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Preface

The principal audience that will benefit from this book are M.Sc. and Ph.D. stu-
dents with specialization in physical chemistry, electrochemistry, or physics, as well
as researchers and engineers in the field of electrochemistry, particularly in areas of
semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemi-
cal power sources. Impedance spectroscopy has firmly established itself as one of
the most informative and irreplaceable investigation methods in these areas of
research. In addition, the book provides a valuable source of information and
resource for established researchers and engineers working in one or more of the
above fields.

The book should enable understanding of the method of impedance spec-
troscopy in general, as well as detailed guidance in its application in all these areas.
It is the only book in existence that brings together expert reviews of all the main
areas of impedance applications. This book covers all the subjects needed by a
researcher to identify whether impedance spectroscopy may be a solution to his/her
particular needs and to explain how to set up experiments and how to analyze their
results. It includes both theoretical considerations and the know-how needed to begin
work immediately. For most subjects covered, theoretical considerations dealing
with modeling, equivalent circuits, and equations in the complex domain are pro-
vided. The best measurement methods for particular systems are discussed and
sources of errors are identified along with suggestions for improvement. The exten-
sive references to scientific literature provided in the book will give a solid foun-
dation in the state of the art, leading to fast growth from a qualified beginner to an
expert.

The previous edition of this book became a standard textbook on impedance
spectroscopy. This second extended edition updates the book to include the results
of the last two decades of research and adds new areas where impedance spec-
troscopy has gained importance. Most notably, it includes completely new sections
on batteries, supercapacitors, fuel cells, and photochromic materials. A new section
on commercially available measurements systems reflects the reality of impedance
spectroscopy as a mainstream research tool.

EVGENII BARSOUKOV
Dallas, Texas

xi



Preface to the First Edition

Impedance spectroscopy (IS) appears destined to play an important role in funda-
mental and applied electrochemistry and materials science in the coming years. In
a number of respects it is the method of choice for characterizing the electrical
behavior of systems in which the overall system behavior is determined by a number
of strongly coupled processes, each proceeding at a different rate. With the current
availability of commercially made, high-quality impedance bridges and automatic
measuring equipment covering the millihertz to megahertz frequency range, it
appears certain that impedance studies will become increasingly popular as more
and more electrochemists, materials scientists, and engineers understand the theo-
retical basis for impedance spectroscopy and gain skill in the interpretation of im-
pedance data.

This book is intended to serve as a reference and/or textbook on the topic of
impedance spectroscopy, with special emphasis on its application to solid materials.
The goal was to produce a text that would be useful to both the novice and the expert
in IS. To this end, the book is organized so that each individual chapter stands on
its own. It is intended to be useful to the materials scientist or electrochemist, student
or professional, who is planning an IS study of a solid state system and who may
have had little previous experience with impedance measurements. Such a reader
will find an outline of basic theory, various applications of impedance spectroscopy,
and a discussion of experimental methods and data analysis, with examples and
appropriate references. It is hoped that the more advanced reader will also find this
book valuable as a review and summary of the literature up to the time of writing,
with a discussion of current theoretical and experimental issues. A considerable
amount of the material in the book is applicable not only to solid ionic systems but
also to the electrical response of liquid electrolytes as well as to solid ones, to elec-
tronic as well as to ionic conductors, and even to dielectric response.

The novice should begin by reading Chapter 1, which presents a broad overview
of the subject and provides the background necessary to appreciate the power of the
technique. He or she might then proceed to Chapter 4, where many different appli-
cations of the technique are presented. The emphasis in this chapter is on present-
ing specific applications of IS rather than extensive reviews; details of how and why
the technique is useful in each area are presented. To gain a fuller appreciation of
IS, the reader could then proceed to Chapters 2 and 3, which present the theory and
measuring and analysis techniques.

For someone already familiar with IS, this text will also be useful. For those
familiar with one application of the technique the book will provide both a con-
venient source for the theory of IS, as well as illustrations of applications in areas
possibly unfamiliar to the reader. For the theorist who has studied IS, the applica-

xiii



xiv  Preface to the First Edition

tions discussed in Chapter 4 pose questions the experimentalist would like answered;
for the experimentalist, Chapters 2 and 3 offer different (and better!) methods to
analyze IS data. All readers should benefit from the presentation of theory, experi-
mental data, and analysis methods in one source. It is our hope that this widened
perspective of the field will lead to a more enlightened and thereby broadened use
of IS.

In format and approach, the present book is intended to fall somewhere between
the single-author (or few-author) text and the “monograph” of many authors and as
many chapters. Although the final version is the product of 10 authors’ labors, con-
siderable effort has been made to divide the writing tasks so as to produce a unified
presentation with consistent notation and terminology and a minimum of repetition.
To help reduce repetition, all authors had available to them copies of Sections
1.1-1.3, 2.2, and 3.2 at the beginning of their writing of the other sections. We
believe that whatever repetition remains is evidence of the current importance to IS
of some subjects, and we feel that the discussion of these subjects herein from several
different viewpoints is worthwhile and will be helpful to the readers of the volume.

J. Ross MACDONALD
Chapel Hill, North Carolina
March 1987
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Chapter 1

Fundamentals of
Impedance Spectroscopy

J. Ross Macdonald
William B. Johnson

1.1 BACKGROUND, BASIC DEFINITIONS,
AND HISTORY

1.1.1 The Importance of Interfaces

Since the end of World War II we have witnessed the development of solid state
batteries as rechargeable high-power-density energy storage devices, a revolution in
high-temperature electrochemical sensors in environmental, industrial, and energy
efficiency control, and the introduction of fuel cells to avoid the Carnot inefficiency
inherent in noncatalytic energy conversion. The trend away from corrosive aqueous
solutions and toward solid state technology was inevitable in electrochemical energy
engineering, if only for convenience and safety in bulk handling. As a consequence,
the characterization of systems with solid—solid or solid-liquid interfaces, often
involving solid ionic conductors and frequently operating well above room temper-
ature, has become a major concern of electrochemists and materials scientists.

At an interface, physical properties—crystallographic, mechanical, composi-
tional, and, particularly, electrical—change precipitously and heterogeneous charge
distributions (polarizations) reduce the overall electrical conductivity of a system.
Proliferation of interfaces is a distinguishing feature of solid state electrolytic cells,
where not only is the junction between electrode and electrolyte considerably more
complex than in aqueous cells, but the solid electrolyte is commonly polycrystalline.
Each interface will polarize in its unique way when the system is subjected to an
applied potential difference. The rate at which a polarized region will change when
the applied voltage is reversed is characteristic of the type of interface: slow for
chemical reactions at the triple phase contacts between atmosphere, electrode, and
electrolyte, appreciably faster across grain boundaries in the polycrystalline elec-

Impedance Spectroscopy, Second Edition, edited by Evgenij Barsoukov and J. Ross Macdonald
ISBN 0-471-64749-7 Copyright © 2005 by John Wiley & Sons, Inc.



2 Chapter 1 Fundamentals of Impedance Spectroscopy

trolyte. The emphasis in electrochemistry has consequently shifted from a time/con-
centration dependency to frequency-related phenomena, a trend toward small-signal
ac studies. Electrical double layers and their inherent capacitive reactances are char-
acterized by their relaxation times, or more realistically by the distribution of their
relaxation times. The electrical response of a heterogeneous cell can vary substan-
tially depending on the species of charge present, the microstructure of the elec-
trolyte, and the texture and nature of the electrodes.

Impedance spectroscopy (IS) is a relatively new and powerful method of char-
acterizing many of the electrical properties of materials and their interfaces with
electronically conducting electrodes. It may be used to investigate the dynamics of
bound or mobile charge in the bulk or interfacial regions of any kind of solid or
liquid material: ionic, semiconducting, mixed electronic—ionic, and even insulators
(dielectrics). Although we shall primarily concentrate in this monograph on solid
electrolyte materials—amorphous, polycrystalline, and single crystal in form—and
on solid metallic electrodes, reference will be made, where appropriate, to fused salts
and aqueous electrolytes and to liquid-metal and high-molarity aqueous electrodes
as well. We shall refer to the experimental cell as an electrode—material system. Sim-
ilarly, although much of the present work will deal with measurements at room tem-
perature and above, a few references to the use of IS well below room temperature
will also be included. A list of abbreviations and model definitions appears at the
end of this work.

In this chapter we aim to provide a working background for the practical mate-
rials scientist or engineer who wishes to apply IS as a method of analysis without
needing to become a knowledgeable electrochemist. In contrast to the subsequent
chapters, the emphasis here will be on practical, empirical interpretations of mate-
rials problems, based on somewhat oversimplified electrochemical models. We shall
thus describe approximate methods of data analysis of IS results for simple solid-
state electrolyte situations in this chapter and discuss more detailed methods and
analyses later. Although we shall concentrate on intrinsically conductive systems,
most of the IS measurement techniques, data presentation methods, and analysis
functions and methods discussed herein apply directly to lossy dielectric materials
as well.

1.1.2 The Basic Impedance
Spectroscopy Experiment

Electrical measurements to evaluate the electrochemical behavior of electrode and/or
electrolyte materials are usually made with cells having two identical electrodes
applied to the faces of a sample in the form of a circular cylinder or rectangular par-
allelepiped. However, if devices such as chemical sensors or living cells are inves-
tigated, this simple symmetrical geometry is often not feasible. Vacuum, a neutral
atmosphere such as argon, or an oxidizing atmosphere are variously used. The
general approach is to apply an electrical stimulus (a known voltage or current) to
the electrodes and observe the response (the resulting current or voltage). It is
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virtually always assumed that the properties of the electrode—material system are
time-invariant, and it is one of the basic purposes of IS to determine these pro-
perties, their interrelations, and their dependences on such controllable variables as
temperature, oxygen partial pressure, applied hydrostatic pressure, and applied static
voltage or current bias.

A multitude of fundamental microscopic processes take place throughout the
cell when it is electrically stimulated and, in concert, lead to the overall electrical
response. They include the transport of electrons through the electronic conductors,
the transfer of electrons at the electrode—electrolyte interfaces to or from charged or
uncharged atomic species which originate from the cell materials and its atmospheric
environment (oxidation or reduction reactions), and the flow of charged atoms or
atom agglomerates via defects in the electrolyte. The flow rate of charged particles
(current) depends on the ohmic resistance of the electrodes and the electrolyte and
on the reaction rates at the electrode—electrolyte interfaces. The flow may be further
impeded by band structure anomalies at any grain boundaries present (particularly
if second phases are present in these regions) and by point defects in the bulk of all
materials. We shall usually assume that the electrode—electrolyte interfaces are per-
fectly smooth, with a simple crystallographic orientation. In reality, of course, they
are jagged, full of structural defects, electrical short and open circuits, and they often
contain a host of adsorbed and included foreign chemical species that influence the
local electric field.

There are three different types of electrical stimuli which are used in IS. First,
in transient measurements a step function of voltage [V(r) = V, for t > 0, V() =0
for # < 0] may be applied at # =0 to the system and the resulting time-varying current
i(f) measured. The ratio V,/i(f), often called the indicial impedance or the time-
varying resistance, measures the impedance resulting from the step function voltage
perturbation at the electrochemical interface. This quantity, although easily defined,
is not the usual impedance referred to in IS. Rather, such time-varying results are
generally Fourier or Laplace-transformed into the frequency domain, yielding a
frequency-dependent impedance. If a Fourier-transform is used, a distortion arising
because of the non-periodicity of excitation should be corrected by using window-
ing. Such transformation is only valid when |V, is sufficiently small that system
response is linear. The advantages of this approach are that it is experimentally easily
accomplished and that the independent variable, voltage, controls the rate of the elec-
trochemical reaction at the interface. Disadvantages include the need to perform inte-
gral transformation of the results and the fact that the signal-to-noise ratio differs
between different frequencies, so the impedance may not be well determined over
the desired frequency range.

A second technique in IS is to apply a signal v(f) composed of random (white)
noise to the interface and measure the resulting current. Again, one generally
Fourier-transforms the results to pass into the frequency domain and obtain an
impedance. This approach offers the advantage of fast data collection because only
one signal is applied to the interface for a short time. The technique has the dis-
advantages of requiring true white noise and then the need to carry out a Fourier
analysis. Often a microcomputer is used for both the generation of white noise and
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the subsequent analysis. Using a sum of well-defined sine waves as excitation instead
of white noise offers the advantage of a better signal-to-noise ratio for each desired
frequency and the ability to analyze the linearity of system response.

The third approach, the most common and standard one, is to measure imped-
ance by applying a single-frequency voltage or current to the interface and measur-
ing the phase shift and amplitude, or real and imaginary parts, of the resulting current
at that frequency using either analog circuit or fast Fourier transform (FFT) analy-
sis of the response. Commercial instruments (see Section 3.2) are available which
measure the impedance as a function of frequency automatically in the frequency
ranges of about 1mHz to 1MHz and are easily interfaced to laboratory micro-
computers. The advantages of this approach are the availability of these instruments
and the ease of their use, as well as the fact that the experimentalist can achieve a
better signal-to-noise ratio in the frequency range of most interest. In addition to
these three approaches, one can combine them to generate other types of stimuli.
The most important of these, ac polarography, combines the first and third tech-
niques by simultaneously applying a linearly varying unipolar transient signal and
a much smaller single-frequency sinusoidal signal (Smith [1966]).

Any intrinsic property that influences the conductivity of an electrode—
materials system, or an external stimulus, can be studied by IS. The parameters
derived from an IS spectrum fall generally into two categories: (a) those pertinent
only to the material itself, such as conductivity, dielectric constant, mobilities of
charges, equilibrium concentrations of the charged species, and bulk generation—
recombination rates; and (b) those pertinent to an electrode—material interface, such
as adsorption—reaction rate constants, capacitance of the interface region, and dif-
fusion coefficient of neutral species in the electrode itself.

It is useful and not surprising that modern advances in electronic automation
have included IS. Sophisticated automatic experimental equipment has been devel-
oped to measure and analyze the frequency response to a small-amplitude ac signal
between about 10~ and >10°Hz, interfacing its results to computers and their periph-
erals (see Section 3.1). A revolution in the automation of an otherwise difficult meas-
uring technique has moved IS out of the academic laboratory and has begun to make
it a technique of significant importance in the areas of industrial quality control of
paints, emulsions, electroplating, thin-film technology, materials fabrication,
mechanical performance of engines, corrosion, and so on.

Although this book has a strong physicochemical bias, the use of IS to investi-
gate polarization across biological cell membranes has been pursued by many in-
vestigators since 1925. Details and discussion of the historical background of
this important branch of IS are given in the books of Cole [1972] and Schanne and
Ruiz-Ceretti [1978].

1.1.3 Response to a Small-Signal
Stimulus in the Frequency Domain

A monochromatic signal V() =V, sin(wf), involving the single frequency v = w/2r,
is applied to a cell and the resulting steady state current i(¢) = I,,sin(@f + 6) meas-
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ured. Here 0 is the phase difference between the voltage and the current; it is zero
for purely resistive behavior. The relation between system properties and response
to periodic voltage or current excitation is very complex in the time domain. In
general, the solution of a system of differential equations is required. Response of
capacitive and inductive elements is given as i(f) = [dW(#)/dt] C and W(¢) = [di(t)/df]
L correspondingly, and combination of many such elements can produce an intrac-
table complex problem.

Fortunately, the use of Fourier transformation allows one to simplify signifi-
cantly the mathematical treatment of this system. The above differential equations
can be transformed into I(j @) = C- @-j-V(j w) and I(j ®) = -V(j w)/(L- ®-j). Here
j= \El, which is also often denoted in the literature as “i”. For the case of sine-
wave excitation as above, Fourier transforms of voltage and current V(j @) and
I(j ®) become V, mr and I, m-exp(6)) respectively. It can be easily seen that in the
frequency domain voltage/current relations can be rearranged to a form similar to
Ohm’s law for dc current: I(j w) = V(j w)/Z(j w) where for capacitance the complex
quantity Z(j @) is 1/(C- @-j) and for inductance Z(j ) is L- @-j. The complex quan-
tity Z(j w) is defined as the “impedance function”, and its value at a particular fre-
quency is “impedance” of the electric circuit. For simplicity, Z(j w) is usually written
as just Z(w). Because of this Ohm’s law-like relationship between complex current
and voltage, the impedance of a circuit with multiple elements is calculated using
the same rules as with multiple resistors, which greatly simplifies calculations.

Impedance may be defined not only for discrete systems but also for arbitrary
distributed systems as the Fourier transform of the differential equation defining the
voltage response divided by the Fourier transform of the periodic current excitation:
Z(j w) = F{v(n)}/F{i(r)}. Here the F{} operator denotes a Fourier transform.
However, Fourier transformation only reduces differential equations to simple Ohm’s
law-like form under conditions of linearity, causality, and stationarity of the system;
therefore impedance is properly defined only for systems satisfying these conditions.

The concept of electrical impedance was first introduced by Oliver Heaviside
in the 1880s and was soon after developed in terms of vector diagrams and com-
plex representation by A. E. Kennelly and especially C. P. Steinmetz. Impedance is
a more general concept than resistance because it takes phase differences into
account, and it has become a fundamental and essential concept in electrical
engineering. Impedance spectroscopy is thus just a specific branch of the tree of
electrical measurements. The magnitude and direction of a planar vector in a right-
hand orthogonal system of axes can be expressed by the vector sum of the com-
ponents a and b along the axes, that is, by the complex number Z = a + jb. The
imaginary number ;= V-1 = exp(jn/2) indicates an anticlockwise rotation by 7/2
relative to the x axis. Thus, the real part of Z, a, is in the direction of the real axis
x, and the imaginary part b is along the y axis. An impedance Z(w) = Z’ + jZ” is such
a vector quantity and may be plotted in the plane with either rectangular or polar
coordinates, as shown in Figure 1.1.1. Here the two rectangular coordinate values
are clearly

Re(Z)=Z'=|Z|cos(0) and Im(Z)=Z"=|Z|sin(6) (D
with the phase angle
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Figure 1.1.1. The impedance Z plotted as a planar vector using rectangular and polar coordinates.

0 =tan(z2"/Z’) (@)

and the modulus
1/2

Z1=[(z) +(z")] 3)
This defines the Argand diagram or complex plane, widely used in both mathematics
and electrical engineering. In polar form, Z may now be written as Z(®) = |Z|exp(j0),
which may be converted to rectangular form through the use of the Euler relation
exp(jB) = cos(6) + jsin(6). It will be noticed that the original time variations of the
applied voltage and the resulting current have disappeared, and the impedance is
time-invariant (provided the system itself is time-invariant).

In general, Z is frequency-dependent, as defined above. Conventional IS
consists of the (nowadays often automated) measurement of Z as a function of v or
w over a wide frequency range. It is from the resulting structure of the Z(w) vs. @
response that one derives information about the electrical properties of the full elec-
trode—material system.

For nonlinear systems, i.e. most real electrode-material systems, IS measure-
ments in either the time or the frequency domain are useful and meaningful in
general only for signals of magnitude such that the overall electrode—material system
response is electrically linear. This requires that the response to the sum of two sep-
arate input-measuring signals applied simultaneously be the sum of the responses of
the signals applied separately. A corollary is that the application of a monochromatic
signal, one involving sin(wt), results in no, or at least negligible, generation of har-
monics in the output, that is components with frequencies nv forn =2, 3,. ... Both
solid and liquid electrochemical systems tend to show strong nonlinear behavior,
especially in their interfacial response, when applied voltages or currents are large.
But so long as the applied potential difference (p.d.) amplitude V,, is less than the
thermal voltage, V; = RT/F = kT/e, about 25mV at 25°C, it can be shown that
the basic differential equations which govern the response of the system become
linear to an excellent approximation. Here k is Boltzmann’s constant, 7 the absolute
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temperature, e the proton charge, R the gas constant, and F' the faraday. Thus if the
applied amplitude V,, is appreciably less than V7, the system will respond linearly.
Note that in the linear regime it is immaterial as far as the determination of Z(®) is
concerned whether a known V(w?) is applied and the current measured or a known
i(wt) applied and the resulting voltage across the cell measured. When the system
is nonlinear, this reciprocity no longer holds.

1.1.4 Impedance-Related Functions

The impedance has frequently been designated as the ac impedance or the complex
impedance. Both these modifiers are redundant and should be omitted. Impedance
without a modifier always means impedance applying in the frequency domain and
usually measured with a monochromatic signal. Even when impedance values are
derived by Fourier transformation from the time domain, the impedance is still
defined for a set of individual frequencies and is thus an alternating-current imped-
ance in character.

Impedance is by definition a complex quantity and is only real when 6 =0 and
thus Z(w) = Z'(w), that is, for purely resistive behavior. In this case the impedance
is completely frequency-independent. When Z’ is found to be a variable function of
frequency, the Kronig—Kramers (Hilbert integral transform) relations (Macdonald
and Brachman [1956]), which holistically connect real and imaginary parts with each
other, ensure that Z” (and ) cannot be zero over all frequencies but must vary with
frequency as well. Thus it is only when Z(w) = Z’, independent of frequency, so
Z' =R, an ordinary linear resistance, that Z(w) is purely real.

There are several other measured or derived quantities related to impedance
which often play important roles in IS. All of them may be generically called immit-
tances. First is the admittance, Y=Z"' = Y’ + jY”. In the complex domain where V,
i, and Z are all taken complex, we can write v = Zi or alternatively i = Yv. It is also
customary in IS to express Z and Y in terms of resistive and capacitance components
as Z=R(w) — jX,(w) and Y = G,(w) + jB,(w), where the reactance X, = [wC(@)]
and the susceptance B, = wC,(w). Here the subscripts s and p stand for “series” and
“parallel.”

The other two quantities are usually defined as the modulus function M =jwC.Z
=M’ + jM” and the complex dielectric constant or dielectric permittivity €= M~ =
Y/(joC,) = € — je”. In these expressions C. = A/l is the capacitance of the empty
measuring cell of electrode area A. and electrode separation length /. The quantity
& is the dielectric permittivity of free space, 8.854 x 107> F/m. The dielectric con-
stant € is often written elsewhere as €* or € to denote its complex character.
Here we shall reserve the superscript asterisk to denote complex conjugation; thus
Z* = 7' — jZ”. The interrelations between the four immittance functions are sum-
marized in Table 1.1.1.

The modulus function M = €' was apparently first introduced by Schrama
[1957] and has been used appreciably by McCrum et al. [1976], Macedo et al.
[1972], and Hodge et al. [1975, 1976]. The use of the complex dielectric constant
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Table 1.1.1. Relations Between the Four Basic
Immittance Functions®

M Z Y £
M M uz uy! e’
Z u'M 4 Y u'e!
Y uMm z! Y ue
£ M u'z! u'y £

¢ 1= jwC,, where C, is the capacitance of the empty cell.

goes back much further but was particularly popularized by the work of Cole and
Cole [1941], who were the first to plot € in the complex plane.

Some authors have used the designation modulus spectroscopy to denote small-
signal measurement of M vs. v or @. Clearly, one could also define admittance and
dielectric permittivity spectroscopy. The latter is just another way of referring to
ordinary dielectric constant and loss measurements. Here we shall take the general
term impedance spectroscopy to include all these other very closely related
approaches. Thus IS also stands for immittance spectroscopy. The measurement and
use of the complex &(w) function is particularly appropriate for dielectric materials,
those with very low or vanishing conductivity, but all four functions are valuable
in IS, particularly because of their different dependence on and weighting with
frequency.

1.1.5 Early History

Impedance spectroscopy is particularly characterized by the measurement and analy-
sis of some or all of the four impedance-related functions Z, Y, M, and ¢ and the
plotting of these functions in the complex plane. Such plotting can, as we shall see,
be very helpful in interpreting the small-signal ac response of the electrode—
material system being investigated. Historically, the use of Z and Y in analyzing the
response of electrical circuits made up of lumped (ideal) elements (R, L, and C) goes
back to the beginning of the discipline of electrical engineering. An important
milestone for the analysis of real systems, that is ones distributed in space, was the
plotting by Cole and Cole [1941] of €” and &” for dielectric systems in the complex
plane, now known as a Cole—Cole plot, an adaption at the dielectric constant level
of the circle diagram of electrical engineering (Carter [1925]), exemplified by the
Smith—Chart impedance diagram (Smith [1939, 1944]). Further, Z and/or Y have
been widely used in theoretical treatments of semiconductor and ionic systems
and devices from at least 1947 ( e.g. Randles [1947], Jaffé [1952], Chang and Jaffé
[1952], Macdonald [1953], and Friauf [1954]). Complex plane plots have sometimes
been called Nyquist diagrams. This is a misnomer, however, since Nyquist diagrams
refer to transfer function (three- or four-terminal) response, while conventional
complex plane plots involve only two-terminal input immittances.
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On the experimental side, one should mention the early work of Randles and
Somerton [1952] on fast reactions in supported electrolytes; no complex plane
plotting appeared here. But complex plane plotting of G,/@ vs. C, was used by
Macdonald [1955] for experimental results on photoconducting alkali halide single
crystals. Apparently the first plotting of impedance in the impedance plane for
aqueous electrolytes was that of Sluyters [1960] (theory) and Sluyters and Oomen
[1960] (experiment). The use of admittance plane plotting for accurate conductivity
determination of solid electrolytes was introduced by Bauerle [1969], the first impor-
tant paper to deal with IS for ionic solids directly. Since then, there have been many
pertinent theoretical and experimental papers dealing with IS and complex plane
plots. Many of them will be cited later, and we conclude this short survey of early
history pertinent to IS with the mention of three valuable reviews: Sluyters-Rehbach
and Sluyters [1970], Armstrong et al. [1978], and Archer and Armstrong [1980]. The
first and second of these deal almost entirely with liquid electrolytes but are never-
theless somewhat pertinent to IS for solids.

1.2 ADVANTAGES AND LIMITATIONS

Although we believe that the importance of IS is demonstrated throughout this
monograph by its usefulness in the various applications discussed, it is of some value
to summarize the matter briefly here. IS is becoming a popular analytical tool in
materials research and development because it involves a relatively simple electrical
measurement that can readily be automated and whose results may often be
correlated with many complex materials variables: from mass transport, rates of
chemical reactions, corrosion, and dielectric properties, to defects, microstructure,
and compositional influences on the conductance of solids. IS can predict aspects of
the performance of chemical sensors and fuel cells, and it has been used extensively
to investigate membrane behavior in living cells. It is useful as an empirical quality
control procedure, yet it can contribute to the interpretation of fundamental electro-
chemical and electronic processes.

A flow diagram of a general characterization procedure using IS is presented in
Figure 1.2.1. Here CNLS stands for complex nonlinear least squares fitting (see
Section 3.3.2). Experimentally obtained impedance data for a given electrode—mate-
rials system may be analyzed by using an exact mathematical model based on a plau-
sible physical theory that predicts theoretical impedance Z(w) or by a relatively
empirical equivalent circuit whose impedance predictions may be denoted by Z,.(w).
In either the case of the relatively empirical equivalent circuit or of the exact math-
ematical model, the parameters can be estimated and the experimental Z,(w) data
compared to either the predicted equivalent circuit impedance Z,.(®) or to the the-
oretical impedance Z,(®). Such fitting is most accurately accomplished by the CNLS
method described and illustrated in Section 3.3.2.

An analysis of the charge transport processes likely to be present in an experi-
mental cell (the physical model) will often suggest an equivalent circuit of ideal
resistors and capacitors (even inductors or negative capacitors in some instances)
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Figure 1.2.1. Flow diagram for the measurement and characterization of a material-electrode
system.

and may account adequately for the observed IS response. For example Schouler
et al. [1983] found that the effects of densification by sintering a polycrystalline
electrolyte will reduce the magnitude of the resistance across the grain boundaries
and simultaneously decrease the surface area associated with the interface capaci-
tance. These components will clearly be electrically in parallel in this situation. Their
combination will be in series with other similar subcircuits representing such
processes as the ionization of oxygen at the electrodes.

In another example, the oxidation-reduction reaction for the Zn** couple in an
aqueous solution with a dropping mercury electrode (Sluyters and Oomen [1960])
can be represented by a reaction resistance Rp, arising from the transfer of electrons
between the electrode and the solution, in parallel with a capacitor Cy associated
with the space charge diffuse double layer near the electrode surface. It is not diffi-
cult to calculate the theoretical impedance for such a circuit in terms of the param-
eters Rz and Cy. From an analysis of the parameter values in a plausible equivalent
circuit as the experimental conditions are changed, the materials system can be
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characterized by analysis of its observed impedance response, leading to estimates
of its microscopic parameters such as charge mobilities, concentrations, and elec-
tron transfer reaction rates.

The disadvantages of IS are primarily associated with possible ambiguities in
interpretation. An important complication of analyses based on an equivalent circuit
(e.g. Bauerle [1969]) is that ordinary ideal circuit elements represent ideal lumped-
constant properties. Inevitably, all electrolytic cells are distributed in space, and their
microscopic properties may be also independently distributed. Under these condi-
tions, ideal circuit elements may be inadequate to describe the electrical response.
Thus, it is often found that Z,(®) cannot be well approximated by the impedance of
an equivalent circuit involving only a finite number of ordinary lumped-constant ele-
ments. It has been observed by many in the field that the use of distributed imped-
ance elements [e.g. constant-phase elements (CPEs) (see Section 2.2.2.2)] in the
equivalent circuit greatly aids the process of fitting observed impedance data for a
cell with distributed properties.

There is a further serious potential problem with equivalent circuit analysis, not
shared by the direct comparison with Z(w) of a theoretical model: What specific
equivalent circuit out of an infinity of possibilities should be used if one is neces-
sary? An equivalent circuit involving three or more circuit elements can often be
rearranged in various ways and still yield exactly the same Z,.(w). For the different
interconnections the values of the elements will have to be different to yield the
same Z,(w) for all , but an essential ambiguity is present. An example is presented
in Figure 1.2.2. In these circuits the impedance Z; is arbitrary and may be made up
of either lumped elements, distributed elements, or a combination of these types.
Examples of other circuits which demonstrate this type of ambiguity will be pre-
sented in Section 2.2.2.3. Which one of two or more circuits which all yield exactly
the same Z,.(w) for all w should be used for physicochemical analysis and interpre-
tation? This question cannot be answered for a single set of Z,(®) data alone. An
approach to its solution can only be made by employing physical intuition and by
carrying out several Z,(w) sets of measurements with different conditions, as dis-
cussed in Section 2.2.2.3.

H Z, WA
R,[1+(R/R,)]

z,= [1+ (Ry/R))%Z,

Figure 1.2.2. An example of different circuits with the same overall impedance at all frequencies.
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1.2.1 Differences Between Solid State
and Aqueous Electrochemistry

The electrochemist who works with aqueous electrolytes has available at least one
major stratagem not accessible to those who work with solid electrolytes. Investi-
gators interested in the interfacial behavior of a particular charged species, are
usually free to add to the solution an excess of a second electrolyte, the ions of which
are neither adsorbed nor react at the interface, but which by sheer numbers are able
to screen the interior of the electrolyte from any electric field and cause nearly all
the potential drop to occur within a few angstroms of the interface. The investiga-
tor is thus (at least by assumption) freed from having to take into account the effect
of a nonuniform electric field on the transport of the electroactive species through
the bulk electrolyte and need not (again by assumption) puzzle over the fraction
of the applied signal which directly governs the exchange of ions or electrons
between the electrode surface and the adjacent layer of electrolyte. The added elec-
trolyte species which thus simplifies the interpretation of the experimental results is
termed the indifferent or supporting electrolyte, and systems thus prepared are
termed supported systems. Solid electrolytes must necessarily be treated as unsup-
ported systems, even though they may display some electrical characteristics usually
associated with supported ones. The distinction between unsupported and supported
situations is a crucial one for the interpretation of IS results.

It is thus unfortunate that there has been a tendency among some workers in the
solid electrolyte field to take over many of the relatively simple theoretical results
derived for supported conditions and use them uncritically in unsupported situations,
situations where the supported models and formulas rarely apply adequately. For
example the expression for the Warburg impedance for a redox reaction in a
supported situation is often employed in the analysis of data on unsupported situa-
tions where the parameters involved are quite different (e.g. Sections 2.2.3.2 and
2.2.3.3).

There are a few other important distinctions between solid and liquid elec-
trolytes. While liquid electrolytes and many solid electrolytes have negligible elec-
tronic conductivity, quite a number of solid electrolytes can exhibit substantial
electronic conductivity, especially for small deviations from strict stoichiometric
composition. Solid electrolytes may be amorphous, polycrystalline, or single-crystal,
and charges of one sign may be essentially immobile (except possibly for high tem-
peratures and over long time spans). On the other hand, all dissociated charges in a
liquid electrolyte or fused salt are mobile, although the ratio between the mobilities
of positive and negative charges may differ appreciably from unity. Further, in solid
electrolytes mobile ions are considered to be able to move as close to an electrode
as permitted by ion-size steric considerations. But in liquid electrolytes there is
usually present a compact inner or Stern layer composed of solvent molecules, for
example H,O, immediately next to the electrode. This layer may often be entirely
devoid of ions and only has some in it when the ions are specifically adsorbed at
the electrode or react there. Thus capacitative effects in electrode interface regions
can be considerably different between solid and liquid electrolyte systems.
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1.3 ELEMENTARY ANALYSIS
OF IMPEDANCE SPECTRA

1.3.1 Physical Models for
Equivalent Circuit Elements

A detailed physicoelectrical model of all the processes which might occur in inves-
tigations on an electrode—material system may be unavailable, premature, or perhaps
too complicated to warrant its initial use. One then tries to show that the experi-
mental impedance data Z,(w) may be well approximated by the impedance Z,.(®)
of an equivalent circuit made up of ideal resistors, capacitors, perhaps inductances,
and possibly various distributed circuit elements. In such a circuit a resistance rep-
resents a conductive path, and a given resistor in the circuit might account for the
bulk conductivity of the material or even the chemical step associated with an elec-
trode reaction (see, e.g., Randles [1947] or Armstrong et al. [1978]). Similarly,
capacitances and inductances will be generally associated with space charge polar-
ization regions and with specific adsorption and electrocrystallization processes at
an electrode. It should be pointed out that ordinary circuit elements, such as resis-
tors and capacitors, are always considered as lumped-constant quantities which
involve ideal properties. But all real resistors are of finite size and are thus distrib-
uted in space; they therefore always involve some inductance, capacitance, and time
delay of response as well as resistance. These residual properties are unimportant
over wide frequency ranges and therefore usually allow a physical resistor to be well
approximated in an equivalent circuit by an ideal resistance, one which exhibits only
resistance over all frequencies and yields an immediate rather than a delayed
response to an electrical stimulus.

The physical interpretation of the distributed elements in an equivalent circuit
is somewhat more elusive. They are, however, essential in understanding and inter-
preting most impedance spectra. There are two types of distributions with which we
need to be concerned. Both are related, but in different ways, to the finite spatial
extension of any real system. The first is associated directly with nonlocal processes,
such as diffusion, which can occur even in a completely homogeneous material, one
whose physical properties, such as charge mobilities, are the same everywhere. The
other type, exemplified by the constant-phase element (CPE), arises because micro-
scopic material properties are themselves often distributed. For example the solid
electrode—solid electrolyte interface on the microscopic level is not the often pre-
sumed smooth and uniform surface. It contains a large number of surface defects
such as kinks, jags, and ledges, local charge inhomogeneities, two- and three-phase
regions, adsorbed species, and variations in composition and stoichiometry. Reac-
tion resistance and capacitance contributions differ with electrode position and vary
over a certain range around a mean, but only their average effects over the entire
electrode surface can be observed. The macroscopic impedance which depends, for
example, on the reaction rate distribution across such an interface is measured as an
average over the entire electrode. We account for such averaging in our usual one-
dimensional treatments (with the dimension of interest perpendicular to the elec-
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trodes) by assuming that pertinent material properties are continuously distributed
over a given range from minimum to maximum values. For example when a given
time constant, associated with an interface or bulk processes, is thermally activated
with a distribution of activation energies, one passes from a simple ideal resistor and
capacitor in parallel or series to a distributed impedance element, for example the
CPE, which exhibits more complicated frequency response than a simple undistrib-
uted RC time constant process (Macdonald [1984, 19854, ¢, d], McCann and Badwal
[1982]).

Similar property distributions occur throughout the frequency spectrum. The
classical example for dielectric liquids at high frequencies is the bulk relaxation of
dipoles present in a pseudoviscous liquid. Such behavior was represented by Cole
and Cole [1941] by a modification of the Debye expression for the complex dielec-
tric constant and was the first distribution involving the important constant phase
element, the CPE, defined in Section 2.1.2.3. In normalized form the complex dielec-
tric constant for the Cole—Cole distribution may be written

(g_ew)/(g.y—gw):[l-i-(jwfo)]—a]_] (1)

where € is the dielectric constant, & and &, are the static and high-frequency limit-
ing dielectric constants, 7, the mean relaxation time, and & a parameter describing
the width of the material property distribution (in this case a distribution of dielec-
tric relaxation times in frequency space).

1.3.2 Simple RC Circuits

Figure 1.3.1 shows two RC circuits common in IS and typical Z and Y complex
plane responses for them. The response of Figure 1.3.1a is often present (if not
always measured) in IS results for solids and liquids. Any electrode—material system
in a measuring cell has a geometrical capacitance C, = C.. = C, and a bulk resist-
ance R, = R.. = R, in parallel with it. These elements lead to the time constant 7, =
R..C.., the dielectric relaxation time of the basic material. Usually, 7, is the small-
est time constant of interest in IS experiments. It is often so small (<107’s) that for
the highest angular frequency applied, ®,., the condition @, 7y << 1 is satisfied
and little or nothing of the impedance plane curve of Figure 1.3.1b is seen. It should
be noted, however, that lowering the temperature will often increase 7, and bring
the bulk arc within the range of measurement. Since the peak frequency of the com-
plete semicircle of Figure 1.3.1b, ®,, satisfies @,7, = 1, it is only when @yTp >> 1
that nearly the full curve of Figure 1.3.15 is obtained. Although the bulk resistance
is often not appreciably distributed, particularly for single crystals, when it is actu-
ally distributed the response of the circuit often leads to a repressed semicircle in
the Z plane, one whose center lies below the real axis instead of to a full semicircle
with its center on the real axis. Since this distributed element situation is frequently
found for processes in the @ << 7j' frequency range, however, we shall examine in
detail one simple representation of it shortly.
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Figure 1.3.1. Figures 1.3.1a and d show two common RC circuits. Parts b and e show their
impedance plane plots and ¢ and f their admittance plane plots. Arrows indicate the direction of
increasing frequency.

Besides R, = R.. and C, = C.,, one often finds parallel R,, C, response associ-
ated with a heterogeneous electrode reaction. For such a case we would set R, = Ry
and C, = Cg, where Ry is a reaction resistance and Cy is the diffuse double-layer
capacitance of the polarization region near the electrode in simplest cases. The
circuit of Figure 1.3.1d combines the above possibilities when R, = Rz and C, = C.
The results shown in Figure 1.3.1e and f are appropriate for the well-separated time
constants, R.R.. << R,C... It is also possible that a parallel RC combination can arise
from specific adsorption at an electrode, possibly associated with delayed reaction
processes. The response arising from R.. and C.. in Figure 1.3.1e is shown dotted to
remind one that it often occurs in too high a frequency region to be easily observed.
Incidentally, we shall always assume that the capacitance and resistance of leads to
the measuring cell have been subtracted out (e.g. by using the results of a prelimi-
nary calibration of the system with the cell empty or shorted) so that we always deal
only with the response of the material-electrode system alone.

In the complex plane plots, the arrows show the direction of increasing fre-
quency. Further, G, = R}, G.. = R.!, G, = R;'. Because IS results usually involve
capacitance and rarely involve inductance, it has become customary to plot imped-
ance in the —Im (Z), Re (Z) plane rather than the Im (Z), Re (Z) plane, thereby ensur-
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ing that the vast majority of all curves fall in the first quadrant, as in Figure 1.3.1b.
This procedure is also equivalent to plotting Z* = Z’ — iZ” rather than Z, so we can
alternatively label the ordinate Im (Z*) instead of —Im (Z). Both choices will be used
in the rest of this work.

The admittance of the parallel RC circuit of Figure 1.3.1a is just the sum of the
admittances of the two elements, that is,

Y;, = G1 +ij1 (2)
It immediately follows that
Z,=Y,' =R/(RY,)=R/[1+ joRC)] 3)

This result can be rationalized by multiplying by [1 — jwR,C,], the complex conju-
gate of [1 +jwR,C}], in both numerator and denominator. The response of the Figure
1.3.1a circuit is particularly simple when it is plotted in the Y plane, as in Figure
1.3.1c. To obtain the overall admittance of the Figure 1.3.1d circuit, it is simplest to
add R.. to the expression for Z, above with R; — R, and C;, — C,, convert the result
to an admittance by inversion, and then add the jwC.. admittance. The result is

Y, = joC.. +[1+ joR,C,]/[(R, + R.)+ joC, RyR.] )

Although complex plane data plots, such as those in Figures 1.3.1b, ¢, e and f
in which frequency is an implicit variable, can show response patterns which are
often very useful in identifying the physicochemical processes involved in the elec-
trical response of the electrode—material system, the absence of explicit frequency
dependence information is frequently a considerable drawback. Even when fre-
quency values are shown explicitly in such two-dimensional (2-D) plots, it is usually
found that with either equal intervals in frequency or equal frequency ratios, the fre-
quency points fall very nonlinearly along the curves. The availability of computer-
ized plotting procedures makes the plotting of all relevant information in a single
graph relatively simple. For example three-dimensional (3-D) perspective plotting,
as introduced by Macdonald, Schoonman, and Lehnen [1981], displays the fre-
quency dependence along a new log (v) axis perpendicular to the complex plane (see
Section 3.3). For multi-time-constant response in particular, this method is particu-
larly appropriate. The full response information can alternately be plotted with ortho-
graphic rather than perspective viewing.

1.3.3 Analysis of Single Impedance Arcs

Analysis of experimental data that yield a full semicircular arc in the complex plane,
such as that in Figure 1.3.1b, can provide estimates of the parameters R, and C; and
hence lead to quantitative estimates of conductivity, faradic reaction rates, relaxation
times, and interfacial capacitance (see detailed discussion in Section 2.2.3.3). In prac-
tice, however, experimental data are only rarely found to yield a full semicircle with
its center on the real axis of the complex plane. There are three common perturba-
tions which may still lead to at least part of a semicircular arc in the complex plane:
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1. The arc does not pass through the origin, either because there are other arcs
appearing at higher frequencies and/or because R.. > 0.

2. The center of an experimental arc is frequently displaced below the real axis
because of the presence of distributed elements in the material-electrode
system. Similar displacements may also be observed in any of the other
complex planes plots (Y, M, or €). The relaxation time 7 is then not single-
valued but is distributed continuously or discretely around a mean, 7, =
®,!. The angle 8 by which such a semicircular arc is depressed below the
real axis is related to the width of the relaxation time distribution and as such
is an important parameter.

3. Arcs can be substantially distorted by other relaxations whose mean time
constants are within two orders of magnitude or less of that for the arc under
consideration. Many of the spectra shown in following chapters involve
overlapping arcs.

We shall begin by considering simple approximate analysis methods of data yield-
ing a single, possibly depressed, arc. Suppose that IS data plotted in the impedance
plane (actually the Z* plane) show typical depressed circular arc behavior, such as
that depicted in Figure 1.3.2. Here we have included R.. but shall initially ignore any
effect of C... We have defined some new quantities in this figure which will be used
in the analysis to yield estimates of the parameters R.., Rz = Ry — R, Tz and the frac-
tional exponent Y., parameters which fully characterize the data when they are well
represented by the distributed-element ZARC impedance expression (see Section
2.2.2.2),

Z—-R.=Zsnrc E(Ro_Roo)Iz 5

where

1= [1+Gor)"™ | = [1+G9" ] ®)

-Im(2)

Figure 1.3.2. Impedance plane plot for a depressed circular arc showing definitions of quantities
used in its analysis.
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Here s = w1 is a normalized frequency variable, and I, is the normalized, dimen-
sionless form of Z;,gc. Notice that it is exactly the same as the similarly normalized
Cole—Cole dielectric response function of Eq. (1) when we set Yy, =1 — a. We can
also alternatively write the ZARC impedance as the combination of the resistance
Ry in parallel with the CPE impedance Zcpg (see Section 2.2.2.2). The CPE admit-
tance is (Macdonald [1984])

Yore = Zcbe = Ao (J.a))wn = (ijR)WZL (7)

Then Eq. (§) may be expressed as

Zzare = RR/[I + By (jw)vzc ] @®)

where B = Th = RzA,. The fractional exponent Y satisfies 0 <y < 1.

Let us start by considering two easy-to-use approximate methods of estimating
the parameters, methods often adequate for initial approximate characterization of
the response. The estimates obtained by these approaches may also be used as initial
values for the more complicated and much more accurate CNLS method described
and illustrated in Section 3.3.2. Note that the single RzCy situation, that where
0 =0 and y,c = 1, is included in the analysis described below.

From the figure, —Z” reaches its maximum value, y,, when @ = ®,, = 73" and
thus s = 1. At this point the half-width of the arc on the real axis is Z' — R.. = x, =
Ry/2. Now from the data, the complex plane plot, and estimated values of x,, y,, and
o, one can immediately obtain estimates of R.., Ry, Rk, and 7. In order to obtain
0, one must, of course, find the direction of the circle center. The easiest graphical
method is to draw on the Z* plane plot several lines perpendicular to the semicircle;
the center will be defined by their intersection. Two other more accurate approaches
will be described below. Incidentally, when there is more than one arc present and
there is some overlap which distorts the right, lower-frequency side of the arc, the
present methods can still be used without appreciable loss of accuracy provided
overlap distortion is only significant for @ < ,, that is, on the right side of the center
of the left arc. Then all parameters should be estimated from the left side of the
arc, that is, for @ = ®,. A similar approach may be used when data are available
only for w £ w,. From Figure 1.3.2 and Eq. (5) we readily find that 6 = ©/2 — x =
(/2)(1 — yye); thus when Y, = 1 there is no depression and one has simple
single-time-constant (7z = RzCy) Debye response with Ay = Cz. When yye < 1,
Tx = (RrAy)"“x, but an ideal Cy capacitor cannot be directly defined, reflecting the
distributed nature of the response.

The rest of the analysis proceeds as follows. First, one may obtain an estimate
of Wy from the 6 value using .. = 1 — 26/m. But a superior alternative to first obtain-
ing O by finding the circle center approximately is to use the values of x, and y,
defined on the figure. For simplicity, it will be convenient to define

g=(0tx)" = (s)"" )
2= (w/2)-0=(n/2)y.. (10)

and note that
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xOE(RO—RM)/ZERR/Z (11)
We may now rewrite Eq. (6) for I, as
1 o
1,(g.z) = Bracosl-jg Slrzl()c) (12)
1+2gcos(y)+q
For g = 1, the peak point, one finds
I,(1,) = 0.5[1— j tan(y/2)] (13)
Let us further define for later use the quantity
v, = tan(y/2) = tan(zy ,c /4) (14)
Now in general from Eq. (12) we may write
~17/1; = gsin(x)/[1+q cos(x)] (15)

which becomes, for g = 1,
~17/ 1| o1 = o/ x0 =tan(y/2) =y, (16)

Thus from knowledge of y, and x, one can immediately calculate ¥, yj, Wy, and 0
For completeness, it is worth giving expressions for w and r which follow from the
figure. One finds

w = xo etn(y) = xo tan(6) = xo[1-y3) /2y, | (17)

and

r=yo+w=uxocsc(y) = xosec(6) = xo[(1+v3) /2y, ] (18)

A further method of obtaining ¢ and 6 is to first estimate R.. and plot (Z — R..)™
in the Y plane. Then a spur inclined at the angle [(7/2) — 6] = y will appear whose
® — 0 intercept is (R, — R..)™". A good estimate of W, may be obtained from the
x value when the spur is indeed a straight line. Now at ® = ®,, it turns out that
B!z = 1. Thus one may obtain an estimate of B, from @,’~. Then T = B{/¥« =
, and A, = R;'B,. Thus all the parameters of interest have then been estimated.

The above simple methods of estimating - depend only on the determination
of xy and y, from the impedance complex plane arc or on the use of a few points in
the admittance plane. Although they are often adequate for initial investigation, it is
worth mentioning a relatively simple alternative procedure which can be used to test
the appropriateness of Eqs (5) and (6) and obtain the parameter estimates of inter-
est. Consider the point Z* on the arc of Figure 1.3.2, a point marking a specific value
of Z. It follows from the figure and Eq. (5) that Z* — R, = (R, — R.)I¥ = u and R, —
Z* =(Ry— R.) (1 — I}) = v. Therefore,

v/l =1n| ()| = 1n(0) = W e in(@) + In(z)] (19)

If one assumes that R, and R.. may be determined adequately from the complex plane
plot, not always a valid assumption, then v and u may be calculated from experi-
mental Z data for a variety of frequencies. A plot of In|v/u| vs. In(w) will yield a
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straight line with a slope of ;¢ and an intercept of Wy In(z) provided Eq. (19)
holds. Ordinary linear least squares fitting may then be used to obtain estimates of
Wye and In (7).

Although a more complicated nonlinear least squares procedure has been
described by Tsai and Whitmore [1982] which allows analysis of two arcs with some
overlap, approximate analysis of two or more arcs without much overlap does not
require this approach and CNLS fitting is more appropriate for one or more arcs
with or without appreciable overlap when accurate results are needed. In this section
we have discussed some simple methods of obtaining approximate estimates of some
equivalent circuit parameters, particularly those related to the common symmetrical
depressed arc, the ZARC. An important aspect of material-electrode characteriza-
tion is the identification of derived parameters with specific physicochemical
processes in the system. This matter is discussed in detail in Sections 2.2 and 3.3
and will not be repeated here. Until such identification has been made, however, one
cannot relate the parameter estimates, such as Ry, Cg, and Yy, to specific micro-
scopic quantities of interest such as mobilities, reaction rates, and activation ener-
gies. It is this final step, however, yielding estimates of parameters immediately
involved in the elemental processes occurring in the electrode-material system,
which is the heart of characterization and an important part of IS.

1.4 SELECTED APPLICATIONS OF IS

In this section two applications will be presented which illustrate the power of the
IS technique when it is applied to two very diverse areas, aqueous electrochemistry
and fast ion transport in solids. These particular examples were chosen because of
their historical importance and because the analysis in each case is particularly
simple. Additional techniques and applications of IS to more complicated systems
will be presented in Chapter 4 as well as throughout the text.

The first experimental use of complex plane analysis in aqueous electrochem-
istry was performed in 1960 (Sluyters and Oomen [1960]). This study is a classic
illustration of the ability of impedance spectroscopy to establish kinetic parameters
in an aqueous electrochemical system. Using a standard hanging mercury drop cell,
the impedance response of the Zn(Hg)/Zn** couple in a 1M NaClO, + 10°M HCIO,
electrolyte was examined at 298 K. For this couple, the reaction rate is such that in
the frequency range of 20 Hz to 20kHz the kinetics of charge transfer is slower than
ion diffusion in the electrolyte. The results (Figure 1.4.1) show a single semicircle
characteristic of kinetic control by an electrochemical charge transfer step at the
electrode—electrolyte interface. The physical model appropriate to this system is the
same as that presented in Figure 1.3.1d. The semicircle beginning at the origin in
Figure 1.3.1eis not observed in Figure 1.4.1 because the frequency range was limited
to below 20kHz. Thus, in Figure 1.4.1, R.. is the solution resistance, R, is the charge
transfer resistance. The double-layer capacitance, C, can be obtained by analysis of
Z” frequency dependence.

By solving the standard current—potential equation for an electrochemical reac-
tion (see, for example, Bard and Faulkner [1980]) under the conditions of kinetic
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Figure 1.4.1. The impedance results of a Zn(Hg)/Zn** couple in 1M NaClO, + 10°M HCIO, with
Cz, =8 x 10°moles/cm® and Cz,>* = 8 X 10™°. The numbers represent the frequency in kilohertz; the
axes are in arbitrary scale units. (Sluyters and Oomen [1960])

Table 1.4.1. Calculation of Rate Constant of Zn(Hg)/Zn**

Couple
Czn=Cyt R, Ry X Cz,
(moles/cm®)  (Q-cm?)  (moles-Q/cm) k (cm/sec)”
2% 107 10.17 20.3 x 107°
4 4.95 19.8
5 4.26 21.3
8 2.41 19.3 326 x 102 +3.6%
10 2.13 21.3
16 1.27 20.3
16 1.28 20.5

“ Calculated from the average value of R, X Cz, = 20.4 x 107 by
k = (R,Cz,n®F?)™'RT according to Eq. (1).
Source: Sluyters and Oomen [1960].

control (i.e. the rate of charge transfer is much slower than diffusive processes in
the system), the value of R, can be evaluated. For a known concentration of Zn at
the amalgam—electrolyte interface, Cz,ug), and a known concentration of Zn*" at the
electrolyte—electrode interface, Cz,, the value of R, is given by Eq. (1):
R RT
2 = o -0 (1)
i’lezk(Can+) (CZn(Hg))

where 7 is the number of electrons transferred, F is Faraday’s constant, & is the rate
constant for the electrochemical charge transfer reaction, « is the electrochemical
transfer coefficient, R is the ideal gas constant, and T is the absolute temperature.
When the concentration of Zn in the amalgam is equal to the concentration of Zn
ions in the solution, then the rate constant k£ can be determined. Results at several




22  Chapter 1 Fundamentals of Impedance Spectroscopy

different equal concentrations of Zn and Zn** (Table 1.4.1) gave a mean value of
k =3.26 x 10~ cm/s. By using different concentrations of Zn and Zn** the transfer
coefficient « (Tables 1.4.2 and 1.4.3) was found to be 0.70. In addition, the value
of the double-layer capacitance could be easily determined in each of the
experiments.

In a similar experiment, the Hg/Hg** reaction in 1M HCIO, has also been inves-
tigated (Sluyters and Oomen [1960]) using IS in the frequency range of 20Hz to
20kHz and for concentrations between 2 x 107 and 10 x 10°moles/cm®Hg?*. The
results (Figure 1.4.2) show linear behavior in the complex plane with an angle of
45° to the real axis. Such a response is indicative of a distributed element as dis-
cussed in the previous section. In this case, the system is under diffusion control as
the kinetics of the charge transfer at the electrode—electrolyte interface is much faster
than the diffusion of the Hg?" ions in the solution. Solution of the diffusion equa-
tion with the appropriate boundary conditions under a small ac perturbation gives
the diffusional contribution to the impedance in the complex plane as (see Chapter
2 for a detailed discussion)

W=0o0"" - jow™" )

where the impedance, W, is generally called the Warburg impedance, @ is the angular

frequency, j is equal to (=1)"* and o is a constant given by
o RT 1 N 1 3
T i 12 12 3
WFV2| G (D) [Ce(Due)'”]
Table 1.4.2. Calculation of Transfer Coefficient o of Zn(Hg)/Zn** Couple
CZn Can+ R2
(moles/cm?®) (moles/cm®) (Q-cm?) logR, —log Cy,2* o
16 x 107 16 x 107 1.28 0.107 4.796
16 8 2.00 0.301 5.097 0.70
16 4 3.29 0.517 5.398
16 2 5.37 0.730 5.699
¢ From slope of —log C,* vs. logR, plot.
Source: Sluyters and Oomen [1960].
Table 1.4.3. Calculation of Transfer Coefficient 1 — & of Zn(Hg)/Zn** Couple
CZn“ CZH R2
(moles/cm®) (moles/cm®) (Q-cm?) logR, —log Cy, 1-of
16 x 107 16 x 107 1.28 0.107 4.796
16 x 107 8 1.56 0.193 5.097 0.29
16 x 107 4 1.93 0.286 5.398

¢ From slope of —log Cy, vs. logR, plot.
Source: Sluyters and Oomen [1960].
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Figure 1.4.2. The impedance results of a Hg3"7Hg couple in 1M HCIO, electrolyte with Cyr =
2 X 10°moles/cm®. The numbers represent the frequency in kilohertz; the axes are in arbitrary scale
units. (Sluyters and Oomen [1960])

where Dy, and Dy, are the diffusivity of mercurous ions in solution and mercury
in amalgam, respectively, and the other terms are defined as above. This impedance
is to be added (see Sluyters [1960]) and the discussion in Chapter 2) in series with
R, of Figure 1.3.1d. When the impedance of this circuit is plotted in the complex
plane, one obtains a semicircle combined with a straight line at an angle of 45° to
the real axis. The line, when extended to the real axis, has an intercept of R.. + R,
— 20Cy. If 20C, is small, as in the present case, the semicircle is suppressed and
the product of the imaginary part of W, Im (W) and @'"* will be equal to o at all
frequencies.

The experimental results in Figure 1.4.2 are thus consistent with a system under
diffusion control. The diffusivity of Hg3* ions in solution can be easily calculated
(Table 1.4.4) at several different concentrations of Hg3' in the solution from the value
of 0. No further information can be obtained from this data because the time con-
stant associated with the kinetics is too fast to be measured at frequencies below
20kHz.

The frequency range chosen in the above experiments was dictated by the
limited electronics available in 1960 and the cumbersome experimental approach
associated with it, which required that the impedance be measured independently at
each frequency. The introduction of automated impedance analysis instruments
removes this restriction and allows the experimenter to choose the most appropriate
frequency range for a given experiment. This choice should be determined by the
nature of the interfaces in the experiment and the time constants that are associated
with them. For example corrosion studies, which often involve a slow aqueous dif-
fusion process, generally have relatively large time constants (on the order of
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Table 1.4.4. Calculation of Diffusion Coefficient of Hg** in

IN HCIO,

Cu o’ Dbﬂgﬁ* R.+R,
(moles/cm®) (Q-sec™>cm?) (cm?/sec) (Q-cm?)
10 x 10°° 2.09 0.241 x 107 0.190
5 4.10 0.251 0.188
4 4.99 0.264 0.188
3 6.60 0.268 0.195
2 9.73 0.277 0.193

* o =1Im (W) was found to be independent of frequency within 2%.
b Dy= [RT(on*F* ¥2 Cy)']? according to Eq. (3) with
1/[Cug(Dyg) ™1 << 1/[Ciyg*(Dig*)"?], as is the case here with a pure
Hg electrode.

Source: Sluyters and Oomen [1960].

0.1-10s), and thus most impedance studies of corroding systems use frequencies
between a few millihertz and 100kHz. On the other hand, studies of solid ionic
conductors require higher frequencies to measure the time constant associated with
ionic motion (milli- to microseconds), which is generally smaller than those found
in aqueous diffusion processes. Thus, frequencies between a few hertz and 15 MHz
are most appropriate here.

That is not to say that the frequency range should always be restricted based upon
predetermined expectations. In the above studies, a wider frequency range would
probably have allowed a determination of additional information. For the Zn/Zn**
couple, lower frequencies would have allowed the measurement of the diffusivity of
zinc ions in the solution. For the study of the Hg/Hg** couple, the kinetics of the
electrochemical reaction at the interface could have been explored by using higher
frequencies. Nevertheless, an understanding of the relationship between the time
constant in an experiment and the frequencies with which to measure it provides an
intelligent starting point in the choice of the most appropriate frequency range.

A second example which illustrates the utility of IS to solid state chemists is
the application of impedance analysis to zirconia—yttria solid electrolytes (Bauerle
[1969]). At elevated temperatures solid solution zirconia—yttria compounds are
known to be oxygen-ion conductors which function by transport of oxygen ions
through vacancies introduced by the dopant yttria. By examining cells of the form

Pt, O, (Zr02)0>9(Y203)0_1|02,Pt “

using IS, admittance plots were obtained (Figure 1.4.3a). The equivalent circuit pro-
posed to fit this data is shown in Figure 1.4.3b. By a careful examination of the effect
of the electrode-area-to-sample-length ratio, and by measuring the dc conductivity
of the samples, the high-frequency semicircle (the one on the right in Figure 1.4.3a)
was ascribed to bulk electrolyte behavior, while the low-frequency semicircle (on
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Figure 1.4.3. (a) Admittance behavior of the electrochemical cell given in TABLE1.4.4 at 873K
for a specimen with naturally porous electrodes (sputtered Pt). (») The equivalent circuit for the
behavior in part a showing the two impedance elements associated with each semicircle. (Bauerle
[1969])

the left in Figure 1.4.3a) corresponded to the electrode polarization. In the termi-
nology of Figure 1.4.3b, R, and C; correspond to electrode polarization phenomena,
while R,, R;, and C, describe processes which occur in the bulk of the electrolyte
specimen. Furthermore, by varying temperature, oxygen partial pressure, and elec-
trode preparation, the role of each component in the overall conduction mechanism
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was determined. In particular, R, represents an effective resistance for the electrode
reaction

1
Eoz(g) +2e” = 0* (electrolyte) 3)

where C, is the double-layer capacitance of the electrode; R, is a “constriction” or
intergranular resistance corresponding to resistance of conduction across two dif-
ferent grains, primarily due to impurities located there; C, is the capacity across the
intergranular region; and R; is the resistance to conduction within the grains. Elec-
tron microprobe studies supported the theory of impurities at the grain boundary.
Thus, in a system as electrochemically complex at this, with many different effects
interacting, one can still obtain fundamental information about processes occurring
at each interface and in the bulk specimen.

This second study illustrates a very important point about IS. Although it is an
extremely powerful technique in its own right, the analysis of complicated systems
must be correlated with other experimental information to verify that the chosen
circuit is physically reasonable. Furthermore, agreement between independently
determined experimental values and those determined in a fitting procedure of the
complex plane results can only strengthen the IS results and thus should never be
overlooked.
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2.1 THE ELECTRICAL ANALOGS OF
PHYSICAL AND CHEMICAL PROCESSES

2.1.1 Introduction

One of the most attractive aspects of impedance spectroscopy as a tool for investi-
gating the electrical and electrochemical properties of materials and systems is the
direct connection that often exists between the behavior of a real system and that of
an idealized model circuit consisting of discrete electrical components. The inves-
tigator typically compares or fits the impedance data to an equivalent circuit, which
is representative of the physical processes taking place in the system under investi-
gation. The main objective of the present section is to define and discuss the analo-
gies between circuit elements and electrochemical processes, so that the results of
data fitting can be more easily converted into physical understanding. That such a
close connection exists between electrochemistry and the behavior of idealized
circuit elements is not surprising, since the fundamental laws which connect charge
and potential and which define the properties of linear systems are unchanged in
passing from electronic to ionic materials.

There are, however, dangers in the indiscriminate use of analogies to describe
electrochemical systems. The first point to be made is that equivalent circuits are
seldom unique. Only the simplest circuits can be said to be unambiguous in their
description of experimental data; in complex situations, choices based upon other
physical data are often necessary. It should also be remembered that electrolytes,
interfaces, and so on are only approximately modeled by idealized circuit elements
over a limited range of experimental conditions. One general condition, which will
be assumed through much of this volume, is that we are dealing with small signals;
that is, linear behavior is implied. The impedance is supposed to be independent of
the amplitude of the applied signal, or at least to approach a constant finite limit as
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the amplitude of the signal is decreased. Electrochemical systems, of course, can be
highly nonlinear, and response to large signals includes rectification and higher
harmonic generation. In Section 2.1.4 we discuss the linearization of interfacial
kinetics to produce a charge transfer resistance. Interfacial capacitances are also
voltage-dependent and mass transport will also be nonlinear if diffusion coefficients
or thermodynamic terms, present in the diffusion expression, are a function of con-
centration (see Section 2.1.3.2). The use of small signals, however, is in general a
distinct advantage of the impedance approach as compared to cyclic voltammetry,
for example, where the wealth of information contained in a single experiment may
prove too difficult to deconvolute. Usually, the voltage dependence of the electro-
chemical parameters is rather small, and a linear expansion of the ac current, in terms
of the variation of the perturbed concentrations and so on is well justified. Higher-
order effects are not discussed in this chapter, but a discussion of electrochemical
applications may be found in the review by Sluyters-Rehbach and Sluyters [1984].

Two other limitations on the exact correspondence between equivalent circuits
and electrochemical systems are also addressed. The first of these is the effect of
geometry on the current distribution. The effect of this on the frequency dispersion
of the impedance is only beginning to be explored by those interested in impedance
methods, and will prove to be important as the technique is extended to more
complex geometries and small structures. A number of problems where current dis-
tribution is undoubtedly important, for example in the behavior of polycrystalline
solid electrolytes and the effect of roughness on interfacial impedance, have recently
been considered by Fleig and Maier [1996].

A further limitation is the often observed anomalous frequency dependence of
both bulk and interface parameters. Several electrochemical properties, for example
conductivity and interface capacitance, are predicted to be independent of frequency,
whereas, in fact, they often show significant deviations from this behavior. This type
of phenomenon has achieved recognition only since the application of ac techniques
to a wide variety of problems, since a small degree of frequency dispersion is diffi-
cult to recognize in transient (time domain) experiments. Although good para-
meterization of this frequency dispersion has been achieved, and certain general or
“universal” forms suggested, a universally accepted microscopic description has not
yet emerged. Some of the aspects of this phenomenology are discussed in Sections
2.1.2.3 and 2.1.2.7, and we have brought together some of the various attempts
which have appeared in a wide variety of fields to deal with this problem.

The general approach adopted in this section is to treat bulk and interfacial
phenomena separately. First the electrical properties of homogeneous phases are
discussed. There are two aspects to this treatment, relating respectively to dielectric
relaxation and long-range dc conductivity.

Although the well-established measurement of dielectric loss is not, in its nar-
rowest sense, strictly impedance spectroscopy, a discussion of relaxation behavior
is central to the family of techniques that use the interaction of a time-varying elec-
tromagnetic signal with a material to deduce microscopic detail. The generalization
of the treatment of systems with a single relaxation time (Debye behavior) to those
with multiple relaxations or distributions of relaxation times is discussed in Section
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2.1.2.3. Recently, the application of impedance methods to disordered, condensed
phases, such as organic polymers and glasses, warrants a general appreciation of the
concepts involved. Dielectric loss measurements are also important and are used
extensively to study the energetics of relaxations of complex ionic defects, such as
those found in the fluorite family of materials.

The determination of dc ionic conductivity is perhaps the most widespread and
also the simplest application of impedance spectroscopy. By using ac methods, elec-
trode polarization can be correctly eliminated from an electrochemical system, and
other sources of spurious frequency dispersion, such as grain boundary effects, may
also be removed under certain circumstances. Electrodes may be inert foreign
metals, thus eliminating the need for demonstrating the reversibility of parent metal
electrodes.

Conductivity is of course closely related to diffusion in a concentration gradi-
ent, and impedance spectroscopy has been used to determine diffusion coefficients
in a variety of electrochemical systems, including membranes, thin oxide films, and
alloys. In materials exhibiting a degree of disorder, perhaps in the hopping distance
or in the depths of the potential wells, simple random walk treatments of the statis-
tics are no longer adequate; some modern approaches to such problems are intro-
duced in Section 2.1.2.7.

The above mentioned sections deal with bulk phenomena. The other important
area about which impedance spectroscopy gives important information is that of the
electrochemical interface. This is usually a junction between an electronic and an
ionic conductor; electrochemical devices utilize the charge transfer that occurs at
this interface. The kinetics of this process as well as the electrical nature of the
interface region are discussed in Section 2.1.4.

The emphasis of this section is on solid systems; therefore, several important
aspects of electrical response appropriate to liquid electrochemistry are either neg-
lected or given little emphasis. Examples are the omission of convection in the treat-
ment of mass transport and the related neglect of ac impedance at a rotating disk
electrode. Similarly, porous electrodes are not discussed, although related “rough”
electrodes are briefly considered. Complex electrochemical mechanisms at solid—
solid interfaces have been hardly mentioned in the literature; the treatment of the
topic here reflects that. However, some attempt has been made to give a sufficiently
general approach to interface kinetics and the development of expressions for the
faradic impedance so that solid state scientists may be aware of the advanced state
of development of the theory used by aqueous electrochemists.

2.1.2 The Electrical Properties
of Bulk Homogeneous Phases

2.1.2.1 Introduction

In this section we are concerned with the electrical response of solids with a uniform
composition. Mass and charge transport in the presence of concentration gradients
are discussed in Section 2.1.3.
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On the time scale of interest to electrochemists (i.e. greater than ~1 us) an elec-
tric field can interact with a solid in two principal ways. These are, respectively, the
reorientation of defects having electric dipole moments (usually complex defects)
and the translational motion of charge carriers (usually simple defects such as vacan-
cies, ionic interstitials, and defect electronic species).

The first interaction leads to a displacement current,

i =dD/dt (1)

where D is the electric displacement (defined as the total charge density on the
electrodes),

D=¢E+P 2

where E is the electric field, & is the permittivity of free space, and P is the polar-
ization of the dielectric material.
The second type of interaction leads to a purely real (dc) conductivity o,

i=oE 3)

We therefore deal first with the phenomenon of dielectric relaxation in materi-
als with a single time constant and an absence of conductivity and later with
materials that show long-range conductivity. As we are primarily concerned with
developing the electrical analogs of these processes, little consideration is given
to the characteristics of individual defects or materials. Similarly, the thermody-
namics of the formation of defects, which determines their concentration, is also
ignored.

2.1.2.2 Dielectric Relaxation in Materials
with a Single Time Constant

When an electric field E is applied to an insulating material, the resulting polariza-
tion P may be divided into two parts according to the time constant of the response:

1. An almost instantaneous polarization due to the displacement of the elec-
trons with respect to the nuclei. This defines the high-frequency dielectric
constant &, related to the refractive index.

e.—-1=P./Eg, 4)

The time constant of this process is about 10™'¢s and therefore occurs in the
UV region of the electromagnetic spectrum. Ionic vibrations have a time con-
stant which usually occurs in the infrared and are also therefore instanta-
neous as far as electrochemical experiments are concerned.

2. A time-dependent polarization P’(¢) due to the orientation of dipoles in the
electric field. If the field remains in place for an infinitely long time, the
resulting total polarization P, defines the static dielectric constant &:

g, —1=P,/Eg, )
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t=0 t

Figure 2.1.1. Time dependence of the polarization P after the application of an electric field to an
insulator at # = 0.

P, =P.+P'(t=20) (6)

The simplest assumption allowing calculation of the properties of such a system is
that P’(¢) is governed by first-order kinetics, that is, a single-relaxation time 7, such
that

wP'(t)/dt =P, ~P 0

In other words, the rate at which P approaches P, is proportional to the difference
between them. Referring to Figure 2.1.1, on application of a unit step voltage uy(f)

P=P.u,(t)+P(r) (8)

If we take the Laplace transforms of the last two equations and solve for {P}, we
obtain
Poo wOI)S
= +
(p+wy) plp+w,)

{P}

©)

where {P} is the Laplace transform of the polarization and ®,= 7°"; p is the complex
frequency variable.
The current density is obtained using the relation

{it=p{P}-P(t=0) (10)
or by differentiating in the time domain, to give
[

{l} =P, +(PS _Pw)(p-l-—a)o)

an
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and therefore
i(t) =P.8(t)+(P, —P..)t " exp(~t/7) (12)

This is the same result as that obtained for the circuit of Figure 2.1.2, with the
identities

T= RCZ
C =(g, —¢€.)g (13)
Cl =E.&)

The admittance due the relaxation process is, since {E} = 1/p:

{i} Wop
Y=—"o=c.gop+(ge.)e0 ——— (14)
{E} ’ ’ (p+a,)
or, separating the real and imaginary parts (p = jw),
2
R
e oy e (15)

= +
1+’ kG 140’ RC
The expression may be rewritten in terms of the complex dielectric constant
e =Yljws:
g —€. | o0t(e—¢.)
e e

(16)

The real and imaginary parts of this expression are the Debye relaxation rela-
tions, which have remained the basic model of dielectric relaxation since their incep-
tion (Debye [1929]). They are plotted against one another in Figure 2.1.3 and in
Figure 2.1.4 are separately plotted against the normalized frequency w/@,. The
dielectric loss peak £”, which corresponds to the real part of the admittance, has
been widely used in solid state measurement for the characterization of relaxation
processes. As will be seen later, the equivalent circuit of Figure 2.1.2 is also used
in the interpretation of ac impedance data for solid electrolyte systems even though
the physical phenomena describing the relaxation processes, that is conductivity and
space charge accumulation and depletion, are quite different.

C1
1|
| |

v

Co R
Figure 2.1.2. The Debye equivalent circuit.
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woRCy =1

)

Y

C1/€4 {Cq +C)/Eq
8'
Figure 2.1.3. Complex plane plot of the frequency dependence of the complex permittivity
modeled by the circuit of Figure 2.1.2.

w
log Yo
Figure 2.1.4. Real and imaginary parts of the complex permittivity as a function of normalized
radial frequency.

The principal difference between a dielectric loss experiment and an impedance
spectrum is that the former usually utilizes temperature as the independent variable
and measurements are made at several fixed frequencies. A typical example of the
use of dielectric loss measurements to obtain data about the relaxations of defects
in crystalline solids is the paper by Wapenaar et al. [1982], who studied LaF;-doped
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BaF,. Two main types of relaxation are found in this material, corresponding to
dipole moments caused by association of substitutional lanthanum with an intersti-
tial fluorine along the <100> and <111> crystal axes, respectively. Loss peaks are
seen at low levels of doping corresponding to both defects. Calculation of the respec-
tive dipole moments allows calculation of the concentration of defects from the
strengths of the losses (i.e. from the associated values of C,).

In practice, very few systems obey the Debye equations with accuracy; an exten-
sive literature exists on the real properties of dielectric materials. It is often found,
especially in disordered materials (e.g. glasses and amorphous thin films), that
the Debye peak is considerably broadened over its theoretical half-width of
log [(2+«/§ ) / (2—«/§ )] decades. A number of empirical relaxation functions have
been proposed to parameterize the observations, usually interpreted in terms of a
distribution of relaxation times. This theme is discussed in the next section.

2.1.2.3 Distributions of Relaxation Times

The Debye dispersion relations were derived above for a process with a single relax-
ation time. Figure 2.1.4 showed that the dielectric loss function £” corresponding to
this situation is symmetric about a central frequency, with a characteristic shape and
width. The current flow in such a material, after the imposition of a voltage step
function, decays exponentially with time. In view of the observations mentioned at
the end of the previous section, attempts have been made to extend the Debye model
by including processes with more than one relaxation time. By choosing a distribu-
tion of relaxation times with appropriate strengths and frequencies, it should prove
possible to parameterize the broad response of many dielectric materials. The dis-
tribution of relaxation times approach has also been suggested as the origin of the
“constant-phase elements” that are often seen in impedance studies of solid elec-
trolytes and the solid—solid interface. In this section, some of the main features of
this line of reasoning are presented. The dielectric literature in this area is extensive;
no attempt is made here to be comprehensive.

Assuming linear relaxation processes of the type modeled by the series—RC—
branch, the principle of superposition allows the dielectric function €* — &, to be
generalized:

g = .[: (e, —€.)G(1)dT (17

1+ p7

where p is the complex frequency variable and G(7) represents a distribution of
relaxation times. The distribution should be normalizable,

j: G(t)dr =1 (18)

and should have upper and lower limits. Here G(7) represents the fraction of the
total dispersion (& — €.), which is contributed by processes having relaxation times
between 7T and 7+ dT.

Now & may be divided into real and imaginary parts corresponding to the
frequency jo,
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g —¢. =j”w

0

19
1+(CUT)2 (19

o r w1G(1)(e, —£..)dT

0

20
1+(o7) 20)

Kirkwood and Fuoss [1941] first showed that G(7) could be recovered by integra-
tion from a set of £” values. A general treatment has been given by Macdonald and
Brachman [1956], who provided a useful set of relations between the various func-
tions used to describe networks and systems as well as between responses to various
types of input.

Using the notation of those authors, the network function is defined as

- G(T)dT
olp)= |, I+ pt 1)
where Q(p) corresponds to (€ — £.)/(g — £..).
The admittance is related to Q(p):

Y(p)=p0O(p) (22)

The step function response A(#) and the impulse response B(f) are
At)=L"[0(p)] (23)
B(t)=L"[¥(p)] (24

where L™ is the inverse Laplace transform operator.
It was shown that G(7) was derivable from these quantities through the
relations

7G(r) = D(A) = L L' [Q(p)] (25)
or
D(A)=L"A(r) (26)

where D(A) is a distribution function of the new variable A = 7. Other relationships
may also be derived. The authors give useful examples of various types of network
functions and derived distributions. The simplest is

G(t)=6(t-10) (27)

which corresponds to a single relaxation time and leads to the simple Debye
dispersion equations. Rewriting G(7) in terms of A,

D(A) =1G(t) =16(t — 7)) (28)
and therefore
DA)=2"6(A" - A') (29)
=200(A—2o)
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Hence,
A(t)= L{D(A)} (30)
= Ao exp(—Aot) (3D
=(1/7o)exp(~t/7,) (32)
and
0(p)=1/(1+70p) (33)

Observed relaxation times may occur over many orders of magnitude, and it seems
reasonable that such a range of variation would, for a thermally activated process of
the type

7 =t*exp(E*/kT) (34)

correspond to a distribution of activation energies rather than to a distribution of 7*.
We may therefore define a distribution K(E*) such that

K(E*)dE* = G(1)dt (35)
Evidently, from Eq. (34)
K(E*)=(t/ kT)G(1) (36)

Macdonald [1962] has pointed out that if K(E*) is independent of T, then G(7)
cannot be so independent. Both the midpoint 7, and the width of the distribution will
change with temperature. Not all of the G(7) proposed in the literature are consistent
with this postulate. See Section 2.2.3.5 for further discussion of activation energy
distributions.

Van Weperen et al. [1977] noted that in fluorite-structure materials the dielec-
tric and ionic thermocurrent peaks broadened with increasing concentration of
dipoles (for example Johnson et al. [1969]) and developed a theory of dipole—dipole
interactions which predicted an almost Gaussian distribution of activation energies:

2
K(E9) =——exp {_ M} 37)
oV (2r) 202

The corresponding distribution of 7 is lognormal, the Wagner distribution

b Y
— b2 In— 38
G(7) Tﬁexp{ b (lnro) } (33)

where 0= kT/b V2; 02 is the variance of the K(E*). If K(E*) is to be invariant with
T, then b should be proportional to 7.

The importance of this distribution, apart from being well defined in a physical
sense, is its behavior for large o, that is wide distributions. As b becomes small, G(7)
becomes proportional to 1/7, and A(f), the current response to a unit step function,
becomes proportional to 1/t. The power spectrum may mimic 1/f behavior over
several decades, and the dielectric function will show a very gradual frequency dis-
persion.
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One of the most widely used distributions is that proposed by Cole and Cole
[1941] to describe the occurrence of depressed semicircular arcs in the £€” — €’ plots
obtained for a wide variety of polar liquids and solids. The dielectric constant
behavior was described by the equation

e_p __ (B—e) 29
) [l+(jan'o)l_a] 59)

where ani/2 is the angle between the real axis and the line to the center of the circle
from the high-frequency intercept. Now € may be separated into real and imaginary
parts

eg—-e. 1 sinh(1-a)x
. =5l (40)
& —€. 2 cosh (1 —a)x +cos ar/2
e 1 cos or/2
e, —¢€. 2 cosh(l1—o)x+sin or/2 S

where x = log (w7). These expressions reduce of the Debye relationships for o — 0.
The derived distribution function of time constants is

1 sin ar
G(t)=— 42
(@) 27t cosh (1—o)log(t/7,) — cosam “2)
from which the distribution of activation energies would be, using Eq. (36),
K(E*) = 1 sin o (43)

27kT cosh(1—-a)(E* — E%)/kT—cosar

Unlike the Wagner distribution, K(E*) cannot be rendered temperature-independent
except in limiting cases where & — 0 or 1. The Cole—Cole distribution, like the log-
normal distribution, is symmetrical with respect to a central frequency or relaxation
time. The distribution of time constants is plotted as a function of the variable
s = log (/1) in Figure 2.1.5, and the complex plane plots for various values of o
are given in Figure 2.1.6.

As was pointed out by Cole and Cole, dielectric response corresponding to the
function of Eq. (39) may be decomposed into the circuit shown in Figure 2.1.7,
which contains a constant-phase element (CPE). The CPE is an empirical imped-
ance function of the type

Zepe = A(jo) (44)

which has proved of considerable value in data fitting. The admittance of this circuit
may be expressed as
JjoC,

Y = joC + —————— (45)
[1+CAGw)™]
Dividing by jwe, and comparing with Eq. (39), we find that
1-o
A=—T0 (46)

(e, —¢€.)g
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Figure 2.1.5. The distribution function F(s) associated with the Cole~Cole distribution of
relaxation times [Eq. (42)] for different values of o
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Figure 2.1.6. Complex permittivity associated with the Cole-Cole expression [Eq. (39)].

It is interesting to enquire about the distribution of relaxation times implied by the
presence of Zcpg alone. If

Zeps =AP™ 47
then the admittance is

Y(p)=A""p" (48)
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| 1S
R

C—ZH—— CPE

Figure 2.1.7. The analog of Figure 2.1.2, which models the electrical response associated with the
Cole—Cole expression.

Therefore,
Al)=L{A™p™'} (49)
At
“T(-a) 0
where I" is the gamma function. And
“1ja-1
D(3) = mAT;L)m) (51)
or
Glz)= SO yoipa (52)

Thus, the distribution of relaxation times is proportional to 1/7% It has often been
pointed out that this distribution is nonnormalizable. Physical acceptability may be
restored by truncating the distribution at upper and lower limits of 7. The resulting
distribution has been discussed by Matsumoto and Higasi [1962].

Assuming an expression for 7 of the form given by Eq. (34), we find a distri-
bution of activation energies:

K(E*)ocexp [(1—ot) E*/kT] (53)

The important point to be made here is that the assumption of (1) an exponen-
tial distribution of activation energies and (2) an exponential form for 7 lead directly
to CPE behavior. The exponential distribution of activation energies has been further
discussed by Macdonald [1963]. See also Section 2.2.3.5.

Two other distribution functions are due to Kirkwood and Fuoss [1941] and
Davidson and Cole [1951] (see also Davidson [1961]).

The first of these is symmetric, and is again based on an extension of the Debye
theory functions. In the Debye theory

e”/el =sech x (54)
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where x = log w/a,. Instead of this, Kirkwood and Fuoss wrote

e” /el =sech ox (55)
which leads to a distribution of the form

2 cos (ar/2) cosh as

Gls)= T cos? (am/2)+sinh’ os (56)

where s is again equivalent to log(7/1).
The Davidson—Cole equation

L (57)
& — & (1+jan'0)ﬁ
leads to a skewed arc in the €” — ¢’ plane. It is a semicircle at low frequency, but

asymptotic to /2 at high frequencies (Figure 2.1.8).
The real and imaginary parts are

e —¢.=(g —¢.)cos Py (cos y)ﬁ (58)

e” =(g, —&..)sin By (cos y)ﬁ (59)

where y = tan™ @7,
The current response to the application of a step function potential difference
is

-1
P-P.( ¢ t
i(1) = P.5(0) + 2= (—) ex _(—j 60
Tol(B) \ 7o P To (60)
which may be compared with the equivalent Cole—Cole expression
(1-c)
P, -P t
(1) =P.6(1)+——=| — (61)
) @) TOF(1+OZ)(’L'0)

and the Debye expression [Eq. (12)].

Ci/€, (C1+C) &
g—=

Figure 2.1.8. Complex permittivity associated with the Cole-Davidson expression [Eq. (57)].
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The distribution of relaxation times is highly asymmetric:

G(T)=M( ¢ )B, T<T,

T To—T
=0 T>7T,

(62)

Thus, the distribution ends abruptly at its most probable value.

A further generalization of the Debye approach was made by Williams and Watts
[1970] and Williams et al. [1970] who introduced the use of the following fractional
exponential form to describe the decay of polarization after the removal of a con-
stant field.

o(t) =P(1)/(P, —P.) =exp-(/7)", O<a<l (63)

neglecting the instantaneous drop in polarization. The equivalent Debye expression
has o= 1.
Thus,

A(t)=—do/dr = (cr®" [1*)exp—(t/7)" (64)

The Laplace transform of A(¢), that is Q(p), may be evaluated by series expansions,

although care is needed because of slow convergence for certain ranges of o

(Williams et al. [1970]). For the particular case of o = %, an analytical expression

is easily derived:

Q()=£ex Lerfc !
Pt P, ) ©5)

The inverse Laplace transform of functions of this type, which gives the distribution
of relaxation times, is given by Montroll and Bendler [1984]. A simple expression

for o = % may be derived:

1
G(r)= ) &P [~(t/47,)] (66)
Like the Cole—Davidson function, the Williams—Watts approach gives asymmetric
plots in the complex € plane. A detailed comparison of these two forms has been
made by Lindsey and Patterson [1980].

Interest in the Williams—Watts approach has arisen, not only because of its
empirical success in fitting dielectric data, but also because of its relation to certain
types of diffusion and random walk problems. The mechanistic relation between dif-
fusion and relaxation was introduced by Glarum [1960], who suggested a process
in which a mobile defect enabled a “frozen in” dipole to relax. Further aspects of
random walk processes and their relation to CEPs and other empirical functions are
discussed in a later section.
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2.1.2.4 Conductivity and Diffusion in
Electrolytes (Ibl [1983a], Newman [1973])

In the previous sections the expressions for the admittance of materials were devel-
oped on the assumption that they had no dc conductivity. The real part of the admit-
tance arose from the dissipative process of dipole reorientation. Energy was absorbed
by the system when the orientation of dipoles was changed with respect to the elec-
tric field vector.

Dissipation may also occur by mass transport of particles in the bulk of the
phase. Work must be done against the frictional forces of the medium through which
the particle moves. In solids, migration and diffusion are usually important; in liquids
and membranes, hydrodynamic mass transport must also be considered.

A convenient starting point for discussion of transport properties in electrolytes
is a consideration of the physical laws which connect charge and electric potential.
In a medium of uniform dielectric constant we may write Poisson’s equation, which
connects the gradient of the electric field with the charge density

V20 =—-p/e,e, (67)

Here @ is the electric potential. The charge density p is equal to the sum over the
local concentrations of species multiplied by their charges.

pP= FZZiCi (68)

Because of the magnitude of the constant F/g,, very large electric fields result from
very small deviations from electroneutrality. It is, therefore, a very good approxi-
mation to write for the interior of an electrolyte

ZZ,‘C,' =0 (69)

provided the separation of the electrodes is not too small. In other words, except for
the smallest systems, the bulk of the electrolyte is electrically neutral. This situation
is generally otherwise at interfaces where there exists the possibility of large elec-
tric fields. It also follows that, in general, Laplace’s equation

Vo =0 (70)

is a good approximation in the electrolyte bulk.
A second basic equation expresses the conservation of mass in the system

dc;/ot=-V-j, +R, (71)

This equation states that the rate of accumulation of a species i in a given volume
element is equal to the negative of the divergence of the flux plus any terms that
lead to the production or deletion of 7, such as chemical reactions or recombination
in the bulk of the material.

Third, we can write an equation for the electric current density in terms of the
fluxes of changed species

i= FZZiji (72)
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We now need an expression for the flux of species i in terms of the forces acting
on the particles. The assumption that is usually made is that a particle has a char-
acteristic mobility u; which is the proportionality constant between its velocity and
the force causing it to move. The driving force is supposed to be the gradient in elec-
trochemical potential 7; of the species, so that when the mobility is multiplied by
the driving force and the concentration, we obtain the flux of i:

Ji= —Ciu,-VTI,- (73)

The problem with this equation lies in the formulation of the force term. In
general, a particle may move in response to gradients in the electrochemical poten-
tials of other species, leading to cross-terms in the flux equation. In principle, the
presence of cross-terms will occur whenever a component is present whose chemi-
cal potential may vary independently of that of species i. Thus, the motion of i may
depend not only on Vn; but also on V1, if 7; is independent of 7, (i.e. it is not coupled
through a Gibbs—Duhem relation). The flux equation may therefore be generalized
as

Ji == {Vn,- + Z%Vm} (74)
J

where the ¢; are the coefficients expressing the influence of V7, on i.

It may be shown that this equation is equivalent to the phenomenological equa-
tions derived from irreversible thermodynamics, as well as the multicomponent dif-
fusion equations derived from the Stefan—-Maxwell equations, which were first used
to describe diffusion in multicomponent gases.

Further development of transport theory involves solution of Eqs (71) and (73),
subject to the appropriate initial and boundary conditions to give currents, concen-
tration profiles, and so on.

The simplest approach, often adopted in practice, particularly in solution elec-
trochemistry, may be termed dilute solution approximation. We can write, for the
gradient in electrochemical potential for a dilute solution,

V1. =RTVc:/c; +z,FV® (75)
Thus,
Jji=—RTuVc¢; —z; Fcu, VO (76)
The quantity RTy; is called the diffusion coefficient (Nernst—Einstein relation)
Jji=—DVc¢; —z;Fcu, V@ 77
and the current density is given by the expression
i=—-FXzVe.D - F*Yzlcu, V@ (78)
Substituting Eq. (77) into Eq. (71), we obtain
dc;/dt=zFV - (ucV®)+V - (DVe,)+R, (79)

or, in one dimension,
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dc; d%¢;
3Ci/(9t=ziFu,-—cE+Di ¢ +Rl (80)
dx ox?
if we assume JE/dx = 0, that is, electroneutrality. This is the classical Nernst-Planck

equation.
Instead of assuming dilute or ideal behavior, it is possible to write

Ji =—cauV; — z; Feu,V® (82)
= —DkC,-V,u,-/RT—Z,-FC,-M,-V(D (83)

Here D, is known as the component diffusion coefficient. The importance of this
definition lies in the fact that Nernst—Einstein proportionality between a diffusion
coefficient and a mobility has been retained, even though the condition of ideality
has been relaxed. This is important since the apparent violation of the Nernst—
Einstein equation in nonideal solutions is not a failure of the proportionality
between mobility and mean displacement; it is a weakness in the method of formu-
lating the driving force for diffusion in terms of a concentration gradient (Fick’s law)
rather than in terms of an activity or chemical potential gradient.

2.1.2.5 Conductivity and Diffusion—a Statistical Description

In the previous section, the Nernst—Planck equation was developed from the macro-
scopic flux density and mass conservation equations [(71) and (73), respectively].
The same equation can also be derived by statistical methods, which describe the
probability of finding a particle within a volume region at a time ¢, given an initial
distribution and a set of jump probabilities. For the simplest case, in one dimension,
with equal probabilities of the particle making a jump to the right or to the left, the
time evolution of an initial delta function in concentration at x = 0 is Gaussian:

n(x, )Ax = (—x?/4D1)Ax (84)

1
2~/ (nDt) xp
where D, the diffusion coefficient, is equal to v/%/2, where v is the number of steps
of length [ the particle makes per unit time. A further assumption involved in the
use of the statistical arguments which lead to this equation is that the jumps are
statistically independent. n(x, ?) is plotted for several different times in Figure 2.1.9.
The total area under the curve is constant.

The mean displacement of the particles is zero:

(x)= jxn (x,8)dx =0 (85)
as long as the jump probabilities are symmetrical. The second moment is
(x)? = _[xzn(x, t)dx =2Dt (86)

The probability density n(x, f), given by Eq. (84), is a solution of the diffusion
equation
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Figure 2.1.9. The Gaussian or normal distribution function n(x, #) plotted as a function of distance
from the origin for different times.

on(x, 1)/t = DI*n(x, 1)/dx> (87)

This is identical to the Nernst—Planck Eq. (80) in the absence of an electric field
term and a generation—recombination term.

If the jump probabilities are not symmetrical—for example, in the presence of
an electric field—then (x) is no longer equal to zero, and the probability distribution
is

n(x, 1At = ﬁexp[(—x - (v)t)zt/ 4Dt]Ax (88)

Here (v) is the mean drift velocity (x)/z. The mean drift velocity per unit field is the
drift mobility b;, and the conductivity o; is defined by

o =bciz;F (89)

=(v)e,;z,F/E (90)

Note that b; is equal to z;Fu;.
Now n(x, ) from Eq. (88) is the solution to Eq. (80) with R; set to zero and

describes a propagating Gaussian packet. The ratio of the dispersion + (<X2> - <x>2)

to distance traveled is inversely proportional to the square root of time.

A more general approach via the master equation, leading to Fokker—Planck
equations, may also be followed and may be found in texts on statistical physics
(see, for example, Reichl [1980]).
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The type of diffusion discussed here may be termed “normal” or Gaussian dif-
fusion. It arises simply from the statistics of a process with two possible outcomes,
which is attempted a very large number of times. In Section 2.1.2.7, the statistical
basis of diffusion is enlarged to include random walks in continuous rather than dis-
crete time, and also situations where different distributions of jump distances occur.

2.1.2.6 Migration in the Absence of Concentration Gradients

Under certain circumstances, the passage of electric current through an electrolyte
does not lead to a concentration gradient, and Eq. (78) becomes

i=—F>cz2uVo On

The term F>Zc;z2u; is called the conductivity o, and under these conditions Ohm’s
law is obeyed by the electrolyte. Examples of this behavior are found where only
one electrolyte species is mobile, for example in a solid electrolyte, with reversible
electrodes (see Section 2.1.3) or at high frequencies where several carriers may
move, but where neither electrode nor concentration polarizations have time to build
up.

For a simple hopping conductivity process, in the absence of long-range inter-
actions, the conductivity is expected to be independent of frequency. Here, a single
particle is presumed to move along an infinite lattice of identical potential wells
(Figure 2.1.10a). This might be contrasted with the case of a single particle hopping
backward and forward in double well, where the low-frequency conductivity is zero,
and a Debye-like transition region is followed by a constant high-frequency
conductivity (Figure 2.1.10b).
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Figure 2.1.10. Frequency dependence of the hopping conductivity for different potential energy
profiles: (a) Periodic constant activation energy, (b) a single bi-well, and (c¢) a potential profile with
multiple activation energies.
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Apart from the most dilute solutions, however, we do expect interactions
between unassociated defect species, and in general this will lead to a frequency-
dependent conductivity. This has been recognized for many years by electrochemists
(Onsager [1926, 1927], Debye and Falkenhagen [1928]). The form of the frequency
dependence, however, is of considerable interest.

Following the work of Jonscher (see, for example, Jonscher [1977, 1980]), who
showed that a large number of different types of conductors exhibited a frequency
dispersion of the CPE type, the presence of interactions has been invoked to explain
the observed frequency dispersion in the conductivity of a number of solid elec-
trolytes by Almond, West, and coworkers (Almond and West [1983a, b]), Almond
et al. [1982, 1983, 1984]. These authors expressed the real part of the ionic con-
ductivity of a number of materials by an expression of the type

o(w)=0,+A®" (92)

where o is a “dc” or frequency-independent part, and the second term is of the CPE
type. Making use of Jonscher’s empirical expressions, Eq. (92) was rewritten:

o(w)=Kw,+ Ko, 0" (93)

where @), is the hopping frequency and K depends on the concentration of the mobile
charge carriers. The high-temperature limiting value for @, should be equal to the
attempt frequency, which is independently accessible using IR spectroscopy. For the
case of sodium beta alumina, good agreement was found. Once ®, is known, then
the carrier concentration and activation entropy can also be deduced. For the case
of beta alumina the hopping rate calculation has been confirmed by mechanical
relaxation measurements. In a number of materials, however, including ”-alumina,
the low-frequency region is not independent of frequency and a second CPE term
must be included. The work of Almond and West is also discussed beginning at Eq.
(78) of Section 2.2.3.5.

According to Jonscher, the origin of the frequency dependence of the conduc-
tivity was due to relaxation of the ionic atmosphere after the movement of the par-
ticle. This idea, and the earlier concepts of Debye, Onsager, and Falkenhagen, have
been developed into a quantitative model suitable for solids by Funke [1986]. It is
assumed that immediately after an ion hops to a new site (a new minimum in lattice
potential energy) it is still displaced from the true minimum in potential energy,
which includes a contribution from other mobile defects. At long times the defect
cloud relaxes, until the true minimum coincides with the lattice site. The model pre-
dicts upper and lower frequency-limiting conductivities and a region in between of
power law (CPE) behavior.

In general, both conductivity and dipolar relaxation processes may be present
in the same material, and the total conductivity is given by

Oy =0+ jEED (94)

Where ¢ is given by Eq. (16).
The equivalent circuit for such a combination of processes is shown in Figure
2.1.11. An—RC—series combination will be present for each relaxation process
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/o

Figure 2.1.11.  An equivalent circuit which models the behavior of a material which has both long-
range conductivity (o) and a number of discrete relaxation processes.

present in the material. The dielectric loss peaks will be superimposed on a back-
ground loss due to the long-range conductivity process. Due to interactions, for
example, dipole—dipole, or lattice relaxations, as discussed above, a distribution of
relaxation times is to be expected, and Wapenaar and Schoonman [1981] have
included Cole—Cole branches (series—CZcpg——combinations) rather than Debye
branches to fit data on Ba,_[La,F,,, fluorite structure solid solutions. The impedance
spectra of doped tysonite materials have been investigated by Roos et al. [1984],
who again found excellent agreement between data and a circuit which included
Cole—Cole branches. However, the activation energies were not consistent with a
simple dielectric relaxation, and a model in which conducting species move between
inequivalent sites has been developed (Franceschetti and Shipe [1984]). The motion
of the defect species may involve several distinguishable jump processes, each gov-
erned by a different activation energy. The interpretation of the relaxation branches
in the circuit is that they describe a polarization arising from the inequalities in jump
probabilities.

The important point to be emphasized here is that, although for a single jump
frequency, in the absence of interactions, no particular structure is expected in the
conductivity or dielectric constant at that frequency, a more complex model which
incorporates several jump frequencies (Figure 2.1.10c) indicates that frequency dis-
persion is expected in this range. Although the model of Franceschetti and Shipe
was developed for the tysonite structure, a more general treatment for a small
number of sublattices has been independently given (Wong and Brodwin [1980])
and confirms the main conclusions. As the number of possible jump frequencies
increases, it is apparent that generalization of the model will eventually describe
conductivity and diffusion in disordered materials, that is, in materials in which the
jump probabilities are described by random variables.
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2.1.2.7 Transport in Disordered Media

In a previous section reference was made to the random walk problem (Montroll
and Schlesinger [1984], Weiss and Rubin [1983]) and its application to diffusion in
solids. Implicit in these methods are the assumptions that particles hop with a fixed
jump distance (for example between neighboring sites on a lattice) and, less obvi-
ously, that jumps take place at fixed equal intervals of time (discrete time random
walks). In addition, the processes are Markovian, that is the particles are without
memory: the probability of a given jump is independent of the previous history of
the particle. These assumptions force normal or Gaussian diffusion. Thus, the dif-
fusion coefficient and conductivity are independent of time.

In recent years, more complex types of transport processes have been investi-
gated and, from the point of view of solid state science, considerable interest is
attached to the study of transport in disordered materials. In glasses, for example, a
distribution of jump distances and activation energies are expected for ionic trans-
port. In crystalline materials, the best ionic conductors are those that exhibit con-
siderable disorder of the mobile ion sublattice. At interfaces, minority carrier
diffusion and discharge (for example electrons and holes) will take place in a random
environment of mobile ions. In polycrystalline materials the lattice structure and
transport processes are expected to be strongly perturbed near a grain boundary.

In general, the study of transport processes in disordered media has its widest
application to electronic materials, such as amorphous semiconductors, and very
little attention has been given to its application to ionic conductors. The purpose of
this section is to discuss briefly the effect of disorder on diffusion process and to
point out the principles involved in some of the newly developing approaches. One
of the important conclusions to be drawn is that frequency-dependent transport
properties are predicted to be of the form exhibited by the CPE if certain statistical
properties of the distribution functions associated with time or distance are fulfilled.
If these functions exhibit anomalously long tails, such that certain moments are not
finite, then power law frequency dispersion of the transport properties is observed.
However, if these moments are finite, then Gaussian diffusion, at least as limiting
behavior, is inevitable.

Although the general problem of a random walk on a random lattice is difficult,
there has been considerable success in approaching this problem from the point of
view of the continuous time random walk, which was first proposed by Montroll
and Weiss [1965]. In this approach, the walk is supposed to take place on a regular
lattice; disorder is introduced by defining a distribution of waiting or residence times
for a particle on a site. In a disordered material there will be a distribution of energy
barriers. It therefore seems reasonable that a particle in a deep well will spend more
time there than will a particle in a shallow well. The waiting time distribution func-
tion y(r) therefore describes the probability for an event to happen at a time ¢ after
a previous event. The original y(#) of Montroll and Weiss was generalized to a posi-
tion-dependent y(r, t) by Scher and Lax [1973a]. The application of the approach
to electronic transport in amorphous semiconductors has been discussed in several
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papers (Scher and Montroll [1975], Pfister and Scher [1978], Scher and Lax
[1973b]).

There is a qualitative difference in transport properties depending on the nature
of y(¥). If y(¢) is such that the time between hops has a finite first moment, that is,
a mean residence time (¢) can be defined, then classical diffusion is observed. An
example would be

() = Lexp(-Ar) 95)

where the mean waiting time is 1/A. If, on the other hand, [tydr diverges, then non-
Gaussian or “dispersive” transport is seen. Of particular interest in this respect are
y(t) with long time tails

v()=0Ar"/T(1-a), O<a<l (96)

In other words, the hopping probability is a slowly decaying function of time. Under
these conditions, the dispersion of the concentration, {x*()), becomes proportional
to ¢%, and the diffusion coefficient

D(r) = (1/2A)d(x?)/ dt 97)

and conductivity become time-dependent, with a power law dependence on fre-
quency and time. Here A is the dimensionality of the system.

The physical origin of a power law distribution function for waiting times might
arise from an exponential distribution of activation energies. Suppose, the distribu-
tion function of activation energies was of the form

K(E*) = K, exp(—E*)/ E§ (98)

Then, if the waiting time were proportional to the exponential of the activation
energy, the distribution of waiting times would have a power law dependence on
time, as required by Eq. (96).

The concepts of the continuous time random walk (CTRW) approach have been
applied to ionic conductivity in glasses by Abelard and Baumard [1984]. In an alkali
silicate glass, it is usually assumed that only a small number of the alkali metal ions
are mobile, and the remainder are associated with nonbridging oxygens. These latter
form dipoles which may reorient in the presence of an electric field. Interpretation
of the complex impedance or dielectric constant of these glasses therefore is usually
made in terms of a distribution of these relaxation times, in the manner discussed
in the previous section. Abelard and Baumard, however, suggest that a more appro-
priate approach is to consider all alkali ions mobile, but with a distribution of acti-
vation energies associated with the potential wells in which they are situated. There
is, therefore, a distribution of waiting times which leads to the observed frequency
dependence of the real part of the conductivity.

An interesting extension of the dispersive transport model is its application to
dielectric relaxation. As mentioned earlier, Glarum [1960] proposed that “frozen-in”
polarizations could be relaxed when a defect (e.g. a mobile charge carrier)
approached them. Bordewijk [1975] extended the model and showed that in one-
dimensional transport a Williams—Watts dielectric relaxation function with o = &
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resulted, but normal Debye relaxation was predicted in three dimensions (& = 1).
Schlesinger and Montroll [1984] have shown that if diffusion of the mobile defect is
restricted to a CTRW with a long-time-tailed w(#), then a Williams—Watts dielectric
function for the relaxation of the dipoles is expected. The relaxation process is treated
as a diffusion controlled chemical reaction.

The essentially different nature of transport processes with W(z) < "% should
be stressed. Processes with this type of waiting time distribution function show an
absence of scale. They exhibit very sporadic behavior. Long dormancies are fol-
lowed by bursts of activity. They have been described as fractal time processes
(Schlesinger [1984]). Fractal space processes, in which the absence of scale is
present in the spatial aspects of the transport, are considered later in this section.

A different approach to transport in disordered systems has been developed by
considering the excitation dynamics of random one-dimensional chains (Alexander
et al. [1981]). Such a system may be represented by a master equation of the form

de /dt = Wn,nfl (1),1,1 - I)n) + vVn,nH (BHI - Bl) (99)

where the P’s are the amplitude of the excitations (site occupancies) and the W’s are
the transition probabilities between the nodes or sites, n and so on. This equation is
obviously a discrete form of the diffusion equation, with the W’s stochastic vari-
ables described by a distribution function. The electrical analog to this equation is
the random transmission line, described by the equation

C,dP,/dt =W, ,(P,y—P,)+ W, (P — P,) (100)

Here the C, are the random capacitances, the W, are the random conductances, and
the P, are the node potentials.

Alexander et al. [1981] have obtained solutions to this type of equation for
various types of distribution functions of W for an initial delta function input in P.
In particular, they considered distribution functions for which a mean transition rate
(W) could be defined, and functions which were of the form

p(W) = po(T)W ") (101)

where no mean transition rate exists. This is similar to the distribution function of
waiting times for a CTRW defined in Eq. (96), and the arguments suggesting its use
are essentially the same. The transition rate is an exponential function of activation
energies, and the activation energies are supposed to be exponentially distributed,
leading to a power law form for the distribution of transition rates. A similar argu-
ment can be used if a distribution of jump distances is assumed, that is configura-
tional disorder rather than randomness in the activation energies is assumed.

As for the case of the CTRW method, qualitatively different solutions are
obtained depending on whether a mean transition rate can be defined or not. In the
former case, the system behaves as if it were ordered with a single transition rate
[p(W) = 6(W — W,)], even though the W’s are random variables. These systems
exhibit a frequency-independent low-frequency conductivity.
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For power law distributions, however, the low-frequency conductivity tends to
the form

al(2-a)

o() < (-jo) (102)

as @ — 0. There may also be a situation in which a crossover between the two dis-
tributions occurs as a function of time, in which case the mean square particle dis-
placement is given by

(x*)= 2Dyt + Bi™ (103)
and the real part of the conductivity is
o’(w)=0(0)+Aw* (104)

Thus, at low frequencies a constant conductivity would be seen, but at higher fre-
quencies a power law contribution enters. In these equations, Dy is the limiting dif-
fusion coefficient and A and B are thermally activated constants.

Experimental observations of the frequency dependence of the conductivity in
the one-dimensional ionic conductor potassium hollandite (Bernasconi et al. [1979])
show a pronounced power law dependence, as predicted by the model. It was pro-
posed that the transport process in this material was limited by random barrier
heights caused by the presence of impurities.

In the previous paragraphs it was pointed out that a discrete time random walk,
or a CTRW with a finite first moment for the waiting time distribution, on a lattice
with a fixed jump distance led to a Gaussian diffusion process with a probability
density given by Eq. (84). The spatial Fourier transform of this equation is

n(q, t) =exp(-Diq*) (105)

Disorder was introduced into this system by postulating a distribution of waiting
times. A complementary extension of the theory may be made by considering a dis-
tribution of jump distances. It may be shown that, as a consequence of the central
limit theorem, provided the single-step probability density function has a finite
second moment, Gaussian diffusion is guaranteed. If this condition is not satisfied,
however, then Eq. (105) must be replaced by

n(q, 1) =exp(-Arlg") (106)

where 1 lies between 0 and 2. This distribution function is known as a Levy or stable
distribution. This distribution is a solution of the equation

an(g,1)/dt=-Algl"n(g,1) (107)

which is, of course, the Fourier transform of the diffusion equation when y = 2. A
number of authors have considered the type of random walk process, defined by the
Levy distribution (Hughes et al. [1981]). A particle executes a walk which may be
transient and clustered. In other words, not all regions of space are visited by the
walker, and a hierarchy of clusters is developed. The clusters may be self-similar,
and Mandelbrot [1983] has stressed the fractal nature of walks with this
distribution.
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Other workers have also considered transport on a self-similar geometry,
through the connection with percolation. Close to a percolation threshold, the con-
ductivity and dielectric constant behave with a power law exponent in the concen-
tration of one of the components, and the percolating cluster at the threshold has
been identified as a fractal object. The temporal behavior of the diffusion process
close to the percolation threshold has also been considered (Gefen et al. [1983]) and,
using scaling arguments, it has been shown that the mean square displacement is

(r@))=ar® (108)

where a and 0 are constants, leading to a time- and frequency-dependent diffusion
coefficient and conductivity. Experimental verification of this power law depend-
ence has been obtained for two-dimensional percolation in thin gold films (Laibowitz
and Gefen [1984]).

An alternative approach, used to describe the properties of ionically conduct-
ing glasses, is conceptually closely related to the earlier discussion of transport prop-
erties in materials with a small number of sublattices for the conducting species.

It has been recognized for a considerable time that if the translational invari-
ance of the conductivity activation energy barriers is lost, then the dielectric and
conductivity properties become frequency-dependent (Figure 2.1.10c). For a mate-
rial with no dipolar relaxation processes (i.e. & is not a function of time), but with
a conductivity oy, then Eq. (94) becomes

Y =0, + jwe, &, (109)

The equivalent circuit is simply a parallel—RC—combination, and thus
JOo
wE,

E=¢,— (110)

Macedo, Moynihan, and Bose [1972] defined the conductivity relaxation time

Ty =£€0€, /0y (111)
Hence
..
g=g, -1 (112)
T,

Macedo and others (Hodge et al. [1975, 1976]) have stressed the electric modulus
formalism (M* = 1/¢*) for dealing with conducting materials, for the reason that it
emphasizes bulk properties at the expense of interfacial polarization. Equation (112)
transforms to

M=m, 19 (113)
1+ jot,
where M, = 1/g,.
For a material with a single relaxation time 7, a plot of M” vs. log(f) shows a
maximum, in just the same way that £”shows a maximum for a dielectric relaxation
process. Glassy conductors however, often show broad and asymmetric modulus

spectra, and, in complete analogy to the discussion of Section 2.1.2.3, Macedo et al.
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[1972] introduced a distribution function of conductivity relaxation times G(7,) such
that

) JOTs

M =M, | Glr,) =
0 1+ jot,

dt, (114)
They were able to fit experimental modulus data for a calcium—potassium nitrate
melt and a lithium aluminosilicate glass using a double lognormal distribution
function.

The decay function for the electric field after the imposition of a charge on the
electrodes

¢’(t) =E(1)/E(t = 0) (115)

may also be defined, in analogy to the decay of polarization function [see Eq. (63)].
For a single relaxation time,

¢'(t) =exp—1/7, (116)

The modulus is related to ¢ through the expression

M _J(_de
! {( 5 j} (117)

where, as usual, {} denote a Laplace transform.
Moynihan et al. [1973] used the Williams—Watts form of ¢,

¢'(0) =exp[~(1/7,)"], 0<p<I (118)

to obtain a much better fit to the same glass data mentioned above. The same func-
tion has also been used to analyze modulus data for lithium phosphate glasses
(Martin and Angell [1986]), where it was found that the parameter 3 was largely
independent of temperature but the distribution broadened with increasing alkali
content. The inappropriateness of the Moynihan Williams-Watts approach has,
however, been emphasized in Macdonald [1996, 2004] and in Chapter 4.2.

2.1.3 Mass and Charge Transport in
the Presence of Concentration Gradients
2.1.3.1 Diffusion
In the absence of an electric field and terms in R;, Eq. (30) reduces to
dc;[dt=-V-j, (119)
=V-(DVc,) (120)
In one dimension, for constant D;,
dc:i/dt = D,d%c; [ x> (121)

This equation has been introduced from two points of view. In the macroscopic
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approach it was assumed that the flux or diffusion current is proportional to a con-
centration gradient or a chemical potential gradient and also satisfies a continuity
equation. The generalizations of and justifications for this approach lie at the basis
of nonequilibrium thermodynamics; as such, they are independent of the atomistic
nature of the processes involved.

On the other hand, in the atomistic approach, the time-dependent configurations
of the system are determined from the probabilities of the elementary atomic process.
The random walk approach calculates the probability of finding the system in a
certain state after a certain time given an initial distribution of particles. It is then
possible to show that the distributions are solutions of the diffusion equation.

It was shown in Section 2.1.2.4 that the general flux equations (e.g. the
Nernst-Planck equation) contain, in addition to the diffusion terms, a contribution
from migration, that is the movement of charged particles under the influence of an
electric field. Under certain circumstances it is quite possible to carry out experi-
ments in which the field is negligibly small compared to the concentration or activ-
ity driving force.

In aqueous electrochemistry this situation is usually achieved by use of a sup-
porting electrolyte. This is an inactive salt that is added to the solution in high con-
centration to increase the conductivity enough that the migration term in Eq. (78)
or Eq. (82) becomes very small. In solid state electrochemistry it is difficult to
achieve the same effect in such a simple way. The movement of a minority charge
carrier, either electronic or ionic, in a good solid electrolyte is an analogous situa-
tion. This result is exploited in the Wagner [1933] asymmetric polarization experi-
ment in which the partial conductivity of electronic species in a solid electrolyte is
measured assuming that the driving force for electronic conductivity is an activity
gradient rather than an electric field. In the next section, another example, that of
chemical diffusion in a majority electronic carrier, is discussed in more detail. It is
worth mentioning that local electric fields arising from the coupled motion of two
charged species through an approximate electroneutrality condition are not neces-
sarily absent from the equations of this section. This local field may be present and
profoundly affect the diffusion of species, without any net average field across the
bulk of a sample leading to a migration process. In this section, it is assumed that a
field which leads to a migration current is absent, but local fields, such as those
present in neutral electrolyte diffusion or ambipolar diffusion, may be present.

The purposes of this section is to discuss the electrical analogs of diffusion
processes in the absence of migration and to present suitable electrical equivalent
circuits for analysis of data obtained under these circumstances.

From the point of view of impedance spectroscopy, solutions of the diffusion
equation are required in the frequency domain. The Laplace transform of Eq. (121)
is an ordinary differential equation

plct =t =0) = Dd*{c}/ dx* (122)
where p is the complex frequency variable

p=0+tjo (123)
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This transformation of a partial differential equation into an ordinary differential
equation illustrates a general advantage of working in the frequency domain. Solu-
tions are of the form

{Ac} = Aexp(—ox) + Bexp(ow) (124)
where {Ac} is the Laplace transform of the excess concentration
Ac=c(x,t)—c(x,0) (125)

and a =+/(p/D).Here A and B are constants to be determined by the boundary con-
ditions. Experimentally, one boundary is usually the interface between the electrode
and the electrolyte (x = 0). Consider the case of semiinfinite diffusion into the
electrode:

Ac—0 as x—oo

and therefore B = 0.
At x = 0 (the electrode—electrolyte interface) the solution is

{Ac},_, ={Ai}/zF\(pD) (126)

where Ai is the ac current, which is equal to —zFDdAc/dx. To calculate the imped-
ance we need a relationship between Ac,, and Av, the ac component of the voltage.
For small perturbations around equilibrium, we may write

Av/Ac = (dE/dc) (127)

where (dE/dc) represents the change in electrode potential with concentration, which
may be developed from a model (e.g. ideal solution assumptions) or from a sepa-
rate thermodynamic measurement. For an ideal solution dE/dc = RT/zFc. For small-
signal conditions, the perturbation may also be expanded around a steady state dc
potential, in which case the surface concentrations due to the dc current must also
be calculated from a steady state flux equation.

Taking the Laplace transform of Eq. (127) and substituting into Eq. (126) gives

Z(p) ={Av.o}/{Ai} = (dE/ dc)/ F~(pD) (128)
Setting ¢ = 0 and separating the real and imaginary parts gives

Z(jo) = (dE/dc) (@™ - jo™3)/zFN(2D) (129)

The complex impedance is therefore inversely proportional to the square root of fre-
quency. In the complex plane it is a straight line inclined at 7/4 to the real axis.

Equation (121) has analogies in both heat conduction and electrical circuit
theory. Consider the semiinfinite transmission line composed only of resistors and
capacitors (Figure 2.1.12). If r is the resistance per unit length and c is the capaci-
tance per unit length, then

I=—(0V/dx)/r (130)
oV/dx=—1/dx)/c (131)
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R e i

Figure 2.1.12. A resistive—capacitive transmission line which describes the behavior of a
semiinfinite diffusion process.

Differentiating Eq. (130) and combining the two equations gives
oV/[at=(3*V/ax*)/re (132)

The analogy with diffusion may be made more specific if we compare the
appropriate driving forces and fluxes. The electric potential difference V in the trans-
mission line case is analogous to the electrochemical potential difference in the case
of diffusion. Thus,

————— (133)

for an ideal solution (the case for which Fick’s law is least ambiguously valid). The
reciprocal of the resistance per unit length is analogous to ¢cDF?z*/RT, and the capac-
itance per unit length is analogous to z°F?c/RT.

Thus the reciprocal of the rc product plays the role of the diffusion coefficient.
The impedance of the transmission line is

Zx =~(r/ pe) (134)

which is exactly the same form as Eq. (129) if appropriate substitutions are made.
For a nonideal solution, R7/zFc may be replaced by (dE/dc).

So far, only semiinfinite boundary conditions have been considered. For many
problems, however, thin samples dictate the use of finite-length boundary condi-
tions. A reflective boundary dc/dx = 0 has been considered by Ho ef al. [1980] and
the impedance derived for this case:

L _dE 1 coshl«/(ja);D)
Z(jw)= d oF —m (135)

The equivalent circuit analog of this situation is a finite-length transmission line ter-
minated with an open circuit. A constant activity or concentration is also a common
condition for the interface removed from x = 0. In this case the finite-length trans-
mission line would be terminated in a resistance, and the impedance is given by the
expression

.. _dE 1 tanhl(jo/D)
Z(JCO)—%'Z—F'W (136)
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Figure 2.1.13. Complex plane representations of the impedance due to a finite-length diffusion

process with (a) reflective, (b) transmissive boundary conditions at x = 1.

The complex plane representations of these two impedance behaviors are shown
in Figure 2.1.13.

In this section the following principal assumptions were made. First, it was
assumed that the surface concentrations and potentials were given by their equilib-
rium or dc steady state values. In other words, there was supposed to be no barrier
preventing or slowing down the transfer of matter across the electrode—electrolyte
interface. In general, of course, this will not be true, and the impedance associated
with the interface forms a very important aspect of impedance spectroscopy as
applied to electrochemical situations. This is in contrast to applications where the
only interest lies in bulk effects. The interfacial impedance, due to both the storage
and the dissipation of energy, will be addressed in Section 2.1.4.

Second, although the form of the diffusion equation was derived from ideal solu-
tion theory, it will be seen in the next section that the form of the equation may be
retained, even though the dilute solution assumptions are relaxed, through definition
of a chemical diffusion coefficient.

2.1.3.2 Mixed Electronic-lonic Conductors

It was seen in the previous paragraphs that the presence of a supporting electrolyte
leads to a situation in which a charged species may diffuse in an essentially field-
free environment. Under these circumstances, Fick’s law of diffusion may be solved
for the appropriate boundary conditions, and the electrical response of the system
may be modeled by a transmission line composed of distributed elements. Although
such situations are very common in aqueous electrochemistry, the analogous situa-
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tion in solids, where a minority ion diffuses in a solid supporting electrolyte, occurs
infrequently.

More interesting is the commonly encountered situation where an ion diffuses
in a majority electronic conductor. Thus, diffusion in metallic and semiconducting
alloys or of inserted species in transition metal oxides and chalcogenides fall into
this category. Many electrode reactions are of this type. Lithium diffusion in S-LiAl
and other alloys is of interest in negative electrode reactions for advanced lithium
batteries; hydrogen and lithium diffusion in oxides (e.g. V¢O,3) and sulfides (e.g.
TiS,) are of importance as positive electrode reactions for batteries and elec-
trochromic devices.

In materials of this type the diffusion process may be regarded as involving a
neutral atomic species, or as a coupled process in which an ionic and electronic
species move together. In the simplest case, where the electronic partial conductiv-
ity is much greater than the ionic, the flux equation for a neutral species may be
written

j:_c*udﬁ‘ :_C*MRTM:_C*D,(M (137)
dx dx dx

Here we cannot assume ideal or dilute solution behavior since the mobile species
activity may vary widely especially if the electron activity changes rapidly over the
stoichiometric domain of the phase of interest. After rearrangement we obtain the
equation

dloga* dc* dlogy* |dc*
j=—Dk—g-—=—Dk[1+—gV}— (138)
dlogc* dx dlogc* | dx
which is equivalent to Fick’s law if we write
d logy*}
D, =Dy 1+———
A‘: dlogc* (139)

Here u is the mobility, u the chemical potential, and Yy the activity coefficient of the
mobile species. The “*” denotes that the relations are written for a neutral species.
Now D is the component diffusion coefficient which, as pointed out in Section
2.1.2.4, obeys the Nernst-Einstein relation

D, =uRT (140)

for all situations, irrespective of ideality assumptions.

The term in square brackets in Eq. (138) expresses the variation of activity coef-
ficient of the neutral species with concentration. Thus, in addition to the statistical
contribution to diffusion, expressed by the familiar gradient-in-concentration term,
there is a chemical driving force due to the variation of free energy with composi-
tion and hence position. The term in square brackets is known as the thermodynamic
enhancement factor and was identified by Darken [1948]. The diffusion coefficient
D, is known as the chemical diffusion coefficient, and its use is appropriate when-
ever diffusion takes place in an appreciable concentration gradient and when ideal
solution laws cannot be applied to the solute. The concept was extended by C.
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Wagner [1953], and a general treatment has been given by Weppner and Huggins
[1977]. This general approach involves elimination of the field term from simulta-
neous equations of the type

i :-RTu{ OBd; 46 | ure —} (141)
dlogc; dx  RT dx
written for ionic and electronic species. The result is a general equation
dloga¥ , dloga# |dc;
ji= =Dy (1-1) S 289 5, B T OB 18 (142)
dlogc? 27, z; dlogei |dx

valid for general transference numbers and thermodynamic parameters. For small-
signal conditions (constant enhancement factor over the concentration range of the
experiment), the diffusion equations are still of the Fick’s law type and therefore
lead to V@ dependence of the admittance (Warburg behavior).

In recent years, cells of the type

Li[Li*electrolyte|Li, M

(where M is a mixed conducting host material for the inserted lithium) have been
used to investigate the diffusion of Li in a number of alloys and oxides using ac
impedance methods. The boundary condition at the electrolyte—electrode interface
is a sinusoidally varying chemical potential of (neutral) lithium. It is important to
recognize that the potential difference applied across a cell determines the activity
of the electroactive species at the point at which the conductivity of the system
changes from being predominantly ionic to being predominantly electronic. In this
kind of experiment the thermodynamic enhancement factor is conveniently deter-
mined in situ by measuring the dependence of equilibrium cell potential on elec-
trode composition.

For thin samples, the second boundary condition may be modified to include
either transmissive or reflective interfaces, as discussed in Section 2.1.3.1.

2.1.3.3 Concentration Polarization

The situation is often encountered where, upon the passage of current through an
electrochemical cell, only one of the mobile species is discharged at the electrodes.
Examples are (a) the use of a liquid or polymeric electrolyte, where both ions are
mobile, and yet where only one is able to participate in the electrode reaction; and
(b) a mixed conducting solid in which current is passed by electrons, but in which
cations also have a significant transport number.

Consider a system consisting of a binary, unsupported electrolyte between elec-
trodes which are reversible only to the cation. The cell is initially at equilibrium (no
net currents are passing). At very short times after the imposition of a potential dif-
ference, the concentrations of all species in the bulk of the electrolyte are uniform
and the ions move in response to the applied field. The current is determined by the
uniform electrolyte conductivity.
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dd
i=—FYcz’u,— (143)
dx

At long times, on the other hand, the flux of the blocked anion falls to zero, and a
constant flux of cations passes through the system. In order to maintain electroneu-
trality there must also be a gradient in anion concentration and hence in electric
potential, which just balances the gradient in anion chemical potential.
< =— L dp (144)
dx . F dx
Thus, there is effectively a gradient in the concentration of neutral species across
the cell, and therefore we must include in the total potential difference a Nernstian
term which is equal to the potential difference that would exist immediately after
the interruption of current flow but before the reestablishment of uniform concen-
tration profiles. The other contribution to the potential difference, that which is due
to the flow of current itself, is a term arising from the gradient in conductivity due
to the variations in concentration. This of course arises from differences in the mobil-
ity of the two species. It must be distinguished from the ohmic term present at very
short times (high frequencies) due to the initially uniform conductivity of the elec-
trolyte. The concentration polarization is therefore the additional polarization which
is present due to concentration gradients caused by the current flow; this is com-
pared to the ohmic polarization that would be present if the current flow (and dis-
tribution) were the same but the concentration gradients were absent.
Substitution of the condition (144) into the flux equation for cations

dlogc, ao

j+ =—C+M+RTT—C+M+FE (145)
(assuming ideal solutions) gives the steady state cation current:
d %
i, =—2u,RT =~ (146)
dx

The ohmic potential difference may then be found by integration of Eq. (144)
across the cell using this flux equation. Since the current is constant, the concentra-
tion profile must also be uniform. The Nernstian term may be included as the poten-
tial of a concentration cell with the same concentration profile. It is possible to show
that the ratio of the steady-state resistance to the high-frequency resistance depends
on the transference numbers of the ions.

At large potentials this model predicts a limiting current density at which point
the concentration at one of the electrodes has fallen to zero. For example in a solid
or polymeric electrolyte, with plane parallel electrodes and an initial uniform con-
centration of c,

_4c*D.F

i == (147)
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where [ is the thickness of the electrolyte.

It is therefore apparent that in passing from high to low frequency in a system
of this kind, there is an additional impedance due to concentration polarization.
Macdonald and Hull [1984] considered this effect on the electrical response of this
type of system. Under many circumstances, the presence of concentration polariza-
tion might be confused with an interface impedance. At different ratios of mobili-
ties of anions and cations, either diffusion-like response (finite-length transmission
line behavior) or parallel capacitative—resistive behavior may appear. Ac impedance
methods have been used to determine ionic transference numbers in polymeric elec-
trolytes using this principle (Sorensen and Jacobsen [1982]).

2.1.4 Interfaces and Boundary Conditions

2.1.4.1 Reversible and Irreversible Interfaces

Although it is quite reasonable to discuss the bulk properties of homogeneous phases
in isolation, it is seldom possible in electrochemical situations to neglect the inter-
faces, since potentials and fluxes are usually measured or defined at junctions
between ionically and electronically conducting phases. In general, two extreme
types of interface are recognized.

The first type is an interface which is reversible to the species under consider-
ation. The term reversible implies certain thermodynamic and kinetic properties.
Thermodynamically, it means that an equilibrium relation of the type

A, =0 (148)

may be written for the ith species, which applies to points immediately on each side
of the interface in phases 1 and 2. Here, 1 is the electrochemical potential. Thus, a
clean interface between a parent metal M and a binary M* conducting solid elec-
trolyte is thermodynamically reversible; the activities of M, M*, and ¢~ are fixed by
equilibrium at the interface.

Kinetically, the term is less well defined and depends more explicitly on the
nature of the experiment. In practice, it means that the exchange current density (the
microscopic flux crossing the interface equally in both directions at equilibrium)
is very much greater than the net current density crossing the interface during the
experiment or the measuring process. At appreciable current densities, however, the
net current density may eventually exceed the exchange current density; interface
kinetics then become important.

In the electrochemical literature it is useful to refer to a reversible interface or
interfacial reaction as one whose potential is determined only by the thermodynamic
potentials of the various electroactive species at the electrode surface. In other
words, it is only necessary to take into account mass transport to and from the inter-
face, and not the inherent heterogeneous kinetics of the interfacial reaction itself,
when discussing the rate of the charge transfer reaction. This nomenclature has two
principal disadvantages. First, it neglects the fact that mass transport to the inter-
face, whether migration or diffusion, is inherently an irreversible or dissipative
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process in a thermodynamic sense. Second, it neglects the time dependence of the
system. At short times the rate may be largely determined by interfacial reaction
rates; at long times it may be determined by mass transport processes. This is
particularly clear when ac experiments are performed; steady states may be
achieved in the frequency domain that correspond to transient conditions in the time
domain.

An interface may be reversible to one species, but blocking to others. In addi-
tion, in multicomponent systems, a reversible electrode may not necessarily define
the thermodynamic potentials of all components present at the interface.

An electrode which is reversible to electrons but irreversible to ions is a
common situation in both aqueous and solid state electrochemistry. For determina-
tions of ionic conductivity in electrolytes, this type of electrode has proved useful,
because the concentrations of majority ionic species do not depend critically on the
imposition of a well-defined thermodynamic activity of the electroactive neutral
species. Measurements with two irreversible electrodes of a nonreactive metal are
then permissible; numerous examples are found in the solid-electrolyte literature.
Minority electronic transport however, typically depends very strongly on the activ-
ity of neutral components, and care must be taken to utilize thermodynamically
meaningful experiments to determine minority conductivities. Asymmetric cells
using one reversible electrode and one irreversible electrode are then appropriate,
but have actually been little explored using ac impedance methods.

A real electrode with some degree of reversibility will therefore allow a steady
state current to pass; in the sense that such a current obeys Faraday’s laws, it is
termed a faradic current. A completely polarizable electrode passes no faradic
current. In transient or ac experiment however, a polarizable electrode and a
reversible electrode both pass a nonfaradic current, corresponding to charging or dis-
charging of the interface capacitance and perhaps changes in the nature and con-
centration of any adsorbed species. The distinction between the two types of current
is important in developing expressions for the impedance of the electrode—electrolyte
interface.

2.1.4.2 Polarizable Electrodes

Within the voltage limits set by the thermodynamic stability range of the electrolyte,
foreign metal electrodes may sometimes be regarded as ideally polarizable or block-
ing. The metal electrodes must not react with the electrolyte, and for the moment
adsorption and underpotential deposition will be neglected. From an electrochemi-
cal point of view, this is the simplest type of interface and has furnished much of
the information we have about the electrified interface.

Depending on the initial positions of the Fermi levels of the electrolyte and elec-
trode, a small amount of charge flows in one direction or the other and a field is
created on the electrolyte side of the contact. The mobile charges in the electrolyte
distribute themselves over this field; the charge density of the metal is confined to
the surface of the electrode. The excess charge density at any point within the elec-
trolyte is given by Boltzmann statistics
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p(x) = ZZtii

(149)

—z,F®
=Yz Fc! exp( & )

RT

and the relationship between charge and potential is given by the Poisson equation,
and thus

d*®
dx*

-1 -z, F®
=—>YzFclex (’—) 150

&g ¢ P RT (150)
Solution of this equation leads to the space charge (diffuse double-layer) capaci-
tance. For a symmetrical (z, = z_) electrolyte,

2 2 0 12
Cd _ 2z°F EEHC; COSh(ZFq)O) (151)
RT 2RT

where @, is the potential at x = 0 (measured relative to @ = 0 at x = o). The diffuse
double layer therefore behaves as a simple parallel plate capacitor. The perturbation
in concentration due to the electric field extends into the electrolyte a distance on
the order of the Debye length Lp:

1/2
RTes, }
L,=|—2_ (152)
b
Thus, the higher the concentration of the electrolyte, the thinner the diffuse double

layer.
In addition to the use of Boltzmann statistics, the model has assumed:

a. Point charges, and hence no limit on the distance of closest approach to the
interface.

b. A uniform dielectric constant.

c. A sharp boundary between the metal and the electrolyte; that is, the elec-
tronic wave functions do not extend beyond the geometrical plane of the
interface.

d. No screening effects such as those found in the Debye-Hiickel theory of
electrolytes.

At some potential, the situation will occur where there is no excess charge on
either side of the interface and the concentration profiles are flat. This point is known
as the potential of zero charge.

Up to now, no real distinction has been made between solid and liquid elec-
trolytes. In an extrinsically conducting solid, the complementary charge carrier will
be absent; therefore, it will not be included in the distribution. However, the theory
is basically equally applicable to solids, molten salts, and polar solvent electrolytes.

In the presence of a polar solvent molecule such as water, considerable atten-
tion has been focused on the role of the solvent. Since the dipole moment is free to
rotate in the presence of an electric field, it is reasonable that in a layer of water
close to the interface there will be a net dipolar orientation and the water will not
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exhibit its normal dielectric constant. In addition, hydrated ions will not be able to
approach indefinitely close to the interface. Thus, up to a monolayer of charge will
exist at a distance of closest approach to the electrode; this distance is determined
by the size of the (hydrated) ion. Beyond this inner layer, the diffuse layer will extend
back into the solution. The interface therefore behaves as two capacitors in series:
an inner (Stern) layer and an outer (Gouy—Chapman) layer. The model takes into
account both the dipolar nature of the solvent and some of the finite-size effects.

In a solid, of course, there is no solvent. However, we still expect an inner-layer
capacitance, since there is still a finite distance of closest approach of the ions to the
interface. Therefore,

C =¢g)/d (153)

where C; is the capacitance per unit area. If d is of the order of a few angstroms and
€1is of order 1, then C; should lie between 1 and 10 uF/cm?. We also expect it to be
independent, or a slowly varying function, of interfacial potential difference. Since
C,, however, depends exponentially on voltage, we expect it to become large quickly,
and therefore C; will dominate the interface capacitance except when it is close to
the potential of zero charge.

There are few experimental studies of the solid electrolyte—solid electrode inter-
face carried out in such a way that meaningful potential capacitance data can be
obtained. This would involve the asymmetric cell type of arrangement; for example,

M/M* electrolyte/inert metal

where the thermodynamic quantities of the electrolyte are fixed at the inert
metal—electrolyte interface by the application of a potential difference. Some studies
of this type have been performed, but there seems to be few instances of the obser-
vation of a well-defined diffuse double-layer capacitance. Most of the experiments
were, however, performed on highly conducting materials, which would be expected
to have very thin diffuse double layers.

A possible exception to this is the study of the graphite—AgBr interface (Kimura
et al. [1975]), where a broad minimum in capacitance was found at potentials some-
what positive of the Ag—AgBr electrode potential at temperatures between 219 and
395°C. The minimum was somewhat broader than expected from the theoretical
model, but of the correct order of magnitude. On the other hand, a similar experi-
ment by Armstrong and Mason [1973] showed no particular minimum in capaci-
tance at a similar temperature.

More often, the double-layer capacitance for the silver conductors seems to
show a small potential dependence, more easily interpreted, at least qualitatively, in
terms of an inner-layer phenomenon.

The experimental study of the solid—solid interface is complicated by a further
problem. It is often (perhaps usually) observed that, instead of a purely capacitative
behavior, the interface shows significant frequency dispersion. Several authors have
found excellent agreement of this behavior with the dispersion shown by the con-
stant-phase element (Bottelberghs and Broers [1976], Raistrick et al. [1977]).
Although the amount of frequency dispersion is influenced by electrode roughness
and other aspects of the quality of the interface (i.e. nonuniform current distribu-
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tion), these are evidently not the only contributions to the observation of CPE behav-
ior. Although no well-defined microscopic theory of the CPE has emerged, this
empirically important aspect of both interface and bulk behavior is discussed further
in this section and in Section 2.2. As is true for the case of the potential dependence
of the capacitance, there have been too few studies of the frequency dispersion of
the interface. It should be mentioned that the microscopically smooth liquid
metal-aqueous electrolyte interfaces apparently do not show frequency dispersion
of the capacitance if the systems are quite pure.

2.1.4.3 Adsorption at the Electrode-Electrolyte Interface

In the previous section the distance of closest approach of ions to a planar elec-
trode—electrolyte interface was discussed. In solid-electrolyte systems, this distance
is assumed to be approximately the radius of the mobile ion. In the presence of a
polar solvent the hydration sheath of the ion and the solvent layer adjacent to the
metal are also important. The only forces acting on the interface have been assumed
to be electrostatic in origin. These forces orient the solvent dipoles and determine
the distribution of ions with distance from the interface.

It is possible, however, that an ion can interact chemically with the electrode
material. If this happens the ion may break through the solvent layers or, as in the
case of the solid, become displaced from a normal lattice site. This possibility is
known as specific adsorption. In aqueous electrochemistry the locus of the centers
of the specifically adsorbed ions is known as the inner Helmholtz plane. Neutral
molecules may also adsorb and hence affect the faradic current, for example by
blockage of the reaction sites. Neutral molecule effects have not been studied in the
case of solid systems and will therefore not be considered further.

In order to include adsorption in a discussion of the electrical response, it is
necessary to know the relationship between the surface concentration of the adsorbed
species and the concentration in the electrolyte just outside the double layer. This
last concentration can then be related to the bulk or average concentration through
appropriate diffusion equations.

For a neutral molecule, potential dependence will still be expected, since at large
potential differences the force acting on the dipole of a polar solvent will be suffi-
cient to compete with all but the strongest adsorption bonds.

A simple isotherm, due originally to Langmuir, assumes that the free energy of
adsorption AGY is the same all over the surface and that interactions between
adsorbed species are neglected. Under these conditions, the surface concentration I';
is related to the surface concentration at full coverage I'y by the expression

r 0 . -AG! ) ( —@ziFj
- _u 154
T,-T 1-0 “ eXp[ P "Rt (154)

where a!is the bulk activity of i.
The capacitance associated with the adsorption can be obtained by differentia-
tion of the charge due to the adsorbed species:

q =g, (155)
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where ¢; is the charge corresponding to one monolayer:
C=dq/d® =(dg/d6)(d6]d®) = q,(z;F/RT)6(1-6) (156)

Various attempts have been made to include interactions between adsorbed species.
As pointed out by Conway et al. [1984], the correct way to handle interactions is to
include the appropriate pairwise or long-range interaction term into the partition
function, which allows calculation of the Helmholtz free energy and the chemical
potential. These quantities are a function of 6 due to (a) the configurational term, as
included in the Langmuir case; and (b) the interaction or deviation from ideality.

As an example, Frumkin’s isotherm may be derived by assuming a pairwise
interaction of the form

U(e)=ro*/2 (157)
where r is positive for a repulsive interaction and negative for an attractive force.
This leads to

——=a/ex (—AG?—rOjeX (_(DZFj 158
1—e P Rr P\"rT (158)
This yields a capacitance of the form
CO)=q|—= | ————= 1
©) q(RT) 1+r0(1-06) (159)

Comparing this expression with Eq. (156) indicates that the new capacitance expres-
sion can be expressed as a “Langmuir” capacitance in series with an “interaction”
capacitance:

c@)=(ci'+¢;")" (160)

Other expressions for different forms of the interaction term have been given by
Conway et al. [1984].

The Temkin isotherm attempts to account for heterogeneity of the electrode
surface by making the energy of adsorption vary linearly with coverage, which gives

exp(r0) = Ka!’ exp(z; F®/RT) (le1)
and
C(0) = q:(z;F/RT)-1/r (162)

The rates of adsorption are usually rapid and hence the kinetics are determined
by other electrochemical or chemical steps and mass transport. Armstrong has
pointed out that in solid-electrolyte systems, where the interfacial potential differ-
ence cannot be varied independently of the concentration of the mobile species, the
adsorption of that species cannot be controlled by a diffusional process.

Raleigh [1976] has put forward a model of competitive chemisorption of anions
and cations in silver halides that leads to a broad maximum in capacitance at the
potential of zero charge, in agreement with observations on some of these com-
pounds. This approach is greatly extended in Macdonald et al. [1980].
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The kinetics of complex electrochemical reactions in the presence of adsorbed
intermediates and its effect on the impedance of the interface is discussed in Section
2.14.4.

2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface
The rate of heterogeneous charge transfer reaction
O+ne=R (163)
is given by the expression
—ip = nF[kfco — k,,cR] (164)

where ir is the faradic current density, k, are the forward and reverse rate con-
stants, and ¢, are the concentrations of the reactants and products at the interface
at time .

The current, in general, is composed of a steady state or dc part determined by
the mean dc potential E and the mean dc concentrations at the interface, ¢, and c,
and an ac part, Air, determined by the ac perturbing potential AE and the fluctuat-
ing concentrations Ac;. The faradic impedance is given by the ratio of the Laplace
transforms of the ac parts of the voltage and current

Ze ={AE}/{Air} (165)

Because charge transfer is involved, the presence of an electric field at the interface
affects the energies of the various species differently as they approach the interfacial
region. In other words, the activation energy barrier for the reaction depends on the
potential difference across the interface. It is convenient to express the potential
dependence of the rate constants in the following manner:

k; = ko exp—o(E — E®)nF/RT (166)
ky = kyexp(1—ot)(E — E®)nF/RT (167)

where k, is the rate constant at the formal electrode potential E° and ¢ is the appar-
ent cathodic transfer coefficient. Hence
k f nF
—~L =exp—(E-E° 168
b, ~ P Rr ) (168)
Generally, we can express Air as an expansion of the ac parts of the concentrations
and electrode potential,

a&) (ag) _
Aip =2| — |Ac; +| ——= |AE + higher-order terms
lp Z(&Ci JE g (169)
Neglecting all but the first-order terms (linearization) and solving for AE,
1 dip ) ]
—AE =————|2| =— |Ac; —Ai 170
3w 2 e o (o

and hence
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1 dir ) {Ac; }}
Zr =7 1—2(— — 171
! @m®m[ dc; ){Air} a7
The first term is the charge transfer resistance; the second term contains the
influence of the ac part of the mass transport on the impedance. Here {Ac;}/{Air}
can be expressed as a solution of the diffusion equation. For example, for semiinfi-
nite diffusion to a plane, we can use Eq. (126):
AC,- 1
{ . - (172)
{Air}  nF(pD))
The coefficients in parentheses may be evaluated from the rate expressions discussed
above,

dir n*F? [ nF 0 :|
el iy — — (E- 173
and
ai]: al;.) nF 0
- —|= - =— —(E - 174
(gcoj nFk;, (&CR nFk;exp RT(E E°) (174)

Here ¢, and ¢y are determined by the solution of the appropriate dc mass transport
equations. The coefficients may then be substituted into Eq. (166) to give the overall
faradic impedance.

At the equilibrium potential E,, the net current is zero; therefore, ¢, and cy are
equal to their bulk values c% and c% and are related through the Nernst equation

ch nk

— =exp— (E, —E° 175
it ) (175)
Under these circumstances, the coefficient (dix/dE) simplifies to give

aip n2F2 |: onF :|

—= k°exp| ———(E, - E°)c} 176

oE = kT X P T Rr )t (170
and the charge transfer resistance is

r.. = RT/nFi, (177)

where the exchange current density is
iy = nFk°c exp|-a(nF/RT)(E, — E°)|
=nFk i (178)
When mass transport to the electrode is unimportant, substitution of Eq. (178)
into Eq. (164) gives the Butler—Volmer equation
nkF nF
—ip =iyl exp——o(E—E,)—exp—(1—-a)(E—-E, 179
i =i - (E - E)-exp (- oE-E)|  (179)

When E is sufficiently far removed from E,, the current in one direction may
be neglected, leading to the Tafel relation
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(E-E,)=a+blogi (180)

It should be emphasized that the development of the expressions for charge
transfer kinetics given here is not completely general. It rests on the assumptions of
absolute rate theory. More general treatments have been given in the literature where
no a priori assumption of the form of the dependence of the rate constants on poten-
tial is made (Birke [1971], Holub et al. [1967]). A point which arises from these
more general treatments is worth pursuing here. For the case of semiinfinite diffu-
sion to a planar interface, the faradic impedance may be written in the form

Zr =1, +(00 +0 )1/ V0 )(1- ) (181)
where r,, is given by the inverse of Eq. (168), and o, and o} are of the form
Op= ZRT : VD, (182)
n?F*N2 oy +(1—ot)cgexp(nF/RT)(E - E°)
and
.= KT (1/N/Dg Yexp(nF/RT)(E - E°) (183)

n*F*N2 oo +(1-a)cgexp(nF/RT)(E - E°)

The terms in 6/~ correspond to the normal Warburg impedance; they do not
contain the heterogeneous rate constants. The more general treatments, however,
indicate that the Warburg impedance does in general contain coefficients that depend
on the rate constants and their potential dependence. It is only on the basis of
absolute rate theory that these coefficients cancel out of the final expression.

The complete equivalent circuit for a single-step charge transfer reaction in the
presence of diffusion is given in Figure 2.1.14. The electrolyte resistance and double-
layer capacitance have also been added to this figure.

A second aspect of the theory developed in this section is the assumption that
the faradic current is decoupled from the nonfaradic current. In other words, the
impedance due to the double-layer capacitance is included afterward and placed in
parallel to the faradic impedance, since

CDL”
f

]
Rs

Zp

Ret
Figure 2.1.14. The Randles equivalent circuit, which describes the response of a single-step
charge-transfer process with diffusion of reactants and/or products to the interface.
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In general, however,

) dg dq \(JE dq \dAc;

lNF_(dt)_((QE)( a:j+z(ac,.j ot (183)
where the summation extends over all species, including O and R. Thus, the non-
faradic component is coupled to the faradic current unless experimental steps are
taken to decouple them. This is usually achieved by making the concentration of
electroactive ions very small compared to the inactive charge carriers, which do most
of the double-layer charging.

In solid electrolytes, however, the unsupported electroactive species is often the
sole charge carrier. It is thus impossible to change the interfacial potential differ-
ence without changing the concentration of ions in the double-layer region. This
means of course, that the normal Warburg impedance is not seen, but it also means
that there is a coupling between the faradic current and the double-layer charging.

This has been recognized by Armstrong [1974], who has proposed the rate
equation

o cd,(E—Er)} nF oo
i=ij [1+—|CI—| CAEC, exXp s o(E-E,) (186)
for metal deposition from a solid electrolyte. Here, AE is the difference between E
and the potential of zero charge, ¢_ is the charge density of anions in the inner layer,
and C, is taken independent of voltage.

The treatment given above for a single-step charge-transfer reaction may be
readily extended to more complex reaction schemes. For a multistep reaction, the
partial currents of the individual steps must be appropriately coupled and the mass
transport relations defined for each step.

For example, for a surface-adsorbed species, intermediate in a two-step reac-
tion, there will be an additional relationship of the type

dT/dt = Ai} /n F — Aiz [ n, F (187)

where I is the surface concentration of the adsorbed intermediate produced by reac-
tion 1 and removed by reaction 2. This case is of considerable importance in aqueous
electrochemistry. The form of the impedance and the expected equivalent circuits
have been discussed by Gerischer and Mehl [1955], Armstrong and Henderson
[1972], Grahame [1952], and Epelboin and Keddam [1970]. In the absence of mass
transport control, the equivalent circuit is of the form shown in Figure 2.1.15. Here
Rcris a charge transfer resistance, and R4ps and C,ps are components which contain
the contribution of the surface concentration (coverge) of the adsorbed intermediate
and the rate of adsorption or desorption, respectively. Under certain circumstances
R4ps and C,ps can become negative, leading to the appearance of inductive behav-
ior in the impedance spectrum.

As applications of impedance spectroscopy to very complex reactions in the
solid state have not yet been made, further development of the theory of the faradic
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Figure 2.1.15. An equivalent circuit which describes the electrical response of an electrochemical
reaction with a strongly adsorbed intermediate.

impedance seems unwarranted here. The linear operator approach to calculating the
impedance of the systems is due to Rangarajan [1974] and is well described in the
review of Sluyters-Rehbach and Sluyters [1984].

2.1.5 Grain Boundary Effects

It was suggested earlier that the electrical analog of an isotropic, homogeneous, ion-
ically conducting solid is a pure resistance in parallel with a high-frequency ideal
capacitor. This model assumes the absence of electrode polarization and of relax-
ation processes within the crystal that would lead to additional parallel branches in
the equivalent circuit. This model is generally accepted, and several studies of single-
crystal materials have demonstrated its validity.

Many solids are, however, studied in polycrystalline form, either because they
are only available as such or because this is the manner in which they will be uti-
lized. Polycrystalline materials usually have less than theoretical density (voidage)
and misorientated grains (important in anisotropic materials). In the simplest case,
these effects would lead to purely geometric reductions in the conductivity with
respect to the single crystal. In addition, impurities may be present as a second phase
at the grain boundaries. Because of the importance of ac impedance spectroscopy
as a tool for measuring ionic conductivity, there have been several studies of the
effect of polycrystallinity on the impedance of solid electrolytes.

The problem was first attacked in a modern manner by Bauerle [1969], whose
paper was the first application of impedance spectroscopy to solid electrolytes. He
studied both high-purity and “impure” polycrystalline zirconia. Bauerle found that
the presence of a second phase at the grain boundaries in dense material led to the
introduction of a second time constant in the equivalent circuit. This additional
impedance was absent in the very-high-purity material. Bauerle envisaged the ion-
ically insulating second phase as introducing a constriction in the area of contact
between the grains of the highly conducting phase. Beekmans and Heyne [1976]
found similar behavior in calcia-stabilized zirconia and suggested as well that a dis-
tribution of time constants for the grain boundary behavior was appropriate, rather
than the single—RC—time constant as was suggested by Bauerle.
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Later, it became apparent that a second phase need not be present in polycrys-
talline materials for the grain boundaries to make a contribution to the impedance
of the system. There have been several studies of the impedance of polycrystalline
sodium B-alumina, a very nonisotropic solid electrolyte. Hooper [1977] systemati-
cally studied the relationship between single-crystal and polycrystalline material
and showed that it was possible to extract “true” bulk values from polycrystalline
samples. This intragrain conductivity had the same activation energy as the single-
crystal material; there still was, however, a relatively small difference between the
absolute conductivity values, probably mostly due to the geometric effects intro-
duced by the anisotropy of the material, and preferential orientation in the pressed
samples. Grain boundary (intergrain) conductivity had a greater activation energy
and disappeared at high temperatures.

There have also been several studies of the more isotropically conducting mate-
rials based on the Li,SiO, and I Li;PO, (“LISICON”) structures (Ho [1980] and
Bruce and West [1983]). Ho varied the density of polycrystalline Liy,,,Si;_,Al,O,
from nearly the theoretical density down to about 60% of theoretical density. At the
highest densities, only a single circular arc was seen in the impedance plots, but at
lower densities two arcs became apparent. The resistance associated with the lower-
frequency arc exhibited a higher activation energy than that associated with the
higher-frequency arc, which was attributed to intergrain impedance. As with
Hooper’s study of S-alumina, this contribution disappeared at higher temperatures.
Ho’s study and the 1976 work of Raistrick et al. [1976] on other polycrystalline
alumino silicates noted, however, that except for the very densest of materials, poly-
crystalline samples always showed some anomalous frequency dispersion. The
circuit element now often known as a constant-phase element (CPE) was introduced
to fit the data

Yée = A(jo)" (188)

Each of the circular arcs found in the polycrystalline materials was of the form
shown in Figure 2.1.16. It seems that polycrystallinity introduces anomalous fre-
quency dispersion into the bulk impedance behavior before a second and separate
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Figure 2.1.16. An equivalent circuit which describes the electrical response of polycrystalline solid
electrolytes.
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contribution from an intergrain impedance appears. A study by Bruce and West
[1983] of polycrystalline LISICON essentially reached the same conclusions. Unlike
Ho, however, the same activation energy was found for both the inter- and intra-
grain resistances. This suggests that essentially the same physical processes are
involved and that the authors attributed the intergrain impedance to a constriction
effect not unlike that proposed by Bauerle. Bruce and West, however, attributed the
constriction to the smaller area of contact between grains rather than to the presence
of an ionically insulating second phase. A recent investigation of the effect of a
single-grain boundary on the response of an otherwise single-crystal CaO-doped
CeO, specimen also found two semicircles in the impedance plane (E1 Adham and
Hammou [1983]). Depending on the presence or absence of CaO enrichment at the
grain boundary, a different activation energy was present for the resistance associ-
ated with the boundary. A detailed modeling of the properties of a constriction resist-
ance of this type should be possible, but does not yet appear to have been carried
out. It is also possible that close to a grain boundary, the transport properties of the
crystal are controlled by imperfections, expected to be present there in higher con-
centration that in the center of a grain, leading to an additional contribution to the
intergrain impedance. This idea is very close to the observation of conductivity
enhancement due to heterogeneous doping of solid electrolytes. Here, a second insol-
uble, nonconducting phase is introduced into the solid electrolyte as finely dispersed
particles. The internal space charge created at the phase boundaries may lead to a
significant increase in the concentration of mobile defects. A detailed impedance
study of such a system would be of considerable interest, but does not yet appear to
have been carried out.

2.1.6 Current Distribution, Porous and
Rough Electrodes—the Effect of Geometry

2.1.6.1 Current Distribution Problems (Ibl [1983b])

It was pointed out in Section 2.1.2.4 that in most electrochemical systems, includ-
ing those situations in which there is a concentration gradient but in which regions
close to interfaces between different phases are excluded, electroneutrality is a rea-
sonable assumption. Under these circumstances, the potential variation is given by
Laplace’s equation

Vo =0 (189)
In principle, this equation may be solved subject to the following boundary

conditions:

@ = constant (conducting boundary)
d®/dn = constant (insulating boundary)

where 7 is the normal to the boundary.

The potential and current distributions derived from these boundary conditions
are called the primary distribution. They depend only on the geometry of the system.
For very simple geometries, analytical solutions to Laplace’s equation have been
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found. In recent years, numerical solutions have often become the preferred method,
and both finite-difference and finite-element methods, as well as techniques based
on Green’s function methods, are valuable. Equation (189) corresponds to steady
temperature in heat conduction problems; a useful discussion is found in Carslaw
and Jaeger [1959].

Often, in solid state experiments, the most common experimental arrangement
is the most satisfactory from a primary current distribution point of view. The elec-
trodes completely cover the ends of the electrolyte and there is no spreading of the
current lines. The current distribution should, however, be considered whenever
more complex geometries are involved or the placement of a reference electrode is
in question.

The real importance of current distribution problems in impedance measure-
ments, however, lies in the fact that the distribution is frequency-dependent. This
arises because of the influence of interfacial polarization combined with the geo-
metrical aspects of the arrangement.

The electrode—electrolyte interface is not an equipotential surface. This is
because the interfacial potential difference is typically a function of the local current
density. Thus, even for a purely resistive interface impedance—independent of local
current density—there is a smoothing effect on the current distribution in the system.
The greater the current density at a particular point, the greater the potential drop
across the interface, which in turn tends to lower the local current density. The ten-
dency is therefore to make a uniform current distribution. The magnitude of the
smoothing depends on the relative magnitudes of the interface and bulk impedances,
as well as the geometry of the system. The current distribution in the presence of
interfacial polarization (but neglecting mass transport effects) is called the second-
ary distribution.

In general, interfacial impedance is partly capacitative as well as resistive in
nature. At high frequencies, the capacitance short-circuits the interface, and the
primary distribution is observed for the ac part of the current. As the frequency is
lowered, the interface impedance increases, causing a changeover to the secondary
distribution. Of necessity, this effect leads to a frequency dependence of the equiv-
alent circuit parameters which describe the system. Of course, if the primary distri-
bution is uniform, there will be no frequency dispersion arising from this source.

The question of the frequency dependence of the current distribution and its
effect on the measured impedance of a solid state electrochemical system has been
hardly considered, although it is important in discussing the impedance of, for
example, porous gas electrodes on anion conductors, of rough electrodes (discussed
below), and also perhaps of polycrystalline materials. In aqueous electrochemical
situations the effects has been considered with respect to the rotating disk electrode,
where there may be severe current distribution problems.

2.1.6.2 Rough and Porous Electrodes

It is recognized that porosity or roughness of the electrode surface could be expected
to lead to a frequency dispersion of the interfacial impedance even in the absence
of detailed considerations of the current distribution problems as outlined above.
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Figure 2.1.17. Transmission line model for a V-shaped groove in an electrode surface.

A simple approach to the problem of porous and rough interfaces is based on
the use of transmission line analogies (de Levie [1967]). Consider a cylindrical pore
in a conducting electrode. If the series resistance of the electrolyte per unit length
is r, and the interfacial capacitance per unit length is ¢, then the pore behaves as a
transmission line and has an impedance given by Eq. (135). This approach can be
extended to more complex situations which include pores of finite depth, non-
uniform pores, and situations where the interfacial capacitance is replaced by a
complex faradic admittance, corresponding to an electrochemical reaction taking
place down the depth of the pore. It is also possible to include finite electrode
resistance.

In order to describe a rough electrode, de Levie [1965] suggested a model based
on the V-shaped groove shown in Figure 2.1.17. It was assumed that the double-
layer capacitance was uniform over the true surface of the electrode and that the
current lines were perpendicular to the macroscopic surface of the electrode. The
impedance of the groove is then analogous to a transmission line in which the com-
ponents are a function of the distance into the groove. The transmission line equa-
tion may be readily modified for the present case, where r and ¢ are functions of x,
which is the distance down the line:

I=—{1/r(x)]0V/dx (190)
oV/dt=-1/c(x)]a1/dx (191)
On combining these equations, we obtain
—c(x)&—v= 1 [Q_V dr(x) ) 82Vi|
It p(x)’ Ldx Idx ox*

The Laplace transform of this equation is, like the diffusion equation, an ordinary
differential equation

(192)
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VY dr dlv)
P r— ———rcp{V}=0 (193)

"Tae i Tax Pivy
For r and ¢ simple functions of x, the equation becomes a modified Bessel equation
and may be solved analytically. For example, in the case of the groove geometry, as

considered by de Levie,
Z=(p/tan B)Io(2)/ A1 (2) (194)

where Z is the impedance, 2 is the angle at the apex of the groove, p is the spe-
cific solution resistivity, and A is 2+/(plpx/sin ) ; Kk is the interface capacitance per
unit area. In the limit of low and high frequency, the phase angle of the impedance
changes from 7i/2 to /4.

Using this approach, a number of different geometries can be analyzed (Keiser
et al. [1976]). The interface impedance, considered in the example above to be a
pure capacitance, could be generalized to include both real and imaginary compo-
nents, for example a Warburg impedance. In general, however, p and x would
become functions of distance into the groove if significant diffusional effects were
included in the calculation, and the diffusion layer thickness, relative to the thick-
ness of the surface features, becomes important.

As pointed out by de Levie, however, the most important weakness in the
model is the assumption that the current distribution is normal to the macroscopic
surface, that is a neglect of the true current distribution. For a rough surface, the
lines of electric force do not converge evenly on the surface. The double layer will
therefore be charged unevenly, and the admittance will be time and frequency
dependence.

The tangential components of the interface charging were recognized and
included in a qualitative model by Scheider [1975], who suggested the use of
branched transmission lines to model the effects of uneven surface topology. The
suggestion was significant in that transmission lines of this type do represent a circuit
which, unlike the unbranched transmission line of de Levie, agrees with experi-
mental observations of the impedance at rough electrodes.

The basic type of line suggested by Scheider is shown in Figure 2.1.18 for a
single type of branching. In general, both the series (as shown) and the parallel com-
ponents of a simple—RC—Iline may be replaced by other transmission lines, which
may themselves be branched. The degree of branching may be unlimited. Let the
series impedance per unit length be z and the parallel admittance per unit length be
y (Figure 2.1.19). In addition, let all the z and all the y be independent of distance
down the line. Using the continued-fraction approach to write the total impedance
Zr,

Zy=——————— (195)

For an infinite line,
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Figure 2.1.18. A branched transmission line circuit which shows CPE behavior.
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Figure 2.1.19. A generalized transmission line where z and y are respectively the series impedance
and interfacial admittance per unit length.

Zy=———" (196)

2
Zr=—t [t X (197)
2 4 'y

Z =5 (198)

Suppose, if z represents a transmission line z = A(jw)

y =joC, then

, and y is a pure capacitance

A 3
Z = (E)(f“’) " (199)

Evidently, a first-order branching of the series component leads to an impedance
with a phase angle of (3/4) (7/2).
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In fact, the value of the frequency exponents is limited only by the degree of
branching of the circuit. The interval between frequency exponents is

[1/2]9+l

where 0 is the order of the branching. The frequency dependence is determined by
the branching type and not by the magnitude of the components.

The important feature of these lines is that they produce a constant phase angle,
like a Warburg impedance, but with the phase angle not restricted to /4. This is
exactly the behavior often found at the electrode—electrolyte interface and has been
termed a constant-phase element (CPE). It appears to be true that roughness is an
important contributing factor to the observed frequency dispersion. Scheider’s
model, however, remains qualitative, and the microscopic link between the topol-
ogy and the circuit is absent.

In general, a transmission line with nonuniform components, such as that
described by Eq. (192), does not lead to CPE behavior. Schrama [1957] has shown
that for lines with a particular type of nonuniformity, CPE behavior is predicted.
This relationship is, for a discrete—RC—Iline,

3 21“(1—05)_ o +x) _
‘7 T T(-a+k)
Na) Tl-a+x) .,

Ck:(2K+1)r(1—a)'r(1+a+x)'h (201)

h* (200)

where h is a positive real number. Schrama suggested an interpretation in terms of
nonuniform diffusion coefficients and driving forces.

It has been shown (Liu [1985]) that at a fractal interface, a nonuniform trans-
mission line will model the electrical response. The fractal geometry assumed was
that of the triadic bar of Cantor, illustrated schematically in Figure 2.1.20a. The

ELECTROLYTE

(@) ®)
Figure 2.1.20. (a) Formal model for a fractal electrode—electrolyte interface, and () an equivalent
circuit which models the double-layer charging behavior.
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equivalent circuit corresponding to such an interface is shown in Figure 2.1.20b. It
is evident that the circuit may be folded over into an—RC—transmission line with
the resistance and capacitance per unit length related to one another in a specific
manner.

The possible relationship between CPE behavior and a fractal interface geom-
etry have also been emphasized by Le Mehaute [1984] and Le Mehaute and Crepy
[1983].

This section was written by Ian D. Raistrick and updated by J. R. Macdonald
and D. R. Franceschetti. The U.S. government retains a royalty-free license to repro-
duce or reuse this material for in-house or governmental purpose.

2.2 PHYSICAL AND ELECTROCHEMICAL MODELS
2.2.1 The Modeling of Electrochemical Systems

Numerous theoretical models have been developed to explain and predict the
behavior of electrochemical systems and to guide the design of systems with desired
characteristics. The models which have been developed thus far fall generally into
three broad categories, corresponding to three different levels of description of the
system. From a practical standpoint, no one group of models is more important than
another: the models which may be helpful to a materials scientist in fabricating a
new solid electrolyte may provide no assistance at all to the engineer attempting
to design a portable power source which meets rigid cost and performance
specifications.

At the most fundamental level of description are atomistic or microscopic
models which attempt to provide an accurate description of the motions of individ-
ual charge-carrying particles in the system. At the least detailed level are the equiv-
alent circuit models, in which hypothetical electrical circuits, consisting of elements
with well-defined electrical properties, are used to describe the response of the
system to a range of possible signals. Such models are of special interest in imped-
ance spectroscopy, since the frequency response behavior of linear electrical circuits
is now extremely well understood. An important variant of the equivalent circuit is
the equivalent electrical network, composed of simple circuit elements of differen-
tial size. An introduction to equivalent circuit models is provided in Section 2.2.2
below. The electrical network approach is discussed in 2.2.3.4. The level interme-
diate between equivalent circuits or networks and microscopic models might be
termed the continuum level, as the bulk regions of the electrodes and electrolyte are
regarded as continuous media. The transport of mobile species is thus assumed to
be governed by differential equations, and the transfer of charge across interfaces
obeys rate laws which serve as boundary conditions for these equations. The param-
eters of the continuum model can be regarded as averages of the parameters appear-
ing in an atomistic model. As can be seen in Section 2.2.3, the continuum parameters
can usually be related to the parameters of an equivalent circuit model, and the analy-
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sis of the continuum model can thus guide in the construction of an appropriate
equivalent circuit.

2.2.2 Equivalent Circuits

2.2.2.1 Unification of Immittance Responses

For a long time, dimensionless normalization has been used in the dielectric con-
stant measurement area of IS. As in Eq. (1) in Section 1.3, one supposes that there
exists a low-frequency limiting value of the dielectric constant, &, and a high-
frequency limiting value ... In the latter case there may be even higher-frequency
dispersions than that whose limit is &.., but in ordinary IS it is usually sufficient to
establish (or assume!) that € = €. over a wide range of high frequencies, and primary
attention is directed to the response in the frequency region between € = & and &..
Then the normalized response may be written
k=8 (1
&5 — &
where Kk - 1 as v — 0 and Kk — 0 as v — oo (or to the region where € = €..). The
function x is a normalized immittance, defined at the dielectric constant level.

For solid electrolytes one usually is concerned with intrinsically conducting
systems rather than with intrinsically nonconducting (dielectric) ones. It is then
appropriate and usual to consider basic system response at the impedance rather than
the complex dielectric constant level. Then if one assumes that the overall imped-
ance of the system, Z,, approaches R, at sufficiently low frequencies and R.. at suf-
ficiently high ones, one can form the normalized dimensionless quantity

Z;—R.
Ry —R.
in analogy to Eq. (1). We have given a specific expression for 7, in Eq. (6) of Section
1.3. Again, I, > lasv —>0and I, > 0 as v — oo,

Since Eqs (1) and (2) are similar in form, we can combine them in the single
expression

I @)

I, = Ui =Uk 3)
U k0 — U koo
where k=¢cor Z, U, = e¥ =€ + j&’, and U, =Z =7+ jZ". As before, Uy and U,
are, respectively, the low-and highs-frequency limiting real values of U,. We actu-
ally use £*, the complex conjugate of g, rather than € here so that the imaginary parts
of I, and I, may be defined with the same sign.

Now, as already mentioned in Section 1.3, the I of that section’s Eq. (6) is of
just the same form as the well-known Cole—Cole dielectric dispersion response func-
tion (Cole and Cole [1941]). In its normalized form, the same I, function can thus
apply at either the impedance or the complex dielectric constant level. We may gen-
eralize this result (J. R Macdonald [1985a,c,d]) by asserting that any IS response
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Table 2.2.1. Relations Between the General, Unified
Immittance Function / and Specific System Functions

Conductive System General System Dielectric System

(k=2) Normalized (k=g
M uly Y

Z I £

Y I M

€ (ul)™ Z

Note: Here U = joC,.

function that can be normalized as in Eq. (3) may be used at either the complex
dielectric constant level or at the impedance level. It is very important to note that
when the same function (with possibly different parameter values) is applied at both
the complex dielectric constant and the impedance levels, it defines different systems
at these levels. This matter is discussed in more detail in J. R. Macdonald [1985c¢].
Thus a theoretical derivation of response at one level automatically yields response
of the same kind for the other level but applying to a different type of system. When
the form of Eq. (3) is used to discuss bulk properties we will use I, for the complex,
frequency-dependent resistivity and I, for the complex frequency-dependent
conductivity.

The above results allow us to use a single general /(@) function to represent
normalized response at either the € or Z system levels. When the & subscript of I, is
omitted, it will be understood to be general in this sense. The use of the general nor-
malized immittance response function / allows one to subsume two kinds of systems
and response with a single function and will be so employed in the next section.
Table 2.2.1 shows how I, for k = Z or &, is related for the various immittance levels
to the specific conductive and dielectric systems functions. Here, as before, t=joC..
Alternatively, to maintain dimensionless quantities at all levels, one might replace
U by jot = js, where T is a specific relaxation time and s = w7. Note that all func-
tions are simply related to /. Let us illustrate these relations with a specific example.
Take, for concreteness, I, = Fi(V,,, §), the specific response function of Eq. (6) in
Section 1.3. Then we can write

€ = €.+ (65— €.)F(Wec,5) 4)
Y. =iwC.¢, ()
Z. ={iaCcle.. +(es — €.)F(Wee, O]} (6)
and
Z;=R.+(Ry— R.F,(Wyc,s) @)
Y, =27; (8)

e, ={ioC.[R.+(Ry— R.)F; (‘I/zc,S)]}_1 (&)
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We have used specific subscripts here to designate which type of system is involved.
Now when one compares, say, Eqs (6) and (7), both at the impedance level but for
different types of systems, or Eqs (4) and (9), both at the complex dielectric con-
stant level, one sees that although the normalized expressions for I, and I, are of
exactly the same form, Z, and Z, as well as &, and &, yield very different frequency
response. The main unification produced by the introduction of the general I = I, is
that of allowing a single function to represent typical normalized response of either
a conductive (k = Z) or a dielectric (k = €) system.

2.2.2.2 Distributed Circuit Elements

Diffusion-Related Elements. Although we usually employ ideal resistors,
capacitors, and inductances in an equivalent circuit, actual real elements only
approximate ideality over a limited frequency range. Thus an actual resistor always
exhibits some capacitance and inductance as well and, in fact, acts somewhat like a
transmission line, so that its response to an electrical stimulus (output) is always
delayed compared to its input. All real elements are actually distributed because they
extend over a finite region of space rather than being localized at a point. Never-
theless, for equivalent circuits which are not applied at very high frequencies (say
over 107 or 10*Hz), it will usually be an adequate approximation to incorporate some
ideal, lumped-constant resistors, capacitors, and possibly inductances.

But an electrolytic cell or dielectric test sample is always finite in extent, and
its electrical response often exhibits two generic types of distributed response,
requiring the appearance of distributed elements in the equivalent circuit used to fit
IS data. The first type, that discussed above, appears just because of the finite extent
of the system, even when all system properties are homogeneous and space-
invariant. Diffusion can lead to a distributed circuit element (the analog of a finite-
length transmission line) of this type. When a circuit element is distributed, it is
found that its impedance cannot be exactly expressed as the combination of a finite
number of ideal circuit elements, except possibly in certain limiting cases.

The second generic type of distributed response is quite different from the first,
although it is also associated with finite extension in space. In all ordinary IS exper-
iments one uses electrodes of macroscopic dimensions. Therefore, the total macro-
scopic current flowing in response to an applied static potential difference is the sum
of a very large number of microscopic current filaments originating and ending at
the electrodes. If the electrodes are rough and/or the bulk properties of the material
are inhomogeneous, the individual contributions to the total current will all be dif-
ferent, and the distribution in electrode surface or bulk properties will lead to a dis-
tributed resistance (many different elemental resistances) or conductance.

The situation is even more complicated when small-signal frequency and time
dependence is considered. Consider a material involving ion-hopping conduction.
The immediate microscopic surroundings of different ions may be different at a
given instant either because of inhomogeneous material properties or because the
dynamic relaxation of the positions of atoms surrounding an ion has progressed a
different amount for different ions. The result may be described in terms of a dis-
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tribution of relaxation times, which, for example, might be associated with a
distribution of hopping-barrier-height activation energies. Such a distribution of
relaxation times will lead to frequency-dependent effects which may, at least approx-
imately, often be described through the use of certain simple distributed circuit
examples.

The first distributed element introduced into electrochemistry was the infinite-
length Warburg [1899] impedance, often termed the Warburg impedance by those
possibly unaware of the more general finite-length Warburg solution. The infinite-
length Warburg impedance is obtained from the solution of Fick’s second law, the
diffusion equation, for one-dimensional diffusion of a particle in a semiinfinite space,
a situation mathematically analogous to wave transmission on a semiinfinite dis-
tributed RC transmission line (e.g. Franceschetti and Macdonald [1979c]). Diffusion
of atomic oxygen in an infinitely thick electrode might be described by this imped-
ance, an impedance which we shall designate Zy.. (see below). But real physical sit-
uations never involve infinite lengths (although this limit may sometimes be a useful
one to consider). The solution for the diffusion of particles in a finite-length region
(equivalent to a finite-length, shorted transmission line) appears first to have been
presented by Llopis and Colon [1958], for the supported situation, where the finite
length considered was the thickness of the Nernst diffusion layer, appropriate for a
stirred electrolyte or a rotating electrode. But particles diffusing in an electrode of
thickness [, or in an electrolytic cell of unstirred liquid or in solid material are free
to move through the entire available region /, or /. Thus it is reasonable to take the
finite-length region where diffusion occurs as [ or /, in cases of present interest.
General Warburg response for charge motion in a finite-length region of an unsup-
ported electrolyte appears in the first exact solution of this problem (Macdonald
[1953]). It was identified and discussed in later work (Macdonald [1971a,b, 1974a,b]
and Macdonald and Franceschetti [1978]). These results, particularly appropriate for
solid electrolytes, will be discussed later in Section 2.2.3.3. Here it is sufficient to
give the expression for Zy, for an uncharged particle diffusing in a finite-length region
of length /,, which might be the thickness of an electrode (Franceschetti and
Macdonald [1979c¢]), and show how it reduces to Zy.. as [, — oo. The result may be
written

Zy = Rpo[tanh(Vjs [/ js )] (10)

where s = X(w/D) and D is the diffusion coefficient of the diffusing particle. Here
the diffusion resistance Rpy is the @ — 0 limit of Zy(w). It may be expressed in a
form involving various rate constants if so desired (Macdonald and Franceschetti
[1978], Franceschetti [1981]). Series expansion readily shows that when s << 3, Zy,
is well approximated by Rp, in parallel with a capacitance Cpy, where

Cpo=12/3DRp (11)

When plotted in the complex plane, Zy, leads to an initial straight-line region with
6 = 45°: it reaches a peak value of —Z;, = 0.417 Ry, at s = 2.53 and then begins to
decrease toward the real axis, finally approaching it vertically, as required by the
limiting Ry, and Cp, in parallel
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When s >> 3, the tanh term approaches unity and Zy, approaches Zy,.., given by
Ze = Roo[[Js = (Roo /1200 D) (1= ) (12)

clearly showing the 45° response of Zy... Let us define the frequency-dependent dif-
fusion length as [,=+/D/w; then s = (L/1,)*. Tt is obvious that when I, << [,, for
example at high frequencies, Zy.. response is found: the diffusion length is then much
less than the entire region available for diffusion. But when [, begins to approach /,,
Zy.. response is no longer appropriate since diffusion begins to be limited, and Zy..
must then be replaced with Zy,. In fact, it is always reasonable and appropriate to use
Zy. The quantity Zy, will always be referred as the Warburg or diffusion impedance
in this work. Finally, the resistance R, is proportional to /, and is thus extensive.
Equation (11) also shows that Cp, is also extensive (but proportional to [, rather than
to I;' as in an ordinary plane parallel capacitance). Thus Warburg response becomes
extensive and depends on electrode separation at sufficiently low frequencies. But as
Eq. (12) shows, Zy.. is entirely intensive since (Rpy/l,) is itself intensive. One way of
identifying Warburg response is to validate the transition from intensive to extensive
behavior using measurements with two or more different values of /,.

The Warburg impedance Zy, is the diffusion analog of the impedance of a finite-
length, uniformly distributed RC transmission line (see Figure 2.2.1) with a short at
the far end, equivalent in the diffusion case to unhindered disappearance of the dif-
fusing particles at x = /.. But this special situation, while common, by no means
includes all cases of interest. An expression for the impedance Z;, of the finite-length
diffusion problem with more general conditions at the far end has been presented
by Franceschetti and Macdonald [1979c]. It is recommended that the general Z;, be
used initially in an equivalent circuit representation and for fitting unless and until
it can be established that Z, = Zy,.

Although we shall not discuss the general Z,(®) further here, there is one addi-
tional specific case which follows from it and deserves mention. Suppose that the
finite-length transmission line analog is open-circuited (see Franceschetti and
Macdonald [1979c]). Then no direct current can flow in the actual system, as it could
with Zy, (but not Zy..), and the concentration of the diffusing particle increases at the

rdx rdx rdx
O———— — = AAAN— ————
cdx_| cdx cdx_|
Zn* —_ —_ 2y
O — —— AAN— L ———
rdx rdx rdx

Figure 2.2.1. Uniform continuous transmission line involving series resistance of 2r per unit length
and shunt capacitance of ¢ per unit length, terminated by an impedance Z;. When Z; = 0, Z, = Zy, and
when Z; = oo, Z;, = Zpoc.
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far end of the diffusion region where complete blocking occurs. The final low-
frequency behavior of the open-circuit impedance, Zpy is thus capacitative. Its
representation at the dielectric constant level is

E= Y/jgcc = (CDOC/CP)[tanh “/J—S/\/J—S] (13)

Thus, the process leads to the limiting capacitance Cpoc as @ — 0: further, the fre-
quency response at this level is exactly the same as that for Zy at the impedance
level [see Eq. (10)] and thus involves an initial straight line at 8= 45°. At the imped-
ance level, Zpoc = (joC.£)™", is given by

Zpoc = (TDoc/CDoc)[Ctnh (W/F)/‘/J—S] (14

where we have written s = @Tpoc S0 that Tpoe = [2/D. The appearance of response of
the present type has been found in electrochromic thin films (see Glarum and
Marshall [1980], Ho et al. [1980], Franceschetti and Macdonald [1982]). Equations
(10) and (13) show immediately that the general I; function associated with shorted
or open-circuited diffusion is just

I, :tanhﬁ/@ (15)

A distributed element which shares some features with Zy, Eq. (14), is the
Gerischer impedance,

Zo(w) = 22— (16)
Vk+ jo

which arises when an electroactive species undergoes a chemical reaction in the bulk
(Gerischer [1951], Sluyters-Rehbach and Sluyters [1970], [1984], Boukamp and
Bouwmeester [1984]). The Gerischer function is indistinguishable from the finite-
length Warburg in the high frequency limit, and like it yields purely resistive behav-
ior in the low frequency limit, but differs from it in its detailed frequency
dependence, yielding, for example, an arc closer to the real axis in the Z plane. Like
the infinite length Warburg, the Gerischer impedance is representable by a semi-
infinite transmission line with a series resistance per unit length but with a parallel
resistance added to the transmission line capacitance per unit length. A related result
describing the diffusion of an electroactive species which is trapped at fixed sites
was developed by Franceschetti [1984].

The somewhat similar function

Z ()= %ijtanh(«/k +jo) (17)

was found by Lorenz [1954] for an electrode reaction in which atoms are added to
a ledge on a crystalline electrode. This function was proposed by Franceschetti and
Macdonald [1979a] based on a treatment by Wang and Nowick [1979] involving
oxygen diffusion along strip-like electrode contacts with an oxygen conducting elec-
trolyte. Franceschetti and Ross [1989] extended this result to circular electrode con-
tacts, obtaining an impedance function in terms of cylindrical Bessel functions of

[k + joo]™.
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The Constant Phase Element and Its Simple Combinations. Although
Warburg and open-ended diffusion effects frequently appear in supported situations
and sometimes in unsupported ones and exhibit characteristic 8 = 45° lines in the
Z* or € plane, one often finds approximate straight-line behavior over a limited fre-
quency range with 6 # 45° (e.g. McCann and Badwal [1982]). Then the frequency
response of Z’ and Z” is no longer proportional to @' but to some other power of
. To describe such response it is convenient to write, as in Eq. (7) in Section 1.3,
at the admittance level,

Yors = Ao(j)” = A" [cos(ym/2) + j sin(yr/2)] (1)

where A and y are frequency-independent parameters which usually depend on tem-
perature, and 0 < y < 1. This admittance has been designated the constant-phase
element (CPE) admittance because its characteristic feature, and that of Zqpg as well,
is a phase angle independent of frequency. Although a slightly more general form
ay(jwr)¥ may be written, the combination (g,t¥) cannot be resolved into its parts
using single-temperature frequency response measurements and fitting. The param-
eter Ay will be intensive for interface processes and may be extensive for bulk ones.
Unlike the finite-length Warburg impedance, the CPE exhibits no transition from
intensive to extensive behavior as the frequency decreases. Note that a resistance R..
in series with Zepg = Ycpg yields an inclined spur (straight line) in the Z plane, with
an @ — oo intercept of R..

The importance of constant phase response was probably first emphasized by
Fricke [1932]; the CPE was explicitly mentioned by Cole and Cole [1941], and its
importance and ubiquity have been independently emphasized in recent times by
Jonscher [1974, 1975a,b, 1980, 1983]. Some discussion of its history, relation to
physical processes, and applicability has been given by Macdonald [1984]. Note that
it describes an ideal capacitor for ¥ = 1 and an ideal resistor for = 0. It is gener-
ally thought to arise, when y # 0 or 1, from the presence of inhomogeneities in the
electrode—material system, and it can be described in terms of a (nonnormalizable)
distribution of relaxation times (Macdonald and Brachman [1956]), or it may arise
from nonuniform diffusion whose electrical analog is an inhomogeneously distrib-
uted RC transmission line (Schrama [1957]).

Although CPE-like response appears in the majority of experimental data on
solid and liquid electrolytes, it is always well approximated only over a finite range
of frequency. In fact, the CPE cannot be applied for all frequencies and becomes
physically unrealizable for sufficiently low or high frequencies (Macdonald [1984,
1985b,c,d]). Although many response theories lead to the CPE type of response for
a finite frequency range, they must deviate from such response at the frequency
extremes in order to yield realistic, physically realizable response. Because of the
lack of full physical realizability, the CPE, as in Eq. (18), cannot be normalized in
the usual [, fashion. For example, the @ — 0 limits of neither &cpg nor Zepg exist.
With this understood, we shall nevertheless write a unified expression for the CPE,
taking it to represent just a dimensionless form of either € or Z. Then we have

Teppk = Bk(ja))iw = (J'S)iw (19)



88 Chapter 2 Theory

©
Figure 2.2.2. Three compound circuits involving the CPE: (a) the €ARC, (b) the ZARC, and
(c) the YARC.

where B, is a frequency-independent constant and the second form is less general
than the first (Macdonald [1984]). For k = Z, one usually sets y, = n and for k = ¢,
Y, = 1 — n, where as usual 0 < n < 1. These choices ensure that at the admittance
level, for either k = € or k = Z, the fractional exponent y in Eq. (18) is just n.

There are three important subcircuits, shown in Figure 2.2.2, which consist of
the CPE in conjunction with other circuit elements. Although they can always be
treated by considering the CPE contribution separately, their wide use as combined
elements and their historical importance justify their separate discussion as com-
pound circuit elements and our assignment of specific designations to them. Further,
it has not usually been recognized how such compound expressions can involve indi-
vidual CPE’s. The first subcircuit, that in Figure 2.2.24, the éARC, yields a depressed
symmetrical semicircular arc in the complex € plane; the second, shown in Figure
2.2.2b, the ZARC or ZC, yields an arc in the Z plane; and the third, the YARC, leads
to an arc in the Y plane. The depression of the arc of course depends on the CPE
parameter Y or n. We have already discussed in Section 1.3 the ZARC and simple
ways of analyzing data exhibiting it. The same methods apply to depressed arcs in
any complex plane.

The circuit shown in Figure 2.2.2a is just that originally proposed by Cole and
Cole [1941] for dielectric systems. It yields capacitances C, in the @ — 0 limit and
C.. in the @ — oo limit. When one uses the Eq. (18) definition of the CPE admit-
tance, it leads to the following expression for &:

E=¢.=€.+ Es ~ e

‘ 1+ (jor)”* <0
where €. = C./C,, € = Cy/C., T=[(Cy — C.)/Ao]"%, and y, = 1 — y. Cole and Cole
related Eq. (20) to a particular distribution of relaxation times, and it has been widely
used with y, = 1 — o for the interpretation of IS results for dielectric and low-
conductivity liquid and solid materials. Clearly when 0 < y, < 1, Eq. (20) leads to
a depressed arc in the complex € plane. For y, = 1, it yields a single-relaxation-
constant Debye curve, a full semicircle.
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In terms of the original CPE parameters of Eq. (18), the éARC admittance of
Figure 2.2.2a may be written as

Y, =Yoare = jo| C.. +

Go—Cn } 1)

1+[(Cy = C.) /Ao )(jw) ™

For simplicity we shall usually ignore C.. in the definition of éARC; it may readily
be included when needed. The €ARC circuit element will, in fact, often appear in
solid electrolyte equivalent circuits with C., zero (or appearing elsewhere in the
overall circuit). Then it is clear that the éARC function of Eq. (21) may be consid-
ered to represent a distributed (complex) capacitor. When y = 0, it involves an ordi-
nary capacitor C, and resistor A;' in series, and when y =1, it involves C, in series
with the capacitor A,. These results are consistent with the behavior of the CPE
alone. The CPE reduces to an ideal capacitor for y =1 and to a resistor for y = 0.
An example of the use of the éARC function for the analysis of a polycrystalline
sample is provided by the work of Casciola and Fabiani [1983].

It was independently suggested some time ago (Ravaine and Souquet [1973],
Sandifer and Buck [1974], and Macdonald [1976b]) that the following impedance
form might be used to describe the depressed arcs which often appear when imped-
ance data on solids is plotted in the Z* plane, namely,

R,

Z; =Zsare = T 1o (22)
1+(jor)

where no R.. is included and 0 < & < 1. When R.. is included, one can write
Z;,=R.+ & (23)
1+(jor)”
which is just the impedance of the Figure 2.2.2b circuit with y = y. This is an exact
analog, at the impedance level, of the Cole—Cole complex dielectric constant expres-
sion of Eq. (20). Although the two forms may be described in terms of the same
formal distribution of relaxation times, this distribution applies at different response
levels for the two cases and thus describes quite different system behavior
(Macdonald and Brachman [1956]), Macdonald [1985a—c]). Now it is clear that Eq.
(22), which applies when R.. = 0 or is neglected, may be rewritten as

__ R
1+A(jw)"”

involving the parameter A = 7%*. Now the parallel combination of a resistance R, and
a CPE with parameter A, as in Figure 2.2.2b, yields just

(24)

1+ ARy (j)"”

equivalent to the result in Eq. (24) if A = AR, or 7= (A,R,)"".
The foregoing results and the definition of I, of Eq. (3) lead immediately to

h=h+ugwyl (26)

Zz (25)
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where, as usual, s = w7 (see the discussion in the last section). Since when k = Z
one obtains the ZARC function and, when k = ¢, the Cole—Cole equation, we suggest
that the general normalized response function of Eq. (26) be designated the ZC func-
tion. Again it is most appropriate to take y, = y= ¢rand y, = 1 — o. Although CNLS
fitting of data with either a CPE and R in parallel, as in Eq. (25), or with the unified
expression of Eq. (26), involving 7, will yield exactly the same fit, the two
approaches involve different parameterizations (R, Ay, and y; or Ry, 7, and ). One
or the other will generally yield smaller estimated standard errors for A, or 7 and
less correlation of one of these quantities with the other parameters. That choice
should be used. Analysis of Na -alumina data (Macdonald and Cook [1985]) gave
better results, for example, with the 7 parameterization.

It has already been mentioned that the series combination of a resistance R.. and
a CPE as in Figure 2.2.2¢ leads to a depressed arc in the Y plane. Since such arcs
are also often encountered experimentally, it is reasonable to define them as YARCs,
for which the admittance may be written as

G.
1+(R.A) (| jo)"

where G.. = 1/R... The similarity to Eq. (25) is obvious, although frequency increases
along the ZARC and the YARC in opposite directions, as usual for Z- and Y-plane
plots. Although it is possible to define a dimensionless function like /; which can
represent either Y-system or M-system response, just as [, represents either conduc-
tive or dielectric system response, the matter will not be pursued here. In fact, a
single dimensionless function with superscript k = &, Y, Z, or M may be used to rep-
resent response of any of the four different immittance-level systems if the normal-
ization is properly defined at each level.

It is worth mentioning that although Eqgs (20)—(27) may be interpreted as involv-
ing nonuniform diffusion (Schrama [1957]) either in bulk or at an interface, another
allied but somewhat different approach which also leads to Eq. (22) has been pro-
posed (Le Mehaute and Crepy [1983]) without reference to its earlier history and
use. This theory involves mass transfer at a fractal interface, one with apparent
fractal dimensionality d, with d = y' = (1 — @)™'. A more solidly based treatment
of a fractal interface has been published by Liu [1985]. Unfortunately, neither of
these approaches provides a quantitative interpretation in terms of microscopic
parameters of why v, determined from data fitting on solids or liquids, often depends
appreciably on temperature.

The above results show that the W, = 1 — o parameter which appears in the
€ARC Cole—Cole function, Eq. (20), associated with a CPE and ideal capacitor in
series, and the y’s appearing in the ZARC and YARC functions, Eqs (25) and (27),
associated with a CPE and resistor in parallel or in series, may all be interpreted as
the y of a CPE. The y values estimated from fitting with these forms are thus com-
parable. Although the CPE has sometimes been found in equivalent circuit data
fitting to appear separately and not directly in any of the above compound forms
(e.g. Macdonald, Hooper, and Lehnen [1982]), its presence as a direct part of the
€ARC, ZARC, and YARC functions, ones which have long been used in the inter-

Yyarc =

27)
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Table 2.2.2. Some Distributed Elements and Their Descriptions at the Impedance Level

Symbol Name and Description Defining Equation
Zw Finite-length Warburg diffusion (10)
Zy.. Infinite-length Warburg diffusion (12)
Zp Diffusion with general boundary conditions —
Zpoc Open-circuit (blocked) diffusion (14)
Zcpe Constant-phase element (18), (19)
ZeARC Depressed semicircle in complex dielectric constant plane (20), (21)
(see Fig. 2.2.2a)
Z7ARC Depressed semicircle in impedance plane (22), (23)
(see Fig. 2.2.2b)
Zzc ZC element, general form of éARC and ZARC (26)
Zyare Depressed semicircle in admittance plane (see Fig. 2.2.2¢) 27

pretation of a wide variety of IS data on dielectric and conduction materials, under-
lines the wide usefulness of the CPE.

As already mentioned, the lack of any physically based relation for the tem-
perature dependence of the CPE and CPE-like fractional exponent y (or n or @) is
an important weakness in the theories which lead to frequency response with such
exponents. A new theory which involves a distribution of activation energies and
does predict temperature dependence for y often in agreement with experiment
(Macdonald [1985a,c,d]) will be discussed in Section 2.2.3.5, along with some
empirical frequency response relations suggested by Jonscher. We summarize the
various distributed elements (simple and compound) discussed in this section in
Table 2.2.2.

2.2.2.3 Ambiguous Circuits

Let us now further consider the inherent ambiguity of equivalent circuit fitting. One
example of two different equivalent circuits having the same overall impedance at
all frequencies has already been presented in Figure 1.2.2. Incidentally, if we change
all the resistors in both circuits to capacitors, we have another instance of the same
kind of ambiguity. Another series of circuits which may all have the same imped-
ance is shown in Figure 2.2.3 (see Franceschetti and Macdonald [1977]). Here we
have again given the actual relations between the various components. Some adsorp-
tion models (see later) yield inductive-type behavior and a resulting arc which falls
below the real axis in the Z* plane. Sometimes the apparent inductance can be very
large. But it is only an apparent inductance since real inductance requires storage of
energy in a magnetic field and there is no appreciable ac magnetic field energy
present in low-current IS measurements. The actual situation involves an inductive
type of phase shift, but rather than represent it by the inductive circuits of Figure
2.2.3a and b, which give a somewhat misleading picture of the process, we recom-
mend following earlier work (e.g. Franceschetti and Macdonald [1977]) and using
circuit (c), which involves both a negative differential capacitor and a negative dif-
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Figure 2.2.3. Three circuits having the same impedance at all frequencies.
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Figure 2.2.4. Three further circuits which can have the same impedance at all frequencies when the
parameters of the circuit are properly interrelated.

ferential resistor. Since adsorption often can be represented electrically by a posi-
tive resistor and capacitor in the (c) type of circuit, continuity is served by allowing
both these elements to become negative when appropriate. It is then unnecessary to
pass from an ordinary RC circuit to a LC one as adsorption changes; instead the R
and C can just go from positive values to negative ones.

Figure 2.2.4 presents three more electrical circuits often encountered in IS work.
They exhibit three time constants (N = 3) and can all yield the same impedance for
all frequencies when their elements are properly related. All three circuits yield three
distinct arcs in the Z* plane when the three time constants are well separated. Start-
ing from the Voigt circuit with only two time constants, one can find relatively simple
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algebraic formulas yielding expressions for the elements in the other two N =2 cir-
cuits which ensure that the impedance is the same (Novoseleskii et al. [1972]), but
such simple relations do not always exist when one starts with another of the cir-
cuits or when there are three or more time constants present. In practice, however,
the detailed relations between the elements are not particularly important when
CNLS fitting procedures are available. First, parameter estimates for any of the cir-
cuits may be obtained by such fitting and those for the different circuits compared.
Incidentally, the degree of fit is completely independent of which of the three cir-
cuits is employed. Second, when the time constants are separated by factors of 100
or more, the R’s and C’s of, say, the top and bottom circuits closely approach each
other. It is particularly when this condition is not satisfied, however, that CNLS
fitting is necessary to resolve the overlapping arcs in the Z* plane.

But CNLS fitting is not always available or may not be justified for preliminary
fits. When N = 2 in the circuits of Figure 2.2.4, several of the relations between the
circuit elements of the three types of circuits can prove very useful in graphical fits.
These relationships are summarized in the appendix at the end of this section. Once
the parameters of a particular N = 2 circuit have been graphically estimated from
impedance spectra, estimates of the parameters of the other two circuits may be
obtained using these relations, avoiding the need for graphical fitting of the other
circuits. Indeed, the equivalence relations are the easiest way to obtain the parame-
ters of the ladder network (Figure 2.2.4c), which cannot be well estimated from
either an impedance or admittance plot but require a laborious process involving
more than one type of plot (de Levie and Vukadin [1975]). It is simple to fit to the
N =2 circuit of Figure 2.2.4a or b and transform to the ladder representation. Further,
the equivalence relations may be useful when no IS data are available but circuit
element estimates are, as in published work of others.

Since all three of the Figure 2.2.4 circuits are equivalent as far as fitting is con-
cerned, how does one choose between them, particularly in cases when element esti-
mates for the different circuits are quite different? First, one may use continuity and
knowledge of the physical processes involved, as in the above brief discussion of
inductive-like effects in adsorption. Second, one may be able to compare the cir-
cuits with the predictions of a physical model—one which yields simpler expres-
sions for the elements of one of the circuits than for the others. This has been done
for the unsupported conduction case (Franceschetti and Macdonald [1977]) and the
work showed that in the case of charge of a single-sign mobile the ladder circuit
was much superior to the others (see Section 2.2.2.3).

Finally, one should apply the criterion of simplicity. Given equally good fits,
the circuit with the smallest number of elements should be used. Second, when
electrode separation /, temperature 7, or possibly oxygen partial pressure p(0,) (e.g.
Verkerk and Burggraaf [1983], Badwal [1984]) is changed, one expects some or all
of the fitting parameters to change. But that circuit in which the changes are least,
simplest, and/or closest to theoretical expectations should certainly generally be
preferred. By carrying out CNLS fitting with several different but plausible circuits,
such as those in Figure 2.2.4, for various /, T, and/or p(O,) conditions, one can often
reach an unambiguous choice of the “best” fitting circuit (out of those considered)
to use. Since various processes occur in various, often widely separated, different
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frequency regions, it should be emphasized that IS measurements must include such
regions to allow identification and analysis of the individual processes present.
Generally, then, as wide a frequency span as possible should be covered by the
experimental measurements.

Appendix. This appendix summarizes the relations between the elements of the
three circuits of Figure 2.2.4 when N = 2. Here the subscripts a and b are used in
place of the o and f of Figure 2.2.4.

(a) Voigt —» Maxwell
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Here R, and C|, are defined such that R,C, > R,C,.
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C,=C. (A12)

R, = R.. + Ry (AI3)
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2.2.3 Modeling Results

2.2.3.1 Introduction

In any modeling situation one must first specify the physical conditions considered.
Is the system in equilibrium or in a steady state? What species of mobile and immo-
bile charges are present? Is the material between the electrodes homogeneous (liquid
or single-crystal) or not (amorphous or polycrystalline)? In the polycrystalline case,
what boundary conditions should be used at the interfaces between crystallites? In
all cases, what kind of electrodes are assumed and thus what are the appropriate
boundary conditions at the electrode—material interfaces?

Perhaps the most general problem one would like to solve in the present area,
a sufficiently general situation that would include almost all simpler ones of inter-
est, is the following: a biased situation with applied dc p.d. of arbitrary size and a
small-signal ac p.d. also applied; an arbitrary number of charged species (but not
exceeding, say, six) with arbitrary mobilities and bulk concentrations present;
general interactions (e.g. generation—recombination) possible between the various
positive and negative charged species; arbitrary (i.e. general) blocking—nonblock-
ing, reaction—adsorption conditions for each of the mobile species at the electrode
interfaces; and separate treatments of homogeneous and polycrystalline situations.
One would like to calculate the direct current I over a wide range of applied poten-
tial difference and, at any given applied steady state potential difference, calculate
the impedance as a function of frequency.

Unfortunately, this general problem, which usually involves an inhomogeneous
distribution of charge within the material, has not been solved. The situation is highly
nonlinear and, although the many coupled differential equations and boundary
conditions which could be used to specify it mathematically could, in principle,
be solved with a large computer, only purely numerical results depending on a very
large number of input parameter values (e.g. mobilities, equilibrium concentrations)
would be obtained. Of course even such a general, and almost useless, solution
would still be approximate since the equations used would themselves still be
approximations to the actual physical situation.

Thus far, only much simpler idealizations of the general problem have been
solved, and in Section 2.2.3.3 we shall discuss some of their results. When the
simpler solutions are thought to be adequate, they may be used to analyze experi-
mental data and obtain estimates of such interesting quantities as electrode charge-
transfer reaction rate. Many of the simpler solutions can be represented exactly or
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approximately by an equivalent circuit, but some yield only a complicated expres-
sion for Z(w) which cannot always be so represented in a useful manner.

Solutions for unbiased, flat-band situations (i.e. where there are no intrinsic
space charge layers at the boundaries) are simplest, and only these will be discussed
below except when otherwise noted. We shall present a brief discussion of the sup-
ported situation, primarily appropriate for liquids and mixed conductors, and devote
more space to results for unsupported materials, since most solid electrolytes involve
unsupported ionic conduction under conditions of primary interest. For simplicity,
theoretical results for flux, currents, impedances, and other circuit elements will be
given in specific form, per unit of electrode area A., so this area will not appear
directly in the formulas.

The possible behaviors of an electrode—electrolyte interface are variously dis-
cussed in the literature in terms of polarizability, blocking or nonblocking charac-
ter, and reversibility, with usage differing somewhat from one author to another.
For clarity and precision we shall use the term polarizability to denote the electri-
cal behavior of the electrode—electrolyte interface and the terms blocking (or non-
blocking) and reversibility to describe the electrochemical character of the interface.
An electrode—electrolyte interface is nonpolarizable if the potential drop across the
interface is independent of the current through the interface. It is partially polariz-
able if the interfacial potential difference is dependent on the current and completely
polarizable if it completely prohibits the flow of (faradic) current. An interface is
blocking with respect to a given charge-carrying species in the electrolyte if that
species cannot cross the interface or exchange charge (in the form of electrons) with
the electrode; otherwise it is nonblocking with respect to the given species. A non-
blocking interface is generally thermodynamically reversible since, in thermal
equilibrium, the electrochemical potential of the species involved in the interfacial
charge transfer will obey an equilibrium relation. The interface is kinetically
reversible if the rate of the electrode charge-transfer reaction is rapid enough that
the equilibrium relation is maintained in the immediate vicinity of the interface as
current passes through the system.

The polarization of an electrode—electrolyte interface can result either from
the slowness of the electrode reaction, as in the case of nonblocking but kineti-
cally nonreversible electrodes, or from any factor which limits the transport of
any of the species participating in the electrode reaction, for example slow
diffusion of the reactant or product species away from the interface or the genera-
tion or consumption of one of the species by a slow chemical reaction in the
electrolyte.

We shall be concerned primarily with the behavior of ionic charge carriers at
the interface, and the electrode—electrolyte combinations to be encountered will fall
into two general groups: parent-atom electrodes and redox electrodes. In parent-atom
electrodes, charge can cross the interface in ionic form. Electrodes of this type
include parent-metal electrodes such as Ag in the solid state cell Ag|AgClAg, in
which the electrode serves both as a source of ions and as an electronic conductor,
and parent-nonmetal electrodes, as in the cell Bry(Pt)]AgBr|Br,(Pt), in which an inert
metal phase must be present to serve as the electronic conductor. In redox electrodes,
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charge crosses the interface in the form of electrons and the reaction may be written
in the form

ky

Red " "20x™ +n.e” (28)

b
where k; and k, are forward and reverse reaction rate constants, respectively. Both
Ox and Red are usually soluble in the electrolyte, but if z = n,, the Red species is
uncharged, and if it is a gas, it may evolve at an electrode and/or diffuse into the
electrode, especially if the electrode is somewhat porous. The admittance behavior
of more complex electrode reactions (in aqueous electrolytes) than those mentioned
above has been discussed by Seralathan and de Levie [1987] and is not considered
herein.

Finally, while still dealing with interface effects, it is worth stating one of the
most important equations of reaction rate electrochemistry, the Butler—Volmer equa-
tion (see Vetter [1967], Franceschetti [1982]). Written in terms of flux for a simple
redox reaction, it is

J = (I/nF) = {k%ct.s exp[(nF/ RT)om |
— kych, eXP[_(”F/RT)(l eun ]}

Here n is the number of moles of electrons involved in the reaction; the rate con-
stants have been assumed to be thermally activated; and k} and kj} are potential-
independent rate constant parameters. The potential-dependent concentrations cgeq
and co, are evaluated at their points of closest approach to the electrode, taken here
as the outer Helmholtz plane. Further, o is here a dimensionless symmetry factor
often assumed to be 0.5 (the symmetrical barrier case), and 1,y is the charge
transfer overvoltage effective in driving the reaction away from equilibrium (for
Nur = 0, J = 0). The Butler—Volmer equation is usually a good approximation for
both biased and unbiased conditions.

(29)

2.2.3.2 Supported Situations

Half-Cells. The concept of a supported electrolyte has proven quite valuable in
solution electrochemistry by allowing great theoretical simplification at (usually)
only a small cost in accuracy. The several (often implicit) assumptions made in treat-
ing the electrolyte in a given cell as supported, however, deserve careful attention
as they generally do not apply in the case of solid state electrochemical systems. It
should also be noted that it is usually possible in solution electrochemistry to use a
large, essentially kinetically reversible counterelectrode so that all but a negligible
fraction of the applied potential difference falls across the electrode—electrolyte
interface of interest. In its simplest form, the supported approach assumes that all
the potential difference in the system falls across the compact double layer—ap-
proximately one solvent molecule diameter in thickness—at this electrode, and the
approach of the electroactive species to the boundary of the compact layer, the outer
Helmholtz plane, occurs purely by diffusion. Corrections for the buildup of space
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charge near the interface (the diffuse double layer) and the ohmic drop across
the electrolyte are then made in piecewise fashion as needed. In solid state electro-
chemistry, one is usually concerned with measurements on a cell with an unsup-
ported electrolyte and identical plane parallel electrodes. The impedance of such a
cell will be twice that of its two half-cells. Although most solid electrolytes are essen-
tially unsupported for temperatures of interest, Archer and Armstrong [1980]
have suggested that when a solid electrolyte contains immobile anions and two dif-
ferent species of cations of similar mobilities, if one of the ionic species is present
in much higher bulk concentration than the other, it can act as support for the other
species of mobile ion—a supported case. Also, mixed electronic—ionic conduction
can sometimes lead to supported conditions. Thus the supported situation may even
be of some direct interest for solid electrolytes.

A symmetrical full cell with identical electrodes, no intrinsic space charge
layers, and zero potential drop across the compact double layers is mathematically
equivalent to two half cells in series since the concentrations of the diffusing species
will be zero in the center. In this one case, the normalized impedance of the
half-cell is the same as that of the full cell. For identical and kinetically reversible
redox electrodes and both oxidized and reduced species mobile in the supported
electrolyte, a complete solution, neglecting compact layer capacitance, has been
obtained by Sluyters [1963]. This solution, derived and presented as real functions,
is highly complicated in appearance. Macdonald [1971a] pointed out that the
Sluyters result simplifies greatly when the impedance is written in complex variable
form. Franceschetti [1987] treated the same situation allowing for a finite charge
transfer rate and a compact layer capacitance, and in the process found Sluyters
result as the sum of two finite-length Warburg elements. In the same paper,
Franceschetti found an impedance for a supported system with two dissimilar elec-
trodes of the parent-metal type (perhaps a pure metal and an amalgam). The result-
ing equivalent circuit requires an inductive element and three lengths of transmission
line, one of which includes an inductive series reactance.

Let us now consider only infinitesimal deviations from zero bias equilibrium
conditions and assume that the equilibrium distribution of all charges is constant
throughout the material, so for equilibrium there is no polarization and electroneu-
trality applies everywhere. Solution of Fick’s laws of diffusion under supported
small-signal ac conditions for a simple one-step reaction (single reacting charged
species) (Randles [1947], Sluyters-Rehbach and Sluyters [1970], Armstrong et al.
[1978], Franceschetti [1982]) leads to the equivalent circuit of Figure 2.2.5. This
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Figure 2.2.5. Equivalent circuit for a single electrode and its interface under supported conditions.
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Figure 2.2.6. Equivalent circuit for a full cell with two identical electrodes under supported
conditions. This circuit only applies when Zy = Zy,...

circuit may be taken to apply to a half-cell of infinite extent to the right of the elec-
trode. It thus does not include any bulk or solution resistance R.. which would depend
on the finite extent of an actual cell. It does include an infinite-length Warburg
impedance, the charge-transfer reaction resistance R, and the capacitance associ-
ated with it, C, the diffuse double-layer capacitance, sometimes denoted C,. This
circuit, with the addition of a bulk or solution resistance in series with it, is cus-
tomarily known as the Randles circuit. Appreciable discussion of the circuit from
an electrochemical viewpoint appears in Macdonald [1971a].

Full-Cell Results. We can generalize the circuit of Figure 2.2.5 to a full-cell sit-
uation with identical electrodes as long as Zy is well approximated by Zy,.., that is
as long as the diffusion length is much smaller than /. One then obtains two contri-
butions to the impedance of the Figure 2.2.5 type, one associated with each elec-
trode. Since the electrodes are taken identical, the two intensive impedances are
identical and may be combined to yield a result of twice the individual impedances.
When we additionally add a geometric capacitance C, = C.. and the bulk or solution
resistance R.., we obtain the circuit of Figure 2.2.6.

Although we will always refer to actual circuit elements in an equivalent circuit,
we shall, for simplicity, give expressions for these elements per unit area. We shall
not, however, usually distinguish between a quantity and its per-unit-area specific
form, so, for example, a capacitance-unit area will still be referred to as a capaci-
tance. If the separation of the electrodes is /, the geometrical capacitance (per unit
area) is given by

C. =¢g,/l (30

where € is the effective dielectric constant of the electrolyte. It is customary to omit
C.. in supported situations since IS measurements on liquids rarely extend to high
enough frequencies for it to affect the overall impedance appreciably. This is not
always the case for solid electrolytes where impedance contributions from other ele-
ments may be high, especially at low temperatures.
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Now ionic conduction in a full cell actually occurs in a region of length /. =
1 — 21y, where I is the effective thickness of the inner region, next to the electrode,
into which ions cannot fully penetrate. Because of the finite size of ions, the
minimum steric but not necessarily electrical value of /; is an ionic radius. Except
for unrealistically thin cells, the distinction between /. and [ is not important for
most circuit elements and will usually be neglected hereafter. It should be mentioned,
however, that in the study of thin (sometimes monomolecular) membranes in the
biological field, using high-molarity liquid electrolyte electrodes, the distinction may
be important. We may now write the expression for R.. as

R.=(/ F)(iz,-uic?j a1)

where z; and y; are the valence numbers and mobilities of the m charged species
of bulk concentration ¢ present in the electrolyte. We have followed past work in
assigning the oo subscripts to C.. and R.. herein since these elements lead to the
semicircle in the complex impedance plane which occurs at higher frequencies than
do any other impedance plane structures. This semicircle peaks at @ = 7', where
Tp = R..C.. is the dielectric relaxation time of the material, an intensive quantity.

An important quantity in solid and liquid electrolytes is the Debye length Lj,
given by

w -1/2
Lp= [(ggORT)‘Fzzz,?c?} (32)
i=1
where the sum includes mobile charge species only. The Debye length is a measure
of the distance in the electrolyte over which a small perturbation in potential or elec-
tric field decays. Such a perturbation creates a region of space charge where elec-
troneutrality no longer holds. This region extends only over a few Debye lengths.
The Gouy—Chapman diffuse double-layer differential capacitance Cy which is
associated with the charge-transfer reaction resistance R appearing in Figure 2.2.6
is given by

Cr =€,/ Ly (33)

in the absence of bias. An expression taking dc bias into account appears in
Macdonald [1954], and a further generalization taking finite-ion-size effects into
account as well by means of a lattice gas treatment is presented in Macdonald,
Franceschetti, and Lehnen [1980] (see also Franceschetti [1982]).

The supported electrolyte half-cell reaction resistance Rz may be written in the
general form

Re = (RT/n? F*)(k0c?) " (34)

where k? and ¢? depend on the specific type of reaction considered. For the parent
metal electrode situation, M|M**, where M denotes the metal electrode, K=K, a
potential-independent Butler—Volmer-type reaction rate parameter, and ¢} = ¢y, the
bulk equilibrium concentration of the reacting cation. Similarly for a redox situation
one finds k¢! = (I,/nF) = k{ckea = kicd,, where I, is the exchange current, a measure



2.2 Physical and Electrochemical Models 101

of the rates at which oxidation and reduction processes occur in equilibrium (Vetter
[1967], Gabrielli [1981]). It is the common magnitude of the equal and opposite
electrical currents associated with oxidation and with reduction (no net current in
equilibrium). A more complicated expression for R and for infinite-length Warburg
impedance under steady state conditions where the dc bias is nonzero has been given
by Sluyters-Rehbach and Sluyters [1970].

Diffusion Effects. Next, consider small-signal unbiased diffusion effects. We ini-
tially discuss the parent-ion equal electrode situation for simplicity. The problem
with applying the circuit of Figure 2.2.6 to the supported full-cell situation at low
frequencies is that Cx remains an intensive quantity associated with an interface
region but 2Zy.. — Zp, some new diffusion impedance, and becomes extensive at
low enough frequencies. It is then not correct to continue to allow the element Cg/2
to bridge the series combination of 2R, and 2Zy... In fact, at sufficiently low fre-
quencies where the diffusion effects are extensive, there can only be a single diffu-
sion impedance Zj, for the entire cell. At sufficiently high frequencies Z, will be well
approximated by Zy.., but the full cell then exhibits an effective diffusion imped-
ance of 2Zy., not Zy.., as shown in Figure 2.2.6. There is thus a transition region in
frequency as the frequency is decreased in which the effective diffusion impedance
goes from 2Zy,.. to Zj, = Zy, not 2Zy, and the Cg/2 connection shown in Figure 2.2.6
is also no longer entirely applicable. Let us therefore first consider sufficiently low
frequencies that the extensive Zj, is present and the admittance of Cg/2 is negligible.
We can then consider Z; alone and its transition to Zy... We shall start with the
expressions (Franceschetti [1981]) appropriate for Z, in the parent-metal electrode
and redox cases.

In the parent-metal electrode case take the diffusion coefficient of the metal ion
M as D,,. Then one finds

ol

(zF) Vjwl? /Dy

Zp (35)

DMCI?/H-
which should be compared with the result in Eq. (10). Now when (@/%/D,,) >> 3,
Zw — Zw.. and one obtains

RT/(zF?)

The situation is somewhat more complicated in the redox case because of the
presence of the two charged species in the electrolyte [unless (z — n,) = 0]. Then one
finds

ZD = ZW.()XOX + ZW,Réd

where

(37

Zuox :[ RT }[ ! }{tanhm }

(I’lF)z DOXC8x '\/]Cl)lz DOx
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(38)

RT }{ ! }[tanhw/ jwl”DRed}
(nF)2 DRedcg(ed '\/]a)lz DRed
and Do, and Dy, are the relevant diffusion coefficients and all concentrations are

those in the bulk. When both tanh terms are well approximated by unity, the expres-
sion for Z, reduces to

ZW, Red =|:

ZD = ZW,OXOX + ZW,Red

RT 02y 2 o 2\ . -
ZWN{(HF)Z}[(DOX(%X)) +(Drealcted)’) ](Jco) (39)

the classical result (Armstrong et al. [1978], Gabrielli [1981]). The above results
show that we may expect to find two finite-length Warburgs in series (and generally
displaced in frequency) at sufficiently low frequencies. It is worth again emphasiz-
ing that although it will be the Zy.. of Eq. (39) which appears in the half-cell circuit,
it is 2Zy.. which appears for the full cell under supported conditions at sufficiently
high frequencies.

We have attempted to give supported results in a form appropriate for com-
parison with unsupported ones by considering full-cell conditions. The transition
problems discussed above only occur for unstirred (liquid) electrolytes or for solid
electrolytes. When a stirred solution or rotating electrode with laminar flow is
employed, the [ which appears in Z;, and Zy, expressions is replaced by &y, where Jy
is the thickness of the Nernst diffusion layer. It decreases as the frequency of rota-
tion of a rotating electrode increases and the experiment is always carried out for
conditions where &y << .

2.2.3.3 Unsupported Situations: Theoretical Models

Introduction. We shall discuss results for unsupported situations under two cat-
egories: (1) those that follow directly or indirectly from exact solutions of the small-
signal differential equations of charge motion in the material-electrode system; and
(2) those which largely arise from empirical analysis of data and often use such ubig-
uitous distributed elements as CPEs. The first category deals with more idealized
situations than the second but generally leads to more detailed results and to more
specific relations between macroscopic equivalent circuit elements and microscopic
processes occurring in the system. At the present early stage of theoretical analysis
of real systems, both approaches have important roles to play.

Most theories of charge transport and interfacial charge transfer in unsupported
situations involve a model which assumes a homogeneous material, for example a
single crystal. Here we shall initially discuss the electrical response following
from the application of a small-signal ac potential difference to homogeneous
materials without applied dc bias or built-in Frenkel space charge layers and with
identical plane parallel electrodes—the idealized full-cell situation. Theore-
tical results are only available so far for conditions where there may be a single
species of mobile positive charge and a single species of mobile negative charge
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present with electroneutrality in the bulk. Results for polycrystalline materials and
for homogeneous ones with Frenkel layers or applied dc bias will be discussed later
on.

We shall start with a discussion of the exact results obtained from the solution
of the most general model yet considered, but one which is still appreciably ideal-
ized (Macdonald and Franceschetti [1978]). Then work relaxing some of the ideal-
izations will be discussed. Some of the present results have been included in the
solid electrolyte reviews of Archer and Armstrong [1980] and by Franceschetti
[1982]. The model of Macdonald and Franceschetti involves mobile positive and
negative charges which may arise from three sources: the partial or full dissociation
of (a) neutral intrinsic centers, (b) neutral donor centers, and (c) neutral acceptor
centers. The model is general enough to include disordered sublattice materials and
single crystals with Schottky or Frenkel disorder. Arbitrary amounts of genera-
tion—-recombination (G/R) are allowed. After dissociation of a neutral center, the
resulting positive and negative charges are taken to have arbitrary mobilities; so, for
example, a donor center might dissociate to yield an immobile positive charge and
a mobile negative charge. We shall denote the mobility ratio for negative and posi-
tive charges as m,, = u,/11,. Although the present model also allows arbitrary valence
numbers for the mobile charged species, we shall primarily restrict attention here to
the usual uni-univalent case.

Boundary Conditions: Adsorption-Reaction Effects. The Macdonald-
Franceschetti model involves relatively general boundary conditions at the elec-
trodes and so includes the possibility of charge transfer reactions and specific
adsorption. Because of its generality, however, the model prediction for Z(w) is very
complicated and, in general, cannot be well represented by even a complicated
equivalent circuit. The Z,(w) expression, may, however, be used directly in CNLS
fitting. Here, for simplicity, we shall consider only those specific situations where
an approximate equivalent circuit is applicable. Idealizations involved in the model
include the usual assumption of diffusion coefficients independent of field and posi-
tion, the use of the simplified Chang—Jaffé [1952] boundary conditions, and the
omission of all inner layer and finite-ion-size effects. Some rectification of the latter
two idealizations will be discussed later.

The Chang—Jaffé boundary conditions involve the physical assumption that the
current arising from the reaction of a charge carrier of a given species is propor-
tional to the excess concentration of that species at the interface, that is for, say, a
negatively charged species,

I, =—z,ek,(n—n") (40)

where z, is the valence number of the charge carrier, k, is a reaction rate parameter
at the reaction plane, and n” is the bulk concentration of the species. The Chang—Jaffé
conditions, as compared to the Butler—Volmer equation, are unrealistic in two impor-
tant respects: there is a complete neglect of the finite size of the charge carriers (i.e.
the compact double layer), and it is assumed that the charge transfer rate does not
depend at all on the local concentration of the electrode reaction products. These
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deficiencies are not, however, nearly as limiting as one might at first expect. The
neglect of the compact double layer introduces only a small error (which becomes
zero at zero frequency) in many solid state situations (Macdonald [1974b],
Franceschetti and Macdonald [1977]). The accumulation of the electrode reaction
product can be neglected when (a) the product species is a metal atom which is
rapidly incorporated into a parent-metal electrode, (b) the product is a gas atom
which equilibrates very rapidly with the ambient atmosphere, or (c) the product
species is soluble in the electrolyte or electrode and diffuses away from the inter-
face very quickly. If the accumulation of the product species is not eliminated by
one of these processes, but the transport of the product is governed by diffusion and
therefore is independent of the electric field, it may be incorporated into the
Chang-Jaffé boundary condition through the artifice of a complex, frequency-
dependent reaction rate constant as described below.

It proves convenient in the theoretical work to use the dimensionless
Chang-Jaffé rate parameters

p.=(1/2)k,/D,) (41)

and
p, =(/2)k,/D,) 42)

where the k’s are effective rate constants and the D’s the diffusion coefficients of
the negative and positive species. These parameters have in some previous work
been given in terms of the alternate equivalent quantities p, = p, = /2 = r,/2 and
p, = p1 = n/2 = r,/2. Clearly when p, = 0 the electrode is completely blocking for
the negative species and for p, = e it is completely nonblocking and nonpolarized.

Now since, to a good approximation, specific adsorption of an ion at an elec-
trode and then a reaction of the adsorbed ion to form a neutral species occur at very
nearly the same point in space, one might expect that these sequential interface
processes would be largely decoupled from bulk and double-layer effects which
occur elsewhere in the system. Some time ago Lanyi [1975] introduced the concept
of frequency-dependent complex rate constants, and they have been found very
useful in allowing reaction—adsorption effects to be included in a very simple way
(Macdonald [1976a], Franceschetti and Macdonald [1977]). In essence, if a Z(w)
solution has been found for a certain situation involving the presence of real,
frequency-independent p, and p, boundary parameters, one only needs to change
them to complex frequency-dependent quantities to automatically include adsorp-
tion effects. No other parts of the solution are affected. As an example, suppose that
a negative carrier is adsorbed and the adsorbed species then reacts to form a neutral
species whose concentration remains, or is held, constant. One finds that the real p,
originally present in the solution need only be replaced by

_ P+ J(OTp)G 1o
1 + j(a)TD )gna

where p, and p,.. are the @ — 0 and ® — oo limits of p,: &,,= 7,./Tp; and T, is the
adsorption relaxation time. In this case p,.. is the rate constant for the first step in

(43)

n
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the adsorption—-reaction sequence in which charge is exchanged between the elec-
trolyte and the adsorbed layer, and p,, is a function of both p,.. and the rate constant
for the second step in the process, in which charge is exchanged between the
adsorbed layer and the electrode. For the case of pure adsorption, p,, is zero and p,
becomes zero at @ — 0. In the limit in which the second (reaction) step is much
faster than the initial (adsorption) step, the adsorbed layer becomes inconsequential,
T = 0, Puo = Pue and p,.. becomes real and frequency-independent. The quanti-
ties p,o and p,.. or, equivalently, k,o and k,., may be expressed in terms of partial
derivatives with respect to various surface concentrations of the small-signal bound-
ary conditions written in terms of current (Franceschetti and Macdonald [1977]).
Derivative definitions of this form which depend on Taylor series expansions, appro-
priate for small-signal conditions, were developed earlier by Armstrong and
Henderson [1972], for example (see also Armstrong ef al. [1978]).

The rate-limiting diffusion of an electrode reaction can also be incorporated into
the Chang—Jaffé boundary conditions by a similar approach. In this case, assuming,
for example, diffusion through a semiinfinite electrode, the result obtained is

_ Pu=Ni®D
Pr P, +~ViwD

where, as before, p,.. is the @ — oo limit of p,, p; is a rate parameter for the in-
verse electrode reaction, and D is the diffusion coefficient of the reaction product.
For sufficiently large D, diffusion becomes undetectable and p, = p,.. Various
adsorption—-reaction—diffusion sequences have been considered by Franceschetti and
Macdonald ([1979¢c, 1982]) and Franceschetti ([1982, 1984]).

(44)

DC Response. Before passing to the uni-univalent case which we will consider
in detail, let us consider the full dc resistance of the system for arbitrary valence
numbers, but only for two (or possibly one) species of mobile charge with equilib-
rium bulk concentrations #° and p°, valence numbers z, and Z»» and electrical mobil-
ities i, and u,. Then electroneutrality in the bulk leads to z,n° = z,p°. The bulk
conductance G.. may be expressed as

G.=R.'=G.,+G., (45)
where

G.., = (F/1)(z,u,n°) (46)
and

Gy = (F/D(z,1t,") (47)

Let us further define the conductivity fractions (or bulk transport numbers)
&, = G..,/G.. and g, = G.,,/G... These quantities may be written in the simple forms

e =1+x;)" (48)

and
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e, =(+m,)" (49)

under intrinsic conditions, the only case to be considered in detail here. Finally,
define the Debye length when only one species of charge is mobile as Lp;. The
important quantities M = (I/2)/L, and M, = (I/2)/Lp, then measure the number of
Debye lengths in a half-cell (half a symmetrical cell of full electrode separation [).
In the present case where L, and M refer to a single species of positive and a single
species of negative charge mobile, Lp, = V2L,

Let us (apparently arbitrarily) now define the small-signal half-cell adsorp-
tion—reaction impedances associated with the positively and negatively charged
species as

Zp, = RT/22F?k,n° (50)
and
Zxy = RT/22F?k,n° (51)

where the k’s may be complex. Using the Einstein relation D; = (RT/F) (u;/z;) for
the j = n and p species, one readily finds that p; may be written as (I/2) (F/RT)
(ziki/l;), so if p; is complex, so is k;. Note that the @ — O limits of Zg, and Zg, are

Ry, = RT/22F*k,n° (52)
and
Ry, = RT/22F?k0p° (53)

where k,, and k, are related as above to p,, and p,.

Now it is often useful to consider normalized quantities in theoretical analysis
or even in an equivalent circuit or 3-D plot. We shall, when desirable, normalize
impedances with the bulk resistance R.., so Zy = Z/R.., and capacitances with C.., so
Cy = C/C... The normalized expressions for some of the circuit elements defined
above simplify considerably and are

Gy =G..,[G.. =€, (54)
G.pn=6G.,/G. =¢, (55)
Gow = R../ Roy=2€,p00 (56)
and
Gapw = R../ Ry = 28,00 (57)

We are now finally in a good position to write down the expression for the full-
cell complete dc resistance following from the present model, R, = Z(w — 0). We
write it here as Rj or Rpy rather than R, to agree with earlier usage. The exact R)
result applies for arbitrary valences for the mobile charged species, arbitrary mobil-
ities, intrinsic, extrinsic, or intrinsic and extrinsic conduction, and any dissocia-
tion—recombination conditions. In unnormalized form it is just

Ry=Gy' =(G,+G,)" (58)
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where

G,=(R., +2Ry) " (59)
and

G,=(R., +2Ry)" (60)

These results show that the total dc conductance is made up of a branch G,, involv-
ing negative charge carrier effects only, in parallel with a similar branch involving
only positive carrier effects. Each individual branch involves a bulk resistive con-
tribution and two equal adsorption—reaction resistances, one associated with each
electrode. The expression for R, in normalized form, Rpy (e.g. Franceschetti and
Macdonald [1977]), is even simpler, namely,

-1

E, £

Rpy :( ] +—Plj (61)
1+pnO l+pp0

Note that when p,o= p,y = oo, one obtains Ry = (€, + .9,,)‘1 = 1; so Rp = R.., ohmic
behavior and thus not very interesting. Of course in the completely blocking
Puo=Ppo = 0 case, Rpy = . To set a scale, it is interesting to note that when
Puo = Ppo =1, Rpy =2 and adsorption-reaction effects have contributed an additional
R.. resistance to R). In general, when p,, =p,o = p., then Rpy = 1 + p; ! a result
entirely independent of mobilities and 7, except indirectly through R.. and p,
themselves.

Adsorption-Reaction and Reaction-Diffusion Predictions. Next, in order
to investigate adsorption and reaction effects more fully, let us consider Z, and Z,
in normalized form. It is straightforward to show that

ZRnN = (2gnpn)71 = pnORQnN /pn (62)

and

ZRpN = (zgppp)_] = ppORGpN/pp (63)

If we now substitute the complex p, from Eq. (43) into Eq. (62) and a similar expres-
sion for p, into Eq. (63), we readily find that the resulting impedances each lead to
a simple ladder network whose hierarchical form is consonant with the sequential
processes: adsorption then reaction. But for the full cell there are two identical inter-
face impedances in series. The circuit for a half-cell with total impedance Z, is
shown in Figure 2.2.7a. The full-cell impedance is just 2Z,. The normalized ele-
ments of Figure 2.2.7a are readily found to be given by
-1

RRnN = (gnan) (64)
RAnN = pnm /EnpnOpnoo (65)

and

C‘AnN = éngnp)zlw/pnm (66)
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Figure 2.2.7. (a) Equivalent circuit for two identical simple electrode adsorption—reaction processes
in series, one at each electrode, with negative charge carriers reacting. Unsupported conditions.
(b) Equivalent circuit for two identical reaction—diffusion processes with negative charge carriers
reacting. Unsupported conditions.

where p,,, = Pu. — Pro- All the elements in the circuit of Figure 2.2.7 are intensive,
as they should be for interface effects. The normalized dc resistance of the circuit
is just

2ZRnN (w_>0) = RRnN + RAnN = (gnpn())il = 2R@nN (67)

which is as expected. Note that since p,,, may be either positive or negative, R,, and
Cy.,, specific adsorption elements, have the same sign and also may be positive or
negative, in agreement with earlier discussion. In the absence of the adsorption step,
27, = Ry, the reaction resistance (for two electrodes), since Ry, is then zero and
C,, infinite. See Figure 4.4.25 for some of the complex plane shapes which follow
from the present approach.

In like manner, if we substitute the complex p, from Eq. (44) into Eq. (62), we
obtain the circuit shown in Figure 2.2.7b, appropriate for a reaction—diffusion
sequence without an intermediate adsorption stage. Here R,y is given by Eq. (64)
as before and

Zwy = P/ €upuaNiwD (68)

Theoretical Results for Various Cases of Interest. Thus far we have only
considered some exact @ — 0 results and typical adsorption—reaction interface fre-
quency response for a half-cell or full cell. Let us now turn to further predictions of
the complete full-cell model (Macdonald and Franceschetti [1978]), predictions
derived from its specific analytical results in several simplified cases and from a
large amount of CNLS fitting of various equivalent circuits to the exact model pre-



2.2 Physical and Electrochemical Models 109

dictions (e.g. Franceschetti and Macdonald [1977], Macdonald, Franceschetti, and
Meaudre [1977], Macdonald and Franceschetti [1979a], Macdonald and Hull
[1984]). For simplicity, we consider only the uni-univalent case (z, = z, = 1), intrin-
sic conduction, and M >> 1. The latter condition excludes the behavior of very thin
layers and membranes, but their response has been discussed in the literature. Let
us define cases of interest by their [p,, p,. 7,] values. Actual values of p, and p,
cited in this way will always be real, but when the symbols are used, they may
include complex cases. Because the electrodes are taken to be identical, p, and p,
values apply to both electrodes.

Little has been done on the [p,, p., ,] case, that where the normalized reaction
rates (but not necessarily k, and k,) are equal and nonzero. Although this is a situa-
tion of small experimental interest except for p, = 0, a formal expression for its
admittance has been given (Macdonald and Franceschetti [1978]) but does not lead
to a useful approximate equivalent circuit representation except when ,, = 1. When
p. =0 as well, there is no finite-length Warburg present. Because of its complexity,
model predictions for the general [p,, p,. 7] case with both p, and p, values nonzero
and noninfinite have been little explored, although it has been found that for a
nonzero p, value say, and even for =, = 1, as p, increases from zero toward p, a
finite-length Warburg arc which appears in the impedance plane rapidly decreases
in size (Macdonald [1975]). Note that when a diffusion arc is present, one finds
(Macdonald [1974b]) that C,(w), the total frequency-dependent parallel capacitance
associated with Y, exhibits @ and @' dependence, quite different from @™ simple
Debye response, yet frequently observed experimentally.

The situation of most experimental interest, especially for solid electrolytes, is
defined by [0, p,, m,] or, equivalently, [p,, 0, m,]. Thus only one species of charge
carrier discharges, but both positive and negative ones may be mobile. The equiva-
lent circuit we believe to be most appropriate in this case is presented in Figure
2.2.8b. First, we see the usual elements C.., R.., Rz, C4, and R, already discussed.
For this [0, p,, m,] situation, Rk, R,, and C, are given by just the unnormalized forms
of Rz, Ranv, and Cy,y presented in Eqs (64)—(66). The additional elements Zp,, Zy,
Cy, and Ri.. which appear in the circuit require discussion. But first it should be
emphasized that much theoretical analysis and fitting of theory to different equiva-
lent circuits makes it quite clear that the hierarchical ladder network form of this
circuit is far more appropriate than either the series Voigt or the parallel Maxwell
forms. The ladder network, which leads to a continued fraction expression for the
total impedance, ensures that the R..C.. arc in the impedance plane will occur at the
highest frequencies, followed (with or without overlap) by a RzCy, arc and then R,C,
arc as the frequency decreases. The Voigt circuit, for example, imposes no such
requirements. The diffusion arc(s) may actually occur in any frequency range for
the present circuit but is usually found at the right of the diagram, the lowest
frequency region.

The element Zp, is a general diffusion impedance added to account for possi-
ble diffusion of uncharged reactants such as oxygen atoms (but not parent-electrode
atoms) in the electrodes (for the present full-cell situation it accounts, of course, for
diffusion in both electrodes). When p, = 0 it should not appear. In most cases of



110  Chapter 2 Theory

Rp rpdx rpdx
O— AWy MAN———--
Cpdx Cpdx Cpdx
Co/dx Co/dx
[ [ -
O i 1
cndx cndx Cndx
Rn rndx rhdx

o—\ W A ———--

(a)

[
Co
o— 0
I
CR
Reo
L AAA—4 ZW — I‘ —
Iic
A
RR RRco
A MV— A
Ra

—W—t Zpe

)

Figure 2.2.8. (a) Transmission line representation of Nernst-Planck Poisson equation system for a
binary electrolyte. R, and R, are charge transfer resistances for positive and negative charge species at
the electrode, respectively. (b) General approximate equivalent circuit (full-cell, unsupported) for the

[0, p,, m,] cases applying to a homogeneous liquid or solid material.

interest, it will probably be best represented by a finite-length Warburg impedance,
s0 Zp, = Zy.. One might at first be surprised to find Zp, in series with the adsorption
related resistance R, rather than in series with C.. and R... Although the diffusion
process in the electrode does occur after the charge carrier has been transported
through the electrolyte, it has only a negligible effect on the potential difference
across the electrode, which is essentially zero for a metallic electrode. Rather, it con-
tributes to the interfacial impedance by hindering the discharge of the adsorbed
species. If adsorption does not occur to any significant extent then C, — 0, R, —
0, and Z), is in series with Ry.
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The next new element is a finite-length Warburg impedance Zy, associated with
diffusion of charged particles within the electrolyte. It is primarily present in low-
frequency regions where the more mobile or more abundant charged species have
time in a half-cycle to rearrange positions so as to screen the less mobile or less
abundant charges from the electric field, leaving diffusion as the primary conduc-
tion method for such low frequencies. Since this diffusional process occurs in the
electrolyte bulk, Zy is placed in series with R... For the present situation, the diffu-
sion impedance is well approximated by

Zu = 2w/ R. = [ranh(iom?) " /o) | (©9)

except when p, = 0 and 7, = 1 simultaneously, a situation where Zy = 0. Here
Q = w1 = WR..C... The quantity Hy is found to be

Hy =(M,)2)(m;} +2+7,)" (70)
We defined M, = I/2L,, where Lp, in the present case is given by

Lo, =[egoRT/87F?qn° " (71)

and ¢ takes intrinsic G/R into account and is actually frequency-dependent and
complex in the exact theory. Here it will be sufficient to take g = 1 when charges of
both sign are mobile and usually take ¢ = 0.5 when only one species is mobile (see
later discussion). Then L, equals either Ly, or Ly,. Note that when 7, = 1, Hy = M,.
Alternatively, when 7,, — O because u, — 0, there will be no dc path through the
circuit and Zy — ce.

The appearance of a Warburg impedance—generally associated with a diffusion
process—arising from the motion of charged particles in an unsupported system has
been the source of some confusion. A discussion and comparison of the various
sources of finite-length Warburg impedances in both supported and unsupported
systems can be found in Franceschetti ef al. [1991]. The essential point is that the
appearance of Warburg behavior in itself is not necessarily a signature of mobile
neutral species coupled to the electrode reaction.

It should be mentioned that when the product of a reaction at the electrode is
neutral, it may possibly diffuse back into the electrolyte as well as into the electrode
(Franceschetti [1981]). Then another Z, appears in series with R;. How can one dis-
tinguish between up to three different Zy’s, all effectively in series with R.? By
changes in the electrode thickness /, and the separation of the electrodes /, one should
be able to identify a given Zy arc as arising from diffusion in one or the other region.
One can then decide whether a Zy, which depends on / involves charged or uncharged
species by changing (if possible) the equilibrium concentration of the neutral species
in the electrolyte, either directly or by changing the composition or pressure of the
ambient atmosphere. Of course, in most experimental situations only a single Zy, arc
appears in the very-low-frequency region (or measurements do not extend to low
enough frequencies to show others). As we shall see subsequently, a single Zy can
only arise from neutral-species diffusion if y, = 0 and , # 0, so 7, = oo, the one-
mobile case. Similar results appear for u, = 0 and u, # 0.
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The next element requiring discussion is Ck, the reaction capacitance, arising
from the series combination of equal diffuse double-layer capacitance effects at each
electrode. It is usually very well approximated by

Cry = Cr/C.. =M, ctnh(M,) -1 (72)

essentially equal to M, in the present M >> 1 case, but note that Cy + C.. =
C.M, ctnh (M,). When M, >> 1, the usual situation, this full-cell result is just half
of the conventional diffuse double-layer capacitance, an intensive quantity, given in
Eq. (33) for the supported half-cell situation.

Now what about the remaining element, Rg..? In the present case, Eq. (61) leads
to Rpy=&'[1 + piol =1 + m," + [€,0,0]", an exact result. But on omitting Zp,, the
circuit of Figure 2.2.8b leads to Rpy = Ry + Zyno + (Reny + Ray) + Reey =1 + 70, +
(f:,lpno)’1 + Rg..y- Thus Rg.. must actually be zero, at least in the @ — 0 limit, unless
expressions for one or more of the other parameters are incorrect in this limit.
Macdonald and Hull [1984] found that even when R, = 0 and Rz = 0 (taking
Pn = Pu = °°) a circuit similar to the present one with the present Zy, could be best
fitted to the exact [0, oo, 7,,] case with a nonzero Rg.. approximately given by

RRMN = 2M_l [ﬂ,_nl - 1] (73)

for m, < 1 and by zero for x, > 1. Thus even in the absence of a normal reaction
resistance, CNLS fitting of exact data leads to a nonzero apparent reaction resist-
ance. For large M it is only of importance when 7, is very small (a high-resistance
case), since when Rg.. < 0.01 R., its effect will be essentially negligible and difficult
to resolve even with CNLS fitting. Note also that Rz..y will always be appreciably
smaller than Zyy, = 7, for M >> 1. Nevertheless, the presence of this element in
the circuit and the natural tendency to consider the measured Ry + Ry.. as “the” reac-
tion resistance can lead to incorrect estimates of the rate parameter unless the pres-
ence of Rg.. is explicitly recognized (Macdonald and Hull [1984]). The fact that Rg..
should not actually appear at @ = 0, yet is needed in the fitting circuit, is an indica-
tion of some inappropriateness in the fitting circuit itself. But for the present it seems
the best circuit available.

Let us continue to ignore Zp, and investigate two simpler cases. First consider
the important completely blocking case [0, O, 7,] where R; = . There is still a
Warburg impedance present in general, but it can only contribute to making the nor-
mally vertical spur present at low frequencies in the impedance plane and associ-
ated with complete blocking show less than vertical behavior over a finite frequency
range. But an inadequacy of the present expression for Zy, appears when 7, = 1; then
the exact solution leads to no Zy but Eq. (69) still yields a nonzero Zy,. The special
[0, O, 1] case must therefore be handled separately until a more complete expres-
sion for Zy is found or unless direct CNLS comparison between data and model pre-
dictions is employed.

The Case of Charge of Only a Single-Sign Mobile. The remaining one-
mobile case, [0, p,, o], is of particular interest for solid electrolytes with only a
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single-species-of-charge (here negative-charge) mobile. This situation is the most
usual one for solid electrolytes, although it should be realized that it is always some-
thing of an approximation. At nonzero temperature both positive- and negative-
charge species present in a solid material or a fused salt are mobile, although their
mobility ratio, m, = u,/i,, may be either very large or very small. The relatively
immobile species may have so low a mobility at a given temperature that motion of
this species is negligible during a half-cycle of the lowest frequency applied. Then
the one-mobile approximation will be a good one. Although we have taken p, as
zero in the above case designation, its value is immaterial since the positive charges
are taken immobile (1, = 0) and cannot react at an electrode. In the present case all
the &,’s which appear in the defining equations are unity and all 7;,"’s zero. There-
fore, as Eq. (69) shows, Zy, = 0, and no charged-particle Warburg arc is present, and
the only Warburg diffusion response possible must arise from diffusion of neutral
particles in the electrodes or the bulk of the material. The exact theoretical results
show that in the present case the circuit of Figure 2.2.8b (with Ri.. = 0) is completely
applicable with all frequency-independent elements given exactly by their values
following from the foregoing expressions except that for Cry. When Zp,, = 0 and the
time constants are well separated, so that R,C, >> RzCr >> R..C.., the circuit of
Figure 2.2.8b leads to just three distinct arcs in the Z* plane.

It is in the partially dissociated one-mobile case that G/R can play a role of some
importance (e.g. Macdonald [1953], Macdonald and Franceschetti [1978]). We have
already mentioned that the L, which appears in the equation for Cgy should usually
be taken as Ly, (g = 0.5) in the one-mobile case. This choice is particularly relevant
for fully dissociated charges, such as might arise from the complete ionization of
immobile donors. But in the partly dissociated situation, appropriate for intrinsic
conduction, G/R can lead to an effective mobility for the immobile charge species
(except at dc). Then, over some region of frequency, as v decreases L, changes from
Lp; to Lp because of the frequency dependence of ¢. Thus, although the formal
expression for Cry given above remains valid for the one-mobile case, one must con-
sider the physical situation to decide whether to use Ly, or L, in M,. Alternatively,
it is more accurate to use the full frequency-dependent expression for g as a part of
the definition of Cgy in this case. Then CNLS fitting can, in principle, lead to infor-
mation about the degree of dissociation of intrinsic centers and the associated G/R
parameters. Such a procedure would only be justified, however, for excellent data.
It was originally thought (Macdonald [1976b]) that G/R might lead to a separate
semicircle in the impedance plane, but later work (Macdonald et al. [1977]) sug-
gests that it does not for ionic conduction. Thus its effects for the one-mobile case
are entirely restricted to Cg only and are relatively small even there. Note that in the
two-mobile case, as long as the mobilities are not greatly different, effective mobi-
lization, arising from G/R, of the species with the smaller mobility will still lead to
negligible effects.

Some Results for More General and Realistic Situations. Next let us con-
sider the removal of some of the approximations inherent in the foregoing model.
For the small-signal flat-band case, it turns out that the half-cell reaction resistance
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in the supported case, Eq. (34), derived using the Butler—Volmer equation, and the
half-cell reaction resistance in the unsupported case, Ry, Eq. (52), which followed
from use of the Chang—Jaffé boundary equations, are essentially identical
(Macdonald [1974a,b]). Furthermore, Franceschetti and Macdonald [1977] and
Macdonald and Franceschetti [1979a] later showed that the calculation of the reac-
tion resistance in either the unsupported or supported case gave the same result
(because of compensating errors) whether Chang—Jaffé or Butler—Volmer equations
were employed, provided, however, that any inner- or compact-layer capacitance C,
present was much larger than the diffuse double-layer capacitance. In addition, a
method of transforming an unsupported small-signal impedance solution based on
Chang-Jaffé boundary conditions to one employing Butler—Volmer, or even more
general boundary equations, was developed. This method obviates the difficult task
of solving the small-signal equations ab initio with the new boundary conditions.

There are plausible physical reasons to prefer Butler—Volmer to Chang—Jaffé
conditions, especially when a compact layer is present, since the Butler—Volmer
equations can account for the p.d. across this layer. Macdonald and Franceschetti
[1979a] therefore studied how, for the [0, p,, °o] case without adsorption, Cr and
Ry are changed from the results given here to new values when Butler—Volmer, or
even more general boundary conditions, are used instead of Chang—Jaffé conditions
and a compact layer of arbitrary constant capacitance was assumed present as well.
Theoretical results were given and CNLS fitting of such results to an equivalent
circuit were carried out in order to find the simplest adequate modifications needed.
This approach not only allowed @ — 0 modifications to appear but yielded infor-
mation on changes in the interface impedance over all @ values of interest arising
from the presence of C. and the more general boundary conditions.

Results found from the above approach were surprisingly simple. The present
expression for Rgy or Ry, (with g = 1) was shown to hold exactly in the
Butler—Volmer case, independent of the size of C.y. A simple expression for a new
effective full-cell Cy, say Cg,, was found in the Butler—Volmer case, namely,

Cren =Cry —(Cry +1+ Pno)z /(CRN +1+Cu) (74)

Now in the usual M >> 1 case where Cry >> 1 + p,, this result reduces to just
Ciiy = Ciy + Coy, a series combination of the original Cy and the compact-layer
capacitance C.. However, this is just the @ — O result always used in the supported
case! Although these results were derived for the [0, p,g, o] case without adsorp-
tion, they should hold quite adequately for the nonadsorption [0, p,o, 7,] case as
well.

When adsorption is present and the effects of a compact layer are included as
well, it has been shown (Macdonald et al. [1980]) that in the [0, 0, o] case the
@ — 0 expression for the total differential capacitance is more complicated than
just Cg, and C, in parallel. One needs first to separate C, into two series parts so
C.'=C,' + C5', where C, is the capacitance between the electrode and the charge
centroids of the adsorbed ions (at the inner Helmholtz plane), and Cp is that from
this plane to the outer Helmholtz plane, where the diffuse layer of charge begins.
Then one obtains the circuit of Figure 2.2.9, which reduces to the above result for
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o— —o

Figure 2.2.9. Circuit for the total interface differential capacitance in the (0, 0, =) case without
adsorption for @ — 0.

Cr. when C, = o0. When C,, < oo, it is not clear how Ry should be added to this circuit
since it should bridge C, and still be in series with C,. For most solid electrolyte
situations, however, it will usually be an adequate approximation to take C, = oo in
fact and to put Ry in series with C,, returning to the usual form of the interface part
of the circuit (Figure 2.2.8b). First, there is the probability of the electron wave func-
tion spilling out from the surface of a metal electrode and reducing the effective
thickness of C, toward zero (Kornyshev et al. [1982]). Second, for solid materials
there will be no inner uncharged layer of solvent material, as in liquid electrolyte
situations. This means that the plane marking the beginning of the diffuse layer
is nearly as close to the electrode as the plane where adsorption occurs; when
Couy —> o or it is very large, Cgy will also be extremely large and may often be neg-
lected compared to Cy, so Cg, = Cy. Incidentally, in the presence of dc bias, Cy (and
C,) are both functions of the effective overpotential and can increase greatly over
their flat-band values under some conditions. They are limited in maximum value,
however, because of the finite size of ions (Macdonald et al. [1980]). When one
finds experimentally that Cy, is nearly independent of applied dc bias and tempera-
ture, it is likely that it is dominated by C. rather than Cx.

Now let us briefly consider some results for the non-flat-band case without
adsorption (Franceschetti and Macdonald [1979a,b, 1980]). Both transient response
and biased small-signal frequency response results have been obtained using com-
puter simulation, that is numerical solution of coupled sets of partial or ordinary
second-order differential equations describing the model. Chang—Jaffé and Butler—
Volmer boundary conditions were both employed. Here we shall discuss only the
frequency response results. First, the response of cells with (0, 0, x,,) conditions at
the left electrode and (oo, oo, 7,,) conditions at the right one was considered, leading
to essentially half-cell conditions. The dc bias was assumed to arise from either built-
in Frenkel space charge regions or an actual applied p.d. No direct current flowed
in these completely blocking situations. Second, results were obtained for the full-
cell system with (0, 0, x,,) conditions at each electrode. Many complex plane Z and
Y plots were presented to show how arcs and spurs varied with applied bias. More
importantly, it was found that the equivalent circuit of Figure 2.2.8b with Z;, = 0,
P =0, and no adsorption applied quite well, not only for zero bias (flat-band) but
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for either polarity of applied bias up to the maximum magnitude applied of about
15 (RT/F), sufficient bias to make the system very nonlinear. There are no R, and
Ry elements present under these conditions, but Zy did appear for x,, # 1 and for
7, # oo conditions. It is impractical to summarize here all the results found and
reported, but the dependences of Ck and the components of Zy, generally varied with
bias in reasonable and expected ways. The bulk parameters R.. and C.. showed neg-
ligible variation with bias.

Later, large-bias frequency response results were obtained for one-mobile par-
tially blocking situations with no adsorption and with either (p,9, —, 0) for the left
electrode and (e, —, 0) for the right (half-cell conditions) or (p,o, —, 0) for both. Then
a direct current can flow, and steady state current—voltage curves for Chang—Jaffé
conditions were compared with those for Butler—Volmer ones. Appreciable differ-
ences occurred for biases bigger in magnitude than (R7/F). As expected, no diffu-
sion effects were present in the response. The circuit of Figure 2.2.8b was again
found adequate to describe the response, here with Z,, =0, R, =0, and Zy, = 0. For
Chang-Jaffé conditions R..y remained very close to its expected unity value and C..y
was held fixed at unity, but for Butler—Volmer conditions R..y and C..y were some-
what bias-dependent and differed from unity. The dependences of R and Cy on bias
were in accord with predictions based on the buildup of charge accumulation or
depletion regions near the partly blocking electrodes, and it was found that Cry was
smaller in the Butler—Volmer case, because of compact-layer effects, than in the
Chang-Jaffé one. For the same reason Rgy was less bias-dependent for Butler—
Volmer than for Chang—Jafté.

The foregoing results show the wide scope of the Figure 2.2.8b general circuit.
It applies with good approximation for both flat-band small-signal conditions and
under equilibrium or nonequilibrium biased conditions provided its elements are
properly interpreted to account for the presence or absence of a compact layer and
the appropriate type of boundary conditions.

Thus far we have dealt with either half-cells, where the right half-cell bound-
ary involves nonpolarizing, ohmic boundary conditions (eo, o, m,) and the left
involves conditions such as (0, p,, 7,,) or with full cells with identical boundary con-
ditions at each electrode. Another interesting full-cell case is that of crossed reac-
tions where the left electrode involves (0, p,, m,) and the right (p,, 0, 7). Different
electrodes are used, so charge of one sign reacts at one electrode and that of the
other sign at the other electrode. This double-injection model cannot pass dc and
has been analyzed by Glarum and Marshall [1980]. Although their solution is rather
complicated, it reduces under conditions of interest (7, << 1) to just the Z,,c imped-
ance of Section 2.2.2.2, that for an open-circuited transmission line. As already
noted, it leads to an ordinary finite-length Warburg arc in the &, not the Z, complex
plane. Glarum and Marshall have used this result with some success in analyzing
data for iridium oxide thin films (see also Franceschetti and Macdonald [1982]). It
is therefore likely that a modification of the general Figure 2.2.8b circuit, useful in
some R; = 0 situations, would be to replace Zy by Zpoc. In fact, the most general
modification would be to replace Zy by Z;, allowing the possibility of any kind of
uniform-transmission-line-like behavior.
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2.2.3.4 Unsupported Situations: Equivalent Network Models

Sah [1970] introduced the use of networks of electrical elements of infinitesimal size
to describe charge carrier motion and generation/recombination in semiconductors.
Barker [1975] noted that the Nernst—Planck—Poisson equation system for an unsup-
ported binary electrolyte could be represented by a three-rail transmission line
(Figure 2.2.8a), in which a central conductor with a fixed capacitive reactance per
unit length is connected by shunt capacitances to two resistive rails representing the
individual ion conductivities. Electrical potentials measured between points on the
central rail correspond to electrostatic potential differences between the correspon-
ding points in the cell while potentials computed for the resistive rails correspond
to differences in electrochemical potential. This idea was further developed by
Brumleve and Buck [1978], and by Franceschetti [1994] who noted that nothing in
principle prevents extension of the model to two or three dimensional systems.

Most recently, the electrical network formalism has been used extensively by
Jamnik, Maier and their collaborators (Jamnik et al. [1999], Jamnik and Maier
[2001], Jamnik [2003]), whose work has highlighted the utility of the models for
qualitative reasoning about phenomena occurring in systems with a mixed ionic and
electronic conducting electrolyte (MIEC) and electrodes nearly blocking for one
species. These workers highlight the fact that the capacitors connecting the ionic
rails to the central rail representing bulk dielectric behavior are in fact chemical,
rather than electrostatic, capacitances related to the derivative of chemical potential
with respect to ionic concentration. In modeling mixed conductors with a large
enough electrode separation to have bulk electroneutrality, Jamnik er al. [1999]
and Jamnik and Maier [2001] obtain informative approximate results by eliminat-
ing the central or displacement rail in Figure 2.2.8a and replacing it with a geometric
capacitance in parallel with the transmission line. In particular, they are able to
model the transition between a “nearly single-carrier system” not exhibiting a
Warburg region and a two carrier system, exhibiting a Warburg. Jamnik [2003]
describes the use of the model to describe multiphase systems and to model grain
boundary effects.

While electrical networks offer a number of useful features, as a guide to qual-
itative reasoning about electrochemical systems and as a means of shedding light on
the origin of the elements appearing in “lumped” circuits, it should be remembered
that they are simply a graphical representation for what amounts to a finite difference
representation of the underlying Nernst—Planck, Poisson, Maxwell and Diffusion
equations. Flieg and Maier [1997] have made use of this direct computational
approach to study the effects of partial contact with a real electrode while Jamnik
et al. [2000] have used it to study the effective rate constant for structured arrays of
contact points or strips.

2.2.3.5 Unsupported Situations:
Empirical and Semiempirical Models

In this section, we shall first discuss some ways in which the theoretical model results
and equivalent circuits of the last section may be modified to attempt to account for
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less ideal conditions than assumed in the theory, conditions often appreciably closer
to those found in real material-electrode systems. Then we shall discuss empirical
and semiempirical models which may be useful as elements in equivalent circuits
used for fitting real IS data.

Possible Circuit and Model Modifications. Further modifications of the
Figure 2.2.8b equivalent circuit are often necessary, especially for polycrystalline
material. One frequently finds experimentally that one or more of the R..C.., RxCx,
or R,C, semicircles in the complex plane are depressed so their centers lie below
the real axis. It is more probable for the RzCy arc to show such depression than the
bulk R..C.. one for single-crystal material. Such depression may be interpreted in
terms of a distribution of relaxation times, possibly arising in the case of the RzCx
arc from electrode surface roughness and/or porosity (e.g. de Levie [1967], Franklin
[1975]). Although the exact small-signal solution with identical electrodes actually
leads to some arc depression when =, is very different from unity (Macdonald
[1974b]), the amount of depression possible from widely different positive and neg-
ative charge mobilities is insufficient to explain most experimental depressions.

In the absence of a fully adequate microscopic theory leading to arc depression
in the impedance plane, it has become customary to use the ZARC function defined
in Section 2.2.2.2 to describe the depression analytically. This function involves
either a resistance and a CPE in parallel or a unified impedance as in Eqs (23) and
(25). For describing depressed arcs in the € plane, the éARC (Cole—Cole) function
also defined in Section 2.2.2.2 has long been used. Note that the CPE which appears
in both the ZARC and the éARC may be associated with a non-uniform transmis-
sion line and nonuniform diffusion in a region of infinite extent, but the CPE has
not been generalized so far to the finite-length diffusion regime. When an adequate
expression is available, it will represent a more complex process than ordinary finite-
length (uniform) diffusion, for example, Zy, a subset of such generalized CPE
response. Although this process would be appropriate for distributed (nonuniform)
bulk response, since it would change from intensive to extensive behavior with
decreasing frequency as Zy does, the ordinary CPE, which can be taken either inten-
sive or extensive, seems more appropriate for intensive interface processes. When-
ever a straight-line spur in the impedance of plane is found with an angle from the
real axis different from /4, the CPE should replace Zy,.

Although there is no complete derivation of a generalized CPE yet available
which arises from nonuniform diffusion (NUD) in a finite-length region, one may
heuristically modify the CPE and Warburg diffusion expressions in such a way as
to generalize them both. The result is

Zyup = Ry tanh [A(JRO (]a))V]/ [AoRo (Jw)w] (75)

where R;, which might be R.. for bulk behavior, is taken extensive and we require
0 < y< 1. For y = 0.5, this expression reduces to just Zy, when one takes A, =
L/RoN D . For AGRy®" >> 1, Znyp = Zcps. Further, for any Y, Zyup — Ry, an exten-
sive quantity, when A,R,@" << 1, and, for W < 1, to [Ay(jw)"]™" for AjRy®" >> 1.
This result is intensive, as it should be if A, is taken intensive, as it is in the Warburg
limit. Note that while both the ZARC impedance and Zyyp involve RyAo, they will
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have somewhat different shapes at the lowest frequencies where they approach the
real axis. Further, the present expression for Zyyp is just an empirical stopgap result
and is probably most useful for 0 < y < 0.6. We shall denote this heuristic general-
ization as the generalized finite-length Warburg model (GFW).

The fact that the current ungeneralized CPE has no dc path (while a general-
ized one would) can lead to problems in using the CPE in hierarchical circuits such
as that of Figure 2.2.8b. Whenever it seems appropriate to replace an ordinary capac-
itor in the circuit by a CPE, no problem arises. But one cannot replace a resistor
needed as part of a dc path by a CPE and still maintain the dc path; all one can do
is put a CPE in parallel with the resistor, producing a ZARC function, or perhaps to
use Zyup. But there is a problem in using such elements in hierarchical circuits.
Although the real and imaginary parts of, say, a ZARC function could be separated,
and the imaginary part used in place of an ideal capacitor in an hierarchical circuit
and the real part in place of an ideal resistor, there is no physical justification for
such separation.

In the polycrystalline case, one must consider the processes which occur within
an individual single-crystal grain and what happens at the grain boundaries, taking
into account that there is almost certainly a distribution of grain sizes and orienta-
tions present. Since the response is a three-dimensional average of the response of
a great many interacting grains, one expects that the bulk response for composite
materials will both be more complicated than the R..C.. semicircle expected for
a perfect homogeneous material and may often be described by a distribution of
relaxation times, either discrete or continuous. Since one usually finds that it is
experimentally impossible to distinguish results arising from a continuous dis-
tribution and its approximation by, say, 10 or more discrete relaxations, it is often
easiest to use the continuous distributions, since many less parameters need be
specified. For the distorted and displaced arcs which are usually seen in the imped-
ance plane for composite materials such as ceramics, it of course makes no differ-
ence in which order the elements representing this overall bulk response appear in
the equivalent circuit (Voigt, not hierarchical connection), and it has also been cus-
tomary to try to represent the response by one or more ZARC functions in series.
No charged-particle Warburg response will be present if charge of only a single sign
is mobile.

Although is does not seem reasonable to build a hierarchical ladder network
circuit using the separated real and imaginary parts of a distributed element such as
the ZARC, we can still achieve considerable generality and flexibility if we form a
circuit using only unified distributed elements as in the three-level circuit of Figure
2.2.10. Here DE represents a general distributed element, one like the ZARC which
can well approximate either an ideal resistor or an ideal capacitor in limiting cases
of its fractional frequency dependence exponent . Thus, in Figure 2.2.10, the odd-
numbered DEs could, in the limit, be taken as capacitors, and the even-numbered
ones as resistors. In practical cases, however, one would often find it necessary to
choose some of the DEs as nonideal distributed elements. Note that if the electrodes
were nonblocking, one would need to ensure a dc path through the circuit by, for
example, taking the even-numbered DEs as resistors, ZARCs, or some other unitary
or composite nonblocking distributed element.
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DE,

DEs

DEs

DEg

Figure 2.2.10. General equivalent circuit showing hierarchical structure and involving general
distributed elements.

Further Empirical and Semiempirical Models. Although various empirical
distributed-element models have already been discussed, particularly in Section
2.2.2.2, the subject is by no means exhausted. Here we briefly mention and discuss
various old and new elements which may sometimes be of use in a fitting circuit
such as that of Figure 2.2.10. Complex plane plots of IS data by no means always
yield perfect or depressed semicircular arcs; often the arc is unsymmetric and cannot
be well approximated by the ZC. An unsymmetrical impedance plane arc usually
exhibits a peak at low frequencies and CPE-like response at sufficiently high fre-
quencies. The reverse behavior is not, however, unknown (Badwal [1984]). An
expression originally proposed in the dielectric field by Davidson and Cole [1951]
yields ordinary asymmetric behavior. Its [, generalization is

Lo=[1+js] ™ (76)

with s = ot and 0 < y; < 1, and it reduces to symmetric Debye response for y;, =
1. This model will be denoted by DC. A further empirical approach, due to
Kohlrausch [1854] and Williams and Watts [1970], yields transient response
of the fractional exponential form exp [—(#/7)%, with 0 < yw < 1. It yields
frequency-domain response generally rather similar to that of Eq. (76) and such
response will be denoted in this section by WW. The LEVM/LEVMW CNLS com-
puter program, available for free downloading from J. R. Macdonald and Solartron
Inc. (Macdonald and Solartron Inc. [2003]) allows accurate calculation of such
response for both simulation and data fitting. See the discussion in section 4.2.2.3.

Jonscher [1974, 1975a,b, 1980, 1983], in an extensive series of papers, working
primarily in the dielectric area, independently emphasized the importance and
ubiquity of constant phase response, and proposed and demonstrated the utility
of three different empirical frequency response functions in IS data fitting. These
three equations, termed universal dielectric response by Jonscher, were originally
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expressed in terms of the imaginary part of the complex dielectric susceptibility, y”.
They may alternatively be expressed, of course, in terms of € or Y. Further, they
may all be generalized to the I} (k = € or Z) representation. Finally, it has been found
(Macdonald [1985d]) that two of them may be written in full complex form, not just
as Iy .

The three generalized Jonscher equations may be expressed as

I, = Bko(jw)iw (77
I, = B/d[(j(mfkl)_w1 +(jw7k2)_wz] (78)

and
I, = —Bkz[(a)/cokp)_‘m +(a)/a),q,,)_l‘/“]il (79)

It is clear that Eq. (77) is just the CPE and Eq. (78) is a combination of two CPEs
(in parallel for k = € and in series for k = Z). Of course, the @y, of Eq. (79), which
denotes a peak frequency, could be replaced by 7, = 7},. The possible range of all
the exponents is (0, 1). In Jonscher’s k = € “universal dielectric response” case, one
has Wo=1—-n, Yuy=1—-n, Ypo=1—ny, Ys=m, and Yy, = 1 — n. If we further
choose Y, = n, Yz = n,, and Y, = ny, Eqs (77) and (78) yield the same frequency
dependence exponents at the admittance level when a single term dominates. For
example, Eq. (77) yields Y, o (jw)" and Y, o< (jw)" for the above choices. We shall
term Eq. (78) the generalized second Jonscher equation (GJ2) and Eq. (79) the gen-
eralized third Jonscher equation (GJ3).

The minus sign in Eq. (79) arises because we have defined I, with a plus sign
as I = I + iI{. When @ = @, in Eq. (79), |[I}'| reaches a maximum. Further, when
Wiz = W, this equation reduces to the long-known Fuoss—Kirkwood [1941] form,
yielding a symmetrical curve for —I” vs. log(w/a,). We shall denote this special
form of the GJ3 as the GFKJ equation. Although no fully complex general expres-
sion consistent with Eq. (79) is available, when ¥, = ¥; = ¥4 complex forms have
been given for various fractional values of ;. Jonscher and his collaborators have
shown that the y” forms of Eqs (77)—(79) can fit a great deal of dielectric and con-
ductive system data. Unfortunately, the fits never used CNLS, and no ordinary non-
linear least squares fits of y” giving fitted parameter estimates and standard deviation
estimates have been presented. Further discussion of “universal dielectric response”
appears in Macdonald [1985d].

Some time ago Almond, West, and Grant [1982], Bruce, West, and Almond
[1982], and Almond and West [1983b] specialized the )” form of Jonscher’s Eq.
(78) for hopping conduction situations to obtain

o(w)=K(w, +o,"0" (80)

where o(w) is the ac conductivity, K is a temperature-dependent constant, and ,
was identified as the thermally activated ionic hopping frequency vy. Now Eq. (80)
may be rewritten at the Y level as

Y'(0)=G[1+(@/w,)'] (81)
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Next, generalization of Eq. (81) to the complex plane yields

Y(0) = Gy[1+(jor,)"| (82)
which is fully consistent with Eq. (81) when
o, = {10 [cos.(n7t/2)]“"}7l (83)
or, equivalently,
7y = ;' =[cos(nr/2)] " [, (84)
Finally, Eq. (82) yields
Z=R/[1+(jar,)'] (85)

where R, = G;'. This expression is just the long-known ZARC [compare Eq. (22)].
Thus, it appears that the principal new element in the Almond—West work is the
identification of @, as the hopping frequency. This interesting suggestion has been
examined at some length recently (Macdonald and Cook [1985]), with the conclu-
sion that the case is not proven so far. If, in fact, the hopping frequency vy, is directly
involved in the ZARC when it is applied to hopping conduction situations, it seems
most plausible that v, = @, = rj', or perhaps /2, rather than @,. Equation (83)
shows that @, — o as n — 1, an unlikely result and one avoided by the choice of
y instead.

Several of the empirical model responses discussed above have been given a
more theoretical basis (see Macdonald [1985¢,d] for references), but they still suffer
from two important weaknesses. They do not generally lead to physically realistic
response at both high- and low-frequency extremes, and they do not lead to any
predictions for possible temperature dependence of the fractional exponent(s) w. A
semiempirical theory whose frequency response results are briefly discussed below
does, however, avoid these weaknesses. Since any real material will have a largest
(7..) and a smallest (7,) response time, response at longer (shorter) times than these
will be determined by these limiting responses (for a single type of physical process).
But such single-time-constant behavior leads to frequency response proportional
to  for @ << 7' and to @' for @ >> 7;'. Although simple Debye behavior with
Ty = T.. = T also leads to limiting @"' response, here 7, and 7.. may differ greatly, and
for the range 7' < @ < 7;', non-Debye fractional exponent response may appear,
and usually does so.

Note that CPE response fails the above test of physical realism at both frequency
extremes; so does ZC response for y < 1. On the other hand, Davidson—Cole low-
frequency-limiting response is realistic, but not its high-frequency-limiting response.
One might reasonably ask, if all these models are not entirely physically realistic,
why are they discussed and used for fitting? The reason is that it is rare for a single-
response process, say that associated with an electrode reaction (Ri and Cy in the
ideal nondistributed case), to be so isolated in its frequency range that one can follow
its response alone to very high or low (relative) frequencies. Because of the usual
presence of other processes yielding response near or even overlapping in frequency
with that of the process of immediate concern, one cannot usually follow the
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response of the process in question very far into its wings where ®*' limiting
response finally must appear. Further, one usually finds that experimental limitations
preclude measuring far into the high-frequency wing of the lowest-frequency process
present. In essence, what we can’t measure doesn’t matter—at least until we can
measure it! Nevertheless, a theoretical model which does incorporate proper limit-
ing behavior is clearly superior in that respect to one that doesn’t.

Although dielectric response data often leads to temperature-independent y’s
(so that the time—temperature or frequency—temperature superposition law holds),
this is by no means always the case (Jonscher [1983]). Further, conductive-system
response, as in ionic hopping conductors, often leads to appreciable temperature
dependence of . Surprisingly, v, and y;, temperature responses, when apparent, are
usually found to be quite different, with y, increasing with increasing temperature
and y; decreasing.

In recent years, several important variations of the Kohlrausch—Williams—Watts
model have been produced and attention has been drawn to a nearly constant com-
ponent of bulk dielectric response in low conductivity electrolytes. This work is dis-
cussed in Section 4.2.2.3.

Fitting Ambiguity and a New Semiempirical Model. Although all the
models we have discussed in this section and in Section 2.2.2.2 are distinct and sep-
arate, and although they may be associated with different physical processes, it turns
out that there is a high degree of practical fitting ambiguity between most of them.
Response differences between several unsymmetric models with the same y value
are demonstrated in Figure 2.2.11. Here Debye response is included for comparison
and DAE, (which involves the parameter ¢ rather than y) refers to the semiempir-
ical distribution-of-activation-energies model discussed below. But the situation is
different when “data” derived from one model involving a given v, say y,, are fitted

0.6 ¢ =1/3
Debye Y o=1/3

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.2.11. Complex plane response of the normalized I; response of various distributed models.



124  Chapter 2 Theory

by CNLS to another model, yielding a y estimate for this model, say y,. It turns
out, as we shall demonstrate below (see also Macdonald [1985d]), that when y, and
Y, are allowed to be different, one model can often fit another within 1% or so
(usually better than most experimental data are known) over quite wide frequency
and magnitude ranges. When such ambiguity is present, as it usually is for practi-
cal less-than-perfect data, it will often be easiest to fit with the simplest model,
whether or not it is physically reasonable for the material—-electrode system consid-
ered, and then relate the fitting results to a more appropriate, but more complex,
model.

Such a more complex model is the DAE, involving an exponential density dis-
tribution of activation energies. Its rationale and results are described in detail in
Macdonald [1963, 1985c¢.d]. Let us distinguish three forms of it. First is the DAE,,
which involves a single exponential density distribution and leads to unsymmetri-
cal response (Macdonald [1985c]). Second is the DAE,, which involves two joined,
complementary exponential distributions and leads to symmetric behavior in the
complex plane. Finally, the general DAE involves two joined, noncomplementary
exponential distributions and spans the range of shapes from the DAE, to the DAE,
(Macdonald [1985d]). Of course, the DAE is most generally given in normalized 7,
form.

Although the frequency response of the DAE model can only be expressed in
integral form (associated with a hypergeometric function) for arbitrary ¢, relatively
simple closed-form response has been given for many values of ¢. Such closed-form,
discrete-¢@ response is useless, however, for accurate CNLS fitting using this model.
Therefore, the full-integral DAE model as well as nearly all of the other distributed
element models discussed so far, have been built into the general CNLS fitting
program, LEVM/LEVMW. Thus, any of these models can be used to fit experimental
frequency response data or “data” derived from another model.

Some of the model-fitting ambiguity mentioned above is demonstrated in the
next figures. Further discussion of DAE-Jonscher ambiguity appears in Macdonald
[1985d]. First, it is worthwhile to categorize the models discussed by their complex
plane symmetry as in Table 2.2.3. The symmetric and asymmetric curves give closed
arcs in the complex [ plane, but the CPE and GJ2 yield only open spurs in this plane
(and, as mentioned earlier, cannot be normalized in the usual [, way). The fitting
ambiguity with which we are concerned here applies only within a given column of

Table 2.2.3. Summary of Main Models Discussed, Showing
Their Symmetry Characteristics in the Complex Plane

Symmetric Asymmetric General
ZC DC CPE
GFKIJ GFW GJ2
DAE, WwWw DAE

DAE,
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Table 2.2.3. We cannot expect to get a good fit of asymmetric WW data, for example,
with a symmetric model such as the ZC. Note that all models will generally show
some region of frequency where CPE-like response appears. In this region, the CPE
model is clearly sufficient. It is not this ambiguity with which we are concerned but
rather with the holistic response, that which includes regions beyond and below that
where CPE response alone dominates.

We have found that any symmetric model of Table 2.2.3 can be very well fitted
by any other symmetric model. Figures 2.2.12 and 2.2.13 show two-dimensional

8 Frequency decades , "
06 aueney GFKJ "DATA™ y
—-—— DAE; Fiti ¢
o = 10'2
0.4
. Wy =3/4- = i $=1.173
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
I

Figure 2.2.12. Complex plane comparisons of the response of the GFKJ and DAE, models when
the DAE, is fitted to GFKJ response with CNLS.

0.6+ 8 Frequency decades \ .
GFKJ "DATA™ y
—-—2C Fitl Yy,e
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0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.2.13. Complex plane comparisons of the response of the GFKJ and ZC models when the
ZC is fitted to GFKIJ response with CNLS.



126 Chapter 2 Theory

plots obtained from full CNLS fitting of the DAE, and ZC models to GFKJ model
“data” for several different y values. The fits are so good that only with extremely
accurate experimental data (better than those usually available) could one decide
unambiguously between any of the three symmetric models on the basis of CNLS
fitting alone. Further, the DAE has been found to yield a very good fit of the GJ2
model as well (Macdonald [1985d]).

Figures 2.2.12 and 2.2.13 of course do not show frequency response explicitly.
It is found to agree exceptionally well also at each point, at least until one moves
far away from the peak frequency. Some results for DAE, fitting to GFKJ data for
y; =+ are shown in Figure 2.2.14. The unity weighting used in Figures 2.2.12 and
2.2.13 yields a better fit near the peak, and proportional weighting (see Section 3.3.2)
leads to better agreement in the skirts of the curve. Here s = @7, is a normalized fre-
quency variable (Macdonald [1985c,d]).

The situation is somewhat less ambiguous for the special asymmetric models
of Table 2.2.3. Although the DC and DAE, models can well fit each other, neither
one can fit WW model response adequately over a wide y; range. For 0.7 < ygyyw <
1, the DAE, can fit WW results quite well, but better fits are obtained for this region
and below using the general DAE model to fit WW “data.” Figure 2.2.15 shows the

-0.5
r,=10'2 DAE, fitting
to GFKJ
-1.0
B
o
o
o
-
-1.5
—"Data" |y, = 1/3 \
—_- — Proportional weighting ¢=0.30
— ——— Unity weighting ¢ = 0.29
-2.0
-10.0 -8.0 -6.0 -4.0 -2.0
Log;o (s)

Figure 2.2.14. Frequency response curves comparing the results of fitting the DAE, model to
GFKJ “data.” The logarithm of —I” is plotted vs. the logarithm of a normalized frequency variable s.
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Figure 2.2.15. Complex plane comparisons of the response of the WW and DAE models when the

DAE is fitted to WW response with CNLS.
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Figure 2.2.16. Three-dimensional plot with perspective showing the excellent agreement between

WW “data” and the results of fitting these data with the DAE model.
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results of such CNLS fitting plotted in the complex plane, and Figure 2.2.16 shows
them with 3-D plotting (see Section 3.3.1). Again the fits are so close that only with
superb data could one unambiguously discriminate between the two models. One
reason to prefer the various DAE models to the others, however, is that the former
yield explicit temperature dependences for the ¢,’s which enter the model, while no
such y; temperature dependence is a part of the other models. When the actual frac-
tional frequency response exponents observed in a set of experimental data are found
to vary with temperature, as they often do for both conductive and dielectric systems,
it is thus natural to try DAE fitting and see if the ¢, estimates found depend on tem-
perature in one of the ways predicted by the theory (Macdonald [1985c,d]). If such
agreement is established, much can be learned about the detailed response of the
system. Finally, it should be mentioned that the exponential DAE model has recently
been simplified and its predictions compared to those of a symmetric or asymmet-
ric Gaussian DAE model (Macdonald [1987]). Again fitting ambiguity is sometimes
found.
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Measuring Techniques
and Data Analysis

3.1 IMPEDANCE MEASUREMENT TECHNIQUES

Michael C. H. McKubre
Digby D. Macdonald

3.1.1 Introduction

Until the advent of digital computers, all electrochemical studies involved the pro-
cessing and analysis of analog signals in either the time domain or the frequency
domain. Typical examples of analog signal analysis include the use of ac coupled
bridges and of Lissajous figures for determining interfacial impedance. In both
instances, the desired information (e.g. balance of a bridge) is obtained in purely
analog format, and no need exists for converting signals into digital form.

When describing analog instrumental methods, it is convenient to classify
techniques according to the type of excitation functions employed, particularly with
respect to the independent variable. For example frequency domain impedance
measurements are carried out using a small-amplitude sinusoidal excitation with fre-
quency as the independent variable. Alternatively, the perturbation and response may
be recorded in the time domain with time as the independent variable, and the imped-
ance as a function of frequency can then be extracted by time-to-frequency conver-
sion techniques such as Laplace or Fourier transformation. Time domain methods
characteristically use digital-processing techniques; frequency domain methods
have traditionally used analog techniques, although digital processing is becoming
common in synthesis and analysis of sinusoidal signals.

The application of a sine wave excitation to a system under test often is the
easiest method of determining the system transfer function. Here we are concerned
with measuring or inferring a transfer function for an electrochemical cell as a first

Impedance Spectroscopy, Second Edition, edited by Evgenij Barsoukov and J. Ross Macdonald
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step in determining reaction mechanistic and kinetic parameters (Macdonald [1977],
Gabrielli [1981], Macdonald and McKubre [1981], Macdonald and McKubre [1982]).

By way of review, the transfer function of a system can be determined as the
output divided by the input

G(jo) = Xou (jo)/ X (jo) (1)

For the special case where the output signal is the system voltage and the input (or
excitation function) is the current, the transfer function is the system impedance

G(jo) = E(jw)/I(jo) = Z(jo) )

Since the output may be changed in both amplitude and phase with respect to the
input, we must express the impedance as a complex number

Z(jw)=2Z'+jz” 3

where primed and double-primed variables refer to in-phase and quadrature com-
ponents, respectively.

It is important to note that we are using the formalism of linear systems analy-
sis; that is, Eq. (2) is considered to hold independently of the magnitude of the input
perturbation. Electrochemical systems do not, in general, have linear current—voltage
characteristics. However, since any continuous, differentiable function can be con-
sidered linear for limitingly small input perturbation amplitudes (Taylor expansion),
this presents more of a practical problem than a theoretical one.

In the following section we present a number of standard methods of measur-
ing a system impedance or a frequency domain transfer function. In applying any
of the methods described, the perturbation must be of a sufficiently small magnitude
that the response is linear. Although the condition of linearity may be decided from
theoretical considerations (Bertocci [1979], McKubre [1981], McKubre [1983],
McKubre and Syrett [1986]), the most practical method is to increase the input signal
to the maximum value at which the response is independent of the excitation func-
tion amplitude.

3.1.2 Frequency Domain Methods

3.1.2.1 Audio Frequency Bridges

In the past, impedance measurements using reactively substituted Wheatstone
bridges at audio frequencies have been the easiest to accomplish. Consequently,
great emphasis has been placed historically on electrochemical processes having
characteristic impedance spectra in the audio frequency range 20-20,000Hz,
namely, double-layer capacitive and moderately fast reaction kinetic effects at plane
parallel electrodes.

The mathematics and methodology of such measurements are well understood
(Hague [1957], Armstrong et al. [1968]). However, considerable use still may be
made of passive audio frequency bridge measurements in this age of active circuitry,
principally in high-precision applications. Following a brief review of bridge cir-
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Figure 3.1.1. Audio frequency bridge modified to include working electrode dc potential control.

cuits, we will restrict our discussion to the limitations imposed by the use of each
type of bridge, since these will influence the point at which an experimentalist will
select a more complex measuring device.

Figure 3.1.1 shows schematically the familiar representation of an audio fre-
quency bridge adapted for use with an imposed dc potential. The condition of
balance for the bridge shown is

Z.=(R/R,)Z, )

where subscripts x and s refer to unknown and standard impedances, respectively.
A variety of RCL combinations are possible for Z; in the commonly used Wien
bridge (Hague [1957]) Z, takes the form of series variable resistance and capacitance
standards, which are adjusted alternately until the real and imaginary components
of the voltage at the null detector simultaneously are zero. For this null condition
the real and imaginary components of the unknown impedance may be calculated
as

Z.=(R/R,)R, ®)
Z!=(R/R)oC, (©6)

The form of Eqgs (5) and (6) has led to the widespread and unfortunate practice
of tabulating and plotting measured impedance data in terms of the complex pair
(R,, jJ/wC,) even when a Wien bridge has not been used. The impedance notation
(7', jZ") is significantly less ambiguous and will be used here.

High-Frequency Limitations. The upper operating limit is imposed primarily
by reactivity and nonlinearity of available resistive standards (chiefly inductive
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effects) and the effects of stray capacitive shunts. By using a Wagner earth (Hague
[1957], Armstrong et al. [1968]), the latter effect can often be reduced sufficiently
to allow sensible measurements at frequencies up to 10°Hz. However, the impor-
tance of Wagner earthing varies greatly with the magnitude of the impedance being
measured (Hague [1957]). In general, elimination of stray capacitance is most impor-
tant at high frequencies when measuring small capacitances or large resistances
(i.e. for small-area electrodes).

Low-Frequency Limitations. The null detection system traditionally used with
an audio frequency bridge consists of an amplifier, filter, and ac voltmeter. This com-
bination imposes three limitations at low frequencies:

* Null detection with a magnitude voltmeter or oscilloscope is most sensitive
when the resistive and reactive components of the unknown impedance are
of the same magnitude, since the total bridge out-of-balance signal contains
terms proportional to each. For an impedance bridge used to measure the
electrical properties of electrochemical cells, this fact imposes a limit on
accuracy at low frequencies since the reactive terms, which are primarily
capacitive, dominate the cell admittance with decreasing frequency. Increas-
ing the gain to observe the resistive component more precisely results
in saturation of the detection system with the reactive out-of-balance
signal.

* A significant source of noise at the detector may result from harmonic dis-
tortion originating in the oscillator or caused by nonlinearity in the system
under test or in subsequent amplifiers. In such cases, the signal at balance
consists mainly of the second harmonic. At high frequencies, this signal can
be removed effectively by appropriate signal conditioning with bandpass,
low-pass, or notch filters (McKubre and Macdonald [1984]). At low fre-
quencies, however, analog filters of bandwidth less than 10Hz are less easy
to construct and control.

* Another major source of noise at low frequencies is mains pickup. This may
amount to hundreds of millivolts superimposed on the test signal unless major
efforts are made at shielding and ground loop suppression. Usually, unless an
adequate notch filter is used in addition, the experimentalist must be satisfied
with reduced precision at frequencies below about 100 Hz.

These three effects can be reduced to a large extent by using a phase-sensitive
detector (PSD) to measure separately the real and imaginary components of the
bridge out-of-balance signal. By separate amplification of the in-phase and quadra-
ture components, differential sensitivities in excess of 100:1 can be attained. The
advantages and limitations conferred by the use of PSDs are described in Section
3.1.2.6.

In normal operation, a PSD is completely insensitive to the second harmonic,
but most commercial instruments have the additional facility of being able to select
a reference signal at twice the fundamental frequency. By this means the extent of
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second-harmonic distortion can be measured. This distortion often reflects not an
error signal (i.e. noise) but an expected response induced by nonlinearity of the
system under test (McKubre [1981, 1983], McKubre and Syrett [1984]).

In addition, and unlike traditional bandpass filters, a PSD has a bandpass char-
acteristic with bandwidth that decreases with decreasing frequency and frequently
can be used within +5Hz of 50- or 60-Hz mains pickup.

When phase-sensitive null detection is used, the practical low-frequency limit
becomes a function of the particular form of bridge chosen. For the Wien bridge,
this limit is imposed by the selection of suitably large adjustable capacitance stan-
dards at frequencies below about 20 Hz.

Limitations of Imposed Potential. A considerable limitation on the use of
this form of bridge is that it necessitates the use of a two-terminal cell. Although it
is often possible to construct a cell in which the working-electrode impedance
greatly exceeds that of the counter electrode, potentiostatic conditions cannot be
established adequately with this type of bridge. Closely associated with this limita-
tion is the fact that in normal use, the cell current and voltage vary with the settings
of the resistive and reactive standards.

In electrochemical applications, these combined limitations may be severe.
Figure 3.1.1 shows one of a variety of possible methods by which an imposed
working-electrode dc potential can be adjusted to the desired value without influ-
encing the detector circuit. The method shown can be used at frequencies less than
the normal operating frequency limit of ac coupled amplifiers.

3.1.2.2 Transformer Ratio Arm Bridges

The high-frequency limitation imposed on the operation of reactively substituted
Wheatstone bridges by unavoidable stray capacitances prompted the development
of the transformer ratio arm bridge (Calvert [1948]). By substituting a transformer
for orthodox ratio arms, a bridge was produced for which the impedance ratio is pro-
portional to the square of the number of turns and which was capable of accepting
heavy capacitive loads with virtually no effect on the voltage ratio.

The operation of a transformer ratio arm bridge is shown schematically in Figure
3.1.2. Briefly, voltage 180° out of phase is fed from the secondary winding of the
input “voltage” transformer to the cell or unknown impedance and to resistance and
capacitance standards. The “arms” of the bridge consist of a series of ratio taps of
the primary windings of an output “current” transformer. The standard and unknown
impedances are connected to the output transformer in such a way that a detector
null is achieved when the sum of the flux induced by the unknown and standard cur-
rents in the output transformer is zero. In this condition

! noo.
Z "R +joCr @)
for all V,,, where ry, r,, and r; are ratios (usually decade), separately selected.

The advantages of using this type of bridge are as follows:
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Figure 3.1.2. Transformer ratio arm bridge with dc potenticostatic control.

 Error resulting from the impurity of standard variables can be virtually

eliminated. Because ratios are selectable over a wide range (usually 1000: 1),
standards can be small. Also, with decade-spaced transformer ratios, standards
need be variable only over a range of about 11:1. Consequently, standards
can be used that closely approximate ideality (e.g. air-gap capacitors and non-
reactively wound metal resistance), and one standard can be used to measure
a wide impedance range.

By the use of precision transformers as ratio arms, one can obtain highly accu-
rate ratio values that are essentially independent of frequency well into the
megahertz range.

The bridge is highly insensitive to the presence of stray capacitance. Figure
3.1.3 shows the reason: C,, C,, and C; can cause no measurement error — C,
because it merely produces a reactive potential drop that is common to the
unknown and standard circuits, and C, and C; because at balance no poten-
tial drop appears across them. Now C, represents the capacitance across the
unknown terminals and its effect is canceled by trimming capacitor C, on the
standard side. Here C, is adjusted at each measurement frequency by discon-
necting the standard and balancing the bridge. Similarly, effects of the stray
capacitances to earth virtually disappear if the neutral terminal is grounded
(Calvert [1948]; see also Figure 3.1.2).

Impedances may be measured in all four quadrants by selecting positive or
negative ratios. Of particular importance is the use of pure capacitive stan-
dards to measure unknowns with a positive (inductive) reactance.
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Figure 3.1.3. The effect of stray capacitances in the transformer ratio arm bridge.

High-Frequency Limitations. In normal use for electrochemical cells, the
effective upper operating limit is imposed by effects external to the bridge. These
effects, which have been described in detail by Armstrong et al. [1968], consist pri-
marily of transmission line effects in connecting cables, the effect of residual series
inductance in leads and the cell, and (normally desired) impedance dispersion effects
of solid electrodes. In the latter group, edge effects (Sluyters [1970]) and transmis-
sion line effects due to surface roughness (de Levie [1963, 1965b, 1967]) become
dominant with increasing frequency. In electrochemical systems for which the inter-
facial impedance is the desired parameter, measurement precision becomes limited
by the dominance of the uncompensated electrolyte resistance in the total measured
impedance. This effect has prompted the use of very small electrodes for which the
ratio of uncompensated resistance to interfacial impedance is reduced (Zeuthen
[1978]).

Series leakage inductances in the transformers within the bridge result in an
impedance measurement error that is proportional to frequency. This effect has been
examined by Calvert [1948], but is seldom likely to impose high-frequency limita-
tions in electrochemical applications.

Low-Frequency Limitations. The use of input and output transformers results
in cell current and voltage, and thus detector signals that decrease with decreasing
frequency. This effect becomes apparent only at low audio frequencies and imposes
a practical lower limit of the order of 100-200Hz with commercial bridges.
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Limitations of Potential Control. The limitations of potential control for a
transformer ratio arm bridge are similar to those imposed in classical bridge meas-
urement. That is, it is not possible to apply the ac potential via a reference electrode
and potentiostat circuit only to the interface of interest. The measured impedance
necessarily includes series terms associated with the lead and electrolyte resistance
and the counter electrode impedance.

Dc potentials can be applied to the interface of interest by using a circuit of the
form shown within the dashed lines in Figure 3.1.2, since at moderate frequencies
the low-pass filter will not observe the ac component. However, direct current must
be excluded from the bridge windings by the use of blocking capacitors C; and C..
The impedance of these also will be included in the measured “cell” impedance.

3.1.2.3 Berberian-Cole Bridge

An active null admittance measuring instrument that incorporates many of the
advantages of the transformer ratio arm technique, while obviating many of the dis-
advantage of passive bridges, has been reported by Berberian and Cole [1969].
Figure 3.1.4 shows a form of this bridge modified to measure impedance and to
remove some of the limitations of the earlier instrument (McKubre [1976]).

The basic operation is as follows. The external variable decade standards are R, and
C, while R” and R” are internal and fixed. With reference to Figure 3.1.4, at all times,

L+ +i=0 ®)

Wi =AV /R (Vy=1Z) 9)
h=AV,(joC) (V, =1Z) (10)
iy=BVy/R" (Vz=—-IR) (11)
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Figure 3.1.4. Modified Berberian—Cole bridge shown as a three-terminal interfacial-impedance-
measuring system, with potentiostatic control of the working electrode.
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where Z is the impedance between the working electrode and the reference electrode
and [ is the current flowing through the cells. Therefore, for the condition of balance
at the summing point

BIR'/R” = AIZ/ R, + AIZ(jo C) (12)
Removing I and solving for the unknown impedance yields
_ BR'R, (1- joR,C)

Z= 13
AR” 1+®’R:C? (13)

The advantages of this method apply principally at low (audio and subaudio)
frequencies. It is important to note that the device shown schematically in Figure
3.1.4 is a bridge only in the sense that external variables are adjusted to produce an
output null.

The principal advantages of the Cole—Berberian bridge are as follows:

* Because of the use of buffer amplifiers, null adjustment does not vary the
potential across (or current through) the unknown impedance, as is the case
for classical and transformer ratio bridge measurement.

* Measurements can be made on two, three, or four terminal cells, allowing the
isolation of the impedance component of interest from the total cell imped-
ance. This is not possible with a passive bridge, and it is frequently infeasi-
ble to construct a cell for which the impedance of interest is much greater
than all series terms. This is particularly difficult when measuring the imped-
ance of an electrode of large area, when measuring impedance in a highly
resistive electrolyte, or when the impedance of interest is that of a highly con-
ductive electrolyte.

* Measurements can be made effectively down to OHz. Because the bridge
shown in Figure 3.1.4 is direct coupled, the low-frequency limits are those of
the null detection system and the patience of the experimenter.

* Measurements can be made in the presence of a dc bias under potentiostatic
control, without the use of blocking capacitors.

* Impedance can be measured over an extremely wide range, from below
107 Q to over 10°Q.

* Error resulting from the impurity of standards can be virtually eliminated
because standards can be selected according to ideality, not magnitude of the
components.

* By using differential gain for the real and reactive standards, a suitable range
of measurement can be selected for each impedance component separately.
This feature is incorporated in Figure 3.1.5.

* Impedances may be measured in all four quadrants (RC, —RC, RL, —RL) using
resistance and capacitance standards alone.

Because the gains of amplifiers A and B perform the same function as the ratios
in a transformer ratio arm bridge, the two techniques have many features in common.
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Figure 3.1.5. Schematic diagram of a working (modified) Berberian—Cole bridge shown as a four-

terminal impedance-measuring system.

High-Frequency Limitations. Inaccuracies at high frequencies can occur
because of errors in the gain functions A and B with decreasing amplifier open-loop
gain (McKubre and Macdonald [1984]). Figure 3.1.5 shows, schematically, a prac-
tical bridge of the Berberian—Cole type. Gain errors in the voltage followers are neg-
ligible, and, since amplifiers A and B are identical devices and their gains appear as
a ratio in Eq. (13), inaccuracies in this term are partially compensated. Neverthe-
less, the upper operating frequency limit for the bridge shown in Figure 3.1.5 is
about 10kHz, depending somewhat on the magnitude of the unknown impedance.
This device is capable of 0.01% measurement accuracy for both impedance com-
ponents between 1.0Hz and 1kHz, and 0.1% accuracy in the peripheral decades
(0.1-1.0Hz, 1-10kHz).

Low-Frequency Limitations. As stated previously, the low-frequency operat-
ing limit is imposed by the detection system. At frequencies down to 0.5Hz, a two-
component PSD performs an ideal null detection function (McKubre [1976]). At
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frequencies below 0.1 Hz, a low-pass filter and oscilloscope or picoammeter can be
used (Berberian and Cole [1969]).

Potential Control. Although it is possible to impose ac potentiostatic control at
the interface of interest, the presence of a dc bias will result in a signal in the active
bridge circuits. Dc offset must be adjusted to near zero to prevent overloading in
subsequent gain stages. For a cell under dc potentiostatic control, this requirement
may necessitate frequent offset adjustment of the current amplifier B.

3.1.2.4 Considerations of Potentiostatic Control

An essential element of electrode kinetics is the characteristic dependence of elec-
trode reaction rate of the electrode potential. Thus, for many electrode studies, the
use of the potentiostatic control is the most convenient method of obtaining relevant
kinetic and mechanistic parameters. A limitation of passive bridge methods in
general is their inflexibility with regard to potential control, so that in many cases
the experimenter must forgo the advantages of simplicity and sensitivity associated
with bridge measurement to impose ac and/or dc potentiostatic control at a single
interface. The “direct” methods permit effective potential control while retaining the
relative simplicity of operation of many of the bridge techniques.

If the cell current and voltage are measured with regard to their magnitude and
phase relations, the impedance can be determined directly from Eq. (2). Figure 3.1.6
shows, in simplified form, a circuit that allows the direct measurement of imped-
ance under potentiostatic control.

It is necessary at the outset to separate phase shifts associated with the cell
impedance from those attributable to the potentiostat control loop. Commercial
potentiostats normally are optimized for fast step response, and the potentiostatting
function becomes substantially in error for sinusoidal inputs, with increasing fre-
quency. Analyses have been performed of the frequency-dependent errors introduced
by the potentiostatting function for a variety of potentiostats with varying loads
(Brown et al. [1968], McKubre and Macdonald [1984]). However, the fidelity of the
potentiostatting function with respect to an ac test signal superimposed on a dc
control level is seldom of significance provided that the system under test is linear
(the fundamental assumption of the use of ac methods in electrochemical kinetic
studies) and that the ac voltage is measured directly as the potential difference
between the working and a suitably placed reference electrode, and not at the input
to the potentiostat.

Reference

Electrode eljs)

g;ljw) + ey

eqliw) = iljwiR

Figure 3.1.6. Direct measurement of interfacial impedance under ac and dc potentiostatic control.
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In fact, so-called high-speed potentiostats are often undesirable for use in high-
frequency impedance measurements at an electrode—aqueous-electrolyte interface.
The reactive impedance at such an interface reduces to that of the double-layer
capacitance at limiting high frequencies. Thus, one may have 3 A/cm’ of out-of-
phase current flowing at 10°Hz to an electrode with 50 yF/cm? of double-layer capac-
itance if the potentiostat is able to maintain a 10 mV ac perturbation at that frequency.
Such high current densities may result in severe nonlinearities, and one often will
prefer the reduced amplitude and phase shift of a narrow-bandwidth potentiostat
when the voltage is measured at the point of interest (e, not e; in Figure 3.1.6).

3.1.2.5 Oscilloscopic Methods for Direct Measurement

By recording e(jw) and i(jw) (as the voltage drop across a series resistance R;; see
Figure 3.1.6) with a twin-beam oscilloscope, the magnitude of the impedance can
be calculated from the ratio of the two peak-to-peak voltages and the directly
observed phase angle. Figure 3.1.7 shows the oscilloscope traces for e(jw) and
ex(jw) that result from the imposition of a sine wave between the working and ref-
erence electrodes.

The real and imaginary components can be calculated (with reference to Figure
3.1.7) as

Re(jo)
|Z| = =75

= 14
lex(jo) (9

VOLTAGE —

TIME —=

Figure 3.1.7. The direct measurement of impedance using a twin-beam oscilloscope.
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Z’ =|Z|cos(¢) (15)
Z” =|Z|sin(¢) (16)

The time base of available storage oscilloscopes limits low-frequency measurements
to about 102 Hz. High-frequency limitations are imposed by effects external to the
oscilloscope, principally stray capacitance and transmission line effects in the leads
and cell. Measurements can often be made at frequencies above 10°Hz.

The primary limitation of this technique is precision. Oscilloscope linearity is
seldom better than 1%, and it is difficult to measure phase angles directly with a
precision of better than 2°. Measurements usually can be accomplished with an
uncertainty in Z” and Z” of +3% of |Z|.

A single-beam oscilloscope or an “X—Y” recorder also can be used to measure
impedance parameters directly by the method of Lissajous figures.

Elimination of 7 between expressions for e and i of the form

e =|e|sin(wt)
i =|i|sin(w? + @)

leads to an equation of the form of an ellipse when e and i are plotted orthogonally
(e applied to the “X plates and i applied to the “Y” plates), and the components of
the impedance can be calculated from the dimensions of the ellipse. With reference
to Figure 3.1.8,

|Z| = Ae/ Ai (17)
sin(¢) = Ai’/ Ai = aB/(AiAe) (18)

where Z” and Z” can be calculated from Egs (15) and (16).

Limitations of oscilloscopic recording are essentially those of precision as
described above for two-channel measurement. However, since time is not an
explicit variable, time base limitations do not apply when recording Lissajous

CURRENT —

POTENTIAL —
Figure 3.1.8. Lissajous figure for the evaluation of impedance.
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Figure 3.1.9. The errors in electromechanical Lissajous figure recording due to the presence of
input noise.

figures. Low-frequency limitations are imposed by electrochemical instabilities in
the system under test and electrical instabilities (particularly dc offset drift) in the
attendant circuitry. Electromechanically “X-Y” recording can be used to achieve a
precision better than 1% of |Z| at frequencies from 1Hz to below 10~ Hz.

Considerable caution is necessary when applying this last method. Electro-
chemical systems are susceptible to external noise pickup. The use of high gain,
without appropriate electrical filtering, to amplify low-level since-wave voltage and
current perturbations may result in severe errors in the dimensions of the ellipse
traced on an electromechanical “X-Y” plotter because the mechanical damping of
the plotter may disguise the fact that the input amplifiers are overloaded by the
“high”-frequency (>10Hz) noise envelope. This effect is shown schematically in
Figure 3.1.9 for 50- or 60-Hz mans pickup in the “Y” amplifier. Errors may, of
course, occur in both channels. This phenomenon often is reflected as skewing or
tracking of the recorded ellipse, but may result in a stable erroneous trace. To prevent
errors in the calculated impedance values, appropriate electronic low-pass or
notch (50- or 60-Hz mains pickup) filtering must be used at an early stage of
amplification.

3.1.2.6 Phase-Sensitive Detection for Direct Measurement

The real and imaginary components of a voltage can be measured directly with
respect to a reference signal with a phase-sensitive detector (PSD). Because of the
requirements for linearity, small input signals must be used to measure electro-
chemical impedances, and noise problems often make it impractical to use either e
or ex (Figure 3.1.6) as a reference signal. Accordingly, e and ez must be measured
alternately in terms of a coherent reference signal of arbitrary phase and the imped-
ance determined from the complex quotient
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/+ /4
Py Gl L (19)
ex (er + jex)

To understand the advantages inherent in this method, it is appropriate to discuss
briefly the detection technique.

Phase-sensitive detection may be accomplished by the sequential operation of
multiplexing and time-averaging circuits. The multiplexer serves effectively to mul-
tiply the input sine wave e; with a reference square wave e,.;. We can represent e,
in terms of its Fourier components

41 . 1. 1.
Cret = ;[sm(w,t) + gsm(3w,t) + gsm(Sa),t) +-- } (20)

and the input sine wave can be written as ¢; = |A°|sin(@;t + ¢), where |A°| is the
input signal amplitude, @ is the angular frequency, and subscripts r and i refer to
the reference and input signals.

The multiplexer output will be

2|A°|

e = s = {cos[(a)i —w,)t+¢]+%cos[(a),- _30,)+0]

) 21
- gcos[(a)i +30,)t+ @]+ }

In normal practice, @, and ®; are derived from a common source (i.e. @, = ),
and the multiplexer output is

2| A% 1
S cos(¢) —cosRw,t+ ) + 3 cos(—2w,t +¢)

| (22)
- 5cos(4a),t +0)+- }

Only the first term in Eq. (22) is time-independent and, when applied to the
time-average circuit, will result in a nonzero output

Cout =%|A°Icos(¢) (23)

This is obviously a phase-sensitive dc output voltage, which is a maximum at ¢ = 0.

The PSD output is frequency-selective since the time average of Eq. (21) for
o, # ®; is zero. The important exception to this statement is for w; = 3®,, So,, 70,,
and so forth. That is, a PSD responds to odd-order harmonics of the input signal.
This contribution diminishes with the order of the harmonic.

Time-averaging may be accomplished by analog or digital means. In the vast
majority of commercial instruments, an analog low-pass smoothing circuit is used
with a front-panel-adjustable time constant. This arrangement offers the advantage
of simplicity and flexibility in high-frequency operation. The upper frequency limit
is commonly 10°Hz. The low-frequency limit of analog time-averaging devices is
imposed by the practical details of low-pass filter design (Sallen and Key [1955])
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smoothing capacitor ideality, current leakage in buffer amplifiers, and external asyn-
chronous (nonrandom) noise effects. The low-frequency limit of commercial instru-
ments is commonly in the range 0.5-10Hz. Impedance usually can be measured with
0.1% precision in both components over the specified frequency range.

By using digital integration methods, the low-frequency response can be
extended to below 10 Hz. In this method, the average is taken digitally over an
integral number of cycles (McKubre and Hills [1979]). At very low frequencies,
information relating to e and i taken over a single cycle can be used to calculate the
real and imaginary impedance components with a precision of 0.1%.

3.1.2.7 Automated Frequency Response Analysis

In general, direct methods can be used to acquire impedance data significantly more
rapidly than bridge methods. This is particularly true for digitally demodulated,
phase-sensitive detectors, for which only a single cycle is required. Nevertheless, in
unstable systems, such as rapidly corroding specimens, acquisition rate is an impor-
tant consideration, and a major criticism of PSD methods is that these must be per-
formed frequency by frequency. Fortunately, this often is not a serious hindrance
when such equipment is automated. In the past decade, a number of experimenters
have used automated “frequency response analyzers” as digitally demodulated,
stepped-frequency impedance meters. Typical of this class are the Solartron 1170
and 1250 series frequency response analyzers (FRAs).

FRAs determine the impedance by correlating the cell response S(f) with two
synchronous reference signals, one of which is in phase with the sine-wave pertur-
bation and the other shifted 90° in phase (Gabrielli [1981], Gabrielli and Keddam
[1974], Armstrong et al. [1968, 1977]). A typical FRA is shown schematically in
Figure 3.1.10. The sine-wave perturbation function P(¢) applied to the cell may be
represented as

P(t) = P’ sin(w?) (24)

where P’ is the amplitude and @ is the frequency. Likewise, the cell response may
be written as

S(t) = P°| Z() sin[o1 + ¢(@)]+ Y, A, sin(mwr —¢,,) + N(1) (25)

where |Z(w)| €% is the transfer function of the cell and the first term on the right
side of Eq. (25) is the fundamental component. However, because of the nonlinear
nature of electrochemical systems, the response will also contain harmonics. Also,
electrochemical studies are normally carried out in environments electronically
“cluttered” by signals due principally to pickup from main power sources. The har-
monic and noise contents of the cell response are represented by the second and
third terms, respectively, on the right side of Eq. (25).

The real and imaginary components of the impedance are given by the integrals

H(0) = % [[ s()sin(wr)d 26)
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Figure 3.1.10. Schematic of transfer function analyzer.

H"(@)= [ St)cos(oids e

Substituting Eqs (26) and (27) into Eqgs (24) and (25), we obtain

H'(0) = P'| Z(w)|], sin[ar+ ¢(o)]sin(o)dr
r r (28)
+ %Jo ;Am Sin(ma)t —(]),,,)Sin(‘[t)dt + %J.O N(t) sin(wt)dt

H”(0) = P°| Z(w) IJOT sin[w? + ¢(w)]cos(wt)dt
T r 29)
+ %_L g, A, sin(mor —¢,,)cos(rt)dr + %jﬂ N(t)cos(wt)dt

If the noise is completely random (i.e. asynchronous), then the last integrals in Eqs
(28) and (29) are equal to zero provided that they are carried out over infinite time.
If the integration is carried out over N, periods of the sinusoidal perturbation, the
equivalent filter selectively is given by (Gabrielli [1981])

Af/ fi=1/N; (30)

where f; is the center frequency in hertz and Af is the bandwidth. For example if
the integration is carried out over 10 periods, then at f; = 1000Hz and 1Hz, Af is
100Hz and 0.1 Hz, respectively. On the other hand, if the integration is carried out
over 100 periods, the bandwidths are reduced to 10Hz and 0.01 Hz. Clearly, the
ability of a transfer function analyzer to reject asynchronous noise improves greatly
as the number of periods over which the integration is performed is increased.
However, the price is an excessively long data acquisition time, during which the
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Figure 3.1.11. Frequency response analyzer transfer function vs. normalized frequency, as a
function of number of integration cycles.

stability condition may be violated (see Section 3.1.2.9). Figure 3.1.11 shows the
transfer function of an FRA as a function of the number of integration cycles per-
formed.

As far as the harmonics are concerned, the integrals in Eqs (28) and (29) may
be expanded to read

J:)T sin(mwt —¢,,)sin(wt)dt =

31

cos(,, )JOT sin(wt)sin(mwt)dt —sin(¢,, )JOT sin(wt) cos(mwt)dt

IT sin(mwt — ¢,,) cos(wt)dt =

’ (32)

cos(@,, ).[)T cos(wt)sin(mwt)dt —sin(¢,, )J.OT cos(wt) cos(mmt)dt

Also noting that
. 0if m, n integers, m #
J-k Tsin(nx)sin(mx)dx ={ i m‘ nin egers m#n (33)
0 kn/Z 1s m, n integers, m=n
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0 if m, n integers, m+n even

_[:HT sin(nx) cos(mx)dx = { (34)

2km/(m* —m?)if m, n integers, m+n odd

Then the integrals involving the harmonics in Eqs (31) and (32) are identically equal
to zero provided that the integrals are carried out over multiples of 2. Accordingly,
FRAs effectively reject the harmonics. Application of the above identities to the fun-
damental components in Eqs (28) and (29) therefore yields the real and imaginary
outputs from the integrators as

H'(w) = P|Z(o)|cos[¢p(w)] (35)
H"(0) = P|Z()|sin[¢(w)] (36)

which may be scaled to give directly the real and imaginary components of the cell
impedance.

FRAs are also readily used to determine the harmonics contained within the
output from the cell. This is done by multiplying the reference signal to the multi-
pliers (but not to the cell) by the harmonic coefficient (2 for the second harmonic,
3 for the third, and so forth). The ability of FRAs to characterize the harmonics pro-
vides a powerful tool for investigating nonlinear systems; a topic that is now being
actively developed (McKubre [1983]).

FRAs provide a very convenient, high-precision, wide-bandwidth method of
measuring impedances in electrochemical systems. Commercial instruments are
available which provide up to 47 digits of precision in the real and imaginary com-
ponents, in frequency ranges covering 10 to 10°Hz. These are direct-measuring
devices and therefore are not susceptible to limitations on imposed potentiostat
control.

The primary limitation is one of cost. The basic FRA may cost in the order
of $20,000 (1986), and an additional investment for microcomputer and data storage
facility is necessary to accommodate the higher rates of data collection made
possible by the use of a FRA. A more subtle difficulty often occurs, as these devices
are capable of operating with 471 digits of precision (the data dutifully recorded
by the microcomputer) whether or not the instrument is connected correctly, or at all,
to the electrochemical cell. Considerable familiarity with electrical systems is neces-
sary in order to get accurate impedance data, particularly at higher frequencies. It is
highly desirable that an oscilloscope be used in parallel with the two input channels
of an FRA, in order to monitor continuously the form of the input and output signals.

3.1.2.8 Automated Impedance Analyzers

There are a number of automated and semiautomated “impedance analyzers” on the
market. Although these are intended primarily for network and network component
analysis, they have a limited applicability for measurements in electrochemical
systems.

Generally, this class of ac analyzer operates with a so-called autobalance bridge.
The desired signal (comprising both ac and dc components) is applied to the



148 Chapter 3 Measuring Techniques and Data Analysis

tmpedance Analyzer

Oscillator {(~~

High

Zumknown

e =eljw) tey

{a} Electrical Connections

e =ae + ibe;

High Low
| Zunknown } VAVAYA
R

Tid '

In Phase Null

In Phase

Null Detector

Quadrature Null

Quadrature

(b) Auto-Balance Bridge Operation

Figure 3.1.12. Direct measurement of impedance using an impedance analyzer.

unknown impedance, as is shown in Figure 3.1.12a. The current follower effectively
constrains all the current flowing through the unknown impedance i, to flow through
the range resistor R,, presenting a virtual ground at the terminal marked “low” (for
a further description of the use of current followers, see McKubre and Macdonald
[1984]). For this condition the impedance can be measured as

Zuntaown = R, - (37)
€

The complex ratio e/e, is measured in a manner very similar to that described

in Sections 3.1.2.2 and 3.1.2.3 for transformer ratio and Berberian—Cole bridge

circuits, in which in-phase and quadrature factions of the input signal are summed

with the unknown output signal (current) until the result is zero. One method

of accomplishing this is shown in Figure 3.1.12b. The oscillator that produces

the input perturbation signal e; also outputs in-phase and quadrature (90° out-of-

phase) reference signals that are proportional in amplitude to e;. These are fed to

a summing circuit and summed with the unknown current until the current to the

detector, i, is zero. At this condition the low-potential terminal is at ground voltage,
and
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R,
Z = .
a=jb

(38)

Thus, the unknown impedance can be determined directly from the value of the
range resistor, R,, and the attenuation factors a and b imposed by the null detector
to achieve the null condition.

The advantages of this method are that relatively high speed and high precision
are attainable. Being a null method, the effects of stray capacitances are somewhat
reduced, although, unlike in a “true” bridge, currents do flow through the unknown
impedance at the null condition. This method is usable up to very high frequencies
(tens or hundreds of megahertz), well beyond the range of interest in aqueous
electrochemistry.

The intrinsic disadvantage of this method is its two-terminal nature: the facts
that a dc potential cannot be applied to the electrode of interest with respect to a
suitable reference electrode and that the potential e; across the specimen varies
during the balance procedure. Since the in-phase and quadrature null signals usually
are derived from a PSD, instruments of this type are limited at low frequencies to
approximately 1 Hz due to the instability of analog filters with longer time constants.

3.1.2.9 The Use of Kramers—Kronig Transforms

The use of a frequency domain transformation first described by Kramers [1929]
and Kronig [1926] offers a relatively simple method of obtaining complex imped-
ance spectra using one or two ac multimeters. More important, retrospective use of
Kramers—Kronig (KK) transforms allows a check to be made on the validity of an
impedance data set obtained for linear system over a wide range of frequencies.
Macdonald and Urquidi-Macdonald [1985] have applied this technique to electro-
chemical and corrosion impedance systems.

The KK transforms of interest in analyzing corrosion and electrochemical
systems are

Z(0)-7=)=( 2]

T
j: [(;)Z”(x) _Z”(CO)} = —la)2 dx (40)
Z”(“’)z"(%)f %‘lx (1)

o= (27(0]] R (“2)

j”L(x)dx (43)
0 x

r xZ"(x)— wZ"(w)dx

2 2

X o (39)

These equations show that the real component of the impedance can be calculated
from the imaginary component and vice versa, the phase angle ¢(®) can be com-
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puted from the magnitude of the impedance, and the polarization resistance (R,) can
be extracted from the imaginary component [Eq. (43)] in addition to being derived
directly from the real component of the impedance

R, =Z'(0)-Z'(e) (44)

The use of these expressions to validate impedance data will not be discussed in
detail here (see Section 3.1.3.4 and Macdonald and Urquidi-Macdonald [1985],
Urquidi-Macdonald et al. [1985]). Instead, we note that if the magnitude of the
impedance is measured over an effectively infinite bandwidth, then the real and
imaginary components can be calculated. These data are then used to compute the
polarization resistance directly from Eq. (44) and indirectly from the imaginary
component according to Eq. (43). The application of this latter method to calculat-
ing R, in concentrated potassium hydroxide solution at 25°C is show in Figures
3.1.13 and 3.1.14. In the first figure, the complex-plane diagram for this system is
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Figure 3.1.13. Impedance diagram for AI-0.1 P-0.1 In-0.2 Ga-0.01 T1 alloy in 4 M KOH at 25°C
and at the open-circuit potential (—1.760 V vs. Hg/HgO). The parameter is frequency in Hz.
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Figure 3.1.14. Plot of Z” vs. log X(X in Hz) for AI-0.1 P-0.1 In-0.2 Ga-0.1 alloy in 4M KOH
at 25°C under open-circuit conditions (E = —1.76 V vs. Hg/HgO). Dashed line = polynomial fit
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shown, illustrating the inductive behavior at low frequencies and the extrapolation
to the real axis to determine Z’(0) and Z’(e). In the second figure, the imaginary
component is plotted as a function of log x, together with a fitted polynomial

Z"(x)= iakxk (45)
k=0

which is then used to evaluate the integral in Eq. (40). This procedure yields a value
for R, of 82.4Q, compared with 90 £ 5 Q determined from the real components. This
difference is insignificant from a corrosion-monitoring viewpoint; it probably arises
from changes in the interface during the period of data acquisition.

As indicated earlier, KK transforms not only can be used to check a data set for
internal consistency, but also provide a simple method of obtaining impedance data.
Briefly, the magnitude of an unknown impedance is often very easily measured as
the scalar ratio of the magnitudes of the voltage across, and current passing through,
the unknown element. It is considerably more difficult to measure the phase infor-
mation, but this can be calculated from the impedance magnitude spectrum using
the appropriate KK transformation.

A circuit to allow the measurement of an unknown impedance magnitude
spectrum is shown schematically in Figure 3.1.15; although a two-terminal con-
figuration is shown, there is no reason why this method cannot be applied with
potentiostatic control. To obtain an impedance magnitude spectrum, the frequency
of the ac oscillator is simply stepped or swept through the desired frequency range,
the ac voltage and current recorded, and the ratio taken as a function of frequency.
Since a machine transformation is necessary to obtain the phase spectrum (which
can be used in conjunction with the magnitude information to yield the real and
imaginary components in Cartesian coordinates), the most practical implementation
of this method is to use a computer interfaced with, for example, an IEEE-488 con-
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Figure 3.1.15. Circuit to obtain an impedance magnitude spectrum.
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trolled oscillator and multimeters to output frequencies and record the current and
voltage information directly (see Section 3.1.3.3 for a description of the IEEE-488
interface).

The major advantages of this method are simplicity and low cost; a practical
system can be configured for under $5000 if a microcomputer is used to synthesize
the sine wave. Since ac amp/voltmeters operate basically as dc devices (following
a rectifying front end), they can operate to very high frequencies, and reliable meas-
urements can be made well into the megahertz frequency range, the high-frequency
limitation usually depending only on stray capacitances and transmission line effects
external to the measurement circuit.

Practical limitations are imposed at low frequencies, however, where the
rectification-smoothing function necessary to transduce the ac voltage magnitude to
a dc level becomes inaccurate. Ac voltmeters typically become seriously in error at
frequencies below 20Hz. To obtain an accurate KK transform, it is necessary to
extend the measurement frequency range significantly beyond the limits of fre-
quency needed to elucidate the equivalent circuit under test. Thus, the method
described here is not appropriate for aqueous electrochemical systems for which the
diffusional impedance is prominent. This method can be useful for systems in which
the lowest frequency of interest is greater than 50Hz or so, as is usually the case for
solid ionic conductors, oxide films, and semiconductor surfaces.

A more subtle limitation is imposed by the use of the method described here in
that all of the four assumptions implied in the use of KK transforms are subsumed
when the magnitude-to-phase transformation is made. That is, the unknown imped-
ance is given the properties of linearity, invariance, and causality whether or not
they apply, and there is no independent check of this assumption. In current prac-
tice, this limitation is not very severe since experimenters frequently report and draw
conclusions from impedance data sets, normally derived, that have not been sub-
jected to the scrutiny of the KK rules or other simple tests of experimental validity.

3.1.2.10 Spectrum Analyzers

Spectrum analyzers are instruments that are optimized to characterize signals in the
frequency domain; the requirements of signal analysis are subtly different from those
of linear network analysis, the former requiring low noise and low distortion over a
wide range of frequencies (bandwidth), the latter being optimized to give accurate
amplitude and phase measurements over a wide range of input-output voltages
(dynamic range). Nevertheless, spectrum analyzers can be used to measure imped-
ances rapidly at audio and higher frequencies, using a variety of input excitation
functions. In this section we will describe the functioning of the three major classes
of spectrum analyzer: parallel filter, swept filter, and dynamic.

The classical function of a spectrum analyzer is to measure the power (or ampli-
tude) of a signal at a number of discrete points, or in discrete frequency bands, within
a defined frequency range. Normally, the frequency bands are linearly or, more com-
monly, logarithmically spaced within the spectrum of interest. A very simple method
to accomplish this goal is to apply the unknown signal to a parallel array of filters,
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Figure 3.1.16. Spectrum analyzers.

each tuned to pass a defined (and narrow) frequency band. If these bandpass filters
are arranged to be uniformly spaced with minimal overlap, as shown in Figure
3.1.16a, then the output of one or more voltmeters applied sequentially or simulta-
neously to the parallel array of “N” filters will be an “N”-point analog of the input
frequency spectrum. The advantages of this method are simplicity and speed. If,
however, a highly accurate analog of the spectrum is needed, then a large number
of closely spaced, narrow-bandwidth filters are required. As the bandwidth is
reduced, such filters become expensive and unstable, and the cost of such an ana-
lyzer becomes greater as the resolution is increased.

One way to avoid the need for a large number of expensive filters is to use only
one filter and to sweep it slowly through the frequency range of interest. If, as in
Figure 3.1.16b, the output of the filter is plotted against the frequency to which it is
tuned, then one obtains a record of the spectrum of the input signal. This swept-
analysis technique is commonly used in radio frequency and microwave spectrum
analysis. However, the filter has a finite response time, and the narrower the band-
width of the filter, the longer it takes to respond. To avoid amplitude errors, one must
sweep the filter slowly through the frequency range of interest, and the advantage
of speed afforded by spectrum analyzers is compromised.
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There is a basic trade-off between parallel- and swept-filter spectrum analyzers.
The parallel-filter analyzer is fast but has limited resolution and is expensive. The
swept-filter analyzer can be cheaper and have higher resolution, but the measure-
ment takes longer (especially at high resolution). Furthermore, since the swept-filter
analyzer does not observe all frequencies simultaneously, it cannot be used to analyze
transient events.

A disadvantage common to both classes of spectrum analyzer discussed so far
is that they do not measure absolute amplitudes accurately, and they do not measure
phase at all. Although this last limitation can be circumvented by the use of KK
transformations (see Section 3.1.2.9), these instruments generally are poor choices
for linear circuit (ac impedance) analysis.

Another kind of analyzer has been developed which offers the best features of
parallel- and swept-filter spectrum analyzers. So-called dynamic signal analyzers use
analog-to-digital conversion followed by frequency-to-time-domain transformation,
usually using hard-wired computational machines, to mimic the function of a
parallel-filter analyzer with hundreds of filters, and yet are cost-competitive with
swept-filter analyzers. In addition, dynamic spectrum analyzers are capable of meas-
uring amplitude and phase accurately; these are basically time domain instruments,
and their function will be discussed in Section 3.1.4.

3.1.3 Time Domain Methods

3.1.3.1 Introduction

With the advent of high-speed digital computers, a clear trend toward digital signal
processing has become apparent. The advantage of digital over analog data pro-
cessing is purely mathematical; a far wider range of mathematical computations can
be performed in the digital mode than on analog signals. Digital signal processing
using hard-wired devices has also expanded rapidly over the past decade and is likely
to find even more application in the years to come.

Since the world of electrochemistry is an analog one, the use of digital computa-
tion methods must be preceded by analog-to-digital conversion. One of the most
important experimental aspects of this process is the method by which the computer
interacts with the analog experiment: the computer interface. Having achieved the
digital state, the range of computational algorithms used to extract ac impedance infor-
mation is very diverse. Although a thorough discussion of these topics is beyond the
scope of this chapter, in this section we discuss briefly the techniques that are now in
common use for analog-to-digital conversion, computer interfacing, and digital signal
processing, with reference to the measurement of the ac impedance parameters.

From the definitions given in Section 4.4.2, it is apparent that the interfacial
impedance can be calculated from the perturbation and response in the time domain,
in which the excitation can be any arbitrary function of time. In principle, any one
of several linear integral transforms can be used (Macdonald and McKubre [1981])
to convert from the time domain into the frequency domain, but the two most com-
monly used are the Laplace and Fourier transforms:
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F(s) = j: F(t)e " dt (46)

F( F(t)e ' dt 47

. 1
W)=—7—
jo)=— I
where s is the Laplace frequency. Noting that s = 0 + jo, Eq. (46) leads to
F(jo)= j: F()e i dt (48)

which is referred to as a single-sided Fourier transform. By transforming the time
domain voltage [E(#)] and current [I(¢)] to yield the frequency domain quantities
[E(jw) and I(jw)], the impedance may be calculated as
Z(w) = EU0) L) (49)
1(jo) I*(jw)
where I*(jw) is the complex conjugate of I(jw).

As noted above, any arbitrary time domain excitation can be used to measure
the system impedance provided that the excitation is applied and the response
recorded over a sufficiently long time to complete the transforms over the desired
frequency band. Thus, potential and current steps and various noise excitations
have been extensively used (Sierra-Alcazar [1976], Pilla [1970, 1972, 1975],
Doblhofer and Pilla [1971], Smith [1966, 1971, 1976], Creason and Smith [1972,
1973]), particularly in the field of ac polarography. More recently, these same
methods have been applied in corrosion science (Pound and Macdonald [1985];
Smyrl ([1985a,b]; Smyrl and Stephenson [1985]) to obtain impedance spectra,
but more importantly to estimate polarization resistance for rapidly corroding
systems. In the work of Pound and Macdonald [1985], various time-to-frequency
transformation techniques were evaluated, including the discrete Fourier transform,
the fast Fourier transform (FFT), the Laplace transform, and an algorithm that
duplicates the mathematical operation of an FRA (see Section 3.1.2.7). All these
techniques involve the recording of the perturbation and response in digital form in
the time domain before signal processing in either software or hardware. Regard-
less of the mode of processing, the accuracy of transformation depends critically on
acquiring data records having the desired characteristics of length and sampling
frequency.

3.1.3.2 Analog-to-Digital (A/D) Conversion

The conversion of analog signals into digital form, and ultimately into binary-word
representation, is now a common practice in electrochemistry, particularly for inter-
facing analog instruments, such as potentiostats, with digital recording and pro-
cessing equipment (e.g. computers). The essential operation desired is to convert the
value of an analog signal into a binary word whose magnitude is proportional to the
signal being sampled. This process involves two operations: sampling and quanti-
zation. The first involves momentarily “freezing” the analog signal in time to
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produce a discrete value. This value is then converted to its binary representation
during the “quantization” step, after which the cycle is repeated.

Sampling is normally achieved by using “sample and hold” amplifiers of the type
shown schematically in Figure 3.1.17. In this circuit, a signal to the analog switch
(e.g. 4066 CMOS) connects the analog input to the amplifier. Provided that the capac-
itance to ground is sufficiently small, the capacitor will charge to the analog input
voltage with good fidelity. Removal of the control signal effectively disconnects the
input from the capacitor so that the analog output assumes the value of the input at
the instant the switch was opened. The above cycle is then repeated, with the sample
rate being determined by the control signal from the clock; it is necessary in the case
of A/D conversion, however, that the hold time be sufficiently long for the quantiza-
tion step to generate an accurate digital representation of the analog input.

A number of quantization techniques are available, and the selection of the
optimum analog-to-digital converter (ADC) for a particular application is properly
based on considerations of resolution (precision), accuracy (initial and drift with
time and temperature), ease of interfacing, cost, and convenience (availability, size
and power requirements). To select an ADC, it is useful to understand exactly what
types are available and how they work. The listing in Table 3.1.1, although far from
complete, does include the most popular ADCs, especially those currently produced
in an integrated circuit form.

We will discuss here only successive-approximation and integration ADCs in
any detail. The tracking A/D and voltage-to-frequency converter can be looked on
as variations of the successive-approximation and the integration design techniques;
in these types, the digital data is available on a virtually continuous basis.

The principle of the successive-approximation technique is shown in Figure
3.1.18. In this particular example we wish to convert the analog input voltage
(10.3 V) into its floating-point, 8-bit binary form to the nearest 0.0625 V. The process
involves eight successive steps, in which the field is divided into halves and a bit of
1 or O is assigned to each step, depending in which half of each field the analog
value lies. For example in the first step 10.3 lies between 8 and 16, so that 1 is
assigned as the most significant bit. However, in the second conversion step the
analog input lies in the 8—12 field rather than in the upper half (12-16), so that 0 is
assigned to the second most significant bit. This process is repeated until the desired
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Property of Common Analog-to-Digital Converters

Type Advantages Disadvantages Typical Uses
Successive High speed Precision expensive  Multiplexing
approximation Flexibility Susceptible to noise 100 Hz—1 MHz/
channel
Integrating High accuracy Low speed DC-100Hz

Tracking (counter-
comparator)

Multicomparator
(flash)

Voltage—frequency
converter

Low cost

Low sensitivity to noise

High tracking speed

High speed

High resolution
Fast response
Continuous output

Susceptible to noise
Expensive

Moderate precision

Digital voltmeters
DC-100Hz
1MHz and up

Telemetry
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Figure 3.1.18. Successive-approximation conversion of an analog signal to its 8-bit binary

representation. Analog input = 10.3, equivalent binary output = 1010.0100 =

10.25.
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Figure 3.1.19. Schematic diagram of a successive-approximation A/D converter.

precision is achieved. Clearly, only n steps are required to quantize an unknown
voltage into its {A}, binary form.

A block diagram of a successive-approximation ADC is shown in Figure 3.1.19.
The circuit converts each successive approximation into an analog signal Y, which
is equivalent to the center of each division shown in Figure 3.1.18. The analog input
(A) is then compared with Y in the following cycle; if A is greater than Y, the com-
parator swings to positive saturation and a “1” is loaded into the register.

The principal advantage of the successive-approximation technique is high
speed, and conversion rates in the megahertz range are possible. The principal dis-
advantages are limited accuracy and precision. Accuracy is limited because, as with
all wide-bandwidth (high-speed) devices, the technique is very susceptible to exter-
nal noise sources, and a noise spike coinciding with any of the more significant bit
conversions can result in large errors; to some extent this difficulty can be removed
by averaging multiple conversions, at the expense of speed. The precision is limited
by the number of bits converted. Thus a 16-bit ADC (8, 10, 12, 14, and 16 bits are
commonly used) will have a minimum uncertainty of 1 part in 2'® or 0.0015% and
can achieve that level of precision only if the voltage being measured is close to the
ADC maximum. However, even when using a 2-V device, the sensitivity of a 16-
bit ADC is 0.03mV, which is adequate for most electrochemical measurements.

A second A/D conversion technique offers greater immunity to noise and almost
unlimited precision, as well as reducing the need for sample-and-hold circuitry at
the signal input. The concept of the “dual-slope” or up/down integrating ADC is
simple. A current proportional to the input signal charges a capacitor for a fixed
length of time; the capacitor is then discharged by a current proportional to a refer-
ence voltage until the starting point is crossed. Figure 3.1.20 shows a schematic rep-
resentation of the implementation of this technique. The input voltage e; is applied
to the input resistor R;. With the switches in position 1, op amp OA1 forces a current
I; = e/R; to charge the plates of capacitor C. Thus, with the switches in position 1,
and after time 7, the output voltage e, will be given by
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Figure 3.1.20. Schematic diagram of an up/down integrating D/D converter.
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€, = €initial +R_CIO e:dt (50)

where e, 1S the output at £ = 0. For simplicity, if the initial voltage is zero and the
integral is replaced by the average in the input time window, ¢&;,

el;

T RC D

€

After an accurately clocked interval #;, the clock sets the switches to position 2, and
the negative reference current is applied to discharge the capacitor. Thus,

el et

L, = — 52
“=RC RC (>2)
and at the condition of null, when ¢, = 0,
Rit
=——e, 53
4= R ¢ (53)

and the averaged input voltage can be calculated very precisely from the accurately
known values of resistances and time.

Although good-quality components (especially the capacitor) must be used for
reasonable accuracy, only the reference need be an expensive, high-quality compo-
nent. Speed is an obvious limitation because of the long count time required. (For
example one must count to 2000 and effectively do 1000 successive comparison
tests at the null detector to achieve 3-digit or 10-bit resolution.)

Dual-slope integration has many advantages. Conversion accuracy is inde-
pendent of both the capacitor value and the clock frequency, because they affect both
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the upslope and the downramp in the same ratio. The averaging mode and the fixed
averaging period also grant excellent immunity to noise, and an integrating ADC
has “infinite” normal-mode rejection at frequencies that are integral multiples of 1/¢,.
In practical terms, if the ADC is set to integrate over exactly n cycles of some extra-
neous and periodic noise source (e.g. main frequency) then the integral will be zero,
as if the spurious signal had been completely filtered out at the input.

Throughput rate of dual-slope converters is limited to somewhat less than 3,
conversions per second; the sample time ¢; is determined by the fundamental fre-
quency to be rejected. For example if one wishes to reject 60 Hz and its harmonics,
the minimum integration time is 10.167ms, and the maximum conversion rate is
somewhat less than 30Hz.

3.1.3.3 Computer Interfacing

The details of computer interfacing are so intimately connected to the details of pro-
gramming itself that a discussion of arbitrary, low-level interfacing is best suited to
a treatise on software than to one on hardware. Interfaces that operate at a high level,
with their details of operation obscured to the user by a “driver” program, however,
are of significant importance to the experimenter interested in the implementation
of ac methods. Most common among the high-level interfacing systems is the
general-purpose interface bus (GPIB), also known as the IEEE-488 (or IEC-625 or
Hewlett-Packard Interface Bus (HPIB)). This interface standard is becoming capable
of almost universally connecting computers with digital multimeters, transient
recorders, Fourier analyzers—in short, with all those tools needed to implement the
ac impedance method in the time domain.

IEEE standard 488—1978 interface represents a highly flexible, moderate-speed
system that is well suited to general laboratory use. The IEEE-488 interface bus (IB)
consists of 16 signal lines. Eight lines are used for data, five for bus management,
and three lines are used to establish a temporary communication link, or “hand-
shake,” between two devices that are properly attached to the bus. Because there are
eight data lines, an 8-bit byte can be communicated in each handshake cycle. Thus
16-bit, 24-bit, etc. words (either instructions or data) can be communicated with
sequential handshake cycles. This method is often referred to as “bit parallel, byte
serial” transmission (Colloms [1983]).

A very large number of devices can be connected simultaneously to the inter-
face bus. Each device is given a unique address, which is used in establishing a hand-
shake. Handshake is used to ensure that data is transferred from a source to one or
more designated acceptors. Figure 3.1.21 shows a portion of the bus structure, and
Figure 3.1.22 shows the handshake sequence in detail. The three signals used for
handshake are: data valid (DAV), not ready for data (NRFD), and no data accepted
(NDAC). The DAV line is driven by the sender, while the NFRD and NDAC lines
are driven by the receiver. The handshake procedure ensures that all listeners are
ready to receive data, that the data on the eight data lines is valid, and that the data
has been accepted by all listeners. Data will be sent only as fast as it can be accepted
by the slowest receiver.
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Figure 3.1.22. Use of the IEEE-488 interface for dc and ac measurement and control.

The IEEE-488 IB is designed to interface with the four major types of devices
shown in Figure 3.1.21. A master or controller sends commands over the bus, using
the bus control (uniline) and data lines (multiline). Normally, one controller is
present (e.g. a computer or microprocessor), but if more are present, only one may
exercise control at any time. A controller issues a system initiation command, inter-
face clear (IFC), and designates which devices are talkers and which are listeners.
The controller has complete control of the attention line (ATN). When ATN is “true,”
the controller is issuing messages or commands.

A listener receives data over the IB, following an acceptor handshake.
Addressed listeners respond to controller commands. Listen-only devices are
intended for use in a circuit with no controller. An example of a listener might be a
digitally controlled analog potentiostat.
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A talker is a device capable of sending data over the IB to a controller or lis-
tener. An unaddressed talk-only device, such as a digital voltmeter, may represent a
problem in a circuit with a controller, since this device may continue talking when
the controller requires attention (ATN “true”), resulting in a garbled message.

Most commercial devices intended for use with an IEEE-488 IB are combined
talker-listeners, capable of receiving instructions, setting the data collection mode
and experimental conditions, and returning data to the controller.

IEEE-488 systems of considerable complexity have been developed for elec-
trochemical data acquisition and experimental control. One such system, shown in
Figure 3.1.22, uses a microcomputer to monitor temperature and dc signals with an
IEEE-488 multiplexer and multimeter, to control and IEEE-488 potentiostat, and to
output and input data for an IEEE-488 frequency response analyzer, in order to
measure impedances in a sodium/sodium-polysulfide cell at elevated temperatures
(McKubre and Sierra-Alcazar [1985]).

3.1.3.4 Digital Signal Processing

In principle, any one of several integral transforms can be used to convert data
collected in the time domain into the frequency domain for subsequent analysis.
Because of the similarity of the various transformation techniques, it is convenient
first to discuss briefly the interrelationships of the various transform functions.

The general linear integral transformation of a function F(f) with respect to a
kernel K(t, g) is given as (Bohn [1963], Crain [1970])

Flg)=af K(t.g)F@)d (54)

where a and b define the transform interval and g is the transformation variable. The
kernels and the limits of integration frequently adopted for the transforms of inter-
est are summarized in Table 3.1.2. It is clear that the methods are very closely related.
In particular, the reader will note that the imaginary-axis Laplace transformation

Fjw)= j: F(r)e "'ds (55)
is in fact a single-sided Fourier transform. Also, since the form of the Laplace vari-

able (s = o + jw) dictates that both frequency domain and transient responses can

Table 3.1.2. Linear Integral Transforms

Transform Kernel K(t, q) o a b
Laplace e 1 0 oo
Fourier
Infinite e’ 1 —oo +o0
Infinite e’ L —o0 +o0
2r
Single-sided e’ 1 0 +o0
Segment e’ 1 0 +o0
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be obtained, it is clear that the Fourier transform is a special case of the more general
Laplace transform. The one remaining linear transform of interest, the “Z” trans-
form, to our knowledge has not been used for the analysis of interfacial impedance.
Accordingly, this transform will not be considered in this discussion.

In this chapter, we are concerned with machine implementation of transform
techniques, either software or hardware, to obtain data in a form convenient for ac
impedance analysis. In recent years, the advent of hard-wired (dedicated) Fourier
transform units (Reticon [1977]) and the fast Fourier transform algorithm, or FFT
(Cooley and Tukey [1965], Hartwell [1971]), have concentrated practical interest
almost exclusively on the Fourier transform.

Again, in the formalism of linear systems analysis, the transfer function is the
mathematical description of the relationship between any two signals. In the special
case where the signals of interest are the input (current excitation) and output
(voltage response) of a linear electrical system, the transfer function is equivalent
to the system impedance.

Mathematically,

R

- _ E(jw) _ FIEQ®)]

Gjo)=——==—

1(jo)  F[I(1)]

where G(jw) is the system transfer function, F denotes the Fourier transform, E is

the system voltage, and I is the current. The variable jo indicates that this is a

complex frequency domain parameter, and ¢ indicates a time domain parameter.

Equation (56) indicates that the ratio of the Fourier transforms of the measured time
domain voltage and current is equal to the impedance.

Obviously, two stages of data manipulation are required to obtain Z(jw) as a
function of frequency from the response of the system to an arbitrary time domain
perturbation: first, the input and response functions must be sampled and recorded
in the time window of interest, then the transform of each must be computed and
the complex ratio calculated. In hard-wired Fourier transform units, the acquisition
subsystem is an integral part of the unit, and this function normally can be ignored.
If the experimenter is using a computer or microcomputer to perform these
functions, the concepts of analog-to-digital conversion and computer interfacing
(described briefly in Sections 3.1.3.2 and 3.1.3.3) must be used.

With either hard-wired or software-programmed logic, the most common method
of obtaining F [E(t)] and F [1(?)] uses the FFT algorithm first devised by Cooley and
Tukey [1965] as a method for obtaining a discrete digital approximation of the infi-
nite Fourier transformation from a finite data record. The digital nature of the trans-
formation, however, and the finite length of the time record give rise to a number of
properties of the FFT that must be recognized in order to minimize distortion of the
derived impedance data (Smith [1976], Creason and Smith [1972, 1973]).

The FFT algorithms demand that the time record contain 2" words, where 7 is
an integer. This requirement is easily satisfied by simply adjusting the digitizing sam-
pling rate and/or the length of the record. However, the sampling theorem states that
the highest-frequency component that can be completely characterized in terms of
amplitude and phase must have a frequency of less than half the sampling rate. On

=Z(jo) (56)
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the other hand, the lowest frequency that is accessible is the reciprocal of the total
sampling period. These limitations are readily illustrated by considering a standard
FFT array of 1024 words. If this array is collected over 0.7 s, the lowest frequency
is 1.43Hz, whereas the highest frequency is 0.5 X (1024/0.7) = 731.4Hz. Clearly,
somewhat less than three decades of frequency are accessible from a single 1024-
point FFT. This may be construed as a serious limitation of the FFT algorithm, but
it is possible to apply the transformation to successive segments, thereby extending
the total frequency range to many orders of magnitude.

The finite length of the data record may cause broadening of the Fourier spec-
trum relative to the actual spectrum. The phenomenon, which is frequently referred
to as “leakage,” may be minimized (but not eliminated) by increasing the length of
the time record as much as possible or by modifying the way in which the time
record is truncated. Also, the leakage error can be reduced to zero if the waveform
is periodic within the time record since the components whose frequencies match
those computed are not subjected to leakage error.

A third source of error is due to a phenomenon known as “aliasing,” which
arises because of the discrete nature of the data record. In this case, the error is
induced by components whose frequencies are greater than the $x sampling rate
maximum imposed by the sampling theorem. These higher-frequency components
are incorrectly included as lower-frequency components when executing the FFT.
Aliasing is easily avoided by simply ensuring that the data-sampling frequency is
greater than twice the highest frequency in the exciting waveform. This can be
achieved by using a low-pass filter to remove the unwanted high-frequency com-
ponents, thereby giving rising to the use of bandwidth-limited excitation.

A number of other operational problems exist when using the FFT algorithm.
The most important of these, as far as electrochemistry is concerned, is due to the
inherently nonlinear nature of the system. When Eq. (56) is used to measure the
impedance with an arbitrary time domain input function (i.e. not a single-frequency
sinusoidal perturbation), then the Fourier analysis will incorrectly ascribe the har-
monic responses due to system nonlinearity, to input signal components which may
or may not be present at higher frequencies. As a consequence, the “measured”
impedance spectrum may be seriously in error.

Up to this point we have described methods in which impedance is measured
in terms of a transfer function of the form given by Eq. (56). For frequency domain
methods, the transfer function is determined as the ratio of frequency domain voltage
and current, and for time domain methods as the ratio of the Fourier or Laplace
transforms of the time-dependent variables. We will now describe methods by which
the transfer function can be determined from the power spectra of the excitation and
response.

In addition to Eq. (56), the transfer function G(j®) can be calculated for the
cross-power spectra of the input and the output, which in turn can be calculated from
the linear spectra of the input and output. Thus,

 Re) S,Go)sEGo)
CUO)=% (o)~ s.w)s o) G
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where P,.(jw) is the average cross-power spectrum of the input and output, P,.(jw)
is the average power spectrum of the input, S,(jw) and S,(jw) are the linear spectra
of the input and output, respectively, and * denotes the complex conjugate.

By invoking the equivalence of Eqs (56) and (57), it is apparent that the infor-
mation required to calculate the operational impedance is contained in the input and
output linear magnitude spectra S, and S,. In practice these are cumbersome to
compute. The power and cross-power spectra give the same basic information, are
faster to compute, and can be applied to measurements to which linear magnitude
spectra cannot (Roth [1970]).

Calculations of power spectra are most conveniently performed via the corre-
lation functions. The auto- and cross-correlation functions for time domain input
[x(H)] and output [y(¢)] functions are

R, = % jorx(t)x(t +1)di (58)

R, = %.[)T x(O)y(t+7)dt (59)

where T is the time interval over which the correlation is required and 7 is a time
displacement or delay. In essence, the correlation function yields a time-averaged
quantity having greatly improved signal-to-noise characteristics. The value of self-
and autocorrelation before transformation is therefore clear.

The significance of the correlation functions in transfer function analysis
becomes apparent from the following equations:

P.(0)=F[R.(1)] (60)
P,(@) = F[R,.(1)] (61)

Thus, it is possible to calculate the frequency domain power spectra [and hence
Z()] from the Fourier-transformed auto- and cross-correlation functions. The appli-
cation of correlation techniques for the determination of electrochemical impedance
data has been used by Blanc et al. [1975], Barker [1969], and Bindra et al. [1973],
using both random noise input functions and internally generated noise.

A number of significant advantages are inherent in this method:

* The correlation technique is an averaging method and thus affords the same
type of insensitivity to asynchronous system noise as phase-sensitive detection.

* In common with other transform methods, G(j®) is determined for all fre-
quencies simultaneously and in the time required for the lowest frequency
alone by conventional methods. Thus, impedance can be measured down to
relatively low frequencies in time-varying systems, and impedance parame-
ters can be measured as a function of time in, for example, a rapidly corrod-
ing environment.

 Correlation analysis can be performed on internally generated noise in the
complete absence of an external excitation function. Because the ionic events



3.1 Impedance Measurement Techniques 167

that produce this noise are not synchronized to an external trigger, the corre-
lation function in this case contains no phase information, but may be con-
sidered analogous to the magnitude of the impedance. This technique is
potentially an extremely powerful one, allowing equilibrium and steady state
conditions to be approached very closely.

* The coherence function provides an internal check on the validity of the mea-
surement. In this regard, it is important to note that methods which determine
impedance as the ratio of the imposed input to the observed output do so
without regard to the degree of causality between the two signals. Thus, for
example, in a system exposed to mains noise or containing electrolyte pumped
in an oscillatory or peristaltic fashion, a component of the output signal power
results from frequencies characteristic of the environment or system but not
of the applied input. Another frequent cause of error in a measured electro-
chemical impedance is nonlinearity of the interfacial reaction impedance at
large perturbations. Thus excitation at frequency @, results in harmonic dis-
tortion and a component of output power at frequencies 2@, 3@,, and so on,
which may invalidate the “impedance” measured at these frequencies.

The coherence function y5(®) can be calculated to determine the validity of a
transfer function measurement if the extent of extraneous input and nonlinearity is
not known. This function is defined as

P, (@)’

Po(@)P, (@) (62)

7o (0)=
where bars denote average quantities and P,, is the auto power spectrum of the output
signal y(#). Coherence function values range between 0 and 1. A coherence value of
1 means there is only one input and the system is linear.

The primary limitation of this method of impedance measurement is cost.

3.1.4 Conclusions

In an age of computerized instrumentation, ac impedance and other measurement
results are often presented to the user with four or more digits of precision, with
little reminder of the intrinsic limitations of the measurement or computational tech-
niques used. Even when considerable care is given to the electrical connections of
the system under test and to analysis of subsequently produced data, the operation
of the instrument is often transparent to the user. Since the choice of analyzer may
determine acquisition precision, time, and other important parameters of data col-
lection, it is of some value to the careful experimenter to understand as fully as pos-
sible the method of operation of the impedance analyzer. It is hoped that this chapter
is useful in contributing to this understanding.

As a final note of caution, even carefully performed experiments may be sub-
ject to systematic error; the system under test may be intrinsically nonlinear, or it
may be subject to periodic oscillations, to drift with time, or to other extraneous
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effects. The results of such perturbations may not be obvious to the experi-
menter, even when the input and output waveforms are closely monitored with an
oscilloscope. It is therefore desirable that impedance data be screened routinely
for systematic error. Two screening methods, the Kramers—Kronig integrals and
the coherence function, have been described in this chapter, and their use is
recommended.

3.2 COMMERCIALLY AVAILABLE
IMPEDANCE MEASUREMENT SYSTEMS

Brian Sayers

3.2.1 Electrochemical Impedance
Measurement Systems

Electrochemical impedance tests usually investigate the interface between an
electrode material and a solution (for example corrosion tests may investigate dif-
ferent coated metals in a salt solution, while battery/fuel cell tests may investigate
different electrode materials in an electrolyte). Electrochemical impedance tests
provide complementary information to that obtained from dc electrochemical tech-
niques such as cyclic voltammetry, pulse voltammetry, ohmic drop analysis, and
chronoamperometry.

3.2.1.1 System Configuration

Electrochemical impedance measurement systems used for the analysis of the ac
properties of electrochemical cells typically consist of a potentiostat (sometimes
called an electrochemical interface) together with a frequency response analyzer
(FRA) or a spectrum analyzer, or even a combination of the two. The potentiostat
provides buffered connections to the cell under investigation together with circuitry
for applying a controlled voltage or current stimulus and for the measurement of the
dc properties of the cell. The FRA is connected through the potentiostat to the cell
and therefore the bandwidth of the potentiostat is a very important consideration for
accurate high frequency analysis.

A PC running application software is typically used to provide control of the
instrumentation, storage of data, display of graphical results and detailed analysis
functions (including access to equivalent circuit fitting and data analysis programs
such as LEVM—refer to Section 3.3 Data Analysis). The instruments are connected
to the PC via a standard interface such as GPIB (IEEE-488), USB, Ethernet, serial
port (RS232), parallel port or in some cases via the internal PCI Bus in the PC or
by a proprietary interface. The USB and Ethernet approaches are gaining popular-
ity due to the low cost of connection to the PC (these interfaces are available in most
PCs as standard or can easily be added at very low cost). High data transfer rates
are available via Ethernet and USB. Ethernet also provides the possibility of dis-
tributing instrumentation and control PCs throughout a factory or laboratory, allow-
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ing data to be easily analyzed in a more comfortable environment well away from
corrosive chemicals and noisy equipment.

3.2.1.2 Why Use a Potentiostat?

The potentiostat is a very important part of an electrochemical impedance test
system. The potentiostat consists of the following elements:

* a power amplifier that can supply or take power from a cell, for instance when
charging or discharging a battery or fuel cell;

* one or more high input impedance voltage measurement reference inputs,
usually connected to the cell via a standard reference electrode;

* a current measurement input connected to the working electrode on the cell;

* a control loop that maintains the required voltage across the cell (when oper-
ating in potentiostatic control mode) or current through the cell (when oper-
ating in galvanostatic mode);

* connections to a frequency response analyzer to allow impedance analysis of
the cell.

One important capability of the potentiostat is to maintain the required dc con-
ditions on the cell while the frequency response analyzer is performing the imped-
ance (ac) analysis. The actual dc conditions required depend on the application. For
tests on fuel cells it may be necessary to set up a particular dc steady state current
to investigate the impedance of the cell under load conditions. In other cases it may
be necessary to run the impedance test at the “open circuit” potential of the elec-
trochemical cell, in which case the open circuit voltage is measured (Figure 3.2.1)

Current

Open Circuit
Voltage

Current =0 \

~
7

Voltage —

Figure 3.2.1. Setting up the dc conditions on the cell for an impedance test.
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and then held on the cell while the impedance test progresses. In other cases, it may
be required to impose a particular dc potential offset relative to the open circuit
potential of the cell to investigate the impedance under conditions that encourage a
particular form of corrosion to take place. Whenever running impedance tests it is
very important to operate in a linear regime and under conditions of stability on the
cell. If the cell changes significantly during the time taken to run the impedance test,
the results taken at the start of the test (usually the high frequency part of the sweep)
may not be consistent with the results at the end of the test (usually the low fre-
quency data). This can cause strange impedance artifacts which, if the reason is not
known, may easily lead to misinterpretation of the data. A simple test for stability
is to repeat the impedance test to see if the results are consistent.

3.2.1.3 Measurements Using 2, 3 or 4-Terminal Techniques

Most modern potentiostats provide at least four connections to the cell. These con-
nections typically consist of a counter electrode (CE) that provides current to the
cell, a working electrode (WE) that provides measurement of the current through
the cell, and at least two reference electrode inputs (RE) for voltage measurement.
Potentiostats that have 4-terminal connections are capable of 2, 3 or 4-terminal
testing of electrochemical cells (Figure 3.2.2). The 2-terminal test technique is used
mainly for the measurement of high impedance materials where the impedance of
cables is not significant (see Section 3.2.2.3).

The 3-terminal technique is often used for corrosion or general electrochemical
tests using older equipment where 4-terminal connection to the cell was not pro-
vided. There is a counter electrode providing current to the cell, a working electrode
that is used for measuring the current through the cell, and a connection for the use
of a standard reference electrode within the cell. It is important to realize that since
the measurement of the differential voltage across the cell also includes the voltage

CE (current) CE (current)

RE7 oltage hi)

v v

\

RE2 (voltage lo)

WE (c.urrent) WE (current)

2-terminal measurement 4-terminal measurement
Figure 3.2.2. 2-terminal/4-terminal measurement techniques.
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drop in the working electrode connection cable; this type of system can give mea-
surement errors when measuring low impedance cells such as batteries and fuel cells.
The 4-terminal measurement technique is therefore usually preferred.

The 4-terminal measurement capability is extremely important when measur-
ing low impedance devices such as batteries, fuel cells and ultra-capacitors. When
measuring very low impedance cells, the impedance of the connection cables may
well be of the same order of magnitude as the impedance of the cell itself. If 2-
terminal (or even 3-terminal) connections are used for this type of measurement, the
instrumentation will be unable to differentiate between the impedance of the cables
and of the cell and this can lead to large measurement errors. The 4-terminal tech-
nique ensures that the voltage drop measured by the instrument is measured directly
across the cell and does not include the voltage drop in the CE and WE cables and
therefore provides accurate measurement of the cell voltage. When the actual cell
voltage is measured using the 4-terminal technique and is combined with accurate
measurement of the current flowing through the cell, it becomes possible to char-
acterize very low impedance test cells.

3.2.1.4 Measurement Resolution and Accuracy

Frequency resolution is an important parameter for some applications and this is a
function of the design of the waveform synthesizer in the FRA or spectrum analyzer.
Using state-of-the-art techniques it is possible to design very high resolution wave-
form synthesizers which are able to provide 26 bit, or even higher, frequency reso-
lution (i.e. 1 in 67,000,000). Using these waveform generator techniques, very fine
frequency sweeps with as little as 100 mHz steps can be achieved at 1 MHz (this is
essential when testing highly resonant devices such as crystals, for example in quartz
crystal microbalance (QCM) applications). Of course it is important that the ana-
lyzers are also able to measure at such fine increments of frequency and this is all
part of the overall system design.

Frequency accuracy, as opposed to resolution, depends on the stability of the
on-board frequency reference, which is usually a crystal oscillator, and these are
usually stable to 10 ppm if the temperature is held stable. For more precise applica-
tions, some instruments allow a very accurate external frequency reference to be
used.

Impedance measurement accuracy depends on the measurement of ac voltage
and current through the cell. The 4-terminal technique is extremely important for
measurement of low impedance devices as explained earlier. Other considerations
are the voltage and current ranges that are available in the potentiostat and FRA, the
bandwidth of the potentiostat (this is dependent on the range selection), and the
measurement accuracy of the frequency response analyzer.

Usually, measurement of ac voltage is not so much of a problem and bandwidths
of 1MHz and beyond can fairly easily be achieved with careful design. Current
measurement, however, usually presents much more of a problem. It is therefore
extremely important to check the specified bandwidth of the potentiostat for the
particular measurement that is required. The bandwidth of any potentiostat will tend
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to be widest in its mid-impedance range (probably when measuring cells of around
1 kiloohm impedance). For measurements on batteries and fuel cells, however, the
impedance being measured is very much lower (typically much less than 1 ohm and
even down to milliohms). In this case, since the cell impedance is low, the poten-
tiostat is usually measuring on one of its high current ranges (measured current
through the cell = applied voltage/cell impedance), which usually has lower fre-
quency bandwidth. At the other end of the impedance scale, when measuring high
impedance devices such as anticorrosion coatings, the potentiostat is usually oper-
ating on a low current range where again the bandwidth is limited compared to the
mid-impedance range bandwidth. It is very important, therefore, to study and under-
stand impedance measurement specifications that are provided by instrument man-
ufacturers and select instrumentation that is appropriate for the measurements to be
performed.

It is not sufficient to only consider the bandwidth of the electrometer (the voltage
measurement circuits); the whole system, especially including the bandwidth of the
current measurement system, should be considered for the specific cells that are
likely to be tested. Wherever possible, the instruments should be tested on the
actual cells to be analyzed to make sure that they are able to make the required
measurements.

3.2.1.5 Single Sine and FFT Measurement Techniques

Single sine and FFT (fast Fourier transform) measurement techniques are widely used
for the impedance analysis of electrochemical cells. In terms of accuracy the single
sine frequency response analysis technique (sometimes referred to as single sine cor-
relation) is unsurpassed. This technique involves applying a low amplitude pure sinu-
soidal voltage or current waveform to the cell at a particular frequency and then
calculating the impedance of the cell at that frequency from the measured ac voltage
across the cell and the ac current passing through the cell. This measurement process
is repeated at a number of frequencies in order to fully characterize the cell imped-
ance across the frequency range of interest. The FFT technique provides an alterna-
tive method for measuring the impedance of the cell by applying a stimulus waveform
containing multiple frequency components (for example multisine, random noise, or
step/pulse waveforms), and then calculating the impedance from the measured
voltage and current time domain waveforms. This process involves performing FFT
computations to transform the measured time domain results into the frequency
domain. Both of these techniques are examined in more detail and the advantages and
disadvantages of each technique are assessed later in this section.

For the single sine analysis technique, a low amplitude sinusoidal stimulus
(usually around 10mV) is used in order to operate within a linear region on the cell.
This is very important since the nonlinear nature of electrochemical cells can lead
to impedance measurement inaccuracies when using higher amplitude signals.
Figure 3.2.3 shows what would happen if a sine wave stimulus of too high ampli-
tude were used to make measurements on a cell which has a nonlinear voltage vs.
current response curve. The resulting ac current waveform in this case is heavily
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Figure 3.2.3. Non-linear electrochemical cells.

distorted (certainly not a pure sine wave), giving rise to additional frequency com-
ponents (harmonic distortion). Since the single sine correlation technique applies a
single frequency sine wave and measures only at the same frequency, the effect of
harmonic distortion introduced by measurement of cells in a nonlinear regime is
minimized. However, in order to obtain accurate impedance results it is essential to
operate within a linear regime on the cell by using a low enough amplitude ac stim-
ulus. As will be seen later in this section, the FFT (or harmonic analysis) approach
can be used to provide useful information about whether the measurement results
are obtained in a linear or nonlinear measurement regime.

Refer to section 3.1.2.7 for more information about the single sine correlation
process. Even measurement of one cycle of the waveform to be analyzed provides
rejection of all harmonic frequencies, as can be seen from the upper trace in Figure
3.2.4. Additional cycles can be averaged to provide rejection of noise and subhar-
monics from the waveform, as demonstrated by the other two traces which show the
improved rejection of spurious signals for 10 and 100 cycles of integration.

For a complete impedance characterization of the cell, the frequency of the stim-
ulus sine wave is swept across the frequency range of interest and measurements are
taken at each frequency point. Frequency response analyzers give very accurate
measurements but are limited in their measurement speed due to having to sweep
the measurement frequency. This has limited their use for measurements on fast
changing systems. However, with the increased use of digital signal processor (DSP)
technology, this is becoming less of a limitation, with very fast frequency sweeps
now being available, at least at the high frequency end of the spectrum. At low fre-
quency the measurement time is limited by the necessity to measure at least one
cycle of the waveform (so at 1 mHz, a single measurement takes 1000s).

The use of FFT (fast Fourier transform) spectral analysis can be the perfect com-
plement to the single sine analysis technique. The FFT can perform very fast meas-
urements since it is not necessary to sweep the stimulus frequency in order to
measure multiple frequencies. With the introduction of DSP technology, very fast
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Figure 3.2.4. Single sine correlation (rejection of noise and harmonics).

measurements at multiple frequencies can be performed. Typically a multisine stim-
ulus waveform is constructed that includes a number of discrete frequency compo-
nents added in such a way that the crest factor (spikiness) of the final waveform is
kept as low as possible. This is important since high signal levels corresponding to
peaks in the multisine waveform may lead to harmonic distortion effects. The crest
factor of the waveform is optimized by adjusting the phase of each sinusoidal fre-
quency component relative to the others until the waveform is as smooth as possi-
ble and is free from large spikes. The resulting multisine waveform is applied to the
cell and measurements of ac voltage and current are taken over a user-defined whole
number of cycles of the lowest frequency present in the stimulus waveform. Since
the stimulus waveform contains multiple frequencies, the measured waveforms will
also contain the same frequencies. The FFT algorithm computes the results from all
frequencies simultaneously, producing an impedance spectrum. The advantages for
FFT analysis are: fast multifrequency analysis, fewer problems when measuring time
variant systems (since measurements can be very fast—depending on the lowest fre-
quency to be analyzed), and a consistent set of data since all frequencies are mea-
sured at the same time.

The choice of frequencies that are included in the multisine stimulus waveform
is an interesting area for discussion. In the case where all frequencies are stimulated
in the applied multisine waveform, the FFT analysis is not able to differentiate
between signals that are the response of the cell to the same frequency in the stim-
ulus waveform, or signals that are simply harmonics of the stimulus frequencies due
to the nonlinearity of the cell, and this can lead to very poor results. Of course it is
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essential to operate in a linear regime on the cell and if that rule is observed the FFT
impedance results can be much improved. However, if all frequencies are used in
the stimulus waveform, in order to keep the overall signal level low to operate in a
linear regime on the cell, the amplitude at each frequency will need to be very low,
leading to possible additional problems with noisy results.

Much improved measurement can be obtained by reducing the number of
stimulus frequencies in the multisine waveform. Some commercially available
analyzers have either a preprogrammed list of frequencies or allow the multisine
frequencies to be selected by the user. In this case, many frequencies in the FFT
analysis band are deliberately not stimulated. The applied multisine frequencies are
usually chosen so that each stimulus frequency is not coincident with the main har-
monics of lower frequencies. In this case, the main components of harmonic dis-
tortion from each frequency in the stimulus waveform do not interfere with other
stimulus frequencies (though of course it is not possible to avoid all significant har-
monic frequencies). Without doubt, the impedance results from this approach are
much improved compared to those obtained by the method where all frequencies
are stimulated.

It is also possible (and this is a major benefit of the FFT or harmonic analysis
approach), by measuring the results at the nonstimulated frequencies to investigate
whether the cell is operating in a linear regime. If the nonstimulated frequencies are
showing a significant response then it is necessary to adjust the experimental con-
ditions, for instance by reducing the applied ac level until the nonstimulated
responses are sufficiently low.

In addition, the fact that very much fewer frequencies are contributing to the
multisine stimulus waveform allows a higher amplitude signal to be used at each
frequency while keeping the overall waveform amplitude within the linear regime
on the cell. Typically 10-15 frequencies may be selected (usually with an approxi-
mately logarithmic relationship) for each decade leading to perhaps 50 frequencies
being stimulated across the entire measurement frequency band, while analyzing
over 8000 frequencies using the FFT algorithm to check for nonlinearity and then
focusing on the 50 original frequencies to provide the impedance response. This
approach can lead to good quality impedance data while utilizing the advantage of
the FFT measurement speed.

Another possible problem area of the FFT approach that should be discussed is
that of dynamic range. Since all frequencies are measured at the same time, there
can be problems with dynamic range, especially when measuring over several
decades of frequency. This can be seen when using an FFT based instrument to
measure the impedance of a capacitor over a wide range of frequency. Since the
impedance of a capacitive sample changes by an order of magnitude for every decade
of frequency, the current measurement input needs to be able to resolve the wide
range of current levels that are present at the same time. This can be a problem for
measurements on corrosion coatings for example, which may cover a very wide
range of impedance when tested over several decades of frequency. In other appli-
cations the range of impedance being measured may not be as large and the dynamic
range issue may not be a significant problem.
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Figure 3.2.5. FFT analyzer vs. frequency response analyzer.

In the case of the capacitive sample, the problem is to measure the high current
signal present at the high frequency end of the spectrum where the capacitor is low
impedance at the same time as measuring the low current signal at the low frequency
end of the spectrum where the capacitor is high impedance. If many decades of fre-
quency are being analyzed at the same time, then the high frequency current com-
ponent may be some orders of magnitude bigger than the low frequency current
component. This may give rise to noisy or “limited” measurements at the low fre-
quency end of the spectrum and “clipping” at the high frequency end of the spec-
trum (Figure 3.2.5). This problem can be avoided by running several FFTs in
sequence each on different input ranges over different bands of frequency and then
patching the results together, though this reduces the speed of measurement and the
results are no longer simultaneous. There may also be steps at the edges of each fre-
quency band since the integration time may be different in each case. The single
sine technique does not suffer from this limitation since optimum voltage and current
ranges can be selected at each frequency in the sweep.

Great care must also be exercised in the acquisition of data that is to be used
for FFT analysis. In order to avoid problems with aliasing of frequencies (see section
3.1.3.4 for a discussion of this problem), it is essential to apply rigorous analog and
digital filtering techniques, and the measurement sample rate must be sufficiently
high (at least two times the maximum frequency of interest) otherwise out of band
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signals (aliases) may appear in the analysis frequency range. Subsampling (some-
times called undersampling) techniques are sometimes used where the sample rate
is many times lower than the frequency that is to be analyzed and this can give errors
due to unwanted interference frequencies contributing to the impedance results.

In summary, the single sine analysis technique is a pure technique that gives
rise to very stable, repeatable measurements and is able to minimize the effects of
noise and distortion from the cell. Speed improvements for this technique are avail-
able due to the introduction of DSP-based frequency response analyzers. The single
sine technique can also give harmonic information that can be used to check for non-
linearity. The FFT technique is complementary to the single sine technique and gives
very fast impedance results that are less affected by time variant cells and can incor-
porate information about cell nonlinearity. However, if not applied with care the FFT
can sometimes be more susceptible to nonlinear effects, alias frequencies, noisy
results, or by dynamic range limitations. Systems that offer both techniques through-
out the full frequency range of the instrumentation are able to extract the maximum
information from test cells.

3.2.1.6 Multielectrode Techniques

Some commercially available electrochemical impedance test systems have the
ability to measure not only the overall impedance of a complete electrochemical cell,
but also the impedance contribution of various component parts of the cell allow-
ing, for example, direct comparison of different anode or cathode materials in a
battery. Multielectrode measurement techniques may also be used to investigate indi-
vidual cells in a battery or fuel cell stack (Figures 3.2.6 and 3.2.7).

It is important to realize that some systems may only provide the use of auxil-
iary electrodes for dc voltage measurement (it is not possible to use these particu-
lar systems for the measurement of impedance from the auxiliary electrodes).
Careful selection of equipment is therefore important if it is necessary to measure
the impedance of parts of cells in this way.

CE (current)
RE1 (vyoltage hi)

Aux 17

Aux 2 :\

RE2 (voltage lo)

WE (cprrent)

Figure 3.2.6. Auxiliary voltage measurements (measurement of electrodes in a cell).
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Figure 3.2.7. Auxiliary voltage measurements (measurement of individual cells in a battery).

For anode/cathode investigations on batteries or fuel cells it is necessary to have
extra connections built into the cell itself to allow connection to the auxiliary voltage
inputs on the instrumentation. This provides separate measurement of the ac voltage
drop across the anode, cathode, and separators. With modern measurement equip-
ment it is becoming possible to make simultaneous measurements of the overall
battery impedance and of the individual electrodes within the cell using single sine
or FFT techniques.

By combining the ac voltage measurements from the auxiliary voltage inputs
together with the measurement of the ac current through the whole cell, it is possi-
ble to measure the impedance contribution of the anode, cathode, and the imped-
ance of the whole cell. By overlaying the results it is easy to see the contribution to
the overall cell impedance that is made by the anode and cathode. Measurements
from the main and auxiliary channels can be made simultaneously to ensure that the
results represent a consistent data set.

For measurements of individual cells in a battery or fuel cell stack, the main
channel connections are placed across the whole stack with the auxiliary electrodes
connected across each individual cell allowing the overall impedance and the imped-
ance of each cell to be investigated. This method of obtaining individual cell imped-
ance measurements from the auxiliary voltage input signals, in combination with the
charge/discharge facilities provided by the potentiostat for the standard cycling of
the cells, provides early detection of bad cells in a stack.

3.2.1.7 Effects of Connections and Input Impedance

Connections to electrochemical cells are usually made via a potentiostat/galvanos-
tat. There are particularly critical points on the cell where great care needs to be
taken in the method of connection. Usually the counter electrode (CE) is where the
stimulus waveform is applied to the cell and this is not a particularly critical part of
the system. However, the points where voltage and current are measured are vital
to the accuracy of the results.
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In the case of voltage measurement, it is critical that current that has passed
through the cell does not “leak” into the voltage inputs since this can give rise to
errors in both current and voltage measurement. For this reason, the reference inputs
usually consist of very-high-input impedance, low capacitance buffer amplifiers. The
method of connection of the voltage measurement circuits to the point of interest in
the cell is also critical. Typically, potentiostats provide either “driven shield” voltage
measurement connections to the cell, or they have external voltage-follower buffer
amplifiers (sometimes referred to as electrometers) that are positioned close to the
measurement points in the cell. Using the latter technique, it is necessary to posi-
tion electronics close to the cell which can be a disadvantage when performing tem-
perature tests on the cell since the electronics may also be subject to temperature
variations which can lead to measurement errors or in extreme cases may damage
the electronics. If, however, tests are only being performed at room temperature this
technique gives good results.

Using the driven shield technique, all of the electronics is positioned inside the
potentiostat avoiding any problems of cell temperature affecting the measurement
electronics. The driven shield technique ensures that whatever voltage signal is seen
at the measurement point within the cell is accurately reproduced on the shield of
the connection cable, so that the voltage difference between the cable inner and
shield is permanently maintained at zero volts (Figure 3.2.8). Therefore, there is zero
current flow between cable inner and shield. Using this technique, a cable that has
a real capacitance of around 100 pF/m actually exhibits very low capacitance of the
order of a few pF/m, which allows accurate high-frequency ac voltage measurements
to be made on the cell.

For very sensitive measurements on very low impedance (or very high imped-
ance) cells it may be necessary to shield the cell from external interference using a
Faraday cage which is connected to the instrument ground and it may also be nec-
essary to take particular care regarding the placement of cables to avoid electrical
interference and cross-talk between cables.

| Potentiostat
Connection l

to cell BNC Cable (e.g. 1 metre)

V measure

Sy

Figure 3.2.8. Driven shields (zero voltage drop between cable inner and shield).
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3.2.1.8 Verification of Measurement Performance

Usually, equipment manufacturers supply a known test circuit to verify the per-
formance of the equipment. The test circuit is typically a combination of resistors
and capacitors that give a known impedance frequency response curve. Of course
this only tests the particular voltage and current ranges that are appropriate for the
circuit in the test box. It may well be the case that a particular system performs well
for that level of impedance but has problems when measuring other cells. Batteries
are difficult to simulate in a test box since they often have very low impedance and
also have a dc cell voltage. The impedance response of the battery also changes
dramatically at different stages of partial charge/discharge so it is difficult to
investigate the performance of the equipment for these tests. However, tests can be
performed on accurate low value resistors or large capacitors to simulate different
aspects of the battery in a more controlled way and gain an insight into the mea-
surement performance of the system. Of course the voltage/current rating of the
components must be compatible with the tests that are to be performed otherwise
accuracy of the result could be affected or the test component may fail or even
explode.

Other tests that are of great value are to check the stability and linearity of the
cell under the imposed test conditions. The stability may easily be checked by repeat-
ing the impedance tests on the same cell within a short period of time and in the
same environmental conditions to check if the impedance results are repeatable and
stable. If this is not done, time can be wasted in trying to interpret artifacts that are
simply due to an unstable cell. In addition, it is very important to test for cell lin-
earity by referring to the tests using harmonic or FFT analysis that were suggested
in section 3.2.1.5.

3.2.1.9 Floating Measurement Techniques

Most modern potentiostats allow measurements on grounded devices such as
pipelines, metal storage tanks, and even laboratory tests using grounded autoclaves
or similar devices. For measurements to be properly made in these difficult condi-
tions it is necessary for the instrumentation to have “floating” measurement capa-
bility. In this case, the internal circuitry in the potentiostat is referred to an internal
floating ground rather than actual ground. For measurements on grounded structures
(Figure 3.2.9) the instrument is set to “floating” measurement mode (usually by soft-
ware control or by a manual switch on the unit) and the counter electrode (CE) is
connected directly to the grounded structure while the working electrode (WE) that
measures current flowing through the structure is allowed to “float” to the required
voltage under the control of the potentiostat. In this case, the whole structure
becomes a large counter electrode which supplies the required test current to the WE
where it is accurately measured. The WE is controlled by the potentiostat and floats
to an offset voltage relative to the grounded CE in order to supply the required
current (if operating in current controlled mode) or offset potential (when operating
in voltage controlled mode). In the case of a nonfloating measurement system, where
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Figure 3.2.9. Grounded and floating measurement systems.

CE is instead set to a particular voltage relative to ground while the WE is held
close to ground potential (nonfloating), much of the current supplied be the CE
goes directly to ground via the structure under test, completely avoiding (short-
circuiting) the WE current measurement input and leading to very high current levels
and overloads in the system. The floating measurement capability is therefore
extremely important for some applications.

Floating measurements are also used to avoid ground loops where equipment
and test cell are grounded at different points leading to noise and interference in the
measurements. If the cell is grounded but the equipment is floating then this problem
can be avoided.

It has been known for earth connections to be removed from nonfloating systems
to convert them into floating systems. This is a very dangerous practice and is not
recommended from the safety point of view since the whole equipment could
become “live” which could lead to injury or fatalities.

3.2.1.10 Multichannel Techniques

There are many applications where multichannel impedance measurement systems
are particularly useful. The throughput of testing in a laboratory can be increased
either by the use of multiplexed systems where multiple cells are connected and are
automatically tested in sequence by, for example, a potentiostat and FRA, or by the
use of true parallel measurement systems where each cell has access to its own
potentiostat and FRA. The parallel system, of course, is the more efficient method
since all cells can be tested simultaneously; however the equipment required for
this is more expensive since there are separate potentiostats and FRAs on every
channel. The introduction of multichannel systems, however, has seen a reduction
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in cost of these parallel measurement systems since the PC, software, power sup-
plies, communications, and casework are shared between a number of channels in
the system.

Multichannel systems also allow more advanced tests to be performed, for
example testing a segmented fuel cell where one electrode has been partitioned to
investigate different electrode materials or to do impedance mapping of the fuel cell
electrode. Different materials can also be simultaneously screened in a common cor-
rosive environment using a multichannel potentiostat system with several working
electrodes and one counter electrode and a reference electrode.

Multichannel potentiostats can often be connected in parallel to provide tests
on high power devices when needed while allowing the flexibility to be used as a
multichannel system on lower power devices by reconfiguring the connections to
the cells.

3.2.2 Materials Impedance Measurement Systems

Whereas electrochemical tests usually investigate the interface between electrode
material and solution (for example a metal in salt solution for corrosion tests, or an
electrode in an electrolyte for battery tests), materials impedance tests tend to focus
on the properties of the material in isolation. For materials impedance tests, the
electrodes are simply a method for providing electrical contact to the material. The
material under investigation might be a solid (ferroelectric, piezoelectric, ceramic,
polymer, etc.) or a liquid (liquid crystal materials, oils, pharmaceutical products,
etc.). In some cases, the impedance properties of the material may be under inves-
tigation as a function of temperature (e.g. ceramic materials in high temperature fuel
cells or satellite materials over a wide range of temperature). Materials that are used
in insulator applications are also investigated using impedance techniques at close
to their breakdown potential by the use of high voltage amplifiers.

3.2.2.1 System Configuration

Typical, commercially available, materials impedance test systems consist of either
a self-contained impedance analyzer that is capable of measuring the ac voltage drop
across a material and the ac current through the sample or, for very high impedance
materials, a more specialized system made up of a very sensitive ultra-high-
resolution current to voltage converter interface unit connected to a frequency
response or impedance analyzer. The measurement principles are the same in both
cases; an ac stimulus signal is applied to the sample under test, the ac voltage and
current are both measured, and the impedance of the sample is obtained. A PC is
used to control the instrumentation and collect impedance results for storage on disk
and for display in graphical form. Equivalent circuit fitting routines such as LEVM
are widely used for further analysis of the impedance results.

Self-contained impedance analyzers are usually connected to the sample using
2-terminal or 4-terminal techniques, depending on the impedance of the sample to
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be measured. Specialized sample holders are available from various manufacturers
that can be used for measurements of liquid and solid materials samples. Self-
contained impedance analyzers usually cover measurements of medium to low
impedance samples (100 megaohms to 10 milliohms being a typical measurement
range). Ultra-sensitive amplifiers are often added to the system for the investigation
of very high impedance materials and these typically offer an impedance range of
tens of ohms to over 10" ohms. The frequency range of medium frequency imped-
ance analyzers and frequency response analyzers is typically from tens of yHz to
tens of MHz. Radio Frequency (RF) impedance analyzers are also available to
extend the frequency range up to tens of GHz using waveguide sample measure-
ment techniques.

3.2.2.2 Measurement of Low Impedance Materials

The same arguments apply to testing low impedance materials as those for testing
low impedance electrochemical cells. It is very important to use 4-terminal test tech-
niques to ensure that the impedance of the connection cables does not invalidate the
measurement of the material itself (refer to section 3.2.1.3 for more details). Typi-
cally, a stand alone 4-terminal impedance analyzer is used for this type of mea-
surement. A Faraday cage may also be required to screen very low impedance
samples against interference since the voltage levels measured on low impedance
samples is often very small (maybe in the mV region).

3.2.2.3 Measurement of High Impedance Materials

For measurement of high impedance materials, 2-terminal test connections to the
sample are usually used. This is because the impedance of the sample is generally
much greater than the impedance of the test cables; therefore, any errors introduced
by the cables are unlikely to significantly affect the sample measurement results.
This is true at low frequency in particular but at high frequency, specialist techniques
are often needed to minimize errors due to cables and these will be discussed later
in this section.

It is important in many applications to have very sensitive current measurement
capability for measurements at low frequency (less than 1 Hz) where the impedance
of a wide range of materials becomes very high. This is especially true for ceramic
and other insulator materials.

For the measurement of high impedance (or ultra-high impedance insulator)
materials, it is often necessary to add a specialized materials test interface into the
system. The impedance interface typically comprises of a very sensitive virtual earth
current to voltage converter capable of resolving current in the subpico amp region
(<102 amps). This type of measurement system is able to measure very high im-
pedance (insulator) materials in the range up to 100 teraohms (10" ohms) allowing
characterization of ceramic, polymer and ferroelectric materials. The interface is
connected to a frequency response or impedance analyzer that provides the analy-
sis of the ac voltage across the material and the signal output of the current to voltage
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converter which is proportional to the current flowing through the sample. The
impedance of the sample can then be calculated. For measurement of ultra high
impedance samples, a Faraday cage is again recommended in order to screen the
sample from interference. The Faraday cage can usually be connected to the screen
of one of the sample connection cables since this is usually connected to earth inside
the instrument.

3.2.2.4 Reference Techniques

Impedance tests on materials are often performed over a wider frequency range
than those on electrochemical cells. In particular, measurements at the high
frequency end of the spectrum (>1 MHz) are more difficult to perform with high
accuracy, and measurement errors due to cables and instrumentation become more
pronounced in this frequency range, requiring specialized reference and normal-
ization techniques to reduce or eliminate these effects and obtain accurate and
repeatable results.

Impedance interfaces often provide the facility for automatically switching
between measurements of the sample to be measured and measurements of a low
loss calibrated reference capacitor (Figure 3.2.10). An ideal reference capacitor
would have a completely “flat” response (constant capacitance) across the entire fre-
quency range. This “ideal” capacitor cannot be achieved in reality since there will
always be some parallel resistance in the capacitor even though this can, in practice,
be an extremely high value. However, the difference between an ideal and nonideal
capacitor is sufficiently small for most purposes and the reference capacitor is a very
useful tool that can be used to quantify errors due to cables and instrument mea-
surement errors. The deviation of the capacitor from its ideal response due to cables
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Figure 3.2.10. Connection of ac measurement unit and materials test interface.
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and measurement errors is measured and recorded and this deviation is used to apply
a correction to the measured results from the material under test.

Materials test interfaces often have a selection of reference capacitors available
inside the unit that can be automatically switched to match a wide range of differ-
ent materials samples. Measurement is usually taken of the sample and then the
closest available reference capacitor (of similar capacitance value) is chosen for the
reference measurement. In this case the measurements can be taken on the same
voltage and current ranges and any errors due to instrumentation or connection
cables can be virtually eliminated. The internal reference capacitors can even be
changed automatically as the sweep progresses to provide the best reference capac-
itance matching when measuring dispersive materials where the measured capaci-
tance of the material changes significantly during the sweep.

Usually external reference capacitors can be connected to the interface allow-
ing an ultra-stable reference to be used if one is available. This also provides best
matching of cable errors since the same type of connection cables can be used on
the sample and on the reference. The reference technique is especially useful when
using external amplifiers for high voltage tests, though the reference capacitor must
be chosen with care to withstand the applied voltage level.

3.2.2.5 Normalization Techniques

An alternative technique is to use normalization to improve measurement accuracy.
In this case, the capacitance of the sample is measured across the range of frequency
of interest. A capacitance value is then chosen to most closely match the measured
capacitance of the sample. The sample is removed from the sample holder, con-
verting it into an empty cell (air) capacitor and the spacing of the sample holder
electrodes is adjusted until the same capacitance value is measured. The same fre-
quency sweep is then performed on the “empty cell” recording results at the same
list of frequencies as the original sweep on the sample and also recording the dimen-
sions of the empty cell. The “empty cell” results may then be used to normalize the
measured results from the sample.

The “empty cell” measurement may only need to be taken once if a series of
samples of similar capacitance are required to be measured, saving valuable test
time.

3.2.2.6 High Voltage Measurement Techniques

High voltage amplifiers are sometimes added to the system to allow impedance
testing at close to the dielectric breakdown of the material under test. Amplifiers can
provide ac or dc stimulus signals at beyond 1kV. Care must be taken to attenuate
the signals back down to within the measurement voltage range of the equipment
in order to avoid damage to the instrumentation. Usually, current-limited power
supplies are required to ensure that high current does not enter the equipment,
especially in the case when the sample breaks down.
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3.2.2.7 Temperature Control

Some systems allow temperature control to be added to the materials impedance test
system to characterize the way that materials change with temperature. There are a
wide range of temperature controllers available from various manufacturers and
these can often be coupled with furnaces for very high temperature tests to >1,000°C
or with nitrogen or helium cryostats for low temperature testing of the sample
(Figure 3.2.11). Cryostats and furnaces provide closed loop control of temperature
using temperature sensors positioned close to the sample. The temperature controller
compares the temperature being reported by the sensor with the required tempera-
ture and automatically adjusts the power supplied to the heater coil in order to
achieve the desired sample temperature.

In the case of cryostats, liquid nitrogen or helium is used to cool the sample and
a heater coil is used to raise the temperature of the sample relative to the tempera-
ture that would otherwise be set by the nitrogen or helium. It is usually preferable
that the cryogen does not come into contact with the sample to ensure that there is
no contamination or condensation on the sample which may, in some cases, affect
the results. It is also preferable for the sample chamber not to be filled with air to
avoid possible oxidation problems. For this reason it is often the case that the sample
is placed in a separate chamber in the cryostat in an inert gas environment.

There are often two temperature sensors in the system, one is positioned close
to the heater coil and provides very stable control of temperature since there is im-
mediate feedback of any temperature changes in the coil. The other is positioned
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Figure 3.2.11. Cryostat measurement set-up.
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close to the sample in order to provide an accurate record of the actual sample tem-
perature (this may be slightly different from the heater coil temperature).

3.2.2.8 Sample Holder Considerations

The sample holder is also a very important part of a materials impedance measure-
ment system. Fringing and stray capacitance effects can easily give measurement
errors if inappropriate sample holders are used. Tests on dielectric (or high imped-
ance) materials are often performed using 2-terminal connections, and for the most
accurate results, sample holders that have guard electrodes are used in order to min-
imize fringing effects. Ideally, field lines should be parallel throughout the sample for
accurate measurements but Figure 3.2.12 shows how the field lines at the edge of the
sample become distorted, leading to measurement errors. For this reason, sample
holders have been specifically developed which provide an earthed guard ring sur-
rounding the actual measurement electrode. The “Lo” electrode is connected to the
instrument current measurement input while the guard ring is connected to the shield
of the current measurement input which is typically connected to earth inside the
instrument. The current measurement circuit uses a “virtual earth” current-to-voltage
converter which maintains the “Lo” electrode on the sample holder close to earth
potential, while the guard electrode is connected to actual earth. Since there is no
potential difference between the guard and the measurement electrode, the field lines
are kept parallel and evenly distributed throughout the part of the sample that is to be
measured. The current that passes through the edge of the sample, which experiences
fringing and stray capacitance effects, simply goes direct to earth and is not meas-
ured, giving very accurate measurement of current through the central part of the
sample. A general rule is that the width of the guard ring should be at least two times
the thickness of the material in order to avoid fringing problems. The same techniques
can be applied to liquid sample holders and also to sample holders that are used in
high or low temperature tests as part of a furnace/cryostat system.

This section was written by Brian Sayers.
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Figure 3.2.12. Sample holder with guard ring.
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3.3 DATA ANALYSIS

J. Ross Macdonald

3.3.1 Data Presentation and Adjustment

3.3.1.1 Previous Approaches

In this section we shall first summarize a number of previous methods of data pres-
entation and then illustrate preferred methods. A common method of showing data
has been to plot the imaginary parts (or sometimes their logarithms when they show
considerable variation) of such quantities as Z, ¥, M, or € vs. v or log(v). More
rarely, real parts have been plotted vs. v. Such plotting of the individual parts of Z
or M data has itself been termed impedance or modulus spectroscopy (e.g. Hodge
et al. [1976], Almond and West [1983b]). As mentioned earlier, however, we believe
that this approach represents only a part of the umbrella term impedance spec-
troscopy and that complex plane and 3-D plots can much better show full-function
frequency dependence and interrelationships of real and imaginary parts.

Let us consider some of the above plots qualitatively for the simplest possible
cases: a resistor R in parallel or in series with a capacitor C. Let the single time con-
stant 7= RC and define the Debye function D(w7) = D’ — jD” = [1 + jwt]™", which
leads to a semicircle in the complex plane. The D” = (w7)/[1 + (@7)*]. A plot of this
functions vs. @ yields a peak at @, = 7' and an eventual dropoff proportional to
o at @ << ®,, and to @™ at @ >> ®,,. Thus the final slopes of log(D”) vs. log(wT)
are +1 and —1. It is easy to show that for the parallel connection; Z = RD(w7),
-Z" = RD"(wt), M = (C/C) (jot) D(wT), and M” = (C,/C) D”(®7). For the series
connection, one finds Y = (jwC) D(wrt), Y’ = GD"(w71), € = (C/C,) D(wt), and
&£” = (C/C,)D”(wt). These results demonstrate that under different conditions —Z”,
M”, Y”, and € all exhibit D”(®@7) response. Further, in some sense, the pairs Z and
M= (joC,Z, and € and Y = (jwC,)¢ are closely related. Real materials often do not
lead to IS results of the simple D(@7) semicircle form, however, but frequently
involve a distorted or depressed semicircle in the complex plane which may arise
from not one but several relaxation times or from a continuous distribution of relax-
ation times. Under such conditions, curves of —Z” vs. v, for example, are often appre-
ciably broader than that following from D(@7).

It has been customary in much past work to plot —Z” or M” vs. v and either not
give estimates of parameters, such as R and C, leading to the response or to esti-
mate them roughly by graphical means. It is often found that the frequency at the
peak, w,, is at least approximately thermally activated. But this frequency involves
both R and C, quantities which may be separately and differently thermally acti-
vated. Thus instead of using the composite quantity ,,, which may be hard to inter-
pret properly, we believe it to be far preferable to find estimates of all the parameters
entering into an equivalent circuit for the situation. As we shall see, such estimates
can best be obtained from CNLS fitting.

One other type of plotting has been very common in the dielectric field in earlier
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years, namely plotting of tan(J) vs. v, where 6 = —0 = tan™' (¢”/€’). Thus tan(8) =
£”/¢’. Since energy loss is proportional to £€” and energy storage to €’, J is often
termed the loss angle. When € is given by Eq. (20) in Section 2.2 with y, =1, so
there is only a single time constant and D(@7) response is involved, the simplest
case of interest, one readily finds that

(&, — £.)0T)

tan(8) = (D

e +e. (1)
which again gives a Debye-type peaked curve, with maximum value
(e, —€.)/[2Vee.. ] occurring at @7 =+/e,e.. . But here again there is no longer any
good reason to plot tan(8) vs. v when much more about the total response can be
learned from a 3-D plot of € or Y. Incidentally, the use of tan(d) plots is entirely
absent from a recent compendium of dielectric theory and behavior (Bottcher and
Bordewijk [1978]).

3.3.1.2 Three-Dimensional Perspective Plotting

It should be clear from the above discussion that we strongly believe that all IS data
should be examined and presented using three-dimensional perspective plotting. One
then automatically obtains the plots of real and imaginary parts as projections in the
coordinate planes, a normal complex plane plot in the real-imaginary plane and an
overall 3-D curve showing the response in proper 3-D perspective. Sometimes when
the variation of the quantity plotted is extreme, it is desirable to replace the real and
imaginary axes by log(real) and log(imaginary) axes.

A typical simple circuit is shown at the top of Figure 3.3.1, and 3-D plots for
its impedance response appear in the middle and bottom of the figure. The two 3-D
graphs are for different viewing angles. Note that a log(frequency) axis has been
added at right angles to the ordinary —Im(Z), Re(Z) complex plane plot, allowing
frequency response to appear explicitly. We shall sometimes use f and sometimes v
to indicate frequency in the succeeding graphs. The heavy curve in Figure 3.3.1 is
the 3-D response line, its vertical projections to the log( f)-Re(Z) plane are shown
dotted, and the curve in the complex plane plot is actually a semicircle here.

There is an alternative to the usual 3-D plotting of Z in rectangular form which
we have been discussing. Instead, we may express a quantity such as Z or M
in polar form, involving, say, |M| and 6. If one defines the three axes in a 3-D
plot as (X, Y, Z) = (6, |M|, log(v)), one will obtain a different looking 3-D plot and
different projection curves. If the |M| axis is replaced by log |[M|, one even has a
3-D Bode plot. Note that In(M) = In[|M| exp(j0)] = In|M| + jO, a complex number,
so the In|M|, 6 plane is a consistent complex plane, whereas that involving M and
0 is not, since M and 0 do not form the parts of a complex number. Thus, there is
some reason to prefer the second of these approaches to the first. The use of the pro-
jection curves In|Z| vs. v and 0 vs. v has been proposed and encouraged by Cahan
and Chen [1982]. Although there may be instances where both the standard rectan-
gular and polar 3-D representations are worthwhile plotting and examining, we
believe that the standard rectangular one with either real and imaginary axes or log
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Figure 3.3.1. A simple circuit and 3-D plots of its impedance response. The 3-D plots are for
different viewpoints. (Reprinted from J. R. Macdonald, J. Schoonman, and A. P. Lehnen, Solid State
lonics 5, 137-140, 1981.)
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axes is usually quite sufficient and shows the entire frequency response of the func-
tion considered in a way that yields projection curves of the kind that have been
widely used in the past and about which there exists a larger body of interpretative
knowledge.

There still remains the problem of which ones of the four functions Z, M, Y,
and &€ to plot in 3-D. Certainly, one should always plot the one of these that was
directly measured. If, in addition, all four are plotted and examined, as a good
general rule, emphasis should be put on the one (or ones) which show the most detail
and cover the entire frequency range with best resolution.

We shall illustrate the above by showing results for IS impedance data for a
single-crystal Na B-alumina with blocking gold electrodes, measured at T = 83K.
These data (Almond and West [1981], Bruce et al. [1982]) were kindly provided by
Dr. West [1983]. This set, and data for eight higher temperatures, have been re-
analyzed with CNLS fitting (Macdonald and Cook [1984, 1985]).

Figure 3.3.2 shows a 3-D impedance plot of the data, using straight lines
between data points. Solid dots are employed for the data points themselves and
open circles for their projections in the three planes. The log(Vv) scale starts at 1 here
and in the succeeding plots, and its scale interval (between tick marks) is always
also 1. The zero points of —Z” and Z’ occur at the origin. Three important conclu-
sions may be drawn from these results. First, it is clear that much of the higher-
frequency data are too small to be adequately resolved in this plot. Second, it seems
likely that the lowest-frequency point is in error. Third, although this anomaly shows
up clearly in the 3-D curve and in the complex-plane curve, it is entirely absent from
the —Z” vs. log(v) and the Z’ vs. log(V) projection curves. Were these the only curves

Figure 3.3.2. A 3-D plot of the impedance-log(V) response of single-crystal Na B-alumina at 7 =
83K. (Reprinted from J. R. Macdonald and G. B. Cook, J. Electronanal. Chem. 193, 57-74, 1985.)
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plotted, as would often be the case in the absence of 3-D plotting, the anomaly would
not be discovered. More 3-D plots are presented in Section 3.3.2.

3.3.1.3 Treatment of Anomalies

What should one do about anomalies of this kind, points which do not seem to lie
close to a smooth curve? If the experiment can be repeated, that should be done, and
averaged or best data used. In the present instance, measurement at a few more fre-
quencies between the present lowest and next lowest point would yield intermedi-
ate points which would help clarify whether the last point is badly off or not. If the
experiment cannot be repeated, then outliers of appreciable magnitude, such as the
lowest-frequency point in the present plot, should be omitted (or weighted very low)
in subsequent CNLS fitting.

Figure 3.3.3 presents a log-impedance 3-D plot of the same data. It has the virtue
of allowing all the data to appear with the same relative resolution, but it clearly
reduces anomalies. Although we could show the higher-frequency data alone on a
separate regular 3-D plot to achieve better resolution, it turns out for the present data
that a 3-D M plot (Figure 3.3.4) covers the full data range with adequate resolution.
Here, we see two more important anomalous regions not apparent on the earlier
curves or in the papers of Almond and West. First, the one in the middle arises (West
[1983]) from overlapping data taken with two different measuring devices which
evidently gave inconsistent results in their regions of overlap. This anomaly only

Log (-Z")

T=83K

N

Log(Z") UNIT: |
ORIGIN: (2,3)

Figure 3.3.3. A 3-D plot of the same data as that of Figure 3.3.2, but with logarithmic
transformation of the impedance. (Reprinted from J. R. Macdonald and G. B. Cook, J. Electronanal.
Chem. 168, 335-354, 1984.)
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ORIGIN: (99x10°,0)

Figure 3.3.4. A 3-D modulus function plot of the Na S-alumina, 7 = 83K data. Here M = joC.Z.
(Reprinted from J. R. Macdonald and G. B. Cook, J. Electroanal. Chem. 193, 57-74, 1985.)

shows up clearly in the 3-D curve and in the M’ vs. log(v) curve. It was apparently
not recognized until the present 3-D M plotting was carried out (Macdonald and
Cook [1984]). In this instance, the plot shows that it would certainly have been desir-
able to recalibrate the measuring instruments and repeat the experiment. Second,
there is a probable anomaly for the highest-frequency three points. Although M plots
emphasize high frequencies as compared to Z plots, there is no physical reason to
believe that M’ should begin to decrease at high frequencies (Macdonald and Cook
[1984]), and it would be difficult to justify putting in elements in a fitting equiva-
lent circuit which would cause it to do so. Therefore, in subsequent CNLS fitting of
these data, at least the highest-frequency three points, should be omitted.

Thus far we have recommended that when appreciable outliers or other anom-
alies appear in IS data, the experiment be repeated one or more times or, when this
is impractical, particularly anomalous points be omitted. But there is one further pro-
cedure which has often been found useful in other areas and could be applied here
as well. This procedure is smoothing; it should, however, only be carried out after
the averaging and pruning mentioned above. All IS frequency data curves should,
ideally, follow smooth curves with no abrupt changes in slope, except at possibly
sharp cusps where two arcs join each other in the complex plane (e.g. Figure 1.3.1¢).
Even here no sharp change is present unless the processes represented by the two
arcs occur in widely separated frequency regions, and even then it is not present in
the 3-D curve itself.

When large anomalies have been eliminated, it is still often valuable to reduce
the remaining smaller deviations (noise, experimental error) from a smooth curve
by smoothing. The resulting smoothed data will then generally lead to more
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accurate estimates of the parameters involved in a CNLS fitting. There are many
methods available for smoothing. We suggest that the holistic approach of smooth-
ing using B-splines calculated by a least squares approximation would be particu-
larly appropriate for the type of complex data obtained in IS (de Boor [1978]).
Unfortunately, it does not yet seem practical to apply this procedure to both real and
imaginary parts simultaneously, as would certainly be most appropriate; instead, one
would smooth, say, Z’ vs. v [or possible log(V)] and Z” vs. v results separately and
then recombine the results to obtain Z(w). This procedure would have another virtue.
Besides producing an analytic approximation to the Z data, it would yield dZ/dv
results with no further calculation. These results, now expressed in analytic form, in
turn would simplify CNLS fitting of the smoothed Z(®) data to a specific model or
equivalent circuit. Much work still remains to be done to develop this approach,
which could, in fact, be incorporated as an optional initial part of a CNLS fitting
program. It may sometimes prove useful, when major anomalies (which cannot be
directly remedied) appear more evident in M or Y 3-D plots than in the Z plot, to
carry out the actual smoothing on the transformed data, then convert the smoothed
Z for use in CNLS fitting.

3.3.2 Data Analysis NMethods

3.3.2.1 Simple Methods

When non-overlapping semicircular arcs appear in, say, the impedance plane, one
can directly estimate the associated R and C values from the left and right intercepts
of the arc with the real axis and the value of w at the peak of the arc, ®,, = (RC)™".
This procedure is quite adequate for initial estimates, but it yields no uncertainty
measures for the parameters and does not check that the frequency response along
the arc is consonant with that for an R and C in parallel. Further, experimental arcs
rarely approximate exact semicircles well. There have been many graphical methods
proposed for the analysis of impedance and dielectric data (e.g. Cole and Cole
[1941], Vetter [1967], Macdonald [1974a,b], Bottcher and Bordewijk [1978]). These
methods often consist of plotting some function of the data vs. some function of fre-
quency with the expectation of obtaining a straight line whose parameters may be
related to the desired parameters of the equivalent circuit. Although these parame-
ters may be estimated from the straight line by ordinary least squares fitting, this is
not usually necessary if the estimates are to be used as initial values in subsequent
CNLS fitting. Often subtraction of the effects of some estimated parameters is used
to help in the estimation of further parameters. But subtractive methods are notori-
ously inaccurate. Again, all quantities are usually estimated without using all the
available data simultaneously and without yielding uncertainties.

An improved geometrical, iterated—subtractive curve fitting method for resolv-
ing two or more overlapping arcs (which may be depressed) has been described by
Kleitz and Kennedy [1979] and has been further developed and automated by Tsai
and Whitmore [1982]. An algebraic method of estimating parameters for systems
which exhibit pseudoinductance (i.e. negative capacitance and resistance) and lead
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to an arc in the first quadrant of the impedance plane followed by an arc in the fourth
quadrant has been proposed by D. D. Macdonald [1978¢] (see also Macdonald
and Franceschetti [1979b]. Finally, a sophisticated least squares method for finding
the best circle through a set of data points in the plane appears in Macdonald,
Schoonman, and Lehnen [1982]. For obtaining initial parameter estimates, the
simple methods described in Section 1.3 are usually sufficient.

3.3.2.2 Complex Nonlinear Least Squares

None of the above methods uses all the data simultaneously, and they are often
restricted to the analysis of limited situations (e.g. two possibly overlapping arcs).
Nevertheless, when applicable, these methods are useful for initial exploration of
the data and for initial parameter estimates for use in CNLS fitting. The much more
general and powerful method of complex nonlinear least squares was first applied
to IS in the work of Macdonald and Garber [1977], and further discussion of the
method and demonstrations of its high resolving power and accuracy appears in
Macdonald, Schoonman, and Lehnen [1982] and Macdonald [1991]. Later, a some-
what similar CNLS program was developed by Tsai and Whitmore [1982], but it does
not include the important feature of allowing arbitrary or analytical weighting of the
data and has no built-in procedure for avoiding or recognizing local minima in the
sum of squares to be minimized. The current version of the very flexible and general
computer program, LEVM, for weighted CNLS fitting is available for free down-
loading and use (Macdonald and Potter [1987], Macdonald and Solartron [2003]).
Why should one be interested in using complex nonlinear least squares fitting?
After all, as already mentioned, the Kronig—Kramers (KK) relations (Macdonald and
Brachman [1956]) ensure that if one knows the real or imaginary part of a minimum-
phase function over all frequencies, one can calculate the value of the other part at
any frequency. This may suggest to the reader that ordinary nonlinear least squares
fitting of data for either the real or imaginary part vs. v should be sufficient. But we
never have data over all frequencies, and all experimental data are contaminated
with error. Thus, application of the KK relations to the real or imaginary part of
actual experimental data often does not allow the measured values of the other part
(which contain errors) to be calculated very closely. It therefore appears reasonable
to attempt to fit all of the data simultaneously to a given model, a model which
involves a set P of unknown parameters (e.g. circuit elements) which may enter non-
linearly in the formula for the measured function of frequency, impedance, admit-
tance, and so on. Although the real and imaginary parts of this physically realizable
function are connected in a holistic, averaged way with each other through the KK
relations, it is usually a good approximation to assume that the random (nonsys-
tematic) errors in each of these quantities are uncorrelated with each other. Since
practical fitting models nearly always are minimum-phase and thus satisfy the KK
relations, the achievement of a good CNLS fit of data to the model automatically
ensures that the KK relations hold, and it is thus unnecessary to carry out the lengthy
integrations necessary to check KK satisfaction directly. When no appropriate math-
ematical model or equivalent circuit is available, however, CNLS fitting is not useful.
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In such cases, KK analysis turns out to be particularly helpful, as demonstrated in
the discussion of Section 4.4.5.

Complex nonlinear least squares avoids most of the weaknesses of earlier
methods since it fits all the data simultaneously and thus yields parameter estimates
associated with all, rather than half, the data. In addition, it provides uncertainty esti-
mates for all estimated parameters, showing which ones are important and which
unimportant in the model or equivalent circuit used for fitting; and finally, it allows
one to fit a very complex model, one having 5, 10, or even more unknown (free)
parameters. None of the other methods can do this adequately, especially when
several of the time constants of the model are close together.

Here, we shall briefly describe a slightly more general fitting method than ordi-
nary weighted CNLS, but for simplicity we shall still refer to it as CNLS. Consider
a theoretical model expression fi(@; P) which is a function of both angular frequency
 and a set of model parameters P. Consider i =1, 2, . . ., k data points associated
with ;. We need not specify the number of parameters here, but we do assume that
they enter f; nonlinearly in general. Now suppose that f; is separated into two parts,
fYw; P) and f?(w; P), which both depend on the same set of parameters. For
flw; P) = Z(w; P), for example, the two parts might be f¢ = Z/ and f/ = Z/, or
f&=1Z| and f? = 6, where 0 is the phase angle of Z,. The least squares procedure
involves minimizing the sum of squares function

§= 2 wilss —f @i P+t [ = (i P} @

where w¢ and w? are the weights associated with the ith data point and % and f% are
experimental data values. When, say, b(w:; P) = 0, the procedure reduces to ordi-
nary nonlinear least squares.

Since the above generalization of the ordinary nonlinear least squares method is
so minor, it is a simple matter to modify a standard nonlinear least squares program
to implement Eq. (2). In any nonlinear least squares procedure, however, there is a
problem of ensuring that the minimum found in parameter space is the absolute
minimum. This problem, which may become serious when the number of free param-
eters is large, has been attacked in the work of Macdonald, Schoonman, and Lehnen
[1982] by using two programs in series. The first does not require inversion of the
system matrix and thus nearly always converges. The second program, which uses
the results of the first as input, does not usually converge, however, unless it can find
a set of parameter values which lead to an absolute minimum in S or at least a good
local minimum. The first program often helps it to do so. In spite of the power of this
serial method, the achievement of an absolute minimum, giving the least squares esti-
mates of the parameters as well as their uncertainty estimates (standard deviation esti-
mates), is always simplified and facilitated by using the best available estimates of
the parameter values as input to the first program. Some of the simpler analysis
methods mentioned above are often useful in providing such initial estimates.

The procedure described above is not really a CNLS approach unless f* and f*
are the real and imaginary parts of a complex variable. But as we have seen, |Z| and
0 are not, although In|Z| and 6 and Z’ and Z” are. Since we sometimes are inter-
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ested in fitting data in the |Z|, 8 form rather than In|Z|, 6, this distinction is worth
making, although it makes no formal difference in the minimization of Eq. (2).

3.3.2.3 Weighting

The problem of what weights to use is not always an entirely well-defined one. The
simplest choice, termed unweighted or unity-weighted, is to set all w¢ and w? values
equal to unity. But if values of f¢ and f2 vary over several orders of magnitude, as
is often the case, only the larger values will contribute appreciably to the sum S,
resulting in poor parameter estimates. A reasonable procedure, when it can be done,
is to replicate the experiment 5 or 10 times and determine the w,’s from the standard
deviations from the mean for each point. The general relations to use are w¢ = (0°¢)™
and w? = (0?)%, where the 0’s are the experimental standard deviations.

When replication is impractical and there is no direct information on the best
individual w;’s to employ, it has usually proved most satisfactory to assume that the
relative errors of the measured quantities are constant. This approach has been
termed proportional or P weighting. It is equivalent to setting

of =gfsi and ol =g 3)

where g is a proportionality constant which is usually taken to be unity and whose
value makes no difference in the parameter estimates. Here P weighting is particu-
larly needed when the data exhibit large variation. In the Z case, S would become

LMz -z P) T [Z0-7/(0:P)T
S=SZ=Z{[ el Z,(wta )} +l: ei Zt/Ewta )jl (4)

i=1

An alternative choice, which yields nearly the same parameter estimates if the rel-
ative errors are small (i.e., the squared terms above), is to take o = gf7(w;; P) and
o} = gfi(w; P).

3.3.2.4 Which Impedance-Related Function to Fit?

The next problem is which function Z, Y, M, or € to fit. The answer is that it is most
sensible from a statistical point of view to fit the data in measured rather than trans-
formed form. Suppose that Z is measured in rectangular form. When both Z and the
associated ¥ = Z™' data are separately fitted with P weighting, it is found that there
are often significant differences between the parameter estimates obtained from the
two fits. This is not unexpected; the operation of taking an inverse (complex or not)
on data with errors generally introduces a bias in the fitted results; it is for this reason
that the directly measured results should be fitted directly.

In most automated measurements the rectangular components are measured
directly, but sometimes the modulus and phase angle are directly obtained. These
are the two quantities, ¢ = |f,| and 2 = 6 = <f,, which would then appear in Eq. (2)
for S. Again in the absence of measured uncertainties, P weighting would usually
be most appropriate. In this case ¢ = g|f.| and 6? = g6,.. It is worth mentioning
that it has sometimes been suggested that with data in rectangular form, a modified
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P weighting be used in which 6¢ = o7 = g|f.|. Such weighting leads to parameter
estimates from Z and Y fitting which are generally much closer together than those
obtained with ordinary P weighting. Thus with this weighting, it makes no signifi-
cant difference whether the data are fitted to the model in Z or Y form. Since,
however, this weighting seems physically unrealistic and blurs a distinction which
we in fact expect, it seems to have little to recommend it. Further, when ordinary P
weighting is used for fitting of data in either rectangular or polar form, it is easy to
show that the @ factors occurring in M or € cancel out of the S function, and thus
fitting of Z and M then yield exactly the same set of parameter estimates and rela-
tive fitting residuals, and fitting of Y and ¢ also yield the same set of parameter esti-
mates and relative residuals. Of course, the Z and Y sets will be different unless the
data are exact for the model considered. Thus when P weighting is employed, one
should fit to Z or Y depending on which was measured directly and should fit in rec-
tangular or polar form, again depending on which form is directly measured.

3.3.2.5 The Question of “What to Fit” Revisited

The remaining problem is what equivalent circuit or equation to fit by CNLS (see
Sections 2.2.2.3 and 2.2.3.4). If it is expected that the data arise from an experiment
described by a known analytic model, then of course fitting to the Z(w) or Y(w) pre-
dictions of this model would be appropriate. In the more usual case where a com-
plete, appropriate model is unknown, the first step is to examine 3-D plots of the data
and attempt to identify the effects of specific processes appearing in different fre-
quency regions. An equivalent circuit may then be put together to try to describe these
processes and their interactions (see Sections 2.2.3.3 and 2.2.3.5). When CNLS fitting
with this circuit is then carried out, one would hope to find little evidence of system-
atic error (leading to large, serially correlated residuals), small relative standard errors
for all free parameters, and small relative residuals for the data points, so the overall
relative standard deviation of the fit, S, is small. If relative standard deviations of
the parameters are of the order of 30% or more, the associated parameters are not well
determined by the data and should be removed from the equivalent circuit. Generally,
one would keep modifying the equivalent circuit and doing CNLS fitting until the
above criteria are as well satisfied as possible, under the general criterion of using as
simple an equivalent circuit with as few individual elements as practical.

3.3.2.6 Deconvolution Approaches

There is an alternative to some of the above trial-and-error procedure that is some-
times worth trying. Suppose that the impedance-plane plot shows a wide arc which
is not exactly a displaced semicircle. It might possibly be best described by several
discrete time constants not too far apart (e.g. Armstrong et al. [1974], Badwal and
de Bruin [1978]) or by a continuous distribution of time constant. In the first case,
the equivalent circuit would involve several individual parallel RC’s in series, and
in the second it might involve one or more ZARC functions (CPE and R in paral-
lel) in series. Although the best of these choices could be discovered by carrying out
several CNLS fits, a more direct method would first be to use deconvolution of the
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Z”(m) data to find an estimate of the distribution function of time constants implicit
in the data (Franklin and de Bruin [1983], Colonomos and Gordon [1979]). Such a
distribution, if sufficiently accurate, will separate out the various time constants
present, even if they are completely invisible in 3-D plots, and by the width of the
individual relaxations apparent in the distribution suggest whether they may be best
described by discrete circuit elements or by continuous distributions in the frequency
domain. From the values of relaxation time 7 where relaxation peaks occur, 7,, one
may also calculate the approximate frequency region @, = 7,' where the relaxation
produces its maximum effect. These results may then be used to construct an appro-
priate equivalent circuit and estimate initial values of the parameters for subsequent
CNLS fitting.

The basic equations for obtaining the distribution of relaxation times, g.(7), at,
say, the impedance level, start with the defining relation (Macdonald and Brachman
[1956])

> Z(T)dt
Z(w) =f 0 1g+ja)T

&)

where R, is the @ — 0 value of Z(w). This relation can be put in convolution form
by several transformations. Let us use normalized quantities and pick some fre-
quency @, which is approximately the central value of all frequencies measured. Let
Wy =27V, Ty = Wy ', OTy = exp(—z), T= Texp(s), and G.(s) = 1g.(7). We have here
introduced the new logarithmic variables s and z. Then Eq. (5) becomes

Z(2)=Ry J_w 1+ jexp[—(z—s)]

This equation may now be separated into real and imaginary parts, each giving an
independent expression involving G.(s), the desired quantity. Although both may be
used, the imaginary part of Z generally shows more structure than the real part, and
it is customary to calculate G(s) from Z” data rather than from Z’ data. The expres-
sion for Z” following from Eq. (6) is

(6)

Z7"(z2)=—(R,/ 2)!:0 G,(s)sech(z —s)ds €)

now in standard convolution form. The process of deconvolution to find G.(s) and
thus g.(7) is generally a complicated one but can be carried out by computer when
needed. Although two different methods are described by Franklin and de Bruin
[1983] and Colonomos and Gordon [1979], current superior procedures using
LEVM are discussed and illustrated in Macdonald [2000a, 2000c], see also Lasia
[1999].

3.3.2.7 Examples of CNLS Fitting

As a first example of CNLS fitting, the circuit shown in Figure 3.3.5 was constructed
with lumped elements whose values were measured on an impedance bridge (top
figures) (Macdonald, Schoonman, and Lehnen [1982]). This circuit leads to very
little structure in either the Z or Y 3-D plots shown in Figures 3.3.6 and 3.3.7. The
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Figure 3.3.5. Test circuit involving lumped circuit elements. Nominal values are the numbers on

top, while those in parentheses are CNLS estimates. (Reprinted from J. R. Macdonald, J. Schoonman,
and A. P. Lehnen, Solid State Ionics 5, 137-140, 1981.)
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Figure 3.3.6. Perspective 3-D plot of the Z response of the circuit of Figure 3.3.5. (Reprinted from
J. R. Macdonald, J. Schoonman, and A. P. Lehnen, Solid State Ionics 5, 137-140, 1981.)



3.3 Data Analysis 201
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Figure 3.3.7. Perspective 3-D plot of the Y response of the circuit of Figure 3.3.5. (Reprinted from
J. R. Macdonald, J. Schoonman, and A. P. Lehnen, Solid State Ionics 5, 137-140, 1981.)

bottom numbers shown for each element in Figure 3.3.5 are the CNLS Y-fitting
values estimated from all the data; they are probably more accurate than the nominal
values. Clearly the resolution and accuracy are very good here in spite of the appear-
ance of little structure in the 3-D plots. But this was a situation where the proper
circuit was initially known.

Figure 3.3.8 shows the results of fitting impedance data for B-PbF, at 474K
(Macdonald, Schoonman, and Lehnen [1982]) with CNLS to the circuit at the top
of the figure. Initially the form of the circuit which would best fit the data was
unknown, so several different ones were tried. The use of a CPE in the circuit, as
shown, allowed quite a good fit to the data to be obtained and led to well-determined
parameter estimates. The deviations between the dotted and dashed projection lines
at the lowest frequencies show that the fit is not perfect in this region, however.

Finally, Figure 3.3.9 shows a 3-D log impedance plot for the same data shown
in Figure 3.3.3. Here the fit (dotted curves) appears to agree very well indeed with
the data, but an M plot (as in Figure 3.3.4) showing both data and fit predictions
shows regions of appreciable disagreement (Macdonald and Cook [1984, 1985]).
Since it has become customary to plot curves such as log(—Z”) vs. v or log(v) and
log(Z”) vs. v or log(v) when data variation is large and to compare data and fitted
results in this form, we wish to warn that this is often insufficient; discrepancies of
some importance may be obscured by the logarithmic transformation. Even though
several 3-D plots with different scales may be required to show data of wide vari-
ability plotted linearly, it is generally a good idea to examine them all when data
and predicted values are to be compared. Regions of discrepancy then yield
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B-PbF, at 474K
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Figure 3.3.8. At the top is a circuit used to fit 3-Pbf, data at 474K. Parameter values and their
standard deviations estimated from CNLS fitting are shown. The bottom part shows a 3-D perspective
plot of the Z data (solid line and short dashes) and predicted values and curves (long dashes).
(Reprinted from J. R. Macdonald, J. Schoonman, and A. P. Lehnen, Solid State Ionics 5, 137-140, 1981.)

immediate information about needed modifications in the fitting circuit. Finally,
although the idea hasn’t been much exploited as yet, it is a simple matter to plot
relative residuals themselves in 3-D. For Z data one would plot (—Z. + Z7)/Z(’)) on
the vertical axis and (Z, — Z;)/Z, on the horizontal real axis and employ the usual
log(v) axis. For P weighting, one would expect the resulting 3-D curve to be well
bounded (magnitudes of most residuals comparable), but the plot should clearly
show any regions of correlated residuals, indicating the presence of systematic errors
and the need for improving the fitting circuit.

3.3.2.8 Summary and Simple Characterization Example

In the IS field, workers ordinarily spend much time and effort in preparing materi-
als and measuring them under closely controlled conditions. But frequently their
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Figure 3.3.9. Perspective 3-D Z plot showing both data (solid lines) and CNLS fit (dotted lines) for
Na S-alumina data at 83K. Compare Figure 3.3.3 for the data alone. (Reprinted from J. R. Macdonald
and G. B. Cook, J. Electroanal. Chem. 168, 335-354, 1984.)

subsequent attention to data analysis is quite inadequate and does not do justice to
the work done. Although some kind of a data presentation is usually included, it is
rare when sufficient plots are incorporated to resolve all the data well and show its
shapes for different kinds of plots. We have tried herein to illustrate some of the
virtues of 3-D perspective plotting and strongly urge its increased use in the IS field.

Even in the rare cases where the data are presented adequately, one often finds
either no discussion of an appropriate model or equivalent circuit or just the state-
ment that the data fit a given equivalent circuit without either a comparison of the
original data and the circuit predictions or a listing of estimates of the values of the
parameters in the equivalent circuit. In most cases where such a listing is included,
the estimates have been obtained by approximate methods and the reader is given
no measure of their accuracy and applicability. Finally, even when an equivalent
circuit is presented and used, one rarely finds any discussion of why it is the most
appropriate circuit to use or any comparison with other possible fitting circuits.

In summary, we first advocate 3-D plotting of data in various forms, followed
by data adjustment and smoothing when warranted. Then crude approximate analy-
sis methods may be employed to estimate initial values of the parameters which
enter into an equivalent circuit thought appropriate. Next, CNLS fitting with weight-
ing should be carried out using this and any other possibly likely allied circuits in
order to find the simplest and best-fitting one. Then the data and the fitting results
should be compared in 3-D and the final parameter estimates and their estimated
standard deviations presented.
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Even when all the above procedures have been completely carried out, there is
a final stage of analysis which should always be included when possible. This stage
is the essence of characterization: the passage from good equivalent-circuit macro-
scopic element estimates to estimates of microscopic parameter values. It is, of
course, unnecessary if one is fitting data directly to an impedance function involv-
ing microscopic parameters. But in the more usual case of fitting to an equivalent
circuit, this stage is the heart of the whole enterprise. A general approach to such
macroscopic—microscopic transformation for unsupported systems has been outlined
in detail in Macdonald and Franceschetti [1978], and the method is illustrated in,
for example, Macdonald, Hooper, and Lehnen [1982] and Macdonald and Cook
[1984, 1985].

Here we shall illustrate the method for a simple unsupported situation, that
where the equivalent circuit of Figure 2.2.8b applies with only C.., R.., Ck, and Ry
present. Assume that univalent charge of only a single sign, say, positive, is mobile
and the partially blocking electrodes are identical with known spacing [. The equa-
tions presented in Section 2.2.3 become (per unit area)

C.=¢¢g,/1 (®)
R.=1/Fu,c )
Cr =(eeoF> ¢ /RT)" (10)
and
Ry = RT/(F*c%k®) (11)

Assume that either &, the bulk dielectric constant, is known or that C., has been deter-
mined from CNLS fitting of the data. In either case, €&, can be obtained and used
in Eq. (10) to obtain from the Cy estimated value an estimate of c‘;, the bulk con-
centration of the mobile positive charge carriers. Then this value of ¢) may be used
in Eq. (9) along with the estimated value of R.. to obtain an estimate of 4, the mobil-
ity of the positive charges. Finally, the ¢}, estimate may be used in Eq. (11) in con-
junction with the Ry estimate to calculate k‘;, the effective reaction rate for the
reacting positive charges. Thus from the four macroscopic estimates C.., R.., Cg, and
Ry, one obtains estimates of the four microscopic quantities &, c?,, U,, and k?,. These
values and their dependences on controllable variables such as ambient temperature
should then finally lead to valuable insight into the electrical behavior of the mate-
rial-electrode system.
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4.1 CHARACTERIZATION OF MATERIALS
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4.1.1 Microstructural Models for
Impedance Spectra of Materials

4.1.1.1 Introduction

In polycrystalline solids, transport properties are strongly affected by microstruc-
ture, and impedance spectra usually contain features that can be directly related to
microstructure. This is clearly illustrated in ceramic electrolytes such as zirconia and
B-alumina. Much work on correlating microstructure and electrical properties can
be directly traced to the pioneering study of Bauerle [1969]. The main purpose of
this research effort has often been to optimize electrical conductivity for use in solid
state electrochemical devices, such as solid oxide fuel cells (SOFC) and sensors. In
parallel, impedance spectroscopy (IS) has been developed as a technique for the
study of materials not intended for electrical applications, where transport proper-
ties are incidental to the main application, for example structural ceramics. In this
section we discuss microstructural models describing grains and grain boundaries
of differing phase composition, suspensions of one phase within another, and poros-
ity, while in Section 4.1.3, we give examples of the combined use of IS and
electron microscopy. With the two techniques combined, it is possible to derive
information of microstructural relevance that is not accessible using one of the
techniques alone.

Impedance Spectroscopy, Second Edition, edited by Evgenij Barsoukov and J. Ross Macdonald
ISBN 0-471-64749-7 Copyright © 2005 by John Wiley & Sons, Inc.
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The electrical properties of heterogeneous media have been modeled for over
100 years. Meredith and Tobias [1962], Mitoff [1968], and McLachlan et al. [1990]
have given clear accounts of their scope and validity. However, since these articles
cover the case where the conductivity or permittivity are real, which normally means
dc conductivity or permittivity of loss-free dielectrics, they are not directly applica-
ble to IS. AC properties have been discussed by Wimmer, Graham, and Tallan [1974]
with special reference to ceramics. The dielectric literature has been reviewed by
van Beek [1965], while Dukhin and Shilov [1974] have described models that
include the effects of the interfacial double layer. Sihvola [1999] has produced a
comprehensive survey of the properties of mixed phase systems with coverage of
the historical and theoretical background.

As this section emphasizes materials properties, the results are presented in
terms of bulk intensive quantities, such as the complex conductivity v, the complex
resistivity p, the permittivity €, and the modulus M. A distinction is made between
two kinds of properties, both bulk intensive: (i) macroscopic properties, such as the
resistivity of a sample due to grain boundaries (after correction for length/area),
which are directly measurable, and (ii) microscopic properties, such as the resistiv-
ity of the grain boundary phase, which can only be estimated with the help of a
microstructural model. The macroscopic quantities are represented by Latin symbols
and the microscopic ones by Greek symbols.

The quantity used for expressing models of this type is the complex conduc-
tivity, defined as

where ©; is the dc conductivity and & the permittivity of phase i. The role of the
model is to provide a hypothetical microstructure, for which the total complex con-
ductivity, y;, may be calculated. Having obtained v, = y,(w), this may be converted
to another representation, such as the complex resistivity, p = y™'. In many cases,
it is possible to find an equivalent circuit that represents the model. This has the
advantage that the circuit parameters can be estimated from the impedance spec-
trum. Equation (1) is equivalent to assigning a Voigt element to each phase. As will
be shown below, some of the models for two-phase microstructures are equivalent
to a circuit consisting of two elements in series (Figure 4.1.1), while others predict
a more complex behavior. The models fall into two types: layer models and
effective medium models.

Figure 4.1.1. Circuit equivalent of a two-phase microstructure.
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4.1.1.2 Layer Models

The earliest model used to describe the electrical properties of a two-phase mixture
is the series layer model (Maxwell [1881]) shown microstructurally in Figure 4.1.2a.
The two phases are assumed to be stacked in layers parallel to the measurement elec-
trodes, with total thicknesses of each phase proportional to the volume fractions x;
and x,. The series layer model is described by the equation

v =y oy )
or, in terms of the complex resistivities
P =X1p1 X202 (2a)

which expresses a linear mixing rule. The series layer model is equivalent to the
circuit of Figure 4.1.1, in which

81 =c71/x1,g2 =02/x2
¢ :81/x1,02 :Sz/xz

3)

The impedance and modulus spectra for this model in general consist of two semi-
circles. The diameters of these are gi', g>' in the impedance and ci', ¢;' in the
modulus spectra. The time constants of the two phases are defined as 7, = ¢,/g, and
T, = Cy/g,. If these time constants differ as a result of differences in c, then the arcs
will be well resolved in the impedance spectrum. If they differ as a result of g, they
will be resolved in the modulus spectrum (Hodge et al. [1976]). In practice, good
resolution is not obtained in both Z and M spectra.

It is interesting to compare the series model (Figure 4.1.2a) with the corre-
sponding parallel model (Figure 4.1.2b), in which the layers are stacked across the
electrodes. For the parallel layer model, the complex conductivity follows a linear
mixing rule

YV =x1¥ + X0, “4)
The equivalent circuit would be that of Figure 4.1.3a with values

81 = X101, §2 = X0, 5)

€ = X1€1,Cr = X8,

PHASE 1 —

@ @

PHASE 2

Figure 4.1.2. Hypothetical two-phase microstructures described by simple layer models: (@) series

layer model; (b) parallel layer model.
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Figure 4.1.3. Circuit equivalent of the parallel layer model. Two parallel connected Voigt elements
(a) transform to a single Voigt element (b).

The behavior of this circuit differs qualitatively from the previous one, because con-
ductances g, g, and capacitances c, ¢, are in parallel. Thus the circuit is equivalent
to that of Figure 4.1.3b, which shows only one relaxation. For the microstructure of
Figure 4.1.2b the individual relaxations cannot be resolved by any method, graphi-
cal, CNLS, or other. Although at first glance this model would appear to be as plau-
sible as the series layer model, it fails to describe the behavior of grain boundaries
in ceramics.

A third model, originally suggested by Beekmans and Heyne [1976], has been
termed the brick layer model (van Dijk and Burggraaf [1981], Verkerk, ez al. [1982]).
It is more realistic, treating the microstructure as an array of cubic grains, separated
by flat grain boundaries, as shown in Figure 4.1.4a. The grains have a side D and
the grain boundaries a thickness d, where d << D, and so the volume fraction of the
grain boundary phase is 3d/D. The current flow is assumed to be one-dimensional,
and curvature of the current paths at the corners of the grains is neglected. In this
case the two paths available to the current are either through grains and across grain
boundaries or along grain boundaries, as depicted in the exploded diagram shown
in Figure 4.1.4b. Depending on the relative magnitudes of o,; and o, one of the
two paths will normally dominate.

Case (i): o, >> 0y Conduction along the grain boundaries is negligible,
and conduction through the grains and across grain boundaries dominates. The
behavior can be described in terms of complex resistivity:

1
Pi = Pgi +§xgbpgh (6a)

or, for consistency with the rest of this section, in terms of the complex
conductivity:

-1
1
Vi =(V/.§f +§ngll/;§zl) (6b)

Case (ii): 0, << 0. Conduction along the grain boundaries is dominant:

2
V=V, +§xgbl//gb O
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Figure 4.1.4. Brick layer model for a two-phase ceramic: (a) Overall view, showing array of cubic
grains, separated by flat grain boundaries. (b) Exploded view of a single cell, showing parallel
electrical paths: (i) through grains and grain boundaries, and (ii) along grain boundaries.

Case (iii): general. According to Nife [1984], the two paths (i) and (ii) may be
combined into a network describing the polycrystalline properties for all ratios of
0,/ 0. Using our own notation this means:

-1
Y, = (v/g,-‘ +%ng) +%xghwgh ®)

We examine each case separately:

Case (i). For o,; >> 0, the brick layer model is equivalent to the series layer
model but with a one-third weighting of the grain boundary resistance. This reflects
the fact that grain boundaries in only one of the three orientations (i.e. normal to the
current) have a blocking effect. The circuit equivalent of the brick layer model is,

therefore, that of Figure 4.1.1 with parameters

ggi = Ggi, cgi = 8gi

C))
8eb = 3o-gh/xgba Cop =3Eg /xgb
A useful expression can be derived from these equations
_ Cqi ggb
Xgb _3Cgb ggi (10)
or, expressed in terms of grain size D and the grain boundary thickness d,
d i €
4 _ Cai Egp 1)

D Ceb Sg,'
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By making the assumption &,, = &, the thickness or volume fraction of the grain
boundary phase can be estimated, if the grain size is known. This applies only when
the boundary capacitance arises from the presence of a second phase which, as
explained later, is not always the case. Often one refers loosely to g,; and g, as grain
interior and grain boundary conductivities. A more appropriate term would be
macroscopic conductivities, as they are corrected for the macroscopic shape of the
sample (length/area). For the brick layer model, and for d << D, g,; is indeed the
microscopic conductivity of the grain interior. By contrast, g, is usually 100 to 1000
times higher than o, because x,, is small. Therefore, although we can have g, >
8gi» this should not be taken to imply o, > 0,

Case (ii). When the current is mainly carried along grain boundaries, the brick
layer model is equivalent to the parallel layer model (Figure 4.1.2a), but with a two-
thirds weighting on the grain boundary conductance term. A ceramic sample will
then show a single arc in the impedance or modulus spectrum revealing little or
nothing about its microstructure.

Case (iii). Nife’s [1984] model combines the two extremes in one expression,
and is valid at high or low conductivity ratios, as it reduces to the expressions given
for cases (i) and (ii). We have reservations about using this model over the entire
range of 0,/0,,, since the assumption of current flowing via separate pathways is
not tenable when o, = 0.

Thus it is possible, on the basis of the impedance spectrum alone, to differen-
tiate between two situations: conducting grains with blocking grain boundaries or
poorly conducting grains with highly conducting grain boundaries.

Blocking of lons—Easy Paths. The brick layer model assumed the grain
boundary region separating the grains to be continuous. However, it is often observed
that the activation energies for the two conductivities, g,, and g,;, are equal or very
similar. This led Bauerle [1969] to suggest, in connection with zirconia ceramics, that
there were regions of the grain boundary where good intergranular contact was estab-
lished; these are called easy paths (Figure 4.1.5a). The circuit chosen by Bauerle
(Figure 4.1.5b) expresses the idea that mobile species (oxide ions) are sequentially
blocked at grain interiors and grain boundaries. g,, is the conduction through easy

Qg Oy Cyp
ggi
. ;.
Cgi
g gb g Cgb Ca

@) @ ©

Figure 4.1.5. Easy path model for a two-phase ceramic: (@) Schematic representation of grains
separated by a discontinuous grain boundary phase. (b) Series circuit equivalent according to Bauerle
[1969]. (¢) Parallel circuit equivalent according to Schouler [1979].
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paths. Since &, = &, the small intergranular contact areas do not affect c,,. A slightly
different model, proposed by Schouler [1979] (Figure 4.1.5¢), divides the ionic
current into two paths, one of which (g, ¢,) is blocked capacitatively, while the other
(g.) 1s not. The proportion of blocked ionic current is then given by

B=g,/(g.+) (12)
The same ratio 8 could be expressed in terms of a series model as:
B=ro/(ri+ 1) (13)

Both models explain the identical activation energies of r,; and r,, and, as they are
equivalent (see Chapter 1), there is no a priori reason to prefer one to the other. One
might prefer to visualize constriction resistances according to Bauerle [1969], when
the grain boundary coverage is known to be high, or partial blocking according to
Schouler [1979], when the grain boundary coverage is low, in the form of isolated
islands.

Effect of Space Charge. As mentioned earlier, grain boundary effects arise not
only from the presence of second phases. The electrical behavior of interfacial
regions often differs from that of the grain interior due space charge effects, studied
by Maier and co-workers. Maier [1986] has shown that the conductance of a poly-
crystal contains three components: that of the grain interior (gi), the grain core (gc),
and a region next to the grain boundary, dominated by space charge (sc). The space
charge extends over a length, A, from the core, known as the Debye length. For the
simplest case, of a pair of defects with the same charge, the Debye length is given

by the expression:
PR L (14)
2c.z°F

where K is the dielectric constant of the medium

z is the number of charges on the defect

.. is the molar concentration of defect far from the interface
and &, R, T and F have their usual meanings.

In the Debye model, the defect concentration is an analytic function of the distance
from the boundary and, therefore, so is the conductivity, assuming that the mobility
is constant. The defect concentration depends on the difference in local free energy
between a defect at the boundary and a defect in the bulk and is parameterized by
a quantity in the range —1 to 1, describing the sign and strength of the effect. Figure
4.1.6a shows a defect concentration profile, in which the concentration is normal-
ized with respect to the bulk concentration and the distance from the interface is
normalized with respect to the Debye length.

For current perpendicular to a grain boundary, the following expression holds
for the impedance':

! The notation used in this expression has been altered for consistency with the rest of the section.
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Figure 4.1.6. (a) Defect concentration profile near an interface, according to the Debye model.
(b) Model microstructure for a polycrystalline solid, after Maier [1987].

Z'=Zi+Zy +AZ; (15)

while for current parallel to a grain boundary, a related admittance expression is
derived:

Y'= ¥+ Y.+ AV (16)

Both terms prefixed by A in these equations can be obtained by integrating the
relevant concentration profiles over the distance from the grain boundary core. By
considering a system composed of square grains (Figure 4.1.60) and summing the
contributions of the perpendicular and parallel paths (while neglecting the squared
term in x,,), the following expression is derived for the complex conductivity:

2
l//gil//ng + g xgbwgbl//;b
v, = (17)

L1
Ve + 5 XepWgi

where x,, refers to the combined volume fraction of the core and space charge region,
1.e. Xz, =X, + x,.. This is equivalent to Eq. (8), re-written so as to distinguish between
parallel and perpendicular paths and with the squared term in x,, removed, namely:

1 T2
V.= (W;tl +§xgbl//zjb_lj +§xgby/!’b (18)

A salient point in this work is that, by specifying a variation in conductivity
with distance from the grain boundary core, conductivity profiles in both orienta-
tions can be integrated and a phenomenological description obtained that is consis-
tent with the brick-layer model. On one hand, this is encouraging, because it shows
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that the simple brick-layer model is able to reproduce some of the more subtle effects
in ceramics. On the other hand, it suggests that conventional studies of ceramics,
especially those of pure ceramics with low grain boundary phase content, may com-
pletely miss the effect of the space charge layer. A recommendation arising from the
above is that several ceramic samples should be prepared with the same composi-
tion and with the widest possible range of grain sizes. However, it must be recog-
nized that this recommendation cannot always be turned into practice.

The above treatment assumes that the defects are mobile and distributed in
response to the thermodynamic driving force. It should be mentioned that this is not
always the case: ceramics often contain defects frozen in from higher temperature
treatment (e.g. sintering), in which case some of the defect concentrations will be
fixed. The two cases, respectively known as the Debye and Schottky cases, produce
different interfacial properties, including different characteristic lengths. For a
concise discussion of the two cases see Maier [1996]. Further relevant information
can be found in Kim et al. [2003] and Maier [2004].

Effects of Grain Shape and the Presence of Distributed Easy Paths.
Fleig and Maier [1998] have approached the question of grain boundary impedance
by finite element modeling. They have modeled various periodic grain structures
with grains of different shapes and aspect ratios. They have compared the results to
the predictions of the brick-layer model. The modeling results published so far cover
only two-dimensional systems. Figure 4.1.7 shows two model structures compris-
ing grains of high symmetry and the resulting impedance spectra, together with the
spectrum for the brick-layer case. For these examples, the discrepancy from the brick
layer model in terms of r,, was of the order of 5%. For another case, namely of a
serrated grain structure, where grain boundaries intersected the current lines at an
angle, the macroscopic grain boundary conductivity varied with the slope angle, o,
as follows:”

d .
8w =, Owsina (19)

This differs from the brick-layer model, for which the sine term is absent. This
should be expected, since for this model, &= 90°. Note that the above relation holds
even when the serrations are on a much smaller scale than that of the grains. Fleig
and Maier [1998] also explored the effect of a specific serrated microstructure on
the temperature dependence of the macroscopic grain boundary conductivity. They
assumed activation energies of 1.0 and 0.5eV for o,; and o, respectively, fed these
values into the model and observed that AH,, was slightly different from AH,y,. In
the temperature region near the point where g, = g4, AH,, increased to 0.6eV;
outside this region, it returned to the expected value of 0.5eV. Fleig [2000] exam-
ined the spatial distribution of easy paths in grain boundaries and found that con-

% This has been converted to our preferred notation.
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Figure 4.1.7. (a) Model grain boundary structures and the impedance spectra resulting from finite
element modeling of these structures. The spectrum for the square, brick-layer case is shown for
comparison (b). After Fleig and Maier [1998]. (Courtesy of the Electrochemical Society).

duction across the boundary was significantly greater with many small paths than
with a single large one when these paths occupied the same total grain boundary
area. Fleig [2002] examined a large number of computer-generated realistic
microstructures and confirmed that deviations from the brick layer model were
usually less that 10% and noted that the grain boundary relaxation frequency for the
model reflected the correct input value.

The work demonstrates that the layer model is acceptable, provided the grain
size distribution is narrow and the grain shape is roughly isotropic. In the case of
grain boundary blocking with easy paths, the grain boundary conduction is not
directly proportional to the area of the easy path contacts, but depends also on their
spatial distribution. Regarding the effect of space charges, we conclude that, in
general, simple studies will miss these effects, although some help could be pro-
vided by studying ceramics with a range of grain sizes.
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PHASE 1

@ PHASE 2 @

EFFECTIVE
MEDIUM

Figure 4.1.8. Hypothetical microstructures that may be described by the effective medium model:
(a) Continuous matrix of phase 1 containing a dilute dispersion of spheres of phase 2. (b) A grain
boundary shell of phase 1 surrounding a spherical grain of phase 2.

4.1.1.3 Effective Medium Models

The Maxwell-Wagner Model. The layer models presented so far have the
advantage of clarity, but have been derived under unrealistic assumptions concern-
ing the current distribution. Alternative models have been developed that take into
account the real current distributions, based on the effective medium technique. This
may be briefly described as follows. One imagines a continuous medium (the effec-
tive medium) of conductivity . A portion of this is removed and replaced by an
equal portion of the heterogeneous system consisting of two (or more) phases. By
applying the constraint that the current distribution in the effective medium is not
altered by this operation, an expression is derived for ¥, The total conductivity of
the two phase system V; is then equal to .. It should be noted that this approach
makes certain implicit assumptions about the microstructure, especially regarding
the continuity of the constituent phases. Figure 4.1.8 shows two possible microstruc-
tures with a continuous phase (1) and a discontinuous phase (2).

The first exact expression of this type was derived by Maxwell [1881] for the
dc conductivity of a dispersion of spheres in a continuous medium. Maxwell Garnett
[1904] derived a similar expression for dielectric and optical properties. Wagner
[1914] extended Maxwell’s model to the complex domain and this model has there-
after been known as the Maxwell-Wagner model.” It gives the following expression
for complex conductivity:

_ 2y + Yo —2x(y — )
: 2+ + (W —ys)

Despite its complexity compared to expressions derived from layer models,
this expression has proven to be versatile in describing the impedance spectra of

Vi (20)

* There is confusion regarding the name that should be attributed to this expression. Garnett’s given
names were James Clerk Maxwell, but he appears to have incorporated the last one into his surname.
Furthermore, while K.W. Wagner extended Maxwell’s formula to the complex variable, the term
Maxwell-Wagner is also associated with a slightly different phenomenon of interfacial polarization.
‘We have used the term to describe Eq. (20), following the practice of Fricke [1953].
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heterogeneous media. It is assumed that distortions to the electric field caused by
the particle are local, i.e. that neighboring particles experience a uniform field. This
has traditionally been taken to mean that the suspension must be dilute in phase 2.*
An embodiment of this model is shown in Figure 4.1.8a, in which the system con-
sists of spheres suspended in a continuous medium. Simulated complex resistivity
and modulus spectra given in Figure 4.1.9a,b for x, = 0.25 and for phases having
conductivities 0, >> 0; and identical permittivities. In this case, the relaxations of
the two phases are best resolved in the modulus plot.

Brailsford and Hohnke [1983] have applied the Maxwell-Wagner model to
grain boundaries in two-phase systems. Their microstructural model, shown in
Figure 4.1.8b, consists of a spherical grain of radius , surrounded by a shell of
outer radius r;, which represents the grain boundary and has a volume fraction
x; = 1 — (ro/r))*. The authors observe that for x;, — 0 and Y, << Y, the effective
medium model becomes identical to case (i) of the brick layer model, namely Eq.
(6). Further, we have found that for x — 0 and y; >> y,, it reduces to case (ii) of
the brick layer model, namely Eq. (7).}

The assumed conditions of a low grain boundary phase volume fraction and
large low grain boundary conductivity are realistic, as far as ceramic electrolytes are
concerned. It is therefore encouraging to see that models derived from two differ-
ent grain geometries give the same results under these conditions. This suggests that
the estimation of grain boundary properties from electrical circuit parameters should
be subject to a relatively small error as a result of assumptions about the shape of
the grains, if they are isotropic.

Simulated complex resistivity and modulus spectra based on Eq. (20) for the
blocking grain boundary situation (Figure 4.1.8b) are shown in Figure 4.1.9¢ and d.
It is evident that for the parameters chosen (0, >> ) either the impedance or the
modulus spectra resolve the microstructural components. For an appreciable volume
fraction of high conductivity suspended phase (Figure 4.1.8a), the modulus spec-
trum is preferable. For the situation with a low volume fraction of continuous grain
boundary phase (Figure 4.1.8b) the impedance or complex resistivity spectra give
good resolution.

Brailsford and Hohnke [1983] make two further observations regarding
porosity for the case 0, << 0. If the volume fraction of pores is x,, then for
intragranular pores,

8 =3 1)

* The maximum volume fraction x2 for which Eq. (20) is valid has not been accurately specified, with
values as low as 0.1 and as high as 0.5 having been proposed. A sensible upper bound might be 0.30
since above this the system approaches the percolation limit for spherical particles. On the other hand,
in the following paragraph, we mention a case where the model is valid for x, = 1.

* For consistency with the rest of the section, we have used different subscripts than have Brailsford
and Hohnke.
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Simulated impedance and modulus spectra for a two-phase microstructure, based on
the effective medium model. Values of the input parameters are given in Table 4.1.1. (a, b) Spectra for

modulus spectrum (b) but not the impedance spectrum (a). (¢, d) Spectra for a spherical grain of phase
2 surrounded by a grain boundary shell of phase 1. The ratio of shell thickness to sphere radius is 10~
Resolution is achieved in the impedance spectrum (c¢) but not the modulus spectrum (d).
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The same amount of porosity distributed intergranularly has a larger effect on the
grain boundary conductivity, highlighting the importance of the spatial distribution

of pores:
304
ggb =

Xgp + 5 Xp

Comparing the last two equations to Eq. (9) shows that the presence of pores
modifies the impedance spectra (complex conductivity spectra) by altering the diam-
eters of the grain interior or grain boundary arc. Nevertheless, in neither of these
cases do pores introduce a new arc or other feature in the impedance spectrum. Thus,
stating that the effect of pores can be seen on the impedance spectrum, does not
imply that from an empirical impedance spectrum the degree or type of porosity can
be established. This deduction could only be made if the electrical properties o, €
were known beforehand for both the grain and for grain boundary phases, a condi-
tion that is unlikely to be fulfilled.

Inspection of Figure 4.1.9 suggests that Eq. (20) generates spectra that are
similar to those of simple RC circuits. This is indeed the case. In fact, Bonanos and
Lilley [1981] showed that the Maxwell-Wagner model is formally identical to the
two-element circuit of Figure 4.1.1, but with values of g;, g,, ¢;, and ¢, that can be
expressed as rather complicated functions of &y, 0,, &, & and x, (Table 4.1.1).

(22)

The Fricke Model for Two-Phase Dispersions. Expressions similar to those
of Maxwell have been derived for ellipsoidal particles of random orientation (Fricke
[1932]) and for aligned ellipsoidal particles (Fricke [1953]). The expressions contain
form factors which depend on the axial ratio of the ellipsoids and their orientation
with respect to the electric field. The case of random orientation is the most inter-
esting, as it describes a realistic ceramic microstructure and results in the following
equation:

R (li/l —Wz)(l—xz)

(23)

1+(x2/3)2(l//1 _I//Z)/(¢nll/1 +y,)

n=1

where

v, = complex conductivity of the dispersion
v, ¥, = complex conductivities of the matrix and the dispersed phase, respectively

Table 4.1.1. Input parameters used to calculate the spectra shown in Figure 4.1.9

o o, & &
Volume Fraction x, S/cm F/em Figure
0.25 107 107 8.85 x 107" 8.85x 107" (a), (b)
0.997 107 107 8.85x 107" 8.85x 107" (c), (d)

Note: The permittivities &, & correspond to a dielectric constant of 10.
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X = volume fraction of the dispersed phase
01,5 = form factors which depend on the axial ratios of the ellipsoidal particles,
defined by the semiaxes a, b, ¢, where a 2 b 2> c.

Selected values of ¢ are given in Table 4.1.2. A simulated modulus spectrum for Eq.
(23) is shown in Figure 4.1.10. The parameters used to generate this are listed in
Table 4.1.3. A plot of complex resistivity (not shown) displays only the low-
frequency arc, with a very small distortion at high frequency.

For the parameters chosen, there are two readily resolvable arcs in the
modulus spectrum Figure 4.1.10. The low-frequency arc corresponds to the low-
conductivity continuous phase and is apparently a perfect semicircle with its center
on the real axis. The high-frequency arc corresponds to the discontinuous phase and
is composed of three relaxations corresponding to the three possible orientations of
the ellipsoids. In Figure 4.1.10 these are not well resolved, but cause the arc to be
nonideal. The two-phase dispersion can be represented by either of the two circuits
in Figure 4.1.11; the values shown in Table 4.1.4 are the results of NLLS fits to the
spectrum.

The Bruggeman Effective Medium Models. Bruggeman [1935] is credited
with two very significant contributions to the modeling of two-phase systems,
generally known as the Bruggeman asymmetric and symmetric models.® The
asymmetric model is an extension of the Maxwell-Wagner model to high volume
fractions of discontinuous phase. This model treats the discontinuous phase as
embedded in a medium which is itself modified by the presence of the discontinu-
ous phase. Using the same notation as before, the Bruggeman asymmetric model is
described by Eq. (24).

Table 4.1.2. Selection of Form Factors According to Fricke [1953] for Use in Eq. (23)

alb blc o O o5 Particle Shape
1 1 2.00 2.00 2.00 Spherical

1 2 4.79 1.42 1.42

1 4 12.2 1.16 1.16 Spheroidal
1 6 21.6 1.09 1.09

2 2 7.9 2.50 0.66 Ellipsoidal

2 6 20.7 6.9 0.209

Note: These factors have been calculated from the axial ratios of the ellipsoidal particles a, b, ¢, where
az2bz=c.

% As is common in this area, these expressions have been credited to several sources. For example the
symmetrical Bruggeman formula is also known as the Polder—van Santen formula. It has also been
attributed to Landauer [1974], who pointed out the percolation aspect. For a more complete discussion
of the equations and their nomenclature, the reader is referred to Sihvola [1999].
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Figure 4.1.10. Simulated impedance and modulus spectra for a two-phase microstructure
comprising a matrix of phase 1 with 25% by volume of randomly oriented ellipsoids of phase 2.
(a) Impedance spectrum showing only one arc. (b) Modulus spectrum resolving two arcs, one being
nonideal due to anisotropy of the ellipsoids. Values of input parameters are given in Table 4.1.3.

Table 4.1.3. Input Parameters Used for the Simulation
Shown in Fig. 4.1.10, According to the Fricke [1953] Model
for Ellipsoids

Conductivities: o; = 10®#S/cm, 0, = 10°S/cm
Permittivities: & = & = 8.85 x 10" F/cm
Ratios of ellipsoid semiaxes: a/b =2, blc =2
Form factors: ¢, = 7.90, ¢, = 2.50, ¢; = 0.66
Volume fraction of suspended phase: x, = 0.25

3
L(u) C(-n) 4)
V. \V, -V,

Since this expression has an excellent pedigree, and is explicit in the volume frac-
tion, x,, it has often been used to estimate the phase volume fractions of composite
conductors or dielectrics where the conductivity and permittivity, respectively, are
real. The expression has not been often used with complex variables, no doubt
because it is implicit in y; and, therefore, difficult to evaluate. Tuncer et al. [2001,
2002] have used a numerical solution, while Sihvola [1999] has given a series expan-
sion that can be used for complex variables. An extended version of the series is
given below (Sihvola [2003] private communication).
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Figure 4.1.11. Two equivalent circuits, for a matrix of phase 1 containing randomly oriented
ellipsoids of phase 2 according to model proposed by Fricke [1953]: (a) parallel circuit; (b) series
circuit.

Table 4.1.4. Parameter Values for the Circuits Shown in Figure 4.1.11, Obtained by
NLLS Fitting to the Spectrum of Figure 4.1.10; the Products f,-f,-f..f; and fi-f>-fs-fs are Equal

Element r; (Qcm) ¢; (F/em) fi(Hz)  Element r;,(Qcm) ¢; (F/cm) f; (Hz)

a 42x10" 89x10"® 43x10° 1 40x 10" 22x10"? 1.8x10°
b 9.8 x10° 83x 10" 20x10* 2 1.1x10° 47x10" 3.1 x10*
¢ 20x 107 7.8x10™ 1.0x10° 3 48x10° 4.6x10"? 7.2x 10*
d 1.2x107 24x10" 55x10* 4 34x10° 40x10"? 12x10°
+2 +5
W, =y, +3yrx; +31//]r2ux§ +2y, 4ux§
Yo +2y, Vo +2y, (252)
S5yp3 21 2+6 Ptyi
+3‘//1r4 V3 vy, I//321//1 Vi Xt

(w2 +2y,)
Where

- Vo — Y,

Evaluation of this expression generates a spectrum rather similar to that for the
Maxwell-Wagner model, but with a different weighting of the two phases. Figure
4.1.12 shows a modulus spectrum for the same input parameters as those that were
used to produce the spectrum in Figure 4.1.95.
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Figure 4.1.12. Modulus spectrum for the Bruggeman asymmetric dispersed phase model with
0,=1x10%Scm™, 0, =1 x 10°Scm™ and x, = 0.3. The calculation was made using the series
expansion Eq. (25) due to A. Sihvola Labels indicate log(f).

The symmetric Bruggeman model does not make a distinction between contin-
uous and discontinuous phases and, therefore, the relevant expression is symmetri-
cal in y;, y,. It seems to have been first applied to the complex variable by Landauer
[1978]. Coverdale et al. [1995] give an in-depth discussion of its relevance to imped-
ance spectra of composite materials. The symmetric Bruggeman model is described
by Eq. (26).

1 1
WV =Z{q+(q2 +81//1y/2)2} (26a)
where
q= (3.X] - 1)!//1 + (S.XQ - 1)1//2 (26b)
and
X +x; =1 (26¢)

While the model was originally based on effective medium considerations, it is
instructive that Wu and Liu [1997] were able to derive an identical equation using
a resistor network.

Figure 4.1.13 shows a modulus spectrum generated using (Eq. 26) using the
same input parameters as were used for the previous figure. Unlike the case of the
Maxwell-Wagner model, the spectrum cannot be reproduced by a simple RC circuit
(the dashed arcs shown in the figure give only an approximate fit). Eq. (26) has the
important property that, as the volume fraction of the high conductivity phase
approaches %, its effect becomes dominant, as can be easily verified by substituting
two unequal values of (real) dc conductivity. Thus the model provides an elemen-
tary and mathematically economical description of phase percolation.

Finite Element Modeling of Mixed Phase Systems. Another approach to
the problem is to generate lattices populated with phases of different dielectric con-
stant/conductivity and to compute their properties by the method of finite elements.
Tuncer et al. [2001, 2002] have pursued this for a variety of pseudorandom and peri-
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Figure 4.1.13. Modulus spectrum for the Bruggeman symmetric model (Eq. 20) for dispersed
phases using the same input parameters as were used for Figure 4.1.12. Labels indicate log(f).

odic lattices and compared the results obtained with the predictions of mathemati-
cally precise models, including the Bruggeman asymmetric model and others pre-
sented in this section. The articles are a good introduction to the literature on mixed
phases as well as covering computational aspects of the subject.’

Nonideal Behavior. The above examples illustrate the way in which microstruc-
tural features affect the impedance spectra. This should not, however, be taken to
mean that nonideal behavior (i.e. departure from a single arc centered on the real
axis of Z or M) necessarily implies phase heterogeneity. The assumption that ¢ and
k are frequency-independent is not justified for real materials, see for example
Jonscher [1975c, 1983]. Frequency-dependent conductivity can be caused by factors
other than of microstructure, even for ceramics such as zirconia (Abélard and
Baumard [1982]). However, the resulting nonidealities are, in general, less promi-
nent than the microstructural effects discussed here. The examples also illustrate the
importance of choosing the right representation. In cases where grain boundary
effects are dominant, the impedance spectrum is the best starting point, while for
mixtures of phases with different conductivity, the modulus is more useful. In the
author’s opinion, the value of the modulus representation has been often underrated,
and investigators are urged to use it more extensively, especially where mixed phases
are concerned.

4.1.1.4 Modeling of Composite Electrodes

In the models discussed above, the constituent phases have different values of con-
ductivity, but the conductivities are of the same type, i.e. they are both ionic or both
electronic; therefore, no special conditions apply at the boundaries between the
phases. Examples of systems where this situation holds are polyphase zirconia
ceramics (oxide ion conductors), discussed in Section 4.1.3, and PTCR materials
(electronic conductors).

’ Tuncer et al. [2001, 2002] displayed the results in the spectrum of complex dielectric susceptibility,
%, defined by the relation y = k — 1, rather than the modulus (M = k™), adopted in this section.
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There are, however, a number of important systems where this situation does
not hold, for example ceramic—metal composites, and ceramic composites of elec-
tronic and ionic conductors, used as electrodes in solid oxide fuel cells. Composite
electrodes are important in a solid oxide fuel cell (SOFC), as they provide the contact
area necessary for the electrode processes to occur.® This is usually visualized as the
three-phase boundary (TPB), the boundary line where electronic conductor, ionic
conductor, and pores meet. A composite cathode is shown schematically in Figure
4.1.14, after Costamagna et al. [1998]. The processes occurring in a composite elec-
trode are briefly as follows:

* electron transport from the electronic current collector to the TPB;
* electrochemical reaction at the TPB and gas diffusion in the pores;

* ion transport from TPB to the electrolyte, via the ionic conductor.

These reactions generate electrochemical impedances due to charge transfer, gas
or solid state diffusion, etc. Since these impedances appear specifically at the bound-
aries between dissimilar phases, the composites cannot be fully described by simple
effective medium models, even if these impedances are approximated by linear resis-
tive elements. As pointed out by several authors, in the mixture of electronic and
ionic phases there are clusters connected to (i) both current collector and electrolyte,
(ii) only to the electrode, and (iii) isolated clusters. Clusters of all three types are
visible in Figure 4.1.14.

Kenjo et al. [1991] have described composite electrodes using the finite length
pore model shown in Figure 4.1.15. The electronic and ionic conductor paths run in
parallel, with pores providing access to the gas phase via the electrolyte, which is
unrealistic, but may not be of any great consequence. Essentially, the composite

e- Current collector

1’\""":" L e
.. J\\'}y\\\\iﬁzi\\\\:“'\%\;:\ ' Y _NOA | ' lonic conductor
A ) Rl ' \
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Flectrolyte .o'\\\

Figure 4.1.14. Schematic diagram of composite cathode, after Costamagna et al. [1998].

«——— Electronic conductor

¥ The electronic conductors commonly used for SOFCs are lanthanum strontium manganite (LSM) for
cathodes and nickel metal for anodes. The anodes are prepared in situ by reduction of a nickel oxide/
electrolyte composite.
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Figure 4.1.15. Visualisation of a composite electrode as a finite length pore, with electronic
conductor paths (black) and ionic conductor paths (hatched) running in parallel. After Kenjo et al.
[1991].

is regarded as consisting of type (i) clusters only. For this model, the polarization
resistance is given by Eq. (27)

R, =~ pkr/2 coth~2d?p/(kr) (27)

where p is the electrolyte resistivity, k is the contact resistance, d is the pore length,
and r is the pore radius. The resistivity of the electrode material is taken as zero.’
R, increases with the pore radius and decreases with the pore length, to an asymp-
totic value of +/pkr/2 . The pore radius and pore length in Figure 4.1.15 roughly
correspond to the electrode thickness and particle size in Figure 4.1.14. It is not clear
how the volume fractions of the electrode and electrolyte materials could be built
into this model. Kenjo et al. [1991] treated only the dc case but, if an interfacial
capacitance were to be included, the model would become equivalent to a finite
transmission line terminated in a resistance. The impedance spectrum of such a
circuit is shown in Figure 2.1.13.

A refinement of the above approach is to treat the composite as a quasihomo-
geneous system with specific electronic/ionic conductivities and gas diffusion prop-
erties, with the electrochemical reaction distributed uniformly over its volume. The
problem has been solved in one dimension by Costamagna et al. [1998], but their
solution applies to the steady state and is not relevant to the present discussion, which
concentrates on the frequency domain. Furthermore, intuition would suggest that a
one-dimensional model would not completely describe a system as complex as that
depicted in Figure 4.1.14.

There seems to be no alternative to the generation of stochastic composite struc-
tures and their solution by computer methods. In a series of papers, Sunde has treated
the bulk resistivity and polarization resistance for the steady-state (Sunde [1996a,
1996b]) and the electrode impedance in the frequency domain (Sunde [1997, 2000]).
Although this work focused on nickel/zirconia anodes, the methodology is equally
valid for other composite electrodes. The first step was to use the Monte Carlo

? In the above expression, p is in Qcm and k in Qcm? Kenjo et al. [1991] have mainly used an
alternative definition for k, which contains the factor r/2 and, therefore, has units of Qcm?.
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method to generate pseudorandom packings of spherical electrode and electrolyte
particles and identify neighbors. Contacts between dissimilar phases were assigned
electrochemical impedances describing charge transfer, double layer capacitance,
reactant adsorption, etc., while contacts between similar phases were taken to be
purely ohmic. "

The simplest case is illustrated here, where the contact impedances contained
terms for charge transfer and double layer capacitance. Figure 4.1.16 shows imped-
ance spectra for such an electrode for two volume fractions, ¢, of the electrode
phase. In the first case (¢ = 0), which describes a single phase electrode, the
spectrum corresponds to a summation of many RC elements in parallel. In the second
case (¢ = 0.3), which describes a composite electrode, a new arc appears at the high
frequency end of the spectrum. For the simulation in hand, the high frequency arc
can be fitted to a ZARC (n = 0.9), while the low frequency arc corresponds closely
to a parallel RC element (n = 1). Note that in the case of ¢ = 0.3, the polarization
resistance (Z-,, — Z..) decreases by a factor of about four, which elegantly
illustrates the technological advantage of composite electrodes in solid oxide fuel
cells.

The presence of a new feature may be qualitatively explained in terms of the
three types of clusters mentioned above. At low frequency only clusters of type (i)
and (ii) are active, while, at high frequency, the double layer capacitance reduces
the magnitude of the contact impedance and type (iii) clusters progressively “switch
in”, producing a second arc. The degree of overlap of the arcs depends on the volume
fraction of the electrode phase, an effect for which Sunde provides a tentative
explanation: at low volume fractions, where the overall impedance is dominated by
the electrolyte, type (iii) clusters have a significant effect and generate a well-
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Figure 4.1.16. Impedance spectra of an electrode with two volume fractions, ¢, of the electrode
phase, for the case where the contact impedances contain only charge transfer resistance and double
layer capacitance: (a) ¢ = 0 (single phase electrode) and (b) ¢ = 0.3 (composite electrode). For details
of the simulation see Sunde [2000]. The labels show the logarithm of the normalized frequency.

19 Tt is important to distinguish between the bulk resistivity of the composite, which arises when it is
contacted via to electronic conductors, and the electrode impedance, which arises when it is placed
between an ionic and an electronic conductor, as in an SOFC.
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resolved arc, while at higher volume fractions, where the electrode phase is near or
above percolation, the effect amounts only to a distortion of the original electrode
arc.

A valuable property of such modeling experiments is that all currents and poten-
tials are stored and available for further analysis. A possible way of visualizing the
function of the composite electrode would be to sum the partial electronic and ionic
currents at various depths within the composite electrode and plot them as a func-
tion of position. The partial currents could be used to identify the region of maximum
charge transfer in the composite.

4.1.2 Experimental Techniques

4.1.2.1 Introduction

A wide range of materials can be usefully characterized by IS, namely electrical and
structural ceramics, magnetic ferrites, semiconductors, membranes, polymeric mate-
rials, and protective paint films. The measurement techniques used to characterize
materials are generally simpler than those used for electrode processes. Impedance
spectra are usually independent of applied potential (both ac amplitude and dc bias)
up to potentials of 1V or more. Consequently, it is unnecessary to fix the potential
of electrodes, as is the case with potentiostatic experiments, and two-electrode sym-
metrical cells are commonly used.

Considerations of Frequency and Impedance Range. As discussed in
Section 4.1.3, the frequency range to be chosen depends on the relaxation frequen-
cies f, of phases present in the sample under study and also on the microstructure.
The highest relaxation frequency is normally that of the grain interior relaxation and
is given by f,; = 0,/(2m€,;), corresponding to the apex of the grain interior imped-
ance arc. Conductivities vary enormously from one material to another, and with
temperature for any one material. By contrast, the dielectric constants of most
compounds, apart from ferroelectrics, lie within the range of 5 to 100. Taking a
dielectric constant 30 as typical (this is close to the value for cubic zirconia) the
relationship between conductivity and relaxation frequency is illustrated in
Figure 4.1.17, with the shaded regions showing commonly accessible ranges of con-
ductivity and frequency.

-3 0 3 6 9 12 log(f) (Hz)

-15 -12 -9 -6 -3 0 3 log(o) (S/cm)

Figure 4.1.17. Relationship between relaxation frequency and conductivity and for a solid having a
dielectric constant of 30.
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4.1.2.2 Measurement Systems

Most of the measurement equipment required for impedance studies can be bought
off the shelf. The equipment falls into three categories:

(i) frequency response analyzers (FRAs);
(i) component analyzers, impedance analyzers, and ac bridges;

(iii) potentiostats, galvanostats, and general electrochemical interfaces.

Frequency Response Analyzers. These instruments are designed measure a
voltage ratio, rather than impedance, but can be adapted to measure impedance by
the addition of auxiliary components—in the simplest case, a standard resistor. A
detailed account of the circuitry, which was included in the first edition of this
volume, would be out of place today; here it will be dealt with in brief, to illustrate
the principles involved.

The FRA generates a sinusoidal voltage of variable frequency and amplitude
and measures the in-phase and out-of-phase components of the voltage at two inputs,
“X” and “Y.” The voltages are expressed as complex quantities Vy = Vx + jV and
Vy = Vy+ jVy. The simplest circuit for measurement of impedance uses the standard
resistor in a voltage divider configuration, shown in Figure 4.1.18. In this case, input
“X” is used to measure the generator output and input “Y” to measure the midpoint
of the divider. The unknown impedance is then given by:

Z, = Z (28)

The main disadvantage of this configuration is that input “Y” is connected in
parallel to the sample. The inputs of the FRA have a finite impedance, Z,,, typically
1 MQ in parallel with 30 to 50pF and, unless Z; << Z,,, this leads to an error in Z,.
The problem can be reduced by placing fast unity-gain amplifiers (buffers) at the
FRA inputs. The situation can also be helped by interchanging the standard and
the unknown, so that the input impedance of “Y” appears across the standard. If the
standard resistance is made small, the effect of Z;, is minimized. This, however, adds
complexity and results in a low voltage signal at “Y”.

F | GEN.OUTPUT >
R | INPUT "X~ Rstand. Zsample
A | INPUT Y" | oG

”;7 common

Figure 4.1.18. Impedance adaptor for frequency response analyzer (FRA) based on voltage divider
network.
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Figure 4.1.19. Impedance adaptor for frequency response analyzer (FRA) incorporating a current-
to-voltage converter.

An alternative approach that eliminates the above problems uses the active
current-to-voltage converter shown in Figure 4.1.19, with the standard resistor
placed in the feedback loop of a fast operational amplifier. The amplifier delivers an
output, such that the junction “T” in the diagram is maintained at ground potential
(virtual ground). Consequently, any stray conductance/capacitance from “T” to
ground is excluded from the measurement. Since the effect of capacitances has been
eliminated, the leads to the sample can be screened, reducing the effect of electri-
cal noise. In this configuration, the unknown impedance is given by:

Vi

Z,= v, Z, (29)
The complex quotient V./V, is computed by the impedance analyzer. Normally, Z;
is a pure resistor, in which case, Z, has a simple relationship to this quotient. In prin-
ciple, any circuit of well-defined impedance may be used (e.g. parallel RC combi-
nation), bearing in mind, of course, that the multiplication of V,/V, and Z; must be
performed in the complex domain. It is good practice to select a standard resistor of
magnitude comparable to the real part of the unknown. Obviously, a trial measure-
ment is needed in order to select the most suitable standard resistor.

The frequency range of an active current-to-voltage converter is limited mainly
by the gain and phase performance of the operational amplifier, which falls off at
high frequencies. An analysis of this effect (T. Goldrick [1982], unpublished) shows
that, for certain simplifying assumptions, the apparent impedance Z, is related to
the standard and unknown as follows:

Zn=2Z,+] %(ZS +7Z,) (30)

Jo

where f is the measurement frequency and f, the frequency at which the open-loop
gain of the amplifier falls to unity. This formula can be re-written as:

Z, =7+ j27fL; (D

where
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_Z,+7Z,
21y

For the case where the standard and unknown resistances are both real, the intro-
duced error is equivalent to that of an inductor in series with the unknown. The
pseudoinductance will, of course, appear in addition to any physical inductance
introduced by the leads.

L, (32)

Impedance Analyzers. Component analyzers, impedance analyzers, and ac
bridges have built-in current measuring circuits, which are designed to minimize the
above problems. These instruments are usually configured for four-wire connection,
which minimizes stray series resistance and inductance, the dominant source of error
for low impedance samples.

Impedance analyzers do not have the capability of controlling the potential with
respect to a reference electrode—this requires the use of electrochemical interfaces,
as described in Section 3.2. They can, nevertheless, be used to measure electro-
chemical under current load. In the configuration of Figure 4.1.20, the ac current
generated by an impedance analyzer in galvanostatic mode is added to the (higher)
dc current generated by an external galvanostat (S. Hgjgaard Jensen and J. Poulsen,
unpublished work [2003]). This configuration takes advantage of the superior high
frequency performance of the impedance analyzer, as compared to an electrochem-
ical interface, which is essential for separating the series electrolyte resistance and
electrode polarization effects.

While commercial measurement systems generally perform better than the
improvised impedance adaptors described in Figures 4.1.18 and 4.1.19, they are not

Input “X”

Rm

S

@ Input “Y” - Sample

dc galvanostat
Imp. analyzer
current output

Figure 4.1.20. Measurement on an electrochemical cell under load. The dc current generated by
the external galvanostat is added to the ac current generated by the impedance analyzer. The
measurement resistor R, is a low inductance, metal strip resistor, rated to the necessary dc current.
(S. Hgjgaard Jensen and J. Poulsen, unpublished work [2003]).
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immune to errors, especially at the extremes of their specified range. The burden of
obtaining error-free data cannot be carried wholly by the manufacturers, who may
have designed the instrument for a different application than the one for which it is
used.

Measurement Rigs. Important considerations in the design of a rig for IS of
materials are:

(i) provision of a controlled temperature and chemical environment for the
sample;
(ii) provision of the best possible electrical path to the sample.

The importance of temperature control is illustrated by considering a sample with
an activation energy of 1eV for the conductivity: at 800°C a change of 1°C would
produce a change of 1% in conductivity. At 300°C, the same error would produce a
change of 3.5%. A temperature stability of 1°C or better can be easily achieved with
present-day three-term controllers, but this alone is not sufficient to ensure good tem-
perature control: temperature gradients in the rig must be kept to a minimum and
the temperature sensor must be in thermal contact with the sample.

The inner assembly of a general-purpose conductivity rig is shown in Figure
4.1.21. It is based on a ceramic “shoe” that slides over a ceramic supporting tube.
A spring-loaded harness of Nichrome or Kanthal wire provides a load on the con-
tacts. Contact is made with the sample via a platinum foil on either side. For situa-
tions where the electrode response is to be measured, the sample can be contacted

Pt foit supported on alumina plate
thermocouple

Pt contact

sample

screened alumina tube

screened alumina support tube

return lead

brass base plate

Figure 4.1.21. Rig used for the characterization of ceramic samples.
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by means of “castellated” alumina pellets (Figure 4.1.22) wrapped in platinum mesh.
This allows good contact while providing the gas with access to the electrodes. A
four-wire configuration is recommended for this cell, as it reduces the magnitude of
the series stray resistance and stray inductance.

Measurement Errors and their Correction. One of the major sources of
error is uncompensated or stray components. The components can be effectively
connected in parallel or in series with the sample. The most important parallel com-
ponent is stray capacitance, Cy,. In the first place, this can be minimized by screen-
ing leads to within a short distance from the sample and grounding metal parts of
the measurement cell. C,, cannot be estimated by a measurement on the empty cell;
without a sample, the capacitance of the airgap remains. Instead, the unknown is
replaced with a sample of known dielectric constant and shape and the calculated
capacitance is subtracted from the measured one to give C,,. Correction for the stray
capacitance can then made by subtracting 27fC,, from the imaginary part of the
measured admittance. In a well-designed cell the stray parallel conductance G,
should be negligible. In cases where G,,, is significant, it is not straightforward to
correct for it after the measurement, as G,, varies with the measurement conditions
more strongly than C,, does.

The series stray components are the inductance L, and resistance R,,. Both of
these can be kept low by using a four-wire connection. While the resistance can
usually be eliminated, the inductance cannot; it depends on the length of leads and
their positioning. Figure 4.1.23 shows two wiring configurations that could be used

1 =

758.10.27

Figure 4.1.22. Castellated pellet used to support platinum mesh in impedance measurement rig.
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=) (a)

Figure 4.1.23. Two possible wiring configurations for a tube furnace. Configuration (b) produces
an inductance many times greater than that of (a) and should be avoided.

-Z" (Q)

1.4 1.6 1.8 2.0 22 2.4
Z'(Q)

Figure 4.1.24. Effect of inductance error on the impedance spectrum of a symmetrical cell. Open
symbols: raw data; closed symbols: data corrected for stray inductance of 36 x 10 H. The sample is a
YSZ tape of area 0.21 cm? with an LSM composite cathode on both sides, measured in air, 850°C.

with a tube furnace. Configuration (b) produces an inductance that is 10 to 20 times
greater than with (a), and should be avoided at all cost (Primdahl and Hendriksen
[1996]). The components R, and L, are measured with the cell shorted at the sample
position. Correction for the series stray components is made by subtracting R, from
the real part of the impedance and 27zf L, from the imaginary part. The effect of
correction for inductance is shown in Figure 4.1.24 for a symmetrical cathode
sample described in Section 4.1.3.
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4.1.2.3 Sample Preparation—Electrodes

The impedance of a sample is the product of the complex resistivity and the length
over area ratio, //A; therefore samples should be prepared with parallel faces and a
well-defined cross section. For measurement of grain interior properties, surface
finish is not critical, as this only affects the electrode impedance (Armstrong et al.
[1973]). If the grain boundary and electrode arcs overlap, their resolution can be
improved by polishing before applying the electrodes. Electrodes are applied by
painting, vacuum evaporation, or sputtering. The types of electrodes commonly used
are described below.

Precious metal paints, also known as pastes or dags, are good general-purpose
electrodes for IS studies. The most commonly used precious metal paints are plat-
inum, palladium, gold, and silver, all of which are commercially available. Nickel
and other transition metals are not generally available as paints. It the case of plat-
inum, certain commercial products contain inorganic fluxes or glass to assist sinter-
ing and these are best avoided, as they give rise to high electrode impedances.
Flux-free platinum paints are preferable, as long as the samples can tolerate the
curing temperatures of over 1000°C that these products require. If high temperature,
oxidizing, conditions are not part of the study, carbon paints can be used.

Silver and gold, which have relatively high vapor pressures, can be easily
applied by vacuum evaporation, while metals of lower vapor pressure, such as plat-
inum, palladium, and stainless steel, can be deposited by radio frequency sputter-
ing; in this case, however, the film thicknesses are limited to about 100 nm. Before
electrode deposition, the samples must be cleaned and heat treated. Failure to remove
surface impurities will result in loss of adhesion when samples are subsequently
heated during the measurement.

The choice of electrodes also depends on the temperature of the investigation
and the type of conductivity that is being investigated. Platinum and gold electrodes
perform well at high temperatures, but at temperatures below 600°C, they are rela-
tively blocking to oxygen. If the measurement temperature is lower than this, silver
electrodes are preferable, as they generally have lower electrode impedances. Figure
4.1.25 shows impedance spectra for yttria-stabilized zirconia (an oxide ion conduc-
tor) with platinum and silver electrodes, at 300°C. The electrode impedances are
considerably lower for the silver electrodes.

The preparation of electrodes is only the first step towards a successful exper-
iment. The measurement system must also be kept free of elements such as silicon
or phosphorus, which, under high temperature reducing conditions, form volatile
compounds that attack the electrodes, for example platinum, to produce brittle and
poorly-conducting compounds.

4.1.2.4 Problems Associated With the
Measurement of Electrode Properties

In the work discussed so far, the main objective was to characterize the bulk prop-
erties; the electrodes were there only to make this measurement possible. In other
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Figure 4.1.25. TImpedance spectra for yttria-stabilized zirconia oxide ion conductor with platinum
(black) and silver (grey) electrodes, at 300°C. The electrode impedances are lower for the silver.

situations, the bulk properties are already known and the objective is to character-
ize the electrodes: this applies, for example, in the development of electrodes for
SOFCs. In SOFCs, the current-potential characteristics of the electrodes are often
found to be linear, and the steady state properties of the electrodes can be adequately
represented by a linear polarization resistance, R,. The characterization of electrodes
in these systems can be performed in one of two ways:

1. On symmetrical cells equipped with two nominally identical electrodes,
using a small ac signal, at zero dc polarization. In this case, the electrode
polarization obtained from the impedance plot must be divided by two, since
it is caused by the two electrodes in series. The measurement is simple and
can be performed with an impedance analyzer.

2. On three-electrode cells, i.e. cells equipped with working electrode, coun-
terelectrode, and reference electrode (WE, CE, and RE) under potentiostatic
or galvanostatic control. In this case, the small ac signal is superimposed on
a dc polarization. The measurement requires an electrochemical interface
(potentiostat or galvanostat) coupled to an FRA (see Section 3.2).

While the latter case offers greater flexibility, it is also susceptible to rather subtle
errors, which arise from the positioning of the RE in relation to the WE. These errors
need to be considered if reliable electrode performance is to be obtained on solid
electrolyte cells. With liquid electrolytes, the RE can be made as small as necessary
and placed as close to the WE as required. With solids, the electrode must be located
on the electrolyte surface, or, if the electrolyte thickness permits, in a suitably fash-
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ioned recess (see Figure 4.1.26b). Here, the discussion is confined to the planar
geometry shown in Figure 4.1.26a.

The problem arises because of non-uniform current distribution at the WE, or
more precisely, different nonuniform current distributions in the case of f — oo and
f— 0. If the cell could be constructed so that the current density was uniform over
the WE, the measurement would yield the correct value of R,. However, any mis-
alignment of the WE and CE produces a distortion in the equipotential lines, of the
type shown in Figure 4.1.27. Accordingly, a RE placed at the side of the WE will
not be intersected by the equipotential passing through the midpoint of the elec-
trolyte, but will read a potential either too high, or too low. At f — 0 the electrode
impedance is equal to R,, while, at f — oo, the electrode impedance is negligible,
due to the displacement current flowing through the double layer capacitance. The
different current distributions obtained in the two cases will cause a shift of the
equipotential lines. This will interfere with the correct estimation of R, when this is
obtained using the expression R, = |Z; | — |Z.,..| (See also Section 4.3.3).

The error has been analysed Winkler et al. [1998] using finite-element model-
ling in the real domain (see also Primdahl and Hendriksen [1996]). The total current
and RE potential were calculated for the low and high frequency limits and used to
estimate the apparent value of R,. The resulting error is plotted in Figure 4.1.28 as
a function of the displacement between WE and CE, based on realistic values of
electrolyte conductivity and polarisation resistance of the electrodes, and a value of
9 x 107 for the ratio of electrolyte thickness/electrode width. The figure shows that
a displacement of one electrolyte thickness can result in an error of over 50%, for
input parameters typical of solid oxide fuel cells at operating temperature. Since
electrolytes have thicknesses of 150 um or less, it is clear that the construction of a
fully reliable three electrode cell of planar geometry is a considerable technical chal-
lenge. It was further shown that, even with perfectly aligned electrodes, errors still
arise, if the polarisation resistances of the WE and CE do not match. Since the above
simulation covered only the two extrema of frequency, the shape of the electrode
arc cannot be reconstructed from this analysis. Distortions in the three-electrode
spectra due to a size mismatch between WE and CE were described by Reinhardt
and Gopel [1998]. Errors in three electrode and four electrode cells are covered in
a series of papers by Hsieh ez al. [1996a, 1996b, 1997].

CE CE
CE RE RE
-‘ RE
WE WE WE
(@) (b) ©

Figure 4.1.26. Commonly used geometries of three-electrode solid electrolyte cells.
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Figure 4.1.27. Distortion in the equipotential lines due to misalignment of the CE and WE in a

thin electrolyte cell.
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Figure 4.1.28. Error in the apparent polarization resistance due to the relative displacement of
WE and CE in a planar cell. The error is calculated for an electrolyte resistivity of 10Qcm and a
polarization resistance 0.16 Qcm? for both the WE and CE. A positive displacement is defined as a
displacement of the WE in the direction of the RE, as in Figure 4.1.27 (for further details see Winkler
et al. 1998).

An authoritative analysis of these errors has been provided by Adler [2002],
who has described the thin electrolyte case using finite element analysis in the
complex domain. This revealed distortions of the electrode arc, both as a result of
electrode displacement, and of mismatch in the polarisation resistances between the
WE and CE. The magnitude and sign of the predicted errors in R, are in agreement
with those reported by Winkler et al. [1998]. Figure 4.1.29 shows Adler’s simula-
tions, for the case when theoretical polarisation resistances of the WE and CE are
in the ratio 1/3. The figure shows the theoretical impedance of the WE, and the cal-
culated impedance spectra, for WE displacements towards the RE, and away from
the RE. As expected, the displacements affect the magnitudes of both R, and R,.
Furthermore, Adler showed that the distortions due to mismatch in R, arise in the
case of perfectly aligned electrodes, an effect that could be loosely described as
“interference” of the WE from the CE.
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Figure 4.1.29. Distortion of the electrode arc in a thin electrolyte cell due to displacement of the
WE. (O) No displacement () Displacement from the RE by one electrolyte thickness, () Displace-
ment towards the RE by one electrolyte ethickness. For details see Adler et al. [2002]. Solid markers
show the data for a frequency 1 Hz. (Courtesy of the Electrochemical Society).

From the above, and from our practical experience with thin electrolyte cells,
we conclude that the problems associated with three-electrode measurements are so
complex and severe that the technique cannot be used routinely for the evaluation
of electrode properties, and recommend the two remaining alternatives:

i) to prepare the electrodes on a thick electrolyte, for example using the geom-
etry of Figure 4.1.26¢.

ii) to use symmetrical cells and perform impedance measurements at open
circuit conditions.

4.1.3 Interpretation of the Impedance
Spectra of lonic Conductors and Interfaces

4.1.3.1 Introduction

This section covers the interpretation of experimental impedance spectra of two-
phase ceramics, solid electrolytes, and their electrode interfaces. Examples are given
from the authors’ work and from the literature, with preference to cases where the
original data were available. Many of the examples refer to zirconia ceramics, since
these materials give well-resolved spectra and exhibit interesting polymorphic phe-
nomena, as well as the ionic conductivity that underlies their use in solid oxide fuel
cells and other electrochemical devices. In many of these examples, spectra are pre-
sented for temperatures well below normal operating temperatures of the materials,
in order to bring the spectral features into the instrumental frequency range (see
Figure 4.1.17).

Microstructural Aspects of Zirconia Ceramics. ZrO, is polymorphic and
can have one of three crystal structures: monoclinic (m) at ambient temperatures,
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tetragonal (7) at 1170 to 2370°C, and cubic (c) between 2370°C and its melting point
of 2700°C. On cooling from the temperatures of 1300 to 1800°C, normally used for
sintering ceramics, ZrO, adopts the monoclinic structure. The transformation from ¢
to m is accompanied by a significant volume change; as a result, pure ZrO, is un-
suitable for the preparation of ceramics. The effect can be suppressed by doping
with oxides such as CaO, MgO, and Y,0; (Subbarao [1981], Subbarao and Maiti
[1984]), with which it forms extensive solid solutions. At dopant concentrations of
~10mol % the solid solutions have a cubic structure and are called fully stabilized
zirconia (FSZ). At 2-6 mole % Y,O; their structure remains tetragonal, provided
the grain size is around 500nm or less (Gupta et al. [1977]) and the materials are
sometimes referred to as tetragonal zirconia polycrystals (TZP). These systems can
be sintered at lower temperatures than cubic zirconia and have a very high mechani-
cal strength and toughness. Intermediate level of stabilizer result in a ¢ matrix, with
a fine dispersion of ¢ and/or m precipitates (Kobayashi et al. [1981]); which is termed
partially stabilized zirconia (PSZ). The ¢ precipitates have the property of trans-
forming to m under the influence of a stress field and in doing so retard the propaga-
tion of cracks; the effect is known as transformation toughening (Garvie et al.
[1975]).

When elements of valence 2 or 3 are introduced into zirconia, they occupy
Zr*" lattice sites, generating vacancies at oxygen sites. These provide zirconia with
its well-known ionic conductivity, leading to its use in high temperature electro-
chemical cells (Subbarao and Maiti [1984], Steele [1976], Steele et al. [1981]). FSZ
is mainly used for electrochemical application, PSZ mainly for structural applica-
tions, while TZP is used both as a solid electrolyte and a structural ceramic.

Bauerle’s Circuit Equivalent. The use of IS for the characterization of ceramic
solid electrolytes became routine after Bauerle [1969] showed that, for stabilized
zirconia with platinum electrodes, the polarizations of the grain interiors, grain
boundaries, and electrode—electrolyte interface could be resolved in the admittance
plane. He presented a circuit equivalent for this arrangement which has since been
applied to many other systems (Figure 4.1.30) with RC elements corresponding to
grain interiors (gi), grain boundaries (gb), and electrode (e) connected in series."
The estimation of the circuit parameters was not straightforward due to Bauerle’s
choice of the admittance plane. Subsequent workers have generally used the imped-
ance plane, where a direct relationship exists between the spectrum and the circuit
(Armstrong et al. [1974], Schouler et al. [1981]). Examples of admittance and
impedance spectra for a sample of ZrO,: 6 mole % Y,0; at 240°C are given in Figure
4.1.31a,b. A simulated impedance plot is shown in Figure 4.1.31c¢ using the param-
eters given in Table 4.1.5. The agreement between experiment and simulation is sat-
isfactory for the grain interior and grain boundary arcs both in shape and distribution

"' The circuit shown in Figure 4.1.30 contains an extra capacitor for the grain interior element, not
included by Bauerle, because the grain interior relaxation lay above the frequency range covered.
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Figure 4.1.30. Circuit equivalent for a ceramic electrolyte according to Bauerle [1969] and
modeling the impedance of the grain interiors (gi), grain boundaries (gb), and electrode (e).
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Figure 4.1.31. Comparison of admittance and impedance spectra for a zirconia solid electrolyte
(ZrO,: 6 mole % Y,0;) at 240°C: (a) Experimental admittance spectrum. (b) Experimental impedance
spectrum. (¢) Simulated impedance spectrum, using the circuit of Figure 4.1.30 and parameter values
given in Table 4.1.5.
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Table 4.1.5. Circuit Parameters Used to Generate the
Impedance Spectrum of Figure 4.1.31¢

Cyi=4.8pF Cyp=1.7nF C.=2.0uF
R,=2.1MQ R, =1.5MQ R, =5.0MQ

of frequencies, indicating that the circuit is adequate for representing the salient fea-
tures of the frequency response.

4.1.3.2 Characterization of Grain Boundaries by IS

Understanding the origin of polarizations in ceramics is important, not only in order
to optimize the electrical conductivity, but also to achieve a better understanding of
the microstructure, that in turn influences other properties such as the mechanical
strength. The fabrication of ceramics may involve adding small amounts of impuri-
ties that form liquids at the sintering temperature. In zirconia ceramics, trace
amounts of silica and alumina fulfill this function, even if not added deliberately.
On cooling, aluminosilicate phases, both amorphous and crystalline, form at the
grain boundaries with adverse effects on the ionic conductivity, as shown by Bauerle
[1969], Schouler et al. [1973], Schouler [1979], Kleitz et al. [1981], and Bernard
[1981]. Noting that small additions of Al,O; could reduce the grain boundary resist-
ance, Drennan and Butler [1973] suggested that the AL,O; particles scavenge SiO,
to form discrete particles of AlSi,O;; (mullite). Subsequent grain boundary migra-
tion during grain growth leaves these particles in the interior of the grains, where
their influence on the ionic conductivity is smaller. This effect is in accordance with
Eqgs (21) and (22), describing the effect of high-resistivity inclusions on the resis-
tivity of ceramics.

Microstructure-Grain Boundary Property Correlations. The way in
which the grain boundary structure affects the impedance spectrum is illustrated by
comparing 3 mole % Y,0; tetragonal and 6 mole % mainly cubic ceramics. Figure
4.1.32a shows a transmission electron micrograph of the 3 mole % specimen. The
grain boundary phases were continuous with a thickness of 10nm or less; from
images obtained at lower magnifications, the grain size was estimated as 0.5 to
1 um. Selected area diffraction patterns (SADP) showed the grain boundary films to
be amorphous and energy-dispersive x-ray microanalysis detected SiO,, Al,0;, and
Y,0; at levels of 65, 20, and 70 wt %, respectively (Butler and Bonanos [1985]).
Figure 4.1.32b shows a transmission electron micrograph of the 6 mole % specimen
with a grain size of ~10 um. Pockets of second phase are seen along the grain bound-
aries—their lenticular shape indicates that they originate from nonwetting liquid
phases present at high temperatures. Selected area electron diffraction analysis
shows both crystalline and amorphous grain boundary phases; both are discrete,
allowing partial intergranular contact.
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Figure 4.1.32. Transmission electron micrographs of two zirconia ceramics: (a) Tetragonal
zirconia ceramic (ZrO,: 3 mole % Y,0;) showing thin, continuous grain boundary phase (arrowed).
(b) Partially stabilized ceramic (ZrO,: 6 mole % Y,0;) showing discrete, lenticular grain boundary
phase.
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While high-resolution transmission electron microscopy (TEM) is a powerful
technique, it samples only a tiny fraction of the grain boundary area, potentially
allowing some grain boundary defects to be missed. A definitive statement as to the
absence of grain boundary phases cannot be made—the phases could be too thin or
too sparse to detect. For electrically conducting materials, IS averages over the entire
sample and thus provides a valuable complement to TEM.

Impedance spectra of the two zirconia ceramics are shown in Figure 4.1.33 for
300°C. Both systems exhibit a Bauerle-type behavior. The spectrum of the 3 mole
% material (Figure 4.1.33a) is dominated by a grain boundary arc, due to the pres-
ence of a continuous grain boundary phase. In the 6 mole % material (Figure
4.1.33b), the grain boundary arc is relatively small. It seems that this material has
been optimized for electrical conductivity and that the grain boundary resistance has
been reduced by making the grain boundary phases discrete.

Further indirect information about the topology of the grain boundary phases
can be obtained from the temperature dependence of the quantities r,; and r,,. In
crystalline ionic conductors in the extrinsic region, the conductivity is thermally acti-
vated and described by:

o =(0y/T)exp(-AH,, [kT) (33)

where AH,, is the activation enthalpy for migration. The Arrhenius plot linearizes
this equation and AH,, is obtained from its slope. Arrhenius plots of r,; and r,, for
the TZP and FSZ ceramics (Figure 4.1.34) are linear over the temperature range
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Figure 4.1.33. Impedance spectra for two zirconia ceramics, obtained at 300°C using sputtered
platinum electrodes: (a) Tetragonal zirconia ceramic (ZrO,: 3 mole % Y,0;) with large grain boundary
arc due to continuous grain boundary phase. (b) Partially stabilized ceramic (ZrO,: 6 mole % Y,0;)
with small grain boundary arc due to discrete grain boundary phase. (Courtesy of Silicates Industriels.)
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Figure 4.1.34. Arrhenius plots of the grain interior and grain boundary resistivities for two zirconia
ceramics: (a) Tetragonal zirconia ceramic (ZrO,: 3 mole % Y,03) in which the lines have different
slopes, as expected from the brick layer model. (b) Partially stabilized ceramic (ZrO,: 6 mole % Y,05)
in which the slopes of the lines are similar, as expected for discrete grain boundary phase. (Courtesy of
Silicates Industriels.)

examined (200-500°C). In the tetragonal ceramic (Figure 4.1.34a) the slopes are
different (higher for r,,), as expected on the basis of the brick layer model without
easy paths. For the mainly cubic ceramic (Figure 4.1.22b) the slopes are quite
similar, suggesting that a partial blocking model is more appropriate to this mate-
rial. The conclusions based on analysis of the impedance spectra support TEM
studies in assigning specific microstructural models to each ceramic. Table 4.1.6
gives the activation enthalpies for the two materials, and for a third PSZ ceramic,
intended for electrical applications.

The treatment of the capacitative elements of the circuit equivalent differs
according to which model applies. For the bricklayer tetragonal ceramic, the grain
boundary capacitance can be used to calculate the grain boundary thickness using
Eq. (11). Not having any information on the dielectric constants of the grain bound-
ary phase, we assume &, = &,,'” and calculate a grain boundary thickness of 4nm,
compatible with the 10nm estimated from the electron micrograph.

12 The error introduced by this assumption is smaller than the spread in the distribution of grain size,
that is, about a factor of two.
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Table 4.1.6. Activation Energies for Conduction for Three ZrO,: Y,0; Ceramics of
Different Composition and Structure

Sample Composition Structure AH,; (eV) AH, (eV)
Y-TZP 3.0m% Y,04 Tetragonal 0.92 1.09
Y-PSZ 4.7m% Y,0; Cubic + tetragonal 1.07 1.15
Y-PSZ 6.0m% Y,0; Cubic + tetragonal 1.07 1.12

For the mainly cubic 6 mole % material this type of calculation is inappropri-
ate, since the grain boundary phases are discontinuous. Instead, one can use Eq.
(13) (partially blocked transport) to calculate a blocking coefficient . A value of
0.3 is found, implying grain boundary coverage of 30% in second phase. This seems
to be in accord with the appearance of the boundaries in Figure 4.1.32 and in
other micrographs examined. Thus, for the two ceramics, TEM and IS give com-
patible information regarding the dimensions and continuity of the grain boundary
phases.

Materials with no Grain Boundary Impedance Arc. Single crystals are an
obvious example of such materials. Single crystals of stabilized zirconia are grown
commercially for artificial gems by a process known as skull melting. Bonanos and
Butler [1985] characterized crystals of ZrO,: Y,0; (2.2 and 3.4 mole %) by x-ray
diffraction, TEM, and IS. Transmission electron micrographs of the 2.2 mole %
crystal (Figure 4.1.35) showed striated areas characterized by a reorientation of

Figure 4.1.35. Transmission electron micrograph of a single crystal (ZrO,: 2.2 mole % Y,05),
showing separate regions of monoclinic (m) and tetragonal (t) phases. The micrograph was obtained at
1MV. (Courtesy of Silicates Industriels.)
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the crystals known as twinning. SADP of these areas revealed the presence of
both m and ¢ phases. The ¢ phase was similar in morphology to a nontransformable
phase ¢ observed by Lanteri ef al. [1983] in crystals of similar composition. In the
3.4 mole % crystal only the ¢ phase was observed.

The impedance spectra of the two crystals are shown in Figure 4.1.36. For the
2.2 mole % crystal (Figure 4.1.36a) the spectrum shows a large, distorted grain inte-
rior arc and an electrode arc. The depressed arc is due to the combination of tetrag-
onal and monoclinic phases; indeed, it appears to be composed of two poorly
resolved arcs. The 3.4 mole % crystal displays one high-frequency arc due to the ¢
phase. The resistivity of 0.10MQcm is close to the value of 0.13MQ cm measured
for 3 mole % Y-TZP. The two spectra illustrate the sensitivity of IS towards phase
composition and lend confidence to its use in investigating relatively complex
microstructures.

Although the three-arc response is observed in most crystalline solid elec-
trolytes, cases are known where the grain boundary arc is absent or at least too small
to be seen. Figure 4.1.37 shows the impedance spectrum of ZrO,:(Y,0; + MgO)
measured by Slotwinski, Bonanos, and Butler [1985]. The large arc with pp, at
about 10kHz can be identified as a bulk property from the fact that it passes through
the origin, and from the associated capacitance of about 4 pF/cm. The abnormally
small grain boundary arc was explained by reference to a transmission electron
micrograph (Figure 4.1.38). Unlike other zirconia-based systems, in ZrO,:(Y,0; +
MgO) there are finely twinned crystallites along substantial lengths of grain bound-
ary. Selective area electron diffraction patterns of this phase showed a tetragonal
symmetry, resembling the patterns of the # phase, which has a relatively high ionic
conductivity. It is suggested that #-phase dispersed along the grain boundary area
effectively short circuits the grain boundary impedance.
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Figure 4.1.36. Comparison of the impedance spectra obtained at 300°C for two zirconia—yttria
single crystals. (a) Tetragonal + monoclinic single crystal (ZrO,: 2.2 mole % Y,0;) showing large bulk
arc. (b) Fully tetragonal single crystal (ZrO,: 3.4 mole % Y,0;) showing small bulk arc.
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Figure 4.1.37. Impedance spectrum for a partially stabilized zirconia ceramic of composition ZrO,:
(7.0 mole % MgO + 1.5 mole % Y,0;), obtained at 300°C, not resolving a grain boundary arc.
(Reprinted from R. K. Slotwinski, N. Bonanos, and E. P. Butler, J. Mat. Sci. Lett. 4, 641-644, 1985,
courtesy of Chapman & Hall.)

Figure 4.1.38. Transmission electron micrograph of partially stabilized zirconia ceramic ZrO,: (7.0
mole % MgO + 1.5 mole % Y,0;) showing two grains (labeled A, B) and the intervening tetragonal
grain boundary phase (arrowed). (Reprinted from R. K. Slotwinski, N. Bonanos, and E. P. Butler,

J. Mat. Sci. Lett. 4, 641-644, 1985, courtesy of Chapman & Hall.)

Another example of a ceramic lacking a grain boundary response is found in
dense Bi,03:Er,0; ceramics (C. P. Tavares and N. Bonanos, 1984, unpublished
work). Figure 4.1.39 shows the impedance spectrum of a pellet of Bi,O; (17 mole
% Er,0;). Here, the absence of grain boundary impedance can be tentatively
explained by the absence of grain boundary phases altogether. Unlike zirconia,
bismuth oxide has a considerable solid solubility for silica and alumina, common
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Figure 4.1.39. Impedance spectrum obtained at 300°C for a pellet of Bi,Os: 17 mole % Er,05
showing no grain boundary arc. (The pellet was supplied by Dr C. P. Tavares of Basic Volume Ltd.,
London, England).
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Figure 4.1.40. Complex resistivity spectrum for Bi,UOg at 200°C (air, Ag electrodes).

impurities in ceramics and, therefore, they would not be expected to segregate during
sintering and subsequent cooling.

Effect of Anisotropy in Grain Shape and Conductivity. In the ceramics
discussed so far, the shape and conductivity of the grains were isotropic. This, is
not, however, a rule for ceramics. Two examples are given of materials whose con-
duction or grain structure are anisotropic.

The first example concerns the polymorphic compound Bi,UOg¢ which, at
ambient temperature, has a monoclinic structure, which transforms to triclinic at
~730°C. The monoclinic structure comprises layers of U-O and double Bi-O layers,
and may be regarded as a superstructure of fluorite. Bonanos [1989] identified
Bi,UOg as an oxide ion conductor and, based on impedance spectroscopy, reported
grain interior conductivities of 5 x 107 at 200°C and 10™' S cm™ at 400°C. An imped-
ance spectrum is shown in Figure 4.1.40 for 200°C. The large grain boundary arc
(an order of magnitude larger than the grain interior arc) might suggest the presence
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Figure 4.1.41. High resolution transmission electron micrograph of a grain boundary in Bi,UQs.
Courtesy of D. White, BP Research Centre, Sunbury and J. L. Hutchinson, University of Oxford, UK.
For further details see White, Ramdas, Hutchinson, and Billyard [1989].

of second phase at grain boundaries. However, high resolution TEM (Figure 4.1.41)
showed the grain boundaries to be free of second phases to a scale of a few nm.
To reconcile these observations, Bonanos [1989] suggested that the grain boun-
dary impedance arose because of the random orientation of grains having two-
dimensional conductivity. In a subsequent structural/electrical study of this system,
Vannier et al. [1999] reported the total conductivity as 2 X 10>Scm™ at 400°C.
However, since the grain interior arc was not resolved, the exceptionally high value
of o, claimed by Bonanos was neither confirmed nor refuted.

Sodium-conducting B-alumina ceramics are a second example of anisotropic
materials: they consist of elongated grains in which the Na* ions migrate along spe-
cific crystallographic planes. Early studies by Whittingham and Huggins [1971] and
by Powers and Mitoff [1975] established activation energies of 0.2 for the grain inte-
rior and 0.4eV for the grain boundary conductivities. Lilley and Strutt [1979] per-
formed IS over the temperature range —135 to 400°C. Figure 4.1.42a reveals a large
grain boundary resistance at —135°C,"* which was interpreted as due to two-

'3 The experimental conditions were chosen to allow resolution of the grain interior arc over the
widest possible temperature range. The conductivity of 5 x 10°Scm™ at ambient temperature
corresponds to a relaxation frequency of the order of 10°Hz.
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Figure 4.1.42. Application of impedance spectroscopy to a study of sodium SB-alumina by Lilley
and Strutt [1979]: (a) Impedance spectrum obtained at —135°C using evaporated gold blocking
electrodes. (b) Arrhenius plot of o,; and o, showing transition between grain boundary and easy
path conduction. (Reprinted from E. Lilley and J. E.Strutt, Phys. Stat. Sol. (a) 54, 639-650 [1979],
courtesy of Akademie-Verlag.)

dimensional conductivity of grains in random orientation. Arrhenius plots of the
conductivities (Figure 4.1.42b) fell into two regions: a low temperature region,
where the activation energies were identical at 0.18eV, and a high temperature
region, where the grain boundary activation energy was 0.45eV. According to Lilley
and Strutt, at low temperatures, the grain boundary conduction was dominated by
easy paths (Figure 4.1.43a) while, at high temperatures, transport through the grain
boundary overtook the easy path mechanism. If this interpretation is correct, a
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transition between easy-path and true grain boundary conduction in the same system
would be a clear indication that IS can reveal deep information, when performed
over the necessary range of frequency and temperature. Table 4.1.7 gives the
capacitance values reported by these authors.

In a contemporaneous TEM/IS study of the same system, De Jonghe [1979]
concluded that a simple RC network was unsuitable for describing the varying cross
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Figure 4.1.43. Circuits proposed for modeling the impedance spectrum of polycrystalline sodium
B-alumina: (a) Easy path model according to Lilley and Strutt [1979]; (b) Multielement model
according to De Jonghe [1979].

Table 4.1.7 Capacitance Values for S-Alumina at Various
Temperatures, as Determined by Lilley and Strutt [1979]

Temperature (K) C, (F) Cy (F) Cu (F)

138 4 x 107" 7 % 10710 1.5 x 107
149 — 8 x 1071 1.5 x 107
371 — 8 x 107" 1.0 x 1077

652 — — 0.8 x 1077
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section and orientation of the grains in ceramics. As an alternative, he proposed a
circuit having a series-parallel configuration (Figure 4.1.43b). De Jonghe simulated
the effect of grain boundary blocking by varying the grain boundary parameters r;,
¢; along the branches, while holding r,; constant. By assigning activation energies
0.17eV and 0.35€eV to the microscopic parameters AH,,; and AH,,,, he simulated a
range of temperatures and compared the macroscopic values of r,, ¢, With those
obtained by a parallel summation of the r;, ¢; branches. The macroscopic values devi-
ated from the microscopic values at all but the lowest temperatures, moreover the
apparent grain boundary capacitance increased with temperature. De Jonghe con-
cluded that, for systems with grain shape significant anisotropy, the information
obtained by IS was of limited fundamental value. He also stressed the difficulty in
interpreting c,, in microstructures with discontinuous grain boundary phases.

While De Jonghe’s cautionary advice is worth heeding, the actual trend in C,
predicted by his model is not mirrored in the results of Strutt and Lilley [1979] (Table
4.1.7) where the capacitances were found to be constant over the temperature range
studied. Accordingly, the De Jonghe model may be regarded as a worst-case analy-
sis of a complex microstructure with grain anisotropy.

While the first edition of this monograph contained a defense of IS against the
above and other criticisms, such a discussion would be less relevant today, in view
of the advancement in finite element simulations (Coverdale er al. [1995], Fleig
[2000, 2002], Tuncer et al. [2001, 2002]).

4.1.3.3 Characterization of Two-Phase Dispersions by IS

In the systems discussed so far, the continuous phase was concentrated in grain
boundary regions, such that its blocking properties were noticeable, even at low
volume fraction. This sub-section covers two-phase dispersions, where the volume
fractions of continuous and discontinuous phase are closer, for example 0.70 and
0.30. Two examples are discussed, one where the time constants of the phases are
well resolved, and another where they are not.

Characterization of a Two-phase Alkali Halide System. Alkali halide
crystals have been studied as model systems for defect aggregation and solid state
precipitation. In the NaCl/CdCl, system, crystals grown from the melt contain a
phase of composition CdNasClg, Suzuki phase, in which 12.5% of the cation sites
are vacant. This phase has a higher Na" conductivity than the matrix in which it
forms. A transmission electron micrograph of a crystal with Suzuki phase precipi-
tates is shown in Figure 4.1.44. The volume fraction of the dispersed phase in this
system is about 0.28.

Impedance spectra of such crystals, reported by Bonanos and Lilley [1981],
displayed only bulk and electrode arcs. The same data plotted in the modulus
plane (Figure 4.1.45) revealed two overlapping arcs: a low frequency arc ascribed
to the matrix and a high frequency one ascribed to the dispersed phase. Using the
Maxwell-Wagner effective medium relation (Eq. 20), the modulus spectra were
modeled and the microscopic conductivities of the two phases were evaluated for
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Figure 4.1.44. Transmission electron micrograph of a NaCl: CdCl, single crystal with precipitates
of the Suzuki phase CdNagCls. The micrograph was taken by A. L. Guererro and E. P. Butler at a
voltage of 1 MV, at liquid helium temperature. (Reprinted with permission from N. Bonanos and

E. Lilley, Conductivity Relaxation in Single Crystals of Sodium Chloride Containing Suzuki Phase
Precipitates, J. Phys. Chem. Solids, 42, 943-952. Copyright 1981 Pergamon Journals Ltd.).
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Figure 4.1.45. Modulus spectrum obtained at 150°C for a single crystal of NaCl:CdCl,, of which a
micrographs is shown in Figure 4.1.44. (Reprinted with permission from N. Bonanos and E. Lilley,
Conductivity Relaxation in Single Crystals of Sodium Chloride Containing Suzuki Phase Precipitates,
J. Phys. Chem. Solids, 42, 943-952. Copyright 1981 Pergamon Journals Ltd.).

several volume fractions of dispersed phase. The ionic conductivity of the dispersed
phase was similar to that determined on polycrystalline samples.

In the above system, the analysis was possible because the relaxation frequen-
cies of the matrix and dispersed phases differed by a factor of about 30. In other
cases, it is impossible to identify the relaxations of individual phases due to prox-
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imity of the time constants. Even in these cases, the impedance spectroscopy in con-
junction with microstructural characterization can be used to glean information
regarding the conductivities of individual phases. This is illustrated below.

Resistivity Analysis in Polyphase Ceramics. As mentioned earlier, the
grains in PSZ consist of a matrix of cubic zirconia with a fine dispersion of tetrag-
onal particles. Figure 4.1.46 shows the microstructure of ZrO, (Y,0; + MgO) PSZ.
The appearance of the elongated particles, distributed equally along three normal
axes, is reminiscent of the Fricke model for a dispersion of ellipsoids (Section 4.1.1).
The simulated spectrum for this model (Figure 4.1.10) indicates that (depending on
the symmetry of the precipitates) up to four different relaxations could arise within
the grain interior, in addition to that of the grain boundary.'* Prolonged heat treat-
ment (aging) of PSZ ceramics at high temperature is known to cause transformation
of the precipitates from ¢ to m, with a small increase in size, but size, no significant
change in shape or chemical composition. Since the ¢, ¢, and m phases have differ-
ent conductivities, these microstructural changes should be reflected in the electri-
cal properties.

Figure 4.1.46. Transmission electron micrograph of grain interior of a partially stabilized zirconia
ceramic ZrO,: (7.0 mole % MgO + 1.5 mole % Y,05), aged for 40h at 1400°C. Bright areas
correspond to the tetragonal phase.

'* The number would depend on the symmetry of the precipitates.
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This approach has been used by Bonanos et al. [1984a] to study PSZ of com-
position ZrO, with 8 mole % CaO (Ca-PSZ). XRD and TEM showed the t —» m
transformation to be complete after 20 h of heat treatment at 1400°C, while quanti-
tative x-ray diffraction analysis gave a value of 0.3 for the volume fraction of the ¢
component. Electron microscopy showed the ¢ particles to be ellipsoidal, with axial
ratios a/b and b/c of ~2, for which Table 4.1.2 gives the corresponding form factors,
6, =179, ¢, =2.5, ¢ = 0.66. In short the parameters ¢; and x, in Eq. (23) are given
and the only remaining variables are the complex conductivities y;, ¥, and y,.

Figure 4.1.47 shows impedance spectra for Ca-PSZ after aging at 1400°C for
different times. Distinct relaxations of the matrix and dispersed phases are not
resolved in these spectra, which are of a simple Bauerle type, nor are they resolved
in the corresponding modulus spectra (not shown), presumably due to the proxim-
ity of the relaxation frequencies. Thus, multielement circuits (Figure 4.1.9) cannot
be used to represent these data and the grain interior response must be approximated
by a single RC element. Nevertheless, Eq. (23) can be used to interpret the dc con-
ductivity of the grain interiors g, (for convenience, the inverse, r,;, was used).

From a microstructural analysis and from the evolution of r,;, aging was found
to occur in three stages.
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Figure 4.1.47. Impedance spectra obtained at 300°C for partially stabilized zirconia ceramics
(ZrO,: 8 mole % CaO): (a) as fired; (b) aged for 15h at 1400°C; (c) aged for 30h at 1400°C.
(Reprinted from N. Bonanos, R. K. Slotwinski, B. C. H. Steele, and E. P. Butler, J. Mat. Sci., 19,
785-793, courtesy of Chapman & Hall.)
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Stage I: an increase in volume fraction of ¢ phase, resulting in a sharp fall in r,
since o, > o, (Figure 4.1.47a to 4.1.47).

Stage II: a period of precipitate growth at constant volume fraction with no
change in r,.

Stage III: a transformation of the precipitates from ¢ to m without change in the
chemical composition of the matrix or the precipitates (Figure 4.1.47b to
4.1.47¢), with no change in o..

A numerical analysis of the conductivity changes during these transitions showed
that physically consistent solutions to Eq. (23) could be obtained only for ¢, > o, >
o,, and allowed an estimation of o, and o, to within an order of magnitude. Since
CaO-stabilized TZP was not available at the time of that paper (and to the author’s
knowledge have not been prepared since), the analysis of a polyphase material was
the only way of evaluating the conductivity of this system.

The Siugnificance of Grain Boundary Phases Placed in Context. While
grain boundary phases have a dominant effect on the impedance spectrum, it should
be remembered that, even in the absence of second phases, the electrical properties
of interfacial regions differ from those of the interior, as illustrated by the space
charge effects discussed in Section 4.1.1. Dopants segregated to interfaces during
high temperature processing and frozen in during later cooling also modify the elec-
trical resistance of the interfaces. Finally, unlike bulk properties, which are invari-
ably linear, the grain boundaries in oxide semiconductors often have nonohmic
characteristics, which form the basis for positive temperature coefficient resistors
(PTCR) (Levinson [1981]). Interfacial segregation and space charges in ionic con-
ductors have been invoked by Heyne [1983], Burggraaf et al. [1985], and Steele and
Butler [1985] to explain the appearance of grain-boundary-like arcs in nominally
pure ceramics. In many situations, second phases, segregation, and space charges all
together contribute to a rich variety of electrical behavior.

4.1.3.4 Impedance Spectra of Unusual Two-phase Systems

In a volume such as this, most examples are unavoidably drawn from systems that
are fairly well understood. As a counter-balance, two examples are mentioned that
are, in some way, unusual.

The first example concerns a composite of (Sc,0; + Y,03) stabilized ZrO,, a
pure ionic conductor, and La,ssSry;sMn, (O, a pure electronic conductor, at a
volume fraction 0.30 for the latter. Figure 4.1.48 shows an impedance spectrum
obtained at ambient conditions. It resembles that of a classical solid electrolyte, with
a “bulk” resistivity of 5 x 10°Qcm and a “bulk” capacitance of 4 x 10"*Fcm™.

The “grain boundary” and “electrode” features are associated with Warburg
components of 3 X 10®¥Scm™s"* and 1.3 X 10°Scm™s"? respectively. The known
properties of the zirconia phase do not, however, fit such an interpretation: the resis-
tivity, extrapolated from higher temperature is at least 10> Q cm. This would suggest
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Figure 4.1.48. Impedance spectrum at ambient conditions for a composite of (Sc,0; + Y,03)
stabilized ZrO,, and LagssSt ¢1sMn, 4O¢ at a volume fraction 0.30. The spectrum resembles that of a
classical solid electrolyte, but the “bulk conductivity” exceeds the expected value by a factor of 10°.

that the enhanced bulk conductivity is due to the presence of a high conductivity
phase close to the percolation threshold. Unfortunately, the effective medium models
presented in Section 4.1.1 cannot be used to describe this composite, as they apply
to phases of the same type of conductivity, i.e. they do not include any charge trans-
fer impedances at the interfaces between ionic and electronic conductor.

The second example is a concentrated aqueous dispersion of dihydrogenated
tallow dimethylammonium chloride (DHTDMAC) a lamellar liquid crystal com-
monly used in fabric conditioners. Figure 4.1.49 shows an impedance spectrum
obtained at ambient temperature in the frequency range 10? to 10°Hz. It shows
two overlapping arcs with capacitance/CPE elements of 8 x 107?Fcm™ and 8 x
107°Scm™'s'2, Despite the superficial similarity of the spectra with the grain/grain
boundary spectra of solids, the substance is actually a viscous liquid consisting of
spherical aggregates, called liposomes. These are made up of thick regions of
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Figure 4.1.49. Impedance spectrum of dihydrogenated tallow dimethylammonium chloride (see
inset), obtained at ambient temperature in a coaxial cell with gold electrodes. Labels indicate log(f).



258 Chapter 4 Applications of Impedance Spectroscopy

aqueous phase separated by thinner bilayers of DHTDMAC (Clint [1992]). One may
imagine that the bulk arc is due to the conductive aqueous regions and the grain-
boundary-like arc is due to the resistive bilayers. Thus, while it is often said that
impedance spectroscopy resolves the grain boundary properties in ceramics, it would
be more correct to say that this spectrum is sensitive to structure, be that the struc-
ture of a solid or a liquid.

4.1.3.5 Impedance Spectra of Composite Electrodes

This section presents two examples of composite cathodes for SOFC. For these
systems, the most commonly used cathode material and solid electrolyte are LSM
and YSZ, respectively. Electrode impedances appear over a small space scale, char-
acteristic of atomic dimensions, and as a result their spectra differ from those of bulk
materials in several ways listed below.

1. Their properties are dependent on both the electrolyte and the electrode mate-
rial and on the microstructure (grain size, porosity, etc).

2. The associated capacitances are of the order of 10°Fcm™, or more when
they arise from processes other than charge storage at the double layer.

3. Their impedances are in general nonlinear, i.e. dependent on the amplitude
of the applied ac signal and the dc bias. Measurements are performed at small
signal amplitudes in order to stay within the linear regime.

4. FElectrode reactions usually involve a gas phase and, therefore, electrochem-
ical impedances will depend on the gas composition and transport within this
phase.

5. As stated in Section 4.1.3, measurements on cells with reference electrodes
are subject to substantial errors, in the case of thin electrolyte cells.

Figure 4.1.50 shows the structure of a composite electrode. The composite is
made of a mixture of electrolyte and electronically conducting phases and has a
thickness of 5 to 50 um. Since this layer usually has insufficient in-plane electronic
conductivity for current collection, it is covered with a current collecting layer of
porous electronic conductor. This can be made of the same substance as the electronic
component of the composite, or another substance of high electronic conductivity.
For laboratory testing, precious metal pastes are convenient for this purpose. The
thickness of the current collecting layer is typically in the region of 50 um.

The impedance spectra of composite cathodes reveal several processes, not all
of which are fully resolved in the impedance spectrum. Some of the processes are
observed also in point contact electrodes, while some are specific to the composite
electrode®. Jgrgensen and Mogensen [2001] have surveyed the dominant impedance

!> Point contact electrodes are made by contacting a point of electrode material on a dense electrolyte.
They are simpler than composite cathodes due to (a) their well defined geometry, allowing the
estimation of the three-phase boundary length and (b) the absence of complex diffusional processes.
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Figure 4.1.50. Composite electrode, consisting of a mixture of ionically and electronically
conducting phases, with porous current collecting layer.
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arcs of composite cathodes (not including the electrolyte series resistance) and have

classified them as follows, in descending order of their relaxation frequency:

A and B. Conductivity relaxations, related to the microstructure of the
composite. Their activation energies are about 1eV, similar to those of the
grain or grain boundary conductivities and are independent of the oxygen
partial pressure (Po,). One or both of these arcs may be absent in some

composite cathodes, but are absent with point contact electrodes.

C. This arc is ascribed to the main cathodic process, namely adsorption and
dissociation of oxygen molecules on the surface of the electrode material.
Activation energies are in the range 1.8 to 2.0eV and it is dependant on P,
with a power law (P,,)?, with ¢ in the range —0.14 to —0.50. The associated
capacitances are in the region 10 to 10 Fcm™. This feature is observed

in composite cathodes and point contact electrodes alike.

D. Gas phase diffusional impedance. This arc is observed mainly in high per-
formance cathodes, and increases with cathodic polarization (negative
applied potential). The observed impedance is in accordance with the pres-

ence of a stagnant gas layer close to the electrode surface.

E. Inductive loop. It is not clear whether this arc represents a new feature
or is a manifestation of an activation process within arc C. The feature is
observed with point contact electrodes. It is ascribed to adsorbed oxygen

intermediates, or segregation of chemical species at the TPB.

The above classification implicitly assumes a circuit equivalent composed of
ZARC elements. There are, however, alternatives, namely the Gerischer'® element,
as used by Holtappels et al. [1998]. This is illustrated in Figure 4.1.51 for the spec-
trum of a composite cathode at 850°C. In Figure 4.1.51a the electrode response is

1o For the definition of this element see Section 2.2.2.2.
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Figure 4.1.51. Impedance spectrum of a symmetrical cell with composite cathode on both sides,
fitted to two different circuits. The solid lines show the total fit, while the dashed lines show the
impedances of the individual elements. The composite layer consists of ZrO, (8 mol% Y,0;) and
Lay 35Sro,1sMn, 100¢ in equal proportions and the current collector is porous platinum paste. The
measurement was made in air, at 850°C. The data were corrected for the series inductance of the
measurement rig, determined in short circuit.

simulated using a circuit with three ZARC elements, while in 4.1.51b one
of the ZARC:s is replaced by a Gerischer element. There is no appreciable differ-
ence in the goodness of fit, as judged by the solid lines, the y* values in both
cases were about 6 X 107°, and the estimation of the polarization resistance differs
by 2%."

The ability of two different circuits to model the same data set has both posi-
tive and negative implications. On one hand, it facilitates the process of electrode
development, since the values of the polarization resistance estimated by different
investigators can be compared, even if they were not based on exactly the same
circuit. On the other hand, it complicates the interpretation of the spectral features
in terms of mechanisms, because arcs cannot be paired to processes on a one-to-
one basis. It is, therefore, essential that a fundamental investigation covers the
widest possible range of experimental conditions (namely temperature, gas com-
position), including conditions that are far from those of the planned application,
so that all the electrode processes “get a chance to appear” in the impedance
spectrum.

The second example concerns functionally graded cathodes, consisting of five
layers of YSZ/LSM with increasing content of LSM (20-100%) (Holtappels and
Bagger [2002]). The cathodes were prepared on both sides of a YSZ tape (thickness
~150 um), characterized by IS and found to have a very high performance, with

'7 The circuit containing the Gerischer element is not able fully to reproduce the spectrum at the low
frequency end, although in the data of Holtappels et al. [1998], this problem did not arise.
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polarization resistances of 100mQcm? or less at 850°C (see also Figure 4.1.24).
Close examination of the results revealed that the electrolyte resistance associated
with the cathodes was higher, by about 50mQcm? than that expected from the
known conductivity of the electrolyte; this was attributed to the resistance of the
YSZ-rich layer adjacent to the electrolyte. To investigate this further, impedance
studies were performed at temperatures below the operating temperature (Bonanos
et al. [2002]).

Figure 4.1.52 shows impedance spectra at two temperatures, with simulated data
for a circuit based on four ZARC:s (for Figure 4.1.52a one of the ZARC:s is replaced
by a resistor). By starting at low temperatures and using the parameters estimated
at one temperature as initial guesses for the next one, convergence was obtained in
all cases.

The spectra illustrate the difficulty in estimating R,. At 700°C (Figure 4.1.52a)
the arc R;Q, is very flat. The simulation suggests that this arc should intersect the
real axis at 10%Hz, which is outside the frequency range used. The spectrum at
400°C, however, falsifies this expectation: rather than approaching the real axis, the
spectrum develops into a new, high frequency arc, RyQ,. This development could

?}’ 100 mHz (a)
N
13
2 R3Q3
400°C
= (b)
g 1  MH R.Qs,
Ry - 100 uHz
0 1 1 1 1 ]
0 6
()

Figure 4.1.52. (a), (b) Impedance spectra of cathode consisting of five layers of YSZ/LSM, with
graded thickness and composition. (¢) Circuit equivalent. The cathodes were prepared on both sides of
a YSZ tape. The measurements were performed in air (Bonanos et al. [2002]).



262 Chapter 4 Applications of Impedance Spectroscopy

10° 104 [
+ Ro+Rq el Ro+R3
102 R3
o Rp
o Ro
e Ry 102 |
<« 10" -
£
S § 10|
o 100 | an
100 t
-1 =
10 100 |
10-2 1 1 1 ] 10-2 1 1 1 ]
08 10 12 14 16 08 10 12 14 16
103 (K 1031 (K"

Figure 4.1.53. Temperature dependence of the resistive elements obtained by fitting the circuit of
Figure 4.1.52(c) to the data of a multilayer composite cathode. (@) Ry and R;; (») R, and R;. The plots
for Ry and R, curve in opposite directions, indicating a systematic error of resolution, while their sum
gives a straight line. This may be due to a “smearing out” of the electrode/electrolyte interface in the
graded structure. The corresponding plots for R, and R; also show a (slightly) greater curvature than
their sum. The activation energies for (R, + R,) and (R, + R;) are 0.96 and 1.25¢eV, corresponding to
electrolyte and electrode processes respectively.

not have been observed in the spectrum obtained at high temperature, graphically,
or by CNLS fitting. The frequency range is simply too limited to reveal this arc.

The temperature dependence of the resistors R, to R is shown in Figure 4.1.53;
for convenience, Ry, R; and R,, R; are shown separately. The plots for R, and R,
(Figure 4.1.53a) have significant curvature in opposite directions. This is certainly
due to a systematic error in the resolution, because their sum, Ry + R, gives a good
straight line with an activation energy of 0.96 €V, the value expected for YSZ.'® This
leads to the conclusion that Ry, and R; are both manifestations of the electrolyte
resistance but that they cannot be resolved completely in the impedance spectra,
even at low temperatures. This may be qualitatively described as a “smearing out”
of the electrode/electrolyte interface due to the graded nature of this system. The
corresponding plots for R, and R; are shown in Figure 4.1.53b. The Arrhenius plots
are curved, as observed for two-layer composite cathodes (Juhl er al. [1996]). As
with the case of R, and R, the sum R, + R; gives a better straight line (activation
energy of 1.25eV), than either R, or R;, suggesting that these processes too may be
not be fully separable.

18 Estimated from In[(R, + R,)/T] versus T\,
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The problems of resolution described above are explained by the proximity of
characteristic time constants, rather than experimental error. The problem is funda-
mental to the material and could not be solved using another technique, such as
current interrupt. The understanding of a system with four relaxation frequencies but
only two temperature dependences seems to need a more advanced model than that
afforded by an electrical circuit.

4.1.3.6 Closing Remarks

The work presented here has covered three main aspects of IS, namely modeling,
experimental techniques, and the application of the technique to systems with
complex microstructures. Since it is not possible to summarize this work in a para-
graph, we will draw attention to three themes that recur in this section.

* Choice of appropriate model: IS is not a technique that can or should be
applied without prior knowledge of the system. Impedance spectra must be
interpreted in the context of a model, be this a simple brick-layer model for
a ceramic, or an advanced one based on electrode kinetics. When used in con-
junction with electron microscopy, IS provides information about structure,
and especially grain boundary structure. The microstructural information
and the models derived from this are what make the conclusions of IS
unequivocal.

Choice of equipment and experimental conditions: the instrumental frequency
range needs to cover the dominant relaxations of the system. It is as impor-
tant to choose the temperature of the system as it is to choose the right instru-
ment. It is also important to make the measurements over a range of conditions
considerably wider than those expected in operation.

Choice of formalism: the formalism (Z, M, etc.) should be chosen to make
the correspondence between measured spectrum and model as simple as
possible. In cases where grain boundaries or electrodes are blocking, the
preferred choice will normally be the impedance formalism—in other cases,
others will be better. It is advisable to examine data in more than one
formalism.
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4.2 CHARACTERIZATION OF THE ELECTRICAL
RESPONSE OF HIGH RESISTIVITY IONIC

AND DIELECTRIC SOLID MATERIALS BY
IMMITTANCE SPECTROSCOPY

J. Ross Macdonald

4.2.1 Introduction

For at least several decades, the effects of charged-particle motion in doped semi-
conductors, amorphous materials, polycrystals, single crystals, inorganic glasses,
and polymers have been of much interest to both experimentalists and theorists. In
fact, J. C. Phillips [1994] has characterized the problem of relaxation in complex
disordered systems as the most important unsolved problem in physics! For ioni-
cally conducting materials such as solid electrolytes, the dynamics of the mobile
ions have usually been investigated by analyzing the frequency response of the mate-
rial over a wide range of frequencies, sometimes as wide or wider than 10~ Hz to
10" Hz. Such investigations thus usually involve immittance spectroscopy meas-
urements and techniques. In this section, the main emphasis is on ionic conductors
because of their technological importance in such areas as batteries, fuel cells, elec-
trochromic displays, energy storage in capacitors, sensors, and even bionics. Because
the electrical response of ionic conductors is rarely of simple Debye-relaxation
character except in limiting cases, one must be concerned with its generalization:
dispersive response.

Conductive-system dispersive response may be associated with a distribu-
tion of relaxation times (DRT) at the complex resistivity level, as in the work of
Moynihan, Boesch, and Laberge [1973] based on the assumption of stretched-
exponential response in the time domain (Eq. (118), Section 2.1.2.7), work that led
to the widely used original modulus formalism (OMF) for data fitting and analysis.
In contrast, dielectric dispersive response may be characterized by a distribution of
dielectric relaxation times defined at the complex dielectric constant or permittivity
level (Macdonald [1995]). Its history, summarized in the monograph of Béttcher and
Bordewijk [1978], began more than a hundred years ago. Until relatively recently,
however, these two types of dispersive response were not usually distinguished, and
conductive-system dispersive response was often analyzed as if it were of dielectric
character, even when this was not the case. In this section, material parameters will
be expressed in specific form appropriate to the level concerned.
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Conductive-system dispersion (CSD) usually involves thermally activated
conduction extending to zero frequency plus an always-present bulk dielectric
constant, &p.., usually taken to be frequency-independent in the experimental range.
Dielectric-system dispersion (DSD) often involves dielectric-level response with
only weak temperature dependence, and it may or may not involve a non-
negligible frequency-independent leakage resistivity, pc.. = Pac = po = 1/0y. There
may be cases where separate processes lead to the simultaneous presence within an
experimental frequency range of both types of dispersion, but this is rare for
most solid electrolytes. Further complications are present when conduction involves
both mobile ionic and electronic charges, neither of whose effects are negligible
(Jamnik [2003]). Here only ionic, dipolar, and vibronic effects will be further
considered, with the main emphasis on conductive rather than on dielectric
dispersion.

Since conductive-system dispersive response may be transformed and shown
graphically at the complex dielectric level, and dielectric dispersion may be pre-
sented at the complex resistivity level, frequency-response data alone may be insuf-
ficient to allow positive identification of which type of process is present, since there
may be great similarity between the peaked dispersion curves that appear in plots
of p”(®w) and of £”(w) or of & (w) = £”(w) — (0y/wey). Here, &y is the permittivity of
vacuum. This quantity has usually been designated as &, as in other parts of this
book. Its designation here as &, avoids ambiguity and allows clear distinction
between it and &(0) = £’(0) = &, the usage in the present section.

Even CNLS data fitting at a specific temperature may not always allow unam-
biguous discrimination between CSD and DSD responses. But if data are available
over a range of temperatures, discrimination is straightforward. Then, one generally
finds that py/T (or p,) and 7,, the characteristic relaxation time of a model exhibit-
ing thermally activated CSD, involve the same activation enthalpy (usually termed
the activation energy) (e.g. Macdonald [2002a]). This is an effective quantity when
the process considered involves a distribution of activation energies. Dielectric dis-
persion response may not be thermally activated but when it is, 7, certainly does not
have the same activation energy as that of an independent leakage resistivity p,. A
detailed study of discrimination between the two types of dispersion appears in
Macdonald [1999a].

4.2.2 Types of Dispersive Response
Models: Strengths and Weaknesses

4.2.2.1 Overview

Conductive-system dispersive response involving mobile charge may be conceptu-
ally associated with the effects of three processes:

1. electrode effects, which are particularly important at low frequencies (see
Section 2.2.3.1) but may not be negligible at very high ones (Macdonald
[2002a,b]);
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2. ionic hopping effects, usually significant at mid-range frequencies
(Macdonald [2002a,b]);

3. nearly constant loss effects primarily evident at sufficiently low temperatures
over the usual frequency range or at high frequencies for higher tempera-
tures (Ngai [1999], Ngai and Ledn [2002], Macdonald [2002c, 2003b]).

Three different kinds of models have been proposed for describing these
responses. A summary of some of the pertinent history of attempts to characterize
the situation appears in Roling et al. [2001]. We shall consider here only models for
the above behaviors that may be associated with mobile charge effects. The first and
most desirable would be a fully microscopic model that accounted for all the above
processes, since they are all directly or indirectly associated with mobile charge in
conductive-system materials. Unfortunately, this many-body problem involving all
interactions is currently insoluble.

A second approach involves approximate microscopic models whose log—log
o’(w) slope continuously increases toward a value of unity until a high-frequency
plateau is reached. No account of electrode effects is included in these approaches.
In most other models, their high-frequency slope is related to a model parameter and
quickly increases to a constant value less than unity as the frequency increases and
before a final plateau begins to appear (Macdonald [1997b, 2002d]).

The third approach involves a composite model involving separate parts: one
accounting for ionic hopping; a parallel contribution representing the effect of the
endemic bulk dielectric constant, &p..; possibly a part describing nearly constant loss;
and finally a series response model to account for electrode effects. For fitting most
limited-range data, only two or three of these parts are usually required and excel-
lent data fits are generally found using appropriate models. We shall therefore con-
sider some composite models in detail.

It is noteworthy that most comparisons and fits of models to experimental data
deal only with ¢’(w) response. An advantage of this procedure is that o’(w) and
£”(w) = 0’'(w)/we, are the only ones of the eight real and imaginary parts of the four
immittance levels that are independent of the presence of &p..: ’(w) fitting is thus
simpler than fitting with any of the four complex immittance-level responses or with
the six other real and imaginary parts. Such an approach does not allow estimation
of &p.., however, and it not only forfeits the error-averaging inherent in CNLS fitting
but also the latter’s test for the applicability of the Kronig—Kramers transformations.

The following discussion does not include consideration of all reasonable
models that have been proposed and used for conductive-system fitting, but only
some widely used ones and ones of particular theoretical importance.

4.2.2.2 Variable-slope Models

The Mismatch and Relaxation Model. Although some apparent theoretical
defects inherent in the mismatch-and-relaxation model of Funke [1998], have been
pointed out (Macdonald [1999b]), they have neither been explicitly recognized nor
directly resolved. A recent empirical modification of this approach (Funke ef al.
[2002]) seems, however, to avoid some of the problems of the earlier work. Further,
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new work of Funke and Banhatti [2004] corrects further weakness in the model,
although it still contains some empirical elements and thus cannot be considered a
full microscopic response model.

The Symmetric Hopping Model. This model (Dyre and Schrgder [2000])
ignores Coulomb interactions, claims to be of universal character in the extreme dis-
order limit, and yields response rather similar to that of the mismatch-and-relaxation
model. Of the several approximate but specific microscopic hopping realizations of
the microscopic model considered by Dyre and Schrgder, the diffusion-cluster-
approximation one led to best results, although it involves low-frequency-limiting
response in disagreement with the physically realistic dependencies of the real and
imaginary parts of the ac conductivity on @ and @, respectively (Odagaki and Lax
[1980], Macdonald [1996, 1997b, 2001a]. The mathematical complexities of both
the mismatch-and-relaxation model and the diffusion-cluster-approximation one
makes data fitting and the estimation of values of model parameters difficult, and
thus no CNLS fitting of data to estimate such parameters seems to have been pub-
lished so far.

Comparisons of the variable-slope models with real-part conductivity data have
rarely involved responses with a variation of 6’(w)/0, greater than three decades
starting from a low-frequency experimental value of this ratio of nearly unity, and
even for such a limited range they usually show increasing disagreement with exper-
iment toward the high end of this ratio where the relative frequency is large. In con-
trast, the results of a PK1-model (defined in the next section) fit of accurate synthetic
data calculated for the microscopic diffusion-cluster hopping model and involving
a range of ¢’(w)/oy greater than seven decades yielded a value of Sg, the relative
standard deviation of the fit, of less than 0.01 and showed no deviation between
o’(w)/0, data and fit points on a log—log plot, as well as no apparent slope varia-
tion (Macdonald [2001b]).

It is therefore clear that since the variable-slope models have not been com-
pared with data that would allow discrimination between their predictions and those
of simpler composite models, the variable-slope approaches, while of theoretical
interest, are currently less appropriate for data fitting and analysis than are simpler
and well-fitting composite models.

4.2.2.3 Composite Models

The ZC Power-law Model. Although we discuss some single dispersive-
response models here, in practice they must always take account of &p., and of pos-
sibly some other effects as well and so the overall model is always composite. A
frequently used fitting model is the ZARC one of Eq. (22), Section 2.2. It is now
more often designated as the ZC and, when written at the complex conductivity level,
it may be expressed as o(®) = op[1 + ((WT7)y,c], where 0 < 7y, < 1. The exponent
Yzc has often been written as n and is the high-frequency-limiting log—log slope of
the model. It has usually been found to have a value in the range 0.6 < 7, < 0.7.
The real part of the ZC model has been termed Jonscher or universal dynamic
response, but the word “universal” is inappropriate since CNLS fits with the ZC or
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with its 07:(®) part have been shown to be much poorer than those with other com-
posite models (Macdonald [2000b, 2003a]). Finally, the identification of 7, or its
real-part-fitting counterpart, as the inverse of the hopping radial frequency of the
charge carriers has also been shown to be unsuitable (Macdonald [2003a]), and a
more appropriate choice, the CK1 model, is discussed below.

OMF and CMF Kohlrausch Response Models. Consider now the general
definition of the /; normalized frequency response quantity of Eq. (3), Section 2.2,
with k= D, 0, and 1. For k = D, U, in that equation is the complex dielectric con-
stant, &(®w), and for the other two values, U, is the complex resistivity, p(w). Now I;
may be calculated from either a distribution of relaxations times or from a tempo-
ral correlation function: see Macdonald [1996, 2002d] and Section 2.1.2.3. Although
the p.. and p,.. quantities entering into the definition of U, and U, are usually either
zero or negligibly small, they may be large enough to affect the frequency response
of the model at very high frequencies (Macdonald [2002d]). They will be taken zero
for most of the present work. Then it follows that we may write py(®) = polo(®) and
p1(®) = pol, (@), where we ignore the distinction between py, and py,.

The stretched-exponential temporal response of Eq. (63), Section 2.1, a versatile
and theoretically plausible correlation function, is one whose corresponding fre-
quency behavior is now called Kohlrausch—Williams—Watts or just Kohlrausch
[1854] model response, denoted here by Kk. It is also now customary to replace the
o of the stretched-exponential equation by S or 3, with k=D or 0. The k = D choice
may be related to KD-model dispersive frequency response involving a distribution
of dielectric relaxation (properly “retardation”) times, and the k = 0 and 1 choices to
two different distributions of resistivity relaxation times and thus to KO and K1-model
responses, respectively. Note that the 3, parameter of the important K1 model is not
directly related to stretched exponential temporal response, as are the other
Kohlrausch models, but the DRTs of the KO and K1 models are closely related
(Macdonald [1997a]). Further, although the KD and KO models are identical in form,
they apply at different immittance levels and so represent distinct response behaviors.

No closed form expressions are available for the frequency responses of the Kk
models for arbitrary S, values but algorithms for calculating such responses and for
fitting data with them are included in the free LEVM CNLS fitting program
(Macdonald and Potter [1987], Macdonald [2000a]) and are very accurate for 0.3 <
B <£0.7 and somewhat less accurate outside this range. Further, LEVM also includes
closed-form exact-response expressions for the choices f, = 1/3 and 1/2.

Although defects in the 1973 OMF K1-model approach of Moynihan and asso-
ciates [1973] have been pointed out for the last 10 years, papers continue to be pub-
lished that use the OMF and ignore criticisms of it. It is therefore worthwhile to
discuss it and its corrected version, the corrected modulus formalism (CMF), in order
to make the issues involved clear to the reader, who can then make an informed
choice between the two approaches. Although they both use the K1 response model,
the OMF and CMF approaches are nevertheless crucially different.

Since the OMF response model was originally derived at the modulus level, let
us begin by writing for the KO model, My(®) = ioeypolo(®). In contrast, the OMF
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analysis (Moynihan et al. [1973]) led to the following result for the M,(®) response
of the K;-model in terms of Iy(®),

M, (0) =iwey pol,(w) =[1- I ()]/€, (1)

where &; was defined as &p.., now written by supporters of the OMF as &... The sub-
script 01 is used here to indicate that Io;(w) is just Iy(®) in form but involves B, rather
than .

The OMF K1 model of Eq. (1), derived from a purely conductive-system cor-
relation function, improperly mixes together conductive-system and dielectric-
system responses through its identification of & as &p... This identification leads to
a world of problems (e.g. Macdonald [1996, 2002a, 2004]) vitiating this approach
and implying that the OMF should be replaced by the CMF or by a superior model.

The CMF correction is simple: & in Eq. (1) is defined as the limiting dielectric
constant £cy.. = €cy(e°), a purely conductive-system non-zero quantity associated only
with charge-carrier motion and defined below. Except for the explicit introduction
of &, the essence of the 1973 OMF derivation of Eq. (1) appeared in the earlier work
of Macdonald and Barlow [1963]. Incidentally, for the KO model, &cp.. = €cp(e°) =
0. For both the KO and CMF K1 models, one therefore needs to account for the
endemic presence of &p.. by including a free dielectric-constant fitting parameter, &,
in the composite fitting model, now designated the CKO model for KO response and
the CK1 for the CMF K1 situation. Then for the KO model €. = &, and for the
CKl1 €. = &1.. + €p... The separate existence of &c.. is not recognized by users of
the OMF. Note that CKO and CKI1 fits of the same data lead to nearly the same
estimates of €...

It has sometimes been found useful to replace the ideal capacitance represented
by & = &p.. by a parallel constant-phase element, the PCPE, &(®) = Apc(im) e,
with 0 £ ¢ < 1, reducing to a nearly ideal capacitance when - << 1 so that
Apc = €p... The resulting composite model has been designated the PK1. A series
CPE, the SCPE, o5(®) = gAs(im)"sc with 0 < % < 1, has often been found satis-
factory for modeling electrode effects, and it represents the effect at the complex
resistivity level of a completely blocking series capacitance when Y5 = 1. When
SCPE response is combined with that of the CK1, the result is written as the CK1S
model. For the data fitting described in the next section, it turns out that a more com-
plicated model is needed to represent electrode effects more exactly.

The OMF K1 was derived by considering electric field decay at constant dielec-
tric displacement and is thus a macroscopic response model. It has been shown,
however, that the CMF K1, with &, = &,.., is completely isomorphic in form with the
famous stochastic-transport microscopic analysis of Scher and Lax [1973a], a con-
tinuous-time, random-walk hopping model. The extended version of this model
(Macdonald [2002d]) leads to response of exactly the form shown in Eq. (1), involv-
ing a quantity equivalent to I, (®) derived by Fourier transform from an initially
unspecified correlation function associated with a waiting time distribution for
hopping. It is the specific stretched-exponential choice for this function that leads to
explicit K1 response. These considerations show that the K1 may be derived by con-
sidering either macroscopic or microscopic processes, and such generality possibly
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accounts for the ability of the CK1 to fit a variety of conductive-system frequency-
response data exceptionally well (e.g. Macdonald [2000b, 2002a, 2003a]).

The OMF expression for € = €. may be written (Macdonald [1996, 2001c,
2002d])

€. = O-O<T>01/8V = 8Ma<x>01 = gMaﬁl_Olr(ﬁl_(;) (2)

where the averages are over the resistivity DRT for the K1 model, and the OMF f,
is designated as B, to distinguish it from that of the CMF, f3,.. Here the Maxwell
quantity &, is

Eva=00T, /€y (3)

x = 7/71,; and 7, denotes the characteristic relaxation time of the K1 model, and it
will be used for other models as well. The part of Eq. (2) involving the gamma func-
tion is only appropriate in the absence of cutoff of the K1 distribution of relaxation
times (Macdonald [1996, 2001c]).

In contrast, for the CMF K1 dispersion model, &, = &.., where

8Clw = 8Ma/<x_l>1 = 6Ma<-x>()1 = gMaﬁl_Cl‘r(ﬁl_Cl')

4
= [(ga)’ (Gkae)] 7= A/T @

and N is the maximum mobile charge number density; Y is the fraction of charge
carriers of charge ¢ that are mobile; and d is the rms single-hop distance for the
hopping entity. The high-frequency-limiting effective dielectric constant, &;.., asso-
ciated entirely with mobile-charge effects, is likely to arise from the short-range
vibrational and librational motion of caged ions.

Comparison of CMF equations with those of the Scher-Lax hopping model
(Macdonald [2002d]) shows that the K1 mean relaxation time, {7)y, = 7,{x),1, is iden-
tical with the mean hopping time of the microscopic model, also defined as the mean
waiting time for a hop. The term involving N in Eq. (4), not included in the OMF,
is fully consistent with the Scher—Lax model predictions. In practice, fits of the same
data with the OMF K1 and with the CK1 of the CMF approach lead to very differ-
ent estimates of 7, and of ;o and B,c.

We expect that the quantities in the square brackets of Eq. (4) are usually tem-
perature independent, so the fitting parameter A is then itself independent of tem-
perature. It follows that in the usual case where 7, is thermally activated, To is
activated with the same activation energy (Macdonald [2002a]). The presence of the
N term of Eq. (4) shows that as the ionic concentration approaches zero, &:.. — 0
and so £, — &p.., requiring that &,, — 0 as well, in accordance with CMF fit results.
The situation is different for the OMF expression of Eq. (2), however. In this case,
OMF fits show that both €. and &, approach the same constant value, that of &p...
There is then no dispersion, and the response reduces to that of single-time-constant
Debye behavior.

Fits of frequency-response data for a variety of materials, temperatures, and
concentrations lead to 3, estimates all very close to 1/3. But OMF fits, particularly
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of data in M”(w) form, the usual OMF approach, invariably yield appreciably larger
values of f3,o, ones that approach unity as the ionic concentration decreases or as the
temperature increases. Such dependence led most users of the OMF to conclude that
the correlation between charge carriers decreased as f3,, increased. But constancy of
Bic and the lack of Coulomb interactions in the well-fitting CMF microscopic model
fail to support this supposition. For most data, it has been found that CK1 fits are
superior to CKO fits of the same data, but even in situations where these fits are com-
parable, CK1 ones are preferable to CKO ones because ;- = 1/3 estimates are vir-
tually independent of temperature and ionic concentration, while CKO f3, estimates
depend strongly on these variables (Macdonald [2002a, 2003a]).

Note that OMF data fitting with LEVM leads to estimates of the free parame-
ters po, T,, and B, and €., may then be calculated using Eq. (2). When S, is taken
constant at the value of 1/3, CMF fits yield estimates of py, 7,, and & = €p.., and &..
may then be calculated using Eq. (4), with &¢,.. = 6&, for this value of .. Although
Po estimates are usually nearly the same for the two types of fits of the same data,
as are also calculated values of €., B, is always appreciably larger than 1/3, and
CMF 1, estimates are generally at least an order of magnitude smaller than those
from OMF fits.

When the OMF approach is used to fit experimental data, a fatal flaw appears,
one that invalidates any conclusions based on such fitting results. For good data, all
CMF fits yield closely the same estimates of 7, and f,., independent of the immit-
tance level for the data. This is not the case, however, for OMF fits. They lead to
inconsistent results such that fits of the data in M(w) or M”(®) form yield charac-
teristically large values of B4, usually falling in the range 0.45 < 3,5, £ 0.55 for mid-
range temperatures and concentrations, while fits of the same data in 6’(w) form
yield values close to 1/3. As mentioned earlier, since €., has no effect on o’(w)
response, K1 and CK1 fits at this level must yield the same estimates, and OMF and
CMF fits are then equivalent. A table of such comparisons and further discussion of
OMF problems appear in Macdonald [2004] and make it evident that the OMF
treatment of &p.. as an intrinsic part of the K1 dispersive conductive-system model
is incorrect.

Coupling and Cutoff Models. The Ngai coupling model (Ngai [1979, 1998]),
discussed in Macdonald [1998, 2005a], has been used in many conductive-system
data analyses by Ngai and his associates. It assumes that for times longer than 7. (a
temperature-insensitive cross-over time of the order of 1 ps) the temporal response
of the system is of stretched-exponential character, and for shorter times it is of ordi-
nary exponential character. In its applications to frequency response behavior, the
coupling model has made use of OMF estimates of S, although the frequency-
response model directly corresponding to stretched-exponential behavior is the KO,
not the K1, and generally B, # [

A superior alternative, the cutoff model, avoids this inconsistency, makes no use
of the OMEF, and is based on a cutoff of the K1 distribution of relaxation times at
T = t.. It does not involve the OMF assumption that the correlation between charge
carriers decreases as f3; increases for response at frequencies below @, = 1/¢,, and
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it properly undergoes a transition to simple Debye response for frequencies greater
than @.. Further, as shown in Macdonald [2005a], it leads not only to a smoother
frequency-response transition around @ = @, but also to satisfaction of the physical
requirement that the K1 7,(7T) never decreases below . as the measurement tem-
perature becomes high. This requirement is not met by the 7,(7) of the coupling
model approach, suggesting that it should be superseded by the cutoff model. Both
the coupling model and the cutoff one lead to non-Arrhenius behavior of oy(T'), with
a transition from a low-temperature Arrhenius activation energy to a smaller appar-
ent energy at high temperatures (Macdonald [1998, 2005a], Le6n et al. [1998]).

Rationalization of the Barton, Nakajima, and Namikawa Relation. The
Barton [1966], Nakajima [1972], and Namikawa [1975] empirical relation, usually
designated by BNN, has played a useful role for some time in the analysis of dis-
persed frequency response data (e.g. Dyre [1988], Macdonald [1996], Dyre and
Schrgder [2000], Porto et al. [2000]). It involves a loosely defined parameter, p,
expected to be of order 1, and Nakajima and Namikawa believed that it arose from
correlation between electrical conduction and dielectric polarization, apparently
because it involved both measured dc conductivity and a dielectric strength quan-
tity Ae.

But as we have seen, for a conductive system both ¢, and Ae = €(0) — €(0) =
& — €. may arise entirely from mobile charge effects and not involve bulk dielec-
tric effects at all. Then Ag = A& = €cy9 — &y for the CK1 model, and Ae = Agg, =
Ecoo for the CKO one. It was indeed pointed out by Macdonald [1996] that the K1
conducting-system model could lead to a quantitative value for p, one that depended
on the value of S

Here it is shown that the BNN expression is most reasonably interpreted as
arising entirely from charge motion, and if the K1 fit value of ;- = 1/3 is a uni-
versal value, then the value of p is fully defined and the BNN equation is just a
natural consequence of the apparent universal applicability or quasiuniversality of
the conductive-system CK1 model with 3, = 1/3. For ion-conducting homogeneous
glasses and single crystals with charge motion allowed in all three dimensions it has
been shown theoretically, in two independent ways that 1/3 is the only possible value
of B¢ and that the resulting high-frequency-limiting-response power-law exponent
is 2/3 (Macdonald [2005b], Macdonald and Phillips [2005]). Consistent with these
results, it follows that CKO model fits of such response lead to 3, = 2/3 when the
data extend to sufficiently high frequencies.

The BNN equation may be expressed as

Ae=p(00/eve,)=p7 (7, /T0)€m = P (Vo [V, )Era 5)

Here as usual, 7, is the characteristic response time of a fitting model such as the
CKI. Further, w, = 27v, = 1/1,, where v, is the frequency at the peak of the dielec-
tric loss curve, £/(v), and v, 2 Vv,. For ;¢ = 1/3, the K1 model leads to &c;.. = 6&y,
and to &y = 60&y,, (Macdonald [2001c, 2005b]). Therefore, Ae = 54¢,, and one may
write for this situation p = (v,/v,)/54.

Sidebottom [1999] noted the similarity between the BNN equation and a scaling
factor he proposed. This similarity arises because his result, appropriate for situa-
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tions where the frequency response shape of the model is temperature independent,
the situation for the K1 model with a constant 3, = 1/3 value, is a simplification of
scaling factors associated with KO and K1 models with variable f,, as discussed in
Macdonald [2001c]. Of course with accurate CNLS fitting, scaling is unnecessary.
The success of the Sidebottom scaling approach is further indirect evidence of the
widespread applicability of the CMF CK1 model with fixed S,c = 1/3.

From nearly exact calculations of K1 model €'(w) synthetic data derived from
the parameter estimates of experimental data fits of the next section, with the elec-
trode contributions present or removed, one finds that the v,/v, ratio is about 95 and
89, respectively, leading to p estimates of about 1.77 and 1.65. The 1.65 value is the
appropriate one for K1-alone response and is universal to the degree that Eqs (1)
and (4) are applicable and f,- = 1/3. Although many data fits suggest that this value
of B¢, is a constant for CK1 fits, one would expect that as ;¢ — 1, p should also
approach unity in the limit, and, for example, when f,- = 0.5, one obtains p = 1.27.

Over the years since the introduction of the BNN equation, published p values
have mostly fallen in the range of 0.5 to 10 but are often close to unity. Accurate
estimation of p directly from experimental data is uncertain when electrode effects
are significant and/or when the data range is too small to lead to good estimates of
& and ... It is therefore appropriate to calculate p values from parameter values esti-
mated from data fitting.

Although Hunt [1992] concluded that p cannot have a universal value, the
present 1.65 value is consistent with most of the many BNN-related p estimates for
experimental data presented by Dyre and Schrgder [2000] in their Figure 3, ones
mostly slightly larger than unity. Such agreement is further evidence of the appro-
priateness of the CK1 model for many different materials. Earlier, Dyre [1988]
quoted an estimate of p for a CTRW model different from the present Scher—Lax
K1 one of only 0.42, while for their microscopic symmetric hopping model Dyre
and Schrgder [2000] listed a value of 1.5 & 0.4. The present results show that if CMF
fitting is used, there is no need for the BNN since it is an automatic consequence of
the applicability of such fitting. When CK1 CNLS fit parameters are available,
however, the BNN equation with p = 1.65 may be used to obtain an accurate esti-
mate of v, for the conducting-system part of the data alone.

Finally, Porto et al. [2000] have recently suggested that the BNN relation cannot
apply for an appreciable range of concentrations because data fits show that A¢ does
not scale as N/T. But Eq. (4) shows that for the CMF K1 model &,.. does indeed
scale in this fashion and involves d” as well. Further, at constant Bic, €10 and thus
Ag also do so (Macdonald [2001c, 2002a]). Therefore, this criticism does not seem
appropriate. To test the matter, estimates of p were calculated from CK1 CNLS fits
of xK,0-(1 — x,)GeO, germanate glasses with the relative ionic concentration, x.,
equal to 0.2 and 0.02, data kindly provided by Drs. Jain and Krishnaswami [1998].
The p estimates were 1.64 and 1.65, respectively, thus well verifying the appropri-
ateness of the BNN equation over a considerable concentration variation.

Nearly Constant Loss Models. Nearly constant loss (NCL) is evidenced by a
power-law dependence of 6’(w) on frequency with an exponent very close to unity,
leading to £7(w) loss response that varies only slightly over a substantial frequency
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range. It may appear directly at low temperatures or may contribute significantly to
o(w) response at the high end of the measured frequency range. In the first case,
NCL is dominant and thermally activated hopping response is completely negligi-
ble (Macdonald [2001a, 2003b]. In the second case, hopping is dominant over most
of the frequency range.

Excellent reviews and discussions of NCL behavior in ionically conducting
glasses appear in Ngai [1999] and Roling er al. [2001]. Although most authors
believe that NCL arises from the restricted motion of caged ions or groups of atomic
species, very few quantitative NCL models have been proposed. An important early
composite one may be written as 0’(®) = oy[1 + (07,)"] + A, with 0 < n < 1 and
s = 1 (Lee et al. [1991], Nowick et al. [1998]). The first term represents universal
dynamic response, as discussed earlier, and constant loss occurs when s = 1, not a
viable situation for a finite frequency range.

Although this composite model implies the additivity of hopping and NCL
effects, the appropriateness of such additivity has been challenged by Ledn et al
[2001] and Rivera et al. [2002]. They suggested an alternate serial (not series) picture
in which NCL ceases to exist when hopping begins and ions begin to exit their cages.
This is not a quantitative model, and their work dealt primarily with ¢’(®) response.
Fitting of both synthetic and experimental complex data provides strong evidence,
however, that additivity should not be rejected, and analysis using a quantitative
complex model such as the PK1 suggests that hopping and NCL effects can exist
simultaneously in a crossover region of finite length (Macdonald [2001a—c, 2002a]).
Here, the parts of the model are in parallel electrically and additivity is ensured. The
PCPE part of the expression models NCL behavior and can extend over an unre-
stricted frequency range.

Although a PCPE may be used to model NCL data with equal slopes for both
o’(w) and &]’(w) since they both involve the same - << 1 exponent, some data may
be better represented by such power-law response for ¢’(w) but by a function that
yields a very close approximation to constant loss for the €/(®) part of the response
(Nowick et al. [1998]). In the absence of hopping, just the series combination of an
ideal capacitor and a CPE can yield such behavior with very nearly constant loss
over several decades of frequency (Macdonald [2001a]).

It was first shown in 2002 that the CPK1 composite model, where both C and
a PCPE are in parallel with K1, could be used to represent frequency-independent
undispersed &p.. behavior, hopping behavior, and NCL (Macdonald [2002a]). This
work, in turn, suggested that the model could be made more physically plausible by
an effective medium approach, one that might be able to represent both kinds of
NCL behavior, as well as possibly non-negligible hopping effects. The resulting
effective medium model, the EMKI, indeed met this objective well (Macdonald
[2003b]). It is based on the assumption of a background involving a constant &p..
term and a volume fraction, 7, of “inclusions” associated with ions vibrating over
a limited region and represented by a PCPE. Thus, even in the absence of the K1
part, €g,(®) is complex.

The EMKI1 model, unlike the CPK1 one, leads to physically plausible low-
frequency-limiting slopes for &(®) and other immittance functions, as well as equal
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or superior fits to those of the CPK1. As a first approximation, 7 is set equal to the
relative ionic concentration, x.. Synthetic data for &,(®) extending over many
decades of frequency and for a wide range of 1 values showed that although there
is no finite range of exact constant-loss behavior, such response is well approximated
for 1 near 0.25. In addition, when the response is approximated by a power-law
model, the resulting very small exponent may be either positive for 17 << 1 or neg-
ative for 11 = 0.25 over the higher-frequency region of the response.

There are two important questions arising from the present model discussions.
First, a microscopic model needs to be developed that leads to ;- = 1/3 and is less
approximate than the Scher-Lax one and second, a microscopic model is also needed
that yields response like the present effective medium model and takes explicit
account of the detailed interactions, electromagnetic and otherwise, between vibrat-
ing ions and bulk dipoles.

4.2.3 Illustration of Typical Data
Fitting Results for an lonic Conductor

CNLS fitting has been little used by most workers who have analyzed frequency-
response data for solid ionic conductors. The majority of published work deals pri-
marily with either 6’(v) or M”(v) response, but not usually with both or with
simultaneous fitting of real and imaginary parts of an immittance data set. An appar-
ent advantage of the fitting and analysis of 0’(V) data alone is that it and its direct
transform, €’(w) = o’(w)/wey, are the only immittance-level parts that include no
effects from &p.., as already mentioned in Section 4.2.2.1. But much more can gen-
erally be learned by considering full complex response at other immittance levels.
Here we will only deal with data that do not extend to high enough frequencies or
low enough temperatures to require a nearly constant loss contribution.

It is therefore worthwhile to illustrate, for a typical data set, the usefulness of
CNLS fitting and of various plots of the results. For generality, the data set selected
is one for which both bulk dispersion and electrode effects are non-negligible. It
was kindly provided by Dr Carlos Leén and involves the fast ionic conductor
LiysLay sTiO5, measured at T=225K (Le6n et al. [1998]). This set is designated here-
after as LLTO.5. Fitting was carried out using the O circuit of the LEVM program.
To allow independent work with this data set, its full LEVM input file, 225Z36EL,
has been included in the LEVM FITTESTS folder of test files for the O circuit.

Figure 4.2.1 shows the full O circuit. For LEVM, only those circuit elements
that are given non-zero values are used in fitting. Here “DE” designates a distrib-
uted circuit element, one that can be selected from a large number of different ele-
ments available in LEVM. DED involves a dielectric distributed element, such as
the DSD, a dielectric-system dispersive element. Similarly, DEC designates a con-
ductive distributed element, such as the CSD. In LEVM, the series inductance shown
in the figure may be replaced by a short circuit, a resistor, or a capacitance, Cs.

Since it was initially established that the LLTO.5 data sets for different tem-
peratures involved thermally activated response and were therefore of CSD charac-
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Figure 4.2.1. The LEVM fitting circuit O. It may be used as shown for fitting immittance data in
raw or specific form. The DE blocks may each be selected as any one of the many available
distributed-circuit-element response models.

ter, we begin by carrying out CMF fits of the T =225 K data. The bulk response was
thus represented by the K1 model in the DEC part of the circuit. It involves the
parameters py, T,, and ¢, but, as usual, a ;¢ value of 1/3 yielded best results. There-
fore, this value was taken as fixed for all the present fits. When the CMF CK1 model
was employed, &p.. was represented by the C.. element of the circuit. As usual, R..
was found to contribute nothing to the fits and was thus not used thereafter.

For blocking electrodes the simplest element to represent their effect is a series
capacitance, Cys, but electrode processes are generally too complicated for adequate
representation by a single capacitance. The next level of complexity, often found
adequate, is to use a series constant-phase element, the SCPE, in the DE; position
of the circuit. A recent analysis of the use of a CPE for modeling electrode behav-
ior appears in Bisquert et al. [1998]. For the present data, for which electrode effects
are far from negligible, it was found that they were best represented by a SCPE in
parallel with the C; capacitance of the circuit, all in series with Cg, involving a total
of four free fitting parameters. The full CK1 model including these free electrode-
related parameters is termed the CKIEL and involves a total of seven free
parameters.

The CK1EL CNLS fit of the data at the complex resistivity level using LEVM
with proportional weighting led to the estimates &p.. = 83.08, p, = 1.784 x 10’ ohm-
cm, and 7, = 4.488 x 107%s. In addition, the estimate for the Ysc parameter of the
SCPE was about 0.641. The fit also led to the estimates & = 254, &0 = 171, &1
= 17.1, &. = 100, and Ae = Ag.; = 154. Exactly the same parameter values were
obtained for proportional-weighting fitting at the complex modulus level. The rela-
tive standard deviation of the overall fit, S;, was 0.0072, indicating an excellent
result.

When electrode effects were represented only by a SCPE, the CK1S model, Sg
increased appreciably to 0.015. This fit led to a larger ;¢ estimate of about 0.897
and to the slightly different estimates for &p.., &, €cio, Ecis E-, and A€ of about 79,
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Figure 4.2.2. Three-dimensional log-log—log plot, with planar projections. The solid lines and solid
circles show the data, and open circles identify points from CK1EL-model CNLS fitting of the Ligs
LaysTiO; data (denoted LLTO.5 hereafter) at the complex resistivity level. The quantities with a

subscript “n” in the axes names of this and subsequent figures are of unity magnitude and are included
to make the arguments of the logarithms dimensionless as they should be.

254,175, 17.5, 97, and 157, respectively. In the limit of low frequencies, the four-
parameter model for electrode behavior is dominated by the blocking capacitor, Cs.
Its value, expressed in dielectric-constant form was more than 30 times larger than
the CK1EL estimate of &,.

Figure 4.2.2 presents a 3-D log—log—log plot of complex-resistivity data as well
as fit points for the CK1EL model fit. The projections in the three planes involve
only the data. The 3-D line shows every other one of the data points and every fourth
fit point. Since the open-circle fit points enclose their corresponding data points sym-
metrically, no deviations are evident. The projection lines at the two back planes
clearly show the transition to electrode-related power-law behavior toward the low
end of the frequency scale. Space restrictions preclude presentation here of the three
other 3-D immittance plots.

Figure 4.2.3 shows the behavior of the real and imaginary parts of the complex
modulus. In addition to the CK1EL-fit lines, those for the CK1 and K1 parts of the
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Figure 4.2.3. Log-log complex modulus data and fit results for M’(®) and M”(®) obtained from
fitting the M(w) complex data with the CK1EL model. In addition, predictions for the CK1 and K1
parts of the full model are shown.

model are also shown. They were calculated using, in LEVM, the appropriate param-
eter values found from the full CKIEL fit, and thus they are virtually exact repre-
sentations of the model behavior for these values. The present M’ results show that
electrode effects are dominant at low frequencies and have only a minor effect at
the high-frequency end of the data range. As one would expect, the difference
between the CK1 and K1 results, associated entirely with &p.., becomes great at the
high-frequency end.

It is often been stated that a virtue of plotting and analyzing data in M” form is
the resulting suppression of electrode effects. The present results demonstrate such
suppression near the M” peak, but it clearly diminishes as the frequency departs from
the peak value. Further, since the same parameter estimates are obtained for both
p(w) and M(w) fits when proportional weighting is employed, the suppression is
graphical but not significant for least-squares fitting. Finally, it is evident that the
peak of the K1 M” curve appears at much higher frequencies than that of the data
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Figure 4.2.4. Log-log o’(w) data and fit results from CNLS fitting as in Figure 4.2.3. The CK1SG
results eliminate both electrode effects and those of .

and the CMF CK1 one and the breadth of the K1 curve at half height is also much
larger. This difference is associated with the CK1 value of 3, of 1/3 and a value
greater than 0.5 found for OMF fitting of the M(w) data, as expected from the dis-
cussion in Section 4.2.2.

Figure 4.2.4 compares 0’(w) data and CK1EL fit values, as well as individual
contributions to the full model. For this immittance level, there is no effect from &,,..,
so here CK1EL and KI1EL fit results are equivalent. The CK1SG results were
obtained by first setting the G, parameter of the Figure 4.2.1 circuit to —c,. This,
together with the K1 parameter estimates obtained from the CK1EL fit, were then
used in LEVM to calculate the resulting exact response of the combination and thus
to eliminate the effect of o. It is evident that, as expected, at the high frequency
end of the range the 6’(®) response is nearly entirely associated with the ac part of
the K1 model, with only a small contribution from electrode effects apparent.
Further, the data curve shows that no accurate value of o, could be directly esti-
mated from it, making it essential that all fits should account for electrode effects.

Rather than present 0”(w) fitting results, it is appropriate to show those for the
corresponding €’(w), related to ¢”(w) by a factor of 1/ey®. Such results are pre-
sented in the top part of Figure 4.2.5. It is clear that the €’(w) data curve alone does
not allow one to obtain a reasonable estimate of & from it. Removal of the electrode
effects obtained from the full CK1EL fit leads to the low- and high-frequency plateau
values & and €.., respectively, while subsequent removal of &p.. leads to the limiting
conductive-system K1-model quantities &y and &... It is again evident that elec-
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Figure 4.2.5. Log-loge(w) data and fit results from CNLS fitting as in Figure 4.2.3. The exact
CK1 response is that without electrode effects, and the K1 response eliminates the effect of &p.. as
well and shows the approach of the data toward the limiting &,.. value. The peak of the CK1SG &(w)
curve is denoted by Vv,

trode effects play a minor but not completely negligible role at high frequencies.
The bottom part of the present figure shows £”(®) results, where again &.. plays no
role. The frequency at the peak of the CK1SG curve, that for &'(w), is shown by v,
and is needed for the calculation of the BNN quantity p.

Finally, Figure 4.2.6 is a linear-scale complex-resistivity-plane plot. Here, to
allow greater resolution, lower-frequency points than those shown have been
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Figure 4.2.6. p(w) data and fit results from CNLS fitting as in Figure 4.2.2. These complex-plane
results demonstrate clearly the dominance of electrode effects up to quite high frequencies.

omitted. The results indicate that electrode effects remain important over much of
the frequency range, even toward the higher frequencies. Comparison of corre-
sponding data and fit points shows some very minor discrepancies for the spur part
of the response, ones that are too small to be evident in log—log plots. The low-
frequency end of the CK1-only part of the response approaches the axis at 90° as it
should and defines the value of p,. It is important to note that extrapolation of the
electrode spur line down to the p” axis leads directly to an excellent estimate of p,.
This can be useful when the temperature is so high that little or none of the bulk arc
is included in the measurement range and CNLS fitting may not have been carried
out. However, such extrapolation fails for mixed ionic and electronic conduction
situations.

In a full data analysis, one would first determine the most appropriate model
and then use it to carry out fits for each different temperature available. Here, only
partial results for fits of the present T = 225K data with a few other models will be
discussed. First, Sk values for CNLS proportional weighting fits with the CKOEL,
OMF KI1EL, and “DSD” EDAEEL models were all close to 0.007; excellent fits.
Here, the EDAE model involves an exponential distribution of activation energies
fitted at the complex dielectric level and assuming dielectric-system dispersion.
Since the fits were all comparable, selection of a best model must depend on other
criteria.

The CKOEL model led to CNLS estimates of &, &-o = A€, and €., of about 255,
145, and 97, respectively. Since this model always involves €q.. = 0, it does not
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yield a separate estimate of &p.., but its ) and ysc estimates were about 0.487 and
0.635, respectively. Note that with B, = 1/3, B, + Bic # 1 here. Even when the
CKI1EL and CKOEL models yield comparable fits and nearly the same estimates for
some common parameters, the former, with fixed B, = 1/3, should be preferred
because it yields not only a comparable fit with fewer free parameters but because
it also leads to separate estimates of both &,.. and &p...

For the OMF KI1EL model, & = &y, A€, and &, = &¢,., values were all calcu-
lated from the CNLS fit parameters, leading to estimates of about 233, 118, and 115,
respectively. They thus agree less well with the CK1EL and CKOEL fit results. The
above M(m) fit results used proportional weighting, but M”(w) NLS fits with either
proportional or unity weighting led to closely similar estimates. The S, and ¥sc
values estimated for these fits were about 0.604 and 0.607, respectively. Finally, an
OMF KIEL fit of the 0’(w) part of the data, with electrode parameters fixed at their
K1EL M(w)-fit values, led to &), Ag, and &, estimates of about 175, 156, and 18.5,
respectively. The last value is clearly an estimate of the CK1 &.. quantity here.
Further, the B, estimate was 0.338, very close to the fixed value of 1/3 for the
CKI1EL fitting. The stark inconsistency between the OMF M(w) and ¢’(®) B, esti-
mates, also observed in all other such published comparisons, is a clear indication
of the failure of the OMF to take proper account of &p... Therefore, it is a particu-
larly inappropriate fitting model and should not be used.

Although the present data involve CSD rather than DSD behavior, it is of inter-
est to fit at the dielectric level with a DSD model, one that involves a p, parameter
separate from the dispersion model. The asymmetric EDAE model, available in
LEVM, is appropriate for this situation and involves the bulk parameters Ag, €., 7,,
and s, where %% falls in the range 0 < 9% < 1. CNLS fitting using the EDAEEL model
with proportional weighting led to estimates of the above quantities of 131, 109,
9.11 x 10°°s, and 0.473, respectively. The prediction for & is therefore 240 and the
estimate for p, was 1.73 x 10° ohm-cm.

The standard deviations of parameters common to both the CKIEL and
EDAEEL fits were appreciably larger for the latter than for the former even though
their overall Sy values were nearly the same. Not only does the EDAEEL model
involve two more free parameters than does the CK1EL one, but its separate treat-
ment of p, is inappropriate for a CSD situation. The present results clearly indicate
that for the LLT0.5 CSD data, and probably for most such data, the CK1 model with
B, = 1/3 is the most appropriate bulk fitting and analysis model. Its BNN p value
was found to be 1.65, as was that for the EDAE fit, and that for the KO was about
1.33.

4.3 SOLID STATE DEVICES

William B. Johnson
Wayne L. Worrell

In this section examples of several different applications of impedance spectroscopy
(IS) will be presented. Four different devices have been chosen: solid electrolyte
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chemical sensors, secondary (rechargeable) batteries, photoelectrochemical devices,
and semiconductor—insulator—electrolyte sensors. In each subsection one selected
application of IS will be briefly summarized to indicate the utility of this technique
in determining the parameters important to that device. These sections are not
intended to provide an extensive review of the area, but rather to show the power
of the technique to solid state researchers. Thus this section is not a description of
every device to which IS has been applied. Devices not discussed here which have
been studied using IS include, among others, ion selective membranes (Sandifer and
Buck [1974], Buck [1980, 1982]) and high-temperature steam electrolyzers
(Schouler et al. [1981]).

Before beginning a detailed discussion it will be helpful to indicate the advan-
tages and limitations that IS has in general application. Particularly desirable fea-
tures of IS inherent to each specific applications will be discussed in the subsections
below. The most important advantage is the ability to determine all of the time con-
stants associated with a given interface in one experiment. That means that it is pos-
sible to determine diffusive, electrochemical, and chemical rate constants for a
process from a single impedance spectrum. Further, the impedance is measured with
a small ac signal, and a dc bias voltage can be superimposed with the ac signal so
that the impedance and the rate information can be determined under various con-
ditions. Such potential control is particularly important for electrochemical systems
because the applied potential influences the rate of electron transfer at the interface.
By measuring the impedance in such systems as a function of applied potential (i.e.
dc bias), it is possible to determine the importance of the electrochemical reaction
step to the overall rate of the reaction.

Although the equipment necessary to measure impedance spectra is readily
available from many different suppliers, it remains expensive ($20,000-40,000 in
2005 dollars) even before the purchase of the nearly mandatory computer required
for control and data analysis. Another disadvantage of IS is that very careful cell
design is required to minimize stray capacitances and inductances. In addition to
requiring three-electrode cell arrangements, as with all electrochemical systems, lead
effects, including length, shielding, and the nature of all electrical contacts leading
to and from the sample, must be considered. Ideally, the impedance of the cell should
be measured under the actual experimental conditions but in the absence of the
sample. These results can be used to verify or correct the experimental results.
However, it is usually sufficient to minimize the stray impedances so that their values
are negligible in comparison to the sample impedances.

A final drawback of the technique is the cumbersome data analysis which is
required to obtain the desired physical quantities from the impedance spectra. A
model electrical circuit which approximates the physical process being examined
must be formulated. The model parameters are then obtained by determining param-
eter values which give the best fit to the impedance data. Finally, the model must
be correlated with the physical system to establish the reliability of the model and
to establish that the model values determined from the fit are physically reasonable.
If not, the model may have to be modified and the entire analysis process repeated.
In Chapter 3 there is a detailed discussion of this entire procedure. Clearly the
required analysis is not always straightforward and is usually quite involved.
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4.3.1 Electrolyte-Insulator-
Semiconductor (EIS) Sensors

Electrolyte—insulator—semiconductor (EIS) sensors are one of a larger class of chem-
ically sensitive electronic devices (Zemel in Janata and Huber [1985]) which meld
integrated circuit technology with traditional chemical sensor technology. The EIS
device is composed of a doped semiconductor, normally Si, acting as a substrate for
a thin insulating layer, normally an oxide or nitride, which can be immersed in an
electrolyte containing a fixed concentration of an ionic species to be measured.
General reviews of the construction (Huber in Janata and Huber [1985]), thermo-
dynamics (Janata in Janata and Huber [1985]), and operation (Abe et al. [1979],
Lauks and Zemel [1979], Bergveld and De Rooij [1981]) of such devices are
available. Only a brief overview of the area will be given here so that those un-
familiar with these devices will be able to appreciate the application of IS described
below.

A schematic of a typical EIS sensor is shown in Figure 4.3.1a. The operation
of the sensor can easily be understood by considering the solid state analog of it,
the metal oxide semiconductor (MOS) capacitor shown in Figure 4.3.1b. In the MOS
device the capacitance is controlled by applying an external voltage between the
gate and substrate. When there is a negative voltage relative to a p-type substrate
the capacitance will be large because the holes in the substrate will be attracted to
the insulator—semiconductor interface, giving rise to a wider region of dielectric
material through which charge is separated. If the gate voltage is increased toward
zero, the space charge layer in the capacitor will become narrower so the capaci-
tance will decrease. As the voltage goes positive, the space charge layer in the semi-
conductor becomes narrower until it eventually disappears, and electrons build up
at the surface of the semiconductor, forming what is normally called an inversion
layer. This process is shown schematically in Figure 4.3.1c. For an n-type substrate,
the capacitance curve is inverted (Figure 4.3.1d), as when V;; <0, an inversion layer
forms (holes at surface of n-type Si), and when V;; > 0, there is a wider space charge
layer.

The EIS functions in exactly the same fashion except the gate is formed by a
reference electrode in solution rather than a metal contact. The ability of the EIS to
respond to ions in solution results from a modification of the electric charge distri-
bution at the insulator—liquid and/or the insulator—semiconductor interface. Thus, at
a given value of the reference potential the capacitance of the device will change
depending on the ionic concentration in the solution. For example for the simple
device shown in Figure 4.3.1a, it has been shown that the capacitance will respond
to a change in pH in the solution (Bergveld [1970], Siu and Cobbold [1979], Leroy
et al. [1982], Bousse [1982], Bousse and Bergveld [1983], among others).

One real advantage of these sensors lies in the fact that an ion-selective mem-
brane can act as a gate directly on a field effect transistor (FET) (Janata and Huber
[1985]). These ion-selective field effect transistors (ISFET, shown schematically in
Figure 4.3.2a) again are the analog of a solid state device, the metal oxide semi-
conductor field effect transistor (MOSFET, Figure 2.2.2b).
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A MOSFET operates by controlling the concentration of charge carriers in p-
type substrate between two n-type regions, called the source and the drain. When
the gate is negatively biased with respect to the substrate, the region between the
two n-type regions below the gate has no free electrons and the conductivity between
the source and drain is very low. But as the voltage is increased until it becomes
positive, at some point an inversion layer will form so there will be electrons avail-
able to form a channel. The conductivity between the source and drain will then
increase. If there is a drain voltage supplied in this case, then a drain current can
exist. At a given gate voltage, as the drain voltage is increased the drain current will
saturate because the inversion layer is no longer of uniform thickness and becomes
pinched off at the drain end. The transfer curve shown in Figure 4.3.2¢ results. As
before, the ISFET operates in the same fashion except that an ion-selective mem-
brane and reference electrode operate as a gate.

Although the impedance characteristics of the MOS devices are reasonably well
understood (Nicollian and Goetzberger [1967], Nicollian and Brew [1982]), IS has
not been applied nearly as widely to the EIS or ISFET devices. In this section the
IS results of one of the simplest EIS devices, the Si—SiO,—electrolyte pH sensor
(Barabash and Cobbold [1982], Bousse and Bergveld [1983], Diot et al. [1985]) will
be used to illustrate the relative advantages of the technique.

An equivalent circuit for an EIS device has been derived (Bousse and Bergveld
[1983], adapted by Diot et al. [1985]). From left to right in Figure 4.3.3a, it con-
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Figure 4.3.3. The equivalent circuit of EIS sensor shown in Figure 4.3.1a (after Bousse and
Bergveld [1982]). (b) The reduced equivalent circuit for a MIS where the reference electrode—
electrolyte interface impedances are small. Here R, and C, are the equivalent R and C elements
associated with the combined impedance of the semiconductor and semiconductor-insulator interface.
(After Diot et al. [1985].)
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sists of the reference electrode impedance Z.; the electrolyte solution resistance R;
the electrolyte—insulator interface impedance, which is composed of the double-layer
capacitance C,, a diffusion impedance associated with the ionic species in solution
(hydrogen ions for pH sensor), Z,, and the SiO,—electrolyte interface capacitance
C,; the insulator capacitance C;; and the semiconductor—insulator interface imped-
ance, which is composed of the space charge capacitance in the semiconductor, C,,,
as well as a capacitance and resistance C;, and R;, respectively, associated with the
interface states at this interface. At high frequency the electrolyte—insulator imped-
ance is small with respect to C;, as is the impedance of the reference electrode, so
the equivalent circuit reduces to that shown in Figure 4.3.3b, where C, represents
the combined response of the C,. and C;.

In the EIS structure the value of C, depends upon the biasing of the device as
described in Figure 4.3.1. In forward bias, C, will be large with respect to C; because
an accumulation layer exists in the semiconductor (Figure 4.3.1d, V; < 0). In this
case, the measured capacitance at high frequency, which is a series combination of
C,. and C;, reduces to C(1/C; + 1/C,. = 1/C;), which is independent of applied poten-
tial. By evaluating the relative voltage in the space change layer and the oxide (Diot
et al. [1985], Sze [1985]), it can be shown that

E-E, = eNpeoes[(C,/C) ~1]/2C )

where E is the applied potential, Ej, is the flat-band potential, e is the charge on an
electron, N, is the doping level, & and & are the vacuum permittivity and relative
dielectric constant, respectively, C; is the insulator layer capacitance, and C is the
total measured capacitance. The value of C varies with applied potential because the
semiconductor capacitance, Cs¢, depends on E through the surface voltage y; (see
below). Thus, the values of Nj, and Ej, can be determined from the slope and inter-
cept, respectively, of the linear portion of a plot of E vs. (C/C)* — 1. An example of
such a result is shown in Figure 4.3.4.

Additional information about the semiconductor can be obtained from the inter-
face capacitance C;, which arises because each interface state stores a charge. A
surface potential C; can be defined as the potential at the semiconductor—insulator
interface which causes the center of the band gap of the semiconductor [the Fermi
level of the intrinsic material, (Ey),] to shift to a new value (Figure 4.3.5). This surface
potential arises whenever the applied potential causes charge to build up at the inter-
face. For example, for an n-type material when E = E;— (E), is very much less than
zero, (Ep); will cross Eas shown in Figure 4.3.5, leading to an accumulation of holes
at the interface, that is, inversion as described above for the MOS devices. Now v
can be calculated from the capacitance data described above by means of (Nicollian
and Goetzberger [1967])

v, =] (1-cc)de )
Ep

Thus, the important electrical characteristics of the semiconductor can be
determined.
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Figure 4.3.4. A plot of (C/C)* — 1 for n-type Si/SO, EIS, where C; is the insulator capacitance
derived from high-frequency data and C is the total capacitance of the system. The oxide thickness is
94nm and pH = 2.5. The values of the doping density N, and the flat-band potential Ey, calculated
from the linear portion of the curve are 2.2 x 10*°/m* and —0.06 V, respectively (Diot et al. [1985]).
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Figure 4.3.5. A simplified energy band diagram of an n-type EIS device which has an applied
voltage E such that the semiconductor oxide interface is in the inversion regime [shown by crossing of
E; and (E));] leading to a buildup of holes at the interface. Two energy scales are shown, one referenced
to an electron at infinity (e2) and the other referenced to the saturated calomel electrode (SCE). The
surface potential y;, the voltage drop across the insulator, V;, and the Fermi levels of the reference
electrode, the semiconductor under an applied voltage E, and the intrinsic semiconductor [(E))., Ej,
and (E)); respectively] are all shown. (After Diot ez al. [1986].)
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Further information about the interface states can also be extracted from the
impedance data. From measured values of the total conductance G and capacitance
C, the interface conductance can be calculated at any given potential after correct-
ing for the solution resistance according to (Diot et al. [1985])

G, C'G 3
®  o(G/w) +(C-C)] ®
The insulator capacitance can be determined as described above. Thus, at any given
reference potential the surface conductance G, can be determined as a function of
frequency. An example for typical results (Diot et al. [1985]) of a Si-SiO,—elec-
trolyte EIS is shown in Figure 4.3.6. Alternatively, G,/ can be calculated as the ref-
erence potential is swept and then converted to the representation in Figure 4.3.6.
Using these data, it is possible to calculate the number of interface states N, at
the semiconductor—insulator interface. In addition, a characteristic time constant T,
associated with these states can be calculated. It is the time constant associated with
the exponential decay of the interface states back to equilibrium after a perturbation.
Qualitatively, when a small ac potential applied to the system swings in one direc-
tion, the electrons will be promoted from the interface states into unoccupied states
in the silicon band and then demoted back to them as it swings in the other sense.
The characteristic time for the electrons (in an n-type material) to decay back to the
equilibrium configuration is 7.

10*Gpw™ (Fm2)

05 . 1 2 5 10 20 30 100
Frequency (KHz)

Figure 4.3.6. Plot of G,/® vs. frequency for a p-type Si/SiO, EIS at pH = 4.0 with doping density
N, =5.0 x 10*/m? and oxide thickness of 60 mm. Here G, is the total equivalent conductance associated
with the semiconductor-semiconductor interface as described in Figure 4.3.3b. (Diot et al. [1985].)
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The interface conductance can be understood, then, simply as the energy loss
associated with this RC circuit such that R,C;, = 7, or G;, = C;/7,. The loss will be
a maximum when the applied frequency reaches resonance with the characteristic
time. In that case, G,/® will reach a maximum value. For the case of weak inver-
sion in the semiconductor, the maximum will occur when @7, = 1 and (G,/ @) . Will
equal C;/2. The number of interface states N, is given by C;/e.

Using the techniques above, the effect of pH in the electrolyte has been exam-
pled on the Si—-SiO,—electrolyte EIS to ascertain the nature of the interaction between
the hydrogen ions and the device (Bousse and Bergveld [1983], Diot et al. [1985]).
One immediate advantage of IS appears in the ability to measure very-low-interface
state concentrations, lower than 10°m™(eV)™ (Diot et al. [1985]). Plots of the N,
(calculated as described above) vs. the surface potential [calculated from Eq. (2)]
have also been made as a function of pH and show that the effect of pH is very small
(Figure 4.3.7). This implies that the SiO,—electrolyte interface is the one responsi-
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Figure 4.3.7. The number of interface states N, as a function of surface potential y; at three differ-
ent pH values for a p-type Si/SiO, EIS (doping density N, = 4 x 1072'/m*® and oxide thickness of 92.5
nm). (Diot et al. [1985].)
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ble for the change in potential of the device, not the SiO,—Si interface (Diot et al.
[1985]). Based upon a similar conclusion, a theoretical model which depends only
on the sensitivity of the SiO, to the ionic concentration in the electrolyte has been
used to successfully model the Si—SiO,—electrolyte capacitance as a function of pH
(Bousse and Bergveld [1983]). In addition, the general shape of Figure 4.3.7 is iden-
tical to that observed in MOS devices, thus reinforcing the contention that MOS and
EIS devices function in exactly the same manner. Measurements of 7; (Diot ef al.
[1985]) are also consistent with this supposition.

To reiterate, IS can be used to determine the important semiconductor electrical
characteristics [Ey, and N, (or N,)], the insulator characteristics (C;), and the nature of
the semiconductor—insulator interface states (N, and ;). The technique is quite
sensitive, allowing interface state concentration measurements below 10
m*(eV)~". Results from several different studies (Barabash and Cobbold [1982], Diot
et al. [1985]) verify that the EIS device behavior is identical to that of the MOS device
except that the metal gate is replaced by an electrolyte containing a reference elec-
trode. Finally, and most importantly to device operation, in the Si—SiO,—electrolyte
device the electrolyte—insulator interface is shown (Diot ef al. [1985], Bousse and
Bergveld [1983]) to be the one that responds to changes in pH rather that the Si-SiO,
interface. A major advantage of IS is its ability to gather such detailed interfacial
information which is not easily accessible with other measurement techniques.

4.3.2 Solid Electrolyte Chemical Sensors

The role of IS in the development and characterization of solid electrolyte chemi-
cal sensors (SECSs) is rapidly expanding. SECSs are electrochemical cells designed
to measure the concentration or pressure of chemical species in gases or fluids. IS
is emerging as an extremely useful technique to investigate the critical parameters
which determine the electrolyte and electrode performances in these sensors.

The most successful SECSs are those which use zirconia-based electrolytes to
measure oxygen concentrations. The three most common applications of these elec-
trolytes are to measure oxygen concentrations of steel melts and in combustion gas
environments and to control the air—fuel ratio in automobile engines. In the latter
two applications, there is increasing interest in lowering the sensor temperature
below 600°C, the current minimum temperature of operation because of low ionic
conductivity and slow charge-transfer reactions at electrode—electrolyte interfaces.

An excellent example of the advantages and limitations of IS is the use of this
technique to examine the effect of various electrode materials on the properties of
zirconia-based oxygen sensors at temperatures below 600°C (Matsui [1981], Badwal
[1983], Mizusaki et al. [1983], Badwal et al. [1984]). The most common electrode
material is platinum. However, the charge-transfer reaction (I) at the electrode—
electrolyte interface is restricted to regions at or near lines of three-phase (gas—
electrode—electrolyte) contact:

1
5 0,(gas) +2¢~ (electrode) = O~*(electrolyte) @
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Because of this, a finely dispersed, porous electrode structure is formed on the elec-
trolyte surface to maximize the regions of three-phase contact. However, an optimum
pore structure is very difficult to maintain due to electrode sintering upon exposure
to elevated temperatures.

Several authors (e.g. Matsui [1981], Badwal [1983], Mizusaki et al. [1983],
Badwal er al. [1984]) have used IS to investigate the effects of different electrode
materials and their pretreatment temperatures upon oxygen sensor performance at
low temperatures. It is particularly interesting to compare the properties of gold and
silver electrodes with the commonly used platinum electrodes. A typical impedance
spectra of a zirconia-based oxygen sensor at 500°C is characterized by two semi-
circles, as shown in Figure 4.3.8. (Matsui [1981]). The semicircle in the low-
frequency range shows a characteristic distortion depending largely on the electrode
material and preparation. The intersection of the low-frequency semicircle at the
extreme right side of the abscissa (3000€2) is determined by the resistance arising
from the oxygen electrode reaction (I) and is represented in the equivalent circuit
by R;. The values of R, and R, in Figure 4.3.8 represent the bulk and grain bound-
ary resistance, respectively. As shown in Figure 4.3.8, the centers of the semicircle
are usually below the real axis. In general this may result from two factors as
described in Section 1.3, a constant-phase element such as that arising either from
diffusion (the Warburg impedance) or from a distribution of time constants around
an ideal value.

Oxygen sensor electrodes can experience temperatures as high as 900°C during
cell preparation because of the necessity to remove organic impurities in the
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Figure 4.3.8. (a) Impedance response for a Pt/yttria-stabilized zirconia electrolyte with additives/Pt
cell at 500°C and (b) the corresponding equivalent circuit. (Matsui [1981].)
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platinum paste electrodes and/or to ensure adherent platinum films on the zirconia
electrolyte. The exposure time and temperature can affect and significantly increase
the electrode impedance due to a reduction in the three-phase contact regions for
reaction (I), which is caused by sintering of the finely dispersed, porous electrodes
at high temperatures. Thus, oxygen cells with similar platinum paste electrodes but
having different exposure times and temperatures will exhibit different complex-
impedance spectra and electrode resistances. The IS data can therefore be used to
optimize the sintering times and temperature to provide an electrode with better
properties.

The electrode preparation technique is another important factor in determining
the electrode resistance. For example the difference between porous platinum elec-
trodes prepared from a platinum paste (A) and a sputtering technique (B) is shown
in Figure 4.3.9 (Mizusaki et al. [1983]), which shows only the low-frequency part
of the complex-impedance spectrum. Although both cells were held at 900°C for
50h in 1atm oxygen, the resistance of the sputtered platinum electrode is less than
that of the one prepared from platinum paste. However, the resistance of the oxide
(Up5S¢050,4,) electrode (C) is about an order of magnitude less than that of the plat-
inum electrodes. These oxide electrodes significantly decrease the electrode resist-
ance by increasing the interfacial area for charge-transfer reaction (I). Both oxygen
ions and electrons are mobile in these electrodes (Badwal er al. [1984]), and reac-
tion (I) can occur over the entire gas—electrode interfacial area. Scanning electron
micrographs of the three electrodes shown in Figure 4.3.9, taken before and after
heating at 900°C, clearly indicate substantial sintering of the platinum electrodes,
while only small morphological changes are observed with the oxide electrodes
(Badwal [1983]).
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Figure 4.3.9. Complex impedance response for (a) 6082 Pt paste electrodes, (b) sputtered Pt
electrodes 0.9 um thick, and (¢) Ug5Scys0,,, electrodes (also inset on enlarged scale) at 600°C in
100% oxygen. All cells were given a prior heat treatment at 900°C for 50h. Numbers on the arcs are
frequencies in hertz. (Badwal [1983].)
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The impedance spectra (only the low-frequency region) for three noble metals
(Ag, Au, Pt) electrodes are shown in Figure 4.3.10 (Badwal et al. [1984]). The results
clearly indicate a significant difference between the silver and the gold electrode
resistance in an oxygen sensor cell at 600°C. Although the resistance of the silver
electrode is only slightly smaller than that of the platinum electrode, the resistance
of the latter electrode significantly increases upon exposure to high temperatures.
These sintering effects are not as severe for the silver electrodes because the appre-
ciable solubility of oxygen in silver enables reaction (I) to occur over the entire elec-
trode—electrolyte interfacial area rather than only at or near the three-phase contact
region, as in the case with the platinum and gold electrodes.

Figure 4.3.10 clearly indicates that silver is a better electrode material in low-
temperature oxygen sensors. However, significant volatility and microstructural
changes of silver can occur at elevated temperatures, particularly at or above 900°C
(Badwal et al. [1984]). Silver has been combined with platinum to form a Pt—-Ag
electrode, which possibly could exhibit the advantages of both metals. As shown in
Figure 4.3.11 (Matsui [1981]), a Pt—Ag electrode (circles with centers) does have a
significantly lower resistance than that of the platinum one (open circles). The
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Figure 4.3.10. Complex impedance response at 600°C in 1atm of oxygen after heating at 600°C
for 50h for the cells (a) Ag/yttria-stabilized zirconia/Au, (b) Au/yttria-stabilized zirconia/Au, and
(c) Pt/yttria-stabilized zirconia/Pt. The numbers on the arcs are frequencies in hertz. (Badwal et al.
[1984].)
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Figure 4.3.11. The impedance response for two kinds of electrodes using a tube of yttria-stabilized
zirconia as the electrolyte. The arcs in the high-frequency range coincide, but the low-frequency arcs
show a significantly lower resistance for the Pt/Ag electrode. (Matsui [1981].)

impedance spectra shown in Figure 4.3.11 and zirconia-cell results at 300°C indi-
cate that the Pt—Ag electrode could be a very useful electrode in a low-temperature
oxygen sensor (Matsui [1981]).

The use of impedance spectra to determine the optimum electrode materials and
preparation procedures for low-temperature oxygen sensors is only one example
of the application of this technique in solid electrolyte sensors. For example im-
pedance spectra have already been used to examine the properties of zirconia
stabilizers such as yttria and calcia in low-temperature zirconia electrolyte oxygen
sensors (Badwal [1983]). The use of this technique in the development and charac-
terization of other solid state sensors should increase significantly in the next few
years.

4.3.3 Photoelectrochemical Solar Cells

Photoelectrochemical solar cells (PESCs) are devices which harness light energy
and convert it into electrical or chemical energy by means of an electrochemical
reaction at an interface. A general review of the electrochemistry of these devices
can be found in most electrochemistry texts (e.g. Bard and Faulkner [1980]), but a
cursory description will be given here for those unfamiliar with these devices. Most
PESCs are composed of a semiconductor—electrolyte interface with an appropriate
redox couple in solution. For an n-type semiconductor, when light with energy
greater than the band gap strikes the interface, photons are absorbed and electron-
hole pairs are created in the semiconductor. Some of these electron-hole pairs will
simply recombine in the bulk, dissipating their energy thermally by the creation of
phonons, by photon emission and so on. However, some proportion of the holes
created at the interface will be available to oxidize the reduced species in solution,
liberating an electron in the semiconductor which can flow in the external circuit.
This photocurrent is absent in the dark where the concentration of holes is very low,
so no reaction with the species in the solution is possible. The behavior of p-type
semiconductors under irradiation is analogous; however, in this case electrons assist
a reduction process in the solution and a current is produced by holes in the
semiconductor.



4.3 Solid State Devices 297

In practice, the electrochemical behavior of semiconductor—electrolyte inter-
faces is far more complex than that described above (for a good review, see Boddy
[1965]). One of the complications arises because the semiconductor surface at the
electrolyte—semiconductor interface is not equivalent to that in the bulk. In particu-
lar, the energy states localized at the surface for holes and/or electrons are different
than those present in the bulk. These surface states may arise in several ways—for
example through pretreatment (etching, polishing, etc.) of the semiconductor surface
before immersion in the electrolyte. The surface states can be detrimental to the
PESC efficiency if they increase the recombination of the electron-hole pairs in the
semiconductor, thus reducing the number of holes (electrons for p-type material)
available for chemical reaction with the redox species in solution.

Another complication arises because the semiconductor may chemically or
electrochemically react with the electrolyte after immersion, leaving a layer on the
surface of the semiconductor which has different electrical or electrochemical char-
acteristics (e.g. an insulating layer) from the semiconductor. Because the photocur-
rent under illumination is very sensitive to the semiconductor—electrolyte interface,
these surface perturbations not only change the electrochemical behavior but they
can, in extreme cases, completely inhibit the photoresponse.

Impedance spectroscopy offers an excellent tool to examine the existence of
surface states or other modifications of the ideal semiconductor—electrolyte inter-
face. The general response of such interfaces was reviewed as early as 1965 (Boddy
[1965]). Dutoit et al. [1975] found that the capacitance of these interfaces at a given
dc potential was dependent on the measuring frequency for CdSe, CdS, and TiO,
in several different aqueous and nonaqueous electrolytes. Tomkiewicz [1979] and
McCann and Badwal [1982] have made more thorough investigations of the imped-
ance response of several different technologically important semiconductor—
electrolyte interfaces. The capacitance of a semiconductor—electrolyte junction has
also been measured as a function of incident wavelength and used to characterize
energy levels in semiconductors (Haak and Tench [1984], Haak et al. [1982]). One
particular study (Shen er al. [1986]) will be examined in more detail here to
illustrate the kinds of effects that can be resolved using IS.

The impedance response of n-CulnSe, in polyiodide solutions has recently been
used to understand the behavior of this material in a PESC (Shen et al. [1986]).
Typical current potential response curves for n-CulnSe,—polyiodide solutions are
given in Figure 4.3.12 (Shen et al. [1986]) in which the effect of various pretreat-
ments is shown. Polishing + etching or polishing + etching + oxidation significantly
improve the photoresponse over simple polishing. For example, from Figure 4.3.12,
at —0.2V vs. Pt the photocurrent increases by approximately a factor of two after
each additional pretreatment. IS was used in combination with electroreflectance
(Shen et al. [1986]) to understand this behavior.

The impedance response obtained for polished + etched crystals and polished
+ etched + oxidized crystals (Figure 4.3.13a and b, respectively) show qualitatively
different behavior, the principal one being the addition of at least one more time
constant in the oxidized case as manifested by (at least) one additional peak in
the imaginary part in Figure 4.3.13b. Such behavior is reasonable since there is an
additional interface between the oxide and semiconductor.
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Figure 4.3.12. The effect of surface preparation of the current-potential response curves of
n-CulnSc, in a solution of 6M KI + 0.1M Inl; + 0.0125M 1, at pH 6.0. The square-wave response
results from using a chopped white light source of intensity 100 mW/cm? Etching was in a 2%
Br,—methanol solution for 60s; oxidation was for 2h at 150°C. (Shen et al. [1986].) Reprinted by
permission of the publisher, The Electrochemical Society, Inc.

Using the equivalent circuits shown in Figure 4.3.13a and b, the high-frequency
data were analyzed to determine the capacitance associated with the two fastest time
constants in the polished + etched material and the fastest time constant in polished
+ etched + oxidized material. The low-frequency data were not analyzed because
their physical interpretation was not clear. For the data shown in Figure 4.3.13a and
b, the fastest time constant has been associated with the space charge layer in the
semiconductor (Csc in Figure 4.3.13a and C, in Figure 4.3.13b). In the polished +
etched material, the next fastest is that associated with surface states on the semi-
conductor-electrolyte interface. It was assumed that the surface states are character-
ized by one time constant which does not significantly overlap with the time
constants of any other states. It has been pointed out (McCann and Badwal [1982])
that should there be overlap of states with time constants close to one another, the
time constants become essentially continuous, and a frequency-dependent resistance
and capacitance must be used to model the interface. Here, though, the essential
features of the interface appear to be adequately described without resorting to
such elements.
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Figure 4.3.13. The impedance response and equivalent circuit of n-CulnSe, in the same solution as
described in Figure 4.2.12 for: (a) Polished + etched sample. B, is the imaginary portion of the
measured admittance less @C,.. The value of C,, is calculated from the linear part of the high-frequency
portion of the imaginary response of the impedance. The low-frequency response was not analyzed.

(b) Polished + etched + oxidized sample. The solid line is a theoretical fit assuming the equivalent circuit
shown. (Shen ez al. [1986].) Reprinted by permission of the publisher, The Electrochemical Society, Inc.

In the case of the polished + etched + oxidized sample, C, was associated with
the space charge layer capacitance. No further data were used. Thus, C, is repre-
sentative of the change in capacitance of the space charge layer from the presence
of the oxide layer.

Analyzing the effect of applied potential on the capacitance arising from the
surface states, C, in the polished + etched material (Figure 4.3.14) led to the
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Figure 4.3.14. The variation of the capacitance associated with the surface states C,, as a function
of potential. The solid lines are a theoretical fit to two Gaussian line shapes as described in text. (Shen
et al. [1986].) Reprinted by permission of the publisher, The Electrochemical Society, Inc.

conclusion that there were two surface states, one centered 0.17eV below the con-
duction band [-0.69 — (—0.72) in Figure 4.3.14] and the other at 0.45eV below the
conduction band. Assuming a Gaussian distribution of surface states (Tomkiewicz
[1979]), the area density of both states was calculated to be less than 1% of a mono-
layer. Thus, it was concluded that one major effect of etching was to remove most
of the surface states. This conclusion is consistent with electroreflectance results
(Shen et al. [1986]) on the same system which show that in unetched samples the
surface states pin the Fermi level, while after etching the surface states are nearly
completely removed.

To determine the effect of oxidation, a Mott—Schottky plot of the space charge
capacitance before and after oxidation was compared. In these plots, which were
originally derived for a metal-semiconductor interface (Schottky [1939, 1942], Mott
[1939]) but hold equally well for the metal-electrolyte interface, a linear relation-
ship is predicted between the applied potential and one over the square of the capac-
itance arising from the space charge layer in the semiconductor. The slope is
inversely proportional to the effective donor or acceptor concentration in the semi-
conductor. For the semiconductor—electrolyte interface (Bard and Faulkner [1980]),

1 2 kT
R

Ci egyeEN,

where A¢ is the difference between the applied potential and the flat-band potential
E — E;, C,. is the space charge capacitance, € is the dielectric constant, & is the
permittivity of free space, k is Boltzmann’s constant, 7 is absolute temperature, and
N, is the concentration of donors or acceptors. For the n-CulnSe, electrode the
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Figure 4.3.15. Mott-Schottky plots of the space charge capacitance C,. (curve 1) as derived from
data like those shown in Figure 4.3.9a and the capacitance associated with the high-frequency
response, C, (curve 2) derived from data like those shown in Figure 4.3.9b. The flat-band potential is
the same in both cases (0.69 V), but the doping level, as calculated from the slope of the lines, is an
order of magnitude lower for curve 2 (polished + etched + oxidized sample) than for curve 1 (polished
+ etched sample). (Shen et al. [1986]). Reprinted by permission of the publisher, The Electrochemical
Society, Inc.

Mott—Schottky plot (Figure 4.3.15) shows that the polish + etch + oxidation proce-
dure does not change the flat-band potential, but the effective doping level decreases
by nearly one order of magnitude from that observed in the polished + etched
material.

Several conclusions can be drawn from these data. First, the oxidation produced
a layer that does not alter the electrical characteristics of the semiconductor since
the flat-band potential did not change. Second, the oxide layer decreases the doping
level, thus increasing the width of the space charge layer. This wider layer in turn
leads to higher photocurrent because most of the light is absorbed within the space
charge layer so that recombination of charge carriers in the bulk is reduced. Finally,
by applying a simple model of photoresponse, Tomkiewicz [1979] determined that
surface recombination arises from the surface state at 0.17 eV below the conduction
band. Electroreflectance measurements (Shen et al. [1986]) are consistent with this
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conclusion. Thus, the improved response caused by etching can be explained by the
decrease in density of these surface states observed in the impedance results after
etching.

Several key features of this study should be emphasized. IS clearly can be used
to successfully model a semiconductor—electrolyte interface in a PESC. The ability
to probe the physics of this interface using IS while controlling the applied
potential can allow significant insight into the important parameters of the device. In
particular, the surface states at the semiconductor—electrolyte interface may be deter-
mined, as can their relative importance after several different pretreatments or in dif-
ferent cell configurations. The electrical characteristics of the interface, for example
the flat-band potential and the space charge capacitance, can also be determined.

The work described above also shows that it is not always necessary to analyze
the entire frequency spectrum (i.e. determine the complete equivalent circuit) of a
cell in order to obtain significant insights into its operation if it is possible to asso-
ciate a particular region of the spectrum with a meaningful physical quantity. In the
case of the semiconductor—electrolyte interface described above, a strong theoreti-
cal background describing the expected behavior along with other experimental find-
ings (electroreflectance, current—potential curves) on the system permitted such a
limited but meaningful analysis. Further, a more detailed analysis of the results
would probably have led to a more complete description of the operation of the
PESC. This fact was recognized by the authors themselves (Shen et al. [1986]).
Although a limited analysis may allow significant insights, it should be made with
extreme caution, as the results could lead to erroneous conclusions. A complete
detailed analysis of the entire frequency spectrum is far preferable and leads to a
more complete understanding of the device operation.

4.3.4 Impedance Response of
Electrochromic Naterials and Devices

Gunnar A. Niklasson
Anna Karin Johsson
Maria Strgmme

4.3.4.1 Introduction

Electrochromic materials have the ability to change their optical properties when an
electrical voltage is applied across them. The optical properties and hence the color
can be altered gradually and reversibly, i.e. the original state is recovered if the polar-
ity of the voltage is reversed. For practical use, the electrochromic material must be
incorporated in a system, or a device, which allows for the application of a voltage
over it. Depending on the application at least one of the contacts must exhibit a high
optical transmittance. Research on electrochromic materials became widespread
around 1970, due to a widely cited paper by Deb [1969]. The aim of the early work
was to develop devices for display technology. Today, electrochromic devices are of
interest for a wide range of applications and commercial activities are being started
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up (Lampert [2003]). Much of the emphasis of the applied work has shifted to
energy-efficient windows with variable solar and luminous transmittance; they are
able to reduce the influx of solar energy into a building. This will lead to large reduc-
tions in the need for cooling and air conditioning in warm and temperate climates
(Azens and Granqvist [2003]). Overheating and reduced comfort is prone to occur
because windows and glass facades allow too much solar energy to penetrate into
buildings. Works on electrochromic materials and devices are numerous and have
been reviewed several times. The comprehensive reviews by Granqvist ([1995,
2000]) sum up most of the work prior to 2000.

In this section we concentrate on inorganic electrochromic materials and devices
that use this class of materials. The electrochromic effect is caused by ion and elec-
tron insertion into the materials. Figure 4.3.16 shows a schematic picture of an elec-
trochromic device. It consists of five layers interfaced between two substrates, or
alternatively deposited on a single substrate. We consider first the configuration with
two substrates. They are coated by a transparent conducting layer and then by an
electrochromic layer. The two sides of the device are laminated by an ion conduc-
tor, preferably a polymer. The electrochromic layers are chosen to be complemen-
tary. One of them is cathodic (i.e. it colors under cation/electron insertion) and the
other is anodic (coloring under cation/electron extraction). This means that both will
color upon the application of a voltage between the transparent contacts, and both
will bleach when the polarity is reversed. One of the electrochromic layers may be
replaced by an ion storage layer that can accommodate inserted ions and electrons
without changing its optical properties. The alternative design, the so-called all-
thin-film device consists of five layers consecutively deposited on one substrate.
The material requirements are similar for this kind of device, except for the ion
conductor, which in this case has to be an inorganic thin film.

+ +

+ + +

lons

L

Figure 4.3.16. Schematic illustration of an electrochromic device.
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Optical properties as well as ion and electron transport are the physical prop-
erties of electrochromic materials that are of most importance for the performance
of a device. The requirements on the optical behavior can be summarized as follows.
One of the electrochromic materials should change color upon ion-electron interca-
lation while the other electrochromic material should show complementary behav-
ior, i.e. change color upon ion-electron extraction, or remain optically invariant
during the whole intercalation—deintercalation cycle. The optical properties of the
ion conductor material are not allowed to change while ions are transported through
it. Inorganic electrochromic materials mostly belong to the class of transition metal
oxides. Coloration occurs, during ion/electron insertion or extraction, as the Fermi
level moves from a position in the band gap into the conduction or valence band. In
most cases, the absorption process is due to electronic transitions between localized
states close to the band edges. The electron—phonon interaction is of major impor-
tance in this process.

The requirements for the electrical properties are somewhat more complex. A
good electrochromic material should be a relatively fast ionic and electronic con-
ductor. Since the optical modulation is an effect of the changing number of elec-
trons in the material, and because of the requirement of charge neutrality, charges
of opposite signs must be able to move. Hence, the electrochromic material must be
a mixed ionic and electronic conductor. The ion conductor, on the other hand, should
ideally not conduct electrons at all, in order to prevent the device from short-
circuiting. When investigating the ability of a material to act as one of the layers in
an electrochromic device it is, thus, important to extract information, not only about
the dc conductivity, but also about the mobility, revealing the speed by which the
ions move (Strgmme Mattsson and Niklasson [1999]). Further, the energy barriers
felt by the ions when moving between the ion conductor and the electrochromic
layers should be as low as possible.

Impedance spectroscopy is widely recognized as a versatile technique to obtain
detailed information on ion and electron transport. The first works on the electro-
chemical impedance of electrochromic coatings in contact with a liquid electrolyte
appeared around 1980. Measurements on Li intercalated tungsten oxide films were
carried out by Ho et al. [1980]. They developed a basic model of the impedance
response and showed that it can be represented by the Randles equivalent circuit. A
similar circuit was used by Glarum and Marshall [1980] in an early work on iridium
oxide films. The determination of the circuit elements from experimental data
yielded information on the ion diffusion in the coating, as well as the properties of
the electrolyte—film interface. The work of Ho er al. [1980] was generalized by
Franceschetti and Macdonald [1982], who introduced an additional adsorption
process. It was assumed that an ion combines with an electron from the conduction
band of the coating to form an adsorbed intermediate species before insertion into
the electrochromic film. This process leads, under certain conditions, to the occur-
rence of two semicircles at high frequencies in complex impedance (Z) plots. Unfor-
tunately, this theory has been rarely used in the field of electrochromic materials
(Pyun et al. [1996]), and the occurrence of two semicircles in the Z plots has some-
times been ascribed to electron injection at the back contact of the film (Yoshiike
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et al. [1984]). A systematic approach for deriving generalized equivalent circuits
for mixed conductors from the basic transport equations has been established by
Jamnik and Maier [2001]. The case of a mixed conductor with one electrode
blocking to ions and the other blocking to electrons (Jamnik [2003]) is of obvious
relevance for electrochromic materials. Below, we will use the basic Randles circuit,
with some additional features, to illustrate how basic information on the electro-
chemical response of electrochromic materials can be extracted from impedance
spectra.

4.3.4.2 Materials

Cathodic Electrochromic Materials. Amorphous tungsten oxide is a widely
studied cathodic electrochromic material. The history of induced color changes
in tungsten oxides dates back to the days of Berzelius in the early 19th century,
while electrochemical studies were initiated around 1930, as discussed by Granqvist
[1995]. The optical properties of WO; switch from a transparent state to a colored
blue state upon insertion of small cations like H*, Li*, and Na*. The coloration is
actually due to simultaneous insertion of charge-balancing electrons into the con-
duction band through an outer circuit. Electronic transitions between localized states
give rise to a polaron absorption. On the other hand, polycrystalline tungsten oxide
switches from a transparent state to a near-infrared absorbing one and then to a
reflecting state upon ion/electron insertion. The reflecting state is due to free elec-
trons in the conduction band. Published research on tungsten oxide coatings is very
extensive; see for example the reviews of Granqvist [1995, 2000] and the review on
charge transport by Monk [1999]. Most electrochromic devices employ tungsten
oxide as a cathodic material and no serious contenders have appeared despite long-
standing efforts.

Titanium dioxide exhibits optical properties very similar to those of tungsten
oxide. Electrons in the conduction band become localized by the electron—phonon
interaction and give rise to polaron absorption. Coatings of titanium oxide are less
stable in an electrochromic device than films of tungsten oxide, and have therefore
not been used so much.

Anodic Electrochromic Materials. The most commonly used anodic elec-
trochromic materials are nickel oxide (Svensson and Granqvist [1986]) and iridium
oxide (Gottesfeld et al. [1978]). They switch from a transparent state to a colored
one upon extraction of protons. Charge-balancing electrons are simultaneously
extracted from the valence band. The films are probably a mixture of oxide and
hydroxide components in the bleached state, since there needs to exist a reservoir
of protons in the films. Due to the high cost of iridium, the use of nickel oxide is
favored for large scale applications. Recently, a class of mixed nickel oxides with
enhanced modulation between the transparent and the colored state have been dis-
covered (Avendano et al. [2003]). Intercalation of Li into nickel oxide films has been
attempted, but the optical properties are not modulated very much (Decker et al.
[1992]). The mechanism of optical absorption is not known in detail. However, in
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the case of nickel-based oxide films, it is known that the oxygen-rich compounds
NiOOH and Ni,O; are both strongly absorbing for visible light.

Transition metal oxides that do not change their transparency, or color very little,
under ion/electron insertion and extraction can also be used as a counter electrode
in electrochromic devices employing tungsten oxide as a cathodic material. There
has been particular interest in oxides based on vanadium pentoxide and cerium
oxide. Pure V,05 as well as a mixture of vanadium and titanium oxide are of inter-
est. Cerium-based mixed oxides, in particular cerium-zirconium oxide (Veszelei
et al. [1999]), exhibit less optical absorption, but the stability is not sufficient for
many applications.

lonic Conductors. As mentioned above, the ion conductor used in elec-
trochromic device can be of two types, that is a polymer electrolyte or an inorganic
thin film. A large number of polymer electrolytes, protonic as well as lithium con-
ducting, have been tested in electrochromic devices. A review of recent results for
devices, using a polymer electrolyte, was given in Granqvist [2000]; see also refer-
ences therein. In Section 4.3.4.5 below we report data on a laminated devices using
polyethylene glycol mixed with the salt lithium trifluoromethanesulfonate, as the ion
conductor. In good polymer electrolytes the dc conductivity usually dominates the
impedance response for frequencies below the MHz range. At higher frequencies
relaxations can appear. The dielectric properties of polymer electrolytes is a large
field of research, and a treatment is outside the scope of this work. Reviews have
been given by Bruce [1987] and Greenbaum et al. [1990].

Inorganic ion conductors are found among the transition metal oxides, as well
as lithiated metal oxides and fluorides. We refer to Granqvist [2000], and references
given therein, for data on recent devices that have used inorganic ion conductors.
Among the transition metal oxides, tantalum pentoxide has been used in window
devices close to the commercial stage (O’Brien et al. [1999]). In Section 4.3.4.5
below, we report on an all-thin-film device with zirconium oxide as ion conductor.
Both these oxides exhibit reasonable proton and lithium ion conductivities (Jonsson
et al. [1999], Frenning et al. [2001]).

4.3.4.3. Experimental Techniques

In this section, we show how impedance spectroscopy can be used to extract quan-
tities necessary for the evaluation of the viability of a material as a component in
an electrochromic device. We also show how transient current measurements can be
used for the extraction of electrical conduction parameters that cannot be obtained
easily from impedance spectroscopy.

In the first subsection we discuss how the dc conductivity, 0y, can be accurately
extracted from ordinary two-electrode impedance spectroscopy, i.e. when electron-
ically conducting electrodes are attached to the top and bottom surface of the film
under investigation.

In the second subsection we will show how data obtained from electrochemi-
cal three-electrode impedance spectroscopy can be used to obtain information about
the chemical diffusion coefficient, D, as well as about energy barriers at the
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interfaces. In electrochemical three-electrode impedance spectroscopy the film
under study is backed by an electronic conductor, which is connected to a counter
electrode and a reference electrode via an outer circuit. The film is immersed in an
electrolyte containing ions that will be forced into the film. The ac potential is super-
imposed on an equilibrium potential, Ug,, applied between the film, which acts as
the working electrode, and the reference electrode, while the current is measured
between the film and the counter electrode. The equilibrium potential decreases as
more cations are inserted into the film. The extraction of cations is accompanied by
an increasing equilibrium potential. Electrochromic materials display quite high Ug,,
for example they are in the region of 3V vs. the Li electrode for tungsten and nickel
oxide. It should not be possible for ion conductor materials to intercalate at the oper-
ating potentials of the electrochromic materials. For example, significant intercala-
tion starts at about 2V vs. Li in tantalum and zirconium oxide films.

In the third subsection, the determination of ion density and mobility will be in
focus, both by using impedance spectroscopy and transient current measurements.

Extracting the dc Conductivity. There are several ways to extract a value
of the dc conductivity from impedance spectroscopy data. A method that is built
on the amply documented power-law response at frequencies above the dc regime
(Jonscher [1983]) is presented here. If we assume that ¢’ has an approximate power-
law behavior within some frequency range, it can be expressed as

G/ =0, +me—1 (5)
where B and m are constants. By rewriting the derivative of ¢’, we obtain

, 1 do’
Oy =0"———
m—1dlnw

(6)

and oy, can be extracted by plotting ¢’ vs. do’/d In @. In order to determine for which
frequency region this plot should be made, one may first plot 6" and do’/dIn @ vs.
o separately. The region for which Eq. (6) should be applied is the one where do’/d
In @ has a good power-law behavior and is proportional to @™ and where ¢’ starts
to level off towards low frequencies as a consequence of 0y becoming the domi-
nant contribution (Strgmme Mattsson et al. [1999]). The procedure also yields good
estimates of oy, when the frequency response is an approximate power law (Strgmme
Mattsson et al. [1999]).

Determination of Parameters from Randles Circuit. Electrochemical
three-electrode impedance spectra taken on electrochromic materials can very often
be fitted to the Randles equivalent circuit (Randles [1947]) displayed in Figure
4.3.17. In this circuit R, denotes the high frequency resistance of the electrolyte, R,
is the charge-transfer resistance associated with the ion injection from the electrolyte
into the electrochromic film and Zp is a Warburg diffusion impedance of either
semi-infinite, or finite-length type (Ho et al. [1980]). The CPE, is a constant
phase element describing the distributed capacitance of the electrochemical double
layer between the electrolyte and the film having an impedance that can be
expressed as
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Figure 4.3.17. The Randles equivalent circuit, with resistance R, of a charge-transfer process and
the diffusional impedance Zj. R); and CPE,, are the high frequency resistance and the double layer
distributed capacitance, respectively.
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where ¢ is a parameter with the dimension Fs*', and k is a positive number between
zero and unity. Further, it has been shown that the number k in Eq. (7) can be directly
associated with the fractal dimension of the electrochromic film surface (Strgmme
Mattsson et al. [1996a)).

Fitting an impedance spectrum to the Randles circuit is a convenient way of
obtaining quantitative values of the height of the barrier the ions have to pass when
entering the electrochromic film (R, and the chemical diffusion coefficient, which
gives the speed with which the intercalated ion-electron couples move (D extracted
from Zp). By recording impedance spectra at different temperatures, the activation
energies of the charge transfer and the diffusion process can be obtained, as will be
demonstrated in Section 4.3.4.4 below.

Determining the lon Density and Mobility. In this section we present
methods to obtain the ion density and mobility from two-electrode measurements
with ion blocking contacts. We review methods based on impedance spectroscopy
and transient currents. It is often of interest to investigate not only the conductivity
of the ions inside the different layers of an electrochromic device, but also the
density, n, of moving ions and their mobility, y. Provided that electrode polariza-
tions (space-charge effects) dominate the impedance response of the layer under
investigation, this can be done by analyzing the impedance spectra, or rather the per-
mittivity spectra, using the method of Schiitt and Gerdes [1992a, b]. In their model,
developed for singly charged positive ions moving under the influence of relatively
low applied voltages (<=0.03 V), the real part of the effective dielectric constant is
given by (Schiitt and Gerdes [1992b])

g = e.§(1+%). ®)
1+(wté)



4.3 Solid State Devices 309

Here € is the real part of the relative permittivity in the low-frequency bulk relax-
ation regime, § = d/ VDt where d is the film thickness, D the diffusion coefficient
of the moving ions, and 7= &¢&;/0 is the electrical relaxation time. The density and
mobility of the moving ions can be obtained from the high-frequency part of &
immediately below the frequency range of bulk polarization (&;) by picking a fre-
quency @, where €'(wx) = Xe!. Provided that the approximation 1 + (wx78)* =
(wx76)* holds, the ion density is obtained by using the Nernst-Einstein relation
(D = ukT/e, where kT is the thermal energy and e the unit charge) as

4 ’
\ :( O j 0elkT ©)
NX=Deelwy ) ed?

and p is then straight forwardly obtained from
Oq4 =ney . (10)

When both migration, diffusion, as well as space-charge effects, significantly
contribute to the ionic motion inside a film, impedance spectroscopy can still be used
to extract values of n and y (Frenning et al. [2003]). In this case the equations
become significantly more complex, and profound computations are needed to solve
them. The approach presented by Frenning ef al. [2003] may, however, be used not
only for single layer ion conductors but also to model the impedance response of a
complete three-layered device. For low ion concentrations space-charge effects can
be neglected and instead diffusion and migration govern the current response
(Frenning and Strgmme [2001]). In this case one may use transient current meas-
urements instead of impedance spectroscopy to extract n and i as we shall see below.

In the mid eighties, Greeuw and Hoenders [1984] presented an analytical solu-
tion for the transient ionic displacement current in a one-dimensional dielectric slab,
neglecting space-charge effects but taking into account both diffusion and migra-
tion. In their model the slab is placed between two blocking electrodes. The slab,
which is exposed to a static electric field, contains no ions to begin with, but a source-
function emits identical ions, with a release frequency v, from interface traps at one
end of the slab into the bulk of it. The measured current as a function of time in this
model is given by (Greeuw and Hoenders [1984])

1) = %[C(O, )—c(d, 0]+ %[l —exp(—v1)]. (11)

Here c(0, t) is the time-dependent ion concentration at the electrode from which the
ions are released, and c(d, t) is the same quantity at the electrode they move toward.
The total number of released ions is N. c(0, t) and c(d, t) are given explicitly by
Greeuw and Hoenders [1984].

This model was initially used to estimate the density and mobility of alkali ions
in ion implanted SiO, layers (Greeuw and Verway [1984]). It should be noted that
the same model may be used to extract a value of the mobility of Li ions interca-
lated from an electrolyte into an electrochromic film under the application of a poten-
tial step (Strgmme Mattsson et al. [1999b], Strgmme Mattsson [2000]). The mobility
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obtained in such an electrochemical transient current experiment represents an
average over the compositions present in the film, during the time span the poten-
tial step is applied and is a very relevant measure for device applications (Strgmme
Mattsson [2000]).

If we instead consider the case when the potential across the sample is changed
from zero to a specified value taking the sample from a uniform charge distribution
to a polarized state, the equation describing the transient current becomes much
simpler. Neglecting space-charge effects and assuming that the initial current decay
is dominated by migration of ions toward an ion-blocking contact, both n and u can
be obtained by fitting the measured current response to (Watanabe et al. [1985],
Strgmme Mattsson and Niklasson [1999])

Aoy U _uu 12
I(t) =4 exp( e tj. (12)
Here A is the electrode area and U the applied potential. # is extracted from oy, using
Eq. (10). The above equation holds when there are only identical ions present. The
equation is, however, easily adapted to the case when more than one type of ion
reside in the sample simultaneously by just adding one additional term—identical
to the one already at the right hand side of the equation—per ion type (Watanabe
et al. [1985]). This procedure is especially useful when studying Li ion movements
in device layers where one suspects that protons are also present and contributing
to the current response (Strgmme Mattsson and Niklasson [1999]). Also, in the
case of potential step experiments, a model for the ionic current response has been
developed for the situation when migration, diffusion, and space-charge effects all
together contribute to the ionic motion (Frenning and Strgmme [2001]). And, just
as for impedance spectroscopy measurements, the model can be used to analyze the
transient current response of a full three-layered device (Frenning et al. [2003]).

4.3.4.4 Experimental Results on Single Materials

In this section we present some examples of impedance spectra, in order to illus-
trate the concepts introduced above. We show how the methods in Section 4.3.4.3
may be used to characterize electrochromic materials and inorganic ion conductors.
Data on titanium dioxide and tantalum oxide are emphasized, because they illustrate
especially well several of the concepts treated above. Of course, we also review the
application of impedance spectroscopy to the widely used electrochromic materials
tungsten oxide and nickel oxide.

Cathodic Electrochromic Materials—Fluorinated Ti Oxide. Figure 4.3.18
shows two electrochemical three-electrode impedance spectra taken at different
temperatures on a heavily intercalated Li containing fluorine doped Ti oxide film
(Strgmme Mattsson et al. [1997]). The impedance response corresponds to that of
the Randles circuit with a Zp of finite-length type. Details about the film prepara-
tion and the measurement conditions can be obtained from Strgmme Mattsson et al.
[1996¢c, 1997]. The high frequency semicircle clearly has a center below the real
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Figure 4.3.18. Electrochemical three-electrode impedance complex-plane plots for the real (R) and
the imaginary (X) parts of the impedance of fluorine doped Ti oxide films recorded at the displayed
temperatures at an equilibrium potential of 1.0V vs. a Li reference electrode (corresponding to
~0.85Li/Ti unit) (Strgmme Mattsson et al. [1997]). Explicit frequency readings are shown at a few
selected data points.

axis, hence it is appropriate to use a constant phase element for C,. The low fre-
quency response is a model case of a Warburg diffusion element of finite-length type.
The impedance spectra taken at different temperatures and different Li compositions
(equilibrium potentials) can be fitted to the Randles circuit with excellent agreement.
By this procedure, the results for the circuit elements, displayed in Figure 4.3.19
were obtained (Strgmme Mattsson et al. [1996¢])).

Figure 4.3.19 a shows that both the charge transfer resistance, as well as its acti-
vation energy, decreases with decreasing equilibrium potential (increasing ion
content in the film). These quantities are associated with the barrier that the Li ions
have to transverse to enter the film. The more Li ions in the film, the easier it gets
for additional ions to enter. From the way the activation energy changes, one can
also draw conclusions about the symmetry properties of the energy barrier (Strgmme
Mattsson et al. [1996c]). From Figure 4.3.19b we observe that the power-law param-
eter k is rather independent of temperature and of Li ion composition (equilibrium
potential). This is in accordance with the fact that the distributed capacitance expo-
nent described by this parameter only depends on the surface geometry (Strgmme
Mattsson et al. [1996a]). Finally, Figure 4.3.19¢ shows that the chemical diffusion
process is thermally activated with the activation energy virtually independent of Li
ion content (equilibrium potential). The value of ~0.5eV is comparable to that of Li
ion diffusion in amorphous WOs; films (Nagai ef al. [1986]), but somewhat higher
than the activation energy for proton diffusion (Randin and Viennet [1982]). The
activation energy being independent of the Li content in the film indicates that the
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Figure 4.3.19. Magnitude of the quantities R., (a), k (b), and D (c) for Li ions in fluorine doped Ti
oxide vs. inverse thermal energy (Strgmme Mattsson et al. [1996c]). Data were obtained from fits of
impedance spectra of the type shown in Figure 4.3.18 to the circuit in Figure 4.3.17. The displayed
activation energies E, in part (a) and (¢) were obtained from exponential fits (lines) to the individual
data points.
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ions move unaffected by each other so that they are only influenced by their sur-
roundings. In fact, it was shown (Strgmme Mattsson et al. [1996c]), that the obtained
activation energy for diffusion gave a Li ion “jump length” corresponding to the
distance between neighboring cells in the anatase structure of the nanocrystallites
(Strgmme Mattsson et al. [1996b]) in the films under study.

Cathodic Electrochromic Materials—Tungsten Trioxide. Figure 4.3.20
shows electrochemical impedance spectra on both amorphous and crystalline Li con-
taining WO; films together with fits to the Randles circuit (Strgmme Mattsson
[2000]). For the amorphous film the high frequency semicircle overlaps with the dif-
fusion response. In the case of the crystalline film, only a part of the semicircle due
to C, and R,,, can be observed. As is obvious from the displayed spectra, the charge
transfer resistance is much larger for the crystalline sample than for the disordered
one at an equilibrium potential of 2.9V vs. the Li reference electrode used in the
experiment. Impedance spectra were taken at several equilibrium potentials, and in
all cases the impedance response corresponded to that of the Randles circuit with a
Zp of semi-infinite type.
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Figure 4.3.20. Electrochemical three-electrode impedance complex-plane plots for the real (R) and
the imaginary (X) parts of the impedance of crystalline (filled squares) and disordered (filled circles)
WO; recorded at 2.9V vs. Li (Strgmme Mattsson [2000]). This equilibrium potential corresponds to
~0.004 Li/W unit for the crystalline film and 0.03Li/W for the amorphous one (Stremme Mattsson
[2000]). Included in the figure are also fits (open squares for crystalline and open circles for disordered
WO;) to the Randles circuit in Figure 4.3.17. Explicit frequency readings are shown at a few selected

data points.
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In Figure 4.3.21 electrochemical transient current measurements on the same
types of films are displayed together with fits to Eq. (11). Prior to the transient current
measurement the WE potential was set to 4.5V vs. the Li reference electrode, thus
making sure that no Li ions resided in the films prior to the potential step (Strgmme
Mattsson [2000]). From the fits, values for the chemical diffusion coefficients of the
tungsten oxide films were extracted. The chemical diffusion coefficient from imped-
ance spectroscopy and the average diffusion coefficient from the transient current
measurements are presented in Figure 4.3.22, while Figure 4.3.23 shows the charge
transfer resistance, as obtained from impedance spectroscopy, associated with the
barrier the Li ions have to pass to enter the WO; films. The results are discussed in
further detail in Strgmme Mattsson [2000], where information about the film prepa-
ration and the measurement conditions are given. As is obvious from the figures pre-
sented above, however, there is a marked difference between the parameters for the
amorphous and crystalline samples. There is also a significant difference in the infor-
mation carried by the impedance spectroscopy and the transient current diffusion
coefficients.

Tungsten trioxide is a very widely studied electrochromic material and the
impedance response has been measured several times. The results are consistent in
that they can invariably be fitted to a Randles circuit, but details in the spectra vary.

03—

m crystalline WO3, Ugq= 2.8 V vs. Li

02} disordered WOg3, Ugq=2.8 V vs. Li §

Current (mA/cm?)

0 [ L L L L | L L L L 1 L L L L |
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Figure 4.3.21. Current response of Li intercalation into crystalline (squares) and disordered
(circles) WO; after a potential of 2.8 V vs. Li was applied (Strgmme Mattsson [2000]). Included in the
figure are also fits (full lines) to Eq. (11). The applied potential corresponds to an equilibrium
concentration of ~0.009 Li/W unit for the crystalline film and 0.06 Li/W for the amorphous one
(Strgmme Mattsson [2000]).
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Figure 4.3.23. Charge transfer resistance for Li ion intercalation into WOs. Data are obtained by
electrochemical impedance spectroscopy from fits of the type shown in Figure 4.3.20.

In particular, values of the ion diffusion coefficient and the other circuit parameters
depend not only on the crystallinity, but also on the deposition conditions of the
films. Since tungsten oxide easily becomes non-stoichiometric when deposited as a
thin film, the stoichiometry probably also plays a role. Data have been presented for
films produced by thermal evaporation (Ho et al. [1980], Bohnke and Bohnke
[1990], Lee et al. [2000, 2001]), electron-beam evaporation (Yoshiike et al. [1984]),
sputtering (Pyun and Bae [1996]), sol-gel (Wang and Bell [1999], Sharma et al.
[2002]), and various other techniques (Bohnke and Bohnke [1988]). Our data pre-
sented here are in general agreement with other studies of sputtered films, as well
as with the recent detailed study of Lee et al. [2000, 2001].

There are a few questions, however, that deserve a further study. Sometimes the
Warburg element is not of the finite-length type, but exhibits a power-law response
instead. The reason for this behavior is not clear; it has been attributed to the
WOs/substrate interface (Bohnke et al. [1993]), or to an additional kinetic step in
the bulk of the film (Fabregat-Santiago et al. [2001]).

Counter Electrode Materials. The anodic electrochromic materials and ion
storage materials have not been so widely studied as the cathodic electrochromic
materials discussed above. In general, the main features of the impedance spectra
are similar to those shown above. The impedance response of nickel oxide films with
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protons (Gorenstein et al. [1990]) as well as with lithium ions (Decker et al. [1992],
Artuso et al. [2002]) as the intercalated species, has been studied. The spectra can
be fitted by a Randles circuit, with a finite length Warburg element (Gorenstein et
al. [1990]). The charge transfer resistance decreases and the low frequency limiting
capacitance as well as the diffusion impedance both increase with increasing equi-
librium potential, i.e. during proton extraction. The ion diffusion is thus slowed down
as the hydrated nickel oxide colors. Impedance data for iridium oxide films were
also modeled within the framework of a Randles circuit (Glarum and Marshall
[1980]). In a detailed study of lithium intercalation into vanadium oxide films (Bae
and Pyun [1995]), the impedance spectra were interpreted with the extended Randles
circuit of Franceschetti and Macdonald [1982].

Inorganic Thin Film lon Conductors—Tantalum Oxide. We give here a
detailed account of the impedance response of thin tantalum pentoxide films. Firstly,
the data illustrates several of the methods treated in Section 4.3.4.3. Secondly, Ta,Os
is a very interesting ion conductor for applications, in particular because it is possi-
ble to make the electronic leakage current very low. We also make some comments
on ZrO,.

Figure 4.3.24 shows a series of two-electrode impedance spectroscopy meas-
urements on a proton containing 3-Ta,0s sample (Strgmme Mattsson et al. [1999a]).
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Figure 4.3.24. Real parts of the dielectric permittivity (€”) and the ac conductivity (¢”) as a function
of frequency for a 3-Ta,Os sample (Strgmme Mattsson ef al. [1999a]). The measurements were
performed at the displayed temperatures. Also included in the figure is a straight line with a slope of @™.
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The data are presented in terms of the real parts of the dielectric permittivity (€”)
and the ac conductivity (0”). The measurements were performed at temperatures
between 24 and 90°C. By applying Eq. (6) to these data, one obtains that the dc con-
duction process has an activation energy of 0.42 eV with the room temperature value
of 0y being 25.3 pS/cm (Strgmme Mattsson ef al. [1999a]).

The behavior of both €” and ¢’ in the frequency region between 10 and 10°
Hz clearly shows a space-charge limited response (Schiitt and Gerdes [1992]). A
straight line with a slope of @™ is included in the figure to show that the Schiitt and
Gerdes model may be used to extract approximate values of n and . We observe
that &, when its magnitude is slightly below 10°, is approximately parallel to the
line. The somewhat smaller slope of €” as compared to the line can partly be attrib-
uted to surface roughness of the Ta,0s samples (Schiitt and Gerdes [1992]) and partly
to the fact that the factor (wx7o)® in Eq. (8) is only ~5 (as can be deduced from
the calculations below). Applying Eq. (9) to the room-temperature € and using an
X value of 941/¢; = 36.4 (& = €., = 25.8), which corresponds to a wy value of
0.0235Hz* 27 = 0.148s™", gives the proton density in the sample as n = 3.5%10"
protons/cm’. Further, Eq. (10) gives the proton mobility as u = 4.5%107°cm?Vs.
These numbers imply that (wx76)* = 5 and that the relation 1 + (@x78)* = (WxT5)?
required for the validity of Eq. (9) is not completely satisfied. The obtained proton
density and mobility must therefore be considered as rough order of magnitude
estimates.

An independent determination of n and u can be obtained from transient current
measurements. Figure 4.3.25 shows the current response after a potential of 3V is
applied across the proton-containing Ta,0s sample, taking the sample from a uniform
charge distribution to a polarized state (Streamme Mattsson et al. [1999a]). Assum-
ing that the initial current decay is dominated by migration of ions toward an ion-
blocking contact, both n and u can be obtained by fitting the measured current
response to Eq. (12). This procedure gives n = 1.3* 10" protons/cm® and u = 5.5 *
107°cm?Vs, which corresponds very well to the parameters obtained from the
space-charge limited impedance response.

Ta,O;s has also been investigated for its Li ion conduction properties (Strgmme
Mattsson and Niklasson [1999]). Figure 4.3.26 shows a transient current experiment
on the above-discussed -Ta,O5 sample after Li ions have been intercalated into the
film. The current response is clearly made up of two mechanisms involving two
more or less overlapping peaks. The presence of peaks here indicates that the charge
carriers are initially trapped (Strgmme Mattsson and Niklasson [1999]). Both
protons and Li ions were uniformly distributed in the sample prior to the measure-
ment, thus Eq. (12) is applied to analyze the current decay after the peaks. An expo-
nential function is fitted to the measured current in a time window immediately after
the first peak, most likely pertaining to protons. In this time range, contributions
from the other charge carrier is negligible. Similarly, the current decay following the
second peak, most likely caused by Li ions, is fitted to another exponential function.
From this procedure we find that the proton mobility i, equals 3.24* 107" cm*/Vs
and the Li ion mobility g;; = 1.17* 107" cm?*Vs. These numbers were verified by
using the position of the peaks to estimate the speed with which the ions traversed
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Figure 4.3.25. The transient current (circles) in -Ta,Os after a potential step. The displayed
equation is the exponential fit (full line) to the data. From this fit the shown proton density n and

mobility ¢ could be extracted using Eqs (12) and (10).
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Figure 4.3.26. The transient current (full line) in lithiated 3-Ta,Os after a potential step. The proton

and Li ion mobility u, and ,,, respectively, are obtained from a fit to Eq. (12) (squares for 4, and

circles for ;).
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the sample (Strgmme Mattsson and Niklasson [1999]). The proton mobility has obvi-
ously decreased after Li ions were introduced, which can be interpreted as a mixed
alkali effect (Bunde et al. [1991]). The Li ion mobility is almost one order of mag-
nitude lower. We have hence shown that the two methods for determining ion density
and mobility, outlined in Section 4.3.4.3, are mutually consistent.

It has been shown that Li ions and their charge balancing electrons enter the [3-
Ta,Os at a higher energy than that for intercalation into, for example, WO; (Strgmme
Mattsson and Niklasson [1999]). This finding, together with the fact that Li ions in
-Ta,0Os have a mobility of the same order as in WO; (cf. Figure 4.3.22), makes the
Ta oxide potentially very interesting as a Li ion conductor in a WO; based elec-
trochromic device.

Inorganic Thin Film lon Conductors—Zirconium Oxide. Electrochemical
three-electrode impedance spectroscopy was performed for proton intercalation on
sputtered ZrO, by Jonsson et al. [1999]. The data can be fitted very well to the
Randles equivalent circuit. When the charge transfer resistance R, is extracted, it is
found to be very high at low intercalation levels and then drops several orders of
magnitude at medium intercalation levels. The reason for the high R, could be a
layer grown on the surface of the film that slows down the transport of ions from
the electrolyte into the film. For some reason it becomes easier for the protons to
enter the film at higher ion content, either the surface film disappears or the protons
find an easy way through it. The diffusion coefficient was determined to be in the
range of 10"°~107'?cm?/s, which is only about one order of magnitude lower than
in Ta,Os.

4.3.4.5 Experimental Results on Electrochromic Devices

Impedance Spectroscopy. Impedance spectroscopy has been carried out on
devices with WOj; as the cathodic electrochromic layer, counter electrodes of iridium
oxide, polyaniline or Prussian blue, and polymers as electrolytes (Katsube et al.
[1986], Friestad et al. [1997]). The equivalent circuit for a whole device becomes
very complicated. In the works quoted above simplified, Randles-type circuits were
used for the two electrochromic layers, while the ion conductor was modeled by a
pure resistance, or neglected. Extraction of device parameters from the data fitting
was reported. However, it is clear that in many cases it will be difficult to distin-
guish the contributions from the different layers in a device, in particular if the
migration impedances, ion diffusion impedances, etc. are of the same order of
magnitude. When it comes to characterizing electrochromic devices, impedance
spectroscopy is a very time-consuming process, since a spectrum down to low
frequencies should be taken at a number of equilibrium potentials. Thus we believe
that transient current measurements in many cases offer a faster alternative that
sometimes allows a simple determination of diffusion coefficients.

Transient lon Currents. Transient current measurements, according to Section
4.3.4.3, have been performed on laminated devices (Jonsson et al. [2004]) as well
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as on all-thin-film (ATF) devices (Frenning et al. [2003]). The transient current
response for a typical configuration of a laminated electrochromic device is shown
in Figure 4.3.27. The device consisted of cathodic tungsten oxide and anodic nickel
oxide films that were laminated with a 50 um thick layer of polymer electrolyte pre-
pared by mixing polyethylene glycol and lithium trifluoromethanesulfonate. Both Li
ions and protons may act as charge carriers in this device. As can be seen in the
figure very different responses are obtained depending on the direction of the elec-
tric field, i.e. in which direction the charge carriers are moving. The solid curve
shows the response when the device is not polarized, and a potential of —1.5V is
applied. The current decreases rapidly during the first 0.3 s, after which it levels out
during approximately 20s before a rapid decrease sets in again. The dotted curve
shows the current after the potential has been switched to 1.5V and ions move from
the WO, layer to the nickel oxide layer. The initial current is higher and it decreases
slower than for the unpolarized case but after 1s a more rapid decrease sets in. The
potential was switched once more, from 1.5V to —1.5V, and the ions moved from
the nickel oxide layer back to the WO; layer. Here, two areas of low slope are found,
the first after 0.02 s and the second after 1s. After 1005 all three cases show a steady
decrease and a current density less than 10~ A/cm’. The charge carriers move with
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Figure 4.3.27. Transient current versus time response of laminated tungsten oxide—polymer
electrolyte—nickel oxide electrochromic device for different directions of the ion movement. The break
in the curve at 9s is due to measurement artifacts.
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different velocities in the different layers of the device (Granqvist [1995], Wu et al.
[2000], Avendano [2002]), which influences the current and may give rise to peaks
or shoulders. When ions move through the device they encounter two interfaces that
can act as potential barriers with certain activation energies (Atanasov et al. [1999]).
This may be depicted as if the ions get trapped at the interface and then are released
at a certain release rate. In a laminated device, the complementary ion in the salt, in
this case trifluoromethanesulfonate, is also present. This ion will stay in the elec-
trolyte however, and thus not pass any of the interfaces.

The ATF devices consisted of nanocrystalline thin films of hydrated NiO and
ZrO, and X-ray amorphous WO;. A potential step of 1.5V was applied over the
devices and the resulting current was measured as a function of time. The main
charge carriers through this device are protons, introduced into the nickel oxide
during deposition. In Figure 4.3.28 the transient current versus time response is
shown for coloration and bleaching, respectively. For the coloration measurement
the device was polarized to assure that all protons were in the NiO prior to the meas-
urement and similarly in the bleaching process all protons resided in the WO; layer
prior to the application of the potential step. The initial features, up to 10-100s,
show similarities to those of the laminated device. In both cases the current is higher
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Figure 4.3.28. Transient current versus time response for an all-solid state device, using tungsten
oxide and nickel oxide as electrochromic layers and zirconium oxide as an ion conductor. The transient
current is shown for both the coloration and decoloration process.
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for ion movement from the WO; to the nickel oxide. This suggests that the proton
conductivity is higher in WO; than in NiO. For longer times the response of the ATF
device shows a well-defined peak. When protons are transported from the NiO layer
into the WO, layer in the coloration process, the peak is situated at about 3000s.
When the protons are transported in the opposite direction, a much smeared out peak
is observed at about 10,000s. Subsequently, the current decreases, because the ions
have arrived at a blocking electrode. The peak has been modeled by Frenning et al.
[2003], and its position corresponds to an ion mobility of the same order of magni-
tude as in a ZrO, film.

This behavior can be understood within two scenarios. In the first scenario, the
proton conductivity is lower in the ion conductor than in the WO; and NiO layers.
When protons are transported through the device they are slowed down in the ion
conductor and the current thus decreases. After the protons enter the electrochromic
oxides their speed increases and the current goes up. At the back contact the protons
are blocked and the current decreases again, thus a peak is seen. Since the proton
conductivity is higher in WO, than in NiO the peak is less pronounced in the bleach-
ing process compared to the coloration. In the other scenario, the proton conductiv-
ity does not differ by orders of magnitude between the three oxide layers. Instead
there are barriers at the interfaces between the ion conductor and the electrochromic
oxides acting as ion traps. When the ions are released the current increases and
the protons pass through to the back contact. In the laminated device no peak at
long times is observed, probably because the ion conductor effectively serves as a
short for the ions in this case. In the ATF device, after approximately 100,000s
the current takes the same constant value for ion movements in both situations.
This value most likely represents a leakage electron current through the ZrO, ion
conductor.

The transient current versus time response for all-solid-state devices and lami-
nated devices show some interesting common features. The initial response is similar
in the two devices although the response is slower in the all-solid-state device. In
both types of devices the ion transport is markedly quicker from WOj; into NiO than
in the opposite direction. Also, pronounced peaks and shoulders are only present
when ions are transported from the NiO layer towards the WO; layer. This asym-
metric behavior indicates that barriers of different magnitude are present at the inter-
faces between the oxide layers and that these barriers strongly affect the transient
current response.

The investigation of transient ionic currents in electrochromic devices is still in
the initial stage. The theory of Frenning et al. [2003] constitutes a good starting point
for detailed comparisons with experiments, but further developments are probably
needed in order to reach a thorough understanding.

4.3.4.6 Conclusions and Outlook

Today, there exists a good understanding of the impedance response of elec-
trochromic materials. Experiments on oxide electrodes deposited onto an electron-
conducting substrate and immersed in an electrolyte, invariably show the
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characteristic behavior of the Randles circuit. By fitting the data to this circuit,
detailed information on ion chemical diffusion coefficients in the oxide film, as well
as processes occurring at the interfaces can be obtained. Most investigations have
been carried out on tungsten oxide. In the future, more work will probably be
directed towards other materials.

Some details of the Randles circuit require further study. First, the double layer
capacitance is in many cases more properly modeled with a constant phase element.
This gives information on the mesoscopic structure of the oxide—electrolyte inter-
face. Also, in some cases, the diffusion impedance contains a power-law behavior.
The reason for this is controversial: is it due to the back contact or rather an indi-
cator of an unknown Kkinetic process in WO;? It should also be mentioned that the
adsorption process proposed by Franceschetti and Macdonald [1982] has not been
studied in detail, and the systematic equivalent circuit approach of Jamnik [2003]
has only been rarely used.

Much information about the kinetics of electrochromic devices can be obtained
from impedance spectroscopy or transient current measurements. In particular, the
transient current technique is a promising method for device testing. It is based on
the well-known transient ion current technique used in studies of ion conduction and
it is less time consuming than impedance spectroscopy. More efforts should be
devoted to development of theory as well as to detailed comparison with experi-
mental data.

A rather neglected area is studies of the so-called color impedance. To investi-
gate this property, an ac signal is applied to the electrochromic film and the result-
ing transmittance modulation is measured. This method should give information not
only on the ion and electron transport, but also on the kinetics of the coloration
process. Initial work has been reported on WO; (Gabrielli et al. [1994], Kim et al.
[1997]) and NiO (Cordoba-Torresi et al. [1990]) films. It appears that the kinetics
of coloration is not determined solely by the ion diffusion (Gabrielli et al. [1994]).
The technique may open up interesting possibilities for further studies of the elec-
trochromic coloration process.

Energy

Figure 4.3.29. Energy band diagram of a junction between an n-type and a p-type semiconductor.
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Figure 4.3.30. Typical steady-state photocurrent voltage curve. The thin line is the current in the
dark, which shows diode behavior. The thick line is the current under standard AM1.5 solar irradiation.

4.3.5 Time-Resolved Photocurrent Generation

Albert Goossens

4.3.5.1 Introduction—Semiconductors

A semiconductor is a material in which the electrical conduction is in between that
of an insulator and that of a metal. Usually, the electrical resistivity of a semicon-
ductor ranges between 10~ and 10°Qcm. A good semiconductor shows no ionic
conduction whatever. To understand the nature of semiconductors, one needs to
study the quantum-physical properties of the electrons. When atoms are brought
together to form a lattice, the valence electron orbitals overlap. This orbital overlap
implies that electrons are no longer located on individual atoms, but delocalize over
all constituent atoms. This electronic delocalization is stronger when the orbital
overlap is larger. In a typical semiconductor, the overlap is so large that the valence
orbitals merge together completely and form an energy band. This is called the
valence band. Likewise, the lowest empty atomic orbitals also merge together and
form the conduction band. The lowest energy state of the conduction band has an
energy E., while the highest energy state in the valence band has energy E,.
There is an energy gap in between these bands called the bandgap energy, E,, and
E,=E.-E,.

For typical semiconductors the bandgap is between 1 and 3eV. The electronic
population of the energy bands is determined by the Fermi—Dirac distribution func-
tion, i.e.
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1
" 1+expl(E— Ep)/kT]

Jin(E) 13)

In this expression E is the Fermi-energy level, which determines the population sta-
tistics. In a non-degenerate semiconductor E, — Er and E — E, are much larger than
kT and the Fermi—Dirac distribution can be approximated by the Boltzmann distri-
bution functions for the conduction and valence bands, i.e.

fs (Ez:) = CXP[—(EC - EF)/kT] (14)
f3(E,) = exp[~(Er - Ev)/kT]

The effective density of states of the conduction band and valence band are N and
Ny, respectively. The concentrations of conduction band electrons, n, and valence
band holes, p, are given by

n = Neexp[~(E. — Er)/kT] 15
p=Nyexp[—(Er - Ev)/kT]

Thermal excitation of valence band electrons yields conduction band electrons,
which can be written in the Kroger—Vink notation, i.e.

O=e +h (16)

In this expression ¢’ is a conduction-band electron and #” is a valence-band hole. If
this reaction is in thermodynamic equilibrium, the following condition holds

® 60 o
®
\
OO0 OO

S

Figure 4.3.31. Typical set-up for time-of-flight experiments. The capacitances of photoelectrode and
the shunt add up. R; is the series resistance and R,, the resistance over which the voltage is measured.
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K, =[e'f[W]=np 7)

Here n = [¢’] and p = [/']. Upon substitution of Eq.15 in Eq.17 the equilibrium con-
stant K,, is found

K., =np=NcNy exp[-E, /kT] (18)

Intrinsic semiconductors are undoped and the concentration of conduction band elec-
trons equals that of valence band holes, i.e. n = p. In this case, the Fermi energy
level is located near the centre of the bandgap.

To get a feeling for quantities, it is useful to take a closer look at silicon, which
is the most important semiconductor. Silicon has a bandgap of 1.1eV and effective
density of states Nc = 2.8 x 10”cm™ and Ny = 1.04 x 10”cm™ (Sze [1981]). For
intrinsic silicon at room temperature the concentrations of conduction band electrons
and valence band holes are about 10'°cm™, which is very low when considering that
the concentration of atoms is twelve orders of magnitude larger. Therefore, intrin-
sic semiconductors at room temperature exhibit a very small electronic conductiv-
ity. The conductivity can be increased considerably by applying a suitable doping
element. When a few parts per million of phosphorous is dissolved into silicon, the
concentration of conduction band electrons increases six orders of magnitude; the
concentration of holes reduces by the same amount. The opposite is true when boron
is used as doping element. In that case p increases many orders of magnitude and n
reduces accordingly.

A small concentration of a well-chosen doping element affects the concentra-
tions of conduction-band electrons and valence-band holes significantly. Since Eq.15
is also valid for doped semiconductors, the position of the Fermi energy can be
shifted from the midgap position towards either of the bands. If an electron donor
is applied as doping element n > p holds, and the Fermi energy shifts towards the
conduction band; these semiconductors are called n-type. If an electron acceptor is
applied as doping element p > n holds, and the Fermi energy shifts towards the
valence band; the semiconductor is called p-type.

The Fermi-energy level is equal to the electrochemical potential of the elec-
trons, i.e.

Er = fi, = g +kTn[e'] - g9 (19)

U, is the chemical potential of the electrons in either the conduction band or valence
band deep inside the bulk of a material; g is the elementary charge, and ¢ is the gal-
vanic potential.

In general, the electrochemical potential of the electrons of two different mate-
rials is not the same. When a junction is made between n- and p-type semiconduc-
tors, or between a semiconductor and a metal, the system will reach thermodynamic
equilibrium by equalizing the electrochemical potentials (the Fermi-energy levels)
of the two materials.
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Electrons flow from the material with a high Fermi energy to the one with a
low Fermi energy until the gradient of the Fermi energy is zero. This redistribution
of electrons leads to the formation of a space-charge region, which is the region in
the proximity of the interface in which local charge neutrality is no longer observed.
In the n-type material, the concentration of conduction band electrons is depleted
and an effective positive background space charge, Qgc, remains. In the p-type
material the valance-band holes are depleted and a negative background charge is
present. The positive and negative space charges are equal to ensure overall charge
neutrality.

In a junction between an n-type and p-type semiconductor the positive-charged
and negative-charged space-charge regions are connected together. This charged
interface exhibits a space charge capacitance, Csc, which is defined as dQs-/dV and
can be found by solving the Poisson equation with adequate boundary conditions
(Rhoderick and Williams [1988]). In the Mott—Schottky approach, Cs¢ is considered
as a function of the applied dc voltage, V. The Mott—Schottky equation gives the
relation between the reciprocal of the square of the space charge capacitance and
the applied dc voltage, i.e.

C2(V)= 2 ( ! + ! j(V—V —k—T) 20
* €0gA* \ &Np E,N, " q 0)

in which &, is the permittivity of free space; &, and g, the dielectric constants of the
n-type and p-type materials; N, and N, the concentrations of the electron donors and
acceptors; Vis the externally applied potential; and V}, is the built-in potential, which
is associated with the flat-band potential. The presence of space-charge region is
associated with a built-in electrical field, pointing from the n-type side to the
p-type side of the junction. This electric field is also associated with the built-in
potential.

To investigate the electrical properties of pn junctions, impedance spectroscopy
is a powerful tool. First of all, the formation of a space-charge region is associated
with a junction capacitance, which can be measured. A good approach is to measure
the impedance spectrum at a range of applied voltages. By fitting the spectra to a
well-chosen equivalent circuit the space-charge capacitance is found as a function
of the applied dc. voltage. Following Eq. (44), a Mott—Schottky plot can be con-
structed of Cs versus V. For ideal junctions a Mott-Schottky plot is linear. From
the slope of a Mott-Schottky plot, {(€,Np)™" + (€,N4)™'}™" can be determined. In case
of a metal-semiconductor Schottky contact, the same equation can be used, except
for the small k7/g term, with the notion that the metal resembles a very-highly-doped
semiconductor. In this case, the doping density of the semiconductor can be deter-
mined. The intercept of a Mott—Schottky plot with the voltage axis equals the built-
in voltage within a factor of k7/q. The intercept voltage is called the flat-band
potential, V.. The interested reader can find more on basic properties of semicon-
ductors in classical text books Sze [1981], Rhoderick et al. [1988], Bube [1992],
Tanner [1995], Solymar and Walsh [1999]).
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4.3.5.2 Steady-State Photocurrents

If a junction between n-type and p-type semiconductors is irradiated with light a
photocurrent can be generated. If photons with sufficient energy are absorbed in a
semiconductor, electrons are excited from the valence band into the conduction band.
The concentrations of conduction-band electrons and valence-band holes increase
by this optical pumping process. Now the system is no longer in thermodynamic
equilibrium, and the Eqs (13) to (20) no longer hold. The optical-generated elec-
trons and holes are mobile and lead to a photocurrent. If generation of electron-hole
pairs takes place in the space charge region, the built-in electric field decouples the
electrons from the holes and accelerates them in opposite directions, giving rise to
a photocurrent. If electron-hole pair generation occurs outside the space charge
region, it is possible that the minority carrier, i.e. holes in n-type material and elec-
trons in p-type material, reach the space-charge region by diffusion. Upon arrival,
the built-in electric field accelerates the charge carrier away and a photocurrent is
generated. The first type of current is based on drift of free charge carriers, the second
one on diffusion.

In general, both the drift and diffusion components contribute additively to the
photocurrent. The steady-state efficiency of the photogeneration process can be
found by solving the drift and diffusion equations and adding the currents. When
assuming that the built-in field is located primarily in either the n-type or p-type side
of the junction, the Girtner equation for monochromatic photocurrent generation
applies, which reads

e—aW
T, =—qd|1- 21
" q[ 1+aL} @h

in which J;, is the photocurrent density, ® the photon flux (number of impinging
photons per second per cm?), W is the width of the space charge region, a the absorp-
tion coefficient, and L the minority-carrier diffusion length (Girtner [1959]).

W depends on the applied voltage V according to

1/2
Zsosnj ( ij
W(V)= V-V, —— 22
() (qND L (22)

which implies that the generated photocurrent is voltage dependent.

Here, it is assumed that the applied field fully drops over the n-type side of the
junction. Eq. (21) is only valid if electron-hole pairs do not recombine in the space-
charge region, or at the surface. For practical devices this assumption usually does
not hold, but to avoid complications we shall not consider these types of electron-
hole pair recombination here.

In a steady-state photocurrent experiment, a monochromatic light source is used
to excite the semiconductor and the photocurrent and photovoltage are measured
(Green [1992]). If the load resistance is zero, the short-circuit photocurrent is mea-
sured and the photovoltage is zero. If the load is infinite, the photocurrent is zero
and the open-circuit photovoltage is measured.



330 Chapter 4 Applications of Impedance Spectroscopy

Steady-state techniques are convenient to obtain a general idea about the gen-
eration and collection of charge carriers. But in steady-state experiments only overall
processes can be observed; details of the charge carrier dynamics are out of sight.
To study these details one needs to apply time-resolved techniques. There are two
approaches: time-of-flight techniques, and intensity-modulated techniques. In the
first method an irradiation pulse or step is applied, usually making use of a pulsed
laser. In the second method, the intensity of the light source is harmonically modu-
lated. Below both techniques shall be discussed in more detail.

4.3.5.3 Time-Of-Flight

In a typical time-of-flight (TOF) experiment the semiconductor is kept under bias
control. One of the contacts is transparent, being the injecting contact. The other
contact is the collecting contact. By applying a bias voltage, V, the contacts are
charged and the system behaves as a parallel plate capacitor (Fig. 4.3.32). Before
the laser pulse is applied, the charge on the injecting contact is Q; and that on the

collection contact is Q.. Charge neutrality requires that Q; = —Q.. The capacitance
is
c=2_gaA (23)
14 L

At the injecting contact, minority charge carriers are generated instantaneously by
applying a laser pulse. The spatial distribution of these charge carriers must be kept
small, which can be achieved by choosing a wavelength for which the absorption
coefficient is large. The initial condition, therefore, is a collection of minority charge
carriers with a total charge, AQ, confined in space and time.

Let us suppose that we deal with an n-type semiconductor, for which valence
band holes are the minority carriers. A positive voltage is applied on the injecting
contact. Immediately after the laser pulse, the holes reside near the injecting contact.
They induce an image charge, which changes the charge on the injecting contact
from Q, to Q; — AQ. To ensure that the internal electric field is not affected, the inten-
sity of the laser pulse must be reduced until AQ << Q, holds. Forced by the electric
field, the holes drift away from the injection contact towards the collecting contact.
Since the electric field, E, is constant the holes drift with a constant velocity, v, given
by

(V=Vs) (24)

v=UE=u, I

In this expression the presence of a built-in field of V,,/L has been taken into account.

While moving from the injecting towards the collecting contact, the image
charges on these contacts change in time. At # =0, the charge on the injecting contact
is Q; — AQ and that on the collecting contact / = —/. After a period 7, the holes arrive
at the collecting contact. At t = 7 the charge on the injecting contact is Q;, and that
on the collecting contact is Q. + AQ. Accordingly, the charge on the collecting
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Figure 4.3.32. Internal photocurrent transient in an ideal TOF experiment.

contact changes linearly from Q. to Q. + AQ over the time interval 7. The current
that runs through the external circuit is J,, = AQ/7. This photocurrent sets on at
t =0 and turns off at ¢ = 7, as is shown in Figure 4.3.32.
In the ideal case, as described above, the photocurrent transient drops abruptly
to zero at ¢ = 7. The following equation holds
2
S — (25)
v E  u(V=Vp)

The best way to determine the hole drift mobility y, is to construct a plot of 1/7

versus V. This plot will be linear with a slope of % Even more reliable results are

obtained if one constructs a graph of the obtained slopes versus L. Further infor-
mation of the principles of the time-of-flight technique can be found in Scher and
Montroll [1975], Béssler [1993], and Schroder [1998].

In reality, the interpretation of a time-of-flight experiment is more complex than
outlined above. There are several aspects that have been neglected so far. Some
important aspects are discussed below.

It has already been mentioned that the condition AQ << Q, must hold to ensure
that the electric field strength is not affected by the optically-generated charge car-
riers. If this condition is not fulfilled, the electric field strength is not constant and
can become a function of space and time. This will complicate the interpretation of
TOF signals.

Diffusion. In the above the diffusion contribution to charge migration has been
neglected. This is only valid if the transit time, 7, is much smaller than the effective
diffusion transit time: L*/2D, where D is the diffusion coefficient.

L L I?

= << — (26)
1% 'LL;,,E 2D
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Using the Einstein relation between the mobility and the diffusivity we write

L L 5 2kT 2kT
r:—:—<<q—:E>>—:(V—Vﬂ,)>>— (27)
v mE  2kTu, qL " q
Accordingly, the diffusion contribution can be neglected only if the above condition
holds. If this condition is not fulfilled, the spatial distribution of charge carriers
broadens during the transit time. In this case, the current transient no longer drops

abruptly to zero at t = 7 but is smoothed somewhat.

Trapping. In our simple model, all generated charge carriers have the same
mobility. This is only true for ideal, defect free semiconductors. In defect semi-
conductors, electrons and holes can be trapped in sub-bandgap electronic states. If
the energy of these states is within a few kT of the conduction or valence band, the
charges can be emitted to one of the bands and they can be transported towards the
collecting electrode by a hopping process. This will slow down the carrier transport
considerably. It can be modeled by introducing an effective mobility, which is much
smaller than the mobility of free charge carriers. If there is only one dominant trap
state, a time of flight experiment shows two waves, the first one coming from the
free charges and the second one from the trapped charges. In most cases trapping of
charge carriers leads to a broadening of the current drop at ¢ = 7, showing a current
tail beyond the transit-time threshold. This tail is denoted the post-transit tail and
can be used to determine the presence of sub-bandgap electronic states.

Recombination. Minority carriers can recombine with majority carriers during
the transit time, leading to a loss of charge AQ in time. In a simple approach, recom-
bination is expressed as

dAQ(r) _ —-AQ(r) (28)
dt Tr
which yields
AQ(r) = AQ expl—t/74] (29)

in which AQ, is the charge generated at r = 0.
Since J,, = AQ/T, we write

Jon(t) = &(t) = %exp[—t/r,g] (30)
T T
In the time interval between ¢ = 0 and ¢ = 7, the current is no longer constant but
decays exponentially in time. The effects of diffusion, trapping, and recombination
of charge carriers is illustrated in Figure 4.3.33.

Convolution. A final complication must be addressed. Since the photocurrent is
driven into a capacitive component, the shape of the measured transient is affected.
The measured photocurrent response function is convoluted with the response func-
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tion of the measuring system. If the response function of the measuring system is
known, deconvolution of the two contributions to the current response can be accom-
plished using Laplace transform algorithms. The internal photocurrent, J,;,, as shown
in Figure 4.3.33, has a Laplace transform given by

I & Jph(s):A_TQ{l—eX—p(—ST)} 3

N

The voltage is measured over the network presented in Figure 4.3.31, which has an
impedance given by
R,
Zw)=—— "
1+kw(R, +R,,)C
In this expression R, is the resistance over which the voltage is measured, R, is the
series resistance of the device, and C is the sum of the capacitances of the photo-
electrode and the shunt capacitor. We write R,, + R, = R and RC being the charac-

teristic response time of the system.
Taking the Laplace transform gives for the measured voltage

‘/meas (S) = Z(S)Jph (S) (33)

For simplicity we consider only the behavior immediately after the onset of the pho-
tocurrent, i.e. for the limit s7 >> 1. Then

(32)

R A0_A0 R,
" 14sRC 5 17 s(1+sRC)

Taking the inverse Laplace transform gives

‘/metzs (S) = Z(S)Jph (S) (34)

Jon

|
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Figure 4.3.33. Effects of diffusion, trapping, and recombination of charge carriers on the

TOF response.
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0 =A—TQR,,, (1 - expl[~1/RC)) (35)

There are two limiting cases, 7>> RC and 7 << RC. For 7>> RC, the measuring
system is fast and can follow the internal photocurrent. In this limit #RC >> 1 and

Vi (r)=AT—QRm (36)

For 7 << RC, the measuring system is slow and cannot follow the internal pho-
tocurrent. In this limit #/RC << 1 and the measured voltage reads

Vo) =22 R, - G7)
T RC

In this case the RC circuit acts as a current integrator and the voltage rises linearly

in time. When neither of these limiting cases hold one should use the Laplace trans-

form method. Or one can also use the approach elaborated by Donovan and

Kreouzis [2000].

The time-of-flight technique has been applied specifically to semiconductors
with high defect densities, because the charge carrier mobilities in these materials
are low. In particular, amorphous silicon is studied extensively with TOF and,
recently, also organic semiconductors.

4.3.5.4 Intensity-Modulated Photocurrent Spectroscopy

Another way to investigate the dynamics of electrons and holes in semiconductors
is to apply intensity-modulated photocurrent spectroscopy (IMPS). This technique
is based on the application of a small-signal harmonic perturbation of the irradia-
tion intensity. As in the case of time-of-flight, two electrical contacts are applied:
the injecting contact, which is optically transparent, and the collecting contact. Irra-
diation is applied through the injecting contact. In the vicinity of this contact, charge
carriers are generated. Since the light intensity is harmonically modulated, the gen-
eration rate of the electron-hole pairs is a sinusoidal function of time. The generated
charge carriers migrate to the collecting contact, leading to photocurrent generation,
which is also a sinusoidal function of time. The phase of the current response is
shifted with respect to the phase of the impinging irradiation. This phase shift, and
the amplitude of the photocurrent, are functions of the applied modulation frequency.
If one measures the phase shift and the amplitude of the photocurrent over a
broad frequency range the optoelectrical response function of the system can be
determined.

To define the above in more rigid mathematical expressions, we write for the
modulated irradiation intensity

D(w) =  + Dsin(wr) (38)
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in which @ is the continues background irradiation, in photons cm?s™!, and
®is the modulation amplitude. The angular frequency @ equals 27 times the mod-
ulation frequency.

When ® is sufficiently small the photocurrent is a sinusoidal function of time
and reads

Jph ((D) = jph + .71,;, Sin(a)t + (p) (39)

In this expression J,, and @ are the amplitude and phase of the modulated pho-
tocurrent density. Both are frequency dependent. In a frequency response analyzer
J,» and @ are measured as a function of the modulation frequency.

For further analysis of the response, one can make use of the familiar concepts
of impedance spectroscopy. The only difference is that while in impedance spec-
troscopy (IS) the input signal is a voltage, in IMPS the input signal is a modulated
light beam. But from a theoretical point of view this is unimportant and linear-
response theory can readily be applied in both cases. As a matter of fact, the differ-
ences between IMPS and IS are even less than one might expect. In IS a modulated
voltage, superimposed on a stationary bias voltage, is applied across the contacts.
This time-varying voltage modulates the difference of the electrochemical potential
of the electrons between the two electrodes. As a result, a modulated electrical
current, superimposed on a stationary current, flows between the contacts. In IMPS
one irradiates the sample through the injecting contact. Electron-hole pairs are gen-
erated, which leads to a change of the electrochemical potential of the electrons at
the contacts. As a result, a modulated photocurrent, superimposed on a stationary
current, will flow through the system.

It is possible to use the conventional complex impedance, which is defined for
impedance spectroscopy as

L _V(jo)
Z(jw) 7o) (40)

in which j=+-1.The admittance is Y(jw) = 1/Z(j). In the case of IMPS we write

P(jw)

1
= — 1 - 41
daGe) 4 YUe) (4D

Fnlie) Zu(jo)

It is good to realize that we have normalized the irradiation intensity and the pho-
tocurrent to particles per second per unit area. In this way the IMPS impedance and
admittance are dimensionless.

The concept of impedance is only applicable if the system under study com-
plies with the conditions of stability, causality, finity, and linearity. It is good prac-
tice to verify whether these conditions hold before giving further interpretation to
the data. A stable system has a Z(jw) independent of time. Causal systems do not
show any response if the input signal is zero (in the dark for IMPS). All practical
systems are finite. Linear systems show a response linearly related to the input; the
current density is linearly related to the irradiation intensity. A convenient technique
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is the use of Kramers—Kronig relationships. If the data set complies with these rela-
tionships, linear response theory can be applied. If this is not the case, one should
question whether the concept of impedance is justified. From here on we shall deal
with systems that comply to the above requirements, allowing the use of linear-
response theory. An excellent introduction to the IMPS technique is given by Peter
[1990]. One of the first reports on the use of IMPS to study semiconductor proper-
ties dates back to 1981 (Oheda [1981]). A few years later, IMPS was applied to study
the reaction kinetics in photoelectrochemical systems, electron-hole recombination,
anodic thin films, and electron transport in disordered semiconductors.

Electron Drift in a Constant Electric Field. As an example, let us consider
the system discussed in the time-of-flight section. In this system, charge carriers are
generated close to the injecting contact and drift to the collecting contact under the
force of a constant electric field. As discussed above, the current response on a laser
pulse has a constant value of J,, = AQ/7 for 0 < t < 7, and drops instantly to zero at
t = 7. The input signal is a delta function and the output response is a step function.
Linear-response theory shows that the system function H(s) is the Laplace transform
of the impulse response function A(f). In our example:

ht)=—= F(t -1) 42)

in which F is the function that is 1 at 0 <7 < 7and zero forr <0 and ¢ > 7.
The Laplace transform of A(¢) is the system function H(s), which reads

h(r) = —F(t—r) S H(s)= AQ{LP(”)} 3)

N

The impedance Z(jw) is identical to the system function with s = j®.

. AQ (1-exp(jwr)
2jo)= —{—-p : } (44)
T jo
For low frequencies o7 << 1
Z(jw)=AQ (45)
For high frequencies w7 >> 1
. AQ
Z(jo)=—— (46)
jot

It is possible to interpret the optoelectrical impedance in terms of an electrical equiv-
alent circuit. When doing so, the system resembles a resistor R = AQ at low fre-
quencies and a capacitor C = 7/AQ at high frequencies. At intermediate frequencies
the system shows a more complex behavior. One should be careful to have a mental
picture of a resistor and a capacitor when using equivalent circuit approach for inter-
preting IMPS data. Maybe it is better to look upon it in a more abstract mathemat-
ical way.
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The impedance as defined by Eq. (44) can be plotted in the usual ways. In Figure
4.3.34 a Nyquist plot is presented.

Electron Diffusion. It is also possible that there is no internal electric field and
that electrons migrate exclusively by diffusion. This is the situation in nanoporous
TiO, electrodes as used in dye-sensitized solar cells (O’Regan and Gritzel [1991],
Hagfeldt and Gritzel [1995], Bach et al. [1998], Gritzel [2000]). In recent years,
these systems have been studied extensively and we shall use the results of these
studies to demonstrate the strength of the IMPS technique. Without going into detail,
when light is absorbed in a dye-sensitized solar cell, electrons are injected into the
conduction band of a nanoporous TiO, electrode (Figure 4.3.35). These electrodes
are composed of nanometer sized TiO, crystals with a size of about 32nm. The
nanocrystals are sintered together and form a film about 22 um thick. On the surface,
dye molecules are grafted. The molecules have the function of absorbing sunlight
and injecting an electron from the first excited state of the molecule into the con-
duction band of TiO,. The nanoporous electrode is immersed in a liquid non-aqueous
redox electrolyte, which takes care of fast regeneration (reduction) of the dye
cations. At the counter electrode the electrolyte picks up electrons. The injected elec-
tron in the conduction band of TiO, migrates through the nanoporous network
towards the front contact, which is a transparent conducting oxide (TCO). Since the
nanoporous TiO, is immersed in a conducting medium, its internal surface has the
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Figure 4.3.34. Nyquist plot of the IMPS impedance. On the vertical axis minus the imaginary
component is plotted and on the horizontal axis the real component. AQ is taken as 10°C and 7= 5 us.



338 Chapter 4 Applications of Impedance Spectroscopy

Work

Current

+ Nunoporous
Tio

Electrobyte
® Solution

Negative Pogitive
Electrode Electrode
Figure 4.3.35. Schematic drawing of a dye-sensitized solar cell. The photoactive electrode is a

10 um thick film of sintered 20nm anatase TiO, nanoparticles. On the surface light-sensitive dye
molecules are applied. The electrode is immersed in a non-aqueous redox electrolyte.

same electrical potential everywhere. Furthermore, the size of the nanoparticles is
much smaller than the Debye length, i.e. the screening depth of the electric field.
Therefore, there is no internal electric field to drive the electrons; the only contri-
bution to electron transport is diffusion. This is a slow process and it can take up to
a second for an electron to pass 10 um.

Electron transport and reaction kinetics in nanostructured photoelectrodes have
been studied successfully with the IMPS technique. It appears that the diffusion coef-
ficient is a strong function of the background light intensity. Without background
irradiation, the diffusion coefficient, D, is about 10 cm?s™. With background light
D can be four orders of magnitude larger. When more background light is applied,
the electron injection rate rises, which speeds up the electron transport considerably.
A striking observation is that an increase of the injection rate is almost exactly
counterbalanced by the increase of the diffusion coefficient and the concentration of
migrating charge carriers is practically independent on the presence of background
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light. Under a wide range of conditions, the electron concentration amounts to about
one electron per nanoparticle.
In dye-sensitized solar cells the following equation holds

dAn(x, 1)
at

9> An(x, 1) An(x, 1)
dx? T

An is the excess electron density due to irradiation: An = Ry, — Naan a is the effec-
tive absorption coefficient, D the diffusion coefficient, and 7 is the lifetime of the
injected electrons. The first term on the right-hand side of Eq. (47) is the generation
rate, the second term the diffusional electron flux, and the third term the recombi-
nation rate. This differential equation can be solved under the following boundary
conditions. The electron consumption at the TCOITiO, injecting contact is assumed
to be infinitely fast, which yield a boundary condition

=a®(x,t)+D 47)

An(x=0,1)=0 (48)

At the other side of the nanoporous TiO, electrode the arriving electrons cannot
escape into the electrolyte because this back reaction is kinetically hindered. They
are bounced back into the porous network, which implies that the gradient of the
electron density on the outside is zero. The following boundary condition holds

dAn )
=0 49
(52 “9)
in which ¢€ is the film thickness. The photocurrent is given by
dAn
J(t)==D, (50)
wl=-0{ %)

Applying the boundary conditions Eqs (48) and (49), the electron transport Eq.
(47), can be solved in the frequency domain and the harmonic photocurrent, driven
by the harmonic oscillation of the irradiation intensity, reads

Jon(@) =

in which += |4 /? 2041 =vDr
A I*! D

L is the diffusion length and can be considered as the distance over which elec-
trons can migrate within their lifetime 7.
If recombination can be neglected, T — o and L — oo, which implies that

1_Jjeo and
A D

o (w)=

aed)(w)( @' Sinh(€/ )+ ae" —aCosh(€//l)j 51)

Cosh(€/A)

7{11

ae<1>( ) (
a*—jw/D) Cosh(d«/ja)/D

+«/]a)?D Tanh d’\/ja);D ) (52)
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The nanostructured electrodes can store a large number of electrons, which implies
that the photocurrent is driven into a capacitive element. This introduces an addi-
tional time constant, the RC time, in the photocurrent response. To deal with it,
Eqs (51) and (52) must be multiplied by the transfer function of the measuring
system, presented in Figure 4.3.31. The transfer function of the measuring system
and the measured signals in the frequency domain are given by Eqs (32) and (33),
respectively.

The photocurrent measured externally, J,(®), is the internally generated photo-
current multiplied by the transfer function of the measuring system, i.e.

R,

Vmeas w :J) a) . - N~
(@)= I )1+jw(RS+Rm)C

(53)
in which R,, is the measuring resistance of the current meter, i.e. 50 in our system,
R, the series resistance between the current generating device and the measuring
unit, and C the cell capacitance. The quantity (R,, + R,)C is the RC time of the mea-
suring system.

Figure 4.3.36a shows a Nyquist plot Y” vs. Y’; a Bode plot is shown in Figure
4.3.36b, in which the frequency dependence is more clear. In Figure 4.3.36) a mea-
sured data set is presented along with the non-linear least squares fit of this dataset
to Eqs (51) and (53). Also the Kramers—Kronig transfer is shown. Since all the curves
fall on top of each other the following conclusions are justified: (i) linear-response
theory can be applied; and (ii) the model Eqs (47) to (53) accurately describes the
frequency response of the system.

With the aid of non-linear least squares fitting, the effective absorption coeffi-
cient a, the diffusion coefficient D, and the lifetime of the electrons 7, are found.
These values can be used to determine the steady-state electron density, An(x), which
reads

An(x) = a®/D ((e’e/L—aLe"“é) WL (e" +aLe™")

7x/L —ax
+ —
a*— L2\ 2Cosh(¢/L) ¢ 2Cosh(¢/L) ¢ ¢ ) (54)

If the recombination is slow, T — oo, the steady-state electron density is given by
0]
An(x)=—(1—-ae ““x—e™®
() =—( ) (55)

For two different types of TiO, nanoparticles, and for two different background
light intensities the steady-state electron profiles have been calculated and are shown
in Figure 4.3.37. If the background light intensity is increased by a factor 500, from
0.7 to 330 Wm™>, the diffusion coefficient increases from 14 x 107? to 1.2 x 10 m?
s™' for PK5585 anatase TiO, nanoparticles and from 19 x 107"% to 1.5 x 10”m?s™
for AK1 anatase TiO,. The steady-state electron concentration is almost unaffected
by these huge variations in light intensity. The diffusivity of the electrons is adjusted
such that the concentration of conduction band electrons in TiO, nanostructured
electrodes saturates to about one electron per nanoparticle. To date, this remarkable
observation has not been fully explained.
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Figure 4.3.36. (a) Nyquist and (b) Bode plots of an IPMS spectrum of a dye-sensitized solar cell.

4.3.5.5 Final Remarks

The generation, separation, and recombination of electron-hole pairs, along with
electronic transport can be studied in great detail with time-resolved photocurrent
generation techniques. The examples given above are by no means limiting and do
not cover all possible fields of applications. Yet, they demonstrate the enormous
potential that these techniques offer. In the study of dye-sensitized solar cells the
use of IMPS have proven invaluable and has lead to fundamental knowledge about
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Figure 4.3.37. Steady-state electron concentration profiles in dye-sensitized solar cells made from
different TiO, nanoparticles, i.e. AK1 and PK5585.

the transport of electrons in nanoporous electrodes. At the moment, solid-state physi-
cists usually prefer the time-of-flight method above the intensity-modulated pho-
tocurrent method. In my opinion this is not always justified. Frequency-domain
techniques offer a superior resolution when dispersive processes are involved. Data
acquisition in the frequency domain allows for advanced digital processing and
usually yields a much better signal-to-noise ratio. Furthermore, frequency-domain
techniques make use of a small-signal perturbation, while time-domain experiments
usually involve intense laser pulses. This may lead to non-linear response of the
system, which is usually difficult to model. It is beyond doubt that the frequency
domain photocurrent generation will continue to contribute to the elucidation of the
physics and chemistry of photocurrent generation.
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4.4 CORROSION OF MATERIALS

Digby D. Macdonald
Michael C. H. McKubre

4.4.1 Introduction

Corrosion is defined as the spontaneous degradation of a reactive material by an
aggressive environment and, at least in the case of metals in condensed media, it
occurs by the simultaneous occurrence of at least one anodic (metal oxidation) and
one cathodic (e.g. reduction of dissolved oxygen) reaction. Because these partial
reactions are charge-transfer processes, corrosion phenomena are essentially elec-
trochemical in nature. Accordingly, it is not surprising that electrochemical tech-
niques have been used extensively in the study of corrosion phenomena, both to
determine the corrosion rate and to define degradation mechanisms.

Of all of the electrochemical techniques that are available, impedance spec-
troscopy promises to be the most valuable because of its ability, in a single experi-
ment, to detect interfacial relaxations covering a wide range of relaxation times. The
application of this technique in corrosion science became possible, in the practical
sense, only within the past decade, with the advent of techniques for measuring trans-
fer functions at subhertz frequencies (see Section 3). Instruments and techniques are
now available for measuring interfacial impedances at frequencies down to the
10°-110"Hz region, where relaxations involving adsorbed intermediates and
diffusing species appear.

Over this same period, considerable development has taken place in the theo-
retical treatment of the impedance properties of corroding interfaces (Macdonald
and McKubre [1981]). These theoretical developments have been especially impor-
tant, since they serve to enhance the quantitative nature of the technique. Indeed,
impedance spectroscopy has emerged as probably the most powerful technique cur-
rently available for identifying corrosion reaction mechanisms, and methods are now
being developed to extract kinetic parameters (rate constants, transfer coefficients)
for multistep reaction schemes.

In this section, we review the application of impedance spectroscopy to the study
of corrosion phenomena. Emphasis is placed on illustrating how the method is
applied to identify the different processes that occur at a corroding interface. We also
review the use of impedance measurements for measuring corrosion rate, since
this was the initial application of the technique in corrosion science and engineering.
The use of impedance spectroscopy to analyze other cause and effect phenomena of
interest in corrosion science, including electrochemical-hydrodynamic, fracture, and
electrochemical-mechanical processes, is also discussed.

4.4.2 Fundamentals

The response of any physical system to a perturbation of arbitrary form may be
described by a transfer function
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H(s)=V(s)/1(s) (1
where s is the Laplace frequency and ®(s) and I(s) are the Laplace transforms of
the time-dependent voltage and current, respectively (Goldman [1950]). In terms of
the steady state sinusoidal frequency domain, the transfer function becomes

H(jw)zm_m 2)

FlI(0)]  1(jo)

where F signifies the Fourier transform and V(jw) and I(jw) are the sinusoidal
voltage and current, respectively. Provided that the system is linear, that causality is
obeyed, and that the interface is stable over the time of sampling (see later), the
transfer function may be identified as an impedance Z(jw). Because they are vector
quantities, H(jw) and Z(jw) are complex numbers containing both magnitude and
phase information. From a theoretical viewpoint, the impedance (or, more generally,
the transfer function) is one of the most important quantities that can be measured
in electrochemistry and corrosion science. This is because, if it is sampled over an
infinite bandwidth, it contains all the information that can be obtained from the
system by purely electrical means.

An important requirement for a valid impedance function is that the system be
linear. Theoretically, this implies that the real and imaginary components transform
correctly according to the Kramers—Kronig relationships (discussed later in this
section). Practically, linearity is indicated by the impedance being independent of
the magnitude of the perturbation, a condition that is easily (although seldom) tested
experimentally.

4.4.3 Measurement of Corrosion Rate

The Stern—Geary equation provides a direct relationship between the steady state
corrosion current and the “dc” resistance across the interface (Stern and Geary
[1957])

i eml 7) <3>

where f3, and B. are the Tafel constants for the anodic and cathodic partial reactions,
respectively, and R, is the polarization resistance (Mansfeld [1976]). Because
corroding interfaces are inherently reactive by nature, owing to the presence of
capacitive, psuedoinductive, and diffusional impedance terms, it is evident that the
polarization resistance is given only by the difference of the measured impedance
at sufficiently low and high frequencies:

R, =|Z(jo)l,_ —|2(jo),.. @)

Measurement of the series resistance at the high-frequency limit normally presents
few problems, because Z(j®) becomes nonreactive at frequencies as low as 10kHz,
in most cases. On the other hand, in the low-frequency region, reactance is com-
monly observed at frequencies in the vicinity of 10~ Hz, so that special precautions
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must be adopted to obtain reliable data (Syrett and Macdonald [1979]). The need
for these precautions is independent of the form of the perturbation applied to the
interface. Accordingly, they apply equally well to the use of potential or current
steps and triangular and sinusoidal voltage perturbations in the measurement of the
polarization resistance, as well as to the determination of “steady state” current—
voltage curves. Practically, therefore, it is necessary to use a sufficiently low-
frequency (sinusoidal perturbation), low-voltage scan rate (small-amplitude cyclic
voltametry) or to wait a long enough time (potential or current step perturbation)
before acquiring the response data (e.g. current) for calculating the polarization
resistance.

The problem of acquiring impedances at sufficiently low frequencies is amply
demonstrated by the data (Syrett and Macdonald [1979]) for 90: 10 Cu: Ni alloy cor-
roding in flowing seawater (Figure 4.4.1). Thus, for an exposure time of 22h, the
impedance function can be defined over the entire bandwidth, and an accurate value
for R, may be obtained by probing the interface at frequencies above 0.01 Hz. On
the other hand, at much longer exposure times, frequencies as low as 0.0005Hz
are not sufficient to completely define the interfacial impedance, and considerable
extrapolation is required to acquire a value for R,

It is important to emphasize again that, because time domain functions can
be synthesized as linear combinations of sinusoidal (sine and cosine) components
(Fourier synthesis), this problem is not limited to impedance spectroscopy. Thus,
failure to use a sufficiently low sweep rate in the case of small-amplitude cyclic
voltametry (SACV) will also introduce significant error (Figure 4.4.2), depending
upon which resistance is considered as being the parameter of interest (R, or Ry,
Figure 4.4.3; Macdonald [1978a]). Interestingly, our experience in using a variety
of electrochemical monitoring techniques indicates that SACV is superior, in many
respects, to impedance spectroscopy for determining the polarization resistance.
Thus, quite reliable values for R, for systems as reactive as that shown in Figure
4.4.1 generally can be obtained using a single voltage sweep rate of 0.1 mV/s, which
is quite accessible using standard electrochemical instrumentation.

Because most impedance measurements are made sequentially at discrete fre-
quencies, the total data acquisition time can be expressed as

n.
T=)— )
25

where n; is the number of cycles at frequency f;. The minimum acquisition time is
obtained by setting n; = 1. Therefore,

T = 2% ©)

and it is apparent that the minimum acquisition time is dominated by the low-
frequency components. For example the impedance data shown in Figure 4.4.1, for
an exposure period of 164h, required an acquisition time of more than 1h. This
contrasts with an acquisition time of 100s required to obtain a reliable value for R,
using SACV with a voltage sweep rate of 0.1 mV/s and a peak-to-peak amplitude
for the triangular voltage excitation of SmV. Because SACV does not readily



346 Chapter 4 Applications of Impedance Spectroscopy

400 T T T T I T

0.75 22 hours
200 +—

[
[ ]
025 0.15 g,
0.07s

1 { I

0
200 400 600 800 1000 1200
1000 — 0.05 0.025 72 hours
0.07% ) 0.01
500 L 015 995 10 001 |
a a5 0.25 \Z ‘
N g | L 5'°ﬁ | ) |
! 1000 J,. 2000 3000
30 [ Vi€, tohm) :
100 164 hours
3000 |20 200 | 40 ur
1200 2
1 1750 R‘ {ohm)
2000 0 L L 0.0025 —
0 10 20 30 40 0.0015

.01
0.015\00 0.0005

1 ! 1
0O 1000 2000 3000 4000 5000 6000
VARIY!

Figure 4.4.1. Complex plane impedance diagrams for 90: 10 Cu:Ni alloy in flowing seawater as a
function of exposure time. Flow velocity = 1.62m/sec, [O,] = 0.045 mg/1, specimen area = 11.05cm?,
T = 26°C; exposure time = 50h. (From B. C. Syrett and D. D. Macdonald, The Validity of
Electrochmical Methods for Measuring Corrosion Rates of Copper-Nickel Alloys in Seawater.
Reprinted with permission from Corrosion, 35, 11, [1979], NACE, Houston, TX.) Numbers next to
each point to frequency in hertz.

yield the mechanistic information afforded by impedance spectroscopy, the two
methods are best regarded as being complementary in nature.

According to Fourier’s theorem, all small-amplitude techniques must yield
identical results (i.e. the same interfacial impedance), regardless of the form of the
excitation. This is clearly the case for the system discussed above, as shown in Figure
4.44. In this figure, polarization resistance data, obtained using the impedance
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Figure 4.4.2. Plots of 1/R, and 1/R,,, as measured using SACV for 90:10 Cu:Ni in flowing
seawater. Flow velocity = 1.62m/s, [O,] = 0.045mg/l, T = 26°C, exposure time = 50h. (From D. D.
Macdonald, An Impedance Interpretation of Small Amplitude Cyclic Voltammetry: I. Theoretical
Analysis for a Resistive—Capacitive System, J. Electrochem. Soc., 125, 1443—-1449 [1978]. Reprinted
by permission of the publisher, The Electrochemical Society, Inc.)

spectroscopic, potential step, and SACV techniques, are plotted as a function of
time for two copper—nickel alloys exposed to flowing seawater (Syrett and
Macdonald [1979]). The fact that the polarization resistance data are independent of
the technique used for their measurement implies that the experimenter has the
freedom to tailor a perturbation for the measurement of interfacial impedance in
order to achieve some desired experimental goal. One implementation of this
concept is the application of a large number of sine-wave voltage signals sim-
ultaneously, so that the total data acquisition time is determined only by the
lowest frequency, and not by the summation embodied in Eq. (5). These “structured
noise” techniques are now being actively developed for corrosion-monitoring
purposes.
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Figure 4.4.3. Small-amplitude cyclic voltamograms for 90: 10 Cu:Ni alloy in flowing seawater.
Experimental conditions are as listed in Figure 4.4.1. (From D. D. Macdonald, An Impedance
Interpretation of Small Amplitude Cyclic Voltammetry: I. Theoretical Analysis for a Resistive—
Capacitive System, J. Electrochem. Soc., 125, 1443-1449, [1978]. Reprinted by permission of the
publisher, The Electrochemical Society, Inc.)

The structured noise method stems from the elegant work of Smith and co-
workers (Smith [1966]), who developed a multifrequency technique for ac polarog-
raphy. Subsequently, structured noise techniques have been used in corrosion studies
by Smyrl and coworkers (Smyrl [1985a,b], Smyrl and Stephenson [1985]) and by
Pound and Macdonald [1985]. In all cases, the perturbation applied to the system is
of the form
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Figure 4.4.4. Corrosion rate (as //R,) vs. time for 90: 10 Cu:Ni and 70:30 Cu:Ni in flowing
seawater having an oxygen content of 0.85mg/dm®. (From B. C. Syrett and D. D. Macdonald, The
Validity of Electrochmical Methods for Measuring Corrosion Rates of Copper—Nickel Alloys in
Seawater. Reprinted with permission from Corrosion, 35, 11, [1979], NACE, Houston, TX.) Numbers
next to each point to frequency in hertz.

V(6)= Y a;sin(w;t +¢;) )

where ¢; is the amplitude, @, is the frequency, and ¢, is the phase. If these parame-
ters are selected in a completely random fashion, the signal is referred to as white
noise. However, because corroding interfaces are inherently nonlinear, considerable
advantages exist in choosing values for a;, @;, and ¢, such that certain experimental
problems are avoided. For example nonlinearity produces harmonics of 2@, 3@,
... n; in response to a perturbation at the fundamental frequency @, Because the
amplitude of a harmonic decreases rapidly with increasing n, harmonic intrusion
may be avoided by ensuring that @, # nw; (n = 2, 3,...) or may at least be mini-
mized by requiring that n > 3. Also, the power applied to the interface, which is
proportional to the square of the amplitude of each component, may be tailored by
choosing appropriate values for a;. Regardless of the exact form of the perturbation
employed, the impedance data are extracted from the perturbation and the response
by Fourier or Laplace transformation (Pound and Macdonald [1985], Smyrl
[1985a,b]). As an example of this technique, we show the data of Pound and
Macdonald [1985] for carbon steel in acidified brine (Figure 4.4.5). The structured
noise data are compared with those obtained using a frequency-by-frequency corre-
lation technique (FRA). Clearly, the structured noise data are considerably more
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Figure 4.4.5. Nyquist plot of impedance data for 1018 steel in HCl-acidified 3% NaCl (pH = 3).
Exposure time = 28h, E,,,, = —0.682V (SCE).

scattered than are those obtained by the correlation method, but that is compensated
for by the reduction in the data acquisition time.

4.4.4 Harmonic Analysis

The derivation leading to the Stern—Geary relationship [Eq. (3)] assumes that the
corroding electrode responds linearly to the imposed electrical perturbation; that is,
doubling the perturbing voltage amplitude results in a double current response (but
an unchanged impedance). Since physical variables in all physically realizable
systems must have a finite first derivative, it is always possible to achieve linear con-
ditions by applying a perturbation of limitingly small amplitude.

The nonlinearity of the current—voltage relationship in corroding systems pro-
vides an opportunity to determine corrosion rates without the need to measure inde-
pendently the Tafel constants. The reason is that the electrical perturbation, which
is imposed on the system at a frequency of f, in a nonlinear system results in a
response at 2f, 3f, 4f, and so on, in addition to a dc component (McKubre [1983],
Morring and Kies [1977], McKubre and Macdonald [1984], Bertocci [1979],
Bertocci and Mullen [1981], Kruger [1903]). Neither the fundamental response
(fo) nor the total power response (X ohf) can be analyzed to determine uniquely
the corrosion rate (as opposed to the polarization resistance). Nevertheless, an analy-
sis of the harmonic responses can be used to determine the unknown parameters
in Eq. (3) and thus to measure corrosion rates in systems for which the Tafel
coefficients are not known or at potentials removed from the free corrosion poten-
tial Vj, as, for example, under conditions of an applied cathodic protection
potential.

The origin of the harmonic response is shown schematically in Figure 4.4.6a
for an input voltage sine wave at frequency f, superimposed on a current—voltage
curve of the form

I= Ifc {exp[ﬁa (V - sz)] - exp[_ﬁc(v - Vfc)]} (8)
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FIGURE 4.4.6.a. The source of a harmonic response: reflection of an input sine wave on a
nonlinear current—voltage curve.

where f, and B, are the forward anodic and reverse cathodic Tafel coefficients,
respectively, and I, is the free corrosion current flux, defined at the free corrosion
potential (V}.) as

If(' = Ia = _I(' (at VfL) (9)

Figure 4.4.6a shows a perturbing voltage sinusoid reflected about the dc current
voltage response curve at V;, and at some positive bias. In the linear region, this
reflection results in an undistorted current response, with V/I being a constant (equal
to the dc corrosion resistance).

The expected response in the time domain is shown schematically in Figure
4.4.6b. The output is generally shifted in phase with respect to the input due to
reactive terms associated with diffusional and capacitive processes. The extent of
the distortion in the nonlinear region can be quantified by performing a Fourier series
analysis. As indicated in Figure 4.4.6¢, when a sinusoidal perturbation of moderate
amplitude is applied to a corroding electrode, the response will consist of a compo-
nents at the same frequency (generally shifted in phase with respect to the input),
as well as terms at integral multiples of the input frequency (the harmonics). Unless
the input excitation is symmetric about V., then the output also will show a dc
offset that we term the zero’th harmonic. An offset is shown even for a symmetric
perturbation if the I/V curve is not symmetrical—this is the basis of the faradic
rectification effect. These harmonic response terms contain information sufficient to
completely specify the current—voltage curve, in principle, at any dc voltage and
thus to monitor the instantaneous corrosion rate even in the presence of an applied
cathodic polarization.
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FIGURE 4.4.6.h. The source of a harmonic response: time domain representation of input and
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FIGURE 4.4.6.c. The source of a harmonic response: frequency domain representation of input
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The analysis of the harmonic response of a system of a sinusoidal current or
voltage perturbation has received periodic attention in the electrochemical literature
since the pioneering work of Warburg [1899] and Kruger [1903]. This effect has
been studied as faradic rectification (Oldham [1957]), Barker et al. [1958], Barker
[1958], Delahay et al. [1960], Iami and Delahay [1962], Bauer [1964]) and faradic
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distortion (Delahay [1954], Breyer and Bauer [1964], Smith [1966]), and the results
of this form of analysis have been applied to the development of ac polarography
(Morring and Kies [1977]). More recently, Bertocci [1979], Bertocci and Mullen
[1981], and others (Chin and Venkatesh [1979] have investigated the effect of large-
amplitude perturbations in increasing the corrosion rates of electrical conduit mate-
rials (so-called ac corrosion).

The theoretical treatments referenced above all suffer from a major deficiency.
The nonlinear term of interest in corrosion (the electron transfer process) is con-
tained within a circuit comprising other linear (electrolyte resistance) and nonlinear
(double-layer capacitance and diffusional impedance) terms. Since the voltage
dropped across nonlinear circuit elements cannot be considered to linearly super-
impose, we cannot use the equivalent circuit method to isolate the impedance terms
of interest. Properly, one must solve for the system as a whole, including diffusional
and double-layer terms, and identify the harmonic components associated with the
faradic process of interest.

The simplified theoretical treatment presented here is similar in form to that
described previously (McKubre [1983], Bertocci [1979], Bertocci and Mullen
[1981], Devay and Meszaros [1980], Devay [1982], Gill et al. [1983], Hladky et al.
[1980], Rangarajan [1975], Ramamurthy and Rangarajan [1977], Rao and Mishra
[1977], Callow et al. [1976], Devay and Meszaros [1980]).

We are interested in the current response of an electrode to a voltage perturba-
tion of the form

V =V, +vsin(wt) (10)
Substituting Eq. (10) into Eq. (8) yields
I'= 1 (exp{B.[n+vsin(an)]} —exp{-p.[n+vsin(w)]}) (1)
where
n=Ve—Ve (12)

One can make the substitution (Abramowitz and Stegun [1965], Bauer [1964])

oo

explzsin(x)] = Jo(2) + 2, (<1)* Jag (2)sin[ (2K + 1)x]

k=0

23 (1) Jou () cos(k)

k=1

(13)

where J,(z) is a modified Bessel function of order n. The value of J,(z) can be cal-
culated by means of the expression,

=(z/2) i[ z/2)2k /k!(n+k)!] (14)

The first term in Eq. (13) represents the expected dc response (zero’th harmonic or
faradic rectification component) attributable to an ac perturbation. The second term
gives the odd-order harmonic response, and the last term gives the even harmonics.
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In the limit as v — 0, all response functions except the fundamental disappear, and
for 11 = 0 we obtain the familiar expression for the Stern—Geary (1957) relationship

dlp _ 1 23031 (B, +B.)
dv R, B.B.

Under all other conditions, the faradic current must be represented by a Fourier series
of harmonic responses, as indicated by Eqs (12)—(14).
Substituting Eqs (13) and (14) into Eq. (11), we obtain an equation of the form

1/ 1 =[exp(B))( «C*+1C™+ 27+ ,C +---)
- [GXP(—ﬁcTI)]( 0oC T+ C+,C+;C +-- )

where the harmonic series of constants C* are exp [+v sin (@r)] evaluated according
to Eq. (13) and presubscripts are used to denote the harmonic number.

Figures 4.4.7 and 4.4.8 demonstrate the influence of various corrosion param-
eters on the expected harmonic response, calculated from Eq. (16). Figure 4.4.7
shows the effect of the ac amplitude (v) on the magnitude of the response at large
overvoltages; the responses are normalized by that at the first harmonic. Clearly, the
application of perturbation levels as low as 50mV can result in significant powers
of the harmonic response at Of, 2f, and 3f.

The effect of dc potential and Tafel coefficient on the harmonic response is
shown in Figure 4.4.8. The power of the current response normalized by the free
corrosion current (I;.), shown on a log-linear scale, parallels that of the dc current
response with constant ratio between the harmonics. For the symmetric case, shown
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Figure 4.4.7. The effect of ac amplitude on the magnitude of the harmonic response for a two-
electron process.
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Figure 4.4.8. The effect of dc applied potential on the harmonic response for an asymmetric
corrosion process.

in Figure 4.4.6a, the minimum in harmonic response occurs at the free corrosion
potential. However, as the ratio of the reverse cathodic to forward anodic Tafel
coefficients is increased, the potential at which the response is a minimum for each
harmonic is increased. This phenomenon is shown in Figure 4.4.8 and has been
suggested as the basis for a corrosion monitor (Gill et al. [1983]).

Precise measurements of the current responses at each of a number of harmon-
ics can be used, in conjunction with Eq. (16), to evaluate the unknown terms in Eq.
(11). A complete description of the faradic current—voltage response is sufficient to
define the anodic partial current (the corrosion rate) at any potential; the parameters
needed are the forward and reverse Tafel coefficients, the free corrosion current, and
the free corrosion potential.

In applying the harmonic method to corrosion rate monitoring, three major
sources of interferences must be overcome. A major source of error is due to the
presence of an uncompensated series electrolyte resistance. The harmonic current
responses due to the corrosion process are transformed by such a resistance into a
voltage that appears as an input perturbation at the harmonic frequency, leading to
an erroneous harmonic current response. A second source of error appears at large
values of anodic or cathodic polarization, where the measured dc (and thus low-
frequency impedance) response may be largely dominated by diffusional processes.
Since the genesis of the harmonic response is considered to be in the faradic
processes, it is necessary to deconvolve the diffusional from the charge-transfer
impedance terms. A practical, although approximate, solution to the problem of
uncompensated resistance and diffusional impedance is to completely determine the
equivalent circuit for the corroding electrode by performing the impedance (funda-
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mental or harmonic) study over a wide range of frequencies and mathematically
correcting the data set retrospectively (McKubre and Syrett [1984]).

A more insidious problem is the limitation on precision imposed by the van-
ishingly small magnitude of the anodic (corrosion) component compared with the
cathodic partial current at large values of cathodic bias, due to the exponential form
of the current—voltage relationships for the anodic and cathodic half-reactions.

Methods by which these limitations can be minimized and the parameters of
interest calculated are described by McKubre and Syrett [1984]. The ratio of the har-
monic admittance to the fundamental admittance (both corrected as described above)
is used to evaluate the desired corrosion parameters. Equation (15) can be expressed
in the more appropriate form by noting that

nY_n[ IV_n[ Ifc

WY VoL I an
oY _ [exp(Bal(oC*) = [exp(=Bm](,C") (18)
Y [eXPﬁ n)(lc+) [exp(=B.m](,C")
oY [exp(Bl(>C*) —[exp(=Bm)](-C") (19
Y [exp(Ba)](iCY) = [exp(=Bm](:C7)
3Y _ [exp(Bn)](:CY) — [exp(=B.m](:C”) 20)
lY [exp(ﬁan)](l ) [exp( ﬁ 77)]( )

The constants ,C* can be evaluated using Eqs (17) and (18); the unknown parame-
ters 7, B, B. are calculated from the best fit of the measured admittance ratios to
this system of equations.

4.4.5 Kramers-Kronig Transforms

At this point it is fitting to ask the question: “How do I know that my impedance
data are correct?” This question is particularly pertinent in view of the rapid expan-
sion in the use of impedance spectroscopy over the past decade and because more
complex electrochemical and corroding systems are being probed. These give rise
to a variety of impedance spectra in the complex plane, including those that exhibit
pseudoinductance and intersecting loops in the Nyquist domain. By merely inspect-
ing the experimental data, it is not possible to ascertain whether or not the data are
valid or have been distorted by some experimental artifact. However, this problem
can be addressed by using the Kramers—Kronig (KK) transforms (Kramers [1929],
Kronig [1926], Tyagai and Kolbasov [1972], Van Meirhaeghe et al. [1976], Bode
[1945], Macdonald and Brachman [1956]), as described by Macdonald and Urquidi-
Macdonald [1985] and Urquidi-Macdonald, Real, and Macdonald [1986].

The derivation of the KK transforms (Bode [1945]) is based on the fulfillment
of four general conditions of the system:

1. Causality. The response of the system is due only to the perturbation applied
and does not contain significant components from spurious sources.
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2. Linearity. The perturbation/response of the system is described by a set of
linear differential laws. Practically, this condition requires that the imped-
ance be independent of the magnitude of the perturbation.

3. Stability. The system must be stable in the sense that it returns to its origi-
nal state after the perturbation is removed.

4. The impedance must be finite-valued at @ — 0 and @ — oo and must be a
continuous and finite-valued function at all intermediate frequencies.

If the above conditions are satisfied, the KK transforms are purely a mathematical
result and do not reflect any other physical property or condition of the system.
These transforms have been used extensively in the analysis of electrical cir-
cuits (Bode [1945]), but only rarely in the case of electrochemical systems (Tyagai
and Kolbasov [1972], Van Meirhaeghe et al. [1976]).
The KK transforms may be stated as follows:
2 J-w xZ"(x)— 2" (@)

Z(0)- 7= 2 )

dx 21
T )0 X" -

Z/(@)-2/(0) = (27“’) [ [(%jZ"(x) - Z”(w)] = _1w2 dx (22)
o (2)

wor-[2)

where ¢(w) is the phase angle, Z" and Z” are the real and imaginary components of
the impedance, respectively, and  and y are frequencies. Therefore, according to
Eq. (4), the polarization resistance simply becomes

T e

xmin X
where Y. and Y, are the maximum and minimum frequencies selected such that
the error introduced by evaluating the integral over a finite bandwidth, rather than
over an infinite bandwidth, is negligible.

To illustrate the application of the KK transformation method for validating
polarization resistance measurements in particular and for verifying impedance data
in general, we consider the case of TiO,-coated carbon steel corroding in HC1-KCl
solution (pH = 2) at 25°C (McKubre [1985]). The complex plane diagram for this
case is shown in Figure 4.4.9, illustrating that at high frequencies the locus of points
is linear, but that at low frequencies the locus curls over to intersect the real axis.
Application of Eq. (25) predicts a polarization resistance of 158.2Q compared with
a value of 157.1Q calculated from the high- and low-frequency intercepts on the
real axis (Macdonald and Urquidi-Macdonald [1985]).

By using the full set of transforms, as expressed by Eqs (21)—(24), it is possi-
ble to transform the real component into the imaginary component and vice
versa (Macdonald and Urquidi-Macdonald [1985], Urquidi-Macdonald, Real, and

-z, 23)

0 x?—@?

[ oz o1

0 %2 — 2
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Figure 4.4.9. Complex plane impedance plot for TiO,-coated carbon steel in HCI-KCI solution
(pH = 2) at 25°C. The parameter is frequency is hertz. (From D. D. Macdonald and M. Urquidi-
Macdonald, Application of Kramers—Kronig Transforms to the Analysis of Electrochemical
Impedance Data: 1. Polarization Resistance, J. Electrochem. Soc., 132, 2316-2319, [1985]. Reprinted
by permission of the publisher, The Electrochemical Society, Inc.)
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Figure 4.4.10. Kramers—Kronig transforms of impedance data for TiO,-coated carbon steel in
HCV/KCI solution (pH = 2) at 25°C: (a) Real impedance component vs. log @. (b) Comparison of the
experimental imaginary impedance component (— — —) with Z”(@) data (—) obtained by KK
transformation of the real component. (From D. D. Macdonald and M. Urquidi-Macdonald,
Application of Kramers—Kronig Transforms to the Analysis of Electrochemical Impedance Data: 1.
Polarization Resistance, J. Electrochem. Soc., 132, 2316-2319, [1985]. Reprinted by permission of the
publisher, The Electrochemical Society, Inc.)

Macdonald [1986]). These transforms therefore represent powerful criteria for
assessing the validity of experimental impedance data. The application of these
transforms to the case of TiO,-coated carbon steel is shown in Figures 4.4.10 and
4.4.11. The accuracy of the transform was assessed by first analyzing synthetic
impedance data calculated from an equivalent electrical circuit. An average error
between the “experimental” and “transformed” data of less than 1% was obtained.
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Figure 4.4.11. Kramers—Kronig transforms of impedance data for TiO,-coated carbon steel in
HCI/KCI solution (pH = 2) at 25°C: (@) Imaginary impedance component vs. log . () Comparison of
the experimental real impedance component (— — —) with Z”(w) data (—) obtained by KK
transformation of the imaginary component. (From D. D. Macdonald and M. Urquidi-Macdonald,
Application of Kramers—Kronig Transforms to the Analysis of Electrochemical Impedance Data: 1.
Polarization Resistance, J. Electrochem. Soc., 132, 2316-2319, [1985]. Reprinted by permission of the
publisher, The Electrochemical Society, Inc.)

In this case, the residual error may be attributed to the algorithm used for evaluat-
ing the integrals in Eqs (21)—(23). A similar level of precision was observed on
transforming McKubre’s (1985) extensive data set for TiO,-coated carbon steel in
HCI/KCI (Macdonald and Urquidi-Macdonald [1985], Urquidi-Macdonald, Real,
and Macdonald [1985]). Not all impedance data are found to transform as well as
those for the equivalent electrical circuit and the TiO,-coated carbon steel system
referred to above. For example, Urquidi-Macdonald, Real, and Macdonald [1986]
recently applied the KK transforms (21)—(23) to the case of an aluminum alloy cor-
roding in 4 M KOH at temperatures between 25 and 60°C and found that significant
errors occurred in the transforms that could be attributed to interfacial instability as
reflected in the high corrosion rate.

4.4.6 Corrosion Mechanisms

4.4.6.1 Active Dissolution

Impedance spectroscopy has been applied extensively in the analysis of the mech-
anism of corrosion of iron and other metals in aqueous solutions. Typical work of
this kind is that reported by Keddam et al. [1981], who sought to distinguish between
various mechanisms that had been proposed for the electrodissolution of iron in
acidified sodium sulfate solutions. Since this particular study provides an excellent
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review of how impedance spectroscopy is used to discern reaction mechanism, the
essential features of the analysis are described below.

As the result of analyzing a large number of possible mechanisms for the dis-
solution of iron, Keddam et al. [1981] concluded that the most viable mechanism
for this reaction involves three intermediate species

Fe*(l)ads
ks Ky
P ks ko
Fe — 5 Fe(l)us Fe(l)so (26)
Ks

k_5 kB

Fe*(”)ads

k7 k_7

Fe(”)ads

in which steps 4 and 6 are written in complete form as

Fe*(I),, +Fe—“—Fe*(I),, +Fe(Il)_, +2e¢" Q7
and
Fe * (1), +Fe——Fe*(II),, +Fe(Il) , +2¢" (28)

In setting up the reaction model for this case, Keddam et al. assumed that the ele-
mentary steps obey Tafel’s law, that the transfer coefficient () has a value between
0 and 1 and is independent of potential, and that the coverage by adsorbed species
obeys the Langmuir isotherm. Designating the fractional coverages by the species
Fe(I).qs, Fe*(1).q4, and Fe*(II),4 to be 6,, 6, and 6, respectively, and that of the pas-
sivating species Fe(Il)4 as 0,, and assuming no overlap, then the current flowing
across the interface may be expressed as

1= F[klz + (kz + k5 )01 + 2k492 + (2k6 - k_5 )9”5] (29)
where
2:1_01—92_93_94 (30)
and k; is the rate constant for the i step defined by
F
b=k, exp(ﬂ . Ej G1)
’ RT
Mass balance relationships involving the adsorbed species results in the following
expressions for the time dependencies of 6;, 6,, 6;, and 6;:
do,

B ? =k X — (ks + ks +ks)0, + k30, +k_s0; (32)
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do
B 7; =36, = k36, (33)
do
Bs d—; =ks0, — (ks +k;)0; + k10, (34)
do
Bs 7;‘ = k05 —k 40, (35)

where 3 is a constant that links the surface fractions to surface concentrations
(mole/cm™). The value for B8 is ~10®*mole/cm? which corresponds to about one
monolayer. The steady state is characterized by d6/dt = 0, in which case

—  kik_sk_sk_
01 — 1 3D5 7 (36)
—  kiksk_sk_
92 — 1 3D5 7 (37)
—  kk_sk_sk_
03 — 1 3D Sh—7 (38)
—  kiksksk
6, =12l (39)
where
D = kik_sksky +{ki[ksk_s + k_3 (ks + k_s)] + kok_sk_s }k_; (40)

and hence the steady state current becomes
I =2F(k;0, + k46, + kq05) (41)

In order to derive the faradic impedance (Z;) we note that for sinusoidal varia-
tions in the potential and in the surface coverages of reaction intermediates we may
write

OE =|GEle’™ (42)
60,' = |60,‘|€jw{ (43)
j=~-1 (44)
Thus, from Eq. (41) and defining Z as
OE
=— 45
ZF Sl (45)
we obtain the following expression for the faradic impedance:
1 1 do deo
—=——Flk—ky —ks]—+ (ks -2k, ) — =
Zr Ry dE dE (46)
do; do,
+(ky +kos —2ks)——+k ——
( 1 5 ()) dE 1 dE

where
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1 — — _
E = F[(bl + b2 )k291 +2b4k492 + [(b5 + b,5)k,5 + 2b6k6]93] (47)

1
b, =o,F/RT (48)

The faradic impedance is readily obtained by first deriving expressions for
d@/dt. This is done by taking the total differentials of Eqs (32)—(35). For example
in the case of Eq. (33) we write

do
5( B, 7;) = k00, +6,6k; — k06, — 0,6k 5 (49)
Since
do, d(66,) .
ol B— |= = 3, jwoo (50)
(ﬁ > dr ) b dt B2 jd0,
and
we obtain
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Figure 4.4.12. Steady state polarization curves for iron in NaSO,~H,SO, solutions according to
Keddam er al. [1981]: (a) Simulated curves. (b) Experimental data. Rotating disk electrode (rotating
speed = 1600 rpm, diameter = 3mm), 7' = 25 + 0.2°C. (From M. Keddam, O. R. Mattos, and H. J.
Takenouti, Reaction Model for Iron Dissolution Studied by Electrode Impedance: Determination of the
Reaction Model, J. Electrochem. Soc., 128, 257-274, [1981]. Reprinted by permission of the publisher,
The Electrochemical Society, Inc.)
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06 06
(k_3 + ]wﬁ2)5_; - k3 5_E1' - 91b3k3 + 92b_3k_3 = O (52)

Additional linear simultaneous equations may be generated from Eqs (32), (34), and
(35), and the set may be solved for 80,/6E, 66,/6E, 66,/ OE, and 66,/OE. These values
are then substituted into Eq. (46) to calculate the faradaic impedance, which in turn
yields the interfacial impedance as

Zr =Zi [(1+ joCuZr) (53)

where C, is the double layer capacitance.

Experimental and simulated [Eq. (29)] steady state current-voltage curves for
iron in Na,SO,~H,SO, solutions as a function of pH are shown in Figure 4.4.12, and
simulated and experimental complex plane impedance diagrams at various points on
these curves are shown in Figures 4.4.13 and 4.4.14, respectively (Keddam et al.
[1981]). The close agreement between the steady state polarization curves is imme-
diately apparent, even to the extent that the inflection in the curve for pH 4 is accu-
rately reproduced. Examination of the impedance diagrams in Figures 4.4.13 and
4.4.14 show that the mechanism selected by Keddam et al. [1981] is capable of
reproducing the essential features of the diagrams, including the number and type
of relaxations, but not the details. However, the latter depend strongly upon the
values selected for the rate constants, and are also probably affected by the isotherm
selected for describing the adsorption of intermediate species onto the surface.

4.4.6.2 Active-Passive Transition

The sudden transition of a metal—solution interface from a state of active dissolu-
tion to the passive state is a phenomenon of great scientific and technological inter-
est. This transition has been attributed to the formation of either a monolayer (or
less) of adsorbed oxygen on the surface or to the coverage of the surface by a three-
dimensional corrosion product film. In either case, the reactive metal is shielded
from the aqueous environment, and the current drops sharply to a low value that is
determined by the movement of ions or vacancies across the film.

The changes that typically occur in the complex-plane impedance diagram on
increasing the potential through an active-to-passive transition are shown in Figure
4.4.15 (Keddam et al. [1984]). At point A, the high-frequency arm of the impedance
is typical of a resistive-capacitive system, but the impedance locus terminates in a
negative resistance as @ — 0. This, of course, is consistent with the negative slope
of the steady state polarization curve. At higher potentials, the high-frequency locus
is again dominated by an apparent resistive—capacitance response (see Section
4.4.6.3), but the low-frequency arm is not observed to terminate at the real axis in
this case because of the very high value for the polarization resistance (horizontal /
vs. E curve). The origin of the negative resistance can be accounted for theoretically
(Keddam er al. [1984]) in terms of an increasing coverage of the surface by an
adsorbed intermediate as the potential is increased. Thus, the low-frequency
loop exhibited in Figure 4.4.15a is due to relaxations involving these surface
species.
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Epelboin and coworkers [1972] and Diard and LeGorrec [1979] have recog-
nized a serious shortcoming of classical potentiostatic methods for investigating the
active-to-passive transition. The problem arises because a potentiostat has a load line
of negative slope in the / vs. E plane and hence is incapable of effectively defining
the current—voltage characteristics of a metal-solution interface in the active-to-
passive transition region. To overcome this limitation of potentiostatic control,
Epelboin et al. [1972, 1975] and Diard and LeGorrec [1979] devised potential
control instruments having negative output impedances, which are characterized by
load lines having positive (and controllable) slopes. These negative impedance con-
verters (NICs) have allowed “Z-shaped” active-to-passive transitions to be studied
and the impedance characteristics to be determined, as shown by the data plotted in
Figure 4.4.16. In contrast to the case shown in Figure 4.4.15a, the active-to-passive
transition shown in Figure 4.4.16, as determined using a NIC, exhibits a change in
the sign of dI/dE from negative to positive to negative as the current decreases from
the active to the passive state. This change in sign, as reflected in the shape of the
Z-shaped polarization curves, has been explained by Epelboin et al. [1975] in terms
of coupling between mass transfer and surface reactions, although other explana-
tions have also been advanced (Law and Newman [1979]).

4.4.6.3 The Passive State

The phenomenon of passivity is enormously important in corrosion science and engi-
neering, since it is responsible for the relatively low corrosion rates that are observed
for most engineering metals and alloys. It is not surprising, therefore, that passivity
has been studied extensively using a wide variety of techniques, including IS. A brief
account of these impedance studies is given below.

In discussing this subject it is convenient to delineate the processes that occur at
the film—solution interface and those that take place within a passive film (Figure
4.4.17). In the first case, the processes are essentially ion exchange phenomena with
the possibility of solution phase transport, whereas the second processes involve only
transport. The movement of charged species within the film (anion vacancies V;; and
cation vacancies Vj) occurs, however, under the influence of both concentration and
electrical potential gradients, with the electrical effects probably dominating, at least
in the case of thin films. Accordingly, any analysis of the impedance characteristic of
passive films must consider electromigration as well as diffusional transport.

The total impedance of the system of interphases shown in Figure 4.4.17 may
be written as

<

Figure 4.4.13. Simulated complex plane impedance diagrams for the electrodissolution of iron in
sulfate media as a function of pH according to Keddam et al. [1981]. The potentials for which the
diagrams are calculated are shown in Figure 4.4.12. The arrows indicate the direction of decreasing

frequency. (From M. Keddam, O. R. Mattos, and H. J. Takenouti, Reaction Model for Iron Dissolution
Studied by Electrode Impedance: Determination of the Reaction Model, J. Electrochem. Soc., 128,
257-274, [1981]. Reprinted by permission of the publisher, The Electrochemical Society, Inc.)
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Figure 4.4.15. Steady-state polarization curve and complex plane impedance diagrams at selected
potentials through the active-to-passive transition for iron in 1 M H,SO, as reported by Keddam, Lizee,
Pallotta, and Takenouti [1984]. The arrows indicate the direction of decreasing frequency. (From

M. Keddam, O. R. Mattos, and H. J. Takenouti, Reaction Model for Iron Dissolution Studied by
Electrode Impedance: Determination of the Reaction Model, J. Electrochem, Soc., 128, 257-274,
[1981]. Reprinted by permission of the publisher, The Electrochemical Society, Inc.)

<

Figure 4.4.14. Experimental complex plane impedance diagrams for iron in sulfate media as a
function of pH according to Keddam ez al. [1981]. The potentials at which the diagrams were
measured are shown in Figure 4.4.12. The arrows indicate the direction of decreasing frequency.
(From M. Keddam, O. R. Mattos, and H. J. Takenouti, Reaction Model for Iron Dissolution Studied by
Electrode Impedance: Determination of the Reaction Model, J. Electrochem. Soc., 128, 257-274,
[1981]. Reprinted by permission of the publisher, The Electrochemical Society, Inc.)
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Figure 4.4.16. Impedance spectra for iron in 1 M H,SO, at various potentials within the active
dissolution and active-to-passive transition regions as determined using a negative impedance
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indicate the direction of decreasing frequency. (After Epelboin ez al. [1975]).
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Metal Film (MO, ;») | Solution
(1 m+Vyx' = My +xe' (2) My, = MX* (aq) + Vyx'
(3) m = My + (3) Vg +xe (4) Vg + Hy0 = Og +2H*
VX'
Vo

Figure 4.4.17. Schematic of physicochemical processes that occur within a passive film according
to the point defect model. Here m = metal atom, M), = metal cation in cation site, O, = oxygen ion in
anion site, Vj; = cation vacancy, Vs = anion vacancy. During film growth, cation vacancies are
produced at the film—solution interface but are consumed at the metal—film interface. Likewise, anion
vacancies are formed at the metal—film interface but are consumed at the film—solution interface.
Consequently, the fluxes of cation vacancies and anion vacancies are in the directions indicated.

ZT = Zm/f + Zf + Zf/r (54)

where Z,, Z; and Z, are the impedances associated with the metal-film interface,
the film, and the film—solution interface, respectively. Because the elements are con-
nected in series, the largest impedance will dominate the total impedance of the
system. However, the impedance elements are frequency-dependent, so that each of
the elements may dominate over different frequency ranges.

Metal-Film Interface. According to Armstrong and Edmondson (1973), the
impedance of the metal—film interface can be described in terms of a capacitance (CZ)
in parallel with two charge transfer resistances, one for the transfer of electrons (R,)
and the other for the transfer of cations (R.) from the metal to the film. Accordingly,

R.R.(R. +R.) . 0’CRR?
-J
(R,+R.)’ +@*C*R*R* (R, +R.)’ +w*C>R*R?
For most systems, particularly for diffuse metal-oxide junctions, we assume that the

resistance to the movement of electrons across the interface is small compared with
the resistance to the movement of cations, so that

Zyjy = (55)

R, <<R. (56)
In this case, Eq. (55) reduces to

R . WCR
1+0’CR. 1+’ CR

Zys (57)

Furthermore, the capacitance associated with this interface is probably that due to
the space charge layer within the oxide. Therefore, over the frequency range of most
interest to corrosion scientists (10™*~10*Hz), 1/CR, >> @, so that

Zm/f ~R, (58)
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Accordingly, under these conditions, the impedance of the metal—film interface is
likely to appear as a (small) frequency-independent resistance due to the transfer of
electrons between the two phases.

The Film. A quantitative analysis of the impedance of a passive film has been
reported by Chao, Lin, and Macdonald [1982], and the essential features of this treat-
ment are reproduced here. The treatment is based upon their previously proposed
(Chao et al. [1981], Lin et al. [1981]) point defect model for the growth and break-
down of passive films; the essential features of which are depicted in Figure 4.4.17.

In this model, it is assumed that the total current that is detected in an external
circuit upon application of a voltage is the sum of four components: (1) electronic
current due to the transport of electrons (¢'); (2) electronic current due to the flow
of electron holes (h); (3) ionic current due to the transport of anion vacancies (V;);
and (4) ionic current due to the movement of cation vacancies (V)

I=1,+1, +1, + 1y, (59)
Therefore,
1/Z;=1/Z.+1/2,+1/Z,+1/ Zy, (60)

The total impedance of the film is therefore described in terms of the transport of
vacancies in parallel with the electron and hole resistances, provided that electron
or hole exchange processes do not occur at the film—solution interface. This situa-
tion exists in the absence of any redox couples in the solution.

The movement of anion and cation vacancies within the film, under the influ-
ence of concentration (C) and electrical potential (¢) gradients, is determined by
Fick’s second law:

2
9 _p2C_pyk2C o
where
K =€F/RT (62)
e=—do/dx (63)

Here g is the charge on the moving species (—y for cation vacancies and +2 for
oxygen vacancies for an oxide film of stoichiometry MO,,), D is the diffusivity, and
F, R, and T have their usual meanings. The current observed in an external con-
ductor due to the movement of the vacancies is given by Fick’s first law, as applied
to the metal—film interface:

I=qFJ=qF(—Da—C+DqKCj (64)
dx mlf

According to the point defect model, and under conditions where the various
equations can be linearized with respect to the applied ac voltage (V,.), the concen-
tration of vacancies at the metal—film and film—solution interfaces may be expressed
as (Chao et al. [1982])
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Cyy(m/ ) =[Cy, (m/ F)],,. - % Ve (65)
Cuyy (m/ f)=[Cy,, (m/ )], - % Ve (66)
Col/9)=1Cu /9], 2V )
Cun (119 =[G (150, 2 0 (68)

where the quantities in square brackets are constants, which are related to the ther-
modynamic parameters for the interfacial reactions shown in Figure 4.4.17.

The set of Eqs (61)—(68) are readily solved by Laplace transformation to yield
the impedance

Z(j©) = Ve /L, s = joo, j=~—1 (69)

where s is the Laplace frequency. The impedance so calculated is found to have
the from

where 0, and o, are given by
oo = RT/ F2(32D)*{LCy, (m/ f), (1 - @)} (71)
oy = RT/ F*(2x*D) " {(er =Dy, (m/ 1), J} (72)

The reader will recognize Eq. (70) as being of the form of a Warburg impedance for
two parallel moving species. Two limiting cases may be defined: (1) movement of
cations vacancies alone (o, >> 0y, Zr — Z)); and (2) movement of anion vacancies
alone (o), >> 0y, Zr — Z). Accordingly,

Zr =0,0 21— j) (cation vacancies) (73)
Zr =0,0 "?(1-j) (anion vacancies) (74)

Substitution of the appropriate expression for [Cy,(m/f)]q into Eq. (71) yields
the Warburg coefficients for the movement of oxygen ion vacancies as

1/2

1 (D, ) €

o = — - (75)
0 Id(_‘ ( 2 1 -

The form of the equation for o is particularly interesting, because it suggests that
if the electric field strength (€) and « are constants (as assumed in the point defect
model), then the product oply. should be independent of the applied voltage across
the system and the thickness of the film.

A plot of —=Z” vs. Z for selected values of the various parameters contained in
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Figure 4.4.18. Complex impedance plane predicted by Eq. (74). Dy = 107 cm?/s, Iy = 1 uA/em?,
£=10°V/cm, o= 0.88, area = 1 cm?

Eq. (74) is shown in Figure 4.4.18. As expected, the impedance locus is a straight
line when

e> D(F*/ R*T?) (76)

However, for sufficiently low frequencies (Chao et al. [1982]), the impedance is pre-
dicted to intercept the real axis at a value of

RT

Koo = 4F>DK{2[Cy, (m/ )], (1—a)— A"}

(77
where

A’ =A(RT/FV,.) (78)
with

A _( FVi )
RT

[Cy, (f/5)] a+[Cy,(m/ )], (1- (x)exp[KL —(K*+ s/DL)l/z] (79)
' exp(KL)sinh[(K* +5/DL")]
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Figure 4.4.19. Complex plane impedance plot for Ni(111) in phosphate buffer ([PO,] = 0.1 M) at
25°C. E=0.1V (SCE), pH = 10. The frequency at which each point was measured is indicated.
Electrode area = 0.998 cm?.
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Figure 4.4.20. Randles plot of Z' vs. @ " for Ni(111) passivated in 0.1 M phosphate solution
(pH = 9). L = film thickness measured ellipsometrically. Electrode area = 0.998 cm®.

These equations show that the most critical parameters in determining the value of
R, - is the diffusivity of oxygen vacancies (D = D,) and the film thickness L;
R, - increases roughly exponentially with L and with 1/D. Similar arguments can
be made in the case of the transport of cation vacancies across a passive film.

The diagnostic features of this analysis have been used by Chao et al. [1982]
in their investigation of the growth of passive films on nickel and Type 304 stain-
less steel in borate and phosphate buffer solutions. Typical complex plane and
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Randles’s plane plots for nickel in 0.IN Na,HPO, (pH = 9.1) and in 0.15N
H;B05/0.15N Na,B,0; (pH = 8.7) solutions are shown in Figures 4.4.19 and 4.4.20.
The data shown in Figure 4.4.19 reveal a linear impedance locus at low frequencies,
with a partially resolved semicircle at high frequencies. This latter characteristic is
attributed to relaxations occurring at the film—solution interface, as discussed later.
The Randles plots shown in Figure 4.4.20 provide further evidence for the low-
frequency Warburg response predicted by Eqs (73) and (74). These plots also show
that the experimentally measured Warburg coefficient = dZ'/dw"* is independent
of the film thickness (as measured ellipsometrically) and of the applied voltage.
Furthermore, the values of o obtained for the phosphate (23.1k€/s"?) and borate
(8.53kQ/s'"?) environments differ by nearly a factor of 3, as do the passive currents.
This is predicted by Eqs (75) and (76), assuming that negligible differences exist
between the passive films formed in these two solutions.

A more extensive impedance analysis of passive films formed on nickel in
borate buffer solution has been reported by Liang, Pound, and Macdonald [1984].
In this study, impedance data were obtained for passive nickel over a wide range of
applied potential and pH (Figure 4.4.21), and these data serve as a good test of the
constancy of ol as predicted by Eqs (75) and (76). The data (Figure 4.4.21) show
that this product is indeed constant, within experimental error, thereby supporting
the original hypothesis of the point defect model that the electric field strength is
independent of film thickness and applied voltage.

An important application of the data shown in Figure 4.4.21 and of the equa-
tion for the Warburg coefficient [Eq. (75)] is in the calculation of the diffusivity
for anion vacancies within the film. In the case of passive polycrystalline nickel in
borate and phosphate buffer solutions, Chao et al. (1982) computed a value of 1.3
x 107" cm?s for the diffusivity of oxygen ion vacancies. In a later study by Liang
et al. [1984], a somewhat higher (and possibly more reliable) value of 1.5 X
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Figure 4.4.21. Plot of 1,0, vs. potential for Ni(111) in phosphate buffers ([PO,] = 0.1M) as a
function of pH. Open circles = pH 7, closed circles = pH 8, open squares = pH 9, closed squares =
pH 10, open triangles = pH 11, closed triangles = pH 12. T = 25°C, I = estimated error for each point,
electrode area = 0.998 cm’.
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107" cm?/s for this same quantity was calculated from the data shown in Figure
4.4.21 for passive films formed on single-crystal nickel (100) in borate buffer solu-
tion. The principal problem with these calculations lies in the accurate measurement
of the passive current /.. Experience shows that this quantity can vary over several
orders of magnitude depending upon how the surface is prepared, the method by
which it is measured (potentiostatic vs. potentiodynamic techniques), and possibly
the means by which the passive film is formed. Nevertheless, the values for D, given
above are consistent with data extrapolated from high temperatures for a variety of
oxides, and they appear to be eminently reasonable from a physicochemical view-
point (Chao ef al. [1982]).

The data shown in Figure 4.4.22 for Type 304 stainless steel appear to contra-
dict the findings reported above for nickel. However, as noted by Chao et al. [1982],
the potential-dependent and film-thickness-dependent Warburg coefficient can be
accounted for by the fact that the composition of the passive film also changes
with potential. A study of passive films on Fe-25 Ni-XCr alloys by Silverman,
Cragnolino, and Macdonald [1982] indicated that the quantity €/(1 — &) changes very
little as the Fe/Cr ratio is varied over a wide range, but diffusivity data for oxygen
ion vacancies in iron and chromium oxides at elevated temperatures very by many
orders of magnitude, and in a manner that provides a qualitative explanation of the
Randles plots shown in Figure 4.4.22.

Film-Solution Interface. One of the most comprehensive treatments of the
impedance characteristics of the film—solution interface of a passive film is that
reported by Armstrong and Edmondson [1973]. Their treatment essentially consid-
ers the ion exchange properties of an interface (Figure 4.4.23) by addressing the
movement of anions and cations between the film surface and the solution as the
applied potential is modulated over a wide frequency range.

Armstrong and Edmondson [1973] begin their analysis by noting that the time
dependence of the excess of cations over anions in the surface layer (Figure 4.4.23)
is given as

dr
Vit n -V, (80)

in which rates V|, V,, V;, and V, can be expanded linearly as Taylor series in applied
potential and excess cation concentration. Therefore,

V,-=v,-o+(ﬂ) AEem(ﬂ] ATe™, i=1-4 81)
E ) ar ),

Equations (80) and (81) may be combined to yield
o i ) ( i ) ( i ) }
- - AE
{(8E)r+(8E ae ). "\oE). )

30 () (D)0
9= or ), Lar ), \ar ), Lar ),

Al' =
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Figure 4.4.22. Dependence of Z’' on @ ™? for Type 304SS passivated in 0.1 N Na,HPO, solution
(pH 9.1). (From C.-Y. Chao, L. F. Lin, and D. D. Macdonald, A Point Defect Model for Anodic
Passive Films; III. Impedance Response, J. Electrochem Soc. 129, 1874—-1879, [1982]. Reprinted
by permission of the publisher, The Electrochemical Society, Inc.)

If the number of electrons that flow through an external circuit upon the transfer of

one species in reaction i (Figure 4.4.23) is n;, then the faradic admittance of the

film—solution interface is

an‘/l +n2F‘/2 +n3F‘/3 +n4F‘/4
AEexp(jr)

Y= (83)

which upon substitution of Eq. (81) becomes

4 vV, v
Y, = niF( ) +AF n, ( j (84)

where AT is given by Eq. (82). According to Armstrong and Edmondson [1973], it
is convenient to define infinite-frequency charge-transfer resistances as

oV oV,
1/R.; =n (aE)F ZF[QE) (85)

= — 86
I/R‘,qz =Nz (aE r+n4F aE . ( )
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Figure 4.4.23. Model of film-solution interface according to Armstrong and Edmondson [1973].
(Reprinted with permission from R. D. Armstrong and K. Edmondson, The Impedance of Metals in the
Passive and Transpassive Regions, Electrochim. Acta 18, 937-943, [1973]. Copyright 1973 Pergamon
Journals Ltd.)

and resistances at zero frequency as

V= (52) +(52). (55 ) -(52) | (87)
el 5g), o 52) o

20 (28] 22 (2]
wr(51), e 51 )

where k defines the relaxation time 7 as

t=1/k (89)

(202 (20) (2
“Uor ), "\or ), "ot ), "\ar ), (90)

(88)

with
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Accordingly, the faradic admittance becomes
1 1 k 1 1
Yf/s=—+—+—.-(—+—) on
R. R, k+jo \Ry Ry
However, Armstrong and Edmondson [1973] claim that, in most cases, oxygen will

be in equilibrium between the interface and the solution, a condition that can only
be satisfied if R.., = —Ry,. Thus, Eq. (91) becomes

1 k 1 1 i
Vyjy =t I 92)
R., k+jo R, R, k+jo
and the total interfacial impedance is written as
1
Zjy=——"r 93)
Yy + joC.,

where C.. is the double-layer capacitance. The complex-plane impedance loci that
can be generated by Eq. (93) according to the relative values of k and @ have been
explored by Armstrong and Edmondson [1973], and their results are summarized
below.

1. Large k (k >> ). In this case, Eq. (92) reduces to

1 1 i
Yifp=—+—+ J
Rocl R()l kRecZ
and the impedance locus takes the form of a single semicircle in the complex
plane (Figure 4.4.24) resulting from a resistance R..;Ry/(R..; + Ry;) in paral-
lel with the capacitance C.. + kR....

2. Small k (k << ®), in which case Eq. (92) becomes
1 1 Jjk

YY)y =—+——-——"— 95
7 R.. R. Ry ©3)

(94)

_z

=
1 1
LI
[Rm Rmil

Figure 4.4.24. Film-solution interface according to Eq. (89) for large k. (Reprinted with permission
from R. D. Armstrong and K. Edmondson, The Impedance of Metals in the Passive and Transpassive
Regions, Electrochim. Acta 18, 937-943, [1973]. Copyright 1973 Pergamon Journals Ltd.)
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Figure 4.4.25. Complex plane impedance diagrams for film-solution interface according to
Eq. (93) for small k. (After Armstrong and Edmondson [1973])

{e)

indicating that two semicircles will appear in the complex plane according
to the relative values of A and B:

_ R.. + Ry, 96
R.i + Ry 96)
=Bt 97
&l +Ro<)2 ( )

Thus, for A > B >0 and B > A > 0, the complex plane impedance loci shown in
Figures 4.4.25a and b are obtained, whereas for B > 0 > A that shown in Figure
4.4.25¢ results. The latter case occurs because R, may be positive or negative,
depending upon the relative values of the differentials contained in Eq. (87).
Provided that Ry, is negative, but that IR..;| > IR,|, second-quadrant behavior at low
frequencies is predicted, terminating in a negative resistance at @ — 0. The low-
frequency inductive response predicted in the second case (B > A > 0) is also of
considerable practical and theoretical interest, because fourth-quadrant behavior is
frequently observed experimentally.

At this point it is worthwhile pausing to consider the properties of the total
impedance of the interphase system consisting of the metal—film interface, the film,
and the film-solution interface. According to Eq. (54) and subsequent expressions
for Z,, Z;, and Zy,, the total impedance becomes
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ZT=RE+W+L—J'(W+L) 9%)
X2 +Y? X2 +Y?
W=M (99)
Oy +0,
2 2
yo L1 (“’_+’<_j (100)
R>ol k2+w2 sz R()]
11
_ ok (———j+w€m (101)
k*+w? R, Ry

These rather complicated expressions predict that a variety of impedance loci in the
complex plane might be observed, depending upon the frequency range employed
and the relative values of the parameters contained in Eqgs (98)—(101).

By way of illustration, we calculate complex impedance diagrams for the case
of a passive film in which only anion vacancies are mobile and for which k [Eq.
(90)] is large. Thus, for k >> w, oy >> 0y, and assuming that no redox reactions
occur at the film—solution interface, then the total impedance becomes

4= (az +io2b2 +O-°wl/2]_j( a’ er(ij)zb2 +Gowil/2) (102
where
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Impedance diagrams for a passive film, computed using Eq. (102), are displayed
in Figure 4.4.26. These diagrams show a partially resolved semicircle at high fre-
quencies and a low-frequency Warburg response. These same general features are
exhibited by the impedance data for passive Ni(IIl) in phosphate buffer solution, as
shown in Figure 4.4.19. The calculated impedance spectra (Figure 4.4.26) show that
as the kinetics of the interfacial ion exchange processes become slower (increasing
Ry,), the impedance becomes increasingly dominated by the nondiffusional compo-
nent. In the limit of sufficiently slow interfacial reactions but fast transport of vacan-
cies across the film, the impedance locus takes the form of a semicircle, which is
similar to that expected for a purely capacitive (dielectric)