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1. Differentiable Manifolds

1.1. Manifolds. A topological manifold is a separable metrizable space M
which is locally homeomorphic to R®. So for any x € M there is some homeo-
morphism v : U — u(U) C R™, where U is an open neighborhood of z in M and
u(U) is an open subset in R™. The pair (U, u) is called a chart on M.

From algebraic topology it follows that the number n is locally constant on
M; if n is constant, M is sometimes called a pure manifold. We will only consider
pure manifolds and consequently we will omit the prefix pure.

A family (Uy, ua)aca of charts on M such that the U, form a cover of M is
called an atlas. The mappings u,g 1= uq © ugl tug(Uap) = ua(Uyp) are called
the chart changings for the atlas (U,), where Uyp := U, N Usg.

An atlas (Uy, %a)aca for a manifold M is said to be a C*-atlas, if all chart
changings uap : ug(Uap) — ua(Uyg) are differentiable of class C*. Two Ck-
atlases are called C*-equivalent, if their union is again a C*-atlas for M. An
equivalence class of CF-atlases is called a C*-structure on M. From differential
topology we know that if M has a C'-structure, then it also has a C''-equivalent
C>®-structure and even a Cl-equivalent C“-structure, where C* is shorthand
for real analytic, see [Hirsch, 1976]. By a C*-manifold M we mean a topological
manifold together with a C*-structure and a chart on M will be a chart belonging
to some atlas of the C*-structure.

But there are topological manifolds which do not admit differentiable struc-
tures. For example, every 4-dimensional manifold is smooth off some point,
but there are such which are not smooth, see [Quinn, 1982], [Freedman, 1982].
There are also topological manifolds which admit several inequivalent smooth
structures. The spheres from dimension 7 on have finitely many, see [Milnor,
1956]. But the most surprising result is that on R* there are uncountably many
pairwise inequivalent (exotic) differentiable structures. This follows from the re-
sults of [Donaldson, 1983] and [Freedman, 1982], see [Gompf, 1983] or [Mattes,
Diplomarbeit, Wien, 1990] for an overview.

Note that for a Hausdorff C'*°-manifold in a more general sense the following
properties are equivalent:

(1) It is paracompact.

(2) It is metrizable.

(3) It admits a Riemannian metric.

(4) Each connected component is separable.

In this book a manifold will usually mean a C'°°-manifold, and smooth is used
synonymously for C'°, it will be Hausdorff, separable, finite dimensional, to state
it precisely.
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2 1. Differentiable Manifolds, 1.2

Note finally that any manifold M admits a finite atlas consisting of dim M +1
(not connected) charts. This is a consequence of topological dimension theory
[Nagata, 1965], a proof for manifolds may be found in [Greub-Halperin-Vanstone,
Vol. I].

1.2. Example: Spheres. We consider the space R*t!, equipped with the
standard inner product (z,y) = Y z'y*. The n-sphere S™ is then the subset
{x € R**! . (z,2) = 1}. Since f(z) = (z,z), f : R*T1 — R, satisfies df (z)y =
2(x,y), it is of rank 1 off 0 and by 1.12 the sphere S™ is a submanifold of R**1,

In order to get some feeling for the sphere we will describe an explicit atlas
for S™, the stereographic atlas. Choose a € S™ (‘south pole’). Let

Us=8"\{a},  ug:Up = fa)t,  ug(e) = 25000
U_:=S"\{-a}, w_:U_—{a}", u_(s)=7524

From an obvious drawing in the 2-plane through 0, z, and a it is easily seen that
w4 1s the usual stereographic projection. We also get

_ 2_1q
U+1(y) = Iz||2_|_1a + |y|22+1y fOI' y € {a}J_ \ {0}

and (u_ oui")(y) = ﬁ The latter equation can directly be seen from the
drawing using ‘Strahlensatz’.

1.3. Smooth mappings. A mapping f : M — N between manifolds is said
to be C* if for each x € M and one (equivalently: any) chart (V,v) on N with
f(x) € V there is a chart (U,u) on M with x € U, f(U) CV,and vo fou™!is
C*. We will denote by C*(M, N) the space of all C*-mappings from M to N.

A C*-mapping f : M — N is called a C*-diffeomorphism if f~1 : N — M
exists and is also C*. Two manifolds are called diffeomorphic if there exists a dif-
feomorphism between them. From differential topology we know that if there is a
C'-diffeomorphism between M and N, then there is also a C'*°-diffeomorphism.

There are manifolds which are homeomorphic but not diffeomorphic: on R*
there are uncountably many pairwise non-diffeomorphic differentiable structures;
on every other R” the differentiable structure is unique. There are finitely many
different differentiable structures on the spheres S™ for n > 7.

A mapping f : M — N between manifolds of the same dimension is called
a local diffeomorphism, if each x € M has an open neighborhood U such that
fIU : U — f(U) C N is a diffcomorphism. Note that a local diffeomorphism
need not be surjective.
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1. Differentiable Manifolds, 1.4 3

1.4. Smooth functions. The set of smooth real valued functions on a manifold
M will be denoted by C*°(M,R), in order to distinguish it clearly from spaces
of sections which will appear later. C°°(M,R) is a real commutative algebra.

The support of a smooth function f is the closure of the set, where it does
not vanish, supp(f) = {z € M : f(x) # 0}. The zero set of f is the set where f
vanishes, Z(f) ={x € M : f(z) = 0}.

1.5. Theorem. Any manifold admits smooth partitions of unity: Let (Uy)aca
be an open cover of M. Then there is a family (¢a)aca of smooth functions
on M, such that supp(p) C Uy, (supp(va)) is a locally finite family, and
Y o Pa =1 (locally this is a finite sum).

Proof. Any manifold is a ”Lindelof space”, i. e. each open cover admits a count-
able subcover. This can be seen as follows:

Let U be an open cover of M. Since M is separable there is a countable dense
subset S in M. Choose a metric on M. For each U € U and each x € U there
isan y € S and n € N such that the ball By,,(y) with respect to that metric
with center y and radius % contains x and is contained in U. But there are only
countably many of these balls; for each of them we choose an open set U € U
containing it. This is then a countable subcover of U.

Now let (Uy)aea be the given cover. Let us fix first a and x € U,. We choose
a chart (U, u) centered at x (i. e. u(z) = 0) and € > 0 such that eD” C w(UNU,),
where D" = {y € R" : |y| < 1} is the closed unit ball. Let

_{e_l/t for t > 0,
1o for t < 0,

>
=

):
a smooth function on R. Then
foa(2) { h(e? — Ju(2)|?) for 2z € U,

z) =
“r 0 for 2 ¢ U
is a non negative smooth function on M with support in U, which is positive at
T.
We choose such a function f, , for each o and x € U,. The interiors of the
supports of these smooth functions form an open cover of M which refines (U,,),

so by the argument at the beginning of the proof there is a countable subcover
with corresponding functions fi, fa,.... Let

Wo={z€M: fo(x)>0and fi(z) <L for1<i<n},

and denote by W the closure. We claim that (W) is a locally finite open
cover of M: Let x € M. Then there is a smallest n such that x € W,,. Let
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4 1. Differentiable Manifolds, 1.6

Vi={yeM: f.(y) > %fn(x)} If y € VN Wy then we have f,(y) > %fn(x)
and f;(y) < ¢ for i < k, which is possible for finitely many & only.
Now we deﬁne for each n a non negative smooth function g, by gn( ) =
h(fa(@)h(5; — fi(2)) ... h(; = fa—1(x)). Then obviously supp(g,) = Wn. So
g =Y., 0nis smooth since it is locally only a finite sum, and everywhere
positive, thus (gn/g)neN is a smooth partition of unity on M. Slnce supp(gn) =
W, is contained in some Uy,) we may put ¢, = Z{n a(n)_a} to get the
required partition of unity which is subordinated to (U,). O

1.6. Germs. Let M be a manifold and z € M. We consider all smooth
functions f : Uy — R, where Uy is some open neighborhood of z in M, and we
put f ~ g if there is some open neighborhood V of x with f|V = g|V. This is an

equivalence relation on the set of functions we consider. The equivalence class
of a function f is called the germ of f at x, sometimes denoted by germ, f. We
may add and multiply germs, so we get the real commutative algebra of germs
of smooth functions at z, sometimes denoted by C2°(M,R). This construction
works also for other types of functions like real analytic or holomorphic ones, if
M has a real analytic or complex structure.

Using smooth partitions of unity (1.4) it is easily seen that each germ of a
smooth function has a representative which is defined on the whole of M. For
germs of real analytic or holomorphic functions this is not true. So C2°(M, R)
is the quotient of the algebra C'*°(M,R) by the ideal of all smooth functions
f: M — R which vanish on some neighborhood (depending on f) of x.

1.7. The tangent space of R". Let a € R*. A tangent vector with foot
point a is simply a pair (a, X) with X € R”, also denoted by X,. It induces
a derivation X, : C°(R",R) — R by X,(f) = df(a)(X,). The value depends
only on the germ of f at a and we have X,(f - g) = Xo(f) - g(a) + f(a) - Xa(g)
(the derivation property).

If conversely D : C*°(R™,R) — R is linear and satisfies D(f - g) = D(f) -
g(a)+ f(a)- D(g) (a derivation at a), then D is given by the action of a tangent
vector with foot point a. This can be seen as follows. For f € C*°(R",R) we
have

F@) = f@)+ [ flat to—a)as
+Z/ 6Wa+t;r:—a))dt(:17’.—a")
+Zh (z* — a®).
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1. Differentiable Manifolds, 1.8 5
D(1) =D(1-1) =2D(1), so D(constant) = 0. Thus

D(f) = D(f(a)+ Y _hi(a" ~ a*))
=0+ Z D(hi)(a’ — a*) + Z hi(a)(D(z") — 0)
= ok (a) D ("),

where z¢ is the i-th coordinate function on R™. So we have

D(f) =3 D')gkla(f), D=3 D)zl

Thus D is induced by the tangent vector (a, ., D(z')e;), where (e;) is the
standard basis of R™.

1.8. The tangent space of a manifold. Let M be a manifold and let x €
M and dimM = n. Let T, M be the vector space of all derivations at x of
C°(M,R), the algebra of germs of smooth functions on M at x. (Using 1.5 it
may easily be seen that a derivation of C*° (M, R) at x factors to a derivation of
Cz(M,R).)

So T, M consists of all linear mappings X,, : C°°(M,R) — R with the property
Xe(f-9) = Xa(f) - g(x) + f(z) - Xz(g9). The space T,,M is called the tangent
space of M at x.

If (U,u) is a chart on M with x € U, then uv* : f +— f owu induces an iso-
morphism of algebras C7, (R",R) = C°(M,R), and thus also an isomorphism
Tyu @ ToM — Ty)R™, given by (T,u.X;)(f) = Xz(f ou). So T, M is an
n-dimensional vector space.

We will use the following notation: v = (ul,...,u"), so u* denotes the i-th
coordinate function on U, and

%Lﬂ = (Tmu)_l(%b(w)) = (Twu)_l(u($)76i)'

So % « € T, M is the derivation given by
O(fou™?)
Lol = 2L ().

Draft from November 17, 1997 Peter W. Michor, 1.8



6 1. Differentiable Manifolds, 1.9

From 1.7 we have now

TouX, = Z(Twu.Xw)(mi)%b(m) = ZXUC(;H 0 U) 527 ()

1=1

€T

Xp = (Tou) " TouX, =) Xo(u') 5
1=1

1.9. The tangent bundle. For a manifold M of dimension n we put TM :=
||,car T M, the disjoint union of all tangent spaces. This is a family of vec-
tor spaces parameterized by M, with projection 7wy : TM — M given by
wm(Ty M) = x.

For any chart (U,,us) of M consider the chart (73 (Us),Tua) on TM,
where Tu, : W]T/[l(Ua) — uq(Uy) X R™ is given by the formula Tu,.X =
(wa (T2 (X)), Tr,y (x)Ua-X). Then the chart changings look as follows:

Tug o (Tua) " Tua(my; (Uag)) = ta(Uag) x R* —
= up(Uap) X R* = Tug(my; (Uag)),
(Tug o (Tua) ™)y Y))(f) = (Tua) "y, Y))(f 0 up)
= (y.Y)(fougoug') =d(fougouz')(y).Y
= df (ug o ug ' (y)).d(ug o uz')(y).Y
= (ug o ug'(y),d(up o ug ") (y).Y)(f).

So the chart changings are smooth. We choose the topology on T'M in such
a way that all Tu, become homeomorphisms. This is a Hausdorff topology,
since X, Y € TM may be separated in M if 7(X) # n(Y), and in one chart if
m(X) =n(Y). So TM is again a smooth manifold in a canonical way; the triple
(TM,mp, M) is called the tangent bundle of M.

1.10. Kinematic definition of the tangent space. Let C§°(R, M) denote
the space of germs at 0 of smooth curves R — M. We put the following
equivalence relation on C§°(R, M): the germ of ¢ is equivalent to the germ
of e if and only if ¢(0) = e(0) and in one (equivalently each) chart (U,u) with
c(0) = e(0) € U we have L |o(uoc)(t) = &|o(uoe)(t). The equivalence classes
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1. Differentiable Manifolds, 1.11 7
are also called velocity vectors of curves in M. We have the following mappings

CR,M)) ~ «—C5° (R, M)

|

T™ — M,

where a(c)(germ, ) f) = 40f(c(t)) and B : TM — C°(R,M) is given by:
B((Tu)~(y,Y)) is the germ at 0 of ¢t — u~'(y +tY). So T'M is canonically
identified with the set of all possible velocity vectors of curves in M.

1.11. Tangent mappings. Let f : M — N be a smooth mapping between
manifolds. Then f induces a linear mapping Ty f : T,M — T} N for each
x € M by (T,f.Xz)(h) = Xg(ho f) for h € C’J‘i‘(’m)(N, R). This mapping is well
defined and linear since f* : C’J‘i‘(’m)(N, R) — C*(M,R), given by h +— ho f, is
linear and an algebra homomorphism, and 7}, f is its adjoint, restricted to the
subspace of derivations.

If (U,u) is a chart around = and (V,v) is one around f(x), then

(T f-g07l2) (v7) = gz lo(v7 0 f) = 537 (v7 o f o u™") (u(2)),
wa% z = ZJ(wa% m)(vj)a;gﬂf(m) by 1.9

d(viofou !
= 3, 2t ) (u(@)) 525 | e

So the matrix of Ty f : Ty M — Ty, N in the bases (32 |5) and (525 | () is just
the Jacobi matrix d(v o f o u™1)(u(x)) of the mapping v o f ou™! at u(zx), so
TiwyvoTpfo(Tyu) ™t =d(wo fout)(u(x)).

Let us denote by T'f : TM — TN the total mapping, given by T f|T, M :=
T, f. Then the composition TvoT fo (Tu)~! : u(U) x R™ — v(V) x R™ is given
by (y,Y) — (vo fou™Y(y),d(vo fou=t)(y)Y), and thus T'f : TM — TN is
again smooth.

If f: M — N and g : N — P are smooth mappings, then we have T'(go f) =
TgoTf. This is a direct consequence of (go f)* = f* o g*, and it is the global
version of the chain rule. Furthermore we have T'(Idy) = Idpyy.

If f e C®°M,R), then Tf : TM — TR = R x R We then define the
differential of f by df :=prooTf : TM — R. Let t denote the identity function
on R, then (Tf.X,)(t) = X (to f) = X.(f), so we have df (X,) = X, (f).

1.12. Submanifolds. A subset N of a manifold M is called a submanifold, if for
each € N there is a chart (U, u) of M such that w(U N N) = u(U) N (RF x 0),
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8 1. Differentiable Manifolds, 1.13

where R¥ x 0 < R¥ x R*~* = R”. Then clearly N is itself a manifold with
(UNN,u|UN N) as charts, where (U, u) runs through all submanifold charts as
above.

If f:R® — R? is smooth and the rank of f (more exactly: the rank of its
derivative) is g at each point y of f71(0), say, then f~1(0) is a submanifold of R™
of dimension n — ¢ (or empty). This is an immediate consequence of the implicit

function theorem, as follows: Permute the coordinates (z!,...,2") on R" such
that the Jacobi matrix
aft af! aft aft
M) - W] ) - G
df (y) = oji SRR oji SRy
ot W) o W (W) o Fm(y)
has the left part invertible. Then (f,pr,_,) : R* — R? x R"7 has invert-
ible differential at y, so u := f~! exists in locally near y and we have f o

w2zt . 0 2") = (2L .., 29), so u(fH(0)) = w(U) N (0 x R*9) as required.

The following theorem needs three applications of the implicit function the-
orem for its proof, which is sketched in execise 1.21 below, or can be found in
[Dieudonné, I, 10.3.1].

Constant rank theorem. Let f: W — R? be a smooth mapping, where W is
an open subset of R™. If the derivative df (x) has constant rank k for each x € W,
then for each a € W there are charts (U,u) of W centered at a and (V,v) of R?
centered at f(a) such that vo fou~t:u(U) — v(V) has the following form:

(1, y2n) = (T1,... ,2%,0,...,0).

So f=1(b) is a submanifold of W of dimension n — k for each b € f(W).

1.13. Products. Let M and N be smooth manifolds described by smooth
atlases (Uy, ta)aca and (Vg,vg)gen, respectively. Then the family (Uy x Vg, uq ¥
vg : Uy X Vg — R™ X R”)(a,ﬁ)eAxB is a smooth atlas for the cartesian product
M x N. Clearly the projections

MEEMx NN

are also smooth. The product (M x N,pri,pre) has the following universal

property:
For any smooth manifold P and smooth mappings f : P+ M and g: P - N
the mapping (f,g9): P — M x N, (f,9)(z) = (f(z), g(z)), is the unique smooth

mapping with pri o (f,g) = f, pr2o (f,9) = g.
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1. Differentiable Manifolds, 1.14 9

From the construction of the tangent bundle in 1.9 it is immediately clear

that

T(pr1) T (pr2)

TM T(M x N) TN

is again a product, so that T(M x N) =TM x TN in a canonical way.
Clearly we can form products of finitely many manifolds.

1.14. Theorem. Let M be a connected manifold and suppose that f : M — M
is smooth with f o f = f. Then the image f(M) of f is a submanifold of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are man-
ifolds. If we do not suppose that M is connected, then f(M) will not be a
pure manifold in general, it will have different dimension in different connected
components.

Proof. We claim that there is an open neighborhood U of f(M) in M such that
the rank of T}, f is constant for y € U. Then by theorem 1.12 the result follows.

For x € f(M) we have T,f o T,f = T,f, thus imT,f = ker(Id — T,f)
and rank T, f + rank(Id — T, f) = dim M. Since rank T, f and rank(Id — T, f)
cannot fall locally, rank T}, f is locally constant for x € f(M), and since f(M) is
connected, rank T, f = r for all x € f(M).

But then for each x € f(M) there is an open neighborhood U, in M with
rank Ty, f > r for all y € U,. On the other hand rank T, f = rankT,(f o f) =
rank Ty, f o T, f < rankT}y(,)f = r. So the neighborhood we need is given by

1.15. Corollary. 1. The (separable) connected smooth manifolds are exactly
the smooth retracts of connected open subsets of R™ ’s.

2. f: M — N is an embedding of a submanifold if and only if there is an
open neighborhood U of f(M) in N and a smooth mapping v : U — M with
rof=1Idy.

Proof. Any manifold M may be embedded into some R, see 1.16 below. Then
there exists a tubular neighborhood of M in R™ (see later or [Hirsch, 1976,
pp. 109-118]), and M is clearly a retract of such a tubular neighborhood. The
converse follows from 1.14.

For the second assertion repeat the argument for NV instead of R*. [

1.16. Embeddings into R"’s. Let M be a smooth manifold of dimension m.
Then M can be embedded into R", if
(1) n=2m + 1 (see [Hirsch, 1976, p 55] or [Brocker-Janich, 1973, p 73]),
(2) n = 2m (see [Whitney, 1944]).
(3) Conjecture (still unproved): The minimal n is n = 2m — a(m) + 1, where
a(m) is the number of 1’s in the dyadic expansion of m.
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10 1. Differentiable Manifolds, 1.17

There exists an immersion (see section 2) M — R™, if

(1) n=2m (see [Hirsch, 1976]),
(2) n=2m — a(m) (see [Cohen, 1982]).

Examples and Exercises

1.17. Discuss the following submanifolds of R, in particular make drawings of
them:

The unit sphere S"~! = {z € R" :< z,z >= 1} C R".

The ellipsoid {x € R" : f(z) = >, m—2 1}, a; # 0 with principal axis
A1y ey Gy

The hyperboloid {x € R" : f(z) := Y., eiz—z =1}, ¢, = £1, a; # 0 with
principal axis a; and index = > ¢;. Z

The saddle {z € R® : 3 = z1232}.

The torus: the rotation surface generated by rotation of (y R)2 + 22 =12,
0 < r < R with center the z—axis, i.e. {(z,y,2): (v/22 +y2 — R)?> + 22 = r2}.

1.18. A compact surface of genus g. Let f(z):=x(z —1)%>(z —2)%...(z —
(g —1))%(x — g). For small r > 0 the set {(z,y,2) : (y*> + f(x))® + 22 = r?}
describes a surface of genus g (topologically a sphere with g handles) in R3.
Prove this.

1.19. The Moebius strip.

It is not the set of zeros of a regular function on an open neighborhood of R™.
Why not? But it may be represented by the following parametrization:

Draft from November 17, 1997 Peter W. Michor, 1.19



1. Differentiable Manifolds, 1.20 11

cos (R + rcos(p/2))
flr,@) = | sinp(R+rcos(e/2)) |, (r,9) € (=1,1)x0,2m),
rsin(p/2)

where R is quite big.

1.20. Describe an atlas for the real projective plane which consists of three
charts (homogeneous coordinates) and compute the chart changings.

Then describe an atlas for the n-dimensional real projective space P™(R) and
compute the chart changes.

1.21. Proof of the constant rank theorem 1.12. Let U C R™ be an open
subset, and let f : U — R™ be a C°°-mapping. If the Jacobi matrix df has
constant rank k£ on U, we have:

For each a € U there exists an open neighborhood U, of a in U, a diffeomor-
phism ¢ : U, — ¢(U,) onto an open subset of R” with ¢(a) = 0, an open subset
Vi) of f(a) in R™, and a diffeomorphism 1 : Vi,) — 9% (Vf(,)) onto an open
subset of R™ with ¢ (f(a)) = 0, such that 1o f oo™ : p(U,) = (V) has
the following form: (zi,...,2,)+— (z1,...,2%,0,...,0).

(Hints: Use the inverse function theorem 3 times. 1. step: df(a) has rank
k < n,m, without loss we may assume that the upper left k£ x k subma-
trix of df(a) is invertible. Moreover, let a = 0 and f(a) = 0. Choose a
suitable neighborhood U of 0 and consider ¢ : U — R", o(z1,...,2,) =
(fi(z1),..., fx(xk), Tks1s- .-, 2n). Then ¢ is a diffeomorphism locally near 0.
Consider g = f o =1, What can you tell about g? Why is g(z1,...,2,) =
(21, 2Ky Gk+1(2), - - -, gn(2))?  What is the form of dg(z)? Deduce further
properties of g from the rank of dg(z)? Put

Y1
Y1 ’
Yk

w : ~ yk+1_gk+1(y17'-'7yka07"'70)
Ym .

yn_gn(ylv"'7yk707"'70)

Then 1 is locally a diffeomorphism and 1 o f o p~! has the desired form.)
Prove also the following Corollary: Let U C R be open and let f : U — R™

be C* with df of constant rank k. Then for each b € f(U) the set f~1(b) C R®
is a submanifold of R".
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12 1. Differentiable Manifolds, 1.22
1.22. Let f: L(R*,R") — L(R",R") be given by f(A) := A*A. Where is f of
constant rank? What is f~1(Id)?

1.23. Let f: L(R*,R™) — L(R",R"), n < m be given by f(A) := A*A. Where
is f of constant rank? What is f~1(Idgn)?

1.24. Let S be a symmetric a symmetric matrix, i.e., S(z,y) = z'Sy is a
symmetric bilinear form on R™. Let f : L(R*,R") — L(R™,R™) be given by
f(A) := A*SA. Where is f of constant rank? What is f~1(5)?

1.25. Describe T'S? C RS.
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2. Submersions and Immersions

2.1. Definition. A mapping f : M — N between manifolds is called a sub-
mersion at © € M, if the rank of T, f : T,M — Ty, )N equals dim N. Since the
rank cannot fall locally (the determinant of a submatrix of the Jacobi matrix is
not 0), f is then a submersion in a whole neighborhood of . The mapping f is
said to be a submersion, if it is a submersion at each x € M.

2.2. Lemma. If f : M — N is a submersion at x € M, then for any chart
(V,v) centered at f(x) on N there is chart (U,u) centered at x on M such that
vo fou~! looks as follows:

Proof. Use the inverse function theorem. [

2.3. Corollary. Any submersion f : M — N is open: for each open U C M
the set f(U) is open in N. [

2.4. Definition. A triple (M,p, N), where p: M — N is a surjective submer-
sion, is called a fibered manifold. M is called the total space, N is called the
base.

A fibered manifold admits local sections: For each x € M there is an open
neighborhood U of p(x) in N and a smooth mapping s : U — M with pos = Idy
and s(p(x)) = z.

The existence of local sections in turn implies the following universal property:

M

(N

f

N———P

If (M,p,N) is a fibered manifold and f : N — P is a mapping into some further
manifold, such that fop: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion at
r € M if the rank of T, f : TuM — Tj)N equals dim M. Since the rank is
maximal at z and cannot fall locally, f is an immersion on a whole neighborhood
of x. f is called an immersion if it is so at every x € M.
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14 2. Submersions and Immersions, 2.6

2.6. Lemma. Iff: M — N is an immersion, then for any chart (U,u) centered
at x € M there is a chart (V,v) centered at f(x) on N such that vo fou™! has
the form:

Proof. Use the inverse function theorem. [

2.7. Corollary. If f : M — N s an immersion, then for any x € M there is
an open neighborhood U of © € M such that f(U) is a submanifold of N and
fTU:U— f(U) is a diffeomorphism. O

2.8. Definition. If i : M — N is an injective immersion, then (M, 1) is called
an immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in
general. The structure of an immersed submanifold (M,3) is in general not
determined by the subset i(M) C N. All this is illustrated by the following
example. Consider the curve v(t) = (sin®#,sint. cost) in R2. Then ((—m,7),v |
(—m,m)) and ((0,27),v | (0,27)) are two different immersed submanifolds, but
the image of the embedding is in both cases just the figure eight.

2.9. Let M be a submanifold of N. Then the embedding : : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
1o f:Z — N is smooth.

The example in 2.8 shows that there are injective immersions without property
(1).

2.10. We want to determine all injective immersions ¢ : M — N with property
2.9.1. To require that ¢ is a homeomorphism onto its image is too strong as 2.11
and 2.12 below show. To look for all smooth mappings ¢ : M — N with property
2.9.1 (initial mappings in categorical terms) is too difficult as remark 2.13 below
shows.

2.11. Lemma. If an injective immersion i : M — N is a homeomorphism onto
its image, then i(M) is a submanifold of N.

Proof. Use 2.7. [0

2.12. Example. We consider the 2-dimensional torus T? = R?/Z2. Then the
quotient mapping 7 : R> — T2 is a covering map, so locally a diffeomorphism.
Let us also consider the mapping f : R — R?, f(t) = (¢,a.t), where « is
irrational. Then 7o f : R — T? is an injective immersion with dense image, and
it is obviously not a homeomorphism onto its image. But 7w o f has property
2.9.1, which follows from the fact that 7 is a covering map.
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2. Submersions and Immersions, 2.13 15

2.13. Remark. If f: R — R is a function such that f? and f? are smooth for
some p, ¢ which are relatively prime in N, then f itself turns out to be smooth,
see [Joris, 1982]. So the mapping i : ¢ — (Z)), R — R2?, has property 2.9.1, but 4
is not an immersion at 0.

2.14. Definition. For an arbitrary subset A of a manifold N and zy € A let
Cyo(A) denote the set of all z € A which can be joined to zy by a smooth curve
in M lying in A.

A subset M in a manifold N is called initial submanifold of dimension m, if
the following property is true:

(1) For each x € M there exists a chart (U, u) centered at  on N such that
w(Cx(UNM)) =u(U)N(R™ x0).

The following three lemmas explain the name initial submanifold.

2.15. Lemma. Let f : M — N be an injective immersion between manifolds
with property 2.9.1. Then f(M) is an initial submanifold of N.

Proof. Let € M. By 2.6 we may choose a chart (V,v) centered at f(z) on N
and another chart (W, w) centered at z on M such that (vofow=1)(y!,... ,y™) =
(yt,...,y™,0,...,0). Let r > 0 be so small that {y € R™ : |y| < r} C w(W)
and {z e R" : |z| < 2r} C v(V). Put
U:=v'({z€R":|z| <r}) CN,
Wy:=w({y e R™: |y <r}) C M.

We claim that (U,u = v [ U) satisfies the condition of 2.14.1.

u Hu(U)N (R™ x0)) =uw ({(y',...,4™,0...,0): [yl <r}) =
=fow to(uo fow H T {(y ...,y 0...,0): |yl <r}) =
=fow ' ({y e R™ : Jy| <r}) = f(W1) C Cyy (U N F(M)),

since f(Wy) CUN f(M) and f(W;) is C°°-contractible.

Now let conversely z € Cy ) (UNf(M)). Then by definition there is a smooth
curve ¢ : [0,1] — N with ¢(0) = f(x), ¢(1) = z, and ¢([0,1]) C U N f(M). By
property 2.9.1 the unique curve ¢ : [0,1] - M with f o¢ = ¢, is smooth.

We claim that ¢([0,1]) € Wy. If not then there is some ¢ € [0, 1] with &(¢) €
w™l({y € R™ : r < |y| < 2r}) since € is smooth and thus continuous. But then
we have

(vo f)(et) € (vo fow ™  )({y eR™ :r <yl <2r}) =
={(y,0) eR" x0:r<|yl<2r}C{zeR":r < |z| < 2r}.
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16 2. Submersions and Immersions, 2.16

This means (vo foc)(t) = (voc)(t) € {z € R* : v < |z2| < 2r}, s0 ¢(t) ¢ U, a
contradiction.

So ¢([0,1]) € Wy, thus ¢(1) = f~1(2) € Wy and z € f(W;). Consequently we
have Cp(,,)(U N f(M)) = f(W) and finally f(W1) = v (u(U) N (R™ x 0)) by
the first part of the proof. [

2.16. Lemma. Let M be an initial submanifold of a manifold N. Then there
15 a unique C°-manifold structure on M such that the injection ¢ : M — N is
an injective immersion with property 2.9.(1):
(1) For any manifold Z a mapping f : Z — M is smooth if and only if
tof:Z — N is smooth.

The connected components of M are separable (but there may be uncountably
many of them).

Proof. We use the sets C, (U, N M) as charts for M, where z € M and (U, uy)
is a chart for N centered at x with the property required in 2.14.1. Then the
chart changings are smooth since they are just restrictions of the chart changings
on N. But the sets C,(U, N M) are not open in the induced topology on M
in general. So the identification topology with respect to the charts (Cy (U, N
M), uz)zen yields a topology on M which is finer than the induced topology, so
it is Hausdorff. Clearly ¢ : M — N is then an injective immersion. Uniqueness
of the smooth structure follows from the universal property (1) which we prove
now: For z € Z we choose a chart (U,u) on N, centered at f(z), such that
u(Cr(UNM)) =u(U)N(R™ x 0). Then f~*(U) is open in Z and contains a
chart (V,v) centered at z on Z with v(V) a ball. Then f(V') is C*°-contractible
inUNM,so f(V)C Cs,y(UNM), and (u | C, (UNM))o fov™' =wuo for™?
is smooth.

Finally note that N admits a Riemannian metric (see ?7) which can be
induced on M, so each connected component of M is separable. [

2.18. Transversal mappings. Let M;, Ms, and N be manifolds and let
fi + M; — N be smooth mappings for + = 1,2. We say that f; and f; are
transversal at y € N, if

imTajl fl + im 113;2 f2 = TyN whenever fl (ZL'I) = f2 (1'2) = 1.

Note that they are transversal at any y which is not in f1(Mj) or not in fo(Ms).
The mappings f1 and f5 are simply said to be transversal, if they are transversal
at every y € N.

If P is an initial submanifold of N with embedding ¢ : P — N, then f: M —
N is said to be transversal to P, if + and f are transversal.
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2. Submersions and Immersions, 2.19 17

Lemma. In this case f~Y(P) is an initial submanifold of M with the same
codimension in M as P has in N, or the empty set. If P is a submanifold, then
also f~1(P) is a submanifold.

Proof. Let © € f~Y(P) and let (U,u) be an initial submanifold chart for P
centered at f(z) on N, i.e. u(Cy)(U N P)) = u(U) N (RP x 0). Then the
mapping

MDY U) LU S uwU) CRP x R 22 grp
is a submersion at x since f is transversal to P. So by lemma 2.2 there is a chart
(V,v) on M centered at = such that we have

(pra ouofov_l)(yl,... JytTP L y™) = (yl,... Lyt TP,

But then z € C,(f~1(P) N V) if and only if v(z) € v(V) N (0 x R™~"*P) 5o
v(Ce(fTHP)NV)) =v(V)N (0 x Rm="+P). [

2.19. Corollary. If f;: M1 — N and fo : My — N are smooth and transversal,
then the topological pullback

M, X My = My Xy My = {(.Tl,xz) € My x M, Zfl(l'l) :fz(xz)}
(f1,N,f2)
is a submanifold of My x My, and it has the following universal property.
For any smooth mappings g1 : P — My and g3 : P — My with fiogs = f20g2
there is a unique smooth mapping (g1, g2) : P — My X xy My with prio(g1,92) = g1
and prs o (g1, g2) = go-

P g2
Wm)
lprl f2
M N
LA

This is also called the pullback property in the category M f of smooth man-
ifolds and smooth mappings. So one may say, that transversal pullbacks exist in
the category M f. But there also exist pullbacks which are not transversal.

Proof. My xn My = (f1 x f2)7"Y(A), where fi X fo : My x My — N x N and
where A is the diagonal of N x N, and f; X f5 is transversal to A if and only if
f1 and fs are transversal. [
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3. Vector Fields and Flows

3.1. Definition. A wvector field X on a manifold M is a smooth section of
the tangent bundle; so X : M — TM is smooth and my; o X = Idp;. A local
vector field is a smooth section, which is defined on an open subset only. We
denote the set of all vector fields by X(M). With point wise addition and scalar
multiplication X (M) becomes a vector space.

Example. Let (U, u) be a chart on M. Then the 8?“- U —-TM U, x— %

described in 1.8, are local vector fields defined on U.

T

Lemma. If X is a vector field on M and (U,u) is a chart on M and x € U, then
we have X (z) = Y im0 X (2)(u') 525 |- We write X [U = >0 X(u')52. O

3.2. The vector fields (52:)™, on U, where (U,u) is a chart on M, form a
holonomic frame field. By a frame field on some open set V. C M we mean
m = dim M vector fields s; € X(U) such that si(z),..., s, () is a linear basis
of T, M for each x € V. A frame field is said to be holonomic, if s; = % for
some chart (V,v). If no such chart may be found locally, the frame field is called
anholonomic.

With the help of partitions of unity and holonomic frame fields one may
construct ‘many’ vector fields on M. In particular the values of a vector field

can be arbitrarily preassigned on a discrete set {z;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically with
the space of all derivations of the algebra C*°(M,R) of smooth functions, i.e.
those R-linear operators D : C°(M,R) — C*°(M,R) with D(fg) = D(f)g +
fD(g).

Proof. Clearly each vector field X € X(M) defines a derivation (again called
X, later sometimes called Lx) of the algebra C°°(M,R) by the prescription
X()(@) :== X(2)(f) = df (X (2)).

If conversely a derivation D of C*°(M,R) is given, for any x € M we consider
D, : C*°(M,R) — R, D,(f) = D(f)(z). Then D, is a derivation at = of
C>°(M,R) in the sense of 1.7, so D, = X, for some X, € T,M. In this
way we get a section X : M — TM. If (Uyu) is a chart on M, we have
D, = Y, X(2)(u) 52|, by 1.7. Choose V open in M, V. C V C U, and
¢ € C°(M,R) such that supp(¢) C U and ¢ | V = 1. Then ¢ - u’ € C°(M,R)
and (pu?) |V =u! | V. So D(pu®)(z) = X (z)(pu’) = X(x)(u’) and X [V =
St D(put) [V 52 |V is smooth. [
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3. Vector Fields and Flows, 3.4 19

3.4. The Lie bracket. By lemma 3.3 we can identify X(M) with the vector
space of all derivations of the algebra C'*°(M,R), which we will do without any
notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X(Y (f))—-Y (X (f))
is again a derivation of C°°(M, R), as a simple computation shows. Thus there is
a unique vector field [X,Y] € X(M) such that [X,Y](f) = X (Y (f)) = Y(X(f))
holds for all f € C*°(M,R).

In a local chart (U,u) on M one immediately verifies that for X | U =
S X2 and Y [ U =3 Y2 we have

Y7) - Y

X V] = D (G
i J

Y]

5ur X))

ouJ

since second partial derivatives commute. The R-bilinear mapping

[, ]:X(M)xX(M)— X(M)
is called the Lie bracket. Note also that X(M) is a module over the algebra
C*°(M,R) by point wise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , ]:X(M) x X(M) — X(M) has the following
properties:

Y, Z) =X, Y], Z] + [Y, [ X, Z]], the Jacobi identity,
XY= fIX, Y] - (Y[)X,
X, fY] = fIX,Y] + (X f)Y.
The form of the Jacobi identity we have chosen says that ad(X) = [X, ]is
a derivation for the Lie algebra (X(M),[ , ).

The pair (X(M),[ , ]) is the prototype of a Lie algebra. The concept of a
Lie algebra is one of the most important notions of modern mathematics.

X,Y]=-[Y, X],
f

[
(X
[
[

Proof. All these properties are checked easily for the commutator [X,Y] =
Y — Y o X in the space of derivations of the algebra C*°(M,R). O

3.5. Integral curves. Let ¢ : J — M be a smooth curve in a manifold M
defined on an interval J. We will use the following notations: ¢'(t) = ¢é(t) =
b ¢(t) := Tyel. Clearly ¢ : J — T'M is smooth. We call ¢ a vector field along
¢ since we have myroc’ =c.

TM

T

J—e— M
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20 3. Vector Fields and Flows, 3.6

A smooth curve ¢ : J — M will be called an integral curve or flow line of a
vector field X € X(M) if ¢/(t) = X (c(t)) holds for all t € J.

3.6. Lemma. Let X be a vector field on M. Then for any x € M there is an
open interval J; containing 0 and an integral curve c¢g @ J, — M for X (i.e.
ch, = X oc,) with ¢, (0) = x. If J, is mazimal, then c, is unique.

Proof. In a chart (U,u) on M with © € U the equation ¢(t) = X(c(t)) is
an ordinary differential equation with initial condition ¢(0) = z. Since X is
smooth there is a unique local solution by the theorem of Picard-Lindelof, which
even depends smoothly on the initial values, [Dieudonné I, 1969, 10.7.4]. So on
M there are always local integral curves. If J, = (a,b) and limy ¢, (t) =:
¢z (b) exists in M, there is a unique local solution ¢; defined in an open interval
containing b with ¢;(b) = ¢;(b). By uniqueness of the solution on the intersection
of the two intervals, ¢y prolongs ¢, to a larger interval. This may be repeated
(also on the left hand side of J,) as long as the limit exists. So if we suppose J,
to be maximal, J, either equals R or the integral curve leaves the manifold in
finite (parameter-) time in the past or future or both. [

3.7. The flow of a vector field. Let X € X(M) be a vector field. Let us
write FL* (z) = FI* (t,z) := ¢, (t), where ¢, : J, — M is the maximally defined
integral curve of X with ¢,(0) = z, constructed in lemma 3.6.

Theorem. For each vector field X on M, the mapping FI¥ : D(X) - M is
smooth, where D(X) = U,cpr J= X {x} is an open neighborhood of 0 x M in
R x M. We have

FI*(t + s,2) = FI*(t, F1¥ (s, )

in the following sense. If the right hand side exists, then the left hand side exists
and we have equality. If both t, s > 0 or both are < 0, and if the left hand side
exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of 3.6, F1* (¢, z) is smooth in (¢, z) for small ¢,
and if it is defined for (¢, z), then it is also defined for (s,y) nearby. These are
local properties which follow from the theory of ordinary differential equations.

Now let us treat the equation FI¥ (¢ 4 s,2) = FI¥ (¢, F1¥ (s, z)). If the right
hand side exists, then we consider the equation

LFIX(t+5,2) = £ FI* (u, @) |umtss = X (FIX(t+ 5, 7)),
FI*(t + 5, 2)|4—0 = F1¥ (5, ).

But the unique solution of this is F1¥ (£, FIX (s, z)). So the left hand side exists
and equals the right hand side.
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3. Vector Fields and Flows, 3.8 21

If the left hand side exists, let us suppose that t,s > 0. We put

() F1¥ (u, z) ifu<s
Czlu) =
FIY (u— 5, F1% (s,2)) ifu>s.
4oy { B () = XE (w,0)) foru<s _
" i B (u = 5, FIY (5, 2)) = X (FF (u— 5, FI (s, 7))

= X(cz(u)) for0<u<t+s.

Also ¢,;(0) = = and on the overlap both definitions coincide by the first part of
the proof, thus we conclude that ¢, (u) = FI¥(u,z) for 0 < u < t + s and we
have FIX (¢, F1% (s, 2)) = ¢z (t + s) = FIX (t + s, z).

Now we show that D(X) is open and FI¥ is smooth on D(X). We know
already that D(X) is a neighborhood of 0 x M in Rx M and that F1* is smooth
near 0 x M.

For 2 € M let .J!, be the set of all ¢ € R such that FI* is defined and smooth
on an open neighborhood of [0,¢] x {z} (respectively on [¢,0] x {z} for ¢t < 0)
in R x M. We claim that J, = .J,, which finishes the proof. It suffices to show
that J. is not empty, open and closed in J,. It is open by construction, and
not empty, since 0 € J.. If J. is not closed in J,, let to € J, N (JL \ J.) and
suppose that ¢ty > 0, say. By the local existence and smoothness F1¥ exists and is
smooth near [—¢, e] x {y := F1*(to, )} for some ¢ > 0, and by construction FI*
exists and is smooth near [0,y — €] x {z}. Since FI* (—¢,y) = FI¥ (ty — ¢, z) we
conclude for ¢ near [0, ty —ée], 2’ near z, and ¢’ near [—¢, €], that FI* (t+¢,2') =
F1* (¢, F1* (t,2")) exists and is smooth. So to € J', a contradiction. [J

3.8. Let X € X(M) be a vector field. Its flow FI* is called global or complete,
if its domain of definition D(X) equals R x M. Then the vector field X itself
will be called a "complete vector field”. In this case Fng is also sometimes called
exp tX; it is a diffeomorphism of M.

The support supp(X) of a vector field X is the closure of the set {x € M :

X (z) # 0}.
Lemma. A wvector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has positive
distance to the disjoint closed set (Rx M)\ D(X) (if it is not empty), so [—¢, €] X
K C D(X) for some € > 0. If # ¢ K then X(x) = 0, so FI*(t,2) = z for all ¢
and R x {z} € D(X). So we have [—¢,¢] x M C D(X). Since FI* (¢t +¢,2) =
FI¥ (¢, F1¥ (e, z)) exists for |t| < e by theorem 3.7, we have [—2¢, 2] x M C D(X)
and by repeating this argument we get R x M = D(X). O
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22 3. Vector Fields and Flows, 3.9

So on a compact manifold M each vector field is complete. If M is not compact
and of dimension > 2, then in general the set of complete vector fields on M
is neither a vector space nor is it closed under the Lie bracket, as the following

example on R? shows: X = y-Z a and Y = % 68 are complete, but neither X +Y

nor [X,Y] is complete. In general one may embed R? as a closed submanifold
into M and extend the vector fields X and Y.

3.9. f-related vector fields. If f : M — M is a diffeomorphism, then for any
vector field X € X(M) the mapping Tf ! o X o f is also a vector field, which
we will denote f*X. Analogously we put f,X :=TfoX o f~1 = (f"1)*X.

But if f: M — N is a smooth mapping and Y € X(V) is a vector field there
may or may not exist a vector field X € X(M) such that the following diagram
commutes:

v T N

i

f

M ——— N.

Definition. Let f : M — N be a smooth mapping. Two vector fields X €
X(M)and Y € X(N) are called f-related, if Tfo X = Y o f holds, i.e. if diagram

(1) commutes.

Example. If X € X(M) and Y € X(IN) and X xY € X(M x N) is given
(X xY)(z,y) = (X(x),Y(y)), then we have:

(2) X xY and X are pri-related.

(3) X xY and Y are pra-related.

(4) X and X x Y are ins(y)-related if and only if Y(y) = 0, where the
mapping ins(y) : M — M x N is given by ins(y)(z) = (z,y).

3.10. Lemma. Consider vector fields X; € X(M) and Y; € X(N) fori=1,2,
and a smooth mapping f: M — N. If X; and Y; are f-related for = 1,2, then
also M X1 + Ao Xy and \Y1 + A2Ys are f-related, and also [ X1, X3] and [Y7,Ys]
are f-related.

Proof. The first assertion is immediate. To prove the second we choose h €
C*°(N,R). Then by assumption we have T'f o X; = Y; o f, thus:

(Xi(ho [))(z) = Xi(z)(ho f) = (Tof Xi(z))(h) =
= (T'f o Xy)(x)(h) = (Yio f)(2)(h) = Yi(f(2))(h) = (Yi(h))(f(2)),
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3. Vector Fields and Flows, 3.11 23
so X;(ho f)=(Y;(h)) o f, and we may continue:

[X1, Xo](ho f) = X1(Xa(ho f)) — Xo(Xi(ho f)) =
= X1(Ya(h) o f) — X2(Yi(h) o f) =
=Y1(Ya(h)) o f = Ya(Y1(h)) o f = [Y1,Y2](R) o f.
But this means T'f o [X1, Xo] = [V, Y2]o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (Tpf)~' makes
sense for each x € M ), then for' Y € X(N) a vector field f*Y € X(M) is defined

by (f*Y)(z) = (Tof) LY (f(x)). The linear mapping f* : X(N) — X(M) is
then a Lie algebra homomorphism, i.e. f*[Y1,Ys] = [f*Y1, f*Ys].

3.12. The Lie derivative of functions. For a vector field X € X(M) and
f € C®(M,R) we define Lx f € C°(M,R) by

Lxf(x):= %|0f(F1X(t,JJ)) or
Lxf = o(FE) ] = &1o(f o FIX).

Since F1¥ (t,z) is defined for small ¢, for any 2z € M, the expressions above make
sense.

Lemma. %(FltX)*f = (FLY)*X(f) = X((F1X)*f), in particular for t = 0 we
have Lx f = X(f) =df(X). O

Proof. We have
M (FL) f(2) = df (& FY (1, 2)) = df (X (FTY (1, 2))) = (FI)* (X f) (x).
From this we get Lx f = X (f) = df(X) and then in turn

F(FI)"f = Flo(FIT o FIS)"f = £ lo(FIS)"(FI1)"f = X ((F)*f). D

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define
LxY € %(M) by
LxY = L]o(FI)Y = L]o(T(F1¥,) o Y o FLY),

and call it the Lie derivative of Y along X.
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24 3. Vector Fields and Flows, 3.14
Lemma. LxY = [X,Y] and L(FIX)'Y = (FI))"LxY = (FIY)*[X,Y] =
Lx(FL)*Y = [X, (FL)*Y].

Proof. Let f € C*°(M,R) be a testing function and consider the mapping
a(t, s) :== Y(FI* (¢, 2))(f o FI), which is locally defined near 0. It satisfies

a(t,0) = Y (FI* (t,2))(f),

a(0,5) = Y (z)(f o FI),
50(0,0) = 8t S0 Y FL (1, 2)(f) = &, VN (EF (t2) = X(@)(Y]),
5:0(0,0) = Z[oY (2)(f o FIJ) = Y (2) & |o(f o FIJ) = Y (2) (X f).

But on the other hand we have
o loa(u, —u) = F[oY (FI (u,2))(f o F1Z,)
= &l (T(FIX,) 0 Y o FLY) () = (LxY)al),
so the first assertion follows. For the second claim we compute as follows:

2 (FI)Y = 2 (T(Fl)_(t) oT(FIX )oY o FIX o Flf()

T(F1%,) 0 2o (T(Fl)_()OYoF@() o FLX
T(F1%,) o [X,Y] o FI¥ = (FIY)*[X,Y].
2 |o(FIN)*(FI)*Y = Lx (FIF)*Y. O

(F1
(F1

o (F)"Y

3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for
a smooth mapping f : M — N. Then we have f o Flf( = Flz/ of, whenever

both sides are defined. In particular, iof f is a diffeomorphism, we have FIZ*Y =
f1oFL of.

Proof. We have 4(foFIX) = Tfo 4 FLY = Tfo X oFIf = Yo fo FIf
and f(FI¥(0,z)) = f(x). So t — f(F1*(¢,z)) is an integral curve of the vector
field Y on N with initial value f(z), so we have f(F1*(t,z)) = FI¥ (¢, f(x)) or

foFLX =F1Y of. O
3.15. Corollary. Let X,Y € X(M). Then the following assertions are equiva-
lent

(1) LxY =[X,Y]=0.

(2) (FLX)*Y =Y, wherever defined.

(3) FLX o F1Y = F1Y o FL¥, wherever defined.
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3. Vector Fields and Flows, 3.16 25

Proof. (1) < (2) is immediate from lemma 3.13. To see (2) < (3) we note
that FIX o F1Y = F1¥ o FIX if and only if FIY' = FIX, 0 FIY o FIX = FIF)™Y by
lemma 3.14; and this in turn is equivalent to ¥ = (FIX)*Y. O

3.16. Theorem. Let M be a manifold, let ¢* : R x M D Uyi — M be smooth
mappings for i = 1,...,k where each Uy is an open neighborhood of {0} x M
in R x M, such that each ¢! is a diffeomorphism on its domain, oh = Idy, and
2ot = Xi € X(M). We put [, ¢7); = [0}, 1] == () o (p}) ™ 0 ] 0 ¢}.
Then for each formal bracket expression P of lenght k we have

£l
0=2710P(pt,....0F) forl<t<k,

k
P(Xy,...,Xy) = 15w loP(ot, -, 0F) € X(M)

in the sense explained in step 2 of the proof. In particular we have for vector
fields X, Y € X(M)

0= 2|, (F1¥, o F1¥, o FIY o FLY),

(X, Y] = L 2|y (FIY, o FI¥, o FIY o FIY).
Proof. Step 1.  Let ¢ : R — M be a smooth curve. If ¢(0) = z € M,
c(0) =0,...,c*1(0) = 0, then ¢*)(0) is a well defined tangent vector in T, M
which is given by the derivation f — (f o c)®)(0) at z.

For we have

since all other summands vanish: (f o)) (0) =0 for 1 < j < k.

Step 2. Let ¢ : R x M D U, — M be a smooth mapping where U, is an open
neighborhood of {0} x M in R x M, such that each ¢; is a diffeomorphism on
its domain and ¢o = Idy;. We say that ¢, is a curve of local diffeomorphisms
though Idys. _

From step 1 we see that if 68—1;|0g0t =0foralll <j <k, then X := %%Wpt
is a well defined vector field on M. We say that X is the first non-vanishing
derivative at 0 of the curve ¢; of local diffeomorphisms. We may paraphrase this

as (OFlop)f = k!Lx [
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26 3. Vector Fields and Flows, 3.16

Claim 3. Let ¢, 1y be curves of local diffeomorphisms through Idy, and let
f € C*(M,R). Then we have

k
OFlo(pe o ) f = OFlo(¥7 o 0})f =D (5)(0]lows) (0F 7o) -
Jj=0

Also the multinomial version of this formula holds:

k! - .
g @) - O o0}

Oflo(pro...op)) f= Y

Jrtetie=k

We only show the binomial version. For a function h(t, s) of two variables we
have

k
Z (V0] 05~ h(t, 5)|s=t,
J=0

since for h(t,s) = f(t)g(s) this is just a consequence of the Leibnitz rule, and
linear combinations of such decomposable tensors are dense in the space of all
functions of two variables in the compact C'°°-topology, so that by continuity
the formula holds for all functions. In the following form it implies the claim:

k

8tk|0f( t @b t .’17 Z 838k Jf (t,?,b(s,.’lf))”t:s:o.

J=0

Claim 4. Let ¢; be a curve of local diffeomorphisms through Idy, with first
non-vanishing derivative k!X = 0%|op;. Then the inverse curve of local diffeo-
morphisms ;' has first non-vanishing derivative —k!X = 9F|op; *.

For we have got_l oy = Id, so by claim 3 we get for 1 < j <k

]
0=20]lo(e; o) f=>_ ()(0flow}) (0 (or ")) f =
2=0
= 3] lowi (9o ) f + @50l 10(0r H)* f,

ie. 870t f = —0]o(p; 1)*f as required.

Claim 5. Let ¢; be a curve of local diffeomorphisms through Idys with first
non-vanishing derivative m!X = 0/"|p¢, and let ¢, be a curve of local diffeo-
morphisms through I'dys with first non-vanishing derivative n!Y = 0f|ot).
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3. Vector Fields and Flows, 3.16 27

Then the curve of local diffeomorphisms [, 1] = 1, * o 7t 01); 0 @y has first
non-vanishing derivative

(m +n)I[X, Y] = 07" " |o[r, 1]

From this claim the theorem follows.
By the multinomial version of claim 3 we have

Anf =0 o o togrop) f
N!
= > e @lov) @Flo(er ) Ofo (i) ).
i+j+k+e=N

Let us suppose that 1 < n < m, the case m < n is similar. If N < n all
summands are 0. If N = n we have by claim 4

AN = (07 o) f + (O o) f + (0Flo(0r 1)) f + @OF (v 1)) f = 0.
If n < N < m we have, using again claim 4:
Anf= Y N 071000 O80 (7)) + 5 (07 0wD)  + (O o(07 1)) f)
jtt=n"
= (N o(b; o p)™)f +0=0.

Now we come to the difficult case m,n < N < m + n.

ANF =0 o ooy o) f 4 () (0710w (07 ™™ ot o 0y o 4hy) ) f
(1) + (07 lowi) S,

by claim 3, since all other terms vanish, see (3) below. By claim 3 again we get:

O o o o) = Y S @llav) @ hler ) ) @flalv))S

jthte=NJ

2 = > (@)@l ) f + ()@ ™ ot) 070 (05 ")) f

j+e=N
+ (Y@ o (0r ) ON ™o (b 1)) f + N [o(07 1) f
=0+ () (OF ™oy )mLx f+ ()m!L_x (0 ™ |o(v; H)*) f

+ 0 o(es )" f
= 6N (m+ ) (LxLy — Ly Lx)f + 0N (o D) f
=00 o (m+ ) Lx vy f + 07 oy 1) f
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28 3. Vector Fields and Flows, 3.17

From the second expression in (2) one can also read off that

(3) Oy ™ o(wy t o o)  f =0 T ol M) S

If we put (2) and (3) into (1) we get, using claims 3 and 4 again, the final result
which proves claim 3 and the theorem:

ANS = b (m+n)Lix v f + 0N o(0r )" f
+ () (07 109) 07 ™o (07 1)) f + (0N o} f
= 0N en(m+n)Lix v f + 0N o(pr ' o w)*f
=0 in(m+n)Lixyyf+0. O

3.17. Theorem. Let X1q,...,X,, be vector fields on M defined in a neighbor-
hood of a point x € M such that X1(z),..., X (z) are a basis for T,M and
[Xi, X;] =0 foralli,j.

Then there is a chart (U,u) of M centered at x such that X; [ U = 6?“-.

Proof. For small t = (t%,... ,t™) € R™ we put
flt . ot = (Flﬁl 0---0 Flf,(nm)(x)

By 3.15 we may interchange the order of the flows arbitrarily. Therefore

Dt 1) = 2(FIYN o FIX o0 ) (2) = Xi((FIZ% o -+ ) ().
So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart
with the desired properties. [

3.27. The theorem of Frobenius. The next three subsections will be devoted
to the theorem of Frobenius for distributions of constant rank. We will give a
powerfull generalization for distributions of nonconstant rank below (3.18 —
3.25).

Let M be a manifold. By a vector subbundle E of T M of fiber dimension k
we mean a subset ¥ C T'M such that each F, := FENT,M is a linear subspace
of dimension k, and such that for each xzim M there are k vector fields defined
on an open neighborhood of M with values in F and spanning F, called a local
frame for E. Such an F is also called a smooth distribution of constant rank
k. See section 6 for a thorough discussion of the notion of vector bundles. The
space of all vector fields with values in E will be called C*(FE).

The vector subbundle E of T'M is called integrable or involutive, if for all
X,Y € C*®°(E) we have [X,Y] € C®(E).
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3. Vector Fields and Flows, 3.28 29

Local version of Frobenius’ theorem. Let E C T'M be an integrable vector
subbundle of fiber dimension k of TM .

Then for each x € M there exists a chart (U,u) of M centered at x with
w(U) =V x W CRF x R"F | such that T(u=1(V x {y})) = E|(u=(V x {y}))
for each y € W.

Proof. Let x € M. We choose a chart (U,u) of M centered at x such that there
exist k vector fields X1, ..., Xi € C°°(FE) which form a frame of E|U. Then we
have X; = 37 3£Jmpﬂecwu7m Then f = (f7) is a (k x m)-matrix
valued smooth functlon on U which has rank k on U. So some (k x k)-submatrix,
say the top one, is invertible at x and thus we may take U so small that this top
(k x k)-submatrix is invertible everywhere on U. Let g = (g!) be the inverse of

this submatrix, so that f.g = (%) We put

0 0
(1) Yi —ngX Zzgz Jaul = T > hf%

j=11=1 p>k+1

We claim that [Y;,Y;] = 0 for all 1 < 4,5 < k. Since E is integrable we have
Y:,Y;] = Zle cijl. But from (1 ) we conclude (using the coordinate formula
in 3.4) that [V;,Y;] =3 ;. a? 52>, Again by (1) this implies that ct; = 0 for
all [, and the claim follows.

Now we consider an (m — k)-dimensional linear subspace W; in R™ which

is transversal to the k vectors T,u.Y;(z) € ToR™ spanning R¥, and we define
F:VxXW — U by

f@h“wﬁwy:(mﬁomgo“ﬁF@Q@r%w%

where t = (t!,...,t*) € V, a small neighborhood of 0 in R¥, and where y € W,
a small neighborhood of 0 in W;. By 3.16 we may interchange the order of the
flows in the definition of f arbitrarily. Thus

O ptt) = 2 (P om o) (w7 ) = Vi (1))

Ty f is invertible and the inverse of f on a suitable neighborhood of x gives us
the required chart. [

3.28. Remark. Charts (U,u: U — V x W C RF x R™7%) as constructed in
theorem 3.27 with V and W open balls are called distinguished charts for E.
The submanifolds u=}(V x {y}) are called plaques. Two plaques of different
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30 3. Vector Fields and Flows, 3.29

distinguished charts intersect in open subsets in both plaques or not at all: this
follows immediately by flowing a point in the intersection into both plaques with
the same construction as in in the proof of 3.27. Thus an atlas of distinguished
charts on M has chart change mappings which respect the submersion RF x
R™~% — R™~F (the plaque structure on M). Such an atlas (or the equivalence
class of such atlases) is called the foliation corresponding to the integrable vector
subbundle E C TM.

3.29. Global Version of Frobenius’ theorem. Let EE C T'M be an integrable
vector subbundle of TM . Then, using the restrictions of distinguished charts to
plaques as charts we get a new structure of a smooth manifold on M, which we
denote by M. If E = T M the topology of Mg is finer than that of M, Mg has
uncountably many connected components called the leaves of the foliation, and
the identity induces a bijective immersion Mg — M. Fach leaf L is a second

countable initial submanifold of M, and it is a mazximal integrable submanifold
of M for E in the sense that T, L. = E,, for each x € L.

Proof. Let (Uy,tug : Uy — Vo x Wy € RF x R™7%) be an atlas of distu-
ished charts corresponding to the integrable vector subbundle £ C TM, as
given by theorem 3.27. Let us now use for each plaque the homeomorphisms
pry ot [(uz 1 (Vy x {y))) : uz(Vy x {y}) — Vo € R™F as charts, then we de-
scribe on M a new smooth manifold structure Mg with finer topology which
however has uncountably many connected components, and the identity on M
induces a bijective immersion Mg — M. The connected components of Mg are
called the leaves of the foliation.

In order to check the rest of the assertions made in the theorem let us construct
the unique leaf L through an arbitrary point x € M: choose a plaque containing
x and take the union with any plaque meeting the first one, and keep going. Now
choose y € L and a curve c: [0,1] — L with ¢(0) = z and ¢(1) = y. Then there
are finitely many distinguished charts (Uy,u1),..., (Uy,u,) and ay,...,a, €
R™* such that 2 € u7' (Vi x {a1}), y € u;'(V,, x {a,}) and such that for each
i

(*) up (Vi x {ai}) Nuiy (Viga x {aiga}) # 0.
Given wu;, u;y+1 and a; there are only countably many points a; 1 such that (*)
holds: if not then we get a cover of the the separable submanifold ui_l(V,- X
{a;}) N U;11 by uncountably many pairwise disjoint open sets of the form given
in (*), which contradicts separability.

Finally, since (each component of) M is a Lindel6f space, any distinguished
atlas contains a countable subatlas. So each leaf is the union of at most countably
many plaques. The rest is clear. [
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3.18. Distributions. Let M be a manifold. Suppose that for each x € M
we are given a sub vector space E, of T, M. The disjoint union F = | | .., Ex
is called a distribution on M. We do not suppose, that the dimension of E, is
locally constant in .

Let Xjo.(M) denote the set of all locally defined smooth vector fields on M,
i.e. Xjpe(M) =JX(U), where U runs through all open sets in M. Furthermore
let X denote the set of all local vector fields X € Xj,.(M) with X(z) € E,
whenever defined. We say that a subset V C Xg spans E, if for each x € M the
vector space F,, is the linear hull of the set {X (z) : X € V}. We say that F is a
smooth distribution if Xg spans E. Note that every subset W C X;,.(M) spans
a distribution denoted by F(W), which is obviously smooth (the linear span of
the empty set is the vector space 0). From now on we will consider only smooth
distributions.

An integral manifold of a smooth distribution E is a connected immersed
submanifold (N,i) (see 2.8) such that T,i(T,N) = Ejq) for all z € N. We
will see in theorem 3.22 below that any integral manifold is in fact an initial
submanifold of M (see 2.14), so that we need not specify the injective immersion
t. An integral manifold of E is called maximal, if it is not contained in any
strictly larger integral manifold of E.

3.19. Lemma. Let E be a smooth distribution on M. Then we have:

1. If (N,i) is an integral manifold of E and X € Xg, then i*X makes sense
and is an element of Xj,.(N), which isi | i~ (Ux)-related to X, where Ux C M
s the open domain of X.

2. If (N;,i;) are integral manifolds of E for j = 1,2, then iy ' (i1(N1)Ni2(N2))
and iy *(i1(N1)Niz(No)) are open subsets in Ny and No, respectively; furthermore
i;l 011 is a diffeomorphism between them.

3. If x € M 1is contained in some integral submanifold of E, then it is con-
tained in a unique mazximal one.

Proof. 1. Let Ux be the open domain of X € Xg. If i(z) € Ux for x € N, we
have X (i(x)) € Ej(zy = Tpi(TpN), so i* X () := ((Tyi) "' o X o) (x) makes sense.
It is clearly defined on an open subset of N and is smooth in z.

2. Let X € Xg. Then i;X € Xi0c(N;) and is ij-related to X. So by lemma
3.14 for j = 1,2 we have

ij o Fl = FIj o1j.

Now choose z; € N; such that ii(z1) = i2(z2) = x9p € M and choose vector
fields X1,...,X, € Xg such that (X1 (zo),..., Xn(x0)) is a basis of E,,. Then

FE ) = (F1 Y o o B (a)
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32 3. Vector Fields and Flows, 3.20

is a smooth mapping defined near zero R® — N;. Since obviously a%k|0 i =
i; Xi(z;) for j = 1,2, we see that f; is a diffeomorphism near 0. Finally we have

(i3 0y o f1)(tY, ... ,t") = (i5 " 04y o FIA¥ oo o FIE ™) (2y)

(
= (i7" o FIX o0+ o FIX" oiy) (1)
( o...oFli%X" oiy ' oiy)(z1)

= foltt, ..., t"™).

So iy 154y is a diffeomorphism, as required.

3. Let N be the union of all integral manifolds containing x. Choose the union
of all the atlases of these integral manifolds as atlas for N, which is a smooth
atlas for V by 2. Note that a connected immersed submanifold of a separable
manifold is automatically separable (since it carries a Riemannian metric). [

3.20. Integrable distributions and foliations.

A smooth distribution £ on a manifold M is called integrable, if each point
of M is contained in some integral manifold of E. By 3.19.3 each point is
then contained in a unique maximal integral manifold, so the maximal integral
manifolds form a partition of M. This partition is called the foliation of M
induced by the integrable distribution F, and each maximal integral manifold
is called a leaf of this foliation. If X € Xg then by 3.19.1 the integral curve
t — F1*(t,z) of X through = € M stays in the leaf through z.

Note, however, that usually a foliation is supposed to have constant dimen-
sions of the leafs, so our notion here is sometimes called a singular foliation.

Let us now consider an arbitrary subset V C Xj,.(M). We say that V is stable
if for all X,Y € V and for all ¢ for which it is defined the local vector field
(FI.¥)*Y is again an element of V.

If W C Xjoc(M) is an arbitrary subset, we call S(W) the set of all local vector
fields of the form (FIX' o+ o FIX*)*Y for X;,Y € W. By lemma 3.14 the flow
of this vector field is

FI((FIF o+ o FIXK)*Y,t) = FI¥} 0--- 0 FIX} oF1Y oFI} 0. .- 0 FI}*,
so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € X;,.(M) is
called an infinitesimal automorphism of F, if T,(FIX)(F,) C Fpix (1,2) Whenever
defined. We denote by aut(F) the set of all infinitesimal automorphisms of F.
By arguments given just above, aut(F') is stable.
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3.21. Lemma. Let E be a smooth distribution on a manifold M. Then the
following conditions are equivalent:
(1) E is integrable.
(2) Xg is stable.
(3) There exists a subset W C Xjoc(M) such that SOV) spans E.
(4) aut(E)NXg spans E.

Proof. (1) = (2). Let X € Xg and let L be the leaf through x € M, with
i : L — M the inclusion. Then FI¥, 0i =io Fl’_tX by lemma 3.14, so we have

T, (F1%,)(E,) = T(F1X,).T,i.T, L = T(F1¥, 0i).T, L

= Ti. T, (FI ). T, L
= Ti.TFli*X(_t,m)L = EFlX(—t,ac)'

This implies that (FLX)*Y € Xp for any YV € Xp.

(2) = (4). In fact (2) says that Xg C aut(FE).

(4) = (3). We can choose W = aut(E) N Xg: for X,Y € W we have
(FIX)*Y € Xp; 50 W C S(W) C Xp and E is spanned by W.

(3) = (1). We have to show that each point x € M is contained in some
integral submanifold for the distribution E. Since S(W) spans E and is stable
we have

(5) T(FIY).Ey = Epyx (y 1)

for each X € S(W). Let dim E, = n. There are X;,...,X,, € S(W) such that
Xi(z),...,Xn(z) is a basis of E,, since E is smooth. As in the proof of 3.19.2
we consider the mapping

f(t17 e 7tn) = (Flﬁl O--- oFlign)(:L,)7

defined and smooth near 0 in R”. Since the rank of f at 0 is n, the image under f
of a small open neighborhood of 0 is a submanifold N of M. We claim that N is
an integral manifold of F. The tangent space T, .. ¢n)N is linearly generated
by

2 (FIX 0. o FIX")(z) = T(FIX 0+ 0 FIA T ) X3 (FISE 0 - - 0 FIN ) ()

1 * X -1 * n
= ((FI5)" - (P Xe) (F (- o t™).
Since S(W) is stable, these vectors lie in E¢(;). From the form of f and from (5)

we see that dim Ey;) = dim Ey, so these vectors even span Ey;) and we have
TyyN = Ey) as required. [J
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3.22. Theorem (local structure of foliations). Let E be an integrable dis-
tribution of a manifold M. Then for each x € M there exists a chart (U, u) with
uw(U) = {y € R™ : |y*| < ¢ for all i} for some € > 0, and a countable subset
A CR™™ "™, such that for the leaf L through x we have

w(UNL)={ycul): @y, ... ,y"™) € A}.

FEach leaf is an initial submanifold.
If furthermore the distribution E has locally constant rank, this property holds
for each leaf meeting U with the same n.

This chart (U,u) is called a distinguished chart for the distribution or the
foliation. A connected component of U N L is called a plaque.

Proof. Let L be the leaf through z, dimL = n. Let Xq,...,X,, € Xg be local
vector fields such that Xi(z),..., X,(z) is a basis of E,. We choose a chart
(V,v) centered at z on M such that the vectors

Xi(x),..., Xn(x), %u, . ..,%im|w
form a basis of T, M. Then
fltt .. t™) = (FIY o o FIL) (070, ..., 0,8 T .. ™)

is a diffeomorphism from a neighborhood of 0 in R™ onto a neighborhood of =
in M. Let (U,u) be the chart given by f~!, suitably restricted. We have

ye L« (FLJ'o---oFi")(y) € L
for all y and all t!,... " for which both expressions make sense. So we have
ftt, ... ™) e L < f(0,...,0,t"" ... ™) €L,

and consequently L N U is the disjoint union of connected sets of the form
{y e U: (u"tl(y),...,u™(y)) = constant}. Since L is a connected immersive
submanifold of M, it is second countable and only a countable set of constants
can appear in the description of u(LNU) given above. From this description it is
clear that L is an initial submanifold (2.14) since u(Cy(LNU)) = uw(U)N(R™ x0).
The argument given above is valid for any leaf of dimension n meeting U, so
also the assertion for an integrable distribution of constant rank follows. [
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3.23. Involutive distributions. A subset V C X;,.(M) is called involutive if
[X,Y] € V for all X,Y € V. Here [X,Y] is defined on the intersection of the
domains of X and Y.

A smooth distribution E on M is called involutive if there exists an involutive
subset V C Xjoc.(M) spanning E.

For an arbitrary subset W C Xj,.(M) let £L(W) be the set consisting of all local
vector fields on M which can be written as finite expressions using Lie brackets

and starting from elements of W. Clearly £()V) is the smallest involutive subset
of Xj0c(M) which contains W.

3.24. Lemma. For each subset W C Xjo.(M) we have
EW) C E(L(OW)) C E(S(W)).

In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xgs(w)), for then by
induction we get L(W) C Xgsowy) and E(L(W)) C E(S(W)).

Let x € M; since by 3.21 E(S(W)) is integrable, we can choose the leaf L
through z, with the inclusion 7. Then ¢*X is i-related to X, ¢*Y is i-related to
Y, thus by 3.10 the local vector field [i*X,i*Y] € X;,.(L) is i-related to [X, Y],
and [X,Y](z) € E(S(W))g, as required. O

3.25. Theorem. Let V C Xjo.(M) be an involutive subset. Then the distribu-
tion E(V) spanned by V is integrable under each of the following conditions.

(1) M is real analytic and V consists of real analytic vector fields.
(2) The dimension of E(V) is constant along all flow lines of vector fields in

V.

Proof. (1). For X,Y € V we have %(Flgx)*Y = (FIX)*LxY, consequently
;;, (FLX)*Y = (FL)*(Lx)*Y, and since everything is real analytic we get for
x € M and small ¢

(FX)Y (@) =3 dtk| (FIX)Y () = 3 1 (L)Y (@)

k>0 k>0

Since V is involutive, all (Lx)¥Y € V. Therefore we get (FL)*Y (z) € E(V),
for small t. By the flow property of FI¥ the set of all ¢ satisfying (FL*)*Y (z) €
E(V), is open and closed, so it follows that 3.21.2 is satisfied and thus E(V) is
integrable.
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(2). We choose X1q,...,X,, € V such that X;(z),..., X,(z) is a basis of
E(V)z. For X € V, by hypothesis, E(V)gx(; ) has also dimension n and ad-

mits X1 (F1*(¢,2)),..., X, (FI*(t,2)) as basis for small . So there are smooth
functions f;;(t) such that

X, X;](F1X (¢, z) Zf,, J(F (8, ).

47FIX,). X (FIX (¢, 7)) = T(Fl)_(t).[X X (F1X (¢, 2)) =
3 f” T(F1%,). X, (FI¥ (t, 2)).

So the T, M-valued functions g¢;(t) = T(Fl)_(t).Xi(FlX (t,z)) satisfy the linear
ordinary differential equation %g;(t) = 2?21 fij(t)g;(t) and have initial values
in the linear subspace E(V);, so they have values in it for all small ¢. There-
fore T(Fli(t)E(V)FlX(t,m) C E(V), for small t. Using compact time intervals
and the flow property one sees that condition 3.21.2 is satisfied and E(V) is
integrable. [

Example. The distribution spanned by W C X;,.(R?) is involutive, but not

integrable, where W consists of all global vector fields with support in R? \ {0}

and the field 831 ; the leaf through 0 should have dimension 1 at 0 and dimension
2 elsewhere.

3.26. By a time dependent vector field on a manifold M we mean a smooth
mapping X : J x M — TM with mps o X = pry, where J is an open interval.
An integral curve of X is a smooth curve ¢ : I — M with ¢é(t) = X (¢, ¢(t)) for
all t € I, where [ is a subinterval of J.

There is an associated vector field X € X(J x M), given by X(t,z) =
(2,X(t,z)) € LR x T, M.

By the evolution operator of X we mean the mapping ®X : J x J x M — M,
defined in a maximal open neighborhood of the diagonal x M and satisfying the

differential equation
{ LoX(t,s,2) = X(t,¥(t,s,7))

X (s,s,1) = .

It is easily seen that (¢, ®X(t,s,2)) = FI¥ (t—s, (s,x)), so the maximally defined
evolution operator exists and is unique, and it satisfies

X _ X X
(I)t,s - (Dt,r © (Dr,s
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whenever one side makes sense (with the restrictions of 3.7), where &, () =
O(t,s,x).

Examples and Exercises

3.27. Compute the flow of the vector field &y(x,y) := —ya% + xa% in R?. Draw
the flow lines. Is this a global flow?

3.28. Compute the flow of the vector field & (z,y) ==y
flow?
Answer the same questions for {3(x,y) ==

2 in R?. Is it a global
x> 0
2 9y
Now compute [£1,&>] and investigate its flow. This time it is not global! In

fact, Fl££1’£2](:c, y) = (ﬁﬂit,yefot 2$/(2+m)dz) ,xt+y > 0. Compute the integral.

Investigate the flow of &; 4+ &;. It is not global either!

3.29. Driving a car. The phase space consists of all (z,y,60, ) € R? x St x
(—m/4,m/4), where

(2,y) ...position of the midpoint of the rear axle,

0 ...direction of the car axle,

¢ ...steering angle of the front wheels.

DA
g

N\

X

There are two ‘control’ vector fields:

2

Oy

drive = cos(0)Z + Sin(Q)a% + tan(yp)+ 2 (why?)

steer =

Compute [steer,drive] =: park (why?) and [drive, park]|, and interpret the re-
sults. Is it not convenient that the two control vector fields do not span an
integrable distribution?
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3.30. Describe the Lie algebra of all vectorfields on S in terms of Fourier expan-

sion. This is nearly (up to a central extension) the Virasoro algebra of theoretical
physics.
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4. Lie Groups I

4.1. Definition. A Lie group G is a smooth manifold and a group such that
the multiplication p : G X G — G is smooth. We shall see in a moment, that
then also the inversion v : G — G turns out to be smooth.

We shall use the following notation:
i G x G — G, multiplication, pu(x,y) = z.y.
Lo : G — G, left translation, u,(x) = a.x.
p® : G — G, right translation, p%(z) = x.a.
v:G — G, inversion, v(z) = 271
e € (G, the unit element.
Then we have jiq 0 py = pap, p% o0 p® = pb% pgt = -1, ()~ = p
pr oy = ppo p® If ¢ : G — H is a smooth homomorphism between Lie
groups, then we also have @ o pg = py@q) © @, o p* = 1@ o . thus also
To.Tpa = Thyq)-Te, etc. So Tep is injective (surjective) if and only if T, is
injective (surjective) for all a € G.

4.2. Lemma. T(gpp: T,G X TyG — TypG is given by
T(a,b)lj“(Xa,v Yb) =T, (Mb)-Xa + Tb(ﬂa).ifb.

Proof. Let 1i, : G — G x G, rig(z) = (a,x) be the right insertion and let
liy : G — G x G, liy(x) = (x,b) be the left insertion. Then we have

T(a,b),u-(Xm Yi)) = T(a,b)u'(Ta(lib)-Xa + Tb(ria)-Y;)) =
= To(poliy). Xo + Ty(poria).Yy = To(u?).Xo + To(pta). Y. O

4.3. Corollary. The inversion v : G — G is smooth and

1 —1

Tov=—T.(* )To(ppa-1) = —Tolpta-1).Toa(pu® ).

Proof. The equation p(x,v(x)) = e determines v implicitly. Since we have
Te(p(e, )) = Te(pe) = Id, the mapping v is smooth in a neighborhood of e
by the implicit function theorem. From (v o p,)(z) = z=ta=t = (u* o v)(z)

we may conclude that v is everywhere smooth. Now we differentiate the equation
p(a,v(a)) = e; this gives in turn

-1
0c = Tia,q1y1-(Xa, Tav-Xo) = Ta(p® )Xo+ Ty-1(pa) Tav.- X,
Tov.Xo = —To(pta) L Ta(p® )Xo = —To(ptg-1).Ta(p® ).Xo. O
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4.4. Example. The general linear group GL(n,R) is the group of all invertible
real n x n-matrices. It is an open subset of L(R™,R"), given by det # 0 and a
Lie group.

Similarly GL(n,C), the group of invertible complex n X n-matrices, is a Lie
group; also GL(n,H), the group of all invertible quaternionic n x n-matrices, is
a Lie group, since it is open in the real Banach algebra Ly (H™, H") as a glance
at the von Neumann series shows; but the quaternionic determinant is a more
subtle instrument here.

4.5. Example. The orthogonal group O(n,R) is the group of all linear isome-
tries of (R™,( , )), where ( , ) is the standard positive definite inner prod-
uct on R™. The special orthogonal group SO(n,R) := {A € O(n,R) : det A =1}
is open in O(n,R), since

-1 0

O(n,R) = SO(n,R) U ( 0 T

> SO(n,R),

where I is short for the identity matrix Idgr. We claim that O(n,R) and
SO(n,R) are submanifolds of L(R™,R™). For that we consider the mapping
f: L(R",R") — L(R",R"), given by f(A) = A.A. Then O(n,R) = f~(1,);
so O(n,R) is closed. Since it is also bounded, O(n,R) is compact. We have
df(A).X = X. A" + A.X* so kerdf(I,,) = {X : X + X* =0} is the space o(n,R)
of all skew symmetric n x n-matrices. Note that dimo(n,R) = 1(n — 1)n. If
A is invertible, we get kerdf(A) = {V : Y.A' + AY? = 0} = {YV : Y.A €
o(n,R)} = o(n,R).(A71)%. The mapping f takes values in Ly, (R™, R™), the
space of all symmetric n x n-matrices, and dimker df (A) + dim Ly, (R*,R"*) =
Tn—Dn+in(n+1)=n?=dimL(R*,R"), s0 f : GL(n,R) = Lgym (R*,R") is
a submersion. Since obviously f~!(I,) C GL(n,R), we conclude from 1.12 that
O(n,R) is a submanifold of GL(n,R). It is also a Lie group, since the group
operations are smooth as the restrictions of the ones from GL(n,R).

4.6. Example. The special linear group SL(n,R) is the group of all n x n-
matrices of determinant 1. The function det : L(R",R") — R is smooth and
ddet(A)X = trace(C(A).X), where C(A)%, the cofactor of A7, is the determinant

of the matrix, which results from putting 1 instead of Ag into A and 0 in the
rest of the j-th row and the i-th column of A. We recall Cramers rule C'(A).A =
A.C(A) = det(A).L,. Soif C(A) # 0 (i.e. rank(A) > n — 1) then the linear
functional df(A) is non zero. So det : GL(n,R) — R is a submersion and
SL(n,R) = (det)~1(1) is a manifold and a Lie group of dimension n? — 1. Note
finally that 71, SL(n,R) = kerddet(I,) = {X : trace(X) = 0}. This space of
traceless matrices is usually called sl(n,R).
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4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-
matrices A such that w(Az, Ay) = w(z,y) for all z,y € R?>", where w is a (the
standard) non degenerate skew symmetric bilinear form on R2".

Such a form exists on a vector space if and only if the dimension is even,
and on R” x (R™)* the form w((z,z*), (y,y*)) = (x,y*) — (y, z*), in coordinates
w((@)72), (¥7)7m) = iy (@fy™t* — 2™ Tiy’), is such a form. Any symplectic
form on R?" looks like that after choosing a suitable basis. Let (e;)?; be the
standard basis in R?". Then we have

e = (g, )=

and the matrix J satisfies J! = —J, J? = —Ia,, J(Z) = (_ym) in R* x R", and

w(x,y) = (z,Jy) in terms of the standard inner product on R?".

For A € L(R?>" R*") we have w(Ax, Ay) = (Ax, JAy) = (z, A'JAy). Thus
A € Sp(n,R) if and only if A*'JA = J.

We consider now the mapping f : L(R®* R?>") — L(R?*,R®") given by
f(A) = A'JA. Then f(A)! = (ALJA)! = —A'JA = —f(A), so f takes val-
ues in the space 0(2n,R) of skew symmetric matrices. We have df(A4)X =
XtJA+ A*JX, and therefore

ker df (Iz,) = {X € L(R*,R*") : X'J + JX =0}
= {X : JX is symmetric} =: sp(n, R).

We see that dimsp(n,R) = % = (2";1). Furthermore ker df(A4) = {X :
XtJA+A*JX = 0} and the mapping X ~ A*JX is an isomorphism ker df (A) —
Lym (R2" R?™), if A is invertible. Thus dimkerdf(A) = (*%/) for all A €
GL(2n,R). If f(A) = J, then A'tJA = J, so A has rank 2n and is invert-

ible, and we have dimker df(A) + dimo(2n,R) = (¥%51) + 20E20=D) — 4p2 —
dim L(R?>", R?>"). So f : GL(2n,R) — 0(2n,R) is a submersion and f~!(J) =
Sp(n,R) is a manifold and a Lie group. It is the symmetry group of ‘classical

mechanics’.

4.8. Example. The complex general linear group GL(n,C) of all invertible
complex n X n-matrices is open in L¢(C™,C™), so it is a real Lie group of real
dimension 2n?; it is also a complex Lie group of complex dimension n2. The
complex special linear group SL(n,C) of all matrices of determinant 1 is a sub-
manifold of GL(n,C) of complex codimension 1 (or real codimension 2).

The complex orthogonal group O(n,C) is the set

{Ae L(C",C") : g(Az, Aw) = g(z,w) for all z,w},
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where g(z,w) = Y"1, z'w’. This is a complex Lie group of complex dimension
("_21)", and it is mot compact. Since O(n,C) = {A : A'A = 1,}, we have
1 = detc(I,,) = detc(A*A) = detc(A)?, so detc(A) = +1. Thus SO(n,C) :=
{A € O(n,C) : detc(A) = 1} is an open subgroup of index 2 in O(n, C).

The group Sp(n,C) = {A € Lc(C*,C?") : A'JA = J} is also a complex Lie
group of complex dimension n(2n + 1).

These groups treated here are the classical complex Lie groups. The groups
SL(n,C) for n > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more
exceptional groups exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C" be equipped with the standard hermitian inner product
(z,w) = Y Z'w'. The unitary group U(n) consists of all complex n x n-
matrices A such that (Az, Aw) = (z,w) for all z, w holds, or equivalently U(n) =
{A: A*A=1,}, where A* = A",

We consider the mapping f : Lc(C*,C*) — L¢(C*,C"), given by f(A) =
A*A. Then f is smooth but not holomorphic. Its derivative is df (4)X = X*A+
A*X, so kerdf(L,) = {X : X*+ X =0} =: u(n), the space of all skew hermitian
matrices. We have dimg u(n) = n?. As above we may check that f : GL(n,C) —
Lperm(C®,C™) is a submersion, so U(n) = f~1(I,,) is a compact real Lie group
of dimension n?.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we
have |detc(A)| = 1, thus dimg SU(n) = n? — 1.

4.10. Example. The group Sp(n). Let H be the division algebra of quater-
nions. We will use the following description of quaternions: Let (R3,( , ), A)
be the oriented Euclidean space of dimension 3, where A is a determinant func-
tion with value 1 on a positive oriented orthonormal basis. The vector product
on R3 is then given by (X x Y, Z) = A(X,Y,Z). Now we let H := R?® x R,
equipped with the following product:

(X,8)(Y,t):= (X x Y +sY +tX, st — (X,Y)).

Now we take a positively oriented orthonormal basis of R?, call it (7,7, k), and
indentify (0,1) with 1. Then the last formula implies visibly the usual product
rules for the basis (1,4, j, k) of the quaternions.

The group Sp(1) := S2 C H = R* is then the group of unit quaternions,
obviously a Lie group.

Now let V' be a right vector space over H. Since H is not commutative, we
have to distinguish between left and right vector spaces and we choose right ones
as basic, so that matrices can multiply from the left. By choosing a basis we get
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V =R'@gH=H". Foru= (uf),v=(v) € H" we put (u,v) := > . uv’
Then ( , ) is R-bilinear and (ua, vb) = @(u,v)b for a,b € H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted by
Ly (V,V). It is real isomorphic to the space of all quaternionic n x n-matrices
with the usual multiplication, since for the standard basis (e;)7; in V = H" we
have A(u) = A(Y, eu’) = Y, Ale;)ut = > ejAgui. Note that Lg(V,V) is
only a real vector space, if V' is a right quaternionic vector space - any further
structure must come from a second (left) quaternionic vector space structure on
V.

GL(n,H), the group of invertible H-linear mappings of H", is a Lie group,
because it is GL(4n,R) N Ly (H™, H"), open in Ly (H", H").

A quaternionically linear mapping A is called isometric or quaternionically
unitary, if (A(u), A(v)) = (u,v) for all u,v € H*. We denote by Sp(n) the
group of all quaternionic isometries of H", the quaternionic unitary group. The
reason for its name is that Sp(n) = Sp(n,C) N U(2n), since we can decompose
the quaternionic hermitian form ( , ) into a complex hermitian one and a
complex symplectic one. Also we have Sp(n) C O(4n,R), since the real part of
( , ) is a positive definite real inner product. For A € Ly(H",H") we put
A* := A", Then we have (u, A(v)) = (A*(u),v), so (A(u), A(v)) = (A*A(u),v).
Thus A € Sp(n) if and only if A*A = Id.

Again f : Ly(H",H") — Ly perm (H*,H") = {A : A* = A}, given by f(A) =
A* A, is a smooth mapping with df (A)X = X*A+ A*X. So we have kerdf (Id) =
{X : X* = —-X} =: sp(n), the space of quaternionic skew hermitian matrices.
The usual proof shows that f has maximal rank on GL(n,H), so Sp(n) = f~1(Id)
is a compact real Lie group of dimension 2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and
real forms of the exceptional complex Lie groups exhaust all simple compact Lie
groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field £ on G is called left invariant, if pr¢ = ¢ for all a € G, where
pré =T(pg—1)0&ou, as in section 3. Since by 3.11 we have p*[€,n] = [pi, pinl,
the space X1 (G) of all left invariant vector fields on G is closed under the Lie
bracket, so it is a sub Lie algebra of X(G). Any left invariant vector field ¢
is uniquely determined by &(e) € T.G, since {(a) = Te(q)-£(e). Thus the Lie
algebra X1 (G) of left invariant vector fields is linearly isomorphic to T.G, and
on T.G the Lie bracket on X1, (G) induces a Lie algebra structure, whose bracket
is again denoted by [ , ]. This Lie algebra will be denoted as usual by g,
sometimes by Lie(G).
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We will also give a name to the isomorphism with the space of left invariant
vector fields: L: g — X1(G), X — Lx, where Lx(a) = Tepq.X. Thus [X,Y] =
[Lx, Ly] (6)

A vector field n on G is called right invariant, if (u®)*n = n for all a € G.
If £ is left invariant, then v*¢ is right invariant, since v o u® = p,-1 o v implies
that (40)""€ = (10 )€ = (oo 0 V)"€ = 1*(ig1)"€ = v*€. The right
invariant vector fields form a sub Lie algebra Xg(G) of X(G), which is again
linearly isomorphic to 7T.G and induces also a Lie algebra structure on T.G.
Since v* : X1(G) — Xg(G) is an isomorphism of Lie algebras by 3.11, T.v =
—1Id : T.G — T.G is an isomorphism between the two Lie algebra structures.
We will denote by R : g = T.G — Xgr(G) the isomorphism discussed, which is
given by Rx(a) = T.(pu*).X.

4.12. Lemma. If Lx is a left invariant vector field and Ry s a right invariant
one, then [Lx, Ry]| = 0. Thus the flows of Lx and Ry commute.

Proof. We consider the vector field 0x Lx € X(G x G), given by (0x Lx)(a,b) =
(0a, Lx(b)). Then T4 p)pt.(0a, Lx (b)) = Top’.0q + Topta-Lx(b) = Lx(ab), so
0 x Lx is p-related to Lx. Likewise Ry x 0 is p-related to Ry. But then
0 = [0 x Lx,Ry x 0] is p-related to [Lx, Ry] by 3.10. Since p is surjective,
[Lx,Ry] =0 follows. O

4.13. Let ¢ : G — H be a homomorphism of Lie groups, so for the time being
we require ¢ to be smooth.

Lemma. Then ¢’ :=T.p : g =T.G — b = T.H is a Lie algebra homomor-
phism.

Proof. For X € g and = € G we have

Top.Lx(x) =Trp.Tepry. X =Te(po pg). X
= Te(lflgo(:v) © @)-X = Te(ﬂtp(m))'TeQO-X = Ltp’ (X) (QO('T))

So Lx is p-related to L,/ (x). By 3.10 the field [Lx, Ly] = Lix,y] is o-related
80 [Lyr(x)s Lipr(v)] = Ligr(x),7 (1)1 So we have T'p o Lix,yy = Lipr (x),0' () © #-
If we evaluate this at e the result follows. [

Now we will determine the Lie algebras of all the examples given above.

4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R™,R™) =: gl(n,R)
and TGL(n,R) = GL(n,R) x L(R™,R") by the affine structure of the sur-
rounding vector space. For A € GL(n,R) we have pusa(B) = A.B, so pa
extends to a linear isomorphism of L(R™,R"), and for (B,X) € TGL(n,R)
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we get Tp(pa).(B,X) = (A.B,A.X). So the left invariant vector field Lx €
XL(GL(n,R)) is given by Lx(A) = T.(pa). X = (4, A.X).

Let f : GL(n,R) — R be the restriction of a linear functional on L(R™,R™).
Then we have Lx(f)(A) = df(A)(Lx(A)) = df(A)(A.X) = f(A.X), which we
may write as Lx(f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly]|(f) = Lx(Ly(f)) — Ly (Lx(f))
=Lx(f( .Y)—-Ly(f( .X)=f( XY)-f( YX)
= Lxy_vx(f).

So the Lie bracket on gl(n,R) = L(R™,R™) is given by [X,Y] = XY — Y X, the
usual commutator.

4.15. Example. Let V be a vector space. Then (V, +) is a Lie group, ToV =V
is its Lie algebra, TV = V xV, left translation is p, (w) = v4+w, Ty (). (w, X) =
(v+w,X). So Lx(v) = (v,X), a constant vector field. Thus the Lie bracket is
0.

4.16. Example. The special linear group is SL(n,R) = det '(1) and its Lie
algebra is given by T.SL(n,R) = kerddet(I) = {X € L(R",R") : trace X =
0} = sl(n,R) by 4.6. The injection ¢ : SL(n,R) — GL(n,R) is a smooth
homomorphism of Lie groups, so T.i = i : sl(n,R) — g[(n,R) is an injective
homomorphism of Lie algebras. Thus the Lie bracket is given by [X,Y] =
XY -YX.

The same argument gives the commutator as the Lie bracket in all other
examples we have treated. We have already determined the Lie algebras as T.G.

4.17. One parameter subgroups. Let G be a Lie group with Lie algebra g.
A one parameter subgroup of G is a Lie group homomorphism « : (R, +) — G,
i.e. a smooth curve a in G with a(s +t) = a(s).a(t), and hence «(0) = e.

Lemma. Let a:R — G be a smooth curve with «(0) =e. Let X € g. Then the
following assertions are equivalent.

(1) « is a one parameter subgroup with X =
(2) a(t) = F1¥X(t,e) for all t.
(3) a(t) = F1%% (t,e) for all t.
(4) z.oft) = FI¥*(t,2) , or FIFX = p*® | for all t .
(5) at).e =FI*¥(t,z) , or FIFX = la(t), for all t.

siloa(t

Proof. (1) => (4). We have Lz.a(t) = Lloz.a(t +s) = L|pz.a(t).als) =
Lot aty(s) = Te(Bag.a@w ) loa(s) = Lx (z.a(t)). By uniqueness of solutions

we get z.a(t) = FI¥X (¢, z).
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(4) = (2). This is clear.
(2) = (1). We have
La(t)als) = £ (Bawy@(s) = T (tae)) 1= (s)
~ T(pta) Lx(als)) = Lx(a(t)a(s)

and a(t)a(0) = a(t). So we get a(t)a(s) = FI¥¥ (s, a(t)) = FIEX FIFX(e) =
FIEX (t + s,e) = a(t + 5).
(4) <= (5). We have FI!" ¢ = =16 F1; ov by 3.14. Therefore we have by 4.11

(FIEX (z71)) "' = (v o FIEX op)(z) = FIV Bx (1)
= F1X¥ () = .o —1).

So F1% (z=1) = a(t).z~!, and FIF* (y) = a(t).y.
(5) = (3) = (1) can be shown in a similar way. [

An immediate consequence of the foregoing lemma is that left invariant and
right invariant vector fields on a Lie group are always complete, so they have
global flows, because a locally defined one parameter group can always be ex-
tended to a globally defined one by multiplying it up.

4.18. Definition. The exponential mapping exp : g — G of a Lie group is
defined by

exp X = F1¥¥(1,¢) = FI®¥(1,¢) = ax (1),
where ax is the one parameter subgroup of G with ax(0) = X.

Theorem.
(1) exp: g — G is smooth.
2) exp(tX) = F1X¥ (¢, e).
FIF* (¢, ) = z. exp(tX).
F17% (t,2) = exp(tX).x.
exp(0) = e and Toexp = Id : Tog = g — T.G = g, thus exp is a
diffeomorphism from a neighborhood of 0 in g onto a neighborhood of e
in G.

w
— — N

(
(
(4
(5

Proof. (1) Let 0 x L € X(g x G) be given by (0 x L)(X,z) = (0x, Lx(x)). Then
pro F1I°%L (£, (X, e)) = ax(t) is smooth in (¢, X).

(2) exp(tX) = FI"E¥(1,¢) = FIXX (¢, ) = ax(t).

(3) and (4) follow from lemma 4.17.

(5) Toexp.X = %|oexp(0+t.X) = %|0F1Lx(ta e)=X. O

Draft from November 17, 1997 Peter W. Michor, 4.18



4. Lie Groups I, 4.19 47

4.19. Remark. If G is connected and U C g is open with 0 € U, then the
group generated by exp(U) equals G.

For this group is a subgroup of G containing some open neighborhood of e,
so it is open. The complement in G is also open (as union of the other cosets),
so this subgroup is open and closed. Since G is connected, it coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the connected
component of e in G.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then the diagram

/

¥

g———b

exth Jepo

¥

G——H

commutes, since ¢t — @(exp(tX)) is a one parameter subgroup of H and
#lop(exp tX) = ¢/ (X), so p(exp® tX) = exp” (1¢'(X)).

If G is connected and ¢, : G — H are homomorphisms of Lie groups with
@ =1 : g — b, then ¢ = ). For ¢ = 1) on the subgroup generated by exp® g
which equals G by 4.19.

4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie groups
1s smooth. In particular a topological group can carry at most one compatible Lie
group structure.

Proof. Let first ¢ = a : (R,4+) — G be a continuous one parameter subgroup.
Then a(—¢,e) C exp(U), where U is an absolutely convex open neighborhood of
0 in g such that exp [ 2U is a diffeomorphism, for some € > 0. Put 3 := (exp |
2U) Yo : (—e,e) = g. Then for [t| < £ we have exp(203(t)) = exp(B(t))? =
a(t)? = a(2t) = exp(B(2t)), so 26(t) = B(2t); thus B(£) = 36(s) for |s| < e. So
we have a(%) = exp(3(%)) = exp(30(s)) for all |s| < € and by recursion we get
a(5) = exp(5:3(s)) forn € N and in turn (£ s) = a(Z)* = exp(£6(s))* =
exp(4%((s)) for k € Z. Since the £ for k € Z and n € N are dense in R and
since « is continuous we get a(ts) = exp(tf(s)) for all t € R. So « is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let Xy,...,X, be
a linear basis of g. We define a mapping ¢ : R* — G as ¢(t!,... ,t") =
exp(t'X1) - -exp(t"X,,). Then Tyt is invertible, so ¢ is a diffeomorphism near
0. Sometimes ! is called a coordinate system of the second kind. ¢ +
¢(exp® tX;) is a continuous one parameter subgroup of H, so it is smooth by
the first part of the proof.

Draft from November 17, 1997 Peter W. Michor, 4.21
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We have (p o )(t!,...,t") = (pexp(t!Xy))- - (pexp(t"X,,)), so p o1 is
smooth. Thus ¢ is smooth near e € G and consequently everywhere on G. [

4.22. Theorem. Let G and H be Lie groups (G separable is essential here),
and let ¢ : G — H be a continuous bijective homomorphism. Then ¢ is a
diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V' be an open
e-neighborhood in G, and let K be a compact e-neighborhood in G such that
K.K~! C V. Since G is separable there is a sequence (a;);en in G such that
G = ;2 a;-K. Since H is locally compact, it is a Baire space (V;, for i € N
open and dense implies (| V; dense). The set ¢(a;)@(K) is compact, thus closed.
Since H = |J, ¢(a;).¢(K), there is some 4 such that ¢(a;)p(K) has non empty
interior, so ¢(K) has non empty interior. Choose b € G such that ¢(b) is an
interior point of ¢(K) in H. Then ey = ¢(b)p(b~!) is an interior point of
o(K)p(K~') € (V). So if U is open in G and a € U, then ey is an interior
point of ¢(a™1U), so ¢(a) is in the interior of ¢(U). Thus ¢(U) is open in H,
and ¢ is a homeomorphism.
Now by 4.21 ¢ and ¢~! are smooth. [

4.23. Examples. We first describe the exponential mapping of the general
linear group GL(n,R). Let X € gl(n,R) = L(R",R"), then the left invari-
ant vector field is given by Lx(A) = (A4,A.X) € GL(n,R) x gl(n,R) and the
one parameter group ax(t) = FI¥¥(t,1) is given by the differential equation
Lax(t) = Lx(ax(t)) = ax(t).X, with initial condition ax(0) = I. But the

unique solution of this equation is ax(t) = e =327 Z—k!Xk. So
expPlmR)(X) = X = Sreo i XE

If n =1 we get the usual exponential mapping of one real variable. For all Lie
subgroups of GL(n,R), the exponential mapping is given by the same formula
exp(X) = eX; this follows from 4.20.

4.24. The adjoint representation. A representation of a Lie group G on a
finite dimensional vector space V' (real or complex) is a homomorphism p : G —
GL(V) of Lie groups. Then by 4.13 p' : g — gl(V) = L(V,V) is a Lie algebra
homomorphism.

For a € G we define conj, : G — G by conj,(z) = aza™l. Tt is called
the conjugation or the inner automorphism by a € G. We have conj,(zy) =
conj,(x) conj,(y), conj,, = conj, o conj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,)" = Te(conj,) : g —
g. By 4.13 Ad(a) is a Lie algebra homomorphism, so we have Ad(a)[X,Y] =
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[Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL(g) is a representation, called the
adjoint representation of GG, since

Ad(ab) = Tu(conj,y) = Tt (conj, o conjy)
= Te(conj,) o Te(conj,) = Ad(a) o Ad(b).

—1

The relations Ad(a) = Te(conj,) = T, (1 ).Te(pta) = Tafl(,ua).Te(,u“_l) will be

used later.

Finally we define the (lower case) adjoint representation of the Lie algebra g,
ad: g — gl(g) = L(g,g), by ad := Ad' = T, Ad.

Lemma.

(1) Lx(a) = Raq(a)x(a) for X € g and a € G.
(2) ad(X)Y =[X,Y] for X,Y €g.

Proof. (1). Lx(@) = T.(1a)-X = Tu(u).To(k® " © 1)-X = Ragiayx(a).
(2). Let Xy,...,X, be a linear basis of g and fix X € g. Then Ad(z)X =
Yo fi(z).X; for f; € C*(G,R) and we have in turn
Ad(YV)X = T(Ad( )X)Y = d(Ad( )XY = d(S fiX)|Y
= Sl (V)Xs = Ly (£)(0)- X
Lx(0) = g (&) = RS £ X)(0) = £ (o), () by (1),
[Ly, Lx] = [Ly, fi-Rx,] =0+ > Ly (fi).Rx, by 3.4 and 4.12.
Y, X]=[Ly,Lx](e) =Y. Ly(fi)(e).Rx,(e) = Ad (V)X = ad(Y)X. O

4.25. Corollary. From 4.20 and 4.23 we have

Adoexp® = exp®l® o ad
Ad(ezp®X)Y =) " & (ad X)FY = 2 Xy
k=0

=Y +[X, Y]+ [X, [ X, Y]]+ L[X, [X, [ X, Y]] + -

so that also ad(X) = 5 ‘OAd exp(tX)).

4.26. The right logarithmic derivative. Let M be a manifold and let f :
M — G be a smooth mapping into a Lie group G' with Lie algebra g. We define
the mapping 0f : TM — g by the formula §f(&,) = Tf(w)(uf(m)fl).Tmf.ém.
Then 0f is a g-valued 1-form on M, 6f € QY(M,g), as we will write later. We
call 6f the right logarithmic derivative of f, since for f : R — (RT,-) we have

0f(x).1 = L = (logof)' ().
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Lemma. Let f,g: M — G be smooth. Then we have

0(f-9)(x) = 0f(x) + Ad(f(x))-09(x).
Proof.

3(f.9)(x) = T(u#@ @) T, (f.9)
(1 (w)‘l) (g(m) ).
(1 ).

(=

(f(z),g9(x)) M- (T f7 :Eg)

T
( (1) To f + T(pif(a))-Te )
). O

T
T(pf @) 7@

0f (x) + Ad(f(x)).0g

Remark. The left logarithmic derivative 6 f € QY(M, g) of a smooth mapping
[+ M — G is given by 6" f.&, = T (p(e)-1) - Tof-&x- The corresponding
Leibnitz rule for it is uglier that that for the right logarithmic derivative:

0 (fg)(x) = 8" g(w) + Ad(g(x)7")8"" f ().

The form 6% (Idg) € Q(G;g) is also called the Maurer-Cartan form of the Lie
group G.

4.27. Lemma. Forexp:g— G and for g(z) := we have

5(exp)(X) = T(p™PCY) Ty exp = Y | oy (ad X)P = g(ad X).
p=0

Proof. We put M(X) = 0(exp)(X):g — g. Then

(s+t)M((s+t)X) = (s+t)d(exp)((s +t)X)
(exp((s+t) ))X by the chain rule,
(exp(s ).exp(t )).X

(exp(s )).X + Ad(exp(sX)).d(exp(t )).X by 4.26,
s.0(exp)(sX) + Ad(exp(sX)).t.d(exp)(tX)
= s.M(sX) + Ad(exp(sX)).t.M(tX).

]
]

Lol
(%)

Next we put N(t) := t.M(tX) € L(g,g), then we obtain N(s +t) = N(s) +
Ad(exp(sX)).N(t). We fix t, apply -L|y, and get N'(t) = N’(0) + ad(X).N(t),
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where N'(0) = M(0)+0 = d(exp)(0) = Idy. So we have the differential equation
N'(t) = Idg+ad(X).N(t) in L(g, g) with initial condition N(0) = 0. The unique
solution is

N(s) = Z ﬁ ad(X)P.sP*',  and so
p=0
5(exp)(X) = M(X) = N(1) = gy ad(X)?. O
p=0

4.28. Corollary. Tx exp is bijective if and only if no eigenvalue of ad(X) :
g — g is of the form /—12kx for k € Z\ {0}.

Proof. The zeros of g(z) = Lz_l are exactly z = \/—12kw for k € Z \ {0}. The
linear mapping T'x exp is bijective if and only if no eigenvalue of g(ad(X)) =
T (ue*P(=X)).Tx exp is 0. But the eigenvalues of g(ad(X)) are the images under
g of the eigenvalues of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.
Let G be a Lie group with Lie algebra g. For complex z near 1 we consider the

function f(z) := % = ano (;i)ln (z—1)™.

Then for X, Y near 0 in g we have exp X.expY = expC(X,Y), where

1
C(X,Y) :Y+/ flet 24X e 1Y) X dt
0

:X+Y+Z(n_i):/0 ( > ﬁ(adX)k(adYV) X dt

n>1 k,£>0
k+0>1

x4y +Y (=" 3 (ad X)* (ad V)" ... (ad X)F» (ad V)"

1, L (e o Dl Rl ]
0 050
ki+e;>

=X +Y+iX, Y]+ (X, [X,Y]] - [V, [V, X]) +- -

Proof. Let C(X,Y) :=exp~1(exp X.expY) for X, Y near 0 in g, and let C(t) :=
C(tX,Y). Then by 4.27 we have

T(ueXp(_C(t)))% (exp C(t)) = d(expoC)(t).1 = d exp(C(t)).C(t)
= S0 ik (ad CNEC) = glad C(0).CL0),
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where g(z) == &=L = > k>0 (szkl), We have expC(t) = exp(tX)expY and

z

exp(—C(t)) = exp(C(t)) ! = exp(=Y) exp(—tX), therefore
T(Mexp(—C(t)))% (expC(t)) = T(Mexp(—Y) exp(—tX))% (exp(tX)expY)
= T(pPCPNT (P EINT (1Y) & exp(tX)
= T(u™*")) Ry (exp(tX)) = X, by 4.18.4 and 4.11.
X = g(ad C(t)).C(t).
e € = Ad(exp C(t)) by 4.25
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(exp Y)

— ead(tX)'eadY — et.ad X.ea,d Y.

If X, Y, and t are small enough we get ad C(t) = log(et2d X.e2d Y where
log(z) =3",51 (=" (z — 1)™, thus we have

X = g(ad C(t)).C(t) = g(log(e* 2 X 21 Y)).C(¢).

For z near 1 we put f(z) := l‘;g_(i) = > .50 (;1_)1” (z — 1), which satisfies

g(log(z)).f(z) = 1. So we have
X = g(lOg(et'a‘d X.ea,d Y))C(t) — f(et.a,d X-ead Y)_I.C(t),
{ C(t) _ f(et.ad X pad Y).X,

) =Y

Passing to the definite integral we get the desired formula

C(X,Y) =C(1) = C(0) + /1 C(t) dt

1
:Y+/ feh»d X e ) X dt
0

:X+Y+Z(n_i):/0 <Z ﬁ(ad X)*(ad Y)£> X dt

n>1 k,£>0
k+£>1
(—1)™ (ad X))k (ad Y)* ... (ad X)k= (ad V)%
=X+Y + -— X
nz>:1n+1k1 =, (k14 4+ kn+ Dky! o kM 2!
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Remark. If G is a Lie group of differentiability class C2, then we may define
TG and the Lie bracket of vector fields. The proof above then makes sense
and the theorem shows, that in the chart given by exp~! the multiplication
p: G xG — G is C¥ near e, hence everywhere. So in this case G is a real
analytic Lie group. See also remark 5.6 below.

4.30. Example. The group SO(3,R). From 4.5 and 4.16 we know that the
Lie algebra o(3,R) of SO(3,R) is the space Lgkew(R3, R?) of all linear mappings
which are skew symmetric with respect to the inner product, with the commu-
tator as Lie bracket.

The group Sp(1) = S® of unit quaternions has as Lie algebra T;5% = 1+,
the space of imaginary quaternions, with the commutator of the quaternion
multiplications as bracket. From 4.10 we see that thisis [X,Y] =2X x Y.

Then we observe that the mapping

a:sp(1) = 0(3,R) = Lgew(R®, R?)
a(X)Y =2X xY

is an isomorphism of Lie algebras. Since S2 is simply connected we may conclude
that Sp(1) is the universal cover of SO(3).

We can also see this directly as follows: Consider the mapping 7: % C H —
SO(3,R) which is given by 7(P)X = PXP, where X € R x {0} C H is an
imaginary quaternion. It is clearly a homomorphism 7 : S — GL(3,R), and
since |[7(P)X| = |[PXP| = |X| and S? is connected it has values in SO(3,R).
The tangent mapping of 7 is computed as (T17.X)Y = XY1 + 1Y (—-X) =
2(X xY) = a(X)Y, which we already identified as an isomorphism. Thus 7
is a local diffeomorphism, the image of 7 is an open and compact (since S® is
compact) subgroup of SO(3,R), so 7 is surjective since SO(3,R) is connected.
The kernel of 7 is the set of all P € S% with PXP = X for all X € R?, that is
the intersection of the center of H with S3, the set {1,—1}. So 7 is a two sheeted
covering mapping.

So the universal cover of SO(3,R) is the group S® = Sp(1) = SU(2) =
Spin(3). Here Spin(n) is just a name for the universal cover of SO(n), and the
isomorphism Sp(1) = SU(2) is just given by the fact that the quaternions can
also be described as the set of all complex matrices

a b .
<—b a) ~al + bj.
The fundamental group 71 (SO(3,R)) = Zy = Z/27.
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4.31. Example. The group SO(4,R). We consider the smooth homomorphism
p:S3x83 = SO(4,R) given by p(P,Q)Z := PZQ in terms of multiplications of
quaternions. The derived mapping is p'(X,Y)Z = (T(1,1)p.(X,Y))Z = X Z1 +
1Z(-Y) = XZ—ZY, and its kernel consists of all pairs of imaginary quaternions
(X,Y) with XZ = ZY for all Z € H. If we put Z = 1 we get X =Y, then
X is in the center of H which intersects sp(1) in 0 only. So p’ is a Lie algebra
isomorphism since the dimensions are equal, and p is a local diffeomorphism. Its
image is open and closed in SO(4,R), so p is surjective, a covering mapping.
The kernel of p is easily seen to be {(1,1),(—1,—1)} C S® x S3. So the universal
cover of SO(4,R) is S x S3 = Sp(1) x Sp(1) = Spin(4), and the fundamental
group m1(SO(4,R)) = Z, again.
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5. Lie Groups II. Lie Subgroups
and Homogeneous Spaces

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a Lie
subgroup, if H is itself a Lie group (so it is separable) and the inclusioni : H — G
is smooth.

In this case the inclusion is even an immersion. For that it suffices to check
that T.i is injective: If X € b is in the kernel of T,i, then i o exp® (tX) =
exp?(t.T.i.X) = e. Since i is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in
the sense of 2.14: If Hy is the connected component of H, then i(Hy) is the Lie
subgroup of G generated by i’(h) C g, which is an initial submanifold, and this
is true for all components of H.

5.2. Theorem. Let G be a Lie group with Lie algebra g. If h C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie algebra
h. H s an initial submanifold.

Proof. Put E; = {T.(pz).X : X € b} C TpG. Then E := || o E; is a
distribution of constant rank on G, in the sense of 3.18. The set {Lx : X € h}
is an involutive set in the sense of 3.23 which spans E. So by theorem 3.25 the
distribution F is integrable and by theorem 3.22 the leaf H through e is an initial
submanifold. It is even a subgroup, since for x € H the initial submanifold p, H
is again a leaf (since E is left invariant) and intersects H (in x), so u,(H) = H.
Thus H.H = H and consequently H~! = H. The multiplication p: H x H — G
is smooth by restriction, and smooth as a mapping H x H — H, since H is an
initial submanifold, by lemma 2.17. [

5.3. Theorem. Let g be a finite dimensional real Lie algebra. Then there exists
a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [Jacobson, 1962, p??] or [Vara-
darajan, 1974, p 237]) g has a faithful (i.e. injective) representation on a finite
dimensional vector space V, i.e. g can be viewed as a Lie subalgebra of gl(V') =
L(V,V). By theorem 5.2 above there is a Lie subgroup G of GL(V) with g as
its Lie algebra. [

This is a rather involved proof, since the theorem of Ado needs the struc-
ture theory of Lie algebras for its proof. There are simpler proofs available,
starting from a neighborhood of e in G (a neighborhood of 0 in g with the
Baker-Campbell-Hausdorff formula 4.29 as multiplication) and extending it.
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5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b, re-
spectively. Let f : g — b be a homomorphism of Lie algebras. Then there is
a Lie group homomorphism ¢, locally defined near e, from G to H, such that
o' =Tep = f. If G is simply connected, then there is a globally defined homo-
morphism of Lie groups ¢ : G — H with this property.

Proof. Let € := graph(f) C gxh. Then ¢ is a Lie subalgebra of g x b, since f is a
homomorphism of Lie algebras. g x b is the Lie algebra of G x H, so by theorem
5.2 there is a connected Lie subgroup K C G x H with algebra £. We consider
the homomorphism g := pry owncl : K — G x H — GG, whose tangent mapping
satisfies Teg(X, f(X)) = T(c,eypr1.Teincl.(X, f(X)) = X, so is invertible. Thus
g is a local diffeomorphism, so g : K — Gy is a covering of the connected
component Gg of e in G. If GG is simply connected, ¢ is an isomorphism. Now we
consider the homomorphism v := pry oincl : K — G x H — H, whose tangent
mapping satisfies T,1.(X, f(X)) = f(X). We see that ¢ := o (g | U)~!:
G D U — H solves the problem, where U is an e-neighborhood in K such that
g | U is a diffeomorphism. If G is simply connected, ¢ = 9 o g~ ! is the global
solution. [

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is a Lie
subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset b := {¢/(0) : ¢ €
C*(R,G),c(R) C H,c(0) = e}.

Claim 1. h is a linear subspace.

If £,(0) € h and t; € R, we define c(t) := cy(t1.t).ca(ta.t). Then ¢(0) =
Tie,eypt-(t1.¢1(0),t2.¢5(0)) = t1.¢1(0) + t2.¢5(0) € b.

Claim 2. h ={X € g:exp(tX) € H for all t € R}.

Clearly we have ‘D’. To check the other inclusion, let X = ¢/(0) € b and consider
v(t) := (exp®)~'e(t) for small t. Then we have X = ¢/(0) = £y exp(v(t)) =
v'(0) = limp 00 n.v(). We put ¢, = £ and X,, = n.v(2), so that exp(t,.X,) =
exp(v(L)) = ¢(1) € H. By claim 3 below we then get exp(tX) € H for all ¢.
Claim 3. Let X,, - X in g, 0 < ¢, — 0 in R with exp(¢,X,,) € H. Then
exp(tX) € H for all t € R.

Let ¢ € R and take m,, € (i -1, i] NZ. Then t,,.m, — t and m,.t,.X, — tX,

and since H is closed we may conclude that

exp(tX) = limexp(my,.t,.X,) = limexp(¢,.X,)"" € H.

Claim 4. Let £ be a complementary linear subspace for f in g. Then there is
an open 0-neighborhood W in € such that exp(W) N H = {e}.
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If not there are 0 # Y € € with Y, — 0 such that exp(Y;) € H. Choose a
norm | |on gand let X,, =Y, /|Y,|. Passing to a subsequence we may assume
that X,, — X in ¢ then |X| = 1. But exp(|Y,|.X,) = exp(Y,) € H and
0 < |Y,| — 0, so by claim 3 we have exp(tX) € H for all £ € R. So by claim 2
X € b, a contradiction.

Claim 5. Put ¢ : h xt = G, ¢(X,Y) = expX.expY. Then there are 0-
neighborhoods V' in h, W in €, and an e-neighborhood U in G such that ¢ :
V x W — U is a diffeomorphism and U N H = exp(V).

Choose V', W, and U so small that ¢ becomes a diffeomorphism. By claim
4 W may be chosen so small that exp(W) N H = {e}. By claim 2 we have
exp(V) C HNU. Let x € HNU. Since z € U we have x = exp X.expY for
unique (X,Y) € V x W. Then z and exp X € H, so expY € H Nexp(W), thus
Y =0. Soxz=expX € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

(U,(p IV x W)~1 =: u) is a submanifold chart for H centered at e by claim 5.
For x € H the pair (p;(U),u 0 py—1) is a submanifold chart for H centered at
x. So H is a closed submanifold of G, and the multiplication is smooth since it
is a restriction. [J

5.6. Remark. The following stronger results on subgroups and the relation
between topological groups and Lie groups in general are available.

Any arc wise connected subgroup of a Lie group is a connected Lie subgroup,
[Yamabe, 1950].

Let G be a separable locally compact topological group. If it has an e-
neighborhood which does not contain a proper subgroup, then G is a Lie group.
This is the solution of the 5-th problem of Hilbert, see the book [Montgomery-
Zippin, 1955, p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but
it might be non separable. To indicate a proof of this statement, consider all
continuous curves ¢ : R — G with ¢(R) C H, and equip H with the final topology
with respect to them. Then the component of the identity satisfies the conditions
of the Gleason-Yamabe theorem cited above.

5.7. Let g be a Lie algebra. An ideal € in g is a linear subspace € such that
[¢,g] C €. Then the quotient space g/€ carries a unique Lie algebra structure
such that g — g/¢ is a Lie algebra homomorphism.

Lemma. A connected Lie subgroup H of a connected Lie group G is a normal
subgroup if and only if its Lie algebra b is an ideal in g.

Proof. H normal in G means tHx~! = conj,(H) C H for all x € G. By remark
4.20 this is equivalent to T,(conjy)(h) C b, i.e. Ad(xz)h C b, for all z € G. But
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this in turn is equivalent to ad(X)h C b for all X € g, so to the fact that b is an
ideal in g. [

5.8. Let G be a connected Lie group. If A C G is an arbitrary subset, the
centralizer of A in G is the closed subgroup Z4 := {z € G : za = ax for all a €
A}.

The Lie algebra 34 of Z4 consists of all X € g such that a.exp(tX).a™! =
exp(tX) for alla € A, ie. 340 ={X € g:Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G, then 34 = {X € g: ad(Y)X =
0 for all Y € a}. This set is also called the centralizer of a in g. If A = G then
Zg is called the center of G and 3¢ = {X € g:[X,Y]=0for all Y € g} is then
the center of the Lie algebra g.

5.9. The normalizer of a subset A of a connected Lie group G is the subgroup
Na={x € G: py(A)=p*(A)} ={z € G : conjy(A) = A}. If A is closed then
N4 is also closed.

If A is a connected Lie subgroup of G then Ny = {z € G : Ad(z)a C a} and
its Lie algebra is ng = {X € g:ad(X)a C a} is then the idealizer of a in g.

5.10. Group actions. A left action of a Lie group G on a manifold M is a
smooth mapping £ : G x M — M such that ¢, o £, = {5, and £, = Idys;, where
ly(2) =L(x,2).

A right action of a Lie group G on a manifold M is a smooth mapping r :
M x G — M such that r* o r¥ = r¥® and r® = Idys, where r*(z) = r(z, z).

A G-space is a manifold M together with a right or left action of G on M.

We will describe the following notions only for a left action of G on M. They
make sense also for right actions.

The orbit through z € M is the set G.z = £(G,z) C M. The action is called
transitive, if M is one orbit, i.e. for all z,w € M there is some g € G with
g.z = w. The action is called free, if g1.2 = g2.2z for some z € M implies already
g1 = g2- The action is called effective, if £, = £, implies x = y, i.e. if £ : G —
Diff (M) is injective, where Diff (M) denotes the group of all diffeomorphisms of
M.

More generally, a continuous transformation group of a topological space M
is a pair (G, M) where G is a topological group and where to each element x € G
there is given a homeomorphism ¢, of M such that £ : Gx M — M is continuous,
and £, ol = lgy,. The continuity is an obvious geometrical requirement, but
in accordance with the general observation that group properties often force
more regularity than explicitly postulated (cf. 5.6), differentiability follows in
many situations. So, if G is locally compact, M is a smooth or real analytic
manifold, all Z, are smooth or real analytic homeomorphisms and the action is
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effective, then G is a Lie group and £ is smooth or real analytic, respectively, see
[Montgomery, Zippin, 55, p. 212].

5.11. Homogeneous spaces. Let GG be a Lie group and let H C GG be a closed
subgroup. By theorem 5.5 H is a Lie subgroup of G. We denote by G/H the
space of all right cosets of G, i.e. G/H = {xH : x € G}. Let p: G - G/H
be the projection. We equip G/H with the quotient topology, i.e. U C G/H is
open if and only if p~*(U) is open in G. Since H is closed, G/H is a Hausdorff
space.

G/H is called a homogeneous space of G. We have a left action of G on G/H,
which is induced by the left translation and is given by ji,(zH) = zzH.

Theorem. If H is a closed subgroup of G, then there exists a unique structure
of a smooth manifold on G/H such that p : G — G/H is a submersion. So
dimG/H = dimG — dim H.

Proof. Surjective submersions have the universal property 2.4, thus the manifold
structure on G/H is unique, if it exists. Let h be the Lie algebra of the Lie
subgroup H. We choose a complementary linear subspace £ such that g =6 @ ¢.
Claim 1. We consider the mapping f : €x H — G, given by f(X, h) := exp X.h.
Then there is an open 0-neighborhood W in € and an open e-neighborhood U in
G such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theorem 5.5 there are open 0-neighborhoods V' in b,
W' in €, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’ is a
diffeomorphism, where p(X,Y) = exp X.exp Y, and such that U' N H =exp V.
Now we choose W in W’ C € so small that exp(W)~!.exp(W) C U’. We will
check that this W satisfies claim 1.

Claim 2. f | W x H is injective.

f(X1,h1) = f(X2,he) means exp X1.h; = exp Xs.ha, consequently we have
hohT' = (exp X)) texpX; € exp(W) Lexp(W)NH Cc U NH =expV. So
there is a unique Y € V with hoh7' = expY. But then ¢(X1,0) = exp X; =
exp X2.h2.h1_1 = exp Xs.expY = p(Xs,Y). Since ¢ is injective, X; = X5 and
YZO,SOhlth.

Claim 3. f | W x H is a local diffeomorphism.

The diagram

w s v LEXEP

' i

commutes, and Idy x exp and ¢ are diffeomorphisms. So f | W x (U' N H)
is a diffeomorphism. Since f(X,h) = f(X,e).h we conclude that f [ W x H
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is everywhere a local diffeomorphism. So finally claim 1 follows, where U =

f(W x H).
Now we put g :=po(exp | W): &€ D W — G/H. Then the following diagram
commutes: f

WxH-——U

| lp

w—29 . G/H.

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.
Clearly g is continuous, and g is open, since p is open. If g(X;) = g(X3) then
exp X1 = exp Xs.h for some h € H, so f(X1,e) = f(X2,h). By claim 1 we get
X1 = Xs, so g is injective. Finally g(W) = U, so claim 4 follows.

For a € G we consider U, = jiq(U) = a.U and the mapping u, := g 1o ji -1 :
U, > W Ce¢.
Claim 5. (U,,u, =g~ to fig—1 : Uy — W)aeg is a smooth atlas for G/H.
Let a, b € G such that U, N Uy, # 0. Then

Ug O ub_l =g tofig10ofpog:uy(U, NUy) = uq(U, NU)
=g~ ofig-popo (exp | W)
=gt opopg-1po0 (exp | W)

=priof topg-1p0(exp | W) issmooth. [

5.12. Let £ : G x M — M be a left action. Then we have partial mappings
ly: M — M and ¢* : G — M, given by £,(x) = {*(a) = £(a,z) = a.z.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by
CX( ) (g:v) X = T(e :v)£ (X 0 )
Lemma. In this situation the following assertions hold:

(1) ¢:g9— X(M) is a linear mapping.

(2) T:(fa)-Cx () = Cad(a)x (@-2).-
(3) Rx x 0pr € X(G x M) is L-related to (x € X(M).
(4)

[Cx,Cy] = —(ix,v1-

Proof. (1) is clear.
(2) We have £,£%(b) = abx = aba™tax = £%®conj,(b), so

Tw(ly).Cx () =Tp(Ly) Te(£7). X = Te(£y 0 £7). X
= Te(£*"). Ad(a).X = C(ad(a)x (az).
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(3) We have Lo (Id x £,) =Lo (u* x Id) : G x M — M, so

CX (ﬁ(av :U)) = T(e,am)g'(Xa Oaw) = Tﬂ([d X T(ga))'(Xa Om)
— T0(T(u") x 1d).(X,0,) = TE(Rx % 0r)(a, z).

(4) [RX X Opr, Ry X OM] = [Rx,Ry] X 0y = —R[ny] X Ops 1s f-related to
[Cx,Cy] by (3) and by 3.10. On the other hand —Rjx y] X 0as is /-related to
—(rx,y] by (3) again. Since £ is surjective we get [(x,Cy] = —(x,y]- O

5.13. Let r : M x G — M be a right action, so 7 : G — Diff (M) is a group
anti homomorphism. We will use the following notation: r* : M — M and
re : G — M, given by r;(a) = r%(z) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by
Cx( ) (T’m) X = T(m 6)1" (Om,X)

Lemma. In this situation the following assertions hold:

(1) ¢:g9— X(M) is a linear mapping.

(2) To(r")-Cx (#) = Caa@1)x(7-0)-

(3) O X Lx € %(M X G) is r-related to (x € X(M).
)

(4) [Cx.¢v] = O

5.14. Theorem. Let ¢ : G x M — M be a smooth left action. For x € M let

= {a € G : ax = x} be the isotropy subgroup of z in G, a closed subgroup
of G. Then £* : G — M factors over p: G — G /G, to an injective immersion
i* : G/Gy — M, which is G-equivariant, i.e. £, 00" = i" o iy for alla € G. The
image of 1% s the orbit through x.

The fundamental vector fields span an integrable distribution on M in the
sense of 3.20. Its leaves are the connected components of the orbits, and each
orbit is an initial submanifold.

Proof. Clearly ¢ factors over p to an injective mapping i* : G/G, — M; by
the universal property of surjective submersions ¢* is smooth, and obviously
it is equivariant. Thus Tp(a) (iw).Tp(e)(ﬂa) = Iyp(e) (Zw o ﬂa) = Iy(e) (fa o Zw) -
Ty (£a). Ty (%) for all a € G and it suffices to show that T}, (i) is injective.

Let X € g and consider its fundamental vector field (x € X(M). By 3.14 and
5.12.3 we have

U(exp(tX), ) = L(FIF¥ > (e, ) = FI;* (¢(e, 7)) = FI;™ (x).
So exp(tX) € Gw, ie. X € g,, if and only if (x(z) = 0,. In other words,
= (x(z) = Te(£"). X = Tpe)(i%).Tep. X if and only if Top. X =0 Thus *

is an immersion.

p(e)
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Since the connected components of the orbits are integral manifolds, the fun-
damental vector fields span an integrable distribution in the sense of 3.20; but
also the condition 3.25.2 is satisfied. So by theorem 3.22 each orbit is an initial
submanifold in the sense of 2.14. [

5.15. Semidirect products of Lie groups. Let H and K be two Lie groups
and let £ : H x K — K be a smooth left action of H in K such that each £, :
K — K is a group homomorphism. So the associated mapping {:H — Aut(K)
is a smooth homomorphism into the automorphism group of K. Then we can
introduce the following multiplication on K x H

(1) (k, h)(K', 1) := (ken(K'), BI).

It is easy to see that this defines a Lie group G = K x, H called the semidirect
product of H and K with respect to £. If the action £ is clear from the context we
write G = K x H only. The second projection prs : K x H — H is a surjective
smooth homomorphism with kernel K x {e}, and the insertion ins, : H — K x H,
ins.(h) = (e, h) is a smooth group homomorphism with pry o ins, = Idgy.
Conversely we consider an exact sequence of Lie groups and homomorphisms

2) {e} > K565 H- e}

So 7 is injective, p is surjective, and the kernel of p equals the image of j.
We suppose furthermore that the sequence splits, so that there is a smooth
homomorphism i : H — G with poi = Idg. Then the rule £;(k) = i(h)ki(h™!)
(where we suppress j) defines a left action of H on K by automorphisms. It
is easily seen that the mapping K xy; H — G given by (k,h) — ki(h) is an
isomorphism of Lie groups. So we see that semidirect products of Lie groups
correspond exactly to splitting short exact sequences.

5.16. The tangent group of a Lie group. Let G be a Lie group with
Lie algebra g. We will use the notation from 4.1. First note that TG is
also a Lie group with multiplication Ty and inversion Tv, given by (see 4.2)

-1
Tlapyb-(6as ) = Ta(p”) Lo + To(ta) 1o and Tov.&o = —To(pg—1)- Ta(p® ) &a-
Lemma. Via the isomomorphism Tp:gx G — TG, Tp.(X,g) = Te(p9).X, the
group structure on TG looks as follows: (X,a).(Y,b) = (X + Ad(a)Y,a.b) and
(X,a)"t = (= Ad(a™1)X,a™1). So TG is isomorphic to the semidirect product
g X G.
Proof. Tipyp.(Tp* X, TplY) = TpP Tp® X + Tpe Tpb.Y =

= Tu®. X + Tt Tps T  Tp,.Y = Tp*®(X + Ad(a)Y).
Tov.Tp® X = —Tp®  Tpe— . Tp* X = —Tp® . Ad(e=H)X. O
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Remark. In the left trivialisation TXA : G x g — TG, TA.(9,X) = Te(pg).X,
the semidirect product structure looks somewhat awkward: (a,X).(b,Y) =
(ab, Adb™H)X +Y) and (a,X) ! = (a7, — Ad(a)X).
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6. Vector Bundles

6.1. Vector bundles. Let p : E — M be a smooth mapping between mani-
folds. By a wvector bundle chart on (E,p, M) we mean a pair (U,1), where U is
an open subset in M and where v is a fiber respecting diffeomorphism as in the
following diagram:

UxV

Here V is a fixed finite dimensional vector space, called the standard fiber or the
typical fiber, real for the moment.

Two vector bundle charts (Uy, 1) and (Us, t2) are called compatible, if 1)1 o
¥y ! is a fiber linear isomorphism, i.e. (11 0 95 ) (w,v) = (,v1.2(x)v) for some
mapping 11 2 : Uy 2 := Uy NUz — GL(V). The mapping ¢ 2 is then unique and
smooth, and it is called the transition function between the two vector bundle
charts.

A wvector bundle atlas (Uy, a)aca for (E, p, M) is a set of pairwise compatible
vector bundle charts (U, 1) such that (Uy)aeca is an open cover of M. Two
vector bundle atlases are called equivalent, if their union is again a vector bundle
atlas.

A wvector bundle (E,p, M) consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E — M (the projection) together with an
equivalence class of vector bundle atlases: So we must know at least one vector
bundle atlas. p turns out to be a surjective submersion.

6.2. Let us fix a vector bundle (E,p, M) for the moment. On each fiber E, :=
p~L(z) (for z € M) there is a unique structure of a real vector space, induced
from any vector bundle chart (U,,s) with z € U,. So 0, € E, is a special
element and 0 : M — FE, 0(z) = 0,, is a smooth mapping, the zero section.

A section u of (E,p, M) is a smooth mapping u : M — E with pou = Id),.
The support of the section u is the closure of the set {z € M : u(z) # 0.} in
M. The space of all smooth sections of the bundle (E,p, M) will be denoted by
either C°(F) = C*(FE,p,M) = C>(E — M). Clearly it is a vector space with
fiber wise addition and scalar multiplication.

If (Uy,®a)aca is a vector bundle atlas for (E, p, M), then any smooth map-
ping fo : Uy, — V (the standard fiber) defines a local section = — ¢ (z, fo(z))
on Uy. If (ga)aca is a partition of unity subordinated to (U,), then a global
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section can be formed by z — Y ga(z) - 31 (2, fa(z)). So a smooth vector
bundle has ‘many’ smooth sections.

6.3. We will now give a formal description of the amount of vector bundles with
fixed base M and fixed standard fiber V.

Let us first fix an open cover (Uy)aca of M. If (E,p, M) is a vector bundle
which admits a vector bundle atlas (U,, 1) with the given open cover, then
we have 9, o wgl(m,v) = (x,Yqap(x)v) for transition functions ¢ag : Uyp =
UaNUg — GL(V'), which are smooth. This family of transition functions satisfies

0 Yap () - Ypy(x) = Pay(z) for each z € Uygy = Uy NUgN U,
Yaa(x) =€  forall z € U,

Condition (1) is called a cocycle condition and thus we call the family (1)) the
cocycle of transition functions for the vector bundle atlas (U, ¥4 ).

Let us suppose now that the same vector bundle (F,p, M) is described by an
equivalent vector bundle atlas (Uy, ¢,) with the same open cover (U,). Then
the vector bundle charts (U, %) and (U, @) are compatible for each «, so
Yo o Y51 (x,v) = (2, 74(x)v) for some 7, : U, — GL(V). But then we have

(, Ta(@)ap()0) = (Pa 0 3 ") (@, Yap(w)v)
Yo 05t 0 the 05 ) (@, 0) = (a0 P T) (@, 0)
Yo © @ 0 g 0Py ) (T, 0) = (T, pap(x)Ts(2)0).

= ( P
= ( P

So we get

(2) To(2)Vap(x) = pap(z)T3(x) for all z € Uyg.

We say that the two cocycles (1o5) and (¢ag) of transition functions over
the cover (U,) are cohomologous. The cohomology classes of cocycles (¢qag)
over the open cover (U,) (where we identify cohomologous ones) form a set
H'((Uy,),GL(V)) the first Cech cohomology set of the open cover (U,) with
values in the sheaf C*°( ,GL(V)) =: GL(V).

Now let (W;)icr be an open cover of M that refines (U,) with W; C U,
where ¢ : I — A is some refinement mapping, then for any cocycle (¢n3) over
(Ua) we define the cocycle e* (va5) =: (i;) by the prescription @;; := .y o(j) |
Wi;;. The mapping €* respects the cohomology relations and induces therefore
a mapping ¢t : H'((Uy),GL(V)) — H'Y((W;),GL(V)). One can show that
the mapping €* depends on the choice of the refinement mapping ¢ only up to
cohomology (use 7; = Y(i),nq) | Wi if € and 7 are two refinement mappings), so
we may form the inductive limit lim H*(U,GL(V)) =: H'(M,GL(V)) over all
open covers of M directed by refinement.

Draft from November 17, 1997 Peter W. Michor, 6.3



66 6. Vector Bundles, 6.4

Theorem. There is a bijective correspondence between H'(M,GL(V)) and the
set of all isomorphism classes of vector bundles over M with typical fiber V.

Proof. Let (1ap) be a cocycle of transition functions 1,z : Usg — GL(V') over
some open cover (U,) of M. We consider the disjoint union | |, 4{a} x Uy x V/
and the following relation on it: («,z,v) ~ (5,y,w) if and only if x = y and
VYpa(z)v = W.

By the cocycle property (1) of (o) this is an equivalence relation. The space
of all equivalence classes is denoted by E' = V B(1,3) and it is equipped with the
quotient topology. We put p: E — M, p[(«a, z,v)] = x, and we define the vector
bundle charts (Uy, o) by Yul(a, z,v)] = (z,v), o : p71(Us) =t E | Uy —
Uax V. Then the mapping 14015 *(, v) = ¢al(B, 3, 0)] = al(@ 3, ag(x)0)] =
(@, ap(x)v) is smooth, so E becomes a smooth manifold. E is Hausdorff: let
u # v in Ej; if p(u) # p(v) we can separate them in M and take the inverse image
under p; if p(u) = p(v), we can separate them in one chart. So (E,p, M) is a
vector bundle.

Now suppose that we have two cocycles (¢og) over (Uy), and (¢;;) over (V;).
Then there is a common refinement (W,) for the two covers (U,) and (V;).
The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a finer open cover. So we may assume that (¢ag3)
and (pqp) are cocycles over the same open cover (U,). If the two cocycles are
cohomologous, S0 Ty - ag = Yag - T 00 Uyg, then a fiber linear diffeomorphism
T : VB(Yap) = VB(pag) is given by oo 7[(cr, ,v)] = (2, 7o (x)v). By relation (2)
this is well defined, so the vector bundles V B(1o3) and V B(¢4p) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. [

Remark. If GL(V) is an abelian group (only if V' is of real or complex dimension
1), then HY(M,GL(V)) is a usual cohomology group with coefficients in the
sheaf GL(V') and it can be computed with the methods of algebraic topology. If
GL(V) is not abelian, then the situation is rather mysterious: there is no clear
definition for H?(M,GL(V)) for example. So H*(M,GL(V')) is more a notation
than a mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the concept
of topological K-theory, which can be handled much better, but is only a quotient
of the real situation.

6.4. Let (Uy,1%4) be a vector bundle atlas on a vector bundle (E,p, M). Let
(ej);?:1 be a basis of the standard fiber V. We consider the section s;(z) :=
Yot (z,e;) for € U,. Then the s; : U, — E are local sections of E such that
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(sj(a:));?:1 is a basis of F, for each z € U,: we say that s = (s1,...,5k) is a
local frame field for E over U,.

Now let conversely U C M be an open set and let s; : U — E be local
sections of E such that s = (s1,...,sg) is a local frame field of E over U. Then s
determines a unique vector bundle chart (U, ¢) of E such that s;(z) = ¢~ (z, ¢;),
in the following way. We define f : U x R¥ — E | U by f(z,v!,...,o%) :=
Z?:l v/s;(x). Then f is smooth, invertible, and a fiber linear isomorphism, so
(U, = f~1) is the vector bundle chart promised above.

6.5. Let (F,p, M) and (F,q,N) be vector bundles. A vector bundle homomor-
phism ¢ : E — F is a fiber respecting, fiber linear smooth mapping

¥

E———F

plwtq

M ———— N.

So we require that ¢, : Fy — Fy(,) is linear. We say that ¢ covers ¢. If ¢ is

invertible, it is called a vector bundle isomorphism.

6.6. A vector sub bundle (F,p, M) of a vector bundle (E, p, M) is a vector bundle
and a vector bundle homomorphism 7 : F' — E, which covers Idjs, such that
T. : B — F, is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p,M) — (E’,q,N) be a vector bundle homomorphism

such that rank(p, : E, — E;(w)) is constant in x € M. Then ker @, given by

(ker ) = ker(py), is a vector sub bundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are trivial:
let £ = M xRP and let F = N x R?, then p(z,v) = (p(z),9(x).v), where
®: M — L(RP,R7). The matrix @(x) has rank k, so by the elimination procedure
we can find p—k linearly independent solutions v;(z) of the equation @(z).v = 0.
The elimination procedure (with the same lines) gives solutions v;(y) for y near
x, so near x we get a local frame field v = (v1,...,v,_k) for ker p. By 6.4 ker ¢
is then a vector sub bundle. [J

6.7. Constructions with vector bundles. Let F be a covariant functor from
the category of finite dimensional vector spaces and linear mappings into itself,
such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F will be called a
smooth functor for shortness sake. Well known examples of smooth functors are
F(V) = A¥(V) (the k-th exterior power), or F(V) = ®" V', and the like.
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If (F,p, M) is a vector bundle, described by a vector bundle atlas with cocycle
of transition functions pag : Usg — GL(V'), where (U,) is an open cover of M,
then we may consider the smooth functions F(pag) : © — F(vap(z)), Usp —
GL(F(V)). Since F is a covariant functor, F(p,p) satisfies again the cocycle
condition 6.3.1, and cohomology of cocycles 6.3.2 is respected, so there exists
a unique vector bundle (F(E) := VB(F(¢ap)),p, M), the value at the vector
bundle (E,p, M) of the canonical extension of the functor F to the category of
vector bundles and their homomorphisms.

If F is a contravariant smooth functor like duality functor F (V) = V*, then
we have to consider the new cocycle }"(90;5) instead of F(@ap)-

If F is a contra-covariant smooth bifunctor like L(V, W), then the construction
F(VB(ap),VB(pap)) = VB(}"(i/);é, ¢ap)) describes the induced canonical

vector bundle construction, and similarly in other constructions.

So for vector bundles (F,p, M) and (F,q, M) we have the following vector
bundles with base M: A*E, E@® F, E*, AE = @,-,A*E, E® F, L(E, F) =
E*® F, and so on. B

6.8. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and let
f: N — M be smooth. Then the pullback vector bundle (f*FE, f*p, N) with the
same typical fiber and a vector bundle homomorphism

p*f

fE——

.

f

N———M

is defined as follows. Let E be described by a cocycle (¢43) of transition functions
over an open cover (Uy) of M, E = VB(143). Then (145 o f) is a cocycle of
transition functions over the open cover (f~1(U,)) of N and the bundle is given
by f*E :=VB(¢qpo f). As a manifold we have f*E =N x F in the sense

(f,.M,p)
of 2.19.

The vector bundle f*E has the following universal property: For any vector
bundle (F,q, P), vector bundle homomorphism ¢ : FF — FE and smooth g :
P — N such that fog = ¢, there is a unique vector bundle homomorphism
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Y : F — f*E with ¢ = g and p*f o) = ¢.

F ' 4
X
q f*ELE
lf*p p

P—9% v .u
6.9. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, where dim M = m. Let
(Uas¥a)aca be a vector bundle atlas. Since M is separable, by topological
dimension theory there is a refinement of the open cover (Uy)aeca of the form
(Vij)i=1,....m+1;jen, such that V;; N Vi, = 0 for j # k, see the remarks at the end
of 1.1. We define the set W; := UjeN Vij (a disjoint union) and ¢; [ Vij = ¥ai j),
where a: {1,...,m + 1} x N — A is a refining map. Then (W, 1;)i=1,....m+1 18
a finite vector bundle atlas of . [

6.10. Theorem. For any vector bundle (E,p, M) there is a second vector bun-
dle (F,p, M) such that (E @& F,p, M) is a trivial vector bundle, i.e. isomorphic
to M x RN for some N € N.

Proof. Let (U;,v;)?_, be a finite vector bundle atlas for (E,p, M). Let (g;)
be a smooth partition of unity subordinated to the open cover (U;). Let ¢; :
RF — (RF)" = R* x --- x R* be the embedding on the i-th factor, where
RF is the typical fiber of E. Let us define ¢ : E — M x R™ by o(u) =
(p(u), >0, gi(p(u)) (¢; o pro o th;)(u)), then ¢ is smooth, fiber linear, and an
embedding on each fiber, so E is a vector sub bundle of M x R™ via 1. Now

we define F,, = E- in {z} x R"® with respect to the standard inner product on
R™ . Then F — M is a vector bundle and E® F = M x R**, O

6.11. The tangent bundle of a vector bundle. Let (E,p, M) be a vector
bundle with fiber addition +g : F Xy F — FE and fiber scalar multiplication
mEF : E — E. Then (TE,rg, E), the tangent bundle of the manifold E, is itself
a vector bundle, with fiber addition denoted by +rg and scalar multiplication
denoted by mI'®.

If (Uyyto: E | Uy — Uy X V)qea is a vector bundle atlas for E, such that
(Uq, uq) is also a manifold atlas for M, then (E [ Uy, Y., )aca is an atlas for the
manifold E, where

YL i= (ug X Idy) o tpy : E [ Uy = Uy XV = ug(Uy) x VCR™ x V.

«
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Hence the family (T(E | Uy), T, : T(E [ Uy) — T(ua(Uy) X V) = ua(Uy) X
V X R™ X V)aea is the atlas describing the canonical vector bundle structure of
(TE, g, E). The transition functions are in turn:

(a0t ") (@, 0) = (&, Pap(x)v)  for z € Unp
(ta 0 ug")(y) = uap(y) for y € ug(Uag)
(Pn 0 (¥5) ) (Y, v) = (uap(y), Yap(uz' (y))v)
(T 0 T(Wp) ™) (5, v w) = (uap(y), Yap(ug' (4))v; d(uap) (W)E,
(d(tap 0 ug ) 1))V + Yap(uz ' (y))w).

So we see that for fixed (y,v) the transition functions are linear in (§, w) € R™ x
V. This describes the vector bundle structure of the tangent bundle (TE, 7g, E).

For fixed (y, ) the transition functions of TE are also linear in (v, w) € VX V.
This gives a vector bundle structure on (TE, Tp,TM). Its fiber addition will be
denoted by T'(+g) : T(FE Xy E) = TE xpp TE — TE, since it is the tangent
mapping of +x. Likewise its scalar multiplication will be denoted by T'(mf).
One may say that the second vector bundle structure on TE, that one over T'M,
is the derivative of the original one on F.

The space {E € TE : Tp.2=01in TM} = (Tp)~'(0) is denoted by VE and is
called the vertical bundle over E. The local form of a vertical vector = is Ty, .E =
(y,v;0,w), so the transition function looks like (T4, o T(¢p) ") (y, v;0,w) =
(uag(y),i/)ag(ugl(y))v; O,Q/)ag(ugl(y))w). They are linear in (v,w) € V x V for
fixed y, so VE is a vector bundle over M. It coincides with 0%,(TE,Tp,TM),
the pullback of the bundle TE — T M over the zero section. We have a canonical
isomorphism vlg : Ex ) E — VE,| called the vertical lift, given by vlg(uy, v;) :=
4 |o(ug + tvg), which is fiber linear over M. The local representation of the
vertical lift is (T4, ovlg o (!, x ¥') ") ((y,u), (y,v)) = (y,u;0,v).

If (and only if) ¢ : (F,p, M) — (F,q,N) is a vector bundle homomorphism,
then we have vipo(p Xy ) = Tpovlg : ExXyE — VF C TF. So vl is a natural
transformation between certain functors on the category of vector bundles and
their homomorphisms.

The mapping vprg := pry o vllgl : VE — FE is called the wvertical projection.
Note also the relation pry o fulgl =7g [ VE.

6.12. The second tangent bundle of a manifold. All of 6.11 is valid
for the second tangent bundle T?M = TTM of a manifold, but here we have

one more natural structure at our disposal. The canonical flip or involution
kar 2 T2 M — T?M is defined locally by

(T?uo kipr o T?u™) (2,60, ) = (2,15 €,C),
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where (U, u) is a chart on M. Clearly this definition is invariant under changes
of charts.

The flip ks has the following properties:

(1) ky oT?f =T?f ok for each f € C°(M,N).

(2) T(wpm) ok = Trum-

(3) T O K = T(mar)-

(4) Ky = K-

(5) ks is a linear isomorphism from the bundle (TTM, T (wp), TM) to the
bundle (TTM, wry, TM), so it interchanges the two vector bundle struc-
tures on TT'M.

(6) It is the unique smooth rnapping TTM — TTM which satisfies the

equation 2 2c(t,s) = k2 2c(t, s) for each ¢ : R — M.

All this follows from the local formula given above.

6.13. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =wvprrpro(TY o X —kppoTX0Y).

We will give global proofs of this result later on: the first one is 6.19.

Proof. We prove this locally, so we may assume that M is open in R™, X (x) =
(x, X(x)), and Y (z) = (z,Y(x)). Then by 3.4 we have

(X,Y](z) = (z,dY (2).X (2) — dX (2).Y (2)),
and thus

vprrp o (TY o X —kppoTX oY) (x) =
= vprrar o (TY.(z, X (7)) — kpyr o TX.(2,Y (7)) =
= vprry (2, Y (2); X (z),dY (z). X (z))—
— km((z, X (2);Y (), dX (2).Y (7)) =
= vprrar(z, Y (x);0, —dX(z).Y (x)) =
= (2,dY (z).X(z) — dX (z).Y(z)). O

oW
=
N
~ '><|
>
E/

6.14. Natural vector bundles or vector bundle functors. Let Mf,, de-
note the category of all m-dimensional smooth manifolds and local diffeomor-
phisms (i.e. immersions) between them. A wvector bundle functor or natural
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vector bundle is a functor F' which associates a vector bundle (F' (M), par, M) to
each m-manifold M and a vector bundle homomorphism

F(M) MF(N)
th JPN
f

M— N

to each f : M — N in Mf,,, which covers f and is fiberwise a linear iso-
morphism. We also require that for smooth f : R x M — N the mapping
(t,z) — F(f:)(z) is also smooth R x F(M) — F(N). We will say that F' maps
smoothly parametrized families to smoothly parametrized families.

Examples. 1. T'M, the tangent bundle. This is even a functor on the category
Mf.

2. T* M, the cotangent bundle, where by 6.7 the action on morphisms is given
by (T*f)s := (Tpf)~Y)* : T/ M — T} N This functor is defined on M fm,
only.

3. ART*M, AT*M = @, A*T*M.

4. T*'MOQ TM =T*M @ - @ T*M @ TM & - -- ® TM, where the
action on morphisms involves T'f ~! in the T*M-parts and T'f in the T'M-parts.

5. F(TM), where F is any smooth functor on the category of finite dimen-
sional vector spaces and linear mappings, as in 6.7.

6.15. Lie derivative. Let F' be a vector bundle functor on M f,, as described
in 6.14. Let M be a manifold and let X € X(M) be a vector field on M. Then
the flow Flg( , for fixed t, is a diffeomorphism defined on an open subset of M,
which we do not specify. The mapping

F(M) M F(M)
th JPM
FL*

M———— M

is then a vector bundle isomorphism, defined over an open subset of M.
We consider a section s € C*°(F(M)) of the vector bundle (F(M),pn, M)
and we define for t € R

FIX)*s := F(F1X,) 0 s o FIX,
t t t
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a local section of the bundle F(M). For each z € M the value ((FLX)*s)(z) €
F(M), is defined, if ¢ is small enough. So in the vector space F(M), the
expression %|0((Flf( )*s)(x) makes sense and therefore the section

dlo(F11)"s

is globally defined and is an element of C*°(F(M)). 1t is called the Lie derivative
of s along X.

ﬁXs =

Lemma. In this situation we have
(1) (FES)*(FI1X)*s = (Flfi,,) s, whenever defined.
(2) L(FL)*s = (FY)*Lxs = Lx(FL)*s, so
[Lx, (FL)*] := Lx o (FIX)* — (FIX)* o Lx = 0, whenever defined.
(3) (FIX)*s = s for all relevant t if and only if Lxs = 0.
Proof. (1) is clear. (2) is seen by the following computations.
4 (F1)*s = d| (FLX)*(FI)*s = Lx (FI)*s
%((Flf() $)(x) = 4= lo(FI)*(FIY)*s) ()
= 4|,F(FI,)(F(FI%,) o s o FIX)(FL* (z))
= F(F1%,) L |o(F(FI%,) o s o FIX)(FL* (z))
= ((F")*Lxs)(z),
since F(FIX,) : F(M)gyx gy — F(M), is linear.
(3) follows from (2). O

6.16. Let Fy, Fy be two vector bundle functors on Mf,,. Then the tensor
product (Fy ® F3)(M) := F1(M) ® F5(M) is again a vector bundle functor and
for s; € C°(F;(M)) there is a section s; ® sg € C®°((F; ® F)(M)), given by
the pointwise tensor product.

Lemma. In this situation, for X € X(M) we have
Lx(s1®s2) =Lxs1 ® 3+ 51 ® LxSa.
In particular, for f € C°(M,R) we have Lx(fs) =df(X)s+ fLxs.
Proof. Using the bilinearity of the tensor product we have
Lx(s1©52) = &]o(FI;)*(s1 © 52)

= Zlo((FI7)*s1 ® (FI;')*s2)

= H1o(FI)*s1 @ 52 + 51 ® 4 |0 (FI7 )52
Lx51® 52+ 51 LxSe. 0O

Draft from November 17, 1997 Peter W. Michor, 6.16



74 6. Vector Bundles, 6.17

6.17. Let ¢ : F} — F5 be a linear natural transformation between vector bun-
dle functors on M f,,. So for each M € MFf,, we have a vector bundle ho-
momorphism ¢y @ Fy(M) — Fs(M) covering the identity on M, such that
Fs(f)opm = on o Fi(f) holds for any f: M — N in Mf,,.

Lemma. In this situation, for s € C®(Fy(M)) and X € X(M), we have
Lx(pms) =ou(Lxs).

Proof. Since ¢y is fiber linear and natural we can compute as follows.

Lx(par s)(@) = £lo(FIF)* (o ))(x)
= 4|y(Fa(F1%,) 0 opr 0 s 0 FIT ) ()
= o 0 &o(FL(FIY,) 0 50 FIY ) ()
= (oM Lxs)(z). O

6.18. A tensor field of type (2) is a smooth section of the natural bundle
QRIT*M @ Q" TM. For such tensor fields, by 6.15 the Lie derivative along
any vector field is defined, by 6.16 it is a derivation with respect to the tensor
product, and by 6.17 it commutes with any kind of contraction or ‘permutation
of the indices’. For functions and vector fields the Lie derivative was already
defined in section 3.

6.19. Let F be a vector bundle functor on Mf,, and let X € X(M) be a
vector field. We consider the local vector bundle homomorphism F(FL) on
F(M). Since F(FI) o F(FI)) = F(FL.,) and F(FIY) = Idp( we have
4 pEFLY) = L],FFIX) o F(FIY) = XT o F(FIY), so we get F(FIX) = FIX
where X% = %|0F(F1§) € X(F(M)) is a vector field on F(M), which is called
the flow prolongation or the natural lift of X to F(M).

Lemma.

(1) XT = KJMOTX.

(2) [X,Y]" =[x, Y7

(3) XF: (F(M),pp, M) — (TF(M),T(pr), TM) is a vector bundle homo-
morphism for the T'(+)-structure.

(4) For s € C*°(F(M)) and X € X(M) we have
Lxs=uvprpmry(Tso X — XFos).

(5) Lxs is linear in X and s.
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Proof. (1) is an easy computation. F(FLY) is fiber linear and this implies (3).
(4) is seen as follows:

(Lxs)(z) = L|o(F(FIY,) 0 s o FIY)(z) in F(M),
= vprpon (Lo (F(FIX,) 0 s o FIY ) (2) in VF(M))
= oprrn (—X" 0 s o FI) () + T(F(FI))) 0 T's 0 X (x))
= vprpy(Tso X — XFos)(x).

(5). Lxs is homogeneous of degree 1 in X by formula (4), and it is smooth as a
mapping X(M) — C°(F(M)), so it is linear. See [Frolicher, Kriegl, 88] for the
convenient calculus in infinite dimensions.

(2). Note first that F' induces a smooth mapping between appropriate spaces
of local diffeomorphisms which are infinite dimensional manifolds (see [Kriegl,
Michor, 91]). By 3.16 we have

0= 2| (FI¥,oFI¥, o FI} o FIJ),
(X, Y] = 1.2, (F1Y, o FIX, o FIY o FIX)
X,Y]
- E‘o )

Applying F' to these curves (of local diffeomorphisms) we get

0= 2|, (FIY, o FI¥, oFlY " o FIX"),
(XE YF) = 12| (FIY, oFI%, oF1) oFIX")
= L F(FIY, o FI¥, o FI o FLY)

XY
=2 FELYY =[x, v)F.

O

6.20. Theorem. For any vector bundle functor F on Mf,, and X,Y € X(M)
we have

[ﬁx,ﬁy] = EX Oﬁy — ﬁy OEX = ,C[X,y] : COO(F(M)) — COO(F(M))

So L:X(M)— EndC>™(F(M)) is a Lie algebra homomorphism.
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7. Differential Forms

7.1. The cotangent bundle of a manifold M is the vector bundle T*M := (T'M)*,
the (real) dual of the tangent bundle.
If (U,u) is a chart on M, then (2; =2 is the associated frame field

Julr 0 Pum
over U of TM. Since 52;|,(u?) = dui (32 |,) = 6] we see that (dul,... du™) is

ou?
the dual frame field on T*M over U. It is also called a holonomous frame field.

A section of T*M is also called a 1-form.

7.2. According to 6.18 a tensor field of type (2) on a manifold M is a smooth
section of the vector bundle

p times q times

— —
®TM®®T*M TM® - @TM QT*M® -+ @ T*M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u) is a
chart on M, we have the holonomous frame field

(52 ® 525 ® -

ou'l ou'2

.. J
® ®du q)ie{l,...,m}P,jE{l,---am}q

over U of this tensor bundle, and for any ( ) tensor field A we have

A|U= ZA“ p @2 @dut ® - @ dul,

J1.---Jq aull 8u’1’

The coefficients have p indices up and ¢ indices down, they are smooth functions
on U. From a categorical point of view one should look, where the indices of the
frame field are, but this convention here has a long tradition.

7.3. Lemma. Let ® : X(M) x --- x X(M) = X(M)¥ — C°(®"'TM) be a
mapping which is k-linear over C*°(M,R) then ® is given by the action of a
(,lc) -tensor field.

Proof. For simplicity’s sake we put k =1, £ =0, s0 ® : X(M) — C>*(M,R) is a
C*° (M, R)-linear mapping: ®(f.X) = f.®(X).

CramMm 1. If X | U = 0 for some open subset U C M, then we have ®(X) |
U=0.
Let x € U. We choose f € C°(M,R) with f(z) =0and f | M\ U = 1. Then
[X=X,5®X)(z)=2(fX)(z) = f(z).®(X)(z) =0.

CLAM 2. If X (z) = 0 then also ®(X)(z) = 0.
Let (U,u) be a chart centered at z, let V be open with z € V € V C U. Then
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X|U=Y X2 and X*(z) = 0. We choose g € C*°(M,R) with g | V =1 and
suppg C U. Then (¢2.X) |V = X | V and by claim 1 ®(X) | V depends only on
X |V and g2.X = 3,(9.X%)(9.52) is a decomposition which is globally defined
on M. Therefore we have ®(X)(z) = ®(¢%.X)(z) = @ (3 ;(9-X")(9-52)) (z) =
5(9-X) (2)-B(g. 22 () = 0.

So we see that for a general vector field X the value ®(X)(x) depends only
on the value X (x), for each x € M. So there is a linear map ¢, : T, M — R for
each x € M with ®(X)(z) = ¢, (X(x)). Then ¢ : M — T*M is smooth since

|l V=> @(g.aii) du® in the setting of claim 2. O

7.4. Definition. A differential form of degree k or a k-form for short is a
section of the (natural) vector bundle A*T*M. The space of all k-forms will be
denoted by QF(M). It may also be viewed as the space of all skew symmetric
(2)—tensor fields, i. e. (by 7.3) the space of all mappings

d:X(M) x---x X(M) = X(M)* - C®(M,R),
which are k-linear over C*°(M, R) and are skew symmetric:
O(Xp1,..., Xor) =signo - ®(Xq,..., X)

for each permutation o € Sy.
We put Q°(M) := C*>°(M,R). Then the space

QM) = P oFm)
k=0

is an algebra with the following product. For ¢ € Q¥(M) and ¢ € Q*(M) and
for X; in X(M) (or in T, M) we put

(@Aw)(le 7Xk+£) -
=t Y signo - o(Xor, o Xok) W (Xo(or1)s -+ Xohre))-

0€Sk4¢

This product is defined fiber wise, i. e. (¢ A ), = @z A, for each z € M. Tt
is also associative, i.e (0 AY) AT = p A (¢ A7), and graded commutative, i. e.
o Ap = (—1)¥4) A p. These properties are proved in multilinear algebra.
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7.5. If f : N — M is a smooth mapping and ¢ € QF(M), then the pullback
f*¢ € QF(N) is defined for X; € T, N by

(1) (f*SO)m(Xla e ,Xk) = Qof(m) (Tmf.Xl, . ,Tmek)

Then we have f*(pAvY) = f*o A f*1), so the linear mapping f* : Q(M) — Q(N)
is an algebra homomorphism. Moreover we have (gof)* = f*og* : Q(P) — Q(N)
if g: M — P, and (Idpy)* = Idg(ary.

So M — Q(M) = C*°(AT*M) is a contravariant functor from the category
Mf of all manifolds and all smooth mappings into the category of real graded
commutative algebras, whereas M +— AT*M is a covariant vector bundle func-
tor defined only on Mf,,, the category of m-dimensional manifolds and local
diffeomorphisms, for each m separately.

7.6. The Lie derivative of differential forms. Since M ~ A*T*M is a
vector bundle functor on M f,,, by 6.15 for X € X(M) the Lie derivative of a
k-form ¢ along X is defined by

Lxp= gloFL)* .
Lemma. The Lie derivative has the following properties.

(1) Lx(eAY)=Lxo AN+ oA Lx, so Lx is a derivation.
(2) ForY; € X(M) we have

k
(Lxe) (Y. V) = X((Y1,-. ., Vi) = Y o(Ve, .., [X, Vi), ..., V).

i=1
(3) [£x, Lyl = Lix,y1-
Proof. The mapping Alt : ®k T*M — AFT*M, given by

(ARA)(Y1,... Vi) == 5 ) _sign(0) A(You, ..., Yor),

is a linear natural transformation in the sense of 6.17 and induces an algebra
homomorphism from @, ., C™ (Q" T*M) onto Q(M). So (1) follows from 6.16
and 6.17. -

(2). Again by 6.16 and 6.17 we may compute as follows, where Trace is the
full evaluation of the form on all vector fields:

X(p(Y1,...,Yy))=LxoTrace(p @Y1 ® - @ Yi)
= TraceoLx(p Y, ® - - @ Yy)
:Trace(ﬁXgp@(Yl@...@)Yk)

+tee (L 1® 9LxYi® - ®Y)).
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Now we use LxY; = [X,Y;].
(3) is a special case of 6.20. [
7.7. The insertion operator. For a vector field X € X(M) we define the
insertion operator ix = i(X) : QF(M) — QF~1(M) by
(ngO)(Yl, e aYk;—l) = (p(X, Yl, e ,Yk_l).

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so we
have ix (@A) =ixp A+ (=1)48Pp Adixp.
(2) [,C)(,iy] = ,CX @) iy - iy e} ﬁX = i[ny].

Proof. (1). For ¢ € QF(M) and ¢ € Qf(M) we have

(in (90 A ,ll}))(X?? s 7Xk+€) = (90 A ,ll})(le s 7Xk:~|-€)
= ﬁ Z sign(a) QO(XO'D s 7X0k)w(XU(k+l)7 s 7Xcr(k+£))'

(ix, o AN+ (1) o Nix, ) (Xay ..., Xiye)
= m Zsign(a) ©(X1, Xo2, oo, Xok)V( Xo(t1)s - - » Xo(kte))

—1)* )
+ ﬁ ZSIgI’l(O‘) (,O(ng, Ce 7Xa(k+1))w(X17 XUUH-Q)? .. )

Using the skew symmetry of ¢ and 1 we may distribute X; to each position by
adding an appropriate sign. These are k+/ summands. Since (k—ll)! R (1{1—1)! =

%, and since we can generate each permutation in Si, in this way, the result

follows.
(2). By 6.16 and 6.17 we have:

Lxiye = Lx Trace; (Y ® ¢) = Trace; Lx (Y ® ¢)
= Trace;(LxY @ ¢ +Y @ Lxp) = ix,y)p +ivLxp. O

7.8. The exterior differential. We want to construct a differential operator
QF (M) — QF+1(M) which is natural. We will show that the simplest choice will
work and (later) that it is essentially unique.

Let U be open in R", let ¢ € QF(U) = C>(U, L¥,,(R",R)). We consider the
derivative Dy € C*(U, L(R™, L¥,,(R",R))), and we take its canonical image in
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C> (U, LFH(R™, R)). Here we write D for the derivative in order to distinguish
it from the exterior differential, which we define as dy := (k + 1) Alt Dy, more

explicitly as

(1) (de)o(Xo,- - s Xi) = & Zsign(a) Do(z)(Xo0)(Xo1,- .-, Xok)

k
=Y (1) De(@)(X:)(Xo, - ., Xi, - Xa),

=0

where the hat over a symbol means that this is to be omitted, and where X; € R™.

Now we pass to an arbitrary manifold M. For a k-form ¢ € QF(M) and
vector fields X; € X(M) we try to replace Do(z)(X;)(Xo,...) in formula (1) by
Lie derivatives. We differentiate X;(¢(x)(Xo,dotsc)) = Do(z)(X;)(Xo,...) +
> o<j<hjzi P(@)(Xo, ..., DX;(2)X;,...), so inserting this expression into for-
mula (1) we get (cf. 3.4) our working definition

k

1=0
+3 (1) o([Xs, Xj), Xos s Xay oo, X oo Xa).

1<J

dep, given by this formula, is (k+1)-linear over C*° (M, R), as a short computation
involving 3.4 shows. It is obviously skew symmetric, so by 7.3 dy is a (k+1)-form,
and the operator d : QF(M) — QFFL(M) is called the exterior derivative.

If (U,u) is a chart on M, then we have

Z Gy, i A du't,

1 <<t
where @;, i, = 90(81%, e miik). An easy computation shows that (2) leads
to
(3) dp [ U= Y dgi, . i ANdu" A+ Adu,
11 < <ig,

so that formulas (1) and (2) really define the same operator.
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7.9. Theorem. The exterior derivative d : QF(M) — QFYY(M) has the follow-

ing properties:
(1) d(eAy) =dpAp+(—1)98LpAdy, sod is a graded derivation of degree
1.

2) Lx =ixod+doix for any vector field X .

) 2 =dod=0.

) ffod=do f* for any smooth f : N — M.

) Lx od=doLx for any vector field X .

) [L£x,Ly] = Lix,y] for any two vector fields X, Y.

(

(3
(4
(5
(6

Remark. In terms of the graded commutator
[Dy, D3] := Dy 0 Dy — (_1)deg(D1)deg(Dz)D2 o Dy

for graded homomorphisms and graded derivations (see 13.1) the assertions of
this theorem take the following form:

()ﬁX—[zxvd]
(3) [d d] = 0.
()[ ,d] = 0.
(5) [Ex,d]zo-

This point of view will be developed in section 13 below. The equation (6) is a
special case of 6.20.

Proof. (2) For ¢ € QF(M) and X; € X(M) we have

(£X0<P)(X1a--- ,Xk;) Xo( (Xl, .. ,Xk))+

k
+ ) (1) ([ Xo, X,], X1, ..., X, ..., Xy) by 7.6.2,

0<i<y
k . —_——~
(diXo(p)(Xh s 7Xk) = Z(_l)z_lXi((iXo(p)(le .. '7Xi7 . 7Xk)) +
=1
+ ) (U i 0) ([Xi, Xi], X1y, Xay oo, Xy, X)
1<i<y
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k
= - Z(_l)iXi(QO(XOaXh vy Xy oo, X)) —
=1
= Y (D)X, X, Xoy X1v o Xy Xy, X0,
1<i<j

By summing up the result follows.

(1) Let ¢ € QP(M) and ¢ € Q2(M). We prove the result by induction on
p+aq.
p+q=0:d(f-g)=df -g+ f-dg.
Suppose that (1) is true for p+ ¢ < k. Then for X € X(M) we have by part (2)
and 7.6, 7.7 and by induction

ixd(pAy) =Lx(pANp) —dix(p A1)
=Lxp AP+ o ANLxp —d(ixp A+ (=1)Po Nix1p)
=ixdp ANV +dixpNYp+oeNixdp+ o ANdixy —dixp NP
— (=) lixpAdp — (=1)Pdo Nixp — o A dixtp
=ix(dp A+ (=1)Pp A dy).

Since X is arbitrary, (1) follows.

(3) By (1) d is a graded derivation of degree 1, so d*> = 1[d,d] is a graded
derivation of degree 2 (see 13.1), and is obviously local: d?(p A 9) = d?(p) A
Y4+ @ Ad(1)). Since Q(M) is locally generated as an algebra by C°°(M,R) and
{df : f € C°(M,R)}, it suffices to show that d>f = 0 for each f € C*(M,R)
(d3f = 0 is a consequence). But this is easy: d?f(X,Y) = Xdf (V) — Ydf(X) —
df([X,Y]) = XYf-YXf—[X,Y]f=0.

(4) f* : QM) — Q(N) is an algebra homomorphism by 7.6, so f* od and
do f* are both graded derivations over f* of degree 1. So if f*od and do f* agree
on ¢ and on 9, then also on ¢ A. By the same argument as in the proof of (3)
above it suffices to show that they agree on g and dg for all g € C°°(M,R). We
have (£dg),(Y) = (dg)s)(Tyf-Y) = (Tyf.Y)(g) = Y(g 0 F)) = (df*g)y(V),
thus also df*dg = ddf*g = 0, and f*ddg = 0.

(5) dLx = dix d+ddix = dixd+ixdd = Lxd.

(6) We use the graded commutator alluded to in the remarks. By the (graded)
Jacobi identity and by lemma 7.7.2 we have

£X7 'CY] = [‘CX7 [in d]] = H‘CX7 2‘Y]v d]+[iY7 [‘CX7 d]] = [i[X,Y]7 d]+0 = ‘C[X,Y]' [
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7.10. A differential form w € QF(M) is called closed if dw = 0, and it is called
ezact if w = dyp for some @ € QF~1(M). Since d?> = 0, any exact form is closed.
The quotient space

k _ ker(d: QF(M) — QM (M)
HAM) = @ F 1 (D) = QR (M)

is called the k-th De Rham cohomology space of M. As a preparation for our
treatment of cohomology we finish with the

Lemma of Poincaré. A closed differential form is locally exact. More precisely:
let w € QF(M) with dw = 0. Then for any © € M there is an open neighborhood
U ofzin M and a ¢ € Q¥ 1(U) with dp =w | U.

Proof. Let (U,u) be chart on M centered at z such that u(U) = R™. So we may
just assume that M = R™.

We consider a : RxR™ — R™, given by a(t,z) = ay(x) = tz. Let I € X(R™)
be the vector field I(z) = x, then a(ef, z) = FI (z). So for t > 0 we have

I I
%a:w = %(Fllogt)*w = %(Fllogt)*ﬁfw
1
t

= 1o (irdw + dijw) = $dojijw.
Note that T (ca;) = t.Id. Therefore

(305irw)s(Xay ..., Xi) = $(i1w)ee (t X2, ... 1 Xy)
= twig (tr, tXo, ... tX)) = wig (2, X0, ... 1 X).

So if k > 1, the (k—1)-form fojisw is defined and smooth in (¢,z) for all t € R.
Clearly ajw = w and ajw = 0, thus

1

ok *, d %
Ww=0ojw— oy = S wdt
0

1 1
= / d(tajijw)dt =d (/ %afi,—wdt) =dp. O
0 0
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8. Integration on Manifolds

8.1. Let U C R" be an open subset, let dr denote Lebesque-measure on R™
(which depends on the Euclidean structure), let ¢ : U — ¢(U) be a diffeo-
morphism onto some other open subset in R”, and let f : g(U) — R be an
integrable continuous function. Then the transformation formula for multiple
integrals reads

e dy—/f ))| det dg () d.
g(U)

This suggests that the suitable objects for integration on a manifold are sections
of 1-dimensional vector bundle whose cocycle of transition functions is given by
the absolute value of the Jacobi matrix of the chart changes. They will be called
densities below.

8.2. The volume bundle. Let M be a manifold and let (U, uy) be a smooth
atlas for it. The volume bundle (Vol(M),mpr, M) of M is the one dimensional
vector bundle (line bundle) which is given by the following cocycle of transition
functions, see 6.2:

Q/Jaﬁ :Uap=U,NUg — R\ {0} = GL(I,R),

-1 (2 — 1 .
Yap(z) = |det d(ug o uy ") (ua(x))| |detd(uaou§1)(lw($))|

Lemma. Vol(M) is a trivial line bundle over M.

But there is no natural trivialization.

Proof. We choose a positive local section over each U, and we glue them with a
partition of unity. Since positivity is invariant under the transitions, the resulting

global section p is nowhere 0. By 6.4 p is a global frame field and trivializes
Vol(M). O

Definition. Sections of the line bundle Vol(M) are called densities.

8.3. Integral of a density. Let p € C*(Vol(M)) be a density with compact
support on the manifold M. We define the integral of the density pu as follows:

Let (Ug,uq) be an atlas on M, let f, be a partition of unity with
supp(fa) C U,. Then we put

[ ] e

=3 / o 0 ) 07 )
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8. Integration on Manifolds, 8.3 85

If 1+ does not have compact support we require that ZfU foa || < oo. The
series is then absolutely convergent.

Lemma. [, p is well defined.

Proof. Let (Vg,vg) be another atlas on M, let (gg) be a partition of unity with
supp(gg) C Vs. Let (Uq, o) be the vector bundle atlas of Vol(M) induced by
the atlas (Ua,uq), and let (Vg,pg) be the one induced by (V3,vg). Then we
have by the transition formula for the diffeomorphisms u, o vﬁ_l :vg(UsNV3) —
ua(Ua N Vg)

> / =3 [ Gaouz )ty @) dy

a(Ua)

N D S e (O R N P

a(Ua) g

) IR I R L

af

:Z/ U, mV)(gﬁoUﬁ_l)( )(faovﬁ ) (@)

af
Yo (u(vy (2)))| det d(ua o v5")(2)| do

B Z/ (UanV, )(gﬁ ovgh)(@)(fa o v ) (@)ps(u(vy ' (2))) dz
ap Y vsUanVg

= g
XB:/VBQW

If p € C°°(Vol(M)) is an arbitrary section and f € C2°(M,R) is a function
with compact support, then we may define the integral of f with respect to pu
by [ 1 J 1, since fp is a density with compact support. In this way p defines a
Radon measure on M.

For the converse we note first that (C! suffices) diffeomorphisms between
open subsets on R™ map sets of Lebesque measure zero to sets of Lebesque
measure zero. Thus on a manifold we have a well defined notion of sets of
Lebesque measure zero — but no measure. If v is a Radon measure on M which
is absolutely continuous, i. e. the |v|-measure of a set of Lebesque measure zero

is zero, then is given by a uniquely determined measurable section if the line
bundle Vol.
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8.4. Remark. For 0 < p < 1 let Vol”(M) be the line bundle defined by the
cocycle of transition functions

Yl Uap — R\ {0}
D 5(@) = | det d(uq ouz")(ug(z))| 7.

This is also a trivial line bundle. Its sections are called p-densities. 1-densities
are just densities, 0-densities are functions. If y is a p-density and v is a g-density
with p 4+ ¢ < 1 then p.v := p® v is a p + g-density, i. e. Vol?(M) ® Vol!(M) =
Vol? Jrq(M ). Thus the product of two %—densities with compact support can be
integrated, so C°(Vol'/%(M)) is a pre Hilbert space in a natural way.

Distributions on M (in the sense of generalized functions) are elements of the
dual space of the space C°(Vol(M)) of densities with compact support equipped
with the inductive limit topology — so they contain functions.

8.5. Example. The density of a Riemannian metric. Let g be a Rie-
mannian metric on a manifold M. So g is a symmetric (g) tensor field such that
gz is a positive definite inner product on T, M for each z € M. If (U,u) is a
chart on M then we have

glU = Z 9gi; du' ® du?

i,j=1

where the functions g” =g(2 5o 3u7) form a positive definite symmetric matrix.
So det(g;;) = det((g (52, 81”))” 1) > 0. We put

vol(g)" = \/det((g (52 525))—1)-

If (V,v) is another chart we have

vol(g)* = \/det((g(azz‘ ) %))%:1)

=\ Jdet((325 ).1)? det((g( 2, 525))e)
= |detd(vou™")| vol(g)”,

so these local representatives determine a section vol(g) € C°°(Vol(M)), which
is called the density or volume of the Riemannian metric g. If M is compact
then [, vol(g) is called the volume of the Riemannian manifold (M, g).
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8.6. The orientation bundle. For a manifold M with dim M = m and an
atlas (Uy, uy) for M the line bundle A™T™* M is given by the cocycle of transition
functions

Pop(x) = det d(ug o ug ™) (ua(7)).

We consider the line bundle Or(M) which is given by the cocycle of transition
functions

Tap(T) = sign pg(x) = signdet d(ug o ut) (ua ().

Since Tog(%)pas(r) = Pap(z), the cocycle of the volume bundle of 8.2, we have

Vol(M) = Or(M) @ A" T*M
A™T*M = Or(M) ® Vol(M)

8.7. Definition. A manifold M is called orientable if the orientation bundle
Or(M) is trivial. Obviously this is the case if and only if there exists an atlas
(Uq, uq) for the smooth structure of M such that det d(u, o ugl)(uﬁ (x)) > 0 for
all z € Uyp.

If M is orientable there are two distinguished global frames for the orientation
bundle Or(M ), namely those with absolute value |s(z)| = 1. Since the transition
functions of Or(M) take only the values +1 and —1 there is a well defined notion
of a fiberwise absolute value on Or(M), given by |s(z)| := praTo(s(x)), where
(Uq, 7o) is & vector bundle chart of Or(M) induced by an atlas for M.

The two normed frames s; and sy of Or(M) will be called the two possible
ortentations of the orientable manifold M. M is called an oriented manifold if
one of these two normed frames of Or(M) is specified: it is denoted by o,;.

If M is oriented then Or(M) = M x R with the help of the orientation, so we
have also

A™T*M = Or(M) @ Vol(M) = (M x R) ® Vol(M) = Vol(M).

So an orientation gives us a canonical identification of m-forms and densities.
Thus for an m-form w € Q™ (M) the integral

|

is defined by the isomorphism above as the integral of the associated density, see
8.3. If (Uy,uq) is an oriented atlas (i. e. in each induced vector bundle chart
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(U, 7o) for Or(M) we have 7,(0p7) = 1) then the integral of the m-form w is
given by

P = Z/uaw )fa(ugl(y»-w“(u;l(y)) dy' Ao Ndy™,

where the last integral has to be interpreted as an oriented integral on an open
subset in R™.

8.8. Manifolds with boundary. A manifold with boundary M is a sec-
ond countable metrizable topological space together with an equivalence class
of smooth atlases (U,,u,) which consist of charts with boundary: so ug :
Uy — uq(Uy) is a homeomorphism from U, onto an open subset of a half
space (—00,0] x R™~! = {(z1,... ,2y) : z1 < 0}, and all chart changes ung :
ug(Uq NUB) = uq(Uy NUg) are smooth in the sense that they are restrictions
of smooth mappings defined on open (in R™) neighborhoods of the respective
domains. There is a more intrinsic treatment of this notion of smoothness by
means of Whitney jets, see [Tougeron, 1972].

We have uag(ug(Us N Ug) N (0 x R™ 1)) = uy (U, NUg) N (0 x R™™1) since
interiour points (with respect to R™) are mapped to interior points by the inverse
function theorem.

Thus the boundary of M, denoted by OM, is uniquely given as the set of
all points & € M such that u,(z) € 0 x R™~1 for one (equivalently any) chart
(U, uq) of M. Obviously the boundary OM is itself a smooth manifold of
dimension m — 1.

A simple example: the closed unit ball B™ = {x € R™ : |z| < 1} is a manifold
with boundary, its boundary is 0B™ = S™~ 1.

The notions of smooth functions, smooth mappings, tangent bundle (use the
approach 1.9 without any change in notation) are analogous to the usual ones.
If z € OM we may distinguish in T, M tangent vectors pointing into the interior,
pointing into the exterior, and those in T, (OM).

8.9. Lemma. Let M be a manifold with boundary of dimension M. Then M is
a submanifold with boundary of an m-dimensional manifold M without boundary.

Proof. Using partitions of unity we construct a vector field X on M which points
strictly into the interior of M. We may multiply X by a strictly positive function
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so that the flow FIX exists for all 0 < t < 2¢ for some € > 0. Then FIX : M —
M\ OM is a diffeomorphism onto its image which embeds M as a submanifold
with boundary of M \ OM. O

8.10. Lemma. Let M be an oriented manifold with boundary. Then there is a
canonical induced orientation on the boundary OM .

Proof. Let (Uy,uq) be an oriented atlas for M. Then uqg : ug(Uapg N OM) —
Uo(Uap N OM), thus for z € ug(Uug N OM) we have dugg(z) : 0 x R™™1 —

0 x Rm—1,
A0 ... 0
dugp(z) = (* N ) ,

where A > 0 since dung(x)(—e1) is again downwards pointing. So

det dugg(z) = Adet(duggs(z)|0 x R™™1) > 0,
consequently det(duqag(z)|0xR™~1) > 0 and the restriction of the atlas (Us, uq)
is an oriented atlas for oM. O

8.11. Theorem of Stokes. Let M be an m-dimensional oriented manifold
with boundary OM. Then for any (m — 1)-form w € QT~Y(M) with compact

support on M we have
/ dw:/ i*w:/ w,
M oM oM

where 1 : OM — M s the embedding.

Proof. Clearly dw has again compact support. Let (Uy,u,) be an oriented
smooth atlas for M and let (f,) be a smooth partition of unity with supp(f,) C
U,. Then we have Y fow = w and Y d(fow) = dw. Consequently [, dw =
>0 Ju. d(faw) and [y, w =37, [5 faw. It suffices to show that for each

we have fU fa =[5t faw. For simplicity’s sake we now omit the index c.
The form fw has compact support in U and we have in turn

fw:Zwkdul/\---/\@\k---/\dum
k=1
0wk e m
d(fw)zzﬂdu ANdu™ A+ Nduk - Adu
U
k=1
“ ow
_ k—1 k m

>~
I

1
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Since i*du! = 0 we have fw|OU = i*(fw) = widu®A---Adu™, where i : OU — U

is the embedding. Finally we get

/ (fw) = / )= 1%du1/\---/\dum
u

Ukl

" Oow
_ k—l k 1 m
E — /3ukdu A ANdu

/ </ O ) da?...dz™

Z / ( aw: dxk> del ... dekdz™
(—00,0]xRm —2 O
/ .., x™) —0)d2? . .. ds™
= / (wi|OU)du? ... du™ = | fuw.
U U

We used the fundamental theorem of calculus:

/ %dl' = w(0,2%,...,2™) — 0,

&uk

k
&de =0,

since fw has compact support in U. [
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9. De Rham cohomology

9.1. De Rham cohomology. Let M be a smooth manifold which may have
boundary. We consider the graded algebra Q(M) = ZEM QF (M) of all differ-
ential forms on M. Then the space Z(M) := {w € Q(M) : dw = 0} of closed
forms is a graded subalgebra of € (i. e. it is a subalgebra and Q¥ (M)NZ (M) =
ZF(M)), and the space B(M) := {dp : ¢ € Q(M)} is a graded ideal in Z(M).
This follows directly from the derivation property d(pA1)) = dpAp+(—1)48 LA
diy of the exterior derivative.

Definition. The algebra

_Z(M)  {w e QM) :dw =0}
- B(M)  {dp:peQ(M)}

is called the De Rham cohomology algebra of the manifold M. It is graded by

dim M dim M

. ker(d : Q¥ (M) — QFY (M
B (M) = g H (M) = @ im(d : Qkfl(])\/f_))% QkEM;)

If f: M — N is a smooth mapping between manifolds then f*: Q(N) — Q(V)
is a homomorphism of graded algebras by 7.5 which satisfies d o f* = f*od

by 7.9. Thus f* induces an algebra homomorphism which we call again f* :
H*(N) — H*(M).

9.2. Remark. Since QF(M) = 0 for k > dim M =: m we have
_ (M)
{de:p e Q= (M)}
HY(M) =0 for & > m.
{f € QM) =C>®(M,R) :df =0}

0
= the space of locally constant functions on M

_ ]RI)O(M)7

H™(M)

H°(M) =

where bo(M) is the number of arcwise connected components of M. We put
b (M) := dimg H¥(M) and call it the k-th Betti number of M. If by (M) < oo
for all k£ we put

fa(t) = bR (M)t
k=0
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and call it the Poincaré polynomial of M. The number
Xu = b (M) (=1)F = far(—1)
k=0

is called the Euler Poincaré characteristic of M, see also 11.7 below.

9.3. Examples. We have H°(R™) = R since it has only one connected com-
ponent. We have H*(R™) = 0 for k > 0 by the proof of the lemma of Poincaré
7.10.

For the one dimensional sphere we have H°(S!) = R since it is connected,
and clearly H¥(S') = 0 for k > 1 by reasons of dimension. And we have

1ol {we QY (M) : dw =0}
)= pen)
Q'(M)
~{df : f EC®(SL,R)}’
QYSY) = {fdt: f e C®(S',R)}
~{feC®RR): fis periodic with period 27},

where dt denotes the global coframe of T*S!. If f is periodic with period 27
then f dt is exact if and only if [ fdt is also 27 periodic, 1. e. fozw f(t)dt = 0. So
we have

{f € C>®°(R,R) : f is periodic with period 27}

{f € C*(R,R) : f is periodic with period 2, fozw =0}
= R,

H'Y(S) =

where f +— fo% f dt factors to the isomorphism.

9.4. Lemma. Let f, g: M — N be smooth mappings between manifolds which
are C*-homotopic: there exists h € C>°(R x M, N) with h(0,z) = f(x) and
h(1,z) = g(z).

Then f and g induce the same mapping in cohomology: f* = g* : H(N) —

Remark. f, g € C°(M,N) are called homotopic if there exists a continuous
mapping h : [0,1] x M — N with with h(0,z) = f(z) and h(1,z) = g(x). This
seemingly looser relation in fact coincides with the relation of C'°°-homotopy.
We sketch a proof of this statement: let ¢ : R — [0, 1] be a smooth function with
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o((—00,1/4]) =0, ¢([3/4,00)) = 1, and ¢ monotone in between. Then consider
h:R x M — N, given by h(t,z) = h(p(t),z). Now we may approximate h by
smooth functions & : Rx M — N whithout changing it on (—oco,1/8) x M where
it equals f, and on (7/8,00) x M where it equals g. This is done chartwise by
convolution with a smooth function with small support on R™. See [Brocker-
Janich, 1973] for a careful presentation of the approximation.

So we will use the equivalent concept of homotopic mappings below.

Proof. For w € QF(M) we have h*w € QF(R x M). We consider the insertion
operator ins; : M — Rx M, given by ins;(z) = (¢,x). For ¢ € QF(Rx M) we then
have a smooth curve ¢ + ins} ¢ in Q¥(M) (this can be made precise with the help
of the calculus in infinite dimensions of [Frolicher-Kriegl, 1988]). We define the
integral operator I} : QF(Rx M) — QF(M) by I}(p) := fol insy ¢ dt. Looking at
this locally on M one sees that it is well defined, even without Frolicher-Kriegl
calculus. Let T := 2 € X(R x M) be the unit vector field in direction R.

We have ins; s = FltT oins for s, t € R, so

[é)

Linstp=2 ‘0 (FI oins,)*p = 2 ‘0 ins*(F17)*p

= ins}t 2 ‘0 (F1II')*p = (ins,)* Lo by 7.6.
We have used that (ins,)* : Q¥(R x M) — QF(M) is linear and continuous and
so one may differentiate through it by the chain rule. This can also be checked
by evaluating at x € M. Then we have in turn

1 1
d[&(pzd/ ins;godt:/ d ins} o dt
0 0
1
:/ insf dodt = I dyp by 7.9.(4).
0

1 1
(ins] —insj)p = /0 2 insj pdt = /0 insy Loy dt
=1} Lpp = I} (dir + ipd)p by 7.9.

Now we define the homotopy operator h := I} oir o h* : Q¥(M) — Q¥=1(M).
Then we get

g* — f*=(hoinsy)" — (hoinsy)* = (ins] —insf) o h*

= (dolIjoir+Ijoirod)oh*=doh—hod,

which implies the desired result since for w € QF(M) with dw = 0 we have
g*w — ffw = hdw + dhw = dhw. 0O
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9.5. Lemma. If a manifold is decomposed into a disjoint union M = || M,
of open submanifolds, then H*(M) =[], H*(My,) for all k.

Proof. Q%(M) is isomorphic to [T, Q%(M,) via ¢ + (¢|My)q. This isomorphism
commutes with exterior differential d and induces the result. O

9.6. The setting for the Mayer-Vietoris Sequence. Let M be a smooth
manifold, let U, V' C M be open subsets such that M = UUV. We consider the

following embeddings:
. unv_ .
N
U |
P
M.
Lemma. In this situation the sequence

0 QM) S QU)a V) L QUnV) =0

is exact, where a(w) = (ifw,ij,w) and B, ) = jie — jv. We also have
(d®d)oa=aodanddo B =Fo(ddd).

Proof. We have to show that « is injective, ker 8 = im «, and that (3 is surjective.
The first two assertions are obvious and for the last one we we let {fy, fv} be
a partition of unity with supp fy C U and supp fyy C V. For ¢ € QU NV) we
consider fyp € Q(UNV), note that supp(fy¢) is closed in the set U NV which
is open in U, so we may extend fy o by 0 to oy € Q(U). Likewise we extend

—fue by 0 to gy € Q(V). Then we have B(pu, ov) = (fu + fv)e=¢. O

Now we are in the situation where we may apply the main theorem of ho-
mological algebra, 9.8. So we deviate now to develop the basics of homological
algebra.

9.7. The essentials of homological algebra. A graded differential space
(GDS) K = (K,d) is a sequence

_ dn—l dn
e KPS g S K

of abelian groups K™ and group homomorphisms d* : K™ — K"*! such that
d"1 o d™ = 0. In our case these are the vector spaces K™ = Q"(M) and the
exterior derivative. The group

ker(d" : K™ — Knt1)

H"(K) :=
(K) im(dn—1: Kn—1 —» Kn)
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is called the n-th cohomology group of the GDS K. We consider also the direct
sum

H*(K):= @ H"(K)

n=—oo

as a graded group. A homomorphism f : K — L of graded differential spaces is
a sequence of homomorphisms f™ : K™ — L™ such that d” o f* = f**lod". It
induces a homomorphism f, = H*(f) : H*(K) — H*(L) and H* has clearly the
properties of a functor from the category of graded differential spaces into the
category of graded group: H*(Idx) = Idg+ k) and H*(f og) = H*(f) o H*(g).

A graded differential space (K,d) is called a graded differential algebra if
@, K™ is an associative algebra which is graded (so K™.K™ C K"™™), such
that the differential d is a graded derivation: d(z.y) = dz.y+ (—1)9®8%z.dy. The
cohomology group H*(K,d) of a graded differential algebra is a graded algebra,
see 9.1.

By a short exact sequence of graded differential spaces we mean a sequence

05K SLEBM=0

of homomorphism of graded differential spaces which is degreewise exact: For
each n the sequence 0 — K™ — L™ — M™ — 0 is exact.

9.8. Theorem. Let
0K SL5M-=0

be an exact sequence of graded differential spaces. Then there exists a graded
homomorphism § = (6™ : H*(M) — H" " (K)),cz called the "connecting homo-
morphism” such that the following is an exact sequence of abelian groups:

o HY (M) S HY(K) s B (D) 2 HY (M) S HYPYEK) - -

It is called the "long exact sequence in cohomology”. d is a natural transformation
in the following sense: Let

0—K ——1I' M'—0
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be a commutative diagram of homomorphisms of graded differential spaces with
exact lines. Then also the following diagram is commutative.

s M) O () s () 25 () ——

m*l kl @J m*[

. —>Hn_1(M/) TH”(K’) i—/>Hn(L/) —/>Hn(M) ...

The long exact sequence in cohomology is also written in the following way:

H*(K) H*(L)
N %
H*(M)

Definition of . The connecting homomorphism is defined by ‘6 =i~ todop™

* *

1

or §[pf] = [i~1dl]. This is meant as follows.
n—1
L’n—l b Mn—]. 0
dn—l dn—l
0 Kn— " gn Py 0
0______+l(n+1 in+1 Ln+1 pn+1 A4n+1——————+0
dn+1 dn+1
Z‘n+2

0 l(n+2 ‘Ln+2

The following argument is called a diagram chase. Let [m] € H™(M). Then
m € M"™ with dm = 0. Since p is surjective there is £ € L™ with p/ = m. We
consider d¢ € L™*! for which we have pdf = dpf = dm =0, so dl € kerp = im¢,
thus there is an element k € K"*! with ik = df. We have idk = dik = ddf = 0.
Since i is injective we have dk = 0, so [k] € H"T}(K).

Now we put §[m] := [k] or &[pf] = [i~1d/].

This method of diagram chasing can be used for the whole proof of the the-
orem. The reader is advised to do it at least once in his life with fingers on the
diagram above. For the naturality imagine two copies of the diagram lying above
each other with homomorphisms going up.
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9.9. Five-Lemma. Let

1 g a3 Qg

Al A2 AB A4 A5

ol e e el

Bl Bl B2 /82 33 /83 B4 54 B5

be a commutative diagram of abelian groups with exact lines. If ©1, @2, @4, and
5 are isomorphisms then also the middle @3 is an isomorphism.

Proof. Diagram chasing in this diagram leads to the result. The chase becomes
simpler if one first replaces the diagram by the following equivalent one with
exact lines:

/ /

00— Ay/imay a2 Az a3 keray —— 0
90’2[% 903[ w&l%
) By By
0 ——— By/im B3 ker B4 —— 0. [

9.10. Theorem. Mayer-Vietoris sequence. Let U and V be open subsets
in a manifold M such that M = U UV . Then there is an exact sequence

o HYOM) 2 HYUY @ HEY(V) 2 HY U N V) S HEY (M) -
It is natural in the triple (M, U, V') in the sense explained in 9.8. The homomor-
phisms o, and (B, are algebra homomorphisms, but § is not.

Proof. This follows from 9.6 and theorem 9.8. [

Since we shall need it later we will give now a detailed description of the con-
necting homomorphism 0. Let { fy, fy} be a partition of unity with supp fy C U
and supp fy C V. Let w € QYU N V) with dw = 0 so that [w] € H¥({U NV).
Then (fy.w, —fu.w) € QF(U) ® Q%(V) is mapped to w by B and so we have by
the prescrition in 9.8

Slw] =[a~ d(fv.w, —fo.w)] = [ dfy Aw, —dfy Aw)]
= [dfv ANw] = —[dfu Aw)],

where we have used the following fact: fir + fyy = 1 implies that on U NV we
have dfy = —dfy thus dfy Aw = —dfy Aw and offt U NV both are 0.

Draft from November 17, 1997 Peter W. Michor, 9.10



98 9. De Rham cohomology, 9.11

9.11. Axioms for cohomology. The De Rham cohomology is uniquely deter-
mined by the following properties which we have already verified:

(1) H*( ) is a contravariant functor from the category of smooth manifolds
and smooth mappings into the category of Z-graded groups and graded
homomorphisms.

(2) H*(point) =R for k=0 and = 0 for k # 0.

(3) If f and g are C*°-homotopic then H*(f) = H*(g).

(4) If M =], M, is a disjoint union of open subsets then
H*(M) =TI, H*(My).

(5) If U and V are open in M then there exists a connecting homomorphism
§: H*(UNV) — H*TY(UUV) which is natural in the triple (UUV,U, V)
such that the following sequence is exact:

S HYUUV) - HYU)e HY(V) - HYUNV) S BH U UV) >

There are lots of other cohomology theories for topological spaces like singular
cohomology, Cech-cohomology, simplicial cohomology, Alexander-Spanier coho-
mology etc which satisfy the above axioms for manifolds when defined with real
coefficients, so they all coincide with the De Rham cohomology on manifolds.
See books on algebraic topology or sheaf theory for all this.

9.12. Example. If M is contractible (which is equivalent to the seemingly
stronger concept of C*-contractibility, see the remark in 9.4) then H°(M) = R
since M is connected, and H*(M) = 0 for k # 0, because the constant mapping
c: M — point — M onto some fixed point of M is homotopic to Idys, so
H*(c) = H*(Idyr) = Idg-(ary by 9.4. But we have

\/

p01nt

More generally, two manifolds M and N are called to be smoothly homotopy
equivalent if there exist smooth mappings f : M — N and g : N — M such
that g o f is homotopic to Idy; and f o g is homotopic to Idy. If this is the case
both H*(f) and H*(g) are isomorphisms, since H*(g) o H*(f) = Idg~ ) and
H*(f)o H*(g9) = Idp=(n)-

As an example consider a vector bundle (E, p, M) with zero section Og : M —
E. Then poOg = Idp whereas 0 op is homotopic to Idg via (¢, u) — t.u. Thus
H*(E) is isomorphic to H*(M).
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9.13. Example. The cohomology of spheres. Forn > 1 we have

R  fork=0
Hk(S”): 0 forl1<k<n-1

R fork=n

0 fork>n

R2  fork=0

H*(S%) = H*(2 point :{
(57 (2points) = 0 ks 0

We may say: The cohomology of S™ has two generators as graded vector space,
one in dimension 0 and one in dimension n. The Poincaré polynomzial is given

Proof. The assertion for S° is obvious, and for S! it was proved in 9.3 so let

n > 2. Then H°(S™) = R since it is connected, so let k¥ > 0. Now fix a north
polea € S™, 0 <e < 1, and let

S"={z e R :|2]? = (z,2) = 1},
U={zeS":(x,a) > —¢},
V={xeS":(x,a) <c},

so U and V are overlapping northern and southern hemispheres, respectively,
which are diffeomorphic to an open ball and thus smoothly contractible. Their
cohomology is thus described in 9.12. Clearly UUV = S" and UNV = §7~1 x
(—¢,¢) which is obviously (smoothly) homotopy equvalent to S®~!. By theorem
9.10 we have the following part of the Mayer-Vietoris sequence

H*U)® H* (V) — H*(U N V) —0 s gE+(7) s gMYU) o HE (V)
[l [l [l
0 HE(s™ 1) 0,

S

where the vertical isomorphisms come from 9.12. So we have HF(S"~!) =
HFL(S™) for k> 0 and n > 2.
Next we look at the initial segment of the Mayer-Vietoris sequence:

00— HO(S™) — HOU U V) —L—s HOU A V)~ HY(S™) — HY (U U V)
Il Il Il Il

0 R & R? R 0

From exactness we have: in the lower line « is injective, so dim(ker ) =1, so 3

is surjective and thus 6 = 0. This implies that H1(S™) = 0 for n > 2. Starting
from HF(S') for k > 0 the result now follows by induction on n.
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By looking more closely on on the initial segment of the Mayer-Vietoris se-
quence for n = 1 and taking into account the form of 6 : H°(S%) — H(S') we
could even derive the result for S' without using 9.3. The reader is advised to
try this. [0

9.14. Example. The Poincaré polynomial of the Stiefel manifold V (k, n; R) of
oriented orthonormal k-frames in R™ (see 15.5) is given by:

For: fven) =
l .
n=2m, k=2+1,1>0: (L+& )@+
=1

!
n=2m+1, k=2,1>1: H(1+t4m—4i+3)

=1
-1
n=2m, k= 2[, m>[0>1: (1 + th—Zl)(l + th—l) H(l + t4m—4z—1)
=1
n=2m+1,k=2+1 -1 .
’ ’ 1 2m—21 1 4m—4i+3
m>1>0: (1+1 )H( +1 )

=1

Since V(n — 1,n; R) = SO(n; R) we get

m—1
fSO(Zm;R)( ) 1 + t2m= 1 H 1 + i 1
=1

m

fso@meipy(t) = [ +1471).

=1

So the cohomology can be quite complicated. For a proof of these formulas using
the Gysin sequence for sphere bundles see [Greub-Halperin-Vanstone II, 1973].

9.15. Relative De Rham cohomology. Let N C M be a closed submanifold
and let
QF (M, N) := {w € Q*(M) : i*w = 0},

where ¢ : N — M is the embedding. Since ¢* od = d o * we get a graded
differential subalgebra (2*(M,N),d) of (Q*(M),d). Its cohomology, denoted
by H*(M,N), is called the relative De Rham cohomology of the manifold pair
(M,N).
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9.16. Lemma. In the setting of 9.15,
0 — Q* (M, N) < Q*(M) 5 Q*(N) = 0

s an exact sequence of differential graded algebras. Thus by 9.8 we the following
long exact sequence in cohmology

oo — HY(M,N) —» H¥(M) — H*(N) % H*"Y(M,N) — ...

which is natural in the manifold pair (M, N). It is called the long exact coho-
mology sequence of the pair (M, N).

Proof. We only have to show that i* : Q*(M) — Q*(N) is surjective. So we
have to extend each w € QF(INV) to the whole of M. We cover N by submanifold
charts of M with respect to N. These and M \ N cover M. On each of the
submanifold charts one can easily extend the restriction of w and one can glue
all these extensions by a partition of unity which is subordinated to the cover of
M. O
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10. Cohomology with compact supports
and Poincaré duality

10.1. Cohomology with compact supports. Let QF(M) denote the space of
all k-forms with compact support on the manifold M. Since supp(dw) C supp(w),
supp(Lxw) C supp(X) N supp(w), and supp(ixw) C supp(X) N supp(w), all
formulas of section 7 are also valid in QX(M) = ?eraM QF(M). So Q(M) is an
ideal and a differential graded subalgebra of Q*(M). The cohomology of 2% (M)

 ker(d: QF(M) — QEFL(M))
~imd : QF Y (M) = QF(M)
HX(M):= @ Hi(M)

k=0

HY(M) -

Y

is called the De Rham cohomology algebra with compact supports of the manifold
M. Tt has no unit if M is not compact.

10.2. Mappings. If f: M — N is a smooth mapping between manifolds and
if w € QF(N) is a form with compact support, then f*w is a k-form on M, in
general with noncompact support. So €2% is not a functor on the category of all
smooth manifolds and all smooth mappings. But if we restrict the morphisms
suitably, then 2} becomes a functor. There are two ways to do this:

(1) QF is a contravariant functor on the category of all smooth manifolds
and proper smooth mappings (f is called proper if f~!( compact set ) is
a compact set) by the usual pullback operation.

(2) QF is a covariant functor on the category of all smooth manifolds and
embeddings of open submanifolds: for i : U < M and w € QF(U) just
extend w by 0 off U to get i,w € QF(M). Clearly i, od = d o i,.

10.3. Remark. 1. If a manifold M is a disjoint union, M = | |, M,, then we
have obviously H*(M) = @, H¥(M,).

2. HY(M) is a direct sum of copies of R, one for each compact connected
component of M.

3. If M is compact, then H¥(M) = H*(M).

10.4. The Mayer-Vietoris sequence with compact supports. Let M be
a smooth manifold, let U, V' C M be open subsets such that M = U U V. We
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consider the following embeddings:

i
U

un
U
M

V .
w
v
Theorem. The following sequence of graded differential algebras is exact:

0= QUNV) 25 Q (U)® Q(V) 25 QF (M) — 0,

where Be(w) := ((Ju)«w, (Jv)sw) and a.(p, ) = (iv)«p — (iv) . So by 9.8 we
have the following long exact sequence

= H=Y(M) 25 HYUNV) > HYU)® HY(V) - HY(M) 25 H¥* UNV) >

which is natural in the triple (M, U, V). It is called the Mayer Vietoris sequence
with compact supports.

The connecting homomorphism 6. : H¥(M) — H¥L (U NV) is given by

Oc[) = (B2 d o (9)] = [B: d(fup, —fv )]
=ldfu N [UNV]|=—[dfv N [UNV].

Proof. The only part that is not completely obvious is that a. is surjective. Let
{fu, fv} be a partition of unity with supp(fy) C U and supp(fy) C V, and let
© € QF(M). Then fyp € QF(U) and —fyp € QF (V) satisfy a.(fup, —fre) =
(fu+fv)e=p. O

10.5. Proper homotopies. A smooth mapping h : R x M — N is called a
proper homotopy if h=1( compact set ) N ([0, 1] x M) is compact. A continuous
homotopy h : [0,1] x M — N is a proper homotopy if and only if it is a proper
mapping.

* .

Lemma. Let f,g : M — N be proper and proper homotopic, then f* = g
HF(N) — H¥(M) for all k.

Proof. Recall the proof of lemma 9.4. B
Claim. In the proof of 9.4 we have furthermore h : Q¥(N) — QF=1(M).
Let w € Q¥(M) and let K; := supp(w), a compact set in M. Then K, :=
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h=1 (K1) N ([0,1] x M) is compact in R x M, and finally K3 := pra(K3) is
compact in M. If x ¢ K3 then we have

(hw)s = ((IL i o W)y = /0 (ins? (irh*w)), dt) = 0.

The rest of the proof is then again as in 9.4. [

10.6. Lemma.
R fork=n

0 else.

i@ = {

First Proof. We embed R™ into its one point compactification R™ U {oo} which
is diffeomorphic to S™, see 1.2. The embedding induces the exact sequence of
complexes

0— Q(R") = Q(S™) = Q(S™) oo — 0,

where Q(S™),, denotes the space of germs at the point co € S™. For germs
at a point the lemma of Poincaré is valid, so we have H°(2(S")s) = R and
H¥(Q(S™)s) = 0 for k > 0. By theorem 9.8 there is a long exact sequence in
cohomology whose beginning is:

HO(R™) — HO(S™) — HO(Q(S™)oo) —2 HX(R") — H(S™) — H(Q(S™)o0)
[ [ [ [
0 R R 0

From this we see that § = 0 and consequently H!(R™) = H!(S™). Another part
of this sequence for k > 2 is:

HYH(Q(S™)o0) —0 HE(R™) — H*(S™) — H(Q(S™)o0)
[l [l
0 0

It implies H*(R") = H*(S™) for all k. O

10.7. Fiber integration. Let M be a manifold, pr; : M x R — M. We define
an operator called fiber integration

/ cQF(M x R) — QF (M)
fiber

as follows. Let t be the coordinate function on R. A differential form with
compact support on M x R is a finite linear combination of two types of forms:

(1) prie.f(x,t), shorter ¢.f.
(2) prie A f(z,t)dt, shorter p A fdt.
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where ¢ € Q(M) and f € C°(M x R,R). We then put

1) fﬁberp,rf(pf = 0.
) Japer PTIO A fdt == [T f( ,t)dt

10.8. Lemma. We have d o fﬁber = fﬁber od. Thus fﬁber induces a mapping in
cohomology

([ ) mtarsm - mon,

which however is not an algebra homomorphism.

Proof. In case (1) we have

oo
= (—l)kgo/ %dt =0 since f has compact support

—00

= d/ o.f.
fiber

In case (2) we get

/ d(cp/\fdt):/ d(p/\fdt+(—1)k/ e Ndyf Adt
fiber fiber fiber
—dw/ FCdes (0% [ dif( e

_d</ £ dt>:d/ﬁber<p/\fdt. O

10.9. In order to find a mapping in the converse direction we let e = e(t)dt be a

compactly supported 1-form on R with f t)dt = 1. We define e, : QF(M) —

QFL(M x R) by e.(p) = ¢ Ae. Then de*( ) =d(eNe)=dpNe+0=ce.(dp),

so we have an induced mapping in cohomology e, : H¥(M) — H¥1(M x R).
We have [, oe. = Idgk ), since

/ﬁber e o) = /ﬁber p el )dt = SO/O:O e(t)dt = .

Next we define K : QF(M x R) — QF=1(M x R) by

(1) K(p.f):=
(2) K(gp/\fdt o 1 fdt —@.A(t) [° fdt, where A(t) == [T e(t)dt.
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10.10. Lemma. Then we have

IdQICc(MXR)—e*O/ :(—1)k_1(dOK—KOd)
fiber

Proof. We have to check the two cases. In case (1) we have

(Id— e, 0 /ﬁb Yo-f) = o.f 0,

(do K — K od)(¢.f) =0 K(dp.f + (=1)*o Adr f + (—1)*0 A GFdt)

= —(-1)F (w/_t 9L dt — p.A(t) /_Oo %dt)
= (-DF 1o f +C(>)o. h

In case (2) we get

oo

(Id—e*o/ﬁb )(go/\fdt):go/\fdt—go/ fdt N e,

—00

(doK—Kod)(go/\fdt):d<cp/_toofdt—<p.A(t)/oo fdt)

—00

— K(do A fdt + (=1)*"Yo Adyf A dt)

:(—1)k_1<cp/\fdt—<p/\e/ fdt> m

— 00

oo

10.11. Corollary. The induced mappings (fﬁber) and e, are inverse to each

*

other, and thus isomorphism between H¥(M x R) and H¥=1(M).
Proof. This is clear from the chain homotopy 10.10. [
10.12. Second Proof of 10.6. For k < n we have

H¢(R") = H7 YR 22 2 HY(RPF)
[0 for k <n
- L HYR®) =R for k = n.
Note that the isomorphism H(R™) = R is given by integrating the differential
form with compact support with respect to the standard orientation. This is
well defined since by Stokes’ theorem 8.11 we have [, dw = [jw = 0, so the
integral induces a mapping [, : H*(R") - R. O
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10.13. Example. We consider the open Mobius strip M in R2. Open means
without boundary. Then M is contractible onto S!, in fact M is the total space
of a real line bundle over S'. So from 9.12 we see that H*(M) = H*(S') = R
for k=0,1 and = 0 for k£ > 1.

Now we claim that H¥(M) = 0 for all k. For that we cut the Mobius strip in
two pieces which are glued at the end with one turn (make a drawing), so that
M=UUV where U 2R?, V=2 R? and UNV = R? UR?, the disjoint union.
We also know that H?(M) = 0 since M is not compact and connected. Then
the Mayer-Vietoris sequence (see 10.4) is given by

HYN U)o HL(V) =0
H; (M)
)
H2(UNV) =RoR
Be

H2(U)o H* (V) =R®R

C C

HZ (M)

H3(UNV) =0.

We shall show that the linear mapping (. has rank 2. So we read from the
sequence that HX(M) = 0 and H2(M) = 0. By dimension reasons H*(M) = 0
for k£ > 2.

Let ¢, ¢ € Q2(UNV) be two forms, supported in the two connected com-
ponents, respectively, with integral 1 in the orientation induced from one on U.
Then [, ¢ =1, [;%¥ = L, but for some orientation on V' we have [, ¢ = 1 and

fV 1) = —1. So the matrix of the mapping (. in these bases is (1 _11 >, which
has rank 2.

10.14. Mapping degree for proper mappings. Let f : R — R” be a
smooth proper mapping, then f* : QF(R™) — QF(R") is defined and is an algebra
homomorphism. So also the induced mapping in cohomology with compact
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supports makes sense and by

a linear mapping R — R, i. e. multiplication by a real number, is defined. This
number deg f is called the "mapping degree” of f.

10.15. Lemma. The mapping degree of proper mappings has the following
properties:

(1) If f, g : R* — R™ are proper, then deg(f o g) = deg(f). deg(g).

(2) If f and g : R* — R™ are proper homotopic (see 10.5) then deg(f) =
deg(g).

(3) deg(Idrn)=1.

(4) If f : R — R™ is proper and not surjective then deg(f) = 0.

Proof. Only statement (4) needs a proof. Since f is proper, f(R"™) is closed
in R": for K compact in R the inverse image K; = f~}(K) is compact, so
f(K1) = f(R") N K is compact, thus closed. By local compactness f(R™) is
closed.

Suppose that there exists z € R™ \ f(R™), then there is an open neighborhood
U cCR"\ f(R"). We choose a bump n-form a on R* with support in U and
[ a=1. Then f*a =0, so deg(f) = 0 since [a] is a generator of H*(R"). O

10.16. Regular values. Let f : M — N be a smooth mapping between
manifolds.

(1) z € M is called a "singular point” of f if T, f is not surjective, and is
called a "reqular point” of f if T, f is surjective.

(2) y € N is called a "regular value” of f if T, f is surjective for allz € f~1(y).
If not y is called a singular value. Note that any y € N\ f(M) is a regular
value.

Theorem. Sard, 1942. The set of all singular values of a smooth mapping
f: M — N is of Lebesgue measure 0 in N.

So any smooth mapping has regular values. For the proof of this result we
refer to [Hirsch, 1976].
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10.17. Lemma. For a proper smooth mapping f : R® — R"™ the mapping degree
is an integer, in fact for any reqular value y of f we have

deg(f)= ) sign(det(df(x))) € Z.

z€f~1(y)

Proof. By 10.15.(4) we may assume that f is surjective. By Sard’s theorem,
see 10.16, there exists a regular value y of f. We have f~!(y) # 0, and for
all z € f~!(y) the tangent mapping T, f is surjective, thus an isomorphism.
By the inverse mapping theorem f is locally a diffeomorphism from an open
neighborhood of = onto a neighborhood of y. Thus f~1(y) is a discrete and
compact set, say f~1(y) = {z1,..., 71} C R".

Now we choose pairwise disjoint open neighborhoods U; of z; and an open
neighborhood V' of y such that f : U; — V is a diffeomorphism for each i. We
choose an n-form a on R™ with support in V and [« =1. So f*a =), (f|U;)*«
and moreover

\%4

des(n)= [ sra=3 [ (v

k
=3 sign(det(df (z:)) € 2. O

/U. (flU;) = sign(det(df(xi)))/ a = sign(det(df (x;)))

10.18. Example. The last result for a proper smooth mapping f : R — R
can be interpreted as follows: think of f as parametrizing the path of a car on
an (infinite) street. A regular value of f is then a position on the street where
the car never stops. Wait there and count the directions of the passes of the
car: the sum is the mapping degree, the number of journeys from —oo to co. In
dimension 1 it can be only —1, 0, or +1 (why?).

10.19. Poincaré duality. Let M be an oriented smooth manifold of dimension
m without boundary. By Stokes’ theorem the integral [ : Q7 (M) — R vanishes
on exact forms and induces the “cohomologigal integral”

(1) /HZ”(M)—HR
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It is surjective (use a bump m-form with small support). The ‘Poincaré product’
is the bilinear form

(2) PY  HY(M) x H™ % (M) — R,
Ph(el19) = [lln@= [ ang.

It is well defined since dy A B = d(y A ) etc. If j : U — M is an orientation
preserving embedding of an open submanifold then for [o] € H*(M) and for
(8] € H™*(U) we may compute as follows:

(3) P& (37l [6]) = / (")) A 18] = / Jfan g

* U

:/Uj*mw*m:/jw)aw*ﬁ
_ /M a B = Pl(la], 1.18)).

Now we define the Poincaré duality operator

(4) Dy HH(M) — (H'™F(M))*,
([8]. Disla]) = Py ([e], [B])-
For example we have DY, (1) = ([z.)« € (HZ(R™))*.

Let M =U UV with U, V open in M, then we have the two Mayer Vietoris
sequences from 9.10 and from 10.4

o HYOM) 2 HYUY @ HY(V) 2 HY U N V) S HEY (M) -
— H™ (M)« H™ ™ U) & H™ (V) « H" U V) &= B~ G (M)

We take dual spaces and dual mappings in the second sequence and we replace
§ in the first sequence by (—1)*716 and get the following diagram which is
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commutative as we will see in a moment.

(—1)*=25 ok
Dk
HE (M) it HP (M)
k k DG ® DY g m—k (1%
H*(U) @ H*(V) HI(U) @ H (V)
(5)
" (U V) Dynv H™ U V)
(-1)F1o O¢
Dk+1
HR (M) M HI'~® D (M)

10.20. Lemma. The diagram (5) in 10.19 commutes.

Proof. The first and the second square from the top commute by 10.19.(3). So
we have to check that the bottom one commutes. Let [«] € HF¥(UNV) and [f] €

H;n_(kﬂ)(M), and let (fu, fy) be a partition of unity which is subordinated to
the open cover (U, V) of M. Then we have

(8], Dy H(=1)*Yola]) = Py (1) 1élal, [6])
= Py ()% dfv Aal,[8]) by 9.10
= (—1)*! /M dfv A a A .

([8), 02 Dty []) = (8:[6], Dy [ed) = Py (la], 0:[8)
= Phav ([ol, [dfo A B] = =[dfv AB]) Dby 10.4

:_/ Oz/\de/\B:—(—l)k/ dfy AaAp. O
unv M
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10.21. Theorem. Poincaré Duality. If M is an oriented manifold of dimen-
ston m without boundary then the Poincaré duality mapping

DY H¥(M) — H™ (M)~
s a linear isomomorphism for each k.

Proof. Step 1. Let O be an i-base for the open sets of M, i. e. O is a basis
containing all finite intersections of sets in O. Let O be the the set of all open
sets in M which are finite unions of sets in O. Let Oy be the set of all open sets
in M which are at most countable disjoint unions of sets in @. Then obviously
Oy and Oy are again i-bases.

Step 2. Let O be an i-base for M. If Do : H(O) — H.(O)* is an isomorphism
for all O € O, then also for all O € Oy.

Let U € Of, U = O1U---UOy, for O; € O. We consider Oy and V =
O2U---UOg. Then O1NV = (01 N032)U---U (01 NOg) is again a union of
elements of O since it is an ¢-base. Now we prove the claim by induction on k.
The case k =1 is trivial. By induction Do,, Dy, and Do,y are isomorphisms,
so Dy is also an isomorphism by the five-lemma 9.9 applied to the diagram
10.19.(5).

Step 3. If O is a basis of open sets in M such that Do is an isomorphism
for all O € O, then also for all O € O;.

IfU € Og we have U = O1 U0 U ... = | |72, O; for O; € O. But then the
diagram
H(U) [[H©O))
i=1

Dy JH Do,

HAU) = (@@ H0) = [[H(0:)"

commutes and implies that Dy is an isomorphism.

Step 4. If Do is an isomorphism for each O € O where O is an i-base for
the open sets of M then Dy is an isomorphism for each open set U C M.

For ((Of)s)s contains all open sets of M. This is a consequence of the proof
that each manifold admits a finite atlas. Then the result follows from steps 2
and 3.

Step 5. Dgm : H(R™) — H.(R™)* is an isomorphism.

We have

R for k=0
Hk(Rm):{ >

0 fork>0

R fork=m

k(mmy\ _
HC(R)_{O for kK #m
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The class [1] is a generator for H°(R™), and [a] is a generator for H™(R™) where
« is any m-form with compact support and [,, @ = 1. But then Pg,. ([1], [o]) =

mla=1.
fR Step 6. For each open subset U C R™ the mapping Dy is an isomorphism.

The set {{z € R™ : a® < z° < * for all i} : a® < b*} is an i-base of R™. Each
element O in it is diffeomorphic (with orientation preserved) to R™, so Do is a
diffeomorphism by step 5. From step 4 the result follows.

Step 7. D) is an isomorphism for each oriented manifold M.

Let O be the the set of all open subsets of M which are diffeomorphic to an
open subset of R™, i. e. all charts of a maximal atlas. Then O is an ¢-base for
M, and Dy is an isomorphism for each O € O. By step 4 Dy is an isomorphism
for each open U in M, thus also Dy. U

10.22. Corollary. For each oriented manifold M without boundary the bilinear
pairings
Py :H*(M)x H: (M) — R,
Py, - HY(M) x H™ *(M) - R
are not degenerate.

10.23. Corollary. Let j:U — M be the embedding of an open submanifold of
an oriented manifold M of dimension m without boundary. Then of the following
two mappings one is an isomorphism if and only if the other one is:

j* : H*(U) « H*(M),
Jo : H'7R(U) — HIF(M).

Proof. Use 10.19.(3), PE(5*[c], [8]) = P ([, j.[8]). O

10.24. Theorem. Let M be an oriented connected manifold of dimension m
without boundary. Then the integral

/*:HQ”(M)—HR

is an isomorphism. So ker [,, = d(Q~1(M)) C QI (M).

Proof. Considering m-forms with small support shows that the integral is sur-
jective. By Poincaré duality 10.21 dimg H™(M)* = dimg H°(M) = 1 since M
is connected. [

Definition. The uniquely defined cohomology class wys € H (M) with integral
fM wpr = 1 is called the orientation class of the manifold M.
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10.25. Relative cohomology with compact supports. Let M be a smooth

manifold and let N be a closed submanifold. Then the injection i : N — M is a
proper smooth mapping. We consider the spaces

QF(M,N) :={w € Q¥(M) : w|N = i*w = 0}

whose direct sum is a graded differential subalgebra (Q%(M, N), d) of (Q%(M), d).
Its cohomology, denoted by H*(M, N), is called the relative De Rham cohomology
with compact supports of the manifold pair (M, N).

0 — (M, N) < Q*(M) 5 QX (N) = 0

is an exact sequence of differential graded algebras. This is seen by the same
proof as of 9.16 with some obvious changes. Thus by 9.8 we have the following
long exact sequence in cohmology

oo — HY(M,N) — H*(M) —» H*(N) % H**(M,N) — ...

which is natural in the manifold pair (M, N). It is called the long exact coho-
mology sequence with compact supports of the pair (M, N).

10.26. Now let M be an oriented smooth manifold of dimension m with bound-
ary M. Then OM is a closed submanifold of M. Since for w € Q™ 1(M,0M)
we have [, dw = [, w= [5,.0 =0, the integral of m-forms factors as follows

H™(M,0M)

to the cohomological integral [ : H"(M,0M) — R.

Ezample. Let I = [a,b] be a compact intervall, then I = {a,b}. We have
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HY(I) = 0 since fdt = dfat f(s)ds. The long exact sequence in cohomology is

0
H°(I,0I) = 0
H(I) = R
H°(0I) = R?
5
H'(I,0I) éR
HY(I) =0
H'(0I) = 0.

The connecting homomorphism § : H°(0I) — H(I,dI) is given by the following
procedure: Let (f(a), f(b)) € H°(OI), where f € C*°(I,R). Then

b b
5(f(a), f(8)) = [df] = / df] = / af — / F(t)dt = F(b) - f(a).

So the fundamental theorem of calculus can be interpreted as the connecting

homomorphism for the long exact sequence of the realtive cohomology for the
pair (I,0I).

The general situation. Let M be an oriented smooth manifold with boundary
OM. We consider the following piece of the long exact sequence in cohomology
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with compact supports of the pair (M, 90M):

H™ Y (M) ——— H™ Y(OM) —%  H™(M,0M) — H™(M) —— 0

o "

R R

The connecting homomorphism is given by
5[0)|8M] = [dw]Hgn(M,BM)a w € Q;n_l(M),

so commutation of the diagram above is equivalent to the validity of Stokes’
theorem.
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11. De Rham cohomology of compact manifolds

11.1. The oriented double cover. Let M be a manifold. We consider the
orientation bundle Or(M) of M which we dicussed in 8.6, and we consider the
subset or(M) := {v € Or(M) : |v| = 1}. We shall see shortly that it is a subman-
ifold of the total space Or(M), that it is orientable, and that mps : or(M) — M
is a double cover of M. The manifold or(M) is called the orientable double cover
of M.

We first check that the total space Or(M) of the orientation bundle is ori-
entable. Let (Uy,u,) be an atlas for M. Then the orientation bundle is given
by the cocycle of transition functions

Tap(T) = sign pg(x) = signdet d(ug o ult) (ua ().

Let (Uq, To) be the induced vector bundle atlas for Or(M), see 6.3. We consider
the mappings

(M)|Uq Ta U, xR
U

and we use them as charts for Or(M). The chart changes ug(Uag) x R —
ua(Uqp) x R are then given by

Uy X Id
_—

Or Uo(Uy) x R € R™TL

(y:t) = (ua o ug™ (), Tap(ug ' ())1)
= (uq © ugl(y), signdet d(ug o u ") ((uy o ugl)(y))t)
= (uq © ugl(y), signdet d(ug © ugl)(y)t)

The Jacobi matrix of this mapping is

<d(ua o uz)(y) * >

0 sign det d(ug © ugl) (y)

which has positive determinant.

Now we let Z := {v € Or(M) : |v|] < 1} which is a submanifold with boundary
in Or(M) of the same dimension and thus orientable. Its boundary 0Z coincides
with or(M), which is thus orientable.
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Next we consider the diffeomorphism ¢ : or(M) — or(M) which is induced by
the multiplication with —1 in Or(M). We have pop = Id and 75, (v) = {2, ¢(2)}
for z € or(M) and mps(2) = x.

Suppose that the manifold M is connected. Then the oriented double cover
or(M) has at most two connected components, since s is a two sheeted con-
vering map. If or(M) has two components, then ¢ restricts to a diffeomorphism
between them. The projection my,, if restricted to one of the components, be-
comes invertible, so Or(M) admits a section which vanishes nowhere, thus M is
orientable. So we see that or(M) is connected if and only if M is not orientable.

The pullback mapping ¢* : Q(or(M)) — Q(or(M)) also satisfies p* o p* = Id.
We put

Qi(or(M)) : ={w € Qor(M)) : p*w = w},
Q_(or(M)) : ={w € Qor(M)) : p*w = —w}.

For each w € Q(or(M)) we have w = 1 (w + ¢*w) + 1 (v — p*w) € Q4 (or(M)) ®

Q_(or(M)), so Q(or(M)) = Q4 (or(M))®Q_(or(M)). Since dop* = p*od these
two subspaces are invariant under d, thus we conclude that

(1) H(or(M)) = H*(Q (or(M))) & H* (Q—(or(M))).

Since 7}, @ Q(M) — Q(or(M)) is an embedding with image Q4 (or(M)) we see
that the induced mapping 7%, : H¥(M) — HF(or(M)) is also an embedding
with image H* (24 (or(M))).
11.2. Theorem. For a compact manifold M we have dimg H* (M) < co.
Proof. Step 1. If M is orientable we have by Poincaré duality 10.21
k DIX/I m—k * m—k * (Dﬁ_k)*
HY(M) —> (H ™ (M))" = (H™ ™ (M))* «—_—

o~ o~

(H(M))™,

so H¥(M) is finite dimensional since otherwise dim(H*(M))* > dim H*(M).

Step 2. Let M be not orientable. Then from 11.1 we see that the oriented
double cover or(M) of M is compact, oriented, and connected, and we have
dim H*(M) = dim H*(Q4 (or(M))) < dim H*(or(M)) < co. O

11.3. Theorem. Let M be a connected manifold of dimension m. Then

R of M is compact and orientable,
H™(M) = { / P

0 else.
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Proof. If M is compact and orientable by 10.24 we the integral [, : H™(M) — R
is an isomorphism.

Next let M be compact but not orientable. Then the oriented double cover
or(M) is connected, compact and oriented. Let w € Q™ (or(M)) be an m-form
which vanishes nowhere. Then also ¢*w is nowhere zero where ¢ : or(M) —
or(M) is the covering transformation from 11.1. So ¢*w = fw for a function
f € C*(or(M),R) which vanishes nowhere. So f > 0or f < 0. If f > 0 then
a:=w+ ¢*w = (1 + f)w is again nowhere 0 and p*a = a, so a = 73,0 for an
m-form 8 on M without zeros. So M is orientable, a contradiction. Thus f < 0
and ¢ changes the orientation.

The m-form v := w — p*w = (1 — f)w has no zeros, so for(M)’y > 0 if we
orient or(M) using w, thus the cohomology class [y] € H™(or(M)) is not zero.
But p*y = —y so v € Q_(or(M)), thus H™(Q2_(or(M))) # 0. By the first
part of the proof we have H™(or(M)) = R and from 11.1 we get H™ (or(M)) =
H™(Q_(or(M))), so H™(M) = H™(Q4(or(M))) = 0.

Finally let us suppose that M is not compact. If M is orientable we have by
Poincaré duality 10.21 and by 10.3.(2) that H™(M) = H?(M)* = 0.

If M is not orientable then or(M) is connected by 11.1 and not compact, so
H™(M)=H™(Q4(or(M))) Cc H™(or(M))=0. O

11.4. Corollary. Let M be a connected manifold which is not orientable. Then
or(M) is orientable and the Poincaré duality pairing of or(M) satisfies

Proof. From 11.1 we know that or(M) is connected and orientable. So R =
HP(or(M)) = H" (or(M))*.

Now we orient or(M) and choose a positive bump m-form w with compact
support on or(M) so that for(M) w > 0. From the proof of 11.3 we know that
the covering transformation ¢ : or(M) — or(M) changes the orientation, so
p*w is negatively oriented, for(M) ¢*w < 0. Then w — p*w € Q™ (or(M)) and
for(M)(w — ¢*w) >0, s0 (H™)_(or(M)) =R and (H")(or(M)) =0.

Since ¢* is an algebra homomorphism we have

O (or(M)) A (QF) 4 (0x(M)) C (27")+(or(M)),

C

QF (or(M)) A (2 7F)~ (or(M)) € () (or(M)).

C
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From (H]")i(or(M)) = 0 the first two results follows. The last two assertions
then follow from this and H*(or(M)) = H* (or(M)) ® H* (or(M)) and the anal-

ogous decomposition of H¥(or(M)). O

11.5. Theorem. For the real projective spaces we have

H°(RP") =R
H(RP™) =0 for1 <k <mn,
HO(RP) — { R for odd n,

0  for even n.

Proof. The projection 7 : S™ — RP" is a smooth covering mapping with 2 sheets,
the covering transformation is the antipodal mapping A : S™ — S™, © — —ux.
We put Q4 (S™) ={w € Q(S™) : A*'w =w} and Q_(S™) = {w € Q(S™) : A*w =
—w}. The pullback 7* : Q(RP™) — Q(S™) is an embedding onto Q4 (S™).

Let A be the determinant function on the oriented Euclidean space R*t1.
We identify T,S™ with {z}1 in R**! and we consider the n-form wg» € Q"(S™)
which is given by (wgn)z(X1,...,Xn) = Az, X4,...,X,). Then we have

(A*an)m(Xl, . ,Xn) = (wS”)A(m) (TmAXl, . ,TmAXn)
— (LL)STL)_m(—)(]_7 ey —Xn)
=A(—z,—X1q,...,—X,)
= (-D)"MA(z, X1,...,X,)

= (—1)n+1(wsn)m(X1, “ee ,Xn)

Since wgn is invariant under the action of the group SO(n + 1, R) it must be the
Riemannian volume form, so

1 7rk
n (n+1)ﬂ'% ﬁ forn=2k-1
wsn = vol(S™) = —F(”+3) = gk k1 . B
2 135.(2k—3) orn= 2k —2

Thus [wgn] € H™(S™) is a generator for the cohomology. We have A*wgn =
(—=1)"*lwgn, so
Qn(s™ for odd n,
wen € { T (S™)

Qmr(S™)  for even n.

Thus H"(RP™) = H™(24+(S™)) equals H™(S™) = R for odd n and equals 0 for
even n.

Since RP™ is connected we have HO(RP") = R. For 1 < k < n we have
H*(RP") = H*(Q,(S™)) Cc H*(S™)=0. O
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11.6. Corollary. Let M be a compact manifold. Then for all Betti numbers we
have by, (M) := dimg H¥ (M) < oo. If M is compact and orientable of dimension
m we have by, (M) = by, _k(M).

Proof. This follows from 11.2 and from Poincaré duality 10.21. [

11.7. Euler-Poincaré characteristic. If M is compact then all Betti numbers
are finite, so the Euler Poincaré characteristic (see also 9.2)

dim M

X = Y (=1)Fb(M) = far(—1)

k=0
is defined.

Theorem. Let M be a compact and orientable manifold of dimension m. Then
we have:

(1) If m is odd then xp = 0.
(2) If m = 2n for odd n then xp = b, (M) = 0( mod 2).
(3) If m = 4k then xar = bay, (M) = signature(PiF)( mod 2).

Proof. From 11.6 we have by(M) = by—q(M). So xm = Y ,Lo(=1)%, =
> aeo(=1)Tm—g = (=1)™xn which implies (1).

If m = 2n we have yy = Z;ZO(—I)qbq = 22;:01(—1)%(1 + (=1)"by, so
XM = by ( mod 2). In general we have for a compact oriented manifold

P (el 19) = [

anp= (11 [ a1 0PE(g) fal)
M M

For odd n and m = 2n we see that Py, is a skew symmetric non degenerate
bilinear form on H?(M), so b, must be even (see 4.7 or 7?7 below) which implies
(2).

(3). If m = 4k then P2F is a non degenerate symmetric bilinear form on
H?F(M), an inner product. By the signature of a non degenerate symmetric
inner product one means the number of positive eigenvalues minus the number
of negative eigenvalues, so the number dim H?* (M), —dim H**(M)_ =: ay—a_,
but since H**(M), ® H**(M)_ = H?*(M) we have ay+a_ = bop, 80 a; —a_ =
bgk —2a_ = bgk( mod 2). [

11.8. The mapping degree. Let M and N be smooth compact oriented
manifolds, both of the same dimension m. Then for any smooth mapping f :
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M — N there is a real number deg f, called the degree of f, which is given in
the bottom row of the diagram

I I

R deg f R

112

where the vertical arrows are isomorphisms by 10.24, and where deg f is the
linear mapping given by multiplication with that number. So we also the defining
relation

/f*w:degf/w for all w € Q™(N).
M N

11.9. Lemma. The mapping degree deg has the following properties:

(1) deg(fog)=degf-degg, deg(Idy)=1.

(2) If f, g: M — N are (smoothly) homotopic then deg f = deg g.

(3) If deg f # O then f is surjective.

(4) If f : M — M is a diffeomorphism then deg f = 1 if f respects the
ortentation and deg f = —1 if f reverses the orientation.

Proof. (1) and (2) are clear. (3). If f(M) # N we choose a bump m-form
w on N with support in the open set N \ f(M). Then f*w = 0 so we have
0= [, ffw=degf [yw. Since [y w # 0 we get deg f = 0.

(4) follows either directly from the definition of the integral 8.7 of from 11.11
below. [l

11.10. Examples on spheres. Let f € O(n+1,R) and restrict it to a mapping
f 8™ — 8™ Then deg f = det f. This follows from the description of the
volume form on S™ given in the proof of 11.5.

Let f, g : S™ — S™ be smooth mappings. If f(xz) # —g(z) for all z € S™
then the mappings f and g are smoothly homotopic: The homotopy moves f(x)
along the shorter arc of the geodesic (big circle) to g(z). So deg f = degg.

If f(x) # —x for all z € S™ then f is homotopic to Idgn, so deg f = 1.

If f(x) # x for all x € S™ then f is homotopic to —Idgn, so deg f = (—1)"*1,

The hairy ball theorem says that on S™ for even n each vector field vanishes
somewhere. This can be seen as follows. The tangent bundle of the sphere is

TS" = {(z,y) e K" x R"™" : |z> = 1, (z,y) = 0},

so a vector field without zeros is a mapping x — (z,g(z)) with g(z)Lz; then
f(z) :=g(x)/|g(x)| defines a smooth mapping f : S™ — S™ with f(x)Lz for all
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z. So f(x) # x for all z, thus deg f = (—1)"*! = —1. But also f(z) # —x for
all z, so deg f = 1, a contradiction.

Finally we consider the unit circle S* € = R2. Tts volume form is given by

w:=1i"(rdy —ydzr) = i*%; obviously we have [q, xdy — ydz = 27. Now

let f:S! — S be smooth, f(t) = (z(t),y(t)) for 0 <t < 2m. Then

1
dexf = 3= [ 1 (ady = yda)

is the winding number about 0 from compex analysis.

11.11. The mapping degree is an integer. Let f : M — N be a smooth
mapping between compact oriented manifolds of dimension m. Let b € N be a
regular value for f which exists by Sard’s theorem, see 10.16. Then for each = €
f~1(b) the tangent mapping T, f mapping is invertible, so f is diffeomorphism
near x. Thus f~1(b) is a finite set, since M is compact. We define the mapping
e: M — {-1,0,1} by

0 if Ty, f is not invertible
e(x)y=< 1 if T,, f is invertible and respects orientations

—1 if T, f is invertible and changes orientations.

11.12. Theorem. In the setting of 11.11, if b € N is a reqular value for f,

then
deg f = Z e(z).
z€f~1(b)

In particular deg f is always an integer.

Proof. The proof is the same as for lemma 10.17 with obvious changes. [l
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12. Lie groups III. Analysis on Lie groups

Invariant integration on Lie groups

12.1. Invariant differential forms on Lie groups. Let G be a real Lie group
of dimension n with Lie algebra g. Then the tangent bundle of G is a trivial
vector bundle, see 5.16, so G is orientable. Recall from section 4 the notation:
i G x G — G is the multiplication, p, : G — G is left translation by z, and
1Y 1 G — G is right translation. v : G — G is the inversion.

A differential form w € Q"(Q) is called left invariant if piw = w for all
x € G. Then w is uniquely determined by its value w, € A"T*G = A™g*. For
each determinant function A on g there is a unique left invariant n-form La on
G which is given by

(1) (La)a(X1,. .., Xn) = ATy (ttg=1)- X1, . - ., To(ta=1).X),
(La)z = To(pg—1)"A.

Likewise there is a unique right invariant n-form Ra which is given by

(2) (Ra)o (X1, Xn) o= AT (1® ).X1, ..., To(u® ). Xn).

12.2. Lemma. We have for all a € G

(1) (1")*La = det(Ad(a™"))La,
(2) (Ha)" Ra = det(Ad(a)) Ra,
(3) (Ra)a = det(Ad(a))(La)a-

Proof. We compute as follows:

(") La)a(X1,. .o s Xn) = (La)ea(Te(p?). X1, o Te(p®). Xy)
= A(Tm(/‘(ma)*l)-Tm(ﬂa)-le e vaa(/ﬁ(ma)*l)-Tm(/‘a)-Xn)
= A(To(pa—1)Toa(pz—1)Te(p®)- X1, o, Ta(pa—1)-Toa(pe—1) T (pn”).-Xn)
= AT (o) T Tt )- X o T (ptas) L) Ta(ptams). Xo)
= A(Ad(a™Y). Ty (g-1).X1, ..., Ad(a™Y). Ty (p1y—1).X)
= det(Ad(a™ ") A(Te(pig-1)- X1, Topto-1)-Xn)
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=det(Ad(a 1)) (La)e (X1, .., Xp).

(1a) " Ra)a (X1, -+ Xn) = (Ra)aw(Te () X1, -+, Te(11a)-X0)
(T (1 )Ty (10)- X1, -+, T (%)) T (110) - X)
(T (1) Tow () To(pta)- X, -+, Talp® ) Tan (1) T (1) Xn)
(T (1) To(a) To (B )Xy ooy Ta(i® ). Topa) T (1) X0n)
(Ad(a).To(u® ). X1, ..., Ad(a).Te(u® ). X,)

= det (Ad(a))A(Ty (). X1, ... . To(p® ' ).Xp)

= det(Ad(a))(Ra)s (X1, ... , Xn).
det(Ad(a))(La)a(X1,-- ., Xn)

= det(Ad(a))A(T (ua—l)Xla--- Ta(pa=1)-Xn)
= A(Ad(a) Ta(pa=1)-X15 - -+, Ad(a). Ta(pg=1)-Xn)

= A(Ta (1) Te(pa) Ta(pra=1)- X1, -+ Ta(p® ). Telpta) Tapia—1). Xn)
= AT, (p* ). X1, Ta(p® ). X0n) = (Ra)o(X1, ..., Xn). O

12.3. Corollary and Definition. The Lie group G admits a left and right
invariant n-form if and only if det(Ad(a)) =1 for all a € G.
The Lie group G is called unimodular if |det(Ad(a))| =1 for all a € G.

Proof. This is obvious from lemma 12.2. [

12.4. Haar measure. We orient the Lie group G by a left invariant n-form
La. If f € C*(G,R) is a smooth function with compact support on G then the
integral [ fLA is defined and we have

L winra= [ witrra) = [ ria,

because u, : G — G is an orientation preserving diffeomorphism of G. Thus f—
f o fLa is aleft invariant integration on ¢, which is also denoted by f o f(z)dpz,
and which gives rise to a left invariant measure on G, the so called Haar measure.
It is unique up to a multiplicative constant, since dim(A”g*) = 1. In the other
notation the left invariance looks like

/ flax)drx = / f(x)dpx for all f € C°(G,R),a € G.
G G
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From lemma 12.2.(1) we have

[ () Ls = detad(a™) [ (u)(FLa)
G

G

— | det(Ad(a="))| /G FLA.

since the mapping p is orientation preserving if and only if det(Ad(a)) > 0. So
a left Haar measure is also a right invariant one if and only if the Lie group G is
unimodular.

12.5. Lemma. FEach compact Lie group is unimodular.

Proof. The mapping det oAd : G — GL(1,R) is a homomorphism of Lie groups,
so its image is a compact subgroup of GL(1,R). Thus det(Ad(G)) equals {1} or
{1, —1}. In both cases we have |det(Ad(a))| =1 foralla e G. O

Analysis for mappings between Lie groups

12.6. Definition. Let G and H be Lie groups with Lie algebras g and b,
respectively, and let f : G — H be a smooth mapping. Then we define the
mapping Df : G — L(g,h) by

D () = Tyoy () ™) Ta f T (47) = 6 (2) T 1),

and we call it the right trivialized derivative of f.

12.7. Lemma. The chain rule: For smooth g : K — G and f : G — H we
have

D(f og)(z) = Df(g(z)) o Dg(z).
The product rule: For f,h € C*°(G, H) we have

D(fh)(z) = Df(z) + Ad(f(x))Dh(z).
Proof. We compute as follows:

D(f 0 g)(X) = T(u W@ )T, (f 0 g).To (1)
= T(Mf(g(m))il)'Tg(w)(f)-Te(/‘g(m))-T(Hg(m)il)-Tm (9)-Te(n”)
= Df(g(x)).Dg(x).
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D(fh)(x) = T(u MDY Ty (o (£, ). Te (1)
=TT (h(w)) ). Tt 2y niw) o (To f Te(1®), Toh Te(p"))
(W) (™), (T () T () + Tpgia)) T T )
( )

pf e I)TfT( “) o T )T () T () Toh T (")
f (&) + Ad(f ()).Dh(z). O

T
T
D

12.8. Inverse function theorem. Let f : G — H be smooth and for some
x € G let Df(x) : g — b be invertible. Then f is a diffeomorphism from a
suitable neighborhood of x in G onto a neighborhood of f(x) in H, and for the
derivative we have D(f~1)(f(x)) = (Df(x))~?!

Proof. This follows from the usual inverse function theorem. [

12.9. Lemma. Let f € C®(G,G) and let A € A" C%g* be a determinant
function on g. Then we have for all z € G,

(f*Ra)r =det(Df(z))(RA)z-

Proof. Let dim G = n. We compute as follows

(F*Ra)e(X1 o X0) = (Ra) sy (Tuf- X1y, Tof-X0)
(T(Wf @ )T f X, )

1

A(T

A(T(p! @) T f. T (). T (). X, )
ADf(2).T (1" ). X1,
det
det

Df () AT (). X1, ...)
Df(2))(Ra)u(X1, ..., Xpn). O

(DS
t(Df(

12.10. Theorem. Transformation formula for multiple integrals. Let
f: G — G be a diffeomorphism, let A € A CGg*. Then for any g € C°(G,R)
we have

/ 9(f ()| det(Df (x))|dgr = / 9(y)dry,
G G

where drx is the right Haar measure, given by R .

Proof. We consider the locally constant function e(x) = signdet(Df(z)) which
is 1 on those connected components where f respects the orientation and is —1
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on the other components. Then the integral is the sum of all integrals over the
connected components and we may investigate each one separately, so let us
restrict attention to the component Gy of the identity. By a right translation
(which does not change the integrals) we may assume that f(Gy) = Go. So
finally let us assume without loss of generality that G is connected, so that ¢ is
constant. Then by lemma 12.9 we have

/C;gRA:eLf*<gRA>=eLf*<g>f (R

~ [ (9o Dedet(DNRs = [ (g0 N)ldettDPIRs. O
G G

12.11. Theorem. Let G be a compact and connected Lie group, let f €
C>(G,G) and A € AY™CGg* Then we have for g € C°(G,R),

degf/ gRA:/(gOf)det(Df)RA, or
dex s [ gtw)dny = | o(7(@) der(Df(@))dns.

Here deg f, the mapping degree of f, see 11.8, is an integer.

Proof. From lemma 12.9 we have f*Ra = det(Df)Ra. Using this and the
defining relation from 11.8 for deg f we may compute as follows:

degf/gRA—/f (¢Ra) /f

_/( o f)det(Df)Ra. O
G

12.12. Examples. Let GG be a compact connected Lie group.

1. If f=p":G — G then D(p*)(xr) = Idg. From theorem 12.11 we get
fG gRA = fG (g o u*)Ra, the right invariance of the right Haar measure.

2. If f = ptg : G = G then D(pg)(w) = T(ul* ™). T, (a)-To(u") = Adl(a).
So the last two results give [, gRA = [;(gopa)| det Ad(a)|Ra which we already
know from 12.4.

3. If f(x) = 2? = p(z,z) we have

Df(z) = Tpo (4 ). Tip myi-(To (1), Te(1s”))

= To(1® )Ty (1) (T () T (1®) + T ()T (11"))
= Ad(z) + Id,.
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Let us now suppose that fG RA =1, then we get

deg(( )?) = deg(( /RA—/det (Idg + Ad(x))drz

/ g(x?) det(Idy + Ad(x))drr = / det(Id, + Ad(z))dpz / g(z)dgz.
G G

4. Let f(z) = 2% for k € N, [, dra = 1. Then we claim that

k—1
=) Ad(x
i=0
This follows from induction, starting from example 3 above, since

D(( )*)(x) =DIda( )* ()
:D([dG)(iU)+Ad(a:).D(( N (z) by 12.7

k—1
= Idy + Ad(x ZAd )= Ad(x
1=0

We conclude that

deg( ¥ = /Gdet (ZAd(x’)) dRrz.

If G is abelian we have deg( )* = k4™ since then Ad(z) = Id,.

5. Let f(z) = v(z) = #~'. Then we have Dv(z) = Tp*® ™ T,w.T.u® =
—Ad(z~1). Using this we see that the result in 4. holds also for negative k, if
the summation is interpreted in the right way:

—k+1

k-1
D(( )y = Y AdGa') = =3 Ad(),

Cohomology of compact connected Lie groups

12.13. Let G be a connected Lie group with Lie algebra g. The De Rham coho-
mology of G is the cohomology of the graded differential algebra (Q(G),d). We
will investigate now what is contributed by the subcomplex of the left invariant
differential forms.
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Definition. A differential form w € Q(G) is called left invariant differential
form if piw = w for all a € G. We denote by Qp(G) the subspace of all left
invariant forms. Clearly the mapping

L: Ag* — QL(G),
(Lw)w(Xl,. . ,Xk) = w(T(/j,m—l).Xl, e ,T(ﬂw—l).Xk),

is a linear isomorphism. Since uf od = d o p’ the space (1 (G),d) is a graded
differential subalgebra of (2(G), d).

We shall also need the representation Ad : G — GL(Ag*) which is given by
Ad(a) = A(Ad(a=1)*) or

(Ad(a)w)(X1,..., Xe) = w(Ad(a™ ). X1, ..., Ad(a™").Xx).

12.14. Lemma. 1. Via the isomorphism L : Ag* — Qr(G) the exterior differ-
ential d has the following form on Ag*:

dw(Xo,..., Xp) = > (-1)"Mw(X;, X;], Xo,..., Xiy. .. Xjy .., X),
0<i<j<k

where w € A¥g* and X; € g.
2. For X € g we have i(L(X))QL(G) C QrL(G) and L1 x)Qr(G) C QrL(G).
Thus we have induced mappings

ix : AFg* — AMlgr,
(ixw) (X1, .., Xpe1) = w(X, X1, .00, Xpo1);
Lx : A*g* — AFg*,
k ~
(Lxw) (X1, Xp) =D (—D'w((X, Xi], X1,..., Xi,... Xx).

=1

3. These mappings satisfy all the properties from section 7, in particular

Lx=ixod+doix, see 7.9.(2),

Lxod=doLx, see 7.9.(5),
[Lx,Ly] = Lix v, see 7.0.(3).
[Lx,iy] = ix,v]s see 7.7.(2).
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4. The representation Ad : G — GL(Ag*) has the following derivative:
T.Ad.X = Lx.
Proof. For w € AFg* and X; € g the function
(Lw)a(Lxo(2), ., Lx, (2) = (T (pg=1) - Lix, (2), . ..)

W(T(ppgp—1).T (pe)- X1,-..)
w(Xl, Ce ,Xk)

is constant in . This implies already that i(Lx)Qr(G) C Qr(G) and the form
of ix in 2. Then by 7.8.(2) we have

(dw)(Xo, ..., X) = (dL,)(Lx,,- .., Lx,)(€)
k
= Z(—l)iLXi (e)(w(Xo, ... Xi, ... X))

+ Z (—1)i+jw([Xi,Xj],X0,...,)?i,...,)?j,...Xk),
0<i<y<k

from which assertion 1 follows since the first summand is 0. Similarly we have
([,Xw)(Xl, e ,Xk) = (EL(X)Lw)(Lle ce ey LXk)(e)

k
= Lx(e)(w(X1,..., X)) + Y _(-D'w([X, Xi], X1, ..., Xi, ... Xp).

i=1
Again the first summand is 0 and the second result of (2) follows.
3. This is obvious.
4. For X and X; € g and for w € AFg* we have
(TAdX)w) (X1 .., Xp) = 2|, (Ad(exp(tX))w)(X1, ..., X)
=2 ‘0 w(Ad(exp(—tX)).X1,..., Ad(exp(—tX)).Xx)

I
]~

w(X1, ..o, Xim1, —ad(X) Xy, Xiga, .. Xp)

.
[y

= |l

(_1)iw([X7 Xz’],Xl, .. .,)?i, .. Xk)

I
—

:ZEXLU)(Xl,... ,Xk) 0
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12.15. Lemma of Maschke. Let G be a compact Lie group, let
0V 5 Vo BV —0

be an exact sequence of G-modules and homomorphisms such that each V; is
a complete locally conver vector space and the representation of G on each V;
consists of continuous linear mappings with g — g.v continuous G — V; for each
v € V;. Then also the sequence

. G
0=)VELVELELVE 50

is exact, where V¢ :={v € V; : gv = for all g € G}.

Proof. We prove first that p® is surjective. Let vz € V& C Vs. Since p :
Vo — V3 is surjective there is an vy € Vo with p(ve) = v3. We consider the
element vy := fG x.vodrx; the integral makes sense since x — x.v5 is a continuous
mapping G — V5, GG is compact, and Riemann sums converge in the locally
convex topology of V5. We assume that fG drr = 1. Then we have a.v5 =
a. [qxvedpr = [, (ax).vadpx = [, x.v2dpz = Uy by the left invariance of the
integral, see 12.4, where one uses continuous linear functionals to reduce to the
scalar valued case. So 7y € V,& and since p is a G-homomorphism we get

G (0y) = Vo) = T.v9dx
1% (@) = p(i2) p</G d1)

_ /G pz.vs)dp = / 2.p(vs)dpe

G

:/x.vgde: / v3drx = v3.
G
G . . .
So p“ is surjective.

Now we prove that the sequence is exact at Vo¥. Clearly p©oi® = (poi)|VC =
0. Suppose conversely that vy € Vi& with p%(vy) = p(v2) = 0. Then there is
an v; € V7 with i(v1) = ve. Consider vy := fG r.v1drx. As above we see that
o, € VE and that i%(9,) = vp. O
12.16. Theorem (Chevalley, Eilenberg). Let G be a compact connected Lie
group with Lie algebra g. Then we have:

(1) H*(G) = H*(Ag*,d) := H*(g).

(2) H*(g) = H*(Ag*,d) = (Ag*)? = {w € Ag*: Lxw = 0 for all X € g},

the space of all g-invariant forms on g.
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The algebra H*(g) = H(Ag*, d) is called the cohomology of the Lie algebra g.

Proof. (Following [Pitie, 1976].)
(1). Let Z¥(G) = ker(d : QF(G) — QF+1(@G)), and let us consider the following
exact sequence of vector spaces:

(3) QF1(G) % Z8(@G) — HYG) — 0

The group G acts on Q(G) by a — p*_,, this action commutes with d and induces
thus an action of G of Z*¥(@G) and also on H¥(G). On the space Q(G) we may
consider the compact C°°-topology (uniform convergence on the compact G, in
all derivatives separately). In this topology d is continuous and Z*(G) is closed,
and the action of GG is pointwise continuous. So the assumptions of the lemma of
Maschke 12.15 are satisfied and we conclude that the following sequence is also
exact:

(4) NG S Z28(@)¢ — HYG)G -0

Since G is connected, for each a € G we may find a smooth curve c¢: [0,1] - G
with ¢(0) = e and ¢(1) = a. Then (f,x) = pew-1(z) = ¢(t) "'z is a smooth
homotopy between Idg and p,-1, so by 9.4 the two mappings induce the same
mapping in homology; we have p* , = Id : H*(G) — H"*(G) for each a € G.
Thus H*(G)¢ = H*(G). Furthermore Z*(G)% = ker(d : Q% (G) — Q5*1(@)),
so from the exact sequence (4) we may conclude that

_ ker(d: Q% (G) — Q¥ (@)
~im(d: QFY(G) = 0k (@)

H¥(@) = H¥(G)¢ = H*(Ag*,d).

(2). From 12.14.3 we have Lx od = d o Lx, so by 12.14.4 we conclude that
Ad(a) od = do Ad(a) : Ag* — Ag* since G is connected. Thus the the sequence

(5) AF=lge & 7F(g*) — H*(Ag*,d) — 0,

is an exact sequence of G-modules and G-homomorphisms, where Z¥(g*) =
ker(d : A¥g* — AF*lg*). All spaces are finite dimensional, so the lemma of

Maschke 12.15 is applicable and we may conclude that also the following sequence
is exact:

(6) (AF=1g")G & 7k (g*)¢ — H*(Ag*,d) — 0,
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The space H*(Ag*,d)® consist of all cohomology classes a with zzzl(a)a =«
for all @ € G. Since G is connected, by 12.14.4 these are exactly the a with
Lxa =0 for all X € g. For w € Ag* with dw = 0 we have by 12.14.3 that
Lxw = ixdw + dixw = dixw, so that Lxa = 0 for all « € H¥(Ag*,d). Thus
we get HF(Ag*,d) = H¥(Ag*,d)%. Also we have (Ag*)¢ = (Ag*)? so that the
exact sequence (6) tranlates to

(7) H*(g) = H*(Ag*, d) = H*((Ag")?, d).

Now let w € (Akg*)® = {p : Lxp = 0forall X € g} and consider the
inversion v : G — G. Then we have for w € A¥g* and X; € g:

a(Te(ua) Xy, dots, Te(pa)-X) =
w)a—1(TaV.Te(pg). X1, dots, Tov.Te(pa) - Xk)
at (T (%) T (1) Te(a)-X1, .
AT )Xl,..., ~T.(u" ). X)
Tua.Tu® . Xi1,...,Tua.Tu® . Xp)

-1 'm(a— Jw) (X1, dots, Xp)
—DFw(Xy,..., Xe) since w € (A*g*)®

So for w € (A¥g*)® we have v*L, = (—1)*L, and thus also (—=1)**1L4, =
v*dL, = dv*L, = (—1)¥dL, = (—=1)*Lg, which implies dw = 0. Hence we have
4|(Ag")e = 0.

From (7) we how get H*(g) = H*((Ag*)?,0) = (A*g*)? as required. [

12.17. Corollary. Let G be a compact connected Lie group. Then its Poincaré
polynomzial is given by

Jalt) = /G det (Ad(x) + t1dg)dp.

Proof. Let dim G = n. By definition 9.2 and by Poincaré duality 11.6 we have

t):zn:bk( G)tF _Zb G)t"F = " dimg H*(G)t" "
k=0
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On the other hand we hand we have

/ det (Ad(x) + t1dg)dpa — / det(Ad(z~1)* + t1dy-)dp e
G G

= Z Trace(A* Ad(z=")*) t"*drz by 12.19 below
& k=0

= / Trace(Ad(x)|AFg*)dpa (.
k=0"G

If p: G — GL(V) is a finite dimensional representation of G' then the operator
fG p(x)drz : V — V is just a projection onto V&, the space of fixed points of
the represetation, see the proof of the lemma of Maschke 12.14. The trace of a
projection is the dimension of the image. So

/G Trace(Ad(a)|A¥g*)dpz = Trace ( /G (%(a)|Akg*)de>

= dim(A*g*)¢ = dim H*(G). O

12.18. Let T" = (S1)" be the n-dimensional torus, let t* be its Lie algebra.
The bracket is zero since the torus is an abelian group. From theorem 12.16 we
have then that H*(T") = (A(t*)*)"" = A(t")*, so the Poincaré Polynomial is
fra(t) = (1 + )™,

12.19. Lemma. Let V be an n-dimensional vector space and let A:V — V be
a linear mapping. Then we have

det(A + tldy) = > _t" ¥ Trace(A* A).
k=0

Proof. By A*A : AFV — AFV we mean the mapping v A -+ Avg — Avy A« A
Avg. Let eq,...,e, be a basis of V. By the definition of the determinant we
have

det(A+tldy)(er A---Nep) = (Aer +ter) A--- A (Ae, + tey)

n
=3 t"F N er A A Aei AN Aei A Ny,
k=0 i <o<ip
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The multivectors (e;, A --- A e, )i,<...<i, are a basis of A¥V and we can thus
write

(ARA) (e, AvvvAei,) = Aeg, Aoe N Ae, = > Al

J1<-<Jk

Zke.h .'/\ejk7

where (AJ1 J%) is the matrix of AFA in this basis. We see that

K

er A A Aey AN Aej, Ao Ney = AR TRer A Ay,

ik
Consequently we have

n

det(A+tldy)er A+ Nep =Y "7 " Alttke  AeciNey,
k=0 i< <ip

n
= Z "k Trace(A*A)eg A -+ Aey,
k=0

which implies the result. [
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13. Derivations
on the Algebra of Differential Forms
and the Frolicher-Nijenhuis Bracket

13.1. Derivations. In this section let M be a smooth manifold. We consider
the graded commutative algebra Q(M) = @™ QF (M) = @2 ___ QF(M) of
differential forms on M, where we put Q¥(M) = 0 for k¥ < 0 and k > dim M.
The denote by Derg Q(M) the space of all (graded) derivations of degree k,
i.e. all linear mappings D : Q(M) — Q(M) with D(Q4(M)) c QFH(M) and
D(p A) = D(p) A+ (=1)* o A D(¥) for ¢ € QY(M).

Lemma. Then the space Der Q(M) = €, Dery Q(M) is a graded Lie algebra
with the graded commutator [Dy, D3] :== Dy o Dy — (—=1)¥1¥2Dy 0 Dy as bracket.
This means that the bracket is graded anticommutative, and satisfies the graded
Jacobi identity

[D1, Dy] = —(—=1)¥1%2[Dy, Dy],
[D1,[Da, Ds]] = [[Dy, Dy, Ds] + (—1)"*2[D,, [Dy, Ds]]

(so that ad(Dq) = [Dy, | is itself a derivation of degree ki ).
Proof. Plug in the definition of the graded commutator and compute. [

In section 7 we have already met some graded derivations: for a vector field X
on M the derivation ¢x is of degree —1, Lx is of degree 0, and d is of degree 1.
Note also that the important formula Lx = dix+ix d translates to Lx = [ix, d].
13.2. Algebraic derivations. A derivation D € Dery, Q(M) is called algebraic
if D | Q°(M) = 0. Then D(f.w) = f.D(w) for f € C>®°(M,R), so D is of
tensorial character by 7.3. So D induces a derivation D, € Dery AT M for each
x € M. It is uniquely determined by its restriction to 1-forms D, |TM : T} M —
AFFIT* M which we may view as an element K, € A**'T*M ® T, M depending
smoothly on x € M. To express this dependence we write D = ix = i(K),
where K € C®°(A*IT*MQTM) =: Q¥+ (M; TM). Note the defining equation:
iK(w) =woK for we QY(M). We call Q(M, TM) = 21;%]\/[ QOF(M, TM) the
space of all vector valued differential forms.

Theorem. (1) For K € Q**Y(M,TM) the formula
(in)(Xl, Ce ,Xk+g) =
= Gty > signo w(K(Xo1, .- Xo(er1) Xo(rys - --)

0ESk4e
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for w € QY(M), X; € X(M) (or T,M) defines an algebraic graded derivation
i € Dery, Q(M) and any algebraic derivation is of this form.

(2) By i([K, L") := [ik,ir] we get a bracket | , 1" on Q**1(M,TM) which
defines a graded Lie algebra structure with the grading as indicated, and for
K € QMY (M, TM), L € Q1 (M, TM) we have

[K,L)" =ixgL — (-1)*i K
where ig(w® X) == ig(w)® X.

[, ]" is called the algebraic bracket or the Nijenhuis-Richardson bracket,
see [Nijenhuis-Richardson, 1967].

Proof. Since AT;M is the free graded commutative algebra generated by the
vector space T M any K € QFt1(M,TM) extends to a graded derivation. By
applying it to an exterior product of 1-forms one can derive the formula in (1).
The graded commutator of two algebraic derivations is again algebraic, so the
injection 7 : Q*TY(M,TM) — Der,(2(M)) induces a graded Lie bracket on
Q*T1(M,TM) whose form can be seen by applying it to a 1-form. [

13.3. Lie derivations. The exterior derivative d is an element of Der; Q(M).
In view of the formula Lx = [ix, d] = ix d+dix for vector fields X, we define for
K € QF(M; TM) the Lie derivation Lx = L(K) € Dery Q(M) by Lx := [ix, d).

Then the mapping £ : Q(M,TM) — DerQ(M) is injective, since Lxf =
igdf =df o K for f € C*(M,R).

Theorem. For any graded derivation D € Dery Q(M) there are unique K €
QF(M;TM) and L € QFY(M; TM) such that

D=Lkg+1r.
We have L =0 if and only if [D,d] = 0. D is algebraic if and only if K = 0.
Proof. Let X; € X(M) be vector fields. Then f — (Df)(Xq,...,Xk) is a
derivation C*°(M,R) — C°°(M,R), so by 3.3 there is a unique vector field
K(X4,...,X) € X(M) such that

(DX, Xp) = K(Xo. . X)f = dF (K (X, . X)),

Clearly K(X1,...,Xg) is C°°(M,R)-linear in each X; and alternating, so K is
tensorial by 7.3, K € QF(M;TM).

The defining equation for K is Df = dfoK = ixdf = Lk f for f € C°(M,R).
Thus D — Lk is an algebraic derivation, so D — Lg = iy, by 13.2 for unique
L € Q¥ Y(M; TM).

Since we have [d,d] = 2d? = 0, by the graded Jacobi identity we obtain
0 = lixc, [d,d]) = [[ixc, ], d) + (—1)*[d, [ixe, d]] = 2[Lxc, ). The mapping K
lix,d] = Lk is injective, so the last assertions follow. [
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13.4. Applying i(Idrpr) on a k-fold exterior product of 1-forms we see that
i(Idpy)w = kw for w € QF(M). Thus we have L(Idry)w = i(Idpy)dw —
di(Idry)w = (k+ 1)dw — kdw = dw. Thus L(Idry) = d.

13.5. Let K € QF(M;TM) and L € QY(M;TM). Then clearly [[Lx, L], d] =
0, so we have
(LK), £(L)] = L([K, L])

for a uniquely defined [K, L] € Q¥(M;TM). This vector valued form [K, L] is
called the Frolicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = 2:6]\/[ QF(M; TM) with its usual grading
s a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we have
[K7 L] = _(_1)k£[L7 K]
[Klv [K27 K3]] = [[Klv K2]7 K3] + (_1)k1k2 [K27 [Kla K3]]
Idrar € QY(M;TM) is in the center, i.e. [K, Idppy] =0 for all K.
L:(QM;TM),[ , ])— DerQ(M) is an injective homomorphism of gra-

ded Lie algebras. For vector fields the Frolicher-Nijenhuis bracket coincides with
the Lie bracket.

Proof. df o [X,Y] = L([X,Y])f = [Lx,Ly]f. The rest is clear. O
13.6. Lemma. For K € Q¥(M;TM) and L € QYY(M; TM) we have

[Lr,iz] =i([K,L]) — (~1)*L(iK), or
lir, Lx] = L(ir K) — (=1)*i([L, K]).

This generalizes 7.7.2.
Proof. For f € C*(M,R) we have [ir,,Lx|f = irixdf —0 = ir(df o K) =
df o (ipK) = L(iLK)f. So [ir, Lx] — L(ir K) is an algebraic derivation.
[[iLWCKLd] = [iL7 [‘CKv d]] - (_1)k£[£K7 [iLv d]] =
=0— (-D)ML(K, L) = (-1)*[i([L, K)), d].
Since [ ,d] kills the ‘L’s’ and is injective on the ‘i’s’, the algebraic part of
lir, Lx] is (=1)*4([L, K]). O

13.7. Module structure. The space Der Q(M) is a graded module over the
graded algebra Q(M) with the action (w A D)y = w A D(p), because Q(M) is
graded commutative.
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Theorem. Let the degree of w be q, of ¢ be k, and of b be £. Let the other
degrees be as indicated. Then we have:

(1) [wA Dy, D3] = w A [Dy, Ds] — (—1)(@+*0k2 Dy () A Dy

(2) i(wAL)=wAi(L)

(3) WALk =LwAK)+ (=1)TFLi(dw A K).

(4) [wA Ly, Ly = w A [Ly1, L] —
—(~1 )(q+£1 1(£2—-1) i(Lo)w A L.

(5) WA Ky, K] =wA [Ky, Ko] — (—1) @0k £(Ko)w A K
+ (=) R dw A i(K) K.

(6) @ X, YpRY]=pA)p®[X,Y]

— (ivdp ANYp @ X — (—D)Fixdyp AR Y)

— (diye Ap) @ X — (—1)*d(ixyp A p) ®Y)
=AY R[X, Y]+ oANLxYp QY —LypAp @ X
+(=DF(dpNixyp @Y +iypAdyp @ X).

Proof. For (1) , (2) , (3) write out the definitions. For (4) compute i(jw A
L1, Ls]"). For (5) compute L([w A K1, K3]). For (6) use (5) . O

13.8. Theorem. For K € QF(M;TM) and w € QY(M) the Lie derivative of w
along K s given by the following formula, where the X; are vector fields on M.

(,CKw)(Xl, e X}H_g) =
k|g| ZSlgngﬁ Xoty-o- Uk))( (Xcr(k+1)7"' 7Xcr(k+£)))

+ Frien ngna WK (Xo1, -+ s Xok)s Xo(ea1))s Xo (ki) ---)

(—1)F1
+ GenrE=n 1) (14 Iy ngnaw ([Xo1, Xo2], Xo3, -+ - )y Xo(kt2)s - - - )-

Proof. Tt suffices to consider K = ¢ ® X. Then by 13.7.3 we have L(p ® X) =
o ANLx — (=1)*"tdp Aix. Now use the global formulas of section 7 to expand
this. O

Draft from November 17, 1997 Peter W. Michor, 13.8



13. The Frolicher-Nijenhuis bracket, 13.9 141

13.9. Theorem. For K € Q¥(M;TM) and L € Q*(M;TM) we have for the
Frélicher-Nijenhuis bracket [K, L] the following formula, where the X; are vector
fields on M.

(K, L) (X1, ... Xppe) =
= a > _signo [K(Xo1, .. Xon), L(Xo(t1)s - - » Xo(ere))]

+ wy Z sigho L([K (Xo1s- -+ s Xok)s Xo st Xo(hia),---)
ke
+ = 11)).5. ZSlgDU K([L(Xo1,--- X00), Xo@+1)], Xo(et2), -+ -)

(—1)k-1
+ (k 1) (f )12 ngnaL Xgl,ng],ng,...),Xa(k+2),...)

_1)k—1¢

+ (k ! (f Dol ngna[( Xgl,XUQ],XU?,,...),XU(£+2),...).

Proof. Tt suffices to consider K = ¢®X and L = ¢¥®Y’, then for [p@ X, Y QY| we
may use 13.7.6 and evaluate that at (Xi,..., Xgye). After some combinatorial
computation we get the right hand side of the above formula for K = p® X and

L=¢yeY. O
There are more illuminating ways to prove this formula, see [Michor, 1987].

13.10. Local formulas. In a local chart (U,u) on the manifold M we put
K|U=YK.d*®0, L |U=3L,d®0;, and w | U = Y w,d”, where
a=(1<a; <az<---<a<dimM) is a form index, d* = du® A...Adu**,
0; = % and so on.

Plugging X; = 0;, into the global formulas 13.2, 13.8, and 13.9, we get the
following local formulas:

. _ 7 . «
KW | U= E :Ka ...aszak+1~~~ak+zf1 d

A E:
KL |U < ay...0p zak+1 k4t
k—1)(¢—1) 11 «
— (COEEDLL o K 4 @0,

a1...0¢ ’La[+1

LKLL) | U — Z(Kél Qg 8’iwak+1...ak+[

+ ( ) (8 Ké2 ak+1) wiak+2...ak+[> da
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K,L]| U = Z(K ;L7

a1...0k Ap41--- X4y

— (—-1)kL? 0K

a1...0¢ Ap41--- A4y

— kK Doy, Lt

Q1.0 110 Q1. - X4

4 (—1)Rer 0, K ) d* ® ;

x1...00p 11 Ap41--- A4y
13.11. Theorem. For K; € Q% (M;TM) and L; € Q¥+ (M; TM) we have

(1) [ﬁKl +in,, Lk, + iL2] =L ([Kl,Kz] +ir, Ko — (—1)k1k2iL2K1)
+i ([L1, La)™ + [K1, La] — (—1)"*[K,, Ly]) .

Each summand of this formula looks like a semidirect product of graded Lie
algebras, but the mappings

i:QM;TM) — End(Q(M;TM),[ , ]
ad : Q(M; TM) — End(Q(M;TM),[ , ")

do not take values in the subspaces of graded derivations. We have instead for
K € Q¥(M;TM) and L € QY(M; TM) the following relations:

(2) in[K1, Ko = [in K1, Ko] 4+ (—1)* Ky, i K]
= (O, T K — (1) 08K, L))
(3) (K, [L1, L)) = [[K, L1}, Lo)" 4+ (1) [Ly, [K, Ly)|"—

(VMR (L) K, L) — (—1) EHOR (L) K, L))

The algebraic meaning of the relations of this theorem and its consequences
in group theory have been investigated in [Michor, 1989]. The corresponding
product of groups is well known to algebraists under the name ‘Zappa-Szep’-
product.

Proof. Equation (1) is an immediate consequence of 13.6. Equations (2) and (3)
follow from (1) by writing out the graded Jacobi identity, or as follows: Consider
L(ir[K1, K2]) and use 13.6 repeatedly to obtain £ of the right hand side of (2).
Then consider i([K, [L1, L2]"]) and use again 13.6 several times to obtain i of
the right hand side of (3). O
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13.12. Corollary (of 8.9). For K, L € Q'(M;TM) we have

[K,L](X,Y) = [KX,LY] — [KY, LX]
— L(KX,Y] - [KY, X])
— K([LX,Y]—[LY, X))
+ (LK + KL)[X,Y].

13.13. Curvature. Let P € QY(M;TM) be a fiber projection, i.e. PoP = P.
This is the most general case of a (first order) connection. We may call ker P the
horizontal space and im P the vertical space of the connection. If P is of constant
rank, then both are sub vector bundles of TM. If im P is some primarily fixed
sub vector bundle or (tangent bundle of) a foliation, P can be called a connection
for it. Special cases of this will be treated extensively later on. The following
result is immediate from 13.12.

Lemma. We have
[P, P] = 2R + 2R,

where R, R € Q*(M;TM) are given by R(X,Y) = P[(Id— P)X, (Id— P)Y] and

R(X,Y) = (Id — P)|PX, PY].

If P has constant rank, then R is the obstruction against integrability of the
horizontal bundle ker P, and R is the obstruction against integrability of the
vertical bundle im P. Thus we call R the curvature and R the cocurvature of the
connection P. We will see later, that for a principal fiber bundle R is just the
negative of the usual curvature.

13.14. Lemma (Bianchi identity). If P € Q'(M;TM) is a connection (fiber
projection) with curvature R and cocurvature R, then we have

[P,R+R]=0
[R,P]=irR+igzR.

Proof. We have [P, P] = 2R + 2R by 13.13 and [P, [P, P]] = 0 by the graded
Jacobi identity. So the first formula follows. We have 2R = P o [P, P] = i;p p| P.
By 13.11.2 we get i(p p)[P, P] = 2[i;p p)P, P] — 0 = 4[R, P]. Therefore [R, P] =
1ip,p[P, P] = i(R+ R)(R+ R) = igR + iz R since R has vertical values and
kills vertical vectors, so ig R = 0; likewise for R. [
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13.15. Naturality of the Frolicher-Nijenhuis bracket. Let f : M —
N be a smooth mapping between manifolds. Two vector valued forms K €
OF(M;TM) and K' € QF(N;TN) are called f-related or f-dependent, if for all
X; € T,M we have

(1) Koy (Tef - Xuooo o Tof - Xp) = Tof - Ko(X1,e .., X3).
Theorem.
(2) If K and K' as above are f-related then ix o f* = f*oig : Q(N) —

(3) Ifig o f* | BYN) = f*oixs | BY(N), then K and K' are f-related,
where B! denotes the space of exact 1-forms.

(4) If K; and K are f-related for j = 1,2, then ix,Ks and ir; Ky are
f-related, and also [Ky1, Ko|" and [K{, K§]" are f-related.

(5) If K and K' are f-related then Lk o f* = f*o Lk : Q(N) — Q(M).

(6) If Lk o f*| QON) = f*o Ly | Q°(N), then K and K' are f-related.

(7) If K; and K} are f-related for j = 1,2, then their Frolicher-Nijenhuis

brackets [K1, K] and [K', K] are also f-related.

Proof. (2) By 13.2 we have for w € Q4(N) and X; € T, M:

(ZKf*w):p(Xl, . e 7Xq+k—1) s
= m ZSignU (f*CL))m(Km(XO—]_, “ e 7X0'k)7 XU(k+1)7 .. .)

= =y 2 180 Wiy (Tof - Ko (Xo, )y Tof - Xo(egys - )

= m Zsignawf(gg)(K}(m)(Tmf . X0'17 .. .),Tmf . Xa(k+1)7 .. )
= (f*iK'w)JE(Xla s an—i-k;—l)

(3) follows from this computation, since the df, f € C*(M,R) separate
points.

(4) follows from the same computation for Ko instead of w, the result for the
bracket then follows from 13.2.2.

(5) The algebra homomorphism f* intertwines the operators ix and igs by
(2), and f* commutes with the exterior derivative d. Thus f* intertwines the
commutators [iK, d] = ﬁK and [iKl,d] = ,CKI.

(6) For g € Q°(N) we have Lx f*g = igdf*g = ix f*dg and f* L g =
[* ik dg. By (3) the result follows.
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(7) The algebra homomorphism f* intertwines Lg, and EKJ(, so also their

graded commutators which equal L([K, K»]) and L([KT, K3]), respectively. Now
use (6) . O

13.16. Let f: M — N be a local diffeomorphism. Then we can consider the
pullback operator f* : Q(N;TN) — Q(M;TM), given by

(1) (FK)o(X1,...  Xp) = (T f) 'K (Tof - X1y, Tuf - X))

Note that this is a special case of the pullback operator for sections of natural
vector bundles in 6.15. Clearly K and f*K are then f-related.

Theorem. In this situation we have:

(2) f*[K, L] = [f"K, f*L].

(3) frixLl =ipxf*L.

(4) f* K, L]" = [f*K, f*L]".

(5) For a vector field X € X(M) and K € Q(M;TM) by 6.15 the Lie de-
rivative Lx K = %‘0 (FIX)*K is defined. Then we have LxK = [X, K],
the Frolicher-Nijenhuis-bracket.

1

We may say that the Frolicher-Nijenhuis bracket, [ , etc. are natural

bilinear concomitants.

Proof. (2) — (4) are obvious from 13.15. (5) Obviously Lx is R-linear, so it
suffices to check this formula for K = ¢y ® Y, ¢ € Q(M) and Y € X(M). But
then

Lx(WWRY)=Lxp QY +¢Y@LxY by6.16
=Lxy Y +¢YR[X,Y]
=[X,v®Y] by13.76. O

13.17. Remark. At last we mention the best known application of the Froli-
cher-Nijenhuis bracket, which also led to its discovery. A vector valued 1-form
J € QY M;TM) with JoJ = —Id is called a almost complex structure; if it
exists, dim M is even and J can be viewed as a fiber multiplication with /—1
on T'M. By 13.12 we have

[, JI(X,Y) =2(JX,JY] - [X,Y] - J[X,JY] - J[JX,Y]).

The vector valued form 3[J, J] is also called the Nijenhuis tensor of J. For it
the following result is true:

A manifold M with a almost complex structure .J is a complex manifold (i.e.,
there exists an atlas for M with holomorphic chart-change mappings) if and only
if [J, J] = 0. See [Newlander-Nirenberg, 1957].
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14. Fiber Bundles and Connections

14.1. Definition. A (fiber) bundle (F,p, M,S) consists of manifolds E, M,
S, and a smooth mapping p : £ — M; furthermore each x € M has an open
neighborhood U such that E | U := p~1(U) is diffeomorphic to U x S via a fiber
respecting diffeomorphism:

E|U L4 UxS
X /ﬁ
U.

FE is called the total space, M is called the base space or basis, p is a surjective
submersion, called the projection, and S is called standard fiber. (U,)) as above
is called a fiber chart.

A collection of fiber charts (U, 1), such that (Uy,) is an open cover of M,
is called a “fiber bundle atlas”. If we fix such an atlas, then v, o wg_l(a:, s) =
(,Yap(x,s)), where o : (U, NUg) x § — S is smooth and 9.a(x, ) is a
diffeomorphism of S for each x € U,g := U, N Ug. We may thus consider
the mappings a3 : Usp — Diff(S) with values in the group Diff(S) of all
diffeomorphisms of S; their differentiability is a subtle question, which will not
be discussed in this book, but see [Michor, 1988]. In either form these mappings
Yap are called the transition functions of the bundle. They satisfy the cocycle
condition: Pap(x)oa () = Yary(x) for & € Uypy and 9qq(x) = Ids for z € U,.
Therefore the collection (143) is called a cocycle of transition functions.

Given an open cover (U,) of a manifold M and a cocycle of transition functions
(1ap) we may construct a fiber bundle (E, p, M, S) similarly as in 6.3.

14.2. Lemma. Let p: N — M be a surjective submersion (a fibered manifold)
which is proper, so that p~1(K) is compact in E for each compact K C M, and
let M be connected. Then (N,p, M) is a fiber bundle.

Proof. We have to produce a fiber chart at each zog € M. So let (U,u) be
a chart centered at xgp on M such that u(U) = R™. For each x € U let
¢:(y) == (Tyuw)~t.u(z), then &, € X(U), depending smoothly on = € U, such
that w(F1¥* u=1(2)) = z + t.u(z), so each &, is a complete vector field on U.
Since p is a submersion, with the help of a partition of unity on p~!(U) we may
construct vector fields , € X(p~1(U)) which depend smoothly on z € U and are
prelated to &: Tp.ng = &4 0 p. Thus po FI" = FI¢* op by 3.14, so F17* is fiber
respecting, and since p is proper and &, is complete, 7, has a global flow too.
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14. Fiber Bundles and Connections, 14.3 147

Denote p~'(xg) by S. Then ¢ : U x S — p~1(U), defined by ¢(z,y) = F17* (y),
is a diffeomorphism and is fiber respecting, so (U, ¢™!) is a fiber chart. Since M
is connected, the fibers p~!(z) are all diffeomorphic.

14.3. Let (E,p,M,S) be a fiber bundle; we consider the fiber linear tangent
mapping Tp : TE — TM and its kernel ker Tp =: VE which is called the
vertical bundle of E. The following is special case of 13.13.

Definition. A connection on the fiber bundle (E,p, M,S) is a vector valued 1-
form ® € Q' (E; VE) with values in the vertical bundle V E such that ®o® = ®
and Im® = V E; so @ is just a projection TE — V E.

Then ker @ is of constant rank, so by 6.6 ker ® is a sub vector bundle of TF, it
is called the space of horizontal vectors or the horizontal bundle and it is denoted
by HE. Clearly TE = HE® VFE and T,F = H,EF® V,FE for u € E.

Now we consider the mapping (T'p,7g) : TE — TM x s E. Then by definition
(Tp, WE)_l(Op(u),U) =V,E,so (Tp,mg) | HE: HE — TM xj; E is fiber linear
over I/ and injective, so by reason of dimensions it is a fiber linear isomorphism:
Its inverse is denoted by

C:=((Tp,7g) | HE)™' : TM x) E — HE — TE.

So C: TM xp E — TFE is fiber linear over E and is a right inverse for (T'p, 7).
C is called the horizontal lift associated to the connection ®.

Note the formula ®(&,) = &, — C(Tp.&y,u) for &, € T,E. So we can equally
well describe a connection ® by specifying C'. Then we call ® the vertical pro-
jection (no confusion with 6.11 will arise) and x := idpg — ® = C o (Tp, 7g) will
be called the horizontal projection.

14.4. Curvature. If & : TE — V E is a connection on the bundle (E,p, M, S),
then as in 13.13 the curvature R of ® is given by

2R = [®,®] = [Id — ®,Id — ®] = [x, x] € Q*(E;VE)

(The cocurvature R vanishes since the vertical bundle V E is integrable). We have
R(X,Y) = 1[®,®](X,Y) = ®[xX, xY], so R is an obstruction against integra-
bility of the horizontal subbundle. Note that for vector fields £,n € X(M) and
their horizontal lifts C¢,Cn € X(E) we have R(C¢,Cn) = [CE,Cn] — C([€,n)).
Since the vertical bundle V' E is integrable, by 13.14 we have the Bianchi identity
[®, R] = 0.

14.5. Pullback. Let (E,p, M,S) be a fiber bundle and consider a smooth
mapping f : N — M. Since p is a submersion, f and p are transversal in the
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148 14. Fiber Bundles and Connections, 14.6

sense of 2.18 and thus the pullback N X(f s,y E exists. It will be called the
pullback of the fiber bundle E by f and we will denote it by f*FE. The following
diagram sets up some further notation for it:

B p*f
f *pl lp
f

N ——— M.

Proposition. In the situation above we have:

(1) (f*E, f*p,N,S) is again a fiber bundle, and p*f is a fiber wise diffeo-
morphism.

(2) If® € QYE;TE) is a connection on the bundle E, then the vector valued
form f*®, given by (f*®),(X) := T, (p*f)~1.®.T,(p*f).X for X € T,E,
s a connection on the bundle f*E. The forms f*® and ® are p* f-related
in the sense of 13.15.

(3) The curvatures of f*® and ® are also p* f-related.

Proof. (1). If (Ua,ts) is a fiber bundle atlas of (E,p, M,S) in the sense of
14.1, then (f~Y(Uy.), (f*p,pra o 14 o p*f)) is visibly a fiber bundle atlas for
(f*E, f*p, N, S), by the formal universal properties of a pullback 2.19. (2) is
obvious. (3) follows from (2) and 13.15.7. O

14.6. Let us suppose that a connection ® on the bundle (E,p, M, S) has zero
curvature. Then by 14.4 the horizontal bundle is integrable and gives rise to
the horizontal foliation by 3.25.2. Each point u € F lies on a unique leaf L(u)
such that T,,L(u) = H,E for each v € L(u). The restriction p | L(u) is locally
a diffeomorphism, but in general it is neither surjective nor is it a covering onto
its image. This is seen by devising suitable horizontal foliations on the trivial
bundle pry : R x St — St

14.7. Local description. Let ® be a connection on (E,p, M, S). Let us fix a
fiber bundle atlas (U,) with transition functions (1g), and let us consider the
connection ((14)~1)*® € QY (U, x S;U, x TS), which may be written in the
form

((%)_1)*@)(&67%) = _Fa(émay) + 1y for ¢, € T,U, and Ny € TyS,

since it reproduces vertical vectors. The I'* are given by

(04, T%(€, y)) := =T (Y0)- 2T (0) "' (&4, 0,)-
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We consider I'* as an element of the space Q! (Uy; X(S)), a 1-form on U® with
values in the infinite dimensional Lie algebra X(S) of all vector fields on the
standard fiber. The I'* are called the Christoffel forms of the connection ® with
respect to the bundle atlas (Uy, 9q)-

Lemma. The transformation law for the Christoffel forms is

Ty(waﬂ(xv ))F'B(ém y) =TI (éma ’Qbag(."l?, y)) - Tm(wa,ﬁ( 7y))-gm-
The curvature R of ® satisfies

(3 1)*R =dl™ + [0, T%]x(s)-

Here dI'® is the exterior derivative of the 1-form I'* € QY(Uy; X(S)) with
values in the complete locally convex space X(S). We will later also use the Lie
derivative of it and the usual formulas apply: consult [Frolicher, Kriegl, 1988]
for calculus in infinite dimensional spaces.

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only in the level of local description.

Proof. From (th, o (5) 1) (2, y) = (z,9ap(w,y)) we get that
T(lba ° (wﬂ)_l)(é_ﬁm 773/) = (E:vv T(m,y) (waﬁ)(&m ny)) and thus:

T(1h5"). (05,17 (s ) = —R(T(Y5") (62, 0y)) =
—O(T ()T (Yo 05 ") . (€2, 0y)) =
‘I’(T(@b;l)(é’m,T(w,y)(lbaﬁ)(fm, y)) =
= —O(T (3 ") (€as Oy p(a))) — PT (V3 ) Oy Ty Y €y 0y)) =

T(a")-(00, T (€as Yap(@, 1)) = T(¥a ) (00, To(Pap( ,1))-Ea)-

This implies the transformation law.
For the curvature R of ® we have by 14.4 and 14.5.3

(W) R (€ n"), (€% n%) =
= () @[(Id— (3 ") @) n"), (Id = (v5 ) @) (€%, 7)) =
= (o ) @1, T7(€Y), (%, T%(6%)] =
(7#;1)*4)([ ¢7,6'T(€7) — €T (¢h) + [T(61), T (67)]) =
T((€h €%) +€'T(€?) — €°T(€h) + [T(¢1), T™(&%)] =
ZdF“(él,E ) +[C*(€H, T*(€M)x(s)- O

Draft from November 17, 1997 Peter W. Michor, 14.7
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14.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b), ¢(0) = z.

Then there is a neighborhood U of E, x {0} in E; x (a,b) and a smooth
mapping Pt. : U — E such that:

(1) p(Pt(c,ug,t)) = c(t) if defined, and Pt(c, ug, 0) = uy.

(2) ®(L Pt(c,ug,t)) = 0 if defined.

(3) Reparametrisation invariance: If f : (a’,b") — (a,b) is smooth with 0 €

(a', "), then Pt(c,uy, f(t)) = Pt(co f,Pt(c, ug, f(0)),t) if defined.
(4) U is maximal for properties (1) and (2).
(5) In a certain sense Pt depends smoothly also on c.

First proof. In local bundle coordinates ® (<4 Pt(c,u,,t)) = 0 is an ordinary
differential equation of first order, nonlinear, with initial condition Pt(c, u,,0) =
uz. So there is a maximally defined local solution curve which is unique. All
further properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*FE, c*p, (a,b), S) and the pullback
connection ¢*® on it. It has zero curvature, since the horizontal bundle is 1-
dimensional. By 14.6 the horizontal foliation exists and the parallel transport
just follows a leaf and we may map it back to E, in detail: Pt(c, uz,t) = p*e((c*p |

L(ug)) = (t))-
Third proof. Consider a fiber bundle atlas (Uy, 1) as in 14.7. Then we have
Ya(Pt(c, 95t (z,y),1)) = (c(t),¥(y, 1)), where

0= ((¥z")*®) (Le(t), Er(y,t) = =T (L), v(y, 1) + £y, 1),

so v(y, t) is the integral curve (evolution line) through y € S of the time depen-
dent vector field T'® (%c(t)) on S. This vector field visibly depends smoothly
on c. Clearly local solutions exist and all properties follow. For (5) we refer to
[Michor, 1983]. O

14.9. A connection ® on (E,p, M,S) is called a complete connection, if the
parallel transport Pt. along any smooth curve ¢ : (a,b) — M is defined on the
whole of Ey % (a,b). The third proof of theorem 14.8 shows that on a fiber
bundle with compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (Uy, ¥4 ) and complete Riemannian met-
rics g, on the standard fiber S such that each Christoffel form I'* €
QY Uy, X(S)) takes values in the linear subspace of g,-bounded vector
fields on S
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For in the third proof of theorem 14.8 above the time dependent vector field
I'*(4c(t)) on S is go-bounded for compact time intervals. So by continuation
the solution exists over ¢~1(U,), and thus globally.

A complete connection is called an Ehresmann connection in [Greub - Halperin
- Vanstone I, p 314], where it is also indicated how to prove the following result.

Theorem. FEach fiber bundle admits complete connections.

Proof. Let dimM = m. Let (Uy, %) be a fiber bundle atlas as in 14.1. By
topological dimension theory [Nagata, 1965] the open cover (U,) of M admits
a refinement such that any m 4+ 2 members have empty intersection, see also
1.1. Let (U,) itself have this property. Choose a smooth partition of unity (fy)
subordinated to (Uy). Then the sets V, := {z : fa(x) > #H} C U, form still
an open cover of M since Y fo(z) = 1 and at most m + 1 of the f,(x) can be
nonzero. By renaming assume that each V, is connected. Then we choose an
open cover (W,) of M such that W, C V.

Now let g; and g» be complete Riemannian metrics on M and S, respectively
(see [Nomizu - Ozeki, 1961] or [Morrow, 1970]). For not connected Riemannian
manifolds complete means that each connected component is complete. Then
91|Uq X g2 is a Riemannian metric on U, X S and we consider the metric g :=
Y. fati(g1|Uqs X g2) on E. Obviously p : E — M is a Riemannian submersion
for the metrics g and g;. We choose now the connection ® : TE — V E as the
orthonormal projection with respect to the Riemannian metric g.

Claim. ® is a complete connection on E.

Let ¢ : [0,1] — M be a smooth curve. We choose a partition 0 = ty < t; <
-+« <t = 1 such that c([t;, t;+1]) C V4, for suitable a;. It suffices to show that
Pt(c(ti+ ), ucp,),t) exists for all 0 < ¢ < ;11 —t; and all uy,), for all i —
then we may piece them together. So we may assume that ¢ : [0,1] — V,, for
some «. Let us now assume that for some (z,y) € V,, x S the parallel transport
Pt(c,¥q(x,y),t) is defined only for ¢ € [0,¢') for some 0 < t' < 1. By the third
proof of 14.8 we have Pt(c,¥q(x,y),t) = ¥, (c(t),(t)), where v : [0,') — S
is the maximally defined integral curve through y € S of the time dependent
vector field I'*(L¢(t), ) on S. We put go = (¢¥3')*g, then (ga)(zy) =
(gl)m X (ZB fﬂ(ﬂﬁ)@bﬂa(% )*QZ)y- Since pri (Va X Svga) - (Va791|va) is
a Riemannian submersion and since the connection (¢ 1)*® is also given by
orthonormal projection onto the vertical bundle, we get

t’
0 > gurlengthf (¢) = gurlength(e,) = [ (), 716y, dt =
0

:/0 \/IC’(t) 2+ X a(c(t) (Wap(e(t), =) g2) (Gv(1), Fry(t)) dt >
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> [ VEED) Ol it > <= [ 0l

So go-lenght(7y) is finite and since the Riemannian metric g on S is complete,
limy 4 y(t) =: y(t’) exists in S and the integral curve + can be continued. [

14.10. Holonomy groups and Lie algebras. Let (E,p, M, S) be a fiber
bundle with a complete connection ®, and let us assume that M is connected.
We choose a fixed base point ¢y € M and we identify F,, with the standard fiber
S. For each closed piecewise smooth curve ¢ : [0,1] — M through z( the parallel
transport Pt(c, ,1) =: Pt(e,1) (pieced together over the smooth parts of c)
is a diffeomorphism of S. All these diffeomorphisms form together the group
Hol(®, zy), the holonomy group of ® at z(, a subgroup of the diffeomorphism
group Diff(S). If we consider only those piecewise smooth curves which are
homotopic to zero, we get a subgroup Holy(®, z), called the restricted holonomy
group of the connection ® at xg.

Now let C': TM x; E — TFE be the horizontal lifting as in 14.3, and let R
be the curvature (14.4) of the connection ®. For any z € M and X, € T, M
the horizontal lift C'(X,) := C(X,, ): E, — TFE is a vector field along E,.
For X, and Y, € T, M we consider R(CX,,CY,) € X(F;). Now we choose
any piecewise smooth curve ¢ from xy to £ and consider the diffeomorphism
Pt(c,t) : S = E;, — E, and the pullback Pt(c,1)*R(CX,,CY,) € X(S). Let
us denote by hol(®, zg) the closed linear subspace, generated by all these vector
fields (for all z € M, X,, Y, € T, M and curves c¢ from xy to z) in X(S) with
respect to the compact C'°°-topology, and let us call it the holonomy Lie algebra
of & at zo.

Lemma. hol(®,z) is a Lie subalgebra of X(S5).

Proof. For X € X(M) we consider the local flow FIC¥ of the horizontal lift of
X. It restricts to parallel transport along any of the flow lines of X in M. Then
for vector fields on M the expression

2o (FI$%)* (P17 ) (F190)* (FI97)*R(CU,CV) | E
= (FIJX)*[CY, (FI9))*(FIS?)*R(CU,CV)| | B,
= [(FI¢*y ¢y, (FIS?)*R(CU,CV)| | E

is in hol(®, xy), since it is closed in the compact C'*°-topology and the derivative
can be written as a limit. Thus

[(FIS%)*[CY1, CYs), (FISZ)*R(CU,CV)] | E,, € hol(®, x)
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by the Jacobi identity and
[(FIT%)*CV1, Yal, (FIS?)*R(CU,CV)] | By, € hol(®, zo),
so also their difference
(FIS*)*R(CYy, CYa), (FIT?)*R(CU,CV)] | Ea,

is in hol(®, xp). O

14.11. The following theorem is a generalization of the theorem of Ambrose
and Singer on principal connections. The reader who does not know principal
connections is advised to read parts of sections 15 and 16 first. We include this
result here in order not to disturb the development in section 16 later.

Theorem. Let ® be a complete connection on the fibre bundle (E,p, M, S) and
let M be connected. Suppose that for some (hence any) xo € M the holonomy
Lie algebra hol(®, xq) is finite dimensional and consists of complete vector fields
on the fiber E

Then there is a principal bundle (P,p, M, G) with finite dimensional structure
group G, an irreducible connection w on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol(®, x), the fibre
bundle E is isomorphic to the associated bundle P[S], and ® is the connection
induced by w. The structure group G equals the holonomy group Hol(®,xz). P
and w are unique up to isomorphism.

By a theorem of [Palais, 1957] a finite dimensional Lie subalgebra of X(FE,,)
like hol(®, zy) consists of complete vector fields if and only if it is generated by
complete vector fields as a Lie algebra.

Proof. Let us again identify E,, and S. Then g := hol(®,x() is a finite dimen-
sional Lie subalgebra of X(S), and since each vector field in it is complete, there
is a finite dimensional connected Lie group G of diffeomorphisms of S with Lie
algebra g, see [Palais, 1957].

Claim 1. G| contains Holy(®, ), the restricted holonomy group.

Let f € Holg(®,zp), then f = Pt(c,1) for a piecewise smooth closed curve ¢
through g, which is nullhomotopic. Since the parallel transport is essentially
invariant under reparametrisation, 14.8, we can replace ¢ by c o g, where g is
smooth and flat at each corner of c. So we may assume that c itself is smooth.
Since c¢ is homotopic to zero, by approximation we may assume that there is
a smooth homotopy H : R? — M with H1][0,1] = ¢ and Hyl|[0,1] = zo. Then
ft := Pt(Hy, 1) is a curve in Holy(®, ) which is smooth as a mapping Rx.S — S;
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this can be seen by using the proof of claim 2 below or as in the proof of 16.7.3.
We will continue the proof of claim 1 below.

Claim 2. (%ft) o fit =:Z isin g for all t.

To prove claim 2 we consider the pullback bundle H*E — R? with the induced
connection H*®. It is sufficient to prove claim 2 there. Let X = —S and Y =

be the constant vector fields on R?, so [X,Y] = 0. Then Pt(c,s) = FI¥ |S and
so on. We put

frs = FI9Y o FI19Y o FISX o FICY . 5 — S,
so ft1 = fi. Then we have in the vector space X(.5)
(4 fr.s) © frd = —(FITF)*CY + (FI§%)*(FIFY)* (F19)*CY,
(Brrodit= [ & (hho o fid) s
_ /01 (—~(FIX)*[0X, OV + (FICX)[CX, (FIFY ) (FICX) O )
—(FIC%)*(FI9Y ) (FIC X )*[O X, CY]) ds.
Since [X,Y] =0 we have [CX,CY] =®[CX,CY]=R(CX,CY) and
(FIEX) Oy = C((Flf()*Y) +q>(( 10Xy (JY)
= CY+/Ot%<I>( IF%)*Cy dt
=CY + /Ot d(FIC*)* [CX, CY] dt
=CY + /Ot (FIC*)*R(CX,CY) dt

t
= CY+/ (FIS*)*R(CX,CY) dt.
0

The flows (F1° X,)* and its derivative at 0 Lox = [CX, ] do not lead out of
g, thus all parts of the integrand above are in g and so (%fm) o f;ll is in g for
all t and claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t)

in Gy satistying T, (py(t)) Ze = Zi-g(t) = Lg(t) and g(0) = e; via the action of
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Go on S the curve g(t) is a curve of diffeomorphisms on S, generated by the
time dependent vector field Z;, so g(t) = f; and f = f1 is in Go. So we get
HOl()(@,CE()) g Go.
Claim 3. Holy(®, zp) equals Gy.
In the proof of claim 1 we have seen that Holy(®, xg) is a smoothly arcwise
connected subgroup of Gy, so it is a connected Lie subgroup by the results cited
in 5.6. It suffices thus to show that the Lie algebra g of Gy is contained in the
Lie algebra of Holy(®, z¢), and for that it is enough to show, that for each £ in a
linearly spanning subset of g there is a smooth mapping f : [-1,1] x S — S such
that the associated curve f lies in Holy(®, zo) with f7(0) = 0 and f”(0) = €.
By definition we may assume ¢ = Pt(c,1)*R(CX,,CY,) for X, Y, € T,M
and a smooth curve ¢ in M from zg to x. We extend X, and Y, to vector fields
X and Y € X(M) with [X,Y] = 0 near . We may also suppose that Z € X(M)
is a vector field which extends ¢/(t) along c(¢): if ¢ is simple we approximate it
by an embedding and can consequently extend ¢/(¢) to such a vector field. If ¢
is not simple we do this for each simple piece of ¢ and have then several vector
fields Z instead of one below. So we have

FI?)*R(CX,CY) = (FI?)*[CX,CY] since [X,Y](z) =0
FIfZ) 141, o (FIZ)Y o FIX o FICY o FIY) by 3.16

= L&) o (FICZ o FIC}Y o FI°F o FICY o FICX 0 FICZ),

&=

(
(

where the parallel transport in the last equation first follows ¢ from z¢ to x, then
follows a small closed parallelogram near z in M (since [X,Y] = 0 near z) and
then follows ¢ back to xg. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®, z() into a Lie group which we call G, by taking
Holy(®, z¢) = Gy as its connected component of the identity. Then the quotient
Hol(®, z¢)/ Holy (P, ) is a countable group, since the fundamental group 1 (M)
is countable (by Morse theory M is homotopy equivalent to a countable CW-
complex).

Step 5. Construction of a cocycle of transition functions with values in G.
Let (Uy, tq : Uy — R™) be a locally finite smooth atlas for M such that each
Uy : Uy — R™) is surjective. Put z, := uj1(0) and choose smooth curves c, :
[0,1] = M with ¢, (0) = z¢ and ¢, (1) = 24. For each x € U, let ¢Z : [0,1] - M
be the smooth curve t — uj!(t.us(x)), then ¢ connects z, and x and the
mapping (z,t) — ¢ (t) is smooth U, x [0,1] = M. Now we define a fibre bundle
atlas (Uy, Yo : E|Uy — Uy x S) by 951 (x, 5) = Pt(c%, 1) Pt(cq, 1) s. Then 1, is
smooth since Pt(c%,1) = F1I{*= for a local vector field X, depending smoothly
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on z. Let us investigate the transition functions.

1/)(,1[)51(33, s) = (z,Pt(cq, 1)~ Pt(c®, 1) Pt(cﬁ, 1) Pt(cg, 1) s)
= (a:,Pt(Cg.cg.(cz) Lca)™h,4) s)
=: (z,9%qp(x) s), where o5 : Usp — G.

Clearly vga : Uga x S — S is smooth which implies that ¢¥g, : Uge — G is
also smooth. (¢,g) is a cocycle of transition functions and we use it to glue
a principal bundle with structure group G over M which we call (P, p, M, G).
From its construction it is clear that the associated bundle P[S] = P xg S equals
(E,p,M,S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of ® with respect to the
atlas of step 5. To do this directly is quite difficult since we have to differentiate
the parallel transport with respect to the curve. Fortunately there is another
way. Let c¢:[0,1] — U, be a smooth curve. Then we have

Ya(Pt(e, 1)y (c(0), 5)) =
= (), Pt((ca) 71 1) PH((S) 71, 1) Pt(e, £) (e, 1) Ph(ca, 1)s)
= (c(t),7(t)-5),
where ~() is a smooth curve in the holonomy group G. Let T € Q1(U,, X(S))

be the Christoffel symbol of the connection ® with respect to the chart (Uy, 1)4)-
From the third proof of theorem 14.8 we have

Ya(Pt(e, )y ((0), 5)) = (e(t), 7(t, 5)),

Where 4(t,s) is the integral curve through s of the time dependent vector field
I'“(Lc(t)) on S. But then we get

L (ge(®) (3t 5)) = £3(, )Zdi(’v(t)-S)Z(%v(t))-s,
P (get) = (Fy®) ov(t) " € g.

So I'* takes values in the Lie sub algebra of fundamental vector fields for the
action of G on S. By theorem 11.9 below the connection ® is thus induced by a
principal connection w on P. Since by 11.8 the principal connection w has the
‘same’ holonomy group as ® and since this is also the structure group of P, the
principal connection w is irreducible, see 11.7. [
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15. Principal Fiber Bundles and G-Bundles

15.1. Definition. Let G be a Lie group and let (E,p, M, S) be a fiber bundle
as in 14.1. A G-bundle structure on the fiber bundle consists of the following
data:

(1) A left action £: G x S — S of the Lie group on the standard fiber.

(2) A fiber bundle atlas (Uy, ) whose transition functions (1,3) act on S
via the G-action: There is a family of smooth mappings (¢ag : Usg = G)
which satisfies the cocycle condition pag(z)psy(z) = pay(z) for = €
Uapy and @paq(x) = e, the unit in the group, such that ¢,g(z,s) =
Upap (@), 5) = pas ().

A fiber bundle with a G-bundle structure is called a G-bundle. A fiber bundle
atlas as in (2) is called a G-atlas and the family (¢,p) is also called a cocycle of
transition functions, but now for the G-bundle.

To be more precise, two G-atlases are said to be equivalent (to describe the
same G-bundle), if their union is also a G-atlas. This translates as follows to
the two cocycles of transition functions, where we assume that the two coverings
of M are the same (by passing to the common refinement, if necessary): (¢ap)
and (¢),5) are called cohomologous if there is a family (7, : Uy — G) such that
Yap(r) = Ta(x)_l.go;ﬂ(x).m(x) holds for all € U,g, compare with 6.3.

In (2) one should specify only an equivalence class of G-bundle structures
or only a cohomology class of cocycles of G-valued transition functions. The
proof of 6.3 now shows that from any open cover (U,) of M, some cocycle of
transition functions (pag : U — G) for it, and a left G-action on a manifold
S, we may construct a G-bundle, which depends only on the cohomology class
of the cocycle. By some abuse of notation we write (E,p, M,S,G) for a fiber
bundle with specified G-bundle structure.

Ezxamples. The tangent bundle of a manifold M is a fiber bundle with structure
group GL(m). More general a vector bundle (E,p, M,V) as in 6.1 is a fiber
bundle with standard fiber the vector space V' and with GL(V)-structure.

15.2. Definition. A principal (fiber) bundle (P,p, M,G) is a G-bundle with
typical fiber a Lie group G, where the left action of G on G is just the left
translation.

So by 15.1 we are given a bundle atlas (Uy, ¢ : P|Uy — U, X G) such
that we have goagogl(a:, a) = (z, pap(x).a) for the cocycle of transition functions
(pap : Uap — G). This is now called a principal bundle atlas. Clearly the
principal bundle is uniquely specified by the cohomology class of its cocycle of
transition functions.
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Each principal bundle admits a unique right action r : P x G — P, called the
principal Tight action, given by ¢, (r(p51(z,a),9)) = (z,ag). Since left and right
translation on G commute, this is well defined. As in 5.10 we write r(u, g) = u.g
when the meaning is clear. The principal right action is visibly free and for any
uy € P, the partial mapping r,, = r(uz, ):G — P, is a diffeomorphism onto
the fiber through u,, whose inverse is denoted by 7, : P, — G. These inverses
together give a smooth mapping 7 : P X3y P — (G, whose local expression is
(o (z,a), o5 (z,b)) = a~1.b. This mapping is also uniquely determined by
the implicit equation 7(ug, 7(Ugz, vy)) = vy, thus we also have 7(ugz.g,ul.9") =
g L r(ug,ul).g" and T(ugz, uz) = e.

When considering principal bundles the reader should think of frame bundles
as the foremost examples for this book. They will be treated in 15.11 below.

15.3. Lemma. Letp: P — M be a surjective submersion (a fibered manifold),
and let G be a Lie group which acts freely on P such that the orbits of the action
are exactly the fibers p~1(z) of p. Then (P,p, M, Q) is a principal fiber bundle.

Proof. Let the action be a right one by using the group inversion if necessary.
Let sq : U, — P be local sections (right inverses) for p : P — M such that
(Ug) is an open cover of M. Let o : U, x G — P|U, be given by ¢ !(z,a) =
Sq(z).a, which is obviously injective with invertible tangent mapping, so its
inverse @, : P|lUy — Uy X G is a fiber respecting diffeomorphism. So (Uy, ¢« )
is already a fiber bundle atlas. Let 7 : P x3; P — G be given by the implicit
equation 7(ug, T(ug, ul)) = ul, where r is the right G-action. 7 is smooth
by the implicit function theorem and clearly we have 7(ug,ul,.g) = 7(ugz,u,).g
and ¢, (uz) = (,7(sa(x),u;)). Thus we have <pa<p§1(a:,g) = pa(sp(z).9) =
(z, 7(sa(z),s8(x).9)) = (x, 7(sa(z), sg()).g) and (Ua, ¢q) is a principal bundle
atlas. O

15.4. Remarks. In the proof of Lemma 15.3 we have seen, that a principal
bundle atlas of a principal fiber bundle (P, p, M, G) is already determined if we
specify a family of smooth sections of P, whose domains of definition cover the
base M.

Lemma 15.3 can serve as an equivalent definition for a principal bundle. But
this is true only if an implicit function theorem is available, so in topology
or in infinite dimensional differential geometry one should stick to our original
definition.

From the Lemma itself it follows, that the pullback f*P over a smooth map-
ping f: M’ — M is again a principal fiber bundle.

15.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g. Let K
be a closed subgroup of GG, then by theorem 5.5 K is a closed Lie subgroup whose
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Lie algebra will be denoted by €. By theorem 5.11 there is a unique structure
of a smooth manifold on the quotient space G/K such that the projection p :
G — G/K is a submersion, so by the implicit function theorem p admits local
sections.

Theorem. (G,p,G/K,K) is a principal fiber bundle.

Proof. The group multiplication of GG restricts to a free right action u: G x K —
G, whose orbits are exactly the fibers of p. By lemma 15.3 the result follows. [

For the convenience of the reader we discuss now the best known homogeneous
spaces.

The group SO(n) acts transitively on S*~! C R™. The isotropy group of the
‘north pole’ (0,...,0,1) is the subgroup

((1) 30(3—1)>

which we identify with SO(n —1). So S"~! = SO(n)/SO(n — 1) and we get a
principal fiber bundle (SO(n),p, S*~1,SO(n — 1)). Likewise
(O( ) b, Sn_17 O(n o 1))7
( ( ) b, SZn—l SU(TL— 1))7
(U(n),p, "1, U(n — 1)), and
(Sp(n),p, S4"= 1, Sp(n — 1)) are principal fiber bundles.

The Grassmann manifold G(k,n;R) is the space of all k-planes containing 0
in R”. The group O(n) acts transitively on it and the isotropy group of the
k-plane R* x {0} is the subgroup

(°0 oun):

therefore G(k,n;R) = O(n)/O(k) x O(n — k) is a compact manifold and we get
the principal fiber bundle (O(n),p, G(k,n;R),O(k) x O(n — k)). Likewise
(SO(n),p, G(k,n;R), S(O(k) x O(n— k))),

(S () G(k,n;R), SO(k) x SO(n — k)),

(U(n),p (kn(C) U(k) xU(n —k)), and

(Sp(n ) G(k,n;H), Sp(k) x Sp(n — k)) are principal fiber bundles.

The Stzefel manifold V (k,n; R) is the space of all orthonormal k-frames in R™.
Clearly the group O(n) acts transitively on V(k,n; R) and the isotropy subgroup
of (e1,...,ex) is I x O(n — k), so V(k,n;R) = O(n)/O(n — k) is a compact
manifold, and (O(n),p, V(k,n;R),O(n — k)) is a principal fiber bundle. But
O(k) also acts from the right on V(k,n;R), its orbits are exactly the fibers of
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the projection p : V(k,n; R) — G(k,n;R). So by lemma 15.3 we get a principal
fiber bundle (V(k,n,R),p, G(k,n;R),O(k)). Indeed we have the following dia-
gram where all arrows are projections of principal fiber bundles, and where the
respective structure groups are written on the arrows:

Oln — k) V(k,n;R)

(a) O(k)t JO(k)

Vin —k,n;R) ——— G(k,n; R
(n 7”7 ) O(n_k) ( 7n7 )7
V(k,n) is also diffeomorphic to the space { A € L(RF R") : AL A = I}, i.e.
the space of all linear isometries R¥ — R™. There are furthermore complex and
quaternionic versions of the Stiefel manifolds.

15.6. Homomorphisms. Let x : (P,p, M,G) — (P',p’, M',G) be a principal
fiber bundle homomorphism, i.e. a smooth G-equivariant mapping x : P — P’.
Then obviously the diagram

X

P—=—P

(%) p[ [p'

M4_>M/
X

commutes for a uniquely determined smooth mapping x¥ : M — M’. For each
x € M the mapping x, = x|P: : Pr — P;Z(w) is G-equivariant and therefore a
diffeomorphism, so diagram (a) is a pullback diagram.

But the most general notion of a homomorphism of principal bundles is the
following. Let ® : G — G’ be a homomorphism of Lie groups. x : (P,p, M,G) —
(P',p',M',G") is called a homomorphism over ® of principal bundles, if x : P —
P’ is smooth and x(u.g) = x(u).®(g) holds in general. Then x is fiber respecting,
so diagram (a) makes again sense, but it is no longer a pullback diagram in
general.

If x covers the identity on the base, it is called a reduction of the structure
group G' to G for the principal bundle (P’,p’, M', G') — the name comes from
the case, when ® is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism x of
principal fiber bundles over a group homomorphism can be written as the com-
position of a reduction of structure groups and a pullback homomorphism as
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follows, where we also indicate the structure groups:

(Pv G) - (X*Plv G/) - (Plv G/)

(b \ L

M—X M.

15.7. Associated bundles. Let (P, p, M, G) be a principal bundle and let £ :
G xS — S be aleft action of the structure group G on a manifold S. We consider
the right action R: (P x S) x G — P x S, given by R((u,s),g) = (u.g,g1.5).

Theorem. In this situation we have:

(1) The space P xg S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q: P xS — P xg S is a
submersion.

(2) (PxgS,p,M,S,G) is a G-bundle in a canonical way, wherep : PxgS —
M s given by

PXSLPXGS

(a) lprl ﬁl

r—r .
In this diagram q, : {u} xS — (P XgS)p) 5 a diffeomorphism for each
ue P.
(3) (P x S,q,P xgS,G) is a principal fiber bundle with principal action R.
(4) If Uy, pa : PlUy — U, x G) is a principal bundle atlas with cocycle
of transition functions (pap @ Uap — G), then together with the left
action £ : G x S — S this cocycle is also one for the G-bundle (P xg
S,p,M,S,G).

Notation. (P x¢g S,p, M, S,G) is called the associated bundle for the action
{:G xS — S. We will also denote it by P[S, /] or simply P[S] and we will
write p for p if no confusion is possible. We also define the smooth mapping
T =151 Pxy P[S, €] = S by T(ug,vs) := q; }(vg). It satisfies 7(u, q(u, s)) = s,
q(ug, (g, vg)) = vz, and T(ugz.g,v;) = g~ 1.7 (ug, v;). In the special situation,
where S = G and the action is left translation, so that P[G] = P, this mapping
coincides with 7 considered in 15.2.

Proof. In the setting of the diagram in (2) the mapping p o pry is constant on
the R-orbits, so p exists as a mapping. Let (Uy, 9o @ P|Us — Uy X G) be a
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principal bundle atlas with transition functions (pas : Usg — G). We define
Pl Uys xS — p~ 1 (Uy) C PxgSby v,z s) =q(e; (x,e),s), which is fiber
respecting. For each orbit in p~1(z) C P x¢ S there is exactly one s € S such
that this orbit passes through (¢3! (z,e),s), namely s = 7 (ug, o5 (z,e)) 1.5’
if (ug,s’) is the orbit, since the principal right action is free. Thus ¢ (z, ) :
S — p~1(x) is bijective. Furthermore

@bg_l('% S) = CI(SOEI(xa 6), 3)

= q(pn (@, pap(r).€),8) = q(p5 " () €).0ap(z), )

= (5 (7,€), 0ap(®).5) = ¥5 ' (7, Pap(@).5),

S0 wai/)ﬁ_l(x, s) = (z, pap(x).5) So (Ua,1q) is a G-atlas for P xg S and makes
it into a smooth manifold and a G-bundle. The defining equation for v, shows
that ¢ is smooth and a submersion and consequently the smooth structure on
P xg S is uniquely defined, and p is smooth by the universal properties of a
submersion.

By the definition of 1, the diagram

p ' (Uq) ><54><'0a><1d U, xG xS

(b) ql lld x 0
ﬁ_l (Ua) wa

U, xS

commutes; since its lines are diffeomorphisms we conclude that ¢, : {u} x S —
p~L(p(u)) is a diffeomorphism. So (1), (2), and (4) are checked.

(3) follows directly from lemma 15.3. We give below an explicit chart construc-
tion. We rewrite the last diagram in the following form:

p_l(Ua) x S ;q_l(Va) LVQ x G

(c) qJ lpr 1

ﬁ_l(Ua) ;} Va

Here V, = p }(U,) C P xg S and the diffeomorphism ), is defined by
MW (e, s),9) = (p5t(z,g9), g7 .s). Then we have

«

)‘El(wojl('r? S)vg) = )\El(l%—l(% 90,801(1')-5)79)
= (QO;I(ZU,g),g_l.gOga(m),s)

Draft from November 17, 1997 Peter W. Michor, 15.7



15. Principal Fiber Bundles and G-Bundles, 15.8 163

= (02" (T, Pap(2).9), 97 " ap(z) " .5)
= A\ (W5 (@, 9), pap(T)-9),

SO )\a)\gl(@bgl(x,s),g) = (Y5 (z,8), pap(r).9) and (P x S,q, P xg S,G) is a
principal bundle with structure group G and the same cocycle (¢q3) we started
with. [

15.8. Corollary. Let (E,p,M,S,G) be a G-bundle, specified by a cocycle of
transition functions (¢ap) with values in G and a left action ¢ of G on S. Then
from the cocycle of transition functions we may glue a unique principal bundle

(P,p, M,G) such that E = P[S,¢]. O

This is the usual way a differential geometer thinks of an associated bundle.
He is given a bundle F, a principal bundle P, and the G-bundle structure then
is described with the help of the mappings 7 and gq.

15.9. Equivariant mappings and associated bundles.

1. Let (P,p, M,G) be a principal fiber bundle and consider two left actions
of G,/ :GxS — Sand ¢ : G xS — 5. Let furthermore f : S — S’ be
a G-equivariant smooth mapping, so f(g.s) = g.f(s) or foly, = £, o f. Then
Idpx f:PxS — PxS'is equivariant for the actions R: (P xS)xG — P x S
and R' : (PxS")xG — P xS’ and is thus a homomorphism of principal bundles,
so there is an induced mapping

Id x f

PxS PxS
(o q[ [q'
P Xa SMP Xa S/,

which is fiber respecting over M, and a homomorphism of G-bundles in the sense
of the definition 15.10 below.

2. Let x : (P,p, M,G) — (P',p', M',G) be a principal fiber bundle homomor-
phism as in 15.6. Furthermore we consider a smooth left action £: G x S — S.
Then xy x Idg : P xS — P’ x S is G-equivariant and induces a mapping
X Xglds : PxgS — P’ xg S, which is fiber respecting over M, fiber wise a dif-
feomorphism, and again a homomorphism of G-bundles in the sense of definition
15.10 below.

3. Now we consider the situation of 1 and 2 at the same time. We have two
associated bundles P[S, ¢] and P'[S’,¢']. Let x : (P,p, M,G) — (P',p', M',G) be
a principal fiber bundle homomorphism and let f : S — S’ be an G-equivariant
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mapping. Then y x f: P xS — P’ x S’ is clearly G-equivariant and therefore
induces a mapping x xq f : P[S,£] — P'[S’,¢'] which again is a homomorphism
of G-bundles.

4. Let S be a point. Then P[S] = P xg S = M. Furthermore let y € S’
be a fixpoint of the action ¢/ : G x S" — S’, then the inclusion i : {y} — S’ is
G-equivariant, thus Idp x i induces Idp xgi: M = P[{y}] — P[S’], which is a
global section of the associated bundle P[S’].

If the action of G on S is trivial, so g.s = s for all s € S, then the associ-
ated bundle is trivial: P[S] = M x S. For a trivial principal fiber bundle any
associated bundle is trivial.

15.10. Definition. In the situation of 15.9, a smooth fiber respecting mapping
v : P[S,£] — P'[S", V'] covering a smooth mapping ¥ : M — M’ of the bases
is called a homomorphism of G-bundles, if the following conditions are satisfied:
P is isomorphic to the pullback ¥*P’, and the local representations of « in
pullback-related fiber bundle atlases belonging to the two G-bundles are fiber
wise G-equivariant.

Let us describe this in more detail now. Let (U], .,) be a G-atlas for P'[S’, /']
with cocycle of transition functions (¢, 5), belonging to the principal fiber bundle
atlas (U., ¢l,) of (P',p', M', G). Then the pullback-related principal fiber bundle
atlas (U, = ¥y~ 1(U.), pqo) for P = ¥*P' as described in the proof of 14.5 has the
cocycle of transition functions (ag = ¢4 ©7); it induces the G-atlas (Ua, 1a)
for P[S, ). Then (¢!, oyot; ) (z,5) = (Y(),va(z,s)) and vo(z, ):S — Sis
required to be G-equivariant for all « and all z € U,.

Lemma. Letvy: P[S,{] — P'[S’,{'] be a homomorphism of G-bundles as defined
above. Then there is a homomorphism x : (P,p, M,G) — (P',p',M' ,G) of
principal bundles and a G-equivariant mapping f : S — S’ such thaty = xxg [ :
P[S, 0] — P'[S", 0'].

Proof. The homomorphism x : (P,p, M,G) — (P',p’, M',G) of principal fiber
bundles is already determined by the requirement that P = ¥*P’, and we have
¥ = X. The G-equivariant mapping f : S — S’ can be read off the following
diagram

S
(a) X XM vt lf
P XM P/[Sl] T—>S/,
which by the assumptions is seen to be well defined in the right column. [
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So a homomorphism of G-bundles is described by the whole triple (x : P —
P f:S — S (G-equivariant),~ : P[S] — P’[S’]), such that diagram (a) com-
mutes.

15.11. Associated vector bundles. Let (P, p, M, G) be a principal fiber bun-
dle, and consider a representation p : G — GL(V) of G on a finite dimensional
vector space V. Then P[V, p] is an associated fiber bundle with structure group
G, but also with structure group GL(V), for in the canonically associated fiber
bundle atlas the transition functions have also values in GL(V'). So by section 6
P[V, p] is a vector bundle.

Now let F be a covariant smooth functor from the category of finite dimen-
sional vector spaces and linear mappings into itself, as considered in section
6.7. Then clearly Fop : G — GL(V) — GL(F(V)) is another representa-
tion of G and the associated bundle P[F(V'),F o p] coincides with the vector
bundle F(P[V,p]) constructed with the method of 6.7, but now it has an ex-
tra G-bundle structure. For contravariant functors F we have to consider the
representation F o p o v, similarly for bifunctors. In particular the bifunctor
L(V,W) may be applied to two different representations of two structure groups
of two principal bundles over the same base M to construct a vector bundle
L(P[V, pl, P'[V", p']) = (P xm P)L(V, V'), Lo ((pov) x p)].

If (E,p, M) is a vector bundle with n-dimensional fibers we may consider
the open subset GL(R", E) C L(M x R™, E), a fiber bundle over the base M,
whose fiber over x € M is the space GL(R™, E,) of all invertible linear map-
pings. Composition from the right by elements of GL(n) gives a free right ac-
tion on GL(R"™, FE') whose orbits are exactly the fibers, so by lemma 15.3 we
have a principal fiber bundle (GL(R™, E),p, M,GL(n)). The associated bun-
dle GL(R™, E)[R"] for the banal representation of GL(n) on R™ is isomorphic
to the vector bundle (E,p, M) we started with, for the evaluation mapping
ev : GL(R",E) x R* — FE is invariant under the right action R of GL(n),
and locally in the image there are smooth sections to it, so it factors to a fiber
linear diffeomorphism GL(R", E)[R"] = GL(R", E) XgL(n) R* — E. The prin-
cipal bundle GL(R™, E) is called the linear frame bundle of E. Note that local
sections of GL(R™, F) are exactly the local frame fields of the vector bundle F
as discussed in 6.4.

To illustrate the notion of reduction of structure group, we consider now
a vector bundle (E,p, M,R") equipped with a Riemannian metric g, that is
a section g € C°(S?E*) such that g, is a positive definite inner product on
E, for each z € M. Any vector bundle admits Riemannian metrics: local
existence is clear and we may glue with the help of a partition of unity on
M, since the positive definite sections form an open convex subset. Now let
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s’ = (sh,...,s),) € C*°(GL(R",E)|U) be a local frame field of the bundle E
over U C M. Now we may apply the Gram-Schmidt orthonormalization pro-
cedure to the basis (s1(x),...,s,(x)) of E, for each z € U. Since this proce-
dure is smooth (even real analytic), we obtain a frame field s = (s1,...,8,)
of E over U which is orthonormal with respect to g. We call it an orthonor-
mal frame field. Now let (U,) be an open cover of M with orthonormal frame
fields s* = (s¢,...,s%), where s* is defined on U,. We consider the vector
bundle charts (Uy, %o : E|Uy — U, X R™) given by the orthonormal frame
fields: 5 (z, 0. . ,0") = Y s¥(z).vt = s*(z).w. For z € Uyg we have
s (x) = zgf(a:)ggaz(a:) for C°-functions gep? : Uss — R. Since s%(x)
and s°(x) are both orthonormal bases of E,, the matrix gas(z) = (gap? (z))
is an element of O(n,R). We write s* = s”.gg, for short. Then we have
@bﬁ_l(x,v) = sP(2)v = 5%x).90p(x)v = P, (7, gap(z).v) and consequently
¢a¢51($,v) = (x,gap(x).v). So the (gop : Usp — O(n,R)) are the cocycle
of transition functions for the vector bundle atlas (Uy,%s). So we have con-
structed an O(n, R)-structure on E. The corresponding principal fiber bundle
will be denoted by O(R™, (E, g)); it is usually called the orthonormal frame bun-
dle of E. It is derived from the linear frame bundle GL(R", E') by reduction of
the structure group from GL(n) to O(n). The phenomenon discussed here plays
a prominent role in the theory of classifying spaces.

15.12. Sections of associated bundles. Let (P, p, M,G) be a principal fiber
bundle and £ : G x S — S a left action. Let C(P,S)% denote the space

of all smooth mappings f : P — S which are G-equivariant in the sense that
f(u.g) = g~ L. f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P|[S,{] correspond exactly to
the G-equivariant mappings P — S; we have a bijection C*° (P, S)¢ = C*(P[S]) ]

This result follows from 15.9 and 15.10. Since it is very important we include
a direct proof.

Proof. If f € C*(P,S)¢ we construct s; € C*°(P[S]) in the following way:
graph(f) = (Id, f) : P — P x S is G-equivariant, since we have (Id, f)(u.g) =
(u.g, f(u.g)) = (u.g,g7 1. f(u)) = ((Id, f)(u)).g. So it induces a smooth section
sy € C(P[S]) as seen from 15.9 and the diagram:

P x {Pt}%PMPx S
(a) Pl lq
M ps)
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If conversely s € C°(P[S]) we define f; € C(P,S)% by fs =750 (Idp x
s): P=Pxy M — P xy P[S] — S. This is G-equivariant since fs(uz.g) =
7 (ug.g9,5(x)) = g 175 (ug, 8(z)) = g7 .fs(uz) by 15.7. The two construc-
tions are inverse to each other since we have fyp)(u) = 75(u,ss(p(u))) =
5 (u, q(u, f(u))) = f(u) and sg(o)(p(u) = q(u, fs(u)) = q(u, 75(u, s(p(w))) =
s(p(u)). O

15.13. Induced representations. Let K be a closed subgroup of a Lie group
G. Let p: K — GL(V) be a representation in a vector space V, which we
assume to be finite dimensional for the beginning. Then we consider the principal
fiber bundle (G,p,G/K,K) and the associated vector bundle (G[V],p,G/K).
The smooth (or even continuous) sections of G[V] correspond exactly to the
K-equivariant mappings f : G — V, those satisfying f(gk) = p(k~1)f(g), by
lemma 15.12. Each g € G acts as a principal bundle homomorphism by left
translation g

G ———(

I

a/k -t gk

So by 15.9 we have an induced isomorphism of vector bundles

G Hg G
Vv
GV LKL Gy

a/k —t L aq/k

—a

which gives rise to the representation ind g p of G in the space C*°(G[V]), defined
by

nN G —

(indgp)(9)(5) := (g X V)0 50 fig—1 = (hg Xx V)« (5)-

Now let us assume that the original representation p is unitary, p: K — U(V)

for a complex vector space V with inner product ( , )y. Then v — [[v]]? =
(v,v) is an invariant symmetric homogeneuous polynomial V' — R of degree 2,

so it is equivariant where K acts trivial on R. By 15.9 again we get an induced
mapping G[V] — G|R] = G/K xR, which we can polarize to a smooth fiberwise
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hermitian form ( , )gqy) on the vector bundle G[V]. We may also express this
by

<Uwa ww>G[V] = <TV (Uwa Um)a TV (Uwa ww)>V
for some u, € G, using the mapping 7 : G xg/m G[V] =V from 15.7; it can
be checked easily that it does not depend on the choice of u,. Still another way
to describe the fiberwise hermitian form is

(G xV)xg/k (GxV)

G[V] xg/k G[V]

G/K,

where f((g1,v1), (92,v2)) = (vi,p(7% (g1, 92))v2)v for 78 : G xx G — K,
78 (g1,92) = g7 'g> from 15.2. From this last description it is also clear that
each g € GG acts as an isometric vector bundle homomorphism.

Now we consider the natural line bundle Vol'/?(G/K) of all 1-densities on

the manifold G/K from 8.4. Then for }-densities y; € C*° (Vol'/?(G/M)) and
any diffecomorphism f : G/K — G/K the push forward f,u; is defined and
for those with compact support we have fg/K(f*Ml-f*Nz) = fG/K fe(p.p2) =
I /& M1-p2. The hermitian inner product on G [V] now defines a fiberwise her-
mitian mapping

(GIV] ® VoI'2(G/K)) xa/x (GIV]® Vol' /2(G/K)) -V \olY/2(G /M)

and on the space C°(G[V]® Vol'/?(G/K)) of all smooth sections with compact
support we have the following hermitian inner product

(s1,89) 1= / (1, 82)Gv]-
G/K

Obviously the resulting action of the group G on C°°(G[V] ® Vol'/?(G/K)) is
unitary with respect to the hermitian inner product, and it can be extended to
the Hilbert space completion of this space of sections. The resulting unitary
representation is called the induced representation and is denoted by ind% P
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If the original unitary representation p : K — U(V) is in an infinte dimen-
sional Hilbert space V', one can first restrict the representation p to the subspace
of smooth vectors, on which it is differentiable, and repeat the above construc-
tion with some modifications. See [Michor, 1990] for more details on this infinite
dimensional construction.

15.14. Theorem. Consider a principal fiber bundle (P,p, M,G) and a closed
subgroup K of G. Then the reductions of structure group from G to K correspond
bijectively to the global sections of the associated bundle P|G /K, )] in a canonical
way, where X : G x G/K — G/K is the left action on the homogeneous space
from 5.11.

Proof. By theorem 15.12 the section s € C°°(P[G/K]) corresponds to fs €
C>(P,G/K)%, which is a surjective submersion since the action A\ : G x G/K —
G/K is transitive. Thus Ps := f;!(e) is a submanifold of P which is stable under
the right action of K on P. Furthermore the K-orbits are exactly the fibers of
the mapping p : P; — M, so by lemma 15.3 we get a principal fiber bundle
(Ps,p, M, K). The embedding Ps < P is then a reduction of structure groups
as required.

If conversely we have a principal fiber bundle (P’ p’, M, K) and a reduction of
structure groups x : P’ — P, then y is an embedding covering the identity of M
and is K-equivariant, so we may view P’ as a sub fiber bundle of P which is stable
under the right action of K. Now we consider the mapping 7 : P x; P — G
from 15.2 and restrict it to P x s P’. Since we have 7(uy, v;.k) = 7(ug, v).k for
k € K this restriction induces f: P — G/K by

P xy P T G

| i

P=PxyP/K—1 /K,

since P'/K = M; and from 7(uy.g,v5) = g 1.7 (ug,vy) it follows that f is G-
equivariant as required. Finally f=!(e) = {u € P : 7(u, Pluy) €K} =P, so
the two constructions are inverse to each other. [

15.15. The bundle of gauges. If (P,p, M,G) is a principal fiber bundle we
denote by Aut(P) the group of all G-equivariant diffeomorphisms y : P — P.
Then p oy = x op for a unique diffeomorphism x of M, so there is a group
homomorphism from Aut(P) into the group Diff(M) of all diffeomorphisms of
M. The kernel of this homomorphism is called Gau(P), the group of gauge
transformations. So Gau(P) is the space of all x : P — P which satisfy pox =p

and x(u.g) = x(u).g.
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Theorem. The group Gau(P) of gauge transformations is equal to the space
O (P, (G, conj))© = 0 (P|G, conj]).

Proof. We use again the mapping 7 : P Xy P — G from 15.2. For y €
Gau(P) we define f, € C*®(P, (G,conj))? by f, := 70 (Id, x). Then f,(u.g) =
7(u.g, x(u.g)) = g~ .7 (u, x(u)).g = conj,—1 fy(u), so fy is indeed G-equivariant.

If conversely f € C®(P,(G,conj))¢ is given, we define x5 : P — P by
Xf(u) == u.f(u). It is easy to check that x is indeed in Gau(P) and that the
two constructions are inverse to each other, namely

xs(ug) = ugf(ug) =ugg™ " f(u)g = xs(u)g,
Py () = 7% (u, x5 () = 7% (u, u. f(u)) = 7% (u, u) f(u) = f(u),
Xr, () = ufy(u) = ur(u, x(u)) = x(u). O

15.16. The tangent bundles of homogeneous spaces. Let G be a Lie
group and K a closed subgroup, with Lie algebras g and £, respectively. We
recall the mapping Adg : G — Autre(g) from 4.24 and put Adg x := Adg |K :
K — Autric(g). For X € ¢ and £k € K we have Adg x (k)X = Adg(k)X =
Adg (k)X € ¢ so tis an invariant subspace for the representation Adg x of K
in g, and we have the factor representation Ad* : K — GL(g/¢). Then

(a) 0—>t—>g—>g/t—0

is short exact and K-equivariant.
Now we consider the principal fiber bundle (G, p, G/K, K) and the associated
vector bundles G[g/¢, Ad] and G[e, Adg].

Theorem. In these circumstances we have

T(G/K) = Glg/t, Ad™] = (G xx 8/t,p,G/K, g/b).
The left action g — T(fig) of G on T(G/K) corresponds to the canonical left
action of G on G X i g/t. Furthermore G[g/¢, AdT|@®G[¢t, Adk] is a trivial vector
bundle.

Proof. For p: G — G /K we consider the tangent mapping T.p : g — T:(G/K)

which is linear and surjective and induces a linear isomorphism T.p : g/t —

T:(G/K). For k € K we have poconj;, = po 0 pp—1 = jix op and consequently

T.poAdg i (k) = TepoTe(conj,) = TsjigoTep. Thus the isomorphism T,p : g/ —

T:(G/K) is K-equivariant for the representations Adt and Tah : k — T jig,.
Let us now consider the associated vector bundle

G[Té(G/K)vTéS‘] = (G xx Te(G/K),p,G/K,Te(G/ K)),
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which is isomorphic to the vector bundle G[g/¢, Ad*], since the representation
spaces are isomorphic. The mapping To\ : G x To(G/K) — T(G/K) (where
T, is the second partial tangent functor) is K-invariant, since TA((g, X)k) =
TX(gk, Tejir-1.X) = Tjigr.Tiig-1.X = Tfig.X. Therefore it induces a mapping
¢ as in the following diagram:

G x Tz(G/K)

e \G/K

This mapping ¢ is an isomorphism of vector bundles.

It remains to show the last assertion. The short exact sequence (a) induces a
sequence of vector bundles over G/K:

G/K x 0 — G[e, Adg] — Glg, Adg k] — G[g/t, Adt] = G/K x 0

This sequence splits fiber wise thus also locally over G/K, so we get G[g/¢, Ad"]®
Gt Adk] = G[g, Adg,x]. We have to show that G[g, Adg k| is a trivial vector
bundle. Let ¢ : G x g — G x g be given by ¢(g, X) = (g9, Adg(g)X). Then for
k € K we have

o((9, X).k) = ¢(gk, Adg,k (k™) X)
= (gk, Adg(g.k.-k~ 1) X) = (gk, Ada(9)X).

(b) G xg To(G/K)

So ¢ is K-equivariant for the ‘joint’ K-action to the ‘on the left’ K-action and
therefore induces a mapping ¢ as in the diagram:

Gxg L Gxg
d J
(c) G xk g 2 G/K x g

G/K

The map ¢ is a vector bundle isomorphism. [
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15.17. Tangent bundles of Grassmann manifolds. From 15.5 we know
that (V(k,n) = O(n)/O(n — k),p,G(k,n),O(k)) is a principal fiber bundle.
Using the banal representation of O(k) we consider the associated vector bundle
(Ex := V(k,n)[RF],p,G(k,n)). It is called the universal vector bundle over
G(k,n) for reasons we will discuss below in section 16. Recall from 15.5 the
description of V' (k,n) as the space of all linear isometries R¥ — R"; we get from
it the evaluation mapping ev : V(k,n) x R¥ — R™. The mapping (p, ev) in the
diagram

V(k,n) x R¥

) o X)

V(k,n) xor) R TG(k‘,n) x R

is O(k)-invariant for the action R and factors therefore to an embedding of
vector bundles ¢ : Ey, — G(k,n) x R™. So the fiber (Ej)w over the k-plane W
in R” is just the linear subspace W. Note finally that the fiber wise orthogonal
complement Eyt of Ej, in the trivial vector bundle G (k,n) x R* with its standard
Riemannian metric is isomorphic to the universal vector bundle F,,_j over G(n—
k,n), where the isomorphism covers the diffeomorphism G(k,n) — G(n — k,n)
given also by the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is

TG(k,n) = L(Ey, E,™b).

Proof. We have G(k,n) = O(n)/(O(k) x O(n — k)), so by theorem 15.16 we get

TG(k,n) =0(n) O(k)xé(n_k)(ﬁo(n)/(go(k) x so(n —k))).

On the other hand we have V(k,n) = O(n)/O(n — k) and the right action of
O(k) commutes with the right action of O(n — k) on O(n), therefore

V(k,n)[R*] = (O(n)/O(n - k)) o) R =0 Ok)xO(n—F) o

where O(n — k) acts trivially on R¥. Finally

L(Ey, Ey) = L (O(n) X RF O(n) X R”_k>
O(k)xO(n—k) O(k)xO(n—k)

= 0(n) X L(R* R*™*),
O(k)xO(n—k)
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where O(k) x O(n — k) acts on L(R¥ R*~*) by (4, B)(C) = B.C.A™1. Finally
we have an O(k) x O(n — k) - equivariant linear isomorphism L(RF R*=%) —

so(n)/(so(k) x so(n — k)), as follows:

so(n)/(so(k) x so(n —k)) =

(ske(vsvkeW)o >{<?4t 13) AEL(Rk7R”—k)} O

0 skew

15.18. Tangent bundles and vertical bundles. Let (E,p, M,S) be a fiber
bundle. The sub vector bundle VE = {¢£ € TE : Tp.{ =0} of TE is called
the vertical bundle and is denoted by (VE,7g, E).

Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right action
r:PxG— P. Let £ : GxS — S be aleft action. Then the following assertions
hold:

(1) (TP, Tp,TM,TG) is again a principal fiber bundle with principal right
action Tr : TP xTG — TP, where the structure group T'G is the tangent
group of G, see 5.16.

(2) The vertical bundle (V P, 7, P,g) of the principal bundle is trivial as a
vector bundle over P: VP = P X g.

(3) The vertical bundle of the principal bundle as bundle over M is again a
principal bundle: (VP,pon, M,TG).

(4) The tangent bundle of the associated bundle P[S, /] is given by
T(P[S,t])) = TP[TS,TY).

(5) The vertical bundle of the associated bundle P[S, ] is given by
V(P[S,t]) = P[TS,Tol] = P xg TS.

Proof. Let (Uy,po : PlUy — U, x G) be a principal fiber bundle atlas with
cocycle of transition functions (¢ag : Usp — G). Since T is a functor which
respects products, (TUy,Tes : TP|TU, — TU, x TG) is again a principal
fiber bundle atlas with cocycle of transition functions (T'pap : TUyp — TG),
describing the principal fiber bundle (TP, Tp, TM,TG). The assertion about
the principal action is obvious. So (1) follows. For completeness sake we include
here the transition formula for this atlas in the right trivialization of T'G:

T(pa© 95" ) (a, Te(pg)-X) = (b2, Te(Ppap(2).9)-(0Pap(Ea) + Ad(pap(2)) X)),

where dpap € QY (Uap; g) is the right logarithmic derivative of p,g, see 4.26.
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(2) The mapping (u, X) = Tp(ry). X = Ty )7.(04, X) is a vector bundle isomor-
phism P x g — VP over P.

(3) Obviously Tr : TP x TG — TP is a free right action which acts tran-
sitive on the fibers of Tp : TP — TM. Since VP = (Tp)~*(0pr), the bun-
dle VP — M is isomorphic to TP|0y; and Tr restricts to a free right ac-
tion, which is transitive on the fibers, so by lemma 15.3 the result follows.
(4) The transition functions of the fiber bundle P[S, ¢] are given by the expression
lo(papx1Idg) : UapxS — GxS — S. Then the transition functions of T'(P[S, £])
are T' (Lo (pap X Idg)) =Tlo (Tpap X Idrs) : TUyp x TS - TG x TS = TS,
from which the result follows.

(5) Vertical vectors in T'(P[S, £]) have local representations (0g,7s) € TUqyp xT'S.
Under the transition functions of T'(P[S,¢]) they transform as T'(¢ o (ap X
1ds)).(0z,ms) = Tl.(0p, s02)>Ms) = Tl s(2))Ns = T2l.(pap(T),ns) and this
implies the result [
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16. Principal and Induced Connections

16.1. Principal connections. Let (P,p, M,G) be a principal fiber bundle.
Recall from 14.3 that a (general) connection on P is a fiber projection & : TP —
V P, viewed as a 1-form in Q!(P; TP). Such a connection @ is called a principal
connection if it is G-equivariant for the principal right action r : P x G — P, so
that T'(r9).® = ®.T(r9) and ® is r9-related to itself, or (r9)*® = ® in the sense
of 13.16, for all g € G. By theorem 13.15.6 the curvature R = 1.[®, ®] is then
also r9-related to itself for all g € G.

Recall from 15.18.2 that the vertical bundle of P is trivialized as a vector
bundle over P by the principal action. So w(X,) := Te(r,) 1.®(X,) € g and in
this way we get a g-valued 1-form w € Q(P;g), which is called the (Lie algebra
valued) connection form of the connection ®. Recall from 5.13. the fundamental
vector field mapping ¢ : g — X(P) for the principal right action. The defining
equation for w can be written also as ®(X,) = (u(x,)(u).

Lemma. If ® € QY(P;VP) is a principal connection on the principal fiber
bundle (P,p, M,G) then the connection form has the following two properties:

(1) w reproduces the generators of fundamental vector fields, so we have
w(lx(u)) =X foral X € g.

(2) w is G-equivariant, ((r9)*w)(X,) = w(T,(r9).X,) = Ad(g™1).w(Xy) for
allg € G and X, € T, P. Consequently we have for the Lie derivative
Leww=—ad(X).w.

Conversely a 1-form w € QY(P,g) satisfying (1) defines a connection ® on P
by ®(X,) = Te(ry).w(Xy), which is a principal connection if and only if (2) is
satisfied.

Proof. (1). Te(ry).w((x(u)) = ®((x(u)) = (x(u) = Te(ry).X. Since Te(ry,) :
g — V., P is an isomorphism, the result follows.
(2). Both directions follow from

Te(rug)-w(Tu(rg)-Xu) - Cw(Tu(rg).Xu)(u’g) = q)(Tu(rg)XU)

Te(rug)- Ad(g™1)-w(Xu) = Cad(g-1).w(x,) (1g) = Tu(r?)-Cux,) (w)
= T,(r9).®(X,) O

16.2. Curvature. Let ® be a principal connection on the principal fiber bundle
(P,p, M,G) with connection form w € Q!(P;g). We already noted in 16.1 that
the curvature R = $[®, ®] is then also G-equivariant, (r9)*R = R for all g € G.
Since R has vertical values we may again define a g-valued 2-form Q € Q?(P; g)
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by Q(X,,Y,) := —To(r,) ' .R(X,, Y,), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(X,,Yy) = —Co(x,,v,)(uw). We
take the negative sign here to get the usual curvature form as in [Kobayashi-
Nomizu I, 1963].

We equip the space Q(P; g) of all g-valued forms on P in a canonical way with
the structure of a graded Lie algebra by

[0, QA (X1, - - Xp+q) -

p q' ZSlgnU 01, NN ,Xgp), @(Xg(p+1), Ce ,Xg(p+q))]g

or equivalently by [ @ X, 0@ Y]\ := Y AOR[X,Y ;. From the latter description
it is clear that d[¥, O], = [dV¥,O]x + (—1)9¥[¥, dO],. In particular for w €
Q(P; g) we have [w,w]A(X,Y) = 2[w(X),w(Y)],-

Theorem. The curvature form ) of a principal connection with connection form
w has the following properties:

(1) Q is horizontal, i.e. it kills vertical vectors.

(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g™1).Q. Conse-
quently L¢ Q= —ad(X).0.

(3) The Maurer-Cartan formula holds: Q = dw + 3w, w]x.

Proof. (1) is true for R by 14.4. For (2) we compute as follows:
Te(rug)-((r?)* Q) (Xu, Yu) = Te(rug) Ty (r?). Xy, T (19).Y,,) =
= —Ruyug(Ty(r9). X0, Ty (r9).Y,) = =Tu(r?).((r?)*R) (X, Yy) =
= —Tyu(r9).R(Xy, Yy) = Tu(r7).Cox,,v.) (u) =
= Cad(g1).2(x,,va) (ug) = Te(rug). Ad(g™").Q(X,, Y,), by 5.13.
(3). For X € g we have ic, R =0 by (1), and using 16.1.(3) we get

) 1., 1.
w,w|a) = i¢ydw + §[Z§Xw,w]/\ — §[w,zgxw]/\ =

=Lew+ [ X,wh=—ad(X)w+ad(X)w =0

. 1
ZCX (dw + 5[

So the formula holds for vertical vectors, and for horizontal vector fields X,Y €
C>*(H(P)) we have
R(X,Y)=Q[X - ®X,Y — oY ] = ®[X, Y] = (u(x,v))

(dw + %[w,w])(X, Y) = Xw(Y) - Yw(X) - w(X,Y])) = —w(X,Y]) O
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16.3. Lemma. Any principal fiber bundle (P,p, M, G) (with paracompact basis)
admats principal connections.

Proof. Let (Uy, ¢q : PlUy — U, X G)o be a principal fiber bundle atlas. Let
us define o (To5(&xy Tepg-X)) = X for & € T,U, and X € g. An easy
computation involving lemma 5.13 shows that v, € Q'(P|U,;g) satisfies the
requirements of lemma 16.1 and thus is a principal connection on P|U,. Now
let (fo) be a smooth partition of unity on M which is subordinated to the open
cover (Uy), and let w := > _(fa ©P)Ya- Since both requirements of lemma 16.1
are invariant under convex linear combinations, w is a principal connection on
pP. O

16.4. Local descriptions of principal connections. We consider a principal
fiber bundle (P, p, M, G) with some principal fiber bundle atlas (U, 9o : P|Uy —
Uy x G) and corresponding cocycle (pq3 : Uyg — G) of transition functions. We
consider the sections s, € C°°(P|U,) which are given by ¢, (sa(z)) = (z,e) and
satisfy sq.¢0ap = S, since we have in turn:

Pa(3p(2)) = pay ' (z,€) = (2, Pap(@))
5p(2) = ¢ (7, e0ap(e)), = 05" (=, €)Pap(®) = sa(7)Pap(z).

(1) Let © € QY(G,g) be the left logarithmic derivative of the identity,
ie. O(ng) := Ty(pg-1).ng. We will use the forms Onp = ap*® €
Ql(Uaﬁ; g)-

Let ® = (ow € QY(P;VP) be a principal connection with connection form
w € QY(P;g). We may associate the following local data to the connection:

(2) wq = sa*w € Q1 (U,; g), the physicists version of the connection.

(3) The Christoffel forms I'* € Q}(U,; X(G)) from 14.7, which are given by
(00, T%(éz,9)) = =T (¢a)-®-T(0a) " (£, 04)-

(4) Ya = (p;1)*w € QY (U, x G;g), the local expressions of w.

Lemma. These local data have the following properties and are related by the

following formulas.
(5) The forms wy € QY (Uy; @) satisfy the transition formulas

Wo = Ad(gogal)wg + O34,

and any set of forms like that with this transition behavior determines a
unique principal connection.
(6) We have vo (s, Tpg-X) = Ya(€s,04) + X = Ad(g7wa (&) + X.

(7) We have T*(&5,9) = —Te(ptg)Va(6e,0g) = —Te(pg). Ad(g™Hwa (&) =
—T(p9)wa (&), s0 (&) = Ry (¢,), @ Tight invariant vector field.
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Proof. From the definition of the Christoffel forms we have

(02, T2, 9)) = =T (¢a)-®.T(pa) ™" (&2, 04)
= —T(pa).Te(r oa(z, g))w-T(SOa)_l(fwaOg)
= ~Te(pa 071 (5 )W T(0a) " €z, 0y)
= (0, Te(1g)w-T(pa) ™ (€, 09)) = —(0s, Te(p1g) Yo (€x» Og))-

This is the first part of (7). The second part follows from (6).

Yo (&x Trig-X) = Ya(€z, 0g) + Yo 0z, Trg-X)
= Yoz, 0g) + w(T(pa) " (00, Thig- X))
= Ya(ba; 0g) + w(Cx (03 (7, 9)))
7a(£x,0g)+X

So the first part of (6) holds. The second part is seen from

’Ya(gma Og) = 7&(5337 Te(ﬂg)oe) = (w © T(‘Pa)_l o T(IdX X Mg))(gm Oe) =
= (WoT(r? 0 p;"))(€r 0e) = Ad(g™)w(T(¢5") (€ 0c))
= Ad(g7)(s0"w) (&) = Ad(9™Hwal(&s).
Via (7) the transition formulas for the w, are easily seen to be equivalent to the

transition formulas for the Christoffel forms in lemma 14.7. A direct proof goes
as follows: We have s, (z) = sg(z)ppa(r) = r(sg(2), ppa(r)) and thus

wa(€z) = w(Te(5a)-Ex)
= (W o Tss(2),08a(@)) (Te56-Exs 050 (2) — (05 (%), Tuppa-Ea))
= W(T(r?e®). Ty (5p).&a) + (T (@) (T () T (Ppa) L)
= Ad(ppa(r) " Hw (T (s)-£x)
+ W(Typ () (Ts @) T (Bppa (@) © Pope @)1 )Tz (Ppa)-Ex)
= Ad(ppa(r) " Hws(és)
+ W(Te(Ts5(2) 050 (2))-Opa-la)
= Ad(ppa(r) " ws(és) + Opalés). O
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16.5. The covariant derivative. Let (P,p, M, G) be a principal fiber bundle
with principal connection ® = ( o w. We consider the horizontal projection
X = ldrp — ® : TP — HP, cf. 14.3, which satisfies y o x = x, imx = HP,
kery =VP,and xyoT(r9) =T(r9) o x for all g € G.

If W is a finite dimensional vector space, we consider the mapping x* :
Q(P; W) — Q(P; W) which is given by

(X*Qo)u(Xla ces 7Xk:) = Qou(X(Xl)a .. '7X(Xk))'

The mapping x* is a projection onto the subspace of horizontal differential forms,
i.e. the space Qpor(P; W) :={¢p € Q(P; W) :ixy =0 for X € VP}. The notion
of horizontal form is independent of the choice of a connection.

The projection x* has the following properties: x*(¢ A ¥) = x*p A x* ¢ if
one of the two forms has values in R; x* o x* = x*; x* o (r9)* = (r9)* o x* for
all g € G; x*w = 0; and x* o L((x) = L({x) o x*. They follow easily from the

corresponding properties of y, the last property uses that Flf(X) = pexp X

We define the covariant exterior derivative d,, : QX (P; W) — QF1(P; W) by
the prescription d,, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.

dw (o AY) = dy, () A+ (=148 2x* o Ad,, () if ¢ or 1 is real valued.
L((x)od, =d, o L((x) for each X € g.

(r9)* od, =d, o (r9)* for each g € G.

dyop*=dop* =p*od: QM; W) — Quor(P; W).

d,w = Q, the curvature form.

d, ) = 0, the Bianchi identity.

dy o x* —d, = x* 0i(R), where R is the curvature.

dyod, =x*0i(R)od.

Let Quor(P, )¢ be the algebra of all horizontal G-equivariant g-valued
forms, i.e. (r9)*¢ = Ad(g~)y. Then for any ¢ € Qpor(P,g)¢ we have
dytp = dyp + [waw]/\-

The mapping 1 — Gy, where Cy(X1,..., Xe)(u) = Cpxy,.. x0) ) (W),
is an isomorphism between Qpor (P, g)¢ and the algebra Qo (P, VP)C of
all horizontal G-equivariant forms with values in the vertical bundle V P.
Then we have Cq,yp = —[P, (y].

—~
N =
~

AN AN AN N AN N S
O 00 g O U s W
S N S S e S

(

—_
)
~—

Proof. (1) through (4) follow from the properties of x*.
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(5) We have

(dww)(&m) = (X"dw) (& m) = dw(x§, xn)
= (x§wxn) — (xnw(x§) — w([x&; xnl)
= —w([x¢, xn]) and

—C(2&,m) = R(&m) = [XE, xn] = Cu(xe.xn)-

(6) Using 16.2 we have
d,Q = d, (dw + %[w, w]A)
= X" ddw + 3x*d[w, w]A
= %x*([dw,w]/\ — w, dw]p) = x*[dw, w]A
= [x"dw, x*w]x = 0, since x*w = 0.

(7) For ¢ € Q(P; W) we have
(de*QO)(Xo,.. Xk) (dX 90)( (XO)a"'a)((Xk))
= 3 (X)) (X0 -y X(Xa)s -+, X(Xi))

0<i<k
£ 2D () (X (X)) (Ko
'?)X‘XV\E')? -7@’ )
= Z (1) XX ((X(X0), -+ X(X0), s X(X))
£ 2D (DX, x(X)] = @e(Xe) x(X)], X(Xo). -

—

o X(Xa)s - x (X))
= (de) (x(Xo), - - ., x(Xk)) + (ire) (X (X0), . - -, X(Xk))
= (dy + x"ir)(p)(Xo, ... , Xk).
(8) dwd, = x*dx*d = (x*ir + x*d)d = x*igd holds by (7).
(9) If we insert one vertical vector field, say (x for X € g, into d v, we
get 0 by definition. For the right hand side we use i¢ 9 = 0 and Ly =

%‘0 (FI$X )*qp = %‘0 (reet Xy sy = 2 ‘OAd exp(—tX))y = —ad(X)y to get

icx (A + [w, Yn) = ic dp + dic th + [icw, Y] — [w, i Y]
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Let now all vector fields &; be horizontal, then we get

(dww)(&)v v 7£k) = (X*dd})(&]a o aé-k:) = dd}(&)a o 7£k)7
(dp + [w,¥]a) &0y - -, &) = dp(€o, - - - 5 &k)-

So the first formula holds.
(10) We proceed in a similar manner. Let ¥ be in the space Qf (P,VP)%

hor
of all horizontal G-equivariant forms with vertical values. Then for each X € g
we have i, ¥ = 0; furthermore the G-equivariance (r9)*¥ = ¥ implies that

LoV = [(x,¥] =0 by 13.16.(5). Using formula 13.11.(2) we have
Uex [ @, U] = [igy @, W] — [®, ¢, U] + ([, (x W +4([¥, (x])®
= [Cx,U]—0+0+0=0.

Let now all vector fields &; again be horizontal, then from the huge formula 13.9
for the Frolicher-Nijenhuis bracket only the following terms in the third and fifth
line survive:

[@7 \II](é_lv s 7££+1) -
CES " signo ST (Ens . . e Eoean)))

2!
+ W Z Signa @(W([EUL 602]7 6037 s 760(3—1—1))-

For f: P — g and horizontal £ we have ®[{, (¢] = Ce(r) = Cape): It is C°(P,R)-
linear in &; or imagine it in local coordinates. So the last expression becomes

—C(dp(o, .- 5 &) = —C(dp (o, -+ - &) = —C((dY + [w, P]A) oy - -+ 5 ER))

as required. [

16.6. Theorem. Let (P,p, M,G) be a principal fiber bundle with principal
connection w. Then the parallel transport for the principal connection is globally
defined and G-equivariant.

In detail: For each smooth curve ¢ : R — M there is a smooth mapping
Pt : R X Pyoy — P such that the following holds:

(1) Pt(c,t,u) € Poyy, Pt(c,0) = Idp,,, , and w(L Pt(c,t,u)) = 0.

(2) Pt(c,t) : Pooy = Pew is G-equivariant, i.e. Pt(c,t,u.g) = Pt(c,t,u).g
holds for all g € G and u € P. Moreover we have Pt(c,t)*((x|Per)) =
C)(|Pc(0) forall X € g.

(3) For any smooth function f: R — R we have
Pt(c, f(t),u) = Pt(co f,t,Pt(c, f(0),u)).
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Proof. By 16.4 the Christoffel forms T'* € Q!(U,, X(G)) of the connection w with
respect to a principal fiber bundle atlas (Uy, po) are given by I'*(§;) = R, (¢,)»
so they take values in the Lie subalgebra Xg(G) of all right invariant vector fields
on GG, which are bounded with respect to any right invariant Riemannian metric
on GG. Each right invariant metric on a Lie group is complete. So the connection
is complete by the remark in 14.9.

Properties (1) and (3) follow from theorem 14.8, and (2) is seen as follows:
w(EPt(c,t,u).g) = Ad(g~"w(ZL Pt(c,t,u)) = 0 implies that Pt(c,t,u).g =
Pt(c,t,u.g). For the second assertion we compute for u € Py):

Pt(c,t)* (x| Pery) (w) = T Pt(c, t) ' Cx (Pt(c, t, u))
=T Pt(c,t) " Lo Pt(c, t,u). exp(sX)
=T Pt(c, )" 4 |o Pt(c, t, u. exp(s X))
= Lo Pt(c,t) "' Pt(c, t, u. exp(sX))
= ielow.exp(sX) = (x(u). O

16.7. Holonomy groups. Let (P,p, M,G) be a principal fiber bundle with
principal connection ® = ( o w. We assume that M is connected and we fix
Ty € M.

In 14.10 we defined the holonomy group Hol(®, zy) C Diff(P,,) as the group
of all Pt(c,1) : Py, — P,, for ¢ any piecewise smooth closed loop through x.
(Reparametrizing c by a function which is flat at each corner of ¢ we may assume
that any ¢ is smooth.) If we consider only those curves ¢ which are nullhomotopic,
we obtain the restricted holonomy group Holy(®, ), a normal subgroup.

Now let us fix ug € P,,. The elements 7(ug, Pt(c,t,up)) € G form a subgroup
of the structure group G which is isomorphic to Hol(®,z(); we denote it by
Hol(w, ug) and we call it also the holonomy group of the connection. Considering
only nullhomotopic curves we get the restricted holonomy group Holg(w,ug) a
normal subgroup of Hol(w, ug).

Theorem. 1. We have Hol(w, ug.g) = conj(g—") Hol(w, ug) and
Holy(w, uo.g) = conj(g~") Holo(w, uo).

2. For each curve ¢ in M with ¢(0) = xp we have Hol(w, Pt(c,t,up)) =
Hol(w, ug) and Holyp(w, Pt(c,t,uq)) = Holp(w, ugp).

3. Holg(w,ug) is a connected Lie subgroup of G and the quotient group
Hol(w, ug)/ Holp(w, ug) is at most countable, so Hol(w, ug) is also a Lie subgroup
of G.

4. The Lie algebra hol(w,ug) C g of Hol(w,ug) is linearly generated by
{QXy,Yy) + Xy, Y, € T,P}. It is isomorphic to the Lie algebra hol(®,zg)
we considered in 14.10.
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5. Forug € Py, let P(w,uq) be the set of all Pt(c,t,up) for ¢ any (piecewise)
smooth curve in M with c(0) = z¢ and fort € R. Then P(w,uo) is a sub fiber
bundle of P which is invariant under the right action of Hol(w,ug); so it is itself
a principal fiber bundle over M with structure group Hol(w,ug) and we have a
reduction of structure group, cf. 15.6 and 15.14. The pullback of w to P(w,ugp)
is then again a principal connection form i*w € QY (P(w,ug); hol(w, ug)).

6. P is foliated by the leaves P(w,u), u € Py, .

7. If the curvature = 0 then Holg(w, up) = {e} and each P(w,u) is a cover-
ing of M. They are all isomorphic and are associated to the universal covering of

M, which is a principal fiber bundle with structure group the fundamental group
™1 (M) .

In view of assertion 5 a principal connection w is called irreducible *-principle
connection if Hol(w, up) equals the structure group G for some (equivalently any)
Ug € Paco .

Proof. 1. This follows from the properties of the mapping 7 from 15.2 and from
the from the G-equivariance of the parallel transport:

7(ug.9, Pt(c, 1, ug.9)) = 7(uo, Pt(c, 1,up).g) = g_l.T(u(], Pt(e, 1, ug)).g.
Note that we have an isomorphism

Hol(w, up) — Hol(®, zy)
g (u— fo(u) = ug.g.7(ug, u))
g5 := 7(uo, f(uo)) « f.

So via the diffeomorphism 7(ug, ): Py, — G the action of the holonomy group
Hol(®, ug) on P,, is conjugate to the left translation of Hol(w,ug) on G.

2. By reparameterizing the curve ¢ we may assume that ¢ = 1, and we
put Pt(e,1,up) =: uy. Then by definition for an element g € G we have g €
Hol(w,uy) if and only if g = 7(uy,Pt(e, 1,u;)) for some closed smooth loop e
through x1 := ¢(1) = p(uq), 1. e.

Pt(e, 1)(r9(uo)) = 9 (Pt(c, 1)(uo)) = urg = Pt(e, 1)(Pt(c, 1) (uo))
uog = Pt(c, 1)t Pt(e, 1) Pt(c, 1)(up) = Pt(c.e.c™t, 3) (up),
where c.e.c™! is the curve travelling along c(t) for 0 < ¢t < 1, along e(t — 1) for
1 <t <3, and along ¢(3 —t) for 2 <t < 3. This is equivalent to g € Hol(w, up).

Furthermore e is nullhomotopic if and only if c.e.c™! is nullhomotopic, so we also
have Holgp(w, u1) = Holp(w, uyp).
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3. Let ¢ : [0,1] — M be a nullhomotopic curve through zo and let h : R> — M
be a smooth homotopy with h;|[0,1] = ¢ and h(0,s) = h(t,0) = h(t,1) = zo.
We consider the pullback bundle

p*h

hWpP—P
h*pt tp
R —2— M.
Then for the parallel transport Pt® on P and for the parallel transport Pt""® of
the pulled back connection we have
Pt (hy, 1, up) = (0 h) PV B (8, ), 1,u0) = (p"h) FIC" "2 (1, ug).

So t +— 7(ug, Pt®(he, 1,u0)) is a smooth curve in the Lie group G starting from e,
so Holp(w, up) is an arcwise connected subgroup of G. By the theorem of Yamabe
(which we mentioned without proof in 5.6) the subgroup Holp(w,up) is a Lie
subgroup of G. The quotient group Hol(w, ug)/ Holp(w, up) is a countable group,
since by Morse theory M is homotopy equivalent to a countable CW-complex,
so the fundamental group 71 (M) is countably generated, thus countable.

4. Note first that for g € G and X € X(M) we have for the horizontal lift
(r9)*CX = CX, since (r9)*® = ® implies T, (r9).H, P = H, 4P and thus

Tu(r9).C(X, u) = Ty(r?).(Tup| HuP) (X (p(w)))

= (Tugp|HugP)~ (X (p(u)) = C(X, u.g).
Thus hol(w) is an ideal in the Lie algebra g, since
Ad(g™HQC(X,u), C(Y,u)) = QT,(r9).C(X,u), Ty (r9).C(Y, u))
=Q(C(X,u.g),C(Y,u.g)) € hol(w).
We consider now the mapping
€% : hol(w) = X(Py,)
€ (W) = Cad(r(uo,u)-1)x (1).

It turns out that £y° is related to the right invariant vector field Rx on G' under
the diffeomorphism 7(ug, )= (ru,)"": Py, — G, since we have

Ty(rug)-Bx(9) = Tg(rug) - Te(p?). X = Ty (19).Te(ru, ). X
= Tuo (r?)Cx (10) = Cad(g-1)x (v0-9) = €5 (u0-9)-
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Thus £ is a Lie algebra anti homomorphism, and each vector field £5° on Py,
is complete. The dependence of £"° on ug is explained by

£X7 (1) = Cad(r(uog,u)-1)x () = CAd(r(uo,u)~1) Ad(g) X (1)
= Exage)x (1)-
Recall now that the holonomy Lie algebra hol(®, xg) is the closed linear span of

all vector fields of the form Pt(c,1)*R(CX,CY), where X,Y € T, M and c is a
curve from zy to . Then we have for u = Pt(c, 1, up)

R(C(X,u),C(Y,u)) = Cac(x,u),c(Yu)) (W)
R(CX,CY)(ug) =T(r?)R(CX,CY)(u) = T(r?)Cac(x u),.c(v.u)) (@)
= CAd(g—1)2(C(X,u),0(Vu) (49) = & 0(x u),0(vou)) (19)
(Pt(c, 1)*R(CX,CY))(ug.g) =
= T(Pt(c, 1) )Caa(g-1)0(c(x.m).cvuy (Ptc, 1, uo.g))
= (Pt(c,1)"Caa(g-1)(c (X ,u),C(Yu))) (U0-9)
= CAd(g—1)Q(C(X,u),C(Y,u)) (10-9) by 16.6.(2)

= gg%C(X,u),C(Y,u)) (u0-9)-

So &% : hol(w) — hol(®,zp) is a Lie algebra anti isomorphism. Moreover
hol(®, zy) consists of complete vector fields and we may apply theorem 14.11
(only claim 3) which tells us that the Lie algebra of the Lie group Hol(®, xy) is
hol(®, xp). The diffeomorphism 7(up, ): Py, — G intertwines the actions and
the infinitesimal actions in the right way.

5. We define the sub vector bundle £ C TP by E, := H,P + T.(r,). hol(w).
From the proof of 4 it follows that {y° are sections of E for each X € hol(w),
thus F is a vector bundle. Any vector field n € X(P) with values in F is a
linear combination with coefficients in C*° (P, R) of horizontal vector fields C X
for X € X(M) and of (z for Z € hol(w). Their Lie brackets are in turn

[CX,CY](u) =C[X,Y](u) + R(CX,CY)(u)
= C[X, Y(u) + Cac(x,u),00vu))(u) € CF(E)
[(z,CX] = L,CX = 4|4(FI§7)*CX =0,
since (r9)*CX = CX, see step 4 above. So F is an integrable subbundle and

induces a foliation by 3.25.2. Let L(ug) be the leaf of the foliation through wug.
Since for a curve ¢ in M the parallel transport Pt(c, ¢, ug) is tangent to the leaf,
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we have P(w,up) C L(ug). By definition the holonomy group Hol(®, zy) acts
transitively and freely on P(w,uy) N P,,, and by 4 the restricted holonomy group
Holy(®, z¢) acts transitively on each connected component of L(ug) N Py, , since
the vertical part of F is spanned by the generating vector fields of this action.
This is true for any fiber since we may conjugate the holonomy groups by a
suitable parallel transport to each fiber. Thus P(w,up) = L(up) and by lemma
15.2 the sub fiber bundle P(w, x) is a principal fiber bundle with structure group
Hol(w, ug). Since all horizontal spaces H, P with u € P(w, xo) are tangential to
P(w,zy), the connection ® restricts to a principal connection on P(w,z() and
we obtain the looked for reduction of the structure group.

6. This is obvious from the proof of 5.

7. If the curvature €2 is everywhere 0, the holonomy Lie algebra is zero, so
P(w,u) is a principal fiber bundle with discrete structure group, p|P(w,u) :
P(w,u) — M is a local diffeomorphism, since T, P(w,u) = H,P and Tp is
invertible on it. By the right action of the structure group we may translate
each local section of p to any point of the fiber, so p is a covering map. Parallel
transport defines a group homomorphism ¢ : 71 (M, x9) — Hol(®, () (see the
proof of 3). Let M be the universal covering space of M, then from topology
one knows that M — M is a principal fiber bundle with discrete structure group
m1(M,zy). Let m (M) act on Hol(®,xp) by left translation via ¢, then the
mapping f : M xHol(®, z9) — P(w, ug) which is given by f([c], g) = Pt(c, 1, u0).g
is m (M)-invariant and thus factors to a mapping M[Hol(®,z¢)] — P(w,u)
which is an isomorphism of Hol(®, xy)-bundles since the upper mapping admits
local sections by the curve lifting property of the universal cover. [

16.8. Inducing principal connections on associated bundles.
Let (P,p, M, G) be a principal bundle with principal right action r : P x G — P
and let £ : G xS — S be a left action of the structure group G on some manifold
S. Then we consider the associated bundle P[S] = P[S,{] = P xS, constructed
in 15.7. Recall from 15.18 that its tangent and vertical bundle are given by
T(P[S,4])) =TP[TS, Tl =TPxpcTS and V(PI[S,/]) = P[TS,T2f] = PxgTS.
Let ® = (ow € Q(P; TP) be a principal connection on the principal bundle
P. We construct the induced connection ® € QY (P[S],T(P[S])) by factorizing
as in the following diagram:

TPxTSMTPxTS;T(Px S)

T

TP x7¢ TS —2 TP xre TS —=—T(P x¢ S).
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Let us first check that the top mapping ® x Id is T'G-equivariant. For g € G and

X € g the inverse of T,.(p4)X in the Lie group TG is denoted by (T%(pg)X )71,
see lemma 5.16. Furthermore by 5.13 we have

Tr(&u, Te(pg) X)

Tu(r?)&u + Tr((0p x Lx)(u,g))
Tu(rg)gu + Tg(ru)(Te(Ng)X)
Tu(r?)&u + Cx (ug).

We may compute

(@ % Id)(Tr(&u, Te(p1g) X ), TA((Te(12g) X) ™, 115))
= (®(Tu(r?)u + Cx (ug)), TL(Te(ptg) X) ™" 1))
= (®(Tu(r?)u) + 2(Cx (ug)), T((Te(ng) X) ™", 15))
= ((Tu(r?)®&u) + Cx (ug), TU(Te(1tg) X) ™, 5))
( 1

Tr(®(&u), Telpg) X), TU(Telg) X) ™7, 15))-

So the mapping ® x Id factors to ® as indicated in the diagram, and we have
Pod = & from (& x Id)o (P x Id) = ® x Id. The mapping & is fiberwise linear,
since ® x Id and ¢’ = T'q are. The image of ® is

qd(VPxTS)=¢q (ker(Tp: TP x TS — TM))
— ker(Tp : TP x7¢ TS — TM) = V(P[S, ).

Thus @ is a connection on the associated bundle P[S]. We call it the induced
connection.

From the diagram it also follows, that the vector valued forms ® x Id €
QY P x S;TP xTS) and ® € QL (P[S]; T(P[S])) are (¢ : P x S — P[S])-related.
So by 13.15 we have for the curvatures

(@ x Id,® x Id] = 3[®,®] x 0 = Rg x 0,
[®, D],

Roxra =
Rg =

1
2
1
2
that they are also g-related, i.e. Tqo (Rg x 0) = Rg o (T'q xpr Tq).

By uniqueness of the solutions of the defining differential equation we also get
that

Ptg(c,t,q(u,s)) = q(Pta(c, t,u), s).
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16.9. Recognizing induced connections. We consider again a principal
fiber bundle (P,p, M,G) and a left action £ : G x S — S. Suppose that ¥ €
QY(P[S]; T(P[S])) is a connection on the associated bundle P[S] = P[S, £]. Then
the following question arises: When is the connection ¥ induced from a principal
connection on P? If this is the case, we say that ¥ is compatible with the G-
structure on P[S]. The answer is given in the following

Theorem. Let U be a (general) connection on the associated bundle P[S]. Let
us suppose that the action £ is infinitesimally effective, i.e. the fundamental
vector field mapping ¢ : g — X(S) is injective.

Then the connection ¥ is induced from a principal connection w on P if and
only if the following condition is satisfied:

In some (equivalently any) fiber bundle atlas (Uy, o) of P[S] belonging
to the G-structure of the associated bundle the Christoffel forms I'® €
QY (Uq; X(8S)) have values in the sub Lie algebra X f4n4(S) of fundamental
vector fields for the action £.

Proof. Let (Uy, 9o : P|lUy — U,y X G) be a principal fiber bundle atlas for
P. Then by the proof of theorem 15.7 the induced fiber bundle atlas (Uy, ¥4 :
P[S]|U, — U, x S) is given by

(1) w;l(l'?s) = q((p(;l(l',e),s),
(2) (Y © @) (05" (2,9),8) = (2,9.5).

Let ® = Cow be a principal connection on P and let ® be the induced connection
on the associated bundle P[S]. By 14.7 its Christoffel symbols are given by

(02, Tz 8)) = —(T(a) 0 @ 0 T(1h 1)) (&5, 05)
:—(T(wa)o(i)quo( (v )x[d))(gm,oe,os) by (1)
= —(T(¢pa) 0 Tq o (® x Id))(T(¢;")(éx,0c),05) by 16.8
= —(T(¢pa) o Tq)(®(T (05 ") (€2, 0c)), 0s)
= (T(¢a) o Tq)(T (05 ") (02, T% (¢, €)), 0s) by 16.4.(3)
= —T(aoqo(pg" x 1d))(0z,wa(&),05) by 16.4.(7)
= —Te(£*)wa(&s) by (2)
= ~Cwa(€a) (9)-

So the condition is necessary. Now let us conversely suppose that a connection
U on P|[S] is given such that the Christoffel forms I'§ with respect to a fiber
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bundle atlas of the G-structure have values in X ¢,,4(S). Then unique g-valued
forms w, € Q1(U,; g) are given by the equation

I'G(€z) = ((walée)),

since the action is infinitesimally effective. From the transition formulas 14.7 for
the I'g follow the transition formulas 16.4.(5) for the w®, so that they give a
unique principal connection on P, which by the first part of the proof induces
the given connection ¥ on P[S]. O

16.10. Inducing principal connections on associated vector bundles.
Let (P,p, M,G) be a principal fiber bundle and let p : G — GL(W) be a rep-
resentation of the structure group G on a finite dimensional vector space W.
We consider the associated vector bundle (E := P[W, p|,p, M, W), which was
treated in some detail in 15.11.

Recall from 6.11 that T(E) = TP x1pg TW has two vector bundle structures
with the projections

g : T(E)=TP xpgTW — P xgW = E,
Tpopry:T(E)=TP Xpg TW — TM.

Now let ® = ( ow € Q(P; TP) be a principal connection on P. We consider
the induced connection ® € Q! (E; T(E)) from 16.8. A look at the diagram below
shows that the induced connection is linear in both vector bundle structures. We
say that it is a linear connection on the associated bundle.

TP x TW © x Id TP xTW TPxW xW
x ™
PxW
Tq tq Tq
PxgW=F
TP XTa TW i) TP XTa T™TW — TFE
Tp Tp
TM
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Recall now from 6.11 the vertical lift vig : F X3y F — V E, which is an isomor-
phism, pri—mg—fiberwise linear and also p—T'p-fiberwise linear.
Now we define the connector K of the linear connection ® by

K :=pryo(vlg) to®:TE - VE - Exy E— E.

Lemma. The connector K : TE — E 1is a vector bundle homomorphism for both
vector bundle structures on TE and satisfies Kovlg = pro: EXyE —TE — E.

So K is mg—p-fiberwise linear and T'p—p—fiberwise linear.

Proof. This follows from the fiberwise linearity of the composants of K and from
its definition. [

16.11. Linear connections. If (E,p, M) is a vector bundle, a connection
U € QYE;TE) such that ¥ : TE — VE — TE is also Tp-Tp-fiberwise linear
is called a linear connection. An easy check with 16.9 or a direct construction
shows that W is then induced from a unique principal connection on the linear
frame bundle GL(R", F) of E (where n is the fiber dimension of E).

Equivalently a linear connection may be specified by a connector K : TE — E
with the three properties of lemma 16.10. For then HE := {&, : K(&u) = Opu)}
is a complement to V E in TE which is T'p—fiberwise linearly chosen.

16.12. Covariant derivative on vector bundles. Let (E,p, M) be a vector
bundle with a linear connection, given by a connector K : TE — E with the
properties in lemma 16.10.

For any manifold N, smooth mapping s : N — FE, and vector field X € X(N)
we define the covariant derivative of s along X by

(1) Vxs:=KoTsoX:N—+TN —-TFE — E.

If f: N — M is a fixed smooth mapping, let us denote by C'° (N, E) the vector
space of all smooth mappings s : N — E with pos = f — they are called sections
of E along f. From the universal property of the pullback it follows that the
vector space C'2° (N, E) is canonically linearly isomorphic to the space C*°(f*E)
of sections of the pullback bundle. Then the covariant derivative may be viewed
as a bilinear mapping

(2) V:X(N) x C¥(N,E) = C(N, E).
In particular for f = Idy; we have

V : X(M) x C®(E) — C*=(E).
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Lemma. This covariant derivative has the following properties:

(3) Vxs is C®(N,R)-linear in X € X(N). So for a tangent vector X, €
TyN the mapping Vx, : C7° (N,E) — Ey;) makes sense and we have
(VXs)(JJ) = VX(z)S-

(4) Vxs is R-linear in s € C3°(N, E).

(5) Vx(h.s) =dh(X).s+ h.Vxs for h € C*(N,R), the derivation property
Of VX .

(6) For any manifold Q) and smooth mapping g : Q — N and Y, € T,QQ we
have Vrgyy,s = Vy,(sog). If Y € X(Q) and X € X(N) are g-related,
then we have Vy(sog) = (Vxs)og.

Proof. All these properties follow easily from the definition (1). O

Remark. Property (6) is not well understood in some differential geometric lit-
erature. See e.g. the clumsy and unclear treatment of it in [Eells-Lemaire, 1983].

For vector fields X, Y € X(M) and a section s € C*°(F) an easy computation
shows that

RE(X, Y)S L= VvaS — VyVXS — V[X,Y]S
= ([Vx,Vy] = Vix y))s

is C>° (M, R)-linear in X, Y, and s. By the method of 7.3 it follows that R¥ is a 2-
form on M with values in the vector bundle L(E, E), i.e. RY € Q*(M; L(E, E)).
It is called the curvature of the covariant derivative.

For f : N — M, vector fields X, Y € X(INV) and a section s € C’J?O(N, E)
along f one may prove that

VxVys—VyVxs—Vixys= (f*"RF)(X,Y)s:= RE(Tf.X,TfY)s.

16.13. Covariant exterior derivative. Let (F,p, M) be a vector bundle with
a linear connection, given by a connector K : TFE — FE.

For a smooth mapping f : N — M let Q(N; f*FE) be the vector space of all
forms on N with values in the vector bundle f*FE. We can also view them as
forms on N with values along f in F, but we do not introduce an extra notation
for this.

The graded space Q(N; f*FE) is a graded Q(N)-module via

(AP (X1,...,Xpyq) =
= Y sign(0) o(Xo1, -+ Xop)@(Xo(pi1) -+ » Xo(pra))-
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It is easily seen that the graded module homomorphisms H : Q(N; f*E) —
Q(N; f*E) (so that H(p A ®) = (—1)de&H-degv, A [(P)) are exactly the map-
pings p(A) for A € QP(N; f*L(E, E)), which are given by

(L(A) ) (X1, ... Xpig) =
= o> sign(o) A(Xo1,- s Xop) (@Kot - » Xopia)-

The covariant exterior derivative dy : QP(N; f*E) — QPTY(N; f*E) is defined
by (where the X; are vector fields on N)

p
(dv®)(Xo,..., Xp) =Y (-1)'Vx,®(Xo,..., Xi,..., X})

=0
+ > (1)K, X)), Xo, -, Xy X, X)),
0<i<j<p

Lemma. The covariant exterior derivative is well defined and has the following
properties.

(1) For s € C®(f*E) = Q°%N; f*E) we have (dys)(X) = Vxs.

(2) dv(pA®)=dpA®+ (—1)%8%p A dy®.
(3) For smoothg:(@Q — N and ® € Q(N; f*E) we have dy(g*®) = g*(dv D).
(4) dvdv® = u(f*RF).
Proof. 1t suffices to investigate decomposable forms ® = ¢ ® s for ¢ € QP(N)
and s € C°(f*FE). Then from the definition we have dv(p ® s) = dp @ s +
(—1)P¢ A dys. Since by 16.12.(3) dys € QY (N; f*E), the mapping dy is well
defined. This formula also implies (2) immediately. (3) follows from 16.12.(6).
(4) is checked as follows:

dvdy(p® s) =dy(de ® s+ (—1)P¢ Adys) by (2)
=0+ (=1)*Pp Adydys
= o A u(f*RF)s by the definition of RF
= u(f*R¥)(¢®s). O

16.14. Let (P,p, M, G) be a principal fiber bundle and let p: G — GL(W) be a
representation of the structure group G on a finite dimensional vector space W.
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Theorem. There is a canonical isomorphism from the space of P[W, p]-valued
differential forms on M onto the space of horizontal G-equivariant W -valued
differential forms on P:

¢" : QUM; PIW, p) = Quor (P; W) = {p € QP; W) 1 ixp =0
for all X € VP, (r9)*¢ = p(g~ ') o ¢ for all g € G}.
In particular for W = R with trivial representation we see that
p* i QUM) = Qor(P) = {9 € Qnor(P) = (r9) ¢ = ¢}
18 also an isomorphism. The isomorphism
¢* : Q°(M; P[W]) = C=(P[W]) = Qy,, (P; W)F = C=(P,W)*
s a special case of the one from 15.12.

Proof. Recall the smooth mapping 7% : P x3; P — G from 15.2, which satisfies
(g, 7% (U, V5)) = Vg, TG (Ug.g,u..9") = g7 1.7 (ug, ul).g', and 7Y (ug, uz) = e.
Let p € QF (P;W)C, Xy,..., Xy € T,P, and X},..., X, € T, P such that
Tup-X; = Typ.X! for each i. Then we have for g = 7% (u, u'), so that ug = u':
Q(ua Qou(le v 7Xk)) = Q(Ug, p(g_l)gou(Xla v 7Xk))
= q(u’, ((r")"@)u(X1, ..., X))
- Q(ul7 (pug(Tu(T'g).Xl, sy (Tg) Xk))
= q(u', oy (X1,...,X})), since T, (r9)X; — X| € Vi P.
By this a vector bundle valued form ® € QF(M; P[W]) is uniquely determined.
For the converse recall the smooth mapping 7V : P xp P[W,p] — W
from 15.7, which satisfies 7 (u,q(u,w)) = w, q(ug, ™" (Ug,vz)) = vz, and

TV (Uzg,vz) = plg™") T (Uz, vz).
For ® € QF(M; P[W]) we define ¢*® € Q¥(P; W) as follows. For X; € T, P

we put
(@) (X1, s Xi) = 7" (U, Ppy (Tup- X1, - - ., Tup - X))
Then ¢*® is smooth and horizontal. For ¢ € G we have
() (" ®)) o (X1, - -+, Xk) = (¢"®)g (T (r9). X1, ..., T (19). X
= 7 (ug, @y ug) (Tugp-Tu(r9). X1, ..., Tugp.Ty(r9). Xy))
= p(g7 )™V (U, @puy (Tup- X1, ... , Tup-Xi))
= p(g™)(@*®)u(X1,- .., Xi).

Clearly the two constructions are inverse to each other. [
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16.15. Let (P,p, M,G) be a principal fiber bundle with a principal connection
® = (ow, and let p: G — GL(W) be a representation of the structure group G
on a finite dimensional vector space W. We consider the associated vector bundle
(E := P[W, p|,p, M, W), the induced connection ® on it and the corresponding
covariant derivative.

Theorem. The covariant exterior derivative d,, from 16.5 on P and the co-
variant exterior derivative for P[W]-valued forms on M are connected by the
mapping ¢t from 16.14, as follows:

¢  ody =d,o0q": QM; PIW]) = Qpuor (P; W)E.

Proof. Let us consider first f € Q) (P; W)Y = C®°(P,W)¢, then f = ¢*s for
s € C®(P[W]) and we have f(u) = 7" (u,s(p(u))) and s(p(u)) = q(u, f(u))
by 16.14 and 15.12. Therefore we have T's.Tp.X,, = Tq(X.,Tf.X,), where
TfX, = (f(u),df(Xy)) e TW =W x W. If x : TP — HP is the horizontal
projection as in 16.5, we have T's.Tp. X, = Ts.Tp.x. Xy = Tq(x-Xu, Tf.x-Xu)-
So we get

(¢*dvs)(Xu) = 7" (u, (dvs)(Tp.Xu))

=7 (u, Vrp x, 5) by 16.13.(1)
= W (u, K.Ts.Tp.X,) by 16.12.(1)
=" (u, K. Tq(x Xu, Tfx-X4u)) from above
=7V (u, pro.vly wy @ Ta(x-Xu, Tfx-Xu)) by 16.10
=7V (u, pro.vlp ]Tq (® x Id)(x. Xy, Tf.x-Xy))) by 16.8
= 7 (u, pro. vlp W1 Tq(0,, Tfx.Xu))) since ®.x =0
= 7 (u, q.prs. vlpxw (0u, Tf.x-Xu))) since ¢ is fiber linear
=" (u, q(u, df-x.-Xu)) = (" df ) (Xu)

= (dug*s)(Xu)-

Now we turn to the general case. It suffices to check the formula for a decom-
posable P[W]-valued form ¥ = ¢ ® s € QF(M, P[W]), where ¢ € QF(M) and
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s € C°°(P[W]). Then we have

wqﬂ(w ®5) = do(p*y - ¢*s)
do(p*Y) - ¢*s + (=1)*x*p* Y Adug®s by 16.5.(1)
= X*p*dip - gfs + (=1 p* e A ¢Pdys from above and 16.5.(4)
=p*dy - ¢*s + (=1)"p*Y A dhdys
= ¢'(dy ® s + (=1)*p A dys)
=ldv(yp ®s). O

16.16. Corollary. In the situation of theorem 16.15 above we have for the

Lie algebra valued curvature form 2 € Qhor(P; g) and the curvature RFPWI ¢
Q%(M; L(P[W], P[W])) the relation

# PW] _
TR =00,
where p' = Tep : g — L(W, W) is the derivative of the representation p.

Proof. We use the notation of the proof of theorem 16.15. By this theorem we
have for X, Y € T, P

(dodo@ppy5)u(X.Y) = (¢Fdydys)u(X.Y)
= (¢*RTWlg),(X,Y)
= (u, R N(T,p. X, Tup.Y)s(p(u)))
= (@ e (X, V) (g ) ()
On the other hand we have by theorem 16.5.(8)
(dudwd®s)u(X,Y) = (x"irdg"s)u(X,Y)
= (dg*s),(R(X,Y)) since R is horizontal
= (dg*s)(~Cacx,y)(w) by 16.2
= &y @) (FEX ()
W (u. exp(—tQ(
W (u. exp(—tQ(
)

)
(

2], X,Y)), s(p(u. exp(—tQ(X,Y)))))
X,Y)),s(p(w)))
2|y PlexptX, Y)Y (u, 5(p(u))) by 15.7

)
= ' (QUX,Y))(¢*s)(w). O

ol
ot 1o
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17. Characteristic classes

17.1. Invariants of Lie algebras. Let G be a Lie group with Lie algebra
g, let @ g* be the tensor algebra over the dual space g*, the graded space of
all multilinear real (or complex) functionals on g. Let S(g*) be the symmetric
algebra over g* which corresponds to the algebra of polynomial functions on g.
The adjoint representation Ad : G — L(g, g) induces representations Ad* : G —
L(®g*,Qg*) and also Ad* : G — L(S(g*),S(g*)), which are both given by
Ad*(g)f = fo(Ad(g™!) ®---® Ad(g™1)). A tensor f € ® g* (or a polynomial
f € S(g*)) is called an invariant of the Lie algebra if Ad*(g)f = f for all g € G.
If the Lie group G is connected, f is an invariant if and only if Lx f = 0 for all
X € g, where Lx is the restriction of the Lie derivative to left invariant tensor
fields on G, which coincides with the unique extension of ad(X)* : g* — g* to
a derivation on ) g* or S(g*), respectively. Compare this with the proof of
12.16.(2). Obvious the space of all invariants is a graded subalgebra of @) g* or
S(g*), respectively. The usual notation for the algebra of invariant polynomials
is I(G) := @50 I*(G), where I*(G) is the invariant subspace of S*(g*).

We will later determine the generating systems of the algebra of invariant
polynomials for the most important Lie algebras.

17.2. The Chern-Weil forms. Let (P,p, M,G) be a principal fiber bundle
with principal connection ® = ( ow and curvature R = (o Q. For v¢; € QPi(P;g)
and f € S¥(g*) C ®k g* we have the differential forms

101 Qp - DA wk EQPH—----!-pk(p;g®...(g)g)7
fol(th®n---@nthy) € Q1 FPE(P).

The exterior derivative of the latter one is clearly given by

d(f o (1 @ -+ Oa i) = fod(hy ®n -+~ O Pi)
=fo (Zle(—l)’“*'“*pi*wl B+ @n dihi @p -+ ®p wk)

Let us now consider an invariant polynomial f € I*(G) and the curvature form
Qe Q2 (P,g)% Then the 2k-form fo (Q®, --- @4 ) is horizontal since by

hor

16.2.(2) € is horizontal. It is also G-invariant since by 16.2.(2) we have

() (fo(Q2®@n @) =fo((r)" Q@A @ (19)"Q)
= fo(Ad(gHQ®nA - ®a Ad(g™ 1))
= fo(2®a - ®rQ).
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So by theorem 16.14 there is a uniquely defined 2k-form cw(f, P,w) € Q2*(M)
with p* cw(f, P,w) = fo(Q2®n - --®a ), which we will call the Chern-Weil form
of f.

If g: N - M is a smooth mapping, then for the pullback bundle ¢*P the
Chern-Weil form is given by cw(f,g*P,¢*w) = g* cw(f, P,w), which is easily
seen by applying p*.

17.3. Theorem. The Chern-Weil homomorphism. [n the setting of 17.2
we have:

1. For f € I*(G) the Chern Weil form cw(f, P,w) is closed: dcw(f, P,w) = 0.
So there is a well defined cohomology class Cw(f, P) = [ew(f, P,w)] € H2*(M),
called the characteristic class of the invariant polynomial f.

2. The characteristic class Cw(f, P) does not depend on the choice of the
principal connection w.

3. The mapping Cwp : I*(G) — H**(M) is a homomorphism of commutative
algebras, and it is called the Chern-Weil homomorphism.

4. If g : N — M 1s a smooth mapping, then the Chern-Weil homomorphism
for the pullback bundle g* P s given by

Cwyp = g* o Cwp : I*(G) — H**(N).

Proof. 1. Since f € I*(G) is invariant we have for any X € g

0= %|0 Ad(exp(—th))*f(Xl, Ce ,Xk;) = ad(X())*f(Xl, Ce 7Xk;)
= Y f (X [ X0y Xl Xk) = S0 (X0, Xl X, X, X,

This implies that

d(fo(Q@p - @rQ))=fo (Zlegz@/\...@/\dg@/\...@/\g)
=kfo(d2®n- - @AQ)+kfo(w, Qg, Ra -+ ®a N)
=kfo(dyQ®rQ®n- Q1 Q)=0, by 16.5.6.
p*dew(f, Pw)=dp*cw(f, P,w)
—d(fo(Q®n- - ®rQ)) =0,
and thus dcw(f, P,w) = 0 since p* is injective.
2. Let wy, wy € QY (P,g)% be two principal connections. Then we consider

the principal bundle (P x R,p x Id,M x R,G) and the principal connection
0= (1—t)wg+tws = (1—1t)(pri)*we+t(pri)*w; on it, where ¢ is the coordinate
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function on R. Let O be the curvature form of @. Let insg : P — P x R be
the embedding at level s, insg(u) = (u, s). Then we have in turn by 16.2.(3) for
s=0,1
ws = (insg)*w
Qs = dws + [ws,ws]/\
= d(ins,)*@ + 3 [(ins,)*@, (ins,)*@]A
= (inss)* (dw + 1@, @]A)
= (ins,)* .
So we get for s =0,1
p*(insg)* ew(f, P x R, @) = (inss)* (p x Idr)* cw(f, P x R, @)
)*(fo (Q®n - ®A Q)
(inss)*Q @p - - - D (inss)*Q)
Qs(X)/\"'(X)/\Q;-;)

(inss

Since p* is injective we get (inss)* cw(f, PxR,w) = cw(f, P,ws) for s = 0,1, and
since insy and ins; are smoothly homotopic, the cohomology classes coincide.
3. and 4. are obvious. [

17.4. Local description of characteristic classes. Let (P,p, M,G) be a
principal fiber bundle with a principal connection w € QY(P,g)¢. Let s, €
C*(P|U,) be a collection of local smooth sections of the bundle such that (Uy)
is an open cover of M. Recall (from the proof of 15.3 for example) that then
0o = (p,7% 50 0p, )):P|Uy — U, x G is a principal fiber bundle atlas with
transition functions pug(7) = 7%(s54(7), sg(z)).

Then we consider the physicists version from 16.4 of the connection w which
is descibed by the forms w, = sXw € Q}(U,; g). They transform according to
Wo = Ad(pap)ws + Onp, where O3 = papdpap if G is a matrix group, see
lemma 16.4. This affine transformation law is due to the fact that w is not
horizontal.

Let Q = dw + 1[w,w]r € QF (P, g)¢ be the curvature of w, then we consider
again the local forms of the curvature:

Qa L= SZQ = s*(dw + %[UJ,W]/\)
= d(s3w) + 3[s5w, 5o

= dwa + %[waawa]/\
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Recall from theorem 16.14 that we have an isomorphism ¢* : Q(M, P[g, Ad]) —
Qnor (P, g)¢. Then Q, = s%Q is the local expression of (g*)~*(Q) for the induced
chart P[g]|U, — U, X g, thus we have the the simple transformation formula
Qa = Ad((pag)Qg.

If now f € I*(G) is an invariant of G, for the Chern-Weil form cw(f, P,w) we
have

cw(f, P,w)|Us : = 55 (q" cw(f, P,w)) = s5,(f 0 (@ -+ - @A Q)
=fo(siQ®n - ®a s582)
=f0(QyRn - Qn Qo),

where Q4 ®p - Dp Qo € VP Uy;g®@ -+ @ g).

17.5. Characteristic classes for vector bundles. For a real vector bundle
(E,p, M,R™) the characteristic classes are by definition the characteristic classes
of the linear frame bundle (GL(R", E),p, M, GL(n,R)). We write Cw(f, E) :=
Cw(f,GL(R", E)) for short. Likewise for complex vector bundles.

Let (P,p, M,G) be a principal bundle and let p: G — GL(V) be a represen-
tation in a finite dimensional vector space. If w is a principal connection form
on P with curvature form €2, then for the induced covariant derivative V on the
associated vector bundle P[V] and its curvature RFV] we have ¢! RVl = p/ 0 Q
by corollary 16.16. So if the representation p is infinitesimally effective, i. e. if
p' g — L(V,V) is injective, then we see that actually RFV] € Q?(M; P[g]). If
f € I*(G) is an invariant, then we have the induced mapping

k

® [dPXfPXR

QJ q
k
PIX) sl P er

So the Chern-Weil form can also be written as
ew(f,P,w) = P[f]o (RPM @, --- @5 RFV)).

Sometimes we will make use of this expression.

All characteristic classes for a trivial vector bundle are zero, since the frame
bundle is then trivial and admits a principal connection with curvature 0.

We will determine the classical bases for the algebra of invariants for the
matrix groups GL(n,R), GL(n,C), O(n,R), SO(n,R), U(n), and discuss the
resulting characteristic classes for vector bundles.
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200 17. Characteristic classes, 17.6

17.6. The characteristic coefficients. . For a matrix A € gl(n,R) =
L(R",R") we consider the characteristic coefficients cj(A) which are given by
the implicit equation

n

(1) det(A+ 1) =) " cp(A).t"".

k=0

From lemma 12.19 we have ¢ (A) = Trace(A¥A : AKR® — A*R™). The charac-
teristic coefficient cj is a homogeneous invariant polynomial of degree k, since
we have det(Ad(g)A +tI) = det(gAg~t + tI) = det(g(A +tI)g~ 1) = det(A + ¢I).

Lemma. We have
k
n-rm A 0 mn m
vt <<0 B)) => (A (B).

Proof. We have

det ((A 0 > + t]In+m> = det(A + tI,,) det(B + tL,,)

0 B
- (an cg(A)t"—k) i (A

k=0 j=0
ntm [ k
-3 (S aw,m) re o
— §=0

17.7. Pontryagin classes. Let (E,p, M) be a real vector bundle. Then the
Pontryagin classes are given by

pk(E) = <27T?/1__1> CW(CdImE E) e H4k(M R)

The factor 27:7\/1_—1 makes this class to be an integer class (in H**(M,Z)) and

makes several integral formulas (like the Gauss-Bonnet-Chern formula) more

beautiful. In principle one should always replace the curvature {2 by o \/1_19

The inhomogeneous cohomology class

= pi(E) € H*(M,R)
k>0

is called the total Pontryagin class.
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Theorem. For the Pontryagin classes we have:
1. If E1 and FEs are two real vector bundles over a manifold M, then for the
fiberwise direct sum we have

p(E1 @ Ez) = p(E1) Ap(Es) € HY (M, R).
2. For the pullback of a vector bundle along f : N — M we have
p(f*E) = f*p(E).

3. For a real vector bundle and an invariant f € I¥(GL(n,R)) for odd k
we have Cw(f,F) = 0. Thus the Pontryagin classes exist only in dimension
0,4,8,12,....

Proof. 1. If w' € QY(GL(R™ , E;), gl(n;))“L(™) are principal connection forms
for the frame bundles of the two vector bundles, then for local frames of the two
bundles s!, € C°(GL(R™ , E;|U,) the forms

1
Wo 1= <wa u?z > € Ql(Ua,g[(nl +n32))

«

are exactly the local expressions of the direct sum connection, and from lemma
17.6 we see that py(Ey @ Ez) = Y+ p;j(E1)pr—;(E2) holds which implies the
desired result.

2. This follows from 17.3.4.

3. Choose a fiber Riemannian metric g on E, consider the corresponding or-
thonormal frame bundle (O(R", E), p, M, O(n,R)), and choose a principal con-
nection w for it. Then the local expression with respect to local orthonormal
frame fields s, are skew symmetric matrices of 1-forms. So the local curva-
ture forms are also skew symmetric. Any real matrix is conjugate to its trans-
posed (use Jordan’s normal form), so there are invertible matrices g, such that
gaQaggl = —Q,. But then

fo(Qa®/\"'®/\Qa): o(ga ag;1®/\"'®/\gaQag;1)

f Q
fo((—2a) ®n -+ ®n (—))
(—=1)*f 0 (Qo ®p - Dn Q).

This implies that Cw(f, E) =0 if k£ is odd. O
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17.8. Remarks. 1. If two vector bundles F and F' are stably equivalent, i. e.
E®d(MxRP)=2F& (M xR?), then p(E) = p(F). This follows from 17.7.1 and

2.
k

—f—
2. If for a vector bundle E for some k the bundle E® --- & E®(M x R) is
trivial, then p(E) = 1 since p(E)* = 1.
3. Let (E, p, M) be a vector bundle over a compact oriented manifold M. For
Ji € Ng we put

Nv.oos (E) ::/ p(EY . pr(E)ir € R,
M

where the integral is set to be 0 on each degree which is not equal to dim M.
Then these Pontryagin numbers are indeed integers, see [Milnor-Stasheff, 77].
For example we have

Niv. s (T(CP™)) = <2n+ 1) <2n+ 1>.

jl jr

17.9. The trace coefficients. For a matrix A € gl(n,R) = L(R®,R"™) the
trace coefficients are given by

k
——
tr7?(A) := Trace(A*) = Trace(Ao...o A).

Obviously try is an invariant polynomial, homogeneous of degree k. To a direct
sum of two matrices A € gl(n) and B € gl(m) it reacts clearly by

nim (A 0 Ak 0 n m
trp (0 B)zTrace<O Bk)ztrk(A)+trk(B).

The tensor product (sometimes also called Kronecker product) of A and B is
given by A® B = (A;-Blk)(,-,k),(j,l)e,wm in terms of the canonical bases. Since
we have Trace(A® B) =}, . AiBY = Trace(A) Trace(B), we also get

trp™ (A ® B) = Trace((A ® B)¥) = Trace(A* ® B¥) = Trace(A*) Trace(B")
= try (A) trp* (B).
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Lemma. The trace coefficients and the characteristic coefficients are connected
by the following recursive equation:

%Z D)k=I=1en(A) tep_ (A).
7=0

Proof. For a matrix A € gl(n) let us denote by C'(A) the matrix of the signed
algebraic complements of A (also called the classical adjoint), i. e

(1) C(A): = (—1)"H det (A

without ¢-th column,
without j-th row

Then Cramer’s rule reads

(2) A.C(A) =C(A).A =det(A).I,
and the derivative of the determinant is given by

(3) ddet(A)X = Trace(C(A)X).

Note that C'(A) is a homogeneous matrix valued polynomial of degree n — 1 in
A. We define now matrix valued polynomials a(A) by

|
—

n

(4) CA+) =S ap(A)n—k1,

e
I
=

We claim that for A € gl(n) and £k =0,1,...,n — 1 we have

Mw

(5)

Ck J
J=0

We prove this in the following way: from (2) we have
(A+tI)C(A+ tl) = det(A + tI)I,

and we insert (4) and 17.6.(1) to get in turn

(A+tD)> ap(A)p"F1 =3 " (A1
j=0
n—1 n—1 n
> Aag(A R4 ag (AR =D (AT
k=0 k=0 =0
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204 17. Characteristic classes, 17.9

We put a_1(A) := 0 =: a,(A) and compare coefficients of t*~* in the last
equation to get the recursion formula

A.ag_1(A) + ax(A) = (AT
which immediately leads to to the desired formula (5), even for £k =0,1,...,n. If

we start this computation with the two factors in (2) reversed we get A.ax(A) =
ar(A).A. Note that () for k = n is exactly the Caley-Hamilton equation

= cp_(A)AT
§=0

We claim that
(6) Trace(ar(A)) = (n — k)ci (A).
We use (3) for the proof:

(det(A + tI)) = ddet(A + tI) Q‘ (A+1tI) = Trace(C’(A + ¢I)I)
= Trace (Z

2 (det(A + 1)) = \(
k

=Y (n—k)c(A)nkt
k=0

i)
E‘o

f
—
Q
A
H~
3
??‘
n—l
v
ﬁ
o
o
CD
Q
?r
H~
S
-
=

Comparing coefficients leads to the result (6).
Now we may prove the lemma itself by the following computation:

(n — k)cp (A) = Trace(ar(A)) by (6)
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= ncp(A) +

J

cr(A) = =1 Y (1) c_;(A) e} (A)

(—l)ch_j(A) tri; (A).

k
=1

EX @ g ). O

17.10. The trace classes. Let (FE,p, M) be a real vector bundle. Then the
trace classes are given by

1 2k )
(1) tri(F) 1= <27r\/__1> Cw(trp™¥ F) € H* (M, R).

Between the trace classes and the Pontryagin classes there are the following
relations for k£ > 1

(2) pi(E) = ;—; z_:pj(E) Atri_;(E),

which follows directly from lemma 17.9 above.
The inhomogeneous cohomology class

oo

(3) tr(E) = Z % tri(E) = Cw(Trace o exp, E)
k=0

is called the Pontryagin character of E. In the second expression we use the
smooth invariant function Traceoexp : gl(n) — R which is given by

k
Trace(exp(A)) = Trace Z % = Z % Trace(AF).

E>0 k>0

Of course one should first take the Taylor series at 0 of it and then take the
Chern-Weil class of each homogeneous part separately.
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Theorem. Let (F;,p, M) be vector bundles over the same base manifold M.
Then we have

(1) tI‘(El D Ez) = tI‘(El) + tI‘(EQ).

(2) tr(E; @ Ey) = tr(Eq) Atr(Es).

(3) tr(g*F) = g* tr(F) for any smooth mapping g: N — M.

Clearly stably equivalent vector bundles have equal Pontryagin characters.
Statements 1 and 2 say that one may view the Pontryagin character as a ring
homomorphism from the real K-theory into cohomology,

tr: Kp(M) — H*(M;R).
Statement 3 says, that it is even a natural transformation.
Proof. 1. This can be proved in the same way as 17.7.1, but we indicate another
method which will be used also in the proof of 2 below. Covariant derivatives
for 1 and E5 induce a covariant derivative on E; & E5 by Vf(l@EZ’ (s1,82) =
(Vf{sl, V%, s9). For the curvature operators we clearly have
REr 0

RE1®OE: _ pEL ¢ pE2 _ < 0 RE2>
So the result follows from 17.9 with the help of 17.5.

2. We have an induced covariant derivative on Fy ® E5 given by V§1®E231 ®
Sy = (Vf(lsl) ® 89 + 851 ® (Vf(2 s2). Then for the curvatures we get obviously
RECE:(XY) = REV(X,Y)® Idg, + Idg, ® RP2(X,Y). The two summands of
the last expression commute, so we get,

k
k . .
(R™' @ Idg, + Idg, ® R®)°M* =3 ( > (RF)T @4 (RF2) -,

j=o

where the product involved is given as in

(RP on RP)(X1,...,X4) = 535 Y _sign(0)R¥(X,1, Xo2) 0 R® (X3, Xo4),

which makes (Q(M; L(E, E)),oa) into a graded associative algebra. The next
computation takes place in a commutative subalgebra of it:

tr(E, ® Fy) = [Traceexp(RP' ® Idg, + Idg, ® RE2)]H(M)
= [Trace(exp(R") @ exp(RE2))]H(M)
= [Trace(exp(RF")) A Trace(exp(RE2))]H(M)
= tr(Ep) A tr(E3).
3. This is a general fact. [J
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17.11. The Pfaffian coefficient. Let (V,g) be a real Euclidian vector space
of dimension n, with a positive definite inner product g. Then for each p we
have an induced inner product on APV which is given by

(T A ATp, gt A Nyp)g = det(g(zi, y5)ig)-
Moreover the inner product g, when viewed as a linear isomorphism g : V' —
V*, induces an isomorphism 3 : A’V — Ly skew(V, V) which is given on decom-
posable forms by S(z A y)(z) = g(z, 2)y — g(y, z)x. We also have

BHA)=Aog !t € Ly (V*, V) ={B € L(V*,V) : B' = —B} = A*V, where
B v Zye Sy

Now we assume that V is of even dimension n and is oriented. Then there is
a unique element e € A™V which is positive and normed: (e,e), = 1. We define

n/2

Ve

PI(A) 1= (e (A Ao A B (A

This is a homogeneous polynomial of degree n/2 on gl(n). Its polarisation is the
n/2-linear symmetric functional

Pt9(Ay,..., Apja) = %(aﬁ—l(Al) A ANBTHAry2))g

Lemma. 1. If U € O(V,g) then Pf9(U.A.U™) = det(U)PfI(A), so Pf? is
invariant under the adjoint action of SO(V,g).
2. If X € Ly, skew(V, V) =0(V, g) then we have

n/2
D PII(Ay,. . [X Al Ayye) =0
=1

Proof. We have U € O(V,g) if and only if g(Uz,Uy) = g(x,y). For g : V — V*
this means U*gU = g and U~ lg~ 1 (UH)* = g1, so we get f~H({UAU!) =
UAU g~ = UAg='U* = A?2(U)B7'(A) and in turn:

PI9(UAUY) = %(e,A”(U)(B‘l(A) Ao ABTHA)))

_ L det(U) A (W)e, AT (BH(A) A - A BHAY),

n!
_ % det(U)(e, B7HA) A=+~ ABTH(A))g
= det(U) Pf9(A).

2. This follows from 1. by differentiation, see the beginning of the proof of
17.3. 0O

Draft from November 17, 1997 Peter W. Michor, 17.11



208 17. Characteristic classes, 17.12

17.12. The Pfaffian class. Let (E,p, M,V) be a vector bundle which is fiber
oriented and of even fiber dimension. If we choose a fiberwise Riemannian met-
ric on E, we in fact reduce the linear frame bundle of E to the oriented or-
thonormal one SO(R™, E). On the Lie algebra o(n,R) of the structure group
SO(n,R) the Pfaffian form Pf of the standard inner product is an invariant,
Pf € I"/2(SO(n, R)). We define the Pfaffian class of the oriented bundle E by

PH(E) = v Cw(Pf, SO(R",E)) € H"(M
E)= (5o ) gy CHPEL SO B)) € H (M)

It does not depend on the choice of the Riemannian metric on FE, since for
any two fiberwise Riemannian metrics g; and g on E there is an isometric
vector bundle isomorphism f : (E,g1) — (F,g2) covering the identity of M,
which pulls a SO(n)-connection for (E, g2) to an SO(n)-connection for (E, gq).
So the two Pfaffian classes coincide since then Pf! o(f*Qy ®p -+ - ®a Q) =
Pf?o(Qy @p « - @p Qa).

Theorem. The Pfaffian class of oriented even dimensional vector bundles has
the following properties:

1. Pf(E)? = (=1)"?p,,;»(E) where n is the fiber dimension of E.

2. PI(E; @ E2) = Pf(E;) A Pf(E»)

3. Pf(g*)(F) = g* PI(E) for smooth g: N — M.

Proof. This is left as an exercise for the reader. [

17.13. Chern classes. Let (E,p, M) be a complex vector bundle over the
smooth manifold M. So the structure group is GL(n,C) where n is the fiber
dimension. Recall now the explanation of the characteristic coefficients c}} in
17.6 and insert complex numbers everywhere. Then we get the characteristic
coefficients ¢ € I*(GL(n,C)), which are just the extensions of the real ones to
the complexification.

We define then the Chern classes by

—1

2mv/—1

The total Chern class is again the inhomogeneous cohomology class

(1) cx(E) = ( ) Cw(cimE E) c H?*(M;R).

dim¢ E
(2) o(B) =Y o(E) e H>*MP),
k=0
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It has the following properties:

(3) c(B) = (~1)"me Fe(E)
(4) C(El D Eg) = C(El) A C(Ez)
(5) c(¢*E) = g*c(F) for smooth g: N — M

One can show (see [Milnor-Stasheff, 1974]) that (2), (4), (5), and the following
normalisation determine the total Chern class already completely: The total
Chern class of the canonical complex line bundle over S? (the square root of the
tangent bundle with respect to the tensor product) is 1 + wg2, where wg= is the
canonical volume form on $? with total volume 1.

Lemma. Then Chern classes are real cohomology classes.

Proof. We choose a hermitian metric on the complex vector bundle E, i. e.
we reduce the structure group from GL(n,C) to U(n). Then the curvature
Q2 of a U(n)-principal connection has values in the Lie algebra u(n) of skew
hermitian matrices A with A* = —A. But then we have ¢ (—v/—1A4) € R since

detc(—v/—1A + tI) = detc(—v/—1A4 + tI) = dete(—/—1A + tI). O

17.14. The Chern character. The trace classes of a complex vector bundle
are given by

k
1 .

1 try(E) = Cw(trdmE E) e H?*(M,R).
) (B)i= (3o ) Cwlend™ B B) € B
They are also real cohomology classes, and we have tro(E) = dimc F, the fiber
dimension of E, and try(F) = ¢1(F). In general we have the follwoing recursive
relation between the Chern classes and the trace classes:

k

(2) h(B) = =25 e (B) A tr_y (E),

I
—

S,
I
=

which follows directly from lemma 17.9. The inhomogeneous cohomology class

(3) ch(E) := L try(E) € H**(M,R)

is called the Chern character of the complex vector bundle E. With the same
methods as for the Pontryagin character one can show that the Chern character

Draft from November 17, 1997 Peter W. Michor, 17.14



210 17. Characteristic classes, 17.15

satisfies the following properties:

(4) ch(FE1 @ F3) = ch(E}) + ch(FE3)
(5) ch(E1 ® E2) = ch(E1) A ch(E?)
(6) ch(g*E) = g" ch(E)

From these it clearly follows that the Chern character can be viewed as a ring
homomorphism from complex K-theory into even cohomology,

ch: Ke(M) — H**(M,R),

which is natural.

Finally we remark that the Pfaffian class of the underlying real vector bundle
of a complex vectorbundle F of complex fiber dimension n coincides with the
Chern class ¢, (F). But there is a new class, the Todd class, see below.

17.15. The Todd class. On the vector space gl(n,C) of all complex (n X n)-
matrices we consider the smooth function

— =DF
1 A) :=det A" ).
(1 £(4) 1= dg (gzoj G
It is the unique smooth function which satisfies the functional equation

det(A).f(A) = det(I — exp(—A)).

Clearly f is invariant under Ad(GL(n,C)) and f(0) = 1, so we may consider
the invariant smooth function, defined near 0, Td : gl(n,C) D U — C, which is
given by Td(A) = 1/f(A). Tt is uniquely defined by the functional equation

det(A) = Td(A) det(I — exp(—A))
det(1A) det(exp(3A)) = Td(A) det(sinh(3A)).

The Todd class of a complex vector bundle is then given by

-1 Qn,k
(2) Td(E) = |GL(C", E)[Td] Z(% \/__1RE>

H?*(M,R)
= Cw(Td, E).

The Todd class is a real cohomology class since for A € u(n) we have Td(—A) =
Td(A*) = Td(A). Since Td(0) = 1, the Todd class Td(F) is an invertible
element of H?*(M,R).
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17.16. The Atiyah-Singer index formula (roughly). Let F; be complex
vector bundles over a compact manifold M, and let D : C*°(E;) — C*(FE3) be
an elliptic pseudodifferential operator of order p. Then for appropriate Sobolev
completions D prolongs to a bounded Fredholm operator between Hilbert spaces
D : HMHP(E)) — HY(Ey). Tts index index(D) is defined as the dimension of the
kernel minus dimension of the cokernel, which does not depend on d if it is high
enough. The Atiyah-Singer index formula says that

index(D) = (—1)4mM ch(o(D)) Td(TM ® C),

where o(D) is a virtual vector bundle (with compact support) on TM \ 0, a
formal difference of two vector bundles, the so called symbol bundle of D.

See [Boos, 1977] for a rather unprecise introduction, [Shanahan, 1978] for a
very short introduction, [Gilkey, 1984] for an analytical treatment using the heat
kernel method, [Lawson, Michelsohn, 1989] for a recent treatment and the papers
by Atiyah and Singer for the real thing.

Special cases are The Gauss-Bonnet-Chern formula, and the Riemann-Roch-
Hizebruch formula.

Draft from November 17, 1997 Peter W. Michor, 17.16



212

18. Jets

Jet spaces or jet bundles consist of the invariant expressions of Taylor devel-
opments up to a certain order of smooth mappings between manifolds. Their
invention goes back to Ehresmann [Ehresmann, 1951]. We could have treated
them from the beginning and could have mixed them into every chapter; but it
is also fine to have all results collected in one place.

18.1. Contact. Recall that smooth functions f,g : R — R are said to have
contact of order k at 0 if all their values and all derivatives up to order k coincide.

Lemma. Let f,g: M — N be smooth mappings between smooth manifolds and
let x € M. Then the following conditions are equivalent.

(1) For each smooth curve ¢ : R — M with ¢(0) = x and for each smooth
function h € C*°(M,R) the two functions ho foc and hogoc have
contact of order k at 0.

(2) For each chart (U,u) of M centered at x and each chart (V,v) of N with
f(z) € V the two mappings vo fou™t and vogou™t, defined near 0 in
R™, with values in R™, have the same Taylor development up to order k

at 0.
(3) For some charts (U,u) of M and (V,v) of N with x € U and f(z) € V
we have al al
o' o'
uc m(Uof)— uc ﬂc(Uog)

for all multi indices o € N™ with 0 < || < k.
(4) TEf =Tkg, where TF is the k-th iterated tangent bundle functor.

Proof. This is an easy exercise in Analysis.

18.2. Definition. If the equivalent conditions of lemma 18.1 are satisfied, we
say that f and g have the same k-jet at x and we write j*f(z) or j*f for the
resulting equivalence class and call it the &k -jet at x of f; x is called the source
of the k-jet, f(x) is its target.

The space of all k-jets of smooth mappings from M to N is denoted by
J¥(M,N). We have the source mapping « : J¥(M,N) — M and the target
mapping 3 : J*(M,N) — N, given by a(j*f(z)) = = and B(5*f(z)) = f(x). We
will also write J¥(M,N) := o~ (z), J*(M,N), := 7 (y), and JE(M,N), :=
JE(M,N)n J*(M,N), for the spaces of jets with source z, target y, and both,
respectively. For [ < k we have a canonical surjective mapping 7 : J¥(M, N) —
JY(M, N), given by «¥ (5% f(x)) := j'f(z). This mapping respects the fibers of
and # and 7§ = (a, B) : J¥(M,N) — M x N.
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18.3. .. Now we look at the case M = R™ and N = R".

Let f: R™ — R™ be a smooth mapping. Then by 18.1.3 the k-jet j*f(z) of
f ant x has a canonical representative, namely the Taylor polynomial of order k
of f at x:

Fty) = F@)+ d @)y + oy F@y? + -+ b F )+ ofly )
=: f(z) + Tayy f(y) + o|y[*)

Here y* is short for (y,v,...,y), k-times. The ‘Taylor polynomial without con-
stant’

Tayhf o Tayh(y) = df @)y + () + -+ 11 () g

is an element of the linear space

sym

k
P*(m,n) := P L, R™ R"),
j=1

where L7, (R™,R") is the vector space of all j-linear symmetric mappings R™ x

- x R™ — R™, where we silently use the total polarization of polynomials.
Conversely each polynomial p € P¥(m,n) defines a k-jet j¥(y — 2z + p(z +
y)) with arbitrary source x and target z. So we get canonical identifications

JE(R™ R"), = P*(m,n) and
JER™,R*) =~ R™ x R x P¥(m,n).

If U C R™ and V C R" are open subsets then clearly J*(U,V) =2 U x V x
P¥(m,n) in the same canonical way.
For later uses we consider now the truncated composition

o : P*(m,n) x P*(p,m) — P*(p,n),
where pe g is just the polynomial poq without all terms of order > k. Obviously
it is a polynomial, thus real analytic mapping. Now let U C R™, V C R", and
W C RP be open subsets and consider the fibered product

JEU V) xpyp JFW,U) = { (o,7) € J¥U, V) x JF(W,U) : ao) = B(7) }
=U xV x W x P*(m,n) x P*(p,m).

Draft from November 17, 1997 Peter W. Michor, 18.3



214 18. Jets, 18.4

Then the mapping
v JRUL V) xpg JFW,U) — JF(W, V),
V(o 7) =v((al0), B(0),0), (a(7), B(7), 7)) = (a(7), B(0), 7 @ T),
is a real analytic mapping, called the fibered composition of jets.

Let U, U' ¢ R™ and V C R™ be open subsets and let g : U’ — U be a
smooth diffeomorphism. We define a mapping J*(g, V) : J¥(U,V) — J&(U, V")
by J*(g,V) (5% f(x)) = j*(f o g)(¢971(x)). Using the canonical representation of
jets from above we get J*(g,V)(0) = (0, 5%9(97 ' (z))) or J*(g,V)(z,y,5) =
(g7 (z),y,0 Tay’g“,l(m)g). If g is a CP diffeomorphism then J*(g,V) is a
CP~* diffeomorphism. If ¢’ : U” — U’ is another diffeomorphism, then clearly
J*(g', V)od*(g,V) = J¥(gog', V) and J¥( V) is a contravariant functor acting
on diffeomorphisms between open subsets of R”. Since the truncated composi-
tion o — 60Tay’5,1(m)g is linear, the mapping JE (g, R") := J*(g,R*)|JE(U,R") :
JEU,RY) — JF (U',R™) is also linear.

g7 (z)
If more generally g : M’ — M is a diffeomorphism between manifolds the same

formula as above defines a bijective mapping J*(g, N) : J*(M, N) — J*(M', N)
and clearly J¥( ,N) is a contravariant functor defined on the category of man-
ifolds and diffeomorphisms.

Now let U C R™, V C R", and W C RP be open subsets and let h: V — W
be a smooth mapping. Then we define J*(U,h) : J*(U, V) — J*(U,W) by
JHU,h) (5% f (x)) = j*(h o f)(x) or equivalently by

JEU, ) (z,y,5) = (z, h(y), Tay';h, °7).

If h is CP, then J*(U, h) is CP=%. Clearly J*(U, ) is a covariant functor acting
on smooth mappings between open subsets of finite dimensional vector spaces.
The mapping JE(U, h), : JE(U, V), — J*(U, W)y is linear if and only if the
mapping & — Tay%h e & is linear, so if h is affine or if k = 1.

If h: N — N’ is a smooth mapping between manifolds we have by the same

prescription a mapping J*(M, h) : J¥(M, N) — J*(M, N’) and J¥(M, ) turns
out to be a functor on the category of manifolds and smooth mappings.
18.4. The differential group G .. The k-jets at 0 of diffeomorphisms of
R™ which map 0 to 0 form a group under truncated composition, which will be
denoted by GL¥(m,R) or G¥ for short, and will be called the differential group
of order k. Clearly an arbitrary O-respecting k-jet o € P¥(m,m) is in G¥, if and
only if its linear part is invertible, thus

k
Gk, = GL*(m,R) = GL(m) & @ Ll (R™,R™) =: GL(m) x P§(m),
j=2
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where we put PY(m) = @?22 LI, (R™,R™) for the space of all polynomial
mappings without constant and linear term of degree < k. Since the trun-
cated composition is even a polynomial mapping, G¥ is a Lie group, and clearly
the mappi.ng ™ GE — G!, is a homomorphism of Lie groups, so ker(r¥) =
@?:l w1 Ll (R™, R™) =: P (m) is a normal subgroup for all [. The exact
sequence of groups

{e} = Plii(m) = G}, — Gy, — {e}

splits if and only if [ = 1; only then we have a semidirect product.

18.5. Theorem. If M and N are smooth manifolds, the following results hold.

(1) J¥(M, N) is a smooth manifold (it is of class C"=* if M and N are of
class C"); a canonical atlas is given by all charts (J*(U, V), JF(u=1,v)),
where (U, u) is a chart on M and (V,v) is a chart on N.

(2) (JE(M,N),(a,B), MxN, P*(m,n), Gk xG¥) is a fiber bundle with struc-
ture group, where m = dimM, n = dimN, and where (v, x) € Gk x GF
acts on o € PE(m,n) by (v,x).c = xecey L.

(3) If f : M — N is a smooth mapping then j*f : M — J¥(M, N) is also
smooth (it is C™=F if f is C ), sometimes called the k-jet extension of f.
We have aco j* f = Idpy and o % f = f.

(4) If g: M" — M is a (C"-) diffeomorphism then also the induced mapping
J*(g,N): J*(M,N) — JF(M',N) is a (C"~*-) diffeomorphism.

(5) If h : N — N’ is a (C"-) mapping then J¥(M,h) : J¥(M,N) —
JE(M,N') is a (C"=%-) mapping. J*(M, ) is a covariant functor
from the category of smooth manifolds and smooth mappings into itself
which maps each of the following classes of mappings into itself: im-
mersions, embeddings, closed embeddings, submersions, surjective sub-
mersions, fiber bundle projections. Furthermore JX( | ) is a contra-
covariant bifunctor.

(6) The projections 7 : J*(M,N) — J' (M, N) are smooth and natural, i.e.
they commute with the mappings from (4) and (5).

(7) (J¥(M,N),nf,J (M,N),PE,(m,n)) are fiber bundles for all I. The
bundle (J¥(M,N),nf_,, J*=1 (M, N), LY . (R™,R")) is an affine bundle.
The first jet space JY(M, N) is a vector bundle, it is isomorphic to the
bundle (L(TM,TN), (nar,7n5), M x N). Moreover we have J3 (R, N) =
TN and J'(M,R)y = T*M.

Proof. We use 18.3 heavily. Let (U, u,) be an atlas of M and let (V.,v.) be
an atlas of N. Then J*(u',ve) : (a, )71 Uy X Vo) = J¥(uy(Uy),ve(V2)) is a
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bijective mapping and the chart change looks like

Jk(u;l, ve) o JE(uzt v,) 7t = JF(ug 0 u;l, ve ov t)
by the functorial properties of J¥( , ). With the identification topology
J*¥(M, N) is Hausdorff, since it is a fiber bundle and the usual argument for
gluing fiber bundles applies. So (1) follows.

Now we make this manifold atlas into a fiber bundle by using as charts
(Uy X Vo), b0y + JE(M,N)|Uy x Vo — Uy x Vo x P*(m,n), where ¢, o\ (c) =
(a(o), B(o), Js(o_)(u;l, Ve) (). We then get as transition functions

w('y,s)w(cs,u) (377 Y, 5-) = ('Ta Y, Jfé(m) (u5 oUu, 1? Ve © Uu_l)(a-))

= (./L', Y, Tayﬁu(y) (UE o ’UU_I) ' Yol | Tayﬁy(w)(u(s e} ’U,;l))v

and (2) follows.

(3), (4), and (6) are obvious from 18.3, mainly by the functorial properties of

(. )
(5). We will show later that these assertions hold in a much more general
situation, see the chapter on product preserving functors. It is clear from 18.3
that J*(M, h) is a smooth mapping. The rest follows by looking at special chart
representations of h and the induced chart representations for J*(M, h).

It remains to show (7) and here we concentrate on the affine bundle. Let
a1 +a € GL(n) x P§(n,n), 0 + o}, € P*~Y(m,n) ® LE, (R™,R"), and by + b €
GL(m) x P¥(m,m), then the only term of degree k containing o in (a + ay) e
(0 +01)e(b+by,) is aj ooy ob¥, which depends linearly on oy. To this the degree
k-components of compositions of the lower order terms of ¢ with the higher order
terms of a and b are added, and these may be quite arbitrary. So an affine bundle
results.

We have J1(M, N) = L(TM,TN) since both bundles have the same transition
functions. Finally we have J3(R,N) = L(ToR,TN) = TN, and J}(M,R), =
L(TM,TyR) = T*M O

Jk

18.6. Frame bundles and natural bundles.. Let M be a manifold of dimen-
sion m. We consider the jet bundle J}(R™, M) = L(ToR™,TM) and the open
subset invJ}(R™, M) of all invertible jets. This is visibly equal to the linear
frame bundle of TM as treated in 15.11.

Note that a mapping f : R™ — M is locally invertible near 0 if and only if
j1£(0) is invertible. A jet o will be called invertible if its order 1-part 7¥ (o) €
JE(R™, M) is invertible. Let us now consider the open subset invJ§(R™, M) C
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JE(R™, M) of all invertible jets and let us denote it by P*M. Then by 12.5.2 we
have a principal fiber bundle (P*M, my, M, GE ) which is called the k-th order
frame bundle of the manifold M. Its principal right action r can be described in
several ways. By the fiber composition of jets:

r =7 invJY(R™ R™) x invJ§(R™, M) = GE, x P*M — P*M;
or by the functorial property of the jet bundle:
rit9(0) = invJ¥ (g, M)

for a local diffeomorphism ¢g : R™,0 — R™, 0.

If h: M — M’ is a local diffeomorphism, the induced mapping J&(R™, h)
maps the open subset P*M into P*M’. By the second description of the prin-
cipal right action this induced mapping is a homomorphism of principal fiber
bundles which we will denote by P*(h) : P*M — P*M’. Thus P* becomes a
covariant functor from the category M f,, of m-dimensional manifolds and local
diffeomorphisms into the category of all principal fiber bundles with structure
group G¥ over m-dimensional manifolds and homomorphisms of principal fiber
bundles covering local diffeomorphisms.

If we are given any smooth left action £ : GF¥, x S — S on some manifold
S, the associated bundle construction from theorem 15.7 gives us a fiber bundle
PEM(S, €] = P*M x i S over M for each m-dimensional manifold M; by 15.9.2
this describes a functor P¥( )[S, £] from the category M f,, into the category of
all fiber bundles over m-dimensional manifolds with standard fiber S and G¥, -
structure, and homomorphisms of fiber bundles covering local diffeomorphisms.
These bundles are also called natural bundles or geometric objects.

It is one of the aims of this book to prove that under mild conditions all
functors between the mentioned categories are of the form described above. This
will involve some rather hard analytical results.

18.7. Theorem. If (E,p, M,S) is a fiber bundle, let us denote by J*(E) the
space of all k-jets of sections of E. Then we have:

(1) JF(E) is a closed submanifold of J*(M, E).

(2) The first jet bundle JY(E) is an affine subbundle of the vector bundle
JYM,E) = L(TM,TE), in fact we have J'(E) = {0 € L(TM,TE) :
Tpoo=Idry}.

(3) (JE(E),rk_,, JF=Y(E)) is an affine bundle.

(4) If (E,p, M) is a vector bundle, then (J*(E), o, M) is also a vector bundle.
If ¢ : E — E' is a homomorphism of vector bundles covering the identity,
then J*(p) is of the same kind.
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Proof. (1). By 18.6.5 the mapping J*¥(M,p) is a submersion, thus J*¥(E) =

J*(M,p)~t(j*(Idys)) is a submanifold. (2) is clear. (3) and (4) are seen by
looking at appropriate canonical charts. [l
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List of Symbols
a:J"(M,N)— M the source mapping of jets
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B:J°(M,N)— N the target mapping of jets

C>(F), also C*°(E — M) the space of smooth sections of a fiber bundle

C>*(M,R) the space of smooth functions on M

d usually the exterior derivative

(E,p,M,S), also simply £ usually a fiber bundle with total space E, base
M, and standard fiber §

FI¥, also Fl(t, X)  the flow of a vector field X

[, short for the k£ x k-identity matrix Idp«.

Lx Lie derivative

G usually a general Lie group with multiplication p : G x G — G, left
translation A, and right translation p

J"(E) the bundle of r-jets of sections of a fiber bundle £ — M

J"(M,N) the bundle of r-jets of smooth functions from M to N 12.2

j"f(x), also jof  the r-jet of a mapping or function f

{:G xS — S usually a left action

M usually a (base) manifold

N natural numbers

Np nonnegative integers

7 J"(M,N) — JY(M,N) projections of jets

R real numbers

r: Px P — P usually a right action, in particular the principal right action
of a principal bundle

TM  the tangent bundle of a manifold M with projection wp; : TM — M
1.7

Z, integers
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1-form, 73

adjoint representation, 46
algebraic bracket, 135

algebraic derivation, 134

almost complex structure, 142
anholonomic, 17

associated bundle, 158

atlas, 3

base space, 143

base, 12, 61

basis manifold, 143

Betti number, 88

Bianchi identity, 144

bundle, 143

Caley-Hamilton equation, 201
canonical flip, 67

Cech cohomology set, 62

center, 55

centralizer, 55

characteristic class, 194

chart, 3

charts with boundary, 85

Chern character, 206

Chern classes, 205

Chern-Weil form, 194

Chern-Weil homomorphism, 194
Christoffel forms, 146

classical complex Lie groups, 39
classifying spaces, 163

closed form, 88

cocurvature, 140

cocycle condition, 62, 143

cocycle of transition functions, 62, 143
cohomological integral, 111
cohomologous, 62, 154
cohomology classes, 62
cohomology group, 92
cohomology of the Lie algebra, 130
compatible, 61

complete connection, 147
complete, 20

conjugation, 45

connection form, Lie algebra valued, 172
connection, 140, 144

connector, 187

contact of order, 209

cotangent bundle, 73

covariant derivative, 187
covariant exterior derivative, 176, 189
curvature form, Lie algebra valued, 173
curvature, 140, 188

curve of local diffeomorphisms, 24

Index,

Index

De Rham cohomology algebra with compact
supports, 99

De Rham cohomology algebra, 88

degree, 119

densities, 81

density or volume of the Riemannian metric,
83

derivation, 6

derivations, graded, 134

diffeomorphic, 4

diffeomorphism, 4

differential form, 74

differential group of order, 211

differential, 9

distinguished chart, 29, 33

distribution, 28, 29

effective action, 55

Ehresmann connection, 148

equivalent, 3, 61

Euler Poincaré characteristic, 89

evolution operator, 35

exact, 80

exponential mapping, 43

exterior derivative, 77

f-dependent, 141

f-related, 21, 141

fiber bundle, 143

fiber chart, 143

fiber, 61

fibered composition of jets, 211

fibered manifold, 12

first non-vanishing derivative, 24

flow line, 19

flow prolongation, 71

foliation, 31

frame field, 17, 64

free, 55

Frolicher-Nijenhuis bracket, 136

fundamental vector field, 57, 58

G-atlas, 154

G-bundle structure, 154

G-bundle, 154

gauge transformations, 166

general linear group, 37

geometric objects, 214

germ of f at =, 6

global, 20

graded derivations, 134

graded differential space, 91

Grassmann manifold, 156

Haar measure, 122

hairy ball theorem, 119

half space, 85
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holonomic frame field, 17 long exact cohomology sequence with compact

holonomic, 17 supports, 111

holonomous , 73 manifold pair, 97, 111

holonomy group, 149, 179 manifold with boundary, 85

holonomy Lie algebra, 149 Maurer-Cartan form, 47

homogeneous space, 56 Maurer-Cartan equation, 146

homomorphism of G-bundles, 161 maximal, 30

homomorphism over ® of principal bundles, natural bilinear concomitants, 142
157 natural bundles, 214

homotopy operator, 90 natural lift, 71

horizontal bundle, 144 natural transformation, 71

horizontal differential forms, 176 natural vector bundle, 68

horizontal foliation, 145 Nijenhuis tensor, 142

horizontal lift, 144 Nijenhuis-Richardson bracket, 135

horizontal projection, 144 normalizer, 55

horizontal space, 140 one parameter subgroup, 42

horizontal vectors, 144 orbit, 55
ideal, 54 orientable double cover, 114

orientable, 84

immersed submanifold, 13 orientations, 84

immersion at, 12 oriented manifold, 84

index, 208 orthogonal group, 37
orthonormal frame bundle, 163
orthonormal frame field, 163
Pfaffian class, 205

plaque, 29, 33

Poincaré polynomial, 89
Pontryagin character, 202
Pontryagin classes, 197
Pontryagin numbers, 199
principal (fiber) bundle, 154
principal bundle atlas, 154
principal connection, 172
principal fiber bundle homomorphism, 157

idealizer, 55

induced connection, 183, 184
induced representation, 165
infinitesimal automorphism, 31
initial submanifold, 14

inner automorphism, 45
insertion operator, 76
integrable, 28, 31

integral curve, 19

integral manifold, 30

integral of the density, 81
invariant of the Lie algebra, 193
invertible, 213

involution, 67

involutive, 28, 33

irreducible *-principle connection, 180

principal right action, 155
product, 10

projection, 61, 143
proper homotopy, 100

jet at, 209 proper smooth mappings, 99
k-form, 74 pullback vector bundle, 65
k-th order frame bundle, 214 pullback, 145

leaf, 31

pure, 3
quaternionic unitary group, 40
quaternionically linear, 40

left action, 55
left invariant differential form, 121, 127

left invariant, 40 quaternionically unitary, 40

left logarithmic derivative, 47 reduction of the structure group, 157
Lie algebra, 18 relative De Rham cohomology with compact
Lie bracket, 18 supports, 111

Lie derivation, 135 relative De Rham cohomology, 97
Lie derivative, 22, 70, 75 representation, 45

Lie group, 36 restricted holonomy group, 149, 179
Lie subgroup, 52 Riemannian metric, 162

linear connection, 186, 187 right action, 55

linear frame bundle of, 162 right invariant, 41

local diffeomorphism, 4 right logarithmic derivative, 46

local vector field, 17 right trivialized derivative, 123
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section, 61

semidirect product, 59
short exact sequence, 92
signature, 118

singular foliation, 31
smooth distribution, 30
smooth functor, 64
smooth partitions of unity, 5
source mapping, 209
source of a jet, 209

spans, 29

special linear group, 37
special orthogonal group, 37
special unitary, 39

sphere, 4

stable, 31

stably equivalent, 199
standard fiber, 61, 143
stereographic atlas, 4
Stiefel manifold, 156
structure, 3

submanifold charts, 9
submanifold, 9
submersion, 12

support of a vector field, 20
support, 5

support, 61

symplectic group, 38
tangent bundle, 8

tangent space of M at x, 7
tangent vector, 6

target mapping, 209
target of a jet, 209

tensor field, 71, 73

time dependent vector field, 35

Todd class, 207
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topological manifold, 3
total Chern class, 205
total Pontryagin class, 197
total space, 12, 61, 143

trace classes of a complex vector bundle, 206

trace coeflicients, 199

transformation formula for multiple integrals,

81
transition functions, 61, 143
transitive action, 55
transversal, 15
truncated composition, 210
typical fiber, 61
unimodular Lie group, 122
unitary, 39
universal vector bundle, 169
vector bundle atlas, 61
vector bundle chart, 61
vector bundle functor, 68
vector bundle homomorphism, 64
vector bundle isomorphism, 64
vector bundle, 61
vector field, 17
vector product, 39
vector subbundle, 28, 64
vector valued differential forms, 134
vertical bundle, 67, 144, 170
vertical lift, 67
vertical projection, 67, 144
vertical space, 140
volume bundle, 81
volume, 83
zero section, 61
zero set, 5
®
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