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1. Introduction.

1. Introduction.

Fourier theory is a branch of mathematics first invented to solve certain problems in
partial differential equations. The most well-known of these equations are:

. FPu P . .
Laplace's equation, dC—LZL + ®—‘2‘ = 0, for u(x, y) a function of two variables,
. # 2 . .
the wave equation, dt—;‘ —c2 dx—;‘ = 0, for u(x, t) a function of two variables,
. ou Fu . .
the heat equation, a Ka2= 0, for u(x, t) a function of two variables.

In the heat equation, x represents the position along the bar measured from some origin, ¢
represents time, u(x, ¢) the temperature at position x, time ¢. Fourier was initially
concerned with the heat equation. Incidentally, the same equation describes the
concentration of a dye diffusing in a liquid such as water. For this reason the equation is
sometimes called the diffusion equation.

In the wave equation, x, represents the position along an elastic string under tension,
measured from some origin, ¢ represents time, u(x, ¢) the displacement of the string from
equilibrium at position x, time ¢.

In Laplace's equation, u(x, y) represents the steady temperature of a flat conducting plate
at the position (x, y) in the plane.

Since both the heat equation and the wave equation involve a single space variable x, we
sometime refer to them as the one dimensional heat equation and the one dimensional
wave equation respectively.

Laplace's equation involves two spatial variables and is therefore sometimes called the
two-dimensional laplace equation. Laplace's equation is connected to the theory of analytic
functions of a complex variable. If f(z) = u(x, y) + iv(x, y), the real and imaginary parts

u(x, y), v(x, y) satisfy the Cauchy-Riemann equations,

u_o du _
&~ &

Pu_ P Fu
@CZ_éxéy__@’z

Pu  Fu
&2+®2=0.

Fv P
dcz+0y2=

(%4
dC ’
Then

or

Similarly,
0.

Heat conduction and wave propagation usually occur in 3 space dimensions and are
described by the following versions of Laplace's equation, the heat equation and the wave

equation;
FPu Pu Fu
2 + @,2 + o2 = O»
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2. Linear differential operators.

2. Linear differential operators.

All of the above mentioned partial differential equations can be written in the form

Llul=F
where
Llul =Pu= ig‘ + ;}23 + ig in Laplace's equation,
L{u] E% - K mg + ;22‘ + Zg% % —k [Pu in the heat equation,
and

Fu u Fu Fu 2u 2 . .
Llu] = a2 —c? £2 + &2 + &2% g% — ¢ 0% in the heat equation.

L[u ]is in each case, a linear partial differential operator. Linearity means that for any
two functions u,, Uy, and any two constants c;, Cy»

L[clu1 + 02u2] = clL[ul] + c2L[u2].

In other words, L is linear if it preserves linear combinations of u;, u,. This definition
generalises to

Llcyuy + -+ + cu,l=c;Llu;1 + ~ + ¢, Llu,]
for any functions u,,..., u, and constants cy,...,c, .

Let u(x; x,,...,x,) be a function of n variables x = (x; X,,...,x, ). Then the most general linear
partial differential operator is of the form

Pu

Liu] = i iaij(x)dxdcj-" i bi(x)% +cxu
=1 j= l 1= l

where a ij(x), b,(x), c(x) are given coefficients.

The highest order partial derivative appearing is the order of the partial differential
operator. Henceforth we will consider only second order partial differential operators of the
form

Llu]l = ;JZ ay(x)dfgcj+ l; b,(x) gucl +c@u.

The general linear second order partial differential equation is of the form

Llu] = F(x)

where F(x) is a given function. When F(x) = 0, the equation L[u] = 0 is called homogeneous.
If F(x) £ 0, the equation Llu] = F(x) is called non-homogeneous.

Linearity of L is essential to the success of the Fourier method. There are usually
(infinitely) many solutions of a linear partial differential equation. The number of
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solutions may be restricted by imposing extra conditions. Often these extra conditions are
given as linear equations involving u and its derivatives on the boundary of some region Q
[0 R"™. These equations are written as boundary conditions

Blu(x)] = ¢dx)

where B is a partial differential operator defined on the boundary 0Q of the region Q.

As an example let u(x, ¢) be the temperature at x [0 Q, at time ¢, of a conducting body. Then
u satisfies the heat equation

%_szmo,xmg,bo.

Suppose the temperature at the boundary is maintained at a given temperature @, then
wx, t)= @dx, t), x 00Q, t>0.
Also the initial temperature of the body is given by
wx,0) =f(x), x 0 Q.

Suppose u,,..., u;, satisfy the linear partial differential equations

L[uj]=FJ-,j=1,...,k
and boundary conditions

B[uj]=q0j,j=1,...,k,

then the linear combination u = quy + .... + ¢ ,u, satisfies the linear partial differential
equation

Llul=cF| + ... + ¢, F}
and the boundary condition
Blul=ci@ +.... +¢,9, .
This result is commonly referred to as the principle of superposition and it is of paramount

importance for the Fourier method. It shows that by taking linear combinations of
solutions of related linear partial differential equations, other solutions can be constructed

for source and boundary terms F', ¢ which are linear combinations of simpler terms.
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3. Separation of variables.
Example 1. To motivate Fourier series, consider a heat conducting bar of length [,

insulated along its length, so that heat can flow only along the bar. The temperature w(x,?)
along the bar, satisfies the heat equation

u, —ku, =0, O<x<l,t>0

t
and boundary conditions
u,t)=0, wl,t)=0, t>0.
Let the initial temperature along the bar at ¢ = 0 be given by
u(x, 0) = flx), O<x<l.
Assume a solution of the form
u(x, t) = X(x)T(¢).

Such a solution is called a separation-of-variables solution. Substituting into the heat
equation,

X)T (t) = kKX () T(2).

Dividing by «X(x)7(¢), leads to

T X'(x)
KT() ~ X&)

Since the variables x, ¢t appear on separate sides of this equation, each side of this equation
can only be equal to a constant, say A. Then

T = kAT, and X'=AX

These are constant coefficient ordinary differential equations. A is real but could be
positive, negative or zero. Assume for the moment that A > 0. The solutions are

T(t) = Ce K/\t’ X(x) — Ang’\ + Be —x_'\//\

for A, B, C constants. Then u(x, t ) = X(x)1(¢) satisfies u(0,¢) =0, u(l,¢t) =0, ¢t >0, if and
only if X(0) = 0, X(I) = 0. That is

0=X(0)=A+B

0= X(1)= Ae VA 4 Be V2,

Eliminating A, B leads to the condition

VA _ VA _g

or
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sinh ( ZV) =0.
There are no values of A > 0 which satisfy this condition. So A cannot be positive.

Suppose that A < 0 and let A =— 12 for some real i . Then \_/A = i and hence u satisfies

dHl _e=inl =
or

sin( /,l) =0.
m

This has solutions yl = nm, n =+1, +2,..., and hence y, = nT, n=%1%2,...,

Kn’1e't in7oc inmc

- 2 j - 1 (7 [
T t)=e ' X ()=e -e =2isin[; Qn=12
For A=0,
T =0, and X"=0

or

) = C, and X(x) = A + Bx.

The boundary conditions u(0, ¢) = 0, w(l, t) = 0, ¢ > 0, are satisfied if and only if X(0) = 0, X({)
= 0. That is
0=X0=A, 0=X()=BI
or
A=B=0.

Therefore the non-trivial solutions of the heat equation

u, —Ku, =0, O<x<l,t>0

t
satisfying boundary conditions

u0,t)=0, wl,t)=0, >0

Kn27'12t
(hTEe [

u,(x,t) = e_ r sinHT E, n=1,2,...

annzt

2 [(hTE [

ux, £) = Z b, u(x,t)= Z be sin{17— [

also satisfies the heat equation and the boundary conditions. For the initial condition to be
satisfied

By superposition

ux, 0= f) = 5 bysin{ 0 O<x<l

That is we must show that f(x) can be represented as a series expansion of sines. We are
mainly concerned wuth those functions f(x) which have this property.

A series expansion such as
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flx) = Z b, sin%leC %

is called a Fourier series expansion.

Example 2. Suppose the conducting bar is insulated at each end, the temperature u(x,?)
satisfies the same heat equation and initial condition but different boundary conditions

u, (0,t)=0, u, (,t)=0, t>0.

Separation of variables u(x, t ) = X(x)1(¢) in the heat equation leads to the same ordinary
differential equations

T =kAT, and X =X

and assuming for the moment that A > 0, solutions
() = Ce ¥, X(x) = AexVA 4 Be =V,
The boundary conditions are satisfied if and only if

0 = X'(0), 0=X().
That is

0-Vr@a-B), 0=Va( 4 _p-1V) |
Eliminating A, B again leads to the condition, A # 0,
VA _o-1NA _
sinh( z?/) = 0.

There are no values of A > 0 which satisfy this condition. So A cannot be positive.

or

Suppose that A < 0 and let A =— 12 for some real u. Then \_/A = it and hence u satisfies
gnl _e=iul =0

or
sin( u) =0.
T
This has solutions y, [ = n1, n =1, +2,..., and hence u, = nT’ n=z%1,%2...,
(ot (2
Ay=—H,2%=— 07 B, n= 1,2,...,

kn21tt infox Inme

- l l Tix
T, (t)=e r , X, (x)=e +e =2cos%@n=l,2,...

IfA=0,T#)=C, andX(x)=A+ Bx.Theboundary conditions u(0, t)=0, u(l,t)=0, t>
0, if and only if X'(0) = 0, X'(I) = 0. That is

0=X0)=B, 0=X'D.
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or

Xx)=A,, T)=C,
Therefore the non-trivial solutions of the heat equation

u, —ku, =0, O<x<l,t>0

t
satisfying boundary conditions

u,(0,t)=0, u, (,t)=0, t>0

Kn27'l2t
- 2

T
u,(xt)=e P cos gtﬁ @, n=0,1,2,....

By superposition
kn?1tt
2 (hroe [

u(x,t) = Z) a, u,(x,t)= Z) ane_ P cos HTH

also satisfies the heat equation and the boundary conditions. For the initial condition to be
satisfied

(o0} 0

u(x, 0) = flx) = Zoancos%TrDC@ O<x<l.

This is also called a Fourier series expansion.
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4, Fourier Series.

A function flx), f: R— R is called periodic if f(x + P) = flx) for all x O R. P > 0 is called the
period of f.

Suppose f(x ) is periodic with period 27, then an important question is whether flx ) has a

Fourier series expansion of the form

00

a
0 .
flx) =5 + Z(ancosnx+bnsmnx), 0<x<2mm
n=

a
} 0 }
The constant term is taken as 5 as a matter of convenience.

The formulas
e =cosx+ 1 sin x, e ™ =cosx—1isinx

can be used to write the Fourier series expansion as

flx) = Z c.e inz
where the coefficients are

a,— lbn a, + lbn a,

c,= 2 > cC_,= " 9 n=12,..,¢c= 75 .

Assuming for the moment that the 27-periodic function f has a Fourier series expansion,
the Fourier coefficients c, will be determined using the following orthogonality property of

the complex exponentials e ™, n = 0, +1, +2, ... .

Lemma.
T . E 0; nm
J‘ inx —imx dx — D
- H2m n=m
n m
Proof. For n Z m, Iemx e~y Iez(n—m)x e
_7'[ _n
1 [ i(n-m)m —i(n—m)il
= < e —e
in-m)
=n-m) sin(n —m)m=0.
T m

Ifn =m, e e gy = [1dx=2TT
fore i |

-TT
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[o0]
Since flx) = Z ce™
T

m T
-1 3 O —imx
flx)e” "™ dx = ﬁz ce™ dx
] TR ™
z cnIe_l(n I gy =2r1cC,),
-0 7
Hence
T
= an [0 e ™ dx, m=0,%1,12, .,
-7

which are the Fourier coefficients of flx).

Since
a,—1ib, a,+1ib, ay
c = B , cC_,= " 9 n=1,2,..,¢="79 ,

n -n

the Fourier cosine and sine coefficients are given by

T

ao=200=7lT J'ﬂx)dx,
T

1 —i 3 1
a,=c, +c_, =51Iﬂx)(e e 7TJ' flx) cos nx dx
-1

b, =ic, —c. )= o Jaﬂx)(emx_ "y }Tfﬂx)smnxdx

Either of the expansions

inx -0 .
ZCne , 2+Z(ancosnx+bnsmnx)
n=

is called a Fourier series expansion of f(x). The first, the exponential form and the second
the trigonometric form.

Notice that if flx) is an even periodic function, i.e. fi—x) = flx) for all x, then

0 s
%TI flx) sin nx dx = %Iﬂx)sinnx dx + %Jﬂx)sinnxdx
-

-7

n
T

0
= %T Iﬂ—x) sin(— nx) (-dx) + }TG[ﬂx) sin nx dx

m

}T@[ —fl=x)+ flx))sinnx dx =0,n=1,2, ....
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Thus the Fourier series expansion of an even function f{x) has only cosine terms
[o¢]
0
5 + Z a,, Cos nx
n=
Furthermore, the coefficients a ,
m

J flx)cos nx dx

m 0
an=7lT J'ﬂx)cosnxdx = }*T Iﬂx)cosnxdx + }*T
-7 -1
0 m
= %1 J' fl—x) cos(— nx) (—dx) + }T@[ flx) cos nx dx
T
T

= }—T J’ (fl—x) + flx)) sin nx dx

m

= iJﬂx)cosnxdx, n=0,1,2, ...

Similarly if f(x) is an odd periodic function, f(—x) = — flx), then

w 0 T
an=ll1 Iﬂx)cosnx dx = }*T Iﬂx)cosnx dx + ;Jﬂx)cos nx dx
- -7
0 T
= %Iﬂ—x) cos(— nx) (—dx) + }TJf(x) cos nx dx
m

T

= }TJ(ﬂ-x)Jrﬂx))sin nxde =0, n=0, 1,2 ...

Thus the Fourier series expansion of an odd function f{x) has only sine terms

o0
Zl b, sin nx,
n=
and the coefficients are
m 0 m

bn=7lT J'f(x)sin nx dx = 711 J'ﬂx)sinnxdx+ ;Jﬂx)sin nx dx
-7 -1t

0 m

= %1 J' fl—x) sin(— nx) (—dx) + }T@[ flx) sin nx dx
T
= %T J (—fl=x) + flx)) sin nx dx

m

= iJﬂx)sin nx dx , n=12,...

It is worth noting that for a periodic function f(x), the constant term in the Fourier series

T

2 = on J'ﬂx)dx
T
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is the average value of flx) over a period, - T<x < 7T

Example (a). Let f(x) be periodic with period 2171,

E—l; —1<x<0

flx)= 0

1, O<x<m

15

05

5 -3 -1 1 2 3 45 6

-15
-6.28 6.28

This is called a squarewave function. It is obviously an odd function, hence its Fourier
cosine coefficients a, are all zero and

T

b, = iJﬂx} sin nx dx

T

?TJ 1 sin nx dx

= —cosn7T+cos(] =n%1 —(—1)"+i
0; n even
=
=0 4 .
H o n odd
4 : : .
Therefore b,, =0, b, ;= m ,n=1,2, .... The Fourier series of f(x) is
n_

b_sinnx, = b, sin(2n—1)x
nZl n nZl 2n-1

Z M sin (2n — 1)x

4 2 1 .
= %’; on—1 sin (2n — 1)x.

(b). Let flx) be periodic with period 271 flx) = Isinx|,— m<x< 71

E—Sinx; —1<x<0

flx)= 0

sin x; O<x<mr
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15
125

/ \ / N O7/5 \ / \
/ / | / 0.25 / |

5 -3 -1 1 2 3 45 6

05

-6.28 6.28

flx) is an even periodic function, hence b, = 0 for all n.

T T

2 2 .
a, = I—TJﬂx) cos nx dx = I_TJ sin x cos nx dx

s

_ 2 G]’; [ sin(n + 1)x + sin((—n + 1)x] dx

T

s

= 711@[ [ sin(n + 1)x — sin(n — 1);] dx

_ lELcos(n+1)rr cos(n — 1) 1 1 0O
= g n+l1 Y n-1 FTn+l n-10p
- 1olog (n+Dm- - (n-1)n"Y
= ameid-cos(n+Dm— 5 (1- cos(n— -
E 0; n odd
- 102 2 O
@ T+l n_1ig " even
E 0; n odd
=[] 4
— 5 .. ;neven
@ (n2 - i
Therefore a,, =- ((2n)§—1)n’ @y, 1 = 0 and the Fourier series of f(x) is

[ W~

%o + S 2 S 1 2
o a Ccos nx = — COS 4nx.
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5. Bessel's inequality.
Theorem. Let f be 27T-periodic and Riemann integrable on [—17, 7. Then
ad 1
Ic 12 < <o I 1f(x)12 dx.
- 7T

n_

Proof. Using zz = |z 12 for complex z,

2

inx D y nx y imx
H(x)— n_ZNC e D = @(x)— nzZNcne @@’(x)— mzZNcme ﬁ

=1 flo)? - z cemx flx) — Z c, ¢ e "™ flx) + Z Z c?el(” m

n=—N n=—N m=—-N

Dividing by 27 and integrating over [—7T 71,

N T N T
0<, jlf(x)lex — Y 6 g [e" A — Y ¢, on [e ™) dx
T n=—N T m=—N T
N N 9 n ( )
+ c.c o [e'" " dx
n—ZNmZ—N " 2”_‘!’-[
1 N 7 N -
= [Ifix)I2dx — c,c, — c_c,_  + c, C
27T_'!; n—ZN m=Z—N mem n=ZN nen
1 " al
= 5 J’ lf(x)12 dx — z le, 12 for any N.
T n=—N

Letting N — o0 leads to the result.

Bessel's inequality will later be shown to be actually an equality but for now it implies that

the series Z lc, | 2 converges where c, are the Fourier coefficients of the Riemann
n=—o~oo

integrable function f.

Using the equations

a,— lbn a,+ib, a,
c, = 2 cC_,= 9 n=1,2,..,¢="79,

n

Bessel's inequality can be written as
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15

2 . .
o0 . |2_ai+ o0 n—lbn[?_'_ o0 , Fib 2
> e, =4 Z s O 0 2 O
n=—0oo n= n=
2 0

_ %o lz la 12+ 15 12
=4 T2 [an +10, ]
n=

m

This implies that the series

00

[o0]
Z la, 12, Z 15, 12 also converge, where a,, b, are the Fourier cosine and
n= n=

sine coefficients of f.
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6. Convergence results for Fourier series.
We will consider the question: For what functions f do the Fourier series

(e¢]
%o

Ceinx
Z n > 2

—

[oe]
+ Z (ancos nx+bnsmnx) ,
n=

converge?

Because we are dealing with functions, the concept of convergence must be made precise.

Do we mean the numerical series converging at every x [0 [- 1, ]? Can convergence be
different at different points x, indeed can we have convergence at some points and not at
others and if so, which are the points of convergence? Can we have some sort of average

convergence on [— 71, 711?

A function f is called piecewise continuous on an interval [a, b] if it is continuous
everywhere except at finitely many points x, xo, ... , x, U [a, b] and the left-hand and
right-hand limits of f exist at each of the points %, x,, ... , x, . The set of all piecewise
continuous functions on [a, b] is denoted by PCla, b].

f is called piecewise smooth if f and its derivative f” are piecewise continuous on [a, b].

Consider the Nth partial sum of the complex Fourier series of f,

N .
S{,(x): z ce™

n
n=—N

= g ElL ne_inyf(y)dy%einx
L] ]

n N
(n in(x—y)J
= e (y) dy.
JBr 20

Y

N
1 inx
We define D \(x) = 5= e . Then
N( 21 n=ZN
T T

SYx) = [ Dpfx-y)fy)dy = [ Dyyfx—y)dy.
-7 -7
[The last equality follows from a change of variable and the periodicity of the integrand
Dy(x —y)fiy)]. The function Dy/(x) is called the Dirichlet kernel and
2N

1 _. .
DN(x)=E-[e iNx Enemx
n=t

~2n® H e®*-1 H
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| ! +Dx_ -iNa

_ 1 : [
_QITH e®_1 H

29 129

. 1 . 1
1 %L(N +2)x_e—L(N + 9k
= or H . .

[l

0
e2—e 2 i
1 sin(N+3 X

()

The question of convergence of the Fourier series reduces to question:
Does SZ’:,(x) converge as N — o for x (- 77 r? If so, to what does it converge?

We prove a preliminary result.

Lemma.
0 T
[ Dywd= | Dyx)dx =3,
-
1 1 N ; 1 1 N
Proof. Dy(x)= 5+ 5 z e = o+ 7721 COS nx
n=—N n=

nz0

From the even-ness of Dy(x) and integrating,
N

0 w T
_L Dp(x)dx = JDN(x)dx= J%+ }T’; cosnx%lx

. T
sin nxd

_E o, 1g sinmD 1

Theorem. Let f be a piecewise smooth 2 7-periodic function on R. Then

lim SZ(,(x) = %[ fl) +f(x+]
N oo

for every x. Hence lim S]':,(x) = flx) for each point x of continuity of f.

N-

Proof.  Siw-3[ Ar)+fw] = [ Dywife-y)dy- 5 far) +fixt]

T 0

= G[ DyyIflx—y) = (facldy + [ Dyylflc—y) —flact)ldy
i

(from lemma above)
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T 0

= 6]’ Dyylfix=y) = feldy + [ Dpf=ylfix +y) = flaH)l=dy)
mn

s

= G]’ D\ flx—y) — fx) + flxc + y) — flat)ldy

"1 sm( N + % y
= [on [flx—y)—fx) + fle + y) — flxt)]dy
sin( %

m |:| Y
1 2 x=y)=fl)  flx+y) - flat)n
_ne[ s1n(N+a y%in(% y + p [fly
For fixed x define
o .
gy = [ 2 x-y)—flx) +ﬂx+y)—ﬂx )]
@in( % Y Y J

which is an odd piecewise continuous function for [-71, 7] by the condition of piecewise
smoothness on f.

Then

S]’:f(x)—% [ fla) +f(x+] =}TJ sin( N + a y 8(y)dy

= }Tfsin (Ny){ cos(% g(y} dy + }TJHCOS (Ny){ sin(% g(y} dy

The last two terms are the Fourier sine and cosine coefficients By, Ay, of

%cos( % gly), % sin( % g(y) respectively. By Bessel's inequality, By, , Ay, - 0OasN -

00,

Therefore
Sl — 5[ ) +fat] =By +Ay - 0,asN - o.

This result, that the partial sums of the Fourier series of a piecewise smooth 2 r-periodic
function converges pointwise to the mean of the left and right hand limits at x. If x is a
point of continuity of f, then the partial sums converge pointwise to f(x).



6. Convergence results for Fourier series.

Fourier series provide a useful method for summing certain numerical series.

Example. The Fourier series of the continuous periodic function f(x) =Isin x|, x O [- 11, 71,
is

2 42 1
- 9 4 COS 2nx
T T = 4n -1

15
1.25
7 N
SN

\ S
/025 \

1 2 3 45 6

05
-6.28 6.28
Because x = 0 is a point of continuity of f, the Fourier series converges at x = 0 to f0) =0,
2 42 1

0= 7'[_ TT 4= 4n2—1

or
o 1 1
L 42172

T . .
At x = 5, the Fourier series converges to

) c1-2_45 1
n_
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7. Differentiation and Integration of Fourier Series.

Fourier series can be differentiated term-by-term but the question is does the resulting
series converge and if so, to what does it converge? Similar concerns apply to the series
resulting from the term-by-term integration of a Fourier series.

Theorem. Let a,, b,, c, be the Fourier coefficients of a 27Fperiodic piecewise smooth
function ' and a,, b,, c, be the Fourier coefficients of /. Then

a, =nb,, b

n n n=—na

w»  Cp=1nc,.

Proof. By integration by parts,

T

=9 [ e %
-

T T

= o flge ™ EL - [ ) (ine™ ™ )
T -7

T
.1 —inx _
=in 5. J'ﬂx)e dx = inc,.
-

A similar proof works for a, = nb,, b, =-na,.

Theorem. Let f be 27periodic, piecewise smooth, with piecewise smooth derivative f".
Then the Fourier series of f” is

00 00

. inx .
z inc,e™ = Z ( nb, cos nx — na, sin nx)
00 n=

and converge for each x where f'(x) exists. If f” is not continuous at x, then the series above

converge to % [f () + f(x)].

Proof. This result follows by combining the previous two theorems.

Integration of Fourier series is not so straightforward since the anti-derivative of a
periodic function need not be periodic. For example, flx) = 1 is periodic but its anti-
derivative F(x) = x is not. However, since all but the constant term of a Fourier series has a
periodic anti-derivative, the following result is true.

Theorem. Let fbe 27Fperiodic, piecewise continuous with Fourier coefficients a,, b,, ¢
X

and let F(x) = J fie)de. If ¢, = %ao = 0, then for all x,

© o A — )
Flx)=C,+ Zﬁemx=70+ Z%Tn%cosnx+%lf%innx%
n= oo =

n

n

n#z0
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T
where C, = 120 = 2177{ F(x) dx the average value of F on [- 77, 1.
-

If ¢, # 0, then the series above converges to F(x) — cyx.

X

Proof. Since flx) is piecewise continuous, F(x) = J f(t) dt is continuous.

Ifc, =0, F(x) is 2 reperiodic since

x+211 x x+211 s
Flx +2m — Flx) = J ft) dt — J ft)dt = J ftydt=" [ fit)dt =21, =0.

Therefore the Fourier series of F' converges pointwise at each x [ [—71, 1 to F(x). Since flx) =
F'(x), by the two previous theorems,

b =-nA

a,=nB,, " - cn=lnCn,

where a,, b, , c, are the Fourier coefficients of f and A, B,, C, are the Fourier coefficients

of F. If n # 0, this implies that

T
The constant C0 = 120 = 21”1; F(x) dx is the constant term in the Fourier series of
X
Flx) = @[ f(t)dt.
Ifc,# 0, flx) —c, has zero mean value on [-77, 1] and therefore its zeroth Fourier coefficient
is

T T
ln_'[[ (flx) — co)dx = 217T_J;[ flx) dx —cy=cy—cy=0.

Applying the result just obtained to flx) —c, and its anti-derivative F(x) — ¢ ;x completes
the theorem.

Integrating and differentiating known Fourier series using the above results is a useful
way of obtaining new Fourier series.

Example. The 27-periodic function f :R - R, filx) = x(rm— | x|), x O [-77 1, is continuous with
piecewise smooth derivative. Therefore its Fourier series converges at each x to flx). The
Fourier series is by the table #17

flx) = x(mm— |x|)_ Zl @n )3 sin (2n — 1)x.

By the above results,

1
flx)=m-2lxl = 7'[21(2 2 cos (2n — 1x
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or
00

lxl =52 Z @n_1)2 08 @n—1x
7T

n=

which agrees with table #2.

H 0; —n<x<0
Example. f(x) = [
H 1; O<x<mr
15
125
1075
025
| T H
5 3 1 1 23 456
05
-6.28319 6.28319
is piecewise continuous with Fourier series
flx) = 2 + 2n sin (2n — 1)x

) 0; —m<x<0
(table #7). Since ¢, = 5 # 0, F(x) = J fit)dt.= 0O
x; O<x<m

Therefore
F(x)_oz_cz 70_ 72 (@n_1)2 °08 (2n - 1x
n=
Since - d Fa-S=T_ %5 2n -1
ince J;F(x) x_4, (x)—5=4— "ZL )2 cos (2n — 1)x.
Q—g; —Tn<x<0 el
ButF(x)—yz*C = [] =%
H x
95 O<x<m
Therefore
| x
T: 7 zl @n )2 cos (2n — 1)x
or
lxl = & Z @n 1)2 cos (2n — 1x.

This result agrees with the previous example
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8. Half-range Fourier series.

It is often convenient to represent a given function as a Fourier series which contains only
cosine terms or only sine terms, as in the initial examples.

If f(x) is piecewise continuous on [0, 7], it can be extended to [-77, 0] as either an even
function or as an odd function.

Then fis periodically extended to the whole real line as a 27-periodic function by

flx+2m=flx), x OR.

Let flx) be a piecewise smooth function given on the interval [0, 77] and extended to [-, O]

as an even function. That is, f(x) = fl—x), x O [-m, 0]. Then the periodic extension to R, is
piecewise smooth and has Fourier series
a, 2
9 + Z @, COS nx
n=

T

a,= ?TJf(x) cos nx dx.

where

Similarly, extending f(x) to [, 0] as an odd function and periodically to R, the extension

has Fourier series
00
Z bn sin nx
n=

T

b = %Jﬂx) sin nx dx.

where

a (ee] (ee]

The Fourier series 70 + Z a, cos nx, Z b, sin nx are known as half-range series for
n= n=

flx), x« 0[O0, .

Example. Let f(x) = sin x, x (I [0, 7r1]. Extend fto [-7, 0] as an even function.

sin(—x) = — sin x ; —1<x<0
That is flx)= O
sin x; O<x<m

= |sin x|
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15
125
/ o1
/ 025
> a1 1 2 3
05
314159 314159

The half-range Fourier series of fis given by

- 1

[H

flx) =

SRR

_ﬂr; 2n? —

1

cos 2nx (table #8).
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9. General Intervals.

The theory of Fourier series can be expanded to include functions which have arbitrary
period. Let /R >R have period 2/ > 0. That is flx + 2) = f(x), x 0 R. Also define ¢:R - R by

@x) = f E’TH UThen

dx+210 dx_ 53
dox + 27 = fEiH: o +2l%f8n%q(x)

So @has period 271. Applying the earlier results to ¢ results in the Fourier series

. a 00
inx 0 .
@x) = z c,e = 5 + E (ancos nx +b , sin nx)
— 00 n=

where
T T
_1 (/*() dx l ) . dax _1 (ﬁ() —inxdx
_nJ' x) cos nx dx, I x) sin nx dx, cn_2nI x)e .
-7 -7 -7T

The change of variable y = ix_[ leads to

l

l
=u BBl fromT

o~ =

S~
lv._, -
DE

.':5
N

‘<
N“—l
ER

2

=}
E

iny 1 inTy

2i J’cpé.ygb_ dy = %_J’f(y)e_ : dy.

Therefore

flx) = D-ZDCD z c, e

= CE+ s [ cos 7l b sin 7
2 + D H cos [ b, sin
is the Fourier series of a 2/-periodic function f.

It follows from the above calculations that if f(x) is an even function on [-/, [], its Fourier
series contains no sine terms and is of the form

with

ay, 2 o]
5 + Z a. cos
n=
5 l
a, = 7@[ )cos Edrf
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Likewise if f{x) is an odd function on [/, /], its Fourier series contains no cosine terms and
is of the form

> . [
Zx b, sin BTE,

with
l
b, = 7 [Aosin [l e

A function f(x) defined on an interval [0, /] can be extended to [/, /] either as an even or an
odd function and the extended periodically with period 2/ to the real line. The Fourier
series of such functions are half-range expansions on [0, /] and contain no sine terms in the
case of an even extension or no cosine terms for an odd extension.
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10. Application to Laplace's equation.

Example 1. Let Q be a rectangle 0 <x <a,0 <y < b, and consider the boundary-value
problem

ZCQLZL+;2L2L=O,OSxSa,OSySb
u(x,0)=0,ulx,b)=fx),0<x<a

u,y)=ula,y)=0,0<y<b.

Assuming a separation of variables solution of the form u(x, y) = X(x)Y(y) and substituting
into Laplaces equation,

XY+XY =0
or

— % = % = constant = A

For A>0,X +AX=0, Y — AY =0, hence
X(x) =A cosV Ax + B sim/ Ax, Y () = C coshy/ Ay + D sinhy/ Ay .
To satisfy the boundary conditions u(0, y) =u(a,y)= 0,0 <y < b, requires that
X0)=A =0, X(a)=Bsin( aV) = 0.

h 70c[]
a

Therefore aVA = nrTi, A= %ﬂlﬁ, n=1,2, ..,and X(x) =B sin%

To also satisfy the boundary condition wu(x, 0) =0, 0 <x < a, requires that
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Y(0) = C = 0 and therefore Y (y) =D sinh gaﬂ@ The separation of variables solutions for

A >0 are

[(hTe
a

[Ty

Sth?@ n=12, ..,

w(x, y) = X(x)Y(y) = BD sin

[

for an arbitrary constant BD.

For A<0,letA=—p,tu>0.Then X —uX =0, Y + uY = 0, hence

X(x) =A costh +B sinh;//,lx , Y(iy)=C cosVuy +D sinVuy .

To satisfy the boundary conditions u(0, y) =u(a,y)= 0,0 <y < b, requires that
X0)=4 =0,  Xa=Bsinh( aV)

But B = 0 gives a trivial solution and sinh( aV) # 0 for A < 0. So there is only the trivial
separation of variables solution u = 0, for A < 0.

Finally suppose that A =0, then X =0, Y = 0, hence
X(x)=A + Bx, Y(y) = C + Dy.
To satisfy the boundary conditions u(0, y) =u(a,y)= 0,0 <y < b, requires that
X(0)=A =0, X(a)=Ba =0.

That is, A = B = 0 and the only separation of variables solution for A = 0 is the trivial
solution.

Summarising thus far, there is a sequence of non-trivial solutions of the form

. e [(h7ty[]
u,(x,y)=B, smE a BsthﬂB n=12, ..,
where B, are the constants BD for each n =1, 2, ... . By superposition, a solution is also
given by
(00]

wx, y)= Y B u,lx,y)
n=1
(e [ty

sin a ﬁSinhBOTﬁ

The boundary condition u(x, b) =f(x), 0 < x < a, implies that

||M 8
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® ik ™
u(x, b)=flx) = nZ1Bn sin%ag sinh %7@
. . . o 7]
Since @(x), 0 < x < a, has a Fourier half-range series flx) = 2. b, SmE(TEF where
a
b, = i@[ﬂf} sin %g%df: B, s1nh%laﬂﬁ
Therefore
b 2 ¢ e

0]
_ ) . e
u(x, y) —nZIBn sin{, [ sinh [~

Suppose all four sides of the rectangle have non-zero boundary conditions, then we can
break up the problem into four sub-problems each similar to the one we have just solved.
Each of these subproblems will have zero boundary conditions on three of the four sides
and can be solved as above. Then the solution to the boundary-value problem is the sum of
the four sub-problems by superposition.

Example 2. We seek a solution to Laplaces' equation on a circle, satisfying Dirichlet

boundary conditions. It is natural to choose Q a circle centre the origin, radius a, and
Laplaces' equation in polar coordinates,

Au(r, 9)=0;§‘+,1,gr”+:2§2‘;=0, r<a,0<60<2rm

subject to boundary conditions
wa, 0 = O, 0<0<2m

where @is a continuous functionon 0< 6 <271
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Using separation of variables, assume that

u(r, )= R(r)&6)
and substitute into the differential equation to obtain

R'o+ R0+ RO - 0,
r r2

or separating variables,

! ’ e
R I-%F rRo__ o - constant = A2 (say),

which leads to the two families of ordinary differential equations
r2R +rR-)?R=10,0 + A20=0.

Consider the case A = 0; then the solutions of the above equations are
© =A,+B,6

R =C,+ Dgylogr

Since solutions u must be periodic in 6, and bounded for r <a, we conclude that B,= 0, D,
= 0.

In the case A # 0 the solutions of the above equations are
© =A, cos A8 + B, sin A0
R =C, ™ +D N r=A
where the coefficients depend on A. Again because solutions are periodic in 8 with period

21 we conclude that A =n = 1,2,3,.., and because solutions are bounded forr <a,D, =0, n
= 1,2,3,... By superposition we can combine these solutions to obtain

(0]
w(r,0) = z Cnr”( A cos nb+ B, sin nG)
n=0

We may as well incorporate the constant C, into A, and B,, hence

(0]
u(r, 0) = z r”( A, cos nB+ B, sin nG)
=)

n

At the boundary r = a,

[00]
f0)=ua, ) = Z a”( A, cos nf+B, sin nG)
n=0
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a (0]
0 .
=g+ z (ancosn9+bnsmn6)
n=1
where
21T 21

a,= 71_[ %’ﬂt) cosntdt, b, = }Tgﬂt) sinnt dt

are the Fourier coefficients of the function f. Equating coefficients of cos n6, sin ng in
these two expressions for f{6), we obtain that

an bn
An=a7, Bn=a7
and hence
a o0
u(r, 0) = 70 + z %g( a,cos nB+b  sin nG)
n=1

This series converges uniformly for0 < 6 <2mr <a.

We can get a closed form expression for u by substituting the formulae for the Fourier
coefficients as follows.
21 00 2m

_ 1 1 B8l . .
u(r, ) = 27_[‘57‘(15) dt + - Z1 ElDJﬂt) (' cos nt cos n6 + sin nt sinn6) dt

n=

2n 00 2

_ 1 1 < o _
= 2noﬂt) dt + "nZ1 mDJﬂt) cos n(¢ — 6) dt

2m 2 00
_ 1 1 d'rt _
- 2n‘([f(t) dt + ’_[Jf(t) nzl o Cos n(t— 6 dt

where the interchange of the order of summation and integration is allowed by the uniform
convergence of the series.

21T

{ 0 , 0
Therefore  wu(r, §)= — _g fa+2 S B0 cos n(t— ) [t

S
M 8

Using the exponential form, 2 cos x = é* + e** the term in the square brackets reduces to
two infinite geometric series whose sum is

a?-r?

a?— 2arcos(t — 0) + r?

1+2 %gcosn(t—e) =

S
M 8

(exercise). Therefore
1 27T 9 9
a“—r
ur, 0=, [0

m{ a%- 2ar cos(t—6)+r?
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which is Poissons’ integral formula for the circle.
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11. Sturm-Liouville problems and orthogonal functions.

The functions sin nx , cos nx, e, e " n =0, 1, 2, ... , are examples of orthogonal

functions on [-77 7] Their orthogonality properties follow from the fact that they solutions
of linear second order ordinary differential equations.

For example sin nx , cos nx, e * satisfy
—u"(x) = Au(x),
u(=m = u(m, uw'(-m=u'(m

for A = n2. The ordinary differential equation together with the boundary conditions is
called a boundary-value problem.

The set {e * , n =0, £1, 2, ... } form a basis for the vector space Ly[-77 11 consisting of
T

functions f:[-m, m — R for which I |f(x)12 dx < oo. A set of functions {@(x);n=1,2,..}is
-

said to be a basis for L,[-77 m if for any function f U L,[-77 71 , there is a unique set of
scalarsc, ,n =1, 2, ... such that

s N B
lim x) — c,@(x)d dx =0.
dim, [ 9= 2 8@
Then we say that f has the expansion f = Z c, D,
n=

Furthermore, if the set {@(x); n = 1, 2,... } is orthonormal, that is

m

I%(x) @,(x) dx = E

0; n#m

1, n=m

then the coefficients c, are given by

T

c, = _J,;f(X) @,(x) dx, n=12, ...

The interval [-71 111 can be replaced by [a, b] and the theory of Fourier series generalised
to the expansion of arbitrary functions f 0 Ljla, 6] in terms of an orthonormal basis {¢ (x);

n =1, 2,... } consisting of functions which are solutions of a boundary-value problem for
certain second order linear ordinary differential equations.

Let p(x), gx), w(x) be real continuous functions on the interval [a, b]. Let p(x) be
continuous and p(x) > 0, g(x) 20, w(x) 20 on [a, b]. Let &, a;, B, B;, be real constants.

A Sturm-Liouville problem is a boundary value problem

- ( p(x)u) "+ qo)u = Awx)u, x0la, b]
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agu(a) + agu’(a) =0,
Byu(b) + Bu’'(b) = 0.

The value of A for which this boundary-value problem has non-trivial solutions are called
eigenvalues of the boundary-value problem and the corresponding solutions u(x) are called

eigenfunctions. It can be shown that the eigenvalues form a countable set {A ;n =1, 2,... }

and the corresponding eigenfunctions {@(x); n = 1, 2,... } are orthonormal with respect to
the weighted inner-product

b
<f;8>, = Jw(x) fx) g(x) dx.

Let the vector space ng[a, b] consist of functions f:[a, b] - R for which
b

17112 =J’ w(x) | fix)12 dx < . A set of functions {@(x); n=1,2,..}1is said to be a basis for

L’;’[a, b] if for any function f O L’g[a, b], there is a unique set of scalarsc_, n =1, 2, ... such

that

b g X i
Alflznoo Jw(x) H(x)— nZl cn%(x)% dx =0.

Let the linear Sturm-Liouville differential operator L be defined as

U=t (pw) +awf

w(x)

Let f(x), g(x) be C2 functions on [a, b]. Then

b
<Llfl;8>, = J[( p@f) +q@f g dx

b b
- _p<x>fg% £ (pwr g +qwr g dx

Also

b
<f;Llgl>, = Jf(x) [ (pg) "+qwd dx

b b
= g B+ | (pwr & +qwr g) dx.

Subtracting these two expressions,

b
<Lfl;8>, - <f; Lgl>, =-p@( fg-fg) a .

This is Lagrange's identity.
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Lemma. If £, g are C? functions on [a, b] which satisfy
ayfla) + o;f(a) =0, augla) + a,8°(a) =0,

Byfib) + B,f(b) =0, Bys(d) + B18'(b) =0,
then
<Llfl;g>, =<f;LIgl>,

Proof. Suppose q, # 0, §, # 0, then by Lagrange's identity,

b
<Lifl;g>, - <f;Hgl>, =p@(fg-f&) B,

0 By O
= —p(b)D"(b)[—p—— g'b)
0 By O

0a
+p<a>nr*<a>5u—1 g'(@)

Similarly if a; #0, B; #0or a; 20, B, # 0 or a, # 0, B; # 0, the result follows with minor
changes to the argument.

Lemma. The eigenvalues of the Sturm-Liouville operator L are real.

Proof. Let A be an eigenvalue with corresponding eigenfunction ¢. Then @satisfies

Ligl= wl(x)[ —( p(x)qa '+q(x)(} = AQ,

ayfa) + a,¢(a) =0,

B,dtb) + B¢ (b) = 0.

Then
Md2 =A<e; ¢, = <Mp; ¢>,
=<Lld;g>, = <p;Llg>, (abovelemma)
= <P M>, = A<p; >, = Allgl2,
Therefore

A= Mligh2 =0

Since ¢#0, A = ; and A is real.
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Lemma. Let ¢dx), ¢(x) be eigenfunctions of the Sturm-Liouville boundary-value problem
with corresponding eigenvalues A, u respectively. Then If A # u, ¢x), Y(x) are orthogonal on
[a, b] with respect to the weighted inner product <f'; g>,,.

Proof.

Lig = LIyl = Ay
| foda) + a,¢(@) =0 [hoWa) + a/(@) =0
E%W’) +B,9(0)=0 EEOW» + B B) =0

From a previous lemma,

<Llg;y>, =<o;LIy>, ,
<Ap; y>, =<, >, ,
A-w<g;y>, =0.

Since A # u, <@; y>, =0.

These results can be used to prove the following result:

Theorem. The eigenfunctions of a regular Sturm-Liouville problem are a countable set

{@(x);n =1, 2, ...} and form an orthonormal basis for ng[a, b]. That is, each function f [

ng[a, b] has a series expansion f = Z c,®, where the ¢, = <f; 9>, ,n=12,..,and
n=

convergence is in the sense that

oo X f
li - dx =0,
Lim Jw(x) H(x) nZ\ cnqon(x)%
or
il 2
Al]zinoollf— 2 c, @ I, =0.

If f(x) O C2?[a, b] and satisfies the boundary conditions ayfla) + o;f(a) =0,

00

Bf1b) + Bif(b) =0, the series f(x) = Z ¢, @, (x) converges uniformly on [a, b]. That is
n=

N

[ 0
lim max X) — c.o(x)0d=0.
N 0ox [Ta; b] nZl n% 0
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12. Bessel Functions.
Consider the heat equationonadisc0<r<a,0<60<2r,

ou o fu louw 1 Fup
&—KAU(F,G)—(%—KHM rar ’szZH:

0<r<a,0<0 <2mt>0,where u(r, 6, t) is the temperature, Kk > 0 a constant.
Let the initial temperature at ¢ = 0, be

wr, 6,0)=f(r, 9,
0<r<a,0<0 <2 and boundary condition at r = a,
ula, 6,t)=0,
0<6 <2mt>0.

Assuming a solution of the form u(r, 6, t) = R(r) &6) 1(t), substituting in the heat equation,

1 1
r " -~ ’ el ’" D_
ROT KBQ Or+ [R'OT'+ 3RO'TE=0,
’ n ’ @N
r _E R = constant = — A2 (say),

kT~ B TrR " 20

PR" IR’ o'
A%2 =
R *R 7 )

T + A2kT = 0, = constant = 2 (say),

@'+ 120 =0, R" + rR’ + (A%2 — v2)R = 0.

The equations for T, © are familiar but the equation for R is Bessel's equation and has
non-constant coefficients. We can write it in the Sturm-Liouville form,

—(rR) '+ —R AR,
V2
where p(r)=r=0,q(r) = > 0, w(r)=r=0.

A change of variable p = Ar in Bessel's equation results in

(BS  dS ,
o ~v)S =0,
Pipr* a7

where S(p) = R(r) = R % % We denote a solution of this Bessel's equation as S(p) = J (p)

and then a solution of the original form of Bessel's equation is R(r) = S(Ar) = J (Ar). A

second solution of Bessel's equation is Y (Ar), a Bessel function of the second kind, and
therefore the general solution is

R(r)= AJ (Ar)+ BY (Ar).
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Ifv#£0,1,2, .. then J_/ (Ar) is also a solution and { J (Ar) ;J_v(/\l"} is a linearly
independent set of solutions to Bessel's equation. The general solution is then

R(r)=AJ (Ar) + BJ _ (Ar)

for constants A, B. The solution J (Ar) is called a Bessel's function of the first kind and a
series representation can be found

222 A 0
22+2v)  24.2+2v)(4+2v) O

J (Ar) = (Ar)" q -
U
Forv >0, J,0) =0,J,(0) =1.Y (Ar), J_ (Ar) are unbounded as r — o, hence the only
bounded solutions R(r) occur when B = 0.

The Bessel functions J (Ar) are oscillatory for » > 0. For v> 0, let the zeros of J (p) be
{p,,;m=0,1, ..}, where p,, =0 for all v> 0.

Then R(r) = J (Ar) solves the Sturm-Liouville problem

—(rR'(r)" + élrE@R(r) =A2rR(r),

R0)=J0)=0, R(a)=dJ,(Aa)=0,

if Ada=p,,,m=1,2,..,foreach v>0.

O m,, %
The Bessel functions %’VE%EE , are orthogonal on the interval (0, a), with respect to
m=1

a

the weighted inner product <f; >, = J rf(r) g(r) dr. That is,

“ D)erD mvlrlj

JrJVETH‘IVE?Edr =0,if m #1[.

Returning to the heat equation on the disc 0 <r < a, 0 < 6< 2, the solutions of the form
w(r, 8,t)= R(r) &6) T(t) are given by

R(r)= AJ (Ar) + BY (Ar),
©&(0) = C cos (vO) + D sin (v0),
)= E e VK |

For &(6) to have period 2 v=n=0,1,2, ....

For R(r) to be bounded atr =0, B =0.
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Foru(a, 6,t) =0, R(a) =J(Aa) =0 or Aa = p n=0,1,2 ..,m=1,2, .., the zeros of

nm ?

. /\nm
J (p). Thatis A, = q "= 0,1,2,...,m=1,2, ...

By superposition, a solution of the heat equation on the disc satisfying the boundary
condition u(a, 6, t) = 0, is given by

© ® 0 Pkt O PO _
u(r, 6,t)= nZO ”Zl exp%_ ”22 %JHBZLH( C,,cos(nb)+D . Sln(ne) .

The orthogonality relations

T

¢ D)nmrD DDnlrlj . . .
JrJn%Tgn%?%Zr =0,if m#/, and £ cos(nb) sin (kO)dO, ifn 2k,

O, r0 P, 0 O 00300

imply the orthogonality of " eos(n 6) o] in(n0)J on the rectangle
FoH o B Ha 90

(r, ) 0(0, a)x(—m, m with respect to the inner product

a T

<f;8> = G[ J'rf(r, 0) g(r, 6) dOdr.
That is, )

a T

O Pum!” 0 [Py’

@[ _-7[ ] 'IBT@COS(” @ﬁ kB?@COS(k G)@ZG dr

0; n#k
% O;n=Fk andm %I

= a
E T erév%gdr;nzk and m =1

nmr

a7TD

J 1

&S

U [Py’

O . ad O . 0
|%sm(n G)H i Haf%sm(k 0) Ed 0dr

|

0; k
% O;nzl;etandmil
K

n@[eré.%gdr;n =k and m =1

a T

0 Pu,rd 0l Py, [l
(J’ I r Ein%THcos(n @H rH o %m(k@)%i@ dr =0 foralln, m,k and [.
7T

The coefficients C,, ,D

" are determined using these orthogonality properties. For
example,

nm
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a T

hence

—

a
ITJ r Jké’% dr

Similarly,

[y

a

mkﬂ'

ITJ r JkHOT dr

k=0,1,2,..,1=1,2, ...

I erﬁ%@cos(ke)f(r, 6)dodr =C,, rr@[eré’%ﬁdr,
—IT

a T

@ Py .
G[ I erECTEsm(kH)f(r, 0) dodr,

J I erér%ﬁcos(kG)f(r, 0) dodr.
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13. Fourier Transforms.

00

A function f: R-R is said to be integrable on R if i lf(x)ldx < 00. We call the class of all

00

such functions L1(R). Similarly, f : R-R is said to be square integrable on R if L If(x)12dx

< 0. and we call the class of all such functions Lz(R).

Examples. Let f: R-R and g : R- R be defined by

2

3
;0<x<1
flx) = % ,
) ; otherwise

oo

-
gw=0"
) ; otherwise

;a>1

Then
oo 1 2 1

Llf(x)ldx = CJoc_?’olx = 3x3 | (1) =3<

[ 1 é

1
J; If(xc) Pdx = Jx_ 3dx =—3x 3 | (1)= 00,

Therefore £ 0 LY(R) but £ 0 L2(R). On the other hand,

o0 ®© 9 1

[lewide = [ Y = 3x3| " =

and
0 1 4

1
ng(x)lzdx= Jx_?’dx =—3x_3|°10=3< 00,

Therefore g [ LYR) but g LXR).

Given two function £ LYR) and g O LYR), the product fg is not necessarily in L'R).
Counter-examples are given by
2

3.
fx) = gla) = % ;0<x<1
B); otherwise

There is a product = for which f«g 0O L'(R) whenever fOd L'R) and g OL LR). We define
the convolution product
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(fg)x) = Lﬂx —y) gly)dy.

Lemma.If f0 L'(R)andg O LY(R), then f+g O L'R).

00 [oe] [0e]

H 0
Proof. L I(Fg)(x)ldx = L HJ; fle —y) gly) dy%ix

o0 0

_£ L Ifix —y) gy)l dydx

IN

0

,L Iflx —y) If|g<y)| dydx

IN

[ee] 00

< Llf(x)l dx ‘ng(y)l dx < 00,

The Fourier transform of a function f [ LY(R) is defined to be

(&= Lﬂx)e =< 8Xdy,

where &[0 R. It is easy to see that the Fourier transform of a function [ [ L'R) isa
bounded continuous function on R. The boundedness follows easily from

[oe]

0

Il = %iﬂx}e -i&x dx%s i Ifix)| dx < 0.

The continuity follows from the following.
Theorem. (Riemann-Lebesgue). If f DLI(R), then /" O C(R) and f"(&) -~ 0 as |l o
Proof. Let £ OR, £#0. Then

(o]

(&= Lﬂx)e‘ifxdx =—ell Lﬂx)e =&xdx

]

- —if% + LN D 7TD
== [fwe §Ldx = [flx— e
Therefore _

|:| (o] . (o) 7_[ ] |:|
20 (&)l = &gy (fH- p%d
A e (-

< f@‘(x) - f% - ’; ﬁe i) g
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< f%{x)—f%—? x —» 0 aslél - oo,

£
To prove continuity of f,let £€>0 be given and a >0 chosen such that I Iftx)ldx < 7 and
l |

a

0> 0 chosen such that 2ad J' lf(x)ldx < €. Then for Inl < J,
lx < a

| &+ n)—fA(fI) = %L(ﬂx)e_i(er ”)x—ﬂx)e‘i@ dx%

< oolf(x)l-le =X (e N%¥_ 1) dx = 2 mlf(x)l sin dx
j j

< 2le alf(x)l | sin( 9 | dx + 2|xILJf(x)I | sin( 9 | dx

<2 Il dx + 2 J'lf(x)l | 021 dx

lx %> a lx %< a

™M
™

&
<3 +ad I|f(x)|dx$ 9+ g ==&

lx < a

Therefore (&) is uniformly continuous on R.

We define the linear transformation F:f - " defined by

FEd == Lﬂx)e 8y,

F is called the Fourier integral transformation and /" the Fourier transform of f 0 L'R).
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Properties of Fourier transforms.
1. Translation (a). Let f : R -~ R and & 0 R. The translate of f by A is the function 7,f
defined by
(fXx) = flx —h),x OR.
The Fourier transform of 7,/ is
(5) "®= [@Xoe s
= J;ﬂx — h)e S¥%dx
— Lﬂx Ye —<&(x + h)dx
= ¢-i¢h Lﬂx Je 8% dx
= e TS RNQ).

(b). For real c,

[oe]

( e zcxf(x) A — Le —iéx ( e chf(x) dx

00

- Lﬂx Je &x =)y
-rE-a=( 1) @
2. Dilation. Let A O R, A > 0, the dilation of f by A is defined as , f where
(8, x) = /\‘%ﬂ)\ 1), x OR.
The Fourier transform of &, f is
(a) “@= f (3, fXx)e €l
= A -5_ ff()\ %) e F8xdx
=A-{£&na*”mw

=22 0o=( 5 ©
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3. Differentiation. Let fand /" [ L'(R) and denote by D the differential operator D = % .

The Fourier transform of Df is

00

(Dy "&= [ (DPe &y

= flx)e X | fooo - Lﬂx)( De ‘lf% dx
= @O (&).
By induction ( Dk) "= E=1,2, ...

9 Iffand of OL'R)

4. Multiplication. We denote by 0 the differential operator J = p:

then
oQ -iéx [
() ©®-= seh ﬂx)e dx]
= L(—ix)ﬂx)e 8y,
Therefore ( —ix]) " = gF". By induction it follows that %" = ( (—zlx)k) k=12, ...

5. Convolution. Let f, g [ LYR). Then fxg O LY(R) and has Fourier transform

)" (&) = L (frgXx)e *&dx

_ f@ f i - ) 8(y) dy o

o0 0

£ L fix) g(y) e €& + Mgy dy

= ﬁ‘L flx)e 8¢ dx ﬁlg(y)e “Eydyﬁ

= (&g"(&.

x?

Example 1.Let filx)=e 2 .Then f O LY(R) and has Fourier transform

00 xz

&) = Le T2, -idxgy
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/\

Y i ’ 2 —lfx
(E) pY: L dx

- 2

_ L e 2(—ix)e €% dx

I
TR

o
=-¢ Le_ze‘ifxdx
=— (.
Therefore f" satisfies a first order ordinary differential equation with solution (&) =
&
ce 2.
o x?
Since f(0)=c= Le_zdx =2,
7 2 &
"2 0=+2me 2.

; lxl < a

Example 2. Let f(x) = =X, 0 LY(R) and has Fourier transform

% ; otherwise

(X) "©= [X.)e *¥dx = f e &y
1 ; a 1 R
=_§e—lfxl_a=_;r e-ifa—e E)

2sinaé

- ¢
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14. Inverse Fourier Transforms.

The Fourier transform of f [ L'R) is continuous, bounded and /(&)1 » 0 as I&l - oo,

However f" is not neccesarily in L'®R). Assuming f [ Ll(R), [ piecewise smooth, and
£ 0 LYR), define
a
£ = 5 [ (e it

a

3 B o f s

am [ [ ¢ ) dy

alx-y) _ e—ia(x—y)
2m LD ix—y)

) dy

= [Dx=) f)dy=" [D0)fix - dy

= ( Daxa‘ (x)

sin ax

where D (x)=

Now

£, 3 fa) + ] = }T [fa-9) Sinyay dy — 5[ o) + flxt]

sin ay dy

- G]’ [ fix — y) —flx)
+ 71 _L [ flx—y)— f(x+]) su;}ay dy %smce sin ay dy

sin ay dy

—G[[ﬂx y) - flc)
* }J[ﬂ“w—ﬂx*]’ Ty

l\')\%‘
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In the second integral,

o f LAy - i) S g
J[ﬂx+y)—ﬂx+]> s1nayd J[ﬂx+y)—ﬂ ]) smayd
IfK>1,
Bwﬂx+ y Smay o< w| flx+y) d
DJ' y D-J y} dy
and
[ S dy e [ gy,
Since @[ [f(x)ldx , 6|' sin ay dy are both convergent integrals, IJ’ sin ay dy - 0,
IJ’l ﬂx+yl dy - 0asK - 00,
For the integrals over [0, K],
K sin ay 3 ay _ ¢
J[ﬂx+y)—ﬂx+]) Tdy=7l Eg(y)dy

= 5[ &'ca)-g"]

Ij‘(x +y) — flat)
where g(y) = [] Y
[] 0 ; otherwise

;0<y<K

Since [ is piecewise smooth, f (x*) exists for all x O R and lim g(y) = f(x*). Therefore
y-0*

g is bounded on [0, K] and hence g [ L'R). By the Riemann-Lebesgue lemma, g” exists, is

continuous, g"(*a) -~ 0 as a — % and therefore
K

[ ey ) L Gy Dasa o

for K> 1. A virtually identical argument works for the first integral.

Therefore

-0 asa »

f,@) =3[ for) + flet]

or

lim f,(x) = lzm = f f“(f)e 16X &

s 00 27T

=on Lf“(f) e g = 5[ flo) + fat]

Summarising
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Theorem. Let f [ LYR) and let f be piecewise smooth on R. Then for every x O R,

00

o [ @ e g = 5] o) + fla])
If x is a point of continuity of £, then 21—71 J; (&) e 1dE = flx).

[oe]

For quLl(R), we call q; (x) = 2177 L @ &) e ¥¥E the inverse Fourier transform of ¢ and

F defined by ( F_lal (x) = 2171 J; @ &) e 1¥%d¢& in called the inverse Fourier transformation.

If @is the Fourier transform of a piecewise smooth function f [ r (R), that is ¢=f", then
we define flx) = %[ fle) + f(x+] at a point of discontinuity of f.

Then fix) = (pv (x) = 2171 Lf\(f) e %4, Thatis F1Ff=7+.

Example. The inverse Fourier transform is useful in computing Fourier transforms.

Since F ( e _alxD = a22+a§ 5 » it follows that F_IF( e _alxb = F° %% .

_ 2 ) .
e—alxl = F-1 @572 af 2D . Interchanging the roles of x and &, multiplying by 27 leads to
+

2a 1 14
FL- == 0= -alél F O_ alél .. ) .
52 + 220 2me or f=9 20= 4° . In a similar fashion, every Fourier
transform pair defines a dual pair using the inverse Fourier transform.
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15. Applications to Differential Equations.

1. The wave equation. The equation

Pu  ,Pu

a2 ¢ dxz_o -0 <x<,¢>0,

describes the vertical vibrations of an infinite stretched elastic string, where u(x, t) is the
vertical displacement of the string from its rest position at position x, time ¢. Let the initial
displacement and velocity be given as

w0 = v, G = g, - @ <x< o,

We take Fourier transforms of the wave equation and the initial conditions with respect to
the x variable and denote by u"(¢, ¢) the Fourier transform F( u(x, t) . The using the
derivative properties of the Fourier Transform,

‘3;; (&% =0,—0 < E< 0, >0,

or

d;2 + (%" =0.

Then
u"(& t) = A(&) cos(c &) + B(&) sin(c &).

When t =0, u"(&, t)= A& = (&), %(f, t) = g™ (&) = c&B(&). Therefore

uNE, £) = (&) cos(cét) + gz(j) 2 smf(cft)

@ ia@)é Uct)é O
= @8 Ty e (e

Using the translation property and the convolution theorem,

[ee]

ux, )= 5 [ A+ ct) +fa—ct) + o [ Xelw =) g dy

= %[ﬂx+ct)+f(x—ct]) + % sy dy
lx —ctl < ct
x+ct
1
= §[ﬂx+ct)+f(x—ct]) I gy dy.
x ct

This is d'Alemberts solution to the one-dimensional wave equation.
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2. Laplace's Equation.

Consider Laplace's equation in two variables on the upper half-plane y > 0. Then

FPu  Fu

de2+®,2 =0, —00<x<00,y>0.
Let the boundary condition

u(x, 0) = flx), —00<x< 00

be given for a function f [ LYR). Then taking the Fourier transform in the variable x,

G&2uNE, y) + i}_u2(5’ y) =0, —00<x<00,y>0.

or

d;,uz (& y) — E2UNE y) =

which has solutions
uNé&, y) = A(de ¥+ B(Ee~ &

We need two conditions to determne the functions A(¢), B(£). In addition to u(x, 0) = f(x), —
0 <x< 0 et g}u(x, 0) =g(x), — < x < 00 for some function g [ LYR). We will find g

such that the solution u(x, y) is bounded for y > 0, in fact such that u(x,y) - Oasy — oo,
Taking transforms,

LEO =D, G (E0=g"O,
or

A(&) + B(&) = (&), EA() — EB(&) = g"(&).
Solving for A(¢), B(é),

AD=3 "0+ 2

S nBO=; @Wa

= 3O+ (E)D 2o o a%-fy.

and

g"(&

For £>0,u”(&,y) - 0asy - 0ifand only if (&) +

g™&
'3

=0,and for £ <0, u"(&,y) - 0as

y - 0if and only if /(&) — = 0. Therefore

B4 (&;6>0
g =
B &No;E<0

— 1E1£(9).

Hence
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uA(an) = [
B\ (e ;<0

= (e W,

N
Since e~ Wl = Y U by the convolution theorem,

T Hn? + y2H

oY 0 oy
u(x, y) = H 2 +2) fH_ _L (82 +y2)f(s)ds.

3. The Heat Equation.

The heat equation,

ou Pu
E—K@=O, —00<x<0, >0

for u(x, ¢) a function of two variables, with initial condition

wx, t) = flx),— 00 < x < 00

for £ Ll(R), f continuous and bounded, can be solved using Fourier transforms. Taking
transforms in the variable x,

A& - K GEUNE =0,

or

ou” A
W(E7 t) + K Ezu (E} t) =0.
Solving this first order ordinary differential equation,

WNE 1) = uME, O ~ K€t = (e K&,

x2
e

0 _
Now & 2 O0=+v2me and using the dilation property of Fourier transforms

22
Let 5 =kt or A =V_2Kt , then
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0- ﬁﬁ
R P S S S v o [
21 \ 2kt
1 X A
0- 30-=>—d0
-1 & %mvze 00
41K
Therefore from the convolution theorem, since
1 x N
B S [
WNE 1) = ) % ‘CV2e OO
V—mt
1 X
D I e [
ulx, t) = 2DV§Kt Da(x)
. o -y
— Le 4Kt ]((y) dy
Vi -
K2

The function A(x, t) =
47t

[oe]

u(x, t) = L h(x—y, t) Ay) dy.

4Kt
is called the heat kernel. We can then write
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16. Plancherels' and Parsevals' Identities.

By the convolution theorem, for f, g [ Ll(R)mLz(R),

(9 "=rg"
Therefore 5
feg=(rg)
or
[-9)g) dy = 21 [eie g @ de
_ JT_
Set x =0,

Lﬂ—y) gy dy = 21 L (&g & dé
_ TT_

Replacing g(x) by g(—x) , the Fourier transform g"(&) is replaced by g"(é) , hence

[fi=9) &) dy =21 [1@© &0 ds
_ TT_

or

[ &) dy - - [ 1@ £ de

This is Plancherels’ identity. When f = g we obtain Parsevals’ identity,

[P dy = - IGRE

Examples.

1; lxl < a
L Let f(x) = X (%) = EO o
; otherwise

2sinaé

3

Then (&) = , and by Parsevals' identity,

9 . 1 Dsmafﬁ2
lea(x)l dx = 2 f D d&

[ ?%“fédfﬂm

or

rsin a &3

I B¥=™
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2. Let fix) = e — @il

or

2a

5 ;o andby Parsevals'identity
a“+ ¢

JAGE
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17. Band Limited Functions and Shannon's Sampling Theorem.

The Fourier transform variable has the role of frequency and f"(&) is referred to as the
frequency representation of f{x).

If (& =0 forlél> & >0, then flx) is called a band-limited function and &, is called the

cut-off frequency. Many functions from science and technology, are band-limited. For
example, human hearing is assumed to be limited to frequencies below about 20 kHz.
Therefore the acoustic signals recorded on compact discs are limited to a bandwidth of 22
kHz.

A first step in the processing of signals, is sampling. A signal represented by a continuous
function f(x), is replaced by its samples at regular intervals, {f{inL),n = 0, 1, £2, ... }.
Shannons' Theorem shows that it is possible to exactly recover the band-limited
continuous function flx) from knowledge of its samples, provided the sampling interval L,
is sufficiently short.

N
Consider the functions (on(f) given by

E 0; 1E1> &,

o=, -m=

2€

N
The inverse Fourier transforms of qon(cf) are given by

[oe]

_L ixé A
@,(x) = Py Le qon(é)drf

Ec inié

; 1
omgx) = [e™*¢
% _Jc 7250

e i(fcx—nrb _ e—i(fcx—nrl) 0

21 x —nm) %

OO

sin(é x — n)

{x—nm
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—[2m siné (x—nL)

m
-7 .5 . where L= _
L Ec(x _nl) whnere

Consider the inner products

A A © A A
<¢,:0,>= [ 20,0 d¢

z inmé B imT[ED

1 N A
= e e ¢

26 _£ O ™

i(m—-n) ié

1 ¢ ¢, dE
= e

e

g0, m #n

El;m:n .

N
So the functions { (pn(rf) ;n=0,%1,+2 ...}, form an orthogonal set in L2(—Ec, ¢.). Since (&)

is band limited to Il < € , it has a Fourier series

(&= 3% ¢, 0@

inmié
[e4) 1 - Ec
c, e dé
e
where the Fourier coefficients ¢, are given by
inmé

&
dé.

c,=

726
By Plancherel's theorem
N N
=S50 >=2nLf; 0>

SO

=% c, 0= 2ngf; 9 >0 (5.

Taking inverse Fourier transforms,

=% <f; 0, >2m¢(x)

2m siné (x —nL)

z </ g0>'\/ £ (x—nL)
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The samples at intervals of length L = = are
C
27T siné (kL —nL)
kL) =
fRL) = Z <5 0> € (kL —nL)

27‘[ sin(k —n)mr

B Z<f¢> (k—n)m

=<3 ¢k>;/in

/L
< 9>= ﬂkL)-\/zn , k=0,+1,+2 ..

So

Finally therefore
2m siné (x —nL)

flx) = Z < rp>'\/ —Ec(x L)

o0 siné (x —nL)

= 20D )

Summarising we have Shannon's theorem,

Theorem. Let £ L'(R)nL*(R) be continuous and band limited to I&] < £,. Then

o0 siné (x —nL) T
flx) = nZoof (nL) Ec(x——nL) where L = ?c )

The relationship wl = 271, where wis the frequency of sampling in cycles per unit length,
shows that from Shannon's theorem, to reconstruct a band-limited function, it suffices to

2m
sample at a frequency w= 7= 2¢, twice the cut-off frequency.
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18. Heisenberg’s Inequality.

Let £ 0 LAR), xf O L(R). Then the quantity

[I 00(x — a)?lf(x)|? dx D
Af = DL - ]
0 [fwrd ]

is called the dispersion about the point x = a of f. The reasoning behind the definition is
that if f(x) is concentrated near x =a , then Af is smaller than when f is not close to zero
far from x = a.

Example. Consider the characteristic function

Al ; lxl < b
Xb(x) =
EO; otherwise

which has Fourier transform

2sin b
X = " ‘.

Notice that X, is concentrated near x = 0 for small . The dispersion about the origin is

b

D x2de 5
BoXp= | o E%
[ & [

and it clear that the dispersion increases as b increases.

N
Notice that the Fourier transform X, does not have a finite dispersion about the origin,
since

P A ® . [2sin(bé)
2| 2dé&= 2 d
_Lf Xp(OF dé _Lf Eié H ¢
=4[ sin”(b &) dé = .
This indicates that )(2 is spread out away from x = 0.

The following result shows that there is a type of inverse relationship between the
dispersion of a function and that of its Fourier transform.

Theorem. Let £ L(R)nL*®R). Then for all @, a O R,
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[ee]

[] 2If(x)l2dx|:|:| EAFN(OI2déE []
(a) (2r) Dl [DL [F:
DLIf(x)Izdx Djl I (O1%dE ]

and equality holds if and only if f(x)=ce ~ho* for constants ¢ 0 R and % > 0.

00 [ee]

Proof. We firstly prove the result for ¢ = a = 0. ‘Lx2|f(x)l2 dx and L EIN(E)IPdE are

both assumed finite since otherwise the result is trivial.

Let £(x) = (GEF\E) or (FHYNE) = i&(&). Then f*0LAR), and

H L 2l dxHH L Ezlf“(E)IZdEH= H L PP de a5

0

L |(lf)f'\(f)|2df%
e 00 -~ en 0
- Hlx2lf(x)|2deHL I(7) (5)'2015%

—on @L [P ds @@ [P dx@ (by Parseval’s identity).

Since

o0 2
@L%x( fix) floy + f(x flx dx@ =§ xRe( f(x) flx de

ot Fwac <R @ de
e _‘L xflx) f(x) x _D_:L xflx) f(x) x

I:Iél:l

0. 00 . 0
< Eu: x2|f(x) 2 d"HEL[ I (x0)12 de

(by the Cauchy-Schwartz inequality).

We will show that

_ fx( fix) flx) + f(x) fix) dx= f|f(x)|2dx

from which the result follows, for then

ﬁ [P dx @ﬁ [ 52|f“<a|2d5ﬁ= om ﬁ [P dx ﬁﬁ [P dxﬁ

e 2
> 2T %_ %x( filx) fix) + f(x) fx dx%
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_nH 2 B O e, OO 2,7
- § [P de = § Hrords G [ 1@rde

0]

10, og . u
= 1 [ fwPdegQ [ i @IPdeg

To complete the proof, we assume that f is continuous and piecewise smooth, This

assumption can be removed since functions in LY(R) are the uniform limit of such
functions.

Then from the property of Fourier transforms,
fx)=fx)

wherever the derivative exists. Then for any interval [a, b],

b
bIFB)R — alfia)2 = chc (xlf)1?) dx

b
- J(xf’(x)ﬂx) +x ) @+ fw1?) dx

b b
_ J x( i) fo) + oo Ax) dx+ Jlf(x)l2dx

The assumption £ 0 L2(R) implies that & If(6)2 - 0 as b — ® and alf(@)f - 0 asa — — o
since otherwise If(x)|> ¢ IxI"V2 aslxl — o, which is not integrable. Taking the limit as
b -5 o and a - — 0,

0= Lx( @ fo + f@fe) de+ [P de

as required.

As for the case of equality in Heisenberg’s inequality, this holds if and only if f(x) f(x) is
real and f(x) = K xf(x) for some complex constant K. That is,

£x) Fi(x) = fx) Kaflx) =x )P K is real.

Therefore K is real.

The differential equation

fx)=Fx)=Kx flx)

has solutions of the form

Ko?
fx)=ce 2

, ¢ any real constant,
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Ko

and flix) =ce 2 O L*R) if and only if K > 0. Therefore equality holds in Heisenberg’s
inequality only if f(x)=ce —ho* for constants¢c O R and % > 0.

Ku?

Conversely, let fix)= e 2 for constant K > 0. Then
O o e 2. 00 ¢ corenrezaed o0 r o g o 00 ¢ e 1o o 0
Eu:x [(x)] dxHHJ; E2M &) dEH= 2nEu:x [(x)] dxHHJ; IF* (20l dxH

= om ﬁlx2lf(x)l2 dxﬁﬁi IK x fx)l2 dx@

— 2 U ) 2 5 5 O
=2nK Hlx (0l dxH
sz |:|2

_ 2[1002—
=2nK H_Lxe dxH

_ 2 DLD( _ ‘Kx) u
=2nK L 9K 2K xe de

0]

= 0
_ o0 O D( _ ‘Kx) u
= 21K i_L 9K [ 2K xe de

no " _Rx? | [2
=s0df e dx [
2D,L
uss . _tzdtgz s
= 2KD_L3 0~ 2K

Whereas,

10, g 010, 0. 0
i [P de D [ P ORdE | O [ P dx%@n [ e dx

n
2

0. 3
HL Ifx) 12 dx%
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no O _Ke? | [2
=s0f e dx [
2DL O

and equality holds.

The case of a %0, a # 0, follows by observing that F(x) = e f(x + a) satisfies the same
hypotheses as flx) and A f =AyF and A f"= AF" for anya 20, a#0.

As a consequence of the inequality( Aa)) ( Aof\ ) >, we see that it is impossible for

both A f and Auf“ to be simultaneously small. That is, i
then the other must be large.

L r BTG

one of A_f or Aa]‘“ is very small



