, in absorption and
emission and are qualitatively similar to those in Figs. 4.1.2 and 4.1.3. This is largely
because the mean atmospheric temperature is less than the surface temperature in
the first case, and greater in the second.

There are some differences, however. In particular, lines formed in an atmo-
sphere with a temperature gradient do not exhibit the symmetry in absorption
and emission shown in homogeneous isothermal media. According to Eqs. (4.2.5)



4.2 Models with a vertical temperature structure 143

Fig. 4.2.2 Lorentz lines in emission in an atmosphere with a constant, negative lapse rate.
The temperature at the surface and base of the atmosphere is 90 K, while the tempera-
ture at the top of the atmosphere is 150 K. The remaining parameters are the same as in
Fig. 4.2.1.

and (4.2.6) the variation of number density with altitude is more extreme with a
negative lapse rate. Hence, if the base of the atmosphere is the reference level,
the integrated column density will be less. The lines, seen in emission, will ap-
pear weaker than corresponding absorption lines formed in an atmosphere with
a positive lapse rate, as long as the molecular number densities at the bases are
equal.

A second difference is that lines associated with a temperature gradient tend not
to saturate as readily as those associated with an isothermal atmosphere. In the latter
case saturation occurs at wavenumbers where the total atmosphere becomes opaque.
In the former case, however, the temperature contrast between different levels within
the atmosphere is sufficient to cause a spectral variation with wavenumber even
though the surface cannot contribute.

The reason can be clarified with the concepts of weighting and contribution
functions. If emission from the surface does not depend on azimuth, Eq. (2.4.1) can
be written

I (z = z0, µ) = I (z = 0, µ) exp

(
− 1

µ

∫ z0

0
Nχ dz

)
+
∫ z0

z
B(z′)W (z′, µ) dz′,

(4.2.9)
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where z0 is the top of the atmosphere for all practical purposes, and the weighting
function W (z, µ) is given by

W (z, µ) = ∂

∂z

[
exp

(
− 1

µ

∫ z0

z
Nχ dz′

)]
. (4.2.10)

This function is the gradient of the transmittance through the atmosphere in the
direction µ. The weighting function is a maximum where the transmittance is
changing most rapidly. Hence, from Eq. (4.2.9), if the variation of B(z) with z
is small compared with that of W (z, µ), the level at which W (z, µ) is maximum is
also the level that contributes most to the outgoing intensity I (z0, µ). More often,
however, the variation B(z) with z is not small, and the maximum of the contribution
function,

C(z, µ) = B(z)W (z, µ), (4.2.11)

is more appropriate for defining the level of maximum contribution to I (z0, µ).
This level will vary with wavenumber because χ and B(z) do. Consequently, the
effective level from which the atmosphere emits depends on wavenumber, and,
because the various levels are at different temperatures, the outgoing intensity
will also vary with wavenumber, even though the atmosphere may be sufficiently
opaque to obscure the contribution from the surface. The net effect is to defer
saturation in opaque lines arising from an atmosphere with a temperature gradi-
ent. These lines appear to be somewhat broader in the wings and less flat near
the core than lines generated in an isothermal atmosphere. This is illustrated in
Fig. 4.2.3.

b. Multiple lapse rates

The correlation between contribution functions and the observed spectrum becomes
most evident when the atmosphere undergoes temperature reversals. Consider
the temperature profile shown in Fig. 4.2.4. Three distinct lapse rates define the
thermal structure; two positive lapse rates bound a negative one in the middle.
Discontinuities in temperature gradient are avoided by rounding the profile at the
two extremes.

Outgoing intensity spectra of models using this temperature profile are shown
in Fig. 4.2.5. The models are defined by Eqs. (4.2.5) through (4.2.8). The differ-
ent panels in the figure are associated with different values of the base number
density Nr. As Nr grows larger the opacity at a given wavenumber increases,
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Fig. 4.2.3 Comparisons of Lorentz line ratio spectra for isothermal atmospheres (solid
curves) and constant lapse rate atmospheres (dashed curves). All lines are normalized to the
continuum. The temperature at the top (z = 50 km) of all atmospheres is TA = 90 K; the
temperature remains constant throughout the isothermal atmospheres, and increases linearly
with decreasing altitude to TA = 150 K at z = 0 for the constant lapse rate atmospheres. The
surface temperature is TS = 150 K for all models, and the reference level is at z = 10 km,
where N = Nr. The number density is N = 0 below 10 km, and is calculated in accordance
with Eqs. (4.2.5)–(4.2.6) between 10 and 50 km.

causing the effective emission level zeff at that wavenumber to rise to higher
altitudes.

The topmost panel in Fig. 4.2.5 shows a spectrum for which zeff extends over
the full altitude range, 0–90 km. This is demonstrated in Fig. 4.2.6, in which four
contribution functions associated with four critical wavenumbers are displayed.
Three of the wavenumbers (ν = 367, 393, and 400 cm−1) correspond to minima
or maxima in the spectrum, while the fourth (ν = 200 cm−1) is located in the far
wing.

The atmosphere is very transparent at 200 cm−1 and almost opaque at the line cen-
ter at 400 cm−1. The corresponding contribution functions are relatively narrow, and
their peaks are located at the surface and at the top of the atmosphere, respectively.
As a result the calculated intensities of the spectrum at these two wavenumbers are
almost equal to the Planck intensities associated with the temperature (T = 150 K)
at the bottom and top of the atmosphere.
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Fig. 4.2.4 Temperature profile used to calculate spectra in Fig. 4.2.5.

The contribution function for ν = 393 cm−1 is associated with a peak spectral
intensity at this wavenumber, and also has a maximum at z = 60 km, the altitude
at which the temperature profile is maximum. However, the function itself is rather
broad, and fairly large contributions to the outgoing intensity at 393 cm−1 arise from
a moderate range of altitudes centered about 60 km, over which the temperature
is less than maximum. Consequently, the spectral intensity at 393 cm−1 is only
slightly greater than the Planck intensity for T = 180 K, as indicated in Fig. 4.2.5a,
rather than that for T = 210 K, as implied by Fig. 4.2.4.

A minimum in the spectrum occurs at ν = 367 cm−1, implying the associ-
ated weighting function is maximum near z = 30 km, where the temperature
(and hence the Planck intensity) has a minimum. Thus the weighting func-
tion and Planck intensity tend to counteract each other, and their product
results in the broad, double-peaked contribution function shown in Fig. 4.2.6. In
this case the concept of an effective emission level has little meaning, since there
exists a broad altitude range over which individual levels contribute about equally
to the outgoing intensity. This phenomenon is characteristic of temperature minima
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Fig. 4.2.5 Emission spectra of atmospheric models that incorporate the temperature profile
in Fig. 4.2.4. The models are defined by Eqs. (4.2.5) through (4.2.8). The reference level,
where N = Nr, is at z = 0; the top in all cases is at z = 90 km.

in general, and can lead to difficulty in attempts to infer the detailed thermal struc-
ture of real atmospheres from observed spectra, the subject of Section 8.2.

In summary, the spectral intensity at a given wavenumber can, in certain spectral
regions, be closely associated with the Planck intensity of the atmosphere at a
given effective emission level zeff. In other spectral regions, especially near spectral
minima, the association is not as close. To the extent that zeff is meaningful, the
emission properties of this level are governed by the optical properties and cross
sections of the particles and molecules present at this level, as well as the temperature
profile. The sharper the contribution function associated with zeff, the better defined
this level is.

If comparisons are being made across a fairly broad spectral range, the Planck
intensity will vary with wavenumber at a given zeff. In this case it is frequently useful
to plot the spectrum in units of brightness temperature, TB. This is not a physical
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Fig. 4.2.6 Contribution functions at selected wavenumbers, corresponding to the atmo-
spheric model with Nr = 500 particles cm−3. The associated emission spectrum is shown
in panel (a) of Fig. 4.2.5.

temperature, but rather is the temperature of a blackbody that would radiate with the
outgoing intensity at a given wavenumber. Thus TB is a function of wavenumber,
and, provided the thermal structure is known, gives one an easy way to estimate the
variation of zeff with wavenumber, or, what amounts to the same thing, to estimate
the approximate level at which each point in the spectrum is formed. We use this
representation in the last section.

4.3 Model with realistic molecular parameters

So far we have considered only the effect of the atmospheric thermal structure on
a single line. However, in the thermal infrared, molecular bands are dominantly
responsible for the gaseous opacity, and it is useful to see how they affect the
appearance of spectra. We illustrate this with the 667 cm−1 band of carbon dioxide
(CO2) and the temperature profile shown in Fig. 4.3.1. This profile qualitatively
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Fig. 4.3.1 Temperature profile used to calculate the CO2 emission spectrum in Fig. 4.3.2.

resembles those for Earth and Titan (see Chapters 6 and 8). We assume a nitrogen
(N2) atmosphere (mean molecular weight of 28 amu) and add a CO2 mole fraction
of 1 × 10−6. The spectrum shown in Fig. 4.3.2 is computed at a resolution of
0.01 cm−1 and degraded to 1.0 cm−1. Part of the spectrum is shown in the lower
panel at a resolution of 0.1 cm−1.

The P- and R-branches of the 667 cm−1 CO2 band display considerable structure,
principally in absorption in the ranges 625–664 cm−1 and 671–705 cm−1, although
individual lines appear in emission. This indicates that the corresponding contri-
bution functions peak in the lower atmosphere where the temperature gradient is
negative, except in the line centers where the contribution functions have shifted to
a position above the temperature minimum. In the central Q-branch the spectrum is
strongly inverted and appears in emission. Here the atmosphere is opaque enough
to shift the contribution functions well above the temperature minimum, where the
temperature gradient becomes positive.



150 The emerging radiation field

Fig. 4.3.2 Upper panel shows a spectrum calculated for an N2–CO2 atmosphere with the
temperature profile illustrated in Fig. 4.3.1 and a spectral resolution of 1.0 cm−1. The lower
panel is part of the same spectrum but displayed between 666 and 680 cm−1 at a resolution
of 0.1 cm−1. The CO2 mole fraction is q = 1 × 10−6 between z = 0 and z = 60 km, and
q = 0 above these altitudes.
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From this example it is clear that some combination of thermal structure and
emitting gas abundance can be inferred from observed spectra. As we have seen,
a qualitative picture can often be obtained simply by inspecting a display of the
spectral data. A more quantitative assessment requires solutions of the equation
of transfer. First, however, it is necessary to examine how instrumental effects
modify the appearance of planetary spectra. This will be discussed in the next
chapter.



5

Instruments to measure the radiation field

In Chapter 4 we constructed examples of planetary spectra by applying solutions of
the radiative transfer equation to model atmospheres of assumed composition and
temperature structure. Before we can compare the results of such calculations with
measured spectra we have to understand the modifications the emerging radiation
field experiences in the recording process performed by radiometric instruments. A
full comprehension of the detailed functioning of instruments is also necessary for
the planning and the design of remote sensing investigations. Therefore, in Chapter 5
we discuss the principles of infrared instrumentation. We concentrate on instruments
for space use, but the physical principles are equally applicable to ground-based
astronomical sensors. On several occasions we refer to such Earth-based devices.
It is neither possible nor useful to mention all infrared instruments ever flown in
space or ever used for planetary work with ground-based telescopes. Instead, we
analyze the physical concepts of different design approaches. To illustrate these
concepts we occasionally show diagrams of specific instruments as well as samples
of results obtained with them.

Radiometric devices have certain common characteristics. For example, most
radiometric instruments contain optical elements to channel planetary radiation onto
a detector. Telescopes are often essential parts of these designs. Following a brief
introduction in Section 5.1, the subject of telescopes is discussed in Section 5.2. In
the process of imaging a planetary surface element onto the detector, fundamental
limits in spatial resolution are encountered. These limits, set by diffraction, are
discussed in Section 5.3. Sometimes, radiometric instruments have components
that chop the incoming radiation, or allow line by line scanning to form an infrared
image, or permit image motion compensation to reduce smear caused by the relative
motion of the field of view against the planet during the exposure. Different system
configurations have evolved to permit execution of these functions; they are the
subject of Section 5.4.

152
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The spectral range of a remote sensing instrument must be restricted to at least
one, but sometimes to many, well-defined intervals. Calculations are carried out
most conveniently for monochromatic radiation, and nearly monochromatic meas-
urements are often desirable. But instrumental and other realities set practical
limits, and for some investigations the optimum spectral interval may be rela-
tively wide. To provide structure to the discussion of the numerous methods used
to restrict the spectral range of remote sensing instruments, we divide this subject
into four sections: spectral separators based on intrinsic material properties, spec-
tral filters based on interference in thin films, spectral analysers based on diffrac-
tion, and Fourier transform spectrometers. Section 5.5 on intrinsic material prop-
erties includes a discussion of prism spectrometers and gas cell instruments. In
Section 5.6 on interference phenomena we present an analysis of narrow- and
wide-band optical filters designed to operate at fixed frequencies as well as
tunable filters. Interference filters and Fabry–Perot interferometers are part of this
discussion. Grating spectrometers are the subject of Section 5.7. Fourier trans-
form spectrometers, that is, instruments for which the output signal needs to be
Fourier transformed to obtain a spectrum, are grouped in Section 5.8. Of course,
they are also based on interference phenomena. Michelson interferometers, on
space platforms and from the ground, have made significant contributions to our
knowledge of planetary atmospheres and surfaces. However, with cryogenically
cooled detectors one reaches a point where background noise becomes a limiting
factor and where Fourier transform spectrometers lose the important multiplex ad-
vantage. The post-dispersion technique, also discussed in Section 5.8, overcomes
this limitation. The Martin–Puplett and the lamellar grating interferometers are
included in this section because of their significance to present and future space
exploration. Today, Fourier transform spectrometers reach spectral resolutions on
the order of 10−2 cm−1. Heterodyne spectroscopy can reach a spectral resolution
as small as 10−5 cm−1, although most planetary measurements have been per-
formed with somewhat higher resolution. This powerful technique is discussed in
Section 5.9.

All radiometric devices must convert infrared energy into electrical signals.
The fundamental properties of infrared converters, commonly called detectors, are
analyzed in Section 5.10. In Section 5.11 the operating principles, noise limitations,
and several temperature to voltage conversion mechanisms of thermal detectors are
treated. Properties and noise characteristics of quantum detectors are the subject of
Section 5.12. In many cases radiometric instruments must be calibrated in intensity
and wavenumber. For best results calibration techniques are part of the instru-
ment design. Several calibration methods are treated and their merits discussed in
Section 5.13. Finally, Section 5.14 deals with considerations encountered in the
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selection of specific instrument designs; scientific objectives are related to certain
instrument parameters.

Chapter 5 is neither a listing of available instruments nor is it an instruction
manual for the construction of such devices. Rather, this chapter is intended to
provide the necessary background to make an intelligent choice of a particular
instrumental technique in the pursuit of a specific scientific goal and to be able to
assess instrumental effects in recorded data.

5.1 Introduction to infrared radiometry

Instruments designed to measure infrared radiation are traditionally called radio-
meters, photometers, or, if they record the polarization, photopolarimeters; if they
measure the intensity as a continuous function of wavenumber, or wavelength, the
term spectrometer is applicable; if they generate a two-dimensional display of the
radiation field, they are called imaging systems or cameras. However, there is no
fundamental difference between radiometers, spectrometers, or cameras, and most
of what has to be discussed in this chapter applies to all. For example, all radiomet-
ric instruments must have detectors, that is, elements that absorb infrared radiation
and convert it to another form of energy, which can then be sensed by electronic
means. In general, radiometric instruments have other elements as well, such as
lenses or mirrors, but only a detector is needed to construct a simple radiometer.
The black and white detectors originally designed for the Vanguard program and
later flown in modified form on Explorer 7 by Verner Suomi of the University
of Wisconsin, for example, consisted only of an absorbing and emitting surface the
size and shape of a table tennis ball, with a temperature sensor inside, mounted
on the tip of an antenna rod (Weinstein & Suomi, 1961). The spherical detector
attempts to reach equilibrium between its own thermal emission and the radiative
fluxes from the Sun, the Earth, and the spacecraft. Taking advantage of the space-
craft passing periodically into the Earth’s shadow, the individual contributions to
the energy balance of the detectors can be separated and the fluxes emitted and
reflected by the Earth and its atmosphere determined. The simplicity of the de-
vice made it attractive in the early days of space meteorology. Such detectors
and several variations of the same idea have been flown repeatedly in Earth’s
orbit (Weinstein & Suomi, 1961; Hanel, 1961a; Astheimer et al., 1961; Nordberg
et al., 1962; Bandeen et al., 1964). However, the precision and the spatial and
spectral resolution inherent in such devices are insufficient for more sophisticated
investigations. Additional complexity must be tolerated to satisfy scientific re-
quirements. Therefore, most radiometric instruments include optical components
to focus radiation from a planetary area onto one or several detectors, elements that
limit or otherwise identify the spectral range, and circuitry to amplify and record
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the signal. In addition, choppers, shutters, scanning mirrors, image motion com-
pensators, calibration sources, and other components may also be part of a fully
functional remote sensing device. Each task – imaging, spectral separation, and
detection – can be implemented by a multitude of techniques. Besides the scientific
requirements, physical size, weight, power consumption, cryogenic demands, data
rates, and other often subtle requirements set further boundaries to the design. The
organization of this chapter follows the functional elements of radiometric systems.

5.2 Optical elements

The purpose of optical elements is to channel radiation as efficiently as possible
from the observed area on the planetary object onto the detector. The simplest optical
elements capable of doing so are lenses and curved reflectors (Fig. 5.2.1). Mirrors

Fig. 5.2.1 Simple optical systems to image a planetary area onto a detector; (A) with a
refractive and (B) with a reflective element.
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fold back individual rays, in contrast to lenses, which do not; lenses lead, therefore,
to more straightforward layouts. Since it is then easier to follow individual rays we
use lenses often in the optical schematics designed to demonstrate the principles.
However, for every optical layout with lenses, as shown in panel A of the figure,
there exists an equivalent layout with mirrors, as illustrated in panel B. Sometimes
one configuration is easier to implement than the other.

In Fig. 5.2.1 the lens images the scene of area Ap onto the detector of area Ad.
The size of the detector and its distance to the lens determine the field of view given
by the solid angle, �0. The detector is illuminated by a much larger solid angle,
�d, determined by the maximum half angle, θmax, which in turn is given by the size
of the lens and the distance to the detector. For a circular lens

�d =
∫ θmax

0

∫ 2π

0
sin θ dφ dθ = 2π (1 − cos θmax). (5.2.1)

The azimuth angle is φ. The relationship between � and θmax is shown in Fig. 5.2.2.
The same figure indicates the f-number of the lens; f-number = focal length ÷
diameter. For small values of θmax, the cosine term may be approximated by
(1 − θ2/2), which is equivalent to the paraxial approximation, sin θ ∼ θ , and

� ∼ πθ2
max. (5.2.2)

This approximation, also shown in Fig. 5.2.2, is good for values of θmax up to 40◦

(80◦ full cone angle) or an f-number of 0.6. Another often used and convenient
approximation, area of aperture divided by the square of the distance between
aperture and detector, yields

� ∼ π tan2 θmax; (5.2.3)

it is good to about 20◦ half cone angle, or an f-number of 1.4.
The product of the cross section (area) of the radiation times the solid angle is

the étendue, or simply the A-Omega. Unfortunately, no specific name exists for this
quantity in the English language. Sometimes the term throughput is suggested, but
this seems more appropriate to the quantity A�η, η being the optical efficiency of
the system.

As can be seen from Fig. 5.2.1 and approximation Eq. (5.2.3), the solid angle of
the instrument is

�0 = Ap

a2
= Ad

b2
. (5.2.4)
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Fig. 5.2.2 Solid angle versus maximum cone angle. The solid curve is the exact formula,
the dashed curves are approximations valid for small cone angles. The f-numbers of the
optical elements are also shown (F#).

If we let the radius of the lens of area A0 be R0 we obtain:

a tan α = R0 = b tan θ. (5.2.5)

Squaring this equation and multiplying by π yields

a2π tan2 α = π R2
0 = b2π tan2 θ. (5.2.6)

With approximation (5.2.3) one obtains

a2�p = A0 = b2�d. (5.2.7)

Elimination of a2 and b2 with the help of Eq. (5.2.4) yields

Ap�p = A0�0 = Ad�d. (5.2.8)
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Fig. 5.2.3 Schematic of the infrared radiometer on TIROS 2. Half of the rotating modulator
is reflective, the other half is absorbing.

Thus the product A� is invariant in an optical system. Actually the term n2 A� is
invariant, n being the refractive index, but as long as we measure A and � in the same
medium (air or vacuum, for example) it is sufficient to consider A� to be invariant.
An optical system may be compared to an electrical transformer, where the product
current times voltage (power) is also invariant. The telescope and the transformer
are not without losses; optical and electrical efficiencies are less than unity.

In reality, the planet–lens distance is much larger than the lens–detector distance;
for all practical purposes the planet is at infinity and the detector must be placed
at the focal point of the lens. Indeed such simple radiometers have been flown
in space, for example, on TIROS 2 (Fig. 5.2.3). As the half-reflective, half-black
modulator rotates, half of the radiation arriving at the detector originates at the black
modulator while the other half alternates between both input beams. The optical
element of this instrument consists of a lens, which focuses the planetary radiation
(or that from space) onto the detector. A cluster of five such devices, each one with
its own spectral filter, formed this five channel radiometer. For each channel the
entrance aperture is the lens or, if you consider only one of the entrance beams,
one half of the lens. Modulator and prismatically shaped mirror are oversized. The
field stop, that is, the aperture that determines the field of view, is the detector. Such
an optical layout has the advantage of simplicity, but it has shortcomings as well.
The response of infrared detectors is often not uniform across the sensitive area.
Some parts of the detector surface may be several times as sensitive as others. The
area of the planet to be imaged onto this nonuniform detector is in all likelihood
also not uniform. The detector signal is then proportional to the two-dimensional
convolution of both distribution patterns. If the field of view and, therefore, also the
detector, is small and possibly scanning across the planetary surface, the effect may


















































































































































































































































































































































































































































































































































































































































































































































	Half-title
	Title
	Copyright
	Contents
	Introduction to first edition
	Introduction to second edition
	1 Foundation of radiation theory
	1.1 Maxwell’s equations
	1.2 Conservation of energy and the Poynting vector
	1.3 Wave propagation
	1.4 Polarization
	1.5 Boundary conditions
	1.6 Reflection, refraction, and the Fresnel equations
	1.7 The Planck function
	1.8 The Poynting vector, specific intensity, and net flux

	2 Radiative transfer
	2.1 The equation of transfer
	a. Definitions and geometry
	b. Microscopic processes
	c. The total field
	d. The diffuse field

	2.2 Formal solutions
	2.3 Invariance principles
	a. Definitions
	b. The stacking of layers
	c. Composite scattering and transmission functions
	d. Starting solutions

	2.4 Special cases
	a. Nonscattering atmospheres
	b. Optically thin atmospheres

	2.5 Scattering atmospheres; the two-stream approximation
	a. Single scattering phase function
	b. Separation of variables
	c. Discrete streams
	d. Homogeneous solution
	e. Outside point source


	3 Interaction of radiation with matter
	3.1 Absorption and emission in gases
	a. The old quantum theory
	b. The Schrödinger equation
	c. Energy levels and radiative transitions

	3.2 Vibration and rotation of molecules
	3.3 Diatomic molecules
	a. Vibration
	b. Rotation
	c. Vibration–rotation interaction
	d. Collision-induced transitions

	3.4 Polyatomic molecules
	a. Vibration
	b. Rotation
	c. Vibration–rotation transitions

	3.5 Line strength
	3.6 Line shape
	3.7 Solid and liquid surfaces
	a. Solid and liquid phases
	b. Complex refractive indices

	3.8 Cloud and aerosol particles
	a. Asymptotic scattering functions
	b. Rigorous scattering theory; general solution
	c. Particular solutions and boundary conditions
	d. The far field; phase function and efficiency factors


	4 The emerging radiation field
	4.1 Models with one isothermal layer
	a. Without scattering
	b. With scattering

	4.2 Models with a vertical temperature structure
	a. Single lapse rate
	b. Multiple lapse rates

	4.3 Model with realistic molecular parameters

	5 Instruments to measure the radiation field
	5.1 Introduction to infrared radiometry
	5.2 Optical elements
	5.3 Diffraction limit
	5.4 Chopping, scanning, and image motion compensation
	a. D.C. radiometers
	b. Chopped or a.c. radiometers
	c. Image motion compensation

	5.5 Intrinsic material properties
	a. Absorbing and reflecting filters
	b. Prism spectrometers
	c. Gas filter, selective chopper, and the pressure modulated radiometer

	5.6 Interference phenomena in thin films
	a. Outline of thin film theory
	b. Antireflection coatings
	c. Beam dividers
	d. Interference filters and Fabry–Perot interferometers

	5.7 Grating spectrometers
	5.8 Fourier transform spectrometers
	a. Michelson interferometer
	b. Post-dispersion
	c. Martin–Puplett interferometer
	d. Lamellar grating interferometer

	5.9 Heterodyne detection
	5.10 Infrared detectors in general
	5.11 Thermal detectors
	a. Temperature change
	b. Noise in thermal detectors
	c. Temperature to voltage conversion

	5.12 Photon detectors
	a. Intrinsic and extrinsic semiconductors
	b. Photoconductors and photodiodes
	c. Responsivities
	d. Noise in photon detectors
	e. Circuits for photon detectors
	f. Detector arrays

	5.13 Calibration
	a. Concepts
	b. Middle and far infrared calibration
	c. Near infrared calibration
	d. Wavenumber calibration

	5.14 Choice of measurement techniques
	a. Scientific objectives
	b. Instrument parameters


	6 Measured radiation from planetary objects up to Neptune
	6.1 Instrument effects
	6.2 The terrestrial planets
	6.3 The giant planets
	6.4 Titan
	6.5 Objects without substantial atmospheres
	a. Tenuous atmospheres
	b. Surfaces


	7 Trans-Neptunian objects and asteroids
	7.1 Pluto and Charon
	7.2 Comets
	7.3 Asteroids

	8 Retrieval of physical parameters from measurements
	8.1 Retrieval of atmospheric parameters
	8.2 Temperature profile retrieval
	a. General consideration
	b. Constrained linear inversion
	c. Relaxation algorithms
	d. Backus–Gilbert formulation
	e. Statistical estimation
	f. Limb-tangent geometry

	8.3 Atmospheric composition
	a. Principles
	b. Feature identification
	c. Correlation analysis
	d. Abundance determination
	e. Profile retrieval
	f. Simultaneous retrieval of temperature and gas abundance
	g. Limb-tangent observations

	8.4 Clouds and aerosols
	a. Small absorbing particles
	b. Titan’s stratospheric aerosol

	8.5 Solid surface parameters
	a. Surface temperature
	b. Thermal inertia
	c. Refractive index and texture

	8.6 Photometric investigations
	a. Introduction
	b. The Bond albedo
	c. Thermal emission


	9 Interpretation of results
	9.1 Radiative equilibrium
	a. Governing principles
	b. The solar radiation field
	c. Thermal radiation and the temperature profile
	d. General atmospheric properties

	9.2 Atmospheric motion
	a. Governing equations
	b. Mars
	c. The outer planets
	d. Venus

	9.3 Evolution and composition of the Solar System
	a. Formation of the Solar System
	b. Evolution of the terrestrial planets
	c. Evolution of the giant planets

	9.4 Energy balance
	a. The terrestrial planets
	b. The giant planets


	Closing remarks
	Appendix 1
	MATHEMATICAL FORMULAS
	A1.1 Vector quantities
	Cartesian coordinates
	Spherical coordinates
	Transformation of coordinates

	A1.2 Spherical Bessel functions
	A1.3 Legendre polynomials


	Appendix 2
	Appendix 3
	References
	Abbreviations
	Index

