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Abstract

A new gauge theory of gravity is presented� The theory is constructed in a
�at background spacetime and employs gauge �elds to ensure that all relations
between physical quantities are independent of the position and orientation of
the matter �elds� In this manner all properties of the background spacetime
are removed from physics� and what remains are a set of �intrinsic� relations
between physical �elds� For a wide range of phenomena� including all present
experimental tests� the theory reproduces the predictions of general relativity�
Di�erences do emerge� however� through the �rst�order nature of the equations
and the global properties of the gauge �elds� and through the relationship with
quantum theory� The properties of the gravitational gauge �elds are derived
from both classical and quantum viewpoints� Field equations are then derived
from an action principle� and consistency with the minimal coupling procedure
selects an action which is unique up to the possible inclusion of a cosmological
constant� This in turn singles out a unique form of spin�torsion interaction� A
new method for solving the �eld equations is outlined and applied to the case
of a time�dependent� spherically�symmetric perfect �uid� A gauge is found
which reduces the physics to a set of essentially Newtonian equations� These
equations are then applied to the study of cosmology� and to the formation and
properties of black holes� Insistence on �nding global solutions� together with
the �rst�order nature of the equations� leads to a new understanding of the
role played by time reversal� This alters the physical picture of the properties
of a horizon around a black hole� The existence of global solutions enables one
to discuss the properties of �eld lines inside the horizon due to a point charge
held outside it� The Dirac equation is studied in a black hole background and
provides a quick �though ultimately unsound	 derivation of the Hawking tem�
perature� Some applications to cosmology are also discussed� and a study of
the Dirac equation in a cosmological background reveals that the only models
consistent with homogeneity are spatially �at� It is emphasised throughout
that the description of gravity in terms of gauge �elds� rather than spacetime
geometry� leads to many simple and powerful physical insights� The language
of �geometric algebra� best expresses the physical and mathematical content of
the theory and is employed throughout� Methods for translating the equations
into other languages �tensor and spinor calculus	 are given in appendices�
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Part I � Foundations

� Introduction

In modern theoretical physics particle interactions are described by gauge theories�
These theories are constructed by demanding that symmetries in the laws of physics
should be local
 rather than global
 in character� The clearest expositions of this
principle are contained in quantum theory
 where one initially constructs a Lagran�
gian containing a global symmetry� In order to promote this to a local symmetry

the derivatives appearing in the Lagrangian are modi�ed so that they are unchanged
in form by local transformations� This is achieved by the introduction of �elds with
certain transformation properties 	�gauge �elds�

 and these �elds are then respons�
ible for inter�particle forces� The manner in which the gauge �elds couple to matter
is determined by the �minimal coupling� procedure
 in which partial 	or directional

derivatives are replaced by covariant derivatives� This is the general framework
that has been applied so successfully in the construction of the �standard model� of
particle physics
 which accounts for the strong
 weak and electromagnetic forces�
But what of gravity� can general relativity be formulated as a gauge theory�

This question has troubled physicists for many years ��
 �
 ��� The �rst work which
recovered features of general relativity 	GR
 from a gauging argument was due to
Kibble ���
 who elaborated on an earlier
 unsuccessful attempt by Utiyama ���� Kibble
used the ���component Poincar�e group of passive in�nitesimal coordinate transform�
ations 	consisting of four translations and six rotations
 as the global symmetry
group� By gauging this group and constructing a suitable Lagrangian density for
the gauge �elds
 Kibble arrived at a set of gravitational �eld equations � though
not the Einstein equations� In fact
 Kibble arrived at a slightly more general theory

known as a �spin�torsion� theory� The necessary modi�cations to Einstein�s theory
to include torsion were �rst suggested by Cartan ���
 who identi�ed torsion as a
possible physical �eld� The connection between quantum spin and torsion was made
later ��
 �
 ��
 once it had become clear that the stress�energy tensor for a massive
fermion �eld must be asymmetric ��
 ��� Spin�torsion theories are sometimes referred
to as Einstein�Cartan�Kibble�Sciama 	ECKS
 theories� Kibble�s use of passive trans�
formations was criticised by Hehl et al� ���
 who reproduced Kibble�s derivation from
the standpoint of active transformations of the matter �elds� Hehl et al� also arrived
at a spin�torsion theory
 and it is now generally accepted that torsion is an inevitable
feature of a gauge theory based on the Poincar�e group�
The work of Hehl et al� ��� raises a further issue� In their gauge theory derivation

Hehl et al� are clear that �coordinates and frames are regarded as �xed once and for
all� while the matter �elds are replaced by �elds that have been rotated or translated��
It follows that the derivation can only a�ect the properties of the matter �elds
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and not the properties of spacetime itself� Yet
 once the gauge �elds have been
introduced
 the authors identify these �elds as determining the curvature and torsion
of a Riemann�Cartan spacetime� This is possible only if it is assumed from the outset
that one is working in a Riemann�Cartan spacetime
 and not in �at Minkowski
spacetime� But the idea that spacetime is curved is one of the cornerstone principles
of GR� That this feature must be introduced a priori 
 and is not derivable from
the gauge theory argument
 is highly undesirable � it shows that the principle
of local gauge invariance must be supplemented with further assumptions before
GR is recovered� The conclusions are clear� classical GR must be modi�ed by the
introduction of a spin�torsion interaction if it is to be viewed as a gauge theory
 and
the gauge principle alone fails to provide a conceptual framework for GR as a theory
of gravity�
In this paper we propose an alternative theory of gravity which is derived from

gauge principles alone� These gauge �elds are functions of position in a single
Minkowski vector space� But here we immediately hit a profound di�culty� Para�
meterising points with vectors implies a notion of a Newtonian �absolute space� 	or
spacetime
 and one of the aims of GR was to banish this idea� So can we possibly
retain the idea of representing points with vectors without introducing a notion of
absolute space� The answer to this is yes � we must construct a theory in which
points are parameterised by vectors
 but the physical relations between �elds are
independent of where the �elds are placed in this vector space� We must therefore
be free to move the �elds around the vector space in an arbitrary manner
 without
in any way a�ecting the physical predictions� In this way our abstract Minkowski
vector space will play an entirely passive role in physics
 and what will remain are
a set of �intrinsic� relations between spacetime �elds at the same point� Yet
 once
we have chosen a particular parameterisation of points with vectors
 we will be free
to exploit the vector space structure to the full
 secure in the knowledge that any
physical prediction arrived at is ultimately independent of the parameterisation�
The theory we aim to construct is therefore one that is invariant under arbitrary

�eld displacements� It is here that we make contact with gauge theories
 because
the necessary modi�cation to the directional derivatives requires the introduction
of a gauge �eld� But the �eld required is not of the type usually obtained when
constructing gauge theories based on Lie�group symmetries� The gauge �eld coupling
is of an altogether di�erent
 though very natural
 character� However
 this does not
alter the fact that the theory constructed here is a gauge theory in the broader
sense of being invariant under a group of transformations� The treatment presented
here is very di�erent from that of Kibble ��� and Hehl et al� ���� These authors
only considered in�nitesimal translations
 whereas we are able to treat arbitrary
�nite �eld displacements� This is essential to our aim of constructing a theory that
is independent of the means by which the positions of �elds are parameterised by
vectors�
Once we have introduced the required �position�gauge� �eld
 a further spacetime
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symmetry remains� Spacetime �elds are not simply scalars
 but also consist of vectors
and tensors� Suppose that two spacetime vector �elds are equated at some position�
If both �elds are then rotated at a point
 the same intrinsic physical relation is
obtained� We therefore expect that all physical relations should be invariant under
local rotations of the matter �elds
 as well as displacements� This is necessary if
we are to achieve complete freedom from the properties of the underlying vector
space � we cannot think of the vectors representing physical quantities as having
direction de�ned relative to some �xed vectors in Minkowski spacetime
 but are
only permitted to consider relations between matter �elds� Achieving invariance
under local rotations introduces a further gauge �eld
 though now we are in the
familiar territory of Yang�Mills type interactions 	albeit employing a non�compact
Lie group
�
There are many ways in which the gauge theory presented here o�ers both real

and potential advantages over traditional GR� As our theory is a genuine gauge
theory
 the status of physical predictions is always unambiguous � any physical
prediction must be extracted from the theory in a gauge�invariant manner� Further�
more
 our approach is much closer to the conventional theories of particle physics

which should ease the path to a quantum theory� A �nal
 seemingly obvious
 point
is that discarding all notions of a curved spacetime makes the theory conceptually
much simpler than GR� For example
 there is no need to deal with topics such as
di�erentiable manifolds
 tangent spaces or �bre bundles �����
The theory developed here is presented in the language of �geometric algebra� ���


���� Any physical theory can be formulated in a number of di�erent mathematical
languages
 but physicists usually settle on a language which they feel represents the
�optimal� choice� For quantum �eld theory this has become the language of abstract
operator commutation relations
 and for GR it is Riemannian geometry� For our
gauge theory of gravity there seems little doubt that geometric algebra is the op�
timal language available in which to formulate the theory� Indeed
 it was partly the
desire to apply this language to gravitation theory that led to the development of the
present theory� 	This should not be taken to imply that geometric algebra cannot
be applied to standard GR � it certainly can ���
 ��
 ��
 ���� It has also been used
to elaborate on Utiyama�s approach �����
 To us
 the use of geometric algebra is as
central to the theory of gravity presented here as tensor calculus and Riemannian
geometry were to Einstein�s development of GR� It is the language that most clearly
exposes the structure of the theory� The equations take their simplest form when ex�
pressed in geometric algebra
 and all reference to coordinates and frames is removed

achieving a clean separation between physical e�ects and coordinate artefacts� Fur�
thermore
 the geometric algebra development of the theory is entirely self�contained�
All problems can be treated without ever having to introduce concepts from other
languages
 such as di�erential forms or the Newman�Penrose formalism�
We realise
 however
 that the use of an unfamiliar language may deter some

readers from exploring the main physical content of our theory � which is of course

�



independent of the language chosen to express it� We have therefore endeavoured
to keep the mathematical content of the main text to a minimum level
 and have
included appendices describing methods for translating our equations into the more
familiar languages of tensor and spinor calculus� In addition
 many of the �nal
equations required for applications are simple scalar equations� The role of geometric
algebra is simply to provide the most e�cient and transparent derivation of these
equations� It is our hope that physicists will �nd geometric algebra a simpler and
more natural language than that of di�erential geometry and tensor calculus�
This paper starts with an introduction to geometric algebra and its spacetime

version � the spacetime algebra� We then turn to the gauging arguments outlined
above and �nd mathematical expressions of the underlying principles� This leads to
the introduction of two gauge �elds� At this point the discussion is made concrete
by turning to the Dirac action integral� The Dirac action is formulated in such
a way that internal phase rotations and spacetime rotations take equivalent forms�
Gauge �elds are then minimally coupled to the Dirac �eld to enforce invariance under
local displacements and both spacetime and phase rotations� We then turn to the
construction of a Lagrangian density for the gravitational gauge �elds� This leads to
a surprising conclusion� The demand that the gravitational action be consistent with
the derivation of the minimally�coupled Dirac equation restricts us to a single action
integral� The only freedom that remains is the possible inclusion of a cosmological
constant
 which cannot be ruled out on theoretical grounds alone� The result of this
work is a set of �eld equations which are completely independent of how we choose
to label the positions of �elds with a vector x� The resulting theory is conceptually
simple and easier to calculate with than GR
 whilst being consistent with quantum
mechanics at the �rst�quantised level� We call this theory �gauge theory gravity�
	GTG
� Having derived the �eld equations
 we turn to a discussion of measurements

the equivalence principle and the Newtonian limit in GTG� We end Part I with a
discussion of symmetries
 invariants and conservation laws�
In Part II we turn to applications of gauge theory gravity
 concentrating mainly

on time�dependent spherically�symmetric systems� We start by studying perfect
�uids and derive a simple set of �rst�order equations which describe a wide range of
physical phenomena� The method of derivation of these equations is new and o�ers
many advantages over conventional techniques� The equations are then studied
in the contexts of black holes
 collapsing matter and cosmology� We show how a
gauge can be chosen which a�ords a clear
 global picture of the properties of these
systems� Indeed
 in many cases one can apply simple
 almost Newtonian
 reasoning
to understand the physics� For some of these applications the predictions of GTG
and GR are identical
 and these cases include all present experimental tests of GR�
However
 on matters such as the role of horizons and topology
 the two theories
di�er� For example
 we show that the black�hole solutions admitted in GTG fall
into two distinct time�asymmetric gauge sectors
 and that one of these is picked
out uniquely by the formation process� This is quite di�erent to GR
 which admits
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eternal time�reverse symmetric solutions� In discussing di�erences between GTG and
GR
 it is not always clear what the correct GR viewpoint is� We should therefore be
explicit in stating that what we intend when we talk about GR is the full
 modern
formulation of the subject as expounded by
 for example
 Hawking � Ellis ���� and
D�Inverno ����� This includes ideas such as worm�holes
 exotic topologies and distinct
�universes� connected by black holes ���
 ���� In short
 none of these concepts survive
in GTG�
After studying some solutions for the gravitational �elds we turn to the proper�

ties of electromagnetic and Dirac �elds in gravitational backgrounds� For example

we give �eld con�gurations for a charge held at rest outside a black hole� We show
how these �eld lines extend smoothly across the horizon
 and that the origin behaves
as a polarisation charge� This solution demonstrates how the global properties of
the gravitational �elds are relevant to physics outside the horizon
 a fact which is
supported by an analysis of the Dirac equation in a black�hole background� This
analysis also provides a quick
 though ultimately unsound
 derivation of a particle
production rate described by a Fermi�Dirac distribution with the correct Hawking
temperature� We end with a discussion of the implications of gauge�theory grav�
ity for cosmology� A study of the Maxwell and Dirac equations in a cosmological
background reveals a number of surprising features� In particular
 it is shown that a
non�spatially��at universe does not appear homogeneous to Dirac �elds � fermionic
matter would be able to detect the �centre� of the universe if k �� �� Thus the only
homogeneous cosmological models consistent with GTG are those which are spatially
�at� 	This does not rule out spatially��at universes with a non�zero cosmological
constant�
 A concluding section summarises the philosophy behind our approach

and outlines some future areas of research�

� An Outline of Geometric Algebra

There are many reasons for preferring geometric algebra to other languages em�
ployed in mathematical physics� It is the most powerful and e�cient language for
handling rotations and boosts� it generalises the role of complex numbers in two di�
mensions
 and quaternions in three dimensions
 to a scheme that e�ciently handles
rotations in arbitrary dimensions� It also exploits the advantages of labelling points
with vectors more fully than either tensor calculus or di�erential forms
 both of
which were designed with a view to applications in the intrinsic geometry of curved
spaces� In addition
 geometric algebra a�ords an entirely real formulation of the
Dirac equation ���
 ���
 eliminating the need for complex numbers� The advantage
of the real formulation is that internal phase rotations and spacetime rotations are
handled in an identical manner in a single unifying framework� A wide class of phys�
ical theories have now been successfully formulated in terms of geometric algebra�
These include classical mechanics ���
 ��
 ���
 relativistic dynamics ����
 Dirac the�
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ory ���
 ��
 ��
 ���
 electromagnetism and electrodynamics ���
 ��
 ���
 as well as
a number of other areas of modern mathematical physics ���
 ��
 ��
 ��
 ���� In
every case
 geometric algebra has o�ered demonstrable advantages over other tech�
niques and has provided novel insights and uni�cations between disparate branches
of physics and mathematics�
This section is intended to give only a brief introduction to the ideas and ap�

plications of geometric algebra� A fuller introduction
 including a number of results
relevant to this paper
 is set out in the series of papers ���
 ��
 ��
 ��� written by
the present authors� Elsewhere
 the books by Hestenes ���
 ��� and Hestenes �
Sobczyk ���� cover the subject in detail� The latter
 �Cli�ord Algebra to Geometric
Calculus� ����
 is the most comprehensive exposition of geometric algebra available

though its uncompromising style makes it a di�cult introduction to the subject�
A number of other helpful introductory articles can be found
 including those by
Hestenes ���
 ��� and Vold ���
 ���� The conference proceedings ���
 ��
 ��� also
contain some interesting and useful papers�
Geometric algebra arose from Cli�ord�s attempts to generalise Hamilton�s qua�

ternion algebra into a language for vectors in arbitrary dimensions ����� Cli�ord
discovered that both complex numbers and quaternions are special cases of an al�
gebraic framework in which vectors are equipped with a single associative product
which is distributive over addition�� With vectors represented by lower�case Roman
letters 	a
 b

 Cli�ord�s �geometric product� is written simply as ab� A key feature of
the geometric product is that the square of any vector is a scalar� Now
 rearranging
the expansion

	a b
� � 	a b
	a b
 � a�  	ab ba
  b� 	���


to give

ab ba � 	a b
� � a� � b�� 	���


where the right�hand side of 	���
 is a sum of squares and by assumption a scalar

we see that the symmetric part of the geometric product of two vectors is also a
scalar� We write this �inner� or �dot� product between vectors as

a�b � �
�	ab ba
� 	���


The remaining antisymmetric part of the the geometric product represents the dir�
ected area swept out by displacing a along b� This is the �outer� or �exterior� product
introduced by Grassmann ���� and familiar to all who have studied the language

�The same generalisation was also found by Grassmann ����� independently and somewhat before
Cli�ord�s work� This is one of many reasons for preferring Cli�ord�s name �	geometric algebra�

over the more usual 	Cli�ord algebra��
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of di�erential forms� The outer product of two vectors is called a bivector and is
written with a wedge�

a�b � �
�	ab� ba
� 	���


On combining 	���
 and 	���
 we �nd that the geometric product has been de�
composed into the sum of a scalar and a bivector part


ab � a�b a�b� 	���


The innovative feature of Cli�ord�s product 	���
 lies in its mixing of two di�erent
types of object� scalars and bivectors� This is not problematic
 because the addition
implied by 	���
 is precisely that which is used when a real number is added to
an imaginary number to form a complex number� But why might we want to add
these two geometrically distinct objects� The answer emerges from considering
re�ections and rotations� Suppose that the vector a is re�ected in the 	hyper
plane
perpendicular to the unit vector n� The result is the new vector

a� �	a�n
n � a� 	an na
n � �nan� 	���


The utility of the geometric algebra form of the resultant vector
�nan
 becomes clear
when a second re�ection is performed� If this second re�ection is in the hyperplane
perpendicular to the unit vector m
 then the combined e�ect is

a �� mnanm� 	���


But the combined e�ect of two re�ections is a rotation so
 de�ning the geometric
product mn as the scalar�plus�bivector quantity R
 we see that rotations are repres�
ented by

a �� Ra !R� 	���


Here the quantity !R � nm is called the �reverse� of R and is obtained by reversing
the order of all geometric products between vectors�

	ab � � � c
!� c � � � ba� 	���


The object R is called a rotor � Rotors can be written as an even 	geometric
 product
of unit vectors
 and satisfy the relation R !R � �� The representation of rotations in
the form 	���
 has many advantages over tensor techniques� By de�ning cos� � m�n
we can write

R � mn � exp
�
m�n
jm�nj���

�
� 	����
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which relates the rotor R directly to the plane in which the rotation takes place�
Equation 	����
 generalises to arbitrary dimensions the representation of planar ro�
tations a�orded by complex numbers� This generalisation provides a good example
of how the full geometric product
 and the implied sum of objects of di�erent types

can enter geometry at a very basic level� The fact that equation 	����
 encapsu�
lates a simple geometric relation should also dispel the notion that Cli�ord algebras
are somehow intrinsically �quantum� in origin� The derivation of 	���
 has assumed
nothing about the signature of the space being employed
 so that the formula applies
equally to boosts as well as rotations� The two�sided formula for a rotation 	���
 will
also turn out to be compatible with the manner in which observables are constructed
from Dirac spinors
 and this is important for the gauge theory of rotations of the
Dirac equation which follows�
Forming further geometric products of vectors produces the entire geometric

algebra� General elements are called �multivectors� and these decompose into sums
of elements of di�erent grades 	scalars are grade zero
 vectors grade one
 bivectors
grade two etc�
� Multivectors in which all elements have the same grade are termed
homogeneous and are usually written as Ar to show that A contains only grade�r
components� Multivectors inherit an associative product
 and the geometric product
of a grade�r multivector Ar with a grade�s multivector Bs decomposes into

ArBs � hABir�s  hABir�s�� � � � hABijr�sj� 	����


where the symbol hMir denotes the projection onto the grade�r component of M �
The projection onto the grade�� 	scalar
 component of M is written hMi� The ���
and ��� symbols are retained for the lowest�grade and highest�grade terms of the
series 	����

 so that

Ar �Bs � hABijr�sj 	����


Ar�Bs � hABir�s� 	����


which are called the interior and exterior products respectively� The exterior product
is associative
 and satis�es the symmetry property

Ar�Bs � 	��
rsBs�Ar� 	����


Two further products can also be de�ned from the geometric product� These are
the scalar product

A�B � hABi 	����


and the commutator product

A�B � �
�	AB �BA
� 	����


�



The scalar product 	����
 is commutative and satis�es the cyclic reordering property

hA � � �BCi � hCA � � �Bi� 	����


The scalar product 	����
 and the interior product 	����
 coincide when acting on
two homogeneous multivectors of the same grade� The associativity of the geometric
product ensures that the commutator product 	����
 satis�es the Jacobi identity

A�	B�C
  B�	C�A
  C�	A�B
 � �� 	����


Finally we introduce some further conventions� Throughout we employ the oper�
ator ordering convention that
 in the absence of brackets� inner� outer� commutator
and scalar products take precedence over geometric products� Thus a�bc means 	a�b
c

not a�	bc
� This convention helps to eliminate unwieldy numbers of brackets� Sum�
mation convention is employed throughout except for indices which denote the grade
of a multivector
 which are not summed over� Natural units 	� � c � ���� � G � �

are used except where explicitly stated� Throughout we refer to a Lorentz trans�
formation 	i�e� a spatial rotation and"or boost
 simply as a rotation�

��� The Spacetime Algebra

Of central importance to this paper is the geometric algebra of spacetime
 the space�
time algebra ����� To describe the spacetime algebra 	STA
 it is helpful to introduce
a set of four orthonormal basis vectors f��g
 � � � � � � �
 satisfying

�� ��� � 	�� � diag	 � � �
� 	����


The vectors f��g satisfy the same algebraic relations as Dirac�s ��matrices
 but they
now form a set of four independent basis vectors for spacetime
 not four components
of a single vector in an internal �spin�space�� The relation between Dirac�s matrix
algebra and the STA is described in more detail in Appendix A
 which gives a direct
translation of the Dirac equation into its STA form�
A frame of timelike bivectors f
kg
 k � � � � � � is de�ned by


k � �k��� 	����


and forms an orthonormal frame of vectors in the space relative to the �� direction�
The algebraic properties of the f
kg are the same as those of the Pauli spin matrices

but in the STA they again represent an orthonormal frame of vectors in space
 and
not three components of a vector in spin�space� The highest�grade element 	or
�pseudoscalar�
 is denoted by i and is de�ned as�

i � �������� � 
�
�
�� 	����


The symbol i is used because its square is ��
 but the pseudoscalar must not be
confused with the unit scalar imaginary employed in quantum mechanics� Since

�



we are in a space of even dimension
 i anticommutes with odd�grade elements
 and
commutes only with even�grade elements� With these de�nitions
 a basis for the
���dimensional STA is provided by

� f��g f
k� i
kg fi��g i
� scalar � vectors � bivectors � trivectors � pseudoscalar�

	����


Geometric signi�cance is attached to the above relations as follows� An observer�s
rest frame is characterised by a future�pointing timelike 	unit
 vector� If this is chosen
to be the �� direction then the ���vector determines a map between spacetime vectors
a � a��� and the even subalgebra of the full STA via

a�� � a�  a� 	����


where

a� � a��� 	����


a � a���� 	����


The �relative vector� a can be decomposed in the f
kg frame and represents a spatial
vector as seen by an observer in the ���frame� Since a vector appears to an observer
as a line segment existing for a period of time
 it is natural that what an observer
perceives as a vector should be represented by a spacetime bivector� Equation 	����

embodies this idea
 and shows that the algebraic properties of vectors in relative
space are determined entirely by the properties of the fully relativistic STA�
The split of the six spacetime bivectors into relative vectors and relative bivectors

is a frame�dependent operation � di�erent observers see di�erent relative spaces�
This fact is clearly illustrated with the Faraday bivector F � The �space�time split� ����
of F into the ���system is made by separating F into parts which anticommute and
commute with ��� Thus

F � E  iB� 	����


where

E � �
�
	F � ��F��
 	����


iB � �
�	F  ��F��
� 	����


Both E and B are spatial vectors in the ���frame
 and iB is a spatial bivector�
Equation 	����
 decomposes F into separate electric and magnetic �elds
 and the
explicit appearance of �� in the formulae forE andB shows how this split is observer�
dependent�
The identi�cation of the algebra of ��space with the even subalgebra of the STA

necessitates a convention which articulates smoothly between the two algebras� Rel�
ative 	or spatial
 vectors in the ���system are written in bold type to record the fact

��



that in the STA they are actually bivectors� This distinguishes them from spacetime
vectors
 which are left in normal type� No problems arise for the f
kg
 which are
unambiguously spacetime bivectors
 so these are also left in normal type� Further
conventions are introduced where necessary�

��� Geometric Calculus

Many of the derivations in this paper employ the vector and multivector derivat�
ives ���
 ���� Before de�ning these
 however
 we need some simple results for vector
frames� Suppose that the set fekg form a vector frame� The reciprocal frame is
determined by ����

ej � 	��
j��e��e��� � ��#ej�� � ��en e�� 	����


where

e � e��e��� � ��en 	����


and the check on #ej denotes that this term is missing from the expression� The fekg
and fejg frames are related by

ej �ek � �kj � 	����


An arbitrary multivector B can be decomposed in terms of the fekg frame into

B �
X

i�����j

Bi���j e
i�� � ��ej 	����


where

Bi���j � Br �	ej�� � ��ei
� 	����


Suppose now that the multivector F is an arbitrary function of some multivector
argument X
 F � F 	X
� The derivative of F with respect to X in the A direction
is de�ned by

A��XF 	X
 � lim
� ���

F 	X  
A
� F 	X




� 	����


From this the multivector derivative �X is de�ned by

�X �
X

i�����j

ei�� � ��ej	ej�� � ��ei
��X� 	����


This de�nition shows how the multivector derivative �X inherits the multivector
properties of its argument X
 as well as a calculus from equation 	����
�

��



Most of the properties of the multivector derivative follow from the result that

�XhXAi � PX	A
� 	����


where PX	A
 is the projection of A onto the grades contained in X� Leibniz� rule
is then used to build up results for more complicated functions 	see Appendix B
�
The multivector derivative acts on the next object to its right unless brackets are
present� for example in the expression �XAB the �X acts only on A
 but in the
expression �X	AB
 the �X acts on both A and B� If the �X is intended to act only
on B then this is written as $�XA $B
 the overdot denoting the multivector on which
the derivative acts� As an illustration
 Leibniz� rule can be written in the form

�X	AB
 � $�X $AB  $�XA $B� 	����


The overdot notation neatly encodes the fact that
 since �X is a multivector
 it
does not necessarily commute with other multivectors and often acts on functions
to which it is not adjacent�
The derivative with respect to spacetime position x is called the vector derivative


and is given the symbol

r � rx � �x� 	����


In the STA we can therefore write

r � ��
�

�x�
� ����� 	����


so that
 just as the ��matrices are replaced by vectors in spacetime
 objects such
as x��� and r � ���� become frame�free vectors� The usefulness of the geomet�
ric product for the vector derivative is illustrated by electromagnetism� In tensor
notation
 Maxwell�s equations are

��F
�� � J� ���F��� � �� 	����


which have the STA equivalents ����

r�F � J r�F � �� 	����


But we can utilise the geometric product to combine these into the single equation

rF � J� 	����


The great advantage of the r operator is that it possesses an inverse
 so a �rst�
order propagator theory can be developed for it ���
 ���� This is not possible for the
separate r� and r� operators�

��



The derivative with respect to the vector a
 �a
 is often used to perform linear
algebra operations such as contraction� For such operations the following results are
useful�

�aa�Ar � rAr 	����


�aa�Ar � 	n� r
Ar 	����


�aAra � 	��
r	n� �r
Ar� 	����


where n is the dimension of the space 	n � � for all the applications considered
here
�

��� Linear Algebra

Geometric algebra o�ers many advantages over tensor calculus in developing the
theory of linear functions ���
 ��
 ���� A linear function mapping vectors to vectors
is written with an underbar f	a
� Throughout
 the argument of a linear function is
assumed to be a constant vector
 unless stated otherwise�
The adjoint function is written with an overbar
 f 	a

 so that

a�f	b
 � f 	a
�b� 	����


and hence

f	a
 � �bhf 	b
ai� 	����


We will frequently employ the derivative with respect to the vectors a
 b etc� to
perform algebraic manipulations of linear functions
 as in equation 	����
� The
advantage is that all manipulations are then frame�free� Of course
 the �a and a
vectors can be replaced by the sum over a set of constant frame vectors and their
reciprocals
 if desired�
A symmetric function is one for which f	a
 � f	a
� For such functions

�a�f	a
 � �a��bhaf	b
i � f	b
��b� 	����


It follows that for symmetric functions

�a�f	a
 � �� 	����


which is equivalent to the statement that f	a
 � f 	a
�
Linear functions extend to act on multivectors via

f	a�b�� � ��c
 � f	a
�f	b
 � � ��f	c
� 	����


so that f is now a grade�preserving linear function mapping multivectors to mul�
tivectors� In particular
 since the pseudoscalar I is unique up to a scale factor
 we
can de�ne

det	f 
 � f 	I
I��� 	����


��



Viewed as linear functions over the entire geometric algebra
 f and f are related
by the fundamental formulae

Ar �f	Bs
 � f �f	Ar
�Bs� r 	 s

f	Ar
�Bs � f �Ar�f	Bs
� r 
 s�
	����


which are derived in ���
 Chapter ��� The formulae for the inverse functions are
found as special cases of 	����



f��	A
 � det	f
�� f 	AI
I��

f
��
	A
 � det	f
�� I��f	IA
�

	����


A number of further results for linear functions are contained in Appendix B� These
include a coordinate�free formulation of the derivative with respect to a linear func�
tion
 which proves to be very useful in deriving stress�energy tensors from action
integrals�

� Gauge Principles for Gravitation

In this section we identify the dynamical variables which will describe gravitational
interactions� We start by reviewing the arguments outlined in the introduction� The
basic idea is that all physical relations should have the generic form a	x
 � b	x


where a and b are spacetime �elds representing physical quantities
 and x is the STA
position vector� An equality such as this can certainly correspond to a clear physical
statement� But
 considered as a relation between �elds
 the physical relationship
expressed by this statement is completely independent of where we choose to think
of x as lying in spacetime� In particular
 we can associate each position x with some
new position x� � f	x
 and rewrite the relation as a	x�
 � b	x�

 and the equation
still has precisely the same content� 	A proviso
 which will gain signi�cance later
 is
that the map f	x
 should be non�singular and cover all of spacetime�

A similar argument applies to rotations� The intrinsic content of a relation

such as a	x
 � b	x
 at a given point x� is unchanged if we rotate each of a and
b by the same amount� That is
 the equation Ra	x�
 !R � Rb	x�
 !R has the same
physical content as the equation a	x�
 � b	x�
� For example scalar product relations

from which we can derive angles
 are una�ected by this change� These arguments
apply to any physical relation between any type of multivector �eld� The principles
underlying gauge theory gravity can therefore be summarised as follows�

	i
 The physical content of a �eld equation in the STA must be invariant un�
der arbitrary local displacements of the �elds� 	This is called position�gauge
invariance�


	ii
 The physical content of a �eld equation in the STA must be invariant under
arbitrary local rotations of the �elds� 	This is called rotation�gauge invariance�


��



In this theory predictions for all measurable quantities
 including distances and
angles
 must be derived from gauge�invariant relations between the �eld quantities
themselves
 not from the properties of the STA� On the other hand
 quantities which
depend on a choice of �gauge� are not predicted absolutely and cannot be de�ned
operationally�
It is necessary to indicate how this approach di�ers from the one adopted in gauge

theories of the Poincar�e group� 	This is a point on which we have been confused in
the past �����
 Poincar�e transformations for a multivector �eld M	x
 are de�ned by

M	x
 ��M � � RM	x�
 !R 	���


where

x� � !RxR  t� 	���


R is a constant rotor and t is a constant vector� Transformations of this type mix
displacements and rotations
 and any attempt at a local gauging of this spacetime
symmetry fails to decouple the two ��
 ��� Furthermore
 the fact that the rotations
described by Poincar�e transformations include the displacement 	���
 	with t � �

means that the rotations discussed under point 	ii
 above are not contained in the
Poincar�e group�
As a �nal introductory point
 whilst the mapping of �elds onto spacetime posi�

tions is arbitrary
 the �elds themselves must be well�de�ned in the STA� The �elds
cannot be singular except at a few special points� Furthermore
 any remapping of
the �elds in the STA must be one�to�one
 else we would cut out some region of phys�
ical signi�cance� In later sections we will see that GR allows operations in which
regions of spacetime are removed� These are achieved through the use of singular
coordinate transformations and are the origin of a number of di�erences between
GTG and GR�

��� The Position�Gauge Field

We now examine the consequences of the local symmetries we have just discussed� As
in all gauge theories we must study the e�ects on derivatives
 since all non�derivative
relations already satisfy the correct requirements�
We start by considering a scalar �eld �	x
 and form its vector derivative r�	x
�

Suppose now that from �	x
 we de�ne the new �eld ��	x
 by

��	x
 � �	x�
� 	���


where

x� � f	x
 	���


��



and f	x
 is an arbitrary 	di�erentiable
 map between spacetime position vectors�
The map f	x
 should not be thought of as a map between manifolds
 or as moving
points around� rather
 the function f	x
 is merely a rule for relating one position
vector to another within a single vector space� Note that the new function ��	x
 is
given by the old function � evaluated at x�� We could have de�ned things the other
way round
 so that ��	x�
 is given by �	x

 but the form adopted here turns out to
be more useful in practice�
If we now act on the new scalar �eld �� with r we form the quantity r��f	x
��

To evaluate this we return to the de�nition of the vector derivative and construct

a�r��f	x
� � lim
���

�

�
	�f	x �a
� �f	x



� lim
���

�

�

�
��f	x
  �f	a
�� �f	x


�
� f 	a
�rx��	x�
� 	���


where

f	a
 � a�rf	x
 	���


and the subscript on rx� records that the derivative is now with respect to the
new vector position variable x�� The function f 	a
 is a linear function of a and an
arbitrary function of x� If we wish to make the position�dependence explicit we write
this as f	a� x
 or f

x
	a
� In general
 any position�dependent linear function with its

position�dependence suppressed is to be taken as a function of x� Also � as stated
in the introduction � the argument of a linear function should be assumed to be
constant unless explicitly stated otherwise�
From 	���
 we see that

rx � f	rx�
 	���


and it follows that

r��	x
 � f �rx��	x�
�� 	���


The bracketed term on the right�hand side
 rx��	x�

 is the old gradient vector r�
evaluated at x� instead of x� This tells us how to modify the derivative operator
r� we must introduce a new linear function which assembles with r in such a
way that the f �eld is removed when the full object is displaced� The resulting
object will then have the desired property of just changing its position dependence
under arbitrary local displacements� We therefore introduce the position�gauge �eld
h	a� x

 which is a linear function of a and an arbitrary function of position x� As
usual this is abbreviated to h	a
 when the position�dependence is taken as a function

��



of x� Under the displacement x �� x� � f	x

 h	a
 is de�ned to transform to the

new �eld h
�
	a� x

 where

h
�
	a� x
 � h	f

��
	a
� f	x

 � hx�f

��
	a
� 	���


so that

hx	rx
 �� hx�f
��
	rx
 � hx�	rx�
� 	����


This transformation law ensures that the vector A	x

 say


A	x
 � h�r�	x
� 	����


transforms simply as A	x
 �� A�	x
 � A	x�
 under arbitrary displacements� This
is the type of behaviour we seek� The vector A	x
 can now be equated with other
	possibly non�di�erentiated
 �elds and the resulting equations are unchanged in form
under arbitrary repositioning of the �elds in spacetime�
Henceforth
 we refer to any quantity that transforms under arbitrary displace�

ments as

M	x
 ��M �	x
 �M	x�
 	����


as behaving covariantly under displacements� The h��eld enables us to form deriv�
atives of covariant objects which are also covariant under displacements� When we
come to calculate with this theory
 we will often �x a gauge by choosing a labelling
of spacetime points with vectors� In this way we remain free to exploit all the ad�
vantages of representing points with vectors� Of course
 all physical predictions of
the theory will remain independent of the actual gauge choice�
The h��eld is not a connection in the conventional Yang�Mills sense� The coupling

to derivatives is di�erent
 as is the transformation law 	���
� This is unsurprising

since the group of arbitrary translations is in�nite�dimensional 	if we were consid�
ering maps between manifolds then this would form the group of di�eomorphisms
�
Nevertheless the h��eld embodies the idea of replacing directional derivatives with
covariant derivatives
 so clearly deserves to be called a gauge �eld�
A remaining question is to �nd the conditions under which the h��eld can be

transformed to the identity� Such a transformation
 if it existed
 would give

hx�	a
f
��
	a
 � a 	����


� hx�	a
 � f 	a
� 	����


But
 from the de�nition of f	a

 it follows that

f	a
 � �bhab�rf	x
 � rhf	x
ai 	����


��



and hence that

r�f	a
 � r�rhf	x
ai � �� 	����


So
 if the h	a
 �eld can be transformed to the identity
 it must satisfy

rx�hx�	a
 � �� 	����


This condition can be simpli�ed by using equation 	����
 to write rx as hx�	rx�


giving

hx�	rx�
�hx�	a
 � �� 	����


This must hold for all x�
 so we can equally well replace x� with x and write

h	r
�h	a
 � � 	����


which implies that

$r�h�� $h	a
 � � $r� $h��h	a
 � �� 	����


Thus we �nally obtain the �pure gauge� condition in the simple form

r�h��	a
 � �� 	����


An arbitrary h��eld will not satisfy this equation
 so in general there is no way
to assign position vectors so that the e�ects of the h��eld vanish� In the light
of equations 	����
 and 	����
 it might seem more natural to introduce the gauge

�eld as h
��
	r

 instead of h	r
� There is little to choose between these conventions


though our choice is partially justi�ed by our later implementation of the variational
principle�

��� The Rotation�Gauge Field

We now examine how the derivative must be modi�ed to allow rotational freedom
from point to point
 as described in point 	ii
 at the start of this section� Here we give
an analysis based on the properties of classical �elds� An analysis based on spinor
�elds is given in the following section� We have already seen that the gradient of
a scalar �eld is modi�ed to h	r�
 to achieve covariance under displacements� But
objects such as temperature gradients are certainly physical
 and can be equated
with other physical quantities� Consequently vectors such as h	r�
 must transform
under rotations in the same manner as all other physical �elds� It follows that
 under
local spacetime rotations
 the h��eld must transform as

h	a
 �� Rh	a
 !R� 	����


��



Now consider an equation such as Maxwell�s equation
 which we saw in Sec�
tion ��� takes the simple form rF � J in the STA� Once the position�gauge �eld is
introduced
 this equation becomes

h	r
F � J � 	����


where

F � h	F 
 and J � det	h
h��	J
� 	����


	The reasons behind these de�nitions will be explained in Section �� The use of
a calligraphic letter for certain covariant �elds is a convention we have found very
useful�
 The de�nitions of F and J ensure that under local rotations they transform
as

F �� RF !R and J �� RJ !R� 	����


Any 	multi
vector that transforms in this manner under rotations and is covariant
under displacements is referred to as a covariant 	multi
vector�
Equation 	����
 is covariant under arbitrary displacements
 and we now need to

make it covariant under local rotations as well� To achieve this we replace h	r

by h	�a
a �r and focus attention on the term a �rF � Under a position�dependent
rotation we �nd that

a�r	RF !R
 � Ra�rF !R a�rRF !R RFa�r !R� 	����


Since the rotor R satis�es R !R � � we �nd that

a�rR !R Ra�r !R � � 	����


� a�rR !R � �Ra�r !R � �	a�rR !R
!� 	����


Hence a�rR !R is equal to minus its reverse and so must be a bivector in the STA�
	In a geometric algebra the bivectors form a representation of the Lie algebra of the
rotation group �����
 We can therefore write

a�r	RF !R
 � Ra�rF !R �	a�rR !R
�	RF !R
� 	����


To construct a covariant derivative we must therefore add a �connection� term to a�r
to construct the operator

Da � a�r �	a
� � 	����


Here �	a
 � �	a� x
 is a bivector�valued linear function of a with an arbitrary
x�dependence� The commutator product of a multivector with a bivector is grade�
preserving so
 even though it contains non�scalar terms
 Da preserves the grade of
the multivector on which it acts�

��



Under local rotations the a�r term in Da cannot change
 and we also expect that
the Da operator be unchanged in form 	this is the essence of �minimal coupling�
�
We should therefore have

D�
a � a�r ��	a
� � 	����


But the property that the covariant derivative must satisfy is

D�
a	RF !R
 � RDaF !R 	����


and
 substituting 	����
 into this equation
 we �nd that �	a
 transforms as

�	a
 �� ��	a
 � R�	a
 !R � �a�rR !R� 	����


Of course
 since �	a
 is an arbitrary function of position
 it cannot in general be
transformed away by the application of a rotor� We �nally reassemble the derivat�
ive 	����
 with the h	�a
 term to form the equation

h	�a
DaF � J � 	����


The transformation properties of the h	a

 F 
 J and �	a
 �elds ensure that this
equation is now covariant under rotations as well as displacements�
To complete the set of transformation laws
 we note that under displacements

�	a
 must transform in the same way as a�rR !R
 so that

�x	a
 �� �x�f	a
 � �	f	a
� f	x

� 	����


where the subscript is again used to label position dependence� It follows that

h	�a
�x	a
�F	x
 �� hx�f
��
	�a
�x�f	a
�F	x�


� hx�	�a
�x�	a
�F	x�
� 	����


as required for covariance under local translations�
General considerations have led us to the introduction of two new gauge �elds�

the h	a� x
 linear function and the �	a� x
 bivector�valued linear function
 both of
which are arbitrary functions of the position vector x� This gives a total of � � �  
� � � � �� scalar degrees of freedom� The h	a
 and �	a
 �elds are incorporated
into the vector derivative to form the operator h	�a
Da
 which acts covariantly on
multivector �elds� Thus we can begin to construct equations whose intrinsic content
is free of the manner in which we represent spacetime positions with vectors� We
next see how these �elds arise in the setting of the Dirac theory� This enables us to
derive the properties of the Da operator from more primitive considerations of the
properties of spinors and the means by which observables are constructed from them�
First
 though
 let us compare the �elds that we have de�ned with the �elds used

��



conventionally in GR� One might ask
 for example
 whether the h��eld is a disguised
form of vierbein� A vierbein in GR relates a coordinate frame to an orthonormal
frame� Whilst the h�function can be used to construct such a vierbein 	as discussed
in Appendix C

 it should be clear that the h�function serves a totally di�erent
purpose in GTG� it ensures covariance under arbitrary displacements� This was the
motivation for the introduction of a form of vierbein in Kibble�s work ���
 although
only in�nitesimal transformations could be considered there� In addition
 the h��eld
is essential to enable a clean separation between �eld rotations and displacements

which again is not achieved in other approaches� Further di�erences
 relating to the
existence and global properties of h
 will emerge in later sections�

��� Gauge Fields for the Dirac Action

We now rederive the gravitational gauge �elds from symmetries of the Dirac action�
The point here is that
 once the h��eld is introduced
 spacetime rotations and phase
rotations couple to the Dirac �eld in essentially the same way� To see this
 we start
with the Dirac equation and Dirac action in a slightly unconventional form ���

��
 ���� We saw in Section � that rotation of a multivector is performed by the
double�sided application of a rotor� The elements of a linear space which is closed
under single�sided action of a representation of the rotor group are called spinors�
In conventional developments a matrix representation for the Cli�ord algebra of
spacetime is introduced
 and the space of column vectors on which these matrices
act de�nes the spin�space� But there is no need to adopt such a construction� For
example
 the even subalgebra of the STA forms a vector space which is closed under
single�sided application of the rotor group� The even subalgebra is also an eight�
dimensional vector space
 the same number of real dimensions as a Dirac spinor
 and
so it is not surprising that a one�to�one map between Dirac spinors and the even
subalgebra can be constructed� Such a map is given in Appendix A� The essential
details are that the result of multiplying the column spinor j�i by the Dirac matrix
%�� is represented in the STA as � �� �����
 and that multiplication by the scalar
unit imaginary is represented as � �� �i
�� It is easily seen that these two operations
commute and that they map even multivectors to even multivectors� By replacing
Dirac matrices and column spinors by their STA equivalents the Dirac equation can
be written in the form

r�i
�� eA� � m���� 	����


which is now representation�free and coordinate�free� Using the same replacements

the free�particle Dirac action becomes

S �
Z
jd�xjhr�i�� !� �m� !�i 	����


and
 with the techniques of Appendix B
 it is simple to verify that variation of this
action with respect to � yields equation 	����
 with A���

��



It is important to appreciate that the �xed �� and �� vectors in 	����
 and 	����

do not pick out preferred directions in space� These vectors can be rotated to new
vectors R��� !R� and R��� !R�
 and replacing the spinor by � !R� recovers the same
equation 	����
� This point will be returned to when we discuss forming observables
from the spinor ��
Our aim now is to introduce gauge �elds into the action 	����
 to ensure invari�

ance under arbitrary rotations and displacements� The �rst step is to introduce the
h��eld� Under a displacement
 � transforms covariantly
 so

�	x
 �� ��	x
 � �	x�
� 	����


where x� � f	x
� We must therefore replace the r operator by h	r
 so that h	r
�
is also covariant under translations� But this on its own does not achieve complete
invariance of the action integral 	����
 under displacements� The action consists of
the integral of a scalar over some region� If the scalar is replaced by a displaced
quantity
 then we must also transform the measure and the boundary of the region
if the resultant integral is to have the same value� Transforming the boundary is
easily done
 but the measure does require a little work� Suppose that we introduce
a set of coordinate functions fx�	x
g� The measure jd�xj is then written

jd�xj � �ie��e��e��e� dx� dx� dx� dx�� 	����


where

e� � �x

�x�
� 	����


By de�nition
 jd�xj is already independent of the choice of coordinates
 but it must
be modi�ed to make it position�gauge invariant� To see how
 we note that under the
displacement x �� f	x

 the fe�g frame transforms to

e��	x
 �
�f	x


�x�
� f	e�
� 	����


It follows that to ensure invariance of the action integral we must replace each of
the e� by h

��	e�
� Thus the invariant scalar measure is

�i h��	e�
�� � ��h��	e�
 dx� � � � dx� � det	h
��jd�xj� 	����


These results lead us to the action

S �
Z
jd�xjdet	h
��hh	r
�i�� !� �m� !�i� 	����


which is unchanged in value if the dynamical �elds are replaced by

��	x
 � �	x�
 	����


h
�

x	a
 � hx�f
��
	a
� 	����


and the boundary is also transformed�

��



Rotation and Phase Gauge Fields

Having arrived at the action in the form of 	����
 we can now consider the e�ect of
rotations applied at a point� The representation of spinors by even elements is now
particularly powerful because it enables both internal phase rotations and rotations
in space to be handled in the same uni�ed framework� Taking the electromagnetic
coupling �rst
 we see that the action 	����
 is invariant under the global phase
rotation

� �� �� � �ei���� 	����


	Recall that multiplication of j�i by the unit imaginary is represented by right�sided
multiplication of � by i
��
 The transformation 	����
 is a special case of the more
general transformation

� �� �R� 	����


whereR is a constant rotor� Similarly
 invariance of the action 	����
 under spacetime
rotations is described by

� �� R� 	����


h	a
 �� Rh	a
 !R� 	����


In both cases
 � just picks up a single rotor� From the previous section we know that

when the rotor R is position�dependent
 the quantity a � rR !R is a bivector�valued
linear function of a� Since

a�r	R�
 � Ra�r�  	a�rR !R
R�� 	����


with a similar result holding when the rotor acts from the right
 we need the following
covariant derivatives for local internal and external rotations�

Internal� DI
a� � a�r� �

���
I	a
 	����


External� Da� � a�r� �
��	a
�� 	����


For the case of 	internal
 phase rotations
 the rotations are constrained to take
place entirely in the i
� plane� It follows that the internal connection �I	a
 takes
the restricted form �ea �Ai
�
 where A is the conventional electromagnetic vector
potential and e is the coupling constant 	the charge
� The full covariant derivative
therefore has the form

h	�a
�a�r� �
��	a
�  e�i
�a�A� 	����


and the full invariant action integral is now

S �
Z
jd�xj	deth
��

�
h	�a
�a�r �

��	a
��i��
!� � eh	A
��� !� �m� !�

�
�
	����


The action 	����
 is invariant under the symmetry transformations listed in Table ��

��



Transformed Fields

Local
Symmetry ��	x
 h

�
	a� x
 ��	a� x
 eA�	x


Displacements �	x�
 hx�f
��
	a
 �x�f 	a
 ef �A	x�
�

Spacetime
Rotations R� Rh	a
 !R R�	a
 !R � �a�rR !R eA

Phase
Rotations �e�i�� h	a
 �	a
 eA�r�

Table �� The symmetries of the action integral 	����
�

The Coupled Dirac Equation

Having arrived at the action 	����
 we now derive the coupled Dirac equation by
extremising with respect to �
 treating all other �elds as external� When applying
the Euler�Lagrange equations to the action 	����
 the � and !� �elds are not treated
as independent
 as they often are in quantum theory� Instead
 we just apply the
rules for the multivector derivative discussed in Section ��� and Appendix B� The
Euler�Lagrange equations can be written in the form

��L � �a�r	���aL
� 	����


as given in Appendix B� Applied to the action 	����

 equation 	����
 yields

	h	r
�i��
! �
�
i�� !�h	�a
�	a
  

�
�
	h	�a
�	a
�i��
!� e�� !�h	A


� 	eh	A
���
!� �m !� � a�r�det	h
��i�� !�h	�a
� det	h
� 	����


Reversing this equation and simplifying gives

h	�a
�a�r �
�
�	a
��i�� � eh	A
��� �m�

� ��
� det	h
Da�h	�a
 det	h


����i��� 	����


where we have employed the Da derivative de�ned in equation 	����
� If we now
introduce the notation

D� � h	�a
�a�r �
��	a
�� 	����


A � h	A
� 	����


we can write equation 	����
 in the form

D�i
� � eA� � m��� � �
� det	h
Da�h	�a
 det	h


����i��� 	����


This equation is manifestly covariant under the symmetries listed in Table � � as
must be the case since the equation was derived from an invariant action integral�

��



But equation 	����
 is not what we would have expected had we applied the gauging
arguments at the level of the Dirac equation
 rather than the Dirac action� Instead

we would have been led to the simpler equation

D�i
� � eA� � m���� 	����


Clearly
 equation 	����
 reduces to equation 	����
 only if the h	a
 and �	a
 �elds
satisfy the identity

det	h
Da�h	�a
 det	h

��� � �� 	����


	It is not hard to show that the left�hand side of equation 	����
 is a covariant vector�
later it will be identi�ed as a contraction of the �torsion� tensor
� There are good
reasons for expecting equation 	����
 to hold� Otherwise
 the minimally�coupled
Dirac action would not yield the minimally�coupled equation
 which would pose
problems for our use of action principles to derive the gauged �eld equations� We
will see shortly that the demand that equation 	����
 holds places a strong restriction
on the form that the gravitational action can take�
Some further comments about the derivation of 	����
 are now in order� The

derivation employed only the rules of vector and multivector calculus applied to a
��at�space� action integral� The derivation is therefore a rigorous application of the
variational principle� This same level of rigour is not always applied when deriving
�eld equations from action integrals involving spinors� Instead
 the derivations are
often heuristic � j�i and h &�j are treated as independent variables and the h &�j is
just �knocked o�� the Lagrangian density to leave the desired equation� Furthermore

the action integral given by many authors for the Dirac equation in a gravitational
background has an imaginary component ���
 ���
 in which case the status of the
variational principle is unclear� To our knowledge
 only Hehl � Datta ��� have
produced a derivation that in any way matches the derivation produced here� Hehl �
Datta also found an equation similar to 	����

 but they were not working within a
gauge theory setup and so did not comment on the consistency 	or otherwise
 of the
minimal�coupling procedure�

��� Observables and Covariant Derivatives

As well as keeping everything within the real STA
 representing Dirac spinors by
elements of the even subalgebra o�ers many advantages when forming observables�
As described in Appendix A
 observables are formed by the double�sided application
of a Dirac spinor � to some combination of the �xed f��g frame vectors� So
 for
example
 the charge current is given by J � ��� !� and the spin current by s � ��� !��
In general
 an observable is of the form

M � �' !�� 	����


��



where ' is a constant multivector formed from the f��g� All observables are invariant
under phase rotations
 so ' must be invariant under rotations in the i
� plane�
Hence ' can consist only of combinations of ��
 ��
 i
� and their duals 	formed by
multiplying by i
� An important point is that
 in forming the observable M 
 the '
multivector is completely �shielded� from rotations� This is why the appearance of
the �� and �� vectors on the right�hand side of the spinor � in the Dirac action 	����

does not compromise Lorentz invariance
 and does not pick out a preferred direction
in space ����� All observables are unchanged by rotating the f��g frame vectors to
R��� !R� and transforming � to � !R�� 	In the matrix theory this corresponds to a
change of representation�

Under translations and rotations the observables formed in the above man�

ner 	����
 inherit the transformation properties of the spinor �� Under translations
the observableM � �' !� therefore transforms fromM	x
 toM	x�

 and under rota�
tions M transforms to R�' !� !R � RM !R� The observable M is therefore covariant�
These Dirac observables are the �rst examples of quantities which transform covari�
antly under rotations
 but do not inherit this transformation law from the h��eld�
In contrast
 all covariant forms of classical �elds
 such as F or the covariant velocity
along a worldline h��	 $x

 transform under rotations in a manner that that is dictated
by their coupling to the h��eld� Classical GR in fact removes any reference to the
rotation gauge from most aspects of the theory� Quantum theory
 however
 demands
that the rotation gauge be kept in explicitly and
 as we shall show in Section �
 Dirac
�elds probe the structure of the gravitational �elds at a deeper level than classical
�elds� Furthermore
 it is only through consideration of the quantum theory that one
really discovers the need for the rotation�gauge �eld�
One might wonder why the observables are invariant under phase rotations


but only covariant under spatial rotations� In fact
 the h��eld enables us to form
quantities like h	M

 which are invariant under spatial rotations� This gives an
alternative insight into the role of the h��eld� We will �nd that both covariant

observables 	M
 and their rotationally�invariant forms 	h	M
 and h
��
	M

 play

important roles in the theory constructed here�
If we next consider the directional derivative ofM 
 we �nd that it can be written

as

a�rM � 	a�r�
' !� �'	a�r�
!� 	����


This immediately tells us how to turn the directional derivative a � rM into a co�
variant derivative� simply replace the spinor directional derivatives by covariant
derivatives� Hence we form

	Da�
' !�  �'	Da�
!� 	a�r�
' !� �'	a�r�
! �
��	a
�'

!� � �
��'

!��	a


� a�r	�'!�
  �	a
�	�' !�
� 	����


We therefore recover the covariant derivative for observables�

DaM � a�rM  �	a
�M� 	����


��



This derivation shows that many features of the �classical� derivation of gravitational
gauge �elds can be viewed as arising from more basic quantum transformation laws�
Throughout this section we have introduced a number of distinct gravitational

covariant derivatives� We �nish this section by discussing some of their main fea�
tures and summarising our conventions� The operator Da acts on any covariant
multivector and has the important property of being a derivation
 that is it acts as
a scalar di�erential operator


Da	AB
 � 	DaA
B  A	DaB
� 	����


This follows from Leibniz� rule and the identity

�	a
�	AB
 � �	a
�AB  A�	a
�B� 	����


NeitherDa or Da are fully covariant
 however
 since they both contain the �	a
 �eld

which picks up a term in f under displacements 	����
� It is important in the applic�
ations to follow that we work with objects that are covariant under displacements

and to this end we de�ne

�	a
 � �h	a
� 	����


We also de�ne the full covariant directional derivatives a�D and a�D by

a�D� � a�h	r
�  �
�
�	a
� 	����


a�DM � a�h	r
M  �	a
�M� 	����


Under these conventions Da and a�D are not the same object � they di�er by the
inclusion of the h��eld in the latter
 so that

h��	a
�D � Da 	����


The same comments apply to the spinor derivatives a�D and Da � h��	a
�D�
For the a�D operator we can further de�ne the covariant vector derivative

DM � �a a�DM � h	�a
DaM� 	����


The covariant vector derivative contains a grade�raising and a grade�lowering com�
ponent
 so that

DA � D�A D�A� 	����


where

D�A � �a�	a�DA
 � h	�a
�	DaA
 	����


D�A � �a�	a�DA
 � h	�a
�	DaA
� 	����


��



Gauge
�elds

Displacements� h	a


Rotations� �	a
� �	a
 � �h	a


Spinor
derivatives

Da� � a�r� �
�
�	a
�

a�D� � a�h	r
�  �
�
�	a
�

�Observables�
derivatives

DaM � a�rM  �	a
�M
a�DM � a�h	r
M  �	a
�M
DM � �aa�DM � D�M  D�M

Vector derivative r � ��
�

�x�

Multivector
derivative

�X �
X

i�����j

ei�� � ��ej 	ej�� � ��ei
��X

Table �� De�nitions and conventions

As with the vector derivative
 D inherits the algebraic properties of a vector�
A summary of our de�nitions and conventions is contained in Table �� We have

endeavoured to keep these conventions as simple and natural as possible
 but a word
is in order on our choices� It will become obvious when we consider the variational
principle that it is a good idea to use a separate symbol for the spacetime vector
derivative 	r

 as opposed to writing it as �x� This maintains a clear distinction
between spacetime derivatives
 and operations on linear functions such as �contrac�
tion� 	�a�
 and �protraction� 	�a�
� It is also useful to distinguish between spinor
and vector covariant derivatives
 which is why we have introduced separate D and
D symbols� We have avoided use of the d symbol
 which already has a very speci�c
meaning in the language of di�erential forms� Finally
 it is necessary to distinguish
between rotation�gauge derivatives 	Da
 and the full covariant derivative with the
h��eld included 	a�D
� Using Da and a�D for these achieves this separation in the
simplest possible manner�

� The Field Equations

Having introduced the h� and ���elds
 we now look to construct an invariant action
integral which will provide a set of gravitational �eld equations� We start by de�ning

��



the �eld�strength via

�
�
R	a�b
� � �Da�Db��� 	���


� R	a�b
 � a�r�	b
� b�r�	a
  �	a
��	b
� 	���


It follows that we also have

�Da�Db�M � R	a�b
�M� 	���


The �eld R	a� b
 is a bivector�valued linear function of its bivector argument a� b�
Its action on bivectors extends by linearity to the function R	B

 where B is an
arbitrary bivector and therefore
 in four dimensions
 not necessarily a pure �blade�
a � b� Where required
 the position dependence is made explicit by writing R	B�x

or Rx	B
�
Under an arbitrary rotation
 the de�nition 	���
 ensures that R	B
 transforms

as

R	B
 �� R�	B
 � RR	B
 !R� 	���


	This unfortunate double use of the symbol R for the rotor and �eld strength is the
only place where the two are used together�
 Under local displacements we �nd that

R�	a�b
 � a�r��	b
� b�r��	a
  ��	a
���	b

� a�f	 $rx�
 $�x�f	b
� b�f	 $rx�
 $�x�f 	a
  �x�f 	a
��x�f	b


� Rx�f	a�b
� 	���


This result rests on the fact that

a�rf	b
� b�rf	a
 � �a�r� b�r�f	x
 � �� 	���


A covariant quantity can therefore be constructed by de�ning

R	B
 � Rh	B
� 	���


Under arbitrary displacements and local rotations
 R	B
 has the following trans�
formation laws�

Translations� R�	B�x
 � R	B�x�

Rotations� R�	B�x
 � RR	 !RBR�x
 !R� 	���


We refer to any linear function with transformation laws of this type as a covariant
tensor� R	B
 is our gauge theory analogue of the Riemann tensor� We have started
to employ a notation which is very helpful for the theory developed here� Certain
covariant quantities
 such as R	B
 and D
 are written with calligraphic symbols�

��



This helps keep track of the covariant quantities and often enables a simple check
that a given equation is gauge covariant� It is not necessary to write all covariant
objects with calligraphic symbols
 but it is helpful for objects such as R	B

 since
both R	B
 and R	B
 arise in various calculations�
From R	B
 we de�ne the following contractions�

Ricci Tensor� R	b
 � �a�R	a�b
 	���


Ricci Scalar� R � �a�R	a
 	����


Einstein Tensor� G	a
 � R	a
� �
�aR� 	����


The argument of R determines whether it represents the Riemann or Ricci tensors
or the Ricci scalar� Both R	a
 and G	a
 are also covariant tensors
 since they inherit
the transformation properties of R	B
�
The Ricci scalar is invariant under rotations
 making it our �rst candidate for a

Lagrangian for the gravitational gauge �elds� We therefore suppose that the overall
action integral is of the form

S �
Z
jd�xj det	h
��	�

�
R� �Lm
� 	����


where Lm describes the matter content and � � ��G� The independent dynamical
variables are h	a
 and �	a

 and in terms of these

R � hh	�b��a
�a�r�	b
� b�r�	a
  �	a
��	b
�i� 	����


We also assume that Lm contains no second�order derivatives
 so that h	a
 and �	a

appear undi�erentiated in the matter Lagrangian�

��� The h�a��Equation

The h��eld is undi�erentiated in the entire action
 so its Euler�Lagrange equation is
simply

�h�a	�det	h

��	R�� � �Lm
� � �� 	����


Employing some results from Appendix B
 we �nd that

�h�a	 det	h

�� � �det	h
��h��	a
 	����


and

�h�a	R � �h�a	hh	�c��b
R	b�c
i
� �h	�b
�R	a�b
� 	����


��



so that

�h�a		Rdet	h
��
 � �Gh��	a
 det	h
��� 	����


If we now de�ne the covariant matter stress�energy tensor T 	a
 by
det	h
�h�a		Lm det	h


��
 � T h��	a
� 	����


we arrive at the equation

G	a
 � �T 	a
� 	����


This is the gauge theory statement of Einstein�s equation though
 as yet
 nothing
should be assumed about the symmetry of G	a
 or T 	a
� In this derivation only
the gauge �elds have been varied
 and not the properties of spacetime� Therefore

despite the formal similarity with the Einstein equations of GR
 there is no doubt
that we are still working in a �at spacetime�

��� The 	�a��Equation

The Euler�Lagrange �eld equation from �	a
 is
 after multiplying through by det	h



�
�a	R� det	h
�b�r��
�a	�bRdet	h
��� � ���
�a	Lm� 	����


where we have made use of the assumption that �	a
 does not contain any coupling
to matter through its derivatives� The derivatives �
�a	 and �
�a	�b are de�ned in
Appendix B� The only properties required for this derivation are the following�

�
�a	h�	b
Mi � a�bhMi� 	����


�
�b	�ahc�r�	d
Mi � a�c b�dhMi�� 	����


From these we derive

�
�a	hh	�d��c
�	c
��	d
i � �	d
�h	�d�a
  h	a��c
��	c

� ��	b
�h	�b�a

� ���	b
��b
��h	a
  ��b���	b
�h	a
� 	����


and

�
�a	�bhh	�d��c
�c�r�	d
� d�r�	c
�i � h	a�b
� h	b�a

� �h	a�b
� 	����


The right�hand side of 	����
 de�nes the �spin� of the matter


S	a
 � �
�a	Lm� 	����


��



where S	a
 is a bivector�valued linear function of a� Combining 	����

 	����
 and
	����
 yields

D�h	a
  det	h
Db�h	�b
 det	h

����h	a
 � �S	a
� 	����


To make further progress we contract this equation with h��	�a
� To achieve this
we require the results that

h��	�a
��D�h	a
� � Dah	�a
� h	�b
h
��	�a
��Db�h	a
�

� Dah	�a
� h	�b
hh��	�a
b�rh	a
i 	����


and

hb�rh	a
h��	�a
i � det	h
��hb�rh	�a
 �h�a	 det	h
i
� det	h
��b�rdet	h
� 	����


Hence

h��	�a
��D�h	a
� � det	h
Db�h	�b
 det	h

���� 	����


It follows that

det	h
Db�h	�b
 det	h

��� � ��

���a �S	a
� 	����


where S	a
 is the covariant spin tensor de�ned by

S	a
 � Sh
��
	a
� 	����


In Section ��� we found that the minimally�coupled Dirac action gave rise to the
minimally�coupled Dirac equation only when Dbh	�b det	h
��
 � �� We now see that
this requirement amounts to the condition that the spin tensor has zero contraction�
But
 if we assume that the �	a
 �eld only couples to a Dirac fermion �eld
 then the
coupled Dirac action 	����
 gives

S	a
 � S �a� 	����


where S is the spin trivector

S � �
��i��

!�� 	����


In this case the contraction of the spin tensor does vanish�

�a �	S �a
 � 	�a�a
�S � �� 	����


��



There is a remarkable consistency loop at work here� The Dirac action gives rise
to a spin tensor of just the right type to ensure that the minimally�coupled action
produces the minimally�coupled equation� But this is only true if the gravitational
action is given by the Ricci scalar ( No higher�order gravitational action is consistent
in this way� So
 if we demand that the minimally�coupled �eld equations should
be derivable from an action principle
 we are led to a highly constrained theory�
This rules out
 for example
 the type of )R  R�* Lagrangian often considered in
the context of Poincar�e gauge theory ���
 ��
 ���� In addition
 the spin sector is
also tightly constrained� Satisfyingly
 these constraints force us to a theory which is
�rst�order in the derivatives of the �elds
 keeping the theory on a similar footing to
the Dirac and Maxwell theories�
The only freedom in the action for the gravitational �elds is the possible inclusion

of a cosmological constant +� This just enters the action integral 	����
 as the
term �+det	h
��� The presence of such a term does not alter equation 	����

 but
changes 	����
 to

G	a
� +a � �T 	a
� 	����


The presence of a cosmological constant cannot be ruled out on theoretical grounds
alone
 and this constant will be included when we consider applications to cosmology�
Given that the spin is entirely of Dirac type
 equation 	����
 now takes the form

D�h	a
 � �S �h	a
� 	����


This is the second of our gravitational �eld equations� Equations 	����
 and 	����

de�ne a set of �� scalar equations for the �� unknowns in h	a
 and �	a
� Both equa�
tions are manifestly covariant� In the spin�torsion extension of GR 	the Einstein�
Cartan�Sciama�Kibble theory

 D�h	a
 would be identi�ed as the gravitational tor�
sion
 and equation 	����
 would be viewed as identifying the torsion with the matter
spin density� Of course
 in GTG torsion is not a property of the underlying space�
time
 it simply represents a feature of the gravitational gauge �elds� Equation 	����

generalises to the case of an arbitrary vector a � a	x
 as follows�

D�h	a
 � h	r�a
  �S �h	a
� 	����


��� Covariant Forms of the Field Equations

For all the applications considered in this paper the gravitational �elds are generated
by matter �elds with vanishing spin� So
 to simplify matters
 we henceforth set S
to zero and work with the second of the �eld equations in the form

D�h	a
 � �� 	����


��



It is not hard to make the necessary generalisations in the presence of spin� Indeed

even if the spin�torsion sector is signi�cant
 one can introduce a new �eld ����

��	a
 � �	a
� �
�
�a�S 	����


and then the modi�ed covariant derivative with �	a
 replaced by ��	a
 still satis�es
equation 	����
�
The approach we adopt in this paper is to concentrate on the quantities which are

covariant under displacements� Since both h	r
 and �	a
 satisfy this requirement

these are the quantities with which we would like to express the �eld equations� To
this end we de�ne the operator

La � a�h	r
 	����


and
 for the remainder of this section
 the vectors a
 b etc� are assumed to be arbitrary
functions of position� From equation 	����
 we write

h	 $r
� $h	c
 � ��d���	d
�h	c
�
� hb�ah	 $r
� $h	c
i � �hb�a �d���	d
�h	c
�i

� � $La
$h	b
� $Lb

$h	a
��c � �a��	b
� b��	a
��h	c
 	����


where
 as usual
 the overdots determine the scope of a di�erential operator� It follows
that the commutator of La and Lb is

�La� Lb� � �Lah	b
� Lbh	a
��r
� � $La

$h	b
� $Lb
$h	a
��r 	Lab� Lba
�h	r


� �a��	b
� b��	a
  Lab� Lba��h	r
� 	����


We can therefore write

�La� Lb� � Lc� 	����


where

c � a��	b
� b��	a
  Lab� Lba � a�Db� b�Da� 	����


This �bracket� structure summarises the intrinsic content of 	����
�
The general technique we use for studying the �eld equations is to let �	a


contain a set of arbitrary functions
 and then use 	����
 to �nd relations between
them� Fundamental to this approach is the construction of the Riemann tensor
R	B

 which contains a great deal of covariant information� From the de�nition of
the Riemann tensor 	���
 we �nd that

R	a�b
 � $La
$�h	a
� $Lb

$�h	a
  �	a
��	b

� La�	b
� Lb�	a
  �	a
��	b
��	Lah	b
� Lbh	a

�

	����


��



hence

R	a�b
 � La�	b
� Lb�	a
  �	a
��	b
� �	c
� 	����


where c is given by equation 	����
� Equation 	����
 now enables R	B
 to be calcu�
lated in terms of position�gauge covariant variables�

Solution of the �Wedge
 Equation

Equation 	����
 can be solved to obtain �	a
 as a function of h and its derivatives�
We de�ne

H	a
 � h	r�h��	a

 � �h	 $r
� $hh��	a
� 	����


so that equation 	����
 becomes

�b���	b
�a� � H	a
� 	����


We solve this by �rst �protracting� with �a to give

�a��b���	b
�a� � ��b��	b
 � �b�H	b
� 	����


Now
 taking the inner product with a again
 we obtain

�	a
� �b�	a��	b

 � �
�
a���b�H	b
�� 	����


Hence
 using equation 	����
 again
 we �nd that

�	a
 � �H	a
  �
�a�	�b�H	b

� 	����


In the presence of spin the term �
��a�S is added to the right�hand side�

��� Point�Particle Trajectories

The dynamics of a fermion in a gravitational background are described by the Dirac
equation 	����
 together with the quantum�mechanical rules for constructing ob�
servables� For many applications
 however
 it is useful to work with classical and
semi�classical approximations to the full quantum theory� The full derivation of the
semi�classical approximation will be given elsewhere
 but the essential idea is to spe�
cialise to motion along a single streamline de�ned by the Dirac current ��� !�� Thus
the particle is described by a trajectory x	�

 together with a spinor �	�
 which con�
tains information about the velocity and spin of the particle� The covariant velocity
is h��	 $x
 where
 for this and the following subsection
 overdots are used to denote
the derivative with respect to �� The covariant velocity is identi�ed with ��� !� and

��



the Lagrange multiplier p is included in the action integral to enforce this identi�c�
ation� Finally
 an einbein e is introduced to ensure reparameterisation invariance�
The resultant action is

S �
Z
d� h $�i
� !�  �

�
�	 $x
�i
� !�  p	v �me��� !�
  m�ei� 	����


where

v � h��	 $x
� 	����


The equations of motion arising from 	����
 will be presented and analysed elsewhere�
	An e�ect worth noting is that
 due to the spin of the particle
 the velocity v and
momentum p are not collinear�

We can make a full classical approximation by neglecting the spin 	dropping all

the terms containing �
 and replacing ��� !� by p�m� This process leads to the action

S �
Z
d� �p�h��	 $x
� �

�e	p
� �m�
�� 	����


The equations of motion derived from 	����
 are

v � ep 	����


p� � m� 	����


�	h
��
	p
 �

�

r p�
�

h��	 $x
 	����


where
 for this section only
 we employ overstars in place of overdots for the scope
of a di�erential operator� The latter equation yields

$p � h	
�r
p�

�

h��	 $x
� $x� �r h
�

h��	p


� h�	
�

r�
�

h��	p

�h	v
�
� H	p
�v�e 	����


where H	a
 is de�ned by equation 	����
 and we have used equation 	����
� From
equation 	����
 we see that a��	a
 � �a�H	a

 hence

e�		v�e
 � ��	v
�v� 	����


This is the classical equation for a point�particle trajectory� It takes its simplest
form when � is the proper time 
 along the trajectory� In this case e � ��m and the
equation becomes

$v � ��	v
�v� 	����


��



or
 in manifestly covariant form


v �Dv � �� 	����


This equation applies equally for massive particles 	v� � �
 and photons 	v� � �
�
Since equation 	����
 incorporates only gravitational e�ects
 any deviation of v �Dv
from zero can be viewed as the particle�s acceleration and must result from additional
external forces�
Equation 	����
 is usually derived from the action

S � m
Z
d�
q
h��	 $x
�� 	����


which is obtained from 	����
 by eliminating p and e with their respective equations
of motion� A Hamiltonian form such as 	����
 is rarely seen in conventional GR

since its analogue would require the introduction of a vierbein� Despite this
 the
action 	����
 has many useful features
 especially when it comes to extracting con�
servation laws� For example
 contracting equation 	����
 with a constant vector a
yields

�	�a�h��	p
� � a� �r p�
�

h��	 $x
� 	����


It follows that if the h��eld is invariant under translations in the direction a then
the quantity a�h��	p
 is conserved� In Section ��� we show that this result extends
to the case where h��	a
 is a Killing vector�

��
 Measurements� the Equivalence Principle and the New�
tonian Limit

In the preceeding section we derived the equation v �Dv � � from the classical limit
of the Dirac action� This equation is the GTG analogue of the geodesic equation
	see Appendix C
� Arriving at such an equation shows that GTG embodies the
weak equivalence principle � the motion of a test particle in a gravitational �eld
is independent of its mass� The derivation also shows the limitations of this result

which only applies in the classical
 spinless approximation to quantum theory� The
strong equivalence principle
 that the laws of physics in a freely�falling frame are
	locally
 the same as those of special relativity
 is also embodied in GTG through
the application of the minimal coupling procedure� Indeed
 it is clear that both of
these �principles� are the result of the minimal coupling procedure� Minimal coupling
ensures
 through the Dirac equation
 that point�particle trajectories are independent
of particle mass in the absence of other forces� It also tells us how the gravitational
�elds couple to any matter �eld� As we have seen
 this principle
 coupled with the
requirement of consistency with an action principle
 is su�cient to specify the theory
uniquely 	up to an unspeci�ed cosmological constant
�

��



The relationship between the minimal coupling procedure 	the gauge principle

and the equivalence principle has been noted previously� Feynman ����
 for example

argues that a more exact version of the equivalence between linear acceleration and
a gravitational �eld requires an equation of the form

gravity� � gravity  acceleration� 	����


which clearly resembles a gauge transformation� What is not often stressed is the
viewpoint presented here
 which is that if gravity is constructed entirely as a gauge
theory
 there is no need to invoke the equivalence principle� the physical e�ects em�
bodied in the principle are simply consequences of the gauge theory approach� This
further illustrates the di�erent conceptual foundations of GTG and GR� Similarly

there is no need for the principle of general covariance in GTG
 which is replaced by
the requirement that all physical predictions be gauge�invariant� It is often argued
that the principle of general covariance is empty
 because any physical theory can
be written in a covariant form� This objection cannot be levelled at the statement
that all physical predictions must be gauge invariant
 which has clear mathematical
and physical content�
The simplest
 classical measurements in GTG are modelled by assuming that

observers can be treated as frames attached to a single worldline� If this worldline is
written as x	�

 then the covariant velocity is v � h��	 $x

 and the a�ne parameter
for the trajectory is that which ensures that v� � �� The a�ne parameter models
the clock time for an observer on this trajectory� Of course
 there are many hidden
assumptions in adopting this as a realistic model � quantum e�ects are ignored
 as
is the physical extent of the observer � but is is certainly a good model in weak
�elds� In strong �elds a more satisfactory model would involve solving the Dirac
equation to �nd the energy levels of an atom in the gravitational background and
use this to model an atomic clock�
Equation 	����
 enables us to make classical predictions for freely�falling traject�

ories in GTG
 and the photon case 	v� � �
 can be used to model signalling between
observers� As an example
 consider the formula for the redshift induced by the grav�
itational �elds� Suppose that a source of radiation follows a worldline x�	
�

 with
covariant velocity v� � h��	 $x�
� The radiation emitted follows a null trajectory with
covariant velocity u 	u� � �
� This radiation is received by an observer with a world�
line x�	
�
 and covariant velocity v� � h��	 $x�
� The spectral shift z is determined
by the ratio of the frequency observed at the source
 u	x�
 �v�
 and the frequency
observed at the receiver
 u	x�
�v�
 by

�  z � u	x�
�v�
u	x�
�v� � 	����


This quantity is physically observable since the right�hand side is a gauge�invariant
quantity� This is because each of the four vectors appearing in 	����
 is covariant


��



which eliminates any dependence on position gauge
 and taking the dot product
between pairs of vectors eliminates any dependence on the rotation gauge�
A �nal point to address regarding the foundations of GTG is the recovery of

the Newtonian limit� Derivations of this are easily produced by adapting the stand�
ard work in GR� Furthermore
 in Section ��� we show that the description of the
gravitational �elds outside a static
 spherically symmetric star is precisely the same
as in GR� The trajectories de�ned by equation 	����
 are those predicted by GR

so all of the predictions for planetary orbits 	including those for binary pulsars

are unchanged� Similarly
 the results for the bending of light are the same as in
GR� As we show in the applications
 the di�erences between GTG and GR emerge
through the relationship with quantum theory
 and through the global nature of the
gauge �elds in GTG� These di�erences have no consequences for classical tests of
GR
 though they are potentially testable through the interaction with quantum spin

and are certainly signi�cant for discussing more fundamental aspects of gravitational
physics�

� Symmetries� Invariants and Conservation Laws

Having determined the gravitational gauge �elds and their �eld equations
 we now
establish some general results which are applied in the sections that follow� Again

we restrict to the case of vanishing torsion� The approach we adopt in solving
the �eld equations is to let �	a
 be an arbitrary function
 and then work with a
set of abstract �rst�order equations for the terms that comprise �	a
� However
 in
letting �	a
 be an arbitrary function
 we lose some of the information contained
in the �wedge� equation 	����
� This information is recovered by enforcing various
properties that the �elds must satisfy
 including the symmetry properties of R	B

and the Bianchi identities� In addition
 it is often necessary to enforce some gauge�
�xing conditions� For the rotation gauge these conditions are applied by studying
R	B

 so it is important to analyse its general structure�
We start with the result that
 for an arbitrary multivector A	x



D�D�A � D�h�r�h��	A
� � h	r�r�h��	A

 � �� 	���


where we have made use of equation 	����
� It then follows from the result

h	�a
�Da�h	�b
�DbA� � h	�a
�h	�b
��DaDbA�

� �
�h	�a
�h	�b
��R	a�b
�A�� 	���


that
 for any multivector A


�a��b�	R	a�b
�A
 � �� 	���


This derivation illustrates a useful point� Many derivations can be performed most
e�ciently by working with the Da
 since these contain commuting partial derivatives�

��



However
 the �nal expressions take their most transparent form when the h��eld is
included so that only fully covariant quantities are employed�
If we now set A in equation 	���
 equal to a vector c
 and protract with �c
 we

�nd that

�c��a��b�	R	a�b
�c
 � ���a��b�R	a�b
 � �� 	���


Taking the inner product of the term on the right�hand side with c we obtain

c���a��b�R	a�b
� � �b�R	c�b
� �a�R	a�c
� �a��b��R	a�b
�c��
	���


in which both the left�hand side and the �nal term on the right�hand side vanish�
We are therefore left with the simple expression

�a�R	a�b
 � �� 	���


which summarises all the symmetries of R	B
� This equation says that the trivector
�a � R	a � b
 vanishes for all values of the vector b
 so gives a set of � � � � ��
equations� These reduce the number of independent degrees of freedom in R	B

from �� to the expected ��� It should be clear from the ease with which the degrees
of freedom are calculated that the present geometric algebra formulation has many
advantages over traditional tensor calculus�


�� The Weyl Tensor

A good example of the power of the present approach is provided by an analysis of the
Riemann and Weyl tensors� To illustrate this point a number of examples of R	B

for physical systems are included in this section� 	These are stated here without
derivation�
 The �rst application of geometric algebra to the analysis of the Riemann
tensor in classical di�erential geometry was given by Hestenes � Sobczyk ���
 ����
Here the formalism is developed and extended for applications relevant to our gauge
theory of gravity�
In GTG
 six of the degrees of freedom in R	B
 can be removed by arbitrary

rotations� It follows that R	B
 can contain only �� physical degrees of freedom� To
see how these are encoded in R	B
 we decompose it into Weyl and �matter� terms�
Since the contraction of R	a � b
 results in the Ricci tensor R	a

 we expect that
R	a�b
 will contain a term inR	a
�b� This must be matched with a term in a�R	b


since it is only the sum of these that is a function of a�b� Contracting this sum we
obtain

�a��R	a
�b a�R	b
� � bR�R	b
  �R	b
�R	b

� �R	b
  bR� 	���


��



and it follows that

�a���� 	R	a
�b a�R	b

� �
�a�bR� � R	b
� 	���


We can therefore write

R	a�b
 �W	a�b
  �
�
�R	a
�b a�R	b
�� �

�
a�bR� 	���


where W	B
 is the Weyl tensor
 and must satisfy

�a �W	a�b
 � �� 	����


Returning to equation 	���
 and contracting
 we obtain

�b �	�a�R	a�b
 � �a�R	a
 � �� 	����


which shows that the Ricci tensor R	a
 is symmetric� It follows that

�a���� 	R	a
�b a�R	b

� �
�
a�bR� � � 	����


and hence that

�a�W	a
 � �� 	����


Equations 	����
 and 	����
 combine to give the single equation

�aW	a�b
 � �� 	����


Since the �a� operation is called the �contraction�
 and �a� the �protraction�
 Hestenes
� Sobczyk ���� have suggested that the sum of these be termed the �traction�� Equa�
tion 	���
 thus decomposes R	B
 into a �tractionless� term W	B
 and a term spe�
ci�ed solely by the matter stress�energy tensor 	which determines R	a
 through the
Einstein tensor G	a

� There is no generally accepted name for the part of R	B

that is not given by the Weyl tensor so
 as it is entirely determined by the matter
stress�energy tensor
 we refer to it as the matter term�

Duality

To study the consequences of equation 	����
 it is useful to employ the �xed f��g
frame
 so that equation 	����
 produces the four equations


�W	
�
  
�W	
�
  
�W	
�
 � � 	����



�W	
�
� i
�W	i
�
� i
�W	i
�
 � � 	����


�i
�W	i
�
  
�W	
�
� i
�W	i
�
 � � 	����


�i
�W	i
�
 � i
�W	i
�
  
�W	
�
 � �� 	����


��



Summing the �nal three equations
 and using the �rst
 produces

i
kW	i
k
 � � 	����


and substituting this into each of the �nal three equations produces

W	i
k
 � iW	
k
� 	����


It follows that the Weyl tensor satis�es

W	iB
 � iW	B
� 	����


and so is �self�dual�� This use of the term �self�dual� di�ers slightly from its use in
the ��spinor formalism of Penrose � Rindler ����� However
 the pseudoscalar i in the
STA performs the same role as the Hodge star operation 	the duality transformation

in di�erential form theory
 so �self�duality� is clearly an appropriate name for the
relation expressed by equation 	����
�
The fact that tractionless linear functions mapping bivectors to bivectors in

spacetime satisfy equation 	����
 was �rst noted in ����� Equation 	����
 means
that W	B
 can be analysed as a linear function on a three�dimensional complex
space rather as a function on a real six�dimensional space� This is why complex
formalisms
 such as the Newman�Penrose formalism
 are so successful for studying
vacuum solutions� The unit imaginary employed in the Newman�Penrose formalism
is a disguised version of the spacetime pseudoscalar ����� Geometric algebra re�
veals the geometric origin of this �imaginary� unit
 and enables us to employ results
from complex analysis without the need for formal complexi�cation� Furthermore

the complex structure only arises in situations where it is geometrically signi�cant

instead of being formally present in all calculations�
Given the self�duality of the Weyl tensor
 the remaining content of equations

	����
�	����
 is summarised by the relation


kW	
k
 � �� 	����


This equation says that
 viewed as a three�dimensional complex linear function

W	B
 is symmetric and traceless� This gives W	B
 �ve complex
 or ten real de�
grees of freedom� 	Since we frequently encounter combinations of the form scalar
 pseudoscalar
 we refer to these loosely as complex scalars�
 The gauge�invariant
information in W	B
 is held in its complex eigenvalues and
 since the sum of these
is zero
 only two are independent� This leaves a set of four real intrinsic scalar
quantities�
Overall
R	B
 has �� degrees of freedom
 � of which are contained in the freedom

to perform arbitrary local rotations� Of the remaining �� physical degrees of freedom

four are contained in the two complex eigenvalues of W	B

 and a further four in
the real eigenvalues of the matter stress�energy tensor� The six remaining physical
degrees of freedom determine the rotation between the frame that diagonalises G	a

and the frame that diagonalisesW	B
� This identi�cation of the physical degrees of
freedom contained in R	B
 appears to be new
 and is potentially very signi�cant�

��



The Petrov Classi�cation

The algebraic properties of the Weyl tensor are traditionally encoded in its Petrov
type� Here we present geometric algebra expressions for the main Petrov types
	following the conventions of Kramer et al� ����
� The Petrov classi�cation is based
on the solutions of the eigenvalue equation

W	B
 � �B� 	����


in which B is now a bivector 	the eigenbivector
 and � is a complex scalar� There
are �ve Petrov types� I
 II
 III
 D and N� Type I are the most general
 with two
independent eigenvalues and three linearly�independent orthogonal eigenbivectors�
Such tensors have the general form

W	B
 � �
���	B  �F�BF�
  

�
���	B  �F�BF�
 	����


where �� and �� are complex scalars and F� and F� are orthogonal unit bivectors
	F �

� � F �
� � �
� The eigenbivectors are F�
 F� and F� � F�F�
 and the corresponding

eigenvalues are 	��� � ��

 	��� � ��
 and �	��  ��
�
Type D 	degenerate
 are a special case of type I tensors in which two of the

eigenvalues are the same� Physical examples are provided by the Schwarzschild and
Kerr solutions� The region outside a spherically�symmetric source of mass M has

R	B
 �W	B
 � �M

�r�
	B  �
rB
r
 	����


where 
r is the unit radial bivector� The eigenbivectors of this function are 
r
 with
eigenvalue ��M�r�
 and any two bivectors perpendicular to 
r
 with eigenvalue
M�r�� Similarly
 R	B
 for a stationary axisymmetric source described by the Kerr
solution is ����

R	B
 �W	B
 � � M

�	r � iL cos�
�
	B  �
rB
r
� 	����


This di�ers from the radially�symmetric case 	����
 only in that its eigenvalues con�
tain an imaginary term governed by the angular momentumL� Verifying that 	����

and 	����
 are tractionless is simple
 requiring only the result that

�aBa�b � �aB	ab� a�b
 � �bB� 	����


which employs equation 	����
 from Section ����
The fact that the Riemann tensor for the Kerr solution is obtained from that for

the Schwarzschild solution by replacing r by r � iL cos� is reminiscent of a �trick�
used to derive the Kerr solution in the null tetrad formalism ����� This is particularly
suggestive given that the unit imaginary employed in the Newman�Penrose formalism

��



is a disguised version of the spacetime pseudoscalar i� The signi�cance of these
observations is discussed further in �����
For tensors of Petrov type other than I
 null bivectors play a signi�cant role�

Type II tensors have eigenvalues ��
 ��� and � and two independent eigenbivectors

one timelike and one null� Type III and type N have all three eigenvalues zero
 and
satisfy

type III � W�	B
 � �� W�	B
 �� � 	����


type N � W�	B
 � �� 	����


An example of a type N tensor is provided by gravitational radiation� R	B
 for a
plane�polarised gravitational wave travelling in the �� direction is

R�	B
 �W�	B
 � �
�
f	t� z
 ��	��B�� � ��B��
�� 	����


for waves polarised in the direction of the �� and �� axes
 and

R�	B
 �W�	B
 � �
�f	t� z
 ��	��B��  ��B��
�� 	����


for waves polarised at ��o to the axes� In both cases f	t � z
 is a scalar function

and �� is the null vector

�� � ��  ��� 	����


The direct appearance of the null vector �� in W	B
 shows that W�	B
 � �
 and
is physically very suggestive� Expressions of the type ��B�� project the bivector
B down the null vector ��
 and such a structure is exhibited in the radiation �eld
generated by an accelerating point charge �����
These examples illustrate the uniquely compact forms for the Riemann tensor

a�orded by geometric algebra� In terms of both clarity and physical insight these
expressions are far superior to any a�orded by tensor algebra
 the Newman�Penrose
formalism or di�erential forms� Only Wahlquist and Estabrook�s 	� �
 dyadic nota�
tion ���
 ��� achieves expressions of comparable compactness
 although their form�
alism is of limited applicability�


�� The Bianchi Identities

Further information from the wedge equation 	����
 is contained in the Bianchi
identity� One form of this follows from a simple application of the Jacobi identity�

�Da� �Db�Dc��A cyclic permutations � � 	����


� DaR	b�c
  cyclic permutations � �� 	����


Again
 use of the Da derivatives makes this identity straightforward
 but more work
is required to achieve a fully covariant relation�

��



We start by forming the adjoint relation to 	����

 which is

�a��b��ch�a�rR	b�c
  �	a
�R	b�c
�Bi � �� 	����


where B is a constant bivector� We next need to establish the result that

B��R	B�
 � B� �R	B�
� 	����


This follows by contracting equation 	���
 with an arbitrary vector and an arbitrary
bivector to obtain the equations

�c��a�R	c�b
� � R	a�b
 	����


	B ��a
�R	a�b
 � ��aB �R	a�b
� 	����


Protracting the second of these equations with �b and using the �rst
 we obtain

�b��	B ��a
�R	a�b
� � ��R	B
 � ��b��aB �R	a�b
� 	����


Taking the scalar product with a second bivector now gives equation 	����
�
Using this result in equation 	����

 we now obtain

r�h���R	B
�� �a�h���R	�	a
�B
� � �� 	����


Finally
 acting on this equation with h and using equation 	����

 we establish the
covariant result

D�R	B
� �a�R	�	a
�B
 � �� 	����


This result takes a more natural form when B becomes an arbitrary function of
position
 and we write the Bianchi identity as

�a��a�DR	B
�R	a�DB
� � �� 	����


We can extend the overdot notation of Section 	���
 in the obvious manner to write
equation 	����
 as

$D� $R	B
 � �� 	����


which is very compact
 but somewhat symbolic and hard to apply without unwrap�
ping into the form of equation 	����
�
The self�duality of the Weyl tensor implies that

$D� $W	iB
 � �i $D� $W	B
� 	����


so
 in situations where the matter vanishes and W	B
 is the only contribution to
R	B

 the Bianchi identities reduce to

$D $W	B
 � �� 	����


��



The properties of a �rst�order equation such as this are discussed in more detail in
Section ����
The contracted Bianchi identities are obtained from

	�a��b
�� $D� $R	a�b
� � �a�� $R	a� $D
  $D $R	a
�
� � $R	 $D
�DR� 	����


from which we can write

$G	 $D
 � �� 	����


An alternative form of this equation is obtained by taking the scalar product with
an arbitrary vector
 and using the symmetry of G	a
 to write

$D� $G	a
 � �� 	����


Written out in full
 this equation takes the form

�a��LaG	b
�G	Lab
  �	a
�G	b
� G	�	a
�b
� � �� 	����



�� Symmetries and Conservation Laws

We end this section with some comments on symmetries and conservation laws�
These comments are not all directly relevant to the applications discussed in this
paper
 but concern the general structure of GTG�
The �rst signi�cant point is that the theory is founded on an action principle in

a ��at� vector space� It follows that all the familiar equations relating symmetries
of the action to conserved quantities hold without modi�cation� 	A geometric al�
gebra approach to Lagrangian �eld theory has already been developed in �����
 Any
symmetry transformation of the total action integral which is parameterised by a
continuous scalar will result in a vector which is conserved with respect to the vector
derivative r� To every such vector there corresponds a covariant equivalent
 as is
seen from the simple rearrangement

D�J � iD�	iJ 

� det	h
ir��h��	iJ 
�
� det	h
r��h	J 
 det	h
���� 	����


Thus
 if J satis�es r�J � �
 then the covariant equivalent
J � h��	J
 det	h
 	����


satis�es the covariant equation D �J � �� 	This explains the de�nition of J in
Section ����
 Note that if we attempt to form the canonical stress�energy tensor

��



conjugate to translations we obtain the quantity G	a
��T 	a

 which the �eld equa�
tions set to zero� The overall stress�energy tensor is therefore clearly conserved
 but
this does not yield any new information�
A second feature of our use of the STA is that all di�erential equations can be

recast in integral form� The integral equation form is not always useful
 since it
often forces one to deal with non�covariant quantities� But integral equations are
particularly well�suited to handling singularities in the gravitational �elds� Just
as Gauss� theorem in electromagnetism can be used to determine the structure of
an electric �eld source
 so integral equations can be used to uncover the structure
of the matter sources of gravitational �elds� An example of this is provided in
Section ��� where the Schwarzschild solution is shown to arise from a matter stress�
energy tensor containing a single ��function source of strength M � A less obvious
example is contained in ����
 where it is shown that the matter generating the Kerr
solution takes the form of a ring rotating at the speed of light
 supported by a disk
of tension� Such notions are quite di�erent from classical general relativity�
Killing vectors have played a signi�cant role in the analysis of symmetries and

conserved quantities in general relativity
 and their properties are largely unchanged
in GTG� The simplest covariant form of Killing�s equation for a Killing vector K is
that

a�	b�DK
  b�	a�DK
 � � 	����


for any two vector �elds a and b� Contracting with �a ��b immediately yields the
result that K is divergenceless�

D�K � �� 	����


Killing vectors are frequently obtained when
 in some coordinate system
 the metric
is independent of one of the coordinates� This works as follows� Suppose we introduce
a set of four scalar functions fx�	x
g� These determine a coordinate frame

e� � �

�x�
x 	����


with dual frame

e� � rx�� e� �e� � ���� 	����


From the coordinate frame fe�g one can construct a frame of covariant vectors fg�g

with reciprocal vectors fg�g
 by

g� � h��	e�
� g� � h	e�
� 	����


From these the metric is de�ned by 	see Appendix C


g�� � g� �g�� 	����


��



Suppose now that the g�� are all independent of the x� coordinate� It follows that

�

�x�
g�� � g� �	g��Dg�
  g� �	g� �Dg�
 � �� 	����


But
 for a coordinate frame


g� �Dg� � g� �Dg� � h��	��e� � ��e�
 � � 	����


and using this in equation 	����
 we �nd that

g� �	g� �DK
  g� �	g� �DK
 � �� 	����


where K � g�� Equation 	����
 is entirely equivalent to the frame�free equa�
tion 	����
�
A further consequence of equation 	����
 is that
 for any vector a


a�	a�DK
 � �� 	����


So
 for a particle satisfying v �Dv � � 	����

 we see that

��	v �K
 � v �D	v �K
 � K �	v �Dv
  v �	v �DK
 � �� 	����


It follows that the quantity v �K is conserved along the worldline of a freely�falling
particle�

��



Part II � Applications

� Spherically�Symmetric Systems

Our �rst full application of the formalism we have developed is to time�dependent
spherically�symmetric �elds� For simplicity
 we consider only the case where the
matter is described by a perfect �uid� The equations derived here are applicable
to static and collapsing stars
 radially�symmetric black holes and many aspects of
cosmology
 including in�ation� Furthermore
 in a suitable gauge the relevant equa�
tions are essentially Newtonian in form
 making their physical interpretation quite
transparent� Applications discussed here include an analytic solution to the equa�
tions governing collapsing dust
 and the new understanding of horizons forced by
our gauge theory� This section includes an extended version of the work presented
in �����

��� The �Intrinsic
 Method

The traditional approach to solving the gravitational �eld equations in GR is to
start with the metric g�� 
 which is usually encoded as a line element

ds� � g�� dx
� dx�� 	���


The analogous quantity in GTG is derived from the h�function via

g�� � h��	e�
�h��	e�
� 	���


where the fe�g comprise a coordinate frame 	see also Appendix C
� For a given mat�
ter stress�energy tensor
 the �eld equations then yield a set of non�linear
 second�
order di�erential equations for the terms in g�� � These equations are notoriously
hard to solve� On the other hand
 any metric is potentially a solution to the Ein�
stein equations � one where the matter stress�energy tensor is determined by the
corresponding Einstein tensor� This approach
 in which the tail wags the dog
 has
recently probably been more popular( Here we present a new approach to solving
the gravitational �eld equations� The method is closely tied to our gauge�theoretic
understanding of gravity
 but can always be used to generate a metric which solves
the Einstein equations� So
 even if one rejects our gauge�theory description of grav�
ity
 the techniques developed below can still be viewed as providing a new method
for studying the Einstein equations�
Under a local rotation the vector h��	a
 transforms as

h��	a
 �� Rh��	a
 !R� 	���


It follows that the metric g�� 	���
 is invariant under rotation�gauge transformations�
This is in keeping with our earlier observation that
 at the classical level
 it is possible

��



to work with a set of equations that are invariant under rotation�gauge transform�
ations
 and this is precisely what GR does� This approach has the advantage of
removing a number of degrees of freedom from the theory
 but one pays a heavy
price for this� the equations become second�order and one has to deal with complic�
ated non�linear terms� The approach we develop here is quite di�erent� We keep the
rotation�gauge �eld explicit
 and work entirely with quantities that transform cov�
ariantly under position�gauge transformations� Such quantities include h	r

 �	a

and R	B
� We therefore work with directional derivatives of the form La � a�h	r


and treat �	a
 as an arbitrary �eld� The relationship between h and �	a
 is then
encoded in the commutation relations of the La� This setup is achieved by initially
making a suitably general ansatz for the h�function� This trial form is then substi�
tuted into equation 	����
 to �nd the general form of �	a
� An arbitrary �	a
 �eld
consistent with this general form is then introduced
 resulting in a set of equations
relating commutators of the La derivatives to the variables in �	a
�
Next
 the Riemann tensor R	B
 is constructed in terms of abstract �rst�order

derivatives of the �	a
 and additional quadratic terms� The rotation�gauge freedom
is then removed by specifying the precise form that R	B
 takes� For example
 one
can arrange that W	B
 is diagonal in a suitable frame� This gauge �xing is crucial
in order to arrive at a set of equations that are not under�constrained� With R	B

suitably �xed
 one arrives at a set of relations between �rst�order abstract derivatives
of the �	a

 quadratic terms in �	a

 and matter terms� The �nal step is to impose
the Bianchi identities
 which ensure overall consistency of the equations with the
bracket structure� Once all this is achieved
 one arrives at a fully �intrinsic� set of
equations� Solving these equations usually involves searching for natural �integrating
factors�� These integrating factors provide �intrinsic� coordinates
 and many of the
�elds can be expressed as functions of these coordinates alone� The �nal step is to
�coordinatise� the solution by making an explicit 	gauge
 choice of the h�function�
The natural way to do this is to ensure that the coordinates used in parameterising
h	a
 match the intrinsic coordinates de�ned by the integrating factors�
The method outlined above is quite general and can be applied to a wide range of

problems� Here we employ it in the analysis of time�dependent spherically�symmetric
systems�

��� The Intrinsic Field Equations

We start by introducing a set of spherical polar coordinates� In terms of the �xed
f��g frame we de�ne�

t � x��� cos� � x����r
r �

q
	x���
� tan� � 	x���
�	x���
�

	���


��



The associated coordinate frame is

et � ��

er � x��� ���r
e
 � r cos�	cos���  sin���
� r sin� ��

e� � r sin�	� sin���  cos���


	���


and the dual�frame vectors are denoted by fet� er� e
� e�g� We will also frequently
employ the unit vectors %� and %� de�ned by

%� � e
�r� %� � e��	r sin�
� 	���


Associated with these unit vectors are the unit timelike bivectors


r � eret� 

 � %�et� 
� � %�et� 	���


which satisfy


r


� � eter%�%� � i� 	���


The dual spatial bivectors are given by

i
r � �%�%�� i

 � er %�� i
� � �er%�� 	���


Throughout we use the abbreviations

�r �
�

�r
� �t �

�

�t
� 	����


The h	Function

Our �rst step towards a solution is to decide on a general form of the h�function that
is consistent with spherical symmetry� Suppose that B is a constant spatial bivector
	et�B � �

 and de�ne

R � eB�� 	����


x� � !RxR� 	����


Then
 in analogy with electromagnetism
 the gravitational �elds will be spherically
symmetric if rotating h	a
 to Rh	a
 !R and displacing it to the back�rotated posi�
tion x� leaves h	a
 unchanged� Hence rotational symmetry is enforced through the
requirement that

Rhx�	 !RaR
 !R � h	a
� 	����


��



This symmetry immediately implies that the fer� etg and fe
� e�g pairs decouple
from each other
 and the action of h	a
 on the %� and %� vectors is further restricted
to the form

h	%�
 � �%�  � %�

h	%�
 � �%� � �%��
	����


However
 the skew�symmetric term parameterised by � can always be removed by
a rotation in the i
r plane
 so we can assume that h	a
 is diagonal on fe
� e�g� No
such assumption can be made for the fer� etg vectors
 so we take h	a
 as having the
general form

h	et
 � f�e
t  f�e

r

h	er
 � g�e
r  g�e

t

h	e

 � �e


h	e�
 � �e��

	����


where f�
 f�
 g�
 g� and � are all functions of t and r only� We retain the gauge
freedom to perform a boost in the 
r direction
 and this freedom is employed later to
simplify the equations� Our remaining position�gauge freedom lies in the freedom to
reparameterise t and r
 which does not a�ect the general form of 	����
� A natural
parameterisation will emerge once the �intrinsic� variables have been identi�ed�

The ��a�	Function

To �nd a general form �	a
 consistent with 	����
 we substitute 	����
 into equa�
tion 	����
 for �	a
 as a function of h	a
� Where the coe�cients contain derivatives
of terms from h	a
 new symbols are introduced� Undi�erentiated terms from h	a

appearing in �	a
 are left in explicitly� These arise from frame derivatives and the
algebra is usually simpler if they are included� This procedure results in the following
form for �	a
�

�	et
 � Geret

�	er
 � Feret

�	%�
 � S%�et  	T � ��r
er %�

�	%�
 � S %�et  	T � ��r
er %��

	����


where G
 F 
 S and T are functions of t and r only� The important feature of these
functions is that they are position�gauge covariant�
Substituting this de�nition for �	a
 into equations 	����
 and 	����
 we �nd that

the bracket relations are as follows�

�Lt� Lr� � GLt � FLr �Lr� L�
� � �TL�


�Lt� L�
� � �SL�
 �Lr� L��� � �TL��

�Lt� L��� � �SL�� �L
� L�� � ��

	����


��




r 

 
�
et�D � Gi
� �Gi


er �D � F i
� �Fi


%��D T 

 � S i
� �T 
r S i
r
%��D T 
�  S i

 �S i
r �T 
r

Table �� Covariant derivatives of the polar�frame unit timelike bivectors�

where

Lt � et�h	r
 L�
 � %��h	r

Lr � er �h	r
 L�� � %��h	r
� 	����


The use of unit vectors in these derivatives eliminates the need to calculate irrelevant
coordinate derivatives� A set of bracket relations such as 	����
 is precisely what one
aims to achieve � all reference to the h�function is removed and one deals entirely
with position�gauge covariant quantities�

The Riemann Tensor

Having found a suitable form for �	a
 we next use equation 	����
 to calculateR	B
�
This derivation is simpli�ed by judicious use of the results listed in Table �� The
only subtlety in the derivation is the removal of terms involving derivatives of ��r
using the bracket relations 	����
� Since ��r � L�
� we have

Lt	��r
 � LtL�
� � �Lt� L�
�� � �S��r 	����


and

Lr	��r
 � LrL�
� � �Lr� L�
�� � �T��r� 	����


Application of equation 	����
 is now straightforward
 and leads to the Riemann
tensor

R	
r
 � 	LrG � LtF  G� � F �

r

R	


 � 	�LtS  GT � S�


  	LtT  ST � SG
i
�

R	
�
 � 	�LtS  GT � S�

� � 	LtT  ST � SG
i



R	i
�
 � 	LrT  T � � FS
i
� � 	LrS  ST � FT 




R	i


 � 	LrT  T � � FS
i

  	LrS  ST � FT 

�

R	i
r
 � 	�S�  T � � 	��r
�
i
r�

	����


��



The Matter Field and Gauge Fixing

Now that we have found R	B
 in terms of �intrinsic� functions and their �rst de�
rivatives
 we must next decide on the form of matter stress�energy tensor that the
gravitational �elds couple to� We assume that the matter is modelled by an ideal
�uid so we can write

T 	a
 � 	� p
a�vv� pa� 	����


where � is the energy density
 p is the pressure and v is the covariant �uid velocity
	v� � �
� Radial symmetry means that v can only lie in the et and er directions
 so
v must take the form

v � coshu et  sinhu er� 	����


But
 in restricting the h�function to the form of equation 	����

 we retained the
gauge freedom to perform arbitrary radial boosts� This freedom can now be employed
to set v � et
 so that the matter stress�energy tensor becomes

T 	a
 � 	� p
a�etet � pa� 	����


There is no physical content in the choice v � et as all physical relations must be
independent of gauge choices� In particular
 setting v � et does not mean that the
�uid is �at rest�
 or that we are �comoving with the �uid�� An observer comoving with
the �uid will have a covariant velocity et
 but this implies no special relationship
with the time coordinate t
 since the observer�s trajectory would have $x � h	et
 and
nothing has yet been said about the speci�c form of h	a
�
In setting v � et all rotation�gauge freedom has �nally been removed� This is an

essential step since all non�physical degrees of freedom must be removed before one
can achieve a complete set of physical equations� Note that the rotation gauge has
been �xed by imposing a suitable form for R	B

 rather than restricting the form of
h	a
� The reason for working in this manner is obvious � R	B
 deals directly with
physically�measurable quantities
 whereas the algebraic structure of the h�function
is of little direct physical relevance�
From equation 	���
 the source term in R	B
 is given by

R	a�b
�W	a�b
 � ���a�T 	b
  T 	a
�b� �
�
T a�b� 	����


where T � �a�T 	a
 is the trace of the matter stress�energy tensor� With T 	a
 given
by equation 	����

 R	B
 is restricted to the form

R	B
 �W	B
  ���	� p
B �etet � �
��B�� 	����


Comparing this with equation 	����
 we �nd that W	B
 has the general form
W	
r
 � ��
r W	i
r
 � ��i
r
W	


 � ��

  ��i
� W	i


 � ��i

  ��
�
W	
�
 � ��
� � ��i

 W	i
�
 � ��i
� � ��

�

	����


��



But W	B
 must be self�dual
 so �� � ��
 �� � �� and �� � ���
 and symmetric

which implies that �� � ��� It follows that �� � �� � �� Finally
 W	B
 must be
traceless
 which requires that �� ��� � �� Taken together
 these conditions reduce
W	B
 to the form

W	B
 � ��

�
	B  �
rB
r
� 	����


which is of Petrov type D� It follows from the form of R	i
r
 that if we set
A � �

�	�S�  T � � 	��r
�
 	����


then the full Riemann tensor must take the form

R	B
 � 	A �
�
��
	B  �
rB
r
  ���	� p
B �etet � �

�
�B��

	����


Comparing this with equation 	����
 yields the following set of equations�

LtS � �A GT � S� � ��p 	����


LtT � S	G� T 
 	����


LrS � T 	F � S
 	����


LrT � ��A FS � T � � ��� 	����


LrG � LtF � F � �G�  �A ��	� p
� 	����


The Bianchi Identity

We are now close to our goal of a complete set of intrinsic equations� The remaining
step is to enforce the Bianchi identities� The contracted Bianchi identity 	����
 for
a perfect �uid results in the pair of equations

D�	�v
  pD�v � � 	����


	� p
	v �Dv
�v � 	Dp
�v � �� 	����


Since 	v �Dv
�v is the acceleration bivector
 the second of these equations relates
the acceleration to the pressure gradient� For the case of radially�symmetric �elds

equations 	����
 and 	����
 reduce to

Lt� � �	F  �S
	� p
 	����


Lrp � �G	� p
� 	����


the latter of which identi�es G as the radial acceleration� The full Bianchi identities
now turn out to be satis�ed as a consequence of the contracted identities and the
bracket relation

�Lt� Lr� � GLt � FLr� 	����


��



Equations 	����

 	����

 	����
�	����

 the contracted identities 	����
 and 	����

and the bracket condition 	����
 now form the complete set of intrinsic equations�
The structure is closed
 in that it is easily veri�ed that the bracket relation 	����

is consistent with the known derivatives� The derivation of such a set of equations
is the basic aim of our �intrinsic method�� The equations deal solely with objects
that transform covariantly under displacements
 and many of these quantities have
direct physical signi�cance�

Integrating Factors

To simplify our equations we start by forming the derivatives of A� From equa�
tions 	����

 	����
 and 	����
�	����
 it follows that

LtA �SA � ��Sp 	����


LrA �TA � ���T�� 	����


These results
 and equations 	����
 and 	����

 suggest that we should look for an
integrating factor for the Lt  S and Lr  T operators� Such a function
 X say

should have the properties that

LtX � SX� LrX � TX� 	����


A function with these properties can exist only if the derivatives are consistent with
the bracket relation 	����
� This is checked by forming

�Lt� Lr�X � Lt	TX
� Lr	SX


� X	LtT � LrS


� X	SG � FT 


� GLtX � FLrX� 	����


which con�rms that the properties of X are consistent with 	����
� Establishing the
existence of integrating factors in this manner is a key step in our method
 because
the integrating factors play the role of intrinsically de�ned coordinates� If the h�
function is parameterised directly in terms of these functions
 the physical status of
the quantities in it becomes clearer� In the present case
 equations 	����
 and 	����

show that r�� already has the properties required of X
 so it is r�� which emerges as
the intrinsic distance scale� It is therefore sensible that the position�gauge freedom
in the choice of r should be absorbed by setting � � �� This then sets the intrinsic
distance scale equal to r
 lifting r from the status of an arbitrary coordinate to that
of a physically�measurable quantity�
Having �xed the radial scale with the position�gauge choice

r � X� � � �� 	����


��



we can make some further simpli�cations� From the form of h	a
 	����
 and equa�
tions 	����
 and 	����
 we see that

g� � Lrr � Tr 	����


g� � Ltr � Sr� 	����


which gives two of the functions in h	a
� We also de�ne

M � ��r�A � �
�
r	g�

� � g�
�  �
� 	����


which satis�es

LtM � ���r�g�p 	����


and

LrM � ��r�g��� 	����


The latter shows that M plays the role of an intrinsic mass�

The �Newtonian
 Gauge

So far a natural distance scale has been identi�ed
 but no natural time coordinate
has emerged� To complete the solution it is necessary to make a choice for the t
coordinate
 so we now look for additional criteria to motivate this choice� We are
currently free to perform an arbitrary r and t�dependent displacement along the et
direction� This gives us complete freedom in the choice of f� function� An indication
of how this choice should be made is obtained from equations 	����
 and 	����
 for
the derivatives of M 	����

 which invert to yield

�M

�t
�
���g�g�r�	� p


f�g� � f�g�
	����


�M

�r
�
��r�	f�g��  f�g�p


f�g� � f�g�
� 	����


The second equation reduces to a simple classical relation if we choose f� � �

as we then obtain

�rM � ��r��� 	����


which says that M	r� t
 is determined by the amount of mass�energy in a sphere of
radius r� There are other reasons for choosing the time variable such that f� � ��
For example
 we can then use the bracket structure to solve for f�� With f� � � we
have

Lt � f��t  g��r 	����


Lr � g��r� 	����


��



and the bracket relation 	����
 implies that

Lrf� � �Gf�
� �rf� � �G

g�
f�

� f� � �	t
 exp
�
�
Z r

G�g� dr
�
� 	����


The function �	t
 can be absorbed by a further t�dependent rescaling along et 	which
does not change f�

 so with f� � � we can reduce to a system in which

f� � exp
�
�
Z r

G�g� dr
�
� 	����


Another reason why f� � � is a natural gauge choice is seen when the pressure is
zero� In this case equation 	����
 forces G to be zero
 and equation 	����
 then forces
f� � �� A free�falling particle with v � et 	i�e� comoving with the �uid
 then has

$tet  $rer � et  g� er� 	����


where the dots denote di�erentiation with respect to the proper time� Since $t � �
the time coordinate t matches the proper time of all observers comoving with the
�uid� So
 in the absence of pressure
 we are able to recover a global �Newtonian�
time on which all observers can agree 	provided all clocks are correlated initially
�
Furthermore it is also clear from 	����
 that g� represents the velocity of the particle�
Hence equation 	����

 which reduces to

�tM � ���r�g�� 	����


in the absence of pressure
 has a simple Newtonian interpretation � it equates the
work with the rate of �ow of energy density� Equation 	����

 written in the form

�
�
g�

� � M

r
� �

�
	g�

� � �
� 	����


is also now familiar from Newtonian physics � it is a Bernoulli equation for zero
pressure and total 	non�relativistic
 energy 	g�

� � �
���
For these reasons we refer to f� � � as de�ning the �Newtonian� gauge� The

applications discussed in the following sections vindicate our claim that this is the
natural gauge for radially�symmetric systems� The full set of equations in the New�
tonian gauge are summarised in Table �� They underlie a wide range of phenomena
in relativistic astrophysics and cosmology� The closest GR analogue of the Newto�
nian gauge description of a spherically�symmetric system is provided by Gautreau�s
�curvature coordinates� ���� 	see also ����
� This description employs a set of geodesic
clocks in radial freefall
 comoving with the �uid� However
 such a description can
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The h�function

h	et
 � f�e
t

h	er
 � g�e
r  g�e

t

h	e

 � e


h	e�
 � e�

The ��function

�	et
 � Geret

�	er
 � Feret

�	%�
 � g��r %�et  	g� � �
�r er%�
�	%�
 � g��r %�et  	g� � �
�r er %�

Directional derivatives
Lt � f��t  g��r

Lr � g��r

Equations relating the
h� and ��functions

Ltg� � Gg�

Lrg� � Fg�

f� � expf
R r�G�g� drg

De�nition of M M � �
�
r	g�� � g�

�  �


Remaining derivatives
Ltg� � Gg� �M�r� � ��rp
Lrg� � Fg�  M�r� � ��r�

Matter
derivatives

LtM � ���r�g�p Lt� � �	�g��r  F 
	� p


LrM � ��r�g�� Lrp � �G	� p


Riemann
tensor

R	B
 � ���	� p
B �etet � ����B�
��

�	M�r� � �����
	B  �
rB
r


Fluid stress�energy tensor T 	a
 � 	� p
a�etet � pa

Table �� Equations governing a radially�symmetric perfect �uid� An equation of
state and initial data �	r� t�
 and g�	r� t�
 determine the future evolution of the
system�

only be applied if the pressure is independent of radius
 whereas the Newtonian
gauge description is quite general�
One aspect of the equations in Table � is immediately apparent� Given an equa�

tion of state p � p	�

 and initial data in the form of the density �	r� t�
 and the
velocity g�	r� t�

 the future evolution of the system is fully determined� This is
because � determines p and M on a time slice
 and the de�nition of M then de�
termines g�� The equations for Lrp
 Lrg� and Lrg� then determine the remaining

��



information on the time slice� Finally
 the LtM and Ltg� equations can be used to
update the information to the next time slice
 and the process can then start again�
The equations can thus be implemented numerically as a simple set of �rst�order
update equations� This fact considerably simpli�es the study of collapsing matter

and should be particularly signi�cant in current studies of the critical phenomena
associated with horizon and singularity formation ���
 ����

��� Static Matter Distributions

As a simple �rst application we consider a static
 radially�symmetric matter distri�
bution� In this case � and p are functions of r only� Since M	r� t
 is now given
by

M	r
 �
Z r

�
��r�

�
�	r�
 dr� 	����


it follows that

LtM � ��r�g�� � ���r�g�p� 	����


For any physical matter distribution � and p must both be positive
 in which case
equation 	����
 can be satis�ed only if

g� � � 	����


� F � �� 	����


Since g� � � we see that g� is given simply in terms of M	r
 by

g�
� � �� �M	r
�r� 	����


which recovers contact with the standard line element for a static
 radially�symmetric
�eld� It is immediately clear that a solution exists only if �M	r
 � r for all r� This
is equivalent to the condition that a horizon has not formed�
The remaining equation of use is that for Ltg�
 which now gives

Gg� �M	r
�r�  ��rp� 	����


Equations 	����
 and 	����
 combine with that for Lrp to give the famous Oppen�
heimer�Volkov equation

�p

�r
� �	� p
	M	r
  ��r�p


r	r � �M	r

 � 	����


At this point we have successfully recovered all the usual equations governing a non�
rotating star
 and the description is therefore unchanged from that of GR� The work

��



involved in recovering these equations from the full time�dependent case is minimal

and the �nal form of h	a
 is very simple 	it is a diagonal function
� Furthermore

the meaning of the t and r coordinates is clear
 since they have been de�ned opera�
tionally�
The solution extends straightforwardly to the region outside the star� We now

have M constant
 and

f� � ��g� � 	� � �M�r
����� 	����


which recovers the Schwarzschild line element� It follows that all predictions for the
behaviour of matter in the star�s gravitational �eld
 including those for the bending
of light and the perihelion precession of Mercury
 are unchanged from GR�

��� Point Source Solutions � Black Holes

The next solution of interest is obtained when the matter is concentrated at a single
point 	r � �
� For such a solution
 � � p � � everywhere away from the source
 and
the matter equations reduce to

LtM � �
LrM � �

�
�M � constant� 	����


Retaining the symbol M for this constant we �nd that the equations reduce to

Ltg� � Gg� 	����


Lrg� � Fg� 	����


and

g�
� � g�

� � � � �M�r� 	����


No further equations yield new information
 so we have an under�determined system
of equations and some additional gauge �xing is needed to choose an explicit form of
h	a
� The reason for this is that in the vacuum region the Riemann tensor reduces
to

R	B
 � �M

�r�
	B  �
rB
r
� 	����


This tensor is now invariant under boosts in the 
r plane
 whereas previously the
presence of the �uid velocity in the Riemann tensor vector broke this symmetry�
The appearance of this new symmetry in the matter�free case manifests itself as a
new freedom in the choice of h�function�
Given this new freedom
 we should look for a choice of g� and g� which simpli�es

the equations� If we attempt to reproduce the Schwarzschild solution we have to set

��



g� � �
 but then we immediately run into di�culties with g�
 which is not de�ned
for r � �M � We must therefore look for an alternative gauge choice� We show in
the following section that
 when p � �
 g� controls the energy of infalling matter

with particles starting at rest at r �� corresponding to g� � �� A sensible gauge
choice is therefore to set

g� � � 	����


so that

g� � �
q
�M�r 	����


G � � 	����


F � �M�	g�r
�
 	����


and

f� � �� 	����


In this gauge the h�function takes the remarkably simple form

h	a
 � a�
q
�M�r a�eret� 	����


which only di�ers from the identity through a single term� From the results of Sec�
tion ��� the extension to the action of h on an arbitrary multivector A is straight�
forward�

h	A
 � A�
q
�M�r	A�er
�et� 	����


It follows that det	h
 � � and the inverse of the adjoint function
 as de�ned by 	����


is given by

h��	A
 � A 
q
�M�r	A�et
�er� 	����


Point	Particle Trajectories

To study the properties of the solution 	����
 we consider the equation of motion
for infalling matter� For a particle following the trajectory x	
 

 with 
 the proper
time
 we have

v � $t et  	$t
q
�M�r  $r
er  $�e
  $�e�� 	����


Since the h�function is independent of t we have
 from equation 	����



h��	et
�v � 	�� �M�r
 $t � $r
q
�M�r � constant� 	����


��



and
 for particles moving forwards in time 	 $t � � for r��

 we can write

	� � �M�r
 $t � � $r
q
�M�r� 	����


where the constant � satis�es � � �� The $r equation is found from the constraint
that v� � �
 which gives

$r� � �� � 	�� �M�r
��  r�	 $��  sin�� $��
�� 	����


The horizon lies at r � �M since
 for r � �M 
 the velocity $r must be negative� It
might appear that an attempt to integrate equation 	����
 will run into di�culties
with the pole at horizon
 but this not the case� At r � �M we �nd that $r � ��
and this cancels the pole� All particles therefore cross the horizon and reach the
singularity in a �nite coordinate time�
Specialising to the case of radial infall
 we see from equation 	����
 that the

constant �� � � can be identi�ed with twice the particle�s initial energy 	for a unit
mass particle
� Furthermore
 equation 	����
 shows immediately that ,r � �M�r�

� a feature of motion in spherically�symmetric gravitational �eld that is ignored in
many GR texts� Some possible matter and photon trajectories are illustrated in Fig�
ure �� In the case where the particle is dropped from rest at r �� equations 	����

and 	����
 reduce to

$r � �
q
�M�r� $t � �� 	����


and we recover an entirely Newtonian description of the motion� The properties of
a black hole are so simple in the gauge de�ned by 	����
 that it is astonishing that
this gauge is almost never seen in the literature 	see ���� for a partial exception
�
Presumably
 this is because the line element associated with 	����
 does not look as
natural as the h�function itself and hides the underlying simplicity of the system�
Part of the reason for this is that the line element is not diagonal
 and relativists
usually prefer to �nd a coordinate system which diagonalises g�� � Even when the
freefall time coordinate t is employed
 a di�erent radial coordinate is usually found
to keep the metric diagonal ���
 ����

Since the gauge de�ned by g� � � and g� � �
q
�M�r extends our aim of keeping

the equations in a simple Newtonian form
 we refer to this solution as de�ning the
�Newtonian gauge� vacuum solution� We show in Section ��� that this gauge arises
naturally from the description of collapsing dust� In the Newtonian gauge one hardly
needs to modify classical reasoning at all to understand the processes involved � all
particles just cross the horizon and fall into the singularity in a �nite coordinate time�
And the horizon is located at r � �M precisely because we can apply Newtonian
arguments( The only departures fromNewtonian physics lie in relativistic corrections
to the proper time taken for infall
 and in modi�cations to the equations for angular
motion which lead to the familiar results for orbital precession�
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Figure �� Matter and photon trajectories for radial motion in the in the Newtonian
gauge� The solid lines are photon trajectories� and the horizon lies at r��� The
broken lines represent possible trajectories for infalling matter� Trajectory I is for a
particle released from rest at r � �� Trajectory II is for a particle released from rest
at r ���

When extracting physical predictions in the Newtonian
 or any other
 gauge
 it
is important to ensure that the problem is posed in a gauge�invariant manner� For
example
 one can envisage a simple experiment with two observers initially at rest
outside a black hole at a distance r�
 where this distance is de�ned in terms of the
magnitude of R	B
� One observer can then start free�falling
 and agree to emit
photons of a chosen frequency at regular intervals� If one then computes what the
remaining
 stationary observer sees as a function of their proper time
 this is clearly
something physically meaningful� It is not hard to show that the predictions for this
are gauge invariant
 as they must be� Furthermore
 if everything takes place outside
the horizon
 one can work in the �Schwarzschild� gauge with g� � �� But
 to see
what happens as the free�falling observer crosses the horizon
 a global solution such
as 	����
 must be used� One still �nds that the signal from the free�falling observer
becomes successively more red�shifted and less intense
 as predicted when working
with the Schwarzschild metric
 but the free�falling observer crosses the horizon in a
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�nite coordinate time�
The fact that all physical predictions should be invariant of the means by which

they are computed should
 in principle
 be as true in standard GR as it is in GTG�
However
 some authors 	see e�g� Logunov � Loskutov ����
 have questioned the
uniqueness of predictions made in GR
 and this remains a controversial issue� While
we do not wish to comment on this issue in relation to GR
 we would point out that
our gauge theory does not permit any such ambiguity�

Horizons and Time	Reversal Asymmetry

Our picture of the gravitational �elds due to a radially�symmetric point source is
rather di�erent from that of GR� These di�erences are seen most clearly in the e�ects
of time reversal� Time reversal is achieved by combining the displacement

f	x
 � �etxet � x� 	����


with the re�ection

h
�
	a
 � �eth	a
et� 	����


resulting in the the time�reversed solution

h
�
	a
 � ethx�	etaet
et� 	����


As an example
 the identity function h	a
 � a is time�reverse symmetric � as it
should be� The displacement 	����
 is a gauge transformation and cannot have
any physical consequences� The re�ection 	����
 is not a gauge transformation

however
 and can be used to transform between physically distinct gauge sectors�
The re�ection 	����
 is lost when the metric is formed
 so GR cannot handle time�
reversal in the same manner as GTG�
With the h�function described by equation 	����

 and with the ffig and fgig

functions of r only
 the e�ect of 	����
 is simply to change the sign of the o��diagonal
elements f� and g�� For example
 applied to the solution 	����

 the transforma�
tion 	����
 produces the time�reversed solution

h
�
	a
 � a 

q
�M�r a�eret� 	����


The result is a solution in which particles inside the horizon are swept out� Once
outside
 the force on a particle is still attractive but particles cannot re�enter through
the horizon�
This lack of time�reversal symmetry is not a feature of the various gauge choices

made in arriving at 	����
� it is an inevitable result of the presence of a horizon�
To see why
 we return to the equations in the form prior to the restriction to the
Newtonian gauge� The h��eld is as de�ned by equation 	����
 with � � � and

��



the ffig and fgig functions of r only� The general set of time�independent vacuum
equations still have M constant and

g�
� � g�

� � �� �M�r 	����


with

�rg� � G� �rg� � F� 	����


The bracket relation 	����
 now gives

g��rf� � g��rf� � Gf� � Ff� 	����


from which it follows that

�r	f�g� � f�g�
 � �r det	h
 � �� 	����


Hence det	h
 is a constant
 with its value dependent on the choice of position gauge�
Since R	B
 tends to zero at large r
 we can always choose the gauge such that h	a

tends to the identity as r��� In this case det	h
 must be one
 so we can write

f�g� � f�g� � �� 	����


If we form the line element derived from our general h�function we obtain

ds� � 	�� �M�r
 dt�  �	f�g� � f�g�
 dt dr � 	f�� � f�
�
 dr�

� r�	d��  sin�� d��
� 	����


The o��diagonal term here is the one that breaks time�reversal symmetry� But we
must have g� � 
g� at the horizon
 and we know that f�g� � f�g� � � globally� It
follows that

f�g� � f�g� � 
� at r � �M� 	����


so the line element 	����
 must break time reversal symmetry at the horizon �����
In fact
 the asymmetry is even more pronounced� Once inside the horizon
 equa�
tion 	����
 forces a non�zero g�
 so the h�function cannot be time�reverse symmetric
anywhere inside the horizon� This link between the existence of a horizon and the
onset of time�reversal asymmetry is one of the most satisfying aspects of GTG� Fur�
thermore
 the requirement that a sign be chosen for f�g��f�g� at the horizon shows
that a black hole has more memory about its formation than simply its mass M �
it also remembers that it was formed in a particular time direction� We will see an
example of this in the following section�
At the level of the metric the discussion of time�reversal is much less clear� For

example
 inside the horizon a valid h�function is obtained by setting f� and g� to zero�
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Since f� and g� are non�zero
 this h�function is manifestly not time�reverse symmet�
ric� However
 the line element generated by this h�function is just the Schwarzschild
line element

ds� � 	�� �M�r
 dt� � 	�� �M�r
�� dr� � r�	d��  sin� � d��
�
	����


which is usually thought of as being time�reverse symmetric� Clearly
 our gauge
theory probes questions related to time�reversal symmetry at a deeper level than
GR� The consequences of our new understanding of time�reversal will be met again
in Section �
 where we study the Dirac equation in a black�hole background�
In GR one of the most important results for studying radially�symmetric �elds

is Birkho��s theorem� This can be stated in various ways
 though the most usual
statement is that the line element outside a radially�symmetric body can always
be brought to the form of 	����
� As we have seen
 this statement of Birkho��s
theorem is correct in GTG only if no horizon is present� However
 the more general
statement
 that the �elds outside a spherically�symmetric source can always be made
stationary
 does remain valid�

The Kruskal Extension and Geodesic Completeness

In GR
 the line element 	����
 does not represent the �nal form of the metric
for a radially�symmetric black hole� The full �maximal� solution was obtained by
Kruskal ����
 who employed a series of coordinate transformations which mixed ad�
vanced and retarded Eddington�Finkelstein coordinates� The Kruskal extension de�
scribes a spacetime which contains horizons and is time�reverse symmetric
 so can
have no counterpart in GTG� Furthermore
 the Kruskal solution has two distinct
regions for each value of r ���� and so is
 topologically
 quite distinct from the solu�
tions admitted in GTG� This is because any solution of our equations must consist
of h	a
 expressed as a function of the vector position x� The form of this position
dependence is arbitrary
 but it must be present� So
 when the coordinate r is em�
ployed in de�ning the h�function
 this always represents a particular function of the
vector x� The point r � � is
 by de�nition
 a single point in space 	an unbroken
line in spacetime
� No �elds can alter this fact� The Kruskal solution contains two
separate regions with the label r � �
 so immediately fails in GTG� Instead of the
full Kruskal extension with � sectors 	usually denoted I
 II
 I� and II� ����

 GTG
admits two distinct solutions
 one containing the sectors I and II
 and the other
containing I� and II�� These solutions are related by the discrete operation of time
reversal
 which is not a gauge transformation� This splitting of a single time�reverse
symmetric solution into two asymmetric solutions is typical of the transition from a
second�order to a �rst�order theory� Similar comments apply to the maximal exten�
sions of the Reissner�Nordstr,om and Kerr solutions� The in�nite chain of �universes�
GR admits as solutions have no counterpart in our theory� Instead
 we use integral
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equations to determine the nature of the matter singularities
 precisely as one would
do in electromagnetism ���
 ����
In GR the Kruskal solution is the unique maximal continuation of the Schwarz�

schild metric� The fact that it has no analogue in GTG means that our allowed
solutions are not �maximal� and forces us to address the issue of geodesic incom�
pleteness� For the solution 	����
 geodesics exist which cannot be extended into
the past for all values of their a�ne parameter� But we have already seen that the
presence of a horizon commits us to a choice of time direction
 and in the following
section we show how this choice is �xed by the collapse process� So
 if we adopt the
view that black holes arise solely as the endpoint of a collapse process
 then there
must have been a time before which the horizon did not exist� All geodesics from
the past must therefore have come from a period before the horizon formed
 so there
is no question of the geodesics being incomplete� We therefore arrive at a consistent
picture in which black holes represent the endpoint of a collapse process and the
formation of the horizon captures information about the direction of time in which
collapse occurred� This picture is in stark contrast with GR
 which admits eternal

time�reverse symmetric black�hole solutions�

Coordinate Transformations and Displacements

The coordinate transformations employed in GR have two distinct counterparts in
GTG� as passive re�labellings of the coordinates employed in a solution
 such as
changes of variables used for solving di�erential equations� and as disguised forms
of position�gauge transformations� An example of the latter is the transforma�
tion between the Schwarzschild and advanced Eddington�Finkelstein forms of the
spherically�symmetric line element� This is achieved with the coordinate transform�
ations

t� � r� � t� 	r  �M ln	r � �M

 	����


r� � r� 	�����


which can be viewed as the result of the displacement de�ned by

f	x
 � x� � x� �M ln	r � �M
et� 	�����


This displacement is to be applied to the solution

h	a
 � -����a�etet  -���a�erer  a�
r
r 	�����


where

- � �� �M�r� 	�����


Clearly the gravitational �elds are de�ned only outside the horizon
 and the aim is
to achieve a form of h	a
 that is globally valid�
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Di�erentiating the de�nition 	�����
 we �nd that

f	a
 � a 
�M

r � �M a�eret 	�����


and hence

f
��
	a
 � a� �M

r � �M a�eter� 	�����


Now
 the function 	�����
 is independent of t
 so h	a� x�
 � h	a� x
� It follows that

the transformed function h
�
	a
 is given by

h
�
	a
 � h f

��
	a
 � h	a
� �M

r
-����a�eter� 	�����


This new solution is not yet well�de�ned for all r
 but if we now apply the boost
de�ned by the rotor

R � exp	
r���
� 	�����


where

sinh� � �
�
	-���� �-���
� 	�����


we obtain the solution

h
��
	a
 � a 

M

r
a�e�e�� 	�����


where

e� � et � er� 	�����


The solution 	�����
 is now globally de�ned� It is the GTG equivalent of the Kerr�
Schild form of the Schwarzschild solution
 and has the property that infalling null
geodesics are represented by straight lines on a t�r plot� It is not hard to �nd
a transformation between 	�����
 and the Newtonian gauge solution 	����
� This
transformation consists of a displacement and a rotation
 both of which are globally
well�de�ned� On the other hand
 if one starts with the solution 	�����
 and tries
to recover a version of the Schwarzschild solution by working in reverse
 it is clear
that the process fails� The boost needed is in�nite at the horizon and ill�de�ned
for r � �M 
 as is the required displacement� Such transformations fail to meet
our requirement that gauge transformations be well�de�ned over the whole region of
physical interest�
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Integral Equations and the Singularity

The Riemann tensor R	B
 contains derivatives of terms from �	a
 which fall o� as
��r�� When di�erentiating such terms
 one must take account of the fact that

r�	x�r�
 � ���	x
� 	�����


where x � x�et� This fact will not a�ect the �elds away from the origin
 but will
show up in the results of integrals enclosing the origin� To see how
 we again return
to the setup before the Newtonian gauge was chosen� From equation 	����
 we see
that

et�G	et
 � ��� � �	�LrT � T �  FS
� �A 	�����


and
 using equations 	����
 and 	����

 this gives

��� � �	g��rg� � g��rg�
�r  M�r�

� �r	M�r
�r  M�r�

� 	
r�r
�r	M�r
  	M�r
r�	
r�r

�r�	Mx�r�
� 	�����


It follows that � �M�	x

 so the singularity generating the radially�symmetric �elds
is a simple ��function
 of precisely the same kind as the source of the Coulomb �eld
in electrostatics�
The presence of the ��function source at the origin is most easily seen when

the solution is analysed in the gauge de�ned by 	�����
� Solutions of this type are
analysed in ����
 and we restrict ourselves here to a few basic observations� For the
solution 	�����

 R	B
 is given by ����

R	a ib
 �M �a�r	x�r�
  ir�	b�x�r�
� 	�����


and it is simple to see that
 away from the origin
 	�����
 reduces to 	����
� The
signi�cance of 	�����
 is that it allows us to compute the integral of the Riemann
tensor over a region enclosing the origin simply by converting the volume integral
to a surface integral� Taking the region of integration to be a sphere of radius r�
centred on the origin
 we �nd that

Z
r�ro

d�xR	a
 �M
Z ��

�
d�
Z �

�
d� sin�a�
r
r � ��M

�
a� 	�����


and

Z
r�ro

d�xR	ib
 �
Z ��

�
d�
Z �

�
d� sin� i
r �	b�
r
 � ���M

�
ib�

	�����
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These results are independent of the radius of the spherical shell
 re�ecting the
spherical symmetry of the solution� The above results combine to give

Z
r�ro

d�xR	B
 � ��M
�

B � ��MB�etet � ���M
�
�B  �etBet��

	�����


which makes it clear what has happened� The angular integral of the Weyl compon�
ent of R	B
 has vanished
 because

Z ��

�
d�
Z �

�
d� sin�	B  �
B
r
 � �� 	�����


and what remains is the contribution from the stress�energy tensor
 which is entirely
concentrated at the origin� On contracting we �nd that

Z
d�xR	a
 � ��MetaetZ

d�xR � ���M 	�����
Z
d�xG	a
 � ��Ma�etet

and
 since R	a
 � � everywhere except for the origin
 the integrals in 	�����
 can
be taken over any region of space enclosing the origin� It is now apparent that the
solution represents a point source of matter
 and we can therefore write

T 	a
 �M�	x
a�etet 	�����


for the matter stress�energy tensor� This is consistent with the de�nition of M as
the integral of the density for a static system 	����
�
Analysing singularities in the gravitational �elds by means of integral equations

turns out to be very powerful in GTG� While the above application does not contain
any major surprises
 we show in ���� that the same techniques applied to axisym�
metric �elds reveal that the Kerr solution describes a ring of rotating matter held
together by a disk of isotropic tension � a quite di�erent picture to that arrived at
in GR� This clearly has implications for the ultimate fate of matter falling onto the
singularity
 and could yield testable di�erences between GTG and GR�

��
 Collapsing Dust

The equations in Table � can be used to determine the future evolution of a system
given an equation of state and the initial � and g� distributions� They are therefore
well�suited to the description of radial collapse and the formation of horizons and
singularities� The simplest model
 in which the pressure is set to zero
 describes
collapsing dust� This situation was �rst studied by Oppenheimer � Snyder ����

��



and has been considered since by many authors ���
 ��
 ��
 ���� A feature of these
studies is the appearance of formulae which have a suggestively Newtonian form�
This is usually dismissed as a �coincidence� ���
 Section ������ Here we study the
collapse process in the Newtonian gauge and show that
 far from being coincidental

the Newtonian form of the results is a natural consequence of the equations� The
distinguishing feature of the Newtonian gauge approach is that the associated line
element is not diagonal� This manifestly breaks time�reversal symmetry
 as is appro�
priate for the description of collapsing matter� Working in this gauge enables us to
keep all �elds globally de�ned
 so the horizon is easily dealt with and the matching
onto an exterior vacuum region is automatically incorporated� This is quite di�erent
from previous work ���
 ��
 ���
 which usually employs two distinct diagonal metrics

one for the matter region and one for the vacuum� Finding the correct matching
conditions between these metrics is awkward
 and di�culties are encountered once
the horizon has formed�
If p � � it follows immediately that G � � and hence f� � �� This ensures that

the global time coordinate t agrees with the time measured by observers comoving
with the �uid� Since v �Dv � � in the absence of pressure
 such observers are also
freely falling� The function g� de�nes a velocity since
 for a particle comoving with
the �uid
 g� is the rate of change of r 	which is de�ned by the Weyl tensor
 with
proper time t� To emphasise its role as a velocity we replace g� with the symbol u
for this section� The equations of Table � now reduce to

F � �ru 	�����


M	r� t
 �
Z r

�
��r�

�
�	r�� t
 dr�� 	�����


which de�ne F and M on a time slice
 together with the update equations

�tu u�ru � �M�r� 	�����


�tM  u�rM � �� 	�����


Equations 	�����
 and 	�����
 a�ord an entirely Newtonian description of the �uid�
Equation 	�����
 is the Euler equation with an inverse�square gravitational force

and 	�����
 is the equation for conservation of mass� The Lt derivative plays the
role of the �matter� or �comoving� derivative for the �uid since
 when acting on a
scalar
 v �D � Lt�
The fact that LtM � � in the absence of pressure 	�����
 is a special case of a

more general result� Consider the integral

I	r� t
 �
Z r

�
��s��	s� t
f	s� t
 ds 	�����


where f	r� t
 is some arbitrary function which is conserved along �uid streamlines

that is
 it obeys

Ltf � �� 	�����


��



If we now construct LtI we �nd that

LtI � u��r��f  
Z r

�
��s�

�
��tf  f�t�

�
ds� 	�����


But
 from

Lt� � �	�u�r  F 
� 	�����


and equation 	�����

 we have

�t	r
��
 � ��r	ur��
� 	�����


Similarly
 from equation 	�����

 we see that

�tf � �u�rf� 	�����


so it follows that

LtI � u��r��f �
Z r

�
��
�
us���sf  f�s	us

��

�
ds � �� 	�����


Any integral of the type de�ned by I leads to a quantity which is conserved along
the �uid streamlines� The integral for M	r� t
 	�����
 is one such example
 with f
set to �� It is clear from its appearance in the Riemann tensor that M represents
the �gravitating energy� of the region enclosed inside r�
Since G � �
 we have

Ltg� � � 	�����


and an alternative conserved quantity is therefore de�ned by

�	r� t
 �
Z r

�
��s��	s� t


ds

g�
� 	�����


This is the covariant integral of the density
 so is also a covariant scalar quantity� it
is simply the total rest�mass energy within r 	see Box ���� of �Gravitation� ���� for
a discussion of this point in the static case
� The relationship between the rest�mass
energy � and the gravitating energy M can be seen more clearly by recalling that

g�
� � � � �M�r  u�� 	�����


Since

M	r� t
� �	r� t
 �
Z r

�
��s��	s� t
	g� � �
 ds

g�
� 	�����


��



the di�erence between the rest energy � and the total energy M is governed by
g� � �� This is then multiplied by the term ��r�� dr�g�
 which is the rest mass of a
shell of width dr� For j�M�r � u�j � � we can approximate 	�����
 to give

g� � � � �M�r  �
�u

� 	�����


which explicitly shows the decomposition of the energy di�erence into the sum of
the Newtonian gravitational potential energy 	always negative
 and the energy due
to the bulk kinetic motion 	always positive
� It is clear that for a shell of material
to escape it must have g� � � � � so
 with no approximation necessary
 we recover
the Newtonian escape velocity u� � �M�r�
As a further example of the insight provided by the Newtonian gauge
 consider

the case where the interior of the shell is empty� In this case M � �
 so

g� � 	�  u�
���� 	�����


which shows that g� can be interpreted as a relativistic ��factor associated u� This
identi�cation is justi�ed if we put u � sinh�
 which is reasonable since we know
that u can be greater than �� It is the presence of this additional boost factor in
the formula for M compared to � which
 in this case
 makes the total gravitating
energy greater than the rest mass energy� These results should demonstrate that
the physical picture of gravitational collapse in the absence of pressure is really
no di�erent from that a�orded by Newtonian physics and special relativity� It is
therefore no surprise that many of the results agree with those of Newtonian physics�
Furthermore
 abandoning a description in terms of distorted volume elements and
spacetime geometry has allowed us to recover a clear physical picture of the processes
involved�

Analytical Solutions

A useful property of the system of equations obtained when p � � is that it is easy
to construct analytical solutions ���
 ���� To see this in the Newtonian gauge we
write equation 	�����
 in the form�

�M

�t

�
r

 u

�
�M

�r

�
t

� �� 	�����


Since M is a function of r and t only we can employ the reciprocity relation�
�M

�t

�
r

�
�t

�r

�
M

�
�r

�M

�
t

� �� 	�����


to deduce that �
�t

�r

�
M

�
�

u
� 	�����


��



But we know that u is determined by equation 	�����

 and we also know that
both M and g� are conserved along the �uid streamlines� We can therefore write
g� � g�	M

 and equation 	�����
 can be integrated straightforwardly to give t as a
function of r and M �
To perform the integration it is necessary to make a choice for the sign of u� For

collapsing matter we clearly require u � �
 while for cosmology it turns out that
u � � is the appropriate choice� For this section we can therefore write

�
�t

�r

�
M

� �
�
g�	M


� � �  �M�r
�����

� 	�����


Finally
 we need to choose a form for g�� This amounts to making an initial choice of
u
 since u and g� are related via equation 	�����
� For this section we simplify to the
case in which the matter is initially at rest� This might provide a reasonable model
for a star at the onset of a supernova
 in which there is a catastrophic loss of pressure
due to vast amounts of neutrino production
 and the central core is suddenly left
with no supporting pressure� With u	r� �
 � � we can write

g�
� � �� �M	r�
�r� 	�����


where r� labels the initial r coordinate� We can view the value of r� as carried along
the streamline de�ned by it at t � �
 so can write r� � r�	t� r
 and treat M and g�
as functions of r� only� Equation 	�����
 now becomes

�
�t

�r

�
r�

� �
�
�M

r
� �M

r�

�����
	�����


which integrates to give

t �

�
r�

�

�M

���� �
���� sin��	r�r�
���  	r�r�
���	�� r�r�


���
�

	�����


where we have chosen the initial conditions to correspond to t � ��
Equation 	�����
 determines a streamline for each initial value r�
 and can there�

fore be treated as implicitly determining the function r�	r� t
� SinceM	r�
 and g�	r�

are known
 the future evolution of the system is completely determined� Further�
more
 quantities such as � or �ru can be found directly once r�	r� t
 is known� The
above approach is easily extended to deal with initial conditions other than particles
starting from rest since
 once M	r�
 and g�	r�
 are known
 all one has to do is in�
tegrate equation 	�����
� The ability to give a global description of the physics in a
single gauge allows for simple simulations of a wide range of phenomena �����
An important restriction on the solution 	�����
 is that the streamlines should

not cross� Crossed streamlines would imply the formation of shock fronts
 and in

��



such situations our physical assumption that p � � will fail� Streamline crossing
is avoided if the initial density distribution �	r�
 is chosen to be either constant or
a monotonic�decreasing function of r�� This is physically reasonable and leads to
sensible simulations for a collapsing star�

Singularity Formation

An immediate consequence of equation 	�����
 is that the time taken before a given
streamline reaches the origin is given by

t� � �
�
r����M

����
� 	�����


Since the global time t agrees with the proper time for observers comoving with the
�uid
 equation 	�����
 is also the lapse of proper time from the onset of collapse to
termination at the singularity as measured by any particle moving with the dust� As
pointed out in Section ���� of ����
 the formula 	�����
 agrees with the Newtonian
result� For the reasons given above
 this should no longer be a surprise�
Since g� and M are conserved along a streamline
 equation 	�����
 shows that

u � g� must become singular as r � �� Thus the central singularity forms when the
�rst streamline reaches the origin� Near r� � � the initial density distribution must
behave as

�	r�
 � �� �O	r��
 	�����


so the mass function M	r�
 is

M	r�
 �
��

�
r�

� �O	r�

� 	�����


It follows that

lim
r���

�
�
r����M

����
�
�
�������

����
	�����


so the central singularity forms after a time

tf �

�
��

��G��

����

	�����


where �� is the initial density at the origin and the gravitational constant G has
been included�
A simulation of this process is shown in Figure �
 which plots the �uid streamlines

for the initial density function

� �
��

	�  	r�a
�
�
� 	�����


��
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Figure �� Fluid streamlines for dust collapsing from rest� The initial density is
given by equation ���	
�� with �� � ���� and a � �� The singularity �rst forms at
tf � �����

The streamlines all arrive at the singularity after a �nite time
 and the bunching
at tf can be seen clearly� Solutions can be extended beyond the time at which the
singularity �rst forms by including an appropriate ��function at the origin�
A further point revealed by such simulations is that it is possible to have quite

large di�erences between the total rest mass �� � �	r � �
 and the �nal mass
of the singularity
 M � For example
 for the case plotted in Figure � we �nd that
�� � ����
 whereasM � ����� In this case nearly � times as many baryons have gone
into forming the black hole than is apparent from its massM � The possibility of large
di�erences betweenM and � is usually ignored in discussions of the thermodynamics
of black holes 	see footnote �� of ����
�

Horizon Formation

Any particle on a radial path has a covariant velocity of the form

v � coshu et  sinhu er� 	�����


The underlying trajectory has $x � h	v

 so the radial motion is determined by

$r � coshu g�  sinhu g�� 	�����


��



Since g� is negative for collapsing matter
 the particle can only achieve an outward
velocity if g�� � g�

�� A horizon therefore forms at the point where

�M	r� t
�r � �� 	�����


To illustrate the formation of a horizon
 we again consider the initial density pro�le of
equation 	�����
� By inverting 	�����
 at �xed t
 r� is found as a function of r� From
this
 	�� �M	r� t
�r
 is calculated straightforwardly
 and this quantity is plotted on
Figure � at di�erent time slices� The plots show clearly that the horizon forms at a
�nite distance from the origin� It is conventional to extend the horizon back in time
along the past light�cone to the origin 	r � �

 since any particle inside this surface
could not have reached the point at which ���M�r �rst drops to zero
 and hence is
also trapped ����� The ease with which horizon formation is treated again illustrates
the advantages of working in a non�diagonal gauge� Such considerations will clearly
be important when performing numerical studies of more realistic collapse scenarios�
A �nal point is that
 since u is negative
 it follows that f�g� � f�g� � u must

also be negative� This tells us that the �elds that remain after the collapse process
has �nished are in the class de�ned by f�g� � f�g� � �� at the horizon� This time
direction is then frozen into the �elds
 as discussed in Section ����

��� Cosmology

The equations of Table � are su�ciently general to deal with cosmology as well as
astrophysics� In recent years
 however
 it has once more become fashionable to in�
clude a cosmological constant in the �eld equations� The derivation of Section ��� is
largely una�ected by the inclusion of the cosmological term
 and only a few modi�c�
ations to Table � are required� The full set of equations with a cosmological constant
incorporated are summarised in Table ��
In cosmology we are interested in homogeneous solutions to the equations of

Table �� Such solutions are found by setting � and p to functions of t only
 and it
follows immediately from the Lrp equation that

G � � � f� � �� 	�����


For homogeneous �elds the Weyl component of the Riemann tensor must vanish

since this contains directional information through the er vector� The vanishing of
this term requires that

M	r� t
 �
�

�
�r��� 	�����


which is consistent with the LrM equation� The LtM and Lt� equations now reduce
to

F � g��r 	�����


��
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Figure �� Simulation of collapsing dust in the Newtonian gauge� Successive time
slices for the horizon function 	� � �M	r� t
�r
 versus x are shown� with the top
curve corresponding to t � � and lower curves to successively later times� The
initial velocity is zero� and the initial density pro�le is given by equation ���	
��
with �� � ���� and a � �� There is no horizon present initially� but a trapped region
quickly forms� since in regions where �� �M�r � � photons can only move inwards�

and

$� � ��g�	� p
�r� 	�����


But we know that Lrg� � Fg�
 which can only be consistent with 	�����
 if

F � H	t
� g�	r� t
 � rH	t
� 	�����


The Ltg� equation now reduces to a simple equation for $H


$H  H� � +�� � ���
�
	� �p
� 	�����


Finally
 we are left with the following pair of equations for g��

Ltg� � � 	�����


Lrg� � 	g�
� � �
�r� 	�����


��



The h�function

h	et
 � f�e
t

h	er
 � g�e
r  g�e

t

h	e

 � e


h	e�
 � e�

The ��function

�	et
 � Geret

�	er
 � Feret

�	%�
 � g��r %�et  	g� � �
�r er%�
�	%�
 � g��r %�et  	g� � �
�r er %�

Directional derivatives
Lt � f��t  g��r

Lr � g��r

Equations relating the
h� and ��functions

Ltg� � Gg�

Lrg� � Fg�

f� � expf
R r�G�g� drg

De�nition of M M � �
�
r	g�� � g�

�  � � +r���


Remaining derivatives
Ltg� � Gg� �M�r�  r+�� � ��rp
Lrg� � Fg�  M�r� � r+�� � ��r�

Matter
derivatives

LtM � ���g�r�p Lt� � �	�g��r  F 
	� p


LrM � ��g�r
�� Lrp � �G	� p


Riemann
tensor

R	B
 � ��	� p
B �etet � �
�	��� +
B

��
�	M�r� � �����
	B  �
rB
r


Fluid stress�energy tensor T 	a
 � 	� p
a�etet � pa

Table �� Equations governing a radially�symmetric perfect �uid 
 case with a non�
zero cosmological constant +� The shaded equations di�er from those of Table ��

The latter equation yields g�
� � �  r��	t
 and the former reduces to

$� � ��H	t
�� 	�����


Hence g� is given by

g�
� � � � kr� expf��

Z t

H	t�
 dt�g� 	�����


where k is an arbitrary constant of integration� It is straightforward to check

��



The h�function
h	a
 � a a�er�	g� � �
er  H	t
ret�

g�
� � �� kr� expf�� R tH	t�
 dt�g

The ��function �	a
 � H	t
a�et� 	g� � �
�r a�	eret
et

The density
��

�
� � H	t
� � +��  k expf��

Z t

H	t�
 dt�g

Dynamical
equations

$H  H� � +�� � ����� 	�  �p

$� � ��H	t
	� p


Table �� Equations governing a homogeneous perfect �uid�

that 	�����
 is consistent with the equations for $H and $�� The full set of equa�
tions describing a homogeneous perfect �uid are summarised in Table ��
At �rst sight
 the equations of Table � do not resemble the usual Friedmann

equations� The Friedmann equations are recovered straightforwardly
 however
 by
setting

H	t
 �
$S	t


S	t

� 	�����


With this substitution we �nd that

g�
� � � � kr��S� 	�����


and that the $H and density equations become

,S

S
� +
�
� ���

�
	� �p
 	�����


and

$S�  k

S�
� +
�
�
��

�
�� 	�����


recovering the Friedmann equations in their standard form ����� The intrinsic treat�
ment has therefore led us to work directly with the �Hubble velocity� H	t

 rather
than the �distance� scale S	t
� There is a good reason for this� Once the Weyl tensor
is set to zero
 the Riemann tensor reduces to

R	B
 � ��	� p
B �etet � �
�	��� +
B� 	�����


��



and we have now lost contact with an intrinsically�de�ned distance scale� We can
therefore rescale the radius variable r with an arbitrary function of t 	or r
 without
altering the Riemann tensor� The Hubble velocity
 on the other hand
 is intrinsic
and it is therefore not surprising that our treatment has led directly to equations for
this�
Among the class of radial rescalings a particularly useful one is to rescale r to

r� � S	t
r� This is achieved with the transformation

f	x
 � x�etet  Sx�etet� 	�����


so that
 on applying equation 	���

 the transformed h�function is

h
�
	a
 � a�etet  �

S
�	�� kr�
���a�erer  a�
r 
r�� 	�����


The function 	�����
 reproduces the standard line element used in cosmology� We
can therefore use the transformation 	�����
 to move between the �Newtonian� gauge
developed here and the gauge of 	�����
� This is useful for later sections
 where the
Maxwell and Dirac equations are solved in a cosmological background described
by 	�����
� The di�erences between these gauges can be understood by considering
geodesic motion� A particle at rest with respect to the cosmological frame 	de�ned
by the cosmic microwave background
 has v � et� In the gauge of 	�����
 such a
particle is not moving in the �atspace background 	the distance variable r is equated
with the comoving coordinate of GR
� In the Newtonian gauge
 on the other hand

comoving particles are moving outwards radially at a velocity $r � H	t
r
 though
this expansion centre is not an intrinsic feature� Of course
 attempting to distinguish
these pictures is a pointless exercise
 since all observables must be gauge�invariant�
All that is of physical relevance is that
 if two particles are at rest with respect
to the cosmological frame 	de�ned by the cosmic microwave background

 then the
light�travel time between these particles is an increasing function of time and light
is redshifted as it travels between them�

Dust Models

The utility of the Newtonian gauge in cosmology has been independently discovered
by other authors ���
 ���� Here we illustrate its advantages for dust models 	p � �
�
Setting p to zero implies that

H	t
 � � $����� 	�����


so

g�
� � �� kr����� 	�����


��



and

H	t
 �
�
��

�
�� k����  

+

�

����
� 	�����


We are therefore left with a single �rst�order di�erential equation for �� Explicit
solutions of this equations are often not needed
 as we can usually parameterise time
by the density �	t
�
If we now look at the trajectories de�ned by the �uid
 we �nd that

v � et 	�����


� $x � et  rH	t
er� 	�����


It follows that

$r�r � H	t
 � � $���� 	�����


and hence that

r�r� � 	����

����� 	�����


The �uid streamlines form a family of spacetime curves spreading out from the origin
at the initial singularity 	when � � �
� The Newtonian gauge therefore describes
an expanding universe in a very simple
 almost naive manner� Since all points in a
homogeneous cosmology are equivalent
 we can consider ourselves to be located at
r � �� The Newtonian gauge then pictures our observable universe as a ball of dust
expanding outwards radially from us�
Whilst the picture provided by the Newtonian gauge has no physical reality of

its own
 it does have some heuristic merit and can provide a useful aid to one�s
physical intuition� For example
 consider the familiar relationship between angular
size and redshift� An initially surprising feature of this relationship is that
 beyond
a certain redshift
 angular sizes stop decreasing and start increasing� This result
is easily understood in the Newtonian gauge� Consider the photon paths shown in
Figure �� 	These paths are for a k � � and + � � universe
 though the comments are
applicable more generally�
 Suppose that at some �nite time t� we receive a photon
from the distant past� This photon must have followed part of a path which begins
on the origin at t � �� Before a certain time in the past
 therefore
 photons received
by us must have initially travelled outwards before turning round and reaching us�
The angular size of an observed object is then that appropriate to the actual r
coordinate of the object when it emitted the photons� Since the value of r decreases
before a certain time
 angular sizes appear larger for objects which emitted photons
before this time�
A radial null geodesic has a trajectory

x	
 
 � t	
 
et  r	
 
er� 	�����
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Figure �� Null geodesics for a dust��lled k � + � � universe in the Newtonian gauge�
All geodesics start from the origin at the initial singularity �here set at t � ��� The
dashed line gives the critical distance where photons �turn round� in this gauge�

For these trajectories

v � h��	 $x
 � $t
�
et � rH	t


g�
er
�
 
$r

g�
er 	�����


and the condition that v� � � reduces to

$r�g� � $t	rH	t
�g� 
 �
 	�����


� dr

dt
� rH	t

 g�� 	�����


Since H	t
 is positive in a cooling universe
 the distance at which photons �turn
round� is de�ned by

rc �
g�
H	t


�
�
���

�
 
+

�

�����
� 	�����


��



	In ���� we mistakenly referred to this distance as a particle horizon�
 For k � + � �
it is simple to show that this distance corresponds to a redshift of ����� This result
relates physically measurable quantities
 so is gauge invariant�

Closed Universe Models

The Newtonian gauge presents a particularly simple picture for a closed universe
	k � �
� For k � � the requirement that � � kr����� is positive means that

r�� � k����� 	�����


This places a limit on the speed with which the dust can expand
 so the solution
describes a �nite ball of dust expanding into a vacuum� This ball expands out to
some �xed radius before turning round and contracting back to the origin� The
turning point is achieved where
 for + � �


H	t
 � � 	�����


� � � 	�k���
� 	�����


so the maximum radius is

rmax �
��

�k���
� 	�����


The time taken to reach the future singularity is given by 	�����

 since this cosmo�
logical model is a special case of spherical collapse in which the density is uniform�
This picture of a model for a closed universe is both simple and appealing� It allows
us to apply Newtonian reasoning while ensuring consistency with the full relativistic
theory�
The �nite ball model for a k � � cosmology is clearly useful when considering

experiments with particles carried out near the origin
 but globally one must consider
the boundary properties of the ball� A crucial question is whether the particle
horizon 	the largest region of the universe with which an observer at the origin is
in causal contact
 extends past the edge of the ball or not� It can be shown that
this horizon always lies inside the radius at which g� becomes imaginary
 except
at the turnaround point 	the point at which the ball reaches its maximum radius


where the two radii coincide� A suitable choice of cuto� radius is therefore available
in either the expanding or contracting phase separately
 but what happens at the
turnaround point is potentially ambiguous� When discussing �eld theory
 however

the �nite ball model is inadequate� One must instead use a global gauge so
 in
Section ���
 we introduce the �stereographic projection gauge�� This provides a
global solution which can be shown to be spatially closed� This solution is used in
the study of electromagnetism 	Section ���
 and the Dirac equation 	Section ���
 in
a cosmological background� It is possible to treat the stereographic projection gauge
solution in a form of the Newtonian gauge
 though this possibility is not explored
here�

��



� Electromagnetism in a Gravitational

Background

In Section � we derived �eld equations for the gravitational and Dirac �elds� We
now turn to the derivation of the Maxwell equations in a gravitational background�
A number of applications of these equations are then discussed
 including a simple
derivation of the characteristic surfaces for both the Maxwell and Dirac equations�
The basic dynamical variable is the electromagnetic vector potential A
 for which

the coupling to spinor �elds was derived in Section ���� Under phase rotations of
the spinor �eld
 A transforms as

eA �� eA�r�� 	���


It follows that
 under a displacement
 A must transform in the same way as r�

that is


A �� f	A	x�

� 	���


The covariant form of the vector potential is therefore

A � h	A
� 	���


which is the term that appeared in the Dirac equation 	����
�
From A
 the Faraday bivector F is de�ned by

F � r�A� 	���


This de�nition implies that
 under displacements
 F 	x
 is transformed to F �	x


where

F �	x
 � r�fA	x�

� f	rx��A	x�


� fF 	x�
� 	���


It follows that the covariant analogue of F is de�ned by

F � h	F 
� 	���


which is covariant under position and rotation�gauge transformations
 and is invari�
ant under phase changes�
The same covariant quantity F is obtained if one follows the route used for the

construction of R	a � b
 at 	���
� In particular
 the contracted commutator of two
covariant derivatives gives 	in the absence of torsion


h	�b
�h	�a
�Da�Db�� �
�
�h	�b
h	�a
R	a�b
� � �

�R�� 	���


��



The analogous construction for the �internal� covariant derivative

DI
a� � a�r�� ea�A�i
� 	���


gives

h	�b
�h	�a
�DI
a�D

I
b �� � eh	�b
�h	�a
	a�b
�F�i
� � �eF�i
�� 	���


which clearly identi�es F as a covariant quantity� UnlikeR
 however
 F is a bivector
and equation 	���
 exhibits a curious interaction between this bivector on the left of
�
 and the �xed bivector i
� on the right�
Having de�ned the covariant bivector F 
 it is clear that the appropriate gener�

alisation of the electromagnetic action to include gravitational interactions is

S �
Z
jd�xjdet	h
�� 	��F �F �A�J 
� 	����


where here J is the covariant charge current� Unlike the Dirac action
 the rotation�
gauge �eld �	a
 does not appear in this action� It follows that the electromagnetic
�eld does not act as a source of spin� The action 	����
 is varied with respect to A

with h	a
 and J treated as external �elds� The result of this is the equation

r�G � J� 	����


where

G � hh	F 
 det	h
�� 	����


and

J � h	J 
 det	h
��� 	����


Equation 	����
 combines with the identity

r�F � � 	����


to form the full set of Maxwell equations in a gravitational background� We again see
that the classical �eld equations can be expressed in a form from which all reference
to the rotation gauge has been removed�
Some insight into the equations 	����
 and 	����
 is obtained by performing a

space�time split 	see Section ���
 and writing

F � E  iB 	����


G �D  iH 	����


J�� � �  J � 	����


��



In terms of these variables Maxwell�s equations in a gravitational background take
the familiar form

r�B � � r�D � �

r�����E � ��B
�t

r�����H � J  
�D

�t

	����


where r � �� � r � 
i�xi is the �D vector derivative
 and the bold cross ����� is the
traditional vector cross product�

a�����b � �ia�b� 	����


Equation 	����
 shows that the h��eld de�nes the dielectric properties of the space
through which the electromagnetic �elds propagate
 with det	h
��hh determining
the generalized permittivity"permeability tensor� Many phenomena
 including the
bending of light
 can be understood easily in terms of the properties of the dielectric
de�ned by the h��eld�

Covariant Form of the Maxwell Equations

So far we have failed to achieve a manifestly covariant form of the Maxwell equations�
We have
 furthermore
 failed to unite the separate equations into a single equation�
In the absence of gravitational e�ects the equations r�F � J and r�F � � combine
into the single equation

rF � J� 	����


The signi�cance of this equation is that the r operator is invertible
 whereas the
separate r� and r� operators are not ���
 ���� Clearly
 we expect that such a
uni�cation should remain possible after the gravitational gauge �elds have been
introduced� To �nd a covariant equation
 we �rst extend the �wedge� equation 	����

to include higher�grade terms� To make the derivation general we include the spin
term
 in which case we �nd that

$D� $h	a�b
 � � $D� $h	a
��h	b
� h	a
�� $D� $h	b
�
� ��h	a
�S��h	b
� �h	a
��h	b
�S�
� �S�h	a�b
 	����


and
 more generally
 we can write

D�h	Ar
 � h	r�Ar
  �hSArir��� 	����


We can therefore replace equation 	����
 by

D�F � �S�F � �� 	����


��



We next use the rearrangement

r�	h	F
 det	h
��
 � ir�	ih	F
 det	h
��

� ir�	h��	iF


� ih

��
�D�	iF
  �	iF
�S� 	����


to write equation 	����
 as

D�F � �S �F � ih	Ji
 � J � 	����


Equations 	����
 and 	����
 now combine into the single equation

DF � �SF � J � 	����


which achieves our objective� Equation 	����
 is manifestly covariant and the ap�
pearance of the DF term is precisely what one might expect on �minimal�coupling�
grounds� The appearance of the spin term is a surprise
 however� Gauge arguments
alone would not have discovered this term and it is only through the construction of
a gauge�invariant action integral that the term is found� Equation 	����
 should be
particularly useful when considering electromagnetic e�ects in regions of high spin
density
 such as neutron stars�
To complete the description of electromagnetism in a gravitational background we

need a formula for the free��eld stress�energy tensor� Applying the de�nition 	����

we construct

Temh��	a
 � �
�
det	h
 �h�a	hh	F 
h	F 
 det	h
��i

� h	a�F 
�F � �
�h

��	a
F �F � 	����


Hence


Tem	a
 � h	h	a
�F 
�F � �
�
aF �F

� 	a�F
�F � �
�aF �F

� ��
�FaF � 	����


which is the natural covariant extension of the gravitation�free form �FaF��� The
tensor 	����
 is symmetric
 as one expects for �elds with vanishing spin density�

��� Characteristic Surfaces

In the STA the Maxwell and Dirac equations are both �rst�order di�erential equa�
tions involving the vector derivative r� For electromagnetism
 this �rst�order form
of the equations o�ers many advantages over the equivalent second�order theory ���

���� We have now seen that gravitational interactions modify both these equations

��



in such a way that the vector derivative r is replaced by the position�gauge co�
variant derivative h	r
� As an illustration of the utility of �rst�order equations

both without and with gravitational e�ects
 we now give a simple derivation of the
properties of characteristic surfaces�
Consider
 initially
 a generic equation of the type

r� � f	�� x
 	����


where � is some arbitrary �eld
 and f is some known function� Suppose that an
initial set of data is given over some three�dimensional surface in spacetime
 and we
wish to propagate this information o� the surface into the adjoining region� We pick
three vectors
 a
 b and c
 which are tangent to the surface� From our initial data we
can construct a�r�
 b�r� and c�r�� Now de�ne

n � ia�b�c 	����


and use nr � n�r n�r to decompose 	����
 into

n�r� � �n�r�  nf	�
� 	����


The right�hand side of 	����
 contains the term

n�r� � i	a�b�c
�r�
� i	a�b c�r�� a�c b�r� b�c a�r�
� 	����


which is therefore known� It follows that we know all the terms on the right�hand
side of equation 	����
 and can therefore construct n�r�� This gives us the derivative
required to propagate o� the surface� The only situation for which propagation is
impossible is when n remains in the surface� This occurs when

n�	a�b�c
 � �
� n�	ni
 � �

� n�n � �� 	����


It follows that the characteristic surfaces for any �rst�order equation of the type
de�ned by 	����
 are null surfaces� These considerations automatically include the
Maxwell and Dirac equations� It is notable how this result follows from purely
algebraic considerations�
The generalisation to a gravitational background is straightforward� Equation

	����
 is generalised to

h	r
� � f	�
� 	����


and we assume that a gauge choice has been made so that all the �elds 	apart from
�
 are known functions of x� Again
 we assume that the initial data consist of values
for � over some three�dimensional surface
 so we can still determine a�r� etc� Since

a�r � h��	a
�h	r
 	����


��



it follows that the vector of interest is now

ih��	a
�h��	b
�h��	c
 � ih��	ni
 � h	n
 det	h
��� 	����


This time we multiply equation 	����
 by h	n
 and �nd that h	n
 �h	r
� can be
constructed entirely from known quantities� We can therefore propagate in the
hh	n
 direction
 so we now require that this vector does not lie in the initial surface�
The analogue of 	����
 is therefore

hh	n
�n � �� or h	n
� � �� 	����


and the characteristic surfaces are now those for which h	n
 is null� This is the
obvious covariant extension of n being a null vector�

��� Point Charge in a Black�Hole Background

The problem of interest here is to �nd the �elds generated by a point source held
at rest outside the horizon of a radially�symmetric black hole� The h�function in
this case can be taken as that of equation 	����
� The solution to this problem can
be found by adapting the work of Copson ���� and Linet ���� to the present gauge
choices� Assuming
 for simplicity
 that the charge is placed on the z�axis a distance
a from the origin 	a � �M

 the vector potential can be written in terms of a single
scalar potential V 	r� �
 as

A � V 	r� �
	et  

p
�Mr

r � �M er
� 	����


It follows that

E � �rV B � �
p
�Mr

r	r � �M

�V

��

� 	����


H � � D � ��V
�r


r � �

r � �M
�V

��


 	����


and

F � ��V
�r


r � �

r � �M
�V

��
	

  

q
�M�r i
�
� 	����


The Maxwell equations now reduce to the single partial di�erential equation

�

r�
�

�r

�
r�
�V

�r

�
 

�

r	r � �M

�

sin�

�

��

�
sin�

�V

��

�
� ��� 	����


where � � q�	x � a
 is a ��function at z � a� This was the problem originally
tackled by Copson ���� who obtained a solution that was valid locally in the vicinity

��



of the charge
 but contained an additional pole at the origin� Linet ���� modi�ed
Copson�s solution by removing the singularity at the origin to produce a potential
V 	r� �
 whose only pole is on the z�axis at z � a� Linet�s solution is

V 	r� �
 �
q

ar

	r �M
	a�M
�M� cos��

D
 
qM

ar
� 	����


where

D � �r	r � �M
  	a�M
� � �	r �M
	a�M
 cos�  M� cos�������
	����


An important feature of of this solution is that once 	����
 is inserted back
into 	����
 the resultant F is both �nite and continuous at the horizon� Further�
more
 since h is well�de�ned at the horizon
 both F and G must also be �nite and
continuous there� Working in the Newtonian gauge has enabled us to construct a
global solution
 and we can therefore study its global properties� One simple way to
illustrate the global properties of the solution is to plot the streamlines of D which

from equation 	����

 is divergenceless away from the source� The streamlines should
therefore spread out from the charge and cover all space� Since the distance scale r
is �xed to the gravitationally�de�ned distance
 the streamlines of D convey genuine
intrinsic information� Hence the plots are completely una�ected by our choice for the
g� or g� functions
 or indeed our choice of t�coordinate� Figure � shows streamline
plots for charges held at di�erent distances above the horizon� Similar plots were
�rst obtained by Hanni � Ru�ni ���� although
 as they worked with the Schwarz�
schild metric
 they were unable to extend their plots through the horizon� The plots
reveal an e�ective contraction in the radial direction� It is not hard to show that the
contraction is precisely that of a particle moving with the free�fall velocity 	�M�a
���

relative to a �xed observer�
The description presented here of the �elds due to a point charge is very di�erent

from that advocated by the �Membrane Paradigm� ����� The membrane paradigm
was an attempt to develop the theory of black holes in a way that
 as far as possible

employed only familiar physical concepts� In this way
 gravitational e�ects could be
incorporated correctly without requiring an understanding of the full GR treatment�
The hope was that astrophysicists would adopt this paradigm when modelling re�
gions where black�hole physics could be signi�cant
 such as at the heart of a quasar�
The paradigm works by drawing a veil over the horizon 	the membrane
 and con�
centrating on the physics outside the horizon as seen by observers remaining at a
�xed distance 	�ducial observers
� Our view
 however
 is that it is the Newtonian
gauge which provides the clearest understanding of the physics of black holes whilst
requiring minimal modi�cation to Newtonian and special�relativistic ideas� Further�
more
 writing the Maxwell equations in the form 	����
 removes any di�culties in
applying conventional reasoning to the study electromagnetism in a gravitational
background�

��
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Figure �� Streamlines of the D �eld� The horizon is at r � � and the charge is
placed on the z�axis� The charge is at z � � and z � ���� for the top and bottom
diagrams respectively� The streamlines are seeded so as to re�ect the magnitude
of D� The streamlines are attracted towards the origin but never actually meet it�
Note the appearance of a �cardiod of avoidance� as the charge gets very close to the
horizon� The equation for this cardiod is r �M	� cos�
� which is found by setting
D � � when a � �M �

��



There are other ways that our approach o�ers advantages over the membrane
paradigm� When applying the membrane paradigm one has to work with quantities
which are singular at the horizon
 and this is hardly a recipe for applying traditional
intuition( As we have seen
 once formulated in the Newtonian gauge 	or any other
gauge admissible in GTG
 all physical quantities are �nite� The membrane paradigm
also warns physicists against producing plots such as Figure �
 because such plots
depend on the choice of radial coordinate� But our intrinsic approach makes it clear
that such plots are meaningful
 because r is determined uniquely by the Riemann
tensor� Presenting the plots in the form of Figure � enables direct physical inform�
ation to be read o�� In short
 the simple physical picture provided by our intrinsic
method and Newtonian�gauge solution disposes of any need to adopt the arti�cial
ideas advocated by the membrane paradigm�

��� Polarisation Repulsion

An interesting feature of the above solution 	����
 is the existence of a repulsive
�polarisation� force ����
 one e�ect of which is that a smaller force is needed to keep
a charged particle at rest outside a black hole than an uncharged one� In their
derivation of this force
 Smith � Will ���� employed a complicated energy argument
which involved renormalising various divergent integrals� Here we show that the
same force can be derived from a simple argument based on the polarisation e�ects
of the dielectric described by a black hole� First
 however
 we must be clear how
force is de�ned in GTG� In the presence of an electromagnetic �eld the equation of
motion for a point particle 	����
 is modi�ed to

m $v � �qF �m�	v
��v� 	����


We therefore expect that any additional force should also be described by a covariant
bivector which couples to the velocity the same way that F does� So
 if we denote
the externally applied force as W 
 the equation of motion for a neutral test particle
becomes

m $v � �W �m�	v
��v� 	����


Now
 suppose that W is chosen so that the particle remains at a �xed distance a
outside the horizon of a black hole� The equation for the trajectory is

x	
 
 � t	
 
et  aer	��� ��
� 	����


where the constants �� and �� specify the angular position of the particle� The
covariant velocity is

v � $th��	et
� 	����


��



and the condition that v� � � forces

$t�	�� �M�a
 � �� 	����


so that $t
 and hence v
 are constant� Equation 	����
 now reduces to

W �m�	v
 � � 	����


� W � m $t�	et
 �
Mm

a�

�
� � �M

a

�����

a� 	����


where 
a is the unit outward spatial vector from the source to the particle� The
magnitude of the force is therefore

jW j � Mm

a�

�
�� �M

a

�����
	����


and it is not hard to check that this result is gauge�invariant� Equation 	����
 reduces
to the Newtonian formula at large distances and becomes singular as the horizon is
approached
 where an in�nite force is required to remain at rest�
We now want to see how this expression for the force is modi�ed if the particle is

charged and feels a force due to its own polarisation �eld� From 	����
 the extra term
in the force is simply F 
 and only the radial term contributes� From equation 	����

this is just ��rV 
r� Since the charge lies on the z axis
 we need only look at V
along this axis
 for which

V 	z
 �
q

jz � aj �
qM

jz � aj
�
�

a
 
�

z

�
 
qM

az
� 	����


The singular terms must be due to the particle�s own Coulomb �eld
 and so do not
generate a polarisation force� The only term which generates a force is therefore the
�nal one
 which is precisely the term that Linet added to Copson�s original formula(
This term produces an outward�directed force on the charge
 of magnitude q�M�a��
The applied force is therefore now

W �

�
Mm

a�

�
�� �M

a

����� � Mq�

a�

�

a� 	����


so a smaller force is needed to keep the particle at rest outside the horizon� This
result agrees with that found in ����
 though our derivation avoids the need for in�nite
mass renormalisation and is considerably simpler� This result is a good example of
the importance of �nding global solutions� The polarisation force is felt outside the
horizon
 yet the correction term that led to it was motivated by the properties of
the �eld at the origin�

��



��� Point Charge in a k � � Cosmology

We saw in Section ��� that one form of the h�function for a homogeneous cosmology
is de�ned by 	�����


h	a
 � a�etet  ��	�� kr�
���a�erer  a�
r 
r�� 	����


where � � ��S� When k is positive
 however
 the function 	����
 is unde�ned for
r � k���� and so fails to de�ne a global solution� A globally�valid solution is obtained
with the displacement

f	x
 � x�etet  r

�  kr���
er� 	����


which results in the particularly simple solution

h
�
	a
 � a�etet  �	�  kr���
a�etet� 	����


This solution is well�de�ned for all x and generates an �isotropic� line element� 	The
solution can also be viewed as resulting from a stereographic projection of a ��
sphere�

We want to �nd the �elds due to a point charge in the background de�ned

by 	����
� Since the h�function is diagonal we start with the obvious ans,atz

A � �V 	x
 et� 	����


so that

E � ��rV 	����


and

D � ���  kr������rV� 	����


It follows that the equation we need to solve is simply

�r�
�
��  kr������rV

�
� q�	x� a
� 	����


where the charge q is located at x � a� This equation can be solved using the
general technique described by Hadamard 	see also Copson ���� for a discussion of
a similar problem�
 The solution to 	����
 turns out to be

V �
�  ka��� � ks��

�s	�  ka��� � ks��
����
� 	����


where

s �
	x� a
�
�  kr���

� a �
p
a�� 	����
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Figure �� Fieldlines of the D��eld for a point charge in a k � � universe� The
�eldlines follow null geodesics� which are circles in this gauge� The existence of an
image charge is clear�

As a simple check
 V reduces to the usual Coulomb potential when k � ��
Fieldline plots of the D �eld de�ned from 	����
 are shown in Figure �� The

�eldlines follow null geodesics and clearly reveal the existence of an image charge�
The reason for this is can be seen in the denominator of V � Not only is V singular
at s � �
 it is also singular at

�  ka��� � ks�� � �� 	����


So
 if the charge lies on the z axis
 the position of its image is found by solving

k	z � a
�

�  kz�
� �  

ka�

�
	����


from which we �nd that the image charge is located at

z � ���	ka
� 	����


	This is the stereographic projection of the opposite point to the charge on a ��
sphere�
 However
 if we try to remove this image charge by adding a point source

��



at its position
 we �nd that the �elds vanish everywhere
 since the new source has
its own image which cancels the original charge� The image charge is therefore an
unavoidable feature of k � � cosmologies� We comment on this further in Section ��

	 The Dirac Equation in a Gravitational Back�

ground

In this paper we began by introducing the gravitational gauge �elds and minimally�
coupling these to the Dirac action� For our �nal major application we return to
the Dirac equation in a gravitational background� In the absence of an A �eld
 the
minimally�coupled equation 	����
 is

D�i
� � m���� 	���


Here we consider two applications� the case of a black�hole background� and cosmo�
logical models in which the universe is not at critical density�

��� Black�Hole Background

We have already demonstrated that the Newtonian gauge solution dramatically sim�
pli�es the study of black�hole physics
 so this is the natural gauge in which to study
the Dirac equation� We therefore start with an analysis in this gauge
 and then
consider the gauge�invariance of the predictions made� With the gravitational �elds
as described in Section ���
 the Dirac equation 	���
 becomes

r�i
� � 	�M�r
�����
�
�r�  ��	�r
�

�
i
� � m���� 	���


If we pre�multiply by �� and introduce the symbol j to represent right�sided multi�
plication by i
�
 so that j� � �i
�
 then equation 	���
 becomes

j�t� � �jr�  j	�M�r
���r�����r
�
r����

�
 m &�� 	���


where &� � ������ One feature that emerges immediately is that the Newtonian
gauge has recovered a Hamiltonian form of the Dirac equation 	see ���� for a dis�
cussion of operators
 Hamiltonians and Hermiticity in the STA approach to Dirac
theory
� Since the Newtonian gauge involves the notion of a global time
 it might
have been expected that this gauge would lend itself naturally to a Hamiltonian
formulation� A question of some interest is whether it is always possible to make
such a gauge choice and we hope to address this in the near future�
The Hamiltonian 	���
 contains a subtlety� it is Hermitian only away from the

origin� To see why
 consider the interaction term

HI	�
 � j	�M�r
���r�����r
�
r����

�
� 	���


��



For this we �nd thatZ
d�x h�yHI	�
iS �

p
�M

Z
d�

Z �

�
r� dr r�
��h�y�r	r����
i
�iS

�
p
�M

Z
d�

Z �

�
dr hr����y�r	r����
i
�iS

�
Z
d�x h	HI 	�


y�iS  
p
�M

Z
d�

	
r���h�y�i
�iS


�
�
�
	���


where h iS denotes the projection onto the �complex� � and i
� terms and �y � �� !���
	see Appendix A and ����
� For all normalised states the �nal term in 	���
 tends
to zero as r � �� But it can be shown from 	���
 that wavefunctions tend to the
origin as r����
 so the lower limit is �nite and HI is therefore not 	quite
 a Hermitian
operator� This immediately rules out the existence of normalisable stationary states
with constant real energy�
Equation 	���
 can be used to propagate a spinor de�ned over some initial spatial

surface
 and numerical simulations based on this equation give a good picture of the
scattering induced by a black hole� Here
 however
 we wish to focus on an analytical
approach� A result that follows immediately from the Hamiltonian form of the Dirac
equation is that 	���
 is manifestly separable
 so that we can write

�	x
 � �	t
�	x
� 	���


As usual
 the solution of the t�equation is

�	t
 � exp	�i
�Et
� 	���


where E is the separation constant� The non�Hermiticity of HI means that E cannot
be purely real if � is normalisable� The imaginary part of E is determined by
equation 	���
 and
 for suitably normalised states
 we �nd that

Im	E
 � � lim
r��

��
p
�M h�y�ir���� 	���


This equation shows that the imaginary part of E is necessarily negative
 so the
wavefunction decays with time� This is consistent with the fact that the streamlines
generated by the conserved current ��� !� are timelike curves and
 once inside the
horizon
 must ultimately terminate on the origin�
With the t�dependence separated out
 equation 	���
 reduces to

r� � 	�M�r
���r�����r
�
r����

�
� jE� � jm &�� 	���


To solve this equation we next separate out the angular dependence� This is achieved
using the spherical monogenics
 which are the STA equivalent of the �jlm Pauli

��



spinors� These are described in detail in ���� and here we quote the necessary for�
mulae� The unnormalised monogenic �m

l is de�ned by

�m
l � �	l m �
Pm

l 	cos�
� Pm��
l 	cos�
i
��e

m�i��� 	����


where l 
 �
 �	l  �
 	 m 	 l
 and Pm
l are the associated Legendre polynomials�

The two properties of the �m
l relevant here are

r�m
l � �	l�r

r�m

l 	����


and

r

�

r�

m
l

�
� 	l  �
�r �m

l � 	����


Now
 the operator K	�
 � ��	��x�r
��� commutes with the Hamiltonian de�ned
by 	���
� Constructing eigenstates of this operator with eigenvalue �
 leads to solu�
tions of the form

�	x� �
 �

��

�

m
l u	r
  
r�

m
l v	r
i
� � � l  �


r�
m
l u	r

�  �m

l iv	r
 � � �	l  �
� 	����


where � is a non�zero integer and u	r
 and v	r
 are complex functions of r 	i�e� sums
of a scalar and an i
� term
� Substituting 	����
 into equation 	���

 and using the
properties of the spherical monogenics
 we arrive at the coupled radial equations�

� �	�M�r
���

�	�M�r
��� �

��
u��
u��

�
� A

�
u�
u�

�
	����


where

A �
�

��r j	E  m
� 	�M�r
���	�r
��

j	E �m
� 	�M�r
���	�r
�� ���r
�
�
	����


u� and u� are the reduced functions de�ned by

u� � ru u� � jrv� 	����


and the primes denote di�erentiation with respect to r� 	We continue to employ the
abbreviation j for i
��

To analyse 	����
 we �rst rewrite it in the equivalent form

�
� � �M�r

� �u��
u��

�
�

�
� 	�M�r
���

	�M�r
��� �

�
A

�
u�
u�

�
� 	����


This makes it clear that the equations have regular singular points at the origin
and horizon 	r � �M

 as well as an irregular singular point at r � �� To our

���



knowledge
 the special function theory required to deal with such equations has not
been developed� Without it we either attempt a numerical solution
 or look for power
series with a limited radius of convergence� Here we consider the latter approach

and look for power�series solutions around the horizon� To this end we introduce the
series

u� � 	s
�X
k��

ak	
k� u� � 	s

�X
k��

bk	
k� 	����


where 	 � r��M � The index s controls the radial dependence of � at the horizon
 so
represents a physical quantity� To �nd the values that s can take
 we substitute 	����

into 	����
 and set 	 � �� This results in the equation

s

�M

�
a�
b�

�
�

�
� �
� �

��
��	�M
 j	E  m
� 	�M
��

j	E �m
� 	�M
�� ���	�M

��

a�
b�

�

	����


Rewriting this in terms of a single matrix and setting its determinant to zero yields
the two indicial roots

s � � and s � ��
�
 �jME� 	����


The s � � solution is entirely sensible � the power series is analytic
 and nothing
peculiar happens at the horizon� The existence of this root agrees with our earlier
observation that one can evolve the time�dependent equations without encountering
any di�culties at the horizon� The second root is more problematic
 as it leads to
solutions which are ill�de�ned at the horizon� Before assessing the physical content
of these roots
 however
 we must �rst check that they are gauge invariant�
If
 instead of working in the Newtonian gauge
 we keep the gauge unspeci�ed

then
 after separating out the angular dependence
 the equations reduce to

�
Lr Lt

Lt Lr

��
u�
u�

�
�

�
��r �G�� jm� F��
�jm� F�� ���r �G��

��
u�
u�

�
� 	����


We can still assume that the t�dependence is of the form exp	�jEt

 so that equa�
tion 	����
 becomes

�
g� g�
g� g�

��
u��
u��

�
� B

�
u�
u�

�
	����


where

B �
�
��r �G��  jf�E j	m f�E
 � F��
�j	m� f�E
� F�� ���r �G��  jf�E

�
� 	����


���



Now
 since g�� � g�
� � �� �M�r holds in all gauges
 we obtain

�
�� �M�r

� �u��
u��

�
�

�
g� �g�
�g� g�

�
B

�
u�
u�

�
� 	����


and substituting in the power series 	����
 and setting 	 � � produces the indicial
equation

det

��
g� �g�
�g� g�

�
B � s

r
I

�
r��M

� �� 	����


where I is the identity matrix� Employing the result that

g�G � g�F �
�
�
�r	g�

� � g�
�
 �M�r� 	����


we �nd that the solutions to the indicial equation are now

s � � and s � ��
�  �jME	g�f� � g�f�
� 	����


But in Section ��� we established that g�f� � g�f� �  � at the horizon for all
solutions with a forward time direction� This demonstrates that the indices are
indeed intrinsic
 with the sign of the imaginary term for the singular root picking up
information about the time direction implicit in the presence of the horizon�
The fact that s � � is always a solution of the indicial equation means that solu�

tions always exist which are analytic at the horizon� Determining the split between
ingoing and outgoing states of these solutions enables one to calculate re�ection
coe�cients and scattering amplitudes� The question we wish to consider is whether
the second
 singular
 root can be physically signi�cant� To address this we look at
the current� The covariant current J is given by ��� !�
 and satis�es D�J � �� The
corresponding non�covariant quantity is therefore

J � h	��� !�
 det	h

�� 	����


which satis�es the �atspace conservation equation r�J � �� It is the streamlines of
J that are plotted as functions of x and determine the �ow of density� The crucial
terms in J are the time component and radial component
 which 	ignoring the overall
exponential decay term
 are given by

�� �J � �

r�

h
f�	u�!u�  u�!u�
  f�	u�!u�  !u�u�


i
�m
l
!�m
l 	����


and

er �J � �

r�

h
g�	u�!u�  !u�u�
  g�	u�!u�  u�!u�


i
�m
l
!�m
l � 	����


���



The ffig and fgig are �nite for all admissible solutions so
 for the s � � solution

the components of J are well�de�ned at the horizon� Furthermore
 it is easily shown
that for s � � the radial �ux at the horizon always points inwards� The s � � root
therefore describes the case where the �ux crosses the horizon and continues onto
the singularity�
For the singular root we must �rst decide on a branch for the solution so that

� is fully speci�ed on both sides of the horizon� We can then assess whether the
discontinuity in �
 and the discontinuity in the current generated by it
 are physically
acceptable� To do this
 we �rst write 	s as

	s � expf	��
�
 �jME
 ln	r � �M
g� 	����


We can now write

ln	r � �M
 � ln jr � �M j  j arg	r � �M
� 	����


and for the choice of argument we take

arg	r � �M
 �
��

� r � �M

�� r � �M�
	����


	The choice of sign will be discussed further below�
 If we now take the limit r� �M
from above and below we �nd that the �� component of J is given by

�� �J � A	�� �
e���tjr � �M j�� 
 �M� �
��

� r � �M

expf��MErg r � �M 	����


where A	�� �
 is a positive�de�nite
 �nite term and we have split E into real and
imaginary parts as

E � Er � j�� 	����


Equation 	����
 is valid in all gauges for which g�f� � g�f� �  � at the horizon�
While the density �� �J is singular at the horizon
 the presence of the positive term
�M� ensures that any integral over the horizon is �nite and the solution is therefore
normalisable� This link between the properties of � at the horizon and at the origin
	where � is determined
 provides another example of the importance of �nding global
solutions to the �eld equations� The radial current now turns out to be

er �J � A	�� �


�M
e���tjr � �M j�M� �

��

� r � �M

� expf��MErg r � �M 	����


and is therefore zero at the horizon
 and inward�pointing everywhere inside the
horizon� It appears that the existence of the imaginary contribution to E does

���



ensure that that the singular solutions have sensible physical properties
 and the
singularity in � at the horizon is no worse than that encountered in the ground state
of the hydrogen atom ����� What is less clear
 however
 is the extent to which the
properties of � at the horizon are compatible with the original equation 	���
� In
particular
 since � is both singular and non�di�erentiable at the horizon
 it does not
appear that the singular root can be viewed as de�ning a solution of 	���
 over all
space�

��� The Hawking Temperature

A number of authors have attempted to give derivations of the Hawking temperature
and particle �ux due to a black hole from an analysis of �rst�quantised theory
 i�e�
from the properties of wave equations alone ���
 ��
 ���� This work has generated
some controversy ����
 so it is interesting to assess how the ideas stand up in GTG�
These derivations focus on the singular solutions to the wave equation 	either Klein�
Gordon or Dirac

 and study the properties of these solutions under the assumption
that the energy is real� If one ignores the problems that � � � introduces for the
normalisability of � and presses ahead
 then from 	����
 there is now a non�zero
current at the horizon and
 furthermore
 there is a net creation of �ux there� The
ratio of the outward �ux to the total �ux is simply

er �J�
er �J� � er �J� �

�

e��ME  �
	����


which de�nes a Fermi�Dirac distribution with temperature

T �
�

��MkB
� 	����


Remarkably
 this is the temperature found by Hawking ����� The fact that both
the correct Fermi�Dirac statistics and Hawking temperature can be derived in this
manner is astonishing
 since both are thought to be the result of quantum �eld
theory� But what can we really make of this derivation� The �rst problem is that
setting � to zero means that the density is no longer normalisable at the horizon �
any integral of the density over the horizon region diverges logarithmically
 which is
clearly unphysical� A further problem relates to the choice of branch 	����
� Had
the opposite branch been chosen we would not have obtained 	����
 and
 as pointed
out in ����
 there is no a priori justi�cation for the choice made in 	����
�
For the above reasons
 the �derivation� of 	����
 cannot be viewed as being sound�

The remarkable thing is that the same techniques can be used to �derive� the correct
temperatures for the Reissner�Nordstr,om and Rindler cases
 as well as the Schwinger
production rate in a constant electric �eld� This will be discussed elsewhere� These
further analyses contain another surprise� the temperature at the interior horizon
of a Reissner�Nordstr,om black hole is necessarily negative( However
 while these

���



analyses are both interesting and suggestive
 it is only through a study of the full
quantum �eld theory in a black hole background that one can be sure about particle
production rates� This too will be treated elsewhere�
A �nal point in this section is that all our analyses have been based on working

with the correct time�asymmetric solutions admitted in GTG� On attempting to
force through the analysis in the �Schwarzschild� gauge 	g� � f� � �

 one discovers
that the indices are now given by

s � ��
� 
 �jME� 	����


In this case no analytic solution is possible
 and even the presence of an exponential
damping factor does not produce a normalisable current at the horizon� This only
serves to reinforce the importance of working with global solutions
 since there is no
doubt that the presence of non�singular
 normalisable solutions is an intrinsic feature
of horizons�

��� The Dirac Equation in a Cosmological Background

As a second application we consider the Dirac equation in a cosmological background�
We have a choice of form of h�function to use
 of which the simplest is that de�ned
by 	�����



h
�
	a
 � a�etet  �

S
�	�� kr�
���a�erer  a�
r 
r�� 	����


The Dirac equation in this background takes the form

�
et�t  

�

S
�	�� kr�
���er�r  e
�
  e����

�
�i
�

 �
�

�
�H	t
et � ��	� � kr�
��� � ��er

�
�i
� � m���� 	����


where the various functions are as de�ned in Section ���� Our question is this� can
we �nd solutions to 	����
 such that the observables are homogeneous� There is
clearly no di�culty if k � � since
 with p � �
 equation 	����
 is solved by

� � ����e�i��mt 	����


and the observables are �xed vectors which scale as �	t
 in magnitude ����� But
what happens when k �� �� It turns out that the solution 	����
 must be modi�ed
to ����

� �
����

�  
p
�� kr�

e�i��mt� 	����


���



For the case of k � � both h	a
 and � are only de�ned for r � k����� This problem
is overcome by using the displacement 	����
 to transform to the global solution of
equation 	����
� In this case � is given by

� � �
�
	�  kr���
����e�i��mt� 	����


which diverges as r���
In both the k � � and k � � cases
 � contains additional r�dependence and so is

not homogeneous� Furthermore
 the observables obtained from � are also inhomo�
geneous� In principle one could therefore determine the origin of this space from
measurements of the current density� This clearly violates the principle of homogen�
eity
 though it is not necessarily inconsistent with experiment� The implications for
cosmology of this fact are discussed in the following section� 	Some consequences
for self�consistent solutions of the Einstein�Dirac equations are discussed in ���
 ���
and
 in the context of GR
 in �����

The fact that quantum �elds see this �preferred� direction in k �� � models


whereas classical phenomena do not
 re�ects the gauge structure of the theory� Dirac
spinors are the only �elds whose action couples them directly to the �	a
�function�
All other matter �elds couple to the gravitational �eld through the h��eld only� Dirac
spinors therefore probe the structure of the gravitational �elds directly at level of
the ���eld
 which is inhomogeneous for k �� � models� On the other hand
 classical
�elds only interact via the covariant quantities obtained from the gravitational �elds

which are homogeneous for all values of k� This conclusion is reinforced by the fact
that the Klein�Gordon equation
 for which the action does not contain the �	a
��eld

does have homogenous solutions in a k �� � universe�


 Implications for Cosmology

In Section ��� we discussed some aspects of cosmology as examples of the general
treatment of time�varying spherically�symmetric systems� There we drew attention
to the utility of the Newtonian gauge as a tool for tackling problems in cosmology�
In addition
 in Sections ��� and ��� we studied the Maxwell and Dirac equations
in various cosmological backgrounds� In this section we draw together some of our
conclusions from these sections� Speci�cally
 we discuss redshifts
 di�culties with
k �� � models
 and the de�nitions of mass and energy for cosmological models�

��� Cosmological Redshifts

As a �nal demonstration of the use of the Newtonian gauge
 consider a photon
following a null path in the � � ��� plane� In this case the photon�s momentum can
be written as

P � .R	��  ��
 !R� 	���


���



where

R � e��� i�� 	���


and . is the frequency measured by observers comoving with the �uid� We restrict
to the pressureless case
 so G � � and f� � �
 but will allow � to be r�dependent� A
simple application of equation 	����
 produces

��. � �.�
�
g�
r
sin� � �rg� cos

� �
�
� 	���


where � � � �� But
 since f� � �
 we �nd that ��t � .
 so

d.

dt
� �.

�
g�
r
sin� � �rg� cos

� �
�
� 	���


which holds in any spherically�symmetric pressureless �uid�
For the case of a cosmological background we have g� � H	t
r
 so the angular

terms drop out of equation 	���

 and we are left with the simple equation

d.

dt
� �H	t
. � $����� 	���


which integrates to give the familiar redshift versus density relation

�  z � 	�����

���� 	���


Other standard cosmological relations
 such as the luminosity distance and angu�
lar diameter versus redshift formulae
 can be easily derived in this gauge 	see also
Section ���
�
In ���� equation 	���
 was derived in the gauge of equation 	�����

 in which

all particles comoving with the cosmological �uid are at rest in the background
spacetime� In this gauge the redshift can be attributed to a loss of energy to the
gravitational �eld
 although this is a gauge�dependent viewpoint � the only phys�
ical statement that one can make is embodied in equation 	���
� The explanation of
cosmological redshifts in our theory has nothing to do with �tired light�
 or space�
time playing a dynamic role by expanding
 or even anything to do with Doppler
shifts� The redshift is simply a consequence of the assumption of homogeneity� Ul�
timately
 all physical predictions are independent of the gauge in which they are
made
 although certain gauges may have useful computational or heuristic value�

��� k �� � Cosmologies

At the level of classical 	i�e� non�quantum
 physics
 there is no doubt that k �� �
cosmologies are homogeneous� This is true in both GR and GTG� No prediction

���



derived for classical systems of point particles or for electromagnetic �elds can reveal
a preferred spatial direction in these models� However
 we saw in Section ��� that it
is impossible to �nd homogeneous solutions of the Dirac equation in a k �� � universe�
The consequences of this are
 in principle
 observable
 since the local density gradient
will reveal a preferred radial direction� It has already been pointed out that it is
impossible to �nd a self�consistent solution of the combined system of Dirac�Einstein
equations for any case other than a spatially �at cosmology ���
 ���� We believe that
this is the �rst time that it has been pointed out that even a non�self�consistent
Dirac �eld would be observably inhomogeneous� This is a more damaging result for
k �� � cosmologies
 since it reveals inhomogeneity without assuming that spin�torsion
e�ects have anything to do with the dynamics of the universe�
While the properties of Dirac �elds pose theoretical di�culties for k �� � models


there is no contradiction with present observations� Furthermore
 one could question
the validity of inferences drawn in extrapolating the Dirac equation to cosmological
scales� There is
 however
 a purely classical e�ect which does lead one to question
the validity of k � � models� As we have seen
 when looking at the properties of
�elds in a k � � background it is necessary to work in a globally�de�ned gauge
 such
as that of equation 	����
� In this case the Maxwell equations show that each point
charge must have an image charge present in a remote region of the universe� This
is a consequence of a closed universe that we have not seen discussed
 although it
has doubtless been pointed out before� The necessity for this image charge raises
many problems in attempting to take such a universe seriously�

��� Mass and Energy in Cosmological Models

Setting aside the problems with k �� � models
 a further issue on which our theory
sheds some light is discussions of the total matter and energy content of the universe�
In Section ��� we discussed the distinction between the rest�mass energy and the
total gravitating energy inside a sphere of radius r� Since cosmological models are a
special case of the general theory outlined in Section �
 this same distinction should
be signi�cant in cosmology�
In Section ��� we identi�ed the total gravitating energy of a sphere of radius r

with the function M	r� t
� For all cosmological models
 this is given by 	�����


M	r� t
 �
�

�
�r��	t
� 	���


In strictly homogeneous models the Weyl tensor vanishes
 and we lose an intrin�
sically�de�ned distance scale� But
 if we consider cosmological models as the limiting
case of spherically�symmetric systems
 then there seems little doubt that 	���
 is
still the correct expression for the gravitating energy within a sphere of radius r
surrounding the origin� Moreover
 attempts to discover the gravitating content of a
region rely on perturbations away from ideal uniformity� In these cases an intrinsic

���



distance scale is well de�ned
 since a Weyl tensor is again present� 	Determining the
gravitating content of a region is important in
 for example
 determinations of � �
the ratio of the actual density of the universe to the critical density�
 On the other
hand
 the total rest mass energy within a sphere of radius r centred on the origin
must still be given by 	�����


�	r� t
 �
Z r

�
��s��	t


ds

g�
� 	���


This remains a covariant scalar quantity
 and is just �	t
 multiplied by the covariant
volume integral 	this is the volume one would measure locally using light paths or
�xed rods
�
We have now de�ned two covariant scalar quantities
M	r� t
 and �	r� t

 both of

which are conserved along �uid streamlines in the absence of pressure� If the iden�
ti�cations made in the spherically�symmetric case remain valid in the homogeneous
case
 then the di�erence between these should give the additional contribution to
the total energy beyond the rest�mass energy� For spatially��at universes we have
g� � � so there is no di�erence� 	In terms of the Newtonian�gauge description of
Section ���
 the gravitational potential energy cancels the kinetic energy�
 But
 for
k �� � models
 there is a di�erence because �	r� t
 is now given by

�	r
 �
Z r

�

��s��	s


	�� ks�����
���
ds� 	���


An interesting place to study the di�erence betweenM and � is in a k � � universe
at its �turnaround� point
 as described in Section ���� There one �nds that
 to lowest
order in r
 the di�erence is given by

M	r
� �	r
 � ��M	r

�

�r
� 	����


which is precisely the Newtonian formula for the self�potential of a uniform sphere
of massM	r
� This is what we would have expected since
 at the turnaround point

the kinetic energy vanishes�
The above should only be viewed as suggestive
 but one idea that it appears to

rule out is the popular suggestion that the total energy density of the universe should
be zero ���
 ���� If the above analysis is correct then there is no possibility of the
total energy density M	r� t
 ever being zero� Furthermore
 for spatially��at models
� which we consider the most likely � the total energy density resides entirely in
the rest�mass energies of the particles in the universe and cannot be cancelled by a
negative gravitational contribution�

�� Conclusions

In this paper we developed a theory of gravity consisting of gauge �elds de�ned
in a �at background spacetime� The theory is conceptually simple
 and the role

���



of the gauge �elds is clearly understood � they ensure invariance under arbitrary
displacements and rotations� Whilst it is possible to maintain a classical picture of
the rotation gauge group
 a full understanding of its role is only achieved once the
Dirac action is considered� The result is a theory which o�ers a radically di�erent
interpretation of gravitational interactions from that provided by GR� Despite this

the two theories agree in their predictions for a wide range of phenomena� Di�erences
only begin to emerge over issues such as the role of topology
 our insistence on the use
of global solutions
 and in the interaction with quantum theory� Furthermore
 the
separation of the gauge �elds into one for displacements and one for local rotations
is suggestive of physical e�ects being separated into an inertia �eld and a force
�eld� Indeed
 there is good reason to believe that mass should enter relativistic
multiparticle wave equations in the manner of the h��eld ����� It is possible that
 in
the development of a multiparticle theory
 the h	a
 and �	a
 �elds will be extended
in quite distinct ways� Such possibilities do not appear to be open to a GR�type
theory
 with its reliance on the metric as the �foundation of all� ����� Probably the
closest approach to the theory developed here is the spin�� �eld theory discussed
by many authors 	see Box ���� of ���� and ����
� This theory is usually viewed as
reproducing GR exactly
 albeit in a somewhat ugly form due to the existence of a
background spacetime and the reliance on in�nite series of the �eld variable� By
contrast
 we hope to have demonstrated that GTG has an internal attractiveness of
its own
 as well as simplicity due to its �rst�order nature�
A crucial question to address is whether any experimental tests are likely to dis�

tinguish between GR and GTG in the immediate future� The biggest di�erences
between GR and GTG to emerge to date lie in the treatment of black hole singu�
larities ���
 ��
 ���
 but these are unlikely to be testable for some considerable time(
A more promising area is the link between gravity and quantum spin� GTG makes
a clear prediction for the type and magnitude of this interaction
 whereas it is not
uniquely picked out in ECKS theory 	the extension of GR to incorporate torsion
 or
in more general Poincar�e gauge theory� Any experiment measuring this interaction
would therefore provide a clear test of GTG� A partial exploration of the e�ects of
spin interactions in GTG is contained in �����
The techniques developed here reveal some remarkable properties of spherically�

symmetric systems� It has been known since the �����s ���� that
 in the absence of
pressure
 the dynamical equations of cosmology can be cast in a Newtonian form�
We have now shown that a single
 uni�ed
 Newtonian treatment can be given for
all spherically�symmetric pressureless �uids
 whether homogeneous or not� Further�
more
 e�ects which have hitherto been viewed as the result of spacetime curvature
can now be understood in a simple alternative fashion� The result is a physical
picture in which the background spacetime has no e�ect on either dynamics or kin�
ematics� This
 we believe
 is both new and potentially very useful� For example

simulations of black hole formation
 and studies of the behaviour of the universe as
a whole
 can be carried out in exactly the same framework� All previous studies

���



have relied on cutting and pasting various metrics together
 with the result that no
clear
 global view of the underlying physics can be achieved� These advantages are
exploited in ���� to model the growth of a spherically�symmetric perturbation in a
homogeneous background cosmology
 and to study the e�ect of the perturbation on
the cosmic microwave background�
The intrinsic method described here
 and used to study spherically�symmetric

systems
 is quite general and can be applied to a wide range of problems� In ���� the
method is applied to a restricted class of cylindrically�symmetric systems� Further
publications will present treatments of more general cylindrically�symmetric systems

and of axisymmetric systems� In all cases studied to date
 the intrinsic method has
brought considerable clarity to what would otherwise be a largely mysterious mess
of algebra� This is achieved by removing the dependence on an arbitrary coordinate
system
 and instead working directly with physical quantities� The same technique
also looks well suited to the study of cosmological perturbation theory
 about which
there has been considerable recent debate �����
The interaction between Dirac theory and the gauge theory developed here re�

vealed a number of surprises� The �rst was that consistency of the action principle
with the minimal�coupling procedure restricted us to a theory which is unique up to
the possible inclusion of a cosmological constant� The second was that spatially �at
cosmologies are the only ones that are consistent with homogeneity at the level of
the single�particle Dirac equation� The �nal surprise was provided by a study of the
Dirac equation in a black hole background
 which revealed a remarkable link with
the Hawking temperature and quantum �eld theory� Much work remains to settle
the issues raised by this �nal point
 however�
As a �nal remark
 we also hope to have demonstrated the power of geometric

algebra in analysing many physical problems� Many of the derivations performed
in this paper would have been far more cumbersome in any other language
 and
none are capable of the compact expressions provided by geometric algebra for
 say

the Riemann tensor� In addition
 use of geometric algebra enabled us to remove all
reference to coordinate frames from the fundamental equations� This is a real aid
to providing a clear physical understanding of the mathematics involved� We would
encourage anyone interested in studying the consequences of our theory to take time
to master the techniques of geometric algebra�
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A The Dirac Operator Algebra

In the Dirac�Pauli representation the ��matrices are de�ned as

%�� �

�
I �
� �I

�
� %�k �

�
� �%
k
%
k �

�
� 	A��


where the %
k are the standard Pauli matrices ���
 ���� The Dirac ��matrices act on
spinors
 which are four�component complex column vectors� A spinor j�i is placed in
one�to�one correspondence with an ��component even element of the STA via ���
 ���

j�i �

�
BBB�

a�  ja�

�a�  ja�

�b�  jb�

�b� � jb�

�
CCCA�� � a�  aki
k  i	b�  bki
k
� 	A��


where j here denotes the unit scalar imaginary of conventional quantum mechanics�
The action of the f%��g
 j and %�
 � �j%��%��%��%�� operators maps to

%��j�i � �����
jj�i � �i
�
%�
j�i � �
��

	A��


The Dirac equation


%��	j�� � eA�
j�i � mj�i� 	A��


now takes the STA form

��	���i
� � eA��
�� � m�� 	A��


Recombining to form the vectors r � ���� and A � ��A�
 and postmultiplying by
��
 we arrive at the Dirac equation in the form

r�i
�� eA� � m���� 	A��


Under Lorentz transformations the spinor � transforms single�sidedly to R�
 hence
the presence of the �xed �� and �� vectors on the right�hand side of � does not break
Lorentz invariance�
The role of the Dirac adjoint is played by the geometric operation of reversion


and the quantum inner product projects out the f�� i
�g components from a general
multivector� So
 for example
 the real part of the inner product h &��j��i is given
in the STA by h !����i and the imaginary part by �h !����i
�i� The Dirac current
J� � h &�j%��j�i is now replaced by the set of components

h !������i � �� �	��� !�
� 	A��


���



These are simply the components of the vector ��� !�
 decomposed in the f��g frame�
Reference to the frame is removed from the vector by de�ning the current as

J � ��� !�� 	A��


Similarly
 the role of the spin current is played by the vector

s � ��� !�� 	A��


and the spin trivector is simply is� The Dirac Lagrangian has the equivalent STA
form

h &�j	%��	j�� � eA�
�m
j�i�hr�i�� !� � eA��� !� �m� !�i�
	A���


which is the form used in the main text� A more detailed discussion of the STA
formulation of Dirac theory is contained in �����

B Some Results in Multivector Calculus

We begin with a set of results for the derivative with respect to the vector a in an
n�dimensional space �����

�aa�b � b �aa
� � �a

�a �a � n �aa�Ar � rAr

�a�a � � �aa�Ar � 	n� r
Ar

�aa � n $�aAr $a � 	��
r	n� �r
Ar�

	B��


The results needed for the multivector derivative in this paper are�

�XhXAi � PX	A


�Xh !XAi � PX	 !A
�
	B��


where PX	A
 is the projection of A onto the grades contained in X� These results
are combined using Leibniz� rule� for example


��h� !�i � $��h $� !�i  $��h� $!�i � � !�� 	B��


For the action principle we also require results for the multivector derivative
with respect to the directional derivatives of a �eld �� The aim is again to re�ne the
calculus so that it becomes possible to work in a frame�free manner� 	The derivations
presented here supersede those given previously in �����
 We �rst introduce the �xed

���



frame fejg
 with reciprocal fekg
 so that ej�ek � �jk� The partial derivative of � with
respect to the coordinate xj � ej �x is abbreviated to �
j so that

�
j � ej �r�� 	B��


We can now de�ne the frame�free derivative

���a � a�ej ���j
� 	B��


The operator ���a is the multivector derivative with respect to the a�derivative of ��
The fundamental property of ���a is that

���ahb�r�Mi � a�bP�	M
� 	B��


Again
 more complicated results are built up by applying Leibniz� rule� The Euler�
Lagrange equations for the Lagrangian density L � L	�� a�r�
 can now be given
in the form

��L � �a�r	���aL
� 	B��


which is the form applied in the main text of this paper�
We also need a formalism for the derivative with respect to a linear function�

Given the linear function h	a
 and the �xed frame feig
 we de�ne the scalar coe��
cients

hij � ei�h	ej
� 	B��


The individual partial derivatives �hij are assembled into a frame�free derivative by
de�ning

�h�a	 � a�ejei�hij � 	B��


The fundamental property of �h�a	 is that

�h�a	h	b
�c � a�ejei�hij 	hlkbkcl

� a�ej eicibj
� a�b c 	B���


which
 together with Leibniz� rule
 is su�cient to derive all the required properties
of the �h�a	 operator� For example
 if B is a �xed bivector


�h�a	hh	b�c
Bi � $�h�a	h $h	b
h	c
Bi � $�h�a	h $h	c
h	b
Bi
� a�b h	c
�B � a�c h	b
�B
� h�a�	b�c
��B� 	B���


���



This result extends immediately to give

�h�a	hh	Ar
Bri � hh	a�Ar
Bri�� 	B���


In particular


�h�a	 det	h
 � �h�a	hh	I
I��i
� h	a�I
I��
� det	h
h

��
	a
� 	B���


where the de�nition of the inverse 	����
 has been employed� The derivation of 	B���

a�ords a remarkably direct proof of the formula for the derivative of the determinant
of a linear function�
The above results hold equally if h is replaced throughout by its adjoint h
 which

is the form of the derivative used throughout the main text� Note
 however
 that

�h�a	h	b
 � �h�a	hh	c
bi�c
� a�cb�c
� ba� 	B���


Thus the derivatives of h	b
 and h	b
 give di�erent results
 regardless of any sym�
metry properties of h� This has immediate implications for the symmetry 	or lack
of symmetry
 of the functional stress�energy tensors for certain �elds�
We �nally need some results for derivatives with respect to the bivector�valued

linear function �	a
� The extensions are straightforward
 and we just give the re�
quired results�

�
�a	h�	b
Mi � a�bhMi� 	B���


�
�b	�ahc�r�	d
Mi � a�c b�d hMi�� 	B���


C The Translation of Tensor Calculus

The reformulation of the gauge theory presented in this paper in terms of conven�
tional tensor calculus proceeds as follows� A choice of gauge is made and a set of
scalar coordinates fx�g is introduced� The coordinate frame fe�g


e� � �x

�x�
� 	C��


and reciprocal frame fe�g


e� � rx�� 	C��


���



are then constructed� From these one constructs the vectors

g� � h��	e�
� g� � h	e�
� 	C��


The metric is then given by the �� � matrix

g�� � g� �g�� 	C��


If the x�dependence in g�� is replaced by dependence solely on the coordinates fx�g
then we recover Riemann�Cartan geometry
 where all relations are between coordin�
ates and the concept of a point as a vector is lost�
The connection is de�ned by 	following the conventions of ��
 ���


D�g� � '
�
��g�� 	C��


where D� � g� �D � ��  �	g�
� � We can therefore write

'	�� � g	 �	D�g�
� 	C��


Since

��g�	 � 	D�g�
�g	  g� �	D�g	
� 	C��


we �nd that

��g�	 � '
�
��g�	  '

�
�	g�� � 	C��


which recovers �metric compatibility� of the connection� This is nothing more than
the statement that the a�D operator satis�es Leibniz� rule� Equation 	C��
 can be
inverted to show that the connection contains a component given by the standard
Christo�el symbol� The connection can then be written

'�	� �
n
�
	�

o
�K	�

� � 	C��


where K	�
� is the contorsion tensor and is given by

K	�
� � �S	��  S	

�
� � S�

	�� 	C���


Here S	�
� is the torsion tensor
 equal to the antisymmetric part of the connection�

S	�
� � �

�	'
�
	� � '��	


� �
�g

� �	D	g� �D�g	


� ��
��g� �	D	g

�
� g	�	D�g
�
�

� ��
�
	g��g	
�	D�g�


� �
�	g	�g�
�S	g�
� 	C���


���



where S	a
 is the torsion bivector
 as expected� The contorsion is formed from S	a

by

K	�� � ��
�	g	�g�
�S	g�
  �

�	g��g�
�S	g	
� �
�	g��g	
�S	g�


� �
�
	g��g�
�S	g	
� �

�
g	 �	g� �S	g�
� g� �S	g�



� 	g��g�
��S	g	
� �
�
g	�	�a�S	a

�� 	C���


For our gauge theory of gravity
 the torsion is exclusively of the type S	a
 � a�S

where S is the spin trivector
 in which case

K	�� � �S	�� � ��
�	g	�g��g�
�S� 	C���


If we now consider the covariant derivative of a covariant vector A � A�g� �
A�g

�
 we �nd that

D�A � D�	A
�g�


� 	��A
�
g�  A�'���g�

� 	��A
�  '���A

�
g�� 	C���


so that the components of the vector D�A are those expected for tensor calculus�
Obviously the fact that A�g� � A�g

� implies that A� � A�g��
 so indices are raised
and lowered in the expected manner�
For covariant quantities such as the Riemann tensor the translation to tensor

calculus is straightforward�

R�
��� � 	g

��g�
�R	g��g�
� 	C���


The general scheme is that any covariant quantity in GTG can be decomposed into
tensor components by applying either the fg�g or fg�g
 or a mixture of both
 to
yield a tensor with the appropriate number of upstairs and downstairs indices� So

for example
 F can be decomposed to F�� � F � 	g� � g�

 F�

� � F � 	g� � g�

or F �� � F � 	g��g�
� Tensor calculus is poor at revealing which
 if any
 of the
components represent a physical observable� Such issues are much clearer in GTG

which focuses attention on the single entity F �
A vierbein e�i 	essentially an orthonormal tetrad
 is given by

e�
i � g� ��i 	C���


e�i � g� ��i 	C���


where f�ig is a �xed orthonormal frame� Any position dependence in the f�ig is
eliminated with a suitable rotor transformation� When matrix operators f%�ig are
required these are replaced by the f�ig frame vectors using the method described

���



in Appendix A� In this way frame�free vectors can be assembled� For example
 the
Dirac operator ���
 Chapter ���

�Dj�i � e�i%�
i	

�

�x�
 �

�
�jk�%�

j%�k
j�i 	C���


has the STA equivalent

g� ��i�i� �
�x�

 �
�
�	g�
�	�k��j
�j�k��� � h	r
���  �

�
g��	g�
���

� D���� 	C���


The above relations enable many results from Riemann�Cartan geometry to be
carried over into our formalism
 though the theory of gravity presented here is re�
stricted in the structures from Riemann�Cartan geometry that it admits 	the torsion
is of trivector type
 for example
�
A similar translation scheme is easily set up for the language of di�erential forms


which is much closer to the spirit of geometric algebra than tensor calculus� Di�eren�
tial forms are scalar�valued functions of an antisymmetrised set of vectors� They can
easily be mapped to an equivalent multivector
 and a full translation into geomet�
ric algebra is quite straightforward� Here we note in passing the geometric algebra
equivalent of the Hodge dual of a di�erential form
 which is

��r �� �det	h
��hh	 !Ar
i 	C���


where Ar is the multivector equivalent of �r�
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