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Preface

What differential calculus, and, in general, analysis of the infinite, might be
can hardly be explained to those innocent of any knowledge of it. Nor can we
here offer a definition at the beginning of this dissertation as is sometimes
done in other disciplines. It is not that there is no clear definition of this
calculus; rather, the fact is that in order to understand the definition there
are concepts that must first be understood. Besides those ideas in common
usage, there are also others from finite analysis that are much less common
and are usually explained in the course of the development of the differential
calculus. For this reason, it is not possible to understand a definition before
its principles are sufficiently clearly seen.

In the first place, this calculus is concerned with variable quantities.
Although every quantity can naturally be increased or decreased without
limit, still, since calculus is directed to a certain purpose, we think of some
quantities as being constantly the same magnitude, while others change
through all the stages of increasing and decreasing. We note this distinc-
tion and call the former constant quantities and the latter variables. This
characteristic difference is not required by the nature of things, but rather
because of the special question addressed by the calculus.

In order that this difference between constant quantities and variables
might be clearly illustrated, let us consider a shot fired from a cannon with
a charge of gunpowder. This example seems to be especially appropriate to
clarify this matter. There are many quantities involved here: First, there is
the quantity of gunpowder; then, the angle of elevation of the cannon above
the horizon; third, the distance traveled by the shot; and, fourth, the length
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of time the shot is in the air. Unless the same cannon is used throughout
the experiment, we must also bring into our calculations the length of the
barrel and the weight of the shot. Here, we will not consider variations in the
cannon or the shot, lest we become entailed in very complicated questions.
Hence, if we always keep the same quantity of powder, the elevation of
the barrel will vary continuously with the distance traveled and the shot’s
duration of time in the air. In this case, the amount of powder, or the
force of the explosion, will be the constant quantity. The elevation of the
barrel, the distance traveled, and the time in the air should be the variable
quantities. If for each degree of elevation we were to define these things,
so that they may be noted for future reference, the changes in distance
and duration of the flight arise from all of the different elevations. There
is another question: Suppose the elevation of the barrel is kept the same,
but the quantity of powder is continuously changed. Then the changes that
occur in the flight need to be defined. In this case, the elevation will be the
constant, while the quantity of powder, the distance, and duration are the
variable quantities. Hence, it is clear that when the question is changed, the
quantities that are constant and those that are variables need to be noted.
At the same time, it must be understood from this that in this business
the thing that requires the most attention is how the variable quantities
depend on each other. When one variable changes, the others necessarily
are changed. For example, in the former case considered, the quantity of
powder remains the same, and the elevation is changed; then the distance
and duration of the flight are changed. Hence, the distance and duration
are variables that depend on the elevation; if this changes, then the others
also change at the same time. In the latter case, the distance and duration
depend on the quantity of charge of powder, so that a change in the charge
must result in certain changes in the other variables.

Those quantities that depend on others in this way, namely, those that
undergo a change when others change, are called functions of these quanti-
ties. This definition applies rather widely and includes all ways in which one
quantity can be determined by others. Hence, if x designates the variable
quantity, all other quantities that in any way depend on x or are determined
by it are called its functions. Examples are x2, the square of x, or any other
powers of x, and indeed, even quantities that are composed with these pow-
ers in any way, even transcendentals, in general, whatever depends on x in
such a way that when x increases or decreases, the function changes. From
this fact there arises a question; namely, if the quantity x is increased or
decreased, by how much is the function changed, whether it increases or
decreases? For the more simple cases, this question is easily answered. If
the quantity x is increased by the quantity ω, its square x2 receives an
increase of 2xω + ω2. Hence, the increase in x is to the increase of x2 as ω
is to 2xω + ω2, that is, as 1 is to 2x + ω. In a similar way, we consider the
ratio of the increase of x to the increase or decrease that any function of x
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receives. Indeed, the investigation of this kind of ratio of increments is not
only very important, but it is in fact the foundation of the whole of analysis
of the infinite. In order that this may become even clearer, let us take up
again the example of the square x2 with its increment of 2xω + ω2, which
it receives when x itself is increased by ω. We have seen that the ratio here
is 2x + ω to 1. From this it should be perfectly clear that the smaller the
increment is taken to be, the closer this ratio comes to the ratio of 2x to
1. However, it does not arrive at this ratio before the increment itself, ω,
completely vanishes. From this we understand that if the increment of the
variable x goes to zero, then the increment of x2 also vanishes. However,
the ratio holds as 2x to 1. What we have said here about the square is to
be understood of all other functions of x; that is, when their increments
vanish as the increment of x vanishes, they have a certain and determinable
ratio. In this way, we are led to a definition of differential calculus: It is
a method for determining the ratio of the vanishing increments that any
functions take on when the variable, of which they are functions, is given a
vanishing increment. It is clearly manifest to those who are not strangers
to this subject that the true character of differential calculus is contained
in this definition and can be adequately deduced from it.

Therefore, differential calculus is concerned not so much with vanishing
increments, which indeed are nothing, but with the ratio and mutual pro-
portion. Since these ratios are expressed as finite quantities, we must think
of calculus as being concerned with finite quantities. Although the values
seem to be popularly discussed as defined by these vanishing increments,
still from a higher point of view, it is always from their ratio that conclu-
sions are deduced. In a similar way, the idea of integral calculus can most
conveniently be defined to be a method for finding those functions from the
knowledge of the ratio of their vanishing increments.

In order that these ratios might be more easily gathered together and
represented in calculations, the vanishing increments themselves, although
they are really nothing, are still usually represented by certain symbols.
Along with these symbols, there is no reason not to give them a certain
name. They are called differentials, and since they are without quantity,
they are also said to be infinitely small. Hence, by their nature they are
to be so interpreted as absolutely nothing, or they are considered to be
equal to nothing. Thus, if the quantity x is given an increment ω, so that
it becomes x + ω, its square x2 becomes x2 + 2xω + ω2, and it takes the
increment 2xω + ω2. Hence, the increment of x itself, which is ω, has the
ratio to the increment of the square, which is 2xω+ω2, as 1 to 2x+ω. This
ratio reduces to 1 to 2x, at least when ω vanishes. Let ω = 0, and the ratio
of these vanishing increments, which is the main concern of differential
calculus, is as 1 to 2x. On the other hand, this ratio would not be true
unless that increment ω vanishes and becomes absolutely equal to zero.
Hence, if this nothing that is indicated by ω refers to the increment of
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the quantity x, since this has the ratio to the increment of the square x2

as 1 to 2x, the increment of the square x2 is equal to 2xω and for this
reason is also equal to zero. Although both of these increments vanish
simultaneously, this is no obstacle to their ratios being determined as 1
to 2x. With respect to this nothing that so far has been represented by
the letter ω, in differential calculus we use the symbol dx and call it the
differential of x, since it is the increment of the quantity x. When we put
dx for ω, the differential of x2 becomes 2x dx. In a similar way, it is shown
that the differential of the cube x3 will be equal to 3x2 dx. In general, the
differential of any quantity xn will be equal to nxn−1 dx. No matter what
other functions of x might be proposed, differential calculus gives rules for
finding its differential. Nevertheless, we must constantly keep in mind that
since these differentials are absolutely nothing, we can conclude nothing
from them except that their mutual ratios reduce to finite quantities. Thus,
it is in this way that the principles of differential calculus, which are in
agreement with proper reasoning, are established, and all of the objections
that are wont to be brought against it crumble spontaneously; but these
arguments retain their full rigor if the differentials, that is, the infinitely
small, are not completely annihilated.

To many who have discussed the rules of differential calculus, it has
seemed that there is a distinction between absolutely nothing and a special
order of quantities infinitely small, which do not quite vanish completely
but retain a certain quantity that is indeed less than any assignable quan-
tity. Concerning these, it is correctly objected that geometric rigor has been
neglected. Because these infinitely small quantities have been neglected, the
conclusions that have been drawn are rightly suspected. Although these in-
finitely small quantities are conceived to be few in number, when even a
few, or many, or even an innumerable number of these are neglected, an
enormous error may result. There is an attempt wrongfully to refute this
objection with examples of this kind, whereby conclusions are drawn from
differential calculus in the same way as from elementary geometry. Indeed,
if these infinitely small quantities, which are neglected in calculus, are not
quite nothing, then necessarily an error must result that will be the greater
the more these quantities are heaped up. If it should happen that the er-
ror is less, this must be attributed to a fault in the calculation whereby
certain errors are compensated by other errors, rather than freeing the cal-
culation from suspicion of error. In order that there be no compensating
one error by a new one, let me fix firmly the point I want to make with
clear examples. Those quantities that shall be neglected must surely be
held to be absolutely nothing. Nor can the infinitely small that is discussed
in differential calculus differ in any way from nothing. Even less should this
business be ended when the infinitely small is described by some with the
example wherein the tiniest mote of dust is compared to a huge mountain
or even to the whole terrestrial globe. If someone undertakes to calculate
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the magnitude of the whole terrestrial globe, it is the custom easily to grant
him an error not only of a single grain of dust, but of even many thousands
of these. However, geometric rigor shrinks from even so small an error,
and this objection would be simply too great were any force granted to it.
Then it is difficult to say what possible advantage might be hoped for in
distinguishing the infinitely small from absolutely nothing. Perhaps they
fear that if they vanish completely, then will be taken away their ratio, to
which they feel this whole business leads. It is avowed that it is impossi-
ble to conceive how two absolutely nothings can be compared. They think
that some magnitude must be left for them that can be compared. They are
forced to admit that this magnitude is so small that it is seen as if it were
nothing and can be neglected in calculations without error. Neither do they
dare to assign any certain and definite magnitude, even though incompre-
hensibly small. Even if they were assumed to be two or three times smaller,
the comparisons are always made in the same way. From this it is clear that
this magnitude gives nothing necessary for undertaking a comparison, and
so the comparison is not taken away even though that magnitude vanishes
completely.

Now, from what has been said above, it is clear that that comparison,
which is the concern of differential calculus, would not be valid unless the
increments vanish completely. The increment of the quantity x, which we
have been symbolizing by ω, has a ratio to the increment of the square x2,
which is 2xω + ω2, as 1 to 2x + ω. But this always differs from the ratio
of 1 to 2x unless ω = 0, and if we do require that ω = 0, then we can truly
say that this ratio is exactly as 1 to 2x. In the meantime, it must be un-
derstood that the smaller the increment ω becomes, the closer this ratio is
approached. It follows that not only is it valid, but quite natural, that these
increments be at first considered to be finite and even in drawings, if it is
necessary to give illustrations, that they be finitely represented. However,
then these increments must be conceived to become continuously smaller,
and in this way, their ratio is represented as continuously approaching a cer-
tain limit, which is finally attained when the increment becomes absolutely
nothing. This limit, which is, as it were, the final ratio of those increments,
is the true object of differential calculus. Hence, this ratio must be consid-
ered to have laid the very foundation of differential calculus for anyone who
has a mind to contemplate these final ratios to which the increments of the
variable quantities, as they continuously are more and more diminished,
approach and at which they finally arrive.

We find among some ancient authors some trace of these ideas, so that
we cannot deny to them at least some conception of the analysis of the
infinite. Then gradually this knowledge grew, but it was not all of a sudden
that it has arrived at the summit to which it has now come. Even now,
there is more that remains obscure than what we see clearly. As differential
calculus is extended to all kinds of functions, no matter how they are pro-
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duced, it is not immediately known what method is to be used to compare
the vanishing increments of absolutely all kinds of functions. Gradually
this discovery has progressed to more and more complicated functions. For
example, for the rational functions, the ultimate ratio that the vanishing
increments attain could be assigned long before the time of Newton and
Leibniz, so that the differential calculus applied to only these rational func-
tions must be held to have been invented long before that time. However,
there is no doubt that Newton must be given credit for that part of differ-
ential calculus concerned with irrational functions. This was nicely deduced
from his wonderful theorem concerning the general evolution of powers of
a binomial. By this outstanding discovery, the limits of differential calculus
have been marvelously extended. We are no less indebted to Leibniz insofar
as this calculus at that time was viewed as individual tricks, while he put
it into the form of a discipline, collected its rules into a system, and gave a
crystal-clear explanation. From this there followed great aids in the further
development of this calculus, and some of the open questions whose an-
swers were sought were pursued through certain definite principles. Soon,
through the studies of both Leibniz and the Bernoullis, the bounds of dif-
ferential calculus were extended even to transcendental functions, which
had in part already been discussed. Then, too, the foundations of integral
calculus were firmly established. Those who followed in the elaboration of
this field continued to make progress. It was Newton who gave very com-
plete papers in integral calculus, but as to its first discovery, which can
hardly be separated from the beginnings of differential calculus, it cannot
with absolute certainty be attributed to him. Since the greater part has yet
to be developed, it is not possible to say at this time that this calculus has
absolutely been discovered. Rather, let us with a grateful mind acknowl-
edge each one according to his efforts toward its completion. This is my
judgment as to the attribution of glory for the discovery of this calculus,
about which there has been such heated controversy.

No matter what name the mathematicians of different nations are wont
to give to this calculus, it all comes to this, that they all agree on this
outstanding definition. Whether they call the vanishing increments whose
ratios are under consideration by the name differentials or fluxions, these
are always understood to be equal to zero, and this must be the true notion
of the infinitely small. From this it follows that everything that has been
debated about differentials of the second and higher orders, and this has
been more out of curiosity then of usefulness, comes back to something
very clear, namely, that when everything vanishes together we must con-
sider the mutual ratio rather than the individual quantities. Since the ratio
between the vanishing increments of the functions is itself expressed by
some function, and if the vanishing increment of this function is compared
with others, the result must be considered as the second differential. In this
way, we must understand the development of differentials of higher orders,
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in such a way that they always are seen to be truly finite quantities and
that this is the only proper way for them to be represented. At first sight,
this description of analysis of the infinite may seem, for the most part, both
shallow and extremely sterile, although that obscure notion of the infinitely
small hardly offers more. In truth, if the ratios that connect the vanishing
increments of any functions are clearly known, then this knowledge very of-
ten is of the utmost importance and frequently is so important in extremely
arduous investigations that without it almost nothing can be clearly un-
derstood. For instance, if the question concerns the motion of a shot fired
from a cannon, the air resistance must be known in order to know what
the motion will be through a finite distance, as well as both the direction
of the path at the beginning and also the velocity, on which the resistance
depends. But this changes with time. However, the less distance the shot
travels, the less the variation, so that it is possible more easily to come to
knowledge of the true relationship. In fact, if we let the distance vanish,
since in that case both the difference in direction and change in velocity
also are removed, the effect of resistance produced at a single point in time,
as well as the change in the path, can be defined exactly. When we know
these instantaneous changes or, rather, since these are actually nothing,
their mutual relationship, we have gained a great deal. Furthermore, the
work of integral calculus is to study changing motion in a finite space. It is
my opinion that it is hardly necessary to show further the uses of differen-
tial calculus and analysis of the infinite, since it is now sufficiently noted,
if even a cursory investigation is made. If we want to study more carefully
the motion of either solids or fluids, it cannot be accomplished without
analysis of the infinite. Indeed, this science has frequently not been suf-
ficiently cultivated in order that the matter can be accurately explained.
Throughout all the branches of mathematics, this higher analysis has pen-
etrated to such an extent that anything that can be explained without its
intervention must be esteemed as next to nothing.

I have established in this book the whole of differential calculus, deriving
it from true principles and developing it copiously in such a way that noth-
ing pertaining to it that has been discovered so far has been omitted. The
work is divided into two parts. In the first part, after laying the founda-
tions of differential calculus, I have presented the method for differentiating
every kind of function, for finding not only differentials of the first order,
but also those of higher order, and those for functions of a single variable
as well as those involving two or more variables. In the second part, I have
developed very fully applications of this calculus both in finite analysis and
the study of series. In that part, I have also given a very clear explanation
of the theorem concerning maxima and minima. As to the application of
this calculus to the geometry of plane curves, I have nothing new to offer,
and this is all the less to be required, since in other works I have treated
this subject so fully. Even with the greatest care, the first principles of
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differential calculus are hardly sufficiently developed that I should bring
them, as it were drawn from geometry, to this science. Here, everything is
kept within the bounds of pure analysis, so that in the explanation of the
rules of this calculus there is no need for any geometric figures.

Euler
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1
On Finite Differences

1. From what we have said in a previous book1 about variables and func-
tions, it should be clear enough that as a variable changes, the values of
all functions dependent on that variable also change. Thus if a variable
quantity x changes by an increment ω, instead of x we write x + ω. Then
such functions of x as x2, x3, (a + x) /

(
x2 + a2

)
, take on new values. For

instance, x2 becomes x2 + 2xω + ω2; x3 becomes x3 + 3x2ω + 3xω2 + ω3;
(a + x) /

(
a2 + x2

)
is transformed into

a + x + ω

a2 + x2 + 2xω + ω2 .

This kind of change always occurs unless the function has only the appear-
ance of a function of a variable, while in reality it is a constant, for example,
x0. In this case the function remains constant no matter how the value of
x changes.

2. Since these things are clear enough, we move now to those results
concerning functions upon which rests the whole of analysis of the infinite.
Let y be any function of the variable x. Successively we substitute for x
the values of an arithmetic progression, that is, x, x + ω, x + 2ω, x + 3ω,
x + 4ω, . . . . We call the value of the function yI when x + ω is substituted
for x; likewise, yII is the value of the function when x + 2ω is substituted

1L. Euler, Introductio in Analysin Infinitorum. English translation: Introduction to
Analysis of the Infinite, Books I, II, Springer-Verlag, New York, 1988.
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for x. In a similar way we denote the value of the function by yIII, yIV,
yV, . . . , which we obtain when we substitute x + 3ω, x + 4ω, x + 5ω, . . . .
The correspondence between these values is as follows:

x, x + ω, x + 2ω, x + 3ω, x + 4ω, x + 5ω, . . . ,

y, yI, yII, yIII, yIV, yV, . . . .

3. Just as the arithmetic series x, x + ω, x + 2ω, . . . can be continued to
infinity, so the series that depends on the function y: y, yI, yII, . . . can be
continued to infinity, and its nature will depend on the properties of the
function y. Thus if y = x or y = ax+ b, then the series y, yI, yII, . . . is also
arithmetic. If y = a/ (bx + c), the resulting series will be harmonic. Finally,
if y = ax, we will have a geometric series. Furthermore, it is impossible to
find any series that does not arise from some such function. We usually call
such a function of x, because of the series from which it comes, the general
term of that series. Since every series formed according to some rule has a
general term, so conversely, the series arises from some function of x. This
is usually treated at greater length in a discussion of series.

4. Here we will pay special attention to the differences between successive
terms of the series y, yI, yII, yIII, . . . . In order that we become familiar with
the nature of differentials, we will use the following notation:

yI − y = ∆y, yII − yI = ∆yI, yIII − yII = ∆yII, . . . .

We express the increment by ∆y, which the function y undergoes when we
substitute x + ω for x, where ω takes any value we wish. In the discussion
of series it is usual to take ω = 1, but here it is preferable to leave the value
general, so that it can be arbitrarily increased or decreased. We usually
call this increment ∆y of the function y its difference. This is the amount
by which the following value yI exceeds the original value y, and we al-
ways consider this to be an increment, although frequently it is actually a
decrement, since the value may be negative.

5. Since yII is derived from y, if instead of x we write x + 2ω, it is clear
that we obtain the same result also if we first put x + ω for x and then
again x + ω for x. It follows that yII is derived from yI if we write x + ω
instead of x. We now see that ∆yI is the increment of yI that we obtain
when x + ω is substituted for x. Hence, in like manner, ∆yI is called the
difference of yI. Likewise, ∆yII is the difference of yII, or its increment,
which is obtained by putting x + ω instead of x. Furthermore, ∆yIII is
the difference, or increment, of yIII, and so forth. With this settled, from
the series of values of y, namely, y, yI, yII, yIII, . . . , we obtain a series of
differences ∆y, ∆yI, ∆yII, . . . , which we find by subtracting each term of
the previous series from its successor.
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6. Once we have found the series of differences, if we again take the dif-
ference of each term and its successor, we obtain a series of differences of
differences, which are called second differences. We can most conveniently
represent these by the following notation:

∆∆y = ∆yI − ∆y,

∆∆yI = ∆yII − ∆yI,

∆∆yII = ∆yIII − ∆yII,

∆∆yIII = ∆yIV − ∆yIII,

. . . .

We call ∆∆y the second difference of y, ∆∆yI the second difference of
yI, and so forth. In a similar way, from the second differences, if we once
more take their differences, we obtain the third differences, which we write
as ∆3y, ∆3yI, . . . . Furthermore, we can take the fourth differences ∆4y,
∆4yI, . . . , and even higher, as far as we wish.

7. Let us represent each of these series of differences by the following
scheme, in order that we can more easily see their respective relationships:

Arithmetic Progression:

x, x + ω, x + 2ω, x + 3ω, x + 4ω, x + 5ω, . . .

Values of the Function:

y, yI, yII, yIII, yIV, yV, . . .

First Differences:

∆y, ∆yI, ∆yII, ∆yIII, ∆yIV, . . .

Second Differences:

∆∆y, ∆∆yI, ∆∆yII, ∆∆yIII, . . .

Third Differences:

∆3y, ∆3yI, ∆3yII, . . .

Fourth Differences:

∆4y, ∆4yI, . . .
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Fifth Differences:

∆5y, . . .

Each of these series comes from the preceding series by subtracting each
term from its successor. Hence, no matter what function of x we substitute
for y, it is easy to find each of the series of differences, since the values yI,
yII, yIII, . . . are easily found from the definition of the function.

8. Let y = x, so that yI = xI = x + ω, yII = xII = x + 2ω, and so
forth. When we take the differences, ∆x = ω, ∆xI = ω, ∆xII = ω, . . . , the
result is that all of the first differences of x are constant, so that all of the
second differences vanish, as do the third differences and all those of higher
orders. Since ∆x = ω, it is convenient to use the notation ∆x instead of ω.
Since we are assuming that the successive values x, xI, xII, xIII, . . . form
an arithmetic progression, the differences ∆x, ∆xI, ∆xII, . . . are constants
and mutually equal. It follows that ∆∆x = 0, ∆3x = 0, ∆4x = 0, and so
forth.

9. We have assumed that the successive values of x are terms of an arith-
metic progression, so that the values of its first differences are constant and
its second and succeeding differences vanish. Although the choice is freely
ours to make among all possible progressions, still we usually choose the
progression to be arithmetic, since it is both the simplest and easiest to
understand, and also it has the greatest versatility, in that x can assume
absolutely any value. Indeed, if we give ω either negative or positive values
in this series, the values of x will always be real numbers. On the other
hand, if the series we have chosen is geometric, there is no place for neg-
ative values. For this reason the nature of functions y is best determined
from the values of x chosen from an arithmetic progression.

10. Just as ∆y = yI − y, so all the higher differences can also be defined
from the terms of the first series: y, yI, yII, yIII, . . . . Since

∆yI = yII − yI,

we have

∆∆y = yII − 2yI + y

and

∆∆yI = yIII − 2yII + yI.

Furthermore,

∆3y = ∆∆yI − ∆∆y = yIII − 3yII + 3yI − y;
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in like manner,

∆4y = yIV − 4yIII + 6yII − 4yI + y

and

∆5y = yV − 5yIV + 10yIII − 10yII + 5yI − y.

We observe that the numerical coefficients of these formulas are the same as
those of the binomial expansion. Insofar as the first difference is determined
by the first two terms of the series y, yI, yII, yIII, . . . , the second difference
is determined by three terms, the third is determined by four terms, and
so forth. It follows that when we know the differences of all orders of y,
likewise, differences of all orders of yI, yII, . . . are defined.

11. It follows that for any function, with any values of x and any differ-
ences ω, we can find its first difference as well as its higher differences. Nor
is it necessary to compute more terms of the series of the values of y, since
we obtain the first difference ∆y when for the function y we substitute
x+ω for x and from this value yI we subtract the function y. Likewise the
second difference ∆∆y is obtained from the first difference ∆y by substi-
tuting x + ω for x to obtain ∆yI, and then subtracting ∆y from ∆yI. In
a similar way we get the third difference ∆3y from the second difference
∆∆y by putting x + ω for x and then subtracting. In the same way we
obtain the fourth difference ∆4y and so forth. Provided that we know the
first difference of any function, we can find the second, third, and all of
the following differences, since the second difference of y is nothing but the
first difference of the first difference ∆y, and the third difference is nothing
but the first difference of the second difference ∆∆y, and so forth.

12. If a function y is the sum of two or more functions, as for example
y = p+q+r+ · · · , then, since yI = pI +qI +rI + · · · , we have the difference

∆y = ∆p + ∆q + ∆r + · · · .
Likewise,

∆∆y = ∆∆p + ∆∆q + ∆∆r + · · · .
It follows that if a function is the sum of other functions, then the com-
putation of its differences is just as easy. However, if the function y is the
product of two functions p and q, then, since

yI = pIqI

and

pI = p + ∆p
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and

qI = q + ∆q,

we have

pIqI = pq + p∆q + q∆p + ∆p∆q,

so that

∆y = p∆q + q∆p + ∆p∆q.

Hence, if p is a constant equal to a, since ∆a = 0 and the function y = aq,
the first difference ∆y equals a∆q. In a similar way the second difference
∆∆y equals a∆∆q, the third difference ∆3y equals a∆3q, and so forth.

13. Since every polynomial is the sum of several powers of x, we can
find all of the differences of polynomials, provided that we know how to
find the differences of these powers. For this reason we will investigate the
differences of powers of x in the following examples.

Since x0 = 1, we have ∆x0 = 0, because x0 does not change when x
changes to x + ω.

Also, since as we have seen, ∆x = ω and ∆∆x = 0, all of the following
differences vanish. Since these things are clear, we begin with the second
power of x.

Example 1. Find the differences of all orders of x2.

Since here y = x2, we have yI = (x + ω)2, so that

∆y = 2ωx + ω2,

and this is the first difference. Now, since ω is a constant, we have ∆∆y =
2ω2 and ∆3y = 0, ∆4y = 0, . . . .

Example 2. Find the differences of all orders of x3.

Let y = x3. Since yI = (x + ω)3, we have

∆y = 3ωx2 + 3ω2x + ω3,

which is the first difference. Then, since ∆x2 = 2ωx+ω2, we have ∆3ωx2 =
6ω2x + 3ω3, ∆3ω2x = 3ω3, and ∆ω3 = 0. We put it all together to obtain

∆∆y = 6ω2x + 6ω3

and

∆3y = 6ω3.

The differences of higher order vanish.
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Example 3. Find the differences of all orders of x4.

Let y = x4. Since yI = (x + ω)4 , we have

∆y = 4ωx3 + 6ω2x2 + 4ω3x + ω4,

which is the first difference. Then, from what we have already found,

∆4ωx3 = 12ω2x2 + 12ω3x + 4ω4,

∆6ω2x2 = 12ω3x + 6ω4,

∆4ω3x = 4ω4,

∆ω4 = 0.

When these are combined, we have the second difference

∆∆y = 12ω2x2 + 24ω3x + 14ω4.

Furthermore, since

∆12ω2x2 = 24ω3x + 12ω4,

∆24ω3x = 24ω4,

∆14ω4 = 0,

we obtain the third difference

∆3y = 24ω3x + 36ω4.

Finally, we have the fourth difference

∆4y = 24ω4,

and since this is constant, all differences of higher order vanish.

Example 4. Find the differences of all orders of xn.

Let y = xn. Since yI = (x + ω)n , yII = (x + 2ω)n , yIII = (x + 3ω)n , . . . ,
the expanded powers are as follows:

y = xn,

yI = xn +
n

1
ωxn−1 +

n (n− 1)
1 · 2 ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 ω3xn−3

+ · · · ,
yII = xn +

n

1
2ωxn−1 +

n (n− 1)
1 · 2 4ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 8ω3xn−3

+ · · · ,
yIII = xn +

n

1
3ωxn−1 +

n (n− 1)
1 · 2 9ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 27ω3xn−3

+ · · · ,
yIV = xn +

n

1
4ωxn−1 +

n (n− 1)
1 · 2 16ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 64ω3xn−3

+ · · · .
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Then we take the differences to obtain

∆y =
n

1
ωxn−1 +

n (n− 1)
1 · 2 ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 ω3xn−3 + · · · ,

∆yI =
n

1
ωxn−1 +

n (n− 1)
1 · 2 3ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 7ω3xn−3 + · · · ,

∆yII =
n

1
ωxn−1 +

n (n− 1)
1 · 2 5ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 19ω3xn−3

+ · · · ,

∆yIII =
n

1
ωxn−1 +

n (n− 1)
1 · 2 7ω2xn−2 +

n (n− 1) (n− 2)
1 · 2 · 3 37ω3xn−3

+ · · · .

Once more we take differences to obtain

∆∆y = n (n− 1)ω2xn−2 +
n (n− 1) (n− 2)

1 · 2 · 3 6ω3xn−3

+
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 14ω4xn−4 + · · · ,

∆∆yI = n (n− 1)ω2xn−2 +
n (n− 1) (n− 2)

1 · 2 · 3 12ω3xn−3

+
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 50ω4xn−4 + · · · ,

∆∆yII = n (n− 1)ω2xn−2 +
n (n− 1) (n− 2)

1 · 2 · 3 18ω3xn−3

+
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 110ω4xn−4 + · · · .]

From these results we use subtraction to derive

∆3y = n (n− 1) (n− 2)ω3xn−3 +
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 36ω4xn−4

+ · · · ,

∆3yI = n (n− 1) (n− 2)ω3xn−3 +
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 60ω4xn−4

+ · · · .
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Then

∆4y = n (n− 1) (n− 2) (n− 3)ω4xn−4 + · · · .

14. In order that we may more easily see the law by which these differences
of powers of x are formed, let us for the sake of brevity use the following:

A =
n

1
,

B =
n (n− 1)

1 · 2 ,

C =
n (n− 1) (n− 2)

1 · 2 · 3 ,

D =
n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 ,

E =
n (n− 1) (n− 2) (n− 3) (n− 4)

1 · 2 · 3 · 4 · 5 ,

. . . .

We will use the following table for each of the differences:

y 1 0 0 0 0 0 0 0 0 . . .

∆y 0 1 1 1 1 1 1 1 1 . . .

∆2y 0 0 2 6 14 30 62 126 254 . . .

∆3y 0 0 0 6 36 150 540 1,806 5,796 . . .

∆4y 0 0 0 0 24 240 1,560 8,400 40,824 . . .

∆5y 0 0 0 0 0 120 1,800 16,800 126,000 . . .

∆6y 0 0 0 0 0 0 720 15,120 191,520 . . .

∆7y 0 0 0 0 0 0 0 5,040 141,120 . . .

Each number in a row of the table is found by taking the sum of the
preceding number in that row and the number directly above that preceding
number and multiplying that sum by the exponent on ∆. For example, in
the row for ∆5y the number 16,800 is found by taking the sum of the
preceding 1800 and the 1560 in the preceding row to obtain 3360, which is
multiplied by 5.
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15. With the aid of this table we can write each of the differences of the
powers y = xn as follows:

∆y = Aωxn−1 + Bω2xn−2 + Cω3xn−3 + Dω4xn−4 + · · · ,

∆2y = 2Bω2xn−2 + 6Cω3xn−3 + 14Dω4xn−4 + · · · ,

∆3y = 6Cω3xn−3 + 36Dω4xn−4 + 150Eω5xn−5 + · · · ,

∆4y = 24Dω4xn−4 + 240Eω5xn−5 + 1560Fω6xn−6 + · · · .
In general, the difference of order m of the power xn, that is ∆my, is
expressed in the following way.

Let

I =
n (n− 1) (n− 2) · · · (n−m + 1)

1 · 2 · 3 · · ·m ,

K =
n−m

m + 1
I,

L =
n−m− 1
m + 2

K,

M =
n−m− 2
m + 3

L,

· · · .
Then we let

α = (m + 1)m − m

1
mm +

m (m− 1)
1 · 2 (m− 1)m

− m (m− 1) (m− 2)
1 · 2 · 3 (m− 2)m + · · · ,

β = (m + 1)m+1 − m

1
mm+1 +

m (m− 2)
1 · 2 (m− 1)m+1

− m (m− 1) (m− 2)
1 · 2 · 3 (m− 2)m+1 + · · · ,

γ = (m + 1)m+2 − m

1
mm+2 +

m (m− 1)
1 · 2 (m− 1)m+2

− m (m− 1) (m− 2)
1 · 2 · 3 (m− 2)m+2 + · · · .

With these definitions we can write

∆my = αIωmxn−m + βKωm+1xn−m−1 + γLωm+2xn−m−2 + · · · .
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This result follows immediately from all of the differences of y, yI, yII,
yIII, . . . .

16. From what we have seen it is clear that if the exponent n is a positive
integer, sooner or later we obtain a constant difference, and thereafter all
differences vanish. Thus we have

∆.x = ω,

∆2.x2 = 2ω2,

∆3.x3 = 6ω3,

∆4.x4 = 24ω4,

and finally,

∆n.xn = 1 · 2 · 3 · · ·nωn

(see paragraph 146 for an explanation of this notation). It follows that every
polynomial finally arrives at a constant difference. For instance, the linear
function of x, ax+b, has for a first difference the constant aω. The quadratic
function ax2 + bx+ c has for second difference the constant 2aω2. A third-
degree polynomial has its third difference constant; the fourth degree has
its fourth difference constant, and so forth.

17. The method whereby we find the differences of powers xn can be
further extended to exponents that are negative, a fraction, or even an
irrational number. For the sake of clarity we will discuss only the first
differences of powers with these kinds of exponents, since the law for second
and higher differences is not so easily seen. Let

∆.x = ω,

∆.x2 = 2ωx + ω2,

∆.x3 = 3ωx2 + 3ω2x + ω3,

∆.x4 = 4ωx3 + 6ω2x2 + 4ω3x + ω4,

. . . .
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In a similar way we let

∆.x−1 = − ω

x2 +
ω2

x3 − ω3

x4 + · · · ,

∆.x−2 = −2ω
x3 +

3ω2

x4 − 4ω3

x5 + · · · ,

∆.x−3 = −3ω
x4 +

6ω2

x5 − 10ω3

x6 + · · · ,

∆.x−4 = −4ω
x5 +

10ω2

x6 − 20ω3

x7 + · · · .

We continue in the same way for the rest. For fractions we have

∆.x1/2 =
ω

2x1/2 − ω2

8x3/2 +
ω3

16x5/2 − · · · ,

∆.x1/3 =
ω

3x2/3 − ω2

9x5/9 +
5ω3

81x8/3 − · · · ,

∆.x−1/2 = − ω

2x3/2 +
3ω2

8x5/2 − 5ω3

16x7/2 + · · · ,

∆.x−1/3 = − ω

3x4/3 +
2ω2

9x7/3 − 14ω3

81x10/3 + · · · .

18. It should be clear that if the exponent is not a positive integer, then
these differences will progress without limit, that is, there will be an infinite
number of terms. Nevertheless, these same differences can be expressed by
a finite expression. If we let y = x−1 = 1/x, then yI = 1/ (x + ω), so that

∆.x−1 = ∆.
1
x

=
1

x + ω
− 1

x
.

Hence, if the fraction 1/ (x + ω) is expressed as a series, then we obtain the
infinite expression we saw before. In a similar way we have

∆.x−2 = ∆.
1
x2 =

1
(x + ω)2

− 1
x2 .

Furthermore, for irrational expressions we have

∆.
√
x =

√
x + ω −√

x

and

∆.
1√
x

=
1√

x + ω
− 1√

x
.
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If these formulas are expressed as series in the usual way, we will obtain
the expressions found above.

19. In this same way, differences of functions, either rational or irrational,
can be found. If, for example, we wish to find the first difference of the
fraction 1/

(
a2 + x2

)
, then we let y = 1/

(
a2 + x2

)
, and since

yI =
1

a2 + x2 + 2ωx + ω2 ,

we have

∆y = ∆
1

a2 + x2 =
1

a2 + x2 + 2ωx + ω2 − 1
a2 + x2 ,

and this expression can be converted into an infinite series.
We let a2 + x2 = P and 2ωx + ω2 = Q. Then

1
P + Q

=
1
P

− Q

P 2 +
Q2

P 3 − Q3

P 4 + · · ·

and

∆y = − Q

P 2 +
Q2

P 3 − Q3

P 4 + · · · .

When we substitute the values of P and Q we obtain

∆y = ∆
1

a2 + x2

= − 2ωx + ω2

(a2 + x2)2
+

4ω2x2 + 4ω3x + ω4

(a2 + x2)3

− 8ω3x3 + 12ω4x2 + 6ω5x + ω6

(a2 + x2)4
+ · · · .

If these terms are ordered by the powers of ω, we obtain

∆.
1

x2 + a2 = − 2ωx
(a2 + x2)2

+
ω2

(
3x2 − a2

)
(a2 + x2)3

− 4ω3
(
x3 − a2x

)
(a2 + x2)4

+ · · · .

20. Differences of irrational functions can be expressed by similar series.
If we let y =

√
a2 + x2, and since

yI =
√

a2 + x2 + 2ωx + ω2,

we let a2 + x2 = P and 2ωx + ω2 = Q, then

∆y =
√
P + Q−

√
P =

Q

2
√
P

− Q2

8P
√
P

+
Q3

16P 2
√
P

− · · · ,
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so that

∆y = ∆.
√

a2 + x2 =
2ωx + ω2

2
√
a2 + x2

− 4ω2x2 + 4ω3x + ω4

8 (a2 + x2)
√
a2 + x2

+ · · · ,

or

∆y =
ωx√

a2 + x2
+

a2ω2

2 (a2 + x2)
√
a2 + x2

− a2ω3x

2 (a2 + x2)2
√
a2 + x2

+ · · · .

From this we gather the fact that the difference of any function of x, which
we call y, can be put into this form, so that

∆y = Pω + Qω2 + Rω3 + Sω4 + · · · ,
where P , Q, R, S, . . . are certain functions of x that in any case can be
defined in terms of the function y.

21. We do not exclude from this form of expression even the differences
of transcendental functions, as will clearly appear from the following ex-
amples.

Example 1. Find the first difference of the natural logarithm of x.

Let y = lnx. Since yI = ln (x + ω) , we have

∆y = yI − y = ln (x + ω) − lnx = ln
(
1 +

ω

x

)
.

Elsewhere2 we have shown how this kind of logarithm can be expressed in
an infinite series. We use this to obtain

∆y = ∆ lnx =
ω

x
− ω2

2x2 +
ω3

3x3 − ω4

4x4 + · · · .

Example 2. Find the first difference of exponential functions ax.

Let y = ax, so that yI = axaω. We have also shown3 that

aω = 1 +
ω ln a

1
+

ω2 (ln a)2

1 · 2 +
ω3 (ln a)3

1 · 2 · 3 + · · · .

From this we have

∆.ax = yI − y = ∆y =
axω ln a

1
+

axω2 (ln a)2

1 · 2 +
axω3 (ln a)3

1 · 2 · 3 + · · · .

Example 3. In a unit circle, to find the difference of the sine of the arc
x.

2Introduction to Analysis of the Infinite, Book I, Chapter VII; see also note on page 1.
3Introduction, Book I, Chapter VIII; see also note on page 1.
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Let sinx = y. Then yI = sin (x + ω), so that

∆y = yI − y = sin (x + ω) − sinx.

Now,

sin (x + ω) = cosω · sinx + sinω · cosx,

and we have shown4 that

cosω = 1 − ω2

1 · 2 +
ω4

1 · 2 · 3 · 4 − ω6

1 · 2 · 3 · 4 · 5 · 6 + · · ·

and

sinω = ω − ω3

1 · 2 · 3 +
ω5

1 · 2 · 3 · 4 · 5 − ω7

1 · 2 · 3 · 4 · 5 · 6 · 7 + · · · .

When we substitute these series we obtain

∆. sinx = ω cosx− ω2

2
sinx− ω3

6
cosx +

ω4

24
sinx +

ω5

120
cosx− · · · .

Example 4. In a unit circle, to find the difference of the cosine of the arc
x.

Let y = cosx. Then since yI = cos (x + ω), we have

yI = cosω cosx− sinω sinx

and

∆y = cosω cosx− sinω sinx− cosx.

From the series referenced above we obtain

∆. cosx = −ω sinx− ω2

2
cosx− ω3

6
sinx +

ω4

24
cosx− ω5

120
sinx− · · · .

22. Since any function of x, which we call y, whether it is algebraic or
transcendental, has a difference of the form

∆y = Pω + Qω2 + Rω3 + Sω4 + · · · ,
if we take the difference again, it is clear that the second difference of y has
the form

∆2y = Pω2 + Qω3 + Rω4 + · · · .

4Introduction, Book I, Chapter VIII; see also note on page 1.
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In a similar way the third difference will be

∆3y = Pω3 + Qω4 + Rω5 + · · · ,

and so forth.
We should note that these letters P , Q, R, . . . do not stand for deter-

mined values, nor does the same letter in different differences denote the
same function of x. Indeed, we use the same letters lest we run out of
symbols.

Furthermore, these forms of differences should be carefully noted, since
they are very useful in the analysis of the infinite.

23. According to the method we are using, the first difference of any
function is found, and from it we find the differences of the successive
orders. Indeed, from the values of successive functions of y, namely, yI, yII,
yIII, yIV, . . . , we find in turn differences of y of any order. We recall that

yI = y + ∆y,

yII = y + 2∆y + ∆2y,

yIII = y + 3∆y + 3∆2y + ∆3y,

yIV = y + 4∆y + 6∆2y + 4∆3y + ∆4y,

and so forth, where the coefficients arise from the binomial expansion. Since
yI, yII, yIII, . . . are values of y that arise when we substitute for x the
successive values x+ω, x+ 2ω, x+ 3ω, . . . , we can immediately assign the
value of y(n), which is produced if in place of x we write x+nω. The value
obtained is

y +
n

1
∆y +

n (n− 1)
1 · 2 ∆2y +

n (n− 1) (n− 2)
1 · 2 · 3 ∆3y + · · · .

Furthermore, values of y can be obtained even if n is a negative integer.
Thus, if instead of x we put x− ω, the function y is in the form

y − ∆y + ∆2y − ∆3y + ∆4y − · · · .

If instead of x we put x− 2ω, the function y becomes

y − 2∆y + 3∆2y − 4∆3y + 5∆4y − · · · .

24. We will add a few things about the inverse problem. That is, if we
are given the difference of some function, we would like to investigate the
function itself. Since this is generally very difficult and frequently requires
analysis of the infinite, we will discuss only some of the easier cases. First of
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all, proceeding backwards, if we have found the difference for some function
and that difference is now given, we can, in turn, exhibit that function
from which the difference came. Thus, since the difference of the function
ax+ b is aω, if we are asked for the function whose difference is aω, we can
immediately reply that the function is ax + b, since the constant quantity
b does not appear in the difference, so we are free to choose any value for
b. It is always the case that if the difference of a function P is Q, then the
function P + A, where A is any constant, also has Q as its difference. It
follows that if this difference Q is given, a function from which this came is
P +A. Since A is arbitrary, the function does not have a determined value.

25. We call that desired function, whose difference is given, the sum. This
name is appropriate, since a sum is the operation inverse to difference, but
also since the desired function really is the sum of all of the antecedent
values of the difference. Just as

yI = y + ∆y

and

yII = y + ∆y + ∆yI,

if the values of y are continued backwards in such a way that what x − ω
corresponds to is written as yI, and yII preceding this, and also yIII, yIV,
yV, . . . , and if we form the retrograde series with their differences

yV, yIV, yIII, yII, yI, y

and

∆yV, ∆yIV, ∆yIII, ∆yII, ∆yI,

then y = ∆yI + yI. Since yI = ∆yII + yII and yII = ∆yIII + yIII, we have

y = ∆yI + ∆yII + ∆yIII + ∆yIV + ∆yV + · · · .
Thus the function y, whose difference is ∆y, is the sum of the values of
the antecedent differences, which we obtain when instead of x we write the
antecedent values x− ω, x− 2ω, x− 3ω, . . . .

26. Just as we used the symbol ∆ to signify a difference, so we use the
symbol Σ to indicate a sum. For example, if z is the difference of the
function y, then ∆y = z. We have previously discussed how to find the
difference z if y is given. However, if z is given and we want to find its
sum y, we let y = Σz, and from the equation z = ∆y, working backwards,
we obtain the equation y = Σz, where an arbitrary constant can be added
for the reason already discussed. From the equation z = ∆y, if we invert,
we also obtain y = Σz + C. Now, since the difference of ay is a∆y = az,
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we have Σaz = ay, provided that a is a constant. Since ∆x = ω, we have
Σω = x+C and Σaω = ax+C; since ω is a constant, we have Σω2 = ωx+C,
Σω3 = ω2 + C, and so forth.

27. If we invert the differences of powers of x which we previously found,
we have Σω = x and from this Σ1 = x/ω. Then we have

Σ
(
2ωx + ω2) = x2,

so that

Σx =
x2

2ω
− Σ

ω

2
=

x2

2ω
− x

2
.

Furthermore,

Σ
(
3ωx2 + 3ω2x + ω3) = x3,

or

3ωΣx2 + 3ω2Σx + ω3Σ1 = x3,

so that

Σx2 =
x3

3ω
− ωΣx− ω2

3
Σ1,

and so

Σx2 =
x3

3ω
− x2

2
+

ωx

6
.

In a similar way we have

Σx3 =
x4

4ω
− 3ω

2
Σx2 − ω2Σx− ω3

4
Σ1.

If for Σx2, Σx, and Σ1 we substitute the previously found values, we obtain

Σx3 =
x4

4ω
− x3

2
+

ωx2

4
.

Then, since

Σx4 =
x5

5ω
− 2ωΣx3 − 2ωΣx2 − ω3Σx− ω4

5
Σ1,

when we make the appropriate substitutions we have

Σx4 =
x5

5ω
− 1

2
x4 +

1
3
ωx3 − 1

30
ω3x.
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In a similar way we obtain

Σx5 =
x6

6ω
− 1

2
x5 +

5
12

ωx4 − 1
12

ω3x4

and

Σx6 =
x7

7ω
− 1

2
x6 +

1
2
ωx5 − 1

6
ω3x3 − 1

42
ω5x.

Later we will show an easier method to obtain these expressions.

28. If the given difference is for a polynomial function of x, then its sum
(or the function of which it is the difference) can easily be found with these
formulas. Since the difference is made up of different powers of x, we find
the sum of each term and then collect all of these terms.

Example 1. Find the function whose difference is ax2 + bx + c.

We find the sum of each term by means of the formulas found above:

Σax2 =
ax3

3ω
− ax2

2
+

aωx

6
,

Σbx =
bx2

2ω
− bx

2
,

Σc =
cx

ω
.

When we collect these sums we obtain

Σ
(
ax2 + bx + c

)
=

ax3

3ω
− aω − b

2ω
x2 +

aω2 − 3bω + 6c
6ω

x + C,

which is the desired function, whose difference is ax2 + bx + c.

Example 2. Find the function whose difference is x4 − 2ω2x2 + ω4.

Following the same method we obtain

Σx4 =
1
5ω

x5 − 1
2
x4 +

ωx3

3
− ω3

30
x,

−Σ2ω2x2 = −2ω
3
x3 + ω2x2 − ω3

3
x,

+Σω4 = ω3x,

so that the desired function is

1
5ω

x5 − 1
2
x4 − 1

3
ωx3 + ω2x2 +

19
30

ω3x + C.

As a check, if instead of x we put x+ω and from this expression we subtract
the one we have found, the given difference x4−2ω2x2+ω4 is what remains.
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29. If we carefully observe the sums of the powers of x that we have found,
the first, second, and third terms, we quickly discover the laws of formation
that they follow. The law for the following terms is not so obvious that we
can state in general the sum for the power xn. Later (in paragraph 132 of
the second part) we will show that

Σxn =
xn+1

(n + 1)ω
− 1

2
xn +

1
2
· nω

2 · 3x
n−1 − 1

6
· n (n− 1) (n− 2)ω3

2 · 3 · 4 · 5 xn−3

+
1
6
· n (n− 1) (n− 2) (n− 3) (n− 4)ω5

2 · 3 · 4 · 5 · 6 · 7 xn−5

− 3
10

· n (n− 1) · · · (n− 6)ω7

2 · 3 · · · 8 · 9 xn−7

+
5
6
· n (n− 1) · · · (n− 8)ω9

2 · 3 · · · 10 · 11
xn−9

− 691
210

· n (n− 1) · · · (n− 10)ω11

2 · 3 · · · 12 · 13
xn−11

+
35
2

· n (n− 1) · · · (n− 12)ω13

2 · 3 · · · 14 · 15
xn−13

− 3617
30

· n (n− 1) · · · (n− 14)ω15

2 · 3 · · · 16 · 17
xn−15

+
43867

42
· n (n− 1) · · · (n− 16)ω17

2 · 3 · · · 18 · 19
xn−17

− 1222277
110

· n (n− 1) · · · (n− 18)ω19

2 · 3 · · · 20 · 21
xn−19

+
854513

6
· n (n− 1) · · · (n− 20)ω21

2 · 3 · · · 22 · 23
xn−21

− 1181820455
546

· n (n− 1) · · · (n− 22)ω23

2 · 3 · · · 24 · 25
xn−23

+
76977927

2
· n (n− 1) · · · (n− 24)ω25

2 · 3 · · · 26 · 27
xn−25

− 23749461029
30

· n (n− 1) · · · (n− 26)ω27

2 · 3 · · · 28 · 29
xn−27

+
8615841276005

462
· n (n− 1) · · · (n− 28)ω29

2 · 3 · · · 30 · 31
xn−29

+ · · · + C.

The main interest here is the sequence of purely numerical coefficients. It
is not yet time to explain how these are formed.
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30. It is clear that if n is not a positive integer, then the expression for the
sum is going to be an infinite series, nor can it be expressed in finite form.
Furthermore, here we should note that not all powers of x with exponents
less than n occur. All of the terms xn−2, xn−4, xn−6, . . . are lacking, that
is, they have coefficients equal to zero, although the second term, xn, does
not follow this law, since it has coefficient − 1

2 . If n is negative or a fraction,
then this sum can be expressed as an infinite series with the sole exception
that n cannot be −1, since in that case the term

xn+1

(n + 1)ω

would be infinite, since n + 1 = 0. Hence, if n = −2, then

Σ
1
x2 = C − 1

ωx
− 1

2x2 − 1
2
· ω

3x3 +
1
6
· ω3

5x5 − 1
6
· ω5

7x7 +
3
10

· ω7

9x9

− 5
6
· ω9

11x11 +
691
210

· ω11

13x13 − 35
2

· ω13

15x15 +
3617
30

· ω15

17x17 − · · · .

31. If a given difference is any power of x, then its sum, or the function
from which it came, can be given. However, if the given difference is of
some other form, so that it cannot be expressed in parts that are powers of
x, then the sum may be very difficult, and frequently impossible, to find,
unless by chance it is clear that it came from some function. For this reason
it is useful to investigate the difference of many functions and carefully to
note them, so that when this difference is given, its sum or the function
from which it came can be immediately given. In the meantime, the method
of infinite series will supply many rules whose use will marvelously aid in
finding sums.

32. Frequently, it is easier to find the sum if the given difference can be
expressed as a product of linear factors that form an arithmetic progression
whose difference is ω. Suppose the given function is (x + ω) (x + 2ω). Since
when we substitute x + ω for x we obtain (x + 2ω) (x + 3ω), then the dif-
ference will be 2ω (x + 2ω). Hence, going backwards, if the given difference
is 2ω (x + 2ω), then its sum is (x + ω) (x + 2ω). From this it follows that

Σ (x + 2ω) =
1
2ω

(x + ω) (x + 2ω) .

Similarly, if the given function is (x + nω) (x + (n + 1)ω), since its differ-
ence is 2ω (x + (n + 1)ω), we have

Σ (x + (n + 1)ω) =
1
2ω

(x + nω) (x + (n + 1)ω) ,
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and

Σ (x + nω) =
1
2ω

(x + (n− 1)ω) (x + nω) .

33. If the function is the product of several factors, such as

y = (x + (n− 1)ω) (x + nω) (x + (n + 1)ω) ,

then since

yI = (x + nω) (x + (n + 1)ω) (x + (n + 2)ω) ,

we have

∆y = 3ω (x + nω) (x + (n + 1)ω) .

It follows that

Σ (x + nω) (x + (n + 1)ω) =
1
3ω

(x + (n− 1)ω) (x + nω) (x + (n + 1)ω) .

In the same way we find that

Σ (x + nω) (x + (n + 1)ω) (x + (n + 2)ω)

=
1
4ω

(x + (n− 1)ω) (x + nω) (x + (n + 1)ω) (x + (n + 2)ω) .

Hence the law for finding sums is quite clear if the difference is the product
of several factors of this kind. Although these differences are polynomials,
still this method of finding their sums seems to be easier than the previous
method.

34. From this method the way is now clear to finding the sums of fractions.
Let the given fraction be

y =
1

x + nω
.

Since

yI =
1

x + (n + 1)ω
,

we have

∆y =
1

x + (n + 1)ω
− 1

x + nω
=

−ω

(x + nω) (x + (n + 1)ω)
,

and it follows that

Σ
1

(x + nω) (x + (n + 1)ω)
= − 1

ω
· 1
x + nω

.
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Furthermore, let

y =
1

(x + nω) (x + (n + 1)ω)
.

Since

yI =
1

(x + (n + 1)ω) (x + (n + 2)ω)
,

we have

∆y =
−2ω

(x + nω) (x + (n + 1)ω) (x + (n + 2)ω)
,

and it follows that

Σ
1

(x + nω) (x + (n + 1)ω) (x + (n + 2)ω)

= − 1
2ω

· 1
(x + nω) (x + (n + 1)ω)

.

In a similar way we have

Σ
1

(x + nω) (x + (n + 1)ω) (x + (n + 2)ω) (x + (n + 3)ω)

= − 1
3ω

· 1
(x + nω) (x + (n + 1)ω) (x + (n + 2)ω)

.

35. We should observe this method carefully, since sums of differences of
this kind cannot be found by the previous method. If the difference has a
numerator or the denominator has factors that do not form an arithmetic
progression, then the safest method for finding sums is to express the frac-
tion as the sum of partial fractions. Although we may not be able to find
the sum of an individual fraction, it may be possible to consider them in
pairs. We have only to see whether it may be possible to use the formula

Σ
1

x + (n + 1)ω
− Σ

1
x + nω

=
1

x + nω
.

Although neither of these sums is known, still their difference is known.

36. In these cases the problem is reduced to finding the partial fractions,
and this is treated at length in a previous book.5 In order that we may see
its usefulness for finding sums, we will consider some examples.

5Introduction, Book I, Chapter II.
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Example 1. Find the function whose difference is

3x + 2ω
x (x + ω) (x + 2ω)

.

The given difference is expressed as partial fractions:

1
ω

· 1
x

+
1
ω

· 1
x + ω

− 2
ω

· 1
x + 2ω

.

From the previous formula

Σ
1

x + nω
= Σ

1
x + (n + 1)ω

− 1
x + nω

,

we have

Σ
1
x

= Σ
1

x + ω
− 1

x
.

It follows that the desired sum is
1
ω

Σ
1
x

+
1
ω

Σ
1

x + ω
− 2

ω
Σ

1
x + 2ω

=
2
ω

Σ
1

x + ω
− 2

ω
Σ

1
x + 2ω

− 1
ωx

.

But

Σ
1

x + ω
= Σ

1
x + 2ω

− 1
x + ω

,

so that the desired sum is

− 1
ωx

− 2
ω (x + ω)

=
−3x− ω

ωx (x + ω)
.

Example 2. Find the function whose difference is

3ω
x (x + 3ω)

.

We let this difference be z. Then

z =
1
x
− 1

x + 3ω
and

Σz = Σ
1
x
− Σ

1
x + 3ω

= Σ
1

x + ω
− Σ

1
x + 3ω

− 1
x

= Σ
1

x + 2ω
− Σ

1
x + 3ω

− 1
x
− 1

x + ω
= − 1

x
− 1

x + ω
− 1

x + 2ω
,

which is the desired sum. Whenever the signs of the sums finally cancel each
other, we will be able to find the sum. However, if this mutual annihilation
does not occur, it signifies that this sum cannot be found.



2
On the Use of Differences
in the Theory of Series

37. It is well known that the nature of series can be very well illustrated
from first principles through differences. Indeed, arithmetic progressions,
which are ordinarily considered first, have this particular property, that
their first differences are equal to each other. From this it follows that their
second differences and all higher differences will vanish. There are series
whose second differences are constant and for this reason are conveniently
called of the second order, while arithmetic progressions are said to be of
the first order. Furthermore, series of the third order are those whose third
differences are constant; those of the fourth order and higher orders are
those whose fourth and higher differences are constant.

38. In this division there is an infinite number of kinds of series, but by
no means can all series be reduced to one of these. There are innumerably
many series whose successive differences never reduce to constants. Besides
innumerable others, the geometric progressions never have constant differ-
ences of any order. For example, consider

1, 2, 4, 8, 16, 32, 64, 128, . . .

1, 2, 4, 8, 16, 32, 64, . . .

1, 2, 4, 8, 16, 32, . . . .

Since the series of differences of each order is equal to the original series,
equality of differences is completely excluded. There are many classes of
series, of which only one class is such that its differences of various orders
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finally reduce to a constant; this chapter will be particularly concerned
with that class.

39. Two things are especially important concerning the nature of series:
the general term and the sum of the series. The general term is an expression
that contains each term of the series and for that reason is a function of the
variable x such that when x = 1 the first term of the series is obtained, the
second when we let x = 2, the third when x = 3, the fourth when x = 4,
and so forth. When we know the general term of a series we can find any
of the terms, even if the law that relates one term to another is not clear.
Thus, for example, for x = 1000 we immediately know the thousandth
term. In the series

1, 6, 15, 28, 45, 66, 91, 120, . . .

the general term is 2x2 − x. If x = 1, this formula gives the first term, 1;
when x = 2 we obtain the second term, 6; if we let x = 3, the third term
15 appears, and so forth. It is clear that for the 100th term we let x = 100,
and then 2 · 10000 − 100 = 19900 is the term.

40. Indices or exponents in a series are the numbers that indicate which
term we are concerned with; thus the index of the first term will be 1, that
of the second will be 2, of the third 3, and so forth. Thus the indices of any
series are usually written in the following way:

Indices 1 2 3 4 5 6 7 . . .

Terms A B C D E F G . . .

It is thus immediately clear that G is the seventh term of a given series.
From this we see that the general term is nothing else than the term of the
series whose index is the indefinite number x. First we will discover how
to find the general term of a series whose differences, either first, second,
or some other difference is constant. Then we will turn our attention to
finding the sum.

41. We begin with the first order, which contains arithmetic progressions,
whose first differences are constant. Let a be the first term of the series
and let the first term of the series of differences be b, which is equal to all
other terms of this series. Hence the series has the form:

Indices 1 2 3 4 5 6 . . .

Terms a a + b a + 2b a + 3b a + 4b a + 5b . . .

Differences b, b, b, b, b, b, . . .

From this it is immediately clear that the term whose index is x will be
a + (x− 1) b and the general term will be bx + a− b. This is formed from
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both terms of the series itself and terms of the series of differences. If we
call the second term of the series aI, since b = aI−a, then the general term
is (

aI − a
)
x + 2a− aI = aI (x− 1) − a (x− 2) .

Hence from our knowledge of the first and second terms of an arithmetic
progression we form the general term.

42. Let a be the first term of a series of the second order, let b be the first
term of the series of first differences, and let c be the first term of the series
of second differences. Then the series with its differences have the following
form:

Indices:
1, 2, 3, 4, 5, 6, 7

Terms:

a, a+ b, a+ 2b+ c, a+ 3b+ 3c, a+ 4b+ 6c, a+ 5b+ 10c, a+ 6b+ 15c

First Differences:

b, b + c, b + 2c, b + 3c, b + 4c, b + 5c, . . .

Second Differences:
c, c, c, c, c, . . .

By inspection we conclude that the term with index x will be

a + (x− 1) b +
(x− 1) (x− 2)

1 · 2 c,

and this is the general term of the given series. However, if we let the
second term of the series be aI and the third term be aII, since b = aI − a
and c = aII − 2aI + a, as we understand from the definition of differences
(paragraph 10), we have the general term

a + (x− 1)
(
aI − a

)
+

(x− 1) (x− 2)
1 · 2

(
aII − 2aI + a

)
.

But this reduces to the form

aII (x− 1) (x− 2)
1 · 2 − 2aI (x− 1) (x− 3)

1 · 2 +
a (x− 2) (x− 3)

1 · 2 ,

or

aII

2
(x− 1) (x− 2) − 2aI

2
(x− 1) (x− 3) +

a

2
(x− 2) (x− 3) ,
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or finally,

1
2

(x− 1) (x− 2) (x− 3)
(

aII

x− 3
− 2aI

x− 2
+

a

x− 1

)
.

It follows that the general term is defined by the first three terms of the
series.

43. Let a, aI, aII, aIII, aIV, . . . be the terms of a series of the third order,
let b, bI, bII, bIII, . . . be its first differences, and let c, cI, cII, cIII, . . . be
its second differences, while d, d, d, . . . are its third differences, which of
course are constants:

Indices: 1, 2, 3, 4, 5, 6, . . .

Terms: a, aI, aII, aIII, aIV, aV, . . .

First Differences: b, bI, bII, bIII, bIV, . . .

Second Differences: c, cI, cII, cIII, . . .

Third Differences: d, d, d, . . .

Since aI = a + b, aII = a + 2b + c, aIII = a + 3b + 3c + d, aIV = a + 4b +
6c + 4d, . . . , the general term, or the term whose index is x, is

a +
(x− 1)

1
b +

(x− 1) (x− 2)
1 · 2 c +

(x− 1) (x− 2) (x− 3)
1 · 2 · 3 d,

so that the general term is formed from the differences. Since we have

b = aI − a, c = aII − 2aI + a, d = aIII − 3aII + 3aI − a,

when these values are substituted, the general term will be

aIII (x− 1) (x− 2) (x− 3)
1 · 2 · 3 − 3aII (x− 1) (x− 2) (x− 4)

1 · 2 · 3

+ 3aI (x− 1) (x− 3) (x− 4)
1 · 2 · 3 − a

(x− 2) (x− 3) (x− 4)
1 · 2 · 3 .

This can also be expressed as

(x− 1) (x− 2) (x− 3) (x− 4)
1 · 2 · 3

(
aIII

x− 4
− 3aII

x− 3
+

3aI

x− 2
− a

x− 1

)
.

44. Now let a series of any order be given:

Indices: 1, 2, 3, 4, 5, 6, . . .
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Terms: a, aI, aII, aIII, aIV, aV, . . .

First Differences: b, bI, bII, bIII, bIV, . . .

Second Differences: c, cI, cII, cIII, . . .

Third Differences: d, dI, dII, . . .

Fourth Differences: e, eI, . . .

Fifth Differences: f, . . .

and so forth. From the first term of the series and the first terms of the
differences, b, c, d, e, f, . . . we can express the general term as

a +
(x− 1)

1
b +

(x− 1) (x− 2)
1 · 2 c +

(x− 1) (x− 2) (x− 3)
1 · 2 · 3 d

+
(x− 1) (x− 2) (x− 3) (x− 4)

1 · 2 · 3 · 4 e + · · ·

until we come to the constant differences. From this it is clear that if we
never produce constant differences, then the general term will be expressed
by an infinite series.

45. Since the differences are formed from the terms of the given series, if
these values are substituted, the general term in this form for any series
of the first, second, and third orders have been given. For a series of the
fourth order the general term is

(x− 1) (x− 2) (x− 3) (x− 4) (x− 5)
1 · 2 · 3 · 4

×
(

aIV

x− 5
− 4aIII

x− 4
+

6aII

x− 3
− 4aI

x− 2
+

a

x− 1

)
.

From this the law of formation for the general term for higher-order se-
quences is easily seen. It is also clear that for any order the general term
will be a polynomial in x whose degree will be no higher than the or-
der of the series to which it refers. Thus, a series of the first order has
a general term that is a first-degree function, a second-order series has a
second-degree term, and so forth.
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46. The differences, as we have seen above, can be expressed in terms of
the original series as follows:

b = aI − a, c = aII − 2aI + a, d = aIII − 3aII + 3aI − a,

bI = aII − aI, cI = aIII − 2aII + aI, dI = aIV − 3aIII + 3aII − aI,

bII = aIII − aII, cII = aIV − 2aIII + aII, dII = aV − 3aIV + 3aIII − aII,

. . . , . . . , . . . .

Since in a series of the first order all values of c vanish, we have

aII = 2aI − a, aIII = 2aII − aI, aIV = 2aIII − aII, . . . ,

and so it is clear that these series are recurrent and that the scale of relation
is 2, −1. Then, since in a series of the second order all values of d vanish,
we have

aIII = 3aII − 3aI + a, aIV = 3aIII − 3aII + aI, . . . .

From this it follows that these series are recurrent with a scale of relation
3, −3, 1. In a similar way it can be shown that each such series of any order
is both a recurrent series and the scale of relation consists of the binomial
coefficients where the exponent is one more than the order of the series.

47. Since in a series of the first order we also have all d’s, e’s, and all of
the subsequent differences vanishing, we also have

aIII = 3aII − 3aI + a,

aIV = 3aIII − 3aII + aI,

and so forth, or

aIV = 4aIII − 6aII + 4aI − a,

aV = 4aIV − 6aIII + 4aII − aI,

and so forth. From this it follows that these are recurrent series, indeed in
an infinite number of ways, since the scales of relation can be 3,−3,+1;
4,−6,+4,−1; 5,−10,+10,−5 + 1; . . . . In a similar way it should be un-
derstood that each of the series of the kind we have been discussing is a
recurrent series in an infinite number of ways and that the scale of relation
is

n, −n (n− 1)
1 · 2 , +

n (n− 1) (n− 2)
1 · 2 · 3 , −n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 ,
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and so forth, provided that n is an integer and is larger than the order of the
given series. These series can also arise from fractions whose denominator is
(1 − y)n, as is shown in a previous book1 where recurrent series are treated
at greater length.

48. As we have seen, every series of this class, no matter of what order,
has a general term that is a polynomial. On the other hand, we will see that
every series that has this kind of function for its general term belongs to
this class of series and the differences eventually are a constant. Indeed, if
the general term is a second-degree polynomial of the form ax2+bx+c, then
the series obtained by letting x be equal successively to 1, 2, 3, 4, 5, . . . , will
be of the second order, and the second difference will be constant. Likewise,
if the general term is a third-degree polynomial ax3 + bx2 + cx + d, then
the series will be of the third order, and so forth.

49. From the general term we can find not only all of the terms of the
series, but also the series of differences, both the first differences and also
the higher differences. If the first term of a series is subtracted from the
second, we obtain the first term of the series of differences. Likewise, we
obtain the second term of this series if we subtract the second term from
the third term of the original series. Thus we obtain the term of the series
of differences whose index is x if we subtract the term of the original series
whose index is x from the term whose index is x + 1. Hence, if in the
general term of the series we substitute x + 1 for x and from this subtract
the general term, the remainder will be the general term of the series of
differences. If X is the general term of the series, then its difference ∆X
(which is obtained in the way shown in the previous chapter if we let ω = 1)
is the general term of the series of first differences. Likewise, ∆2X is the
general term of the series of second differences; ∆3X is the general term of
the series of third differences, and so forth.

50. If the general term X is a polynomial of degree n, from the previous
chapter we know that its difference ∆X is a polynomial of degree n − 1.
Furthermore, ∆2X is of degree n− 2, and ∆3X is of degree n− 3, and so
forth. It follows that if X is a first-degree polynomial, as is ax+ b, then its
difference ∆X is the constant a. Since this is the general term of the series
of first differences, we see that a series whose general term is a first-degree
polynomial is an arithmetic progression, that is, a series of the first order.
Likewise, if the general term is a second-degree polynomial, since ∆2X is a
constant, the series of second differences is constant and the original series
is of second order. In like manner it is always true that the degree of the
general term is the order of the series it defines.

1Introduction, Book I, Chapter IV.



32 2. On the Use of Differences in the Theory of Series

51. It follows that a series of powers of the natural numbers will have
constant differences, as is clear from the following scheme:

First Powers: 1, 2, 3, 4, 5, 6, 7, 8, . . .

First Differences: 1, 1, 1, 1, 1, 1, 1, . . .

Second Powers: 1, 4, 9, 36, 49, 64, . . .

First Differences: 3, 5, 7, 9, 11, 13, 15, . . .

Second Differences: 2, 2, 2, 2, 2, 2, . . .

Third Powers: 1, 8, 27, 64, 125, 216, 343, . . .

First Differences: 7, 19, 37, 61, 91, 127, . . .

Second Differences: 12, 18, 24, 30, 36, . . .

Third Differences: 6, 6, 6, 6, . . .

Fourth Powers: 1, 16, 81, 256, 625, 1296, 2401, . . .

First Differences: 15, 65, 175, 369, 671, 1105, . . .

Second Differences: 50, 110, 194, 302, 434, . . .

Third Differences: 60, 84, 108, 132, . . .

Fourth Differences: 24, 24, 24, . . . .

The rules given in the previous chapter for finding differences of any order
can now be used to find the general terms for differences of any order for a
given series.

52. If the general term for any series is known, then not only can it be
used to find all of the terms, but it can also be used to reverse the order
and find terms with negative indices, by substituting negative values for x.
For example, if the general term is

(
x2 + 3x

)
/2 and we use both negative

and positive indices, we can continue the series in both ways as follows:

Indices: . . . , −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, . . .

Series: . . . , 5, 2, 0, −1, −1, 0, 2, 5, 9, 14, 20, 27, . . .

First Differences: . . . , −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, . . .

Second Differences: . . . , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .
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Since the general term is formed from the differences, any series can be
continued backwards so that if the differences finally are constant, the gen-
eral term can be expressed in finite form. If the differences are not finally
constant, then the general term requires an infinite expression. From the
general term we can also define terms whose indices are fractions, and this
gives an interpolation of the series.

53. After these remarks about the general terms of series we now turn to
the investigation of the sum, or general partial sum, of a series of any order.
Given any series the general partial sum is a function of x that is equal to
the sum of x terms of the series. Hence the general partial sum will be such
that if x = 1, then it will be equal to the first term of the series. If x = 2,
then it gives the sum of the first two terms of the series; let x = 3, and
we have the sum of the first three terms, and so forth. Therefore, if from
a given series we form a new series whose first term is equal to the first
term of the given series, second term is the sum of the first two terms of
the given series, the third of the first three terms, and so forth, then this
new series is its partial sum series. The general term of this new series is
the general partial sum. Hence, finding the general partial sum brings us
back to finding the general term of a series.

54. Let the given series be

a, aI, aII, aIII, aIV, aV, . . .

and let the series of partial sums be

A, AI, AII, AIII, AIV, AV, . . . .

From the definition we have

A = a,

AI = a + aI,

AII = a + aI + aII,

AIII = a + aI + aII + aIII,

AIV = a + aI + aII + aIII + aIV,

AV = a + aI + aII + aIII + aIV + aV,

and so forth. Now, the series of differences of the series of partial sums is

AI −A = aI, AII −AI = aII, AIII −AII = aIII, . . . ,

so that if we remove the first term of the given series, we have the series
of first differences of the series of partial sums. If we supply a zero as the
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first term of the series of partial sums, to give

0, A, AI, AII, AIII, AIV, AV, . . . ,

then the series of first differences is the given series

a, aI, aII, aIII, aIV, aV, . . . .

55. For this reason, the first differences of the given series are the second
differences of the series of partial sums; the second differences of the former
are the third differences of the latter; the third of the former are the fourth
of the latter, and so forth. Hence, if the given series finally has constant
differences, then the series of partial sums also eventually has constant
differences and so is of the same kind except one order higher. It follows
that this kind of series always has a partial sum that can be given as a
finite expression. Indeed, the general term of the series

0, A, AI, AII, AIII, AIV, . . . ,

or that expression which corresponds to x, gives the sum of the x−1 terms
of the series a, aI, aII, aIII, aIV, . . . . If instead of x we write x+1, we obtain
the sum of x terms which is the general term.

56. Let a given series be

a, aI, aII, aIII, aIV, aV, aVI, . . . .

The series of first differences is

b, bI, bII, bIII, bIV, bV, bVI, . . . ,

the series of second differences is

c, cI, cII, cIII, cIV, cV, cVI, . . . ,

the series of third differences is

d, dI, dII, dIII, dIV, dV, dVI, . . . ,

and so forth, until we come to constant differences. We then form the series
of partial sums, with 0 as its first term, and the succeeding differences in
the following way:

Indices: 1, 2, 3, 4, 5, 6, 7, . . .

Partial Sums: 0, A, AI, AII, AIII, AIV, AV, . . .

Given Series: a, aI, aII, aIII, aIV, aV, aVI, . . .
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First Differences: b, bI, bII, bIII, bIV, bV, bVI, . . .

Second Differences: c, cI, cII, cIII, cIV, cV, cVI, . . .

Third Differences: d, dI, dII, dIII, dIV, dV, dVI, . . .

The general term of the series of partial sums, that is, the term correspond-
ing to the index x, is

0 + (x− 1) a +
(x− 1) (x− 2)

1 · 2 b +
(x− 1) (x− 2) (x− 3)

1 · 2 · 3 c + · · · ,

but this is also the series of partial sums of the first x−1 terms of the given
series a, aI, aII, aIV, . . . .

57. Hence, if instead of x − 1 we write x, we obtain the series of partial
sums

xa +
x (x− 1)

1 · 2 b +
x (x− 1) (x− 2)

1 · 2 · 3 c +
x (x− 1) (x− 2) (x− 3)

1 · 2 · 3 · 4 d + · · · .

If we let the letters b, c, d, e, . . . keep the assigned values, then we have

Series: a, aI, aII, aIII, aIV, aV, . . .

General Term:

a + (x− 1) b +
(x− 1) (x− 2)

1 · 2 c +
(x− 1) (x− 2) (x− 3)

1 · 2 · 3 d

+
(x− 1) (x− 2) (x− 3) (x− 4)

1 · 2 · 3 · 4 e + · · · ,

Partial Sum:

xa+
x (x− 1)

1 · 2 b+
x (x− 1) (x− 2)

1 · 2 · 3 c+
x (x− 1) (x− 2) (x− 3)

1 · 2 · 3 · 4 d+· · · .

Therefore, once a series of any order is found, the general term can easily
be found from the partial sum in the way we have shown, namely, by
combining differences.

58. This method of finding the partial sum of a series through differences
is most useful for those series whose differences eventually become constant.
In other cases we do not obtain a finite expression. If we pay close attention
to the character of the partial sums, which we have already discussed, then
another method is open to us for finding the partial sum immediately from
the general term. Indeed this method is much more general, and in the
infinite case we obtain finite expressions, rather than the infinite that we
obtain from the previous method. Let a given series be

a, b, c, d, e, f, . . . ,
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with X the general term corresponding to the index x, and S the partial
sum. Since S is the sum of the first x terms, the sum of the first x−1 terms
is S−X. Furthermore, X is the difference, since this is what remains when
S −X is subtracted from the next term S.

59. Since X = ∆(S −X) is the difference, as defined in the previous
chapter, provided that we let the constant ω equal 1, if we return to the
sum, then we have ΣX = S −X, and the desired partial sum is

S = ΣX + X + C.

Hence we need to find the sum of the function X by the method previously
discussed, to which we add the general term X to obtain the partial sum.
Since this process involves a constant quantity that must either be added
or subtracted, we need to accommodate this to the present case. It is clear
that if we let x = 0, the number of terms in the sum is zero, and the sum
also should be zero. From this fact the constant C should be calculated by
letting both x = 0 and S = 0. In the expression S = ΣX + X + C with
both S = 0 and x = 0, we obtain the value of C.

60. Since this whole business reduces to the sums of functions we found
(in paragraph 27) when ω = 1, we recall those results, especially for the
powers of x:

Σx0 = Σ1 = x,

Σx =
1
2
x2 − 1

2
x,

Σx2 =
1
3
x3 − 1

2
x2 +

1
6
x,

Σx3 =
1
4
x4 − 1

2
x3 +

1
4
x2,

Σx4 =
1
5
x5 − 1

2
x4 +

1
3
x3 − 1

30
x,

Σx5 =
1
6
x6 − 1

2
x5 +

5
12

x4 − 1
12

x2,

Σx6 =
1
7
x7 − 1

2
x6 +

1
2
x5 − 1

6
x3 +

1
42

x.

In paragraph 29 we gave the sum for a general power of x, provided that
everywhere we let ω = 1. With these formulas we can easily find the partial
sum, provided that the general term is a polynomial in x.

61. Let S.X be the partial sum of the series whose general term is X. As
we have seen,

S.X = ΣX + X + C,



2. On the Use of Differences in the Theory of Series 37

where C is the constant we obtain by letting S.X vanish when we let x = 0.
It follows that we can express the partial sum of the series of powers, that
is, the series for which the general term has the form xn. We let

S.X = 1 + 2n + 3n + 4n + · · · + xn.

Then

S.xn =
1

n + 1
xn+1 +

1
2
xn +

1
2
· n

2 · 3x
n−1 − 1

6
· n (n− 1) (n− 2)

2 · 3 · 4 · 5 xn−3

+
1
6
· n (n− 1) (n− 2) (n− 3) (n− 4)

2 · 3 · · · 6 · 7 xn−5

− 3
10

· n (n− 1) · · · (n− 6)
2 · 3 · · · 8 · 9 xn−7

+
5
6
· n (n− 1) · · · (n− 8)

2 · 3 · · · 10 · 11
xn−9 − 691

210
· n (n− 1) · · · (n− 10)

2 · 3 · · · 12 · 13
xn−11

+
35
2

· n (n− 1) · · · (n− 12)
2 · 3 · · · 14 · 15

xn−13

− 3617
30

· n (n− 1) · · · (n− 14)
2 · 3 · · · 16 · 17

xn−15

+
43867

42
· n (n− 1) · · · (n− 16)

2 · 3 · · · 18 · 19
xn−17

− 1222277
110

· n (n− 1) · · · (n− 18)
2 · 3 · · · 20 · 21

xn−19

+
854513

6
· n (n− 1) · · · (n− 20)

2 · 3 · · · 22 · 23
xn−21

− 1181820455
546

· n (n− 1) · · · (n− 22)
2 · 3 · · · 24 · 25

xn−23

+
76977927

2
· n (n− 1) · · · (n− 24)

2 · 3 · · · 26 · 27
xn−25

− 23749461029
30

· n (n− 1) · · · (n− 26)
2 · 3 · · · 28 · 29

xn−27,

and so forth.
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62. Hence, for various values of n we have the following:

S.x0 = x,

S.x1 =
1
2
x2 +

1
2
x,

S.x2 =
1
3
x3 +

1
2
x2 +

1
6
x,

S.x3 =
1
4
x4 +

1
2
x3 +

1
4
x2,

Sx4 =
1
5
x5 +

1
2
x4 +

1
3
x3 − 1

30
x,

S.x5 =
1
6
x6 +

1
2
x5 +

5
12

x4 − 1
12

x2,

S.x6 =
1
7
x7 +

1
2
x6 +

1
2
x5 − 1

6
x3 +

1
42

x,

S.x7 =
1
8
x8 +

1
2
x7 +

7
12

x6 − 7
24

x4 +
1
12

x2,

S.x8 =
1
9

+
1
2
x8 +

2
3
x7 − 7

15
s5 +

2
9
x3 − 1

30
x,

S.x9 =
1
10

x10 +
1
2
x9 +

3
4
x8 − 7

10
x6 +

1
2
x4 − 3

20
x2,

S.x10 =
1
11

x11 +
1
2
x10 +

5
6
x9 − x7 + x5 − 1

2
x3 +

5
66

x,

S.x11 =
1
12

x12 +
1
2
x11 +

11
12

x10 − 11
8
x8 +

11
6
x6 − 11

8
x4 +

5
12

x2,

S.x12 =
1
13

x13 +
1
2
x12 + x11 − 11

6
x9 +

22
7
x7 − 33

10
x5 +

5
3
x3 − 691

2730
x,

S.x13 =
1
14

x14 +
1
2
x13 +

13
12

x12 − 143
60

x10 +
143
28

x8 − 143
20

x6 − 691
420

x2,

S.x14 =
1
15

x15 +
1
2
x14 +

7
6
x13 − 91

30
x11 +

143
18

x9 − 143
10

x7

+
91
6
x5 − 691

90
x3 +

7
6
x,

S.x15 =
1
16

x16 +
1
2
x15 +

5
4
x14 − 91

24
x12 +

143
12

x10 − 429
16

x8

+
455
12

x6 − 691
24

x4 +
35
4
x2,

S.x16 =
1
17

x17 +
1
2
x16 +

4
3
x15 − 14

3
x13 +

52
3
x11 − 143

3
x9

+
260
3

x7 − 1382
15

x5 +
140
3

x3 − 3617
510

x,

and so forth. These formulas can be continued to the twenty-ninth power.
Indeed, they can be carried to even higher powers, provided that the nu-
merical coefficients have been worked out.
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63. In these formulas we can observe a general law, with whose help we
can easily find any one of the formulas from the preceding formula, except
for the last term, in case the power of that term is 1. In that case we have
to find one more term. If we ignore that term for the moment, and if

S.xn = αxn+1 + βxn + γxn−1 − δxn−3 + εxn−5 − ζxn−7 + ηxn−9 − · · · ,

then the subsequent formula will be

S.xx+1 =
n + 1
n + 2

αxn+2 − n + 1
n + 1

βxn+1 +
n + 1
n

γxn − n + 1
n− 2

δxn−2

+
n + 1
n− 4

εxn−4 − n + 1
n− 6

ζxn−6 +
n + 1
n− 8

ηxn−8 − · · · ,

and if n is even, we obtain the true formula. If n is odd, then the formula
is lacking a term, which has the form ±φx. Now with very little work we
can discover φ. Since when we let x = 1 the partial sum should be but a
single term, the first term, and this is equal to 1, if we let x = 1 in all of the
terms found so far, the sum should be equal to 1. In this way we evaluate
φ. Once this is found we can proceed to the next step. In this way all of
these sums can be found. Thus, since

S.x5 =
1
6
x6 +

1
2
x5 +

5
12

x4 − 1
12

x2,

we have

S.x6 =
6
7
· 1
6
x7 +

6
6
· 1
2
x6 +

6
5
· 5
12

x5 − 6
3
· 1
12

x3 + φx,

or

S.x6 =
1
7
x7 +

1
2
x6 +

1
2
x5 − 1

6
x3 + φx.

Now let x = 1, so that 1 = 1
7 + 1

2 + 1
2 − 1

6 + φ, and so φ = 1
6 − 1

7 = 1
42 , just

as we found in the general form.

64. By means of these formulas for partial sums we can easily find the
partial sums of all series whose general term is a polynomial, and much
more expeditiously than by the previous method using differences.

Example 1. Find the partial sum of the series 2, 7, 15, 26, 40, 57, 77, 100,
126, . . . , whose general term is (3x2 + x)/2.

Since the general term consists of two members, we find the partial sum
for each of them from the above formulas

S.
3
2
x2 =

1
2
x3 +

3
4
x2 +

1
4
x
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and

S.
1
2
x =

1
4
x2 +

1
4
x,

so that

S.
3x2 + x

2
=

1
2
x3 + x2 +

1
2
x =

1
2
x (x + 1)2 ,

and this is the desired partial sum. Thus if x = 5, we have 5
2 · 62 = 90,

while the sum of the terms is

2 + 7 + 15 + 26 + 40 = 90.

Example 2. Find the partial sum of the series 1, 27, 125, 343, 729, 1331,
. . . , which is the sum of the cubes of the odd integers.

The general term of this series is

(2x− 1)3 = 8x3 − 12x2 + 6x− 1,

so we collect the partial sums in the following way:

+8.S.x3 = 2x4 + 4x3 + 2x2,

−12.S.x2 = −4x3 − 6x2 − 2x,

+6.S.x = +3x2 + 3x,

and

−1.S.x0 = −x.

Then the desired sum is

2x4 − x2 = x2 (2x2 − 1
)
.

Hence, if x = 6, we have 36 · 71 = 2556, which is the sum of the first six
terms of the given series:

1 + 27 + 125 + 343 + 729 + 1331 = 2556.

65. If the general term is a product of linear factors as in paragraph 32,
then it is easier to find the partial sums by the method treated in that
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section and the sections following. When we let ω = 1, we have

Σ (x + n) =
1
2

(x + n− 1) (x + n) ,

Σ (x + n) (x + n + 1) =
1
3

(x + n− 1) (x + n) (x + n + 1) ,

Σ (x + n) (x + n + 1) (x + n + 2) =
1
4

(x + n− 1) (x + n) (x + n + 1)

× (x + n + 2) ,

and so forth. If we add to these sums the general term and a constant,
which can be calculated by letting x = 0, with the partial sum vanishing,
then we obtain the following:

S. (x + n) =
1
2

(x + n) (x + n + 1) − 1
2
n (n + 1) ,

S. (x + n) (x + n + 1) =
1
3

(x + n) (x + n + 1) (x + n + 2)

− 1
3
n (n + 1) (n + 2) ,

S. (x + n) (x + n + 1) (x + n + 2) =
1
4

(x + n) (x + n + 1) (x + n + 2)

× (x + n + 3)

− 1
4
n (n + 1) (n + 2) (n + 3) ,

and so forth.
If we let n = 0 or n = −1, then the constant in these partial sums will

vanish.

66. For the series 1, 2, 3, 4, 5, . . . , whose general term is x, the partial sum
is 1

2x (x + 1) . The series of partial sums, 1, 3, 6, 10, 15, . . . has a partial sum

x (x + 1) (x + 2)
1 · 2 · 3 .

This series of partial sums 1, 4, 10, 20, 35, . . . has a partial sum

x (x + 1) (x + 2) (x + 3)
1 · 2 · 3 · 4 ,

which is the general term of the series 1, 5, 15, 35, 70, . . . with partial sum

x (x + 1) (x + 2) (x + 3) (x + 4)
1 · 2 · 3 · 4 · 5 .
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These series have a special importance, since they have many applications.
For instance, from these we obtain coefficients of binomials with high de-
grees, and it is clear to anyone with some experience in this area that these
are important.

67. We can also use these to find more easily the partial sums that we
formerly found with differences. Since we found the general term to be of
the form

a +
x− 1

1
b +

(x− 1) (x− 2)
1 · 2 c +

(x− 1) (x− 2) (x− 3)
1 · 2 · 3 d + · · · ,

if we take the partial sum of each member and then add all of these, we
will have the partial sum of the series with the given general term. Thus,
since

S.1 = x,

S. (x− 1) =
1
2
x (x− 1) ,

S. (x− 1) (x− 2) =
1
3
x (x− 1) (x− 2) ,

S. (x− 1) (x− 2) (x− 3) =
1
4
x (x− 1) (x− 2) (x− 3) ,

and so forth, we have the desired partial sum

xa +
x (x− 1)

1 · 2 b +
x (x− 1) (x− 2)

1 · 2 · 3 c +
x (x− 1) (x− 2) (x− 3)

1 · 2 · 3 · 4 d + · · · ,
and this is exactly the form we obtained before in paragraph 57 with dif-
ferences.

68. We can also find these partial sums for quotients. Since previously, in
paragraph 34, we obtained, when ω = 1,

Σ
1

(x + n) (x + n + 1)
= −1 · 1

x + n
,

so that

S.
1

(x + n) (x + n + 1)
= −1 · 1

x + n + 1
+

1
n + 1

.

In a similar way, if we add to the above sum the general term, or, what
comes to the same thing, if in these expressions we substitute x + 1 for x,
then we have

S.
1

(x + n) (x + n + 1) (x + n + 2)

= −1
2
· 1
(x + n + 1) (x + n + 2)

+
1
2
· 1
(n + 1) (n + 2)
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and

S.
1

(x + n) (x + n + 1) (x + n + 2) (x + n + 3)

= −1
3
· 1
(x + n + 1) (x + n + 2) (x + n + 3)

+
1
3
· 1
(n + 1) (n + 2) (n + 3)

.

These forms can easily be continued as far as desired.

69. Since

S.
1

(x + n) (x + n + 1)
=

1
n + 1

− 1
x + n + 1

,

we also have

S.
1

x + n
− S.

1
x + n + 1

=
1

n + 1
− 1

x + n + 1
.

Although neither of these two partial sums can be expressed by itself, still
their difference is known. In many cases, by this means the sum of the series
can be reasonably found. This is the case if the general term is a quotient
whose denominator can be factored into linear factors. The whole quotient
is expressed as partial fractions, and then by means of this lemma it soon
becomes clear whether we can find the partial sum.

Example 1. Find the partial sum of the series 1+ 1
3 + 1

6 + 1
10 + 1

15 + 1
21 +· · · ,

whose general term is 2/
(
x2 + x

)
.

This general term can be expressed as

2
x
− 2

x + 1
.

It follows that the partial sum is

2S.
1
x
− 2S.

1
x + 1

.

By the previous lemma we have that this is equal to

2 − 2
x + 1

=
2x

x + 1
.

Hence, if x = 4, then 8
5 = 1 + 1

3 + 1
6 + 1

10 .

Example 2. Find the partial sum of the series 1
5 ,

1
21 ,

1
45 ,

1
77 ,

1
117 , . . . , whose

general term is 1/
(
4x2 + 4x− 3

)
.
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Since the denominator of the general term has the factors (2x− 1) and
(2x + 3), the general term can be expressed as

1
4
· 1
2x− 1

− 1
4
· 1
2x + 3

=
1
8
· 1
x− 1

2

− 1
8
· 1
x + 3

2

.

But then

S.
1

x− 1
2

= S.
1

x + 1
2

+ 2 − 1
x + 1

2

and

S.
1

x + 1
2

= S.
1

x + 3
2

+
2
3
− 1

x + 3
2

,

so that

S.
1

x− 1
2

− S.
1

x + 3
2

= 2 +
2
3
− 1

x + 1
2

− 1
x + 3

2

.

When this is divided by eight, we have the desired partial sum:

1
4

+
1
12

− 1
8x + 4

− 1
8x + 12

=
x

4x + 2
+

x

3 (4x + 6)
=

x (4x + 5)
3 (2x + 1) (2x + 3)

.

70. General terms that have the form of binomial coefficients deserve
special notice. We will find the partial sums of series whose numerators are
1 and whose denominators are binomial coefficients. Hence, a series whose:

general term is has partial sum

1 · 2
x (x + 1)

2
1
− 2

x + 1
,

1 · 2 · 3
x (x + 1) (x + 2)

3
2
− 1 · 3

(x + 1) (x + 2)
,

1 · 2 · 3 · 4
x (x + 1) (x + 2) (x + 3)

4
3
− 1 · 2 · 4

(x + 1) (x + 2) (x + 3)
,

1 · 2 · 3 · 4 · 5
x (x + 1) (x + 2) (x + 3) (x + 4)

5
4
− 1 · 2 · 3 · 5

(x + 1) (x + 2) (x + 3) (x + 4)
,

and so forth. From this the law by which these expressions proceed is
obvious. However, the partial sum that corresponds to the general term
1/x is not obtained, since it cannot be expressed in finite form.

71. Since the partial sum has x terms if the index is x, it is clear that if
we let the index become infinite, we obtain the sum of these infinite series.
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In this case, in the expressions just found, the later terms will vanish due
to the denominators becoming infinite.

Hence, these infinite series have finite sums, as follows:

1 +
1
3

+
1
6

+
1
10

+
1
15

+ · · · =
2
1
,

1 +
1
4

+
1
10

+
1
20

+
1
35

+ · · · =
3
2
,

1 +
1
5

+
1
15

+
1
35

+
1
70

+ · · · =
4
3
,

1 +
1
6

+
1
21

+
1
56

+
1

126
+ · · · =

5
4
,

1 +
1
7

+
1
28

+
1
84

+
1

210
+ · · · =

6
5
,

and so forth. Therefore, every series whose partial sum we know can be
continued to infinity, and the sum can be exhibited by letting x = ∞,
provided that the sum is finite; this will be the case if in the partial sum
the power of x is the same in both the numerator and denominator.
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3
On the Infinite and the Infinitely Small

72. Since every quantity, no matter how large, can always be increased,
and there is no obstacle to adding to a given quantity another like quantity,
it follows that every quantity can be increased without limit. Furthermore,
there is no quantity so large that a larger one cannot be conceived, and so
there is no doubt that every quantity can be increased to infinity. If there
is someone who would deny this, he would have to give some quantity that
cannot be increased, and so he needs to give a quantity to which nothing
can be added. This is absurd, and even the idea of quantity rules out this
possibility. He must necessarily concede that every quantity can always be
increased without limit, that is, it can be increased to infinity.

73. For each kind of quantity this becomes even clearer. No one can
easily defend himself if he declares that the series of natural numbers,
1, 2, 3, 4, 5, 6, . . . has a limit beyond which it cannot be continued. Indeed,
there is no such number to which 1 cannot be added to obtain the following
number, which is greater. Hence, the series of natural numbers continues
without limit, nor is it possible to come to some greatest number beyond
which there is no greater number. In like manner the straight line cannot
be extended to such a point that it cannot be extended further. By this it
is clear that both the integers and the line can be increased to infinity. No
matter what kind of quantity it may be, we should understand that every
quantity, no matter how large, can always be made greater and greater,
and thus increased without limit, that is, increased to infinity.
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74. Although these things are clear enough, so that anyone who would
deny them must contradict himself, still, this theory of the infinite has been
so obfuscated by so many difficulties and even involved in contradictions
by many who have tried to explain it, that no way is open by which they
may extricate themselves. From the fact that a quantity can be increased
to infinity, some have concluded that there is actually an infinite quantity,
and they have described it in such a way that it cannot be increased.
In this way they overturn the very idea of quantity, since they propose a
quantity of such a kind that it cannot be increased. Furthermore, those who
admit such an infinity contradict themselves; when they put an end to the
capacity a quantity has of being increased, they simultaneously deny that
the quantity can be increased without limit, since these two statements
come to the same thing. Thus while they admit an infinite quantity, they
also deny it. Indeed, if a quantity cannot be increased without limit, that
is to infinity, then certainly no infinite quantity can exist.

75. Hence, from the fact that every quantity can be increased to infinity, it
seems to follow that there is no infinite quantity. A quantity increased con-
tinuously by increments does not become infinite unless it shall have already
increased without limit. However, that which must increase without limit
cannot be conceived of as having already become infinite. Nevertheless, not
only is it possible to give a quantity of this kind, to which increments are
added without limit, a certain character, and with due care to introduce it
into calculus, as we shall soon see at length, but also there exist real cases,
at least they can be conceived, in which an infinite number actually exists.
Thus, if there are things that are infinitely divisible, as many philosophers
have held to be the case, the number of parts of which this thing is con-
stituted is really infinite. Indeed, if it be claimed that the number is finite,
then the thing is not really infinitely divisible. In a like manner, if the whole
world were infinite, as many have held, then the number of bodies making
up the world would certainly not be finite, and would hence be infinite.

76. Although there seems to be a contradiction here, if we consider it
carefully we can free ourselves from all difficulties. Whoever claims that
some material is infinitely divisible denies that in the continuous division
of the material one ever arrives at parts so small that they can no longer be
divided. Hence, this material does not have ultimate indivisible parts, since
the individual particles at which one arrives by continued division must be
able to be further subdivided. Therefore, whoever says, in this case, that
the number of parts is infinite, also understands that the ultimate parts
are indivisible; he tries to count those parts that are never reached, and
hence do not exist. If some material can always be further subdivided, it
lacks indivisible or absolutely simple parts. For this reason, whoever claims
that some material can be infinitely subdivided denies that the material is
made up of simple parts.
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77. As long as we are speaking about the parts of some body or of some
material, we understand not ultimate or simple parts, of which indeed there
are none, but those that division really produces. Then, since by hypothesis
we admit material that is infinitely divisible, even a very small particle of
material can be dissected into many parts, but no number can be given that
is so large that a greater number of parts cut from that particle cannot be
exhibited. Hence the number of parts, indeed not ultimate parts, but those
that are still further divisible, that make up each body, is greater than
any number that can be given. Likewise, if the whole world is infinite,
the number of bodies making up the world is greater than any assignable
number. Since this is not a finite number, it follows that an infinite number
and a number greater than any assignable number are two ways of saying
the same thing.

78. Anyone who has gathered from this discussion any insight into the
infinite divisibility of matter will suffer none of the difficulties that people
commonly assign to this opinion. Nor will he be forced to admit anything
contrary to sound reasoning. On the other hand, anyone who denies that
matter is infinitely divisible will find himself in serious difficulties from
which he will in no way be able to extricate himself. These ultimate particles
are called by some atoms, by others monads or simple beings. The reason
why these ultimate particles admit no further division could be for two
possible reasons. The first is that they have no extension; the second is
that although they have extension, they are so hard and impenetrable that
no force is sufficient to dissect them. Whichever choice is made will lead to
equally difficult positions.

79. Suppose that ultimate particles lack any extension, so that they lack
any further parts: By this explanation the idea of simple beings is nicely
saved. However, it is impossible to conceive how a body can be constituted
by a finite number of particles of this sort. Suppose that a cubic foot of
matter is made up of a thousand simple beings of this kind, and that it is
actually cut up into one thousand pieces. If these pieces are equal, they will
each be one cubic finger; if they are not equal, some will be larger, some
smaller. One cubic finger will be a simple being, and we will be faced with
a great contradiction, unless by chance we want to say that there is one
simple being and the rest of the space is empty. In this way the continuity
of the body is denied, except that those philosophers completely banished
any vacuum from the world. If someone should object that the number
of simple beings contained in a cubic foot of matter is much more than
a thousand, absolutely nothing is gained. Any difficulty that follows from
the number one thousand will remain with any other number, no matter
how large. The inventor of the monad, a very acute man, LEIBNIZ, probed
this problem deeply, and finally decided that matter is infinitely divisible.
Hence, it is not possible to arrive at a monad before the body is actually



50 3. On the Infinite and the Infinitely Small

infinitely divided. By this very fact, the existence of simple beings that
make up a body is completely refuted. He who denies that bodies are made
up of simple beings and he who claims that bodies are infinitely divisible
are both saying the same thing.

80. Nor is their position any better if they say that the ultimate particles
of a body are indeed extended, but because of the hardness they cannot
be broken apart. Since they admit extension in the ultimate particles, they
hold that the particles are composite. Whether or not they can be separated
from each other makes little difference, since they can assign no cause that
explains this hardness. For the most part, however, those who deny the
infinite divisibility of matter seem to have sufficiently felt the difficulties of
this latter position, since usually they cling to the former idea. But they
cannot escape these difficulties except with a few trivial metaphysical dis-
tinctions, which generally strive to keep us from trusting the consequences
that follow from mathematical principles. Nor should they admit that sim-
ple parts have dimensions. In the first place they should have demonstrated
that these ultimate parts, of which a determined number make up a body,
have no extension.

81. Since they can find no way out of this labyrinth, nor can they meet the
objections in a suitable way, they flee to distinctions, and to the objections
they reply with arguments supplied by the senses and the imagination. In
this situation one should rely solely on the intellect, since the senses and ar-
guments depending on them frequently are fallacious. Pure intellect admits
the possibility that one thousandth part of a cubic foot of matter might
lack all extension, while this seems absurd to the imagination. That which
frequently deceives the senses may be true, but it can be decided by no
one except mathematicians. Indeed, mathematics defends us in particular
against errors of the senses and teaches about objects that are perceived by
the senses, sometimes correctly, and sometimes only in appearance. This
is the safest science, whose teaching will save those who follow it from the
illusions of the senses. It is far removed from those responses by which
metaphysicians protect their doctrine and thus rather make it more sus-
pect.

82. But let us return to our proposition. Even if someone denies that
infinite numbers really exist in this world, still in mathematical speculations
there arise questions to which answers cannot be given unless we admit an
infinite number. Thus, if we want the sum of all the numbers that make
up the series 1 + 2 + 3 + 4 + 5 + · · · , since these numbers progress with
no end, and the sum increases, it certainly cannot be finite. By this fact it
becomes infinite. Hence, this quantity is so large that it is greater than any
finite quantity and cannot not be infinite. To designate a quantity of this
kind we use the symbol ∞, by which we mean a quantity greater than any
finite or assignable quantity. Thus, when a parabola needs to be defined in
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such a way that it is said to be an infinitely long ellipse, we can correctly
say that the axis of the parabola is an infinitely long straight line.

83. This theory of the infinite will be further illustrated if we discuss
that which mathematicians call the infinitely small. There is no doubt that
any quantity can be diminished until it all but vanishes and then goes
to nothing. But an infinitely small quantity is nothing but a vanishing
quantity, and so it is really equal to 0. There is also a definition of the
infinitely small quantity as that which is less than any assignable quantity.
If a quantity is so small that it is less than any assignable quantity, then
it cannot not be 0, since unless it is equal to 0 a quantity can be assigned
equal to it, and this contradicts our hypothesis. To anyone who asks what
an infinitely small quantity in mathematics is, we can respond that it really
is equal to 0. There is really not such a great mystery lurking in this idea as
some commonly think and thus have rendered the calculus of the infinitely
small suspect to so many. In the meantime any doubts that may remain
will be removed in what follows, where we are going to treat this calculus.

84. Since we are going to show that an infinitely small quantity is really
zero, we must first meet the objection of why we do not always use the
same symbol 0 for infinitely small quantities, rather than some special
ones. Since all nothings are equal, it seems superfluous to have different
signs to designate such a quantity. Although two zeros are equal to each
other, so that there is no difference between them, nevertheless, since we
have two ways to compare them, either arithmetic or geometric, let us look
at quotients of quantities to be compared in order to see the difference.
The arithmetic ratio between any two zeros is an equality. This is not the
case with a geometric ratio. We can easily see this from this geometric
proportion 2 : 1 = 0 : 0, in which the fourth term is equal to 0, as is the
third. From the nature of the proportion, since the first term is twice the
second, it is necessary that the third is twice the fourth.

85. These things are very clear, even in ordinary arithmetic. Everyone
knows that when zero is multiplied by any number, the product is zero and
that n ·0 = 0, so that n : 1 = 0 : 0. Hence, it is clear that any two zeros can
be in a geometric ratio, although from the perspective of arithmetic, the
ratio is always of equals. Since between zeros any ratio is possible, in order
to indicate this diversity we use different notations on purpose, especially
when a geometric ratio between two zeros is being investigated. In the
calculus of the infinitely small, we deal precisely with geometric ratios of
infinitely small quantities. For this reason, in these calculations, unless we
use different symbols to represent these quantities, we will fall into the
greatest confusion with no way to extricate ourselves.

86. If we accept the notation used in the analysis of the infinite, then
dx indicates a quantity that is infinitely small, so that both dx = 0 and
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a dx = 0, where a is any finite quantity. Despite this, the geometric ratio
a dx : dx is finite, namely a : 1. For this reason these two infinitely small
quantities dx and a dx, both being equal to 0, cannot be confused when
we consider their ratio. In a similar way, we will deal with infinitely small
quantities dx and dy. Although these are both equal to 0, still their ratio
is not that of equals. Indeed, the whole force of differential calculus is
concerned with the investigation of the ratios of any two infinitely small
quantities of this kind. The application of these ratios at first sight might
seem to be minimal. Nevertheless, it turns out to be very great, which
becomes clearer with each passing day.

87. Since the infinitely small is actually nothing, it is clear that a finite
quantity can neither be increased nor decreased by adding or subtracting an
infinitely small quantity. Let a be a finite quantity and let dx be infinitely
small. Then a+ dx and a− dx, or, more generally, a±ndx, are equal to a.
Whether we consider the relation between a± ndx and a as arithmetic or
as geometric, in both cases the ratio turns out to be that between equals.
The arithmetic ratio of equals is clear: Since ndx = 0, we have

a± ndx− a = 0.

On the other hand, the geometric ratio is clearly of equals, since

a± ndx

a
= 1.

From this we obtain the well-known rule that the infinitely small vanishes
in comparison with the finite and hence can be neglected. For this reason
the objection brought up against the analysis of the infinite, that it lacks
geometric rigor, falls to the ground under its own weight, since nothing is
neglected except that which is actually nothing. Hence with perfect jus-
tice we can affirm that in this sublime science we keep the same perfect
geometric rigor that is found in the books of the ancients.

88. Since the infinitely small quantity dx is actually equal to 0, its square
dx2, cube dx3, and any other dxn, where n is a positive exponent, will
be equal to 0, and hence in comparison to a finite quantity will vanish.
However, even the infinitely small quantity dx2 will vanish when compared
to dx. The ratio of dx±dx2 to dx is that of equals, whether the comparison
is arithmetic or geometric. There is no doubt about the arithmetic; in the
geometric comparison,

dx± dx2 : dx =
dx± dx2

dx
= 1 ± dx = 1.

In like manner we have dx ± dx3 = dx and generally dx ± dxn+1 = dx,
provided that n is positive. Indeed, the geometric ratio dx ± dxn+1 : dx
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equals 1 + dxn, and since dxn = 0, the ratio is that of equals. Hence, if we
follow the usage of exponents, we call dx infinitely small of the first order,
dx2 of the second order, dx3 of the third order, and so forth. It is clear that
in comparison with an infinitely small quantity of the first order, those of
higher order will vanish.

89. In a similar way it is shown that an infinitely small quantity of the
third and higher orders will vanish when compared with one of the second
order. In general, an infinitely small quantity of any higher order vanishes
when compared with one of lower order. Hence, if m is less than n, then

a dxm + b dxn = a dxm,

since dxn vanishes compared with dxm, as we have shown. This is true also
with fractional exponents; dx vanishes compared with

√
dx or dx

1
2 , so that

a
√
dx + b dx = a

√
dx.

Even if the exponent of dx is equal to 0, we have dx0 = 1, although dx = 0.
Hence the power dxn is equal to 1 if n = 0, and from being a finite quantity
becomes infinitely small if n is greater than 0.

Therefore, there exist an infinite number of orders of infinitely small
quantities. Although all of them are equal to 0, still they must be carefully
distinguished one from the other if we are to pay attention to their mutual
relationships, which has been explained through a geometric ratio.

90. Once we have established the concept of the infinitely small, it is
easier to discuss the properties of infinity, or the infinitely large. It should
be noted that the fraction 1/z becomes greater the smaller the denominator
z becomes. Hence, if z becomes a quantity less than any assignable quantity,
that is, infinitely small, then it is necessary that the value of the fraction1/z
becomes greater than any assignable quantity and hence infinite. For this
reason, if 1 or any other finite quantity is divided by something infinitely
small or 0, the quotient will be infinitely large, and thus an infinite quantity.
Since the symbol ∞ stands for an infinitely large quantity, we have the
equation

a

dx
= ∞.

The truth of this is clear also when we invert:
a

∞ = dx = 0.

Indeed, the larger the denominator z of the fraction a/z becomes, the
smaller the value of the fraction becomes, and if z becomes an infinitely
large quantity, that is z = ∞, then necessarily the value of the fraction
a/∞ becomes infinitely small.
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91. Anyone who denies either of these arguments will find himself in great
difficulties, with the necessity of denying even the most certain principles
of analysis. If someone claims that the fraction a/0 is finite, for example
equal to b, then when both parts of the equation are multiplied by the
denominator, we obtain a = 0 · b. Then the finite quantity b multiplied
by zero produces a finite a, which is absurd. Much less can the value b of
the fraction a/0 be equal to 0; in no way can 0 multiplied by 0 produce
the quantity a. Into the same absurdity will fall anyone who denies that
a/∞ = 0, since then he would be saying that a/∞ = b, a finite quantity.
From the equation a/∞ = b it would legitimately follow that ∞ = a/b, but
from this we conclude that the value of the fraction a/b, whose numerator
and denominator are both finite quantities, is infinitely large, which of
course is absurd. Nor is it possible that the values of the fractions a/0 and
a/∞ could be complex, since the value of a fraction whose numerator is
finite and whose denominator is complex cannot be either infinitely large
or infinitely small.

92. An infinitely large quantity, to which we have been led through this
consideration, and which is treated only in the analysis of the infinite, can
best be defined by saying that an infinitely large quantity is the quotient
that arises from the division of a finite quantity by an infinitely small quan-
tity. Conversely, we can say that an infinitely small quantity is a quotient
that arises from division of a finite quantity by an infinitely large quantity.
Since we have a geometric proportion in which an infinitely small quantity
is to a finite quantity as a finite quantity is to an infinitely large quantity,
it follows that an infinite quantity is infinitely greater than a finite quan-
tity, just as a finite quantity is infinitely greater than an infinitely small
quantity. Hence, statements of this sort, which disturb many, should not
be rejected, since they rest on most certain principles. Furthermore, from
the equation a/0 = ∞, it can follow that zero multiplied by an infinitely
large quantity produces a finite quantity, which would seem strange were
it not the result of a very clear deduction.

93. Just as when we compare infinitely small quantities by a geometric ra-
tio, we can find very great differences, so when we compare infinitely large
quantities the difference can be even greater, since they differ not only by
geometric ratios, but also by arithmetic. Let A be an infinite quantity that
is obtained from division of a finite quantity a by the infinitely small dx,
so that a/dx = A. Likewise 2a/dx = 2A and na/dx = nA. Now, since nA
is an infinite quantity, it follows that the ratio between two infinitely large
quantities can have any value. Hence, if an infinite quantity is either multi-
plied or divided by a finite number, the result will be an infinite quantity.
Nor can it be denied that infinite quantities can be further augmented.
It is easily seen that if the geometric ratio that holds between two infinite
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quantities shows them to be unequal, then even less will an arithmetic ratio
show them to be equal, since their difference will always be infinitely large.

94. Although there are some for whom the idea of the infinite, which we
use in mathematics, seems to be suspect, and for this reason think that
analysis of the infinite is to be rejected, still even in the trivial parts of
mathematics we cannot do without it. In arithmetic, where the theory of
logarithms is developed, the logarithm of zero is said to be both negative
and infinite. There is no one in his right mind who would dare to say
that this logarithm is either finite or even equal to zero. In geometry and
trigonometry this is even clearer. Who is there who would ever deny that
the tangent or the secant of a right angle is infinitely large? Since the
rectangle formed by the tangent and the cotangent has an area equal to
the square of the radius, and the cotangent of a right angle is equal to 0,
even in geometry it has to be admitted that the product of zero and infinity
can be finite.

95. Since a/dx is an infinite quantity A, it is clear that the quantity A/dx
will be a quantity infinitely greater than the quantity A. This can be seen
from the proportion a/dx : A/dx = a : A, that is, as a finite number to
one infinitely large. There are relations of this kind between infinitely large
quantities, so that some can be infinitely greater than others. Thus, a/dx2

is a quantity infinitely greater than a/dx; if we let a/dx = A, then a/dx2 =
A/dx. In a similar way a/dx3 is an infinite quantity infinitely greater than
a/dx2, and so is infinitely greater than a/dx. We have, therefore an infinity
of grades of infinity, of which each is infinitely greater than its predecessor.
If the number m is just a little bit greater than n, then a/dxm is an infinite
quantity infinitely greater than the infinite quantity a/dxn.

96. Just as with infinitely small quantities there are geometric ratios indi-
cating inequalities, but arithmetic ratios always indicate equality, so with
infinitely large quantities we have geometric ratios indicating equality, but
whose arithmetic ratios still indicate inequality. If a and b are two finite
quantities, then the geometric ratio of two infinite quantities a/dx+ b and
a/dx indicates that the two are equal; the quotient of the first by the sec-
ond is equal to 1+ b dx/a = 1, since dx = 0. However, if they are compared
arithmetically, due to the difference b, the ratio indicates inequality. In a
similar way, the geometric ratio of a/dx2 + a/dx to a/dx2 indicates equal-
ity; expressing the ratio, we have 1 + dx = 1, since dx = 0. On the other
hand, the difference is a/dx, and so this is infinite. It follows that when we
consider geometric ratios, an infinitely large quantity of a lower grade will
vanish when compared to an infinitely large quantity of a higher grade.

97. Now that we have been warned about the grades of infinities, we will
soon see that it is possible not only for the product of an infinitely large
quantity and an infinitely small quantity to produce a finite quantity, as
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we have already seen, but also that a product of this kind can also be
either infinitely large or infinitely small. Thus, if the infinite quantity a/dx
is multiplied by the infinitely small dx, the product will be equal to the
finite a. However, if a/dx is multiplied by the infinitely small dx2 or dx3 or
another of higher order, the product will be a dx, a dx2, a dx3, and so forth,
and so it will be infinitely small. In the same way, we understand that if
the infinite quantity a/dx2 is multiplied by the infinitely small dx, then the
product will be infinitely large. In general, if a/dxn is multiplied by b dxm,
the product ab dxm−n will be infinitely small if m is greater than n; it will
be finite if m equals n; it will be infinitely large if m is less than n.

98. Both infinitely small and infinitely large quantities often occur in
series of numbers. Since there are finite numbers mixed in these series, it is
clearer than daylight, how, according to the laws of continuity, one passes
from finite quantities to infinitely small and to infinitely large quantities.
First let us consider the series of natural numbers, continued both forward
and backward:

. . . , −4, −3, −2, −1, +0, +1, +2, +3, +4, . . . .

By continuously decreasing, the numbers approach 0, that is, the infinitely
small. Then they continue further and become negative. From this we un-
derstand that the positive numbers decrease, passing through 0 to increas-
ing negative numbers. However, if we consider the squares of the numbers,
since they are all positive,

. . . , +16, +9, +4, +1, +0, +1, +4, +9, +16, . . . ,

we have 0 as the transition number from the decreasing positive numbers
to the increasing positive numbers. If all of the signs are changed, then
0 is again the transition from decreasing negative numbers to increasing
negative numbers.

99. If we consider the series with general term
√
x, which is continued

both forwards and backwards, we have

. . . , +
√−3, +

√−2, +
√−1, +0, +

√
1, +

√
2, +

√
3, +

√
4, . . . ,

and from this it is clear that 0 is a kind of limit through which real quantities
pass to the complex.

If these terms are considered as points on a curve, it is seen that if they
are positive and decrease so that they eventually vanish, then continuing
further, they become either negative, or positive again, or even complex.
The same happens if the points were first negative, then also vanish, and if
they continue further, become either positive, negative, or complex. Many
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examples of phenomena of this kind are found in the theory of plane curves,
treated in a preceding book.1

100. In the same way infinite terms often occur in series. Thus, in the
harmonic series, whose general term is 1/x, the term corresponding to the
index x = 0 is the infinite term 1/0. The whole series is as follows:

. . . , −1
4
, −1

3
, −1

2
, −1

1
, +

1
0
, +

1
1
, +

1
2
, +

1
3
, . . . .

Going from right to left the terms increase, so that 1/0 is infinitely large.
Once it has passed through, the terms become decreasing and negative.
Hence, an infinitely large quantity can be thought of as some kind of limit,
passing through which positive numbers become negative and vice versa.
For this reason it has seemed to many that the negative numbers can be
thought of as greater than infinity, since in this series the terms continu-
ously increase, and once they have reached infinity, they become negative.
However, if we consider the series whose general term is 1/x2, then after
passing through infinity, the terms become positive again,

. . . , +
1
9
, +

1
4
, +

1
1
, +

1
0
, +

1
1
, +

1
4
, +

1
9
, . . . ,

and no one would say that these are greater than infinity.

101. Frequently, in a series an infinite term will constitute a limit sep-
arating real terms from complex, as occurs in the following series, whose
general term is 1/

√
x:

. . . , +
1√−3

, +
1√−2

, +
1√−1

, +
1
0
, +

1√
1
, +

1√
2
, +

1√
3
, . . . .

From this it does not follow that complex numbers are greater than infinity,
since from the series previously discussed,

. . . , +
√−3, +

√−2, +
√−1, +0, +

√
1, +

√
2, +

√
3, . . . ,

it would equally follow that the complex numbers are less than zero. It is
possible to show a change from real terms to complex, where the limit is
neither 0 nor ∞, for example if the general term is 1 +

√
x. In these cases,

due to the irrationality, each term has two values. In the limit between
real and complex numbers the two values always come together as equals.
Nevertheless, whenever there are terms that are first positive and then
become negative, the transition is always through a limit that is infinitely
small or infinitely large. This is all due to the law of continuity, which is
most clearly seen through plane curves.

1Introduction, Book II.
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102. From the summation of infinite series we can gather many results
that both further illustrate this theory of the infinite and also aid in an-
swering doubts that frequently arise in this material. In the first place, if
the series has equal terms, such as

1 + 1 + 1 + 1 + 1 + · · · ,
which is continued to infinity, there is no doubt that the sum of all of these
terms is greater than any assignable number. For this reason it must be
infinite. We confirm this by considering its origin in the expansion of the
fraction

1
1 − x

= 1 + x + x2 + x3 + · · · .

If we let x = 1, then

1
1 − 1

= 1 + 1 + 1 + 1 + · · · ,

so that the sum is equal to

1
1 − 1

=
1
0

= ∞.

103. Although there can be no doubt that when the same finite number
is added an infinite number of times the sum should be infinite, still, the
general infinite series that originates from the fraction

1
1 − x

= 1 + x + x2 + x3 + x4 + x5 + · · ·

seems to labor under most serious difficulties. If for x we successively sub-
stitute the numbers 1, 2, 3, 4, . . . , we obtain the following series with their
sums:

A. 1 + 1 + 1 + 1 + 1 + · · · = 1
1−1 = ∞,

B. 1 + 2 + 4 + 8 + 16 + · · · = 1
1−2 = −1,

C. 1 + 3 + 9 + 27 + 81 + · · · = 1
1−3 = − 1

2 ,

D. 1 + 4 + 16 + 64 + 256 + · · · = 1
1−4 = − 1

3 ,

and so forth. Since each term of series B, except for the first, is greater
than the corresponding term of series A, the sum of series B must be much
more than the sum of series A. Nevertheless, this calculation shows that
series A has an infinite sum, while series B has a negative sum, which is less
than zero, and this is beyond comprehension. Even less can we reconcile

Administrator
ferret
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with ordinary ideas the results of this and the following series C, D, and
so forth, which have negative sums while all of the terms are positive.

104. For this reason, the opinion suggested above, namely, that negative
numbers might sometimes be considered greater than the infinite, that is,
more than infinity, might seem to be more probable. Since it is also true
that when decreasing numbers go beyond zero they become negative, a
distinction has to be made between negative numbers like −1,−2,−3, . . .
and negative numbers like

+1
−1

+2
−1

+3
−1

, . . . ,

the former being less than zero and the latter being greater than the infinite.
Even with this agreement, the difficulty is not eliminated, as is suggested
by the following series:

1 + 2x + 3x2 + 4x3 + 5x4 + · · · =
1

(1 − x)2
,

from which we obtain the following series:

A. 1 + 2 + 3 + 4 + 5 + · · · = 1
(1−1)2 = 1

0 = ∞,

B. 1 + 4 + 12 + 32 + 80 + · · · = 1
(1−2)2 = 1.

Now, every term of series B is greater than the corresponding term of series
A, except for the first term, and insofar as the sum of series A is infinite,
while the sum of series B is equal to 1, which is only the first term, the
suggested principle is no explanation at all.

105. Since if we were to deny that

−1 =
+1
−1

and
+a

−b
=

−a

+b
,

the very firmest foundations of analysis would collapse, the previously sug-
gested explanation is not to be admitted. We ought rather to deny that the
sums that the general formula supplied are the true sums. Since these series
are derived by continual division, and while the remainders are divided fur-
ther, the remainders always grow larger the longer we continue, so that the
remainder can never be neglected. Even less can the last remainder, that is,
that divided by an infinitesimal, be omitted, since it is infinite. Since we did
not observe this in the previous series where the remainder became zero, it
should not be surprising that those sums led to absurd results. Since this
response is derived from the very origin of the series itself, it is most true
and it removes all doubt.
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106. In order that this may be clarified, let us examine the development
of the fraction 1/ (1 − x) in the first finite number of terms. Hence we have

1
1 − x

= 1 +
x

1 − x
,

1
1 − x

= 1 + x +
x2

1 − x
,

1
1 − x

= 1 + x + x2 +
x3

1 − x
,

1
1 − x

= 1 + x + x2 + x3 +
x4

1 − x
,

and so forth. If someone wishes to say that the finite series 1+x+x2+x3 has
a sum equal to 1/ (1 − x), then he is in error by the quantity x4/ (1 − x);
if he should say that the sum of the series 1 + x + x2 + x3 + · · · + x1000

is 1/ (1 − x), then his error is equal to x1001/ (1 − x). If x happens to be
greater than 1, this error is very large.

107. From this we see that he who would say that when this same series
is continued to infinity, that is,

1 + x + x2 + x3 + · · · + x∞,

and that the sum is 1/ (1 − x), then his error would be x∞+1/ (1 − x), and
if x > 1, then the error is indeed infinite. At the same time, however, this
same argument shows why the series 1 + x+ x2 + x3 + x4 + · · · , continued
to infinity, has a true sum of 1/ (1 − x), provided that x is a fraction less
than 1. In this case the error x∞+1 is infinitely small and hence equal to
zero, so that it can safely be neglected. Thus if we let x = 1

2 , then in truth

1 +
1
2

+
1
4

+
1
8

+
1
16

+ · · · =
1

1 − 1
2

= 2.

In a similar way, the rest of the series in which x is a fraction less than 1
will have a true sum in the way we have indicated.

108. This same answer is valid for the sum of divergent series in which
the signs alternate between + and −, which ordinarily is given by the same
formula, but with the sign of x changed to negative. Since we have

1
1 + x

= 1 − x + x2 − x3 + x4 − x5 + · · · ,

if we did not express the final remainder, we would have

A. 1 − 1 + 1 − 1 + 1 − 1 + · · · = 1
2 ,
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B. 1 − 2 + 4 − 8 + 16 − 32 + · · · = 1
3 ,

C. 1 − 3 + 9 − 27 + 81 − 243 + · · · = 1
4 .

It is clear that the sum of series B cannot be equal to 1
3 , since the more

terms we actually sum, the farther away the result gets from 1
3 . But the

sum of any series ought to be a limit the closer to which the partial sums
should approach, the more terms are added.

109. From this we conclude that series of this kind, which are called
divergent, have no fixed sums, since the partial sums do not approach any
limit that would be the sum for the infinite series. This is certainly a true
conclusion, since we have shown the error in neglecting the final remainder.
However, it is possible, with considerable justice, to object that these sums,
even though they seem not to be true, never lead to error. Indeed, if we
allow them, then we can discover many excellent results that we would
not have if we rejected them out of hand. Furthermore, if these sums were
really false, they would not consistently lead to true results; rather, since
they differ from the true sum not just by a small difference, but by infinity,
they should mislead us by an infinite amount. Since this does not happen,
we are left with a most difficult knot to unravel.

110. I say that the whole difficulty lies in the name sum. If, as is commonly
the case, we take the sum of a series to be the aggregate of all of its terms,
actually taken together, then there is no doubt that only infinite series
that converge continually closer to some fixed value, the more terms we
actually add, can have sums. However, divergent series, whose terms do
not decrease, whether their signs + and − alternate or not, do not really
have fixed sums, supposing we use the word sum for the aggregate of all
of the terms. Consider these cases that we have recalled, with erroneous
sums, for example the finite expression 1/ (1 − x) for the infinite series
1+x+x2+x3+ · · · . The truth of the matter is this, not that the expression
is the sum of the series, but that the series is derived from the expression.
In this situation the name sum could be completely omitted.

111. These inconveniences and apparent contradictions can be avoided
if we give the word sum a meaning different from the usual. Let us say
that the sum of any infinite series is a finite expression from which the
series can be derived. In this sense, the true sum of the infinite series
1+x+x2+x3+· · · is 1/ (1 − x), since this series is derived from the fraction,
no matter what value is substituted for x. With this understanding, if
the series is convergent, the new definition of sum agrees with the usual
definition. Since divergent series do not have a sum, properly speaking,
there is no real difficulty which arises from this new meaning. Finally, with
the aid of this definition we can keep the usefulness of divergent series and
preserve their reputations.
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4
On the Nature of Differentials
of Each Order

112. In the first chapter we saw that if the variable quantity x received an
increment equal to ω, then from this each function of x obtained an incre-
ment that can be expressed as Pω +Qω2 +Rω3 + · · · , and this expression
may be finite or it may go to infinity. Hence the function y, when we write
x + ω for x, takes the following form:

yI = y + Pω + Qω2 + Rω3 + Sω + · · · .
When the previous value of y is subtracted, there remains the difference of
the function y, which we express as

∆y = Pω + Qω2 + Rω3 + Sω4 + · · · .
Since the subsequent value of x is xI = x + ω, we have the difference
of x, namely, ∆x = ω. The letters P,Q,R, . . . represent functions of x,
depending on y, which we found in the first chapter.

113. Therefore, with whatever increment ω the variable quantity x is in-
creased, at the same time it is possible to define the increase that accrues to
y, the function of x, provided that we can define the functions P,Q,R, S, . . .
for any function y. In this chapter, and in all of the analysis of the infinite,
the increment ω by which we let the variable x increase will be infinitely
small, so that it vanishes; that is, it is equal to 0. Hence it is clear that the
increase, or the difference, of the function y will also be infinitely small.
With this hypothesis, each term of the expression

Pω + Qω2 + Rω3 + Sω4 + · · ·
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will vanish when compared with its predecessor (paragraph 88 and follow-
ing), so that only Pω will remain. For this reason, in the present case where
ω is infinitely small, the difference of y, ∆y, is equal to Pω.

114. The analysis of the infinite, which we begin to treat now, is noth-
ing but a special case of the method of differences, explained in the first
chapter, wherein the differences are infinitely small, while previously the
differences were assumed to be finite. Hence, this case, in which the whole
of analysis of the infinite is contained, should be distinguished from the
method of differences. We use special names and notation for the infinitely
small differences. With Leibniz we call infinitely small differences by the
name differentials. From the discussion in the first chapter on the different
orders of differences, we can easily understand the meaning of first, second,
third, and so forth, differentials of any function. Instead of the symbol ∆,
by which we previously indicated a difference, now we will use the symbol
d, so that dy signifies the first differential of y, d2y the second differential,
d3y the third differential, and so forth.

115. Since the infinitely small differences that we are now discussing we
call differentials, the whole calculus by means of which differentials are
investigated and applied has usually been called differential calculus. The
English mathematicians (among whom Newton first began to develop this
new branch of analysis, as did Leibniz among the Germans) use different
names and symbols. They call infinitely small differences, which we call
differentials, fluxions and sometimes increments. These words seem to fit
better in Latin, and they signify reasonably well the things themselves.
A variable quantity by continuously increasing takes on various different
values, and for this reason can be thought of as being in flux, from which
comes the word fluxion. This was first used by Newton for the rate of
change, to designate an infinitely small increment that a quantity receives,
as if, by analogy, it were flowing.

116. It might be uncivil to argue with the English about the use of words
and a definition, and we might easily be defeated in a judgment about the
purity of Latin and the adequacy of expression, but there is no doubt that
we have won the prize from the English when it is a question of notation. For
differentials, which they call fluxions, they use dots above the letters. Thus,
ẏ signifies the first fluxion of y, ÿ is the second fluxion, the third fluxion
has three dots, and so forth. This notation, since it is arbitrary, cannot
be criticized if the number of dots is small, so that the number can be
recognized at a glance. On the other hand, if many dots are required, much
confusion and even more inconvenience may be the result. For example, the
tenth differential, or fluxion, is very inconveniently represented with ten
dots, while our notation, d10y, is very easily understood. There are cases
where differentials of even much higher order, or even those of indefinite
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order, must be represented, and for this the English mode is completely
inapt.

117. We have used both the words and notations that have been accepted
in our countries; they are both more familiar and more convenient. Still, it
is not beside the point that we have spoken about the English usage and
notation, since those who peruse their books will need to know this if they
are to be intelligible. The English are not so wedded to their ways that they
refuse to read writings that use our methods. Indeed, we have read some
of their works with great avidity, and have taken from them much profit. I
have also often remarked that they have profited from reading works from
our regions. For these reasons, although it is greatly to be desired that
everywhere the same mode of expression be used, still it is not so difficult
to accustom ourselves to both methods, so that we can profit from books
written in their way.

118. Since up to this time we have used the letter ω to denote the differ-
ence or the increment by which the variable x is understood to increase,
now we understand ω to be infinitely small, so that ω is the differential of x,
and for this reason we use our method of writing ω = dx. From now on, dx
will be the infinitely small difference by which x is understood to increase.
In like manner the differential of y we express as dy. If y is any function
of x, the differential dy will indicate the increment that y receives when x
changes to x + dx. Hence, if we substitute x + dx for x in the function y
and we let yI be the result, then dy = yI − y, and this is understood to be
the first differential, that is, the differential of the first order. Later we will
consider the other differentials.

119. We must emphasize the fact that the letter d that we are using here
does not denote a quantity, but is used to express the word differential,
in the same way that the letter l is used for the word logarithm when the
theory of logarithms is being discussed. In algebra we are used to using
the symbol √ for a root. Hence dy does not signify, as it usually does
in analysis, the product of two quantities d and y, but rather we say the
differential of y. In a similar way, if we write d2y, this is not the square of
a quantity d, but it is simply a short and apt way of writing the second
differential. Since we use the letter d in differential calculus not for some
quantity, but only as a symbol, in order to avoid confusion in calculations
when many different constant quantities occur, we avoid using the letter d.
Just so we usually avoid the letter l to designate a quantity in calculations
where logarithms occur. It is to be desired that these letters d and l be
altered to give a different appearance, lest they be confused with other
letters of the alphabet that are used to designate quantities. This is what
has happened to the letter r, which first was used to indicate a root; the r
has been distorted to √.
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120. If y is any function of x, as we have seen, its first differential will have
the form Pω. Since ω = dx, we have dy = P dx. Whatsoever function of x
y might be, its differential is expressed by the product of a certain function
of x that we call P and the differential of x, that is, dx. Although the
differentials of x and y are both infinitely small, and hence equal to zero,
still there is a finite ratio between them. That is, dy : dx = P : 1. Once we
have found the function P , then we know the ratio between the differential
dx and the differential dy. Since differential calculus consists in finding
differentials, the work involved is not in finding the differentials themselves,
which are both equal to zero, but rather in their mutual geometric ratio.

121. Differentials are much easier to find than finite differences. For the
finite difference ∆y by which a function increases when the variable quan-
tity x increases by ω, it is not sufficient to know P , but we must investigate
also the functions Q,R, S, . . . that enter into the finite difference that we
have expressed as

Pω + Qω2 + Rω3 + · · · .
For the differential of y we need only to know the function P . For this
reason, from our knowledge of the finite difference of any function of x
we can easily define its differential. On the other hand, from a function’s
differential it is not possible to figure out its finite difference. Nevertheless,
we shall see (in paragraph 49 of the second part) that from a knowledge
of the differentials of all orders it is possible to find the finite difference of
any given function. Now, from what we have seen, it is clear that the first
differential dy = P dx gives the first term of the finite difference, that is,
Pω.

122. If the increment ω by which the variable x is considered to be in-
creased happens to be very small, so that in the expression Pω + Qω2 +
Rω3 + · · · the terms Qω2 and Rω3, and even more so the remaining terms,
become so small in comparison to Pω that they can be neglected in compu-
tations where rigor is not so important, in this case when we know the dif-
ferential Pdx we also know approximately the finite difference Pω. Hence,
in many cases we can use calculus in applications with no little profit. There
are some who judge that differentials are very small increments, but they
deny that they are actually equal to zero, and so they say that they are only
indefinitely small. This idea presents to others an occasion to blame anal-
ysis of the infinite for not obtaining exact, but only approximate, results.
This objection has some justification unless we insist that the infinitely
small is absolutely equal to zero.

123. Those who are unwilling to admit that the infinitely small becomes
nothing, in order that they might seem to meet the objection, compare
differentials to the very smallest speck of dust in relation to the whole earth.
One is thought not to have given the true bulk of the earth who departs
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by one speck from the truth. They want such a ratio between a finite
quantity and one infinitely small to be as is the ratio between the whole
earth and the smallest speck. If there is someone for whom this difference
is not sufficiently large, then let the ratio be magnified by even more than
a thousand, so that the smallness cannot possibly be observed. However,
they are forced to admit that geometrical rigor has been a bit compromised,
and to meet this objection they turn to such examples as they may find
from geometry or analysis of the infinite; from any agreement between these
latter methods they try to draw some good. This argument does not work,
since they frequently try to draw the truth from erroneous arguments.
In order that an argument avoid this difficulty and even be completely
successful, those quantities that we neglect in our calculations must not
be just incomprehensibly small, but they must be actually nothing, as we
have assumed. In this way geometric rigor suffers absolutely no violence.

124. Let us move on to an explanation of differentials of the second order.
These arise from second differences, which were treated in the first chapter,
when we let ω become the infinitely small dx. If we suppose that the variable
x increases by equal increments, then the second value xI becomes equal to
x + dx, and the following will be xII = x + 2dx, xIII = x + 3dx, . . . . Since
the first differences dx are constant, the second differences vanish, and so
the second differential of x, that is, d2x, is equal to 0. For this reason all of
the other differentials of x are equal to 0, namely, d3x = 0, d4x = 0, d5x =
0, . . . . One could object that since differentials are infinitely small, for that
reason alone they are equal to 0, so that there is nothing special about
the variable x, whose increments are considered to be equal. However, this
vanishing should be interpreted as due not only to the fact that d2x, d3x, . . .
are nothing in themselves, but also by reason of the powers of dx, which
vanish when compared to dx itself.

125. In order that this may become clearer, let us recall that the second
difference of any function y of x can be expressed as Pω2+Qω3+Rω4+· · · .
Hence, if ω should be infinitely small, then the terms Qω3, Rω4, . . . vanish
when compared with the first term Pω2, so that with ω = dx, the second
differential of y will be equal to P dx2, where dx2 means the square of the
differential dx. It follows that although the second differential of y, namely
d2y, by itself is equal to 0, still, since d2y = P dx2, d2y has a finite ratio
to dx2, that is, as P to 1. However, since y = x, we have P = 0, Q = 0,
R = 0, . . . , so that in this case the second differential of x vanishes, even
with respect to dx2, and so do the other higher powers of dx. This is the
sense in which we should understand what was stated previously, namely,
d2x = 0, d3x = 0, . . . .

126. Since the second difference is just the difference of the first difference,
the second differential, or, as it is frequently called, the differentiodifferen-
tial, is the differential of the first differential. Now, since a constant function
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undergoes no increment or decrement, it has no differences. Strictly speak-
ing, only variable quantities have differentials, but we say that constant
quantities have differentials of all orders equal to 0, and hence all powers
of dx vanish. Since the differential of dx, that is d2x, is equal to 0, the
differential dx can be thought of as a constant quantity; as long as the
differential of any quantity is constant, then that quantity is understood
to be taking on equal increments. Here we are taking x to be the quantity
whose differential is constant, and thus we estimate the variability of all
the functions on which the differentials depend.

127. We let the first differential of y be p dx. In order to find the second
differential we have to find the differential of p dx. Since dx is a constant
and does not change, even though we write x+ dx for x, we need only find
the differential of the first quantity p. Now let dp = q dx, since we have seen
that the differential of every function of x can be put into this form. From
what we have shown for finite differences, we see that the differential of np
is equal to nq dx, where n is a constant quantity. We substitute dx for the
constant n, so that the differential of p dx is equal to q dx2. For this reason,
if dy = p dx and dp = q dx, then the second differential d2y = q dx2, and
so it is clear, as we indicated before, that the second differential of y has a
finite ratio to dx2.

128. In the first chapter we noticed that the second and higher differences
cannot be determined unless the successive values of x are assumed to follow
some rule; since this rule is arbitrary, we have decided that the best and
easiest rule is that of an arithmetic progression. For the same reason we
cannot state anything certain about second differentials unless the first
differentials, by which the variable x is thought to increase constantly,
follow the stated rule. Hence we suppose that the first differentials of x,
namely, dx, dxI, dxII, . . . , are all equal to each other, so that the second
differentials are given by

d2x = dxI − dx = 0, d2xI = dxII − dxI = 0, . . . .

Since the second differentials, and those of higher order, depend on the
order by which the differentials of x are mutually related, and this order
is arbitrary, first differentials are not affected by this, and this is the huge
difference between the method for finding first differentials and those of
higher order.

129. If the successive values of x, namely, x, xI, xII, xIII, xIV, . . . , do
not form an arithmetic progression, but follow some other rule, then their
first differentials, namely, dx, dxI, dxII, . . . , will not be equal to each other,
and so we do not have d2x = 0. For this reason the second differentials
are functions of x with a different form. If the first differential of such a
function y is equal to p dx, to find the second differential it is not enough to
multiply the differential of p by dx, but we must also take the differential
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of dx, that is, d2x into account. Since the second differential arises from
the difference when p dx is subtracted from its successor, which we obtain
by substituting x+dx for x and dx+d2x for dx, we suppose that the value
of this successor of p has the form p + q dx, and the successor of p dx has
the form

(p + q dx)
(
dx + d2x

)
= p dx + p d2x + q dx2 + q dx d2x.

When we subtract p dx from this we have the second differential

d2y = p d2x + q dx2 + q dx d2x = p d2x + q dx2

since q dx d2x vanishes when compared to p d2x.

130. Although it is simplest and most convenient to have the increments
of x equal to each other, nevertheless it is frequently the case that y is
not directly a function of x, but a function of some other quantity that
is a function of x. Furthermore, frequently it is specified that the first
differentials of this other quantity should be equal, but their relation to x
may not be clear. In the previous case the second and following differentials
of x depend on a relationship that x has with that quantity, and we suppose
that the change is by equal increments. In this other case the second and
following differentials of x are considered to be unknowns, and we use the
symbols d2x, d3x, d4x, . . . .

131. The methods by which these differentiations in the different cases are
to be treated we shall discuss at length later. Now we will proceed under
the assumption that x increases uniformly, so that the first differentials
dx, dxI, dII, . . . are equal to each other, so that the second and higher
differentials are equal to zero. We can state this condition by saying that
the differential of x, that is dx, is assumed to be constant. Let y be any
function of x; since the function is defined by x and constants, its first,
second, third, fourth, and so forth, differentials can be expressed in terms
of x and dx. For example, if in y we substitute x + dx for x and subtract
the original value of y, there remains the first differential dy. If in this
differential we substitute x + dx for x, we obtain dyI and d2y = dyI − dy.
In a similar way, by substituting x + dx for x in d2y we obtain d2yI and
d2yI − d2y = d3y, and so forth. In all of the calculations dx is always seen
as a constant whose differential vanishes.

132. From the definition of y, a function of x, we determine the value of
the function p, which when multiplied by dx gives the first differential dy.
We can determine p either by the method of finite differences, or by a much
more expeditious method that we will discuss later. Given dy = p dx, the
differential of p dx gives the second differential d2y. Hence, if dp = q dx,
since dx is constant, we have d2y = q dx2, as we have already shown. Taking
another step, since the differential of the second differential gives the third
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differential, we let dq = r dx, so that d3y = r dx3. In like manner, if the
differential of this function r is sought, it will be dr = s dx, from which we
obtain the fourth differential d4y = s dx4, and so forth. Provided that we
can find the first differential of any function, we can find the differential of
any order.

133. In order that we may keep the form of these differentials, and the
method of discovery, in mind we present the following table: If y is any
function of x,

then and we let
dy = p dx, dp = q dx,

d2y = q dx2, dq = r dx,

d3y = r dx3, dr = s dx,

d4y = s dx4, ds = t dx,

d5y = t dx5, . . . .

Since the function p is known from y by differentiation, similarly we find
q from p, then r from q, then s, and so forth. We can find differentials of
any order, provided only that the differential dx remains constant.

134. Since p, q, r, s, t, . . . are finite quantities, in particular, functions
of x, the first differential of y has a finite ratio to the first differential of
x, that is, as p to 1. For this reason, the differentials dx and dy are said
to be homogeneous. Then, since d2y has the finite ratio to dx2 as q to 1,
it follows that d2y and dx2 are homogeneous. Similarly, d3y and dx3 as
well as d4y and dx4 are homogeneous, and so forth. Hence, just as first
differentials are mutually homogeneous, that is, they have a finite ratio, so
second differentials with the squares of first differentials, third differentials
with cubes of first differentials, and so forth, are homogeneous. In general,
the differential of y of the nth order, expressed as dny, is homogeneous with
dxn, that is, with the nth power of dx.

135. Since in comparison with dx all of its powers greater than 1 vanish,
so also in comparison with dy all of the powers dx2, dx3, dx4, . . . vanish,
as well as the differentials of higher orders that have finite ratios with
these, that is, d2y, d3y, d4y, . . . . In a similar way, in comparison with d2y,
since this is homogeneous with dx2, all powers of dx that are greater than
the second, dx3, dx4, . . . , will vanish. Along with these will vanish d3y,
d4y, . . . . Furthermore, compared to d3y, we have dx4, d4y, dx5, d5y, . . . all
vanishing. Hence, given expressions involving differentials of this kind, it
is easy to decide whether or not they are homogeneous. We have only to
consider the differentials, since the finite parts do not disturb homogeneity.
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For differentials of the second and higher order, consider the powers of dx;
if the numbers are the same, the expressions are homogeneous.

136. Thus it is clear that the expressions P d2y2 and Qdy d3y are mutually
homogeneous. For d2y2 is the square of d2y, and since d2y is homogeneous
with dx2, it follows that d2y2 is homogeneous with dx4. Thus, since dy
is homogeneous with dx and d3y is homogeneous with dx3, we have that
the product dy d3y is homogeneous with dx4. From this it follows that
P d2y2 and Qdy d3y are mutually homogeneous, and so their ratio is finite.
Similarly, we gather that the expressions

P d3y2

dx d2y
and

Qd5y

dy2

are homogeneous. If we substitute for dy, d2y, d3y, and d5y the powers of
dx that are homogeneous with them, namely, dx, dx2, dx3, and dx5, we
obtain the expressions P dx3 and Qdx3, which are mutually homogeneous.

137. If after reduction the proposed expressions do not contain the same
powers of dx, then the expressions are not homogeneous, nor is their ratio
finite. In this case one will be either infinitely greater or infinitely less than
the other, and so one will vanish with respect to the other. Thus P d3y/dx2

to Qd2y2/dy has a ratio infinitely large. The former reduces to P dx and
the latter to Qdx3. It follows that the latter will vanish when compared
to the former. For this reason, if in some calculation the sum of these two
terms occurs

P d3y

dx2 +
Qd2y2

dy
,

the second term, compared to the first, can safely be eliminated, and only
the first term P d3y/dx2 is kept in the calculation. There is a perfect ratio
of equality between the expressions

P d3y

dx2 +
Qd2y2

dy
and

P d3y

dx2 ,

since when we express the ratio, we obtain

1 +
Qdx2d2y2

P dy d3y
= 1, because

Qdx2d2y2

P dy d3y
= 0.

In this way differential expressions can sometimes be wonderfully reduced.

138. In differential calculus rules are given by means of which the first
differential of a given quantity can be found. Since second differentials are
obtained by differentiating first differentials, third differentials by the same
operation on seconds, and so forth, the next one from the one just found,
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differential calculus contains a method for finding all differentials of each
order. From the word differential, which denotes an infinitely small differ-
ence, we derive other names that have come into common usage. Thus we
have the word differentiate, which means to find a differential. A quantity
is said to be differentiated when its differential is found. Differentiation
denotes the operation by which differentials are found. Hence differential
calculus is also called the method of differentiating, since it contains a way
of finding differentials.

139. Just as in differential calculus the differential of any quantity is
investigated, so there is a kind of calculus that consists in finding a quantity
whose differential is one that is already given, and this is called integral
calculus. If any differential is given, that quantity whose differential is the
proposed quantity is called its integral. The reason for this name is as
follows: Since a differential can be thought of as an infinitely small part by
which a quantity increases, that quantity with respect to which this is a
part can be thought of as a whole, that is, integral, and for this reason is
called an integral. Thus, since dy is the differential of y, y, in turn, is the
integral of dy. Since d2y is the differential of dy, dy is the integral of d2y.
Likewise, d2y is the integral of d3y, and d3y is the integral of d4y, and so
forth. It follows that any differentiation, from an inverse point of view, is
also an example of integration.

140. The origin and nature of both integrals and differentials can most
clearly be explained from the theory of finite differences, which has been
discussed in the first chapter. After it was shown how the difference of
any quantity should be found, going in reverse, we also showed how, from
a given difference, a quantity can be found whose difference is the one
proposed. We called that quantity, with respect to its difference, the sum
of the difference. Just as when we proceed to the infinitely small, differences
become differentials, so the sums, which there were called just that, now
receive the name of integral. For this reason integrals are sometimes called
sums. The English call differentials by the name fluxions, and integrals are
called by them fluents. Their mode of speaking about finding the fluent of
a given fluxion is the same as ours when we speak of finding the integral
of a given differential.

141. Just as we use the symbol d for a differential, so we use the symbol∫
to indicate an integral. Hence if this is placed before a differential, we

are indicating that quantity whose differential is the one given. Thus, if the
differential of y is p dx, that is, dy = p dx, then y is the integral of p dx.
This is expressed as follows: y =

∫
p dx, since y =

∫
dy. Hence, the integral

of p dx, symbolized by
∫
p dx, is that quantity whose differential is p dx.

In a similar way if d2y = q dx, where dp = q dx, then the integral of d2y
is dy, which is equal to p dx. Since p =

∫
q dx, we have dy = dx

∫
q dx,

and hence y =
∫
dx

∫
q dx. If in addition, dq = r dx, then q =

∫
r dx and
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dp = dx
∫
r dx, so that if we place the symbol

∫
before both sides, we

have p =
∫
dx

∫
r dx. Finally, we have dy = dx

∫
dx

∫
r dx and so y =∫

dx
∫
dx

∫
r dx.

142. Since the differential dy is an infinitely small quantity, its integral y
is a finite quantity. In like manner the second differential d2y is infinitely
less that its integral dy. It should be clear that a differential will vanish in
the presence of its integral. In order that this relation be better understood,
the infinitely small can be categorized by orders. First differentials are said
to be infinitely small of the first order; the infinitely small of the second
order consist of differentials of the second order, which are homogeneous
with dx2. Similarly, the infinitely small that are homogeneous with dx3

are said to be of the third order, and these include all differentials of the
third order, and so forth. Hence, just as the infinitely small of the first
order vanish in the presence of finite quantities, so the infinitely small of
the second order vanishes in the presence of the infinitely small of the first
order. In general, the infinitely small of any higher order vanishes in the
presence of an infinitely small of a lower order.

143. Once the orders of the infinitely small have been established, so that
the differential of a finite quantity is infinitely small of the first order, and
so forth, conversely, the integral of an infinitely small of the first order is a
finite quantity. The integral of an infinitely small of the second order is an
infinitely small of the first order, and so forth. Hence if a given differential is
infinitely small of order n, then its integral will be infinitely small of order
n − 1. Thus, just as differentiating increases the order of the infinitely
small, so integrating lowers the order until we come to a finite quantity. If
we wished to integrate again finite quantities, then according to this law
we obtain quantities infinitely large. From the integration of these we get
quantities infinitely greater still. Proceeding in this way we obtain orders
of infinity such that each one is infinitely greater than its predecessor.

144. It remains to give something of a warning about the use of symbols
in this chapter, lest there still be any ambiguity. First of all, the symbol
for differentiation, d, operates on only the letter that comes immediately
after it. Thus, dx y does not mean the differential of the product xy, but
rather the product of y and the differential of x. In order to minimize the
confusion we ordinarily would write this with the y preceding the symbol
d, as y dx, by which we indicate the product of y and dx. If y happens to be
a quantity preceded by a symbol indicating either a root √ or a logarithm,
then we usually place that after the differential. For instance, dx

√
a2 − x2

signifies the product of the finite quantity
√
a2 − x2 and the differential dx.

In like manner, dx ln (1 + x) is the product of the logarithm of the quantity
1 + x and dx. For the same reason d2y

√
x expresses the product of the

second differential d2y and the finite quantity
√
x.
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145. The symbol d does not affect only the letter immediately following
it, but also the exponent on that letter if it has one. Thus, dx2 does not
express the differential of x2, but the square of the differential of x, so that
the exponent 2 refers not to x but to dx. We could write this as dx dx in
the same way as we would write the product of two differentials dx and
dy as dx dy. The previous method, dx2, has the advantage of being both
briefer and more usual. Especially if it is a question of higher powers of
dx, the method of repeating so many times tends to be too long. Thus,
dx3 denotes the cube of dx; we observe the same reasoning with regard to
differentials of higher order. For example, d2y4 denotes the fourth power
of the second-order differential d2y, and d3y2√x symbolizes the product of
the square of the differential of the third order of y and

√
x. If it were the

product with the rational quantity x then we would write it as x d3y2.

146. If we want the symbol d to affect more than the next letter, we need
a special way of indicating that. In this case we will use parentheses to in-
clude the expression whose differential we need to express. Then d

(
x2 + y2

)
means the differential of the quantity x2 + y2. It is true enough that if we
want to designate the differential of a power of such an expression, then
ambiguity can hardly be avoided. If we write d

(
x2 + y2

)2, this could be
understood to mean the square of d

(
x2 + y2

)
. On the other hand, we can

avoid this difficulty with the use of a dot, so that d.
(
x2 + y2

)2 means the
differential of

(
x2 + y2

)2. If the dot is missing, then d
(
x2 + y2

)2 indicates
the square of d

(
x2 + y2

)
. The dot conveniently indicates that the symbol

d applies to the whole expression after the dot. Thus, d.x dy expresses the
differential of x dy, and d3.x dy

√
a2 + x2 is the third-order differential of

the expression x dy
√
a2 + x2, which is the product of the finite quantities

x and
√
a2 + x2 and the differential dy.

147. On the one hand, the symbol for differentiation d affects only the
quantity immediately following it, unless a dot intervenes and extends its
influence to the whole following expression; on the other hand, the inte-
gral sign

∫
always extends to the whole expression that follows. Thus,∫

y dx
(
a2 − x2

)n denotes the integral of, or the quantity whose differential
is, y dx

(
a2 − x2

)n. The expression
∫
x dx

∫
dx lnx denotes the quantity

whose differential is x dx
∫
dx lnx. Hence, if we wish to express the prod-

uct of two integrals, for instance
∫
y dx and

∫
z dx, it would be wrong to

write
∫
y dx

∫
z dx. This would be understood as the integral of y dx

∫
z dx.

For this reason we again use a dot to remove any ambiguity, so that∫
y dx · ∫ z dx signifies the product of the integrals

∫
y dx and

∫
z dx.

148. Now, analysis of the infinite is concerned with the discovery of both
differentials and integrals, and for this reason it is divided into two principal
parts, one of which is called differential calculus, and the other is integral
calculus. In the former, rules are given for finding differentials of any quan-
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tity. In the latter a way of investigating integrals of given differentials is
shown. In both parts there are indications of the best applications to both
analysis itself and higher geometry. For this reason even this first part of
analysis has already grown so that to cover it requires no small book. In
the integral calculus both new methods of integration are being discovered
every day, as well as the revelation of new aids for the solution of different
kinds of problems. Due to the new discoveries that are continuously being
made, we could never exhaust, much less describe and explain perfectly, all
of this. Nevertheless I will make every effort in these books to make sure
that either everything that has so far been discovered shall be presented,
or at least the methods by which they can be deduced are explained.

149. It is common to give other parts of analysis of the infinite. Besides
differential and integral calculus, one sometimes finds differentio-differential
calculus and exponential calculus. In differentio-differential calculus the
methods of finding second and higher differentials are usually discussed.
Since the method of finding differentials of any order will be discussed in
this differential calculus, this subdivision, which seems to be based more
on the importance of its discovery rather than the thing itself, we will
omit. The illustrious Johann Bernoulli, to whom we are eternally grateful
for innumerable and great discoveries in analysis of the infinite, extended
the methods of differentiating and integrating to exponential quantities by
means of exponential calculus. Since I plan to treat in both parts of calculus
not only algebraic but also transcendental quantities, this special part has
become superfluous and outside our plan.

150. I have decided to treat differential calculus first. I will explain the
method by which not only first differentials but also second and higher
differentials of variable quantities can be expeditiously found. I will begin
by considering algebraic quantities, whether they be explicitly given or im-
plicitly by equations. Then I will extend the discovery of differentials to
nonalgebraic quantities, at least to those which can be known without the
aid of integral calculus. Quantities of this kind are logarithms and expo-
nential quantities, as well as arcs of circles and in turn sines and tangents of
circular arcs. Finally, we will teach how to differentiate compositions and
mixtures of all of these quantities. In short, this first part of differential
calculus will be concerned with differentiating.

151. The second part will be dedicated to the explanation of the applica-
tions of the method of differentiating to both analysis and higher geometry.
Many nice things spill over into ordinary algebra: finding roots of equations,
discussing and summing series, discovering maxima and minima, defining
and discovering values of expressions that in some cases seem to defy de-
termination. Higher geometry has received its greatest development from
differential calculus. By its means tangents to curves and their curvature
can be defined with marvelous facility. Many other problems concerned
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with either reflex or refracted radii of curves can be solved. Although a
long treatise could be devoted to all of this, I will endeavor, as far as pos-
sible, to give a brief and clear account.



5
On the Differentiation of Algebraic
Functions of One Variable

152. Since the differential of the variable x is equal to dx, when x is
incremented, x becomes equal to x+ dx. Hence, if y is some function of x,
and if we substitute x+ dx for x, we obtain yI. The difference yI − y gives
the differential of y. Now if we let y = xn, then

yI = (x + dx)n = xn + nxn−1dx +
n (n− 1)

1 · 2 xn−2dx2 + · · · ,

and so

dy = yI − y = nxn−1dx +
n (n− 1)

1 · 2 xn−2dx2 + · · · .

In this expression the second term and all succeeding terms vanish in the
presence of the first term. Hence, nxn−1dx is the differential of xn, or

d.xn = nxn−1dx.

It follows that if a is a number or constant quantity, then we also have
d.axn = naxn−1dx. Therefore, the differential of any power of x is found
by multiplying that power by the exponent, dividing by x, and multiplying
the result by dx. This rule can easily be memorized.

153. Once we know the first differential of xn, it is easy to find its sec-
ond differential, provided that we assume that the differential dx remains
constant. Since in the differential nxn−1dx the factor ndx is constant,
the differential of the other factor xn−1 must be taken, which will be
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(n− 1)xn−2dx. When this is multiplied by ndx, we have the second dif-
ferential

d2.xn = n (n− 1)xn−2dx2.

In a similar way, if the differential of xn−2, which is equal to (n− 2)xn−3dx,
is multiplied by n (n− 1) dx2, we have the third differential

d3.xn = n (n− 1) (n− 2)xn−3dx3.

Furthermore, the fourth differential will be

d4.xn = n (n− 1) (n− 2) (n− 3)xn−4dx4,

and the fifth differential is

d5.xn = n (n− 1) (n− 2) (n− 3) (n− 4)xn−5dx5.

The form of the following differentials is easily understood.

154. As long as n is a positive integer, eventually the higher differentials
will vanish; these are equal to 0, because differentials of higher powers of
dx vanish. We should note a few of the simpler cases:

d.x = dx, d2.x = 0, d3.x = 0, . . . ,

d.x2 = 2x dx, d2.x2 = 2dx2, d3.x2 = 0, d4.x2 = 0, . . . ,

d.x3 = 3x2dx, d2.x3 = 6x dx2, d3.x3 = 6dx3, d4.x3 = 0, . . . ,

d.x4 = 4x3dx, d2.x4 = 12x2dx2, d3.x4 = 24x dx3, d4.x4 = 24dx4,

d5.x4 = 0 . . . ,

d.x5 = 5x4dx, d2.x5 = 20x3dx2, d3.x5 = 60x2dx3,

d4.x5 = 120x dx4,

d5.x5 = 120dx5, d6.x5 = 0, . . . .

It is clear that if n is a positive integer, then the differential of order n of
xn will be a constant, that is, it will be equal to 1 ·2 ·3 · · ·ndxn. The result
is that all differentials of higher order will be equal to 0.

155. If n is a negative integer, differentials of x with such negative powers
can be taken, such as

1
x
,

1
x2 ,

1
x3 , . . . ,

since
1
x

= x−1,
1
x2 = x−2,
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and generally,
1
xm

= x−m.

If we substitute in the previous formula −m for n, we have the first differ-
ential of 1/xm equal to

−mdx

xm+1 ;

the second differential is equal to

m (m + 1) dx2

xm+2 ;

the third differential is equal to

−m (m + 1) (m + 2) dx3

xm+3 ;

and so forth. The following simpler cases deserve to be noted:

d.
1
x

=
−dx

x2 , d2.
1
x

=
2dx2

x3 , d3.
1
x

=
−6dx3

x4 , . . . ,

d.
1
x2 =

−2dx
x3 , d2.

1
x2 =

6dx2

x4 , d3.
1
x2 =

−24dx3

x5 , . . . ,

d.
1
x3 =

−3dx
x4 , d2.

1
x3 =

12dx2

x5 , d3.
1
x3 =

−60dx3

x6 , . . . ,

d.
1
x4 =

−4dx
x5 , d2.

1
x4 =

20dx2

x6 , d3.
1
x4 =

−120dx3

x7 , . . . ,

d.
1
x5 =

−5dx
x6 , d2.

1
x5 =

30dx2

x7 , d3.
1
x5 =

−210dx3

x8 , . . . ,

and so forth.

156. Then if we let n be a fraction, we obtain differentials of irrational
expressions. If n = µ/ν, then the first differential of xµ/ν , that is ν

√
xµ, is

equal to

µ

ν
x(µ−ν)/νdx =

µ

ν
dx

ν
√
xµ−ν .

The second differential is equal to

µ (µ− ν)
ν2 x(µ−2ν)/νdx2 =

µ (µ− ν)
ν2 dx2 ν

√
xµ−2ν ,
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and so forth. Hence we have

d.
√
x =

dx

2
√
x
, d2.

√
x =

−dx2

4x
√
x
, d3.

√
x =

1 · 3dx3

8x2
√
x
, . . . ,

d. 3
√
x =

dx

3 3
√
x2

, d2. 3
√
x =

−2dx2

9x 3
√
x2

, d3. 3
√
x =

2 · 5dx3

27x2 3
√
x2

, . . . ,

d. 4
√
x =

dx

4 4
√
x3

, d2. 4
√
x =

−3dx2

16x 4
√
x3

, d3. 4
√
x =

3 · 7dx3

64x2 4
√
x3

, . . . .

If we inspect these expressions a bit, we can easily find the differentials,
even without putting the expression into exponential form.

157. If µ is not 1, but some other integer, whether positive or negative, the
differentials can be defined just as easily. Since the second- and higher-order
differentials are defined from the first, using the same law of exponents, we
put down a few of the simpler examples of only first differentials.

d.x
√
x =

3
2
dx

√
x, d.x2√x =

5
2
x dx

√
x, d.x3√x =

7
2
x2dx

√
x, . . . ,

d.
1√
x

=
−dx

2x
√
x
, d.

1
x
√
x

=
−3dx
2x2

√
x
, d.

1
x2

√
x

=
−5dx
2x3

√
x
, . . . ,

d.
3
√
x2 =

2dx
3 3
√
x
, d.x 3

√
x =

4
3
dx 3

√
x, d.x

3
√
x2 =

5
3
dx

3
√
x2,

d.x2 3
√
x =

7
3
x dx 3

√
x, d.x2 3

√
x =

8
3
x dx 3

√
x, . . . ,

d.
1
3
√
x

=
−dx

3x 3
√
x
, d.

1
3
√
x2

=
−2dx
3x 3

√
x2

, d.
1

x 3
√
x

=
−4dx
3x2 3

√
x
,

d.
1

x
3
√
x2

=
−5dx

3x2 3
√
x2

, d.
1

x2 3
√
x

=
−7dx
3x3 3

√
x
, . . . .

158. From functions of this kind we can find the differentials of all rational
algebraic functions, since each of their terms is a power of x, which we know
how to differentiate. Suppose we have a quantity of the form

p + q + r + s + · · · .

When we substitute x + dx for x we obtain

p + dp + q + dq + r + dr + s + ds + · · · ,
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so that its differential is equal to

dp + dq + dr + ds + · · · .

Hence, if we can give the differential of each quantity p, q, r, s, then we
know the differential of the sum. Furthermore, since the differential of a
multiple of p is the same multiple of dp, we have d.ap = a dp, and the
differential of ap + bq + cr is equal to a dp + b dq + c dr. Finally, since the
differentials of constants are zero, the differential of ap+bq+cr+f is equal
to a dp + b dq + c dr.

159. In polynomial functions, since each term is either a constant or power
of x, differentiation according to the given rule is easily carried out. Thus
we have

d (a + x) = dx,

d (a + bx) = b dx,

d
(
a + x2) = 2x dx,

d
(
a2 − x2) = −2x dx,

d
(
a + bx + cx2) = b dx + 2cx dx,

d
(
a + bx + cx2 + ex3) = b dx + 2cx dx + 3ex2dx,

d
(
a + bx + cx2 + ex3 + fx4) = b dx + 2cx dx + 3ex2dx + 4fx3dx.

If the exponents are indefinite, then

d (1 − xn) = −nxn−1dx,

d (1 + xm) = mxm−1dx,

d (a + bxm + cxn) = mbxm−1dx + ncxn−1dx.

160. Since the degree of a polynomial is given by the term with the highest
power of x, it is clear that if differentials of such functions are continually
taken, the differential will eventually become constant and then vanish,
provided that we assume that dx is constant. Thus the first differential of a
first degree polynomial a+ bx, b dx, is constant, and the second and higher
differentials vanish. Let a + bx + cx2 = y be a second-degree polynomial.
Then

dy = b dx + 2cx dx, d2y = 2c dx2, d3y = 0.
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Likewise, if a + bx + cx2 + ex3 = y is a third-degree polynomial, then

dy = b dx + 2cx dx + 3ex2dx

d2y = 2c dx2 + 6ex dx2,

d3y = 6e dx3,

d4y = 0.

In general, if the function is of degree n, then its differential of order n will
be constant, and higher-order differentials will all vanish.

161. Nor is there any difficulty with differentiation if among the powers of
x that make up a function we have negative or fractional exponents. Thus

I. If
y = a + b

√
x− c

x
,

then

dy =
b dx

2
√
x

+
c dx

x2 .

II. If
y =

a√
x

+ b + c
√
x− ex,

then

dy =
−a dx

2x
√
x

+
c dx

2
√
x
− e dx

and

d2y =
3a dx2

4x2
√
x
− c dx2

4x
√
x
.

III. If
y = a +

b
3
√
x2

− c

x 3
√
x

+
f

x2 ,

then

dy =
−2b dx
3x 3

√
x2

+
4c dx

3x2 3
√
x
− 2f dx

x3

and

d2y =
10b dx2

9x2 3
√
x2

− 28c dx2

9x3 3
√
x

+
6f dx2

x4 .
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Further examples of this kind are easily treated according to the given laws.

162. If the quantity proposed for differentiation is the power of some func-
tion whose differential we can find, then the preceding rules are sufficient
to find the first differential. Let p be any function of x that is raised to
some power and whose differential is dp. Then the first differential of pn is
equal to npn−1dp. From this we obtain the following.

I. If y = (a + x)n, then

dy = n (a + x)n−1
dx.

II. If y =
(
a2 − x2

)2, then

dy = −4x dx
(
a2 − x2) .

III. If y =
1

a2 + x2 =
(
a2 + x2)−1

, then

dy =
−2x dx

(a2 + x2)2
.

IV. If y =
√
a + bx + cx2, then

dy =
b dx + 2cx dx

2
√
a + bx + cx2

.

V. If y = 3
√

(a4 − x4)2 =
(
a4 − x4

)2/3, then

dy = −8
3
x3dx

(
a4 − x4)− 1

3 =
−8x3dx

3 3
√
a4 − x4

.

VI. If y =
1√

1 − x2
=

(
1 − x2)− 1

2 , then

dy = x dx
(
1 − x2)− 3

2 =
x dx

(1 − x2)
√

1 − x2
.

VII. If y = 3
√

a +
√
bx + x, then

dy =

(
dx

√
b
)/

(2
√
x) + dx

3 3

√(
a +

√
bx + x

)2
=

dx
√
b + 2dx

√
x

6
√
x

3

√(
a +

√
bx + x

)2
.
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VIII. If y =
1

x +
√
a2 − x2

, then since

d.
√
a2 − x2 =

−x dx√
a2 − x2

,

we have

dy =
−dx + (x dx)

/(√
a2 − x2

)
(
x +

√
a2 − x2

)2 =
x dx− dx

√
a2 − x2(

x +
√
a2 − x2

)2 √
a2 − x2

,

or

dy =
dx

(
x−√

a2 − x2
)3

(2x2 − a2)2
√
a2 − x2

.

IX. If y = 4

√(
1 − 1√

x
+ 3

√
(1 − x2)2

)3

, we let

1√
x

= p and 3
√

(1 − x2)2 = q;

since y = 4
√

(1 − p + q)3, we have

dy =
−3dp + 3dq
4 4
√

1 − p + q
.

From previous work we have

dp =
−dx

2x
√
x

and dq =
−4x dx

3 3
√

1 − x2
.

When these results are substituted, we have

dy =
(3dx)

/
(2x

√
x) − (4x dx)

/
3
√

1 − x2

4 4

√
1 − 1√

x
+ 3

√
(1 − x2)2

.

In a similar way, by substituting individual letters for terms to be com-
posed, we can easily find the differentials of this kind of function.

163. If the quantity that is to be differentiated is the product of two or
more functions of x whose differentials are known, the most convenient
method for finding the differential is as follows. Let p and q be functions of
x with differentials dp and dq already known. When we substitute x+dx for
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x, p becomes p+ dp, and q becomes q + dq. The product pq is transformed
into

(p + dp) (q + dq) = pq + p dq + q dp + dp dq.

Hence, the differential of the product pq is equal to p dq + q dp + dp dq.
Since p dq and q dp are infinitely small of the first order, while dp dq is of
the second order, the last term vanishes, with the result that

d.pq = p dq + q dp.

It follows that the differential of the product pq consists of two members,
each of which is one factor multiplied by the differential of the other. From
this we easily deduce the differential of the triple product pqr. If we let
qr = z, then pqr = pz and d.pqr = p dz + z dp. Since z = qr, we have
dz = q dr + r dq, and after substituting for z and dz, we have

d.pqr = pq dr + pr dq + qr dp.

In a similar way, if the quantity to be differentiated is a fourfold product,
then we have

d.pqrs = pqr ds + pqs dr + prs dq + qrs dp.

From this it should be easily seen what the differential of a product of many
factors will be.

I. If y = (a + x) (b− x), then

dy = −dx (a + x) + dx (b− x) = −a dx + b dx− 2x dx.

This same differential can be found by expanding the expression to
y = ab− ax + bx− x2, so that by the previous rule,

dy = −a dx + b dx− 2x dx.

II. If y =
1
x

√
a2 − x2, we let

1
x

= p and
√

a2 − x2 = q,

but since

dp =
−dx

x2 and dq =
−x dx√
a2 − x2

,

we have

dy = p dq + q dp =
−dx√
a2 − x2

− dx

x2

√
a2 − x2.
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If we take a common denominator, we have

−x2dx− a2dx + x2dx

x2
√
a2 − x2

=
−a2dx

x2
√
a2 − x2

.

Hence the desired differential is

dy =
−a2dx

x2
√
a2 − x2

.

III. If y =
x2

√
a4 + x4

, we let

x2 = p and
1√

a4 + x4
= q.

We find that

dp = 2x dx and dq =
−2x3dx

(a4 + x4)3/2
,

so that

p dq + q dp =
−2x5dx

(a4 + x4)3/2
+

2x dx√
a4 + x4

=
2a4x dx

(a4 + x4)3/2
.

It follows that the desired differential is

dy =
2a4x dx

(a4 + x4)
√
a4 + x4

.

IV. If y =
x

x +
√

1 + x2
, we let

x = p and
1

x +
√

1 + x2
= q.

Since

dp = dx

and

dq =
−dx− (x dx)

/√
1 + x2(

x +
√

1 + x2
)2 =

−dx
(
x +

√
1 + x2

)
(
x +

√
1 + x2

)2 √
1 + x2

=
−dx(

x +
√

1 + x2
)√

1 + x2
,
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we have

p dq + q dp =
−x dx(

x +
√

1 + x2
)√

1 + x2
+

dx

x +
√

1 + x2

=
dx

(√
1 + x2 − x

)
(
x +

√
1 + x2

)√
1 + x2

.

Therefore, the desired differential is

dy =
dx

(√
1 + x2 − x

)
(
x +

√
1 + x2

)√
1 + x2

.

If we multiply both numerator and denominator of this fraction by√
1 + x2 − x, we have

dy =
dx

(
1 + 2x2 − 2x

√
1 + x2

)
√

1 + x2
=

dx + 2x2dx√
1 + x2

− 2x dx.

The same differential can be more easily obtained. Since

y =
x

x +
√

1 + x2
,

if we multiply both numerator and denominator by
√

1 + x2 − x, we
have

y = x
√

1 + x2 − x2 =
√

x2 + x4 − x2.

By the previous rule we have

dy =
x dx + 2x3dx√

x2 + x4
− 2x dx =

dx + 2x2dx√
1 + x2

− 2x dx.

V. If y = (a + x) (b− x) (x− c), then

dy = (a + x) (b− x) dx− (a + x) (x− c) dx + (b− x) (x− c) dx.

VI. If y = x
(
a2 + x2

)√
a2 − x2, because of the three factors we have

dy = dx
(
a2 + x2)√a2 − x2 + 2x2dx

√
a2 − x2 − x2dx

(
a2 + x2

)
√
a2 − x2

=
dx

(
a4 + a2x2 − 4x4

)
√
a2 − x2

.
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164. Although the quotient of two functions can be thought of as the
product of two functions, it may be more convenient to use a rule for
differentiating a quotient. Let p/q be a given function whose differential we
need to find. When we substitute x + dx for x the quotient becomes1

p + dp

q + dq
= (p + dp)

(
1
q
− dq

q2

)
=

p

q
− p dq

q2 +
dp

q
− dp dq

q2 .

When p/q is subtracted, the differential remains,

d.
p

q
=

dp

q
− p dq

q2 ,

since the term dp dq/q2 vanishes. Hence, we have

d.
p

q
=

q dp− p dq

q2 ,

and the rule for quotients can be stated:

To obtain the differential of a quotient, from the product of the
denominator and the differential of the numerator we subtract
the product of the numerator and the differential of the denom-
inator. Then the remainder is divided by the square of the de-
nominator.

The following examples illustrate the application of this rule.

I. If y =
x

a2 − x2 , then by this rule

dy =

(
a2 + x2

)
dx− 2x2dx

(a2 + x2)2
=

(
a2 − x2

)
dx

(a2 + x2)2
.

II. If y =
√
a2 + x2

a2 − x2 , we have

dy =

(
a2 − x2

)
x dx

/√
a2 + x2 + 2x dx

√
a2 + x2

(a2 − x2)2
,

and when this is reduced we have

dy =

(
3a2 + x2

)
x dx

(a2 − x2)2
√
a2 + x2

.

1If we wish to keep all terms up to the second order, the term p dq2/q3 cannot be
omitted.
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Frequently, it may be more expeditious to use the rule in its earlier form

d.
p

q
=

dp

q
− p dq

q2 ,

so that the differential of a quotient is equal to the quotient of the dif-
ferential of the numerator by the denominator minus the quotient of the
product of the differential of the denominator and the numerator by the
square of the denominator. From this we have:

III. If y =
a2 − x2

a4 + a2x2 + x4 , then

dy =
−2x dx

a4 + a2x2 + x4 −
(
a2 − x2

) (
2a2x dx + 4x3dx

)
(a4 + a2x2 + x4)2

,

and when we take a common denominator we have

dy =
−2x dx

(
2a4 + 2a2x2 − x4

)
(a4 + a2x2 + x4)2

.

165. This should be sufficient for the investigation of differentials of ra-
tional functions. If the function happens to be a polynomial, we have said
enough. If the function is a quotient, it can always be reduced to the fol-
lowing form:

y =
A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + · · ·
α + βx + γx2 + δx3 + εx4 + ζx5 + · · · .

We let the numerator be equal to p and the denominator be equal to q, so
that y = p/q and

dy =
q dp− p dq

q2 .

But since

p = A + Bx + Cx2 + Dx3 + Ex4 + · · ·
and

q = α + βx + γx2 + δx3 + εx4 + · · · ,
we have

dp = B dx + 2Cxdx + 3Dx2dx + 4Ex3dx + · · ·
and

dq = β dx + 2γx dx + 3δx2dx + 4εx3dx + · · · .
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By multiplication we obtain

q dp = αB dx + 2αCxdx+ 3αDx2dx + 4αEx3dx + · · ·
+βBxdx + 2βCx2dx+ 3βDx3dx + · · ·

+ γBx2dx + 2γCx3dx + · · ·
+ δBx3dx+ · · · ;

p dq = βAdx + βBxdx +βCx2dx +βDx3dx + · · ·
+ 2γAxdx + 2γBx2dx + 2γCx3dx + · · ·

+ 3δAx2dx + 3δBx3dx + · · ·
+ 4εAx3dx + · · · .

From these we obtain the desired differential dy, which is the quotient
whose numerator is equal to

(αB − βA) dx + (2αC − 2γA)x dx + (3αD + βC − γB − 3δA)x2dx

+ (4αE + 2βD − 2δB − 4εA)x3dx

+ (5αF + 3βE + γD − δC − 3εB − 5ζA)x4dx

and whose denominator is equal to(
α + βx + γx2 + δx3 + εx4 + ζx5 + · · ·)2 .

This expression is most accommodated to the expeditious differentiation
of any rational function. Since the numerator of the differential is made
up from coefficients of the numerator and denominator functions, it can be
obtained by inspection. The denominator of the differential is the square
of the denominator of the given function.

166. If in the given quotient either the numerator or the denominator, or
both, is made up of a product, then when the multiplication is performed
we have a form we have already differentiated. However, we give special
rules to make it easier to cover these cases.

Suppose the given quotient has the form y = pr/q. We let pr = P . Then

dP = p dr + r dp.

Since y = P/q, we have

dy =
q dP − P dq

q2 ,

and after substituting for P and dP , we have the following result:
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I. If y =
pr

q
, then

dy =
pq dr + qr dp− pr dq

q2 .

If y =
p

qs
, we let qs = Q, so that

dQ = q ds + s dq

and

dy =
Qdp− p dQ

q2s2 .

It follows that:

II. If y =
p

qs
, then

dy =
qs dp− pq ds− ps dq

q2s2 .

If y =
pr

qs
, again, we let pr = P and qs = Q, so that y =

P

Q
and

dy =
QdP − P dQ

Q2 .

Since

dP = p dr + r dp and dQ = q ds + s dq,

we obtain the following differentiation:

III. If y =
pr

qs
, then

dy =
pqs dr + qrs dp− pqr ds− prs dq

q2s2 ,

or

dy =
r dp

qs
+

p dr

qs
− pr dq

q2s
− pr ds

qs2 .

In a similar way, if the numerator and denominator of the quotient con-
tained several factors, using the same reasoning we could investigate the
differential. It does not seem to be necessary that one be led by hand
through the argument. For this reason we omit any examples of this kind,
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especially since we will soon give a general method that will comprehend
all of these special methods of differentiating.

167. There are some cases in which the differential can be more easily
expressed than with the general rules we have given; these would be either
products or quotients in which the factors that make up the product or the
numerator or denominator of the quotient are powers.

We suppose that the function that is to be differentiated is y = pmqn.
To find the differential of this function we let pm = P and qn = Q, so that

y = PQ and dy = P dQ + QdP.

Since

dP = mpm−1dp and dQ = nqn−1dq,

when we substitute these values, we obtain

dy = npmqn−1dq + mpm−1qn dp = pm−1qn−1 (np dq + mq dp) .

From this result we derive the following rule:

I. If y = pmqn, then

dy = pm−1qn−1 (np dq + mq dp) .

In a similar way, if there are three factors, the differential can be found
and expressed as follows:

II. If y = pmqnrk, then

dy = pm−1qn−1rk−1 (mqr dp + npr dq + kpq dr) .

168. If a quotient has either a numerator or a denominator that has a
factor that is a power, we can give special rules.

First we suppose that the quotient has the form y = pm/q. Then from
the general rule for quotients we have

dy =
mpm−1q dp− pmdq

q2 ,

but this differential can be expressed more conveniently as:

I. If y =
pm

q
, then

dy =
pm−1 (mq dp− p dq)

q2 .
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If, on the other hand, y = p/qn, then by the general rule,

dy =
qn dp− npqn−1dq

q2n .

If we divide both numerator and denominator by qn−1 we have

dy =
q dp− np dq

qn+1 .

We conclude:

II. If y =
p

qn
, then

dy =
q dp− np dq

qn+1 .

If the given quotient is y = pm/qn, then we find that

dy =
mpm−1qn dp− npmqn−1dq

q2n ,

which reduces to

dy =
mpm−1q dp− npm dq

qn+1 .

It follows that:

III. If y =
pm

qn
, then

dy =
pm−1 (mq dp− np dq)

qn+1 .

Finally, if the given quotient is y = r/(pmqn), then by the general
quotient rule we have

dy =
pmqn dr −mpm−1qnr dp− npmqn−1r dq

p2mq2n .

Since both numerator and denominator are divisible by pm−1qn−1:

IV. If y =
r

pmqn
, then

dy =
pq dr −mqr dp− npr dq

pm+1qn+1 .
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If several factors occur, this kind of special rule can easily be worked out,
so it is superfluous to say more.

169. The rules for differentiating that we have presented so far are suffi-
cient to cover any algebraic function of x. If the function is a sum of powers
of x, this has been treated in paragraph 159; if the function is a quotient
of such functions, we have shown how to differentiate in paragraph 165.
We have also given an outline of differentiation when the function involves
factors. We have also taught how to differentiate irrational quantities, how-
soever they may affect the function, whether through addition, subtraction,
multiplication, or division. We are always able to reduce the function to
cases already treated. We should understand that the reference is to ex-
plicit functions. As to implicit functions given by an equation, these we will
treat later, after we have taught how to differentiate functions of two or
more variables.

170. If we carefully consider all of the rules we have given so far, and
we compare them with each other, we can reduce them to one universal
principle, which we will be able to prove rigorously in paragraph 214. In
the meantime it is not so difficult to see intuitively that this is true. Any
algebraic function is composed of parts that are related to each other by
addition, subtraction, multiplication, or division, and these parts are either
rational or irrational. We call those quantities that make up any function
its parts.

We differentiate any part of a given function by itself, as if it were the
only variable and the other parts were constants. Once we have the individ-
ual differentials of the parts making up the function, we put it all together
in a single sum, and thus we obtain the differential of the given function.

By means of these rules almost all functions can be differentiated, not
even excepting transcendental functions, as we shall show later.

171. In order to illustrate this rule, we suppose that the function consists
of two parts, connected by either addition or subtraction, so that

y = p± q.

We suppose that the first part p is the variable part and that the second
part q is the constant part, so that the differential is equal to dp. Then we
suppose that the second part ±q is the only variable, while the other part p
is constant, so that the differential is equal to ±dq. The desired differential
is put together from those two differentials, so that

dy = dp± dq,

just as we have seen before. From this it must be perfectly clear that if the
function consists of several parts conjoined by either addition or subtrac-
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tion, namely,

y = p± q ± r ± s,

then by this rule we will have

dy = dp± dq ± dr ± ds,

which is clear from the rule stated previously.

172. If the parts are joined by multiplication, so that

y = pq,

it is clear that if we suppose that only the part p is variable, then the
differential will be equal to q dp. If the other part q is the only variable,
then the differential is equal to p dq. When we add these two differentials
we obtain the desired differential

dy = q dp + p dq,

just as we proposed above. If there are several parts joined by multiplica-
tion, for example,

y = pqrs,

and we successively let each part be variable, we obtain the differentials

qrs dp, prs dq, pqs dr, pqr ds,

whose sum gives the desired differential

dy = qrs dp + prs dq + pqs dr + pqr ds,

as we have already seen. Therefore, the differential is obtained from the
differentials of all of the parts, whether they are joined by addition, sub-
traction, or multiplication.

173. If the parts of the function are joined by division, for example,

y =
p

q
,

according to the rule we first let p be variable, and since q is constant,
the differential is equal to dp/q. Next we let q alone be variable, and since
y = pq−1, the differential is equal to −p dq/q2. When we join the two
differentials we have the differential of the given function

dy =
dp

q
− p dq

q2 =
q dp− p dq

q2 ,
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as we have seen before. In a similar way if the given function is

y =
pq

rs
,

we let each of the parts successively be variable and obtain the following
differentials:

q dp

rs
,

p dq

rs
,

−pq dr

r2s
,

−pq ds

rs2 .

It follows that

dy =
qrs dp + prs dq − pqs dr − pqr ds

r2s2 .

174. Provided only that each of the parts that make up a function are
such that we can find their differentials, we can find the differential of the
whole function. Hence, if the parts are integral powers, we can find their
differentials not only by means of the laws we have given before, but also
from this general rule. If the parts are irrational, since the irrationality
comes from the fractional exponents, we can differentiate these through
the differentiation of powers, that is, d.xn = nxn−1dx. From this same well
we draw the differentiation of like irrational formulas that involve other
surds. Therefore, it should be clear that if with this general rule, which
will be proved later, we join the rule for differentiating powers, then the
differentials of absolutely all algebraic functions can be exhibited.

175. From all of this it clearly follows that if y is any [algebraic] function
of x, its differential dy will have the form dy = p dx, where p can always
be found from the laws we have set down. Furthermore, the function p
is also an algebraic function of x, since in determining the differential no
other operations were used except the usual ones for algebraic functions.
For this reason if y is an algebraic function of x, then dy/dx is also an
algebraic function of x. Furthermore, if z is an algebraic function of x, such
that dz = q dx, since q is an algebraic function of x, we also know that
dz/dx is an algebraic function of x, and indeed so is dz/dy an algebraic
function of x which is equal to p/q. Hence, if the formula dz/dy is part of
some algebraic expression, this does not prevent the whole expression from
being algebraic, provided only that y and z are algebraic functions.

176. We can extend this line of reasoning to second- and higher-order
differentials. If y is an algebraic function of x, dy = p dx and dp = q dx,
then with dx remaining constant, we have d2y = q dx2, as we have already
seen. Since for the reasons already given q is also an algebraic function of
x, it follows that d2y/dx2 is not only a finite quantity but also an algebraic
function of x, provided only that y is such a function. In a similar way we
see that

d3y

dx3 ,
d4y

dx4 , . . .
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are algebraic functions of x, provided that y is such a function. Furthermore,
if z is also an algebraic function of x, all finite expressions made up of
differentials of any order of y, z, and dx, such as

d2y

d2z
,

d3y

dz d2y
,

dx d4y

dy3d2z
,

are all likewise algebraic functions of x.

177. Since the first differential of any algebraic function of x can now
be found by the method given, using the same method we can investigate
the second- and higher-order differentials. If y is any algebraic function of
x, from differentiation we have dy = p dx, and we note the value of p. If
we differentiate again and obtain dp = q dx, then d2y = q dx2, supposing
that dx is constant. In this way we have defined the second differential.
When we differentiate q, so that dq = r dx, we have the third differential
d3y = r dx3. In this way we investigate the differentials of higher order,
and since the quantities p, q, r, . . . are all algebraic functions of x, the
given laws for differentiation are sufficient. Therefore, we have continuous
differentiation. If we omit the dx in the differentiation of y, we obtain the
value dy/dx = p, which is again differentiated and divided by dx to obtain
q = d2y/dx2. Each time we divide by dx, since everywhere the differential
dx is omitted. In a similar way we obtain r = d3y/dx3, and so forth.

I. Let y =
a2

a2 + x2 ; find the first- and higher-order differentials.

First we differentiate and divide by dx to obtain

dy

dx
=

−2a2x

(a2 + x2)2

and then

d2y

dx2 =
−2a4 + 6a2x2

(a2 + x2)3
,

d3y

dx3 =
24a4x− 24a2x3

(a2 + x2)4
,

d4y

dx4 =
24a6 − 240a4x2 + 120a2x4

(a2 + x2)5
,

d5y

dx5 =
−720a6x + 2400a4x3 − 720a2x5

(a2 + x2)6
,

and so forth.
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II. Let y =
1√

1 − x2
; find the first- and higher-order differentials.

dy

dx
=

x

(1 − x2)3/2
,

d2y

dx2 =
1 + 2x2

(1 − x2)5/2
,

d3y

dx3 =
9x + 6x3

(1 − x2)7/2
,

d4

dx4 =
9 + 72x2 + 24x4

(1 − x2)9/2
,

d5y

dx5 =
225x + 600x3 + 120x5

(1 − x2)11/2
,

d6y

dx6 =
225 + 4050x2 + 5400x4 + 720x6

(1 − x2)13/2
,

and so forth. These differentials can easily be continued, but the law
by which the terms proceed may not be immediately obvious. The
coefficient of the highest power of x is the product of the natural num-
bers from 1 to the order of the differential. Meanwhile, if we wish to
continue further our investigation, we will find that if y = 1/

√
1 − x2,

generally we have

dny

dxn
=

1 · 2 · 3 · · ·n
(1 − x2)n+ 1

2

×
(
xn +

1
2
· n (n− 1)

1 · 2 xn−2

+
1 · 3
2 · 4 · n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 xn−4

+
1 · 3 · 5
2 · 4 · 6 · n (n− 1) · · · (n− 5)

1 · 2 · · · 6 xn−6

+
1 · 3 · 5 · 7
2 · 4 · 6 · 8 · n (n− 1) · · · (n− 7)

1 · 2 · · · 8 xn−8 + · · ·
)
.

Examples of this kind are useful not only for acquiring a habit of differ-
entiating, but they also provide rules that are observed in differentials of
all orders, which are very much worth noticing and can lead to further
discoveries.



6
On the Differentiation of
Transcendental Functions

178. Besides the infinite class of transcendental, or nonalgebraic, quanti-
ties that integral calculus supplies in abundance, in Introduction to Analysis
of the Infinite we were able to gain some knowledge of more usual quan-
tities of this kind, namely, logarithms and circular arcs. In that work we
explained the nature of these quantities so clearly that they could be used
in calculation with almost the same facility as algebraic quantities. In this
chapter we will investigate the differentials of these quantities in order that
their character and properties can be even more clearly understood. With
this understanding, a portal will be opened up into integral calculus, which
is the principal source of these transcendental quantities.

179. We begin with logarithmic quantities, that is, functions of x that,
besides algebraic expressions, also involve logarithms of x or any functions
of logarithms of x. Since algebraic quantities no longer are a problem, the
whole difficulty in finding differentials of these quantities lies in discovering
the differential of any logarithm itself. There are many kinds of logarithms,
which differ from each other only by a constant multiple. Here we will
consider in particular the hyperbolic, or natural, logarithm, since the others
can easily be found from this one. If the natural logarithm of the function
p is signified by ln p, then the logarithm with a different base of the same
function p will be m ln p where m is a number that relates logarithms with
this base to the hyperbolic logarithms. For this reason ln p will always
indicate the hyperbolic logarithm of p.
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180. We are investigating the differential of the hyperbolic logarithm of x
and we let y = lnx, so that we have to define the value of dy. We substitute
x + dx for x so that y is transformed into yI = y + dy. From this we have

y + dy = ln (x + dx) , dy = ln (x + dx) − lnx = ln
(

1 +
dx

x

)
.

But we have seen before1 that the hyperbolic logarithm of this kind of
expression 1 + z can be expressed in an infinite series as follows:

ln (1 + z) = z − z2

2
+

z3

3
− z4

4
+ · · · .

When we substitute dx/x for z we obtain

dy =
dx

x
− dx2

2x2 +
dx3

3x3 − · · · .

Since all of the terms of this series vanish in the presence of the first term,
we have

d lnx = dy =
dx

x
.

It follows that the differential of any logarithm whatsoever that has the
ratio to the hyperbolic logarithm of n : 1, has the form ndx/x.

181. Therefore, if ln p for any function p of x is given, by the same argu-
ment, we see that its differential will be dp/p. Hence, in order to find the
differential of any logarithm we have the following rule:

For any quantity p whose logarithm is proposed, we take the differential
of that quantity p and divide by the quantity p itself in order to obtain the
desired differential of the logarithm.

This same rule follows from the form

p0 − 10

0
,

to which we reduced the logarithm of p in the previous book.2 Let ω = 0,
and since ln p = (pω − 1)/ω, we have

d ln p = d
1
ω
pω = pω−1dp =

dp

p
,

since ω = 0. It is to be noted, however, that dp/p is the differential of the
hyperbolic logarithm of p, so that if the common logarithm of p is desired,
this differential dp/p must be multiplied by the number 0.43429448 . . . .

1Introduction, Book I, Chapter VII.
2Introduction, Book I, Chapter VII.
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182. By means of this rule the differential of the logarithm of any given
function of x whatsoever is easily found, which will be clear from the fol-
lowing examples.

I. If y = lnx, then

dy =
dx

x
.

II. If y = lnxn, we let xn = p, so that y = ln p and dy = dp/p. But
dp = nxn−1dx, so that

dy =
ndx

x
.

The same result can be found from the nature of logarithms; since
lnxn = n lnx, we have

d lnxn = nd lnx =
ndx

x
.

III. If y = ln
(
1 + x2

)
, then

dy =
2x dx
1 + x2 .

IV. If y = ln
1√

1 − x2
, since

y = − ln
√

1 − x2 = −1
2

ln
(
1 − x2) ,

we see that

dy =
x dx

1 − x2 .

V. If y = ln
x√

1 + x2
, since y = lnx− 1

2 ln
(
1 + x2

)
, we have

dy =
dx

x
− x dx

1 + x2 =
dx

x (1 + x2)
.

VI. If y = ln
(
x +

√
1 + x2

)
, we have

dy =
dx + x dx

/√
1 + x2

x +
√

1 + x2
=

x dx + dx
√

1 + x2(
x +

√
1 + x2

)√
1 + x2

;

but since both numerator and denominator of this fraction are divis-
ible by x +

√
1 + x2, we have

dy =
dx√

1 + x2
.
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VII. If y = 1√−1 ln
(
x
√−1 +

√
1 − x2

)
, we let z = x

√−1. Also, since y =
1√−1 ln

(
z +

√
1 + z2

)
, by the previous example we have

dy =
1√−1

dz√
1 + z2

.

Since dz = dx
√−1, we have

dy =
dx√

1 − x2
.

Although the given logarithm involves a complex number, the differ-
ential is real.

183. If the logarithm of a product is given, then the logarithm is expressed
as a sum in the following manner. If y = ln pqrs is given, since y = ln p +
ln q + ln r + ln s, we have

dy =
dp

p
+

dq

q
+

dr

r
+

ds

s
.

This reduction also has a use if the logarithm of a quotient is to be differ-
entiated. If

y = ln
pq

rs
,

since y = ln p + ln q − ln r − ln s, we have

dy =
dp

p
+

dq

q
− dr

r
− ds

s
.

Powers give no more difficulty. If

y = ln
pmqn

rµsν
,

since y = m ln p + n ln q − µ ln r − ν ln s, we have

dy =
mdp

p
+

ndq

q
− µdr

r
− ν ds

s
.

I. If y = ln (a + x) (b + x) (c + x), since

y = ln (a + x) + ln (b + x) + ln (c + x) ,

the desired differential is

dy =
dx

a + x
+

dx

b + x
+

dx

c + x
.
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II. If y =
1
2

ln
(

1 + x

1 − x

)
, then

y =
1
2

ln (1 + x) − 1
2

ln (1 − x) ,

so that

dy =
1
2dx

1 + x
+

1
2dx

1 − x
=

dx

1 − x2 .

III. If y =
1
2

ln

(√
1 + x2 + x√
1 + x2 − x

)
, since

y =
1
2

ln
(√

1 + x2 + x
)
− 1

2
ln

(√
1 + x2 − x

)
,

we have

dy =
1
2dx√
1 + x2

+
1
2dx√
1 + x2

=
dx√

1 + x2
.

This same result can be more easily obtained if we rationalize the denom-
inator by multiplying both numerator and denominator by

√
1 + x2 + x.

The result is

y =
1
2

ln
(√

1 + x2 + x
)2

= ln
(√

1 + x2 + x
)
,

and as we have seen before, dy = dx/
√

1 + x2.

IV. If

y = ln
(√

1 + x +
√

1 − x√
1 + x−√

1 − x

)
,

we let the numerator of this fraction be
√

1 + x +
√

1 − x = p

and the denominator
√

1 + x−√
1 − x = q,

so that y = ln
(
p
q

)
= ln p− ln q and dy = dp/p− dq/q. But

dp =
dx

2
√

1 + x
− dx

2
√

1 − x
=

−dx

2
√

1 − x2

(√
1 + x−√

1 − x
)

=
−q dx

2
√

1 − x2

and

dq =
dx

2
√

1 + x
+

dx

2
√

1 − x
=

p dx

2
√

1 − x2
.
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It follows that

dp

p
− dq

q
=

−q

2p
√

1 − x2
− p dx

2q
√

1 − x2
=

− (
p2 + q2

)
dx

2pq
√

1 − x2
.

Since p2 + q2 = 4 and pq = 2x, we have

dy = − dx

x
√

1 − x2
.

This differential can more easily be found if the given logarithm is trans-
formed by rationalization as follows:

y = ln
1 +

√
1 − x2

x
= ln

(
1
x

+

√
1
x2 − 1

)
.

If we let

p =
1
x

+

√
1
x2 − 1,

then

dp =
−dx

x2 − dx

x3
√

1
x2 − 1

=
−dx

x2 − dx

x2
√

1 − x2
=

−dx
(
1 +

√
1 − x2

)
x2

√
1 − x2

.

Since

p =
1 +

√
1 − x2

x
,

we have
dy =

dp

p
=

−dx

x
√

1 − x2
,

as we have already seen.

184. Since the first differentials of logarithms, when divided by dx, are
algebraic quantities, the second differentials and those of higher orders can
easily be found with the rules of the previous chapter, provided that we
assume that the differential dx is constant. Hence, if we let y = lnx, then

dy =
dx

x
and

dy

dx
=

1
x
,

d2y =
−dx2

x2 and
d2y

dx2 =
−1
x2 ,

d3y =
2dx3

x3 and
d3y

dx3 =
2
x3 ,

d4y =
−6dx4

x4 and
d4y

dx4 =
−6
x4 ,
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etc. If p is an algebraic quantity and y = ln p, then although y is not an
algebraic quantity, nevertheless,

dy

dx
,

d2y

dx2 ,
d3y

dx3 ,

etc., are algebraic functions of x.

185. Now that we have discussed the differentiation of logarithms, those
functions that are a combination of logarithms and algebraic functions are
easily differentiated. Those functions that consist only of logarithms can
also be differentiated, as is clear from the following examples.

I. If y = (lnx)2, we let p = lnx, and since y = p2, we have dy = 2p dp.
but dp = dx/x, so that

dy =
2dx
x

lnx.

II. In a similar way, if y = (lnx)n, then

dy =
ndx

x
(lnx)n−1

,

so that if y =
√

lnx, since n = 1
2 , we have

dy =
dx

2x
√

lnx
.

III. If p is any function of x and y = (ln p)n, then

dy =
ndp

p
(ln p)n−1

.

Hence, since the differential dp can be found by our previous work,
the differential of y itself is known.

IV. If y = (ln p) (ln q) with p and q being any functions of x, by the
product rule given before,

dy =
dp

p
ln q +

dq

q
ln p.

V. If y = x lnx, then by the same rule,

dy = dx lnx +
x dx

x
= dx lnx + dx.
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VI. If y = xm lnx− 1
mxm, and we differentiate each part, we see that

d.xm lnx = mxm−1dx lnx + xm−1dx

and d. 1
mxm = xm−1dx, so that

dy = mxm−1dx lnx.

VII. If y = xm (lnx)n, then

dy = mxm−1dx (lnx)n + nxm−1dx (lnx)n−1
.

VIII. If logarithms of logarithms occur, so that y = ln lnx, we let p = lnx.
Then y = ln p and dy = dp

p ; but dp = dx
x , so that

dy =
dx

x lnx
.

IX. If y = ln ln lnx and we let p = lnx, then y = ln ln p, and by the
preceding example

dy =
dp

p dp
.

But dp = dx/x, so that by substitution we have

dy =
dx

x lnx ln lnx
.

186. Now that we have discussed the differentiation of logarithms, we
move on to exponential quantities, that is, powers of the sort where the
exponent is a variable. The differentials of this kind of function of x can
be found by differentiating their logarithms, as follows. If we want the
differential of ax, we let y = ax and take the logarithm of each: ln y =
x ln a. When we take the differentials we have dy/y = dx ln a, so that dy =
y dx ln a. Since y = ax, we have dy = axdx ln a, which is the differential
of ax. In a similar way, if p is any function of x, the differential of ap is
apdp ln a.

187. This differential could also be found immediately from the nature of
exponential quantities discussed in Introduction. Let ap be given where p
is any function of x. When we substitute x + dx for x we obtain p + dp.
Hence, if we let y = ap and x becomes x+dx, we have y+dy = ap+dp, and
so

dy = ap+dp − ap = ap
(
adp − 1

)
.
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We have shown3 that an exponential quantity az can be expressed by a
series as follows:

1 + z ln a +
z2 (ln a)2

2
+

z3 (ln a)3

6
+ · · · .

It follows that

adp = 1 + dp ln a +
dp2 (ln a)2

2
+ · · ·

and adp − 1 = dp ln a, since the following terms vanish in the presence of
dp ln a. It follows that

dy = d.ap = apdp ln a.

Therefore, the differential of an exponential quantity ap is the product of
the exponential quantity itself, the differential of the exponent p, and the
logarithm of the constant quantity a that is raised to the variable exponent.

188. If e is the number whose hyperbolic logarithm is equal to 1, so that
ln e = 1, then the differential of the quantity ex is equal to exdx. If dx is
taken to be constant, then the differential of this differential is equal to
exdx2, which is the second differential of ex. In a similar way the third
differential is equal to exdx3. It follows that if y = enx, then dy/dx = nenx

and d2y/dx2 = n2enx. Furthermore,

d3y

dx3 = n3enx,
d4y

dx4 = n4enx, . . . .

Hence it is clear that the first, second, and following differentials of enx

form a geometric progression, and it follows that the differential of order
m of y = enx, namely, dmy, equals nmenxdxm. Therefore,

dmy

y dxm

is the constant quantity nm.

189. If the quantity that is raised to a power is itself a variable, its differ-
ential can be investigated in a similar way. Let p and q be any functions of
x, and we consider the exponential quantity y = pq. We take the logarithm
so that ln y = q ln p. When we differentiate these we have

dy

y
= dq ln p +

q dp

p
,

3Introduction, Book I, Chapter VII; see also note on page 1.
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so that

dy = y dq ln p +
yq dp

p
= pq dq ln p + qpq−1dp,

since y = pq. Hence this differential consists of two members, the first
of which, pqdq ln p, would arise if in the proposed quantity pq the p were
constant and only the exponent q were variable; the other member would
arise if in the proposed quantity pq the exponent q were constant and only
the quantity p were variable. This differential could have been found by the
general rule given above in paragraph 170.

190. The differential of this same expression pq can also be found from
the nature of an exponential quantity as follows. Let y = pq and let x be
replaced by x+ dx so that y + dy = (p + dp)q+dq. This expression, when it
is expressed in the usual way by a series, gives

y + dy = pq+dq + (q + dq) pq+dq−1dp

+
(q + dq) (q + dq − 1)

1 · 2 pq+dq−2dp2 + · · · ,

so that

dy = pq+dq − pq + (q + dq) pq+dq−1dp.

The following terms, which involve higher powers of dp vanish in the pres-
ence of (q + dq) pq+dq−1dp. But

pq+dq − pq = pq
(
pdq − 1

)

= pq

(
1 + dq ln p +

dq2 (ln p)2

2
+ · · · − 1

)
= pq dq ln p.

In the second term (q + dq) pq+dqpq+dq−1dp, if we write q instead of q + dq
we obtain qpq−1dp so that the differential is as was found before: dy =
pqdq ln p + qpq−1dp.

191. This same differential can more easily be investigated from the nature
of exponential quantities in the following way. Since we have taken the
number e for the number whose hyperbolic logarithm is equal to 1, we
let pq = eq ln p, because the logarithm of each is the same, q ln p. Hence
y = eq ln p. It follows, since now the quantity e that is raised to a power is
constant, we have

dy = eq ln p

(
dq ln p +

q dp

p

)
,
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as we have shown before in the rule given in paragraph 187. When we
replace eq ln p with pq, we have

dy = pq dq ln p +
pqq dp

p
= pq dq ln p + qpq−1dp.

If y = xx, we have dy = xxdx lnx. From this its higher differentials can
be defined. We see that

d2y

dx2 = xx

(
1
x

+ (1 + lnx)2
)
,

d3y

dx3 = xx

(
(1 + lnx)3 +

3 (1 + lnx)
x

− 1
x2

)
,

etc.

192. Among the differentials of this kind of function, which involve expo-
nential functions, the following examples should be especially noted. They
arise from the differentiation of exp, indeed,

d.exp = ex dp + exp dx = ex (dp + p dx) .

I. If y = exxn, then

dy = exnxn−1dx + exxn dx,

or,

dy = ex dx
(
nxn−1 + xn

)
.

II. If y = ex (x− 1), then

dy = exx dx.

III. If y = ex
(
x2 − 2x + 2

)
, then

dy = exx2dx.

IV. If y = ex
(
x3 − 3x2 + 6x− 6

)
, then

dy = exx3dx.

193. If the exponents themselves are again exponential quantities, then
differentiation is accomplished according to the same rules. Thus, if we
want to differentiate ee

x

, we let p = ex, so that

y = ee
x

= ep;
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Then dy = epdp, and since dp = exdx, it follows that if y = ee
x

, then

dy = ee
x

exdx.

If y = ee
ex

, then

dy = ee
ex

ee
x

exdx.

However, if y = pq
r

, then we let qr = z, and dy = pzdz ln p + zpz−1dp, but
dz = qrdr ln q + rqr−1dq, so that

dy = pzqrdr ln p · ln q + pzrqr−1dq ln p +
pzqrdp

p
.

It follows that if y = pq
r

, then

dy = pq
r

qr
(
dr ln p · ln q +

r dq ln p

q
+

dp

p

)
.

In this way, no matter how the exponential may occur, the differential can
be found.

194. We proceed now to transcendental quantities. Previously, a consid-
eration of circular arcs has led us to a knowledge of these. Let an arc of
a circle whose radius is always equal to unity be given, and let the sine of
this arc be equal to x. We express this arc as arcsinx and we investigate
the differential of this arc, that is, the increment that it receives if the sine
of x is increased by its differential dx. We can accomplish this by the differ-
entiation of logarithms, since in Introduction (loc. cit., paragraph 138) we
have shown that the expression arcsinx can be reduced to this logarithmic
expression:

1√−1
ln

(√
1 − x2 + x

√−1
)
.

We let y = arcsinx, so that

y =
1√−1

ln
(√

1 − x2 + x
√−1

)
,

whose differential we have seen (paragraph 182, VII) to be

dy =
1√−1

(
−x dx√
1−x2 + dx

√−1
)

√
1 − x2 + x

√−1
=

dx
(
x
√−1 +

√
1 − x2

)
(√

1 − x2 + x
√−1

)√
1 − x2

,

so that

dy =
dx√

1 − x2
.
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195. This differential of a circular arc can also more easily be found with-
out the aid of logarithms. If y = arcsinx, then x is the sine of the arc y,
that is, x = sin y. When we substitute x + dx for x, y becomes y + dy, so
that x + dx = sin (y + dy). Since

sin (a + b) = sin a · cos b + cos a · sin b,

we have

sin (y + dy) = sin y · cos dy + cos y · sin dy.

As dy vanishes the arc becomes equal to its sine, and its cosine becomes
equal to 1. For this reason sin (y + dy) = sin y + dy cos y, so that x + dx =
sin y + dy cos y. Since sin y = x, we have cos y =

√
1 − x2, and when these

values are substituted, we have dx = dy
√

1 − x2, from which we obtain

dy =
dx√

1 − x2
.

The arc of a given sine has a differential equal to the differential of the sine
divided by the cosine.

196. Suppose p is any function of x and that y is the arc whose sine is p,
that is, y = arcsin p. Since the differential of this arc is dy = dp/

√
1 − p2,

where
√

1 − p2 expresses the cosine of that same arc, we can find the dif-
ferential of an arc whose cosine is given. If y = arccosx, then the sine
of this arc is equal to

√
1 − x2, so that y = arcsin

√
1 − x2. When we let

p =
√

1 − x2, it follows that dp = −dx/
√

1 − x2 and
√

1 − p2 = x, so that

dy =
−dx√
1 − x2

.

The differential of the arc of a given cosine is equal to the negative of the
differential of the cosine divided by the sine of that same arc.

This result can also be shown in the following way. If y = arccosx, we
let z = arcsinx, so that dz = dx/

√
1 − x2. But the sum of the two arcs

y and z is equal to the constant 90 degrees, that is y + z is constant, so
that dy + dz = 0, or dy = −dz. Hence we have the same result as before,
dy = −dx/

√
1 − x2.

197. If an arc whose tangent is given is to be differentiated, we begin
with y = arctanx. But then the sine is equal to x/

√
1 + x2 and the cosine

is equal to 1/
√

1 + x2. We let p = x/
√

1 + x2, so that√
1 − p2 =

1√
1 + x2

,

and so y = arcsin p. Hence, by a rule already given dy = dp/
√

1 − p2. Since
p = x/

√
1 + x2, we have

dp =
dx

(1 + x2)3/2
,
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and after substitution we obtain

dy =
dx

1 + x2 .

The differential of the arc whose tangent is given is equal to the differential
of the tangent divided by the square of the secant. We note that

√
1 + x2 is

the secant if x is the tangent.

198. In a similar way, suppose that the cotangent of an arc is given, so
that y is equal to the arccotangent of x. Since the tangent of that same arc
is 1/x, we let p = 1/x, so that y = tan p. Since

dy =
dp

1 + p2 and dp =
−dx

x2 ,

we make the substitutions to obtain

dy =
−dx

1 + x2 ,

that is, the differential of the arc of a cotangent is the negative of the
differential of the cotangent divided by the square of the cosecant.

If y is equal to the arcsecant of x, since

y = arccos
1
x
,

we have

dy =
dx

x2
√

1 − 1/x2
=

dx

x
√
x2 − 1

.

Also, if y is equal to the arccosecant of x, then

y = arcsin
1
x

and

dy =
−dx

x
√
x2 − 1

.

Frequently, the versed sine4 occurs. If y is equal to the versed sine of x,
since y = cos (1 − x), the sine of this arc is equal to

√
2x− x2, so that

dy =
dx√

2x− x2
.

4The versed sine of α is equal to 1 − cosα.
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199. Although the arc whose sine or cosine or tangent or cotangent or
secant or cosecant or finally versed sine is given is a transcendental quantity,
nevertheless its differential when divided by dx is an algebraic quantity. It
follows that its second differential, its third, fourth, and so forth, when
divided by the appropriate power of dx, are also algebraic. In order that
this differentiation might better be seen, we adjoin some examples.

I. If y = arcsin 2x
√

1 − x2, we let p = 2x
√

1 − x2, so that y = arcsin p
and dy = dp/

√
1 − p2. But then

dp = 2dx
√

1 − x2 − 2x2dx√
1 − x2

=
2dx

(
1 − 2x2

)
√

1 − x2

and
√

1 − p2 = 1− 2x2, so when these values are substituted we have

dy =
2dx√
1 − x2

.

From this it is clear that 2x
√

1 − x2 is the sine of twice the arc where
x is the sine of the original arc. Hence if y = 2 arcsinx, then dy =
2dx/

√
1 − x2.

II. If

y = arcsin
1 − x2

1 + x2 ,

we let

p =
1 − x2

1 + x2 ,

so that

dp =
−4x dx

(1 + x2)2
and

√
1 − p2 =

2x
1 + x2 .

Since
dy =

dp√
1 − p2

,

we have

dy =
−2dx
1 + x2 .

III. If y = arcsin
√

(1 − x)/2, we let p =
√

(1 − x)/2, so that

√
1 − p2 =

√
1 + x

2
and dp =

−dx

4
√

1−x
2

.

It follows that

dy =
dp√
1 − p2

=
−dx

2
√

1 − x2
.
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IV. If
y = arctan

2x
1 − x2 ,

we let
p =

2x
1 − x2 ,

so that

1 + p2 =

(
1 + x2

)2
(1 − x2)2

and dp =
2dx

(
1 + x2

)
(1 − x2)2

.

Hence, since dy = dp/
(
1 + p2

)
, we have by the rule for tangents

(paragraph 197)

dy =
2dx

1 + x2 .

V. If

y = arctan
√

1 + x2 − 1
x

,

we let

p =
√

1 + x2 − 1
x

,

so that

p2 =
2 + x2 − 2

√
1 + x2

x2

and

1 + p2 =
2 + 2x2 − 2

√
1 + x2

x2 =
2
(√

1 + x2 − 1
)√

1 + x2

x2 .

But

dp =
−dx

x2
√

1 + x2
x2 +

dx

x2 =
dx

(√
1 + x2 − 1

)
x2

√
1 + x2

.

Hence, since dy = dp/
(
1 + p2

)
, we have

dy =
dx

2 (1 + x2)
.

From this we see that

arctan
√

1 + x2 − 1
x

=
1
2

arctanx.
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VI. If y = earcsin x, this formula can also be differentiated by the preceding
methods. Indeed, we have

dy = earcsin x dx√
1 − x2

.

In this way all functions of x involving not only logarithms and exponen-
tials, but also even circular arcs, can be differentiated.

200. Since the differentials of arcs when divided by dx are algebraic quan-
tities, their second, and higher, differentials can be found, as we have
shown, by differentiation of algebraic quantities. Let y = arcsinx. Since
dy = dx/

√
1 − x2, we have

dy

dx
=

1√
1 − x2

,

whose differential gives the value of d2y/dx2, provided that we keep dx
constant. Hence the differentials of this y of any order are of this kind.

If y = arcsinx, then

dy

dx
=

1√
1 − x2

,

and when we keep dx constant,

d2y

dx2 =
x

(1 − x2)3/2
,

d3y

dx3 =
1 + 2x2

(1 − x2)5/2
,

d4y

dx4 =
9x + 6x3

(1 − x2)7/2
,

d5y

dx5 =
9 + 72x2 + 24x4

(1 + x2)9/2
,

d6y

dx6 =
225x + 600x3 + 120x5

(1 − x2)11/2
,

. . . .
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Hence we conclude as above (paragraph 177) that the general formula will
be

dn+1y

dxn+1 =
1 · 2 · 3 · · ·n

(1 − x2)n+1/2

×
(
xn +

1
2
· n (n− 1)

1 · 2 xn−2

+
1 · 3
2 · 4 · n (n− 1) (n− 2) (n− 3)

1 · 2 · 3 · 4 xn−4

+
1 · 3 · 5
2 · 4 · 6 · n (n− 1) (n− 2) (n− 3) (n− 4) (n− 5)

1 · 2 · 3 · 4 · 5 · 6 xn−6

+ · · ·
)
.

201. There remain some quantities that arise as inverses of these func-
tions, namely the sines and tangents of given arcs, and we ought to show
how these are differentiated. Let x be a circular arc and let sinx denote its
sine, whose differential we are to investigate. We let y = sinx and replace
x by x + dx so that y becomes y + dy. Then y + dy = sin (x + dx) and

dy = sin (x + dx) − sinx.

But

sin (x + dx) = sinx · cos dx + cosx · sin dx,

and since, as we have shown in Introduction,

sin z =
z

1
− z3

1 · 2 · 3 +
z5

1 · 2 · 3 · 4 · 5 − · · · ,

cos z = 1 − z2

1 · 2 +
z4

1 · 2 · 3 · 4 − · · · ,

when we exclude the vanishing terms, we have cos dx = 1 and sin dx = dx,
so that

sin (x + dx) = sinx + dx cosx.

Hence, when we let y = sinx, we have

dy = dx cosx.

Therefore, the differential of the sine of any arc is equal to the product of
the differential of the arc and the cosine of the arc.



6. On the Differentiation of Transcendental Functions 117

If p is any function of x, then in a similar way we have

d. sin p = dp cos p.

202. Similarly, if we are given cosx, that is, the cosine of the arc x, and we
are to investigate its differential, we let y = cosx and replace x by x + dx
so that y + dy = cos (x + dx). Since

cos (x + dx) = cosx · cos dx− sinx · sin dx,

and since, as we have just seen, cos dx = 1 and sin dx = dx, we have

y + dy = cosx− dx sinx,

so that

dy = −dx sinx.

Hence, the differential of the cosine of any arc is equal to the negative of
the product of the differential of the arc and the sine of the same arc.

Hence, if p is any function of x, then

d. cos p = −dp sin p.

These differentiations can also be derived from previous results as follows.
If y = sin p, then p = arcsin y and

dp =
dy√
1 − y2

.

Since y = sin p, cos p =
√

1 − y2, and we substitute this value to obtain
dp = dy/cos p, and so

dy = dp cos p

as before. In like manner, if y = cos p, then
√

1 − y2 = sin p and p =
arccos y. Hence

dp =
−dy√
1 − y2

=
−dy

sin p
,

so that we have as before

dy = −dp sin p.

203. If y = tanx, then

dy = tan (x + dx) − tanx;
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since

tan (x + dx) =
tanx + tan dx

1 − tanx · tan dx
,

when the tangent is subtracted from this expression there remains

dy =
tan dx (1 + tanx · tanx)

1 − tanx · tan dx
.

However, when the arc dx vanishes, the tangent is equal to the arc itself,
so that tan dx = dx, and the denominator 1 − dx tanx reduces to unity.
Hence

dy = dx
(
1 + tan2 x

)
.

Since

1 + tan2 x = sec2 x =
1

cos2 x
,

we have

dy = dx sec2 x =
dx

cos2 x
.

We could also obtain this differential from the differentials of the sine and
cosine. Since tanx = sinx/cosx, we have (paragraph 164)

dy =
dx cosx · cosx + dx sinx · sinx

cos2 x
=

dx

cos2 x

since sin2 x + cos2 x = 1.

204. This differential can also be found in a different way. Since y = tanx,
we have x = arctan y, and by the rule given above,

dx =
dy

1 + y2 .

Since y = tanx, √
1 + y2 = secx =

1
cosx

,

so that dx = dy cos2 x and

dy =
dx

cos2 x

as before. The differential of the tangent of any arc is equal to the differ-
ential of the arc divided by the square of the cosine of the same arc.
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In a similar way if we let y = cotx, then x is equal to the arccotangent
of y and

dx =
−dy

1 + y2 .

But √
1 + y2 = cscx =

1
sinx

,

so that dx = −dy sin2 x and

dy =
−dx

sin2 x
.

The differential of the cotangent of any arc is equal to the negative of the
differential of the arc divided by the square of the sine of the same arc.

Or since

cotx =
cosx
sinx

,

we have from the quotient rule

dy =
−dx sin2 x− dx cos2 x

sin2 x
=

−dx

sin2 x

as we have already seen.

205. If the secant of an arc is given, so that y = secx, since y = 1/cosx,
we have

dy =
dx sinx

cos2x
= dx tanx secx.

In a similar way, if y = cscx, we have

dy =
−dx cosx
sin2x

= −dx cotx cscx,

and it is not necessary to consider rules for special cases. If the versed sine
is given and y is equal to the versed sine of x, since y = 1− cosx, we have
dy = dx sinx. In all of the cases in which some straight line is related to
a given arc, since it can always be expressed through a sine or a cosine, it
can always be differentiated without difficulty. This is true not only of the
first differentials, but also of the second and succeeding differentials by the
given rules. We let y = sinx, z = cosx, and we keep dx constant. Then we
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have as follows:
y = sinx, z = cosx,

dy = dx cosx, dz = −dx sinx,

d2y = −dx2 sinx, d2z = −dx2 cosx,

d3y = −dx3 cosx, d3z = dx3 sinx,

d4y = −dx4 sinx, d4z = dx4 cosx,

. . . .

206. In a similar way we can find the differentials of all orders of the
tangent of the arc x. Let y = tanx = sinx/cosx and keep dx constant.
Then

y =
sinx

cosx
,

dy

dx
=

1
cos2 x

,

d2y

dx2 =
2 sinx

cos3 x
,

d3y

dx3 =
6

cos4 x
− 4

cos2 x
,

d4y

dx4 =
24 sinx

cos5 x
− 8 sinx

cos3 x
,

d5y

dx5 =
120

cos6 x
− 120

cos4 x
+

16
cos2 x

,

d6y

dx6 =
720 sinx

cos7 x
− 480 sinx

cos5 x
+

32 sinx

cos3 x
,

d7y

dx7 =
5040
cos8 x

− 6720
cos6 x

+
2016
cos4 x

− 64
cos2 x

.

207. Any function whatsoever in which the sine or cosine of an arc is
involved can be differentiated by these rules. This can be seen from the
following examples.

I. If y = 2 sinx cosx = sin 2x, then

dy = 2dx cos2 x− 2dx sin2 x = 2dx cos 2x.

II. If y =

√
1 − cosx

2
, or y = sin 1

2x, then

dy =
dx sinx

2
√

2 (1 − cosx)
.



6. On the Differentiation of Transcendental Functions 121

Since
√

2 (1 − cosx) = 2 sin 1
2x and sinx = 2 sin 1

2x cos 1
2x, we have

dy =
1
2
dx cos

1
2
x,

which follows immediately from the form y = sin 1
2x.

III. If y = cos ln 1
x , we let p = ln 1

x so that y = cos p. Hence

dy = −dp sin p.

But since p = ln 1 − lnx, we have dp = −dx/x, and so

dy =
dx

x
sin ln

1
x
.

IV. If y = esin x, we have

dy = esin xdx cosx.

V. If y = e−n/cos x, then

dy = −e−n/cos xndx sinx

cos2 x
.

VI. If y = ln
(
1 −

√
1 − e−n/sin x

)
, we let p = e−n/sin x, and since

y = ln
(
1 −

√
1 − p

)
,

we have

dy =
dp

2
(
1 −√

1 − p
)√

1 − p
.

But

dp =
e−n/sin xndx cosx

sin2 x
.

When this value is substituted, we obtain

dy =
ne−n/sin xdx cosx

2 sin2 x
(
1 −

√
1 − e−n/sin x

)√
1 − e−n/sin x

.
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7
On the Differentiation of Functions
of Two or More Variables

208. If two or more variable quantities x, y, z are independent of each
other, it can happen that while one of the variables increases or decreases,
the other variables remain constant. Since we have supposed that there is
no connection between the variables, a change in one does not affect the
others. Neither do the differentials of the quantities y and z depend on the
differential of x, with the result that when x is increased by its differential
dx, the quantities y and z can either remain the same, or they can change in
any desired way. Hence, if the differential of x is dx, the differentials of the
remaining quantities, dy and dz, remain indeterminate and by our arbitrary
choice will be presumed to be either practically nothing or infinitely small
when compared to dx.

209. However, frequently the letters y and z are wont to signify functions
of x that are either unknown or whose relationship to x is not considered.
In this case the differentials dy and dz do have a certain relationship to dx.
Whether or not y and z depend on x, the method of differentiation that we
now consider is the same. We look for the differential of a function that is
formed in any way from the several variables x, y, and z that the function
receives when each variable x, y, z increases by its respective differential
dx, dy, or dz. In order to find this for the given function, for each of the
variables x, y, and z we write x + dx, y + dy, and z + dz, and from this
expression we subtract the given function. The remainder is the desired
differential. This should be clear from the nature of differentials.
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210. Let X be a function of x, and let its differential, or increase, be
equal to P dx, when x increases by dx. Then let Y be a function of y and
let its differential be equal to Qdy, which is the augmentation Y receives
when y is increased to y + dy. Finally, let Z be a function or z, and let its
differential be equal to Rdz. These differentials P dx, Qdy, and Rdz can
be found from the nature of the functions X, Y , and Z by means of the
rules we have given above. Suppose the given function is X +Y +Z, which
is a function of the three variables x, y, and z, and its differential is equal
to P dx + Qdy + Rdz. Whether these three differentials are homogeneous
or not need not concern us. Terms that contain powers of dx will vanish in
the presence of P dx, as if the other members Qdy and Rdz were absent.
For a similar reason we neglect terms in the differentiation of the functions
Y and Z.

211. We keep the same description of X, Y , and Z and let the given
function be XY Z, which is a function of x, y, and z. We investigate the
differential of this function. If we replace x by x+dx, y by y+dy, and z by
z + dz, then X becomes X + P dx, Y becomes Y + Qdy, and Z becomes
Z + Rdz, so that the given function XY Z becomes

(X + P dx) (Y + Qdy) (Z + Rdz)

= XY Z + Y ZP dx + XZQdy + XY Rdz

+ ZPQdxdy + Y PRdx dz + XQRdy dz + PQRdxdy dz.

Since dx, dy, and dz are infinitely small, whether they are mutually homo-
geneous or not, the last term will vanish in the presence of any one of the
preceding terms. Then the term ZPQdxdy will vanish in the presence of ei-
ther Y ZP dx or XZQdy. For the same reason Y PRdx dz and XQRdy dz
will vanish. When we subtract the given function, the remainder is the
differential

Y ZP dx + XZQdy + XY Rdz.

212. These examples of functions of three variables x, y, and z, to which
we could, if desired, add more, should be sufficient to show that for any
proposed function of three variables x, y, and z, howsoever these variables
may be combined, the differential will always have this same form p dx +
q dy+ r dz. These functions p, q and r will be individual functions of either
all three variables x, y, and z or of two variables, or even of only one,
depending of how the given function is formed from the three variables and
constants. In a similar way, if the given function depends on four or more
variables, say x, y, z, and v, then its differential will have the form

p dx + q dy + r dz + s dv.
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213. Let us consider first a function of only two variables x and y, which
we will call V . Then its differential will have the form

dV = p dx + q dy.

If we let the quantity y remain constant, then dy = 0, so that the differential
of the function V will be p dx. If, on the other hand, we let x remain
constant, then dx = 0 and only y remains variable, so that the differential
of V is equal to q dy. The result is that the rule for differentiating a function
V of two variables x and y is as follows:

Let only the first quantity x remain variable, while the second quantity y
is treated as a constant. We take the differential of V , which will be equal
to p dx. Then we let only the quantity y remain variable, while the other,
x, is kept as constant and the differential is found, which will be equal to
q dy. From these results, when we let both x and y be variable we have
dV = p dx + q dy.

214. In a similar way, when the function V is of three variables x, y, and
z, the differential of this function has the form

dV = p dx + q dy + r dz.

It is clear that if only the quantity x is kept variable and the remaining y
and z are kept constant, since dy = 0 and dz = 0, the differential of V will
be equal to p dx. In a like manner we find the differential of V to be equal
to q dy when x and z are constant while only y is variable. If x and y are
treated as constants and only z is variable, we see that the differential of V
is equal to r dz. Hence, in order to find the differential of a function of three
or more variables, we consider individually each variable as if it alone were
variable and then take the differential, considering the other quantities as
constant. Then we take the sum of each of these differentials found with
each individual quantity taken as variable. This sum will be the required
differential of the given function.

215. In this rule, which we have found for the differentiation of a function
of however many variables, we have a demonstration of the general rule
given above (paragraph 170) by means of which any function of one variable
can be differentiated. If for each term of the function discussed in that
place the variable is considered to be a different letter and then each term
is successively differentiated in the way we have just prescribed, as if only
that were variable, we then collect into one sum each of the differentials
obtained in this way. This sum will be the desired differential after each
of the individual letters has its value restored. Hence this rule has wide
application to functions of several variables, no matter how they may be
composed. Thus its use in all of differential calculus is quite wide.
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216. Now that we have found this general rule, by means of which func-
tions of howsoever many variables can be differentiated, it will be pleasant
to show its use in several examples.

I. If V = xy, then

dV = x dy + y dx.

II. If V =
x

y
, then

dV =
dx

y
− x dy

y2 .

III. If V =
y√

a2 − x2
, then

dV =
dy√

a2 − x2
+

yx dx

(a2 − x2)3/2
.

IV. If V = (αx + βy + γ)m (δx + εy + ζ)n, then

dV = m (αx + βy + γ)m−1 (δx + εy + ζ)n (αdx + βdy)

+ n (αx + βy + γ)m (δx + εy + ζ)n−1 (δdx + εdy) ,

or

dV = (αx + βy + γ)m−1 (δ + εy + ζ)n−1

by

(mαδ + nαδ)x dx + (mβδ + nαε)x dy + (mαε + nβδ) y dx

+ (mβε + nβε) y dy + (mαζ + nγδ) dx + (mβζ + nγε) dy.

V. If V = y lnx, then

dV = dy lnx +
y dx

x
.

VI. If V = xy, then

dV = yxy−1dx + xy dy lnx.

VII. If V = arctan
y

x
, then

dV =
x dy − y dx

x2 + y2 .
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VIII. If V = sinx cos y, then

dV = dx cosx cos y − dy sinx sin y.

IX. If V =
exy√
x2 + y2

, then

dV =
ezy dz√
x2 + y2

+
ez

(
x2dy − yx dx

)
(x2 + y2)

√
x2 + y2

.

X. If V = ez arcsin

(
x−

√
x2 − y2

x +
√

x2 − y2

)
, the result is

dV = ezdz arcsin

(
x−

√
x2 − y2

x +
√

x2 − y2

)

+ ez
xy dy − y2dx(

x +
√

x2 − y2
)

(x2 − y2)3/4
√
x
.

217. We have seen that if V is a function of two variables x and y, its
differential will have the form dV = P dx + Qdy, in which P and Q are
functions that depend on V and are determined by it. It follows that these
two quantities P and Q in some certain way depend on each other, since
each depends on the function V . Whatever this connection between the
finite quantities P and Q may be, which we will have to investigate, it is
clear that not all differential formulas with the form P dx+Qdy, in which P
and Q are arbitrarily chosen, can be the differential of some finite function
V of x and y. Unless this relationship between the functions P and Q is
present, which the nature of differentiation requires, a differential of the
type P dx+Qdy clearly cannot arise from differentiation, and in turn will
have no integral.

218. Therefore, in integration it is of great interest to know this rela-
tionship between the quantities P and Q in order that we may distinguish
between those that really arose from the differentiation of some finite func-
tion and those that were formed arbitrarily and have no integral. Although
we are not going to take up the business of integration here, still this is
a convenient time to investigate this relationship by looking more deeply
into the nature of real differentials. Not only is this knowledge extremely
necessary for integral calculus, for which we are preparing the way, but
also it will cast significant light on differential calculus itself. First, then,
it is clear that if V is a function of two variables x and y, then both the
differentials dx and dy must be present in the differential P dx + Qdy. It
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follows that it is not possible for P to be equal to zero, nor for Q to be
equal to zero. Hence, if P is a function of x and y, the formula P dx cannot
be the differential of some finite quantity, that is, there is no finite quantity
whose differential is P dx.

219. Thus there is no finite quantity V , whether algebraic or transcen-
dental, whose differential is yx dx, provided that y is a variable quantity
which is independent of x. If we should suppose that there did exist such a
finite quantity V , since y is part of its differential, it would necessarily be
the case that y would also be in the quantity V . But if V contained y, due
to the variability of y, necessarily dy would have to be in the differential
of V . However, since it is not present, it is not possible that yx dx could
arise from the differentiation of some finite quantity. It is equally clear that
the formula P dx + Qdy, if Q is equal to zero and P contains y, cannot
be a real differential. At the same time we understand that the quantity Q
cannot be chosen arbitrarily, but that it depends on P .

220. In order to investigate this relationship between P and Q in the
differential dV = P dx + Qdy, we first suppose that V is a function of
zero dimension in x and y. We proceed from particular cases to a general
relation. Suppose that we let y = tx. Then the quantity x vanishes from the
function V , and we have a function of t alone, which we call T , and whose
differential is Θ dt, where Θ is a function of t. We also substitute everywhere
y = tx and dy = t dx + x dt. From this we obtain P dx + Qt dx + Qxdt.
Since dx is really not contained in this, we necessarily have P +Qt = 0, so
that

Q =
−P

t
=

−Px

y

and

Px + Qy = 0.

Hence in this case we have found the relation between P and Q. Further-
more, it is necessary that Θ = Qx so that Qx is equal to a function of t,
that is, a function of zero dimension in x and y. Since Q = Θ/x, we have
P = −Θy/x2, and both Px and Qy are functions of zero dimension in x
and y.

221. If a function V is a function of zero dimension in x and y, and it
is differentiated, then its differential P dx + Qdy will always be such that
Px + Qy = 0. That is, if in the differential instead of the differentials dx
and dy we write x and y, the result will be equal to zero, as will appear
from the following examples.

I. Let V =
x

y
. Then

dV =
y dx− x dy

y2 ,
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and when x replaces dx and y replaces dy, we have

yx− xy

y2 = 0.

II. Let V =
x√

x2 − y2
. Then

dV =
−y2dx− yx dy

(x2 − y2)3/2
,

so that
−y2x + y2x

(x2 − y2)3/2
= 0.

III. Let V =
y +

√
x2 + y2

−y +
√

x2 + y2
, which is a function of zero dimension in x

and y. Then

dV =
2x2dy − 2xy dx(√

x2 + y2 − y
)2 √

x2 + y2
,

and when x and y are substituted for dx and dy, the result is zero.

IV. Let V = ln
(
x + y

x− y

)
. Then

dV =
2x dy − 2y dx

x2 − y2 ,

and
2xy − 2yx
x2 − y2 = 0.

V. Let V = arcsin
(√

x− y√
x + y

)
. Then

dV =
y dx− x dy

(x + y)
√

2y (x− y)
,

and this formula enjoys the same property.

222. Now let us consider some other homogeneous functions and let V be
an n-dimensional function of x and y. Hence if we let y = tx, then V takes
the form Txn, where T is a function of t. We let dT = Θ dt so that

dV = xnΘ dt + nTxn−1dx
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If we let dV = P dx + Qdy, since dy = t dx + x dt, we have

dV = P dx + Qt dx + Qxdt.

Since the two forms should be equal, we have

P + Qt = nTxn−1 =
nV

x

because V = Txn. Since t = y/x we have

Px + Qy = nV,

and this equation thus defines the relation between P and Q. Hence if one
is known, the other is easily discovered. Since Qx = xnΘ, it follows that
Qx, as well as Qy and Px, is an n-dimensional function of x and y.

223. Hence, if in the differential of any homogeneous function in x and y
we substitute x and y for dx and dy, respectively, the result will be equal to
the original function whose differential is given multiplied by the dimension.

I. If V =
√
x2 + y2, then n = 1, and since

dV =
x dx + y dy√

x2 + y2
,

we have

x2 + y2√
x2 + y2

= V =
√

x2 + y2.

II. If V =
y3 + x3

y − x
, then n = 2 and

dV =
2y3dy − 3y2x dy + 3yx2dx− 2x3dx + y3dx− x3dy

(y − x)2
.

When we substitute x for dx and y for dy, we have

2y4 − 2y3x + 2yx3 − 2x4

(y − x)2
=

2y3 + 2x3

y − x
= 2V.

III. If V =
1

(y2 + y2)2
, then n = −4 and

dV = −4y dy + 4x dx
(y2 + x2)3

.

When we substitute x for dx and y for dy, we have

− 4y2 + 4x2

(x2 + y2)3
= −4V.
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IV. If V = x2 ln
(
x + y

y − x

)
, then n = 2 and

dV = 2x dx ln
(
y + x

y − x

)
+

2x2 (y dx− x dy)
y2 − x2 .

When we make the required substitutions, there arises

2x2 ln
(
y + x

y − x

)
= 2V.

224. A similar property can be observed if V is a homogeneous function
in more than two variables. If V is a function of the quantities x, y, and
z, which together have a dimension of n, then its differential has the form
P dx+Qdy+Rdz. When we let y = tx and z = sx, so that dy = t dx+x dt
and dz = s dx + x ds, then furthermore, the function V takes the form
Uxn, where U is a function of the two variables t and s. Hence, if we let
dU = p dt + q ds, then

dV = xnpdt + xnq ds + nUxn−1dx.

The previous form gives

dV = P dx + Qt dx + Qxdt + Rsdx + Rxds.

When these two forms are compared, we have

P + Qt + Rs = nUxn−1 =
nV

x
,

from which we obtain

Px + Qy + Rz = nV.

This same property extends to functions of howsoever many variables.

225. If the given function is homogeneous in howsoever many variables
x, y, z, v, . . . , its differential will always have the property that, if for the dif-
ferentials dx, dy, dz, dv, . . . we substitute the finite quantities x, y, z, v, . . . ,
then the result is the given function multiplied by the dimension. This rule
applies likewise if V is a homogeneous function of the single variable x. In
this case V is a power of x, for example V = axn, which is a homogeneous
function of dimension n. Indeed, there is no other function of x in which
x has n dimensions besides the power xn. Since dV = naxn−1dx, when we
substitute x for dx, we obtain naxn, which is nV . This remarkable property
of homogeneous functions deserves to be very carefully noted, since it will
have extremely useful consequences in integral calculus.
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226. Now, in order to inquire into the general relationship between P and
Q, which constitute the differential P dx + Qdy of any function V of two
variables x and y, we need to pay attention to what follows. If V is any
function whatsoever of x and y, and we substitute x + dx for x, then V is
transformed into R. If y + dy is substituted for y, then V is transformed
into S. If simultaneously x+dx and y+dy are substituted for x and y, then
V is changed into V I. Since R comes from V when x + dx is substituted
for x, it is clear that if furthermore y + dy is substituted in R, the result is
V I. It comes to the same thing as substituting x+ dx for x and y + dy for
y immediately. In a similar way, if x + dx is substituted for x in S, since
S has already arisen from V by substituting y + dy for y, once again we
obtain V I, as may be seen more clearly from the following table.

The quantity becomes if for we put

V R x x + dx

V S y y + dy

V V I x x + dx

y y + dy

R V I y y + dy

S V I x x + dx

227. If we differentiate V as if x were the only variable and y is treated as a
constant, since we substitute x+dx for x, the function V becomes R, whose
differential will be equal to R−V . From the form dV = P dx+Qdy it follows
that the same differential will be equal to P dx, so that R−V = P dx. If we
substitute y + dy for y and treat x as a constant, since R becomes V I and
V becomes S; the quantity R−V becomes V I −S. Then the differential of
R − V = P dx, which arises if only y is considered variable, will be equal
to

V I −R− S + V.

In a similar way, when we substitute y+dy for y, V becomes S, so that S−V
is the differential of V if we let only y be variable, so that Q− V = Qdy.
Now when we substitute x+ dx for x, S becomes V I and V becomes R, so
that the quantity S−V becomes V I−R and the differential of S−V = Qdy,
which arises when only x is variable, is equal to

V I −R− S + V,

which is equal to the differential we found previously.
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228. From this equality we deduce the following conclusion. If any function
V of two variables x and y has a differential dV = P dx + Qdy, then the
differential of P dx, which comes from letting only y be variable while x
is held constant, is equal to the differential of Qdy, which comes from
letting only x be variable while y is held constant. For instance, if only
y is variable, then dP = Z dy and the differential of P dx, taken in the
prescribed way, will be equal to Z dx dy. Now, if we let only x be variable,
then also dQ = Z dx. Thus the differential of Qdy, taken in the prescribed
way, will be Z dx dy. In this way we understand the relationship between P
and Q. In short, the differential of P dx when x is constant must be equal
to the differential of Qdy when y is constant.

229. This remarkable property will become clearer if we illustrate it with
a few examples.

I. Let V = yx. Then

dV = y dx + x dy,

so that P = y and Q = x. When we keep x constant,

d.P dx = dx dy,

and when y is kept constant,

d.Qdy = dx dy,

so that the two differentials are equal.

II. Let V =
√

x2 − 2xy. Then

dV =
x dx + y dx + x dy√

x2 + 2xy
,

so that

P =
x + y√
x2 + 2xy

and Q =
x√

x2 + 2xy
,

so that when x is kept constant,

d.P dx =
xy dx dy

(x2 + 2xy)3/2
,

and when y is kept constant,

d.Q =
xy dx dy

(x2 + 2xy)3/2
.
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III. Let V = x sin y + y sinx, so that

dV = dx sin y + x dy cos y + dy sinx + y dx cosx.

Hence P dx = dx sin y + y dx cosx and Qdy = dy sinx + x dy cos y.
When we keep x constant, we have

d.P dx = dx dy cos y + dx dy cosx,

and when y is kept constant, we have

d.Qdy = dx dy cos y + dx dy cosx.

IV. Let V = xy. Then

dV = xy dy lnx + yxy−1dx,

so that P dx = yxy−1dx and Qdy = xydy lnx. Hence when we keep
x constant we have

d.P dx = xy−1dx dy + yxy−1dx dy lnx,

and when y is kept constant, we have

d.Qdy = yxy−1dx dy lnx + xy−1dx dy.

230. This property can also be stated in another way, so that this remark-
able characteristic of all functions of two variables can be understood. If
any function V of two variables x and y is differentiated with only x vari-
able, and this differential is again differentiated with only y variable, then
after this double differentiation, the same result is obtained when the order
of differentiation is reversed by first differentiating V with only y variable
and then differentiating this differential with only x variable. Both of these
cases give the same expression of the form z dx dy. The reason for this
identity clearly follows from the previous property; for if V is differentiated
with only x variable, we have P dx, and if V is differentiated with only y
variable, we have Qdy. The differentials of these, in the way already indi-
cated, are equal, as we have demonstrated. For the rest, this characteristic
follows immediately from the argument given in paragraph 227.

231. The relationship between P and Q, if P dx+Qdy is the differential
of the function V , can also be indicated in the following way. Since P and Q
are functions of x and y, they can both be differentiated with both x and y
variable. If dV = P dx+Qdy, then dP = p dx+ r dy and dQ = q dx+ s dy.
Therefore, when x is constant, dP = r dy and d.P dx = r dx dy. Then when
y is constant dQ = q dx and d.Qdy = q dx dy. Since these two differentials
r dx dy and q dx dy are equal to each other, it follows that

q = r.
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Therefore, the functions P and Q are related in such a way that if both of
them are differentiated as we have done, the quantities q and r are equal to
each other. For the sake of brevity, at least in this chapter, the quantities r
and q will conveniently be symbolized by ∂P/∂y, in that P is differentiated
with only y variable, which is indicated by ∂y in the denominator. In this
way we obtain the finite quantity r. In like manner ∂Q/∂x will symbolize
the finite quantity q, since by this is indicated that the function Q is dif-
ferentiated with only x variable, so we ought to divide the differential by
∂x.

232. We will use this method of symbolizing, although there is some
danger of ambiguity therein. We avoid this with the use of the partial
symbol, with the result that the complications in describing the conditions
of differentiation are avoided. Thus we can briefly express the relationship
between P and Q by stating

∂P

∂y
=

∂Q

∂x
.

In fractions of this kind, beyond the usual significance is which the denom-
inator indicates the divisor, here the differential of the numerator is to be
taken with only that quantity variable which is indicted by the differential
in the denominator. In this way by the division of differentials these frac-
tions ∂P/∂y and ∂Q/∂x exist from calculus and indicate finite quantities,
which in this case are equal to each other. Once this method is agreed upon,
the quantities p and s can be denoted by p = ∂P/∂x and s = ∂Q/∂y if, as
we have noted, the differentiation of the numerator by the denominator is
properly restricted.

233. There is a wonderful agreement between this property and that prop-
erty of homogeneous functions which we previously have shown. Let V be a
homogeneous function in x and y of dimension n. We let dV = P dx+Qdy,
and we have shown that nV = Px + Qy. Hence

Q =
nV

y
− Px

y
.

We let dP = p dx + r dy, so that

∂P

∂y
= r,

which is thus shown to be equal to ∂Q/∂x. Let Q be differentiated with
only x variable, and under the present hypothesis we have

dQ =
nP dx

y
− P dx

y
− xp dx

y
,
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so that

∂Q

∂x
=

(n− 1)P
y

− px

y
,

and we must have

(n− 1)P
y

− px

y
= r,

or

(n− 1)P = px + ry.

This equality becomes clear when we note that P is a homogeneous function
in x and y of dimension n− 1, so that its differential dP = p dx+ r dy, due
to the property of homogeneous functions, should be such that (n− 1)P =
px + ry.

234. This property, that
∂P

∂y
=

∂Q

∂x
,

which we have shown to be common to all functions of two variables x and
y, can also reveal to us the nature of functions of three or more variables.
Let V be any function of three variables x, y, and z, and let

dV = P dx + Qdy + Rdz.

If in this differentiation z is treated as a constant, then dV = P dx+Qdy. In
this case by what has gone before it should be true that ∂P/∂y = ∂Q/∂x.
Then if y is supposed to be constant, we have dV = P dx + Rdz, so that
∂P/∂z = ∂R/∂x. Finally with x constant we see that ∂Q/∂z = ∂R/∂y.
Therefore, in the differential P dx + Qdy + Rdz of the function V , the
quantities P , Q, and R are related to each other in such a way that

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

235. It follows that this property of functions that involve three or more
variables is analogous to that which we have shown above (paragraph 230)
for functions of two variables. If V is any function of three variables x,
y, and z, and this is differentiated three times in such a way that in the
first differentiation the first variable, that is, x, is the only variable, in the
second differentiation only y is variable, and in the third only z is variable,
then we obtain an expression of the form Z dx dy dz. This same expression
is obtained no matter in which order the quantities x, y, and z are taken.
There are six different ways of taking the threefold derivative to obtain the
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same expression, since there are six ways of ordering x, y, and z. No matter
what order is chosen, if the function V is differentiated with only the first
variable, and that is then differentiated with only the second variable, and
this then differentiated with only the third variable, the same expression is
obtained when the order is changed.

236. In order that the reason for this property may be seen more clearly,
we let

dV = P dx + Qdy + Rdz.

Then we differentiate each of the quantities P , Q, and R, with their differ-
entials of the form we have already seen:

dP = p dx + s dy + t dz,

dQ = s dx + q dy + u dz,

dR = t dx + u dy + r dz.

Now if we differentiate V with only x variable, we have P dx. This differ-
ential is now differentiated with only y variable to obtain s dx dy. If this
is differentiated with only z variable, and after this is divided by dx dy dz,
we have ∂s/∂z. Now we reorder the variables as y, x, z, and the first dif-
ferentiation gives Qdy, the second s dx dy and the third (when divided
by dx dy dz) gives ∂s/∂z as before. Now choose the order z, y, x and the
first differentiation gives Rdz, the second u dy dz, and the third, after di-
vision by dx dy dz, gives ∂u/∂x. But when y is kept constant, we have
dQ = s dx + u dz, so that

∂s

∂z
=

∂u

∂x
,

as we wished to show.

237. We let

V =
x2y

a2 − z2 ,

and we take the three derivatives as many times as the order of the variables
x, y, and z can change:
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1st differential 2nd differential 3rd differential

with respect to x alone y alone z alone
2xy dx
a2 − z2

2x dx dy
a2 − z2

4xz dx dy dz
(a2 − z2)2

with respect to x alone z alone y alone
2xy dx
a2 − z2

4xyz dx dz
(a2 − z2)2

4xz dx dy dz
(a2 − z2)2

with respect to y alone x alone z alone
x2dy

a2 − z2

2x dx dy
a2 − z2

4xz dx dy dz
(a2 − z2)2

with respect to y alone z alone x alone
x2dy

a2 − z2

2x2z dy dz

(a2 − z2)2
4xz dx dy dz
(a2 − z2)2

with respect to z alone x alone y alone
2x2yz dz

(a2 − z2)2
4xyz dx dz
(a2 − z2)2

4xz dx dy dz
(a2 − z2)2

with respect to z alone y alone x alone
2x2yz dz

(a2 − z2)2
2x2z dy dz

(a2 − z2)2
4xz dx dy dz
(a2 − z2)2

From this example it is clear that no matter in what order the variables are
taken, after the three differentiations we always have the same expression

4xz dx dy dz
(a2 − z2)2

.

238. Just as after three differentiations we arrived at the same expres-
sion, so we detect some agreement after the second differentiation. Among
these each expression occurs twice. It is clear that those formulas with the
same differentials are equal to each other, and the third differentials are all
equal to each other because they all have the same differentials dx dy dz.
From this we conclude that if V is a function of howsoever many variables
x, y, z, v, u, . . . and V is differentiated successively the number of times re-
quired so that always only one quantity is variable, then as often as we
arrive at expressions with the same differentials, those expressions will be
equal to each other. Thus, after two differentiations we find an expression
Z dx dy where in one only x is variable and in the other only y is variable,
no matter which is first or second. In a similar way there are six ways by
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which the triple differentiation arrives at the same expression Z dx dy dz.
There are twenty-four ways of taking four derivatives to arrive at the same
expression of the form Z dx dy dz dv, and so forth.

239. One can easily agree to the truths of these theorems with little at-
tention paid to the principles explained earlier, and one can more easily see
this truth by one’s own meditation than by such complications of words,
without which it is not possible to give a demonstration. But since a knowl-
edge of these properties is of the greatest importance in integral calculus,
beginners should be warned that they must not only meditate on these
properties with great care and examine their truth, but also work through
many examples. In this way they will become very familiar with this ma-
terial, and then they will be able more easily to gather the fruit which
will come later. Indeed, not only beginners, but also those who are already
acquainted with the principles of differential calculus are exhorted to the
same, since in almost all introductions to this part of analysis this argument
is wont to be omitted. Frequently, authors have been content to give only
the rules for differentiation and the applications to higher geometry. They
do not inquire into the nature or the properties of differentials, from which
the greatest aid to integral calculus comes. For this reason the argument,
which is practically new in this chapter, has been discussed at length in
order that the way to other more difficult integrations may be prepared,
and the work to be undertaken later might be lightened.

240. Once we know these properties that functions of two or more vari-
ables enjoy, we can easily decide whether or not a given formula for a
differential in which there occur two or more variables has really arisen
from differentiation of some finite function. If in the formula P dx + Qdy
it is not true that ∂P/∂y = ∂Q/∂x, then we can with certainty state that
there is no function of x and y whose differential is equal to P dx + Qdy.
When we come to integral calculus we will deny that there is any integral
for such a formula. Hence since yx dx + x2dy does not have the required
condition, there is no function whose differential is equal to yx dx + x2dy.
The question is whether as long as ∂P/∂y = ∂Q/∂x, the formula has al-
ways arisen from the differentiation of some function. From the principles
of integration we can surely answer in the affirmative.

241. If in a given formula of a differential there are three or more variables,
such as P dx+Qdy+Rdz, then there is no way that this shall have arisen
from differentiation unless these three conditions are met:

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

Of these conditions, if even only one is missing, then we can state with
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certainty that there is no function of x, y, and z whose differential is P dx+
Qdy + Rdz. For such a formula we cannot require an integral, and such
is said not to be integrable. It can easily be understood that in integral
calculus we ought to investigate the differential formulas to see whether
they can be integrated before actually working to find the integral.



8
On the Higher Differentiation
of Differential Formulas

242. If there is a single variable and its differential is held constant, we
have already given the method for finding differentials of any order. That
is, if the differential of any function is differentiated again, we obtain its sec-
ond differential. If this is again differentiated, we get the third differential,
and so forth. This same rule holds whether the function involves several
variables or only one, whose first differential is not kept constant. Hence,
if V is any function of x and dx is not held constant, but is as if it were
a variable, then the differential of dx is equal to d2x. The differential of
d2x is equal to d3x, and so forth. Let us investigate the second and higher
differentials of the function V .

243. We let the first differential of the function V be equal to P dx,
where P is some function of x depending on V . If we want to find the
second differential of V , we must differentiate again its first differential
P dx. Since this is the product of two variable quantities, P and dx, whose
differentials respectively are dP = p dx and d.dx = d2x, then according to
the product rule the second differential is

d2V = P d2x + p dx2.

Then if we let dp = q dx, since the differential of dx2 is equal to 2dx d2x,
we have by another differentiation

d3V = P d3x + dP d2x + 2p dx d2x + dp dx2.



142 8. On the Higher Differentiation of Differential Formulas

Since dP = p dx and dp = q dx, we have

d3V = P d3x + 3p dx d2x + q dx3.

We find the higher differentials in a similar way.

244. Now we apply this to powers of x, whose successive differentials we
investigate, supposing that dx is not kept constant.

I. If V = x, then

dV = dx, d2V = d2x, d3V = d3x, d4V = d4x, . . . .

II. If V = x2, then

dV = 2x dx

and

d2V = 2x d2x + 2dx2,

d3V = 2x d3x + 6dx d2x,

d4V = 2x d4x + 8dx d3x + 6d2x2,

d5V = 2x d5x + 10dx d4x + 20d2x d3x,

. . . .

III. If in general V = xn, then and

dV = nxn−1dx,

d2V = nxn−1d2x + n (n− 1)xn−2dx2,

d3V = nxn−1d3x

+ 3n (n− 1)xn−2dx d2x + n (n− 1) (n− 2)xn−3dx3,

d4V = nxn−1d4x + 4n (n− 1)xn−2dx d3x + 3n (n− 1)xn−2d2x2

+ 6n (n− 1) (n− 2)xn−3dx2d2x

+ n (n− 1) (n− 2) (n− 3)xn−4dx4,

. . . .

If dx happens to be constant, then d2x = 0, d3x = 0, d4x = 0, and so
forth. Thus we have the same differentials we found earlier under this
hypothesis.
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245. Since differentials of any order are differentiated according to the
same rules as are finite quantities, any expression in which differentials
occur besides finite quantities can be differentiated according to the rules
given above. Since this operation occurs not infrequently, we illustrate this
with a few examples.

I. If V =
x d2x

dx2 , we differentiate to obtain

dV =
x d3x

dx2 +
d2x

dx
− 2x d2x2

dx3 .

II. If V =
x

dx
, then

dV = 1 − x d2x

dx2 ,

where there is no problem if we let V be an infinite quantity.

III. If

V = x2 ln
(
d2x

dx2

)
,

we first transform V into x2 ln d2x−2x2 ln dx, and then by the ordinary
rules for differentiating we have

dV = 2x dx ln d2x +
x2d3x

d2x
− 4x dx ln dx− 2x2d2x

dx
.

The higher differentials of V can be found in a similar way.

246. If the given expression involves two variables, namely x and y, either
only one of the differentials can be kept constant, or neither. It is arbitrary
which of the differentials is assumed to be constant, since it depends on
our choice of the extent to which we want successive values to increase.
However, we cannot decide to keep both differentials constant, since this
would assume some relationship between x and y, while we have assumed
that there is no such relationship, or if there is, that it is unknown. If
we suppose that x increases equally and y also takes equal increments,
then by that fact we would have y = ax + b, and hence y would depend
on x, which is contrary to the hypothesis. For this reason either only one
differential of a variable is kept constant, or neither is kept constant. If we
know how to perform differentiations with no differential taken as constant,
it is clear how to find differentials if one differential is kept constant: If dx
is constant, we need only let the terms that contain d2x, d3x, d4x, and so
forth, be deleted.



144 8. On the Higher Differentiation of Differential Formulas

247. We let V be any finite function of x and y, and let dV = P dx+Qdy.
In order to find the second differential of V we suppose that both of the
differentials dx and dy are variable. Since P and Q are functions of x and
y, we let

dP = p dx + r dy,

dQ = r dx + q dy,

since we have already noted that

∂P

∂y
=

∂Q

∂x
= r.

Under these conditions we differentiate dV = P dx + Qdy and obtain

d2V = P d2x + p dx2 + 2r dx dy + Qd2y + q dy2.

Hence, if we suppose that dx is constant, then

d2V = p dx2 + 2r dx dy + Qd2y + q dy2.

On the other hand, if we suppose that dy is constant, then

d2V = P d2x + p dx2 + 2r dx dy + q dy2.

248. Therefore, if any function of x and y is differentiated twice, with
neither differential held constant, the second differential always has the
form

d2V = P d2x + Qd2y + Rdx2 + S dy2 + T dx dy;

where the quantities P , Q, R, S, and T are so interrelated that when we
use the notation used in the previous chapter,

∂P

∂y
=

∂Q

∂x
, R =

∂P

∂x
, S =

∂Q

∂y
, T = 2

∂Q

∂x
= 2

∂P

∂y
.

If any one of these conditions fails, then we can affirm with certainty that
the proposed formula cannot be the second differential of a function. Here
we have an immediate test of whether or not an expression of this kind is
the second differential of some quantity.

249. In a similar way the third differential and higher differentials are
found. It would seem to be helpful to show a particular example rather
than give general formulas.
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Let V = xy, so that

dV = y dx + x dy,

d2V = y d2x + 2dx dy + x d2y,

d3V = y d3x + 3dy d2x + 3d2y dx + x d3y,

d4V = y d4x + 4dy d3x + 6d2x d2y + 4dx d3y + x d4y,

. . . .

In this example the numerical coefficients follow the law of the powers of a
binomial, so that this can be continued howsoever far one wishes.

If V = y/x, then

dV =
dy

x
− y dx

x2 ,

d2V =
d2y

x
− 2dx dy

x2 +
2y dx2

x3 − y d2x

x2 ,

d3V =
d3y

x
− 3dx d2y

x2 +
6dx2dy

x3 − 3dy d2x

x2

+
6y dx d2x

x3 − 6y dx3

x4 − y d3x

x2 ,

. . . .

In this example the sequence of differentials is not as clear as in the previous
example.

250. This method of differentiation is not confined only to finite functions.
It can also be extended to any expression that already contains differentials.
The differential can be found whether or not some differential is assumed to
remain constant. Since each differential is differentiated by the same laws
as finite quantities, the rules given in the preceding chapters are still valid
and should be observed. Let V denote such an expression that we need to
differentiate, whether it is finite or infinitely large or infinitely small. The
method of differentiation can be seen from the following examples.

I. Let V =
√
dx2 + dy2. Then

dV =
dx d2x + dy d2y√

dx2 + dy2
.

II. Let V =
y dx

dy
. Then

dV = dx +
y d2x

dy
− y dx d2y

dy2 .
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III. Let

V =

(
dx2 + dy2

)3/2
dx d2y − dy d2x

.

Then

dV =

(
3dx d2x + 3dy d2y

)√
dx2 + dy2

dx d2y − dy d2x

−
(
dx2 + dy2

)3/2 (
dx d3y − dy d3x

)
(dx d2y − dy d2x)2

.

Since these differentials are taken most generally, with no differential taken
to be constant, from these it is easy to derive the differentials that arise
when either dx or dy is held constant.

251. Since we are assuming that none of the differentials are constant,
we can give no law according to which the second differentials and those of
higher order can be determined, nor do they have a definite meaning. Hence
the formula for the second differential and those of higher order have no
determined value, unless some differential is assumed to be constant. But
even its signification will be vague and will change depending on which of
the differentials are held constant. There are, however, some expressions
that for second differentials, although no differential is held constant, still
have a determined signification. This always remains the same, no matter
which differential we decide to hold constant. Below we will consider very
carefully the nature of formulas of this kind, and we will discuss the way
in which these may be distinguished from those others that do not include
any determined values.

252. In order that we may more easily see the kind of formulas that
contain second or higher differentials, we consider first formulas containing
only a single variable. It will then be perfectly clear that if in such a formula
there is a second differential of the variable x, d2x, and no differential is
held constant, then it is not possible for the formula to have a fixed value.
Indeed, if we decided that the differential of x should be constant, then
d2x = 0. However, if we held constant the differential of x2, that is, 2x dx,
or even x dx, since the differential of x dx is x d2x + dx2, this expression
is equal to zero, so that d2x = −dx2/x. Indeed, if the differential of some
power, for example nxn−1dx or xn−1dx, should be constant, then its second
differential satisfies

xn−1d2x + (n− 1)xn−2dx2 = 0,

so that

d2x = − (n− 1) dx2

x
.
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Different values for d2x will be given if the differentials of other functions
of x are held constant. However, it is clear that the formulas in which d2x
occurs take on quite different values depending on whether in place of d2x
we write zero or −dx2/x or − (n− 1) dx2/x or some other expression of this
kind. For instance, if the given formula is x2d2x/dx2, then, because d2x and
dx2 are both infinitely small and homogeneous, the expression should have
a finite value. If dx is made constant, the expression becomes zero; if d.x2

is constant, it becomes −x; if d.x3 is constant, it becomes −2x; if d.x4 is
constant, it becomes −3x, and so forth. Hence, it can have no determined
value unless the differential of something is assumed to be constant.

253. This ambiguity of signification is present, for a similar reason, if the
third differential is present in some formula. Let us consider the formula

x3d3x

dx d2x
,

which also has a finite value. If the differential dx is constant, then the
formula takes the form 0/0, whose value we will soon see. Let d.x2 be
constant. Then d2x = −dx2/x and after another differentiation we obtain

d3x = −2dx d2x

x
+

dx3

x2 =
3dx3

x2 ,

since d2x = −dx2/x. Hence, for this reason, the given formula

x3d3x

dx d2x

becomes −3x2. However, if d.xn is constant, then

d2x =
− (n− 1) dx2

x
,

so that

d3x = −2 (n− 1) dx d2x

x
+

(n− 1) dx3

x2 =
2 (n− 1)2 dx3

x2 +
(n− 1) dx3

x2 ,

=
(2n− 1) (n− 1) dx3

x2 .

Hence for this reason we have

d3x

d2x
=

(2n− 1) dx
x

and

x3d3x

dx d2x
= − (2n− 1)x2.
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It follows that if n = 1, or dx is constant, the value of the formula will be
equal to −x2. From this it is clear that if in any formula there occurs a
third or higher differential and at the same time it is not indicated which
of these differentials are taken to be constant, then that formula has no
certain value and can have no further significance. For this reason such
expressions cannot occur in the calculation.

254. In a similar way, if the formula contains two or more variables and
there occur differentials of the second or higher order, it should be under-
stood that it can have no determined value unless some differential is con-
stant, with the exception of some special cases that we will soon consider.
Since as soon as d2x is in some formula, due to the various differentials
that can be constant, the value of d2x always changes. The result is that it
is impossible that the formula should have a stated value. The same is true
for any higher differential of x and also for the second and higher differen-
tials of the other variables. However, if a formula contains the differentials
of two or more variables, it can happen that the variability arising from
one is destroyed by the variability of the others. It is for this reason that
we have that exceptional case that we mentioned, in which a formula of
this kind, involving second differentials of two or more variables, can have
a definite value, even though no differential is held constant.

255. The formula
y d2x + x d2y

dx dy

can have no fixed and stated signification unless one of the first differentials
is set constant. If dx is made constant, then we have

x d2y

dx dy
.

On the other hand, if dy is made constant, we have

y d2x

dx dy
.

It should be clear that these formulas need not be equal. If they were
necessarily equal, they would remain the same when any function of x is
substituted for y. Let us suppose that y = x2. When we set dx constant we
have d2y = 2dx2, and the formula

x d2y

dx dy

becomes equal to 1. However, if dy, that is 2x dx, is set constant, then
d2y = 2x d2x + 2dx2 = 0, so that d2x = −dx2/x, and the formula

y d2x

dx dy
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becomes equal to − 1
2 . Since we have this contradiction in a single case,

much less is it possible in general that

x d2y

dx dy
,

when dx is constant, is equal to

y d2x

dx dy
,

when dy is constant. Since the formula

y d2x + x d2y

dx dy

has no fixed meaning even though either dx or dy is constant, much less
will there be a fixed meaning if the differential of an arbitrary function of
either x of y or both is set equal to a constant.

256. Thus it appears that a formula of this kind cannot have a stated
value unless it is so made up that when for y or z or any function of x is
substituted, the second and higher differentials of x, namely d2x, d3x, etc.,
no longer remain in the calculation. Indeed, if after any such substitution
whatsoever in the formula there remains d2x or d3x or d4x, etc., the value
of this formula remains unsettled. This is because as different constants are
assigned, the differentials take on different meanings. The formula we have
just discussed,

y d2x + x d2y

dx dy
,

is of this kind. If this formula had a fixed value, no matter what y should
signify, the stated value should remain the same if y represents any func-
tion or x. But if we let y = x, the formula becomes 2x d2x/dx2, which is
undetermined due to the presence of d2x, so that it takes on various values
according to the various differentials that are made constant. This should
be sufficiently clear from the discussion in paragraph 252.

257. From this there arises a doubt as to the existence of any formulas
that contain two or more second, or higher, differentials that still have the
property that when arbitrary functions of one of the variables are substi-
tuted for the other variables, then the second differentials are eliminated.
We propose this doubt in order to present a formula that has this pre-
cise property. By this investigation we will more easily see the force of the
question. I say that the following formula has this remarkable property:

dy d2x + dx d2y

dx3 .

Indeed, no matter what function of x we substitute for y, the second dif-
ferentials always vanish completely.
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I. Let y = x2. Then dy = 2xdx and d2y = 2x d2x + 2dx2. When these
values are substituted into the formula

dy d2x− dx d2y

dx3 ,

we have

2x dx d2x− 2x dx d2x− 2dx3

dx3 = −2.

II. Let y = xn. Then dy = nxn−1dx and

d2y = nxn−1d2x + n (n− 1)xn−2dx2.

When these values are substituted, the formula

dy d2x− dx d2y

dx3

is transformed into

nxn−1dx d2x− nxn−1dx d2x− n (n− 1)xn−2dx3

dx3 = −n (n− 1)xn−2.

III. Let y = −√
1 − x2. Then

dy =
x dx√
1 − x2

and

d2y =
x d2x√
1 − x2

+
dx2

(1 − x2)3/2
,

so that the formula
dy d2x− dx d2y

dx3

becomes

x d2x

dx2
√

1 − x2
− x d2x

dx2
√

1 − x2
− 1

(1 − x2)3/2
=

−1

(1 − x2)3/2
.

In all of these examples the second differentials d2x cancel each other. This
also happens no matter what other functions of x are substituted for y.

258. Since these examples have already shown the truth of our proposi-
tion, namely, that the formula

dy d2x− dx d2y

dx3
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has a fixed value, even though no differential is assumed to be constant, all
the more easily we can furnish a demonstration. Let y be any function or x,
and then dy is its differential, so that dy = p dx, where p is some function
of x. The differential of p will have the form dp = q dx and q is a function
of x. Since dy = p dx, by differentiation we have d2y = pd2x + q dx2 and

dy d2x− dx d2y = p dx d2x− p dx d2x− q dx3 = −q dx3.

In this expression, since there is no second differential, it has a fixed value
and

dy d2x− dx d2y

dx3 = −q.

No matter how y depends on x, the second differentials in this formula
vanish. For this reason its value is quite fixed, although in other respects
it may be unsettled.

259. Although we have here supposed that y is a function of x, never-
theless the truth of the assertion remains true even if y does not depend
on x at all. While we substitute for y an arbitrary function, and whatever
kind it might be we do not determine, we attribute to y no dependence
on x. Meanwhile, with no mention of a function, a demonstration can be
given. No matter what quantity y might be, whether it depends on x or
not, its differential dy will be homogeneous with dx, so that dy/dx will be
some finite quantity p. The differential of p that we take when x goes to
x + dx and y to y + dy will be fixed, and have no dependence on the law
of second differentials. Hence, since dy/dx = p, we have dy = p dx and
d2y = pd2x + dp dx, so that

dx d2y − dy d2x = dp dx2,

and this value is not unsettled, since it contains only first differentials.
This property is consistent whether any differential is taken as constant,
whatsoever it might be, or even if no differential is held constant.

260. The formula dy d2x− dx d2y has a fixed signification even though it
contains second differentials, which can be thought of as destroying each
other. Any expression in which there are no other second differentials be-
sides the formula dy d2x− dx d2y likewise has a fixed meaning. Now, if we
let dy d2x− dx d2y = ω and if V is a quantity formed from x, y, their first
differentials dx, dy, and ω, then V will have a fixed value. Since in the
first differentials dx and dy there is no reason for uncertainty as to the law
by which the successive values change as x increases, and in ω the second
differentials cancel each other, so that the quantity V is not uncertain but
fixed. Thus the expression (

dx2 + dy2
)3/2

dx d2y − dy d2x
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has a fixed value although it seems to be contaminated by second differ-
entials. In addition, since the numerator is homogeneous with the denomi-
nator, it has a finite value, unless by chance it becomes infinitely large or
infinitely small.

261. Just as the formula dx d2y − dy d2x has a fixed value, as has been
shown, so also if a third variable z is added, these formulas dx d2z−dz d2x
and dy d2z−dz d2y have fixed values. Hence, expressions in three variables
x, y, and z, provided that there are no second differentials except these, then
the expression will be fixed, just as if they contained no second differential
at all. It follows that this expression

(
dx2 + dy2 + dz2

)3/2
(dx + dz) d2y − (dy + dz) d2x + (dx− dy) d2z

,

although it does contain second differentials, still it keeps a fixed signifi-
cation. In a similar way it is possible to exhibit formulas containing many
variables in which second differentials do not prevent the formulas from
having a fixed significance.

262. Except for formulas of this kind, all others that contain second dif-
ferentials will give uncertain signification, and for this reason they have no
place in calculations. On the other hand, a first differential may be defined
to be constant. As soon as any first differential is assumed to be constant,
all expressions, no matter how many variables they may contain and no
matter what differentials higher than the first may be present, obtain fixed
significance, and they are no longer excluded from calculations. For exam-
ple, if dx is assumed to be constant, the second differential of x and all
higher differentials vanish. Whatsoever functions of x may be substituted
for the other variables y, z, and so forth, their second differentials through
dx2, their third through dx3, and so forth, will be determined. In this way
the ambiguity is removed from the second differentials. The same thing
is true if the first differential of some other variable or function is made
constant.

263. From this it follows that second and higher differentials never enter
into a calculation, and because of their unsettled signification they are
completely unsuitable for analysis. Now, when second differentials seem to
be present, either some first differential is assumed to be constant, or this is
not the case. In the first case, the second differentials simply vanish, since
they are determined by the first differential. In the latter case, unless they
cancel each other, the signification is unsettled, and for this reason they
have no place in analysis. On the other hand, if they cancel each other,
they only seem to be present, and only finite quantities with their first
differentials are to be considered really present. However, since they very
frequently only seem to be used in calculations, it was necessary that the
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method of dealing with them be explained. Soon, now, we will show the
method by means of which second and higher differentials can always be
eradicated.

264. If an expression contains a single variable x and its higher differ-
entials d2x, d3x, d4x, etc. occur in the expression, then it can have no
fixed meaning unless some first differential is set constant. Thus, let t be
that variable whose differential dt is set constant. Then d2t = 0, d3t = 0,
d4t = 0, etc. We let dx = p dt, and p will be a finite quantity whose differ-
ential is not affected by the unsettled signification of second differentials;
furthermore, dp/dt will be a finite quantity. Let dp = q dt, and in a similar
way dq = r dt, dr = s dt, etc. Here q, r, s, etc. are finite quantities with
fixed signification. Since dx = p dt, we have

d2x = dp dt = q dt2,

d3x = dq dt2 = r dt3,

d4x = dr dt3 = s dt4,

. . . .

If these values are substituted for d2x, d3x, d4x, and so forth, the whole
expression will contain only finite expressions and the first differential of
dt, nor will there be any unsettled signification.

265. If x were a function of t, then in this way the quantity x could be
completely eliminated, so that only the quantity t and its differential dt
would remain in the expression. However, if t were a function of x, then
x would also be a function of t. Nevertheless, this quantity x with its first
differential dx can be retained in the calculation, provided that after the
substitutions previously made for t and dt, the values expressed by x and
dx are restored. In order that this might become clearer, we will let t = xn,
so that the first differential of xn will be held constant. Since dt = nxn−1dx,
we have p = 1/

(
nxn−1

)
and

dp =
− (n− 1) dx

nxn
= q dt = nqxn−1dx,

so that

q =
− (n− 1)
n2x2n−1

and

dq =
(n− 1) (2n− 1) dx

n2x2n = r dt = nrxn−1dx.

From this it follows that

r =
(n− 1) (2n− 1)

n3x3n−1
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and

s =
− (n− 1) (2n− 1) (3n− 1)

n4x4n−1 .

Hence, if we let the differential of xn be constant, then

d2x = − (n− 1) dx2

x
,

d3x =
(n− 1) (2n− 1) dx3

x2 ,

d4x = − (n− 1) (2n− 1) (3n− 1) dx4

x3 ,

and so forth.

266. If an expression contains two variables x and y, and if the differential
of one, x, is held constant, then since d2x = 0, there will be no second or
higher differentials besides d2y, d3y, etc. However, these can be treated
in the same way as before. They can be removed by letting dy = p dx,
dp = q dx, dq = r dx, dr = s dx, and so forth. Then we have

d2y = q dx2, d3y = r dx3, d4y = s dx4, . . . ,

and so forth. By means of these substitutions we obtain an expression that
contains only the differential dx besides the finite quantities x, y, p, q, r,
s, etc. For example, if the given expression is

y dx4 + x dy d3y + x d4y

(x2 + y2) d2y
,

in which we assume that dx is constant, then we let dy = p dx, dp = q dx,
dq = r dx, and dr = s dx. When these values are substituted the given
expression is transformed into

(y + xpr + xs) dx2

(x2 + y2) q
,

which contains no second or higher differential.

267. In a similar way the second and higher differentials are removed if
dy is assumed to be constant. However, if any other first differential dt is
taken to be constant, then the higher differentials of x are removed from
the calculation with the method first mentioned before. That is, we let

dx = p dt, dp = q dt, dq = r dt, dr = s dt, . . . ,

so that

d2x = q dt2, d3x = r dt3, d4x = s dt4, . . . .
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Then in a similar way for the higher differentials of y we let

dy = P dt, dP = Qdt, dQ = Rdt, dR = S dt, . . . ,

so that

d2y = Qdt2, d3y = Rdt3, d4y = S dt4, . . . .

When these substitutions are made we obtain an expression that contains
only the differential dt besides the finite quantities x, p, q, r, s, etc. y, P ,
Q, R, S, etc. It follows that there is no unsettled signification.

268. If the first differential that is made constant depends on x or on y, or
if it depends on both at the same time, then it is not necessary to introduce
a pair of series of finite quantities p, q, r, etc. Indeed, if dt depends only on
x, then the letters p, q, r, etc. will be functions of x, and only the letters
P , Q, R, etc. will be present. The same thing will occur if the constant
differential dt depends only on y. However, if dt depends on both, then the
operation must be changed a bit. For example, we let the differential y dx
be constant, so that y d2x + dx dy = 0 and

d2x = −dx dy

y
.

Now let

dy = p dx, dp = q dx, dq = r dx, . . . ,

so that

d2x = −p dx2

y
.

When we differentiate further, we obtain

d3x = −q dx3

y
+

p2dx2

y2 − 2p dx d2x

y
,

and when we substitute −p dx2/y for d2x we have

d3x = −q dx3

y
+

3p2 dx2

y2 .

Furthermore,

d4x = −r dx4

y
+

pq dx4

y2 +
6pq dx4

y2 − 6p3dx4

y3 +
(

3p2

y2 − q

y

)
3dx2d2x

and when for d2x we substitute −p dx2/y, we have

d4x =
(−r

y
+

10pq
y2 − 15p3

y3

)
dx4
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and so forth. Then, since dy = p dx, we have

d2y = q dx2 + pd2x =
(
q − p2

y

)
dx2,

and again substituting −p dx2/y for d2x we have

d3y =
(
r − 4pq

y
+

3p3

y2

)
dx3

and

d4y =
(
s− 7pr

y
− 4q2

y
+

25p2q

y2 − 15p4

y3

)
dx4,

and so forth. When these values are substituted for the higher differentials
of x and y, a given expression is transformed into a form of the kind which
no longer contains higher differentials. This is accomplished by considering
some differential to be constant.

269. Frequently in the application of calculus to curves it may happen
that the first differential

√
dx2 + dy2 is assumed to be constant. For this

reason we now show the way in which for this case the second and higher
differentials should be eliminated. At the same time, by using the same ar-
gument, the way will be opened to show the process if any other differential
is assumed to be constant. Now we let

dy = p dx, dp = q dx, dq = r dx, dr = s dx, . . . .

Then the differential
√

dx2 + dy2 takes the form dx
√

1 + p2. Since this is
constant, we have

d2x
√

1 + p2 +
pq dx2√
1 + p2

= 0,

so that

d2x = −pq dx2

1 + p2 ,

and we already have the value of d2x. Furthermore, we have

d3x = −pr dx3

1 + p2 − q2dx3

1 + p2 +
2p2q2dx3

(1 + p2)2
− 2pq dx d2x

1 + p2

= −pr dx3

1 + p2 − q2dx3

1 + p2 +
4p2q2dx3

(1 + p2)2
= −pr dx3

1 + p2 +

(
3p2 − 1

)
q2dx3

(1 + p2)2
.
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Then we have

d4x = −ps dx4

1 + p2 +

(
10p2 − 3

)
qr dx4

(1 + p2)2
−

(
15p2 − 13

)
pq3dx4

(1 + p2)3
.

Since we are assuming that dy = p dx, when this is differentiated, we have

d2y = q dx2 + pd2x = q dx2 − p2q dx2

1 + p2 =
q dx2

1 + p2 ,

d3y =
r dx3

1 + p2 − 2pq2dx3

(1 + p2)2
+

2q dx d2x

1 + p2 ,

so that

d3y =
r dx3

1 + p2 − 4pq2dx3

(1 + p2)2
.

When we differentiate again we have

d4y =
s dx4

1 + p2 − 13pqr dx4

(1 + p2)2
+

4
(
6p2 − 1

)
q3dx4

(1 + p2)3
.

Hence all higher differentials of both x and y are expressed through fi-
nite quantities and powers of dx. After these substitutions, the resulting
expression is completely free of second differentials.

270. Now that we have given the method for stripping second and higher
differentials from expressions, it is fitting that we illustrate this material
with some few examples.

I. Let the given expression be x d2y/dx2, in which dx is set constant.
Hence we let dy = p dx and dp = q dx, so that d2y = q dx2 and the
given expression becomes this finite quantity xq.

II. Let the given expression be
(
dx2 + dy2

)
/d2x, in which dy is set con-

stant. We let dx = pdy, dp = q dy. Since d2x = q dy2, we obtain(
1 + p2

)
/q. However, if we should wish, as before, to let dy = p dx,

dp = q dx, since dy is constant, we have 0 = pd2x + dp dx and
d2x = −q dx2/p. Hence the given expression becomes −p

(
1 + p2

)
/q.

III. Let the given expression be

y d2x− x d2y

dx dy
,

in which y dx is set constant. We let dy = p dx and dp = q dx; from
paragraph 268 we have d2x = −p dx2/y and

d2y = q dx2 − p2dx2

y
.
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When these are substituted into the given expression, it is transformed
into

−1 − xq

p
+

xp

y
.

IV. Let the given expression be

dx2 + dy2

d2y
,

in which we let
√
dx2 + dy2 be constant. Again we let dy = p dx,

dp = q dx, and from the preceding paragraph we have

d2y =
q dx2

1 + p2 .

Hence the given expression becomes
(
1 + p2

)2
/q.

From these examples it should be sufficiently clear, in any given case, the
way in which second and higher differentials should be eliminated when
any first differential is assumed to be constant.

271. Since second and higher differentials can be eliminated by introduc-
ing finite quantities p, q, r, s, etc., so that the whole expression is made
up only of the differential dx and the finite quantities p, q, r, s, etc., if
an expression reduced in this manner is given, we can again recover the
original form by substituting second and higher differentials for the letters
p, q, r, s, etc. Now in the same way, some first differential is assumed to
be constant, whether it be the one originally so assumed, or some other.
However, it could be that no differential was assumed to be constant while
it contains second and higher differentials and at the same time it has a
fixed signification. We have seen expressions of this kind above.

272. Now let any given expression contain the finite letters x, y, p, q, r,
etc. with one differential dx, in which

p =
dy

dx
, q =

dp

dx
, r =

dq

dx
, . . . .

If we wish to eliminate these letters, in their place we introduce second and
higher differentials of x and y with no differential assumed to be constant.
Since

dp =
dx d2y − dy d2x

dx2 ,

so that

q =
dx d2y − dy d2x

dx3 ,
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this formula gives

dq =
dx2d3y − 3dx d2x d2y + 3dy d2x2 − dx dy d3x

dx4 ,

so that

r =
dx2d3y − 3dx d2x d2y + 3dy d2x2 − dx dy d3x

dx5 .

Furthermore, if the letter s, which indicates the value of dr/dx, is in the
expression, then

s =
dx3d4y − 6dx2d2xd3y − 4dx2d2y d3x + 15dx d2x2d2y

dx7

+
10dx dy d2xd3x− 15dy d2x3 − dx2dy d4x

dx7 .

When these values are substituted for p, q, r, s, etc., into the given expres-
sion, that expression is transformed into another one that contains higher
differentials of x and y. Even though no first differential is assumed to be
constant, still the expression has a fixed signification.

273. In this way any formula for a higher differential in which some first
differential is assumed to be constant can be transformed into another form,
in which no differential is set equal to a constant, and in spite of this it
still has a fixed value. First, by means of the method already discussed, we
take the values dy = p dx, dp = q dx, dq = r dx, dr = s dx, etc., and the
higher differentials are eliminated. Then for p, q, r, s, etc., we substitute the
values just discovered and this transformation is illustrated by the following
examples.

I. Let the given expression be x d2y/dx2, in which we let dx be constant.
We would like to transform this into another form that involves no
constant differential. We let dy = p dx, dp = q dx, and, as seen before
in paragraph 270, the given expression becomes qx. Now for q we
substitute the value we obtain when no differential is constant, namely,

q =
dx d2y − dy d2x

dx3 .

The resulting expression is then equal to

x dx d2y − x dy d2x

dx3 ,

and this involves no other constant differential.
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II. Let the given expression be

dx2 + dy2

d2x
,

in which dy is assumed to be constant. We let dy = p dx and dp = q dx,
so that the expression becomes −p

(
1 + p2

)
/q, as in paragraph 270.

Since

p =
dy

dx
and q =

dx d2y − dy d2x

dx3 ,

we obtain the expression

dy
(
dx2 + dy2

)
dy d2x− dx d2y

.

Here no differential is assumed constant, and this expression has the
same value as the one originally proposed.

III. Let the given expression be

y d2x− x d2y

dx dy
,

in which the differential y dx is assumed to be constant. We let dy =
p dx, dp = q dx, and as we saw in paragraph 270, this expression is
transformed into

−1 − xq

p
+

xp

y
.

When we do not assume any differential to be constant, the expression
is transformed into

− 1 − x dx d2y − x dy d2x

dx2dy
+

x dy

y dx

=
x dx dy2 − y dx2dy − yx dx d2y + yx dy d2x

y dx2dy
.

IV. Let the given expression be

dx2 + dy2
d2y

,

in which we assume that the differential
√
dx2 + dy2 is constant.

When we let dy = p dx and dp = q dx, there arises the expression(
1 + p2

)2
/q as in paragraph 270. Now we set p = dy/dx and

q =
dx d2y − dy d2x

dx3
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with no differential being constant, and the expression
(
dx2 + dy2

)2
dx2d2y − dx dy d2x

becomes equivalent to the proposed expression.

V. Let the given expression be dx d3y/d2y, in which the differential dx is
assumed to be constant. We let dy = p dx, dp = q dx, and dq = r dx.
Since d2y = q dx2 and d3y = r dx3, the given formula becomes r dx2/q.
Now for q and r we substitute those values that they receive when no
differential is assumed to be constant, that is,

q =
dx d2y − dy d2x

dx3

and

r =
dx2d3y − 3dx d2x d2y + 3dy d2x2 − dx dy d3x

dx5 .

We then obtain the following expression, which is equivalent to that
originally given:

dx2d3y − 3dx d2x d2y + 3dy d2x2 − dx dy d3x

dx d2y − dy d2x

=
dx

(
dx d3y − dy d3x

)
dx d2y − dy d2x

− 3d2x.

274. If we consider these transformations more carefully, we can find a
more expeditious method in which it is not necessary to resort to the letters
p, q, r, etc. Depending on which differential in the formula is assumed to
be constant, different methods are used. First, suppose that the constant
differential is dx. When we have substituted p dx for dy and conversely
dy/dx for p, whenever the differentials dx or dy occur, they are retained
without alteration. However, wherever d2y occurs, after we have substituted
q dx2 and then for q we have written the value

dx d2y − dy d2x

dx
or d2y − dy d2x

dx
,

the transformation is complete. Furthermore, if in the given expression d3y
occurs, since we have substituted r dx3, because of the value already found
for r, whenever d3y is found we write

d3y − 3d2x d2y

dx
+

3dy d2x2

dx2 − dy d3x

dx
.
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When this is done, the given expression is transformed into a different one
that involves no constant differential. For example, if the given expression
is (

dx2 + dy2
)3/2

dx d2y

and dx is set constant, when

d2y − dy d2x

dx

is substituted for d2y, the new form with no constant differential is(
dx2 + dy2

)3/2
dx d2y − dy d2x

.

275. From this it is easily gathered that whenever in some expression the
differential dy is constant, then wherever we find d2x we should write

d2x− dx d2y

dy

and for d3x we write

d3x− 3d2x d2y

dy
+

3dx d2y2

dy2 − dx d3y

dy
,

in order to obtain an equivalent expression in which no differential is set
constant. However, if in the given expression y dx is assumed constant, then
according to paragraph 268, we have

d2x = −p dx2

y
and d2y = q dx2 − p2dx2

y
.

In place of d2x we should everywhere write −dx dy/y and in place of d2y
we should everywhere write

d2y − dy d2x

dx
− dy2

y
.

Since the higher differentials seldom occur in this business, we will progress
no further. However, if in the given expression the differential

√
dx2 + dy2

is assumed constant, since in paragraph 269 we obtained

d2x = −pq dx2

1 + p2 and d2y =
q dx2

1 + p2 ,

for d2x we should everywhere write

dy2d2x− dx dy d2y

dx2 + dy2 ,
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and for d2y we everywhere write

dx2d2y − dx dy d2x

dx2 + dy2 .

Hence, if the given expression is

dy
√

dx2 + dy2

d2x
,

in which
√
dx2 + dy2 is assumed to be constant, then the expression is

transformed into (
dx2 + dy2

)3/2
dy d2x− dx d2y

,

in which no differential is assumed to be constant.

276. In order that these reductions can be used more easily, we have
brought them together in the following table.

A differential formula of higher order can be transformed into one that
involves no constant differential by means of the following substitutions:

I. If the differential dx is assumed to be constant, then for d2y we write

d2y − dy d2x

dx

and for d3y we write

d3y − 3d2x d2y

dx
+

3dy d2x2

dx2 − dy d3x

dx
.

II. If the differential dy is assumed to be constant, then for d2x we write

d2x− dx d2y

dy
,

and for d3x we write

d3x− 3d2x d2y

dy
+

3dx d2y2

dy2 − dx d3y

dy
.

III. If the differential y dx is assumed to be constant, then for d2x we write

−dx dy

y
,
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for d2y we write

d2y − dy d2x

dx
− dy2

y
,

for d3x we write

dy d2x

y
− dx d2y

y
+

3dx dy2

y2 ,

for d3y we write

d3y − 3d2x d2y

dx
+

3dy d2x2

dx2 − dy d3x

dx
− 4dy d2y

y
+

4dy2d2x

y dx
+

3dy3

y2 .

IV. If the differential
√
dx2 + dy2 is assumed to be constant, then for d2x

we write
dy2d2x− dx dy d2y

dx2 + dy2 ,

for d2y we write
dx2d2y − dx dy d2x

dx2 + dy2 ,

for d3x we write

dy2d3x− dx dy d3y

dx2 + dy2

+

(
dx d2y − dy d2x

) (
3dy2d2y − dx2d2y + 4dx dy d2x

)
(dx2 + dy2)2

,

for d3y we write

dx2d3y − dx dy d3x

dx2 + dy2

+

(
dy d2x− dx d2y

) (
3dx2d2x− dy2d2x + 4dx dy d2y

)
(dx2 + dy2)2

.

277. These expressions, which include no constant differential, are given
in such a way that one has freedom to choose any differential to be constant.
Hence, differential expressions of higher order in which no differential is as-
sumed to be constant, can be tested to decide whether they have unsettled
or fixed significance. We choose arbitrarily some differential, for example
dx, to be constant. Then, with the rule provided in the previous paragraph,
the expression is reduced once more to a form in which no differential is
assumed to be constant. If this agrees with the given expression, then it has
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fixed significance and does not depend on the variability of second differen-
tials. However, if we obtain a different expression, then the given expression
has unsettled significance. Thus, if the given expression is y d2x− x d2y, in
which no differential is set constant, we investigate whether the significance
is unsettled or fixed. We let dx be constant, so that the expression becomes
−x d2y. Now, with the first rule of the previous paragraph, we substitute

d2y − dy d2x

dx

for d2y and obtain

−x d2y +
x dy d2x

dx
.

Since these two expressions do not agree, this indicates that the given
expression has no fixed and stated significance.

278. In a similar way if the given general expression is of the type

P d2x + Qdxdy + Rd2y,

it is possible to define a condition under which the expression will have a
fixed value even though no differential is assumed to be constant. When dx
is set constant, the expression becomes Qdxdy + Rd2y. Now this is once
more transformed into another form, so that its signification remains the
same, even though no differential is thought to be constant. In this way we
obtain

Qdxdy + Rd2y − Rdy d2x

dx
,

which agrees with the given expression, provided that P dx+Rdy = 0. Only
in this case will the value of the expression be fixed. Indeed, if P is not
equal to −Rdy/dx or if R is not equal to −P dx/dy, the given expression
P d2x+Qdxdy+Rd2y has no fixed value. Its signification will be unsettled
and vary depending on which differential is assumed to be constant.

279. Using these principles it will be easy to convert a differential ex-
pression in which some differential is set constant into another form in
which a different differential is assumed to be constant. We reduce the first
expression to the form that involves no constant differential. Once this is
accomplished, we set the other differential constant. Thus if in the pro-
posed expression the differential dx is assumed to be constant, and this is
transformed into another that involves a constant dy, in the above formulas
instead of d2y and d3y, since dy is constant, we would let d2y = 0, d3y = 0,
but the desired result is obtained if for d2y we substitute

−dy d2x

dx
and

3dy d2x

dx2 − dy d3x

dx
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for d3y. In this way the formula

− (
dx2 + dy2

)3/2
dx d2y

,

in which dx is set constant, is transformed into(
dx2 + dy2

)3/2
dy d2x

,

in which dy is set constant.

280. If, on the other hand, a formula in which dy is set constant is to be
transformed into another in which dx is constant, then for d2x we have to
substitute

−dx d2y

dy
,

and for d3x the expression

3dx d2y2

dy2 − dx d3y

dy
.

In a similar way, if a formula in which
√
dx2 + dy2 is set constant is to be

transformed into another in which dx is constant, then for d2x we write

−dx dy d2y

dx2 + dy2 ,

and for d2y we write
dx2d2y

dx2 + dy2 .

However, if a formula in which dx is assumed to be constant is to be
transformed into another in which

√
dx2 + dy2 is to be constant, since

dx2 + dy2 is constant, we have dx d2x + dy d2y = 0 and

d2x = −dy d2y

dx
.

This value is given to d2x, and for d2y we write

d2y +
dy2d2y

dx2 =

(
dx2 + dy2

)
d2y

dx2 .

Hence the formula
− (

dx2 + dy2
)3/2

dx d2y
,

in which dx is constant, is transformed into another in which
√
dx2 + dy2

is set constant, which is

−dx
√

dx2 + dy2

d2y
.
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On Differential Equations

281. In this chapter we principally set forth an explanation of the differen-
tiation of those functions of x that are not defined explicitly, but implicitly
by means of the relationship of x to the function y. Once this is accom-
plished, we consider the nature of differential equations in general, and
we show how they arise from finite equations. Since the main concern in
integral calculus is the solution of differential equations, that is finding fi-
nite equations that correspond to the differentials, it is necessary here to
examine very carefully the nature and properties of differential equations
that follow from their origin. In this way we will be preparing the way for
integral calculus.

282. In order that we complete this task, let y be a function of x that is
defined by this quadratic expression:

y2 + Py + Q = 0.

Since this expression y2+Py+Q is equal to zero, whatever x might signify,
the equation will still be equal to zero if we substitute x+ dx for x. In this
case y becomes y + dy. When this substitution is made and the original
y2 + Py + Q is subtracted from the new quantity, there remains the dif-
ferential, which is also equal to zero. From this it should be clear that if
any expression is equal to zero, then its differential will also be equal to
zero. Furthermore, if two expressions are equal to each other, then their
differentials will be equal. Since y2 + Py + Q = 0, we also have

2y dy + P dy + y dP + dQ = 0.
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Since P and Q are functions of x, their differentials have the form dP = p dx
and dQ = q dx so that

2y dy + P dy + yp dx + q dx = 0,

with the result that

dy

dx
= − yp + q

2y + P
.

283. Now, just as the finite equation y2+Py+Q = 0 gives the relationship
between y and x, so the differential equation expresses the relationship, or
the ratio of dy to dx. However since

dy

dx
=

−yp + q

2y + P
,

we cannot know this ratio dy : dx unless we know the function y. Things
could not possibly be otherwise, since from the finite equation y has two
values. Either of these two values has its own proper differential, and either
differential will appear depending on which value is substituted for y. In a
similar way, the function y can be defined by a cubic equation. In this case,
dy/dx will have three values, depending on which of the three values of y
is substituted. If in a given finite equation y has four or more values, then
of necessity, dy/dx has just as many significations.

284. Nevertheless, the function y can be eliminated, since we have two
equations containing y, namely the finite and the differential. In that case,
however, the differential dy will take on as many values as y had in the
original finite equation. Thus there are this many ratios of dy to dx. Let
us take the preceding example, y2 + Py + Q = 0, whose differential is
2y dy + P dy + y dP + dQ = 0, from which we obtain

y = −P dy + dQ

2dy + dP
.

When this value for y is substituted in the previous equation, we have(
4Q− P 2) dy2 +

(
4Q− P 2) dP dy + QdP 2 − P dP dQ + dQ2 = 0,

whose roots are

dy = −1
2
dP ±

1
2P dP − dQ√

P 2 − 4Q
.

These two differentials correspond to the two values of y from the original
finite equation

y = −1
2
P +

1
2

√
P 2 − 4Q.
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285. Once the value of dy has been found, by repeated differentiation we
find the value of d2y, d3y, d4y, etc. Since these have no determined value
unless some first differential is made constant, for convenience, let dx be
constant, and for an illustration, let us consider this example:

y3 + x3 = 3axy.

By differentiation we obtain

3y2dy + 3x2dx = 3ax dy + 3ay dx,

so that

dy

dx
=

ay − x2

y2 − ax
.

Once more we take differentials with dx constant and obtain

d2y

dx
=

−ay2dy − a2x dy + 2x2y dy − 2xy2dx + a2y dx + ax2dx

(y2 − ax)2
.

When we substitute for dy the value already obtained,

ay dx− x2dx

y2 − ax
,

and divide by dx, we have

d2y

dx2 =

(
ay − x2

) (
2x2y − ay2 − a2x

)
(y2 − ax)3

+
ax2 + a2y − 2xy2

(y2 − ax)2
,

or

d2y

dx2 =
6ax2y2 − 2x4y − 2xy4 − 2a3xy

(y2 − ax)3

= − 2a3xy

(y2 − ax)3
,

since from the finite equation we have 2x4y + 2xy4 = 6ax2y2. In this way,
using the finite equation, these values can be transformed into innumerable
different forms.

286. A differential equation can be expressed in an infinite number of
ways, since it can be combined with the finite equation. Thus, with the
preceding example we obtained the differential equation

y2dy + x2dx = ax dy + ay dx,
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and if this is multiplied by y, we have

y3dy + x2y dx = axy dy + ay2dx.

If we substitute for y3 its value 3axy − x3, we obtain the new equation

2ax dy − x3dy + x2y dx = ay2dx.

If we multiply this equation again by y and then substitute for y3 its value,
we have

2axy2dy − x3y dy + x2y2dx = 3a2xy dx− ax3dx.

In general, if P , Q, R represent any functions of x and y, and if the differ-
ential equation is multiplied by P , then

Py2dy + Px2dx = aPx dy + aPy dx.

Now, since x3 + y3 − 3axy = 0, we also have(
x3 + y3 − 3axy

)
(Qdx + Rdy) = 0.

When these equations are added to each other we obtain a general differ-
ential equation that arises from the given finite equation

Py2dy − aPx dy + Rx3dy + Ry3dy − 3aRxy dy

+ Px2dx− aPy dx + Qx3dx + Qy3dx− 3aQxy dx = 0.

287. It is possible to find an infinite number of differential equations
through differentiation from the same finite equation, since before differen-
tiation the equation can be multiplied or divided by an arbitrary quantity.
Thus, if P is any function of x and y, so that dP = p dx + q dy, and if
the finite equation is multiplied by P and then differentiated, we obtain a
general differential equation that takes on an infinite number of forms in-
sofar as P takes on one or another function. This multiplicity is increased
infinitely if this equation is added to the original finite equation multiplied
by the formula Qdx+Rdy, where Q and R can be any functions of x and y.
Although in all of these equations the relation between dy and dx remains,
and this is determined by the differential of the function y in the original
finite equation, nevertheless, the differential of y could be determined by
other finite equations. The reason for this is better explained in integral
calculus.

288. Not only can we obtain an innumerable number of equations from
a single finite equation, but we can also find an infinite number of finite
equations that lead to the same differential equation. For instance, these
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two equations y2 = ax + ab and y2 = ax are entirely different, since in
the first any constant quantity can be given to b. Nevertheless, when both
equations are differentiated, we obtain the same differential equation

2y dy = a dx.

Indeed, all of the equations represented by y2 = ax, depending on the value
assigned to a, correspond to a single differential equation that contains no
a. If this equation is divided by x, so that y2/x = a, then this, when
differentiated, gives

2x dy − y dx = 0.

Even both transcendental and algebraic equations can lead to the same
differential equation, as is seen in the equations

y2 − ax = 0 and y2 − ax = b2ex/a.

If each of these equations is divided by ex/a, so that we have

e−x/a
(
y2 − ax

)
= 0 and e−x/a

(
y2 − ax

)
= b2,

then when each of these is differentiated, the same differential equation
results:

2y dy − a dx− y2dx

a
+ x dx = 0.

289. The reason for this diversity is the fact that the differential of a
constant quantity is equal to zero. Hence, if a finite equation can be reduced
to such a form that some constant quantity stands alone, neither multiplied
nor divided by variables, then by differentiation there arises an equation
in which that constant quantity is completely eliminated. In this way any
constant quantity involved in a finite equation can be eliminated through
differentiation. Thus, if the given equation is

x3 + y3 = 3axy,

and if this is divided by xy, so that we have

x3 + y3

xy
= 3a,

then when this equation is differentiated we have

2x3y dx + 2xy3dy − x4dy − y4dx = 0,

in which the constant no longer appears.
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290. If we need to remove several constant quantities from some finite
equation, we accomplish this through differentiating two or more times,
and in this way we finally obtain differential equations of higher orders in
which the constants have been completely removed. Let the given equation
be

y2 = ma2 − nx2,

from which we need to remove the constants ma2 and n. We remove the
first by differentiation, to obtain

y dy + nx dx = 0.

From this we form the equation

y dy

x dx
+ n = 0.

When we take dx to be constant, through differentiation, we have

xy d2y + x dy2 − y dx dy = 0.

This equation, although it contains no constant, still results from every
equation that has the form y2 = ma2 − nx, no matter what values may be
assigned to the letters m, n, and a2.

291. Not only constant quantities can be eliminated by differentiation
from finite equations, but also some variables, namely that variable whose
differential is assumed to be constant can be eliminated by differentiation.
Indeed, from a given equation in x and y, let us find the value of x such
that x = Y , where Y is a function of y. Then dx = dY , and when dx is
taken to be constant, by differentiation we have 0 = d2Y . However, if

x2 + ax + b = Y,

then by three differentiations we have 0 = d3Y. By differentiation four times
the equation

x3 + ax2 + bx + c = Y

gives 0 = d4Y . In all of these equations, although only one variable seems
to be present, while another variable can be missing from the equation,
still, since the differential dx is assumed to be constant, we must in reality
remember that there is some relationship to x and consider x as belonging
to the equation. Hence it should cause no surprise if frequently differential
equations of second or higher order occur in which only one variable seems
to be involved.
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292. It is particularly important to notice that irrational and transcen-
dental quantities can be eliminated from an equation by differentiation.
With regard to irrationals, by known methods of reduction irrationals can
be eliminated, and once this is accomplished, by differentiation we obtain
an equation free of any irrationality. However, frequently it can be more
convenient without the reduction to remove the irrationality by comparing
the differential equation with the finite formula, provided that there is only
one irrational quantity. If there are two or more irrational parts in the fi-
nite equation, then the differential equation is differentiated again as many
times as there are individual irrational parts to be eliminated, and hence
the differential equation will be of a higher order. In this way arbitrary
exponents and fractional exponents can also be eliminated. For example, if

ym =
(
a2 − x2)n ,

then after differentiation we have

mym−1dy = −2n
(
a2 − x2)n−1

x dx.

When this equation is divided by the finite equation we have

mdy

y
= − 2nx dx

a2 − x2 ,

in which there remains no arbitrary exponent. It should be clear that a
differential equation that is free of all irrationality can arise from a finite
equation that involves an irrationality or even a transcendental quantity.

293. In order that we understand the way in which transcendental quan-
tities are eliminated by differentiation we begin with logarithms. Since the
differential of a logarithm is algebraic, this operation causes no difficulty.
Thus, if

y = x lnx,

then y/x = lnx, and by differentiation we have

x dy − y dx

x2 =
dx

x
,

so that

x dy − y dx = x dx.

If there are two logarithms, then two differentiations are required. If

y lnx = x ln y,

then
y lnx

x
= ln y,
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and by differentiation,

x dy lnx + y dx− y dx lnx

x2 =
dy

y
.

We conclude that

lnx =
x2dy − y2dx

yx dy − y2dx
.

When this equation is differentiated, with dx set constant, we have

dx

x
=

x2d2y + 2x dx dy − 2y dx dy
yx dy − y2dx

+

(
y2dx− x2dy

) (
yx d2y + x dy2 − y dx dy

)
(yx dy − y2dx)2

,

or

dx

x
=

y3x dx d2y − y2x2dx d2y + 3yx2dx dy2

(yx dy − y2dx)2

+
−y2x dx dy2 + y3dx2dy − 2xy2dx2dy − x3dy3

(yx dy − y2dx)2
,

which by reduction gives

y3x dx d2y − y2x2dx d2y + 3yx2dx dy2 − 2xy2dx dy2

+ 3y3dx2dy − 2xy2dx2dy − x3dy3 − y4dx3

x
= 0,

or

y2x2 (y − x) dx d2y + 3yx dx dy
(
x2dy + y2dx

)− 2y2x2dx dy (dx + dy)

= x4dy3 + y4dx3.

294. Exponential quantities are removed by differentiation in the same
way as logarithms. If the given equation is

P = eQ,

where P and Q are any functions of x and y, the equation can be trans-
formed into the logarithmic equation lnP = Q, whose differential is

dP

P
= Q, or dP = P dQ.

There is no real difficulty if the exponential quantities are more compli-
cated. In this case, if one differentiation is not sufficient, then two or more
differentiations will solve the problem.



9. On Differential Equations 175

I. Let

y =
ex + e−x

ex − e−x
.

When both numerator and denominator are multiplied by ex, we have

y =
e2x + 1
e2x − 1

,

so that

e2x =
y + 1
y − 1

and 2x = ln
(
y + 1
y − 1

)
,

whose differential is

dx = − dy

y2 − 1
=

dy

1 − y2 .

II. Let

y = ln
(
ex + e−x

2

)
.

By the first differentiation

dy =
ex − e−x

ex + e−x
dx,

or
dy

dx
=

e2x − 1
e2x + 1

and e2x =
dy + dx

dx− dy
.

Hence

2x = ln
(
dy + dx

dx− dy

)
.

If we take dx to be constant, then

dx =
dx d2y

dx2 − dy2 ,

or

dx2 = d2y + dy2.

295. In a similar way trigonometric quantities can be removed from an
equation by differentiation, as can be understood from the following exam-
ples.

I. Let
y = a arcsin

x

a
.

Then

dy =
a dx√
a2 − x2

.
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II. Let
y = a cos

y

x
.

Then
y

a
= cos

y

x
and

dy

a
=

−x dy + y dx

x2 sin
y

x
.

Since
cos

y

x
=

y

a
,

we have

sin
y

x
=

√
a2 − y2

a
.

When we substitute this value into the differential equation, we have

dy

a
=

(y dx− x dy)
√
a2 − y2

ax2 ,

or

x2dy = (y dx− x dy)
√

a2 − y2.

III. Let y = m sinx + n cosx. After the first differentiation we have dy =
mdx cosx − ndx sinx. When we keep dx constant and differentiate
again the result is d2y = −mdx2 sinx− ndx2 cosx. When this equa-
tion is divided by the given one we have d2y/y = −dx2, or

d2y + y dx2 = 0,

from which not only the sine and cosine have been eliminated, but
also the constants m and n.

IV. Let y = sin lnx. Then arcsin y = lnx, and by differentiation we have

dy√
1 − y2

=
dx

x
.

When each side is squared, the result is x2dy2 = dx2−y2dx2. When we
let dx be constant, by another differentiation we obtain 2x2dy d2y +
2x dx dy2 = −2y dx2dy, or

x2d2y + x dx dy + y dx2 = 0.

V. Let y = aemx sinnx. Then by differentiation,

dy = maemxdx sinnx + naemxdx cosnx.

When this is divided by the given equation we have
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dy

y
= mdx +

ndx cosnx
sinnx

= mdx + ndx cotnx,

so that

arccot
(

dy

ny dx
− m

n

)
= nx.

If we let dx be constant and differentiate, then 1

ndx =
ndx dy2 − ny dx d2y

m2y2dx2 + n2y2dx2 − 2my dx dy + dy2 ,

or (
m2 + n2) y2dx2 − 2my dx dy = −y d2y.

It should be clear that although the differential equation may contain no
transcendental quantity, still the finite equation from which it originated
may contain transcendental quantities of various kinds.

296. Therefore, differential equations, whether of the first or higher order,
which contain two variables, x and y, arise from finite equations that also
express a relationship between the two variables. Indeed, given any differ-
ential equation containing these two variables x and y, there is expressed
a relationship between x and y such that y becomes a function of x. From
this we can see the nature of a differential equation. That is, if we can as-
sign to y a function of x that is indicated by the equation and is such that
when the function is substituted for y its differential is substituted for dy,
and its higher differentials for d2y, d3y, etc., then the resulting equation
is an identity. Integral calculus is concerned with the investigation of such
functions. It has this purpose, that given any differential equation, a func-
tion of x should be defined that is equal to the other variable y, or what
is equivalent, that a finite equation be found that contains the relationship
between x and y.

297. If, for example, the given equation is

2y dy − a dx− y2dx

a
+ x dx = 0,

1This is a correction by Gerhard Kowalewski. The original edition had

ndx =
ndx dy2 − ny dx d2y

m2y2dx2 + n2y2dx2 − 2my dx dy
.
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which we arrived at above in paragraph 288, the same relationship between
x and y is defined as that contained in the finite equation

y2 − ax = b2ex/a.

From this we have y2 = ax + b2ex/a, so that√
ax + b2ex/a = y,

which is the function of x that y equals in the given differential equation.
Indeed, if we substitute the value ax + b2ex/a for y2 and if we substitute
its differential

a dx +
b2

a
ex/adx

for 2y dy, we obtain the following identity:

a dx +
b2

a
ex/adx− a dx− x dx− b2

a
ex/adx + x dx = 0.

Hence it is clear that every differential equation exhibits the same relation-
ship between x and y as a certain finite relationship, which we can find
only with the aid of integral calculus.

298. In order that this may be understood more clearly, we suppose that
we know the function of x that is equal to y by reason of the differential
equation, whether of the first order or of higher order. We also let

dy = p dx, dp = q dx, dq = r dx,

etc., and if in the equation we take dx to be constant, then d2y = q dx2,
d3y = r dx3, etc. When these values are substituted into the differential
equation, due to the homogeneous terms, there remains an equation con-
taining only finite quantities x, y, p, q, r, etc. Since p, q, r, etc. are quantities
that naturally depend on the function y, there really remains an equation
between two variables x and y. In turn it should be clear that a certain
relationship between the variables x and y is determined by every differen-
tial equation. For this reason, if in the solution of some problem we obtain
a differential equation between x and y, we can consider this to be equiv-
alent to a relationship between x and y, just as if we had come to a finite
equation.

299. In this way any differential equation can be reduced to finite form, so
that it contains nothing but finite quantities when the differentials, that is,
the infinitely small quantities, are removed. Since y is some certain function
of x, if we let dy = p dx, dp = q dx, dq = r dx, etc., when some differential
is taken to be constant, the second and higher differentials are expressed
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through powers of dx and then completely removed through division. For
example, if the given equation is

xy d3y + x2dy d2y + y2dx d2y − xy dx3 = 0,

in which dx is taken as constant, we let dy = p dx, dp = q dx, and dq = r dx,
so that the equation becomes

xyr + x2pq + y2q − xy = 0.

After the whole equation is divided by dx3, this finite equation determines
the relationship between x and y.

300. Every differential equation, no matter of what order, by means of
the substitutions

dy = p dx, dp = q dx, dq = r dx,

etc., can be reduced to finite quantities. Indeed, if the differential equation
is of the first order, so that it contains only the first differential, by means
of this reduction, besides y and x, the quantity p is also introduced. If the
differential equation is of the second order, containing a second differential,
then also the quantity q is introduced; if it be of the third order, then we
also have r; and so forth. Since the differentials are eliminated from the
calculation in this way, the question about a constant differential has not
gone away. Even though we have the quantities q and r arising from second
differentials we still have to indicate whether some differential is taken to
be constant. It comes to this, whether or not in the development some
differential has been arbitrarily taken to be constant.

301. If some differential equation of second or higher order is given, and no
constant first differential is indicated, we can explore in the following way
whether or not there is a determined relationship between the variables
x and y. Since no differential is assumed to be constant, we are free to
choose whatever differential we want to be constant. By choosing different
differentials to be constant we see whether the same relationship between
x and y is given. If this does not happen, then it is a certain sign that the
equation expresses no determined relationship, and therefore can have no
place in the solution of a problem. However, the safest method, and also
the easiest, to explore this question is that given above in paragraph 277.
There, in a similar question, we gave a test for determining whether or not
differential expressions of higher order have a fixed signification.

302. Hence, given a differential equation of second or higher order, with
no differential set constant, we let dx be constant. Then, as we have shown
above in paragraph 276 for differential expressions, this equation will be
reduced to the same form, which supposes that no differential is constant.
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That is, we substitute

d2y − dy d2x

dx

for d2y, and

d3y − 3d2x d2y

dx
+

3dy d2x2

dx2 − dy d3x

dx

for d3y, etc. When this is done it becomes clear whether the resulting
equation is the same as the given equation. If this is the case, the given
equation gives a determined relationship between x and y, just as we have
shown at length.

303. In order that this become perfectly clear let us take a given equation
in which no constant differential seems to be given:

P d2x + Qd2y + Rdx2 + S dx dy + T dy2 = 0.

When we let dx be constant, the equation becomes

Qd2y + Rdx2 + S dx dy + T d2 = 0.

From this now, the consideration of a constant differential is removed in
the previously prescribed manner, to obtain

−Qdy d2x

dx
+ Qd2y + Rdx2 + S dx dy + T dy2 = 0.

Since this equation differs from the original only in the first term, we must
see whether P = −Qdy/dx. If this is the case, we conclude that the given
equation exhibits a fixed relationship between x and y, which can be found
by the rules of integral calculus, whichever differential is taken to be con-
stant. However, if it is not true that P = −Qdy/dx, then the given equation
is impossible.

304. It follows that unless the given equation

P d2x + Qd2y + Rdx2 + S dx dy + T dy2 = 0

is meaningless, it is necessary that P dx + Qdy = 0. This can happen in
two ways. First, the equation

P = −Qdy

dx
, or P dx + Qdy = 0,

is an identical equation. Second, the equation P dx + Qdy = 0 is itself a
first-order differential equation whose differentiation gave rise to the given
equation. In the second case, the equation P dx+Qdy = 0 corresponds to
the given equation and contains the same relationship between x and y. For
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this reason the solution can be found without the aid of integral calculus.
Indeed, when P dx + Qdy = 0 is differentiated, we obtain

P d2x + Qd2y + dP dx + dQdy = 0,

and when this is subtracted from the given equation, there remains

Rdx2 + S dx dy + T dy2 = dP dx + dQdy.

Since dy = −P dx/Q, the differentials can be completely eliminated to
indicate the relationship between x and y.

305. Let us suppose that in the solution of some problem we arrive at the
equation

x3d2x + x2y d2y − y2dx2 + x2dy2 + a2dx2 = 0

and that there is no assumption about a constant differential. Since it is
clear that the equation is not absurd, it follows that x3dx + x2y dy = 0 or
x dx + y dy = 0, whose differential is

x3d2x + x2y d2y + 3x2dx2 + 2xy dx dy + x2dy2 = 0.

When this equation is subtracted from the given equation, there remains

a2dx2 − y2dx2 − 3x2dx2 − 2xy dx dy = 0,

or

a2dx− y2dx− 3x2dx− 2xy dy = 0.

Since x dx + y dy = 0, we have

2xy dy = −2x2dx,

so that a2dx−y2dx−x2dx = 0, or y2+x2 = a2. Now this equation expresses
a true relationship between x and y, and it agrees with the differential
x dx + y dy = 0, which we found before. This agreement follows unless
it were manifestly clear that the given equation were impossible. Since in
this case that is not true, it is valid to find x2 + y2 = a2 without integral
calculus.

306. For the sake of an example of an impossible equation, let us consider

y2d2x− x2d2y + y dx2 − x dy2 + a dx dy = 0,

in which no constant differential is assumed. Then we would have y2dx −
x2dy = 0. When this is differentiated, we have

y2d2x− x2d2y + 2y dx dy − 2x dx dy = 0.
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This together with the proposed equation gives

y dx2 − x dy2 + a dx dy = 2y dx dy − 2x dx dy.

However, since dy = y2dx/x2, when the differentials are eliminated, we
obtain

y − y4

x3 +
ay2

x2 =
2y3

x2 − 2y2

x
,

or

x3 − y3 + axy = 2xy2 − 2x2y.

Now, whether this is consistent with the differential y2dx − x2dy = 0 be-
comes clear when it is differentiated; that is,

3x2dx− 3y2dy + ax dy + ay dx = 2y2dx + 4xy dy − 2x2dy − 4xy dx,

or

dy

dx
=

3x2 + ay − 2y2 + 4xy
3y2 − ax + 4xy − 2x2 .

But since
dy

dx
=

y2

x2 ,

we have

3x4 + 4x3y + ax2y = 3y4 + 4xy3 − axy2,

or

axy =
3y4 + 4xy3 − 4x3y − 3x4

x + y
= 3y3 + xy2 − x2y − 3x3.

From the finite equation already obtained, we have

axy = y3 + 2xy2 − 2x2y − x3,

and when this is subtracted from the previous equation there remains

0 = 2y3 − xy2 + x2y − 2x3,

which factors into 0 = y−x and 2y2 +xy+2x2 = 0. Of these, the equation
y = x can be consistent with dy = y2dx/x2, but it does not satisfy the finite
equation previously found. Unless we let a = 0, or unless both variables x
and y are set constant so that dx = 0 and dy = 0 and all of the differential
equations are satisfied, the given equation cannot hold.
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307. Now let us consider differential equations involving three variables x,
y, and z that are of the first, second, or higher order. In order to investigate
the nature of these we ought to note that a finite equation composed of
three variables determines a relationship that one of them has to the other
two. Hence, there is defined the kind of function that z is of x and y. A finite
equation of this kind can be a solution insofar as it is clear what kind of a
function of x and y is to be substituted for z in order to satisfy the equation.
Likewise, a differential equation involving three variables determines what
kind of function one of the variables is of the others. Hence an equation
of this kind should be thought of as having been solved when the function
of two variables x and y is given that when substituted for z satisfies the
equation or renders it an identity. Thus a differential equation is solved if
either a function z of x and y is defined or a finite equation is given by
means of which the value of this same z is expressed.

308. Although every differential equation containing only two variables
always expresses a determined relationship between them, nevertheless this
is not always the case in differential equations in three variables. There exist
equations of this kind in which it is clear that there is no possibility that
some function of x and y can be substituted for z to satisfy the equation.
Indeed, if the given equation is

z dy = y dx,

it is easily seen that absolutely no function of x and y can be given that
when substituted for z makes z dy = y dx. The differentials dx and dy
cannot simply vanish. In a similar way it is clear that there is no function
of x and z that when substituted for y will satisfy that same equation. No
matter what function of x and z might be devised for y, its differential dy
contains dz, but this cannot be eliminated, since it is not in the equation.
For these reasons there is no finite equation in x, y, and z that satisfies the
differential equation z dy = y dx.

309. Hence we must distinguish among differential equations in three
variables those that are imaginary and those that are real. An equation of
this kind will be imaginary or absurd if there is no finite equation that could
satisfy it. Such an equation is z dy = y dx, which we have just considered.
An equation will be real if an equivalent finite equation can be exhibited
in which one variable is equal to a certain function of the other two. The
following equation is such an example:

z dy + y dz = x dz + z dx + x dy + y dx.

This fits with the finite equation yz = xz + xy, so that

z =
xy

y − x
.
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We must very carefully separate these kinds of equations into imaginary
and real, especially in integral calculus, since it would be ridiculous to seek
an integral for a differential equation, that is, a finite equation that it would
satisfy, when it is clear that none exists.

310. In the first place, then, it is clear that every differential equation
with three variables in which only two differentials occur is imaginary and
absurd. Let us consider an equation that contains the variable z but only
the differentials dx and dy, the differential dz being completely absent.
It is obvious that no function of x and y can be exhibited that can be
substituted for z to produce an identical equation. Indeed, the differentials
dx and dy can in no way be removed. In these cases there is absolutely
no satisfactory finite equation, unless perhaps it is possible to assign a
relationship between x and y that persists no matter what z might be. For
example, in the equation

z dy − z dx = y dy − x dx,

which is satisfied by y = x. It is easy to investigate the cases in which this
happens by looking for a relationship between x and y, first when z = 0,
and then whether the same relationship persists when z has an arbitrary
value.

311. Nor is it the case that an equation is absurd only if it involves three
variables and two differentials. It can be absurd even if all three differentials
are present. In order to show this let P and Q be functions of only x and
y and consider the equation

dz = P dx + Qdy.

If this equation is not to be absurd, then z is some function of x and y whose
differential is dz = p dx+ q dy so that P = p and Q = q. However, we have
demonstrated (paragraph 232) that p dx + q dy cannot be the differential
of any function of x and y unless

∂p

∂y
=

∂q

∂x
.

Here the notation means, as we previously assumed, that ∂p/∂y is the
differential of p with only y variable, divided by dy, and ∂q/∂x is the
differential of q, with only x variable, divided by dx. Hence, the equation
dz = P dx + Qdy cannot be real unless

∂P

∂y
=

∂Q

∂x
.

312. Absolutely the same reasoning applies to the equation

dZ = P dx + Qdy,
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if Z denotes any function of z, while P and Q are functions of x and y
without involving z. In order that Z might be a function of x and y, it is
necessary that

∂P

∂y
=

∂Q

∂x
.

According to this criterion, any proposed differential equation given in this
general form can be judged to be either real or absurd. Hence, it is clear
that the equation z dz = y dx + x dy is real. Since P = y and Q = x, we
have

∂P

∂y
= 1 =

∂Q

∂x
= 1.

However, the equation az dz = y2dx + x2dy is absurd, since

∂P

∂y
= 2y and

∂Q

∂x
= 2x.

But these are not equal.

313. In order to investigate this criterion more completely, let P , Q, and
R be functions of x, y, and z. Every differential equation in three variables,
provided that it is of the first order, is of the form

P dx + Qdy + Rdz = 0.

Whenever this equation is real, z will be equal to some function of x and
y. Furthermore, its differential will have the form dz = p dx + q dy. Hence,
if in the given equation this function of x and y is substituted for z and
if p dx + q dy is substituted for dz, then of necessity, the result will be an
identical equation 0 = 0. Since from the given equation we have

dz = −P dx

R
− Qdy

R
,

if in P , Q, and R, this function is substituted for z, then necessarily we
have

p = −P

R
and q = −Q

R
.

314. Since dz = p dx + q dy, from a previous demonstration we have

∂p

∂y
=

∂q

∂x
.

Hence, when the function in x and y is substituted for z, we have p = −P/R
and q = −Q/R, so that

∂p

∂y
=

−R∂P + P∂R

R2∂y
and

∂q

∂x
=

−R∂Q + Q∂R

R2∂x
.
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It follows that when we multiply by R2, we obtain

P
∂R

∂y
−R

∂P

∂y
= Q

∂R

∂x
−R

∂Q

∂x
,

where the denominators ∂y and ∂x indicate that in the differentials of the
numerators, only that quantity that appears in the denominator is assumed
to be variable. However, these differentials ∂P , ∂Q, and ∂R cannot be
known until the proper value is substituted for z; since this is not known,
we proceed in the following way.

315. Since P , Q, and R are functions of x, y, and z, we let

dP = αdx + βdy + γdz,

dQ = δdx + εdy + ζdz,

dR = ηdx + θdy + ιdz,

where α, β, γ, ε, and so forth, denote those functions that arise from differ-
entiation. Now let us consider the substitution everywhere for z the func-
tion in x and y that is equal to z, and for dz we substitute the expression
p dx + q dy and thus obtain

dP = (α + γp) dx + (β + γq) dy,

dQ = (δ + ζp) dx + (ε + ζq) dy,

dR = (η + ιp) dx + (θ + ιq) dy.

From these equations we obtain

∂R

∂y
= θ + ιq,

∂R

∂x
= η + ιp,

∂P

∂y
= β + γq,

∂Q

∂x
= δ + ζp.

316. Since the reality of the equation requires that

P
∂R

∂y
−R

∂P

∂y
= Q

∂R

∂x
−R

∂Q

∂x
,

the result is that when we substitute the values just found, we obtain

P (θ + ιq) −R (β + γq) = Q (η + ιp) −R (δ + ζp) .

However, we have already seen that p = −P/R and q = −Q/R. But these
values can be obtained, even if the function in x and y is not substituted for
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z, since the differentials are no longer required in the computation. Hence
we have

Pθ − PQι

R
−Rβ + Qγ = Qη − PQι

R
−Rδ + Pζ,

or

0 = P (ζ − θ) + Q (η − γ) + R (β − δ) .

Since the quantities β, δ, γ, η, ζ, θ, were found by differentiation, when we
use the notation given previously, we have

0 = P

(
∂Q

∂z
− ∂R

∂y

)
+ Q

(
∂R

∂x
− ∂P

∂z

)
+ R

(
∂P

∂y
− ∂Q

∂x

)
.

Unless this condition is met, the original equation is not real, but imaginary
and absurd.

317. Although we have discovered this rule from a consideration of the
variable z, still, since all of the variables enter in equally, it is clear that
from a consideration of the other variables, the same expression will re-
sult. Hence, if a first-order differential equation involving three variables is
proposed, we can determine immediately whether it is real or imaginary.
Indeed, it can be put into the general form

P dx + Qdy + Rdz

and then we investigate the value of the formula

P

(
∂Q

∂z
− ∂R

∂y

)
+ Q

(
∂R

∂x
− ∂P

∂z

)
+ R

(
∂P

∂y
− ∂Q

∂x

)
.

If this is equal to zero, then the equation is real; if it is not equal to zero,
then the equation is imaginary or absurd.

318. A given equation can always be reduced by division to the form

P dx + Qdy + dz = 0.

If R = 1, the previous criterion becomes simpler:

P
∂Q

∂z
−Q

∂P

∂z
+

∂P

∂y
− ∂Q

∂x
= 0.

Whenever this expression is really equal to zero, the given equation is real;
if the contrary is true, then the equation is imaginary. After all of this has
been demonstrated, it is certain. However, a priori, it could be doubted
whether an equation is always real whenever this criterion so indicated.
Since at this time we cannot demonstrate this completely, nevertheless in
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integral calculus this can be confirmed. At this time we simply affirm that
this is true and that no one should fear any danger from this, even if in the
meantime someone wishes to entertain some doubt about its truth.

319. From this criterion, in the first place, it is clear that if in the equation

P dx + Qdy + Rdz = 0

P is a function only of x, Q is a function only of y, and R is a function
only of z, then the equation will always be real. Indeed, since

∂P

∂y
= 0,

∂P

∂z
= 0,

∂Q

∂z
= 0,

∂Q

∂x
= 0,

∂R

∂x
= 0,

∂R

∂y
= 0,

the whole expression vanishes spontaneously.

320. If, as before, P is a function of x and Q is a function of y, but only
R is a function of x, y, and z, then the equation will we real if

P
∂R

∂y
= Q

∂R

∂x
, or

∂R

∂x

/
∂R

∂y
=

P

Q
.

For example, if the given equation is

2dx
x

+
3dy
y

+
x2y3dz

z6 = 0,

since here

P =
2
x
, Q =

3
y
, R =

x2y3

z6 ,

we have
∂R

∂x
=

2xy3

z6 and
∂R

∂y
=

3x2y2

z6 ,

and so

P
∂R

∂y
= Q

∂R

∂x
=

6xy2

z6 .

It follows that the given equation is real.

321. If P and Q are functions of x and y, while R is a function of z alone,
since

∂P

∂z
= 0,

∂Q

∂z
= 0,

∂R

∂x
= 0,

∂R

∂y
= 0,

the equation will be real, provided that

∂P

∂y
=

∂Q

∂x
.
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This same condition is required if P dx+Qdy is to be a determined differen-
tial, that is, one that arises from the differentiation of some finite function
of x and y. This brings us back to what we have previously observed in
paragraph 312, that the equation dZ = P dx+Qdy with Z a function of z
alone, while P and Q are functions of x and y, can be real only if

∂P

∂y
=

∂Q

∂x
.

Both of these cases are interrelated, since if R is a function of z alone we
can substitute dZ for Rdz, where Z is a function of z.

322. In order to illustrate this criterion let us consider the following equa-
tion:(

6xy2z − 5yz3) dx +
(
5x2yz − 4xz3) dy +

(
4x2y2 − 6xyz2) dz = 0.

When this is compared to the general form, we obtain

P = 6xy2z − 5yz3,
∂P

∂y
= 12xyz − 5z3,

∂P

∂z
= 6xy2 − 15yz2,

Q = 5x2yz − 4xz3,
∂Q

∂x
= 10xyz − 4z3,

∂Q

∂z
= 5x2y − 12xz2,

R = 4x2y2 − 6xyz2,
∂R

∂x
= 8xy2 − 6yz2,

∂R

∂y
= 8x2y − 6xz2.

With these values discovered, the equation giving the solution is(
6xy2z − 5yz3) (−3x2y − 6xz2) +

(
5x2yz − 4xz3) (2xy2 + 9yz2)

+
(
4x2y2 − 6xyz2) (2xyz − z3) = 0.

But when this expression is simplified, each term is negated by another, so
that 0 = 0, which indicates that the given equation is real.

323. When the expression obtained in this way from the criterion fails to
vanish, this is a sign that the given equation is imaginary. However, when
a finite equation is found in this way from the criterion, provided that
it is consistent with the differential equation, it indicates the relationship
that the variables have to each other. Furthermore, this is the way in which
those cases arise that we recall from paragraph 310. Suppose that the given
equation is

(z − x) dx + (y − z) dy = 0.
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Then
P = z − x, Q = y − z, and R = 0,

but
∂P

∂z
= 1 and

∂Q

∂z
= −1.

The deciding equation becomes

P
∂Q

∂z
= Q

∂P

∂z
,

or

z − x = z − y,

so that

y = x.

Since in this case it turns out that y = x also satisfies the differential
equation, we have to say that the given differential equation has no other
significance than y = x.

324. Hence, when a differential equation containing three variables is
given,

P dx + Qdy + Rdz = 0,

there are the three following cases that must be considered concerning the
equation which results:

P

(
∂Q

∂z
− ∂R

∂y

)
+ Q

(
∂R

∂x
− ∂P

∂z

)
+ R

(
∂P

∂y
− ∂Q

∂x

)
= 0.

The first case occurs if this expression is really equal to zero, and then the
given equation is real. However, if this finite equation is not an identity,
then it must be decided whether it satisfies the given equation. If this
happens, we have a finite equation, and this is the second case. The third
case occurs if the finite equation does not agree with the given differential
equation, and then the given equation is imaginary. In this case no finite
equation can be found that satisfies the given equation.

325. The first and third cases are self-evident. The second, however, al-
though quite rare, deserves special consideration. Since the example already
considered contains only two differentials, we will give another equation,
which has all three differentials:

(z − y) dx + x dy + (y − z) dz = 0.
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Here we have

P = z − y,
∂Q

∂z
= 0,

∂R

∂y
= 1,

Q = x,
∂R

∂x
= 0,

∂P

∂z
= 1,

R = y − z,
∂P

∂y
= −1,

∂Q

∂x
= 1,

so that the finite equation resulting from the criterion is z − x− y = 0, or
z = x + y. When this value for z is substituted in the differential equation
we have

x dx + x dy − x (dx + dy) = 0.

Since this equation is an identity, it follows that the differential equation
signifies nothing but z = x + y.

326. Since we have said that all first-order differential equations contain-
ing three variables are of the form

P dx + Qdy + Rdz = 0,

some question may arise concerning those equations in which the first dif-
ferentials are raised to the second or higher power. For example,

P dx2 + Qdy2 + Rdz2 = 2S dx dy + 2T dx dz + 2V dy dz.

It should be noted about equations of this kind that they could not possibly
be real unless they have divisors of the previous form that make up simple
equations. Since from the given equation we have

dz =
T dx + V dy

R

±
√

dx2 (T 2 − PR) + 2dx dy (TV + RS) + dy2 (V 2 −QR)
R

,

it is clear that z cannot be a function or x and y, nor does dz have the
form p dx + q dy unless the irrational expression turns out to be rational.
This happens if (

T 2 − PR
) (

V 2 −QR
)

= (TV + RS)2 ,

or

R =
PV 2 + 2STV + QT 2

PQ− S2 .
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Hence unless this finite equation is satisfied, the given equation will be
imaginary.

327. We might have treated in this chapter differential equations of higher
order that contain three variables, and we might have considered and de-
cided which of these turn out to be either real or imaginary. However, since
the criteria become extremely intricate, we omit this work, especially since
this follows from the same sources which we have here explored. Indeed, if
there is need for these criteria in integral calculus, at that stage they can
easily be developed. For the same reason we have not at this time consid-
ered equations with more variables, especially since they practically never
occur. If it is ever necessary, there should be no difficulty in examining such
equations with the principles we have discussed here. For these reasons we
here bring to a conclusion our exposition of the principles of differential cal-
culus. We next move on to show some of the more important applications
that this calculus has both in analysis and in higher geometry.
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