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Preface

Almost two decades have passed since the appearance of those graph the-
ory texts that still set the agenda for most introductory courses taught
today. The canon created by those books has helped to identify some
main fields of study and research, and will doubtless continue to influence
the development of the discipline for some time to come.

Yet much has happened in those 20 years, in graph theory no less
than elsewhere: deep new theorems have been found, seemingly disparate
methods and results have become interrelated, entire new branches have
arisen. To name just a few such developments, one may think of how
the new notion of list colouring has bridged the gulf between invari-
ants such as average degree and chromatic number, how probabilistic
methods and the regularity lemma have pervaded extremal graph theo-
ry and Ramsey theory, or how the entirely new field of graph minors and
tree-decompositions has brought standard methods of surface topology
to bear on long-standing algorithmic graph problems.

Clearly, then, the time has come for a reappraisal: what are, today,
the essential areas, methods and results that should form the centre of
an introductory graph theory course aiming to equip its audience for the
most likely developments ahead?

I have tried in this book to offer material for such a course. In
view of the increasing complexity and maturity of the subject, I have
broken with the tradition of attempting to cover both theory and appli-
cations: this book offers an introduction to the theory of graphs as part
of (pure) mathematics; it contains neither explicit algorithms nor ‘real
world’ applications. My hope is that the potential for depth gained by
this restriction in scope will serve students of computer science as much
as their peers in mathematics: assuming that they prefer algorithms but
will benefit from an encounter with pure mathematics of some kind, it
seems an ideal opportunity to look for this close to where their heart lies!

In the selection and presentation of material, I have tried to ac-
commodate two conflicting goals. On the one hand, I believe that an
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introductory text should be lean and concentrate on the essential, so as
to offer guidance to those new to the field. As a graduate text, moreover,
it should get to the heart of the matter quickly: after all, the idea is to
convey at least an impression of the depth and methods of the subject.
On the other hand, it has been my particular concern to write with
sufficient detail to make the text enjoyable and easy to read: guiding
questions and ideas will be discussed explicitly, and all proofs presented
will be rigorous and complete.

A typical chapter, therefore, begins with a brief discussion of what
are the guiding questions in the area it covers, continues with a succinct
account of its classic results (often with simplified proofs), and then
presents one or two deeper theorems that bring out the full flavour of
that area. The proofs of these latter results are typically preceded by (or
interspersed with) an informal account of their main ideas, but are then
presented formally at the same level of detail as their simpler counter-
parts. I soon noticed that, as a consequence, some of those proofs came
out rather longer in print than seemed fair to their often beautifully
simple conception. I would hope, however, that even for the professional
reader the relatively detailed account of those proofs will at least help
to minimize reading time. . .

If desired, this text can be used for a lecture course with little or
no further preparation. The simplest way to do this would be to follow
the order of presentation, chapter by chapter: apart from two clearly
marked exceptions, any results used in the proof of others precede them
in the text.

Alternatively, a lecturer may wish to divide the material into an easy
basic course for one semester, and a more challenging follow-up course
for another. To help with the preparation of courses deviating from the
order of presentation, I have listed in the margin next to each proof the
reference numbers of those results that are used in that proof. These
references are given in round brackets: for example, a reference (4.1.2)
in the margin next to the proof of Theorem 4.3.2 indicates that Lemma
4.1.2 will be used in this proof. Correspondingly, in the margin next to
Lemma 4.1.2 there is a reference [ 4.3.2 ] (in square brackets) informing
the reader that this lemma will be used in the proof of Theorem 4.3.2.
Note that this system applies between different sections only (of the same
or of different chapters): the sections themselves are written as units and
best read in their order of presentation.

The mathematical prerequisites for this book, as for most graph
theory texts, are minimal: a first grounding in linear algebra is assumed
for Chapter 1.9 and once in Chapter 5.5, some basic topological con-
cepts about the Euclidean plane and 3-space are used in Chapter 4, and
a previous first encounter with elementary probability will help with
Chapter 11. (Even here, all that is assumed formally is the knowledge
of basic definitions: the few probabilistic tools used are developed in the
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text.) There are two areas of graph theory which I find both fascinat-
ing and important, especially from the perspective of pure mathematics
adopted here, but which are not covered in this book: these are algebraic
graph theory and infinite graphs.

At the end of each chapter, there is a section with exercises and
another with bibliographical and historical notes. Many of the exercises
were chosen to complement the main narrative of the text: they illus-
trate new concepts, show how a new invariant relates to earlier ones,
or indicate ways in which a result stated in the text is best possible.
Particularly easy exercises are identified by the superscript −, the more
challenging ones carry a +. The notes are intended to guide the reader
on to further reading, in particular to any monographs or survey articles
on the theme of that chapter. They also offer some historical and other
remarks on the material presented in the text.

Ends of proofs are marked by the symbol ¤. Where this symbol is
found directly below a formal assertion, it means that the proof should
be clear after what has been said—a claim waiting to be verified! There
are also some deeper theorems which are stated, without proof, as back-
ground information: these can be identified by the absence of both proof
and ¤.

Almost every book contains errors, and this one will hardly be an
exception. I shall try to post on the Web any corrections that become
necessary. The relevant site may change in time, but will always be
accessible via the following two addresses:

http://www.springer-ny.com/supplements/diestel/
http://www.springer.de/catalog/html-files/deutsch/math/3540609180.html

Please let me know about any errors you find.
Little in a textbook is truly original: even the style of writing and

of presentation will invariably be influenced by examples. The book that
no doubt influenced me most is the classic GTM graph theory text by
Bollobás: it was in the course recorded by this text that I learnt my first
graph theory as a student. Anyone who knows this book well will feel
its influence here, despite all differences in contents and presentation.

I should like to thank all who gave so generously of their time,
knowledge and advice in connection with this book. I have benefited
particularly from the help of N. Alon, G. Brightwell, R. Gillett, R. Halin,
M. Hintz, A. Huck, I. Leader, T. ÃLuczak, W. Mader, V. Rödl, A.D. Scott,
P.D. Seymour, G. Simonyi, M. Škoviera, R. Thomas, C. Thomassen and
P. Valtr. I am particularly grateful also to Tommy R. Jensen, who taught
me much about colouring and all I know about k-flows, and who invest-
ed immense amounts of diligence and energy in his proofreading of the
preliminary German version of this book.

March 1997 RD

http://www.springer-ny.com/supplements/diestel/
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About the second edition

Naturally, I am delighted at having to write this addendum so soon after
this book came out in the summer of 1997. It is particularly gratifying
to hear that people are gradually adopting it not only for their personal
use but more and more also as a course text; this, after all, was my aim
when I wrote it, and my excuse for agonizing more over presentation
than I might otherwise have done.

There are two major changes. The last chapter on graph minors
now gives a complete proof of one of the major results of the Robertson-
Seymour theory, their theorem that excluding a graph as a minor bounds
the tree-width if and only if that graph is planar. This short proof did
not exist when I wrote the first edition, which is why I then included a
short proof of the next best thing, the analogous result for path-width.
That theorem has now been dropped from Chapter 12. Another addition
in this chapter is that the tree-width duality theorem, Theorem 12.3.9,
now comes with a (short) proof too.

The second major change is the addition of a complete set of hints
for the exercises. These are largely Tommy Jensen’s work, and I am
grateful for the time he donated to this project. The aim of these hints
is to help those who use the book to study graph theory on their own,
but not to spoil the fun. The exercises, including hints, continue to be
intended for classroom use.

Apart from these two changes, there are a few additions. The most
noticable of these are the formal introduction of depth-first search trees
in Section 1.5 (which has led to some simplifications in later proofs) and
an ingenious new proof of Menger’s theorem due to Böhme, Göring and
Harant (which has not otherwise been published).

Finally, there is a host of small simplifications and clarifications
of arguments that I noticed as I taught from the book, or which were
pointed out to me by others. To all these I offer my special thanks.

The Web site for the book has followed me to

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/

I expect this address to be stable for some time.
Once more, my thanks go to all who contributed to this second

edition by commenting on the first—and I look forward to further com-
ments!

December 1999 RD

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. The degree of a vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Paths and cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. Trees and forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6. Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7. Contraction and minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8. Euler tours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9. Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10. Other notions of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2. Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1. Matching in bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2. Matching in general graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3. Path covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



xii Contents

3. Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1. 2-Connected graphs and subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2. The structure of 3-connected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3. Menger’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4. Mader’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5. Edge-disjoint spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6. Paths between given pairs of vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4. Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1. Topological prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Plane graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3. Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4. Planar graphs: Kuratowski’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5. Algebraic planarity criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6. Plane duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1. Colouring maps and planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2. Colouring vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3. Colouring edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4. List colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5. Perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6. Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1. Circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2. Flows in networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3. Group-valued flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4. k-Flows for small k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5. Flow-colouring duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6. Tutte’s flow conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Contents xiii

7. Substructures in Dense Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1. Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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1 The Basics

This chapter gives a gentle yet concise introduction to most of the ter-
minology used later in the book. Fortunately, much of standard graph
theoretic terminology is so intuitive that it is easy to remember; the few
terms better understood in their proper setting will be introduced later,
when their time has come.

Section 1.1 offers a brief but self-contained summary of the most
basic definitions in graph theory, those centred round the notion of a
graph. Most readers will have met these definitions before, or will have
them explained to them as they begin to read this book. For this reason,
Section 1.1 does not dwell on these definitions more than clarity requires:
its main purpose is to collect the most basic terms in one place, for easy
reference later.

From Section 1.2 onwards, all new definitions will be brought to life
almost immediately by a number of simple yet fundamental propositions.
Often, these will relate the newly defined terms to one another: the
question of how the value of one invariant influences that of another
underlies much of graph theory, and it will be good to become familiar
with this line of thinking early.

By N we denote the set of natural numbers, including zero. The set
Z/nZ of integers modulo n is denoted by Zn; its elements are written as Zn
i := i+nZ. For a real number x we denote by bxc the greatest integer
6 x, and by dxe the least integer > x. Logarithms written as ‘log’ are bxc, dxe
taken at base 2; the natural logarithm will be denoted by ‘ln’. A set log, ln

A = {A1, . . . , Ak } of disjoint subsets of a set A is a partition of A if partition

A =
⋃k
i=1Ai and Ai 6= ∅ for every i. Another partition {A′1, . . . , A′` } of

A refines the partition A if each A′i is contained in some Aj . By [A]k we [A]k

denote the set of all k-element subsets of A. Sets with k elements will
be called k-sets; subsets with k elements are k-subsets. k-set
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1.1 Graphs
A graph is a pair G = (V,E) of sets satisfying E ⊆ [V ]2; thus, the ele-graph

ments of E are 2-element subsets of V . To avoid notational ambiguities,
we shall always assume tacitly that V ∩E = ∅. The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are itsvertex

edges (or lines). The usual way to picture a graph is by drawing a dot foredge

each vertex and joining two of these dots by a line if the corresponding
two vertices form an edge. Just how these dots and lines are drawn is
considered irrelevant: all that matters is the information which pairs of
vertices form an edge and which do not.

1

2

3

4

5

6

7

Fig. 1.1.1. The graph on V = { 1, . . . , 7 } with edge set
E = {{ 1, 2 }, { 1, 5 }, { 2, 5 }, { 3, 4 }, { 5, 7 }}

A graph with vertex set V is said to be a graph on V . The vertexon

set of a graph G is referred to as V (G), its edge set as E(G). TheseV (G), E(G)

conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W,F ) is still referred to as V (H), not as
W (H). We shall not always distinguish strictly between a graph and its
vertex or edge set. For example, we may speak of a vertex v ∈ G (rather
than v ∈ V (G)), an edge e ∈ G, and so on.

The number of vertices of a graph G is its order , written as |G|;order

its number of edges is denoted by ‖G‖. Graphs are finite or infinite|G|, ‖G‖
according to their order; unless otherwise stated, the graphs we consider
are all finite.

For the empty graph (∅, ∅) we simply write ∅. A graph of order 0 or 1∅
is called trivial . Sometimes, e.g. to start an induction, trivial graphs cantrivial

graph
be useful; at other times they form silly counterexamples and become a
nuisance. To avoid cluttering the text with non-triviality conditions, we
shall mostly treat the trivial graphs, and particularly the empty graph ∅,
with generous disregard.

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v.incident

The two vertices incident with an edge are its endvertices or ends, andends

an edge joins its ends. An edge {x, y } is usually written as xy (or yx).
If x ∈ X and y ∈ Y , then xy is an X–Y edge. The set of all X–Y edges
in a set E is denoted by E(X,Y ); instead of E({x }, Y ) and E(X, { y })E(X,Y )

we simply write E(x, Y ) and E(X, y). The set of all the edges in E at a
vertex v is denoted by E(v).E(v)
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Two vertices x, y of G are adjacent , or neighbours, if xy is an edge adjacent

of G. Two edges e 6= f are adjacent if they have an end in common. If all neighbour

the vertices of G are pairwise adjacent, then G is complete. A complete complete

graph on n vertices is a Kn; a K3 is called a triangle. Kn

Pairwise non-adjacent vertices or edges are called independent .
More formally, a set of vertices or of edges is independent (or stable) inde-

pendent
if no two of its elements are adjacent.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We call G and
G′ isomorphic, and write G ' G′, if there exists a bijection ϕ:V → V ′ '
with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′ for all x, y ∈ V . Such a map ϕ is called
an isomorphism; if G = G′, it is called an automorphism. We do not isomor-

phism
normally distinguish between isomorphic graphs. Thus, we usually write
G = G′ rather than G ' G′, speak of the complete graph on 17 vertices,
and so on. A map taking graphs as arguments is called a graph invariant invariant

if it assigns equal values to isomorphic graphs. The number of vertices
and the number of edges of a graph are two simple graph invariants; the
greatest number of pairwise adjacent vertices is another.

GG ∪ − G ∩

1

2

3

4

5
G

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

G′

G′G′ G′

Fig. 1.1.2. Union, difference and intersection; the vertices 2,3,4
induce (or span) a triangle in G∪G′ but not in G

We set G∪G′ := (V ∪ V ′, E ∪E′) and G∩G′ := (V ∩V ′, E ∩E′). G ∩G′
If G∩G′ = ∅, then G and G′ are disjoint . If V ′ ⊆ V and E′ ⊆ E, then subgraph

G′ is a subgraph of G (and G a supergraph of G′), written as G′ ⊆ G. G′ ⊆ G

Less formally, we say that G contains G′.
If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then

G′ is an induced subgraph of G; we say that V ′ induces or spans G′ in G, induced
subgraph

and write G′ =: G [V ′ ]. Thus if U ⊆ V is any set of vertices, then G [U ] G [U ]

denotes the graph on U whose edges are precisely the edges of G with
both ends in U . If H is a subgraph of G, not necessarily induced, we
abbreviate G [V (H) ] to G [H ]. Finally, G′ ⊆ G is a spanning subgraph spanning

of G if V ′ spans all of G, i.e. if V ′ = V .
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G′ G′′G

Fig. 1.1.3. A graph G with subgraphs G′ and G′′:
G′ is an induced subgraph of G, but G′′ is not

If U is any set of vertices (usually of G), we write G−U for−
G [V rU ]. In other words, G−U is obtained from G by deleting all the
vertices in U ∩ V and their incident edges. If U = { v } is a singleton,
we write G− v rather than G− { v }. Instead of G− V (G′) we simply
write G−G′. For a subset F of [V ]2 we write G−F := (V, ErF ) and+

G+F := (V, E∪F ); as above, G−{ e } and G+{ e } are abbreviated to
G− e and G+ e. We call G edge-maximal with a given graph propertyedge-

maximal
if G itself has the property but no graph G+ xy does, for non-adjacent
vertices x, y ∈ G.

More generally, when we call a graph minimal or maximal with someminimal

property but have not specified any particular ordering, we are referringmaximal

to the subgraph relation. When we speak of minimal or maximal sets of
vertices or edges, the reference is simply to set inclusion.

If G and G′ are disjoint, we denote by G ∗G′ the graph obtainedG ∗G′
from G∪G′ by joining all the vertices of G to all the vertices of G′. For
example, K2 ∗K3 = K5. The complement G of G is the graph on V

comple-

ment G
with edge set [V ]2rE. The line graph L(G) of G is the graph on E in
which x, y ∈ E are adjacent as vertices if and only if they are adjacentline graph

L(G)
as edges in G.

G G

Fig. 1.1.4. A graph isomorphic to its complement

1.2 The degree of a vertex

Let G = (V,E) be a (non-empty) graph. The set of neighbours of a
vertex v in G is denoted by NG(v), or briefly by N(v).1 More generallyN(v)

1 Here, as elsewhere, we drop the index referring to the underlying graph if the
reference is clear.
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for U ⊆ V , the neighbours in V rU of vertices in U are called neighbours
of U ; their set is denoted by N(U).

The degree (or valency) dG(v) = d(v) of a vertex v is the number degree d(v)

|E(v)| of edges at v; by our definition of a graph,2 this is equal to the
number of neighbours of v. A vertex of degree 0 is isolated . The number isolated

δ(G) := min { d(v) | v ∈ V } is the minimum degree of G, the number δ(G)

∆(G) := max { d(v) | v ∈ V } its maximum degree. If all the vertices ∆(G)

of G have the same degree k, then G is k-regular , or simply regular . A regular

3-regular graph is called cubic. cubic

The number
d(G) :=

1
|V |

∑
v∈V

d(v)
d(G)

is the average degree of G. Clearly,
average
degree

δ(G) 6 d(G) 6 ∆(G) .

The average degree quantifies globally what is measured locally by the
vertex degrees: the number of edges of G per vertex. Sometimes it will
be convenient to express this ratio directly, as ε(G) := |E|/|V |. ε(G)

The quantities d and ε are, of course, intimately related. Indeed,
if we sum up all the vertex degrees in G, we count every edge exactly
twice: once from each of its ends. Thus

|E| = 1
2

∑
v∈V

d(v) = 1
2d(G) · |V | ,

and therefore
ε(G) = 1

2d(G) .

Proposition 1.2.1. The number of vertices of odd degree in a graph is [ 10.3.3 ]

always even.

Proof . A graph on V has 1
2

∑
v∈V d(v) edges, so

∑
d(v) is an even

number. ¤

If a graph has large minimum degree, i.e. everywhere, locally, many
edges per vertex, it also has many edges per vertex globally: ε(G) =
1
2d(G) > 1

2δ(G). Conversely, of course, its average degree may be large
even when its minimum degree is small. However, the vertices of large
degree cannot be scattered completely among vertices of small degree: as
the next proposition shows, every graph G has a subgraph whose average
degree is no less than the average degree of G, and whose minimum
degree is more than half its average degree:

2 but not for multigraphs; see Section 1.10
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Proposition 1.2.2. Every graph G with at least one edge has a sub-[ 3.6.1 ]

graph H with δ(H) > ε(H) > ε(G).

Proof . To construct H from G, let us try to delete vertices of small
degree one by one, until only vertices of large degree remain. Up to
which degree d(v) can we afford to delete a vertex v, without lowering ε?
Clearly, up to d(v) = ε : then the number of vertices decreases by 1
and the number of edges by at most ε, so the overall ratio ε of edges to
vertices will not decrease.

Formally, we construct a sequence G = G0 ⊇ G1 ⊇ . . . of induced
subgraphs of G as follows. If Gi has a vertex vi of degree d(vi) 6 ε(Gi),
we let Gi+1 := Gi − vi; if not, we terminate our sequence and set
H := Gi. By the choices of vi we have ε(Gi+1) > ε(Gi) for all i, and
hence ε(H) > ε(G).

What else can we say about the graph H? Since ε(K1) = 0 < ε(G),
none of the graphs in our sequence is trivial, so in particular H 6= ∅. The
fact that H has no vertex suitable for deletion thus implies δ(H) > ε(H),
as claimed. ¤

1.3 Paths and cycles
A path is a non-empty graph P = (V,E) of the formpath

V = {x0, x1, . . . , xk } E = {x0x1, x1x2, . . . , xk−1xk } ,

where the xi are all distinct. The vertices x0 and xk are linked by P and
are called its ends; the vertices x1, . . . , xk−1 are the inner vertices of P .
The number of edges of a path is its length, and the path of length k islength

denoted by P k. Note that k is allowed to be zero; thus, P 0 = K1.Pk

G P

Fig. 1.3.1. A path P = P 6 in G

We often refer to a path by the natural sequence of its vertices,3

writing, say, P = x0x1 . . . xk and calling P a path from x0 to xk (as well
as between x0 and xk).

3 More precisely, by one of the two natural sequences: x0 . . . xk and xk . . . x0

denote the same path. Still, it often helps to fix one of these two orderings of V (P )
notationally: we may then speak of things like the ‘first’ vertex on P with a certain
property, etc.
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For 0 6 i 6 j 6 k we write xPy, P̊

Pxi := x0 . . . xi

xiP := xi . . . xk

xiPxj := xi . . . xj

and
P̊ := x1 . . . xk−1

Px̊i := x0 . . . xi−1

x̊iP := xi+1 . . . xk

x̊iPx̊j := xi+1 . . . xj−1

for the appropriate subpaths of P . We use similar intuitive notation for
the concatenation of paths; for example, if the union Px∪ xQy ∪ yR of
three paths is again a path, we may simply denote it by PxQyR. PxQyR

xPyQzx

y

z
x

P

y

Q

z

Fig. 1.3.2. Paths P , Q and xPyQz

Given sets A,B of vertices, we call P = x0 . . . xk an A–B path if A–B path

V (P ) ∩ A = {x0 } and V (P ) ∩ B = {xk }. As before, we write a–B
path rather than { a }–B path, etc. Two or more paths are independent inde-

pendent
if none of them contains an inner vertex of another. Two a–b paths, for
instance, are independent if and only if a and b are their only common
vertices.

Given a graph H, we call P an H-path if P is non-trivial and meets H-path

H exactly in its ends. In particular, the edge of any H-path of length 1
is never an edge of H.

If P = x0 . . . xk−1 is a path and k > 3, then the graph C :=
P + xk−1x0 is called a cycle. As with paths, we often denote a cycle cycle

by its (cyclic) sequence of vertices; the above cycle C might be written
as x0 . . . xk−1x0. The length of a cycle is its number of edges (or vertices); length

the cycle of length k is called a k-cycle and denoted by Ck. Ck

The minimum length of a cycle (contained) in a graph G is the girth girth g(G)

g(G) of G; the maximum length of a cycle in G is its circumference. (If circum-
ferenceG does not contain a cycle, we set the former to ∞, the latter to zero.)

An edge which joins two vertices of a cycle but is not itself an edge of chord

the cycle is a chord of that cycle. Thus, an induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords (Fig. 1.3.3). induced

cycle
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y

x

Fig. 1.3.3. A cycle C8 with chord xy, and induced cycles C6, C4

If a graph has large minimum degree, it contains long paths and
cycles:

Proposition 1.3.1. Every graph G contains a path of length δ(G) and[ 3.6.1 ]

a cycle of length at least δ(G) + 1 (provided that δ(G) > 2).

Proof . Let x0 . . . xk be a longest path in G. Then all the neighbours of
xk lie on this path (Fig. 1.3.4). Hence k > d(xk) > δ(G). If i < k is
minimal with xixk ∈ E(G), then xi . . . xkxi is a cycle of length at least
δ(G) + 1. ¤

x0 xi xk

Fig. 1.3.4. A longest path x0 . . . xk, and the neighbours of xk

Minimum degree and girth, on the other hand, are not related (un-
less we fix the number of vertices): as we shall see in Chapter 11, there
are graphs combining arbitrarily large minimum degree with arbitrarily
large girth.

The distance dG(x, y) in G of two vertices x, y is the length of adistance
dG(x, y)

shortest x–y path in G; if no such path exists, we set d(x, y) := ∞. The
greatest distance between any two vertices in G is the diameter of G,
denoted by diam(G). Diameter and girth are, of course, related:diameter

diam(G)

Proposition 1.3.2. Every graph G containing a cycle satisfies g(G) 6
2 diam(G) + 1.

Proof . Let C be a shortest cycle in G. If g(G) > 2 diam(G) + 2, then
C has two vertices whose distance in C is at least diam(G) + 1. In G,
these vertices have a lesser distance; any shortest path P between them
is therefore not a subgraph of C. Thus, P contains a C-path xPy.
Together with the shorter of the two x–y paths in C, this path xPy
forms a shorter cycle than C, a contradiction. ¤
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A vertex is central in G if its greatest distance from any other ver- central

tex is as small as possible. This distance is the radius of G, denoted radius

by rad(G). Thus, formally, rad(G) = minx∈V (G) maxy∈V (G) dG(x, y). rad(G)

As one easily checks (exercise), we have

rad(G) 6 diam(G) 6 2 rad(G) .

Diameter and radius are not directly related to the minimum or
average degree: a graph can combine large minimum degree with large
diameter, or small average degree with small diameter (examples?).

The maximum degree behaves differently here: a graph of large
order can only have small radius and diameter if its maximum degree
is large. This connection is quantified very roughly in the following
proposition:

Proposition 1.3.3. A graphG of radius at most k and maximum degree
[ 9.4.1 ]
[ 9.4.2 ]

at most d has no more than 1 + kdk vertices.

Proof . Let z be a central vertex in G, and let Di denote the set of
vertices of G at distance i from z. Then V (G) =

⋃k
i=0Di, and |D0| = 1.

Since ∆(G) 6 d, we have |Di| 6 d |Di−1| for i = 1, . . . , k, and thus
|Di| 6 di by induction. Adding up these inequalities we obtain

|G| 6 1 +
k∑
i=1

di 6 1 + kdk.

¤

A walk (of length k) in a graph G is a non-empty alternating se- walk

quence v0e0v1e1 . . . ek−1vk of vertices and edges in G such that ei =
{ vi, vi+1 } for all i < k. If v0 = vk, the walk is closed . If the vertices
in a walk are all distinct, it defines an obvious path in G. In general,
every walk between two vertices contains4 a path between these vertices
(proof?).

1.4 Connectivity
A non-empty graph G is called connected if any two of its vertices are connected

linked by a path in G. If U ⊆ V (G) and G [U ] is connected, we also call
U itself connected (in G).

Proposition 1.4.1. The vertices of a connected graph G can always be
[ 1.5.2 ]

enumerated, say as v1, . . . , vn, so that Gi := G [ v1, . . . , vi ] is connected
for every i.

4 We shall often use terms defined for graphs also for walks, as long as their
meaning is obvious.
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Proof . Pick any vertex as v1, and assume inductively that v1, . . . , vi
have been chosen for some i < |G|. Now pick a vertex v ∈ G−Gi. As G
is connected, it contains a v–v1 path P . Choose as vi+1 the last vertex
of P in G−Gi; then vi+1 has a neighbour in Gi. The connectedness of
every Gi follows by induction on i. ¤

Let G = (V,E) be a graph. A maximal connected subgraph of G
is called a component of G. Note that a component, being connected, iscomponent

always non-empty; the empty graph, therefore, has no components.

Fig. 1.4.1. A graph with three components, and a minimal
spanning connected subgraph in each component

If A,B ⊆ V and X ⊆ V ∪ E are such that every A–B path in
G contains a vertex or an edge from X, we say that X separates theseparate

sets A and B in G. This implies in particular that A∩B ⊆ X. More
generally we say that X separates G, and call X a separating set in G,
if X separates two vertices of G−X in G. A vertex which separates
two other vertices of the same component is a cutvertex , and an edgecutvertex

separating its ends is a bridge. Thus, the bridges in a graph are preciselybridge

those edges that do not lie on any cycle.

wv

e

x y

Fig. 1.4.2. A graph with cutvertices v, x, y, w and bridge e = xy

G is called k-connected (for k ∈ N) if |G| > k and G−X is connectedk-connected

for every set X ⊆ V with |X| < k. In other words, no two vertices of G
are separated by fewer than k other vertices. Every (non-empty) graph
is 0-connected, and the 1-connected graphs are precisely the non-trivial
connected graphs. The greatest integer k such that G is k-connected
is the connectivity κ(G) of G. Thus, κ(G) = 0 if and only if G isconnectivity

κ(G)
disconnected or a K1, and κ(Kn) = n− 1 for all n > 1.

If |G| > 1 and G− F is connected for every set F ⊆ E of fewer
than ` edges, then G is called `-edge-connected. The greatest integer ``-edge-

connected
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HG

Fig. 1.4.3. The octahedron G (left) with κ(G) = λ(G) = 4,
and a graph H with κ(H) = 2 but λ(H) = 4

such that G is `-edge-connected is the edge-connectivity λ(G) of G. In
particular, we have λ(G) = 0 if G is disconnected.

edge-
connectivity

λ(G)For every non-trivial graph G we have

κ(G) 6 λ(G) 6 δ(G)

(exercise), so in particular high connectivity requires a large minimum
degree. Conversely, large minimum degree does not ensure high connec-
tivity, not even high edge-connectivity (examples?). It does, however,
imply the existence of a highly connected subgraph:

Theorem 1.4.2. (Mader 1972)
Every graph of average degree at least 4k has a k-connected subgraph.

[ 8.1.1 ]
[ 11.2.3 ]

Proof . For k ∈ { 0, 1 } the assertion is trivial; we consider k > 2 and a
graph G = (V,E) with |V | =: n and |E| =: m. For inductive reasons it
will be easier to prove the stronger assertion that G has a k-connected
subgraph whenever

(i) n > 2k− 1 and

(ii) m > (2k− 3)(n− k+ 1) + 1.

(This assertion is indeed stronger, i.e. (i) and (ii) follow from our as-
sumption of d(G) > 4k: (i) holds since n > ∆(G) > d(G) > 4k, while
(ii) follows from m = 1

2d(G)n > 2kn.)
We apply induction on n. If n = 2k − 1, then k = 1

2 (n+ 1), and
hence m > 1

2n(n−1) by (ii). Thus G = Kn ⊇ Kk+1, proving our claim.
We now assume that n > 2k. If v is a vertex with d(v) 6 2k− 3, we can
apply the induction hypothesis to G−v and are done. So we assume that
δ(G) > 2k− 2. If G is k-connected, there is nothing to show. We may
therefore assume that G has the form G = G1 ∪G2 with |G1 ∩G2| < k
and |G1|, |G2| < n. As every edge of G lies in G1 or in G2, G has no edge
between G1−G2 and G2−G1. Since each vertex in these subgraphs has
at least δ(G) > 2k−2 neighbours, we have |G1|, |G2| > 2k−1. But then
at least one of the graphs G1, G2 must satisfy the induction hypothesis
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(completing the proof): if neither does, we have

‖Gi‖ 6 (2k− 3)(|Gi| − k+ 1)

for i = 1, 2, and hence

m 6 ‖G1‖+ ‖G2‖
6 (2k− 3)

(
|G1|+ |G2| − 2k+ 2

)
6 (2k− 3)(n− k+ 1) (by |G1 ∩G2| 6 k− 1)

contradicting (ii). ¤

1.5 Trees and forests

An acyclic graph, one not containing any cycles, is called a forest . A con-forest

nected forest is called a tree. (Thus, a forest is a graph whose componentstree

are trees.) The vertices of degree 1 in a tree are its leaves. Every non-leaf

trivial tree has at least two leaves—take, for example, the ends of a
longest path. This little fact often comes in handy, especially in induc-
tion proofs about trees: if we remove a leaf from a tree, what remains is
still a tree.

Fig. 1.5.1. A tree

Theorem 1.5.1. The following assertions are equivalent for a graph T :
[ 1.6.1 ]
[ 1.9.6 ]
[ 4.2.7 ]

(i) T is a tree;

(ii) any two vertices of T are linked by a unique path in T ;

(iii) T is minimally connected, i.e. T is connected but T − e is discon-
nected for every edge e ∈ T ;

(iv) T is maximally acyclic, i.e. T contains no cycle but T + xy does,
for any two non-adjacent vertices x, y ∈ T . ¤
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The proof of Theorem 1.5.1 is straightforward, and a good exercise
for anyone not yet familiar with all the notions it relates. Extending our
notation for paths from Section 1.3, we write xTy for the unique path xTy

in a tree T between two vertices x, y (see (ii) above).
A frequently used application of Theorem 1.5.1 is that every con-

nected graph contains a spanning tree: by the equivalence of (i) and (iii),
any minimal connected spanning subgraph will be a tree. Figure 1.4.1
shows a spanning tree in each of the three components of the graph
depicted.

Corollary 1.5.2. The vertices of a tree can always be enumerated, say
as v1, . . . , vn, so that every vi with i > 2 has a unique neighbour in
{ v1, . . . , vi−1 }.

Proof . Use the enumeration from Proposition 1.4.1. ¤ (1.4.1)

Corollary 1.5.3. A connected graph with n vertices is a tree if and
[ 1.9.6 ]
[ 3.5.1 ]
[ 3.5.4 ]
[ 4.2.7 ]
[ 8.2.2 ]

only if it has n− 1 edges.

Proof . Induction on i shows that the subgraph spanned by the first
i vertices in Corollary 1.5.2 has i− 1 edges; for i = n this proves the
forward implication. Conversely, let G be any connected graph with n
vertices and n− 1 edges. Let G′ be a spanning tree in G. Since G′ has
n− 1 edges by the first implication, it follows that G = G′. ¤

Corollary 1.5.4. If T is a tree and G is any graph with δ(G) > |T |−1,
[ 9.2.1 ]
[ 9.2.3 ]

then T ⊆ G, i.e. G has a subgraph isomorphic to T .

Proof . Find a copy of T in G inductively along its vertex enumeration
from Corollary 1.5.2. ¤

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree with a fixed root root

is a rooted tree. Choosing a root r in a tree T imposes a partial ordering
on V (T ) by letting x 6 y if x ∈ rTy. This is the tree-order on V (T ) tree-order

associated with T and r. Note that r is the least element in this partial
order, every leaf x 6= r of T is a maximal element, the ends of any edge
of T are comparable, and every set of the form {x | x 6 y } (where y
is any fixed vertex) is a chain, a set of pairwise comparable elements. chain

(Proofs?)
A rooted tree T contained in a graph G is called normal in G if normal tree

the ends of every T -path in G are comparable in the tree-order of T .
If T spans G, this amounts to requiring that two vertices of T must be
comparable whenever they are adjacent in G; see Figure 1.5.2. Normal
spanning trees are also called depth-first search trees, because of the way
they arise in computer searches on graphs (Exercise 17).
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r

G

T

Fig. 1.5.2. A depth-first search tree with root r

Normal spanning trees provide a simple but powerful structural tool
in graph theory. And they always exist:

Proposition 1.5.5. Every connected graph contains a normal spanning[ 6.5.3 ]

tree, with any specified vertex as its root.

Proof . Let G be a connected graph and r ∈ G any specified vertex. Let T
be a maximal normal tree with root r in G; we show that V (T ) = V (G).

Suppose not, and let C be a component of G−T . As T is normal,
N(C) is a chain in T . Let x be its greatest element, and let y ∈ C be
adjacent to x. Let T ′ be the tree obtained from T by joining y to x; the
tree-order of T ′ then extends that of T . We shall derive a contradiction
by showing that T ′ is also normal in G.

Let P be a T ′-path in G. If the ends of P both lie in T , then they
are comparable in the tree-order of T (and hence in that of T ′), because
then P is also a T -path and T is normal in G by assumption. If not,
then y is one end of P , so P lies in C except for its other end z, which
lies in N(C). Then z 6 x, by the choice of x. For our proof that y and
z are comparable it thus suffices to show that x < y, i.e. that x ∈ rT ′y.
This, however, is clear since y is a leaf of T ′ with neighbour x. ¤

1.6 Bipartite graphs

Let r > 2 be an integer. A graph G = (V,E) is called r-partite ifr-partite

V admits a partition into r classes such that every edge has its ends
in different classes: vertices in the same partition class must not be
adjacent. Instead of ‘2-partite’ one usually says bipartite.bipartite

An r-partite graph in which every two vertices from different par-
tition classes are adjacent is called complete; the complete r-partitecomplete

r-partite
graphs for all r together are the complete multipartite graphs. The
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K2,2,2 = K3
2

Fig. 1.6.1. Two 3-partite graphs

complete r-partite graph Kn1 ∗ . . . ∗ Knr is denoted by Kn1,...,nr ; if Kn1,...,nr

n1 = . . . = nr =: s, we abbreviate this to Kr
s . Thus, Kr

s is the complete Kr
s

r-partite graph in which every partition class contains exactly s ver-
tices.5 (Figure 1.6.1 shows the example of the octahedron K3

2 ; compare
its drawing with that in Figure 1.4.3.) Graphs of the form K1,n are
called stars. star

==

Fig. 1.6.2. Three drawings of the bipartite graph K3,3 = K2
3

Clearly, a bipartite graph cannot contain an odd cycle, a cycle of odd odd cycle

length. In fact, the bipartite graphs are characterized by this property:

Proposition 1.6.1. A graph is bipartite if and only if it contains no [ 5.3.1 ]
[ 6.4.2 ]

odd cycle.

Proof . Let G = (V,E) be a graph without odd cycles; we show that G is (1.5.1)
bipartite. Clearly a graph is bipartite if all its components are bipartite
or trivial, so we may assume that G is connected. Let T be a spanning
tree in G, pick a root r ∈ T , and denote the associated tree-order on V
by 6T . For each v ∈ V , the unique path rTv has odd or even length.
This defines a bipartition of V ; we show that G is bipartite with this
partition.

Let e = xy be an edge of G. If e ∈ T , with x <T y say, then
rTy = rTxy and so x and y lie in different partition classes. If e /∈ T
then Ce := xTy + e is a cycle (Fig. 1.6.3), and by the case treated
already the vertices along xTy alternate between the two classes. Since
Ce is even by assumption, x and y again lie in different classes. ¤

5 Note that we obtain a Kr
s if we replace each vertex of a Kr by an independent

s-set; our notation of Kr
s is intended to hint at this connection.
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e

Ce

r

x

y

Fig. 1.6.3. The cycle Ce in T + e

1.7 Contraction and minors

In Section 1.1 we saw two fundamental containment relations between
graphs: the subgraph relation, and the ‘induced subgraph’ relation. In
this section we meet another: the minor relation.

Let e = xy be an edge of a graph G = (V,E). By G/e we denote theG/e

graph obtained from G by contracting the edge e into a new vertex ve,contraction

which becomes adjacent to all the former neighbours of x and of y. For-
mally, G/e is a graph (V ′, E′) with vertex set V ′ := (V r{x, y })∪{ ve }
(where ve is the ‘new’ vertex, i.e. ve /∈ V ∪E) and edge setve

E′ :=
{
vw ∈ E | { v, w }∩ {x, y } = ∅

}
∪
{
vew | xw ∈ Er { e } or yw ∈ Er { e }

}
.

x

y

e
ve

G/eG

Fig. 1.7.1. Contracting the edge e = xy

More generally, if X is another graph and {Vx | x ∈ V (X) } is a
partition of V into connected subsets such that, for any two vertices
x, y ∈ X, there is a Vx–Vy edge in G if and only if xy ∈ E(X), we call
G an MX and write6 G = MX (Fig. 1.7.2). The sets Vx are the branchMX

sets of this MX. Intuitively, we obtain X from G by contracting everybranch sets

6 Thus formally, the expression MX—where M stands for ‘minor’; see below—
refers to a whole class of graphs, and G = MX means (with slight abuse of notation)
that G belongs to this class.
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X

Y
Vx

Vz

x

z

G

Fig. 1.7.2. Y ⊇ G = MX, so X is a minor of Y

branch set to a single vertex and deleting any ‘parallel edges’ or ‘loops’
that may arise.

If Vx = U ⊆ V is one of the branch sets above and every other
branch set consists just of a single vertex, we also write G/U for the G/U

graph X and vU for the vertex x ∈ X to which U contracts, and think vU

of the rest of X as an induced subgraph of G. The contraction of a
single edge uu′ defined earlier can then be viewed as the special case of
U = {u, u′ }.

Proposition 1.7.1. G is an MX if and only if X can be obtained
from G by a series of edge contractions, i.e. if and only if there are
graphs G0, . . . , Gn and edges ei ∈ Gi such that G0 = G, Gn ' X, and
Gi+1 = Gi/ei for all i < n.

Proof . Induction on |G| − |X|. ¤

IfG=MX is a subgraph of another graph Y , we callX a minor of Y
and write X 4 Y . Note that every subgraph of a graph is also its minor; minor; 4
in particular, every graph is its own minor. By Proposition 1.7.1, any
minor of a graph can be obtained from it by first deleting some vertices
and edges, and then contracting some further edges. Conversely, any
graph obtained from another by repeated deletions and contractions (in
any order) is its minor: this is clear for one deletion or contraction, and
follows for several from the transitivity of the minor relation (Proposition
1.7.3).

If we replace the edges of X with independent paths between their
ends (so that none of these paths has an inner vertex on another path
or in X), we call the graph G obtained a subdivision of X and write subdivision

TX
G = TX.7 If G = TX is the subgraph of another graph Y , then X is a
topological minor of Y (Fig. 1.7.3). topological

minor

7 So again TX denotes an entire class of graphs: all those which, viewed as a
topological space in the obvious way, are homeomorphic to X. The T in TX stands
for ‘topological’.



18 1. The Basics

X

Y

G

Fig. 1.7.3. Y ⊇ G = TX, so X is a topological minor of Y

If G = TX, we view V (X) as a subset of V (G) and call these vertices
the branch vertices of G; the other vertices of G are its subdividingbranch

vertices
vertices. Thus, all subdividing vertices have degree 2, while the branch
vertices retain their degree from X.

Proposition 1.7.2.[ 4.4.2 ]
[ 8.3.1 ]

(i) Every TX is also an MX (Fig. 1.7.4); thus, every topological
minor of a graph is also its (ordinary) minor.

(ii) If ∆(X) 6 3, then every MX contains a TX; thus, every minor
with maximum degree at most 3 of a graph is also its topological
minor. ¤

Fig. 1.7.4. A subdivision of K4 viewed as an MK4

Proposition 1.7.3. The minor relation 4 and the topological-minor[ 12.4.1 ]

relation are partial orderings on the class of finite graphs, i.e. they are
reflexive, antisymmetric and transitive. ¤

1.8 Euler tours

Any mathematician who happens to find himself in the East Prussian
city of Königsberg (and in the 18th century) will lose no time to follow the
great Leonhard Euler’s example and inquire about a round trip through



1.8 Euler tours 19

Fig. 1.8.1. The bridges of Königsberg (anno 1736)

the old city that traverses each of the bridges shown in Figure 1.8.1
exactly once.

Thus inspired,8 let us call a closed walk in a graph an Euler tour if
it traverses every edge of the graph exactly once. A graph is Eulerian if Eulerian

it admits an Euler tour.

Fig. 1.8.2. A graph formalizing the bridge problem

Theorem 1.8.1. (Euler 1736)
A connected graph is Eulerian if and only if every vertex has even degree. [ 2.1.5 ]

[ 10.3.3 ]

Proof . The degree condition is clearly necessary: a vertex appearing k
times in an Euler tour (or k+ 1 times, if it is the starting and finishing
vertex and as such counted twice) must have degree 2k.

8 Anyone to whom such inspiration seems far-fetched, even after contemplating
Figure 1.8.2, may seek consolation in the multigraph of Figure 1.10.1.
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Conversely, let G be a connected graph with all degrees even, and
let

W = v0e0 . . . e`−1v`

be a longest walk in G using no edge more than once. Since W cannot
be extended, it already contains all the edges at v`. By assumption, the
number of such edges is even. Hence v` = v0, so W is a closed walk.

Suppose W is not an Euler tour. Then G has an edge e outside W
but incident with a vertex of W , say e = uvi. (Here we use the connect-
edness of G, as in the proof of Proposition 1.4.1.) Then the walk

ueviei . . . e`−1v`e0 . . . ei−1vi

is longer than W , a contradiction. ¤

1.9 Some linear algebra

Let G = (V,E) be a graph with n vertices and m edges, say V =
{ v1, . . . , vn } and E = { e1, . . . , em }. The vertex space V(G) of G is the

vertex
space
V(G) vector space over the 2-element field F2 = { 0, 1 } of all functions V →F2.

Every element of V(G) corresponds naturally to a subset of V , the set of
those vertices to which it assigns a 1, and every subset of V is uniquely
represented in V(G) by its indicator function. We may thus think of
V(G) as the power set of V made into a vector space: the sum U +U ′+

of two vertex sets U,U ′ ⊆ V is their symmetric difference (why?), and
U = −U for all U ⊆ V . The zero in V(G), viewed in this way, is the
empty (vertex) set ∅. Since { { v1 }, . . . , { vn } } is a basis of V(G), its
standard basis, we have dimV(G) = n.

In the same way as above, the functions E → F2 form the edge
space E(G) of G: its elements are the subsets of E, vector additionedge space

E(G)
amounts to symmetric difference, ∅ ⊆ E is the zero, and F = −F for
all F ⊆ E. As before, { { e1 }, . . . , { em } } is the standard basis of E(G),standard

basis
and dim E(G) = m.

Since the edges of a graph carry its essential structure, we shall
mostly be concerned with the edge space. Given two edge sets F, F ′ ∈
E(G) and their coefficients λ1, . . . , λm and λ′1, . . . , λ

′
m with respect to the

standard basis, we write

〈F, F ′〉 := λ1λ
′
1 + . . .+λmλ

′
m ∈ F2 .〈F, F ′〉

Note that 〈F, F ′〉 = 0 may hold even when F = F ′ 6= ∅: indeed,
〈F, F ′〉 = 0 if and only if F and F ′ have an even number of edges
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in common. Given a subspace F of E(G), we write

F⊥ :=
{
D ∈ E(G) | 〈F,D〉 = 0 for all F ∈ F

}
. F⊥

This is again a subspace of E(G) (the space of all vectors solving a certain
set of linear equations—which?), and we have

dimF + dimF⊥ = m.

The cycle space C = C(G) is the subspace of E(G) spanned by all cycle space
C(G)

the cycles in G—more precisely, by their edge sets.9 The dimension of
C(G) is the cyclomatic number of G.

Proposition 1.9.1. The induced cycles in G generate its entire cycle [ 3.2.3 ]

space.

Proof . By definition of C(G) it suffices to show that the induced cycles
in G generate every cycle C ⊆ G with a chord e. This follows at once
by induction on |C|: the two cycles in C+ e with e but no other edge in
common are shorter than C, and their symmetric difference is precise-
ly C. ¤

Proposition 1.9.2. An edge set F ⊆ E lies in C(G) if and only if every [ 4.5.1 ]

vertex of (V, F ) has even degree.

Proof . The forward implication holds by induction on the number of
cycles needed to generate F , the backward implication by induction on
the number of cycles in (V, F ). ¤

If {V1, V2 } is a partition of V , the set E(V1, V2) of all the edges of
G crossing this partition is called a cut . Recall that for V1 = { v } this cut

cut is denoted by E(v).

Proposition 1.9.3. Together with ∅, the cuts in G form a subspace C∗ [ 4.6.3 ]

of E(G). This space is generated by cuts of the form E(v).

Proof . Let C∗ denote the set of all cuts in G, together with ∅. To prove
that C∗ is a subspace, we show that for all D,D′ ∈ C∗ also D + D′

(= D −D′) lies in C∗. Since D +D = ∅ ∈ C∗ and D + ∅ = D ∈ C∗,
we may assume that D and D′ are distinct and non-empty. Let
{V1, V2 } and {V ′1 , V ′2 } be the corresponding partitions of V . Then
D +D′ consists of all the edges that cross one of these partitions but
not the other (Fig. 1.9.1). But these are precisely the edges between
(V1 ∩V ′1)∪ (V2 ∩V ′2) and (V1 ∩V ′2)∪ (V2 ∩V ′1), and by D 6= D′ these two

9 For simplicity, we shall not normally distinguish between cycles and their edge
sets in connection with the cycle space.
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V1 V2

V ′
1

V ′
2

D′

D

Fig. 1.9.1. Cut edges in D+D′

sets form another partition of V . Hence D+D′ ∈ C∗, and C∗ is indeed
a subspace of E(G).

Our second assertion, that the cuts E(v) generate all of C∗, follows
from the fact that every edge xy ∈G lies in exactly two such cuts (in E(x)
and in E(y)); thus every partition {V1, V2 } of V satisfies E(V1, V2) =∑
v∈V1

E(v). ¤

The subspace C∗ =: C∗(G) of E(G) from Proposition 1.9.3 will be
called the cut space of G. It is not difficult to find among the cutscut space

C∗(G)
E(v) an explicit basis for C∗(G), and thus to determine its dimension
(exercise); together with Theorem 1.9.5 this yields an independent proof
of Theorem 1.9.6.

The following lemma will be useful when we study the duality of
plane graphs in Chapter 4.6:

Lemma 1.9.4. The minimal cuts in a connected graph generate its[ 4.6.2 ]

entire cut space.

Proof . Note first that a cut in a connected graph G = (V,E) is minimal
if and only if both sets in the corresponding partition of V are connected
in G. Now consider any connected subgraph C ⊆ G. If D is a component
of G−C, then also G−D is connected (Fig. 1.9.2); the edges between D

D

C

−DG

Fig. 1.9.2. G−D is connected, and E(C,D) a minimal cut
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and G−D thus form a minimal cut. By choice of D, this cut is precisely
the set E(C,D) of all C–D edges in G.

To prove the lemma, let a partition {V1, V2 } of V be given, and
consider a component C of G [V1 ]. Then E(C, V2) = E(C,G− C) is
the disjoint union of the edge sets E(C,D) over all components D of
G−C, and is thus the disjoint union of minimal cuts (see above). Now
the disjoint union of all these edge sets E(C, V2), taken over all the
components C of G [V1 ], is precisely our cut E(V1, V2). So this cut is
generated by minimal cuts, as claimed. ¤

Theorem 1.9.5. The cycle space C and the cut space C∗ of any graph
satisfy

C = C∗⊥ and C∗ = C⊥ .

Proof . Let us consider a graph G = (V,E). Clearly, any cycle in G has
an even number of edges in each cut. This implies C ⊆ C∗⊥.

Conversely, recall from Proposition 1.9.2 that for every edge set
F /∈ C there exists a vertex v incident with an odd number of edges in F .
Then 〈E(v), F 〉 = 1, so E(v) ∈ C∗ implies F /∈ C∗⊥. This completes the
proof of C = C∗⊥.

To prove C∗ = C⊥, it now suffices to show C∗ = (C∗⊥)⊥. Here
C∗ ⊆ (C∗⊥)⊥ follows directly from the definition of ⊥. But since

dim C∗+ dim C∗⊥ = m = dim C∗⊥+ dim (C∗⊥)⊥,

C∗ has the same dimension as (C∗⊥)⊥, so C∗ = (C∗⊥)⊥ as claimed. ¤

Theorem 1.9.6. Every connected graph G with n vertices and m edges [ 4.5.1 ]

satisfies

dim C(G) = m−n+ 1 and dim C∗(G) = n− 1 .

Proof . Let G = (V,E). As dim C + dim C∗ = m by Theorem 1.9.5, it (1.5.1)
(1.5.3)

suffices to find m− n+ 1 linearly independent vectors in C and n− 1
linearly independent vectors in C∗: since these numbers add up to m,
neither the dimension of C nor that of C∗ can then be strictly greater.

Let T be a spanning tree in G. By Corollary 1.5.3, T has n− 1
edges, so m−n+ 1 edges of G lie outside T . For each of these m−n+ 1
edges e ∈ ErE(T ), the graph T + e contains a cycle Ce (see Fig. 1.6.3
and Theorem 1.5.1 (iv)). Since none of the edges e lies on Ce′ for e′ 6= e,
these m−n+ 1 cycles are linearly independent.

For each of the n− 1 edges e ∈ T , the graph T − e has exactly two
components (Theorem 1.5.1 (iii)), and the set De of edges in G between
these components form a cut (Fig.1.9.3). Since none of the edges e ∈ T
lies in De′ for e′ 6= e, these n− 1 cuts are linearly independent. ¤
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e

Fig. 1.9.3. The cut De

The incidence matrix B = (bij)n×m of a graph G = (V,E) withincidence
matrix

V = { v1, . . . , vn } and E = { e1, . . . , em } is defined over F2 by

bij :=
{ 1 if vi ∈ ej

0 otherwise.

As usual, let Bt denote the transpose of B. Then B and Bt define linear
maps B: E(G)→V(G) and Bt:V(G)→E(G) with respect to the standard
bases.

Proposition 1.9.7.

(i) The kernel of B is C(G).

(ii) The image of Bt is C∗(G). ¤

The adjacency matrix A = (aij)n×n of G is defined byadjacency
matrix

aij :=
{ 1 if vivj ∈ E

0 otherwise.

Our last proposition establishes a simple connection between A and B
(now viewed as real matrices). Let D denote the real diagonal matrix
(dij)n×n with dii = d(vi) and dij = 0 otherwise.

Proposition 1.9.8. BBt = A+D. ¤
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1.10 Other notions of graphs

For completeness, we now mention a few other notions of graphs which
feature less frequently or not at all in this book.

A hypergraph is a pair (V,E) of disjoint sets, where the elements hypergraph

of E are non-empty subsets (of any cardinality) of V . Thus, graphs are
special hypergraphs.

A directed graph (or digraph) is a pair (V,E) of disjoint sets (of directed
graph

vertices and edges) together with two maps init:E→V and ter:E→V
assigning to every edge e an initial vertex init(e) and a terminal vertex init(e)

ter(e). The edge e is said to be directed from init(e) to ter(e). Note that ter(e)

a directed graph may have several edges between the same two vertices
x, y. Such edges are called multiple edges; if they have the same direction
(say from x to y), they are parallel . If init(e) = ter(e), the edge e is called
a loop. loop

A directed graph D is an orientation of an (undirected) graph G if orientation

V (D) = V (G) and E(D) = E(G), and if { init(e), ter(e) } = {x, y } for
every edge e = xy. Intuitively, such an oriented graph arises from an oriented

graph
undirected graph simply by directing every edge from one of its ends to
the other. Put differently, oriented graphs are directed graphs without
loops or multiple edges.

A multigraph is a pair (V,E) of disjoint sets (of vertices and edges) multigraph

together with a map E→ V ∪ [V ]2 assigning to every edge either one
or two vertices, its ends. Thus, multigraphs too can have loops and
multiple edges: we may think of a multigraph as a directed graph whose
edge directions have been ‘forgotten’. To express that x and y are the
ends of an edge e we still write e = xy, though this no longer determines
e uniquely.

A graph is thus essentially the same as a multigraph without loops
or multiple edges. Somewhat surprisingly, proving a graph theorem more
generally for multigraphs may, on occasion, simplify the proof. Moreover,
there are areas in graph theory (such as plane duality; see Chapters 4.6
and 6.5) where multigraphs arise more naturally than graphs, and where
any restriction to the latter would seem artificial and be technically
complicated. We shall therefore consider multigraphs in these cases, but
without much technical ado: terminology introduced earlier for graphs
will be used correspondingly.

Two differences, however, should be pointed out. First, a multi-
graph may have cycles of length 1 or 2: loops, and pairs of multiple
edges (or double edges). Second, the notion of edge contraction is sim-
pler in multigraphs than in graphs. If we contract an edge e = xy in
a multigraph G = (V,E) to a new vertex ve, there is no longer a need
to delete any edges other than e itself: edges parallel to e become loops
at ve, while edges xv and yv become parallel edges between ve and v
(Fig. 1.10.1). Thus, formally, E(G/e) = Er{ e }, and only the incidence



26 1. The Basics

map e′ 7→ { init(e′), ter(e′) } of G has to be adjusted to the new vertex
set in G/e. The notion of a minor adapts to multigraphs accordingly.

G/eG
e

ve

Fig. 1.10.1. Contracting the edge e in the multigraph corre-
sponding to Fig. 1.8.1

Finally, it should be pointed out that authors who usually work with
multigraphs tend to call them graphs; in their terminology, our graphs
would be called simple graphs.

Exercises
1.− What is the number of edges in a Kn?

2. Let d ∈ N and V := { 0, 1 }d; thus, V is the set of all 0–1 sequences of
length d. The graph on V in which two such sequences form an edge if
and only if they differ in exactly one position is called the d-dimensional
cube. Determine the average degree, number of edges, diameter, girth
and circumference of this graph.

(Hint for circumference. Induction on d.)

3. Let G be a graph containing a cycle C, and assume that G contains
a path of length at least k between two vertices of C. Show that G
contains a cycle of length at least

√
k. Is this best possible?

4.− Is the bound in Proposition 1.3.2 best possible?

5. Show that rad(G) 6 diam(G) 6 2 rad(G) for every graph G.

6.+ Assuming that d > 2 and k > 3, improve the bound in Proposition
1.3.3 to dk.

7.− Show that the components of a graph partition its vertex set. (In other
words, show that every vertex belongs to exactly one component.)

8.− Show that every 2-connected graph contains a cycle.

9. (i)− Determine κ(G) and λ(G) for G = P k, Ck,Kk,Km,n (k,m, n > 3).

(ii)+ Determine the connectivity of the n-dimensional cube (defined in
Exercise 2).

(Hint for (ii). Induction on n.)

10. Show that κ(G) 6 λ(G) 6 δ(G) for every non-trivial graph G.
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11.− Is there a function f :N→ N such that, for all k ∈ N, every graph of
minimum degree at least f(k) is k-connected?

12. Let α, β be two graph invariants with positive integer values. Formalize
the two statements below, and show that each implies the other:

(i) α is bounded above by a function of β;

(ii) β can be forced up by making α large enough.

Show that the statement

(iii) β is bounded below by a function of α

is not equivalent to (i) and (ii). Which small change would make it so?

13.+ What is the deeper reason behind the fact that the proof of Theorem
1.4.2 is based on an assumption of the form m > cn− b rather than
just on a lower bound for the average degree?

14. Prove Theorem 1.5.1.

15. Show that any tree T has at least ∆(T ) leaves.

16. Show that the ‘tree-order’ associated with a rooted tree T is indeed a
partial order on V (T ), and verify the claims made about this partial
order in the text.

17. Let G be a connected graph, and let r ∈ G be a vertex. Starting
from r, move along the edges of G, going whenever possible to a vertex
not visited so far. If there is no such vertex, go back along the edge by
which the current vertex was first reached (unless the current vertex
is r; then stop). Show that the edges traversed form a normal spanning
tree in G with root r.

(This procedure has earned those trees the name of depth-first search
trees.)

18. Let T be a set of subtrees of a tree T . Assume that the trees in T have
pairwise non-empty intersection. Show that their overall intersection⋂
T is non-empty.

19. Show that every automorphism of a tree fixes a vertex or an edge.

20. Are the partition classes of a regular bipartite graph always of the same
size?

21. Show that a graph is bipartite if and only if every induced cycle has
even length.

22. Find a function f :N→N such that, for all k ∈ N, every graph of average
degree at least f(k) has a bipartite subgraph of minimum degree at
least k.

23. Show that the minor relation 4 defines a partial ordering on any set of
(finite) graphs. Is the same true for infinite graphs?

24.− Show that the elements of the cycle space of a graph G are precisely
the unions of the edges sets of edge-disjoint cycles in G.
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25. Given a graph G, find among all cuts of the form E(v) a basis for the
cut space of G.

26. Prove that the cycles and the cuts in a graph together generate its
entire edge space, or find a counterexample.

27. Give a direct proof of the fact that the cycles Ce defined in the proof
of Theorem 1.9.6 generate the cycle space.

28. Give a direct proof of the fact that the cuts De defined in the proof of
Theorem 1.9.6 generate the cut space.

29. What are the dimensions of the cycle and the cut space of a graph with
k components?

Notes
The terminology used in this book is mostly standard. Alternatives do exist,
of course, and some of these are stated when a concept is first defined. There
is one small point where our notation deviates slightly from standard usage.
Whereas complete graphs, paths, cycles etc. of given order are mostly denoted
by Kn, Pk, C` and so on, we use superscripts instead of subscripts. This has
the advantage of leaving the variables K, P , C etc. free for ad-hoc use: we
may now enumerate components as C1, C2, . . ., speak of paths P1, . . . , Pk, and
so on—without any danger of confusion.

Theorem10 1.4.2 is due to W. Mader, Existenz n-fach zusammenhängen-
der Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem.
Univ. Hamburg 37 (1972) 86–97. Theorem 1.8.1 is from L. Euler, Solutio
problematis ad geometriam situs pertinentis, Comment. Acad. Sci. I. Petro-
politanae 8 (1736), 128–140.

Of the large subject of algebraic methods in graph theory, Section 1.9 does
not claim to convey an adequate impression. The standard monograph here is
N.L. Biggs, Algebraic Graph Theory (2nd edn.), Cambridge University Press
1993. Another comprehensive account is given by C.D. Godsil & G.F. Royle,
Algebraic Graph Theory , in preparation. Surveys on the use of algebraic
methods can also be found in the Handbook of Combinatorics (R.L. Graham,
M. Grötschel & L. Lovász, eds.), North-Holland 1995.

10 In the interest of readability, the end-of-chapter notes in this book give references
only for Theorems, and only in cases where these references cannot be found in a
monograph or survey cited for that chapter.
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Suppose we are given a graph and are asked to find in it as many in-
dependent edges as possible. How should we go about this? Will we
be able to pair up all its vertices in this way? If not, how can we be
sure that this is indeed impossible? Somewhat surprisingly, this basic
problem does not only lie at the heart of numerous applications, it also
gives rise to some rather interesting graph theory.

A set M of independent edges in a graph G = (V,E) is called a
matching . M is a matching of U ⊆ V if every vertex in U is incident matching

with an edge in M . The vertices in U are then called matched (by M); matched

vertices not incident with any edge of M are unmatched .
A k-regular spanning subgraph is called a k-factor . Thus, a sub- factor

graph H ⊆ G is a 1-factor of G if and only if E(H) is a matching of V .
The problem of how to characterize the graphs that have a 1-factor, i.e.
a matching of their entire vertex set, will be our main theme in this
chapter.

2.1 Matching in bipartite graphs

For this whole section, we let G = (V,E) be a fixed bipartite graph with G = (V,E)

bipartition {A,B }. Vertices denoted as a, a′ etc. will be assumed to lie A,B

in A, vertices denoted as b etc. will lie in B. a, b etc.

How can we find a matching in G with as many edges as possible?
Let us start by considering an arbitrary matching M in G. A path in G
which starts in A at an unmatched vertex and then contains, alternately,
edges from ErM and from M , is an alternating path with respect to M . alternating

path
An alternating path P that ends in an unmatched vertex of B is called
an augmenting path (Fig. 2.1.1), because we can use it to turn M into augment-

ing path
a larger matching: the symmetric difference of M with E(P ) is again a
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M

A B A B

P M ′

Fig. 2.1.1. Augmenting the matching M by the alternating
path P

matching (consider the edges at a given vertex), and the set of matched
vertices is increased by two, the ends of P .

Alternating paths play an important role in the practical search for
large matchings. In fact, if we start with any matching and keep applying
augmenting paths until no further such improvement is possible, the
matching obtained will always be an optimal one, a matching with the
largest possible number of edges (Exercise 1). The algorithmic problem
of finding such matchings thus reduces to that of finding augmenting
paths—which is an interesting and accessible algorithmic problem.

Our first theorem characterizes the maximal cardinality of a matching
in G by a kind of duality condition. Let us call a set U ⊆ V a cover of E
(or a vertex cover of G) if every edge of G is incident with a vertex in U .vertex

cover

Theorem 2.1.1. (König 1931)
The maximum cardinality of a matching in G is equal to the minimum
cardinality of a vertex cover.

Proof . Let M be a matching in G of maximum cardinality. From everyM

edge in M let us choose one of its ends: its end in B if some alternating
path ends in that vertex, and its end in A otherwise (Fig. 2.1.2). We
shall prove that the set U of these |M | vertices covers G; since any vertexU

cover of G must cover M , there can be none with fewer than |M | vertices,
and so the theorem will follow.

U ∩A

U ∩B

Fig. 2.1.2. The vertex cover U
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Let ab ∈ E be an edge; we show that either a or b lies in U . If
ab ∈ M , this holds by definition of U , so we assume that ab /∈ M . Since
M is a maximal matching, it contains an edge a′b′ with a = a′ or b = b′.
In fact, we may assume that a = a′: for if a is unmatched (and b = b′),
then ab is an alternating path, and so the end of a′b′ ∈ M chosen for
U was the vertex b′ = b. Now if a′ = a is not in U , then b′ ∈ U , and
some alternating path P ends in b′. But then there is also an alternating
path P ′ ending in b: either P ′ := Pb (if b ∈ P ) or P ′ := Pb′a′b. By the
maximality of M , however, P ′ is not an augmenting path. So b must be
matched, and was chosen for U from the edge of M containing it. ¤

Let us return to our main problem, the search for some necessary
and sufficient conditions for the existence of a 1-factor. In our present
case of a bipartite graph, we may as well ask more generally when G
contains a matching of A; this will define a 1-factor of G if |A| = |B|,
a condition that has to hold anyhow if G is to have a 1-factor.

A condition clearly necessary for the existence of a matching of A
is that every subset of A has enough neighbours in B, i.e. that

marriage
condition

|N(S)| > |S| for all S ⊆ A.

The following marriage theorem says that this obvious necessary condi-
tion is in fact sufficient:

Theorem 2.1.2. (Hall 1935) marriage
theorem

G contains a matching of A if and only if |N(S)| > |S| for all S ⊆ A.

We give three proofs for the non-trivial implication of this theorem, i.e.
that the ‘marriage condition’ implies the existence of a matching of A.
The first of these is based on König’s theorem; the second is a direct
constructive proof by augmenting paths; the third will be an independent
proof from first principles.

First proof. If G contains no matching of A, then by Theorem 2.1.1
it has a cover U consisting of fewer than |A| vertices, say U = A′ ∪B′
with A′ ⊆ A and B′ ⊆ B. Then

|A′|+ |B′| = |U | < |A| ,
and hence

|B′| < |A| − |A′| = |ArA′|

(Fig. 2.1.3). By definition of U , however, G has no edges between ArA′
and BrB′, so

|N(ArA′)| 6 |B′| < |ArA′|

and the marriage condition fails for S := ArA′. ¤
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A′

B′

Fig. 2.1.3. A cover by fewer than |A| vertices

Second proof. Consider a matching M of G that leaves a vertex of AM

unmatched; we shall construct an augmenting path with respect to M .
Let a0, b1, a1, b2, a2, . . . be a maximal sequence of distinct vertices ai ∈ A
and bi ∈ B satisfying the following conditions for all i > 1 (Fig. 2.1.4):

(i) a0 is unmatched;

(ii) bi is adjacent to some vertex af(i) ∈ { a0, . . . , ai−1 };f(i)

(iii) aibi ∈ M .

By the marriage condition, our sequence cannot end in a vertex of A:
the i vertices a0, . . . , ai−1 together have at least i neighbours in B, so
we can always find a new vertex bi 6= b1, . . . , bi−1 that satisfies (ii). Let
bk ∈ B be the last vertex of the sequence. By (i)–(iii),k

P := bkaf(k)bf(k)af2(k)bf2(k)af3(k) . . . afr(k)P

with fr(k) = 0 is an alternating path.

a0

a1

a2

a3

a4

b1

b2

b3

b4

b5

Fig. 2.1.4. Proving the marriage theorem by alternating paths

What is it that prevents us from extending our sequence further?
If bk is matched, say to a, we can indeed extend it by setting ak := a,
unless a = ai with 0 < i < k, in which case (iii) would imply bk = bi
with a contradiction. So bk is unmatched, and hence P is an augmenting
path between a0 and bk. ¤
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Third proof. We apply induction on |A|. For |A| = 1 the assertion
is true. Now let |A| > 2, and assume that the marriage condition is
sufficient for the existence of a matching of A when |A| is smaller.

If |N(S)| > |S|+ 1 for every non-empty set S $ A, we pick an edge
ab ∈ G and consider the graph G′ := G−{ a, b }. Then every non-empty
set S ⊆ Ar { a } satisfies

|NG′(S)| > |NG(S)| − 1 > |S| ,

so by the induction hypothesis G′ contains a matching of Ar { a }. To-
gether with the edge ab, this yields a matching of A in G.

Suppose now that A has a non-empty proper subset A′ with |B′| = A′, B′

|A′| for B′ := N(A′). By the induction hypothesis, G′ := G [A′ ∪B′ ] G′

contains a matching of A′. But G−G′ satisfies the marriage condition
too: for any set S ⊆ A r A′ with |NG−G′(S)| < |S| we would have
|NG(S ∪A′)| < |S ∪A′|, contrary to our assumption. Again by induc-
tion, G−G′ contains a matching of ArA′. Putting the two matchings
together, we obtain a matching of A in G. ¤

Corollary 2.1.3. If |N(S)| > |S| − d for every set S ⊆ A and some [ 2.2.3 ]

fixed d ∈ N, then G contains a matching of cardinality |A| − d.

Proof . We add d new vertices to B, joining each of them to all the ver-
tices in A. By the marriage theorem the new graph contains a matching
ofA, and at least |A|−d edges in this matching must be edges ofG. ¤

Corollary 2.1.4. If G is k-regular with k > 1, then G has a 1-factor.

Proof . If G is k-regular, then clearly |A| = |B|; it thus suffices to show by
Theorem 2.1.2 that G contains a matching of A. Now every set S ⊆ A
is joined to N(S) by a total of k |S| edges, and these are among the
k |N(S)| edges of G incident with N(S). Therefore k |S| 6 k |N(S)|, so
G does indeed satisfy the marriage condition. ¤

Despite its seemingly narrow formulation, the marriage theorem
counts among the most frequently applied graph theorems, both out-
side graph theory and within. Often, however, recasting a problem in
the setting of bipartite matching requires some clever adaptation. As a
simple example, we now use the marriage theorem to derive one of the
earliest results of graph theory, a result whose original proof is not all
that simple, and certainly not short:

Corollary 2.1.5. (Petersen 1891)
Every regular graph of positive even degree has a 2-factor.
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Proof . Let G be any 2k-regular graph (k > 1), without loss of generality(1.8.1)

connected. By Theorem 1.8.1, G contains an Euler tour v0e0 . . . e`−1v`,
with v` = v0. We replace every vertex v by a pair (v−, v+), and every
edge ei = vivi+1 by the edge v+

i v
−
i+1 (Fig. 2.1.5). The resulting bipartite

graph G′ is k-regular, so by Corollary 2.1.4 it has a 1-factor. Collapsing
every vertex pair (v−, v+) back into a single vertex v, we turn this 1-
factor of G′ into a 2-factor of G. ¤

v

v−

v+

Fig. 2.1.5. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by CG the set of its components, and byCG
q(G) the number of its odd components, those of odd order. If G has aq(G)

1-factor, then clearly
Tutte’s
condition q(G−S) 6 |S| for all S ⊆ V (G),

since every odd component of G−S will send a factor edge to S.

G

S S

HS

Fig. 2.2.1. Tutte’s condition q(G−S) 6 |S| for q = 3, and the
contracted graph HS from Theorem 2.2.3.

Again, this obvious necessary condition for the existence of a 1-factor
is also sufficient:
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Theorem 2.2.1. (Tutte 1947)
A graph G has a 1-factor if and only if q(G−S) 6 |S| for all S ⊆ V (G).

Proof . Let G = (V,E) be a graph without a 1-factor. Our task is to V,E

find a bad set S ⊆ V , one that violates Tutte’s condition. bad set

We may assume that G is edge-maximal without a 1-factor. Indeed,
if G′ is obtained from G by adding edges and S ⊆ V is bad for G′, then
S is also bad for G: any odd component of G′ − S is the union of
components of G−S, and one of these must again be odd.

What does G look like? Clearly, if G contains a bad set S then, by
its edge-maximality and the trivial forward implication of the theorem,

all the components of G−S are complete and every vertex
s ∈ S is adjacent to all the vertices of G− s. (∗)

But also conversely, if a set S ⊆ V satisfies (∗) then either S or the
empty set must be bad: if S is not bad we can join the odd components
of G− S disjointly to S and pair up all the remaining vertices—unless
|G| is odd, in which case ∅ is bad.

So it suffices to prove that G has a set S of vertices satisfying (∗).
Let S be the set of vertices that are adjacent to every other vertex. If S

this set S does not satisfy (∗), then some component of G−S has non-
adjacent vertices a, a′. Let a, b, c be the first three vertices on a shortest a, b, c

a–a′ path in this component; then ab, bc ∈ E but ac /∈ E. Since b /∈ S,
there is a vertex d ∈ V such that bd /∈ E. By the maximality of G, there d

is a matching M1 of V in G+ ac, and a matching M2 of V in G+ bd. M1,M2

P
c

a

b

d

C
. . .

2 21

1

1

Fig. 2.2.2. Deriving a contradiction if S does not satisfy (∗)

Let P = d . . . v be a maximal path in G starting at d with an edge v

from M1 and containing alternately edges from M1 and M2 (Fig. 2.2.2).
If the last edge of P lies in M1, then v = b, since otherwise we could
continue P . Let us then set C := P + bd. If the last edge of P lies in M2,
then by the maximality of P the M1-edge at v must be ac, so v ∈ { a, c };
then let C be the cycle dPvbd. In each case, C is an even cycle with
every other edge in M2, and whose only edge not in E is bd. Replacing
in M2 its edges on C with the edges of C −M2, we obtain a matching
of V contained in E, a contradiction. ¤
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Corollary 2.2.2. (Petersen 1891)
Every bridgeless cubic graph has a 1-factor.

Proof . We show that any bridgeless cubic graph G satisfies Tutte’s
condition. Let S ⊆ V (G) be given, and consider an odd component C of
G−S. Since G is cubic, the degrees (in G) of the vertices in C sum to an
odd number, but only an even part of this sum arises from edges of C.
So G has an odd number of S–C edges, and therefore has at least 3 such
edges (since G has no bridge). The total number of edges between S and
G−S thus is at least 3q(G−S). But it is also at most 3|S|, because G
is cubic. Hence q(G−S) 6 |S|, as required. ¤

In order to shed a little more light on the techniques used in match-
ing theory, we now give a second proof of Tutte’s theorem. In fact,
we shall prove a slightly stronger result, a result that places a structure
interesting from the matching point of view on an arbitrary graph. If the
graph happens to satisfy the condition of Tutte’s theorem, this structure
will at once yield a 1-factor.

A graph G = (V,E) is called factor-critical if G 6= ∅ and G − vfactor-
critical

has a 1-factor for every vertex v ∈ G. Then G itself has no 1-factor,
because it has odd order. We call a vertex set S ⊆ V matchable tomatchable

G−S if the (bipartite1) graph HS , which arises from G by contracting
the components C ∈ CG−S to single vertices and deleting all the edges
inside S, contains a matching of S. (Formally, HS is the graph withHS

vertex set S∪CG−S and edge set { sC | ∃ c ∈ C : sc ∈ E }; see Fig. 2.2.1.)

Theorem 2.2.3. Every graph G = (V,E) contains a vertex set S with
the following two properties:

(i) S is matchable to G−S;

(ii) every component of G−S is factor-critical.

Given any such set S, the graph G contains a 1-factor if and only if
|S| = |CG−S |.

For any given G, the assertion of Tutte’s theorem follows easily from
this result. Indeed, by (i) and (ii) we have |S| 6 |CG−S | = q(G− S)
(since factor-critical graphs have odd order); thus Tutte’s condition of
q(G − S) 6 |S| implies |S| = |CG−S |, and the existence of a 1-factor
follows from the last statement of Theorem 2.2.3.

Proof of Theorem 2.2.3. Note first that the last assertion of the(2.1.3)

theorem follows at once from the assertions (i) and (ii): if G has a
1-factor, we have q(G − S) 6 |S| and hence |S| = |CG−S | as above;

1 except for the—permitted—case that S or CG−S is empty
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conversely if |S| = |CG−S |, then the existence of a 1-factor follows straight
from (i) and (ii).

We now prove the existence of a set S satisfying (i) and (ii). We
apply induction on |G|. For |G| = 0 we may take S = ∅. Now let G
be given with |G| > 0, and assume the assertion holds for graphs with
fewer vertices.

Let d be the least non-negative integer such that d

q(G−T ) 6 |T |+ d for every T ⊆ V . (∗)

Then there exists a set T for which equality holds in (∗): this follows
from the minimality of d if d > 0, and from q(G−∅) > |∅|+ 0 if d = 0.
Let S be such a set T of maximum cardinality, and let C := CG−S . S, C

We first show that every component C ∈ C is odd. If |C| is even,
pick a vertex c ∈ C, and let S′ := S ∪{ c } and C ′ := C− c. Then C ′ has
odd order, and thus has at least one odd component. Hence, q(G−S′) >
q(G−S) + 1. Since T := S satisfies (∗) with equality, we obtain

q(G−S′) > q(G−S) + 1 = |S|+ d+ 1 = |S′|+ d >
(∗)

q(G−S′)

with equality, which contradicts the maximality of S.
Next we prove the assertion (ii), that every C ∈ C is factor-critical.

Suppose there exist C ∈ C and c ∈ C such that C ′ := C − c has no
1-factor. By the induction hypothesis (and the fact that, as shown ear-
lier, for fixed G our theorem implies Tutte’s theorem) there exists a set
T ′ ⊆ V (C ′) with

q(C ′−T ′) > |T ′| .

Since |C| is odd and hence |C ′| is even, the numbers q(C ′−T ′) and |T ′|
are either both even or both odd, so they cannot differ by exactly 1. We
may therefore sharpen the above inequality to

q(C ′−T ′) > |T ′|+ 2 .

For T := S ∪{ c }∪T ′ we thus obtain

q(G−T ) = q(G−S)− 1 + q(C ′−T ′)
> |S|+ d− 1 + |T ′|+ 2

= |T |+ d

>
(∗)
q(G−T )

with equality, again contradicting the maximality of S.
It remains to show that S is matchable to G− S. If S = ∅, this

is trivial, so we assume that S 6= ∅. Since T := S satisfies (∗) with



38 2. Matching

equality, this implies that C too is non-empty. We now apply Corollary
2.1.3 to H := HS , but ‘backwards’, i.e. with A := C. Given C′ ⊆ C,H

set S′ := NH(C′) ⊆ S. Since every C ∈ C′ is an odd component also of
G−S′, we have

|NH(C′)| = |S′| >
(∗)

q(G−S′)− d > |C′| − d .

By Corollary 2.1.3, then, H contains a matching of cardinality

|C|− d = q(G−S)− d = |S| ,

which is therefore a matching of S. ¤

Let us consider once more the set S from Theorem 2.2.3, togetherS

with any matching M in G. As before, we write C := CG−S . Let usC
denote by kS the number of edges in M with at least one end in S, and
by kC the number of edges in M with both ends in G− S. Since eachkS , kC
C ∈ C is odd, at least one of its vertices is not incident with an edge of
the second type. Therefore every matching M satisfies

kS 6 |S| and kC 6 1
2

(
|V | − |S| − |C|

)
. (1)

Moreover, G contains a matching M0 with equality in both cases: firstM0

choose |S| edges between S and
⋃
C according to (i), and then use (ii) to

find a suitable set of 1
2

(
|C| − 1

)
edges in every component C ∈ C. This

matching M0 thus has exactly

|M0| = |S|+ 1
2

(
|V | − |S| − |C|

)
(2)

edges.
Now (1) and (2) together imply that every matching M of maximum

cardinality satisfies both parts of (1) with equality: by |M | > |M0|
and (2), M has at least |S|+ 1

2

(
|V | − |S| − |C|

)
edges, which implies by

(1) that neither of the inequalities in (1) can be strict. But equality
in (1), in turn, implies that M has the structure described above: by
kS = |S|, every vertex s ∈ S is the end of an edge st ∈M with t ∈ G−S,
and by kC = 1

2

(
|V | − |S| − |C|

)
exactly 1

2 (|C| − 1
)

edges of M lie in C,
for every C ∈ C. Finally, since these latter edges miss only one vertex in
each C, the ends t of the edges st above lie in different components C
for different s.

The seemingly technical Theorem 2.2.3 thus hides a wealth of struc-
tural information: it contains the essence of a detailed description of all
maximum-cardinality matchings in all graphs.2

2 A reference to the full statement of this structural result, known as the Gallai-
Edmonds matching theorem, is given in the notes at the end of this chapter.
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2.3 Path covers

Let us return for a moment to König’s duality theorem for bipartite
graphs, Theorem 2.1.1. If we orient every edge of G from A to B, the
theorem tells us how many disjoint directed paths we need in order to
cover all the vertices of G: every directed path has length 0 or 1, and
clearly the number of paths in such a ‘path cover’ is smallest when it
contains as many paths of length 1 as possible—in other words, when it
contains a maximum-cardinality matching.

In this section we put the above question more generally: how many
paths in a given directed graph will suffice to cover its entire vertex set?
Of course, this could be asked just as well for undirected graphs. As it
turns out, however, the result we shall prove is rather more trivial in
the undirected case (exercise), and the directed case will also have an
interesting corollary.

A directed path is a directed graph P 6= ∅ with distinct vertices
x0, . . . , xk and edges e0, . . . , ek−1 such that ei is an edge directed from
xi to xi+1, for all i < k. We denote the last vertex xk of P by ter(P ). ter(P )

In this section, path will always mean ‘directed path’. A path cover of a path

directed graph G is a set of disjoint paths in G which together contain path cover

all the vertices of G. Let us denote the maximum cardinality of an
independent set of vertices in G by α(G). α(G)

Theorem 2.3.1. (Gallai & Milgram 1960)
Every directed graph G has a path cover by at most α(G) paths.

Proof . Given two path covers P1,P2 of a graph, we write P1 < P2 if P1 < P2

{ ter(P ) | P ∈ P1 } ⊆ { ter(P ) | P ∈ P2 } and |P1| < |P2|. We shall prove
the following:

If P is a <-minimal path cover of G, then G contains an
independent set { vP | P ∈ P } of vertices with vP ∈ P for
every P ∈ P.

(∗)

Clearly, (∗) implies the assertion of the theorem.
We prove (∗) by induction on |G|. Let P = {P1, . . . , Pm } be given P, Pi,m

as in (∗), and let vi := ter(Pi) for every i. If { vi | 1 6 i 6 m } is vi

independent, there is nothing more to show; we may therefore assume
that G has an edge from v2 to v1. Since P2v2v1 is again a path, the
minimality of P implies that v1 is not the only vertex of P1; let v be v

the vertex preceding v1 on P1. Then P ′ := {P1v, P2, . . . , Pm } is a path P ′
cover of G′ := G− v1 (Fig. 2.3.1). We first show that P ′ is <-minimal G′

with this property.
Suppose that P ′′ < P ′ is another path cover of G′. If a path P ∈ P ′′

ends in v, we may replace P in P ′′ by Pvv1 to obtain a smaller path
cover of G than P, a contradiction to the minimality of P. If a path
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. . .

v1 v2

P1 P2

v

Pm

Fig. 2.3.1. The path cover P ′ of G′

P ∈ P ′′ ends in v2 (but none in v), we replace P in P ′′ by Pv2v1,
again contradicting the minimality of P. Hence { ter(P ) | P ∈ P ′′ } ⊆
{ v3, . . . , vm }, and in particular |P ′′| 6 |P| − 2. But now P ′′ and the
trivial path { v1 } together form a path cover of G that contradicts the
minimality of P.

Hence P ′ is minimal, as claimed. By the induction hypothesis,
{V (P ) | P ∈ P ′ } has an independent set of representatives. But this is
also a set of representatives for P, and (∗) is proved. ¤

As a corollary to Theorem 2.3.1 we now deduce a classic result from
the theory of partial orders. Recall that a subset of a partially ordered
set (P,6) is a chain in P if its elements are pairwise comparable; it ischain

an antichain if they are pairwise incomparable.antichain

Corollary 2.3.2. (Dilworth 1950)
In every finite partially ordered set (P,6), the minimum number of
chains covering P is equal to the maximum cardinality of an antichain
in P .

Proof . If A is an antichain in P of maximum cardinality, then clearly
P cannot be covered by fewer than |A| chains. The fact that |A| chains
will suffice follows from Theorem 2.3.1 applied to the directed graph on
P with the edge set { (x, y) | x < y }. ¤

Exercises

1. Let M be a matching in a bipartite graph G. Show that if M is sub-
optimal, i.e. contains fewer edges than some other matching in G, then
G contains an augmenting path with respect to M . Does this fact
generalize to matchings in non-bipartite graphs?

(Hint. Symmetric difference.)
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2. Describe an algorithm that finds, as efficiently as possible, a matching
of maximum cardinality in any bipartite graph.

3. Find an infinite counterexample to the statement of the marriage the-
orem.

4. Let k be an integer. Show that any two partitions of a finite set into
k-sets admit a common choice of representatives.

5. Let A be a finite set with subsets A1, . . . , An, and let d1, . . . , dn ∈ N.
Show that there are disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all
k 6 n, if and only if ∣∣∣⋃

i∈I

Ai

∣∣∣ >∑
i∈I

di

for all I ⊆ { 1, . . . , n }.

6.+ Prove Sperner’s lemma: in an n-setX there are never more than
(

n
bn/2c

)
subsets such that none of these contains another.

(Hint. Construct
(

n
bn/2c

)
chains covering the power set lattice of X.)

7. Find a set S for Theorem 2.2.3 when G is a forest.

8. Using (only) Theorem 2.2.3, show that a k-connected graph with at
least 2k vertices contains a matching of size k. Is this best possible?

9. A graph G is called (vertex-) transitive if, for any two vertices v, w ∈ G,
there is an automorphism of G mapping v to w. Using the observa-
tions following the proof of Theorem 2.2.3, show that every transitive
connected graph is either factor-critical or contains a 1-factor.

(Hint. Consider the cases of S = ∅ and S 6= ∅ separately.)

10. Show that a graph G contains k independent edges if and only if
q(G−S) 6 |S|+ |G| − 2k for all sets S ⊆ V (G).

(Hint. For the ‘if’ direction, suppose that G has no k independent
edges, and apply Tutte’s 1-factor theorem to the graph G ∗K|G|−2k.
Alternatively, use Theorem 2.2.3.)

11.− Find a cubic graph without a 1-factor.

12. Derive the marriage theorem from Tutte’s theorem.

13.− Prove the undirected version of the theorem of Gallai & Milgram (with-
out using the directed version).

14. Derive the marriage theorem from the theorem of Gallai & Milgram.

15.− Show that a partially ordered set of at least rs+ 1 elements contains
either a chain of size r+ 1 or an antichain of size s+ 1.

16. Prove the following dual version of Dilworth’s theorem: in every fi-
nite partially ordered set (P,6), the minimum number of antichains
covering P is equal to the maximum cardinality of a chain in P .

17. Derive König’s theorem from Dilworth’s theorem.



42 2. Matching

18.+ Find a partially ordered set that has no infinite antichain but cannot
be covered by finitely many chains.

(Hint. N×N.)

Notes
There is a very readable and comprehensive monograph about matching in
finite graphs: L. Lovász & M.D. Plummer, Matching Theory , Annals of Dis-
crete Math. 29, North Holland 1986. All the references for the results in this
chapter can be found there.

As we shall see in Chapter 3, König’s Theorem of 1931 is no more than the
bipartite case of a more general theorem due to Menger, of 1929. At the time,
neither of these results was nearly as well known as Hall’s marriage theorem,
which was proved even later, in 1935. To this day, Hall’s theorem remains one
of the most applied graph-theoretic results. Its special case that both partition
sets have the same size was proved implicitly already by Frobenius (1917) in
a paper on determinants.

Our proof of Tutte’s 1-factor theorem is based on a proof by Lovász
(1975). Our extension of Tutte’s theorem, Theorem 2.2.3 (including the infor-
mal discussion following it) is a lean version of a comprehensive structure the-
orem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovász &
Plummer for a detailed statement and discussion of this theorem.

Theorem 2.3.1 is due to T. Gallai & A.N. Milgram, Verallgemeinerung
eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21
(1960), 181–186.
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Our definition of k-connectedness, given in Chapter 1.4, is somewhat
unintuitive. It does not tell us much about ‘connections’ in a k-connected
graph: all it says is that we need at least k vertices to disconnect it. The
following definition—which, incidentally, implies the one above—might
have been more descriptive: ‘a graph is k-connected if any two of its
vertices can be joined by k independent paths’.

It is one of the classic results of graph theory that these two defini-
tions are in fact equivalent, are dual aspects of the same property. We
shall study this theorem of Menger (1927) in some depth in Section 3.3.

In Sections 3.1 and 3.2, we investigate the structure of the 2-con-
nected and the 3-connected graphs. For these small values of k it is still
possible to give a simple general description of how these graphs can be
constructed.

In the remaining sections of this chapter we look at other concepts of
connectedness, more recent than the standard one but no less important:
the number of H-paths in a graph for a given subgraph H; the number of
edge-disjoint spanning trees; and the existence of disjoint paths linking
up several given pairs of vertices.

3.1 2-Connected graphs and subgraphs
A maximal connected subgraph without a cutvertex is called a block . block

Thus, every block of a graphG is either a maximal 2-connected subgraph,
or a bridge (with its ends), or an isolated vertex. Conversely, every such
subgraph is a block. By their maximality, different blocks of G overlap
in at most one vertex, which is then a cutvertex of G. Hence, every edge
of G lies in a unique block, and G is the union of its blocks.

In a sense, blocks are the 2-connected analogues of components, the
maximal connected subgraphs of a graph. While the structure of G is
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determined fully by that of its components, however, it is not captured
completely by the structure of its blocks: since the blocks need not be
disjoint, the way they intersect defines another structure, giving a coarse
picture of G as if viewed from a distance.

The following proposition describes this coarse structure of G as
formed by its blocks. Let A denote the set of cutvertices of G, and B
the set of its blocks. We then have a natural bipartite graph on A∪B
formed by the edges aB with a ∈ B. This block graph of G is shown inblock

graph
Figure 3.1.1.

a′

a

a′

a

B′
B′

B B

Fig. 3.1.1. A graph and its block graph

Proposition 3.1.1. The block graph of a connected graph is a tree.
¤

Proposition 3.1.1 reduces the structure of a given graph to that of its
blocks. So what can we say about the blocks themselves? The following
proposition gives a simple method by which, in principle, a list of all
2-connected graphs could be compiled:

Proposition 3.1.2. A graph is 2-connected if and only if it can be[ 4.2.5 ]

constructed from a cycle by successively adding H-paths to graphs H
already constructed (Fig. 3.1.2).

Fig. 3.1.2. The construction of 2-connected graphs
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Proof . Clearly, every graph constructed as described is 2-connected.
Conversely, let a 2-connected graph G be given. Then G contains a
cycle, and hence has a maximal subgraph H constructible as above. H

Since any edge xy ∈ E(G)rE(H) with x, y ∈ H would define an H-
path, H is an induced subgraph of G. Thus if H 6= G, then by the
connectedness of G there is an edge vw with v ∈ G−H and w ∈ H. As
G is 2-connected, G−w contains a v–H path P . Then wvP is an H-path
in G, and H ∪wvP is a constructible subgraph of G larger than H. This
contradicts the maximality of H. ¤

3.2 The structure of 3-connected graphs

We start this section with the analogue of Proposition 3.1.2 for 3-
connectedness: our first theorem describes how every 3-connected graph
can be obtained from a K4 by a succession of elementary operations
preserving 3-connectedness. We then prove a deep result of Tutte about
the algebraic structure of the cycle space of 3-connected graphs; this will
play an important role again in Chapter 4.5.

Lemma 3.2.1. If G is 3-connected and |G| > 4, then G has an edge e [ 4.4.3 ]

such that G/e is again 3-connected.

Proof . Suppose there is no such edge e. Then, for every edge xy ∈ G, xy

the graph G/xy contains a separating set S of at most 2 vertices. Since
κ(G) > 3, the contracted vertex vxy of G/xy (see Chapter 1.7) lies
in S and |S| = 2, i.e. G has a vertex z /∈ {x, y } such that { vxy, z } z

separates G/xy. Then any two vertices separated by { vxy, z } in G/xy
are separated in G by T := {x, y, z }. Since no proper subset of T
separates G, every vertex in T has a neighbour in every component C C

of G−T .
We choose the edge xy, the vertex z, and the component C so that

|C| is as small as possible, and pick a neighbour v of z in C (Fig. 3.2.1). v

x

y

z

T
C

v

Fig. 3.2.1. Separating vertices in the proof of Lemma 3.2.1
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By assumption, G/zv is again not 3-connected, so again there is a vertex
w such that { z, v, w } separatesG, and as before every vertex in { z, v, w }w

has a neighbour in every component of G−{ z, v, w }.
As x and y are adjacent, G−{ z, v, w } has a component D such that

D∩{x, y } = ∅. Then every neighbour of v in D lies in C (since v ∈ C),
so D∩C 6= ∅ and hence D $ C by the choice of D. This contradicts the
choice of xy, z and C. ¤

Theorem 3.2.2. (Tutte 1961)
A graphG is 3-connected if and only if there exists a sequence G0, . . . , Gn
of graphs with the following properties:

(i) G0 = K4 and Gn = G;

(ii) Gi+1 has an edge xy with d(x), d(y) > 3 and Gi = Gi+1/xy, for
every i < n.

Proof . IfG is 3-connected, a sequence as in the theorem exists by Lemma
3.2.1. Note that all the graphs in this sequence are 3-connected.

Conversely, let G0, . . . , Gn be a sequence of graphs as stated; we
show that if Gi = Gi+1/xy is 3-connected then so is Gi+1, for every i < n.xy

Suppose not, let S be a separating set of at most 2 vertices in Gi+1, andS

let C1, C2 be two components of Gi+1−S. As x and y are adjacent, weC1, C2

may assume that {x, y }∩V (C1) = ∅ (Fig. 3.2.2). Then C2 contains nei-

C1 C2S

x
y

Fig. 3.2.2. The position of xy ∈ Gi+1 in the proof of Theo-
rem 3.2.2

ther both vertices x, y nor a vertex v /∈ {x, y }: otherwise vxy or v would
be separated from C1 in Gi by at most two vertices, a contradiction.
But now C2 contains only one vertex: either x or y. This contradicts
our assumption of d(x), d(y) > 3. ¤

Theorem 3.2.2 is the essential core of a result of Tutte known as his
wheel theorem.1 Like Proposition 3.1.2 for 2-connected graphs, it enables
us to construct all 3-connected graphs by a simple inductive process
depending only on local information: starting with K4, we pick a vertex
v in a graph constructed already, split it into two adjacent vertices v′, v′′,
and join these to the former neighbours of v as we please—provided only
that v′ and v′′ each acquire at least 3 incident edges, and that every
former neighbour of v becomes adjacent to at least one of v′, v′′.

1 Graphs of the form Cn ∗K1 are called wheels; thus, K4 is the smallest wheel.wheel
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Theorem 3.2.3. (Tutte 1963)
The cycle space of a 3-connected graph is generated by its non-separating [ 4.5.2 ]

induced cycles.

Proof . We apply induction on the order of the graph G considered. (1.9.1)

In K4, every cycle is a triangle or (in terms of edges) the symmetric
difference of triangles. As these are both induced and non-separating,
the assertion holds for |G| = 4.

For the induction step, let e = xy be an edge of G for which e = xy

G′ := G/e is again 3-connected; cf. Lemma 3.2.1. Then every edge G′

e′ ∈ E(G′)r E(G) is of the form e′ = uve, where at least one of the
two edges ux and uy lies in G. We pick one that does (either ux or uy),
and identify it notationally with the edge e′; thus e′ now denotes both
the edge uve of G′ and one of the two edges ux, uy. In this way we may
regard E(G′) as a subset of E(G), and E(G′) as a subspace of E(G); thus
all vector operations will take place unambiguously in E(G).

Let us consider an induced cycle C ⊆ G. If e ∈ C and C = C3, we
call C a fundamental triangle; then C/e = K2. If e ∈ C but C 6= C3, fundamental

triangle
then C/e is a cycle in G′. Finally if e /∈ C, then at most one of x, y
lies on C (otherwise e would be a chord), so the vertices of C in order
also form a cycle in G′ if we replace x or y by ve; this cycle, too, will
be denoted by C/e. Thus, as long as C is not a fundamental triangle,
C/e will always denote a unique cycle in G′. Note, however, that in the C/e

case of e /∈ C the edge set of C/e when viewed as a subset of E(G) need
not coincide with E(C), or even be a cycle at all; an example is shown
in Figure 3.2.3.

e′

e′

C/e

ve

C

e′′ e′′

E(C/e) ⊆ G

x

y

x

y

u w u w u w

Fig. 3.2.3. One of the four possibilities for E(C/e) when e /∈ C

Let us refer to the non-separating induced cycles in G or G′ as basic basic cycles

cycles. An element of C(G) will be called good if it is a linear combination good

of basic cycles in G; we thus want to show that every element of C(G) is
good. The basic idea of our proof is to contract a given cycle C ∈ C(G)
to C/e, generate C/e in C(G′) by induction, and try to lift the generators
back to basic cycles in G that generate C.

We start by proving three auxiliary facts.

Every fundamental triangle is a basic cycle in G. (1)
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A fundamental triangle, wxyw say, is clearly induced in G. If it sepa-
rated G, then { ve, w } would separate G′, which contradicts the choice
of e. This proves (1).

If C ⊆ G is an induced cycle but not a fundamental trian-
gle, then C+C/e+D ∈ { ∅, {e} } for some good D ∈ C(G). (2)

The gist of (2) is that, in terms of ‘generatability’, C and C/e differ only
a little: after the addition of a permissible error term D, at most in the
edge e. In which other edges, then, can C and C/e differ? Clearly at
most in the two edges eu = uve and ew = vew incident with ve in C/e;
cf. Fig. 3.2.3. But these differences between the edge sets of C/e and
C are levelled out precisely by adding the corresponding fundamental
triangles uxy and xyw (which are basic by (1)). Indeed, let Du denote
the triangle uxy if eu /∈ C and ∅ otherwise, and let Dw denote xyw if
ew /∈ C and ∅ otherwise. Then D := Du +Dw satisfies (2) as desired.

Next, we show how to lift basic cycles of G′ back to G:

For every basic cycle C ′ ⊆ G′ there exists a basic cycle
C = C(C ′) ⊆ G with C/e = C ′.

(3)

If ve /∈ C ′, then (3) is satisfied with C := C ′. So we assume that ve ∈ C ′.
Let u and w be the two neighbours of ve on C ′, and let P be the u–wu,w

path in C ′ avoiding ve (Fig. 3.2.4). Then P ⊆ G.P

x

y

u w

P

Fig. 3.2.4. The search for a basic cycle C with C/e = C′

We first assume that {ux, uy, wx,wy } ⊆ E(G), and consider (as
candidates for C) the cycles Cx := uPwxu and Cy := uPwyu. Both areCx, Cy

induced cycles in G (because C ′ is induced in G′), and clearly Cx/e =
Cy/e = C ′. Moreover, neither of these cycles separates two vertices
of G− (V (P ) ∪ {x, y }) in G, since C ′ does not separate such vertices
in G′. Thus, if Cx (say) is a separating cycle in G, then one of the
components of G− Cx consists just of y. Likewise, if Cy separates G
then one of the arising components contains only x. However, this cannot
happen for both Cx and Cy at once: otherwise NG({x, y }) ⊆ V (P ) and
hence NG({x, y }) = {u,w } (since C ′ has no chord), which contradicts
κ(G) > 3. Hence, at least one of Cx, Cy is a basic cycle in G.
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It remains to consider the case that {ux, uy, wx,wy } 6⊆ E(G), say
ux /∈ E(G). Then, as above, either uPwyu or uPwxyu is a basic cycle
in G, according as wy is an edge of G or not. This completes the proof
of (3).

We now come to the main part of our proof, the proof that every
C ∈ C(G) is good. By Proposition 1.9.1 we may assume that C is an C

induced cycle in G. By (1) we may further assume that C is not a
fundamental triangle; so C/e is a cycle. Our aim is to argue as follows.
By (2), C differs from C/e at most by some good error term D (and
possibly in e); by (3), the basic cycles C ′i of G′ that sum to C/e by
induction can be contracted from basic cycles of G, which likewise differ
from the C ′i only by a good error term Di (and possibly in e); hence these
basic cycles of G and all the error terms together sum to C—except that
the edge e will need some special attention.

By the induction hypothesis, C/e has a representation

C/e = C ′1 + . . .+C ′k C′1, . . . , C
′
k

in C(G′), where every C ′i is a basic cycle in G′. For each i, we obtain from
(3) a basic cycle C(C ′i) ⊆ G with C(C ′i)/e = C ′i (in particular, C(C ′i) is
not a fundamental triangle), and from (2) some good Di ∈ C(G) such
that

C(C ′i) +C ′i +Di ∈ { ∅, {e} } . (4)

We let

Ci := C(C ′i) +Di ; C1, . . . , Ck

then Ci is good, and by (4) it differs from C ′i at most in e. Again by (2),
we have

C +C/e+D ∈ { ∅, {e} }

for some good D ∈ C(G), i.e. C +D differs from C/e at most in e. But D

then C+D+C1 + . . .+Ck differs from C/e+C ′1 + . . .+C ′k = ∅ at most
in e, that is,

C +D+C1 + . . .+Ck ∈ { ∅, {e} } .

Since C +D+C1 + . . .+Ck ∈ C(G) but {e} /∈ C(G), this means that in
fact

C +D+C1 + . . .+Ck = ∅ ,

so C = D+C1 + . . .+Ck is good. ¤
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3.3 Menger’s theorem

The following theorem is one of the cornerstones of graph theory.

Theorem 3.3.1. (Menger 1927)
Let G = (V,E) be a graph and A,B ⊆ V . Then the minimum number

[ 3.6.2 ]
[ 8.1.2 ]
[ 12.3.9 ]
[ 12.4.4 ]
[ 12.4.5 ]

of vertices separating A from B in G is equal to the maximum number
of disjoint A–B paths in G.

We offer three proofs. WheneverG,A,B are given as in the theorem,
we denote by k = k (G,A,B) the minimum number of vertices separatingk

A from B in G. Clearly, G cannot contain more than k disjoint A–B
paths; our task will be to show that k such paths exist.

First proof. We prove the following stronger statement:

If P is any set of fewer than k disjoint A–B paths in G
then there is a set Q of |P|+ 1 disjoint A–B paths whose
set of ends includes the set of ends of the paths in P.

Keeping G and A fixed, we let B vary and apply induction on |G−B|.
Let R be an A–B path that avoids the (fewer than k) vertices of B that
lie on a path in P. If R avoids all the paths in P, then Q := P ∪ {R }
is as desired. (This will happen for |G−B| = 0 when all A–B paths are
trivial.) If not, let x be the last vertex of R that lies on some P ∈ P
(Fig. 3.3.1). Put B′ := B ∪V (xP ∪xR) and P ′ :=

(
P r {P }

)
∪{Px }.

Then |P ′| = |P| and k(G,A,B′) > k(G,A,B), so by the induction
hypothesis there is a set Q′ of |P|+ 1 disjoint A–B′ paths whose ends
include those of the paths in P ′. Then Q′ contains a path Q ending in x,
and a unique path Q′ whose last vertex y is not among the last vertices
of the paths in P ′. If y /∈ xP , we let Q be obtained from Q′ by adding
xP to Q, and adding yR to Q′ if y /∈ B. Otherwise y ∈ x̊P , and we let
Q be obtained from Q′ by adding xR to Q and adding yP to Q′. ¤

A B

R

P

x Px

Rx

P

Fig. 3.3.1. Paths in the first proof of Menger’s theorem
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Second proof. We show by induction on |G|+ ‖G‖ that G contains k
disjoint A–B paths. For all G,A,B with k ∈ { 0, 1 } this is true. For
the induction step let G,A,B with k > 2 be given, and assume that the
assertion holds for graphs with fewer vertices or edges.

If there is a vertex x ∈ A∩B, then G−x contains k−1 disjoint A–B
paths by the induction hypothesis. (Why?) Together with the trivial
path {x }, these form the desired paths in G. We shall therefore assume
that

A∩B = ∅ . (1)

We first construct the desired paths for the case that A and B are
separated by a set X ⊆ V with |X| = k and X 6= A,B. Let CA be X

the union of all the components of G−X meeting A; note that CA 6= ∅,
since |A| > k = |X| but A 6= X. The subgraph CB defined likewise is not CA, CB

empty either, and CA∩CB = ∅. Let us write GA := G [V (CA)∪X ] and
GB := G [V (CB) ∪X ]. Since every A–B path in G contains an A–X GA, GB

path in GA, we cannot separate A from X in GA by fewer than k vertices.
Thus, by the induction hypothesis, GA contains k disjoint A–X paths
(Fig. 3.3.2). In the same way, there are k disjoint X–B paths in GB . As
|X| = k, we can put these paths together to form k disjoint A–B paths.

GA GB

X

A

A B

Fig. 3.3.2. Disjoint A–X paths in GA

For the general case, let P be any A–B path in G. By (1), P has
an edge ab with a /∈ B and b /∈ A. Let Y be a set of as few vertices as ab

possible separating A from B in G−ab (Fig. 3.3.3). Then Ya := Y ∪{ a } Y

and Yb := Y ∪{ b } both separate A from B in G, and by definition of k Ya, Yb

we have
|Ya|, |Yb| > k .

If equality holds here, we may assume by the case already treated that
{Ya, Yb } ⊆ {A,B }, so {Ya, Yb } = {A,B } since a /∈ B and b /∈ A. Thus,
Y = A∩B. Since |Y | > k− 1 > 1, this contradicts (1).

We therefore have either |Ya| > k or |Yb| > k, and hence |Y | > k.
By the induction hypothesis, then, there are k disjoint A–B paths even
in G− ab ⊆ G. ¤
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A B
Y

P

a b

Fig. 3.3.3. Separating A from B in G− ab

Applied to a bipartite graph, Menger’s theorem specializes to the
assertion of König’s theorem (2.1.1). For our third proof, we now adapt
the alternating path proof of König’s theorem to the more general set-
up of Theorem 3.3.1. Let again G,A,B be given, and let P be a set ofP
disjoint A–B paths in G. We write

V [P ] :=
⋃
{V (P ) | P ∈ P }

E [P ] :=
⋃
{E(P ) | P ∈ P } .

A walk W = x0e0x1e1 . . . en−1xn in G with ei 6= ej for i 6= j is said
to be alternating with respect to P if the following three conditions are
satisfied for all i < n (Fig. 3.3.4):alternating

walk

(i) if ei = e ∈ E [P ], then W traverses the edge e backwards, i.e.
xi+1 ∈ Px̊i for some P ∈ P;

(ii) if xi = xj with i 6= j, then xi ∈ V [P ];

(iii) if xi ∈ V [P ], then { ei−1, ei }∩E [P ] 6= ∅.2

Px0

xn

A

B

W

Fig. 3.3.4. An alternating walk from A to B

2 For i = 0 we let { ei−1, ei } := { e0 }.
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Let us consider a walk W = x0e0x1e1 . . . en−1xn from Ar V [P ] W,xi, ei

to BrV [P ], alternating with respect to P. By (ii), any vertex outside
V [P ] occurs at most once on W . Since the edges ei of W are all distinct,
(iii) implies that any vertex in V [P ] occurs at most twice on W . This
can happen in two ways: if xi = xj with 0 < i < j < n, say, then

either ei−1, ej ∈ E [P ] and ei, ej−1 /∈ E [P ]

or ei, ej−1 ∈ E [P ] and ei−1, ej /∈ E [P ] .

Lemma 3.3.2. If such a walk W exists, then G contains |P|+1 disjoint
A–B paths.

Proof . Let H be the graph on V [P ]∪{x0, . . . , xn } whose edge set is the
symmetric difference of E [P ] with { e0, . . . , en−1 }. In H, the ends of
the paths in P and of W have degree 1 (or 0, if the path or W is trivial),
and all other vertices have degree 0 or 2. For each of the |P|+ 1 vertices
a ∈ (A∩ V [P ])∪ {x0 }, therefore, the component of H containing a is
a path, P = v0 . . . vk say, which starts in a and ends in A or B. Using P

conditions (i) and (iii), one easily shows by induction on i = 0, . . . , k− 1
that P traverses each of its edges e = vivi+1 in the forward direction with
respect to P or W . (Formally: if e ∈ P ′ with P ′ ∈ P, then vi ∈ P ′̊vi+1;
if e = ej ∈ W , then vi = xj and vi+1 = xj+1.) Hence, P ends in B. As
we have |P|+ 1 disjoint such paths P , this completes the proof. ¤

Third proof of Menger’s theorem. Let P be a set of as many disjoint P
A–B paths in G as possible. Unless otherwise stated, all alternating
walks considered are alternating with respect to P. We set

A1 := A∩V [P ] and A2 := ArA1 , A1, A2

and

B1 := B ∩V [P ] and B2 := BrB1 . B1, B2

For every path P ∈ P, let xP be the last vertex of P that lies on xP

some alternating walk starting in A2; if no such vertex exists, let xP be
the first vertex of P . Clearly, the set

X := {xP | P ∈ P } X

has cardinality |P|; it thus suffices to show that X separates A from B.
Let Q be any A–B path in G; we show that Q meets X. Suppose Q

not. By the maximality of P, the path Q meets V [P ]. Since the A–
V [P ] path in Q is trivially an alternating walk, Q also meets the vertex
set V [P ′ ] of

P ′ := {PxP | P ∈ P } ; P ′
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let y be the last vertex of Q in V [P ′ ], let P be the path in P containing y,y, P

and let x := xP . Finally, let W be an alternating walk from A2 to x,x,W

as in the definition of xP . By assumption, Q avoids X and hence x,
so y ∈ Px̊, and W ∪ xPyQ is a walk from A2 to B (Fig. 3.3.5). If
this walk is alternating and ends in B2, we are home: then G contains
|P|+ 1 disjoint A–B paths by Lemma 3.3.2, contrary to the maximality
of P.

P

Q

W

y
x

z Qy

Fig. 3.3.5. Alternating walks in the third proof of Menger’s the-
orem

How could W ∪ xPyQ fail to be an alternating walk? For a start,
W might already use an edge of xPy. But if x′ is the first vertex of W
on xP ẙ, then W ′ := Wx′Py is an alternating walk from A2 to y. (Byx′,W ′

Wx′ we mean the initial segment of W ending at the first occurrence of
x′ on W ; from there onwards, W ′ follows P back to y.) Even our new
walk W ′yQ need not yet be alternating: W ′ might still meet ẙQ. By
definition of P ′ and W , however, and the choice of y on Q, we have

V (W ′)∩V [P ] ⊆ V [P ′ ] and V (ẙQ)∩V [P ′ ] = ∅ .

Thus, W ′ and ẙQ can meet only outside P.
If W ′ does indeed meet ẙQ, let z be the first vertex of W ′ on ẙQ. Asz

z lies outside V [P ], it occurs only once on W ′ (condition (ii)), and we let
W ′′ := W ′zQ. On the other hand if W ′∩ ẙQ = ∅, we set W ′′ := W ′∪yQ.W ′′

In both cases, W ′′ is alternating with respect to P ′, becauseW ′ is and ẙQ
avoids V [P ′ ]. (Note that W ′′ satisfies condition (iii) at y in the second
case, while in the first case (iii) is not applicable to z.) By definition of P ′,
therefore, W ′′ avoids V [P ]r V [P ′ ]; in particular, V (ẙQ)∩ V [P ] = ∅.
Thus W ′′ is also alternating with respect to P, and it ends in B2. (Note
that y cannot be the last vertex of W ′′, since y ∈ Px̊ and hence y /∈ B.)
Furthermore, W ′′ starts in A2, because W does. We may therefore
use W ′′ with Lemma 3.3.2 to obtain the desired contradiction to the
maximality of P. ¤
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A set of a–B paths is called an a–B fan if any two of the paths have fan

only a in common.

Corollary 3.3.3. For B ⊆ V and a ∈ V rB, the minimum number of [ 10.1.2 ]

vertices 6= a separating a from B in G is equal to the maximum number
of paths forming an a–B fan in G.

Proof . Apply Theorem 3.3.1 with A := N(a). ¤

Corollary 3.3.4. Let a and b be two distinct vertices of G.

(i) If ab /∈ E, then the minimum number of vertices 6= a, b separating
a from b in G is equal to the maximum number of independent
a–b paths in G.

(ii) The minimum number of edges separating a from b in G is equal
to the maximum number of edge-disjoint a–b paths in G.

Proof . (i) Apply Theorem 3.3.1 with A := N(a) and B := N(b).
(ii) Apply Theorem 3.3.1 to the line graph of G, with A := E(a)

and B := E(b). ¤

Theorem 3.3.5. (Global Version of Menger’s Theorem)
[ 4.2.10 ]
[ 6.6.1 ]
[ 9.4.2 ](i) A graph is k-connected if and only if it contains k independent

paths between any two vertices.

(ii) A graph is k-edge-connected if and only if it contains k edge-
disjoint paths between any two vertices.

Proof . (i) If a graph G contains k independent paths between any two
vertices, then |G| > k and G cannot be separated by fewer than k ver-
tices; thus, G is k-connected.

Conversely, suppose that G is k-connected (and, in particular, has
more than k vertices) but contains vertices a, b not linked by k indepen- a, b

dent paths. By Corollary 3.3.4 (i), a and b are adjacent; let G′ := G−ab. G′

Then G′ contains at most k − 2 independent a–b paths. By Corollary
3.3.4 (i), we can separate a and b in G′ by a set X of at most k − 2 X

vertices. As |G| > k, there is at least one further vertex v /∈ X ∪{ a, b } v

in G. Now X separates v in G′ from either a or b—say, from a. But
then X ∪{ b } is a set of at most k− 1 vertices separating v from a in G,
contradicting the k-connectedness of G.

(ii) follows straight from Corollary 3.3.4 (ii). ¤
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3.4 Mader’s theorem

In analogy to Menger’s theorem we may consider the following ques-
tion: given a graph G with an induced subgraph H, up to how many
independent H-paths can we find in G?

In this section, we present without proof a deep theorem of Mader,
which solves the above problem in a fashion similar to Menger’s theorem.
Again, the theorem says that an upper bound on the number of such
paths that arises naturally from the size of certain separators is indeed
attained by some suitable set of paths.

What could such an upper bound look like? Clearly, ifX ⊆ V (G−H)X

and F ⊆ E(G−H) are such that every H-path in G has a vertex or anF

edge in X ∪ F , then G cannot contain more than |X ∪ F | independent
H-paths. Hence, the least cardinality of such a set X ∪ F is a natural
upper bound for the maximum number of independent H-paths. (Note
that every H-path meets G−H, because H is induced in G and edges
of H do not count as H-paths.)

In contrast to Menger’s theorem, this bound can still be improved.
Clearly, we may assume that no edge in F has an end in X: otherwise
this edge would not be needed in the separator. Let Y := V (G−H)rX,
and denote by CF the set of components of the graph (Y, F ). Since everyCF
H-path avoiding X contains an edge from F , it has at least two vertices
in ∂C for some C ∈ CF , where ∂C denotes the set of vertices in C with∂C

a neighbour in G − X − C (Fig. 3.4.1). The number of independent

∂C

CF
C

H X

Fig. 3.4.1. An H-path in G−X

H-paths in G is therefore bounded above by

MG(H) := min
(
|X|+

∑
C∈CF

⌊
1
2 |∂C|

⌋)
,

where the minimum is taken over all X and F as described above: X ⊆X

MG(H)

V (G−H) and F ⊆ E(G−H −X) such that every H-path in G has a
vertex or an edge in X ∪F .
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Now Mader’s theorem says that this upper bound is always attained
by some set of independent H-paths:

Theorem 3.4.1. (Mader 1978)
Given a graph G with an induced subgraph H, there are always MG(H)
independent H-paths in G.

In order to obtain direct analogues to the vertex and edge version
of Menger’s theorem, let us consider the two special cases of the above
problem where either F or X is required to be empty. Given an induced
subgraph H ⊆ G, we denote by κG(H) the least cardinality of a vertex κG(H)

set X ⊆ V (G −H) that meets every H-path in G. Similarly, we let
λG(H) denote the least cardinality of an edge set F ⊆ E(G) that meets λG(H)

every H-path in G.

Corollary 3.4.2. Given a graph G with an induced subgraph H, there
are at least 1

2κG(H) independent H-paths and at least 1
2λG(H) edge-

disjoint H-paths in G.

Proof . To prove the first assertion, let k be the maximum num- k

ber of independent H-paths in G. By Theorem 3.4.1, there are sets
X ⊆ V (G−H) and F ⊆ E(G−H −X) with

k = |X|+
∑
C∈CF

⌊
1
2 |∂C|

⌋
such that every H-path in G has a vertex in X or an edge in F . For every
C ∈ CF with ∂C 6= ∅, pick a vertex v ∈ ∂C and let YC := ∂C r { v }; if
∂C = ∅, let YC := ∅. Then

⌊
1
2 |∂C|

⌋
> 1

2 |YC | for all C ∈ CF . Moreover,
for Y :=

⋃
C∈CF YC every H-path has a vertex in X ∪Y . Hence Y

k > |X|+
∑
C∈CF

1
2 |YC | > 1

2 |X ∪Y | > 1
2κG(H)

as claimed.
The second assertion follows from the first by considering the line

graph of G (Exercise 16). ¤

It may come as a surprise to see that the bounds in Corollary 3.4.2
are best possible (as general bounds): one can find examples for G and
H where G contains no more than 1

2κG(H) independent H-paths or no
more than 1

2λG(H) edge-disjoint H-paths (Exercises 17 and 18).
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3.5 Edge-disjoint spanning trees

The edge version of Menger’s theorem tells us when a graph G contains k
edge-disjoint paths between any two vertices. The actual routes of these
paths within G may depend a lot on the choice of those two vertices:
having found the paths for one pair of endvertices, we are not necessarily
better placed to find them for another pair.

In a situation where quick access to a set of k edge-disjoint paths
between any two vertices is desirable, it may be a good idea to ask for
more than just k-edge-connectedness. For example, if G has k edge-
disjoint spanning trees, there will be k canonical such paths between
any two vertices, one in each tree.

When do such trees exist? If they do, the graph is clearly k-edge-
connected. The converse is easily seen to be false; indeed, it is not
even clear whether any edge-connectivity, however large, will imply the
existence of k edge-disjoint spanning trees. Our first aim in this section
will be to study conditions under which k edge-disjoint spanning trees
exist.

As before, it is easy to write down some obvious necessary conditions
for the existence of k edge-disjoint spanning trees. With respect to any
partition of V (G) into r sets, every spanning tree of G has at least r− 1
cross-edges, edges whose ends lie in different partition sets (why?). Thuscross-edges

if G has k edge-disjoint spanning trees, it has at least k (r − 1) cross-
edges.

Once more, this obvious necessary condition is also sufficient:

Theorem 3.5.1. (Tutte 1961; Nash-Williams 1961)
A multigraph contains k edge-disjoint spanning trees if and only if for
every partition P of its vertex set it has at least k (|P | − 1) cross-edges.

Before we prove Theorem 3.5.1, let us note a surprising corollary:
to ensure the existence of k edge-disjoint spanning trees, it suffices to
raise the edge-connectivity to just 2k:

Corollary 3.5.2. Every 2k-edge-connected multigraph G has k edge-[ 6.4.4 ]

disjoint spanning trees.

Proof . Every set in a vertex partition of G is joined to other partition
sets by at least 2k edges. Hence, for any partition into r sets, G has
at least 1

2

∑r
i=1 2k = kr cross-edges. The assertion thus follows from

Theorem 3.5.1. ¤

For the proof of Theorem 3.5.1, let a multigraph G = (V,E) andG = (V,E)

k ∈ N be given. Let F be the set of all k-tuples F = (F1, . . . , Fk) ofk,F
edge-disjoint spanning forests in G with the maximum total number of
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edges, i.e. such that ‖F‖ :=
∣∣E [F ]

∣∣ with E [F ] := E(F1)∪ . . .∪E(Fk) E[F ], ‖F‖
is as large as possible.

If F = (F1, . . . , Fk) ∈ F and e ∈ ErE [F ], then every Fi + e con-
tains a cycle (i = 1, . . . , k): otherwise we could replace Fi by Fi+ e in F
and obtain a contradiction to the maximality of ‖F‖. Let us consider
an edge e′ 6= e of this cycle, for some fixed i. Putting F ′i := Fi + e− e′,
and F ′j := Fj for all j 6= i, we see that F ′ := (F ′1, . . . , F

′
k) is again in F ;

we say that F ′ has been obtained from F by the replacement of the edge
replacement

edge e′ with e. Note that the component of Fi containing e′ keeps its
vertex set when it changes into a component of F ′i . Hence for every path
x . . . y ⊆ F ′i there is a unique path xFiy in Fi; this will be used later. xFiy

We now consider a fixed k-tuple F 0 = (F 0
1 , . . . , F

0
k ) ∈ F . The set F 0

of all k-tuples in F that can be obtained from F 0 by a series of edge
replacements will be denoted by F0. Finally, we let F0

E0E0 :=
⋃

F ∈F0

(ErE [F ])

and G0 := (V,E0). G0

Lemma 3.5.3. For every e0 ∈ ErE [F 0 ] there exists a set U ⊆ V that
is connected in every F 0

i ( i = 1, . . . , k) and contains the ends of e0.

Proof . As F 0 ∈ F0, we have e0 ∈ E0; let C0 be the component of G0 C0

containing e0. We shall prove the assertion for U := V (C0). U

Let i ∈ { 1, . . . , k } be given; we have to show that U is connected i

in F 0
i . To this end, we first prove the following:

Let F = (F1, . . . , Fk) ∈ F0, and let (F ′1, . . . , F
′
k) have been

obtained from F by the replacement of an edge of Fi. If
x, y are the ends of a path in F ′i ∩C0, then also xFiy ⊆ C0.

(1)

Let e = vw be the new edge in E(F ′i )rE [F ]; this is the only edge of
F ′i not lying in Fi. We assume that e ∈ xF ′iy: otherwise we would have
xFiy = xF ′iy and nothing to show. It suffices to show that vFiw ⊆ C0:
then (xF ′iy− e)∪ vFiw is a connected subgraph of Fi ∩C0 that contains
x, y, and hence also xFiy. Let e′ be any edge of vFiw. Since we could
replace e′ in F ∈ F0 by e and obtain an element of F0 not contain-
ing e′, we have e′ ∈ E0. Thus vFiw ⊆ G0, and hence vFiw ⊆ C0 since
v, w ∈ xF ′iy ⊆ C0. This proves (1).

In order to prove that U = V (C0) is connected in F 0
i we show that,

for every edge xy ∈ C0, the path xF 0
i y exists and lies in C0. As C0 is

connected, the union of all these paths will then be a connected spanning
subgraph of F 0

i [U ].
So let e = xy ∈ C0 be given. As e ∈ E0, there exist an s ∈ N

and k-tuples F r = (F r1 , . . . , F
r
k ) for r = 1, . . . , s such that each F r is

obtained from F r−1 by edge replacement and e ∈ E rE [F s ]. Setting
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F := F s in (1), we may think of e as a path of length 1 in F ′i ∩ C0.
Successive applications of (1) to F = F s, . . . , F 0 then give xF 0

i y ⊆ C0

as desired. ¤

Proof of Theorem 3.5.1. We prove the backward implication by(1.5.3)

induction on |G|. For |G| = 2 the assertion holds. For the induction
step, we now suppose that for every partition P of V there are at least
k (|P |−1) cross-edges, and construct k edge-disjoint spanning trees in G.

Pick a k-tuple F 0 = (F 0
1 , . . . , F

0
k ) ∈ F . If every F 0

i is a tree, we areF 0

done. If not, we have

‖F 0‖ =
k∑
i=1

‖F 0
i ‖ < k (|G| − 1)

by Corollary 1.5.3. On the other hand, we have ‖G‖ > k (|G| − 1) by
assumption: consider the partition of V into single vertices. So there
exists an edge e0 ∈ E r E [F 0 ]. By Lemma 3.5.3, there exists a sete0

U ⊆ V that is connected in every F 0
i and contains the ends of e0; inU

particular, |U | > 2. Since every partition of the contracted multigraph
G/U induces a partition of G with the same cross-edges,3 G/U has at
least k (|P | − 1) cross-edges with respect to any partition P . By the
induction hypothesis, therefore, G/U has k edge-disjoint spanning trees
T1, . . . , Tk. Replacing in each Ti the vertex vU contracted from U by the
spanning tree F 0

i ∩G [U ] of G [U ], we obtain k edge-disjoint spanning
trees in G. ¤

Let us say that subgraphs G1, . . . , Gk of a graph G partition G ifgraph
partition

their edge sets form a partition of E(G). Our spanning tree problem may
then be recast as follows: into how many connected spanning subgraphs
can we partition a given graph? The excuse for rephrasing our simple
tree problem in this more complicated way is that it now has an obvious
dual (cf. Theorem 1.5.1): into how few acyclic (spanning) subgraphs
can we partition a given graph? Or for given k: which graphs can be
partitioned into at most k forests?

An obvious necessary condition now is that every set U ⊆ V (G)
induces at most k (|U | − 1) edges, no more than |U | − 1 for each forest.
Once more, this condition turns out to be sufficient too. And surprising-
ly, this can be shown with the help of Lemma 3.5.3, which was designed
for the proof of our theorem on edge-disjoint spanning trees:

Theorem 3.5.4. (Nash-Williams 1964)
A multigraph G = (V,E) can be partitioned into at most k forests if and
only if ‖G [U ]‖ 6 k (|U | − 1) for every non-empty set U ⊆ V .

3 see Chapter 1.10 on the contraction of multigraphs
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Proof . The forward implication was shown above. Conversely, we show (1.5.3)

that every k-tuple F = (F1, . . . , Fk) ∈ F partitions G, i.e. that E [F ] =
E. If not, let e ∈ ErE [F ]. By Lemma 3.5.3, there exists a set U ⊆ V
that is connected in every Fi and contains the ends of e. Then G [U ]
contains |U | − 1 edges from each Fi, and in addition the edge e. Thus
‖G [U ]‖ > k (|U | − 1), contrary to our assumption. ¤

The least number of forests forming a partition of a graph G is called
the arboricity of G. By Theorem 3.5.4, the arboricity is a measure for arboricity

the maximum local density: a graph has small arboricity if and only if
it is ‘nowhere dense’, i.e. if and only if it has no subgraph H with ε(H)
large.

3.6 Paths between given pairs of vertices

A graph with at least 2k vertices is said to be k-linked if for every 2k dis- k-linked

tinct vertices s1, . . . , sk, t1, . . . , tk it contains k disjoint paths P1, . . . , Pk
with Pi = si . . . ti for all i. Thus unlike in Menger’s theorem, we are not
merely asking for k disjoint paths between two sets of vertices: we insist
that each of these paths shall link a specified pair of endvertices.

Clearly, every k-linked graph is k-connected. The converse, however,
is far from true: being k-linked is generally a much stronger property
than k-connectedness. But still, the two properties are related: our aim
in this section is to prove the existence of a function f :N→N such that
every f(k)-connected graph is k-linked.

As a lemma, we need a result that would otherwise belong in Chap-
ter 8:

Theorem 3.6.1. (Mader 1967)
There is a function h:N→N such that every graph with average degree
at least h(r) contains Kr as a topological minor, for every r ∈ N.

Proof . For r 6 2, the assertion holds with h(r) = 1; we now assume that (1.2.2)
(1.3.1)

r > 3. We show by induction on m = r, . . . ,
(
r
2

)
that every graph G with

average degree d(G) > 2m has a topological minor X with r vertices and
m edges; for m =

(
r
2

)
this implies the assertion with h(r) = 2(r2).

If m = r then, by Propositions 1.2.2 and 1.3.1, G contains a cycle
of length at least ε(G) + 1 > 2r−1 + 1 > r+ 1, and the assertion follows
with X = Cr.

Now let r < m 6
(
r
2

)
, and assume the assertion holds for smaller m.

Let G with d(G) > 2m be given; thus, ε(G) > 2m−1. Since G has a
component C with ε(C) > ε(G), we may assume that G is connected.
Consider a maximal set U ⊆ V (G) such that U is connected in G and U
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ε(G/U) > 2m−1; such a set U exists, because G itself has the form G/U
with |U | = 1. Since G is connected, we have N(U) 6= ∅.

Let H := G [N(U) ]. If H has a vertex v of degree dH(v) < 2m−1, weH

may add it to U and obtain a contradiction to the maximality of U : when
we contract the edge vvU in G/U , we lose one vertex and dH(v) + 1 6
2m−1 edges, so ε will still be at least 2m−1. Therefore d(H) > δ(H) >
2m−1. By the induction hypothesis, H contains a TY with |Y | = r
and ‖Y ‖ = m− 1. Let x, y be two branch vertices of this TY that are
non-adjacent in Y . Since x and y lie in N(U) and U is connected in G,
G contains an x–y path whose inner vertices lie in U . Adding this path
to the TY , we obtain the desired TX. ¤

How can Theorem 3.6.1 help with our aim to show that high con-
nectivity will make a graph k-linked? Since high connectivity forces the
average degree up (even the minimum degree), we may assume by the
theorem that our graph contains a subdivision K of a large complete
graph. Our plan now is to use Menger’s theorem to link the given ver-
tices si and ti disjointly to branch vertices of K, and then to join up the
correct pairs of those branch vertices inside K.

Theorem 3.6.2. (Jung 1970; Larman & Mani 1970)
There is a function f :N→ N such that every f(k)-connected graph is
k-linked, for all k ∈ N.

Proof . We prove the assertion for f(k) = h(3k) + 2k, where h is a(3.3.1)

function as in Theorem 3.6.1. Let G be an f(k)-connected graph. ThenG

d(G) > δ(G) > κ(G) > h(3k); choose K = TK3k ⊆ G as in TheoremK

3.6.1, and let U denote its set of branch vertices.U

For the proof that G is k-linked, let distinct vertices s1, . . . , sk andsi, ti

t1, . . . , tk of G be given. By definition of f(k), we have κ(G) > 2k.
Hence by Menger’s theorem (3.3.1), G contains disjoint paths P1, . . . , Pk,
Q1, . . . , Qk, such that each Pi starts in si, each Qi starts in ti, and allPi, Qi

these paths end in U but have no inner vertices in U . Let the set P ofP
these paths be chosen so that their total number of edges outside E(K)
is as small as possible.

Let u1, . . . , uk be those k vertices in U that are not an end of aui

path in P. For each i = 1, . . . , k, let Li be the U -path in K (i.e., theLi

subdivided edge of the K3k) from ui to the end of Pi in U , and let vi bevi

the first vertex of Li on any path P ∈ P. By definition of P, P has no
more edges outside E(K) than PviLiui does, so viP = viLi and hence
P = Pi (Fig. 3.6.1). Similarly, if Mi denotes the U -path in K from uiMi

to the end of Qi in U , and wi denotes the first vertex of Mi on anywi

path in P, then this path is Qi. Then the paths siPiviLiuiMiwiQiti are
disjoint for different i and show that G is k-linked. ¤
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si

Pi

P

Li

vi

ui

Mi

Qi ti

wi

Fig. 3.6.1. Constructing an si–ti path via ui

In our proof of Theorem 3.6.2 we did not try to find any particularly
good bound on the connectivity needed to force a graph to be k-linked;
the function f we used grows exponentially in k. Not surprisingly, this
is far from being best possible. It is still remarkable, though, that f can
in fact be chosen linear: as Bollobás & Thomason (1996) have shown,
every 22k-connected graph is k-linked.

Exercises
For the first three exercises, let G be a graph and a, b ∈ V (G). Suppose that
X ⊆ V (G)r{ a, b } separates a from b in G. We say that X separates a from b
minimally if no proper subset of X separates a from b in G.

1.− Show that X separates a from b minimally if and only if every vertex
in X has a neighbour in the component Ca of G−X containing a, and
another in the component Cb of G−X containing b.

2. Let X ′ ⊆ V (G)r { a, b } be another set separating a from b, and define
C′a and C′b correspondingly. Show that both

Ya := (X ∩C′a)∪ (X ∩X ′)∪ (X ′ ∩Ca)
and

Yb := (X ∩C′b)∪ (X ∩X ′)∪ (X ′ ∩Cb)

separate a from b (see figure).

X′

XX′

a bYa

X

3. Do Ya and Yb separate a from b minimally if X and X ′ do? Are |Ya|
and |Yb| minimal for vertex sets separating a from b if |X| and |X ′| are?

4. Let X and X ′ be minimal separating vertex sets in G such that X
meets at least two components of G−X ′. Show that X ′ meets all the
components of G−X, and that X meets all the components of G−X ′.
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5.− Prove the elementary properties of blocks mentioned at the beginning
of Section 3.1.

6. Show that the block graph of any connected graph is a tree.

7. Show, without using Menger’s theorem, that any two vertices of a 2-
connected graph lie on a common cycle.

8. For edges e, e′ ∈ G write e ∼ e′ if either e = e′ or e and e′ lie on some
common cycle in G. Show that ∼ is an equivalence relation on E(G)
whose equivalence classes are the edge sets of the non-trivial blocks
of G.

9. Let G be a 2-connected graph but not a triangle, and let e be an edge
of G. Show that either G− e or G/e is again 2-connected.

10. Let G be a 3-connected graph, and let xy be an edge of G. Show that
G/xy is 3-connected if and only if G−{x, y } is 2-connected.

11. (i) Show that every cubic 3-edge-connected graph is 3-connected.

(ii) Show that a graph is cubic and 3-connected if and only if it can
be constructed from a K4 by successive applications of the following
operation: subdivide two edges by inserting a new vertex on each of
them, and join the two new subdividing vertices by an edge.

12.− Show that Menger’s theorem is equivalent to the following statement.
For every graph G and vertex sets A,B ⊆ V (G), there exist a set P of
disjoint A–B paths in G and a set X ⊆ V (G) separating A from B in
G such that X has the form X = {xP | P ∈ P } with xP ∈ P for all
P ∈ P.

13. Work out the details of the proof of Corollary 3.3.4 (ii).

14. Let k > 2. Show that every k-connected graph of order at least 2k
contains a cycle of length at least 2k.

15. Let k > 2. Show that in a k-connected graph any k vertices lie on a
common cycle.

16. Derive the edge part of Corollary 3.4.2 from the vertex part.

(Hint. Consider the H-paths in the graph obtained from the disjoint
union of H and the line graph L(G) by adding all the edges he such
that h is a vertex of H and e ∈ E(G)rE(H) is an edge at h.)

17.− To the disjoint union of the graph H = K2m+1 with k copies of K2m+1

add edges joining H bijectively to each of the K2m+1. Show that the
resulting graph G contains at most km = 1

2
κG(H) independent H-

paths.

18. Find a bipartite graph G, with partition classes A and B say, such that
for H := G [A ] there are at most 1

2
λG(H) edge-disjoint H-paths in G.
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19.+ Derive Tutte’s 1-factor theorem (2.2.1) from Mader’s theorem.

(Hint. Extend the given graph G to a graph G′ by adding, for each
vertex v ∈ G, a new vertex v′ and joining v′ to v. Choose H ⊆ G′ so that
the 1-factors in G correspond to the large enough sets of independent
H-paths in G′.)

20. Find the error in the following short ‘proof’ of Theorem 3.5.1. Call a
partition non-trivial if it has at least two classes and at least one of the
classes has more than one element. We show by induction on |V |+ |E|
that G = (V,E) has k edge-disjoint spanning trees if every non-trivial
partition of V into r sets (say) has at least k(r− 1) cross-edges. The
induction starts trivially with G = K1 if we allow k copies of K1 as a
family of k edge-disjoint spanning trees of K1. We now consider the
induction step. If every non-trivial partition of V into r sets (say) has
more than k(r−1) cross-edges, we delete any edge of G and are done by
induction. So V has a non-trivial partition {V1, . . . , Vr } with exactly
k(r − 1) cross-edges. Assume that |V1| > 2. If G′ := G [V1 ] has k
disjoint spanning trees, we may combine these with k disjoint spanning
trees that exist in G/V1 by induction. We may thus assume that G′

has no k disjoint spanning trees. Then by induction it has a non-trivial
vertex partition {V ′1 , . . . , V ′s } with fewer than k(s − 1) cross-edges.
Then {V ′1 , . . . , V ′s , V2, . . . , Vr } is a non-trivial vertex partition of G into
r+ s− 1 sets with fewer than k(r− 1) + k(s− 1) = k((r+ s− 1)− 1)
cross-edges, a contradiction.

21.− Show that every k-linked graph is (2k− 1)-connected.

Notes
Although connectivity theorems are doubtless among the most natural, and
also the most applicable, results in graph theory, there is still no comprehensive
monograph on this subject. Some areas are covered in B. Bollobás, Extremal
Graph Theory , Academic Press 1978, in R. Halin, Graphentheorie, Wissen-
schaftliche Buchgesellschaft 1980, and in A. Frank’s chapter of the Handbook of
Combinatorics (R.L. Graham, M. Grötschel & L. Lovász, eds.), North-Holland
1995. A survey specifically of techniques and results on minimally k-connected
graphs (see below) is given by W. Mader, On vertices of degree n in minimally
n-connected graphs and digraphs, in (D. Miklós, V.T. Sós & T. Szőnyi, eds.)
Paul Erdős is 80, Vol. 2, Proc. Colloq. Math. Soc. János Bolyai, Budapest 1996.

Our proof of Tutte’s Theorem 3.2.3 is due to C. Thomassen, Planarity and
duality of finite and infinite graphs, J. Combin. Theory B 29 (1980), 244–271.
This paper also contains Lemma 3.2.1 and its short proof from first principles.
(The lemma’s assertion, of course, follows from Tutte’s wheel theorem—its
significance lies in its independent proof, which has shortened the proofs of
both of Tutte’s theorems considerably.)

An approach to the study of connectivity not touched upon in this chap-
ter is the investigation of minimal k-connected graphs, those that lose their
k-connectedness as soon as we delete an edge. Like all k-connected graphs,
these have minimum degree at least k, and by a fundamental result of Halin
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(1969), their minimum degree is exactly k. The existence of a vertex of small
degree can be particularly useful in induction proofs about k-connected graphs.
Halin’s theorem was the starting point for a series of more and more sophis-
ticated studies of minimal k-connected graphs; see the books of Bollobás and
Halin cited above, and in particular Mader’s survey.

Our first proof of Menger’s theorem is due to T. Böhme, F. Göring and
J. Harant (manuscript 1999); the second to J.S. Pym, A proof of Menger’s
theorem, Monatshefte Math. 73 (1969), 81–88; the third to T. Grünwald (later
Gallai), Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13
(1938), 188–192. The global version of Menger’s theorem (Theorem 3.3.5) was
first stated and proved by Whitney (1932).

Mader’s Theorem 3.4.1 is taken from W. Mader, Über die Maximalzahl
kreuzungsfreier H -Wege, Arch. Math. 31 (1978), 387–402. The theorem may
be viewed as a common generalization of Menger’s theorem and Tutte’s 1-
factor theorem (Exercise 19). Theorem 3.5.1 was proved independently by
Nash-Williams and by Tutte; both papers are contained in J. London Math.
Soc. 36 (1961). Theorem 3.5.4 is due to C.St.J.A. Nash-Williams, Decompo-
sitions of finite graphs into forests, J. London Math. Soc. 39 (1964), 12. Our
proofs follow an account by Mader (personal communication). Both results
can be elegantly expressed and proved in the setting of matroids; see § 18 in
B. Bollobás, Combinatorics, Cambridge University Press 1986.

In Chapter 8.1 we shall prove that, in order to force a topological Kr mi-

nor in a graph G, we do not need an average degree of G as high as h(r) = 2(r2)

(as used in our proof of Theorem 3.6.1): the average degree required can
be bounded above by a function quadratic in r (Theorem 8.1.1). The im-
provement of Theorem 3.6.2 mentioned in the text is due to B. Bollobás &
A.G. Thomason, Highly linked graphs, Combinatorica 16 (1996), 313–320.
N. Robertson & P.D. Seymour, Graph Minors XIII: The disjoint paths prob-
lem, J. Combin. Theory B 63 (1995), 65-110, showed that, for every fixed k,
there is an O(n3) algorithm that decides whether a given graph of order n is
k-linked. If k is taken as part of the input, the problem becomes NP-hard.



4 Planar Graphs

When we draw a graph on a piece of paper, we naturally try to do this
as transparently as possible. One obvious way to limit the mess created
by all the lines is to avoid intersections. For example, we may ask if we
can draw the graph in such a way that no two edges meet in a point
other than a common end.

Graphs drawn in this way are called plane graphs; abstract graphs
that can be drawn in this way are called planar . In this chapter we
study both plane and planar graphs—as well as the relationship between
the two: the question of how an abstract graph might be drawn in
fundamentally different ways. After collecting together in Section 4.1 the
few basic topological facts that will enable us later to prove all results
rigorously without too much technical ado, we begin in Section 4.2 by
studying the structural properties of plane graphs. In Section 4.3, we
investigate how two drawings of the same graph can differ. The main
result of that section is that 3-connected planar graphs have essentially
only one drawing, in some very strong and natural topological sense. The
next two sections are devoted to the proofs of all the classical planarity
criteria, conditions telling us when an abstract graph is planar. We
complete the chapter with a section on plane duality , a notion with
fascinating links to algebraic, colouring, and flow properties of graphs
(Chapters 1.9 and 6.5).

The traditional notion of a graph drawing is that its vertices are
represented by points in the Euclidean plane, its edges are represented by
curves between these points, and different curves meet only in common
endpoints. To avoid unnecessary topological complication, however, we
shall only consider curves that are piecewise linear; it is not difficult to
show that any drawing can be straightened out in this way, so the two
notions come to the same thing.
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4.1 Topological prerequisites

In this section we briefly review some basic topological definitions and
facts needed later. All these facts have (by now) easy and well-known
proofs; see the notes for sources. Since those proofs contain no graph
theory, we do not repeat them here: indeed our aim is to collect precisely
those topological facts that we need but do not want to prove. Later,
all proofs will follow strictly from the definitions and facts stated here
(and be guided by but not rely on geometric intuition), so the material
presented now will help to keep elementary topological arguments in
those proofs to a minimum.

A straight line segment in the Euclidean plane is a subset of R2 that
has the form { p+ λ(q − p) | 0 6 λ 6 1 } for distinct points p, q ∈ R2.
A polygon is a subset of R2 which is the union of finitely many straightpolygon

line segments and is homeomorphic to the unit circle. Here, as later, any
subset of a topological space is assumed to carry the subspace topology.
A polygonal arc is a subset of R2 which is the union of finitely many
straight line segments and is homeomorphic to the closed unit interval
[ 0, 1 ]. The images of 0 and of 1 under such a homeomorphism are the
endpoints of this polygonal arc, which links them and runs between them.
Instead of ‘polygonal arc’ we shall simply say arc. If P is an arc betweenarc

x and y, we denote the point set P r {x, y }, the interior of P , by P̊ .
Let O ⊆ R2 be an open set. Being linked by an arc in O defines

an equivalence relation on O. The corresponding equivalence classes are
again open; they are the regions of O. A closed set X ⊆ R2 is said toregion

separate O if O rX has more than one region. The frontier of a setseparate

X ⊆ R2 is the set Y of all points y ∈ R2 such that every neighbourhoodfrontier

of y meets both X and R2rX. Note that if X is open then its frontier
lies in R2rX.

The frontier of a region O of R2 rX, where X is a finite union of
points and arcs, has two important properties. The first is accessibility:
if x ∈ X lies on the frontier of O, then x can be linked to some point in O
by a straight line segment whose interior lies wholly inside O. As a conse-
quence, any two points on the frontier of O can be linked by an arc whose
interior lies in O (why?). The second notable property of the frontier of
O is that it separates O from the rest of R2. Indeed, if ϕ: [ 0, 1 ]→P ⊆ R2

is continuous, with ϕ(0) ∈ O and ϕ(1) /∈ O, then P meets the frontier of
O at least in the point ϕ(y) for y := inf {x | ϕ(x) /∈ O }, the first point
of P in R2rO.

Theorem 4.1.1. (Jordan Curve Theorem for Polygons)
For every polygon P ⊆ R2, the set R2 r P has exactly two regions, of

[ 4.2.1 ]
[ 4.2.4 ]
[ 4.2.5 ]
[ 4.2.10 ]
[ 4.3.1 ]
[ 4.5.1 ]
[ 4.6.1 ]
[ 5.1.2 ]

which exactly one is bounded. Each of the two regions has the entire
polygon P as its frontier.
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With the help of Theorem 4.1.1, it is not difficult to prove the
following lemma.

Lemma 4.1.2. Let P1, P2, P3 be three arcs, between the same two end-
[ 4.2.5 ]
[ 4.2.6 ]

[ 4.2.10 ]point but otherwise disjoint.

(i) R2 r (P1 ∪ P2 ∪ P3) has exactly three regions, with frontiers
P1 ∪P2, P2 ∪P3 and P1 ∪P3.

(ii) If P is an arc between a point in P̊1 and a point in P̊3 whose
interior lies in the region of R2r (P1 ∪P3) that contains P̊2, then
P̊ ∩ P̊2 6= ∅.

P1

P2

P3

P

Fig. 4.1.1. The arcs in Lemma 4.1.2 (ii)

Our next lemma complements the Jordan curve theorem by saying
that an arc does not separate the plane. For easier application later, we
phrase this a little more generally:

Lemma 4.1.3. Let X1, X2 ⊆ R2 be disjoint sets, each the union of [ 4.2.1 ]
[ 4.2.3 ]

finitely many points and arcs, and let P be an arc between a point in
X1 and one in X2 whose interior P̊ lies in a region O of R2r (X1∪X2).
Then Or P̊ is a region of R2r (X1 ∪P ∪X2).

X1 X2

P

O

Fig. 4.1.2. P does not separate the region O of R2r (X1 ∪X2)

It remains to introduce a few terms and facts that will be used only
once, when we consider notions of equivalence for graph drawings in
Chapter 4.3.

As usual, we denote by Sn the n-dimensional sphere, the set of Sn

points in Rn+1 at distance 1 from the origin. The 2-sphere minus its
‘north pole’ (0, 0, 1) is homeomorphic to the plane; let us choose a fixed
such homeomorphism π:S2r{ (0, 0, 1) }→R2 (for example, stereograph- π

ic projection). If P ⊆ R2 is a polygon and O is the bounded region of
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R2rP , let us call C := π−1(P ) a circle on S2, and the sets π−1(O) and
S2rπ−1(P ∪O) the regions of C.

Our last tool is the theorem of Jordan and Schoenflies, again adapt-
ed slightly for our purposes:

Theorem 4.1.4. Let ϕ:C1 → C2 be a homeomorphism between two[ 4.3.1 ]

circles on S2, let O1 be a region of C1, and let O2 be a region of C2.
Then ϕ can be extended to a homeomorphism C1 ∪O1→C2 ∪O2.

4.2 Plane graphs
A plane graph is a pair (V,E) of finite sets with the following propertiesplane

graph
(the elements of V are again called vertices, those of E edges):

(i) V ⊆ R2;
(ii) every edge is an arc between two vertices;
(iii) different edges have different sets of endpoints;
(iv) the interior of an edge contains no vertex and no point of any

other edge.

A plane graph (V,E) defines a graph G on V in a natural way. As long
as no confusion can arise, we shall use the name G of this abstract graph
also for the plane graph (V,E), or for the point set V ∪

⋃
E; similar

notational conventions will be used for abstract versus plane edges, for
subgraphs, and so on.1

For every plane graph G, the set R2rG is open; its regions are the
faces of G. Since G is bounded—i.e., lies inside some sufficiently largefaces

disc D—exactly one of its faces is unbounded: the face that contains
R2 rD. This face is the outer face of G; the other faces are its inner
faces. We denote the set of faces of G by F (G). Note that if H ⊆ GF (G)

then every face of G is contained in a face of H.
In order to lay the foundations for the (easy but) rigorous introduc-

tion to plane graphs that this section aims to provide, let us descend
once now into the realm of truly elementary topology of the plane, and
prove what seems entirely obvious:2 that the frontier of a face of a plane
graph G is always a subgraph of G—not, say, half an edge. The fol-
lowing lemma states this formally, together with two similarly ‘obvious’
properties of plane graphs:

1 However, we shall continue to use r for differences of point sets and − for graph
differences—which may help a little to keep the two apart.

2 Note that even the best intuition can only ever be ‘accurate’, i.e., coincide with
what the technical definitions imply, inasmuch as those definitions do indeed formal-
ize what is intuitively intended. Given the complexity of definitions in elementary
topology, this can hardly be taken for granted.
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Lemma 4.2.1. Let G be a plane graph and e an edge of G.
[ 4.5.1 ]
[ 4.5.2 ]

(i) If X is the frontier of a face of G, then either e ⊆ X or X ∩ e̊ = ∅.
(ii) If e lies on a cycle C ⊆ G, then e lies on the frontier of exactly

two faces of G, and these are contained in distinct faces of C.

(iii) If e lies on no cycle, then e lies on the frontier of exactly one face
of G.

Proof . We prove all three assertions together. Let us start by considering (4.1.1)
(4.1.3)

one point x0 ∈ e̊. We show that x0 lies on the frontier of either exactly
two faces or exactly one, according as e lies on a cycle in G or not. We
then show that every other point in e̊ lies on the frontier of exactly the
same faces as x0. Then the endpoints of e will also lie on the frontier of
these faces—simply because every neighbourhood of an endpoint of e is
also the neighbourhood of an inner point of e.

G is the union of finitely many straight line segments; we may as-
sume that any two of these intersect in at most one point. Around every
point x ∈ e̊ we can find an open disc Dx, with centre x, which meets Dx

only those (one or two) straight line segments that contain x.
Let us pick an inner point x0 from a straight line segment S ⊆ e. x0, S

Then Dx0 ∩G = Dx0 ∩S, so Dx0 rG is the union of two open half-discs.
Since these half-discs do not meet G, they each lie in a face of G. Let
us denote these faces by f1 and f2; they are the only faces of G with x0 f1, f2

on their frontier, and they may coincide (Fig. 4.2.1).

f1

f2

x0

Dx0

e
S

Fig. 4.2.1. Faces f1, f2 of G in the proof of Lemma 4.2.1

If e lies on a cycle C ⊆ G, then Dx0 meets both faces of C (Theo-
rem 4.1.1). The faces f1, f2 of G are therefore contained in distinct faces
of C—since C ⊆ G, every face of G is a subset of a face of C—and in
particular f1 6= f2. If e does not lie on any cycle, then e is a bridge and
thus links two disjoint point sets X1, X2 with X1 ∪X2 = Gr e̊. Clearly,
f1 ∪ e̊∪ f2 is the subset of a face f of G− e. (Why?) By Lemma 4.1.3,
f r e̊ is a face of G. But f r e̊ contains f1 and f2 by definition of f , so
f1 = f r e̊ = f2 since f1, f2 and f are all faces of G.

Now consider any other point x1 ∈ e̊. Let P be the arc from x0 to x1

x1 contained in e. Since P is compact, finitely many of the discs Dx P

with x ∈ P cover P . Let us enumerate these discs as D0, . . . , Dn in the D0, . . . , Dn

natural order of their centres along P ; adding Dx0 or Dx1 as necessary,
we may assume that D0 = Dx0 and Dn = Dx1 . By induction on n, one
easily proves that every point y ∈ Dnr e can be linked by an arc inside y
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(D0 ∪ . . .∪Dn)r e to a point z ∈ D0 r e (Fig. 4.2.2); then y and z arez

equivalent in R2rG. Hence, every point of Dnr e lies in f1 or in f2, so
x1 cannot lie on the frontier of any other face of G. Since both half-discs
of D0 r e can be linked to Dn r e in this way (swap the roles of D0

and Dn), we find that x1 lies on the frontier of both f1 and f2. ¤

x0 x1

y
z

P

e

D0 Dn

Fig. 4.2.2. An arc from y to D0, close to P

Corollary 4.2.2. The frontier of a face is always the point set of a
subgraph. ¤

The subgraph of G whose point set is the frontier of a face f is said to
bound f and is called its boundary ; we denote it by G [ f ]. A face isboundary

said to be incident with the vertices and edges of its boundary. NoteG [ f ]

that if H ⊆ G then every face f of G is contained in a face f ′ of H. If
G [ f ] ⊆ H then f = f ′ (why?); in particular, f is always also a face of
its own boundary G [ f ]. These basic facts will be used frequently in the
proofs to come.

Proposition 4.2.3. A plane forest has exactly one face.[ 4.6.1 ]

Proof . Use induction on the number of edges and Lemma 4.1.3. ¤(4.1.3)

With just one exception, different faces of a plane graph have dif-
ferent boundaries:

Lemma 4.2.4. If a plane graph has different faces with the same bound-[ 4.3.1 ]

ary, then the graph is a cycle.

Proof . Let G be a plane graph, and let H ⊆ G be the boundary of(4.1.1)

distinct faces f1, f2 of G. Since f1 and f2 are also faces of H, Proposition
4.2.3 implies that H contains a cycle C. By Lemma 4.2.1 (ii), f1 and f2

are contained in different faces of C. Since f1 and f2 both have all of H
as boundary, this implies that H = C: any further vertex or edge of H
would lie in one of the faces of C and hence not on the boundary of the
other. Thus, f1 and f2 are distinct faces of C. As C has only two faces,
it follows that f1 ∪C ∪ f2 = R2 and hence G = C. ¤

Proposition 4.2.5. In a 2-connected plane graph, every face is bounded

[ 4.3.1 ]
[ 4.4.3 ]
[ 4.5.1 ]
[ 4.5.2 ] by a cycle.
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Proof . Let f be a face in a 2-connected plane graph G. We show by (3.1.2)
(4.1.1)
(4.1.2)induction on |G| that G [ f ] is a cycle. If G is itself a cycle, this holds

by Theorem 4.1.1; we therefore assume that G is not a cycle.
By Proposition 3.1.2, there exist a 2-connected plane graph H ⊆ G H

and a plane H-path P such that G = H ∪P . The interior of P lies in a P

face f ′ of H, which by the induction hypothesis is bounded by a cycle C. f ′, C

If f is also a face of H, we are home by the induction hypothesis.
If not, then the frontier of f meets P rH, so f ⊆ f ′. Therefore f is a
face of C ∪P , and is hence bounded by a cycle (Lemma 4.1.2 (i)). ¤

A plane graph G is called maximally plane, or just maximal , if we maximal
plane graph

cannot add a new edge to form a plane graphG′ %G with V (G′) = V (G).
We call G a plane triangulation if every face of G (including the outer plane

triangulationface) is bounded by a triangle.

Proposition 4.2.6. A plane graph of order at least 3 is maximally plane
[ 4.4.1 ]
[ 5.4.2 ]

if and only if it is a plane triangulation.

Proof . Let G be a plane graph of order at least 3. It is easy to see that (4.1.2)

if every face of G is bounded by a triangle, then G is maximally plane.
Indeed, any additional edge e would have its interior inside a face of G
and its ends on the boundary of that face. Hence these ends are already
adjacent in G, so G∪ e cannot satisfy condition (iii) in the definition of
a plane graph.

Conversely, assume that G is maximally plane and let f ∈ F (G) be f

a face; let us write H := G [ f ]. Since G is maximal as a plane graph, H

G [H ] is complete: any two vertices of H that are not already adjacent
in G could be linked by an arc through f , extending G to a larger plane
graph. Thus G [H ] = Kn for some n—but we do not know yet which n

edges of G [H ] lie in H.
Let us show first that H contains a cycle. If not, then GrH 6= ∅:

by G ⊇ Kn if n > 3, or else by |G| > 3. On the other hand we have
f ∪H = R2 by Proposition 4.2.3 and hence G = H, a contradiction.

SinceH contains a cycle, it suffices to show that n6 3: thenH =K3

as claimed. Suppose n > 4, and let C = v1v2v3v4v1 be a cycle in G [H ] C, vi

(= Kn). By C ⊆ G, our face f is contained in a face fC of C; let f ′C
be the other face of C. Since the vertices v1 and v3 lie on the boundary fC , f

′
C

of f , they can be linked by an arc whose interior lies in fC and avoids G.

f ′
C

v1

v

C

2

v3

v4
fC ⊇ f

Fig. 4.2.3. The edge v2v4 of G runs through the face f ′C
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Hence by Lemma 4.1.2 (ii), the plane edge v2v4 of G [H ] runs through
f ′C rather than fC (Fig. 4.2.3). Analogously, since v2, v4 ∈ G [ f ], the
edge v1v3 runs through f ′C . But the edges v1v3 and v2v4 are disjoint, so
this contradicts Lemma 4.1.2 (ii). ¤

The following classic result of Euler (1752)—here stated in its sim-
plest form, for the plane—marks one of the common origins of graph
theory and topology. The theorem relates the number of vertices, edges
and faces in a plane graph: taken with the correct signs, these numbers
always add up to 2. The general form of Euler’s theorem asserts the same
for graphs suitably embedded in other surfaces, too: the sum obtained
is always a fixed number depending only on the surface, not on the
graph, and this number differs for distinct (orientable closed) surfaces.
Hence, any two such surfaces can be distinguished by a simple arithmetic
invariant of the graphs embedded in them!3

Let us then prove Euler’s theorem in its simplest form:

Theorem 4.2.7. (Euler’s Formula)
Let G be a connected plane graph with n vertices, m edges, and ` faces.
Then

n−m+ ` = 2 .

Proof . We fix n and apply induction on m. For m 6 n− 1, G is a tree(1.5.1)
(1.5.3)

and m = n− 1 (why?), so the assertion follows from Proposition 4.2.3.
Now let m > n. Then G has an edge e lying on a cycle; let G′ :=e,G′

G− e. By Lemma 4.2.1 (ii), e lies on the boundary of exactly two facesf1, f2

f1, f2 of G; we put f1,2 := f1 ∪ e̊∪ f2. We shall prove thatf1,2

F (G)r { f1, f2 } = F (G′)r { f1,2 } , ψ (∗)

without assuming that f1,2 ∈ F (G′). However, since e̊ must lie in some
face of G′ and this will not be a face of G, by (∗) it can only be f1,2.
Thus again by (∗), G′ has one face less than G. As G′ also has one edge
less than G, the assertion then follows from the induction hypothesis
for G′.

For our proof of (∗) we first consider any f ∈ F (G)r { f1, f2 }. By
Lemma 4.2.1 (i), we have G [ f ] ⊆ Gr e̊ = G′. So f is also a face of G′

(but obviously not equal to f1,2) and hence lies in F (G′)r { f1,2 }.
Conversely, let a face f ′ 6= f1,2 of G′ be given. Since e lies on thef ′

boundary of both f1 and f2, we can link any two points of f1,2 by an
arc in R2 r G′, so f1,2 lies inside a face f ′1,2 of G′. Our assumptionf ′1,2
of f ′ 6= f1,2 therefore implies f ′ 6⊆ f1,2 (as otherwise f ′ ⊆ f1,2 ⊆ f ′1,2

3 This fundamental connection between graphs and surfaces lies at the heart of
the proof of the famous Robertson-Seymour graph minor theorem; see Chapter 12.5.
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and hence f ′ = f1,2 = f ′1,2); let x be a point in f ′ r f1,2. Then x lies x

in some face f 6= f1, f2 of G. As shown above, f is also a face of G′. f

Hence x ∈ f ∩ f ′ implies f = f ′, and we have f ′ ∈ F (G)r { f1, f2 } as
desired. ¤

Corollary 4.2.8. A plane graph with n > 3 vertices has at most 3n−6
[ 4.4.1 ]
[ 5.1.2 ]
[ 8.3.5 ]edges. Every plane triangulation with n vertices has 3n− 6 edges.

Proof . By Proposition 4.2.6 it suffices to prove the second assertion. In a
plane triangulation G, every face boundary contains exactly three edges,
and every edge lies on the boundary of exactly two faces (Lemma 4.2.1).
The bipartite graph on E(G)∪F (G) with edge set { ef | e ⊆ G [ f ] } thus
has exactly 2 |E(G)| = 3 |F (G)| edges. According to this identity we may
replace ` with 2m/3 in Euler’s formula, and obtain m = 3n− 6. ¤

Euler’s formula can be useful for showing that certain graphs cannot
occur as plane graphs. The graph K5, for example, has 10 > 3 · 5− 6
edges, more than allowed by Corollary 4.2.8. Similarly, K3,3 cannot be a
plane graph. For sinceK3,3 is 2-connected but contains no triangle, every
face of a plane K3,3 would be bounded by a cycle of length > 4 (Pro-
position 4.2.5). As in the proof of Corollary 4.2.8 this implies 2m > 4`,
which yields m 6 2n− 4 when substituted in Euler’s formula. But K3,3

has 9 > 2 · 6− 4 edges.
Clearly, along with K5 and K3,3 themselves, their subdivisions can-

not occur as plane graphs either:

Corollary 4.2.9. A plane graph contains neither K5 nor K3,3 as a [ 4.4.5 ]
[ 4.4.6 ]

topological minor. ¤

Surprisingly, it turns out that this simple property of plane graphs iden-
tifies them among all other graphs: as Section 4.4 will show, an arbitrary
graph can be drawn in the plane if and only if it has no (topological) K5

or K3,3 minor.

As we have seen, every face boundary in a 2-connected plane graph
is a cycle. In a 3-connected graph, these cycles can be identified combi-
natorially:

Proposition 4.2.10. The face boundaries in a 3-connected plane graph
[ 4.3.2 ]
[ 4.5.2 ]

are precisely its non-separating induced cycles.

Proof . Let G be a 3-connected plane graph, and let C ⊆ G. If C is a
(3.3.5)
(4.1.1)
(4.1.2)non-separating induced cycle, then by the Jordan curve theorem its two

faces cannot both contain points of GrC. Therefore it bounds a face
of G.

Conversely, suppose that C bounds a face f . By Proposition 4.2.5, C, f

C is a cycle. If C has a chord e = xy, then the components of C−{x, y }
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are linked by a C-path in G, because G is 3-connected. This path and
e both run through the other face of C (not f) but do not intersect,
a contradiction to Lemma 4.1.2 (ii).

It remains to show that C does not separate any two vertices x, y ∈
G−C. By Menger’s theorem (3.3.5), x and y are linked in G by three
independent paths. Clearly, f lies inside a face of their union, and by
Lemma 4.1.2 (i) this face is bounded by only two of the paths. The third
therefore avoids f and its boundary C. ¤

4.3 Drawings

An embedding in the plane, or planar embedding , of an (abstract) graphplanar
embedding

G is an isomorphism between G and a plane graph G̃. The latter will
be called a drawing of G. We shall not always distinguish notationallydrawing

between the vertices and edges of G and of G̃.
In this section we investigate how two planar embeddings of a graph

can differ. For this to make sense, we first have to agree when two em-
beddings are to be considered the same: for example, if we compose one
embedding with a simple rotation of the plane, the resulting embedding
will hardly count as a genuinely different way of drawing that graph.

To prepare the ground, let us first consider three possible notions
of equivalence for plane graphs (refining abstract isomorphism), and see
how they are related. Let G = (V,E) and G′ = (V ′, E′) be two planeG; V,E, F

graphs, with face sets F (G) =: F and F (G′) =: F ′. Assume that G andG′;V ′, E′, F ′

G′ are isomorphic as abstract graphs, and let σ:V → V ′ be an isomor-
phism. Setting xy 7→ σ(x)σ(y), we may extend σ in a natural way to aσ

bijection V ∪E→V ′ ∪E′ which maps V to V ′ and E to E′, and which
preserves incidence (and non-incidence) between vertices and edges.

Our first notion of equivalence between plane graphs is perhaps
the most natural one. Intuitively, we would like to call our isomor-
phism σ ‘topological’ if it is induced by a homeomorphism from the
plane R2 to itself. To avoid having to grant the outer faces of G and
G′ a special status, however, we take a detour via the homeomorphism
π:S2 r { (0, 0, 1) } → R2 chosen in Section 4.1: we call σ a topologicalπ

isomorphism between the plane graphs G and G′ if there exists a homeo-
morphism ϕ:S2→ S2 such that ψ := π ◦ ϕ ◦ π−1 induces σ on V ∪E.topological

isomorphism
(More formally: we ask that ψ agree with σ on V , and that it map every
plane edge e ∈ G onto the plane edge σ(e) ∈ G′. Unless ϕ fixes the point
(0, 0, 1), the map ψ will be undefined at π(ϕ−1(0, 0, 1)).)

It can be shown that, up to topological isomorphism, inner and
outer faces are indeed no longer different: if we choose as ϕ a rotation
of S2 mapping the π−1-image of a point of some inner face of G to the
north pole (0, 0, 1) of S2, then ψ maps the rest of this face to the outer
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Fig. 4.3.1. Two drawings of a graph that are not topologically
isomorphic—why not?

face of ψ(G). (To ensure that the edges of ψ(G) are again piecewise
linear, however, one may have to adjust ϕ a little.)

If σ is a topological isomorphism as above, then—except possibly
for a pair of missing points where ψ or ψ−1 is undefined—ψ maps the
faces of G onto those of G′ (proof?). In this way, σ extends naturally
to a bijection σ:V ∪E ∪ F → V ′ ∪E′ ∪ F ′ which preserves incidence of
vertices, edges and faces.

Let us single out this last property of a topological isomorphism
as the defining property for our second notion of equivalence for plane
graphs: let us call our given isomorphism σ between the abstract graphs
G and G′ a combinatorial isomorphism of the plane graphs G and G′ combinatorial

isomorphism
if it can be extended to a bijection σ:V ∪ E ∪ F → V ′ ∪ E′ ∪ F ′ that
preserves incidence not only of vertices with edges but also of vertices
and edges with faces. (Formally: we require that a vertex or edge x ∈ G
shall lie on the boundary of a face f ∈ F if and only if σ(x) lies on the
boundary of the face σ(f).)

G′G

Fig. 4.3.2. Two drawings of a graph that are combinatorially
isomorphic but not topologically—why not?

If σ is a combinatorial isomorphism of the plane graphs G and G′, it
maps the face boundaries of G to those of G′. Let us raise this property
to our third definition of equivalence for plane graphs: we call our isomor-
phism σ of the abstract graphs G and G′ a graph-theoretical isomorphism

graph-
theoretical

isomorphismof the plane graphs G and G′ if{
σ(G [ f ]) : f ∈ F

}
=
{
G′ [ f ′ ] : f ′ ∈ F ′

}
.

Thus, we no longer keep track of which face is bounded by a given
subgraph: the only information we keep is whether a subgraph bounds
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some face or not, and we require that σ map the subgraphs that do
onto each other. At first glance, this third notion of equivalence may
appear a little less natural than the previous two. However, it has the
practical advantage of being formally weaker and hence easier to verify,
and moreover, it will turn out to be equivalent to the other two notions
in most cases.

As we have seen, every topological isomorphism between two plane
graphs is also combinatorial, and every combinatorial isomorphism is also
graph-theoretical. The following theorem shows that, for most graphs,
the converse is true as well:

Theorem 4.3.1.
(i) Every graph-theoretical isomorphism between two plane graphs is

combinatorial. Its extension to a face bijection is unique if and
only if the graph is not a cycle.

(ii) Every combinatorial isomorphism between two 2-connected plane
graphs is topological.

Proof . Let G = (V,E) and G′ = (V ′, E′) be two plane graphs, put
(4.1.1)
(4.1.4)
(4.2.4)
(4.2.5) F (G) =: F and F (G′) =: F ′, and let σ:V ∪E→ V ′ ∪E′ be an isomor-

phism between the underlying abstract graphs.
(i) If G is a cycle, the assertion follows from the Jordan curve theo-

rem. We now assume that G is not a cycle. Let H and H′ be the sets of
all face boundaries in G and G′, respectively. If σ is a graph-theoretical
isomorphism, then the map H 7→ σ(H) is a bijection between H and H′.
By Lemma 4.2.4, the map f 7→ G [ f ] is a bijection between F and H,
and likewise for F ′ and H′. The composition of these three bijections is
a bijection between F and F ′, which we choose as σ:F → F ′. By con-
struction, this extension of σ to V ∪E ∪F preserves incidences (and is
unique with this property), so σ is indeed a combinatorial isomorphism.

(ii) Let us assume that G is 2-connected, and that σ is a combina-σ

torial isomorphism. We have to construct a homeomorphism ϕ:S2→S2

which, for every vertex or plane edge x ∈ G, maps π−1(x) to π−1(σ(x)).
Since σ is a combinatorial isomorphism, σ̃ : π−1 ◦ σ ◦ π is an incidenceσ̃

preserving bijection from the vertices, edges and faces4 of G̃ := π−1(G)
to the vertices, edges and faces of G̃′ := π−1(G′).G̃, G̃′

We construct ϕ in three steps. Let us first define ϕ on the vertex
set of G̃, setting ϕ(x) := σ̃(x) for all x ∈ V (G̃). This is trivially a
homeomorphism between V (G̃) and V (G̃′).

As the second step, we now extend ϕ to a homeomorphism between
G̃ and G̃′ that induces σ̃ on V (G̃) ∪ E(G̃). We may do this edge by

4 By the ‘vertices, edges and faces’ of G̃ and G̃′ we mean the images under π−1

of the vertices, edges and faces of G and G′ (plus (0, 0, 1) in the case of the outer
face). Their sets will be denoted by V (G̃), E(G̃), F (G̃) and V (G̃′), E(G̃′), F (G̃′),
and incidence is defined as inherited from G and G′.
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S2 ⊇ ⊇G̃ G̃′ S2

R2 ⊇ ⊇G G′ R2

y y

  y
  y

σ̃

σ

ππ

Fig. 4.3.3. Defining σ̃ via σ

edge, as follows. Every edge xy of G̃ is homeomorphic to the edge
σ̃(xy) = ϕ(x)ϕ(y) of G̃′, by a homeomorphism mapping x to ϕ(x) and
y to ϕ(y). Then the union of all these homeomorphisms, one for every
edge of G̃, is indeed a homeomorphism between G̃ and G̃′—our desired
extension of ϕ to G̃: all we have to check is continuity at the vertices
(where the edge homeomorphisms overlap), and this follows at once from
our assumption that the two graphs and their individual edges all carry
the subspace topology in R3.

In the third step we now extend our homeomorphism ϕ: G̃→ G̃′ to
all of S2. This can be done analogously to the second step, face by face.
By Proposition 4.2.5, all face boundaries in G̃ and G̃′ are cycles. Now if
f is a face of G̃ and C its boundary, then σ̃(C) :=

⋃
{ σ̃(e) | e ∈ E(C) }

bounds the face σ̃(f) of G̃′. By Theorem 4.1.4, we may therefore extend
the homeomorphism ϕ:C → σ̃(C) defined so far to a homeomorphism
from C ∪ f to σ̃(C)∪ σ̃(f). We finally take the union of all these home-
omorphisms, one for every face f of G̃, as our desired homeomorphism
ϕ:S2→S2; as before, continuity is easily checked. ¤

So far, we have considered ways of comparing plane graphs. We
now come to our actual goal, the definition of equivalence for planar
embeddings. Let us call two planar embeddings σ1, σ2 of a graph G
topologically (respectively, combinatorially) equivalent if σ2 ◦σ−1

1 is a to- equivalent
embeddings

pological (respectively, combinatorial) isomorphism between σ1(G) and
σ2(G). If G is 2-connected, the two definitions coincide by Theorem
4.3.1, and we simply speak of equivalent embeddings. Clearly, this is
indeed an equivalence relation on the set of planar embeddings of any
given graph.

Note that two drawings of G resulting from inequivalent embeddings
may well be topologically isomorphic (exercise): for the equivalence of
two embeddings we ask not only that some (topological or combinatori-
al) isomorphism exist between the their images, but that the canonical
isomorphism σ2 ◦σ−1

1 be a topological or combinatorial one.
Even in this strong sense, 3-connected graphs have only one embed-

ding up to equivalence:

Theorem 4.3.2. (Whitney 1932)
Any two planar embeddings of a 3-connected graph are equivalent.
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Proof . LetG be a 3-connected graph with planar embeddings σ1:G→G1(4.2.10)

and σ2:G→G2. By Theorem 4.3.1 it suffices to show that σ2 ◦ σ−1
1 is

a graph-theoretical isomorphism, i.e. that σ1(C) bounds a face of G1 if
and only if σ2(C) bounds a face of G2, for every subgraph C ⊆ G. This
follows at once from Proposition 4.2.10. ¤

4.4 Planar graphs: Kuratowski’s theorem

A graph is called planar if it can be embedded in the plane: if it isplanar

isomorphic to a plane graph. A planar graph is maximal , or maximally
planar , if it is planar but cannot be extended to a larger planar graph
by adding an edge (but no vertex).

Drawings of maximal planar graphs are clearly maximally plane.
The converse, however, is not obvious: when we start to draw a planar
graph, could it happen that we get stuck half-way with a proper subgraph
that is already maximally plane? Our first proposition says that this
can never happen, that is, a plane graph is never maximally plane just
because it is badly drawn:

Proposition 4.4.1.

(i) Every maximal plane graph is maximally planar.

(ii) A planar graph with n > 3 vertices is maximally planar if and
only if it has 3n− 6 edges.

Proof . Apply Proposition 4.2.6 and Corollary 4.2.8. ¤(4.2.6)
(4.2.8)

Which graphs are planar? As we saw in Corollary 4.2.9, no planar
graph contains K5 or K3,3 as a topological minor. Our aim in this section
is to prove the surprising converse, a classic theorem of Kuratowski: any
graph without a topological K5 or K3,3 minor is planar.

Before we prove Kuratowski’s theorem, let us note that it suffices
to consider ordinary minors rather than topological ones:

Proposition 4.4.2. A graph contains K5 or K3,3 as a minor if and only
if it contains K5 or K3,3 as a topological minor.

Proof . By Proposition 1.7.2 it suffices to show that every graph G(1.7.2)

with a K5 minor contains either K5 as a topological minor or K3,3 as
a minor. So suppose that G < K5, and let K ⊆ G be minimal such
that K = MK5. Then every branch set of K induces a tree in K, and
between any two branch sets K has exactly one edge. If we take the
tree induced by a branch set Vx and add to it the four edges joining it
to other branch sets, we obtain another tree, Tx say. By the minimality
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Tx

Vx

Fig. 4.4.1. Every MK5 contains a TK5 or MK3,3

of K, Tx has exactly 4 leaves, the 4 neighbours of Vx in other branch
sets (Fig. 4.4.1).

If each of the five trees Tx is a TK1,4 then K is a TK5, and we are
done. If one of the Tx is not a TK1,4 then it has exactly two vertices
of degree 3. Contracting Vx onto these two vertices, and every other
branch set to a single vertex, we obtain a graph on 6 vertices containing
a K3,3. Thus, G < K3,3 as desired. ¤

We first prove Kuratowski’s theorem for 3-connected graphs. This
is the heart of the proof: the general case will then follow easily.

Lemma 4.4.3. Every 3-connected graph G without a K5 or K3,3 minor
is planar.

Proof . We apply induction on |G|. For |G| = 4 we have G = K4, and (3.2.1)
(4.2.5)

the assertion holds. Now let |G| > 4, and assume the assertion is true
for smaller graphs. By Lemma 3.2.1, G has an edge xy such that G/xy xy

is again 3-connected. Since the minor relation is transitive, G/xy has no
K5 or K3,3 minor either. Thus, by the induction hypothesis, G/xy has
a drawing G̃ in the plane. Let f be the face of G̃− vxy containing the G̃

point vxy, and let C be the boundary of f . Let X := NG(x)r { y } and f, C

Y := NG(y)r {x }; then X ∪Y ⊆ V (C), because vxy ∈ f . Clearly, X,Y

G̃′ := G̃−{ vxyv | v ∈ Y rX } G̃′

may be viewed as a drawing of G−y, in which the vertex x is represented
by the point vxy (Fig. 4.4.2). Our aim is to add y to this drawing to
obtain a drawing of G.

Since G̃ is 3-connected, G̃ − vxy is 2-connected, so C is a cycle
(Proposition 4.2.5). Let x1, . . . , xk be an enumeration along this cycle of x1, . . . , xk

the vertices in X, and let Pi = xi . . . xi+1 be the X-paths on C between Pi

them (i = 1, . . . , k; with xk+1 := x1). For each i, the set C r Pi is
contained in one of the two faces of the cycle Ci := xxiPixi+1x; we Ci
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x1

x2

x3

x4

x5

x (= vxy)

C

f1 P4

f

Fig. 4.4.2. G̃′ as a drawing of G−y: the vertex x is represented
by the point vxy

denote the other face of Ci by fi. Since fi contains points of f (closefi

to x) but no points of C, we have fi ⊆ f . Moreover, the plane edges xxj
with j /∈ { i, i+ 1 } meet Ci only in x and end outside fi in CrPi, so fi
meets none of those edges. Hence fi ⊆ R2r G̃′, that is, fi is contained
in a face of G̃′. (In fact, fi is a face of G̃′, but we do not need this.)

In order to turn G̃′ into a drawing of G, let us try to find an i
such that Y ⊆ V (Pi); we may then embed y into fi and link it up to
its neighbours by arcs inside fi. Suppose there is no such i: how then
can the vertices of Y be distributed around C? If y had a neighbour
in some P̊i, it would also have one in C − Pi, so G would contain a
TK3,3 (with branch vertices x, y, xi, xi+1 and those two neighbours
of y). Hence Y ⊆ X. Now if |Y | = |Y ∩X| > 3, we have a TK5 in G.
So |Y | 6 2; in fact, |Y | = 2, because d(y) > κ(G) > 3. Since the two
vertices of Y lie on no common Pi, we can once more find a TK3,3 in G,
a contradiction. ¤

Compared with other proofs of Kuratowski’s theorem, the above
proof has the attractive feature that it can easily be adapted to produce
a drawing in which every inner face is convex (exercise); in particular,
every edge can be drawn straight. Note that 3-connectedness is essential
here: a 2-connected planar graph need not have a drawing with all inner
faces convex (example?), although it always has a straight-line drawing
(Exercise 12).

It is not difficult, in principle, to reduce the general Kuratowski
theorem to the 3-connected case by manipulating and combining partial
drawings assumed to exist by induction. For example, if κ(G) = 2 and
G = G1 ∪G2 with V (G1 ∩G2) = {x, y }, and if G has no TK5 or TK3,3

subgraph, then neither G1 + xy nor G2 + xy has such a subgraph, and
we may try to combine drawings of these graphs to one of G+ xy. (If
xy is already an edge of G, the same can be done with G1 and G2.)
For κ(G) 6 1, things become even simpler. However, the geometric
operations involved require some cumbersome shifting and scaling, even
if all the plane edges occurring are assumed to be straight.
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The following more combinatorial route is just as easy, and may be
a welcome alternative.

Lemma 4.4.4. Let X be a set of 3-connected graphs. Let G be a graph [ 8.3.1 ]

with κ(G) 6 2, and let G1, G2 be proper induced subgraphs of G such
that G = G1 ∪G2 and |G1 ∩G2| = κ(G). If G is edge-maximal without
a topological minor in X , then so are G1 and G2, and G1 ∩G2 = K2.

Proof . Note first that every vertex v ∈ S := V (G1 ∩G2) has a neigh- S

bour in every component of Gi − S, i = 1, 2: otherwise S r { v } would
separate G, contradicting |S| = κ(G). By the maximality of G, every
edge e added to G lies in a TX ⊆ G + e with X ∈ X . For all the X

choices of e considered below, the 3-connectedness of X will imply that
the branch vertices of this TX all lie in the same Gi, say in G1. (The
position of e will always be symmetrical with respect to G1 and G2, so
this assumption entails no loss of generality.) Then the TX meets G2 at
most in a path P corresponding to an edge of X. P

If S = ∅, we obtain an immediate contradiction by choosing e with
one end in G1 and the other in G2. If S = { v } is a singleton, let e
join a neighbour v1 of v in G1 − S to a neighbour v2 of v in G2 − S
(Fig. 4.4.3). Then P contains both v and the edge v1v2; replacing vPv1

with the edge vv1, we obtain a TX in G1 ⊆ G, a contradiction.

G1 G2

TX

Pe

v

v1 v2

Fig. 4.4.3. If G+ e contains a TX, then so does G1 or G2

So |S| = 2, say S = {x, y }. If xy /∈ G, we let e := xy, and in the x, y

arising TX replace e by an x–y path through G2; this gives a TX in G,
a contradiction. Hence xy ∈ G, and G [S ] = K2 as claimed.

It remains to show that G1 and G2 are edge-maximal without a
topological minor in X . So let e′ be an additional edge for G1, say.
Replacing xPy with the edge xy if necessary, we obtain a TX either
in G1 + e′ (which shows the edge-maximality of G1, as desired) or in G2

(which contradicts G2 ⊆ G). ¤

Lemma 4.4.5. If |G| > 4 and G is edge-maximal with TK5, TK3,3 6⊆ G,
then G is 3-connected.
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Proof . We apply induction on |G|. For |G| = 4, we have G = K4(4.2.9)

and the assertion holds. Now let |G| > 4, and let G be edge-maximal
without a TK5 or TK3,3. Suppose κ(G) 6 2, and choose G1 and G2 asG1, G2

in Lemma 4.4.4. For X := {K5,K3,3 }, the lemma says that G1 ∩G2 is
a K2, with vertices x, y say. By Lemmas 4.4.4, 4.4.3 and the inductionx, y

hypothesis, G1 and G2 are planar. For each i = 1, 2 separately, choose a
drawing of Gi, a face fi with the edge xy on its boundary, and a vertexfi

zi 6= x, y on the boundary of fi. Let K be a TK5 or TK3,3 in thezi

abstract graph G+ z1z2 (Fig. 4.4.4).K

G1 G2

z1 z2x

y

K

Fig. 4.4.4. A TK5 or TK3,3 in G+ z1z2

If all the branch vertices of K lie in the same Gi, then either Gi+xzi
or Gi + yzi (or Gi itself, if zi is already adjacent to x or y, respectively)
contains a TK5 or TK3,3; this contradicts Corollary 4.2.9, since these
graphs are planar by the choice of zi. SinceG+z1z2 does not contain four
independent paths between (G1 −G2) and (G2 −G1), these subgraphs
cannot both contain a branch vertex of a TK5, and cannot both contain
two branch vertices of a TK3,3. Hence K is a TK3,3 with only one branch
vertex v in, say, G2−G1. But then also the graph G1 +v+{ vx, vy, vz1 },
which is planar by the choice of z1, contains a TK3,3. This contradicts
Corollary 4.2.9. ¤

Theorem 4.4.6. (Kuratowski 1930; Wagner 1937)
The following assertions are equivalent for graphs G:

[ 4.5.1 ]
[ 12.4.3 ]

(i) G is planar;

(ii) G contains neither K5 nor K3,3 as a minor;

(iii) G contains neither K5 nor K3,3 as a topological minor.

Proof . Combine Corollary 4.2.9 and Proposition 4.4.2 with Lemmas(4.2.9)

4.4.3 and 4.4.5. ¤

Corollary 4.4.7. Every maximal planar graph with at least four ver-
tices is 3-connected.

Proof . Apply Lemma 4.4.5 and Theorem 4.4.6. ¤
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4.5 Algebraic planarity criteria

In this section we show that planarity can be characterized in purely
algebraic terms, by a certain abstract property of its cycle space. Theo-
rems relating such seemingly distant graph properties are rare, and their
significance extends beyond their immediate applicability. In a sense,
they indicate that both ways of viewing a graph—in our case, the topo-
logical and the algebraic way—are not just formal curiosities: if both are
natural enough that, quite unexpectedly, each can be expressed in terms
of the other, the indications are that they have the power to reveal some
genuine insights into the structure of graphs and are worth pursuing.

Let G = (V,E) be a graph. We call a subset F of its edge space
E(G) simple if every edge of G lies in at most two sets of F . For example, simple

the cut space C∗(G) has a simple basis: according to Proposition 1.9.3 it
is generated by the cuts E(v) formed by all the edges at a given vertex v,
and an edge xy ∈ G lies in E(v) only for v = x and for v = y.

Theorem 4.5.1. (MacLane 1937)
A graph is planar if and only if its cycle space has a simple basis. [ 4.6.3 ]

Proof . The assertion being trivial for graphs of order at most 2, we
(1.9.2)
(1.9.6)
(4.1.1)
(4.2.1)
(4.2.5)
(4.4.6)

consider a graph G of order at least 3. If κ(G) 6 1, then G is the union
of two proper induced subgraphs G1, G2 with |G1 ∩G2| 6 1. Then C(G)
is the direct sum of C(G1) and C(G2), and hence has a simple basis if
and only if both C(G1) and C(G2) do (proof?). Moreover, G is planar if
and only if both G1 and G2 are: this follows at once from Kuratowski’s
theorem, but also from easy geometrical considerations. The assertion
for G thus follows inductively from those for G1 and G2. For the rest of
the proof, we now assume that G is 2-connected.

We first assume that G is planar and choose a drawing. By Lemma
4.2.5, the face boundaries of G are cycles, so they are elements of C(G).
We shall show that the face boundaries generate all the cycles in G; then
C(G) has a simple basis by Lemma 4.2.1. Let C ⊆ G be any cycle, and
let f be its inner face. By Lemma 4.2.1, every edge e with e̊ ⊆ f lies on
exactly two face boundaries G [ f ′ ] with f ′ ⊆ f , and every edge of C lies
on exactly one such face boundary. Hence the sum in C(G) of all those
face boundaries is exactly C.

Conversely, let {C1, . . . , Ck } be a simple basis of C(G). Then, for
every edge e ∈ G, also C(G − e) has a simple basis. Indeed, if e lies
in just one of the sets Ci, say in C1, then {C2, . . . , Ck } is a simple
basis of C(G − e); if e lies in two of the Ci, say in C1 and C2, then
{C1 + C2, C3, . . . , Ck } is such a basis. (Note that the two bases are
indeed subsets of C(G− e) by Proposition 1.9.2.) Thus every subgraph
of G has a cycle space with a simple basis. For our proof that G is planar,
it thus suffices to show that the cycle spaces of K5 and K3,3 (and hence



86 4. Planar Graphs

those of their subdivisions) do not have a simple basis: then G cannot
contain a TK5 or TK3,3, and so is planar by Kuratowski’s theorem.

Let us consider K5 first. By Theorem 1.9.6, dim C(K5) = 6; let
B = {C1, . . . , C6 } be a simple basis, and put C0 := C1 + . . .+C6. As
B is linearly independent, none of the sets C0, . . . , C6 is empty, and so
each of them contains at least three edges (cf. Proposition 1.9.2). The
simplicity of B therefore implies

18 = 6 · 3 6 |C1|+ . . .+ |C6|
6 2 ‖K5‖− |C0|
6 2 · 10− 3 = 17 ,

a contradiction; for the middle inequality note that every edge in C0 lies
in just one of the sets C1, . . . , C6.

ForK3,3, Theorem 1.9.6 gives dim C(K3,3) = 4; let B = {C1, . . . , C4 }
be a simple basis, and put C0 := C1 + . . .+C4. Since K3,3 has girth 4,
each Ci contains at least four edges, so

16 = 4 · 4 6 |C1|+ . . .+ |C4|
6 2 ‖K3,3‖− |C0|
6 2 · 9− 4 = 14 ,

a contradiction. ¤

It is one of the hidden beauties of planarity theory that two such
abstract and seemingly unintuitive results about generating sets in cy-
cle spaces as MacLane’s theorem and Tutte’s theorem 3.2.3 conspire to
produce a very tangible planarity criterion for 3-connected graphs:

Theorem 4.5.2. (Tutte 1963)
A 3-connected graph is planar if and only if every edge lies on at most
(equivalently: exactly) two non-separating induced cycles.

Proof . The forward implication follows from Propositions 4.2.10 and
(3.2.3)
(4.2.1)
(4.2.5)
(4.2.10) 4.2.1 (and Proposition 4.2.5 for the ‘exactly two’ version); the backward

implication follows from Theorems 3.2.3 and 4.5.1. ¤
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4.6 Plane duality
In this section we shall use MacLane’s theorem to uncover another con-
nection between planarity and algebraic structure: a connection between
the duality of plane graphs, defined below, and the duality of the cycle
and cut space hinted at in Chapters 1.9 and 3.5.

A plane multigraph is a pair G = (V,E) of finite sets (of vertices plane
multigraph

and edges, respectively) satisfying the following conditions:

(i) V ⊆ R2;
(ii) every edge is either an arc between two vertices or a polygon

containing exactly one vertex (its endpoint);
(iii) apart from its own endpoint(s), an edge contains no vertex and

no point of any other edge.

We shall use terms defined for plane graphs freely for plane multigraphs.
Note that, as in abstract multigraphs, both loops and double edges count
as cycles.

Let us consider the plane multigraph G shown in Figure 4.6.1. Let
us place a new vertex inside each face of G and link these new vertices
up to form another plane multigraph G∗, as follows: for every edge e of
G we link the two new vertices in the faces incident with e by an edge e∗

crossing e; if e is incident with only one face, we attach a loop e∗ to the
new vertex in that face, again crossing the edge e. The plane multigraph
G∗ formed in this way is then dual to G in the following sense: if we
apply the same procedure as above to G∗, we obtain a plane multigraph
very similar to G; in fact, G itself may be reobtained from G∗ in this way.

G∗

e∗
e

G

Fig. 4.6.1. A plane graph and its dual

To make this idea more precise, let G = (V,E) and (V ∗, E∗) be any
two plane multigraphs, and put F (G) =: F and F ((V ∗, E∗)) =: F ∗. We
call (V ∗, E∗) a plane dual of G, and write (V ∗, E∗) =: G∗, if there are plane

dual G∗
bijections

F →V ∗

f 7→ v∗(f)
E→E∗

e 7→ e∗
V →F ∗

v 7→ f∗(v)

satisfying the following conditions:

(i) v∗(f) ∈ f for all f ∈ F ;
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(ii) |e∗ ∩G| = |̊e∗ ∩ e̊| = |e∩G∗| = 1 for all e ∈ E;
(iii) v ∈ f∗(v) for all v ∈ V .

The existence of such bijections implies that both G and G∗ are con-
nected (exercise). Conversely, every connected plane multigraph G has
a plane dual G∗: if we pick from each face f of G a point v∗(f) as a
vertex for G∗, we can always link these vertices up by independent arcs
as required by condition (ii), and there is always a bijection V → F ∗

satisfying (iii) (exercise).
If G∗1 and G∗2 are two plane duals of G, then clearly G∗1 ' G∗2; in fact,

one can show that the natural bijection v∗1(f) 7→ v∗2(f) is a topological
isomorphism between G∗1 and G∗2. In this sense, we may speak of the
plane dual G∗ of G.

Finally, G is in turn a plane dual of G∗. Indeed, this is witnessed
by the inverse maps of the bijections from the definition of G∗: setting
v∗(f∗(v)) := v and f∗(v∗(f)) := f for f∗(v) ∈ F ∗ and v∗(f) ∈ V ∗, we
see that conditions (i) and (iii) for G∗ transform into (iii) and (i) for G,
while condition (ii) is symmetrical in G and G∗. Thus, the term ‘dual’
is also formally justified.

Plane duality is fascinating not least because it establishes a con-
nection between two natural but very different kinds of edge sets in a
multigraph, between cycles and cuts:

Proposition 4.6.1. For any connected plane multigraph G, an edge set[ 6.5.2 ]

E ⊆ E(G) is the edge set of a cycle in G if and only if E∗ := { e∗ | e ∈ E }
is a minimal cut in G∗.

Proof . By conditions (i) and (ii) in the definition of G∗, two vertices(4.1.1)
(4.2.3)

v∗(f1) and v∗(f2) of G∗ lie in the same component of G∗− E∗ if and
only if f1 and f2 lie in the same region of R2r

⋃
E: every v∗(f1)–v∗(f2)

path in G∗−E∗ is an arc between f1 and f2 in R2r
⋃
E, and conversely

every such arc P (with P ∩V (G) = ∅) defines a walk in G∗−E∗ between
v∗(f1) and v∗(f2).

Now if C ⊆ G is a cycle and E = E(C) then, by the Jordan curve
theorem and the above correspondence, G∗−E∗ has exactly two com-
ponents, so E∗ is a minimal cut in G∗.

Conversely, if E ⊆ E(G) is such that E∗ is a cut in G∗, then, by
Proposition 4.2.3 and the above correspondence, E contains the edges
of a cycle C ⊆ G. If E∗ is minimal as a cut, then E cannot contain any
further edges (by the implication shown before), so E = E(C). ¤

Proposition 4.6.1 suggests the following generalization of plane du-
ality to a notion of duality for abstract multigraphs. Let us call a multi-
graph G∗ an abstract dual of a multigraph G if E(G∗) = E(G) and theabstract

dual
minimal cuts in G∗ are precisely the edge sets of cycles in G. Note that
any abstract dual of a multigraph is connected.
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Proposition 4.6.2. If G∗ is an abstract dual of G, then the cut space
of G∗ is the cycle space of G, i.e.

C∗(G∗) = C(G) .

Proof . By Lemma 1.9.4,5 C∗(G∗) is the subspace of E(G∗) = E(G) (1.9.4)

generated by the minimal cuts in G∗. By assumption, these are precisely
the edge sets of the cycles in G, and these generate C(G) in E(G). ¤

We finally come to one of the highlights of classical planarity the-
ory: the planar graphs are characterized by the fact that they have an
abstract dual. Although less obviously intuitive, this duality is just as
fundamental a property as planarity itself; indeed the following theorem
may well be seen as a topological characterization of the graphs that
have a dual:

Theorem 4.6.3. (Whitney 1933)
A graph is planar if and only if it has an abstract dual.

Proof . Let G be a graph. If G is plane, then every component C of G has (1.9.3)
(4.5.1)

a plane dual C∗. Let us consider these C∗ as abstract multigraphs, pick
a vertex in each of them, and identify these vertices. In the connected
multigraph G∗ obtained, the set of minimal cuts is the union of the sets
of minimal cuts in the multigraphs C∗. By Proposition 4.6.1, these cuts
are precisely the edge sets of the cycles in G, so G∗ is an abstract dual
of G.

Conversely, suppose that G has an abstract dual G∗. By Theorem
4.5.1 and Proposition 4.6.2 it suffices to show that C∗(G∗) has a simple
basis, which it has by Proposition 1.9.3. ¤

Exercises

1. Show that every graph can be embedded in R3 with all edges straight.

2.− Show directly by Lemma 4.1.2 that K3,3 is not planar.

3.− Find an Euler formula for disconnected graphs.

4. Show that every connected planar graph with n vertices, m edges and
finite girth g satisfies m 6 g

g−2
(n− 2).

5. Show that every planar graph is a union of three forests.

5 Although the lemma was stated for graphs only, its proof remains the same for
multigraphs.
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6. Let G1, G2, . . . be an infinite sequence of pairwise non-isomorphic
graphs. Show that if lim sup ε(Gi) > 3 then the graphs Gi have un-
bounded genus—that is to say, there is no (closed) surface S in which
all the Gi can be embedded.

(Hint. You may use the fact that for every surface S there is a constant
χ(S) 6 2 such that every graph embedded in S satisfies the generalized
Euler formula of n−m+ ` > χ(S).)

7. Find a direct proof for planar graphs of Tutte’s theorem on the cycle
space of 3-connected graphs (Theorem 3.2.3).

8.− Show that the two plane graphs in Fig. 4.3.1 are not combinatorially
(and hence not topologically) isomorphic.

9. Show that the two graphs in Fig. 4.3.2 are combinatorially but not
topologically isomorphic.

10.− Show that our definition of equivalence for planar embeddings does
indeed define an equivalence relation.

11. Find a 2-connected planar graph whose drawings are all topologically
isomorphic but whose planar embeddings are not all equivalent.

12.+ Show that every plane graph is combinatorially isomorphic to a plane
graph whose edges are all straight.

(Hint. Given a plane triangulation, construct inductively a graph-
theoretically isomorphic plane graph whose edges are straight. Which
additional property of the inner faces could help with the induction?)

Do not use Kuratowski’s theorem in the following two exercises.

13. Show that any minor of a planar graph is planar. Deduce that a graph
is planar if and only if it is the minor of a grid. (Grids are defined in
Chapter 12.3.)

14. (i) Show that the planar graphs can in principle be characterized as
in Kuratowski’s theorem, i.e., that there exists a set X of graphs such
that a graph G is planar if and only if G has no topological minor in X .

(ii) More generally, which graph properties can be characterized in this
way?

15.− Does every planar graph have a drawing with all inner faces convex?

16. Modify the proof of Lemma 4.4.3 so that all inner faces become convex.

17. Does every minimal non-planar graph G (i.e., every non-planar graph G
whose proper subgraphs are all planar) contain an edge e such that
G− e is maximally planar? Does the answer change if we define ‘mini-
mal’ with respect to minors rather than subgraphs?

18. Show that adding a new edge to a maximal planar graph of order at
least 6 always produces both a TK5 and a TK3,3 subgraph.
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19. Prove the general Kuratowski theorem from its 3-connected case by
manipulating plane graphs, i.e. avoiding Lemma 4.4.5.

(This is not intended as an exercise in elementary topology; for the
topological parts of the proof, a rough sketch will do.)

20. A graph is called outerplanar if it has a drawing in which every vertex
lies on the boundary of the outer face. Show that a graph is outerplanar
if and only if it contains neither K4 nor K2,3 as a minor.

21. Let G = G1 ∪G2, where |G1 ∩G2| 6 1. Show that C(G) has a simple
basis if both C(G1) and C(G2) have one.

22.+ Find a cycle space basis among the face boundaries of a 2-connected
plane graph.

23. Show that a 2-connected plane graph is bipartite if and only if every
face is bounded by an even cycle.

24.− Let G be a connected plane multigraph, and let G∗ be its plane dual.
Prove the following two statements for every edge e ∈ G:

(i) If e lies on the boundary of two distinct faces f1, f2 of G, then
e∗ = v∗(f1) v∗(f2).

(ii) If e lies on the boundary of exactly one face f of G, then e∗ is
a loop at v∗(f).

25.− What does the plane dual of a plane tree look like?

26.− Show that the plane dual of a plane multigraph is connected.

27.+ Show that a plane multigraph has a plane dual if and only if it is
connected.

28. Let G,G∗ be mutually dual plane multigraphs, and let e ∈ E(G). Prove
the following statements (with a suitable definition of G/e):

(i) If e is not a bridge, then G∗/e∗ is a plane dual of G− e.
(ii) If e is not a loop, then G∗− e∗ is a plane dual of G/e.

29. Show that any two plane duals of a plane multigraph are combinatori-
ally isomorphic.

30. Let G,G∗ be mutually dual plane graphs. Prove the following state-
ments:

(i) If G is 2-connected, then G∗ is 2-connected.

(ii) If G is 3-connected, then G∗ is 3-connected.

(iii) If G is 4-connected, then G∗ need not be 4-connected.

31. Let G,G∗ be mutually dual plane graphs. Let B1, . . . , Bn be the blocks
of G. Show that B∗1 , . . . , B

∗
n are the blocks of G∗.

32. Show that if G∗ is an abstract dual of a multigraph G, then G is an
abstract dual of G∗.
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33. Show that a connected graph G = (V,E) is planar if and only if there
exists a connected multigraph G′ = (V ′, E) (i.e. with the same edge
set) such that the following holds for every set F ⊆ E: the graph (V, F )
is a tree if and only if (V ′, ErF ) is a tree.

Notes
There is an excellent monograph on the embedding of graphs in surfaces,
including the plane: B. Mohar & C. Thomassen, Graphs on Surfaces, Johns
Hopkins University Press, to appear. Proofs of the results cited in Section 4.1,
as well as all references for this chapter, can be found there. A good account
of the Jordan curve theorem, both polygonal and general, is given also in
J. Stillwell, Classical topology and combinatorial group theory , Springer 1980.

The short proof of Corollary 4.2.8 uses a trick that deserves special men-
tion: the so-called double counting of pairs, illustrated in the text by a bipar-
tite graph whose edges can be counted alternatively by summing its degrees
on the left or on the right. Double counting is a technique widely used in
combinatorics, and there will be more examples later in the book.

The material of Section 4.3 is not normally standard for an introductory
graph theory course, and the rest of the chapter can be read independently of
this section. However, the results of Section 4.3 are by no means unimportant.
In a way, they have fallen victim to their own success: the shift from a topo-
logical to a combinatorial setting for planarity problems which they achieve
has made the topological techniques developed there dispensable for most of
planarity theory.

In its original version, Kuratowski’s theorem was stated only for topo-
logical minors; the version for general minors was added by Wagner in 1937.
Our proof of the 3-connected case (Lemma 4.4.3) can easily be strengthened
to make all the inner faces convex (exercise); see C. Thomassen, Planarity and
duality of finite and infinite graphs, J. Combin. Theory B 29 (1980), 244–271.
The existence of such ‘convex’ drawings for 3-connected planar graphs follows
already from the theorem of Steinitz (1922) that these graphs are precisely
the 1-skeletons of 3-dimensional convex polyhedra. Compare also W.T. Tutte,
How to draw a graph, Proc. London Math. Soc. 13 (1963), 743–767.

As one readily observes, adding an edge to a maximal planar graph (of
order at least 6) produces not only a topological K5 or K3,3, but both. In
Chapter 8.3 we shall see that, more generally, every graph with n vertices
and more than 3n− 6 edges contains a TK5 and, with one easily described
class of exceptions, also a TK3,3. Seymour conjectures that every 5-connected
non-planar graph contains a TK5 (unpublished).

The simple cycle space basis constructed in the proof of MacLane’s theo-
rem, which consists of the inner face boundaries, is canonical in the following
sense: for every simple basis B of the cycle space of a 2-connected planar graph
there exists a drawing of that graph in which B is precisely the set of inner face
boundaries. (This is proved in Mohar & Thomassen, who also mention some
further planarity criteria.) Our proof of the backward direction of MacLane’s
theorem is based on Kuratowski’s theorem. A more direct approach, in which
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a planar embedding is actually constructed from a simple basis, is adopted in
K. Wagner, Graphentheorie, BI Hochschultaschenbücher 1972.

The proper setting for duality phenomena between cuts and cycles in ab-
stract graphs (and beyond) is the theory of matroids; see J.G. Oxley, Matroid
Theory , Oxford University Press 1992.





5 Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured differently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A vertex colouring of a graph G = (V,E) is a map c:V → S such vertex
colouring

that c(v) 6= c(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k such that
G has a k-colouring , a vertex colouring c:V →{ 1, . . . , k }. This k is the chromatic

number
(vertex-) chromatic number of G; it is denoted by χ(G). A graph G with χ(G)

χ(G) = k is called k-chromatic; if χ(G) 6 k, we call G k-colourable.

1

1

2

3

2

4

Fig. 5.0.1. A vertex colouring V →{ 1, . . . , 4 }

Note that a k-colouring is nothing but a vertex partition into k
independent sets, now called colour classes; the non-trivial 2-colourable colour

classes
graphs, for example, are precisely the bipartite graphs. Historically,
the colouring terminology comes from the map colouring problem stated
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above, which leads to the problem of determining the maximum chro-
matic number of planar graphs. The committee scheduling problem, too,
can be phrased as a vertex colouring problem—how?

An edge colouring of G = (V,E) is a map c:E→S with c(e) 6= c(f)edge
colouring

for any adjacent edges e, f . The smallest integer k for which a k-edge-
colouring exists, i.e. an edge colouring c:E→ { 1, . . . , k }, is the edge-
chromatic number , or chromatic index , of G; it is denoted by χ′(G).

chromatic
index
χ′(G) The third of our introductory questions can be modelled as an edge

colouring problem in a bipartite multigraph (how?).
Clearly, every edge colouring of G is a vertex colouring of its line

graph L(G), and vice versa; in particular, χ′(G) = χ(L(G)). The prob-
lem of finding good edge colourings may thus be viewed as a restriction
of the more general vertex colouring problem to this special class of
graphs. As we shall see, this relationship between the two types of
colouring problem is reflected by a marked difference in our knowledge
about their solutions: while there are only very rough estimates for χ,
its sister χ′ always takes one of two values, either ∆ or ∆ + 1.

5.1 Colouring maps and planar graphs

If any result in graph theory has a claim to be known to the world
outside, it is the following four colour theorem (which implies that every
map can be coloured with at most four colours):

Theorem 5.1.1. (Four Colour Theorem)
Every planar graph is 4-colourable.

Some remarks about the proof of the four colour theorem and its history
can be found in the notes at the end of this chapter. Here, we prove the
following weakening:

Proposition 5.1.2. (Five Colour Theorem)
Every planar graph is 5-colourable.

Proof . Let G be a plane graph with n > 6 vertices and m edges. We(4.1.1)
(4.2.8)

assume inductively that every plane graph with fewer than n vertices
can be 5-coloured. By Corollary 4.2.8,n,m

d(G) = 2m/n 6 2 (3n− 6)/n < 6 ;

let v ∈ G be a vertex of degree at most 5. By the induction hypothesis,v

the graph H := G− v has a vertex colouring c:V (H)→{ 1, . . . , 5 }. If cH

uses at most 4 colours for the neighbours of v, we can extend it to a 5-c

colouring of G. Let us assume, therefore, that v has exactly 5 neighbours,
and that these have distinct colours.
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Let D be an open disc around v, so small that it meets only those D

five straight edge segments of G that contain v. Let us enumerate these
segments according to their cyclic position in D as s1, . . . , s5, and let s1, . . . , s5

vvi be the edge containing si (i = 1, . . . , 5; Fig. 5.1.1). Without loss of v1, . . . , v5

generality we may assume that c(vi) = i for each i.

v1

v2

v3

v4

v5

s1

s2

s3
s4

s5 v
P

D

Fig. 5.1.1. The proof of the five colour theorem

Let us show first that every v1– v3 path P ⊆ H separates v2 from P

v4 in H. Clearly, this is the case if and only if the cycle C := vv1Pv3v C

separates v2 from v4 in G. We prove this by showing that v2 and v4 lie
in different faces of C.

Consider the two regions of D r (s1 ∪ s3). One of these regions
meets s2, the other s4. Since C ∩ D ⊆ s1 ∪ s3, the two regions are
each contained within a face of C. Moreover, these faces are distinct:
otherwise, D would meet only one face of C, contrary to the fact that
v lies on the boundary of both faces (Theorem 4.1.1). Thus D ∩ s2 and
D ∩ s4 lie in distinct faces of C. As C meets the edges vv2 ⊇ s2 and
vv4 ⊇ s4 only in v, the same holds for v2 and v4.

Given i, j ∈ { 1, . . . , 5 }, let Hi,j be the subgraph of H induced by Hi,j

the vertices coloured i or j. We may assume that the component C1 of
H1,3 containing v1 also contains v3. Indeed, if we interchange the colours
1 and 3 at all the vertices of C1, we obtain another 5-colouring of H;
if v3 /∈ C1, then v1 and v3 are both coloured 3 in this new colouring,
and we may assign colour 1 to v. Thus, H1,3 contains a v1– v3 path P .
As shown above, P separates v2 from v4 in H. Since P ∩H2,4 = ∅,
this means that v2 and v4 lie in different components of H2,4. In the
component containing v2, we now interchange the colours 2 and 4, thus
recolouring v2 with colour 4. Now v no longer has a neighbour coloured 2,
and we may give it this colour. ¤

As a backdrop to the two famous theorems above, let us cite another
well-known result:

Theorem 5.1.3. (Grötzsch 1959)
Every planar graph not containing a triangle is 3-colourable.
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5.2 Colouring vertices

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

χ(G) 6 1
2 +

√
2m+ 1

4 .

Proof . Let c be a vertex colouring of G with k = χ(G) colours. Then
G has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m> 1

2k(k−1). Solving
this inequality for k, we obtain the assertion claimed. ¤

One obvious way to colour a graph G with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumerationgreedy

algorithm
v1, . . . , vn of G, we consider the vertices in turn and colour each vi with
the first available colour—e.g., with the smallest positive integer not
already used to colour any neighbour of vi among v1, . . . , vi−1. In this
way, we never use more than ∆(G) + 1 colours, even for unfavourable
choices of the enumeration v1, . . . , vn. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of ∆ + 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex
vi in the above algorithm, we only need a supply of dG[ v1,...,vi ](vi) + 1
rather than dG(vi)+1 colours to proceed; recall that, at this stage, the al-
gorithm ignores any neighbours vj of vi with j > i. Hence in most graphs,
there will be scope for an improvement of the ∆+1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number dG[ v1,...,vi ](vi) + 1 of colours
required will be smallest if vi has minimum degree in G [ v1, . . . , vi ]. But
this is easily achieved: we just choose vn first, with d(vn) = δ(G), then
choose as vn−1 a vertex of minimum degree in G− vn, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed

colouring
number
col(G) shows that col(G) 6 maxH⊆G δ(H) + 1. But for H ⊆ G clearly also

col(G) > col(H) and col(H) > δ(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least δ(H). So we have proved the following:
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Proposition 5.2.2. Every graph G satisfies

χ(G) 6 col(G) = max { δ(H) | H ⊆ G }+ 1 .
¤

Corollary 5.2.3. Every graph G has a subgraph of minimum degree at
[ 9.2.1 ]
[ 9.2.3 ]

[ 11.2.3 ]least χ(G)− 1. ¤

The colouring number of a graph is closely related to its arboricity; see
the remark following Theorem 3.5.4.

As we have seen, every graph G satisfies χ(G) 6 ∆(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,
then

χ(G) 6 ∆(G) .

Proof . We apply induction on |G|. If ∆(G) 6 2, then G is a path or
a cycle, and the assertion is trivial. We therefore assume that ∆ := ∆

∆(G) > 3, and that the assertion holds for graphs of smaller order.
Suppose that χ(G) > ∆.

Let v ∈ G be a vertex and H := G − v. Then χ(H) 6 ∆ : by v,H

induction, every component H ′ of H satisfies χ(H ′) 6 ∆(H ′) 6 ∆ unless
H ′ is complete or an odd cycle, in which case χ(H ′) = ∆(H ′) + 1 6 ∆
as every vertex of H ′ has maximum degree in H ′ and one such vertex is
also adjacent to v in G.

Since H can be ∆-coloured but G cannot, we have the following:

Every ∆-colouring of H uses all the colours 1, . . . ,∆ on
the neighbours of v; in particular, d(v) = ∆.

(1)

Given any ∆-colouring of H, let us denote the neighbour of v col-
oured i by vi, i = 1, . . . ,∆. For all i 6= j, let Hi,j denote the subgraph v1, . . . , v∆

of H spanned by all the vertices coloured i or j. Hi,j

Ci,j

For all i 6= j, the vertices vi and vj lie in a common com-
ponent Ci,j of Hi,j .

(2)

Otherwise we could interchange the colours i and j in one of those com-
ponents; then vi and vj would be coloured the same, contrary to (1).

Ci,j is always a vi– vj path. (3)

Indeed, let P be a vi– vj path in Ci,j . As dH(vi) 6 ∆−1, the neighbours
of vi have pairwise different colours: otherwise we could recolour vi,
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contrary to (1). Hence the neighbour of vi on P is its only neighbour
in Ci,j , and similarly for vj . Thus if Ci,j 6= P , then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most ∆ − 2 colours are used
on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).

vi

vj

P ů

Ci,j
i

j j

j

j

i

ii

v

u
i

Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if vi 6= u ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours inN(v)∪{ v } already,
so G = G [N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive theirv1, . . . , v∆

names from some fixed ∆-colouring c of H. Let u 6= v2 be the neighbourc

of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3u

in C1,3, we obtain a new colouring c′ of H; let v′i, H
′
i,j , C

′
i,j etc. be definedc′

with respect to c′ in the obvious way. As a neighbour of v1 = v′3, our
vertex u now lies in C ′2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′1,2.
Hence u ∈ C ′2,3 ∩C ′1,2, contradicting (4) for c′. ¤

As we have seen, a graph G of large chromatic number must have
large maximum degree: at least χ(G)− 1. What else can we say about
the structure of graphs with large chromatic number?

One obvious possible cause for χ(G) > k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) > k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) > k− 1, and
hence by Theorem 1.4.2 a subgraph H ′ with κ(H ′) > b 1

4 (k− 1)c.
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So are those somewhat denser subgraphs the ‘cause’ for the large
value of χ? Do they, in turn, necessarily contain a graph of high chro-
matic number—maybe even one from some small collection of canonical
such graphs, such as Kk? Interestingly, this is not so: those subgraphs of
large but ‘constant’ average degree—bounded below only by a function
of k, not of |G|—are not nearly dense enough to contain (necessarily)
any particular graph of high chromatic number, let alone Kk.1

Yet even if the above local structures do not appear to help, it
might still be the case that, somehow, a high chromatic number forces
the existence of certain canonical highly chromatic subgraphs. That this
is in fact not the case will be our main result in Chapter 11: according
to a classic result of Erdős, proved by probabilistic methods, there are
graphs of arbitrarily large chromatic number and yet arbitrarily large
girth (Theorem 11.2.2). Thus given any graph H that is not a forest, for
every k ∈ N there are graphs G with χ(G) > k but H 6⊆ G.2

Thus, contrary to our initial guess that a large chromatic number
might always be caused by some dense local substructure, it can in fact
occur as a purely global phenomenon: after all, locally (around each
vertex) a graph of large girth looks just like a tree, and is in particular
2-colourable there!

So far, we asked what a high chromatic number implies: it forces
the invariants δ, d, ∆ and κ up in some subgraph, but it does not imply
the existence of any concrete subgraph of large chromatic number. Let
us now consider the converse question: from what assumptions could we
deduce that the chromatic number of a given graph is large?

Short of a concrete subgraph known to be highly chromatic (such
as Kk), there is little or nothing in sight: no values of the invariants
studied so far imply that the graph considered has a large chromatic
number. (Recall the example of Kn,n.) So what exactly can cause high
chromaticity as a global phenomenon largely remains a mystery!

Nevertheless, there exists a simple—though not always short—
procedure to construct all the graphs of chromatic number > k. For
each k ∈ N, let us define the class of k-constructible graphs recursively k-con-

structible
as follows:

(i) Kk is k-constructible.

(ii) If G is k-constructible and x, y ∈ V (G) are non-adjacent, then also
(G+xy)/xy is k-constructible.

1 This is obvious from the examples of Kn,n, which are 2-chromatic but whose
connectivity and average degree n exceeds any constant bound. Which (non-constant)
average degree exactly will force the existence of a given subgraph will be the topic
of Chapter 7.

2 By Corollaries 5.2.3 and 1.5.4, of course, every graph of sufficiently high chro-
matic number will contain any given forest.
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(iii) If G1, G2 are k-constructible and there are vertices x, y1, y2 such
that G1 ∩G2 = {x }, xy1 ∈ E(G1) and xy2 ∈ E(G2), then also
(G1 ∪G2)−xy1−xy2 + y1y2 is k-constructible (Fig. 5.2.2).

y1 y2 y1 y2

xx

Fig. 5.2.2. The Hajós construction (iii)

One easily checks inductively that all k-constructible graphs—and hence
their supergraphs—are at least k-chromatic. Indeed, if (G+ xy)/xy as
in (ii) has a colouring with fewer than k colours, then this defines such
a colouring also for G, a contradiction. Similarly, in any colouring of
the graph constructed in (iii), the vertices y1 and y2 do not both have
the same colour as x, so this colouring induces a colouring of either G1

or G2 and hence uses at least k colours.
It is remarkable, though, that the converse holds too:

Theorem 5.2.5. (Hajós 1961)
Let G be a graph and k ∈ N. Then χ(G) > k if and only if G has a
k-constructible subgraph.

Proof . Let G be a graph with χ(G) > k; we show that G has a k-
constructible subgraph. Suppose not; then k > 3. Adding some edges
if necessary, let us make G edge-maximal with the property that none
of its subgraphs is k-constructible. Now G is not a complete r-partite
graph for any r: for then χ(G) > k would imply r > k, and G would
contain the k-constructible graph Kk.

Since G is not a complete multipartite graph, non-adjacency is not
an equivalence relation on V (G). So there are vertices y1, x, y2 such that
y1x, xy2 /∈ E(G) but y1y2 ∈ E(G). Since G is edge-maximal withouty1x, xy2

a k-constructible subgraph, each edge xyi lies in some k-constructible
subgraph Hi of G+xyi (i = 1, 2).H1, H2

Let H ′2 be an isomorphic copy of H2 that contains x and H2 −H1H′2
but is otherwise disjoint from G, together with an isomorphism v 7→ v′v′ etc.

from H2 to H ′2 that fixes H2 ∩H ′2 pointwise. Then H1 ∩H ′2 = {x }, so

H := (H1 ∪H ′2)−xy1−xy′2 + y1y
′
2

is k-constructible by (iii). One vertex at a time, let us identify in H each
vertex v′ ∈ H ′2 −G with its partner v; since vv′ is never an edge of H,
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each of these identifications amounts to a construction step of type (ii).
Eventually, we obtain the graph

(H1 ∪H2)−xy1−xy2 + y1y2 ⊆ G ;

this is the desired k-constructible subgraph of G. ¤

5.3 Colouring edges

Clearly, every graph G satisfies χ′(G) > ∆(G). For bipartite graphs, we
have equality here:

Proposition 5.3.1. (König 1916)
Every bipartite graph G satisfies χ′(G) = ∆(G).

Proof . We apply induction on ‖G‖. For ‖G‖ = 0 the assertion holds. (1.6.1)

Now assume that ‖G‖ > 1, and that the assertion holds for graphs with
fewer edges. Let ∆ := ∆(G), pick an edge xy ∈ G, and choose a ∆- ∆, xy

edge-colouring of G− xy by the induction hypothesis. Let us refer to
the edges coloured α as α-edges, etc. α-edge

In G− xy, each of x and y is incident with at most ∆− 1 edges.
Hence there are α, β ∈ { 1, . . . ,∆ } such that x is not incident with an α, β

α-edge and y is not incident with a β-edge. If α = β, we can colour the
edge xy with this colour and are done; so we may assume that α 6= β,
and that x is incident with a β-edge.

Let us extend this edge to a maximal walk W whose edges are
coloured β and α alternately. Since no such walk contains a vertex twice
(why not?), W exists and is a path. Moreover, W does not contain y:
if it did, it would end in y on an α-edge (by the choice of β) and thus
have even length, so W +xy would be an odd cycle in G (cf. Proposition
1.6.1). We now recolour all the edges on W , swapping α with β. By the
choice of α and the maximality of W , adjacent edges of G−xy are still
coloured differently. We have thus found a ∆-edge-colouring of G− xy
in which neither x nor y is incident with a β-edge. Colouring xy with β,
we extend this colouring to a ∆-edge-colouring of G. ¤

Theorem 5.3.2. (Vizing 1964)
Every graph G satisfies

∆(G) 6 χ′(G) 6 ∆(G) + 1 .

Proof . We prove the second inequality by induction on ‖G‖. For ‖G‖= 0 V,E

it is trivial. For the induction step let G = (V,E) with ∆ := ∆(G) > 0 be ∆
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given, and assume that the assertion holds for graphs with fewer edges.
Instead of ‘(∆ + 1)-edge-colouring’ let us just say ‘colouring’. An edgecolouring

coloured α will again be called an α-edge.α-edge

For every edge e ∈ G there exists a colouring of G − e, by the
induction hypothesis. In such a colouring, the edges at a given vertex
v use at most d(v) 6 ∆ colours, so some colour β ∈ { 1, . . . ,∆ + 1 } is
missing at v. For any other colour α, there is a unique maximal walkmissing

(possibly trivial) starting at v, whose edges are coloured alternately α
and β. This walk is a path; we call it the α/β - path from v.α/β - path

Suppose that G has no colouring. Then the following holds:

Given xy ∈ E, and any colouring of G− xy in which the
colour α is missing at x and the colour β is missing at y,
the α/β - path from y ends in x.

(1)

Otherwise we could interchange the colours α and β along this path and
colour xy with α, obtaining a colouring of G (contradiction).

Let xy0 ∈ G be an edge. By induction, G0 := G − xy0 has axy0

colouring c0. Let α be a colour missing at x in this colouring. Further,G0, c0, α

let y0, y1, . . . , yk be a maximal sequence of distinct neighbours of x in G,y1, . . . , yk

such that c0(xyi) is missing in c0 at yi−1 for each i = 1, . . . , k. For each
of the graphs Gi := G−xyi we define a colouring ci, settingGi

ci(e) :=
{
c0(xyj+1) for e = xyj with j ∈ { 0, . . . , i− 1 }
c0(e) otherwise;ci

note that in each of these colourings the same colours are missing at x
as in c0.

Now let β be a colour missing at yk in c0. Clearly, β is still missingβ

at yk in ck. If β were also missing at x, we could colour xyk with β
and thus extend ck to a colouring of G. Hence, x is incident with a
β-edge (in every colouring). By the maximality of k, therefore, there is
an i ∈ { 1, . . . , k− 1 } such that

i c0(xyi) = β .

Let P be the α/β - path from yk inGk (with respect to ck; Fig. 5.3.1).P

By (1), P ends in x, and it does so on a β-edge, since α is missing at x.
As β = c0(xyi) = ck(xyi−1), this is the edge xyi−1. In c0, however, and
hence also in ci−1, β is missing at yi−1 (by (2) and the choice of yi); let
P ′ be the α/β - path from yi−1 in Gi−1 (with respect to ci−1). Since P ′P ′

is uniquely determined, it starts with yi−1Pyk; note that the edges of
Px̊ are coloured the same in ci−1 as in ck. But in c0, and hence in ci−1,
there is no β-edge at yk (by the choice of β). Therefore P ′ ends in yk,
contradicting (1). ¤
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α α

α

α

Gk

yi+1

yi

yi−1

yk

x

β

β

β

β

P

y0

Fig. 5.3.1. The α/β - path P in Gk

Vizing’s theorem divides the finite graphs into two classes according
to their chromatic index; graphs satisfying χ′ = ∆ are called (imagina-
tively) class 1 , those with χ′ = ∆ + 1 are class 2 .

5.4 List colouring

In this section, we take a look at a relatively recent generalization of the
concepts of colouring studied so far. This generalization may seem a little
far-fetched at first glance, but it turns out to supply a fundamental link
between the classical (vertex and edge) chromatic numbers of a graph
and its other invariants.

Suppose we are given a graph G = (V,E), and for each vertex of
G a list of colours permitted at that particular vertex: when can we
colour G (in the usual sense) so that each vertex receives a colour from
its list? More formally, let (Sv)v∈V be a family of sets. We call a vertex
colouring c of G with c(v) ∈ Sv for all v ∈ V a colouring from the
lists Sv. The graph G is called k-list-colourable, or k-choosable, if, for k-choosable

every family (Sv)v∈V with |Sv| = k for all v, there is a vertex colouring
of G from the lists Sv. The least integer k for which G is k-choosable is
the list-chromatic number , or choice number ch(G) of G.

choice
number

ch(G)List-colourings of edges are defined analogously. The least integer
k such that G has an edge colouring from any family of lists of size k
is the list-chromatic index ch′(G) of G; formally, we just set ch′(G) := ch′(G)

ch(L(G)), where L(G) is the line graph of G.
In principle, showing that a given graph is k-choosable is more diffi-

cult than proving it to be k-colourable: the latter is just the special case
of the former where all lists are equal to { 1, . . . , k }. Thus,

ch(G) > χ(G) and ch′(G) > χ′(G)

for all graphs G.
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In spite of these inequalities, many of the known upper bounds for
the chromatic number have turned out to be valid for the choice num-
ber, too. Examples for this phenomenon include Brooks’s theorem and
Proposition 5.2.2; in particular, graphs of large choice number still have
subgraphs of large minimum degree. On the other hand, it is easy to con-
struct graphs for which the two invariants are wide apart (Exercise 24).
Taken together, these two facts indicate a little how far those general
upper bounds on the chromatic number may be from the truth.

The following theorem shows that, in terms of its relationship to
other graph invariants, the choice number differs fundamentally from the
chromatic number. As mentioned before, there are 2-chromatic graphs
of arbitrarily large minimum degree, e.g. the graphs Kn,n. The choice
number, however, will be forced up by large values of invariants like δ, ε
or κ:

Theorem 5.4.1. (Alon 1993)
There exists a function f :N→N such that, given any integer k, all graphs
G with average degree d(G) > f(k) satisfy ch(G) > k.

The proof of Theorem 5.4.1 uses probabilistic methods as introduced in
Chapter 11.

Empirically, the choice number’s different character is highlighted
by another phenomenon: even in cases where known bounds for the
chromatic number could be transferred to the choice number, their proofs
have tended to be rather different.

One of the simplest and most impressive examples for this is the list
version of the five colour theorem: every planar graph is 5-choosable.
This had been conjectured for almost 20 years, before Thomassen found
a very simple induction proof. This proof does not use the five colour
theorem—which thus gets reproved in a very different way.

Theorem 5.4.2. (Thomassen 1994)
Every planar graph is 5-choosable.

Proof . We shall prove the following assertion for all plane graphs G with(4.2.6)

at least 3 vertices:

Suppose that every inner face of G is bounded by a trian-
gle and its outer face by a cycle C = v1 . . . vkv1. Suppose
further that v1 has already been coloured with the col-
our 1, and v2 has been coloured 2. Suppose finally that
with every other vertex of C a list of at least 3 colours is
associated, and with every vertex of G−C a list of at least
5 colours. Then the colouring of v1 and v2 can be extended
to a colouring of G from the given lists.

(∗)
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Let us check first that (∗) implies the assertion of the theorem.
Let any plane graph be given, together with a list of 5 colours for each
vertex. Add edges to this graph until it is a maximal plane graph G.
By Proposition 4.2.6, G is a plane triangulation; let v1v2v3v1 be the
boundary of its outer face. We now colour v1 and v2 (differently) from
their lists, and extend this colouring by (∗) to a colouring of G from the
lists given.

Let us now prove (∗), by induction on |G|. If |G| = 3, then G =
C and the assertion is trivial. Now let |G| > 4, and assume (∗) for
smaller graphs. If C has a chord vw, then vw lies on two unique cycles vw

C1, C2 ⊆ C + vw with v1v2 ∈ C1 and v1v2 /∈ C2. For i = 1, 2, let Gi
denote the subgraph of G induced by the vertices lying on Ci or in its
inner face (Fig. 5.4.1). Applying the induction hypothesis first to G1

and then—with the colours now assigned to v and w—to G2 yields the
desired colouring of G.

v2 = w

v1

v

G1

G2

1

2

Fig. 5.4.1. The induction step with a chord vw; here the case
of w = v2

If C has no chord, let v1, u1, . . . , um, vk−1 be the neighbours of vk in u1, . . . , um

their natural cyclic order order around vk;3 by definition of C, all those
neighbours ui lie in the inner face of C (Fig. 5.4.2). As the inner faces

v1

v2

C′

vk−1

vk

u1

u2
u3

P

Fig. 5.4.2. The induction step without a chord

3 as in the first proof of the five colour theorem
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of C are bounded by triangles, P := v1u1 . . . umvk−1 is a path in G, and
C ′ := P ∪ (C − vk) a cycle.C′

We now choose two different colours j, ` 6= 1 from the list of vk and
delete these colours from the lists of all the vertices ui. Then every list of
a vertex on C ′ still has at least 3 colours, so by induction we may colour
C ′ and its interior, i.e. the graph G− vk. At least one of the two colours
j, ` is not used for vk−1, and we may assign that colour to vk. ¤

As is often the case with induction proofs, the trick of the proof
above lies in the delicately balanced strengthening of the assertion
proved. Note that the proof uses neither traditional colouring arguments
(such as swapping colours along a path) nor the Euler formula implicit in
the standard proof of the five colour theorem. This suggests that maybe
in other unsolved colouring problems too it might be of advantage to
aim straight for their list version, i.e. to prove an assertion of the form
ch(G) 6 k instead of the formally weaker χ(G) 6 k. Unfortunately,
this approach fails for the four colour theorem: planar graphs are not in
general 4-choosable.

As mentioned before, the chromatic number of a graph and its choice
number may differ a lot. Surprisingly, however, no such examples are
known for edge colourings. Indeed it has been conjectured that none
exist:

List colouring conjecture. Every graph G satisfies ch′(G) = χ′(G).

We shall prove the list colouring conjecture for bipartite graphs. As
a tool we shall use orientations of graphs, defined in Chapter 1.10. If D
is a directed graph and v ∈ V (D), we denote by N+(v) the set, and byN+(v)

d+(v) the number, of vertices w such that D contains an edge directedd+(v)

from v to w.
To see how orientations come into play in the context of colouring,

let us recall the greedy algorithm from Section 5.2. In order to apply the
algorithm to a graph G, we first have to choose a vertex enumeration
v1, . . . , vn of G. The enumeration chosen defines an orientation of G:
just orient every edge vivj ‘backwards’, from vi to vj if i > j. Then, for
each vertex vi to be coloured, the algorithm considers only those edges
at vi that are directed away from vi: if d+(v) < k for all vertices v, it will
use at most k colours. Moreover, the first colour class U found by the
algorithm has the following property: it is an independent set of vertices
to which every other vertex sends an edge. The second colour class has
the same property in G−U , and so on.

The following lemma generalizes this to orientations D of G that do
not necessarily come from a vertex enumeration, but may contain some
directed cycles. Let us call an independent set U ⊆ V (D) a kernel of Dkernel
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if, for every vertex v ∈ D − U , there is an edge in D directed from v
to a vertex in U . Note that kernels of non-empty directed graphs are
themselves non-empty.

Lemma 5.4.3. Let H be a graph and (Sv)v∈V (H) a family of lists. If H
has an orientation D with d+(v) < |Sv| for every v, and such that every
induced subgraph of D has a kernel, then H can be coloured from the
lists Sv.

Proof . We apply induction on |H|. For |H| = 0 we take the empty
colouring. For the induction step, let |H| > 0. Let α be a colour occur- α

ring in one of the lists Sv, and let D be an orientation of H as stated.
The vertices v with α ∈ Sv span a non-empty subgraph D′ in D; by D′

assumption, D′ has a kernel U 6= ∅. U

Let us colour the vertices in U with α, and remove α from the lists
of all the other vertices of D′. Since each of those vertices sends an edge
to U , the modified lists S′v for v ∈ D − U again satisfy the condition
d+(v) < |S′v| in D − U . Since D − U is an orientation of H − U , we
can thus colour H −U from those lists by the induction hypothesis. As
none of these lists contains α, this extends our colouring U →{α } to
the desired list colouring of H. ¤

Theorem 5.4.4. (Galvin 1995)
Every bipartite graph G satisfies ch′(G) = χ′(G).

Proof . Let G =: (X ∪Y,E), where {X,Y } is a vertex bipartition of G. X,Y, E

Let us say that two edges of G meet in X if they share an end in X, and
correspondingly for Y . Let χ′(G) =: k, and let c be a k-edge-colouring k

of G. c

Clearly, ch′(G) > k; we prove that ch′(G) 6 k. Our plan is to use
Lemma 5.4.3 to show that the line graph H of G is k-choosable. To apply H

the lemma, it suffices to find an orientation D of H with d+(v) < k for
every vertex v, and such that every induced subgraph of D has a kernel.
To define D, consider adjacent e, e′ ∈ E, say with c(e) < c(e′). If e and D

e′ meet in X, we orient the edge ee′ ∈ H from e′ towards e; if e and e′

meet in Y , we orient it from e to e′ (Fig 5.4.3).
Let us compute d+(e) for given e ∈ E = V (D). If c(e) = i, say,

then every e′ ∈ N+(e) meeting e in X has its colour in { 1, . . . , i− 1 },
and every e′ ∈ N+(e) meeting e in Y has its colour in { i+ 1, . . . , k }.
As any two neighbours e′ of e meeting e either both in X or both in
Y are themselves adjacent and hence coloured differently, this implies
d+(e) < k as desired.

It remains to show that every induced subgraph D′ of D has a D′

kernel. We show this by induction on |D′|. For D′ = ∅, the empty set
is a kernel; so let |D′| > 1. Let E′ := V (D′) ⊆ E. For every x ∈ X E′

at which E′ has an edge, let ex ∈ E′ be the edge at x with minimum
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Fig. 5.4.3. Orienting the line graph of G

c-value, and let U denote the set of all those edges ex. Then every edgeU

e′ ∈ E′ rU meets some e ∈ U in X, and the edge ee′ ∈ D′ is directed
from e′ to e. If U is independent, it is thus a kernel of D′ and we are
home; let us assume, therefore, that U is not independent.

Let e, e′ ∈ U be adjacent, and assume that c(e) < c(e′). By definitione, e′

of U , e and e′ meet in Y , so the edge ee′ ∈ D′ is directed from e to e′.
By the induction hypothesis, D′− e has a kernel U ′. If e′ ∈ U ′, then U ′U ′

is also a kernel of D′, and we are done. If not, there exists an e′′ ∈ U ′

such that D′ has an edge directed from e′ to e′′. If e′ and e′′ met in X,
then c(e′′) < c(e′) by definition of D, contradicting e′ ∈ U . Hence e′ and
e′′ meet in Y , and c(e′) < c(e′′). Since e and e′ meet in Y , too, also e
and e′′ meet in Y , and c(e) < c(e′) < c(e′′). So the edge ee′′ is directed
from e towards e′′, so again U ′ is also a kernel of D′. ¤

By Proposition 5.3.1, we now know the exact list-chromatic index
of bipartite graphs:

Corollary 5.4.5. Every bipartite graph G satisfies ch′(G) = ∆(G).
¤

5.5 Perfect graphs
As discussed in Section 5.2, a high chromatic number may occur as a
purely global phenomenon: even when a graph has large girth, and thus
locally looks like a tree, its chromatic number may be arbitrarily high.
Since such ‘global dependence’ is obviously difficult to deal with, one may
become interested in graphs where this phenomenon does not occur, i.e.
whose chromatic number is high only when there is a local reason for it.

Before we make this precise, let us note two definitions for a graphG.
The greatest integer r such that Kr ⊆ G is the clique number ω(G) of G,ω(G)

and the greatest integer r such that Kr ⊆ G (induced) is the indepen-
dence number α(G) of G. Clearly, α(G) = ω(G) and ω(G) = α(G).α(G)
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A graph is called perfect if every induced subgraph H ⊆ G has perfect

chromatic number χ(H) = ω(H), i.e. if the trivial lower bound of ω(H)
colours always suffices to colour the vertices of H. Thus, while proving
an assertion of the form χ(G) > k may in general be difficult, even
in principle, for a given graph G, it can always be done for a perfect
graph simply by exhibiting some Kk+1 subgraph as a ‘certificate’ for
non-colourability with k colours.

At first glance, the structure of the class of perfect graphs appears
somewhat contrived: although it is closed under induced subgraphs (if
only by explicit definition), it is not closed under taking general sub-
graphs or supergraphs, let alone minors (examples?). However, per-
fection is an important notion in graph theory: the fact that several
fundamental classes of graphs are perfect (as if by fluke) may serve as a
superficial indication of this.4

What graphs, then, are perfect? Bipartite graphs are, for instance.
Less trivially, the complements of bipartite graphs are perfect, too—
a fact equivalent to König’s duality theorem 2.1.1 (Exercise 34). The
so-called comparability graphs are perfect, and so are the interval graphs
(see the exercises); both these turn up in numerous applications.

In order to study at least one such example in some detail, we
prove here that the chordal graphs are perfect: a graph is chordal (or chordal

triangulated) if each of its cycles of length at least 4 has a chord, i.e. if
it contains no induced cycles other than triangles.

To show that chordal graphs are perfect, we shall first characterize
their structure. If G is a graph with induced subgraphs G1, G2 and S,
such that G = G1 ∪G2 and S = G1 ∩G2, we say that G arises from G1

and G2 by pasting these graphs together along S. pasting

Proposition 5.5.1. A graph is chordal if and only if it can be con- [ 12.3.11 ]

structed recursively by pasting along complete subgraphs, starting from
complete graphs.

Proof . If G is obtained from two chordal graphs G1, G2 by pasting them
together along a complete subgraph, then G is clearly again chordal:
any induced cycle in G lies in either G1 or G2, and is hence a triangle
by assumption. Since complete graphs are chordal, this proves that all
graphs constructible as stated are chordal.

Conversely, let G be a chordal graph. We show by induction on |G|
that G can be constructed as described. This is trivial if G is complete.
We therefore assume that G is not complete, in particular |G| > 1, and
that all smaller chordal graphs are constructible as stated. Let a, b ∈ G a, b

4 The class of perfect graphs has duality properties with deep connections to
optimization and complexity theory, which are far from understood. Theorem 5.5.5
shows the tip of an iceberg here; for more, the reader is referred to Lovász’s survey
cited in the notes.
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be two non-adjacent vertices, and let X ⊆ V (G) r { a, b } a minimalX

set of vertices separating a from b. Let C denote the component ofC

G−X containing a, and put G1 := G [V (C) ∪X ] and G2 := G−C.G1, G2

Then G arises from G1 and G2 by pasting these graphs together along
S := G [X ].S

Since G1 and G2 are both chordal (being induced subgraphs of G)
and hence constructible by induction, it suffices to show that S is com-
plete. Suppose, then, that s, t ∈ S are non-adjacent. By the minimalitys, t

of X = V (S) as an a–b separator, both s and t have a neighbour in C.
Hence, there is an X-path from s to t in G1; we let P1 be a shortest such
path. Analogously, G2 contains a shortest X-path P2 from s to t. But
then P1∪P2 is a chordless cycle of length > 4 (Fig. 5.5.1), contradicting
our assumption that G is chordal. ¤

a

b
S

G1 G2

P1 P2

s

t

Fig. 5.5.1. If G1 and G2 are chordal, then so is G

Proposition 5.5.2. Every chordal graph is perfect.

Proof . Since complete graphs are perfect, it suffices by Proposition
5.5.1 to show that any graph G obtained from perfect graphs G1, G2 by
pasting them together along a complete subgraph S is again perfect. So
let H ⊆ G be an induced subgraph; we show that χ(H) 6 ω(H).

Let Hi := H ∩ Gi for i = 1, 2, and let T := H ∩ S. Then T is
again complete, and H arises from H1 and H2 by pasting along T . As
an induced subgraph of Gi, each Hi can be coloured with ω(Hi) colours.
Since T is complete and hence coloured injectively, two such colourings,
one of H1 and one of H2, may be combined into a colouring of H with
max {ω(H1), ω(H2) } 6 ω(H) colours—if necessary by permuting the
colours in one of the Hi. ¤

We now come to the main result in the theory of perfect graphs, the
perfect graph theorem:

Theorem 5.5.3. (Lovász 1972)
perfect
graph
theorem A graph is perfect if and only if its complement is perfect.
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We shall give two proofs of Theorem 5.5.3. The first of these is Lovász’s
original proof, which is still unsurpassed in its clarity and the amount
of ‘feel’ for the problem it conveys. Our second proof, due to Gasparian
(1996), is in fact a very short and elegant linear algebra proof of another
theorem of Lovász’s (Theorem 5.5.5), which easily implies Theorem 5.5.3.

Let us prepare our first proof of the perfect graph theorem by a
lemma. Let G be a graph and x ∈ G a vertex, and let G′ be obtained
from G by adding a vertex x′ and joining it to x and all the neighbours
of x. We say that G′ is obtained from G by expanding the vertex x to
an edge xx′ (Fig. 5.5.2). expanding

a vertex

X r {x }

x ′

G′

x

G H

Fig. 5.5.2. Expanding the vertex x in the proof of Lemma 5.5.4

Lemma 5.5.4. Any graph obtained from a perfect graph by expanding
a vertex is again perfect.

Proof . We use induction on the order of the perfect graph considered.
Expanding the vertex of K1 yields K2, which is perfect. For the induc-
tion step, let G be a non-trivial perfect graph, and let G′ be obtained
from G by expanding a vertex x ∈ G to an edge xx′. For our proof that x, x′

G′ is perfect it suffices to show χ(G′) 6 ω(G′): every proper induced
subgraph H of G′ is either isomorphic to an induced subgraph of G or
obtained from a proper induced subgraph of G by expanding x; in either
case, H is perfect by assumption and the induction hypothesis, and can
hence be coloured with ω(H) colours.

Let ω(G) =: ω ; then ω(G′) ∈ {ω, ω+ 1 }. If ω(G′) = ω+ 1, then ω

χ(G′) 6 χ(G) + 1 = ω+ 1 = ω(G′)

and we are done. So let us assume that ω(G′) = ω. Then x lies in no
Kω ⊆ G: together with x′, this would yield a Kω+1 in G′. Let us colour
G with ω colours. Since every Kω ⊆ G meets the colour class X of x but X

not x itself, the graph H := G− (Xr{x }) has clique number ω(H) < ω H

(Fig. 5.5.2). Since G is perfect, we may thus colour H with ω−1 colours.
Now X is independent, so the set (Xr{x })∪{x′ } = V (G′−H) is also
independent. We can therefore extend our (ω− 1)-colouring of H to an
ω-colouring of G′, showing that χ(G′) 6 ω = ω(G′) as desired. ¤
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Proof of Theorem 5.5.3. Applying induction on |G|, we show that
the complement G of any perfect graph G = (V,E) is again perfect. ForG = (V,E)

|G| = 1 this is trivial, so let |G| > 2 for the induction step. Let K denoteK
the set of all vertex sets of complete subgraphs of G. Put α(G) =: α,α

and let A be the set of all independent vertex sets A in G with |A| = α.A
Every proper induced subgraph of G is the complement of a proper

induced subgraph of G, and is hence perfect by induction. For the per-
fection of G it thus suffices to prove χ(G) 6 ω(G) (= α). To this end,
we shall find a set K ∈ K such that K ∩A 6= ∅ for all A ∈ A; then

ω(G−K) = α(G−K) < α = ω(G) ,

so by the induction hypothesis

χ(G) 6 χ(G−K) + 1 = ω(G−K) + 1 6 ω(G)

as desired.
Suppose there is no such K; thus, for every K ∈ K there exists a

set AK ∈ A with K ∩AK = ∅. Let us replace in G every vertex x by aAK

complete graph Gx of orderGx

k(x) :=
∣∣{K ∈ K | x ∈ AK }

∣∣ ,k(x)

joining all the vertices ofGx to all the vertices ofGy whenever x and y are
adjacent in G. The graph G′ thus obtained has vertex set

⋃
x∈V V (Gx),G′

and two vertices v ∈ Gx and w ∈ Gy are adjacent in G′ if and only if
x = y or xy ∈ E. Moreover, G′ can be obtained by repeated vertex
expansion from the graph G [ {x ∈ V | k(x) > 0 } ]. Being an induced
subgraph of G, this latter graph is perfect by assumption, so G′ is perfect
by Lemma 5.5.4. In particular,

χ(G′) 6 ω(G′) . (1)

In order to obtain a contradiction to (1), we now compute in turn the
actual values of ω(G′) and χ(G′). By construction of G′, every maximal
complete subgraph of G′ has the form G′ [

⋃
x∈X Gx ] for some X ∈ K.

So there exists a set X ∈ K such thatX

ω(G′) =
∑
x∈X

k(x)

=
∣∣{ (x,K) : x ∈ X, K ∈ K, x ∈ AK }

∣∣
=
∑
K∈K

|X ∩AK |

6 |K|− 1 ; (2)
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the last inequality follows from the fact that |X ∩ AK | 6 1 for all K
(since AK is independent but G [X ] is complete), and |X ∩AX | = 0 (by
the choice of AX). On the other hand,

|G′| =
∑
x∈V

k(x)

=
∣∣{ (x,K) : x ∈ V, K ∈ K, x ∈ AK }

∣∣
=
∑
K∈K

|AK |

= |K| ·α .

As α(G′) 6 α by construction of G′, this implies

χ(G′) > |G′|
α(G′)

> |G
′|
α

= |K| . (3)

Putting (2) and (3) together we obtain

χ(G′) > |K| > |K|− 1 > ω(G′) ,

a contradiction to (1). ¤

Since the following characterization of perfection is symmetrical in
G and G, it clearly implies Theorem 5.5.3. As our proof of Theorem
5.5.5 will again be from first principles, we thus obtain a second and
independent proof of the perfect graph theorem.

Theorem 5.5.5. (Lovász 1972)
A graph G is perfect if and only if

|H| 6 α(H) ·ω(H) (∗)

for all induced subgraphs H ⊆ G.

Proof . Let us write V (G) =: V =: { v1, . . . , vn }, and put α := α(G) V, vi, n

and ω := ω(G). The necessity of (∗) is immediate: if G is perfect, then α, ω

every induced subgraph H of G can be partitioned into at most ω(H)
colour classes each containing at most α(H) vertices, and (∗) follows.

To prove sufficiency, we apply induction on n = |G|. Assume that
every induced subgraph H of G satisfies (∗), and suppose that G is not
perfect. By the induction hypothesis, every proper induced subgraph of
G is perfect. Hence, every non-empty independent set U ⊆ V satisfies

χ(G−U) = ω(G−U) = ω . (1)
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Indeed, while the first equality is immediate from the perfection ofG−U ,
the second is easy: ‘6’ is obvious, while χ(G − U) < ω would imply
χ(G) 6 ω, so G would be perfect contrary to our assumption.

Let us apply (1) to a singleton U = {u } and consider an ω-colouring
of G−u. Let K be the vertex set of any Kω in G. Clearly,

if u /∈ K then K meets every colour class of G−u; (2)

if u ∈ K then K meets all but exactly one colour class of G−u. (3)

Let A0 = {u1, . . . , uα } be an independent set in G of size α.A0

Let A1, . . . , Aω be the colour classes of an ω-colouring of G − u1, let
Aω+1, . . . , A2ω be the colour classes of an ω-colouring of G − u2, and
so on; altogether, this gives us αω+ 1 independent sets A0, A1, . . . , AαωAi

in G. For each i = 0, . . . , αω, there exists by (1) a Kω ⊆ G−Ai; we
denote its vertex set by Ki.Ki

Note that if K is the vertex set of any Kω in G, then

K ∩Ai = ∅ for exactly one i ∈ { 0, . . . , αω+ 1 }. (4)

Indeed, if K ∩A0 = ∅ then K ∩Ai 6= ∅ for all i 6= 0, by definition of Ai
and (2). Similarly if K ∩A0 6= ∅, then |K ∩A0| = 1, so K ∩Ai = ∅ for
exactly one i 6= 0: apply (3) to the unique vertex u ∈ K ∩A0, and (2)
to all the other vertices u ∈ A0.

Let J be the real (αω + 1)× (αω + 1) matrix with zero entries inJ

the main diagonal and all other entries 1. Let A be the real (αω+ 1)×nA

matrix whose rows are the incidence vectors of the subsets Ai ⊆ V : if
ai1, . . . , ain denote the entries of the ith row of A, then aij = 1 if vj ∈ Ai,
and aij = 0 otherwise. Similarly, let B denote the real n × (αω + 1)B

matrix whose columns are the incidence vectors of the subsets Ki ⊆ V .
Now while |Ki∩Ai| = 0 for all i by the choice of Ki, we have Ki∩Aj 6= ∅
and hence |Ki ∩Aj | = 1 whenever i 6= j, by (4). Thus,

AB = J.

Since J is non-singular, this implies that A has rank αω+ 1. In particu-
lar, n > αω+ 1, which contradicts (∗) for H := G. ¤

By definition, every induced subgraph of a perfect graph is again
perfect. The property of perfection can therefore be characterized by
forbidden induced subgraphs: there exists a set H of imperfect graphs
such that any graph is perfect if and only if it has no induced subgraph
isomorphic to an element of H. (For example, we may choose as H the
set of all imperfect graphs with vertices in N.)

Naturally, it would be desirable to keep H as small as possible. In
fact, one of the best known conjectures in graph theory says that H
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need only contain two types of graph: the odd cycles of length > 5 and
their complements. (Neither of these are perfect—why?) Or, rephrased
slightly:

Perfect Graph Conjecture. (Berge 1966)
A graph G is perfect if and only if neither G nor G contains an odd cycle
of length at least 5 as an induced subgraph.

Clearly, this conjecture implies the perfect graph theorem. In fact, that
theorem had also been conjectured by Berge: until its proof, it was
known as the ‘weak’ version of the perfect graph conjecture, the above
conjecture being the ‘strong’ version.

Graphs G such that neither G nor G contains an induced odd cycle
of length at least 5 have been called Berge graphs. Thus all perfect graphs
are Berge graphs, and the perfect graph conjecture claims that all Berge
graphs are perfect. This has been approximately verified by Prömel &
Steger (1992), who proved that the proportion of perfect graphs to Berge
graphs on n vertices tends to 1 as n→∞.

Exercises

1.− Show that the four colour theorem does indeed solve the map colouring
problem stated in the first sentence of the chapter. Conversely, does
the 4-colourability of every map imply the four colour theorem?

2.− Show that, for the map colouring problem above, it suffices to consid-
er maps such that no point lies on the boundary of more than three
countries. How does this affect the proof of the four colour theorem?

3. Try to turn the proof of the five colour theorem into one of the four
colour theorem, as follows. Defining v and H as before, assume induc-
tively that H has a 4-colouring; then proceed as before. Where does
the proof fail?

4. Calculate the chromatic number of a graph in terms of the chromatic
numbers of its blocks.

5.− Show that every graph G has a vertex ordering for which the greedy
algorithm uses only χ(G) colours.

6. For every n > 1, find a bipartite graph on 2n vertices, ordered in such
a way that the greedy algorithm uses n rather than 2 colours.

7. Consider the following approach to vertex colouring. First, find a max-
imal independent set of vertices and colour these with colour 1; then
find a maximal independent set of vertices in the remaining graph and
colour those 2, and so on. Compare this algorithm with the greedy
algorithm: which is better?
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8. Show that the bound of Proposition 5.2.2 is always at least as sharp as
that of Proposition 5.2.1.

9. Find a function f such that every graph of arboricity at least f(k) has
colouring number at least k, and a function g such that every graph of
colouring number at least g(k) has arboricity at least k, for all k ∈ N.
(The arboricity of a graph is defined in Chapter 3.5.)

10.− A k-chromatic graph is called critically k-chromatic, or just critical ,
if χ(G − v) < k for every v ∈ V (G). Show that every k-chromatic
graph has a critical k-chromatic induced subgraph, and that any such
subgraph has minimum degree at least k− 1.

11. Determine the critical 3-chromatic graphs.

12.+ Show that every critical k-chromatic graph is (k− 1) - edge-connected.

13. Given k ∈ N, find a constant ck > 0 such that every graph G with
|G| > 3k and α(G) 6 k contains a cycle of length at least ck |G|.

14.− Find a graph G for which Brooks’s theorem yields a significantly weaker
bound on χ(G) than Proposition 5.2.2.

15.+ Show that, in order to prove Brooks’s theorem for a graph G = (V,E),
we may assume that κ(G) > 2 and ∆(G) > 3. Prove the theorem under
these assumptions, showing first the following two lemmas.

(i) Let v1, . . . , vn be an enumeration of V . If every vi (i < n) has
a neighbour vj with j > i, and if v1vn, v2vn ∈ E but v1v2 /∈ E,
then the greedy algorithm uses at most ∆(G) colours.

(ii) If G is not complete and vn has maximum degree in G, then vn
has neighbours v1, v2 as in (i).

16. Given a graph G and k ∈ N, let PG(k) denote the number of vertex
colourings V (G)→{ 1, . . . , k }. Show that PG is a polynomial in k of
degree n := |G|, in which the coefficient of kn is 1 and the coefficient
of kn−1 is −‖G‖. (PG is called the chromatic polynomial of G.)

(Hint. Apply induction on ‖G‖. In the induction step, compare the
values of PG(k), PG−e(k) and PG/e(k).)

17.+ Determine the class of all graphs G for which PG(k) = k (k−1)n−1. (As
in the previous exercise, let n := |G|, and let PG denote the chromatic
polynomial of G.)

18. In the definition of k-constructible graphs, replace the axiom (ii) by

(ii)′ Every supergraph of a k-constructible graph is k-constructible;

and the axiom (iii) by

(iii)′ If G is a graph with vertices x, y1, y2 such that y1y2 ∈ E(G)
but xy1, xy2 /∈ E(G), and if both G+ xy1 and G+ xy2 are k-
constructible, then G is k-constructible.

Show that a graph is k-constructible with respect to this new definition
if and only if its chromatic number is at least k.
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19.− An n×n - matrix with entries from { 1, . . . , n } is called a Latin square
if every element of { 1, . . . , n } appears exactly once in each column and
exactly once in each row. Recast the problem of constructing Latin
squares as a colouring problem.

20. Without using Proposition 5.3.1, show that χ′(G) = k for every k-
regular bipartite graph G.

21. Prove Proposition 5.3.1 from the statement of the previous exercise.

22.+ For every k ∈ N, construct a triangle-free k-chromatic graph.

23.− Without using Theorem 5.4.2, show that every plane graph is 6-list-
colourable.

24. For every integer k, find a 2-chromatic graph whose choice number is
at least k.

25.− Find a general upper bound for ch′(G) in terms of χ′(G).

26. Compare the choice number of a graph with its colouring number:
which is greater? Can you prove the analogue of Theorem 5.4.1 for
the colouring number?

27.+ Prove that the choice number of Kr
2 is r.

28. The total chromatic number χ′′(G) of a graph G = (V,E) is the least
number of colours needed to colour the vertices and edges of G simulta-
neously so that any adjacent or incident elements of V ∪E are coloured
differently. The total colouring conjecture says that χ′′(G) 6 ∆(G) + 2.
Bound the total chromatic number from above in terms of the list-
chromatic index, and use this bound to deduce a weakening of the
total colouring conjecture from the list colouring conjecture.

29.− Find a directed graph that has no kernel.

30.+ Prove Richardson’s theorem: every directed graph without odd directed
cycles has a kernel.

31. Show that every bipartite planar graph is 3-list-colourable.

(Hint. Apply the previous exercise and Lemma 5.4.3.)

32.− Show that perfection is closed neither under edge deletion nor under
edge contraction.

33.− Deduce Theorem 5.5.5 from the perfect graph conjecture.

34. Use König’s Theorem 2.1.1 to show that the complement of any bipar-
tite graph is perfect.

35. Using the results of this chapter, find a one-line proof of the following
theorem of König, the dual of Theorem 2.1.1: in any bipartite graph
without isolated vertices, the minimum number of edges meeting all
vertices equals the maximum number of independent vertices.

36. A graph is called a comparability graph if there exists a partial ordering
of its vertex set such that two vertices are adjacent if and only if they
are comparable. Show that every comparability graph is perfect.
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37. A graphG is called an interval graph if there exists a set { Iv | v ∈ V (G) }
of real intervals such that Iu ∩ Iv 6= ∅ if and only if uv ∈ E(G).

(i) Show that every interval graph is chordal.

(ii) Show that the complement of any interval graph is a compara-
bility graph.

(Conversely, a chordal graph is an interval graph if its complement is a
comparability graph; this is a theorem of Gilmore and Hoffman (1964).)

38. Show that χ(H) ∈ {ω(H) , ω(H) + 1 } for every line graph H.

39.+ Characterize the graphs whose line graphs are perfect.

40. Show that a graph G is perfect if and only if every non-empty induced
subgraph H of G contains an independent set A ⊆ V (H) such that
ω(H −A) < ω(H).

41.+ Consider the graphs G for which every induced subgraph H has the
property that every maximal complete subgraph of H meets every max-
imal independent vertex set in H.

(i) Show that these graphs G are perfect.

(ii) Show that these graphsG are precisely the graphs not containing
an induced copy of P 3.

42.+ Show that in every perfect graph G one can find a set A of independent
vertex sets and a set O of vertex sets of complete subgraphs such that⋃
A = V (G) =

⋃
O and every set in A meets every set in O.

(Hint. Lemma 5.5.4.)

43.+ Let G be a perfect graph. As in the proof of Theorem 5.5.3, replace
every vertex x of G with a perfect graph Gx (not necessarily complete).
Show that the resulting graph G′ is again perfect.

44. Let H1 and H2 be two sets of imperfect graphs, each minimal with
the property that a graph is perfect if and only if it has no induced
subgraph in Hi (i = 1, 2). Do H1 and H2 contain the same graphs, up
to isomorphism?

Notes
The authoritative reference work on all questions of graph colouring is T.R.
Jensen & B. Toft, Graph Coloring Problems, Wiley 1995. Starting with a brief
survey of the most important results and areas of research in the field, this
monograph gives a detailed account of over 200 open colouring problems, com-
plete with extensive background surveys and references. Most of the remarks
below are discussed comprehensively in this book, and all the references for
this chapter can be found there.

The four colour problem, whether every map can be coloured with four
colours so that adjacent countries are shown in different colours, was raised by
a certain Francis Guthrie in 1852. He put the question to his brother Frederick,
who was then a mathematics undergraduate in Cambridge. The problem was
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first brought to the attention of a wider public when Cayley presented it to
the London Mathematical Society in 1878. A year later, Kempe published
an incorrect proof, which was in 1890 modified by Heawood into a proof of
the five colour theorem. In 1880, Tait announced ‘further proofs’ of the four
colour conjecture, which never materialized; see the notes for Chapter 10.

The first generally accepted proof of the four colour theorem was pub-
lished by Appel and Haken in 1977. The proof builds on ideas that can be
traced back as far as Kempe’s paper, and were developed largely by Birkhoff
and Heesch. Very roughly, the proof sets out first to show that every plane
triangulation must contain at least one of 1482 certain ‘unavoidable config-
urations’. In a second step, a computer is used to show that each of those
configurations is ‘reducible’, i.e., that any plane triangulation containing such
a configuration can be 4-coloured by piecing together 4-colourings of smaller
plane triangulations. Taken together, these two steps amount to an inductive
proof that all plane triangulations, and hence all planar graphs, can be 4-
coloured.

Appel & Haken’s proof has not been immune to criticism, not only be-
cause of their use of a computer. The authors responded with a 741 page
long algorithmic version of their proof, which addresses the various criticisms
and corrects a number of errors (e.g. by adding more configurations to the
‘unavoidable’ list): K. Appel & W. Haken, Every Planar Map is Four Col-
orable, American Mathematical Society 1989. A much shorter proof, which
is based on the same ideas (and, in particular, uses a computer in the same
way) but can be more readily verified both in its verbal and its computer part,
has been given by N. Robertson, D. Sanders, P.D. Seymour & R. Thomas, The
four-colour theorem, J. Combin. Theory B 70 (1997), 2–44.

A relatively short proof of Grötzsch’s theorem was found by C. Thomassen,
Grötzsch’s 3-color theorem and its counterparts for the torus and the projective
plane, J. Combin. Theory B 62 (1994), 268–279. Although not touched upon
in this chapter, colouring problems for graphs embedded in surfaces other
than the plane form a substantial and interesting part of colouring theory;
see B. Mohar & C. Thomassen, Graphs on Surfaces, Johns Hopkins University
Press, to appear.

The proof of Brooks’s theorem indicated in Exercise 15, where the greedy
algorithm is applied to a carefully chosen vertex ordering, is due to Lovász
(1973). Lovász (1968) was also the first to construct graphs of arbitrarily
large girth and chromatic number, graphs whose existence Erdős had proved
by probabilistic methods ten years earlier.

A. Urquhart, The graph constructions of Hajós and Ore, J. Graph Theory
26 (1997), 211–215, showed that not only do the graphs of chromatic number
at least k each contain a k-constructible graph (as by Hajós’s theorem); they
are in fact all themselves k-constructible. Algebraic tools for showing that
the chromatic number of a graph is large have been developed by Kleitman &
Lovász (1982), and by Alon & Tarsi (1992); see Alon’s paper cited below.

List colourings were first introduced in 1976 by Vizing. Among other
things, Vizing proved the list-colouring equivalent of Brooks’s theorem. Voigt
(1993) constructed a plane graph of order 238 that is not 4-choosable; thus,
Thomassen’s list version of the five colour theorem is best possible. A stim-
ulating survey on the list-chromatic number and how it relates to the more
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classical graph invariants (including a proof of Theorem 5.4.1) is given by
N. Alon, Restricted colorings of graphs, in (K. Walker, ed.) Surveys in Combi-
natorics, LMS Lecture Notes 187, Cambridge University Press 1993. Both the
list colouring conjecture and Galvin’s proof of the bipartite case are originally
stated for multigraphs. Kahn (1994) proved that the conjecture is asymptot-
ically correct, as follows: given any ε > 0, every graph G with large enough
maximum degree satisfies ch′(G) 6 (1 + ε)∆(G).

The total colouring conjecture was proposed around 1965 by Vizing and
by Behzad; see Jensen & Toft for details.

A gentle introduction to the basic facts about perfect graphs and their ap-
plications is given by M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press 1980. Our first proof of the perfect graph theorem
follows L. Lovász’s survey on perfect graphs in (L.W. Beineke and R.J. Wilson,
eds.) Selected Topics in Graph Theory 2, Academic Press 1983. The theorem
was also proved independently, and only a little later, by Fulkerson. Our
second proof, the proof of Theorem 5.5.5, is due to G.S. Gasparian, Minimal
imperfect graphs: a simple approach, Combinatorica 16 (1996), 209–212. The
approximate proof of the perfect graph conjecture is due to H.J. Prömel &
A. Steger, Almost all Berge graphs are perfect, Combinatorics, Probability
and Computing 1 (1992), 53–79.



6 Flows

Let us view a graph as a network: its edges carry some kind of flow—of
water, electricity, data or similar. How could we model this precisely?

For a start, we ought to know how much flow passes through each
edge e = xy, and in which direction. In our model, we could assign
a positive integer k to the pair (x, y) to express that a flow of k units
passes through e from x to y, or assign −k to (x, y) to express that k
units of flow pass through e the other way, from y to x. For such an
assignment f :V 2→Z we would thus have f(x, y) = −f(y, x) whenever
x and y are adjacent vertices of G.

Typically, a network will have only a few nodes where flow enters
or leaves the network; at all other nodes, the total amount of flow into
that node will equal the total amount of flow out of it. For our model
this means that, at most nodes x, the function f will satisfy Kirchhoff’s
law

Kirchhoff’s
law

∑
y∈N(x)

f(x, y) = 0 .

In this chapter, we call any map f :V 2 → Z with the above two
properties a ‘flow’ on G. Sometimes, we shall replace Z with another
group, and as a rule we consider multigraphs rather than graphs.1 As
it turns out, the theory of those ‘flows’ is not only useful as a model for
real flows: it blends so well with other parts of graph theory that some
deep and surprising connections become visible, connections particularly
with connectivity and colouring problems.

1 For consistency, we shall phrase some of our proposition for graphs only: those
whose proofs rely on assertions proved (for graphs) earlier in the book. However, all
those results remain true for multigraphs.
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6.1 Circulations

In the context of flows, we have to be able to speak about the ‘directions’
of an edge. Since, in a multigraph G = (V,E), an edge e = xy is notG = (V,E)

identified uniquely by the pair (x, y) or (y, x), we define directed edges as
triples:

→
E := { (e, x, y) | e ∈ E; x, y ∈ V ; e = xy } .→

E

Thus, an edge e = xy with x 6= y has the two directions (e, x, y) anddirection
(e, x, y)

(e, y, x); a loop e = xx has only one direction, the triple (e, x, x). For
given →e = (e, x, y) ∈

→
E, we set ←e := (e, y, x), and for an arbitrary set←e

→
F ⊆

→
E of edge directions we put

←
F := { ←e | →e ∈

→
F } .←

F

Note that
→
E itself is symmetrical:

←
E =

→
E. For X,Y ⊆ V and

→
F ⊆

→
E,

define

→
F (X,Y ) := { (e, x, y) ∈

→
F | x ∈ X; y ∈ Y ; x 6= y } ,→

F (X,Y )

abbreviate
→
F ({x }, Y ) to

→
F (x, Y ) etc., and write→

F (x, Y )

→
F (x) :=

→
F (x, V ) =

→
F ({x }, {x }) .→

F (x)

Here, as below, X denotes the complement V rX of a vertex set X ⊆ V.X

Note that any loops at vertices x ∈ X ∩Y are disregarded in the defini-
tions of

→
F (X,Y ) and

→
F (x).

Let H be an abelian semigroup,2 written additively with zero 0.0

Given vertex sets X,Y ⊆ V and a function f :
→
E→H, letf

f(X,Y ) f(X,Y ) :=
∑

~e ∈ ~E (X,Y )

f(→e) .

Instead of f({x }, Y ) we again write f(x, Y ), etc.f(x, Y )

From now on, we assume that H is a group. We call f a circulationcirculation

on G (with values in H), or an H-circulation, if f satisfies the following
two conditions:

(F1) f(e, x, y) = −f(e, y, x) for all (e, x, y) ∈
→
E with x 6= y;

(F2) f(v, V ) = 0 for all v ∈ V .

2 This chapter contains no group theory. The only semigroups we ever consider
for H are the natural numbers, the integers, the reals, the cyclic groups Zk, and
(once) the Klein four-group.
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If f satisfies (F1), then

f(X,X) = 0

for all X ⊆ V . If f satisfies (F2), then

f(X,V ) =
∑
x∈X

f(x, V ) = 0 .

Together, these two basic observations imply that, in a circulation, the
net flow across any cut is zero:

Proposition 6.1.1. If f is a circulation, then f(X,X) = 0 for every
[ 6.3.1 ]
[ 6.5.2 ]
[ 6.6.1 ]set X ⊆ V .

Proof . f(X,X) = f(X,V )− f(X,X) = 0− 0 = 0. ¤

Since bridges form cuts by themselves, Proposition 6.1.1 implies
that circulations are always zero on bridges:

Corollary 6.1.2. If f is a circulation and e = xy is a bridge in G, then
f(e, x, y) = 0. ¤

6.2 Flows in networks

In this section we give a brief introduction to the kind of network flow
theory that is now a standard proof technique in areas such as matching
and connectivity. By way of example, we shall prove a classic result of
this theory, the so-called max-flow min-cut theorem of Ford and Fulk-
erson. This theorem alone implies Menger’s theorem without much dif-
ficulty (Exercise 3), which indicates some of the natural power lying in
this approach.

Consider the task of modelling a network with one source s and
one sink t, in which the amount of flow through a given link between
two nodes is subject to a certain capacity of that link. Our aim is to
determine the maximum net amount of flow through the network from
s to t. Somehow, this will depend both on the structure of the network
and on the various capacities of its connections—how exactly, is what
we wish to find out.

Let G = (V,E) be a multigraph, s, t ∈ V two fixed vertices, and G = (V,E)

c:
→
E → N a map; we call c a capacity function on G, and the tuple s, t, c,N

N := (G, s, t, c) a network . Note that c is defined independently for network

the two directions of an edge. A function f :
→
E→R is a flow in N if it flow

satisfies the following three conditions (Fig. 6.2.1):
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(F1) f(e, x, y) = −f(e, y, x) for all (e, x, y) ∈
→
E with x 6= y;

(F2′) f(v, V ) = 0 for all v ∈ V r { s, t };
(F3) f(→e) 6 c(→e) for all →e ∈

→
E.

We call f integral if all its values are integers.integral

0

1

1

2

2

1

1

3

s

t
3

Fig. 6.2.1. A network flow in short notation: all values refer to
the direction indicated (capacities are not shown)

Let f be a flow in N . If S ⊆ V is such that s ∈ S and t ∈ S, we callf

the pair (S, S) a cut in N , and c(S, S) the capacity of this cut.cut in N

Since f now has to satisfy only (F2′) rather than (F2), we no longercapacity

have f(X,X) = 0 for all X ⊆ V (as in Proposition 6.1.1). However, the
value is the same for all cuts:

Proposition 6.2.1. Every cut (S, S) in N satisfies f(S, S) = f(s, V ).

Proof . As in the proof of Proposition 6.1.1, we have

f(S, S) = f(S, V )− f(S, S)

=
(F1)

f(s, V ) +
∑

v∈Sr{ s }
f(v, V ) − 0

=
(F2′)

f(s, V ) .

¤

The common value of f(S, S) in Proposition 6.2.1 will be called the total
value of f and denoted by |f |;3 the flow shown in Figure 6.2.1 has totaltotal value

|f |
value 3.

By (F3), we have

|f | = f(S, S) 6 c(S, S)

for every cut (S, S) in N . Hence the total value of a flow in N is never
larger than the smallest capacity of a cut. The following max-flow min-
cut theorem states that this upper bound is always attained by some
flow:

3 Thus, formally, |f | may be negative. In practice, however, we can change the
sign of |f | simply by swapping the roles of s and t.
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Theorem 6.2.2. (Ford & Fulkerson 1956)
In every network, the maximum total value of a flow equals the minimum

max-flow
min-cut
theoremcapacity of a cut.

Proof . LetN = (G, s, t, c) be a network, andG=: (V,E). We shall define
a sequence f0, f1, f2, . . . of integral flows in N of strictly increasing total
value, i.e. with

|f0| < |f1| < |f2| < . . .

Clearly, the total value of an integral flow is again an integer, so in fact
|fn+1| > |fn|+ 1 for all n. Since all these numbers are bounded above
by the capacity of any cut in N , our sequence will terminate with some
flow fn. Corresponding to this flow, we shall find a cut of capacity
cn = |fn|. Since no flow can have a total value greater than cn, and no
cut can have a capacity less than |fn|, this number is simultaneously the
maximum and the minimum referred to in the theorem.

For f0, we set f0(→e) := 0 for all →e ∈
→
E. Having defined an integral

flow fn in N for some n ∈ N, we denote by Sn the set of all vertices v Sn

such that G contains an s–v walk x0e0 . . . e`−1x` with

fn(→ei) < c(→ei)

for all i < `; here, →ei := (ei, xi, xi+1) (and, of course, x0 = s and x` = v).
If t ∈ Sn, let W = x0e0 . . . e`−1x` be the corresponding s–t walk; W

without loss of generality we may assume that W does not repeat any
vertices. Let

ε := min { c(→ei)− fn(→ei) | i < ` } . ε

Then ε > 0, and since fn (like c) is integral by assumption, ε is an integer.
Let

fn+1: →e 7→


fn(→e) + ε for →e = →ei, i = 0, . . . , `− 1;
fn(→e)− ε for →e = ←ei, i = 0, . . . , `− 1;
fn(→e) for e /∈ W .

Intuitively, fn+1 is obtained from fn by sending additional flow of value ε
along W from s to t (Fig. 6.2.2).

0

1

1

2

2

1

1

3

s

t
3

W

Fig. 6.2.2. An ‘augmenting path’ W with increment ε = 2, for
constant flow fn = 0 and capacities c = 3
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Clearly, fn+1 is again an integral flow in N . Let us compute its total
value |fn+1| = fn+1(s, V ). Since W contains the vertex s only once, →e0

is the only triple (e, x, y) with x = s and y ∈ V whose f -value was
changed. This value, and hence that of fn+1(s, V ) was raised. Therefore
|fn+1| > |fn| as desired.

If t /∈ Sn, then (Sn, Sn) is a cut in N . By (F3) for fn, and the
definition of Sn, we have

fn(→e) = c(→e)

for all →e ∈
→
E(Sn, Sn), so

|fn| = fn(Sn, Sn) = c(Sn, Sn)

as desired. ¤

Since the flow constructed in the proof of Theorem 6.2.2 is integral,
we have also proved the following:

Corollary 6.2.3. In every network (with integral capacity function)
there exists an integral flow of maximum total value. ¤

6.3 Group-valued flows

Let G = (V,E) be a multigraph and H an abelian group. If f and
g are two H-circulations then, clearly, (f + g): →e 7→ f(→e) + g(→e) andf + g

−f : →e 7→ −f(→e) are again H-circulations. The H-circulations on G thus−f
form a group in a natural way.

A function f :
→
E→H is nowhere zero if f(→e) 6= 0 for all →e ∈

→
E. Annowhere

zero
H-circulation that is nowhere zero is called an H-flow .4 Note that the
set of H-flows on G is not closed under addition: if two H-flows addH-flow

up to zero on some edge →e, then their sum is no longer an H-flow. By
Corollary 6.1.2, a graph with an H-flow cannot have a bridge.

For finite groupsH, the number ofH-flows onG—and, in particular,
their existence—surprisingly depends only on the order of H, not on H
itself:

Theorem 6.3.1. (Tutte 1954)
For every multigraph G there exists a polynomial P such that, for any
finite abelian group H, the number of H-flows on G is P

(
|H| − 1

)
.

4 This terminology seems simplest for our purposes but is not standard; see the
notes.
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Proof . Let G =: (V,E); we use induction on m := |E|. Let us assume (6.1.1)

first that all the edges of G are loops. Then, given any finite abelian
group H, every map

→
E→H r { 0 } is an H-flow on G. Since |

→
E| = |E|

when all edges are loops, there are
(
|H| − 1

)m such maps, and P := xm

is the polynomial sought.
Now assume there is an edge e0 = xy ∈ E that is not a loop; let e0 = xy

→e0 := (e0, x, y) and E′ := Er { e0 }. We consider the multigraphs E′

G1 := G− e0 and G2 := G/e0 .

By the induction hypothesis, there are polynomials Pi for i = 1, 2 such P1, P2

that, for any finite abelian group H and k := |H| − 1, the number of k

H-flows on Gi is Pi(k). We shall prove that the number of H-flows on
G equals P2(k)−P1(k); then P := P2−P1 is the desired polynomial.

Let H be given, and denote the set of all H-flows on G by F . We H

are trying to show that F

|F | = P2(k)−P1(k) . (1)

The H-flows on G1 are precisely the restrictions to
→
E′ of those H-circu-

lations on G that are zero on e0 but nowhere else. Let us denote the set
of these circulations on G by F1; then F1

P1(k) = |F1| .

Our aim is to show that, likewise, the H-flows on G2 correspond bijec-
tively to those H-circulations on G that are nowhere zero except possibly
on e0. The set F2 of those circulations on G then satisfies F2

P2(k) = |F2| ,

and F2 is the disjoint union of F1 and F . This will prove (1), and hence
the theorem.

e0
v0

E′(x, y)

G2

x y

G

Fig. 6.3.1. Contracting the edge e0

In G2, let v0 := ve0 be the vertex contracted from e0 (Fig. 6.3.1; v0

see Chapter 1.10). We are looking for a bijection f 7→ g between F2
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and the set of H-flows on G2. Given f , let g be the restriction of f to
→
E′r

→
E′(y, x). (As the x–y edges e ∈ E′ become loops in G2, they have on-

ly the one direction (e, v0, v0) there; as its g-value, we choose f(e, x, y).)
Then g is indeed an H-flow on G2; note that (F2) holds at v0 by Propo-
sition 6.1.1 for G, with X := {x, y }.

It remains to show that the map f 7→ g is a bijection. If we are given
an H-flow g on G2 and try to find an f ∈ F2 with f 7→ g, then f(→e) is
already determined as f(→e) = g(→e) for all →e ∈

→
E′r

→
E′(y, x); by (F1), we

further have f(→e) = −f(←e) for all →e ∈
→
E′(y, x). Thus our map f 7→ g is

bijective if and only if for given g there is always a unique way to define
the remaining values of f(→e0) and f(←e0) so that f satisfies (F1) in e0 and
(F2) in x and y.

This is indeed the case. Let V ′ := V r {x, y }. As g satisfies (F2),V ′

the f -values fixed already are such that

f(x, V ′) + f(y, V ′) = g(v0, V
′) = 0 . (2)

With

h :=
∑

~e ∈
→
E′(x,y)

f(→e)
(

=
∑

e ∈E′(x,y)

g(e, v0, v0)
)
,

(F2) for f requires

0 = f(x, V ) = f(→e0) +h+ f(x, V ′)
and

0 = f(y, V ) = f(←e0)−h+ f(y, V ′) ,

so we have to set

f(→e0) := −f(x, V ′)−h and f(←e0) := −f(y, V ′) +h .

Then f(→e0) + f(←e0) = 0 by (2), so f also satisfies (F1) in e0. ¤

The polynomial P of Theorem 6.3.1 is known as the flow polynomialflow
polynomial

of G.

Corollary 6.3.2. If H and H ′ are two finite abelian groups of equal[ 6.4.5 ]

order, then G has an H-flow if and only if G has an H ′-flow. ¤

Corollary 6.3.2 has fundamental implications for the theory of al-
gebraic flows: it indicates that crucial difficulties in existence proofs of
H-flows are unlikely to be of a group-theoretic nature. On the other
hand, being able to choose a convenient group can be quite helpful; we
shall see a pretty example for this in Proposition 6.4.5.
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Let k > 1 be an integer and G = (V,E) a multigraph. A Z-flow f k

on G such that 0 < |f(→e)| < k for all →e ∈
→
E is called a k-flow . Clearly, k-flow

any k-flow is also an `-flow for all ` > k. Thus, we may ask which is
the least integer k such that G admits a k-flow—assuming that such a k
exists. We call this least k the flow number of G and denote it by ϕ(G); flow

number
if G has no k-flow for any k, we put ϕ(G) := ∞. ϕ(G)

The task of determining flow numbers quickly leads to some of the
deepest open problems in graph theory. We shall consider these later
in the chapter. First, however, let us see how k-flows are related to the
more general concept of H-flows.

There is an intimate connection between k-flows and Zk-flows. Let
σk denote the natural homomorphism i 7→ i from Z to Zk. By compo- σk

sition with σk, every k-flow defines a Zk-flow. As the following theorem
shows, the converse holds too: from every Zk-flow on G we can construct
a k-flow on G. In view of Corollary 6.3.2, this means that the general
question about the existence of H-flows for arbitrary groups H reduces
to the corresponding question for k-flows.

Theorem 6.3.3. (Tutte 1950)
A multigraph admits a k-flow if and only if it admits a Zk-flow.

[ 6.4.1 ]
[ 6.4.2 ]
[ 6.4.3 ]
[ 6.4.5 ]

Proof . Let g be a Zk-flow on a multigraph G = (V,E); we construct a
k-flow f on G. We may assume without loss of generality that G has g

no loops. Let F be the set of all functions f :
→
E→Z that satisfy (F1), F

|f(→e)| < k for all →e ∈
→
E, and σk ◦ f = g; note that, like g, any f ∈ F is

nowhere zero.
Let us show first that F 6= ∅. Since we can express every value

g(→e) ∈ Zk as i with |i| < k and then put f(→e) := i, there is clearly a map
f :
→
E→Z such that |f(→e)| < k for all →e ∈

→
E and σk ◦f = g. For each edge

e ∈ E, let us choose one of its two directions and denote this by →e. We
may then define f ′:

→
E→Z by setting f ′(→e) := f(→e) and f ′(←e) := −f(→e)

for every e ∈ E. Then f ′ is a function satisfying (F1) and with values in
the desired range; it remains to show that σk ◦ f ′ and g agree not only
on the chosen directions →e but also on their inverses ←e. Since σk is a
homomorphism, this is indeed so:

(σk ◦ f ′)(←e) = σk(−f(→e)) = −(σk ◦ f)(→e) = −g(→e) = g(←e) .

Hence f ′ ∈ F , so F is indeed non-empty.
Our aim is to find an f ∈ F that satisfies Kirchhoff’s law (F2), and

is thus a k-flow. As a candidate, let us consider an f ∈ F for which the f

sum
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K(f) :=
∑
x∈V

|f(x, V )|

of all deviations from Kirchhoff’s law is least possible. We shall prove

K

that K(f) = 0; then, clearly, f(x, V ) = 0 for every x, as desired.
SupposeK(f) 6= 0. Since f satisfies (F1), and hence

∑
x∈V f(x, V ) =

f(V, V ) = 0, there exists a vertex x withx

f(x, V ) > 0 . (1)

Let X ⊆ V be the set of all vertices x′ for which G contains a walkX

x0e0 . . . e`−1x` from x to x′ such that f(ei, xi, xi+1) > 0 for all i < `;
furthermore, let X ′ := X r {x }.X′

We first show that X ′ contains a vertex x′ with f(x′, V ) < 0. By
definition of X, we have f(e, x′, y) 6 0 for all edges e = x′y such that
x′ ∈ X and y ∈ X. In particular, this holds for x′ = x. Thus, (1) implies
f(x,X ′) > 0. Then f(X ′, x) < 0 by (F1), as well as f(X ′, X ′) = 0.
Therefore∑

x′∈X′

f(x′, V ) = f(X ′, V ) = f(X ′, X) + f(X ′, x) + f(X ′, X ′) < 0 ,

so some x′ ∈ X ′ must indeed satisfyx′

f(x′, V ) < 0 . (2)

As x′ ∈ X, there is an x–x′ walk W = x0e0 . . . e`−1x` such thatW

f(ei, xi, xi+1) > 0 for all i < `. We now modify f by sending some flow
back along W , letting f ′:

→
E→Z be given byf ′

f ′: →e 7→


f(→e)− k for →e = (ei, xi, xi+1), i = 0, . . . , `− 1;
f(→e) + k for →e = (ei, xi+1, xi), i = 0, . . . , `− 1;
f(→e) for e /∈ W .

By definition of W , we have |f ′(→e)| < k for all →e ∈
→
E. Hence f ′, like f ,

lies in F .
How does the modification of f affect K? At all inner vertices v

of W , as well as outside W , the deviation from Kirchhoff’s law remains
unchanged:

f ′(v, V ) = f(v, V ) for all v ∈ V r {x, x′ }. (3)

For x and x′, on the other hand, we have

f ′(x, V ) = f(x, V )− k and f ′(x′, V ) = f(x′, V ) + k . (4)
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Since g is a Zk-flow and hence

σk(f(x, V )) = g(x, V ) = 0 ∈ Zk
and

σk(f(x′, V )) = g(x′, V ) = 0 ∈ Zk ,

f(x, V ) and f(x′, V ) are both multiples of k. Thus f(x, V ) > k and
f(x′, V ) 6 −k, by (1) and (2). But then (4) implies that

|f ′(x, V )| < |f(x, V )| and |f ′(x′, V )| < |f(x′, V )| .

Together with (3), this gives K(f ′) < K(f), a contradiction to the choice
of f .

Therefore K(f) = 0 as claimed, and f is indeed a k-flow. ¤

Since the sum of two Zk-circulations is always another Zk-circulation,
Zk-flows are often easier to construct (by summing over suitable partial
flows) than k-flows. In this way, Theorem 6.3.3 may be of considerable
help in determining whether or not some given graph has a k-flow. In
the following sections we shall meet a number of examples for this.

6.4 k-Flows for small k

Trivially, a graph has a 1-flow (the empty set) if and only if it has no
edges. In this section we collect a few simple examples of sufficient
conditions under which a graph has a 2-, 3- or 4-flow. More examples
can be found in the exercises.

Proposition 6.4.1. A graph has a 2-flow if and only if all its degrees [ 6.6.1 ]

are even.

Proof . By Theorem 6.3.3, a graph G = (V,E) has a 2-flow if and only if (6.3.3)

it has a Z2-flow, i.e. if and only if the constant map
→
E→Z2 with value 1

satisfies (F2). This is the case if and only if all degrees are even. ¤

For the remainder of this chapter, let us call a graph even if all its vertex
even

graph
degrees are even.

Proposition 6.4.2. A cubic graph has a 3-flow if and only if it is bi-
partite.
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Proof . Let G = (V,E) be a cubic graph. Let us assume first that(1.6.1)
(6.3.3)

G has a 3-flow, and hence also a Z3-flow f . We show that any cycle
C = x0 . . . x`x0 in G has even length (cf. Proposition 1.6.1). Consider
two consecutive edges on C, say ei−1 := xi−1xi and ei := xixi+1. If f
assigned the same value to these edges in the direction of the forward
orientation of C, i.e. if f(ei−1, xi−1, xi) = f(ei, xi, xi+1), then f could
not satisfy (F2) at xi for any non-zero value of the third edge at xi.
Therefore f assigns the values 1 and 2 to the edges of C alternately, and
in particular C has even length.

Conversely, let G be bipartite, with vertex bipartition {X,Y }.
Since G is cubic, the map

→
E → Z3 defined by f(e, x, y) := 1 and

f(e, y, x) := 2 for all edges e = xy with x ∈ X and y ∈ Y is a Z3-
flow on G. By Theorem 6.3.3, then, G has a 3-flow. ¤

What are the flow numbers of the complete graphs Kn? For odd
n > 1, we have ϕ(Kn) = 2 by Proposition 6.4.1. Moreover, ϕ(K2) = ∞,
and ϕ(K4) = 4; this is easy to see directly (and it follows from Proposi-
tions 6.4.2 and 6.4.5). Interestingly, K4 is the only complete graph with
flow number 4:

Proposition 6.4.3. For all even n > 4, ϕ(Kn) = 3.

Proof . Proposition 6.4.1 implies that ϕ(Kn) > 3 for even n. We show,(6.3.3)

by induction on n, that every G = Kn with even n > 4 has a 3-flow.
For the induction start, let n = 6. Then G is the edge-disjoint union

of three graphs G1, G2, G3, with G1, G2 = K3 and G3 = K3,3. Clearly
G1 and G2 each have a 2-flow, while G3 has a 3-flow by Proposition 6.4.2.
The union of all these flows is a 3-flow on G.

Now let n > 6, and assume the assertion holds for n−2. Clearly, G is
the edge-disjoint union of a Kn−2 and a graph G′ = (V ′, E′) with G′ =
Kn−2 ∗K2. The Kn−2 has a 3-flow by induction. By Theorem 6.3.3, it
thus suffices to find a Z3-flow on G′. For every vertex z of the Kn−2 ⊆G′,
let fz be a Z3-flow on the triangle zxyz ⊆ G′, where e = xy is the edge
of the K2 in G′. Let f :

→
E′→Z3 be the sum of these flows. Clearly, f is

nowhere zero, except possibly in (e, x, y) and (e, y, x). If f(e, x, y) 6= 0,
then f is the desired Z3-flow on G′. If f(e, x, y) = 0, then f + fz (for
any z) is a Z3-flow on G′. ¤

Proposition 6.4.4. Every 4-edge-connected graph has a 4-flow.

Proof . Let G be a 4-edge-connected graph. By Corollary 3.5.2, G has(3.5.2)

two edge-disjoint spanning trees Ti, i = 1, 2. For each edge e /∈ Ti, let
Ci,e be the unique cycle in Ti + e, and let fi,e be a Z4-flow of value if1,e, f2,e

around Ci,e—more precisely: a Z4-circulation on G with values i and −i
on the edges of Ci,e and zero otherwise.
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Let f1 :=
∑
e/∈T1

f1,e. Since each e /∈ T1 lies on only one cycle C1,e′ f1

(namely, for e = e′), f1 takes only the values 1 and −1 (= 3) outside T1.
Let

F := { e ∈ E(T1) | f1(e) = 0 }

and f2 :=
∑
e∈F f2,e. As above, f2(e) = 2 = −2 for all e ∈ F . Now f2

f := f1 + f2 is the sum of Z4-circulations, and hence itself a Z4-circula- f

tion. Moreover, f is nowhere zero: on edges in F it takes the value 2, on
edges of T1 − F it agrees with f1 (and is hence non-zero by the choice
of F ), and on all edges outside T1 it takes one of the values 1 or 3. Hence,
f is a Z4-flow on G, and the assertion follows by Theorem 6.3.3. ¤

The following proposition describes the graphs with a 4-flow in terms
of those with a 2-flow:

Proposition 6.4.5.

(i) A graph has a 4-flow if and only if it is the union of two even
subgraphs.

(ii) A cubic graph has a 4-flow if and only if it is 3-edge-colourable.

Proof . Let Z2
2 = Z2×Z2 be the Klein four-group. (Thus, the elements of (6.3.2)

(6.3.3)
Z2

2 are the pairs (a, b) with a, b ∈ Z2, and (a, b)+(a′, b′) = (a+a′, b+b′).)
By Corollary 6.3.2 and Theorem 6.3.3, a graph has a 4-flow if and only
if it has a Z2

2 -flow.
(i) now follows directly from Proposition 6.4.1.
(ii) Let G = (V,E) be a cubic graph. We assume first that G has a

Z2
2 -flow f , and define an edge colouring E→Z2

2r { 0 }. As a = −a for
all a ∈ Z2

2, we have f(→e) = f(←e) for every →e ∈
→
E; let us colour the edge

e with this colour f(→e). Now if two edges with a common end v had
the same colour, then these two values of f would sum to zero; by (F2),
f would then assign zero to the third edge at v. As this contradicts the
definition of f , our edge colouring is correct.

Conversely, since the three non-zero elements of Z2
2 sum to zero,

every 3-edge-colouring c:E→Z2
2r{ 0 } defines a Z2

2 -flow on G by letting
f(→e) = f(←e) = c(e) for all →e ∈

→
E. ¤

Corollary 6.4.6. Every cubic 3-edge-colourable graph is bridgeless.
¤



136 6. Flows

6.5 Flow-colouring duality
In this section we shall see a surprising connection between flows and
colouring: every k-flow on a plane multigraph gives rise to a k-vertex-
colouring of its dual, and vice versa. In this way, the investigation of
k-flows appears as a natural generalization of the familiar map colouring
problems in the plane.

Let G = (V,E) and G∗ = (V ∗, E∗) be dual plane multigraphs. ForG = (V,E)

simplicity, let us assume that G and G∗ have neither bridges nor loopsG∗

and are non-trivial. For edge sets F ⊆ E, let us write

F ∗ := { e∗ ∈ E∗ | e ∈ F } .F ∗

Conversely, if a subset of E∗ is given, we shall usually write it immedi-
ately in the form F ∗, and thus let F ⊆ E be defined implicitly via the
bijection e 7→ e∗.

Suppose we are given a circulation g on G∗: how can we employ the
duality between G and G∗ to derive from g some information about G?
The most general property of all circulations is Proposition 6.1.1, which
says that g(X,X) = 0 for all X ⊆ V ∗. By Proposition 4.6.1, the minimal
cuts E∗(X,X) in G∗ correspond precisely to the cycles in G. Thus if we
take the composition f of the maps e 7→ e∗ and g, and sum its values
over the edges of a cycle in G, then this sum should again be zero.

Of course, there is still a technical hitch: since g takes its arguments
not in E∗ but in

→
E∗, we cannot simply define f as above: we first have

to refine the bijection e 7→ e∗ into one from
→
E to

→
E∗, i.e. assign to every

→e ∈
→
E canonically one of the two directions of e∗. This will be the

purpose of our first lemma. After that, we shall show that f does indeed
sum to zero along any cycle in G.

If C = v0 . . . v`−1v0 is a cycle with edges ei = vivi+1 (and v` := v0),
we shall call

→
C := { (ei, vi, vi+1) | i < ` }→

C

a cycle with orientation. Note that this definition of
→
C depends on thecycle with

orientation
vertex enumeration chosen to denote C: every cycle has two orientations.
Conversely, of course, C can be reconstructed from the set

→
C . In practice,

we shall therefore speak about C freely even when, formally, only
→
C has

been defined.

Lemma 6.5.1. There exists a bijection ∗: →e 7→ →e ∗ from
→
E to

→
E∗ with

the following properties.

(i) The underlying edge of →e ∗ is always e∗, i.e. →e ∗ is one of the two
directions

→
e∗,

←
e∗ of e∗.

(ii) If C ⊆ G is a cycle, F := E(C), and if X ⊆ V ∗ is such that
F ∗ = E∗(X,X), then there exists an orientation

→
C of C with

{ →e ∗ | →e ∈
→
C } =

→
E∗(X,X).



6.5 Flow-colouring duality 137

The proof of Lemma 6.5.1 is not entirely trivial: it is based on the
so-called orientability of the plane, and we cannot give it here. Still,
the assertion of the lemma is intuitively plausible. Indeed if we de-
fine for e = vw and e∗ = xy the assignment (e, v, w) 7→ (e, v, w)∗ ∈
{ (e∗, x, y), (e∗, y, x) } simply by turning e and its ends clockwise onto e∗

(Fig. 6.5.1), then the resulting map →e 7→ →e ∗ satisfies the two assertions
of the lemma.

X

X

→
C

Fig. 6.5.1. Oriented cycle-cut duality

Given an abelian group H, let f :
→
E→H and g:

→
E∗→H be two maps f, g

such that
f(→e) = g(→e ∗)

for all →e ∈
→
E. For

→
F ⊆

→
E, we set

f(
→
F ) :=

∑
~e ∈ ~F

f(→e) .
f(
→
C ) etc.

Lemma 6.5.2.
(i) The map g satisfies (F1) if and only if f does.

(ii) The map g is a circulation on G∗ if and only if f satisfies (F1)
and f(

→
C ) = 0 for every cycle

→
C with orientation.

Proof . Assertion (i) follows from Lemma 6.5.1 (i) and the fact that (4.6.1)
(6.1.1)→e 7→ →e ∗ is bijective.

For the forward implication of (ii), let us assume that g is a circu-
lation on G∗, and consider a cycle C ⊆ G with some given orientation.
Let F := E(C). By Proposition 4.6.1, F ∗ is a minimal cut in G∗, i.e.
F ∗ = E∗(X,X) for some suitable X ⊆ V ∗. By definition of f and g,
Lemma 6.5.1 (ii) and Proposition 6.1.1 give

f(
→
C ) =

∑
~e ∈ ~C

f(→e) =
∑

~d ∈
→
E∗(X,X)

g(
→
d) = g(X,X) = 0

for one of the two orientations
→
C of C. Then, by f(

←
C ) = −f(

→
C ), also
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the corresponding value for our given orientation of C must be zero.
For the backward implication it suffices by (i) to show that g satis-

fies (F2), i.e. that g(x, V ∗) = 0 for every x ∈ V ∗. We shall prove that
g(x, V (B)) = 0 for every block B of G∗ containing x; since every edge
of G∗ at x lies in exactly one such block, this will imply g(x, V ∗) = 0.

So let x ∈ V ∗ be given, and let B be any block of G∗ contain-B

ing x. Since G∗ is a non-trivial plane dual, and hence connected, we
have B−x 6= ∅. Let F ∗ be the set of all edges of B at x (Fig. 6.5.2),F ∗, F

X

X

x F ∗ B

C

Fig. 6.5.2. The cut F ∗ in G∗

and let X be the vertex set of the component of G∗−F ∗ containing x.X

Then ∅ 6= V (B − x) ⊆ X, by the maximality of B as a cutvertex-free
subgraph. Hence

F ∗ = E∗(X,X) (1)

by definition of X, i.e. F ∗ is a cut in G∗. As a dual, G∗ is connected,
so G∗[X ] too is connected. Indeed, every vertex of X is linked to x by
a path P ⊆ G∗ whose last edge lies in F ∗. Then P − x is a path in
G∗[X ] meeting B. Since x does not separate B, this shows that G∗[X ]
is connected.

Thus, X and X are both connected in G∗, so F ∗ is even a minimal
cut in G∗. Let C ⊆ G be the cycle with E(C) = F that exists byC

Proposition 4.6.1. By Lemma 6.5.1 (ii), C has an orientation
→
C such that

{ →e ∗ | →e ∈
→
C } =

→
E∗(X,X). By (1), however,

→
E∗(X,X) =

→
E∗(x, V (B)),

so
g(x, V (B)) = g(X,X) = f(

→
C ) = 0

by definition of f and g. ¤

With the help of Lemma 6.5.2, we can now prove our colouring-flow
duality theorem for plane multigraphs. If P = v0 . . . v` is a path with
edges ei = vivi+1 (i < `), we set (depending on our vertex enumeration
of P )

→
P := { (ei, vi, vi+1) | i < ` }→

P

and call
→
P a v0→ v` path. Again, P may be given implicitly by

→
P .

v0→ v`
path
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Theorem 6.5.3. (Tutte 1954)
For every dual pair G,G∗ of plane multigraphs,

χ(G) = ϕ(G∗) .

Proof . Let G =: (V,E) and G∗ =: (V ∗, E∗). For |G| ∈ { 1, 2 } the (1.5.5)

assertion is easily checked; we shall assume that |G| > 3, and apply V,E

induction on the number of bridges in G. If e ∈ G is a bridge then e∗ V ∗, E∗

is a loop, and G∗ − e∗ is a plane dual of G/e (why?). Hence, by the
induction hypothesis,

χ(G) = χ(G/e) = ϕ(G∗− e∗) = ϕ(G∗) ;

for the first and the last equality we use that, by |G| > 3, e is not the
only edge of G.

So all that remains to be checked is the induction start: let us
assume that G has no bridge. If G has a loop, then G∗ has a bridge,
and χ(G) = ∞ = ϕ(G∗) by convention. So we may also assume that G
has no loop. Then χ(G) is finite; we shall prove for given k > 2 that G k

is k-colourable if and only if G∗ has a k-flow. As G—and hence G∗—
has neither loops nor bridges, we may apply Lemmas 6.5.1 and 6.5.2
to G and G∗. Let →e 7→ →e ∗ be the bijection between

→
E and

→
E∗ from

Lemma 6.5.1.
We first assume that G∗ has a k-flow. Then G∗ also has a Zk-flow g. g

As before, let f :
→
E→Zk be defined by f(→e) := g(→e ∗). We shall use f to f

define a vertex colouring c:V →Zk of G.
Let T be a normal spanning tree ofG, with root r, say. Put c(r) := 0.

For every other vertex v ∈ V let c(v) := f(
→
P ), where

→
P is the r→ v

path in T . To check that this is a proper colouring, consider an edge
e = vw ∈ E. As T is normal, we may assume that v < w in the tree
order of T . If e is an edge of T then c(w)− c(v) = f(e, v, w) by definition
of c, so c(v) 6= c(w) since g (and hence f) is nowhere zero. If e /∈ T , let
→
P denote the v→w path in T . Then

c(w)− c(v) = f(
→
P ) = −f(e, w, v) 6= 0

by Lemma 6.5.2 (ii).
Conversely, we now assume that G has a k-colouring c. Let us define c

f :
→
E→Z by

f(e, v, w) := c(w)− c(v) , f

and g:
→
E∗→ Z by g(→e ∗) := f(→e). Clearly, f satisfies (F1) and takes g

values in {±1, . . . ,±(k − 1) }, so by Lemma 6.5.2 (i) the same holds
for g. By definition of f , we further have f(

→
C ) = 0 for every cycle

→
C

with orientation. By Lemma 6.5.2 (ii), therefore, g is a k-flow. ¤
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6.6 Tutte’s flow conjectures

How can we determine the flow number of a graph? Indeed, does every
(bridgeless) graph have a flow number, a k-flow for some k? Can flow
numbers, like chromatic numbers, become arbitrarily large? Can we
characterize the graphs admitting a k-flow, for given k?

Of these four questions, we shall answer the second and third in this
section: we prove that every bridgeless graph has a 6-flow. In particular,
a graph has a flow number if and only if it has no bridge. The ques-
tion asking for a characterization of the graphs with a k-flow remains
interesting for k = 3, 4, 5. Partial answers are suggested by the following
three conjectures of Tutte, who initiated algebraic flow theory.

The oldest and best known of the Tutte conjectures is his 5-flow
conjecture:

Five-Flow Conjecture. (Tutte 1954)
Every bridgeless multigraph has a 5-flow.

Which graphs have a 4-flow? By Proposition 6.4.4, the 4-edge-
connected graphs are among them. The Petersen graph (Fig. 6.6.1), on
the other hand, is an example of a bridgeless graph without a 4-flow:
since it is cubic but not 3-edge-colourable (Ex. 19, Ch. 5), it cannot have
a 4-flow by Proposition 6.4.5 (ii).

Fig. 6.6.1. The Petersen graph

Tutte’s 4-flow conjecture states that the Petersen graph must be
present in every graph without a 4-flow:

Four-Flow Conjecture. (Tutte 1966)
Every bridgeless multigraph not containing the Petersen graph as a mi-
nor has a 4-flow.

By Proposition 1.7.2, we may replace the word ‘minor’ in the 4-flow
conjecture by ‘topological minor’.
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Even if true, the 4-flow conjecture will not be best possible: a K11,
for example, contains the Petersen graph as a minor but has a 4-flow,
even a 2-flow. The conjecture appears more natural for sparser graphs,
and indeed the cubic graphs form an important special case. (See the
notes.)

A cubic bridgeless graph or multigraph without a 4-flow (equivalent-
ly, without a 3-edge-colouring) is called a snark . The 4-flow conjecture snark

for cubic graphs says that every snark contains the Petersen graph as
a minor; in this sense, the Petersen graph has thus been shown to be
the smallest snark. Snarks form the hard core both of the four colour
theorem and of the 5-flow conjecture: the four colour theorem is equi-
valent to the assertion that no snark is planar (exercise), and it is not
difficult to reduce the 5-flow conjecture to the case of snarks.5 However,
although the snarks form a very special class of graphs, none of the
problems mentioned seems to become much easier by this reduction.6

Three-Flow Conjecture. (Tutte 1972)
Every multigraph without a cut consisting of exactly one or exactly three
edges has a 3-flow.

Again, the 3-flow conjecture will not be best possible: it is easy to con-
struct graphs with three-edge cuts that have a 3-flow (exercise).

By our duality theorem (6.5.3), all three flow conjectures are true
for planar graphs and thus motivated: the 3-flow conjecture translates
to Grötzsch’s theorem (5.1.3), the 4-flow conjecture to the four colour
theorem (since the Petersen graph is not planar, it is not a minor of a
planar graph), the 5-flow conjecture to the five colour theorem.

We finish this section with the main result of the chapter:

Theorem 6.6.1. (Seymour 1981)
Every bridgeless graph has a 6-flow.

Proof . Let G = (V,E) be a bridgeless graph. Since 6-flows on the
(3.3.5)
(6.1.1)
(6.4.1)components of G will add up to a 6-flow on G, we may assume that

G is connected; as G is bridgeless, it is then 2-edge-connected. Note
that any two vertices in a 2-edge-connected graph lie in some common
even connected subgraph—for example, in the union of two edge-disjoint
paths linking these vertices by Menger’s theorem (3.3.5 (ii)). We shall
use this fact repeatedly.

5 The same applies to another well-known conjecture, the cycle double cover con-
jecture; see Exercise 13.

6 That snarks are elusive has been known to mathematicians for some time; cf.
Lewis Carroll, The Hunting of the Snark , Macmillan 1876.
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We shall construct a sequence H0, . . . , Hn of disjoint connected andH0, . . . , Hn

even subgraphs of G, together with a sequence F1, . . . , Fn of non-emptyF1, . . . , Fn

sets of edges between them. The sets Fi will each contain only one or
two edges, between Hi and H0 ∪ . . .∪Hi−1. We write Hi =: (Vi, Ei),Vi, Ei

Hi := (H0 ∪ . . .∪Hi) + (F1 ∪ . . .∪Fi)Hi

and Hi =: (V i, Ei). Note that each Hi = (Hi−1 ∪Hi) +Fi is connectedV i, Ei

(induction on i). Our assumption that Hi is even implies by Proposition
6.4.1 (or directly by Proposition 1.2.1) that Hi has no bridge.

As H0 we choose any K1 in G. Now assume that H0, . . . , Hi−1 and
F1, . . . , Fi−1 have been defined for some i > 0. If V i−1 = V , we terminate
the construction and set i− 1 =: n. Otherwise, we let Xi ⊆ V i−1 ben

minimal such that Xi 6= ∅ andXi ∣∣E(Xi, V i−1rXi)
∣∣ 6 1 (1)

(Fig. 6.6.2); such an Xi exists, because V i−1 is a candidate. Since G
is 2-edge-connected, (1) implies that E(Xi, V

i−1) 6= ∅. By the mini-
mality of Xi, the graph G [Xi ] is connected and bridgeless, i.e. 2-edge-
connected or a K1. As the elements of Fi we pick one or two edgesFi

from E(Xi, V
i−1), if possible two. As Hi we choose any connected even

subgraph of G [Xi ] containing the ends in Xi of the edges in Fi.

Hi
Fi Xi

V i−1

V i−1 r Xi

Hi−1

Fig. 6.6.2. Constructing the Hi and Fi

When our construction is complete, we set Hn =: H and E′ :=H

E r E(H). By definition of n, H is a spanning connected subgraphE′

of G.
We now define, by ‘reverse’ induction, a sequence fn, . . . , f0 of Z3-fn, . . . , f0

circulations on G. For every edge e ∈ E′, let
→
Ce be a cycle (with orienta-→

Ce

tion) in H + e containing e, and fe a positive flow around
→
Ce; formally,

we let fe be a Z3-circulation on G such that f−1
e (0) =

→
E r (

→
Ce ∪

←
Ce).fe

Let fn be the sum of all these fe. Since each e′ ∈ E′ lies on just one offn

the cycles Ce (namely, on Ce′), we have fn(→e) 6= 0 for all →e ∈
→
E′.
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Assume now that Z3-circulations fn, . . . , fi on G have been defined fi

for some i 6 n, and that

fi(
→e) 6= 0 for all →e ∈

→
E′ ∪

⋃
j>i

→
Fj , (2)

where
→
Fj := { →e ∈

→
E | e ∈ Fj }. Our aim is to define fi−1 in such a way →

Fj
that (2) also holds for i− 1.

We first consider the case that |Fi| = 1, say Fi = { e }. We then e

let fi−1 := fi, and thus have to show that fi is non-zero on (the two
directions of) e. Our assumption of |Fi| = 1 implies by the choice of
Fi that G contains no Xi–V i−1 edge other than e. Since G is 2-edge-
connected, it therefore has at least—and thus, by (1), exactly—one edge
e′ between Xi and V i−1 rXi. We show that fi is non-zero on e′; as e′

{ e, e′ } is a cut in G, this implies by Proposition 6.1.1 that fi is also
non-zero on e.

To show that fi is non-zero on e′, we use (2): we show that e′ ∈
E′ ∪

⋃
j>i Fj , i.e. that e′ lies in no Hk and in no Fj with j 6 i. Since e′

has both ends in V i−1, it clearly lies in no Fj with j 6 i and in no Hk

with k < i. But every Hk with k > i is a subgraph of G [V i−1 ]. Since e′

is a bridge of G [V i−1 ] but Hk has no bridge, this means that e′ /∈ Hk.
Hence, fi−1 does indeed satisfy (2) for i− 1 in the case considered.

It remains to consider the case that |Fi| = 2, say Fi = { e1, e2 }. e1, e2

Since Hi and Hi−1 are both connected, we can find a cycle C in Hi = C

(Hi∪Hi−1) +Fi that contains e1 and e2. If fi is non-zero on both these
edges, we again let fi−1 := fi. Otherwise, there are directions →e1 and
→e2 of e1 and e2 such that, without loss of generality, fi(

→e1) = 0 and
fi(

→e2) ∈ { 0, 1 }. Let
→
C be the orientation of C with →e2 ∈

→
C , and let g be

a flow of value 1 around
→
C (formally: let g be a Z3-circulation on G such

that g(→e2) = 1 and g−1(0) =
→
E r (

→
C ∪

←
C )). We then let fi−1 := fi + g.

By choice of the directions →e1 and →e2, fi−1 is non-zero on both edges.
Since fi−1 agrees with fi on all of

→
E′ ∪

⋃
j>i

→
Fj and (2) holds for i, we

again have (2) also for i− 1.
Eventually, f0 will be a Z3-circulation on G that is nowhere zero

except possibly on edges of H0 ∪ . . .∪Hn. Composing f0 with the map
h 7→ 2h from Z3 to Z6 (h ∈ { 1, 2 }), we obtain a Z6-circulation f on G f

with values in { 0, 2, 4 } for all edges lying in some Hi, and with values
in { 2, 4 } for all other edges. Adding to f a 2-flow on each Hi (formally:
a Z6-circulation on G with values in { 1,−1 } on the edges of Hi and 0
otherwise; this exists by Proposition 6.4.1), we obtain a Z6-circulation
on G that is nowhere zero. Hence, G has a 6-flow by Theorem 6.3.3.

¤
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Exercises
1.− Prove Proposition 6.2.1 by induction on |S|.
2. (i)− Given n ∈ N, find a capacity function for the network below such

that the algorithm from the proof of the max-flow min-cut theorem will
need more than n augmenting paths W if these are badly chosen.

s t

(ii)+ Show that, if all augmenting paths are chosen as short as possible,
their number is bounded by a function of the size of the network.

3.+ Derive Menger’s Theorem 3.3.4 from the max-flow min-cut theorem.

(Hint. The edge version is easy. For the vertex version, apply the edge
version to a suitable auxiliary graph.)

4.− Let f be an H-circulation on G and g:H→H ′ a group homomorphism.
Show that g ◦ f is an H ′-circulation on G. Is g ◦ f an H ′-flow if f is an
H-flow?

5.− Given k > 1, show that a graph has a k-flow if and only if each of its
blocks has a k-flow.

6.− Show that ϕ(G/e) 6 ϕ(G) whenever G is a multigraph and e an edge
of G. Does this imply that, for every k, the class of all multigraphs
admitting a k-flow is closed under taking minors?

7.− Work out the flow number of K4 directly, without using any results
from the text.

8. Let H be a finite abelian group, G a graph, and T a spanning tree
of G. Show that every mapping from the directions of E(G)rE(T ) to
H that satisfies (F1) extends uniquely to an H-circulation on G.

Do not use the 6-flow Theorem 6.6.1 for the following three exercises.

9. Show that ϕ(G) < ∞ for every bridgeless multigraph G.

10. Assume that a graph G has m spanning trees such that no edge of G
lies in all of these trees. Show that ϕ(G) 6 2m.

11.+ Let G be a bridgeless connected graph with n vertices and m edges. By
considering a normal spanning tree of G, show that ϕ(G) 6 m−n+ 2.

12. Show that every graph with a Hamilton cycle has a 4-flow. (A Hamilton
cycle of G is a cycle in G that contains all the vertices of G.)

13. A family of (not necessarily distinct) cycles in a graph G is called a
cycle double cover of G if every edge of G lies on exactly two of these
cycles. The cycle double cover conjecture asserts that every bridgeless
multigraph has a cycle double cover. Prove the conjecture for graphs
with a 4-flow.
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14.− Determine the flow number of C5 ∗K1, the wheel with 5 spokes.

15. Find bridgeless graphs G and H = G− e such that 2 < ϕ(G) < ϕ(H).

16. Prove Proposition 6.4.1 without using Theorem 6.3.3.

17.+ Prove Heawood’s theorem that a plane triangulation is 3-colourable if
and only if all its vertices have even degree.

18.− Find a bridgeless graph that has both a 3-flow and a cut of exactly
three edges.

19. Show that the 3-flow conjecture for planar multigraphs is equivalent to
Grötzsch’s Theorem 5.1.3.

20. (i)− Show that the four colour theorem is equivalent to the non-exist-
ence of a planar snark, i.e. to the statement that every cubic bridgeless
planar multigraph has a 4-flow.

(ii) Can ‘bridgeless’ in (i) be replaced by ‘3-connected’?

21.+ Show that a graph G = (V,E) has a k-flow if and only if it admits an
orientation D that directs, for every X ⊆ V , at least 1/k of the edges
in E(X,X) from X towards X.

22.− Generalize the 6-flow Theorem 6.6.1 to multigraphs.

Notes
Network flow theory is an application of graph theory that has had a major
and lasting impact on its development over decades. As is illustrated already
by the fact that Menger’s theorem can be deduced easily from the max-flow
min-cut theorem (Exercise 3), the interaction between graphs and networks
may go either way: while ‘pure’ results in areas such as connectivity, matching
and random graphs have found applications in network flows, the intuitive
power of the latter has boosted the development of proof techniques that have
in turn brought about theoretic advances.

The standard reference for network flows is L.R. Ford & D.R. Fulkerson,
Flows in Networks, Princeton University Press 1962. A more recent and com-
prehensive account is given by R.K. Ahuja, T.L. Magnanti & J.B. Orlin, Net-
work flows, Prentice-Hall 1993. For more theoretical aspects, see A. Frank’s
chapter in the Handbook of Combinatorics (R.L. Graham, M. Grötschel &
L. Lovász, eds.), North-Holland 1995. A general introduction to graph algo-
rithms is given in A. Gibbons, Algorithmic Graph Theory , Cambridge Univer-
sity Press 1985.

If one recasts the maximum flow problem in linear programming terms,
one can derive the max-flow min-cut theorem from the linear programming
duality theorem; see A. Schrijver, Theory of integer and linear programming ,
Wiley 1986.

The more algebraic theory of group-valued flows and k-flows has been
developed largely by Tutte; he gives a thorough account in his monograph
W.T. Tutte, Graph Theory , Addison-Wesley 1984. Tutte’s flow conjectures are
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covered also in F. Jaeger’s survey, Nowhere-zero7 flow problems, in (L.W. Bei-
neke & R.J. Wilson, eds.) Selected Topics in Graph Theory 3, Academic Press
1988. For the flow conjectures, see also T.R. Jensen & B. Toft, Graph Coloring
Problems, Wiley 1995. Seymour’s 6-flow theorem is proved in P.D. Seymour,
Nowhere-zero 6-flows, J. Combin. Theory B 30 (1981), 130–135. This pa-
per also indicates how Tutte’s 5-flow conjecture reduces to snarks. In 1998,
Robertson, Sanders, Seymour and Thomas announced a proof of the 4-flow
conjecture for cubic graphs.

Finally, Tutte discovered a 2-variable polynomial associated with a graph,
which generalizes both its chromatic polynomial and its flow polynomial.
What little is known about this Tutte polynomial can hardly be more than
the tip of the iceberg: it has far-reaching, and largely unexplored, connections
to areas as diverse as knot theory and statistical physics. See D.J.A. Welsh,
Complexity: knots, colourings and counting (LMS Lecture Notes 186), Cam-
bridge University Press 1993.

7 In the literature, the term ‘flow’ is often used to mean what we have called ‘cir-
culation’, i.e. flows are not required to be nowhere zero unless this is stated explicitly.



7 Substructures in
Dense Graphs

In this chapter and the next, we study how global parameters of a graph,
such as its edge density or chromatic number, have a bearing on the
existence of certain local substructures. How many edges, for instance,
do we have to give a graph on n vertices to be sure that, no matter how
these edges happen to be arranged, the graph will contain a Kr subgraph
for some given r? Or at least a Kr minor? Or a topological Kr minor?
Will some sufficiently high average degree or chromatic number ensure
that one of these substructures occurs?

Questions of this type are among the most natural ones in graph
theory, and there is a host of deep and interesting results. Collectively,
these are known as extremal graph theory .

Extremal graph problems in this sense fall neatly into two categories,
as follows. If we are looking for ways to ensure by global assumptions
that a graph G contains some given graph H as a minor (or topological
minor), it will suffice to raise ‖G‖ above the value of some linear function
of |G| (depending on H), i.e. to make ε(G) large enough. The existence
of such a function was already established in Theorem 3.6.1. The precise
growth rate needed will be investigated in Chapter 8, where we study
substructures of such ‘sparse’ graphs. Since a large enough value of ε
gives rise to an H minor for any given graph H, its occurrence could be
forced alternatively by raising some other global invariants (such as κ
or χ) which, in turn, force up the value of ε, at least in some subgraph.
This, too, will be a topic for Chapter 8.

On the other hand, if we ask what global assumptions might imply
the existence of some given graph H as a subgraph, it will not help
to raise any of the invariants ε, κ or χ, let alone any of the other in-
variants discussed in Chapter 1. Indeed, as mentioned in Chapter 5.2,
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given any graph H that contains at least one cycle, there are graphs
of arbitrarily large chromatic number not containing H as a subgraph
(Theorem 11.2.2). By Corollary 5.2.3 and Theorem 1.4.2, such graphs
have subgraphs of arbitrarily large average degree and connectivity, so
these invariants too can be large without the presence of an H subgraph.

Thus, unless H is a forest, the only way to force the presence of an H
subgraph in an arbitrary graph G by global assumptions on G is to raise
‖G‖ substantially above any value implied by large values of the above
invariants. If H is not bipartite, then any function f such that f(n)
edges on n vertices force an H subgraph must even grow quadratically
with n: since complete bipartite graphs can have 1

4n
2 edges, f(n) must

exceed 1
4n

2.
Graphs with a number of edges roughly1 quadratic in their numberdense

of vertices are usually called dense; the number ‖G‖
/(|G|

2

)
—the propor-

tion of its potential edges that G actually has—is the edge density of G.edge
density

The question of exactly which edge density is needed to force a given
subgraph is the archetypal extremal graph problem in its original (nar-
rower) sense; it is the topic of this chapter. Rather than attempting to
survey the wide field of (dense) extremal graph theory, however, we shall
concentrate on its two most important results and portray one powerful
general proof technique.

The two results are Turán’s classic extremal graph theorem for
H = Kr, a result that has served as a model for countless similar
theorems for other graphs H, and the fundamental Erdős-Stone theo-
rem, which gives precise asymptotic information for all H at once (Sec-
tion 7.1). The proof technique, one of increasing importance in the
extremal theory of dense graphs, is the use of the Szemerédi regularity
lemma. This lemma is presented and proved in Section 7.2. In Sec-
tion 7.3, we outline a general method for applying the regularity lemma,
and illustrate this in the proof of the Erdős-Stone theorem postponed
from Section 7.1. Another application of the regularity lemma will be
given in Chapter 9.2.

7.1 Subgraphs

Let H be a graph and n > |H|. How many edges will suffice to force an
H subgraph in any graph on n vertices, no matter how these edges are
arranged? Or, to rephrase the problem: which is the greatest possible
number of edges that a graph on n vertices can have without containing
a copy of H as a subgraph? What will such a graph look like? Will it
be unique?

1 Note that, formally, the notions of sparse and dense make sense only for families
of graphs whose order tends to infinity, not for individual graphs.
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A graph G 6⊇ H on n vertices with the largest possible number of
edges is called extremal for n and H; its number of edges is denoted by extremal

ex(n,H). Clearly, any graph G that is extremal for some n and H will ex(n,H)

also be edge-maximal with H 6⊆ G. Conversely, though, edge-maximality
does not imply extremality: G may well be edge-maximal with H 6⊆ G
while having fewer than ex(n,H) edges (Fig. 7.1.1).

Fig. 7.1.1. Two graphs that are edge-maximal with P 3 6⊆ G; is
the right one extremal?

As a case in point, we consider our problem forH = Kr (with r > 1).
A moment’s thought suggests some obvious candidates for extremality
here: all complete (r− 1)-partite graphs are edge-maximal without con-
taining Kr. But which among these have the greatest number of edges?
Clearly those whose partition sets are as equal as possible, i.e. differ in
size by at most 1: if V1, V2 are two partition sets with |V1|− |V2| > 2, we
may increase the number of edges in our complete (r− 1)-partite graph
by moving a vertex from V1 across to V2.

The unique complete (r − 1)-partite graphs on n > r − 1 vertices
whose partition sets differ in size by at most 1 are called Turán graphs;
we denote them by T r−1(n) and their number of edges by tr−1(n) T r−1(n)

(Fig. 7.1.2). For n < r − 1 we shall formally continue to use these tr−1(n)

definitions, with the proviso that—contrary to our usual terminology—
the partition sets may now be empty; then, clearly, T r−1(n) = Kn for
all n 6 r− 1.

Fig. 7.1.2. The Turán graph T 3(8)

The following theorem tells us that T r−1(n) is indeed extremal for
n and Kr, and as such unique; in particular, ex(n,Kr) = tr−1(n).
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Theorem 7.1.1. (Turán 1941)
For all integers r, n with r > 1, every graph G 6⊇ Kr with n vertices and[ 7.1.2 ]

[ 9.2.2 ]
ex(n,Kr) edges is a T r−1(n).

Proof . We apply induction on n. For n 6 r − 1 we have G = Kn =
T r−1(n) as claimed. For the induction step, let now n > r.

Since G is edge-maximal without a Kr subgraph, G has a sub-
graph K = Kr−1. By the induction hypothesis, G −K has at mostK

tr−1(n − r + 1) edges, and each vertex of G − K has at most r − 2
neighbours in K. Hence,

‖G‖ 6 tr−1(n− r+ 1) + (n− r+ 1)(r− 2) +
(
r− 1

2

)
= tr−1(n) ; (1)

the equality on the right follows by inspection of the Turán graph T r−1(n)
(Fig. 7.1.3).

(
r−1
2

)

r− 2

tr−1(n− r +1)

Fig. 7.1.3. The equation from (1) for r = 5 and n = 14

Since G is extremal for Kr (and T r−1(n) 6⊇ Kr), we have equality
in (1). Thus, every vertex of G−K has exactly r−2 neighbours in K—
just like the vertices x1, . . . , xr−1 of K itself. For i = 1, . . . , r− 1 letx1, . . . , xr−1

Vi := { v ∈ V (G) | vxi /∈ E(G) }V1, . . . , Vr−1

be the set of all vertices ofG whose r−2 neighbours inK are precisely the
vertices other than xi. Since Kr 6⊆ G, each of the sets Vi is independent,
and they partition V (G). Hence, G is (r− 1)-partite. As T r−1(n) is the
unique (r−1)-partite graph with n vertices and the maximum number of
edges, our claim that G = T r−1(n) follows from the assumed extremality
of G. ¤

The Turán graphs T r−1(n) are dense: in order of magnitude, they
have about n2 edges. More exactly, for every n and r we have

tr−1(n) 6 1
2n

2 r− 2
r− 1

,
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with equality whenever r − 1 divides n (Exercise 8). It is therefore
remarkable that just εn2 more edges (for any fixed ε > 0 and n large)
give us not only a Kr subgraph (as does Turán’s theorem) but a Kr

s for
any given integer s—a graph itself teeming with Kr subgraphs:

Theorem 7.1.2. (Erdős & Stone 1946)
For all integers r > 2 and s > 1, and every ε > 0, there exists an integer
n0 such that every graph with n > n0 vertices and at least

tr−1(n) + εn2

edges contains Kr
s as a subgraph.

We shall prove this theorem in Section 7.3.

The Erdős-Stone theorem is interesting not only in its own right: it
also has a most interesting corollary. In fact, it was this entirely unex-
pected corollary that established the theorem as a kind of meta-theorem
for the extremal theory of dense graphs, and thus made it famous.

Given a graph H and an integer n, consider the number hn :=
ex(n,H)/

(
n
2

)
: the maximum edge density that an n-vertex graph can

have without containing a copy of H. Could it be that this critical
density is essentially just a function of H, that hn converges as n→∞?
Theorem 7.1.2 implies this, and more: the limit of hn is determined by a
very simple function of a natural invariant of H—its chromatic number!

Corollary 7.1.3. For every graph H with at least one edge,

lim
n→∞

ex(n,H)
(
n

2

)−1

=
χ(H)− 2
χ(H)− 1

.

For the proof of Corollary 7.1.3 we need as a lemma that tr−1(n)
never deviates much from the value it takes when r − 1 divides n (see
above), and that tr−1(n)/

(
n
2

)
converges accordingly. The proof of the

lemma is left as an easy exercise with hint (Exercise 9).

Lemma 7.1.4. [ 7.1.2 ]

lim
n→∞

tr−1(n)
(
n

2

)−1

=
r− 2
r− 1

.

¤
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Proof of Corollary 7.1.3. Let r := χ(H). Since H cannot be colouredr

with r− 1 colours, we have H 6⊆ T r−1(n) for all n ∈ N, and hence

tr−1(n) 6 ex(n,H) .

On the other hand, H ⊆ Kr
s for all sufficiently large s, so

ex(n,H) 6 ex(n,Kr
s )

for all those s. Let us fix such an s. For every ε > 0, Theorem 7.1.2s

implies that eventually (i.e. for large enough n)

ex(n,Kr
s ) < tr−1(n) + εn2.

Hence for n large,

tr−1(n)/
(
n
2

)
6 ex(n,H)/

(
n
2

)
6 ex(n,Kr

s )/
(
n
2

)
< tr−1(n)/

(
n
2

)
+ εn2/

(
n
2

)
= tr−1(n)/

(
n
2

)
+ 2ε/(1− 1

n )

6 tr−1(n)/
(
n
2

)
+ 4ε (assume n > 2).

Therefore, since tr−1(n)/
(
n
2

)
converges to r−2

r−1 (Lemma 7.1.4), so does
ex(n,H)/

(
n
2

)
. Thus

lim
n→∞

ex(n,H)
(
n

2

)−1

=
r− 2
r− 1

as claimed. ¤

For bipartite graphs H, Corollary 7.1.3 says that substantially fewer
than

(
n
2

)
edges suffice to force an H subgraph. It turns out that

c1n
2− 2

r+1 6 ex(n,Kr,r) 6 c2n
2− 1

r

for suitable constants c1, c2 depending on r; the lower bound is obtained
by random graphs,2 the upper bound is calculated in Exercise 13. If H
is a forest, then H ⊆ G as soon as ε(G) is large enough, so ex(n,H)
is at most linear in n (Exercise 5). Erdős and Sós conjectured in 1963
that ex(n, T ) 6 1

2 (k − 1)n for all trees with k > 2 edges; as a general
bound for all n, this is best possible for every T . See Exercises 15–18 for
details.

2 see Chapter 11
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7.2 Szemerédi’s regularity lemma

More than 20 years ago, in the course of the proof of a major result on
the Ramsey properties of arithmetic progressions, Szemerédi developed a
graph theoretical tool whose fundamental importance has been realized
more and more in recent years: his so-called regularity or uniformity
lemma. Very roughly, the lemma says that all graphs can be approx-
imated by random graphs in the following sense: every graph can be
partitioned, into a bounded number of equal parts, so that most of its
edges run between different parts and the edges between any two parts
are distributed fairly uniformly—just as we would expect it if they had
been generated at random.

In order to state the regularity lemma precisely, we need some defi-
nitions. Let G = (V,E) be a graph, and let X,Y ⊆ V be disjoint. Then
we denote by ‖X,Y ‖ the number of X–Y edges of G, and call ‖X,Y ‖

d(X,Y ) :=
‖X,Y ‖
|X| |Y | d(X,Y )

the density of the pair (X,Y ). (This is a real number between 0 and 1.) density

Given some ε > 0, we call a pair (A,B) of disjoint sets A,B ⊆ V ε-regular
if all X ⊆ A and Y ⊆ B with ε-regular

pair

|X| > ε |A| and |Y | > ε |B|
satisfy ∣∣d(X,Y )− d(A,B)

∣∣ 6 ε .

The edges in an ε-regular pair are thus distributed fairly uniformly: the
smaller ε, the more uniform their distribution.

Consider a partition {V0, V1, . . . , Vk } of V in which one set V0 has
been singled out as an exceptional set . (This exceptional set V0 may exceptional

set
be empty.3) We call such a partition an ε-regular partition of G if it
satisfies the following three conditions:

(i) |V0| 6 ε |V |; ε-regular
partition

(ii) |V1| = . . . = |Vk|;
(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 6 i < j 6 k are

ε-regular.

The role of the exceptional set V0 is one of pure convenience: it
makes it possible to require that all the other partition sets have exactly
the same size. Since condition (iii) affects only the sets V1, . . . , Vk, we

3 So V0 may be an exception also to our terminological rule that partition sets
are not normally empty.
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may think of V0 as a kind of bin: its vertices are disregarded when
the uniformity of the partition is assessed, but there are only few such
vertices.

Lemma 7.2.1. (Regularity Lemma)
For every ε > 0 and every integer m > 1 there exists an integer M[ 9.2.2 ]

such that every graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk } with m 6 k 6 M .

The regularity lemma thus says that, given any ε > 0, every graph
has an ε-regular partition into a bounded number of sets. The upper
bound M on the number of partition sets ensures that for large graphs
the partition sets are large too; note that ε-regularity is trivial when
the partition sets are singletons, and a powerful property when they are
large. In addition, the lemma allows us to specify a lower bound m on
the number of partition sets; by choosing m large, we may increase the
proportion of edges running between different partition sets (rather than
inside one), i.e. the proportion of edges that are subject to the regularity
assertion.

Note that the regularity lemma is designed for use with dense
graphs:4 for sparse graphs it becomes trivial, because all densities of
pairs—and hence their differences—tend to zero (Exercise 22).

The remainder of this section is devoted to the proof of the regu-
larity lemma. Although the proof is not difficult, a reader meeting the
regularity lemma here for the first time is likely to draw more insight
from seeing how the lemma is typically applied than from studying the
technicalities of its proof. Any such reader is encouraged to skip to the
start of Section 7.3 now and come back to the proof at his or her leisure.

We shall need the following inequality for reals µ1, . . . , µk > 0 and
e1, . . . , ek > 0: ∑ e2

i

µi
> (

∑
ei)

2∑
µi

. (1)

This follows from the Cauchy-Schwarz inequality
∑
a2
i

∑
b2i > (

∑
aibi)2

by taking ai :=
√
µi and bi := ei/

√
µi.

Let G = (V,E) be a graph and n := |V |. For disjoint sets A,B ⊆ VG = (V,E)

we definen

q(A,B) :=
|A| |B|
n2

d2(A,B) =
‖A,B‖2
|A| |B|n2

.q(A,B)

For partitions A of A and B of B we set

q(A,B) :=
∑

A′∈A; B′∈B
q(A′, B′) ,q(A,B)

4 Sparse versions do exist, though; see the notes.
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and for a partition P = {C1, . . . , Ck } of V we let

q(P) :=
∑
i<j

q(Ci, Cj) . q(P)

However, if P = {C0, C1, . . . , Ck } is a partition of V with exceptional
set C0, we treat C0 as a set of singletons and define

q(P) := q(P̃) ,

where P̃ :=
{
C1, . . . , Ck

}
∪
{
{ v } : v ∈ C0

}
. P̃

The function q(P) plays a pivotal role in the proof of the regularity
lemma. On the one hand, it measures the uniformity of the partition P:
if P has too many irregular pairs (A,B), we may take the pairs (X,Y ) of
subsets violating the regularity of the pairs (A,B) and make those sets
X and Y into partition sets of their own; as we shall prove, this refines
P into a partition for which q is substantially greater than for P. Here,
‘substantial’ means that the increase of q(P) is bounded below by some
constant depending only on ε. On the other hand,

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci| |Cj |
n2

d2(Ci, Cj)

6 1
n2

∑
i<j

|Ci| |Cj |

6 1 .

The number of times that q(P) can be increased by a constant is thus
also bounded by a constant—in other words, after some bounded number
of refinements our partition will be ε-regular! To complete the proof of
the regularity lemma, all we have to do then is to note how many sets
that last partition can possibly have if we start with a partition into m
sets, and to choose this number as our desired bound M .

Let us make all this precise. We begin by showing that, when we
refine a partition, the value of q will not decrease:

Lemma 7.2.2.

(i) Let C,D ⊆ V be disjoint. If C is a partition of C and D is a
partition of D, then q(C,D) > q(C,D).

(ii) If P,P ′ are partitions of V and P ′ refines P, then q(P ′) > q(P).
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Proof . (i) Let C =: {C1, . . . , Ck } and D =: {D1, . . . , D` }. Then

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1
n2

∑
i,j

‖Ci, Dj‖
2

|Ci| |Dj |

>
(1)

1
n2

(∑
i,j ‖Ci, Dj‖

)2∑
i,j |Ci| |Dj |

=
1
n2

‖C,D‖2(∑
i |Ci|

)(∑
j |Dj |

)
= q(C,D) .

(ii) Let P =: {C1, . . . , Ck }, and for i = 1, . . . , k let Ci be the parti-
tion of Ci induced by P ′. Then

q(P) =
∑
i<j

q(Ci, Cj)

6
(i)

∑
i<j

q(Ci, Cj)

6 q(P ′) ,

since q(P ′) =
∑
i q(Ci) +

∑
i<j q(Ci, Cj). ¤

Next, we show that refining a partition by subpartitioning an ir-
regular pair of partition sets increases the value of q a little; since we are
dealing here with a single pair only, the amount of this increase will still
be less than any constant.

Lemma 7.2.3. Let ε > 0, and let C,D ⊆ V be disjoint. If (C,D) is not
ε-regular, then there are partitions C = (C1, C2) of C and D = (D1, D2)
of D such that

q(C,D) > q(C,D) + ε4
|C| |D|
n2

.

Proof . Suppose (C,D) is not ε-regular. Then there are sets C1 ⊆ C and
D1 ⊆ D with |C1| > ε |C| and |D1| > ε |D| such that

|η| > ε (2)

for η := d(C1, D1)− d(C,D). Let C := {C1, C2 } and D := {D1, D2 },η

where C2 := C rC1 and D2 := DrD1.
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Let us show that C and D satisfy the conclusion of the lemma. We
shall write ci := |Ci|, di := |Di|, eij := ‖Ci, Dj‖, c := |C|, d := |D| ci, di, eij

and e := ‖C,D‖. As in the proof of Lemma 7.2.2, c, d, e

q(C,D) =
1
n2

∑
i,j

e2
ij

cidj

=
1
n2

(
e2

11

c1d1
+
∑
i+j>2

e2
ij

cidj

)

>
(1)

1
n2

(
e2

11

c1d1
+

(e− e11)2

cd− c1d1

)
.

By definition of η, we have e11 = c1d1e/cd+ ηc1d1, so

n2 q(C,D) > 1
c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd− c1d1

(
cd− c1d1

cd
e− ηc1d1

)2

=
c1d1e

2

c2d2
+

2eηc1d1

cd
+ η2c1d1

+
cd− c1d1

c2d2
e2− 2eηc1d1

cd
+

η2c21d
2
1

cd− c1d1

> e2

cd
+ η2c1d1

>
(2)

e2

cd
+ ε4cd

since c1 > εc and d1 > εd by the choice of C1 and D1. ¤

Finally, we show that if a partition has enough irregular pairs of
partition sets to fall short of the definition of an ε-regular partition,
then subpartitioning all those pairs at once results in an increase of q by
a constant:

Lemma 7.2.4. Let 0 < ε 6 1/4, and let P = {C0, C1, . . . , Ck }
be a partition of V , with exceptional set C0 of size |C0| 6 εn and
|C1| = . . . = |Ck| =: c. If P is not ε-regular, then there is a partition c

P ′ = {C ′0, C ′1, . . . , C′` } of V with exceptional set C ′0, where k 6 ` 6 k4k,
such that |C ′0| 6 |C0|+n/2k, all other sets C ′i have equal size, and

q(P ′) > q(P) + ε5/2 .
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Proof . For all 1 6 i < j 6 k, let us define a partition Cij of Ci andCij
a partition Cji of Cj , as follows. If the pair (Ci, Cj) is ε-regular, we let
Cij := {Ci } and Cji := {Cj }. If not, then by Lemma 7.2.3 there are
partitions Cij of Ci and Cji of Cj with |Cij | = |Cji| = 2 and

q(Cij , Cji) > q(Ci, Cj) + ε4
|Ci| |Cj |
n2

= q(Ci, Cj) +
ε4c2

n2
. (3)

For each i = 1, . . . , k, let Ci be the unique minimal partition of Ci thatCi
refines every partition Cij with j 6= i. (In other words, if we consider two
elements of Ci as equivalent whenever they lie in the same partition set
of Cij for every j 6= i, then Ci is the set of equivalence classes.) Thus,
|Ci| 6 2k−1. Now consider the partition

C := {C0 }∪
k⋃
i=1

CiC

of V , with C0 as exceptional set. Then C refines P, and

k 6 |C| 6 k2k. (4)

Let C0 :=
{
{ v } : v ∈ C0

}
. Now if P is not ε-regular, then for moreC0

than εk2 of the pairs (Ci, Cj) with 1 6 i < j 6 k the partition Cij is
non-trivial. Hence, by our definition of q for partitions with exceptional
set, and Lemma 7.2.2 (i),

q(C) =
∑

16i<j
q(Ci, Cj) +

∑
16i

q(C0, Ci) +
∑
06i

q(Ci)

>
∑

16i<j
q(Cij , Cji) +

∑
16i

q
(
C0, {Ci }

)
+ q(C0)

>
(3)

∑
16i<j

q(Ci, Cj) + εk2 ε
4c2

n2
+
∑
16i

q
(
C0, {Ci }

)
+ q(C0)

= q(P) + ε5
(
kc

n

)2

> q(P) + ε5/2 .

(For the last inequality, recall that |C0| 6 εn 6 1
4n, so kc > 3

4n.)
In order to turn C into our desired partition P ′, all that remains to

do is to cut its sets up into pieces of some common size, small enough that
all remaining vertices can be collected into the exceptional set without
making this too large. Let C ′1, . . . , C

′
` be a maximal collection of dis-

joint sets of size d := bc/4kc such that each C ′i is contained in somed
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C ∈ Cr {C0 }, and put C ′0 := V r
⋃
C ′i. Then P ′ = {C ′0, C ′1, . . . , C′` } P ′

is indeed a partition of V . Moreover, P̃ ′ refines C̃, so

q(P ′) > q(C) > q(P) + ε5/2

by Lemma 7.2.2 (ii). Since each set C ′i 6= C ′0 is also contained in one
of the sets C1, . . . , Ck, but no more than 4k sets C ′i can lie inside the
same Cj (by the choice of d), we also have k 6 ` 6 k4k as required.
Finally, the sets C ′1, . . . , C

′
` use all but at most d vertices from each set

C 6= C0 of C. Hence,

|C ′0| 6 |C0|+ d |C|

6
(4)
|C0|+

c

4k
k2k

= |C0|+ ck/2k

6 |C0|+n/2k.
¤

The proof of the regularity lemma now follows easily by repeated
application of Lemma 7.2.4:

Proof of Lemma 7.2.1. Let ε > 0 and m > 1 be given; without loss ε,m

of generality, ε 6 1/4. Let s := 2/ε5. This number s is an upper bound s

on the number of iterations of Lemma 7.2.4 that can be applied to a
partition of a graph before it becomes ε-regular; recall that q(P) 6 1 for
all partitions P.

There is one formal requirement which a partition {C0, C1, . . . , Ck }
with |C1| = . . . = |Ck| has to satisfy before Lemma 7.2.4 can be (re-)
applied: the size |C0| of its exceptional set must not exceed εn. With
each iteration of the lemma, however, the size of the exceptional set can
grow by up to n/2k. (More precisely, by up to n/2`, where ` is the
number of other sets in the current partition; but ` > k by the lemma,
so n/2k is certainly an upper bound for the increase.) We thus want
to choose k large enough that even s increments of n/2k add up to at
most 1

2εn, and n large enough that, for any initial value of |C0| < k, we
have |C0| 6 1

2εn. (If we give our starting partition k non-exceptional
sets C1, . . . , Ck, we should allow an initial size of up to k for C0, to be
able to achieve |C1| = . . . = |Ck|.)

So let k > m be large enough that 2k−1 > s/ε. Then s/2k 6 ε/2, k

and hence
k+

s

2k
n 6 εn (5)

whenever k/n 6 ε/2, i.e. for all n > 2k/ε.
Let us now choose M . This should be an upper bound on the

number of (non-exceptional) sets in our partition after up to s iterations
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of Lemma 7.2.4, where in each iteration this number may grow from its
current value r to at most r4r. So let f be the function x 7→ x4x, and
take M := max{ fs(k), 2k/ε }; the second term in the maximum ensuresM

that any n > M is large enough to satisfy (5).
We finally have to show that every graph G = (V,E) of order at

least m has an ε-regular partition {V0, V1, . . . , Vk } with m 6 k 6M . So
let G be given, and let n := |G|. If n 6 M , we partition G into k := nn

singletons, choosing V0 := ∅ and |V1| = . . . = |Vk| = 1. This partition of
G is clearly ε-regular. Suppose now that n > M . Let C0 ⊆ V be minimal
such that k divides |V rC0|, and let {C1, . . . , Ck } be any partition of
V rC0 into sets of equal size. Then |C0| < k, and hence |C0| 6 εn by (5).
Starting with {C0, C1, . . . , Ck } we apply Lemma 7.2.4 again and again,
until the partition of G obtained is ε-regular; this will happen after at
most s iterations, since by (5) the size of the exceptional set in the
partitions stays below εn, so the lemma could indeed be reapplied up to
the theoretical maximum of s times. ¤

7.3 Applying the regularity lemma
The purpose of this section is to illustrate how the regularity lemma
is typically applied in the context of (dense) extremal graph theory.
Suppose we are trying to prove that a certain edge density of a graph G
suffices to force the occurrence of some given subgraph H, and that we
have an ε-regular partition of G. The edges inside almost all the pairs
(Vi, Vj) of partition sets are distributed uniformly, although their density
may depend on the pair. But sinceG has many edges, this density cannot
be zero for all the pairs: some sizeable proportion of the pairs will have
positive density. Now if G is large, then so are the pairs: recall that
the number of partition sets is bounded, and they have equal size. But
any large enough bipartite graph with equal partition sets, fixed positive
edge density (however small!) and a uniform distribution of edges will
contain any given bipartite subgraph5—this will be made precise below.
Thus if enough pairs in our partition of G have positive density that H
can be written as the union of bipartite graphs each arising in one of
those pairs, we may hope that H ⊆ G as desired.

These ideas will be formalized by Lemma 7.3.2 below. We shall then
use this and the regularity lemma to prove the Erdős-Stone theorem
from Section 7.1; another application will be given later, in the proof of
Theorem 9.2.2.

Before we state Lemma 7.3.2, let us note a simple consequence of
the ε-regularity of a pair (A,B): for any subset Y ⊆ B that is not too

5 Readers already acquainted with random graphs may find it instructive to com-
pare this statement with Proposition 11.3.1.
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small, most vertices of A have about the expected number of neighbours
in Y :

Lemma 7.3.1. Let (A,B) be an ε-regular pair, of density d say, and let
Y ⊆ B have size |Y | > ε |B|. Then all but at most ε |A| of the vertices
in A have (each) at least (d− ε)|Y | neighbours in Y .

Proof . Let X ⊆ A be the set of vertices with fewer than (d − ε)|Y |
neighbours in Y . Then ‖X,Y ‖ < |X|(d− ε)|Y |, so

d(X,Y ) =
‖X,Y ‖
|X| |Y | < d− ε = d(A,B)− ε .

Since (A,B) is ε-regular, this implies that |X| < ε |A|. ¤

Let G be a graph with an ε-regular partition {V0, V1, . . . , Vk }, with
exceptional set V0 and |V1| = . . . = |Vk| =: `. Given d ∈ (0, 1 ], let R be R

the graph with vertices V1, . . . , Vk in which two vertices are adjacent if
and only if they form an ε-regular pair in G of density > d. We shall call
R a regularity graph of G with parameters ε, ` and d. Given s ∈ N, let regularity

graph
us now replace every vertex Vi of R by a set V si of s vertices, and every V si
edge by a complete bipartite graph between the corresponding s-sets.
The resulting graph will be denoted by Rs. (For R = Kr, for example, Rs

we have Rs = Kr
s .)

The following lemma says that subgraphs of Rs can also be found
in G, provided that ε is small enough and the Vi are large enough. In
fact, the values of ε and ` required depend only on (d and) the maximum
degree of the subgraph:

Lemma 7.3.2. For all d ∈ (0, 1 ] and ∆ > 1 there exists an ε0 > 0 with [ 9.2.2 ]

the following property: if G is any graph, H is a graph with ∆(H) 6 ∆,
s ∈ N, and R is any regularity graph of G with parameters ε 6 ε0,
` > s/ε0 and d, then

H ⊆ Rs ⇒ H ⊆ G .

Proof . Given d and ∆, choose ε0 < d small enough that d,∆

∆ + 1
(d− ε0)∆

ε0 6 1 ; (1) ε0

such a choice is possible, since (∆ + 1)ε/(d− ε)∆→ 0 as ε→ 0. Now let G,H,R,Rs

G, H, s and R be given as stated. Let {V0, V1, . . . , Vk } be the ε-regular Vi

partition of G that gave rise to R; thus, ε 6 ε0, V (R) = {V1, . . . , Vk } ε, k, `

and |V1| = . . . = |Vk| = `. Let us assume that H is actually a subgraph
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of Rs (not just isomorphic to one), with vertices u1, . . . , uh say. Eachui, h

vertex ui lies in one of the s-sets V sj of Rs; this defines a map σ: i 7→ j.σ

Our aim is to define an embedding ui 7→ vi ∈ Vσ(i) of H in G; thus,vi

v1, . . . , vh will be distinct, and vivj will be an edge of G whenever uiuj
is an edge of H.

Our plan is to choose the vertices v1, . . . , vh inductively. Throughout
the induction, we shall have a ‘target set’ Yi ⊆ Vσ(i) assigned to each i;
this contains the vertices that are still candidates for the choice of vi.
Initially, Yi is the entire set Vσ(i). As the embedding proceeds, Yi will
get smaller and smaller (until it collapses to { vi } when vi is chosen):
whenever we choose a vertex vj with j < i and ujui ∈ E(H), we delete
all those vertices from Yi that are not adjacent to vj . The set Yi thus
evolves as

Vσ(i) = Y 0
i ⊇ . . . ⊇ Y ii = { vi } ,

where Y ji denotes the version of Yi current after the definition of vj (and
any corresponding deletion of vertices from Y j−1

i ).
In order to make this approach work, we have to ensure that the

target sets Yi do not get too small. When we come to embed a vertex uj ,
we consider all the indices i > j with ujui ∈ E(H); there are at most ∆
such i. For each of these i, we wish to select vj so that

Y ji = N(vj)∩Y j−1
i (2)

is large, i.e. not much smaller than Y j−1
i . Now this can be done by

Lemma 7.3.1 (with A = Vσ(j), B = Vσ(i) and Y = Y j−1
i ): unless Y j−1

i

is tiny (of size less than ε`), all but at most ε` choices of vj will be such
that (2) implies

|Y ji | > (d− ε)|Y j−1
i | . (3)

Doing this simultaneously for all of the at most ∆ values of i considered,
we find that all but at most ∆ε` choices of vj from Vσ(j), and in particular
from Y j−1

j ⊆ Vσ(j), satisfy (3) for all i.
It remains to show that the sets Y considered for Lemma 7.3.1 above

are indeed never tiny, and that |Y j−1
j |−∆ε` > s to ensure that a suitable

choice for vj exists: since σ(j′) = σ(j) for at most s− 1 of the vertices
uj′ with j′ < j, a choice between s suitable candidates for vj will suffice
to keep vj distinct from v1, . . . , vj−1. But all this follows from our choice
of ε0. Indeed, the initial target sets Y 0

i have size `, and each Yi has
vertices deleted from it only when some vj with j < i and ujui ∈ E(H)
is defined, which happens at most ∆ times. Thus,

|Y ji | −∆ε` >
(3)

(d− ε)∆`−∆ε` > (d− ε0)∆`−∆ε0` >
(1)

ε0` > s

whenever j < i, so in particular |Y ji | > ε0` > ε` and |Y j−1
j | −∆ε` > s.

¤
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We are now ready to prove the Erdős-Stone theorem.

Proof of Theorem 7.1.2. Let r > 2 and s > 1 be given as in the (7.1.1)
(7.1.4)

statement of the theorem. For s = 1 the assertion follows from Turán’s
theorem, so we assume that s > 2. Let γ > 0 be given; this γ will play

r, s
γ

the role of the ε of the theorem. Let G be a graph with |G| =: n and

‖G‖ > tr−1(n) + γn2. ‖G‖

(Thus, γ < 1.) We want to show that Kr
s ⊆ G if n is large enough.

Our plan is to use the regularity lemma to show that G has a regu-
larity graph R dense enough to contain a Kr by Turán’s theorem. Then
Rs contains a Kr

s , so we may hope to use Lemma 7.3.2 to deduce that
Kr
s ⊆ G.

On input d := γ and ∆ := ∆(Kr
s ), Lemma 7.3.2 returns an ε0 > 0; d,∆

since the lemma’s assertion about ε0 becomes weaker when ε0 is made ε0

smaller, we may assume that

ε0 < γ/2 < 1 . (1)

To apply the regularity lemma, let m > 1/γ and choose ε > 0 small
enough that ε 6 ε0 and m, ε

δ := 2γ− ε2− 4ε− d− 1
m

> 0 ; δ

this is possible, since 2γ− d− 1
m > 0. On input ε and m, the regularity

lemma returns an integer M . Let us assume that M

n > Ms

ε0(1− ε) .
n

Since this number is at least m, the regularity lemma provides us with
an ε-regular partition {V0, V1, . . . , Vk } of G, where m 6 k 6 M ; let k

|V1| = . . . = |Vk| =: `. Then `

n > k` , (2)

and
` =

n− |V0|
k

> n− εn
M

= n
1− ε
M

> s

ε0

by the choice of n. Let R be the regularity graph of G with parameters R

ε, `, d corresponding to the above partition. Since ε6 ε0 and `> s/ε0, the
regularity graph R satisfies the premise of Lemma 7.3.2, and by definition
of ∆ we have ∆(Kr

s ) = ∆. Thus in order to conclude by Lemma 7.3.2
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that Kr
s ⊆ G, all that remains to be checked is that Kr ⊆ R (and hence

Kr
s ⊆ Rs).

Our plan was to show Kr ⊆ R by Turán’s theorem. We thus have to
check that R has enough edges, i.e. that enough ε-regular pairs (Vi, Vj)
have density at least d. This should follow from our assumption that G
has at least tr−1(n) + γn2 edges, i.e. an edge density of about r−2

r−1 + 2γ:
this lies substantially above the approximate edge density r−2

r−1 of the
Turán graph T r−1(k), and hence substantially above any density that
G could have if no more than tr−1(k) of the pairs (Vi, Vj) had density
> d—even if all those pairs had density 1!

Let us then estimate ‖R‖ more precisely. How many edges of G
lie outside ε-regular pairs? At most

(|V0|
2

)
edges lie inside V0, and by

condition (i) in the definition of ε-regularity these are at most 1
2 (εn)2

edges. At most |V0|k` 6 εnk` edges join V0 to other partition sets. The
at most εk2 other pairs (Vi, Vj) that are not ε-regular contain at most
`2 edges each, together at most εk2`2. The ε-regular pairs of insufficient
density (< d) each contain no more than d`2 edges, altogether at most
1
2k

2d`2 edges. Finally, there are at most
(
`
2

)
edges inside each of the

partition sets V1, . . . , Vk, together at most 1
2`

2k edges. All other edges
of G lie in ε-regular pairs of density at least d, and thus contribute to
edges of R. Since each edge of R corresponds to at most `2 edges of G,
we thus have in total

‖G‖ ≤ 1
2ε

2n2 + εnk`+ εk2`2 + 1
2k

2d`2 + 1
2`

2k+ ‖R‖ `2.

Hence, for all sufficiently large n,

‖R‖ ≥ 1
2k

2 ‖G‖− 1
2ε

2n2− εnk`− εk2`2− 1
2dk

2`2− 1
2k`

2

1
2k

2`2

≥
(1,2)

1
2k

2

(
tr−1(n) + γn2− 1

2ε
2n2− εnk`

n2/2
− 2ε− d− 1

k

)
≥
(2)

1
2k

2

(
tr−1(n)
n2/2

+ 2γ− ε2− 4ε− d− 1
m

)

= 1
2k

2

(
tr−1(n)

(
n

2

)−1(
1− 1

n

)
+ δ

)
> 1

2k
2 r− 2
r− 1

> tr−1(k) .

(The strict inequality follows from Lemma 7.1.4.) Therefore Kr ⊆ R by
Theorem 7.1.1, as desired. ¤
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Exercises

1.− Show that K1,3 is extremal without a P 3.

2.− Given k > 0, determine the extremal graphs of chromatic number at
most k.

3. Determine the value of ex(n,K1,r) for all r, n ∈ N.

4. Is there a graph that is edge-maximal without a K3 minor but not
extremal?

5. Show that, for every forest F , the value of ex(n, F ) is bounded above
by a linear function of n.

6.+ Given k > 0, determine the extremal graphs without a matching of
size k.

(Hint. Theorem 2.2.3 and Ex. 10, Ch. 2.)

7. Without using Turán’s theorem, show that the maximum number of
edges in a triangle-free graph of order n > 1 is bn2/4c.

8. Show that

tr−1(n) 6 1
2
n2 r− 2

r− 1
,

with equality whenever r− 1 divides n.

9. Show that tr−1(n)/
(
n
2

)
converges to (r− 2)/(r− 1) as n→∞.

(Hint. tr−1((r− 1)b n
r−1
c) 6 tr−1(n) 6 tr−1((r− 1)d n

r−1
e).)

10.+ Given non-adjacent vertices u, v in a graph G, denote by G [u→ v ] the
graph obtained from G by first deleting all the edges at u and then
joining u to all the neighbours of v. Show that Kr 6⊆ G [u→ v ] if
Kr 6⊆ G. Applying this operation repeatedly to a given extremal graph
for n and Kr, prove that ex(n,Kr) = tr−1(n): in each iteration step,
choose u and v so that the number of edges will not decrease, and so
that eventually a complete multipartite graph is obtained.

11. Show that deleting at most (m− s)(n− t)/s edges from a Km,n will
never destroy all its Ks,t subgraphs.

12. For 0 < s 6 t 6 n let z(n, s, t) denote the maximum number of edges in
a bipartite graph whose partition sets both have size n, and which does
not contain a Ks,t. Show that 2 ex(n,Ks,t) ≤ z(n, s, t) ≤ ex(2n,Ks,t).

13.+ Let 1 6 r 6 n be integers. Let G be a bipartite graph with bipartition
{A,B }, where |A| = |B| = n, and assume that Kr,r 6⊆ G. Show that∑

x∈A

(
d(x)

r

)
6 (r− 1)

(
n

r

)
.

Using the previous exercise, deduce that ex(n,Kr,r) 6 cn2−1/r for some
constant c depending only on r.
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14. The upper density of an infinite graph G is the infimum of all reals α

such that the finite graphs H ⊆ G with ‖H‖
(|H|

2

)−1
> α have bounded

order. Show that this number always takes one of the countably many
values 0, 1, 1

2
, 2

3
, 3

4
, . . ..

(Hint. Erdős-Stone.)

15. Prove the following weakening of the Erdős-Sós conjecture (stated at
the end of Section 7.1): given integers 2 6 k < n, every graph with n
vertices and at least (k− 1)n edges contains every tree with k edges as
a subgraph.

16. Show that, as a general bound for arbitrary n, the bound on ex(n, T )
claimed by the Erdős-Sós conjecture is best possible for every tree T .
Is it best possible even for every n and every T?

17.− Prove the Erdős-Sós conjecture for the case when the tree considered
is a star.

18. Prove the Erdős-Sós conjecture for the case when the tree considered
is a path.

(Hint. Use the result of the next exercise.)

19. Show that every connected graph G contains a path of length at least
min { 2δ(G), |G| − 1 }.

20.− In the definition of an ε-regular pair, what is the purpose of the re-
quirement that |X| > ε |A| and |Y | > ε |B|?

21.− Show that any ε-regular pair in G is also ε-regular in G.

22. Prove the regularity lemma for sparse graphs, that is, for every sequence
(Gn)n∈N of graphs Gn of order n such that ‖Gn‖/n2→ 0 as n→∞.

Notes
The standard reference work for results and open problems in extremal graph
theory (in a very broad sense) is still B. Bollobás, Extremal Graph Theory,
Academic Press 1978. A kind of update on the book is given by its author in
his chapter of the Handbook of Combinatorics (R.L. Graham, M. Grötschel &
L. Lovász, eds.), North-Holland 1995. An instructive survey of extremal graph
theory in the narrower sense of our chapter is given by M. Simonovits in
(L.W. Beineke & R.J. Wilson, eds.) Selected Topics in Graph Theory 2, Aca-
demic Press 1983. This paper focuses among other things on the particular
role played by the Turán graphs. A more recent survey by the same author
can be found in (R.L. Graham & J. Nešetřil, eds.) The Mathematics of Paul
Erdős, Vol. 2, Springer 1996.

Turán’s theorem is not merely one extremal result among others: it is
the result that sparked off the entire line of research. Our proof of Turán’s
theorem is essentially the original one; the proof indicated in Exercise 10 is
due to Zykov.
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Our version of the Erdős-Stone theorem is a slight simplification of the
original. A direct proof, not using the regularity lemma, is given in L. Lovász,
Combinatorial Problems and Exercises (2nd edn.), North-Holland 1993. Its
most fundamental application, Corollary 7.1.3, was only found 20 years after
the theorem, by Erdős and Simonovits (1966).

Of our two bounds on ex(n,Kr,r) the upper one is thought to give the
correct order of magnitude. For vastly off-diagonal complete bipartite graphs
this was verified by J. Kollár, L. Rónyai & T. Szabó, Norm-graphs and bi-
partite Turán numbers, Combinatorica 16 (1996), 399–406, who proved that

ex(n,Kr,s) > crn
2− 1

r when s > r! .
Details about the Erdős-Sós conjecture, including an approximate solu-

tion for large k, can be found in the survey by Komlós and Simonovits cited
below. The case where the tree T is a path (Exercise 18) was proved by
Erdős & Gallai in 1959. It was this result, together with the easy case of stars
(Exercise 17) at the other extreme, that inspired the conjecture as a possible
unifying result.

The regularity lemma is proved in E. Szemerédi, Regular partitions of
graphs, Colloques Internationaux CNRS 260—Problèmes Combinatoires et
Théorie des Graphes, Orsay (1976), 399–401. Our rendering follows an ac-
count by Scott (personal communication). A broad survey on the regular-
ity lemma and its applications is given by J. Komlós & M. Simonovits in
(D. Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2, Proc. Colloq.
Math. Soc. János Bolyai (1996); the concept of a regularity graph and Lem-
ma 7.3.2 are taken from this paper. An adaptation of the regularity lemma
for use with sparse graphs was developed independently by Kohayakawa and
by Rödl; see Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs,
in (F. Cucker & M. Shub, eds.) Foundations of Computational Mathematics,
Selected papers of a conference held at IMPA in Rio de Janeiro, January 1997,
Springer 1997.





8 Substructures in
Sparse Graphs

In this chapter we study how global assumptions about a graph—on its
average degree, chromatic number, or even (large) girth—can force it to
contain a given graph H as a minor or topological minor. As we know
already from Mader’s theorem 3.6.1, there exists a function h such that
an average degree of d(G) > h(r) suffices to create a TKr subgraph
in G, and hence a (topological) H minor if r > |H|. Since a graph
with n vertices and average degree d has 1

2dn edges this shows that, for
every H, there is a ‘constant’ c (depending on H but not on n) such
that a topological H minor occurs in every graph with n vertices and
at least cn edges. Such graphs with a number of edges about linear1 in
their order are called sparse—so this is a chapter about substructures in sparse

sparse graphs.
The first question, then, will be the analogue of Turán’s theorem:

given a positive integer r, what is the minimum value of the above ‘con-
stant’ c for H = Kr, i.e. the smallest growth rate of a function h(r) as
in Theorem 3.6.1? This was a major open problem until very recently;
we present its solution, which builds on some fascinating methods the
problem has inspired over time, in Section 8.1.

If raising the average degree suffices to force the occurrence of a
certain minor, then so does raising any other invariant which in turn
forces up the average degree. For example, if d(G) > c implies H 4 G,
then so will χ(G) > c+ 1 (by Corollary 5.2.3). However, is this best
possible? Even if the value of c above is least possible for d(G) > c to
imply H 4 G, it need not be so for χ(G) > c+ 1 to imply H 4 G. One
of the most famous conjectures in graph theory, the Hadwiger conjecture,

1 Compare the footnote at the beginning of Chapter 7.
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suggests that there is indeed a gap here: while a value of c = c′r
√

log r
(where c′ is independent of both n and r) is best possible for d(G) > c
to imply H 4 G (Section 8.2), the conjecture says that χ(G) > r will
do the same! Thus, if true, then Hadwiger’s conjecture shows that the
effect of a large chromatic number on the occurrence of minors somehow
goes beyond that part which is well-understood: its effect via mere edge
density. We shall consider Hadwiger’s conjecture in Section 8.3.

8.1 Topological minors

In this section we prove that an average degree of cr2 suffices to force
the occurrence of a topological Kr minor in a graph; complete bipartite
graphs show that, up to the constant c, this is best possible (Exercise 5).

The following theorem was proved independently around 1996 by
Bollobás & Thomason and by Komlós & Szemerédi.

Theorem 8.1.1. There exists a c ∈ R such that, for every r ∈ N, every
graph G of average degree d(G) > cr2 contains Kr as a topological
minor.

The proof of this theorem, in which we follow Bollobás & Thomason,
will occupy us for the remainder of this section. A set U ⊆ V (G) will
be called linked (in G) if for any distinct vertices u1, . . . , u2h ∈ U therelinked

are h disjoint paths Pi = u2i−1 . . . u2i in G, i = 1, . . . , h.2 The graph G
itself is (k, `)-linked if every k-set of its vertices contains a linked `-set.(k, `)-linked

How can we hope to find the TKr in G claimed to exist by The-
orem 8.1.1? Our basic approach will be to identify first some r-set X
as a set of branch vertices, and to choose for each x ∈ X a set Yx of
r− 1 neighbours, one for every edge incident with x in the Kr. If the
constant c from the theorem is large enough, the r + r(r − 1) = r2

vertices of X ∪
⋃
Yx can be chosen distinct: by Proposition 1.2.2, G has

a subgraph of minimum degree at least ε(G) = 1
2d(G) > 1

2cr
2, so we

can choose X and its neighbours inside this subgraph. Having fixed X
and the sets Yx, we then have to link up the correct pairs of vertices in
Y :=

⋃
Yx by disjoint paths in G−X, to obtain the desired TKr.

This would be possible at once if Y were linked in G−X. Unfortu-
nately, this is unrealistic to hope for: no average degree, however large,
will force every r(r − 1)-set to be linked. (Why not?) However, if we
pick for X significantly more than the r vertices needed eventually, and
for each x ∈ X significantly more than r− 1 neighbours as Yx, then Y
might become so large that the high average degree of G guarantees the

2 Thus, in a k-linked graph—see Chapter 3.6—every set of up to 2k+ 1 vertices
is linked.



8.1 Topological minors 171

existence of some large linked subset Z ⊆ Y . This would be the case if
G were (k, `)-linked for some k 6 |Y | and ` > |Z|.

As above, a large enough constant c will easily ensure that X and Y
can be chosen with many vertices to spare. Another problem, however,
is more serious: it will not be enough to make ` (and hence Z) large in
absolute terms. Indeed, if k (and Y ) is much larger still, it might happen
that Z, although large, consists of neighbours of only a few vertices in X!
We thus have to ensure that ` is large also relative to k. This will be the
purpose of our first lemma (8.1.2): it establishes a sufficient condition
for G to be (k, dk/2e)-linked.

What is this sufficient condition? It is the assumption that G has a
particularly dense minor H, one whose minimum degree exceeds 1

2 |H|
by a positive fraction of k. (In particular, H will be dense in the sense
of Chapter 7.) In view of Theorem 3.6.2, it is not surprising that such
a dense graph H is highly linked. Given sufficiently high connectivity
of G (which again follows easily if c is large enough), we may then try
to link up the vertices of any Y as above to distinct branch sets of H by
disjoint paths in G avoiding most of the other branch sets, and thus to
transfer the linking properties of H to a dk/2e-set Z ⊆ Y (Fig. 8.1.1).

H

X

Y

Z

x1 x2 x3

Fig. 8.1.1. Finding a TK3 in G with branch vertices x1, x2, x3

What is all the more surprising, however, is that the existence of
such a dense minorH can be deduced from our assumption of d(G)> cr2.
This will be shown in another lemma (8.1.3); the assertion of the theorem
itself will then follow easily.

Lemma 8.1.2. If G is k-connected and has a minor H with 2δ(H) >
|H|+ 3

2k, then G is (k, dk/2e)-linked.
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Proof . Let V := {Vx | x ∈ V (H) } be the set of branch sets in G(3.3.1)

V, Vx corresponding to the vertices of H. For our proof that G is (k, dk/2e)-
linked, let k distinct vertices v1, . . . , vk ∈ G be given. Let us call av1, . . . , vk

sequence P1, . . . , Pk of disjoint paths in G a linkage if the Pi each startlinkage

in vi and end in pairwise distinct sets V ∈ V; the paths Pi themselves will
be called links. Since our assumptions about H imply that |H| > k, andlink

G is k-connected, such linkages exist: just pick k vertices from pairwise
distinct sets V ∈ V, and link them disjointly to { v1, . . . , vk } by Menger’s
theorem.

Now let P = (P1, . . . , Pk) be a linkage whose total number of edgesP
outside

⋃
V ∈V G [V ] is as small as possible. Thus, if f(P ) denotes theP1, . . . , Pk

number of edges of P not lying in any G [Vx ], we choose P so as tof(P )

minimize
∑k
i=1 f(Pi). Then for every V ∈ V that meets a path Pi ∈ P

there exists one such path that ends in V : if not, we could terminate Pi
in V and reduce f(Pi). Thus, exactly k of the branch sets of H meet a
link. Let us divide these sets into two classes:

U := {V ∈ V | V meets exactly one link }
W := {V ∈ V | V meets more than one link } .

U

W

Since H is dense and each U ∈ U meets only one link, it will be easy to
show that the starting vertices vi of those links form a linked set in G.
Hence, our aim is to show that |U| > dk/2e, i.e. that U is no smaller
than W. (Recall that |U|+ |W| = k.) To this end, we first prove the
following:

Every V ∈ W is met by some link which leaves V again
and next meets a set from U (where it ends).

(1)

Suppose Vx ∈ W is a counterexample to (1). Sincex

2δ(H) > |H|+ 3
2k > δ(H) + 3

2k ,

we have δ(H) > 3
2k. As |U ∪W| = k, this implies that x has a neighbour

y in H with Vy ∈ V r (U ∪W); let wxwy be an edge of G with wx ∈ Vx
and wy ∈ Vy. Let Q = w . . . wxwy be a path in G [Vx ∪{wy } ] of whose
vertices only w lies on any link, say on Pi (Fig. 8.1.2). Replacing Pi inPi

P by P ′i := PiwQ then yields another linkage.P ′i
If Pi is not the link ending in Vx, then f(P ′i ) 6 f(Pi). The choice

of P then implies that f(P ′i ) = f(Pi), i.e. that Pi ends in the branch set
W it enters immediately after Vx. Since Vx is a counterexample to (1)
we have W /∈ U , i.e. W ∈ W. Let P 6= Pi be another link meeting W .
Then P does not end in W (because Pi ends there); let P ′ ⊆ P be the
(minimal) initial segment of P that ends in W . If we now replace Pi and
P by P ′i and P ′ in P, we obtain a linkage contradicting the choice of P.
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H

Vx
∈W

wx

P ′ W ∈W

Vy ∈ V r (U ∪W)

P
Pi

w

Pi

wy

P ′
i

Fig. 8.1.2. If Pi does not end in Vx, we replace Pi and P by P ′i
and P ′

We now assume that Pi does end in Vx; then f(P ′i ) = f(Pi) + 1.
As Vx ∈ W, there exists a link Pj that meets Vx and leaves it again; let
P ′j be the initial segment of Pj ending in Vx (Fig 8.1.3). Then f(P ′j) 6
f(Pj)− 1. In fact, since replacing Pi and Pj with P ′i and P ′j in P yields
another linkage, the choice of P implies that f(P ′j) = f(Pj)− 1, so Pj
ends in the branch set W it enters immediately after Vx. Then W ∈ W
as before, so we may define P and P ′ as before. Replacing Pi, Pj and P
by P ′i , P

′
j and P ′ in P, we finally obtain a linkage that contradicts the

choice of P. This completes the proof of (1).

Pi

w

H

wy

P ′ W ∈W

Vy ∈ V r (U ∪W)

P ′
j

Pj
P

Pi

Vx
∈ W

P ′
i

Fig. 8.1.3. If Pi ends in Vx, we replace Pi, Pj , P by P ′i , P
′
j , P

′

With the help of (1) we may define an injection W→U as follows:
given W ∈ W, choose a link that passes through W and next meets a
set U ∈ U , and map W 7→ U . (This is indeed an injection, because
different links end in different branch sets.) Thus |U| > |W|, and hence
|U| > dk/2e.

Let us assume the enumeration of v1, . . . , vk to be such that the
first u := |U| of the links P1, . . . , Pk end in sets from U . Since 2δ(H) > u
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|H|+ 3
2k, we can find for any two sets Vx, Vy ∈ U at least 3

2k sets Vz such
that xz, yz ∈ E(H). At least k/2 of these sets Vz do not lie in U ∪W.
Thus whenever U1, . . . , U2h are distinct sets in U (so h 6 u/2 6 k/2), we
may find inductively h distinct sets V i ∈ Vr (U ∪W) (i = 1, . . . , h) such
that V i is joined in G to both U2i−1 and U2i. For each i, any vertex of
U2i−1 can be linked by a path through V i to any desired vertex of U2i,
and these paths will be disjoint for different i. Joining up the appropriate
pairs of paths from P in this way, we see that the set { v1, . . . , vu } is
linked in G, and the lemma is proved. ¤

Lemma 8.1.3. Let k > 6 be an integer. Then every graph G with
ε(G) > k has a minor H such that 2δ(H) > |H|+ 1

6k.

Proof . We begin by choosing a (4-)minimal minor G0 of G withG0

ε(G0) > k. The minimality of G0 implies that δ(G0) > k and ε(G0) = k
(otherwise we could delete a vertex or an edge of G0), and hence

k+ 1 6 δ(G0) 6 d(G0) = 2k .

Let x0 ∈ G0 be a vertex of minimum degree.x0

If k is odd, let m := (k+ 1)/2 and

G1 := G0 [ {x0 }∪NG0(x0) ] .

Then |G1| = δ(G0) + 1 6 2k + 1 6 2(k + 1) = 4m. By the minimal-
ity of G0, contracting any edge x0y of G0 will result in the loss of at
least k + 1 edges. The vertices x0 and y thus have at least k common
neighbours, so δ(G1) > k+ 1 = 2m (Fig. 8.1.4).

NG0(x0)

x0

y {
> k

Fig. 8.1.4. The graph G1 4 G: a first approximation to the
desired minor H

If k is even, we let m := k/2 and

G1 := G0 [NG0(x0) ] .

Then |G1| = δ(G0) 6 2k = 4m, and δ(G1) > k = 2m as before.
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Thus in either case we have found an integer m > k/2 and a graph m

G1 4 G such that G1

|G1| 6 4m (1)

and δ(G1) > 2m, so

ε(G1) > m > k/2 > 3 . (2)

As 2δ(G1) > 4m > |G1|, our graph G1 is already quite a good
candidate for the desired minor H of G. In order to jack up its value
of 2δ by another 1

6k (as required for H), we shall reapply the above
contraction process to G1, and a little more rigorously than before: step
by step, we shall contract edges as long as this results in a loss of no
more than 7

6m edges per vertex. In other words, we permit a loss of edges
slightly greater than maintaining ε > m seems to allow. (Recall that,
when we contracted G to G0, we put this threshold at ε(G) = k.) If this
second contraction process terminates with a non-empty graph H0, then
ε(H0) will be at least 7

6m, higher than for G1! The 1
6m thus gained will

suffice to give the graph H1, obtained from H0 just as G1 was obtained
from G0, the desired high minimum degree.

But how can we be sure that this second contraction process will
indeed end with a non-empty graph? Paradoxical though it may seem,
the reason is that even a permitted loss of up to 7

6m edges (and one
vertex) per contraction step cannot destroy the m |G1| or more edges
of G1 in the |G1| steps possible: the graphs with fewer than m vertices
towards the end of the process would simply be too small to be able to
shed their allowance of 7

6m edges—and, by (1), these small graphs would
account for about a quarter of the process!

Formally, we shall control the graphs H in the contraction process
not by specifying an upper bound on the number of edges to be discarded
at each step, but by fixing a lower bound for ‖H‖ in terms of |H|. This
bound grows linearly from a value of just above

(
m
2

)
for |H| = m to a

value of less than 4m2 for |H| = 4m. By (1) and (2), H = G1 will satisfy
this bound, but clearly it cannot be satisfied by any H with |H| = m;
so the contraction process must stop somewhere earlier with |H| > m.

To implement this approach, let

f(n) := 1
6m(n−m− 5) f

and
H :=

{
H 4 G1 : ‖H‖ > m |H|+ f(|H|)−

(
m
2

)}
. H

By (1),
f(|G1|) 6 f(4m) = 1

2m
2− 5

6m <
(
m
2

)
,

so G1 ∈ H by (2).
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For every H ∈H, any graph obtained from H by one of the following
three operations will again be in H:

(i) deletion of an edge, if ‖H‖ > m |H|+ f(|H|)−
(
m
2

)
+ 1;

(ii) deletion of a vertex of degree at most 7
6m;

(iii) contraction of an edge xy ∈ H such that x and y have at most
7
6m− 1 common neighbours in H.

Starting with G1, let us apply these operations as often as possible, and
let H0 ∈ H be the graph obtained eventually. SinceH0

‖Km‖ = m |Km| −m−
(
m
2

)
and

f(m) = − 5
6m > −m,

Km does not have enough edges to be in H; thus, H contains no graph
on m vertices. Hence |H0| > m, and in particular H0 6= ∅. Let x1 ∈ H0x1

be a vertex of minimum degree, and put

H1 := H0 [ {x1 }∪NH0(x1) ] .H1

We shall prove that the minimum degree of H := H1 is as large as
claimed in the lemma.

Note first that

δ(H1) > 7
6m. (3)

Indeed, since H0 is minimal with respect to (ii) and (iii), we have d(x1) >
7
6m in H0 (and hence in H1), and every vertex y 6= x1 of H1 has more
than 7

6m − 1 common neighbours with x1 (and hence more than 7
6m

neighbours in H1 altogether). In order to convert (3) into the desired
inequality of the form

2δ(H1) > |H1|+αm ,

we need an upper bound for |H1| in terms of m. Since H0 lies in H but
is minimal with respect to (i), we have

‖H0‖ < m |H0|+
(

1
6m |H0| − 1

6m
2− 5

6m
)
−
(
m
2

)
+ 1

= 7
6m |H0| − 4

6m
2− 1

3m+ 1

6
(2)

7
6m |H0| − 4

6m
2. (4)
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By the choice of x1 and definition of H1, therefore,

|H1| − 1 = δ(H0)

6 2 ε(H0)

<
(4)

7
3m− 4

3m
2/|H0|

6
(1)

7
3m− 1

3m

= 2m,

so |H1| 6 2m. Hence,

2δ(H1) >
(3)

2m+ 1
3m

> |H1|+ 1
3m

>
(2)
|H1|+ 1

6k

as claimed. ¤

Proof of Theorem 8.1.1. We prove the assertion for c := 1116. Let (1.4.2)

G be a graph with d(G) > 1116r2. By Theorem 1.4.2, G has a subgraph
G0 such that G0

κ(G0) > 279r2 > 276r2 + 3r .

Pick a set X := {x1, . . . , x3r } of 3r vertices in G0, and let G1 := G0−X. X

For each i = 1, . . . , 3r choose a set Yi of 5r neighbours of xi in G1; let G1, Yi

these sets Yi be disjoint for different i. (This is possible since δ(G0) >
κ(G0) > 15r2 + |X|.)

As

δ(G1) > κ(G1) > κ(G0)− |X| > 276r2,

we have ε(G1) > 138r2. By Lemma 8.1.3, G1 has a minor H with
2δ(H) > |H|+ 23r2 and is therefore (15r2, 7r2)-linked by Lemma 8.1.2;
let Z ⊆

⋃3r
i=1 Yi be a set of 7r2 vertices that is linked in G1. Z

For all i = 1, . . . , 3r let Zi := Z ∩ Yi. Since Z is linked, it suffices Zi

to find r indices i with |Zi| > r− 1: then the corresponding xi will be
the branch vertices of a TKr in G0. If r such i cannot be found, then
|Zi| 6 r− 2 for all but at most r− 1 indices i. But then

|Z| =
3r∑
i=1

|Zi| 6 (r− 1) 5r+ (2r+ 1)(r− 2) < 7r2 = |Z| ,

a contradiction. ¤
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Although Theorem 8.1.1 already gives a good estimate, it seems
very difficult to determine the exact average degree needed to force a
TKr subgraph, even for small r. We shall come back to the case of
r = 5 in Section 8.3; more results and conjectures are given in the notes.

The following almost counter-intuitive result of Mader implies that
the existence of a topological Kr minor can be forced essentially by large
girth. In the next section, we shall prove the analogue of this for ordinary
minors.

Theorem 8.1.4. (Mader 1997)
For every graph H of maximum degree d > 3 there exists an integer k
such that every graph G of minimum degree at least d and girth at least k
contains H as a topological minor.

As discussed already in Chapter 5.2 and the introduction to Chap-
ter 7, no constant average degree, however large, will force an arbitrary
graph to contain a given graph H as a subgraph—as long as H contains
at least one cycle. By Proposition 1.2.2 and Corollary 1.5.4, on the other
hand, any graph G contains all trees on up to ε(G) + 2 vertices. Large
average degree therefore does ensure the occurrence of any fixed tree T
as a subgraph. What can we say, however, if we would like T to occur
as an induced subgraph?

Here, a large average degree appears to do as much harm as good,
even for graphs of bounded clique number. (Consider, for example,
complete bipartite graphs.) It is all the more remarkable, then, that
the assumption of a large chromatic number rather than a large average
degree seems to make a difference here: according to a conjecture of
Gyárfás, any graph of large enough chromatic number contains either a
large complete graph or any given tree as an induced subgraph. (For-
mally: for every integer r and every tree T , there exists an integer k such
that every graph G with χ(G) > k and ω(G) < r contains an induced
copy of T .)

The weaker topological version of this is indeed true:

Theorem 8.1.5. (Scott 1997)
For every integer r and every tree T there exists an integer k such that
every graph with χ(G) > k and ω(G) < r contains an induced copy of
some subdivision of T .
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8.2 Minors

According to Theorem 8.1.1, an average degree of cr2 suffices to force the
existence of a topological Kr minor in a given graph. If we are content
with any minor, topological or not, an even smaller average degree will
do: in a pioneering paper of 1968, Mader proved that every graph with an
average degree of at least cr log r has a Kr minor. The following result,
the analogue to Theorems 7.1.1 and 8.1.1 for general minors, determines
the precise average degree needed as a function of r, up to a constant c:

Theorem 8.2.1. (Kostochka 1982; Thomason 1984)
There exists a c ∈ R such that, for every r ∈ N, every graph G of average
degree d(G) > c r

√
log r has a Kr minor. Up to the value of c, this

bound is best possible as a function of r.

The easier implication of the theorem, the fact that in general an average
degree of c r

√
log r is needed to force a Kr minor, follows from consider-

ing random graphs, to be introduced in Chapter 11. The converse impli-
cation, the fact that this average degree suffices, is proved by methods
similar to those described in Section 8.1.

Rather than proving Theorem 8.2.1, we therefore devote the remain-
der of this section to another striking result on forcing minors. At first
glance, this result is so surprising that it seems almost paradoxical: as
long as we do not merely subdivide edges, we can force a Kr minor in a
graph simply by raising its girth (Corollary 8.2.3)!

Theorem 8.2.2. (Thomassen 1983)
Given an integer k, every graph G with girth g(G) > 4k−3 and δ(G) > 3
has a minor H with δ(H) > k.

Proof . As δ(G) > 3, every component of G contains a cycle. In particu- (1.5.3)

lar, the assertion is trivial for k 6 2; so let k > 3. Consider the vertex
set V of a component of G, together with a partition {V1, . . . , Vm } of V, Vi

V into as many connected sets Vi with at least 2k− 2 vertices each as m

possible. (Such a partition exists, since |V | > g(G) > 2k− 2 and V is
connected in G.)

We first show that every G [Vi ] is a tree. To this end, let Ti be a
spanning tree of G [Vi ]. If G [Vi ] has an edge e /∈ Ti, then Ti+e contains
a cycle C; by assumption, C has length at least 4k−3. The edge (about)
opposite e on C therefore separates the path C − e, and hence also Ti,
into two components with at least 2k− 2 vertices each. Together with
the sets Vj for j 6= i, these two components form a partition of V into
m+ 1 sets that contradicts the maximality of m.

So each G [Vi ] is indeed a tree, i.e. G [Vi ] = Ti. As δ(G) > 3, the Ti

degrees in G of the vertices in Vi sum to at least 3 |Vi|, while the edges
of Ti account for only 2 |Vi| − 2 in this sum. Hence for each i, G has
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at least |Vi|+ 2 > 2k edges joining Vi to V r Vi. We shall prove that
every Vi sends at most two edges to each of the other Vj ; then Vi must
send edges to at least k of those Vj , so the Vi are the branch sets of an
MH ⊆ G with δ(H) > k.

Suppose, without loss of generality, that G has three V1–V2 edges.
Then there are vertices v1 ∈ V1 and v2 ∈ V2 such that G [V1∪V2 ] contains
three independent v1–v2 paths P1, P2, P3 (Fig. 8.2.1). At most one of

V1 V2

v1

v2

P ′
2

P ′
3

P3

P ′
1

P1

P2

Fig. 8.2.1. Three edges between V1 and V2

these paths can be shorter than 1
2g(G). We assume that P1 has length

at least d 1
2g(G)e > 2k− 1 and let P ′1 := P̊1; then |P ′1| > 2k− 2. Since

P2 ∪P3 is a cycle of length at least 4k− 3, we can further find disjoint
paths P ′2, P

′
3 ⊆ P2 ∪ P3 with 2k − 2 vertices each. Since G [V1 ∪ V2 ] is

connected, there exists a partition of V1 ∪ V2 into three connected sets
V ′1 , V

′
2 , V

′
3 such that V (P ′i ) ⊆ V ′i for i = 1, 2, 3. Replacing the two sets

V1, V2 in our partition of V with the three sets V ′1 , V
′
2 , V

′
3 , we obtain a

partition of V that contradicts the maximality of m. ¤

The following combination of Theorems 8.2.1 and 8.2.2 brings out
the paradoxical character of the latter particularly well:

Corollary 8.2.3. There exists a c ∈ R such that, for every r ∈ N, every
graph G with girth g(G) > c r

√
log r and δ(G) > 3 has a Kr minor.

Proof . We prove the corollary for c := 4c′, where c′ is the constant from
Theorem 8.2.1. Let G be given as stated. By Theorem 8.2.2, G has a
minor H with δ(H) > c′r

√
log r. By Theorem 8.2.1, H (and hence G)

has a Kr minor. ¤
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8.3 Hadwiger’s conjecture

As we saw in the preceding two sections, an average degree of c r
√

log r
suffices to force an arbitrary graph to have a Kr minor, and an average
degree of cr2 forces it to have a topological Kr minor. If we replace
‘average degree’ above with ‘chromatic number’ then, with almost the
same constants c, the two assertions remain true: this is because every
graph with chromatic number k has a subgraph of average degree at
least k− 1 (Corollary 5.2.3).

Although both functions above, c r
√

log r and cr2, are best possible
(up to the constant c) for the said implications with ‘average degree’,
the question arises whether they are still best possible with ‘chromat-
ic number’—or whether some slower-growing function would do in that
case. What is lurking behind this problem about growth rates, of course,
is a fundamental question about the nature of the invariant χ: can this
invariant have some direct structural effect on a graph in terms of forcing
concrete substructures, or is its effect no greater than that of the ‘un-
structural’ property of having lots of edges somewhere, which it implies
trivially?

Neither for general nor for topological minors is the answer to this
question known. For general minors, however, the following conjecture
of Hadwiger suggests a positive answer; the conjecture is considered by
many as one of the deepest open problems in graph theory.

Conjecture. (Hadwiger 1943)
The following implication holds for every integer r > 0 and every
graph G:

χ(G) > r ⇒ G < Kr.

Hadwiger’s conjecture is trivial for r 6 2, easy for r = 3 and r = 4
(exercises), and equivalent to the four colour theorem for r = 5 and
r = 6. For r > 7, the conjecture is open. Rephrased as G < Kχ(G), it is
true for almost all graphs.3 In general, the conjecture for r+ 1 implies
it for r (exercise).

The Hadwiger conjecture for any fixed r is equivalent to the asser-
tion that every graph without a Kr minor has an (r− 1)-colouring. In
this reformulation, the conjecture raises the question of what the graphs
without a Kr minor look like: any sufficiently detailed structural de-
scription of those graphs should enable us to decide whether or not they
can be (r− 1)-coloured.

For r = 3, for example, the graphs without a Kr minor are precisely
the forests (why?), and these are indeed 2-colourable. For r = 4, there

3 See Chapter 11 for the notion of ‘almost all’.
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is also a simple structural characterization of the graphs without a Kr

minor:

Proposition 8.3.1. A graph with at least three vertices is edge-maximal[ 12.4.2 ]

without a K4 minor if and only if it can be constructed recursively from
triangles by pasting4 along K2s.

Proof . Recall first that every MK4 contains a TK4, because ∆(K4) = 3(1.7.2)
(4.4.4)

(Proposition 1.7.2); the graphs without a K4 minor thus coincide with
those without a topological K4 minor. The proof that any graph con-
structible as described is edge-maximal without a K4 minor is left as an
easy exercise; in order to deduce Hadwiger’s conjecture for r = 4, we
only need the converse implication anyhow. We prove this by induction
on |G|.

Let G be given, edge-maximal without a K4 minor. If |G| = 3 then
G is itself a triangle, so let |G| > 4 for the induction step. Then G is
not complete; let S ⊆ V (G) be a separating set with |S| = κ(G), and let
C1, C2 be distinct components of G−S. Since S is a minimal separator,
every vertex in S has a neighbour in C1 and another in C2. If |S| > 3,
this implies that G contains three independent paths P1, P2, P3 between
a vertex v1 ∈ C1 and a vertex v2 ∈ C2. Since κ(G) = |S| > 3, the graph
G−{ v1, v2 } is connected and contains a (shortest) path P between two
different Pi. Then P ∪P1 ∪P2 ∪P3 = TK4, a contradiction.

Hence κ(G) 6 2, and the assertion follows from Lemma 4.4.45 and
the induction hypothesis. ¤

One of the interesting consequences of Proposition 8.3.1 is that all
the edge-maximal graphs without a K4 minor have the same number of
edges, and are thus all ‘extremal’:

Corollary 8.3.2. Every edge-maximal graph G without a K4 minor
has 2 |G| − 3 edges.

Proof . Induction on |G|. ¤

Corollary 8.3.3. Hadwiger’s conjecture holds for r = 4.

Proof . If G arises from G1 and G2 by pasting along a complete graph,
then χ(G) = max {χ(G1), χ(G2) } (see the proof of Proposition 5.5.2).
Hence, Proposition 8.3.1 implies by induction on |G| that all edge-maxi-
mal (and hence all) graphs without a K4 minor can be 3-coloured. ¤

4 This was defined formally in Chapter 5.5.
5 The proof of this lemma is elementary and can be read independently of the

rest of Chapter 4.
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It is also possible to prove Corollary 8.3.3 by a simple direct argument
(Exercise 13).

By the four colour theorem, Hadwiger’s conjecture for r = 5 follows
from the following structure theorem for the graphs without a K5 minor,
just as it follows from Proposition 8.3.1 for r = 4. The proof of Theorem
8.3.4 is similar to that of Proposition 8.3.1, but considerably longer. We
therefore state the theorem without proof:

Theorem 8.3.4. (Wagner 1937)
Let G be an edge-maximal graph without a K5 minor. If |G| > 4 then
G can be constructed recursively, by pasting along triangles and K2s,
from plane triangulations and copies of the graph W (Fig. 8.3.1).

==

Fig. 8.3.1. Three representations of the Wagner graph W

Using Corollary 4.2.8, one can easily compute which of the graphs 4.2.8

constructed as in Theorem 8.3.4 have the most edges. It turns out that
these extremal graphs without aK5 minor have no more edges than those
that are extremal with respect to {MK5,MK3,3 }, i.e. the maximal
planar graphs:

Corollary 8.3.5. A graph with n vertices and no K5 minor has at most
3n− 6 edges. ¤

Since χ(W ) = 3, Theorem 8.3.4 and the four colour theorem imply
Hadwiger’s conjecture for r = 5:

Corollary 8.3.6. Hadwiger’s conjecture holds for r = 5. ¤

The Hadwiger conjecture for r = 6 is again substantially more dif-
ficult than the case r = 5, and again it relies on the four colour theo-
rem. The proof shows (without using the four colour theorem) that any
minimal-order counterexample arises from a planar graph by adding one
vertex—so by the four colour theorem it is not a counterexample after all.

Theorem 8.3.7. (Robertson, Seymour & Thomas 1993)
Hadwiger’s conjecture holds for r = 6.
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By Corollary 8.3.5, any graph with n vertices and more than 3n−6
edges contains an MK5. In fact, it even contains a TK5. This incon-
spicuous improvement is another deep result that had been conjectured
for over 30 years:

Theorem 8.3.8. (Mader 1998)
Every graph with n vertices and more than 3n− 6 edges contains K5 as
a topological minor.

No structure theorem for the graphs without a TK5, analogous to
Proposition 8.3.1 and Theorem 8.3.4, is known. However, Mader has
characterized those with the greatest possible number of edges:

Theorem 8.3.9. (Mader 1997)
A graph is extremal without a TK5 if and only if it can be constructed
recursively from maximal planar graphs by pasting along triangles.

Exercises

1. Prove, from first principles, the theorem of Wagner (1964) that every
graph of chromatic number at least 2r contains Kr as a minor.

(Hint. Apply induction on r.)

2. Prove, from first principles, the result of Mader (1967) that every graph
of average degree at least 2r−2 contains Kr as a minor.

(Hint. Induction on r.)

3.− Derive Wagner’s theorem (Ex. 1) from Mader’s theorem (Ex. 2).

4.+ Given an integer r > 0, find an integer k such that every grid with k
additional edges has a Kr minor, provided that all the ends of the new
edges have distance at least k in the grid both from each other and
from the grid boundary. (Grids are defined in Chapter 12.3.)

5.+ Show that any function h as in Theorem 3.6.1 satisfies the inequality
h(r) > 1

8
r2 for all even r, and hence that Theorem 8.1.1 is best possible

up to the value of the constant c.

6. Prove the statement of Lemma 8.1.3 for k < 6.

7. Explain how exactly the term of 1
6
k in the statement of Lemma 8.1.3

is used in the proof of Theorem 8.1.1. Could it be replaced by k/1000,
or by zero?

8. Explain how exactly the number 7
6

in the proof of Lemma 8.1.3 was
arrived at. Could it be replaced by 3

2
?
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9.+ For which trees T is there a function f :N→N tending to infinity, such
that every graphG with χ(G)< f(d(G)) contains an induced copy of T?
(In other words: can we force the chromatic number up by raising the
average degree, as long as T does not occur as an induced subgraph?
Or, as in Gyárfás’s conjecture: will a large average degree force an
induced copy of T if the chromatic number is kept small?)

10.− Derive the four colour theorem from Hadwiger’s conjecture for r = 5.

11.− Show that Hadwiger’s conjecture for r+ 1 implies the conjecture for r.

12.− Using the results from this chapter, prove the following weakening of
Hadwiger’s conjecture: given any ε > 0, every graph of chromatic num-
ber at least r1+ε has a Kr minor, provided that r is large enough.

13.+ Prove Hadwiger’s conjecture for r = 4 from first principles.

14.+ Prove Hadwiger’s conjecture for line graphs.

15. (i)− Show that Hadwiger’s conjecture is equivalent to the statement
that G < Kχ(G) for all graphs G.

(ii) Show that any minimum-order counterexample G to Hadwiger’s
conjecture (as rephrased above) satisfies Kχ(G)−1 6⊆ G and has a con-
nected complement.

16. Show that any graph constructed as in Theorem 8.3.1 is edge-maximal
without a K4 minor.

17. Prove the implication δ(G) > 3 ⇒ G ⊇ TK4.

(Hint. Theorem 8.3.1.)

18. A multigraph is called series-parallel if it can be constructed recursively
from aK2 by the operations of subdividing and of doubling edges. Show
that a 2-connected multigraph is series-parallel if and only if it has no
(topological) K4 minor.

19. Prove Corollary 8.3.5.

20. Characterize the graphs with n vertices and more than 3n− 6 edges
that contain no TK3,3. In particular, determine ex(n, TK3,3).

(Hint. By a theorem of Wagner, every edge-maximal graph without a
K3,3 minor can be constructed recursively from maximal planar graphs
and copies of K5 by pasting along K2s.)

21. By a theorem of Pelikán, every graph of minimum degree at least 4
contains a subdivision of K5

−, a K5 minus an edge. Using this theorem,
prove Thomassen’s 1974 result that every graph with n > 5 vertices
and at least 4n− 10 edges contains a TK5.

(Hint. Show by induction on |G| that if ‖G‖ > 4n− 10 then for every
vertex x ∈ G there is a TK5 ⊆ G in which x is not a branch vertex.)
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Notes

The investigation of graphs not containing a given graph as a minor, or to-
pological minor, has a long history. It probably started with Wagner’s 1935
PhD thesis, in which he sought to ‘detopologize’ the four colour problem by
classifying the graphs without a K5 minor. His hope was to be able to show
abstractly that all those graphs were 4-colourable; since the graphs without
a K5 minor include the planar graphs, this would amount to a proof of the
four colour conjecture involving no topology whatsoever. The result of Wag-
ner’s efforts, Theorem 8.3.4, falls tantalizingly short of this goal: although it
succeeds in classifying the graphs without a K5 minor in structural terms,
planarity re-emerges as one of the criteria used in the classification. From this
point of view, it is instructive to compare Wagner’s K5 theorem with similar
classification theorems, such as his analogue for K4 (Proposition 8.3.1), where
the graphs are decomposed into parts from a finite set of irreducible graphs.
See R. Diestel, Graph Decompositions, Oxford University Press 1990, for more
such classification theorems.

Despite its failure to resolve the four colour problem, Wagner’s K5 struc-
ture theorem had consequences for the development of graph theory like few
others. To mention just two: it prompted Hadwiger to make his famous conjec-
ture; and it inspired the notion of a tree-decomposition, which is fundamental
to the work of Robertson and Seymour on minors (see Chapter 12). Wagner
himself responded to Hadwiger’s conjecture with a proof that, in order to force
a Kr minor, it does suffice to raise the chromatic number of a graph to some
value depending only on r (Exercise 1). This theorem then, along with its
analogue for topological minors proved independently by Dirac and by Jung,
prompted the question of which average degree suffices to force the desired
minor.

The deepest contribution in this field of research was no doubt made
by Mader, in a series of papers from the late sixties. Our proof of Lemma
8.1.3 is presented intentionally in a step-by-step fashion, to bring out some of
Mader’s ideas. Mader’s own proof—not to mention that of Thomason’s best
possible version of the lemma, as used in the original proof of Theorem 8.1.1—
is wrapped up so elegantly that it becomes hard to see the ideas behind it.
Except for this lemma, our proof of Theorem 8.1.1 follows B. Bollobás &
A.G. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on to-
pological complete subgraphs, Europ. J. Combinatorics 19 (1998), 883–887.
The constant c from the theorem was shown by J. Komlós & E. Szemerédi,
Topological cliques in graphs II, Combinatorics, Probability and Computing 5
(1996), 79–90, to be no greater than about 1

2
, which is not far from the lower

bound of 1
8

given in Exercise 5.

Theorem 8.1.4 is from W. Mader, Topological subgraphs in graphs of large
girth, Combinatorica 18 (1998), 405–412. For H = Kr, the theorem says that
every graph G with δ(G) > r− 1 and g(G) large contains a TKr. For r = 5,
Mader conjectured that g(G) > 5 should be enough, and that the requirement
of δ(G) > 4 could be weakened further: he conjectured that any graph of girth
at least 5, large enough order n, and 2n−4 or more edges has a topological K5

minor. (To see that this implies the minimum degree version of the conjecture
even for small order, consider enough disjoint copies of the given graph.) For
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general H, Mader improved Theorem 8.1.4 by weakening the requirement of
δ(G) > d to d(G) > d−1+ ε for arbitrary ε > 0 (where now the girth k required
to force a TH in such graphs G depends on ε as well as on H); see W. Mader,
Subdivisions of a graph of maximal degree n+ 1 in graphs of average degree
n+ ε and large girth, manuscript 1999.

Theorem 8.1.5 is due to A.D. Scott, Induced trees in graphs of large chro-
matic number, J. Graph Theory 24 (1997), 297–311. Theorem 8.2.1 was
proved independently by Kostochka (1982; English translation: A.V. Kostoch-
ka, Lower bounds of the Hadwiger number of graphs by their average degree,
Combinatorica 4 (1984), 307–316) and by A.G. Thomason, An extremal func-
tion for contractions of graphs, Math. Proc. Camb. Phil. Soc. 95 (1984), 261–
265. Theorem 8.2.2 was taken from Thomassen’s survey, Paths, Circuits and
Subdivisions, in (L.W. Beineke & R.J. Wilson, eds.) Selected Topics in Graph
Theory 3, Academic Press 1988.

The proof of Hadwiger’s conjecture for r = 4, hinted at in Exercise 13, is
given by Hadwiger himself in the 1943 paper containing his conjecture. For a
while, there was a counterpart to Hadwiger’s conjecture for topological minors,
the conjecture of Hajós that χ(G) > r even implies G ⊇ TKr. A counterex-
ample to this conjecture was found in 1979 by Catlin; a little later, Erdős and
Fajtlowicz even proved that Hajós’s conjecture is false for almost all graphs
(see Chapter 11).

Mader’s Theorem 8.3.8 that 3n−5 edges force a topological K5 minor had
been conjectured by Dirac in 1964. Its proof comprises two papers: W. Mader,
3n− 5 edges do force a subdivision of K5, Combinatorica 18 (1998), 569–595;
and W. Mader, An extremal problem for subdivisions of K−5 , J. Graph Theory
30 (1999), 261–276. His proof of Theorem 8.3.9 has not been published yet.
Dirac’s conjecture has been extended by Seymour, who conjectures that every
5-connected non-planar graph should contain a TK5 (unpublished).





9 Ramsey Theory
for Graphs

In this chapter we set out from a type of problem which, on the face of
it, appears to be similar to the theme of the last two chapters: what kind
of substructures are necessarily present in every large enough graph?

The regularity lemma of Chapter 7.2 provides one possible answer
to this question, saying as it does that every (large) graph G contains
large random-like bipartite subgraphs. If we are looking for more defi-
nite substructures, however, such as subgraphs isomorphic to some given
graphs H, then these H will have to be sufficiently complementary in
kind to cater for the variety allowed for G. For example: given an
integer r, does every large enough graph contain either a Kr or an in-
duced Kr? Does every large enough connected graph contain either a
Kr or else a large induced path or star?

Despite its similarity to extremal problems in that we are looking
for local implications of global assumptions, the above type of question
leads to a kind of mathematics with a distinctive flavour of its own.
Indeed, the theorems and proofs in this chapter have more in common
with similar results in algebra or geometry, say, than with most other
areas of graph theory. The study of their underlying methods, therefore,
is generally regarded as a combinatorial subject in its own right: the
discipline of Ramsey theory .

In line with the subject of this book, we shall focus on results that
are naturally expressed in terms of graphs. Even from the viewpoint of
general Ramsey theory, however, this is not as much of a limitation as
it might seem: graphs are a natural setting for Ramsey problems, and
the material in this chapter brings out a sufficient variety of ideas and
methods to convey some of the fascination of the theory as a whole.
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9.1 Ramsey’s original theorems
In its simplest version, Ramsey’s theorem says that, given an integer
r > 0, every large enough graphG contains eitherKr orKr as an induced
subgraph. At first glance, this may seem surprising: after all, we need
about (r− 2)/(r− 1) of all possible edges to force a Kr subgraph in G
(Cor. 7.1.3), but neither G nor G can be expected to have more than half
the total number of edges. However, as the Turán graphs illustrate well,
squeezing many edges into G without creating a Kr imposes additional
structure on G, which may help us find an induced Kr.

So how could we go about proving Ramsey’s theorem? Let us try
to build a Kr or Kr in G inductively, starting with an arbitrary vertex
v1 ∈ V1 := V (G). If |G| is large, there will be a large set V2 ⊆ V1r{ v1 }
of vertices that are either all adjacent to v1 or all non-adjacent to v1.
Accordingly, we may think of v1 as the first vertex of a Kr or Kr whose
other vertices all lie in V2. Let us then choose another vertex v2 ∈ V2

for our Kr or Kr. Since V2 is large, it will have a subset V3, still fairly
large, of vertices that are all ‘of the same type’ with respect to v2 as
well: either all adjacent or all non-adjacent to it. We then continue our
search for vertices inside V3, and so on (Fig. 9.1.1).

v1 v1

v2

V2 V3

Fig. 9.1.1. Choosing the sequence v1, v2, . . .

How long can we go on in this way? This depends on the size of
our initial set V1: each set Vi has at least half the size of its predeces-
sor Vi−1, so we shall be able to complete s construction steps if G has
order about 2s. As the following proof shows, the choice of s = 2r− 3
vertices vi suffices in order to find among them the vertices of a Kr

or Kr.

Theorem 9.1.1. (Ramsey 1930)
For every r ∈ N there exists an n ∈ N such that every graph of order at[ 9.2.2 ]

least n contains either Kr or Kr as an induced subgraph.

Proof . The assertion is trivial for r 6 1; we assume that r > 2. Let
n := 22r−3, and let G be a graph of order at least n. We shall define
a sequence V1, . . . , V2r−2 of sets and choose vertices vi ∈ Vi with the
following properties:

(i) |Vi| = 22r−2−i (i = 1, . . . , 2r− 2);
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(ii) Vi ⊆ Vi−1r { vi−1 } (i = 2, . . . , 2r− 2);
(iii) vi−1 is adjacent either to all vertices in Vi or to no vertex in Vi

(i = 2, . . . , 2r− 2).

Let V1 ⊆ V (G) be any set of 22r−3 vertices, and pick v1 ∈ V1 arbitrarily.
Then (i) holds for i = 1, while (ii) and (iii) hold trivially. Suppose now
that Vi−1 and vi−1 ∈ Vi−1 have been chosen so as to satisfy (i)–(iii) for
i− 1, where 1 < i 6 2r− 2. Since

|Vi−1r { vi−1 }| = 22r−1−i− 1

is odd, Vi−1 has a subset Vi satisfying (i)–(iii); we pick vi ∈ Vi arbitrarily.
Among the 2r−3 vertices v1, . . . , v2r−3, there are r−1 vertices that

show the same behaviour when viewed as vi−1 in (iii), being adjacent
either to all the vertices in Vi or to none. Accordingly, these r−1 vertices
and v2r−2 induce either a Kr or a Kr in G, because vi, . . . , v2r−2 ∈ Vi
for all i. ¤

The least integer n associated with r as in Theorem 9.1.1 is the Ramsey
number R(r) of r; our proof shows that R(r) 6 22r−3. In Chapter 11 we

Ramsey
number
R(r)shall use a simple probabilistic argument to show that R(r) is bounded

below by 2r/2 (Theorem 11.1.3).

It is customary in Ramsey theory to think of partitions as colourings:
a colouring of (the elements of) a set X with c colours, or c-colouring for c-colouring

short, is simply a partition of X into c classes (indexed by the ‘colours’).
In particular, these colourings need not satisfy any non-adjacency re-
quirements as in Chapter 5. Given a c-colouring of [X]k, the set of all [X]k

k-subsets of X, we call a set Y ⊆ X monochromatic if all the elements
of [Y ]k have the same colour,1 i.e. belong to the same of the c partition

mono-
chromatic

classes of [X]k. Similarly, if G = (V,E) is a graph and and all the edges
of H ⊆ G have the same colour in some colouring of E, we call H a mono-
chromatic subgraph of G, speak of a red (green, etc.) H in G, and so on.

In the above terminology, Ramsey’s theorem can be expressed as
follows: for every r there exists an n such that, given any n-set X, every
2-colouring of [X]2 yields a monochromatic r-set Y ⊆ X. Interesting-
ly, this assertion remains true for c-colourings of [X]k with arbitrary c
and k—with almost exactly the same proof!

To avoid repetition, we shall use this opportunity to demonstrate a
common alternative proof technique: we first prove an infinite version
of the general Ramsey theorem (which is easier, because we need not
worry about numbers), and then deduce the finite version by a so-called
compactness argument .

1 Note that Y is called monochromatic, but it is the elements of [Y ]k, not of Y ,
that are (equally) coloured.
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Theorem 9.1.2. Let k, c be positive integers, and X an infinite set. If[ 12.1.1 ]

[X]k is coloured with c colours, then X has an infinite monochromatic
subset.

Proof . We prove the theorem by induction on k, with c fixed. For k = 1
the assertion holds, so let k > 1 and assume the assertion for smaller
values of k.

Let [X]k be coloured with c colours. We shall construct an infinite
sequence X0, X1, . . . of infinite subsets of X and choose elements xi ∈ Xi

with the following properties (for all i):

(i) Xi+1 ⊆ Xir {xi };
(ii) all k-sets {xi } ∪ Z with Z ∈ [Xi+1]k−1 have the same colour,

which we associate with xi.

We start with X0 := X and pick x0 ∈ X0 arbitrarily. By assumption,
X0 is infinite. Having chosen an infinite set Xi and xi ∈ Xi for some i,
we c-colour [Xir {xi }]k−1 by giving each set Z the colour of {xi }∪Z
from our c-colouring of [X]k. By the induction hypothesis, Xi r {xi }
has an infinite monochromatic subset, which we choose as Xi+1. Clearly,
this choice satisfies (i) and (ii). Finally, we pick xi+1 ∈ Xi+1 arbitrarily.

Since c is finite, one of the c colours is associated with infinitely
many xi. These xi form an infinite monochromatic subset of X. ¤

To deduce the finite version of Theorem 9.1.2, we make use of a
standard graph-theoretical tool in combinatorics:

Lemma 9.1.3. (König’s Infinity Lemma)
Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite sets,
and let G be a graph on their union. Assume that every vertex v in a
set Vn with n > 1 has a neighbour f(v) in Vn−1. Then G contains an
infinite path v0v1 . . . with vn ∈ Vn for all n.

V0

V1 V2 V3

f(v)

f(f( v))

v

Fig. 9.1.2. König’s infinity lemma

Proof . Let P be the set of all paths of the form v f(v) f(f(v)) . . . ending
in V0. Since V0 is finite but P is infinite, infinitely many of the paths in
P end at the same vertex v0 ∈ V0. Of these paths, infinitely many also
agree on their penultimate vertex v1 ∈ V1, because V1 is finite. Of those
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paths, infinitely many agree even on their vertex v2 in V2—and so on.
Although the set of paths considered decreases from step to step, it is
still infinite after any finite number of steps, so vn gets defined for every
n ∈ N. By definition, each vertex vn is adjacent to vn−1 on one of those
paths, so v0v1 . . . is indeed an infinite path. ¤

Theorem 9.1.4. For all k, c, r > 1 there exists an n > k such that every [ 9.3.3 ]

n-set X has a monochromatic r-subset with respect to any c-colouring
of [X]k.

Proof . As is customary in set theory, we denote by n ∈ N (also) the
set { 0, . . . , n− 1 }. Suppose the assertion fails for some k, c, r. Then for k, c, r

every n > k there exist an n-set, without loss of generality the set n, and
a c-colouring [n]k→ c such that n contains no monochromatic r-set. Let
us call such colourings bad ; we are thus assuming that for every n > k

bad
colouring

there exists a bad colouring of [n]k. Our aim is to combine these into a
bad colouring of [N]k, which will contradict Theorem 9.1.2.

For every n > k let Vn 6= ∅ be the set of bad colourings of [n]k. For
n > k, the restriction f(g) of any g ∈ Vn to [n− 1]k is still bad, and
hence lies in Vn−1. By the infinity lemma, there is an infinite sequence
gk, gk+1, . . . of bad colourings gn ∈ Vn such that f(gn) = gn−1 for all
n > k. For every m > k, all colourings gn with n > m agree on [m]k, so
for each Y ∈ [N]k the value of gn(Y ) coincides for all n > max Y . Let
us define g(Y ) as this common value gn(Y ). Then g is a bad colouring
of [N]k: every r-set S ⊆ N is contained in some sufficiently large n,
so S cannot be monochromatic since g coincides on [n]k with the bad
colouring gn. ¤

The least integer n associated with k, c, r as in Theorem 9.1.4 is the
Ramsey number for these parameters; we denote it by R(k, c, r).

Ramsey
number
R(k, c, r)

9.2 Ramsey numbers

Ramsey’s theorem may be rephrased as follows: if H = Kr and G
is a graph with sufficiently many vertices, then either G itself or its
complement G contains a copy of H as a subgraph. Clearly, the same is
true for any graph H, simply because H ⊆ Kh for h := |H|.

However, if we ask for the least n such that every graph G with
n vertices has the above property—this is the Ramsey number R(H)

Ramsey
number
R(H)of H—then the above question makes sense: if H has only few edges, it

should embed more easily in G or G, and we would expect R(H) to be
smaller than the Ramsey number R(h) = R(Kh).

A little more generally, let R(H1, H2) denote the least n ∈ N such R(H1, H2)

that H1 ⊆ G or H2 ⊆ G for every graph G of order n. For most graphs
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H1, H2, only very rough estimates are known for R(H1, H2). Interesting-
ly, lower bounds given by random graphs (as in Theorem 11.1.3) are often
sharper than even the best bounds provided by explicit constructions.

The following proposition describes one of the few cases where exact
Ramsey numbers are known for a relatively large class of graphs:

Proposition 9.2.1. Let s, t be positive integers, and let T be a tree of
order t. Then R(T,Ks) = (s− 1)(t− 1) + 1.

Proof . The disjoint union of s− 1 graphs Kt−1 contains no copy of T ,(5.2.3)
(1.5.4)

while the complement of this graph, the complete (s− 1)-partite graph
Ks−1
t−1 , does not contain Ks. This proves R(T,Ks) > (s− 1)(t− 1) + 1.

Conversely, let G be any graph of order n = (s−1)(t−1) + 1 whose
complement contains no Ks. Then s > 1, and in any vertex colouring
of G (in the sense of Chapter 5) at most s−1 vertices can have the same
colour. Hence, χ(G) > dn/(s− 1)e = t. By Corollary 5.2.3, G has a
subgraph H with δ(H) > t−1, which by Corollary 1.5.4 contains a copy
of T . ¤

As the main result of this section, we shall now prove one of those
rare general theorems providing a relatively good upper bound for the
Ramsey numbers of a large class of graphs, a class defined in terms
of a standard graph invariant. The theorem deals with the Ramsey
numbers of sparse graphs: it says that the Ramsey number of graphs H
with bounded maximum degree grows only linearly in |H|—an enormous
improvement on the exponential bound from the proof of Theorem 9.1.1.

Theorem 9.2.2. (Chvátal, Rödl, Szemerédi & Trotter 1983)
For every positive integer ∆ there is a constant c such that

R(H) 6 c |H|

for all graphs H with ∆(H) 6 ∆.

Proof . The basic idea of the proof is as follows. We wish to show that
(7.1.1)
(7.2.1)
(7.3.2)
(9.1.1) H ⊆ G or H ⊆ G if |G| is large enough (though not too large). Consider

an ε-regular partition of G, as provided by the regularity lemma. If
enough of the ε-regular pairs in this partition have positive density, we
may hope to find a copy of H in G. If most pairs have zero or low density,
we try to find H in G. Let R, R′ and R′′ be the ‘regularity graphs’2 of
G whose edges correspond to the pairs of density > 0; > 1/2; < 1/2;
respectively. Then R is the edge-disjoint union of R′ and R′′.

Now to obtain H ⊆ G or H ⊆ G, it suffices by Lemma 7.3.2 to
ensure that H is contained in a suitable ‘inflated regularity graph’ R′s

2 Later, we shall define R′′ a little differently, so that it complies with our formal
definition of a regularity graph.
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or R′′s . Since χ(H) 6 ∆(H)+1 6 ∆+1, this will be the case if s > α(H)
and we can find a K∆+1 in R′ or in R′′. But that is easy to ensure: we
just need that Kr ⊆ R, where r is the Ramsey number of ∆ + 1, which
will follow from Turán’s theorem because R is dense.

For the formal proof let now ∆ > 1 be given. On input d := 1/2 ∆, d

and ∆, Lemma 7.3.2 returns an ε0; since the lemma’s assertion about ε0 ε0

becomes weaker if ε0 is made smaller, we may assume that ε0 < 1. Let
m := R(∆ + 1) be the Ramsey number of ∆ + 1. Let ε 6 ε0 be positive m, ε

but small enough that, for k = m (and hence for all k > m),

2ε <
1

m− 1
− 1
k
. (1)

Finally, let M be the integer returned by the regularity lemma (7.2.1) M

on input ε and m.
All the quantities defined so far depend only on ∆. We shall prove

the theorem with
c :=

M

ε0 (1− ε) . c

So let H with ∆(H) 6 ∆ be given, and let s := |H|. Let G be an s

arbitrary graph of order n > c |H|; we show that H ⊆ G or H ⊆ G. G,n

By Lemma 7.2.1, G has an ε-regular partition {V0, V1, . . . , Vk } with k

exceptional set V0 and |V1| = . . . = |Vk| =: `, where m 6 k 6 M . Then `

` =
n− |V0|

k
> n− εn

M
= n

1− ε
M

> cs
1− ε
M

=
s

ε0
. (2)

Let R be the regularity graph with parameters ε, `, 0 corresponding to R

this partition. By definition, R has k vertices and

‖R‖ >
(
k

2

)
− εk2

= 1
2k

2
(

1− 1
k
− 2ε

)
>
(1)

1
2k

2
(

1− 1
k
− 1
m− 1

+
1
k

)
= 1

2k
2 m− 2
m− 1

> tm−1(k)

edges. By Theorem 7.1.1, therefore, R has a subgraph K = Km. K

We now colour the edges of R with two colours: red if the edge
corresponds to a pair (Vi, Vj) of density at least 1/2, and green otherwise.
Let R′ be the spanning subgraph of R formed by the red edges, and R′′
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the spanning subgraph of R formed by the green edges and those whose
corresponding pair has density exactly 1/2. Then R′ is a regularity graph
of G with parameters ε, ` and 1/2. And R′′ is a regularity graph of G,
with the same parameters: as one easily checks, every pair (Vi, Vj) that
is ε-regular for G is also ε-regular for G.

By definition of m, our graph K contains a red or a green Kr, for
r := χ(H) 6 ∆ + 1. Correspondingly, H ⊆ R′s or H ⊆ R′′s . Since ε 6 ε0r

and ` > s/ε0 by (2), both R′ and R′′ satisfy the requirements of Lemma
7.3.2, so H ⊆ G or H ⊆ G as desired. ¤

So far in this section, we have been asking what is the least order of a
graph G such that every 2-colouring of its edges yields a monochromatic
copy of some given graph H. Rather than focusing on the order of G, we
might alternatively try to minimize G itself, with respect to the subgraph
relation. Given a graph H, let us call a graph G Ramsey-minimal for HRamsey-

minimal
if G is minimal with the property that every 2-colouring of its edges
yields a monochromatic copy of H.

What do such Ramsey-minimal graphs look like? Are they unique?
The following result, which we include for its pretty proof, answers the
second question for some H:

Proposition 9.2.3. If T is a tree but not a star, then infinitely many
graphs are Ramsey-minimal for T .

Proof . Let |T | =: r. We show that for every n ∈ N there is a graph of
(1.5.4)
(5.2.3)
(11.2.2) order at least n that is Ramsey-minimal for T .

Let us borrow the assertion of Theorem 11.2.2 from Chapter 11: by
that theorem, there exists a graph G with chromatic number χ(G) > r2

and girth g(G) > n. If we colour the edges of G red and green, then the
red and the green subgraph cannot both have an r-(vertex-)colouring in
the sense of Chapter 5: otherwise we could colour the vertices of G with
the pairs of colours from those colourings and obtain a contradiction
to χ(G) > r2. So let G′ ⊆ G be monochromatic with χ(G′) > r. By
Corollary 5.2.3, G′ has a subgraph of minimum degree at least r, which
contains a copy of T by Corollary 1.5.4.

Let G∗ ⊆ G be Ramsey-minimal for T . Clearly, G∗ is not a for-
est: the edges of any forest can be 2-coloured (partitioned) so that no
monochromatic subforest contains a path of length 3, let alone a copy
of T . (Here we use that T is not a star, and hence contains a P 3.) So G∗

contains a cycle, which has length g(G) > n since G∗ ⊆ G. In particular,
|G∗| > n as desired. ¤
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9.3 Induced Ramsey theorems

Ramsey’s theorem can be rephrased as follows. For every graph H = Kr

there exists a graph G such that every 2-colouring of the edges of G
yields a monochromatic H ⊆ G; as it turns out, this is witnessed by
any large enough complete graph as G. Let us now change the problem
slightly and ask for a graph G in which every 2-edge-colouring yields
a monochromatic induced H ⊆ G, where H is now an arbitrary given
graph.

This slight modification changes the character of the problem dra-
matically. What is needed now is no longer a simple proof that G is
‘big enough’ (as for Theorem 9.1.1), but a careful construction: the
construction of a graph that, however we bipartition its edges, contains
an induced copy of H with all edges in one partition class. We shall call
such a graph a Ramsey graph for H. Ramsey

graph
The fact that such a Ramsey graph exists for every choice of H is

one of the fundamental results of graph Ramsey theory. It was proved
around 1973, independently by Deuber, by Erdős, Hajnal & Pósa, and
by Rödl.

Theorem 9.3.1. Every graph has a Ramsey graph. In other words, for
every graph H there exists a graph G that, for every partition {E1, E2 }
of E(G), has an induced subgraph H with E(H) ⊆ E1 or E(H) ⊆ E2.

We give two proofs. Each of these is highly individual, yet each offers a
glimpse of true Ramsey theory: the graphs involved are used as hardly
more than bricks in the construction, but the edifice is impressive.

First proof. In our construction of the desired Ramsey graph we shall
repeatedly replace vertices of a graph G = (V,E) already constructed
by copies of another graph H. For a vertex set U ⊆ V let G [U →H ] G [U→H ]

denote the graph obtained from G by replacing the vertices u ∈ U with
copies H(u) of H and joining each H(u) completely to all H(u′) with H(u)

uu′ ∈ E and to all vertices v ∈ V rU with uv ∈ E (Fig. 9.3.1). Formally,

U

G

Fig. 9.3.1. A graph G [U→H ] with H = K3
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G [U→H ] is the graph on

(U ×V (H)) ∪ ((V rU)×{∅ })

in which two vertices (v, w) and (v′, w′) are adjacent if and only if either
vv′ ∈ E, or else v = v′ ∈ U and ww′ ∈ E(H).3

We prove the following formal strengthening of Theorem 9.3.1:

G(H1, H2)

For any two graphs H1, H2 there exists a graph G =
G(H1, H2) such that every edge colouring of G with the
colours 1 and 2 yields either an induced H1 ⊆ G with all
its edges coloured 1 or an induced H2 ⊆ G with all its
edges coloured 2.

(∗)

This formal strengthening makes it possible to apply induction on
|H1|+ |H2|, as follows.

If either H1 or H2 has no edges (in particular, if |H1|+ |H2| 6 1),
then (∗) holds with G = Kn for large enough n. For the induction step,
we now assume that both H1 and H2 have at least one edge, and that
(∗) holds for all pairs (H ′1, H

′
2) with smaller |H ′1|+ |H ′2|.

For each i = 1, 2, pick a vertex xi ∈ Hi that is incident with anxi

edge. Let H ′i := Hi−xi, and let H ′′i be the subgraph of H ′i induced byH′i, H
′′
i

the neighbours of xi.
We shall construct a sequence G0, . . . , Gn of disjoint graphs; Gn will

be the desired Ramsey graph G(H1, H2). Along with the graphs Gi, we
shall define subsets V i ⊆ V (Gi) and a map

f :V 1 ∪ . . .∪V n→V 0 ∪ . . .∪V n−1

such that
f(V i) = V i−1 (1)

for all i > 1. Writing f i := f ◦ . . . ◦ f for the i-fold composition of ff i

whenever it is defined, and f0 for the identity map on V 0 = V (G0), we
thus have f i(v) ∈ V 0 for all v ∈ V i. We call f i(v) the origin of v.origin

The subgraphs Gi [V i ] will reflect the structure of G0 as follows:

Vertices in V i with different origins are adjacent in Gi if
and only if their origins are adjacent in G0.

(2)

Assertion (2) will not be used formally in the proof below. However,
it can help us to visualize the graphs Gi: every Gi (more precisely, every
Gi [V i ]—there will also be some vertices x ∈ Gi−V i) is essentially an
inflated copy of G0 in which every vertexw ∈ G0 has been replaced by

3 The replacement of V rU by (V rU)×{∅ } is just a formal device to ensure
that all vertices of G [U →H ] have the same form (v, w), and that G [U →H ] is
formally disjoint from G.
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the set of all vertices in V i with origin w, and the map f links vertices
with the same origin across the various Gi.

By the induction hypothesis, there are Ramsey graphs

G1 := G(H1, H
′
2) and G2 := G(H ′1, H2) . G1, G2

Let G0 be a copy of G1, and set V 0 := V (G0). Let W ′0, . . . ,W
′
n−1 be the G0, V 0

subsets of V 0 spanning an H ′2 in G0. Thus, n is defined as the number W ′i
of induced copies of H ′2 in G0, and we shall construct a graph Gi for n

every set W ′i−1, i = 1, . . . , n. Since H1 has an edge, n > 1: otherwise
G0 could not be a G(H1, H

′
2). For i = 0, . . . , n− 1, let W ′′i be the image W ′′i

of V (H ′′2 ) under some isomorphism H ′2→G0 [W ′i ].
Assume now that G0, . . . , Gi−1 and V 0, . . . , V i−1 have been defined

for some i > 1, and that f has been defined on V 1 ∪ . . . ∪ V i−1 and
satisfies (1) for all j 6 i. We expand Gi−1 to Gi in two steps. For the
first step, consider the set U i−1 of all the vertices v ∈ V i−1 whose origin U i−1

f i−1(v) lies in W ′′i−1. (For i = 1, this gives U0 = W ′′0 .) Expand Gi−1

to a graph G̃i−1 by replacing every vertex u ∈ U i−1 with a copy G2(u) G2(u)

of G2, i.e. let

G̃i−1 := Gi−1 [U i−1→G2 ] G̃i−1

(see Figures 9.3.2 and 9.3.3). Set f(u′) := u for all u ∈ U i−1 and

G0

u
W ′

0 W ′′
0

v

G1

V 1

H ′
1(u)

H ′′
1 (u)

x(F )

v′G2(u)

u′

Fig. 9.3.2. The construction of G1

u′ ∈ G2(u), and f(v′) := v for all v′ = (v, ∅) with v ∈ V i−1 r U i−1.
(Recall that (v, ∅) is simply the unexpanded copy of a vertex v ∈ Gi−1

in G̃i−1.) Let V i be the set of those vertices v′ or u′ of G̃i−1 for which V i

f has thus been defined, i.e. the vertices that either correspond directly
to a vertex v in V i−1 or else belong to an expansion G2(u) of such a
vertex u. Then (1) holds for i. Also, if we assume (2) inductively for
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i− 1, then (2) holds again for i (in G̃i−1). The graph G̃i−1 is already
the ‘essential part’ of Gi: the part that looks like an inflated copy of G0.

In the second step we now extend G̃i−1 to the desired graph Gi by
adding some further vertices x /∈ V i. Let F denote the set of all familiesF
F of the form

F =
(
H ′1(u) | u ∈ U i−1

)
,

where each H ′1(u) is an induced subgraph of G2(u) isomorphic to H ′1.H′1(u)

(Less formally: F is the collection of ways to select from each G2(u)
exactly one induced copy of H ′1.) For each F ∈ F , add a vertex x(F )x(F )

to G̃i−1 and join it to all the vertices of H ′′1 (u) for every u ∈ U i−1,
where H ′′1 (u) is the image of H ′′1 under some isomorphism H ′1→H ′1(u)H′′1 (u)

(Fig. 9.3.2). Denote the resulting graph by Gi. This completes theGi

inductive definition of the graphs G0, . . . , Gn.
Let us now show that G := Gn satisfies (∗). To this end, we prove

the following assertion (∗∗) about Gi for i = 0, . . . , n:

For every edge colouring with the colours 1 and 2, Gi con-
tains either an induced H1 coloured 1, or an induced H2

coloured 2, or an induced subgraph H coloured 2 such that
V (H) ⊆ V i and the restriction of f i to V (H) is an isomor-
phism between H and G0 [W ′k ] for some k ∈ { i, . . . , n−1 }.

(∗∗)

Note that the third of the above cases cannot arise for i = n, so (∗∗) for
n is equivalent to (∗) with G := Gn.

For i = 0, (∗∗) follows from the choice of G0 as a copy of G1 =
G(H1, H

′
2) and the definition of the sets W ′k. Now let 1 6 i 6 n, and

assume (∗∗) for smaller values of i.
Let an edge colouring of Gi be given. For each u ∈ U i−1 there is a

copy of G2 in Gi:
Gi ⊇ G2(u) ' G(H ′1, H2) .

If G2(u) contains an induced H2 coloured 2 for some u ∈ U i−1, we are
done. If not, then every G2(u) has an induced subgraph H ′1(u) ' H ′1
coloured 1. Let F be the family of these graphs H ′1(u), one for each
u ∈ U i−1, and let x := x(F ). If, for some u ∈ U i−1, all the x–H ′′1 (u)x

edges in Gi are also coloured 1, we have an induced copy of H1 in Gi

and are again done. We may therefore assume that each H ′′1 (u) has a
vertex yu for which the edge xyu is coloured 2. Letyu

Û i−1 := { yu | u ∈ U i−1 } ⊆ V i.Û i−1

Then f defines an isomorphism from

Ĝi−1 := Gi
[
Û i−1 ∪

{
(v, ∅) | v ∈ V (Gi−1)rU i−1

} ]
Ĝi−1
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to Gi−1: just map every yu to u and every (v, ∅) to v. Our edge colouring
of Gi thus induces an edge colouring of Gi−1. If this colouring yields an
induced H1 ⊆ Gi−1 coloured 1 or an induced H2 ⊆ Gi−1 coloured 2, we
have these also in Ĝi−1 ⊆ Gi and are again home.

By (∗∗) for i−1 we may therefore assume that Gi−1 has an induced
subgraph H ′ coloured 2, with V (H ′) ⊆ V i−1, and such that the restric- H′

tion of f i−1 to V (H ′) is an isomorphism from H ′ to G0 [W ′k ] ' H ′2
for some k ∈ { i− 1, . . . , n− 1 }. Let Ĥ ′ be the corresponding induced Ĥ′

subgraph of Ĝi−1 ⊆ Gi (also coloured 2); then V (Ĥ ′) ⊆ V i,

f i(V (Ĥ ′)) = f i−1(V (H ′)) = W ′k ,

and f i: Ĥ ′→G0 [W ′k ] is an isomorphism.

G0

x2

V 0

W ′
i−1

V i−1

V i

Gi

x

u′u
H ′

G2

y

yu
yu′

′Ĥ

′Ĥ

U i−1

W ′′
i−1

H

G2(u)

H2

H ′
2

H ′

G2

G2

Fig. 9.3.3. A monochromatic copy of H2 in Gi

If k > i, this completes the proof of (∗∗) with H := Ĥ ′; we therefore
assume that k < i, and hence k = i − 1 (Fig. 9.3.3). By definition
of U i−1 and Ĝi−1, the inverse image of W ′′i−1 under the isomorphism
f i: Ĥ ′→G0 [W ′i−1 ] is a subset of Û i−1. Since x is joined to precisely
those vertices of Ĥ ′ that lie in Û i−1, and all these edges xyu have colour 2,
the graph Ĥ ′ and x together induce in Gi a copy of H2 coloured 2, and
the proof of (∗∗) is complete. ¤
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Let us return once more to the reformulation of Ramsey’s theorem
considered at the beginning of this section: for every graph H there
exists a graph G such that every 2-colouring of the edges of G yields
a monochromatic H ⊆ G. The graph G for which this follows at once
from Ramsey’s theorem is a sufficiently large complete graph. If we
ask, however, that G shall not contain any complete subgraphs larger
than those in H, i.e. that ω(G) = ω(H), the problem again becomes
difficult—even if we do not require H to be induced in G.

Our second proof of Theorem 9.3.1 solves both problems at once:
given H, we shall construct a Ramsey graph for H with the same clique
number as H.

For this proof, i.e. for the remainder of this section, let us view
bipartite graphs P as triples (V1, V2, E), where V1 and V2 are the twobipartite

vertex classes and E ⊆ V1 × V2 is the set of edges. The reason for this
more explicit notation is that we want embeddings between bipartite
graphs to respect their bipartitions: given another bipartite graph P ′ =
(V ′1 , V

′
2 , E

′), an injective map ϕ:V1 ∪ V2 → V ′1 ∪ V ′2 will be called an
embedding of P in P ′ if ϕ(Vi) ⊆ V ′i for i = 1, 2 and ϕ(v1)ϕ(v2) is an edgeembedding

P →P ′
of P ′ if and only if v1v2 is an edge of P . (Note that such embeddings
are ‘induced’.) Instead of ϕ:V1 ∪ V2 → V ′1 ∪ V ′2 we may simply write
ϕ:P →P ′.

We need two lemmas.

Lemma 9.3.2. Every bipartite graph can be embedded in a bipartite
graph of the form (X, [X]k, E) with E = {xY | x ∈ Y }.E

Proof . Let P be any bipartite graph, with vertex classes { a1, . . . , an }
and { b1, . . . , bm }, say. Let X be a set with 2n+m elements, say

X = {x1, . . . , xn, y1, . . . , yn, z1, . . . , zm } ;

we shall define an embedding ϕ:P → (X, [X]n+1, E).
Let us start by setting ϕ(ai) := xi for all i = 1, . . . , n. Which

(n+ 1)-sets Y ⊆ X are suitable candidates for the choice of ϕ(bi) for
a given vertex bi? Clearly those adjacent exactly to the images of the
neighbours of bi, i.e. those satisfying

Y ∩{x1, . . . , xn } = ϕ(NP (bi)) . (1)

Since d(bi) 6 n, the requirement of (1) leaves at least one of the n+ 1
elements of Y unspecified. In addition to ϕ(NP (bi)), we may therefore
include in each Y = ϕ(bi) the vertex zi as an ‘index’; this ensures that
ϕ(bi) 6= ϕ(bj) for i 6= j, even when bi and bj have the same neighbours
in P . To specify the sets Y = ϕ(bi) completely, we finally fill them up
with ‘dummy’ elements yj until |Y | = n+ 1. ¤
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Our second lemma already covers the bipartite case of the theorem:
it says that every bipartite graph has a Ramsey graph—even a bipartite
one.

Lemma 9.3.3. For every bipartite graph P there exists a bipartite
graph P ′ such that for every 2-colouring of the edges of P ′ there is
an embedding ϕ:P →P ′ for which all the edges of ϕ(P ) have the same
colour.

Proof . We may assume by Lemma 9.3.2 that P has the form (X, [X]k, E) (9.1.4)

with E = {xY | x ∈ Y }. We show the assertion for the graph P ′ := P,X, k,E

(X ′, [X ′]k
′
, E′), where k′ := 2k− 1, X ′ is any set of cardinality P ′, X′, k′

|X ′| = R
(
k′, 2

(
k′

k

)
, k |X|+ k− 1

)
,

(this is the Ramsey number defined after Theorem 9.1.4), and

E′ := {x′Y ′ | x′ ∈ Y ′ } . E′

Let us then colour the edges of P ′ with two colours α and β. Of the α, β

|Y ′| = 2k− 1 edges incident with a vertex Y ′ ∈ [X ′]k
′
, at least k must

have the same colour. For each Y ′ we may therefore choose a fixed k-set
Z ′ ⊆ Y ′ such that all the edges x′Y ′ with x′ ∈ Z ′ have the same colour; Z′

we shall call this colour associated with Y ′. associated

The sets Z ′ can lie within their supersets Y ′ in
(
k′

k

)
ways, as follows.

Let X ′ be linearly ordered. Then for every Y ′ ∈ [X ′]k
′

there is a unique
order-preserving bijection σY ′ :Y ′→{ 1, . . . , k′ }, which maps Z ′ to one σY ′

of
(
k′

k

)
possible images.

We now colour [X ′]k
′

with the 2
(
k′

k

)
elements of the set

[{ 1, . . . , k′ }]k ×{α, β }

as colours, giving each Y ′ ∈ [X ′]k
′

as its colour the pair (σY ′(Z ′), γ),
where γ is the colour α or β associated with Y ′. Since |X ′| was chosen
as the Ramsey number with parameters k′, 2

(
k′

k

)
and k |X|+ k− 1, we

know that X ′ has a monochromatic subset W of cardinality k |X|+k−1. W

All Z ′ with Y ′ ⊆ W thus lie within their Y ′ in the same way, i.e. there
exists an S ∈ [{ 1, . . . , k′ }]k such that σY ′(Z ′) = S for all Y ′ ∈ [W ]k

′
,

and all Y ′ ∈ [W ]k
′

are associated with the same colour, say with α. α

We now construct the desired embedding ϕ of P in P ′. We first ϕ|X
define ϕ on X =: {x1, . . . , xn }, choosing images ϕ(xi) =: wi ∈ W so xi, wi, n

that wi < wj in our ordering of X ′ whenever i < j. Moreover, we choose
the wi so that exactly k− 1 elements of W are smaller than w1, exactly
k − 1 lie between wi and wi+1 for i = 1, . . . , n− 1, and exactly k − 1
are bigger than wn. Since |W | = kn+ k − 1, this can indeed be done
(Fig. 9.3.4).
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Fig. 9.3.4. The graph of Lemma 9.3.3

We now define ϕ on [X]k. Given Y ∈ [X]k, we wish to chooseϕ|[X]k

ϕ(Y ) =: Y ′ ∈ [X ′]k
′

so that the neighbours of Y ′ among the vertices
in ϕ(X) are precisely the images of the neighbours of Y in P , i.e. the
vertices ϕ(x) with x ∈ Y , and so that all these edges at Y ′ are coloured α.
To find such a set Y ′, we first fix its subset Z ′ as {ϕ(x) | x ∈ Y }
(these are k vertices of type wi) and then extend Z ′ by k′ − k further
vertices u ∈ W r ϕ(X) to a set Y ′ ∈ [W ]k

′
, in such a way that Z ′ lies

correctly within Y ′, i.e. so that σY ′(Z ′) = S. This can be done, because
k− 1 = k′− k other vertices of W lie between any two wi. Then

Y ′ ∩ϕ(X) = Z ′ = {ϕ(x) | x ∈ Y } ,

so Y ′ has the correct neighbours in ϕ(X), and all the edges between Y ′

and these neighbours are coloured α (because those neighbours lie in Z ′

and Y ′ is associated with α). Finally, ϕ is injective on [X]k: the images
Y ′ of different vertices Y are distinct, because their intersections with
ϕ(X) differ. Hence, our map ϕ is indeed an embedding of P in P ′. ¤
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Second proof of Theorem 9.3.1. Let H be given as in the theorem,
and let n := R(r) be the Ramsey number of r := |H|. Then, for every r, n

2-colouring of its edges, the graph K = Kn contains a monochromatic K

copy of H—although not necessarily induced.
We start by constructing a graph G0, as follows. Imagine the ver-

tices of K to be arranged in a column, and replace every vertex by a row
of
(
n
r

)
vertices. Then each of the

(
n
r

)
columns arising can be associated

with one of the
(
n
r

)
ways of embedding V (H) in V (K); let us furnish

this column with the edges of such a copy of H. The graph G0 thus aris-
ing consists of

(
n
r

)
disjoint copies of H and (n− r)

(
n
r

)
isolated vertices

(Fig. 9.3.5).

︸ ︷︷ ︸(
n
r

)

n− r

H

H

H
H

n

r

. . .

︸
︷︷

︸
Fig. 9.3.5. The graph G0

In order to define G0 formally, we assume that V (K) = { 1, . . . , n }
and choose copies H1, . . . , H(nr) of H in K with pairwise distinct vertex
sets. (Thus, on each r-set in V (K) we have one fixed copy Hj of H.)
We then define

V (G0) :=
{

(i, j) | i = 1, . . . , n; j = 1, . . . ,
(
n
r

)}
E(G0) :=

(nr)⋃
j=1

{
(i, j)(i′, j) | ii′ ∈ E(Hj)

}
.

G0

The idea of the proof now is as follows. Our aim is to reduce the
general case of the theorem to the bipartite case dealt with in Lem-
ma 9.3.3. Applying the lemma iteratively to all the pairs of rows of G0,
we construct a very large graph G such that for every edge colouring
of G there is an induced copy of G0 in G that is monochromatic on all
the bipartite subgraphs induced by its pairs of rows, i.e. in which edges
between the same two rows always have the same colour. The projection
of this G0 ⊆ G to { 1, . . . , n } (by contracting its rows) then defines an
edge colouring of K. By the choice of |K|, one of the Hj ⊆ K will be
monochromatic. But this Hj occurs with the same colouring in the jth
column of our G0, where it is an induced subgraph of G0, and hence
of G.
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Formally, we shall define a sequence G0, . . . , Gm of n-partite graphs
Gk, with n-partition {V k1 , . . . , V kn } say, and then let G := Gm. The
graph G0 has been defined above; let V 0

1 , . . . , V
0
n be its rows:

V 0
i :=

{
(i, j) | j = 1, . . . ,

(
n
r

)}
.V 0

i

Now let e1, . . . , em be an enumeration of the edges of K. For k =ek,m

0, . . . ,m− 1, construct Gk+1 from Gk as follows. If ek+1 = i1i2, say,i1, i2

let P = (V ki1 , V
k
i2
, E) be the bipartite subgraph of Gk induced by itsP

i1th and i2th row. By Lemma 9.3.3, P has a bipartite Ramsey graphP ′

P ′ = (W1,W2, E
′). We wish to defineGk+1 ⊇ P ′ in such a way that everyW1,W2

(monochromatic) embedding P →P ′ can be extended to an embedding
Gk→Gk+1. Let {ϕ1, . . . , ϕq } be the set of all embeddings of P in P ′,ϕp, q

and let
V (Gk+1) := V k+1

1 ∪ . . .∪V k+1
n ,

where

V k+1
i :=


W1 for i = i1
W2 for i = i2⋃q
p=1(V ki ×{ p }) for i /∈ { i1, i2 }.

(Thus for i 6= i1, i2, we take as V k+1
i just q disjoint copies of V ki .) We

now define the edge set of Gk+1 so that the obvious extensions of ϕp to
all of V (Gk) become embeddings of Gk in Gk+1: for p = 1, . . . , q, let
ψp:V (Gk)→V (Gk+1) be defined by

ψp(v) :=
{
ϕp(v) for v ∈ P
(v, p) for v /∈ P

and let

E(Gk+1) :=
q⋃
p=1

{ψp(v)ψp(v′) | vv′ ∈ E(Gk) } .

Now for every 2-colouring of its edges, Gk+1 contains an induced copy
ψp(Gk) of Gk whose edges in P , i.e. those between its i1th and i2th row,
have the same colour: just choose p so that ϕp(P ) is the monochromatic
induced copy of P in P ′ that exists by Lemma 9.3.3.

We claim that G := Gm satisfies the assertion of the theorem. So
let a 2-colouring of the edges of G be given. By the construction of
Gm from Gm−1, we can find in Gm an induced copy of Gm−1 such that
for em = ii′ all edges between the ith and the i′th row have the same
colour. In the same way, we find inside this copy of Gm−1 an induced
copy of Gm−2 whose edges between the ith and the i′th row have the
same colour also for ii′ = em−1. Continuing in this way, we finally arrive
at an induced copy of G0 in G such that, for each pair (i, i′), all the
edges between V 0

i and V 0
i′ have the same colour. As shown earlier, this

G0 contains a monochromatic induced copy Hj of H. ¤
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9.4 Ramsey properties and connectivity

According to Ramsey’s theorem, every large enough graph G has a very
dense or a very sparse induced subgraph of given order, a Kr or Kr. If
we assume that G is connected, we can say a little more:

Proposition 9.4.1. For every r ∈ N there is an n ∈ N such that every
connected graph of order at least n containsKr, K1,r or P r as an induced
subgraph.

Proof . Let d+ 1 be the Ramsey number of r, let n > 1 + rd r, and let G
be a graph of order at least n. If G has a vertex v of degree at least d+ 1
then, by Theorem 9.1.1 and the choice of d, either N(v) induces a Kr in
G or { v }∪N(v) induces a K1,r. On the other hand, if ∆(G) 6 d, then
by Proposition 1.3.3 G has radius > r, and hence contains two vertices
at a distance > r. Any shortest path in G between these two vertices
contains a P r. ¤

The collection of ‘typical’ induced subgraphs in Proposition 9.4.1
is smallest possible in the following sense. If G is any set of connected
graphs with the same property, i.e. such that, given r ∈ N, every large
enough connected graph G contains an induced copy of a graph of or-
der > r from G, then G contains arbitrarily large complete graphs, stars
and paths. (Note that if we take a complete graph, a star or a path as G,
and then all its subgraphs are again of that type.) But Proposition 9.4.1
tells us that we need no more than these.

In principle, we could look for a set like G for any assumed connectiv-
ity k. We could try to find a ‘minimal’ set (in the above sense) of typical
k-connected graphs, one such that every large k-connected graph has a
large subgraph in this set. Unfortunately, G seems to grow very quickly
with k: already for k = 2 it becomes thoroughly messy if (as for k = 1)
we insist that those subgraphs be induced. By relaxing our specification
of containment from ‘induced subgraph’ to ‘topological minor’ and on to
‘minor’, however, we can give some neat characterizations up to k = 4.

Proposition 9.4.2. For every r ∈ N there is an n ∈ N such that every
2-connected graph of order at least n contains Cr or K2,r as a topological
minor.

Proof . Let d be the n associated with r in Proposition 9.4.1, and let G (1.3.3)
(3.3.5)

be a 2-connected graph with more than 1 + rd r vertices. By Proposition
1.3.3, either G has a vertex of degree > d or diam(G) > rad(G) > r.

In the latter case let a, b ∈ G be two vertices at distance > r. By
Menger’s theorem (3.3.5), G contains two independent a–b paths. These
form a cycle of length > r.
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Assume now that G has a vertex v of degree > d. Since G is 2-
connected, G− v is connected and thus has a spanning tree; let T be
a minimal tree in G − v that contains all the neighbours of v. Then
every leaf of T is a neighbour of v. By the choice of d, either T has a
vertex of degree > r or T contains a path of length > r, without loss of
generality linking two leaves. Together with v, such a path forms a cycle
of length > r. A vertex u of degree > r in T can be joined to v by r
independent paths through T , to form a TK2,r. ¤

Theorem 9.4.3. (Oporowski, Oxley & Thomas 1993)
For every r ∈ N there is an n ∈ N such that every 3-connected graph of
order at least n contains a wheel of order r or a K3,r as a minor.

Let us call a graph of the form Cn ∗K2 (n > 4) a double wheel , the
1-skeleton of a triangulation of the cylinder as in Fig. 9.4.1 a crown, and
the 1-skeleton of a triangulation of the Möbius strip a Möbius crown.

Fig. 9.4.1. A crown and a Möbius crown

Theorem 9.4.4. (Oporowski, Oxley & Thomas 1993)
For every r ∈ N there is an n ∈ N such that every 4-connected graph
with at least n vertices has a minor of order > r that is a double wheel,
a crown, a Möbius crown, or a K4,s.

Note that the minors occurring in Theorems 9.4.3 and 9.4.4 are them-
selves 3- and 4-connected, respectively, and are not minors of one anoth-
er. Thus in each case, the collection of minors is minimal in the sense
discussed earlier.

Exercises
1.− Determine the Ramsey number R(3).

2. Deduce the case k = 2 (but c arbitrary) of Theorem 9.1.4 directly from
Theorem 9.1.1.

3.+ Construct a graph on R that has neither a complete nor an edgeless
induced subgraph on |R| = 2ℵ0 vertices. (So Ramsey’s theorem does
not extend to uncountable sets.)

4.+ Use Ramsey’s theorem to show that for any k, ` ∈ N there is an n ∈ N
such that every sequence of n distinct integers contains an increasing
subsequence of length k+ 1 or a decreasing subsequence of length `+ 1.
Find an example showing that n > k`. Then prove the theorem of
Erdős and Szekeres that n = k`+ 1 will do.
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5. Sketch a proof of the following theorem of Erdős and Szekeres: for every
k ∈ N there is an n ∈ N such that among any n points in the plane,
no three of them collinear, there are k points spanning a convex k-gon,
i.e. such that none of them lies in the convex hull of the others.

6. Prove the following result of Schur: for every k ∈ N there is an n ∈ N
such that, for every partition of { 1, . . . , n } into k sets, at least one of
the subsets contains numbers x, y, z such that x+ y = z.

7. Let (X,6) be a totally ordered set, and let G = (V,E) be the graph
on V := [X]2 with E := {(x, y)(x′, y′) | x < y = x′ < y′}.

(i) Show that G contains no triangle.

(ii) Show that χ(G) will get arbitrarily large if |X| is chosen large
enough.

8. A family of sets is called a ∆-system if every two of the sets have the
same intersection. Show that every infinite family of sets of the same
finite cardinality contains an infinite ∆-system.

9. Prove the following weakening of Scott’s Theorem 8.1.5: for every r ∈ N
and every tree T there exists a k ∈ N such that every graph G with
χ(G) > k and ω(G) < r contains a subdivision of T in which no two
branch vertices are adjacent in G (unless they are adjacent in T ).

10. Use the infinity lemma to show that, given k ∈ N, a countably infi-
nite graph is k-colourable (in the sense of Chapter 5) if all its finite
subgraphs are k-colourable.

11. Let m,n ∈ N, and assume that m− 1 divides n− 1. Show that every
tree T of order m satisfies R(T,K1,n) = m+n− 1.

12. Prove that 2c < R(2, c, 3) 6 3c! for every c ∈ N.

(Hint. Induction on c.)

13.− Derive the statement (∗) in the first proof of Theorem 9.3.1 from the
theorem itself, i.e. show that (∗) is only formally stronger than the
theorem.

14. Show that the Ramsey graph G for H constructed in the second proof
of Theorem 9.3.1 does indeed satisfy ω(G) = ω(H).

15. Show that, given any two graphs H1 and H2, there exists a graph
G = G(H1, H2) such that, for every vertex-colouring of G with colours
1 and 2, there is either an induced copy of H1 coloured 1 or an induced
copy of H2 coloured 2 in G.

(Hint. Apply induction as in the first proof of Theorem 9.3.1.)

16. Show that every infinite connected graph contains an infinite path or
an infinite star.

17.− The Kr from Ramsey’s theorem, last sighted in Proposition 9.4.1, con-
spicuously fails to make an appearance from Proposition 9.4.2 onwards.
Can it be excused?
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Notes

Due to increased interaction with research on random and pseudo-random4

structures (the latter being provided, for example, by the regularity lemma),
the Ramsey theory of graphs has recently seen a period of major activity and
advance. Theorem 9.2.2 is an early example of this development.

For the more classical approach, the introductory text by R.L. Graham,
B.L. Rothschild & J.H. Spencer, Ramsey Theory (2nd edn.), Wiley 1990,
makes stimulating reading. This book includes a chapter on graph Ramsey
theory, but is not confined to it. A more recent general survey is given by
J. Nešetřil in the Handbook of Combinatorics (R.L. Graham, M. Grötschel &
L. Lovász, eds.), North-Holland 1995. The Ramsey theory of infinite sets forms
a substantial part of combinatorial set theory, and is treated in depth in
P. Erdős, A. Hajnal, A. Máté & R. Rado, Combinatorial Set Theory , North-
Holland 1984. An attractive collection of highlights from various branches
of Ramsey theory, including applications in algebra, geometry and point-set
topology, is offered in B. Bollobás, Graph Theory , Springer GTM 63, 1979.

König’s infinity lemma, or König’s lemma for short, is contained in
the first-ever book on the subject of graph theory: D. König, Theorie der
endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig
1936. The compactness technique for deducing finite results from infinite (or
vice versa), hinted at in Section 9.1, is less mysterious than it sounds. As
long as ‘infinite’ means ‘countably infinite’, it is precisely the art of applying
the infinity lemma (as in the proof of Theorem 9.1.4), no more no less. For
larger infinite sets, the same argument becomes equivalent to the well-known
theorem of Tychonov that arbitrary products of compact spaces are compact—
which has earned the compactness argument its name. Details can be found
in Ch. 6, Thm. 10 of Bollobás, and in Graham, Rothschild & Spencer, Ch. 1,
Thm. 4. Another frequently used version of the general compactness argument
is Rado’s selection lemma; see A. Hajnal’s chapter on infinite combinatorics in
the Handbook cited above.

Theorem 9.2.2 is due to V. Chvátal, V. Rödl, E. Szemerédi & W.T. Trotter,
The Ramsey number of a graph with bounded maximum degree, J. Combin.
Theory B 34 (1983), 239–243. Our proof follows the sketch in J. Komlós &
M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph
theory, in (D. Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2,
Proc. Colloq. Math. Soc. János Bolyai (1996). The theorem marks a break-
through towards a conjecture of Burr and Erdős (1975), which asserts that the
Ramsey numbers of graphs with bounded average degree in every subgraph are
linear: for every d ∈ N, the conjecture says, there exists a constant c such that
R(H) 6 c |H| for all graphs H with d(H ′) 6 d for all H ′ ⊆ H. This conjecture
has been verified also for the class of planar graphs (Chen & Schelp 1993) and,
more generally, for the class of graphs not containing Kr (for any fixed r) as
a topological minor (Rödl & Thomas 1996). See Nešetřil’s Handbook chapter
for references.

4 Concrete graphs whose structure resembles the structure expected of a random
graph are called pseudo-random. For example, the bipartite graphs spanned by an
ε-regular pair of vertex sets in a graph are pseudo-random.
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Our first proof of Theorem 9.3.1 is based on W. Deuber, A generalization
of Ramsey’s theorem, in (A. Hajnal, R. Rado & V.T. Sós, eds.) Infinite and
finite sets, North-Holland 1975. The same volume contains the alternative
proof of this theorem by Erdős, Hajnal and Pósa. Rödl proved the same result
in his MSc thesis at the Charles University, Prague, in 1973. Our second
proof of Theorem 9.3.1, which preserves the clique number of H for G, is due
to J. Nešetřil & V. Rödl, A short proof of the existence of restricted Ramsey
graphs by means of a partite construction, Combinatorica 1 (1981), 199–202.

The two theorems in Section 9.4 are due to B. Oporowski, J. Oxley &
R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. The-
ory B 57 (1993), 239–257.





10 Hamilton Cycles

In Chapter 1.8 we briefly discussed the problem of when a graph contains
an Euler tour, a closed walk traversing every edge exactly once. The
simple Theorem 1.8.1 solved that problem quite satisfactorily. Let us
now ask the analogous question for vertices: when does a graphG contain
a closed walk that contains every vertex of G exactly once? If |G| > 3,
then any such walk is a cycle: a Hamilton cycle of G. If G has a Hamilton Hamilton

cycle
cycle, it is called hamiltonian. Similarly, a path in G containing every
vertex of G is a Hamilton path. Hamilton

path
To determine whether or not a given graph has a Hamilton cycle is

much harder than deciding whether it is Eulerian, and no good charac-
terization1 is known of the graphs that do. We shall begin this chapter
by presenting the standard sufficient conditions for the existence of a
Hamilton cycle (Sections 10.1 and 10.2). The rest of the chapter is then
devoted to the beautiful theorem of Fleischner that the ‘square’ of every
2-connected graph has a Hamilton cycle. This is one of the main results
in the field of Hamilton cycles. The simple proof we present (due to Ř́ıha)
is still a little longer than other proofs in this book, but not difficult.

10.1 Simple sufficient conditions

What kind of condition might be sufficient for the existence of a Hamilton
cycle in a graph G? Purely global assumptions, like high edge density,
will not be enough: we cannot do without the local property that every
vertex has at least two neighbours. But neither is any large (but con-
stant) minimum degree sufficient: it is easy to find graphs without a Ha-
milton cycle whose minimum degree exceeds any given constant bound.

1 The notion of a ‘good characterization’ can be made precise; see the introduction
to Chapter 12.5 and the notes for Chapter 12.
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The following classic result derives its significance from this back-
ground:

Theorem 10.1.1. (Dirac 1952)
Every graph with n > 3 vertices and minimum degree at least n/2 has
a Hamilton cycle.

Proof . Let G = (V,E) be a graph with |G| = n > 3 and δ(G) > n/2.
Then G is connected: otherwise, the degree of any vertex in the smallest
component C of G would be less than |C| 6 n/2.

Let P = x0 . . . xk be a longest path in G. By the maximality of P ,
all the neighbours of x0 and all the neighbours of xk lie on P . Hence
at least n/2 of the vertices x0, . . . , xk−1 are adjacent to xk, and at least
n/2 of these same k < n vertices xi are such that x0xi+1 ∈ E. By the
pigeon hole principle, there is a vertex xi that has both properties, so
we have x0xi+1 ∈ E and xixk ∈ E for some i < k (Fig. 10.1.1).

x0 xi

xi+1

xkP
. . . . . .

Fig. 10.1.1. Finding a Hamilton cycle in the proof Theorem 10.1.1

We claim that the cycle C := x0xi+1PxkxiPx0 is a Hamilton cycle
of G. Indeed, since G is connected, C would otherwise have a neighbour
in G−C, which could be combined with a spanning path of C into a
path longer than P . ¤

Theorem 10.1.1 is best possible in that we cannot replace the bound
of n/2 with bn/2c: if n is odd and G is the union of two copies of Kdn/2e

meeting in one vertex, then δ(G) = bn/2c but κ(G) = 1, so G cannot
have a Hamilton cycle. In other words, the high level of the bound of
δ > n/2 is needed to ensure, if nothing else, that G is 2-connected:
a condition just as trivially necessary for hamiltonicity as a minimum
degree of at least 2. It would seem, therefore, that prescribing some
high (constant) value for κ rather than for δ stands a better chance of
implying hamiltonicity. However, this is not so: although k-connected
graphs contain long cycles in terms of k (Ex. 14, Ch. 3), the graphs Kn,k

show that their circumference need not grow with n.
There is another invariant with a similar property: a low inde-

pendence number α(G) ensures that G has long cycles (Ex. 13, Ch. 5),
though not necessarily a Hamilton cycle. Put together, however, the
two assumptions of high connectivity and low independence number
surprisingly complement each other to produce a sufficient condition for
hamiltonicity:
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Proposition 10.1.2. Every graph G with |G| > 3 and κ(G) > α(G)
has a Hamilton cycle.

Proof . Put κ(G) =: k, and let C be a longest cycle in G. Enumerate the (3.3.3)

vertices of C cyclically, say as V (C) = { vi | i ∈ Zn } with vivi+1 ∈ E(C) k

for all i ∈ Zn. If C is not a Hamilton cycle, pick a vertex v ∈ G−C and
a v–C fan F = {Pi | i ∈ I } in G, where I ⊆ Zn and each Pi ends in vi.
Let F be chosen with maximum cardinality; then vvj /∈ E(G) for any
j /∈ I, and

|F| > min { k, |C| } (1)

by Menger’s theorem (3.3.3).
For every i ∈ I, we have i+1 /∈ I: otherwise, (C ∪Pi∪Pi+1)−vivi+1

would be a cycle longer than C (Fig. 10.1.2, left). Thus |F| < |C|, and
hence |I| = |F| > k by (1). Furthermore, vi+1vj+1 /∈ E(G) for all i, j ∈ I,
as otherwise (C ∪Pi ∪Pj) + vi+1vj+1− vivi+1− vjvj+1 would be a cycle
longer than C (Fig. 10.1.2, right). Hence { vi+1 | i ∈ I }∪{ v } is a set of
k+ 1 or more independent vertices in G, contradicting α(G) 6 k. ¤

vi+1 Pi vi+1

Pj

vi

Pi

vj+1 vj

CC

v v

vi

F
Pi+1

Fig. 10.1.2. Two cycles longer than C

It may come as a surprise to learn that hamiltonicity for planar
graphs is related to the four colour problem. As we noted in Chapter 6.6,
the four colour theorem is equivalent to the non-existence of a planar
snark, i.e. to the assertion that every bridgeless planar cubic graph has
a 4-flow. It is easily checked that ‘bridgeless’ can be replaced with ‘3-
connected’ in this assertion, and that every hamiltonian graph has a
4-flow (Ex. 12, Ch. 6). For a proof of the four colour theorem, therefore,
it would suffice to show that every 3-connected planar cubic graph has
a Hamilton cycle!

Unfortunately, this is not the case: the first counterexample was
found by Tutte in 1946. Ten years later, Tutte proved the following
deep theorem as a best possible weakening:

Theorem 10.1.3. (Tutte 1956)
Every 4-connected planar graph has a Hamilton cycle.
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10.2 Hamilton cycles and degree sequences

Historically, Dirac’s theorem formed the point of departure for the dis-
covery of a series of weaker and weaker degree conditions, all sufficient
for hamiltonicity. The development culminated in a single theorem that
encompasses all the earlier results: the theorem we shall prove in this
section.

If G is a graph with n vertices and degrees d1 6 . . . 6 dn, then the
n-tuple (d1, . . . , dn) is called the degree sequence of G. Note that thisdegree

sequence
sequence is unique, even thoughG has several vertex enumerations giving
rise to its degree sequence. Let us call an arbitrary integer sequence
(a1, . . . , an) hamiltonian if every graph with n vertices and a degreehamiltonian

sequence
sequence pointwise greater than (a1, . . . , an) is hamiltonian. (A sequence
(d1, . . . , dn) is pointwise greater than (a1, . . . , an) if di > ai for all i.)pointwise

greater
The following theorem characterizes all hamiltonian sequences:

Theorem 10.2.1. (Chvátal 1972)
An integer sequence (a1, . . . , an) such that 0 6 a1 6 . . . 6 an < n and
n > 3 is hamiltonian if and only if the following holds for every i < n/2:

ai 6 i ⇒ an−i > n− i .

Proof . Let (a1, . . . , an) be an arbitrary integer sequence such that(a1, . . . , an)

0 6 a1 6 . . . 6 an < n and n > 3. We first assume that this sequence
satisfies the condition of the theorem and prove that it is hamiltonian.
Suppose not; then there exists a graph G = (V,E) with a degree sequence
(d1, . . . , dn) such that(d1, . . . , dn)

di > ai for all i (1)

but G has no Hamilton cycle. Let G be chosen with the maximum num-G = (V,E)

ber of edges, and let (v1, . . . , vn) be an enumeration of V with d(vi) = div1, . . . , vn

for all i. By (1), our assumptions for (a1, . . . , an) transfer to (d1, . . . , dn),
i.e.,

di 6 i ⇒ dn−i > n− i for all i < n/2. (2)

Let x, y be distinct and non-adjacent vertices in G, with d(x) 6 d(y)x, y

and d(x) + d(y) as large as possible. One easily checks that the degree
sequence of G+xy is pointwise greater than (d1, . . . , dn), and hence than
(a1, . . . , an). Hence, by the maximality of G, the new edge xy lies on a
Hamilton cycle H of G+xy. Then H−xy is a Hamilton path x1, . . . , xnx1, . . . , xn

in G, with x1 = x and xn = y say.
As in the proof of Dirac’s theorem, we now consider the index sets

I := { i | xxi+1 ∈ E } and J := { j | xjy ∈ E } .
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Then I ∪J ⊆ { 1, . . . , n− 1 }, and I ∩J = ∅ because G has no Hamilton
cycle. Hence

d(x) + d(y) = |I|+ |J | < n , (3)

so h := d(x) < n/2 by the choice of x. h

Since xiy /∈ E for all i ∈ I, all these xi were candidates for the
choice of x (together with y). Our choice of {x, y } with d(x) + d(y)
maximum thus implies that d(xi) 6 d(x) for all i ∈ I. Hence G has at
least |I| = h vertices of degree at most h, so dh 6 h. By (2), this implies
that dn−h > n−h, i.e. the h+ 1 vertices vn−h, . . . , vn all have degree at
least n− h. Since d(x) = h, one of these vertices, z say, is not adjacent z

to x. Since
d(x) + d(z) > h+ (n−h) = n ,

this contradicts the choice of x and y by (3).

Let us now show that, conversely, for every sequence (a1, . . . , an) of
the theorem with

ah 6 h and an−h 6 n−h− 1

for some h < n/2, there exists a graph that has a pointwise greater degree h

sequence than (a1, . . . , an) but no Hamilton cycle. Clearly it suffices,
given h, to show this for the greatest such sequence (a1, . . . , an), the
sequence

(h, . . . , h︸ ︷︷ ︸
h times

, n−h− 1, . . . , n−h− 1︸ ︷︷ ︸
n−2h times

, n− 1, . . . , n− 1︸ ︷︷ ︸
h times

) . (4)

vh

Kh,h

vn−h+1

vh+1

Kn−h

vn

v1

v2

..
.

..
.

..
.

Fig. 10.2.1. Any cycle containing v1, . . . , vh misses vh+1

As Figure 10.2.1 shows, there is indeed a graph with degree sequence
(4) but no Hamilton cycle: the graph with vertices v1, . . . , vn and edge
set

{ vivj | i, j > h }∪ { vivj | i 6 h; j > n−h } ,
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i.e. the union of a Kn−h on the vertices vh+1, . . . , vn and a Kh,h with
partition sets { v1, . . . , vh } and { vn−h+1, . . . , vn }. ¤

By applying Theorem 10.2.1 to G ∗K1, one can easily prove the
following adaptation of the theorem to Hamilton paths. Let an inte-
ger sequence be called path-hamiltonian if every graph with a pointwise
greater degree sequence has a Hamilton path.

Corollary 10.2.2. An integer sequence (a1, . . . , an) such that n > 2 and
0 6 a1 6 . . . 6 an < n is path-hamiltonian if and only if every i 6 n/2
is such that ai < i ⇒ an+1−i > n− i. ¤

10.3 Hamilton cycles in the square of a graph

Given a graph G and a positive integer d, we denote by Gd the graph onGd

V (G) in which two vertices are adjacent if and only if they have distance
at most d in G. Clearly, G = G1 ⊆ G2 ⊆ . . . Our goal in this section is
to prove the following fundamental result:

Theorem 10.3.1. (Fleischner 1974)
If G is a 2-connected graph, then G2 has a Hamilton cycle.

We begin with three simple lemmas. Let us say that an edge e ∈ G2

bridges a vertex v ∈ G if its ends are neighbours of v in G.bridges

Lemma 10.3.2. Let P = v0 . . . vk be a path (k > 1), and let G be the
graph obtained from P by adding two vertices u,w, together with the
edges uv1 and wvk (Fig. 10.3.1).

(i) P 2 contains a path Q from v0 to v1 with V (Q) = V (P ) and
vk−1vk ∈ E(Q), such that each of the vertices v1, . . . , vk−1 is
bridged by an edge of Q.

(ii) G2 contains disjoint paths Q from v0 to vk and Q′ from u to w,
such that V (Q)∪V (Q′) = V (G) and each of the vertices v1, . . . , vk
is bridged by an edge of Q or Q′.

vk

wu

v1

P

v0

Fig. 10.3.1. The graph G in Lemma 10.3.2
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Proof . (i) If k is even, let Q := v0v2 . . . vk−2vkvk−1vk−3 . . . v3v1. If k is
odd, let Q := v0v2 . . . vk−1vkvk−2 . . . v3v1.

(ii) If k is even, let Q := v0v2 . . . vk−2vk; if k is odd, let Q :=
v0v1v3 . . . vk−2vk. In both cases, let Q′ be the u–w path on the remaining
vertices of G2. ¤

Lemma 10.3.3. Let G = (V,E) be a cubic multigraph with a Hamilton
cycle C. Let e ∈ E(C) and f ∈ ErE(C) be edges with a common end v
(Fig. 10.3.2). Then there exists a closed walk in G that traverses e once,
every other edge of C once or twice, and every edge in E rE(C) once.
This walk can be chosen to contain the triple (e, v, f), that is, it traverses
e in the direction of v and then leaves v by the edge f .

e

f

e

f

G

v v′

v′′

G′

Fig. 10.3.2. The multigraphs G and G′ in Lemma 10.3.3

Proof . By Proposition 1.2.1, C has even length. Replace every other (1.2.1)
(1.8.1)

edge of C by a double edge, in such a way that e does not get replaced.
In the arising 4-regular multigraph G′, split v into two vertices v′, v′′,
making v′ incident with e and f , and v′′ incident with the other two
edges at v (Fig. 10.3.2). By Theorem 1.8.1 this multigraph has an Euler
tour, which induces the desired walk in G. ¤

Lemma 10.3.4. For every 2-connected graph G and x ∈ V (G), there is a
cycle C ⊆G that contains x as well as a vertex y 6= x withNG(y)⊆ V (C).

Proof . If G has a Hamilton cycle, there is nothing more to show. If
not, let C ′ ⊆ G be any cycle containing x; such a cycle exists, since G
is 2-connected. Let D be a component of G−C ′. Assume that C ′ and
D are chosen so that |D| is minimal. Since G is 2-connected, D has
at least two neighbours on C ′. Then C ′ contains a path P between
two such neighbours u and v, whose interior P̊ does not contain x and
has no neighbour in D (Fig. 10.3.3). Replacing P in C ′ by a u–v path
through D, we obtain a cycle C that contains x and a vertex y ∈ D. If
y had a neighbour z in G−C, then z would lie in a component D′ $ D
of G−C, contradicting the choice of C ′ and D. Hence all the neighbours
of y lie on C, and C satisfies the assertion of the lemma. ¤
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x

C

D

P

u

v
y

Fig. 10.3.3. The proof of Lemma 10.3.4

Proof of Theorem 10.3.1. We show by induction on |G| that, given
any vertex x∗ ∈ G, there is a Hamilton cycle H in G2 with the following
property:

Both edges of H at x∗ lie in G. (∗)

For |G| = 3, we have G = K3 and the assertion is trivial. So let |G| > 4,
assume the assertion for graphs of smaller order, and let x∗ ∈ V (G) bex∗

given. By Lemma 10.3.4, there is a cycle C ⊆ G that contains both x∗C

and a vertex y∗ 6= x∗ whose neighbours in G all lie on C.y∗

If C is a Hamilton cycle of G, there is nothing to show; so assume
that G − C 6= ∅. Consider a component D of G − C. Let D̃ denote
the graph G/(G−D) obtained from G by contracting G−D into a new
vertex x̃. If |D| = 1, set P(D) := {D }. If |D| > 1, then D̃ is againP(D)

2-connected. Hence, by the induction hypothesis, D̃2 has a Hamilton
cycle C̃ whose edges at x̃ both lie in D̃. Note that the path C̃ − x̃ mayC̃

have some edges that do not lie in G2: edges joining two neighbours of x̃
that have no common neighbour in G (and are themselves non-adjacent
in G). Let Ẽ denote the set of these edges, and let P(D) denote the setP(D)

of components of (C̃ − x̃)− Ẽ; this is a set of paths in G2 whose ends
are adjacent to x̃ in D̃ (Fig. 10.3.4).

P(D)

x̃

D

Fig. 10.3.4. P(D) consists of three paths, one of which is trivial

Let P denote the union of the sets P(D) over all components DP
of G−C. Clearly, P has the following properties:



10.3 Hamilton cycles in the square of a graph 221

The elements of P are pairwise disjoint paths in G2 avoid-
ing C, and V (G) = V (C)∪

⋃
P ∈P V (P ). Every end y of a

path P ∈ P has a neighbour on C in G; we choose such a
neighbour and call it the foot of P at y.

(1)

If P ∈ P is trivial, then P has exactly one foot. If P is non-trivial, then

foot

P has a foot at each of its ends. These two feet need not be distinct,
however; so any non-trivial P has either one or two feet.

We shall now modify P a little, preserving the properties summa-
rized under (1); no properties of P other than those will be used later in
the proof. If a vertex of C is a foot of two distinct paths P, P ′ ∈ P, say
at y ∈ P and at y′ ∈ P ′, then yy′ is an edge and Pyy′P ′ is a path in G2;
we replace P and P ′ in P by this path. We repeat this modification of
P until the following holds:

No vertex of C is a foot of two distinct paths in P. (2)

For i = 1, 2 let Pi ⊆ P denote the set of all paths in P with exactly i P1,P2

feet, and let Xi ⊆ V (C) denote the set of all feet of paths in Pi. Then X1, X2

X1 ∩X2 = ∅ by (2), and y∗ /∈ X1 ∪X2.
Let us also simplify G a little; again, these changes will affect neither

the paths in P nor the validity of (1) and (2). First, we shall assume from
now on that all elements of P are paths in G itself, not just in G2. This
assumption may give us some additional edges for G2, but we shall not
use these in our construction of the desired Hamilton cycle H. (Indeed,
H will contain all the paths from P whole, as subpaths.) Thus if H lies
in G2 and satisfies (∗) for the modified version of G, it will do so also
for the original. For every P ∈ P, we further delete all P–C edges in G
except those between the ends of P and its corresponding feet. Finally,
we delete all chords of C in G. We are thus assuming without loss of
generality:

The only edges of G between C and a path P ∈ P are
the two edges between the ends of P and its corresponding
feet. (If |P | = 1, these two edges coincide.) The only edges
of G with both ends on C are the edges of C itself.

(3)

Our goal is to construct the desired Hamilton cycle H of G2 from
the paths in P and suitable paths in C2. As a first approximation, we
shall construct a closed walk W in the graph

G̃ := G−
⋃
P1 , G̃

a walk that will already satisfy a (∗)-type condition and traverse every
path in P2 exactly once. Later, we shall modify W so that it passes
through every vertex of C exactly once and, finally, so as to include the
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paths from P1. For the construction of W we assume that P2 6= ∅; the
case of P2 = ∅ is much simpler and will be treated later.

We start by choosing a fixed cyclic orientation of C, a bijection
i 7→ vi from Z|C| to V (C) with vivi+1 ∈ E(C) for all i ∈ Z|C|. Let us
think of this orientation as clockwise; then every vertex vi ∈ C has a right
neighbour v+

i := vi+1 and a left neighbour v−i := vi−1. Accordingly, thev+, right

edge v−v lies to the left of v, the edge vv+ lies on its right , and so on.v−, left

A non-trivial path P = vivi+1 . . . vj−1vj in C such that V (P )∩X2 =
{ vi, vj } will be called an interval , with left end vi and right end vj .interval

Thus, C is the union of |X2| = 2 |P2| intervals. As usual, we write P =:
[ vi, vj ] and set (vi, vj) := P̊ as well as [ vi, vj) := P v̊j and (vi, vj ] := v̊iP .[ v, w ] etc.

For intervals [u, v ] and [ v, w ] with a common end v we say that [u, v ]
lies to the left of [ v, w ], and [ v, w ] lies to the right of [u, v ]. We denote
the unique interval [ v, w ] with x∗ ∈ (v, w ] as I∗, the path in P2 withI∗, P ∗

foot w as P ∗, and the path I∗wP ∗ as Q∗.Q∗

For the construction of W , we may think of G̃ as a multigraph M
on X2 whose edges are the intervals on C and the paths in P2 (with their
feet as ends). By (2), M is cubic, so we may apply Lemma 10.3.3 with
e := I∗ and f := P ∗. The lemma provides us with a closed walk W in G̃W

which traverses I∗ once, every other interval of C once or twice, and
every path in P2 once. Moreover, W contains Q∗ as a subpath. The two
edges at x∗ of this path lie in G; in this sense, W already satisfies (∗).

Let us now modify W so that W passes through every vertex of C
exactly once. Simultaneously, we shall prepare for the later inclusion of
the paths from P1 by defining a map v 7→ e(v) that is injective on X1e(v)

and assigns to every v ∈ X1 an edge e(v) of the modified W with the
following property:

The edge e(v) either bridges v or is incident with it. In the
latter case, e(v) ∈ C and e(v) 6= vx∗.

(∗∗)

For simplicity, we shall define the map v 7→ e(v) on all of V (C)rX2,
a set that includes X1 by (2). To ensure injectivity on X1, we only
have to make sure that no edge vw ∈ C is chosen both as e(v) and
as e(w). Indeed, since |X1| > 2 if injectivity is a problem, and P2 6= ∅
by assumption, we have |C− y∗| > |X1|+ 2 |P2| > 4 and hence |C| > 5;
thus, no edge of G2 can bridge more than one vertex of C, or bridge a
vertex of C and lie on C at the same time.

For our intended adjustments of W at the vertices of C, we consider
the intervals of C one at a time. By definition of W , every interval is of
one of the following three types:

Type 1 : W traverses I once;
Type 2 : W traverses I twice, in one direction and back immediately

afterwards (formally: W contains a triple (e, x, e) with x ∈ X2

and e ∈ E(I));
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Type 3 : W traverses I twice, on separate occasions (i.e., there is no
triple as above).

By definition of W , the interval I∗ is of type 1. The vertex x in the
definition of a type 2 interval will be called the dead end of that interval. dead end

Finally, since Q∗ is a subpath of W and W traverses both I∗ and P ∗

only once, we have:

The interval to the right of I∗ is of type 2 and has its dead
end on the left.

(4)

Consider a fixed interval I = [x1, x2 ]. Let y1 be the neighbour I, x1, x2

of x1, and y2 the neighbour of x2 on a path in P2. Let I− denote the y1, y2

interval to the left of I. I−

Suppose first that I is of type 1. We then leave W unchanged on I.
If I 6= I∗ we choose as e(v), for each v ∈ I̊, the edge to the left of v. As
I− 6= I∗ by (4), and hence x1 6= x∗, these choices of e(v) satisfy (∗∗). If
I = I∗, we define e(v) as the edge left of v if v ∈ (x1, x

∗ ]∩ I̊, and as the
edge right of v if v ∈ (x∗, x2). These choices of e(v) are again compatible
with (∗∗).

Suppose now that I is of type 2. Assume first that x2 is the dead
end of I. Then W contains the walk y1x1Ix2Ix1I

− (possibly in reverse
order). We now apply Lemma 10.3.2 (i) with P := y1x1Ix̊2, and replace
in W the subwalk y1x1Ix2Ix1 by the y1–x1 path Q ⊆ G2 of the lemma
(Fig. 10.3.5). Then V (Q̊) = V (P ) r { y1, x1 } = V (I̊). The vertices

e(x−
2 )x1 x2

y1

I− Ix1 x2

y1

W
Q

Fig. 10.3.5. How to modify W on an interval of type 2

v ∈ (x1, x
−
2 ) are each bridged by an edge of Q, which we choose as e(v).

As e(x−2 ) we choose the edge to the left of x−2 (unless x−2 = x1). This
edge, too, lies on Q, by the lemma. Moreover, by (4) it is not inci-
dent with x∗ (since x2 is the dead end of I, by assumption) and hence
satisfies (∗∗). The case that x1 is the dead end of I can be treated in
the same way: using Lemma 10.3.2 (i), we replace in W the subwalk
y2x2Ix1Ix2 by a y2–x2 path Q ⊆ G2 with V (Q̊) = V (I̊), choose as e(v)
for v ∈ (x+

1 , x2) an edge of Q bridging v, and define e(x+
1 ) as the edge

to the right of x+
1 (unless x+

1 = x2).
Suppose finally that I is of type 3. Since W traverses the edge y1x1

only once and the interval I− no more than twice, W contains y1x1I
and I− ∪ I as subpaths, and I− is of type 1. By (4), however, I− 6= I∗.
Hence, when e(v) was defined for the vertices v ∈ I̊−, the rightmost edge
x−1 x1 of I− was not chosen as e(v) for any v, so we may now replace this
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edge. Since W traverses I+ no more than twice, it must traverse the
edge x2y2 immediately after one of its two subpaths y1x1I and x−1 x1I.
Take the starting vertex of this subpath (y1 or x−1 ) as the vertex u in
Lemma 10.3.2 (ii), and the other vertex in { y1, x

−
1 } as v0; moreover, set

vk := x2 and w := y2. Then the lemma enables us to replace these two
subpaths of W between { y1, x

−
1 } and {x2, y2 } by disjoint paths in G2

(Fig. 10.3.6), and furthermore assigns to every vertex v ∈ I̊ an edge e(v)
of one of those paths, bridging v.

I v0 x2 = vkx1 x2

y2y1y2

x1

y1

Fig. 10.3.6. A type 3 modification for the case u = y1 and k odd

Following the above modifications, W is now a closed walk in G̃2.
Let us check that, moreover, W contains every vertex of G̃ exactly once.
For vertices of the paths in P2 this is clear, becauseW still traverses every
such path once and avoids it otherwise. For the vertices of C −X2, it
follows from the above modifications by Lemma 10.3.2. So how about
the vertices in X2?

Let x ∈ X2 be given, and let y be its neighbour on a path in P2. Let
I1 denote the interval I that satisfied yxI ⊆ W before the modification
of W , and let I2 denote the other interval ending in x. If I1 is of type 1,
then I2 is of type 2 with dead end x. In this case, x was retained in W
when W was modified on I1 but skipped when W was modified on I2,
and is thus contained exactly once in W now. If I1 is of type 2, then x
is not its dead end, and I2 is of type 1. The subwalk of W that started
with yx and then went along I1 and back, was replaced with a y–x path.
This path is now followed on W by the unchanged interval I2, so in this
case too the vertex x is now contained in W exactly once. Finally, if I1
is of type 3, then x was contained in one of the replacement paths Q,Q′

from Lemma 10.3.2 (ii); as these paths were disjoint by the assertion of
the lemma, x is once more left on W exactly once.

We have thus shown that W , after the modifications, is a closed walk
in G̃2 containing every vertex of G̃ exactly once, so W defines a Hamilton
cycle H̃ of G̃2. Since W still contains the path Q∗, H̃ satisfies (∗).H̃

Up until now, we have assumed that P2 is non-empty. If P2 = ∅,
let us set H̃ := G̃ = C; then, again, H̃ satisfies (∗). It remains to turnH̃

H̃ into a Hamilton cycle H of G2 by incorporating the paths from P1.
In order to be able to treat the case of P2 = ∅ along with the case of
P2 6= ∅, we define a map v 7→ e(v) also when P2 = ∅, as follows: for
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every v ∈ C − y∗, set

e(v) :=
{
vv+ if v ∈ [x∗, y∗)
vv− if v ∈ (y∗, x∗).

(Here, [x∗, y∗) and (y∗, x∗) denote the obvious paths in C defined ana-
logously to intervals.) As before, this map v 7→ e(v) is injective, satis-
fies (∗∗), and is defined on a superset of X1; recall that y∗ cannot lie
in X1 by definition.

Let P ∈ P1 be a path to be incorporated into H̃, say with foot P, v

v ∈ X1 and ends y1, y2. (If |P | = 1, then y1 = y2.) Our aim is to replace y1, y2

the edge e := e(v) in H̃ by P ; we thus have to show that the ends of P e

are joined to those of e by suitable edges of G2.
By (2) and (3), v has only two neighbours in G̃, its neighbours

x1, x2 on C. If v is incident with e, i.e. if e = vxi with i ∈ { 1, 2 }, we
replace e by the path vy1Py2xi ⊆ G2 (Fig. 10.3.7). If v is not incident

x1 x2

y1 y2P

v e

C

Fig. 10.3.7. Replacing the edge e in H̃

with e then e bridges v, by (∗∗). Then e = x1x2, and we replace e
by the path x1y1Py2x2 ⊆ G2 (Fig. 10.3.8). Since v 7→ e(v) is injective
on X1, assertion (2) implies that all these modifications of H̃ (one for
every P ∈ P1) can be performed independently, and hence produce a
Hamilton cycle H of G2. H

x1 x2

y1 y2P

v

eC

Fig. 10.3.8. Replacing the edge e in H̃

Let us finally check that H satisfies (∗), i.e. that both edges of H
at x∗ lie in G. Since (∗) holds for H̃, it suffices to show that any edge
e = x∗z of H̃ that is not in H (and hence has the form e = e(v) for some e, z

v ∈ X1) was replaced by an x∗–z path whose first edge lies in G. v

Where can the vertex v lie? Let us show that v must be incident
with e. If not then P2 6= ∅, and e bridges v. Now P2 6= ∅ and v ∈ X1

together imply that |C − y∗| > |X1|+ 2 |P2| > 3, so |C| > 4. As e ∈ G
(by (∗) for H̃), the fact that e bridges v thus contradicts (3).
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So v is indeed incident with e. Hence v ∈ {x∗, z } by definition of e,
while e 6= vx∗ by (∗∗). Thus v = x∗, and e was replaced by a path of
the form x∗y1Py2z. Since x∗y1 is an edge of G, this replacement again
preserves (∗). Therefore H does indeed satisfy (∗), and our induction is
complete. ¤

We close the chapter with a far-reaching conjecture generalizing
Dirac’s theorem:

Conjecture. (Seymour 1974)
Let G be a graph of order n > 3, and let k be a positive integer. If G
has minimum degree

δ(G) > k

k+ 1
n ,

then G has a Hamilton cycle H such that Hk ⊆ G.

For k = 1, this is precisely Dirac’s theorem. The case k = 2 had already
been conjectured by Pósa in 1963 and was proved for large n by Komlós,
Sárközy & Szemerédi (1996).

Exercises

1. Show that every uniquely 3-edge-colourable cubic graph is hamilton-
ian. (‘Unique’ means that all 3-edge-colourings induce the same edge
partition.)

2. Prove or disprove the following strengthening of Proposition 10.1.2:
‘Every k-connected graph G with |G| > 3 and χ(G) > |G|/k has a
Hamilton cycle.’

3. Given a graph G, consider a maximal sequence G0, . . . , Gk such that
G0 = G and Gi+1 = Gi +xiyi for i = 0, . . . , k− 1, where xi, yi are two
non-adjacent vertices of Gi satisfying dGi(xi) +dGi(yi) > |G|. The last
graph of the sequence, Gk, is called the Hamilton closure of G. Show
that this graph depends only on G, not on the choice of the sequence
G0, . . . , Gk.

4. Let x, y be two nonadjacent vertices of a connected graph G, with
d(x) + d(y) > |G|. Show that G has a Hamilton cycle if and only
if G+ xy has one. Using the previous exercise, deduce the following
strengthening of Dirac’s theorem: if d(x) + d(y) > |G| for every two
non-adjacent vertices x, y ∈ G, then G has a Hamilton cycle.

5. Given an even positive integer k, construct for every n > k a k-regular
graph of order 2n+ 1.

6.− Find a hamiltonian graph whose degree sequence is not hamiltonian.
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7.− Let G be a graph with fewer than i vertices of degree at most i, for
every i < |G|/2. Use Chvátal’s theorem to show that G is hamiltonian.
(Thus in particular, Chvátal’s theorem implies Dirac’s theorem.)

8. Find a connected graph G whose square G2 has no Hamilton cycle.

9.+ Show by induction on |G| that the third power G3 of a connected graph
G contains a Hamilton path between any two vertices. Deduce that G3

is hamiltonian.

10. Show that the square of a 2-connected graph contains a Hamilton path
between any two vertices.

11. An oriented complete graph is called a tournament . Show that every
tournament contains a (directed) Hamilton path.

12.+ Let G be a graph in which every vertex has odd degree. Show that
every edge of G lies on an even number of Hamilton cycles.

(Hint. Let xy ∈ E(G) be given. The Hamilton cycles through xy
correspond to the Hamilton paths in G−xy from x to y. Consider the
set H of all Hamilton paths in G−xy starting at x, and show that an
even number of these end in y. To show this, define a graph on H so
that the desired assertion follows from Proposition 1.2.1.)

Notes
The problem of finding a Hamilton cycle in a graph has the same kind of origin
as its Euler tour counterpart and the four colour problem: all three problems
come from mathematical puzzles older than graph theory itself. What began
as a game invented by W.R. Hamilton in 1857—in which ‘Hamilton cycles’
had to be found on the graph of the dodecahedron—reemerged over a hun-
dred years later as a combinatorial optimization problem of prime importance:
the travelling salesman problem. Here, a salesman has to visit a number of
customers, and his problem is to arrange these in a suitable circular route.
(For reasons not included in the mathematical brief, the route has to be such
that after visiting a customer the salesman does not pass through that town
again.) Much of the motivation for considering Hamilton cycles comes from
variations of this algorithmic problem.

A detailed discussion of the various degree conditions for hamiltonicity
referred to at the beginning of Section 10.2 can be found in R. Halin, Graphen-
theorie, Wissenschaftliche Buchgesellschaft 1980. All the relevant references
for Sections 10.1 and 10.2 can be found there, or in B. Bollobás, Extremal
Graph Theory , Academic Press 1978.

The ‘proof’ of the four colour theorem indicated at the end of Section 10.1,
which is based on the (false) premise that every 3-connected cubic planar graph
is hamiltonian, is usually attributed to the Scottish mathematician P.G. Tait.
Following Kempe’s flawed proof of 1879 (see the notes for Chapter 5), it seems
that Tait believed to be in possession of at least one ‘new proof of Kempe’s the-
orem’. However, when he addressed the Edinburgh Mathematical Society on
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this subject in 1883, he seems to have been aware that he could not—really—
prove the above statement about Hamilton cycles. His account in P.G. Tait,
Listing’s topologie, Phil. Mag. 17 (1884), 30–46, makes some entertaining
reading.

A shorter proof of Tutte’s theorem that 4-connected planar graphs are
hamiltonian was given by C. Thomassen, A theorem on paths in planar graphs,
J. Graph Theory 7 (1983), 169–176. Tutte’s counterexample to Tait’s assump-
tion that even 3-connectedness suffices (at least for cubic graphs) is shown in
Bollobás, and in J.A. Bondy & U.S.R. Murty, Graph Theory with Applications,
Macmillan 1976 (where Tait’s attempted proof is discussed in some detail).

Proposition 10.1.2 is due to Chvátal & Erdős (1972). Our proof of Fleisch-
ner’s theorem is based on S. Ř́ıha, A new proof of the theorem by Fleisch-
ner, J. Combin. Theory B 52 (1991), 117–123. Seymour’s conjecture is from
P.D. Seymour, Problem 3, in (T.P. McDonough and V.C. Mavron, eds.) Com-
binatorics, Cambridge University Press 1974. Pósa’s conjecture was proved for
large n by J. Komlós, G.N. Sárközy & E. Szemerédi, On the square of a Hamil-
tonian cycle in dense graphs, Random Structures and Algorithms 9 (1996),
193–211.
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At various points in this book, we already encountered the following
fundamental theorem of Erdős: for every integer k there is a graph
G with g(G) > k and χ(G) > k. In plain English: there exist graphs
combining arbitrarily large girth with arbitrarily high chromatic number.

How could one prove such a theorem? The standard approach would
be to construct a graph with those two properties, possibly in steps
by induction on k. However, this is anything but straightforward: the
global nature of the second property forced by the first, namely, that
the graph should have high chromatic number ‘overall’ but be acyclic
(and hence 2-colourable) locally, flies in the face of any attempt to build
it up, constructively, from smaller pieces that have the same or similar
properties.

In his pioneering paper of 1959, Erdős took a radically different
approach: for each n he defined a probability space on the set of graphs
with n vertices, and showed that, for some carefully chosen probability
measures, the probability that an n-vertex graph has both of the above
properties is positive for all large enough n.

This approach, now called the probabilistic method , has since unfold-
ed into a sophisticated and versatile proof technique, in graph theory as
much as in other branches of discrete mathematics. The theory of ran-
dom graphs is now a subject in its own right. The aim of this chapter
is to offer an elementary but rigorous introduction to random graphs:
no more than is necessary to understand its basic concepts, ideas and
techniques, but enough to give an inkling of the power and elegance
hidden behind the calculations.

Erdős’s theorem asserts the existence of a graph with certain prop-
erties: it is a perfectly ordinary assertion showing no trace of the ran-
domness employed in its proof. There are also results in random graphs
that are generically random even in their statement: these are theorems
about almost all graphs, a notion we shall meet in Section 11.3. In the
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last section, we give a detailed proof of a theorem of Erdős and Rényi
that illustrates a proof technique frequently used in random graphs, the
so-called second moment method .

11.1 The notion of a random graph

Let V be a fixed set of n elements, say V = { 0, . . . , n− 1 }. Our aim isV

to turn the set G of all graphs on V into a probability space, and thenG
to consider the kind of questions typically asked about random objects:
What is the probability that a graph G ∈ G has this or that property?
What is the expected value of a given invariant on G, say its expected
girth or chromatic number?

Intuitively, we should be able to generate G randomly as follows.
For each e ∈ [V ]2 we decide by some random experiment whether or not
e shall be an edge of G; these experiments are performed independently,
and for each the probability of success—i.e. of accepting e as an edge
for G—is equal to some fixed1 number p ∈ [ 0, 1 ]. Then if G0 is somep

fixed graph on V , with m edges say, the elementary event {G0 } has a
probability of pmq(

n
2)−m (where q := 1− p): with this probability, ourq

randomly generated graph G is this particular graph G0. (The proba-
bility that G is isomorphic to G0 will usually be greater.) But if the
probabilities of all the elementary events are thus determined, then so
is the entire probability measure of our desired space G. Hence all that
remains to be checked is that such a probability measure on G, one for
which all individual edges occur independently with probability p, does
indeed exist.2

In order to construct such a measure on G formally, we start by
defining for every potential edge e ∈ [V ]2 its own little probability space
Ωe := { 0e, 1e }, choosing Pe({ 1e }) := p and Pe({ 0e }) := q as theΩe

probabilities of its two elementary events. As our desired probabilityPe

space G = G(n, p) we then take the product spaceG(n, p)

Ω :=
∏

e∈[V ]2

Ωe .Ω

1 Often, the value of p will depend on the cardinality n of the set V on which our
random graphs are generated; thus, p will be the value p = p(n) of some function
n 7→ p(n). Note, however, that V (and hence n) is fixed for the definition of G:
for each n separately, we are constructing a probability space of the graphs G on
V = { 0, . . . , n− 1 }, and within each space the probability that e ∈ [V ]2 is an edge
of G has the same value for all e.

2 Any reader ready to believe this may skip ahead now to the end of Proposi-
tion 11.1.1, without missing anything.
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Thus, formally, an element of Ω is a map ω assigning to every e ∈ [V ]2

either 0e or 1e, and the probability measure P on Ω is the product P

measure of all the measures Pe. In practice, of course, we identify ω
with the graph G on V whose edge set is

E(G) = { e | ω(e) = 1e } ,

and call G a random graph on V with edge probability p. random
graph

Following standard probabilistic terminology, we may now call any
set of graphs on V an event in G(n, p). In particular, for every e ∈ [V ]2 event

the set
Ae := {ω | ω(e) = 1e } Ae

of all graphs G on V with e ∈ E(G) is an event: the event that e is an
edge of G. For these events, we can now prove formally what had been
our guiding intuition all along:

Proposition 11.1.1. The events Ae are independent and occur with
probability p.

Proof . By definition,

Ae = { 1e }×
∏
e′ 6=e

Ωe′ .

Since P is the product measure of all the measures Pe, this implies

P (Ae) = p ·
∏
e′ 6=e

1 = p .

Similarly, if { e1, . . . , ek } is any subset of [V ]2, then

P (Ae1 ∩ . . .∩Aek) = P
(
{ 1e1 }× . . .×{ 1ek }×

∏
e/∈{ e1,...,ek }

Ωe
)

= pk

= P (Ae1) · · ·P (Aek) .
¤

As noted before, P is determined uniquely by the value of p and our
assumption that the events Ae are independent. In order to calculate
probabilities in G(n, p), it therefore generally suffices to work with these
two assumptions: our concrete model for G(n, p) has served its purpose
and will not be needed again.

As a simple example of such a calculation, consider the event that G
contains some fixed graph H on a subset of V as a subgraph; let |H| =: k k

and ‖H‖ =: `. The probability of this event H ⊆ G is the product of `

the probabilities Ae over all the edges e ∈ H, so P [H ⊆ G ] = p`. In



232 11. Random Graphs

contrast, the probability that H is an induced subgraph of G is p`q(
k
2)−`:

now the edges missing from H are required to be missing from G too,
and they do so independently with probability q.

The probability PH that G has an induced subgraph isomorphic
to H is usually more difficult to compute: since the possible instances
of H on subsets of V overlap, the events that they occur in G are not
independent. However, the sum (over all k-sets U ⊆ V ) of the probabil-
ities P [H ' G [U ] ] is always an upper bound for PH , since PH is the
measure of the union of all those events. For example, if H = Kk, we
have the following trivial upper bound on the probability that G contains
an induced copy of H:

Lemma 11.1.2. For all integers n, k with n > k > 2, the probability
[ 11.2.1 ]
[ 11.3.4 ]

that G ∈ G(n, p) has a set of k independent vertices is at most

P [α(G) > k ] 6
(
n

k

)
q(
k
2).

Proof . The probability that a fixed k-set U ⊆ V is independent in
G is q(

k
2). The assertion thus follows from the fact that there are only(

n
k

)
such sets U . ¤

Analogously, the probability that G ∈ G(n, p) contains a Kk is at
most

P [ω(G) > k ] 6
(
n

k

)
p(
k
2).

Now if k is fixed, and n is small enough that these bounds for the prob-
abilities P [α(G) > k ] and P [ω(G) > k ] sum to less than 1, then G
contains graphs that have neither property: graphs which contain nei-
ther a Kk nor a Kk induced. But then any such n is a lower bound for
the Ramsey number of k !

As the following theorem shows, this lower bound is quite close to
the upper bound of 22k−3 implied by the proof of Theorem 9.1.1:

Theorem 11.1.3. (Erdős 1947)
For every integer k > 3, the Ramsey number of k satisfies

R(k) > 2k/2.

Proof . For k = 3 we trivially haveR(3)> 3> 23/2, so let k > 4. We show
that, for all n 6 2k/2 and G ∈ G(n, 1

2 ), the probabilities P [α(G) > k ]
and P [ω(G) > k ] are both less than 1

2 .
Since p = q = 1

2 , Lemma 11.1.2 and the analogous assertion for ω(G)
imply the following for all n 6 2k/2 (use that k! > 2k for k > 4):
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P [α(G) > k ], P [ω(G) > k ] 6
(
n

k

)(
1
2

)(k2)
<
(
nk/2k

)
2−

1
2k(k−1)

6
(
2k

2/2/2k
)

2−
1
2k(k−1)

= 2−k/2

< 1
2 .

¤

In the context of random graphs, each of the familiar graph invari-
ants (like average degree, connectivity, girth, chromatic number, and so
on) may be interpreted as a non-negative random variable on G(n, p), random

variable
a function

X:G(n, p)→ [ 0,∞) .

The mean or expected value of X is the number mean

expectation

E(X) :=
∑

G∈G(n,p)

P ({G }) ·X(G) .
E(X)

Note that the operator E, the expectation, is linear: we have E(X+Y ) =
E(X) +E(Y ) and E(λX) = λE(X) for any two random variables X,Y
on G(n, p) and λ ∈ R.

Computing the mean of a random variable X can be a simple and
effective way to establish the existence of a graph G such that X(G) < a
for some fixed a > 0 and, moreover, G has some desired property P.
Indeed, if the expected value of X is small, then X(G) cannot be large for
more than a few graphs in G(n, p), because X(G) > 0 for all G ∈ G(n, p).
Hence X must be small for many graphs in G(n, p), and it is reasonable
to expect that among these we may find one with the desired property P.

This simple idea lies at the heart of countless non-constructive exist-
ence proofs using random graphs, including the proof of Erdős’s theorem
presented in the next section. Quantified, it takes the form of the fol-
lowing lemma, whose proof follows at once from the definition of the
expectation and the additivity of P :

Lemma 11.1.4. (Markov’s Inequality)
Let X > 0 be a random variable on G(n, p) and a > 0. Then

[ 11.2.2 ]
[ 11.4.1 ]
[ 11.4.3 ]

P [X > a ] 6 E(X)/a .

Proof .

E(X) =
∑

G∈G(n,p)

P ({G }) ·X(G)
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>
∑

G∈G(n,p)
X(G)>a

P ({G }) ·X(G)

>
∑

G∈G(n,p)
X(G)>a

P ({G }) · a

= P [X > a ] · a .
¤

Since our probability spaces are finite, the expectation can often
be computed by a simple application of double counting , a standard
combinatorial technique we met before in the proofs of Corollary 4.2.8
and Theorem 5.5.3. For example, if X is a random variable on G(n, p)
that counts the number of subgraphs of G in some fixed set H of graphs
on V , then E(X), by definition, counts the number of pairs (G,H) such
thatH ⊆G, each weighted with the probability of {G }. Algorithmically,
we compute E(X) by going through the graphs G ∈ G(n, p) in an ‘outer
loop’ and performing, for each G, an ‘inner loop’ that runs through the
graphs H ∈ H and counts ‘P ({G })’ whenever H ⊆ G. Alternatively,
we may count the same set of weighted pairs with H in the outer and
G in the inner loop: this amounts to adding up, over all H ⊆ H, the
probabilities P [H ⊆ G ].

To illustrate this once in detail, let us compute the expected number
of cycles of some given length k > 3 in a random graph G ∈ G(n, p). So
let X:G(n, p)→N be the random variable that assigns to every randomX

graph G its number of k-cycles, the number of subgraphs isomorphic
to Ck. Let us write

(n)k := n (n− 1)(n− 2) · · · (n− k+ 1)(n)k

for the number of sequences of k distinct elements of a given n-set.

Lemma 11.1.5. The expected number of k-cycles in G ∈ G(n, p) is[ 11.2.2 ]
[ 11.4.3 ]

E(X) =
(n)k
2k

pk.

Proof . For every k-cycle C with vertices in V = { 0, . . . , n− 1 }, the
vertex set of the graphs in G(n, p), let XC :G(n, p)→{ 0, 1 } denote the
indicator random variable of C:

XC : G 7→
{ 1 if C ⊆ G;

0 otherwise.
Since XC takes only 1 as a positive value, its expectation E(XC) equals
the measure P [XC = 1 ] of the set of all graphs in G(n, p) that contain C.
But this is just the probability that C ⊆ G:

E(XC) = P [C ⊆ G ] = pk. (1)
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How many such cycles C = v0 . . . vk−1v0 are there? There are (n)k
sequences v0 . . . vk−1 of distinct vertices in V , and each cycle is identified
by 2k of those sequences—so there are exactly (n)k/2k such cycles.

Our random variable X assigns to every graph G its number of k-
cycles. Clearly, this is the sum of all the values XC(G), where C varies
over the (n)k/2k cycles of length k with vertices in V :

X =
∑
C

XC .

Since the expectation is linear, (1) thus implies

E(X) = E
(∑

C

XC

)
=
∑
C

E(XC) =
(n)k
2k

pk

as claimed. ¤

11.2 The probabilistic method

Very roughly, the probabilistic method in discrete mathematics has de-
veloped from the following idea. In order to prove the existence of an
object with some desired property, one defines a probability space on
some larger—and certainly non-empty—class of objects, and then shows
that an element of this space has the desired property with positive
probability. The ‘objects’ inhabiting this probability space may be of
any kind: partitions or orderings of the vertices of some fixed graph arise
as naturally as mappings, embeddings and, of course, graphs themselves.
In this section, we illustrate the probabilistic method by giving a detailed
account of one of its earliest results: of Erdős’s classic theorem on large
girth and chromatic number.

Erdős’s theorem says that, given any positive integer k, there is a
graph G with girth g(G) > k and chromatic number χ(G) > k. Let us
call cycles of length at most k short , and sets of |G|/k or more vertices short

big . For a proof of Erdős’s theorem, it suffices to find a graph G without big/small

short cycles and without big independent sets of vertices: then the colour
classes in any vertex colouring of G are small (not big), so we need more
than k colours to colour G.

How can we find such a graph G? If we choose p small enough, then
a random graph in G(n, p) is unlikely to contain any (short) cycles. If
we choose p large enough, then G is unlikely to have big independent
vertex sets. So the question is: do these two ranges of p overlap, that
is, can we choose p so that, for some n, it is both small enough to give
P [ g 6 k ] < 1

2 and large enough for P [α > n/k ] < 1
2 ? If so, then
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G(n, p) will contain at least one graph without either short cycles or big
independent sets.

Unfortunately, such a choice of p is impossible: the two ranges of p
do not overlap! As we shall see in Section 11.4, we must keep p below
n−1 to make the occurrence of short cycles in G unlikely—but for any
such p there will most likely be no cycles in G at all (Exercise 19), so G
will be bipartite and hence have at least n/2 independent vertices.

But all is not lost. In order to make big independent sets unlikely,
we shall fix p above n−1, at nε−1 for some ε > 0. Fortunately, though,
if ε is small enough then this will produce only few short cycles in G,
even compared with n (rather than, more typically, with nk). If we then
delete a vertex in each of those cycles, the graph H obtained will have
no short cycles, and its independence number α(H) will be at most that
of G. Since H is not much smaller than G, its chromatic number will
thus still be large, so we have found a graph with both large girth and
large chromatic number.

To prepare for the formal proof of Erdős’s theorem, we first show
that an edge probability of p = nε−1 is indeed always large enough to
ensure that G ∈ G(n, p) ‘almost surely’ has no big independent set of ver-
tices. More precisely, we prove the following slightly stronger assertion:

Lemma 11.2.1. Let k > 0 be an integer, and let p = p(n) be a function
of n such that p > (6k lnn)n−1 for n large. Then

lim
n→∞

P [α > 1
2n/k ] = 0 .

Proof . For all integers n, r with n > r > 2, and all G ∈ G(n, p), Lemma(11.1.2)

11.1.2 implies

P [α > r ] 6
(
n

r

)
q(
r
2)

6 nrq(
r
2)

=
(
nq(r−1)/2

)r
6
(
ne−p(r−1)/2

)r
;

here, the last inequality follows from the fact that 1− p 6 e−p for all p.
(Compare the functions x 7→ ex and x 7→ x + 1 for x = −p.) Now
if p > (6k lnn)n−1 and r > 1

2n/k, then the term under the exponent
satisfies

ne−p(r−1)/2 = ne−pr/2 + p/2

6 ne−(3/2) lnn+ p/2

6 nn−3/2 e1/2

=
√
e /
√
n −→
n→∞

0 .
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Since p > (6k lnn)n−1 for n large, we thus obtain for r := d 1
2n/ke

lim
n→∞

P [α > 1
2n/k ] = lim

n→∞
P [α > r ] = 0 ,

as claimed. ¤

Theorem 11.2.2. (Erdős 1959)
For every integer k there exists a graph H with girth g(H) > k and [ 9.2.3 ]

chromatic number χ(H) > k.

Proof . Assume that k > 3, fix ε with 0 < ε < 1/k, and let p := nε−1. Let
(11.1.4)
(11.1.5)

p, ε,XX(G) denote the number of short cycles in a random graph G ∈ G(n, p),
i.e. its number of cycles of length at most k.

By Lemma 11.1.5, we have

E(X) =
k∑
i=3

(n)i
2i

pi 6 1
2

k∑
i=3

nipi 6 1
2 (k− 2)nkpk ;

note that (np)i 6 (np)k, because np = nε > 1. By Lemma 11.1.4,

P [X > n/2 ] 6 E(X)
/

(n/2)

6 (k− 2)nk−1pk

= (k− 2)nk−1n(ε−1)k

= (k− 2)nkε−1.

As kε− 1 < 0 by our choice of ε, this implies that

lim
n→∞

P [X > n/2 ] = 0 .

Let n be large enough that P [X > n/2 ]< 1
2 and P [α > 1

2n/k ] < 1
2 ; n

the latter is possible by our choice of p and Lemma 11.2.1. Then there
is a graph G ∈ G(n, p) with fewer than n/2 short cycles and α(G) <
1
2n/k. From each of those cycles delete a vertex, and let H be the graph
obtained. Then |H| > n/2 and H has no short cycles, so g(H) > k. By
definition of G,

χ(H) > |H|
α(H)

> n/2
α(G)

> k .

¤

Corollary 11.2.3. There are graphs with arbitrarily large girth and
arbitrarily large values of the invariants κ, ε and δ.

Proof . Apply Corollary 5.2.3 and Theorem 1.4.2. ¤ (1.4.2)
(5.2.3)
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11.3 Properties of almost all graphs

A graph property is a class of graphs that is closed under isomorphism,property

one that contains with every graph G also the graphs isomorphic to G.
If p = p(n) is a fixed function (possibly constant), and P is a graph prop-
erty, we may ask how the probability P [G ∈ P ] behaves for G ∈ G(n, p)
as n→∞. If this probability tends to 1, we say that G ∈ P for almost
all (or almost every) G ∈ G(n, p), or that G ∈ P almost surely ; if italmost all

etc.
tends to 0, we say that almost no G ∈ G(n, p) has the property P. (For
example, in Lemma 11.2.1 we proved that, for a certain p, almost no
G ∈ G(n, p) has a set of more than 1

2n/k independent vertices.)
To illustrate the new concept let us show that, for constant p, every

fixed abstract3 graph H is an induced subgraph of almost all graphs:

Proposition 11.3.1. For every constant p ∈ (0, 1) and every graph H,
almost every G ∈ G(n, p) contains an induced copy of H.

Proof . Let H be given, and k := |H|. If n > k and U ⊆ { 0, . . . , n− 1 }
is a fixed set of k vertices of G, then G [U ] is isomorphic to H with
a certain probability r > 0. This probability r depends on p, but not
on n (why not?). Now G contains a collection of bn/kc disjoint such
sets U . The probability that none of the corresponding graphs G [U ] is
isomorphic to H is (1− r)bn/kc, since these events are independent by
the disjointness of the edges sets [U ]2. Thus

P [H 6⊆ G induced ] 6 (1− r)bn/kc −→
n→∞

0 ,

which implies the assertion. ¤

The following lemma is a simple device enabling us to deduce that
quite a number of natural graph properties (including that of Proposi-
tion 11.3.1) are shared by almost all graphs. Given i, j ∈ N, let Pi,jPi,j
denote the property that the graph considered contains, for any disjoint
vertex sets U,W with |U | 6 i and |W | 6 j, a vertex v /∈ U ∪W that is
adjacent to all the vertices in U but to none in W .

Lemma 11.3.2. For every constant p ∈ (0, 1) and i, j ∈ N, almost every
graph G ∈ G(n, p) has the property Pi,j .

3 The word ‘abstract’ is used to indicate that only the isomorphism type of H is
known or relevant, not its actual vertex and edge sets. In our context, it indicates
that the word ‘subgraph’ is used in the usual sense of ‘isomorphic to a subgraph’.
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Proof . For fixed U,W and v ∈ G− (U ∪W ), the probability that v is
adjacent to all the vertices in U but to none in W , is

p|U |q|W | > piqj .

Hence, the probability that no suitable v exists for these U and W , is

(1− p|U |q|W |)n−|U |−|W | 6 (1− piqj)n−i−j

(for n > i + j), since the corresponding events are independent for
different v. As there are no more than ni+j pairs of such sets U,W
in V (G) (encode sets U of fewer than i points as non-injective maps
{ 0, . . . , i− 1 } → { 0, . . . , n− 1 }, etc.), the probability that some such
pair has no suitable v is at most

ni+j(1− piqj)n−i−j ,

which tends to zero as n→∞ since 1− piqj < 1. ¤

Corollary 11.3.3. For every constant p ∈ (0, 1) and k ∈ N, almost every
graph in G(n, p) is k-connected.

Proof . By Lemma 11.3.2, it is enough to show that every graph in P2,k−1

is k-connected. But this is easy: any graph in P2,k−1 has order at least
k + 2, and if W is a set of fewer than k vertices, then by definition of
P2,k−1 any other two vertices x, y have a common neighbour v /∈ W ; in
particular, W does not separate x from y. ¤

In the proof of Corollary 11.3.3, we showed substantially more than
was asked for: rather than finding, for any two vertices x, y /∈ W , some
x–y path avoiding W , we showed that x and y have a common neighbour
outside W ; thus, all the paths needed to establish the desired connec-
tivity could in fact be chosen of length 2. What seemed like a clever
trick in this particular proof is in fact indicative of a more fundamental
phenomenon for constant edge probabilities: by an easy result in logic,
any statement about graphs expressed by quantifying over vertices only
(rather than over sets or sequences of vertices)4 is either almost surely
true or almost surely false. All such statements, or their negations,
are in fact immediate consequences of an assertion that the graph has
property Pi,j , for some suitable i, j.

As a last example of an ‘almost all’ result we now show that almost
every graph has a surprisingly high chromatic number:

4 In the terminology of logic: any first order sentence in the language of graph
theory
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Proposition 11.3.4. For every constant p ∈ (0, 1) and every ε > 0,
almost every graph G ∈ G(n, p) has chromatic number

χ(G) >
log(1/q)

2 + ε
· n

logn
.

Proof . For any fixed n > k > 2, Lemma 11.1.2 implies(11.1.2)

P [α > k ] 6
(
n

k

)
q(
k
2)

6 nkq(
k
2)

= qk
logn
log q + 1

2k(k−1)

= q
k
2

(
− 2 logn

log(1/q) +k−1
)
.

For
k := (2 + ε)

logn
log(1/q)

the exponent of this expression tends to infinity with n, so the expression
itself tends to zero. Hence, almost every G ∈ G(n, p) is such that in any
vertex colouring of G no k vertices can have the same colour, so every
colouring uses more than

n

k
=

log(1/q)
2 + ε

· n

logn

colours. ¤

By a result of Bollobás (1988), Proposition 11.3.4 is sharp in the
following sense: if we replace ε by −ε, then the lower bound given for χ
turns into an upper bound.

Most of the results of this section have the interesting common fea-
ture that the values of p played no role whatsoever: if almost every
graph in G(n, 1

2 ) had the property considered, then the same was true
for almost every graph in G(n, 1/1000). How could this happen?

Such insensitivity of our random model to changes of p was certainly
not intended: after all, among all the graphs with a certain property P
it is often those having P ‘only just’ that are the most interesting—for
those graphs are most likely to have different properties too, properties
to which P might thus be set in relation. (The proof of Erdős’s theorem
is a good example.) For most properties, however—and this explains the
above phenomenon—the critical order of magnitude of p around which
the property will ‘just’ occur or not occur lies far below any constant
value of p: it is typically a function of n tending to zero as n→∞.
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Let us then see what happens if p is allowed to vary with n. Al-
most immediately, a fascinating picture unfolds. For edge probabilities
p whose order of magnitude lies below n−2, a random graph G ∈ G(n, p)
almost surely has no edges at all. As p grows, G acquires more and
more structure: from about p =

√
nn−2 onwards, it almost surely has

a component with more than two vertices, these components grow into
trees, and around p = n−1 the first cycles are born. Soon, some of these
will have several crossing chords, making the graph non-planar. At the
same time, one component outgrows the others, until it devours them
around p = (logn)n−1, making the graph connected. Hardly later, at
p = (1 + ε)(logn)n−1, our graph almost surely has a Hamilton cycle!

It has become customary to compare this development of random
graphs as p grows to the evolution of an organism: for each p = p(n),
one thinks of the properties shared by almost all graphs in G(n, p) as
properties of ‘the’ typical random graph G ∈ G(n, p), and studies how
G changes its features with the growth rate of p. As with other species,
the evolution of random graphs happens in relatively sudden jumps: the
critical edge probabilities mentioned above are thresholds below which
almost no graph and above which almost every graph has the property
considered. More precisely, we call a real function t = t(n) with t(n) 6= 0
for all n a threshold function for a graph property P if the following threshold

function
holds for all p = p(n), and G ∈ G(n, p):

lim
n→∞

P [G ∈ P ] =
{

0 if p/t→ 0 as n→∞
1 if p/t→∞ as n→∞.

If P has a threshold function t, then clearly any positive multiple ct of t
is also a threshold function for P; thus, threshold functions in the above
sense are only ever unique up to a multiplicative constant.5

Which graph properties have threshold functions? Natural candi-
dates for such properties are increasing ones, properties closed under the
addition of edges. (Graph properties of the form {G | G ⊇ H }, with
H fixed, are common increasing properties; connectedness is another.)
And indeed, Bollobás & Thomason (1987) have shown that all increasing
properties, trivial exceptions aside, have threshold functions.

In the next section we shall study a general method to compute
threshold functions.

5 Our notion of threshold reflects only the crudest interesting level of screening:
for some properties, such as connectedness, one can define sharper thresholds where
the constant factor is crucial. Note also the role of the constant factor in our com-
parison of connectedness with hamiltonicity in the previous paragraph.
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11.4 Threshold functions and second moments

Consider a graph property of the form

P = {G | X(G) > 0 } ,

where X > 0 is a random variable on G(n, p). Countless properties canX > 0

be expressed naturally in this way; if X denotes the number of spanning
trees, for example, then P corresponds to connectedness.

How could we prove that P has a threshold function t? Any such
proof will consist of two parts: a proof that almost no G ∈ G(n, p) has
P when p is small compared with t, and one showing that almost every
G has P when p is large.

If X is integral, we may use Markov’s inequality for the first part
of the proof and find an upper bound for E(X) instead of P [X > 0 ]:
if E(X) is small then X(G) can be positive—and hence at least 1—only
for few G ∈ G(n, p). Besides, the expectation is much easier to calculate
than probabilities: without worrying about such things as independence
or incompatibility of events, we may compute the expectation of a sum of
random variables—for example, of indicator random variables—simply
by adding up their individual expected values.

For the second part of the proof, things are more complicated. In
order to show that P [X > 0 ] is large, it is not enough to bound E(X)
from below: since X is not bounded above, E(X) may be large simply
because X is very large on just a few graphs G—so X may still be zero
for most G ∈ G(n, p).6 In order to prove that P [X > 0 ]→ 1, we thus
have to show that this cannot happen, i.e. that X does not deviate a lot
from its mean too often.

The following elementary tool from probability theory achieves just
that. As is customary, we write

µ := E(X)µ

and define σ > 0 by setting

σ2 := E
(
(X −µ)2

)
.σ2

This quantity σ2 is called the variance or second moment of X; by
definition, it is a (quadratic) measure of how much X deviates from its
mean. Since E is linear, the defining term for σ2 expands to

σ2 = E(X2− 2µX +µ2) = E(X2)−µ2.

6 For some p between n−1 and (logn)n−1, for example, almost every G ∈ G(n, p)
has an isolated vertex (and hence no spanning tree), but its expected number of
spanning trees tends to infinity with n ! See the Exercise 13 for details.
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Note that µ and σ2 always refer to a random variable on some fixed
probability space. In our setting, where we consider the spaces G(n, p),
both quantities are functions of n.

The following lemma says exactly what we need: that X cannot
deviate a lot from its mean too often.

Lemma 11.4.1. (Chebyshev’s Inequality)
For all real λ > 0,

P
[
|X −µ| > λ

]
6 σ2/λ2.

Proof . By Lemma 11.1.4 and definition of σ2, (11.1.4)

P [ |X −µ| > λ ] = P [ (X −µ)2 > λ2 ] 6 σ2/λ2.

¤

For a proof that X(G) > 0 for almost all G ∈ G(n, p), Chebyshev’s
inequality can be used as follows:

Lemma 11.4.2. If µ > 0 for n large, and σ2/µ2→ 0 as n→∞, then
X(G) > 0 for almost all G ∈ G(n, p).

Proof . Any graph G with X(G) = 0 satisfies |X(G)− µ| = µ. Hence
Lemma 11.4.1 implies with λ := µ that

P [X = 0 ] 6 P
[
|X −µ| > µ

]
6 σ2/µ2 −→

n→∞
0 .

Since X > 0, this means that X > 0 almost surely, i.e. that X(G) > 0
for almost all G ∈ G(n, p). ¤

As the main result of this section, we now prove a theorem that will
at once give us threshold functions for a number of natural properties.
Given a graph H, we denote by PH the graph property of containing a PH
copy of H as a subgraph. We shall call H balanced if ε(H ′) 6 ε(H) for balanced

all subgraphs H ′ of H.

Theorem 11.4.3. (Erdős & Rényi 1960)
If H is a balanced graph with k vertices and ` > 1 edges, then t(n) := k, `

n−k/` is a threshold function for PH . t
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Proof . Let X(G) denote the number of subgraphs of G isomorphic to H.(11.1.4)
(11.1.5)

X
Given n ∈ N, let H denote the set of all graphs isomorphic to H whose
vertices lie in { 0, . . . , n− 1 }, the vertex set of the graphs G ∈ G(n, p):

H :=
{
H ′ | H ′ ' H, V (H ′) ⊆ { 0, . . . , n− 1 }

}
.H

Given H ′ ∈ H and G ∈ G(n, p), we shall write H ′ ⊆ G to express that
H ′ itself—not just an isomorphic copy of H ′—is a subgraph of G.

By h we denote the number of isomorphic copies of H on a fixedh

k-set; clearly, h 6 k! . As there are
(
n
k

)
possible vertex sets for the graphs

in H, we thus have

|H| =
(
n

k

)
h 6

(
n

k

)
k! 6 nk. (1)

Given p = p(n), we set γ := p/t; thenp, γ

p = γn−k/`. (2)

We have to show that almost no G ∈ G(n, p) lies in PH if γ→0 as n→∞,
and that almost all G ∈ G(n, p) lie in PH if γ→∞ as n→∞.

For the first part of the proof, we find an upper bound for E(X), the
expected number of subgraphs of G isomorphic to H. As in the proof of
Lemma 11.1.5, double counting gives

E(X) =
∑
H′∈H

P [H ′ ⊆ G ] . (3)

For every fixed H ′ ∈ H, we have

P [H ′ ⊆ G ] = p`, (4)

because ‖H‖ = `. Hence,

E(X) =
(3,4)
|H| p` 6

(1,2)
nk(γn−k/`)` = γ`. (5)

Thus if γ→ 0 as n→∞, then

P [G ∈ PH ] = P [X > 1 ] 6 E(X) 6 γ` −→
n→∞

0

by Markov’s inequality (11.1.4), so almost no G ∈ G(n, p) lies in PH .
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We now come to the second part of the proof: we show that almost
all G ∈ G(n, p) lie in PH if γ→∞ as n→∞. Note first that, for n > k,

(
n

k

)
n−k =

1
k!

(
n

n
· · · n− k+ 1

n

)
> 1

k!

(
n− k+ 1

n

)k
> 1

k!

(
1− k− 1

k

)k
; (6)

thus, nk exceeds
(
n
k

)
by no more than a factor independent of n.

Our goal is to apply Lemma 11.4.2, and hence to bound σ2/µ2 =(
E(X2)−µ2

)
/µ2 from above. As in (3) we have

E(X2) =
∑

(H′,H′′)∈H2

P [H ′ ∪H ′′ ⊆ G ] . (7)

Let us then calculate these probabilities P [H ′ ∪ H ′′ ⊆ G ]. Given
H ′, H ′′ ∈ H, we have

P [H ′ ∪H ′′ ⊆ G ] = p2`−‖H′∩H′′‖.

Since H is balanced, ε(H ′ ∩H ′′) 6 ε(H) = `/k. With |H ′ ∩H ′′| =: i i

this yields ‖H ′ ∩H ′′‖ 6 i`/k, so by 0 6 p 6 1,

P [H ′ ∪H ′′ ⊆ G ] 6 p2`−i`/k. (8)

We have now estimated the individual summands in (7); what does
this imply for the sum as a whole? Since (8) depends on the parameter
i = |H ′ ∩H ′′|, we partition the range H2 of the sum in (7) into the
subsets

H2
i :=

{
(H ′, H ′′) ∈ H2 : |H ′ ∩H ′′| = i

}
, i = 0, . . . , k, H2

i

and calculate for each H2
i the corresponding sum

Ai :=
∑

i
P [H ′ ∪H ′′ ⊆ G ] Ai

by itself. (Here, as below, we use
∑
i to denote sums over all pairs

∑
i

(H ′, H ′′) ∈ H2
i .)

If i = 0 then H ′ and H ′′ are disjoint, so the events H ′ ⊆ G and
H ′′ ⊆ G are independent. Hence,

A0 =
∑

0
P [H ′ ∪H ′′ ⊆ G ]
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=
∑

0
P [H ′ ⊆ G ] ·P [H ′′ ⊆ G ]

6
∑

(H′,H′′)∈H2

P [H ′ ⊆ G ] ·P [H ′′ ⊆ G ]

=
( ∑
H′∈H

P [H ′ ⊆ G ]
)
·
( ∑
H′′∈H

P [H ′′ ⊆ G ]
)

=
(3)

µ2. (9)

Let us now estimate Ai for i > 1. Writing
∑′ for

∑
H′∈H and

∑′′
for

∑
H′′∈H , we note that

∑
i can be written as

∑′∑′′
|H′∩H′′|=i . For∑′

fixed H ′ (corresponding to the first sum
∑′), the second sum ranges

over (
k

i

)(
n− k
k− i

)
h

summands: the number of graphs H ′′ ∈ H with |H ′′ ∩H ′| = i. Hence,
for all i > 1 and suitable constants c1, c2 independent of n,

Ai =
∑

i
P [H ′ ∪H ′′ ⊆ G ]

6
(8)

∑′
(
k

i

)(
n− k
k− i

)
h p2`p−i`/k

=
(2)
|H|
(
k

i

)(
n− k
k− i

)
h p2`

(
γ n−k/`

)−i`/k
6 |H| p`c1 nk−i h p`γ−i`/k ni

=
(5)

µ c1n
kh p`γ−i`/k

6
(6)

µ c2

(
n

k

)
h p`γ−i`/k

=
(1,5)

µ2c2γ
−i`/k

6 µ2c2γ
−`/k

if γ > 1. By definition of the Ai, this implies with c3 := kc2 that

E(X2)/µ2 =
(7)

(
A0/µ

2 +
k∑
i=1

Ai/µ
2
)
6
(9)

1 + c3γ
−`/k

and hence
σ2

µ2
=
E(X2)−µ2

µ2
6 c3γ

−`/k −→
γ→∞

0 .
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By Lemma 11.4.2, therefore, X > 0 almost surely, i.e. almost all G ∈
G(n, p) have a subgraph isomorphic to H and hence lie in PH . ¤

Theorem 11.4.3 allows us to read off threshold functions for a num-
ber of natural graph properties.

Corollary 11.4.4. If k > 3, then t(n) = n−1 is a threshold function for
the property of containing a k-cycle. ¤

Interestingly, the threshold function in Corollary 11.4.4 is indepen-
dent of the cycle length k considered: in the evolution of random graphs,
cycles of all (constant) lengths appear at about the same time!

There is a similar phenomenon for trees. Here, the threshold func-
tion does depend on the order of the tree considered, but not on its
shape:

Corollary 11.4.5. If T is a tree of order k > 2, then t(n) = n−k/(k−1)

is a threshold function for the property of containing a copy of T .

We finally have the following result for complete subgraphs:

Corollary 11.4.6. If k > 2, then t(n) = n−2/(k−1) is a threshold func-
tion for the property of containing a Kk.

Proof . Kk is balanced, because ε(Ki) = 1
2 (i−1) < 1

2 (k−1) = ε(Kk) for
i < k. With ` := ‖Kk‖ = 1

2k(k−1), we obtain n−k/` = n−2/(k−1). ¤

It is not difficult to adapt the proof of Theorem 11.4.3 to the case
that H is unbalanced. The threshold then becomes t(n) = n−1/ε′(H),
where ε′(H) := max { ε(F ) | F ⊆ H }; see Exercise 22.

Exercises
1.− What is the probability that a random graph in G(n, p) has exactly m

edges, for 0 6 m 6
(
n
2

)
fixed?

2. What is the expected number of edges in G ∈ G(n, p)?

3. What is the expected number of Kr-subgraphs in G ∈ G(n, p)?

4. Characterize the graphs that occur as a subgraph in every graph of
sufficiently large average degree.

5. In the usual terminology of measure spaces (and in particular, of prob-
ability spaces), the phrase ‘almost all’ is used to refer to a set of points
whose complement has measure zero. Rather than considering a limit
of probabilities in G(n, p) as n→∞, would it not be more natural to
define a probability space on the set of all finite graphs (one copy of
each) and to investigate properties of ‘almost all’ graphs in this space,
in the sense above?
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6. Show that if almost all G ∈ G(n, p) have a graph property P1 and almost
all G ∈ G(n, p) have a graph property P2, then almost all G ∈ G(n, p)
have both properties, i.e. have the property P1 ∩P2.

7.− Show that, for constant p ∈ (0, 1), almost every graph in G(n, p) has
diameter 2.

8. Show that, for constant p ∈ (0, 1), almost no graph in G(n, p) has a
separating complete subgraph.

9. Derive Proposition 11.3.1 from Lemma 11.3.2.

10.+ (i) Show that with probability 1 an infinite random graph G ∈ G(ℵ0, p)
has all the properties Pi,j (i, j ∈ N).

(ii) Show that any two (infinite) graphs having all the properties Pi,j
are isomorphic.

(Thus, up to isomorphism, there is only one countably infinite random
graph.)

11. Let ε > 0 and p = p(n) > 0, and let r > (1 + ε)(2 lnn)/p be an integer-
valued function of n. Show that almost no graph in G(n, p) contains r
independent vertices.

12. Show that for every graph H there exists a function p = p(n) such that
limn→∞ p(n) = 0 but almost every G ∈ G(n, p) contains an induced
copy of H.

13.+ (i) Show that, for every 0 < ε 6 1 and p = (1− ε)(lnn)n−1, almost
every G ∈ G(n, p) has an isolated vertex.

(ii) Find a probability p = p(n) such that almost every G ∈ G(n, p) is
disconnected but the expected number of spanning trees of G tends to
infinity as n→∞.

(Hint for (ii): A theorem of Cayley states that Kn has exactly nn−2

spanning trees.)

14.+ Given r ∈ N, find a c > 0 such that, for p = cn−1, almost every
G ∈ G(n, p) has a Kr minor. Can c be chosen independently of r?

15. Find an increasing graph property without a threshold function, and a
property that is not increasing but has a threshold function.

16.− Let H be a graph of order k, and let h denote the number of graphs
isomorphic to H on some fixed set of k elements. Show that h 6 k!.
For which graphs H does equality hold?

17.− For every k > 1, find a threshold function for {G | ∆(G) > k }.
18.− Given d ∈ N, is there a threshold function for the property of containing

a d-dimensional cube (see Ex. 2, Ch. 1)? If so, which; if not, why not?

19. Show that t(n) = n−1 is also a threshold function for the property of
containing any cycle.

20. Does the property of containing any tree of order k (for k > 2 fixed)
have a threshold function? If so, which?
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21.+ Given a graph H, let P be the property of containing an induced copy
of H. If H is complete then, by Corollary 11.4.6, P has a threshold
function. Show that P has no threshold function if H is not complete.

22.+ Prove the following version of Theorem 11.4.3 for unbalanced sub-
graphs. Let H be any graph with at least one edge, and put ε′(H) :=
max { ε(F ) | ∅ 6= F ⊆ H }. Then the threshold function for PH is

t(n) = n−1/ε′(H).

(Hint. Imitate the proof of Theorem 11.4.3. Instead of the sets Hi,
consider the sets H2

F := { (H ′, H ′′) ∈ H2 | H ′ ∩H ′′ = F }. Replace
the distinction between the cases of i = 0 and i > 0 by the distinction
between the cases of ‖F‖ = 0 and ‖F‖ > 0.)

Notes
There are a number of monographs and texts on the subject of random
graphs. The most comprehensive of these is B. Bollobás, Random Graphs,
Academic Press 1985. Another advanced but very readable monograph is
S. Janson, T. ÃLuczak & A. Ruciński, Topics in Random Graphs, in prepara-
tion; this concentrates on areas developed since Random Graphs was pub-
lished. E.M. Palmer, Graphical Evolution, Wiley 1985, covers material similar
to parts of Random Graphs but is written in a more elementary way. Com-
pact introductions going beyond what is covered in this chapter are given
by B. Bollobás, Graph Theory , Springer GTM 63, 1979, and by M. Karoński,
Handbook of Combinatorics (R.L. Graham, M. Grötschel & L. Lovász, eds.),
North-Holland 1995.

A stimulating advanced introduction to the use of random techniques in
discrete mathematics more generally is given by N. Alon & J.H. Spencer, The
Probabilistic Method, Wiley 1992. One of the attractions of this book lies
in the way it shows probabilistic methods to be relevant in proofs of entirely
deterministic theorems, where nobody would suspect it. Another example for
this phenomenon is Alon’s proof of Theorem 5.4.1; see the notes for Chapter 5.

The probabilistic method had its first origins in the 1940s, one of its
earliest results being Erdős’s probabilistic lower bound for Ramsey numbers
(Theorem 11.1.3). Lemma 11.3.2 about the properties Pi,j is taken from Bol-
lobás’s Springer text cited above. A very readable rendering of the proof that,
for constant p, every first order sentence about graphs is either almost surely
true or almost surely false, is given by P. Winkler, Random structures and
zero-one laws, in (N.W. Sauer et al., eds.) Finite and Infinite Combinatorics
in Sets and Logic (NATO ASI Series C 411), Kluwer 1993.

The seminal paper on graph evolution is P. Erdős & A. Rényi, On the
evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960),
17–61. This paper also includes Theorem 11.4.3 and its proof. The generaliza-
tion of this theorem to unbalanced subgraphs was first proved by Bollobás in
1981, using advanced methods; a simple adaptation of the original Erdős-Renyi
proof was found by Ruciński & Vince (1986), and is presented in Karoński’s
Handbook chapter.
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There is another way of defining a random graph G, which is just as
natural and common as the model we considered. Rather than choosing the
edges of G independently, we choose the entire graph G uniformly at random
from among all the graphs on { 0, . . . , n− 1 } that have exactly M = M(n)
edges: then each of these graphs occurs with the same probability of

(
N
M

)
,

where N :=
(
n
2

)
. Just as we studied the likely properties of the graphs in

G(n, p) for different functions p = p(n), we may investigate how the properties
of G in the other model depend on the function M(n). If M is close to pN , the
expected number of edges of a graph in G(n, p), then the two models behave
very similarly. It is then largely a matter of convenience which of them to
consider; see Bollobás for details.

In order to study threshold phenomena in more detail, one often considers
the following random graph process: starting with a Kn as stage zero, one
chooses additional edges one by one (uniformly at random) until the graph
is complete. This is a simple example of a Markov chain, whose Mth stage
corresponds to the ‘uniform’ random graph model described above. A survey
about threshold phenomena in this setting is given by T. ÃLuczak, The phase
transition in a random graph, in (D. Miklós, V.T. Sós & T. Szőnyi, eds.) Paul
Erdős is 80, Vol. 2, Proc. Colloq. Math. Soc. János Bolyai (1996).



12 Minors,
Trees,

and WQO

Our goal in this last chapter is a single theorem, one which dwarfs any
other result in graph theory and may doubtless be counted among the
deepest theorems that mathematics has to offer: in every infinite set of
graphs there are two such that one is a minor of the other. This graph
minor theorem (or minor theorem for short), inconspicuous though it
may look at first glance, has made a fundamental impact both outside
graph theory and within. Its proof, due to Neil Robertson and Paul
Seymour, takes well over 500 pages.

So we have to be modest: of the actual proof of the minor theorem,
this chapter will convey only a very rough impression. However, as with
most truly fundamental results, the proof has sparked off the develop-
ment of methods of quite independent interest and potential. This is
true particularly for the use of tree-decompositions, a technique we shall
meet in Sections 12.3 and 12.4. Section 12.1 gives an introduction to well-
quasi-ordering , a concept central to the minor theorem. In Section 12.2
we apply this concept to prove the minor theorem for trees. The chapter
finishes with an overview in Section 12.5 of the proof of the general graph
minor theorem, and of some of its immediate consequences.

12.1 Well-quasi-ordering
A reflexive and transitive relation is called a quasi-ordering . A quasi-
ordering 6 on X is a well-quasi-ordering , and the elements of X are well-quasi-

ordering
well-quasi-ordered by 6, if for every infinite sequence x0, x1, . . . in X
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there are indices i < j such that xi 6 xj . Then (xi, xj) is a good pairgood pair

of this sequence. A sequence containing a good pair is a good sequence;
thus, a quasi-ordering on X is a well-quasi-ordering if and only if everygood/bad

sequence
infinite sequence in X is good. An infinite sequence is bad if it is not
good.

Proposition 12.1.1. A quasi-ordering 6 on X is a well-quasi-ordering
if and only if X contains neither an infinite antichain nor an infinite
strictly decreasing sequence x0 > x1 > . . ..

Proof . The forward implication is trivial. Conversely, let x0, x1, . . .(9.1.2)

be any infinite sequence in X. Let K be the complete graph on N =
{ 0, 1, . . . }. Colour the edges ij (i < j) of K with three colours: green
if xi 6 xj , red if xi > xj , and amber if xi, xj are incomparable. By
Ramsey’s theorem (9.1.2), K has an infinite induced subgraph whose
edges all have the same colour. If there is neither an infinite antichain
nor an infinite strictly decreasing sequence in X, then this colour must
be green, i.e. x0, x1, . . . has an infinite subsequence in which every pair
is good. In particular, the sequence x0, x1, . . . is good. ¤

In the proof of Proposition 12.1.1, we showed more than was needed:
rather than finding a single good pair in x0, x1, . . ., we found an infinite
increasing subsequence. We have thus shown the following:

Corollary 12.1.2. If X is well-quasi-ordered, then every infinite se-
quence in X has an infinite increasing subsequence. ¤

The following lemma, and the idea of its proof, are fundamental to
the theory of well-quasi-ordering. Let 6 be a quasi-ordering on a set X.
For finite subsets A,B ⊆ X, write A 6 B if there is an injective mapping6
f :A→B such that a 6 f(a) for all a ∈ A. This naturally extends 6 to
a quasi-ordering on [X]<ω, the set of all finite subsets of X.[X]<ω

Lemma 12.1.3. If X is well-quasi-ordered by 6, then so is [X]<ω.[ 12.2.1 ]

Proof . Suppose that 6 is a well-quasi-ordering on X but not on [X]<ω.
We start by constructing a bad sequence (An)n∈N in [X]<ω, as follows.
Given n ∈ N, assume inductively that Ai has been defined for every
i < n, and that there exists a bad sequence in [X]<ω starting with
A0, . . . , An−1. (This is clearly true for n = 0: by assumption, [X]<ω

contains a bad sequence, and this has the empty sequence as an initial
segment.) Choose An ∈ [X]<ω so that some bad sequence in [X]<ω starts
with A0, . . . , An and |An| is as small as possible.

Clearly, (An)n∈N is a bad sequence in [X]<ω; in particular, An 6= ∅
for all n. For each n pick an element an ∈ An and set Bn := Anr{ an }.
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By Corollary 12.1.2, the sequence (an)n∈N has an infinite increasing
subsequence (ani)i∈N. By the minimal choice of An0 , the sequence

A0, . . . , An0−1, Bn0 , Bn1 , Bn2 , . . .

is good; consider a good pair. Since (An)n∈N is bad, this pair cannot
have the form (Ai, Aj) or (Ai, Bj), as Bj 6 Aj . So it has the form
(Bi, Bj). Extending the injection Bi→Bj by ai 7→ aj , we deduce again
that (Ai, Aj) is good, a contradiction. ¤

12.2 The graph minor theorem for trees
The minor theorem can be expressed by saying that the finite graphs
are well-quasi-ordered by the minor relation 4. Indeed, by Proposi-
tion 12.1.1 and the obvious fact that no strictly descending sequence
of minors can be infinite, being well-quasi-ordered is equivalent to the
non-existence of an infinite antichain, the formulation used earlier.

In this section, we prove a strong version of the graph minor theorem
for trees:

Theorem 12.2.1. (Kruskal 1960)
The finite trees are well-quasi-ordered by the topological minor relation.

We shall base the proof of Theorem 12.2.1 on the following notion
of an embedding between rooted trees, which strengthens the usual em-
bedding as a topological minor. Consider two trees T and T ′, with roots
r and r′ say. Let us write T 6 T ′ if there exists an isomorphism ϕ, from T 6 T ′

some subdivision of T to a subtree T ′′ of T ′, that preserves the tree-order
on V (T ) associated with T and r. (Thus if x < y in T then ϕ(x) < ϕ(y)
in T ′; see Fig. 12.2.1.) As one easily checks, this is a quasi-ordering on
the class of all rooted trees.

r

T

r′

ϕ
ϕ

(r)

T ′

Fig. 12.2.1. An embedding of T in T ′ showing that T 6 T ′
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Proof of Theorem 12.2.1. We show that the rooted trees are well-(12.1.3)

quasi-ordered by the relation 6 defined above; this clearly implies the
theorem.

Suppose not. To derive a contradiction, we proceed as in the proof
of Lemma 12.1.3. Given n ∈ N, assume inductively that we have chosen
a sequence T0, . . . , Tn−1 of rooted trees such that some bad sequence of
rooted trees starts with this sequence. Choose as Tn a minimum-orderTn

rooted tree such that some bad sequence starts with T0, . . . , Tn. For each
n ∈ N, denote the root of Tn by rn.rn

Clearly, (Tn)n∈N is a bad sequence. For each n, let An denote theAn

set of components of Tn − rn, made into rooted trees by choosing the
neighbours of rn as their roots. Note that the tree-order of these trees
is that induced by Tn. Let us prove that the set A :=

⋃
n∈NAn of allA

these trees is well-quasi-ordered.
Let (T k)k∈N be any sequence of trees in A. For every k ∈ N chooseTk

an n = n(k) such that T k ∈ An. Pick a k with smallest n(k). Thenn(k)

T0, . . . , Tn(k)−1, T
k, T k+1, . . .

is a good sequence, by the minimal choice of Tn(k) and T k $ Tn(k). Let
(T, T ′) be a good pair of this sequence. Since (Tn)n∈N is bad, T cannot
be among the first n(k) members T0, . . . , Tn(k)−1 of our sequence: then
T ′ would be some T i with i > k, i.e.

T 6 T ′ = T i 6 Tn(i) ;

since n(k) 6 n(i) by the choice of k, this would make (T, Tn(i)) a good
pair in the bad sequence (Tn)n∈N. Hence (T, T ′) is a good pair also in
(T k)k∈N, completing the proof that A is well-quasi-ordered.

By Lemma 12.1.3,1 the sequence (An)n∈N in [A]<ω has a good pair
(Ai, Aj); let f :Ai→Aj be an injection such that T 6 f(T ) for all T ∈ Ai.i, j

We now extend the union of the embeddings T→ f(T ) to a map ϕ from
V (Ti) to V (Tj) by letting ϕ(ri) := rj . This map ϕ preserves the tree-
order of Ti, and it defines an embedding to show that Ti 6 Tj , since the
edges rir ∈ Ti map naturally to the paths rjTjϕ(r). Hence (Ti, Tj) is a
good pair in our original bad sequence of rooted trees, a contradiction.

¤

1 Any readers worried that we might need the lemma for sequences or multi-
sets rather than just sets here, please note that isomorphic elements of An are not
identified: we always have |An| = d(rn).
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12.3 Tree-decompositions

Trees are graphs with some very distinctive and fundamental properties;
consider Theorem 1.5.1 and Corollary 1.5.2, or the more sophisticated
example of Kruskal’s theorem. It is therefore legitimate to ask to what
degree those properties can be transferred to more general graphs, graphs
that are not themselves trees but tree-like in some sense.2 In this section,
we study a concept of tree-likeness that permits generalizations of all
the tree properties referred to above (including Kruskal’s theorem), and
which plays a crucial role in the proof of the graph minor theorem.

Let G be a graph, T a tree, and let V = (Vt)t∈T be a family of vertex
sets Vt ⊆ V (G) indexed by the vertices t of T . The pair (T,V) is called
a tree-decomposition of G if it satisfies the following three conditions:

tree-
decomposition(T1) V (G) =

⋃
t∈T Vt;

(T2) for every edge e ∈ G there exists a t ∈ T such that both ends of e
lie in Vt;

(T3) Vt1 ∩Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ T satisfy t2 ∈ t1Tt3.

Conditions (T1) and (T2) together say that G is the union of the sub-
graphs G [Vt ]; we call these subgraphs and the sets Vt themselves the
parts of (T,V) and say that (T,V) is a tree-decomposition of G into these parts

parts. Condition (T3) implies that the parts of (T,V) are organized into

roughly like a tree (Fig. 12.3.1).

T G

t1

t2

t3
t?

?

e?
?

Vt3

Fig. 12.3.1. Edges and parts ruled out by (T2) and (T3)

Before we discuss the role that tree-decompositions play in the proof
of the minor theorem, let us note some of their basic properties. Consider
a fixed tree-decomposition (T,V) of G, with V = (Vt)t∈T as above. (T,V), Vt

Perhaps the most important feature of a tree-decomposition is that
it transfers the separation properties of its tree to the graph decomposed:

2 What exactly this ‘sense’ should be will depend both on the property considered
and on its intended application.
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Lemma 12.3.1. Let t1t2 be any edge of T and let T1, T2 be the com-
ponents of T − t1t2, with t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩ Vt2 separates
U1 :=

⋃
t∈T1

Vt from U2 :=
⋃
t∈T2

Vt in G (Fig. 12.3.2).

t1

t2
U1

U2

Vt1 ∩Vt2

T1

T2

Fig. 12.3.2. Vt1 ∩Vt2 separates U1 from U2 in G

Proof . Both t1 and t2 lie on every t–t′ path in T with t ∈ T1 and t′ ∈ T2.
Therefore U1 ∩U2 ⊆ Vt1 ∩Vt2 by (T3), so all we have to show is that G
has no edge u1u2 with u1 ∈ U1 rU2 and u2 ∈ U2 rU1. If u1u2 is such
an edge, then by (T2) there is a t ∈ T with u1, u2 ∈ Vt. By the choice of
u1 and u2 we have neither t ∈ T2 nor t ∈ T1, a contradiction. ¤

Note that tree-decompositions are passed on to subgraphs:

Lemma 12.3.2. For every H ⊆ G, the pair
(
T, (Vt ∩ V (H))t∈T

)
is a[ 12.4.2 ]

tree-decomposition of H. ¤

Similarly for contractions:

Lemma 12.3.3. Suppose that G is an MH with branch sets Uh,
h ∈ V (H). Let f :V (G)→ V (H) be the map assigning to each ver-
tex of G the index of the branch set containing it. For all t ∈ T let
Wt := { f(v) | v ∈ Vt }, and put W := (Wt)t∈T . Then (T,W) is a tree-
decomposition of H.

Proof . The assertions (T1) and (T2) for (T,W) follow immediately
from the corresponding assertions for (T,V). Now let t1, t2, t3 ∈ T be
as in (T3), and consider a vertex h ∈ Wt1 ∩Wt3 of H; we show that
h ∈ Wt2 . By definition of Wt1 and Wt3 , there are vertices v1 ∈ Vt1 ∩Uh
and v3 ∈ Vt3 ∩Uh. Since Uh is connected in G and Vt2 separates v1 from
v3 in G by Lemma 12.3.1, Vt2 has a vertex in Uh. By definition of Wt2 ,
this implies h ∈ Wt2 . ¤

Here is another useful consequence of Lemma 12.3.1:
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Lemma 12.3.4. Given a set W ⊆ V (G), there is either a t ∈ T such
that W ⊆ Vt, or there are vertices w1, w2 ∈ W and an edge t1t2 ∈ T such
that w1, w2 lie outside the set Vt1 ∩Vt2 and are separated by it in G.

Proof . Let us orient the edges of T as follows. For each edge t1t2 ∈ T ,
define U1, U2 as in Lemma 12.3.1; then Vt1 ∩ Vt2 separates U1 from U2.
If Vt1 ∩ Vt2 does not separate any two vertices of W that lie outside it,
we can find an i ∈ { 1, 2 } such that W ⊆ Ui, and orient t1t2 towards ti.

Let t be the last vertex of a maximal directed path in T ; we claim
that W ⊆ Vt. Given w ∈ W , let t′ ∈ T be such that w ∈ Vt′ . If t′ 6= t,
then the edge e at t that separates t′ from t in T is directed towards t,
so w also lies in Vt′′ for some t′′ in the component of T − e containing t.
Therefore w ∈ Vt by (T3). ¤

The following special case of Lemma 12.3.4 is used particularly often:

Lemma 12.3.5. Any complete subgraph of G is contained in some part [ 12.4.2 ]

of (T,V). ¤

As indicated by Figure 12.3.1, the parts of (T,V) reflect the struc-
ture of the tree T , so in this sense the graph G decomposed resembles a
tree. However, this is valuable only inasmuch as the structure ofG within
each part is negligible: the smaller the parts, the closer the resemblance.

This observation motivates the following definition. The width of width

(T,V) is the number

max
{
|Vt| − 1 : t ∈ T

}
,

and the tree-width tw(G) of G is the least width of any tree-decomposi- tree-width
tw(G)

tion of G. As one easily checks,3 trees themselves have tree-width 1.
By Lemmas 12.3.2 and 12.3.3, the tree-width of a graph will never

be increased by deletion or contraction:

Proposition 12.3.6. If H 4 G then tw(H) 6 tw(G). ¤

Graphs of bounded tree-width are sufficiently similar to trees that it
becomes possible to adapt the proof of Kruskal’s theorem to the class of
these graphs; very roughly, one has to iterate the ‘minimal bad sequence’
argument from the proof of Lemma 12.1.3 tw(G) times. This takes us a
step further towards a proof of the graph minor theorem:

Theorem 12.3.7. (Robertson & Seymour 1990)
For every integer k > 0, the graphs of tree-width < k are well-quasi-
ordered by the minor relation.

3 Indeed the ‘−1’ in the definition of width serves no other purpose than to make
this statement true.
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In order to make use of Theorem 12.3.7 for a proof of the general
minor theorem, we should be able to say something about the graphs it
does not cover, i.e. to deduce some information about a graph from the
assumption that its tree-width is large. Our next theorem achieves just
that: it identifies a canonical obstruction to small tree-width, a struc-
tural phenomenon that occurs in a graph if and only if its tree-width is
large.

Let us say that two subsets of V (G) touch if they have a vertex intouch

common orG contains an edge between them. A set of mutually touching
connected vertex sets in G is a bramble. Extending our terminology ofbramble

Chapter 2.1, we say that a subset of V (G) covers (or is a cover of) acover

bramble B if it meets every element of B. The least number of vertices
covering a bramble is the order of that bramble.order

The following simple observation will be useful:

Lemma 12.3.8. Any set of vertices separating two covers of a bramble
also covers that bramble.

Proof . Since each set in the bramble is connected and meets both of the
covers, it also meets any set separating these covers. ¤

A typical example of a bramble is the set of crosses in a grid. The
k× k grid is the graph on { 1, . . . , k }2 with the edge setgrid

{ (i, j)(i′, j′) : |i− i′|+ |j− j′| = 1 } .

The crosses of this grid are the k2 sets

Cij := { (i, `) | ` = 1, . . . , k } ∪ { (`, j) | ` = 1, . . . , k } .

Thus, the cross Cij is the union of the grid’s ith column and its jth row.
Clearly, the crosses of the k × k grid form a bramble of order k: they
are covered by any row or column, while any set of fewer than k vertices
misses both a row and a column, and hence a cross.

The following result is sometimes called the tree-width duality theo-
rem:

Theorem 12.3.9. (Seymour & Thomas 1993)
Let k > 0 be an integer. A graph has tree-width > k if and only if it
contains a bramble of order > k.

Proof . For the backward implication, let B be any bramble in a graph G.(3.3.1)

We show that every tree-decomposition (T, (Vt)t∈T ) of G has a part that
meets every set in B.

As in the proof of Lemma 12.3.4 we start by orienting the edges t1t2
of T . If X := Vt1 ∩ Vt2 meets every B ∈ B, we are done. If not, then
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for each B disjoint from X there is an i ∈ { 1, 2 } such that B ⊆ UirX
(defined as in Lemma 12.3.1); recall that B is connected. Moreover, this
i is the same for all such B, because they touch. We now orient the edge
t1t2 towards ti.

If every edge of T is oriented in this way and t is the last vertex of
a maximal directed path in T , then Vt meets every set in B—just as in
the proof of Lemma 12.3.4.

To prove the forward direction, we now assume that G contains no
bramble of order > k. We show that for every bramble B in G there is
a B-admissible tree-decomposition of G, one in which any part of order B-

admissible
> k fails to cover B. For B = ∅ this implies that tw(G) < k, because
every set covers the empty bramble.

Let B be given, and assume inductively that for every bramble B′ B
with more sets than B there is a B′-admissible tree-decomposition of G.
(The induction starts, since no bramble in G has more than 2|G| sets.)
Let X ⊆ V (G) be a cover of B with as few vertices as possible; then X

` := |X| 6 k is the order of B. Our aim is to show the following: `

For every component C of G−X there exists a B-admissible
tree-decomposition of G [X ∪V (C) ] with X as a part.

(∗)

Then these tree-decompositions can be combined to a B-admissible tree-
decomposition of G by identifying their nodes corresponding to X. (If
X = V (G), then the tree-decomposition with X as its only part is B-
admissible.)

So let C be a fixed component of G−X, write H := G [X ∪V (C) ], C,H

and put B′ := B ∪ {C }. If B′ is not a bramble then C fails to touch B′
some element of B, and hence Y := V (C) ∪ N(C) does not cover B.
Then the tree-decomposition of H consisting of the two parts X and Y
satisfies (∗).

So we may assume that B′ is a bramble. Since X covers B but
not B′, we have |B′| > |B|. Our induction hypothesis therefore ensures
that G has a B′-admissible tree-decomposition (T, (Vt)t∈T ). If this de- T, (Vt)t∈T

composition is also B-admissible, there is nothing more to show. If not,
then one of its parts of order > k, Vs say, covers B. Since no set of fewer s

than ` vertices covers B, Lemma 12.3.8 implies with Menger’s theorem
(3.3.1) that Vs and X are linked by ` disjoint paths P1, . . . , P`. As Vs Pi

fails to cover B′ and hence lies in G−C, the paths Pi meet H only in
their ends xi ∈ X. xi

For each i = 1, . . . , ` pick a ti ∈ T with xi ∈ Vti , and let ti

Wt := (Vt ∩ (X ∪V (C)))∪{xi | t ∈ sT ti } ;

for all t ∈ T (Fig. 12.3.3). Then (T, (Wt)t∈T ) is the tree-decomposition
which (T, (Vt)t∈T ) induces on H (cf. Lemma 12.3.2), except that a few
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Vt2

Vt3

Vt1
x3

Vs

Vt

Vt′

x1 x2

Fig. 12.3.3. Wt contains x2 and x3 but not x1; Wt′ contains no xi

xi have been added to some of the parts. Despite these additions, we
still have |Wt| 6 |Vt| for all t: for each xi ∈ Wt r Vt we have t ∈ sT ti,
so Vt contains some other vertex of Pi (Lemma 12.3.1); that vertex does
not lie in Wt, because Pi meets H only in xi. Moreover, (T, (Wt)t∈T )
clearly satisfies (T3), because each xi is added to every part along some
path in T , so it is again a tree-decomposition.

As Ws = X, all that is left to show for (∗) is that this decomposition
is B-admissible. Consider any Wt of order > k. Then Wt meets C,
because |X| = ` 6 k. Since (T, (Vt)t∈T ) is B′-admissible and |Vt| >
|Wt| > k, we know that Vt fails to meet some B ∈ B; let us show that Wt

does not meet this B either. If it does, it must do so in some xi ∈WtrVt.
ThenB is a connected set meeting both Vs and Vti but not Vt. As t ∈ sT ti
by definition of Wt, this contradicts Lemma 12.3.1. ¤

Often, Theorem 12.3.9 is stated in terms of the bramble number of a
graph, the largest order of any bramble in it. The theorem then says that
the tree-width of a graph is exactly one less than its bramble number
(Exercise 15).

How useful even the easy backward direction of Theorem 12.3.9 can
be is exemplified once more by our example of the crosses bramble in the
k× k grid: this bramble has order k, so by the theorem the k× k grid
has tree-width at least k− 1. (Try to show this without the theorem!)

In fact, the k × k grid has tree-width k (Exercise 16). But more
important than its precise value is the fact that the tree-width of grids
tends to infinity with their size. For as we shall see, large grid minors
pose another canonical obstruction to small tree-width: not only do
large grids (and hence all graphs containing large grids as minors; cf.
Proposition 12.3.6) have large tree-width, but conversely every graph of
large tree-width has a large grid minor (Theorem 12.4.4).

Yet another canonical obstruction to small tree-width is described
in Exercise 30.
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Given any two vertices t1, t2 ∈ T , Lemma 12.3.1 implies that every
Vt with t ∈ t1Tt2 separates Vt1 from Vt2 in G. Let us call our tree-
decomposition (T,V) of G linked , or lean,4 if it satisfies the following linked/lean

condition:

(T4) given any s ∈ N and t1, t2 ∈ T , either G contains s disjoint Vt1–Vt2
paths or there exists a t ∈ t1Tt2 such that |Vt| < s.

The ‘branches’ in a lean tree-decomposition are thus stripped of any bulk
not necessary to maintain their connecting qualities: if a branch is thick
(the parts along a path in T large), then G is highly connected along
this branch.

In our quest for tree-decompositions into ‘small’ parts, we now have
two criteria to choose between: the global ‘worst case’ criterion of width,
which ensures that T is nontrivial (unlessG is complete) but says nothing
about the tree-likeness of G among parts other than the largest, and
the more subtle local criterion of leanness, which ensures tree-likeness
everywhere along T but might be difficult to achieve except with trivial
or near-trivial T . Surprisingly, though, it is always possible to find a
tree-decomposition that is optimal with respect to both criteria at once:

Theorem 12.3.10. (Thomas 1990)
Every graph G has a lean tree-decomposition of width tw(G).

The proof of Theorem 12.3.10 is not too long but technical, and we shall
not present it. The fact that this theorem gives us a very useful property
of minimum-width tree-decompositions ‘for free’ has made it a valuable
tool wherever tree-decompositions are applied.

The tree-decomposition (T,V) of G is called simplicial if all the simplicial

separators Vt1 ∩ Vt2 induce complete subgraphs in G. This assumption
can enable us to lift assertions about the parts of the decomposition to
G itself. For example, if all the parts in a simplicial tree-decomposition
of G are k-colourable, then so is G (proof?). The same applies to the
property of not containing a Kr minor for some fixed r. Algorithmically,
it is easy to obtain a simplicial tree-decomposition of a given graph into
irreducible parts. Indeed, all we have to do is split the graph recursively
along complete separators; if these are always chosen minimal, then the
set of parts obtained will even be unique (Exercise 22).

Conversely, if G can be constructed recursively from a set H of
graphs by pasting along complete subgraphs, then G has a simplicial
tree-decomposition into elements of H. For example, by Wagner’s The-
orem 8.3.4, any graph without a K5 minor has a supergraph with a
simplicial tree-decomposition into plane triangulations and copies of the

4 depending on which of the two dual aspects of (T4) we wish to emphasize
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Wagner graph W , and similarly for graphs without K4 minors (see Pro-
position 12.4.2).

Tree-decompositions may thus lead to intuitive structural charac-
terizations of graph properties. A particularly simple example is the
following characterization of chordal graphs:

Proposition 12.3.11. G is chordal if and only if G has a tree-decompo-[ 12.4.2 ]

sition into complete parts.

Proof . We apply induction on |G|. We first assume that G has a tree-(5.5.1)

decomposition (T,V) such that G [Vt ] is complete for every t ∈ T ; let
us choose (T,V) with |T | minimal. If |T | 6 1, then G is complete and
hence chordal. So let t1t2 ∈ T be an edge, and for i = 1, 2 define Ti
and Gi := G [Ui ] as in Lemma 12.3.1. Then G = G1 ∪ G2 by (T1)
and (T2), and V (G1 ∩G2) = Vt1 ∩ Vt2 by the lemma; thus, G1 ∩G2 is
complete. Since (Ti, (Vt)t∈Ti) is a tree-decomposition of Gi into complete
parts, both Gi are chordal by the induction hypothesis. (By the choice
of (T,V), neither Gi is a subgraph of G [Vt1 ∩ Vt2 ] = G1 ∩G2, so both
Gi are indeed smaller than G.) Since G1 ∩G2 is complete, any induced
cycle in G lies in G1 or in G2 and hence has a chord, so G too is chordal.

Conversely, assume that G is chordal. If G is complete, there is
nothing to show. If not then, by Proposition 5.5.1, G is the union of
smaller chordal graphs G1, G2 with G1 ∩G2 complete. By the induction
hypothesis, G1 and G2 have tree-decompositions (T1,V1) and (T2,V2)
into complete parts. By Lemma 12.3.5, G1 ∩G2 lies inside one of those
parts in each case, say with indices t1 ∈ T1 and t2 ∈ T2. As one easily
checks, ((T1 ∪T2) + t1t2,V1 ∪V2) is a tree-decomposition of G into com-
plete parts. ¤

Corollary 12.3.12. tw(G) = min
{
ω(H)− 1 | G ⊆ H; H chordal

}
.

Proof . By Lemma 12.3.5 and Proposition 12.3.11, each of the graphs H
considered for the minimum has a tree-decomposition of width ω(H)−1.
Every such tree-decomposition induced one of G by Lemma 12.3.2, so
tw(G) 6 ω(H)− 1 for every H.

Conversely, let us construct an H as above with ω(H)−1 6 tw(G).
Let (T,V) be a tree-decomposition of G of width tw(G). For every t ∈ T
let Kt denote the complete graph on Vt, and put H :=

⋃
t∈T Kt. Clearly,

(T,V) is also a tree-decomposition of H. By Proposition 12.3.11, H is
chordal, and by Lemma 12.3.5, ω(H)− 1 is at most the width of (T,V),
i.e. at most tw(G). ¤
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12.4 Tree-width and forbidden minors

If H is any set or class of graphs, then the class

Forb4(H) := {G | G 6< H for all H ∈ H} Forb4(H)

of all graphs without a minor inH is a graph property, i.e. is closed under
isomorphism.5 When it is written as above, we say that this property
is expressed by specifying the graphs H ∈ H as forbidden (or excluded) forbidden

minors
minors.

By Proposition 1.7.3, Forb4(H) is closed under taking minors: if (1.7.3)

G′ 4 G ∈ Forb4(H) then G′ ∈ Forb4(H). Graph properties that are
closed under taking minors will be called hereditary in this chapter. hereditary

Every hereditary property can in turn be expressed by forbidden minors:

Proposition 12.4.1. A graph property P can be expressed by forbidden [ 12.5.1 ]

minors if and only if it is hereditary.

Proof . For the ‘if’ part, note that P = Forb4(P), where P is the P
complement of P. ¤

In Section 12.5, we shall return to the general question of how a given
hereditary property is best represented by forbidden minors. In this
section, we are interested in one particular type of hereditary property:
bounded tree-width.

Thus, let us consider the property of having tree-width less than
some given integer k. By Propositions 12.3.6 and 12.4.1, this property
can be expressed by forbidden minors. Choosing their set H as small as
possible, we find that H = {K3 } for k = 2: the graphs of tree-width
< 2 are precisely the forests. For k = 3, we have H = {K4 }:

Proposition 12.4.2. A graph has tree-width < 3 if and only if it has
no K4 minor.

Proof . By Lemma 12.3.5, we have tw(K4) > 3. By Proposition 12.3.6,
(8.3.1)

(12.3.2)
(12.3.5)

(12.3.11)therefore, a graph of tree-width < 3 cannot contain K4 as a minor.
Conversely, let G be a graph without a K4 minor; we assume that

|G| > 3. Add edges to G until the graph G′ obtained is edge-maximal
without a K4 minor. By Proposition 8.3.1, G′ can be constructed re-
cursively from triangles by pasting along K2s. By induction on the
number of recursion steps and Lemma 12.3.5, every graph constructible
in this way has a tree-decomposition into triangles (as in the proof of
Proposition 12.3.11). Such a tree-decomposition of G′ has width 2, and
by Lemma 12.3.2 it is also a tree-decomposition of G. ¤

5 As usual, we abbreviate Forb4({H }) to Forb4(H).
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A question converse to the above is to ask for which H (other than
K3 and K4) the tree-width of the graphs in Forb4(H) is bounded. In-
terestingly, it is not difficult to show that any such H must be planar.
Indeed, as all grids and their minors are planar (why?), every class(4.4.6)

Forb4(H) with non-planar H contains all grids; yet as we saw after
Theorem 12.3.9, the grids have unbounded tree-width.

The following deep and surprising theorem says that, conversely, the
tree-width of the graphs in Forb4(H) is bounded for every planar H:

Theorem 12.4.3. (Robertson & Seymour 1986)
Given a graph H, the graphs without an H minor have bounded tree-
width if and only if H is planar.

The rest of this section is devoted to the proof of Theorem 12.4.3.

To prove Theorem 12.4.3 we have to show that forbidding any planar
graph H as a minor bounds the tree-width of a graph. In fact, we only
have to show this for the special cases when H is a grid, because every
planar graph is a minor of some grid. (To see this, take a drawing of the
graph, fatten its vertices and edges, and superimpose a sufficiently fine
plane grid.) It thus suffices to show the following:

Theorem 12.4.4. (Robertson & Seymour 1986)
For every integer r there is an integer k such that every graph of tree-
width at least k has an r× r grid minor.

Our proof of Theorem 12.4.4, which is much shorter than the original
proof, proceeds as follows. Let r be given, and let G be any graph of
large enough tree-width (depending on r). We first show that G contains
a large family A = {A1, . . . , Am } of disjoint connected vertex sets such
that each pair Ai, Aj ∈ A can be linked in G by a family Pij of many
disjoint Ai–Aj paths avoiding all the other sets in A. We then consider
all the pairs (Pij ,Pi′j′) of these path families. If we can find a pair
among these such that many of the paths in Pij meet many of the paths
in Pi′j′ , we shall think of the paths in Pij as horizontal and the paths
in Pi′j′ as vertical and extract a subdivision of an r× r grid from their
union. (This will be the difficult part of the proof, because these paths
will in general meet in a less orderly way than they do in a grid.) If
not, then for every pair (Pij ,Pi′j′) many of the paths in Pij avoid many
of the paths in Pi′j′ . We can then select one path Pij ∈ Pij from each
family so that these selected paths are pairwise disjoint. Contracting
each of the connected sets A ∈ A will then give us a Km minor in G,
which contains the desired r× r grid if m > r2.

To implement these ideas formally, we need a few definitions. Let
us call a set X ⊆ V (G) externally k-connected in G if |X| ≥ k and forexternally

k-connected
all disjoint subsets Y, Z ⊆ X with |Y | = |Z| ≤ k there are |Y | disjoint
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Y –Z paths in G that have no inner vertex or edge in G [X ]. Note that
the vertex set of a k-connected subgraph of G need not be externally
k-connected in G. On the other hand, any horizontal path in the r× r
grid is externally k-connected in that grid for every k 6 r. (How?)

One of the first things we shall prove below is that any graph of
large enough tree-width—not just grids—contains a large externally k-
connected set of vertices (Lemma 12.4.5). Conversely, it is easy to show
that large externally k-connected sets (with k large) can exist only in
graphs of large tree-width (Exercise 30). So, like large grid minors, these
sets form a canonical obstruction to small tree-width: they can be found
in a graph if and only if its tree-width is large.

An ordered pair (A,B) of subgraphs of G will be called a premesh premesh

in G if G = A∪B and A contains a tree T such that

(i) T has maximum degree ≤ 3;

(ii) every vertex of A∩B lies in T and has degree ≤ 2 in T ;

(iii) T has a leaf in A∩B, or |T | = 1 and T ⊆ A∩B.

The order of such a premesh is the number |A∩B|, and if V (A∩B) is order

externally k-connected in B then this premesh is a k-mesh in G. k-mesh

Lemma 12.4.5. Let G be a graph and let h ≥ k ≥ 1 be integers. If G
contains no k-mesh of order h then G has tree-width < h+ k− 1.

Proof . We may assume that G is connected. Let U ⊆ V (G) be max- U

imal such that G [U ] has a tree-decomposition D of width < h+ k− 1 D
with the additional property that, for every component C of G−U , the
neighbours of C in U lie in one part of D and (G−C, C̃) is a premesh
of order ≤ h, where C̃ := G [V (C)∪N(C) ]. Clearly, U 6= ∅. C̃

We claim that U = V (G). Suppose not. Let C be a component of C

G−U , put X := N(C), and let T be a tree associated with the premesh X

(G−C, C̃). T

By assumption, |X| ≤ h; let us show that equality holds here. If
not, let u ∈ X be a leaf of T (respectively {u } := V (T )) as in (iii), and
let v ∈ C be a neighbour of u. Put U ′ := U ∪{ v } and X ′ := X ∪{ v },
let T ′ be the tree obtained from T by joining v to u, and let D′ be the
tree-decomposition of G [U ′ ] obtained from D by adding X ′ as a new
part (joined to a part of D containing X, which exists by our choice
of U ; see Fig. 12.4.1). Clearly D′ still has width < h+ k− 1. Consider
a component C ′ of G−U ′. If C ′ ∩C = ∅ then C ′ is also a component of
G−U , soN(C ′) lies inside a part ofD (and hence ofD′), and (G−C ′, C̃ ′)
is a premesh of order ≤ h by assumption. If C ′ ∩C 6= ∅, then C ′ ⊆ C
and N(C ′) ⊆ X ′. Moreover, v ∈ N(C ′): otherwise N(C ′) ⊆ X would
separate C ′ from v, contradicting the fact that C ′ and v lie in the same
component C of G−X. Since v is a leaf of T ′, it is straightforward to
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T
X

U

u

v

C

C′

Fig. 12.4.1. Extending U and D when |X| < h

check that (G−C ′, C̃ ′) is again a premesh of order ≤ h, contrary to the
maximality of U .

Thus |X| = h, so by assumption our premesh (G− C, C̃) cannot
be a k-mesh; let Y, Z ⊆ X be sets to witness this. Let P be a set ofY, Z

as many disjoint Y –Z paths in H := G [V (C)∪Y ∪Z ]−E(G [Y ∪Z ])
as possible. Since all these paths are ‘external’ to X in C̃, we have
k′ := |P| < |Y | = |Z| 6 k by the choice of Y and Z. By Menger’sk′

theorem (3.3.1), Y and Z are separated in H by a set S of k′ vertices.S

Clearly, S has exactly one vertex on each path in P; we denote the path
containing the vertex s ∈ S by Ps (Fig. 12.4.2).Ps

Y

Z

H

X

S

U

T

sv

C

C′

Ps

T ′

Fig. 12.4.2. S separates Y from Z in H

Let X ′ := X ∪ S and U ′ := U ∪ S, and let D′ be the tree-
decomposition of G [U ′ ] obtained from D by adding X ′ as a new part.
Clearly, |X ′| ≤ |X|+ |S| ≤ h+ k− 1. We show that U ′ contradicts the
maximality of U .

Since Y ∪Z ⊆ N(C) and |S| < |Y | = |Z| we have S ∩C 6= ∅, so
U ′ is larger than U . Let C ′ be a component of G−U ′. If C ′ ∩C = ∅,
we argue as earlier. So C ′ ⊆ C and N(C ′) ⊆ X ′. As before, C ′ has at
least one neighbour v in S ∩C, since X cannot separate C ′ ⊆ C fromv

S ∩ C. By definition of S, C ′ cannot have neighbours in both Y \ S
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and Z \ S; we assume it has none in Y \ S. Let T ′ be the union of T
and all the Y –S subpaths of paths Ps with s ∈ N(C ′)∩C; since these
subpaths start in Y \ S and have no inner vertices in X ′, they cannot
meet C ′. Therefore (G−C ′, C̃ ′) is a premesh with tree T ′ and leaf v;
the degree conditions on T ′ are easily checked. Its order is |N(C ′)| ≤
|X| − |Y |+ |S| = h− |Y |+ k′ < h, a contradiction to the maximality
of U . ¤

Lemma 12.4.6. Let k ≥ 2 be an integer. Let T be a tree of maximum
degree 6 3 and X ⊆ V (T ). Then T has a set F of edges such that every
component of T −F has between k and 2k−1 vertices in X, except that
one such component may have fewer vertices in X.

Proof . We apply induction on |X|. If |X| ≤ 2k− 1 we put F = ∅. So
assume that |X| ≥ 2k. Let e be an edge of T such that some component
T ′ of T − e has at least k vertices in X and |T ′| is as small as possible.
As ∆(T ) ≤ 3, the end of e in T ′ has degree at most two in T ′, so
the minimality of T ′ implies that |X ∩ V (T ′)| ≤ 2k − 1. Applying the
induction hypothesis to T −T ′ we complete the proof. ¤

Lemma 12.4.7. Let G be a bipartite graph with bipartition (A,B),
|A| = a, |B| = b, and let c ≤ a and d ≤ b be positive integers. Assume
that G has at most (a− c)(b− d)/d edges. Then there exist C ⊆ A and
D ⊆ B such that |C| = c and |D| = d and C ∪D is independent in G.

Proof . As ||G|| ≤ (a− c)(b− d)/d, fewer than b− d vertices in B have
more than (a− c)/d neighbours in A. Choose D ⊆ B so that |D| = d and
each vertex in D has at most (a− c)/d neighbours in A. Then D sends
a total of at most a− c edges to A, so A has a subset C of c vertices
without a neighbour in D. ¤

Given a tree T , call an r-tuple (x1, . . . , xr) of distinct vertices of T
good if, for every j = 1, . . . , r− 1, the xj–xj+1 path in T contains none good

r-tuple
of the other vertices in this r-tuple.

Lemma 12.4.8. Every tree T of order at least r(r− 1) contains a good
r-tuple of vertices.

Proof . Pick a vertex x ∈ T . Then T is the union of its subpaths xTy,
where y ranges over its leaves. Hence unless one of these paths has at
least r vertices, T has at least |T |/(r− 1) > r leaves. Since any path of
r vertices and any set of r leaves gives rise to a good r-tuple in T , this
proves the assertion. ¤

Our next lemma shows how to obtain a grid from two large systems
of paths that intersect in a particularly orderly way.
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Lemma 12.4.9. Let d, r ≥ 2 be integers such that d ≥ r2r+2. Let
G be a graph containing a set H of r2 − 1 disjoint paths and a set
V = {V1, . . . , Vd } of d disjoint paths. Assume that every path in V meets
every path in H, and that each path H ∈ H consists of d consecutive
(vertex-disjoint) segments such that Vi meets H only in its ith segment,
for every i = 1, . . . , d (Fig. 12.4.3). Then G has an r× r grid minor.

H

︸
︷︷

︸. . .

. . .

. . .

. . .

. . .

. . .

H1

H2

Hr

H

V1 Vd

Fig. 12.4.3. Paths intersecting as in Lemma 12.4.9

Proof . For each i = 1, . . . , d, consider the graph with vertex set H in
which two paths are adjacent whenever Vi contains a subpath between
them that meets no other path inH. Since Vi meets every path inH, this
is a connected graph; let Ti be a spanning tree in it. Since |H| ≥ r(r−1),Ti

Lemma 12.4.8 implies that each of these d ≥ r2(r2)r trees Ti has a good
r-tuple of vertices. Since there are no more than (r2)r distinct r-tuples
on H, some r2 of the trees Ti have a common good r-tuple (H1, . . . , Hr).H1, . . . , Hr

Let I = { i1, . . . , ir2 } be the index set of these trees (with ij < ik forI, ik

j < k) and put H′ := {H1, . . . , Hr }.H′

Here is an informal description of how we construct our r× r grid.
Its ‘horizontal’ paths will be the paths H1, . . . , Hr. Its ‘vertical’ paths
will be pieced together edge by edge, as follows. The r− 1 edges of the
first vertical path will come from the first r− 1 trees Ti, trees with their
index i among the first r elements of I. More precisely, its ‘edge’ between
Hj and Hj+1 will be the sequence of subpaths of Vij (together with some
connecting horizontal bits taken from paths in H \H′) induced by the
edges of an Hj–Hj+1 path in Tij that has no inner vertices in H′; see
Fig. 12.4.4. (This is why we need (H1, . . . , Hr) to be a good r-tuple
in every tree Ti.) Similarly, the jth edge of the second vertical path
will come from an Hj–Hj+1 path in Tir+j , and so on.6 To merge these
individual edges into r vertical paths, we then contract in each horizontal

6 Although we need only r− 1 edges for each vertical path, we reserve r rather
than just r−1 of the paths Vi for each vertical path to make the indexing more lucid.
The paths Vir , Vi2r , . . . are left unused.
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The Hj–Hj+1 path P ′ in G

H

H ′

H ′′

Vij

Vij

Hj

Hj+1

P ′

P ′

P ′

H1

H2 H3

HH ′ H ′′

Hj
Hj+1

The Hj–Hj+1 path P in Tij

Vij

Hj

Hj+1

Vi1 Vir+1 Vi2r+1

P ′ viewed as a (subdivided) Hj–Hj+1 edge

︸ ︷︷ ︸
contract

︸ ︷︷ ︸
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Fig. 12.4.4. An Hj–Hj+1 path in Tij inducing segments of Vij
for the jth edge of the grid’s first vertical path
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path the initial segment that meets the first r paths Vi with i ∈ I, then
contract the segment that meets the following r paths Vi with i ∈ I, and
so on.

Formally, we proceed as follows. Consider all j, k ∈ { 1, . . . , r }. (We
shall think of the index j as counting the horizontal paths, and of the
index k as counting the vertical paths of the grid to be constructed.) Let
Hj
k be the minimal subpath of Hj that contains the ith segment of Hj

Hj
k

for all i with i(k−1)r < i ≤ ikr (put i0 := 0). Let Ĥj be obtained fromĤj

Hj by first deleting any vertices following its ir2th segment and then
contracting every subpath Hj

k to one vertex vjk. Thus, Ĥj = vj1 . . . v
j
r .vj

k

Given j ∈ { 1, . . . , r − 1 } and k ∈ { 1, . . . , r }, we have to define a
path V jk that will form the subdivided ‘vertical edge’ vjkv

j+1
k . This path

will consist of segments of the path Vi together with some otherwise
unused segments of paths from H \H′, for i := i(k−1)r+j ; recall that,
by definition of Ĥj and Ĥj+1, this Vi does indeed meet Hj and Hj+1

precisely in vertices that were contracted into vjk and vj+1
k , respectively.

To define V jk , consider an Hj–Hj+1 path P = H1 . . . Ht in Ti that hasV j
k

no inner vertices in H′. (Thus, H1 = Hj and Ht = Hj+1.) Every
edge HsHs+1 of P corresponds to an Hs–Hs+1 subpath of Vi that has
no inner vertex on any path in H. Together with (parts of) the ith
segments of H2, . . . , Ht−1, these subpaths of Vi form an Hj–Hj+1 path
P ′ in G that has no inner vertices on any of the paths H1, . . . , Hr and
meets no path from H outside its ith segment. Replacing the ends of P ′

on Hj and Hj+1 with vjk and vj+1
k , respectively, we obtain our desired

path V jk forming the jth (subdivided) edge of the kth ‘vertical’ path of
our grid. Since the paths P ′ are disjoint for different i and different pairs
(j, k) give rise to different i, the paths V jk are disjoint except for possible
common ends vjk. Moreover, they have no inner vertices on any of the
paths H1, . . . , Hr, because none of these Hj is an inner vertex of any of
the paths P ⊆ Ti used in the construction of V jk . ¤

Proof of Theorem 12.4.4. We are now ready to prove the following
quantitative version of our theorem (which clearly implies it):

Let r,m > 0 be integers, and let G be a graph of tree-width
at least r4m2(r+2). Then G contains either the r× r grid
or Km as a minor.

Since Kr2
contains the r × r grid as a subgraph we may assume that

2 ≤ m ≤ r2. Put c := r4(r+2), and let k := c2(
m
2 ). Then c > 216 andc, k

hence 2m+ 3 ≤ cm, so G has tree-width at least

cm
2

= cmk > (2m+ 3)k > (m+ 1)(2k− 1) + k− 1 ,

enough for Lemma 12.4.5 to ensure that G contains a k-mesh (A,B)(A,B)

of order (m + 1)(2k − 1). Let T ⊆ A be a tree associated with theT
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premesh (A,B); then X := V (A∩B) ⊆ V (T ). By Lemma 12.4.6, T has X

|X|/(2k−1)−1 = m disjoint subtrees each containing at least k vertices
of X; let A1, . . . , Am be the vertex sets of these trees. By definition of a A1, . . . , Am

k-mesh, B contains for all 1 ≤ i < j ≤ m a set Pij of k disjoint Ai–Aj Pij
paths that have no inner vertices in A. These sets Pij will shrink a little
and be otherwise modified later in the proof, but they will always consist
of ‘many’ disjoint Ai–Aj paths.

One option in our proof will be to find single paths Pij ∈ Pij that
are disjoint for different pairs ij and thus link up the sets Ai to form a
Km minor of G. If this fails, we shall instead exhibit two specific sets Pij
and Ppq such that many paths of Pij meet many paths of Ppq, forming
an r× r grid between them by Lemma 12.4.9.

Let us impose a linear ordering on the index pairs ij by fixing an
arbitrary bijection σ : { ij | 1 ≤ i < j ≤ m } → { 0, 1, . . . ,

(
m
2

)
− 1 }. For σ

` = 0, 1, . . . in turn, we shall consider the pair pq with σ(pq) = ` and
choose an Ap–Aq path Ppq that is disjoint from all previously selected
such paths, i.e. from the paths Pst with σ(st) < `. At the same time, we
shall replace all the ‘later’ sets Pij—or what has become of them—by
smaller sets containing only paths that are disjoint from Ppq. Thus for
each pair ij, we shall define a sequence Pij = P0

ij ,P1
ij , . . . of smaller and

smaller sets of paths, which eventually collapses to P`ij = {Pij } when `
has risen to ` = σ(ij).

More formally, let `∗ ≤
(
m
2

)
be the greatest integer such that, for `∗

all 0 ≤ ` < `∗ and all 1 6 i < j 6 m, there exist sets P`ij satisfying the
following five conditions:

(i) P`ij is a non-empty set of disjoint Ai–Aj paths in B that meet A
only in their endpoints.

Whenever a set P`ij is defined, we shall write H`
ij :=

⋃
P`ij for the union H`

ij

of its paths.

(ii) If σ(ij) < ` then P`ij has exactly one element Pij , and Pij does Pij

not meet any path belonging to a set P`st with ij 6= st.

(iii) If σ(ij) = `, then |P`ij | = k/c2`.

(iv) If σ(ij) > `, then |P`ij | = k/c2`+1.

(v) If ` = σ(pq) < σ(ij), then for every e ∈ E(H`
ij)\E(H`

pq) there are
no k/c2`+1 disjoint Ai–Aj paths in the graph (H`

pq ∪H`
ij)− e.

Note that, by (iv), the paths considered in (v) do exist in H`
ij . The

purpose of (v) is to force those paths to reuse edges from H`
pq when-

ever possible, using new edges e /∈ H`
pq only if necessary. Note further

that since σ(ij) <
(
m
2

)
by definition of σ, conditions (iii) and (iv) give

|P`ij | ≥ c2 whenever σ(ij) ≥ `.
Clearly if `∗ =

(
m
2

)
then by (i) and (ii) we have a (subdivided) Km

minor with branch sets A1, . . . , Am in G. Suppose then that `∗ <
(
m
2

)
.
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Let us show that `∗ > 0. Let pq := σ−1(0) and put P0
pq := Ppq. To

define P0
ij for σ(ij) > 0 put Hij :=

⋃
Pij , let F ⊆ E(Hij) \ E(H0

pq)
be maximal such that (H0

pq ∪Hij)−F still contains k/c disjoint Ai–Aj
paths, and let P0

ij be such a set of paths. Since the vertices from Ap∪Aq
have degree 1 in H0

pq ∪Hij unless they also lie in Ai ∪Aj , these paths
have no inner vertices in A. Our choices of P0

ij therefore satisfy (i)–(v)
for ` = 0.

Having shown that `∗ > 0, let us now consider ` := `∗ − 1. Thus,`

conditions (i)–(v) are satisfied for ` but cannot be satisfied for ` + 1.
Let pq := σ−1(`). If P`pq contains a path P that avoids a set Qij ofpq

some |P`ij |/c of the paths in P`ij for all ij with σ(ij) > `, then we can
define P`+1

ij for all ij as before (with a contradiction). Indeed, let st :=
σ−1(`+ 1) and put P`+1

st := Qst. For σ(ij) > `+ 1 write Hij :=
⋃
Qij ,

let F ⊆ E(Hij) \E(H`+1
st ) be maximal such that (H`+1

st ∪Hij)−F still
contains at least |P`ij |/c2 disjoint Ai–Aj paths, and let P`+1

ij be such a set
of paths. Setting P`+1

pq := {P } and P`+1
ij := P`ij = {P `ij } for σ(ij) < `

then gives us a family of sets P`+1
ij that contradicts the maximality of `∗.

Thus for every path P ∈ P`pq there exists a pair ij with σ(ij) > `
such that P avoids fewer than |P`ij |/c of the paths in P`ij . For some
d|P`pq|/

(
m
2

)
e of these P that pair ij will be the same; let P denote the setP

of those P , and keep ij fixed from now on. Note that |P| ≥ |P`pq|/
(
m
2

)
=ij

c |P`ij |/
(
m
2

)
by (iii) and (iv).

Let us use Lemma 12.4.7 to find sets V ⊆ P ⊆ P`pq and H ⊆ P`ij
such that

|V| > 1
2 |P|

(
≥ c

m2
|P`ij |

)
|H| = r2

and every path in V meets every path in H. We have to check that the
bipartite graph with vertex sets P and P`ij in which P ∈ P is adjacent
to Q ∈ P`ij whenever P ∩Q = ∅ does not have too many edges. Since
every P ∈ P has fewer than |P`ij |/c neighbours (by definition of P), this
graph indeed has at most

|P||P`ij |/c 6 |P||P`ij |/6r2

6 b|P|/2c |P`ij |
/

2r2

6 b|P|/2c
(
|P`ij |/r2− 1

)
=
(
|P|− d|P|/2e

)(
|P`ij | − r2

)/
r2

edges, as required. Hence, V and H exist as claimed.V,H
Although all the (‘vertical’) paths in V meet all the (‘horizontal’)

paths in H, these paths do not necessarily intersect in such an orderly
way as required for Lemma 12.4.9. In order to divide the paths from
H into segments, and to select paths from V meeting them only in the
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appropriate segments, we shall first pick a path Q ∈ H to serve as a
yardstick: we shall divide Q into segments each meeting lots of paths
from V, select a ‘non-crossing’ subset V1, . . . , Vd of these vertical paths,
one from each segment (which is the most delicate task; we shall need
condition (v) from the definition of the sets P`ij here), and finally divide
the other horizontal paths into the ‘induced’ segments, accommodating
one Vn each.

So let us pick a path Q ∈ H, and put Q

d := b
√
c/mc = br2r+4/mc ≥ r2r+2. d

Note that |V| > (c/m2)|P`ij | > d2|P`ij |.
For n = 1, 2, . . . , d− 1 let en be the first edge of Q (on its way from en

Ai to Aj) such that the initial component Qn of Q− en meets at least Qn

nd |P`ij | different paths from V, and such that en is not an edge of H`
pq.

As any two vertices of Q that lie on different paths from V are separated
in Q by an edge not in H`

pq, each of these Qn meets exactly nd |P`ij |
paths from V. Put Q0 := ∅ and Qd := Q. Since |V| ≥ d2|P`ij |, we have
thus divided Q into d consecutive disjoint segments Q′n := Qn −Qn−1

(n = 1, . . . , d) each meeting at least d |P`ij | paths from V. Q′1, . . . , Q
′
d

For each n = 1, . . . , d− 1, Menger’s theorem (3.3.1) and conditions
(iv) and (v) imply that H`

pq ∪H`
ij has a set Sn of |P`ij | − 1 vertices such Sn

that (H`
pq ∪H`

ij)−en−Sn contains no path from Ai to Aj . Let S denote S

the union of all these sets Sn. Then |S| < d |P`ij |, so each Q′n meets at
least one path Vn ∈ V that avoids S (Fig. 12.4.5). Vn

H

Q′
1

Qe1 en−1 Q′
n en Q′

d

PP ′
n

Vn

Sn−1 Sn

ed−1

Ai Aj

r2 − 1

. . . . . .

︸
︷︷

︸

︸

︷︷

︸

Fig. 12.4.5. Vn meets every horizontal path but avoids S

Clearly, each Sn consists of a choice of exactly one vertex x from
every path P ∈ P`ij \{Q }. Denote the initial component of P −x by Pn,
put P0 := ∅ and Pd := P , and let P ′n := Pn − Pn−1 for n = 1, . . . , d. P ′1, . . . , P

′
d

The separation properties of the sets Sn now imply that Vn∩P ⊆ P ′n for
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n = 1, . . . , d (and hence in particular that P ′n 6= ∅, ie. that Pn−1 ⊂ Pn).
Indeed Vn cannot meet Pn−1, because Pn−1 ∪ Vn ∪ (Q−Qn−1) would
then contain an Ai–Aj path in (H`

pq ∪H`
ij)− en−1−Sn−1, and likewise

(consider Sn) Vn cannot meet P − Pn. Thus for all n = 1, . . . , d, the
path Vn meets every path P ∈ H\{Q } precisely in its nth segment P ′n.
Applying Lemma 12.4.9 to the path systems H\{Q } and {V1, . . . , Vd }
now yields the desired grid minor. ¤

12.5 The graph minor theorem

Hereditary graph properties, those that are closed under taking minors,
occur frequently in graph theory. Among the most natural examples
are the properties of being embeddable in some fixed surface, such as
planarity.

By Kuratowski’s theorem, planarity can be expressed by forbidding
the minors K5 and K3,3. This is a good characterization of planarity in
the following sense. Suppose we wish to persuade someone that a certain
graph is planar: this is easy (at least intuitively) if we can produce a
drawing of the graph. But how do we persuade someone that a graph
is non-planar? By Kuratowski’s theorem, there is also an easy way to
do that: we just have to exhibit an MK5 or MK3,3 in our graph, as
an easily checked ‘certificate’ for non-planarity. Our simple Proposition
12.4.2 is another example of a good characterization: if a graph has tree
width < 3, we can prove this by exhibiting a suitable tree-decomposition;
if not, we can produce an MK4 as evidence.

Theorems that characterize a hereditary property P by a set H
of forbidden minors are doubtless among the most attractive results in
graph theory. As we saw in the proof of Proposition 12.4.1, there is
always some such characterization: that where H is the complement P
of P. However, one naturally seeks to make H as small as possible. And
as it turns out, there is indeed a unique smallest such set H: the set

HP := {H | H is 4-minimal in P }

satisfies P = Forb4(H) and is contained in every other such set H.

Proposition 12.5.1. P = Forb4(HP), and HP ⊆ H for every set H
with P = Forb4(H). ¤

Clearly, the elements of HP are incomparable under the minor re-
lation 4. Now the graph minor theorem of Robertson & Seymour says
that any set of 4-incomparable graphs must be finite:
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Theorem 12.5.2. (Graph Minor Theorem; Robertson & Seymour)
The finite graphs are well-quasi-ordered by the minor relation 4.

So every HP is finite, i.e. every hereditary graph property can be
represented by finitely many forbidden minors:

Corollary 12.5.3. Every graph property that is closed under taking
minors can be expressed as Forb4(H) with finite H. ¤

As a special case of Corollary 12.5.3 we have, at least in principle,
a Kuratowski-type theorem for every surface:

Corollary 12.5.4. For every surface S there exists a finite set of graphs
H1, . . . , Hn such that Forb4(H1, . . . , Hn) contains precisely the graphs
not embeddable in S.

The minimal set of forbidden minors has been determined explicitly
for only one surface other than the sphere: for the projective plane it
is known to consist of 35 forbidden minors. It is not difficult to show
that the number of forbidden minors grows rapidly with the genus of the
surface (Exercise 34).

The complete proof of the graph minor theorem would fill a book
or two. For all its complexity in detail, however, its basic idea is easy to
grasp. We have to show that every infinite sequence

G0, G1, G2, . . .

of finite graphs contains a good pair: two graphs Gi 4 Gj with i < j.
We may assume that G0 64 Gi for all i > 1, since G0 forms a good pair
with any graph Gi of which it is a minor. Thus all the graphs G1, G2, . . .
lie in Forb4(G0), and we may use the structure common to these graphs
in our search for a good pair.

We have already seen how this works when G0 is planar: then the
graphs in Forb4(G0) have bounded tree-width (Theorem 12.4.3) and are
therefore well-quasi-ordered by Theorem 12.3.7. In general, we need only
consider the cases of G0 = Kn: since G0 4 Kn for n := |G0|, we may
assume that Kn 64 Gi for all i > 1.

The proof now follows the same lines as above: again the graphs in
Forb4(Kn) can be characterized by their tree-decompositions, and again
their tree structure helps, as in Kruskal’s theorem, with the proof that
they are well-quasi-ordered. The parts in these tree-decompositions are
no longer restricted in terms of order now, but they are constrained in
more subtle structural terms. Roughly speaking, for every n there exists
a finite set S of closed surfaces such that every graph without a Kn minor
has a simplicial tree-decomposition into parts each ‘nearly’ embedding in
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one of the surfaces S ∈ S. (The ‘nearly’ hides a measure of disorderliness
that depends on n but not on the graph to be embedded.) By a gen-
eralization of Theorem 12.3.7—and hence of Kruskal’s theorem—it now
suffices, essentially, to prove that the set of all the parts in these tree-
decompositions is well-quasi-ordered: then the graphs decomposing into
these parts are well-quasi-ordered, too. Since S is finite, every infinite
sequence of such parts has an infinite subsequence whose members are
all (nearly) embeddable in the same surface S ∈ S. Thus all we have to
show is that, given any closed surface S, all the graphs embeddable in
S are well-quasi-ordered by the minor relation.

This is shown by induction on the genus of S (more precisely,
on 2 − χ(S), where χ(S) denotes the Euler characteristic of S) using
the same approach as before: if H0, H1, H2, . . . is an infinite sequence
of graphs embeddable in S, we may assume that none of the graphs
H1, H2, . . . contains H0 as a minor. If S = S2 we are back in the case
that H0 is planar, so the induction starts. For the induction step we
now assume that S 6= S2. Again, the exclusion of H0 as a minor con-
strains the structure of the graphs H1, H2, . . ., this time topologically:
each Hi with i > 1 has an embedding in S which meets some non-
contractible closed curve Ci ⊆ S in no more than a bounded number
of vertices (and no edges), say in Xi ⊆ V (Hi). (The bound on |Xi|
depends on H0, but not on Hi.) Cutting along Ci, and sewing a disc on
to each of the one or two closed boundary curves arising from the cut,
we obtain one or two new closed surfaces of larger Euler characteristic.
If the cut produces only one new surface Si, then our embedding of
Hi−Xi still counts as a near-embedding of Hi in Si (since Xi is small).
If this happens for infinitely many i, then infinitely many of the sur-
faces Si are also the same, and the induction hypothesis gives us a good
pair among the corresponding graphs Hi. On the other hand, if we get
two surfaces S′i and S′′i for infinitely many i (without loss of generality
the same two surfaces), then Hi decomposes accordingly into subgraphs
H ′i and H ′′i embedded in these surfaces, with V (H ′i ∩H ′′i ) = Xi. The
set of all these subgraphs taken together is again well-quasi-ordered by
the induction hypothesis, and hence so are the pairs (H ′i, H

′′
i ) by Lem-

ma 12.1.3. Using a sharpening of the lemma that takes into account
not only the graphs H ′i and H ′′i themselves but also how Xi lies in-
side them, we finally obtain indices i, j not only with H ′i 4 H ′j and
H ′′i 4 H ′′j , but also such that these minor embeddings extend to the de-
sired minor embedding of Hi in Hj—completing the proof of the minor
theorem.

In addition to its impact on ‘pure’ graph theory, the graph minor
theorem has had far-reaching algorithmic consequences. Using their tree
structure theorem for the graphs in Forb4(Kn), Robertson & Seymour
have shown that testing for any fixed minor is ‘fast’: for every graph H
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there is a polynomial-time algorithm7 that decides whether or not the
input graph contains H as a minor. By the minor theorem, then, every
hereditary graph property P can be decided in polynomial (even cubic)
time: if H1, . . . , Hk are the corresponding minimal forbidden minors,
then testing a graph G for membership in P reduces to testing the k
assertions Hi 4 G!

The following example gives an indication of how deeply this algo-
rithmic corollary affects the complexity theory of graph algorithms. Let
us call a graph knotless if it can be embedded in R3 so that none of its
cycles forms a non-trivial knot. Before the graph minor theorem, it was
an open problem whether knotlessness is decidable, that is, whether any
algorithm exists (no matter how slow) that decides for any given graph
whether or not that graph is knotless. To this day, no such algorithm
is known. The property of knotlessness, however, is easily ‘seen’ to be
hereditary: contracting an edge of a graph embedded in 3-space will not
create a knot where none had been before. Hence, by the minor theorem,
there exists an algorithm that decides knotlessness—even in polynomial
(cubic) time!

However spectacular such unexpected solutions to long-standing
problems may be, viewing the graph minor theorem merely in terms
of its corollaries will not do it justice. At least as important are the
techniques developed for its proof, the various ways in which minors are
handled or constructed. Most of these have not even been touched upon
here, yet they seem set to influence the development of graph theory for
many years to come.

Exercises

1.− Let 6 be a quasi-ordering on a set X. Call two elements x, y ∈ X
equivalent if both x 6 y and y 6 x. Show that this is indeed an
equivalence relation on X, and that 6 induces a partial ordering on the
set of equivalence classes.

2. Let (A,6) be a quasi-ordering. For subsets X ⊆ A write

Forb6(X) := { a ∈ A | a 6> x for all x ∈ X } .

Show that 6 is a well-quasi-ordering on A if and only if every subset
B ⊆ A that is closed under > (i.e. such that x 6 y ∈ B ⇒ x ∈ B) can
be written as B = Forb6(X) with finite X.

3. Prove Proposition 12.1.1 and Corollary 12.1.2 directly, without using
Ramsey’s theorem.

7 indeed a cubic one—although with a typically enormous constant depending
on H
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4. Given a quasi-ordering (X,6) and subsets A,B ⊆ X, write A 6′ B if
there exists an order preserving injection f :A→B with a 6 f(a) for
all a ∈ A. Does Lemma 12.1.3 still hold if the quasi-ordering considered
for [X]<ω is 6′?

5.− Show that the relation 6 between rooted trees defined in the text is
indeed a quasi-ordering.

6. Show that the finite trees are not well-quasi-ordered by the subgraph
relation.

7. The last step of the proof of Kruskal’s theorem considers a ‘topological’
embedding of Tm in Tn that maps the root of Tm to the root of Tn.
Suppose we assume inductively that the trees of Am are embedded in
the trees of An in the same way, with roots mapped to roots. We thus
seem to obtain a proof that the finite rooted trees are well-quasi-ordered
by the subgraph relation, even with roots mapped to roots. Where is
the error?

8.+ Show that the finite graphs are not well-quasi-ordered by the topological
minor relation.

9.+ Given k ∈ N, is the class {G | G 6⊇ P k } well-quasi-ordered by the
subgraph relation?

10. Show that a graph has tree-width at most 1 if and only if it is a forest.

11. Let G be a graph, T a set, and (Vt)t∈T a family of subsets of V (G) satis-
fying (T1) and (T2) from the definition of a tree-decomposition. Show
that there exists a tree on T that makes (T3) true if and only if there
exists an enumeration t1, . . . , tn of T such that for every k = 2, . . . , n
there is a j < k satisfying Vtk ∩

⋃
i<k

Vti ⊆ Vtj .

(The new condition tends to be more convenient to check than (T3).
It can help, for example, with the construction of a tree-decomposition
into a given set of parts.)

12. Prove the following converse of Lemma 12.3.1: if (T,V) satisfies con-
dition (T1) and the statement of the lemma, then (T,V) is a tree-
decomposition of G.

13. Can the tree-width of a subdivision of a graph G be smaller than tw(G)?
Can it be larger?

14. Let (T, (Vt)t∈T ) be a tree-decomposition of a graph G. For each vertex
v ∈ G, set Tv := { t ∈ T | v ∈ Vt }. Show that Tv is always con-
nected in T . More generally, for which subsets U ⊆ V (G) is the set
{ t ∈ T | Vt ∩U 6= ∅ } always connected in T (i.e. for all tree-decompo-
sitions)?

15.− Show that the tree-width of a graph is one less than its bramble number.

16. Apply Theorem 12.3.9 to show that the k × k grid has tree-width at
least k, and find a tree-decomposition of width exactly k.
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17. Let B be a maximum-order bramble in a graph G. Show that every
minimum-width tree-decomposition of G has a unique part covering B.

18.+ In the second half of the proof of Theorem 12.3.9, let H ′ be the union
of H and the paths P1, . . . , P`, let H ′′ be the graph obtained from H ′

by contracting each Pi, and let (T, (W ′′t )t∈T ) be the tree-decomposi-
tion induced on H ′′ (as in Lemma 12.3.3) by the decomposition that
(T, (Vt)t∈T ) induces on H ′. Is this, after the obvious identification of
H ′′ with H, the same decomposition as the one used in the proof, i.e.
is W ′′t = Wt for all t ∈ T?

19. Show that any graph with a simplicial tree-decomposition into k-
colourable parts is itself k-colourable.

20. Let H be a set of graphs, and let G be constructed recursively from
elements of H by pasting along complete subgraphs. Show that G has
a simplicial tree-decomposition into elements of H.

21. Given a tree-decomposition (T, (Vt)t∈T ) of G and t ∈ T , let Ht denote
the graph obtained from G [Vt ] by adding all the edges xy such that
x, y ∈ Vt ∩Vt′ for some neighbour t′ of t in T ; the graphs Ht are called
the torsos of this tree-decomposition. Show that G has no K5 minor
if and only if G has a tree-decomposition in which every torso is either
planar or a copy of the Wagner graph W (Fig. 8.3.1).

22.+ Call a graph irreducible if it is not separated by any complete subgraph.
Every (finite) graph G can be decomposed into irreducible induced
subgraphs, as follows. If G has a separating complete subgraph S,
then decompose G into proper induced subgraphs G′ and G′′ with G =
G′∪G′′ and G′∩G′′ = S. Then decompose G′ and G′′ in the same way,
and so on, until all the graphs obtained are irreducible. By Exercise 20,
G has a simplicial tree-decomposition into these irreducible subgraphs.
Show that they are uniquely determined if the complete separators were
all chosen minimal.

23.+ If F is a family of sets, then the graph G on F with XY ∈ E(G) ⇔
X ∩ Y 6= ∅ is called the intersection graph of F . Show that a graph
is chordal if and only if it is isomorphic to the intersection graph of a
family of (vertex sets of) subtrees of a tree.

24. A tree-decomposition of a graph is called a path-decomposition if its
decomposition tree is a path. Show that a graph has a path-decompo-
sition into complete graphs if and only if it is isomorphic to an interval
graph. (Interval graphs are defined in Ex. 37, Ch. 5.)

25. (continued)

The path-width pw(G) of a graph G is the least width of a path-decom-
position of G. Prove the following analogue of Corollary 12.3.12 for
path-width: every graph G satisfies pw(G) = min ω(H)− 1, where the
minimum is taken over all interval graphs H containing G.

26.+ Do trees have unbounded path-width?



280 12. Minors, Trees, and WQO

27. Let P be a hereditary graph property. Show that strengthening the
notion of a minor (for example, to that of topological minor) increases
the set of forbidden minors required to characterize P.

28. Deduce from the minor theorem that every hereditary property can be
expressed by forbidding finitely many topological minors. Is the same
true for every property that is closed under taking topological minors?

29. Show that every horizontal path in the k × k grid is externally k-
connected in that grid.

30.+ Show that the tree-width of a graph is large if and only if it contains
a large externally k-connected set of vertices, with k large. For exam-
ple, show that graphs of tree-width < k contain no externally (k+ 1)-
connected set of 3k vertices, and that graphs containing no externally
(k+ 1)-connected set of 3k vertices have tree-width < 4k.

31.+ (continued)

Find an N→ N2 function k 7→ (h, `) such that every graph with an
externally `-connected set of h vertices contains a bramble of order at
least k. Deduce the weakening of Theorem 12.3.9 that, given k, every
graph of large enough tree-width contains a bramble of order at least k.

32. Without using the minor theorem, show that the chromatic number of
the graphs in any 4-antichain is bounded.

33. Seymour’s self-minor conjecture asserts that ‘every countably infinite
graph is a proper minor of itself’. Make this assertion precise, and
deduce the minor theorem from it.

34. Given an orientable surface S of genus g, find a lower bound in terms
of g for the number of forbidden minors needed to characterize embed-
dability in S.

(Hint. The smallest genus of an orientable surface in which a given
graph can be embedded is called the (orientable) genus of that graph.
Use the theorem that the genus of a graph is equal to the sum of the
genera of its blocks.)

Notes
Kruskal’s theorem on the well-quasi-ordering of finite trees was first published
in J.A. Kruskal, Well-quasi ordering, the tree theorem, and Vászonyi’s conjec-
ture, Trans. Amer. Math. Soc. 95 (1960), 210–225. Our proof is due to Nash-
Williams, who introduced the versatile proof technique of choosing a ‘minimal
bad sequence’. This technique was also used in our proof of Higman’s Lemma
12.1.3.

Nash-Williams generalized Kruskal’s theorem to infinite graphs. This
extension is much more difficult than the finite case; it is one of the deepest
theorems in infinite graph theory. The general graph minor theorem becomes
false for arbitrary infinite graphs, as shown by R. Thomas, A counterexample
to ‘Wagner’s conjecture’ for infinite graphs, Math. Proc. Camb. Phil. Soc. 103
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(1988), 55–57. Whether or not the minor theorem extends to countable graphs
remains an open problem.

The notions of tree-decomposition and tree-width were first introduced
(under different names) by R. Halin, S-functions for graphs, J. Geometry 8
(1976), 171–186. Among other things, Halin showed that grids can have ar-
bitrarily large tree-width. Robertson & Seymour reintroduced the two con-
cepts, apparently unaware of Halin’s paper, with direct reference to K. Wagner,
Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570–
590. (This is the classic paper that introduced simplicial tree-decomposi-
tions to prove Theorem 8.3.4; cf. Exercise 21.) Simplicial tree-decompositions
are treated in depth in R. Diestel, Graph Decompositions, Oxford University
Press 1990.

Robertson & Seymour themselves usually refer to the graph minor the-
orem as Wagner’s conjecture. It seems that Wagner did indeed discuss this
problem in the 1960s with his then students Halin and Mader. However,
Wagner apparently never conjectured a positive solution; he certainly rejected
any credit for the ‘conjecture’ when it had been proved.

Robertson & Seymour’s proof of the graph minor theorem is given in
the numbers IV–VII, IX–XII and XIV–XX of their series of over 20 papers
under the common title of Graph Minors, which has been appearing in the
Journal of Combinatorial Theory, Series B, since 1983. Of their theorems cited
in this chapter, Theorem 12.3.7 is from Graph Minors IV, while Theorems
12.4.3 and 12.4.4 are from Graph Minors V. Our short proof of these latter
theorems is from R. Diestel, K.Yu. Gorbunov, T.R. Jensen & C. Thomassen,
Highly connected sets and the excluded grid theorem, J. Combin. Theory B
75 (1999), 61–73.

Theorem 12.3.9 is due to P.D. Seymour & R. Thomas, Graph searching
and a min-max theorem for tree-width, J. Combin. Theory B 58 (1993),
22–33. Our proof is a simplification of the original proof. B.A. Reed gives
an instructive introductory survey on tree-width and graph minors, includ-
ing some algorithmic aspects, in (R.A. Bailey, ed) Surveys in Combinatorics
1997 , Cambridge University Press 1997, 87–162. Reed also introduced the
term ‘bramble’; in Seymour & Thomas’s paper, brambles are called ‘screens’.

The obstructions to small tree-width actually used in the proof of the
graph minor theorem are not brambles but so-called tangles. Tangles are
more powerful than brambles and well worth studying. See Graph Minors X
or Reed’s survey for an introduction to tangles and their relation to brambles
and tree-decompositions.

Theorem 12.3.10 is due to R. Thomas, A Menger-like property of tree-
width; the finite case, J. Combin. Theory B 48 (1990), 67–76.

As a forerunner to Theorem 12.4.3, Robertson & Seymour proved its
following analogue for path-width (Graph Minors I): excluding a graph H as
a minor bounds the path-width of a graph if and only if H is a forest. A short
proof of this result, with optimal bounds, can be found in the first edition of
this book, or in R. Diestel, Graph Minors I: a short proof of the path width
theorem, Combinatorics, Probability and Computing 4 (1995), 27–30.

The 35 minimal forbidden minors for graphs to be embedded in the pro-
jective plane were determined by D. Archdeacon, A Kuratowski theorem for
the projective plane, J. Graph Theory 5 (1981), 243–246. An upper bound for
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the number of forbidden minors needed for an arbitrary closed surface is given
in P.D. Seymour, A bound on the excluded minors for a surface, J. Combin.
Theory B (to appear). B. Mohar, Embedding graphs in an arbitrary surface in
linear time, Proc. 28th Ann. ACM STOC (Philadelphia 1996), 392–397, has
developed a set of algorithms, one for each surface, that decide embeddability
in that surface in linear time. As a corollary, Mohar obtains an indepen-
dent and constructive proof of the ‘generalized Kuratowski theorem’, Corollary
12.5.4. Another independent and short proof of this corollary, which builds on
Theorem 12.4.3 and Graph Minors IV but on no other papers of the Graph
Minors series, was found by C. Thomassen, A simpler proof of the excluded
minor theorem for higher surfaces, J. Combin. Theory B 70 (1997), 306–311.
A survey of the classical forbidden minor theorems is given in Chapter 6.1 of
R. Diestel, Graph Decompositions, Oxford University Press 1990. More recent
developments are surveyed in R. Thomas, Recent excluded minor theorems, in
(J.D. Lamb & D.A. Preece, eds) Surveys in Combinatorics 1999 , Cambridge
University Press 1999, 201–222.

For every graph X, Graph Minors XIII gives an explicit algorithm that
decides in cubic time for every input graph G whether X 4 G. The constants
in the cubic polynomials bounding the running time of these algorithms de-
pend on X but are constructively bounded from above. For an overview of
the algorithmic implications of the Graph Minors series, see Johnson’s NP-
completeness column in J. Algorithms 8 (1987), 285–303.

The concept of a ‘good characterization’ of a graph property was first
suggested by J. Edmonds, Minimum partition of a matroid into independent
subsets, J. Research of the National Bureau of Standards (B) 69 (1965) 67–72.
In the language of complexity theory, a characterization is good if it specifies
two assertions about a graph such that, given any graph G, the first assertion
holds for G if and only if the second fails, and such that each assertion, if true
for G, provides a certificate for its truth. Thus every good characterization
has the corollary that the decision problem corresponding to the property it
characterizes lies in NP∩ co-NP.



Hints for all the
Exercises

Caveat. These hints are intended to set on the right track anyone who
has already spent some time over an exercise but somehow failed to make
much progress. They are not designed to be particularly intelligible
without such an initial attempt, and they will rarely spoil the fun by
giving away the key idea. They may, however, narrow ones mind by
focusing on what is just one of several possible ways to think about a
problem. . .

Hints for Chapter 1

1.− How many edges are there at each vertex?

2. Average degree and edges: consider the vertex degrees. Diameter: how
do you determine the distance between two vertices from the corre-
sponding 0–1 sequences? Girth: does the graph have a cycle of length 3?
Circumference: partition the d-dimensional cube into cubes of lower
dimension and use induction.

3. Consider how the path intersects C. Where can you see cycles, and can
they all be short?

4.− Can you find graphs for which Proposition 1.3.2 holds with equality?

5. Estimate the distances within G as seen from a central vertex.

6.+ Consider the cases d = 2 and d > 2 separately. For d > 2, give a sharper
bound on |Di| for i > 0 than the one used in the proof of Proposition
1.3.3.

7.− Assume the contrary, and derive a contradiction.

8.− Find two vertices that are linked by two independent paths.



284 Hints for all the exercises

9. (i) Straightforward from the definitions.

(ii) Prove κ > n by induction on n: partition the n-dimensional cube
into cubes of lower dimension, and show inductively that the deletion
of < n vertices leaves a connected subgraph.

10. For the first inequality, consider the endvertices of a set of λ(G) edges
whose deletion disconnects G. Use the definition of λ(G) to show the
second inequality.

11.− Try to find counterexamples for k = 1.

12. Rephrase (i) and (ii) as statements about the existence of two N→N
functions. To show the equivalence, express each of these functions in
terms of the other. Show that (iii) may hold even if (i) and (ii) do not,
and strengthen (iii) to remedy this.

13.+ Try to imitate the proof assuming ε(G) > 2k instead of condition (ii).
Why does this fail, and why does condition (ii) remedy the problem?

14. Show (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) from the definitions of the
relevant concepts.

15. Consider paths emanating from a vertex of maximum degree.

16. Theorem 1.5.1.

17. Induction.

18. The easiest solution is to apply induction on |T |. What kind of vertex
of T will be best to delete in the induction step?

19. Induction on |T | is a possibility, but not the only one.

20. Count the edges.

21. Show that if a graph contains any odd cycle at all it also contains an
induced one.

22. Apply Proposition 1.2.2. Split the subgraph thus found into two sides
so that every vertex has many neighbours on the opposite side.

23. Try to carry the proof for finite graphs over to the infinite case. Where
does it fail?

24.− Use Proposition 1.9.2.

25. Why do all the cuts E(v) generate the cut space? Will they still do so
if we omit one of them? Or even two?

26. Start with the case that the graph considered is a cycle.

27. Induction on |F rE(T )| for given F ∈ C(G).

28. Induction on |D∩E(T )| for a given cut D.

29. Apply Theorem 1.9.6.
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Hints for Chapter 2

1. Compare the given matching with a matching of maximum cardinality.

2. Augmenting paths.

3. If you have S $ S′ ⊆ A with |S| = |N(S)| in the finite case, the
marriage condition ensures that N(S) $ N(S′): increasing S makes
more neighbours available. Use the fact that this fails when S is infinite.

4. Apply the marriage theorem.

5. Construct a bipartite graph in which A is one side, and the other side
consists of a suitable number of copies of the sets Ai. Define the edge
set of the graph so that the desired result can be derived from the
marriage theorem.

6.+ Construct chains in the power set lattice of X as follows. For each
k < n/2, use the marriage theorem to find a 1–1 map ϕ from the set A
of k-subsets to the set B of (k+ 1)-subsets of X such that Y ⊆ ϕ(Y )
for all Y ∈ A.

7. Decide where the leaves should go: in factor-critical components or
in S?

8. Distinguish between the cases of |S| ≤ 1 and |S| ≥ 2.

9. The case S = ∅ is easy. In the other case, look for a vertex that meets
every maximum-cardinality matching. What are the consequences of
this for the other vertices?

10. For the ‘if’ direction consider the graph suggested in the hint: does it
have a 1-factor? If not, then consider the set of vertices supplied by
Tutte’s 1-factor theorem. For an alternative solution, apply the remarks
on maximum-cardinality matchings which follow Theorem 2.2.3.

11.− Corollary 2.2.2.

12. Let G be a bipartite graph that satisfies the marriage condition, with
bipartition (A,B) say. Reduce the problem to the case of |A| = |B|. To
verify the premise of Tutte’s theorem for a given set S ⊆ V (G), bound
|S| from below in terms of the number of components of G− S that
contain more vertices from A than from B and vice versa.

13.− Consider any smallest path cover.

14. Direct all the edges from A to B.

15.− Dilworth.

16. Start with the set of minimal elements in P .

17. Think of the elements of A as being smaller than their neighbours in B.

18.+ Let (x, y) 6 (x′, y′) if and only if x 6 x′ and y 6 y′.
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Hints for Chapter 3
1.− Recall the definitions of ‘separate’ and ‘component’.

2. Describe in words what the picture suggests.

3. Use Exercise 1 to answer the first question. The second requires an
elementary calculation, which the figure may already suggest.

4. Only the first part needs arguing; the second then follows by symmetry.
So suppose a component of G − X is not met by X ′, and refer to
Exercise 1. Where does X ′ lie? Are all our assumptions about X ′

consistent?

5.− How can a block fail to be a maximal 2-connected subgraph? And what
else follows then?

6. Deduce the connectedness of the block graph from that of the graph
itself, and its acyclicity from the maximality of each block.

7. Prove the statement inductively using Proposition 3.1.2. Alternative-
ly, choose a cycle through one of the two vertices and with minimum
distance from the other vertex. Show that this distance cannot be
positive.

8. Belonging to the same block is an equivalence relation on the edge set;
see Exercise 5.

9. Induction along Proposition 3.1.2.

10. Assuming that G/xy is not 3-connected, distinguish the cases when vxy
lies inside or outside a separating set of at most 2 vertices.

11. (i) Consider the edges incident with a smaller separator.

(ii) Induction shows that all the graphs obtained by the construction are
cubic and 3-connected. For the converse, consider a maximal subgraph
TH ⊆ G such that H is constructible as stated; then show that H = G.

12.− Can any choice of X and P as suggested by Menger’s theorem fail?

13. Choose the disjoint A–B paths in L(G) minimal.

14. Consider a longest cycle C. How are the other vertices joined to C?

15. Consider a cycle through as many of the k given vertices as possible.
If one them is missed, can you re-route the cycle through it?

16. Consider the graph of the hint. Show that any subset of its vertices
that meets all H-paths (but not H) corresponds to a similar subset
of E(G) r E(H). What does a pair of independent H-paths in the
auxiliary graph correspond to in G?

17.− How many paths can a single K2m+1 accomodate?

18. Choose suitable degrees for the vertices in B.

19.+ Let H be the (edgeless) graph on the new vertices. Consider the sets
X and F that Mader’s theorem provides if G′ does not contain |G|/2
independent H-paths. If G has no 1-factor, use these to find a suitable
set that can play the role of S in Tutte’s theorem.

20. Think small.

21.− If two vertices s, t are separated by fewer than 2k− 1 vertices, extend
{ s } and { t } to k-sets S and T showing that G is not k-linked.
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Hints for Chapter 4
1. Embed the vertices inductively. Where should you not put the new

vertex?

2.− Figure 1.6.2.

3.− Make the given graph connected.

4. This is a generalization of Corollary 4.2.8.

5. Theorem 3.5.4.

6. Imitate the proof of Corollary 4.2.8.

7. Proposition 4.2.10.

8.− Express the difference between the two drawings as a formal statement
about vertices, faces, and the incidences between them.

9. Combinatorially: use the definition. Topologically: express the relative
position of the short (respectively, the long) branches of G′ formally as
a property of G′ which any topological ismorphism would preserve but
G lacks.

10.− Reflexivity, symmetry, transitivity.

11. Look for a graph whose drawings all look the same, but which admits
an automorphism that does not extend to a homeomorphism of the
plane. Interpret this automorphism as σ2 ◦σ−1

1 .

12.+ Star-shape: every inner face contains a point that sees the entire face
boundary.

13. Work with plane rather than planar graphs.

14. (i) The set X may be infinite.

(ii) If Y is a TX, then every TY is also a TX.

15.− By the next exercise, any counterexample can be disconnected by at
most two vertices.

16. Incorporate the extra condition into the induction hypothesis of the
proof. It may help to disallow polygons with 180 degree angles.

17. Number of edges.

18. Use that maximal planar graphs are 3-connected, and that the neigh-
bours of each vertex induce a cycle.

19. If G = G1 ∪G2 with G1 ∩G2 = K2, we have a problem. This will go
away if we embed a little more than necessary.

20. Use a suitable modification of the given graph G to simulate outerpla-
narity.

21. Use the fact that C(G) is the direct sum of C(G1) and C(G2).

22.+ Euler.

23. The face boundaries generate C(G).

24.− Which are the faces that e∗ (viewed as a polygonal arc) can meet?

25.− How many vertices does it have?

26.− Join two given vertices of the dual by a straight line, and use this to
find a path between them in the dual graph.
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27.+ To show existence, define the required bijections F → V ∗, E → E∗,
V → F ∗ successively in this order, while at the same time construct-
ing G∗. Show that connectedness is necessary to ensure that these three
functions can all be made bijective.

28. Solve the previous exercise first.

29. Use the bijections that come with the two duals to define the desired
isomorphism and to prove that it is combinatorial.

30. Apply Menger’s theorem and Proposition 4.6.1. For (iii), consider a
4-connected graph with six vertices.

31. Apply induction on n, starting with part (i) of the previous exercise.

32. Theorem 1.9.5.

33. For the forward implication, consider G′ := G∗. For the converse, apply
a suitable planarity criterion.

Hints for Chapter 5

1.− Duality.

2.− Whenever more than three countries have some point in common, apply
a small local change to the map where this happens.

3. Where does the five colour proof use the fact that v has no more neigh-
bours than there are colours?

4. How can the colourings of different blocks interfere with each other?

5.− Use a colouring of G to derive a suitable ordering.

6. Consider how the removal of certain edges may lead the greedy algo-
rithm to use more colours.

7. Describe more precisely how to implement this alternative algorithm.
Then, where is the difference to the traditional greedy algorithm?

8. Compare the number of edges in a subgraph H as in 5.2.2 with the
number m of edges in G.

9. To find f , consider a given graph of small colouring number and par-
tition it inductively into a small number of forest. For g, use Proposi-
tion 5.2.2 and the easy direction of Theorem 3.5.4.

10.− Remove vertices successively until the graph becomes critically k-
chromatic. What can you say about the degree of any vertex that
remains?

11. Proposition 1.6.1.

12.+ Modify colourings of the two sides of a hypothetical cut of fewer than
k − 1 edges so that they combine to a (k − 1)-colouring of the entire
graph (with a contradiction).

13. Proposition 1.3.1.

14.− For which graphs with large maximum degree does Proposition 5.2.2
give a particularly small upper bound?
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15.+ (i) How will v1 and v2 be coloured, and how vn?

(ii) Consider the subgraph induced by the neighbours of vn.

16. For the induction start, explicitly calculate PG(k) for |G| = n and
‖G‖ = 0.

17.+ Derive from the polynomial the number of edges and the number of
components of G; see the previous exercise.

18. Imitate the proof of Theorem 5.2.5.

19.− Kn,n.

20. How are edge colourings related to matchings?

21. Construct a bipartite ∆(G)-regular graph that contains G as subgraph.
It may be necessary to add some vertices.

22.+ Induction on k. In the induction step k→ k+ 1, consider using several
copies of the graph you found for k.

23.− Vertex degrees.

24. Kn,n. To choose n so that Kn,n is not even k-choosable, consider lists
of k-subsets of a k2-set.

25.− Vizing’s theorem.

26. All you need are the definitions, Proposition 5.2.2, and a standard
argument from Chapter 1.2.

27.+ Try induction on r. In the induction step, you would like to to delete
one pair of vertices and only one colour from the other vertices’ lists.
What can you say about the lists if this is impossible? This information
alone will enable you to find a colouring directly, without even looking
at the graph again.

28. Show that χ′′(G) 6 ch′(G) + 2, and use this to deduce χ′′(G) 6
∆(G) + 3 from the list colouring conjecture.

29.− Do bipartite graphs have a kernel?

30.+ Call a set S of vertices in a directed graph D a core if D contains a
directed v–S path for every vertex v ∈ D− S. If, in addition, D con-
tains no directed path between any two vertices of S, call S a strong
core. Show first that every core contains a strong core. Next, define
inductively a partition of V (D) into ‘levels’ L0, . . . , Ln such that, for
even i, Li is a suitable strong core in Di := D− (L0 ∪ . . .∪Li−1), while
for odd i, Li consists of the vertices of Di that send an edge to Li−1.
Show that, if D has no directed odd cycle, the even levels together form
a kernel of D.

31. Construct the orientation needed for Lemma 5.4.3 in steps: if, in the
current orientation, there are still vertices v with d+(v) > 3, reverse the
directions of an edge at v and take care of the knock-on effect of this
change. If you need to bound the average degree of a bipartite planar
graph, remember Euler’s formula.

32.− Start with a non-perfect graph.

33.− Do odd cycles or their complements satisfy (∗)?
34. Exercise 12, Chapter 3.
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35. Look at the complement.

36. Define the colour classes of a given induced subgraph H ⊆ G induc-
tively, starting with the class of all minimal elements.

37. (i) Can the vertices on an induced cycle contain each other as intervals?

(ii) Use the natural ordering of the reals.

38. Compare ω(H) with ∆(G) (where H = L(G)).

39.+ Which graphs are such that their line graphs contain no induced cycles
of odd length > 5? To prove that the edges of such a graph G can be
coloured with ω(L(G)) colours, imitate the proof of Vizing’s theorem.

40. Use A as a colour class.

41.+ (i) Induction.

(ii) Assume that G contains no induced P 3. Suppose some H has a
maximal complete subgraph K and a maximal set A of independent
vertices disjoint from K. For each vertex v ∈ K, consider the set of
neighbours of v in A. How do these sets intersect? Is there a smallest
one?

42.+ Start with a candidate for the set O, i.e. a set of maximal complete
subgraphs covering the vertex set of G. If all the elements of O hap-
pen to have order ω(G), how does the existence of A follow from the
perfection of G? If not, can you expand G (maintaining perfection) so
that they do and adapt the A for the expanded graph to G?

43.+ Reduce the general case to the case when all but one of the Gx are
trivial; then imitate the proof of Lemma 5.5.4.

44. Apply the property of H1 to the graphs in H2, and vice versa.

Hints for Chapter 6

1.− Move the vertices, one by one, from S to S. How does the value of
f(S, S) change each time?

2. (i) Trick the algorithm into repeatedly using the middle edge in alter-
nating directions.

(ii) At any given time during the algorithm, consider for each vertex
v the shortest s–v walk that qualifies as an initial segment of an aug-
menting path. Show for each v that the length of this s–v walk never
decreases during the algorithm. Now consider an edge which is used
twice for an augmenting path, in the same direction. Show that the
second of these paths must have been longer than the first. Now derive
the desired bound.

3.+ For the edge version, define the capacity function so that a flow of max-
imum value gives rise to sufficiently many edge-disjoint paths. For the
vertex version, split every vertex x into two adjacent vertices x−, x+.
Define the edges of the new graph and their capacities in such a way
that positive flow through an edge x−x+ corresponds to the use of x
by a path in G.
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4.− H-flows are nowhere zero, by definition.

5.− Use the definition and Proposition 6.1.1.

6.− Do subgraphs also count as minors?

7.− Try k = 2, 3, . . . in turn. In searching for a k-flow, tentatively fix the
flow value through an edge and investigate which consequences this has
for the adjacent edges.

8. To establish uniqueness, consider cuts of a special type.

9. Express G as the union of cycles.

10. Combine Z2 -flows on suitable subgraphs to a flow on G.

11.+ Begin by sending a small amount of flow through every edge outside T .

12. View G as the union of suitably chosen cycles.

13. Corollary 6.3.2 and Proposition 6.4.1.

14.− Duality.

15. Take as H your favourite graph of large flow number. Can you decrease
its flow number by adding edges?

16. Euler.

17.+ Theorem 6.5.3.

18.− Search among small cubic graphs.

19. Theorem 6.5.3.

20. (i) Theorem 6.5.3.

(ii) Yes it can. Show, by considering a smallest counterexample, that
if every 3-connected cubic planar multigraph is 3-edge-colourable (and
hence has a 4-flow), then so is every bridgeless cubic planar multigraph.

21.+ For the ‘only if’ implication apply Proposition 6.1.1. Conversely, con-
sider a circulation f on G, with values in { 0,±1, . . . ,±(k− 1) }, that
respects the given orientation (i.e. is positive or zero on the edge di-
rections assigned by D) and is zero on as few edges as possible. Then
show that f is nowhere zero, as follows. If f is zero on e = st ∈ E and
D directs e from t to s, define a network N = (G, s, t, c) such that any
flow in N of positive total value contradicts the choice of f , but any
cut in N of zero capacity contradicts the property assumed for D.

22.− Convert the given multigraph into a graph with the same flow proper-
ties.

Hints for Chapter 7
1.− Straightforward from the definition.

2.− When constructing the graphs, start by fixing the colour classes.

3. It is not difficult to determine an upper bound for ex(n,K1,r). What
remains to be proved is that this bound can be achieved for all r and n.

4. Proposition 1.7.2 (ii).

5. Proposition 1.2.2 and Corollary 1.5.4.
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6.+ What is the maximum number of edges in a graph of the structure given
by Theorem 2.2.3 if it has no matching of size k? What is the optimal
distribution of vertices between S and the components of G− S? Is
there always a graph whose number of edges attains the corresponding
upper bound?

7. Consider a vertex x ∈ G of maximum degree, and count the edges
in G−x.

8. Choose k and i so that n = (r− 1)k+ i with 0 6 i < r− 1. Treat the
case of i = 0 first, and then show for the general case that tr−1(n) =
1
2
r−2
r−1

(n2− i2) +
(
i
2

)
.

9. The bounds given in the hint are the sizes of two particularly simple
Turán graphs—which ones?

10.+ How can you choose v so that the number of edges does not decrease?
Where in the graph can the operation be repeated, and what does the
situation look like when nothing new happens?

11. Choose among the m vertices a set of s vertices that are still incident
with as many edges as possible.

12. For the first inequality, double the vertex set of an extremal graph for
Ks,t to obtain a bipartite graph with twice as many edges but still not
containing a Ks,t.

13.+ For the displayed inequality, count the pairs (x, Y ) such that x ∈ A and
Y ⊆ B, with |Y | = r and x adjacent to all of Y . For the bound on
ex(n,Kr,r), use the estimate (s/t)t ≤

(
s
t

)
≤ st and the fact that the

function z 7→ zr is convex.

14. Assume that the upper density is larger than 1− 1
r−1

. What does this
mean precisely, and what does the Erdős-Stone theorem then imply?

15. Corollary 1.5.4 and Proposition 1.2.2.

16. Complete graphs.

17.− Average degree.

18. Do 1
2
(k− 1)n edges force a subgraph of suitable minimum degree?

19. Consider a longest path P in G. Where do its endvertices have their
neighbours? Can G [P ] contain a cycle on V (P )?

20.− Why would it be impractical to include, say, 1-element sets X,Y in the
comparison?

21.− Apply the definition of an ε-regular pair.

22. Sparse graphs have few edges. How does that affect the average degree
condition in the definition of ε-regularity?
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Hints for Chapter 8

1. For the induction step, partition the vertex set of the given graph G
into two sets V1 and V2 so that colourings of G [V1 ] and G [V2 ] can be
combined to a colouring of G.

2. Imitate the start of the proof of Lemma 8.1.3.

3.− Does a large chromatic number force up the average degree? If in doubt,
consult Chapter 5.

4.+ Try parallel paths in the grid as branch sets.

5.+ How can we best make a TK2r fit into a Ks,s when we want to keep s
small?

6. Split the argument into the cases of k = 0 and k > 1.

7. How are the two lemmas used in the proof of the theorem?

8. Study the motivational chat preceding the definition of f in the proof.

9.+ Consider your favourite graphs with high average degree and low chro-
matic number. Which trees do they contain induced? Is there some
reason to expect that exactly these trees may always be found induced
in graphs of large average degree and small chromatic number?

10.− What does planarity have to do with minors?

11.− Consider a suitable supergraph.

12.− Average degree.

13.+ Show by induction on |G| that any 3-colouring of an induced cycle in
G 6< K4 extends to all of G.

14.+ Reduce the statement to critical k-chromatic graphs and apply Vizing’s
theorem.

15. (i) is easy. In the first part of (ii), distinguish between the cases that
the graph is or is not separated by a Kχ(G)−1. Show the second part
by induction on the chromatic number. In the induction step split the
vertex set of the graph into two subsets.

16. Induction on the number of construction steps.

17. Induction on |G|.
18. Note the previous exercise.

19. Which of the graphs constructed as in Theorem 8.3.4 have the largest
average degree?

20. Which of the graphs constructed as in the hint have the largest average
degree?

21. Consider the subgraph of G induced by the neighbours of x.
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Hints for Chapter 9

1.− Can you colour the edges of K5 red and green without creating a red
or a green triangle? Can you do the same for a K6?

2. Induction on c. In the induction step, unite two of the colour classes.

3.+ Choose a well-ordering of R, and compare it with the natural ordering.
Use the fact that countable unions of countable sets are countable.

4.+ The first and second question are easy. To prove the theorem of Erdős
and Szekeres, use induction on k for fixed `, and consider in the in-
duction step the last elements of increasing subsequences of length k.
Alternatively, apply Dilworth’s Theorem.

5. Use the fact that n > 4 points span a convex polygon if and only if
every four of them do.

6. Translate the given k-partition of { 1, 2, . . . , n } into a k-colouring of the
edges of Kn.

7. (i) is easy. For (ii) use the existence of R(2, k, 3).

8. Begin by finding infinitely many sets whose pairwise intersections all
have the same size.

9. The exercise offers more information than you need. Consult Chap-
ter 8.1 to see what is relevant.

10. Consider an auxiliary graph whose vertices are coloured finite sub-
graphs of the given graph.

11. Imitate the proof of Proposition 9.2.1.

12. The lower bound is easy. Given a colouring for the upper bound, con-
sider a vertex and the neighbours joined to it by suitably coloured
edges.

13.− Given H1 and H2, construct a graph H for which the G of Theorem
9.3.1 satisfies (∗).

14. Show inductively for k = 0, . . . ,m that ω(Gk) = ω(H).

15. For the induction step, construct G(H1, H2) from the disjoint union of
G(H1, H

′
2) and G(H ′1, H2) by joining some new vertices in a suitable

way.

16. Infinity lemma.

17.− How exactly does Proposition 9.4.1 fail if we delete Kr from the state-
ment?

Hints for Chapter 10

1. Consider the union of two colour classes.

2. Will the proof of Proposition 10.1.2 go through if we assume χ(G) >
|G|/k instead of α(G) 6 k? What do k-connected graphs look like that
satisfy the first condition but not the second?

3. Examine an edge that gets added in one sequence but not in another.
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4. Figure 10.1.1.

5. Induction on k with n fixed; for the induction step consider G.

6.− Recall the definition of a hamiltonian sequence.

7.− On which kind of vertices does the Chvátal condition come to bear?
To check the validity of the condition for G, first find such a vertex.

8. How does an arbitrary connected graph differ from the kind of graph
whose square contains a Hamilton cycle by Fleischner’s theorem? How
could this difference obstruct the existence of a Hamilton cycle?

9.+ In the induction step consider a minimal cut.

10. Condition (∗) in the proof of Fleischner’s theorem.

11. Induction.

12.+ How can a Hamilton path P ∈ H be modified into another? In how
many ways? What has this got to do with the degree in G of the last
vertex of P?

Hints for Chapter 11

1.− Consider a fixed choice of m edges on { 0, 1, . . . , n }. What is the prob-
ability that G ∈ G(n, p) has precisely this edge set?

2. Consider the appropriate indicator random variables, as in the proof of
Lemma 11.1.5.

3. Consider the appropriate indicator random variables.

4. Erdős.

5. What would be the measure of the set {G } for a fixed G?

6. Consider the complementary properties.

7.− P2,1.

8. Apply Lemma 11.3.2.

9. Induction on |H| with the aid of Exercise 6.

10.+ (i) Given a pair U,U ′, calculate the probability that every other vertex
is joined incorrectly to U ∪U ′. What, then, is the probability that this
happens for some pair U,U ′?

(ii) Enumerate the vertices of G and G′ jointly, and construct an iso-
morphism G→G′ inductively.

11. Imitate the proof of Lemma 11.2.1.

12. Imitate the proof of Proposition 11.3.1. To bound the probabilities
involved, use the inequality 1 − x 6 e−x as in the proof of Lemma
11.2.1.

13.+ (i) Calculate the expected number of isolated vertices, and apply Lem-
ma 11.4.2 as in the proof of Theorem 11.4.3.

(ii) Linearity.

14.+ Chapter 8.2, the proof of Erdős’s theorem, and a bit of Chebyshev.
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15. For the first problem modify an increasing property slightly, so that it
ceases to be increasing but keeps its threshold function. For the second,
look for an increasing property whose probability does not really depend
on p.

16.− Permutations of V (H).

17.− This is a result from the text in disguise.

18.− Balance.

19. For p/t→ 0 apply Lemmas 11.1.4 and 11.1.5. For p/t→∞ apply Co-
rollary 11.4.4.

20. There are only finitely many trees of order k.

21.+ Show first that no such threshold function t = t(n) can tend to zero as
n→∞. Then use Exercise 12.

22.+ Examine the various steps in the proof of Theorem 11.4.3, and note
which changes will be needed. In the final steps of the proof, how are
the sums AF defined, and why is the sum of all the AF with ||F || = ∅
equal to A0? For ||F || 6= ∅, calculate a bound on AF , and show that
each AF /µ

2 tends to zero as n→∞, as before.

Hints for Chapter 12

1.− Antisymmetry.

2. Proposition 12.1.1.

3. To prove Proposition 12.1.1, consider an infinite sequence in which
every strictly decreasing subsequence is finite. How does the last ele-
ment of a maximal decreasing subsequence compare with the elements
that come after it? For Corollary 12.1.2, start by proving that at least
one element forms a good pair with infinitely many later elements.

4. An obvious approach is to try to imitate the proof of Lemma 12.1.3
for 6′; if it fails, what is the reason? Alternatively, you might try to
modify the injective map produced by Lemma 12.1.3 into an order-
preserving one, without losing the property of a 6 f(a) for all a.

5.− This is an exercise in precision: ‘easy to see’ is not a proof. . .

6. Start by finding two trees T, T ′ with |T | < |T ′| but T 66 T ′; then iterate.

7. Does the original proof ever map the root of a tree to an ordinary vertex
of another tree?

8.+ When we try to embed a graph TG in another graph H, the branch
vertices of the TG can be mapped only to certain vertices of H. Enlarge
G to a similar graph H that does not contain G as a topological minor
because these vertices of H are inconveniently positioned in H. Then
iterate this example to obtain an infinite antichain.

9.+ It is. One possible proof uses normal spanning trees with labels, and
imitates the proof of Kruskal’s theorem.

10. Why are there no cycles of tree-width 1?
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11. For the forward implication, apply Corollary 1.5.2. For the converse,
use induction on k.

12. To prove (T2), consider the edge e of Figure 12.3.1. Checking (T3) is
easy.

13. For the first question, recall Proposition 12.3.6. For the second, try to
modify a tree-decomposition of G into one of the TG without increasing
its width.

14. Lemma 12.3.1 relates the separation properties of a graph G to those
of its decomposition tree T . This exercise illuminates this relation-
ship from the dual viewpoint of connectedness: how are the connected
subgraphs of G related to those of T?

15.− This is just a reformulation of Theorem 12.3.9.

16. Modify the proof given in the text that the k× k grid has tree-width
at least k− 1.

17. Existence was shown in Theorem 12.3.9; the task is to show uniqueness.

18.+ Work out an explicit description of the sets W ′t similar to the definition
of the Wt, and compare the two.

19. Induction.

20. Induction.

21. Use the previous exercise and a result from Chapter 8.3. And don’t
despair at a subgraph of W !

22.+ Show that the parts are precisely the maximal irreducible induced sub-
graphs of G.

23.+ Exercise 14.

24. For the forward implication, interpret the subpaths of the decomposi-
tion path as intervals. Which subpath corresponds naturally to a given
vertex of G?

25. Follow the proof of Corollary 12.3.12.

26.+ They do. To prove it, show first that every connected graph G contains
a path whose deletion decreases the path-width of G. Then apply
induction on a suitable set of trees, deleting a suitable path in the
induction step.

27. Consider minimal sets such as XP in Proposition 12.5.1.

28. To answer the first part, construct for each forbidden minor X a finite
set of graphs whose exclusion as topological minors is equivalent to
forbidding X as a minor. For the second part recall Exercise 8.

29. Find the required paths one by one.

30.+ One direction is just a weakening of Lemma 12.4.5. For the other,
imitate the proof of Lemma 12.3.4.

31.+ Let X be an externally `-connected set of h vertices in a graph G, where
h and ` are large. Consider a small separator S in G: clearly, most of
X will lie in the same component of G− S. Try to make these ‘large’
components, perhaps together with their separators S, into the desired
connected vertex sets.
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32. Consult Chapter 8.2 for substructures to be found in graphs of large
chromatic number.

33. Derive the minor theorem first for connected graphs.

34. K5.
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and diameter, 8
and minimum degree, 8, 179–180, 237
and minors, 179–180
and planarity, 89
and topological minors, 178

Godsil, C., 28
Golumbic, M.C., 122
good

characterization, 274, 282
pair, 252



304 Index

sequence, 252
Gorbunov, K.Yu., 281
Göring, F., 66
Graham, R.L., 210
graph, 2–4, 25, 26

invariant, 3
minor theorem, 251, 274–277, 275
partition, 60
plane, 70–76, 87–89, 96–97, 106–108,

136–139
process, 250
property, 238
simple, 26

graphic sequence, see degree sequence
graph-theoretical isomorphism, 77–78
greedy algorithm, 98, 108, 117
grid, 90, 184, 258

minor, 260, 264–274
theorem, 264
tree-width of, 260, 278, 281

Grötzsch, H., 97, 141, 145
group-valued flow, 128–133
Grünwald, T., 66
Guthrie, F., 120
Gyárfás, A., 178, 185

Hadwiger, H., 181, 186, 187
conjecture, 169–170, 181–183, 185,

186–187
Hajnal, A., 197, 210
Hajós, G., 102, 187

construction, 101–102
Haken, W., 121
Halin, R., 65–66, 227, 280–281
Hall, P., 31, 42
Hamilton, W.R., 227
Hamilton closure, 226
Hamilton cycle, 213–228

in almost all graphs, 241
and degree sequence, 216–218, 226
in G2, 218–226
in G3, 227
and the four colour theorem, 215
and 4-flows, 144, 215
and minimum degree, 214
in planar graphs, 215
power of, 226
sufficient conditions, 213–218

Hamilton path, 213, 218
hamiltonian

graph, 213
sequence, 216

Harant, J., 66
head, see terminal vertex

Heawood, P.J., 121, 145
Heesch, H., 121
hereditary graph property, 263, 274–277

algorithmic decidability, 276–277
Higman, D.G., 252, 280
Hoffman, A.J., 120
hypergraph, 25

in (a graph), 7
incidence, 2

encoding of planar embedding, see
combinatorial isomorphism

map, 25–26
matrix, 24

incident, 2, 72
increasing property, 241, 248
independence number, 110–117

and connectivity, 214–215
and Hamilton cycles, 215
and long cycles, 118
and path cover, 39
of random graph, 232, 248

independent
edges, 3, 29–38
events, 231
paths, 7, 55, 56–57, 283
vertices, 3, 39, 110, 232

indicator random variable, 234, 295
induced subgraph, 3, 111, 116–117, 290

of almost all graphs, 238, 248
cycle, 7–8, 21, 47, 75, 86, 111, 117,

290
of all imperfect graphs, 116–117, 120
of all large connected graphs, 207
in Ramsey theory, 196–206
in random graph, 232, 249
tree, 178

infinite graphs, ix, 2, 28, 41, 166, 209,
248, 280

infinity lemma, 192, 210, 294
initial vertex, 25
inner face, 70
inner vertex, 6
integral

flow, 126, 128
function, 126
random variable, 242

interior
of an arc, 68
of a path, P̊ , 6–7

internally disjoint, see independent
intersection, 3

graph, 279
interval graph, 120, 279
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into, 255

intuition, 70, 231

invariant, 3

irreducible graph, 279

isolated vertex, 5, 248

isomorphic, 3

isomorphism, 3

of plane graphs, 76–80

isthmus, see bridge

Jaeger, F., 146

Janson, S., 249

Jensen, T.R., 120, 146, 281

Johnson, D., 282

join, 2

Jordan, C., 68, 70

Jung, H.A., 62, 186

Kahn, J., 122

Karoński, M., 249

Kempe, A.B., 121, 227

kernel

of incidence matrix, 24

of directed graph, 108–109,119

Kirchhoff’s law, 123, 124

Klein four-group, 135

Kleitman, D.J., 121

knotless graph, 277

knot theory, 146

Kohayakawa, Y., 167

Kollár, J., 167

Komlós, J., 167, 170, 186, 210, 226

König, D., 30, 42, 52, 103, 119, 192,
210

duality theorem, 30, 39, 111

infinity lemma, 192, 210, 294

Königsberg bridges, 19

Kostochka, A.V., 179

Kruskal, J.A., 253, 280, 296

Kuratowski, C., 80–84, 274

Kuratowski-type characterization, 90,
274–275, 281–282

Larman, D.G., 62

Latin square, 119

leaf, 12, 27

lean tree-decomposition, 261

length

of a cycle, 7

of a path, 6, 8

of a walk, 9

line (edge), 2

graph, 4, 96, 185

linear algebra, 20–25, 47–49, 85–86, 116
linear programming, 145
linked

by an arc, 68
by a path, 6
k-linked, 61–63, 66

vs. k-connected, 62, 65
(k, `)-linked, 170
set, 170
tree-decomposition, 261
vertices, 6, 68

list
-chromatic index, 105, 108–110, 121–

122
-chromatic number, see choice num-

ber
colouring, 105–110, 121–122

bipartite graphs, 108–110, 119
Brooks’s theorem, 121
conjecture, 108, 119, 122

k-list-colourable, see k-choosable
logarithms, 1
loop, 25
Lovász, L., 42, 112, 115, 121, 122, 167
ÃLuczak, T., 249, 250

MacLane, S., 85, 92
Mader, W., 11, 56–57, 61, 65, 66, 178,

184, 186, 187
Magnanti, T.L., 145
Mani, P., 62
map colouring, 95–97, 117, 120, 136
Markov chain, 250
Markov’s inequality, 233, 237, 242, 244
marriage theorem, 31, 33, 42, 285
matchable, 36
matching, 29–42

in bipartite graphs, 29–34, 111
and edge colouring, 119
in general graphs, 34–38
of vertex set, 29

Máté, A., 210
matroid theory, 66, 93
max-flow min-cut theorem, 125, 127,

144, 145
maximal, 4

acyclic graph, 12
planar graph, 80, 84, 90, 92, 183, 185
plane graph, 73, 80

maximum degree, 5
bounded, 161, 194
and chromatic number, 99
and chromatic index, 103–105
and list-chromatic index, 110, 122
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and radius, 9, 26

and Ramsey numbers, 194–196

Menger, K., 42, 50–55, 64, 144, 288

k-mesh, 265

Milgram, A.N., 39

minimal, 4

connected graph, 12

k-connected graph, 65

cut, 22, 88, 136

set of forbidden minors, 274, 280,
281–282

non-planar graph, 90

separating set, 63

minimum degree, 5

and average degree, 5

and choice number, 106

and chromatic number, 99, 100

and circumference, 8

and connectivity, 11, 65–66

forcing Hamilton cycle, 214, 226

forcing long cycles, 8

forcing long paths, 8, 166

forcing short cycles, 179–180, 237

forcing trees, 13

and girth, 178, 179–180, 237

and linkability, 171

minor, 16–19, 17

K3,3, 92, 185

K4, 182, 263

K5, 183, 186

K5 and K3,3, 80–84

K6, 183

Kr, 180, 181

of all large 3- or 4-connected graphs,
208

forbidden, 181–185, 263–277, 279,
280, 281–282

forced, 174, 179–186

infinite, 280

of multigraph, 26

Petersen graph, 140

and planarity, 80–84, 90

relation, 18, 274

theorem, 251, 274–277, 275

for trees, 253–254

proof, 275–276

vs. topological minor, 18–19, 80

and WQO, 251–277

(see also topological minor)

Möbius

crown, 208

ladder, 183

Mohar, B., 92, 121, 281–282

moment

first, see Markov’s inequality

second, 242–247

monochromatic (in Ramsey theory)

induced subgraph, 196–206

(vertex) set, 191–193

subgraph, 191, 193–196

multigraph, 25–26

list chromatic index of, 122

plane, 87

multiple edge, 25

Murty, U.S.R., 228

Nash-Williams, C.St.J.A., 58, 60, 66,
280

neighbour, 3, 4

Nešetřil, J., 210, 211

network, 125–128

theory, 145

node (vertex), 2

normal tree, 13–14, 27, 139, 144, 296

nowhere

dense, 61

zero, 128, 146

null, see empty

obstruction

to small tree-width, 258–260, 264–
265, 280, 281

octahedron, 11, 15

odd

component, 34

cycle, 15, 99, 117, 290

degree, 5

on, 2

one-factor theorem, 35, 66

Oporowski, B., 208

order

of deletion/contraction, 17

of a bramble, 258

of a graph, 2

of a mesh or premesh, 265

partial, 13, 18, 27, 40, 41, 120, 277

quasi-, 251–252, 277–278

tree-, 13, 27

well-quasi-, 251–253, 275, 277, 278,
280

orientable surface, 280

plane as, 137

orientation, 25, 108, 145, 289

cycle with, 136–137

oriented graph, 25

Orlin, J.B., 145

outer face, 70, 76–77
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outerplanar, 91
Oxley, J.G., 93, 208

Palmer, E.M., 249
parallel

edges, 25
paths, 293

parity, 5, 34, 37, 227
part of tree-decomposition, 255
partially ordered set, 40, 41, 42
r-partite, 14
partition, 1, 60, 191
pasting, 111, 182, 183, 185, 261
path, 6–9
a–b-path, 7, 55
A–B-path, 7, 50–55
H-path, 7, 44–45, 56–57, 64, 65, 66
alternating, 29, 32
between given pairs of vertices, 61–

63, 66, 170
cover, 39–40, 285
-decomposition, 279
directed, 39
disjoint paths, 39, 50–55
edge-disjoint, 55, 57, 58
-hamiltonian sequence, 218
independent paths, 7, 55, 56–57, 283
induced, 207
length, 6
linkage, 61–63, 66, 170, 172
long, 8
-width, 279, 281

Pelikán, J., 185
perfect, 111–117, 119–120, 122

graph conjecture, 117
graph theorem, 112, 115, 117, 122
matching, see 1-factor

Petersen, J., 33, 36
Petersen graph, 140–141
physics, 146
piecewise linear, 67
planar, 80–89, 274

embedding, 76, 80–93
planarity criteria

Kuratowski, 84
MacLane, 85
Tutte, 86
Whitney, 89

plane
dual, 87
duality, 87–89, 91, 136–139, 288
graph, 70–76,
multigraph, 87–89, 136–139
triangulation, 73, 75, 261

Plummer, M.D., 42

point (vertex), 2

pointwise greater, 216

polygon, 68

polygonal arc, 68, 69

Pósa, L., 197, 226

power of a graph, 218

precision, 296

premesh, 265

probabilistic method, 229, 235–238, 249

projective plane, 275, 281

Prömel, H.J., 117, 122

property, 238

of almost all graphs, 238–241, 247–
248

hereditary, 263

increasing, 241

pseudo-random graph, 210

Pym, J.S., 66

quasi-ordering, 251–252, 277–278

radius, 9

and diameter, 9, 26

and maximum degree, 9, 26

Rado, R., 210

Rado’s selection lemma, 210

Ramsey, F.P., 190–193

Ramsey

graph, 197

-minimal, 196

numbers, 191, 193–194, 209, 210, 232

Ramsey theory, 189–208

and connectivity, 207–208

induced, 196–206

infinite, 192, 208, 210

random graph, 179, 194, 229–250, 231

evolution, 241

infinite, 248

process, 250

uniform model, 250

random variable, 233

indicator r.v., 234, 295

reducible configuration, 121

Reed, B.A., 281

refining a partition, 1, 155–159

region, 68–70

on S2, 70

regular, 5, 33, 226

ε-regular

pair, 153, 166

partition, 153

regularity
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graph, 161
inflated, Rs, 194

lemma, 148, 153–164, 154, 167, 210
Rényi, A., 243, 249
Richardson, M., 119
rigid-circuit, see chordal
Ř́ıha, S., 228
Robertson, N., 66, 121, 183, 186, 257,

264, 275, 281
Rödl, V., 167, 194, 197, 211
Rónyai, L., 167
root, 13
rooted tree, 13, 253, 278
Rothschild, B.L., 210
Royle, G.F., 28
Ruciński, A., 249

Sanders, D.P., 121
Sárközy, G.N., 226
saturated, see edge-maximal
Schelp, R.H., 210
Schoenflies, A.M., 70
Schrijver, A., 145
Schur, I, 209
Scott, A.D., 167, 178, 209
second moment, 242–247
self-minor conjecture, 280
separate

a graph, 10, 50, 55, 56
the plane, 68

separating set, 10
sequential colouring, see greedy algo-

rithm
series-parallel, 185
k-set, 1
set system, see hypergraph
Seymour, P.D., 66, 92, 121, 141, 183,

186, 187, 226, 257, 258, 264, 275,
280, 281

shift-graph, 209
Simonovits, M., 166, 167, 210
simple

basis, 85, 92–93
graph, 26

simplicial tree-decomposition, 261, 275,
279, 281

sink, 125
six-flow theorem, 141
snark, 141

planar, 141, 145, 215
Sós, V., 152, 166, 167
source, 125
spanned subgraph, 3
spanning

subgraph, 3

trees, 13, 14

edge disjoint, 58–60

number of, 248

sparse graphs, 147, 169–185, 194

Spencer, J.H., 210, 249

Sperner’s lemma, 41

square

of graph, 218

Latin, 119

stability number, see independence
number

stable set, 3

standard basis, 20

star, 15, 166, 196

induced, 207

star-shape, 287

Steger, A., 117, 122

Steinitz, E., 92

stereographic projection, 69

Stone, A.H., 151, 160

straight line segment, 68

strong core, 289

subcontraction, see minor

subdividing vertex, 18

subdivision, 18

subgraph, 3

of all large k-connected graphs, 207–
208

forced by edge density, 147–164

of high connectivity, 11

induced, 3

of large minimum degree, 5–6, 99,
118

sum

of edge sets, 20

of flows, 133

supergraph, 3

symmetric difference, 20, 29–30, 40, 53

system of distinct representatives, 41

Szabó, T., 167

Szekeres, G., 208, 209

Szemerédi, E., 154, 170, 186, 194, 226

see also regularity lemma

tail, see initial vertex

Tait, P.G., 121, 227–228

tangle, 281

Tarsi, M., 121

terminal vertex, 25

Thomas, R., 121, 183, 208, 210, 258,
280

Thomason, A.G., 66, 170, 179, 186, 241
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Thomassen, C., 65, 92, 106, 121, 179,
185, 187, 228, 281, 282

three colour theorem, 97

three-flow conjecture, 141

threshold function, 241–247, 250

Toft, B., 120, 146

topological isomorphism, 76, 78, 88

topological minor, 17–18

K3,3, 92, 185

K4, 182, 185, 263

K5, 92, 184

K5 and K3,3, 75, 80–84

K5
−, 185

Kr, 61, 170–178

of all large 2-connected graphs, 207

forced by average degree, 61, 170–178

forced by chromatic number, 181

forced by girth, 178

induced, 178

as order relation, 18

vs. ordinary minor, 18–19, 80

and planarity, 75, 80–84, 90

tree (induced), 178

and WQO of general graphs, 278

and WQO of trees, 253

torso, 279

total chromatic number, 119

total colouring, 119

conjecture, 119, 122

total value of a flow, 126

touching sets, 258

tournament, 227

transitive graph, 41

travelling salesman problem, 227

tree, 12–14

cover, 61

as forced substructure, 13, 178, 185

normal, 13–14, 27, 139, 144, 296

-order, 13

threshold function for, 247

well-quasi-ordering of trees, 253–254

tree-decomposition, 186, 255–262, 278,
280–281

induced on subgraphs, 256

induced on minors, 256

lean, 261

obstructions, 258–260, 264–265, 280,
281

part of, 255

simplicial, 261, 275, 279, 281

width of, 257

tree-width, 257–274

and brambles, 258–260, 278, 281

duality theorem, 258–260

and forbidden minors, 263–274

of grid, 260, 278, 281

of a minor, 257

of a subdivision, 278

obstructions to small, 258–260, 264–
265, 280, 281

triangle, 3

triangulated, see chordal

triangulation, see plane triangulation

trivial graph, 2

Trotter, W.T., 194

Turán, P., 150

theorem, 150, 195

graph, 149–152, 166, 292

Tutte, W.T., 35, 46, 47, 58, 65, 66, 86,
92, 128, 131, 139, 145, 146, 215,
228

flow conjectures, 140–141

Tutte polynomial, 146

Tychonov, A.N., 210

unbalanced subgraph, 247, 249

uniformity lemma, see regularity lemma

union, 3

unmatched, 29

upper density, 166

Urquhart, A., 121

valency (degree), 5

value of a flow, 126

variance, 242

vertex, 2

-chromatic number, 95

colouring, 95, 98–103

-connectivity, 10

cover, 30

cut, see separating set

of a plane graph, 70

space, 20

-transitive, 41

Vince, A., 249

Vizing, V.G., 103, 121, 122, 289, 290,
293

Voigt, M., 121

Wagner, K., 84, 93, 183, 184, 185, 186,
281

‘Wagner’s Conjecture’, 281

Wagner graph, 183, 261–262, 279

walk, 9

alternating, 52

closed, 9

length, 9
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well-ordering, 294

well-quasi-ordering, 251–282

Welsh, D.J.A., 146

wheel, 46

theorem, 46, 65

Whitney, H., 66, 80, 89
width of tree-decomposition, 257
Winkler, P., 249

Zykov, A.A., 166



Symbol Index

The entries in this index are divided into two groups. Entries involving
only mathematical symbols (i.e. no letters except variables) are listed on
the first page, grouped loosely by logical function. The entry ‘[ ]’, for
example, refers to the definition of induced subgraphs H [U ] on page 4
as well as to the definition of face boundaries G [ f ] on page 72.

Entries involving fixed letters as constituent parts are listed on the
second page, in typographical groups ordered alphabetically by those
letters. Letters standing as variables are ignored in the ordering.

∅ 2
= 3
' 3
⊆ 3
6 251
4 16

+ 4, 19, 128
− 4, 70, 128
∈ 2
r 70
∪ 3
∩ 3
∗ 4

b c 1
d e 1
| | 2, 126
‖ ‖ 2, 153
[ ] 4, 72
[ ]k, [ ]<ω 1, 250

〈 , 〉 19
/ 15, 16, 24
C⊥, F⊥, . . . 19
0, 1, 2, . . . 1
(n)k, . . . 232
E(v), E′(w), . . . 2
E(X,Y ), E′(U,W ), . . . 2
(e, x, y), . . . 124
→
E,

→
F ,

→
C , . . . 124, 136, 138

←e,
←
E,

←
F , . . . 124

f(X,Y ), g(U,W ), . . . 124
G∗, F ∗, →e ∗, . . . 88, 136, 140
G2, H3, . . . 216
G, X, G, . . . 4, 124, 258
(S, S), . . . 126
xy, x1 . . . xk, . . . 2, 7
xP, Px, xPy, xPyQz, . . . 7
P̊ , x̊Q, . . . 7, 68
xTy, . . . 13
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F2 19
N 1
Zn 1

CG 34
C(G) 20
C∗(G) 21
E(G) 19
G(n, p) 228
PH 241
Pi,j 236
V(G) 19

Ck 7
E(G) 2
E(X) 231
F (G) 70
Forb4(X ) 257
G(H1, H2) 196
Kn 3
Kn1,...,nr 14
Kr
s 14

L(G) 4
MX 15
N(v), N(U) 4
N+(v) 108
P 229
P k 6
PG 118
R(H) 191
R(H1, H2) 191
R(k, c, r) 191
R(r) 189
Rs 161
Sn 69
TX 16
T r−1(n) 149
V (G) 2

ch(G) 105
ch′(G) 105

col(G) 99
d(G) 5
d(v) 5
d+(v) 108
d(x, y) 8
d(X,Y ) 153
diam(G) 8
ex(n,H) 149
f∗(v) 88
g(G) 7
i 1
init(e) 23
log, ln 1
pw(G) 259
q(G) 34
rad(G) 9
tr−1(n) 149
ter(e) 23
tw(G) 255
ve, vxy, vU 15, 16
v∗(f) 88

∆(G) 5

α(G) 110
δ(G) 5
ε(G) 5
κ(G) 10
κG(H) 56
λ(G) 11
λG(H) 56
µ 240
π : S2r { (0, 0, 1) }→R2 69
σk : Z→Zk 131
σ2 240
ϕ(G) 131
χ(G) 95
χ′(G) 96
χ′′(G) 119
ω(G) 110
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