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The book presents ideas by H. Poincaré and H. Minkowski
according to those the essence and the main content of te rel
tivity theory are the following: the space and time form aqua
four-dimensional continuum supplied by the pseudo-Eeditge-
ometry. All physical processes take place just in this fdianen-
sional space. Comments to works and quotations relatedgo th
subject by L. de Broglie, P.A.M. Dirac, A. Einstein, V.L. Giourg,

S. Goldberg, P. Langevin, H.A. Lorentz, L.l. Mandel'stamNHn-
kowski, A. Pais, W. Pauli, M. Planck, A. Sommerfeld and H. Wey
are given in the book. It is also shown that the special thebry
relativity has been created not by A. Einstein only but evea t
greater extent by H. Poincaré.

The book is designed for scientific workers, post-graduates
and upper-year students majoring in theoretical physics.
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of Henri Poincaré — the greatest mathematician,
mechanist, theoretical physicist

Preface

The special theory of relativity “resulted from the joint efforts
of a group of great researchers — Lorentz, Poin@&rEinstein,
Minkowski” (Max Born).

“Both Einstein, and Poincag, relied on the preparatory works
of H.A. Lorentz, who came very close to the final result, butsva
not able to make the last decisive step. In the coincidenceesf
sults independently obtained by Einstein and Poinéarsee the
profound sense of harmony of the mathematical method and the
analysis, performed with the aid of thought experiments leds
on the entire set of data from physical experimentW. Pauli,
1955).

H. Poincaré, being based upon the relativity principlarfor
lated by him for all physical phenomena and upon the Lorentz
work, has discovered and formulated everything that coeptse
essence of the special theory of relativity. A. Einstein s@%ing
to the theory of relativity from the side of relativity pripde for-
mulated earlier by H. Poincaré. At that he relied upon id®as
H. Poincaré on definition of the simultaneity of events adog
in different spatial points by means of the light signal.tJasthis
reason he introduced an additional postulate — the constdrice
velocity of light. This book presents a comparison of thechaty
A. Einstein of 1905 with the articles by H. Poincaré and ifiles
what is thenew content contributed by each of them. Somewhat
later H. Minkowski further developed Poincaré’s approaSnce
Poincaré’s approach was more general and profound, osepre
tation will precisely follow Poincaré.



According to Poincaré and Minkowski, the essence of nelati
ity theory consists in the followinghe special theory of relativ-
ity is the pseudo-Euclidean geometry of space-time. All phst
ical processes take place just in such a space-tim&he conse-
guences of this postulate are energy-momentum and angolar m
mentum conservation laws, the existence of inertial refegesys-
tems, the relativity principle for all physical phenomeharentz
transformations, the constancy of velocity of light in Gadin co-
ordinates of the inertial frame, the retardation of time, ltlorentz
contraction, the possibility to exploit non-inertial reface sys-
tems, the clock paradox, the Thomas precession, the Safinac e
fect, and so on. Series of fundamental consequences hawe bee
obtained on the base of this postulate and the quantum sotion
and the quantum field theory has been constructed. The preser
vation (form-invariance) of physical equations in all it ref-
erence systems mean that pllysical processesaking place in
these systems under the same conditionsdertical. Just for
this reason alhatural etalons arethe samein all inertial refer-
ence systems.

The author expresses profound gratitude to Academicidmeof t
Russian Academy of Sciences Prof. S.S. Gershtein, Prof.ReA
rov, Prof. N.E. Tyurin, Prof. Y.M. Ado, senior research asate
A.P. Samokhin who read the manuscript and made a number of va-
luable comments, and, also, to G.M. Aleksandrov for sigaific
work in preparing the manuscript for publication and cortipt
Author and Subject Indexes.

A.A.Logunov
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1. Euclidean geometry

In the third century BCEuclid published a treatise on math-
ematics, the“Elements”, in which he summed up the preceding
development omathematics in antique Greecelt was precisely
in this work that the geometry of our three-dimensional spac
Euclidean geometry —was formulated.

This happened to be a most important step in the development
of both mathematics and physics. The point is that geomeiry o
ginated from observational data and practical experiences.
it arose via the study of Nature. But, since all natural pmeno
ena take place in space and time, the importance of geonweatry f
physics cannot be overestimated, and, moreover, geonsefig- i
tually a part of physics.

In the modern language of mathematics the essence of Eu-
clidean geometry is determined by the Pythagorean theorem
In accordance with the Pythagorean theorem, the distanee of
point with Cartesian coordinatesy, z from the origin of the re-
ference system is determined by the formula

0% = 2% + % + 22, (1.2)

or in differential form, the distance between two infinitaaily
close points is

(d0)? = (dx)* + (dy)* + (d=)*. (1.2)

Heredx, dy, dz are differentials of the Cartesian coordinates. Usu-
ally, proof of the Pythagorean theorem is based on Euclix's a
ioms, but it turns out to be that it can actually be considexed
definition of Euclidean geometry. Three-dimensional spaee
termined by Euclidean geometry, possesses the propeftles o
mogeneity and isotropy. This means that there exist no fangu
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points or singular directions in Euclidean geometry. Byfqen-
ing transformations of coordinates from one Cartesianreefse
systemy, y, z, to anothery’, v/, 2/, we obtain

€2 — 2:'2 _|_y2 + 22 — x/2 +y/2 + 2/2. (13)

This means that the square distariégs an invariant, while its
projections onto the coordinate axes are not. We especiathy
this obvious circumstance, since it will further be seer shieh a
situation also takes place in four-dimensional space;tsogcon-
sequently, depending on the choice of reference systemaitesp
time the projections onto spatial and time axes will be netat
Hence arises the relativity of time and length. But this essuil
be dealt with later.

Euclidean geometry became a composite part of Newtonian
mechanics. For about two thousand years Euclidean geomasry
thought to be the unique and unchangeable geometry, in @pite
the rapid development of mathematics, mechanics, and gysi

It was only at the beginning of the 19-th century that the
Russian mathematician Nikolai Ivanovich Lobachevsky made
the revolutionary step — a new geometry was constructed — the
Lobachevsky geometry. Somewhat later it was discovered by
the Hungarian mathematician Bolyai.

About 25 years later Riemannian geometries were developed
by the German mathematician Riemann. Numerous geometrical
constructions arose. As new geometries came into beingsthe i
sue of the geometry of our space was raised. What kind was it?
Euclidean or non-Euclidean?



2. Classical Newtonian mechanics

All natural phenomena proceed in space and time. Precisely f
this reason, in formulating the laws of mechanics in thel.@en-
tury, Isaac Newton first of all defined these concepts:

“Absolute Space, in its own nature, without regard
to any thing external, remains always similar and im-
moveable”.

“Absolute, True, and Mathematical Time, of it self,
and from its own nature flows equably without regard
to any thing external, and by another name is called
Duration”.

As the geometry of three-dimensional space Newton actually
applied Euclidean geometry, and he chose a Cartesian metere
system with its origin at the center of the Sun, while its éhages
were directed toward distant stars. Newton consideredgaigc
such a reference system to be “motionless”. The introdnatio
absolute motionless space and of absolute time turned dug to
extremely fruitful at the time.

The first law of mechanics, or the law of inertia, was formu-
lated by Newton as follows:

“Every body perseveres in its state of rest, or of
uniform motion in a right line, unless it is compelled
to change that state by forces impressed thereon”.

The law of inertia was first discovered by Galileo. If, in nuot
less space, one defines a Cartesian reference system,rtemn, i
cordance with the law of inertia, a solitary body will moverad
a trajectory determined by the following equations:

T = U,t, Y = vyt, z = w,t. (2.1)
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Here,v,, v,, v, are the constant velocity projections, their values
may, also, be equal to zero.

In the book“Science and Hypothesis” H. Poincaré formu-
lated the following general principle:

“The acceleration of a body depends only on the
positions of the body and of adjacent bodies and on
their velocities. A mathematician would say that the
motions of all material particles of the Universe are
determined by second-order differential equations.

To clarify that we are here dealing with a natural
generalization of the law of inertia, | shall permit my-
self to mention an imaginary case. Above, | pointed
out that the law of inertia is not oud priori inherent
attribute; other laws would be equally consistent with
the principle of sufficient foundation. When no force
acts on a body, one could imagine its position or ac-
celeration to remain unchangeable, instead of its ve-
locity.

Thus, imagine for a minute, that one of these two
hypothetical laws is actually a law of Nature and that
it occupies the place of our law of inertia. What would
its natural generalization be? Upon thinking it over
for a minute, we shall find out.

In the first case it would be necessary to consider
the velocity of the body to depend only on its position
and on the position of adjacent bodies; in the second
— that a change in acceleration of the body depends
only on the positions of the body and of adjacent bod-
ies, on their velocities and on their accelerations.

Or, using the language of mathematics, the diffe-
rential equations of motion would be in the first case
of the first order, and in the second case — of the third
order”.
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Newton formulated the second law of mechanics as follows:

“The alteration of motion is ever proportional to
the motive force impressed; and is made in the di-
rection of the right line in which that force is impressed”.

And, finally, the Newton'’s third law of mechanics:
“To every Action there is always opposed an equal
Reaction: or the mutual actions of two bodies upon
each other are always equal, and directed to contrary
parts”.
On the basis of these laws of mechanics, in the case of central
forces, the equations for a system of two particles in a esies
system “at rest” are:

&7 7 — 7
My =L = F(|f — 7 ]) =——
Va2 (I72 T1|)|F2—F1|’
(2.2)
&7, 7 — 7
YT e — 2
2 dt2 (|T2 T1|)|772_771|

Here M, and M, are the respective masses of the first and second
particles; is the vector radius of the first particlg,is the vector
radius of the second particle. The functibrreflects the character
of the forces acting between bodies.

In Newtonian mechanics, mostly forces of two types are con-
sidered: of gravity and of elasticity.

For the forces of Newtonian gravity

My My
F(lry —11|) = G=——= 2.3
(‘T2 Tl‘) |,r—,»2_7;»1‘27 ( )
G is the gravitational constant.
For elasticity forces Hooke’s law is
F(|ry — ) = k[ry — 1], (2.4)

k is the elasticity coefficient.
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Newton’s equations are written in vector form, and, consequ
ently, they are independent of the choice of three-dimernadicef-
erence system. From equations (2.2) it is seen that the ntamen
of a closed system is conserved.

As it was earlier noted, Newton considered equations (2.2) t
hold valid only in reference system at rest. But, if one tales
reference system moving with respect to the one at rest with a
constant velocity’/

—/

Pl =7 - it (2.5)

it turns out that equations (2.2) are not altered, ithey remain
form-invariant, and this means that no mechanical phenom-
ena could permit to ascertain whether we are in a state of rest
or of uniform and rectilinear motion. This is the essence ofle
relativity principle first discovered by Galileo. The transfor-
mations (2.5) have been termed Galilean

Since the velocity' in (2.5) is arbitrary, there exists an infinite
number of reference systems, in which the equations refaiin t
form. This means, that in each reference system the law dfane
holds valid. If in any one of these reference systems a boulyas
state of rest or in a state of uniform and rectilinear motiben in
any other reference system, related to the first by transftom
(2.5), it will also be either in a state of uniform rectilimgaotion
or in a state of rest.

All such reference systems have been termed inertial. The
principle of relativity consists in conservation of the fom of
the equations of mechanics in any inertial reference system
We are to emphasize thiat the base of definition of an inertial
reference system lies the law of inertia by Galileo According
to it in the absence of forces a body motion is described lBalin
functions of time.

But how has an inertial reference system to be defined? Newto-
nian mechanics gave no answer to this question. Nevertehes
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reference system chosen as such an inertial system hadgits or
at the center of the Sun, while the three axes were directeaktb
distant stars.

In classical Newtonian mechanics time is independent of the
choice of reference system, in other words, three-dimeasgpace
and time are separated, they do not form a unique four-dimneals
continuum.

Isaac Newton's ideas concerning absolute space and adsolut
motion were criticized in the 19-th century by Ernst Mach.dda
wrote:

“No one can say anything about absolute space
and absolute motion, this is only something that can
be imagined and is not observable in experiments”.

And further:

“Instead of referring a moving body to space (to
some reference system), we shall directly consider its
relation to bodies of the world, only in this
way it is possible to define a reference system
...even in the most simple case, when we apparently
consider the interaction between only t w o masses, it
isimpossible tobecome distracted from the rest
of the world. ...If a body rotates with respect to the
sky of motionless stars, then there arise centrifugal
forces, while if it rotates around another body,
instead of the sky of motionless stars, no centrifugal
forces will arise. | have nothing against calling the
first revolutiona b solute, ifonlyone does not for-
get that this signifies nothing but revolutionrelative
to the sky of motionless stars”.

Therefore Mach wrote:
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“...there is no necessity for relating the Law of iner-
tia to some special absolute space”.

All this is correct, since Newton did not define the relation
of an inertial reference system to the distribution of mated,
actually, it was quite impossible, given the level of phgsievel-
opment at the time. By the way, Mach also did not meet with
success. But his criticism was useful, it drew the attentibsci-
entists to the analysis of the main concepts of physics.

Since we shall further deal with field concepts, it will befuse
to consider the methods of analytical mechanics developadgl
the 18-th and 19-th centuries. Their main goal, set at the,tim
consisted in finding the most general formulation for clesisne-
chanics. Such research turned out to be extremely imposiaice
it gave rise to methods that were later quite readily gereealto
systems with an infinite number of degrees of freedom. Rebcis
in this way was a serious theoretical start created, thatsuas
cessfully used of in the 19-th and 20-th centuries.

In his “Analytic Mechanics”, published in 1788, Joseph La-
grange obtained his famous equations. Below we shall presen
their derivation. In an inertial reference system, Newsoggua-
tions for a set ofV material points moving in a potential field
have the form

dw, oUu
e Y o192 N 26
M T o 7 (2.:6)
In our case the forcé, is
- ou
.= ——. 2.7
f o (2.7)

To determine the state of a mechanical system at any moment of
time it is necessary to give the coordinates and velocitfeallo
the material points at a certain moment of time. Thus, thie sta
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of a mechanical system is fully determined by the coordmatel
velocities of the material points. In a Cartesian referesystem
Egs. (2.6) assume the form

dv! 1 dv? 9 dv?
Me—— = fo, Me—==f, My—> =
dt dt dt

If one passes to another inertial reference system and makes
use of coordinates other than Cartesian, then it is readép shat
the equations written in the new coordinates differ esatintin
form from equations (2.8). Lagrange found for Newton’s ngeth
ics such a covariant formulation for the equations of motioat
they retain their form, when transition is made to new vdesab

Let us introduce, instead of coordinatés new generalized
coordinates¢*, A = 1,2,...,n, heren = 3N. Let us assume
relations

13 (2.8)

Fa :Fa(q%"'v(bwt)' (29)
After scalar multiplication of each equation (2.6) by vecto
or.,
— 2.10
20, (2.10)

and performing addition we obtain

dv, Or, ou  or,
e = 2% N=1,2,...,n. 2.11
m dt  0qy ory  O0qx " ( )
Here summation is performed over identical indiees
We write the left-hand part of equation (2.11) as

d or, d (or,
1. 0_)0—0 - o'_)o'_ - . 212
dt |:m v 8Q)l Mo¥ dt <8Q)\) ( )
Since P o7
g, = 2o = oy 4 To (2.13)

dt N anqA E’
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hence, differentiating (2.13) with respecigowe obtain the equal-
ity

or, _ 00,
Oqn O
Differentiating (2.13) with respect tg, we obtain
o, 1, | N 0?7,
00, 04,00, 0tdg,
But, on the other hand, we have
d (or, o°r, 0?7,
— 7)) = "4 —. 2.16
dt (5%) 94,00, * otoq, (2.16)
Comparing (2.15) and (2.16) we find

d (0r, v,

(2.14)

(2.15)

In formulae (2.13), (2.15) and (2.16) summation is perfairoeer
identical indices\.

Making use of equalities (2.14) and (2.17) we represent ex-
pression (2.12) in the form

d[ o [mguv? 9 [ mgv?
o (5%)) o ("57)- e

Since (2.18) is the left-hand part of equations (2.11) weaiobt
Lagrangian equations
d (8T) or  ou

Bl (i I W T O ) 2.19
dt \ 94y oq oq (2.19)

HereT is the kinetic energy of the system of material points

T="9"0 (2.20)
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summation is performed over identical indieedf one introduces
the Lagrangian functioi as follows

L=T-1, (2.21)

then the Lagrangian equations assume the form

d (0L OL
E<a—%>——_0,)\_1,2,...,n. (2.22)

The state of a mechanical system is fully determined by the
generalized coordinates and velocities. The form of Lagjean
equations (2.22) is independent of the choicgemneralized co-
ordinates. Although these equations are totally equivalent to the
set of equations (2.6), this form of the equations of cladsite-
chanics, however, turns out to be extremely fruitful, sin@gens
up the possibility of its generalization to phenomena wihielfar
beyond the limits of classical mechanics.

The most general formulation of the law of motion of a me-
chanical system is given by thginciple of least action (or the
principle of stationary action). The action is composeddsivs

t2

S = /L(q,q)dt. (2.23)
t1
The integral (functional) (2.23) depends on the behavidturc-
tions ¢ and ¢ within the given limits. Thus, these functions are

functional arguments of the integral (2.23). The leastoaxcgirin-
ciple is written in the form

t2

5S = 6/L(q, g)dt = 0. (2.24)

t1
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The equations of motion of mechanics are obtained from 4
varying the integrand expression

to

/ a—Léq + a—l,/éq dt = 0. (2.25)
dq aq

t1

Heredq anddq represent infinitesimal variations in the form of the
functions. The variation commutes with differentiatioa, s

_4a
Cdt

Integrating by parts in the second term of (2.25) we obtain

oq (q). (2.26)

to

2
oL d oL
+/ (8_q -8 a_q') Sqdt =0.  (2.27)

1t

Since the variationgq at pointst; andt, are zero, expression
(2.27) assumes the form

t2

oL d 0L
08 = — — — - — | dqdt = 0. 2.28
[ (5 - 50) (229
t1
The variationdq is arbitrary within the interval of integration, so,
by virtue of the main lemma of variational calculus, froméntre
necessary condition for an extremunfollows in the form of the
equality to zero of the variational derivative

5L L d <0L)

dq  dt\9q

- — 0. (2.29)

Such equations were obtained by Leonard Euler in the codrse o
development of variational calculus. For our choice of fiorTtL,
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these equations in accordance with (2.21) coincide withLtne
grangian equations.

From the above consideration it is evident that mechanical m
tion satisfying the Lagrangian equations provides foremum of
the integral (2.23), and, consequently, the action hastestay
value.

The application of the Lagrangian function for describing a
mechanical system with a finite number of degrees of freedom
turned out to be fruitful, also, in describing a physicaldiglo-
ssessing an infinite number of degrees of freedom. In theafase
a field, the function) describing it depends not only on time, but
also on the space coordinates. This means that, instead @éth
ablesq,, ¢, of a mechanical system, it is necessary to introduce

the variables)(z"), a—wA Thus, the field is considered as a me-

chanical system with an infinite number of degrees of freedom
We shall see further (Sections 10 and 15) how the principle of
stationary action is applied in electrodynamics and otatdield
theory.

The formulation of classical mechanics within the framekor
of Hamiltonian approach has become very important. Conside
certain quantity determined as follows

H = pyi, — L, (2.30)

and termed the Hamiltonian. In (2.30) summation is perfarme
over identical indices. We define thegeneralized momentum

as follows:
oL

o — ~F-. - 2.31
Pe =i (2.31)
Find the differential of expression (2.30)

dH = pUdQU + QUdpo - oL dqa — oL dqg — a—Ldt (232)

945 iy Ot
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Making use of (2.31) we obtain

oL oL

dH = g,dp, — adqg ~ Zar (2.33)

ot
On the other handH is a function of the independent variables
4-, Do @ndt, and therefore

DI OH oH
af = g0+ Mg 2.34
g, "1 T 5, e T (2:34)

Comparing (2.33) and (2.34) we obtain

. OH 9L  OH 9L  OH

4o = o 0q 04 ot ot (2.35)

These relations were obtained by transition from independei-
ablesy,, ¢, andt to independent variableg, p, andt.

Now, we take into account the Lagrangian equations (2.22) in
relations (2.35) and obtain the Hamiltonian equations

0oH OH
qO’ apa Y pO’ aqo— ( 36)

When the Hamiltoniar! does not depend explicitly on time,

OH
= =0, (2.37)

we have i 8H SH
— =y + — Py 2.38
dt 8ng + 8p0p ( )

Taking into account equations (2.36) in the above exprassie
obtain

dH
— =0 2.39
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this means that the Hamiltonian remains constant duringnbte
on.

We have obtained the Hamiltonian equations (2.36) making
use of the Lagrangian equations. But they can be found aiso di
rectly with the aid of the least action principle (2.24),a§L, we
take, in accordance with (2.30), the expression

L:pUCja_H7
t

r H
0S = /5pa (dqa — %dt) —

t1

to
oH
- /5% (dpg + —dt) + Do0qs
04y

t1

to
=0.

t1

Since variationgg, at the pointg; andt, are zero, while inside
the interval of integration variations;,, dp, are arbitrary, then,
by virtue of the main lemma of variational calculus, we obtiie
Hamiltonian equations

. OH ) 0OH
4o = 8—7 Po = —5—-
Po

If during the motion the value of a certain function remaiong-c
stant
f(a,p,t) = const (2.40)

then it is called as integral of motion. Let us find the equabd
motion for functionf.
Now we take the total derivative with respect to time of ex-
pression (2.40):
df _of  of. of .

_or,of . _—0. 2.41
it~ ot Tag e T g e =0 (2.41)
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Substituting the Hamiltonian equations (2.36) into (2,448 ob-

tain

of ~of OH of OH

o " og o, op 0g, 0 @42
The expression

of of

04, Opr| _0f 09 _0f 09
dg 99| 04 Ops I Ogo
0q¢s  Ops

(f,9) =

(2.43)

has been termed the Poisson bracket. In (2.43) summatiat-is p
formed over the index.

On the basis of (2.43), Eq. (2.42) for functigrcan be written
in the form

g—{+(f,H) = 0. (2.44)
Poisson brackets have the following properties
(fag) - _(gvf)a
(fi + fo, 9) = (f1,9) + (f2,9), (2.45)
(fife,9) = fi(f2,9) + f2(f1,9),
(f:(g,0) + (g (h, ) + (h, (£, 9)) = 0. (2.46)
Relation (2.46) is called th#acobi identity. On the basis of (2.43)
__of _of
(f7 QU) - 8])0 ) (f7 pa) - 8q0 . (247)

Hence we find

(q>\7 QU) - 07 (p)npa) = 07 (Q)npa) = 6)\0- (248)



2. Classical Newtonian mechanics 21

In the course of development of the quantum mechanics, by
analogy with the classical Poisson brackets (2.43), thegeated
guantum Poisson brackets, which also satisfy all the cromdit
(2.45), (2.46). The application of relations (2.48) for gtuam
Poisson brackets has permitted to establish the commuitadio
lations between a coordinate and momentum.

The discovery of the Lagrangian and Hamiltonian methods in
classical mechanics permitted, at its time, to generahzeextend
them to other physical phenomena. The search for various+ep
sentations of the physical theory is always extremely irtgour
since on their basis the possibility may arise of their galieation
for describing new physical phenomena. Within the depthb®f
theory created there may be found formal sprouts of the éutur
theory. The experience of classical and quantum mechasasb
witness to this assertion.
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3. Electrodynamics. Space-time geometry

Following the discoveries made by Faraday in electromagmet
Maxwell combined magnetic, electric and optical phenonaarh
thus, completed the construction of electrodynamics byingi
out his famous equations.

H. Poincaré in the bookrhe importance of science* wrote
the following about Maxwell’s studies:

“At the time, when Maxwell initiated his studies,
the laws of electrodynamics adopted before him ex-
plained all known phenomena. He started his work
not because some new experiment limited the impor-
tance of these laws. But, considering them from a
new standpoint, Maxwell noticed that the equations
became more symmetric, when a certain term was in-
troduced into them, although, on the other hand, this
term was too small to give rise to phenomena, that
could be estimated by the previous methods.

A priori ideas of Maxwell are known to have waited
for their experimental confirmation for twenty years;
if you prefer another expression, — Maxwell antici-
pated the experiment by twenty years. How did he
achieve such triumph?

This happened because Maxwell was always full of
a sense of mathematical symmetry .. ."

According to Maxwellthere exist no currents, except closed
currents. He achieved this by introducing a small ternma-¢is-
placement current, which resulted in the law of electric charge
conservation following from the new equations.

In formulating the equations of electrodynamics, MaxweHl a
plied the Euclidean geometry of three-dimensional spadeasn
solute time, which is identical for all points of this spauided
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by a profound sense of symmetry, he supplemented the eggatio
of electrodynamics in such a way that, in the same time exipigi
available experimental facts, they were the equations axfted-
magnetic waves. He, naturally, did not suspect that thernmie

tion on the geometry of space-time was concealed in the equa-
tions. But his supplement of the equations of electrodyoami
turned out to be so indispensable and precise, that it glézdl

H. Poincaré, who relied on the work of H. Lorentz, to the disc

ery of the pseudo-Euclidean geometry of space-time. Belmv,
shall briefly describe, how this came about.

In the same time we will show that the striking desire of some
authors to prove that H. Poincaréd's not made the decisive stép
to create the theory of relativity is base upon both misustded-
ing of the essence of the theory of relativity and the shaknawl-
edge of Poincaré works. We will show this below in our comtaen
to such statements. Just for this reason in this book | ptesen
sults, first discovered and elucidated by the light of comseness
by H.Poincaré minutely enough. Here the need to compare the
content of A. Einstein’s work of 1905 both with results of fiub
cations [2, 3] by H. Poincaré, and with his earlier worksunally
arises. After such a comparison it becomes clear wkat each
of them has produced.

How it could be happened that the outstanding research of
Twentieth Century — works [2,3] by H. Poincaré were used in
many ways but in the same time were industriously consigned
to oblivion? It is high time at least now, a hundred years later, to
return everyone his property. It is also our duty.

Studies of the properties of the equations of electrodyoami
revealed them not to retain their form under the Galileanstra
formations (2.5), i. e. not to be form-invariant with respez
Galilean transformations. Hence the conclusion follovet the
Galilean relativity principle is violated, and, conseqtigrthe ex-
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perimental possibility arises to distinguish between amertial
reference system and another with the aid of electromagoeti
optical phenomena. However, various experiments perfdyes
pecially Michelson’s experiments, showed that it is implolgsto
find out even by electromagnetic (optical) experimentshwipre-
cision up to(v/c)?, whether one is in a state of rest or uniform and
rectilinear motion. H. Lorentz found an explanation for thsults
of these experiments, as H. Poincaré notemhly by piling up
hypotheses.

In his book“Science and hypothesis®, published in Russia
in 1904, H. Poincaré noted:

“I shall now permit myself a digression to explain,
why, contrary to Lorentz, | do not think that more
precise observations will sometime be able to reveal
anything other, than relative displacements of mate-
rial bodies. Experiments have been performed, that
should have revealed terms of the first order. The
result was negative; could this had been a game of
chance? Nobody could admit this; a general expla-
nation would was sought, and Lorentz found it: he
showed that the first-order terms mutually cancelled
out. This did not occur in the case of the second-
order terms. Then, experiments of higher precision
were performed, which again yielded a negative re-
sult. Once more, this could not have been a game of
chance, — an explanation had to be found, and it ac-
tually was. There is never any lack of explanations:
hypotheses represent a fund, that is inexhaustible.

This is not all: who will not notice that chance still
plays an important part, here? Was it not a strange
chance coincidence, that gave rise to the known cir-
cumstance just at the right time to cancel out the first-
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order terms, while another, totally different, was res-

ponsible for cancelling out the second-order terms?
No, it is necessary to find one and the same expla-
nation for both cases, and then the idea will natu-

rally arise, that the same thing must equally occur in

the case of higher-order terms and that their mutual

cancellation will possess the nature of absolute preci-
sion”.

In 1904, on the basis of experimental facts, Henri Poincaré
generalized the Galilean relativity principle to all natiupheno-
mena. He wrote J1]:

“The relativity principle, according to which the
laws of physical phenomena must be identical for an
observer at rest and for an observer undergoing uni-
form rectilinear motion, so we have no way and can-
not have any way for determining whether we are un-
dergoing such motion or not”.

Just thisprinciple has become the key ondor the subsequent
development of both electrodynamics and the theory ofivitiat
It can be formulated as follow3.he principle of relativity is the
preservation of form by all physical equations in any inertial
reference system

But if this formulation uses the notion of theertial reference
systenthen it means that the physical law of inertia by Galilei is al
ready incorporated into this formulation of the relatiitynciple.
This is just the difference between this formulation andrfola-
tions given by Poincaré and Einstein.

Declaring this principle Poincaré precisely knew that ofigs
consequences was the impossibilityadisolute motion because
all inertial reference systems were equitable It follows from
here that the principle of relativity by Poincaré does remjuire
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a denial ofether in general, it only deprives ether of relation to
any system of reference. In other words, it removesether in
Lorentz sense. Poincaré does not exclude the concepherf be-
cause itis difficult to imagine more absurd thing than empgcs.
Therefore the wore@ther, which can be found in the Poincaré ar-
ticles even after his formulation of the relativity prinlgphas an-
other meaning, different of the Lorengther. Just thisether has
to satisfy the relativity principle. Also Einstein has comeethe
idea of ether in 1920.

In our time such a role is played by physical vacuum. Just this
point is up to now not understood by some physicists (we keep s
lence about philosophers and historians of science). Sattecer-
roneously attribute to Poincaré the interpretation cdtieity prin-
ciple as impossibility to register the translational umfomotion
relative to ether. Though as the reader can see there arento wo
“ether” in the formulation of the relativity principle.

One must distinguish between ti@alilean relativity prin-
ciple and Galilean transformations. While Poincaré extended
theGalilean relativity principle to all physical phenomenaith-
out altering its physical essencethe Galilean transformations
turned out to hold valid only when the velocities of bodies ar
small as compared to the velocity of light.

Applying this relativity principle to electrodynamical eho-
mena in ref.[3], H. Poincaré wrote:

“This impossibility of revealing experimentally the
Earth’s motion seems to represent a general law of
Nature; we naturally come to accept this law, which
we shall term theelativity postulate, and to accept
it without reservations. It is irrelevant, whether this
postulate, that till now is consistent with experiments,
will or will not later be confirmed by more precise
measurements, at present, at any rate, it is interest-
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ing to see, what consequences can be deduced from
it”.

In 1904, after the critical remarks made by Poincaré, H. Lo-
rentz made a most important step by attempting again to write
electrodynamics equations in a moving reference systerstean-
ing that thewave equation of electrodynamicgemainedunal-
tered (form-invariant) under the following transformations bkt
coordinates and time:

X' = (X —oT), T’=7<T—3X>,Y’:Y, 7' =7, (3.1)

c2

Lorentz named” as themodified local time in contrast tdocal
time 7 = 7"/~ introduced earlier in 1895

1= ——. (3.2)
==
wherec is the electrodynamic constant.

H. Poincaré termed these transformations the Lorentsfinan
mations. The Lorentz transformations, as it is evident f{8r),
are related to two inertial reference systems. H. Lorendznait
establish the relativity principle for electromagneticepbmena,
since he did not succeed in demonstrating the form-inveear
all the Maxwell-Lorentz equations under these transfoionat

From formulae (3.1) it follows that the wave equation being
independent of translational uniform motion of the refeeesys-
tem is achieved only by changing the time. Hence, the coiwlus
arises, naturally, that for each inertial reference systésmeces-
sary to introduce its own physical time.

In 1907, A. Einstein wrote on this:



28 3. Electrodynamics ...

“However, it unexpectedly turned out to be only ne-
cessary to formulate the concept of time with sufficient
precision to overcome the difficulty, just mentioned.
One had only to understand that the subsidiary quan-
tity introduced by H.A. Lorentz, which he called “lo-
cal time”, must actually be defined as “time”. With
such a definition of time the principal equations of
Lorentz’s theory will satisfy the relativity principle .”. .

Or, speaking more precisely, instead of thee time there arose
themodified local time by Lorentz different for each inertial ref-
erence system.

But H. Lorentz did not notice this, and in 1914 he wrote on that
in detailed article “The two papers by Henri Poincaré onhmat
matical physics”:

“These considerations published by myselfin 1904,
have stimulated Poincérto write his article on the
dynamics of electron where he has given my name to
the just mentioned transformation. | have to note as
regards this that a similar transformation have been
already given in an article by Voigt published in 1887
and | have not taken all possible benefit from it. In-
deed | have not given the most appropriate transfor-
mation for some physical quantities encountered in
the formulae. This was done by Poinéand later by
Einstein and Minkowski. ... had not thought of the
straight path leading to them, since | considered there
was an essential difference between the reference sys-
temsz,y, 2, t and2’,y', 2/, t. In one of them were
used — such was my reasoning — coordinate axes with
a definite position in ether and what could be termed
true time in the other, on the contrary, one simply
dealt with subsidiary quantities introduced with the



3. Electrodynamics ... 29

aid of a mathematical trick. Thus, for instance, the
variablet’ could not be calledimein the same sense
as the variablet. Given such reasoning, | did not
think of describing phenomena in the reference system
',y 2, t'in precisely the same wayas in the refer-
ence system, y, z, t ... | later saw from the article by
Poincaté that, if | had acted in a more systematic man-
ner, | could have achieved an even more significant
simplification. Having not noticed this, | was not able
to achieve total invariance of the equations; my for-
mulae remained cluttered up with excess terms, that
should have vanished. These terms were too small
to influence phenomena noticeably, and by this fact |
could explain their independence of the Earth’s mo-
tion, revealed by observations, but | did not estab-
lish the relativity principle as a rigorous and univer-
sal truth. On the contrary, Poincérachieved total
invariance of the equations of electrodynamics and
formulated therelativity postulate— a term first in-

troduced by him ...l may add that, while thus cor-
recting the defects of my work, he never reproached
me for them. | am unable to present here all the

beautiful results obtained by Poind@r Nevertheless
let me stress some of them. First, he did not restrict
himself by demonstration that the relativistic trans-
formations left the form of electromagnetic equations
unchangeable. He explained this success of transfor-
mations by the opportunity to present these equations
as a consequence of the least action principle and by
the fact that the fundamental equation expressing this
principle and the operations used in derivation of the
field equations are identical in systemsy, z,t and
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'y, 2 ... There are some new notions in this part
of the article, | should especially mark them. Poinear
notes, for example, that in consideration of quanti-
ties z,y, z,t/—1 as coordinates of a point in four-
dimensional space the relativistic transformations re-
duces to rotations in this space. He also comes to idea
to add to the three componems Y, Z of the force a
quantity

T=X{+Yn+ Z¢,

which is nothing more than the work of the force at
a unit of time, and which may be treated as a fourth
component of the force in some sense. When dealing
with the force acting at a unit of volume of a body the
relativistic transformations change quantiti®&s Y, 7,
T+/—1 in a similar way to quantities:, y, z, tv/—1.

| remind on these ideas by Poin&because they are
closed to methods later used by Minkowski and other
scientists to easing mathematical actions in the theory
of relativity.”

As one can see, in the course of studying the article by Paénca
H. Lorentz sees and accepts the possibilitge$cribing pheno-
mena in the reference systenx’, y’, z’, t’ in exactly the same
way as in the reference systenx, y, z, { and that all this fully
complies with the relativity principle, formulated by Poaré.
Hence it follows thaphysical phenomena are identicalif they
take place inidentical conditions in inertial referencsteyns ¢, v,
z,t)yand @', v/, 2/, t'), moving with respect to each other with a ve-
locity ». All this was a direct consequence of tpleysical equa-
tions not altering under the Lorentz transformations, that together
with space rotations form a group. Precisely all this is aoméd,
also, in articles by Poincaré [2, 3].
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H. Lorentz writes in 1915 in a new edition of his botkheory
of electrons” in commentr2*:

“The main reason of my failure was | always thought
that only quantity could be treated as a true time and
that my local time’ was considered only as an aux-
iliary mathematical value. In the Einstein theory, just
oppositet’ is playing the same role as If we want
to describe phenomena as dependent:ony’, 2/, ¢/,
then we should operate with these variables in just
the same way as with, y, z,t ”.

Compare this quotation with the detailed analysis of thex€aié
article given by Lorentz in 1914.

Further he demonstrates in this comment the derivation-of ve
locity composition formulae, just in the same form as it ieo
in article [3] by Poincaré. In commefb* he discusses the trans-
formation of forces, exploits invariant (3.22) in the samayvas
it is done by Poincaré. The Poincaré work is cited only in-co
nection with a particular point. It is surprising but Loremt his
dealing with the theory of relativity even does not cite Rairé
articles [2; 3]. What may happen with Lorentz in the period af
ter 1914? How we can explain this? To say the truth, we are to
mention that because of the war the Lorentz article writtel8i14
has appeared in print only in 1921. But it was printed in thaea
form as Lorentz wrote it in 1914. In fact he seems to confirm by
this that his opinion has not been changed. &Llithis in the long
run does not mean nothing substantial, because now we can
ourselves examine deeper and in more detail who has done the
work, what has been done and what is the level of this work,
being informed on the modern state of the theoryand compar-
ing article of 1905 by Einstein to articles by Poincaré.

The scale of works can be better estimated from the time
distance Recollections of contemporaries are valuable for us as
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a testimony on how new ideas have been admitted by the physi-
cal community of that time. But moreover one may obtain some
knowledge on the ethic of science for some scientists, onpgro
interests, and maybe even something more, which is abgolute
unknown to us.

It is necessary to mention that Lorentz in his article of 1804
calculating his transformations has made an error and asuét re
Maxwell-Lorentz equations in a moving reference frame Haee
come different than electrodynamics equations in the rasté.
These equations were overloadeddmperfluousterms. But Lo-
rentz has not been troubled by this. He would easily see tbeiér
he were nokeep away of the relativity principle. After all, just
the relativity principle requires that equations have taHsesame
in both two reference frames. But he singled out reference
frame directly connected with the ether.

Now, following the early works of H. Poincaré we shall deal
with the definition of simultaneity, on the synchronizatafitlocks
occupying different points of space, and we shall clarify pinys-
ical sense ofocal time, introduced by Lorentz. In the article
“Measurement of time”, published in 1898 (see Collectiéhhe
relativity principle”, compiled by Prof. A.A.Tyapkin), Poincaré
discusses the issue of time measurement in detail. Thidearti
was especially noted in the bo68cience and hypothesis” by
Poincaré, and, therefore, it is quite comprehensible tmauisi-
tive reader.

In this article, for instance the following was said:

“But now let us pass to examples, that are less ar-
tificial; to report on the definition tacitly admitted by
scientists, let us consider their work and find, on the
basis of what rules they determine simultaneity ...

When an astronomer tells me that a certain celes-
tial phenomenon is seen in his telescope at this mo-
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ment, but, however, has taken place fifty years ago, |
attempt to understand, what he wants to say, and, first
of all, I ask him how he knows that, i. e. how he has
measured the velocity of light.

He started by saying that hessumedhe velocity
of light to be constant and, in particular, the same in
all directions. This is precisely the postulate, with-
out which no measurement of this velocity could have
been performed. It will never be possible to test this
postulate directly in any experiment; the latter could
disprove the postulate, if the results of various mea-
surements were inconsistent with each other. We should
consider ourselves lucky that no such contradiction
exists and that the small discrepancies, which may
arise, are readily explained.

In any case this postulate, that is consistent with
the law of sufficient foundation, has been accepted by
everyone; to me it is important in thatprovides a
new rule for revealing simultaneity(singled out by
me.— A.L.) totally different from the one we presented
above”.

It follows from this postulate thatthe value of light veloc-
ity does not depend on velocity of the source of this lightThis
statement is also a straightforward consequence of Maehasit
trodynamics.The above postulate together with the relativity
principle formulated by H. Poincaré in 1904 for all physical phe-
nomena preciselgecome the initial statementsn Einstein work
of 1905.

Lorentz dealt with the Maxwell-Lorentz equations in a “roti
onless” reference system related to the ether. He considbes
coordinatesX, Y, Z to beabsolute and the timél" to be thetrue
time.
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In a reference system moving along tkieaxis with a velocity
v relative to a reference system “at rest”, the coordinatéls ve-
spect to the axes moving together with the reference sysésm h
the values
xr=X—-ul, y=Y, z=17, (3.3)

while the time in the moving reference system was termed by Lo
rentzlocal time (1895) and defined as follows:

r=T-=X. (3.4)
C

He introduced this time so as to be able, in agreement witarexp
mental data, to exclude from the theory the influence of théhisa
motion on optical phenomena in the first order owvér.

This time, as he notedwas introduced with the aid of a
mathematical trick”. The physical meaning olbcal time was
uncovered by H. Poincareé.

In the article“The theory of Lorentz and the principle of
equal action and reaction®, published in 1900, he wrote about
the local time 7, defined as follows (Translation from French
into Russian by V.A. Petrov, translated from Russian intgliEh
by J. Pontecorvo):

“l assume observers, situated at different points, to
compare their clocks with the aid of light signals; they
correct these signals for the transmission time, but,
without knowing the relative motion they are under-
going and, consequently, considering the signals to
propagate with the same velocity in both directions,
they limit themselves to performing observations by
sending signals froml to B and, then, fromB to A.
Thelocal time T is the time read from the clocks thus
controlled. Then, it is the velocity of light, and is
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the velocity of the Earth’s motion, which | assume to
be parallel to the positiv&X' axis, we will have:

v
r=T-5X". (3.5)

Taking into account (3.3) in (3.5) we obtain

T=T <1 — U—) Y (3.6)

The velocity of light in a reference system “at rest“ds In a
moving reference system, in the variabted’, it will be equal, in
the direction parallel to th& axis, to

c—v (3.7)
in the positive, and
c+wv (3.8)

— in the negative direction.
This is readily verified, if one recalls that the velocity @fht
in a reference system “at rest* is, in all directions, eqoal, i. e.

() ()< (m) o

In a moving reference system= X — vT the upper expression
assumes, in the variablesT’, the form

2 _ d_l’ + i + g i + % i
“c=\ar " dT ar ) -
Hence it is evident that in a moving reference system thedioor

: . : _dr ..
nate velocity of a light signal parallel to the aX|sd—; is given as

follows
dx

dT

=C—
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in the positive direction,

dx N
— = C v
dr
— in the negative direction.
The coordinate velocity of light in a moving reference sgste
along theY or Z axis equals the quantity

V2 — o2,

We note that if we had made use of the Lorentz transformations
inverse to (3.1), then taking into account the equality

v 2
22 (dT’ + ng/) — 2 (dX + 0dD")? = A(dT)? — (dX')?,

we would have obtained from Eq\)the expression

o (dX'\?  (dy'\?  [(dzZ'\?

=) (@) +(&F)
which would signify that the velocity of light equatsn all direc-
tions in a moving reference system, too. Let us mention dlab t
the light cone equation remains the same after multiplyimg r of
Egs. (3.1) (Lorentz transformations ) by arbitrary funotig(z).
The light cone equation preserves its form under conforraalst
formations.

Following Poincaré, we shall perform synchronization tod t
clocks in a moving reference system with the aid of Loreritocal
time. Consider a light signal leaving poimt with coordinates
(0,0, 0) at the moment of time,:

To =T (1 — U—Q) . (3.9)

c2
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This signal will arrive at point3 with coordinates, 0, 0) at the
moment of timer,

2
Tb:<T+CfU)(1_Z_2)_j_2x:Ta+g (3.10)

Here, we have taken into account the transmission time dfithe
nal from A to B. The signal was reflected at poiBtand arrived
at pointA at the moment of time;

2
r;=<T+ r L2 )(1—”—2):¢b+3 (3.11)
c— c+v c [

On the basis of (3.9), (3.11) and (3.10) we have

To + T,

2

Thus the definition of simultaneity has been introducedcWwinas
later applied by A. Einstein for deriving the Lorentz traorsha-
tions. We have verified that the Lorentintal time” (3.6) satisfies
condition (3.12). Making use of (3.12) as the initial eqaatfor
defining time in a moving reference system, Einstein arratetie
same Lorentzlbcal time” (3.6) multiplied by an arbitrary func-
tion depending only on the velocity From (3.10), (3.11) we see
that in a reference system moving along texis with thelocal
time 7 the light signal has velocitg along any direction parallel
to the X axis. The transformations, inverse to (3.3) and (3.4), will
be as follows

= Tp- (312)

(Y

T+ <%
T x="TT y_y 7= (3.13)
v
2 2

Since the velocity of light in a reference system “at restt,isn
the new variables, x, y, z we find from Eqs.()\) and (3.13)

dao\ dy\? dz\2
. (E) +<£) +<%) = 722, (3.14)
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We can see from the above that to have the velocity of lighakequ
to c in any direction in the moving reference system, also, it is
necessary to multiply the right-hand sides of transforamati(3.3)
and (3.4) forx andr by v and to divide the right-hand sides in
transformations (3.13) fof' and X by ~. Thus, this requirement
leads to appearance of the Lorentz transformations here.

H. Lorentz in 1899 used transformation of the following form

X' =X —oT), Y' =Y, Z'=2, T’:72<T—£X>,
C

to explain the Michelson experiment. The inverse transétioms
are

X=X 40T, Y=Y, Z=2, T=T+-7X"
C

If H. Lorentz would proposed the relativity principle fol ghys-

ical phenomena and required in this connection that a sgdleri
wave should have the same form in unprimed and primed systems
of reference, then he would come to Lorentz transformatibas

we have in unprimed system of reference

AT - X2 -Y?-72=0,

then according to his formulae this expression in new viggals
as follows

2
02 <T/+%’YX/> o (’)/X/+UT/>2_Y/2_Z/2 :O7

and after some simplifications we obtain

2

CQTIZ <1 _ U_Z) o X/2 _ Y/Z _ Z/2 =0.
C

We see that to guarantee the same form of a spherical wavevin ne
variables as in the old ones it is necessary to change varidbl
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replacing it by new variable

1
T =1
.
After transition to the new variable we obtain Lorentz tifansa-

tions

X' =y(X —oT), Y' =Y, 7 =72 T:7<T—%X),
and the inverse transformations

X=n(X'4uvr), Y=Y, Z=2 T:7<T+:—2X’).

But H. Lorentz has not seen this in 1899. He obtained thess-tra
formations in 1904 only, then he also came closely to therthe
relativity, but did not make the decisive step. Lorentz $farma-
tions (3.1) were obtained in 1900 by Larmor. But he also did no
propose the principle of relativity for all physical phenena and
did not require form-invariance of Maxwell equations untterse
transformations. Therefore Larmor also has not made aidecis
step to construct the theory of relativity.

Precisely the constancy of the velocity of light in any iner-
tial reference system is what A. Einstein chose to underfi@p-
proach to the electrodynamics of moving bodies. But it isvjuted
for not by transformations (3.3) and (3.4), but by the Lozdrdns-
formations.

A. Einstein started from the relativity principle and frommet
principle of constancy of the light velocity. Both prinogsl were
formulated as follows:

“l. The laws according to which states of physical
systems evolve do not depend on the fact whether they
are related to one or another coordinate system mov-
ing uniformly and straightforwardly respectively to each
other.”



40 3. Electrodynamics ...

“2. Every light beam moves in a coordinate system
being at “rest” with a definite velocity V, irrespective
to the fact that this light beam is emitted by a moving
body or a body at rest.”

Let us note thaGalilean principle of relativity is not included
into these principles.

Itis necessary to specially emphasize thaptheciple of con-
stancy of velocity of light, suggested by A. Einstein as tbecond
independent postulateis really a special consequence of require-
ments of the relativity principle by H. Poincaré. This miple was
extended by him on all physical phenomena. To be convinced in
this it is sufficient to consider requirements of the rel&fiprinci-
ple for an elementary process — propagation of the elecgosta
spherical wave. We will discuss this later.

In 1904, in the articléThe present and future of mathema-
tical physics”, H. Poincaré formulates the relativity principle for
all natural phenomena, and in the same article he agaimeetar
Lorentz’s idea ofocal time. He writes:

“...Imagine two observers, who wish to compare their
clocks with the aid of light signals; they exchange
signals, but, knowing that light does not propagate
instantaneously, they exchange them, so to say, by a
crossfire method. When the observer at pdinte-
ceives the signal from poim, his clock should not
show the time shown by the clock at poihtwhen
the signal was sent, but that time increased by a cer-
tain constant, representing the duration of the trans-
mission. Consider, for instance, a signal being sent
from pointA, when the clock there shows tihavhile

the signal is received at poi®, when the clock there
shows the time. The clocks have been tested, if the
delay equal ta represents the duration of the signal
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transmission; to test this, a signal is sent from pdnt
when the clock there shows a tiiyehe signal should

be received at pointl, when the clock there shows a
timet. Then the clocks will be synchronized. And, in-
deed, they show the same time at the same physical in-
stant, but under the condition that both points were at
rest. Contrariwise, the durations of transmission will
not be the same in both directions: in the case, when,
for example, pointA moves toward the optical per-
turbation leavingB, and when point3 moves away
from the perturbation leavingl. Clocks compared in
this way will not show thérue time (the time in the
reference system “at rest*A.L.), they will show the
so-called local time: one clock will be slower, than the
others. But this is irrelevant, since we have no means
to notice this. All phenomena, proceeding, for in-
stance, at4, will be retarding, but identically, and the
observer will not notice it, since his clock is slower;
thus, as it follows from the relativity principle, he will
have no means to know whether he is in a state of rest
or of absolute motion.

This is, regretfully, insufficient, additional hypothe-
ses are required; it is necessary to admit that moving
bodies undergo uniform contraction in the direction
of motion ...”

Such was the situation before the work of Lorentz, which also
appeared in 1904. Here Lorentz presents again the transfioms
connecting a reference system “at rest” with a referenceesys
moving with a velocityv relative to the one “at rest”, which were
termed by Poincaré the Lorentz transformations. In thiskwo
Lorentz, instead of théocal time (3.4) introduced the tim&”,
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equal to
T =~T. (3.15)

Lorentz called timel” as themodified local time. Precisely this
time will be present in any inertial reference system in [Bah
coordinates. It does not violate the condition of synchzation
(3.12)

Below we shall see following Lorentz that the wave equation
does indeed not alter its form under the Lorentz transfaonat
(3.1). Let us check this. The wave equation of electrodysami
has the form:

1 9% 092 02 02
Op= = = — - - = 0. :
¢ <02 ot2  0x2  0y? 822> ¢=0 (3.16)

Here¢ is a scalar function in four-dimensional space, which cleang
under coordinate-time transformations according to theiiz’) =
o(z), cis theelectrodynamic constant that has the dimension of
velocity.

Let us establish the form-invariance of the operatavith res-
pect to transformations (3.1). We represent part of theaiper
in the form

1 92 02 1 0 0 1 0 0

R TE R o (E'%_%><?'%+%>' .17
We calculate the derivatives in the new coordinates, apglfor-
mulae (3.1)
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Hence we find

1 0 0 v 1 0 0
?'E_%_7<1+?><?'ﬁ_axf>’ (3.18)

1 0 0 v 1 0 0
?'E+%_7<1_?><?W+W>' (3.19)

Substituting these expressions into (3.17) we obtain

1 02 02 1 02 02

298 o2 @ o a2 &%)
Taking into account that the variablgsandz in accordance with
(3.1) do not change, on the basis of (3.20) we have

1 9% 092 02 02

2 92 922 9y 022

(3.21)
1 92 9 9% 02

o g ot? B O 12 o ay/Q B 922"

This means that theave equation(3.16)remains form-invari-
ant with respect to the Lorentz transformations (3.1). In other
words, it is the same in both inertial reference systems celgior
instance, it follows that the velocity of a light wave equalfoth
in a reference system “at rest” and in any other referenceesys
moving relative to the one “at rest” with a velocity

We have shown that the Lorentz transformations leave the ope
rator O unaltered, i. e. they conserve the form-invariance of the
wave equation. On the other hand, this computation can be con
sidered as an exact derivation of the Lorentz transformatiased
on the form-invariance of the operatar
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In electrodynamics, the wave equation holds valid outdige t
source both for the scalar and vector potentialsand A, res-
pectively. In this casey is defined as a scalar with respect to
three-dimensional coordinate transformations, dris defined as
a vector with respect to the same transformations. For thewa
equation to be form-invariant under the Lorentz transfdroms it
IS necessary to consider the quantit,'reand/f as components of
the four-dimensional vectot” = (¢, A)

0A4Y =0, v=0,1,2,3.

In 1905 Henri Poincaré first established[2, 3] the invar@aof
the Maxwell-Lorentz equations and of the equations of nmotib
charged particles under the action of the Lorentz force weisipect
to the Lorentz transformations (3.1) on the basis of the 186k
by Lorentz, in which the Lorentz transformations were disred,
and on the relativity principle, formulated by Poincarétie same
year for all natural phenomena. All the above will be dem@tst
in detail in Sections 8 and 9.

H. Poincaré discovered that these transformations, together
with spatial rotations form a group. He was the first to intro-
duce the notion of four-dimensionality of a number of physial
quantities. The discovery of this group together with quantum
ideas created the foundation of modern theoretical physics

Poincaré established that the scalar and vector poténtial ),
the charge density and currenp, pv), the four-velocity(~, v /¢),

the work per unit time and force normalized to unit volur@é,ﬁ/c,

f), as well as the four-force transform like the quantities 7).
The existence of the Lorentz group signifies that in all iaéref-
erence systems the Maxwell-Lorentz equations in Galilemor-c
dinates remain form-invariant, i. e. the relativity pripl is satis-
fied. Hence it directly follows that the descriptions of pberena
are the same both in the reference system z,t and in the ref-
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erence system’, s/, 2/, t’, so, consequently, timg like the other
variablesz, y, z, is relative. Thus, time being relative is a direct
consequence of the existence of the group, which itselésies
a consequence of the requirement to fulfil the relativitygiple
for electromagnetic phenomena. The existence of this gledip
to the discovery of the geometry of space-time.

H. Poincaré discovered a number of invariants of the group
and among these — the fundamental invariant

J=cAT* - X2 -Y? - 72, (3.22)

which arose in exploiting the Lorentz transformatidntestifies
that space and time form a unique four-dimensional contin-
uum of events with metric properties determined by the in-
variant (3.22). The four-dimensional space-time discovered by
H. Poincaré, and defined by invariant (3.22), was later called the
Minkowski space Precisely this is the essence of special relativ-
ity theory. This is why it is related to all physical phenoraetit is
space-time determined by the invariant (3.22) that pra/fdethe
existence of physically equal inertial reference systamnisdture.
However, as earlier in classical mechanics, it remainsaanchow
the inertial reference systems are related to the distobwf mat-

ter in the Universe. From expression (3.22) it follows thaainy
inertial reference system a given quantitin Galilean (Cartesian)
coordinates remains unaltered (form-invariant), whitegtojec-
tions onto the axes change. Thus, depending on the choice of
inertial reference system the projectioAsY, Z, T are relative
guantities, while thequantity J for any givenX, Y, Z, T has an
absolute value A positive intervalJ can be measured by a clock
whereas a negative one — by a rod. According to (3.22), irediff
ential form we have

(do)? = A(dT)? — (dX)* — (dY)? — (d2)™ (3.23)

The quantitydo is called annterval.
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The geometry of space-time, i. e. the space of ever{the
Minkowski space)with the measure (3.23) has been termed
pseudo-Euclidean geometry

As it could be seen from the structure of invariaiytwritten
in orthogonal (Galilean) coordinates, it is always posstblintro-
duce a unique tim&’ for all points of the three-dimensional space.
This means that the three-dimensional space of a giveniahert
reference system is orthogonal to the lines of time. Sinsaya
shall see below, the invariaritin another inertial reference system
assumes the form (3.27), it hence follows that in this refeeesys-
tem the unique time will already be different, it is deteredrby
the variabl€l”. But length will change simultaneously. Thus, the
possibility to introduce simultaneity for all the pointstbfee-di-
mensional space is a direct consequence of the pseudai&aicli
geometry of the four-dimensional space of events.

Drawing a conclusion to all the above, we see that H. Lorentz
found the transformations (3.1), which conserve the fornthef
wave equation (3.16). On the basis of the relativity pritecfpr all
physical phenomena formulated by him in 1904 and of the Ltaren
transformations, Henri Poincaré established form-iiavere of the
Maxwell-Lorentz equations and discovered the pseudoiéeicl
an geometry of space-time, determined by the invarian{3o2
(3.23).

A short exposition of the detailed article [3] was given by
H. Poincaré in the reports to the French academy of scigtes
and published even before the work by Einstein was submitted
for publication. This paper contained a precise and rigember
scription of the solution to the problem of the electrodymaof
moving bodies and, at the same time, an extension of the toren
transformations to all natural forces, independently efrtbrigin.

In this publication H. Poincaré discovered Lorentz groughwac-
cordance to that a whole set of four-dimensional physichles
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transforming similar ta, x, y, z arose. The presence of Lorentz
group automatically provides the synchronization of ckitkany
inertial reference system. So the proper physical timesiisany
inertial system of reference — theodified local time by Lorentz.

In paper [2] relativistic formulae for adding velocitiescathe
transformation law for forces arose for the first time. Thexes-
tence ofgravitational waves propagating with light velocity was
predicted.

It should be emphasized that just the discovery of Lorentz
group provided the uniformity of description of all phydieffects
in all the inertial reference systems in full accordancétie rel-
ativity principle. Just all this automatically providecethelativity
of time and length.

H. Poincaré discovered the invariant (3.22) on the basibef
Lorentz transformations (3.1). On the other hand, applyirg
invariant (3.22) it is easy to derive the actual Lorentz $famma-
tions (3.1). Let the invariant in an inertial reference system have
the form (3.22) in Galilean coordinates. Now, we pass tolzarot
inertial reference system

r=X T, Y=Y, 7 =72 (3.24)
then the invariant/ assumes the form

2 v? 2 2 2 2
J:c<1——)T T — a2 —Y? - 2% (3.25)

02
Hence we have
2

J = c? 1 Y T . —
c? 02
02 1-— C—2
(3.26)
2
—..'EQ 1+ Y/Z o Z/2
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Expression (3.26) can be written in the form

J=cT? - X?-Y"? - 77 (3.27)
where
v
2 T—-=X
T =\1- 5T - — 2= (328
c v v
/11— —= 1——
c? c?
X —oT
X =T v (3.29)

2 2
R
C C

We see from expression (3.27) that the form-invariance ef th
invariant.J is provided for by the Lorentz transformations (3.28)
and (3.29). In deriving the Lorentz transformations frora #x-
pression for the invariant (3.22) we took advantage of thetfaat
the invariant/ may assume an arbitrary real value. Precisely this
circumstance has permitted us to consider quantffiesd X as
independent variables, that can assume any real valuese,If w
following Einstein, knew only one value of, equal to zero, we
could not, in principle, obtain Lorentz transformationstioé ge-
neral form, since the space variables would be related ttirtee
variable.

In this case the followingdpeuristic approach can be realized.
The equation of spherical electromagnetic wave havingeitder
in the origin of the coordinate system has the following form

AT? — X2 Y2 72 =,

wherec is the electrodynamic constant, if we use Galilean coordi-
nates of the “rest” system of referenke This fact follows from
the Maxwell -Lorentz equations.
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Let us consider two inertial reference systefhand K’ with
Galilean coordinates moving relative to each other witloegy v
along axisX. Let their origins coincide at the momeht= 0 and
let a spherical electromagnetic wave is emitted just atttament
from their common origin. In reference systdnit is given by
eguation

AT? — X2 —Y? - 72 = 0.

As system of referenc&’ is moving with velocityv, we can use
Galilean transformations

r=X-oI, Y=Y, Z=2
and rewrite the preceding equation of spherical wave in tie f
lowing form

2
AT? (1 — U—z) — 2T — 22 —Y? - 7”7 =0.
c

The requirement of relativity principle here is reducedecessity
that the electromagnetic wave in a new inertial referenctesy
K’ has to be also spherical having its center at the origin &f thi
reference system.

Having this in mind we transform the above equation (as done
before) to the following form

C2T/2 _ X/2 _ Y/2 _ Z/2 — 0

So, we derive the Lorentz transformations.

v
T—-——=X
T/:7022’ X':LUTW Y=Y, 7 =72,
v v
- 1=

but at the light cone only.
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Now, we go to the most important stuff. Let us treat variables
T, X, Y, Z,appearing in the derived transformationsiagepen-
dent. Then after inserting these expressions into r.h.s. oftemua
(3.27) we can see that they leave quantity

62T2 _X2 _Y2 _ 22

unchanged due to the linear character of transformatioherefr
fore we come to the fundamental invariahtand so to pseudo-
Euclidean geometry of space-time. It follows from the ahone
particular, that velocity of light both in systeKy and in system
K’ is the same and therefore the principle of constancy of itgloc
of light is a particular consequence of the relativity pijhe. Pre-
cisely this circumstance remained unnoticed by A. Eingteinis
1905 work, in which the Lorentz transformations were detive

Earlier we have shown, following Poincaré, that Lorentits
cal time” permits to perform synchronization of clocks in a mov-
ing reference system at different spatial points with thieafia
light signal. Precisely expression (3.12) is the condifionthe
synchronization of clocks in a moving reference systemnttor
duces the definition of simultaneity of events at differeoitys of
space. Poincaré established that Lorentldgdl time” satisfies
this condition.

So, the definition of simultaneity of events in different spa
tial points by means of a light signal as well as the definition
of time in a moving reference system by means of light signal
both were considered by Poincag in his papers of 1898, 1900
and 1904. Therefore nobody has any ground to believe that
these ideas have been first treated by A. Einstein in 1905.

But let us see, for example, what is written by Academician
L.I. Mandel’'stam in his lectures [8]:

“So, the great achievement of Einstein consists in
discovering that the concept of simultaneity is a con-
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cept .. .that we have to define. People had the knowl-
edge of space, the knowledge of time, had this knowl-
edge many centuries, but nobody guessed that idea.”.

And the following was written by H. Wey!:

“We can now give up a belief in the objective re-
ality of simultaneity respective to physics. Emancipa-
tion of this dogma is a great gnoseological achieve-
ment of Einstein, whose name must stay in line with
the name of Copernicus”.

Is it possible that L.I. Mandel'stam and H. Weyl have not read
ticles and books by Poincaré?

Academician V.L. Ginzburg in his bod¥On physics and as-
trophysics” (Moscow: Nauka, 1985) in articleHow and who
created Special Relativity Theory?”! wrote:

“From the other side, in earlier works, in articles
and reports by Poinca there are a set of comments
which sound almost prophetical. | mean both the ne-
cessity to define a concept of simultaneity, and an op-
portunity to use light signals for this purpose, and on
the principle of relativity. But Poinc& have not de-
veloped these ideas and followed Lorentz in his works
of 1905-1906".

Let us give some comments to this citation.

To be precise it should be said thrRdincaré was the first who
formulated the relativity principle for all physical proce sses
He alsodefined the concept of simultaneity at different spa-
tial points by means of the light signalin his papers 1898, 1900

LAll the citations of Academician V.L. Ginzburg presenteaenand below
are taken from this article. A.L.
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and 1904. In Poincaré works [2;tBese concepthave been ade-
quately realized in the language of Lorentz group which jgles
fulfilment both the requirement of relativity principle, dthe in-
troduction of his ownmodified localLorentz time in every inertial
system of reference. All that automatically provided a ueigyn-
chronization of clocks by means of the light signal in evemsrtial
reference system. Just due to this not &myher development
of these conceptsvere required after H.A. Lorentz work of 1904.
It was necessary only to introduce these concepts into the bo
som of the theory. It was precisely realized in works [2; 3] by
means of the Lorentz group , discovered by H. Poincaré.daoin
does not follow Lorentz, he developis own ideasby using Lorentz
achievements and he completes the creation of the theomsl-of r
ativity in this way. Exactly in papers [2; 3] he extends Ld=en
invariance on all the forces of nature, including graviaaél; he
discovers equations of the relativistic mechanics ; heodisis
fundamental invariant

22 _ 2 y2 — 2
which determines the geometry of space-time.

H. Poincaré approach is transparent and contemporargkhou
it is realized almost one hundred years ago. How is it possibt
to understand this after reading Poincaré works [2; 3]?

In the article (1905)'On the electrodynamics of moving
bodies” (§3) A.Einstein took the relation (3.12) as the initial
equation in searching for the function But hence one can na-
turally obtain nothing, but Lorentz’sidcal time”. We write the
equation obtained by him in the form

a ’U2 v
T:l U2 |i<1—g)T—§x:|,

2
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Wherea is an unknown function depending only on the velocity
V.

Hence it is seen that this expression differs from the Larent
“local time” (3.6) only by a factor depending on the velocity
and which is not determined by condition (3.12). It is strauhg
see that A. Einstein knows that this is Lorentz "local timait he
does not refer to the author. Such a treatment is not an egoept
for him.

Further, for a beam of light leaving the source at the time mo-
mentr = 0 in the direction of increasingvalues, Einstein writes:

E=cT
or )
(LS H®
C2
He further finds
r=(c—v)T. (0)

Substituting this value of" into the equation fo€, Einstein ob-

tains
a

&= sz.
==

Since, as it will be seen further from Einstein’s articles uantity
ais given as follows

a=+4/1——,
2

then, with account of this expression, we obtain:
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Substituting, instead af, its value (3.3),
x=X—T, (v)
Einstein obtains fo€ an expression of the form:

X —oT

27
v
1— —

c2

£ =

which he namely considers as the Lorentz transformatiorg for
implying that X and T are arbitrary and independent. How-
ever, this is not so. He does not take into account, that dowpr
to (0) and ), there exists the equality

X =T = (c—v)T,

hence it follows that
X =T.

Hence it follows, that Einstein obtained the Lorentz transf
mations for¢ only for the partial case ok = 7"

This can be directly verified, if in formulas] for £ one substitutes,
instead of the value &f from formula ), as done by Einstein, the
value ofx from the same formula. Then we obtain:

¢=—2_X X=c.

1+—
C
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Taking into account the expression far we again arrive at the
formula found earlier,

But further in the text of the article A. Einstein exploitseth
general form of Lorentz transformations without any comtaen
A. Einstein has not observed that the principle of relatitogether
with electrodynamics obligatory requires a constructidrfiooir-
dimensional physical quantities, in accordance with theehtz
group. As a result this requires presence of the group iantsi
testifying to the pseudo-Euclidean geometry of space-tithest
due to this Einstein has not succeeded in finding relatovegua-
tions of mechanics, because he has not discovered the laansft
formation for Lorentz force. He also has not understood ¢mat
ergy and momentum of a particle constitute a unified quaatity
that they transform under Lorentz transformations in timeesevay
asct, z,y, z. It should be especially emphasized that Einstein, in
his work of 1905, in contrast to Poincaré, has not extenaedihiz
transformations onto all forces of nature, for exampleparav-
itation. He wrote later thdin the framework of special relativity
theory there is no place for a satisfactory theory of gratia’”.
But as it is shown in [5] this statement is not correct.

Owing to the Maxwell-Lorentz equations, the relativityrpri
ciple for inertial reference systems led Poincaré [3] asuhse-
qguently, Minkowski [4] to discovering the pseudo-Euclidege-
ometry of space-time. Precisely for this, we indebted toPaxié
and Minkowski. In 1908 H. Minkowski, addressing the 80-theme
ting of German naturalists and doctors in Cologne, noted [4]

“The views of space and time, that | intend to de-
velop before you arose from an experimental-physical
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basis. This determines their force. Their tendency is
radical. From now on space itself and time itself are

to become fictions and only a certain form of combi-
nation of the two is to retain independence”.

Therefore, the essence of special relativity theory cosans
the following (t is a postulate): all physical processes proceed
in four-dimensional space-time(ct, ), the geometry of which
is pseudo-Euclidean and is determined by the interva3.23).

The consequences of this postulate are energy-momentum and
angular momentum conservation laws, the existence ofahest-
erence systems, the relativity principle for all physida¢pomena,
the Lorentz transformations, the constancy of the velamfityght
in Galilean coordinates of an inertial system, the retaodatf
time, the Lorentz contraction, the opportunity to use noerial
reference systems, the “clock paradox”, the Thomas prexess
the Sagnac effect and so on. On the base of this postulatdnand t
quantum ideas a set of fundamental conclusions was obtamed
the quantum field theory was constructed.

By centennial of the theory of relativity it is high time to ke
clear that constancy of the light velocity in all inertialssgms of
reference is not a fundamental statement of the theory atived,.

Thus, investigation of electromagnetic phenomena togeitite
Poincaré’s relativity principle resulted in the unificatiof space
and time in a unique four-dimensional continuum of event$ an
permitted to establish the pseudo-Euclidean geometryi®ttn-
tinuum. Such a four-dimensional space-time is homogenaonds
isotropic.

These properties of space-time provide validity of fundatake
conservation laws of energy, momentum and angular momentum
in a closed physical systerfihe pseudo-Euclidean geometry of
space-time reflects the general dynamical properties of mtr,
which make it universal. Investigation of various forms of mat-
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ter, of its laws of motion is at the same time investigatiosdice
and time. Although the actual structure of space-time has be-
vealed to us as a result of studying matter (electrodyngmics
sometimes speak of space as of an arena, in which some or other
phenomena take place. Here, we will make no mistake, if we
remember that this arena does not exist by itself, withoutena
Sometimes it is said that space-time (Minkowski space)\vsmgi
a priori, since its structure does not change under the mfieief
matter. Such an invariability of Minkowski space arisesmgvio
its universality for all physical fields, so the impression is thus
created that it exists as if independently of matter. Priybpist
due to a vagueness of the essence of special relativityytHeor
him A. Einstein arrived at the conclusion thatithin special rela-
tivity theory there is no place for a satisfactory theory cd\gty”.

In Einstein’s general relativity theory, special relatiheory
is certainly not satisfied, it is considered a limit case. @53
A. Einstein wrote:

“An essential achievement of general relativity the-
ory consists in that it has saved physics from the ne-
cessity of introducing an “inertial reference system”
(or “inertial reference systems”)”.

However, even now, there exists absolutely no experimental
observational fact that could testify to the violation oésial rel-
ativity theory. For this reason no renunciation, to whatextent,
of its rigorous and precise application in studies of gegtignal
phenomena, also, can be justified. Especially taking intoaat
that all known gravitational effects are explained prdgiséthin
the framework of special relativity theory![5Renunciation of
special relativity theory leads to renunciation of the funda-
mental conservation laws of energy, momentum and angular
momentum. Thus, having adopted the hypothesis that all natural
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phenomena proceed in pseudo-Euclidean space-time, waatito
ically comply with all the requirements of fundamental cemns-
tion laws and confirm thexistence of inertial reference systems.

The space-time continuum, determined by the interval (3.23
can be described in arbitrary coordinates, alsdransition to ar-
bitrary coordinates, the geometry of four-dimensional spae-
time does not change. However, three-dimensional space Wil
no longer be Euclidean in arbitrary coordinates. To simplify
our writing we shall, instead of variabl&s X, Y, Z, introduce the
variablesX”, v = 0, 1,2, 3, X° = ¢I'. We now perform transition
from the variablesY{” to the arbitrary variables” with the aid of
the transformations

XV = f(z7). (3.30)

These transformation generally lead to a non-inertialrezfee
system. Calculating the differentials
_af
Oz
(here and further summation is performed from O to 3 over-iden

tical indices)\) and substituting them into (3.23) we obtain an ex-
pression for the interval in the non-inertial referenceasys

ax”

da? (3.31)

(do)? = yua(z)dada?. (3.32)

Here,v,.(z) is the metric tensor of four-dimensional space-time,
it is given as follows

3 LOfr OfY
@) =2 e dzr Pz’

v=0

e’ =(1,-1,-1,—1). (3.33)

Expression (3.32) is invariant with respect to arbitrargrciinate
transformations. Expression (3.33) represents the gefioena of
the pseudo-Euclidean metric.
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The difference between a metric of the form (3.23) from the
metric (3.32) is usually, in accordance with Einstein’sasieat-
tributed to the existence of the gravitational field. Bustls in-
correct. No gravitational field is present in a metric of tbhen
(3.32). Ideas of accelerated reference systems in Minkispsice
have played an important heuristic role in Einstein reftewion
the problem of gravitation. They contributed to his arrgiat
the idea of describing the gravitational field with the aidtloé
metric tensor of Riemannian space, and for this reason étinst
tried to retain them, although they have nothing to do with th
gravitational field. Precisely such circumstances presamiim
from revealing the essence of special relativity theoryonirra
formal, mathematical, point of view Einstein highly appeted
Minkowski’'s work, but he never penetrated the profound phys
cal essence of Minkowski’s work, even though the articleltdea
with a most important discovery in physics — tiscovery of the
pseudo-Euclidean structure of space and time

Einstein considered special relativity theory only redetie an
interval of the form (3.23), while ascribing (3.32) to gealere-
lativity theory. Regretfully, such a point of view still prails in
textbooks and monographs expounding relativity theory.

Consider a certain non-inertial reference system whenmtte
ric tensor of space-time is given ag,(z). It is, then, readily
shown that there exists an infinite number of reference Bystin
which the interval (3.32) is as follows

(do)? = v (2))da' da"™. (3.34)

A partial case of such transformations is represented blydrentz
transformations, which relate one inertial referenceesysto an-
other. We see that the transformations of coordinates,iwibave
the metric form-invariant, result in that physical pheno@ro-
ceeding in such reference systems at identical conditiansever
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permit to distinguish one reference system from anothenckle
one can give a more general formulation of tieativity prin-
ciple, which not only concernéertial reference systems but
non-inertial ones[B], as well:

“Whatever physical reference system (inertial or
non-inertial) we choose, it is always possible to point
to an infinite set of other reference systems, such as
all physical phenomena proceed there exactly like in
the initial reference system, so we have no, and cannot
have any, experimental means to distinguish, namely
in which reference system of this infinite set we are”.

It must be noted that, though the metric tenggor(x) in (3.33)
depends on coordinates, nevertheless the space remairgopse
Euclidean. Although this is evident, it must be pointed suice
even in 1933 A. Einstein wrote the absolute opposite [7]:

“As it was shown by H. Minkowski, this metric in
special relativity theory was quasi-Euclidean, i. e. the
square “length” ds of a linear element represented a
certain quadratic function of the differentials of the
coordinates. If, on the other hand, other coordinates
are introduced with the aid of a nonlinear transfor-
mation, thends? remains a uniform function of the
differentials of coordinates, but the coefficients of this
function (g,,,) will no longer be constants, but cer-
tain functions of the coordinates. Mathematically, this
means, that physical (four-dimensional) space pos-
sesses the Riemannian metric”.

This is, naturallywrong, since it is impossible to transform
pseudo-Euclidean geometry into Riemannian geometry blyapp
ing the transformations of coordinates (3.30). Such arsiate by
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A. Einstein had profound physical roots. Einstein was coced
that the pseudo-Euclidean metric in arbitrary coordinatggx),
describes the gravitational field, also. These ideas, putdial
by Einstein, restricted the framework of special relayittieory
and in such form became part of the material expounded in text
books and monographs, which had hindered comprehensibe of t
essence of relativity theory.

Thus, for example, Academician L.l. Mandel'stam, in his-lec
tures on relativity theory 8], especially noted:

“What actually happens, how an accelerated mov-
ing clock shows time and why it slows down or does
the opposite cannot be answered by special relativity
theory, because it absolutely does not deal with the
issue of accelerated moving reference systems”.

The physical sources of such a limited understanding ofiapec
relativity theory origin from A. Einstein. Let us present amber
of his statements concerning the special relativity thelry1 913
he wrote [9]:

“In ordinary relativity theory only linear orthogo-
nal transformations are admissible”.

In the next article of the same year he writes [10]:
“In the initial relativity theory the physical equa-

tions being independent of the special choice of refer-
ence system is based on postulating the fundamental

invariantds® = ) " dx7, while now the goal consists

in constructing a theory, in which the role of the fun-
damental invariant is to be assumed by a linear ele-
ment of the most general form

ds® = Zgikdxidxk 7.
ik
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Later, in 1930, A. Einstein wroté [11]:

“In special relativity theory only such variations
of coordinates (transformations) are allowed that pro-
vide for the quantityls? (the fundamental invariant)
to assume in the new coordinates, also, the form of
the sum of square differentials of the new coordinates.
Such transformations are called Lorentz transforma-
tion”.

Although Einstein, here, takes advantage of the invariant (
terval) discovered by Poincaré, he understands it onlylimiéed
(strictly diagonal) sense. For A. Einstein it was difficadtdee that
the Lorentz transformations and the relativity of time cealed a
fundamental fact: space and time form a unique four-dinueradi
continuum with pseudo-Euclidean geometry, determinedhiey t
interval

ds?® = Yo (@) dat dx”, det(yw) =7 <0, (3.35)

with the metric tensof,,, (x), for which the Riemannian curvature
tensor equals zero. But, precisely, the existence of thedonen-
sional space of events with a pseudo-Euclidean metric pieuani
to establish that a number of vector quantities in Euclidbase-
dimensional space are at the same time components of fowerdi
sional quantities together with certain scalars in Euelidspace.

This was performed by H. Poincaré and further developed by
H. Minkowski. Very often, without understanding the essent
theory, some people write that Minkowski allegedly gavedke
ometrical interpretation of relativity theory. This is notie. On
the basis of the group discovered by Poincdr, H. Poincat€ and
H. Minkowski revealed the pseudo-Euclidean geometry of spze-
time, which is precisely the essence of special relativitheory.

In 1909 H. Minkowski wrote about this in the articl8pace
and time”:
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“Neither Einstein, nor Lorentz dealt with the con-
cept of space, maybe because in the case of the afor-
ementioned special transformation, under which the
2/, t' plane coincides with the, ¢ plane, it may be un-
derstood that the: axis of space retains its position.
The attempt to thus evade the concept of space could
have indeed been regarded as a certain impudence of
the mathematical thought. But after making this step,
surely unavoidable for true comprehension of the
group the Lorentz group- A.L.), the term felativity
postulaté for requiring invariance with respect to the
G, group seems to me too insipid. Since the meaning
of the postulate reduces to that in phenomena we only
have the four-dimensional world in space and time,
but that the projections of this world onto space and
time can be taken with a certain arbitrariness, | would
rather give this statement the titlgpdstulate of the
absolute world or, to be short, world postulate”.

It is surprising, but in H. Minkowski’s work there is no refer
ence to the articles [2] and [3] by H. Poincaré, althoughst gives
the details of what had already been presented in refs. [@] an
[3]. However, by the brilliant exposition before a broad munde
of naturalists it attracted general attention. In 1913, err@any,

a collection of articles on relativity by H.A. Lorentz, A.iiStein,

H. Minkowski was published. The fundamental works [2] anfd [3
by H.Poincaré were not included in the collection. In theneo
ments by A. Sommerfeld to Minkowski’s work Poincaré is only
mentioned in relation to particulars. Such hushing up offtime
damental works of H. Poincaré in relativity theory is difficto
understand.

E. Whittaker was the first who came to the conclusion of de-
cisive contribution of H. Poincaré to this problem whendsting
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the history of creation of the special relativity theory, ¥€ars
ago. His monograph caused a remarkably angry reaction o som
authors. ButE. Whittaker was mainly right. H.Poincar é re-

ally created the special theory of relativity grounding upm
Lorentz work of 1904 and he gave this theory the general char-
acter by extending it onto all physical phenomena.lnstead of
more thorough study and comparison of Einstein 1905 work and
Poincaré papers (it is just the only way of objective stutiyhe
problem) the way of complete rejection of Whittaker’s carsobns
was chosen. So, the idea that the theory of relativity waatede
independently and exclusively by A. Einstein was propatjate
literature without detail investigations. This was also wgw up

to the middle of 80-s until | had read articles by H. Poincané

A. Einstein.
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4. The relativity of time and the contraction of
length

Consider the course of time in two inertial reference systeme

of which will be considered to be at rest, while another onk wi
move with respect to the first one with a velocityAccording to
the relativity principle, the change in time shown by thec&®(for

a given time scale) in both reference systems is the sameaeThe
fore, the both countheir own physical time in the same manner.
If the clock in the moving reference system is at rest, themit
terval in this system of reference is

do® = Adt”, (4.1)

t' is the time shown by the clock in this reference system.

Since this clock moves relative to the other reference myste
with the velocityv, the same interval, but now in the reference
system at rest will be

1)2

@ﬂzéﬁ%1—ﬁ), (4.2)

C

heret is the time shown by the clock at rest in this reference sys-

tem, and
dr\. [\ [dz)\
2 _ [ @x <y e
v _<dt> +<dt> +<dt> . (4.3)

From relations (4.1) and (4.2) we find the relationship betwe
the time durations in these inertial reference systems in the de-
scription of thephysical phenomenon

dt' = dty /1 — —. (4.4)
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One often reads that a retardation of moving clocks takeepla
It is wrong, because such a statement contradicts the phnof
relativity. The clock rate in all inertial reference systedoes not
change. The clocks equally measure physical time of their ow
inertial system of reference. This is not a change of thekdlate
but a change of a physical process duration. The duratiofockh
physical process according to the clock of this inertiatesysor a
clock in other inertial system is in general different. Ihignimal
in the system where the process is localized in one spatiat.po
Precisely this meaning is implied in saying about tbardation
of time.

Integrating this relation, we obtain

2
A=Aty 1 - 2. (4.5)
C

This expression is a consequence of the existence of tharfueah
tal invariant (3.22). As noted by W. Pauli, it wasléarly revealed
by Einstein” from the “Lorentz transformations”.

We shall apply this equality to an elementary particle with a
lifetime at rest equal ta,. From (4.5) after setting\t' = 75, we
find the lifetime of the moving patrticle

At=—"10

’U2

-2

(4.6)

Precisely owing to this effect it turns out to be possiblertms-
port beams of high energy patrticles in vacuum over quiteeldig-
tances from the accelerator to the experimental devictmaih
their lifetime in the state of rest is very small.

In the case considered above we dealt with a time-like iaterv
do? > 0. We shall now consider another example, when the inter-
val between the events is space-lide? < 0. Again we consider
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two such inertial reference systems. Consider measurelinest
moving reference system, of the length of a rod that is atirest
another reference system. We first determine the methoddar m
suring the length of a moving rod. Consider an observer in the
moving reference system, who records the ends of theXodnd

X}, at thesame moment of time

T =T, (4.7)

this permits to reduce the intervé, in the moving reference sys-
tem to the spatial part only

S2, = —(Xh— X!)* = -2, (4.8)

Thus, in our method of determining the length of a moving rod,
is rather natural to consider the quantitgs its length.

The same interval in the reference system at rest, wherethe r
is in the state of rest, is given as follows

S%Q = 02(T2 — T1)2 — (XQ — X1)2. (49)
But, in accordance with the Lorentz transformations we have
v
LT =5~ T) - 5(Xa - X)), (410

whence for our case (4.7) we find

(Y
c2

(%
T2 — T1 == g(Xg — X1> 607 (411)
¢y is length of the rod in the reference system at rest. Sulistifu
this expression into (4.9) we obtain

2

S2, = —63(1 . “—). (4.12)

2
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Comparing (4.8) and (4.12) we find

U2
(=lo\[1— . (4.13)
C

From relations (4.7) and (4.11) we sékat events that are si-
multaneous in one inertial reference system will not be simu
taneous in another inertial reference system, so the notioof
simultaneity is relative. Relativity of time is a straightforward
consequence of thaefinition of simultaneity for different spatial
points of inertial reference system by means of a light digitae
contraction (4.13) is a consequence of the relative natiseul-
taneity, or to be more precise, of thgistence of the fundamental
invariant (3.22).

Thus, we have established that, in accordance with spezial r
lativity theory, the time interval between events for a lonlgject
and the length of a rod, given the method of measurement o, (4.
are relative. They depend on the choice of the inertial esfes
system. Only the interval between events has an absoluse sen
It must be especially noted that contraction of the length odd
(4.13) is determined not only by the pseudo-Euclidean sirac
of space-time, but also by ounethod of measuring length so
contraction, unlike the slowing down of time (4.5), does have
such essential physical significance. This is due to theispw
down of time being related tolacal object, and such objects ex-
ist in Nature, they are described by the time-like interisad > 0;
consequently, a causal relationship is realized, here tr@cion
of length is related to different points in space and is, éfwe,
described by the space-like interval®> < 0, when no causal rela-
tionship is present.

Let us return to the issue of Lorentz contraction, deterchinge
formula (4.13). We saw that in the case considered abovenwhe
the rod is at rest in the unprimed inertial reference systearhas a
length/y, for all observers in other inertial reference systemsaher
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occurs, given the adopted method of measuring length (don),
traction, and the length will be determined by formula (4.18is
quite evident that here nothing happens to the rod. Somewuth
call this contraction effect kinematical, since the rod enggbes no
deformation, here. And they are right in this case, and tsene
reason for criticizing them. However, it must be noted tlinég t
kinematics is a consequence of the pseudo-Euclidean steuat
space, which reflects the general dynamic properties ofematt
the conservation laws.

Back in 1905 H. Poincaré wrote the following about this &itu
tion:

“If we were to accept the relativity principle, then
we would find a common constant in the law of grav-
ity and in electromagnetic laws — the velocity of light.
Precisely in the same way, we would also encounter it
in all the other forces of whatever origin, which can
be only explained from two points of view: either eve-
rything existing in the world is of electromagnetic ori-
gin, or this property, that is, so to say, common to all
physical phenomena, is nothing more, than an exter-
nal appearance, something related to the methods of
our measurements. How do we perform our measure-
ments? Earlier we would have answered as follows:
by carrying bodies, considered solid and unchange-
able, one to the place of the other; but in modern
theory, taking into account the Lorentz contraction,
this is no longer correct. According to this theory,
two segments are, by definition, equal, if light covers
them in the same time (singled out by me. -A.L.)

A totally different situation arises in the case of motiorthwac-
celeration. If, for instance, the rod, that is at rest in thprimed
inertial reference system and has a lenthstarts moving with
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acceleration along its length so thettth of its ends start moving
simultaneously, then in the reference system, related to the rod,
its length will increase according to the law

or, if formula (12.3) is taken into account, then one can egpthe
velocity v(t) via the acceleration and obtain the expression

242
L=1/0p\/1+ ac—;f.
of events being the same in the unprimed inertial refereystem
and in the reference system moving with acceleradtioim which
the rod is at rest. This means that the rod undergoes ruptamnes
Earlier we found the Lorentz transformations for the cagegnw
the motion of one reference system with respect to anotleetiah
reference system proceeded with a constant velocity aloag 't
axis. Now, consider the general case, when the motion tdkes p
with a velocity in an arbitrary direction

—

F=R—-iT. (4.14)

Transformation (4.14) provides the transition to inenteference
system the origin of which moves with constant velocityelated
to the initial reference system.

Let us decompose vectors, 7' in the initial Galilean refer-
ence system along the direction of velocitand along the direc-
tion perpendicular to velocity:

R= Ry +R, R=_R+ER. (4.15)

|1 |71
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On the basis of the Lorentz transformations (3.1), one mag&x
that only the longitudinal quantities will be changed, \eftilans-
verse quantities remain without changes.

/ (Y - =
Ry =~(Ry—T), T =~ (T—gR|> , R, =R,. (4.16)

In accordance with (4.15) we find

R L
RHI(U), R =R-

U(TR)
2

(4.17)

v

Substituting (4.17) into (4.16) and, then, into (4.15) wéaab

3 (VR)

R=R+(y-1) 5 00T, (4.18)
T = ~ <T - (”j)> . (4.19)

In obtaining formulae (4.18) and (4.19) we have considehed t
under the general transformation (4.14) only the compoM
the vector along the velocity changes, in accordance with the
Lorentz transformations (3.1), while the transverse camepbre-
mains unchanged.

Let us verify that this assertion is correct. To this end wadish
take as a starting point the invariant (3.22). Substitu@ghtj4) into
(3.22) we obtain

’U2

J =T~ (F+0T)* = *T° (1 — —) —2(07)T —7*. (4.20)

c2

In invariant.J we single out the time-like part

J=0 F = 7@} —? - L@ (4.21)

2
~y c? c?
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Our goal is to find such new variablg¥ and R, in which this
expression can be written in a diagonal form

J=dAT"?— R (4.22)

From comparison of (4.21) and (4.22) we find tiffien the mov-
ing reference system:

~ @), (4.23)

Expressing the right-hand part in (4.23) via the variaile®, we
obtain .
T =~ (T . @) . (4.24)
C

We also express the space-like part of invariaim terms of vari-
ablesT’, R

2

—
—

2
P2 @ = B4 LR - 2P G RIT + 20T (4.25)

One can readily verify that the first two terms in (4.25) can be
written in the form

2
, (4.26)

ﬁ2+7—2(*1§2—
c? vh)T =

#(7R)

ﬁ+(7—1) 2

and, consequently, expression (4.25) assumes the form

— 2
(7 R)

é+(7_1) 02

2
- 7S
7+ ) (vr)2 =

(4.27)
— 24T R)T + v*y*T2.
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The right-hand part of (4.27) can be written as

2

R ar| o (a2e)

02

2
o YL =
7“2“—?(1)7_")2: R+(7—1)
Thus, the space-like part of invariantassume a diagonal form
2 VQ 2 B\ 2
where

7 R)

V2

R=R+(y-1) ~iT. (4.30)

Formulae (4.24) and (4.30) coincide with formulae (4.18) @19);
this testifies to our assumption, made earlier in the courtieedr
derivation, being correct.

It should be especially emphasized that we have derivedeabov
thegeneral formulaerelating coordinategl’, R) of the initial in-
ertial reference system to coordinat@¥, 1¥') of the reference sys-
tem moving with constant velocity relative to the first system.
We have used the form-invariance of invariant (3.22) alghti-
cal transformations only. If by means of transformations (4.24)
and (4.30) we go from inertial reference system S to systém
and later to system” , then after these two subsequent transfor-
mations we will get transformation which will be differerbi
transformations (4.24) and (4.30) by a rotation in 3-dinnemel
space. It means that transformations (4.24) and (4.30) tifmrma
a subgroup of the Lorentz group. The rotation mentioned @bov
reduces axes of reference system S to the same orientaiess
of systemS”. Thomas effect which will be considered in Section
14 is caused just by this circumstance.

The general derivation of Lorentz transformations fromrtte
ativity principle, Galilean principle of inertia and the wadront
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equation was done by Academician V.A. Fock in his monograph
[12, Appendix A]. His analysis demonstrates that it is ingeos
ble to derive Lorentz transformations from two Einsteintptaes
only (see pl40 of this book).
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5. Relating velocities

Differentiating the Lorentz transformations (3.1) withspect to
the variablel’, we obtain the formulae relating velocities

2 2
Uy — U 1- 2_2 1- 2_2
u; —_ r Ul U; = un’ U; = Uzw (51)
1-— 2 1-— 2 1-— 2
Here dXx dy dz
T — = Tm z = T 5.2
Ye=gr T ar T ar (5-2)
ax’ ay’ az’
In deriving (5.1) we made use of the formula
a1’ v
—q(1-2 ) 5.4
drT 7( 2 (5.4)

It is possible, in a similar way, to obtain general formulalsp, if

one takes advantage of expressions (4.18), (4.19):

0l [1—02—;)] . (5.5)

We will further (Section 16) see, that the velocity spacéesito-

bachevsky space.
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6. Elements of vector and tensor analysis in
Minkowski space

All physical quantities must be defined in a way, to have their

physical meaning independent on the choice of referendersys
Consider a certain reference systethry = 0,1,2,3 given

in four-dimensional Minkowski space. Instead of this refere

system, it is possible to choose another, defined by the ssipire

¥ = fr(x%). (6.1)

We shall consider functiong” as continuous and differentiable.
If at any point Jacobian of the transformation

af

J = det
¢ 0x°

(6.2)

differs from zero, then under this condition the variabiéswill
be independent, and, consequently, the initial variablesnay
unambiguously be expressed in terms of the new affes

% = (7). (6.3)

Physical quantities must not depend on the choice of reteren
system, therefore, it should be possible to express themrimnst
of geometrical objects. The simplest geometrical objestcaar
¢(x), which under transition to new variables transforms as fol-
lows:

o) = 6[2(a)]. (6.4)
The gradient of scalar function(z) transforms by the rule for
differentiating composite functions
9¢/(«') _ 09 0a°
ox'v Oz Ox'v’

(6.5)
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here, and below, summation is performed over identicatiest
from O to 3.

A set of functions that transforms, under coordinate tramsf
mation, by the rule (6.5) is calledavariant vector

0x°

- ox'v

Accordingly, a quantity3,,,,, that transforms by the rule

Al (2 A, (x). (6.6)

ox®  Ox
T Oxin Qv

is called a covariant tensor of the second rank, and so on.
Let us now pass to another group of geometrical objects. Con-
sider the transformation of the differentials of coordesat
8 v
de"” = T2 _dze. (6.8)
o0x°
A set of functions that transforms, under coordinate tramsf
mations, by the rule (6.8) is calledcantravariant vector:

B, («) (6.7)

ax“j
v AN o
A" (") = 8xUA (). (6.9)
Accordingly, a quantityB*”, that transforms by the rule
ox'™ oz
Iuv / — . o\
B () Fr —8x)‘B (x), (6.10)

has been termed a contravariant tensor of the second rathlsoan
on.

From the transformational properties of a vector or a tertsor
follows, that, if all its components are zero in one refererygs-
tem, then they are zero, also, in any other reference syete,
thatcoordinatesx” do not form a vector, while differentialdz”
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is a vector. The coordinata$ only form a vector with respect to
linear transformations.
Now, we calculate the quantity’ (z') B (x’)

/! / lo / 8‘,1:# axla
A B () = 5o S

but, it is easy to see that

' 8x“’_6u_{0, for ;1 # A
-

A, (z)BNz), (6.11)

— 12
Oz'7 Ozt 1, forpu=A (612)

The symbob is a mixed tensor of the second rank and is known
as the Kronecker symbol.
Taking into account (6.12) in expression (6.11) we find

Al (2B (2') = Ax(z)B*(z) . (6.13)

Hence it is evident that thiguantity is a scalar, it is usually
called an invariant.

In writing expression (3.32) we actually dealt with the fand
mental invariant

do® =y (z)dztdx,  det(7,,) =7 < 0. (6.14)

The existence of the metric tensor of Minkowski space, tlzat h
the general form (3.33), permits to raise and to lower irslick
vector and tensor quantities, for example:

Ay =qna(@)AN, AN =224, AAY =7, ANA7. (6.15)

Yy =6 (6.16)
Tensors can be added and subtracted, for example,

CoP = A6 4 Bob (6.17)

pvo uro pro
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They can also be multiplied, independently of their streetu

aBX __ paf A
Chvep = Alpe - By . (6.18)
Here it is necessary to observe both the order of multipbeics
the order of indices.

Transformations (6.9) form a group. Consider

v i
00 ho(wy, am = 9T aiyy, (6.19)

0x’A

A/l/ (ZE,) — axg

hence we have

" IA "
A5 = ox"™  O«™ . Oa"™

B N (z) = 0x°

Note that tensor calculus does not depend on the metric pirepe
of space. It is persisted, for example, in Riemannian gemet
where the group of motion of space-time is absent, in thergéne
case. On the other hand, the group of general coordinatsféran
mations (6.19-6.20) is fully persisted, since it is indegent of
the metric properties of space, But it has no any physicahinga

A°(z) . (6.20)
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7. Lorentz group

H.Poincaré discovered that the Lorentz transformations, to-
gether with all space rotations, form a group. Consider, for
example,

=y —wnt), t'=m (t - %93) ; (7.1)
2" =yp(d —wt), t'=y <t' — %x’) . (7.2)
Substituting (7.1) into (7.2) we obtain
V1V
2" =172 (1 + %) T —m172(v1 + )t (7.3)

V1V v+ v
t" =172 <1+ 222>t—7172( 102 2)9:, (7.4)

But since

v
= —ut), t"=4y (t - §x> . (7.5)
From comparison of (7.3) and (7.4) with (7.5) we obtain
V1V
V=772 (1 + %) ;v =m72(v + ). (7.6)
From relations (7.6) we find
U1 + Vg
Tz
It is readily verified that
1 V1V
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Thus, we have established that transition from the referenc
systemz” to the reference systeni” and, subsequently, to the
reference system’”” is equivalent to direct transition from the ref-
erence system” to the reference systeni”. Precisely in this
case, it can be said that the Lorentz transformations fornoapy
Poincaré discovered [[2] this group and named it the Lorentz
group. He found the group generators and constructed the Lie
algebra of the Lorentz group. Poinca®g was the first to estab-
lish that, for universal invariance of the laws of Nature with
respect to the Lorentz transformations to hold valid, it is nec-
essary for the physical fields and for other dynamical and kirw-
matical characteristics to form a set of quantities transfom-
ing under the Lorentz transformations in accordance with the
group, or, to be more precise, in accordance with one of the
representations of the Lorentz group

Several general words about a group. A group is a set of ele-
mentsA, B, C ... for which the operation of multiplication is de-
fined. Elements may be of any nature. The product of any two
elements of a group yields an element of the same group. In the
case of a group, multiplication must have the following faxies.

1. The law of associativity

(AB)C = A(BCQ).
2. A group contains a unit elemest
AE =A.
3. Each element of a group has its inverse element
AB=E, B=A"'.

Transformations of the Lorentz group can be given in matrix
form
X' = AX,
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/ /
To=ct, xg=ct.

It is readily verified, that the set of all Lorentz transfotinas
satisfies all the listed requirements of a group.

Coordinate transformations which preserve the form of imetr
tensor are forming thgroup of motions of the spaceln particu-
lar Lorentz group is such a group.
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8. Invariance of Maxwell-Lorentz equations

The Maxwell-Lorentz equations in an inertial referenceteys
said to be “at rest”, have the form

T 1 OE . 1 0H
tH="pit+— 2 yotB=——. 2"
o va+c ar 0 c ot’
R o (8.1)
divEk =4nmp, divH =0,
— — 1 o oo
f=pB+—p [v, H] . (8.2)

The second term in the right-hand part of the first equatiqB .df)
is precisely that small term — thdisplacement current intro-
duced by Maxwell in the equations of electrodynamics. Nantel
was mentioned in Section 3. Since the divergence of a cuelis z
from the first and third equations of (8.1) follows the consagion
law of current

dp
ot

As one sees from (8.3), the displacement current permittadtieve
accordance between the equations of electrodynamics amdth
servation law of electric charge. To make the fourth equtiom
(8.1) be satisfied identically we represéhin the form

+divj =0, j=pv. (8.3)

H=rotA. (8.4)

Thus, we have introduced the vector potentialSubstituting ex-
pression (8.4) into the second equation from (8.1) we obtain

L 1 04
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To have equation (8.5) satisfied identically the expresisitanack-
ets must be gradient of some functipn

E:—i-%—grad 0. (8.6)
c Ot

Thus, we have introduced the notion of scalar potewtidtor
given values ofF’ and H the potentialsy and A, as we shall see
below (Section 10), are determined ambiguously. So by éhgos
them to provide for the validity of the L. Lorenz condition

1 0o

;‘a"‘leA:O, (87)

from equations (8.1), with account of formulae
div gradg = V3¢, rot rotA = grad divA — VZ/T,
Po P P
20 _
Vo= Ox? + oy? + 022’

and relation (8.7) as well, we find equations for potentiedsd A
in the following form:

471'—,»

0A="7, O¢=A4np. (8.8)
c

For the equation of charge conservation to be form-invéarian
with respect to the Lorentz transformations it is necestaithe
densityp and current be components of the contravariant vector
Sl/

" = (cp, ) = (8°,9), j=pi. (8.9)
The contravariant vectdi” transforms under the Lorentz transfor-
mations in the same way &&t , z). The equation (8.3) of charge
conservation assume the form

oS"
or’ 0,

(8.10)
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summation is performed over identical indicesTaking into ac-
count Eq. (8.9) we rewrite Egs. (8.8) as follows

0A=-"195, O¢p=—35°. (8.11)
C C

For these equations not to alter their form under Lorentastra
formations, it is necessary that the scalar and vector fateioe
components of a contravariant vectot

A = (A% A) = (¢, A). (8.12)

Since, as we showed earlier, the operatatoes not alter its form
under the Lorentz transformations, Egs. (8.11) at anyialesys-
tem of reference will have the following form

4
04" = L5 1 =0,1,2,3. (8.13)
C

The vectors S¥ and A" were first introduced by Henri Poin-
caré [3].

Unification of ¢ and 4 into the four-vectorA” is necessary,
since, as the right-hand part of (8.13) represents the vetto
then the left-hand part must also transform like a vectonddeit
directly follows that, if in a certain inertial referencessgm only
an electric field exists, then in any other reference systeret
will be found, together with the electric field, a magnetiddje
also, owing toA” transforming like a vector. This is an immediate
consequence of validity of the relativity principle for eleomag-
netic phenomena.

The Lorentz transformations for the vectgt have the same
form, as in the case of the vectot, %)

Sl =~ <Sx . %So) S0 = <S° . %5) . (8.14)
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Taking into account the components of the vecto(8.9), we find

u
dzw(b7y@,d%=7M%—w- (8.15)
Here 1
Y= —— (8.16)
u
-

u is the velocity of the reference system.
The transformations for the components S. have the form

Py, = pvy, P = pu.. (8.17)

All these formulae were first obtained by H. Poincagé[2]. From
these the formulae for relating velocities follow

2 2
U U
/ /U;p — U / 1 - g ’ 1 - g
Uz = UV, ? by = ,inuvxv v, = Uziuvx. (818)
L= c2 2 1- 2
We now introduce the covariant vectsy
Sy = a8t (8.19)

Taking into account that,, = (1,—1,—1,—1), we obtain from
(8.19) '
Sp=28° S;=-5, i=1,23. (8.20)

Now compose the invariant
2 2 v? 2 2
S,S8" =cp <1 — c_2> = cpp, (8.21)

herep, is the charge density in the reference system, where the
charge is at rest. Hence we have

02
po=p\/1— = (8.22)
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H. Minkowski introduced antisymmetric tensor F,,,,

04, 0A,

S T

which automatically satisfies the equation

v=0,1,2,3, (8.23)

0F,, O0F,, O0F,

pr S o 0. (8.24)

. Lo 1 0A .
SinceH =rot A, E = —grad gb—?a—, the following equa-

. - ot
tions are easily verified

_H:(::F237 _Hy:FZ’)lv _Hz:F127
(8.25)
—E,=Fy, —E,=1Fy, —E, = Fy.

The set of equations (8.24) is equivalent to the set of Malkwel
equations
L 1 OH .,
rotE:——-ﬁ—, divH =0. (8.26)
c Ot
With the aid of the tensoF*”, the set of equations (8.13) can be

written as follows:

=g (8.27)

The tensod™* is related to the field componentsand 4 by the
following relations:

—Hm:F23, —Hy:F31, —HZ:F12,
(8.28)
E,=F"Y E,=F* E, =F%.
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All this can be presented in the following table form, wherstfi
indexu = 0,1, 2,3 numerates lines, and secoméd- columns

0 E, E, E.
e | B 0 - H,
o ~E, H. 0 -H, |’
—E. —H, H, 0
0 —-E, —-E, —E.
pw_ | Be 0 —H. H,
E, H 0 -—H,
E. —H, H, 0

Hence it is seen that the quantitisand H change under the
Lorentz transformations like individual components of tee-
sor F*¥, Neither Lorentz, nor Einstein established this, so they,
did not succeed in demonstrating the invariance of the M#xwe
Lorentz equations with respect to the Lorentz transforomstnei-
ther in space without charges, nor in space with charges.

We emphasize that the identical appearance of equations
in two systems of coordinates under Lorentz transformatiors
still does not mean their form-invariance under these trans
formations. To prove the form-invariance of equations we ae
to ascertain that Lorentz transformations form a group and
field variables (for example,ﬁ and H) transform according
to representation of this group.

Taking into account the relationship between the companent
of the tensor*" and the components of the electric and magnetic
fields, it is possible to obtain the transformation law fog tom-
ponents of the electric field

B, = E., By =~ (B, 1),
(8.29)
E =~ (E + %Hy> ,
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and for the components of the magnetic field

Hy = Ha, Hy =~ (Hy+ 2 E).,
(8.30)
H. =~ (H.— 2E,).
C

These formulae were first discovered by Lorentz, however,
neither he, nor, later, Einstein established their group néure.
This was first done by H. Poincag, who discovered the trans-
formation law for the scalar and vector potentials[3]. Since¢
and A transform like(ct, '), H. Poincaré has found, with the aid
of formulae (8. 4) and (8.6), the procedure of calculationtfe
quantitiesk and H under transition to any other inertial reference
system.

From the formulae for transforming the electric and magneti
fields it follows that, if, for example, in a reference systéithe
magnetic field is zero, then in another reference systemaady/
differs from zero and equals

L1 .
Hy — _ﬁEzy HZ — gEy7 Oor H = — |:1T[:7 Ei| . (8.31)
C C C

From the field components itis possible to construct tworiavds
with respect to the Lorentz transformations.

E? — H? (EH). (8.32)

These invariants of the electromagnetic field were first diso-
vered by H. Poincare [3].

The invariants (8.32) can be expressed via antisymmetric te
sor of the electromagnetic field*

1 - 1 *
E? - H*= 5FWFW, EH = —ZFW Fr. (8.33)
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here

* UV

1
F = —§€MVU)\FO—)\, (834)

"7 is the Levi—Civita tensog®'?® = 1, transposition of any two
indices alters the sign of the Levi—Civita tensor.

In accordance with the second invariant (8.32), the figlds
and H, that are reciprocally orthogonal in one reference system,
persist this property in any other reference system. Iffieremce
systemK the fieldsE and H are orthogonal, but not equal, it is
always possible to find such a reference system, in which ek fi
is either purely electric or purely magnetic, dependinghangign
of the first invariant from (8.33).

Now let us consider the derivation of tfReynting equation
(1884). To do so we multiply both parts of first equation from
Egs. (8.1) by vectorZ, and both parts of second equation from
Egs. (8.1) — by vectoH ; then we subtract the results and obtain

= <E%_f n H%_f> = —pil — = (Hror i~ Brotii)

By using the following formula from vector analysis
div[a@, b] = brot@ — @rot b,
we obtain théPoynting equation

E? 4 I L
% (%) — _piF — divs,

where e L
=—[FH
S=-lBd]
is called thePoynting vector. After integration of the Poynting
equation over volum& and using Gauss theorem we get
0 [ E*+ H* - -
— | ————dV = — vEdV — da'.
BT / o V /pv V %S g
\% \% P
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The term standing in I.h.s. determines a change of elecgyopii
energy in volumé/ at a unit of time. The first term in r.h.s. char-
acterizes work done by electric field on charges in volum&he
second term in r.h.s. determines #ergy flow of electromag-
netic field through surface”, bounding volumé/.

first proposed by N. A. Umov. The notion on teaergy flow
has become one of the most important in physics. With the help
of the Poynting equationit is possible to prove thaniqueness
theorem in the following formulation (seei.E. TammFounda-
tions of the theory of electricity. Moscow: “Nauka”, 1976 (in
Russian). pp. 428-429).

“...electromagnetic field at any instant of time>
0 and at any point of volum&, bounded by an ar-
bitrary closed surfaceS is uniquely determined by
Maxwell equations, if initial values for electromag-
netic vectorst and H are prescribed in all this part
of space at timé¢ = 0 and if alsofor one of these
vectors(for example,E) boundary values of its tan-
gential components on surfac& are given during
the whole time interval fromt = 0to¢ = ¢;.

Let us suppose the opposite, i. e. suppose there are
two different systems of solutions of Maxwell equa-
tions E', H' and E”, H", satisfying the same initial
and boundary conditions. Due to linear character
of the field equations the difference of these solutions
E" = E' — E"andH" = H' — H" should also sat-
isfy Maxwell equations under the following additional
conditions:

a) E_"extra — 0'

b) at timet = 0 in each point of volum&: E" =
0, H"” = 0 (because at = 0 E', E” andH’, H" have,
as supposed, equal given values),
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c) during the whole time interval froh = 0 to
t = t; in all points of surfaceS tangential compo-
nents of vecto£" or vector H” are equal to zero (by
the same reason).

Let us apply the Poynting theorem (which is a con-
sequence of Maxwell equations) to this fiéltl, H"”
and put work of extraneous force? equal to zero.
The surface integral which enters the Poynting equa-
tion is equal to zero during the whole time interval
fromt = 0 tot = ¢;, because from Eqc) it follows
that on surfaces

S = [E’///I:’[///] —0:

therefore, at any time during this interval we get

oW j’”’ 2
—— [ L _av?
ot A
1%

As the integrand is strictly positive, we have

oW
ot =0,

i. e. field energy?”” may decrease or stay constant.
But att = 0, according to Eq.#), energylV"”” of field
E". H" is equal to zero. It also can not become neg-
ative, therefore during the whole interval considered
0 <t <ty energy

W — 8i /(E_T///Q + ﬁ///Z)dV
T
1%

P rddld =



8. Invariance of Maxwell-Lorentz equations 93

should stay equal to zero. This may take place only if
E" and H" stay equal to zero at all points of volume
V. Therefore, the two systems of solutions of the ini-
tial problemE’, H' and E”, H"”, supposed by us to be
different, are necessarily identical. So the uniqueness
theorem is proved.

It is easy to get convinced that in case of the whole
infinite space the fixing of field vectors values on bound-
ing surfaceS may be replaced by putting the follow-
ing conditions at infinity:

ER? and HR? at R — oo stay finite

Indeed, it follows from these conditions that in-
tegral of the Poynting vector over infinitely distant
surface is occurred to be zero. This fact enables us
to prove applicability of the above inequality to the
whole infinite space, starting from the Poynting equa-
tion. Also uniqueness of solutions for field equations
follows from this inequality”.

For consistency with the relativity principle for all electro-
magnetic phenomena, besides the requirement that the Max-
well-Lorentz equations remain unaltered under the Lorentz
transformations, it is necessary that the equations of motin
of charged patrticles under the influence of the Lorentz force
remain unaltered, alsa

All the aforementioned was only performed in works [[2, 3]
by H. Poincaré. The invariability of physical equationsihiner-
tial reference systems is just what signifies the identitylofsical
phenomena in these reference systems under identicaltioosdi
Precisely for this reason, alhtural standards areidentical in all
inertial reference systems. Hence, for instance, folldwe®tual-
ity of the NaC' crystal lattice constants taken to be at rest in two
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inertial reference systems moving with respect to eachrofies

Is just the essence of the relativity principle. The reigtiprin-
ciple was understood exactly in this way in classical memdsan
also. Therefore, one can only express surprise at what Atade
cian V.L. Ginzburg writes in the same article (see this editihe
footnote on page®1):

“l add that, having reread now (70 years after they
were published!) the works of Lorentz and Poirédr
have been only able with difficulty and knowing the
result beforehand (which is known to extremely fa-
cilitate apprehension) to understand why invariance
of the equations of electrodynamics with respect to
the Lorentz transformations, demonstrated in those
works, could at the time be considered as evidence
for validity of the relativity principle”.

Though A. Einstein wrote in 1948

“With the aid of the Lorentz transformation the spe-
cial relativity principle can be formulated as follows:
the laws of Nature are invariant with respect to the
Lorentz transformation (i. e. a law of Nature must not
change, if it would be referred to a new inertial refer-
ence system obtained with the aid of Lorentz transfor-
mation forz, y, z, t)".

Now, compare the above with that written by H. Poincaré wrot
in 1905:

“...If it is possible to give general translational mo-
tion to a whole system without any visible changes
taking place in phenomena, this means that the equa-
tions of the electromagnetic field will not
change as a result of certain transformations, which
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we shall callLorentz transformations two systems,
one at rest, and another undergoing translational mo-
tion represent, therefore, an exact image of each other”.

We see that classical works require attentive reading, mot t
mention contemplation.

We shall now establish the law for transformation of the Intze
force under transformation from one inertial referenceeysto
another. The equations of motion will be established iniSe@.
The expression for the Lorentz force, referred to unit vaymll,
in reference syster’, have the form (8.2)

— — 1 —
F=pE+p— [17, H} . (8.35)
C
Then, in reference systeki’ we must have a similar expression
— — ]_ —
P =pB 4+ )= [ﬁ H’} . (8.36)

Replacing all the quantities by their values (8.15), (8.18)29),
(8.30) and (8.35), we obtain

fi=v(fo==f). £=r(r-=£). @37

here byf we denote the expression
1 /2
f== (v f) . (8.39)

These formulae were first found by Poincaé. We see that

—

scalarf and vectorf transform like components ¢f°, 7). Now
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let us establish the law for the transformation of a forcemefd to
unit charge

ﬁ:E+1[a,ﬁ}, Fol r_ 1 (8.40)
c p p
Making use of (8.37), (8.38) and (8.39), we find
Fl=~L2 (Fx - EF) P =~L (F - ﬁFx) . (8.41)
p c p c
F=LF, r=-LF. (8.42)
p p
On the basis of (8.15) we have
2
=
E/ _ . (8.43)
P 1——uv,
CZ

To simplify (8.43) we shall derive an identity. Consider atam
inertial reference systermy, in which there are two bodies with
four-velocitiesUy andUy (see (9.1)) respectively

U U
Uy = <71,?171> , Uy = <72,?272> ; (8.44)

then, in the reference systeffi, in which the first body is at rest,
their four-velocities will be

=l
Uy = (1,0, Uy = <7', %7) . (8.45)

Since the product of four-vectors is an invariant, we obtain

, o
Y =M (1 — %) : (8.46)
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Setting in this expressiory, = ¢, and v; = « (velocity along the
x axis), we find

\/1 e \/ _wy (8.47)

Ul 2
CZ
On the basis of (8.43) and (8.47) we obtain
N2
p - (U2)
;= e (8.48)
-5
C

wheret’ is the charge’s velocity in the reference syst&im Sub-
stituting (8.48) into (8.41) and (8.42) we obtain the foaree R”
determined by the expression

——  _ R= (8.49)

27
‘/1_?2 ‘/1_?2

which transforms under the Lorentz transformations (ikex)

- _ X /_ _
R, =~ (R~ 2R), B = (R-2R.),
(8.50)

R,=R,, R,=R..
Such a four-vector of force was first introduced by Poincag|[Z2,
3.

With the aid of formulae (8.28) and (8.9) the Lorentz force

(8.35) can be written as

1
S (8.51)
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similarly, for the four-vector of forcé?” we have
RY = F"'U,,. (8.52)

Now let us calculate the energy-momentum tensor of therelect
magnetic field. By means of Egs. (8.51) and (8.27) we obtain

fo =~ O (FFI) — FR0,F,). (859

With the help of identity (8.24) the second term may be wnits
follows

FH0,F,, = —%@FWFW.
Taking into account this equation we get
fo=—0.T2, (8.54)
whereT? is energy-momentum tensor of the electromagnetic field
1 1

T% = —F,,F"* 4+ —§°FHF
Y + 167 " w>
or in symmetric form
ao 1 ap op 1 ao

For more details see Section 19p.R17.
The components of energy-momentum tensor may be expressed
throughE andH as follows

1

TOO -
s

(E* + H?),
<

TOi — Sz —
¢ 47

[EH];,

. 1 1
Tk = - (EE,c + H;H;, — 5 w(E% + HZ)) .



8. Invariance of Maxwell-Lorentz equations 99

From Eq. (8.54) by integrating it over the whole space we get

F = /dvf: 4 / L[Eﬁl]dv.
dt
This result coincides with the expression obtained by Hi€aié
(see Section 9, p.11L2).

Thus, the entire set of Maxwell-Lorentz equations is wntte
via vectors and tensors of four-dimensional space-tifrtee Lo-
rentz group, that was discovered on the basis of studies ofesi-
tromagnetic phenomena, was extended by H. Poincaf2, 3] to
all physical phenomena.

In ref. [3] developing Lorentz ideas he wrote:

“...All forces, of whatever origin they may be, be-
have, owing to the Lorentz transformations (and, con-
sequently, owing to translational motion) precisely like
electromagnetic forces”.

H. Poincaré wrote:

“The principle of physical relativity may serve us
in defining space. It gives us, so to say, a new instru-
ment for measurement. Let me explain. How can a
solid body serve us in measuring or, to be more cor-
rect, in constructing space? The point is the follow-
ing: by transferring a solid body from one place to
another, we thus notice that it can, first, be applied to
one figure and, then, to another, and we agree to con-
sider these figures equal. This convention gave rise
to geometry. ... Geometry is nothing, but a doctrine on
the reciprocal relationships between these transfor-
mations or, to use mathematical language, a doctrine
on the structure of the group composed by these trans-
formations, i. e. the group of motions of solid bodies.
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Now, take another group, the group of transforma-
tions, that do not alter our differential equations. We
obtain a new way of determining the equality of two
figures. We no longer say: two figures are equal, when
one and the same solid body can be applied both to
one figure and to the other. We will say: two figures
are equal, when one and the same mechanical system,
sufficiently distant from neighbouring that it can be
considered isolated, being first accommodated so that
its material points reproduce the first figure, and then
so that they reproduce the second figure, behaves in
the second case like in the first. Do these two views
differ from each other in essence? No...

A solid body is much the same mechanical system
as any other. The only difference between our previ-
ous and new definitions of space consists in that the
latter is broader, allowing the solid body to be re-
placed by any other mechanical system. Moreover,
our new conventional agreement not only defines space,
but time, also. It explains to us, what are two simulta-
neous moments, what are two equal intervals of time,
or what is an interval of time twice greater than an-
other interval”.

Further he notes:

“Just transformations of the “Lorentz group” do
not alter differential equations of dynamics. If we sup-
pose that our system is referred not to axes at rest, but
to axes in translational motion, then we have to admit,
that all bodies are deformed. For example, a sphere
is transformed to an ellipsoid which smallest axis co-
incides with the direction of translational motion of
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coordinate axes. In this case the time itself is expe-

rienced profound changes. Let us consider two ob-

servers, the first is connected to axes at rest, the sec-
ond — to moving axes, but both consider themselves
at rest. We observe that not only the geometric ob-

ject treated as a sphere by first observer will be looked

liked an ellipsoid for the second observer, but also two

events treated as simultaneous by the first will not be

simultaneous for the second.”.

All the above formulated by H. Poincaré (not mentioning the
content of his articles [2, 3]) completely contradicts tdnstein
words written in his letter to professor Zangger (DirectbLaw
Medicine Institute of Zurich University) 16.11.1911, th&tPoin-
caré“has taken up a position of unfounded denial (of the theory of
relativity) and has revealed insufficient understandinghaf new
situation at all”. (B.Hoffmann*. Einstein”, Moscow: Progress,
1984, p. 84 (in Russian)).

If one reflects upon H. Poincaré words, one can immediately
perceive the depth of his penetration into the essence ofiqddy
relativity and the relationship between geometry and grdene-
cisely in this way, starting from the invariability of the Maell-
Lorentz equations under the Lorentz group transformatiwhgh
provided for consistency with the principle of physicalatality,

H. Poincaré discovered the geometry of space-time, dé@techiy
the invariant (3.22).

Such space-time possesses the properties of homogeneity an
isotropy. It reflects the existence in Nature of the fundamen
conservation laws of energy, momentum and angular momentum
for a closed system. Thus, the “new convention” is not aabytr
it is based on the fundamental laws of Nature.

Now let us quote one striking statement by Hermann Weyl. It
is written in his booK'Raum. Zeit. Materie” appeared in 1918
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(cited from Russian translation: Moscow: Yanus, 1996, )20

“The Solution given by A. Einsteirhére is refer-
ence to the 1905 paper by A. EinstetA.L.), which
has solved all difficulties by one strike, is as follows.
World is a four-dimensional affine space in which
a metrization is enclosed by means of an indefinite
quadratic form

Qz) = (z)

with one negative and three positive dimensidns
Below he writes:

“Qx)= —af + af + 23 + 3,
herex; are point coordinates”.

But all this mentioned by H. Weyl were discovered by H. Poraca
(see articles [2, 3]), and not by A. Einstein. But H. Weyl does
see this and even more, he writes in his footnote:

“Two almost simultaneously appeared works by
H. Lorentz and H. Poincarg, are closely related to it
(the article by A. Einstein of 1905 A.L.). They are
not so clear and complete in presenting principal is-
sues as Einstein’s article is.

Then references to works by Lorentz and Poincaré are gweny.
strange logic. H. Weyl has exactly formulated the solutfevhich

has solved all difficulties by one strikdout just thisis contained

in articles by H. Poincaré [2, 3], and not Einstein It is surpris-

ing how he has not seen this during his reading of the Pagncar”
articles, because, as he mentions correctly, the essetice thfe-

ory of relativity is just this. All the main consequencestdbilow
trivially from this, including the definition of simultangiconcept
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for different space points by means of the light signal,adtrced
by H. Poincaré in his articles published in 1898, 1900 ara419

What a clearness and completeness of presentation of the pri
cipal issues is additionally necessary for Weyl when he &lfns
has demonstrated whahds solved all difficulties by one strike.
H. Weyl should better be more attentive in reading and mora-ac
rate in citing literature.

Above we have convinced ourselves that the symmetric set
of equations of electrodynamics, (8.1), (8.2), which isamant
with respect to coordinate three-dimensional orthogaasfor-
mations, at the same time turned out to be invariant, alsb, et
spect to Lorentz transformations in four-dimensional spi@me.
This became possible due to a number of vector quantitiesiof E
clidean space become, together with certain scalar gieantitthe
same space, components of four-dimensional quantitiesthe\t
same time, some vector quantities, such as, for examplef,
are derivatives of the components of four-dimensional tties,
which is the evidence that they are components of a tensdreof t
second rank in Minkowski space. The latter leads to the tresul
that such concepts aectric and magnetic field strengthse not
absolute.
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In Section 3 we saw that the requirement of fulfilment of tHa-re
tivity principle for electrodynamics leads to transitigori one in-
ertial reference system to another, moving with respedidditst
along ther axis with a velocityv, being realized not by Galilean
transformations (2.5), but by Lorentz transformation$)3tHence
it follows, of necessity, that the equations of mechanicsinie
changed to make them form-invariant with respect to the hizare
transformations. Since space and time are four-dimenkitma
physical quantities described by vectors will have four pom
nents. The sole four-vector describing a point-like body tiee

form
B dx”

U" = ) (9.1)
do
Here the intervallo in Galilean coordinates is as follows
,U2
(do)? = Pdt? (1 - —2) : (9.2)
C
Substituting the expression fde into (9.1) we obtain
0 i v’ i dz’ .
U=~ U=y—, vVV=—, 1=123. (9.3)
c dt

This four-vector of velocity was first introduced by Poincare

[3].

We now introduce the four-vector of momentum
PY =mcU" (9.4)

wherem is rest mass of a point-like body.
The relativistic equations of mechanics can intuitivelynré-
ten in the form dU
me? =F", (9.5)
do
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here F” is the four-vector of force, which is still to be expressed
via the ordinary Newtonian forcé. It is readily verified that the
four-force is orthogonal to the four-velocity, i. e.

F*U, =0.

On the basis of (9.2) and (9.3) equation (9.5) can be writien i
the form

d mu _, v?

— | —— | = Fy\/1—- — 9.6
==

d mc v?

— | —— | = F%/1 - =. 9.7

dt 02 c? (9.7
==

Since from the correspondence principle at small velxiigua-
tion (9.6) should coincide with Newton’s equation, it is uval to
defineF' as follows:

—

ﬁ:—l;ﬁ (9.8)
’U2
-2

herefis the usual three-dimensional force.
Now let us verify, that equation (9.7) is a consequence ocaequ

tion (9.6). Multiplying equation (9.6) by velocity and differenti-
ating with respect to time, we obtain

< Tzw.@%):ﬁz (9.9)
=

c2
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On the other hand, upon differentiation with respect to tietpia-
tion (9.7) assumes the form

m LA\ v?
11— —
02

Comparing (9.9) and (9.10), we find

v
==
C

ol

(9.11)

On the basis of relations (9.8) and (9.11) the equationdatives-
tic mechanics assume the form

d mu -
E 5 - 5 (912)
v
==
d mc? -
E > = JU. (913)
v
==

These equations were first obtained by H. Poinca& [3]. Equa-
tion (9.13) relates the change in particle energy and thé& done
per unit time.

Having obtained these equations, Poincaré applied them fo
explaining the anomalies in the movement of Mercury. In this
connection he wrote:
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“Thus, thenew mechanicss still on unsteady soil.
So we are to wished it new confirmations. Let us see
what astronomical observations give us in this con-
nection. The velocities of planets are, doubtless, rel-
atively very small, but, on the other hand, astrono-
mical observations exhibit a high degree of precision
and extend over long intervals of time. Small actions
can, apparently, add up to such an extent, that they
acquire values permitting to be estimated. The only
effect, with respect to which one could expect it to be
noticeable is the one we actually see: | mean the per-
turbations of the fastest of all planets — Mercury. It
indeed shows such anomalies in its motion that can
still not be explained by celestial mechanics. The shift
of its perihelion is much more significant than calcu-
lated on the basis of classical theory. Much effort has
been applied with the aim of explaining these devi-
ations ... The new mechanics somewhat corrects the
error in the theory of Mercury’s motion lowering it to
32", but does not achieve total accordance between
the observation and calculation. This result, is, thus,
not in favour of thenew mechanicsbut at any rate,
it also is not against it. The new doctrine does not
contradict astronomical observations directly”.

One can see here, how careful H. Poincaré was in his estima-
tion of results. This was quite understandable, since therth
was still under development, and therefore attentive aniipiel
experimental tests of its conclusions were required. hedrout
that these equations were valid only when gravity was néggiec
Later A. Einstein explained the anomaly in the motion of Meyc
on the basis of general relativity theory, in which gravgyaicon-
sequence of the existing curvature of space-time. But téa@xp
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the anomaly in the motion of Mercury Einstein actually had to
renounce special relativity theory and, as a consequenedyn-
damental conservation laws of energy-momentum and of angul
momentum.

From equations (9.12) it follows that the equations of ¢tzds
mechanics are valid only when the velocitis small as compared
with the velocity of light. It is just the approximate chatacof
the equations of classical mechanics that has led to thénarig
tion of the Galilean transformations, that leave the equatiof
mechanics unchanged in all inertial reference systems.

In three-dimensional form the momentum and energy have the
form

P=ymv, E=p’c=ymc. (9.14)
From (9.12) and (9.13) it follows that for a closed systenrgye
and momentum are conservefls we see from formula (9.14),
energy £ is not an invariant. It has been and remains to be
an invariant only with respect to three-dimensional coordnate
transformations, and at the same time it is the zeroth compo-
nent of the four-dimensional momentum vector in Minkowski.

As an example let us calculate the energy of a system of two
particlesa andb in two different systems of reference. To proceed
so let us consider invariant

V= (pa+m)
In the system of reference where one patrticle is at rest
Fa =0
we have
Y = 2mFE + 2m2c2.

Here we take masses for partied@and for particleb as equal. The

same invariant is
2

V= (pa +pb)2 = 4?7
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when estimated at the reference system where the centerssf ma
is at rest
ﬁa + ﬁb = 07

and¢ is a particle energy calculated in this system of reference.
When comparing these expressions we get a connection be-
tween the energies in these two reference systems:

2
E =2— —mc.
mc

The collision energy of two particles is used with most effi-
ciency in case when the center of mass of the two particles is a
rest in laboratory system of reference. Just this situasaeal-
ized in colliders. There is no loss of energy for the centanats
motion.

One who has felt the four-dimensionality of space-time |d¢ou
have seen immediately that energy and momentum are combined
in the four-momentum. Moreover, he would have understoat th
in the case of a closed system they obey the energy and momentu
conservation law.

In 1905 A. Einstein has proposed really existent quantgot li
energy fiiw to explain photo-effect. If he would understand in
deep the existence and meaning of the group, and so theeequir
ment of relativity principle that physical quantities skibbe four-
dimensional, then he could introduce for light the quant @ m
mentum in line with the quant of energy. Moreover that time it
was already proved experimentally (P.N. Lebedev, 1901)tttea
light was carrying not only the energy, but also the momerdaoh
So it was exerting pressure on solid bodies. But A. Einstagiot
done this. The quant of light momentum has been introduced by
J. Stark in 1909. He took it into attention in the momentum-con
servation law. So the quantum of light tpeoton has appeared
(as a particle).
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Energy and momentum according to (9.4) transform as follows
under Lorentz transformations

E
pfpzv(px—vg), Py =0y, P.=D: E =7(E—uvp.).

A monochromatic plane light wave is characterized by frexqye
= w
w and wave vectoik = —ri. Together they are components of
C
four-dimensional wave vector
w W
KY = (—, —ﬁ) .

C C
Square of this four-dimensional wave vector is zero due & th
wave equation
K"K, =0.
The meaning of this fact is that the rest mass is zero.

The frequencw and the wave vectdk transform under Lorentz
transformations in the same wayda@sz, i. e. as follows

W= wy (1 — Enm> ,
c

11 v
wn, =wy(ng ——),

c
1.1 1.1
y

W, = Wny, WnN, =wn,.

Just the same formulae stay valid fanoton which rest mass is
zero. The vector of four-momentum of photon is as follows

ho -
pV: <_7hK)7
C

wheref is the Planck constant.

It follows from the above that energy and frequency trans-
forms in the same way. Formulae given above explaappler
effect, i. e. the change of light frequency when it is emitted by
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moving source. Théoppler effect takes place also when the
direction of movement of the light source is perpendicutathte
direction of observationd, = 0). So far as

w=uw"y (1 + ﬁn;) :
C
we obtain for the transverd@oppler effectthe following result

W =wy1—uv/c

This effect is small enough in comparison with the longituadi
one. From the above formulae it is also possible to deterimme
the direction of light beam changes under transformatioarto
other inertial reference system
v
Ny — —
n., = c_.
1-— Enw
&
This formula shows the effect @berration. We will return to
this subject in Sectioh6.
The covariant vector of four-velocity i$, = U°+,,, but since

in Galilean coordinates,, = (1,—1,—1,—1), we obtain
U, = (U° -UY. (9.15)

Taking into account (9.1) and (9.15) it is possible to coneptbe
invariant

U, U" = (U°? — (U)* =1, (9.16)
which by virtue of the definition of the four-vectdr” will be
unity. This is readily verified, if the values determined loy-f
mulae (9.3) are substituted into (9.16). Thus, we have

pup” = (mc)?, or E = c+/p? +m2c2. (9.17)
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In formula (9.17) we have retained for energy only the pesiti
sign, however the negative sign of energy also has sens@ni t
out to be significant in the case of unification of relativitgory
and quantum ideas. This led Dirac to predicting the parf{jote
sitron) with the mass of the electron and positive chargeakip
the electron charge. Then the ideas arose of “elementanyi- pa
cles creation in the process of interaction, of the physiaalium,
of the antiparticles (V. Ambartzumyan, D. Ivanenko, E. Feynit
has opened the possibility of transformation of the catigdpar-
ticles kinetic energy to the material substancepossessingest
mass So the need to construct accelerators for high energies to
study microcosm mysteries has arisen.

On the basis of (9.14) equation (9.12) assumes the form
%(Eﬁ):f,org-%:f—:—?-d—E (9.18)

2 dt

From (9.18) it follows that the acceleration of a body, deteed

by the expressmrzl% does not coincide in direction with the acting

forcef. From the equations of Poincaré relativistic mechanics we
have on the basis of (9.17), for a body in a state of rest

_ 2
Eo—mC,

wherekE) is the energyn is the mass of the body at rest.

From (9.17) it is evident, that massis an invariant. This re-
lation is a direct consequence of pseudo-Euclidean stioftthe
space-time geometry. The connection between energy ansl mas
first arose in relation to the inert property of the electrgmetic
radiation. FormulaZ = mc? for radiation had been found for the
first time in the article by H. Poincaré in 1900 in clear andax
form.
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Let us quote some extractions from the article by H. Pomcar”
published in 1900 “Lorentz theory and principle of equatifyac-
tion and reaction” (double translation: by V.A. Petrov frémench
into Russian and by V.O. Soloviev from Russian into English)

“First of all let us shortly remind the derivation
proving that the principle of equality of action and
reaction is no more valid in Lorentz theory, at least
when it is applied to substance.

We shall search for the resultant of all pondero-
motive forces applied to all electrons located inside a
definite volume. This resultant is given by the follow-
ing integral

. 1. - o
.F:/WW(?WJH+E),

where integration is over elemeni¥” of the consid-
ered volume, and is the electron velocity.
Due to following equations

4 1 OF .
L= —— = 4ot H
c Y c Ot + ot A,
dmtp = divE,

, . .1
and by adding and retracting expreSS|%HVH2, I
T
can write the following formula

4
ﬁ:z 1)
1

1
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where ~
~ 1 - 0F
Fr=—[dV |H—
"7 dre ot |’
. 1 Lo
Fy=— [dV(HV)H
2 AT ( V) )
Fy = —i/deﬂ,
8m
— 1 — . —
F, = yp dVE(divE).
Integration by parts gives the following
A= / doA(RH) — - / v i (div),
47 4

- 1
Is = ——/daﬁH2,
8w

where integrals are taken over all elemenqts of the
surface bounding the volume considered, and where
denotes the normal vector to this element. Taking into
account

divH = 0,
it is possible to write the following

L. 1 L
Fy+ By = o / do <2H(ﬁH) - ﬁH2>. (A)

Now let us transform expressioﬁ. Integration by
parts gives the following
- 1 — — 1 — —
Fy=— [ doE(ME) — — /dV(EV)E.
47 41
Let us denote two integrals from r.h.s. Asand F/,
then B L
Fy=F,—F).
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Accounting for the following equations

. 1 0H
El=—-——.2=
[VE] P
we can obtain the following formula
Fr=v+7
where
51 )
Y=— | dVVE~,
8w
S 1 . OH
Z=—[dV |E—
4rc v ot
As a result we find that
L1 o
Y =— [ donk”,
8
- - d [dV = 5
F—-7Z=— | —HFE
! dt 47rc[ ]
At last we get the following
S d [dV = 5 - -
F=— [ —[HE|+(Fa+F5)+ (F;-Y),

Where(ﬁg + ﬁg) is given by Eq. (A), whereas

I L

Fi-V=o /da<2E(ﬁE) - ﬁE2).
Term(F,+ F) represents the pressure experienced by

different elementgo of the surface bounding the vol-
ume considered. It is straightforward to see that this
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pressure is nothing else, but theagnetic pressurdy
Maxwell, introduced by this scientist in well-known
theory. Similarly, term(F; — Y') represents action of
the electrostatic pressure by Maxwell. In the absence
of the first term
d 1 — -
— [dV—[HE
dt 47?0[ ]
the ponderomotive force would be nothing else, but a
result of the Maxwell pressures. If our integrals are
extended on the whole space, then forégsts, F)
andY disappear, and the rest is simply
F=— [ —HE|.
dt 47?0[ ]
If we denote ad/ the mass of one of particles consid-
ered, and ag/ — its velocity, then we will have in case
when the principle of equality of action and reaction
is valid the following:

ZMU: const. 3

Just the opposite, we will have:

ZMﬁ—/ﬂ[ﬁﬁ] = const.

4re

Let us notice that
C

HE
1 1 E]

is the Poynting vector of radiation.

30nly substance is considered hereAd-L.
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If we put
1
- H2 El2
then the Poynting equation gives the following

d - _,
/ d—{dV = - / do——i[H E] - / dV p(TE). (B)
The firstintegral in r.h.s., as well known, is the amount
of electromagnetic energy flowing into the considered
volume through the surface and the second term is the
amount of electromagnetic energy created in the vol-
ume by means of transformation from other species of
energy.

We may treat the electromagnetic energy as a ficti-
tious fluid with density/ which is distributed in space
according to the Poynting laws. It is only necessary
to admit that this fluid is not indestructible, and it is
decreasing over valugdV E in volume elemendV/
in a unit of time (or that an equal and opposite in sign
amount of it is created, if this expression is negative).
This does not allow us to get a full analogy with the
real fluid for our fictitious one. The amount of this
fluid which flows through a unit square surface ori-
ented perpendicular to axisat a unit of time is equal
to the following

JU;

whereU; are corresponding components of the fluid
velocity.

Comparing this to the Poynting formulae, we ob-
tain e L
= —[EH;

JU 47T[ l;
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so our formulae take the following form

ZMU—}-/dVg:const.“ (@)
c

They demonstrate that the momentum of substance plus
the momentum of our fictitious fluid is given by a con-
stant vector.

In standard mechanics one concludes from the con-
stancy of the momentum that the motion of the mass
center is rectilinear and uniform. But here we have no
rights to conclude that the center of mass of the sys-
tem composed of the substance and our fictitious fluid
is moving rectilinearly and uniformly. This is due to

4In Eq. (C) the second term in |.h.s. determines the total momentureof t
electromagnetic radiation. Just here the concemdifition momentum density

arises J
g = C_2 Ua

and also the concept afiass density of the electromagnetic field

J

m= —
c?’

whereJ is the electromagnetic energy density. It is also easy tdreeehere
that radiation energy density

S="|EH]

e

is related to the momentum density
5
9= 2

So the notions of locaénergyand momentunmappeared. All this was firstly

obtained by H. Poincaré. Later these items were discusstttiPlanck work
(Phys. Zeitschr. 190&. S. 828) -A. L.
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the fact that this fluid is not indestructible.
The position of the mass center depends on value
of the following integral

/ ZJdv,

which is taken over the whole space. The derivative of
this integral is as follows

/ f%dv = - / Zdiv(JU)dV — / pZ(ET)dV.

But the first integral of r.h.s. after integration trans-
forms to the following expression

/ JUdv

<C_" — Z Mﬁ) 2,
when we denote tﬁi the constant sum of vectors from
Eq. ).

Let us denote by/, the total mass of substance, by
R, — coordinates of its mass center, b — the total
mass of fictitious fluid, by?; — its mass center, by
M, — total mass of the system (substance + fictitious
fluid), by R, — its center of mass, then we have

or

My = My + My, M2E2 = Moéo + Mllféla

/deV = MR, 5

c2

SH. Poincaré also exploits in this formula concept of thass density of the
electromagnetic fieléhtroduced by him earlier. A. L.
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Then we come to the following equation

d, =, A _p(TE)
%(MQRQ) = C— /JJ 02

av. (D)

Eq. (D) may be expressed in standard terms as fol-
lows. If the electromagnetic energy is created or anni-
hilated nowhere, then the last term disappears, whereas
the center of mass of system formed of substance and
of electromagnetic energy (treated as a fictitious fluid)
has a rectilinear and uniform motion”.

Then H. Poincaré writes:

“So, the electromagnetic energy behaves as a fluid
having inertia from our point of view. And we have to
conclude that if some device producing electromag-
netic energy will send it by means of radiation in a
definite direction, then this device must experience a
recoil, as a cannon which fire a shot. Of course, this
recoil will be absent if the device radiate energy isotrop-
ically in all directions; just opposite, it will be present
when this symmetry is absent and when the energy is
emitted in the only one direction. This is just the same
as this proceeds, for example, for the H. Hertz emitter
situated in a parabolic mirror. It is easy to estimate
numerically the value of this recoil. If the device has
mass 1 kg, and if it sends three billion Joules in a sin-
gle direction with the light velocity, then the velocity
due to recoil is equal to 1 sm/sec”.

When determining the velocity of recoil H. Poincaré agaipleits

formula >
M=—=

2
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In §7 of article [3] H.Poincaré derives equations of relaticis
mechanics. If we change the system of units in this paragraph
from M = 1, ¢ = 1 to Gaussian system of units, then it is easy to
see thatnert mass of a bodyis also determined by formula:

E
M = =
Therefore, it follows from works by H. Poincaré that theert
massboth of substance and ofradiation is determined by their
energy. All this has been a consequence of the electrodgsami
and the relativistic mechanics.
In 1905 Einstein has published articiBoes the inertia of
a body depend on the energy contained in it?”. Max Jam-
mer wrote on this article in his bodihe concept of mass in
classical and modern physics” (Russian translation: Moscow,
“Progress”, 1967,p. 182):

“Usually one says thathe theorem of inertia in
its full generality has been first established t5in-
stein in 1905. (Max BorriAtomic physics”, Rus-
sian translation: Moscow, “Mir”, 1965, p. 72), in
this relation refers to Einstein articioes the iner-
tia of a body depend on the energy contained in
it?”. Onthe base of the electromagnetic field Maxwell-
Hertz equations Einstein states tH#ta body gives
away energyFE in the form of radiation, then its
mass decreases bi /c?”. Generalizing this result
onto all energetic transformations Einstein concludes:
“The mass of a body is a measure of the energy con-
tained in it”. A curious occasion in the history of sci-
entific thinking is the fact that Einstein own deriva-
tion of formulaE = mc?, as it is given in his arti-
cle published ifAnnalen der Physik” has been log-
ically incorrect. In fact, what is known to non-experts
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asthe most celebrated mathematical formula among
all discoveredin science William Cahn “Einstein,

a pictorial biography”. New York: Citadel, 1955.

p. 26), really has been only a result of petiti princi-
pia, i. e. an argument based upon a statement which
should itself be proved”.

“...The logical groundlessness of the Einstein de-
duction was demonstrated by Ivé¥ournal of the
Optical Society of America. 1952. 42. pp. 540-
543)".

Let us consider shortly Einstein article of 19(3oes the in-
ertia of a body depend on the energy contained in it?” Ein-
stein writes:

“Let there is a body at rest in system, (y, z). Let
its energy related to system,(y, z) is Fy. Let energy
of this body related to systen), {;, <) moving with ve-
locity v is equal toH,. Let this body sends a plane
light wave with energy./2 (measured relative to sys-
tem {, vy, 2)) in the direction having angle to axis
x, and simultaneously sends the same portion of light
in the opposite direction. In this case the body stays
at rest relative to systemx(y, z). For this process the
energy conservation law has to be fulfilled and fur-
thermore (according to the relativity principle) rela-
tive to both coordinate systems. If we denote energy of
the body after light emission measured relative to sys-
tem @, y, z) as F;, and correspondingly energy mea-
sured relative to systeng (n, <) as Hy, then after ex-
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ploiting the above relation we find

L L
Ey=F — + —
0 1—|—<2+2),

Subtracting the first equation from the second we ob-
tain

(Ho—Eo)— (H,— Ey) = L{i

. Einstein tries to get all the following just from this retat.

Let us make an elementary analysis of the equation derived by

him. According to the theory of relativity

E FE
Hy=———, H=———.
v v
Vi-z Vi-=

Einstein seemingly has not seen these formulae. It follows f
here

1 1
HO—E0:E0<72—1>, Hl—El :E1 <72—1>,
(% (%
1—— 1——

c? c?
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and consequently I.h.s. of the Einstein equation is equéheo
following

(Ho — By) — (Hy — Ey) = (Ey— E) (% - 1>;
1 zz
then Eq. (V) takes apparent form
Ey—E; = L.

Therefore, itis impossible to get nothing more substafrioah the
initial Einstein equation/y). In this work A. Einstein has not suc-
ceeded in discovering neither physical arguments, nor hodeif
calculation to prove that formula

E
M=a
is valid at least for radiation. So, the critics given by \eesthe
A. Einstein work is reasonable. In 1906 Einstein once mdrens
to this subject, but his work reproduces the Poincaré resil
1900, as he notes himself.

Later, Planck in 1907 and Langevin in 1913 revealed, on this
basis, the role of internal interaction energy (bindingrgyke which
led to the mass defect, providing conditions for possible en
ergy release, for example, in fission and fusion of atomic niei.
The relativistic mechanics has become an engineeringptiisei
Many accelerators of elementary particles are construweiidxdthe
help of it.

“Disproofs” of the special theory of relativity appearingnse-
times are related to unclear and inexact presentation bbgtcs
in many textbooks. Often its meaning is deeply hidden bytglen
minor or even needless details presented. The specialytiogéor
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relativity is strikingly simple in its basics, almost as Hdean ge-
ometry.
On the transformations of force

According to (9.8) and (9.11) the four-force is

FY = (v % f), (9.19)

F, - <7 = —vf) . (9.20)

As we noted above, the force as a four-vector transformstiike
guantitiesct andz, so,

fi="1m (fx - ﬁﬁf) (@) = Lo @f - eB1.), 9:20)
Y c Y

gl 8
fy= ?fzn f.= ?fz (9.22)
Here
B=—, n=—F, (9.23)

c U

u is the velocity along the axis.
Consider two particles in the unprimed inertial referenge s
tem with the four-velocities

U U
Uy = <%7;) , Uy = (71,71?) : (9.24)

Then, in the inertial reference system, in which the secartl-p
cle is at rest, we have the following expressions for theeetye
four-vectors:

U/
Uy = (7’,7’2) , Uy =(1,0).
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Hence, on the basis of invariance of expresdignUs we have
the following equality:

Y =m (1 - %) : (9.25)

Thus, we obtain .
X o S (9.26)

In our case, when the velocity is directed along the axis, we
have )
A S— (9.27)

T 1_5% Y 1—6% z 1_511_
f’ﬁ’z(‘fﬁ)_—ﬁfﬁ". (9.29)

Hence it is evident that, if the forcﬁin a certain inertial Ga-
lilean reference system is zero, it is, then, zero in anyraties-
tial reference system, also. This means that, if the law eftia
is valid in one inertial reference system, then it is alsoyelen
any other inertial reference system. Moreover, the cormmuson-
cerning the force is not only valid for an inertial referesgstem,
but also for any accelerated (non-inertial) referencessysEorce
cannot arise as a result of coordinate transformations If mo-
tion by inertia in an inertial reference system proceedsi@la
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straight line, then in a non-inertial reference system fresion
will proceed along the geodesic line, which in these coatia
will no longer be a straight line.

In classical mechanics the forgeis the same in all inertial
reference systems, in relativistic mechanics this is ngéoso, the
components of force, in this case, vary in accordance wi28(9

Let us, now, dwell upon a general comment concerning iner-
tial reference systems. Inertial reference systems beajogable
signifies that, if in each reference system we create idaintmn-
ditions for the evolution of matter, then we, naturally, slibhave
the same description of a phenomenon in each referencergyste
other words, we will not be able to single out any one of the-ine
tial reference systems. But, if we have provided some cuomdit
for the motion of matter in one inertial reference systengnth
in describing what goes on in this reference system by obsgrv
from any other inertial reference system, we will alreadyaob
another picture. This does not violate the equality of iaéref-
erence systems, since in this case the initial referendermyisas
been singled out by the actual formulation of the probldpne-
cisely such a situation arises, when we consider the Univers
In this case, there exists a sole physically singled out inial
reference system in the Universe, which is determined by the
distribution of matter. Time will be singled out in this refer-
ence system as compared with other inertial reference systes.
This time could be termed the “true time” of the Universe. As
an example of a singled out reference system one could choose
a reference system, in which the relict electromagnetic rad-
tion is homogeneous and isotropi¢see ref.[5]).

From the above exposition, especially from Sections 3, 8, 7,
and 9 it is evident that Henri Poincaré discovered all tiseegals
that make up the content of special relativity theory. Anyspe,
who has graduated from University in theoretical physiaswho
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has attentively read at least two of his articl@n the dynamics
of the electron”, may verify this.

There exists, also, other points of viewPoincaré did not
make the decisive stefftle Broglie),"Poincaré was, most likely,
quite close to creating SRT, but did not arrive at the end. One
can only guess why this happenedV.L. Ginzburg). But these
statements characterize the authors’ own level of undetstg
the problem, instead of H. Poincaré’s outstanding aclievgs in
relativity theory. What is surprising is that the authorswmo
trace of doubt in considering their own incomprehensionther
difficulty they had in understanding, as a criterion in ewailg
the outstanding studies performed by Poincaré. In this taere
is no need to “guess”. It is only necessary to read the works by
Poincarél[2, 3] and to think.

Professor A. Pais wrote the following in his botkhe scien-
tific activity and life of Albert Einstein”, published in Russian
(Moscow, “Nauka” Publishing House, 1989, p. 162):

“...Itis clearly seen, that even in 1909 Poinéadid

not knowthat contraction of the dimensions of rods

is a consequence of two Einstein’s postulatesin-
gled out by me- A.L.) Hence it follows that Poincar
had not understood one of the fundamental proposi-
tions of SRT".

We right away note that the underlined statement is wrongt Bu
about this — later.

From everything that A. Pais has written it clearly follovasit
he himselfdid not understand the fundamentals of special relati-
vity theory. Let me explain. Poincaré demonstrated thariabil-
ity of the Maxwell-Lorentz equations with respect to the ¢tz
transformations, which was consistent with the relatipityiciple,
formulated by Poincaré in 1904 for all natural physical -
ena. As we already noted, H. Poincaré discovered the fuedtah
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invariant (3.22)
J=c*T* - X*-Y?* - 72,

that establishes the geometry of space-time. Namely héffale i
lows, that the light velocity being constant is a particudanse-
guence of this formula, when the invariants zero. Professor
Pais had to understand that the Lorentz contraction iseclad
negative/, i. e. to a space-like value of, not equal to zero. As to
the slowing down of time, it is related to positive i.e time-like
J, but certainly not equal to zero. Thus, from the above iteacl
that contraction of the dimensions of rods is not a consequee
of the two Einstein’s postulates only Such is the result of a
superficial knowledge of the relativity theory foundations

So with such a knowledge of material professor Pais has tried
to prove on the pages of his book that H. Poincaré has not thade
decisive step to create the theory of relativity! He as a julsts
“reinforced” his view on the contribution of H. Poincaré bye
decision of Paris Session of French Philosophical SocretpP?2.

So simple it is! The philosophers have met and made a deci-
sion whereas they probably have not studied works by Pd@ncar
on the theory of relativity at all. But their study requirectar-
responding professional level. | doubt whether their psienal
level has been higher than one by professor Pais in this figt.
should say that professor Pais was an outstanding sciénést
spective to this criticism and he made a lot of remarkablestiv
gations.

As to the Lorentz contraction, in the article [3]& “The con-
traction of electrons”) H. Poincaré deals with this issue in detalil,
making use of the Lorentz transformations. All this is clgare-
sented in article [3]. Precisely unification of the relainvand the
Maxwell-Lorentz electrodynamics permitted Poincaré darfu-
late in articles [2] and [3] the foundation of relativity thrg. As to
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the postulate concerning the constancy of the velocitygsftliit

proved to be just a simple heuristic device, but not a funddaie

of the theory. Itis a consequence of the requirement thetrelgy-

namical phenomena, described by the Maxwell-Lorentz égpusit

in Galilean coordinates, be consistent with the relatigitiyciple.
Professor A. Pais, mentioning the group character of Larent

transformations, writes (see p. 128 of the book cited above)

“Poincaré, of course, did not suspect that someone
else(A. Einstein is understood-— A.L) had already
mentioned the group properties of Lorentz transfor-
mations few weeks earlier...”

But all this isabsolutely incorrect Article [2] by H. Poincaré,
appeared irfComptes Rendus” on June, 5, 1905, whereas the
article by A. Einstein had been sent to publisher on Junel 05.

H. Poincaré, discovered the group and named iL@®ntz
group. He wrote in article [2]:

“All these transformations together with all rota-
tions should form a group”.

In articles [2; 3] by H. Poincaré, the group properties ardely
used for constructing four-dimensional physical quassitipro-
viding the invariance of electrodynamics equations undher t
Lorentz group. While in the article by A. Einstein only thd-fo
lowing is told:

“From here it follows that such parallel transfor-
mations form a group, as it should be”.

There is no any other word on the group in the Einstein article
From here his misunderstanding that electrodynamic qtiesti
should be transformed according to the group in order toigeov
the invariance of equations required by relativity prineifollows
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naturally. But all this leads to the consequence that sorgsigdl
guantities become four-dimensional, for example, curdenisity,
potentials, momentum, and force.

Striking “discoveries” are made by certain historians regas
ence. Here, follows, for example, one “masterpiece” of sturela-
tive activity. S. Goldberg wrote the following in his argc(‘Ein-
stein collection 1972”, M.:Nauka, 1974, p. 354. See, alsdhe
British Journal for the History of Science”, 1970, vol. V, No.
17, p. 73):

“Poincaré adhered in his works to the idea of ab-
solute space independently of whether it is accessible
for observation, ornot ...”

“...In Poincaré’s opinion there existed a privileged
reference system, in which the velocity of light was
actually constant: this system was the unique one”

S. Goldberg attributes all this to Poincaré without anyugas
whatsoever. Thus, back in 1902, in the bd&cience and hy-
pothesis”, Poincaré wrote:

“Absolute space does not exist. We only perceive
relative motions”.

“Absolute time does not exist”.

In 1904 Poincaré formulated the relativity principle fdndnysical
phenomena (see Section Il 25) and in 1905 establishedrthat,
accordance with the relativity principle, the equationshef elec-
tromagnetic field remain the same in all inertial refererysteams,
owing to the Lorentz transformations.

Thus the equality and constancy of the velocity of light is-pr
vided for any inertial reference system. All this is expoeddn
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the articles by H. Poincaré [2, 3], which should have been-st
ied carefully by S. Goldberg before writing about the opmiuf
Poincaré.

In evaluating the works [2] and [3], as well as the early
works of H. Poincaré in physics it is necessary to proceed only
from their content, comparing it with contemporary ideas, ot
to be guided by statements on the issue, even made by wellrkno
scientists, contemporaries of Poincaré, since the |dvelamy of
them was insufficient to fully apprehend what Poincaré hes w
ten. At the time his personality was especially manifesthiat t
for him physical problems and their adequate mathemataral f
mulation joined naturally and composed a single whole. Ngme
for this reason, his creations are exact and modern evenafte
hundred years. H.Poincaré was one of those rare resesytber
whom natural sciences and mathematics are their propensurr
dings. The young people of today, who are prepared in theoret
ical physics, can readily perceive this, if only they, atsleaead
Poincaré’s works [2] and [3]. What concerns the statembwpts
Professor A. Pais and Doctor S. Goldberg, we once more encoun
ter, what we saw earlier — a clear attempt to attribute thein o
incomprehension to the author.

Some authors wishing to stress the preceding character of
H. Poincaré articles [2], [3] on relativity give two follang quotes
from the book of W. PauliThe theory of relativity” written by
him in young age in 1921:

“The basics of the new theory were concluded up
to some completeness by Einstein”.

“Investigations by Einstein contain not only all the
essential results from both papers mentioned, but also
a presentation of a new and deep understanding of the
whole problem”.
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Below we will give a quotation from W. Pauli related to the gsam
subject, but written later, in 1955.

To the first Pauli quotation it should be said that no further
completion of works [2], [3] by H. Poincaré is required. Afie
main results which contain the full content of the theoryesétiv-
ity are formulated there and in the most definite form.

What about the second statement by Pauli, the case is just op-
posite. It is sufficient to compare the content of Poincau@ &in-
stein, works to conclude that articles [2], [3] by Poincacatain
not only all the main content of the article by Einstein of %90
(moreover Poincaré has formulated everything definitelgan-
trast to Einstein), but also contain main parts of the laterkw
by Minkowski. What about words by Pauli onléep understand-
ing of the whole probleiit is just present in articles [2], [3] by
Poincaré. For example:

“All forces behave in the same way as electromag-
netic forces irrespective of their origin. This is due
to Lorentz transformations (and consequently due to
translational motion)”.

In other words Lorentz invariance is universal. All the adan
full can be said about gravitational forces.

Further, Poincaré discovered pseudo-Euclidean geonoétry
space-time, revealed the four-dimensionality of physoenti-
ties. He constructed the equations of relativistic meatsrpre-
dicted existence of the gravitational waves, propagatiitg the
velocity of light. Then, what elsedeep understanding of the
whole problefimay be spoken about?

1954:

“A bit more and H. Poincag, and not A. Einstein
would be the first who build the theory of relativity in
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its full generality and that would deliver to French sci-
ence the honor of this discovery....But Poiredias

not made the decisive step and let Einstein the honor
to uncover all the consequences following from the
principle of relativity, and in particular, by means of a
deep analysis of measurements of length and time, to
discover the real physical nature of relation between
space and time maintained by the principle of relativ-

ity”.

In fact all this is just opposite to the L. de Broglie writings.
H. Poincaré gave detailed analysis of time measuremergad|
in his article of 1898The measurement of time”, in particular,
by means of light signal. Later, in articles of 1900 and 1964lé-
scribes a procedure fdetermination of simultaneity at different
points of space by means of a light signal in a moving inestyat
tem of reference, and therefore reveals the physical mgaufin
local time by Lorentz. In 1904 in article [1] he was the first who
formulated the principle of relativity for all physical phemena.
In 1905 being based on Lorentz paper H. Poincaré has dissbve
the Lorentz group in articles [2; 3] and on this ground prowed
variance of Maxwell-Lorentz equations under Lorentz tfamaa-
tions in full agreement with the relativity principle. H.iRoaré
extrapolated the Lorentz group on all physical forces. &ftoze
the Lorentz invariance became universal and valid also fav-g
itational phenomena. In article [3], being based on the htare
group H. Poincaré introduced pseudo-Euclidean spacegaom-
etry. So, the homogeneous and isotropic space-time arosé wh
was defined bynvariant

2t2 2 2

At —a? — oy — 22

It was developed in relativity dimeandlengthconcepts, in sym-
metry of physical laws, in conservation laws, in existentéhe
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limiting velocity for material bodies, in four-dimensiditg of
physical quantities. The connection between space andvise
determined in full by the structure of geometry. There is nchs

a deep insight into the essence of the problem in the artigle b
A. Einstein. Following these ideas H. Poincaré discovergda-
tions of relativistic mechanics and predicted existencgra¥ita-
tional waves propagating with velocity of light. TherefétePoin-
caré deduced all the most general consequences from tha-pri
ple of relativity. There is not any idea from the 1905 work by
A. Einstein which has not been present in articles by H. Poin-
caré. And also in realization of ideas the work by A. Einstein is
rather elementary. Though in fact the realization of idegsiired
high level of analysis. In H.Poincaré works [2; 3] there @& n
only the high level analysis and realization, but they conédso
much new which is not contained in the article by A. Einsteid a
which has determined further development of the theory laf re
tivity. How Lui de Broglie has not seen all this when readihg t
Poincaré articles? Compare writings by Lui de Broglie titings

by W. Pauli of 1955 (see present edition[_p.1137).

It is quite evident,that Lui de Broglie has not gained an
understanding of the essence of the problem as a matter of
fact. Though being the Director of the Henri Poincaré Institute
has to do so.

Being based upon opinions by Lui de Broglie Academician
V. L. Ginzburg writes:

“As we see, the position of L. de Broglie, referring
to the memory of H. Poincarwith a deep respect and
with a maximal kindness, should be considered as one
more testimony that the main author of the SRT is
A. Einstein

All this is strange. One would think everything is simple dteif
your qualification admits you, then take the article by A.d@in
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of 1905 and the articles by H. Poincaré, compare themadinuill
be clear. Just this will be considered in details in further Sections
And what about the quotation of L. de Broglie, it clearly demo
strate his superficial knowledge of the works by H. Poincaré

P. A. M. Dirac wrote in 1980 Einstein collection 1982-1983.
Moscow: “Nauka”, 1986. p. 218, in Russian):

“In one respect Einstein has advanced much fur-
ther than Lorentz, Poinc&and others, namely, in as-
sumption that Lorentz transformations should be ap-
plied to the whole physics, and not only to effects con-
nected with the electrodynamics. Any physical forces
which may be introduced in future are to be compati-
ble with the Lorentz transformations”.

But just relating to this H. Poincaré wrote in 1905-1906 riticées
[2; 3]:

“...All forces, despite of the nature they may have,
behave according to Lorentz transformations (and con-
sequently, according to translational motion) just in
the same way as electromagnetic forces”.

Comparing the quotation from Poincaré with the words byabir
it is easy to get convinced, that all this considered by Daac
the achievement by Einstein is contained in full in artic¢ hy
Poincaré. Therefore the quoted statement by Ditat.one re-
spect Einstein has advanced much further than ... Po#&icés
simply incorrect. Poincaré was the first who extrapolatetehtz
transformations onto any forces of nature, including dedignal
ones.

The following, for example, is what Richard Feynman wrote
(see his boolkCharacter of physical laws. Moscow, “Mir”, 1968
(in Russian):
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“Precisely Poincag proposed to examine what could
be done with equations without altering their form. It
is namely his idea to pay attention to the symmetry
property of physical laws”.

In 1955, in connection with the 50-th anniversary of reliaiv
theory W. Pauli wrote:

“Both Einstein and Poinca relied on the prepa-
ratory works of H.A. Lorentz, who came very close to
the final result, but was not able to make the last de-
cisive step. In the coincidence of the results obtained
independently by Einstein and Poinédrsee the pro-
found sense of harmony of the mathematical method
and analysis, performed with the aid of thought exper-
iments based on the entire set of data from physical
experiments”.

Compare this quotation from W. Pauli with words by L. de Breg|
of 1954.

The articles[[2[13] by Henri Poincaré are extremely modern
both in content and form and in the exactness of expositiamy,T
they are pearls of theoretical physics.

Now let us return to words by Academician V.L. Ginzburg (see
this edition, p[94), further he says about the principlestdtivity:

“...Moreover, Lorentz and Poincérinterpreted this
principle only as a statement on impossibility to reg-
ister the uniform motion of a body relative to ether”.

This is absolutely incorrect in relation to Poincaré. Led m
explain. This principle in Poincaré formulation is as ¢olis [1]:

“The principle of relativity, according to which the
laws for physical phenomena should be the same both
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for observer at rest and for observer in uniform mo-
tion, i. e. we have no any method to determine whether
we participate in such motion or not and we cannot
have such a method in principle.”.

There is no term “ether” in this formulation of the relatwprin-
ciple. Therefore the statement by V.L. Ginzburg is a simpie-m
understanding. Let us present some trivial explanationfis
connection. It follows from the formulation of relativityripciple
that an observer performing a translational uniform motan
move with any constant velocity and so there is an infiniteo$et
equitable reference systems with the same laws for phygieal
nomena. This set of equitable reference systems includesaal
system of reference taken as the system of rest.
Then V.L. Ginzburg continues:

“...It is possible to go from above to consideration
of all inertial systems of reference as completely eg-
uitable (this is the modern treatment of the relativity
principle) without special efforts only in casewe
understand Lorentz transformations as transforma-
tions corresponding to transition to the moving ref-
erence systerfemphasized by me. — A.L.)".

To have in mind that Poincaré has not understood that Lorent
transformations correspond to transition from the “reststem
of reference to the moving one is also a misunderstandings Th
trivially follows from the Lorentz transformations.

From the Lorentz transformations

/

¥ =z —et)

it follows that the origin of new system of reference
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moves along axis with velocity ¢:

x =-ct

in relation to another system of reference. Therefore, hiare
transformations connect variablesA, y, z) referring to one sys-
tem of reference with variableg' (2, v/, 2') referring to another
system moving uniformly and straightforwardly with velyce
along axisz relatively to the first system. The Lorentz transfor-
mations has taken place of the Galilean transformationakspg
figuratively.

Let us consider in more detail the statement by V.L. Ginzburg
He notes thatif one understands Lorentz transformations as trans-
formations corresponding to transition to a moving systémen
erence”, then ‘it is possible without special effortgb go on to
“the treatment of all inertial systems of reference as cotaple
equitable (this is the modern treatment of the relativitypiple)’.

But it is not so. This is not enough for the fulfilment of re-
quirements of the principle of relativity. It is necessanyprove
(and this is the most important) that the Lorentz transfaiona
together with the spatial rotations forthe group. But we are
obliged for this solely to Poincaré. Only after discoverihe
group itis possible to say that all physical equations stay urtteuc
able at any inertial reference system. Then all the corredipg
physical characteristics transform exactly accordintipéogroup.
Just this provides the fulfilment of requirements of the treity
principle.

In connection with the quotation from Ginzburg (see this edi
tion, p.[13T) we will give some comments. Let us admit that the
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principle of relativity is treated as a statement of impb#ity to
register a uniform translational motion of a body relativetie
ether. What follows from here? First, from here it followsaditly
that the physical equations are the same, both in the etlser sy
tem of reference and in any other reference system, movitig wi
constant velocity relative to the ether system. The indeiaess

of equations is provided by the Lorentz transformations:o8d,

as the Lorentz transformatioferm a group, it is impossible to
prefer one system of reference to another. The ether system o
reference will be a member of this totality of equitable tredr
systems. Therefore it will lose the meaning of the fixed syshé
reference. But this leads to the fact thia¢ etherin the Lorentz

sensalisappears
Very often in order to stress that Poincaré has not credied t

theory of relativity one cites his words:

“The importance of this subject ought me to return
to this again; the results obtained by me are in corre-
spondence with those of Lorentz in all the most impor-
tant points. | only tried to modify slightly and enlarge
them..

One usually concludes from this that Poincaré has exaaily f
lowed Lorentz views. But Lorentz, as he notes himself, haggso
tablished the relativity principle for electrodynamics, $ne con-
cludes that also Poincaré has not made this decisive Btethis
is incorrect. Those authors who write so have not read Poincaré
articles [2, 3] carefully. Let us give some more explanation
H. Poincaré writes in his article [2]:

“The idea by Lorentz is that electromagnetic field
equations are invariant under some transformations
(which 1 will call by name of H.A. Lorentz) of the fol-
lowing form. . .
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Poincaré writes: the idea by LorentZ’, but Lorentz never writes
so before Poincaré. Here Poincaré has formulated his awn f
damental idea, but ascribed it to Lorentz. He always apatedi
and celebrated extremely high anybody who gave a stimulbisto
thought, a joy of creation, probably as nobody else. He was ab
solutely deprived of personal priority reasoning. But degtants
are obliged to restore truth and pay duty to the creator.

In the same article (see this edition, the footnote dnkp. TB-A
demician V.L. Ginzburg writes:

“It is possible to suspect that Poincahas not es-
timated the Einstein contribution as a very substan-
tial one, and maybe he even has believed that he “has
made everything himself”. But that’s just the point
that we are trying to guess about the Poingdeel-
ings from his silence and not from some claims told
by him.”.

One may readily find out what Poincaré has done in the thefory o
relativity: for a theoretical physicist it is enough to rdad articles
[2, 3]. Therefore it is not necessary “to guess” about the€aié
feelings in order to answer the question: what he really loaed
Academician V. L. Ginzburg usually cites writings by W. Haafl
1921, but surprisingly does not cite writings by W. Pauli 665.
Some people for some reason want to see only A. Einsteiretteat
as the creator of special theory of relativity. But we shdoltbw
facts and only them.

Now let us consider words by professor Pais written in the
same book at p. 164 (see this editiofi_p.]128).

“...Why Poincaé has not mentioned Einstein in his
Gottingen lectures? Why Poindathas not wrote on

the role by Einstein in creation of the theory of rela-
tivity not in one of his articles? It is unthinkable that
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Poincat€ has not understand the articles by Einstein
of 1905 after reading them. It was unbelievable that
up to 1909, when he was delivering a talk idt@n-
gen, he had not been informed on the Einstein results
in this field. Is it possible that the reason is in his
petulance or professional envy?”.

There is a unique answer to these questions. After readimg th
articles and books published by Poincaré up to 1905 it iy eas
to get convinced that there has been nothing new for Panicar”
the Einstein article. Being based on his own previous worit a
on Lorentz investigations Poincaré formulated all the m@on-
tent of the special theory of relativity, discovered the danf rel-
ativistic mechanics, extended Lorentz transformationalltdhe
forces of nature. But all this he ascribedthe Great destructor
H.A. Lorentz, because just his article of 1904 provided mgti

lus for Poincaré thought. This was his usual practice. dtiange
that professor Pais addresses questions only to Poirasat@ot to
Einstein. How Einstein decided to submit his paper on ebeigtr
namics of moving body if he knew papers by Lorentz of ten years
ago only and papers by Poincaré of five years ago only? What
prevented Einstein from acquaintance with reviews pubtisim
journal“Beiblatter Annalen der Physik”, if he himself prepared
many reviews for this journal? 21 reviews by Einstein werb-pu
lished there in 1905.

issues. 24 issues were published in a year. The review of the
Lorentz article which appeared in journadlersl. K. Ak. van
Wet.” (1904.12(8). S. 986—1009) was published in 4th issue of
1905. This review contained Lorentz transformations also.

A review by Einstein on article by M. Ponsot from May is-
sue of French journdiComptes Rendus” 1905. 140. S. 1176—
1179 was published in 18th issue of 1905. The same issue (S.
1171-1173) contains article by P. Lange¥®n impossibility to
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register the translational motion of Earth by physical experi-
ments”. In this article P. Langevin refers to articles by Lorentz of
1904 and Larmor of 1900.

Why Einstein never refers to articles [2, 3] by Poincaré? By
the way, he wrote a lot of articles on the theory of relatidtying
next 50 years. What personal qualities explain this? How is i
possible not to refer to articles, if they are publishedieadnd if
you exploit ideas and concepts from them?

Academicians V.L. Ginzburg and Ya.B. Zel'dovich wrote ir6I9
(see “Zel'dovich — known and unknown (in memory of his friend
colleagues, students). Moscow: “Nauka”, 1993, p. 88):

“For example, despite how much a person would
do himself, he could not pretend to have a priority,
if later it will be clear that the same result has been
obtained earlier by other persons”.

This is a quite right view. We are to follow it. Ideas and résul
should be referred to that person who has discovered thetim firs
How strange the fate happened to be, if one can say that, of the
works by Henri Poincar&,0On the dynamics of the electron”,
published 1905-1906. These outstanding papers by H. Réinca
have become a peculiar source from which ideas and methods
were drawn and then published without references to theoauth
When references to these articles were done, they alwaysdtad
ing to do with the essence. All those discovered and intrediny
Poincaré, in articles [2; 3] can be easily found in one ortheo
form in articles by other authors published later.
M. Planck wrote in article of 1906The relativity principle
and the general equations of mechanics”:

“The relativity principle suggested by Lorentz
and in more general formulation by Einstein means. . .”
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But after all this is incorrect. The relativity principle wéirst for-
mulated in general form by Poincaré, in 1904. Then M. Planck
derives equations of relativistic mechanics, but therenareefer-
ences to the Poincaré article [3], though the equationslafivis-
tic mechanics have been derived in it earlier. If ever M. Bkamas
not been informed on the Poincaré work that time, he couket re
to it later. But such a reference to article [3] did not appeao
later. Articles by Poincarg, [2; 3] did not appear also ia ter-
man collection devoted to the theory of relativity. How omeiicl
explain all this?

B. Hoffmann (sedinstein collection 1982-1983. Moscow:
“Nauka”, 1986. p. 218 (in Russian)) writes:

“I would very much like to know whether peo-
ple could create the SRT without Einstein. It is right
that Poincaé has all the mathematical instruments
and even more of them than Einstein has applied in
his article of 1905, but in Poinc& works the belief
in existence of the rest reference system (something
rest in ether) always presents. And so there is an im-
pression that Poincdr and all his followers would an-
swer “yes”, if someone ask them is there a contraction
when something moves relative to ether. But certainly
all those who believe in that should think that rods
at rest would become elongated instead of contracted,
and according to Poinca one clock would go faster
and another would go slower. The reversible nature
of this connection is a very subtle point and it is quite
probable that people would never recognize this”.

All this is inaccurate or follows from misunderstanding bét
SRT basics. First, the SRT has already been discovered hygdtéi
in articles [2; 3] according to the principle of relativitgrimulated
by Poincaré in 1904 for all physical phenomena. In accardan
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with the principle of relativity physical equations are twme in
all inertial reference systems. All inertial referenceteyss are
equitable, and so the existence of a rest system of refersmoe
cluded. From this it follows that the reversibility is readd here.
Second, Poincaré discovered the Lorentz group and theeages
of the inverse element follows from here, consequently, réie
versibility follows from existence of the group. Third, ing SRT
constructed by Poincaré really this fact — “the reversitature of
this connection is a very subtle point” —is a trivial consexace, so
writing “that people would never recognize this” is an irtten of
the author to see the problem there where it is absent. Mergov
it is absurdly to ascribe his own misunderstanding to Paénca

It is surprising to read a quotation from A. Einstein given by
G. Holton. G. Holton (Harward University) writes (seinstein
collection 1982-1983. Moscow: “Nauka”, 1986. p. 217 (in Rus-
sian)):

“A. Einstein himself said that neither Lorentz, nor
Poincaré, but Langevin could discover the special the-
ory of relativity”.

If we trust G.Holton, then we see that A. Einstein without any
doubt think that he exclusively discovered the special mhed
relativity. Was it possible that he did not read the Poiaqaapers
[2; 3] where all the main content of the special theory oftrelty
was given in the extremely definite and general form? Theeefo
it is rather strange even such an appearance of this statémen
A. Einstein. But if we admit that A. Einstein really has noade
Poincaré articles [2; 3] during next fifty years, then tkigliso sur-
prising. How this could be connected with the “punctiliowsh
esty of Einstein” as a scientist which is described with acege
intensity by G. Holton?

The suppression of Poincag articles [2; 3] continued all the
twentieth century. The opinion was created that the special
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theory of relativity is created by A. Einstein alone. This is writ-
ten in textbooks, including those used at school, in morgggan
science popular books, in encyclopedia. German physmsstiés-
tinct from French physicists have made a lot of efforts ineorid
reach the situation when A. Einstein alone is consideredesre-
ator of the special theory of relativity and this scientifaheeve-
ment as a fruit of German science. But fortunately “manyssri
do not burn”. Articles [2; 3] clearly demonstrate the funcantal
contribution by Poincaré to the discovering of the spettiebry of
relativity. All the following done in this direction are ajigations
and developments of his ideas and methods.

In 1913, a collection of the works of Lorentz, Einstein and
Minkowski in special relativity theory was published in Gany.
But the fundamental works by H. Poincaré were not included i
the collection. How this could be explained?

In 1911 the French physicist Paul Langevin published two ar-
ticles on relativity theory:*Evolution of the concept of space
and time”; “Time, space and causality in modern physics”.
But in these articles H. Poincaré is not even mentionetipatih
they deal with the relativity principle, the Lorentz grougpace
and time, determined by the interval. In 1920 in the artigfe b
P. Langeviri‘The historical development of the relativity prin-
ciple” H. Poincaré is also not mentioned. How could P. Langevin
do that?

In 1935 a collectioriThe relativity principle”, edited by pro-
fessors V.K. Frederix and D.D. Ivanenko was published, tific
the first time contained works in relativity theory of LorepPoincaré,
Einstein and Minkowski. However, the first work by H. Poiriar
“On the dynamics of the electron” happened not to be included.
And only in 1973, in the collectiofiThe relativity principle”
(with an introductory article by corresponding member eftiSSR
Academy of Sciences Professor D.l. Blokhintsev; the ctibec
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was compiled by Professor A.A.Tyapkin), the works of
H. Poincaré in relativity theory were presented most catgty,
which permitted many people to appreciate the decisivericont
bution made by Poincaré in the creation of special relstithie-
ory. Somewhat later, Academician V.A. Matveev and me detide
to rewrite the formulae in the articles by H. Poinca@ the dy-
namics of the electron” in modern notation, so as to facilitate
studying these articles.

In 1984, to the 130-th anniversary of H. Poincaré his atcl
“On the dynamics of the electron” together with comments were
published by the Publishing Department of the Joint Intitor
Nuclear Research, and later, in 1987 they were publishethdy t
Publishing Department of the M.V. Lomonosov Moscow State Un
versity.

Henri Poincaré is one of the most rare personalities in ike h
tory of science. A greatest mathematician, specialist ichae-
ics, theoretical physicist; his fundamental works havedehost
brilliant imprint in many fields of modern science. He, more
possessed the rare gift of profound vision of science as dewho
At the beginning of the past century (1902—-1912) severakboo
by Poincaré were publishedScience and hypothesis”; “The
value of science”; “Science and method”; “Recent thoughts”.
Some of them were nearly at once translated into the Rusamman |
guage. These books are marvellous both in content and in the
free, extremely brilliant and illustrative manner of pretsion.
They have not become antiquated, and for everyone, who stud-
ies mathematics, physics, mechanics, philosophy, it wbaléx-
tremely useful to become familiarized with them. Itis quigret-
ful that for various reasons they were not republished farray |
time. And only owing to the persistent efforts of Academicia
L.S.Pontryagin they have been republished and becomeahbiail
to modern readers.
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10. The principle of stationary action in
electrodynamics

Many equations of theoretical physics are obtained frorirewy
the functional, termed action, to achieve an extremum. i&arl
(Section 2), the principle of least action was applied in Inaexdics,
resulting in the Lagrange equations. We must in the casescf el
trodynamics, also, compose action so as to have its variaiith
respect to the fields lead to the Maxwell-Lorentz equations.
Action is constructed with the aid of scalars composed offun
tions of the field and current. We introduce tensor of thetadec

magnetic field
_0A, 0A,
Fuy - ax“ - 81"/ 9 (101)

which by construction satisfies the equation

8F;w +8FW _'_aFCW
0x° oz ox”

that is equivalent to the Maxwell-Lorentz equations (8.2@Je
need further the two simplest invariants only

— 0, (10.2)

A,S”, F\,F. (10.3)

HereS” is the four-vector of current (8.9).
The sought action will have the form

C

S = 1/LdQ, (10.4)

L is the density of the Lagrangian function, equal to

1 1
L=—-——A,5" — —F,F", dQ = dz°dz*dz?dz®. (10.5)
c 167
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In seeking for the field equations we shall only vary the fiedd p
tentials in the action functional, considering the field rees.S”

as given.
Then
= —— / { SY5A, FA”cSFM} dQY=0. (10.6)
Since the variations commute with differentiation, we abta
0 0 0
o [ Y _ ox_~
e (8:&514 8:505A ) 2F Ee A<5A (20.7)

Substituting (10.7) into (10.6) we find

1 Y 1 .0 -
55———/ [CS 0A, 4—F W5A } dQ=0. (10.8)
Integrating in the second term by parts and taking into actthat
the variations of potentials at the initial and final momesftsme
are zero, while the field vanishes at infinity, we obtain

1 aFC'A

1 1,

Hence, owing to the arbitrarinessaf,, we find

OF°* A
= S (10.10)

Thus, our choice of density of the Lagrangian function (15
justified, since we have obtained exactly the second pairaofi|I-
Lorentz equations

L4 1 OE ,
rot B = 15 +— %t , divE = 47p. (10.11)
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One must bear in mind, that the choice of density of the Lagjean
function in the action functional is not unambiguous, hogreit is
readily verified that adding to the density of the Lagrandiarc-
tion an additional term in the form of the four-dimensioniaedl-
gence of a vector does not influence the form of the field eqnati
The Maxwell-Lorentz equations (10.2), (10.10) are invatriaith
respect to gauge transformations of the potentials,

A=A, + a—f, (10.12)

ox°
heref is an arbitrary function.
The density of the Lagrangian (10.5) we have constructed is

not invariant under transformations (10.12). On the babth®
conservation law of current” (8.10), it only varies by a diver-

gence,

1 0

U=L—— =2(fs"), (10.13)

which has not effect on the field equations.

From the point of view of classical electrodynamics the pete
tial A” has no physical sense, since only the Lorentz force acts on
the charge, and it is expressed via the field strer@tlﬁ. How-
ever, in quantum mechanics this is no longer so. It turnsmbet
that the vector-potential does act on the electron in aicestaua-
tion. This is the Aharonov-Bohm effect. It was observed i6@Q9
The experiment was carried out as follows: a long narrowsnte
was used, the magnetic field outside the solenoid was zeve, ne
ertheless, the motion of electrons outside the solenoidimias
enced. The effect is explained by the solenoid violatingstheple
connectedness of space-time, which gave rise to the in#uehc
the potentiald”, as it should be in quantum gauge theory.

We shall now find the equations of motion for charged parti-
cles in an electromagnetic field. To obtain them it is neagssa
compose an action with a part related to the particles asd, tie
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already known to us part containing the field interactiorhvpiar-
ticles. Since for particle having chargehe following equations
are valid

) dxt
p=cd(F = 7). J' = 07— 7). (10.14)
we have )
-5 [sade =L [Adr. o1y
C &

The action for particle in an electromagnetic field is
S = —me / do — % / A, dz”. (10.16)
Varying over the particle coordinates, we obtain
e €
08 = —/ (mcU,,déx” + —A,dox" + —6A,,d9:”> =0. (10.17)
C C

Integrating by parts in the first two terms and setting théatimms
of coordinates to zero at the ends, we obtain

5S = / (mch,,éx” n %dAVch” - %6Aud9:”> — 0. (10.18)

With account of the obvious relations

04,
O

expression (10.18) assumes the form

B dU, e (0Ay O0A, N ,
55—/[mcdg _?(0xV — 8x/\>U}daéx =0,
(10.20)

04,

5 s, (10.19)

dA, da?, 6A, =
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hence, due to arbitrariness of variatién” being arbitrary, we
have

ch@ = eF,\U", (10.21)
do
or s
mc? = eF"U,. (10.22)
do
In three-dimensional form (10.22) assumes the form
d 1 e =
t-e
d mu R
— | —— | =eE+—[V,H]. (10.24)
dt v2 c
==

Let us calculate the energy loss for an electron moving with a
celeration. In case of electron velocity small in comparismthe
velocity of light the radiation energy loss is given by thédwing
formula due to Larmor:

OFE  2¢% [di\?

In the system of reference where the electron is at restdhisifla

takes the form , )
OE  2e* (dv
—=—| = 10.26

ot 3c3 < dt ) o ( )
where acceleration is calculated in the given system ofeafe.

In the given system of reference the total momentum radiated
is zero due to the symmetry of radiation:

ot

0. (10.27)
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In order to find the formula for radiation energy loss of a dglear
with high velocity it is necessary to apply the Lorentz grpap-
cording to which it is easy to make the transition from ondesys

of reference to another. To do so we consider the accelaratio
four-vector, which is as follows according to (9.5)

,dU” auv
=C .

do dr
By means of this relation and also formulae (9.3) we get

o s T\ L dT (e
a—7< ), a=r t+vcz (Udt . (10.29)

a =cC

(10.28)

Using (10.29) we find invariant

(a%)? — (@) = — 6{(%)2 _ {g) %}2} (10.30)

In the rest system of reference we have

diNz [ @ do)? v\ 2
6 - J— - - — -
7 {<dt) [c’ dt} } (dt)o' (10.31)
Let us now write formulae (10.26) and (10.27) in the covdrian
form , )
op”  2e* [(dv
_ - (= v, 10.32
or 3¢ (dt)OU (1032)
Substituting now (10.31) into this relation we obtain
OE  2¢2  (sdvN: [¥ dv]?
~a =307 (@) - {? a] b (10.33)

_g_lj _ §576{<§)2 _ {% Z_ﬂz}, (10.34)
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Formula (10.33) has been derived first by Liénard in 1898.

The equations of motion (10.22) in an external electromagne
field do not account for the reaction of radiation. Thereftinese
equations are valid only for the motion of a charged particle
weak fields. In 1938 Dirac took into account the reactiondsrc
and this led to the equation

mc2dU = eF U, +
do
(10.35)
2, [Ur  (dU, dU"
+§€[dﬁ‘+U'<E;'E;)y

called the Dirac-Lorentz equation.

Let us apply these formulae to motion of an ultra-relatigist
charge with mass: in a strong constant uniform magnetic field
H. We admit that the circular charge motion is determined ley th
Lorentz force only. So we neglect by influence of the force of
reaction on the motion. Let us write equations (10.35) inftmen
of Egs. (9.12), (9.13):

d s (& L o~ —
—Hmy@) = = 6. + f (10.36)
2?2 |?U - (dU, dU*
fR_ﬁ' ?—FU‘(CZO"dU) ’ (10.37)
dE 2% |- d*U ., (dU, dU”
ak L EY . : 10.
dt 32 [ do? v < do do ) ’ (10.38)

whereF is the energy of the particle.
As in our approximation the equations of motion are the fol-
lowing

me. 80 _ €. [U*, F[] : (U*F[) —0, (10.39)
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it follows from here that

S\ 2
d H\®
vz (U} (BN e (10.40)
do mc?
. U eH\*
U~W__(m—02) U7, (10.41)
whereU is the length of vectot/. For ultra-relativistic particles
E
U~ —s. (10.42)
mc

As U? > 1 we can neglect first term (10.41) in comparison to
second one (10.40) in expression (10.38). In our approximat
we can also neglect by the following term

o\ 2
U2-<ﬂ) , (10.43)
do

in second term (10.38) due to its smallness in comparisoh wit
(10.40). Expression (10.38) after taking into account4@pand
(10.42) is as follows

dE 2 ‘H?E?
dt 3 mic?

With regard to the fact that for the motion of a charge ovetleir
of radiusR the following equation takes place

E
H=—; 10.45
— (10.45)

we can rewrite formula (10.44) in the following form

dE  2e%c E\*
_%:W(@) , (10.46)

(10.44)
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If the energy of electrons and the value of the magnetic fiedd a
large enough, then energy losses for synchrotron radibBoome
rather substantial. Synchrotron radiation is widely usgiology
and medicine, in production of integral schemes an so orci&lpe
storage rings for generation of the intense X-rays are cocistd
(see more details in: Ya.P. Terletsky, Yu.P.Ribakilectrody-
namics”. Moscow: “Vysshaja Shkola”, 1980 (in Russian).).
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11. The motion of a test body by inertia.
Covariant differentiation

In an arbitrary reference system the interval is known tcehtae
form
do? = v, (z)dz"dx", det(v,,) =~ < 0. (11.1)

The pseudo-Euclidean metrg, is determined by expression (3.33).
Precisely for this metric the Riemannian curvature tensaero.
The action for a free moving point-like body of masshas the
form

S = —mec / do. (11.2)

Owing to the principle of stationary action, we have

0S = —mc/é(da) =0, (11.3)

§(do?) = 2dod(do) = (v (v)datdx”) =

(11.4)
— DU 5y 4 9, a5 ()
= I r dx"dx Y AT T ).
Since
d(dx") = d(dz"), (11.5)
from expression (11.4) we find
§(do) = L O g + v Urd(02") (11.6)
2 Ox? m ’ '
here Jot
gr =2 (11.7)

_E.
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Substituting (11.6) into (11.3) we obtain

— 1 a’ylw LTTV S0 A ud((;l'y) -
0S = —mc/ [5 B UrUYox" + v, U Io do = 0.
(11.8)
Since
d(ox") d d
n — B§aV\ _ St n
VU - da(%wU ox”) — dx da(%wU ),  (11.9)

then, with account of the variations at the boundary of tlggore
being zero, we find

1 U™
5S = —mc/ [— : 81“; U0 — Y

2 0 do
(11.10)

_ Ut

p dodxz® = 0.

We represent the last term in (11.10) as

07/0\ nyra 1 a’}/u)\ 8700\ LTTO
TRURU = <0x0‘ o U, (11.11)

With account of (11.11), expression (11.10) assumes time for
1 af}/‘u)\ 870{)\ 87;140( 1 gge’
/[E <8x°‘ + oxH ox? Urus

v
do

(11.12)

YA ]daéx)‘ =0.

Since the factoréz* are arbitrary, we find

du* 1 (0v; | Ve V| pru
.l — *=0. (1112
TGy T3 <3xa Ozt Oz* vt =0 (1113)
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Multiplying (11.13) by~y*”, we obtain

d v
L + FVaUuUa — 07 (11.14)
do i
herel’;, is the Christoffel symbol
1
Iy, = 57”(%% + DuYar — O\ Vpa)- (11.15)

We see that the motion by inertia of any test body, indepethden
of its mass, proceeds along the geodesic line, determined -
tion (11.14). It is absolutely evident that in arbitrary cdoates
the geodesic lines could not be treated as direct linesjgluen-
firmed by nonlinear dependence of spatial coordinat@is= 1, 2,

3) on time variabler’. Motion along a geodesic line (11.14) in
Minkowski space is a free motioithus, forces of inertia cannot
cause any deformation by themselves. Under their influence
free motion takes place. The situation changes, when thereea
forces of reaction, which counteract the forces of inertia.In
this case deformation is unavoidable In weightlessness, in a
satellite, deformation does not exist, because, owingegtiavi-
tational field being homogeneous, in each element of thenvelu
of a body compensation of the force of gravity by the forces of
inertia takes place. The forces of gravity and the forceseftia
are volume forces.

Physical forces are four-vectors in Minkowski space. Bt th
forces of inertia are not such, since they can be renderedl equ
to zero by transition to an inertial reference system in Mingki
space.

Now we shall dwell upon the issue of covariant differentati
In Cartesian coordinates' ordinary differentiation, for example,
of a vectorA” results in a tensor quantity

0AY
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with respect to linear transformations. In arbitrary cooaﬂe5y
this property is not conserved, and, therefore, the qqa%lfﬁ

will no longer be a tensor.

It is necessary to introduce the covariant derivative, Wwhvdl
provide for differentiation of a tensor yielding a tens@aan. This
will permit us to easily render covariant any physical egpre.
Covariance is not a physical, but a mathematical, requiremst.

Earlier (see 6.13) we saw that of two vecte¥s B, it is pos-
sible to construct an invariant

AY(z)B,(x). (11.17)

We shall consider an invariant of a particular form

Ax(2)U (), (11.18)

where N
o = 27 (11.19)

do

fulfils Eq. (11.14).
Differentiating (11.18) with respect tdos, we also obtain an
invariant (a scalar)

d W dAN au”
dU(A)‘U )= do oo U A do
Substituting expression (11.14) into the right-hand paetfind
d A 8‘4)\ arTA v arTA H
dU(AAU )= s —ZU*U = TYUUA,,i. e

%(AAUA) = (gj; - rgAAV) UU. (11.20)
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Since (11.20) is an invariant]* is a vector, hence it follows that
the quantity

0A,
-I"A,
ox® a
is a covariant tensor of the second rankA
DA, 0A,
Ane = =—=-—-T"%A,. 11.21
A oxr® oxr® aA ( )

Here and further the semicolon denotes covariant diffeagah.
Thus, we have defined the covariant derivative of the comtiria

vector A,. Now, we shall define the covariant derivative of the

contravariant vectod”. To this end we write the same invariant

as
d 0A+

(AU ) = 5 U UMt
au” oy
m WTTVTTA D BV
+A Y, e + A*UYU ERY

Substituting expression (11.14) into the right-hand peetpb-
tain

d v
da(A U") =
(11.22)
DA* N | 170
= ’YW%_A F)\—FA”a“)\ U U,

Taking into account definition (11.15) we find

1
Aua)\%w - Au')/ua[fl)\ = EAM(aA’tu + 8}171/)\ V’V/D\) (11 23)

Substituting this expression into (11.22), and applyingregsion
U,y*, instead ofU”, we obtain

d 0A”

(a0 = { fah

+ T AA”} UrU,. (11.24)
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Since (11.24) is an invariant (a scalar), aitl is a vector, from
(11.24) it follows that the first factor in the right-hand p& a
tensor.

Hence it follows,that the covariant derivative of the con-
travariant vector AY is

. DA* 0A“ o
A;)\ - W - W + FN)\AM. (1125)

Making use of formulae (11.21) and (11.25) one can also nbtai
covariant derivatives of a tensor of the second rank.

0A,. N N
Ay = S5 = Dy Aoy = Iy Ay (11.26)
A
ay = A g, 127)
v 8AZ A AV VAN

We see, that the rules established for (11.21) and (11.25q
plied independently for each index of the tensor. Precisetitis
way, one can obtain the covariant derivative of a tensor @f an
rank.

With the aid of expression (11.26) it is easy to show that the
covariant derivative of a metric tensor is zero,

Yuvip = 0. (1129)

Applying the technique of covariant differentiation, orenaead-
ily write the equations of relativistic mechanics and ofcéledy-
namics in arbitrary coordinates of Minkowski space.

Thus, substituting the covariant derivative for the ordynane
in (9.5) we find the equation of relativistic mechanics initny
coordinates

, DU”
do

mc

d v
mc? (% + FM”AU“UA) = Fv, (11.30)
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here
1
;ZA = §7Vp<au7kp + a)ﬁ/up - ap”V,uA)' (1131)

In a similar way, it is also possible to write the Maxwell-leoitz
equations in arbitrary coordinates. To this end, it is neagsto
substitute covariant derivatives for ordinary derivasiie equa-
tions (8.24) and (8.27),

DyFyy + DyFyy + Dy Fy, =0, (11.32)

D,F* = —4—7TS“. (11.33)
C
One can readily verify, that the following equalities hoklid:

F,, = D,A, — D,A, = 9,A, — 0,A,, (11.34)

DyF,, +D,F,; + D, F,, = 0,F,, + 0,F,, + 0,F,,. (11.35)

On the basis of (11.31) we find

1
It = 57" 0o (11.36)

But, since the following equalities hold valid:

1 0Oy ” ov/—y 1 ”
7 T VPOV o By = 5\/_—77“ ) (11.37)
nv

[herey = det(v,,) < 0], we obtain

[ N (11.38)

w2y B
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Making use of (11.27), we find
D,F" = 9,F" 4 [* Fov 4 [V FHe, (11.39)

The second term in (11.39) equals zero, owing to the teAssr
being antisymmetric. On the basis of (11.38), expressiar3d)
can be written as

Dy(V— F*) = 0,(V—7 F*"). (11.40)
Thus, equation (11.33) assumes the form
b
V=
The equations of motion of charged particles can be obtained

by substituting covariant derivatives for the ordinaryidggatives in
(10.22)

3, (/= F™) = —4%5#. (11.41)

v

D
mc? u = eF"U,. (11.42)
do

Thus, we have established that transition in Minkkowskcgpa
from Galilean coordinates in an inertial reference systemrbi-
trary coordinates is a simple mathematical procedure Magant
differentiation has been defined.

The property of covariance of the equations has nothing to
do with the relativity principle. This has long ago been clai-
fied by V.A. Fock [12].

Therefore, no general relativity principle, as a physical pin-
ciple, exists
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12. Relativistic motion with constant acceleration.
The clock paradox. Sagnac effect

Relativistic motion with constant acceleration is a motiorder
the influence of a forcg, that is constant in value and direction.
According to (9.12) we have

dt 2
Y
CZ

df_v |_1_z (12.1)
m

Integrating equation (12.1) over time, we obtain

—

= at + 0. (12.2)
U2

-2
Setting the constani, to zero, which corresponds to zero initial
velocity, we find after squaring

=14 —. (12.3)

Taking into account this expression in (12.2), we obtain

dr it
i — 12.4
dt a2t? ( )
L+
C

U=

Integrating this equation, we find

242
,/1+%—1]. (12.5)
C

_act
0ot —

7=
a?
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Since the intervals is

rU2
ds = cdty/1 — — (12.6)

9
02

the proper timelr for a moving test body is

d 2
dr == —dnf1- =, (12.7)
C C

Taking account of (12.3), from equation (12.7) we find thaltot
proper timer

t 2¢2
T:t0+£1n a—+ 1+—a2 ] (12.8)
a c c

From this formula it follows that, as timeincreases in an iner-
tial reference system, the proper time for a moving body flows
slowly, according to a logarithmic law. We considered theioro

of a body with acceleratiod with respect to an inertial reference
system in Galilean coordinates.

Now consider a reference system moving with constant acce-
leration. Let the inertial and moving reference systemsehaor
ordinate axes oriented in the same way, and let one of them be
moving with respect to the other along theaxis. Then, if one
considers their origins to have coincided at 0, from expression
(12.5) one obtains the law of motion of the origin of the refere
system moving relativistically with constant accelerafio

242
,/1+%—1]. (12.9)
C

Therefore, the formula for coordinate transformation, whan-
sition is performed from the inertial reference syste 7') to

2

c
Ty = —
a
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the reference systerfx,t) moving relativistically with constant
acceleration, will have the form

02

r=X—-29g=X— —
a

a?T?

c? -1

1+

. (12.10)

The transformation of time can be set arbitrarily. Let ithe same
in both reference systems

t=T. (12.11)

In the case of transformations (12.10) and (12.11) thevatelr
assumes the form

2dt? 2at dtd
d0” = =y — - —da* —dY? — 2’ (1212)
a a“t
1 ot
+ L=

We shall now proceed to deal with the “clock paradox”

Consider two reference systems. If two observers, who are in
these reference systems, compared their clocks at mamert,
and then departed from each other, and after some perionhef ti
they again met at one point in space, what time will their k$oc
show? The answer to this question is the solution of the #eeta
“clock paradox”. However, two observers, who are in diffare
inertial reference systems, after they have compared thmks
at one and the same point of space, will never be able to meet in
the future at any other point of space, because to do so, €t lea
one of them would have to interrupt his inertial motion and fo
some time go over to a non-inertial reference system. Imstie
literature, and in textbooks, as well, it is often writteratthhe
answer to this question cannot be given within the framevadrk
special relativity theory.
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This is, naturally, wrong, the issue is resolved precisethivw
the framework of special relativity theory. The point istthefe-
rence systems moving with acceleration in pseudo-Eudiidea
ometry, contrary to A. Einstein’s point of view, have nothiio do
with the gravitational field, and for this reason generaatieity
theory is not required for explaining the “clock paradox”.

Let usillustrate this statement by a concrete computagoip-
pose we have two identical (ideal) clocks at one and the sameé p
of an inertial reference system. Consider their readingsitacide
at the initial moment” = 0. Let one of these clocks always be at
rest at the initial point and, thus, be inertial. Under tHiuence of
an applied force, at moment= 0, the other clock starts to move
relativistically with a constant acceleratiaralong ther axis, and
continues moving thus till the moment of time= 77, shown by
the clock at rest. Further, the influence of the force on ticerse
clock ceases, and during the time inter¥al < ¢t < T} + Ty it
moves with constant velocity. After that a deceleratingéors
applied to it, and under the influence of this force it startssm
ing relativistically with constant acceleratiern and continues to
move thus till the moment of time = 27 + 75, as a result of
which its velocity with respect to the first clock turns zefidhen,
the entire cycle is reversed, and the second clock arrivéiseat
same point, at which the first clock is.

We shall calculate the difference in the readings of theseksl
in the inertial reference system, in which the first clocktisesst.
By virtue of the symmetry of the problem (four segments of mo-
tion with constant acceleration and two segments of unifiarcti-
linear motion), the reading of the clock at rest, by the maonties
two clocks meet, will be

T = AT, + 2Ts. (12.13)
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For the second clock
T' = 4T} + 2173, (12.14)

HereT] is the time interval between the moment when the second
clock started to accelerate and the moment when the actietera
ceased, measured by the moving clo@K. is the interval of the
second clock’s proper time between the fist and second aeccele
ations, during which the second clock’s motion is unifornd an
rectilinear.

In an inertial reference system, the interval for a movingybo

ds = cdt\/i (12.15)
T
/ V11— (12.16)
0

On the basis of (12.3) we obtain

is

Therefore

T d
t
T = | ——. (12.17)
a’t?
0 1+ ?
Hence we find
aT} 2772
T{:£1n< 2y 1+a21>. (12.18)
a & C

The motion of the second clock during the interval of time

T <t<Ti+1T5
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due to Eq. (12.4) proceeds with the velocity

T
= (12.19)

2T2’
\/1+a21
c

and, therefore, in accordance with (12.15) we obtain
T
T = ——2 . (12.20)
a*T?
1+ —

C

Consequently, by the moment the two clocks meet the reading o
the second clock will be

4 T 2772 2T
T/:_01n<2+ 1+ 1>+ . (12.21)
a
1

¢ c? a’T?
+ - -

02
Subtracting (12.13) from (12.21), we find

22
AT:T’—T:@m(a—Tw T )-
a C

c2

(12.22)

1
—AT, + 2T | —/—=—1

a?T?
14+ —

C

It can be verified that for any > 0,7} > 0,7, > 0 the quantity
AT is negative. This means that at the moment the clocks meet
the reading of the second clock will be less than the readitigeo
first clock.

Now consider the same process in the reference system, where
the second clock is always at rest. This reference systeratis n
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inertial, since part of the time the second clock moves witbra
stant acceleration with respect to the inertial refererysgesn re-
lated to the first clock, while the remaining part of time itetion
is uniform. At the first stage the second clock moves with tamts
acceleration, according to the law (12.9)

a?t?
1+ — 1]
c

Therefore, at this segment of the journey, the interval enrtbn-
inertial reference system, according to (12.12) has tha for

02
To = —
a

2dt? 2a t dxdt

do? — A 2atdvdt o gy gz (12.23)
1+ a’t” a’t
c? e

In this reference system the second clock is at rest at poinD,

while the first clock moves along the geodesic line deterchine

Egs. (11.14)
auv
do

Of these four equations only three are independent, sirectoth
lowing relation is always valid:

+I,U°U° =0, v=0,1,23. (12.24)

dx?
do’

’}/MVUMUV - ]., U’ = (1225)

From expression (12.23) we find
1 at

Yoo = W; Yo1 = _W7
2 C 1+ 7

From Eq. (12.26) and the following equation

’VW"YVA — 5;"
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we find

T e T P
C 1+? 02

By means of these formulae and also Egs. (11.31) and (12.i6) i
easy to see that there is only one nonzero Christoffel symbol

0 _ q 01 at 11 1

We do not have to resolve equation (12.24), we shall only take
advantage of relation (12.25)

Yoo(U")? + 290 U°U" — (U')? = 1. (12.27)

Taking into account (12.26), from equation (12.27) we fincaa p

tial solution
t
U= ————, U'=1, (12.28)
t
& 1 + ?
which as easy to check satisfies also Eqgs. (12.24). Fromg)L&.2

follows gl
v (12.29)

E a2t2‘
1+—2
c

Resolving this equation with the initial conditiong0) = 0,
%(0) = 0, we obtain

[\

a c?

242
g=2 [1— 1+ﬂ]. (12.30)
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Thus, we have everything necessary for determining the rea-
dings of both clocks by the final moment of the first stage inrthe
motion. The proper timédr of the first clock at this stage of mo-
tion, by virtue of (12.29), coincides with the tird&’ of the inertial

reference system
dr = ds =dT, (12.31)
C
therefore, by the end of this stage of the journey the readirg

the first clock will beT;
T = T1~ (1232)

Since the second clock is at rest with respect to the nortiahesf-
erence system, its proper time can be determined from esipres

dr' = /oo dt. (12.33)

Since the first stage of the journey occupies the intérvalt < T;
of inertial time, then at the end of this segment the readingf
the second clock will be

a®T?

T
c aT;
T{Z/\/%odtZEIH [71+ 1+—
0

(12.34)

At the end of the first stage of the journey, upon reaching the v
locity

p= (12.35)

the action of the accelerating force ceases, this meantae-
ference system related to the second clock will be inerfldle
interval in this reference system, in accordance with @pvall,
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by the momen{i, have the form

2

do? = ¢ <1 - “—2) dt? — 2udadt — da? — dY? — dZ2, (12.36)
C

here

T
=L (12.37)

2T2'
\/1+a21
c

Taking advantage, for the metric (12.36), of the identity

Y UPUY =1, U = dr” (12.38)
do
we find .
X
Taking into account (12.39) in (12.36), we obtain
dr = do = dt, (12.40)

Cc

I. e. the time, shown by the first clock at this stage, coingidih
the timeTs;

Ty = T>. (12.41)
Since the second clock is at rest, its reading of its propee ts
dr’ = /Y00 dt. (12.42)
Hence follows
T +T>
’ T2
7‘2 = \/%dt - 72 5 . (1243)
a”T5
T 1+
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Owing to the symmetry of the problem, the information ob-
tained is sufficient for determining the readings of the k#oat
the moment they meet. Indeed, the reading of the first cigck
determined in the reference system, related to the seconk, ¢t

T = 47’1 + 27'2, (1244)
which on the basis of (12.32) and (12.41) gives

7= AT, + 2Ts. (12.45)

The reading of the second cloek determined in the same refer-
ence system, where the second clock is at rest, is

7' = 47| + 215, (12.46)
which on the basis of (13.34) and (13.43) gives

4c

27772

, aly a®T;
7 =—In
a

L1+

; = (12.47)

Subtracting from (12.47) expression (12.45), we obtain

AT:T/—T:gln
a

T 272
YA R
C C

(12.48)
1

22 _1
a“T:

\ 1+ —
C

Comparing (12.22) and (12.48) we see, that the computagon p
formed in the inertial reference system, where the firsticleat

—4T) + 2T,
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rest, yields the same result as the computation performeiein
non-inertial reference system related to the second clock.
Thus,
AT = AT <0. (12.49)

Hence it follows that no paradox exists, since the refersgstem
related to the first clock is inertial, while the referencstsyn, in
which the second clock is at rest, is non-inertial.

Precisely for this reason, the slowing down of the seconckglo
as compared to the first clock, is an absolute effect and dotes n
depend on the choice of reference system, in which this tefec
computed.

The arguments concerning the relativity of motion, whicheve
used previously, in this case cannot be applied, since theerece
systems are not equitable. Qualitatively, the slowing doithe
second clock, as compared to the first, can be explained as fol
lows. It is known, that in arbitrary coordinates the free oot
of a test body proceeds along a geodesic line, i. e. the eatrem
line, which in pseudo-Euclidean space is the maximum digtan
between two points, if on the entire line, joining these paithe
quantitydo? is positive. In the case, when we choose an inertial
reference system in Galilean coordinates, related to thiecfmck,
this means that the first clock describes a geodesic linde\ie
second clock, owing to the influence of the force, moves akng
line differing from the geodesic, and, therefore, slows dowhe
same happens, also, when the reference system is relatkd to t
second clock. In the case of transition to this referencéesys
the interval somewhat changes its form. In this case thectiosk
again describes a geodesic line in an altered metric, wialaséc-
ond clock is at rest, and, consequently, do not describe degpto
line and, therefore, slow down.

We have considered the influence of accelerated motion on the
readings of clocks and have showed their slowing down. Bat th
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effect concerns not only clocks, but all physical, or, to beren
general, all natural phenomena. On this basis, interstifihgts
become fantastically fascinating. Back in 1911, Paul Lairge
discussed in an articlé [L3] the voyage of a human being &t hig
velocities, close to the velocity of light, subsequentljuraing

to Earth. In principle, this is possible, but it still remaionly a
fantasy.

Let us now pay attention to the Sagnac effect (see more dletalil
in: Uspekhi Fiz. Nauk — 1988. \Vol. 156, issue 1. — pp. 137-
143. — In collaboration withvu.V. Chugreev As is well known,
the Sagnac effect in line with the Michelson experiment is oh
the basic experiments of the theory of relativity. But tithn it
is possible to read incorrect explanations of this effedhwine
help of signals propagating faster than light or with thephef
general relativity (see in more detail below). So we considas
necessary to stress once more purely special relativiatioce of
Sagnac effect.

Let us at first describe the Sagnac experiment. There are mir-
rors situated at the angles of a quadrangle on a disk. The an-
gles of their reciprocal disposition are such that the beam fa
monochromatic source after reflections over these mirrass¢s
a closed circle and returns to the source. With the help ofra-se
transparent plate it is possible to divide the beam comiogfr
a source into two beams moving in opposite directions over th

closed circle.
Sagnac has discovered that if the disk is subjected to ootati

then the beam with the direction of its round coinciding viitle

direction of rotation will come back to the source later thihe

beam with opposite round, resulting in a shift of the intexfece

picture on the photographic plate. After interchangingdirec-

tion of rotation the interference bands shift in oppositection.
What explanation was given to this effect? Sagnac himself

has obtained a theoretical value for the magnitude of theceff
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by purely classical addition of the light velocity with thieéar
velocity of rotation for the beam moving oppositely to ratatand
corresponding subtraction for the beam moving in the doaatf
rotation. The discrepancy of this result with the experitneas
of percent order.

This explanation of the experimental results remained late
more or less invariable or even became obscure. As a typieal e

ample we present a related quotation from “Optics” by A. S@nm
feld:

“The negative result obtained by Michelson of course
tells us nothing about the propagation of light in ro-
tating media. In this case we should exploit instead
of the special relativity the general theory of relativity
with its additional terms corresponding to mechanical
centrifugal forces. If nevertheless take into account
that in subsequent experimentsy(Sagnac and oth-
ers.— A.L.) only velocities < c are considered and
only first order effects im/c are calculated, then it is
rather possible to avoid the theory of relativity and to
make calculations only classically”.

We will see below that the explanation of the Sagnac effect

lies in full competence of the special theory of relativitydanei-
ther general theory of relativity nor super-luminal vetas are
not required as also any additional postulates. We will w&rsn

detail how to calculate the time difference between arsizdlthe
two beams to the source be in the inertial rest system ofeeder.
We will also do that in the rotating with the disk non-inektief-

erence system. The results of calculations will coincidstesild
be expected. For simplicity of calculations we will congidlee
motion of light in a light guide over circular trajectory v cor-

responds to the case of infinite number of mirrors in the Sagna

experiment.
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We begin with the case of inertial system of reference. Let us
express the interval in cylindrical coordinates:

ds? = Adt? — dr? — r?d¢* — d2*. (12.50)

Let as it has been told before light beams move in plane 0
over circle of radius = ry = const. The interval is exactly equal
to zero for light, so we obtain the following

dqbi(t) C

=+—. 12.51
dt To ( )

The beam moving in the direction of rotation is marked by inde
“+”, and the beam moving in opposite direction is marked b¥ “—
With account for the initial conditions, (0) = 0, ¢_(0) = 27
we find the law of angle.. dependence of the two beams on time

t:
C
¢+(t) - %ta
(12.52)
C
The beams will meet at timeg, whene ., (t1) = ¢_(t;). Substitut-
ing (12.52) we obtain

¢+ (t1) = o-(t1) = m.

Then taking time; as the initial time and repeating our argu-
mentation we will find that the next meeting of beams will take
place just at that spatial point where they have been emitted
at point with coordinatee = 0,r = rg, z = 0.

We emphasize that this result does not depend on the angular
velocity of rotation of the system of reference which is tlestr
system for the source and mirrors.
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The law of dependence of the angular coordinate of the source
by definition is as follows (for initial conditiom,(0) = 0):

Ps(t) = wt. (12.53)

Therefore, the meeting of the source with “+”-beam will take
place at time moment. determined by condition,(t,) = ¢ (t4)—
—2m,i. e.

t=1 2n (12.54)

c/rg) —w’
and with “—"-beam — at time moment determined by condition
Os(t-) = ¢_(t-): )

™

t_ = )t (12.55)
It may seem from the form of Eqgs. (12.54), (12.55) that the ve-
locity of light is here anisotropic and is different froen But this
is incorrect. The light velocity is the same for both beamd i&n
is equal toc, and the different time of return to the source is ex-
plained by the fact that the source has moved over some destan
during the time of beams propagation (“+”-beam has tradedieer
larger distance).

Let us now find the interval of proper time between arrivals of
the two beams for an observer sitting on the source. By diefmit
itis equal to

s(t4

) 28
1 1 [d
A== / ds = —/—Sdt, (12.56)
c c dt
s(t_) t_

wheres is the interval. As a value of interval after using (12.53)
we get

2.2
ds® = dt* — rid¢® = Adt* (1 _ ¥ ) ,

c2
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wherew?r?/c? < 1.
Substituting this into Eq. (12.56) we will find exact value of
the Sagnac effeét

r2w?\ /2 47ror?
A=(1-"") (t, -t )= 0 . (12.57
( c ) (b ) 2[1 — (rgw?/c?)|\/? ( )

Let us note that in deriving Eq. (12.57) we used only absolute
concepts of events of beams meeting (with each other and with
the source), and not the concept of the light velocity redato the
rotating reference system.

Let us consider now the same physical process of propagation
of beams over circle towards each other in rotating with éargu
velocityw non-inertial system of reference. In order to find out the
form of interval in this system we will make a coordinate sfam-
mation:

(bnew = Qbold - Wtoldu

tnew = tolda (1258)
Tnew = Told,

Znew = Zold-

In new coordinates, ..., Tnew; Prews Znew WE Obtain (after lowing
index “new” for simplicity) interval in the following form

2,.2 2
ds® = (1 - ﬂ) 2 — 2 dsedt —
C

2
(12.59)
—dr? — r?d¢? — d2°.
81n calculation for the realistic Sagnac effect, when thatligeam trajectory

is a polygonal line, it is necessary to take into account tregrdfuge deforma-
tion due to centrifugal forces.
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Let us note that timein this expression is the coordinate time for
the rotating system of reference.

After accounting for initial conditiong (0) = 0, ¢_(0) = 27
we get:

o) = = (1-22).
(12.60)
ct wr
6-(t) = 2m — (1+7°).

the first meeting of beams will happen at timewheng, (t1) =

= ¢_(t1), i. e. when angular variable will be equal tg =

7[1 — —(wro/c)]. After analogous reasoning we conclude that the
second meeting of beams will happen “at angle”

by = 2 (1 . ﬂ) , (12.61)
C
i. e. atangular distanc&rrow/c from the source. The dependence
of source angular coordinate is trivia) = const = 0.
The moment of coordinate time corresponding to meeting
of “+”-beam with the source could be found, as before, frota-re

tion ¢,(t1) = 0= ¢4 (1) — 2m

P (12.62)

c—wry

and similarly we find momert_:

b= 27’("/“0
T c4wry

(12.63)

The proper time interval between two events of coming the
beams into the point where the source is disposed can bdaiaidu
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with the help of definition (12.56) and interval (12.59):

28
1 d 2,2\ 1/2
A=— —Sdt:<1—wro)-(t+—t_):

c dt c?
.

B dmwrd
" P (R

i. e. we come to the same expression (12.57).

Therefore we demonstrated that for explanation of the Sagna
effect one does not need neither modify the special theorglof
ativity, nor use super-luminal velocities, nor apply to teneral
theory of relativity. It is only necessary to strictly follothe spe-
cial theory of relativity.
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13. Concerning the limit velocity

The interval for pseudo-Euclidean geometry, in arbitraxgrdina-
tes, has, in accordance with (3.32) and (3.33) the followegeral
form:

do® = 7, (z)dr"dz”, v = det(7,,) < 0. (13.1)
The metric tensof,,, equals
3
O Of"
WHA(J‘,) = € Ok ’ o™’ e = (17 -1,—1, _1) (132)
v=0

Here f are four arbitrary continuous functions with continuous
derivatives, that relate Galilean coordinates with thétimty 2.

Depending on the sign @k-2, events can be identified as time-
like

do® > 0, (13.3)
space-like

do? < 0, (13.4)
and isotropic

do? = 0. (13.5)

Such a division of intervals is absolute, it does not depanthe
choice of reference system.
For a time-like intervatio? > 0 there always exists an inertial
reference system, in which it is only determined by time
do® = 2dT”.

For a space-like intervalo? < 0 there can always be found an
inertial reference system, in which it is determined by tiséeshce
between infinitesimally close points

do? = —d?, d0* = dz? + dy? + dz%.
These assertions are also valid in the case of a finite ifterva
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Any two events, related to a given body, are described by a
time-like interval. An isotropic interval corresponds tdfield
without rest mass. Let us see, what conclusions result fram a
isotropic interval

Y drtdz” = oo (dz®)? + 270:dx’dx’ + vy dr'dx® = 0. (13.6)

We single out in (14.6) the time-like part

dri 12 ; ‘
& | /Ao dt + 2 } — {—%H gt 70’“} dz'dz" = 0. (13.7)
C

4/ 00 Yoo
The quantity
Yoida® 1 (Voxdl'/\)
dr = /Yoo dt + = — 13.8
oo Cy/ 700 C 1/ 00 ( )

is to be considered as physical time, which, as we shall dearbe
is independent of the choice of time variable. In the geneaiab
(non-inertial reference systems) the quantityis not a total dif-
ferential, since the following conditions will not be séiesl:

0 10
8$i<V700) - c ot ( ,—700)7

(13.9)

i( Yoi ) _ 0 ( Yok )
Ozt v/ 700 ox' v/ Y00 .
The second term in (13.7) is nothing, but the square disthaee

tween two infinitesimally close points tifree-dimensional space
which is independent of the choice of coordinates in thi€spa

dl? = ypdzide®, (13.10)
here the metric tensor of three-dimensional spage.is

Xik = —ik T Jorok (13.11)
7Yoo




186 13. Concerning the limit velocity

With account of (13.8) and (13.10), from expression (13.&¥iwd

e
dr
The quantitiesl/ anddr are of local character. In this case the

concept of simultaneitylosessensefor events at different sites,
because it is impossible ®ynchronize clockswith the aid of a
light signal, since it depends on the synchronization p&itom
(13.12) it follows, that the field at each point of Minkowskiexe,
in accordance with the local characteristicsdé6fanddr, have a
velocity equal to the electrodynamic constantThis is the limit
velocity, that is not achievable for particles with rest syasnce
for them

c. (13.12)

do? > 0.

This inequality is the causality condition. The causalitinpiple

is not contained in the Maxwell-Lorentz equations. It is ovpd
as a natural complementary condition. In 1909 H. Minkowski f
mulated it as the principal axiom as follows:

“ A substance, found at any world point, given
the appropriate definition of space and time (i. e.
given the corresponding choice of reference system in
Minkowski space— A.L.) can be considered to be at
rest. The axiom expresses the idea, that at each world
point the expression

Adt* — da* — dy? — d2?

is always positive or, in other words, that any velocity
v is always less than”.

H. Poincaré has demonstrated the deep physical meanihg of t
limiting velocity in his article [1] published in 1904 everfore
his fundamental works [2; 3]. He wrote:
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“If all these results would be confirmed there will
arise the absolutely new mechanics. It will be charac-
terized mainly by the fact that neither velocity could
exceed the velocity of lightas the temperature could
not drop below the absolute zero. Also no any ob-
servable velocity could exceed the light velocity for
any observer performing a translational motion but
not suspecting about it. There would be a contradic-
tion here if we will not remember that this observer
uses another clock than the observer at rest. Really

he uses the clock showing “the local time™.

Just these thoughts by H. Poincaré and his principle ofivela
ity were reported by him in a talk given at The Congress of Art
and Science in Sent-Louis (in September of 1904) and thaydfou
their realization in articles [2; 3]. Also they underlie thvwerk by
A. Einstein of 1905.

Signal from one object to another can only be transferred by
means of a material substance; from the aforementionedlgas,
that c is the limit velocity for transferring interaction or in-
formation. Since particles, corresponding to the electromagnetic
field, — photons — are usually considered to be without resisina
the quantityc is identified with the velocity of light. The existence
of a limit velocity is a direct consequence of the pseudoliaan
geometry of space-time.

If we choose the functiorf” in (13.2) by a special way as
follows

Foa), i), (13.13)

then, owing such transformation, we do not leave the inedfa-
rence system.

’Because bodies would oppose to the forces trying to acdeltrair motion
by means of the increasing inertia, and this inertia woul@drae infinite in
approaching the velocity of light.
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In this case the metric tensqy,,, in accordance with (13.2)
and (13.13), assumes the form

2
B B afo 8f0
Yoo = <—8x0) y o Yo = FIOMEWE (13.14)

B afo 8f0 3 afé afé
Tk = ozt Bk — O’ OrF (13.15)

Substituting the values for the metric coefficients, o, from
(13.14) into (13.8) we obtain, with account for (3.30) and.(B),

1 0 1 1

dr = - (af dx”) = —df’ = ~dXx°. (13.16)
c \ Or” c c

We see, that proper time, in this case, is a total differérgiace

our reference system is inertial. Substituting (13.14) @r&i15)

into (13.11), we obtain

3
M LGt Ga (13.17)
Hence, with account for (3.30) and (13.13), we find
3 3
A = xpdaida® = (df")? = (dX™)%. (13.18)
n=1 n=1

In an inertial reference system, ambiguity exists in ther€oo
dinate description of Minkowski space, depending on thaasho
of functions (13.13). This is the reason for arbitraringsadopt-
ing anagreementconcerning simultaneity at different points of
space. All such agreements are conventional. Howeveathis-
guity and, consequently, the arbitrariness in reachingya@eanent
do not influence the physical quantities. Eqgs. (13.16) agdL@)
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show that in an inertial reference system the physical dpiesof
time (13.8) and distance (13.10) do not depend on the chdice o
agreement concerning simultaneity. Let me clarify. In falae
(13.16) and (13.18), given any choice of functions (13.13re
only ariseGalilean coordinates X°, X™ of Minkowski space,
that correspond to the invariant (3.22). This is precisehaiv
removes, in the physical quantities of time (13.8) and dista
(13.10), arbitrariness in the choice of a conventional exgrent
concerning simultaneity. Moreover, no physical quargitan, in
principle, depend on the choice of this agreement on simeitya
And if someone has written, or is writing, the opposite, tidy
testifies to that personiscomprehensionof the essence of rela-
tivity theory. One must distinguish between coordinatenias
and physical quantities. For details concerning this isaeeref.
[6].

Let us demonstrate a particular special example of the simul
taneity convention. Let the synchronization of clocks ifiedtent
spatial points is provided by the light signal having vetpi; in
the direction parallel to positive semi-axis, and having velocity
¢, in the direction of negative semi-axi§. Then the signal sent
from point A at the moment of time, will arrive to point B at
time ¢z which is given as follows

X
tp=ts—+ CAB. (M)
1

The reflected signal will arrive at point at timet’,

After substituting into this expression valtig, determined by for-
mula (M) we get
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From here it follows

Applying this expression to EqM) we find

C
tp=ta+—

t,—ta).
c + CQ( A A)
So we come to the synchronization proposed by Reichenbaeh (s
his book in Russian translationPhilosophy of space and time”.
— Moscow: “Progress”, 1985, p. 147):

tg=ta+e(ty—ta), 1>e>0.

The conditional convention on the synchronization of ckck
and therefore on simultaneity at different spatial poirdsepted
by us corresponds to the choice of interval in inertial refee
system in the following form:

do? = (dx°)? — deodx—
&, (K)
———(dz)* — (dy)* — (d=z)”.
() — (dy)? — (d2)
Here we deal with coordinate tinte= z°/c and other coordinate
values.
Metric coefficients of intervalK) are as follows:

C(Ca — Cq
Yo =1, o1 = —%7
02 162 (L)
m=—-—— Y2=-1 ms=-L
C1C9
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With the help of Egs. (13.14), (13.15), and aldo), we obtain
transformation functions (13.13) for our case:

2 C1C2
o X = xc(cl + ¢o)
20162

P=Y=y f=zZ=-

Deriving from the above the inverse transformation funciccal-
culating with them differentialgz, dz and then substituting them
into (K), we find

do? = (dX°)? — (dX)?* — (dY)* — (dZ)*. (H)

Therefore,the physical time dr in our example is given as fol-
lows:
dr—dt— . 2=a

2 C1C2 ’
dX° = cdr,

and it does not depend on the choice of functions (13.13juse
it is completely determined by intervatj only. Any change in
coordinate values like (13.13) leads only to changing ofcitwe-
nection betweethe physical timeand coordinate values.

To any conditional convention on the simultaneity therd wil
correspond a definite choice of the coordinate system inetiah
system of reference of the Minkowski space. Therefareon-
ditional convention on the simultaneity is nothing more thaa
definite choice of the coordinate systenn an inertial system of
reference of the Minkowski space.

An important contribution into understanding of some piHnc
ple questions of the theory of relativity related to the dabn of
simultaneity in different spatial points was provided bpfessor
A.A. Tyapkin (Uspekhi Fiz. Nauk. — 1972, Vol. 106, issue 4.)
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Now let us return to the analysis of physical tisve Quantity
dr characterizes physical time, which is independent on tb&eh
of coordinate time. Indeed, let us introduce new varialflesuch
that

20 =22 2%, 2" = 2" (aF). (13.19)

Then due to tensorial charactergf, transformation

, 0z 9aF
T = Vet

we will obtain for our case

920\ oz 028
7(/)0 = Y00 (w) ) 7(/»\ = WOﬁ@ . w; (13.20)
similarly
I\
da™ = gid:co. (13.21)
xO’
Exploiting the Kronecker delta symbol
oz® 0z
oA our = (1322)
we get
/ I\ o
edr = 20987 _ YordT (13.23)

Ve Vo
We can see that physical tinale does not depend on the choice
of the coordinate system in an inertial system of referericbe
Minkowski space.

Physical time determines the flow of time in a physical preces
however, the quantity~ exhibits local character in a non-inertial
reference system, since it is not a total differential aretdfore
no variable 7 exists
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In this case, there exists no unique physical time with lines
orthogonal to three-dimensional space. In a non-inergédrs
ence system the intervat is expressed via the physical quantities
dr, d¢ as follows:

do® = Adr? — di?.

Thereexist novariablesr, ¢ in this case. Hereoordinate quan-
tities arise which permit to describe any effects in space and time
in non-inertial system of reference.

In an inertial reference systetir coincides, in Galilean coor-
dinates, with the differentiaft, so in Minkowski space one can
introduce unique time. It will be physical. Introduction of si-
multaneity for all the points of three-dimensional spac¢ense-
guence of the pseudo-Euclidean geometry of the four-diroeabk
space of events.

One can only speak of the velocity of light being constard, th
same in all directions, and identical with the electrodyitacon-
stantc in aninertial reference system in Galilean coordinates
In an inertial reference system, in any other admissibledieo
nates, the velocity of light will be the same, if time is detine
accordance with formula (13.8) and distance by formulal(@p.
In a non-inertial reference system the electrodynamic temorns
is only expressed via local the quantitiés d¢. There exist no
variablesr, ¢ in this case.

It is often written that the principle of constancy of theae!
ity of light underlies special relativity theory. This is @mg. No
principle of constancy of the velocity of light exists as a fist
physical principle, because this principle is a simple consequence
of the Poincaré relativity principle for all the nature ploenena.

It is enough to apply it to the emission of a spherical elentag-
netic wave to get convinced that the velocity of light at amgrtial
reference system is equal to electrodynamic constafierefore,
owing to its partial role, this proposition, as we alreadyea(see
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Sections 3 and 9), does not underlie relativity theory. Bedgin
the same way, the synchronization of clocks at differenbisonf
space, also, has a limited sense, since it is possible oigitial

reference systems. One cannot perform transition to aetete
reference systems on the basis of the constancy principtleeof

velocity of light, because the concept of simultaneity fosense
for them, since the synchronization of clocks at differemings in
space depends on the synchronization path. The need talsescr
effects by means of coordinate quantities arises.

We, now, define the coordinate velocity of light

vi= B (13.24)

=—=

here/ is a unit vector satisfying the condition
Xanl'0F = 1. (13.25)

With account for formulae (13.8), (13.10) and (13.25) ezpien
(13.12) assumes the following form

v

7 = (13.26)
U Yoi
+ .
v/ Y00 - o
Hence one finds the coordinate velocity
v=c Y0 (13.27)
1— Yoi £
v/ Yoo

In the general case, the coordinate velocity varies, bothlune
and in direction. It can take any value satisfying the coadit

0<v<o0. (13.28)
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In Galilean coordinates of an inertial reference systemdioate
velocity coincides with physical velocity.

In an arbitrary non-inertial reference system, for desegb
physical processes it is possible to introduce unique c¢oatel
time throughout space in many ways. In this case, the synchro
nization of clocks at different points in space must be pentx
with the aid of coordinate velocity. In non-inertial systei is
necessary to ussordinate quantitiesin order to describe phys-
ical processes because in this cphgsical quantities are deter-
mined only locally.
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14. Thomas precession

Consider a particle with its own angular momentum (spity) In
a reference system, where the particle is at rest, its featev
of angular momentum (spin) has the componéﬁtsf). In any
arbitrary inertial reference system we have the relation

S°U, = 0. (14.1)

When a forcefwithout torque acts on the particle, the following
relation should be valid

as”

=zU0", (14.2)
dr
hereU" is the four-vector of velocityt is proper time,
1
dr = dt—. (14.3)
Y

If the velocity U is not zero, then the quantity can be deter-
mined from the relation

d o, dS” v, .,
E(S U,)) = ?Uy + SY =0. (14.4)
Substituting (14.2) into (14.4), we obtain
dU"
Z=— (Sud—T) , (14.5)
the covariant vecta$,, has the components
S, = (8% -8 —S% —5%). (14.6)

With account for Eqg. (14.5) the equation of motion for thenspi
vector (14.2) assumes the form

dsS” dU#
= — — v, 14.7
dr (SM dr ) v ( )
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Our further goal will be to try to provide the details of these
equations making use of the Lorentz transformations. Cens
particle of spinfmoving with a velocityv in a laboratory inertial
reference system. In this case, the inertial laboratorgresice
system will move with respect to the inertial reference eystin
which the particle is at rest, with a velocityv. Applying the
Lorentz transformations (4.18) and (4.19) and taking tge sif
the velocity into account, we obtain

— A . . _ 1 .
S0 :yg, S=J+ 7U2 F(T). (14.8)

au+ .
The four-vectorg/*, dL have the following components:
T

v dUH v v d
= (o l) = (2 E+ D). aan)
c dr

dr dr' ¢ dr ¢

Applying (14.6), (14.8) and (14.9), we obtain

-

( dU“) @) dy

c dr

v odv U dy - y=1_
<c = + . dT) <J+ 2 U(UJ)) .
Computations in the right-hand part of expression (14.10) w
only leave terms obtained by multiplication of the first temm

brackets and the two terms in the second pair of bracket$e athi
other terms mutually cancel out

dur\ vy ~>dv vy—1, = (_dv

Su g ) =
(14.10)
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Making use of (14.8) and (14.11), we write equation (14.pase
rately for the zeroth component of the four-vector of sgihand
for its vector part,

% {v@h} =+ { <fj—f) - 7;2 ) <ﬁ§—f) } , (14.12)

1)2

(14.13)

2 — —

sl (Y L g (6%

N czv{<JdT) + 02 (v )<Ud7')}
From equations (14.12) and (14.13) we find

d (- ~v—1_, 4 v d L2

E{JJF — U(UJ)}—;E{v(U )b=0. (1414

From equation (14.12) we find

ALYy (Uj—f) = % {v@n}-+ (f;l—f) . (14.15)

v

Now we write the first term of equation (14.14) in expandedrfor

d—j+774 7(0J) 7% +
dr (1 +~)?

(14.16)
2

v d I v L= dU
_v @ _ 7 GhE
Tei sy dr {7(“ )} g il

In computation we took into account the equalities

v-1 vody PV
= =L (5=, 14.17
v? A(l+7) dr ¢ Var ( )
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The second term in (14.16) can be transformed, taking adgant
of (14.15), to the form

_ e (v =
A1+ )2 dr)

sl ) (0]

Applying (14.18) we see, that the second term together wviai¢h t
third term in (14.16) can be reduced to the form

\_/l

(14.18)

v d I v =dU

5= {V(UJ)} - Zas )’ (JE) . (14.19)
With account of (14.16) and (14.19) equation (14.14) is cedu
to the following form:

dJ 2 dv _di
IS S LT § SR ¥ (S I Gy 14.2
dr + A(l+7) {dr(v )= v (Jdr)} 0 ( 0)

Using the formula

[a b, 5]} — b (ac) — 2(@b), (14.21)
and choosing the vectors
i=J, b= d—”, c=1, (14.22)
dr

aJ _ [ﬁf] (14.23)

here

G211 [a, d—”} . (14.24)
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When the particle moves along a curvilinear trajectory, the
spin vector fundergoes precession around the directiorf}
with angular velocity |€2]. This effect was first discovered by
Thomas|[14].

The equation of relativistic mechanics (9.12) can be wriite
the form

—

mj—f —f- %(ﬁf). (14.25)

With account of this equation, expression (14.24) assurnes t
form

G--2"lm A (14.26)

mu?

Thus, a force without torque, by virtue of the pseudo-E @il
structure of space-time, gives rise to the precession of gpis
action results in curvilinear motion in the given inertiaference
system. In the case, when the force is directed, in a certdin r
erence system, along the velocity of the particle, no psoaof
the spin occurs. But parallelism of the vectors of fofcm\d of ve-
locity o' is violated, when transition is performed from one inertial
reference system to another. Therefore, the effect of pstme,
equal to zero for an observer in one inertial reference sysiall
differ from zero for an observer in some other inertial refere
system.
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15. The equations of motion and conservation
laws in classical field theory

Earlier we saw that, with the aid of the Lagrangian approdédh,
possible to construct all the Maxwell-Lorentz equationBisTap-
proach possesses an explicit general covariant charéigiermits

to obtain field equations of motion and conservation lawsger
eral form without explicit concretization of the Lagrangidensity
function. In this approach each physical field is describgdb
one- or multi-component function of coordinates and tinadlec
the field function (or field variable). As field variables, qgtides
are chosen that transform with respect to one of the lingaere
sentations of the Lorentz group, for example, scalar, spusator,

or even tensor. Apart the field variables, an important relati
tributed, also, to the metric tensor of space-time, whidbheines
the geometry for the physical field, as well as the choice efan
another coordinate system, in which the description of @ays
processes is performed. The choice of coordinate systeat is,
the same time, a choice of reference system. Naturally, ot e
ery choice of coordinate system alters the reference system
transformations in a given reference system of the form

70 = fo(x(]? xl) 3527 xg)v
(15.1)
2 = [ 2%, 2%,
always leave us in this reference system. Any other choic®-of
ordinate system will necessarily lead to a change in reteregs-

tem. The choice of coordinate system is made from the class of
admissible coordinates,

Yoo > 0, yirdr'dz® < 0, det |y,,| = < 0. (15.2)
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The starting-point of the Lagrangian formalism is condiarcof
the action function. Usually, the expression determiniregaction
function is written as follows

1
S = —/L(xo,xl,xz,x3)dx0dx1dx2dx3, (15.3)
C
Q

where integration is performed over a certain arbitrary-gimen-
sional region of space-time. Since the action must be iaagrthe
Lagrangian density function is the density of a scalar ofghti
+1. The density of a scalar of weightl is the product of a scalar
function and the quantity/—~. The choice of Lagrangian density
is performed in accordance with a number of requiremente On
of them is that the lagrangian density must be real.

Thus, the Lagrangian density may be constructed with the aid
of the fields studiedyp, the metric tensot,,,, and partial deriva-
tives with respect to the coordinates,

L= L(@Av au()OAa <o Yuws a)\’y;uz)- (154)

For simplicity we shall assume, that the system we are dgalin
with consists of a real vector field. We shall consider thelfied-
grangian not to contain derivatives of orders higher, ttnenfirst.
This restriction results in all our field equations beingaipns of
the second order,

L = L(A”, 0\ A", Yy, Or Yy )- (15.5)

Note,that, if the Lagrangian has been constructed, the theory
is defined We find the field equations from the least action prin-
ciple.
1
58 = - / d*z6L = 0. (15.6)

C
Q
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The variationd L is

oL oL
L=—0A —_— A 15.7
0 aA}\(; A\ T+ 8(8,,14)\)6(01/ )\)7 or ( 5 )
oL OL
0L = EcSAA +0, {0(0 AA)(SAA] . (15.8)
Here we have denoted Euler’s variational derivative by
oL oL OL
- 2= _ — . 15.
AL oA, (a@AA)) (15.9)

In obtaining expression (15.8) we took into account, that
5(0,A)) = 0,(0A)). (15.10)

Substituting (15.8) into (15.6) and applying the Gausstd@ove
obtain

1 oL
— — | dQd* A d —— A, .
/ e <5AA)5 T /SV {3(@&)6 A}
>

Since the field variation at the boundatyis zero, we have

S = 1 /de%; oL 5A, = 0. (15.11)
C 5A>\
Q

Owing to the variation$ A, being arbitrary, we obtain, with the
aid of the main lemma of variational calculus, the equatartlie

leld o0 oz oL
= - ) =0. 15.12
A oA, (8(@&)) 0 (15.12)

We see, that if the Lagrangian has been found, then the
theory has been createdBesides field equations, the Lagrangian
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method provides the possibility, also, to obtain differ@intonser-
vation laws: strong andweak. A strong conservation lawis a
differential relation, that holds valid by virtue of the amance of
action under the transformation of coordinates. Weak awatien
laws are obtained from strong laws, if the field equation12bis
taken into account in them.

It must be especially stressed that, in the general casmgstr
differential conservation laws do not establish the coregeyn of
anything, neither local, nor global. For our case the adtiasthe
form

1
S = Z /d4xL(A,\,&,A)\,VW,@)\%V). (1513)
Q

Now, we shall perform infinitesimal transformation of theoodi-
nates,
2V =a" + 6z, (15.14)

heredz” is an infinitesimal four-vector.
Since action is a scalar, then in this transformation it iesa
unaltered, and, consequently,

_ 1 / & (2 / d'zL(x) =0,  (15.15)

where
L(a) = L' (A, 0L44,(2"), 7 (), 05/, ()

The first term in (15.15) can be written as

/ 'L (2)) = / Jd'zL(2), (15.16)

Qf Q
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where the Jacobian of the transformation

8(x’0,x’1,x’2,9:’3) ax/u
(20, z, 22, x3) Ox?

J= = det . (15.17)

In the case of transformation (15.14) the Jacobian has the fo
J =1+ 0\0z". (15.18)
Expandingl’(z’) into a Taylor series, we have

L'(z') = L'(z) + 5:&%. (15.19)

Taking (15.16), (15.18) and (15.19) into account, we rexwdri-
ation (15.15) as

oz

5.5 = % / dia [5LL(Q;) + 9 (WL(@)] —0; (15.20)
Q

here we have denoted
dpL(z) = L'(x) — L(x).

This variation is usually called the Lie variation. It comtesiwith
partial differentiation

01,0, = 0,0p. (15.21)
The Lie variation of the Lagrangian density function is

oL oL

(5LL(CL’) = a—A)\(SLA)\ + m(sL&/A)\ +
(15.22)
oL
— 01V + =———0 i
+3%y LV + EIGR LY
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The following identity

0
6 L(z) + %(MAL(x)) =0, (15.23)
is a consequence of EqQ. (15.20) due to arbitrariness of vefum
It was obtained by D. Hilbert in 1915.

Upon performing elementary transformations, we obtain

0.8 =
(15.24)
B 1 4 oL oL N
= c /d x [5AA5LAA+ &ylwéL’yuy—'—D)\J :| —0,
Q
here
6L _ 0L _, ( oL )
M OV 7 (O Yyuw) 7
JY = Léx" + iéLAA + oL (15.25)

e — .
B9, Ay) D(Dyyay)

Since J" is the density of a vector of weight1, then, in accor-
dance with (11.25) and (11.28), we find

8,J" = D, J", (15.26)

where D” is a covariant derivative in pseudo-Euclidean space-
time. It must be pointed out, that the variationsi,, 6;7,, origi-
nate from the coordinate transformation (15.14), so thayttere-
fore, be expressed via the components.
Let us find the Lie variation of field variables, that is due to

coordinate transformation. According to the transfororataw
of the vectorA,

ox”

A4(a") = 4, @) 55,
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we have
, ddx”
A\(z +0z) = Ax(z) — Ay(2) 5 (15.27)
or
Expanding the quantityl) (x + dz) in a Taylor series, we find
A\ (z + o) = A\ (z) + gAj dz”. (15.28)
xr
Substituting (15.28) into (15.27) we obtain
VaA)\ 6(51’”
or, in covariant form
dpAx(z) = —0x"D, A\ — A, Dyoz". (15.30)

Now let us find the Lie variation of the metric tensgy, from
the transformation law

L oz 0z°
’)/“V(ZL') = o' : W’}/)\J(x)
we obtain
Vo (T 4 0) = Y — Vo 0,027 — 760,027, (15.31)

hence we find
0LV = = Vo 0027 — 700,017 — 627 0p Y- (15.32)
Taking into account the equality
0o = YLy + YAl s (15.33)

we write expression (15.32) through covariant derivatives

0L Y = —Vuoe D27 — 06 D02° . (15.34)
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Substituting expressions (15.30) and (15.34) into actidn24),
we obtain

0.8 = l/d‘lx [—5x’\ oL D\A, — 6—LAZ,D)\5:U”—

c dA, dA,
Q

(15.35)

oL

—(Yuo Dv02° + 6D, 627 )—— + D, J" | = 0.
Yy
We introduce the following notation:
L
™ = -2 0 : (15.36)
0V

We will further seethis quantity, first introduced by Hilbert, is
the tensor density of the field energy-momentum
Integrating by parts in expression (15.35) we obtain

1 " \| 0L
565—?/d93{ ox LSAV
Q

oL
—Dl, (ﬂAA) +DV (T“V’Yu)\>:| + (1537)

D)\AV_

0L
0A,

+D, (J” — Aoz + T“”%wém”) } =0.
Substituting into expression (15.25) for the density ofteed”
the values of variations; A, (z), 6.7, (x), in accordance with
formulae (15.30) and (15.34), and grouping the term&rétand
D,\éx¥, we obtain

JY —

(SAVAA(SxA = —71702° — O‘Z)‘D)\(qu, (15.38)
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here we denote
0L oL

——— D, Ay + —A,. 15.
o0, Ay VN T 54, (15.39)
This quantity is usuallgalled the density of the canonical energy-
momentum tensor, while the quantity
WA _ g 0L N OL
H @) T 00,4y
is called the spin tensor density.

If function L depends only on*”, A,,, 0, A, then quantityfl’jA
according to Eq. (15.40) may be written as follows

oL
A ——— ) A, 154
= (o) & (15402

On the basis of (15.38) we represent the covariant diveggenc
in (15.37) as

T, = —Ld, +

o

A, (15.40)

v 5L A VSO _
D,,(J — s T ) -

—6x7 {DVT; — Dﬂg} + D, (627) x (15.41)
X le\’ — 7y — Duaf\w] — oD, Dydat.

Taking advantage of this expression, the variation of aql®.37)
can be written in the form

0.5 = i /d4x —5m)‘< oL DyA,—
c

0A,
Q
-D, A Ay ) + D,y | + D, (027) x (15.42)

x (TY — 1 — D,ob") — UZ)‘D,,DAM“] = 0.
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Since the integration volum® is arbitrary, it hence follows that
the integrand function is zero.

L L
—593’\< d DA, — DV(CS—AA> + D,,T;:) +

A, A,
(15.43)

+ (Ti’ — Ty Duo—‘;”) D, 62" — o} D, Dyda* = 0.

This expression turns to zero for arbitrafy* independently of
the choice of coordinate system. Precisely this permitgaaolity
establish that the tenso;jA Is antisymmetric with respect ta .
Due to antisymmetry of quantitzy;A in upper indices’, A\ we get
from Eq. (15.40) the following

(agyﬁm ! a@&ixu)) -

It follows from the above that function depends on derivatives
in this case as follows

L(Fl/)\)a

F,»=D,A\ — D)A,.

This result was obtained by D. Hilbert in 1915. Of courses thi
does not exclude an explicit dependencéd.@n variableA, .

By virtue of the tensor transformation law, if it turns to @aen
one coordinate system, then it equals zero in any other owaied
system. Hence the identities follow:

6L 5L
D,/T)\ + 5—14VD)\AV - Dl, (5—141/14)\) =0. (1544)

TY — 7% — Dyoh’ =0, o} = —o))". (15.45)
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As to the last term in (15.43), it should turn to zero owingtie t
quantitiesUZA being antisymmetric with respect to the upper in-
dices. From the antisymmetry of the spin tensor follows

D, TV = D,7". (15.46)
A A

Identities (15.44) and (15.45) are called strong consenvdaws,
they are obeyed by virtue of action being invariant underdiso
nate transformations. Applying relation (15.46), expi@s$l5.44)
can be written in the form

oL 5L
DT + 5P = A, <ﬂ) =0,

(15.47)
F\, = DyA, — D, A,.

If we take into account the field equations (15.12), we wilicot
D,TY =0, TV — 7} = D,o}", (15.48)
here the quantityy equals

, .. 0L
X =L+ 5, Au)DAAu. (15.49)

The existence of a weak conservation law of the symmetriggne
momentum tensor provides for conservation of the field aargul
momentum tensor. By defining the angular momentum tensor in
Galilean coordinates of an inertial reference system

MMA = gV T — T, (15.50)
it is easy, with the aid of (15.48), to establish that

MM =0, (15.51)
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The weak conservation laws we have obtained for the energy-
momentum tensor and for the angular momentum tensor do not
yet testify in favour of the conservation of energy-momemtor
angular momentum for a closed system.

The existence of integral conservation laws for a closed sys
tem is due to the properties of space-time, namely, to the es4
tence of the group of space-time motions. The existence ofdh
Poincaré group (the Lorentz group together with the group
of translations) for pseudo-Euclidean space provides for the
existence of the conservation laws of energy, momentum and
angular momentum for a closed systenf6]. The group of space-
time motion provides form-invariance of the metric tensgy of
Minkowski space.

Let us consider this in more detail. The density of substance
energy-momentum tensor according to Eq. (15.36) is thevatig

™ = =2 oL , (15.52)
0V
oL oL 9 ( OL )
N OV \ Vo)
This tensor density satisfies EQ. (15.48)
D, T" =0, (15.53)
that may be written as follows
1
0,1 + §Tm,aug"” = 0. (15.54)

In general case Eqg. (15.53) could not be written as an egualit
an ordinary divergence to zero, and so it does not demoastrgt
conservation law. But an expression of the form

D, A", (15.55)
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whereA” is an arbitrary vector, is easy to convert into a divergence
form even in the Riemannian space.
From Eq. (11.25) one have

DA\AY = O\AN + T\ AP (15.56)
By means of Eq. (11.38) one obtains
Di(V=7 AY) = d\(vV— AY). (15.57)

Let us exploit this below. Multiply the energy-momentum sliéyn
onto vectom,

T"n,. (15.58)
According to Eqg. (15.57) we obtain
D, (T"n,) = 0,(T""n,). (15.59)

Quantity (15.58) already is a vector density in our case. r&he
fore we should not substitutg—~ into Eq. (15.59). We rewrite
Eq. (15.59) in the following form

1
5T (Duny + D) = 0u (T 1). (15.60)

After integration of Eq. (15.60) over volume containing -
stance we get

1 v 8 v0
5 [ VT D+ D) = o [ nav. @sey)
1%

|4

If vector n, fulfils the Killing equation
D,n, + Dyn, =0, (15.62)

then we have integral of motion

/T”Ode = const. (15.63)

\%
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We have already derived Eq. (15.34):
LY = —(Dyox, + D,dx,). (15.64)

From Eqs. (15.62) it follows that if they are fulfilled, thdretmet-
ric is form-invariant
OV = 0. (15.65)

In case of pseudo-Euclidean (Minkowski space) geometry
Egs. (15.62) may be written in a Galilean (Cartesian) coaid
system:

Ouny + 0ym, = 0. (15.66)

This equation has the following general solution
Ny = Gy + Wyott’, Wye = Wy, (15.67)

containing ten arbitrary parameters w,,,,. This means that there
are ten independent Killing vectors, and so there are t&giats
of motion. Taking
Ny = ay (1568)
and substituting this to Eq. (15.63), one finds four integadimo-
tion: .
PY = — /T”OdV = const. (15.69)
C
14

Here P is the system energy, ani’ is the momentum of the
system. Taking Killing vector in the following form
Ny = Wyet?’ (15.70)

and substituting it in the initial expression (15.63), oretsgthe
following expression for the angular momentum tensor:

1
P =— / (T"°2° — T°%")dV. (15.71)
&
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QuantitiesP’° are center of mass integrals of motion, apid are
angular momentum integrals of motion.

In correspondence with Eq. (15.50) we introduce the folfayvi
quantity

por = L / (T 2% — T 2")dV, (15.72)
C
where
M = T2 — T (15.73)
is tensor density, satisfying the following condition
M = 0. (15.74)

Therefore, we have been convinced, by deriving Eqgs. (1268)
(15.71), that all these ten integrals of motion arise on teelof
pseudo-Euclidean geometry of space-time. Just it has t in
pendent Killing vectors. There may be also ten Killing vestim
Riemannian space, but only in case of constant curvatureespa
[6].

Note that conservation laws are automatically satisfiecafor
arbitrary scalar (Lagrangian) density of the fofnwy, 9,1, in
Minkowski space, that provides for the field energy beingipos
tive, if we only consider second-order field equations. leesgly
recall this here, since from discussions with certain Acaid&ns
working in theoretical physics, | have seen, that this isnavin
even to them.

Now let us find, as an example, the symmetric tensor of the
electromagnetic field energy-momentum. According to (Lthe
Lagrangian density for this field is

1
Ly =———\/—y F.3F. 15.75
f TonV 7Y Fos ( )

We write it in terms of the variables,, and the metric coefficients

1 14
L= _m_ﬁ,/—_y Fog ™", (15.76)



216 15. The equations of motion and conservation laws ...

According to (11.37) we have

oJ/— 1 3
5 =gV (15.77)
uv
With the aid of (15.77) we obtain
0*L 1 . N
5= _?)Q_W\/——wﬂ FsF* (15.78)
nv

* indicates that differentiation is performed with respexcty},,
present in expression (15.76).

Similarly
o*L 1
= ———/=7 FusF,
Oy 167V Taster 8
(15.79)
8 oo 8 BA
Y - . 76)\ + ,yaa 5 LV
OyH OyH
Since gryao )
/7 o SO a SO
o — 5(%51/ +6,0,,),

then using the antisymmetry properties of the tefsgr= —Fj,,
we obtain o .
= —— /A FE\F,.7. 15.80

In obtaining (15.78) and (15.80) we considered quantitjgsy*°
as independent.

Since no derivatives of the metric tensor are present ingne d
sity of the electromagnetic field Lagrangian, the densitythaf
symmetric energy-momentum tensor will be

oL o*L o*L 870‘6
™ = -2 = -2 + . . (15.81)
a’ﬂw a’ﬂw 8’Yaﬁ 8’)/;“/
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From the relation

Yy, = 03, (15.82)
we find 508
,ya 1 (07 14 av
5 = 30 By PR, (15.83)
uv

Substituting this expression into (15.81), we obtain
oL = _9 {3*_1) — 8*_L 06;@61/} )
a’ﬂw a’ﬂw Oyb

Using expressions (15.78) and (15.80) we find the densithef t
energy-momentum tensor of the electromagnetic field

T = —2 (15.84)

v 1
T — ?7 {_FWF”A%A + ZWmﬁwﬁ] . (15.85)

Hence it is readily verified, that the trace of the electronig
field energy-momentum tensor turns to zero, i. e.

T =, T" = 0.

We shall now construct the energy-momentum tensor of sub-
stance. The density of the conserved mass or charge is

1= ~/=7 U’ 8,(v/= pU") = 0, (15.86)

due to Eg. (11.41), wherg, is the density in the rest reference
system. The four-dimensional velocity is defined by the ex-
pression
v d v
Ur =2 =2 0= (15.87)

VAegre? b

Hence, it is clear that

UVU)\’)/V)\ = 1.
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Take the variation of expression (15.86) with respect to the
metric tensor. The quantity is independent of the metric tensor,
therefore,

p = U6(v/=7 o) + /=7 podU° = 0, (15.88)

here

« 55
o_ ¢ v
0 = = S o (15.89)

From expression (15.88) and (15.89) we find

1
5(v/=7 o) = V=7 NOQUQUBCS’Yaﬁ' (15.90)
Since the density of the Lagrangian of substance has the form

L = —/=7 poc?, (15.91)

the density of the energy-momentum tensor of substance €an b
determined as

= =2 oL : (15.92)
MV
On the basis of (15.90) we obtain
" = poctUMUY. (15.93)

Taking into account Eq. (15.86) we obtain in Cartesian cioaite
system:

LOU da¥ 02@
orv ds — Ho ds

Let us rewrite Eq. (10.22) for mass and charge densities:

O, t" = e (15.94)

au
MOCZK = poF* U, = f*. (15.95)
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After comparing Egs. (15.94) and (15.95) we have
fv = 0aty. (15.96)

From Egs. (8.54) and (15.96) we can see that the law of energy-
momentum tensor conservation for electromagnetic fielcsandces
of charge taken together takes place:

Oa(T +12) = 0. (15.97)

As we noted above, addition to the Lagrangian density of a
covariant divergence does not alter the field equationss dlso
possible to show [6], that it does not alter the density oHiikert
energy-momentum tensor, as well. On the contrary, the tyeofsi
the canonical tensor (15.49) does change. But at the saradtan
divergence of the spin tensor density changes with it, aldwe
sum of the canonical tensor density and of the divergencheof t
spin density remains intact.
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16. Lobachevsky velocity space

Let us remind that the relativistic law of composition of aelties
(see Eq. (9.26)) has the following form:

U2 U2
 (-5)(-%)
v ¢ v (16.1)

Note that this expression is a direct consequence of théeexis
of the following invariant

Yu Yo (1l — U¥) = inv.

Herey, = (1 —u?) ™2, v, = (1 —v?)~1/2,

This invariant has been demonstrated first in the H. Poencar”
article [3] (se€§ 9, Eq. (5)), where the system of units is taken so
that velocity of light is equal to 1.

It follows just from here that in pseudo-Euclidean spaoeeti
the velocity space follows the Lobachevsky geometry.

For the further presentation it will be more convenient toan
duce the following notation:

V=g, V=1, U=, (16.2)

cosha = — sinha =

(16.3)
Substituting (16.2) and (16.3) into (16.1) we obtain

cosha = cosh b - cosh ¢ — sinh b - sinh ¢ - cos A, (16.4)
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A is the angle between the velocitiésand .. This is actually
nothing, butthe law of cosines for a triangle in Lobachevsky’s
geometry. It expresses the length of a side of a triangle in terms
of the lengths of the two other sides and the angle between.the
Finding, hencegos A and, thensin A etc., one thus establishes
thelaw of sines of the Lobachevsky geometry

sin A sin B sin C'

(16.5)

sinha sinhb sinhe’
Below, following Lobachevsky, we shall obtain ttev of co-
sines for a trianglein the form

cos A = — cos B cos C' + sin B sin C' cosh a. (16.6)
We write (10.4) in the form

h
tanhbtanhccos A = 1 — ——22% (16.7)
cosh b cosh ¢

From the law of sines (16.5) we have
1 sin A tanhc

coshe sinC  sinha (16.8)
Substituting this expression into (16.7) we find
sin A tanh ¢

h h A=1- . ) 16.
tanh btanh ¢ cos sinC  coshbtanha (16.9)
Hence we findanh ¢
tanh a si
tanh ¢ = anhasin € - . (16.10)
cos A sin C' tanh a tanh b + sin A
cosh b

With the aid of the law of cosines, Lobachevsky further egthbd
the identity
1

cosh? b’
(16.11)

(1 — tanhbtanhccos A)(1 — tanhatanhbcos C) =
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Applying (16.10), we find

1 )
sin A
1—tanhd tanhccos A = cosh b 1 .
cos Asin C'tanh a tanh b + sin A
cosh b
(16.12)
Substitution of this expression into identity (16.11) gl
1hb _ sinA—sinAcosCtanhatlanhb (16.13)
cos cos Asin C tanh a tanh b + sin A
cosh b
With account for
1
1— ———— = tanh®¥, (16.14)
cosh
EqQ. (16.13) assumes the form
tanh b sin C'
— =cot A . 16.1
tanh a cos ' = co cosh b (16.15)
In a similar manner one obtains the relation
tanh a sin C'
ol 8 C = cot Bcosh o~ (16.16)
From thelaw of sineswe have
1 sin A tanhb
coshb sinB sinha’ (16.17)
Substituting this expression into (16.15), we obtain
tanh a cos Asin C
~ tanhb cos €' = coshasin B (16.18)

Applying expressions (16.16) in (16.18), we find
cos A = — cos B cos C' + sin B sin C cosh a. (16.19)
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In a similar manner one obtains the relations:

cos B = —cos AcosC + sin Asin C cosh b,
(16.20)

cosC = —cos Acos B +sin Asin Bcoshec.

Thus, the space of velocities in pseudo-Euclidean geometry
is the Lobachevsky space

For a rectangular trianglé = % according to (16.4) we have

cosh ¢ = cosh a cosh b. (16.21)

From the theorems of sines, (16.5), and of cosines, (16.Hwe
tain

inh tanh b
sin A = Sl.n a’ cos A = 7 (16.22)
sinh ¢ tanh ¢
In line with the obvious equality
sin? A +cos? A =1 (16.23)

one can, making use of expressions (16.22) and (16.21)jndhta
relation

1
sin? A cosh? b + cos? A—ms—=1. (16.24)

cosh”a

Consider, as an example [15], the phenomendigbt aber-
ration, i. e. the change in direction of a beam of light, when tran-
sition occurs from one inertial reference system to anotier,
in two reference systems, moving with respect to each other,
directions toward one and the same sourosill differ. Let 6 and
0’ be the angles at which the light from the source at pGlris
seen from two inertial reference systemisand B, moving with
respect to each other with a velocity In Lobachevsky velocity
space we shall construct the trianglé' D (see Fig. 1), with angle
C equal to zero, since light has the limit velocity.
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Now, we join pointsA and B by a line, and we drop a perpen-
dicular to this line from pointC. It will intersect the line at point
D. We denote the distance from poiatto point D by x and the
distance from poinD to B by y.

A x D vy B
Fig. 1
Applying for given triangleAC D thelaw of cosines(16.20),
we obtain

coshz = —— sinhg = 22 (16.25)
sin o sin a
hence
tanhx = cosa = cos(m — 0') = — cos ¢, (16.26)
similarly

tanhy = cos#. (16.27)
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In accordance with formula (16.3)anh(z + y) is the velocity
of one reference system with respect to the other in unithef t
velocity of light

v tanh(z + ) = tanhx +tanhy  cosf — cos '
c Y ~ 1+tanhztanhy 1 —cosf-cosf
(16.28)
Hence follow the known formulae faberration
cosf — Y
COS 9/ = U707 (1629)
1— —cosf
C
5 )
sinf =1 L. smf (16.30)

c (1 S COSG)

C
Applying formulae (16.29) and (16.30) we obtain

2
(cos@ — 1) cos @ + \/1- U—zsm?e
0—0)= ¢ < . (16.31)

1—£cos@
c

COS

Let us determine the square distance between infinitegimall
close points in Lobachevsky space. From (16.1) we find

(it~ 1)~ i,
- c (16.32)

v ’
(1-%)
v’ is the relative velocity.
Settingu = v + dv and substituting into (16.32) we find
2 _ 2 (c? — v?)(d0)? + (vdv)?
(62 _ U2)2

=/
U2

(dty) (16.33)
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Passing to spherical coordinates in velocity space
vy = vsinfcos ¢, v, = vsinfsing, v, =vcosd, (16.34)

we obtain

o, [ ?(dv)? v? (
(@ —v2)2 ' (2 —v?)

(dt,)* = c df? + sin® Gdéz)} . (16.35)
Hence it is evident that the ratio between the length of the ci
cle and the radius is
14 2
. (16.36)
v 'U2
-z
and is always greater tham.
We now introduce the new variable

Ccv
)
V2 — 2

the range of which extends from zero to infinity. In the newi-var
ables we have

(16.37)

r =

dr?

der? = + 1r2(d6* + sin® dg*); (16.38)

2
"
L+

if we introduce the variable
r = csinh Z, (16.39)
we obtain

d0? = 2dZ? + c*sinh® Z(d6* + sin® 0d¢?). (16.40)
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Usually the space metric in cosmology is written this fornmenw
dealing with the open Universe.

Further we shall dwell, in a descriptive manner, on certia@ t
orems of Lobachevsky’s geometry, following the book by NEfmov
(“Higher geometry” M.: Nauka, 1978 (in Russian)) and the lec-
tures of N.A. Chernikov delivered at the Novosibirsk statever-
sity and published in the form of a preprint in 1965.

In the Lobachevsky geometry, through poftnot lying on
the straight linea, there pass an infinite number of straight lines,
that do not intersect ling, but not all these straight lines are con-
sidered to be parallel to line Leta be a straight line in the plane,
and letA be a point outside it (see Fig. 2),and c are bound-
ary straight lines that do not intersect straight leneAny straight
line passing through poi# inside angle3 will also not intersect
straight linea, while any straight line passing through pofin-
side the angle containing poiBtwill necessarily intersect straight
line a. The straight lineb is called the right boundary straight
line, andc the left boundary straight line. It turns out to be that
this property is conserved for any point lying on straighelb.
Precisely such a boundary straight lihas parallel toa in the
right-hand direction, and in the left-hand direction. Thus, two

b
A
—
(8%
C
X
a
B

Fig. 2
straight lines parallel t@a cargJ be drawn through any one point:
one going to the right and the other to the left. In the Lobashg
geometry, the reciprocity theorem is proven: if one of twaight
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lines is parallel to the other in a certain direction, thee #ec-
ond straight line is parallel to the first in the same dirattin a
similar manner, it is established, that two straight linasafiel to
a third in a certain direction are parallel to each otheg dlsthe
same direction. Two straight lines, perpendicular to aitkiraight
line, diverge. Two divergent straight lines always have com-
mon perpendicular, to both sides of which they diverge imatedy
from each another.

Parallel straight lines, indefinitely receding from eacheotin
one direction, asymptotically approach each other in therofThe
anglea is called the parallelism angle at poistwith respect to
straight linea.

From the law of cosines (16.6) we find

1 = sin «v cosh z.

In obtaining this expression we took into account that gtréline

b asymptotically approaches straight liagso, therefore, the an-
gle between straight linesandb is zero. Hence we obtain Loba-
chevsky’s formula

a(r) = 2arctane™”,

herea is the distance from poim to straight linea. This function
plays a fundamental part in the Lobachevsky geometry. Bmsi
seen from our exposition, because we obtained the Lobakhevs
geometry as the geometry of velocity space. proceeding tham
pseudo-Euclidean geometry of space-time. Funciian decrea-
ses monotonously. The area of the triangle is

S=d*- (n—A—-B-0), (16.41)

hered is a constant value. Below we shall derive this formula.
From the formula it is evident that in the Lobachevsky geaynet
similar triangles do not exist.
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Following Lobachevsky, we express the function
cos/\, where 2A =A+ B+ C, (16.42)

via the sides of the triangle. Applying the law of cosines.§)6
and, also, the formulae
A  1—cosA A 1 A
sin? — = &, cos® — = ﬂ, (16.43)
2 2 2 2
we find
o A sinh(p —b) - sinh(p — ¢)

In“ — = 16.44
S 2 sinh bsinh ¢ ’ (16.44)

A sinhp-sinh(p —a)
27 =
€% sinhbsinhe 7 (16.45)

herep is the half-perimeter of the triangle

2p=a+b+ec
With the aid of formulae (10.44) and (10.45) we obtain
A B sinh(p —b) C

Sin —- €08 o = — —— €08 —, (16.46)
, A sinh(p —a) C
S1n ? COS 7 = W COS 7 (1647)

Hence we have

cosh (_a _ b)
A+ B 2 C
5 _ e cos —. (16.48)
2
cosh 5

sin

Applying the formulae
B sinhp . C

COS — COS — = — sin —
2 2 sinh ¢ 27

(16.49)
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A B sinh(p—¢) . C

sin —-sin - = —— ———sin -, (16.50)
we find
cosh (CL—M)
A+ B
cos 5 z sin g (16.51)
2 cosh — 2
2
From (16.48) and (16.51) we have
sinh g sinh é C C
cos A\ = 22—02 sin — cos —. (16.52)
cosh 5 2 2

Replacing sin%cos% in (16.52) by the expressions from
Egs. (16.44) and (16.45) we find

\/sinh p - sinh(p — a) sinh(p — b) sinh(p — ¢)

cos A\ = " ; -
2 cosh 5 cosh B cosh —
(16.53)
From (16.41) we have the equality
)
sin — = cos A\. (16.54)

2d?
Comparing (16.53) and (16.54) we obtain

.S 4/sinhp-sinh(p — a)sinh(p — b) sinh(p — ¢)
S1n 52 = .
2d 2 cosh g cosh g cosh ¢

(16.55)
In our formulae the sides, b, c are dimensionless quantities, in

accordance with definition (16.3). Eq. (16.55) is the analbilpe
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Heron formula in Euclidean geometry. From (16.52) the expre
sion for the area of the triangle can be written, also, in trenf

S sinh a sinh ﬁ
sin -— = 2 e 2 sinC. (16.56)
2d cosh 5

The areaS is expressed in dimensionless units, since the sides of
the triangle are dimensionless. In our exposition, the tzomnd is
unity, on the basis of the law of cosines (16.4).

From formula (16.41) it follows that in the Lobachevsky ge-
ometry the area of a triangle cannot be indefinitely larges rie-
stricted to the quantity/?r. Thus, admitting the existence of a
triangle of indefinitely large area is equivalent to Eudigaral-
lelism axiom. The areas of polygons can be indefinitely lange
the Lobachevsky geometry.

The area of a spherical triangle in Euclidean geometry is

Sp=R*(A+B+C —7), (16.57)

hereR is the radius of the sphere. Comparing this expression with
formula (16.41), we see that formula (16.41) can be derivech f
formula (16.57), if the radius of the sphere is chosen to ksgim
nary and equal to the valueé = id. This circumstance was already
noted by Lambert.

If one introduces the variables

x:U—x, y:&, z:k, (16.58)
c c c

then formula (16.33), for the Lobachevsky geometry, inthg
plane assumes the form

s 2(L=9)  (dn)* + 2uydedy + (1 = 22) - (dy)?

(1 _ 1’2 _ y2)2 ’
(16.59)

(dty)
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the quantities;, y are called Beltrami coordinates in the Lobachev-
sky geometry.
Passing to new variablésn with the aid of formulae

tanhn

xr =tanh¢, y= coshe’ (16.60)
and calculating the differentials
dr=— dy= —ay— P Gy eae,
cosh” ¢ cosh” 7 cosh & cosh” ¢
upon performing the required computations, we find
(dl,)* = *(cosh®nd&* + dn?). (16.61)
The net of coordinate lines
£ = const, 1 = const, (16.62)

is orthogonal. The area of the triangle in these variables is

S = / / cosh ndédn. (16.63)
(a)

For calculating the area of a triangle by formula (16.63¥ihe-
cessary to find the geodesic (extremal) line in the Lobadtevs
geometry in coordinates ». To this end we shall take advantage
of the principle of stationary action.

Length is
L:/ds:/\/cosh2n-d£2+dn2 =

2

= /dn\/cosh2n-§’2+1.

m

(16.64)
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Hence the extremal curve is found in accordance with theieond
tion
2 9
& - cosh”n-6(&)
Vecosh?n - €2 + 1
1

5L = dp=0, &= (16.65)

The variationy commutes with differentiation, i. e.
6(&') = (68); (16.66)

taking this into account and integrating by parts in the grae
(16.65) we obtain

12
d ( cosh?n - ¢

6L:—/d 6
! dn \ \/cosh®n- &2 +1

m

) =0. (16.67)

Here, it is taken into account that the variatioigsat the limit
points of integration are zero.

From equality (16.67), owing to the variatiog being arbi-
trary, it follows

d h2 W
= coshin - & — 0. (16.68)
dn \ \/cosh®n- &2 +1

Hence we find the equation for the geodesic line
h2 =
cosin-&  _ . (16.69)
Veosh®n - €2 +1
geodesic lines, as the shortest in the Lobachevsky geonaetry
straight lines in it.
Resolving this equation, we obtain
dn

5 - 50 = :tC/ 5 .
coshny/cosh”n — 2

(16.70)
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Changing the variable of integration

u = tanhn, (16.71)
we find
cdu
S :i/ V(1= ) + 2u? N
(16.72)
= j:/ \/% = t+arcshv.
Here u
V= = (16.73)
It is suitable to take for variablethe following notation:
¢ = siné. (16.74)
Thus, the equation of a geodesic line has the form
sinh(§ — &) = £ tano - tanh 7. (16.75)

Let us, now, construct a triangle in tilfe n plane (Fig. 3).
The linesAB and AC' are geodesic lines, that pass through point
(&0, 0). The anglesA; and A, are inferior to the parallelism angle
a

A=A+ As.

From expression (16.75) we find the derivative of the geadas
AC at point¢,
& = —tand,. (16.76)

Hence and from\ AL P we have
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dy = = — A, (16.77)
similarly, from AAK P, we also find for the geodesic linéB

5, = g — A, (16.78)
Thus, the constartt for each geodesic is expressed via the angles
Ay, A;. The geodesic linegtB and AC' intersect they axis at
pointsn?, 75.
In accordance with (16.63) the area of the triangeC is

& m2(8) o
Sa :/df coshn-dn:/{sinhm(g) — sinh ny (&) }d€.
0 n1 (&) 0
(16.79)
Taking advantage of expression (16.75), we find
sinh7 = + sinh(€ — &) (16.80)

\/008—2 § — cosh?(¢ — 50).
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Hence we find

sinh 72(€) = — sinh(€ — &) , (16.81)
\/sin_2 Ay — cosh?(€ — &)
sinh 7, (€) = sinh(€ — &) (16.82)

\/sin_2 Ay — cosh?(€ — &)
Then the intersection points of the geodesic lines with treeght
linen({ =0) are

sinh 7y = sinh & , (16.83)
V/sin=2 Ay — cosh? &
inh
sinh7? = — sinh & . (16.84)
\/sin_2 A; — cosh? o
From the law of sines (16.5) we have
in A
sin B = sinh & - ————| (16.85)
sinh |n}|

Substituting into this expression the valuef(16.84) we obtain

sin B = \/1 —sin? A; cosh?¢&,, cos B = sin A; cosh &.

(16.86)
Similarly
cos C' = sin Aj cosh &. (16.87)
Introducing the variable
u = cosh(& — &) (16.88)

in the integral (16.79), we obtain

cosh &g ] ]
Sa = / + du.
/ { VsinT2A; —u? /sin 2 Ay — u? }

(16.89)
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Hence follows

Sa = arcsin(sin A; cosh &) +

(16.90)
+ arcsin(sin Ay cosh ) — (A1 + As).
Taking into account (16.86) and (16.87), we obtain
Sa = arcsin(cos B) + arcsin(cos C') — A. (16.91)
Ultimately, we have
Sa=m—A—B-C. (16.92)

We have obtained the expression for the area of a triafiglen
the Lobachevsky geometry, that we earlier (16.41) made lise o
finding formula (16.55).

From the above we saw that the Lobachevsky geometry, cre-
ated by him as an “imaginary geometry”, has become a congosit
part of the physics of relativistic motions, as the geomefrye-
locity space.

The discovery of Lobachevsky had a great impact on the deve-
lopment of various parts of mathematics. Thus, for exantpke,
French mathematician G. Hadamard, in the bthddn-Euclidean
geometry” in Section devoted to the theory of automorphic func-
tions noted:

“We hope we have succeeded in showing, how Lo-
bachevsky’s discovery permeates throughout Poigisar
entire remarkable creation, for which it served, by the
idea of Poincaé himself, as the foundation. We are
sure that Lobachevsky’s discovery will play a great
part, also, at the further stages of development of the
theory we have considered”.
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Beltrami raised the questiorils it possible to realize Loba-
chevsky planimetry in the form of an internal geometry ofréece
surface in Euclidean space™ilbert has shown, that in Euclidean
space no surface exists, that is isometric toathire Lobachevsky
plane. However, part of the plane of the Lobachevsky gegmetr
can be realized in Euclidean space.
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Problems and exercises

Section 2

2.1. An electric charge is in a falling elevator. Will it eneiectro-
magnetic waves?

2.2. A charge is in a state of weightlessness in a space ship. W
it radiate?

Section 3

3.1. Let the metric tensor of Minkowski space in a non-irarti
coordinate system have the for, (). Show that there exists a
coordinate system, in which the metric tensor has the same form
7w (2'), and that nonlinear transformations relating these system
constitute a group.

Section 4

4.1. Is the following statement correct: “In a moving refeze
system (with a constant velocity) time flows slower, than in a
reference system at rest"?

4.2. Is the Lorentz contraction of a rod (4.13) real or app&re
4.3. Is it possible, by making use of the Lorentz effect oftcact
tion, to achieve a high density of substance by acceleratirogl?

Section 8

8.1. The electric charge of a body is independent on the ehoic
of reference system. On the basis of this assertion find #mes-tr
formation law of charge density, when transition occursrfrane
inertial reference system to another.
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8.2. With the aid of Lorentz transformations find the field of a
charge undergoing uniformly accelerated motion.

Section 9

9.1. Three small space rockets B andC' are drifting freely in

a region of space distant from other matter, without roratiad
without relative motion, and andC' are equally distant from.
When a signal is received from, the engines oB andC' are
switched on, and they start to smoothly accelerate. Letdbleats

B andC be identical and have identical programs of acceleration.
SupposeB andC have been connected from the very beginning
by a thin thread. What will happen to the thread? Will it snap o
not?

(Problem by J. Bell)

9.2. Let some device emits electromagnetic energy with powe
6000 Watt in a definite direction. What force is required duthe
recoil to hold the device at rest?

Section 10

10.1. Applying the principle of stationary action obtaire tfol-
lowing formula for the Lorentz force:

f= pﬁ+§[17,ﬁ],
wherep is the electric charge density.

Section 11

11.1. Does a charge, moving along geodesic line in a uniforml
accelerating reference system, radiate?

11.2. Does a charge, moving along a geodesic line in an anpitr
non-inertial reference system, radiate?
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11.3. Does a charge, that is at rest in a non-inertial reteregs-
tem, radiate?

11.4. Does an elevator, the rope of which has been torn,sepre
an inertial reference system?

Section 12

12.1. Find the space geometry on a disk, rotating with a eonst
angular velocityw.

12.2. Consider a cosmonaut on a space ship moving with adnsta
acceleration: away from the Earth. Will he be able to receive in-
formation from the Flight Center during his trip?

Section 16

16.1. Find a surface in Lobachevsky geometry, on which thei£u
dean, planimetry is realized.

16.2. Explain the Thomas precession with the aid of Lobaskev
geometry.

16.3. Does a triangle exist in Lobachevsky geometry, allesngf
which equal zero?

16.4. Find the area of a triangle on a sphere of radius Eucli-
dean geometry.
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