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�� Di�erentiable Manifolds

���� Manifolds� A topological manifold is a separable metrizable space M
which is locally homeomorphic to Rn � So for any x � M there is some homeo�
morphism u � U � u�U� � Rn � where U is an open neighborhood of x in M and
u�U� is an open subset in Rn � The pair �U� u� is called a chart on M �
From algebraic topology it follows that the number n is locally constant on

M � if n is constant�M is sometimes called a puremanifold� We will only consider
pure manifolds and consequently we will omit the pre�x pure�
A family �U�� u����A of charts on M such that the U� form a cover of M is

called an atlas� The mappings u�� �� u� � u��� � u��U���� u��U��� are called

the chart changings for the atlas �U��� where U�� �� U� � U� �
An atlas �U�� u����A for a manifold M is said to be a Ck�atlas� if all chart

changings u�� � u��U��� � u��U��� are di�erentiable of class C
k� Two Ck�

atlases are called Ck�equivalent� if their union is again a Ck�atlas for M � An
equivalence class of Ck�atlases is called a Ck�structure on M � From di�erential
topology we know that if M has a C��structure� then it also has a C��equivalent
C��structure and even a C��equivalent C��structure� where C� is shorthand
for real analytic� see �Hirsch� �	
��� By a Ck�manifold M we mean a topological
manifold together with a Ck�structure and a chart onM will be a chart belonging
to some atlas of the Ck�structure�
But there are topological manifolds which do not admit di�erentiable struc�

tures� For example� every ��dimensional manifold is smooth o� some point�
but there are such which are not smooth� see �Quinn� �	���� �Freedman� �	����
There are also topological manifolds which admit several inequivalent smooth
structures� The spheres from dimension 
 on have �nitely many� see �Milnor�
�	���� But the most surprising result is that on R� there are uncountably many
pairwise inequivalent �exotic� di�erentiable structures� This follows from the re�
sults of �Donaldson� �	��� and �Freedman� �	���� see �Gompf� �	��� or �Mattes�
Diplomarbeit� Wien� �		�� for an overview�
Note that for a Hausdor� C��manifold in a more general sense the following

properties are equivalent�

��� It is paracompact�
��� It is metrizable�
��� It admits a Riemannian metric�
��� Each connected component is separable�

In this book a manifold will usually mean a C��manifold� and smooth is used
synonymously for C�� it will be Hausdor�� separable� �nite dimensional� to state
it precisely�
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Note �nally that any manifoldM admits a �nite atlas consisting of dimM��
�not connected� charts� This is a consequence of topological dimension theory
�Nagata� �	���� a proof for manifolds may be found in �Greub�Halperin�Vanstone�
Vol� I��

���� Example� Spheres� We consider the space Rn�� � equipped with the
standard inner product hx� yi � Pxiyi� The n�sphere Sn is then the subset
fx � Rn�� � hx� xi � �g� Since f�x� � hx� xi� f � Rn�� � R� satis�es df�x�y �
�hx� yi� it is of rank � o� � and by ���� the sphere Sn is a submanifold of Rn�� �
In order to get some feeling for the sphere we will describe an explicit atlas

for Sn� the stereographic atlas� Choose a � Sn ��south pole��� Let

U� �� Sn n fag� u� � U� � fag�� u��x� �
x�hx�aia
��hx�ai �

U� �� Sn n f�ag� u� � U� � fag�� u��x� �
x�hx�aia
��hx�ai �

From an obvious drawing in the ��plane through �� x� and a it is easily seen that
u� is the usual stereographic projection� We also get

u��� �y� �
jyj���
jyj���a�

�
jyj���y for y � fag� n f�g

and �u� � u��� ��y� �
y
jyj� � The latter equation can directly be seen from the

drawing using �Strahlensatz��

���� Smooth mappings� A mapping f � M � N between manifolds is said
to be Ck if for each x � M and one �equivalently� any� chart �V� v� on N with
f�x� � V there is a chart �U� u� on M with x � U � f�U� � V � and v � f � u�� is
Ck� We will denote by Ck�M�N� the space of all Ck�mappings from M to N �
A Ck�mapping f � M � N is called a Ck�di�eomorphism if f�� � N � M

exists and is also Ck� Two manifolds are called di�eomorphic if there exists a dif�
feomorphism between them� From di�erential topology we know that if there is a
C��di�eomorphism between M and N � then there is also a C��di�eomorphism�
There are manifolds which are homeomorphic but not di�eomorphic� on R�

there are uncountably many pairwise non�di�eomorphic di�erentiable structures�
on every other Rn the di�erentiable structure is unique� There are �nitely many
di�erent di�erentiable structures on the spheres Sn for n � 
�
A mapping f � M � N between manifolds of the same dimension is called

a local di�eomorphism� if each x � M has an open neighborhood U such that
f jU � U � f�U� � N is a di�eomorphism� Note that a local di�eomorphism
need not be surjective�
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���� Smooth functions� The set of smooth real valued functions on a manifold
M will be denoted by C��M�R�� in order to distinguish it clearly from spaces
of sections which will appear later� C��M�R� is a real commutative algebra�
The support of a smooth function f is the closure of the set� where it does

not vanish� supp�f� � fx �M � f�x� �� �g� The zero set of f is the set where f
vanishes� Z�f� � fx �M � f�x� � �g�
���� Theorem� Any manifold admits smooth partitions of unity� Let �U����A
be an open cover of M � Then there is a family ������A of smooth functions
on M � such that supp���� � U�� �supp����� is a locally �nite family� andP

� �� � � �locally this is a �nite sum��

Proof� Any manifold is a �Lindel�of space�� i� e� each open cover admits a count�
able subcover� This can be seen as follows�
Let U be an open cover ofM � Since M is separable there is a countable dense

subset S in M � Choose a metric on M � For each U � U and each x � U there
is an y � S and n � N such that the ball B��n�y� with respect to that metric

with center y and radius �
n
contains x and is contained in U � But there are only

countably many of these balls� for each of them we choose an open set U � U
containing it� This is then a countable subcover of U �
Now let �U����A be the given cover� Let us �x �rst � and x � U�� We choose

a chart �U� u� centered at x �i� e� u�x� � �� and � � � such that �D n � u�U�U���
where D n � fy � Rn � jyj 	 �g is the closed unit ball� Let

h�t� ��

�
e���t for t � ��

� for t 	 ��
a smooth function on R� Then

f��x�z� ��

�
h��� � ju�z�j�� for z � U�

� for z �� U

is a non negative smooth function on M with support in U� which is positive at
x�
We choose such a function f��x for each � and x � U�� The interiors of the

supports of these smooth functions form an open cover of M which re�nes �U���
so by the argument at the beginning of the proof there is a countable subcover
with corresponding functions f�� f�� � � � � Let

Wn � fx �M � fn�x� � � and fi�x� �
�
n
for � 	 i � ng�

and denote by W the closure� We claim that �Wn� is a locally �nite open
cover of M � Let x � M � Then there is a smallest n such that x � Wn� Let
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V �� fy � M � fn�y� �
�
�fn�x�g� If y � V �W k then we have fn�y� �

�
�fn�x�

and fi�y� 	 �
k for i � k� which is possible for �nitely many k only�

Now we de�ne for each n a non negative smooth function gn by gn�x� �
h�fn�x��h�

�
n � f��x�� � � � h�

�
n � fn���x��� Then obviously supp�gn� � Wn� So

g ��
P

n gn is smooth� since it is locally only a �nite sum� and everywhere
positive� thus �gn�g�n�N is a smooth partition of unity on M � Since supp�gn� �
Wn is contained in some U��n� we may put �� �

P
fn���n���g

gn
g to get the

required partition of unity which is subordinated to �U��� �

���� Germs� Let M be a manifold and x � M � We consider all smooth
functions f � Uf � R� where Uf is some open neighborhood of x in M � and we
put f 


x
g if there is some open neighborhood V of x with f jV � gjV � This is an

equivalence relation on the set of functions we consider� The equivalence class
of a function f is called the germ of f at x� sometimes denoted by germx f � We
may add and multiply germs� so we get the real commutative algebra of germs
of smooth functions at x� sometimes denoted by C�x �M�R�� This construction
works also for other types of functions like real analytic or holomorphic ones� if
M has a real analytic or complex structure�
Using smooth partitions of unity ����� it is easily seen that each germ of a

smooth function has a representative which is de�ned on the whole of M � For
germs of real analytic or holomorphic functions this is not true� So C�x �M�R�
is the quotient of the algebra C��M�R� by the ideal of all smooth functions
f �M � R which vanish on some neighborhood �depending on f� of x�

��	� The tangent space of Rn � Let a � Rn � A tangent vector with foot
point a is simply a pair �a�X� with X � Rn � also denoted by Xa� It induces
a derivation Xa � C

��Rn �R� � R by Xa�f� � df�a��Xa�� The value depends
only on the germ of f at a and we have Xa�f � g� � Xa�f� � g�a� � f�a� �Xa�g�
�the derivation property��
If conversely D � C��Rn �R� � R is linear and satis�es D�f � g� � D�f� �

g�a�� f�a� �D�g� �a derivation at a�� then D is given by the action of a tangent
vector with foot point a� This can be seen as follows� For f � C��Rn �R� we
have

f�x� � f�a� �

Z �

�

d
dtf�a� t�x� a��dt

� f�a� �
nX
i��

Z �

�

�f
�xi �a� t�x� a��dt �xi � ai�

� f�a� �
nX
i��

hi�x��x
i � ai��
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D��� � D�� � �� � �D���� so D�constant� � �� Thus

D�f� � D�f�a� �
nX
i��

hi�x
i � ai��

� � �
nX
i��

D�hi��a
i � ai� �

nX
i��

hi�a��D�x
i�� ��

�
nX
i��

�f
�xi
�a�D�xi��

where xi is the i�th coordinate function on Rn � So we have

D�f� �
nX
i��

D�xi� �
�xi ja�f�� D �

nX
i��

D�xi� �
�xi ja�

Thus D is induced by the tangent vector �a�
Pn

i��D�x
i�ei�� where �ei� is the

standard basis of Rn �

��
� The tangent space of a manifold� Let M be a manifold and let x �
M and dimM � n� Let TxM be the vector space of all derivations at x of
C�x �M�R�� the algebra of germs of smooth functions on M at x� �Using ��� it
may easily be seen that a derivation of C��M�R� at x factors to a derivation of
C�x �M�R���
So TxM consists of all linear mappingsXx � C

��M�R� � R with the property
Xx�f � g� � Xx�f� � g�x� � f�x� � Xx�g�� The space TxM is called the tangent
space of M at x�
If �U� u� is a chart on M with x � U � then u� � f �� f � u induces an iso�

morphism of algebras C�u�x��R
n �R� 
� C�x �M�R�� and thus also an isomorphism

Txu � TxM � Tu�x�Rn � given by �Txu�Xx��f� � Xx�f � u�� So TxM is an
n�dimensional vector space�
We will use the following notation� u � �u�� � � � � un�� so ui denotes the i�th

coordinate function on U � and

�
�ui jx �� �Txu���� �

�xi ju�x�� � �Txu����u�x�� ei��

So �
�ui jx � TxM is the derivation given by

�
�ui jx�f� �

��f � u���
�xi

�u�x���
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From ��
 we have now

Txu�Xx �
nX
i��

�Txu�Xx��x
i� �
�xi
ju�x� �

nX
i��

Xx�x
i � u� �

�xi
ju�x�

�
nX
i��

Xx�u
i� �
�xi ju�x��

Xx � �Txu�
���Txu�Xx �

nX
i��

Xx�u
i� �
�ui jx�

���� The tangent bundle� For a manifold M of dimension n we put TM ��F
x�M TxM � the disjoint union of all tangent spaces� This is a family of vec�

tor spaces parameterized by M � with projection 	M � TM � M given by
	M �TxM� � x�

For any chart �U�� u�� of M consider the chart �	��M �U��� Tu�� on TM �

where Tu� � 	��M �U�� � u��U�� 
 Rn is given by the formula Tu��X �
�u��	M �X��� T�M�X�u��X�� Then the chart changings look as follows�

Tu� � �Tu���� �Tu��	��M �U���� � u��U���
 Rn �
� u��U���
 Rn � Tu��	

��
M �U�����

��Tu� � �Tu������y� Y ���f� � ��Tu�����y� Y ���f � u��
� �y� Y ��f � u� � u��� � � d�f � u� � u��� ��y��Y
� df�u� � u��� �y���d�u� � u��� ��y��Y
� �u� � u��� �y�� d�u� � u��� ��y��Y ��f��

So the chart changings are smooth� We choose the topology on TM in such
a way that all Tu� become homeomorphisms� This is a Hausdor� topology�
since X� Y � TM may be separated in M if 	�X� �� 	�Y �� and in one chart if
	�X� � 	�Y �� So TM is again a smooth manifold in a canonical way� the triple
�TM� 	M �M� is called the tangent bundle of M �

����� Kinematic de
nition of the tangent space� Let C�� �R�M� denote
the space of germs at � of smooth curves R � M � We put the following
equivalence relation on C�� �R�M�� the germ of c is equivalent to the germ
of e if and only if c��� � e��� and in one �equivalently each� chart �U� u� with
c��� � e��� � U we have d

dt j��u � c��t� � d
dt j��u � e��t�� The equivalence classes
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are also called velocity vectors of curves in M � We have the following mappings

C�� �R�M�� 


u
�

C�� �R�M�u

u
ev�

TM
A
A
A
A
AAC




w	M
M�

where ��c��germc��� f� �
d
dt j�f�c�t�� and 
 � TM � C�� �R�M� is given by�


��Tu����y� Y �� is the germ at � of t �� u���y � tY �� So TM is canonically
identi�ed with the set of all possible velocity vectors of curves in M �

����� Tangent mappings� Let f � M � N be a smooth mapping between
manifolds� Then f induces a linear mapping Txf � TxM � Tf�x�N for each
x � M by �Txf�Xx��h� � Xx�h � f� for h � C�f�x��N�R�� This mapping is well
de�ned and linear since f� � C�f�x��N�R� � C�x �M�R�� given by h �� h � f � is
linear and an algebra homomorphism� and Txf is its adjoint� restricted to the
subspace of derivations�
If �U� u� is a chart around x and �V� v� is one around f�x�� then

�Txf�
�
�ui jx��vj� � �

�ui jx�vj � f� � �
�xi �v

j � f � u����u�x���
Txf�

�
�ui jx �

P
j�Txf�

�
�ui jx��vj� �

�vj jf�x� by ��	

�
P

j
��vj�f�u���

�xi �u�x�� �
�vj jf�x��

So the matrix of Txf � TxM � Tf�x�N in the bases � �
�ui jx� and � �

�vj jf�x�� is just
the Jacobi matrix d�v � f � u����u�x�� of the mapping v � f � u�� at u�x�� so
Tf�x�v � Txf � �Txu��� � d�v � f � u����u�x���
Let us denote by Tf � TM � TN the total mapping� given by Tf jTxM ��

Txf � Then the composition Tv �Tf � �Tu��� � u�U�
Rm � v�V �
Rn is given
by �y� Y � �� ��v � f � u����y�� d�v � f � u����y�Y �� and thus Tf � TM � TN is
again smooth�
If f �M � N and g � N � P are smooth mappings� then we have T �g � f� �

Tg � Tf � This is a direct consequence of �g � f�� � f� � g�� and it is the global
version of the chain rule� Furthermore we have T �IdM � � IdTM �
If f � C��M�R�� then Tf � TM � TR � R 
 R� We then de�ne the

di�erential of f by df �� pr� � Tf � TM � R� Let t denote the identity function
on R� then �Tf�Xx��t� � Xx�t � f� � Xx�f�� so we have df�Xx� � Xx�f��

����� Submanifolds� A subset N of a manifoldM is called a submanifold� if for
each x � N there is a chart �U� u� of M such that u�U �N� � u�U� � �Rk 
 ���
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where Rk 
 � �� Rk 
 Rn�k � Rn � Then clearly N is itself a manifold with
�U �N� ujU �N� as charts� where �U� u� runs through all submanifold charts as
above�
If f � Rn � Rq is smooth and the rank of f �more exactly� the rank of its

derivative� is q at each point y of f������ say� then f����� is a submanifold of Rn

of dimension n� q �or empty�� This is an immediate consequence of the implicit
function theorem� as follows� Permute the coordinates �x�� � � � � xn� on Rn such
that the Jacobi matrix

df�y� �

�� �f�

�x� �y� � � � �f�

�xq �y�
� � � � � � � � �

�fq

�x� �y� � � � �fq

�xq �y�

������
�f�

�xq�� �y� � � � �f�

�xn �y�
� � � � � � � � �

�fq

�xq�� �y� � � � �fq

�xn �y�

�A
has the left part invertible� Then �f� prn�q� � R

n � Rq 
 Rn�q has invert�
ible di�erential at y� so u �� f�� exists in locally near y and we have f �
u���z�� � � � � zn� � �z�� � � � � zq�� so u�f������ � u�U� � ��
 Rn�q � as required�
The following theorem needs three applications of the implicit function the�

orem for its proof� which is sketched in execise ���� below� or can be found in
�Dieudonn�e� I� ��������

Constant rank theorem� Let f �W � Rq be a smooth mapping� where W is
an open subset of Rn � If the derivative df�x� has constant rank k for each x �W �
then for each a �W there are charts �U� u� of W centered at a and �V� v� of Rq

centered at f�a� such that v � f � u�� � u�U�� v�V � has the following form�

�x�� � � � � xn� �� �x�� � � � � xk� �� � � � � ���

So f���b� is a submanifold of W of dimension n� k for each b � f�W ��

����� Products� Let M and N be smooth manifolds described by smooth
atlases �U�� u����A and �V�� v����B� respectively� Then the family �U�
V� � u�

v� � U� 
 V� � Rm 
 Rn �������A�B is a smooth atlas for the cartesian product
M 
N � Clearly the projections

M
pr����M 
N

pr���� N

are also smooth� The product �M 
 N� pr�� pr�� has the following universal
property�
For any smooth manifold P and smooth mappings f � P �M and g � P � N

the mapping �f� g� � P �M 
N � �f� g��x� � �f�x�� g�x��� is the unique smooth
mapping with pr� � �f� g� � f � pr� � �f� g� � g�
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From the construction of the tangent bundle in ��	 it is immediately clear
that

TM
T �pr������� T �M 
N�

T �pr������� TN

is again a product� so that T �M 
N� � TM 
 TN in a canonical way�
Clearly we can form products of �nitely many manifolds�

����� Theorem� Let M be a connected manifold and suppose that f �M �M
is smooth with f � f � f � Then the image f�M� of f is a submanifold of M �

This result can also be expressed as� �smooth retracts� of manifolds are man�
ifolds� If we do not suppose that M is connected� then f�M� will not be a
pure manifold in general� it will have di�erent dimension in di�erent connected
components�

Proof� We claim that there is an open neighborhood U of f�M� in M such that
the rank of Tyf is constant for y � U � Then by theorem ���� the result follows�
For x � f�M� we have Txf � Txf � Txf � thus imTxf � ker�Id � Txf�

and rankTxf � rank�Id � Txf� � dimM � Since rankTxf and rank�Id � Txf�
cannot fall locally� rankTxf is locally constant for x � f�M�� and since f�M� is
connected� rankTxf � r for all x � f�M��
But then for each x � f�M� there is an open neighborhood Ux in M with

rankTyf � r for all y � Ux� On the other hand rankTyf � rankTy�f � f� �
rankTf�y�f � Tyf 	 rankTf�y�f � r� So the neighborhood we need is given by
U �

S
x�f�M� Ux� �

����� Corollary� 	� The �separable� connected smooth manifolds are exactly
the smooth retracts of connected open subsets of Rn 
s�

�� f � M � N is an embedding of a submanifold if and only if there is an
open neighborhood U of f�M� in N and a smooth mapping r � U � M with
r � f � IdM �

Proof� Any manifold M may be embedded into some Rn � see ���� below� Then
there exists a tubular neighborhood of M in Rn �see later or �Hirsch� �	
��
pp� ��	������� and M is clearly a retract of such a tubular neighborhood� The
converse follows from �����
For the second assertion repeat the argument for N instead of Rn � �

����� Embeddings into Rn �s� Let M be a smooth manifold of dimension m�
Then M can be embedded into Rn � if

��� n � �m� � �see �Hirsch� �	
�� p ��� or �Br�ocker�J�anich� �	
�� p 
����
��� n � �m �see �Whitney� �	�����
��� Conjecture �still unproved�� The minimal n is n � �m���m���� where

��m� is the number of ��s in the dyadic expansion of m�
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There exists an immersion �see section �� M � Rn � if

��� n � �m �see �Hirsch� �	
����
��� n � �m� ��m� �see �Cohen� �	�����

Examples and Exercises

���	� Discuss the following submanifolds of Rn � in particular make drawings of
them�

The unit sphere Sn�� � fx � Rn �� x� x �� �g � Rn �
The ellipsoid fx � Rn � f�x� �� Pn

i��
x�i
a�i
� �g� ai �� � with principal axis

a�� � � � � an�

The hyperboloid fx � Rn � f�x� �� Pn
i�� �i

x�i
a�i
� �g� �i � ��� ai �� � with

principal axis ai and index �
P

�i�

The saddle fx � R	 � x	 � x�x�g�
The torus� the rotation surface generated by rotation of �y � R�� � z� � r��

� � r � R with center the z�axis� i�e� f�x� y� z� � �
p
x� � y� � R�� � z� � r�g�

���
� A compact surface of genus g� Let f�x� �� x�x� ����x� ��� � � � �x�
�g � �����x � g�� For small r � � the set f�x� y� z� � �y� � f�x��� � z� � r�g
describes a surface of genus g �topologically a sphere with g handles� in R	 �
Prove this�

����� The Moebius strip�

It is not the set of zeros of a regular function on an open neighborhood of Rn �
Why not� But it may be represented by the following parametrization�
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	 ��

f�r� �� ��

�� cos��R� r cos������
sin��R� r cos������

r sin�����

�A � �r� �� � ���� ��
 ��� �	��

where R is quite big�

����� Describe an atlas for the real projective plane which consists of three
charts �homogeneous coordinates� and compute the chart changings�
Then describe an atlas for the n�dimensional real projective space Pn�R� and

compute the chart changes�

����� Proof of the constant rank theorem ����� Let U � Rn be an open
subset� and let f � U � Rm be a C��mapping� If the Jacobi matrix df has
constant rank k on U � we have�
For each a � U there exists an open neighborhood Ua of a in U � a di�eomor�
phism � � Ua � ��Ua� onto an open subset of Rn with ��a� � �� an open subset
Vf�a� of f�a� in Rm � and a di�eomorphism � � Vf�a� � ��Vf�a�� onto an open

subset of Rm with ��f�a�� � �� such that � � f � ��� � ��Ua� � ��Vf�a�� has
the following form� �x�� � � � � xn� �� �x�� � � � � xk� �� � � � � ���
�Hints� Use the inverse function theorem � times� �� step� df�a� has rank
k 	 n�m� without loss we may assume that the upper left k 
 k subma�
trix of df�a� is invertible� Moreover� let a � � and f�a� � �� Choose a
suitable neighborhood U of � and consider � � U � Rn � ��x�� � � � � xn� ��
�f��x��� � � � � fk�xk�� xk��� � � � � xn�� Then � is a di�eomorphism locally near ��
Consider g � f � ���� What can you tell about g� Why is g�z�� � � � � zn� �
�z�� � � � � zk� gk���z�� � � � � gn�z��� What is the form of dg�z�� Deduce further
properties of g from the rank of dg�z�� Put

�

�B� y�
���
ym

�CA ��
�BBBBBBB�

y�
���
yk

yk�� � gk���y�� � � � � yk� �� � � � � ��
���

yn � gn�y�� � � � � yk� �� � � � � ��

�CCCCCCCA
Then � is locally a di�eomorphism and � � f � ��� has the desired form��
Prove also the following Corollary� Let U � Rn be open and let f � U � Rm

be C� with df of constant rank k� Then for each b � f�U� the set f���b� � Rn
is a submanifold of Rn �
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����� Let f � L�Rn �Rn �� L�Rn �Rn� be given by f�A� �� AtA� Where is f of
constant rank� What is f���Id��

����� Let f � L�Rn �Rm�� L�Rn �Rn �� n � m be given by f�A� �� AtA� Where
is f of constant rank� What is f���IdRn��

����� Let S be a symmetric a symmetric matrix� i�e�� S�x� y� �� xtSy is a
symmetric bilinear form on Rn � Let f � L�Rn �Rn� � L�Rn �Rn� be given by
f�A� �� AtSA� Where is f of constant rank� What is f���S��

����� Describe TS� � R
 �

Draft from November ��� ���� Peter W� Michor� ��
�



��

�� Submersions and Immersions

���� De
nition� A mapping f � M � N between manifolds is called a sub�
mersion at x �M � if the rank of Txf � TxM � Tf�x�N equals dimN � Since the
rank cannot fall locally �the determinant of a submatrix of the Jacobi matrix is
not ��� f is then a submersion in a whole neighborhood of x� The mapping f is
said to be a submersion� if it is a submersion at each x �M �

���� Lemma� If f � M � N is a submersion at x � M � then for any chart
�V� v� centered at f�x� on N there is chart �U� u� centered at x on M such that
v � f � u�� looks as follows�

�y�� � � � � yn� yn��� � � � � ym� �� �y�� � � � � yn�

Proof� Use the inverse function theorem� �

���� Corollary� Any submersion f � M � N is open� for each open U � M
the set f�U� is open in N � �

���� De
nition� A triple �M� p�N�� where p �M � N is a surjective submer�
sion� is called a �bered manifold� M is called the total space� N is called the
base�

A �bered manifold admits local sections� For each x � M there is an open
neighborhood U of p�x� in N and a smooth mapping s � U �M with p�s � IdU
and s�p�x�� � x�

The existence of local sections in turn implies the following universal property�

M

u
p

�
�
���

N w
f

P

If �M� p�N� is a �bered manifold and f � N � P is a mapping into some further

manifold� such that f � p �M � P is smooth� then f is smooth�

���� De
nition� A smooth mapping f � M � N is called an immersion at
x � M if the rank of Txf � TxM � Tf�x�N equals dimM � Since the rank is
maximal at x and cannot fall locally� f is an immersion on a whole neighborhood
of x� f is called an immersion if it is so at every x �M �
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���� Lemma� If f �M � N is an immersion� then for any chart �U� u� centered
at x �M there is a chart �V� v� centered at f�x� on N such that v � f � u�� has
the form�

�y�� � � � � ym� �� �y�� � � � � ym� �� � � � � ��

Proof� Use the inverse function theorem� �

��	� Corollary� If f � M � N is an immersion� then for any x � M there is
an open neighborhood U of x � M such that f�U� is a submanifold of N and
f � U � U � f�U� is a di�eomorphism� �

��
� De
nition� If i � M � N is an injective immersion� then �M� i� is called
an immersed submanifold of N �
A submanifold is an immersed submanifold� but the converse is wrong in

general� The structure of an immersed submanifold �M� i� is in general not
determined by the subset i�M� � N � All this is illustrated by the following
example� Consider the curve 
�t� � �sin	 t� sin t� cos t� in R� � Then ���	� 	�� 
 �
��	� 	�� and ���� �	�� 
 � ��� �	�� are two di�erent immersed submanifolds� but
the image of the embedding is in both cases just the �gure eight�

���� Let M be a submanifold of N � Then the embedding i � M � N is an
injective immersion with the following property�

��� For any manifold Z a mapping f � Z � M is smooth if and only if

i � f � Z � N is smooth�

The example in ��� shows that there are injective immersions without property
����

����� We want to determine all injective immersions i �M � N with property
��	��� To require that i is a homeomorphism onto its image is too strong as ����
and ���� below show� To look for all smooth mappings i �M � N with property
��	�� �initial mappings in categorical terms� is too di cult as remark ���� below
shows�

����� Lemma� If an injective immersion i �M � N is a homeomorphism onto
its image� then i�M� is a submanifold of N �

Proof� Use ��
� �

����� Example� We consider the ��dimensional torus T� � R��Z�� Then the
quotient mapping 	 � R� � T� is a covering map� so locally a di�eomorphism�
Let us also consider the mapping f � R � R� � f�t� � �t� ��t�� where � is
irrational� Then 	 � f � R � T� is an injective immersion with dense image� and
it is obviously not a homeomorphism onto its image� But 	 � f has property
��	��� which follows from the fact that 	 is a covering map�

Draft from November ��� ���� Peter W� Michor� 
��





� Submersions and Immersions� 
��� ��

����� Remark� If f � R � R is a function such that fp and fq are smooth for
some p� q which are relatively prime in N � then f itself turns out to be smooth�
see �Joris� �	���� So the mapping i � t �� �

tp

tq

�
� R � R� � has property ��	��� but i

is not an immersion at ��

����� De
nition� For an arbitrary subset A of a manifold N and x� � A let
Cx��A� denote the set of all x � A which can be joined to x� by a smooth curve
in M lying in A�
A subset M in a manifold N is called initial submanifold of dimension m� if

the following property is true�

��� For each x �M there exists a chart �U� u� centered at x on N such that

u�Cx�U �M�� � u�U� � �Rm 
 ���
The following three lemmas explain the name initial submanifold�

����� Lemma� Let f � M � N be an injective immersion between manifolds
with property ��
�	� Then f�M� is an initial submanifold of N �

Proof� Let x � M � By ��� we may choose a chart �V� v� centered at f�x� on N
and another chart �W�w� centered at x onM such that �v�f�w����y�� � � � � ym� �
�y�� � � � � ym� �� � � � � ��� Let r � � be so small that fy � Rm � jyj � rg � w�W �
and fz � Rn � jzj � �rg � v�V �� Put

U � � v���fz � Rn � jzj � rg� � N�

W� � � w���fy � Rm � jyj � rg� �M�

We claim that �U� u � v � U� satis�es the condition of �������

u���u�U� � �Rm 
 ��� � u���f�y�� � � � � ym� � � � � � �� � jyj � rg� �
� f � w�� � �u � f �w������f�y�� � � � � ym� � � � � � �� � jyj � rg� �
� f � w���fy � Rm � jyj � rg� � f�W�� � Cf�x��U � f�M���

since f�W�� � U � f�M� and f�W�� is C
��contractible�

Now let conversely z � Cf�x��U �f�M��� Then by de�nition there is a smooth
curve c � ��� �� � N with c��� � f�x�� c��� � z� and c���� ��� � U � f�M�� By
property ��	�� the unique curve !c � ��� ���M with f � !c � c� is smooth�
We claim that !c���� ��� � W�� If not then there is some t � ��� �� with !c�t� �

w���fy � Rm � r 	 jyj � �rg� since !c is smooth and thus continuous� But then
we have

�v � f��!c�t�� � �v � f � w����fy � Rm � r 	 jyj � �rg� �
� f�y� �� � Rm 
 � � r 	 jyj � �rg � fz � Rn � r 	 jzj � �rg�
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This means �v � f � !c��t� � �v � c��t� � fz � Rn � r 	 jzj � �rg� so c�t� �� U � a
contradiction�
So !c���� ��� �W�� thus !c��� � f���z� �W� and z � f�W��� Consequently we

have Cf�x��U � f�M�� � f�W�� and �nally f�W�� � u���u�U� � �Rm 
 ��� by
the �rst part of the proof� �

����� Lemma� Let M be an initial submanifold of a manifold N � Then there
is a unique C��manifold structure on M such that the injection i � M � N is
an injective immersion with property ��
�����

��� For any manifold Z a mapping f � Z � M is smooth if and only if
i � f � Z � N is smooth�

The connected components of M are separable �but there may be uncountably
many of them��

Proof� We use the sets Cx�Ux �M� as charts for M � where x �M and �Ux� ux�
is a chart for N centered at x with the property required in ������� Then the
chart changings are smooth since they are just restrictions of the chart changings
on N � But the sets Cx�Ux �M� are not open in the induced topology on M
in general� So the identi�cation topology with respect to the charts �Cx�Ux �
M�� ux�x�M yields a topology on M which is �ner than the induced topology� so
it is Hausdor�� Clearly i � M � N is then an injective immersion� Uniqueness
of the smooth structure follows from the universal property ��� which we prove
now� For z � Z we choose a chart �U� u� on N � centered at f�z�� such that
u�Cf�z��U �M�� � u�U� � �Rm 
 ��� Then f���U� is open in Z and contains a
chart �V� v� centered at z on Z with v�V � a ball� Then f�V � is C��contractible
in U �M � so f�V � � Cf�z��U �M�� and �u � Cf�z��U �M���f �v�� � u�f �v��
is smooth�
Finally note that N admits a Riemannian metric �see ��� which can be

induced on M � so each connected component of M is separable� �

���
� Transversal mappings� Let M�� M�� and N be manifolds and let
fi � Mi � N be smooth mappings for i � �� �� We say that f� and f� are
transversal at y � N � if

imTx�f� � imTx�f� � TyN whenever f��x�� � f��x�� � y�

Note that they are transversal at any y which is not in f��M�� or not in f��M���
The mappings f� and f� are simply said to be transversal� if they are transversal
at every y � N �
If P is an initial submanifold of N with embedding i � P � N � then f �M �

N is said to be transversal to P � if i and f are transversal�
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Lemma� In this case f���P � is an initial submanifold of M with the same
codimension in M as P has in N � or the empty set� If P is a submanifold� then
also f���P � is a submanifold�

Proof� Let x � f���P � and let �U� u� be an initial submanifold chart for P
centered at f�x� on N � i�e� u�Cf�x��U � P �� � u�U� � �Rp 
 ��� Then the
mapping

M � f���U�
f�� U

u�� u�U� � Rp 
 Rn�p pr���� Rn�p

is a submersion at x since f is transversal to P � So by lemma ��� there is a chart
�V� v� on M centered at x such that we have

�pr� � u � f � v����y�� � � � � yn�p� � � � � ym� � �y�� � � � � yn�p��
But then z � Cx�f

���P � � V � if and only if v�z� � v�V � � �� 
 Rm�n�p�� so
v�Cx�f

���P � � V �� � v�V � � ��
 Rm�n�p�� �

����� Corollary� If f� �M� � N and f� �M� � N are smooth and transversal�
then the topological pullback

M� 

�f��N�f��

M� �M� 
N M� �� f�x�� x�� �M� 
M� � f��x�� � f��x��g

is a submanifold of M� 
M�� and it has the following universal property�
For any smooth mappings g� � P �M� and g� � P �M� with f� �g� � f� �g�

there is a unique smooth mapping �g�� g�� � P �M�
NM� with pr���g�� g�� � g�
and pr� � �g�� g�� � g��

P

g�

�
�
���
�g��g��

g�

u
M� 
N M�

u
pr�

wpr�
M�

u
f�

wM� w
f�

N�

This is also called the pullback property in the categoryMf of smooth man�
ifolds and smooth mappings� So one may say� that transversal pullbacks exist in
the categoryMf � But there also exist pullbacks which are not transversal�

Proof� M� 
N M� � �f� 
 f��
���"�� where f� 
 f� � M� 
M� � N 
 N and

where " is the diagonal of N 
N � and f� 
 f� is transversal to " if and only if
f� and f� are transversal� �
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�� Vector Fields and Flows

���� De
nition� A vector �eld X on a manifold M is a smooth section of
the tangent bundle� so X � M � TM is smooth and 	M � X � IdM � A local
vector �eld is a smooth section� which is de�ned on an open subset only� We
denote the set of all vector �elds by X�M�� With point wise addition and scalar
multiplication X�M� becomes a vector space�

Example� Let �U� u� be a chart onM � Then the �
�ui
� U � TM � U � x �� �

�ui
jx�

described in ���� are local vector �elds de�ned on U �

Lemma� If X is a vector �eld on M and �U� u� is a chart on M and x � U � then
we have X�x� �

Pm
i��X�x��u

i� �
�ui jx� We write X � U �

Pm
i��X�u

i� �
�ui � �

���� The vector �elds � �
�ui
�mi�� on U � where �U� u� is a chart on M � form a

holonomic frame �eld� By a frame �eld on some open set V � M we mean
m � dimM vector �elds si � X�U� such that s��x�� � � � � sm�x� is a linear basis
of TxM for each x � V � A frame �eld is said to be holonomic� if si �

�
�vi for

some chart �V� v�� If no such chart may be found locally� the frame �eld is called
anholonomic�

With the help of partitions of unity and holonomic frame �elds one may
construct �many� vector �elds on M � In particular the values of a vector �eld
can be arbitrarily preassigned on a discrete set fxig �M �

���� Lemma� The space X�M� of vector �elds on M coincides canonically with
the space of all derivations of the algebra C��M�R� of smooth functions� i�e�
those R�linear operators D � C��M�R� � C��M�R� with D�fg� � D�f�g �
fD�g��

Proof� Clearly each vector �eld X � X�M� de�nes a derivation �again called
X� later sometimes called LX� of the algebra C��M�R� by the prescription
X�f��x� �� X�x��f� � df�X�x���

If conversely a derivation D of C��M�R� is given� for any x �M we consider
Dx � C

��M�R� � R� Dx�f� � D�f��x�� Then Dx is a derivation at x of
C��M�R� in the sense of ��
� so Dx � Xx for some Xx � TxM � In this
way we get a section X � M � TM � If �U� u� is a chart on M � we have
Dx �

Pm
i��X�x��u

i� �
�ui jx by ��
� Choose V open in M � V � V � U � and

� � C��M�R� such that supp��� � U and � � V � �� Then � � ui � C��M�R�
and ��ui� � V � ui � V � So D��ui��x� � X�x���ui� � X�x��ui� and X � V �Pm

i��D��u
i� � V � �

�ui
� V is smooth� �

Draft from November ��� ���� Peter W� Michor� ���



�� Vector Fields and Flows� ��� ��

���� The Lie bracket� By lemma ��� we can identify X�M� with the vector
space of all derivations of the algebra C��M�R�� which we will do without any
notational change in the following�
IfX� Y are two vector �elds onM � then the mapping f �� X�Y �f���Y �X�f��

is again a derivation of C��M�R�� as a simple computation shows� Thus there is
a unique vector �eld �X�Y � � X�M� such that �X�Y ��f� � X�Y �f��� Y �X�f��
holds for all f � C��M�R��
In a local chart �U� u� on M one immediately veri�es that for X � U �P
Xi �

�ui
and Y � U �

P
Y i �

�ui
we havehX

i

Xi �
�ui �

X
j

Y j �
�uj

i
�
X
i�j

�
Xi� �

�uiY
j�� Y i� �

�uiX
j�
�

�
�uj �

since second partial derivatives commute� The R�bilinear mapping

� � � � X�M�
 X�M�� X�M�

is called the Lie bracket� Note also that X�M� is a module over the algebra
C��M�R� by point wise multiplication �f�X� �� fX�

Theorem� The Lie bracket � � � � X�M�
 X�M�� X�M� has the following
properties�

�X�Y � � ��Y�X��
�X� �Y� Z�� � ��X�Y �� Z� � �Y� �X�Z��� the Jacobi identity�

�fX� Y � � f �X�Y �� �Y f�X�
�X� fY � � f �X�Y � � �Xf�Y�

The form of the Jacobi identity we have chosen says that ad�X� � �X� � is
a derivation for the Lie algebra �X�M�� � � ���
The pair �X�M�� � � �� is the prototype of a Lie algebra� The concept of a

Lie algebra is one of the most important notions of modern mathematics�

Proof� All these properties are checked easily for the commutator �X�Y � � X �
Y � Y �X in the space of derivations of the algebra C��M�R�� �

���� Integral curves� Let c � J � M be a smooth curve in a manifold M
de�ned on an interval J � We will use the following notations� c��t� � #c�t� �
d
dt c�t� �� Ttc��� Clearly c

� � J � TM is smooth� We call c� a vector �eld along
c since we have 	M � c� � c�

TM

u
	M

J wc

h
h
hhj#c

M
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A smooth curve c � J � M will be called an integral curve or �ow line of a
vector �eld X � X�M� if c��t� � X�c�t�� holds for all t � J �

���� Lemma� Let X be a vector �eld on M � Then for any x � M there is an
open interval Jx containing � and an integral curve cx � Jx � M for X �i�e�
c�x � X � cx� with cx��� � x� If Jx is maximal� then cx is unique�

Proof� In a chart �U� u� on M with x � U the equation c��t� � X�c�t�� is
an ordinary di�erential equation with initial condition c��� � x� Since X is
smooth there is a unique local solution by the theorem of Picard�Lindel�of� which
even depends smoothly on the initial values� �Dieudonn�e I� �	�	� ���
���� So on
M there are always local integral curves� If Jx � �a� b� and limt�b� cx�t� ��
cx�b� exists in M � there is a unique local solution c� de�ned in an open interval
containing b with c��b� � cx�b�� By uniqueness of the solution on the intersection
of the two intervals� c� prolongs cx to a larger interval� This may be repeated
�also on the left hand side of Jx� as long as the limit exists� So if we suppose Jx
to be maximal� Jx either equals R or the integral curve leaves the manifold in
�nite �parameter�� time in the past or future or both� �

��	� The �ow of a vector 
eld� Let X � X�M� be a vector �eld� Let us

write FlXt �x� � Fl
X�t� x� �� cx�t�� where cx � Jx � M is the maximally de�ned

integral curve of X with cx��� � x� constructed in lemma ����

Theorem� For each vector �eld X on M � the mapping FlX � D�X� � M is
smooth� where D�X� � Sx�M Jx 
 fxg is an open neighborhood of � 
M in
R 
M � We have

FlX�t� s� x� � FlX�t�FlX�s� x��

in the following sense� If the right hand side exists� then the left hand side exists
and we have equality� If both t� s � � or both are 	 �� and if the left hand side
exists� then also the right hand side exists and we have equality�

Proof� As mentioned in the proof of ���� FlX�t� x� is smooth in �t� x� for small t�
and if it is de�ned for �t� x�� then it is also de�ned for �s� y� nearby� These are
local properties which follow from the theory of ordinary di�erential equations�
Now let us treat the equation FlX�t � s� x� � FlX�t�FlX�s� x��� If the right

hand side exists� then we consider the equation�
d
dt Fl

X�t� s� x� � d
du Fl

X�u� x�ju�t�s � X�FlX�t� s� x���

FlX�t� s� x�jt�� � FlX�s� x��

But the unique solution of this is FlX�t�FlX�s� x��� So the left hand side exists
and equals the right hand side�
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If the left hand side exists� let us suppose that t� s � �� We put

cx�u� �

�
FlX�u� x� if u 	 s

FlX�u� s�FlX�s� x�� if u � s�

d
du
cx�u� �

�
d
du Fl

X�u� x� � X�FlX�u� x�� for u 	 s

d
du Fl

X�u� s�FlX�s� x�� � X�FlX�u� s�FlX�s� x���

�
�

� X�cx�u�� for � 	 u 	 t� s�

Also cx��� � x and on the overlap both de�nitions coincide by the �rst part of

the proof� thus we conclude that cx�u� � Fl
X�u� x� for � 	 u 	 t � s and we

have FlX�t�FlX�s� x�� � cx�t� s� � FlX�t� s� x��

Now we show that D�X� is open and FlX is smooth on D�X�� We know
already that D�X� is a neighborhood of �
M in R
M and that FlX is smooth
near �
M �
For x �M let J �x be the set of all t � R such that FlX is de�ned and smooth

on an open neighborhood of ��� t� 
 fxg �respectively on �t� �� 
 fxg for t � ��
in R 
M � We claim that J �x � Jx� which �nishes the proof� It su ces to show
that J �x is not empty� open and closed in Jx� It is open by construction� and
not empty� since � � J �x� If J

�
x is not closed in Jx� let t� � Jx � �J �x n J �x� and

suppose that t� � �� say� By the local existence and smoothness Fl
X exists and is

smooth near ���� ��
fy �� FlX�t�� x�g for some � � �� and by construction FlX
exists and is smooth near ��� t�� ��
 fxg� Since FlX���� y� � FlX�t� � �� x� we

conclude for t near ��� t�� ��� x� near x� and t� near ���� ��� that FlX�t� t�� x�� �
FlX�t��FlX�t� x��� exists and is smooth� So t� � J �x� a contradiction� �

��
� Let X � X�M� be a vector �eld� Its $ow FlX is called global or complete�
if its domain of de�nition D�X� equals R 
M � Then the vector �eld X itself

will be called a �complete vector �eld�� In this case FlXt is also sometimes called
exp tX� it is a di�eomorphism of M �
The support supp�X� of a vector �eld X is the closure of the set fx � M �

X�x� �� �g�
Lemma� A vector �eld with compact support on M is complete�

Proof� Let K � supp�X� be compact� Then the compact set �
K has positive
distance to the disjoint closed set �R
M�nD�X� �if it is not empty�� so ���� ��

K � D�X� for some � � �� If x �� K then X�x� � �� so FlX�t� x� � x for all t

and R 
 fxg � D�X�� So we have ���� �� 
M � D�X�� Since FlX�t � �� x� �

FlX�t�FlX��� x�� exists for jtj 	 � by theorem ��
� we have ����� ���
M � D�X�
and by repeating this argument we get R 
M � D�X�� �
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So on a compact manifoldM each vector �eld is complete� IfM is not compact
and of dimension � �� then in general the set of complete vector �elds on M
is neither a vector space nor is it closed under the Lie bracket� as the following

example on R� shows� X � y �
�x and Y �

x�

�
�
�y are complete� but neither X�Y

nor �X�Y � is complete� In general one may embed R� as a closed submanifold
into M and extend the vector �elds X and Y �

���� f�related vector 
elds� If f �M �M is a di�eomorphism� then for any
vector �eld X � X�M� the mapping Tf�� � X � f is also a vector �eld� which
we will denote f�X� Analogously we put f�X �� Tf �X � f�� � �f����X�
But if f �M � N is a smooth mapping and Y � X�N� is a vector �eld there

may or may not exist a vector �eld X � X�M� such that the following diagram
commutes�

���

TM w
Tf

TN

M w
f

u

X

N�

u

Y

De
nition� Let f � M � N be a smooth mapping� Two vector �elds X �
X�M� and Y � X�N� are called f �related� if Tf �X � Y �f holds� i�e� if diagram
��� commutes�

Example� If X � X�M� and Y � X�N� and X 
 Y � X�M 
 N� is given
�X 
 Y ��x� y� � �X�x�� Y �y��� then we have�

��� X 
 Y and X are pr��related�
��� X 
 Y and Y are pr��related�
��� X and X 
 Y are ins�y��related if and only if Y �y� � �� where the

mapping ins�y� �M �M 
N is given by ins�y��x� � �x� y��

����� Lemma� Consider vector �elds Xi � X�M� and Yi � X�N� for i � �� ��
and a smooth mapping f �M � N � If Xi and Yi are f �related for i � �� �� then
also ��X� � ��X� and ��Y� � ��Y� are f �related� and also �X�� X�� and �Y�� Y��
are f �related�

Proof� The �rst assertion is immediate� To prove the second we choose h �
C��N�R�� Then by assumption we have Tf �Xi � Yi � f � thus�

�Xi�h � f���x� � Xi�x��h � f� � �Txf�Xi�x���h� �

� �Tf �Xi��x��h� � �Yi � f��x��h� � Yi�f�x���h� � �Yi�h���f�x���
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so Xi�h � f� � �Yi�h�� � f � and we may continue�

�X�� X���h � f� � X��X��h � f���X��X��h � f�� �
� X��Y��h� � f��X��Y��h� � f� �
� Y��Y��h�� � f � Y��Y��h�� � f � �Y�� Y���h� � f�

But this means Tf � �X�� X�� � �Y�� Y�� � f � �

����� Corollary� If f � M � N is a local di�eomorphism �so �Txf�
�� makes

sense for each x �M�� then for Y � X�N� a vector �eld f�Y � X�M� is de�ned
by �f�Y ��x� � �Txf����Y �f�x��� The linear mapping f� � X�N� � X�M� is
then a Lie algebra homomorphism� i�e� f��Y�� Y�� � �f�Y�� f�Y���

����� The Lie derivative of functions� For a vector �eld X � X�M� and
f � C��M�R� we de�ne LXf � C��M�R� by

LXf�x� �� d
dt j�f�FlX�t� x�� or

LXf �� d
dt j��FlXt ��f � d

dt j��f � FlXt ��

Since FlX�t� x� is de�ned for small t� for any x �M � the expressions above make
sense�

Lemma� d
dt �Fl

X
t �

�f � �FlXt �
�X�f� � X��FlXt �

�f�� in particular for t � � we
have LXf � X�f� � df�X�� �

Proof� We have

d
dt �Fl

X
t �

�f�x� � df� ddt Fl
X�t� x�� � df�X�FlX�t� x��� � �FlXt �

��Xf��x��

From this we get LXf � X�f� � df�X� and then in turn

d
dt �Fl

X
t �

�f � d
ds j��FlXt �FlXs ��f � d

ds j��FlXs ���FlXt ��f � X��FlXt �
�f�� �

����� The Lie derivative for vector 
elds� For X�Y � X�M� we de�ne
LXY � X�M� by

LXY �� d
dt j��FlXt ��Y � d

dt j��T �FlX�t� � Y � FlXt ��

and call it the Lie derivative of Y along X�
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Lemma� LXY � �X�Y � and d
dt �Fl

X
t �

�Y � �FlXt �
�LXY � �FlXt �

��X�Y � �
LX�FlXt ��Y � �X� �FlXt ��Y ��
Proof� Let f � C��M�R� be a testing function and consider the mapping
��t� s� �� Y �FlX�t� x���f � FlXs �� which is locally de�ned near �� It satis�es

��t� �� � Y �FlX�t� x���f��

���� s� � Y �x��f � FlXs ��
�
�t
���� �� � �

�t

��
�
Y �FlX�t� x���f� � �

�t

��
�
�Y f��FlX�t� x�� � X�x��Y f��

�
�s���� �� �

�
�s j�Y �x��f � FlXs � � Y �x� ��s j��f � FlXs � � Y �x��Xf��

But on the other hand we have

�
�u j���u��u� � �

�u j�Y �FlX�u� x���f � FlX�u�
� �

�u
j�
	
T �FlX�u� � Y � FlXu



x
�f� � �LXY �x�f��

so the �rst assertion follows� For the second claim we compute as follows�

�
�t �Fl

X
t �

�Y � �
�s j�

	
T �FlX�t� � T �FlX�s� � Y � FlXs �FlXt



� T �FlX�t� � �

�s j�
	
T �FlX�s� � Y � FlXs



� FlXt

� T �FlX�t� � �X�Y � � FlXt � �FlXt ���X�Y ��
�
�t �Fl

X
t �

�Y � �
�s j��FlXs ���FlXt ��Y � LX�FlXt ��Y� �

����� Lemma� Let X � X�M� and Y � X�N� be f �related vector �elds for

a smooth mapping f � M � N � Then we have f � FlXt � FlYt �f � whenever
both sides are de�ned� In particular� if f is a di�eomorphism� we have Flf

�Y
t �

f�� � FlYt �f �
Proof� We have d

dt �f � FlXt � � Tf � d
dt Fl

X
t � Tf � X � FlXt � Y � f � FlXt

and f�FlX��� x�� � f�x�� So t �� f�FlX�t� x�� is an integral curve of the vector

�eld Y on N with initial value f�x�� so we have f�FlX�t� x�� � FlY �t� f�x�� or

f � FlXt � FlYt �f � �

����� Corollary� Let X�Y � X�M�� Then the following assertions are equiva�
lent

��� LXY � �X�Y � � ��
��� �FlXt �

�Y � Y � wherever de�ned�

��� FlXt �FlYs � FlYs �FlXt � wherever de�ned�
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Proof� ��� � ��� is immediate from lemma ����� To see ��� � ��� we note

that FlXt �FlYs � FlYs �FlXt if and only if FlYs � FlX�t �FlYs �FlXt � Fl�Fl
X
t ��Y

s by

lemma ����� and this in turn is equivalent to Y � �FlXt �
�Y � �

����� Theorem� Let M be a manifold� let �i � R 
M � U�i � M be smooth
mappings for i � �� � � � � k where each U�i is an open neighborhood of f�g 
M
in R 
M � such that each �it is a di�eomorphism on its domain� �i� � IdM � and
�
�t

��
�
�it � Xi � X�M�� We put ��i� �j�t � ��

i
t� �

j
t � �� ��

j
t �
�� � ��it��� � �jt � �it�

Then for each formal bracket expression P of lenght k we have

� � ��

�t�
j�P ���t � � � � � �kt � for � 	 � � k�

P �X�� � � � � Xk� �
�
k�

�k

�tk
j�P ���t � � � � � �kt � � X�M�

in the sense explained in step � of the proof� In particular we have for vector
�elds X�Y � X�M�

� � �
�t

��
�
�FlY�t �FlX�t �FlYt �FlXt ��

�X�Y � � �
�
��

�t�
j��FlY�t �FlX�t �FlYt �FlXt ��

Proof� Step �� Let c � R � M be a smooth curve� If c��� � x � M �
c���� � �� � � � � c�k������ � �� then c�k���� is a well de�ned tangent vector in TxM
which is given by the derivation f �� �f � c��k���� at x�
For we have

��f�g� � c��k���� � ��f � c���g � c���k���� �
kX

j��

�
k
j

�
�f � c��j�����g � c��k�j����

� �f � c��k����g�x� � f�x��g � c��k�����

since all other summands vanish� �f � c��j���� � � for � 	 j � k�

Step �� Let � � R 
M � U� � M be a smooth mapping where U� is an open
neighborhood of f�g 
M in R 
M � such that each �t is a di�eomorphism on
its domain and �� � IdM � We say that �t is a curve of local di�eomorphisms
though IdM �

From step � we see that if �j

�tj j��t � � for all � 	 j � k� then X �� �
k�

�k

�tk
j��t

is a well de�ned vector �eld on M � We say that X is the �rst non�vanishing
derivative at � of the curve �t of local di�eomorphisms� We may paraphrase this
as ��kt j���t �f � k%LXf �
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Claim �� Let �t� �t be curves of local di�eomorphisms through IdM and let
f � C��M�R�� Then we have

�kt j���t � �t��f � �kt j����t � ��t �f �
kX

j��

�
k
j

�
��jt j���t ���k�jt j���t �f�

Also the multinomial version of this formula holds�

�kt j����t � � � � � ��t��f �
X

j��			�j��k

k%

j�% � � � j�%
��j�t j����t��� � � � ��j�t j����t ���f�

We only show the binomial version� For a function h�t� s� of two variables we
have

�kt h�t� t� �
kX

j��

�
k
j

�
�jt �

k�j
s h�t� s�js�t�

since for h�t� s� � f�t�g�s� this is just a consequence of the Leibnitz rule� and
linear combinations of such decomposable tensors are dense in the space of all
functions of two variables in the compact C��topology� so that by continuity
the formula holds for all functions� In the following form it implies the claim�

�kt j�f���t� ��t� x��� �
kX

j��

�
k
j

�
�jt �

k�j
s f���t� ��s� x���jt�s���

Claim �� Let �t be a curve of local di�eomorphisms through IdM with �rst
non�vanishing derivative k%X � �kt j��t� Then the inverse curve of local di�eo�
morphisms ���t has �rst non�vanishing derivative �k%X � �kt j����t �
For we have ���t � �t � Id� so by claim � we get for � 	 j 	 k

� � �jt j�����t � �t��f �
jX
i��

�
j
i

�
��itj���t ���j�it ����t �

��f �

� �jt j���t ����� �
�f � ����

j
t j�����t ��f�

i�e� �jt j���t f � ��jt j�����t ��f as required�
Claim �� Let �t be a curve of local di�eomorphisms through IdM with �rst
non�vanishing derivative m%X � �mt j��t� and let �t be a curve of local di�eo�
morphisms through IdM with �rst non�vanishing derivative n%Y � �nt j��t�
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Then the curve of local di�eomorphisms ��t� �t� � ���t ����t ��t ��t has �rst
non�vanishing derivative

�m� n�%�X�Y � � �m�n
t j���t� �t��

From this claim the theorem follows�
By the multinomial version of claim � we have

ANf � � �Nt j�����t � ���t � �t � �t��f

�
X

i�j�k���N

N %

i%j%k%�%
��itj���t ���jt j���t ���kt j�����t ������t j�����t ���f�

Let us suppose that � 	 n 	 m� the case m 	 n is similar� If N � n all
summands are �� If N � n we have by claim �

ANf � ��
n
t j���t �f � ��nt j���t �f � ��nt j�����t ���f � ��nt j�����t ���f � ��

If n � N 	 m we have� using again claim ��

ANf �
X

j���N

N %

j%�%
��jt j���t ����t j�����t ���f � �mN

�
��mt j���t �f � ��mt j�����t ���f

�
� ��Nt j�����t � �t���f � � � ��

Now we come to the di cult case m�n � N 	 m� n�

ANf � �Nt j�����t � ���t � �t��f �
�
N
m

�
��mt j���t ���N�mt j�����t � ���t � �t���f

� ��Nt j���t �f����

by claim �� since all other terms vanish� see ��� below� By claim � again we get�

�Nt j�����t � ���t � �t��f �
X

j�k���N

N %

j%k%�%
��jt j���t ���kt j�����t ������t j�����t ���f

�
X

j���N

�
N
j

�
��jt j���t ����t j�����t ���f �

�
N
m

�
��N�mt j���t ���mt j�����t ���f���

�
�
N
m

�
��mt j�����t �����N�mt j�����t ���f � �Nt j�����t ��f

� � �
�
N
m

�
��N�mt j���t �m%L�Xf �

�
N
m

�
m%L�X��N�mt j�����t ���f

� �Nt j�����t ��f
� �Nm�n�m� n�%�LXLY � LY LX�f � �Nt j�����t ��f
� �Nm�n�m� n�%L�X�Y 
f � �Nt j�����t ��f
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From the second expression in ��� one can also read o� that

��� �N�mt j�����t � ���t � �t��f � �N�mt j�����t ��f�
If we put ��� and ��� into ��� we get� using claims � and � again� the �nal result
which proves claim � and the theorem�

ANf � �Nm�n�m� n�%L�X�Y 
f � �Nt j�����t ��f
�
�
N
m

�
��mt j���t ���N�mt j�����t ���f � ��Nt j���t �f

� �Nm�n�m� n�%L�X�Y 
f � �Nt j�����t � �t��f
� �Nm�n�m� n�%L�X�Y 
f � �� �

���	� Theorem� Let X�� � � � � Xm be vector �elds on M de�ned in a neighbor�
hood of a point x � M such that X��x�� � � � � Xm�x� are a basis for TxM and
�Xi� Xj� � � for all i� j�

Then there is a chart �U� u� of M centered at x such that Xi � U �
�
�ui

�

Proof� For small t � �t�� � � � � tm� � Rm we put
f�t�� � � � � tm� � �FlX�

t� � � � � � FlXm

tm ��x��

By ���� we may interchange the order of the $ows arbitrarily� Therefore

�
�ti f�t

�� � � � � tm� � �
�ti �Fl

Xi

ti �FlX�

t� � � � � ��x� � Xi��Fl
x�
t� � � � � ��x���

So T�f is invertible� f is a local di�eomorphism� and its inverse gives a chart
with the desired properties� �

���	� The theorem of Frobenius� The next three subsections will be devoted
to the theorem of Frobenius for distributions of constant rank� We will give a
powerfull generalization for distributions of nonconstant rank below ����� &
������
Let M be a manifold� By a vector subbundle E of TM of �ber dimension k

we mean a subset E � TM such that each Ex �� E � TxM is a linear subspace
of dimension k� and such that for each x imM there are k vector �elds de�ned
on an open neighborhood of M with values in E and spanning E� called a local
frame for E� Such an E is also called a smooth distribution of constant rank
k� See section � for a thorough discussion of the notion of vector bundles� The
space of all vector �elds with values in E will be called C��E��
The vector subbundle E of TM is called integrable or involutive� if for all

X�Y � C��E� we have �X�Y � � C��E��
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Local version of Frobenius� theorem� Let E � TM be an integrable vector
subbundle of �ber dimension k of TM �

Then for each x � M there exists a chart �U� u� of M centered at x with
u�U� � V 
W � Rk 
 Rm�k � such that T �u���V 
 fyg�� � Ej�u���V 
 fyg��
for each y �W �

Proof� Let x �M � We choose a chart �U� u� of M centered at x such that there
exist k vector �elds X�� � � � � Xk � C��E� which form a frame of EjU � Then we
have Xi �

Pm
j�� f

j
i

�
�uj for f

j
i � C��U�R�� Then f � �f ji � is a �k 
m��matrix

valued smooth function on U which has rank k on U � So some �k
k��submatrix�
say the top one� is invertible at x and thus we may take U so small that this top
�k 
 k��submatrix is invertible everywhere on U � Let g � �gji � be the inverse of
this submatrix� so that f�g �

�
Id
�
�
� We put

��� Yi ��
kX

j��

gjiXj �
kX

j��

mX
l��

gji f
l
j

�

�ul
�

�

�ui
�
X

p
k��
hpi

�

�up
�

We claim that �Yi� Yj� � � for all � 	 i� j 	 k� Since E is integrable we have

�Yi� Yj� �
Pk

l�� c
l
ijYl� But from ��� we conclude �using the coordinate formula

in ���� that �Yi� Yj� �
P

p
k�� a
p �
�up � Again by ��� this implies that c

l
ij � � for

all l� and the claim follows�
Now we consider an �m � k��dimensional linear subspace W� in Rm which

is transversal to the k vectors Txu�Yi�x� � T�Rm spanning Rk � and we de�ne
f � V 
W � U by

f�t�� � � � � tk� y� ��
	
FlY�t� �FlY�t� � � � � � FlYktk



�u���y���

where t � �t�� � � � � tk� � V � a small neighborhood of � in Rk � and where y � W �
a small neighborhood of � in W�� By ���� we may interchange the order of the
$ows in the de�nition of f arbitrarily� Thus

�

�ti
f�t� y� �

�

�ti

	
FlYi

ti
�FlY�t� � � � �



�u���y�� � Yi�f�t� y���

T�f is invertible and the inverse of f on a suitable neighborhood of x gives us
the required chart� �

���
� Remark� Charts �U� u � U � V 
W � Rk 
 Rm�k � as constructed in
theorem ���
 with V and W open balls are called distinguished charts for E�
The submanifolds u���V 
 fyg� are called plaques� Two plaques of di�erent
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distinguished charts intersect in open subsets in both plaques or not at all� this
follows immediately by $owing a point in the intersection into both plaques with
the same construction as in in the proof of ���
� Thus an atlas of distinguished
charts on M has chart change mappings which respect the submersion Rk 

Rm�k � Rm�k �the plaque structure on M�� Such an atlas �or the equivalence
class of such atlases� is called the foliation corresponding to the integrable vector
subbundle E � TM �

����� Global Version of Frobenius� theorem� Let E � TM be an integrable
vector subbundle of TM � Then� using the restrictions of distinguished charts to
plaques as charts we get a new structure of a smooth manifold on M � which we
denote by ME� If E �� TM the topology of ME is �ner than that of M � ME has
uncountably many connected components called the leaves of the foliation� and
the identity induces a bijective immersion ME � M � Each leaf L is a second
countable initial submanifold of M � and it is a maximal integrable submanifold
of M for E in the sense that TxL � Ex for each x � L�

Proof� Let �U�� u� � U� � V� 
 W� � Rk 
 Rm�k � be an atlas of distu�
ished charts corresponding to the integrable vector subbundle E � TM � as
given by theorem ���
� Let us now use for each plaque the homeomorphisms
pr� �u�j�u��� �V� 
 fyg�� � u��� �V� 
 fyg� � V� � Rm�k as charts� then we de�
scribe on M a new smooth manifold structure ME with �ner topology which
however has uncountably many connected components� and the identity on M
induces a bijective immersion ME �M � The connected components of ME are
called the leaves of the foliation�
In order to check the rest of the assertions made in the theorem let us construct

the unique leaf L through an arbitrary point x �M � choose a plaque containing
x and take the union with any plaque meeting the �rst one� and keep going� Now
choose y � L and a curve c � ��� ��� L with c��� � x and c��� � y� Then there
are �nitely many distinguished charts �U�� u��� � � � � �Un� un� and a�� � � � � an �
Rm�k such that x � u��� �V�
fa�g�� y � u��n �Vn 
fang� and such that for each
i

�'� u��i �Vi 
 faig� � u��i���Vi�� 
 fai��g� �� ��
Given ui� ui�� and ai there are only countably many points ai�� such that �'�
holds� if not then we get a cover of the the separable submanifold u��i �Vi 

faig� � Ui�� by uncountably many pairwise disjoint open sets of the form given
in �'�� which contradicts separability�
Finally� since �each component of� M is a Lindel�of space� any distinguished

atlas contains a countable subatlas� So each leaf is the union of at most countably
many plaques� The rest is clear� �
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���
� Distributions� Let M be a manifold� Suppose that for each x � M
we are given a sub vector space Ex of TxM � The disjoint union E �

F
x�M Ex

is called a distribution on M � We do not suppose� that the dimension of Ex is
locally constant in x�
Let Xloc�M� denote the set of all locally de�ned smooth vector �elds on M �

i�e� Xloc�M� �
S

X�U�� where U runs through all open sets in M � Furthermore
let XE denote the set of all local vector �elds X � Xloc�M� with X�x� � Ex

whenever de�ned� We say that a subset V � XE spans E� if for each x �M the
vector space Ex is the linear hull of the set fX�x� � X � Vg� We say that E is a
smooth distribution if XE spans E� Note that every subset W � Xloc�M� spans
a distribution denoted by E�W�� which is obviously smooth �the linear span of
the empty set is the vector space ��� From now on we will consider only smooth
distributions�
An integral manifold of a smooth distribution E is a connected immersed

submanifold �N� i� �see ���� such that Txi�TxN� � Ei�x� for all x � N � We
will see in theorem ���� below that any integral manifold is in fact an initial
submanifold ofM �see ������ so that we need not specify the injective immersion
i� An integral manifold of E is called maximal� if it is not contained in any
strictly larger integral manifold of E�

����� Lemma� Let E be a smooth distribution on M � Then we have�
	� If �N� i� is an integral manifold of E and X � XE� then i�X makes sense

and is an element of Xloc�N�� which is i � i���UX��related to X� where UX �M
is the open domain of X�

�� If �Nj � ij� are integral manifolds of E for j � �� �� then i��� �i��N���i��N���

and i��� �i��N���i��N��� are open subsets in N� and N�� respectively� furthermore
i��� � i� is a di�eomorphism between them�

�� If x � M is contained in some integral submanifold of E� then it is con�
tained in a unique maximal one�

Proof� �� Let UX be the open domain of X � XE � If i�x� � UX for x � N � we
have X�i�x�� � Ei�x� � Txi�TxN�� so i

�X�x� �� ��Txi��� �X � i��x� makes sense�
It is clearly de�ned on an open subset of N and is smooth in x�
�� Let X � XE � Then i

�
jX � Xloc�Nj� and is ij�related to X� So by lemma

���� for j � �� � we have

ij � Fli
�

jX

t � FlXt � ij �
Now choose xj � Nj such that i��x�� � i��x�� � x� � M and choose vector
�elds X�� � � � � Xn � XE such that �X��x��� � � � � Xn�x��� is a basis of Ex� � Then

fj�t
�� � � � � tn� �� �Fl

i�jX�

t� � � � � � Fli
�

jXn

tn ��xj�
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is a smooth mapping de�ned near zero Rn � Nj � Since obviously
�
�tk
j�fj �

i�jXk�xj� for j � �� �� we see that fj is a di�eomorphism near �� Finally we have

�i��� � i� � f���t�� � � � � tn� � �i��� � i� � Fli
�

�X�

t� � � � � � Fli��Xn

tn ��x��

� �i��� � FlX�

t� � � � � � FlXn

tn �i���x��
� �Fl

i��X�

t� � � � � � Fli��Xn

tn �i��� � i���x��
� f��t

�� � � � � tn��

So i��� � i� is a di�eomorphism� as required�
�� Let N be the union of all integral manifolds containing x� Choose the union

of all the atlases of these integral manifolds as atlas for N � which is a smooth
atlas for N by �� Note that a connected immersed submanifold of a separable
manifold is automatically separable �since it carries a Riemannian metric�� �

����� Integrable distributions and foliations�
A smooth distribution E on a manifold M is called integrable� if each point

of M is contained in some integral manifold of E� By ���	�� each point is
then contained in a unique maximal integral manifold� so the maximal integral
manifolds form a partition of M � This partition is called the foliation of M
induced by the integrable distribution E� and each maximal integral manifold
is called a leaf of this foliation� If X � XE then by ���	�� the integral curve
t �� FlX�t� x� of X through x �M stays in the leaf through x�
Note� however� that usually a foliation is supposed to have constant dimen�

sions of the leafs� so our notion here is sometimes called a singular foliation�
Let us now consider an arbitrary subset V � Xloc�M�� We say that V is stable

if for all X�Y � V and for all t for which it is de�ned the local vector �eld
�FlXt �

�Y is again an element of V�
IfW � Xloc�M� is an arbitrary subset� we call S�W� the set of all local vector

�elds of the form �FlX�
t�
� � � � � FlXk

tk
��Y for Xi� Y � W� By lemma ���� the $ow

of this vector �eld is

Fl��FlX�
t� � � � � � FlXk

tk
��Y� t� � FlXk�tk � � � � � FlX��t� �FlYt �FlX�

t� � � � � � FlXk
tk
�

so S�W� is the minimal stable set of local vector �elds which contains W�
Now let F be an arbitrary distribution� A local vector �eld X � Xloc�M� is

called an in�nitesimal automorphism of F � if Tx�Fl
X
t ��Fx� � FFlX�t�x� whenever

de�ned� We denote by aut�F � the set of all in�nitesimal automorphisms of F �
By arguments given just above� aut�F � is stable�

Draft from November ��� ���� Peter W� Michor� ��
	



�� Vector Fields and Flows� ��
� ��

����� Lemma� Let E be a smooth distribution on a manifold M � Then the
following conditions are equivalent�

��� E is integrable�
��� XE is stable�
��� There exists a subset W � Xloc�M� such that S�W� spans E�
��� aut�E� � XE spans E�

Proof� ��� �� ���� Let X � XE and let L be the leaf through x � M � with

i � L�M the inclusion� Then FlX�t �i � i � Fli�X�t by lemma ����� so we have

Tx�Fl
X
�t��Ex� � T �FlX�t��Txi�TxL � T �FlX�t �i��TxL

� T i�Tx�Fl
i�X
�t ��TxL

� T i�TFli�X��t�x�L � EFlX��t�x��

This implies that �FlXt �
�Y � XE for any Y � XE �

��� �� ���� In fact ��� says that XE � aut�E��
��� �� ���� We can choose W � aut�E� � XE � for X�Y � W we have

�FlXt �
�Y � XE � so W � S�W� � XE and E is spanned by W�

��� �� ���� We have to show that each point x � M is contained in some
integral submanifold for the distribution E� Since S�W� spans E and is stable
we have

��� T �FlXt ��Ex � EFlX�t�x�

for each X � S�W�� Let dimEx � n� There are X�� � � � � Xn � S�W� such that
X��x�� � � � � Xn�x� is a basis of Ex� since E is smooth� As in the proof of ���	��
we consider the mapping

f�t�� � � � � tn� �� �FlX�

t� � � � � � FlXn

tn ��x��

de�ned and smooth near � in Rn � Since the rank of f at � is n� the image under f
of a small open neighborhood of � is a submanifold N ofM � We claim that N is
an integral manifold of E� The tangent space Tf�t��			 �tn�N is linearly generated
by

�
�tk
�FlX�

t� � � � � � FlXn

tn ��x� � T �FlX�

t� � � � � � FlXk��

tk�� �Xk��Fl
Xk

tk
� � � � � FlXn

tn ��x��

� ��FlX�

�t��
� � � � �FlXk��

�tk���
�Xk��f�t

�� � � � � tn���

Since S�W� is stable� these vectors lie in Ef�t�� From the form of f and from ���
we see that dimEf�t� � dimEx� so these vectors even span Ef�t� and we have
Tf�t�N � Ef�t� as required� �
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����� Theorem �local structure of foliations�� Let E be an integrable dis�
tribution of a manifold M � Then for each x �M there exists a chart �U� u� with
u�U� � fy � Rm � jyij � � for all ig for some � � �� and a countable subset
A � Rm�n � such that for the leaf L through x we have

u�U � L� � fy � u�U� � �yn��� � � � � ym� � Ag�

Each leaf is an initial submanifold�
If furthermore the distribution E has locally constant rank� this property holds

for each leaf meeting U with the same n�

This chart �U� u� is called a distinguished chart for the distribution or the
foliation� A connected component of U � L is called a plaque�
Proof� Let L be the leaf through x� dimL � n� Let X�� � � � � Xn � XE be local
vector �elds such that X��x�� � � � � Xn�x� is a basis of Ex� We choose a chart
�V� v� centered at x on M such that the vectors

X��x�� � � � � Xn�x��
�

�vn��
jx� � � � � �

�vm
jx

form a basis of TxM � Then

f�t�� � � � � tm� � �FlX�

t� � � � � � FlXn

tn ��v
����� � � � � �� tn��� � � � � tm��

is a di�eomorphism from a neighborhood of � in Rm onto a neighborhood of x
in M � Let �U� u� be the chart given by f��� suitably restricted� We have

y � L�� �FlX�

t� � � � � � FlXn

tn ��y� � L

for all y and all t�� � � � � tn for which both expressions make sense� So we have

f�t�� � � � � tm� � L�� f��� � � � � �� tn��� � � � � tm� � L�

and consequently L � U is the disjoint union of connected sets of the form
fy � U � �un���y�� � � � � um�y�� � constantg� Since L is a connected immersive
submanifold of M � it is second countable and only a countable set of constants
can appear in the description of u�L�U� given above� From this description it is
clear that L is an initial submanifold ������ since u�Cx�L�U�� � u�U���Rn
���
The argument given above is valid for any leaf of dimension n meeting U � so

also the assertion for an integrable distribution of constant rank follows� �
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����� Involutive distributions� A subset V � Xloc�M� is called involutive if
�X�Y � � V for all X�Y � V� Here �X�Y � is de�ned on the intersection of the
domains of X and Y �
A smooth distribution E onM is called involutive if there exists an involutive

subset V � Xloc�M� spanning E�
For an arbitrary subsetW � Xloc�M� let L�W� be the set consisting of all local

vector �elds on M which can be written as �nite expressions using Lie brackets
and starting from elements ofW� Clearly L�W� is the smallest involutive subset
of Xloc�M� which contains W�
����� Lemma� For each subset W � Xloc�M� we have

E�W� � E�L�W�� � E�S�W���

In particular we have E�S�W�� � E�L�S�W����
Proof� We will show that for X�Y � W we have �X�Y � � XE�S�W��� for then by
induction we get L�W� � XE�S�W�� and E�L�W�� � E�S�W���
Let x � M � since by ���� E�S�W�� is integrable� we can choose the leaf L

through x� with the inclusion i� Then i�X is i�related to X� i�Y is i�related to
Y � thus by ���� the local vector �eld �i�X� i�Y � � Xloc�L� is i�related to �X�Y ��
and �X�Y ��x� � E�S�W��x� as required� �

����� Theorem� Let V � Xloc�M� be an involutive subset� Then the distribu�
tion E�V� spanned by V is integrable under each of the following conditions�

��� M is real analytic and V consists of real analytic vector �elds�
��� The dimension of E�V� is constant along all �ow lines of vector �elds in

V�

Proof� ���� For X�Y � V we have d
dt �Fl

X
t �

�Y � �FlXt �
�LXY � consequently

dk

dtk
�FlXt �

�Y � �FlXt �
��LX�kY � and since everything is real analytic we get for

x �M and small t

�FlXt �
�Y �x� �

X
k
�

tk

k%

dk

dtk
j��FlXt ��Y �x� �

X
k
�

tk

k%
�LX�kY �x��

Since V is involutive� all �LX�kY � V� Therefore we get �FlXt ��Y �x� � E�V�x
for small t� By the $ow property of FlX the set of all t satisfying �FlXt �

�Y �x� �
E�V�x is open and closed� so it follows that ������ is satis�ed and thus E�V� is
integrable�
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���� We choose X�� � � � � Xn � V such that X��x�� � � � � Xn�x� is a basis of
E�V�x� For X � V� by hypothesis� E�V�FlX�t�x� has also dimension n and ad�

mits X��Fl
X�t� x��� � � � � Xn�Fl

X�t� x�� as basis for small t� So there are smooth
functions fij�t� such that

�X�Xi��Fl
X�t� x�� �

nX
j��

fij�t�Xj�Fl
X�t� x���

d
dt
T �FlX�t��Xi�Fl

X�t� x�� � T �FlX�t���X�Xi��Fl
X�t� x�� �

�
nX
j��

fij�t�T �Fl
X
�t��Xj�Fl

X�t� x���

So the TxM �valued functions gi�t� � T �FlX�t��Xi�Fl
X�t� x�� satisfy the linear

ordinary di�erential equation d
dtgi�t� �

Pn
j�� fij�t�gj�t� and have initial values

in the linear subspace E�V�x� so they have values in it for all small t� There�
fore T �FlX�t�E�V�FlX�t�x� � E�V�x for small t� Using compact time intervals
and the $ow property one sees that condition ������ is satis�ed and E�V� is
integrable� �

Example� The distribution spanned by W � Xloc�R�� is involutive� but not
integrable� where W consists of all global vector �elds with support in R� n f�g
and the �eld �

�x�
� the leaf through � should have dimension � at � and dimension

� elsewhere�

����� By a time dependent vector �eld on a manifold M we mean a smooth
mapping X � J 
M � TM with 	M � X � pr�� where J is an open interval�
An integral curve of X is a smooth curve c � I � M with #c�t� � X�t� c�t�� for
all t � I� where I is a subinterval of J �
There is an associated vector �eld !X � X�J 
 M�� given by !X�t� x� �

� �
�t
� X�t� x�� � TtR 
 TxM �

By the evolution operator of X we mean the mapping (X � J 
 J 
M �M �
de�ned in a maximal open neighborhood of the diagonal 
M and satisfying the
di�erential equation �

d
dt
(X�t� s� x� � X�t�(X�t� s� x��

(X�s� s� x� � x�

It is easily seen that �t�(X�t� s� x�� � Fl
�X�t�s� �s� x��� so the maximally de�ned

evolution operator exists and is unique� and it satis�es

(Xt�s � (
X
t�r � (Xr�s
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whenever one side makes sense �with the restrictions of ��
�� where (Xt�s�x� �
(�t� s� x��

Examples and Exercises

���	� Compute the $ow of the vector �eld ���x� y� �� �y �
�x � x �

�y in R
� � Draw

the $ow lines� Is this a global $ow�

���
� Compute the $ow of the vector �eld ���x� y� �� y �
�x
in R� � Is it a global

$ow�
Answer the same questions for ���x� y� ��

x�

�
�
�y
�

Now compute ���� ��� and investigate its $ow� This time it is not global% In

fact� Fl
�
��
�

t �x� y� �

	
�x

��xt � ye
R
t
�
�x����xz�dz



� xt� y � �� Compute the integral�

Investigate the $ow of �� � ��� It is not global either%

����� Driving a car� The phase space consists of all �x� y� �� �� � R� 
 S� 

��	��� 	���� where

�x� y� � � �position of the midpoint of the rear axle�

� � � �direction of the car axle�

� � � � steering angle of the front wheels�

x

y

There are two �control� vector �elds�

steer � �
��

drive � cos��� ��x � sin���
�
�y � tan���

�
l
�
�� �why��

Compute �steer� drive� �� park �why�� and �drive� park�� and interpret the re�
sults� Is it not convenient that the two control vector �elds do not span an
integrable distribution�
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����� Describe the Lie algebra of all vector�elds on S� in terms of Fourier expan�
sion� This is nearly �up to a central extension� the Virasoro algebra of theoretical
physics�
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���� De
nition� A Lie group G is a smooth manifold and a group such that
the multiplication � � G 
 G � G is smooth� We shall see in a moment� that
then also the inversion � � G� G turns out to be smooth�
We shall use the following notation�

� � G
G� G� multiplication� ��x� y� � x�y�
�a � G� G� left translation� �a�x� � a�x�
�a � G� G� right translation� �a�x� � x�a�
� � G� G� inversion� ��x� � x���
e � G� the unit element�

Then we have �a � �b � �a	b� �
a � �b � �b	a� ���a � �a�� � ��a��� � �a

��

�
�a � �b � �b � �a� If � � G � H is a smooth homomorphism between Lie
groups� then we also have � � �a � ���a� � �� � � �a � ���a� � �� thus also
T��T�a � T���a��T�� etc� So Te� is injective �surjective� if and only if Ta� is
injective �surjective� for all a � G�

���� Lemma� T�a�b�� � TaG
 TbG� TabG is given by

T�a�b����Xa� Yb� � Ta��
b��Xa � Tb��a��Yb�

Proof� Let ria � G � G 
 G� ria�x� � �a� x� be the right insertion and let
lib � G� G
G� lib�x� � �x� b� be the left insertion� Then we have

T�a�b����Xa� Yb� � T�a�b����Ta�lib��Xa � Tb�ria��Yb� �

� Ta�� � lib��Xa � Tb�� � ria��Yb � Ta��
b��Xa � Tb��a��Yb� �

���� Corollary� The inversion � � G� G is smooth and

Ta� � �Te��a
��

��Ta��a��� � �Te��a����Ta��
a��

��

Proof� The equation ��x� ��x�� � e determines � implicitly� Since we have
Te���e� �� � Te��e� � Id� the mapping � is smooth in a neighborhood of e

by the implicit function theorem� From �� � �a��x� � x���a�� � ��a
�� � ���x�

we may conclude that � is everywhere smooth� Now we di�erentiate the equation
��a� ��a�� � e� this gives in turn

�e � T�a�a������Xa� Ta��Xa� � Ta��
a��

��Xa � Ta����a��Ta��Xa�

Ta��Xa � �Te��a����Ta��a��

��Xa � �Te��a����Ta��
a��

��Xa� �
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���� Example� The general linear group GL�n�R� is the group of all invertible
real n 
 n�matrices� It is an open subset of L�Rn �Rn�� given by det �� � and a
Lie group�
Similarly GL�n� C �� the group of invertible complex n 
 n�matrices� is a Lie

group� also GL�n� H �� the group of all invertible quaternionic n
 n�matrices� is
a Lie group� since it is open in the real Banach algebra LH �H n � H n� as a glance
at the von Neumann series shows� but the quaternionic determinant is a more
subtle instrument here�

���� Example� The orthogonal group O�n�R� is the group of all linear isome�
tries of �Rn � h � i�� where h � i is the standard positive de�nite inner prod�
uct on Rn � The special orthogonal group SO�n�R� �� fA � O�n�R� � detA � �g
is open in O�n�R�� since

O�n�R� � SO�n�R� t
��� �
� In��

�
SO�n�R��

where Ik is short for the identity matrix IdRk� We claim that O�n�R� and
SO�n�R� are submanifolds of L�Rn �Rn�� For that we consider the mapping
f � L�Rn �Rn� � L�Rn �Rn �� given by f�A� � A�At� Then O�n�R� � f���In��
so O�n�R� is closed� Since it is also bounded� O�n�R� is compact� We have
df�A��X � X�At � A�Xt� so ker df�In� � fX � X �Xt � �g is the space o�n�R�
of all skew symmetric n 
 n�matrices� Note that dim o�n�R� � �

� �n � ��n� If
A is invertible� we get ker df�A� � fY � Y�At � A�Y t � �g � fY � Y�At �
o�n�R�g � o�n�R���A���t� The mapping f takes values in Lsym�Rn �Rn �� the
space of all symmetric n
 n�matrices� and dimker df�A� � dimLsym�Rn �Rn� �
�
� �n���n� �

�n�n��� � n� � dimL�Rn �Rn�� so f � GL�n�R� � Lsym�Rn �Rn� is
a submersion� Since obviously f���In� � GL�n�R�� we conclude from ���� that
O�n�R� is a submanifold of GL�n�R�� It is also a Lie group� since the group
operations are smooth as the restrictions of the ones from GL�n�R��

���� Example� The special linear group SL�n�R� is the group of all n 
 n�
matrices of determinant �� The function det � L�Rn �Rn � � R is smooth and
d det�A�X � trace�C�A��X�� where C�A�ij� the cofactor of A

j
i � is the determinant

of the matrix� which results from putting � instead of Aj
i into A and � in the

rest of the j�th row and the i�th column of A� We recall Cramers rule C�A��A �
A�C�A� � det�A��In� So if C�A� �� � �i�e� rank�A� � n � �� then the linear
functional df�A� is non zero� So det � GL�n�R� � R is a submersion and
SL�n�R� � �det������ is a manifold and a Lie group of dimension n� � �� Note
�nally that TInSL�n�R� � ker d det�In� � fX � trace�X� � �g� This space of
traceless matrices is usually called sl�n�R��
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��	� Example� The symplectic group Sp�n�R� is the group of all �n 
 �n�
matrices A such that ��Ax�Ay� � ��x� y� for all x� y � R�n � where � is a �the
standard� non degenerate skew symmetric bilinear form on R�n �
Such a form exists on a vector space if and only if the dimension is even�

and on Rn 
 �Rn �� the form ���x� x��� �y� y��� � hx� y�i � hy� x�i� in coordinates
���xi��ni��� �y

j��nj��� �
Pn

i���x
iyn�i � xn�iyi�� is such a form� Any symplectic

form on R�n looks like that after choosing a suitable basis� Let �ei��ni�� be the
standard basis in R�n � Then we have

���ei� ej�
i
j� �

�
� In
�In �

�
�� J�

and the matrix J satis�es J t � �J � J� � �I�n� J
�
x
y

�
�
�
y
�x
�
in Rn 
 Rn � and

��x� y� � hx� Jyi in terms of the standard inner product on R�n �
For A � L�R�n �R�n� we have ��Ax�Ay� � hAx� JAyi � hx�AtJAyi� Thus

A � Sp�n�R� if and only if AtJA � J �
We consider now the mapping f � L�R�n �R�n� � L�R�n �R�n� given by

f�A� � AtJA� Then f�A�t � �AtJA�t � �AtJA � �f�A�� so f takes val�
ues in the space o��n�R� of skew symmetric matrices� We have df�A�X �
XtJA� AtJX� and therefore

ker df�I�n� � fX � L�R�n �R�n� � XtJ � JX � �g
� fX � JX is symmetricg �� sp�n�R��

We see that dim sp�n�R� � �n��n���
� �

�
�n��
�

�
� Furthermore ker df�A� � fX �

XtJA�AtJX � �g and the mappingX �� AtJX is an isomorphism ker df�A��
Lsym�R�n �R�n�� if A is invertible� Thus dimker df�A� �

�
�n��
�

�
for all A �

GL��n�R�� If f�A� � J � then AtJA � J � so A has rank �n and is invert�

ible� and we have dimker df�A� � dim o��n�R� �
�
�n��
�

�
� �n��n���

� � �n� �

dimL�R�n �R�n�� So f � GL��n�R� � o��n�R� is a submersion and f���J� �
Sp�n�R� is a manifold and a Lie group� It is the symmetry group of �classical
mechanics��

��
� Example� The complex general linear group GL�n� C � of all invertible
complex n 
 n�matrices is open in LC �C n � C n�� so it is a real Lie group of real
dimension �n�� it is also a complex Lie group of complex dimension n�� The
complex special linear group SL�n� C � of all matrices of determinant � is a sub�
manifold of GL�n� C � of complex codimension � �or real codimension ���
The complex orthogonal group O�n� C � is the set

fA � L�C n � C n� � g�Az�Aw� � g�z� w� for all z� wg�
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where g�z� w� �
Pn

i�� z
iwi� This is a complex Lie group of complex dimension

�n���n
� � and it is not compact� Since O�n� C � � fA � AtA � Ing� we have

� � detC �In� � detC �AtA� � detC �A�
�� so detC �A� � ��� Thus SO�n� C � ��

fA � O�n� C � � detC �A� � �g is an open subgroup of index � in O�n� C ��
The group Sp�n� C � � fA � LC �C �n � C �n� � AtJA � Jg is also a complex Lie

group of complex dimension n��n� ���
These groups treated here are the classical complex Lie groups� The groups

SL�n� C � for n � �� SO�n� C � for n � �� Sp�n� C � for n � �� and �ve more
exceptional groups exhaust all simple complex Lie groups up to coverings�

���� Example� Let C n be equipped with the standard hermitian inner product
�z� w� �

Pn
i�� z

iwi� The unitary group U�n� consists of all complex n 
 n�
matrices A such that �Az�Aw� � �z� w� for all z� w holds� or equivalently U�n� �

fA � A�A � Ing� where A� � A
t
�

We consider the mapping f � LC �C n � C n � � LC �C n � C n �� given by f�A� �
A�A� Then f is smooth but not holomorphic� Its derivative is df�A�X � X�A�
A�X� so ker df�In� � fX � X��X � �g �� u�n�� the space of all skew hermitian
matrices� We have dimR u�n� � n�� As above we may check that f � GL�n� C � �
Lherm�C n � C n � is a submersion� so U�n� � f���In� is a compact real Lie group
of dimension n��
The special unitary group is SU�n� � U�n� � SL�n� C �� For A � U�n� we

have j detC �A�j � �� thus dimR SU�n� � n� � ��
����� Example� The group Sp�n�� Let H be the division algebra of quater�
nions� We will use the following description of quaternions� Let �R	 � h � i�"�
be the oriented Euclidean space of dimension �� where " is a determinant func�
tion with value � on a positive oriented orthonormal basis� The vector product
on R	 is then given by hX 
 Y� Zi � "�X�Y� Z�� Now we let H �� R	 
 R�
equipped with the following product�

�X� s��Y� t� �� �X 
 Y � sY � tX� st� hX�Y i��

Now we take a positively oriented orthonormal basis of R	 � call it �i� j� k�� and
indentify ��� �� with �� Then the last formula implies visibly the usual product
rules for the basis ��� i� j� k� of the quaternions�
The group Sp��� �� S	 � H 
� R� is then the group of unit quaternions�

obviously a Lie group�
Now let V be a right vector space over H � Since H is not commutative� we

have to distinguish between left and right vector spaces and we choose right ones
as basic� so that matrices can multiply from the left� By choosing a basis we get
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V � Rn �R H � H n � For u � �ui�� v � �vi� � H n we put hu� vi ��
Pn

i�� u
ivi�

Then h � i is R�bilinear and hua� vbi � ahu� vib for a� b � H �
An R linear mapping A � V � V is called H �linear or quaternionically linear

if A�ua� � A�u�a holds� The space of all such mappings shall be denoted by
LH �V� V �� It is real isomorphic to the space of all quaternionic n 
 n�matrices
with the usual multiplication� since for the standard basis �ei�

n
i�� in V � H

n we

have A�u� � A�
P

i eiu
i� �

P
iA�ei�u

i �
P

i�j ejA
j
iu

i� Note that LH �V� V � is
only a real vector space� if V is a right quaternionic vector space � any further
structure must come from a second �left� quaternionic vector space structure on
V �

GL�n� H �� the group of invertible H �linear mappings of H n � is a Lie group�
because it is GL��n�R� � LH �H n � H n�� open in LH �H n � H n��
A quaternionically linear mapping A is called isometric or quaternionically

unitary� if hA�u�� A�v�i � hu� vi for all u� v � H n � We denote by Sp�n� the
group of all quaternionic isometries of H n � the quaternionic unitary group� The
reason for its name is that Sp�n� � Sp�n� C � � U��n�� since we can decompose
the quaternionic hermitian form h � i into a complex hermitian one and a
complex symplectic one� Also we have Sp�n� � O��n�R�� since the real part of
h � i is a positive de�nite real inner product� For A � LH �H n � H n� we put

A� �� A
t
� Then we have hu�A�v�i � hA��u�� vi� so hA�u�� A�v�i � hA�A�u�� vi�

Thus A � Sp�n� if and only if A�A � Id�
Again f � LH �H n � H n �� LH�herm�H n � H n� � fA � A� � Ag� given by f�A� �

A�A� is a smooth mapping with df�A�X � X�A�A�X� So we have ker df�Id� �
fX � X� � �Xg �� sp�n�� the space of quaternionic skew hermitian matrices�
The usual proof shows that f has maximal rank onGL�n� H �� so Sp�n� � f���Id�
is a compact real Lie group of dimension �n�n� �� � �n�
The groups SO�n�R� for n � �� SU�n� for n � �� Sp�n� for n � � and

real forms of the exceptional complex Lie groups exhaust all simple compact Lie
groups up to coverings�

����� Invariant vector 
elds and Lie algebras� Let G be a �real� Lie group�
A vector �eld � on G is called left invariant� if ��a� � � for all a � G� where
��a� � T ��a�������a as in section �� Since by ���� we have ��a��� �� � ���a�� ��a���
the space XL�G� of all left invariant vector �elds on G is closed under the Lie
bracket� so it is a sub Lie algebra of X�G�� Any left invariant vector �eld �
is uniquely determined by ��e� � TeG� since ��a� � Te��a����e�� Thus the Lie
algebra XL�G� of left invariant vector �elds is linearly isomorphic to TeG� and
on TeG the Lie bracket on XL�G� induces a Lie algebra structure� whose bracket
is again denoted by � � �� This Lie algebra will be denoted as usual by g�
sometimes by Lie�G��
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We will also give a name to the isomorphism with the space of left invariant
vector �elds� L � g� XL�G�� X �� LX � where LX�a� � Te�a�X� Thus �X�Y � �
�LX � LY ��e��
A vector �eld � on G is called right invariant� if ��a��� � � for all a � G�

If � is left invariant� then ��� is right invariant� since � � �a � �a�� � � implies
that ��a����� � �� � �a��� � ��a�� � ���� � ����a����� � ���� The right
invariant vector �elds form a sub Lie algebra XR�G� of X�G�� which is again
linearly isomorphic to TeG and induces also a Lie algebra structure on TeG�
Since �� � XL�G� � XR�G� is an isomorphism of Lie algebras by ����� Te� �
�Id � TeG � TeG is an isomorphism between the two Lie algebra structures�
We will denote by R � g � TeG � XR�G� the isomorphism discussed� which is
given by RX�a� � Te��

a��X�

����� Lemma� If LX is a left invariant vector �eld and RY is a right invariant
one� then �LX � RY � � �� Thus the �ows of LX and RY commute�

Proof� We consider the vector �eld �
LX � X�G
G�� given by ��
LX��a� b� �
��a� LX�b��� Then T�a�b�����a� LX�b�� � Ta�

b��a � Tb�a�LX�b� � LX�ab�� so
� 
 LX is ��related to LX � Likewise RY 
 � is ��related to RY � But then
� � �� 
 LX � RY 
 �� is ��related to �LX � RY � by ����� Since � is surjective�
�LX � RY � � � follows� �

����� Let � � G � H be a homomorphism of Lie groups� so for the time being
we require � to be smooth�

Lemma� Then �� �� Te� � g � TeG � h � TeH is a Lie algebra homomor�
phism�

Proof� For X � g and x � G we have

Tx��LX�x� � Tx��Te�x�X � Te�� � �x��X
� Te����x� � ���X � Te����x���Te��X � L���X����x���

So LX is ��related to L���X�� By ���� the �eld �LX � LY � � L�X�Y 
 is ��related
to �L���X�� L���Y �� � L����X�����Y �
� So we have T� � L�X�Y 
 � L����X�����Y �
 � ��
If we evaluate this at e the result follows� �

Now we will determine the Lie algebras of all the examples given above�

����� For the Lie group GL�n�R� we have TeGL�n�R� � L�Rn �Rn� �� gl�n�R�
and T GL�n�R� � GL�n�R� 
 L�Rn �Rn� by the a ne structure of the sur�
rounding vector space� For A � GL�n�R� we have �A�B� � A�B� so �A
extends to a linear isomorphism of L�Rn �Rn�� and for �B�X� � T GL�n�R�
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we get TB��A���B�X� � �A�B�A�X�� So the left invariant vector �eld LX �
XL�GL�n�R�� is given by LX�A� � Te��A��X � �A�A�X��
Let f � GL�n�R� � R be the restriction of a linear functional on L�Rn �Rn ��

Then we have LX�f��A� � df�A��LX�A�� � df�A��A�X� � f�A�X�� which we
may write as LX�f� � f� �X�� Therefore

L�X�Y 
�f� � �LX � LY ��f� � LX�LY �f��� LY �LX�f��

� LX�f� �Y ��� LY �f� �X�� � f� �X�Y �� f� �Y�X�

� LXY�Y X�f��

So the Lie bracket on gl�n�R� � L�Rn �Rn� is given by �X�Y � � XY � Y X� the
usual commutator�

����� Example� Let V be a vector space� Then �V��� is a Lie group� T�V � V
is its Lie algebra� TV � V 
V � left translation is �v�w� � v�w� Tw��v���w�X� �
�v � w�X�� So LX�v� � �v�X�� a constant vector �eld� Thus the Lie bracket is
��

����� Example� The special linear group is SL�n�R� � det����� and its Lie
algebra is given by TeSL�n�R� � ker d det�I� � fX � L�Rn �Rn � � traceX �
�g � sl�n�R� by ���� The injection i � SL�n�R� � GL�n�R� is a smooth
homomorphism of Lie groups� so Tei � i� � sl�n�R� � gl�n�R� is an injective
homomorphism of Lie algebras� Thus the Lie bracket is given by �X�Y � �
XY � Y X�
The same argument gives the commutator as the Lie bracket in all other

examples we have treated� We have already determined the Lie algebras as TeG�

���	� One parameter subgroups� Let G be a Lie group with Lie algebra g�
A one parameter subgroup of G is a Lie group homomorphism � � �R��� � G�
i�e� a smooth curve � in G with ��s� t� � ��s����t�� and hence ���� � e�

Lemma� Let � � R � G be a smooth curve with ���� � e� Let X � g� Then the
following assertions are equivalent�

��� � is a one parameter subgroup with X � �
�t

��
�
��t��

��� ��t� � FlLX �t� e� for all t�

��� ��t� � FlRX �t� e� for all t�

��� x���t� � FlLX �t� x� � or FlLXt � ���t�� for all t �

��� ��t��x � FlRX �t� x� � or FlRXt � ���t�� for all t�

Proof� ��� �� ���� We have d
dtx���t� �

d
ds j�x���t � s� � d

ds j�x���t����s� �
d
ds j��x	��t���s� � Te��x	��t���

d
ds j���s� � LX�x���t��� By uniqueness of solutions

we get x���t� � FlLX �t� x��
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��� �� ���� This is clear�
��� �� ���� We have

d
ds��t���s� �

d
ds ����t���s�� � T ����t��

d
ds��s�

� T ����t��LX���s�� � LX���t���s��

and ��t����� � ��t�� So we get ��t���s� � FlLX �s� ��t�� � FlLXs FlLXt �e� �

FlLX �t� s� e� � ��t� s��

����� ���� We have Fl�
�

t � ��� �Fl
t �� by ����� Therefore we have by ����

�FlRXt �x������ � �� � FlRXt ����x� � Fl��RXt �x�

� FlLX�t �x� � x����t��

So FlRXt �x��� � ��t��x��� and FlRXt �y� � ��t��y�
��� �� ��� �� ��� can be shown in a similar way� �

An immediate consequence of the foregoing lemma is that left invariant and
right invariant vector �elds on a Lie group are always complete� so they have
global $ows� because a locally de�ned one parameter group can always be ex�
tended to a globally de�ned one by multiplying it up�

���
� De
nition� The exponential mapping exp � g � G of a Lie group is
de�ned by

expX � FlLX ��� e� � FlRX ��� e� � �X����

where �X is the one parameter subgroup of G with #�X��� � X�

Theorem�

��� exp � g� G is smooth�

��� exp�tX� � FlLX �t� e��

��� FlLX �t� x� � x� exp�tX��

��� FlRX �t� x� � exp�tX��x�
��� exp��� � e and T� exp � Id � T�g � g � TeG � g� thus exp is a

di�eomorphism from a neighborhood of � in g onto a neighborhood of e
in G�

Proof� ��� Let �
L � X�g
G� be given by ��
L��X� x� � ��X � LX�x��� Then

pr� Fl
��L�t� �X� e�� � �X�t� is smooth in �t�X��

��� exp�tX� � Flt	LX ��� e� � FlLX �t� e� � �X�t��
��� and ��� follow from lemma ���
�

��� T� exp �X �
d
dt
j� exp�� � t�X� � d

dt
j� FlLX �t� e� � X� �
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����� Remark� If G is connected and U � g is open with � � U � then the
group generated by exp�U� equals G�

For this group is a subgroup of G containing some open neighborhood of e�
so it is open� The complement in G is also open �as union of the other cosets��
so this subgroup is open and closed� Since G is connected� it coincides with G�

If G is not connected� then the subgroup generated by exp�U� is the connected
component of e in G�

����� Remark� Let � � G � H be a smooth homomorphism of Lie groups�
Then the diagram

g w
��

u
expG

h

u
expH

G w
�

H

commutes� since t �� ��expG�tX�� is a one parameter subgroup of H and
d
dt
j���expG tX� � ���X�� so ��expG tX� � expH�t���X���
If G is connected and �� � � G � H are homomorphisms of Lie groups with

�� � �� � g � h� then � � �� For � � � on the subgroup generated by expG g

which equals G by ���	�

����� Theorem� A continuous homomorphism � � G� H between Lie groups
is smooth� In particular a topological group can carry at most one compatible Lie
group structure�

Proof� Let �rst � � � � �R��� � G be a continuous one parameter subgroup�
Then ����� �� � exp�U�� where U is an absolutely convex open neighborhood of
� in g such that exp � �U is a di�eomorphism� for some � � �� Put 
 �� �exp �
�U��� � � � ���� �� � g� Then for jtj � 


� we have exp��
�t�� � exp�
�t��
� �

��t�� � ���t� � exp�
��t��� so �
�t� � 
��t�� thus 
� s�� �
�
�
�s� for jsj � �� So

we have �� s� � � exp�
�
s
� �� � exp�

�
�
�s�� for all jsj � � and by recursion we get

�� s�n � � exp�
�
�n
�s�� for n � N and in turn �� k�n s� � �� s�n �

k � exp� �
�n
�s��

k �

exp� k�n 
�s�� for k � Z� Since the k
�n for k � Z and n � N are dense in R and

since � is continuous we get ��ts� � exp�t
�s�� for all t � R� So � is smooth�
Now let � � G � H be a continuous homomorphism� Let X�� � � � � Xn be

a linear basis of g� We de�ne a mapping � � Rn � G as ��t�� � � � � tn� �
exp�t�X�� � � � exp�tnXn�� Then T�� is invertible� so � is a di�eomorphism near
�� Sometimes ��� is called a coordinate system of the second kind� t ��
��expG tXi� is a continuous one parameter subgroup of H� so it is smooth by
the �rst part of the proof�
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We have �� � ���t�� � � � � tn� � �� exp�t�X��� � � � �� exp�tnXn��� so � � � is
smooth� Thus � is smooth near e � G and consequently everywhere on G� �

����� Theorem� Let G and H be Lie groups �G separable is essential here��
and let � � G � H be a continuous bijective homomorphism� Then � is a
di�eomorphism�

Proof� Our �rst aim is to show that � is a homeomorphism� Let V be an open
e�neighborhood in G� and let K be a compact e�neighborhood in G such that
K�K�� � V � Since G is separable there is a sequence �ai�i�N in G such that
G �

S�
i�� ai�K� Since H is locally compact� it is a Baire space �Vi� for i � N

open and dense implies
T
Vi dense�� The set ��ai���K� is compact� thus closed�

Since H �
S
i ��ai����K�� there is some i such that ��ai���K� has non empty

interior� so ��K� has non empty interior� Choose b � G such that ��b� is an
interior point of ��K� in H� Then eH � ��b���b��� is an interior point of
��K���K��� � ��V �� So if U is open in G and a � U � then eH is an interior
point of ��a��U�� so ��a� is in the interior of ��U�� Thus ��U� is open in H�
and � is a homeomorphism�
Now by ���� � and ��� are smooth� �

����� Examples� We �rst describe the exponential mapping of the general
linear group GL�n�R�� Let X � gl�n�R� � L�Rn �Rn�� then the left invari�
ant vector �eld is given by LX�A� � �A�A�X� � GL�n�R� 
 gl�n�R� and the
one parameter group �X�t� � FlLX �t� I� is given by the di�erential equation
d
dt�X�t� � LX��X�t�� � �X�t��X� with initial condition �X��� � I� But the

unique solution of this equation is �X�t� � etX �
P�

k��
tk

k�X
k� So

expGL�n�R��X� � eX �
P�

k��
�
k� X

k�

If n � � we get the usual exponential mapping of one real variable� For all Lie
subgroups of GL�n�R�� the exponential mapping is given by the same formula
exp�X� � eX � this follows from �����

����� The adjoint representation� A representation of a Lie group G on a
�nite dimensional vector space V �real or complex� is a homomorphism � � G�
GL�V � of Lie groups� Then by ���� �� � g � gl�V � � L�V� V � is a Lie algebra
homomorphism�
For a � G we de�ne conja � G � G by conja�x� � axa��� It is called

the conjugation or the inner automorphism by a � G� We have conja�xy� �
conja�x� conja�y�� conjab � conja � conjb� and conj is smooth in all variables�
Next we de�ne for a � G the mapping Ad�a� � �conja�

� � Te�conja� � g �
g� By ���� Ad�a� is a Lie algebra homomorphism� so we have Ad�a��X�Y � �
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�Ad�a�X�Ad�a�Y �� Furthermore Ad � G� GL�g� is a representation� called the
adjoint representation of G� since

Ad�ab� � Te�conjab� � Te�conja � conjb�
� Te�conja� � Te�conjb� � Ad�a� �Ad�b��

The relations Ad�a� � Te�conja� � Ta��
a��

��Te��a� � Ta����a��Te��
a��

� will be
used later�
Finally we de�ne the �lower case� adjoint representation of the Lie algebra g�

ad � g� gl�g� � L�g� g�� by ad �� Ad� � TeAd�

Lemma�

��� LX�a� � RAd�a�X�a� for X � g and a � G�
��� ad�X�Y � �X�Y � for X�Y � g�

Proof� ���� LX�a� � Te��a��X � Te��
a��Te��

a�� � �a��X � RAd�a�X �a��
���� Let X�� � � � � Xn be a linear basis of g and �x X � g� Then Ad�x�X �Pn
i�� fi�x��Xi for fi � C��G�R� and we have in turn

Ad��Y �X � Te�Ad� �X�Y � d�Ad� �X�jeY � d�
P

fiXi�jeY
�
P

dfije�Y �Xi �
P

LY �fi��e��Xi�

LX�x� � RAd�x�X�x� � R�
P

fi�x�Xi��x� �
P

fi�x��RXi
�x� by ����

�LY � LX � � �LY �
P

fi�RXi
� � � �

P
LY �fi��RXi

by ��� and �����

�Y�X� � �LY � LX ��e� �
P

LY �fi��e��RXi
�e� � Ad��Y �X � ad�Y �X� �

����� Corollary� From ���� and ���� we have

Ad �expG � expGL�g� � ad

Ad�expGX�Y �
�X
k��

�
k� �ad X�

kY � ead XY

� Y � �X�Y � � �
�� �X� �X�Y �� �

�
	� �X� �X� �X�Y ��� � � � �

so that also ad�X� � �
�t

��
�
Ad�exp�tX���

����� The right logarithmic derivative� Let M be a manifold and let f �
M � G be a smooth mapping into a Lie group G with Lie algebra g� We de�ne

the mapping �f � TM � g by the formula �f��x� �� Tf�x���
f�x���

��Txf��x�

Then �f is a g�valued ��form on M � �f � )��M� g�� as we will write later� We
call �f the right logarithmic derivative of f � since for f � R � �R� � �� we have
�f�x��� � f ��x�

f�x� � �log �f���x��
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Lemma� Let f� g �M � G be smooth� Then we have

��f�g��x� � �f�x� � Ad�f�x����g�x��

Proof�

��f�g��x� � T ��g�x�
��	f�x���

��Tx�f�g�

� T ��f�x�
��

��T ��g�x�
��

��T�f�x��g�x�����Txf� Txg�

� T ��f�x�
��

��T ��g�x�
��

��
	
T ��g�x���Txf � T ��f�x���Txg



� �f�x� � Ad�f�x����g�x�� �

Remark� The left logarithmic derivative �leftf � )��M� g� of a smooth mapping
f � M � G is given by �leftf��x � Tf�x���f�x�����Txf��x� The corresponding
Leibnitz rule for it is uglier that that for the right logarithmic derivative�

�left�fg��x� � �leftg�x� �Ad�g�x�����leftf�x��

The form �left�IdG� � )��G� g� is also called the Maurer�Cartan form of the Lie
group G�

���	� Lemma� For exp � g� G and for g�z� ��
ez � �
z

we have

��exp��X� � T ��exp��X���TX exp �
�X
p��

�
�p���� �ad X�

p � g�ad X��

Proof� We put M�X� � ��exp��X� � g� g� Then

�s� t�M��s� t�X� � �s� t���exp���s� t�X�

� ��exp��s� t� ��X by the chain rule�

� ��exp�s �� exp�t ���X

� ��exp�s ���X � Ad�exp�sX�����exp�t ���X by �����

� s���exp��sX� � Ad�exp�sX���t���exp��tX�

� s�M�sX� �Ad�exp�sX���t�M�tX��

Next we put N�t� �� t�M�tX� � L�g� g�� then we obtain N�s � t� � N�s� �
Ad�exp�sX���N�t�� We �x t� apply d

ds j�� and get N ��t� � N ���� � ad�X��N�t��
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where N ���� �M����� � ��exp���� � Idg� So we have the di�erential equation
N ��t� � Idg�ad�X��N�t� in L�g� g� with initial condition N��� � �� The unique
solution is

N�s� �
�X
p��

�
�p���� ad�X�

p�sp��� and so

��exp��X� �M�X� � N��� �
�X
p��

�
�p���� ad�X�

p� �

���
� Corollary� TX exp is bijective if and only if no eigenvalue of ad�X� �
g� g is of the form

p�� �k	 for k � Z n f�g�
Proof� The zeros of g�z� � ez��

z are exactly z �
p�� �k	 for k � Z n f�g� The

linear mapping TX exp is bijective if and only if no eigenvalue of g�ad�X�� �
T ��exp��X���TX exp is �� But the eigenvalues of g�ad�X�� are the images under
g of the eigenvalues of ad�X�� �

����� Theorem� The Baker�Campbell�Hausdor� formula�
Let G be a Lie group with Lie algebra g� For complex z near 	 we consider the

function f�z� �� log�z�
z�� �

P
n
�

����n
n�� �z � ��n�

Then for X� Y near � in g we have expX� expY � expC�X�Y �� where

C�X�Y � � Y �

Z �

�

f�et	 adX �eadY ��X dt

� X � Y �
X
n
�

����n
n� �

Z �

�

� X
k��
�
k��
�

tk

k% �%
�adX�k�adY ��

�n
X dt

� X � Y �
X
n
�

����n
n� �

X
k��			�kn
�
���			�n
�
ki��i
�

�adX�k��adY ��� � � � �adX�kn�adY ��n

�k� � � � �� kn � ��k�% � � � kn%��% � � � �n%
X

� X � Y � �
� �X�Y � �

�
����X� �X�Y ��� �Y� �Y�X��� � � � �

Proof� Let C�X�Y � �� exp���expX� expY � for X� Y near � in g� and let C�t� ��
C�tX� Y �� Then by ���
 we have

T ��exp��C�t��� ddt �expC�t�� � ��exp �C��t��� � � exp�C�t��� #C�t�

�
P

k
�
�

�k���� �ad C�t��
k #C�t� � g�ad C�t��� #C�t��

Draft from November ��� ���� Peter W� Michor� ��
�



�
 �� Lie Groups I� ��
�

where g�z� �� ez��
z

�
P

k
�
zk

�k����
� We have expC�t� � exp�tX� expY and

exp��C�t�� � exp�C�t���� � exp��Y � exp��tX�� therefore
T ��exp��C�t��� d

dt
�expC�t�� � T ��exp��Y � exp��tX�� d

dt
�exp�tX� expY �

� T ��exp��tX��T ��exp��Y ��T ��expY � d
dt
exp�tX�

� T ��exp��tX���RX�exp�tX�� � X� by ������ and �����

X � g�ad C�t��� #C�t��

ead C�t� � Ad�exp C�t�� by ����

� Ad�exp�tX� expY � � Ad�exp�tX���Ad�expY �

� ead�tX��ead Y � et	 ad X �ead Y �

If X� Y � and t are small enough we get ad C�t� � log�et	 ad X �ead Y �� where

log�z� �
P

n
�
����n��

n
�z � ��n� thus we have

X � g�ad C�t��� #C�t� � g�log�et	 ad X �ead Y ��� #C�t��

For z near � we put f�z� �� log�z�
z�� �

P
n
�

����n
n�� �z � ��n� which satis�es

g�log�z���f�z� � �� So we have

X � g�log�et	 ad X �ead Y ��� #C�t� � f�et	 ad X �ead Y ���� #C�t���
#C�t� � f�et	 ad X �ead Y ��X�

C��� � Y

Passing to the de�nite integral we get the desired formula

C�X�Y � � C��� � C��� �

Z �

�

#C�t� dt

� Y �

Z �

�

f�et	 ad X �ead Y ��X dt

� X � Y �
X
n
�

����n
n� �

Z �

�

� X
k��
�
k��
�

tk

k% �%
�ad X�k�ad Y ��

�n
X dt

� X � Y �
X
n
�

����n
n� �

X
k��			�kn
�
���			�n
�
ki��i
�

�adX�k��adY ��� � � � �adX�kn�adY ��n

�k� � � � �� kn � ��k�% � � � kn%��% � � � �n%
X

� X � Y � �
� �X�Y � �

�
����X� �X�Y ��� �Y� �Y�X��� � � � � �
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Remark� If G is a Lie group of di�erentiability class C�� then we may de�ne
TG and the Lie bracket of vector �elds� The proof above then makes sense
and the theorem shows� that in the chart given by exp�� the multiplication
� � G 
 G � G is C� near e� hence everywhere� So in this case G is a real
analytic Lie group� See also remark ��� below�

����� Example� The group SO���R�� From ��� and ���� we know that the
Lie algebra o���R� of SO���R� is the space Lskew�R	 �R	� of all linear mappings
which are skew symmetric with respect to the inner product� with the commu�
tator as Lie bracket�
The group Sp��� � S	 of unit quaternions has as Lie algebra T�S

	 � ���
the space of imaginary quaternions� with the commutator of the quaternion
multiplications as bracket� From ���� we see that this is �X�Y � � �X 
 Y �
Then we observe that the mapping

� � sp���� o���R� � Lskew�R
	 �R	�

��X�Y � �X 
 Y

is an isomorphism of Lie algebras� Since S	 is simply connected we may conclude
that Sp��� is the universal cover of SO����
We can also see this directly as follows� Consider the mapping � � S	 � H �

SO���R� which is given by ��P �X � PX !P � where X � R	 
 f�g � H is an
imaginary quaternion� It is clearly a homomorphism � � S	 � GL���R�� and
since j��P �Xj � jPX !P j � jXj and S	 is connected it has values in SO���R��
The tangent mapping of � is computed as �T���X�Y � XY � � �Y ��X� �
��X 
 Y � � ��X�Y � which we already identi�ed as an isomorphism� Thus �
is a local di�eomorphism� the image of � is an open and compact �since S	 is
compact� subgroup of SO���R�� so � is surjective since SO���R� is connected�
The kernel of � is the set of all P � S	 with PX !P � X for all X � R	 � that is
the intersection of the center of H with S	� the set f����g� So � is a two sheeted
covering mapping�
So the universal cover of SO���R� is the group S	 � Sp��� � SU��� �

Spin���� Here Spin�n� is just a name for the universal cover of SO�n�� and the
isomorphism Sp��� � SU��� is just given by the fact that the quaternions can
also be described as the set of all complex matrices�

a b
�!b !a

�

 a� � bj�

The fundamental group 	��SO���R�� � Z� � Z��Z�

Draft from November ��� ���� Peter W� Michor� ���	



�� �� Lie Groups I� ����

����� Example� The group SO���R�� We consider the smooth homomorphism
� � S	
S	 � SO���R� given by ��P�Q�Z �� PZ !Q in terms of multiplications of
quaternions� The derived mapping is ���X�Y �Z � �T��������X�Y ��Z � XZ� �
�Z��Y � � XZ�ZY � and its kernel consists of all pairs of imaginary quaternions
�X�Y � with XZ � ZY for all Z � H � If we put Z � � we get X � Y � then
X is in the center of H which intersects sp��� in � only� So �� is a Lie algebra
isomorphism since the dimensions are equal� and � is a local di�eomorphism� Its
image is open and closed in SO���R�� so � is surjective� a covering mapping�
The kernel of � is easily seen to be f��� ��� �������g � S	
S	� So the universal
cover of SO���R� is S	 
 S	 � Sp���
 Sp��� � Spin���� and the fundamental
group 	��SO���R�� � Z� again�
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�� Lie Groups II� Lie Subgroups

and Homogeneous Spaces

���� De
nition� Let G be a Lie group� A subgroup H of G is called a Lie
subgroup� if H is itself a Lie group �so it is separable� and the inclusion i � H � G
is smooth�
In this case the inclusion is even an immersion� For that it su ces to check

that Tei is injective� If X � h is in the kernel of Tei� then i � expH�tX� �
expG�t�Tei�X� � e� Since i is injective� X � ��

From the next result it follows that H � G is then an initial submanifold in
the sense of ����� If H� is the connected component of H� then i�H�� is the Lie
subgroup of G generated by i��h� � g� which is an initial submanifold� and this
is true for all components of H�

���� Theorem� Let G be a Lie group with Lie algebra g� If h � g is a Lie
subalgebra� then there is a unique connected Lie subgroup H of G with Lie algebra
h� H is an initial submanifold�

Proof� Put Ex �� fTe��x��X � X � hg � TxG� Then E ��
F
x�GEx is a

distribution of constant rank on G� in the sense of ����� The set fLX � X � hg
is an involutive set in the sense of ���� which spans E� So by theorem ���� the
distribution E is integrable and by theorem ���� the leaf H through e is an initial
submanifold� It is even a subgroup� since for x � H the initial submanifold �xH
is again a leaf �since E is left invariant� and intersects H �in x�� so �x�H� � H�
Thus H�H � H and consequently H�� � H� The multiplication � � H
H � G
is smooth by restriction� and smooth as a mapping H 
H � H� since H is an
initial submanifold� by lemma ���
� �

���� Theorem� Let g be a �nite dimensional real Lie algebra� Then there exists
a connected Lie group G whose Lie algebra is g�

Sketch of Proof� By the theorem of Ado �see �Jacobson� �	��� p��� or �Vara�
darajan� �	
�� p ��
�� g has a faithful �i�e� injective� representation on a �nite
dimensional vector space V � i�e� g can be viewed as a Lie subalgebra of gl�V � �
L�V� V �� By theorem ��� above there is a Lie subgroup G of GL�V � with g as
its Lie algebra� �

This is a rather involved proof� since the theorem of Ado needs the struc�
ture theory of Lie algebras for its proof� There are simpler proofs available�
starting from a neighborhood of e in G �a neighborhood of � in g with the
Baker�Campbell�Hausdor� formula ���	 as multiplication� and extending it�
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���� Theorem� Let G and H be Lie groups with Lie algebras g and h� re�
spectively� Let f � g � h be a homomorphism of Lie algebras� Then there is
a Lie group homomorphism �� locally de�ned near e� from G to H� such that
�� � Te� � f � If G is simply connected� then there is a globally de�ned homo�
morphism of Lie groups � � G� H with this property�

Proof� Let k �� graph�f� � g
h� Then k is a Lie subalgebra of g
h� since f is a
homomorphism of Lie algebras� g
h is the Lie algebra of G
H� so by theorem
��� there is a connected Lie subgroup K � G 
H with algebra k� We consider
the homomorphism g �� pr� � incl � K � G 
H � G� whose tangent mapping
satis�es Teg�X� f�X�� � T�e�e�pr��Teincl��X� f�X�� � X� so is invertible� Thus
g is a local di�eomorphism� so g � K � G� is a covering of the connected
component G� of e in G� If G is simply connected� g is an isomorphism� Now we
consider the homomorphism � �� pr� � incl � K � G
H � H� whose tangent
mapping satis�es Te���X� f�X�� � f�X�� We see that � �� � � �g � U��� �
G � U � H solves the problem� where U is an e�neighborhood in K such that
g � U is a di�eomorphism� If G is simply connected� � � � � g�� is the global
solution� �

���� Theorem� Let H be a closed subgroup of a Lie group G� Then H is a Lie
subgroup and a submanifold of G�

Proof� Let g be the Lie algebra of G� We consider the subset h �� fc���� � c �
C��R� G�� c�R� � H� c��� � eg�
Claim �� h is a linear subspace�
If c�i��� � h and ti � R� we de�ne c�t� �� c��t��t��c��t��t�� Then c���� �
T�e�e����t��c

�
����� t��c

�
����� � t��c

�
���� � t��c

�
���� � h�

Claim �� h � fX � g � exp�tX� � H for all t � Rg�
Clearly we have ���� To check the other inclusion� let X � c���� � h and consider
v�t� �� �expG���c�t� for small t� Then we have X � c���� � d

dt j� exp�v�t�� �
v���� � limn�� n�v� �

n
�� We put tn �

�
n
and Xn � n�v� �

n
�� so that exp�tn�Xn� �

exp�v� �n �� � c� �n � � H� By claim � below we then get exp�tX� � H for all t�
Claim �� Let Xn � X in g� � � tn � � in R with exp�tnXn� � H� Then
exp�tX� � H for all t � R�
Let t � R and take mn � � ttn ��� t

tn
��Z� Then tn�mn � t and mn�tn�Xn � tX�

and since H is closed we may conclude that

exp�tX� � lim
n
exp�mn�tn�Xn� � lim

n
exp�tn�Xn�

mn � H�

Claim �� Let k be a complementary linear subspace for h in g� Then there is
an open ��neighborhood W in k such that exp�W � �H � feg�
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If not there are � �� Yk � k with Yk � � such that exp�Yk� � H� Choose a
norm j j on g and let Xn � Yn�jYnj� Passing to a subsequence we may assume
that Xn � X in k� then jXj � �� But exp�jYnj�Xn� � exp�Yn� � H and
� � jYnj � �� so by claim � we have exp�tX� � H for all t � R� So by claim �
X � h� a contradiction�
Claim �� Put � � h 
 k � G� ��X�Y � � expX� expY � Then there are ��
neighborhoods V in h� W in k� and an e�neighborhood U in G such that � �
V 
W � U is a di�eomorphism and U �H � exp�V ��
Choose V � W � and U so small that � becomes a di�eomorphism� By claim
� W may be chosen so small that exp�W � � H � feg� By claim � we have
exp�V � � H � U � Let x � H � U � Since x � U we have x � expX� expY for
unique �X�Y � � V 
W � Then x and expX � H� so expY � H � exp�W �� thus
Y � �� So x � expX � exp�V ��
Claim �� H is a submanifold and a Lie subgroup�
�U� �� � V 
W ��� �� u� is a submanifold chart for H centered at e by claim ��
For x � H the pair ��x�U�� u � �x��� is a submanifold chart for H centered at
x� So H is a closed submanifold of G� and the multiplication is smooth since it
is a restriction� �

���� Remark� The following stronger results on subgroups and the relation
between topological groups and Lie groups in general are available�
Any arc wise connected subgroup of a Lie group is a connected Lie subgroup�

�Yamabe� �	����
Let G be a separable locally compact topological group� If it has an e�

neighborhood which does not contain a proper subgroup� then G is a Lie group�
This is the solution of the ��th problem of Hilbert� see the book �Montgomery�
Zippin� �	��� p� ��
��
Any subgroup H of a Lie group G has a coarsest Lie group structure� but

it might be non separable� To indicate a proof of this statement� consider all
continuous curves c � R � G with c�R� � H� and equip H with the �nal topology
with respect to them� Then the component of the identity satis�es the conditions
of the Gleason�Yamabe theorem cited above�

��	� Let g be a Lie algebra� An ideal k in g is a linear subspace k such that
�k� g� � k� Then the quotient space g�k carries a unique Lie algebra structure
such that g� g�k is a Lie algebra homomorphism�

Lemma� A connected Lie subgroup H of a connected Lie group G is a normal
subgroup if and only if its Lie algebra h is an ideal in g�

Proof� H normal in G means xHx�� � conjx�H� � H for all x � G� By remark
���� this is equivalent to Te�conjx��h� � h� i�e� Ad�x�h � h� for all x � G� But
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this in turn is equivalent to ad�X�h � h for all X � g� so to the fact that h is an
ideal in g� �

��
� Let G be a connected Lie group� If A � G is an arbitrary subset� the
centralizer of A in G is the closed subgroup ZA �� fx � G � xa � ax for all a �
Ag�
The Lie algebra zA of ZA consists of all X � g such that a� exp�tX��a�� �

exp�tX� for all a � A� i�e� zA � fX � g � Ad�a�X � X for all a � Ag�
If A is itself a connected Lie subgroup of G� then zA � fX � g � ad�Y �X �

� for all Y � ag� This set is also called the centralizer of a in g� If A � G then
ZG is called the center of G and zG � fX � g � �X�Y � � � for all Y � gg is then
the center of the Lie algebra g�

���� The normalizer of a subset A of a connected Lie group G is the subgroup
NA � fx � G � �x�A� � �x�A�g � fx � G � conjx�A� � Ag� If A is closed then
NA is also closed�
If A is a connected Lie subgroup of G then NA � fx � G � Ad�x�a � ag and

its Lie algebra is nA � fX � g � ad�X�a � ag is then the idealizer of a in g�

����� Group actions� A left action of a Lie group G on a manifold M is a
smooth mapping � � G
M � M such that �x � �y � �xy and �e � IdM � where
�x�z� � ��x� z��
A right action of a Lie group G on a manifold M is a smooth mapping r �

M 
G�M such that rx � ry � ryx and re � IdM � where r
x�z� � r�z� x��

A G�space is a manifold M together with a right or left action of G on M �
We will describe the following notions only for a left action of G on M � They

make sense also for right actions�
The orbit through z � M is the set G�z � ��G� z� � M � The action is called

transitive� if M is one orbit� i�e� for all z� w � M there is some g � G with
g�z � w� The action is called free� if g��z � g��z for some z �M implies already
g� � g�� The action is called e�ective� if �x � �y implies x � y� i�e� if � � G �
Di��M� is injective� where Di��M� denotes the group of all di�eomorphisms of
M �
More generally� a continuous transformation group of a topological space M

is a pair �G�M� where G is a topological group and where to each element x � G
there is given a homeomorphism �x ofM such that � � G
M �M is continuous�
and �x � �y � �xy� The continuity is an obvious geometrical requirement� but
in accordance with the general observation that group properties often force
more regularity than explicitly postulated �cf� ����� di�erentiability follows in
many situations� So� if G is locally compact� M is a smooth or real analytic
manifold� all �x are smooth or real analytic homeomorphisms and the action is
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e�ective� then G is a Lie group and � is smooth or real analytic� respectively� see
�Montgomery� Zippin� ��� p� �����

����� Homogeneous spaces� Let G be a Lie group and let H � G be a closed
subgroup� By theorem ��� H is a Lie subgroup of G� We denote by G�H the
space of all right cosets of G� i�e� G�H � fxH � x � Gg� Let p � G � G�H
be the projection� We equip G�H with the quotient topology� i�e� U � G�H is
open if and only if p���U� is open in G� Since H is closed� G�H is a Hausdor�
space�

G�H is called a homogeneous space of G� We have a left action of G on G�H�
which is induced by the left translation and is given by !�x�zH� � xzH�

Theorem� If H is a closed subgroup of G� then there exists a unique structure
of a smooth manifold on G�H such that p � G � G�H is a submersion� So
dimG�H � dimG� dimH�

Proof� Surjective submersions have the universal property ���� thus the manifold
structure on G�H is unique� if it exists� Let h be the Lie algebra of the Lie
subgroup H� We choose a complementary linear subspace k such that g � h� k�
Claim �� We consider the mapping f � k
H � G� given by f�X� h� �� expX�h�
Then there is an open ��neighborhood W in k and an open e�neighborhood U in
G such that f �W 
H � U is a di�eomorphism�
By claim � in the proof of theorem ��� there are open ��neighborhoods V in h�
W � in k� and an open e�neighborhood U � in G such that � � W � 
 V � U � is a
di�eomorphism� where ��X�Y � � expX� expY � and such that U � �H � expV �
Now we choose W in W � � k so small that exp�W ���� exp�W � � U �� We will
check that this W satis�es claim ��
Claim �� f �W 
H is injective�
f�X�� h�� � f�X�� h�� means expX��h� � expX��h�� consequently we have
h�h

��
� � �expX��

�� expX� � exp�W ��� exp�W � � H � U � � H � expV � So
there is a unique Y � V with h�h

��
� � expY � But then ��X�� �� � expX� �

expX��h��h
��
� � expX�� expY � ��X�� Y �� Since � is injective� X� � X� and

Y � �� so h� � h��
Claim �� f �W 
H is a local di�eomorphism�
The diagram

W 
 V w
Id
 exp

u
�

W 
 �U � �H�

u
f

��W 
 V � wincl U �

commutes� and IdW 
 exp and � are di�eomorphisms� So f � W 
 �U � � H�
is a di�eomorphism� Since f�X� h� � f�X� e��h we conclude that f � W 
 H
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is everywhere a local di�eomorphism� So �nally claim � follows� where U �
f�W 
H��
Now we put g �� p � �exp �W � � k �W � G�H� Then the following diagram

commutes�
W 
H w

f

u
pr�

U

u
p

W w
g

G�H�

Claim �� g is a homeomorphism onto p�U� �� !U � G�H�
Clearly g is continuous� and g is open� since p is open� If g�X�� � g�X�� then
expX� � expX��h for some h � H� so f�X�� e� � f�X�� h�� By claim � we get
X� � X�� so g is injective� Finally g�W � � !U � so claim � follows�
For a � G we consider !Ua � !�a� !U� � a� !U and the mapping ua �� g�� � !�a�� �

!Ua �W � k�
Claim �� � !Ua� ua � g�� � !�a�� � !Ua �W �a�G is a smooth atlas for G�H�
Let a� b � G such that !Ua � !Ub �� �� Then

ua � u��b � g�� � !�a�� � !�b � g � ub� !Ua � !Ub�� ua� !Ua � !Ub�
� g�� � !�a��b � p � �exp �W �
� g�� � p � �a��b � �exp �W �
� pr� � f�� � �a��b � �exp �W � is smooth� �

����� Let � � G 
M � M be a left action� Then we have partial mappings
�a �M �M and �x � G�M � given by �a�x� � �x�a� � ��a� x� � a�x�
For any X � g we de�ne the fundamental vector �eld �X � �MX � X�M� by

�X�x� � Te��
x��X � T�e�x����X� �x��

Lemma� In this situation the following assertions hold�

��� � � g� X�M� is a linear mapping�
��� Tx��a���X�x� � �Ad�a�X�a�x��
��� RX 
 �M � X�G
M� is ��related to �X � X�M��
��� ��X � �Y � � ���X�Y 
�

Proof� ��� is clear�
��� We have �a�

x�b� � abx � aba��ax � �axconja�b�� so

Tx��a���X�x� � Tx��a��Te��
x��X � Te��a � �x��X

� Te��
ax��Ad�a��X � �Ad�a�X�ax��
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��� We have � � �Id
 �a� � � � ��a 
 Id� � G
M �M � so

�X���a� x�� � T�e�ax����X� �ax� � T���Id
 T ��a����X� �x�

� T���T ��a�
 Id���X� �x� � T���RX 
 �M ��a� x��

��� �RX 
 �M � RY 
 �M � � �RX � RY � 
 �M � �R�X�Y 
 
 �M is ��related to
��X � �Y � by ��� and by ����� On the other hand �R�X�Y 
 
 �M is ��related to
���X�Y 
 by ��� again� Since � is surjective we get ��X � �Y � � ���X�Y 
� �

����� Let r � M 
 G � M be a right action� so *r � G � Di��M� is a group
anti homomorphism� We will use the following notation� ra � M � M and
rx � G�M � given by rx�a� � ra�x� � r�x� a� � x�a�
For any X � g we de�ne the fundamental vector �eld �X � �MX � X�M� by

�X�x� � Te�rx��X � T�x�e�r���x� X��

Lemma� In this situation the following assertions hold�

��� � � g� X�M� is a linear mapping�
��� Tx�r

a���X�x� � �Ad�a���X�x�a��
��� �M 
 LX � X�M 
G� is r�related to �X � X�M��
��� ��X � �Y � � ��X�Y 
� �

����� Theorem� Let � � G 
M � M be a smooth left action� For x � M let
Gx � fa � G � ax � xg be the isotropy subgroup of x in G� a closed subgroup
of G� Then �x � G � M factors over p � G � G�Gx to an injective immersion
ix � G�Gx �M � which is G�equivariant� i�e� �a � ix � ix � !�a for all a � G� The
image of ix is the orbit through x�

The fundamental vector �elds span an integrable distribution on M in the
sense of ����� Its leaves are the connected components of the orbits� and each
orbit is an initial submanifold�

Proof� Clearly �x factors over p to an injective mapping ix � G�Gx � M � by
the universal property of surjective submersions ix is smooth� and obviously
it is equivariant� Thus Tp�a��i

x��Tp�e��!�a� � Tp�e��i
x � !�a� � Tp�e���a � ix� �

Tx��a��Tp�e��i
x� for all a � G and it su ces to show that Tp�e��i

x� is injective�
Let X � g and consider its fundamental vector �eld �X � X�M�� By ���� and

������ we have

��exp�tX�� x� � ��FlRX��Mt �e� x�� � Fl�Xt ���e� x�� � Fl
�X
t �x��

So exp�tX� � Gx� i�e� X � gx� if and only if �X�x� � �x� In other words�
�x � �X�x� � Te��

x��X � Tp�e��i
x��Tep�X if and only if Tep�X � �p�e�� Thus i

x

is an immersion�
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Since the connected components of the orbits are integral manifolds� the fun�
damental vector �elds span an integrable distribution in the sense of ����� but
also the condition ������ is satis�ed� So by theorem ���� each orbit is an initial
submanifold in the sense of ����� �

����� Semidirect products of Lie groups� Let H and K be two Lie groups
and let � � H 
K � K be a smooth left action of H in K such that each �h �
K � K is a group homomorphism� So the associated mapping *� � H � Aut�K�
is a smooth homomorphism into the automorphism group of K� Then we can
introduce the following multiplication on K 
H

��� �k� h��k�� h�� �� �k�h�k��� hh���

It is easy to see that this de�nes a Lie group G � K n� H called the semidirect
product of H and K with respect to �� If the action � is clear from the context we
write G � K nH only� The second projection pr� � K nH � H is a surjective
smooth homomorphism with kernelK
feg� and the insertion inse � H � KnH�
inse�h� � �e� h� is a smooth group homomorphism with pr� � inse � IdH �
Conversely we consider an exact sequence of Lie groups and homomorphisms

��� feg � K
j�� G

p�� H � feg�
So j is injective� p is surjective� and the kernel of p equals the image of j�
We suppose furthermore that the sequence splits� so that there is a smooth
homomorphism i � H � G with p � i � IdH � Then the rule �h�k� � i�h�ki�h���
�where we suppress j� de�nes a left action of H on K by automorphisms� It
is easily seen that the mapping K n� H � G given by �k� h� �� ki�h� is an
isomorphism of Lie groups� So we see that semidirect products of Lie groups
correspond exactly to splitting short exact sequences�

����� The tangent group of a Lie group� Let G be a Lie group with
Lie algebra g� We will use the notation from ���� First note that TG is
also a Lie group with multiplication T� and inversion T�� given by �see ����

T�a�b�����a� �b� � Ta��
b���a � Tb��a���b and Ta���a � �Te��a����Ta��

a��

���a�

Lemma� Via the isomomorphism T� � g
G� TG� T���X� g� � Te��
g��X� the

group structure on TG looks as follows� �X� a���Y� b� � �X � Ad�a�Y� a�b� and
�X� a��� � ��Ad�a���X� a���� So TG is isomorphic to the semidirect product
gnG�

Proof� T�a�b����T�
a�X� T�b�Y � � T�b�T�a�X � T�a�T�

b�Y �

� T�ab�X � T�b�T�a�T�a
��

�T�a�Y � T�ab�X �Ad�a�Y ��

Ta��T�
a�X � �T�a��

�T�a�� �T�a�X � �T�a��

�Ad�a���X� �
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Remark� In the left trivialisation T� � G 
 g � TG� T���g�X� � Te��g��X�
the semidirect product structure looks somewhat awkward� �a�X���b� Y � �
�ab�Ad�b���X � Y � and �a�X��� � �a����Ad�a�X��
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�� Vector Bundles

���� Vector bundles� Let p � E � M be a smooth mapping between mani�
folds� By a vector bundle chart on �E� p�M� we mean a pair �U� ��� where U is
an open subset in M and where � is a �ber respecting di�eomorphism as in the
following diagram�

E � U �� p���U� w
�

A
A
AAC
p

U 
 V
�

�
���

pr�

U

Here V is a �xed �nite dimensional vector space� called the standard �ber or the
typical �ber� real for the moment�
Two vector bundle charts �U�� ��� and �U�� ��� are called compatible� if �� �

���� is a �ber linear isomorphism� i�e� ��� � ���� ��x� v� � �x� �����x�v� for some
mapping ���� � U��� �� U� �U� � GL�V �� The mapping ���� is then unique and
smooth� and it is called the transition function between the two vector bundle
charts�
A vector bundle atlas �U�� �����A for �E� p�M� is a set of pairwise compatible

vector bundle charts �U�� ��� such that �U����A is an open cover of M � Two
vector bundle atlases are called equivalent� if their union is again a vector bundle
atlas�
A vector bundle �E� p�M� consists of manifolds E �the total space�� M �the

base�� and a smooth mapping p � E � M �the projection� together with an
equivalence class of vector bundle atlases� So we must know at least one vector
bundle atlas� p turns out to be a surjective submersion�

���� Let us �x a vector bundle �E� p�M� for the moment� On each �ber Ex ��
p���x� �for x � M� there is a unique structure of a real vector space� induced
from any vector bundle chart �U�� ��� with x � U�� So �x � Ex is a special
element and � �M � E� ��x� � �x� is a smooth mapping� the zero section�
A section u of �E� p�M� is a smooth mapping u � M � E with p � u � IdM �

The support of the section u is the closure of the set fx � M � u�x� �� �xg in
M � The space of all smooth sections of the bundle �E� p�M� will be denoted by
either C��E� � C��E� p�M� � C��E �M�� Clearly it is a vector space with
�ber wise addition and scalar multiplication�
If �U�� �����A is a vector bundle atlas for �E� p�M�� then any smooth map�

ping f� � U� � V �the standard �ber� de�nes a local section x �� ���� �x� f��x��
on U�� If �g����A is a partition of unity subordinated to �U��� then a global
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section can be formed by x �� P
� g��x� � ���� �x� f��x��� So a smooth vector

bundle has �many� smooth sections�

���� We will now give a formal description of the amount of vector bundles with
�xed base M and �xed standard �ber V �
Let us �rst �x an open cover �U����A of M � If �E� p�M� is a vector bundle

which admits a vector bundle atlas �U�� ��� with the given open cover� then
we have �� � ���� �x� v� � �x� ����x�v� for transition functions ��� � U�� �

U��U� � GL�V �� which are smooth� This family of transition functions satis�es

���

�
����x� � ����x� � ����x� for each x � U��� � U� � U� � U�
����x� � e for all x � U�

Condition ��� is called a cocycle condition and thus we call the family ����� the
cocycle of transition functions for the vector bundle atlas �U�� ����
Let us suppose now that the same vector bundle �E� p�M� is described by an

equivalent vector bundle atlas �U�� ��� with the same open cover �U��� Then
the vector bundle charts �U�� ��� and �U�� ��� are compatible for each �� so
�� � ���� �x� v� � �x� ���x�v� for some �� � U� � GL�V �� But then we have

�x� ���x�����x�v� � ��� � ���� ��x� ����x�v�
� ��� � ���� � �� � ���� ��x� v� � ��� � ���� ��x� v�
� ��� � ���� � �� � ���� ��x� v� � �x� ����x����x�v��

So we get

��� ���x�����x� � ����x����x� for all x � U�� �

We say that the two cocycles ����� and ����� of transition functions over
the cover �U�� are cohomologous� The cohomology classes of cocycles �����
over the open cover �U�� �where we identify cohomologous ones� form a set
*H���U��� GL�V �� the �rst �Cech cohomology set of the open cover �U�� with
values in the sheaf C�� � GL�V �� �� GL�V ��
Now let �Wi�i�I be an open cover of M that re�nes �U�� with Wi � U
�i��

where � � I � A is some re�nement mapping� then for any cocycle ����� over
�U�� we de�ne the cocycle �

������ �� ��ij� by the prescription �ij �� �
�i��
�j� �
Wij � The mapping �

� respects the cohomology relations and induces therefore
a mapping �� � *H���U��� GL�V �� � *H���Wi�� GL�V ��� One can show that
the mapping �� depends on the choice of the re�nement mapping � only up to
cohomology �use �i � �
�i����i� �Wi if � and � are two re�nement mappings�� so

we may form the inductive limit lim�� *H��U � GL�V �� �� *H��M�GL�V �� over all
open covers of M directed by re�nement�
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Theorem� There is a bijective correspondence between *H��M�GL�V �� and the
set of all isomorphism classes of vector bundles over M with typical �ber V �

Proof� Let ����� be a cocycle of transition functions ��� � U�� � GL�V � over
some open cover �U�� of M � We consider the disjoint union

F
��Af�g
U�
 V

and the following relation on it� ��� x� v� 
 �
� y� w� if and only if x � y and
����x�v � w�
By the cocycle property ��� of ����� this is an equivalence relation� The space

of all equivalence classes is denoted by E � V B����� and it is equipped with the
quotient topology� We put p � E �M � p���� x� v�� � x� and we de�ne the vector
bundle charts �U�� ��� by ������ x� v�� � �x� v�� �� � p

���U�� �� E � U� �
U�
V � Then the mapping ������� �x� v� � ����
� x� v�� � ������ x� ����x�v�� �

�x� ����x�v� is smooth� so E becomes a smooth manifold� E is Hausdor�� let
u �� v in E� if p�u� �� p�v� we can separate them inM and take the inverse image
under p� if p�u� � p�v�� we can separate them in one chart� So �E� p�M� is a
vector bundle�
Now suppose that we have two cocycles ����� over �U��� and ��ij� over �Vi��

Then there is a common re�nement �W�� for the two covers �U�� and �Vi��
The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a �ner open cover� So we may assume that �����
and ����� are cocycles over the same open cover �U��� If the two cocycles are
cohomologous� so �� ���� � ��� � �� on U��� then a �ber linear di�eomorphism
� � V B������ V B����� is given by ��� ���� x� v�� � �x� ���x�v�� By relation ���
this is well de�ned� so the vector bundles V B����� and V B����� are isomorphic�
Most of the converse direction was already shown in the discussion before the

theorem� and the argument can be easily re�ned to show also that isomorphic
bundles give cohomologous cocycles� �

Remark� If GL�V � is an abelian group �only if V is of real or complex dimension
��� then *H��M�GL�V �� is a usual cohomology group with coe cients in the
sheaf GL�V � and it can be computed with the methods of algebraic topology� If
GL�V � is not abelian� then the situation is rather mysterious� there is no clear
de�nition for *H��M�GL�V �� for example� So *H��M�GL�V �� is more a notation
than a mathematical concept�
A coarser relation on vector bundles �stable isomorphism� leads to the concept

of topological K�theory� which can be handled much better� but is only a quotient
of the real situation�

���� Let �U�� ��� be a vector bundle atlas on a vector bundle �E� p�M�� Let
�ej�

k
j�� be a basis of the standard �ber V � We consider the section sj�x� ��

���� �x� ej� for x � U�� Then the sj � U� � E are local sections of E such that
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�sj�x��
k
j�� is a basis of Ex for each x � U�� we say that s � �s�� � � � � sk� is a

local frame �eld for E over U��
Now let conversely U � M be an open set and let sj � U � E be local

sections of E such that s � �s�� � � � � sk� is a local frame �eld of E over U � Then s
determines a unique vector bundle chart �U� �� of E such that sj�x� � ����x� ej��
in the following way� We de�ne f � U 
 Rk � E � U by f�x� v�� � � � � vk� ��Pk

j�� v
jsj�x�� Then f is smooth� invertible� and a �ber linear isomorphism� so

�U� � � f��� is the vector bundle chart promised above�

���� Let �E� p�M� and �F� q�N� be vector bundles� A vector bundle homomor�
phism � � E � F is a �ber respecting� �ber linear smooth mapping

E w
�

u
p

F

u
q

M w
�

N�

So we require that �x � Ex � F��x� is linear� We say that � covers �� If � is

invertible� it is called a vector bundle isomorphism�

���� A vector sub bundle �F� p�M� of a vector bundle �E� p�M� is a vector bundle
and a vector bundle homomorphism � � F � E� which covers IdM � such that
�x � Ex � Fx is a linear embedding for each x �M �

Lemma� Let � � �E� p�M� � �E�� q� N� be a vector bundle homomorphism
such that rank��x � Ex � E���x�� is constant in x � M � Then ker�� given by

�ker��x � ker��x�� is a vector sub bundle of �E� p�M��

Proof� This is a local question� so we may assume that both bundles are trivial�
let E � M 
 Rp and let F � N 
 Rq � then ��x� v� � ���x�� ��x��v�� where
� �M � L�Rp �Rq �� The matrix ��x� has rank k� so by the elimination procedure
we can �nd p�k linearly independent solutions vi�x� of the equation ��x��v � ��
The elimination procedure �with the same lines� gives solutions vi�y� for y near
x� so near x we get a local frame �eld v � �v�� � � � � vp�k� for ker�� By ��� ker�
is then a vector sub bundle� �

��	� Constructions with vector bundles� Let F be a covariant functor from
the category of �nite dimensional vector spaces and linear mappings into itself�
such that F � L�V�W � � L�F�V ��F�W �� is smooth� Then F will be called a
smooth functor for shortness sake� Well known examples of smooth functors are

F�V � � +k�V � �the k�th exterior power�� or F�V � �Nk
V � and the like�
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If �E� p�M� is a vector bundle� described by a vector bundle atlas with cocycle
of transition functions ��� � U�� � GL�V �� where �U�� is an open cover of M �
then we may consider the smooth functions F����� � x �� F�����x��� U�� �
GL�F�V ��� Since F is a covariant functor� F����� satis�es again the cocycle
condition ������ and cohomology of cocycles ����� is respected� so there exists
a unique vector bundle �F�E� �� V B�F������� p�M�� the value at the vector
bundle �E� p�M� of the canonical extension of the functor F to the category of
vector bundles and their homomorphisms�

If F is a contravariant smooth functor like duality functor F�V � � V �� then
we have to consider the new cocycle F������� instead of F������
If F is a contra�covariant smooth bifunctor like L�V�W �� then the construction

F�V B������ V B������ �� V B�F������ � ����� describes the induced canonical
vector bundle construction� and similarly in other constructions�

So for vector bundles �E� p�M� and �F� q�M� we have the following vector
bundles with base M � +kE� E � F � E�� +E �

L
k
� +

kE� E � F � L�E�F � 
�
E� � F � and so on�

��
� Pullbacks of vector bundles� Let �E� p�M� be a vector bundle and let
f � N �M be smooth� Then the pullback vector bundle �f�E� f�p�N� with the
same typical �ber and a vector bundle homomorphism

f�E w
p�f

u
f�p

E

u
p

N w
f

M

is de�ned as follows� Let E be described by a cocycle ����� of transition functions
over an open cover �U�� of M � E � V B������ Then ���� � f� is a cocycle of
transition functions over the open cover �f���U��� of N and the bundle is given
by f�E �� V B���� � f�� As a manifold we have f�E � N 


�f�M�p�
E in the sense

of ���	�

The vector bundle f�E has the following universal property� For any vector
bundle �F� q� P �� vector bundle homomorphism � � F � E and smooth g �
P � N such that f � g � �� there is a unique vector bundle homomorphism
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� � F � f�E with � � g and p�f � � � ��

F�
�
����

u

q

�

u
f�E w

p�f

u
f�p

E

u
p

P w
g

N w
f

M�

���� Theorem� Any vector bundle admits a �nite vector bundle atlas�

Proof� Let �E� p�M� be the vector bundle in question� where dimM � m� Let
�U�� �����A be a vector bundle atlas� Since M is separable� by topological
dimension theory there is a re�nement of the open cover �U����A of the form
�Vij�i���			�m���j�N� such that Vij � Vik � � for j �� k� see the remarks at the end
of ���� We de�ne the setWi ��

S
j�N Vij �a disjoint union� and �i � Vij � ���i�j��

where � � f�� � � � �m� �g 
 N � A is a re�ning map� Then �Wi� �i�i���			�m�� is
a �nite vector bundle atlas of E� �

����� Theorem� For any vector bundle �E� p�M� there is a second vector bun�
dle �F� p�M� such that �E � F� p�M� is a trivial vector bundle� i�e� isomorphic
to M 
 RN for some N � N�
Proof� Let �Ui� �i�

n
i�� be a �nite vector bundle atlas for �E� p�M�� Let �gi�

be a smooth partition of unity subordinated to the open cover �Ui�� Let �i �
Rk � �Rk �n � Rk 
 � � � 
 Rk be the embedding on the i�th factor� where
Rk is the typical �ber of E� Let us de�ne � � E � M 
 Rnk by ��u� �
�p�u��

Pn
i�� gi�p�u�� ��i � pr� � �i��u��� then � is smooth� �ber linear� and an

embedding on each �ber� so E is a vector sub bundle of M 
 Rnk via �� Now
we de�ne Fx � E�x in fxg 
 Rnk with respect to the standard inner product on
Rnk � Then F �M is a vector bundle and E � F 
�M 
 Rnk � �

����� The tangent bundle of a vector bundle� Let �E� p�M� be a vector
bundle with �ber addition �E � E 
M E � E and �ber scalar multiplication
mE
t � E � E� Then �TE� 	E� E�� the tangent bundle of the manifold E� is itself

a vector bundle� with �ber addition denoted by �TE and scalar multiplication
denoted by mTE

t �
If �U�� �� � E � U� � U� 
 V ���A is a vector bundle atlas for E� such that

�U�� u�� is also a manifold atlas for M � then �E � U�� �
�
����A is an atlas for the

manifold E� where

��� �� �u� 
 IdV � � �� � E � U� � U� 
 V � u��U��
 V � Rm 
 V�
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Hence the family �T �E � U��� T�
�
� � T �E � U�� � T �u��U��
 V � � u��U�� 


V 
Rm 
V ���A is the atlas describing the canonical vector bundle structure of
�TE� 	E� E�� The transition functions are in turn�

��� � ���� ��x� v� � �x� ����x�v� for x � U��

�u� � u��� ��y� � u���y� for y � u��U���

���� � ���������y� v� � �u���y�� ����u��� �y��v�
�T��� � T ���������y� v� �� w� �

�
u���y�� ����u

��
� �y��v� d�u����y���

�d���� � u��� ��y����v � ����u
��
� �y��w

�
�

So we see that for �xed �y� v� the transition functions are linear in ��� w� � Rm

V � This describes the vector bundle structure of the tangent bundle �TE� 	E� E��
For �xed �y� �� the transition functions of TE are also linear in �v� w� � V 
V �

This gives a vector bundle structure on �TE� Tp� TM�� Its �ber addition will be
denoted by T ��E� � T �E 
M E� � TE 
TM TE � TE� since it is the tangent
mapping of �E � Likewise its scalar multiplication will be denoted by T �mE

t ��
One may say that the second vector bundle structure on TE� that one over TM �
is the derivative of the original one on E�
The space f, � TE � Tp�, � � in TMg � �Tp������ is denoted by V E and is

called the vertical bundle over E� The local form of a vertical vector , is T����, �
�y� v� �� w�� so the transition function looks like �T��� � T ���������y� v� �� w� �
�u���y�� ����u

��
� �y��v� �� ����u

��
� �y��w�� They are linear in �v� w� � V 
 V for

�xed y� so V E is a vector bundle over M � It coincides with ��M �TE� Tp� TM��
the pullback of the bundle TE � TM over the zero section� We have a canonical
isomorphism vlE � E
ME � V E� called the vertical lift� given by vlE�ux� vx� ��
d
dt j��ux � tvx�� which is �ber linear over M � The local representation of the
vertical lift is �T��� � vlE � ���� 
 ����

�����y� u�� �y� v�� � �y� u� �� v��
If �and only if� � � �E� p�M�� �F� q�N� is a vector bundle homomorphism�

then we have vlF ���
M �� � T��vlE � E
ME � V F � TF � So vl is a natural
transformation between certain functors on the category of vector bundles and
their homomorphisms�
The mapping vprE �� pr� � vl��E � V E � E is called the vertical projection�

Note also the relation pr� � vl��E � 	E � V E�

����� The second tangent bundle of a manifold� All of ���� is valid
for the second tangent bundle T �M � TTM of a manifold� but here we have
one more natural structure at our disposal� The canonical �ip or involution
�M � T �M � T �M is de�ned locally by

�T �u � �M � T �u����x� �� �� �� � �x� �� �� ���
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�� Vector Bundles� ���� ��

where �U� u� is a chart on M � Clearly this de�nition is invariant under changes
of charts�
The $ip �M has the following properties�

��� �N � T �f � T �f � �M for each f � C��M�N��
��� T �	M � � �M � 	TM �
��� 	TM � �M � T �	M ��
��� ���M � �M �
��� �M is a linear isomorphism from the bundle �TTM� T �	M�� TM� to the

bundle �TTM� 	TM � TM�� so it interchanges the two vector bundle struc�
tures on TTM �

��� It is the unique smooth mapping TTM � TTM which satis�es the
equation �

�t
�
�sc�t� s� � �M

�
�s

�
�tc�t� s� for each c � R

� �M �

All this follows from the local formula given above�

����� Lemma� For vector �elds X� Y � X�M� we have

�X�Y � � vprTM � �TY �X � �M � TX � Y ��

We will give global proofs of this result later on� the �rst one is ���	�

Proof� We prove this locally� so we may assume that M is open in Rm � X�x� �
�x� !X�x��� and Y �x� � �x� !Y �x��� Then by ��� we have

�X�Y ��x� � �x� d !Y �x�� !X�x�� d !X�x�� !Y �x���

and thus

vprTM � �TY �X � �M � TX � Y ��x� �
� vprTM � �TY��x� !X�x��� �M � TX��x� !Y �x��� �
� vprTM

�
�x� !Y �x�� !X�x�� d !Y �x�� !X�x���
� �M ��x� !X�x�� !Y �x�� d !X�x�� !Y �x��

�
�

� vprTM �x� !Y �x�� �� d !Y �x�� !X�x�� d !X�x�� !Y �x�� �

� �x� d!Y �x�� !X�x�� d !X�x�� !Y �x��� �

����� Natural vector bundles or vector bundle functors� Let Mfm de�
note the category of all m�dimensional smooth manifolds and local di�eomor�
phisms �i�e� immersions� between them� A vector bundle functor or natural
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vector bundle is a functor F which associates a vector bundle �F �M�� pM �M� to
each m�manifold M and a vector bundle homomorphism

F �M� w
F �f�

u
pM

F �N�

u
pN

M w
f

N

to each f � M � N in Mfm� which covers f and is �berwise a linear iso�
morphism� We also require that for smooth f � R 
 M � N the mapping
�t� x� �� F �ft��x� is also smooth R 
 F �M�� F �N�� We will say that F maps
smoothly parametrized families to smoothly parametrized families�

Examples� �� TM � the tangent bundle� This is even a functor on the category
Mf �
�� T �M � the cotangent bundle� where by ��
 the action on morphisms is given

by �T �f�x �� ��Txf����� � T �xM � T �f�x�N � This functor is de�ned on Mfm
only�
�� +kT �M � +T �M �

L
k
� +

kT �M �

��
Nk T �M �N� TM � T �M � � � � � T �M � TM � � � � � TM � where the

action on morphisms involves Tf�� in the T �M �parts and Tf in the TM �parts�
�� F�TM�� where F is any smooth functor on the category of �nite dimen�

sional vector spaces and linear mappings� as in ��
�

����� Lie derivative� Let F be a vector bundle functor onMfm as described
in ����� Let M be a manifold and let X � X�M� be a vector �eld on M � Then

the $ow FlXt � for �xed t� is a di�eomorphism de�ned on an open subset of M �
which we do not specify� The mapping

F �M� w
F �FlXt �

u
pM

F �M�

u
pM

M w
FlXt M

is then a vector bundle isomorphism� de�ned over an open subset of M �
We consider a section s � C��F �M�� of the vector bundle �F �M�� pM �M�

and we de�ne for t � R

�FlXt �
�s �� F �FlX�t� � s � FlXt �
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a local section of the bundle F �M�� For each x � M the value ��FlXt �
�s��x� �

F �M�x is de�ned� if t is small enough� So in the vector space F �M�x the

expression d
dt j���FlXt ��s��x� makes sense and therefore the section

LXs �� d
dt
j��FlXt ��s

is globally de�ned and is an element of C��F �M��� It is called the Lie derivative
of s along X�

Lemma� In this situation we have

��� �FlXt �
��FlXr �

�s � �FlXt�r�
�s� whenever de�ned�

��� d
dt �Fl

X
t �

�s � �FlXt �
�LXs � LX�FlXt ��s� so

�LX � �FlXt ��� �� LX � �FlXt �� � �FlXt �� � LX � �� whenever de�ned�
��� �FlXt �

�s � s for all relevant t if and only if LXs � ��
Proof� ��� is clear� ��� is seen by the following computations�

d
dt �Fl

X
t �

�s � d
dr j��FlXr ���FlXt ��s � LX�FlXt ��s�

d
dt ��Fl

X
t �

�s��x� � d
dr j���FlXt ���FlXr ��s��x�

� d
dr j�F �FlX�t��F �FlX�r� � s � FlXr ��FlXt �x��

� F �FlX�t�
d
dr j��F �FlX�r� � s � FlXr ��FlXt �x��

� ��FlXt �
�LXs��x��

since F �FlX�t� � F �M�FlXt �x� � F �M�x is linear�

��� follows from ���� �

����� Let F�� F� be two vector bundle functors on Mfm� Then the tensor
product �F� � F���M� �� F��M�� F��M� is again a vector bundle functor and
for si � C��Fi�M�� there is a section s� � s� � C���F� � F���M��� given by
the pointwise tensor product�

Lemma� In this situation� for X � X�M� we have

LX�s� � s�� � LXs� � s� � s� � LXs��
In particular� for f � C��M�R� we have LX�fs� � df�X� s� f LXs�
Proof� Using the bilinearity of the tensor product we have

LX�s� � s�� �
d
dt
j��FlXt ���s� � s��

� d
dt
j���FlXt ��s� � �FlXt ��s��

� d
dt
j��FlXt ��s� � s� � s� � d

dt
j��FlXt ��s�

� LXs� � s� � s� � LXs�� �
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���	� Let � � F� � F� be a linear natural transformation between vector bun�
dle functors on Mfm� So for each M � Mfm we have a vector bundle ho�
momorphism �M � F��M� � F��M� covering the identity on M � such that
F��f� � �M � �N � F��f� holds for any f �M � N inMfm�

Lemma� In this situation� for s � C��F��M�� and X � X�M�� we have
LX��M s� � �M �LXs��
Proof� Since �M is �ber linear and natural we can compute as follows�

LX��M s��x� � d
dt
j���FlXt ����M s���x�

� d
dt
j��F��FlX�t� � �M � s � FlXt ��x�

� �M � d
dt
j��F��FlX�t� � s � FlXt ��x�

� ��M LXs��x�� �

���
� A tensor �eld of type
�
p
q

�
is a smooth section of the natural bundleNq T �M �Np TM � For such tensor �elds� by ���� the Lie derivative along

any vector �eld is de�ned� by ���� it is a derivation with respect to the tensor
product� and by ���
 it commutes with any kind of contraction or �permutation
of the indices�� For functions and vector �elds the Lie derivative was already
de�ned in section ��

����� Let F be a vector bundle functor on Mfm and let X � X�M� be a

vector �eld� We consider the local vector bundle homomorphism F �FlXt � on

F �M�� Since F �FlXt � � F �FlXs � � F �FlXt�s� and F �FlX� � � IdF �M� we have
d
dtF �Fl

X
t � �

d
ds j�F �FlXs � � F �FlXt � � XF � F �FlXt �� so we get F �FlXt � � FlX

F

t �

where XF � d
ds
j�F �FlXs � � X�F �M�� is a vector �eld on F �M�� which is called

the �ow prolongation or the natural lift of X to F �M��

Lemma�

��� XT � �M � TX�
��� �X�Y �F � �XF � Y F ��
��� XF � �F �M�� pM �M�� �TF �M�� T �pM�� TM� is a vector bundle homo�

morphism for the T ����structure�
��� For s � C��F �M�� and X � X�M� we have

LXs � vprF �M��Ts �X �XF � s��
��� LXs is linear in X and s�
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Proof� ��� is an easy computation� F �FlXt � is �ber linear and this implies ����
��� is seen as follows�

�LXs��x� � d
dt
j��F �FlX�t� � s � FlXt ��x� in F �M�x

� vprF �M��
d
dt
j��F �FlX�t� � s � FlXt ��x� in V F �M��

� vprF �M���XF � s � FlX� �x� � T �F �FlX� �� � Ts �X�x��
� vprF �M��Ts �X �XF � s��x��

���� LXs is homogeneous of degree � in X by formula ���� and it is smooth as a
mapping X�M�� C��F �M��� so it is linear� See �Fr�olicher� Kriegl� ��� for the
convenient calculus in in�nite dimensions�
���� Note �rst that F induces a smooth mapping between appropriate spaces

of local di�eomorphisms which are in�nite dimensional manifolds �see �Kriegl�
Michor� 	���� By ���� we have

� � �
�t

��
�
�FlY�t �FlX�t �FlYt �FlXt ��

�X�Y � � �
�
��

�t�
j��FlY�t �FlX�t �FlYt �FlXt �

� �
�t

��
�
Fl

�X�Y 

t �

Applying F to these curves �of local di�eomorphisms� we get

� � �
�t

��
�
�FlY

F

�t �FlX
F

�t �FlY
F

t �FlXF

t ��

�XF � Y F � � �
�
��

�t� j��FlY
F

�t �FlX
F

�t �FlY
F

t �FlXF

t �

� �
�
��

�t� j�F �FlY�t �FlX�t �FlYt �FlXt �
� �

�t

��
�
F �Fl

�X�Y 

t � � �X�Y �F �

�

����� Theorem� For any vector bundle functor F on Mfm and X�Y � X�M�
we have

�LX �LY � �� LX � LY � LY � LX � L�X�Y 
 � C
��F �M��� C��F �M���

So L � X�M�� EndC��F �M�� is a Lie algebra homomorphism�
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�� Di�erential Forms

	��� The cotangent bundle of a manifoldM is the vector bundle T �M �� �TM���
the �real� dual of the tangent bundle�
If �U� u� is a chart on M � then � �

�u� � � � � �
�

�um � is the associated frame �eld

over U of TM � Since �
�ui jx�uj� � duj� �

�ui jx� � �ji we see that �du
�� � � � � dum� is

the dual frame �eld on T �M over U � It is also called a holonomous frame �eld�
A section of T �M is also called a ��form�

	��� According to ���� a tensor �eld of type
�
p
q

�
on a manifold M is a smooth

section of the vector bundle

pO
TM �

qO
T �M � TM

p timesz 
� �
� � � ��TM � T �M

q timesz 
� �
� � � �� T �M�

The position of p �up� and q �down� can be explained as follows� If �U� u� is a
chart on M � we have the holonomous frame �eld�

�
�ui�

� �
�ui�

� � � � � �
�uip

� duj� � � � � � dujq
�
i�f��			 �mgp�j�f��			 �mgq

over U of this tensor bundle� and for any
�
p
q

�
�tensor �eld A we have

A j U �
X
i�j

A
i�			ip
j�			jq

�
�ui�

� � � � � �
�uip

� duj� � � � � � dujq �

The coe cients have p indices up and q indices down� they are smooth functions
on U � From a categorical point of view one should look� where the indices of the
frame �eld are� but this convention here has a long tradition�

	��� Lemma� Let ( � X�M� 
 � � � 
 X�M� � X�M�k � C��
Nl TM� be a

mapping which is k�linear over C��M�R� then ( is given by the action of a�
l
k

�
�tensor �eld�

Proof� For simplicity�s sake we put k � �� � � �� so ( � X�M�� C��M�R� is a
C��M�R��linear mapping� (�f�X� � f�(�X��

Claim �� If X j U � � for some open subset U � M � then we have (�X� j
U � ��
Let x � U � We choose f � C��M�R� with f�x� � � and f j M n U � �� Then
f�X � X� so (�X��x� � (�f�X��x� � f�x��(�X��x� � ��

Claim �� If X�x� � � then also (�X��x� � ��
Let �U� u� be a chart centered at x� let V be open with x � V � !V � U � Then
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X j U �PXi �
�ui and X

i�x� � �� We choose g � C��M�R� with g j V � � and
supp g � U � Then �g��X� j V � X j V and by claim � (�X� j V depends only on
X j V and g��X �Pi�g�X

i��g� �
�ui � is a decomposition which is globally de�ned

on M � Therefore we have (�X��x� � (�g��X��x� � (
�P

i�g�X
i��g� �

�ui �
�
�x� �P

�g�Xi��x��(�g� �
�ui
��x� � ��

So we see that for a general vector �eld X the value (�X��x� depends only
on the value X�x�� for each x �M � So there is a linear map �x � TxM � R for
each x � M with (�X��x� � �x�X�x��� Then � � M � T �M is smooth since
� j V �Pi(�g�

�
�ui � du

i in the setting of claim �� �

	��� De
nition� A di�erential form of degree k or a k�form for short is a
section of the �natural� vector bundle +kT �M � The space of all k�forms will be
denoted by )k�M�� It may also be viewed as the space of all skew symmetric�
�
k

�
�tensor �elds� i� e� �by 
��� the space of all mappings

( � X�M�
 � � � 
 X�M� � X�M�k � C��M�R��

which are k�linear over C��M�R� and are skew symmetric�

(�X��� � � � � X�k� � sign� � (�X�� � � � � Xk�

for each permutation � � Sk�
We put )��M� �� C��M�R�� Then the space

)�M� ��
dimMM
k��

)k�M�

is an algebra with the following product� For � � )k�M� and � � )��M� and
for Xi in X�M� �or in TxM� we put

�� � ���X�� � � � � Xk��� �

� �
k� ��

X
��Sk��

sign� � ��X��� � � � � X�k����X��k���� � � � � X��k�����

This product is de�ned �ber wise� i� e� �� � ��x � �x � �x for each x � M � It
is also associative� i�e �� � �� � � � � � �� � ��� and graded commutative� i� e�
� � � � ����k�� � �� These properties are proved in multilinear algebra�
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	��� If f � N � M is a smooth mapping and � � )k�M�� then the pullback
f�� � )k�N� is de�ned for Xi � TxN by

��� �f���x�X�� � � � � Xk� �� �f�x��Txf�X�� � � � � Txf�Xk��

Then we have f������ � f���f��� so the linear mapping f� � )�M�� )�N�
is an algebra homomorphism� Moreover we have �g�f�� � f��g� � )�P �� )�N�
if g �M � P � and �IdM �

� � Id��M��
So M �� )�M� � C��+T �M� is a contravariant functor from the category

Mf of all manifolds and all smooth mappings into the category of real graded
commutative algebras� whereas M �� +T �M is a covariant vector bundle func�
tor de�ned only on Mfm� the category of m�dimensional manifolds and local
di�eomorphisms� for each m separately�

	��� The Lie derivative of di�erential forms� Since M �� +kT �M is a
vector bundle functor on Mfm� by ���� for X � X�M� the Lie derivative of a
k�form � along X is de�ned by

LX� � d
dt j��FlXt ����

Lemma� The Lie derivative has the following properties�

��� LX�� � �� � LX� � � � � � LX�� so LX is a derivation�
��� For Yi � X�M� we have

�LX���Y�� � � � � Yk� � X���Y�� � � � � Yk���
kX
i��

��Y�� � � � � �X�Yi�� � � � � Yk��

��� �LX �LY �� � L�X�Y 
��

Proof� The mapping Alt �
Nk T �M � +kT �M � given by

�AltA��Y�� � � � � Yk� ��
�
k�

X
�

sign��� A�Y��� � � � � Y�k��

is a linear natural transformation in the sense of ���
 and induces an algebra

homomorphism from
L

k
� C
��
Nk T �M� onto )�M�� So ��� follows from ����

and ���
�
���� Again by ���� and ���
 we may compute as follows� where Trace is the

full evaluation of the form on all vector �elds�

X���Y�� � � � � Yk�� � LX � Trace��� Y� � � � � � Yk�

� Trace �LX��� Y� � � � � � Yk�

� Trace
�LX�� �Y� � � � � � Yk�

� �� �Pi Y� � � � � � LXYi � � � � � Yk�
�
�
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Now we use LXYi � �X�Yi��
��� is a special case of ����� �

	�	� The insertion operator� For a vector �eld X � X�M� we de�ne the
insertion operator iX � i�X� � )k�M�� )k���M� by

�iX���Y�� � � � � Yk��� �� ��X�Y�� � � � � Yk����

Lemma�

��� iX is a graded derivation of degree �� of the graded algebra )�M�� so we
have iX�� � �� � iX� � � � ����deg�� � iX��

��� �LX � iY � �� LX � iY � iY � LX � i�X�Y 
�

Proof� ���� For � � )k�M� and � � )��M� we have

�iX�
�� � ����X�� � � � � Xk��� � �� � ���X�� � � � � Xk���

� �
k� ��

X
�

sign�����X��� � � � � X�k���X��k���� � � � � X��k�����

�iX�
� � � � ����k� � iX�

���X�� � � � � Xk���

� �
�k���� ��

X
�

sign�����X�� X��� � � � � X�k���X��k���� � � � � X��k����

�
����k

k% ��� ��%
X
�

sign�����X��� � � � � X��k������X�� X��k���� � � � ��

Using the skew symmetry of � and � we may distribute X� to each position by
adding an appropriate sign� These are k�� summands� Since �

�k���� ���
�

k� ������ �
k��
k� �� � and since we can generate each permutation in Sk�� in this way� the result
follows�
���� By ���� and ���
 we have�

LXiY � � LX Trace��Y � �� � Trace� LX�Y � ��

� Trace��LXY � �� Y � LX�� � i�X�Y 
�� iY LX�� �

	�
� The exterior di�erential� We want to construct a di�erential operator
)k�M�� )k���M� which is natural� We will show that the simplest choice will
work and �later� that it is essentially unique�
Let U be open in Rn � let � � )k�U� � C��U�Lkalt�R

n �R��� We consider the
derivative D� � C��U�L�Rn � Lkalt�R

n �R���� and we take its canonical image in
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C��U�Lk��alt �R
n �R��� Here we write D for the derivative in order to distinguish

it from the exterior di�erential� which we de�ne as d� �� �k � ��AltD�� more
explicitly as

�d��x�X�� � � � � Xk� �
�
k�

X
�

sign���D��x��X����X��� � � � � X�k����

�
kX
i��

����iD��x��Xi��X�� � � � �cXi� � � � � Xk��

where the hat over a symbol means that this is to be omitted� and whereXi � Rn �
Now we pass to an arbitrary manifold M � For a k�form � � )k�M� and

vector �elds Xi � X�M� we try to replace D��x��Xi��X�� � � � � in formula ��� by
Lie derivatives� We di�erentiate Xi���x��X�� dotsc�� � D��x��Xi��X�� � � � � �P

��j�k�j ��i ��x��X�� � � � � DXj�x�Xi� � � � �� so inserting this expression into for�

mula ��� we get �cf� ���� our working de�nition

d��X�� � � � � Xk� ��
kX
i��

����iXi���X�� � � � �cXi� � � � � Xk�����

�
X
i�j

����i�j���Xi� Xj�� X�� � � � �cXi� � � � �cXj� � � � � Xk��

d�� given by this formula� is �k����linear over C��M�R�� as a short computation
involving ��� shows� It is obviously skew symmetric� so by 
�� d� is a �k����form�
and the operator d � )k�M�� )k���M� is called the exterior derivative�

If �U� u� is a chart on M � then we have

� � U �
X

i��			�ik
�i��			 �ikdu

i� � � � � � duik �

where �i��			 �ik � �� �
�ui�

� � � � � �
�uik

�� An easy computation shows that ��� leads
to

��� d� � U �
X

i��			�ik
d�i��			 �ik � dui� � � � � � duik �

so that formulas ��� and ��� really de�ne the same operator�
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	��� Theorem� The exterior derivative d � )k�M�� )k���M� has the follow�
ing properties�

��� d����� � d��������deg ���d�� so d is a graded derivation of degree
	�

��� LX � iX � d� d � iX for any vector �eld X�
��� d� � d � d � ��
��� f� � d � d � f� for any smooth f � N �M �
��� LX � d � d � LX for any vector �eld X�
��� �LX �LY � � L�X�Y 
 for any two vector �elds X� Y �

Remark� In terms of the graded commutator

�D�� D�� �� D� �D� � ����deg�D�� deg�D��D� �D�

for graded homomorphisms and graded derivations �see ����� the assertions of
this theorem take the following form�

��� LX � �iX � d��
��� �

� �d� d� � ��
��� �f�� d� � ��
��� �LX � d� � ��

This point of view will be developed in section �� below� The equation ��� is a
special case of �����

Proof� ��� For � � )k�M� and Xi � X�M� we have

�LX�
���X�� � � � � Xk� � X����X�� � � � � Xk���

�
kX

j��

������j���X�� Xj�� X�� � � � �cXj� � � � � Xk� by 
�����

�iX�
d���X�� � � � � Xk� � d��X�� � � � � Xk�

�
kX
i��

����iXi���X�� � � � �cXi� � � � � Xk�� �

�
X

��i�j
����i�j���Xi� Xj�� X�� � � � �cXi� � � � �cXj� � � � � Xk��

�diX�
���X�� � � � � Xk� �

kX
i��

����i��Xi��iX�
���X�� � � � �cXi� � � � � Xk�� �

�
X

��i�j
����i�j���iX�

����Xi� Xj�� X�� � � � �cXi� � � � �cXj� � � � � Xk�
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� �
kX
i��

����iXi���X�� X�� � � � �cXi� � � � � Xk���

�
X

��i�j
����i�j���Xi� Xj�� X�� X�� � � � �cXi� � � � �cXj� � � � � Xk��

By summing up the result follows�
��� Let � � )p�M� and � � )q�M�� We prove the result by induction on

p� q�
p� q � �� d�f � g� � df � g � f � dg�
Suppose that ��� is true for p� q � k� Then for X � X�M� we have by part ���
and 
��� 
�
 and by induction

iX d�� � �� � LX�� � ��� d iX�� � ��
� LX� � � � � � LX� � d�iX� � � � ����p� � iX��
� iXd� � � � diX� � � � � � iXd� � � � diX� � diX� � �

� ����p��iX� � d� � ����pd� � iX� � � � diX�
� iX�d� � � � ����p� � d���

Since X is arbitrary� ��� follows�
��� By ��� d is a graded derivation of degree �� so d� � �

� �d� d� is a graded

derivation of degree � �see ������ and is obviously local� d��� � �� � d���� �
� � � � d���� Since )�M� is locally generated as an algebra by C��M�R� and
fdf � f � C��M�R�g� it su ces to show that d�f � � for each f � C��M�R�
�d	f � � is a consequence�� But this is easy� d�f�X�Y � � Xdf�Y �� Y df�X��
df��X�Y �� � XY f � Y Xf � �X�Y �f � ��
��� f� � )�M� � )�N� is an algebra homomorphism by 
��� so f� � d and

d�f� are both graded derivations over f� of degree �� So if f��d and d�f� agree
on � and on �� then also on ���� By the same argument as in the proof of ���
above it su ces to show that they agree on g and dg for all g � C��M�R�� We
have �f�dg�y�Y � � �dg�f�y��Tyf�Y � � �Tyf�Y ��g� � Y �g � f��y� � �df�g�y�Y ��
thus also df�dg � ddf�g � �� and f�ddg � ��
��� dLX � d iX d� ddiX � diXd� iXdd � LXd�
��� We use the graded commutator alluded to in the remarks� By the �graded�

Jacobi identity and by lemma 
�
�� we have

LX �LY � � �LX � �iY � d�� � ��LX � iY �� d���iY � �LX � d�� � �i�X�Y 
� d��� � L�X�Y 
� �

Draft from November ��� ���� Peter W� Michor� ���



�� Di
erential Forms� ���	 ��

	���� A di�erential form � � )k�M� is called closed if d� � �� and it is called
exact if � � d� for some � � )k���M�� Since d� � �� any exact form is closed�
The quotient space

Hk�M� ��
ker�d � )k�M�� )k���M��

im�d � )k���M�� )k�M��

is called the k�th De Rham cohomology space of M � As a preparation for our
treatment of cohomology we �nish with the

Lemma of Poincar�e� A closed di�erential form is locally exact� More precisely�
let � � )k�M� with d� � �� Then for any x �M there is an open neighborhood
U of x in M and a � � )k���U� with d� � � � U �

Proof� Let �U� u� be chart onM centered at x such that u�U� � Rm � So we may
just assume that M � Rm �
We consider � � R
Rm � Rm � given by ��t� x� � �t�x� � tx� Let I � X�Rm�

be the vector �eld I�x� � x� then ��et� x� � FlIt �x�� So for t � � we have

d
dt�

�
t� �

d
dt �Fl

I
log t�

�� � �
t �Fl

I
log t�

�LI�
� �

t�
�
t �iId� � diI�� �

�
t d�

�
t iI��

Note that Tx��t� � t�Id� Therefore

� �
t
��t iI��x�X�� � � � � Xk� �

�
t
�iI��tx�tX�� � � � � tXk�

� �
t�tx�tx� tX�� � � � � tXk� � �tx�x� tX�� � � � � tXk��

So if k � �� the �k����form �
t�

�
t iI� is de�ned and smooth in �t� x� for all t � R�

Clearly ���� � � and ���� � �� thus

� � ���� � ���� �
Z �

�

d
dt
��t�dt

�

Z �

�

d��t�
�
t iI��dt � d

�Z �

�

�
t�

�
t iI�dt

�
� d�� �
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	� Integration on Manifolds


��� Let U � Rn be an open subset� let dx denote Lebesque�measure on Rn

�which depends on the Euclidean structure�� let g � U � g�U� be a di�eo�
morphism onto some other open subset in Rn � and let f � g�U� � R be an
integrable continuous function� Then the transformation formula for multiple
integrals reads Z

g�U�

f�y� dy �

Z
U

f�g�x��j detdg�x�jdx�

This suggests that the suitable objects for integration on a manifold are sections
of ��dimensional vector bundle whose cocycle of transition functions is given by
the absolute value of the Jacobi matrix of the chart changes� They will be called
densities below�


��� The volume bundle� Let M be a manifold and let �U�� u�� be a smooth
atlas for it� The volume bundle �Vol�M�� 	M �M� of M is the one dimensional
vector bundle �line bundle� which is given by the following cocycle of transition
functions� see ����

��� � U�� � U� � U� � R n f�g � GL���R��

����x� � j det d�u� � u��� ��u��x��j �
�

j det d�u� � u��� ��u��x��j
�

Lemma� Vol�M� is a trivial line bundle over M �

But there is no natural trivialization�

Proof� We choose a positive local section over each U� and we glue them with a
partition of unity� Since positivity is invariant under the transitions� the resulting
global section � is nowhere �� By ��� � is a global frame �eld and trivializes
Vol�M�� �

De�nition� Sections of the line bundle Vol�M� are called densities�


��� Integral of a density� Let � � C��Vol�M�� be a density with compact
support on the manifold M � We de�ne the integral of the density � as follows�

Let �U�� u�� be an atlas on M � let f� be a partition of unity with
supp�f�� � U�� Then we putZ

M

� �
X
�

Z
U�

f�� �

� �
X
�

Z
u��U��

f��u
��
� �y��������u

��
� �y��� dy�
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If � does not have compact support we require that
PR

U�
f� j�j � �� The

series is then absolutely convergent�

Lemma�
R
M
� is well de�ned�

Proof� Let �V� � v�� be another atlas on M � let �g�� be a partition of unity with
supp�g�� � V� � Let �U�� ��� be the vector bundle atlas of Vol�M� induced by
the atlas �U�� u��� and let �V�� ��� be the one induced by �V� � v��� Then we

have by the transition formula for the di�eomorphisms u� �v��� � v��U��V���
u��U� � V��
X
�

Z
U�

f�� �
X
�

Z
u��U��

�f� � u��� ��y������u��� �y��� dy

�
X
�

Z
u��U��

X
�

�g� � u��� ��y��f� � u��� ��y������u��� �y��� dy

�
X
��

Z
u��U�
V��

�g� � u��� ��y��f� � u��� ��y������u��� �y��� dy

�
X
��

Z
v��U�
V��

�g� � v��� ��x��f� � v��� ��x�

�����v
��
� �x���j detd�u� � v��� ��x�j dx

�
X
��

Z
v��U�
V��

�g� � v��� ��x��f� � v��� ��x������v��� �x��� dx

�
X
�

Z
V�

g��� �

If � � C��Vol�M�� is an arbitrary section and f � C�c �M�R� is a function
with compact support� then we may de�ne the integral of f with respect to �
by
R
M
f�� since f� is a density with compact support� In this way � de�nes a

Radon measure on M �
For the converse we note �rst that �C� su ces� di�eomorphisms between

open subsets on Rm map sets of Lebesque measure zero to sets of Lebesque
measure zero� Thus on a manifold we have a well de�ned notion of sets of
Lebesque measure zero & but no measure� If � is a Radon measure onM which
is absolutely continuous� i� e� the j�j�measure of a set of Lebesque measure zero
is zero� then is given by a uniquely determined measurable section if the line
bundle Vol�
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��� Remark� For � 	 p 	 � let Volp�M� be the line bundle de�ned by the
cocycle of transition functions

�p�� � U�� � R n f�g
�p���x� � j det d�u� � u��� ��u��x��j�p�

This is also a trivial line bundle� Its sections are called p�densities� ��densities
are just densities� ��densities are functions� If � is a p�density and � is a q�density
with p� q 	 � then ��� �� � � � is a p� q�density� i� e� Volp�M�� Volq�M� �
Volp�q�M�� Thus the product of two �

� �densities with compact support can be

integrated� so C�c �Vol
����M�� is a pre Hilbert space in a natural way�

Distributions on M �in the sense of generalized functions� are elements of the
dual space of the space C�c �Vol�M�� of densities with compact support equipped
with the inductive limit topology & so they contain functions�


��� Example� The density of a Riemannian metric� Let g be a Rie�
mannian metric on a manifoldM � So g is a symmetric

�
�
�

�
tensor �eld such that

gx is a positive de�nite inner product on TxM for each x � M � If �U� u� is a
chart on M then we have

gjU �
mX

i�j��

guij du
i � duj

where the functions guij � g� �
�ui �

�
�uj � form a positive de�nite symmetric matrix�

So det�guij� � det��g�
�
�ui �

�
�uj ��

m
i�j��� � �� We put

vol�g�u ��
q
det��g� �

�ui �
�
�uj ��

m
i�j����

If �V� v� is another chart we have

vol�g�u �
q
det��g� �

�ui
� �
�uj
��mi�j���

�

s
det��g�

X
k

�vk

�ui
�
�vk

�
X
�

�v�

�uj
�
�v�
��mi�j���

�

q
det���v

k

�ui �k�i�
� det��g� �

�v�
� �
�vj ����j�

� j det d�v � u���j vol�g�v�
so these local representatives determine a section vol�g� � C��Vol�M��� which
is called the density or volume of the Riemannian metric g� If M is compact
then

R
M
vol�g� is called the volume of the Riemannian manifold �M� g��
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��� The orientation bundle� For a manifold M with dimM � m and an
atlas �U�� u�� forM the line bundle +mT �M is given by the cocycle of transition
functions

����x� � det d�u� � u��� ��u��x���
We consider the line bundle Or�M� which is given by the cocycle of transition
functions

����x� � sign����x� � sign det d�u� � u��� ��u��x���
Since ����x�����x� � ����x�� the cocycle of the volume bundle of ���� we have

Vol�M� � Or�M�� +mT �M
+mT �M � Or�M�� Vol�M�


�	� De
nition� A manifold M is called orientable if the orientation bundle
Or�M� is trivial� Obviously this is the case if and only if there exists an atlas
�U�� u�� for the smooth structure of M such that det d�u� �u��� ��u��x�� � � for
all x � U�� �

IfM is orientable there are two distinguished global frames for the orientation
bundle Or�M�� namely those with absolute value js�x�j � �� Since the transition
functions of Or�M� take only the values �� and �� there is a well de�ned notion
of a �berwise absolute value on Or�M�� given by js�x�j �� pr� ���s�x��� where
�U�� ��� is a vector bundle chart of Or�M� induced by an atlas for M �

The two normed frames s� and s� of Or�M� will be called the two possible
orientations of the orientable manifold M � M is called an oriented manifold if
one of these two normed frames of Or�M� is speci�ed� it is denoted by oM �

If M is oriented then Or�M� 
�M 
R with the help of the orientation� so we
have also

+mT �M � Or�M�� Vol�M� � �M 
 R� � Vol�M� � Vol�M��

So an orientation gives us a canonical identi�cation of m�forms and densities�
Thus for an m�form � � )m�M� the integralZ

M

�

is de�ned by the isomorphism above as the integral of the associated density� see
���� If �U�� u�� is an oriented atlas �i� e� in each induced vector bundle chart
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�U�� ��� for Or�M� we have ���oM � � �� then the integral of the m�form � is
given by Z

M

� �
X
�

Z
U�

f�� �

� �
X
�

Z
U�

f���
� du� � � � � � dum

� �
X
�

Z
u��U��

f��u
��
� �y����

��u��� �y�� dy
� � � � � � dym�

where the last integral has to be interpreted as an oriented integral on an open
subset in Rm �


�
� Manifolds with boundary� A manifold with boundary M is a sec�
ond countable metrizable topological space together with an equivalence class
of smooth atlases �U�� u�� which consist of charts with boundary � so u� �
U� � u��U�� is a homeomorphism from U� onto an open subset of a half
space ���� �� 
 Rm�� � f�x�� � � � � xm� � x� 	 �g� and all chart changes u�� �
u��U� � U�� � u��U� � U�� are smooth in the sense that they are restrictions
of smooth mappings de�ned on open �in Rm� neighborhoods of the respective
domains� There is a more intrinsic treatment of this notion of smoothness by
means of Whitney jets� see �Tougeron� �	
���
We have u���u��U� � U�� � ��
 Rm���� � u��U� � U�� � ��
 Rm��� since

interiour points �with respect to Rm� are mapped to interior points by the inverse
function theorem�
Thus the boundary of M � denoted by �M � is uniquely given as the set of

all points x � M such that u��x� � � 
 Rm�� for one �equivalently any� chart
�U�� u�� of M � Obviously the boundary �M is itself a smooth manifold of
dimension m� ��
A simple example� the closed unit ball Bm � fx � Rm � jxj 	 �g is a manifold

with boundary� its boundary is �Bm � Sm���
The notions of smooth functions� smooth mappings� tangent bundle �use the

approach ��	 without any change in notation� are analogous to the usual ones�
If x � �M we may distinguish in TxM tangent vectors pointing into the interior�
pointing into the exterior� and those in Tx��M��


��� Lemma� Let M be a manifold with boundary of dimension M � Then M is
a submanifold with boundary of an m�dimensional manifold -M without boundary�

Proof� Using partitions of unity we construct a vector �eld X onM which points
strictly into the interior ofM � We may multiplyX by a strictly positive function
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so that the $ow FlXt exists for all � 	 t � �� for some � � �� Then FlX
 � M �
M n �M is a di�eomorphism onto its image which embeds M as a submanifold
with boundary of M n �M � �


���� Lemma� Let M be an oriented manifold with boundary� Then there is a
canonical induced orientation on the boundary �M �

Proof� Let �U�� u�� be an oriented atlas for M � Then u�� � u��U�� � �M� �
u��U�� � �M�� thus for x � u��U�� � �M� we have du���x� � � 
 Rm�� �
�
 Rm�� �

du���x� �

�
� � � � � �
� �

�
�

where � � � since du���x���e�� is again downwards pointing� So

det du���x� � � det�du���x�j�
 Rm��� � ��
consequently det�du���x�j�
Rm��� � � and the restriction of the atlas �U�� u��
is an oriented atlas for �M � �


���� Theorem of Stokes� Let M be an m�dimensional oriented manifold
with boundary �M � Then for any �m � ���form � � )m��c �M� with compact
support on M we have Z

M

d� �

Z
�M

i�� �
Z
�M

��

where i � �M �M is the embedding�

Proof� Clearly d� has again compact support� Let �U�� u�� be an oriented
smooth atlas for M and let �f�� be a smooth partition of unity with supp�f�� �
U�� Then we have

P
� f�� � � and

P
� d�f��� � d�� Consequently

R
M
d� �P

�

R
U�

d�f��� and
R
�M

� �
P

�

R
�U�

f��� It su ces to show that for each �

we have
R
U�

d�f��� �
R
�U�

f��� For simplicity�s sake we now omit the index ��
The form f� has compact support in U and we have in turn

f� �
mX
k��

�kdu
� � � � � �dduk � � � � dum

d�f�� �
mX
k��

��k
�uk

duk � du� � � � � �dduk � � � � dum
�

mX
k��

����k�� ��k
�uk

du� � � � � � dum�
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Since i�du� � � we have f�j�U � i��f�� � ��du
��� � ��dum� where i � �U � U

is the embedding� Finally we getZ
U

d�f�� �

Z
U

mX
k��

����k�� ��k
�uk

du� � � � � � dum

�
mX
k��

����k��
Z
U

��k
�uk

du� � � � � � dum

�

Z
Rm��

�Z �

��

���
�x�

dx�
�
dx� � � � dxm

�
mX
k��

����k��
Z
�����
�Rm��

�Z �

��

��k
�xk

dxk
�
dx� � � �ddxkdxm

�

Z
Rm��

������ x
�� � � � � xm�� ��dx� � � � dxm

�

Z
�U

���j�U�du� � � � dum �
Z
�U

f��

We used the fundamental theorem of calculus�Z �

��

���
�x�

dx� � ����� x
�� � � � � xm�� ��Z �

��

��k
�xk

dxk � ��

since f� has compact support in U � �
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� De Rham cohomology

���� De Rham cohomology� Let M be a smooth manifold which may have

boundary� We consider the graded algebra )�M� �
LdimM

k�� )k�M� of all di�er�
ential forms on M � Then the space Z�M� �� f� � )�M� � d� � �g of closed
forms is a graded subalgebra of ) �i� e� it is a subalgebra and )K�M��Z�M� �
Zk�M��� and the space B�M� �� fd� � � � )�M�g is a graded ideal in Z�M��
This follows directly from the derivation property d����� � d��������deg ���
d� of the exterior derivative�

De
nition� The algebra

H��M� ��
Z�M�

B�M�
�
f� � )�M� � d� � �g
fd� � � � )�M�g

is called the De Rham cohomology algebra of the manifold M � It is graded by

H��M� �
dimMM
k��

Hk�M� �
dimMM
k��

ker�d � )k�M�� )k���M��

imd � )k���M�� )k�M�
�

If f �M � N is a smooth mapping between manifolds then f� � )�N�� )�N�
is a homomorphism of graded algebras by 
�� which satis�es d � f� � f� � d
by 
�	� Thus f� induces an algebra homomorphism which we call again f� �
H��N�� H��M��

���� Remark� Since )k�M� � � for k � dimM �� m we have

Hm�M� �
)m�M�

fd� � � � )m���M�g �

Hk�M� � � for k � m�

H��M� �
ff � )��M� � C��M�R� � df � �g

�
� the space of locally constant functions on M

� Rb� �M��

where b��M� is the number of arcwise connected components of M � We put
bk�M� �� dimRH

k�M� and call it the k�th Betti number of M � If bk�M� � �
for all k we put

fM �t� ��
mX
k��

bk�M�t
k

Draft from November ��� ���� Peter W� Michor� ��
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 �� De Rham cohomology� ���

and call it the Poincar�e polynomial of M � The number

�M ��
mX
k��

bk�M�����k � fM ����

is called the Euler Poincar�e characteristic of M � see also ���
 below�

���� Examples� We have H��Rm� � R since it has only one connected com�
ponent� We have Hk�Rm� � � for k � � by the proof of the lemma of Poincar�e

����
For the one dimensional sphere we have H��S�� � R since it is connected�

and clearly Hk�S�� � � for k � � by reasons of dimension� And we have

H��S�� �
f� � )��M� � d� � �g
fd� � � � )��M�g

�
)��M�

fdf � f � C��S��R�g �

)��S�� � ff dt � f � C��S��R�g

� ff � C��R�R� � f is periodic with period �	g�

where dt denotes the global coframe of T �S�� If f is periodic with period �	

then f dt is exact if and only if
R
f dt is also �	 periodic� i� e�

R ��
�

f�t�dt � �� So
we have

H��S�� �
ff � C��R�R� � f is periodic with period �	g

ff � C��R�R� � f is periodic with period �	�
R ��
�
� �g

� R�

where f �� R ��
�

f dt factors to the isomorphism�

���� Lemma� Let f � g �M � N be smooth mappings between manifolds which
are C��homotopic� there exists h � C��R 
M�N� with h��� x� � f�x� and
h��� x� � g�x��

Then f and g induce the same mapping in cohomology� f� � g� � H�N� �
H�M��

Remark� f � g � C��M�N� are called homotopic if there exists a continuous
mapping h � ��� ��
M � N with with h��� x� � f�x� and h��� x� � g�x�� This
seemingly looser relation in fact coincides with the relation of C��homotopy�
We sketch a proof of this statement� let � � R � ��� �� be a smooth function with
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������ ����� � �� ���������� � �� and � monotone in between� Then consider
!h � R 
M � N � given by !h�t� x� � h���t�� x�� Now we may approximate !h by

smooth functions -h � R
M � N whithout changing it on ���� ����
M where
it equals f � and on �
�����
M where it equals g� This is done chartwise by
convolution with a smooth function with small support on Rm � See �Br�ocker�
J�anich� �	
�� for a careful presentation of the approximation�
So we will use the equivalent concept of homotopic mappings below�

Proof� For � � )k�M� we have h�� � )k�R 
M�� We consider the insertion
operator inst �M � R
M � given by inst�x� � �t� x�� For � � )k�R
M� we then
have a smooth curve t �� ins�t � in )

k�M� �this can be made precise with the help
of the calculus in in�nite dimensions of �Fr�olicher�Kriegl� �	����� We de�ne the

integral operator I�� � )
k�R
M� � )k�M� by I�� ��� ��

R �
� ins

�
t �dt� Looking at

this locally on M one sees that it is well de�ned� even without Fr�olicher�Kriegl
calculus� Let T �� �

�t � X�R 
M� be the unit vector �eld in direction R�
We have inst�s � Fl

T
t � inss for s� t � R� so

�
�s
ins�s � �

�
�t

��
�
�FlTt � inss��� � �

�t

��
�
ins�s�Fl

T
t �
��

� ins�s
�
�t

��
�
�FlTt �

�� � �inss��LT� by 
���

We have used that �inss�
� � )k�R 
M�� )k�M� is linear and continuous and

so one may di�erentiate through it by the chain rule� This can also be checked
by evaluating at x �M � Then we have in turn

d I�� � � d

Z �

�

ins�t �dt �
Z �

�

d ins�t �dt

�

Z �

�

ins�t d� dt � I�� d� by 
�	�����

�ins��� ins���� �
Z �

�

�
�t
ins�t �dt �

Z �

�

ins�t LT�dt

� I�� LT� � I�� �d iT � iT d�� by 
�	�

Now we de�ne the homotopy operator !h �� I�� � iT � h� � )k�M� � )k���M��
Then we get

g� � f� � �h � ins��� � �h � ins��� � �ins��� ins��� � h�
� �d � I�� � iT � I�� � iT � d� � h� � d � !h� !h � d�

which implies the desired result since for � � )k�M� with d� � � we have
g�� � f�� � !hd� � d!h� � d!h�� �
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���� Lemma� If a manifold is decomposed into a disjoint union M �
F
�M�

of open submanifolds� then Hk�M� �
Q

�H
k�M�� for all k�

Proof� )k�M� is isomorphic to
Q

�)
k�M�� via � �� ��jM���� This isomorphism

commutes with exterior di�erential d and induces the result� �

���� The setting for the Mayer�Vietoris Sequence� Let M be a smooth
manifold� let U � V �M be open subsets such thatM � U �V � We consider the
following embeddings�

U � V
e�

���
jU

��
���jV

U�����
iU

V
KA

AAD iV
M�

Lemma� In this situation the sequence

�� )�M�
��� )�U�� )�V � ��� )�U � V �� �

is exact� where ���� �� �i�U�� i
�
V �� and 
��� �� � j�U� � j�V �� We also have

�d� d� � � � � � d and d � 
 � 
 � �d� d��

Proof� We have to show that � is injective� ker 
 � im�� and that 
 is surjective�
The �rst two assertions are obvious and for the last one we we let ffU � fV g be
a partition of unity with supp fU � U and supp fV � V � For � � )�U � V � we
consider fV � � )�U � V �� note that supp�fV �� is closed in the set U � V which
is open in U � so we may extend fV � by � to �U � )�U�� Likewise we extend
�fU� by � to �V � )�V �� Then we have 
��U � �V � � �fU � fV �� � �� �

Now we are in the situation where we may apply the main theorem of ho�
mological algebra� 	��� So we deviate now to develop the basics of homological
algebra�

��	� The essentials of homological algebra� A graded di�erential space
�GDS� K � �K� d� is a sequence

� � � � Kn�� dn������ Kn dn��� Kn�� � � � �
of abelian groups Kn and group homomorphisms dn � Kn � Kn�� such that
dn�� � dn � �� In our case these are the vector spaces Kn � )n�M� and the
exterior derivative� The group

Hn�K� ��
ker�dn � Kn � Kn���

im�dn�� � Kn�� � Kn�
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is called the n�th cohomology group of the GDS K� We consider also the direct
sum

H��K� ��
�M

n���
Hn�K�

as a graded group� A homomorphism f � K � L of graded di�erential spaces is
a sequence of homomorphisms fn � Kn � Ln such that dn � fn � fn�� � dn� It
induces a homomorphism f� � H��f� � H��K�� H��L� and H� has clearly the
properties of a functor from the category of graded di�erential spaces into the
category of graded group� H��IdK� � IdH��K� and H

��f � g� � H��f� �H��g��
A graded di�erential space �K� d� is called a graded di�erential algebra ifL
nK

n is an associative algebra which is graded �so Kn�Km � Kn�m�� such
that the di�erential d is a graded derivation� d�x�y� � dx�y�����deg xx�dy� The
cohomology group H��K� d� of a graded di�erential algebra is a graded algebra�
see 	���

By a short exact sequence of graded di�erential spaces we mean a sequence

�� K
i�� L

p��M � �

of homomorphism of graded di�erential spaces which is degreewise exact� For
each n the sequence �� Kn � Ln �Mn � � is exact�

��
� Theorem� Let

�� K
i�� L

p��M � �

be an exact sequence of graded di�erential spaces� Then there exists a graded
homomorphism � � ��n � Hn�M�� Hn���K��n�Z called the �connecting homo�
morphism� such that the following is an exact sequence of abelian groups�

� � � � Hn���M� ��� Hn�K�
i��� Hn�L�

p��� Hn�M�
��� Hn���K�� � � �

It is called the �long exact sequence in cohomology�� � is a natural transformation
in the following sense� Let

� wK wi

u
k

L w
p

u
�

M w

u
m

�

� wK � w
i�

L� w
p�

M � w�
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be a commutative diagram of homomorphisms of graded di�erential spaces with
exact lines� Then also the following diagram is commutative�

� � � wHn���M� w�

u
m�

Hn�K� w
i�

u
k�

Hn�L� w
p�

u
��

Hn�M� w

u
m�

� � �

� � � wHn���M �� w
��

Hn�K �� w
i��

Hn�L�� w
p��

Hn�M� w � � �
The long exact sequence in cohomology is also written in the following way�

H��K� w
i� H��L�

�
�
��

p�

H��M�

�
��	
�

De
nition of �� The connecting homomorphism is de�ned by �� � i�� �d�p���
or ��p�� � �i��d��� This is meant as follows�

Ln�� w
pn��

u
dn��

Mn�� w

u
dn��

�

� wKn win

u
dn

Ln w
pn

u
dn

Mn w

u
dn

�

� wKn�� win��

u
dn��

Ln�� w
pn��

u
dn��

Mn�� w�

� wKn�� win�� Ln��

The following argument is called a diagram chase� Let �m� � Hn�M�� Then
m � Mn with dm � �� Since p is surjective there is � � Ln with p� � m� We
consider d� � Ln�� for which we have pd� � dp� � dm � �� so d� � ker p � im i�
thus there is an element k � Kn�� with ik � d�� We have idk � dik � dd� � ��
Since i is injective we have dk � �� so �k� � Hn���K��
Now we put ��m� �� �k� or ��p�� � �i��d���
This method of diagram chasing can be used for the whole proof of the the�

orem� The reader is advised to do it at least once in his life with �ngers on the
diagram above� For the naturality imagine two copies of the diagram lying above
each other with homomorphisms going up�
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���� Five�Lemma� Let

A� w
��

u
��

A� w
��

u
��

A	 w
�	

u
�	

A� w
��

u
��

A�

u
��

B� w

� B� w


� B	 w

	 B� w


� B�

be a commutative diagram of abelian groups with exact lines� If ��� ��� ��� and
�� are isomorphisms then also the middle �	 is an isomorphism�

Proof� Diagram chasing in this diagram leads to the result� The chase becomes
simpler if one �rst replaces the diagram by the following equivalent one with
exact lines�

� wA�� im�� w
���

u
��� 
�

A	 w
��	

u
�	

ker�� w

u
��� 
�

�

� wB�� im
� w

�� B	 w


�	 ker 
� w�� �

����� Theorem� Mayer�Vietoris sequence� Let U and V be open subsets
in a manifold M such that M � U � V � Then there is an exact sequence

� � � � Hk�M�
����� Hk�U��Hk�V �

���� Hk�U � V � ��� Hk���M�� � � �

It is natural in the triple �M�U� V � in the sense explained in 
��� The homomor�
phisms �� and 
� are algebra homomorphisms� but � is not�

Proof� This follows from 	�� and theorem 	��� �

Since we shall need it later we will give now a detailed description of the con�
necting homomorphism �� Let ffU � fV g be a partition of unity with supp fU � U
and supp fV � V � Let � � )k�U � V � with d� � � so that ��� � Hk�U � V ��
Then �fV ����fU ��� � )k�U�� )k�V � is mapped to � by 
 and so we have by
the prescrition in 	��

���� � ���� d�fV ����fU ���� � �����dfV � ���dfU � ���
� �dfV � �� � ��dfU � ����

where we have used the following fact� fU � fV � � implies that on U � V we
have dfV � �dfU thus dfV � � � �dfU � � and o� U � V both are ��
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����� Axioms for cohomology� The De Rham cohomology is uniquely deter�
mined by the following properties which we have already veri�ed�

��� H�� � is a contravariant functor from the category of smooth manifolds
and smooth mappings into the category of Z�graded groups and graded
homomorphisms�

��� Hk�point� � R for k � � and � � for k �� ��
��� If f and g are C��homotopic then H��f� � H��g��
��� If M �

F
�M� is a disjoint union of open subsets then

H��M� �
Q

�H
��M���

��� If U and V are open inM then there exists a connecting homomorphism
� � Hk�U �V �� Hk���U �V � which is natural in the triple �U �V� U� V �
such that the following sequence is exact�

� � � � Hk�U � V �� Hk�U��Hk�V �� Hk�U � V � ��� Hk���U � V �� � � �

There are lots of other cohomology theories for topological spaces like singular
cohomology� *Cech�cohomology� simplicial cohomology� Alexander�Spanier coho�
mology etc which satisfy the above axioms for manifolds when de�ned with real
coe cients� so they all coincide with the De Rham cohomology on manifolds�
See books on algebraic topology or sheaf theory for all this�

����� Example� If M is contractible �which is equivalent to the seemingly
stronger concept of C��contractibility� see the remark in 	��� then H��M� � R
since M is connected� and Hk�M� � � for k �� �� because the constant mapping
c � M � point � M onto some �xed point of M is homotopic to IdM � so
H��c� � H��IdM � � IdH��M� by 	��� But we have

Hk�M� w
Hk�c�

�
�
�


Hk�M�

Hk�point�

��
�
���

More generally� two manifolds M and N are called to be smoothly homotopy
equivalent if there exist smooth mappings f � M � N and g � N � M such
that g � f is homotopic to IdM and f � g is homotopic to IdN � If this is the case
both H��f� and H��g� are isomorphisms� since H��g� � H��f� � IdH��M� and
H��f� �H��g� � IdH��N��
As an example consider a vector bundle �E� p�M� with zero section �E �M �

E� Then p��E � IdM whereas �E �p is homotopic to IdE via �t� u� �� t�u� Thus
H��E� is isomorphic to H��M��

Draft from November ��� ���� Peter W� Michor� ���




�� De Rham cohomology� ���� ��

����� Example� The cohomology of spheres� For n � � we have

Hk�Sn� �

���������
R for k � �

� for � 	 k 	 n� �
R for k � n

� for k � n

Hk�S�� � Hk�� points� �

�
R� for k � �

� for k � �

We may say� The cohomology of Sn has two generators as graded vector space�
one in dimension � and one in dimension n� The Poincar�e polynomial is given
by fSn�t� � � � tn�

Proof� The assertion for S� is obvious� and for S� it was proved in 	�� so let
n � �� Then H��Sn� � R since it is connected� so let k � �� Now �x a north
pole a � Sn� � � � � �� and let

Sn � fx � Rn�� � jxj� � hx� xi � �g�
U � fx � Sn � hx� ai � ��g�
V � fx � Sn � hx� ai � �g�

so U and V are overlapping northern and southern hemispheres� respectively�
which are di�eomorphic to an open ball and thus smoothly contractible� Their
cohomology is thus described in 	���� Clearly U � V � Sn and U � V 
� Sn�� 

���� �� which is obviously �smoothly� homotopy equvalent to Sn��� By theorem
	��� we have the following part of the Mayer�Vietoris sequence

Hk�U��Hk�V � wHk�U � V � w� Hk���Sn� wHk���U��Hk���V �

� Hk�Sn��� ��

where the vertical isomorphisms come from 	���� So we have Hk�Sn��� 
�
Hk���Sn� for k � � and n � ��
Next we look at the initial segment of the Mayer�Vietoris sequence�

� wH��Sn� wH��U t V � w



H��U � V � w� H��Sn� wH��U t V �

� wR w� R� wR �

From exactness we have� in the lower line � is injective� so dim�ker
� � �� so 

is surjective and thus � � �� This implies that H��Sn� � � for n � �� Starting
from Hk�S�� for k � � the result now follows by induction on n�
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By looking more closely on on the initial segment of the Mayer�Vietoris se�
quence for n � � and taking into account the form of � � H��S��� H��S�� we
could even derive the result for S� without using 	��� The reader is advised to
try this� �

����� Example� The Poincar�e polynomial of the Stiefel manifold V �k� n�R� of
oriented orthonormal k�frames in Rn �see ����� is given by�

For� fV �k�n� �

n � �m� k � �l� �� l � � � �� � t�m���
lY

i��

�� � t�m��i���

n � �m� �� k � �l� l � � �
lY

i��

�� � t�m��i�	�

n � �m� k � �l� m � l � � � �� � t�m��l��� � t�m���
l��Y
i��

�� � t�m��i���

n � �m� �� k � �l � ��

m � l � � � �� � t�m��l�
l��Y
i��

�� � t�m��i�	�

Since V �n� �� n�R� � SO�n�R� we get

fSO��m�R��t� � �� � t�m���
m��Y
i��

�� � t�i����

fSO��m���R��t� �
mY
i��

�� � t�i����

So the cohomology can be quite complicated� For a proof of these formulas using
the Gysin sequence for sphere bundles see �Greub�Halperin�Vanstone II� �	
���

����� Relative De Rham cohomology� Let N �M be a closed submanifold
and let

)k�M�N� �� f� � )k�M� � i�� � �g�
where i � N � M is the embedding� Since i� � d � d � i� we get a graded
di�erential subalgebra �)��M�N�� d� of �)��M�� d�� Its cohomology� denoted
by H��M�N�� is called the relative De Rham cohomology of the manifold pair
�M�N��
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����� Lemma� In the setting of 
�	��

�� )��M�N� �� )��M� i��� )��N�� �

is an exact sequence of di�erential graded algebras� Thus by 
�� we the following
long exact sequence in cohmology

� � � � Hk�M�N�� Hk�M�� Hk�N�
��� Hk���M�N�� � � �

which is natural in the manifold pair �M�N�� It is called the long exact coho�
mology sequence of the pair �M�N��

Proof� We only have to show that i� � )��M� � )��N� is surjective� So we
have to extend each � � )k�N� to the whole of M � We cover N by submanifold
charts of M with respect to N � These and M n N cover M � On each of the
submanifold charts one can easily extend the restriction of � and one can glue
all these extensions by a partition of unity which is subordinated to the cover of
M � �
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��� Cohomology with compact supports

and Poincar�e duality

����� Cohomology with compact supports� Let )kc �M� denote the space of
all k�forms with compact support on the manifoldM � Since supp�d�� � supp����
supp�LX�� � supp�X� � supp���� and supp�iX�� � supp�X� � supp���� all
formulas of section 
 are also valid in )�c�M� �

LdimM
k�� )kc �M�� So )

�
c�M� is an

ideal and a di�erential graded subalgebra of )��M�� The cohomology of )�c�M�

Hk
c �M� � �

ker�d � )kc �M�� )k��c �M��

imd � )k��c �M�� )kc �M�
�

H�
c �M� � �

dimMM
k��

Hk
c �M�

is called the De Rham cohomology algebra with compact supports of the manifold
M � It has no unit if M is not compact�

����� Mappings� If f � M � N is a smooth mapping between manifolds and
if � � )kc �N� is a form with compact support� then f�� is a k�form on M � in
general with noncompact support� So )�c is not a functor on the category of all
smooth manifolds and all smooth mappings� But if we restrict the morphisms
suitably� then )�c becomes a functor� There are two ways to do this�

��� )�c is a contravariant functor on the category of all smooth manifolds
and proper smooth mappings �f is called proper if f��� compact set � is
a compact set� by the usual pullback operation�

��� )�c is a covariant functor on the category of all smooth manifolds and
embeddings of open submanifolds� for i � U �� M and � � )kc �U� just
extend � by � o� U to get i�� � )kc �M�� Clearly i� � d � d � i��

����� Remark� �� If a manifold M is a disjoint union� M �
F
�M�� then we

have obviously Hk
c �M� �

L
�H

k
c �M���

�� H�
c �M� is a direct sum of copies of R� one for each compact connected

component of M �

�� If M is compact� then Hk
c �M� � Hk�M��

����� The Mayer�Vietoris sequence with compact supports� Let M be
a smooth manifold� let U � V � M be open subsets such that M � U � V � We
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consider the following embeddings�

U � V
e�

���
jU

��
���jV

U����

iU

V
XN

N
NQ iV

M�

Theorem� The following sequence of graded di�erential algebras is exact�

�� )�c�U � V � �c�� )�c�U�� )�c�V � �c��� )�c�M�� ��

where 
c��� �� ��jU ���� �jV ���� and �c��� �� � �iU ���� �iV ���� So by 
�� we
have the following long exact sequence

� Hk��
c �M�

�c�� Hk
c �U �V �� Hk

c �U��Hk
c �V �� Hk

c �M�
�c�� Hk��

c �U �V ��

which is natural in the triple �M�U� V �� It is called the Mayer Vietoris sequence
with compact supports�

The connecting homomorphism �c � H
k
c �M�� Hk��

c �U � V � is given by

�c��� � �

��
c d���c ���� � �


��
c d�fU���fV ���

� �dfU � � � U � V � � ��dfV � � � U � V ��

Proof� The only part that is not completely obvious is that �c is surjective� Let
ffU � fV g be a partition of unity with supp�fU � � U and supp�fV � � V � and let
� � )kc �M�� Then fU� � )kc �U� and �fV � � )kc �V � satisfy �c�fU���fV �� �
�fU � fV �� � �� �

����� Proper homotopies� A smooth mapping h � R 
M � N is called a
proper homotopy if h��� compact set � � ���� ��
M� is compact� A continuous
homotopy h � ��� ��
M � N is a proper homotopy if and only if it is a proper
mapping�

Lemma� Let f� g � M � N be proper and proper homotopic� then f� � g� �
Hk
c �N�� Hk

c �M� for all k�

Proof� Recall the proof of lemma 	���
Claim� In the proof of 	�� we have furthermore !h � )kc �N�� )k��c �M��
Let � � )kc �M� and let K� �� supp���� a compact set in M � Then K� ��
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h���K�� � ���� �� 
 M� is compact in R 
 M � and �nally K	 �� pr��K�� is
compact in M � If x �� K	 then we have

�!h��x � ��I
�
� � iT � h����x �

Z �

�

�ins�t �iTh
����x dt� � ��

The rest of the proof is then again as in 	��� �

����� Lemma�

Hk
c �R

n� �

�
R for k � n

� else�

First Proof� We embed Rn into its one point compacti�cation Rn � f�g which
is di�eomorphic to Sn� see ���� The embedding induces the exact sequence of
complexes

�� )c�R
n�� )�Sn�� )�Sn�� � ��

where )�Sn�� denotes the space of germs at the point � � Sn� For germs
at a point the lemma of Poincar�e is valid� so we have H��)�Sn��� � R and
Hk�)�Sn��� � � for k � �� By theorem 	�� there is a long exact sequence in
cohomology whose beginning is�

H�
c �R

n � wH��Sn� wH��)�Sn��� w� H�
c �R

n � wH��Sn� wH��)�Sn���

� R R �

From this we see that � � � and consequently H�
c �R

n � 
� H��Sn�� Another part
of this sequence for k � � is�

Hk���)�Sn��� w� Hk
c �R

n� wHk�Sn� wHk�)�Sn���

� �

It implies Hk
c �R

n� 
� Hk�Sn� for all k� �

���	� Fiber integration� Let M be a manifold� pr� �M 
 R �M � We de�ne
an operator called �ber integrationZ

�ber

� )kc �M 
 R� � )k��c �M�

as follows� Let t be the coordinate function on R� A di�erential form with
compact support on M 
R is a �nite linear combination of two types of forms�
��� pr����f�x� t�� shorter ��f �
��� pr��� � f�x� t�dt� shorter � � fdt�
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where � � )�M� and f � C�c �M 
 R�R�� We then put
���

R
�ber

pr���f �� ��
���

R
�ber

pr��� � fdt �� �
R�
�� f� � t�dt

���
� Lemma� We have d � R
�ber

�
R
�ber

�d� Thus R
�ber

induces a mapping in
cohomology �Z

�ber

�
�
� Hk

c �M 
 R� � Hk��
c �M��

which however is not an algebra homomorphism�

Proof� In case ��� we haveZ
�ber

d���f� �

Z
�ber

d��f � ����k
Z
�ber

��d�f � ����k
Z
�ber

���f�t dt

� ����k�
Z �

��
�f
�t dt � � since f has compact support

� d

Z
�ber

��f�

In case ��� we getZ
�ber

d�� � fdt� �
Z
�ber

d� � fdt� ����k
Z
�ber

� � d�f � dt

� d�

Z �

��
f� � t�dt� ����k�

Z �

��
d�f� � t�dt

� d

�
�

Z �

�
f� � t�dt

�
� d

Z
�ber

� � fdt� �

����� In order to �nd a mapping in the converse direction we let e � e�t�dt be a
compactly supported ��form on R with

R�
�� e�t�dt � �� We de�ne e� � )kc �M��

)k��c �M 
 R� by e���� � � � e� Then de���� � d�� � e� � d� � e� � � e��d���
so we have an induced mapping in cohomology e� � Hk

c �M�� Hk��
c �M 
 R��

We have
R
�ber

�e� � Id�kc �M�� sinceZ
�ber

e���� �
Z
�ber

� � e� �dt � �

Z �

�
e�t�dt � ��

Next we de�ne K � )kc �M 
 R� � )k��c �M 
 R� by
��� K���f� �� �

��� K�� � fdt� � �
R t
�� fdt� ��A�t�

R�
�� fdt� where A�t� ��

R t
�� e�t�dt�

Draft from November ��� ���� Peter W� Michor� �	��



�	� �	� Cohomology with compact supports and Poincar�e duality� �	��	

������ Lemma� Then we have

Id�kc �M�R� � e� �
Z
�ber

� ����k���d �K �K � d�

Proof� We have to check the two cases� In case ��� we have

�Id� e� �
Z
�ber

����f� � ��f � ��

�d �K �K � d����f� � ��K�d��f � ����k� � d�f � ����k� � �f
�t dt�

� �����k
�
�

Z t

��
�f
�t dt� ��A�t�

Z �

��
�f
�t dt

�
� ����k����f � ��

In case ��� we get

�Id� e� �
Z
�ber

��� � fdt� � � � fdt� �

Z �

��
fdt � e�

�d �K �K � d��� � fdt� � d

�
�

Z t

��
fdt� ��A�t�

Z �

��
fdt

�
�K�d� � fdt� ����k��� � d�f � dt�

� ����k��
�
� � fdt� � � e

Z �

��
fdt

�
�

������ Corollary� The induced mappings
�R

�ber

�
� and e� are inverse to each

other� and thus isomorphism between Hk
c �M 
 R� and Hk��

c �M��

Proof� This is clear from the chain homotopy ������ �

	��	�� Second Proof of 	���� For k 	 n we have

Hk
c �R

n� 
� Hk��
c �Rn��� 
� � � � 
� H�

c �R
n�k �

�

�
� for k � n

H�
c �R

�� � R for k � n�

Note that the isomorphism Hn
c �R

n� 
� R is given by integrating the di�erential
form with compact support with respect to the standard orientation� This is
well de�ned since by Stokes� theorem ���� we have

R
Rn

d� �
R
� � � �� so the

integral induces a mapping
R
� � H

n
c �R

n�� R� �
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������ Example� We consider the open M�obius strip M in R	 � Open means
without boundary� Then M is contractible onto S�� in fact M is the total space
of a real line bundle over S�� So from 	��� we see that Hk�M� 
� Hk�S�� � R
for k � �� � and � � for k � ��

Now we claim that Hk
c �M� � � for all k� For that we cut the M�obius strip in

two pieces which are glued at the end with one turn �make a drawing�� so that
M � U � V where U 
� R� � V 
� R� � and U � V 
� R� t R� � the disjoint union�
We also know that H�

c �M� � � since M is not compact and connected� Then
the Mayer�Vietoris sequence �see ����� is given by

H�
c �U��H�

c �V �

u

� �

H�
c �M�

u�

H�
c �U � V �

u
c

� R � R

H�
c �U��H�

c �V �

u

� R � R

H�
c �M�

u
H	
c �U � V � � ��

We shall show that the linear mapping 
c has rank �� So we read from the
sequence that H�

c �M� � � and H
�
c �M� � �� By dimension reasons H

k�M� � �
for k � ��

Let �� � � )�
c�U � V � be two forms� supported in the two connected com�

ponents� respectively� with integral � in the orientation induced from one on U �
Then

R
U
� � ��

R
U
� � �� but for some orientation on V we have

R
V
� � � andR

V
� � ��� So the matrix of the mapping 
c in these bases is

�
� �
� ��

�
� which

has rank ��

������ Mapping degree for proper mappings� Let f � Rn � Rn be a
smooth proper mapping� then f� � )kc �R

n�� )kc �R
n� is de�ned and is an algebra

homomorphism� So also the induced mapping in cohomology with compact
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supports makes sense and by

Hn
c �R

n � w
f�

u

R
� 
�

Hn
c �R

n�

u

�
R
�

R w
deg f

R

a linear mapping R � R� i� e� multiplication by a real number� is de�ned� This
number deg f is called the �mapping degree� of f �

������ Lemma� The mapping degree of proper mappings has the following
properties�

��� If f � g � Rn � Rn are proper� then deg�f � g� � deg�f�� deg�g��
��� If f and g � Rn � Rn are proper homotopic �see 	���� then deg�f� �

deg�g��
��� deg�IdRn� � ��
��� If f � Rn � Rn is proper and not surjective then deg�f� � ��

Proof� Only statement ��� needs a proof� Since f is proper� f�Rn� is closed
in Rn � for K compact in Rn the inverse image K� � f���K� is compact� so
f�K�� � f�Rn� � K is compact� thus closed� By local compactness f�Rn� is
closed�

Suppose that there exists x � Rn nf�Rn �� then there is an open neighborhood
U � Rn n f�Rn�� We choose a bump n�form � on Rn with support in U andR
� � �� Then f�� � �� so deg�f� � � since ��� is a generator of Hn

c �R
n �� �

������ Regular values� Let f � M � N be a smooth mapping between
manifolds�

��� x � M is called a �singular point� of f if Txf is not surjective� and is
called a �regular point� of f if Txf is surjective�

��� y � N is called a �regular value� of f if Txf is surjective for all x � f���y��
If not y is called a singular value� Note that any y � N nf�M� is a regular
value�

Theorem� Sard� ����� The set of all singular values of a smooth mapping
f �M � N is of Lebesgue measure � in N �

So any smooth mapping has regular values� For the proof of this result we
refer to �Hirsch� �	
���
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����	� Lemma� For a proper smooth mapping f � Rn � Rn the mapping degree
is an integer� in fact for any regular value y of f we have

deg�f� �
X

x�f���y�

sign�det�df�x��� � Z�

Proof� By ��������� we may assume that f is surjective� By Sard�s theorem�
see ������ there exists a regular value y of f � We have f���y� �� �� and for
all x � f���y� the tangent mapping Txf is surjective� thus an isomorphism�
By the inverse mapping theorem f is locally a di�eomorphism from an open
neighborhood of x onto a neighborhood of y� Thus f���y� is a discrete and
compact set� say f���y� � fx�� � � � � xkg � Rn �
Now we choose pairwise disjoint open neighborhoods Ui of xi and an open

neighborhood V of y such that f � Ui � V is a di�eomorphism for each i� We
choose an n�form � on Rn with support in V and

R
� � �� So f�� �

P
i�f jUi���

and moreoverZ
Ui

�f jUi��� � sign�det�df�xi���
Z
V

� � sign�det�df�xi���

deg�f� �

Z
Rn

f�� �
X
i

Z
Ui

�f jUi���

�
kX
i

sign�det�df�xi��� � Z� �

����
� Example� The last result for a proper smooth mapping f � R � R
can be interpreted as follows� think of f as parametrizing the path of a car on
an �in�nite� street� A regular value of f is then a position on the street where
the car never stops� Wait there and count the directions of the passes of the
car� the sum is the mapping degree� the number of journeys from �� to �� In
dimension � it can be only ��� �� or �� �why���
������ Poincar�e duality� LetM be an oriented smooth manifold of dimension
m without boundary� By Stokes� theorem the integral

R
� )mc �M�� R vanishes

on exact forms and induces the �cohomologigal integral�

���

Z
�
Hm
c �M�� R�
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It is surjective �use a bump m�form with small support�� The �Poincar�e product

is the bilinear form

P k
M � Hk�M�
Hm�k

c �M�� R����

P k
M ����� �
�� �

Z
�
��� � �
� �

Z
M

� � 
�

It is well de�ned since d
 � 
 � d�
 � 
� etc� If j � U � M is an orientation
preserving embedding of an open submanifold then for ��� � Hk�M� and for
�
� � Hm�k

c �U� we may compute as follows�

P k
U �j

����� �
�� �
Z
�
�j����� � �
� �

Z
U

j�� � 
���

�

Z
U

j��� � j�
� �
Z
j�U�

� � j�


�

Z
M

� � j�
 � P k
M ����� j��
���

Now we de�ne the Poincar�e duality operator

Dk
M � Hk�M�� �Hm�k

c �M�������

h�
�� Dk
M ���i � P k

M ����� �
���

For example we have D�
Rn
��� � �

R
Rn
�� � �Hn

c �R
n����

Let M � U � V with U � V open in M � then we have the two Mayer Vietoris
sequences from 	��� and from ����

� � � � Hk�M�
����� Hk�U��Hk�V �

���� Hk�U � V � ��� Hk���M�� � � �
� Hm�k

c �M�� Hm�k
c �U��Hm�k

c �V �� Hm�k
c �U � V � �c�� Hm��k���

c �M��

We take dual spaces and dual mappings in the second sequence and we replace
� in the �rst sequence by ����k��� and get the following diagram which is
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	 ���

commutative as we will see in a moment�

���

� � �

u
����k���

� � �

u
��c

Hk�M�

u

w
Dk
M Hm�k

c �M��

u
Hk�U��Hk�V �

u

w
Dk
U �Dk

V Hm�k
c �U�� �Hm�k

c �V ��

u
Hk�U � V �

u
����k���

w
DU
V Hm�k

c �U � V ��

u
��c

Hk���M�

u

w
Dk��
M Hm��k���

c �M��

u
� � � � � �

������ Lemma� The diagram ��� in 	��	
 commutes�

Proof� The �rst and the second square from the top commute by ����	����� So
we have to check that the bottom one commutes� Let ��� � Hk�U �V � and �
� �
H
m��k���
c �M�� and let �fU � fV � be a partition of unity which is subordinated to
the open cover �U� V � of M � Then we have

h�
�� Dk��
M ����k������i � P k��

M �����k������� �
��
� P k��

M �����k���dfV � ��� �
�� by 	���

� ����k��
Z
M

dfV � � � 
�

h�
�� ��cDk
U
V ���i � h�c�
�� Dk

U
V ���i � P k
U
V ����� �c�
��

� P k
U
V ����� �dfU � 
� � ��dfV � 
�� by ����

� �
Z
U
V

� � dfV � 
 � �����k
Z
M

dfV � � � 
� �
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������ Theorem� Poincar�e Duality� If M is an oriented manifold of dimen�
sion m without boundary then the Poincar�e duality mapping

Dk
M � Hk�M�� Hm�k

c �M��

is a linear isomomorphism for each k�

Proof� Step �� Let O be an i�base for the open sets of M � i� e� O is a basis
containing all �nite intersections of sets in O� Let Of be the the set of all open
sets in M which are �nite unions of sets in O� Let Os be the set of all open sets
in M which are at most countable disjoint unions of sets in O� Then obviously
Of and Os are again i�bases�
Step �� LetO be an i�base forM � IfDO � H�O�� Hc�O�

� is an isomorphism
for all O � O� then also for all O � Of �
Let U � Of � U � O� � � � � � Ok for Oi � O� We consider O� and V �

O� � � � � � Ok� Then O� � V � �O� � O�� � � � � � �O� � Ok� is again a union of
elements of O since it is an i�base� Now we prove the claim by induction on k�
The case k � � is trivial� By induction DO�

� DV � and DO�
V are isomorphisms�
so DU is also an isomorphism by the �ve�lemma 	�	 applied to the diagram
����	�����
Step �� If O is a basis of open sets in M such that DO is an isomorphism

for all O � O� then also for all O � Os�
If U � Os we have U � O� t O� t � � � �

F�
i��Oi for Oi � O� But then the

diagram

H�U�

u

DU

�Y
i��

H�Oi�

u

Q
DOi

Hc�U�
� �

�M
i��

Hc�Oi��
�

�Y
i��

Hc�Oi�
�

commutes and implies that DU is an isomorphism�
Step �� If DO is an isomorphism for each O � O where O is an i�base for

the open sets of M then DU is an isomorphism for each open set U �M �
For ��Of �s�f contains all open sets of M � This is a consequence of the proof

that each manifold admits a �nite atlas� Then the result follows from steps �
and ��
Step �� DRm � H�Rm�� Hc�Rm�� is an isomorphism�
We have

Hk�Rm� �

�
R for k � �

� for k � �
Hk
c �R

m� �

�
R for k � m

� for k �� m
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 ���

The class ��� is a generator for H��Rm�� and ��� is a generator for Hm
c �R

m� where
� is any m�form with compact support and

R
M
� � �� But then P �

Rm
����� ���� �R

Rm
��� � ��

Step �� For each open subset U � Rm the mapping DU is an isomorphism�
The set ffx � Rm � ai � xi � bi for all ig � ai � big is an i�base of Rm � Each

element O in it is di�eomorphic �with orientation preserved� to Rm � so DO is a
di�eomorphism by step �� From step � the result follows�
Step 	� DM is an isomorphism for each oriented manifold M �
Let O be the the set of all open subsets of M which are di�eomorphic to an

open subset of Rm � i� e� all charts of a maximal atlas� Then O is an i�base for
M � and DO is an isomorphism for each O � O� By step � DU is an isomorphism
for each open U in M � thus also DU � �

������ Corollary� For each oriented manifold M without boundary the bilinear
pairings

PM � H��M�
H�
c �M�� R�

P k
M � Hk�M�
Hm�k

c �M�� R

are not degenerate�

������ Corollary� Let j � U �M be the embedding of an open submanifold of
an oriented manifoldM of dimension m without boundary� Then of the following
two mappings one is an isomorphism if and only if the other one is�

j� � Hk�U�� Hk�M��

j� � Hm�k
c �U�� Hm�k

c �M��

Proof� Use ����	����� P k
U �j

����� �
�� � P k
M ����� j��
��� �

������ Theorem� Let M be an oriented connected manifold of dimension m
without boundary� Then the integralZ

�
� Hm

c �M�� R

is an isomorphism� So ker
R
M
� d�)m��c �M�� � )mc �M��

Proof� Considering m�forms with small support shows that the integral is sur�
jective� By Poincar�e duality ����� dimRH

m
c �M�

� � dimRH
��M� � � since M

is connected� �

De�nition� The uniquely de�ned cohomology class �M � Hm
c �M� with integralR

M
�M � � is called the orientation class of the manifold M �
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������ Relative cohomology with compact supports� LetM be a smooth
manifold and let N be a closed submanifold� Then the injection i � N �M is a
proper smooth mapping� We consider the spaces

)kc �M�N� �� f� � )kc �M� � �jN � i�� � �g

whose direct sum is a graded di�erential subalgebra �)�c�M�N�� d� of �)�c�M�� d��
Its cohomology� denoted byH�

c �M�N�� is called the relative De Rham cohomology
with compact supports of the manifold pair �M�N��

�� )�c�M�N� �� )�c�M�
i��� )�c�N�� �

is an exact sequence of di�erential graded algebras� This is seen by the same
proof as of 	��� with some obvious changes� Thus by 	�� we have the following
long exact sequence in cohmology

� � � � Hk
c �M�N�� Hk

c �M�� Hk
c �N�

��� Hk��
c �M�N�� � � �

which is natural in the manifold pair �M�N�� It is called the long exact coho�
mology sequence with compact supports of the pair �M�N��

������ Now letM be an oriented smooth manifold of dimension m with bound�
ary �M � Then �M is a closed submanifold of M � Since for � � )m��c �M��M�
we have

R
M
d� �

R
�M

� �
R
�M
� � �� the integral of m�forms factors as follows

)mc �M��M�

uu

y w)mc �M� w

R
M R

Hm
c �M��M�

��
��

��
��

��
����R

�

to the cohomological integral
R
� � H

m
c �M��M�� R�

Example� Let I � �a� b� be a compact intervall� then �I � fa� bg� We have
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� ���

H��I� � � since fdt � d
R t
a
f�s�ds� The long exact sequence in cohomology is

�

u
H��I� �I�

u

�

H��I�

u

R

H���I�

u
�

R�

H��I� �I�

u

w

R
�
� R

H��I�

u

�

H���I� ��

The connecting homomorphism � � H���I�� H��I� �I� is given by the following
procedure� Let �f�a�� f�b�� � H���I�� where f � C��I�R�� Then

��f�a�� f�b�� � �df � �

Z
�
�df � �

Z b

a

df �

Z b

a

f ��t�dt � f�b�� f�a��

So the fundamental theorem of calculus can be interpreted as the connecting
homomorphism for the long exact sequence of the realtive cohomology for the
pair �I� �I��

The general situation� Let M be an oriented smooth manifold with boundary
�M � We consider the following piece of the long exact sequence in cohomology
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�

with compact supports of the pair �M��M��

Hm��
c �M� wHm��

c ��M� w�

u

R
�

Hm
c �M��M� w

u

R
�

Hm
c �M� w�

R R

The connecting homomorphism is given by

���j�M � � �d��Hm
c �M��M�� � � )m��c �M��

so commutation of the diagram above is equivalent to the validity of Stokes�
theorem�
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����� The oriented double cover� Let M be a manifold� We consider the
orientation bundle Or�M� of M which we dicussed in ���� and we consider the
subset or�M� �� fv � Or�M� � jvj � �g� We shall see shortly that it is a subman�
ifold of the total space Or�M�� that it is orientable� and that 	M � or�M��M
is a double cover ofM � The manifold or�M� is called the orientable double cover
of M �
We �rst check that the total space Or�M� of the orientation bundle is ori�

entable� Let �U�� u�� be an atlas for M � Then the orientation bundle is given
by the cocycle of transition functions

����x� � sign����x� � sign det d�u� � u��� ��u��x���

Let �U�� ��� be the induced vector bundle atlas for Or�M�� see ���� We consider
the mappings

Or�M�jU� w
��

�
�
�
	M

U� 
 R w
u� 
 Id

�
�
��

pr�

u��U��
 R � Rm��

U�

and we use them as charts for Or�M�� The chart changes u��U��� 
 R �
u��U���
 R are then given by

�y� t� �� �u� � u��� �y�� ����u��� �y��t�
� �u� � u��� �y�� signdet d�u� � u��� ���u� � u��� ��y��t�
� �u� � u��� �y�� signdet d�u� � u��� ��y�t�

The Jacobi matrix of this mapping is�
d�u� � u��� ��y� �

� sign det d�u� � u��� ��y�
�

which has positive determinant�
Now we let Z �� fv � Or�M� � jvj 	 �g which is a submanifold with boundary

in Or�M� of the same dimension and thus orientable� Its boundary �Z coincides
with or�M�� which is thus orientable�
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Next we consider the di�eomorphism � � or�M�� or�M� which is induced by
the multiplication with�� in Or�M�� We have ��� � Id and 	��M �x� � fz� ��z�g
for z � or�M� and 	M �z� � x�
Suppose that the manifold M is connected� Then the oriented double cover

or�M� has at most two connected components� since 	M is a two sheeted con�
vering map� If or�M� has two components� then � restricts to a di�eomorphism
between them� The projection 	M � if restricted to one of the components� be�
comes invertible� so Or�M� admits a section which vanishes nowhere� thus M is
orientable� So we see that or�M� is connected if and only if M is not orientable�
The pullback mapping �� � )�or�M��� )�or�M�� also satis�es �� ��� � Id�

We put

)��or�M�� � � f� � )�or�M�� � ��� � �g�
)��or�M�� � � f� � )�or�M�� � ��� � ��g�

For each � � )�or�M�� we have � � �
� �� � ���� � �

� �� � ���� � )��or�M���
)��or�M��� so )�or�M�� � )��or�M���)��or�M��� Since d��� � ���d these
two subspaces are invariant under d� thus we conclude that

��� Hk�or�M�� � Hk�)��or�M����Hk�)��or�M����

Since 	�M � )�M� � )�or�M�� is an embedding with image )��or�M�� we see
that the induced mapping 	�M � Hk�M� � Hk�or�M�� is also an embedding
with image Hk�)��or�M����

����� Theorem� For a compact manifold M we have dimRH
��M� ���

Proof� Step 	� If M is orientable we have by Poincar�e duality �����

Hk�M�
Dk
M����� �Hm�k

c �M��� � �Hm�k�M���
�Dm�k

M
�����������
�Hk

c �M��
���

so Hk�M� is �nite dimensional since otherwise dim�Hk�M��� � dimHk�M��

Step �� Let M be not orientable� Then from ���� we see that the oriented
double cover or�M� of M is compact� oriented� and connected� and we have
dimHk�M� � dimHk�)��or�M��� 	 dimHk�or�M�� ��� �

����� Theorem� Let M be a connected manifold of dimension m� Then

Hm�M� 
�
�
R if M is compact and orientable�

� else�
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Proof� IfM is compact and orientable by ����� we the integral
R
� � H

m�M�� R
is an isomorphism�
Next let M be compact but not orientable� Then the oriented double cover

or�M� is connected� compact and oriented� Let � � )m�or�M�� be an m�form
which vanishes nowhere� Then also ��� is nowhere zero where � � or�M� �
or�M� is the covering transformation from ����� So ��� � f� for a function
f � C��or�M��R� which vanishes nowhere� So f � � or f � �� If f � � then
� �� � � ��� � �� � f�� is again nowhere � and ��� � �� so � � 	�M
 for an
m�form 
 on M without zeros� So M is orientable� a contradiction� Thus f � �
and � changes the orientation�
The m�form 
 �� � � ��� � �� � f�� has no zeros� so

R
or�M�


 � � if we

orient or�M� using �� thus the cohomology class �
� � Hm�or�M�� is not zero�
But ��
 � �
 so 
 � )��or�M��� thus Hm�)��or�M��� �� �� By the �rst
part of the proof we have Hm�or�M�� � R and from ���� we get Hm�or�M�� �
Hm�)��or�M���� so Hm�M� � Hm�)��or�M��� � ��
Finally let us suppose that M is not compact� If M is orientable we have by

Poincar�e duality ����� and by �������� that Hm�M� 
� H�
c �M�

� � ��
If M is not orientable then or�M� is connected by ���� and not compact� so

Hm�M� � Hm�)��or�M��� � Hm�or�M�� � �� �

����� Corollary� Let M be a connected manifold which is not orientable� Then
or�M� is orientable and the Poincar�e duality pairing of or�M� satis�es

P k
or�M��H

k
��or�M��� �H

m�k
c ���or�M��� � �

P k
or�M��H

k
��or�M��� �H

m�k
c ���or�M��� � �

Hk
��or�M��


� �Hm�k
c ���or�M���

Hk
��or�M�� 
� �Hm�k

c ���or�M��
�

Proof� From ���� we know that or�M� is connected and orientable� So R �
H��or�M�� 
� Hm

c �or�M��
��

Now we orient or�M� and choose a positive bump m�form � with compact
support on or�M� so that

R
or�M�

� � �� From the proof of ���� we know that

the covering transformation � � or�M� � or�M� changes the orientation� so
��� is negatively oriented�

R
or�M� �

�� � �� Then � � ��� � )m� �or�M�� andR
or�M��� � ���� � �� so �Hm

c ���or�M�� � R and �H
m
c ���or�M�� � ��

Since �� is an algebra homomorphism we have

)k��or�M�� � �)m�kc ���or�M�� � �)mc ���or�M���
)k��or�M�� � �)m�kc ���or�M�� � �)mc ���or�M���
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From �Hm
c ���or�M�� � � the �rst two results follows� The last two assertions

then follow from this and Hk�or�M�� � Hk
��or�M���Hk

��or�M�� and the anal�
ogous decomposition of Hk

c �or�M��� �

����� Theorem� For the real projective spaces we have

H��RPn� � R

Hk�RPn� � � for � 	 k � n�

Hn�RPn� �

�
R for odd n�

� for even n�

Proof� The projection 	 � Sn � RPn is a smooth covering mapping with � sheets�
the covering transformation is the antipodal mapping A � Sn � Sn� x �� �x�
We put )��S

n� � f� � )�Sn� � A�� � �g and )��Sn� � f� � )�Sn� � A�� �
��g� The pullback 	� � )�RPn�� )�Sn� is an embedding onto )��S

n��
Let " be the determinant function on the oriented Euclidean space Rn�� �

We identify TxS
n with fxg� in Rn�� and we consider the n�form �Sn � )n�Sn�

which is given by ��Sn�x�X�� � � � � Xn� � "�x�X�� � � � � Xn�� Then we have

�A��Sn�x�X�� � � � � Xn� � ��Sn�A�x��TxA�X�� � � � � TxA�Xn�

� ��Sn��x��X�� � � � ��Xn�

� "��x��X�� � � � ��Xn�

� ����n��"�x�X�� � � � � Xn�

� ����n����Sn�x�X�� � � � � Xn�

Since �Sn is invariant under the action of the group SO�n���R� it must be the
Riemannian volume form� soZ

Sn
�Sn � vol�S

n� �
�n� ��	

n��
�

.�n�	� �
�

� ��k

�k���� for n � �k � �
�k�k��

�			�			��k�	� for n � �k � �
Thus ��Sn � � Hn�Sn� is a generator for the cohomology� We have A��Sn �
����n���Sn � so

�Sn �
�
)n��S

n� for odd n�

)n��S
n� for even n�

Thus Hn�RPn� � Hn�)��S
n�� equals Hn�Sn� � R for odd n and equals � for

even n�
Since RPn is connected we have H��RPn� � R� For � 	 k � n we have

Hk�RPn� � Hk�)��S
n�� � Hk�Sn� � �� �
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����� Corollary� Let M be a compact manifold� Then for all Betti numbers we
have bk�M� �� dimRH

k�M� ��� If M is compact and orientable of dimension
m we have bk�M� � bm�k�M��

Proof� This follows from ���� and from Poincar�e duality ������ �

���	� Euler�Poincar�e characteristic� IfM is compact then all Betti numbers
are �nite� so the Euler Poincar�e characteristic �see also 	���

�M �
dimMX
k��

����kbk�M� � fM ����

is de�ned�

Theorem� Let M be a compact and orientable manifold of dimension m� Then
we have�

��� If m is odd then �M � ��
��� If m � �n for odd n then �M � bn�M� � �� mod ���
��� If m � �k then �M � b�k�M� � signature�P �k

M �� mod ���

Proof� From ���� we have bq�M� � bm�q�M�� So �M �
Pm

q������qbq �Pm
q������qbm�q � ����m�M which implies ����

If m � �n we have �M �
P�n

q������qbq � �
Pn��

q�� ����qbq � ����nbn� so
�M � bn� mod ��� In general we have for a compact oriented manifold

P q
M ����� �
�� �

Z
M

� � 
 � ����q�m�q�
Z
M


 � � � ����q�m�q�Pm�q
M ��
�� �����

For odd n and m � �n we see that Pn
M is a skew symmetric non degenerate

bilinear form on Hq�M�� so bn must be even �see ��
 or �� below� which implies
����
���� If m � �k then P �k

M is a non degenerate symmetric bilinear form on
H�k�M�� an inner product� By the signature of a non degenerate symmetric
inner product one means the number of positive eigenvalues minus the number
of negative eigenvalues� so the number dimH�k�M���dimH�k�M�� �� a��a��
but since H�k�M���H�k�M�� � H�k�M� we have a��a� � b�k� so a��a� �
b�k � �a� � b�k� mod ��� �

���
� The mapping degree� Let M and N be smooth compact oriented
manifolds� both of the same dimension m� Then for any smooth mapping f �
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M � N there is a real number deg f � called the degree of f � which is given in
the bottom row of the diagram

Hm�M�

u

R
� 
�

Hm�N�u
Hm�f�

u

R
� 
�

R Ru
deg f

where the vertical arrows are isomorphisms by ������ and where deg f is the
linear mapping given by multiplication with that number� So we also the de�ning
relation Z

M

f�� � deg f
Z
N

� for all � � )m�N��

����� Lemma� The mapping degree deg has the following properties�

��� deg�f � g� � deg f � deg g� deg�IdM � � ��
��� If f � g �M � N are �smoothly� homotopic then deg f � deg g�
��� If deg f �� � then f is surjective�
��� If f � M � M is a di�eomorphism then deg f � � if f respects the

orientation and deg f � �� if f reverses the orientation�

Proof� ��� and ��� are clear� ���� If f�M� �� N we choose a bump m�form
� on N with support in the open set N n f�M�� Then f�� � � so we have
� �

R
M
f�� � deg f

R
N
�� Since

R
N
� �� � we get deg f � ��

��� follows either directly from the de�nition of the integral ��
 of from �����
below� �

������ Examples on spheres� Let f � O�n���R� and restrict it to a mapping
f � Sn � Sn� Then deg f � det f � This follows from the description of the
volume form on Sn given in the proof of �����
Let f � g � Sn � Sn be smooth mappings� If f�x� �� �g�x� for all x � Sn

then the mappings f and g are smoothly homotopic� The homotopy moves f�x�
along the shorter arc of the geodesic �big circle� to g�x�� So deg f � deg g�
If f�x� �� �x for all x � Sn then f is homotopic to IdSn � so deg f � ��
If f�x� �� x for all x � Sn then f is homotopic to �IdSn � so deg f � ����n���
The hairy ball theorem says that on Sn for even n each vector �eld vanishes

somewhere� This can be seen as follows� The tangent bundle of the sphere is

TSn � f�x� y� � Rn�� 
 Rn�� � jxj� � �� hx� yi � �g�
so a vector �eld without zeros is a mapping x �� �x� g�x�� with g�x��x� then
f�x� �� g�x��jg�x�j de�nes a smooth mapping f � Sn � Sn with f�x��x for all

Draft from November ��� ���� Peter W� Michor� ����	



��� De Rham cohomology of compact manifolds� ����� �
�

x� So f�x� �� x for all x� thus deg f � ����n�� � ��� But also f�x� �� �x for
all x� so deg f � �� a contradiction�

Finally we consider the unit circle S� i�� C � R� � Its volume form is given by
� �� i��x dy � y dx� � i� x dy�y dxx��y� � obviously we have

R
S�
xdy � ydx � �	� Now

let f � S� � S� be smooth� f�t� � �x�t�� y�t�� for � 	 t 	 �	� Then

deg f �
�

�	

Z
S�
f��xdy � ydx�

is the winding number about � from compex analysis�

������ The mapping degree is an integer� Let f � M � N be a smooth
mapping between compact oriented manifolds of dimension m� Let b � N be a
regular value for f which exists by Sard�s theorem� see ������ Then for each x �
f���b� the tangent mapping Txf mapping is invertible� so f is di�eomorphism
near x� Thus f���b� is a �nite set� since M is compact� We de�ne the mapping
� �M � f��� �� �g by

��x� �

�����
� if Txf is not invertible

� if Txf is invertible and respects orientations

�� if Txf is invertible and changes orientations�

������ Theorem� In the setting of 		�		� if b � N is a regular value for f �
then

deg f �
X

x�f���b�

��x��

In particular deg f is always an integer�

Proof� The proof is the same as for lemma ����
 with obvious changes� �
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Invariant integration on Lie groups

����� Invariant di�erential forms on Lie groups� Let G be a real Lie group
of dimension n with Lie algebra g� Then the tangent bundle of G is a trivial
vector bundle� see ����� so G is orientable� Recall from section � the notation�
� � G 
 G � G is the multiplication� �x � G � G is left translation by x� and
�y � G� G is right translation� � � G� G is the inversion�
A di�erential form � � )n�G� is called left invariant if ��x� � � for all

x � G� Then � is uniquely determined by its value �e � +nT �G � +ng�� For
each determinant function " on g there is a unique left invariant n�form L� on
G which is given by

�L��x�X�� � � � � Xn� �� "�Tx��x����X�� � � � � Tx��x����Xn�����

�L��x � Tx��x����"�

Likewise there is a unique right invariant n�form R� which is given by

��� �R��x�X�� � � � � Xn� �� "�Tx��
x��

��X�� � � � � Tx��
x��

��Xn��

����� Lemma� We have for all a � G

��a��L� � det�Ad�a
����L�����

��a�
�R� � det�Ad�a��R�����

�R��a � det�Ad�a���L��a����

Proof� We compute as follows�

���a��L��x�X�� � � � � Xn� � �L��xa�Tx��
a��X�� � � � � Tx��

a��Xn�

� "�Txa���xa�����Tx��
a��X�� � � � � Txa���xa�����Tx��

a��Xn�

� "�Ta��a����Txa��x����Tx��
a��X�� � � � � Ta��a����Txa��x����Tx��

a��Xn�

� "�Ta��a����Te��
a��Tx��x����X�� � � � � Ta��a����Te��

a��Tx��x����Xn�

� "�Ad�a����Tx��x����X�� � � � � Ad�a
����Tx��x����Xn�

� det�Ad�a����"�Tx��x����X�� � � � � Tx��x����Xn�
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� det�Ad�a�����L��x�X�� � � � � Xn��

���a�
�R��x�X�� � � � � Xn� � �R��ax�Tx��a��X�� � � � � Tx��a��Xn�

� "�Tax��
�ax���

��Tx��a��X�� � � � � Tax��
�ax���

��Tx��a��Xn�

� "�Ta��
a��

��Tax��
x��

��Tx��a��X�� � � � � Ta��
a��

��Tax��
x��

��Tx��a��Xn�

� "�Ta��
a��

��Te��a��Tx��
x��

��X�� � � � � Ta��
a��

��Te��a��Tx��
x��

��Xn�

� "�Ad�a��Tx��
x��

��X�� � � � � Ad�a��Tx��
x��

��Xn�

� det�Ad�a��"�Tx��
x��

��X�� � � � � Tx��
x��

��Xn�

� det�Ad�a���R��x�X�� � � � � Xn��

det�Ad�a���L��a�X�� � � � � Xn�

� det�Ad�a��"�Ta��a����X�� � � � � Ta��a����Xn�

� "�Ad�a��Ta��a����X�� � � � � Ad�a��Ta��a����Xn�

� "�Ta��
a��

��Te��a��Ta��a����X�� � � � � Ta��
a��

��Te��a��Ta��a����Xn�

� "�Ta��
a��

��X�� � � � � Ta��
a��

��Xn� � �R��a�X�� � � � � Xn�� �

����� Corollary and De
nition� The Lie group G admits a left and right
invariant n�form if and only if det�Ad�a�� � � for all a � G�

The Lie group G is called unimodular if j det�Ad�a��j � � for all a � G�

Proof� This is obvious from lemma ����� �

����� Haar measure� We orient the Lie group G by a left invariant n�form
L�� If f � C�c �G�R� is a smooth function with compact support on G then the
integral

R
G
fL� is de�ned and we haveZ

G

���af�L� �

Z
G

��a�fL�� �

Z
G

fL��

because �a � G� G is an orientation preserving di�eomorphism of G� Thus f ��R
G
fL� is a left invariant integration on G� which is also denoted by

R
G
f�x�dLx�

and which gives rise to a left invariant measure on G� the so called Haar measure�
It is unique up to a multiplicative constant� since dim�+ng�� � �� In the other
notation the left invariance looks likeZ

G

f�ax�dLx �

Z
G

f�x�dLx for all f � C�c �G�R�� a � G�
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From lemma �������� we haveZ
G

���a��f�L� � det�Ad�a
����

Z
G

��a���fL��

� j det�Ad�a����j
Z
G

fL��

since the mapping �a is orientation preserving if and only if det�Ad�a�� � �� So
a left Haar measure is also a right invariant one if and only if the Lie group G is
unimodular�

����� Lemma� Each compact Lie group is unimodular�

Proof� The mapping det �Ad � G� GL���R� is a homomorphism of Lie groups�
so its image is a compact subgroup of GL���R�� Thus det�Ad�G�� equals f�g or
f����g� In both cases we have j det�Ad�a��j � � for all a � G� �

Analysis for mappings between Lie groups

����� De
nition� Let G and H be Lie groups with Lie algebras g and h�
respectively� and let f � G � H be a smooth mapping� Then we de�ne the
mapping Df � G� L�g� h� by

Df�x� �� Tf�x����
f�x������Txf�Te��x� � �f�x��Te��

x��

and we call it the right trivialized derivative of f �

���	� Lemma� The chain rule� For smooth g � K � G and f � G � H we
have

D�f � g��x� � Df�g�x�� �Dg�x��
The product rule� For f� h � C��G�H� we have

D�fh��x� � Df�x� �Ad�f�x��Dh�x��

Proof� We compute as follows�

D�f � g��X� � T ��f�g�x��
��

��Tx�f � g��Te��x�
� T ��f�g�x��

��

��Tg�x��f��Te��
g�x���T ��g�x�

��

��Tx�g��Te��
x�

� Df�g�x���Dg�x��
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D�fh��x� � T ���f�x�h�x��
��

��Tx�� � �f� h���Te��x�
� T ���f�x�

��

��T ��h�x��
��

��Tf�x��h�x����Txf�Te��
x�� Txh�Te��

x��

� T ���f�x�
��

��T ��h�x��
��

��
	
T ��h�x���Txf�Te��

x� � T ��f�x���Txh�Te��
x�



� T ���f�x�
��

��Txf�Te��
x� � T ���f�x�

��

��T ��f�x���T ��
h�x����

��Txh�Te��
x�

� Df�x� �Ad�f�x���Dh�x�� �

���
� Inverse function theorem� Let f � G � H be smooth and for some
x � G let Df�x� � g � h be invertible� Then f is a di�eomorphism from a
suitable neighborhood of x in G onto a neighborhood of f�x� in H� and for the
derivative we have D�f����f�x�� � �Df�x�����

Proof� This follows from the usual inverse function theorem� �

����� Lemma� Let f � C��G�G� and let " � +dimGg� be a determinant
function on g� Then we have for all x � G�

�f�R��x � det�Df�x���R��x�

Proof� Let dimG � n� We compute as follows

�f�R��x�X�� � � � � Xn� � �R��f�x��Txf�X�� � � � � Txf�Xn�

� "�T ��f�x�
��

��Txf�X�� � � � �

� "�T ��f�x�
��

��Txf�T ��
x��T ��x

��

��X�� � � � �

� "�Df�x��T ��x
��

��X�� � � � �

� det�Df�x��"�T ��x
��

��X�� � � � �

� det�Df�x���R��x�X�� � � � � Xn�� �

������ Theorem� Transformation formula for multiple integrals� Let
f � G� G be a di�eomorphism� let " � +dimGg�� Then for any g � C�c �G�R�
we have Z

G

g�f�x��j det�Df�x��jdRx �
Z
G

g�y�dRy�

where dRx is the right Haar measure� given by R��

Proof� We consider the locally constant function ��x� � sign det�Df�x�� which
is � on those connected components where f respects the orientation and is ��
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on the other components� Then the integral is the sum of all integrals over the
connected components and we may investigate each one separately� so let us
restrict attention to the component G� of the identity� By a right translation
�which does not change the integrals� we may assume that f�G�� � G�� So
�nally let us assume without loss of generality that G is connected� so that � is
constant� Then by lemma ���	 we haveZ

G

gR� � �

Z
G

f��gR�� � �

Z
G

f��g�f��R��

�

Z
G

�g � f�� det�Df�R� �

Z
G

�g � f�j det�Df�jR�� �

������ Theorem� Let G be a compact and connected Lie group� let f �
C��G�G� and " � +dimGg�� Then we have for g � C��G�R��

deg f

Z
G

gR� �

Z
G

�g � f� det�Df�R�� or

deg f

Z
G

g�y�dRy �

Z
G

g�f�x�� det�Df�x��dRx�

Here deg f � the mapping degree of f � see 		��� is an integer�

Proof� From lemma ���	 we have f�R� � det�Df�R�� Using this and the
de�ning relation from ���� for deg f we may compute as follows�

deg f

Z
G

gR� �

Z
G

f��gR�� �

Z
G

f��g�f��R��

�

Z
G

�g � f� det�Df�R�� �

������ Examples� Let G be a compact connected Lie group�
�� If f � �a � G � G then D��a��x� � Idg� From theorem ����� we getR

G
gR� �

R
G
�g � �a�R�� the right invariance of the right Haar measure�

�� If f � �a � G � G then D��a��x� � T ���ax�
��

��Tx��a��Te��
x� � Ad�a��

So the last two results give
R
G
gR� �

R
G
�g ��a�j detAd�a�jR� which we already

know from �����
�� If f�x� � x� � ��x� x� we have

Df�x� � Tx���
x��

��T�x�x����Te��
x�� Te��

x��

� Tx��
x��

��Tx���
x��

� �Tx��x��Te��
x� � Tx��

x��Te��
x��

� Ad�x� � Idg�
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Let us now suppose that
R
G
R� � �� then we get

deg�� ��� � deg�� ���

Z
G

R� �

Z
G

det�Idg � Ad�x��dRxZ
G

g�x�� det�Idg �Ad�x��dRx �

Z
G

det�Idg �Ad�x��dRx

Z
G

g�x�dRx�

�� Let f�x� � xk for k � N � R
G
dRx � �� Then we claim that

D�� �k��x� �
k��X
i��

Ad�xi��

This follows from induction� starting from example � above� since

D�� �k��x� � D�IdG� �k����x�

� D�IdG��x� �Ad�x��D�� �k����x� by ���


� Idg � Ad�x��
k��X
i��

Ad�xi�� �
k��X
i��

Ad�xi��

We conclude that

deg� �k �

Z
G

det

�
kX
i��

Ad�xi�

�
dRx�

If G is abelian we have deg� �k � kdimG since then Ad�x� � Idg�

�� Let f�x� � ��x� � x��� Then we have D��x� � T���x�
��

�Tx��Te�
x �

�Ad�x���� Using this we see that the result in �� holds also for negative k� if
the summation is interpreted in the right way�

D�� ��k��x� �
�k��X
i��

Ad�xi� � �
k��X
i��

Ad�x�i��

Cohomology of compact connected Lie groups

������ Let G be a connected Lie group with Lie algebra g� The De Rham coho�
mology of G is the cohomology of the graded di�erential algebra �)�G�� d�� We
will investigate now what is contributed by the subcomplex of the left invariant
di�erential forms�
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De
nition� A di�erential form � � )�G� is called left invariant di�erential
form if ��a� � � for all a � G� We denote by )L�G� the subspace of all left
invariant forms� Clearly the mapping

L � +g� � )L�G��

�L��x�X�� � � � � Xk� � ��T ��x����X�� � � � � T ��x����Xk��

is a linear isomorphism� Since ��a � d � d � ��a the space �)L�G�� d� is a graded
di�erential subalgebra of �)�G�� d��

We shall also need the representation fAd � G � GL�+g�� which is given byfAd�a� � +�Ad�a����� or
�fAd�a����X�� � � � � Xk� � ��Ad�a����X�� � � � � Ad�a

����Xk��

������ Lemma� 	� Via the isomorphism L � +g� � )L�G� the exterior di�er�
ential d has the following form on +g��

d��X�� � � � � Xk� �
X

��i�j�k
����i�j���Xi� Xj�� X�� � � � � bXi� � � � bXj� � � � � Xk��

where � � +kg� and Xi � g�
�� For X � g we have i�L�X��)L�G� � )L�G� and LL�X�)L�G� � )L�G��

Thus we have induced mappings

iX � +
kg� � +k��g��

�iX���X�� � � � � Xk��� � ��X�X�� � � � � Xk����

LX � +kg� � +kg��

�LX���X�� � � � � Xk� �
kX
i��

����i���X�Xi�� X�� � � � � bXi� � � �Xk��

�� These mappings satisfy all the properties from section �� in particular

LX � iX � d� d � iX � see ��
�����

LX � d � d � LX � see ��
�����

�LX �LY � � L�X�Y 
� see ��������

�LX � iY � � i�X�Y 
� see ��������
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�� The representation fAd � G � GL�+g�� has the following derivative�

TefAd�X � LX �
Proof� For � � +kg� and Xi � g the function

�L��x�LX�
�x�� � � � � LXk

�x�� � ��T ��x����LX�
�x�� � � � �

� ��T ��x����T ��x��X�� � � � �

� ��X�� � � � � Xk�

is constant in x� This implies already that i�LX�)L�G� � )L�G� and the form
of iX in �� Then by 
������ we have

�d���X�� � � � � Xk� � �dL���LX�
� � � � � LXk

��e�

�
kX
i��

����iLXi
�e����X�� � � � bXi� � � �Xk��

�
X

��i�j�k
����i�j���Xi� Xj�� X�� � � � � bXi� � � � � bXj� � � �Xk��

from which assertion � follows since the �rst summand is �� Similarly we have

�LX���X�� � � � � Xk� � �LL�X�L���LX�
� � � � � LXk

��e�

� LX�e����X�� � � � � Xk�� �
kX
i��

����i���X�Xi�� X�� � � � � bXi� � � �Xk��

Again the �rst summand is � and the second result of ��� follows�
�� This is obvious�
�� For X and Xi � g and for � � +kg� we have

��TefAd�X����X�� � � � � Xk� �
�
�t

��
�
�fAd�exp�tX�����X�� � � � � Xk�

� �
�t

��
�
��Ad�exp��tX���X�� � � � � Ad�exp��tX���Xk�

�
kX
i��

��X�� � � � � Xi����ad�X�Xi� Xi��� � � �Xk�

�
kX
i��

����i���X�Xi�� X�� � � � � bXi� � � �Xk�

� �LX���X�� � � � � Xk�� �
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������ Lemma of Maschke� Let G be a compact Lie group� let

����V� i�� V�
p�� V	 � �

be an exact sequence of G�modules and homomorphisms such that each Vi is
a complete locally convex vector space and the representation of G on each Vi
consists of continuous linear mappings with g �� g�v continuous G� Vi for each
v � Vi� Then also the sequence

����V G
�

i�� V G
�

pG��� V G
	 � �

is exact� where V G
i �� fv � Vi � g�v � v for all g � Gg�

Proof� We prove �rst that pG is surjective� Let v	 � V G
	 � V	� Since p �

V� � V	 is surjective there is an v� � V� with p�v�� � v	� We consider the
element -v� ��

R
G
x�v�dLx� the integral makes sense since x �� x�v� is a continuous

mapping G � V�� G is compact� and Riemann sums converge in the locally
convex topology of V�� We assume that

R
G
dLx � �� Then we have a�-v� �

a�
R
G
x�v�dLx �

R
G
�ax��v�dLx �

R
G
x�v�dLx � -v� by the left invariance of the

integral� see ����� where one uses continuous linear functionals to reduce to the
scalar valued case� So -v� � V G

� and since p is a G�homomorphism we get

pG�-v�� � p�-v�� � p�

Z
G

x�v�dLx�

�

Z
G

p�x�v��dLx �

Z
G

x�p�v��dLx

�

Z
x�v	dLx �

Z
G

v	dLx � v	�

So pG is surjective�
Now we prove that the sequence is exact at V G

� � Clearly p
G�iG � �p�i�jV G

� �
�� Suppose conversely that v� � V G

� with pG�v�� � p�v�� � �� Then there is
an v� � V� with i�v�� � v�� Consider -v� ��

R
G
x�v�dLx� As above we see that

-v� � V G
� and that iG�-v�� � v�� �

������ Theorem �Chevalley� Eilenberg�� Let G be a compact connected Lie
group with Lie algebra g� Then we have�

��� H��G� � H��+g�� d� �� H��g��
��� H��g� � H��+g�� d� � �+g��g � f� � +g� � LX� � � for all X � gg�

the space of all g�invariant forms on g�
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The algebra H��g� � H�+g�� d� is called the cohomology of the Lie algebra g�

Proof� �Following �Pitie� �	
����
���� Let Zk�G� � ker�d � )k�G�� )k���G��� and let us consider the following

exact sequence of vector spaces�

��� )k���G� d�� Zk�G�� Hk�G�� �

The group G acts on )�G� by a �� ��a�� � this action commutes with d and induces

thus an action of G of Zk�G� and also on Hk�G�� On the space )�G� we may
consider the compact C��topology �uniform convergence on the compact G� in
all derivatives separately�� In this topology d is continuous and Zk�G� is closed�
and the action of G is pointwise continuous� So the assumptions of the lemma of
Maschke ����� are satis�ed and we conclude that the following sequence is also
exact�

��� )p��L �G�
d�� Zk�G�G � Hk�G�G � �

Since G is connected� for each a � G we may �nd a smooth curve c � ��� ��� G
with c��� � e and c��� � a� Then �t� x� �� �c�t����x� � c�t���x is a smooth
homotopy between IdG and �a�� � so by 	�� the two mappings induce the same
mapping in homology� we have ��a�� � Id � Hk�G� � Hk�G� for each a � G�

Thus Hk�G�G � Hk�G�� Furthermore Zk�G�G � ker�d � )kL�G� � )k��L �G���
so from the exact sequence ��� we may conclude that

Hk�G� � Hk�G�G �
ker�d � )kL�G�� )k��L �G��

im�d � )k��L �G�� )kL�G��
� Hk�+g�� d��

���� From ������� we have LX � d � d � LX � so by ������� we conclude thatfAd�a� � d � d � fAd�a� � +g� � +g� since G is connected� Thus the the sequence

��� +k��g� d�� Zk�g��� Hk�+g�� d�� ��

is an exact sequence of G�modules and G�homomorphisms� where Zk�g�� �
ker�d � +kg� � +k��g��� All spaces are �nite dimensional� so the lemma of
Maschke ����� is applicable and we may conclude that also the following sequence
is exact�

��� �+k��g��G d�� Zk�g��G � Hk�+g�� d�G � ��
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The space Hk�+g�� d�G consist of all cohomology classes � with fAd�a�� � �
for all a � G� Since G is connected� by ������� these are exactly the � with
LX� � � for all X � g� For � � +g� with d� � � we have by ������� that
LX� � iXd� � diX� � diX�� so that LX� � � for all � � Hk�+g�� d�� Thus
we get Hk�+g�� d� � Hk�+g�� d�G� Also we have �+g��G � �+g��g so that the
exact sequence ��� tranlates to

�
� Hk�g� � Hk�+g�� d� � Hk��+g��g� d��

Now let � � �+kg��g � f� � LX� � � for all X � gg and consider the
inversion � � G� G� Then we have for � � +kg� and Xi � g�

���L��a�Te��a��X�� dots� Te��a��Xk� �

� �L��a���Ta��Te��a��X�� dots� Ta��Te��a��Xk�

� �L��a����T ��a��

��T ��a����Te��a��X�� � � � �

� �L��a����Te��a��

��X�� � � � ��Te��a��

��Xk�

� ����k��T�a�T�a
��

�X�� � � � � T�a�T�
a��

�Xk�

� ����k��Ad�a��X�� dots� Ad�a��Xk�

� ����k�fAd�a������X�� dots�Xk�

� ����k��X�� � � � � Xk� since � � �+kg��g
� ����k�L��a�Te��a��X�� dots� Te��a��Xk��

So for � � �+kg��g we have ��L� � ����kL� and thus also ����k��Ld� �
��dL� � d��L� � ����kdL� � ����kLd� which implies d� � �� Hence we have
dj�+g��g � ��
From �
� we how get Hk�g� � Hk��+g��g� �� � �+kg��g as required� �

����	� Corollary� Let G be a compact connected Lie group� Then its Poincar�e
polynomial is given by

fG�t� �

Z
G

det�Ad�x� � tIdg�dLx�

Proof� Let dimG � n� By de�nition 	�� and by Poincar�e duality ���� we have

fG�t� �
nX

k��

bk�G�t
k �

nX
k��

bk�G�t
n�k �

nX
k��

dimRH
k�G�tn�k�
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On the other hand we hand we haveZ
G

det�Ad�x� � tIdg�dLx �

Z
G

det�Ad�x���� � tIdg��dLx

�

Z
G

nX
k��

Trace�+kAd�x����� tn�kdLx by ����	 below

�
nX

k��

Z
G

Trace�fAd�x�j+kg��dLx tn�k�
If � � G � GL�V � is a �nite dimensional representation of G then the operatorR
G
��x�dLx � V � V is just a projection onto V G� the space of �xed points of

the represetation� see the proof of the lemma of Maschke ������ The trace of a
projection is the dimension of the image� SoZ

G

Trace�fAd�a�j+kg��dLx � Trace�Z
G

�fAd�a�j+kg��dLx�
� dim�+kg��G � dimHk�G�� �

����
� Let Tn � �S��n be the n�dimensional torus� let tn be its Lie algebra�
The bracket is zero since the torus is an abelian group� From theorem ����� we
have then that H��Tn� � �+�tn���t

n

� +�tn��� so the Poincar�e Polynomial is
fTn�t� � �� � t�n�

������ Lemma� Let V be an n�dimensional vector space and let A � V � V be
a linear mapping� Then we have

det�A� tIdV � �
nX

k��

tn�k Trace�+kA��

Proof� By +kA � +kV � +kV we mean the mapping v� � � � � � vk �� Av� � � � � �
Avk� Let e�� � � � � en be a basis of V � By the de�nition of the determinant we
have

det�A� tIdV ��e� � � � � � en� � �Ae� � te�� � � � � � �Aen � ten�

�
nX

k��

tn�k
X

i��			�ik
e� � � � � �Aei� � � � � �Aeik � � � � � en�
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The multivectors �ei� � � � � � eik�i��			�ik are a basis of +
kV and we can thus

write

�+kA��ei� � � � � � eik� � Aei� � � � � � Aeik �
X

j��			�jk
Aj�			jk
i�			ik

ej� � � � � � ejk �

where �Aj�			jk
i�			ik

� is the matrix of +kA in this basis� We see that

e� � � � � � Aei� � � � � � Aeik � � � � � en � Ai�			ik
i�			ik

e� � � � � � en�

Consequently we have

det�A� tIdV �e� � � � � � en �
nX

k��

tn�k
X

i��			�ik
Ai�			ik
i�			ik

e� � � � � � en

�
nX

k��

tn�k Trace�+kA� e� � � � � � en�

which implies the result� �
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��� Derivations

on the Algebra of Di�erential Forms

and the Fr
olicher�Nijenhuis Bracket

����� Derivations� In this section let M be a smooth manifold� We consider
the graded commutative algebra )�M� �

LdimM
k�� )k�M� �

L�
k��� )

k�M� of

di�erential forms on M � where we put )k�M� � � for k � � and k � dimM �
The denote by Derk )�M� the space of all �graded� derivations of degree k�
i�e� all linear mappings D � )�M� � )�M� with D�)��M�� � )k���M� and
D�� � �� � D��� � � � ����k�� �D��� for � � )��M��
Lemma� Then the space Der)�M� �

L
k Derk )�M� is a graded Lie algebra

with the graded commutator �D�� D�� �� D� �D� � ����k�k�D� �D� as bracket�
This means that the bracket is graded anticommutative� and satis�es the graded
Jacobi identity

�D�� D�� � �����k�k� �D�� D���

�D�� �D�� D	�� � ��D�� D��� D	� � ����k�k� �D�� �D�� D	��

�so that ad�D�� � �D�� � is itself a derivation of degree k���

Proof� Plug in the de�nition of the graded commutator and compute� �

In section 
 we have already met some graded derivations� for a vector �eld X
on M the derivation iX is of degree ��� LX is of degree �� and d is of degree ��
Note also that the important formula LX � d iX�iX d translates to LX � �iX � d��
����� Algebraic derivations� A derivation D � Derk )�M� is called algebraic
if D j )��M� � �� Then D�f��� � f�D��� for f � C��M�R�� so D is of
tensorial character by 
��� So D induces a derivation Dx � Derk +T �xM for each
x �M � It is uniquely determined by its restriction to ��forms DxjT �xM � T �xM �
+k��T �M which we may view as an element Kx � +k��T �xM �TxM depending
smoothly on x � M � To express this dependence we write D � iK � i�K��
whereK � C��+k��T �M�TM� �� )k���M �TM�� Note the de�ning equation�
iK��� � � �K for � � )��M�� We call )�M�TM� �

LdimM
k�� )k�M�TM� the

space of all vector valued di�erential forms�

Theorem� ��� For K � )k���M�TM� the formula

�iK���X�� � � � � Xk��� �

� �
�k���� ������

X
��Sk��

sign� ���K�X��� � � � � X��k����� X��k���� � � � �
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for � � )��M�� Xi � X�M� �or TxM� de�nes an algebraic graded derivation
iK � Derk )�M� and any algebraic derivation is of this form�
��� By i��K�L��� �� �iK � iL� we get a bracket � � �� on )����M�TM� which

de�nes a graded Lie algebra structure with the grading as indicated� and for
K � )k���M�TM�� L � )����M�TM� we have

�K�L�� � iKL� ����k�iLK
where iK�� �X� �� iK����X�

� � �� is called the algebraic bracket or the Nijenhuis�Richardson bracket�
see �Nijenhuis�Richardson� �	�
��

Proof� Since +T �xM is the free graded commutative algebra generated by the
vector space T �xM any K � )k���M�TM� extends to a graded derivation� By
applying it to an exterior product of ��forms one can derive the formula in ����
The graded commutator of two algebraic derivations is again algebraic� so the
injection i � )����M�TM� � Der��)�M�� induces a graded Lie bracket on
)����M�TM� whose form can be seen by applying it to a ��form� �

����� Lie derivations� The exterior derivative d is an element of Der�)�M��
In view of the formula LX � �iX � d� � iX d�d iX for vector �elds X� we de�ne for
K � )k�M �TM� the Lie derivation LK � L�K� � Derk )�M� by LK �� �iK � d��
Then the mapping L � )�M�TM� � Der)�M� is injective� since LKf �

iKdf � df �K for f � C��M�R��

Theorem� For any graded derivation D � Derk )�M� there are unique K �
)k�M �TM� and L � )k���M �TM� such that

D � LK � iL�

We have L � � if and only if �D� d� � �� D is algebraic if and only if K � ��

Proof� Let Xi � X�M� be vector �elds� Then f �� �Df��X�� � � � � Xk� is a
derivation C��M�R� � C��M�R�� so by ��� there is a unique vector �eld
K�X�� � � � � Xk� � X�M� such that

�Df��X�� � � � � Xk� � K�X�� � � � � Xk�f � df�K�X�� � � � � Xk���

Clearly K�X�� � � � � Xk� is C
��M�R��linear in each Xi and alternating� so K is

tensorial by 
��� K � )k�M �TM��
The de�ning equation forK isDf � df�K � iKdf � LKf for f � C��M�R��

Thus D � LK is an algebraic derivation� so D � LK � iL by ���� for unique
L � )k���M �TM��
Since we have �d� d� � �d� � �� by the graded Jacobi identity we obtain

� � �iK � �d� d�� � ��iK � d�� d� � ����k���d� �iK � d�� � ��LK � d�� The mapping K ��
�iK � d� � LK is injective� so the last assertions follow� �
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����� Applying i�IdTM � on a k�fold exterior product of ��forms we see that
i�IdTM �� � k� for � � )k�M�� Thus we have L�IdTM�� � i�IdTM �d� �
d i�IdTM�� � �k � ��d� � kd� � d�� Thus L�IdTM� � d�

����� Let K � )k�M �TM� and L � )��M �TM�� Then clearly ��LK �LL�� d� �
�� so we have

�L�K��L�L�� � L��K�L��

for a uniquely de�ned �K�L� � )k���M �TM�� This vector valued form �K�L� is
called the Fr�olicher�Nijenhuis bracket of K and L�

Theorem� The space )�M �TM� �
LdimM

k�� )k�M �TM� with its usual grading
is a graded Lie algebra for the Fr�olicher�Nijenhuis bracket� So we have

�K�L� � �����k��L�K�
�K�� �K�� K	�� � ��K�� K��� K	� � ����k�k� �K�� �K�� K	��

IdTM � )��M �TM� is in the center� i�e� �K� IdTM � � � for all K�
L � �)�M �TM�� � � �� � Der)�M� is an injective homomorphism of gra�

ded Lie algebras� For vector �elds the Fr�olicher�Nijenhuis bracket coincides with
the Lie bracket�

Proof� df � �X�Y � � L��X�Y ��f � �LX �LY �f � The rest is clear� �

����� Lemma� For K � )k�M �TM� and L � )����M �TM� we have

�LK � iL� � i��K�L��� ����k�L�iLK�� or
�iL�LK� � L�iLK�� ����k i��L�K���

This generalizes 
�
���

Proof� For f � C��M�R� we have �iL�LK �f � iL iK df � � � iL�df � K� �
df � �iLK� � L�iLK�f � So �iL�LK �� L�iLK� is an algebraic derivation�

��iL�LK �� d� � �iL� �LK� d��� ����k��LK � �iL� d�� �
� �� ����k�L��K�L�� � ����k�i��L�K��� d��

Since � � d� kills the �L�s� and is injective on the �i�s�� the algebraic part of
�iL�LK � is ����k i��L�K��� �

���	� Module structure� The space Der)�M� is a graded module over the
graded algebra )�M� with the action �� � D�� � � � D���� because )�M� is
graded commutative�
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Theorem� Let the degree of � be q� of � be k� and of � be �� Let the other
degrees be as indicated� Then we have�

�� �D�� D�� � � � �D�� D��� �����q�k��k�D���� �D�����

i�� � L� � � � i�L����

� � LK � L�� �K� � ����q�k��i�d� �K�����

�� � L�� L��
� � � � �L�� L��

�����

� �����q������������i�L��� � L��

�� �K�� K�� � � � �K�� K��� �����q�k��k�L�K��� �K����

� ����q�k�d� � i�K��K��

���X�� � Y � � � � � � �X�Y ����

� �iY d� � � �X � ����k�iXd� � �� Y
�

� �d�iY � � ���X � ����k�d�iX� � ��� Y
�

� � � � � �X�Y � � � � LX� � Y � LY � � � �X

� ����k �d� � iX� � Y � iY � � d� �X� �

Proof� For ��� � ��� � ��� write out the de�nitions� For ��� compute i��� �
L�� L��

��� For ��� compute L��� �K�� K���� For ��� use ��� � �

���
� Theorem� For K � )k�M �TM� and � � )��M� the Lie derivative of �
along K is given by the following formula� where the Xi are vector �elds on M �

�LK���X�� � � � � Xk��� �

� �
k� ��

X
�

sign� L�K�X��� � � � � X�k�����X��k���� � � � � X��k�����

� ��
k� ������

X
�

sign� ���K�X��� � � � � X�k�� X��k����� X��k���� � � � �

� ����k��

�k���� ������ ��
X
�

sign� ��K��X��� X���� X�	� � � � �� X��k���� � � � ��

Proof� It su ces to consider K � ��X� Then by ���
�� we have L���X� �
� � LX � ����k��d� � iX � Now use the global formulas of section 
 to expand
this� �
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����� Theorem� For K � )k�M �TM� and L � )��M �TM� we have for the
Fr�olicher�Nijenhuis bracket �K�L� the following formula� where the Xi are vector
�elds on M �

�K�L��X�� � � � � Xk��� �

� �
k� ��

X
�

sign� �K�X��� � � � � X�k�� L�X��k���� � � � � X��k�����

� ��
k� ������

X
�

sign� L��K�X��� � � � � X�k�� X��k����� X��k���� � � � �

� ����k�
�k���� ��

X
�

sign� K��L�X��� � � � � X���� X�������� X������� � � � �

� ����k��

�k���� ������ ��
X
�

sign� L�K��X��� X���� X�	� � � � �� X��k���� � � � �

� �����k����

�k���� ������ ��
X
�

sign� K�L��X��� X���� X�	� � � � �� X������� � � � ��

Proof� It su ces to considerK � ��X and L � ��Y � then for ���X���Y � we
may use ���
�� and evaluate that at �X�� � � � � Xk���� After some combinatorial
computation we get the right hand side of the above formula for K � ��X and
L � � � Y � �

There are more illuminating ways to prove this formula� see �Michor� �	�
��

������ Local formulas� In a local chart �U� u� on the manifold M we put

K j U �
P

Ki
�d

� � �i� L j U �
P

Lj�d
� � �j � and � j U �

P
��d

� � where

� � �� 	 �� � �� � � � � � �k 	 dimM� is a form index� d� � du�� � � � �� du�k �
�i �

�
�ui

and so on�
Plugging Xj � �ij into the global formulas ����� ����� and ���	� we get the

following local formulas�

iK� j U �
X

Ki
��			�k

�i�k��			�k����
d�

�K�L�� j U �
X	

Ki
��			�k

Lji�k��			�k��

� �����k��������Li��			�� Kj
i����			�k��



d� � �j

LK� j U �
X	

Ki
��			�k

�i��k��			�k��

� ����k����Ki
��			�k��

��i�k��			�k��



d�
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�K�L� j U �
X	

Ki
��			�k

�iL
j
�k��			�k��

� ����k�Li��			�� �iKj
����			�k��

� kKj
��			�k��i

��kL
i
�k��			�k��

� ����k��Lj��			����i
���K

i
����			�k��



d� � �j

������ Theorem� For Ki � )ki�M �TM� and Li � )ki���M �TM� we have

��� �LK�
� iL�

�LK�
� iL�

� � L ��K�� K�� � iL�
K� � ����k�k� iL�

K�

�
� i
�
�L�� L��

� � �K�� L��� ����k�k� �K�� L��
�
�

Each summand of this formula looks like a semidirect product of graded Lie
algebras� but the mappings

i � )�M �TM�� End�)�M �TM�� � � ��

ad � )�M �TM�� End�)�M �TM�� � � ���

do not take values in the subspaces of graded derivations� We have instead for
K � )k�M �TM� and L � )����M �TM� the following relations�

iL�K�� K�� � �iLK�� K�� � ����k���K�� iLK�����

�
	
����k��i��K�� L��K� � �����k����k� i��K�� L��K�



�K� �L�� L��

�� � ��K�L��� L��
� � ����kk� �L�� �K�L���

�����

�
	
����kk� �i�L��K�L��� �����k�k��k� �i�L��K�L��



The algebraic meaning of the relations of this theorem and its consequences

in group theory have been investigated in �Michor� �	�	�� The corresponding
product of groups is well known to algebraists under the name �Zappa�Szep��
product�

Proof� Equation ��� is an immediate consequence of ����� Equations ��� and ���
follow from ��� by writing out the graded Jacobi identity� or as follows� Consider
L�iL�K�� K��� and use ���� repeatedly to obtain L of the right hand side of ����
Then consider i��K� �L�� L��

��� and use again ���� several times to obtain i of
the right hand side of ���� �
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������ Corollary �of ��	�� For K� L � )��M �TM� we have

�K�L��X�Y � � �KX�LY �� �KY�LX�

� L��KX�Y �� �KY�X��

�K��LX� Y �� �LY�X��
� �LK �KL��X�Y ��

������ Curvature� Let P � )��M �TM� be a �ber projection� i�e� P �P � P �
This is the most general case of a ��rst order� connection� We may call kerP the
horizontal space and imP the vertical space of the connection� If P is of constant
rank� then both are sub vector bundles of TM � If imP is some primarily �xed
sub vector bundle or �tangent bundle of� a foliation� P can be called a connection
for it� Special cases of this will be treated extensively later on� The following
result is immediate from ������

Lemma� We have

�P� P � � �R� � !R�

where R� !R � )��M �TM� are given by R�X�Y � � P ��Id�P �X� �Id�P �Y � and
!R�X�Y � � �Id� P ��PX�PY ��

If P has constant rank� then R is the obstruction against integrability of the
horizontal bundle kerP � and !R is the obstruction against integrability of the
vertical bundle imP � Thus we call R the curvature and !R the cocurvature of the
connection P � We will see later� that for a principal �ber bundle R is just the
negative of the usual curvature�

������ Lemma �Bianchi identity�� If P � )��M �TM� is a connection ��ber
projection� with curvature R and cocurvature !R� then we have

�P�R� !R� � �

�R�P � � iR !R� i �RR�

Proof� We have �P� P � � �R � � !R by ����� and �P� �P� P �� � � by the graded
Jacobi identity� So the �rst formula follows� We have �R � P � �P� P � � i�P�P 
P �
By ������� we get i�P�P 
�P� P � � ��i�P�P 
P� P �� � � ��R�P �� Therefore �R�P � �
�
� i�P�P 
�P� P � � i�R � !R��R � !R� � iR !R � i �RR since R has vertical values and

kills vertical vectors� so iRR � �� likewise for !R� �
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��� ��� The Fr�olicher�Nijenhuis bracket� �����

������ Naturality of the Fr�olicher�Nijenhuis bracket� Let f � M �
N be a smooth mapping between manifolds� Two vector valued forms K �
)k�M �TM� and K � � )k�N �TN� are called f �related or f �dependent� if for all
Xi � TxM we have

��� K �
f�x��Txf �X�� � � � � Txf �Xk� � Txf �Kx�X�� � � � � Xk��

Theorem�

��� If K and K � as above are f �related then iK � f� � f� � iK� � )�N� �
)�M��

��� If iK � f� j B��N� � f� � iK� j B��N�� then K and K � are f �related�
where B� denotes the space of exact ��forms�

��� If Kj and K �
j are f �related for j � �� �� then iK�

K� and iK�

�
K �

� are
f �related� and also �K�� K��

� and �K �
�� K

�
��
� are f �related�

��� If K and K � are f �related then LK � f� � f� � LK� � )�N�� )�M��
��� If LK � f� j )��N� � f� � LK� j )��N�� then K and K � are f �related�
�
� If Kj and K �

j are f �related for j � �� �� then their Fr�olicher�Nijenhuis
brackets �K�� K�� and �K

�
�� K

�
�� are also f �related�

Proof� ��� By ���� we have for � � )q�N� and Xi � TxM �

�iKf
���x�X�� � � � � Xq�k��� �

� �
k� �q����

X
�

sign� �f���x�Kx�X��� � � � � X�k�� X��k���� � � � �

� �
k� �q����

X
�

sign� �f�x��Txf �Kx�X��� � � � �� Txf �X��k���� � � � �

� �
k� �q����

X
�

sign� �f�x��K
�
f�x��Txf �X��� � � � �� Txf �X��k���� � � � �

� �f�iK���x�X�� � � � � Xq�k���

��� follows from this computation� since the df � f � C��M�R� separate
points�
��� follows from the same computation for K� instead of �� the result for the

bracket then follows from �������
��� The algebra homomorphism f� intertwines the operators iK and iK� by

���� and f� commutes with the exterior derivative d� Thus f� intertwines the
commutators �iK � d� � LK and �iK� � d� � LK� �
��� For g � )��N� we have LK f� g � iK d f� g � iK f� dg and f� LK� g �

f� iK� dg� By ��� the result follows�
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��� The Fr�olicher�Nijenhuis bracket� ����� ���

�
� The algebra homomorphism f� intertwines LKj
and LK�

j
� so also their

graded commutators which equal L��K�� K��� and L��K �
�� K

�
���� respectively� Now

use ��� � �

������ Let f � M � N be a local di�eomorphism� Then we can consider the
pullback operator f� � )�N �TN�� )�M �TM�� given by

��� �f�K�x�X�� � � � � Xk� � �Txf�
��Kf�x��Txf �X�� � � � � Txf �Xk��

Note that this is a special case of the pullback operator for sections of natural
vector bundles in ����� Clearly K and f�K are then f �related�

Theorem� In this situation we have�

��� f� �K�L� � �f�K� f�L��
��� f� iKL � if�Kf

�L�
��� f� �K�L�� � �f�K� f�L���
��� For a vector �eld X � X�M� and K � )�M �TM� by ��	� the Lie de�

rivative LXK � �
�t

��
�
�FlXt �

�K is de�ned� Then we have LXK � �X�K��
the Fr�olicher�Nijenhuis�bracket�

We may say that the Fr�olicher�Nijenhuis bracket� � � ��� etc� are natural
bilinear concomitants�

Proof� ��� � ��� are obvious from ������ ��� Obviously LX is R�linear� so it
su ces to check this formula for K � � � Y � � � )�M� and Y � X�M�� But
then

LX�� � Y � � LX� � Y � � � LXY by ����

� LX� � Y � � � �X�Y �
� �X�� � Y � by ���
��� �

����	� Remark� At last we mention the best known application of the Fr�oli�
cher�Nijenhuis bracket� which also led to its discovery� A vector valued ��form
J � )��M �TM� with J � J � �Id is called a almost complex structure� if it
exists� dimM is even and J can be viewed as a �ber multiplication with

p��
on TM � By ����� we have

�J� J ��X�Y � � ���JX� JY �� �X�Y �� J �X� JY �� J �JX� Y ���

The vector valued form �
� �J� J � is also called the Nijenhuis tensor of J � For it

the following result is true�
A manifoldM with a almost complex structure J is a complex manifold �i�e��

there exists an atlas forM with holomorphic chart�change mappings� if and only
if �J� J � � �� See �Newlander�Nirenberg� �	�
��
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��� Fiber Bundles and Connections

����� De
nition� A ��ber� bundle �E� p�M� S� consists of manifolds E� M �
S� and a smooth mapping p � E � M � furthermore each x � M has an open
neighborhood U such that E j U �� p���U� is di�eomorphic to U 
S via a �ber
respecting di�eomorphism�

E j U w
�

�
�
�
p

U 
 S

�
�
��

pr�

U�

E is called the total space� M is called the base space or basis� p is a surjective
submersion� called the projection� and S is called standard �ber� �U� �� as above
is called a �ber chart�
A collection of �ber charts �U�� ���� such that �U�� is an open cover of M �

is called a ��ber bundle atlas�� If we �x such an atlas� then �� � �����x� s� �
�x� ����x� s��� where ��� � �U� � U�� 
 S � S is smooth and ����x� � is a
di�eomorphism of S for each x � U�� �� U� � U� � We may thus consider
the mappings ��� � U�� � Di��S� with values in the group Di��S� of all
di�eomorphisms of S� their di�erentiability is a subtle question� which will not
be discussed in this book� but see �Michor� �	���� In either form these mappings
��� are called the transition functions of the bundle� They satisfy the cocycle
condition� ����x������x� � ����x� for x � U��� and ����x� � IdS for x � U��
Therefore the collection ����� is called a cocycle of transition functions�
Given an open cover �U�� of a manifoldM and a cocycle of transition functions

����� we may construct a �ber bundle �E� p�M� S� similarly as in ����

����� Lemma� Let p � N �M be a surjective submersion �a �bered manifold�
which is proper� so that p���K� is compact in E for each compact K �M � and
let M be connected� Then �N� p�M� is a �ber bundle�

Proof� We have to produce a �ber chart at each x� � M � So let �U� u� be
a chart centered at x� on M such that u�U� 
� Rm � For each x � U let
�x�y� �� �Tyu�

���u�x�� then �x � X�U�� depending smoothly on x � U � such

that u�Fl
xt u���z�� � z � t�u�x�� so each �x is a complete vector �eld on U �
Since p is a submersion� with the help of a partition of unity on p���U� we may
construct vector �elds �x � X�p���U�� which depend smoothly on x � U and are

p�related to �x� Tp��x � �x � p� Thus p � Fl�xt � Fl
xt �p by ����� so Fl�xt is �ber
respecting� and since p is proper and �x is complete� �x has a global $ow too�

Draft from November ��� ���� Peter W� Michor� ���




��� Fiber Bundles and Connections� ���� ���

Denote p���x�� by S� Then � � U 
 S � p���U�� de�ned by ��x� y� � Fl�x� �y��
is a di�eomorphism and is �ber respecting� so �U� ���� is a �ber chart� Since M
is connected� the �bers p���x� are all di�eomorphic�

����� Let �E� p�M� S� be a �ber bundle� we consider the �ber linear tangent
mapping Tp � TE � TM and its kernel ker Tp �� V E which is called the
vertical bundle of E� The following is special case of ������

De�nition� A connection on the �ber bundle �E� p�M� S� is a vector valued ��
form ( � )��E�V E� with values in the vertical bundle V E such that ( �( � (
and Im( � V E� so ( is just a projection TE � V E�
Then ker( is of constant rank� so by ��� ker( is a sub vector bundle of TE� it

is called the space of horizontal vectors or the horizontal bundle and it is denoted
by HE� Clearly TE � HE � V E and TuE � HuE � VuE for u � E�
Now we consider the mapping �Tp� 	E� � TE � TM
ME� Then by de�nition

�Tp� 	E�
����p�u�� u� � VuE� so �Tp� 	E� j HE � HE � TM 
M E is �ber linear

over E and injective� so by reason of dimensions it is a �ber linear isomorphism�
Its inverse is denoted by

C �� ��Tp� 	E� j HE��� � TM 
M E � HE �� TE�

So C � TM 
M E � TE is �ber linear over E and is a right inverse for �Tp� 	E��
C is called the horizontal lift associated to the connection (�
Note the formula (��u� � �u � C�Tp��u� u� for �u � TuE� So we can equally

well describe a connection ( by specifying C� Then we call ( the vertical pro�
jection �no confusion with ���� will arise� and � �� idTE �( � C � �Tp� 	E� will
be called the horizontal projection�

����� Curvature� If ( � TE � V E is a connection on the bundle �E� p�M� S��
then as in ����� the curvature R of ( is given by

�R � �(�(� � �Id� (� Id� (� � ��� �� � )��E�V E�

�The cocurvature !R vanishes since the vertical bundle V E is integrable�� We have
R�X�Y � � �

� �(�(��X�Y � � (��X� �Y �� so R is an obstruction against integra�
bility of the horizontal subbundle� Note that for vector �elds �� � � X�M� and
their horizontal lifts C��C� � X�E� we have R�C��C�� � �C��C��� C���� ����
Since the vertical bundle V E is integrable� by ����� we have the Bianchi identity
�(� R� � ��

����� Pullback� Let �E� p�M� S� be a �ber bundle and consider a smooth
mapping f � N � M � Since p is a submersion� f and p are transversal in the
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��� ��� Fiber Bundles and Connections� ����

sense of ���� and thus the pullback N 
�f�M�p� E exists� It will be called the
pullback of the �ber bundle E by f and we will denote it by f�E� The following
diagram sets up some further notation for it�

f�E w
p�f

u
f�p

E

u
p

N w
f

M�

Proposition� In the situation above we have�

��� �f�E� f�p�N� S� is again a �ber bundle� and p�f is a �ber wise di�eo�
morphism�

��� If ( � )��E�TE� is a connection on the bundle E� then the vector valued
form f�(� given by �f�(�u�X� �� Tu�p

�f����(�Tu�p�f��X for X � TuE�
is a connection on the bundle f�E� The forms f�( and ( are p�f �related
in the sense of 	��	��

��� The curvatures of f�( and ( are also p�f �related�

Proof� ���� If �U�� ��� is a �ber bundle atlas of �E� p�M� S� in the sense of
����� then �f���U��� �f�p� pr� � �� � p�f�� is visibly a �ber bundle atlas for
�f�E� f�p�N� S�� by the formal universal properties of a pullback ���	� ��� is
obvious� ��� follows from ��� and ������
� �

����� Let us suppose that a connection ( on the bundle �E� p�M� S� has zero
curvature� Then by ���� the horizontal bundle is integrable and gives rise to
the horizontal foliation by ������� Each point u � E lies on a unique leaf L�u�
such that TvL�u� � HvE for each v � L�u�� The restriction p j L�u� is locally
a di�eomorphism� but in general it is neither surjective nor is it a covering onto
its image� This is seen by devising suitable horizontal foliations on the trivial
bundle pr� � R 
 S� � S��

���	� Local description� Let ( be a connection on �E� p�M� S�� Let us �x a
�ber bundle atlas �U�� with transition functions ������ and let us consider the
connection �����

����( � )��U� 
 S�U� 
 TS�� which may be written in the
form

�����
����(���x� �y� �� �.���x� y� � �y for �x � TxU� and �y � TyS�

since it reproduces vertical vectors� The .� are given by

��x�.
���x� y�� �� �T �����(�T ���������x� �y��
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We consider .� as an element of the space )��U��X�S��� a ��form on U
� with

values in the in�nite dimensional Lie algebra X�S� of all vector �elds on the
standard �ber� The .� are called the Christo�el forms of the connection ( with
respect to the bundle atlas �U�� ����

Lemma� The transformation law for the Christo�el forms is

Ty�����x� ���.���x� y� � .
���x� ����x� y��� Tx����� � y����x�

The curvature R of ( satis�es

����� �
�R � d.� � �.��.��X�S��

Here d.� is the exterior derivative of the ��form .� � )��U��X�S�� with
values in the complete locally convex space X�S�� We will later also use the Lie
derivative of it and the usual formulas apply� consult �Fr�olicher� Kriegl� �	���
for calculus in in�nite dimensional spaces�
The formula for the curvature is the Maurer�Cartan formula which in this

general setting appears only in the level of local description�

Proof� From ��� � ��������x� y� � �x� ����x� y�� we get that
T ��� � ����������x� �y� � ��x� T�x�y���������x� �y�� and thus�

T ����� ����x�.
���x� y�� � �(�T ����� ���x� �y�� �

� �(�T ����� ��T ��� � ���� ����x� �y�� �
� �(�T ����� ���x� T�x�y��������x� �y��� �
� �(�T ����� ���x� �����x�y���� (�T ����� ���x� T�x�y������x� �y�� �
� T ����� ����x�.

���x� ����x� y���� T ����� ���x� Tx����� � y����x��

This implies the transformation law�
For the curvature R of ( we have by ���� and ������

����� �
�R ����� ���� ���� ���� �

� ����� �
�( ��Id� ����� ��(����� ���� �Id� ����� ��(����� ���� �

� ����� �
�(�����.������� ����.������� �

� ����� �
�(
�
���� ���� ��.������ ��.����� � �.������.������

�
�

� �.������ ���� � ��.������ ��.����� � �.������.������ �

� d.����� ��� � �.������.������X�S�� �
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���
� Theorem �Parallel transport�� Let ( be a connection on a bundle
�E� p�M� S� and let c � �a� b��M be a smooth curve with � � �a� b�� c��� � x�

Then there is a neighborhood U of Ex 
 f�g in Ex 
 �a� b� and a smooth
mapping Ptc � U � E such that�

��� p�Pt�c� ux� t�� � c�t� if de�ned� and Pt�c� ux� �� � ux�
��� (� ddt Pt�c� ux� t�� � � if de�ned�
��� Reparametrisation invariance� If f � �a�� b�� � �a� b� is smooth with � �

�a�� b��� then Pt�c� ux� f�t�� � Pt�c � f�Pt�c� ux� f����� t� if de�ned�
��� U is maximal for properties ��� and ����
��� In a certain sense Pt depends smoothly also on c�

First proof� In local bundle coordinates (� ddt Pt�c� ux� t�� � � is an ordinary
di�erential equation of �rst order� nonlinear� with initial condition Pt�c� ux� �� �
ux� So there is a maximally de�ned local solution curve which is unique� All
further properties are consequences of uniqueness�

Second proof� Consider the pullback bundle �c�E� c�p� �a� b�� S� and the pullback
connection c�( on it� It has zero curvature� since the horizontal bundle is ��
dimensional� By ���� the horizontal foliation exists and the parallel transport
just follows a leaf and we may map it back to E� in detail� Pt�c� ux� t� � p�c��c�p j
L�ux��

���t���

Third proof� Consider a �ber bundle atlas �U�� ��� as in ���
� Then we have
���Pt�c� �

��
� �x� y�� t�� � �c�t�� 
�y� t��� where

� �
�
����� �

�(
� �

d
dt c�t��

d
dt
�y� t�

�
� �.� � ddt c�t�� 
�y� t��� d

dt
�y� t��

so 
�y� t� is the integral curve �evolution line� through y � S of the time depen�
dent vector �eld .�

�
d
dtc�t�

�
on S� This vector �eld visibly depends smoothly

on c� Clearly local solutions exist and all properties follow� For ��� we refer to
�Michor� �	���� �

����� A connection ( on �E� p�M� S� is called a complete connection� if the
parallel transport Ptc along any smooth curve c � �a� b� � M is de�ned on the
whole of Ec��� 
 �a� b�� The third proof of theorem ���� shows that on a �ber
bundle with compact standard �ber any connection is complete�
The following is a su cient condition for a connection ( to be complete�

There exists a �ber bundle atlas �U�� ��� and complete Riemannian met�
rics g� on the standard �ber S such that each Christo�el form .� �
)��U��X�S�� takes values in the linear subspace of g��bounded vector
�elds on S
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For in the third proof of theorem ���� above the time dependent vector �eld
.�� ddtc�t�� on S is g��bounded for compact time intervals� So by continuation
the solution exists over c���U��� and thus globally�
A complete connection is called an Ehresmann connection in �Greub � Halperin

� Vanstone I� p ����� where it is also indicated how to prove the following result�

Theorem� Each �ber bundle admits complete connections�

Proof� Let dimM � m� Let �U�� ��� be a �ber bundle atlas as in ����� By
topological dimension theory �Nagata� �	��� the open cover �U�� of M admits
a re�nement such that any m � � members have empty intersection� see also
���� Let �U�� itself have this property� Choose a smooth partition of unity �f��
subordinated to �U��� Then the sets V� �� fx � f��x� � �

m��
g � U� form still

an open cover of M since
P

f��x� � � and at most m � � of the f��x� can be
nonzero� By renaming assume that each V� is connected� Then we choose an
open cover �W�� of M such that W� � V��
Now let g� and g� be complete Riemannian metrics on M and S� respectively

�see �Nomizu � Ozeki� �	��� or �Morrow� �	
���� For not connected Riemannian
manifolds complete means that each connected component is complete� Then
g�jU� 
 g� is a Riemannian metric on U� 
 S and we consider the metric g ��P

f��
�
��g�jU� 
 g�� on E� Obviously p � E � M is a Riemannian submersion

for the metrics g and g�� We choose now the connection ( � TE � V E as the
orthonormal projection with respect to the Riemannian metric g�
Claim� ( is a complete connection on E�
Let c � ��� �� � M be a smooth curve� We choose a partition � � t� � t� �
� � � � tk � � such that c��ti� ti���� � V�i for suitable �i� It su ces to show that
Pt�c�ti� �� uc�ti�� t� exists for all � 	 t 	 ti�� � ti and all uc�ti�� for all i &
then we may piece them together� So we may assume that c � ��� �� � V� for
some �� Let us now assume that for some �x� y� � V� 
 S the parallel transport
Pt�c� ���x� y�� t� is de�ned only for t � ��� t�� for some � � t� � �� By the third
proof of ���� we have Pt�c� ���x� y�� t� � ���� �c�t�� 
�t��� where 
 � ��� t

�� � S
is the maximally de�ned integral curve through y � S of the time dependent
vector �eld .�� ddt c�t�� � on S� We put g� �� ����� �

�g� then �g���x�y� �
�g��x 
 �

P
� f��x�����x� ��g��y� Since pr� � �V� 
 S� g�� � �V�� g�jV�� is

a Riemannian submersion and since the connection ����� �
�( is also given by

orthonormal projection onto the vertical bundle� we get

� � g��length
t�

� �c� � g��length�c� 
� �

Z t�

�

j�c��t�� d
dt

�t��jg� dt �

�

Z t�

�

q
jc��t�j�g� �

P
�f��c�t�������c�t�����g��� ddt
�t�� ddt
�t��dt �

Draft from November ��� ���� Peter W� Michor� ����



��
 ��� Fiber Bundles and Connections� ����	

�
Z t�

�

p
f��c�t�� j ddt
�t�jg� dt �

�p
m� �

Z t�

�

j d
dt

�t�jg�dt�

So g��lenght�
� is �nite and since the Riemannian metric g� on S is complete�
limt�t� 
�t� �� 
�t

�� exists in S and the integral curve 
 can be continued� �

������ Holonomy groups and Lie algebras� Let �E� p�M� S� be a �ber
bundle with a complete connection (� and let us assume that M is connected�
We choose a �xed base point x� �M and we identify Ex� with the standard �ber
S� For each closed piecewise smooth curve c � ��� ���M through x� the parallel
transport Pt�c� � �� �� Pt�c� �� �pieced together over the smooth parts of c�
is a di�eomorphism of S� All these di�eomorphisms form together the group
Hol�(� x��� the holonomy group of ( at x�� a subgroup of the di�eomorphism
group Di��S�� If we consider only those piecewise smooth curves which are
homotopic to zero� we get a subgroup Hol��(� x��� called the restricted holonomy
group of the connection ( at x��
Now let C � TM 
M E � TE be the horizontal lifting as in ����� and let R

be the curvature ������ of the connection (� For any x � M and Xx � TxM
the horizontal lift C�Xx� �� C�Xx� � � Ex � TE is a vector �eld along Ex�
For Xx and Yx � TxM we consider R�CXx� CYx� � X�Ex�� Now we choose
any piecewise smooth curve c from x� to x and consider the di�eomorphism
Pt�c� t� � S � Ex� � Ex and the pullback Pt�c� ��

�R�CXx� CYx� � X�S�� Let
us denote by hol�(� x�� the closed linear subspace� generated by all these vector
�elds �for all x � M � Xx� Yx � TxM and curves c from x� to x� in X�S� with
respect to the compact C��topology� and let us call it the holonomy Lie algebra
of ( at x��

Lemma� hol�(� x�� is a Lie subalgebra of X�S��

Proof� For X � X�M� we consider the local $ow FlCXt of the horizontal lift of
X� It restricts to parallel transport along any of the $ow lines of X in M � Then
for vector �elds on M the expression

d
dt j��FlCXs ���FlCYt ���FlCX�s �

��FlCZz ��R�CU�CV � � Ex�

� �FlCXs ���CY� �FlCX�s �
��FlCZz ��R�CU�CV �� � Ex�

� ��FlCXs ��CY� �FlCZz ��R�CU�CV �� � Ex�

is in hol�(� x��� since it is closed in the compact C
��topology and the derivative

can be written as a limit� Thus

��FlCXs ���CY�� CY��� �Fl
CZ
z ��R�CU�CV �� � Ex� � hol�(� x��
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by the Jacobi identity and

��FlCXs ��C�Y�� Y��� �FlCZz ��R�CU�CV �� � Ex� � hol�(� x���

so also their di�erence

��FlCXs ��R�CY�� CY��� �Fl
CZ
z ��R�CU�CV �� � Ex�

is in hol�(� x��� �

������ The following theorem is a generalization of the theorem of Ambrose
and Singer on principal connections� The reader who does not know principal
connections is advised to read parts of sections �� and �� �rst� We include this
result here in order not to disturb the development in section �� later�

Theorem� Let ( be a complete connection on the �bre bundle �E� p�M� S� and
let M be connected� Suppose that for some �hence any� x� � M the holonomy
Lie algebra hol�(� x�� is �nite dimensional and consists of complete vector �elds
on the �ber Ex�

Then there is a principal bundle �P� p�M�G� with �nite dimensional structure
group G� an irreducible connection � on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol�(� x��� the �bre
bundle E is isomorphic to the associated bundle P �S�� and ( is the connection
induced by �� The structure group G equals the holonomy group Hol�(� x��� P
and � are unique up to isomorphism�

By a theorem of �Palais� �	�
� a �nite dimensional Lie subalgebra of X�Ex��
like hol�(� x�� consists of complete vector �elds if and only if it is generated by
complete vector �elds as a Lie algebra�

Proof� Let us again identify Ex� and S� Then g �� hol�(� x�� is a �nite dimen�
sional Lie subalgebra of X�S�� and since each vector �eld in it is complete� there
is a �nite dimensional connected Lie group G� of di�eomorphisms of S with Lie
algebra g� see �Palais� �	�
��
Claim �� G� contains Hol��(� x��� the restricted holonomy group�
Let f � Hol��(� x��� then f � Pt�c� �� for a piecewise smooth closed curve c
through x�� which is nullhomotopic� Since the parallel transport is essentially
invariant under reparametrisation� ����� we can replace c by c � g� where g is
smooth and $at at each corner of c� So we may assume that c itself is smooth�
Since c is homotopic to zero� by approximation we may assume that there is
a smooth homotopy H � R� � M with H�j��� �� � c and H�j��� �� � x�� Then
ft �� Pt�Ht� �� is a curve in Hol��(� x�� which is smooth as a mapping R
S � S�
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this can be seen by using the proof of claim � below or as in the proof of ���
���
We will continue the proof of claim � below�
Claim �� � d

dt
ft� � f��t �� Zt is in g for all t�

To prove claim � we consider the pullback bundle H�E � R� with the induced
connection H�(� It is su cient to prove claim � there� Let X � d

ds and Y �
d
dt

be the constant vector �elds on R� � so �X�Y � � �� Then Pt�c� s� � FlCXs jS and
so on� We put

ft�s � Fl
CX
�s �FlCY�t �FlCXs �FlCYt � S � S�

so ft�� � ft� Then we have in the vector space X�S�

� d
dt
ft�s� � f��t�s � ��FlCXs ��CY � �FlCXs ���FlCYt ���FlCX�s �

�CY�

� ddtft��� � f��t�� �

Z �

�

d
ds

�
� ddtft�s� � f��t�s

�
ds

�

Z �

�

	
��FlCXs ���CX�CY � � �FlCXs ���CX� �FlCYt ���FlCX�s �

�CY �

��FlCXs ���FlCYt ���FlCX�s �
��CX�CY �



ds�

Since �X�Y � � � we have �CX�CY � � (�CX�CY � � R�CX�CY � and

�FlCXt ��CY � C
	
�FlXt �

�Y


�(

	
�FlCXt ��CY



� CY �

Z t

�

d
dt(�Fl

CX
t ��CY dt

� CY �

Z t

�

(�FlCXt ���CX�CY � dt

� CY �

Z t

�

(�FlCXt ��R�CX�CY � dt

� CY �

Z t

�

�FlCXt ��R�CX�CY � dt�

The $ows �FlC Xs�
� and its derivative at � LCX � �CX� � do not lead out of

g� thus all parts of the integrand above are in g and so � ddtft��� � f��t�� is in g for
all t and claim � follows�
Now claim � can be shown as follows� There is a unique smooth curve g�t�

in G� satisfying Te��g�t��Zt � Zt�g�t� �
d
dtg�t� and g��� � e� via the action of
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G� on S the curve g�t� is a curve of di�eomorphisms on S� generated by the
time dependent vector �eld Zt� so g�t� � ft and f � f� is in G�� So we get
Hol��(� x�� � G��

Claim �� Hol��(� x�� equals G��
In the proof of claim � we have seen that Hol��(� x�� is a smoothly arcwise
connected subgroup of G�� so it is a connected Lie subgroup by the results cited
in ���� It su ces thus to show that the Lie algebra g of G� is contained in the
Lie algebra of Hol��(� x��� and for that it is enough to show� that for each � in a
linearly spanning subset of g there is a smooth mapping f � ���� ��
S � S such
that the associated curve *f lies in Hol��(� x�� with *f

���� � � and *f ����� � ��

By de�nition we may assume � � Pt�c� ���R�CXx� CYx� for Xx� Yx � TxM
and a smooth curve c in M from x� to x� We extend Xx and Yx to vector �elds
X and Y � X�M� with �X�Y � � � near x� We may also suppose that Z � X�M�
is a vector �eld which extends c��t� along c�t�� if c is simple we approximate it
by an embedding and can consequently extend c��t� to such a vector �eld� If c
is not simple we do this for each simple piece of c and have then several vector
�elds Z instead of one below� So we have

� � �FlCZ� ��R�CX�CY � � �FlCZ� ���CX�CY � since �X�Y ��x� � �

� �FlCZ� �� ��
d�

dt�
jt���FlCY�t �FlCX�t �FlCYt �FlCXt � by ����

� �
�
d�

dt� jt���FlCZ�� �FlCY�t �FlCX�t �FlCYt �FlCXt �FlCZ� ��

where the parallel transport in the last equation �rst follows c from x� to x� then
follows a small closed parallelogram near x in M �since �X�Y � � � near x� and
then follows c back to x�� This curve is clearly nullhomotopic�

Step �� Now we make Hol�(� x�� into a Lie group which we call G� by taking
Hol��(� x�� � G� as its connected component of the identity� Then the quotient
Hol�(� x���Hol��(� x�� is a countable group� since the fundamental group 	��M�
is countable �by Morse theory M is homotopy equivalent to a countable CW�
complex��

Step �� Construction of a cocycle of transition functions with values in G�
Let �U�� u� � U� � Rm� be a locally �nite smooth atlas for M such that each
u� � U� � Rm� is surjective� Put x� �� u��� ��� and choose smooth curves c� �
��� ���M with c���� � x� and c���� � x�� For each x � U� let c

x
� � ��� ���M

be the smooth curve t �� u��� �t�u��x��� then cx� connects x� and x and the
mapping �x� t� �� cx��t� is smooth U�
 ��� ���M � Now we de�ne a �bre bundle
atlas �U�� �� � EjU� � U�
S� by ���� �x� s� � Pt�c

x
�� �� Pt�c�� �� s� Then �� is

smooth since Pt�cx�� �� � Fl
CXx

� for a local vector �eld Xx depending smoothly
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on x� Let us investigate the transition functions�

���
��
� �x� s� �

�
x�Pt�c�� ��

��Pt�cx�� ��
�� Pt�cx� � �� Pt�c�� �� s

�
�
�
x�Pt�c� �c

x
���c

x
��
����c����� �� s

�
�� �x� ����x� s�� where ��� � U�� � G�

Clearly ��� � U�� 
 S � S is smooth which implies that ��� � U�� � G is
also smooth� ����� is a cocycle of transition functions and we use it to glue
a principal bundle with structure group G over M which we call �P� p�M�G��
From its construction it is clear that the associated bundle P �S� � P
GS equals
�E� p�M� S��
Step �� Lifting the connection ( to P �
For this we have to compute the Christo�el symbols of ( with respect to the
atlas of step �� To do this directly is quite di cult since we have to di�erentiate
the parallel transport with respect to the curve� Fortunately there is another
way� Let c � ��� ��� U� be a smooth curve� Then we have

���Pt�c� t��
��
� �c���� s�� �

�
	
c�t��Pt��c��

��� �� Pt��cc���� ���� �� Pt�c� t� Pt�cc���� � �� Pt�c�� ��s



� �c�t�� 
�t��s��

where 
�t� is a smooth curve in the holonomy group G� Let .� � )��U��X�S��
be the Christo�el symbol of the connection ( with respect to the chart �U�� ����
From the third proof of theorem ���� we have

���Pt�c� t��
��
� �c���� s�� � �c�t�� !
�t� s���

where !
�t� s� is the integral curve through s of the time dependent vector �eld
.�� d

dt
c�t�� on S� But then we get

.�� ddt c�t���!
�t� s�� �
d
dt !
�t� s� �

d
dt �
�t��s� � �

d
dt
�t���s�

.�� d
dt
c�t�� � � d

dt

�t�� � 
�t��� � g�

So .� takes values in the Lie sub algebra of fundamental vector �elds for the
action of G on S� By theorem ���	 below the connection ( is thus induced by a
principal connection � on P � Since by ���� the principal connection � has the
�same� holonomy group as ( and since this is also the structure group of P � the
principal connection � is irreducible� see ���
� �
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����� De
nition� Let G be a Lie group and let �E� p�M� S� be a �ber bundle
as in ����� A G�bundle structure on the �ber bundle consists of the following
data�

��� A left action � � G
 S � S of the Lie group on the standard �ber�
��� A �ber bundle atlas �U�� ��� whose transition functions ����� act on S

via the G�action� There is a family of smooth mappings ���� � U�� � G�
which satis�es the cocycle condition ����x�����x� � ����x� for x �
U��� and ����x� � e� the unit in the group� such that ����x� s� �
������x�� s� � ����x��s�

A �ber bundle with a G�bundle structure is called a G�bundle� A �ber bundle
atlas as in ��� is called a G�atlas and the family ����� is also called a cocycle of
transition functions� but now for the G�bundle�
To be more precise� two G�atlases are said to be equivalent �to describe the

same G�bundle�� if their union is also a G�atlas� This translates as follows to
the two cocycles of transition functions� where we assume that the two coverings
of M are the same �by passing to the common re�nement� if necessary�� �����
and ������ are called cohomologous if there is a family ��� � U� � G� such that

����x� � ���x�
��������x�����x� holds for all x � U�� � compare with ����

In ��� one should specify only an equivalence class of G�bundle structures
or only a cohomology class of cocycles of G�valued transition functions� The
proof of ��� now shows that from any open cover �U�� of M � some cocycle of
transition functions ���� � U�� � G� for it� and a left G�action on a manifold
S� we may construct a G�bundle� which depends only on the cohomology class
of the cocycle� By some abuse of notation we write �E� p�M� S�G� for a �ber
bundle with speci�ed G�bundle structure�

Examples� The tangent bundle of a manifold M is a �ber bundle with structure
group GL�m�� More general a vector bundle �E� p�M� V � as in ��� is a �ber
bundle with standard �ber the vector space V and with GL�V ��structure�

����� De
nition� A principal ��ber� bundle �P� p�M�G� is a G�bundle with
typical �ber a Lie group G� where the left action of G on G is just the left
translation�
So by ���� we are given a bundle atlas �U�� �� � P jU� � U� 
 G� such

that we have ���
��
� �x� a� � �x� ����x��a� for the cocycle of transition functions

���� � U�� � G�� This is now called a principal bundle atlas� Clearly the
principal bundle is uniquely speci�ed by the cohomology class of its cocycle of
transition functions�
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Each principal bundle admits a unique right action r � P 
G� P � called the
principal right action� given by ���r��

��
� �x� a�� g�� � �x� ag�� Since left and right

translation on G commute� this is well de�ned� As in ���� we write r�u� g� � u�g
when the meaning is clear� The principal right action is visibly free and for any
ux � Px the partial mapping rux � r�ux� � � G� Px is a di�eomorphism onto
the �ber through ux� whose inverse is denoted by �ux � Px � G� These inverses
together give a smooth mapping � � P 
M P � G� whose local expression is
������ �x� a�� �

��
� �x� b�� � a���b� This mapping is also uniquely determined by

the implicit equation r�ux� ��ux� vx�� � vx� thus we also have ��ux�g� u
�
x�g

�� �
g�����ux� u�x��g

� and ��ux� ux� � e�
When considering principal bundles the reader should think of frame bundles

as the foremost examples for this book� They will be treated in ����� below�

����� Lemma� Let p � P �M be a surjective submersion �a �bered manifold��
and let G be a Lie group which acts freely on P such that the orbits of the action
are exactly the �bers p���x� of p� Then �P� p�M�G� is a principal �ber bundle�

Proof� Let the action be a right one by using the group inversion if necessary�
Let s� � U� � P be local sections �right inverses� for p � P � M such that
�U�� is an open cover of M � Let �

��
� � U� 
G� P jU� be given by ���� �x� a� �

s��x��a� which is obviously injective with invertible tangent mapping� so its
inverse �� � P jU� � U� 
 G is a �ber respecting di�eomorphism� So �U�� ���
is already a �ber bundle atlas� Let � � P 
M P � G be given by the implicit
equation r�ux� ��ux� u

�
x�� � u�x� where r is the right G�action� � is smooth

by the implicit function theorem and clearly we have ��ux� u
�
x�g� � ��ux� u

�
x��g

and ���ux� � �x� ��s��x�� ux��� Thus we have ���
��
� �x� g� � ���s��x��g� �

�x� ��s��x�� s��x��g�� � �x� ��s��x�� s��x���g� and �U�� ��� is a principal bundle
atlas� �

����� Remarks� In the proof of Lemma ���� we have seen� that a principal
bundle atlas of a principal �ber bundle �P� p�M�G� is already determined if we
specify a family of smooth sections of P � whose domains of de�nition cover the
base M �
Lemma ���� can serve as an equivalent de�nition for a principal bundle� But

this is true only if an implicit function theorem is available� so in topology
or in in�nite dimensional di�erential geometry one should stick to our original
de�nition�
From the Lemma itself it follows� that the pullback f�P over a smooth map�

ping f �M � �M is again a principal �ber bundle�

����� Homogeneous spaces� Let G be a Lie group with Lie algebra g� Let K
be a closed subgroup of G� then by theorem ��� K is a closed Lie subgroup whose
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Lie algebra will be denoted by k� By theorem ���� there is a unique structure
of a smooth manifold on the quotient space G�K such that the projection p �
G � G�K is a submersion� so by the implicit function theorem p admits local
sections�

Theorem� �G� p�G�K�K� is a principal �ber bundle�

Proof� The group multiplication of G restricts to a free right action � � G
K �
G� whose orbits are exactly the �bers of p� By lemma ���� the result follows� �

For the convenience of the reader we discuss now the best known homogeneous
spaces�
The group SO�n� acts transitively on Sn�� � Rn � The isotropy group of the

�north pole� ��� � � � � �� �� is the subgroup�
� �
� SO�n� ��

�
which we identify with SO�n� ��� So Sn�� � SO�n��SO�n� �� and we get a
principal �ber bundle �SO�n�� p� Sn��� SO�n� ���� Likewise
�O�n�� p� Sn��� O�n� ����
�SU�n�� p� S�n��� SU�n� ����
�U�n�� p� S�n��� U�n� ���� and
�Sp�n�� p� S�n��� Sp�n� ��� are principal �ber bundles�
The Grassmann manifold G�k� n�R� is the space of all k�planes containing �

in Rn � The group O�n� acts transitively on it and the isotropy group of the
k�plane Rk 
 f�g is the subgroup�

O�k� �
� O�n� k�

�
�

therefore G�k� n�R� � O�n��O�k�
O�n� k� is a compact manifold and we get
the principal �ber bundle �O�n�� p� G�k� n�R�� O�k� 
O�n� k��� Likewise
�SO�n�� p� G�k� n�R�� S�O�k� 
O�n� k����

�SO�n�� p� -G�k� n�R�� SO�k� 
 SO�n� k���
�U�n�� p� G�k� n� C �� U�k� 
 U�n� k��� and
�Sp�n�� p� G�k� n� H �� Sp�k� 
 Sp�n� k�� are principal �ber bundles�
The Stiefel manifold V �k� n�R� is the space of all orthonormal k�frames in Rn �

Clearly the group O�n� acts transitively on V �k� n�R� and the isotropy subgroup
of �e�� � � � � ek� is Ik 
 O�n � k�� so V �k� n�R� � O�n��O�n � k� is a compact
manifold� and �O�n�� p� V �k� n�R�� O�n � k�� is a principal �ber bundle� But
O�k� also acts from the right on V �k� n�R�� its orbits are exactly the �bers of
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the projection p � V �k� n�R� � G�k� n�R�� So by lemma ���� we get a principal
�ber bundle �V �k� n�R�� p� G�k� n�R�� O�k��� Indeed we have the following dia�
gram where all arrows are projections of principal �ber bundles� and where the
respective structure groups are written on the arrows�

�a�

O�n� w
O�n� k�

u
O�k�

V �k� n�R�

u
O�k�

V �n� k� n�R� w
O�n� k�

G�k� n�R��

V �k� n� is also di�eomorphic to the space fA � L�Rk �Rn � � At�A � Ik g� i�e�
the space of all linear isometries Rk � Rn � There are furthermore complex and
quaternionic versions of the Stiefel manifolds�

����� Homomorphisms� Let � � �P� p�M�G�� �P �� p��M �� G� be a principal
�ber bundle homomorphism� i�e� a smooth G�equivariant mapping � � P � P ��
Then obviously the diagram

�a�

P w
�

u
p

P �

u
p�

M w
!�

M �

commutes for a uniquely determined smooth mapping !� � M � M �� For each
x � M the mapping �x �� �jPx � Px � P ����x� is G�equivariant and therefore a
di�eomorphism� so diagram �a� is a pullback diagram�

But the most general notion of a homomorphism of principal bundles is the
following� Let ( � G� G� be a homomorphism of Lie groups� � � �P� p�M�G��
�P �� p��M �� G�� is called a homomorphism over ( of principal bundles� if � � P �
P � is smooth and ��u�g� � ��u��(�g� holds in general� Then � is �ber respecting�
so diagram �a� makes again sense� but it is no longer a pullback diagram in
general�

If � covers the identity on the base� it is called a reduction of the structure
group G� to G for the principal bundle �P �� p��M �� G�� & the name comes from
the case� when ( is the embedding of a subgroup�

By the universal property of the pullback any general homomorphism � of
principal �ber bundles over a group homomorphism can be written as the com�
position of a reduction of structure groups and a pullback homomorphism as
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follows� where we also indicate the structure groups�

�b�

�P�G� w�����

p

�!��P �� G�� w

u

�P �� G��

u
p�

M w
!�

M ��

���	� Associated bundles� Let �P� p�M�G� be a principal bundle and let � �
G
S � S be a left action of the structure group G on a manifold S� We consider
the right action R � �P 
 S�
G� P 
 S� given by R��u� s�� g� � �u�g� g���s��

Theorem� In this situation we have�

��� The space P 
G S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q � P 
 S � P 
G S is a
submersion�

��� �P
GS� !p�M� S�G� is a G�bundle in a canonical way� where !p � P
GS �
M is given by

�a�

P 
 S w
q

u
pr�

P 
G S

u
!p

P w
p

M�

In this diagram qu � fug
S � �P 
GS�p�u� is a di�eomorphism for each
u � P �

��� �P 
 S� q� P 
G S�G� is a principal �ber bundle with principal action R�
��� If �U�� �� � P jU� � U� 
 G� is a principal bundle atlas with cocycle

of transition functions ���� � U�� � G�� then together with the left
action � � G 
 S � S this cocycle is also one for the G�bundle �P 
G

S� !p�M� S�G��

Notation� �P 
G S� !p�M� S�G� is called the associated bundle for the action
� � G 
 S � S� We will also denote it by P �S� �� or simply P �S� and we will
write p for !p if no confusion is possible� We also de�ne the smooth mapping
� � �S � P 
M P �S� ��� S by ��ux� vx� �� q��ux �vx�� It satis�es ��u� q�u� s�� � s�

q�ux� ��ux� vx�� � vx� and ��ux�g� vx� � g�����ux� vx�� In the special situation�
where S � G and the action is left translation� so that P �G� � P � this mapping
coincides with � considered in �����

Proof� In the setting of the diagram in ��� the mapping p � pr� is constant on
the R�orbits� so !p exists as a mapping� Let �U�� �� � P jU� � U� 
 G� be a
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principal bundle atlas with transition functions ���� � U�� � G�� We de�ne
���� � U�
S � !p���U�� � P 
G S by �

��
� �x� s� � q����� �x� e�� s�� which is �ber

respecting� For each orbit in !p���x� � P 
G S there is exactly one s � S such
that this orbit passes through ����� �x� e�� s�� namely s � �G�ux� �

��
� �x� e��

���s�

if �ux� s
�� is the orbit� since the principal right action is free� Thus ���� �x� � �

S � !p���x� is bijective� Furthermore

���� �x� s� � q����� �x� e�� s�

� q����� �x� ����x��e�� s� � q����� �x� e������x�� s�

� q����� �x� e�� ����x��s� � ���� �x� ����x��s��

so ���
��
� �x� s� � �x� ����x��s� So �U�� ��� is a G�atlas for P 
G S and makes

it into a smooth manifold and a G�bundle� The de�ning equation for �� shows
that q is smooth and a submersion and consequently the smooth structure on
P 
G S is uniquely de�ned� and !p is smooth by the universal properties of a
submersion�
By the de�nition of �� the diagram

�b�

p���U��
 S w
�� 
 Id

u
q

U� 
G
 S

u
Id
 �

!p���U�� w
�� U� 
 S

commutes� since its lines are di�eomorphisms we conclude that qu � fug 
 S �
!p���p�u�� is a di�eomorphism� So ���� ���� and ��� are checked�
��� follows directly from lemma ����� We give below an explicit chart construc�
tion� We rewrite the last diagram in the following form�

�c�

p���U��
 S w� q���V�� w
��

u
q

V� 
G

u
pr�

!p���U�� w� V�

Here V� �� !p���U�� � P 
G S and the di�eomorphism �� is de�ned by
���� ��

��
� �x� s�� g� �� ��

��
� �x� g�� g

���s�� Then we have

���� ��
��
� �x� s�� g� � ���� ��

��
� �x� ����x��s�� g�

� ����� �x� g�� g
�������x��s�
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� ����� �x� ����x��g�� g
�������x����s�

� ���� ��
��
� �x� s�� ����x��g��

so ���
��
� ��

��
� �x� s�� g� � ��

��
� �x� s�� ����x��g� and �P 
 S� q� P 
G S�G� is a

principal bundle with structure group G and the same cocycle ����� we started
with� �

���
� Corollary� Let �E� p�M� S�G� be a G�bundle� speci�ed by a cocycle of
transition functions ����� with values in G and a left action � of G on S� Then
from the cocycle of transition functions we may glue a unique principal bundle
�P� p�M�G� such that E � P �S� ��� �

This is the usual way a di�erential geometer thinks of an associated bundle�
He is given a bundle E� a principal bundle P � and the G�bundle structure then
is described with the help of the mappings � and q�

����� Equivariant mappings and associated bundles�
�� Let �P� p�M�G� be a principal �ber bundle and consider two left actions

of G� � � G 
 S � S and �� � G 
 S� � S�� Let furthermore f � S � S� be
a G�equivariant smooth mapping� so f�g�s� � g�f�s� or f � �g � ��g � f � Then
IdP 
f � P 
S � P 
S� is equivariant for the actions R � �P 
S�
G� P 
S
and R� � �P
S��
G� P
S� and is thus a homomorphism of principal bundles�
so there is an induced mapping

�a�

P 
 S w
Id
 f

u
q

P 
 S�

u
q�

P 
G S w
Id
G f

P 
G S��

which is �ber respecting overM � and a homomorphism of G�bundles in the sense
of the de�nition ����� below�
�� Let � � �P� p�M�G�� �P �� p��M �� G� be a principal �ber bundle homomor�

phism as in ����� Furthermore we consider a smooth left action � � G 
 S � S�
Then � 
 IdS � P 
 S � P � 
 S is G�equivariant and induces a mapping
�
G IdS � P 
G S � P �
G S� which is �ber respecting over M � �ber wise a dif�
feomorphism� and again a homomorphism of G�bundles in the sense of de�nition
����� below�

�� Now we consider the situation of � and � at the same time� We have two
associated bundles P �S� �� and P ��S�� ���� Let � � �P� p�M�G�� �P �� p��M �� G� be
a principal �ber bundle homomorphism and let f � S � S� be an G�equivariant
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mapping� Then � 
 f � P 
 S � P � 
 S� is clearly G�equivariant and therefore
induces a mapping �
G f � P �S� ��� P ��S�� ��� which again is a homomorphism
of G�bundles�

�� Let S be a point� Then P �S� � P 
G S � M � Furthermore let y � S�

be a �xpoint of the action �� � G 
 S� � S�� then the inclusion i � fyg �� S� is
G�equivariant� thus IdP 
 i induces IdP 
G i �M � P �fyg�� P �S��� which is a
global section of the associated bundle P �S���
If the action of G on S is trivial� so g�s � s for all s � S� then the associ�

ated bundle is trivial� P �S� � M 
 S� For a trivial principal �ber bundle any
associated bundle is trivial�

������ De
nition� In the situation of ���	� a smooth �ber respecting mapping

 � P �S� �� � P ��S�� ��� covering a smooth mapping !
 � M � M � of the bases
is called a homomorphism of G�bundles� if the following conditions are satis�ed�
P is isomorphic to the pullback !
�P �� and the local representations of 
 in
pullback�related �ber bundle atlases belonging to the two G�bundles are �ber
wise G�equivariant�
Let us describe this in more detail now� Let �U ��� �

�
�� be a G�atlas for P

��S�� ���
with cocycle of transition functions ������� belonging to the principal �ber bundle
atlas �U ��� �

�
�� of �P

�� p��M �� G�� Then the pullback�related principal �ber bundle
atlas �U� � !


���U ���� ��� for P � !

�P � as described in the proof of ���� has the

cocycle of transition functions ���� � ���� � !
�� it induces the G�atlas �U�� ���
for P �S� ��� Then ���� � 
 ����� ��x� s� � �!
�x�� 
��x� s�� and 
��x� � � S � S� is
required to be G�equivariant for all � and all x � U��

Lemma� Let 
 � P �S� ��� P ��S�� ��� be a homomorphism of G�bundles as de�ned
above� Then there is a homomorphism � � �P� p�M�G� � �P �� p��M �� G� of
principal bundles and a G�equivariant mapping f � S � S� such that 
 � �
Gf �
P �S� ��� P ��S�� ����

Proof� The homomorphism � � �P� p�M�G� � �P �� p��M �� G� of principal �ber
bundles is already determined by the requirement that P � !
�P �� and we have
!
 � !�� The G�equivariant mapping f � S � S� can be read o� the following
diagram

�a�

P 
M P �S� w�S

u
�
M 


S

u
f

P � 
M � P ��S�� w�S
�

S��

which by the assumptions is seen to be well de�ned in the right column� �
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So a homomorphism of G�bundles is described by the whole triple �� � P �
P �� f � S � S� �G�equivariant�� 
 � P �S� � P ��S���� such that diagram �a� com�
mutes�

������ Associated vector bundles� Let �P� p�M�G� be a principal �ber bun�
dle� and consider a representation � � G � GL�V � of G on a �nite dimensional
vector space V � Then P �V� �� is an associated �ber bundle with structure group
G� but also with structure group GL�V �� for in the canonically associated �ber
bundle atlas the transition functions have also values in GL�V �� So by section �
P �V� �� is a vector bundle�

Now let F be a covariant smooth functor from the category of �nite dimen�
sional vector spaces and linear mappings into itself� as considered in section
��
� Then clearly F � � � G � GL�V � � GL�F�V �� is another representa�
tion of G and the associated bundle P �F�V ��F � �� coincides with the vector
bundle F�P �V� ��� constructed with the method of ��
� but now it has an ex�
tra G�bundle structure� For contravariant functors F we have to consider the
representation F � � � �� similarly for bifunctors� In particular the bifunctor
L�V�W � may be applied to two di�erent representations of two structure groups
of two principal bundles over the same base M to construct a vector bundle
L�P �V� ��� P ��V �� ���� � �P 
M P ���L�V� V ��� L � ��� � ��
 �����
If �E� p�M� is a vector bundle with n�dimensional �bers we may consider

the open subset GL�Rn � E� � L�M 
 Rn � E�� a �ber bundle over the base M �
whose �ber over x � M is the space GL�Rn � Ex� of all invertible linear map�
pings� Composition from the right by elements of GL�n� gives a free right ac�
tion on GL�Rn � E� whose orbits are exactly the �bers� so by lemma ���� we
have a principal �ber bundle �GL�Rn � E�� p�M�GL�n��� The associated bun�
dle GL�Rn � E��Rn � for the banal representation of GL�n� on Rn is isomorphic
to the vector bundle �E� p�M� we started with� for the evaluation mapping
ev � GL�Rn � E� 
 Rn � E is invariant under the right action R of GL�n��
and locally in the image there are smooth sections to it� so it factors to a �ber
linear di�eomorphism GL�Rn � E��Rn � � GL�Rn � E�
GL�n� Rn � E� The prin�
cipal bundle GL�Rn � E� is called the linear frame bundle of E� Note that local
sections of GL�Rn � E� are exactly the local frame �elds of the vector bundle E
as discussed in ����

To illustrate the notion of reduction of structure group� we consider now
a vector bundle �E� p�M�Rn� equipped with a Riemannian metric g� that is
a section g � C��S�E�� such that gx is a positive de�nite inner product on
Ex for each x � M � Any vector bundle admits Riemannian metrics� local
existence is clear and we may glue with the help of a partition of unity on
M � since the positive de�nite sections form an open convex subset� Now let
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s� � �s��� � � � � s
�
n� � C��GL�Rn � E�jU� be a local frame �eld of the bundle E

over U � M � Now we may apply the Gram�Schmidt orthonormalization pro�
cedure to the basis �s��x�� � � � � sn�x�� of Ex for each x � U � Since this proce�
dure is smooth �even real analytic�� we obtain a frame �eld s � �s�� � � � � sn�
of E over U which is orthonormal with respect to g� We call it an orthonor�
mal frame �eld� Now let �U�� be an open cover of M with orthonormal frame
�elds s� � �s�� � � � � � s

�
n�� where s

� is de�ned on U�� We consider the vector
bundle charts �U�� �� � EjU� � U� 
 Rn� given by the orthonormal frame
�elds� ���� �x� v

�� � � � � vn� �
P

s�i �x��v
i �� s��x��v� For x � U�� we have

s�i �x� �
P

s�j �x��g��
j
i �x� for C

��functions g��
j
i � U�� � R� Since s��x�

and s��x� are both orthonormal bases of Ex� the matrix g���x� � �g��
j
i �x��

is an element of O�n�R�� We write s� � s��g�� for short� Then we have

���� �x� v� � s��x��v � s��x��g���x��v � ���� �x� g���x��v� and consequently
���

��
� �x� v� � �x� g���x��v�� So the �g�� � U�� � O�n�R�� are the cocycle

of transition functions for the vector bundle atlas �U�� ���� So we have con�
structed an O�n�R��structure on E� The corresponding principal �ber bundle
will be denoted by O�Rn � �E� g��� it is usually called the orthonormal frame bun�
dle of E� It is derived from the linear frame bundle GL�Rn � E� by reduction of
the structure group from GL�n� to O�n�� The phenomenon discussed here plays
a prominent role in the theory of classifying spaces�

������ Sections of associated bundles� Let �P� p�M�G� be a principal �ber
bundle and � � G 
 S � S a left action� Let C��P� S�G denote the space
of all smooth mappings f � P � S which are G�equivariant in the sense that
f�u�g� � g���f�u� holds for g � G and u � P �

Theorem� The sections of the associated bundle P �S� �� correspond exactly to
the G�equivariant mappings P � S� we have a bijection C��P� S�G 
� C��P �S���

This result follows from ���	 and ������ Since it is very important we include
a direct proof�

Proof� If f � C��P� S�G we construct sf � C��P �S�� in the following way�
graph�f� � �Id� f� � P � P 
 S is G�equivariant� since we have �Id� f��u�g� �
�u�g� f�u�g�� � �u�g� g���f�u�� � ��Id� f��u���g� So it induces a smooth section
sf � C��P �S�� as seen from ���	 and the diagram�

�a�

P 
 fPtg 
�P w
�Id� f�

u
p

P 
 S

u
q

M w
sf

P �S�
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If conversely s � C��P �S�� we de�ne fs � C��P� S�G by fs �� �S � �IdP 
M

s� � P � P 
M M � P 
M P �S� � S� This is G�equivariant since fs�ux�g� �
�S�ux�g� s�x�� � g����S�ux� s�x�� � g���fs�ux� by ���
� The two construc�
tions are inverse to each other since we have fs�f��u� � �S�u� sf�p�u��� �

�S�u� q�u� f�u��� � f�u� and sf�s��p�u�� � q�u� fs�u�� � q�u� �S�u� s�p�u��� �
s�p�u��� �

������ Induced representations� Let K be a closed subgroup of a Lie group
G� Let � � K � GL�V � be a representation in a vector space V � which we
assume to be �nite dimensional for the beginning� Then we consider the principal
�ber bundle �G� p�G�K�K� and the associated vector bundle �G�V �� p� G�K��
The smooth �or even continuous� sections of G�V � correspond exactly to the
K�equivariant mappings f � G � V � those satisfying f�gk� � ��k���f�g�� by
lemma ������ Each g � G acts as a principal bundle homomorphism by left
translation

G w
�g

u

G

u
G�K w

!�g
G�K�

So by ���	 we have an induced isomorphism of vector bundles

G w
�g

u

G

u
G�V � w

�g 
K V

u

G�V �

u
G�K w

!�g
G�K

which gives rise to the representation findGK� of G in the space C��G�V ��� de�ned
by

�findGK���g��s� �� ��g 
K V � � s � !�g�� � ��g 
K V ���s��

Now let us assume that the original representation � is unitary� � � K � U�V �
for a complex vector space V with inner product h � iV � Then v �� kvk� �
hv� vi is an invariant symmetric homogeneuous polynomial V � R of degree ��
so it is equivariant where K acts trivial on R� By ���	 again we get an induced
mapping G�V �� G�R� � G�K
R� which we can polarize to a smooth �berwise
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hermitian form h � iG�V 
 on the vector bundle G�V �� We may also express this
by

hvx� wxiG�V 
 � h�V �ux� vx�� �V �ux� wx�iV
for some ux � Gx� using the mapping �

V � G
G�M G�V �� V from ���
� it can
be checked easily that it does not depend on the choice of ux� Still another way
to describe the �berwise hermitian form is

�G
 V �
G�K �G
 V ����������fu
G�V �
G�K G�V �

u

w
h � iG�V 


C

G�K�

where f��g�� v��� �g�� v��� �� hv�� ���K�g�� g���v�iV for �K � G 
K G � K�
�K�g�� g�� � g��� g� from ����� From this last description it is also clear that
each g � G acts as an isometric vector bundle homomorphism�

Now we consider the natural line bundle Vol����G�K� of all �
� �densities on

the manifold G�K from ���� Then for �
� �densities �i � C��Vol����G�M�� and

any di�eomorphism f � G�K � G�K the push forward f��i is de�ned and
for those with compact support we have

R
G�K

�f����f���� �
R
G�K

f�������� �R
G�K

������ The hermitian inner product on G�V � now de�nes a �berwise her�

mitian mapping

�G�V ��Vol����G�K��
G�K �G�V �� Vol� ���G�K��
h � iG�V ���������� Vol����G�M�

and on the space C�c �G�V ��Vol����G�K�� of all smooth sections with compact
support we have the following hermitian inner product

hs�� s�i ��
Z
G�K

hs�� s�iG�V 
�

Obviously the resulting action of the group G on C��G�V � � Vol����G�K�� is
unitary with respect to the hermitian inner product� and it can be extended to
the Hilbert space completion of this space of sections� The resulting unitary
representation is called the induced representation and is denoted by indGK ��

Draft from November ��� ���� Peter W� Michor� �����



��� Principal Fiber Bundles and G�Bundles� ����� ���

If the original unitary representation � � K � U�V � is in an in�nte dimen�
sional Hilbert space V � one can �rst restrict the representation � to the subspace
of smooth vectors� on which it is di�erentiable� and repeat the above construc�
tion with some modi�cations� See �Michor� �		�� for more details on this in�nite
dimensional construction�

������ Theorem� Consider a principal �ber bundle �P� p�M�G� and a closed
subgroup K of G� Then the reductions of structure group from G to K correspond
bijectively to the global sections of the associated bundle P �G�K� !�� in a canonical
way� where !� � G 
 G�K � G�K is the left action on the homogeneous space
from ��		�

Proof� By theorem ����� the section s � C��P �G�K�� corresponds to fs �
C��P�G�K�G� which is a surjective submersion since the action !� � G
G�K �
G�K is transitive� Thus Ps �� f��s �!e� is a submanifold of P which is stable under
the right action of K on P � Furthermore the K�orbits are exactly the �bers of
the mapping p � Ps � M � so by lemma ���� we get a principal �ber bundle
�Ps� p�M�K�� The embedding Ps �� P is then a reduction of structure groups
as required�
If conversely we have a principal �ber bundle �P �� p��M�K� and a reduction of

structure groups � � P � � P � then � is an embedding covering the identity of M
and isK�equivariant� so we may view P � as a sub �ber bundle of P which is stable
under the right action of K� Now we consider the mapping � � P 
M P � G
from ���� and restrict it to P 
M P �� Since we have ��ux� vx�k� � ��ux� vx��k for
k � K this restriction induces f � P � G�K by

P 
M P � w�

u

G

u
p

P � P 
M P ��K w
f

G�K�

since P ��K � M � and from ��ux�g� vx� � g�����ux� vx� it follows that f is G�
equivariant as required� Finally f���!e� � fu � P � ��u� P �p�u�� � K g � P �� so
the two constructions are inverse to each other� �

������ The bundle of gauges� If �P� p�M�G� is a principal �ber bundle we
denote by Aut�P � the group of all G�equivariant di�eomorphisms � � P � P �
Then p � � � !� � p for a unique di�eomorphism !� of M � so there is a group
homomorphism from Aut�P � into the group Di��M� of all di�eomorphisms of
M � The kernel of this homomorphism is called Gau�P �� the group of gauge
transformations� So Gau�P � is the space of all � � P � P which satisfy p�� � p
and ��u�g� � ��u��g�
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Theorem� The group Gau�P � of gauge transformations is equal to the space
C��P� �G� conj��G 
� C��P �G� conj���

Proof� We use again the mapping � � P 
M P � G from ����� For � �
Gau�P � we de�ne f� � C��P� �G� conj��G by f� �� � � �Id� ��� Then f��u�g� �
��u�g� ��u�g�� � g�����u� ��u���g � conjg�� f��u�� so f� is indeed G�equivariant�

If conversely f � C��P� �G� conj��G is given� we de�ne �f � P � P by
�f �u� �� u�f�u�� It is easy to check that �f is indeed in Gau�P � and that the
two constructions are inverse to each other� namely

�f �ug� � ugf�ug� � ugg��f�u�g � �f �u�g�

f�f �u� � �G�u� �f �u�� � �G�u� u�f�u�� � �G�u� u�f�u� � f�u��

�f��u� � uf��u� � u�G�u� ��u�� � ��u�� �

������ The tangent bundles of homogeneous spaces� Let G be a Lie
group and K a closed subgroup� with Lie algebras g and k� respectively� We
recall the mapping AdG � G� AutLie�g� from ���� and put AdG�K �� AdG jK �
K � AutLie�g�� For X � k and k � K we have AdG�K�k�X � AdG�k�X �
AdK�k�X � k� so k is an invariant subspace for the representation AdG�K of K

in g� and we have the factor representation Ad� � K � GL�g�k�� Then

�a� �� k� g� g�k� �

is short exact and K�equivariant�
Now we consider the principal �ber bundle �G� p�G�K�K� and the associated

vector bundles G�g�k�Ad�� and G�k�AdK ��

Theorem� In these circumstances we have
T �G�K� � G�g�k�Ad�� � �G
K g�k� p� G�K� g�k��

The left action g �� T �!�g� of G on T �G�K� corresponds to the canonical left

action of G on G
K g�k� Furthermore G�g�k�Ad���G�k�AdK � is a trivial vector
bundle�

Proof� For p � G � G�K we consider the tangent mapping Tep � g � T�e�G�K�
which is linear and surjective and induces a linear isomorphism Tep � g�k �
T�e�G�K�� For k � K we have p� conjk � p��k ��k�� � !�k �p and consequently
Tep�AdG�K�k� � Tep�Te�conjk� � T�e!�k�Tep� Thus the isomorphism Tep � g�k�
T�e�G�K� is K�equivariant for the representations Ad

� and T�e!� � k �� T�e!�k�
Let us now consider the associated vector bundle

G�T�e�G�K�� T�e!�� � �G
K T�e�G�K�� p� G�K� T�e�G�K���
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which is isomorphic to the vector bundle G�g�k�Ad��� since the representation
spaces are isomorphic� The mapping T�!� � G 
 T�e�G�K� � T �G�K� �where
T� is the second partial tangent functor� is K�invariant� since T !���g�X�k� �
T !��gk� T�e!�k�� �X� � T !�gk�T !�k�� �X � T !�g�X� Therefore it induces a mapping
� as in the following diagram�

�b�

G
 T�e�G�K�A
A
AAC
T !�

�
�

���

q

G
K T�e�G�K� w
�

�������p

T �G�K�
A

A
A

A
AAD

	G�K

G�K

This mapping � is an isomorphism of vector bundles�
It remains to show the last assertion� The short exact sequence �a� induces a

sequence of vector bundles over G�K�

G�K 
 �� G�k�AdK �� G�g�AdG�K �� G�g�k�Ad��� G�K 
 �
This sequence splits �ber wise thus also locally overG�K� so we getG�g�k�Ad���
G�k�AdK � 
� G�g�AdG�K �� We have to show that G�g�AdG�K � is a trivial vector
bundle� Let � � G 
 g � G 
 g be given by ��g�X� � �g�AdG�g�X�� Then for
k � K we have

���g�X��k� � ��gk�AdG�K�k
���X�

� �gk�AdG�g�k�k
���X� � �gk�AdG�g�X��

So � is K�equivariant for the �joint� K�action to the �on the left� K�action and
therefore induces a mapping !� as in the diagram�

�c�

G
 g w
�

u
q

G
 g

u
G
K g w

!�
A
A
AAC
p

G�K 
 g
�

�
���

pr�

G�K

The map !� is a vector bundle isomorphism� �
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����	� Tangent bundles of Grassmann manifolds� From ���� we know
that �V �k� n� � O�n��O�n � k�� p� G�k� n�� O�k�� is a principal �ber bundle�
Using the banal representation of O�k� we consider the associated vector bundle
�Ek �� V �k� n��Rk �� p� G�k� n��� It is called the universal vector bundle over
G�k� n� for reasons we will discuss below in section ��� Recall from ���� the
description of V �k� n� as the space of all linear isometries Rk � Rn � we get from
it the evaluation mapping ev � V �k� n�
 Rk � Rn � The mapping �p� ev� in the
diagram

�a�

V �k� n�
 Rk�
�
�
���
�p� ev�

u
q

V �k� n�
O�k� R
k w

�
G�k� n�
 Rn

is O�k��invariant for the action R and factors therefore to an embedding of
vector bundles � � Ek � G�k� n�
 Rn � So the �ber �Ek�W over the k�plane W
in Rn is just the linear subspace W � Note �nally that the �ber wise orthogonal
complement Ek

� of Ek in the trivial vector bundle G�k� n�
Rn with its standard
Riemannian metric is isomorphic to the universal vector bundle En�k over G�n�
k� n�� where the isomorphism covers the di�eomorphism G�k� n� � G�n � k� n�
given also by the orthogonal complement mapping�

Corollary� The tangent bundle of the Grassmann manifold is

TG�k� n� 
� L�Ek� Ek
���

Proof� We have G�k� n� � O�n���O�k�
O�n� k��� so by theorem ����� we get

TG�k� n� � O�n� 

O�k��O�n�k�

�so�n���so�k�
 so�n� k����

On the other hand we have V �k� n� � O�n��O�n � k� and the right action of
O�k� commutes with the right action of O�n� k� on O�n�� therefore

V �k� n��Rk � � �O�n��O�n� k�� 

O�k�

Rk � O�n� 

O�k��O�n�k�

Rk �

where O�n� k� acts trivially on Rk � Finally

L�Ek� Ek
�� � L

�
O�n� 


O�k��O�n�k�
Rk � O�n� 


O�k��O�n�k�
Rn�k

�
� O�n� 


O�k��O�n�k�
L�Rk �Rn�k ��
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where O�k�
 O�n� k� acts on L�Rk �Rn�k � by �A�B��C� � B�C�A��� Finally
we have an O�k� 
 O�n � k� � equivariant linear isomorphism L�Rk �Rn�k � �
so�n���so�k�
 so�n� k��� as follows�

so�n���so�k�
 so�n� k�� ��
skew

��
skew �
� skew

� � �� � A
�At �

�
� A � L�Rk �Rn�k �

�
�

����
� Tangent bundles and vertical bundles� Let �E� p�M� S� be a �ber
bundle� The sub vector bundle V E � f � � TE � Tp�� � � g of TE is called
the vertical bundle and is denoted by �V E� 	E� E��

Theorem� Let �P� p�M�G� be a principal �ber bundle with principal right action
r � P 
G� P � Let � � G
S � S be a left action� Then the following assertions
hold�

��� �TP� Tp� TM� TG� is again a principal �ber bundle with principal right
action Tr � TP
TG� TP � where the structure group TG is the tangent
group of G� see ��	��

��� The vertical bundle �V P� 	� P� g� of the principal bundle is trivial as a
vector bundle over P � V P 
� P 
 g�

��� The vertical bundle of the principal bundle as bundle over M is again a
principal bundle� �V P� p � 	�M� TG��

��� The tangent bundle of the associated bundle P �S� �� is given by
T �P �S� ��� � TP �TS� T ���

��� The vertical bundle of the associated bundle P �S� �� is given by
V �P �S� ��� � P �TS� T��� � P 
G TS�

Proof� Let �U�� �� � P jU� � U� 
 G� be a principal �ber bundle atlas with
cocycle of transition functions ���� � U�� � G�� Since T is a functor which
respects products� �TU�� T�� � TP jTU� � TU� 
 TG� is again a principal
�ber bundle atlas with cocycle of transition functions �T��� � TU�� � TG��
describing the principal �ber bundle �TP� Tp� TM� TG�� The assertion about
the principal action is obvious� So ��� follows� For completeness sake we include
here the transition formula for this atlas in the right trivialization of TG�

T ��� � ���� ���x� Te��g��X� � ��x� Te������x�	g���������x� � Ad�����x��X���

where ���� � )��U�� � g� is the right logarithmic derivative of ��� � see �����

Draft from November ��� ���� Peter W� Michor� �����



��� ��� Principal Fiber Bundles and G�Bundles� �����

��� The mapping �u�X� �� Te�ru��X � T�u�e�r���u� X� is a vector bundle isomor�
phism P 
 g� V P over P �
��� Obviously Tr � TP 
 TG � TP is a free right action which acts tran�
sitive on the �bers of Tp � TP � TM � Since V P � �Tp�����M�� the bun�
dle V P � M is isomorphic to TP j�M and Tr restricts to a free right ac�
tion� which is transitive on the �bers� so by lemma ���� the result follows�
��� The transition functions of the �ber bundle P �S� �� are given by the expression
������
IdS� � U��
S � G
S � S� Then the transition functions of T �P �S� ���
are T �� � ���� 
 IdS�� � T� � �T��� 
 IdTS� � TU�� 
 TS � TG
 TS � TS�
from which the result follows�
��� Vertical vectors in T �P �S� ��� have local representations ��x� �s� � TU��
TS�
Under the transition functions of T �P �S� ��� they transform as T �� � ���� 

IdS�����x� �s� � T��������x�� �s� � T ������x����s � T��������x�� �s� and this
implies the result �
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��� Principal and Induced Connections

����� Principal connections� Let �P� p�M�G� be a principal �ber bundle�
Recall from ���� that a �general� connection on P is a �ber projection ( � TP �
V P � viewed as a ��form in )��P �TP �� Such a connection ( is called a principal
connection if it is G�equivariant for the principal right action r � P 
G� P � so
that T �rg��( � (�T �rg� and ( is rg�related to itself� or �rg��( � ( in the sense
of ������ for all g � G� By theorem ������� the curvature R � �

� ��(�(� is then
also rg�related to itself for all g � G�
Recall from ������� that the vertical bundle of P is trivialized as a vector

bundle over P by the principal action� So ��Xu� �� Te�ru�
���(�Xu� � g and in

this way we get a g�valued ��form � � )��P � g�� which is called the �Lie algebra
valued� connection form of the connection (� Recall from ����� the fundamental
vector �eld mapping � � g � X�P � for the principal right action� The de�ning
equation for � can be written also as (�Xu� � ���Xu��u��

Lemma� If ( � )��P �V P � is a principal connection on the principal �ber
bundle �P� p�M�G� then the connection form has the following two properties�

��� � reproduces the generators of fundamental vector �elds� so we have
���X�u�� � X for all X � g�

��� � is G�equivariant� ��rg�����Xu� � ��Tu�r
g��Xu� � Ad�g

������Xu� for
all g � G and Xu � TuP � Consequently we have for the Lie derivative
L�X� � � ad�X����

Conversely a 	�form � � )��P� g� satisfying ��� de�nes a connection ( on P
by (�Xu� � Te�ru����Xu�� which is a principal connection if and only if ��� is
satis�ed�

Proof� ���� Te�ru�����X�u�� � (��X�u�� � �X�u� � Te�ru��X� Since Te�ru� �
g� VuP is an isomorphism� the result follows�
���� Both directions follow from

Te�rug����Tu�r
g��Xu� � ���Tu�rg�	Xu��ug� � (�Tu�r

g��Xu�

Te�rug��Ad�g
������Xu� � �Ad�g���	��Xu��ug� � Tu�r

g�����Xu��u�

� Tu�r
g��(�Xu� �

����� Curvature� Let ( be a principal connection on the principal �ber bundle
�P� p�M�G� with connection form � � )��P � g�� We already noted in ���� that
the curvature R � �

� �(�(� is then also G�equivariant� �r
g��R � R for all g � G�

Since R has vertical values we may again de�ne a g�valued ��form ) � )��P � g�

Draft from November ��� ���� Peter W� Michor� ���




��� ��� Principal and Induced Connections� ���


by )�Xu� Yu� �� �Te�ru����R�Xu� Yu�� which is called the �Lie algebra�valued�
curvature form of the connection� We also have R�Xu� Yu� � ����Xu�Yu��u�� We
take the negative sign here to get the usual curvature form as in �Kobayashi�
Nomizu I� �	����
We equip the space )�P � g� of all g�valued forms on P in a canonical way with

the structure of a graded Lie algebra by

�/�0���X�� � � � � Xp�q� �

�
�

p% q%

X
�

sign� �/�X��� � � � � X�p��0�X��p���� � � � � X��p�q���g

or equivalently by ���X� ��Y �� �� ���� �X�Y �g� From the latter description
it is clear that d�/�0�� � �d/�0�� � ����deg��/� d0��� In particular for � �
)��P � g� we have ��� ����X�Y � � ����X�� ��Y ��g�

Theorem� The curvature form ) of a principal connection with connection form
� has the following properties�

��� ) is horizontal� i�e� it kills vertical vectors�
��� ) is G�equivariant in the following sense� �rg��) � Ad�g����)� Conse�

quently L�X) � � ad�X��)�
��� The Maurer�Cartan formula holds� ) � d� � �

� ��� ����

Proof� ��� is true for R by ����� For ��� we compute as follows�

Te�rug����r
g��)��Xu� Yu� � Te�rug��)�Tu�r

g��Xu� Tu�r
g��Yu� �

� �Rug�Tu�r
g��Xu� Tu�r

g��Yu� � �Tu�rg����rg��R��Xu� Yu� �

� �Tu�rg��R�Xu� Yu� � Tu�r
g�����Xu�Yu��u� �

� �Ad�g���	��Xu�Yu��ug� � Te�rug��Ad�g
����)�Xu� Yu�� by �����

���� For X � g we have i�XR � � by ���� and using �������� we get

i�X �d� �
�

�
��� ���� � i�Xd� �

�

�
�i�X�� ��� �

�

�
��� i�X��� �

� L�X� � �X���� � � ad�X�� � ad�X�� � �
So the formula holds for vertical vectors� and for horizontal vector �elds X�Y �
C��H�P �� we have

R�X�Y � � (�X � (X�Y � (Y � � (�X�Y � � ����X�Y 
�

�d� �
�

�
��� ����X�Y � � X��Y �� Y ��X�� ���X�Y �� � ����X�Y �� �
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����� Lemma� Any principal �ber bundle �P� p�M�G� �with paracompact basis�
admits principal connections�

Proof� Let �U�� �� � P jU� � U� 
 G�� be a principal �ber bundle atlas� Let
us de�ne 
��T�

��
� ��x� Te�g�X�� �� X for �x � TxU� and X � g� An easy

computation involving lemma ���� shows that 
� � )��P jU�� g� satis�es the
requirements of lemma ���� and thus is a principal connection on P jU�� Now
let �f�� be a smooth partition of unity on M which is subordinated to the open
cover �U��� and let � ��

P
��f� � p�
�� Since both requirements of lemma ����

are invariant under convex linear combinations� � is a principal connection on
P � �

����� Local descriptions of principal connections� We consider a principal
�ber bundle �P� p�M�G� with some principal �ber bundle atlas �U�� �� � P jU� �
U�
G� and corresponding cocycle ���� � U�� � G� of transition functions� We
consider the sections s� � C��P jU�� which are given by ���s��x�� � �x� e� and
satisfy s����� � s�� since we have in turn�

���s��x�� � ���
��
� �x� e� � �x� ����x��

s��x� � ���� �x� e����e���� ���� �x� e�����x� � s��x�����x��

��� Let 0 � )��G� g� be the left logarithmic derivative of the identity�
i�e� 0��g� �� Tg��g�����g� We will use the forms 0�� �� ���

�0 �
)��U��� g��

Let ( � � � � � )��P �V P � be a principal connection with connection form
� � )��P � g�� We may associate the following local data to the connection�

��� �� �� s�
�� � )��U�� g�� the physicists version of the connection�

��� The Christo�el forms .� � )��U��X�G�� from ���
� which are given by
��x�.

���x� g�� � �T �����(�T ��������x� �g��
��� 
� �� ��

��
� �

�� � )��U� 
G� g�� the local expressions of ��

Lemma� These local data have the following properties and are related by the
following formulas�

��� The forms �� � )��U�� g� satisfy the transition formulas

�� � Ad��
��
����� �0���

and any set of forms like that with this transition behavior determines a
unique principal connection�

��� We have 
���x� T�g�X� � 
���x� �g� �X � Ad�g�������x� �X�
�
� We have .���x� g� � �Te��g��
���x� �g� � �Te��g��Ad�g�������x� �

�T ��g�����x�� so .���x� � R���
x�� a right invariant vector �eld�
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Proof� From the de�nition of the Christo�el forms we have

��x�.
���x� g�� � �T �����(�T ��������x� �g�

� �T �����Te�r���
� �x�g����T ����

����x� �g�

� �Te��� � r���
� �x�g����T ����

����x� �g�

� ���x� Te��g���T ��������x� �g�� � ���x� Te��g�
���x� �g���

This is the �rst part of �
�� The second part follows from ����


���x� T�g�X� � 
���x� �g� � 
���x� T�g�X�

� 
���x� �g� � ��T ����
����x� T�g�X��

� 
���x� �g� � ���X��
��
� �x� g���

� 
���x� �g� �X�

So the �rst part of ��� holds� The second part is seen from


���x� �g� � 
���x� Te��
g��e� � �� � T ������ � T �IdX 
 �g����x� �e� �

� �� � T �rg � ���� ����x� �e� � Ad�g�����T ����� ���x� �e��
� Ad�g����s������x� � Ad�g�������x��

Via �
� the transition formulas for the �� are easily seen to be equivalent to the
transition formulas for the Christo�el forms in lemma ���
� A direct proof goes
as follows� We have s��x� � s��x�����x� � r�s��x�� ����x�� and thus

����x� � ��Tx�s����x�

� �� � T�s��x������x��r���Txs���x� �����x��� ��s� �x�� Tx�����x��
� ��T �r����x���Tx�s����x� � ��T����x��rs��x���Tx�������x�

� Ad�����x�
�����Tx�s����x�

� ��T����x��rs��x���T ������x� � �����x����Tx�������x�

� Ad�����x�
�������x�

� ��Te�rs��x�����x���0����x�

� Ad�����x�
�������x� � 0����x�� �
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����� The covariant derivative� Let �P� p�M�G� be a principal �ber bundle
with principal connection ( � � � �� We consider the horizontal projection
� � IdTP � ( � TP � HP � cf� ����� which satis�es � � � � �� im� � HP �
ker� � V P � and � � T �rg� � T �rg� � � for all g � G�

If W is a �nite dimensional vector space� we consider the mapping �� �
)�P �W �� )�P �W � which is given by

�����u�X�� � � � � Xk� � �u���X��� � � � � ��Xk���

The mapping �� is a projection onto the subspace of horizontal di�erential forms�
i�e� the space )hor�P �W � �� f� � )�P �W � � iX� � � for X � V Pg� The notion
of horizontal form is independent of the choice of a connection�

The projection �� has the following properties� ���� � �� � ��� � ��� if
one of the two forms has values in R� �� � �� � ��� �� � �rg�� � �rg�� � �� for
all g � G� ��� � �� and �� � L��X� � L��X� � ��� They follow easily from the
corresponding properties of �� the last property uses that Fl

��X�
t � rexp tX �

We de�ne the covariant exterior derivative d� � )
k�P �W �� )k���P �W � by

the prescription d� �� �� � d�

Theorem� The covariant exterior derivative d� has the following properties�

��� d������ � d�������������deg�����d���� if � or � is real valued�
��� L��X� � d� � d� � L��X� for each X � g�
��� �rg�� � d� � d� � �rg�� for each g � G�
��� d� � p� � d � p� � p� � d � )�M �W �� )hor�P �W ��
��� d�� � )� the curvature form�
��� d�) � �� the Bianchi identity�
�
� d� � �� � d� � �� � i�R�� where R is the curvature�
��� d� � d� � �� � i�R� � d�
�	� Let )hor�P� g�

G be the algebra of all horizontal G�equivariant g�valued
forms� i�e� �rg��� � Ad�g����� Then for any � � )hor�P� g�

G we have
d�� � d� � ��� ����

���� The mapping � �� ��� where ���X�� � � � � Xk��u� � ���X��			 �Xk��u��u��

is an isomorphism between )hor�P� g�
G and the algebra )hor�P� V P �

G of
all horizontal G�equivariant forms with values in the vertical bundle V P �
Then we have �d�� � ��(� ����

Proof� ��� through ��� follow from the properties of ���
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��� We have

�d������ �� � ��
�d����� �� � d����� ���

� ���������� ���������� ������ ����

� ������� ���� and
���)��� ��� � R��� �� � (���� ��� � �����
���
��

��� Using ���� we have

d�) � d��d� �
�
� ��� ����

� ��dd� � �
��

�d��� ���

� �
��

���d�� ��� � ��� d���� � ���d�� ���
� ���d�� ����� � �� since ��� � ��

�
� For � � )�P �W � we have
�d��

����X�� � � � � Xk� � �d�
������X��� � � � � ��Xk��

�
X

��i�k
����i��Xi����

������X��� � � � ����Xi�� � � � � ��Xk���

�
X
i�j

����i�j���������Xi�� ��Xj��� ��X��� � � �

� � � ����Xi�� � � � ����Xj�� � � � �

�
X

��i�k
����i��Xi������X��� � � � ����Xi�� � � � � ��Xk���

�
X
i�j

����i�j�����Xi�� ��Xj��� (���Xi�� ��Xj��� ��X��� � � �

� � � ����Xi�� � � � ����Xj�� � � � �

� �d�����X��� � � � � ��Xk�� � �iR�����X��� � � � � ��Xk��

� �d� � ��iR�����X�� � � � � Xk��

��� d�d� � ��d��d � ���iR � ��d�d � ��iRd holds by �
��
�	� If we insert one vertical vector �eld� say �X for X � g� into d��� we

get � by de�nition� For the right hand side we use i�X� � � and L�X� �
�
�t

��
�
�Fl�Xt �

�� � �
�t

��
�
�rexp tX� � � � �

�t

��
�
Ad�exp��tX��� � �ad�X�� to get

i�X �d� � ��� ���� � i�Xd� � di�X� � �i�X�� ��� ��� i�X��
� L�X� � �X��� � �ad�X�� � �X��� � ��
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Let now all vector �elds �i be horizontal� then we get

�d������� � � � � �k� � ��
�d������ � � � � �k� � d����� � � � � �k��

�d� � ��� �������� � � � � �k� � d����� � � � � �k��

So the �rst formula holds�
���� We proceed in a similar manner� Let / be in the space )�hor�P� V P �

G

of all horizontal G�equivariant forms with vertical values� Then for each X � g

we have i�X/ � �� furthermore the G�equivariance �r
g��/ � / implies that

L�X/ � ��X �/� � � by ���������� Using formula ��������� we have
i�X �(�/� � �i�X(�/�� �(� i�X/� � i��(� �X ��/ � i��/� �X ��(

� ��X �/�� � � � � � � ��
Let now all vector �elds �i again be horizontal� then from the huge formula ���	
for the Fr�olicher�Nijenhuis bracket only the following terms in the third and �fth
line survive�

�(�/����� � � � � ����� �

� �����
��

X
�

sign� (��/����� � � � � ����� ���������

� �
������ ��

X
�

sign� (�/������ ����� ��	� � � � � ���������

For f � P � g and horizontal � we have (��� �f � � �
�f� � �df�
�� It is C
��P�R��

linear in �� or imagine it in local coordinates� So the last expression becomes

���d����� � � � � �k�� � ���d����� � � � � �k�� � ����d� � ��� �������� � � � � �k��
as required� �

����� Theorem� Let �P� p�M�G� be a principal �ber bundle with principal
connection �� Then the parallel transport for the principal connection is globally
de�ned and G�equivariant�

In detail� For each smooth curve c � R � M there is a smooth mapping
Ptc � R 
 Pc��� � P such that the following holds�

��� Pt�c� t� u� � Pc�t�� Pt�c� �� � IdPc���� and �� d
dt
Pt�c� t� u�� � ��

��� Pt�c� t� � Pc��� � Pc�t� is G�equivariant� i�e� Pt�c� t� u�g� � Pt�c� t� u��g
holds for all g � G and u � P � Moreover we have Pt�c� t����X jPc�t�� �
�X jPc��� for all X � g�

��� For any smooth function f � R � R we have
Pt�c� f�t�� u� � Pt�c � f� t�Pt�c� f���� u���
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Proof� By ���� the Christo�el forms .� � )��U��X�G�� of the connection � with
respect to a principal �ber bundle atlas �U�� ��� are given by .

���x� � R���
x��
so they take values in the Lie subalgebra XR�G� of all right invariant vector �elds
on G� which are bounded with respect to any right invariant Riemannian metric
on G� Each right invariant metric on a Lie group is complete� So the connection
is complete by the remark in ���	�
Properties ��� and ��� follow from theorem ����� and ��� is seen as follows�

�� d
dt
Pt�c� t� u��g� � Ad�g����� d

dt
Pt�c� t� u�� � � implies that Pt�c� t� u��g �

Pt�c� t� u�g�� For the second assertion we compute for u � Pc����

Pt�c� t����X jPc�t���u� � T Pt�c� t����X�Pt�c� t� u��

� T Pt�c� t��� d
ds j� Pt�c� t� u�� exp�sX�

� T Pt�c� t��� d
ds
j� Pt�c� t� u� exp�sX��

� d
ds j� Pt�c� t���Pt�c� t� u� exp�sX��

� d
ds j�u� exp�sX� � �X�u�� �

���	� Holonomy groups� Let �P� p�M�G� be a principal �ber bundle with
principal connection ( � � � �� We assume that M is connected and we �x
x� �M �
In ����� we de�ned the holonomy group Hol�(� x�� � Di��Px�� as the group

of all Pt�c� �� � Px� � Px� for c any piecewise smooth closed loop through x��
�Reparametrizing c by a function which is $at at each corner of c we may assume
that any c is smooth�� If we consider only those curves c which are nullhomotopic�
we obtain the restricted holonomy group Hol��(� x��� a normal subgroup�
Now let us �x u� � Px� � The elements ��u��Pt�c� t� u��� � G form a subgroup

of the structure group G which is isomorphic to Hol�(� x��� we denote it by
Hol��� u�� and we call it also the holonomy group of the connection� Considering
only nullhomotopic curves we get the restricted holonomy group Hol���� u�� a
normal subgroup of Hol��� u���

Theorem� 	� We have Hol��� u��g� � conj�g
���Hol��� u�� and

Hol���� u��g� � conj�g
���Hol���� u���

�� For each curve c in M with c��� � x� we have Hol���Pt�c� t� u��� �
Hol��� u�� and Hol����Pt�c� t� u��� � Hol���� u���

�� Hol���� u�� is a connected Lie subgroup of G and the quotient group
Hol��� u���Hol���� u�� is at most countable� so Hol��� u�� is also a Lie subgroup
of G�

�� The Lie algebra hol��� u�� � g of Hol��� u�� is linearly generated by
f)�Xu� Yu� � Xu� Yu � TuPg� It is isomorphic to the Lie algebra hol�(� x��
we considered in 	��	��
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�� For u� � Px� let P ��� u�� be the set of all Pt�c� t� u�� for c any �piecewise�
smooth curve in M with c��� � x� and for t � R� Then P ��� u�� is a sub �ber
bundle of P which is invariant under the right action of Hol��� u��� so it is itself
a principal �ber bundle over M with structure group Hol��� u�� and we have a
reduction of structure group� cf� 	��� and 	��	�� The pullback of � to P ��� u��
is then again a principal connection form i�� � )��P ��� u��� hol��� u����

�� P is foliated by the leaves P ��� u�� u � Px� �
�� If the curvature ) � � then Hol���� u�� � feg and each P ��� u� is a cover�

ing of M � They are all isomorphic and are associated to the universal covering of
M � which is a principal �ber bundle with structure group the fundamental group
	��M��

In view of assertion � a principal connection � is called irreducible ��principle
connection if Hol��� u�� equals the structure group G for some �equivalently any�
u� � Px� �

Proof� �� This follows from the properties of the mapping � from ���� and from
the from the G�equivariance of the parallel transport�

��u��g�Pt�c� �� u��g�� � ��u��Pt�c� �� u���g� � g�����u��Pt�c� �� u����g�

Note that we have an isomorphism

Hol��� u��� Hol�(� x��

g �� �u �� fg�u� � u��g���u�� u��

gf �� ��u�� f�u���� f�

So via the di�eomorphism ��u�� � � Px� � G the action of the holonomy group
Hol�(� u�� on Px� is conjugate to the left translation of Hol��� u�� on G�
�� By reparameterizing the curve c we may assume that t � �� and we

put Pt�c� �� u�� �� u�� Then by de�nition for an element g � G we have g �
Hol��� u�� if and only if g � ��u��Pt�e� �� u��� for some closed smooth loop e
through x� �� c��� � p�u��� i� e�

Pt�c� ���rg�u��� � rg�Pt�c� ���u��� � u�g � Pt�e� ���Pt�c� ���u���

u�g � Pt�c� ��
��Pt�e� �� Pt�c� ���u�� � Pt�c�e�c��� ���u���

where c�e�c�� is the curve travelling along c�t� for � 	 t 	 �� along e�t � �� for
� 	 t 	 �� and along c��� t� for � 	 t 	 �� This is equivalent to g � Hol��� u���
Furthermore e is nullhomotopic if and only if c�e�c�� is nullhomotopic� so we also
have Hol���� u�� � Hol���� u���
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�� Let c � ��� ���M be a nullhomotopic curve through x� and let h � R� �M
be a smooth homotopy with h�j��� �� � c and h��� s� � h�t� �� � h�t� �� � x��
We consider the pullback bundle

h�P w
p�h

u
h�p

P

u
p

R� wh M�

Then for the parallel transport Pt� on P and for the parallel transport Pth
�� of

the pulled back connection we have

Pt��ht� �� u�� � �p
�h� Pth

����t� �� �� u�� � �p
�h� FlC

h���s
� �t� u���

So t �� ��u��Pt
��ht� �� u��� is a smooth curve in the Lie group G starting from e�

so Hol���� u�� is an arcwise connected subgroup of G� By the theorem of Yamabe
�which we mentioned without proof in ���� the subgroup Hol���� u�� is a Lie
subgroup of G� The quotient group Hol��� u���Hol���� u�� is a countable group�
since by Morse theory M is homotopy equivalent to a countable CW�complex�
so the fundamental group 	��M� is countably generated� thus countable�
�� Note �rst that for g � G and X � X�M� we have for the horizontal lift

�rg��CX � CX� since �rg��( � ( implies Tu�rg��HuP � Hu	gP and thus

Tu�r
g��C�X� u� � Tu�r

g���TupjHuP �
���X�p�u���

� �Tu	gpjHu	gP �
���X�p�u��� � C�X� u�g��

Thus hol��� is an ideal in the Lie algebra g� since

Ad�g���)�C�X� u�� C�Y� u�� � )�Tu�rg��C�X� u�� Tu�rg��C�Y� u��

� )�C�X� u�g�� C�Y� u�g�� � hol����
We consider now the mapping

�u� � hol���� X�Px��

�u�X �u� � �Ad���u��u����X�u��

It turns out that �u�X is related to the right invariant vector �eld RX on G under
the di�eomorphism ��u�� � � �ru��

�� � Px� � G� since we have

Tg�ru���RX�g� � Tg�ru���Te��
g��X � Tu��r

g��Te�ru���X

� Tu��r
g��X�u�� � �Ad�g���X�u��g� � �u�X �u��g��
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Thus �u� is a Lie algebra anti homomorphism� and each vector �eld �u�X on Px�
is complete� The dependence of �u� on u� is explained by

�u�gX �u� � �Ad���u�g�u����X�u� � �Ad���u��u���� Ad�g�X�u�

� �u�Ad�g�X�u��

Recall now that the holonomy Lie algebra hol�(� x�� is the closed linear span of
all vector �elds of the form Pt�c� ���R�CX�CY �� where X�Y � TxM and c is a
curve from x� to x� Then we have for u � Pt�c� �� u��

R�C�X� u�� C�Y� u�� � ���C�X�u��C�Y�u���u�

R�CX�CY ��ug� � T �rg�R�CX�CY ��u� � T �rg����C�X�u��C�Y�u���u�

� �Ad�g�����C�X�u��C�Y�u���ug� � �u��C�X�u��C�Y�u���ug�

�Pt�c� ���R�CX�CY ���u��g� �

� T �Pt�c� ������Ad�g�����C�X�u��C�Y�u���Pt�c� �� u��g��

� �Pt�c� ����Ad�g�����C�X�u��C�Y�u����u��g�

� �Ad�g�����C�X�u��C�Y�u���u��g� by ��������

� �u���C�X�u��C�Y�u���u��g��

So �u� � hol��� � hol�(� x�� is a Lie algebra anti isomorphism� Moreover
hol�(� x�� consists of complete vector �elds and we may apply theorem �����
�only claim �� which tells us that the Lie algebra of the Lie group Hol�(� x�� is
hol�(� x��� The di�eomorphism ��u�� � � Px� � G intertwines the actions and
the in�nitesimal actions in the right way�
�� We de�ne the sub vector bundle E � TP by Eu �� HuP � Te�ru�� hol����

From the proof of � it follows that �u�X are sections of E for each X � hol����
thus E is a vector bundle� Any vector �eld � � X�P � with values in E is a
linear combination with coe cients in C��P�R� of horizontal vector �elds CX
for X � X�M� and of �Z for Z � hol���� Their Lie brackets are in turn

�CX�CY ��u� � C�X�Y ��u� � R�CX�CY ��u�

� C�X�Y ��u� � ���C�X�u��C�Y�u���u� � C��E�

��Z � CX� � L�ZCX � d
dt j��Fl�Zt ��CX � ��

since �rg��CX � CX� see step � above� So E is an integrable subbundle and
induces a foliation by ������� Let L�u�� be the leaf of the foliation through u��
Since for a curve c in M the parallel transport Pt�c� t� u�� is tangent to the leaf�
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we have P ��� u�� � L�u��� By de�nition the holonomy group Hol�(� x�� acts
transitively and freely on P ��� u���Px� � and by � the restricted holonomy group
Hol��(� x�� acts transitively on each connected component of L�u��� Px� � since
the vertical part of E is spanned by the generating vector �elds of this action�
This is true for any �ber since we may conjugate the holonomy groups by a
suitable parallel transport to each �ber� Thus P ��� u�� � L�u�� and by lemma
���� the sub �ber bundle P ��� x�� is a principal �ber bundle with structure group
Hol��� u��� Since all horizontal spaces HuP with u � P ��� x�� are tangential to
P ��� x��� the connection ( restricts to a principal connection on P ��� x�� and
we obtain the looked for reduction of the structure group�

�� This is obvious from the proof of ��


� If the curvature ) is everywhere �� the holonomy Lie algebra is zero� so
P ��� u� is a principal �ber bundle with discrete structure group� pjP ��� u� �
P ��� u� � M is a local di�eomorphism� since TuP ��� u� � HuP and Tp is
invertible on it� By the right action of the structure group we may translate
each local section of p to any point of the �ber� so p is a covering map� Parallel
transport de�nes a group homomorphism � � 	��M�x�� � Hol�(� x�� �see the

proof of ��� Let -M be the universal covering space of M � then from topology

one knows that -M �M is a principal �ber bundle with discrete structure group
	��M�x��� Let 	��M� act on Hol�(� x�� by left translation via �� then the

mapping f � -M
Hol�(� x��� P ��� u�� which is given by f��c�� g� � Pt�c� �� u���g

is 	��M��invariant and thus factors to a mapping -M �Hol�(� x��� � P ��� u��
which is an isomorphism of Hol�(� x���bundles since the upper mapping admits
local sections by the curve lifting property of the universal cover� �

���
� Inducing principal connections on associated bundles�
Let �P� p�M�G� be a principal bundle with principal right action r � P 
G� P
and let � � G
S � S be a left action of the structure group G on some manifold
S� Then we consider the associated bundle P �S� � P �S� �� � P
GS� constructed
in ���
� Recall from ����� that its tangent and vertical bundle are given by
T �P �S� ��� � TP �TS� T �� � TP
TGTS and V �P �S� ��� � P �TS� T��� � P
GTS�

Let ( � � � � � )��P �TP � be a principal connection on the principal bundle
P � We construct the induced connection !( � )��P �S�� T �P �S��� by factorizing
as in the following diagram�

TP 
 TS w
(
 Id

u
Tq � q�

TP 
 TS w�

u
q�

T �P 
 S�

u
Tq

TP 
TG TS w
!( TP 
TG TS w� T �P 
G S��
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Let us �rst check that the top mapping (
Id is TG�equivariant� For g � G and
X � g the inverse of Te��g�X in the Lie group TG is denoted by �Te��g�X�

���
see lemma ����� Furthermore by ���� we have

Tr��u� Te��g�X� � Tu�r
g��u � Tr���P 
 LX��u� g��

� Tu�r
g��u � Tg�ru��Te��g�X�

� Tu�r
g��u � �X�ug��

We may compute

�(
 Id��Tr��u� Te��g�X�� T ���Te��g�X�
��� �s��

� �(�Tu�r
g��u � �X�ug��� T ���Te��g�X�

��� �s��

� �(�Tu�r
g��u� � (��X�ug��� T ���Te��g�X�

��� �s��

� ��Tu�r
g�(�u� � �X�ug�� T ���Te��g�X�

��� �s��

� �Tr�(��u�� Te��g�X�� T ���Te��g�X�
��� �s���

So the mapping ( 
 Id factors to !( as indicated in the diagram� and we have
!(� !( � !( from �(
 Id�� �(
 Id� � (
 Id� The mapping !( is �berwise linear�
since (
 Id and q� � Tq are� The image of !( is

q��V P 
 TS� � q��ker�Tp � TP 
 TS � TM��

� ker�Tp � TP 
TG TS � TM� � V �P �S� ����

Thus !( is a connection on the associated bundle P �S�� We call it the induced
connection�
From the diagram it also follows� that the vector valued forms ( 
 Id �

)��P 
S�TP 
TS� and !( � )��P �S��T �P �S��� are �q � P 
S � P �S���related�
So by ����� we have for the curvatures

R��Id � �
� �(
 Id�(
 Id� � �

� �(�(�
 � � R� 
 ��
R�� �

�
� �
!(� !(��

that they are also q�related� i�e� Tq � �R� 
 �� � R�� � �Tq 
M Tq��
By uniqueness of the solutions of the de�ning di�erential equation we also get

that
Pt���c� t� q�u� s�� � q�Pt��c� t� u�� s��
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��� ��� Principal and Induced Connections� ����

����� Recognizing induced connections� We consider again a principal
�ber bundle �P� p�M�G� and a left action � � G 
 S � S� Suppose that / �
)��P �S��T �P �S��� is a connection on the associated bundle P �S� � P �S� ��� Then
the following question arises� When is the connection / induced from a principal
connection on P� If this is the case� we say that / is compatible with the G�
structure on P �S�� The answer is given in the following

Theorem� Let / be a �general� connection on the associated bundle P �S�� Let
us suppose that the action � is in�nitesimally e�ective� i�e� the fundamental
vector �eld mapping � � g� X�S� is injective�

Then the connection / is induced from a principal connection � on P if and
only if the following condition is satis�ed�

In some �equivalently any� �ber bundle atlas �U�� ��� of P �S� belonging
to the G�structure of the associated bundle the Christo�el forms .� �
)��U��X�S�� have values in the sub Lie algebra Xfund�S� of fundamental
vector �elds for the action ��

Proof� Let �U�� �� � P jU� � U� 
 G� be a principal �ber bundle atlas for
P � Then by the proof of theorem ���
 the induced �ber bundle atlas �U�� �� �
P �S�jU� � U� 
 S� is given by

���� �x� s� � q����� �x� e�� s�����

��� � q������ �x� g�� s� � �x� g�s�����

Let ( � ��� be a principal connection on P and let !( be the induced connection
on the associated bundle P �S�� By ���
 its Christo�el symbols are given by

��x�.
�
����x� s�� � ��T ���� � !( � T ����� ����x� �s�

� ��T ���� � !( � Tq � �T ����� �
 Id����x� �e� �s� by ���

� ��T ���� � Tq � �(
 Id���T ����� ���x� �e�� �s� by ����

� ��T ���� � Tq��(�T ����� ���x� �e��� �s�
� �T ���� � Tq��T ����� ���x�.����x� e��� �s� by ��������

� �T ��� � q � ����� 
 Id����x� ����x�� �s� by ������
�

� �Te��s�����x� by ���

� �����
x��s��

So the condition is necessary� Now let us conversely suppose that a connection
/ on P �S� is given such that the Christo�el forms .�� with respect to a �ber
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��� Principal and Induced Connections� ����	 ���

bundle atlas of the G�structure have values in Xfund�S�� Then unique g�valued
forms �� � )��U�� g� are given by the equation

.����x� � ������x���

since the action is in�nitesimally e�ective� From the transition formulas ���
 for
the .�� follow the transition formulas �������� for the �

�� so that they give a
unique principal connection on P � which by the �rst part of the proof induces
the given connection / on P �S�� �

������ Inducing principal connections on associated vector bundles�
Let �P� p�M�G� be a principal �ber bundle and let � � G � GL�W � be a rep�
resentation of the structure group G on a �nite dimensional vector space W �
We consider the associated vector bundle �E �� P �W� ��� p�M�W �� which was
treated in some detail in ������
Recall from ���� that T �E� � TP 
TG TW has two vector bundle structures

with the projections

	E � T �E� � TP 
TG TW � P 
G W � E�

Tp � pr� � T �E� � TP 
TG TW � TM�

Now let ( � � � � � )��P �TP � be a principal connection on P � We consider
the induced connection !( � )��E�T �E�� from ����� A look at the diagram below
shows that the induced connection is linear in both vector bundle structures� We
say that it is a linear connection on the associated bundle�

TP 
 TW w
(
 Id

u

Tq

�����
	

TP 
 TW

u

Tq

N
N

N
NNQ

	

TP 
W 
W

P 
W

u
q

P 
G W � E

TP 
TG TW

�
�
���	E

w
!(

�����
Tp

TP 
TG TW

N
N
NNQ

	E

N
N

N
NNQ Tp

TE

TM
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��	 ��� Principal and Induced Connections� �����

Recall now from ���� the vertical lift vlE � E 
M E � V E� which is an isomor�
phism� pr��	E��berwise linear and also p�Tp��berwise linear�
Now we de�ne the connector K of the linear connection !( by

K �� pr� � �vlE��� � !( � TE � V E � E 
M E � E�

Lemma� The connector K � TE � E is a vector bundle homomorphism for both
vector bundle structures on TE and satis�es K�vlE � pr� � E
ME � TE � E�

So K is 	E�p��berwise linear and Tp�p��berwise linear�

Proof� This follows from the �berwise linearity of the composants of K and from
its de�nition� �

������ Linear connections� If �E� p�M� is a vector bundle� a connection
/ � )��E�TE� such that / � TE � V E � TE is also Tp�Tp��berwise linear
is called a linear connection� An easy check with ���	 or a direct construction
shows that / is then induced from a unique principal connection on the linear
frame bundle GL�Rn � E� of E �where n is the �ber dimension of E��
Equivalently a linear connection may be speci�ed by a connector K � TE � E

with the three properties of lemma ������ For then HE �� f�u � K��u� � �p�u�g
is a complement to V E in TE which is Tp��berwise linearly chosen�

������ Covariant derivative on vector bundles� Let �E� p�M� be a vector
bundle with a linear connection� given by a connector K � TE � E with the
properties in lemma ������
For any manifold N � smooth mapping s � N � E� and vector �eld X � X�N�

we de�ne the covariant derivative of s along X by

��� rXs �� K � Ts �X � N � TN � TE � E�

If f � N �M is a �xed smooth mapping� let us denote by C�f �N�E� the vector
space of all smooth mappings s � N � E with p�s � f � they are called sections
of E along f � From the universal property of the pullback it follows that the
vector space C�f �N�E� is canonically linearly isomorphic to the space C

��f�E�
of sections of the pullback bundle� Then the covariant derivative may be viewed
as a bilinear mapping

��� r � X�N�
 C�f �N�E�� C�f �N�E��

In particular for f � IdM we have

r � X�M�
 C��E�� C��E��
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Lemma� This covariant derivative has the following properties�

��� rXs is C��N�R��linear in X � X�N�� So for a tangent vector Xx �
TxN the mapping rXx

� C�f �N�E� � Ef�x� makes sense and we have

�rXs��x� � rX�x�s�
��� rXs is R�linear in s � C�f �N�E��
��� rX�h�s� � dh�X��s� h�rXs for h � C��N�R�� the derivation property

of rX �
��� For any manifold Q and smooth mapping g � Q � N and Yy � TyQ we

have rTg	Yys � rYy �s � g�� If Y � X�Q� and X � X�N� are g�related�
then we have rY �s � g� � �rXs� � g�

Proof� All these properties follow easily from the de�nition ���� �

Remark� Property ��� is not well understood in some di�erential geometric lit�
erature� See e�g� the clumsy and unclear treatment of it in �Eells�Lemaire� �	����

For vector �elds X� Y � X�M� and a section s � C��E� an easy computation
shows that

RE�X�Y �s � � rXrY s�rYrXs�r�X�Y 
s

� ��rX �rY ��r�X�Y 
�s

is C��M�R��linear inX� Y � and s� By the method of 
�� it follows that RE is a ��
form onM with values in the vector bundle L�E�E�� i�e� RE � )��M �L�E�E���
It is called the curvature of the covariant derivative�
For f � N � M � vector �elds X� Y � X�N� and a section s � C�f �N�E�

along f one may prove that

rXrY s�rYrXs�r�X�Y 
s � �f
�RE��X�Y �s �� RE�Tf�X� Tf�Y �s�

������ Covariant exterior derivative� Let �E� p�M� be a vector bundle with
a linear connection� given by a connector K � TE � E�
For a smooth mapping f � N � M let )�N � f�E� be the vector space of all

forms on N with values in the vector bundle f�E� We can also view them as
forms on N with values along f in E� but we do not introduce an extra notation
for this�
The graded space )�N � f�E� is a graded )�N��module via

�� � (��X�� � � � � Xp�q� �

� �
p� q�

X
�

sign��� ��X��� � � � � X�p�(�X��p���� � � � � X��p�q���
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It is easily seen that the graded module homomorphisms H � )�N � f�E� �
)�N � f�E� �so that H�� � (� � ����degH	deg�� �H�(�� are exactly the map�
pings ��A� for A � )p�N � f�L�E�E��� which are given by

���A�(��X�� � � � � Xp�q� �

� �
p� q�

X
�

sign��� A�X��� � � � � X�p��(�X��p���� � � � � X��p�q����

The covariant exterior derivative dr � )p�N � f�E� � )p���N � f�E� is de�ned
by �where the Xi are vector �elds on N�

�dr(��X�� � � � � Xp� �

pX
i��

����irXi
(�X�� � � � �cXi� � � � � Xp�

�
X

��i�j�p
����i�j(��Xi� Xj�� X�� � � � �cXi� � � � �cXj� � � � � Xp��

Lemma� The covariant exterior derivative is well de�ned and has the following
properties�

��� For s � C��f�E� � )��N � f�E� we have �drs��X� � rXs�
��� dr�� � (� � d� � (� ����deg�� � dr(�
��� For smooth g � Q� N and ( � )�N � f�E� we have dr�g�(� � g��dr(��
��� drdr( � ��f�RE�(�

Proof� It su ces to investigate decomposable forms ( � � � s for � � )p�N�
and s � C��f�E�� Then from the de�nition we have dr�� � s� � d� � s �
����p� � drs� Since by ��������� drs � )��N � f�E�� the mapping dr is well
de�ned� This formula also implies ��� immediately� ��� follows from ����������
��� is checked as follows�

drdr��� s� � dr�d�� s� ����p� � drs� by ���
� � � �����p� � drdrs
� � � ��f�RE�s by the de�nition of RE

� ��f�RE���� s�� �

������ Let �P� p�M�G� be a principal �ber bundle and let � � G� GL�W � be a
representation of the structure group G on a �nite dimensional vector space W �
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Theorem� There is a canonical isomorphism from the space of P �W� ���valued
di�erential forms on M onto the space of horizontal G�equivariant W �valued
di�erential forms on P �

q� � )�M �P �W� ���� )hor�P �W �
G � f� � )�P �W � � iX� � �

for all X � V P� �rg��� � ��g��� � � for all g � Gg�
In particular for W � R with trivial representation we see that

p� � )�M�� )hor�P �
G � f� � )hor�P � � �rg��� � �g

is also an isomorphism� The isomorphism

q� � )��M �P �W �� � C��P �W ��� )�
hor�P �W �

G � C��P�W �G

is a special case of the one from 	��	��

Proof� Recall the smooth mapping �G � P 
M P � G from ����� which satis�es
r�ux� �

G�ux� vx�� � vx� �
G�ux�g� u

�
x�g

�� � g����G�ux� u�x��g
�� and �G�ux� ux� � e�

Let � � )khor�P �W �G� X�� � � � � Xk � TuP � and X
�
�� � � � � X

�
k � Tu�P such that

Tup�Xi � Tu�p�X
�
i for each i� Then we have for g � �G�u� u��� so that ug � u��

q�u� �u�X�� � � � � Xk�� � q�ug� ��g����u�X�� � � � � Xk��

� q�u�� ��rg����u�X�� � � � � Xk��

� q�u�� �ug�Tu�rg��X�� � � � � Tu�r
g��Xk��

� q�u�� �u��X �
�� � � � � X

�
k��� since Tu�r

g�Xi �X �
i � Vu�P�

By this a vector bundle valued form ( � )k�M �P �W �� is uniquely determined�
For the converse recall the smooth mapping �W � P 
M P �W� �� � W

from ���
� which satis�es �W �u� q�u�w�� � w� q�ux� �
W �ux� vx�� � vx� and

�W �uxg� vx� � ��g����W �ux� vx��
For ( � )k�M �P �W �� we de�ne q�( � )k�P �W � as follows� For Xi � TuP

we put

�q�(�u�X�� � � � � Xk� �� �W �u�(p�u��Tup�X�� � � � � Tup�Xk���

Then q�( is smooth and horizontal� For g � G we have

��rg���q�(��u�X�� � � � � Xk� � �q
�(�ug�Tu�r

g��X�� � � � � Tu�r
g��Xk�

� �W �ug�(p�ug��Tugp�Tu�r
g��X�� � � � � Tugp�Tu�r

g��Xk��

� ��g����W �u�(p�u��Tup�X�� � � � � Tup�Xk��

� ��g����q�(�u�X�� � � � � Xk��

Clearly the two constructions are inverse to each other� �
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������ Let �P� p�M�G� be a principal �ber bundle with a principal connection
( � � � �� and let � � G� GL�W � be a representation of the structure group G
on a �nite dimensional vector spaceW � We consider the associated vector bundle
�E �� P �W� ��� p�M�W �� the induced connection !( on it and the corresponding
covariant derivative�

Theorem� The covariant exterior derivative d� from 	��� on P and the co�
variant exterior derivative for P �W ��valued forms on M are connected by the
mapping q� from 	��	�� as follows�

q� � dr � d� � q� � )�M �P �W ��� )hor�P �W �
G�

Proof� Let us consider �rst f � )�
hor�P �W �

G � C��P�W �G� then f � q�s for
s � C��P �W �� and we have f�u� � �W �u� s�p�u��� and s�p�u�� � q�u� f�u��
by ����� and ������ Therefore we have Ts�Tp�Xu � Tq�Xu� T f�Xu�� where
Tf�Xu � �f�u�� df�Xu�� � TW � W 
W � If � � TP � HP is the horizontal
projection as in ����� we have Ts�Tp�Xu � Ts�Tp���Xu � Tq���Xu� T f���Xu��
So we get

�q�drs��Xu� � �W �u� �drs��Tp�Xu��

� �W �u�rTp	Xu
s� by ���������

� �W �u�K�Ts�Tp�Xu� by ���������

� �W �u�K�Tq���Xu� T f���Xu�� from above

� �W �u� pr��vl
��
P �W 
�

!(�T q���Xu� T f���Xu�� by �����

� �W �u� pr��vl
��
P �W 
�T q��(
 Id����Xu� T f���Xu��� by ����

� �W �u� pr��vl
��
P �W 
�T q��u� T f���Xu��� since (�� � �

� �W �u� q�pr��vl
��
P�W ���u� T f���Xu��� since q is �ber linear

� �W �u� q�u� df���Xu�� � ��
�df��Xu�

� �d�q
�s��Xu��

Now we turn to the general case� It su ces to check the formula for a decom�
posable P �W ��valued form / � � � s � )k�M�P �W ��� where � � )k�M� and
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s � C��P �W ��� Then we have

d�q
��� � s� � d��p

�� � q�s�
� d��p

��� � q�s� ����k��p�� � d�q�s by ��������

� ��p�d� � q�s� ����kp�� � q�drs from above and ��������

� p�d� � q�s� ����kp�� � q�drs
� q��d� � s� ����k� � drs�
� q�dr�� � s�� �

������ Corollary� In the situation of theorem 	��	� above we have for the
Lie algebra valued curvature form ) � )�

hor�P � g� and the curvature RP �W 
 �
)��M �L�P �W �� P �W ��� the relation

q�L�P �W 
�P �W 
�R
P �W 
 � �� � )�

where �� � Te� � g� L�W�W � is the derivative of the representation ��

Proof� We use the notation of the proof of theorem ������ By this theorem we
have for X� Y � TuP

�d�d�q
�
P �W 
s�u�X�Y � � �q

�drdrs�u�X�Y �

� �q�RP �W 
s�u�X�Y �

� �W �u�RP �W 
�Tup�X� Tup�Y �s�p�u���

� �q�L�P �W 
�P �W 
�R
P �W 
�u�X�Y ��q

�
P �W 
s��u��

On the other hand we have by theorem ��������

�d�d�q
�s�u�X�Y � � ��

�iRdq�s�u�X�Y �

� �dq�s�u�R�X�Y �� since R is horizontal

� �dq�s������X�Y ��u�� by ����

� �
�t

��
�
�q�s��Fl

�	�X�Y �

�t �u��

� �
�t

��
�
�W �u� exp��t)�X�Y ��� s�p�u� exp��t)�X�Y �����

� �
�t

��
�
�W �u� exp��t)�X�Y ��� s�p�u���

� �
�t

��
�
��exp t)�X�Y ���W �u� s�p�u��� by ���


� ���)�X�Y ���q�s��u�� �
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��� Characteristic classes

�	��� Invariants of Lie algebras� Let G be a Lie group with Lie algebra
g� let

N
g� be the tensor algebra over the dual space g�� the graded space of

all multilinear real �or complex� functionals on g� Let S�g�� be the symmetric
algebra over g� which corresponds to the algebra of polynomial functions on g�
The adjoint representation Ad � G� L�g� g� induces representations Ad� � G�
L�
N

g��
N

g�� and also Ad� � G � L�S�g��� S�g���� which are both given by
Ad��g�f � f � �Ad�g���� � � � � Ad�g����� A tensor f �N g� �or a polynomial
f � S�g��� is called an invariant of the Lie algebra if Ad��g�f � f for all g � G�
If the Lie group G is connected� f is an invariant if and only if LXf � � for all
X � g� where LX is the restriction of the Lie derivative to left invariant tensor
�elds on G� which coincides with the unique extension of ad�X�� � g� � g� to
a derivation on

N
g� or S�g��� respectively� Compare this with the proof of

���������� Obvious the space of all invariants is a graded subalgebra of
N

g� or
S�g��� respectively� The usual notation for the algebra of invariant polynomials
is I�G� ��

L
k
� I

k�G�� where Ik�G� is the invariant subspace of Sk�g���
We will later determine the generating systems of the algebra of invariant

polynomials for the most important Lie algebras�

�	��� The Chern�Weil forms� Let �P� p�M�G� be a principal �ber bundle
with principal connection ( � � �� and curvature R � � �)� For �i � )pi�P � g�
and f � Sk�g�� �Nk

g� we have the di�erential forms

�� �� � � � �� �k � )p��			�pk�P � g� � � � � g��

f � ��� �� � � � �� �k� � )p��			�pk�P ��
The exterior derivative of the latter one is clearly given by

d�f � ��� �� � � � �� �k�� � f � d��� �� � � � �� �k�
� f �

	Pk
i������p��			�pi���� �� � � � �� d�i �� � � � �� �k



Let us now consider an invariant polynomial f � Ik�G� and the curvature form
) � )�

hor�P� g�
G� Then the �k�form f � �) �� � � � �� )� is horizontal since by

�������� ) is horizontal� It is also G�invariant since by �������� we have

�rg���f � �)�� � � � �� )�� � f � ��rg��)�� � � � �� �rg��)�
� f � �Ad�g���)�� � � � �� Ad�g���)�
� f � �)�� � � � �� )��
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��� Characteristic classes� ���� ���

So by theorem ����� there is a uniquely de�ned �k�form cw�f� P� �� � )�k�M�
with p� cw�f� P� �� � f ��)�� � � ���)�� which we will call the Chern�Weil form
of f �
If g � N � M is a smooth mapping� then for the pullback bundle g�P the

Chern�Weil form is given by cw�f� g�P� g��� � g� cw�f� P� ��� which is easily
seen by applying p��

�	��� Theorem� The Chern�Weil homomorphism� In the setting of 	���
we have�

	� For f � Ik�G� the Chern Weil form cw�f� P� �� is closed� d cw�f� P� �� � ��
So there is a well de�ned cohomology class Cw�f� P � � �cw�f� P� ��� � H�k�M��
called the characteristic class of the invariant polynomial f �

�� The characteristic class Cw�f� P � does not depend on the choice of the
principal connection ��

�� The mapping CwP � I
��G�� H���M� is a homomorphism of commutative

algebras� and it is called the Chern�Weil homomorphism�
�� If g � N � M is a smooth mapping� then the Chern�Weil homomorphism

for the pullback bundle g�P is given by

Cwg�P � g� � CwP � I��G�� H���N��

Proof� �� Since f � Ik�G� is invariant we have for any X � g

� � d
dt
j�Ad�exp��tX���

�f�X�� � � � � Xk� � ad�X��
�f�X�� � � � � Xk�

�
Pk

i��f�X�� � � � � �X�� Xi�� � � � � Xk� �
Pk

i��f��X�� Xi�� X�� � � � �cXi � � � � Xk��

This implies that

d�f � �)�� � � � �� )�� � f �
	Pk

i�� )�� � � � �� d)�� � � � �� )



� k f � �d)�� � � � �� )� � k f � ����)��� �� � � � �� )�
� k f � �d�)�� )�� � � � �� )� � �� by �������

p�d cw�f� P� �� � d p� cw�f� P� ��

� d �f � �)�� � � � �� )�� � ��

and thus d cw�f� P� �� � � since p� is injective�
�� Let ��� �� � )��P� g�G be two principal connections� Then we consider

the principal bundle �P 
 R� p 
 Id�M 
 R� G� and the principal connection
-� � ��� t���� t�� � ��� t��pr��

���� t�pr����� on it� where t is the coordinate
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��� ��� Characteristic classes� ����

function on R� Let -) be the curvature form of -�� Let inss � P � P 
 R be
the embedding at level s� inss�u� � �u� s�� Then we have in turn by �������� for
s � �� �

�s � �inss�
�-�

)s � d�s �
�
� ��s� �s��

� d�inss�
�-� � �

� ��inss�
�-�� �inss��-���

� �inss�
��d-� � �

� �-�� -����

� �inss�
�-)�

So we get for s � �� �

p��inss�� cw�f� P 
 R� -�� � �inss���p
 IdR�
� cw�f� P 
 R� -��

� �inss�
��f � �-)�� � � � �� -)��

� f � ��inss�� -)�� � � � �� �inss�� -)�
� f � �)s �� � � � �� )s�
� p� cw�f� P� �s��

Since p� is injective we get �inss�� cw�f� P
R� -�� � cw�f� P� �s� for s � �� �� and
since ins� and ins� are smoothly homotopic� the cohomology classes coincide�
�� and �� are obvious� �

�	��� Local description of characteristic classes� Let �P� p�M�G� be a
principal �ber bundle with a principal connection � � )��P� g�G� Let s� �
C��P jU�� be a collection of local smooth sections of the bundle such that �U��
is an open cover of M � Recall �from the proof of ���� for example� that then
�� � �p� �

G�s� � p� �� � P jU� � U� 
G is a principal �ber bundle atlas with
transition functions ����x� � �G�s��x�� s��x���
Then we consider the physicists version from ���� of the connection � which

is descibed by the forms �� �� s��� � )��U�� g�� They transform according to
�� � Ad������� � 0�� � where 0�� � ���d��� if G is a matrix group� see
lemma ����� This a ne transformation law is due to the fact that � is not
horizontal�
Let ) � d� � �

� ��� ��� � )�
hor�P� g�

G be the curvature of �� then we consider
again the local forms of the curvature�

)� � � s��) � s��d� � �
� ��� ����

� d�s���� �
�
� �s

�
��� s

�
���

� d�� �
�
� ���� ����
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��� Characteristic classes� ���� ���

Recall from theorem ����� that we have an isomorphism q� � )�M�P �g�Ad���
)hor�P� g�

G� Then )� � s��) is the local expression of �q
�����)� for the induced

chart P �g�jU� � U� 
 g� thus we have the the simple transformation formula
)� � Ad�����)� �
If now f � Ik�G� is an invariant of G� for the Chern�Weil form cw�f� P� �� we

have

cw�f� P� ��jU� � � s���q
� cw�f� P� ��� � s���f � �)�� � � � �� )��

� f � �s��)�� � � � �� s��)�
� f � �)� �� � � � �� )���

where )� �� � � � �� )� � )�k�U�� g� � � � � g��

�	��� Characteristic classes for vector bundles� For a real vector bundle
�E� p�M�Rn� the characteristic classes are by de�nition the characteristic classes
of the linear frame bundle �GL�Rn � E�� p�M�GL�n�R��� We write Cw�f� E� ��
Cw�f�GL�Rn � E�� for short� Likewise for complex vector bundles�
Let �P� p�M�G� be a principal bundle and let � � G� GL�V � be a represen�

tation in a �nite dimensional vector space� If � is a principal connection form
on P with curvature form )� then for the induced covariant derivative r on the
associated vector bundle P �V � and its curvature RP �V 
 we have q�RP �V 
 � �� �)
by corollary ������ So if the representation � is in�nitesimally e�ective� i� e� if
�� � g � L�V� V � is injective� then we see that actually RP �V 
 � )��M �P �g��� If
f � Ik�G� is an invariant� then we have the induced mapping

P 
 �
kO

g� w
IdP 
 f

u
q

P 
 R

u

q

P �

kO
g� w

P �f �
M 
 R�

So the Chern�Weil form can also be written as

cw�f� P� �� � P �f � � �RP �V 
 �� � � � �� RP �V 
��

Sometimes we will make use of this expression�
All characteristic classes for a trivial vector bundle are zero� since the frame

bundle is then trivial and admits a principal connection with curvature ��
We will determine the classical bases for the algebra of invariants for the

matrix groups GL�n�R�� GL�n� C �� O�n�R�� SO�n�R�� U�n�� and discuss the
resulting characteristic classes for vector bundles�
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		 ��� Characteristic classes� ����

�	��� The characteristic coe�cients� � For a matrix A � gl�n�R� �
L�Rn �Rn� we consider the characteristic coe cients cnk �A� which are given by
the implicit equation

��� det�A� tI� �
nX

k��

cnk �A��t
n�k�

From lemma ����	 we have cnk �A� � Trace�+
kA � +kRn � +kRn�� The charac�

teristic coe cient cnk is a homogeneous invariant polynomial of degree k� since
we have det�Ad�g�A� tI� � det�gAg��� tI� � det�g�A� tI�g��� � det�A� tI��

Lemma� We have

cn�mk

��
A �
� B

��
�

kX
j��

cnj �A�c
m
k�j�B��

Proof� We have

det

��
A �
� B

�
� tIn�m

�
� det�A� tIn� det�B � tIm�

�

�
nX

k��

cnk �A�t
n�k
��� mX

j��

cmj �A�t
m�l

�A
�

n�mX
k��

�� kX
j��

cnj �A�c
m
k�j�B�

�A tn�m�k� �

�	�	� Pontryagin classes� Let �E� p�M� be a real vector bundle� Then the
Pontryagin classes are given by

pk�E� ��

� ��
�	
p��

��k

Cw�cdimE
�k � E� � H�k�M �R��

The factor ��
��
p�� makes this class to be an integer class �in H�k�M�Z�� and

makes several integral formulas �like the Gauss�Bonnet�Chern formula� more
beautiful� In principle one should always replace the curvature ) by ��

��
p��)�

The inhomogeneous cohomology class

p�E� ��
X
k
�

pk�E� � H���M�R�

is called the total Pontryagin class�
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	�

Theorem� For the Pontryagin classes we have�
	� If E� and E� are two real vector bundles over a manifold M � then for the

�berwise direct sum we have

p�E� �E�� � p�E�� � p�E�� � H���M�R��

�� For the pullback of a vector bundle along f � N �M we have

p�f�E� � f�p�E��

�� For a real vector bundle and an invariant f � Ik�GL�n�R�� for odd k
we have Cw�f� E� � �� Thus the Pontryagin classes exist only in dimension
�� �� �� ��� � � � �

Proof� �� If �i � )��GL�Rni � Ei�� gl�ni��
GL�ni� are principal connection forms

for the frame bundles of the two vector bundles� then for local frames of the two
bundles si� � C��GL�Rni � EijU�� the forms

�� ��

�
��
� �
� ��

�

�
� )��U�� gl�n� � n���

are exactly the local expressions of the direct sum connection� and from lemma

�
�� we see that pk�E� � E�� �
Pk

j�� pj�E��pk�j�E�� holds which implies the
desired result�
�� This follows from �
�����
�� Choose a �ber Riemannian metric g on E� consider the corresponding or�

thonormal frame bundle �O�Rn � E�� p�M�O�n�R��� and choose a principal con�
nection � for it� Then the local expression with respect to local orthonormal
frame �elds s� are skew symmetric matrices of ��forms� So the local curva�
ture forms are also skew symmetric� Any real matrix is conjugate to its trans�
posed �use Jordan�s normal form�� so there are invertible matrices g� such that
g�)�g

��
� � �)�� But then

f � �)� �� � � � �� )�� � f � �g�)�g��� �� � � � �� g�)�g��� �
� f � ���)���� � � � �� ��)���
� ����kf � �)� �� � � � �� )���

This implies that Cw�f� E� � � if k is odd� �
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�	�
� Remarks� �� If two vector bundles E and F are stably equivalent� i� e�
E� �M 
Rp� 
� F � �M 
Rq �� then p�E� � p�F �� This follows from �
�
�� and
��

�� If for a vector bundle E for some k the bundle

kz 
� �
E � � � � �E��M 
 Rl � is

trivial� then p�E� � � since p�E�k � ��
�� Let �E� p�M� be a vector bundle over a compact oriented manifoldM � For

ji � N� we put

�j��			�jr �E� ��

Z
M

p��E�
j� � � � pr�E�

jr � R�

where the integral is set to be � on each degree which is not equal to dimM �
Then these Pontryagin numbers are indeed integers� see �Milnor�Stashe�� ����
For example we have

�j��			�jr�T �C P
n�� �

�
�n� �

j�

�
� � �

�
�n� �

jr

�
�

�	��� The trace coe�cients� For a matrix A � gl�n�R� � L�Rn �Rn� the
trace coe�cients are given by

trnk �A� �� Trace�A
k� � Trace�

kz 
� �
A � � � � �A��

Obviously trnk is an invariant polynomial� homogeneous of degree k� To a direct
sum of two matrices A � gl�n� and B � gl�m� it reacts clearly by

trn�mk

�
A �
� B

�
� Trace

�
Ak �
� Bk

�
� trnk �A� � tr

m
k �B��

The tensor product �sometimes also called Kronecker product� of A and B is
given by A � B � �Ai

jB
k
l ��i�k���j�l��n�m in terms of the canonical bases� Since

we have Trace�A� B� �
P

i�k A
i
iB

k
k � Trace�A� Trace�B�� we also get

trnmk �A�B� � Trace��A�B�k� � Trace�Ak � Bk� � Trace�Ak� Trace�Bk�

� trnk �A� tr
m
k �B��
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	�

Lemma� The trace coe�cients and the characteristic coe�cients are connected
by the following recursive equation�

cnk �A� �
�
k

k��X
j��

����k�j��cnj �A� trnk�j�A��

Proof� For a matrix A � gl�n� let us denote by C�A� the matrix of the signed
algebraic complements of A �also called the classical adjoint�� i� e�

��� C�A�ij � ����i�j det
�
A
without i�th column�
without j�th row

�
Then Cramer�s rule reads

��� A�C�A� � C�A��A � det�A��I�

and the derivative of the determinant is given by

��� d det�A�X � Trace�C�A�X��

Note that C�A� is a homogeneous matrix valued polynomial of degree n � � in
A� We de�ne now matrix valued polynomials ak�A� by

��� C�A� tI� �
n��X
k��

ak�A�t
n�k���

We claim that for A � gl�n� and k � �� �� � � � � n� � we have

��� ak�A� �
kX

j��

����jcnk�j�A�Aj�

We prove this in the following way� from ��� we have

�A� tI�C�A� tI� � det�A� tI�I�

and we insert ��� and �
������ to get in turn

�A� tI�
n��X
k��

ak�A�t
n�k�� �

nX
j��

cnj �A�t
n�jI

n��X
k��

A�ak�A�t
n�k�� �

n��X
k��

ak�A�t
n�k �

nX
j��

cnj �A�t
n�jI
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We put a���A� �� � �� an�A� and compare coe cients of t
n�k in the last

equation to get the recursion formula

A�ak���A� � ak�A� � cnk �A�I

which immediately leads to to the desired formula ���� even for k � �� �� � � � � n� If
we start this computation with the two factors in ��� reversed we get A�ak�A� �
ak�A��A� Note that ��� for k � n is exactly the Caley�Hamilton equation

� � an�A� �
nX
j��

cnn�j�A�A
j�

We claim that

��� Trace�ak�A�� � �n� k�cnk �A��

We use ��� for the proof�

�
�t

��
�
�det�A� tI�� � d det�A� tI� �

�t

��
�
�A� tI� � Trace�C�A� tI�I�

� Trace

�
n��X
k��

ak�A�t
n�k��

�
�

n��X
k��

Trace�ak�A��t
n�k���

�
�t

��
�
�det�A� tI�� � �

�t

��
�

�
nX

k��

cnk �A�t
n�k
�

�
nX

k��

�n� k�cnk �A�t
n�k���

Comparing coe cients leads to the result ����
Now we may prove the lemma itself by the following computation�

�n� k�cnk �A� � Trace�ak�A�� by ���

� Trace

�� kX
j��

����jcnk�j�A�Aj

�A by ���

�
kX

j��

����jcnk�j�A� Trace�Aj�
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	�

� n cnk �A� �
kX
j��

����jcnk�j�A� trnj �A��

cnk �A� � � �
k

kX
j��

����jcnk�j�A� trnj �A�

� �
k

k��X
j��

����k�j��cnj �A� trnk�j�A�� �

�	���� The trace classes� Let �E� p�M� be a real vector bundle� Then the
trace classes are given by

��� trk�E� ��

� ��
�	
p��

��k

Cw�trdimE
�k � E� � H�k�M�R��

Between the trace classes and the Pontryagin classes there are the following
relations for k � �

��� pk�E� �
��
�k

k��X
j��

pj�E� � trk�j�E��

which follows directly from lemma �
�	 above�

The inhomogeneous cohomology class

��� tr�E� �
�X
k��

�

��k�%
trk�E� � Cw�Trace � exp� E�

is called the Pontryagin character of E� In the second expression we use the
smooth invariant function Trace � exp � gl�n�� R which is given by

Trace�exp�A�� � Trace

��X
k
�

Ak

k%

�A �X
k
�

�

k%
Trace�Ak��

Of course one should �rst take the Taylor series at � of it and then take the
Chern�Weil class of each homogeneous part separately�
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Theorem� Let �Ei� p�M� be vector bundles over the same base manifold M �
Then we have

��� tr�E� �E�� � tr�E�� � tr�E���
��� tr�E� �E�� � tr�E�� � tr�E���
��� tr�g�E� � g� tr�E� for any smooth mapping g � N �M �

Clearly stably equivalent vector bundles have equal Pontryagin characters�
Statements � and � say that one may view the Pontryagin character as a ring
homomorphism from the real K�theory into cohomology�

tr � KR�M�� H���M �R��

Statement � says� that it is even a natural transformation�

Proof� �� This can be proved in the same way as �
�
��� but we indicate another
method which will be used also in the proof of � below� Covariant derivatives
for E� and E� induce a covariant derivative on E� � E� by rE��E�

X �s�� s�� �

�rE�

X s��rE�

X � s��� For the curvature operators we clearly have

RE��E� � RE� �RE� �

�
RE� �
� RE�

�
So the result follows from �
�	 with the help of �
���
�� We have an induced covariant derivative on E��E� given by rE��E�

X s��
s� � �rE�

X s�� � s� � s� � �rE�

X s��� Then for the curvatures we get obviously
RE��E��X�Y � � RE��X�Y �� IdE�

� IdE�
�RE��X�Y �� The two summands of

the last expression commute� so we get

�RE� � IdE�
� IdE�

� RE�����k �
kX

j��

�
k

j

�
�RE�����j �� �RE�����k�j �

where the product involved is given as in

�RE �� RE��X�� � � � � X�� �
�

����

X
�

sign���RE�X��� X��� �RE�X�	� X����

which makes �)�M �L�E�E��� ��� into a graded associative algebra� The next
computation takes place in a commutative subalgebra of it�

tr�E� � E�� � �Trace exp�R
E� � IdE�

� IdE�
� RE���H�M�

� �Trace�exp�RE���� exp�RE����H�M�

� �Trace�exp�RE��� � Trace�exp�RE����H�M�

� tr�E�� � tr�E���

�� This is a general fact� �
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�	���� The Pfa�an coe�cient� Let �V� g� be a real Euclidian vector space
of dimension n� with a positive de�nite inner product g� Then for each p we
have an induced inner product on +pV which is given by

hx� � � � � � xp� y� � � � � � ypig � det�g�xi� yj�i�j��
Moreover the inner product g� when viewed as a linear isomorphism g � V �

V �� induces an isomorphism 
 � +�V � Lg� skew�V� V � which is given on decom�
posable forms by 
�x � y��z� � g�x� z�y � g�y� z�x� We also have


���A� � A � g�� � Lskew�V
�� V � � fB � L�V �� V � � Bt � �Bg 
� +�V� where
Bt � V � B�

��� V �� ���� V�

Now we assume that V is of even dimension n and is oriented� Then there is
a unique element e � +nV which is positive and normed� he� eig � �� We de�ne

Pfg�A� ��
�

n%
he�

n��z 
� �

���A� � � � � � 
���A�ig�

This is a homogeneous polynomial of degree n�� on gl�n�� Its polarisation is the
n���linear symmetric functional

Pfg�A�� � � � � An��� �
�

n%
he� 
���A�� � � � � � 
���An���ig�

Lemma� 	� If U � O�V� g� then Pfg�U�A�U��� � det�U� Pfg�A�� so Pfg is
invariant under the adjoint action of SO�V� g��

�� If X � Lg� skew�V� V � � o�V� g� then we have

n��X
i��

Pfg�A�� � � � � �X�Ai�� � � � � An��� � ��

Proof� We have U � O�V� g� if and only if g�Ux� Uy� � g�x� y�� For g � V � V �

this means U�gU � g and U��g���U���� � g��� so we get 
���UAU��� �
UAU��g�� � UAg��U� � +��U�
���A� and in turn�

Pfg�UAU��� �
�

n%
he�+n�U��
���A� � � � � � 
���A��ig

�
�

n%
det�U�h+n�U�e�+n�U��
���A� � � � � � 
���A��ig

�
�

n%
det�U�he� 
���A� � � � � � 
���A�ig

� det�U� Pfg�A��

�� This follows from �� by di�erentiation� see the beginning of the proof of
�
��� �
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�	���� The Pfa�an class� Let �E� p�M� V � be a vector bundle which is �ber
oriented and of even �ber dimension� If we choose a �berwise Riemannian met�
ric on E� we in fact reduce the linear frame bundle of E to the oriented or�
thonormal one SO�Rn � E�� On the Lie algebra o�n�R� of the structure group
SO�n�R� the Pfa an form Pf of the standard inner product is an invariant�
Pf � In���SO�n�R��� We de�ne the Pfa�an class of the oriented bundle E by

Pf�E� ��

� ��
�	
p��

�n��
�

�n���%
Cw�Pf� SO�Rn � E�� � Hn�M��

It does not depend on the choice of the Riemannian metric on E� since for
any two �berwise Riemannian metrics g� and g� on E there is an isometric
vector bundle isomorphism f � �E� g�� � �E� g�� covering the identity of M �
which pulls a SO�n��connection for �E� g�� to an SO�n��connection for �E� g���
So the two Pfa an classes coincide since then Pf� ��f�)� �� � � � �� f�)�� �
Pf� ��)� �� � � � �� )���

Theorem� The Pfa�an class of oriented even dimensional vector bundles has
the following properties�

	� Pf�E�� � ����n��pn���E� where n is the �ber dimension of E�
�� Pf�E� � E�� � Pf�E�� � Pf�E��
�� Pf�g���E� � g�Pf�E� for smooth g � N �M �

Proof� This is left as an exercise for the reader� �

�	���� Chern classes� Let �E� p�M� be a complex vector bundle over the
smooth manifold M � So the structure group is GL�n� C � where n is the �ber
dimension� Recall now the explanation of the characteristic coe cients cnk in
�
�� and insert complex numbers everywhere� Then we get the characteristic
coe cients cnk � Ik�GL�n� C ��� which are just the extensions of the real ones to
the complexi�cation�
We de�ne then the Chern classes by

��� ck�E� ��

� ��
�	
p��

�k
Cw�cdimE

k � E� � H�k�M �R��

The total Chern class is again the inhomogeneous cohomology class

��� c�E� ��

dimC EX
k��

ck�E� � H���M �R��
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It has the following properties�

c� !E� � ����dimC Ec�E����

c�E� �E�� � c�E�� � c�E�����

c�g�E� � g�c�E� for smooth g � N �M���

One can show �see �Milnor�Stashe�� �	
��� that ���� ���� ���� and the following
normalisation determine the total Chern class already completely� The total
Chern class of the canonical complex line bundle over S� �the square root of the
tangent bundle with respect to the tensor product� is � � �S� � where �S� is the
canonical volume form on S� with total volume ��

Lemma� Then Chern classes are real cohomology classes�

Proof� We choose a hermitian metric on the complex vector bundle E� i� e�
we reduce the structure group from GL�n� C � to U�n�� Then the curvature
) of a U�n��principal connection has values in the Lie algebra u�n� of skew
hermitian matrices A with A� � �A� But then we have cnk ��

p��A� � R since
detC ��

p��A� tI� � detC ��
p��A� tI� � detC ��

p��A� tI�� �

�	���� The Chern character� The trace classes of a complex vector bundle
are given by

��� trk�E� ��

� ��
�	
p��

�k
Cw�trdimE

k � E� � H�k�M�R��

They are also real cohomology classes� and we have tr��E� � dimC E� the �ber
dimension of E� and tr��E� � c��E�� In general we have the follwoing recursive
relation between the Chern classes and the trace classes�

��� ck�E� �
��
k

k��X
j��

cj�E� � trk�j�E��

which follows directly from lemma �
�	� The inhomogeneous cohomology class

��� ch�E� ��
X
k
�

�

k%
trk�E� � H���M�R�

is called the Chern character of the complex vector bundle E� With the same
methods as for the Pontryagin character one can show that the Chern character
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satis�es the following properties�

ch�E� � E�� � ch�E�� � ch�E�����

ch�E� � E�� � ch�E�� � ch�E�����

ch�g�E� � g� ch�E����

From these it clearly follows that the Chern character can be viewed as a ring
homomorphism from complex K�theory into even cohomology�

ch � KC �M�� H���M�R��

which is natural�
Finally we remark that the Pfa an class of the underlying real vector bundle

of a complex vectorbundle E of complex �ber dimension n coincides with the
Chern class cn�E�� But there is a new class� the Todd class� see below�

�	���� The Todd class� On the vector space gl�n� C � of all complex �n
 n��
matrices we consider the smooth function

��� f�A� �� det
C

� �X
k��

����k
�k � ��%

Ak

�
�

It is the unique smooth function which satis�es the functional equation

det�A��f�A� � det�I� exp��A���
Clearly f is invariant under Ad�GL�n� C �� and f��� � �� so we may consider
the invariant smooth function� de�ned near �� Td � gl�n� C � � U � C � which is
given by Td�A� � ��f�A�� It is uniquely de�ned by the functional equation

det�A� � Td�A� det�I� exp��A��
det� ��A� det�exp�

�
�A�� � Td�A� det�sinh�

�
�A���

The Todd class of a complex vector bundle is then given by

Td�E� �

��GL�C n � E��Td�
��X
k
�

� ��
�	
p��R

E

����k�A��
H���M�R�

���

� Cw�Td� E��

The Todd class is a real cohomology class since for A � u�n� we have Td��A� �
Td�A�� � Td�A�� Since Td��� � �� the Todd class Td�E� is an invertible
element of H���M�R��
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�	���� The Atiyah�Singer index formula �roughly�� Let Ei be complex
vector bundles over a compact manifold M � and let D � C��E��� C��E�� be
an elliptic pseudodi�erential operator of order p� Then for appropriate Sobolev
completions D prolongs to a bounded Fredholm operator between Hilbert spaces
D � Hd�p�E��� Hd�E��� Its index index�D� is de�ned as the dimension of the
kernel minus dimension of the cokernel� which does not depend on d if it is high
enough� The Atiyah�Singer index formula says that

index�D� � ����dimM

Z
TM

ch���D�� Td�TM � C ��

where ��D� is a virtual vector bundle �with compact support� on TM n �� a
formal di�erence of two vector bundles� the so called symbol bundle of D�
See �Boos� �	

� for a rather unprecise introduction� �Shanahan� �	
�� for a

very short introduction� �Gilkey� �	��� for an analytical treatment using the heat
kernel method� �Lawson� Michelsohn� �	�	� for a recent treatment and the papers
by Atiyah and Singer for the real thing�
Special cases are The Gauss�Bonnet�Chern formula� and the Riemann�Roch�

Hizebruch formula�
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�	� Jets

Jet spaces or jet bundles consist of the invariant expressions of Taylor devel�
opments up to a certain order of smooth mappings between manifolds� Their
invention goes back to Ehresmann �Ehresmann� �	���� We could have treated
them from the beginning and could have mixed them into every chapter� but it
is also �ne to have all results collected in one place�

�
��� Contact� Recall that smooth functions f� g � R � R are said to have
contact of order k at � if all their values and all derivatives up to order k coincide�

Lemma� Let f� g �M � N be smooth mappings between smooth manifolds and
let x �M � Then the following conditions are equivalent�

��� For each smooth curve c � R � M with c��� � x and for each smooth
function h � C��M�R� the two functions h � f � c and h � g � c have
contact of order k at ��

��� For each chart �U� u� of M centered at x and each chart �V� v� of N with
f�x� � V the two mappings v � f � u�� and v � g � u��� de�ned near � in
Rm � with values in Rn � have the same Taylor development up to order k
at ��

��� For some charts �U� u� of M and �V� v� of N with x � U and f�x� � V
we have

�j�j

�u�

����
x

�v � f� � �j�j

�u�

����
x

�v � g�

for all multi indices � � Nm with � 	 j�j 	 k�
��� T kx f � T kx g� where T

k is the k�th iterated tangent bundle functor�

Proof� This is an easy exercise in Analysis�

�
��� De
nition� If the equivalent conditions of lemma ���� are satis�ed� we
say that f and g have the same k�jet at x and we write jkf�x� or jkxf for the
resulting equivalence class and call it the k �jet at x of f � x is called the source
of the k�jet� f�x� is its target�
The space of all k�jets of smooth mappings from M to N is denoted by

Jk�M�N�� We have the source mapping � � Jk�M�N� � M and the target
mapping 
 � Jk�M�N�� N � given by ��jkf�x�� � x and 
�jkf�x�� � f�x�� We
will also write Jkx �M�N� �� ����x�� Jk�M�N�y �� 
���y�� and Jkx �M�N�y ��
Jkx �M�N� � Jk�M�N�y for the spaces of jets with source x� target y� and both�
respectively� For l � k we have a canonical surjective mapping 	kl � J

k�M�N��
J l�M�N�� given by 	kl �j

kf�x�� �� jlf�x�� This mapping respects the �bers of �
and 
 and 	k� � ��� 
� � J

k�M�N��M 
N �
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�
��� �� Now we look at the case M � Rm and N � Rn �
Let f � Rm � Rn be a smooth mapping� Then by ������ the k�jet jkf�x� of

f ant x has a canonical representative� namely the Taylor polynomial of order k
of f at x�

f�x� y� � f�x� � df�x��y �
�

�%
d�f�x�y� � � � �� �

k%
dkf�x��yk � o�jyjk�

�� f�x� � Taykxf�y� � o�jyjk�

Here yk is short for �y� y� � � � � y�� k�times� The �Taylor polynomial without con�
stant�

Taykxf � y �� Taykx�y� �� df�x��y �
�

�%
d�f�x��y� � � � �� �

k%
dkf�x��yk

is an element of the linear space

P k�m�n� ��
kM

j��

Ljsym�R
m �Rn ��

where Ljsym�R
m �Rn� is the vector space of all j�linear symmetric mappings Rm


� � � 
 Rm � Rn � where we silently use the total polarization of polynomials�
Conversely each polynomial p � P k�m�n� de�nes a k�jet jk� �y �� z � p�x �
y�� with arbitrary source x and target z� So we get canonical identi�cations
Jkx �R

m �Rn�z 
� P k�m�n� and

Jk�Rm �Rn � 
� Rm 
 Rn 
 P k�m�n��

If U � Rm and V � Rn are open subsets then clearly Jk�U� V � 
� U 
 V 

P k�m�n� in the same canonical way�
For later uses we consider now the truncated composition

� � P k�m�n�
 P k�p�m�� P k�p� n��

where p� q is just the polynomial p� q without all terms of order � k� Obviously
it is a polynomial� thus real analytic mapping� Now let U � Rm � V � Rn � and
W � Rp be open subsets and consider the �bered product

Jk�U� V �
U Jk�W�U� � f ��� �� � Jk�U� V �
 Jk�W�U� � ���� � 
��� g
� U 
 V 
W 
 P k�m�n�
 P k�p�m��
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Then the mapping


 � Jk�U� V �
U Jk�W�U�� Jk�W�V ��


��� �� � 
������� 
���� !��� ������ 
���� !��� � ������ 
���� !� � !���
is a real analytic mapping� called the �bered composition of jets�
Let U � U � � Rm and V � Rn be open subsets and let g � U � � U be a

smooth di�eomorphism� We de�ne a mapping Jk�g� V � � Jk�U� V �� Jk�U� V ��
by Jk�g� V ��jkf�x�� � jk�f � g��g���x��� Using the canonical representation of
jets from above we get Jk�g� V ���� � 
��� jkg�g���x��� or Jk�g� V ��x� y� !�� �
�g���x�� y� !� � Taykg���x�g�� If g is a Cp di�eomorphism then Jk�g� V � is a

Cp�k di�eomorphism� If g� � U �� � U � is another di�eomorphism� then clearly
Jk�g�� V ��Jk�g� V � � Jk�g�g�� V � and Jk� � V � is a contravariant functor acting
on di�eomorphisms between open subsets of Rm � Since the truncated composi�
tion !� �� !��Taykg���x�g is linear� the mapping J

k
x �g�R

n� �� Jk�g�Rn�jJkx �U�Rn� �
Jkx �U�R

n�� Jkg���x��U
��Rn � is also linear�

If more generally g �M � �M is a di�eomorphism between manifolds the same
formula as above de�nes a bijective mapping Jk�g�N� � Jk�M�N�� Jk�M �� N�
and clearly Jk� � N� is a contravariant functor de�ned on the category of man�
ifolds and di�eomorphisms�
Now let U � Rm � V � Rn � and W � Rp be open subsets and let h � V � W

be a smooth mapping� Then we de�ne Jk�U� h� � Jk�U� V � � Jk�U�W � by
Jk�U� h��jkf�x�� � jk�h � f��x� or equivalently by

Jk�U� h��x� y� !�� � �x� h�y��Taykyh � !���
If h is Cp� then Jk�U� h� is Cp�k� Clearly Jk�U� � is a covariant functor acting
on smooth mappings between open subsets of �nite dimensional vector spaces�
The mapping Jkx �U� h�y � J

k
x �U� V �y � Jk�U�W �h�y� is linear if and only if the

mapping !� �� Taykyh � !� is linear� so if h is a ne or if k � ��
If h � N � N � is a smooth mapping between manifolds we have by the same

prescription a mapping Jk�M�h� � Jk�M�N�� Jk�M�N �� and Jk�M� � turns
out to be a functor on the category of manifolds and smooth mappings�

�
��� The di�erential group Gk
m�� The k�jets at � of di�eomorphisms of

Rm which map � to � form a group under truncated composition� which will be
denoted by GLk�m�R� or Gk

m for short� and will be called the di�erential group
of order k� Clearly an arbitrary ��respecting k�jet � � P k�m�m� is in Gk

m if and
only if its linear part is invertible� thus

Gk
m � GLk�m�R� � GL�m��

kM
j��

Ljsym�R
m �Rm� �� GL�m�
 P k

� �m��

Draft from November ��� ���� Peter W� Michor� ����



��� Jets� ���� 
��

where we put P k
� �m� �

Lk
j�� L

j
sym�R

m �Rm� for the space of all polynomial
mappings without constant and linear term of degree 	 k� Since the trun�
cated composition is even a polynomial mapping� Gk

m is a Lie group� and clearly
the mapping 	kl � G

k
m � Gl

m is a homomorphism of Lie groups� so ker�	kl � �Lk
j�l�� L

j
sym�R

m �Rm� �� P k
l���m� is a normal subgroup for all l� The exact

sequence of groups

feg � P k
l���m�� Gk

m � Gl
m � feg

splits if and only if l � �� only then we have a semidirect product�

�
��� Theorem� If M and N are smooth manifolds� the following results hold�

��� Jk�M�N� is a smooth manifold �it is of class Cr�k if M and N are of
class Cr�� a canonical atlas is given by all charts �Jk�U� V �� Jk�u��� v���
where �U� u� is a chart on M and �V� v� is a chart on N �

��� �Jk�M�N�� ��� 
��M
N�P k�m�n�� Gk
m
Gk

n� is a �ber bundle with struc�
ture group� where m � dimM � n � dimN � and where �
� �� � Gk

m 
 Gk
n

acts on � � P k�m�n� by �
� ���� � � � � � 
���
��� If f � M � N is a smooth mapping then jkf � M � Jk�M�N� is also

smooth �it is Cr�k if f is Cr�� sometimes called the k�jet extension of f �
We have � � jkf � IdM and 
 � jkf � f �

��� If g �M � �M is a �Cr�� di�eomorphism then also the induced mapping
Jk�g�N� � Jk�M�N�� Jk�M �� N� is a �Cr�k�� di�eomorphism�

��� If h � N � N � is a �Cr�� mapping then Jk�M�h� � Jk�M�N� �
Jk�M�N �� is a �Cr�k�� mapping� Jk�M� � is a covariant functor
from the category of smooth manifolds and smooth mappings into itself
which maps each of the following classes of mappings into itself� im�
mersions� embeddings� closed embeddings� submersions� surjective sub�
mersions� �ber bundle projections� Furthermore Jk� � � is a contra�
covariant bifunctor�

��� The projections 	kl � J
k�M�N�� J l�M�N� are smooth and natural� i�e�

they commute with the mappings from ��� and ����
�
� �Jk�M�N�� 	kl � J

l�M�N�� P k
l���m�n�� are �ber bundles for all l� The

bundle �Jk�M�N�� 	kk��� J
k���M�N�� Lksym�R

m �Rn�� is an a�ne bundle�

The �rst jet space J��M�N� is a vector bundle� it is isomorphic to the
bundle �L�TM� TN�� �	M � 	N ��M 
N�� Moreover we have J�� �R� N� �
TN and J��M�R�� � T �M �

Proof� We use ���� heavily� Let �U� � u�� be an atlas of M and let �V
� v
� be
an atlas of N � Then Jk�u��� � v
� � ��� 
�

���U� 
 V
� � Jk�u��U��� v
�V
�� is a
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bijective mapping and the chart change looks like

Jk�u��� � v
� � Jk�u��� � v��
�� � Jk�u� � u��� � v
 � v��� �

by the functorial properties of Jk� � �� With the identi�cation topology
Jk�M�N� is Hausdor�� since it is a �ber bundle and the usual argument for
gluing �ber bundles applies� So ��� follows�
Now we make this manifold atlas into a �ber bundle by using as charts

�U� 
 V
�� ����
� � J
k�M�N�jU� 
 V
 � U� 
 V
 
 P k�m�n�� where ����
���� �

������ 
���� Jk�����u
��
� � v
������ We then get as transition functions

����
��������x� y� !�� � �x� y� J
k
u��x�

�u� � u��� � v
 � v��� ��!���
�
�
x� y�Taykv��y��v
 � v��� � � !� � Tayku��x��u� � u��� �

�
�

and ��� follows�
���� ���� and ��� are obvious from ����� mainly by the functorial properties of

Jk� � ��
���� We will show later that these assertions hold in a much more general

situation� see the chapter on product preserving functors� It is clear from ����
that Jk�M�h� is a smooth mapping� The rest follows by looking at special chart
representations of h and the induced chart representations for Jk�M�h��
It remains to show �
� and here we concentrate on the a ne bundle� Let

a� � a � GL�n�
 P k
� �n� n�� � � �k � P k���m�n�� Lksym�R

m �Rn�� and b� � b �
GL�m�
 P k

� �m�m�� then the only term of degree k containing �k in �a� ak� �
����k�� �b� bk� is a� ��k � bk� � which depends linearly on �k� To this the degree
k�components of compositions of the lower order terms of � with the higher order
terms of a and b are added� and these may be quite arbitrary� So an a ne bundle
results�
We have J��M�N� � L�TM� TN� since both bundles have the same transition

functions� Finally we have J�� �R� N� � L�T�R� TN� � TN � and J��M�R�� �
L�TM� T�R� � T �M �

�
��� Frame bundles and natural bundles�� LetM be a manifold of dimen�
sion m� We consider the jet bundle J�� �R

m �M� � L�T�Rm � TM� and the open
subset invJ�� �R

m �M� of all invertible jets� This is visibly equal to the linear
frame bundle of TM as treated in ������
Note that a mapping f � Rm � M is locally invertible near � if and only if

j�f��� is invertible� A jet � will be called invertible if its order ��part 	k� ��� �
J�� �R

m �M� is invertible� Let us now consider the open subset invJk� �R
m �M� �
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J�� �R
m �M� of all invertible jets and let us denote it by P kM � Then by ������ we

have a principal �ber bundle �P kM�	M �M�Gk
m� which is called the k�th order

frame bundle of the manifold M � Its principal right action r can be described in
several ways� By the �ber composition of jets�

r � 
 � invJk� �R
m �Rm�
 invJk� �R

m �M� � Gk
m 
 P kM � P kM �

or by the functorial property of the jet bundle�

rj
kg��� � invJk� �g�M�

for a local di�eomorphism g � Rm � �� Rm � ��
If h � M � M � is a local di�eomorphism� the induced mapping Jk� �R

m � h�
maps the open subset P kM into P kM �� By the second description of the prin�
cipal right action this induced mapping is a homomorphism of principal �ber
bundles which we will denote by P k�h� � P kM � P kM �� Thus P k becomes a
covariant functor from the categoryMfm of m�dimensional manifolds and local
di�eomorphisms into the category of all principal �ber bundles with structure
group Gk

m over m�dimensional manifolds and homomorphisms of principal �ber
bundles covering local di�eomorphisms�
If we are given any smooth left action � � Gk

m 
 S � S on some manifold
S� the associated bundle construction from theorem ���
 gives us a �ber bundle
P kM �S� �� � P kM
Gk

m
S overM for each m�dimensional manifoldM � by ���	��

this describes a functor P k� ��S� �� from the categoryMfm into the category of
all �ber bundles over m�dimensional manifolds with standard �ber S and Gk

m�
structure� and homomorphisms of �ber bundles covering local di�eomorphisms�
These bundles are also called natural bundles or geometric objects�
It is one of the aims of this book to prove that under mild conditions all

functors between the mentioned categories are of the form described above� This
will involve some rather hard analytical results�

�
�	� Theorem� If �E� p�M� S� is a �ber bundle� let us denote by Jk�E� the
space of all k�jets of sections of E� Then we have�

��� Jk�E� is a closed submanifold of Jk�M�E��
��� The �rst jet bundle J��E� is an a�ne subbundle of the vector bundle

J��M�E� � L�TM� TE�� in fact we have J��E� � f� � L�TM� TE� �
Tp � � � IdTM g�

��� �Jk�E�� 	kk��� J
k���E�� is an a�ne bundle�

��� If �E� p�M� is a vector bundle� then �Jk�E�� ��M� is also a vector bundle�
If � � E � E� is a homomorphism of vector bundles covering the identity�
then Jk��� is of the same kind�
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Proof� ���� By ������ the mapping Jk�M� p� is a submersion� thus Jk�E� �
Jk�M� p����jk�IdM �� is a submanifold� ��� is clear� ��� and ��� are seen by
looking at appropriate canonical charts� �
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