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PREFACE

The Handbook of the Logic of Argument and Inference is an authoritative
reference work in a single volume, designed for the attention of senior un-
dergraduates, graduate students and researchers in all the leading research
areas concerned with the logic of practical argument and inference. Here is
how the work came about.

One August in the nineties, researchers from disciplines as disparate as
computer science, logic (formal and informal), philosophy of language, psy-
chology and argumentation theory assembled in Dagstiihl, Germany, for a
week-long stay. The purpose of the gathering was to determine whether
the will and the intellectual wherewithal existed to bring to the problem
of practical reasoning some degree of interdisciplinary insight. The main
emphasis of the workshop was on the sort of theory it would take to qualify
as a successful logic for practical reasoning.

After several days of stimulating papers, and much fruitful discussion, it
was determined that the relevant research communities would be well-served
by a Handbook, and editors were appointed and given the task of designing
and executing such a work. Anyone who has worked in an interdisciplinary
arrangement will appreciate the challenges posed in crossing subject-lines.
One of the heavier costs, although not the only one, is the demands such
arrangements make on time. Another is the effort required to evade the
inevitable charge of dilettantism pressed against researchers in their home
discipline when they venture beyond.

Over time the Editors gravitated to a certain view of what the handbook
should do.

1. It should reflect the fact that the interdisciplinary approach to prac-
tical reasoning is not yet an accomplished fact, that it is currently an
enterprise that we meet with in media res.

2. It should reflect the fact that there is much common agreement that
since classical logic was not, designed as a logic of practical reasoning,
it is not an adequate general theory of it.

3. Even so, it should reflect the fact that as matters now stand, the re-
search programmes in practical reasoning constitute a rich and com-
plex pluralism.

Accordingly, the Handbook has been given the following design. After an
introductory chapter, the role of standard logics is surveyed in two chap-
ters. These chapters can serve as a mini-course for interested readers, in
deductive and inductive logic, or as a refresher. Then follow two chapters
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of criticism; one we call the internal critique and the other the empirical
critique. The first deals with objections to standard logics (as theories of
argument and inference) arising from the research programme in philosoph-
ical logic. The second canvasses criticisms arising from work in cognitive
and experimental psychology. The next five chapters deal with develop-
ments in dialogue logic, interrogative logic, informal logic, probability logic
and artificial intelligence. The last chapter surveys formal approaches to
practical reasoning and anticipates possible future developments. Taken as
a whole the Handbook is a single-volume indication of the present state of
the logic of argument and inference at its conceptual and theoretical best.
Future editions will periodically incorporate significant new developments.

The Editors wish to thank most warmly the following persons and agen-
cies for valuable assistance:

e Dov Gabbay and Hans Jiirgen Ohlbach for organising the Dagstiihl
workshop.

e Jane Spurr in London and Dawn Collins, Stephen Friesen and David
Graham in Lethbridge, for technical and production support.

e The Dean of Arts and Science at the University of Lethbridge, Pro-
fessor Bhagwan Dua, for financial support of this project.

e In addition to funding agencies mentioned by the authors we would like
to thank The Physical Sciences and Engineering Research Council of
the United Kingdom and the Social Sciences and Humanities Research
Council of Canada.

e The many excellent colleagues who read chapters in draft and offered
helpful suggestions: David Corfield, Luiz Leite, Donald Gillies, Erik
Krabbe, Jodo Leite, and Halina Przymusinska.

e Arjen Sevenster, our Publisher at Elsevier Science BV for wise and
unstinting support.

The Editors
London, May 2001.
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JOHN WOODS, RALPH H. JOHNSON, DOV M. GABBAY
AND HANS JURGEN OHLBACH

LOGIC AND THE PRACTICAL TURN

1 PURPOSE OF THIS HANDBOOK

The chapters of this volume exhibit a kind of internal dialectic. Chapters
2 and 3 are pivotal. They record standard positions in logic from which
present-day theories of argument and inference are in process of retreat.
Chapters 4 to 10 are in various ways expressions of protest against the stan-
dard positions.! The drift of these chapters is toward the practical, toward
psychologically real models of human interaction in real time. Accordingly,
the volume is “book-ended” by chapters on this theme. Chapter 1 estab-
lishes a contrast with the standard approaches of the coming two chapters;
and chapter 11 sets the stage for still future developments, especially as
regards the construction of formal models. It is one of the burdens of the
Handbook to reveal something of current thinking about the inadequacy of
standard logics. In taking this critical stance, its authors defer to no one
in their admiration for the myriad accomplishments of standard logics of
deduction and induction. The focus of the criticism is a highly specific one.
Such logics don’t do well as theories of real-life argument and reasoning. In
so saying, the burden shifts. What logics will accomplish this task better?

Quine has famously quipped, “Logic is an old subject and since 1879
it has been a great one.” No one will deny the momentous developments
that logic has undergone in the past century and a quarter; but there are
those, among whom we count ourselves, who doubt that logic’s greatness
is so recent and comparatively brief a thing. For all their mathematical
splendour, the modern logics of deduction, induction — and to a lesser
extent abduction — stand out for their fidelity, advertent or otherwise, to
Peirce’s insistence that logic has nothing to do with how we think, and that a
logic of practical reasoning — of vital affairs, as Peirce says — is impossible.
Peirce’s theoretical austerity has not, even so, discouraged logicians from
thinking that the rules of logic serve as ideal norms for human reasoning.
Either way, whether Peirce’s or that of ideal norms, actual thinking and
reasoning, thinking and reasoning on the hoof as we shall say, is significantly
underdetermined by the providence of standard logic.

It is worth emphasizing that the distance between theory and practice
did not inhibit legions of logicians in the first two-thirds of the century just
past, and legions still today, from asserting salient connections with real-life

I Thus, the ‘Ambitious claim’ is false. See Perkins, chapter 5 below.
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reasoning and arguing. This was done for the most part with acknowledge-
ment of the desirability to expose the structure of practical reasoning as it
occurs in real-life, in exchanges, both spontaneous and deliberative, under
actual conditions.

The mathematical turn in logic has never been without its critics, need-
less to say, whether Sidgwick [1910], Schiller [1929] or Dewey [1938]. But
by and large these were not mainstream views. The emphasis on the practi-
cal could not, however, be denied indefinitely; and in the 1970s there arose
criticisms of mathematical logic, both from sciences external to logic —
chiefly computer science, psychology and linguistics — and, more strikingly
perhaps, from within the philosophical mainstream of logic itself. New disci-
plinary arrangements arose out of these dissatisfactions with standard logics
as theories of inference and argument, notably argumentation theory itself
— an amalgam of logic, probability theory, fallacy theory, discourse anal-
ysis, conversational analysis, cognitive science, computer science, forensic
science and rhetoric.

There is as much dissimilarity, and more, in these various approaches
to reasoning and arguing. But virtually without qualification, they can
be seen as converging on a common theme. It is that the peculiarities of
practical reasoning call out for, and deserve, theoretical attention, if not
from standard logic, then from a logic suitably revised for the task; and
even if thus revised, not by logic alone, but by a practical logic in concert
with various purpose-built sister disciplines that have arisen in that past
generation.

This marks what we may fairly call a turn toward the practical. Every
chapter of this Handbook, beyond the surveys of Chapters 2 and 3, illus-
trates this turn in important ways, whether in the precincts of informal
logic, dialectical logic, interrogative logic, probability logic and computer
logic; or argumentation theory and cognitive science. Although the turn
toward the practical is evident in these developments, it is also clear that
we meet with the turning in medias res. There is nothing in this fruitful
motley that stands out as a mature and settled theory, and there is nothing
discernible in them that qualifies as a developed practical logic. The turn to-
ward the practical is, therefore, an historical event in progress. It represents
a development in logic which is as significant as the mathematical turn of a
century and a third ago; for it is a transition that promises a return of logic
to its historic objective as a principled account of how real people transact
their inferential and argumentational agendas on the hoof, whether in the
agora, or on the shop floor, in the corporate head office or Cabinet room. It
is the purpose of this Handbook to chart the turn toward the practical, such
as we have seen of it up to now, and to give some indication of the targets
on which what remains of the turning may be expected to lock.

Practical reasoning has been a recognized species of thinking since antiq-
uity. Given its importance and its ubiquity, practical reasoning is a natural
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target for the theorist. We can trace the study of practical reasoning back
to Aristotle (384-322 BC) who, like many who followed, appears to dif-
ferentiate between practical reasoning (aimed at some end or action) and
theoretical reasoning (aimed at a cognitive good of some sort — a theory,
hypothesis, explanation etc.) We shall later have more to say about this
distinction.

Early theorists saw a structural similarity between reasoning (of a given
kind) and arguments (of that same kind). Here again Aristotle was the
first to press the similarity in a theoretically explicit way. Given the close
connection between reasoning, argument and deduction, it is natural that
the dominant view of these matters has been that a good theory of deductive
argument is likewise a good theory of deductive inference. The closeness of
the connection has been asserted from ancient times to the present, with
recurring disagreements as to which relation of the similarity is primary.
It remains a contentious issue, as we see in this passage from Dummett,
(in which “assertion” can without loss be replaced by “argument”, and
“judgment” by “inference”):

We have opposed throughout the view of assertion [argument]
as the expression of an interior act of judgment [inference]; judg-
ment [inference], rather, is the interiorization of the external act
of assertion [argument]. (Dummett [1973, 262])

This view looms large as we move to the developments in logic in the 19th
and 20th century. Our own view lies closer to Davidson’s, to the effect that

neither language nor thinking can be fully explained in terms
of the other, and neither has conceptual priority. The two are,
indeed, linked in the sense that each requires the other in order
to be understood, but the linkage is not so complete that either
suffices, even when reasonably re-inforced, to explicate the other.

(Davidson [1984, 156])

The Editors share the conviction that the Handbook should be an au-
thoritative reference resource for any researcher or senior student active in
any of the fields that presently converge on the issue of practical reasoning.
Every chapter is written in the recognition that for some readers it must
serve as an introduction to the disciplines and research problems with which
the chapter deals. It is also important that these chapters be of interest to
specialists. Chapters 2 and 3 are a case in point. They are a survey of
standards approaches to deduction and induction, and as such must cover
the basics. At the same time, these chapters are written with a respect
for the rigour appropriate to their disciplinary standards, and they develop
material which some specialists will not have encountered before, or not
have encountered in this form.
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Since Aristotle, it has been customary to suppose that there is a close
relationship between logic and reasoning. This accounts for the assumption,
made by many theorists, that logic is a theory of reasoning, a vexed assump-
tion, as we have seen. By “logic,” the most recent tradition tends to think
in terms of modern formal deductive logic, or FDL for short. However, we
note in passing that Aristotle did not understand the logic of deduction in
the way that classical logicians of the present day do. For classical logicians
(and lots of non-classical ones as well), logic is a theory of validity, a theory
of the consequence relation. For Aristotle, logic is not a theory of validity
or logical consequence. It is a theory of — to coin a term — syllogisity, or
syllogistic consequence. Syllogisms are valid arguments which satisfy ad-
ditional (and powerful) conditions. One is that there can be no syllogism
with redundant premisses. Another is that no premiss can be repeated as
a conclusion. A third bans multiple conclusions. The import of these con-
straints can be seen in the kind of logic that they produce. It is striking
that the first logic in the Western tradition should have been, or should
greatly have approximated to, a linear (hence relevant), intuitionistic, non-
monotonic, paraconsistent logic. This matters for the claim that the logic
of deduction is also a realistic theory of deductive reasoning. For, again,
deduction here is not the deduction of the logics of the modern mainstream,
but rather the deduction of something manifestly more psychologically real
than it.

For good or ill, in these past two and a half millennia it has been natural
to assume that logic is the theory of reasoning. From time to time, logic has
been specifically adapted, as in the case of deontic logic, to take account of
practical reasoning. Notwithstanding some aggressive skepticism over the
ages, logic’s hegemony in these matters persisted until the latter part of the
twentieth century. Even to this day, many logicians introduce their subject
to first-year students as an account of deductive reasoning, and nearly ev-
eryone persists in the habit of calling the transformation rules of deductive
logic “rules of inference.” If ever a case could have been made for supposing
that the rules of the logic of deduction are indeed rules of inference available
to real-life reasoners in real-life situations, it would have been a conception
of deduction that satisfied the more psychologically real constraints on syl-
logisms. Since 1879 which marks the publication of Frege’s Begriffsschrift,
the classical logic of deduction honours none of these constraints, making
the claim that logic is a theory of reasoning a good deal less plausible.

Nor should we omit to remark that even syllogistic logic has been called
into question over the years for various kinds of inadequacy. In the pe-
riod of European modernity (roughly from 1600 AD to the end of World
War II), the then standard logic intermittently attracted some harsh assess-
ment. Writers as different from one another as Bacon (Bacon [1960]), the
Port Royal Logicians (Arnauld and Nicole [1996]), Locke (Locke [1975]),

Whately (Whately [1848]), Mill (Mill [1974] and Alfred Sidgwick (Sidg-
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wick [1910]), shared a general kind of criticism of School Logic, the form in
which syllogistic logic was then expressed. They saw the logic of syllogism
as psychologically unreal. It was not well-suited, and did not apply in a
natural way, to the reasoning of everyday concerns. And it was no good,
they thought, as a logic of discovery. Against this we find the powerful
dissent of Peirce [1992], in which the very idea of a logic of everyday affairs
is dismissed as absurd. Mill takes a more moderate tone. The correct logic
of scientific reasoning will also be the correct logic of business and practical
affairs. Such a logic is not however the logic of syllogisms. But this did not
keep Mill from writing as follows:

I know nothing, in my own education, to which I think myself
more indebted for whatever capacity of thinking I have attained.
(Mill [1974, Chapter 1, section 12])

Locke’s diffidence was even more emphatic, placing at risk his own anti-
syllogistic complaints:

And T readily own that all right reasoning may be reduced to
his [i.e., Aristotle’s] forms of the syllogisms
(Locke [1975, Chapter 17, Book Four]).

All the same, Locke adds, syllogisms are not the only nor the best ways
of reasoning, for leading those into truth who are willing to find it. The
Port Royal logicians, Arnauld and Nicole, proved the stouter critics. Syl-
logistic logic may have its place in a more comprehensive logic of science,
but a logic of science could never suffice for practical affairs. Sidgwick in
his turn acknowledged that there were two main conceptions of how logic
should be done. Writing after Frege (see Sidgwick [1910]), it is perhaps not
surprising that he should have recognized the use of mathematical methods
and mathematical notations in logic. On the other hand, when it comes to
systematizing the reasoning of everyday common sense, a practical logic is
to be preferred, or a logic involving the direct scrutiny of arguments from
daily life, to which could be adapted some of the findings of the empirical
and forensic sciences.

It would be wrong to suggest that these critics did not have their day. The
Port Royal Logique has had an influence on university curricula in France
and beyond which has persisted to this present day. The influence of Mill’s
A System of Logic was not as long-lived but was substantial even so. It was
adopted as a textbook first at Oxford and subsequently at Cambridge.

2 LOGICAL LATITUDE

Important as these criticisms of FDL were, they were insufficiently robust
to place at any risk the hegemony of formal symbolic logic from Frege on-
ward. It has proved next to impossible to discourage in any operationally
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significant way the habit in modern logicians of seeing their enterprise as
one that delivers a principled account of reasoning. Given the steadfastness
of this idée fize it is reasonable to suppose that, for this question of the
state of logic at the beginning of the new millennium, the following are the
historically dominant developments, on top of the founding of logic itself by
Aristotle:

e The establishment of the logic of propositions by Megarian and Stoic
logicians

e The revival of systems of formal dialectic by mediaeval logicians

e The creation of the probability calculus by Laplace, Pascal and other
seventeenth century thinkers

e Modern mathematical logic, independently co-established by Frege
and Peirce, and the subject of a very large number of important ram-
ifications in the century following 1879

e Cognitive psychology, from the 1970s onwards
e Computer science and Al, developed during this same period

o Informal logic, Critical Thinking and Argumentation Theory, also de-
veloped in this period.

There is a natural break in this list after the entry for mathematical logic.
(It is marked by the line.) Dominantly a logic of properties of propositional
structures, such as the consequence relation, mainstream logic after Frege
had few of the user-friendly constraints of the logic of syllogisms, as we
have said; and went on unimpeded to significant intellectual achievements
in its four principal domains of model theory, proof theory, recursion theory
and set theory. (See here Gabbay and Woods [2000a] and [2000c]) Non-
mainstream logics were another matter. Relevant logic took on, unawares,
one of the syllogistic constraints, as did intuitionistic logic a different syllo-
gistic constraint. Modal logics appropriated their operators from Aristotle’s
modal logic, as well as the variations of mediaeval writers. And so on. It is
not entirely surprising that a Fregean logic, together with the mathematical
theory of chance, should have become the targets of criticisms from every
theoretical perspective on our list which occurs below that line.

Part of the task of the Handbook is to tell the story of this conflict between
what is above the line and what is below, with special attention to contexts
of practical reasoning. To this end, it will be a substantial convenience to
confine our multiple narratives to approximately the last one hundred and
twenty-five years, with a special emphasis on developments over the last four
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decades. It is true, of course, that some of what cognitive scientists find fault
with in mainstream logic, and some of what AI theorists find it important
to play up, was prefigured in flourishes of criticism at various times in the
past 2500 years. As we have said, much of what contemporary informal
logicians and argumentation theorists see fit to criticize in mainstream logic
can be found in writers such as Arnauld, Locke, Mill and Sidgwick. In a way,
these historical truths don’t matter, for the critical developments presently
on view were made for the most part from the 1970s onwards, and largely
in ignorance of, or anyhow without reference to, the earlier intimations of
them that dot our intellectual history.

Given these comments about this history of logic, how shall we under-
stand logic for our purposes here? It is a heftily ambiguous word. This is
not a wholly decisive consideration, but it does suggest what we think of as
wise counsel. Better to give the word free reign (provided that the requisite
distinctions are honoured), than to privilege a narrower use which, as is
known in advance, lots of people won’t honour anyway.

There are three elements that may be thought of as central to the idea
of logic and we shall say something about each in turn. They are (1) nor-
mativity — that is, it is thought that logic provides norms for reasoning
rather than descriptions of how people reason; (2) systematicity — which in
its purest form is the idea that logic develops decision procedures or imple-
mentation protocols for the questions it faces; (3) foundationality — that
is the idea that logic is methodologically, or epistemically prior, to other
disciplines (some would say all other disciplines). We shall briefly discuss
each of these.

(1) Normativity. As will be seen in Chapter 2’s discussion of modern
mathematical logic, a standard criticism is that its models aren’t psycho-
logically real. For one reason or another these are models which no actual
human reasoner — not even the most able among us — could conform his
inferential behaviour to. Most theorists concede this point; but some de-
fenders of modern logic argue that even so, its legitimacy is preserved under
the appropriate idealizations.

The distinction between what holds of actual reasoners and what holds of
ideal reasoners also bears on a further contrast of fundamental importance
to the theorist of practical reasoning. (It also bears on the question of how
free a range to give to the word “logic”.) On a widely received view, a
theory of reasoning is an authoritative normative account if, and only if,
its claims are true in the appropriate ideal model. For example, if a rule
of inference is honoured in the model, this shows the rule to be one which
actual reasoners ought to comply with, even if they do not do so in fact.
On the other hand, a theory of reasoning is an authoritative descriptive
theory if its claims are verified by the behaviour of actual human reasoners,
irrespective of whether contrary claims are upheld in the appropriate ideal
model. This leaves the theorist with one good (and difficult) question. Are
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there non-question-begging ways of specifying ideal models, fidelity to which
qualifies a theory as genuinely normative? For the purpose of this present
chapter, we leave this as an open question.

(2) Systematicity. In taking a systematic approach to practical reason-
ing, we do not presume strict computability in the sense of computable
functions and the like. We welcome computability where there is evidence
of its presence. But what we more generally presuppose is susceptibility of
reasoners to problem-solving capabilities subject in principle to decompos-
able description.

Decidability places highly on the contemporary logician’s list of meta-
mathematical virtues. This is odd since, apart from it’s monadic sublogic,
decidability is not a virtue that even classical first order logic can lay claim
to. Of course, the classical logic of sentences is decidable, but standard
systems of relevant sentence logic — system R, for example — are not. (See
Dunn [1984]) Although some systematicizations are decision procedures, the
more basic idea is that of a set of general rules which regulate the perfor-
mance of a given task — the construction of a proof, the making of an
inference, the reaching of a decision, and so on. Rules here are understood
in the manner of procedures, and procedures in turn are understood as ways
of getting certain things done, in some cases tacitly. Related to this is the
idea that a logic — a logic of practical reasoning, for example — gives a
good account of itself to the extent to which it is able to define procedures
for the competent production of practical reasoning (or whatever else the
target of the account in question might be). If the theorist in question is
also a computer scientist, the present idea he will see as mother’s milk, viz.,
as instructions embedded in his software.

This is a basic idea for us, too. But it is necessary to sound a caveat. If
we think of certain kinds of reasoning — of inference, say — as a matter
of belief-revision or belief-update, then it matters a lot what the theorist
takes beliefs to be. If he thinks that he can make do with the idea that
belief is (sociolinguistic) assent to a sentence or some such thing, then the
present notion of systematicization is well-defined for belief-revisions and
belief-updates. For on this account, rules are things which the inferer, i.e.,
the language-user, can obey or disobey at will. But if beliefs are taken to
be psychological states, they are not easily seen as being commanded by
the will, as assent surely is. This being so, algorithms for inference are
not convincingly representable as rules in the sense of the lines just above,
but rather as state conditions, as we might call them. State conditions are
causal processes which operate beyond the direct reach of the subject’s will,
and largely automatically. (See Harman, Chapter 4 below, Woods [2001f,
Chapter 4] and Gabbay and Woods [2002].)

It is perhaps nothing to be alarmed about if for theoretical reasons the
concept of rule were stipulated to cover both kinds of mechanisms, leaving
it to context to determine whether rules in the more common sense meaning
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are intended, or whether it is state conditions on belief-revision and belief-
update that the theorist has in mind. We are ourselves are inclined toward
the latter view, in as much as rules in both sense share a common input-
output structure. So for us systematicization is essentially a matter of
performance rules in this broad sense, rules which we might, for reasons
that are now evident, describe as virtual.

(3) Foundationalism. The foundationalism we assume for these various
approaches to practical reasoning is not the big architectonic of, say, logi-
cism. Logicism is a failed programme in the foundations of mathematics. It
was an attempt to show that all of standard mathematics reduces without
relevant loss to quantification theory plus axiomatic set theory. So con-
ceived of, logic plus set theory was both foundational for and exhaustive
of mathematics. We ourselves are not so minded. But we take it to be an
assumption worth exploring that there exists a base logic, or a protologic for
practical reasoning, or failing that, a family of logics — a partially ordered
set — partially ordered under the relation of being more fundamental to an
algorithmic account of practical reasoning. And failing this, we would settle
for some reasonable approximation of such a poset.

Here, too, where evidence of undergirding structures is available in ways
that offer promise of axiomatization, we do not disdain it. But our assump-
tion is that our various disciplines can rightly aspire to the exposure of fea-
tures connectable by partial orderings, from the more fundamental to the
less, and so on. There is the related question of whether the disciplines that
presumptively fulfil our runner-up subtitle have a suitably general name.
On one way of looking at things, they all qualify for the loosely rendered
name of logic. This is not to overlook those legions of researchers for whom
the word “logic” has been reserved, by God or some suitably positioned
Platonic overseer, for a theoretical working up of the consequence relation
and kindred additional properties, but nothing else, in a formal language,
or what Church calls a logistic system (Church [1956, 48]).

As we said at the beginning of this chapter, the sequence of papers in
this volume in some sense reflects the journey we have just been describing.
As we have said, we will be focussing our efforts mainly on the last 125
years which have been marked by the emergence and domination of FDL.
Chapters 2 and 3 will survey that dominance in the theory of argument and
inference. These chapters set a standard of sorts. The chapters to follow
chronicle the breakdown of that standard. It is a breakdown that is still in
progress.

As we have indicated, the limitations of FDL as anything like a theory
of reasoning emerged in criticisms that will be discussed here. In Chapter
4, Harman presents what we have called the internal critique. Its internal-
ity is a function of the fact that it is a criticism which arises within the
philosophy of logic itself. In Chapter 5, Perkins discusses what we call the
empirical critique — the ways in which the story told by FDL turns out to
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be controverted by empirical research.

These limitations of modern logic (and others) have inspired a series of re-
form or breakaway logics, and these are discussed in the remaining chapters.
In Chapter 6, Barth gives a thorough treatment of what is called dialogue
logic; in Chapter 7, Hintikka, Halonen and Mutanen give an account of in-
terrogative logic; in Chapter 8, Johnson and Blair develop their treatment
of informal logic. Williamson’s Chapter 9 chronicles dissensions which have
emerged in the logic of probability; and Chapter 10 is given over to Pereira’s
account of salient developments in computer science. Finally, in Chapter 11,
Gabbay and Woods set out their foundational proposals for a practical logic.
In all of these, it will be evident that the authors are moved by what they
take as limitations of modern logic. For Harman the problem is intractabil-
ity; for Barth it is deductivism; for Hintikka, the failure to focus on strategic
rules; for informal logic, over-concern with formalism; for computer logic,
the over-abstractness of FDL; for probability logic, intractability is again a
problem; and for dynamic logicians, it is FDL’s indifference to temporality.

3 PRACTICAL REASONING

In one sense of the term, all reasoning is practical.2 All reasoning terminates
in an answer to a question, a solution to a problem, a conclusion from some
data, or a decision to postpone the quest until further facts are known;
even aborted reasoning produces a kind of termination. Against this is the
point that a great deal of human reasoning is automatic, subconscious and
pre-linguistic, concerning which the careless postulation of goals could be
needlessly anthropomorphic.

A case in point: You step off the curb, intent on crossing to the other
side of the street. A horn blares to your left. You step back onto the curb.
A good thing too, you think, as a pick-up truck whizzes by. True enough,
you evaded the truck. But how helpful is it to claim on this account your
possession and activation of a truck-evasion strategy? (But see 1.4 below.)

Ordinary usage, even ordinary philosophical usage, gives little direct guid-
ance for fixing the sense of practical reasoning. It is an expression layered
with multiple meanings and suggestive of contrasts, among which are these:

ordinary, common versus esoteric, specialized
prudential versus alethic

moral versus factual

informal versus formal

precise versus fuzzy

2There is a philosophical tradition in which a practical reason is reason for an action
that involves bodily behaviour. Needless to say, not all reasoning is practical in this
sense. We ourselves are disposed to think that practical reasoning in this sense hardly
carves out a natural kind, so to speak. (See here, e.g., Velleman [2000]).
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conclusion is an action versus conclusion is a proposition
premiss is an action versus premiss is a proposition
goal-directed, purposive versus context-free

applied versus theoretical

concrete versus abstract

tolerant of incommensurabilities versus not

To these we add a further contrast, to which we think it prudent to take
particular note of. It is the contract of

practical versus strict

We illustrate with an example. In the game of (ice) hockey, a hat trick is
achieved by a player scoring three consecutive goals against the opposition.
“Consecutive” here means “without any goal being scored between the first
and the third of this triple by any of the hat tricker’s team-mates”. This
is what a hat trick is strictly speaking. But in practice, or for all practical
purposes (including the triggering of bonus clauses in a player’s contract),
a hat trick is just three goals in a game by one and the same player, never
mind whether he scores them consecutively in our present sense of that
term. So conceived of, practicality is resemblance enough to the real thing
to be considered the real thing. At the same time, it carries the suggestion
of something (admissibly) subpar. We will briefly revisit this contrast in
section 5 below.

In the chapters to follow, most of the issues implied in this variegated
usage will be taken up and examined. Our earlier latitudinarian policy
toward “logic” serves as a helpful guide here. For here too there are good
reasons not to strive for a single canonical meaning of “practical reasoning”
and, correspondingly, for a privileged theoretical approach to it. The fact
is that in its present state, the business of practical reasoning is business
on several different fronts. It is an attractive explosion of conceptual and
theoretical possibilities. We would do well to accept this diversity, as much
anyhow as we can justify, rather than attempt to highjack the concept of
practical reasoning under threat of a charge of self-servingness.

4 A PROTOLOGIC: IDEALIZED LANGUAGE

In Chapter 11, Gabbay and Woods present a way of approaching a theory of
practical reasoning — a protologic, as it were. For the present, we offer the
merest sketch of this approach, as it will help to clarify how we see the com-
ing together of logic and practical reasoning — and hence provide further
orientation to the chapters in this volume. We do so without hegemonic
intent and without having forgotten the proposed flexibility with which we
closed the preceding section. Ours is but one way in which to get the busi-
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ness of a theory of practical reasoning done in an intellectually satisfying
way.

We saw at the beginning of the present chapter the makings of a dis-
pute between those who see all reasoning as practical and those who claim
a principled division to the contrary. Seen the first way, reasoning that
strikes us as automatic, subconscious and extralinguistic still qualifies as
practical provided that we admit tacit goals, virtual aims, and the like. Not
everyone will relish the prospect of endless wrangles about the existence of
such purported entities. Against this, people of a more sanguine mien may
find such disputes refreshing, and in any case possessed of a more funda-
mental attractiveness than might initially have been supposed. Our own
view is that any way of drawing the practical-non-practical distinction in a
plausible way will be subject to some sort of actual-virtual distinction with
respect to whatever qualifies the reasoning as practical. It is better to try
to draw a serviceable distinction between practical reasoning and, whatever
we take its contrast to be, in ways that don’t require us to give a detailed
account the actual-virtual distinction.

We join a large consensus in thinking of an episode of practical reason-
ing as directed to or productive of an action in real time. How nearly this
forecloses on the practicality of purely private, purely mental reasoning is in
large measure a matter of how well disposed we are towards psychological
doctrines of mental states and mental acts. Those who distrust folk psy-
chology (e.g., Churchland [1981]) or doubt the bona fides of introspection
(e.g., Dennett [1996)) are free to fix the limits of practical reasoning as they
see fit. Our own inclination is (again) one of tentative latitudinarianism.

Our approach emphasizes action and real time. It acknowledges the at-
tractions of dialogical factors in developing an adequate theory of practical
reasoning. It recognizes that it lies in what Malraux called the human condi-
tion that so much of what human beings do has a social dimension.® There
may well be a place for reasoning in the head, but from infancy onward a
great deal of it occurs interactively with others. (Privacy has to be learned.)
A natural and near-ubiquitous medium of these interactions is the dialogue
(from the Greek dia for across or between”, and logos for “talking”). A
conspicuously important subcase is the dialectical form of a dialogue — a
form of enquiry or attack shaped by question and answer.*

Even solo reasoning is transacted with resources the reasoner could not
have had except for prior intercourse with his fellows. Solo reasoning can
be seen as a form of enquiry, a kind of interrogation of Nature herself.
(Hintikka [1989], Hintikka and Bachman [1991], and Hintikka, Halonen and
Mutanen, Chapter 7, this volume). But it is not our view that interior

3We could as easily here mention such widely diverse philosophers as Aristotle and
Peirce.

4Contemporary usage shows scant regard for the difference between dialogues and
dialectical exchanges. We ourselves see little virtue in such indifference.
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monologues are truncated conversations with an alter ego, transacted in
the language of thought, or mentalese. Our interest in interactive reasoning
is that it is reasoning-on-the-hoof, relatively easy to identify and to try to
make something of theoretically. Interactive reasoning instantiates the old
saw, ‘transparency in publicity’. Neither do we suppose that a theory of
interactive reasoning will adapt in every way to what goes on strictly in
the head. But it would be folly to suppose that a good account of social
reasoning has nothing to teach us about our solo efforts, if any. So we
emphasize practical interactive reasoning because we think that the relevant
regularities are often easier to spot.

It also bears on our question that dialogue logic is inherently a practical
logic in our present sense. Dialogues engender commitments, which impose
obligations and responsibilities that parties are expected to meet by taking
the appropriate action at the appropriate time. It does not diminish the
point at hand to note that often, indeed typically, those actions are of an
expressly dialogical or linguistic character, as with assent and dissent.

Everyone agrees that humans operate under resource limitations. Un-
like the Enlightenment view of the individual, that human beings are not
contingently related to these traits. We think of the human individual as
intrinsically social and intrinsically resource-challenged. This being so, hu-
man actions, no matter the circumstances, reflect the kind of being the
human individual is. It also means that a practical logic must be a, so to
speak, a social logic. And although dialogue-settings are a recurring and
typical context for an individual’s actions, a practical logic need not, as
we have said, be confined to a dialogue logic, although it should contain
dialogue logic as a sublogic.

It is well to note at this juncture two generic ways of conceiving of logic.
One involves thinking of logic as a set of properties defined for idealized
languages. The other sees logic as a set of properties ascribed to ideal
agents. We close the present section with some remarks about the first
conception. The section to follow is reserved for the second conception.

For ease of exposition, we will speak of linguistic and agency conceptions
of logic, respectively. It is easy to see that these two are prefigured in the
original ambiguity of syllogism, an ambiguity that has endured ever since.
This is the ambiguity reflected in the contrast between logic as a theory
of argument and logic as a theory of reasoning. From the very beginning
logicians have honoured a conception of argument in which arguments are
linguistic structures. Not every logically significant conception of argument
is linguistic in this way, but in virtually every major development of the
subject, logic has found room for such a conception.

If, on the other hand, logic is taken as a theory of reasoning, a theory of
inference, then it is natural to think of it as giving a principled account of
what the thinking agent does, and also what happens to him under certain
circumstances. It is not as natural to simulate this idea of logical agency
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by constructions on linguistic structures, although this has not stopped
logicians over the centuries from trying to do this very thing.

In its linguistic conception, it is not difficult to see that our previously
noted triple of concepts — normativity, systematicity and foundationalism
— can be engaged rather naturally. Of the three, systematicity secures the
readiest purchase. If the heart and soul of systematicity is input-output
mechanisms under the drive of rules, language is tailor-made for rules. Un-
der suitably regimented conditions, a language’s entire syntax can be gener-
ated by rules, and its semantics by functional connections between linguistic
structures and set theoretic structures.

The present authors have expressed their doubts about the normative
bona fides of logic, but for those who are differently minded, normativity
can be thought of in part as language idealized or regimented — as canonical
notation as Quine calls it — and as rules which are truth-preserving.

Foundationalism comes most naturally in the distinction between axioms
and (derived) theorems, but is also caught in the distinction between prim-
itive and derived rules, as well as in the distinction between a logic as a set
of sentences and a superlogic, i.e., a nonconservative extension of it.

A further attraction of the linguistic conception of logic is its openness
to metatheoretic manipulation. Sets of sentences are more or less public
entities, out there in eminent domain, so to speak. On the present view,
logic is linguistics on purpose; it chases truth up the tree of grammar,
in Quine’s witty epigrams. Just as logic drapes its target properties on
syntactic structure, so too does metalogic exploit these same grammatical
forms.

The peculiarities of what we have been calling our protologic are also
easy to specify, with designated lexical items for times and action, and rules
of derivation purpose-built for sentences contriving such expressions.

5 A PROTOLOGIC: IDEALIZED AGENCY

On the agency view, logic is a theory of reasoning, a theory of what thinkers
do and have happen to them. Correspondingly, a practical logic is a theory
of what practical agents think and reflect upon, cogitate over and decide,
decide and act. If the linguistic conception makes it centrally important for
the logician to say, with care, what sort of thing a language is, the agency
view makes it necessary to say, with care, what sort of thing a practical
agent is. With this in mind, our protologic must make room not only for
times and actions, but also for the agents who perform those actions at
those times.

We think of practical agency as a hierarchy of goal-directed, resource-
bound entities of various types. At the bottom of this hierarchy are indi-
vidual human beings with minimal efficient access to institutionalized data
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bases. Next up are individual human beings who operate in institutional
environments — in colleges or government departments, for example, which
themselves are kinds of agents. Then, too there are teams of such people.
Further up are disciplines and other corporate entities such as the American
Space Program or Soviet Science in the 1970s. The hierarchy proceeds thus
from the concrete to the comparatively abstract, with abstract structures
being aggregations of entities lower down. Interesting as this metaphysical
fact might be, it is not the dominant organizing principle of the hierar-
chy. The organizing principle is economic. Entities further up the hierarchy
command resources, more and better, than those below are capable of.

So conceived, the hierarchy is a poset of objects partially ordered by the
relation of commanding greater resources than.’

Every agency in this hierarchy (C, A) involves, whether by aggregation or
supervenience or in some other way, the individual agent. Such agents are
thus basic to any logic of agency, and it is to them that we shall concentrate
our attention in the present section.

Like all agents in the hierarchy, the individual is a performer of actions
in real time. And nearly everything an individual is faced with doing, or is
trying to do, can be done at the wrong time. It can be done at a time so
wrong as to court equivalence with not doing it at all, or doing some opposite
thing. It is not enough that an agent does the right thing, i.e., performs
the right action-types. It is very often essential that the right thing be done
at the right time. As we look upwards at the agency-hierarchy, we see a
diminishing susceptibility to exigent timeliness. No one doubts that NASA
had a real deadline to meet in the sixties, culminating in the moon shot. It
might have been that the moon program would have been cancelled had that
deadline not been met. Even so, individuals are exposed to myriad serious
dangers, many of them mortal, that nothing up above will ever know on
this scale; and essential to averting such dangers is doing what is required
on time.

The dominant requirement of timeliness bears directly on a further con-
straint on individual agency. Individuals wholly fail the economist’s conceit
of perfect information. Agents such as these must deal with the nuisance
not only of less than complete information, but with data-bases that are by
turns inconsistent, uncertain, and loosely defined. To these are added the
difficulties of real-time computation, limited storage capacity and less than
optimal mechanisms for information-retrieval, as well as problems posed by
bias and other kinds of psychological affect. (See Harman, chapter four
below.)

5We note in passing the difference of our hierarchical model from Harry Frankfurt’s
hierarchical model of autonomous action. On this latter conception, the behaviour that
an agent makes happen in the fullest sense of that expression is that which is motivated
by a desire which the agent desires to have. See Frankfurt [1988, 58-68]. But cf. Bratman
[1999, 185-206].
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The two great scarcities that the individual must cope with are time and
information. It is precisely these that institutional agents command more
of, and very often vastly more of. With few (largely artificial) exceptions,
the individual agent is a satisficer rather than an optimizer a fact reflected
in our distinction between the practical and the strict, captured by the
example of the hat trick in section 3 above. For the most part, even seeking
to be an optimizer would be tactically maladroit, if not actually harmful.
The fact of the robust, continuing presence of human agents on this Earth
amply attests to their effective and efficient command of scarce resources. It
is a fact in which is evident the human capacity to compensate for scarcities
of time and information.

We postulate that the individual agent embodies a scare-resource com-
pensation strategy. Here in rough outline, and no particular order, are
the compensation-factors that strike the present authors as particularly im-
portant.

e Human beings are natural hasty generalizers. It was a wise
J.S. Mill who observed (Mill [1974]) that the routines of induction
are not within the group of individuals, but rather are better-suited
to the resource capacities of institutions. The received wisdom has it
that hasty generalization is a fallacy, a sampling error of one sort or
another. The received wisdom may be right, but if it is, individual
human agency is fallacy-ridden in degrees that would startle even the
traditional fallacy-theorist.® Bearing on this question in ways that
suggest an answer different from the traditional one is the fact that
the individual’s hasty generalizations seem not to have served his cog-
nitive and practical agendas all that badly. Upon reflection, in the
actual cases in which a disposition towards hasty generalization plays
itself out, the generalizations are approximately accurate, rather than
fallacious errors, and the decisions taken on their basis are approx-
imately sound, rather than exercises in ineptitude. Not only is the
individual agent a hasty generalizer, he is a hasty generalizer who
tends to get things right.

e How is it possible that there be a range of cases in which projections
from samples are so nearly right while at the same time qualifying
as travesties of what the logic of induction requires? The empirical
record amply attests to a human being’s capacity for pre-inductive
generalization and projection. It would appear that exercise of this
capacity involves at least these following factors, some of them struc-
tural, some of them contextual. The pre-inductive generalizer does not
generalize to universally quantified conditional propositions. Rather

60n what we are calling the traditional account of fallacies, hasty generalization is
always an error. For contrary view see Woods [2001e].
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he generalizes to generic propositions. There is a world of difference
between “For all z, if z is a tiger then z is four-legged” and “Tigers
are four-legged”. The former is falsified by the truth of any negative
instance, whereas the latter holds true even in the light of numerous
negative instances of certain kinds. We could characterize this differ-
ence by saying that universally quantified conditional statements are
highly fragile, whereas generic statements are robust.

The robustness of what the pre-inductive generalizer generalizes to
serves the generalizer’s interests in other ways, two of which are par-
ticularly important. One is that the individual agent is a fallibilist
in (virtually) everything he thinks and does. The other is that the
individual agent has the superficially opposite trait of very high levels
of accuracy in what he thinks and does when operating at the level
ordained for him by the hierarchy of agency. Generalizing to generic
statements is a way of having your cake and eating it too. It is a way
of being right even in the face of true exceptions. It is a way of being
right and mistaken concurrently.

Generalizing in this way also works a substantial economy into the in-
dividual’s cognitive effort. It comes from the smallness of its samples
and the robustness of its generalizations. Generic inference is infer-
ence from small samples under conditions that would make it a fatally
stricken induction. We see in this the idea of the affordable mistake.
Generic inference is not truth-preserving. One can be wrong about
whether Pussy the tiger is four-legged even though one is right in
holding that tigers are four-legged. Affordable mistakes are like small
infections that help train up the immune system. Just as an infant’s
summer sniffles is an affordable (in fact, necessary) infection, so too
are the small errors of the cognitive agent which provide him evolving
guidance as to the freedom and looseness with which to indulge his
predilection for comparatively effortless generalizations. Baby’s sum-
mer cold loops back benignly in the discouragement of more serious
illness. Affordable mistakes loop back benignly in the discouragement
of serious error. We can now see that the old saw of learning from our
mistakes has a realistic motivation. We do not learn from mistakes
that kill us.

What is it about such samples that sets them up for successful generic
inference? It would appear that the record of generic inference is at its
best when samples, small as unit sets though they may be, are samples
of natural kinds. There has been a good deal of philosophical con-
troversy about whether natural kinds actually exist; about whether
the putative difference between natural kinds and conventional kinds
turns on a principled distinction. Certainly there is nothing like a set-
tled consensus as to how the distinction should be applied. Perhaps
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this tells against our here using the concept in any theory-laden way,
but it leaves it open that we introduce it as a term from unanalyzed
common sense. Even so, we should not disdain this literature from
psychology and computer science in which concepts resembling that
of natural kinds seem to be doing useful work, concepts such as those
of frame (Minsky [1975]), prototype (Smith and Medin [1981]), and
ezemplar (Rosch [1978]).

Philosophical particularities aside, the empirical record testifies to our
capacity for classifying sensory stimuli in ways that reflect similarities
and differences that strike us as inhering things as they really are.
There is ample evidence to suggest that our classifications originate
with primitive devices of type-recognition together with the mecha-
nisms of fight and flight. It is significant that some of our most success-
ful and most primitive inferences involve the recognition of something
as dangerous. Generic inference is part and parcel of such strate-
gies. Just as our capacity for recognizing natural kinds exceeds the
comparatively narrow range of immediately dangerous kinds, so too
does our capacity for generic inference exceed the reach of fight-flight
recognition triggers. But whether in fight-flight contexts or beyond,
natural kinds and generic inference are a natural pair. It is an ar-
rangement again favouring the economic — a compensation strategy
for the scarcity of time and information — but not noticeably at the
cost, of error. If generic inferences from natural kind samples are not
quite right, at least they don’t kill us. They don’t even keep us from
prospering.

The fallibilism of generic inference is also evident in its relation to
defaults. A default is something taken as holding, taken to be true,
in the absence of indications to the contrary. Most of what passes for
common knowledge is stocked with defaults, and generic inferences
in turn are inferences to defaults. Default reasoning is inherently
conservative and inherently defeasible. Defeasibility is the cognitive
price one pays for conservatism. And the great appeal of conservatism
is also economic. Conservatism is populated with defaults in the form
“Xis what people have thought up to now, and still do”. Conservatism
is a method of default-collection. It bids us to avoid the cost of fresh
thinking, and to make do with what others have thought before us
(and, experienced and remembered, t00).

Conservatism places a premium on what is already well-received. On
the face of it, conservatism is the ad populum fallacy in endemic form.
Here, too, we might grant the received wisdom (and note the large
irony), conceding that individual agents are notorious fallacy-mongers
on a scale not dreamed of even by the traditional fallacy theorist. But
as we said in our examination of a similar indictment involving the
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charge of hasty generalization, there are factors which seem to cut
across so harsh a condemnation. One is that we are, by and large,
enormously well-served by the trust we place in the testimony of oth-
ers. This needs to be understood. The full account, even if we could
furnish it, is beyond the scope of this chapter, but certain features
stand out, and should be mentioned. It is well to note in passing that
the phenomenon we are presently reflecting on is popular belief, not
popular taste. Popular taste is often taken to be vulgar, sentimental,
prurient, or substandard in other ways. It would be a mistake to try
to reconcile the idea of popular belief to this model. Popular beliefs
are what Aristotle called endoza. They are “reputable opinions”, the
opinions of everyone or of the many or of the wise. The mere fact
of popular opinions triggers an abduction problem. What best ex-
plains that p is a proposition believed by everyone? An answer, which
certainly can be criticized in respect of certain particular details, but
which cannot convincingly be set up for general condemnation is that
p’s universal acceptance is best explained by supposing that p is true
or that a belief in p is accurate. What is loosely called common knowl-
edge is an individual’s (or an institution’s or a society’s) inventory of
endoxa. What is especially striking about common knowledge is that
it is acquired by an individual with little or no demonstrative effort
on his own part, and with attendant economies of proportional yield.

It is evident therefore that individual agents depend for what they
think and for how they act on the sayso of others, on the more or
less uncritical and unreflective testimony of people who by and large
are strangers. Here is yet another respect in which the conduct of
human agents would seem to fall foul of the received opinion of fal-
lacy theorists (let us not forget that the endoxa of the wise are not
guaranteed to be true!). For it would appear that individual agents
are programmed to commit and implement the program on a large
scale, the ad verecundium fallacy. But as before, the actual record of
thoughts and actions produced by such dependancies is rather good;
most of what we think in such ways is not especially inaccurate and,
in any case, not inaccurate enough to have made a mess of the quo-
tidian lives of human individuals. We may suppose, therefore, that
the traditional fallacies of hasty generalization, ad populum and ad
verecundium are hardly fallacious as such (e.g., when considered as
an individual’s strategies or components of strategies for practical ac-
tion), but are fallacies only under certain conditions. We shall return
to this point below.

It has long been known that human life is dominantly social, and that
individual agents find cooperation to be almost as natural as breath-
ing. The routines of cooperation transmit to an individual nearly all



20

J. WOODS. R. H. JOHNSON, D. M. GABBAY AND H.-J. OHLBACH

of the community’s common knowledge that he will ever possess.

Even though the complete story has yet to be told, cooperation has re-
ceived the attention of attractive and insightful theories (e.g. Axelrod
[1984], Coady [1992]).

There is a natural and intuitive contrast between accepting something
on the sayso of others and working it out for oneself. Cross-cutting this
same distinction is the further contrast between accepting something
without direct evidence, or any degree of verification or demonstra-
tive effort on the accepter’s part, and accepting something only after
having made or considered a case for it. The two distinctions are not
equivalent, but they come together overlappingly in ways that produce
for individual agents substantial further economies.

Perhaps this is the point at which to emphasize that in our conception
the individual is not the artefact of the same name, championed by
European thinkers of the seventeenth and eighteenth centuries. We
demur from the notion (the decidedly odd notion, as we see it) that
an individual’s social relationships are merely contingent to his ratio-
nality. On the contrary, an individual’s cognitive and decisional com-
petence is in significant part constituted by his social relationships.
If this is right, it will matter for what we take a logic of individual
cognitive and decisional agency to be. We will have more to say on
this later, but will note in passing the prima facie attractions of a
dialogue logic, as a formalized description of the individual agent.

Such additional economies are the output of two regularities evident
in the social intercourse of agents. One has been dubbed the reason
rule:

Reason Rule: One party’s expressed beliefs and wants are a
prima facie reason for another party to come to have those
beliefs and wants and, thereby, for those beliefs and wants
to structure the range of appropriate utterances that party
can contribute to the conversation. If a speaker expresses
belief X, and the hearer neither believes nor disbelieves X,
then the speaker’s expressed belief in X is reason for the
hearer to believe X and to make his or her contributions
conform to that belief.

(Jacobs and Jackson [1983, 57], Jackson [1996, 103]).

The reason rule reports an empirical regularity in communities of real-
life discussants. Where the rule states that a person’s acceptance of
a proposition is reason for a second party to accept it, it is clear that
“reason” means “is taken as reason” by the second party. Thus a
descriptively adequate theory will observe the Jacob-Jackson regular-
ities as a matter of empirical fact. This leaves the question of whether
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anything good can be said for these regularities from a normative per-
spective. If normativity is understood as a matter of instrumental
value, it would appear that the reason rule can claim some degree of
normative legitimacy. Not only does it produce substantial economies
of time and information, it seems in general not to overwhelm agents
with massive error or inducements to do silly or destructive things.
The reason rule describes a default. Like all defaults, it is defeasible.
Like most defaults, it is a conserver of scarce resources. And like many
defaults, it seems to do comparatively little cognitive and decisional
harm.

There is a corollary to the reason rule. We call it the ad ignorantiam
rule:

Ad Ignorantiam Rule: Human agents tend to accept with-
out challenge the utterances and arguments of others except
where they know or think they know or suspect that some-
thing is amiss.

Here, too, a good part of what motivates the ad ignorantiam rule in
human affairs is economic. People don’t have time to mount challenges
every time someone says something or forwards a conclusion without
reasons that are transparent to the addressee. Even when reasons are
given, social psychologists have discovered that addressees tend not
to scrutinize these reasons before accepting the conclusions they are
said to endorse. Addressees tend to do one or other of two differ-
ent things before weighing up proffered reasons. They tend to accept
this other party’s conclusions if it is something that strikes them as
plausible. They also tend to accept the other party’s conclusion if it
seems to them that this is a conclusion which is within that party’s
competence to make — that is, if he is seen as being in a position to
know what he is talking about, or if he is taken to possess the requisite
expertise or authority. (See, e.g., Petty and Cacioppo [1986], Eagly
and Chaiken [1993], Petty, Cacioppo and Goldman [1981], Axsom,
Yates and Chaiken [1987], O’Keefe [1990], and the classic paper on
the atmosphere effect, Woodworth and Sells [1935]. But see also Ja-
cobs, Allen, Jackson and Petrel [1985]). We see, once again, the sheer
ubiquity of what traditionalists would call — overhastily in our view
— the ad verecundiam fallacy.

We see the individual agent as a processor of information on the basis
of which, among other things, he thinks and acts. Researchers inter-
ested in the behaviour of information-processors tend to suppose that
thinking and deliberate action are modes of consciousness. Studies
in information theory suggest a different view. Consciousness has a
narrow bandwidth. It processes information very slowly. The rate of
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processing from the five senses combined — the sensorsium, as the
Mediaevals used to say — is in the neighbourhood of 11 million bits
per second. For any of those seconds, something fewer than 40 bits
make their way into consciousness. Consciousness therefore is highly
entropic, a thermodynamically costly state for a human system to be
in. At any given time there is an extraordinary quantity of infor-
mation processed by the human system, which consciousness cannot
gain access to. Equally, the bandwidth of language is far narrower
than the bandwidth of sensation. A great deal of what we know —
most in fact — we aren’t able to tell one another. Our sociolinguistic
intercourse is a series of exchanges whose bandwidth is 16 bits per
second (Zimmermann [1989]).

Conscious experience is dominantly linear. Human beings are notori-
ously ill-adept at being in multiples of conscious states at once. And
time flows. Taken together these facts loosely amount to an opera-
tional definition of the linearity of consciousness. Linearity plays a role
in the cognitive economy that tight money plays in the real economy.
It slows things down and it simplifies them. Linearity is a suppressor
of complexity; and reductions in complexity coincide with reductions
in information.”

Psychological studies indicate that most of our waking actions are
unattended by and unshaped by mental states. This mindlessness of
ordinary waking human behaviour is a kind of coping. Consider a case
in which we are watching a short-order cook working at full blast at a
New York midday. It is easy to see his behaviour as connectionist and
mindless, as behaviour reflecting repetories of different skills which
he draws upon concurrently and distributively, and without a jot of
reflection when things are going well.

Here is a view that carries interesting consequences for the analysis
of propositional assent — indeed for conversation generally. On the
received view, when someone asserts, e.g., that the cat is on the mat,
he in effect reports a current mental state (a belief, say), an object
of my present attention. His assertion is sincere if the belief actually
exists, and true if the belief is also true. Conversation more generally
still is a sequence of exchanges of transparent propositional contents
modulo the usual speech acts.

If these psychological studies are right, the received view is wrong.
Conversation would just be linguistic coping. If so, the individual dis-
cussants are less often in a state of belief than many theorists suppose;

"We note in passing that the sheer paucity of information possessed by human con-
sciousness at any given time contrasts with environments known to be fuzzy. Fuzziness,
unlike probability, is unchanged by arbitrarily large increases in information.
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and when someone is telling us about the amenities of, say, Amster-
dam, though he tells us the truth, he is not transmitting any current
mental state and he is not inducing new mental states in us, unless
perhaps what he tells us is surprising. When we stop and think —
when we put a temporary (and expensive) halt to coping — we find
that in what we do in the world we are infrequently the owner of men-
tal states, infrequently the possessor of beliefs. It is a respectable way
of being mindless.

It is now evident that we must amend the claim that individual agents
suffer from a scarcity of information. In so doing, however we are able
to lend appropriate emphasis to what remains true about that propo-
sition. In pre- or sub-conscious states, human systems are awash in
information. Consciousness serves as an aggressive suppressor of in-
formation, preserving radically small percentages of amounts available
pre-consciously. To the extent that some of an individual’s thinking
and decision-making are subconscious, it is necessary to postulate de-
vices that avoid the distortion, indeed the collapse, of information
overload. Even at the conscious level, it is apparent that various con-
straints are at work to inhibit or prevent informational surfeit. The
conscious human thinker and actor cannot have, and could not handle
if he did have, information that significantly exceeded the limitations
we have been discussing. This makes the economic aspect of an agent’s
conscious thought and action an ecosystemic matter as well. Human
beings make do with slight information because information is all the
conscious individual can have.

Human agents make do with scarce information and scarce time. They
do so in ways that make it apparent that in the general case they are
disposed to settle for comparative accuracy and comparative sensible-
ness of action. These are not the ways of error-avoidance. They
are the ways of fallibilism. Error-avoidance strategies cost time and
information, except where they are trivial. The actual strategies of in-
dividual agents cannot afford the costs and, in consequence, are risky.
As we now see, the propensity for risk-taking is a structural feature
of consciousness itself. It might strike us initially that our fidelity to
the reason rule convicts us of gullibility and that our fidelity to the
ad ignorantiam rule shows us to be lazily irrational. These criticisms
are misconceived. The reason rule and the ad ignorantiam rule are
strategies for minimizing information over-load, as is our disposition
to generalize hastily.

Consciousness makes for informational niggardliness. This matters
for computer simulations of human reasoning. That is, it matters
that there is no way presently or foreseeably available of simulating
or mechanizing consciousness. Institutional agencies do not possess
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consciousness in anything like the sense we have been discussing. This
makes it explicable that computer simulations of human thinking fit
institutional thinking better than that of an individual. This is not to
say that nothing is known of how to proceed with the mechanization
of an individual’s conscious thinking. We know, for example, that
the simulation cannot process information in quantities significantly
larger than those we have been discussing here.

Consciousness is a controversial matter in contemporary cognitive sci-
ence. It is widely accepted that information carries negative entropy.
Against this is the claim that the concept of information is used in
ways that confuse the technical and common sense meanings of that
word, and that talk of information’s negative entropy overlooks the
fact that the systems to which thermodynamic principles apply with
greatest sure-footedness are closed, and that human agents are hardly
that.

The complaint against the over-liberal use of the concept of infor-
mation, in which even physics is an information system (Wolfram
[1984]), is that it makes it impossible to explain the distinction be-
tween energy-to-energy transductions and energy-to-information trans-
formations. Also singled out for criticism is the related view that
consciousness arises from neural processes. We ourselves are not in-
sensitive to such issues. They are in their various ways manifestations
of the classical mind-body problem. We have no solution to the mind-
body problem, but there is no disgrace in that. The mind-machine
problem resembles the vexations of mind-body, both as to difficulty
and to type. We have no solution to the mind-machine difficulty.
There is no disgrace in that either.

For individual agents it is a default of central importance that most of
what they experience, most of what is offered them for acceptance or
action stands in no need of scrutiny. Information-theoretic investiga-
tions take this point a step further in the suggestion that consciousness
itself is a response to something disturbing or at least peculiar enough
to be an interruption, a demand — so to speak — to pay attention. If
this is right, consciousness is an aberrant state, the exception rather
than the rule, and the same is true both for case-making and for the
consideration and evaluation of cases. This affects practical reasoning
in an especially interesting way, for it squares with a practical reason-
ing problem requires a trigger and that a trigger is an event or state
of affairs or scrap of information which stands out in some way, which
demands attention and calls for an explanation.
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e Most of the information processed by an individual agent he will not
attend to, and even if it is the object of his consciousness he will
attend to in as little detail as the exigensies of his situation allow. Ar-
guing is a statistically nonstandard kind of practice for human agents,
but even when engaged in it is characterized by incompletions and
short-cuts that qualify for the name of enthymeme. The same is true
of reasoning, of trying to get to the bottom of things. In the gen-
eral case, the individual reasoner will deploy the fewest resources that
produce a result which satisfies him. Here is further evidence that
individuals display a form of rationality sometimes called “minimal”,
and well-discussed in Cherniak [1986].% In addition to features al-
ready discussed in this chapter, the minimal rationalist is, when he
reasons at all, a non-monotonic reasoner and in ways that are mainly
automatic, the successful manger of belief-sets and commitment-sets
that are routinely inconsistent. Much of what makes for the incon-
sistency of belief-sets comes from the inconsistency of deep memory
storage and further aspects of inconsistent belief-sets flow from the
inefficiencies of memory retrieval.

The structure of minimal rationality shows the individual agent to be
the organic realization of a nonmonotonic paraconsistent base logic,
features which our protologic must take care to embed. There is little
to suggest that the strategies endorsed by classical logic and most
going nonstandard logics form more than a very small part of the
individual agent’s repertoire of cognitive and coping skills. If it is
true that individuals are in matters of non-demonstrative import pre-
inductive rather than inductive agents, the same would also appear
to be the case as regards deduction. If so, human individuals are
not the wet-wear for deductive logic, at least in the versions that
have surfaced in serious ways in the sprawling research programmes
of modern logic. There is a particularly interesting reason for this. If
we ask what the value of deductive consequence is, the answer is that
it is a guarantee of truth-preservation. Guaranteed truth-preservation
is a guaranteed way of avoiding error.® But individual agents are
not in the general case dedicated to error-avoidance. So for the most
part the routines of deductive consequence do not serve the individual
agent in the ways in which he is disposed (and programed) to lead
his cognitive and decisional life. This is not to say that agents do not
perform deductive tasks even when performing on the ground level
of our hierarchy. There is a huge psychological literature about such
behaviour (accessibly summarized in Manktelow [1999]). The point

81n fact, it is better thought of as minimalist rationality, the rationality involved in
making do with scarce resources.
9That is, of avoiding errors not alredy in his data-base or his premiss-set.
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rather is that deductive thinking is so small a part of the individual’s
reasoning repertoire.

Indispensable to agency is the ability to remember. The literature on
memory recognizes a contrast between occurrent and dormant mem-
ory, echoing a distinction between short term and long term memory.°
These two reminisciential operations work in interestingly different
ways. Occurrent memory presents beliefs that are, here and now,
ready for action, for driving inferences and shaping behaviour. On
the other hand, beliefs stored in dormant memory are not accessible
as premisses in inferences; they do not conflict with or interact with
one another; and some researchers are of the view that they do not
influence conduct.

Occurrent memory is governed by tougher requirements than dormant
memory. Occurrent or short term memory is in some sense bothered
by inconsistency, whereas inconsistencies in dormant memory are vir-
tually inert. This difference also crops up in the following way. Oc-
current inconsistency is something a rational agent will, in one way or
another, try to do something about. Dormant inconsistences tend not
to register in an agent’s consciousness. By and large there is nothing
to be done about them.

Beliefs and memories are not the only things held to consistency as-
sumptions in the lives of individual agents. Desires are also commonly
expected to be consistent; “beliefs and desires can hardly be reasons
for action unless they are consistent” (Elster [1985, 4]). In present-day
social science, consistency is often defined for preferences. Transitivity
is the minimal condition on preference. If agent S prefers X to Y and
Y to Z then he can be expected also to prefer X to Z.

There is reason to doubt this assumption. “To recognize... incon-
sistency’[of beliefs or preferences] does not demolish [one’s economic
theory], since both the feasibility and the necessity of “consistency”
also requires justification... Whatever view one takes of, say Agamem-
non’s dilemma, it can scarcely be solved by simply demanding that
Agamemnon should lick his preference ordering in shape before he
gets going” (Sen [1987, 66]). While it is quite true that people usu-
ally try to adjust their preferences if intransitivities are pointed out
to them, the fact is that adopting intransitive preferences is far from
uncommon. Moreover, even after intransitivities have been identified,
some people persist in their preferences (Raiffa [1968, 75]).

103ee Howe [1970], Collins and Quillam [1969] and Lindsay and Norman [1977]. For
the classic studies see Howe [1970], Collins and Quillam [1969] and Lindsay and Norman
[1977].
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Time preference inconsistency is also a frequent, even endemic, occur-
rence in human life. People are strikingly prone to non-exponential
time preferences, that is, to time preferences in which the future is
discounted at non-constant ratios. However, here too it seems that
remedies exist which enable the non-exponential time preferer to deal
with this problem. George Ainslie has suggested that by collecting
“several future choices the chances are increased that in each of them
one will take the option with a later and greater reward” (Elster [1983]
and Ainslie [1982]).

The principle that preference should be continuous is breached by
what are called non-Archimedean preferences, such as lexicographic
preferences attached to normative hierarchies. Here is an informal
example, which we quote from Elster [1983, 9].

If I am starving and am offered the choice between an option
involving one loaf and listening to a Bach record and another
involving one loaf and listening to Beethoven, then my love
for Bach may make me prefer the first option. If, however,
from the first option is subtracted even a very small crumb
of bread, as small as you please, then I switch to the second
because at starvation level calories are incomparably more
important than music.

We see then, that the continuity principle is not just breached, it is
refuted. We might wonder why it was proposed in the first place. The
answer is that such an assumption helps streamline theory. If prefer-
ence is held to the conditions of transitivity, completeness and con-
tinuity, preferences are representable as real-valued utility functions
and the mathematics of preference manipulation takes on a certain
power and elegance. The assumption guarantees that the economic
theory will not be descriptively adequate. The question is whether
it is a defensible idealization of an individual’s behaviour; can the
supposed regularity be considered to have normative force? (For a
negative answer, see Woods [2001d, Chapter 8]. On the more positive
side, see Johnson [2000].)

6 PRACTICAL LOGICS

In our description of it so far, we have left the theory of practical reasoning
a fairly underdetermined affair. There is a desirable utility in such flexi-
bility. We leave ourselves free to consider the pros and cons of extending
or adapting our protologic in many possible ways, and in so doing availing
ourselves of the benefit of work already done and on the record. There is
a lot of it, too, whether temporal logics (e.g., van Benthem [1991]), logics
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of action (e.g., Davidson [1980], Brand and Walton [1975], Brand [1984]),
dynamic logic (e.g. van Benthem [1996]), not to forget the huge literature
on deontic logic, and the practical logics of pragmatic philosophers (e.g.,
Dewey [1938] and Schiller [1929]).

There are multiples of different ways of finishing a theoretical product
from its relatively modest beginnings as a logic supplemented by designated
resources for the treatment of action and time. This leaves the research
community with multiples of chances of coming up with finished products
that receive and deserve consensus of a sort that we do not yet see much
in evidence. Even so, it is an attraction of our protologic that it serves
the desirable end, and achieves the welcome economy, of a principled and
modest shortening of the list of attributes on whose behalf the adjective
“practical” is invoked. If we return to the list developed in Section 3 of the
present chapter, it is clear that our protologic sanctions some deletions.

A practical logic in our sense is not restricted to the study of reasoning
about ordinary or commonplace matters. Nothing precludes the practical
reasoner rushing to finish an arcane proof under press of his publisher’s
deadline.

A practical logic in our sense is no enemy of the alethic. For example,
there is a well-understood role in dialogue logic for parties to enhance their
shared data-bases. In so doing they increase their resources for making more
direct cases for various actions.

Practical logic pertains to moral reasoning but is not restricted to it. Nor
does it exclude factual reasoning. (See above).

Practical logic is no enemy of formality. Where appropriate it can in-
volve express manipulation of logical forms; and even where reasoning is
not formal in so sharply structural a way, practical logic is amenable to
other grades of formal treatment. (Woods [1980], [1989], [2001e, Chapter
15], van Eemeren et al. [1996], cf. Johnson [1996, 120]).

Practical logic is not inherently about fuzzy reasoning, but can be ex-
tended to a fuzzy logic (e.g., Zadeh [1975], Chang and Lee [1975], Lee
[1972], Przelecki [1976] and Héjek [1998]) or to a logic of vagueness (e.g.
Tye [1990], Williamson [1994]) in those cases in which reasoning requires
attending to in a more or less direct way the fuzziness of terms or, to fuzzy
states of affairs. There are those who argue that practical reasoning is in-
herently fuzzy in just this sense. In our view this is an open question. (See,
e.g., Woods [2000f].)

Practical logic subsumes but is not restricted to what Aristotle calls prac-
tical syllogisms. The same is true for the adaptation of the same idea in
Gabbay and Woods [1999]. In a practical logic of the kind under review,
a move in a dialogue always occasions an action by the other party, even
though his action needn’t be the action, if any, implied or suggested by his
vis-a-vis premisses. For example, one party may say to the other: “So, you
see, you ought to mow the lawn now”. One way for the second party to
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react to that move is to start mowing the lawn. This is an explicit action
that will also serve as implicit acceptance of his interlocutor’s claim. Or he
might reply, “Yes, I really should be mowing the lawn,” which is explicit
acceptance and intimation of an action yet to be taken. A third answer
is “Like hell!” which is an explicit (and emphatic) rejection. A fourth is
phoning a friend to arrange for a golf game, which is explicitly not mowing
the lawn and implicit rejection of the argument that called for it.

Practical logic deals with goal-directed, purposive action, but not at the
expense of context-free approaches. One of the central tasks of a logic of
propositions is the construction of a proof theory whose rules can be seen
as virtual routines discharged by arbitrary agents.

Neither do we think that practical logic should be reserved for reasoning
involving incommensurabilities. Incommensurability is ambiguous (Gray
[2000]). In its most basic sense, reasoning from incommensurabilities is
reasoning of a pluralistic kind. It is illustrated by the following schema.

1. Harry and Sarah value both friendship and patriotism.

2. Friendship and patriotism though different, and sometimes behaviour-
ally non-co-satisfiable, are incomparable values.

3. In circumstances K, Harry opted for friendship and Sarah for
patriotism.

4. Both acted rightly. Period.

It is true that normative reasoning is often occasion for judgements of incom-
mensurability, but this is also sometimes times of scientific thinking. Plu-
ralism abounds in logic, for example. And paraconsistent logics have been
purpose-built to accommodate incommensurabilities (in the form of out-
right inconsistencies) whether in set theory or quantum mechanics. (Priest
[1998], Brown [1993]) However, the incommensurability view of practical-
ity intersects with our own conception, in the following way. Sometimes
when faced with an incommensurability or an inconsistency, the practical
(i.e., individual) agent has no realistic option but to let it be. He may lack
the resources to adjust his data-base for consistency, which puts him in a
situation in which he must think or act in spite of inconsistency. On the
other hand, the very resources that an individual agent sometimes lacks are
progressively available to agents of higher type.

The only interpretation that we ourselves are able to give the applied ver-
sus theoretical distinction in practical logic is one of the following inequiv-
alent pair. First is the distinction between reasoning in a fully interpreted
as opposed to a merely semi-interpreted vocabulary. To achieve its gen-
erality economically, a practical logic may operate with a semi-interpreted
object language. But it will also have the means of giving its theorems
full interpretations. (This is tricky. No such procedure will preserve formal
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invalidity. See Woods, Chapter 2, below) The second way of drawing our
present distinction is to see it as an instance of a particular way of constru-
ing the descriptive-normative distinction. In a widely accepted view of this
latter, the task of finding a descriptive application of a normative theory is
a matter of (a) finding the discrepancies between them, and (b) accounting
for the descriptive deviations as approximations to the ideal conditions, full
compliance with which would qualify as normatively perfect performance.

Unless we are mistaken, the sense we have proposed to give our proto-
logic offers guidance on the applicability of other distinctions appropriated
by those intent on giving “practical” some principled meaning. The pur-
ported distinction between concrete and abstract is handled by what we
have said about the applied-theoretic distinction. Also there covered is the
distinction between unregimented language and canonical notation. The
distinction between a natural logic and an artificial logic can be captured
by the distinction just mentioned. Alternately it is the distinction between
the psychologically real and the psychologically ideal, which we have already
discussed.

There is also an intuitive distinction between tasks whose performance
requires little or no tutelage and those whose performance require special-
ized technical information. Cutting across this distinction, but in ways that
produce some degree of overlap, is the contrast between ordinary and eso-
teric subject matters. If we wanted the distinction between practical and
theoretical logics to be constrained by these contrasts, they would push in
somewhat different directions; and formal logics such as FDL would elude
classification altogether. We ourselves see little appeal in the first of these
proposed criteria. A logic that attempted to give some insight into what
goes on when an individual attempts to solve the Four Colour Problem is,
as much a practical logic as any that attempted to elucidate an agent’s
choice of breakfast cereal. Neither are we persuaded that, for our purposes
here, there is any abiding value in the contrast between the ordinary and
everyday and (say) the business of quantum nonlocality in physics. A more
fruitful way of drawing the contrast between a practical and theoretical logic
is by piggy-backing on our distinction between a practical and a theoretical
agent. The value of so doing (apart from the naturalness of the concurrence)
is that it is very much less necessary to discredit a logic for its failure to
model realistically actual human behaviour. Most mainstream logic since
1879, and most direct rivals of it, are subject to this failure. They fail for the
most part because their strategies are too complex for the computational
capacities of human individuals or, because their latitude in other respects
(e.g., monotonicity), exceeds actual human reach. True, some mitigation
of these misrepresentations can be found in the notion of idealization; but
idealization is a more fraught device than is usually recognized (one cannot
idealize at will). Even so, many of these logics, which fail as principled
descriptions of what human individuals are capable of, succeed or come
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closer to succeeding as formalized accounts of what institutional agents are
capable of. So a decision to regulate the distinction between practical and
theoretical logics in this way has the virtue, even on an idealized agent ap-
proach to logic, of saving much of what fails as a practical logic as what
succeeds as a theoretical logic.

A final word about user-friendly logics. The idea can be given both
a weak and a strong interpretation. On the weak interpretation, a user-
friendly logic is, as Woods and Walton once said, “a manual of self-help
for the ratiocinatively insecure” (Woods and Walton [1989, xvii]). So con-
ceived, a logic is user-friendly to the extent that it can with little or no
formal instruction be applied to the analysis and evaluation of real-life ar-
guments. We would hope that good theories of practical reasoning would
score at least moderately well on the count of user-friendliness. By this we
mean that it is a virtue to avoid unnecessary technicalities and dispensable
complexities. On the other hand, we have little affection for user-friendliness
on its strong interpretation. In this meaning, a theory is user-friendly to
the extent that its authoritative claims (its theorems, so to speak) are dis-
cernible without formal instruction to the untutored eye of the ordinarily
competent reasoner. As we see these things, theories that have highly coun-
terintuitive mathematical structures can turn out to be the right theories,
and can in turn be attended by application procedures which make them
highly user-friendly on the weak interpretation. (Indeed, the grammar of
English is one such theory.)

We have already said that we find ourselves somewhat vexed by the
descriptive-normative distinction in logic. As we bring this section to a close,
it would be helpful if we could briefly shed some light on our reservation.

There is a considerable body of opinion in the century and a quarter
since 1879 that a logician’s job is axiomatization and that axioms are what
the logician finds to be most intuitive. Much the same view can be found
among logicians who favour natural deduction approaches. Here, too, one’s
choice of structural and operational rules is seen as a matter of what strikes
the theorist as most intuitively correct. Much the same modus operandi is
evident in other disciplines, especially abstract disciplines that lack in any
direct way anyhow — empirical checkpoints. In philosophy this approach
is the heart and soul of conceptual analysis in the manner of G. E. Moore
and an entire generation which fell under his influence.

The method of analytic intuitions raises a fundamental methodological
question. Given that an intuition is what the theorist antecedently believes,
and that a fundamental intuition is what he believes utterly, is there any
good reason to suppose that intuitions are epistemically privileged? Is there
any reason to suppose that what the theorist believes utterly qualifies as
knowledge? If the answer is Yes, the essential methods of conceptual anal-
ysis are confirmed. If the answer is No, the methodology of the abstract
sciences must take this into account.
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One attraction of the method of analytic intuitions in logic is that it
secures a comfortable purchase on the shelf of normativity. It allows for it
to be the case that a human being should reason in such-and-such a way, if
the logician-theorist’s intuitions lend support to a rule or a theorem to the
same effect. But shorne of the comforts of the method of analytic intuitions,
the normatively minded logician will find less desired normativity a lot more
difficult to get a sure grip on. It may be that such a theorist would be well-
served in taking the following approach.

First, he might try to make this account conform closely to how
in the general case practical agents actually perform under the
conditions the theory takes note of.

Secondly, he might also try to take note of what in actual prac-
tice is regarded as mistakes or errors.

If he does both these things, we will say that his account is descriptively
adequate. The sixty-four dollar question is this:

Can the theorist obtain a serviceable standard of normativity
by putting it that a practical agent performs as he should if his
performance conforms to what his fellows do and is not marred
by mistakes in the sense of a paragraph ago?

This we leave as an open question. (But see Woods [2001d, Chapter 8].)

There is an ancient way of characterizing the practical. It is to be found
in the contrast between Practical and Theoretical Reason, between phrone-
sis and episttme. Perhaps we now have the wherewithal to characterize
this contrast in ways that would be found credible by present-day readers.
Accordingly, we repeat our proposal that Practical Reason be thought of
as a repertoire of skills characteristic of the lower strata in the hierarchy of
agency, that Theoretical Reason be thought of as sets of skills characteristic
of higher up, and that the contrast be seen as a matter of degree — a matter
of how low down and how high up the agent in question chances to be. Here
is a suggestion which preserves the truth that all reasoning is goal-directed,
that all reasoning portends some kind of action. But it allows us to crosscut
this universality with considerations of indigenous import, in which Prac-
tical Reason is characterized by features of the agent whose reasoning it
is.

It is also well to emphasize that we are taking the agency view of logic,
as opposed to the linguistic view. The distinctions we have been tracking
and the exclusions we have been proposing, have been transacted within the
tent of agency logic. Agency logic is the natural home of practical logic, and
offers reasonable accommodation to one reasonable conception of theoretical
logic. It is not our view that the linguistic conception of logic should be
rejected. There is nothing good to be said for the idea that we should say
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no to recursion theory, model theory, proof theory and set theory. This is
a Handbook about the practical turn in logic. It obliges us to give sense to
what is practical and to give some idea as to where the idea of the practical
is best pursued by logical theory. In the end, it is this question which we
bring to the distinction between the agency and linguistic conceptions of
logic. And, with respect to the matters that concern us here, it is our view
that an agency logic is a natural home for practical reasoning and that
a linguistic logic is not. But saying so is a long way from pleading the
exclusion of linguistic logic.

7 ALLIED DISCIPLINES

In absorbing the dialogical approach to practical reasoning, we are free to
engage — to appropriate or adapt — a large research literature. Dialogue
logics come in a variety of stripes, some of the most interesting of which
are Hamblin [1970], Lorenzen and Lorenz [1978], Barth and Krabbe [1982],
Carlsen [1982], MacKenzie [1990], Walton and Krabbe [1995], Girle [1993],
[1996], [1997], and Gabbay and Woods [2000] and [2000b]. A bounty of
rich resources also extends to developments in cognitive science, Al and
linguistics.

We take it as obvious that, irrespective of how we finally settle the ques-
tion of the normative-descriptive distinction for theories of practical reason-
ing, it would be a mistake to ignore developments in these allied disciplines.
For example, consider the impact of psychology. The psychological stud-
ies to date have concentrated on deductive, and probabilistic and inductive
reasoning, with somewhat less attention given to decisional and causal rea-
soning. There is no simple dominant paradigm at present; in fact, there are
at least four main approaches that are currently in contention. These are
the mental models account (e.g., and Byrne [1991]), mental logics (e.g., Rips
[1994]), rational analysis and information gain (e.g., Chater and Oaksford
[1999], Oakford, Chater, Grainger and Larkin [1996]), and domain specific
reasoning schemas (e.g., Evans and Over [1996]). Notwithstanding these
theoretical and methodological differences, experimental evidence bears on
the business of practical reasoning in two especially telling ways. One is that
human beings do indeed seem disposed to commit fallacies, that is, errors
of reasoning which are widely and cross-culturally made, easy to make and
attractive, and difficult to correct. (Woods [1992]). A second point is that
human reasoning performance seems to improve, that is, to commit fewer
fallacies, when the reasoning in question is set in a deontic-context. (Cheng
and Holyoak [1985]). “Deontic” here means directed to or (productive) of
an action, which is the core sense of our notion of practicality. Since our
protologic is already moored in deontic and prudential contexts, a mature
theory which is an extension of it must try to explain what is and what
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isn’t a fallacy in a deontic environment or in a practical reasoning task, and
why impractical reasoning should be more prone to fallacies than practical
reasoning. It is entirely possible that some of this difference lies in the fact
that one and the same strategy might be a reasoning error in a nonpractical
context of reasoning, and yet be an error-free strategy deontically. (Gabbay
and Woods [1999], Gabbay and Woods Chapter 11, below.)

A practical logic should also incorporate important developments in the
AT sector. It should exploit the fact that human reasoning is non-monotonic
and that non-monotonic structures have been investigated by Al researchers
(e.g., Geffner [1992] and Pereira, chapter 10, this volume). Human reason-
ers are also adept at recognizing and manipulating defaults. A default is
something taken as true provisionally or, as is said, in default of information
to the contrary. (Reiter [1980]) Default reasoning introduces into the busi-
ness of human inference some extraordinary economies, which a practical
logic must take pains with. For reasoning is good not only when it produces
the right answer, but when it produces it on time. As a related development
from linguistics, generic inference discloses its thinking to default reason-
ing. Generic claims are generalizations of a particularly robust kind. Like
“Tigers are four-legged,” they tolerate true negative instances. (Carlson
and Pelletier [1995]) They also seem triggered by very small samples, as
we have seen. The two features are linked. Somehow human beings are
rigged for what classically would be seen as hasty generalization fallacies in
precisely these cases in which the reasoner is not generalizing to a univer-
sally quantified conditional (which is as fragile as a generic generalization is
robust), but rather to a generalization certain negative instances of which
happen not to matter.

It is easy to see how default reasoning and generic inference touch on
the classical fallacy of hasty generalization, and necessitate a substantial
reconsideration of its traditional analysis. Other forms of default reasoning
pertain in the same way to the classical fallacy argumentum ad ignorantiam.
The basic structure of the fallacy is the argument form:

1. It is not known that P

2. Therefore not P.

On the standard analysis, ad ignoratiam arguments are not only deduc-
tively invalid, but wholly implausible as well. But as studies of autoepis-
temic reasoning show (e.g.,) there are exceptions to so harsh a verdict, as
witness:

1. If there were a Department meeting today, I would know about it.
2. But in fact I know nothing of any such meeting.

3. So, there’ll be no meeting.
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Here is further occasion for a mature theory of practical reasoning to
winnow out the mistakes in classical accounts of fallacious reasoning. (Con-
cerning which see Gabbay and Woods [2003])

8 SUMMARY

1. By now we share the widely received view that FDL, or standard
deductive logic is not an adequate logic of practical reasoning or ar-
gument.

2. However, we see little virtue in iconoclasm. FDL has secured an im-
pressive place in our intellectual heritage. It is perhaps most funda-
mentally seen as a theory of the consequence relation. So conceived
of, it is wholly intelligible why FDL would not have much success as
a theory of inference or argument. No one doubts that there is more
to reasoning and arguing than manipulating the consequence relation.
On the other hand, what theory of reasoning or argument can be in-
different to the consequence relation. So we propose an ecumenical
attitude towards F'DL.

3. More particularly, we recognize both the agency and the linguistic
conceptions of logic. Accordingly, we propose a flexible use for the
word “logic”. A logic is a theory or reasoning or a theory of argument
which makes a reasonable claim on satisfying one of this Handbook’s
organizing themes — “Systematic and Foundational Aspects”.

4. The emphasis of the Handbook is practical reasoning. Accordingly,
a practical logic is any suitable extension of our protologic, which is
a logic of action in real time, whose further properties are indicated
by the type of agency involved. We could say that a purely practical
protologic is one that recognizes the resource limitation strategies at
the base of our hierarchy of agents.

5. We ourselves are not much drawn to embedding the protologic in a
dialogue logic or family of dialogue logics. In our view it should be
the other way around. Dialogical reasoning is a paradigm of social
reasoning which for us is important but not exhaustive. Dialogical
reasoning is sometimes easier to analyse than purely private, solo rea-
soning. Even so, a good many of the principles of dialogue logic can
be expected to adapt in a fairly direct way to solo contexts. So we
propose dialogue logic as a species of practical logic.

6. A practical logic should take note of, and try to account for, the dispo-
sition of humans to commit fallacies, and the diminished disposition
to commit fallacies in deontic contexts.
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7. Owing to the difficulties involved in regulating the normative-descriptive
distinction in a principled and illuminating way, the present authors
propose descriptive adequacy as a prime target of a practical logic.
(However, we are aware that not all of our authors find the distinc-
tion as perplexing as we do.)
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JOHN WOODS

STANDARD LOGICS AS THEORIES OF
ARGUMENT AND INFERENCE: DEDUCTION

1 INTRODUCTION

This Handbook is aimed at a substantial audience of researchers and stu-
dents whose work collectively represents several disciplines. Among them
are logic, computer science, cognitive and experimental psychology, argu-
mentation theory, forensic science and linguistics. Also involved are those
branches of mathematics which explore Bayesian statistics, information the-
ory and ergodics; engineering in its connection with complexity theory and
entropy; economics and management studies in their engagement of game
theory, choice theory and probabilistic decision theory; epistemology in its
involvement with the foundations of probability and rationality theory; and
fallacy theory and other branches of informal logic, as they bear upon the
question of limitations (real or imagined) of formal logic as central and
load-bearing part of any good theory of argument and inference, especially
when considered as branches of practical reasoning. The aim of the present
chapter and the one to follow is to give the untutored reader, or the reader
who has long since forgotten his one course in the subject, an overview of
standard logic, and to do so with sufficient rigour and in sufficient detail to
qualify as a kind of crash course in logic at a level appropriate to the sophis-
tication of the reader’s own research programme in the theory of argument
and inference. Of course, if the reader is a working logician, these pages can
be breezed through quickly out of interest, or ignored altogether out of an
impatience for the less standard chapters to come. Even so, I have tried to
make these chapters worth pausing over even by the veteran logician. They
include some essential background on Aristotle as a deductive logician; and
they attend to the psychological relevance of deductive and inductive logic
to recent discoveries in complexity theory.

For the purposes of these two chapters the term “logics” adumbrates a
loose distinction between deductive and inductive systems. “Standard” sug-
gests a motley of meanings, from “widely-received”, “dominant”, “best”,
and even “uniquely correct”. It is best to give some backbone to this im-
precision by stipulating that the systems here under review are those that
have either acquired or approximated to the status of twentieth century
orthodoxies. Even so, the concept of a standard logic is a slack and con-
tentious idea. Its slackness is evidenced by the fact that even a more or less
constant logical theory can be produced under significant variation of ax-
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ioms, conditions, rules and means of expression.! And the contentiousness
of the general concept is evidenced by the opinion of those theorists who
hold, for example, that a logic of induction is not possible, (Popper [1992]:
cf. Putnam [1975d], [1975b]).

If the basic idea of a standard logic lies open to imprecision and disagree-
ment, the same is true of the suggestion that logic is a theory of argument
and inference. This is perhaps best illustrated by the present state of formal
deductive logic (FDL) which, for the purposes at hand, can tentatively be
identified with the predicate calculus or, more narrowly, with the predicate
calculus of first order (see below).

If, as a good many of its practitioners aver, the fundamental objective
of standard deductive logic is to abet the recognition of a particular class
of sentences, namely, the logical truths, (Quine [1950, xi]); or is, as others
hold, to capture the properties of a propositional relation such as entailment
or logical consequence (Dummett [1973] and Koslow [1992]), then it is not
obvious that such logics will serve as good accounts of either argument or
inference. Granted that there is more to argument and inference than any
deductive logic could capture, there is room, even so, to resist the idea that
a deductive logic will do equally well as a theory of deductive argument and
deductive inference alike.

There are in such reservations two discernibly different points. One is that
in as much as deductive logic is preoccupied with either the specification
of logical truths or the characterization of logical implication or entailment,
it must fail as an account of argument and of inference to the extent that
neither the concept of a logical truth nor the concept of entailment will bear
anything like the full weight of such multi-faceted structures as argument
or inference. We might think of the point this way. Suppose that the
would-be theorist of argument were told that his task is to give an account
of good or correct arguments but that he must do this with an inventory
of conceptual tools restricted to the concept of logical truth and others
definable from it. According to our present critic, the theorist would have no
prospect of capturing the idea of good or correct argument beyond specifying
a notion of deductive correctness or validity. Fine as far as it goes, it
would still fail, with an exception to be noted, to pick out a class of good
arguments, even of good arguments aspiring to the standard of deductive
correctness. The exception is the class of arguments meeting the condition
of deductive validity whose premisses are true. Such arguments are called
sound. Yet it may be doubted whether soundness is a sufficient condition
on good arguments, even of those that aspire to be deductively good, as
witness the circular but sound argument,

IFor example, the truth of the sequent ®1, ..., ®, / ¥ is independent of the language
in which ®;, ... ®,, and ¥ are expressed. (Hodges [1983, 17]). Not all systems have this
property, as witness Dunn and Belnap [1968].
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Either A or not-A
Therefore, either A or not-A

and the trivial but sound argument (where “A” and “B” are true)

Both A and B
Therefore, B

Whether upon reflection these objections might be thought a decisive, or
even a modest discouragement of the view that deductive logic has resources
enough to be a good core theory of a certain conception of correct argument,
deductive logic’s prospects as a theory of inference run into heavier weather.
Not all inferences are intended to be held to standards of deductive impec-
cability, but some are. Restricting our attention to those that are, it is
unlikely that a theory of logical truth or of logical implication comes close
to fulfilling the main criteria of inference-adequacy. It depends, of course,
on the sort of thing the theorist takes inference to be pre-theoretically (just
as the criticisms above need to be assessed in the context of how “argument”
is understood pre-theoretically). But if we suppose inference to be a kind of
belief-revision or updating of a cognitive agent’s store of commitments, it is
a matter of doubt as to whether the rules of deductive logic serve adequately
as a constraint on such processes (Harman [1986], and his chapter 4 below;
cf. Hintikka et al., chapter 7 below). The deductive rule modus ponens is a
case in point. If at a certain time ¢ a reasoner holds that A, and if at ¢ + 1
he comes to hold that if A then B, it is not invariably correct that at ¢t+1
he should revise his commitments by adding B. He might at ¢ + 1 come
to see that B is false. His store of commitments is now threatened with
inconsistency, and the reasoner might certainly avert it in more than one
way, one of which might be correct. For example, he might now delete A or
delete "If A then B7. Either way, he is refusing the rule modus ponens, and
the critic will say that, sometimes at least, doing so is precisely the right
inference for him to make.

The proponent of modus ponens as an invariably correct rule of inference
will be quick (and right) to notice that our example turns on a diachronic
factor. There is a passage of time from ¢ to t+1, and beyond. He may
wish to insist that modus ponens is a correct rule of inference only under
monochronic assumptions. That is, if at some same time a reasoner holds
A and holds "If A then B7, then it is always correct at that time to infer B,
and if diachronicity be admitted at all, to infer B at any time just after any
time at which he holds A and "If A then B concurrently. The deductive
theorist’s reply comes to little more than this: If a reasoner holds at some
t both A and "If A then B and if there is nothing that contra-indicates
the detachment of B just then, he should detach B. This is quite right, as
trivialities have a way of being, but it is not modus ponens.
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We shall return to this point in due course. Our purpose at present is to
make the preliminary point that, for various reasons, the very idea of stan-
dard logics of argument and inference is a challenged notion, whatever its
considerable appeal and its impressive historical bona fides. In the sections
to follow, we shall present representative versions of such theories. In doing
so, we shall make it a point to revisit these reservations from time to time.

Although our attention so far has been directed to systems of deductive
logic considered as theories of argument and inference, reservations, some
similar and some rather different, could be pressed against inductive logic.
We do not here develop these objections, but reserve them for the subse-
quent chapter. It is enough for now to know that they exist and that they
must eventually be taken into account. But in the little that we have said
to date, it becomes apparent that FDL must be understood from the out-
set as taking some liberties with their respective subject matters. Two of
these should be mentioned now. For one thing, contrary to what is often
carelessly said, it is a rare thing to find a system of logic that purports to
give anything but a partial account of its target concepts, though at times
it may be offered as a complete account of that part of them. For another,
it is entirely common for a theory of logic to misrepresent its subject mat-
ter, that is, to characterize it selectively and even to misstate certain of
its features. In this, logic joins the company of virtually every other the-
ory worthy of the name, whether mechanics, or population biology, or any
other. It is sometimes regretted by critics that logic doesn’t capture all the
finely-grained texture of reasoning in real life, or of reasoning “on the hoof”
as we might say. But it is naive to regret this as such. As with any theory
worthy of the name, the regret is justified or not depending on what is left
out and in what ways, and for what theoretical purposes real-life features
are over- or underdescribed. These, too, are matters that we shall keep an
eye on as we proceed, but it is well here to register a significant demurrer
from the co-founder of the modern logic of quantification, who holds that
there cannot be a logic of reasoning on the hoof, (Peirce [1992]).

2 HISTORICAL BEGINNINGS

It may seem odd, in a chapter devoted to 20th century orthodoxy in logic,
that we should pause to say something about Aristotle. This we do not out
of any sense of sentimentalism or misplaced historical enthusiasm. Aristotle
is a neglected logician these days. More’s the pity, since Aristotle’s logical
theory, especially the early account in the Topics and On Sophistical Refu-
tations, manages to touch upon — often inadvertently — a good many of
the issues dealt with in the present volume.

Aristotle originates his logical theory in the context of a richly developed
tradition of argumentative practice nourished by two main arteries. On the
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one hand there is the impressive record of Greek mathematics central to
which were workable conceptions of proof and of reductio arguments. On
the other, are the rhetorical traditions of the Sophists and the dialectical
transformations of them developed in the writings of Plato. The word “di-
alectical” and its cognate “dialectic” is multiply-ambiguous in early Greek
thought, as it is today in somewhat different ways. In the Socratic writings,
the idea is no better illustrated than by the notion of refutation or elenchus.
Refutations are a kind of reductio argument. The conceptual core of refuta-
tion is inducing an opponent to make concessions inconsistent with one of
his stated claims or theses. For this to happen, it is not necessary, and in
fact not desirable, that he be induced to say anything absurd or impossible,
(and so they need not be reductio ad absurdum arguments). It suffices that
what he says now cannot be true if what he said then (his original thesis)
is true. Conversely, if what he says now is true, his original thesis is not
true. It is easily seen that this form of argument closely resembles what
Locke, over two millennia later, would call the argumentum ad hominem.
Ad hominem arguments are those, said Locke, in which we “press a Man
with Consequences drawn from his own Principles or Concessions” (Locke
(1975, 686)).

Aristotle inherited this conception of argument and, with it, the problem
of determining the conditions under which a refutation succeeded or failed.
It is well to understand that Aristotle’s problem arises in the context of
everyday disputation, of arguments transacted by ordinary people about
the great tangle of issues that people are exercised by. Also of importance
is the point that not only are these arguments on the hoof, i.e., just as
they come in natural speech uttered in real life, but they are dialectical and
informal in senses that would be recognized and championed by many a
present-day theorist of argument and informal logician. They are dialectical
in the sense that they are interactive sequences of speech acts between two
(or more) parties produced in real time;?> and they are informal in the
sense that for the purposes of their representation and assessment there is
no pretense of restricting theoretical effort to the manipulation of logical
forms. (Although Aristotle employs schematic letters for terms, with the
aid of which syllogisms can be schematized, he himself has no doctrine of
logical form.)

One way of approaching Aristotle’s problem is to ask, “When one party
claims to have refuted another party, is there a principled way of determining
whether he has in fact?” Aristotle puts the same question in a slightly
different way. How, he asks, can we distinguish sophistical refutations from
the real thing: and it is to this question that the Topics, especially Book
VIII, and the On Sophistical Refutations are directed.

2 Aristotle himself had a more complex understanding of dialectic. See Woods and
Hansen [2001].
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It is a fateful question. It marks a transition in Aristotle’s thought from
a dominantly dialectical interpretation of arguments to something that can
only be thought of as generically logical. This last point requires a deft
touch. Aristotle did not himself call the new territory into which he was
moving by the name of logic. Nor did he apply this name to the mature
theory of the Prior Analytics.®> All the same, this is how the tradition
that extends from then to the present day thinks of this development in
Aristotle’s thought, namely, as the invention and development of logic, and
there seems to be no good reason to buck the tradition once we see in
appropriate detail what it was that Aristotle was up to.

Logic, as we shall now say, was invented by Aristotle to facilitate the
solution of a problem in dialectic. It is no more a part of dialectic than
a plumber’s wrench is a part of a sink. Just as no lover of sinks should
disdain wrenches for not being sinks, no lover of dialectic should disdain
logic for not being dialectic. Aristotle’s logical tool was designed, in the
first instance, to mark the distinction between good and bad refutations,
themselves clearly dialectical in character. If, as sometimes happens in such
cases, the tool took on an interest and achieved a dominance that eclipsed
the centrality of what it was a tool for, that doesn’t change the fact that
for Aristotle logic was introduced as the servant of dialectical argument.*

Intuitively speaking, one person’s refutation of another’s thesis succeeds
when the latter’s concessions to the former are inconsistent with the latter’s
own thesis. The heart of the problem is to specify conditions on inconsis-
tency. It is the heart of the problem, but not all of it, as we shall presently
see. Aristotle introduces his logical tool with the following words; they
constitute a definition of syllogism.

[A] deduction [syllogismos| rests on certain statements such that
they involve necessarily the assertion of something other than
what has been stated, through what has been stated (On So-
phistical Refutations 1, 165* 1-3).

As the account develops, it becomes clear that syllogisms are finite sequences
of propositions, with the terminal members their conclusions and the pre-
ceding members their premisses. Scholars are in agreement that it is true
by the definition of ‘syllogism’ that

1. no such sequence is a syllogism unless its premisses jointly necessitate
its conclusion,;

2. no such sequence is a syllogism if it contains idle premisses;

3The term “logic” seems to have originated with Alexander of Aphrodisias in the third
century A.D.

4This is disputed. See Hintikka [1987]. For a dissenting opinion, see Woods and
Hansen [1997], with a reply by Hintikka [1997].)
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3. no such sequence is a syllogism if its conclusion repeats a premiss.

Also of note are two further constraints. In modern systems, the property
of validity is monotonic. That is, any valid argument stays valid under arbi-
trary supplementation of its premisses arbitrarily many times. On the other
hand, since syllogisms can’t tolerate idle premisses, the property of syllo-
gisity is non-monotonic. Similarly, whereas a circular argument is trivially
valid, syllogisms cannot abide circularity.

Analysis of the structure of syllogisms gives reason to think that addi-
tional constraints apply: that syllogisms must be consistently premissed;
that syllogisms can have at most one conclusion and at least (and, in some
accounts, at most) two premisses; that a logical truth cannot be the con-
clusion of a syllogism; that the premiss of a syllogism must be relevant to
the conclusion; and so on. On the other hand, how closely Aristotle’s con-
cept of necessitation resembles the modern notion of logical implication (or
entailment) is a matter of contention,® but there is quite general agreement
that necessitation is primitive in Aristotle’s logic (Lear [1985, 8]).

It is well to pause over an important ambiguity. Beyond his interest in
disciplining the distinction between good and apparent refutations, Aristotle
regarded his logic of syllogisms as the theoretical core of a wholly general
theory of argument. But syllogisms are arguments. Does Aristotle think
that syllogisms are all there is to arguments? No. Two senses of argument,
have surfaced. In addition to arguments on the hoof (concerning which there
is a process-production distinction), we now have the technical notion which
is exhausted by sequences of propositions satisfying the syllogisity conditions
and nothing more. Arguments in this second sense are not arguments on
the hoof, but Aristotle thinks that they are indispensable to the systematic
analysis of arguments on the hoof.

There is another ambiguity which requires flagging. Aristotle’s word for
syllogism (syllogismus) is ambiguous as between argument and reasoning
(or inference), as is our word “deduction”. There is reason to think that
Aristotle intended the ambiguity. Although he would acknowledge that
there is a world of difference between arguments on the hoof and inferences
on the hoof, Aristotle appears to think that there were resemblances enough
to justify making the theory of syllogisms the theoretical core not only of a
general theory of real-life argument, but also of a general theory of real-life
(strict) reasoning.

To assist with the task of distinguishing good (or real) refutations from
bad (or phony) refutations, Aristotle invokes a dialectical context. As we
started to say, in a refutation there are two participants, the proposer, A,
of a thesis, T, and the would-be refuter of it, Q). Once having proclaimed T,
it is A’s role to answer @’s questions honestly and straightforwardly. For
his part, @’s questions must be answerable in Yes or No form, and must

5See, for example, Woods [2001] for a “proto-modern” answer to this question.
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be asked one at a time and clearly. As A produces his answers, @ keeps a
record of them. From this record he is free to select any consistent subset
as premisses of a syllogism. If A is able to complete a syllogism whose
premisses are A’s answers and nothing else, and whose conclusion is the
contradictory of A’s thesis T, then the syllogism in question is a refutation
of T.

We see here an interesting mingle of dialectical and logical features. Al-
though the refutation itself is a logical structure, or anyhow as purely logical
as any syllogism is, its premisses must have a dialectical origination, just as
its conclusion must contradict a dialectically situated thesis. In so saying, it
is crucial to keep in mind that a syllogism is itself an entirely non-dialectical
entity. It is a plurally-membered sequence of propositions in which the pre-
misses non-superfluously and non-circularly necessitate the conclusion. For
these conditions to be met, neither the provenance of the premisses nor the
context of their utterance need be taken into consideration. That is, syllo-
gisms are context-free and need not have actually been voiced or advanced
by any human arguer. In contrast, a syllogism will not count as a refutation
of a person’s thesis T unless its premisses are drawn exclusively from that
person’s concessions under press of the other party’s questions. We may say,
then, that a refutation is a syllogism lodged in a certain dialectical setting.

We begin to see how certain misconceptions arise. If we ask whether the
theory of syllogisms is a theory of argument, the answer is straightforwardly
affirmative if “argument” is taken in its product sense as a finite sequence of
propositions. So construed, a theory of syllogisms is a theory that specifies
syllogisms as a proper subset of such sequences; that is, syllogisms would be
those very sequences that satisfy certain constraints, including in particular
those that we have already listed here. On the present conception, an
argument is any finite sequence of propositions, and a syllogism is any such
that satisfies the appropriate constraints, e.g., non-superfluous, non-circular
necessitation of the terminal proposition by those that precede it.

Even for this rather abstract and bloodless conception of argument, the
theory of syllogisms would be at most a subtheory of any would-be theory of
argument. A minimal general theory might get away with tracking a basic
property of argument-correctness by invoking the necessitation condition.
Those satisfying it could be forwarded as truth-preserving sequences and
the distinction at hand between the minimally good and the minimally bad
could be redeemed as turning on whether the arguments in question preserve
the truth of premisses or not. Satisfaction of the necessitation condition is
only part of the story of syllogisms. We could, if we liked, reserve the name
of argument for something more robust, and proclaim as a condition on
such arguments satisfaction of either or both of the conditions of premiss
non-superfluousness and non-circularity. Upon doing so, it would be both
right and yet hardly pointful to say that the theory of syllogisms was not a
theory of argument in all variations of the bloodless conception. It is right
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in as much as it is not a theory of argument validity; and it is beside the
point in as much as it is never aspired to give such an account.

If “argument” is available to the theorist as a more or less bloodless no-
tion, how much more attractively does it forward itself as an n-person social
interaction involving an ordered exchange of speech acts set in a context,
and irreducibly influenced by it? These are arguments on the hoof whose
description, to say nothing of assessment, requires the application of rules
that greatly exceed the reach of logic, even generously construed. Such
rules include the whole procedural canon of who speaks when and in what
manner, in relation, over all, to what issue. If the theory of syllogisms could
not dream of being a complete theory of bloodless argument in every log-
ically relevant variation, how much greater its incompleteness as a theory
of argument on the hoof? If a syllogistic logician were to claim comprehen-
siveness with respect to arguments on the hoof he would be naively wrong,
and deservedly the object of a critic’s reproof.

Aristotle was as aware of these things. What is interesting about his
logic of syllogisms is the extent to which he tries to bring bloodless and
on-the-hoof arguments into closer theoretical alignment. In this respect,
Aristotle anticipates a boast made by C.I. Lewis about his own logic of
“strict” implication, which (he said) may claim

[as a] primary advantage over any present system ... that its
meaning of implication is precisely that of ordinary inference
and proof. (Lewis [1912, 531])

It might be questioned how a logic of the implication relation could begin
to capture even the rudimentary nuances of proof and of inference. Beyond
the minimal claim that Lewis’ systems make possible the characterization
of deductive or strict validity for proofs and for inferences, it is certainly not
true that the logic of strict implication tells us anything more about proof in
the ordinary sense or about inference either. Aristotle tries to do better than
Lewis, if the anachronism might be forgiven. Aristotle’s logic is not a logic
of implication. As we have noted, implication is primitive in his writings.
Aristotle’s syllogistic structures are carefully contrived with certain features
of arguments on the hoof clearly in mind. Arguments on the hoof are low-
finite exchanges, and the non-monotonicity of syllogisity mimics this feature.
In constructing an argument on the hoof for a desired conclusion, the actual
reasoner does not make arbitrary searches of arbitrarily large sets of putative
premisses. He attempts to economize his effort, and so is drawn to the task
of working out premisses relevant to his purposes. Whatever this amounts
to in fine, the real-life arguer is disposed to avoid, or at least minimize,
the deployment of superfluous premisses, another echo of syllogisms. Nor is
the arguer-on-the-hoof satisfied with a deduction whose conclusion merely
repeats a premiss. Valid though the deduction is, it is not in any sense a
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proof or argument for that conclusion, a furtherfact that Aristotle captured
in his account of syllogisms.

It could fairly be said that arguments on the hoof imbibe some of the fea-
tures of ordinary inference or belief-revision. Finite, nonmonotonic, linear,
relevant and non-circular®: ordinary inferences and syllogisms come to the
same thing on some scores, as we have said. To the extent that arguments
on the hoof and ordinary inferences also come to the same thing on those
scores, it can be seen that Aristotle was able to capture more of argument
on the hoof than any theory of implication could imagine itself doing. It is
precisely so that Aristotle has the greater claim than Lewis upon inference
and proof in their ordinary meanings.

Refutation, again, is a case in point. In Aristotle’s account, a refuter
of any opponent’s position fails in his purpose unless he is able to derive
syllogistically the contradictory of that position from his opponent’s own
concessions, which the refuter is free to use as premisses in the construction
of his refuting syllogism. The modern theorist of the implication relation has
nothing like this to offer. He can offer only that a refuter must construct a
valid argument to that same conclusion from those concessions, and for this
it suffices to induce the opponent to give inconsistent answers, from which
(classically) every validity follows. However we characterize the result of
such an exchange, it is stretching things utterly to say that it constitutes a
refutation of the particular proposition that chances to be the opponent’s
position or thesis.

Standard systems of logic are those that track the concepts of logical
truth and implication (or, for bloodless arguments, argument validity). As
they stand, they will not have much to say about arguments on the hoof,
or so it would appear. That alone is some reason for not allowing standard
systems to stay all that standard, as witness 20th century developments in
relevant logic (Anderson and Belnap [1975] and Anderson et al. [1992]).
Relevant logic falls outside the plan of the present chapter, but a small ob-
servation can be made in passing. In virtually all going systems of relevant
logic, the theorist does one of two things, and sometimes both. Either he
adds a constraint upon the implication relation so as, among other things,
to avert the standard theorem that an implication with inconsistent an-
tecedents is logically true for any proposition as consequent. Or, he adds
a constraint upon what to count as a deduction from hypotheses, so that
a deduction that fails to use all those hypotheses is not a valid deduction
from them. In the first case, he disarms our complaint that a refutation
of any thesis could be contrived trivially from any set of inconsistent con-
cessions. In the second case, he is in effect disclaiming the monotonicity of
validity. Each time, the further constraint has, or can be given, an Aris-
totelian motivation. But it is Aristotelian motivation with a difference. The

6 Also intuitionistic, since a further condition on syllogisms bans multiple conclusions.
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relevantist’s constraint, whether on implication or on deductions from hy-
potheses, is meant to redeem the implication relation and the structure of
deductions from premisses. That is, the relevantist is bound to say that
unconstrained implication isn’t implication and that unconstrained deduc-
tions from premisses aren’t valid deductions. Aristotle need not say this and
almost certainly doesn’t believe it. By his lights, unconstrained deductions
from premisses are valid. What they aren’t is syllogisms. Readers may wish
to ponder whether we have here a difference that makes a difference.”

3 DEDUCTIVE LOGIC

Though originating with the Stoics, propositional logic emerged in mod-
ern dress in the writings of George Boole (1815-1864). Boole invented a
‘calculus’ in which infinitely many argument forms of arbitrary complexity
are valid (Boole [1847, 1854]). Other precursors are Augustus De Morgan
(1806-1871) and Charles S. Peirce (1839-1914). Aristotle’s syllogisms are
finite sequences of propositions. “Proposition” is a technical term for Aris-
totle. In modern terms, an Aristotelian proposition is a statement whose
only logical particles are quantifier expressions and expressions for some-
thing like term complementation. Thus, for Aristotle neither

Socrates is a man or the cat is on the mat
nor
If Harry punched Bill then Mary will be angry

can be constituents of syllogisms.

In a propositional logic, there are two main departures from what
modern readers will now recognize as Aristotle’s quantifier-negation-copula
fragment of some “more capacious logic”, as one commentator has said —
something approximating to the modern logic of quantifiers, or the calculus
of predicates. In propositional logic, quantifiers, terms and the copula are
suppressed; and connectives other than negation are admitted. (Barnes
[1994, vxi]) Though quantifiers, terms and the copula are suppressed they
are suppressed in different ways. For reasons that will later become clear,
no sentence on the hoof containing a quantifier has a representation in
propositional logic. On the other hand, sentences containing terms and
the copula can be represented in propositional logic, but their mode of
representation is such that neither their terms nor the copula is reflected in
the representation.

The representation of “Mary is angry” is by way of an atomic sen-
tence of propositional logic. Any atomic sentence to which “Mary is an-
gry” might be assigned is one of up to infinitely many propositional letters,

“Concerning which see Woods [2002].
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P1,P2,...,Pn.... For ease of exposition, it is useful to supplement the set
of atomic sentences with p, ¢, r, s, t, etc. The minimal constraint on sen-
tences on the hoof that are eligible for representation as atomic sentences
of propositional logic is that they must be connective-free; that is, they
must not contain expressions such as “it is not the case that” (or negative
prefixes such as “im” or “un”), “or”, “and”, “if...then”, and the like. As
will become apparent, this is a far from satisfactory characterization of the
sorts of sentence on the hoof that have atomic representations in proposi-
tional logic. But the main idea is clear enough to be getting on with. We
turn now to an elementary system of propositional logic, the propositional
calculus PC.

PC is a formal grammar with a set of interpretations. The grammar
stipulates a vocabulary, and then builds up from it compositionally a set of
sentences of PC and a set of sequences of PC-sentences. With the grammar
fixed, the set of interpretation and function relations is displayed in such a
way as to make possible both the characterization and effective recognition
of a stock of target properties. For PC sentences these include the properties
of tautologousness, contingency and self-contradiction. For PC-sequences,
target properties include argument-validity, and deducibility; and, for sets
of PC-sentences; consistency. Beyond these are properties of properties,
e.g., the decidability of validity and the compactness of deducibility (see
below). Then come properties of sets of PC-expressions, such as functional
completeness, and system-wide properties, such as completeness and sound-
ness (see below). In our exposition here we keep to an elementary account.
Our purpose is to expose enough of the logical structure of PC to make its
contribution to a theory of argument and of inference a judgeable matter.

The convention by which connective-free elementary sentences on the
hoof are represented in propositional logic by sentence-letters gives rise to an
elementary notion of sentential (or propositional) form. We may say that the
simple atomic sentences p, q,r,...,p1, P2, - .- reflect the forms of the natural
language sentences whose representation they are. This is accomplished in
two ways. First, by their atomicity the p; indicate that what they represent
have the form of simple unquantified sentences. Second, the fact that the
p; themselves have no internal grammatical structure indicates that the
internal grammatical structures of the simple unquantified sentences which
they represent are deemed for the purposes at hand to be logically inert.
Thus the p; represent the form but not the content of quantifier-free simple
sentences of English.

In addition to the atomic sentences, the vocabulary of PC includes the
connectives, ‘not’, ‘and’, ‘or’, ‘if...then’ and ‘if and only if’, and the punctu-
ators, left parenthesis ‘(* and right parenthesis ¢)’, and the sequence markers,
‘(" and ‘)’. It is well to note that the Greek upper case symbols ®, ¥ are
not expressions of the language of PC. They belong to English and, as here
used, are variables ranging over sentences or sentence-forms of PC. English
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is the language in which we are currently describing the language of PC. So
English is, among other things, language about language. We acquiesce in
an etymologically questionable convention and shall say that English is the
metalanguage for PC, whose own (formal) language is the indexformatin
rulesobject language of PC. Accordingly, in our Formation Rules ® and ¥
are metalinguistic variables that range over expressions constructed out of
PC’s vocabulary. In those same rules, the connectives occur autonymously,
that is, as names of themselves. It is also desirable to have a policy for
the mix of names of connectives and metalinguistic variables, ®, ¥, y, etc.
One such is Quine’s method of quasi-quotation. We will explain this a short
paragraph hence.

The elementary grammar of PC is a set of Formation Rules which when
applied to the vocabulary produces an effectively recognizable set of PC-
sentences. The Formation Rules provide as follows: that an atomic sentence
of PC is a sentence of PC; that if ® is a sentence of PC so too is "not-®;
that if ®, ¥ are sentences of PC so too are "® and ¥, "® or ¥, Tif &
then U7, "® if and only if U7, and that nothing else is.

How do we interpret expressions such as

"not-®"
"® or ¥

and so on? What, in particular, is the role of the symbols ‘"’ and ‘™", or
Quine-corners, as they are also called? (Quine [1950]) The variables ‘® and
‘U’ are metalinguistic variables. They range over formulas of PC but are
not themselves PC-formulas. Consider the Formation Rule

R;  If & is an atomic sentence of PC, then so too is "not-®7.

The corner-quotes function selectively. They quote the contained PC-
expression but do not quote the metalinguistic variables. Thus R; says
that for any entity in the range of the variable, if it is an atomic sentence of
PC (no quotation of any such formula, so far), then the result of prefixing
to that same sentence (no quotation, yet) an occurrence of the connective
‘=’ (quotation!) is likewise a sentence. Similarly for

Ry If ® and ¥ are PC-sentences, so too is "® or ¥™.

Here the rule says that for any entity in the range of the left-variable and
any entity in the range of the right-variable are such that if they are PC-
sentences the same is true of the result of inserting an occurrence of ‘or’
between those two sentences in that order.

In the eztended or full grammar of PC, additional rules come into force.
One is the sequence-rule: If ®, ..., & are PC-sentences, then (®y,...,®,) is
a PC-sequence (of sentences). The others are Transformation Rules which
are rules for constructing PC-sequences in such a way that some target
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property (e.g. the property of being a theorem) is transmitted from initial
member(s) of the sequence to its terminal member. Transformation rules
are discussed in a later section.

The grammar of PC, whether in its elementary or full dress, extends the
notion of logical form in rather natural ways. The full notion of sentential
form in PC is captured recursively by saying that when ®, ¥ are sentence-
forms, atomic or molecular, so too are : "not-®7, "not-¥7', "® and ¥, TP
or U1 Tif ® then U7, "® if and only if ¥, and nothing else is. Thus in PC
a sentence is a sentential form.

Sequence-forms, in turn, are finite sequences of sentence-forms. If @,
... ®,, are sentential-forms of PC, then (®,...,®,) is a sequence-form of
PC, and nothing else is. If (®4,...,®,) is a sequence-form generated by
the Transformation Rules of PC and if ®; has the theoremhood property,
then (®q,...,®,) is a proof-form (or for lexical relief, a formal proof) of
sentence-form ®,, from sentence-form ®;.

Axiomatic approaches to propositional logic are wholly syntactic. (Frege
[1879], Hilbert [1923]) There are also variations of which the best-known
is the natural deduction approach. It has advantages that axiom systems
lack. One is that it operates without the necessity of having to specify (and
justify) a distinguished set of axioms. Another is that it permits the testing
of arguments for validity in ways that are said better to resemble patterns of
reasoning on the hoof (e.g. Kalish and Montague [1964]). Modern natural
deduction approaches originated independently with Gentzen [1934] and
Jaskowski [1934] and exist in several forms: e.g., Mates [1965], Fitch [1952],
Kalish and Montague [1964], Lemmon [1978], Prawitz [1965], Quine [1950],
Suppes [1957], Thomason [1970], Tennant [1978] and van Dalen [1980]. A
third approach is that of the sequent calculus (Gentzen [1934]. We shall
here expound the truth table method.® An axiomatic approach will lightly
be sketched in a subsequent section.

PC is a sequence {Grammar, Set of Interpretations) or (G, I) for short.
Here ‘G’ is ambiguous as between the elementary grammar and the full.
Until further notice, we shall confine our remarks to the elementary gram-
mar. Iis a set of interpretations i of G. An interpretation of G is a function
from the atomic sentences of G to a pair-set of objects called truth-values.
By a natural convention, the truth-values of PC are identified as truth (T")
and falsity (F'). To facilitate this requirement of joint exhaustiveness it is
necessary to read ‘false’ as ‘not true’. In strictness, any pair of objects
{X, Y} will do as truth-values in PC provided that every sentence-form is
assigned either X or Y and none is both.

In giving its interpretation of G, each ¢ € I assigns to each atomic
sentence-form of PC one or other of T, F. The assignments to the total

8 Alternatives to the truth table approach include various versions of the semantic
tableauz method, originated by Beth [1955] and Hintikka [1955], as well as the fell swoop
technique developed by Quine [1950].
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set of the atomic sentences are 2"-many, where n is the number of atomic
sentences of PC. Thus I provides an exhaustive set of distinct total truth-
value assignments to the set of atomic sentences of PC.

We now introduce the concept of a valuation. A valuation v is an exten-
sion of an intepretation which is defined on all sentences of PC. Valuations
in PC are subject to the following conditions.

Where @ is a sentence-form of PC, it is customary to write ‘v(®) = £1°,
which is read as “the truth-value of ® is 7” (or F' as the case may be).

Then, if v(®) = T,v(not-®) = F, and if v(®) = F,v(not-®) = T. That
is, @ is true if and only if "not-®7 is false. "® and ¥7 is true if and only
if @ is true and ¥ is true. "® or ¥ is false when both ® and ¥ are false
and is true otherwise. "If ¥ then ¥ is true except where ® is true and ¥
is false. "® if and only if ¥ is true except where ® and ¥ have different
truth values. Schematically,

e v(®) =T if and only if v(not-®) = F
e v(® and ¥) =T if and only if v(®) =T and v(®) =T

e v(® or ¥) =T if and only if at least one of the following propositions
holds: v(®) =T; v(¥) =T

e v(if ® then ¥) =T except where v(®) =T and v(¥) = F.
e u(® if and only if v(®) = v(T)

From these interpretation-rules it is easy to see that non-atomic or molec-
ular sentences of PC are true or false depending entirely upon the truth
or falsity of their atomic constituents. In every case the truth-value of a
PC-sentence is uniquely determined by, or is a function of, the truth values
of its atomic sentences and hence, given an interpretation i € I there is ex-
actly one valuation v that extends i (i C v). In view of this, the connectives
of PC have come to be called “truth functional” connectives, and PC itself
is called truth functional logic or the logic of truth functions.’

With the truth-value rules ready to hand, a number of target properties
of PC become explicitly definable. If, for example, ® is a sentence-form of
PC then @ is a logical truth, or tautology, if and only if ® is true for each
truth-value assignment to all its atomic constituents. @ is contingent if and
only if it is true for at least one such atomic-assignment and is false for at
least one other such assignment. ® is a self-contradiction if and only if it is
false for all atomic assignments.

9PC is functionally complete. That is, any truth function of n-tuples of PC-sentences
is definable in terms of the present five. These in turn reduce to one or other of the pairs
{‘not’, ¢ and ’}, {‘not’, ‘or’} or {‘not’, ‘if...then’}. We shall demonstrate this claim in
due course.
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Logical truth in PC is a fruitful notion.'® Not only does it explicitly char-
acterize the intuitive notion of a proposition which could not in any sense
be false, but it makes possible (what Aristotle’s logic lacked) an explicit def-
inition of argument-validity. We here re-introduce our bloodless conception
of argument. Let us say that any finite sequence of PC-sentence forms is
an argument-form. Thus < (®4,...,®,) is the argument-form in which &,,
is the conclusion and the members preceding it are premisses. For every
argument-form in PC there is a conditional (or “if...then”) sentence-form
which corresponds to it uniquely. If ({®1,...,®,_1}, ®,) is argument-form
then its corresponding conditional is (If &1, A ..., A®,_1, then ®,). Then
(®1,...,®,) is valid and if and only if (If ®;,A..., AP,y then ®,) is a
tautology.

It is always possible to determine whether a PC-sentence-form is a tau-
tology, and possible, as well, to make these determinisms infallibly, mechan-
ically and in finite time. This being so, the property of tautologousness is
decidable or effectively recognizable in PC. Since an argument-form is valid
in PC just when its corresponding conditional is a tautology, validity too
is decidable in PC.

The best-known procedure for checking for the tautologousness property
in PC is the truth-table method. We will here illustrate the method intu-
itively and informally with two examples. Consider the two PC sentences

1. If (p1 and (if p; then ps)), then po
and

2. pyg if and only if (ps and p1o).

Beginning with (1), we construct its truth-table as follows. We set out a
top row of the table. The top row is divided into a left part and a right. In
the left part, the atomic sentences of (1) are set out, usually in the order of
their occurrence as in (1). In the right part, (1) itself is displayed. Thus

| Left Right |
Top row || p1 p2 | If (p1 and (if py then
p2)), then po

We must next calculate how many additional rows are required. This
done by the 2"-rule, where n is the number of atomic sentences in (1). In
this case, there are two; so the number of rows is 22 or four. Whereupon,

10A hefty abundance of tautologies can be found in Kalish and Montague [1964, 80-84].
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| Left Right |

Top row || pr p2 | If (p1 and (if py
then p;)), then p,

Row 1
Row 2
Row 3
Row 4

Next is required a mechanical method for assigning to the atomic p; and
p2 each of their distinct truth-value assignments. One way of doing this is
as follows. In the column under the left most atom in Left (i.e., under py),
enter 1" and alternate with F' every once in each succeeding row. Then, in
the column under ps, enter 7' in the first two rows, and vary equally with
F every two times (i.e., in every succeeding two rows). This gives

| Left Right |

Top row || pr p2 | If (p1 and (if py
then py)), then p,

Row 1
Row 2
Row 3
Row 4

] | les o
S e o las

The method of atomic assignments easily generalizes. In the left most
column begin with T and vary with F every once until 2" entries have been
made in that column. For any other column, enter half the number of of
T's entered in its neighbouring column to the left and vary with F's at twice
the rate of the variations of T's and F's in the neighbouring column.

With the atomic assignments in place, and using our definitions of the
connectives ‘and’ and ‘if ...then’, we assign row by row a truth value to
constituent sentences of (1). This is done by way of the length rule. We say
that the length of a PC-sentence is the number of symbols comprising it (not
counting parentheses or subscripts). In (1) the atomic sentences p; and py
are of least length. The length rule provides that assignments in the rows in
Right start with sentences of least length, the next-least length, then next-
next-least length, and so on until one has a truth-value for all of (1) in the
row in question. Where a sentence has more than one constituent sentence
of any given length, the length rule stipulates that they be evaluated in
the order of their appearance, left to right, in the complete sentence whose
truth-table is under construction. In our example, the length rule gives us
a complete table:
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| Left Right |

Top row || pr p2 | If (p1 and (if py
then p»)), then p,
Rowl | T T |T TTTTTT
Row2 || F T |F F FTTTT
Row3 | T F|TFTVFFTF
Rowd || F F |F F FTFTF

The numbers at the feet of the columns indicate the order of construction.
Statement (1) is true in every row of its truth-table. In each row, truth-
value assignments are made to the atomic constituents of (1) and, given the
definitions of the connectives of (1), an assignment is made to it. We may
say then that each row gives a interpretation of the atomic constituents.
Since in each row, (1) is true given the atomic assignments in that row,
we see that (1) is true for all it atomic assignments. Since assignments to
atomic sentences that do not occur in (1) make no difference, this gives an
alternative characterization of tautologousness: ® is a tautology of PC if
and only if it is true for every valuation on its atomic consistents.

Given that our rules of truth-table construction provide that every PC-
formula has a unique and effectively recognizable truth-table, we may also
say that the truth-table method is a decision-procedure for tautologousness
in PC, hence here too for argument-validity in PC. Our second example is
more briefly dealt with.

| Left Right |
Top row || ps  ps pio | pa if and only if (ps
and pio )

Rowl (| T T T |TTTTT
Row2 || F T T FFTTT
Row3 (| T F T |TFFVFT
Rowd4 || F F T FTFVFT
Rows (| T T F |TFTFF
Row6 || F T F |FTTFF
Row?7|(| T F F |TVFFFF
Row8 | F F F |FTFFF

Whereas sentence-form (1) had just two atomic consistents, (2) has three.
So our 2"-rule requires that its truth-table have 23 or eight rows. In each
column, the rule for the arraying of Ts and Fs works as before, except
that in each column the rule must operate long enough to generate 22 = 8
entries. Another difference occasioned by the increase from two to three
atomic consistents is that under the third, p;g, we must enter four Ts (half
the number entered under p;) and vary equally with Fs every four times
(twice the variation rate under ps). If we had had a fourth atom, occurring
fourth in the sentence whose truth-table is in question, say pi7, then the
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rule at hand would have displayed T's and F's, for a total of sixteen rows, in
the following pattern for the fourth constituent:

S
]

] B | s st e ol Mo o | | s e e e e | M

With rows understood to give interpretation of atomic constituents, we
see that (2) is true on some interpretations and false on others; i.e., that
(2) is contingent and not a tautology. It is also apparent that “one-half” of
the biconditional sentence that (2) expresses (denoted by the connective ‘if
and only if’), namely,

(2%) If py then (ps and pig),

is also contingent. Hence the argument-form to which it uniquely corre-
sponds, (If ps then (ps and p1g)), is not valid, but invalid. (The same holds
for the other half.)

We have been describing the operation of our set of interpretation func-
tions ¢ on the elementary grammar G of PC. Because every PC-sentence
has a unique truth-table (cf. Kleene [1952, 21ff]), T permits the effective
recognition for arbitrary G-structures of the following properties: for sen-
tences: tautologousness, contingency and self-contradiction: for sequences,
validity and invalidity of argument-forms; and for (finite) sets of sentences:
consistency and inconsistency. (For let > be any set of PC-sentences. Then
>~ is consistent if and only if for at least one valuation on the atomic con-
stituents of the member sentences of > all member sentences are true). So,
again, PC is decidable with respect to its target properties ;. For any such
m; it is possible to determine infallibly, mechanically and in finitely many
operations whether a PC-structure has ;.
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Concerning argument validity (or entailment), PC also has the Deduction
Property: if (®,...®,_1,®,,¥) is valid then (®y,...®P,,_1, if @, then ¥
is valid. This is a form of the Deduction Metatheorem. It is an aid, if only
it were needed, in recognizing valid entailments in PC. PC also answers to
Interpolation Metatheorem: If (®, ¥) is valid, there exists a formula x such
that (®,x) is valid and (x, ¥) is valid, where every atomic sentence in y
likewise occurs in ® and ¥)(or x = p* and not p” or x = ‘p, or not p’)!!
(Craig [1957]).

We close this section with a brief anticipation of something that will
deal we will deal with more fully when we discuss formalization of natural
language constructions, in section 1.6. All that we say for now is that
for technical reasons we now drop from PC the connectives, ‘not’, ‘and’,
‘or’, ‘if...then’ and ‘iff and only if’, and replace them in order with the
autonymous expressions =, A, V, D, and =. We also stipulate that in all
strictness our truth table definitions of the connectives are definitions of this
second bunch. The connection with their natural language counterparts is
discussed two sections hence.

4 AN AXIOMATIZATION OF PC

In our treatment of PC so far, the target properties of PC are delivered
by its syntax (e.g., the property of sentencehood) or by its truth-tabular
provisions (e.g., the property of logical truth or tautologousness). In the
present section we shall briefly indicate a way of generating in a wholly
syntactic way exact counterparts of the logical properties generated by PC’s
truth-tabular apparatus. Properties generated in this latter way are said to
be semantic properties.

It is provable that there is an exact concurrence between these semantic
properties and their merely syntactic counterparts in the axiomatization of
PC. In A(PC) the counterpart of the property of tautologousness is the
property of theoremhood. The theorems of A(PC) are precisely those PC-
sentences derivable from the axioms. By the Completeness Metatheorem,
every tautology is a theorem (or is provable). By the Soundness Metathe-
orem, every PC-provable sentence (or theorem) is a tautology in PC. We
will demonstrate the Soundness Metatheorem below.

In A(PC) truth values have no role. Target properties are specified by
adding to the existing grammatical rules of PC some additional grammat-
ical rules and definitions. One of the important features of A(PC) is its
capacity to generate logical properties just by manipulating grammatical
forms.

A(PC) arises from the grammar of PC in the following way. We intro-
duce first a finite set of axioms. Axioms are understood in a technical way.

1Or x =L or x = T where L= Falsum (or “bottom”) and T = verum (or “top”).
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They are introduced by stipulation, and they do mot carry this ordinary
semantic meaning of being self-evidently true. They are peices of syntaz.

Azioms of A(PC)
1. pD>(¢Dp)
2. p2(g>1)2((p2g)DpD1))

3. (=pD —q)D(¢gDp)

The next step is to specify a finite set of transformation rules. Transfor-
mation rules (sometimes and misleadingly called “rules of inference”) when
applied to axioms produce theorems; and when applied to theorems produce
more theorems, and so on. Thus the set of theorems of A(PC) is said to
be the deductive closure of the A(PC)-axioms under the transformation
rules. Here, too, the term “theorem” is a technical one. It carries none of
the ordinary semantic meaning of a “demonstrated truth”. Theorems, like
axioms, are peices of syntax.

Transformation Rules of A(PC)

R1. From ® and "(® D ¥)7, it is permissible to derive P.
(Modus Ponens)

R2. From @, it is permissible to derive the result of substituting a sen-
tence ¥ for an atomic sentence in @, in all its occurrences.
(Substitution)

We are now able to characterize proofs in A(PC).

Proof A proof in A(PC) is any finite sequence of PC-sentences each
member of which is either an axiom or can be derived from preceding mem-
bers of the sequence by applying a transformation rule.

Now for theorems.
Theorem A theorem of A(PC) is the terminal member of any A(PC)-proof.

We are here giving only the briefest glimpse of the basics of an axiomatic
system. In the interests of space, we shall not take the time to study tech-
niques for the construction of proofs. There is a plethora of accessible
elementary accounts of this. (Woods [2000]) However, as mentioned, we
shall demonstrate that A(PC) satisfies the Soundness Metatheorem (see
just below).
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5 TWO METATHEOREMS

We now give the reader a glimpse of the metatheoretical potency of PC.
A theorem of PC is a PC-sentence that is either a PC axiom or is in the
deductive closure of the PC-axioms. On the other hand, a PC-metatheorem
is a sentence of English which states some deomonstrable fact about PC
(not in it), where the demonstration of that fact is likewise constructed in
English (or whatever home language the theorist is using). We shall here
demonstrate the Functional Completeness Metatheorem and the Soundness
Metatheorem. The first reports of a truth-functional (or semantic) fact; the
second reports a combined fact about semantics and syntax.

Functional Completeness
Any truth functional connective of abitrarily many places can be replaced
without relevant loss by either of the pairs {—, A}, {—, V}.

Metaproof By the construction rules of truth tables, every truth functional
connective has a defining truth table. Since PC-sentences are of finite
length, every PC-truth table is finite.

Let K be an abitrarily selected truth functional connective of
arbitrarily many places (dyadic, triadic, ..., n-adic, ...). Let M
be the defining truth table for K. Let K-® be the formula of the
defining truth table.

There are three cases to consider.

Case one. There is no row of M in which ® comes out true. In that
case, ® is false for every valuation, and so has the same truth conditions as
(T A—-¥)". Thus any K-sentence is equivalent to a {—, A}-sentence. K is
eliminable in favour of {—, A}.

Case two. There is no row of M in which ® comes out false. In that
case, ® is true for every valuation, and so has the same truth conditions of
T(T Vv -®)". Thus any K-sentence is equivalent to a {—, V}-sentence. K is
eliminable in favour of {—, V}.

Case three.  For some rows of M ® comes out true, and for others it comes
out false. Consider now any row in which ® comes out true. In that row
the atoms of ® will be either true or false. Define a literal of PC as any
atom or its negation. Now construct conjunctions of the literals in that row
according to the rule that if an atom is true in that row then the literal is
that atom, and if an atom is false in that row then the literal is its negation.
Repeat the same construction of conjunctions of literals in every other row
of M in which ® comes out true. Let C), be any such conjunction, with the
subscript n denoting the number of rows in question.

The characteristic formula CF of M is the disjunction of the Cj, that is,
the disjunction of the conjunction of literals in each row in which ® comes
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out true. The characteristic formula thus gives the truth conditions for the
formula ® of the defining matrix M. But ® is any arbitrarily selected K-
sentence, and CF is truth conditionally equivalent to it. Since CF requires
no connectives other than {-, A, V}, then K is eliminable in favour of that
trio.

Having shown that any truth-functional K is eliminable in favour of {-,
A, V}, it suffices to show that {—, A, V} is eliminable in favour of either
{=, A} or {—, V}. This is done by truth values that demonstrate the De
Morgan equivalences:

1. (‘I’ AN \If)(—> —|(—I‘I> \% —|\Il)
2. (‘I’ \% \If)(—> —|(—I‘I> AN —|\Il)

We also have it that the pair {—, D} suffices for complete truth functional
expressive power. By the so-called implication law, any sentence "(® D
U)7is truth conditionally equivalent to "(=® V ¥)7 which, in turn, by De
Morgan’s Law is truth conditionally equivalent to "—(® A =)™

To demonstrate soundness, we introduce some needed definitions.

Satisfiability A set of PC-sentences is satisfiable iff there is a valuation
such that all its member-sentences are true.

(Note, that A(PC) structures can have semantic properties. But they can-
not be provided or demonstrated by A(PC) itself. A(PC) and PC have
exactly the same sentences, and we already have it that every PC-sentence
is either true or false and, accordingly, that every PC-sentences has a val-
uation.)

Logical truth (or sentence-validity)
A PC-sentence is a logical truth (or a valid sentence) iff it is satisfied by
every valuation.

Finally, we will also need the principle of strong mathematical induction.
It is customary to represent this principle as an argument whose conclu-
sion is derived from two premisses, one called the basis, and the other the
induction step, as follows

Mathematical Induction
1. The number 0 has property P (Basis)

2. If all predecessors of any natural number n have P, does too does n
have P. (Induction step)

3. Therefore, all natural numbers have P. (Conclusion)
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Now for the Soundness Theorem.

Soundness Every theorem of A(PC) is valid.
Metaproof Tt suffices to show that the A(PC) axioms are valid (logically
true; tautologous) and that validity is preserved by the transformation rules.

It is easy to verify by truth tables that the A(PC)-axioms are valid.

We now show that modus ponens preserves validity. We assume the
contrary, that ® and "(® D ¥)7 are valid and that ¥ is not valid. Since
¥ occurs in "(® D ¥)7, there is a valuation v such that ® and "(® D ¥)™
come out true but ¥ comes out false. But if ® is true and ¥ is false, then
T(® D ¥)" is false, contrary to the assumption. And if "(® D ¥)™ is true
and ¥ is false, then ® is false, contrary to the assumption. Thus modus
ponens is validity-preserving.

We now show that the substitution rule preserves validity. To do requires
that we demonstrate the following lemma (or preliminary metatheorem).

Lemma Let ®g arise by substituting ¥ for atomic sentence « in ®,. Let
a1, ..., @, be a non-repeating array of atoms in which are included a and
any atom occurring in ®,, or ¥. Finally, let v be a valuation (subsuming an
interpretation 7) on aq, ..., a,. Then if v provides identically for ¥ and «,
then v also provides identically for &g and .

Metaproof of the Lemma,

1. Suppose that « fails to have an occurrence in ®,. Then ®y is the
same sentence as ®,, and the lemma, is satisfied trivially.

2. Suppose that a does have an occurrence in ®,. If ®, is connective-
free, then @, is the same sentence as a. So it is obvious that the
lemma is satisfied.

3. Suppose that the lemma holds for any sentence ®!, with k or fewer
occurrences of connectives such that a occurs in ®/,. Let ®, con-
tain k+1 occurrences of connectives and at least one occurrence of a.
Then, by the functional completness metatheorem and the rule of im-
plication, it suffices to put it that ®, is a sentence of the form "=y,
or ", DY,

Consider the options. Suppose ®, is "=y, . Since — is an occurrence of
a connective greater than k, and the lemma holds for k-occurrences, then
the lemma holds for y,. But x, just is ®,, since ®y is the same sentence
as "—yq .

Suppose next that &, is "Q, D T, 7. Then the lemma holds for 2, or it
contains one or more occurrences of connectives fewer than k+1. The same
reasoning applies to T,. So T, satisfies the lemma.
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It follows then, that the lemma holds for "Q, D A, 7, since "Q, D A"
is the same sentence as ®,. This is so because ®y is the same sentence as
rQ¥ 5 AY.

We have it, now, by strong mathematical induction that the lemma is
satisfied by any sentence ®, in which a has an occurrence. If it does not,
the lemma holds trivially, as we have seen.

This completes the metaproof of the lemma.

The assertion that substitution preserves validity now easily follows. The
Soundness Metatheorem therefore holds.

Not every PC-theorist is interested in modelling natural language argu-
ment and inference in his logic. But many are, and have been.

In the form in which we have developed it so far, it is possible to see
the general rationale of PC as not much different from that of Aristotle in
his own formal theory of syllogisms, as set out in the Prior Analytics. Like
Aristotle, the PC-logician is sometimes interested in capturing a class of
arguments on the hoof. Aristotle was interested in arguments that are syl-
logisms. The PC-logician has a different goal, at once more ambitious and
less than Aristotle’s. Unlike Aristotle, the PC-logician is content with cap-
turing arguments that are valid, many of which would fail to be syllogisms.
In this, his programme is less ambitious than Aristotle’s, which aimed at
specifying a class of arguments having properties other than validity. As
against this, the PC- logician is also more ambitious. For, unlike Aristotle,
he can offer an explicit definition of validity.

It will not have escaped the reader’s notice that, although it is not stan-
dard a theoretical target for it, PC is nevertheless capable of generating a
conception of valid argument which closely resembles Aristotle’s syllogism.
These we might fairly call PC-syllogisms, and we could say that a valid
PC-argument-form ({®,...,®,}, ¥) is a PC-syllogism if and only if:

(a)  No proper subargument of ({®q,...,®,}, ¥} is valid.
(b) In {({®4,...,9,},¥), n0o ®; =7T; (i <n).
(¢) {®1,...,®,} is consistent.

Note that ({x1,...,xm}¥) is a subargument of ({®y,...,P,}, ¥) iff
{x1,---,Xm} € {®1,...,®,} and a proper subargument if C is replaced
by C. PC certainly has the resources to determine effectively for any valid
PC-sequence whether it satisfies conditions (a) to (c). So the property of
being a PC-syllogism is decidable in PC. And if, as was said in an early
section of this chapter, the concept of syllogism adumbrates a more full-
blooded concept of argument than that conveyed by the concept of merely
valid argument, it would seem that PC has the resources to honour the
structure of arguments on the hoof approximately as well as the theory of
syllogisms (though, of course, they will be a different class of arguments
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on the hoof, given the essential differences between the vocabularies of the
respective theories). Then, too, if as has been suggested the concept of syl-
logism is one that brings the structure of (deductive) inference into closer
alignment than could be brought off by the concept of a merely valid argu-
ment, it would seem that PC is as well positioned to accommodate a class
of deductive inferences as is the theory of syllogisms, though here too, it is
a different class of deductions.

It might be supposed that since PC and the syllogistic do approximately
as well in capturing the structure of good argument and inference in their
respective domains of application, they also do approximately as badly. For
consider condition (a) on PC syllogisms. It provides that no PC-argument
is a syllogism if its conclusion is a necessary truth (Thom [1981, 22], and
Woods [2001, chapter 7]). Given PC’s definition of validity, any valid PC-
argument whose conclusion is a necessary truth is one whose conclusion is
also validly derived from any proper subset of the argument’s premisses,
including the empty set of premisses. Whereupon no PC-proof of a neces-
sary truth can be a PC-syllogism. This is odd. Aren’t proofs paradigms of
arguments on the hoof? When the workaday theoretician labours to prove a
new theorem of logic or of mathematics is she not marshalling arguments on
the hoof? So it would seem that as a general model of deductive arguments
on the hoof, PC-syllogisms are significantly crimped.

Whether the same fate awaits Aristotle himself depends on whether we
think that, undefined or not, Aristotle’s validity was “classical”, i.e., as
standardly defined in orthodox systems such as PC. Scholars are divided
on this question. It is a question that takes us far from our purposes here.
We shall let it be, except to say in passing that even if Aristotle’s validity
is standard, the ancient syllogistic may fairly reclaim the high ground over
PC-syllogisity as an account of arguments on the hoof.!?

Earlier we met with another complaint against standard systems of logic.
Standard systems, it was said, have as their target concept such stripped-
down things as logical truths or the implication relation. And it was asked,
rhetorically, what headway the theorist of argument or of inference could
make with a conceptual bag of tricks restricted to the logical truths or
the implication relation or others derivable from them. The answer, as we
now see, is one that pulls the question’s rhetorical fangs. For in fact in some
standard systems, such as PC, the concepts of logical truth, implication and
argument validity are interdefinable: A logical truth in PC is a tautology
and nothing else; ® implies ¥ in PC if and only if "If & then ¥ is a
tautology; and an argument is valid in PC if and only if its corresponding
conditional is a tautology.

12¢f. Normore [1993, 447]. For the view that even if Aristotle’s validity is standard the
ancient syllogism may reclaim the high ground, see Woods [2001].
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Comparisons with Aristotle aside, PC aspires to be a method for reveal-
ing the logical forms of a large class of arguments on the hoof. They are the
arguments whose propositional constituents can be given a representation
in PC. Derivatively, they are arguments which can be represented by PC-
sequences of PC-sentences. We have already seen how this works for simple
quantifier-free sentences of English. They are represented by atomic sen-
tences of PC. It is important to say what their representation amounts to.
There are two ways of seeing the process. One involves assuming that the
vocabulary, sentences and sequences of PC constitute an artificial language
into which the vocabulary, sentences and sequences of a natural language
are translated. In the other way of thinking of it, representation is an op-
eration directly on a natural language itself (or fragment of it). By these
lights, representation is an abstraction from language on the hoof. Seen
the first way, the English sentence, “Mary is angry” is translated as the
atomic sentence p; (say) of PC. Seen the second way “Mary is angry” is
reconstructed as p; (say), where all of the interior grammatical structure of
“Mary is angry” is suppressed. Simple sentences are a special case. When
we suppress all of their internal structure, they leave no lexical trace. Labels
are required, one each for each suppressed sentence, and this labeling func-
tion is performed by the atomic sentence-letters py, p2, .- ., Pn -.- . Thus p;
denotes some or other simple sentence whose grammatical interior has, for
theoretical purposes, vanished. Similarly for p2, ps, and so on.

With molecular sentences, reconstruction becomes a more relaxed way of
talking. If we take an example the English sentence, “If Mary is angry then
Bill is sad”, it is reconstructed as “If p; then ps” if p; reconstructs “Mary
is angry” and p, “Bill is sad.” We thus see part of the logical form that “If
Mary is angry then Bill is sad” actually has. Reconstruction, then, is the
mapping of a sentence on the hoof into its logical form.

There is not much to be said about which is the better way of taking
representation, either as reconstruction or translation. Either way, what we
get is a formalization of something in English (say) in the language of PC.

6 FORMALIZING NATURAL LANGUAGE

We are now in a position to determine whether an earlier promissory note
can be redeemed. In chapter one of this volume it was proposed to take
logic as formal idealized description of the behaviour of a logical agent. One
of the reasons for so proposing is the desire to have a conception of logic
that engages practical reasoning in a fruitful way. Since practical reasoning
can be taken as reasoning done by a practical agent, and since practical
agency has been described as an agent’s implementation of scarce resource
strategies in a cognitive economy, agency-type lies at the theoretical heart
of a logic of practical reasoning.
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We remarked at the beginning of the present chapter that the practical-
agent conception of logic seems in its face to be hostile to the dominant
notion of logic since Frege and Peirce. In all its sub-domains — proof
theory, model theory, recursion theory and set theory — standard logic
is indifferent to agency, except in the most contingent of ways. Standard
deductive logic is a disciplined description of target properties of linguistic
structures, of structures in which pragmatic factors of agency, time, context
and the like are suppressed. It is time that some attempt has been made
by modern logicians to adopt standard logics with a view to making their
rules useful for real-life agents. Deontic logic is a case in point. In its choice
of model operators for obligation and permission and their contraries, there
is a clearer adumbration of agency to be seen. But it remains the case
that deontic logic is a formal description of the properties of propositional
structures.

Of course, it can only be expected that part of what a logical agent
will do is ascribe or be guided by the logical properties of propositional
structures. His behaviour as a logical agent won’t likely be indifferent to
considerations of implication, consistency, incompatibility and the like. To
that extent the agency-conception of logic can be said to subsume the logics
of propositional structures, thus diminishing the apparent hostility between
them. The rivalry would be further reduced if it could be shown that the
logic of propositional structures elucidates argument on the hoof. Sup-
pose it were the case that standard formal logic — PC, say — afforded
a principled way of determining the presence of its own target properties
in the product-arguments of process-arguments on the hoof? That would
be more mitigation still, of the rivalry between the agency conception and
the propositional-structures conception of logic. In the present section we
explore this possibility.

Not even the most ardent or doctrinaire mathematical logician believes
that human reasoners should or could abandon their mother tongues. Frege
and Peirce would grant that for everyday concerns one’s mother tongue is
the unavoidable medium in which they are to be addressed. Frege and Peirce
would also have insisted is that human reasoning in a human language is
something that lies beyond the ambit of logic.

This is one of the things that disappoints (actually, infuriates) informal
logicians about mathematical logicans. It is their insistence that “ordinary
reasoning” has no logic. However some formal logicians are heedful of such
disappointment and are minded to respond to it in the following (and some-
what conciliatory) way.

The basic idea is this. Take an episode of human reasoning or argument-
making which has been transacted in a piece of (say) English. Subject
to certain constraints, this chunk of English can be tightly paired with a
counterpart bit of the language of PC. The tightness of the fit is conse-
quential. It allows us to say that if the PC-structure has one of our target
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logical properties, so too does the English structure have it. The process
of finding an English structure’s counterpart in PC is its formalization.
When a formalization works as it should, it maps an English structure to
its logical form in PC. And, again when the formalization has been properly
contrived, the property possessed, by an English structure’s logical form is
reflected backwards onto the English structure itself.

To better see how this works, here are the standard formalization rules
for English and PC.

1. Simple bivalent sentences of English, and only they, are formalized by
arbitrarily selected atomic sentences of PC.

2. The English construction ‘not’ is formalized by ‘—’.

3. The English constructions ‘and’; ‘or’, ‘if ... then’ and ‘if and only if’
are formalized respectively by ‘A’, V', ‘D’ and ‘=".

In this way, the formal logician thinks that he has the means to reassure
his critic. In its most basic sense, the assurance is this: If we can formalize
some reasoning (or arguing) in English in some or other logical system, then,
since formalization has the backwards reflection property with respect to
target concepts, if the logical form instantiates that concept, so too does
the English construction.

Essential to the case for the backwards reflection of target properties
is that the connectives of English stand in the following truth conditional
relationship. Let C be an English connective which is a candidate for for-
malization; and let K be its formalization in PC if it has one. Then C'is
properly formalized as K, provided that for any K-sentence that is false in
PC, its corresponding C-sentence in English is also false. In other words,
the falsity of a K-sentence is sufficient for the falsity of the corresponding
C-sentence. But not conversly; the falsity of the C-sentence is not sufficient
for the falsity of the K-sentence; nor is it the case that the truth of the
respective C-sentence and K-sentence; suffices for the truth of the other. So
K can be the absolutely right formalization of C'in PC without there being
any need for C'and K to be logically equivalent to one another, to say noth-
ing of synonymous. We see, then, that the fact that our PC connectives do
not mean the same as their English counterparts or do not capture at least
one of their meanings (in case they happen to be ambiguous) has nothing
whatever to do with whether the formalization rules have the backwards
reflection property with regard to our target concepts.

But what is to be done when an English connective C'fails this test? Then
the rule is that the connective in question does not have a formalization in
PC, nor does any sentence of English in which C occurs. The rule can now
be explicitly stated.
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The Connective Rule — Where C'is an English connective and K its coun-
terpart in PC, K is the formalization of C' in PC if the falsity of any
K-sentence implies the falsity of its corresponding C-sentence; otherwise C'
has no formalization in PC.

Backwards reflection is really quite remarkable. It shows that formalizing a
contentful argument in English as a contentless argument in PC allows us
to determine with certainty whether the English argument is valid.

Some people are of the view that it is too good to be true. To see what
their reservation comes down to, it is necessary to emphasize that there are
constraints on what can be inputs to our formalization rules. For example,
we are not allowed to apply these rules to interrogative sentences of English,
nor are we allowed to formalize molecular sentences of English as atomic
sentences of PC. And we are not permitted to formalize any connective of
English other than ‘not’, ‘or’, ‘and’, <if ...then’, and ‘if and only if’, and
those that can be defined in terms of these connectives.

Consider, in particular, the rule that only simple sentences of English can
be mapped to atomic sentences of PC. Are there any other constraints on
this atomic rule? Consider the argument:

1. If Sarah has been awarded the first university degree, then Sarah is a
bachelor.

2. If Sarah is a bachelor then Sarah is an unmarried man.

3. Therefore, If Sarah has been awarded the first university degree, then
she is an unmarried man.

If we now apply the formalization rules to this argument, we see that its
logical form in PC is

1*. If p then ¢
2%, If q then r
3*. Therefore if p then r.

This matters. Here is an English argument with a valid logical form in
PC. But the English argument is invalid. We wanted validity to have
the backwards reflection property, but the present example shows that it
doesn’t.

We can solve this problem by noticing that our English argument equivo-
cates on the ambiguous term “bachelor”. In premiss (1) it means one thing,
and in premiss (2), it means something quite different. This suggests a way
out of our difficulty. We can impose upon the formalization of English sen-
tences the Disambiguation Rule. The rule says that for any expression of
English which has more than one meaning, its different meanings require a
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mapping for each sentence in which it occurs to different expressions of PC.
Applying this rule to our present example, we see that the correct logical
form of our English argument is

a) If p then ¢
b) If s then r
c) Therefore, if p then r.

This gives us the desired result. The logical form is invalid. So it would
appear that when we add the Disambiguation Rule to our rules of formal-
ization, validity does indeed have the backwards reflection property; for we
no longer have an argument which is valid in PC but invalid in English.

What about invalidity? Does it too have the backwards reflection prop-
erty? Consider the following argument.

1. The shirt is red.
2. Therefore, the shirt is coloured.

The premiss is a simple sentence of English which entails the conclusion,
also a simple sentence of English. Its logical form in PC is

1*. p
2%, Therefore, ¢

which is invalid.
Here is a second case to consider.

a) The figure is a triangle
b) The figure is a circle

This is an inconsistent set of sentences in English. But the logical form of
this set in PC is {p, ¢}, and {p, ¢} is a consistent set.

In the first case, invalidity fails to have the backwards reflection prop-
erty. In the second case, consistency fails to have the backwards reflection
property. But we want all our target properties to satisfy the backwards
reflection condition. We want this because we want PC to be useful in the
appraisal of real-life reasoning and real-life argument.

As it happens, we can recover the backwards reflection property with
regard to invalidity and consistency if we agree to impose a further condition
on our formalization rules. This is the

Logical Inertia Rule
Simple sentences of English to which the formalization rules apply may not
either imply one another or be inconsistent with one another. In other
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words, the simple sentences that are inputs to the formalization mechanism
of PC must be logically inert.

It seems, then, that we have recovered by backwards reflection of validity by
imposing the Disambiguation Rule, and likewise that we have recovered the
backwards reflection of invalidity and consistency by imposing the Logical
Inertia Rule. Even so, there is a cost to these recoveries.

Let us deal first with the cost of imposing the Logical Inertia Rule. This
requires us to be able to recognize implications and inconsistencies between
simple English sentences in a principled way. This is equivalent to saying
that we must have a theory of implication and inconsistency for English.
But this is what our formalization rules were supposed to provide. PC
would analyze the properties of implication and consistency, and our for-
malization rules would reflect them back into English. So PC together with
the formalization rules would be a theory of implication and consistency for
English. But, as we now see, we can’t run the formalization rules until we
have a theory of implication and consistency for English. And we don’t have
a theory of implication and consistency for English until we’ve executed the
formalization rules. So we have a bootstrapping problem.

Faced with this kind of difficulty, most logicians have in effect withdrawn
the Logical Inertia Rule and, in so doing, have abandoned the hope that
invalidity and consistency would have the backwards reflection property.

The Disambiguation Rule is also a serious matter. If it goes, then we
lose the backwards reflection of validity. So the question now is whether we
are able to apply this rule in a principled way. The answer is no. We do
not yet have a theory that permits us to recognize ambiguity in the general
case. (In fact, a good many philosophical problems have turned out to have
resulted from undetected ambiguities.) This leaves us with Hobson’s Choice.
Either we can give up on the backwards reflection of validity or we can try
to apply the Disambiguation Rule in other than a principled way, that is
to say, intuitively. Most logicians opt, in effect, for the second option. This
also matters. No one doubts that a native speaker of English is adept at
recognizing large numbers of violations of the Logical Inertia Rule. This
is part of what fluency in a language consists in — the intuitive ability to
notice elementary logical connections. The same can be said for the fluent
speaker’s untutored capacity for making and recognizing logical deductions
in his own language. The question is whether we have theories of such skills,
and if so what they would look like. Gerald Massey has suggested that one
place to look for theories of these capacities is in the Natural Logic of writers
such as Lakoff (Massey [1975], [1975a), [1981]). T do not know whether
Massey has retained his enthusiasm for Natural Logic over the years; but
it is now clear, if it wasn’t before, that Natural Logic has not attracted
anything like a large and settled theoretical consensus. Natural Logic aside,
two other points should be made. One is that nowhere in the capacious
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writings of informal logicians do we find any attempt to construct theories
of (logical) implication and (logical) consistency for natural languages. The
other is that monitoring the Disambiguation Rule and the Logical Inertia
Rule is not the business of (or within the capacity of) formal logic. If formal
logic is to offer any principled guidance to natural language reasoners and
arguers, it will be able to do this only on the basis of an irreducibly informal
deployment of the requisite constraints on formalization. Informality is prior
to formality, and not displaceable by it.

In their collective (though largely tacit) decision to abandon hope of back-
wards reflection except for logical truth (or taulolgousness) and
argument-validity, standard logic has given up significantly reduced its
usefulness in the appraisal of real-life argumentation. The gap between
the agency conception and the propositional-structures conception of logic
widens accordingly. Still a test for validity is nothing to sneeze at (assuming
that we have any ambiguities under control).

We note in passing, subject to this same point about ambiguity, that the
PC validity-test does not require that the formalization of English be all
that tight. Tightness was required for the backwards reflection of properties,
such as invalidity, that logicians have already given up on. In particular, we
need not require that the English constructions that get mapped to atomic
PC-sentences be simple (that is, connective-and quantifier-free). Consider a
case. Let A be a PC-argument in the form of modus ponens; and let e, .. .,
en be an arbitrarily selected set of English sentences, as richly structured as
you like. Finally, let our formalization procedures take some of the e; to the
atoms of A. A is valid when for no interpretation is the conclusion false and
the premisses conjoined true. Since the e; have truth-values, and since the
validity of A is indifferent to the truth values of its atoms, then in mapping
e; to the atoms of A, all that matters about the e; is their truth values; and
yet it is precisely these that A is indifferent to if it is valid. Thus, subject to
a proviso, any truth-valued sentence of English can be mapped to any atom
of PC in a test for validity (or logical truth), provided that the Connective
Rule is honoured.

Put in Massey’s way, the Asymmetry Thesis is that we do not have a
theory of invalidity for natural language arguments. (Massey [1975] and
[1975a]) Put in the language of formalization rules, the thesis is that judge-
ments of validity do not require tight atomic formalizations, whereas judge-
ments of nonvalidity require atomic formalizations to be tight beyond our
present theoretical capacity to provide.

7 OTHER ASPECTS

If PC is motivated by an interest in capturing for ordinary arguments the
property of validity, it also enjoys other motivations. One is broadly proof-
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theoretic, and it underwrites an interest in reducing mathematical reasoning
to exactly formulated mechanical rules. In this it was supposed that all
underlying assumptions would be expressly declared and all proofs would
be rigorous. The proof-theoretical approach was developed by Frege (1862
1925), Peano (1858-1932), Hilbert (1848-1925), Russell (1872-1970), Her-
brand (1908-1931), and Gentzen (1909-1945). In Hilbert’s eyes, the logic
would subject mathematical reasoning itself to the scrutiny of mathematical
theory. In this way, Hilbert sought to give a mathematical justification of a
(moderately) infinitistic approach to mathematics. Much of the work pro-
duced under this motivation has come to be known as formal proof calculi,
and of these, Frege’s Begriffsschrift [1879], was the first to produce a satis-
factory notation and theory of proof for what is known as first order logic,
which is PC extended by the introduction of predicate terms, quantifiers,
and individual terms accessible to quantification.

A third basic motivation for the new logic may be called model-theoretic.
It is a highly abstract motivation, in the same spirit as that which underlies
the upper reaches of set-theoretic mathematics. It is essentially an interest
in abstract structures and in the conditions which such structures must
satisfy in order to stay interesting. Leading this model-theoretic effort,
were Schrider (1841-1902), Lowenheim (1878-1957), Langford (1895-1964),
Godel (1906-1978) and Tarski (1901-1985).

If a reader’s interests run to deductive argument and deductive inference
as such, it is not surprising that he would arrive at a feeling of alienation
running deep in the marrow of proof theory and model theory. If the dis-
appointed argumentation theorist is a sober-minded fellow, he will quickly
see that much of the most interesting and important work done in these
branches of logic will have little direct relevance for him. If he is a bit of
a pepperpot, he is likely to be cranky about the whole enterprise, ready to
damn all logic as an imperious falsifier of the delicate tissue of argumen-
tative and inferential practice. It is not our purpose in this chapter either
to develop or adjudicate such complaints. All the same, a certain openness
may seem appropriate, in as much as proof theory deals with proof and in
as much as mathematical reasoning is, after all, reasoning.

Both the proof theoretic and the model theoretic approaches are ap-
proaches that can be taken to PC. In fact, the valuations approach to PC
taken in these pages is (a very modest) part of a model theoretic methodol-
ogy. But proof theory and model theory came into full flower in the richer
systems known as the predicate calculus, PredCal, to an elementary expo-
sition of which we now turn.

It is apparent that the three approaches converge in PC in a rather
fundamental way. FEach has a stake in specifying truth conditions on the
schema: "®q, ..., ®,7 logically implies ¥. From the point of view of argu-
mentation theory, the condition would be that every argument of the form
({®1,...9,}, ) be valid. A proof theorist would require that there is a
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proof of ¥ from {®,,...,®,} in a standard proof calculus. A fancier of
model theory would require it to be true that whenever the ®; are all true
in a structure, ¥ is also true there.

8 PREDICATE LOGIC

In the discussion of PC, we noted an attractive concurrence between logical
implication, valid argument and proof. As we have seen, arguments in
English can be said to be valid should it be the case that it embeds a
valid PC-form. PC-forms are extremely simple structures, however. This
matters in two related ways. Having the requisite such structure delivers the
goods (ambiguity problems aside) only for certain of the logical properties
people are interested in. Argument-validity is one such, true enough; but
even so, there are large classes of valid arguments in English whose validity
cannot be captured by truth functionally valid forms. A case in point is our
previous example,

1. The shirt is red.

2. Therefore, the shirt is coloured.
Another is,

a. Harry is male.

b.  Therefore, someone is male.

These examples turn on interconnectives of syntactic elements that PC has
no capacity to recognize. In case one, the deduction turns on the pair of
predicates {“red”, “coloured”}, and in the second case it turns on the pair
{“Harry”, “someone”} of a name and a quantifier. These facts make it
extremely tempting to consider whether a grammatically richer language
would make for correspondingly richer logical forms with which more real-
istically to capture the logic of real-life arguments. With this possibility in
mind, we now turn to the predicate calculus.

Like PC, PredCal is a sequence (G, I*) of a grammar and a set of inter-
pretations or models. Here, too, G comes in various degrees of complexity.

We begin with the vocabulary of PredCal. Its vocabulary contains the
vocabulary of PC, to which are added (1) countably many individual con-
stants, a1, a2, ... and (2) countably many individual variables x1, s, .. ..
The individual constants function as proper names of individual objects,
and the individual variables as pronomial expressions for those objects.
Such constants and variables constitute the terms of PredCal. The vo-
cabulary also includes countably many predicate constants, Fj', i}, ..., FJ?,
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Fp,...,FPH FRHL L The superscript gives the polyadicity of the pred-
icate, that is, it marks the number of places it has; and the subscript serves
to individuate all predicates of given degree of polyadicity, for each degree
of polyadicity. As with the atomic sentences of PC, the individual and
predicate constants of PredCal are also atomic.

So far, we have extended as follows the vocabulary of PC to arrive at
the vocabulary of the new system PredCal.

I. The atomic sentences p, q, 7, S, t, P1, -y Pry - -+

Ia. The individual constants or names aq, ag, ..., @y ...

Ib.  The predicate and constants F}, ..., FL, ..., F{ ... F ...
Ic. The individual variables z;, xs, ..., Tn, ...

ITa.  The connectives -, A, V, D, =

ITb.  The punctuators ( and ), and sequence markers ( and )

IIc.  The quantifier V.

We now define a singular term of PredCal: Any individual constant or
variable is a singular term of PredCal.

The sentences of PredCal (or the PredCal formulas) are inductively
characterized as follows. The prime PredCal formulas are the atoms of PC;
so is any expression "®(ay, ..., a)" where ® is a n-ary PredCal predicate
constant and aq, ..., a, are singular terms. The PredCal formulas are the
least class including the prime formulas that meets the conditions:

1. If ® is a PredCal formula, and « is a PredCal variable then "V «
(®)7is a PredCal formula.

2. If ® is a PredCal formula so is "T=®™.

3. If ® and ¥ are PredCal formulas, so are " @AY, "oV I T TP O P
and "¢ = U,

In a formula "Va(®)7, « is said to be the variable of the quantifier.

As was the case with PC, we do not carry on our discussion of the
language of PredCal in the language of PredCal. Our metalanguage is
English augmented by some special metalinguistic symbols. In particular,
we are now employing ‘e’ and ‘3’ as metalinguistic variables ranging over
singular terms and individual variables of the object language, PredCal.
We also make the convention that ®, ¥, y, with or without accents are
variables ranging over PredCal predicates as well as PredCal formulas.
We now define:
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The scope of a quantifier. If "Va(®)7 is a formula then the occurrence of
the formula ® in "Va(®)™ is the scope of ¥ in "Va(®)™.

Freedom and bondage. An occurrence d of variable a is bound in a formula
® iff either (1) d follows an occurrence of a quantifier in ®; or (2) d occurs
in the scope of such a quantifier, otherwise d is a free, occurrence of o in ®.

A wariable a is free or bound in a formula according as ® contains free or
bound occurrences of a. A variable can be both bound and free in a formula.

(¢c)  Freedom of a singular term for a variable. We define the conditions
under which W is a substitution instance of ®: If ® is a formula,
then ¥ is a substitution instance of ® just in case ¥ is the formula
TS2(®)7 that results from substituting the singular term « for all free
occurrences of a variable 8 in ®. It is not always the case where ®, «,
3 exist that S? (®)7 is a substitution instance. But, as our exposition
here is elementary, we will overlook this fact, and we will suppose
restrictions on ®, , 3 such that "% (®)7 is always a formula. (This
is nicely dealt with in Bell and Machover [1977, chapter 2 section 3].)

Let a be a singular term and [ a variable of a formula ®. Then « is free
for B in ® according as the following conditions are met: either

(i)  «is itself a variable and no free occurrence of 3 in ® lies within the
scope of a quantifier such that «a is the variable of that quantifier; or

(i) «is a name.
Closedness. @ is a closed formula if and only if ¢ is a formula no

variable of which occurs free. Any formula that is not closed is open.
Closed formulas are sentences.

Quantifier closure. Let ® be any formula containing only, at most
variables aq, ..., a, free; then the formula "Va; ...V, (®)" is a quan-
tifier closure of ®.

Finally, to complete our description of the language of PredCal we intro-
duce the expression ‘3’. We shall say that 3 is definable from V in the special
sense that any formula

Jo(P)
is strictly equivalent to
—Va—(P),

where ® is a formula and a a variable. As will be recalled, V is suggestive
of the English “all” and therefore is called the universal quantifier; 3, sug-
gestive of the English “some” and “at least one,” is called the ezistential
quantifier.
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Formalizing sentences of English. Although these considerations play
no formal role in the grammar of PredCal, it should be evident that one
of the goals of our proceedings is, as we have suggested to represent in
PredCal more of English than we could represent in PC. Thus we might
expect that under a suitable formalization policy a simple subject-predicate
sentence of English, say,

(1) Paris is charming,.
will be represented by a PredCal prime formula, say,

(1¥)  Fy(as)

where, “F!” represents the one place predicate “is charming” and “a3”

represents the name “Paris”. And an ordinary sort of general sentence of
English, say,

(2)  For any object whatever either it is not a man or it is a man,
could be associated with the closed formula
(2%) Vi(~(Fi(21)) V Fi(21)).

(2*) can be read “For any object, call it z1, either it is not the case that z;
is F}, or my is F}”.

In the same way, one could hope that, just as (2) is a necessary truth
of English, so too would (2*), or whatever other PredCal formula might
represent it, be a PredCal logical truth.

Model theory. In its most basic form, model theory undertakes to do
two related things. It tries to elucidate the relationship between language
and the world (or between language and our experience of the world), by
construing truth as a relation between a sentence and a model. A model
is a structure composed of a domain (of individuals) together with an in-
terpretation, where this latter is an assignment of the appropriate values
to the basic constituents of the grammar. The assignment associates in-
dividuals with individual constants of the language in question, functions
with functors or function symbols, and properties and relations with pred-
icate symbols. A prime formula free of variables is true in the structure
(equivalently, the structure is a model of the sentence.) if and only if the in-
dividuals assigned to the sentence’s names or individual constants bear the
relation assigned to the sentence’s predicate symbol. Model-theoretic struc-
tures such as these assume that experience arises from an independently
existing reality, of which they are a kind of mathematical or set-theoretic
idealization.

The second task of model theory is to specify two further relations be-
tween language and the world so as to make possible the elucidation of the
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concept of logical consequence or entailment. The relation of logical conse-
quence from a set of sentences ) to a sentence ® is said to obtain just in
case every structure or model in which all the sentences of ) are also true
® is one in which ® is also true. This is meant to capture the intuitive idea
that a proposition B follows from propositions Ay, ..., A, if and only if it
is in no sense possible that the A; are true and yet B is not true. We now
turn to some details of model theory.

We characterize a PredCal structure ) = (D, I,) such that D # @ is
the domain of ) and I, an interpretation function. By the interpretation
function I, we have it that

(1)  every PC-atom of PredCal is presumed to denote either T or F, but
not both;

(2) every name is presumed to denote exactly one member of D;

(3)  every unary or one-place predicate is presumed to denote the sets of
elements from D;

(4) every n-ary predicate (n> 2) is presumed to denote a set S of ordered
n-tuples of objects taken from D (that is, of n-membered sequence of
objects taken from the D). These sets of n-tuples are called n-place
relations;

We also remark that the connectives of PredCal behave just as they did in
PC; and that the formulas of PredCal will either be satisfied (or not) by
countably infinite sequences of objects from D. We now turn to the notion
of a formula’s being satisfied by a countably infinite sequence out of the
domain of an interpretation.

The individual variables each bear a unique index. Here is why. Let ®
be any PredCal formula in which « is a variable occurring free. Consider
any of the infinitely long sequences of members of D — call it o. Since
o is a sequence, its elements occur there in a given order (they might, of
course, occur in quite a different order in another such sequence). So it is
meaningful to speak of the kth member of o, where k is any positive integer.
As for ®, we shall say that its variable @ = x; denotes the i** member of
every sequence in S. It is very important to note that we did not say, just
now, that it denotes the ith member of o and that same member in every
other sequence in S. Rather we said that, for all sequences in S, its ith
member, whichever elements they severally are, is denoted by «, free in ®.

For the purposes of illustration let us assume D to be the (unordered)
set of all the positive integers, augmented by the three charming towns of
Banff, Picture Butte and Standoff. Consider any infinitely long sequence o
of elements from D. We define a function, d?, from singular terms into the
domain D: if a is a name, then d _, is the element of D that, the name «
names. If o is a variable and % is the index of the variable, then dZ is any
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element z in D such that z is the kth element of o, where o is any sequence
in S.

It is worth emphasizing that variables need not identify what they denote;
rather they identify only the sequence-place of what they denote. And they
denote, for each and every sequence, the object that there occurs in some
given fixed place.

We are now in a position to define the concept of satisfaction of a formula
by an infinite sequence of D-elements. Let ¥ = (D,I) be a model. Such
sequence, o, satisfies ® in ¥ actually: relative to a structure or model
Y. = (D, I) since D has a role to play as well (or X-satisfies ®) according to
the following conditions being met.

(1) If @ is a PC-atom, then ® X-satisfies o iff I provides that ® denotes
the truth value T.

(2) If & is a prime formula of PredCal, "U(«a)”, where ¥ is a unary
predicate and « is a singular term then o satisfies ® iff d7 is a member
of the set which (under X) is denoted by .

(3) If @ is a prime formula of PredCal, "¥(ay, ..., a;,)”, where ¥ is an
n-ary predicate (n > 2) and aj, ..., a, are singular terms, then o
satisfies @ iff (d?(a),...,d? (a,)) is a sequence that is a member of
the set of n-tuples which (under ) is denoted by the n-ary predicate
v,

(4) If @ is the PredCal formula "—¥™ then o satisfies ® iff o does not
satisfy W.

(5) If ® is a PredCal formula "(¥ VvV X)7 then o satisfies ® iff either
o satisfies ¥ or o satisfies X or both. If ® is (¥ A x)7, then o
satisfies @ iff o satisfies U and o satisfies x. If ® is (¥ D x)7 then
o satisfies ® except when o satisfies ¥ and does not satisfy y. If ®
is (¥ = x)7, then o satisfies ® iff either o satisfies both ¥ and x or
o satisfies neither.

(6) If ® is a PredCal formula "Va ()7, where « is the variable whose
index is the integer k, then o satisfies ® iff every countably infinite
sequence (of elements of D) that differs form ¢ at most only in its kth
element is a sequence that satisfies V.

Readers may have noticed that, by the first two clauses of the account of
satisfaction, it is intuitively correct to say that true PC-atoms and true
PredCal primes are satisfied by every sequence, even by those sequences
no member of which is an image under the function, d”, of any constituent
parts of the PC-atom or the prime formula of PredCal. But this is as it
should be. We want no true formula to be countersatisfied by any sequence
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of S, and any formula that is not countersatisfied by such a sequence is
satisfied by it.

It may not be entirely clear how clause (5) achieves the desired result,
viz., that a universally quantified sentence holds for any model exactly if
the scope of the quantified sentence is true of every object in the domain
of the model. To see how this is accomplished, let us recall our homely
geopolitical-arithmetical domain of a few pages back. It is the unordered
set

S = {Banf, Picture Butte, Standoff, 1, 2, ..., n, ...}.

Assume now a structure of PredCal which seeks to preserve the truth that,
relative to this domain, everything is either a town or an integer, or, as we
shall say for short, that everything is a tinteger S is the set of all tintegers.
Let I be such that I(F!') = S. Then there will be sentence of the form

(1) Var(Fl(z1)),

that we shall want to be X-satisfied.
Clause (5) says that this sentence is ¥-satisfied by an infinite sequence o
provided that its scope, i.e. the formula

(2)  Fi(zx),

is satisfied by every infinite sequence differing from o (if at all) only in its
kth member. Put another way, o satisfies (1) iff every sequence o satisfies

(2)-

Suppose now that o is the sequence
(Banff, Picture Butte, Standoff, 1,2, ..., n, ...)
and let us ask whether o Y-satisfies the formula
(3)  Vas(Fy (z3)).

We can see at, once that o differs from itself in at most its k' place (i.e. its
third place). In fact, itdiffers there not at all. So the first thing to check is
whether o itself satisfies the scope of (3). Does o satisfy

(4)  Fi(zs)?

Our interpretation assigns “r3” to the third element of o, that is, to Standoff
d®(z3) = Standoff. Hence < d*(x3) is a member of the set S, that is I(F}),
because it is a town, hence also a tinteger (i.e. a town or an integer). So o
satisfies “Fi(x3)”.

Next, we consider any other sequence of elements of D differing from o in
exactly its third place. Any such sequence is just like o except that it will
have as its third member either Picture Butte or Banff or the integer 1, or
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2or...,or mor.... It is clear in particular that in each such sequence
the third element will always be either a town or an integer; hence every
such sequence will differ from o only by having at its third place a tinteger
different from the tinteger that occupies ¢’s third place. This is the only
sort, of difference that can occur, and it is an inessential one from the point
of view of the interpretation of “Fl(x3)”. Every such sequence satisfies
“Fl(z3)” and, so, by clause (5), o satisfies “Vz3 (“F{(x3))”. It should now
be clear that o could not have Y-satisfied this formula were it not precisely
for the fact that every element of our D is an tinteger — a wholly desirable
and intuitive state of affairs after all.

We must also remark that ¥ does not actually require the use of infinite
sequences of D-elements. In some treatments of so elementary a grammar
as that of PredCal, a satisfaction relation can be defined without the use
of infinite sequences (Shoenfield [1967]). Thus our semantics are richer than
they need to be for present purposes.

Logical Truth in the Model Theory of PredCal. Now that sequence-
satisfaction has been sorted out, the other semantic properties of PredCal
come fairly easily

We may say that ® is a satisfiable PredCal-formula just in case there
is at least one model or structure on which at least one countably infinite
sequence of elements of the domain satisfies ®.

A set T' of PredCal formulas is simultaneously satisfiable just in case
there is at least one structure, and at least one countably infinite sequence
from its domain, which satisfies every PredCal formula in I.

A PredCal formula @ is true in a model ¥ = (D, I) just in case every
countably infinite sequence from its domain satisfies ® (note, then, that not
every sequence that satisfies a formula makes it true).

® is false in a model ¥ = (D, I)
just in case no countably infinite sequence from D satisfies ®.

A prime formula may be neither true in ¥ nor false in X, for some ¥. This is
so, when @ is a prime formula some of whose variables occur free. However,
we note that in a given structure every closed formula must be 7 by all
or by none of the sequences, and hence must be either true or false. For
example it may be that a variable occurs free, yet the formula is, say, true
in ¥. For instance, " P, where I assumes D to P (I(P) = D) would be true
in X.

Any model or structure ¥ in which a formula ® is true is said to be a
model for ®.

Any model or structure ¥ in which a formula ® is false is said to be a
countermodel for ®.

Any assignment ¥ is a model (countermodel) for a set I' of PredCal
formulas just in case every formula in T is true in (false in) X.
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A formula of PredCal is a logical truth (or a valid sentence) just in case
every model or structure is a model for ®.

A PredCal formula @ (or set thereof) semantically entails a PredCal
formula (or set thereof) just in case there is no model or structure that
is a model for the former that is not a model for the latter. (Thus, in
particular, the empty set of formulas semantically entails any logical truth
or valid formula).

Proof Theory. An axiomatization APredCal of PredCal is now sketched.
The language and Formation Rules are as laid out previously. The defi-
nitions of scope, freedom, bondage, freedom for, closedness and quantifier
closures are carried over intact.

The azioms of APredCal are specified by the following list.

Al): T(® (T D x)D((® D ¥)D(P D x))”

A42): T (T 5 )7

A4):  "VB® DS(®)7, provided a is free for 3 in ®

(A1)
(42)
(A3):  T(=® DY) D (¥ D P)”
(44)
(45):

"Va(® D ¥)D(® D Val)? provided « is not free in &
There are two Transformation Rules.

(T1):  Detachment. For any PredCal formulas ® and ¥, ¥ is deducible
from the set {®&, "® C U7}

(T2):  Generalization. For any PredCal formula ¢ and PredCal
variable a, Ya(®) is deducible from .13

As before, it is easy to characterize an APredCal-proof as an enumerable
sequence of APredCal-formulas each of which is either an APredCal-
axiom or arises therefrom by finitely many applications of rules T'1 and 7T'2;
an APredCal-theorem as the terminal member of any APredCal-proof;
and an APredCal-formula’s ® being deducible from a set ® of APredCal-
formulas as ®’s being the terminal member of an APredCal-sequence of
formulas each member of which is either an APredCal-axiom or a member
of I' or arises from preceding formulas of the sequence by finitely many
applications of T'1 and T'2.

131f we are only concerned with proofs (premiss-free deductions, deductions from ax-
ioms) there are no provisos. If we want to admit deductions from ad hoc premiss, a
sufficient proviso would be that if o does not occur free in ® then a does not occur free
in any of the (ad hoc) premises of the deduction as a whole. But this proviso can be
liberalized to refer only to those premisses on which the occurrence of ® used in the
deduction step actually depends. (It’s a bit of work to define this exactly.)



84 JOHN WOODS

APredCal exhibits some peculiarities about which a word of explanation
is needed. For one thing, none of Al to A5 is itself a PredCal-formula; in
fact they are not even written in the language of PredCal. We here chose
to use our metalanguage to specify (though not actually record) an infinite
number of axioms for PredCal; thus each of the As is an axiom schema,
written in the metalanguage, that specifies as axioms an infinite assortment,
of PredCal-formulas having the syntactic form of the schema.

Secondly, it may not be clear why we trouble to impose restrictions on
axiom schemas A4, A5 and rule 72. From a purely formal point of view,
there is no particular reason for it, but none against it either. However, a
major part of the motivation of an axiomatization of any system is the desire
to generate as uninterpreted theorems exactly those formulas of the system
that are there valid, i.e. true for every model/structure. In the present
case, the restrictions are imposed to avoid the necessity of countenancing
as axioms of APredCal (and hence as theorems of APredCal) formulas
that are not PredCal valid. Thus, in A4, unless we had the restriction,
we could have the following situation. Suppose that there exists an infinite
domain, D, of towns no one of which has the same official population as any
other. Let D be the domain of an interpretation of APredCal; let “F2”
represent the predicate, “has the same official population as”. Then, under
this construal, we would have the sentence

1) (Vo Vza FE (21, 22)) D (Voo (FF (22, 72))),
represent the (clearly false) English sentence

(1E) If no town has the same official population as every town, then not
every town has the same population as itself.

Now, by A4 minus the restriction, (1) is an axiom. Yet (1) is plainly in-
valid for our structure, since the antecedent holds for that structure and its
consequent fails. The restriction performs the needed job of forbidding the
substitution on (1) of an occurrence of “z,” for an occurrence of
“r”, since “ap” is not free for “z;” in (1). (As without restriction would
make an axiom of the invalid formula Yz (F2VFz) — (Fx — Yz Fz).)

A similar story can be told of the restriction in T2. For, again using the
above domain of interpretation, let “F?2” represent the English predicate “is
home of the Rimrock Hotel”. Then the sequence

(2)  ((FP(z1)) (V2L (FT)))

would exemplify a good PredCal-deduction of Vz;F2z from FZz, even
though the sequence,

(Banff, Banff, ..., Banff, ...)
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doesn’t satisfy VxFZx,. For, understanding Banff to be the first element
of this sequence, “FZ(x;)” is satisfied by that sequence, Banff being in fact
the home of the Rimrock Hotel; but “Vz;(F?)” is not satisfied by it since it
is not true that the sequence,

(Standoff, Banff, Banff, ..., Banff, ...)

which differs form the original sequence only at the kth (here, the first) ele-
ment, satisfies the formula. Thus, for that structure, Vo, F? is not satisfied,
and therefore the deduction cannot be admitted from the point of view of
structures.

We conclude the present section with a selection of theorems of APredCal.
They are specified by means of the following theorem schemata, which stand
to axiom-schemata as theorems stand to axioms.

Some Theorem Schemata of APredCal

Th(1):  "Va(®) D VB(S5®)", provided 3 does not occur free in ® and j
is free for o in ®.

Th(2):  "(Va(®)) = VB(S§(®))7, provided B does not occur in ¢ and j3
free for din ®.

Th(3):  "(Va(VB(®))) = (VB(Va(®)))™.
Th(4): (@ D Va¥) D Va(®) D ¥)7, provided « is not free in ®.

Metatheory of APredCal. All this, of course, prompts one to ask,
in particular, whether APredCal manages to produce as theorems just all
the valid APredCal formulas; and, more generally, whether APredCal has
other interesting properties, and if so what are they?

To the first question, the answer is yes. APredCal is correct and in the
sense that exactly its theorems are exactly its valid formulas.'* (Proved by
Godel [1930] and later by Henkin [1949]). The metaproof is here omitted.

To the second question, the answer is also yes. APredCal is consistent
in the sense that for no formula @ is it the case both that ® is a theorem
and also that "=®7 is a theorem.

That APredCal is consistent is important, since every consistent such
theory has a model. (Proved by Godel [1930]). Thus APredCal has a
model in fact every model is a model of the set of formulas of APredCal.
APredCal Detachment and Generalization are “good” Transformation
Rules, since under them sequence-satisfaction, truth-in-a-structure, satis-
faction by all sequences that satisfy the premises of the deduction, and
validity are hereditary.

4Note that the soundness metatheorem for PC gives one-half of the completeness
property in the the present meaning of “completeness”.
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APredCal admits of a Compactness Metatheorem (proved by Church
[1936]. Also provable is a Deduction Metatheorem. As we saw in our discus-
sion of PC, the Deduction Metatheorem is a useful device for discovering
theorems, especially if theoremhood is not a decidable property. In PC
theoremhood is decidable, since validity is, and PC is correct and com-
plete. But in APredCal neither validity nor theoremhood is decidable.
(Proved by Godel [1930]). However a fragment of APredCal is decidable.
Let (A'PredCal) be exactly like APredCal save that all its predicates are
one-place (they are the so-called monadic predicates). A'PredCal is “the
monadic predicate calculus”. Validity is decidable in A'PredCal. This last
is important if only in that it suggests that the richer the syntax of a formal
system the less likely its central notions are to behave algorithmically. And
this is so.

9 ENGLISH AND PREDCAL

When we move from PC to PredCal this happy convergence seems to fall
apart. Quantifiers are the problem. The problem they give for convergence
is that they are not (much of) a problem for proof theorists but are for
theorists of the valid-argument persuasion. And for the model theorist
they are a very hard problem indeed. The argument theorist is faced with
the difficulty that the quantifiers of PredCal seem not to have the same
grammar as those of English. In other words, the PredCal quantifiers are
counterintuitive. It is worse for the model theorist. Let

By, ..., B, T

now be quantified sentences of PredCal. If the ®; together logically imply
¥ then there is no structure in which the ®; are true and ¥ false. But
what is a structure? It is the natural child of algebraic parents, an abstract
set-theoretic object. Beyond that there are a great many of them, certainly
more than denumerably many. Abstract and ubiquitous, they are every-
where around but awfully hard to recognize. So how can it be determined
whether W is true in every model in which ®q,..., ®, are also true? The
model theorist must bring models to heel. It is customary to suppose that
he does this by invoking the constraints of the cumulative hierarchy of sets,
as provided for in (say) the Zermelo—Fraenkel (ZF) axioms. By these lights
V' is the universe of sets and is itself a structure. In a crucial respect V is
thought to be on a par with lesser sets: not only are the ZF axioms true
in them, so too the sentences of PredCal are true or false in them. In
fact, however, there is no notion of truth that is both applicable to V' and
formally articulable in ZF. Strictly speaking, then, the model theorist can’t
have ‘true’ in the way that he aspires to have it as a logician i.e., as the
output of his own theory; (so he can’t have ‘all’ and ‘some’ in that way
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either). In this respect, the model theorist is in the same boat as the PC-
representer of English on the hoof. He wanted his judgements of validity
and consistency and invalidity to be secured by logical forms. For the last
two, there is no formal way to satisfy Logical Inertia, and even if it is sat-
isfied somehow, the PC-logician has lost consistency and invalidity in the
way that he contrived to have them in the first place. If the appearances
of late count for anything, the argumentation theorist comes second in the
PredCal stakes. For fanatical traffickers after a theory of natural language
argument this is occasion to abjure PredCal. For the less excitable, there
is reason to consider a marriage of convenience with proof theory. It is of no
use. In PredCal all three approaches come to the same thing. Convergence
on how to handle formulas of the form "®,, ..., ®,7 logically implies ¥ is
restorable after all (Hodges [1983], section 17).

Still, quantifiers in English are hard to make out. It is galling that two
such little words, ‘every’ and ‘some’ should act up so. But they do. What
is the problem? Let us attend to Michael Dummett [1973, 517]:

...given that we understand a sentence from which a predicate
has been formed by omission of certain occurrences of a name,
we are capable of recognizing what concept that predicate stand
for in the sense of knowing what it is for it to be true of or false
of an arbitrary object, whether or not the language contains a
name for that object.

Dummett catches an essential technical point for the development of Pred-
Cal. It is this: that if “Mary is angry” is a sentence and, so, eligible for
truth functional combination, then “z is angry” is a sentence-like construct
and hence also eligible for truth-functional combination. By extension, “Ev-
ery woman is angry” involves a quantifier expression and two predicates, or
as we may now say, open-sentences: ‘x is a woman’ and ‘z is angry’, where
‘r is a woman’ is a predicate. Predicates are open sentences; they can be
truth functionally combined, as witness

z is a woman D z is angry.

‘Every’ now is ‘every z’ and ‘every «’ is qualified by the relative predicate ‘z
is a woman’. The second predicate ‘z is angry’ qualifies what went before.
Thus, as reconstructed in PredCal, “Every woman is angry” is

For every z, z is a women D z is angry
or, in a stylistic variation,
Vz (z is a woman D z is angry).

We said that quantifiers were difficult. Part of their difficulty is now over-
come. We overcame it by seeing that predicates accessible to quantification
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are sentences. It is something that Peirce [1885] was exactly right to em-
phasize.

The quantificational expression ‘some’ is given like treatment. “Some
women are angry” is construed as

For some z, zis a woman A z is angry
or, in a notational variant,
dz(z is a women A z is angry).

Here too the sentence is parsed into two expression types: a quantificational
expression, ‘dz’, and the open-sentences, ‘z is a woman’, and ‘z is angry’.

English abounds in quantifier-expressions — ‘most’, ‘many’, ‘few’; ‘a few’,
‘several’, etc.— that cannot be reconciled to the grammar of ‘all’ and ‘some’,
as has been demonstrated repeatedly. (Barwise and Cooper [1981]). This
answers a question that bothers some critics of logic as a theory of natural
language: Why does PredCal restrict itself to just two quantifiers? The
short answer is that they are the only two that fit the grammatical paradigm
at hand.

Even so, it is clear that PredCal affords us the opportunity of represent-
ing very many more kinds of English arguments than did PC, and many
more kinds of English sentence than it. But it would still be a mistake to
think that the language of PredCal is capable of reflecting all the logi-
cally relevant syntactic structure of English. For example, PredCal has no
identity predicate, and so cannot (tightly) represent such inferences as:

1. Cataline opposed Cicero
2. Cicero = Tully.
3. So, Cataline opposed Tully.'?

Neither does PredCal contain any function symbols, nor, other than the
connectives, operator symbols, and so cannot (tightly) represent such truths
as:

4. The sum of 2 and 4 is 6.
5. 4x6=24
6. If necessarily man is mortal then man is mortal.

PredCal also does not acknowledge tenses and adverbs of tense, so cannot
(tightly) represent:

7. If Sam was here, then possibly he is not here now.

How far should we be prepared to go in our efforts to reflect the logical
structure of English?

15 This is disputed by Quine, where Quine [1970, chapter 5] suggests the contextual
eliminability of “=” from otherwise standard PredCal languages.
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10 FIRST ORDER LOGIC

The language of PredCal can be extended to include the identity predicate,
and some function symbols. And after a few new axioms are added, the re-
sult is a system that can handle examples of the sort (1) to (5). Roughly,
such a system is said to be an elementary first order quantification theory,
FPredCal, adequate for the expression of ordinary arithmetic. Whether to
go further than FPredCal, adding the vocabulary and the axioms needed
to represent cases (6) and (7), is currently a matter of lively controversy.
The conservatives have a point when they say that such non-standard sys-
tems are (comparatively) not very well known, are not yet in many cases
very deeply studied, so why buy a pig in a poke? The non-standardists have
a point when they remind us that FPredCal is not complete, (proved by
Godel [1931]). Note that FPredCal (the logic of first order with identity
and function symbols) itself is complete given the standard axiomatization
(just as APredCal). Gddel established that any consistent first order the-
ory T, if it is equipped with an effective procedure for determining whether
an object is one of its own proofs, is incomplete. That is, if it has the
predicate ‘is a proof of T° the class of objects of which that predicate is
true is a decidable class, all recursive functions are representable in T (so
that the fixed point theorem maybe proved), FPredCal is incomplete. So
it is not much of an argument on FPredCal’s behalf that many of these
more elaborate non-first order systems are not, or are not known to be,
complete. How much of a point either has plainly depends on what one
supposes an adequate logic to be. For excellent discussions of first order
theories see Goldfarb [1979], Moore [1980], Hodges [1983, sections 13-15,
26], and Barwise [1977].

11 VARIATIONS ON STANDARD SYSTEMS

Arguers have a standing interest in two questions. One is whether an argu-
ment that someone has already made is a good argument. The other is how
to go about making a good argument. In a streamlined version, the second
is a question about the conditions under which a search for a good argu-
ment is made efficiently. Belief-revision is likewise something to which both
these questions naturally apply. As we saw, one attraction of syllogisms is
their inchoate recognition of the importance of the second question. If; in a
search for a syllogism for a conclusion C'the enquirer were free to deploy any
premiss that left intact the relation of entailment between all the premisses
he has so far considered and C, then any enquirer exercising this freedom
unconstrained would be a radically inefficient syllogizer. Better if he had
some way of discounting large classes of useless premisses. But Aristotle’s
non-superfluousness condition on premisses is not in fact a satisfactory con-
dition on premiss searches. A premiss cannot be recognized as superfluous in
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Aristotle’s sense unless it occurs in a valid argument. But where the search
is for valid arguments, Aristotle’s condition won’t help. It merely tells you
what to do with useless premisses after you have succeededin making a valid
argument out of them.

Certain modern systems of logic try to go Aristotle one better in the
business of premiss searches. They are not standard systems, but rather
are restrictions of PredCal. Perhaps the best-known nonstandard system
having efficiency of premiss search as a basic motivation is the system R of
relevant propositional logic, developed by Alan Ross Anderson and Nuel D.
Belnap, Jr. [1975] and Anderson et al. [1992], and the veritable galaxy of
extensions, enrichments and variations that orbit R. (Routley et al. [1982]).

Efficiency of premiss-search is a matter of subduing complexity. Com-
plexity is a computational property. Thus a search for efficient premisses
is a quest for a computational simplicity. At the propositional level, PC
properly contains intuitionistic (propositional) logic, which in turn properly
contains minimal (propositional) logic. (Prawitz [1975]). They can be dis-
tinguished by reference to their respective policies for handling hypotheses
in the form {®, -®}. In PC all rules mentioned are valid and so is classi-
cal reductio, and any formula is derivable from {®, ~®} (ez falso sequitur
quodlibet) Int.—IPC lacks: double negation, excluded middle and classical
reductio (with regular reductio retained), any formula still derivable from
{®, =P} constructive dilemma is valid in all three systems; (disjunctive
syllogisms valid in PC and intuitionistic logic but not in minimal logic)
minimal—+MPC lacks the property that any formula follows from {®, =®},
but all negations still follow.

Of the three, PC is a comparative computational delight. PC is NP-
complete. (Cook [1971]). The problem of whether a sentence ¥ has a
proof in PC belongs to a class K of computational problems. K is NP-
complete just in case two conditions are met. First, K-problems can be
solved in nondeterministic polynomial time (in which case K is NP-easy).
Second, any other solvable problem class K* can be transformed into K in
deterministic polynomial time (hence, is NP-hard).

A K is solvable in deterministic polynomial time if there is a polynomial
function ® such that any problem in K of length n is solvable in ®(n) units
of time.

A K is solvable in nondeterministic polynomial time if and only if there is
an effective branching procedure 3 for solving it and a polynomial function
® such that for any argument A to ® of length n, then the tree generated
by @ contains a solution of A at the termination of some branch of length
less than ®(n). Thus if the user of 8 were well-favoured enough to “hit
upon” the “right” branch, he would find the quickest solution, a solution

guaranteed to occupy him for no longer than the ®(n) units of time. If,
indeed!
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NP is the class of all K computable in nondeterministic time. P
is the class of all classes K computable in (deterministic) poly-
nomial time.

No one has produced for the thousands of Ks known to be NP-complete an
effective procedure that runs in polynomial time. Thus the received wisdom
is the P # NP, even though the question is strictly open.

PC has a whole bag of proof strategies. So it is not surprising that, with
all those resources, it is NP-complete. Intuitionistic logic and minimal logic
don’t do nearly as well. They are both very hard, i.e., PSPACE-complete.'®

That PC is NP-complete and the others not should give pause to any
theorist of argument or of inference looking for a tractable model of how
things are on the hoof. In particular, anyone drawn to relevant systems
such as R out of an interest in computational efficiency will need to deal
with the possibility that PC sets a benchmark for tractability. Let us see.

PC is decidable. R is not (Urquhart [1984]). LR, a fragment of R got
by removing the distributivity axiom, is decidable (Thistlewaite, McRobbie,
and Meyer [1988]), but its decision problem is dauntingly inefficient. LR
is no better than ESPACE hard, and may be exponential space-hard'” on
the generalized Ackermann’s function. (Ackermann’s function dominates
any primitive recursive function. See Hilbert and Ackermann [1928], and
Urquhart [1990] and [1999].)

One of the reasons that Anderson and Belnap had for trying to bring
relevance within the orbit of an otherwise classical logic was to make proof
searches more efficient. For this to happen, R’s set of search problems would
need to be P-complete (on the assumption that P # NP), since PC’s search
problems are NP-complete. The analytic apparatus with which Anderson
and Belnap attempted to corral the relevance relation has three main com-
ponents. One is that the metatheoretic predicate “is a proof of ...” is
a transitive relation. Another is that in R and its satellite systems the
classical rule of disjunctive syllogisms fails. The third innovation is that
the connectives in R and its satellites are at least partially intensional (or,
non-truth-functional). In fact, although not intended by its originators, it
is provable that in the negation-implication fragment of R, all connectives
must be intensional if any is (Avron [1992]).

I6PSPACE is the set of decision problems determinable by polynomial space-bounded
deterministic Turing programs that halt for any input. A decision class K is PSPACE-
complete if e PSPACE, K* polynomially implies K. So even if it were the case that P =
NP, it is possible that P # PSPACE. (Garey and Johnson [1979, 171]). A problem is
PSPACE-hard if some recognized PSPACE-complete problem 7 is Turing reducible to it
without the need to state that « itself is in PSPACE.

I7A decision problem is (exponential) space-hard if and only if a Turing machine on
which the problem is solvable employs exponential quantities of (decision) space on in-
finitely many inputs. The implication fragment, R —, of R is space-hard.
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It is striking and ironic that in systems such as R the analysis of rele-
vance itself should be the very thing that makes them irredeemably hopeless
from the point of view of computational efficiency. It is a salutary lesson:
Any restriction worthy of the name in PC will make for greater not less
intractability.

Of course, computational efficiency is not an issue when a system of
logic does not purport to represent or model how human reasoners actually
produce truth-preserving belief-revisions. This leaves it open that compara-
tively intractable systems might appeal for other reasons. One is that there
really is a relevance constraint on the entailment relation, and that it is a
bad thing, therefore, that systems such as PC and PredCal leave it unap-
plied (and unrecognized). This is not the place to decide such issues. But we
mention in passing a system of relevant propositional logic (which has a nat-
ural quantificational extension) in which consideration of the “true nature”
of entailment and of the complexity of searches for its instances come into
happier alignment than Anderson—Belnap systems could ever allow. The
system is Neil Tennant’s IR of relevant intuitionistic logic. (Tennant [1987,
part II], [1992].) IR is a minimal logic augmented by disjunctive syllogism
and the rule

IV (T A D) B

In IR the transitivity of proof is not unrestrictedly valid. Tennant likes IR
because it “has strong meaning-theoretic, epistemological and methodolog-
ical claims to adequacy and correctness” (Tennant [1992, 6]). For example,
he says that it is “adequate for Popperian science” (Tennant [1987, 201
ff]). How does IR fare on the question of complexity? It does better than
R, since it is no less tractable than intuitionistic logic, that is, it no more
decisionally complex than PSPACE-complete. On the other hand, Tennant
is also able to show that a non-Anderson-Belnap system CR of relevant
propositional logic is constructible from PC and that its decisions problems
are no more complex than those of PC, which is NP-complete.

12 ARGUMENT AND INFERENCE

We have already seen that no standard system of logic stand as a satis-
factory theory of deductively appraisable arguments on the hoof. Their
utility in this regard depends essentially on a representation policy R which
takes stretches of natural language discourse into grammatical entities con-
structed out of the language of some or other deductive system. Among
argument theorists there are critics without number who object that any
standard R strips its natural language inputs of a hefty abundance of its
actual properties, whether contextual, syntactic or semantic. This is right
but is nothing to regret as such. What matters are the argumentation theo-
rist’s target properties and whether the logician’s representation policy has
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the backwards reflection property with respect to those targets. If the ar-
gumentation theorist has no interest in whether an argument on the hoof
possesses context-insensitive properties or properties that turn on syntactic
and semantic features which the representation procedures can recognize,
then logic has nothing to say about what interests him about arguments on
the hoof. But what an argumentation theorist may be interested in does not
fix the properties that arguments on the hoof actually have. Of course, as
we have said, tight representation policies require their inputs to satisfy the
Logical Inertia Principle, and whether they do or not, no standard system of
formal logic is able to determine. But that this is so leaves the logician and
the argumentation theorist at parity. Neither has a good theory of logical
inertia for natural languages, and both would be well-served by having one.
Then, too, branching quantification is a problem. For

(1)  Some melody of every big band from the forties is copied in some
hit song of every rock 'n roll star (Hacking [1979, 308]).18

More generally, if we try to say that for each x there is a y and for each z
there is a w such that Fz, y, z, w, how would we represent this in PredCal?
We could try

2. VzIyVzIw(Fryzw)
or
3. VzIdwVzIy(Fryzw)

It won’t work. Whereas we want the choice of y to depend only on z and
the choice of w to depend only on z, in (2) “we represent the choice of w
as depending on z too ...”, and in (3) “we represent the choice of y as
depending on z, too” (Quine [1970, 89-90]).

“As a way of avoiding these unwanted dependencies” (Quine [1970, 90]),
we might try

4. VzIy
Fayzw
Vz3w

which is a branching structure equivalent to neither (2) nor (3). But (4) is
not a formula of PredCal, and a good thing too some will say. For “as
soon as you branch out in the manner of (4) you get into a terrain that
does not admit simultaneously of complete proof procedures for validity
and consistency” (Quine [1970, 91]; proved by Henkin [1961, 181] and Craig
[1957, 281]). Quine points out that our branching quantificational utterance

18Hacking attributes the example to Janet Behner and cites Carlsen and ter Meulen
[1979].
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has a neat representation in a second order quantification theory, that is,
a many-sorted system in which there is quantification over a distinguished
set, of non-individuals or, as in this case, functions. Thus

1. Af3gVaVz(F (z, fx, z,gz))-

Concerning (1), Hacking is of the view that there is nothing to be found that
couldn’t be captured in the manner of (5) and that its functional expressions
‘fand ‘g’ can be restricted “to very low-grade ramified functions.” [Hack-
ing, 1979, 308]. Quine and Hacking differ as to whether (5) is a sentence
of a logic, with Hacking giving it the nod and Quine demurring. There is
no doubt, however, that (5) itself is not constructable in PredCal or in
any standard first order theory, and it is this that the argumentation theo-
rist may want to make something of. Indeed he has a new point to make:
There are quantified syntactic structures in English that won’t go over into
the language of any standard predicate calculus, and that this is so doesn’t
turn on the failure of any semantic principle such as Logical Inertia.

The heart and soul of formal deductive logic is the citation of target prop-
erties and the specification of logical forms such that those properties are
intrinsic to those forms. Of central importance is the operation of substitu-
tion, which is a process that also preserves logical form under syntactic vari-
ation, and also preserves the formal target properties under such variation.
Languages for which substitution is universally target-property preserving
are called “extensional”. In the case of the object languages of systems
such as PC and PredCal, target properties are closed under substitution,
and so such languages are “extensional”. In the case of natural languages
it is clear that they are not extensional just as they come. There are natu-
ral language structures galore whose target properties are not possessed by
their representations in any extensional object language. This calls for hefty
constraints on the logician’s formalization policies. He must try to contrive
his representational strategies in ways that honour the backwards reflection
principle with respect to the theory’s target properties. For this to happen,
he must restrict the inputs to the formalization function in ways that en-
able his theoretical objectives to be met. This amounts to a restriction on
inputs which limits them to those natural language structures with respect
to which the theorist’s target properties hold of them in virtue of their log-
ical forms. These are weighty restrictions. They deny to the input-position
natural language entities which fail Logical Inertia, which involve branching
quantifiers, which admit unrestricted adjectival and adverbial modification,
which display functional expressions, or certain various predicate constants,
such as existence. This leaves extensional logic with at most a structurally
impoverished proper subset of any natural language on which it has any
claim to pronounce; and it leaves the critical argumentation theorist with
three complaints to press.
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First complaint: Since most good real-life arguments are judged bad (i.e.,
invalid) by any extensional logic purporting to represent them, extensional
logic has little to offer a theory of arguments on the hoof.

Second complaint: Owing to the harsh requirements of extensionality, large
classes of arguments on the hoof that actually possess target properties such
as validity, are arguments, having no representations in standard logical
systems.

Third complaint: The logician has no wholly satisfactory principled basis on
which to distinguish between those natural language structures on which his
logic is fitted to pronounce and those on which it is not fitted to pronounce.

There are contemporary logicians who are more than prepared to throw in
the towel on the question of logic’s fruitfulness as a theory of arguments on
the hoof. Quine [1970] is perhaps the most emphatic of these. Extensional
or classical logic is not a theory of arguments on the hoof and not a theory,
either, of ordinary inference. Better, says Quine, to regard first order logic
as a filter on natural language whose output suffices, when supplemented
by the appropriate empirical predicates, for the exact formulation of scien-
tific theories. Central to such a suggestion is the claim that extensionalized
English suffices for the expression, in principle, of any statement of a scien-
tific theory. Such a claim, whatever its initial appeal, is done considerable
damage, however, by the broad recognition that quantum physics is almost
certainly not satisfactorily formulable in a purely extensional language.

The dominance of classical logic granted, some of the most impressive
developments in the present century have occurred in the area of intensional
logic. Here we meet with calculi for alethic modalities (“necessarily” and
“possibly”), causal modalities (“causally necessary”, “causally possible”),
temporal quantifiers, logic of tense, logic of events, and relevant logics. Also
of note are systems of dynamic logic and situational logic in which the
meaning of logical particles is not fixed by context-free truth conditions on
sentences but in which reasoning is represented as information processing
under contextually sensitive constraints. It would be too much to say that
all such systems are motivated by the desire to contrive more accessible and
realistic theories of arguments on the hoof and of ordinary inference and
practical reasoning. Even so, it is possible virtually without exception to
see in these theories something of such a motivation. Their success or failure
in such regard is a matter on which the jury is still out and, in any event,
is a matter that exceeds the reach of the present chapter. Still, these are
developments for the argumentation theorist and the theorist of practical
reasoning to keep an eye on. For the central fact is that natural languages
are intensional. How, then, can it be realistic to look for its logic in purely
extensional ways?

This is a fact of some importance. So we shall close the present chapter
with a brief sketch of intensional logic, in the manner of Gamut [1991].
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13 INTENSIONAL LOGIC

The intensionality of an intensional logic is a matter of degree. It is a matter
of its degree of departure from a purely extensional logic. A logic is purely
extensional if it satisfies the following conditions.

1. Its connectives are truth-functional.

2. Substitution of co-denoting terms preserves singular reference in all
referential contexts.

3. Substitution of co-designating predicates preserves predicate-designation
in all predicative contexts.

4. Substitution of co-valued sentences preserves truth in all sentential
contexts.

To save space, we shall confine our attention to propositional logic. The
most developed intensional approaches to propositional (and predicate) logic
involve the addition of sentence operators (one or more), which intuitively
convey the idea of

necessity and possibility (modal logic)

tense and/or time (tense/and or temporal logic)
knowledge and belief (epistemic and doxastic logic)
permission and obligation (deontic logic).

We shall here examine both the modal and tensed/temporal approaches to
propositional logic. Common to all such logics is the idea that sentences
are assigned truth-values relative to some specified context ¢. Let C be the
set of such contexts. Then the truth of a sentence in context ¢ will depend
on its truth in ¢ but also in other contexts c¢x in C. Let ¢ and cx be points
of time. Then the sentence "It was once the case that 7 is true at ¢, only
if there was an earlier time cx at which ® itself is true. Similarly, “It is
possibly the case that ®” is true in the actual world ¢ only if there is some
suitably alternative world c# in which ® itself is true.

Modal propositional logic MPC

To the language of PC we add the modal operatorsindexmodal operators O
and ¢, and the new Formation Rule:

i) If ®isa wif of MPC then "O&7 and 'O® 7 are so as well.
By the provisions of i), the following are examples of MPC-formulas.
Up
<OpvOyg

—0(pAg)
pD OCp
0> odp
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In the semantics of MPC, there are two fundamental intuitions. One is
that the truth of "O0®7 and "G®7 in any given world will be a matter of
®’s truth in other possible worlds.

We now introduce the idea of a model for MPC.

ii) A model M for MPC is a non-empty set W of possible worlds, a
binary accessibility relation R on W, and a valuation V which assigns
a truth value V,,® to every atomic sentence in each world w € W.

The pair { W, R} is also called a structure. Hence M is a structure together
with a valuation.

The truth value of a sentence ® in a world w in model M (Vi w®) is
defined as follows

iii)  Va,w® = Vi ®, for all atomic wifs

iv)  Viw—® =T iff Vayw® = F

V) Vuw(@D®) =T iff Viyw®=For Vyyw¥ =T

vi)  Va,wO® =T iff for all wx € W such that wRwx : Viyryw® =T

Thus “necessarily true” means “true in all accessible worlds”, and “possibly
true” means “true in at least one accessible world” .

For any model M it is always some wifs that are true in each of M’s
possible worlds. Two examples are

OpDp

Formulas true in all worlds of a model are valid in that model. If ® is such
a sentence, its validity is expressed as

Vu® =T

The class of sentences valid in a model M subdivide into those whose
validity is dependent on the particular valuation that M has, and those
whose vlaidity is independent of such considerations. These latter sentences
owe their validity soley to M’s structure, i.e., to its set of worlds W and its
accessibiltiy relation R. “Op D p” is an example of such a formula. We can
now say that a wff ® which is valid in every model just on this basis of its
structure S, then ® is valid on S. It can be shown that “Op D p” is valid on
any structure whose accessibility relation is reflezive.

Modal logicians are especially interested in exposing in detail relations
between the validity of wifs and various properties of structures. Consider
for example the schema

O(® > ¥) > (0% > OT).
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As it happens it is valid in every structure independently of the properties
of the accessibility relation R. On the other hand, the validity of the schema

Oé H OO
depends on the transitivity of R. And the schema
COp>O @

owes its validity to R’s symmetry.

We now turn to a propositional tense logic (TPC). Tense logic is nota-
tionally similar to modal logic. In tense logic, contexts are not worlds but
rather moments of time; (or, in some approaches intervals of time), and the
accessibility relation is that of earlier than.

TPC results from PC by addition of the operators G and H, each similar
to O. G is read as “it is always going to be the case that” and H as “it
always has been the case that”. Corresponding to & are the further two
operators (definable from the others) F and P, which read respectively as,
“will in the future be the case that” and “was in the past the case that”.

Let us consider ®, the atomic sentnece “Harry is rich”. Then TPC has
the means of recognizing the following tenses

P Harry is rich
Fe Harry will be rich
P Harry was rich
PP® Harry had been rich
FpPo Harry will have been rich
PF® Harry would be rich
(Note, however, that the distinction between the simple past and present
perfect can’t be recognized in TPC.)
A model M for TPC is a nonempty set T of moments in time, an “earlier
than” relation R, and a valuation V., which for each atomic wif ® and each
moment ¢ € T assigns a truth value V;® to ® at t. Here, too, T and R

define a structure, which is also sometimes called a time axis.
Now comes a truth definition for the various tenses.

i) VmG® =T iff for all t+ € T such that tRtx : Vi ® =T

ii) Vi F® = T iff for at least one tx € T such that tRtx : Va1, ® =T
iii) VaH® =T iff for all t+ € T such that t « Rt : Va4, ® :=T

iv)  VaP® =T iff for at least one tx € T such that txRt : Va1 ® =T

As with modal logic, there are principles of tense-logic which express (de-
pend on) certain properties of structures (or time axis). For example,
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G(®D>%) D (GP DOGY)
and
H(®>U0)D>(H®DHY)

are valid independently of the accessibility relation, hence valid on any
time-axis. (Recall, that these are analogues of "0(® D ¥) D (O¢ D> OV)7,
which is likewise valid in every structure.) Unlike "0¢ D @7 the next two
analogues are not wholly intuitive (but see below).

GP DO
and
H® > ®

would be invalid. Lacking a formula to express this irreflexivity, the two
formulas at hand survive as principles of TPC, as do:

v) ®>HF®

V1

& > GPd
P® > H(F Vv &V P3)

Vi1l

)
vii)

) F®>G(PeV IV FD)
)

1X

P® > GP®
x) F®>HF®

(v) says that what is now so has in the past always been something that
would occur. (vi) provides that what is now so will always be something
that has occurred. (vii) syas that if ® was once so, then it has always been
that either ® was yet to occur or that ® was occurring or that ® had already
happened.

Principles (v) and (vi) are true on every time-axis. Principles (vii) and
(viii) are valid on all time-axes where R is connected (i.e., such that for any
two times, one is earlier than the other).

Schemata (ix) and (x) are valid iff R is transitive.

Provided that time is a linear order (i.e., transitive, asymmetric, and
connected), then all the above schemata of TPL are valid.

We will say that R is dense if it satisfies the condition:

If for all distinct z and y z bears R to y, then there is a distinct
z such that z bears R to z and z bears R to y.

Given that R is dense, then there are three more valid schemata.
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xi) F®>FF®
Xii) —|G(‘I> N —|(I))
i) —H(® A -d).

From the elementary discussion of the present section, it is easy to see
that intensional logics, even at the propositional level, are interpretable in
ways that make their languages far better simulacra of actual languages than
anything to be found in a strictly extensional language. That is clearly a
gain for anyone interested in a realistic logic of natural language argument,
and inference. But, as we saw with standard systems of relevant logic, inten-
sional logics are computationally daunting. Complexity is a serious problem
for extensional logic. It is a much more serious problem for intensional log-
ics. It is necessary to ask whether computational costs are a reasonable
price to pay for the benefits that accrue to linguistic richness. As we shall
see, this is also a problem for inductive.
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JOHN WOODS

STANDARD LOGICS AS THEORIES OF
ARGUMENT AND INFERENCE: INDUCTION

1 INTRODUCTION

Induction is a central focus for a sprawling research community — certainly
for everyone to whose interests this Handbook is directed. Among the main
participants are mathematicians and statisticians who work in Bayesian
statistics, information theory, the theory of measurement and ergodics; en-
gineers and computer scientists who work on artificial intelligence, complex-
ity theory and entropy; experimental and cognitive psychologists interested
in the theory of choice, risk-behaviour, problem solving, learning measure-
ment and heuristics; management theorists and economists concerned with
public choice theory, game theory and probabilistic decision theory; episte-
mologists and philosophers of science concerned with theory adjudication,
rationality theory and the foundations of probability; logicians interested in
inductive logic; and in inchoate and rather tentative ways, argumentation
theorists and informal logicians concerned with practical, everyday reason-
ing and advocacy. (Rosenkrantz [1981].)

The focus of the present chapter is ampliative reasoning and argument. In
the ampliative mode the conclusion contains information that goes beyond
the information conveyed by the premisses. There are two main forms of
ampliative reasoning and argument, induction and abduction. We shall see
in due course that inductive logic has not achieved the theoretical stability
that can be claimed for deductive logic. Even so, there are developments
within inductive logic that can reasonably be thought of as standard. The
same cannot yet be said for abductive logic. Though a huge literature has
arisen in recent years, it would be premature to expect to find standardness
of a sort that one does find in inductive logic. We shall not therefore offer
an account of abductive logic as a standard logic of argument and inference.
(We try to make some repair of this omission in Gabbay and Woods [2002].)

In its most basic sense, an induction is a non-deductive argument or infer-
ence from a sample to a conclusion which projects the sample in some way.

One way in which a reasoner or arguer projects from a sample can be
schematized as follows

1. In sample S, the Fs are Gs
2. So, Fs are Gs.
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A second way is this:
i) In the sample, Fs are Gs
ii) So, the next-observed F will be a G.

The first example illustrates generalization by inductive inference, and
the second illustrates prediction by the same means.

The position from which most going systems of inductive logic begin
is a philosophical position known as inductivism. On this view, scientific
reasoning (and, by extension, some kinds of everyday reasoning) is correctly
done when it generalizes or predicts by inductive inference from observed
data. The general presumption is that an inductive inference is strong to
the degree that the data confer increased likelihood on the generalizations
and predictions drawn from it. A central task of inductive logic therefore is
to set out in a principled way the conditions under which such increases in
likelihood occur or, equivalently, an inference is inductively strong.

Bayesianism is a philosophical position according to which likelihood in
the intuitive sense just noted is probability defined by the axioms of the stan-
dard mathematical account of that notion, also known as the probability
calculus. It is possible to be an inductivist without being a Bayesian. Had
Bayesianism been known in his day, it is quite certain that Francis Bacon
[1905] would not have been a Bayesian, even though he was a strong induc-
tivist. Similarly it is possible to hold that the intuitive notion of likelihood
is properly identified with probability and yet to refuse the idea that in-
ductive reasoning is the heart and soul of properly transacted science. Karl
Popper [1992], for example, is a strong anti-inductivist, though sometimes
he is a Bayesian about likelihood. However, inductivism and Bayesianism
are the jointly dominant approacher to the philosophy of science in the 20th
century and beyond, and this has obvious consequences for the logic of that
structure which inductivists take to be fundamental to correct scientific
reasoning.

In chapter 1 we noted Mill’s remark that induction, when properly exe-
cuted, is too complex a mode of reasoning and arguing for individual agents
to manage. We shall return to this question of complexity in due course.

2 INDUCTION AND HUME’S PROBLEM

In the philosophical literature induction is, as we have said, centrally a mat-
ter of generalization or prediction from instances of types of phenomena. A
generalization, e.g. that all ravens are black, is taken to have a likelihood
that increases with the number (and perhaps the mix) of its positive in-
stances, that is, discrete data in the form, “This, that, and the other raven
is black”. Underwriting any such conviction is the Principle of Induction.
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In a broader version, the principle also guides our statistical inferences from
samples to populations. Given that n% of a properly constituted sample
has property ¥, we conclude that n% (or approximately n%) of the sample’s
entire population likewise has property ¥. In the special circumstance in
which the population is taken to be the result of just one case added to the
sample in question, that this will also show property ¥ is underwritten by
the Principle of Singular Induction.

What justifies our confidence in these principles? Consider the general-
ization G, “All ravens are black”. What reason is there to think that ravens
not yet examined will conform to G? If we say that previously unexamined
ravens come out under eventual inspection to conform to it or that other
generalizations have won confirmation in this way, we now have the task
of justifying the further generalization that generalizations with positive
instances and without negative instances so far are well-justified. Taking
this for granted comes to saying, question-beggingly, that the Principle of
Induction is justified by itself. (Circle 1, let’s call it.) So it might be if
the Principle were a truth of logic or even self-evident in some way. But
such appears not to be so, in as much the proposition, “Any generalization
justified by the Principle may be untrue” is logically consistent. On the
other hand, if we hold that the Principle, in its application to future or un-
examined cases, will hold true because it has probably done so up to now,
we will have landed ourselves in a circle, tight enough to be a dot. (Circle
2) This is, in all essentials, Hume’s Problem of Induction and Hume’s point
was that arguments apparently licensed by the Principle of Induction aren’t
arguments at all, but rather inductive habits, some of which may strike us as
having more “survival value” than others, but none of which is objectively
more reasonable or justified than any other. Thus

I shall add, for a further confirmation of the foregoing theory,
that, as this operation of the mind, by which we infer like effects
from like causes, and vice versa, is so essential to the subsistence
of all human creatures, it is not probable, that it could be trusted
to the fallacious deductions of our reason, which is slow in its
operations; appears not, in any degree, during the first year of
infancy; and at best is, in every age and period of human life,
extremely liable to error and mistake. It is more conformable to
the ordinary wisdom of nature to secure so necessary an act of
the mind, by some instinct or mechanical tendency, which may
be infallible in its operations, may discover itself at the first
appearance of life and thought, and may be independent of all
the laboured deductions of the understanding. ~ (Hume [1902,
Section V, Part II, Paragraph 45])

Hume’s skepticism bears upon the issues of the present chapter in a telling
way. He can be taken as having developed a position on the relationship of
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logic to the argument-inference pair, to wit: Inference is instinctual and not
a matter of concocting some or other argument-architectonic. In fact, much
of human inference may be sublinguistic. Though there may be a logic of
arguments, no would-be theory of our inferential habits qualifies as logic.
Whereupon no rule of logic is a correct “rule of inference”.

Worse still, Hume’s Problem is unsettling for empirical knowledge. If in-
duction is the basis of such knowledge, no set of mere facts can attest to its
effectiveness, on pain of circularity. This skepticism also cuts in the opposite
direction, in the direction, that is to say, of an Anti-Induction Principle by
which the more often inductive methods have failed in the past the more
likely they will work in future (cf. the well-known Gambler’s Fallacy). If it
is no more reasonable to bet on the Principle of Induction that on that of
Anti-Induction, our habitual affection for the former and our only very occa-
sional acquiescence in the latter are shown to be rationally unfounded. This
lack of rational mooring for our standard epistemic practices extends well
beyond the alleged fact that there can be no logic of such practices. It would
also appear that empirical theories of them are likewise blocked. For what
would a theory of inductive inference be if not a theory of how we adapt
to and learn from experience? Unless the environments to which we adapt
and from which we learn are available to us as pure “givens”, then that to
which we adapt and from which we learn must itself be learned or inferred,
and thus involve inescapably inductive description. Inductive methods are
essential to the most basic descriptions of the world and thus are unavoid-
ably employed by any theory determined to establish their effectiveness and
truth-tropicity (which is Lipton’s word for truth-approximation. (Lipton
[1991, 8].)) So it would appear that the circularity recurs at this level, too.
(Is it circularity 1 or 2?) (Burks [1977].)

If for these reasons there is no hope of a non-circular defense of the
legitimacy of inductive inferences, what is there left to say about the legiti-
macy of inductive arguments. It is not enough to hold that since arguments
and inferences are different things, arguments escape the heavy weather of
Humean skepticism. Either inductive arguments employ the Principle of
Induction or they don’t. If they do they will feel the teeth of Hume’s bite.
If they don’t, it is open to question whether good inductive arguments,
whatever they turn out to be in fine, are of any use to human reasoners.
For, as in the case of deduction, we have not shown (or said) that since ar-
guments are different from inferences, deductive logic is of no use to human
reasoners. As we saw at the beginning of the preceding chapter there are
constraints, including monochronicity, under which modus ponens is a good
rule, even though it is not so universally. Why could the same not be true
of the rules of an inductive logic which managed to produce a satisfactory
response to Hume’s Problem?

The Principle of Induction in its simplest and most appealing form car-
ries with it the idea of a positive instance of a generalization; as with black
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ravens, which are positive instances of generalization G. By an obvious syn-
tactic similarity so too are nonblack nonravens, which are positive instances
of the generalization, “All nonblacks are nonravens”, which is equivalent
to G by contraposition. Why should the confirmation of a generalization
depend upon the particular terms in which it chances to be formulated or
in which we happen to think it up?

So nonblack nonravens should also and equally qualify as positive in-
stances of @, and so too for black nonravens.! Now everything whatever
crops up in one or other of the four sets, black ravens, black nonravens,
nonblack ravens and nonblack nonravens. From which we have it that ev-
erything whatever is either a positive or negative instance of any general-
ization whatever. Put another way: conformity is confirmation; 2 that is,
every observation consistent with a generalization confirms it. This, the
so-called Paradox of Confirmation, is due to Hempel [1945]. Hempel’s own
solution is a proposal in effect to swallow the conformity-is-confirmation
line on grounds that its counterintuitiveness is a “psychological illusion”.
(Hempel [1945, section 5.2].) An alternative solution, inspired by Popper
[1962] and developed by Watkins [1957] would require us to narrow the
idea of confirmation in reaction to Hempel’s proposal to broaden it. This is
done by restricting the confirmation of an hypothesis to its verified predicted
consequences. Hempel’s approach provides that any statement implying a
second statement which confirms a third statement confirms the third. But
Hempel’s condition rests uneasily with the Popper-Watkins condition that
hypotheses are confirmed by their predicted consequences, for jointly the
principles imply that any statement confirms any other.? In this we see
that the apparent over-broadness of the Hempel approach is not counter-
balanced by the apparent over-narrowness of the Popper—Watkins approach,
so there is no chance of their cancelling out each others’ excesses and leaving
us with a shared and more subdued core notion.

Even so, no scientist or everyday reasoner would ever set out to harness
his confirmatory practices to Hempel’s conditions. This suggests that, nar-
rowness aside, Popper-Watkins is the better approach. That this is so has
been challenged, if not outright discredited, by Goodman [1983], where it
is argued that the P-W principle cannot discriminate between contrary hy-
potheses. Let ‘grue’ be the predicate that applies to green things observed
before time ¢ and to blue things not observed before ¢, where ¢ is some arbi-
trary selected future date (thus to things blue before ¢ and not observed to
be so before t and to things blue after ¢ and not observed to be so before ¢.)

IThis is clear when “All ravens are black” is rewritten as “Vz(RzDBz)”, of which
“RABa” is a confirming instance.

2In a nice turn of phrase of Rosenkrantz [1981].

3 Proof: Let L be a logical truth. Then for all ®, ® 1. Hence, by P-W, ® is confirmed
(by L). Let ¥ be any statement distinct from ®. Then ¥ 1, and L confirms ®. Hence,
by the Hempel condition, ¥ confirms . Every statement confirms every other statement.
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A green emerald examined before tis a grue emerald and so is (Hempelian)
confirmation of the generalization “All emeralds are grue”. Equally con-
firmed is “All emeralds are green”. The two generalizations are incom-
patible with one another since, after ¢, they satisfy contrary predictions.
What is more, since for Hempel confirmation is closed under consequence,
examination of green emeralds prior to t confirms the claim that emeralds
examined after ¢ will be blue. As for the P-W principle that an hypothesis
is confirmed by its consequences, since both “All emeralds are green” and
“All emeralds are grue” have the same true consequences at any time prior
to t, there is no way to adjudicate between the two conflicting hypotheses
at any time prior to some arbitrary time.

Goodman does not regard his problem as having overturned Hempelian
confirmation. Goodman’s own view is that this New Riddle of Induction
calls attention to the necessity of distinguishing lawlike generalizations for
which it doesn’t hold and shouldn’t. The difference turns on entrenchment.
Green things are better entrenched grue things and this, thinks Goodman,
gives us good reason to generalize to the generalization that all emeralds
are green, rather than to the generalizations that they are all grue.

Virtually all commentators take the constructibility of strange predicates
such as ‘grue’ to be the heart and soul of Goodman’s problem. In fact, the
New Riddle of Induction is a case of Hempel’s Paradox. The green emeralds
examined before t are positive instances of “All emeralds examined after ¢
are blue”, in the same way that yellow lemons are Hempelian instances of
“All ravens are black”, a generalization that involves no “funny” predicates.
How, then, it is possible to draw, without circularity, the distinction between
law-like and accidental generalizations in a language all of whose predicates
are entrenched in Goodman’s sense?

As with Hume’s Problem, it is left as a condition on any inductive logic
that it make satisfactory provision for the Paradox of Confirmation and
its special case, the New Riddle of Induction. (Hempel and Goodman are
discussed further in Woods [2001e, chapter 9]. See also Stalker [1994].)

With these things said, a problem arises for the very prospect of a logic
of induction. If Hume’s Problem of Induction and its heirs, such as Good-
man’s New Riddle, are left without a satisfactory rebuttal, the possibility
exists that our inductive practices cannot be justified, never mind that they
are indispensable and the subject of our considerable confidence in actual
reasoning. Logic, on the other hand, is widely conceived of as a norma-
tive enterprise in which arguments of certain types and inferences of certain
patterns are said to be justified to the extent that they conform to various
logical rules.* Thus if there are successful arguments to the effect that in-
duction cannot be justified, they are also arguments to the effect that there
can be no such thing as a logic of induction.

4For all its orthodoxy, such a view is queried in Chapter 1 above.
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This leaves the would-be theorist with two broad options:

Option One: The theorist can provisionally give up on the idea of a logic
of induction as a normative theory and replace it with a modified notion in
which a logic of induction is a systematic account of our more or less settled
practice considered descriptively. (See here Lipton [1991, chapter 1].)

Option Two: The theorist might attempt to make the case that our actual
inductive practices are made normatively secure not by their fidelity to
principles called into question by arguments such as Hume’s but rather by
their fidelity to principles that owe their justification to the principles that
Hume didn’t worry about. On one such attempt, our inductive practices are
justified, at least in part, by their conformity to the calculus of probability
whose own justification is secured by the fact that it is a (specialized) branch
of the arithmetic of the real line. Another possibility is to construe the
property of inductive strength in such a way that its theory is a deductive
theory and thus a theory that satisfactorily answers Hume’s contention that
induction cannot have a deductively based justification or logic. (See here
Carnap [1962]).

In what follows the reader is invited to interpret the theories under re-
view as sanctioned by option one or option two as the case may be. The
general format of our discussion will be this: We shall introduce the con-
cept of an inductive logic in the broad sense (ILP) which is represented as
a quadruple (Provisional definition of inductive strength, the probability
calculus, inductive logic in the narrow sense (IL"V), a philosophical reply to
Hume’s problem). Inductive logic in the narrow sense is motivated by the
fact that the probability calculus fixes the inductive strength of very few
arguments or inferences which we would regard as inductively strong (never
mind, for now, whether we are justified in so regarding them). Thus an IL"
is a theory designed to supplement the theorems of the probability calculus
with rules (or “rules”) for the determination of inductive strength.

The first component of IL? is furnished by the working definition

DefIndSt: An argument ({®y,...,P,}, ¥) is inductively strong
if and only if the probability of ¥ given the ®; is higher than
the probability of ¥ considered alone and ({®4,...,®,},¥) is
invalid.

The definition invokes the concept of probability, and probability is the sub-
ject of the calculus of probability or ProbCal, to which we now turn. But
note, in passing, the force of Raven and Grue. “What are the constraints
on the ®;7”
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3 PROBABILITY

In the several pages to follow we shall give a formal (i.e., a mathematical)
definition of probability. It is important to note that the formal definition
underdetermines the conceptual meaning of probability, concerning which
there are a number of rival interpretations. In most interpretations proba-
bilities are defined over probability spaces whose members are events. The
concept of event varies with different interpretations of the probability con-
cept.

Logical probability On this view, probability is a degree of rational belief.
Given the same evidence, every rational agent will have the same degree of
belief in any given proposition. Early work was done by Johnson [1932]
and Jeffreys [1939], but Keynes [1921] is given special recognition. Carnap
[1962] is a later contribution to the logical approach.

Subjective probability. Originated by Ramsey [1931] and de Finetti [1964],
subjective probabilities are taken as degrees of (rational) belief. An agent’s
degree of belief is measured by his willingness to bet on it. A belief is
“coherent” if it is proof against a Dutch book (see below). An agent, A,
resists a Dutch book when it is not possible for any co-bettor to select stakes
which guarantees that A will lose no matter what.

Frequency probability. As developed by Richard von Mises (von Mises
[1928; 1964]), the probability of an event in a given situation is definable
via the frequency of occurrences of events of the same kind in an imaginary
population of recurrences of the same situation. In its most elementary
form, the frequency theory deals with finite frequencies. The probability of
event F occurring given that it is B, is the number of As that we observe
B divided by the number of Bs. In the so-called “long run” version of the
theory, the probability that A will occur given that it is B is the limit that
the relative frequency of As in Bs would converge on provided there were
indefinitely many Bs. It is open to question, however, whether this limit
is what reasoning agents actually aim at when they make judgements of
probability. It is a problem that provoked Keynes’ celebrated wisecrack
that in the long run we are all dead.

Chance probability. Here a probability is an objective (i.e., non-doxastic)
non-relational property of events. The property is called chance. In virtue
of its non-relational character, the objective theory of objective chances re-
sembles the subjective probability theory, which is also non-relational (or
single-case). But objective chance theories also make use of relative fre-
quencies, which it is the role of the property of chance to explain. Thus
chance accounts for how relative frequencies are evidentially fruitful, (Mel-
lor [1971] and Lewis [1980]). The theory proposes that chance determines
what degree of belief is appropriate without itself being a relative frequency
or a degree of belief. In this regard, propensity theories are also classified as
frequency accounts. On this view, probability is a propensity that inheres
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in a group of repeatable events. The probability r of a particular event of
kind kis a frequency of k-events close to r given the propensity that inheres
of repretitions of the salient repetitions.

Subsuming the logical, subjective and objective theories is an even more
basic distinction adumbrated in Hacking’s remark that probability is a
Janus-faced concept.

[P]robability ... is Janus-faced. On the one side it is statisti-
cal, concerning itself with stochastic laws of chance processes.
On the other side, it is epistemiological, dedicated to assessing
reasonable degrees of belief in propositions quite devoid of sta-
tistical background (Hacking [1975,
12)).

Thus there are two fundamental conceptions of probability, in one of which
probabilities are in the head and, in the other, are in the world. This is
a loose way of talking even that heads are also in the world and that the
in-relation is transitive. There is no fully settled nomenclature for marking
the intended distinction; but we could do worse than material probability
for “in the world” and epistemological probability for “in the head”. So
taken, logical and subjective theories are espistemological, and frequency
and objective theories are material.

Other interpretations still have been made of the concept of probability,
making it a semantically layered notion and occasion of theoretical rivalry.
(See Howson [1995] for an excellent survey.) Even so, three interpretations
lightly sketched here and most of the others (an exception is considered
below) satisfy the axioms of the probability calculus with little or no ad-
justment. So we shall turn now to probability theory.?

4 THE PROBABILITY CALCULUS

The mathematical theory of probability was pioneered by Kolmogorov
[1950].6 A good account of modern developments can be found in Billingsley
[1979].

In deductive logic, an argument ({®1, ..., ®,}, ¥) is valid if and only if its
corresponding conditional, "(®1A, ..., A®,)D ¥ is a necessary truth; that
is, if the premisses conjoined entail ¥. By this test, a considerable number
of arguments, including most that have ever been or will be advanced by real
people in real-life situations, are bad arguments. Of these, a considerable

5For an interesting attempt at reconciling objective and subjective conceptions, see
[Atkinson and Peijnenburg, 1999].
6The original Kolmogorov axioms are, for any proposition ® and W:
0< Pr(®) <1
If Pr(®) = 1, then ® must be true
If  and ¥ are incompatible, then Pr(® or ¥) = Pr(®) + Pr(¥) (Kolmogorov [1956]).
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number are nevertheless, in some serious way, good. Some are said to be
inductively strong. At least one large class of inductively strong arguments
are those that appear to satisfy DefIndSt.

Implicit in DefIndSt is a distinction between the probability a sentence
has independently, and the probability it has in the light of some other
sentence or sentences. We may speak of the former probability as “prior”,
and of the latter probability as “posterior”. These ways of speaking are
loose conveniences at best. They allow us partially to characterize induc-
tive strength: an argument ({®;,...,®,}, ¥) is inductively strong only if
U’s posterior probability is greater than its prior probability. It must not
be thought that, in our example, ¥’s prior probability is the probability it
has independently of any given set of conditions. Similarly, ¥’s posterior
probability is not, in our example, its value in light of any set of conditions,
but only in light of the conditions specified by the argument’s premisses;
so the premisses are an essential factor. In most standard theories of prob-
ability, all probabilities are conditional. Thus ¥’s prior probability is its
conditional probability independently of the conditional probabilities of the
particular premisses ®1, ..., ®,. Often enough, the conditional nature of
prior probabilities is not spelled out. There are reasons for this, some tech-
nical and some rather more substantive. On the technical side, suppressing
the conditionality of prior probabilities simplifies the formulation of those
probabilities in which the theorist has a particular interest. On the sub-
stantive side, the condition that fixes the probability of a given sentence
which, from the point of view of some further set of conditions, is prior to
them, is a condition that is sometimes unknown to the theorist. In some
treatments of probability, the theorist postulates a universe of discourse U,
which is represented by a class of disjoint alternatives. Then U itself is said
to fix the possibilities of each atomic sentence describing the alternatives
in U. The prior probability, then, of each such sentence is its conditional
probability on U. Where ® and ¥ are two such sentences having their prior
probabilities fixed by U, it is possible to compute the posterior probability
of (say) W, given ®. This will be the conditional probability of ¥ on ®.

Not all posterior probabilities are conditional in this way. For if ® and
U are as before, it is possible to compute the probability of "(® A ¥)™
and of "® v ¥7. True, the probability of "® A U7 is conditioned by the
prior probabilities of ® and of ¥, but the sentence to which the conditional
probability is assigned in this case is not, for obvious reasons, ¥(on ®) or
®(on V). Similarly, given that ® has the prior probability that it does have,
it is possible to compute the posterior probability of "—®™.

We have been speaking just now of computing the probabilities of certain
statements given the prior probabilities of other statements. This, too, is
loose talk. It must not be taken to mean that it is always possible to know
the conditional probability of a sentence ¥ on a sentence ®; for sometimes
the prior probabilities of ® and ¥ won’t be known to the theorist. Even so,
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where ® and ¥ have determinate prior values, never mind again whether
anyone knows what they are, various conditionalized combinations of these
sentences, and of truth functional compounds of them, likewise will have
determinate posterior probabilities, never mind whether they are known to
anyone. We see, then, that for various kinds of sentences, posterior prob-
abilities are functions of prior probabilities. Those functional relationships
are constrained by minimal conditions known as the axioms and theorems
of the probability calculus, to a discussion of which we will now turn.

As with various systems of deductive logic, the probability calculus,
ProbCal, is a couple (G, I) of a grammar and a set of interpretations.
The grammar gives a vocabulary and a set of Formation Rules. The vocab-
ulary of ProbCal is made up of (i) an arbitrarily large number of atomic
sentences, p, ¢, 1, S, P1, --., Pn; (i) the connectives, V, A and —; (iii) the
real-valued variables, z, y, z, wy, %1, ..., Tn, ...; the functional expression
‘Pr’; (iv) and the elementary vocabulary of analysis, i.e., the arithmetic of
the real line. The formation rules include (i) the sentence-forming rules of
PC as applied to our connectives; (ii) the descriptor rule: if ® is a sentence
then "Pr(®)" is a denoting phrase which is read “the probability of ®”; (iii)
the formation rules of arithmetic.

Each i€ I'is an interpretation of G. Given an interpretation, each sentence
of ProbCal has exactly one truth-value, T or F. The variables z, y, z, z1, 22,
etc., range over the real numbers in the open interval 0 to 1. Each sentence
of ProbCal has a unique assignment of a real number in [0, ...,1] and the
denoting phrase “Pr(®)” denotes that number. The standard interpretation
of the elementary syntax of the arithmetic of the real line is also assumed.
As here presented, ProbCal is a variation of the treatment of Burks [1977]
which, in turn, derives from Hosiasson-Lindenbaum [1940]. A further, and
accessibly “Burksian” version, is Gustason [1994].

Before turning to the probability axioms of ProbCal, it is necessary to
introduce the concept of mutual exclusivity.

MutExc: If &, ..., ®, and ¥ are ProbCal sentences, then
®q, ..., D, are mutually exclusive on condition ¥ if and only if
at most, one of the ®; can be true if ¥ is true.

Some sentences, x1, ---, Xi, are mutually exclusive no matter what, on
any condition. And sometimes the condition on which a set of sentences is
mutually exclusive is obvious and virtually guaranteed to obtain. In such
cases, the rider “on condition so-and-so” may be omitted. We may now
state our first axiom.

AXIOM 1. If &4, ..., ®,, are mutually exclusive given condition ¥ then
Pr(®V...V®,/%) =" Pr(®;/T).

(That is, the probability of a disjunction on a condition is the sum of the
probabilities of each disjunct on that same condition.)
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Suppose we were to roll a standard six-sided die. Our disjunctive propo-
sition might be: “The result of the roll is a one or a three or a five”. Each
disjunct (i.e. each individual proposed result) has its own probability given
the background conditions ¥ (i.e. that we roll a six-sided die, each of whose
faces has a given chance of being the result of our roll). The probability
of the first disjunct is primitively assigned as 1/6, as are the following two.
Thus Pr(®,/¥) =1/6, Pr(®/¥) = 1/6, and Pr(®3/¥) = 1/6. The sum of
these probabilities is thus 1/6 + 1/6 + 1/6 = 3/6 = 1/2. So the probability
of “the result of the roll is a one or a three or a five” is1/2.

The second axiom tells a similar story about the conditional probability
of conjunctions.

AXIOM 2. Pr(®iA. . . A®, /) = Pr{(®, /U)x .. .« Pr(®,/®A. .. &,—1AT).

(In this exposition, multiplication is denoted by the asterisk x.)

This means that the probability of a conjunctive proposition being true is
the product of the probability of the first conjunct given the background
conditions, ¥, and the second conjunct given both the occurrence of the first
and the background conditions, and the probability of the third conjunct
given the occurrence of the first two and the background conditions, and so
on.

Suppose we have an ordinary deck of 52 cards. We may use this axiom to
calculate the probability of drawing three jacks in a row. Our conjunctive
proposition is thus “drawing a jack and a jack and a jack from a deck of 52
cards without replacement”. The probability of ®; given ¥ is 4/52 , since
any one of the four jacks pulled from the 52 cards will satisfy this condition.
The probability of ®, given the occurrence of ®1, and of ¥, will be 3/51,
since any one of the three remaining jacks pulled from the 51 remaining
cards will satisfy this conjunct. The probability of ®3 given the occurrence
of ®; and @, and of ¥ is 2/50, since either of the two remaining jacks pulled
from the 50 remaining cards will satisfy this condition. The probability of
(@1 A Py A P3) is thus 4/52 % 3/51 * 2/50 = 24/132,600 = 1/5525.

Axioms 1 and 2 are not schematic statements of inductive probability.
A statement of inductive probability is a statement in the form

Evidence E supports proposition P
or
Given evidence F, it is probable that P.
A statement of the probability calculus is a statement in the form

The proposition “Evidence E supports proposition P to degree
Z” is true.

This is not quite right even though it captures the right idea. In the way
we have explained it just now, a statement of the probability calculus is
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a metalinguistic statement, a statement about the statement flanked by
quotation marks. This is not strictly speaking true. In all standard formu-
lations ‘Pr’ is a term-forming operator on sentences, not an expression of
the metalanguage. Thus a statement in the form Pr (®/¥) = x does not
name the statements in (®/¥). Even so, that statement is true just in case
the conditional probability of the statement named by ® on the statement
named by ¥ is in fact z.

Axiom 3 establishes that deductive entailment is a limiting case of prob-
ability. Putting ‘=’ for ‘entails’,
AXIOM 3. If @ = ¥ then Pr (¥/®) = 1, except where ® is a logical
falsehood.”

The exception is explained as follows. The probability calculus assumes
a standard logic for deduction. Accordingly, ProbCal countenances the
classical metatheorem known as ez falso (sequitur) quodlibet: a contradiction
entails any proposition whatever. If in Axiom 3 ® were allowed to be a
contradiction, then every statement whatever would have a probability of
1 relative to ®. In particular, we would have Pr(¥/®) = Pr(—-¥/®) = 1.
But by Axiom 1, Pr(¥ V-¥/®) =1 + 1 = 2, which violates the condition
that there is no probability value greater than 1.

Axiom 4 asserts that probability values on a condition ® remain the same
for all conditions logically equivalent to ®.

AXIOM 4. If @ |= ¥ and ¥ |= ® then for all y,
Pr(x/®) = Pr(x/¥).

The fifth and last axiom merely stipulates that there are no negative prob-
ability values. That is

AXIOM 5. Pr(¥/®) > 0.
We turn now to some theorems of ProbCal.
THEOREM 1. If ® is a logical truth then for any ¥, Pr (®/¥) = 1.

Proof. Assume that ® is a logical truth. (Then ¥ |= ® by deductive logic.)
Hence, by Axiom 3, Pr(®/¥) = 1, unless ¥ is a contradiction. |

Theorem two introduces the connective —.
THEOREM 2. Pr(=®/¥) = 1-Pr(®/7)

Proof. It is a truth of logic that "(® v =®)™. Thus, by Theorem 1, Pr(® Vv
-®/T) = 1. It is a truth of deductive logic that ¥ = =" (® A =P)™. Hence,
by definition, ® and "—®" again, are mutually exclusive on ¥. By axiom
1, Pr(® v =®/¥) = Pr(®/¥) + Pr(—-®/%¥). Given ordinary arithmetic

“In which case Pr(¥/®) is undefined.
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with respect to our previous lines, we have it that Pr(—®/¥)=1-Pr(®/T).
(Assuming throughout that ¥ is not a contradiction. For ease of exposition,
we retain this assumption, except where the contrary is noted.) |

This theorem allows us to calculate the probability of some ®’s not ob-
taining under condition ¥ if we know the probability of ®’s obtaining under
condition ¥. This we do by subtracting this latter probability from 1. For
example, let ® represent “pulls a jack from the deck” and ¥ represent “the
standard deck of 52 playing cards”. As we know, the probability of ®/¥
is 4/52, as there are four jacks in 52 cards. The probability of not pulling
a jack from the deck of 52 cards, (i.e. Pr(—®/¥), is thus 1- 4/52 or 48/52
or 12/13). To take another example, let ® represent “the coin comes head
up” and ¥ represent “a random toss of a standard coin”. As we know, the
probability of ®/¥ is 1/2. The probability of the coin not coming up heads,
but rather tails (i.e. Pr(—=®/%¥)) is thus 1- 1/2 or 1/2.

Theorem 2 is a fruitful derivation. It allows us to prove that logically
false statements have the probability value of 0. It also enables us to show
that all probability values fall in the open interval | 0-1 |. Thus, where = @
means that ® is a logical truth,

THEOREM 3. If = =7 then for all ¥, Pr(® /T )=0.

Proof. Assume that = —®. Then, by Theorem 1, Pr(—-®/¥) = 1. From
which, by Theorem 2 and ordinary arithmetic, Pr(®/%) = 1-1= 0. [ ]

THEOREM 4. 0<Pr(®/¥)<1.

The proof of Theorem 4 comes readily from Axiom 5 and Theorem 2.

Theorem 4 allows us to preserve ®’s conditional probability on ¥ for
any further condition y equivalent to ¥. Our next theorem asserts that
the conditional probability of ® on some condition x is preserved on that
condition for any proposition logically equivalent to ®. Thus

THEOREM 5. For all ® and ¥, if ® = U and ¥ = @, then Pr(®/x)=
Pr (¥ /x).

Proof. Assume that ® = ¥ and ¥ = ®. Then by deductive logic, "(® =
U) = T(x D(® VvV -0))7. In fact, by deductive logic, x E "(® VvV -¥)™.
By Axiom 3, Pr(® v =¥/x)=1. By deductive logic again, "(® = ¥)7
(x D =(® A ~7)), hence, given that "(® = ¥)7 is a logical truth, y =
F=(® A =¥)". Thus, ® and "=¥7 are mutually exclusive on x. Given
Ax1, Pr(® Vv -¥/x) = Pr(¥/x) + Pr(—¥/x). By ordinary arithmetic, we
obtain Pr(®/x)=1-Pr(—¥/x). By Theorem 2 and arithmetic, Pr(®/yx) = 1-
Pr(=¥/x). Whereupon, by the transitivity of identity, Pr (®/x)=Pr(¥/x).

u
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We note that Axiom 1 holds only for mutually exclusive alternatives. Of
course, not, all possibilities are mutually exclusive, and so we need a theorem
that recognizes this fact.

THEOREM 6. Pr(®, V...V &, /¥)=1-Pr(~®, A ... A&, /T).

Proof. By Theorem 2 and ordinary arithmetic Pr(®; V...V ®,/%) =
1-Pr(=(®1 V...V ®,)/¥). But "=(®; V...V &,)7 is logically equivalent
to T(=®; A ... A —®,)7. Hence, by Theorem 5 Pr(®; V...V ®,/¥) =
1-Pr(=®1 A ... A =D, /). ]

Before attempting to secure this theorem, we should ensure that we clearly
understand Axioms 1 and 2, and Theorem 2. The value of the probability
of a disjunctive proposition is equal to 1 (the upper limit of probability)
minus the probability of the conjunction of the negations of each of those
propositions which originally occurred as disjuncts. Here is an example.

Suppose we want to know the probability of a 1, 2 or a 3 coming up on the
single roll of a standard six-sided die. While we could calculate this directly
via Axiom 1. Theorem 6 gives us an alternative method. We first calculate
the probability of the conjunction of the negation of the original disjuncts.
For instance, suppose ®;, ®, and ®3 respectively represent the propositions
that the roll of the die produces a 1, a 2, and a 3. The probability of a 1
occurring (i.e., Pr(®,/¥)) is 1/6. The probability of the negation of this
can be calculated via Theorem 2 as being 5/6 (this ought to be somewhat
intuitive). Given a fair roll, the chances of obtaining a number which is
not 1is 5/6. Pr(=®, A ~®3 A =®3/¥) can be calculated via Axiom 2 to be
Pr(=®, /) x Pr(=®y/—®; A T) % Pr(—=®3/-P; A =P5 A ¥), which is 5/6 *
4/5 % 3/4 or 60/120 or 1/2. Now we may take this result and subtract it
from 1. 1-1/2 = 1/2. Thus the probability of either a 1, 2 or a 3 coming
up on a single roll of a standard six-sided die is 1/2.

We now state a handy heuristic rule: If the statement whose probability
is to be calculated is a disjunction, are the disjuncts mutually exclusive? If
they are, apply Axiom 1; if not, employ Theorem 6.

In the present example, ®; and ®, and ®3 are independent on the condi-
tion ¥ (i.e., that there will be successive tosses of a true coin). Independence
is difficult to characterize in a non-technical way. It will serve our purposes
well enough to say that ®; ..., ®,, constitute a set of independent statements
on a condition ¥ just in case in relation to ¥ the probability of no ®; is af-
fected by the truth-values of any of the other ®; or by any truth-functional
compound of pairs of the ®;.

Up to now, we have been thinking of probability as a function on (pairs
of) sentences. It is convenient also to speak of the probabilities of events,
that is, of the events that would obtain if those sentences were true.

THEOREM 7. Let ®{, ..., ®, be independent on condition ¥. Then
Pr(®, A...A®,/T) =T],_, <nPr¢;/v).
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Proof. Suppose @, ..., ®,, to be independent on ¥. By the meaning
of independence, Pr(®;/¥) = Pr(®;/®1 A ... A P;_1 AT), for each i such
that 2 < ¢ <n. Then, by Ax2 and arithmetic Pr(®; A ... A ®,/¥) =
[licy <nPrei/¢) u

This means that when the probability of each proposition in a conjunction
is unaffected by whether or not any of the propositions in the conjunction
actually obtains (i.e., they are independent of one another), then the prob-
ability of the overall conjunction is equal to the product of the probabilities
of each individual conjunct.

Suppose, for example, that we wish to know the probability of having a
coin come up heads on 100 successive tosses. This could be presented by
Pr(hy A...Ahigo/s) where h; represents “comes up heads on flip #i” and s
represents the standard condition of a fairly flipped coin. Each h; has the
probability of 1/2, and no toss is affected by any other; that is, regardless
of how many times heads has come up successfully prior to a given trial, the
probability of heads being the outcome of a given trial is still 1/2.8 Then
PT(hl A ./\hloo/s) = PT‘(hl/S)*. S PT(th[)/S) or 1/2 * 1/2 * 1/2 .. until
we have 100 multiplicands. Incidently, this yields 1/1.267 * 103° or 7.8886
* 103!, a number indeed very close to 0.

We may now state a second heuristic rule: If the statement whose proba-
bility is to be calculated is a conjunction, are the conjuncts independent or
not? If they are independent, use Theorem 7; if they are not, use Axiom 2.

Let us say that a set of sentences ®q, ..., ®, is jointly exhaustive on
condition ¥ just in case at least one of them is true if ¥ is, if and only if,
that is, ¥ entails (&1 V...V &,).

THEOREM 8. If &y, ..., ®, are both mutually exclusive and jointly ex-
haustive on condition ¥, then Y. Pr(®;/¥) =1

Proof. Assume the ®; to be mutually exclusive and jointly exhaustive on
U. Then, by the definition of joint exhaustiveness, ¥ |="(®; V...V &,)7,
and by Ax3, Pr(®; V...V &,/¥) = 1. Given our original assumption, it
follows by definition and Ax1 that
Pr(® V...V ®,/®) =" Pr(®;/P).

By arithmetic on this step and the one which immediately precedes it,

znjpr(<1>i/qf) =1

Our theorem provides that if a group of propositions (a) have no overlap
and (b) exhaust all alternatives, then the sum of these probabilities is one.

8Many people think otherwise, of course; namely that the probability of yet another
head, decreases. This is known as the ‘Gambler’s Fallacy’.
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For example, suppose we wish to calculate the probability of drawing any
given playing card, say the 7 of diamonds from the standard deck of 52
cards. This probability will be 1/52. We may also state the probabilities of
each card being drawn, systematically The probability of drawing the ace
of spades is 1/52, that of drawing the 2 of spades is 1/52 and so on until
we have exhausted all 52 possible results, each of which has a probability
of 1/52. The sum of these probabilities will be 52/52 or 1.

Let us suppose that @4, ..., ®,, are mutually exclusive on condition ¥.
Then the statements ®q, ..., ®,, are equiprobable on ¥ if and only if, for
each ®; and ®;, Pr(®;/¥) = Pr(Phi;/Psi). This takes us to

THEOREM 9. If @4, ..., ®,, are mutually exclusive, jointly exhaustive and
equiprobable on U then fork =1, 2, ..., n, Pr(® V...V ®;,/T) = k/n.

Proof. Assume the antecedents of the theorem. Then, by definition and
Theorem 8,

Pr®, V... ®,/¥) =" Pr(®;/T) =1

Given this step and our assumption, it follows by the definition of equiprob-
ability that each Pr(®;/¥) = 1/n. By arithmetic and Axiom 1, for k = 1,
2, .., 0 Pr(® V...V, /T) = Kk(1/n) = k/n. [ ]

We return to our coin, and stipulate three tosses. If we ask for the
probability of the coin showing tails on the first two tosses and heads on the
third, Theorem 7 will tell us, since the tosses are independent. (It is 1/23
or 1/8.) Suppose we ask a different question, viz., what is the probability
of getting two tails and one head in any triple of tosses, irrespective of the
order in which heads and tails actually appear? In the example at hand, it
is easy to see that there are exactly three combinations of outcomes which
show two tails and a head. Schematically, they are T1AToAHz, TYAH2A T3,
and HiAT>ATs;. So our question is really this: What is the probability
of occurrence of one of these combinations? The three combinations are
mutually exclusive; so we apply Axiom 1 to obtain:

PT((Tl/\TQ/\H3)V(T1/\H2/\ T3)\/(H1/\T2/\ T3)) = (3(1/8)) = 3/8

In less simple cases, determining the number of combinations is correspond-
ingly less obvious. Suppose that we wish to discover the probability that
five draws, with replacement (viz. by Theorem 7), from a standard prop-
erly shuffled deck will give three clubs and two non-clubs. The number of
distinct ways of obtaining exactly 3 clubs in five draws is

(3)
(5)

The quantity
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obeys the algebraic equation:

( Y ) B y!(mxi y)!

where ‘nl” is ‘n factorial’, that is, nx(n-1)%(n-2)x...% 1. Thus for
5
3

5 5! S5xdx3x2x] 20
3 %2l 3xZx1x2x1 2

we have

There are exactly ten different ways of pulling exactly three clubs in any
draw of five. The probability of any one of these combinations is

9 .
1024

13 13 13 39 39 9
Kk —— k —— k — = ———,
15 52 52 52 52 1024
If we opt for “without replacement”, there is a different result, namely
13 12 11 39 38
— Kk —— ok —— ok — ok — = 15.
52 F51 50 a9t g NI
The combinations taken together form a mutually exclusive set of state-
ments. Then, with “Comb;” abbreviating “The ith combination occurs”,
Axiom 1 gives

Pr(any 3-club-2-nonclub) = Pr(Comb; V ...VComb;0)
= Pr(Comb; )+ Pr(Combs)+. . .4+ Pr(Comb;0)
=10 (9/1024) = 45/512 = 0.088.

We conclude the present section with two central theorems about combi-
nations. Let @4, ..., ®, be independent and equiprobable on condition Y.
Let ¥y, ..., ¥, likewise be independent and equiprobable on y. Suppose
further that each pair (®;, ¥;)* is mutually exclusive and jointly exhaustive
on x. Let Comby, be one of the

n
()

combinations for which m = the number of ®;’s that are true. The combi-
nations here are conjunctions x; A x2 A ... A xp such that for each 1 <i<n,
Xi = ®;, or x; = ¥;. Finally, put it that Pr(®;/x) = z. Then,

THEOREM 10. Pr(Comby /x) = Pr(®;/x)™  Pr(U; /x )"=™ = 7™ (1-7)"~™.
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a) ®q,..., ¢, be independent and equiprobable on condition .
b) ¥y, ..., ¥, be independent and equiprobable on condition yx

c) Each (®;,¥;) is mutually exclusive and jointly exhaustive of .

n

m
combinations for which m = the number of situations, 4, in which
a ®; is true; Pr(®;/x) = 2

d)  Comby be one of the

Then,
Pr(Comby,/x) = Pr(®;/x)™* Pr(¥;/x)"~ ™ = z2™(1-2)" — m.

Our theorem says that we may make a shortcut in the calculation of
probabilities of combinations of ‘events’, given a ‘target property’ ®, and
its negation ¥, which jointly exhaust the possibilities of a result. The
probability of our target property’s obtaining is multiplied by itself the
same number of times that the property must obtain in our combination,
and the probability of the non-occurrence of that property is multiplied by
itself the same number of times that our target property should not occur
in our combination. These two products are then finally multiplied.

Note that since ®;, ¥; are mutually exclusive and jointly exhaustive of
possible results, (®;, ¥;) is logically equivalent to (®;,"—®;7). For example
(heads, tails) in a coin toss is logically equivalent to (heads, not-heads).

The second part of our short cut, our shorter cut so to speak, uses this
negation to invoke Theorem 2 to obtain z™(1-z)" ™. Here an example is
crucial. Suppose we wish to know the probability of obtaining a 5 or a 6
on exactly three of five successive tosses of a standard six-sided die. There
are many ways that this may be done, but we may reduce these by looking
for a target property such as ‘yielding a 5 or a 6’, which we’ll call ®, and
a complementary property of ‘yielding’ a 1 or a 2 or a 3 or a 4 which
will be referred to either as ¥, or "=®7, since ¥ and "—=®7 are logically
equivalent. Using Axiom 1 we can see that the probability of ® is 1/6 +
1/6 or 1/3 while Pr(¥) is 1/6 + 1/6 + 1/6 + 1/6 or 2/3, for any one
given die-toss. Having reduced our attention to the jointly exhaustive and
mutually exclusive occurrences of ® or ¥ we may use the factorial method,
discussed in our example following Theorem 9 to see that there are only ten
combinations of ® and ¥ which could obtain for our five successive die rolls.
As such, we may say that the probability of obtaining exactly three rolls of
five or six is equal to Pr{Comb; V ...VComb;0). The first question is then
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“What is the probability of any one of these combinations occurring?” Once
that is known we may apply Axiom 1 to get the final answer. Theorem
10 allows the calculation to get the final answer. Theorem 10 allows the
calculation of the probability of the occurrence of any combination.

First, let us inspect the long route. One such combination might be:
"®; N &y A &3 A Uy A U5, For this combination we need to calculate
Pr(®1)°+Pr(®2)xPr(®3)xPr(¥,)*Pr(V5), which yields 1/3 % 1/3 x 1/3 % 2/3
% 2/3 or 4/243. Another such combination is: "TU; AU, AP3 A P4 A P57, So
far the combination we need Pr(W¥; ) Pr(¥s)* Pr(®3)*Pr(®,)*Pr(®5), which
yields 2/3 « 2/3 % 1/3 %« 1/3 % 1/3 or 4/243. In short, any combination yields
a conjunction of probabilities whose overall probability is the produce of its
individual probabilities ¢ la Theorem 7

Now the shortcut. We might notice in the above example that the princi-
ple of commutativity worked in our favour. That is, regardless of the order-
ing, we multiplied the probability of ® (i.e. 1/3) together three times, we
multiplied the probability of ¥ (i.e. 2/3) together twice, and we multiplied
these results by one another to get our final result. In all possible combina-
tions of interest to us, this is in fact what we will do. Thus Pr(Comb;) =
Pr(®/x3)xPr(¥/x?) = (1/3)%x(2/3)? = 1/27 % 4/9 - 4/243. To generalize
further, we multiply Pr(®/x) by itself the number of times its occurrence
is required of all fruitful combinations, we multiply Pr(¥/x) by itself the
number of times its occurrence is required, and then multiply these two
products together. The final touch is to note that the number of times that
¥ is required to occur is equal to the number of ‘slots’ available in a com-
bination (here 5) minus the number of occurrences of ® that are required.
Thus we have

Pr(Comb;) = Pr(®/x)™«Pr(¥/x)" ™

The ‘shorter-cut’ requires us to take note of the fact that ¥ is logically
equivalent to =®. In our example, for instance, “yields a 1 or a 2 or a 3 or
a 4”7, given the geometry of dice, is logically equivalent to “does not yield
a 5 and does not yield a 6”. So Pr(Comb;) is also equal to Pr(®/x)™x
Pr(=®/x)* ™. By Theorem 2, Pr{—®/x) = 1-Pr(®/x). So we may substi-
tute "1-Pr®/x " for " Pr(—®/x)". This yields

Pr(Comb;) = Pr(®/x)™*(1-Pr(®/x)* ™
Now, if we replace " Pr(®/x)" with z, we obtain the formula:
Pr(Comb;) = 2™x(1-2)" —m

which is a much smaller mouthful than the fully extended formula. (Big
explanation for a tiny, convenient result.)

9 Actually, Pr(®1/x) but the background statement x has been suppressed for the
most part.
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THEOREM 11. Given the five antecedent conditions as imposed on Theo-
rem 10,

Pr(Comby V...V Comb < ) /X)

= (1) e P s Pron

- ( . >zm(1 )

This theorem is a minor ‘tweaking’ on Theorem 10. We know by Axiom 1
that when we have a large disjunction-sentence we may calculate its prob-
ability by adding the probabilities of its disjuncts. We also know from the
antecedent conditions and Theorem 10 that each combination which serves
as a disjunct has the same probability value. We also know from arithmetic
that when we add the same number to itself, say ten times, we will get
the same answer as we do if we multiply that same number by 10. More
generally

(x1+ 22+ ...+ ) =n(z).

That is, five 7’s added together yield 5 x 7.
We know from the factorial method that we are looking to find the proba-

bility of ( TTrLL > combinations. So the probability of one of the combinations
actually obtaining will be the probability of any one of these equiprobable
combinations added together < :rLL ) times. Hence

Pr(Comb,) V...VComb< ;ib )x) = ( TZ )PT(Combi/X)

Theorem 10 gives us a formula for calculating Pr(Comby/x), so
Pr(Comby) V...V C’omb( ;LL >X

- ( m ) x Pr(®;/x)™ * Pr(¥;/y)"™
=zm(l -2z m

At this juncture readers may be impatient to know what use — apart from
some anticipated returns at the tables at Monte Carlo — are the theorems
of ProbCal. We have already mentioned that the theorems of ProbCal do
not chart the whole course of correct inductive inference for the would-be
thinkers. A person could know the theorems of ProbCal like the back of
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his hand and still be a decrepit inductive reasoner. Except for the limiting
cases of logical truths and logical falsehoods, the theorems of ProbCal
will not enable the inductive reasoner to attribute a probability value to
any statement of conditional probability in which he might be interested.
Unless he has knowledge of the relevant prior probabilities, the theorems of
ProbCal give the reasoner no determinate counsel about what might be
inferred from what and with what degree of reliability.

Even so, often the business of practical reasoning (and scientific rea-
soning, too) involves the adjudication of rival claims or hypotheses, and
concerning such adjudications two theorems of ProbCal turn out to be
directly pertinent. Our theorems will require a preliminary result, whose
proof resembles the proof of Theorem 5. Hence

LEMMA 12. If x E=(® = ) then Pr(®/x) = Pr(¥/x)

Suppose now that ®1, ..., ®,, are mutually exclusive and jointly exhaus-
tive on x. For example, they could be the total set of rival forensic claims
about who murdered Jones or the total set of competing scientific hypoth-
esis about some class of phenomena. Let y be a statement expressing the
results of a test of these hypotheses. Recall that the hypotheses are mu-
tually exclusive. So, too, are the conjunctions ®; A x, ..., ®, A x, each of
which express possible conditions in which y is true. This leads us to the
Prediction Theorem:

THEOREM 13. If ®4, ..., &, are mutually exclusive and jointly exhaus-
tive on ¥, then

Pr(x/¥) = (Pr(®;/¥) x Pr(x/®; A ¥)).

Proof. Assume the hypotheses of the theorem. Then by the definition
of joint exhaustiveness, ¥ =(®; V...V ®,). By deductive logic, (®; V
VD) = (x =((P1 A X)V...V (P, A X)), whence again by deductive
logic, ¥ |= x =((®1 A x)V...V(®, A X)). By our Lemma, Pr(x/¥) =
Pr((®1Ax)V...V(®,AX)/¥). From our original assumption and deductive

logic, ®; A x, ..., ®, A x are mutually exclusive on ¥. From the original
assumption, Axiom 1 gives that Pr(x/¥) = (®; A x/¥) Axiom 2 gives that
Pr(x/®) = Pr(®;/®) z /(®; A D). n

This theorem begins to show how the foregoing results are supposed to
benefit a theory of induction, rather than simply show us the reasoning
behind the theory of statistics. The key element here is the ‘stacking’ of
probabilities. Given that if a certain condition or context of possibility ¥
obtains, one of ®q,...,®,, obtains by definition of mutual exclusivity and
joint exhaustion. Further, there is a given probability that x will obtain,
and this probability might be different depending upon which ®; actually
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obtains. For each ®; which might obtain, the probability of that ®; obtain-
ing must be multiplied by the probability that y might obtain given that ®;
obtains (and also given W, but this is beside the point). We now have the
probability of x relative to the given ®;. However, as some other ®;might
obtain, and its probability of x given it may be different, we must calculate
the sum of all the probabilities of x relative to each given ®.

So Pr(x/¥) really equals

(Pr(®,/9) %« Pr(x/®1 ANO)V ...V Pr(®,/P) « Pr(x/®, A 7))

Suppose we wish to determine the probability of a certain event in the world.
Let us call this y. Further suppose that we have a certain number of theories
about the world, ®, ..., ®,. We do not know which of these theories
actually obtains, but let us also stretch our imaginations and suppose that
they are mutually exclusive and together exhaust all the possible ways that
a world could be.

Event x is highly probable according to some of these theories and highly
improbable according to others. However, these theories themselves are
also more or less probable. For example, some people have theories about
the world in which seeing Elvis is a probable occurrence. These theories,
however, are themselves highly improbable. So a high probability given
a theory may be radically discounted by the improbability of that theory.
The exact mechanics of this discounting (or, conversely, of an accentuating)
is given via this theorem. So, to determine the probability of seeing Elvis
we first find the probability of the individual theory’s obtaining and then
multiply by the probability that our target occurrence (in this case, seeing
Elvis) will obtain granted that theory. What we will have then is a number
of probabilities of seeing Elvis, each being relative to a given theory. Add
these all up, and you have the probability of seeing Elvis.

THEOREM 14. If &4, ..., ®, are mutually exclusive and jointly exhaus-
tive on condition X, then forj =1, ..., n:

_ Pr(®;/9)x Pr(x/®; A D)
Pr(®;/xiN¥) = E;’L:I Pr(®;/®) « Pr(xn/®; V)

Proof. Assume the hypotheses of the theorem. It is also assumed that
Pr(x/®)>0. By deductive logic (x A ®;)=(®; A x) of each j =1, ...,
n. Then, by Theorem 5, Pr(x A ®;/¥) = Pr(®; A x/¥). Axiom 2 gives
Pr(x/¥)x Pr(®;/x N ¥)=Pr(®;/%)x Pr(x/®; A ¥). And arithmetic gives

Pr(®;/®) « Pr(x/®; A T)

Pr(®;/x A¥) = Pr(x/%)
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Given our original assumption, Theorem 13 implies

_ Pr(®;/%) % Pr(x/®; A D)
Pr(®;/xnA¥) = S, Pr(®;/¥) « Pr(x/®; A ¥)

Let there be three closed bins, indistinguishable in appearance. In one
there are eight green and two red apples; in another there are five of each
kind; and in the third there are four green and six red apples. A bin is picked
at random and three apples (with replacement) are drawn. The selection is
subject to three hypotheses.

Hi. Eight green and two red
H2.  Five of each
H3.  Four green and six red.

Suppose now that we have the further fact E that in three draws (with
replacement) all the apples were green.

We can now determine the probabilities of HI, H2 and H3 in the light
of evidence E. Theorem 8 requires that these probabilities sum to 1; so the
probability of one of the hypotheses on E is got by subtracting the sum of
the probabilities of the other hypotheses from 1:

Pr(H1/D) =
B Pr(H1) % (Pr(E/H1))
= Pr(HL)Pr(E/HY) + Pr(H2) * Pr(E/H2) + Pr(H3) + Pr(E/H3)

_ (1/3)  (8/10)

N é11/23)(8/10)3 + (1/3) % (5/10)3 + (1/3) * (4/10)3
701

=0.7304

Similarly, Pr(H2/E)

1 10)3
A3)* GO _ oo
3000

So, Pr(H3/E) =1—(0.734+0.178) = 0.092. As expected, the new evidence
D raised the probability of H1 (from 0.33 to 0.73) and decreased the prob-
ability of H3 (from .33 to 0.092). Hence it appears that we can say that F
confirms H1 and disconfirms H 3.

Bayes’ Theorem gives us occasion to return to the distinction between
prior and posterior probabilities. The prior probability of an event is the
value it has before the factoring in of new evidence. Its posterior probability
is the value it receives after the new evidence is taken into account. More
generally,
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Pr(®;/7) is the prior probability of ®;
and

Pr(®;/x A ¥) is the posterior probability of ®; (relative to evi-
dence x).

The values of x for each of the hypotheses in question are the inverse proba-
bilities of the hypotheses’ posterior probabilities, viz., Pr(x/®; A ¥). These
inverse probabilities are often called “likelihoods” in a technical, not the
generically intuitive sense of the word. As can be seen, Bayes’ Theorem is a
method of finding the posterior probabilities of a set of mutually exclusive
and jointly exhaustive hypotheses from their prior probabilities and their
likelihoods. Its relevance to actual reasoning is also now apparent, as is a
limitation. The limitation is that often, though not always, Bayes’ Theo-
rem will not apply to situations in which precise probability values cannot
believably be assigned.

The significant predecessor of Bayes’ Theorem is obviously Theorem 13,
and is the most important when the question of the role of confirmation
arises. For this reason, it is the culmination of the ProbCal exposition to
date which deals with the machinery of the probability calculus.

As in Theorem 13, with Bayes’ Theorem the key concept is that of the
‘stacking’ of probabilities. We suppose that there is a background. Then
there are a range of ®4,...,®,,, each of which have a characteristic proba-
bility on ¥. Obviously then, the probability of x’s obtaining is affected by
which ®; actually obtains. The issue of this theorem, though, is given the
occurrence of x, what is the probability of a given ®; obtaining?

The theorem says that we may calculate the probability of a given ®;’s
obtaining on conditions x and ¥ in the following manner:

1. (a) Find the probability of the target ®; simply given V.

(b) Find the probability of x should both the particular target ®;
and ¥ obtain.

Find the product of 1(a) and 1(b).

A
o
~

2. (a) For each ®;, find its probability simply given ¥.

(b) For each ®;, find the probability of x should both that ®; and
x obtain.

(¢) Find the product of 2(a) and 2(b), for each ;.
(d) Add up all the 2(c)’s.

3. (a) Divide 1(c) by 2(d).

In essence what we’re doing here is taking the probability of x relative to
the particular target ®; and dividing it by the probability of x given all the
®’s. This should tell us which & most probably obtains.
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Suppose, as an example, that we have three boxes with the following
contents:
Box 1: 3 green marbles, 2 black marbles, 5 white marbles.
Box 2: 0 green marbles, 0 black marbles, 10 white marbles.
Box 3: 7 green marbles, 8 black marbles, 5 white marbles.

The states of affairs in boxes 1, 2 and 3 will be referred to as ¢, ®5, P53
respectively. Now let x be the occurrence of our drawing a white marble.
To find the overall probability of drawing a white marble without knowing
which box we have drawn from, we apply theorem 12.

Pr(®;/7) of any of ®;, &y, &5 is 1/3, as we may have reached
into any one of the three boxes.

Pr(x/® A ¥) is 5/10 or 1/2, as 1/2 of the marbles in the box
are white.

Pr(x/®2 A P) is 1, as all the marble in box 2 are white.
Pr(x/®3 AW) is 5/20 or 1/4, as 1/4 of the marbles in box 3 are
white.

So

S22 Pr(®;/%) x Pr(x/®; A D)

= (Pr(®,/U) * Pr(x/®; A ¥))+

(Pr(®,/0) * Pr(x/®; A ¥))+

(Pr(®s/0) * Pr(y/®; A ¥))

= (1/3%1/2) + (1/3% 1) + (1/3 % 1/4)
=1/6+1/3+1/12

=7/12

Thus Pr(x/¥) = 7/12, which is the denominator of our new formula.
We may use this to find the probability of that marble having come from a
given box.

(a)  Let us now calculate the probability of the marble having come from
box 1. Our formula tells us that:

Pr(®,/x N T) = f’“(‘l’l/‘l’) * Pr(x/® A ¥)
i Pr(®;/¥) x« Pr(x/®; N ¥)
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(b)  But we also have already calculated these numbers just previously:

Lyl 1 o
Pr(@l/x/\\Il):3l2:%:?

12 12

Similarly.
$x1 3 12 4
PT‘((§2/X/\\I’):37 :%:—:—
5 5217
(¢c) And

1,1 1
Pr(@;;/x/\‘ll)::il‘l:%:?

2 2

There are just a few additional things to note. As a check, we may see that
the probabilities sum to 1, which is simply the probability that the marble
came from one of our boxes and did not just popout of thin air. A trivial
point, this is a quick check on our calculations. Secondly, even though there
were just as many marbles in box 3 as in box 1, it is twice as probable that
we had reached into box 1, as it was twice as likely that pulling a marble
from box 1 would result in the drawing of a white marble (once again, a
trivial point).

A non-trivial point is that we have come up with a theory which seems to
be couched in deductive terms; a theory which seems to give us a means of
adjudicating between rival hypotheses. If we pluck a few more marbles from
the same box and they keep coming up white, we may apply this theorem
and axiom 2 until the probability of our pulling marbles from either box 1 or
3 becomes incredibly low. Even if 5 white marbles were successively plucked
from the same box, the stout skeptic could maintain that it is possible that
we’re pulling from box 1 or 3; but it seems clear that such a person might
want to steer clear of Las Vegas. A pertinent question now might be, “Could
this sort of theory ground our theories of confirmation?”

5 DUTCH BOOKS

Suppose that a degree of belief in a statement is measured by the betting
odds one would be ready to accept on that statement. The Dutch Book
theorem!®, to which we now turn, asserts that a failure to set one’s de-
grees of belief, or subjective probabilities, in fullfuilment of the theorems of
ProbCal exposes one to a betting strategy that guarantees that one loses
money no matter whether one’s belief is true or false. Coherence may be
seen, therefore, as belief-formation that evades the Dutch Book; i.e., that
satisfies ProbCal. Thus, Dutch Book theorem is a motivator of coherence.

10See here Gustason [1994].
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Some writers (e.g., van Fraassen) also see it as a motivator of the Reflection
Principle. Informally, the Reflection Principle provides that if an agent has
reason to believe that his degree of belief in statement ® will have the value
rin the future, then he is rationally required to set the value of ® at r now,
never mind the particularities of psychological doubt or certainty that now
pertain. Not everyone will see the Reflection Principle as epistemologically
obvious. Perhaps there is reason to wonder about the philosophical cogency
of Dutch Books arguments. (See here Earman [1992, chapter 2].) Let us
see.

It is perfectly natural to wonder whether the axioms of ProbCal are ac-
tually true and, relatedly, whether we are in fact justified in conforming our
conception of probability to them. One way of approaching these questions
is to consider whether conformity to the axioms would constitute a bet as
rational.

A bet is a bet on a proposition ® at odds x:y against the truth of ®.
Bearing in mind that probability is conditional probability, it is better to
conceive of bets as bets on pairs of propositions (®, ¥) (i.e., (®, given ¥));
where it is understood that ¥ conveys such evidence as there may be for
®. Using the dollar as our exemplary currency, a bet on (®,¥) at odds
x:y is one in which the wagerer wins $x if ("® A ¥7) is true and loses $y if
(T=® A ¥7T) is true. If "=¥ 7 is the case, the bet is “off”. The stakes of such
a bet are x+vy, and the betting quotient, BQ, of (®,¥) is y/x+y). Thus BQ
(®, W) is a ratio of loss to stakes.

A wager system is an arrangement between two agents A; and Ay who
have come to an agreement on: the odds for each bet, the stakes for each,
and who bets on or against (®, ¥).

A bettor, Ay, makes a book against a bettor As, where As is a set of
“clients”, when on a number of (®, ¥), he sets the odds so as to attract
the custom of A, and yet guarantees himself a profit no matter what the
outcome is. Since typically A, is a large clientele, certainly larger than a
single individual, it is possible for A; to make a book against his collective
clientele without making a book against any single client. However, this
last thing is possible, and when A; brings it off against an individual, A is
said to have made a Dutch Book against that individual.

If a bettor A; sets out to make a Dutch Book against some individual
opponent, A, his success depends on how he, together with A5, manages to
contrive an appropriate wager-system. For an examination of such things
we will need the concept of expected value, with the help of which we will
be able to define a fair bet.

Expected value is a central notion in decision theory. It is obvious that
often, indeed typically, a human agent acts in a situation in a way that rep-
resents only one of a number of possible action-alternatives in that situation.
Also typical is that the agent chooses the action-alternative in question with-
out knowing for certain the consequences either of the action he chose or of
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the others he didn’t choose. Action in such circumstances is action under
uncertainty. Agents acting under uncertainty will seek mitigation (though
seldom removal) of the uncertainty in two ways. They will attempt to es-
timate the probable consequences of the action-alternatives; and they will
also attempt to determine the extent to which those consequences, if they
occurred, would answer to the agents’ interests. In other words, agents will
consider the values of the probable outcomes of the various act-alternatives
in question.

Let a and c¢ be variables ranging over acts and consequences respectively.
Let the schematic letters A and C represent specific acts and consequences
respectively. We also stipulate that a, ¢, A and C'may occur with subscripts.
It is possible, then, to define the expected value of a on ¥ by the Principle
of Expected Value.

PrExVal: If &, ..., ®, are mutually exclusive and jointly
exhaustive on condition ¥, and ¢; is a consequence of act a that
obtains if ®; holds true, then ExVal(a/¥) =Y | (Pr(®;/aA¥)
x Val(c;)).

Accordingly, § is a fair bet on (®, ¥) at odds 2:y if and only if ExVal (3/%)
= Pr(®/%)z + Pr(—=®/¥)-y =0

(It is assumed that the action of betting 3 does not influence the proba-
bility of ® or ¥.) With the definition at hand, and with the help of Thm2
and some arithmetic, it is easy to show that a fair bet on (®, ¥) is one in
which the probability of (®,¥) and the betting quotient of (@, ¥) are equal.
Similarly, the betting quotient is fair just in case it equals the probability.

We may now say that a wagering system W has been established from
a set of betting quotients when, for each bet in W, the stakes have been
agreed by A; and Az, as well as which bettor will make which bet. A Dutch
Book is a W in which all outcomes favour one of Ay, As, and are against
the other. The one agent has made a Dutch Book against the other.

We now record an important negative condition on Dutch Books.

K1: if o is a set of fair betting quotients (recall, BQ(®, ¥} is fair
ift BQ(®,¥) = Pr(®/P) for all (®,¥)), then no Dutch Book
can be established from ¢ if and only if it satisfies the axioms of
ProbCal.

K1 is a biconditional, hence the conjunction of two conditional state-
ments Kia and K1b. We turn first to Kja, the claim that if those probabil-
ities don’t conform to the axioms of ProbCal, then a Dutch Book can be
established from o.

To establish this result, we will need to consider our five axioms. We
shall consider each axiom in order, in light of an example that violates it.
We shall try to show that in each such case a Dutch Book is establishable
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from the relevant o. For ease of exposition we will consider variations of
the axioms in which conjuncts and disjuncts are restricted to just two. Our
results easily generalize to longer compounds.

AXIOM 1 If & and ¥ are mutually exclusive on x then Pr(® Vv ¥/x) =
Pr(®/x) + Pr(¥/x).

We can see that if & and ¥ are mutually exclusive on x, then what we
may call the sum of bets on (®,x) and (¥, x) at equal stakes is itself a bet
on (®V ¥, x) at those same stakes. To show this, consider any ® and ¥
mutually exclusive on x and let 5; be a bet on (®, x) at odds z : y, and 35
a bet on (¥, x) at odds z : w. We put it that x+y=z+w. Given the mutual
exclusiveness of ® and W, there are just three cases to consider:

Bi | B2 | Sum (B1,82)
Case one: | (@, x){=7T,x) X | -w X-W
Case two: (=P, X)(T, x) v | z z-y
Case three: | (=®,x){(=¥,x) || -y | -w -(y+w)

Consider the column headed by “Sum(f;, 82)”. If the values in the two
top rows are identical, then the sum is in its own right a winning bet if
either ® or ¥ obtains and a loser if neither does. In this situation the
column describes a bet, 33 on (® V ¥, x) which wins x-w dollars (i.e., z —y
dollars) in cases Case one and Case two and loses y +w dollars in case Case
three. Now z 4+ y = z + w, so x —w = z — y. Because /3 is a bet on (®, )
at x:y and (5 is a bet on (¥, x) at z : w, then sum(f;, =) is a bet S5 on
(®V ¥, x)at z—w : y+w. This means that 83’s stakes are (z —w) + (y +w)
which equals z + y, which equals z+w.

Imagine that A; and As are betting on the next Bluejays game. Let V
be the proposition that the Bluejays win, and T' the proposition that they
tie. Let E be whatever evidence is available at the time of the bet. Clearly
V and T are mutually exclusive on E. A; reckons that Pr(V/E) = 3 and
Pr(T/E) =1/4. From A;’s point of view these are fair bets:

B1: Bet on (V, E) at 5:3
B2: Bet on (T, E) at 3:1

From what we have proved in the preceding paragraph, we have it that sum
(B1, B2) is a bet on (V VT, E) at the same stakes. Axiom 1 tells us that
Pr(VVT/E)=5/8. So on odds 3:5 this is a fair bet.

We might easily imagine that at this point A; trips up. Instead of reckon-
ing Pr(VVT/E) tobe 5/8, let us suppose that he puts it at 1/2. Accordingly
A considers the bet fair at odds of 1:1. A; would also consider fair a bet
against a win or a tie. This is a bet on (=(V VT), E) at odds of 1:1. Call
this bet (3.

Having violated Axiom 1 in the manner indicated, we must try on behalf
of Ay’s opponent A,, to make a Dutch Book against A;. This is easily done.
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As need do no more than accept each of 81, B2 and (33 at the same stakes.
Suppose the stakes are $8.00, then all three together establishes a Dutch
Book against A;:

Bi | B2 | B3 || Sumpi,fBs,0s
Case one: (V, EY(—-T,EX{VVT,E) > 5 | -21] 4 -1
Case two: (=V,E)(T,E)(V VT,E) 3|6 | 4 -1
Case three: | (-V,E)(-T,E){(~(VVT),E) || -3 | -2 | 4 -1

No matter the bet, A; is always the net loser by a dollar. Had A; attended
to ProbCal all would have been well. He would have put (V VT, E) at 5/8
and (=(V VT), E) at 3/8, giving payoffs for 83 of -$3.00 for cases one and
two and $5.00 for case three. The sum (8, B2, 83) would have been 0 for
all cases, thus precluding a Dutch Book.

Even so, A; might have violated Axiom 1 in a different way, by assigning
to (V VT, E) a value in excess of 5/8, say 3/4. Suppose that A; could be
got to bet against (V, E) and (T, E) but on the disjunction, i.e., (V VT, E).
Then there are three bets that 4; would now consider fair:

B4: Bet on (=V, E) at 3:5
Bs: Bet on (=T, E) at 1:3
Be: Bet on (V VT, E) at 1:3

As has a Dutch Book against Aj:

Bi | Bs | Bs || Sumpy, B, Bs
Case one: 5 2 2 -1
Case two: 3|61 2 -1
Case three: || 3 2 | -6 -1

Our examples generalize:

If ® and ¥ are mutually exclusive on x and a bettor (i) gives that
Pr(®/x) = z, Pr(¥/x) = y and Pr(® VvV ¥/x) = z #z + y, and
(ii) accepts fair bets on each set of objects at equal stakes, then
a Dutch Book is makeable against this bettor if he also accepts
bets on (P, x), on (¥, x) and against (2 V ¥, x) if 2 < z+y, and
against (P, x), against (¥, x) and on (®V ¥, x),if z >z +y.

Thus, noncompliance with Axiom 1 exposes one to a Dutch Book.
We now turn to violations of Axiom 2.

AXIOM 2 Pr(® AT /x) = Pr(®/x) * Pr(¥/® A x).

Let F' be the statement that the Bluejays star pitcher has an injury-free
season, and P be the statement that the Bluejays win their division. Let E
be all the evidence available to agents who might want to wager on these
possibilities. We consider bets on: (F, E), (P, F A E) and (F A P, E). Since
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the second bet is conditional on the star pitcher’s avoiding injury, if he is
injured the bet is off.

Suppose that A; reckons that Pr(F,E) = 3/5 and Pr(P/F A E) = 5/8.
By Axiom 2, Pr(FAP/E) = 3/8, but we will imagine that A4; ignores it, or
is unaware of it, and assigns the value 1/4. Then A, can get A; to accept
the following bets as fair

B1: Bet on (F, E) at 2:3
B=2: Bet on (P,F A E) at 3:5
B3: Bet on (~(F A P),E) at 1:3

and if A; also accepts the following stakes: z for both 85 and (3, and zy
for 81, where y = Pr(P/F A E), then a Dutch Book can be made against
Ay. If Ay accepts $8.00 stakes for B2 and 33, the stakes for 3, are (5/8)8 =
$5.00. For these stakes, there are three outcomes in each of which A; has a
net loss:

Bi | B2 | B3 || SumpBi,fBs,0s
Case one: (=F,E),—/{(~(F A P),E) B3 — ] 2 -1
Case two: | (F,E)Y(~P,FANE)(~(FAP),E)y | 2 | -5 | 2 -1
Case three: (F,E)(P,F NE){F A\ P,E) 2 13| -6 -1

Of course, here too A; might have reckoned the value of Pr(F A P/E) to
be greater than 3/8. With the stakes the same as before, if A; can induce
Ay to bet against (F, E), against (P,F A E) and on (F A P,E), a Dutch
Book is makeable against him.

We again generalize our result.

If a wagerer reckons that Pr(®/x) = z, Pr(¥/® A x) = y and
Pr(® A ¥/x) = z#£zy, and (ii) accepts fair bets in relation to
(®,¥) at stake w for (¥, P A x) and for (® A U, x) and at stakes
yw for (®,y) > then a Dutch Book can be made against this
wagerer if he accepts bets on (®,x), on (¥, ® A x) and against
(AT, ) if z < zy, and against (P, x), against (¥, P A x) and
on (P AT/x) if > zy.

We take it as obvious that K'1(a) holds for the remaining, entirely obvious,
axioms of ProbCal. So, K'1(a) is verified.

K1(b) is the other half of the biconditional K1. It asserts that if the
probability values from which o was derived obey the axioms of ProbCal,
then no Dutch Book can be established from o. We begin with the assump-
tion that if o is a series of fair bets, their sum will also be fair. Suppose that
® and ¥ are independent of x, and let us set Pr(®/x) at 1/2 and Pr(¥/x)
at 1/4. Then a bet 5, on (P, y) is fair at odds 1:1, and a bet S on (¥, x)
is fair at odds 3:1. A wagering system W arises from the set of betting
quotients if a bettor A; undertakes to bet 3; and 35 and A; and A, agree
stakes of $2.00 for 5; and $4.00 for 85. The betting setup is this:
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Bi | B2 | Sum (1, B2)
Case one: (P, x){(Tx) 113 4
Case two: (®,x)(—¥,x) 1] -1 0
Case three: | jset=® (¥, x) || -1 | 3 2
Case four: | (=®,x){(—¥,x) || -1 | -1 -2

We ask, what is the expected value of the sum of these bets? (1 and s
are both fair; so their expected values is 0. The same is true of their sum.
That is,

ExVal: (sum(f1, 82)/x)
=Pr(®AT/x)x($4)+Pr(®A=T /x)*(0)+ Pr(=®ATY/x)*($2)+ Pr(—=®A
-0 /x)*(-$2)

= (1/8)x(4) + (1/8)x(2) + (3/8)*(-2)

=1/2+1/4-3/4=0

It is easy to see that any wagering system established from the betting
quotients in question will have an ExVal of 0, never mind how the stakes
are altered and never mind who makes that bet. Thus if each bet of a class
of bets is fair, so too is their sum (and the sum of such sums, too). But
the principle fails in reverse. A sum of bets might be fair even though the
individual bets are not. Consider, for example, two bets whose ExpVals
are $4.00 and -$4.00. They are not fair bets even though their sum is fair.

As we have seen, determinations of ExpVal presuppose the axioms and
theorems of ProbCal. This makes it attractive to suppose that if the prob-
ability values underwriting a set of fair betting quotients obey the ProbCal
axioms, then the sum of fair bets with respect to those quotients will also
be fair. A wagering system is, so to say, nothing but a sum of bets. Hence
any wagering system establishable from the set of fair betting quotients will
have an ExpVal of 0. The proof of this is furnished by Shimony [1955] and
will be omitted here in the interest of space.

Given Shimony’s proof, we are entitled to say that if the inductive prob-
abilities that fix a set of fair betting quotients satisfy the ProbCal axioms,
then each wagering system establishable there-from is fair. If we concede
that a Dutch Book is an unfair wagering system, then we may take it that
K1(b) is verified.

The theorist whose interest lies chiefly in practical reasoning (in one of
its meanings), that is, in those inferences and arguments that arise in the
course of our everyday thinking about everyday things, may find himself
less than enchanted by the present defence of the ProbCal axioms. If his
disenchantment arises from the conviction that wagering systems are an
unrepresentative sample of practical reasoning the probability theorist has
an attractive reply to such criticism. On the other hand, if the practical
reasoner has in mind a further technical result in the theory of wagering
systems itself, his disenchantment is more difficult to brush aside. We take
up these points in order.
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As for the first, it is natural to think that wagering strategies are untypical
of inferences as such. Against this, it may be said that most actions are
gambles of a sort. To the extent that they are at all rational they involve the
interplay of probabilities and expected values. This appears to be so even
for quite ordinary actions and for such reflection as may attend upon them,
whether it is crossing Fifth Avenue at high noon or driving your car to Banff
(or anywhere else). What seems to pull the fangs of the first criticism of the
defence of the ProbCal axioms is this: A Dutch Book will obtain whenever
an agent, Daria say, invests a proposition or a pair of propositions with a
degree of belief which is inconsistent with the degree of belief assigned to
certain other propositions. More generally,

ConBel: Compliance with the ProbCal axioms is a condition
on the self-consistency of an agent’s degrees of belief.

To the extent that the inference theorist, the theorist of argument, or the
theorist of practical reasoning has a standing in determining what influence,
if any, an agent’s internal consistency has on his arguments, his inferences
or anything else he reasons about, it is helpful to know that compliance with
these axioms spares a reasoner the nuisance of falling into inconsistency by
way of Dutch Book susceptibilities.

Even so, all is not well, as an examination of the critic’s second objections
makes clear. Although consistency with the ProbCal axioms arguably
precludes the emergence of a Dutch Book, it does not rule out a partial
book. A partial book is a wagering system in which one of the wagerers
never wins but does not always lose. Consider Axiom 3: If ® = ¥ then
Pr(¥/®) = 1. Consider now an A and a B such that Pr(A/B) = 1. Then
a fair bet (so to speak) on (A, B) will be at odds 0:1. If B = A then you
cannot possibly lose this bet, but there is no profit in winning it. Let us
slightly change the present example. It is logically possible that A is false
and B true even though Pr(A/B) = 1. Then a fair bet on (4, B) gives a
partial book:

Bet on (A, B)
Case one: | (A, B) 0
Case two: | (-A,B) | -1

The axioms of ProbCal are powerless to block such books. But if we
were to proclaim the converse of Axiom 3, viz.,

If Pr(¥/®) = 1, then & |= ¥

we would shut down the very assumption that permits the partial book to
arise. Accordingly, the preclusion of both Dutch and practical books require
fidelity to the ProbCal axioms supplemented by the converse of Axiom 3.
The converse of Axiom 3 is fully independent of the ProbCal axioms, i.e.,
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neither it, nor its negation, is derivable from them. Moreover, it doesn’t
seem to be true, and that is a problem.

6 BAYES’ THEOREM AND BAYESIAN INFERENCE

One of the uses to which we put our inferences is the revision or updating
of our belief-sets. Sometimes it suffices to use purely deductive procedures,
but typically not. One of the tasks of inductive logic is to specify at least
some of the non-demonstrative protocols for belief-revision.

A subsidiary, but no less important question, is whether ProbCal gives
us any direct information about how such procedures work.

Bayesianism: “Bayesianism” is the name given to a rather widely held
position by inductive logicians. In its most basic sense, as we have seen,
it is a view which identifies inductive likelihood with the probability no-
tion of the calculus of probability. But in another dominant use, it is a
position according to which satisfaction of the belief-revisionist’s first task
involves giving an affirmative answer to our present question. A word of
caution is necessary. A theory of belief-revision is not made Bayesian sim-
ply by its subscription to Bayes’ theorem. Not every theory in which Bayes’
theorem holds is a Bayesian theory. There is in fact considerable (and
contentious) latitude given to the contemporary meaning of “Bayesianism”
(Earman [1992]). Even so, there is considerable agreement about the follow-
ing core idea. As a first approximation, a theory is Bayesian to the extent
that

(a) it interprets probability subjectively
and

(b) sanctions the claim that belief-revision (or inference) is conditionaliza-
tion.

We now turn to a fuller consideration of these claims.

The section on Dutch books is designed to show what happens when we
undertake to bet on propositions which behave according to the axioms of
ProbCal. The point of the doctrine of Dutch Books is to describe what
attitude one should taken when confronted with a system which does in fact
work according to the axioms of ProbCal.

The term “Dutch Book” comes from two sources: (1) During the early
enlightenment there was intense economic rivalry between the Dutch and
the English (actually between the Dutch and everyone else), and the En-
glish attempted to associate the Dutch with anything unsavory or unfair
(hence Dutch uncle, Dutch courage, Dutch treat, etc.). (2) A “book” is an
arrangement, whereby a bet is arranged at odds favourable to one of the bet-
tors (usually known as the bookmaker). A Dutch book is then an extreme
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case of the more usual book, in that things have been arranged so that the
bookmaker cannot lose.

The betting simile seems appropriate in as much as it parallels certain
epistemic practices. Each and every one of us has what might be called a
belief system. For example, Sarah believes that the law of gravity governs
certain aspects of the relationship between her pen and the Earth. She
believes that my coffee cup exists even when it is in the cupboard and she
cannot see it, and so on. All of the beliefs that she holds are said to be
held together in her belief set. It is also widely held that our beliefs admit
of degrees; that is, that we may believe some things more than others. For
example, Harry currently believes that his car has not been stolen. He
would reply, if asked, as to the whereabouts of the car, that it is parked
in his garage. Should he receive a phone call right now from a member
of the RCMP advising him that the car was just now found to be in the
hands of some joy-riders across town, he would not complain of police-
mendacity. On the other hand, had someone told him that he had a magic
200 kg anvil which routinely floated unsupported in his living room, Harry
would robustly disbelieve this statement. This is because Harry’s degree of
belief in his car’s whereabouts is lower than his degree of belief about the
ubiquitousness of gravity. In fact, it is not at all atypical to both believe a
thing and its negation, in varying degrees.

The question brought up by our current investigation is how we ought
to take this. If we believe that ®, and evidence later shows that "—®7,
we must certainly do some overhauling of our belief sets. If, however, we
merely believe something like probably ®, our belief sets may be fine, even
in the face of overwhelming evidence of "=®7. For example, it seems all
right if we believe to a high degree (i.e., that it is highly probable) that “the
coin will not come up heads 10 times in a row”, as the probability of this
is rather low. Should 10 successive flips of a coin prove us “wrong”, we do
not have to revise our belief, since the belief was really that the occurrence
mentioned would probably not happen; all the coin tosses showed was that
the highly improbable still sometimes obtains. In other words, while the
coin’s yielding heads ten times successively is a disconfirmation of “the coin
will not come up heads 10 times in a row”, it is not a disconfirming instance
of “it is very likely that the coin will not come up heads 10 times in a row”.
Our assertion is that the latter sentence has a degree of belief imbedded into
it in the first four words, and this is what gets us out of trouble. So it seems
that we might say that propositions admit of degrees of belief much as they
admit of degrees of probability. The question is how much alike are these
two concepts? Let us suppose for the moment that they work just alike.
So we can see how a belief system which did work according to ProbCal
would be constructed.

How much belief should we grant to a given proposition? How much belief
is warranted? The answer is that it depends upon how much belief we invest
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in other, related propositions. How it depends on these is dictated by the
axioms of ProbCal. It would seem that, should a proposition ® be almost
certain, having perhaps a probability of .95, then we should be willing to
lend that proposition all our belief. This is not as yet irrational (although
we would be forced into a revision of our beliefs if that unlikely event with
a probability of .05 actually came to pass), as we may well invest no belief
whatever in "T—=®7. But if we wish to set our belief in "T=®™ at .05 to “cover
ourselves”, while remaining wholly committed to ® (that is believing in ®
to degree 1.0), this is tantamount to betting on ® at odds 0:1 while betting
on "—®T at 19:1.

Dutch-style books arise whenever the odds given do not reflect the proba-
bilities in question. If {®, ¥} is a jointly exhaustive and mutually exclusive
set of outcomes of a given situation, and if Pr(®) is .25 and Pr(¥) is .75,
and if Harry gives Sarah odds of 1:1 on ®, then that means that Harry has
set it up so that the expected value of Sarah’s betting situation, supposing
the bet to be an even $100 is (.25 x 100)+(.75 * -100) = 25 - 75 = -50. Of
course, the value for Harry for this is $50.00. Obviously, the bet has been
skewed, and has been created this way by juggling the odds so that they
do not fall into accord with the probabilities of the system. So then, when
faced with a system which works probabilistically, one should be sure that
the odds do not favour the other side.

7 ACTUAL VALUES

We now introduce a concept of Actual Value. This can be constructed to
provide a distinction between the actual value of a situation, and the value
that we expect that situation to have. The actual value of the situation,
as is evidenced by the principle of expected value, is the probability of
the event in question multiplied by the value of that occurrence. There is
also a perceived value which is constructed as the product of the value of
the occurrence and the perceived probability. What we need to be on the
lookout for is the construction of a perceived value which is not the same
as the actual value k. Divergence in the perceived probability of our given
occurrence will lead us to put either too much stock in the given occurrence’s
happening, or too little.

As we see, there are two distinct ways in which we can go wrong in our
formulation of degrees of belief in propositions. We might try to under-
estimate the chances of an occurrence, so as to create more value for the
situation than is fairly attributed to it, or we might try to undervalue the
situation, in which case an interesting consequence arises. Suppose instead
of getting the thing dead right, we are somewhat skeptical about our as-
sessment of the probability of the occurrence, and thus conservative in the
arrangement of our bets. For example, consider a bet on ® where Pr(®)
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= .75. The fair bet would be at odds 1:3 to reflect the 3/4 chance of win-
ning. One might instead set the odds at 2:3 so as to increase the expected
value of the situation to .75. This would correspond, in our belief model, to
believing in ® to degree 0.6. There might be some difficulty in attracting
human bettors to these odds, but it seems that with belief, we may set our
degrees of belief in any way we see fit, and that reality is simply forced to
take us up on the wager. This is where the analogy breaks down.

The divergence from the betting analogy and the explanation of belief
systems requires a realization that when we’re arranging our belief systems
we make a bet on both propositions. A subtle problem arises when we
constantly underestimate the odds of the propositions in which we invest
our interest. This seems the backbone of conservatism of all sorts, and as
such we may have to fall back on our intuitions to judge this. That is, we
invest both ® and "—®7 with a degree of belief. If Harry believes ® to
degree 0.6, then he also believes in "=®7 to degree 0.4. So, while his bets
on ® seem conservative, his bets on "—®7 are over-optimistic.

In order that we may have a better pool of information from which to base
our evaluation of the mechanics of ProbCal as an inductive logic, it will
prove useful to look at the concept of conditionalization. Conditionalization
is the process of finding what a probability would be once we acknowledge
the realization of some given proposition. Let us take a look at what the
formal machinery actually does, and then we might be able to interpret it
satisfactorily.

Suppose we have some new evidence statement e. Before this statement
presented itself, we had some measure of the probability of e, if only through
simple enumeration. This must now change, as we now suppose that the
situation reported by e actually does obtain. How does this affect the prob-
abilities of the rest of our propositions, for example, the proposition that
p? There will have been a prior probability of its conjunction with e (either
through simple enumeration, or via whatever paths we may desire to posit).
That is, there must have been an old Pr(pAe). But we now know that e
actually obtains. So we want to “factor out” the old Pr(e) from the old
Pr(pAe), which should leave us with the new probability of our proposition
p, taken by itself. This will be the probability of p on the condition that e
actually obtains; hence, the conditional probability of p on e. Thus

oldPr(p A e)

NewPr(p) = oldPr(e)

This is merely a simplification of Bayes’ theorem. Let us look at that
theorem, with the seemingly irrelevant occurrences of ¥ suppressed. We
have
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Pr(pi/e) = Zpr(e/Pi) * Pr(p;)

i=1

The denominator of this is equivalent to Pr(e) by Theorem 13; so we also
have it that

Pr(pi) x Pr(e/pi)
Pr(e)

Pr(pi/e) =
The numerator, by Axiom 2, is equivalent to Pr(p;Ae), so we have

Pr(piAe)
Pr(p;/e) = Pro)

This allows us to explain an important phenomenon in probability —
that of the reformation of our probabilities given our knowledge of the ac-
tual occurrence of a piece of evidence that was hitherto granted only to
a probability. In fact, what this is, is a formula for calculating the effect
of the changing of our probability of e from some number less than one
to a probability of one. As such, it is a special case of a more general
operation, namely, that of calculating the change in the probability values
of one’s propositions p; given any change whatever in the probability of
any of the evidence e. Such a function may be called a rule of generalized
conditionalization.

In generalized conditionalization what we want to know is the probability
of our arbitrary proposition p; given that the probability of our evidence
e has now been changed to some new value (as opposed to its now being
certain). If we can express this relationship in ProbCal, it has passed
another test. Supposing that we can have a certain “base” of possible
evidential states K, ..., K, each formed as a conjunction of the elements
in some subset of our set of possible evidence ey, ..., e,, we may calculate
the new probability of p; by taking the sum of all

newPr(k;) * oldPr(p; A kj)
newPr(p;) = XZ: oldPr(k;)

This gives us a formula for showing how all of the probabilities in a set
of propositions are interconnected, and how we may obtain a method of
calculating the effect a change in the probability of any one proposition in
the system has on any other proposition in the system. This reveals an
interconnection between all of the sentences of a given system.
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This latter point is centrally important, as it shows that any system
which works like ProbCal will display an integral interrelatedness between
whatever works to fulfil the role of propositions. Of course we want these
things which fill the role of propositions to be the beliefs that we have. What
this is meant to show is that, if we try to pull one of these conservative
manoeuvres, we shall be creating a situation in which we’re allotting to
some propositions a degree of belief which is much higher than it ought to
be; a move that we know from our discussion of books will lead us to expect
more “value” from the situation than it actually has. So in trying to be
pleasantly surprised by returns higher than we “expected”, we are putting
ourselves at risk of being wrong more often than we would expect with
regard to the converse of the proposition in question. The lack of isolation
of the propositions/beliefs in our system forces us to make a “bet” on both
sides of the proposition, rather than just one. Thus, the more conservative
we are in one estimate, the more radical we are with respect to the mirror
belief.

To a certain extent, then, this seems to be a particularly good description
of what goes on in our belief systems. We can use this to represent formally
how it seems that our beliefs do in fact interrelate. We can show why either
optimism or pessimism are ultimately untenable positions, and even provide
a sketch of the means by which we should arrive at a probability for a given
proposition.

A valuable trait in any candidate for an inductive logic (in the narrow
sense) is that it answer to certain intuitions we have about the interlocking
nature of the concepts of “theory” and “probabilistic consequence”. We
seem to have a natural intuition of what it is to be a stronger or weaker
consequence of a stronger or weaker theory. For example, we might have
what seems to be a probable theory about some stellar phenomenon, and
we might also have a second, wilder, improbable theory about the same
phenomenon. Further, if it is right to say that the consequences of these
theories can be expressed in probabilistic terms, then some consequences
which are certain (upon the condition of the given theory’s actually obtain-
ing) would be assigned a value of 1 (relative to the given theory), those
which are impossible according to that theory would be assigned a value of
0, and the rest of the spectrum of probability would be strung along the
real interval [0,1].

Granted the distinction between a weak consequence of a weak theory
and a weak consequence of a strong theory, the probability of the weak
consequence of the strong theory seems higher than that of a weak theory.
What is more, the strength of a theory may be “diluted” in its consequences
should those consequences be weak, while the strength of a consequence of
a theory seems to be “diluted” as well by any weakness of the theory. It is
necessary, then, that these types of intuitive relationships should be capable
of being expressed by any decent candidate for an inductive logic.
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ProbCal, while not itself a good candidate for such an overarching logic,
does seem able to express these relationships. Let us examine its represen-
tation of the following;:

1) a strong consequence of a strong theory

2) a strong consequence of a weak theory

3) a weak consequence of a strong theory

(1)
(2)
(3)
(4) a weak consequence of a weak theory

1. Let Pr(Ty/X) = .75; this denotes a high probability of our theory’s
obtaining (given X). Moreover let Pr(C;/TiAX) = .75; this denotes
a high probability that C; obtains, given that our theory T; obtains.
Supposing (for the moment) that this is the only theory we have which
allows for the possibility of the occurrence of C}, we may use Theorem
13 to calculate the probability that C; obtains by using

Pr(Cy/X) = Pr(Ty/X) * Pr(Cy JTLAX) = .75 % .75 = 5625

2. Now suppose we have Pr(Ty/X) = .25; this denotes a low probabil-
ity of our theory’s obtaining (thus corresponding to a weak theory).
Borrowing the value of a “strong consequence” from (1), we see that
the probability of a strong consequence of a weak theory might be
formulated as

Pr(Ce/X) = Pr(Ix/X) « Pr(Cy/To AN X) = .25 % .75 = .1875
3. We give an example of a weak consequence of a theory 77 by allowing

that Pr(Cs/T1AX) = .25, a low probability. Thus we have it that we
might represent a weak consequence of a strong theory by:

Pr(Cs/X) = Pr(Ts/X) * Pr(Cs