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A comparison of different
regularization methods for a Cauchy
problem in anisotropic heat conduction

N.S. Mera, L. Elliott, D.B. Ingham and
D. Lesnic

Keywords Boundary element method,
Heat conduction

In this paper various regularization methods
are numerically implemented using the
boundary element method (BEM) in order to
solve the Cauchy steady-state heat conduction
problem in an anisotropic medium. The
convergence and the stability of the numerical
methods are investigated and compared. The
numerical results obtained confirm that stable
numerical results can be obtained by various
regularization methods but if high accuracy is
required for the temperature, or if the heat flux
is also required, then care must be taken when
choosing the regularization method since the
numerical results are substantially improved
by choosing the appropriate method.

Inverse analysis of continuous casting
processes

Iwona Nowak, Andrzej J. Nowak and
Luiz C. Wrobel

Keywords Inverse problems,
Boundary element method, Sensitivity,
Casting, Metals

This paper discusses an algorithm for phase
change front identification in continuous
casting. The problem is formulated as an
inverse geometry problem, and the solution
procedure utilizes temperature measurements
inside the solid phase and sensitivity
coefficients. The proposed algorithms make
use of the boundary element method, with
cubic boundary elements and Bezier splines
employed for modelling the interface between
the solid and liquid phases. A case study of
continuous casting of copper is solved to
demonstrate the main features of the
proposed algorithms.

Optimization of a window frame by
BEM and genetic algorithm

Małgorzata Król and Ryszard A. Białecki

Keywords Boundary elements,
Genetic algorithms, Heat transfer, Windows

Genetic algorithms and boundary elements
have been used to find an optimal design of a

plastic window frame with air chambers and
steel stiffeners. The objective function has
been defined as minimum heat loss subject to
a constraint of prescribed stiffness and weight
of the steel insert.

BEM/FVM conjugate heat transfer
analysis of a three-dimensional film
cooled turbine blade

A. Kassab, E. Divo, J. Heidmann,
E. Steinthorsson and F. Rodriguez

Keywords Heat transfer,
Coupled phenomena, Boundary elements,
Finite volume

We report on the progress in the development
and application of a coupled boundary
element/finite volume method temperature-
forward/flux-back algorithm developed to
solve conjugate heat transfer arising in 3D
film-cooled turbine blades. We adopt a loosely
coupled strategy where each set of field
equations is solved to provide boundary
conditions for the other. Iteration is carried
out until interfacial continuity of temperature
and heat flux is enforced. The NASA-Glenn
explicit finite volume Navier-Stokes code
Glenn-HT is coupled to a 3D BEM steady
state heat conduction solver. Results from a
CHT simulation of a 3D film-cooled blade
section are compared with those obtained
from the standard two temperature model,
revealing that a significant difference in the
level and distribution of metal temperatures is
found between the two. Finally, current
developments of an iterative strategy
accommodating large numbers of unknowns
by a domain decomposition approach is
presented. An iterative scheme is developed
along with a physically-based initial guess
and a coarse grid solution to provide a good
starting point for the iteration. Results from a
3D simulation show the process that
converges efficiently and offers substantial
computational and storage savings.

RBF interpolation of boundary values in
the BEM for heat transfer problems

Nam Mai-Duy and Thanh Tran-Cong

Keywords Boundary element method,
Boundary integral equation, Heat transfer

This paper is concerned with the application
of radial basis function networks (RBFNs) as
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interpolation functions for all boundary
values in the boundary element method
(BEM) for the numerical solution of heat
transfer problems. The quality of the estimate
of boundary integrals is greatly affected by
the type of functions used to interpolate the
temperature, its normal derivative and the
geometry along the boundary from the nodal
values. In this paper, instead of conventional
Lagrange polynomials, interpolation functions
representing these variables are based on the
‘‘universal approximator’’ RBFNs, resulting in
much better estimates. The proposed method
is verified on problems with different
variations of temperature on the boundary
from linear level to higher orders. Numerical
results obtained show that the BEM with
indirect RBFN (IRBFN) interpolation
performs much better than the one with
linear or quadratic elements in terms of
accuracy and convergence rate. For example,
for the solution of Laplace’s equation in 2D,
the BEM can achieve the norm of error of the
boundary solution of O(102 5) by using
IRBFN interpolation while quadratic BEM
can achieve a norm only of O(102 2) with the
same boundary points employed. The IRBFN-
BEM also appears to have achieved a higher
efficiency. Furthermore, the convergence
rates are of O(h1.38) and O(h4.78) for
the quadratic BEM and the IRBFN-based

BEM, respectively, where h is the nodal
spacing.

Dual reciprocity boundary element
analysis of transient advection-
diffusion

Krishna M. Singh and Masataka Tanaka

Keywords Boundary element method,
Plates, Approximation concepts

This paper presents an application of the
dual reciprocity boundary element method
(DRBEM) to transient advection-diffusion
problems. Radial basis functions and
augmented thin plate splines (TPS) have
been used as coordinate functions in
DRBEM approximation in addition to the
ones previously used in the literature. Linear
multistep methods have been used for time
integration of differential algebraic boundary
element system. Numerical results are
presented for the standard test problem of
advection-diffusion of a sharp front. Use of
TPS yields the most accurate results. Further,
considerable damping is seen in the results
with one step backward difference method,
whereas higher order methods produce
perceptible numerical dispersion for
advection-dominated problems.
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Preface

This special issue of the International Journal of Numerical Methods for
Heat & Fluid Flow comprises six papers dealing with the novel formulations
and applications of the boundary element method (BEM) for heat transfer
problems. The BEM is now a well-established numerical technique for
the analysis of many engineering problems. The basis of the technique is
to transform the original partial differential equation of the problem into
an equivalent integral equation by means of the Green’s theorems and
fundamental solutions (or Green’s functions). The resulting boundary integral
equation only requires discretisation along the boundaries and surface
integrations, providing some modelling advantages.

The first three papers in this issue all deal with the application of inverse
analysis and optimisation techniques to heat conduction problems, reflecting
an area of growing popularity of the BEM. Mera et al. discusses different
regularization methods for a Cauchy problem in anisotropic heat conduction,
Nowak et al. deals with the inverse analysis of continuous casting processes,
while Krol and Bialecki derive a formulation based on genetic algorithms for
the optimisation of a window frame design. The next paper by Kassab et al.
develops a coupled BEM/FVM formulation for the conjugate heat transfer
analysis of a three-dimensional film cooled turbine blade, and demonstrates
the efficiency of such a combination. The final two papers, by Mai-Duy and
Tran-Cong, and Singh, and Tanaka, show novel BEM formulations for the
efficient and accurate evaluation of the boundary integrals, and for the
numerical treatment of transient advection-diffusion problems, respectively.

I am indebted to the authors for their contributions to this special issue, and
for their cooperation and support. It is hoped that this volume will contribute to
increasing the awareness of the journal readership to this powerful numerical
technique which presents a number of advantages for the solution of several
heat transfer problems, particularly those involving moving boundaries and
inverse analysis.

Professor Luiz Wrobel
Brunel University

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 13 No. 5, 2003
pp. 527

# MCB UP Limited
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A comparison of different
regularization methods for a

Cauchy problem in anisotropic
heat conduction

N.S. Mera, L. Elliott, D.B. Ingham and D. Lesnic
Department of Applied Mathematics, University of Leeds, UK

Keywords Boundary element method, Heat conduction

Abstract In this paper, various regularization methods are numerically implemented using the
boundary element method (BEM) in order to solve the Cauchy steady-state heat conduction
problem in an anisotropic medium. The convergence and the stability of the numerical methods are
investigated and compared. The numerical results obtained confirm that stable numerical results
can be obtained by various regularization methods, but if high accuracy is required for the
temperature, or if the heat flux is also required, then care must be taken when choosing
the regularization method since the numerical results are substantially improved by choosing the
appropriate method.

1. Introduction
Many natural and man-made materials cannot be considered isotropic and the
dependence of the thermal conductivity with direction has to be taken into
account in the modelling of the heat transfer. For example, crystals, wood,
sedimentary rocks, metals that have undergone heavy cold pressing, laminated
sheets, composites, cables, heat shielding materials for space vehicles, fibre
reinforced structures, and many others are examples of anisotropic materials.
Composites are of special interest to the aerospace industry because of their
strength and reduced weight. Therefore, heat conduction in anisotropic
materials has numerous important applications in various branches of science
and engineering and hence its understanding is of great importance.

If the temperature or the heat flux on the surface of a solid V is given, then
the temperature distribution in the domain can be calculated, provided the
temperature is specified at least at one point. However, in the direct problem,
many experimental impediments may arise in measuring or in the enforcing of
the given boundary conditions. There are many practical applications which
arise in engineering where a part of the boundary is not accessible for
temperature or heat flux measurements. For example, the temperature or the
heat flux measurement may be seriously affected by the presence of the sensor
and hence there is a loss of accuracy in the measurement, or, more simply, the
surface of the body may be unsuitable for attaching a sensor to measure

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/researchregister http://www.emeraldinsight.com/0961-5539.htm
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the temperature or the heat flux. The situation when neither the temperature
nor the heat flux can be prescribed on a part of the boundary while both of them
are known on the other part leads in the mathematical formulation to an
ill-posed problem which is termed as “the Cauchy problem”.

This problem is much more difficult to solve both numerically and
analytically since its solution does not depend continuously on the prescribed
boundary conditions. Violation of the stability of the solution creates serious
numerical problems since the system of linear algebraic equations obtained by
discretising the problem is ill-conditioned. Therefore, a direct method to solve
this problem cannot be used since such an approach would produce a highly
unstable solution. A remedy for this is the use of regularization methods which
attempt to find the right compromise between accuracy and stability.

Currently, there are various methods to deal with ill-posed problems.
However, their performance depends on the particular problem being solved.
Therefore, it is the purpose of this paper to investigate and compare several
regularization methods for a Cauchy anisotropic heat conduction problem.
There are different methods to solve an ill-posed problem such as the Cauchy
problem. One approach is to use the general regularization methods such as
Tikhonov regularization, truncated singular value decomposition, conjugate
gradient method, etc. On the other hand, specific regularization methods can be
developed for particular problems in order to make use of the maximum
amount of information available. The use of any extra information available for
a specific problem is particularly important in choosing the regularization
parameter of the method employed. Both general regularization and specific
regularization methods developed for the Cauchy problems are considered in
this paper.

These methods are investigated and compared in order to reveal their
performance and limitation. All the methods employed are numerically
implemented using the boundary element method (BEM) since it was found
that this method performs better for linear partial differential equations with
constant coefficients than other domain discretisation methods. Numerical
results are given in order to illustrate and compare the convergence, accuracy
and stability of the methods employed.

2. Mathematical formulation
Consider an anisotropic medium in an open bounded domain V , R2 and
assume that V is bounded by a curve G which may consist of several segments,
each being sufficiently smooth in the sense of Liapunov. We also assume that
the boundary consists of two parts, ›V ¼ G ¼ G1 < G2; where G1;G2 – Y and
G1 > G2 ¼ Y: In this study, we refer to steady heat conduction applications in
anisotropic homogeneous media and we assume that heat generation is absent.
Hence the function T, which denotes the temperature distribution in V, satisfies
the anisotropic steady-state heat conduction equation, namely,

Different
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LT ¼
X2

i; j¼1

kij
›2T

›xi ›xj

¼ 0; x [ V ð1Þ

where kij is the constant thermal conductivity tensor which is assumed to be
symmetric and positive-definite so that equation (1) is of the elliptic type. When
kij ¼ dij; where dij is the Kronecker delta symbol, we obtain the isotropic case
and T satisfies the Laplace equation

72TðxÞ ¼ 0; x [ V ð2Þ

In the direct problem formulation, if the temperature and/or heat flux on the
boundary G is given then the temperature distribution in the domain can be
calculated, provided that the temperature is specified at least at one point.
However, many experimental impediments may arise in measuring or
enforcing a complete boundary specification over the whole boundary G. The
situation when neither the temperature nor the heat flux can be prescribed on a
part of the boundary while both of them are known on the other part leads to
the mathematical formulation of an inverse problem consisting of equation (1)
which has to be solved subject to the boundary conditions

TðxÞ ¼ f ðxÞ for x [ G1 ð3Þ

›T

›nþ
ðxÞ ¼ qðxÞ for x [ G1 ð4Þ

where f,q are prescribed functions, ›=›nþ is given by

›

›nþ
¼
X2

i; j¼1

kij cosðn; xiÞ
›

›xj

ð5Þ

and cos (n,xi) are the direction cosines of the outward normal vector n to the
boundary G. In the above formulation of the boundary conditions (3) and (4) it
can be seen that the boundary G1 is overspecified by prescribing both the
temperature f and the heat flux q, whilst the boundary G2 is underspecified
since both the temperature TjG2

and the heat flux

›T

›nþ
jG2

are unknown and have to be determined.
This problem, termed the Cauchy problem, is much more difficult to solve

both analytically and numerically than the direct problem since the solution
does not satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well-known (Hadamard, 1923) that
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this solution is unstable with respect to the small perturbations in the data on
G1. Thus, the problem is ill-posed and we cannot use a direct approach, e.g.
Gaussian elimination method, to solve the system of linear equations which
arise from discretising the partial differential equations (1) or (2) and the
boundary conditions (3) and (4). Therefore, regularization methods are required
in order to accurately solve this Cauchy problem.

3. Regularization methods
3.1 Truncated singular value decomposition
Consider the ill-conditioned system of equations

CX ¼ d ð6Þ

where C [ RM£N ; X [ RN ; d [ RM and M $ N .
The singular value decomposition (SVD) of the matrix C [ RM£N is given

by

C ¼ WXVT ¼
XN

i¼1

wisiv
T
i ð7Þ

where W ¼ col½w1; . . .;wM � [ RM£M ; and V ¼ col½v1; . . .; vN � [ RN£N are
orthogonal matrices

X ¼
S

0M2N

 !
if M . N

X ¼ S if M ¼ N

and the diagonal matrix S ¼ diag½s1; . . .;sN � has a non-negative diagonal
elements ordered such that

s1 $ s2 $ s3 $ . . . $ sN $ 0 ð8Þ

The non-negative quantities si are called the singular values of the matrix C:
The number of positive singular values of C is equal to the rank of the
matrix C: In the ideal setting, without perturbation and rounding errors, the
treatment of the ill-conditioned system of equation (6) is straightforward,
namely, we simply ignore the SVD components associated with the zero
singular values and compute the solution of the system by means of

X ¼
XrankðCÞ

i¼1

wT
i d

si

v i ð9Þ

In practice, noise is always present in the problem and the vector d and the
matrix C are only known approximately. Therefore, if some of the singular
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values of C are non-zero, but very small, instability arises due to division by
these small singular values in expression (9). One way to overcome this
instability is to modify the inverses of the singular values in expression (9) by
multiplying them by a regularizing filter function fl(si) for which the product
f lðsÞ=s! 0 as s! 0: This filters out the components of the sum (9)
corresponding to small singular values and yields an approximation for the
solution of the problem with the representation

Xl ¼
XrankðCÞ

i¼1

flðsiÞ

si

ðwT
i dÞv i ð10Þ

To obtain some degree of accuracy, one must retain singular components
corresponding to large singular values. This is done by taking f lðsÞ < 1 for
large values of s. An example of such a filter function is

flðsÞ ¼
1 if s2 . l

0 if s2 # l

(
ð11Þ

The approximation (10) then takes the form

Xl ¼
s 2

i
.l

X 1

s i

ðwT
i dÞv i ð12Þ

and it is known as the truncated singular value decomposition (TSVD) solution
of the problem (6). For different filter functions, fl, different regularization
methods are obtained, see Section 3.2. A stable and accurate solution is then
obtained by matching the regularization parameter l to the level of the noise
present in the problem to be solved.

3.2 Tikhonov regularization
In this section, we give a brief description of the Tikhonov regularization
method. For further details on this method, we refer the reader to Tikhonov and
Arsenin (1977) and Tikhonov et al. (1995).

Again consider the ill-conditioned system of equation (6). The Tikhonov
regularized solution of the ill-conditioned system (6) is given by

Xl : TlðXlÞ ¼ min{TlðXÞjX [ RN } ð13Þ

where Tl represents the Tikhonov functional given by

TlðXÞ ¼ kCX 2 dk
2
2 þ l2kLXk

2
2 ð14Þ

and L [ RN£N induces the smoothing norm kLXk2 with l [ R, the
regularization parameter to be chosen. The problem is in the standard form,

HFF
13,5

532



also referred to as Tikhonov regularization of order zero, if the matrix L is the
identity matrix IN [ RN£N :

Formally, the Tikhonov regularized solution Xl is given as the solution of
the regularized equation

ðCTCþ l2LTLÞX ¼ CTd ð15Þ

However, the best way to solve equation (13) numerically is to treat it as a least
squares problem of the form

Xl : TlðXlÞ ¼
X[RN
min

C

lL

 !
X 2

d

0

 !�����
�����

2

ð16Þ

Regularization is necessary when solving inverse problems because the simple
least squares solution obtained when l ¼ 0 is completely dominated by the
contributions from the data and rounding errors. By adding regularization, we
are able to damp out these contributions and maintain the norm kLXk2 to be of
reasonable size. If too much regularization, or smoothing, is imposed on the
solution, then it will not fit the given data d and the residual norm kCX 2 dk2

will be too large. If too little regularization is imposed on the solution, then the
fit will be good, but the solution will be dominated by the contributions from
the data errors, and hence kLXk2 will be too large. In this paper, we assume
that L ¼ IN ; i.e. we consider Tikhonov regularization of order zero.

If we insert the SVD (7) into the least squares formulation (15), then we
obtain

VðX2 þ l2IÞVTXl ¼ VXTWTd ð17Þ

Solving equation (17) for Xl, we obtain

Xl ¼
�
VðX2 þ l2IÞVT

�þ
VXWTd ¼ VðX2 þ l2IÞþXWTd ð18Þ

where + denotes the Moore-Penrose pseudo inverse of a matrix. On substituting
the matrices W;V and X into equation (18), we obtain the regularized solution,
as a function of the left and right singular vectors and the singular values, as
follows:

Xl ¼
XN

i¼1

flðsiÞ

si

ðwT
i dÞv i ð19Þ

where fl are the Tikhonov filter factors given by

flðsiÞ ¼
s 2

i

s 2
i þ l2

ð20Þ
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It should be noted that the Tikhonov filter factors, as defined earlier, depend on
both the singular values si and the regularization parameter l, and fi<1, if
si q l; and fi < s 2

i =l
2, if si p l. In particular, the basic least squares

solution XLS is given by equation (19) with the regularization parameter l ¼ 0
and the Tikhonov filter factors fi ¼ 1 for i¼1,. . .,M. Hence, comparing the
regularized solution Xl with the least squares solution XLS, we see that the
filter factors practically filter out the contributions to the solution
corresponding to small singular values, whilst they leave the SVD
components corresponding to large singular values almost unaffected.
Moreover, damping sets in for si < l:

3.3 Conjugate gradient method
In this section, we describe a variational method that can be applied to solve the
Cauchy problem. Since the boundary condition at G2 is to be determined, we
consider it as a control v [ L2ðG2Þ in a direct problem formulation to fit the
Cauchy data f [ L2ðG1). Thus, we consider the direct problem

LT ¼ 0 ð21Þ

T jG2
¼ v ð22Þ

›T

›nþ
jG1

¼ q ð23Þ

with q[ L 2(G1). Assuming that G is a Lipschitzian boundary consisting of two
non-intersecting closed curves, G1 and G2, we note that since q[ L 2(G1) and
v [ L2ðG2), there is a unique solution T(q,v) of the direct problems (21)-(23)
(Lions and Magenes, 1972). Then we aim to find v such that

Av :¼ Tðq; vÞjG1
¼ f ð24Þ

In doing so, we try to minimise the functional

J ðvÞ ¼
1

2
kAv 2 fk

2
L 2ðG1Þ

ð25Þ

It has been established (Hao and Lesnic, 2000), that this functional is twice
Frechet differentiable and its gradient can be calculated as

J 0ðvÞ ¼ 2
›c

›nþjG2

ð26Þ

where c is the solution of the adjoint problem

Lc ¼ 0 ð27Þ
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cjG2
¼ 0 ð28Þ

›c

›nþ
jG1

¼ Tðq; vÞjG1
2 f ð29Þ

Thus, the conjugate gradient method applied to our problem has the form of the
following algorithm.

(i) Specify an initial guess v0 for the temperature on G2 and set k ¼ 0.

(ii) Solve the direct problems (21)-(23) with v¼vk and determine the residual

~rk :¼ Avk 2 f ð30Þ

(iii) Determine the gradient rk by solving the adjoint problems (27)-(29) with

›ck

›nþjG1

¼ ~rk ð31Þ

then calculate dk¼2rk+bk21dk21, with the convention that b21 ¼ 0 and

bk21 ¼
krkk

2

krk21k
2

ð32Þ

(iv) Determine A0dk ¼ Tð0; dkÞjG1
by solving the problems (21)-(23) with

q ¼ 0 and v ¼ dk;

vkþ1 ¼ vk þ jkdk; ð33Þ

jk ¼
krkk

2

kA0dkk
2
¼

krkk
2

kTð0; dkÞjG1
k

2
ð34Þ

(v) Increase k by one and go to (ii) until a prescribed stopping criterion is
satisfied.

It is known that, in general, the conjugate gradient method produces a stable
solution for ill-posed problems, provided that a regularizing stopping criterion
is used. The performance of this method for the Cauchy problem for anisotropic
heat conduction is investigated and compared with other regularization
methods in Section 5.

3.4 An alternating iterative algorithm
Apart from general regularization methods, which can be applied for solving
any ill-posed problems, typical solution methods may be developed for
particular ill-posed problems. In this section, we describe such a particular
regularization algorithm developed for Cauchy problems. The algorithm uses

Different
regularization

methods

535



the fact that a part of the boundary is overspecified and the remainder is
unspecified in order to reduce the ill-posed problem to a sequence of well-posed
problems by alternating the given data on the overspecified part of the
boundary. This iterative algorithm was first proposed by Kozlov and Mazya
(1990) and consists of the following steps.

(i) Specify an initial boundary temperature guess u0 on G2.

(ii) Solve the mixed well-posed direct problem

X2

i; j¼1

kij

›2T ð0Þ

›xi ›xj

¼ 0 ð35Þ

T ð0Þ
jG2

¼ u0;
›T ð0Þ

›nþ
jG1

¼ q ð36Þ

to determine T ð0ÞðxÞ for x [ V and n0 ¼
›T ð0Þ

›nþ jG2
:

(iii) (a) If the approximation T (2k) is constructed, solve the mixed well-posed
direct problem

X2

i; j¼1

kij
›2T ð2kþ1Þ

›xi ›xj

¼ 0 ð37Þ

T ð2kþ1Þ
jG1

¼ f ;
›T ð2kþ1Þ

›nþ
jG2

¼ nk ð38Þ

to determine T ð2kþ1ÞðxÞ for x [ V and ukþ1 ¼ T ð2kþ1ÞjG0
:

(b) Having constructed T (2k+1), solve the mixed well-posed direct
problem

X2

i; j¼1

kij
›2T ð2kþ2Þ

›xi ›xj

¼ 0 ð39Þ

Tð2kþ2Þ
jG2

¼ ukþ1;
›T ð2kþ2Þ

›nþ
jG1

¼ q ð40Þ

to determine T ð2kþ2ÞðxÞ for x [ V and

nkþ1 ¼
›T ð2kþ2Þ

›nþ
jG2

(iv) Repeat step (iii) for k $ 0 until a prescribed stopping criterion is satisfied.
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According to Kozlov and Mazya (1990), the above algorithm produces two
sequences of approximate solutions, namely {T ð2kÞðxÞ}k$0 and {T ð2kþ1ÞðxÞ}k$0;
which both converge in H 1(V) to the solution T of the Cauchy problem given
by equations (1), (3) and (4) for any initial guess u0 [ H 1=2ðG2Þ.

We note that, provided the initial guess u0 is in H 1/2(G2) and the boundary
data f and q are in H 1/2(G1) and H 1/2(G1)*, respectively, the problems given at
step (iii) of the algorithm are both well-posed and uniquely solvable in H 1(V)
(Lions and Magenes, 1972). These intermediate mixed well-posed problems are
solved using the BEM described in Section 4.

The same conclusions about the convergence and the regularizing character
are obtained, if at the step (i) we specify an initial guess for the heat flux
n0 [ H 1=2ðG2Þ* ; instead of an initial guess for the temperature u0 [ H 1=2ðG2Þ;
and we modify accordingly the steps (ii) and (iii) such that the mixed problems
are solved. The algorithm did not converge, if in the steps (ii) and (iii) the mixed
problems were replaced by Dirichlet or Neumann problems. In addition, the
Neumann direct problem itself is ill-posed due to the non-uniqueness or
non-existence of the solution, if the integral of the heat flux q over the boundary
G vanishes or not, respectively.

A detailed numerical implementation of this algorithm may be found in
Mera et al. (2000), where it was shown that, if a regularizing stopping criterion
is used, then the iterative algorithm produces a convergent and stable
numerical solution for the Cauchy problem considered. Therefore, only those
features necessary to compare this iterative algorithm with other regularization
methods are presented in this paper.

4. The BEM
BEM (Chang et al., 1973; Wrobel, 2002) is used to discretise the Cauchy problem
considered. One way of dealing with the anisotropicity is to transform the
governing partial differential equation (1) into its canonical form by changing
the spatial coordinates. However, after the transformation, the domain deforms
and rotates and the boundary conditions become, in general, more complicated
than the original ones. Therefore, rather than adopt this approach, we use the
fundamental solution for the differential operator L of the equation (1) in its
original form. By using the fundamental solution of the heat equation and
Green’s identities, the governing partial differential equation (1) is transformed
into the following integral equation (Chang et al., 1973)

h ðxÞTðxÞ ¼

Z
G

Gðx; x 0Þ
›T

›nþ
ðx 0Þ2 Tðx 0Þ

›G

›nþ
ðx; x 0Þ

	 

dGx0 ð41Þ

where

(1) x [ �V; x 0 [ G;

(2) hðxÞ ¼ 1, if x [ V and hðxÞ ¼ 1
2, if x [ G (smooth),
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(3) dGx0 denotes the differential increment of G at x 0

(4) G is the fundamental solution of equation (1), namely,

Gðx; x 0Þ ¼ 2
jkijj

1
2

2p
lnðRÞ ð42Þ

where k ij is the inverse matrix to the matrix kij and the geodesic distance R is
defined by

R 2 ¼
X2

i; j¼1

kijðxi 2 x 0
iÞðxj 2 x 0

jÞ: ð43Þ

In practice, the boundary integral equation (41) may rarely be solved
analytically and thus some form of numerical approximation is necessary.
Generically, if the boundaries G1 and G2 are discretised into N1 and N2

boundary elements, then equation (41) reduces to solving the following system
of linear algebraic equations

AT 0 2 BT ¼ 0 ð44Þ

where A and B are matrices which depend solely on the geometry of the
boundary G and can be calculated analytically. The vectors T and T 0 are the
discretised values of the temperature and heat flux, respectively, which are
assumed to be constant over each boundary element and take their values at
the midpoint of each element. Equation (44) represents a system of N linear
algebraic equations with 2N unknowns, where N ¼ N 1 þ N 2: The
discretisation of the boundary conditions given by equations (3) and (4)
provides the values of 2N1 of the unknowns and the problem reduces to solving
a system of N 1 þ N 2 equations with 2N2 unknowns, which generically can be
written as

CX ¼ d ð45Þ

where d is computed using the boundary conditions (3) and (4), the matrix C
depends solely on the geometry of the boundary G and the unknown vector X
contains the values of the temperature and the heat flux on the boundary G1.
In order to determine the system of equation (45), we need to have N 1 $ N 2 or
measðG1Þ $ measðG2Þ; which is in fact a necessary condition for the Cauchy
problem to be numerically identifiable, when the mesh discretisation is
uniform.

5. Numerical results and discussion
In order to illustrate the performance of the numerical method proposed,
we solve a Cauchy problem in a two-dimensional smooth geometry such as
the unit disc V ¼ {ðx; yÞj x2 þ y2 , 1}: We assume that the boundary
G ¼ {ðx; yÞj x2 þ y2 ¼ 1} of the solution domain is divided into two disjoint
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parts, namely, G1 ¼ {x ¼ ðx; yÞj x [ G; uðxÞ # a} and G2 ¼ {x ¼ ðx; yÞj
x [ G; uðxÞ . a} and where uðxÞ is the angular polar coordinate of x and a is a
specified angle in the interval (0, 2p). In order to illustrate the typical numerical
results, we have taken a ¼ 3p=2: Various values may be prescribed for a, but
a necessary condition for the inverse Cauchy problem to be numerically
identifiable when a uniform mesh discretisation is adopted is that measðG1Þ $
measðG2Þ; i.e. a $ p:

The most significant quantity to characterize the anisotropy of a medium is
the determinant of the conductivity coefficients, i.e. jkijj ¼ k11k22 2 k2

12: The
smaller the value of jkijj; the more asymmetric are the temperature fields and
the heat flux vectors and the more difficult is the numerical calculation (Chang
et al., 1973). We consider a typical benchmark example which governs the
steady heat conduction in a two-dimensional anisotropic medium with the
thermal conductivity tensor kij given by k11 ¼ 1:0; k12 ¼ k21 ¼ 0:5 and k22 ¼
1:0; and the analytical temperature distribution to be retrieved, given by
Tðx; yÞ ¼ x2 2 4xy þ y2.

5.1 Direct approach
The system of linear equation (45) cannot be solved by a direct approach, such
as a Gaussian elimination method, since the sensitivity matrix C is
ill-conditioned. The condition number condðCÞ ¼ detðCCTÞ of the sensitivity
matrix C was calculated using the NAG subroutine F03AAF (NAG Fortran
Library Manual, 1991), which evaluates the determinant of a matrix using the
Crout factorisation method with partial pivoting. The condition number of the
system of equation (45) was found to be O(10286) and O(102251) for N ¼ 40
and 80 boundary elements while for numbers of boundary elements exceeding
N ¼ 160, the matrix ðCCTÞ was found to be approximately singular, the value
of its determinant becoming uncomputable, thus revealing the high degree of
ill-posedness of the Cauchy problem being investigated. Thus, a direct
approach to the problem produces a highly unstable solution and that is why
regularization methods, such as those presented here, must be used.

5.2 Discrepancy principle
The accuracy of the numerical solution Xl obtained by using the regularization
methods based on the singular value decomposition of the problem clearly
depends on the choice of the parameter l which is known as the regularization
parameter. Therefore, in order to obtain an accurate solution for an
ill-conditioned problem, it is important to choose the regularization
parameter that gives the right balance between the accuracy and the
stability of the numerical solution. Currently, there are various criteria
available for choosing the regularization parameter, but the most widely used
is the discrepancy principle of Morozov (1966).

According to this principle, the regularization parameter should be chosen
such that
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kCXl 2 dk < d ð46Þ

where d is an estimate of the level of noise present in the problem, i.e.

d ¼ kd 2 d[
k ð47Þ

where d[ is the perturbed value of the right hand side of the system of
equation (6).

For the iterative regularization methods, the stability is ensured by stopping
the iterative process at the point where the errors in predicting the exact
solution start increasing. Thus, regularization is achieved by truncating the
iterative process after a specific number of iterations and the number of
iterations performed acts as a regularization parameter. Also for these iterative
algorithms the discrepancy principle may be used for choosing the
regularization parameter by stopping the iterative process when

kCX k 2 dk < d ð48Þ

where X k is the numerical solution obtained for the discrete problem (45) by
substituting in the vector X the boundary values of the heat flux and of the
temperature calculated by the iterative method considered after k iterations.
Thus, for the iterative methods regularization is achieved by matching the
number of iterations to the level of noise in the problem. For all the
regularization methods considered in this paper, the regularization parameter
was chosen using the discrepancy principle.

5.3 Comparison of the numerical results
It is the purpose of this section to present and compare the numerical results for
the Cauchy problem, obtained using the four regularization methods mentioned
earlier. In order to investigate the stability and the regularization properties of
the methods considered, the boundary data f ¼ TjG1

was perturbed as follows:

~f ¼ f þ t ð49Þ

where t is a Gaussian random variable with mean zero and standard deviation
z ¼ ðs=100Þmaxj f j generated by the NAG routine G05DDF (NAG Fortran
Library Manual, 1991) and s is the percentage of additive noise included in the
input data TjG1

in order to simulate the inherent measurement errors.
The numerical results presented in this section were obtained using N ¼ 160

boundary elements. Various number of boundary elements were tested, but it
was found that no substantial improvement in the numerical solution is
obtained, if the number of boundary elements is increased above N ¼ 160:

The TSVD and Tikhonov regularization methods were applied to the
overdetermined system of linear equation (45) in order to simultaneously
retrieve the temperature and the heat flux on the boundary G2. Figure 1(a) and
(b) shows the numerical solution obtained by using the TSVD and the Tikhonov
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regularization method, respectively, for the temperature on boundary G2 for
various levels of noise s [ {1; 3; 5}: It can be seen that as s decreases, the
numerical solution approximates better than the exact solution while
remaining stable. If the level of noise is not too big, then the numerical
solution obtained by TSVD is a good approximation for the exact solution.

We note that the numerical solution obtained by the Tikhonov
regularization method is less accurate than the numerical solution obtained
by the TSVD method, but it is still a reasonably good approximation to
the exact solution of the problem since we have solved a highly ill-posed
problem.

Although, not presented here, it is reported that for both the TSVD and the
Tikhonov regularization methods, the discrepancy principle was found to be
very efficient in choosing the optimum value of the regularization parameter,
i.e. the level of truncation for the singular values of the matrix C and

Figure 1.
The numerical solution
for the temperature on

the boundary G2

obtained by using (a) the
SVD method, (b) the

Tikhonov regularization
method, (c) the conjugate

gradient method and
(d) the iterative

alternating algorithm
described in Section 3.4

for N¼160 boundary
elements and various

levels of noise, namely,
s ¼ 1 per cent ð†Þ;

s ¼ 3 per cent ðWÞ and
s ¼ 5 per cent ðþÞ; in

comparison with the
exact solution (–)
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the parameter l. Numerous other test examples have been investigated and it
was found that both the TSVD and the Tikhonov regularization methods
produce a convergent and stable solution with respect to decreasing the
amount of noise. However, the TSVD was found to produce in general more
accurate results than the Tikhonov regularization method.

The conjugate gradient method and the alternating iterative algorithm
described in Section 3.4 both require an initial guess to be specified for the
temperature on the boundary G2. This initial guess is improved at every
iteration and approaches the exact solution. Therefore, the rate of convergence
and the accuracy of these methods clearly depend on how close to the exact
solution is the initial guess specified. Since the temperature at the end-points of
the boundary G2 is known, the most natural initial guess is a function, which
ensures the continuity of the temperature at these points and is a linear
function with respect to the angular polar coordinate u. For the test example
considered in this paper, the initial guess is given by the constant function
u0 ¼ v0 ¼ 1:

The numerical results for the temperature on the boundary G2 obtained by
the conjugate gradient method for various levels of noise are presented in
Figure 1(c) in comparison with the exact solution and the initial guess specified.
It can be seen that the numerical solution is not accurate even for small levels of
noise. We note that the test example considered here is a very severe test
example for iterative methods since the exact solution is very far from the most
natural initial guess available. Numerous test example have been investigated
and it was found that the conjugate gradient method produces good results for
simple test examples for which the initial guess is not very far from the exact
solution. However, for more difficult test examples, as the one presented in this
paper, the method failed to produce accurate results for the unspecified
boundary data.

A detailed BEM numerical implementation of the alternating iterative
algorithm presented in Section 3.4 was given in Mera et al. (2000). It was shown
that a substantial improvement in the rate of convergence is obtained by
relaxing the marching condition

ukþ1 ¼ T ð2kþ1ÞjG2

through

ukþ1 ¼ wT ð2kþ1ÞjG2
þ ð1 2 wÞuk

when passing from step iii(a) to iii(b), where w is a variable relaxation factor
with respect to the angular polar coordinate given by

wðuÞ ¼ Asin p
u2 a

2p2 a

� �	 

ð50Þ
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and A [ ½0; 2� is a positive constant. This relaxation procedure was found not
only to reduce the number of iterations necessary to obtain the convergence but
also to substantially increase the accuracy of the numerical solution. We note
that the same relaxation procedure was found to be very efficient in increasing
the rate of convergence also for the conjugate gradient method.

Figure 1(d) presents the numerical solution for the temperature on the
boundary G2 obtained using the iterative alternating algorithm presented in
Section 3.4 coupled with the relaxation procedure (50) in comparison with the
exact solution and the initial guess. It can be seen that even for large amounts
of noise added into the input data, there is a very good agreement between the
numerical and the exact solution for the problem. Therefore, it can be
concluded that this alternating iterative algorithm is very efficient in
regularizing the Cauchy problem considered.

We note that for both the conjugate gradient method and for the iterative
alternating algorithm presented in Section 3.4, the regularization is achieved by
truncating the iterative process at the point where the errors in predicting the
exact solution start increasing. Thus, a stable solution is achieved by matching
the number of iterations to the level of noise present in the data. Although not
presented here, it is reported that the discrepancy principle was found to be
efficient in choosing the regularization parameter also for these iterative
methods. However, it was found to be more robust for the iterative alternating
algorithm than for the conjugate gradient method.

In order to compare the four regularization method considered, Figure 2
graphically shows the numerical solution for the temperature on the boundary
obtained with each of these methods for N ¼ 160 boundary elements and
s¼ 3 per cent noise.

Figure 2.
The numerical solution

for the temperature
on the boundary G2
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It can be seen that the most accurate solution is the one given by the iterative
alternating algorithm of Kozlov and Mazya (1990). The TSVD and the
Tikhonov regularization methods both give a reasonably good approximation
for the temperature on the boundary, but TSVD was in general found to
produce more accurate results. The numerical solution obtained by the
conjugate gradient method is very poor in comparison with the numerical
solutions obtained by the other methods. However, for less severe test
examples, it was found that also the conjugate gradient method produces
numerical solutions almost as accurate as the numerical solution obtained by
the Tikhonov regularization method. The differences between the
regularization methods considered are even large, if the numerical solution
for the heat flux is sought. Figure 3 presents the numerical solution for the heat
flux on the boundary G2 obtained with regularization methods for N ¼ 160
boundary elements and s¼ 3 per cent noise.

Again it can be seen that the TSVD method outperforms the Tikhonov
regularization method while both of them produce more accurate results than
the conjugate gradient method. However, for all these three methods, the
numerical solution for the heat flux is far from the exact solution. In the case of
the heat flux, the iterative alternating algorithm of Kozlov and Mazya (1990)
was the only method that produced accurate results. It can be seen in Figure 3
that the numerical solution for the heat flux obtained by this algorithm is in a
very good agreement with the exact solution while the other methods
considered fail to produce accurate results. Numerous other test examples have
been investigated and similar conclusions have been drawn.

Figure 3.
The numerical solution
for the heat flux on the
boundary G2
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6. Conclusions
In this paper, four regularization methods were investigated and compared for
a Cauchy problem in the steady-state anisotropic heat conduction. Three of the
methods considered were general regularization methods while the fourth one
was an alternating iterative algorithm developed for the Cauchy problems. It
was found that the Cauchy problem can be regularized by any of the
regularization methods considered since all of them produced a stable
numerical solution.

However, the numerical solutions obtained by these methods differ in terms
of accuracy. It was found that the TSVD method outperforms the Tikhonov
regularization method while the latter outperforms the conjugate gradient
method. All these three general regularization methods were outperformed by
the iterative alternating algorithm described in Section 3.4. We note that for the
severe test example considered, the conjugate gradient method failed to
produce an accurate solution both for the temperature and the heat flux.
A possible reason for this is that in the conjugate gradient method described in
Section 3.3, the boundaries G1 and G2 should be disjoint non-intersecting closed
curves which is not the case for our test example considered. The TSVD
method and Tikhonov regularization methods were found to produce
reasonably accurate results for the temperature, but they were both found to
be less accurate for the heat flux. The iterative alternating algorithm of Kozlov
and Mazya (1990) was found to be the only method to produce a good
approximation for both the temperature and the heat flux.

Overall, it may be concluded that the Cauchy problem for the anisotropic
steady-state heat conduction may be regularized by various methods such as
the general regularization methods presented in this paper, but more accurate
results are obtained by particular methods such as the iterative alternating
algorithm investigated in this paper, which takes into account the particular
structure of the problem.
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Abstract This paper discusses an algorithm for phase change front identification in continuous
casting. The problem is formulated as an inverse geometry problem, and the solution procedure
utilizes temperature measurements inside the solid phase and sensitivity coefficients. The proposed
algorithms make use of the boundary element method, with cubic boundary elements and Bezier
splines employed for modelling the interface between the solid and liquid phases. A case study of
continuous casting of copper is solved to demonstrate the main features of the proposed
algorithms.

1. Introduction
The continuous casting process of metals and alloys is a common procedure in
the metallurgical industry. Typically, the liquid material flows into the mould
(crystallizer), where the walls are cooled by flowing water. The solidifying
ingot is then pulled by withdrawal rolls. The side surface of the ingot, below
the mould, is very intensively cooled by water flowing out of the mould and
sprayed over the surface, outside the crystallizer.

An accurate determination of the interface location between the liquid and
solid phases is very important for the quality of the casting material. The
estimation of this phase change front location can be found by using direct
modelling techniques (Crank, 1984) such as the enthalpy method or front
tracking algorithms or, as shown in this paper, by solving an inverse geometry
problem.

Several previous works have dealt with inverse geometry problems (Bénard
and Afshari, 1992; Kang and Zabaras, 1995; Nowak et al., 2000; Tanaka et al.,
2000; Zabaras, 1990; Zabaras and Ruan, 1989). In particular, Zabaras and Ruan
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(1989) developed a formulation based on a deforming finite element method
(FEM) and sensitivity coefficients to analyze one-dimensional inverse Stefan
problems. Their formulation was applied to study the problem of calculating
the position and velocity of the moving interface from the temperature
measurements of two or more sensors (thermocouples) located inside the solid
phase. Zabaras (1990) extended the deforming FEM formulation to two other
problems: the first calculated the boundary heat flux history that would
achieve a specified velocity and flux at the freezing front, while the second
calculated the boundary heat flux and freezing front position, given the
appropriate estimates of the temperature field in a specified number of sensors.
Bénard and Afshari (1992) developed a sequential algorithm for the
identification of the interface location, for one- and two-dimensional
problems, using discrete measurements of temperature and heat flux at the
fixed part of the solid boundary. Kang and Zabaras (1995) calculated the
optimum history of boundary cooling conditions that resulted in a desired
history of the freezing interface location and motion, for a two-dimensional
conduction-driven solidification process.

In the present work following Nowak et al. (2000) and Tanaka et al. (2000),
the solution procedure involves the application of the boundary element
method (BEM) (Brebbia et al., 1984; Wrobel and Aliabadi, 2002) to estimate the
location of the phase change front, making use of temperature measurements
inside the solid phase. This front is approximated by Bezier splines, and this is
significant for the reduction of the number of design variables and, as a
consequence, of the number of required measurements.

Identification of the position of the phase change front requires to build up a
series of direct solutions, which gradually approach the correct location.
Generally, inverse problems are ill-posed. Thus, there is a problem with the
stability and uniqueness of solution (Goldman, 1997). In this paper, it is
proposed that the iteration process (necessary because of the non-linear nature
of the problem) is preceded by a lumping process. This allows the definition of
an initial front position which guarantees convergence of the solution.

The measurements can be obtained by immersing thermocouples into the
melt and allowing them to travel with the solidified material, until they are
damaged. From certain relationships between time and location of nodes in the
continuous casting process, even a limited number of thermocouples can
provide a substantial amount of useful information. Alternatively, it is also
possible to obtain temperature measurements by using an infrared camera.
Although generally more accurate, temperatures have to be measured at the
body surface outside the crystallizer, thus at some distance from the phase
change front.

It is worth to stress that although temperature measurements in this work
are limited only to the solid phase, they carry information on the heat transfer
phenomena occurring on the solid-liquid interface. Moreover, mathematical
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models available for solids (based on heat conduction) are much more
reliable than those for liquids where heat convection generally plays an
important role.

2. Problem formulation
This section starts with a brief description of the mathematical model of the
direct heat transfer problem for continuous casting. This model serves as a
basis for the inverse problem that is discussed in detail in the remainder of the
section. The direct problem will also be employed to generate simulated
temperature measurements for the application of the proposed inverse analysis
algorithms.

The mathematical description of the physical problem consists of
. a convection-diffusion equation for the solid part of the ingot:

72TðrÞ2
1

a
vx
›T

›x
¼ 0 ð1Þ

where T(r) is the temperature at point r, vx is the casting velocity
(assumed to be constant and in the positive x-direction) and a is the
thermal diffusivity of the solid phase, and

. boundary conditions defining the heat transfer process along the
boundaries ABCDO (Figure 1), including the specification of the melting
temperature along the phase change front:

TðrÞ ¼ Tm; r e GAB ð2Þ

TðrÞ ¼ Ts; r e GDO ð3Þ

2l
›T

›n
¼ qðrÞ ¼ 0; r e GOA ð4Þ

2l
›T

›n
¼ qðrÞ; r e GBC ð5Þ

2l
›T

›n
¼ h½TðrÞ2 Ta�; r e GCD ð6Þ

where Tm is the melting temperature, Ta is the ambient temperature, Ts is the
ingot temperature when leaving the system, l is the thermal conductivity, h is
the convective heat transfer coefficient and q is the heat flux.

In the inverse analysis, the location of the phase change front where the
temperature is equal to the melting temperature is unknown. This means that
the mathematical description is incomplete and needs to be supplemented by
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measurements. Typically, the temperatures Ui are measured at some points
inside the ingot (in case of using thermocouples) or on the surface (if an infrared
camera is used). These measurements are collected in a vector U.

The objective is to estimate components of vector Y, which uniquely
describes the phase change front location. In this work, two segments of Bezier
splines are used to approximate the interface. This means that vector Y
contains components of the control points defining the Bezier splines.

The ill-conditioned nature of all inverse problems requires that the number
of measurement sensors should be appropriate to make the problem
overdetermined. This is achieved by using a number of measurement points
greater than the number of design variables. Thus, in general, inverse analysis
leads to optimization procedures with least squares calculations of the objective
functions D. However, in the cases studied here, an additional term intended
to improve the stability is also introduced (Kurpisz and Nowak, 1995;
Nowak, 1997), i.e.

D ¼ ðTcal 2 UÞT W21ðTcal 2 UÞ þ ðY 2 ~YÞTW21
Y ðY 2 ~YÞ! min ð7Þ

where vector Tcal contains temperatures calculated at temperature sensor
locations, U stands for the vector of temperature measurements and
superscript T denotes transpose matrices. The symbol W denotes

Figure 1.
Schematic of the
continuous casting
system and the domain
under consideration
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the covariance matrix of measurements. Thus, the contribution of more
accurately measured data is stronger than the data obtained with lower
accuracy. Known prior estimates of design vector components are collected
in vector ~Y; and WY stands for the covariance matrix of prior estimates. The
coefficients of matrix WY have to be large enough to catch the minimum (these
coefficients tend to infinity, if prior estimates are not known). It was found that
the additional term in the objective function, containing prior estimates, plays a
very important role in the inverse analysis, because it considerably improves
the stability and accuracy of the inverse procedure.

The present inverse problem is solved by building up a series of direct
solutions which gradually approach the correct position of the phase change
front. This procedure can be expressed by the following main steps.

. Make the boundary problem well-posed. This means that the
mathematical description of the thermal process is completed by
assuming arbitrary values Y* (as required by the direct problem).

. Solve the direct problem obtained above and calculate temperatures T* at
the sensor locations.

. Compare the above calculated temperatures T* and measured values U,
and modify the assumed data Y*.

Inverse geometry problems are always non-linear. Thus, an iterative procedure
is generally necessary. In this procedure, iterative loops are repeated until
the newly obtained vector Y minimizes the objective function (7) within a
specified accuracy (Beck and Blackwell, 1988; Kurpisz and Nowak, 1995;
Nowak, 1997).

Each iteration loop involves the application of sensitivity analysis (Beck and
Blackwell, 1988; Nowak, 1997), which utilizes sensitivity coefficients.
According to their definition, these coefficients are the derivatives of the
temperature at point i with respect to identified values at point j, i.e.

Zij ¼
›Ti

›Yj

ð8Þ

and provide a measure of each identified value and an indication of how much
it should be modified.

Sensitivity coefficients are obtained by solving a set of auxiliary direct
problems in succession. Each of these direct problems arises through
differentiation of equation (1) and corresponding boundary conditions (2)-(6)
with respect to the particular design variable Yj. Thus, the resulting field Zj is
governed by an equation of the form:

72ZjðrÞ2
1

a
vx
›Zj

›x
¼ 0 ð9Þ
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Differentiation of the boundary conditions (3)-(6) produces conditions of the
same type as in the original thermal problem, as follows:

ZjðrÞ ¼ 0; r e GDO ð10Þ

2l
›Zj

›n
¼ 0; r e GOA ð11Þ

2l
›Zj

›n
¼ 0; r e GBC ð12Þ

2l
›Zj

›n
¼ hZj; r e GCD ð13Þ

The boundary condition along the phase change front GAB is also obtained by
differentiating equation (2):

›T

›Yj

þ
›T

›x

›x

›Yj

þ
›T

›y

›y

›Yj

¼ 0 ð14Þ

where the derivatives of x and y with respect to the design variable Yj depend
on the particular geometrical representation of the phase change front (Nowak
et al., 2000). In this work, two Bezier splines are used, as discussed in more
detail later.

Equation (14) can now be rewritten as

Zj ¼ 2
›T

›x

›x

›Yj

2
›T

›y

›y

›Yj

ð15Þ

or, taking into account Fourier’s law,

Zj ¼ 2
1

l
qx

›x

›Yj

2 qy
›y

›Yj

� �
ð16Þ

where qx and qy are the x- and y-components of the heat flux vector.
The Cartesian components of the heat flux vector can be expressed in terms

of the tangential and normal components, qt and qn, by the relations:

qx ¼ 2qn cosðaÞ2 qt cos p
2 þ a

� �
qy ¼ 2qn sinðaÞ þ qt sin p

2 þ a
� �

8<
: ð17Þ

where cos(a) and sin(a) are the direction cosines of the normal vector pointing
outwards the solid phase (Figure 2).
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Taking the above into account, the boundary condition along the phase
change front takes the final form:

Zj ¼ 2
1

l
½2qn cosðaÞ þ qt sinðaÞ�

›x

›Yj

þ ½qn sinðaÞ2 qt cosðaÞ�
›y

›Yj

� 	

ð18Þ

Solving the above direct problem for the field Zj, one can collect results at
particular measurement points, i.e. Zij; i ¼ 1; 2; . . .: Repeating this procedure
for all design variables, the whole sensitivity matrix Z can then be constructed.
This is the most expensive and time consuming stage of the analysis.

Through application of sensitivity analysis and some basic algebraic
manipulations (Nowak et al., 2000), minimization of the objective function
equation (7) leads to the following set of equations (Nowak, 1997; Nowak et al.,
2000):
�
ZTW21Z þ W21

Y

�
Y ¼ ZTW21ðU 2 T* Þ þ ðZTW21ZÞY* þ W21

Y
~Y ð19Þ

In this work, the BEM is applied for solving both thermal and sensitivity
coefficient problems. The main advantage of using this method is the
simplification in meshing, as only the boundaries have to be discretized. This is
particularly important in inverse geometry problems in which the geometry of
the body is changed at each iteration step. Furthermore, the location of the
internal measurement sensors does not affect the discretization. Finally, in heat
transfer analysis, BEM solutions directly provide temperatures and heat fluxes,
both of which are required by inverse solutions. In other words, the numerical
differentiation of the temperature field in order to calculate heat fluxes is not
needed.

The BEM system of equations for both the thermal and sensitivity
coefficient problems has the same form:

HT ¼ GQ ð20Þ

Figure 2.
Geometrical relations on

the phase change front
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HZj ¼ GQZ
j ð21Þ

where H and G stand for the BEM influence matrices. The fundamental
solution of the two-dimensional convection-diffusion equation is expressed by
the following formula, assuming that the velocity field is constant along the
x-direction:

u* ¼
1

2pl
exp 2

vxrx

2a


 �
K0

jvxjr

2a

� �
ð22Þ

where K 0 stands for the Bessel function of the second kind and zero order and
r is the distance between source and field points, with its component along
the x-axis denoted by rx.

3. Application of Bezier splines
As noted before, the ill-conditioned nature of all inverse problems requires
that they have to be made overdetermined. On the other hand, it is very
important to limit the number of sensors, mainly because of the difficulties
with measurements acquisition. Application of Bezier splines allows the
modelling of the phase change front using a much smaller number of design
variables.

The Bezier curve (Draus and Mazur, 1991) is built up of cubic segments.
Each of these segments is controlled by four control points V0, V1, V2 and V3

(Figure 3). The following formula presents the definition of cubic Bezier
segments:

PðuÞ ¼ ð1 2 uÞ3V0 þ 3ð1 2 uÞ2uV1 þ 3ð1 2 uÞu2V2 þ u3V3 ð23Þ

where P(u) stands for a point on the Bezier curve, and u varies in the range
k0; 1l: This formula has to be differentiated with respect to the design variable
Yj (i.e. the x- and/or y-coordinate of the given control point) in order to obtain
derivatives required in the boundary condition (18).

Numerical experiments have shown that a Bezier curve composed of two
cubic segments satisfactorily approximates the phase change front. An extra
advantage is that the application of Bezier curves permits to limit the number
of identified values. In reality, some of these values (coordinates of Bezier
control points) are defined by additional constraints resulting from the physical
nature of the problem. These conditions are listed below:

. the y-coordinates of the first and the last control points of the Bezier
curves (VI

0;V
II
3 in Figure 4) are known because those points are located on

the ingot surface and symmetry axis, respectively;
. the last control point of the first segment, VI

3; and the first of the second
segment, VII

0 ; occupy the same position;

HFF
13,5

554



. the smoothness of the curve at the connecting points between two Bezier
segments is guaranteed if the appropriate control points are collinear
(Draus and Mazur, 1991) (compare with Figure 4);

. the equality of the x-coordinate of points VII
2 and VII

3 ensures the existence
of derivatives on the symmetry axis.

Because of the above conditions only ten quantities have to be estimated, which
fully describe the position of the phase change front. Thus, application of the
Bezier functions significantly reduces the number of design variables (Nowak
et al., 2000), which also means a reduction in the number of required
measurements. Acquiring temperature measurements at points located inside
the ingot requires to immerse thermocouples in the solidifying material. This
perturbs part of the casted material during measurements. The application of
an infrared camera is another method of obtaining measurements. Although
the first approach seems to be better, because the measurements location can be
closer to the identified values, the second does not destroy any casted material
and provides measurements which are generally more accurate. Nevertheless,
both methods of measuring temperatures always involve measurement errors,
which affect the final results.

Figure 4.
Identified values in the

problem with two Bezier
segments

Figure 3.
One Bezier segment and

its control points
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4. Starting point and lumping
Extensive computing of inverse geometry problems showed the great influence
of prior estimates and the initial guess on the solution existence and
convergence. Contrary to direct problems, the existence of solutions to
non-linear inverse problems is not clear. Some starting guesses may not fulfill
the conditions for solving the problem. This means that, at the beginning of the
iteration process, there is no guarantee that the assumed starting front position
(i.e. the starting set of Bezier control points) will lead to the solution.

Because of this, it is proposed (Nowak et al., 2001) that the iteration process
is preceded by a kind of lumping process. This lumping consists of summing
up the coefficients in each row of the main matrix A ¼ ZTW21ZþW21

Y of
equation (19) and placing the result on the main diagonal of the square matrix
L. Thus, matrix L takes the following form:

L ¼

Xn

j¼1

z1j 0 . . . 0

0
Xn

j¼1

z2j . . . 0

..

. ..
. ..

.

0 0 . . .
Xn

j¼1

znj

2
6666666666666664

3
7777777777777775

ð24Þ

where zij is an element of the square matrix A. Such matrix decouples the
system (19) and each equation may be solved separately.

It was found that replacing matrix A in equation (19) by L in the first step of
the iteration procedure makes the process always convergent. Simultaneously,
in the present inverse geometry problem, application of the lumping procedure
turns out to be almost always necessary. An inappropriate initial position of
the interface without application of lumping usually leads, very quickly, to
results contradicting the physics of the problem. The phase change front in
successive iterations appears with very sharp corners, and the iterative process
eventually diverges. Such a situation is shown in Figure 5.

Searching for a starting position of the identified values is based on an
observation of matrix L. The largest coefficient on the diagonal of matrix L
shows the most sensitive initially-assumed design variables. This initially-
assumed coordinate could be the reason for the non-existence of solution, and
has to be improved. The direction and value of the correction are determined by
solving an appropriate equation from the decoupled system (19). Once this
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component of vector Y* is corrected, the original system (19) with matrix A can
be solved iteratively.

The above algorithm can be further extended in this way, so that not only
one component of vector Y* is corrected using matrix L, but also all of them.
Figure 6 presents a comparison of average errors in subsequent iterations,
obtained with the simple and the extended approaches. It can be seen that the
final results do not differ significantly. The approach in which all the estimated
values are corrected is more time consuming, so the first method seems to be
more useful in practical applications.

In the iteration process, it is important that subsequent Bezier control points
appear in the correct order. To guarantee the monotonicity of the x- and
y-coordinates (without which the Bezier segment makes a loop), the size of the
vector DY ¼ Y 2 Y* has to be controlled. If necessary, the calculated vector
DY may be reduced until the required criterion is fulfilled.

Figure 6.
Comparison of results

obtained with correcting
one (left) and all (right)

estimated values

Figure 5.
Estimated curve shape

without lumping
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5. Influence of the number of measurements and their errors on final
results
In order to demonstrate the main advantages of the lumping algorithm, a
two-dimensional continuous casting problem from the copper industry is
solved. The following heat fluxes were adopted in these calculations:
qBC ¼ 4 £ 106 W=m2 and qCD ¼ 4;000 (T2Ts) W/m2. All the results were
obtained for the melting temperature Tm ¼ 1;0838C; whereas the end
temperature Ts was assumed to be 508C. Temperature measurements were
assumed to be read inside the casting material (thermocouples) and along
the surface outside the crystallizer (infrared camera).

5.1 Signals recorded with thermocouples
First, the influence of measurement errors on the accuracy of the phase change
front location was tested. In general, manufacturers provide information on the
maximum temperature errors for measurements carried out by thermocouples,
for instance less than 2 per cent. In the analyses carried out here, measurement
errors were assumed at five levels, to be less than 0.1, 0.2, 0.5, 1 and 2 per cent.
In real conditions, the error variation can be approximated by a normal
(Gaussian) distribution. In the present paper, measured temperatures were
simulated by adding errors to temperatures obtained from the relevant direct
solution. The errors are generated by a random generator with normal and/or
uniform distribution.

Figure 7 shows the average temperature errors along the estimated phase
change interface, for various levels and distributions of measurement errors,
where the estimation of the phase change front location was carried out
iteratively. This iterative procedure is terminated when the average
temperature error stops changing or its changes do not exceed a given
tolerance. In the present work, this average error consists of the difference

Figure 7.
Average temperature
error along the estimated
phase change interface
with various levels and
distributions of error
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between the temperature T at a node lying on the Bezier curve (solid-liquid
boundary) and the melting temperature Tm, summed over all nodes lying on
this interface.

Figure 8 presents the successive locations of the phase change interface
and the relevant temperature distribution along this line for normal error
distribution and two measurement errors, i.e. 0.5 per cent (case (a)) and
2 per cent (case (b)), respectively.

The influence of the number and location of measurement points was the
next issue to investigate. This matter has a significant importance, particularly
when the temperature is measured inside the body using thermocouples. In this
paper, three different sets of sensors, i.e. sets A, B and C (shown in Figure 9),
have been tested. The first and second sets are obtained by immersing five
thermocouples in a solidifying material. In set A, the temperature is measured
along the estimated boundary, while in set B, sensors are located at the same
vertical locations (apart from the bottom one). The last set C consists only of
two thermocouples. It can be assumed that each of the thermocouples provide
five measurements (at equal time intervals). This means that 25 measurements
are obtained for sets A and B, and ten for set C.

For the present problem, the minimum number of measurements necessary
to solve the inverse problem is equal to ten. This is because of the application of
two Bezier splines to model the phase change front (the number of identified
values is equal to ten). Figure 10 shows a comparison of results obtained with

Figure 8.
Location of solid-liquid

boundary and
temperature distribution

along this boundary.
(a) mean error 0.5 per cent;
(b) mean error 2 per cent
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25 measurements for sets A and B, while similar comparisons for sets A and C
with ten measurements are shown in Figure 11. In this case, each thermocouple
in set A reads only two temperatures. These figures show that the best results
are obtained for small measurement errors and sensors placed close to the
identified values.

5.2 Signals recorded with infrared camera
An infrared camera is an alternative and relatively easy way for obtaining
temperature measurements. Furthermore, these cameras measure temperatures
with small errors, say 0.2 K. Unfortunately, the temperature has to be measured
on the surface of the body outside the crystallizer and therefore, the sensor
points are located at some distance from the phase change front. On the other
hand, there are no strong limitations on the number of measurement points.

Figures 12 and 13 show results obtained by using an infrared camera for
solving inverse geometry thermal problems. The first figure shows successive
phase change front locations obtained during the iteration process while in

Figure 9.
Three sets of
temperature sensors
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Figure 11.
Comparison of results for

sets A and C (ten
measurements). (a) mean

error 0.5 per cent;
(b) mean error 2 per cent

Figure 10.
Comparison of results for

sets A and B
(25 measurements).

(a) mean error 0.5 per cent;
(b) mean error 2 per cent
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Figure 12.
Front location and
temperature along the
interface boundary
(40 measurements,
maximum error
0.2 per cent)

Figure 13.
Comparison of results
obtained for
thermocouples
(25 measurements) and
infrared camera
(40 measurements)
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the second one, the average error is presented. This error consists of the
difference between the temperature T at a node lying on the Bezier curve
(solid-liquid boundary) and the melting temperature Tm, summed over all
nodes lying on this front.

A comparison of both methods (i.e. 25 sensors inside the body and 40
measurements obtained from infrared camera) shows that the results obtained
for the same measurement errors are better in the case of using thermocouples.
On the other hand, it is difficult to obtain measured temperatures with such a
low error level. In the case of infrared cameras, the phase change front location
is reasonable in view of the costs of the experiment. Furthermore,
measurements can easily be repeated as many times as required.

6. Conclusions
This paper presented an algorithm for solving inverse geometry problems in
continuous casting. The usefulness of the application of cubic Bezier functions
in modelling the phase change boundary has been shown. Using this approach,
a significant reduction in the number of identified values and, consequently, the
number of measurements have been achieved.

The dependence of the final results on the number, location and accuracy of
measurements was investigated. Temperatures were assumed to be measured
using thermocouples and/or infrared cameras. The results obtained with both
methods were presented and compared.

Some modifications to the solution algorithm, providing faster convergence
of the iteration process, have also been discussed. These modifications consist
of guessing the initial phase change front position employing a lumping
procedure. The paper also demonstrated the applicability of sensitivity
analysis to phase change heat transfer processes.
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Abstract Genetic algorithms and boundary elements have been used to find an optimal design of
a plastic window frame with air chambers and steel stiffeners. The objective function has been
defined as minimum heat loss subject to a constraint of prescribed stiffness and weight of the steel
insert.

1. Introduction
1.1 Algorithms of shape optimization
Optimization of engineering objects is an inherent portion of the design
process. Intuition and experience have been the only available techniques for
performing this task for generations of engineers. Introduction of computer
techniques opened the possibility of using a systematic approach to
optimization. The iterative algorithms used in this process require the
solution of a sequence of boundary value problems, typically in domains of
varying geometry. As such, computations are numerically very intensive, and
nontrivial optimization problems were beyond the reach of practicing engineers
for a long time.

The potential economic gains of shape optimization attracted many
researchers to this problem (Fox, 1971; Gallagher and Zienkiewicz, 1973;
Haftka et al., 1990). An important theoretical tool developed to deal with shape
optimization is the sensitivity analysis. The outcome of this technique is a set
of sensitivity coefficients defining the influence of the increments of the design
parameters onto the variation of the objective function. This set, the gradient of
the objective function, is instrumental in many optimization algorithms
(conjugate gradient, variable metric, etc.) whose outcome is the optimal shape
of the domain under consideration. Various aspects of the sensitivity analysis
in the context of shape optimization and inverse analysis have been widely
discussed in the literature. The first monograph on this subject seems to be
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the book by Haung et al. (1986). Dems and Mróz (1998) present a state-of-the-art
of sensitivity analysis in elasticity and thermoelasticity, and gives a
comprehensive literature review of this topic.

The practical application of this technique is often cumbersome due to its
mathematical complexity and inherent limitations. The latter situation results
from the required properties of the objective function, which should be regular
and should possess a positive definite Hessian. As a result, the case of discrete
design parameters, specifically the variations in the topology of the domain
(e.g. introduction of openings), is not straightforward. Another disadvantage of
the standard optimization techniques is their tendency to stall at local optima
of the objective function.

Genetic algorithms, whose principle mimics the natural selection process,
offer an elegant way of circumventing these disadvantages. The algorithms do
not require the calculation of the sensitivity coefficients and can readily be
employed to problems with varying topology. Another advantage of genetic
algorithms is their robustness in the presence of local optima. On the other
hand, the computing time of genetic algorithms is much longer than the case of
standard nonlinear programming. The recent reduction in computing costs
along with the parallel computing options have made genetic algorithms
competitive with standard optimization techniques.

Genetic algorithms (often referred to as evolutionary computations) have
been introduced independently by two groups of researchers working in the
USA (Fogel et al., 1966; Holland, 1975) and one in Germany (Rechenberg, 1973).
The monograph (Goldberg, 1989) presented an unified approach to the problem
and is the most frequently cited book in genetic algorithms. Recently, a
monograph on applications of evolutionary algorithms has been published in
Poland (Arabas, 2001). The important question of parallelization of the genetic
calculations is discussed in a review (Seredyński, 1998).

The evaluation of the objective function in the case of shape optimization is
achieved by the solution of a boundary value problem in a region of complex
shape. In nontrivial cases, this can be accomplished only by using the
numerical techniques. This in turn requires the generation of a numerical grid.
The finite element method, a domain discretization technique, entails a
generation of the grid throughout the entire computational domain. This task,
although conceptually trivial, is computationally fairly demanding.

Using the boundary element method (BEM), instead of the FEM, offers a
significant advantage, as the discretization of the domain in most cases is
restricted solely to the boundary. Thus, due to the reduction of the
dimensionality, the automatic grid generation in BEM is much easier to
implement than in FEM. Therefore, if the problem at hand can be reduced to a
boundary only formulation, BEM is a preferred numerical technique in shape
optimization.
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Summing up this short review of the available shape optimization
techniques, the combination of genetic algorithms and the BEM seem to be the
most attractive technique for solving this class of problems, and this has been
recognized by Kita and Tani (1997). A recent paper of Burczyński et al. (2002)
discusses the application of BEM and evolutionary algorithms in optimization
and identification.

1.2 Window frame optimization
The increasing energy costs and lower admissible CO2 emission are the driving
forces for the need to reduce heat losses from buildings. The building envelope
elements exert a major influence on the energy consumption of buildings. In the
early stage of the R&D process in this field, the main stress has been on
increasing the thermal resistance of the walls. Progress in this area has been
achieved mainly by the introduction of new materials and additional layers of
thermal insulation. Because of the new regulations in national and international
standards, the admissible value of the heat losses of the walls has been
considerably reduced in the last few decades.

Another potential source for the reduction in heat losses from buildings is
the optimization of the ventilation system. Research in this area concentrates
on decreasing the amount of infiltrating air and introducing forced ventilation
equipped with recuperating heat exchangers.

However, about 30 per cent of heat is lost through the windows in a building.
Typical windows consist of double glazed panes and wooden, plastic or metal
frames. Many efforts have therefore been made to reduce the transmissivity of
the glazing system. The heat resistance of a double pane can be increased by
selecting an optimal distance between the glass sheets and filling this gap with
a low conductivity gas. Radiative heat losses through the glazing system are
reduced by the introduction of thin coatings and by using glass of low
emissivity. In contemporary designs, the total heat losses from panes are as low
as 1.1 W/m2 K. At the current energy price level, further insulation
improvement does not seem to be economically justified.

Window frames have smaller surface area than window panes, thus, for a
long time, the optimal thermal design of these elements has been of secondary
importance. At current levels of glazing and wall insulation, the question of
heat losses from window frames has become more important.

The present paper deals with the optimal design of a plastic window frame.
This kind of frame has become very popular due to its low price, easy
maintenance and reasonable insulation properties. To increase the thermal
resistance of the frame and minimize its weight, the air cavities are introduced.
However, as the plastic frames do not have the required stiffness, metal profiles
are inserted in the frame and the presence of a high conducting metal increases
the heat losses. The topic of the present study is the optimal placement of the
stiffener and the air cavities in order to achieve minimum heat losses through
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the frame while maintaining the required stiffness and using the same amount
of metal.

2. Formulation of the problem
2.1 Heat transfer
A 2D steady-state heat transfer problem is considered. The frame consists of
three materials: PVC, air and steel. Constant material properties have been
assumed. The values taken in the calculations are shown in Table I. For the
temperature differences and geometrical dimensions occurring in the problem,
both natural convection and radiation are of minor importance in the air filled
enclosures. Thus, it is assumed that the heat in the cavities is transferred solely
by conduction.

Prescribed boundary conditions are shown in Figure 1. On the portions of
the contour exposed to the environment and in contact with the air in the room,
Robin boundary conditions are prescribed. The values of the indoor and
outdoor temperatures were set to +20 and 2208C, which is in agreement with
the Polish standards PN-82/B-02402 and PN-82/B-02403. The values of the
indoor and outdoor heat transfer coefficients, 23 and 8 W/m2 K, have been
taken from another Polish standard PN-EN ISO 6946. Heat transfer through the
remaining portions of the external surface of the frame has been neglected.
On the interfaces between the different materials, ideal thermal contact,

Material Heat conductivity (W/m2 K)

PVC 0.163
Air 0.023
Steel 58.00

Table I.
Material properties
used in the
calculations

Figure 1.
Geometry and prescribed
boundary conditions for
the window frame
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i.e. continuity of both temperature and heat flux has been assumed. The
geometry of the numerical examples investigated is a simplified version of a
real frame taken from Technical approval ITB (1998).

2.2 Formulation of the optimization problem
The objective of the optimization is to minimize the heat losses subjected to
several constraints.

It is assumed that the element of the frame can be modeled as a beam.
Additional stiffness resulting from the connections with other elements of the
frame is neglected, which is a conservative assumption. The standard 1D beam
equation used in the study is given by

EI
d4u

dx4
¼ 0 ð1Þ

where u is the deflection of the axis of the beam, E and I are the Young’s
modulus and moment of inertia, respectively.

As the contribution of the plastic to the overall stiffness of the frame is
negligible, the measure of the stiffness is the moment of inertia of the metal
insert with respect to the vertical ( y) axis passing through the centre of gravity.

With this definition of stiffness, the following additional conditions should
be fulfilled:

. minimum stiffness should be maintained,

. amount of metal should not exceed a prescribed value,

. stiffener is contained within air cavities (and not immersed in plastic),

. outer contour of the plastic frame is not changed by the algorithm,

. thickness of the plastic interior walls is 1 mm while that of the exterior is
3 mm, and

. geometry of the frame is approximated by a set of line segments.

The design variables are contractions, expansions and translations of the air
cavities, and deformations of the steel insert. The location of the characteristic
points of the boundary, i.e. the corner points of the air cavities and the stiffener,
is expressed in terms of decision variables defined as the coordinates of some
control points. In the developed algorithm, the coordinates of the characteristic
points are defined as an arbitrary linear combination of the coordinates of the
control points. This approach offers significant flexibility in defining the
admissible variation of the geometry.

3. Numerical technique
3.1 Solution of the heat conduction problem
The heat losses from the frame have been computed using BETTI, a boundary
element code (Białecki and Kuhn, 1993). The details of the BEM technique are
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available in Wrobel (2002). Only the basic steps of BEM are mentioned in the
present paper.

The first step in the BEM is a transformation of the original boundary value
problem in a homogeneous domain into an equivalent integral equation of the
form (Wrobel, 2002)

cðpÞTðpÞ ¼

Z
C

½qðrÞT* ðp; rÞ2 TðrÞq* ðp; rÞ� dCðrÞ ð2Þ

where r and p are vector coordinates of the current and observation points,
respectively. T is the temperature and q the associated heat flux q ¼ 2k7T · n;
where k is the heat conductivity and n is the outward unit normal vector of
the contour, T* is the fundamental solution of the Laplace equation and
q* ¼ 2k7T* · n: c(p) is a fraction of the angle with vertex at p subtended in
the domain.

The next step is the discretization of equation (2). The first stage of this
procedure is the subdivision of the contour into a set of (boundary) elements.
The geometry of every element is approximated using locally based shape
functions, expressed in local coordinates. The same set of functions is used to
approximate the variation of temperature and normal flux within elements.
Introduction of these approximations into the original integral equation (2)
produces residuals. The final set of equations is then generated by the nodal
collocation, i.e. requiring that the residuals vanish a set of nodal points. The
result reads

HiTi þ Giqi ¼ 0 ð3Þ

where H and G are the influence matrices and the vectors T and q are the
values of temperature and heat fluxes at the boundary nodes. Superscript i
refers to the subregion number.

The procedure is repeated in all subregions and the sets of linear equations
corresponding to the subregions are linked by enforcing the continuity of
temperature and heat flux on the interface between the adjacent subregions.

In the present study, the geometry as well as the distributions of both
boundary temperature and heat flux have been approximated by isoparametric
continuous quadratic elements. In the presence of corner points at the interface,
this type of element fails to produce the sufficient number of equations
(Białecki et al., 1993). To circumvent this problem, a pair of constant elements
meeting at such points have been introduced.

3.2 Constraints
To check the satisfaction of the constraints, evaluation of the surface area,
coordinates of the mass centre and the moment of inertia are required. All these
quantities may be expressed in terms of the surface integrals, namely
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A ¼

Z
A

d A ð4Þ

x0 ¼

R
A x dA

A
ð5Þ

I yy ¼

Z
A

ðx 2 x0Þ
2 dA ð6Þ

where A is the surface area, x0 is the x coordinate of the mass centre and
Iyy is the moment of inertia with respect to the y axis passing through the mass
centre.

The evaluation of these surface integrals can be significantly simplified by
converting them into the contour integrals. This has been accomplished by
making use of the Stokes theorem

I
C

~w · d~C ¼

Z
A

curl ~w · d~A ð7Þ

where ~w is an arbitrary vector and C is the contour of the surface A.
As the surface of integration lies in the xy plane, the normal infinitesimal

surface vector is defined as d ~A ¼ ½0; 0; dxdy� and the tangential contour line
vector has the form of d~C ¼ ½dx; dy; 0�

Denoting the vectors used to calculate the surface area, center of gravity and
moment of inertia by wA, wy and wI, respectively, their curls are defined as

curl~wA ¼ ½0; 0; 1� ð8Þ

curl~wy ¼ ½0; 0; x� ð9Þ

curl~wI ¼ ½0; 0; ðx 2 x0Þ
2� ð10Þ

It can be readily proved that the vectors ~w should be defined as

~wA ¼ ½0; x; 0� ð11Þ

~wy ¼ ½2xy; 0; 0� ð12Þ

~wI ¼ ½2yðx 2 x0Þ
2; 0; 0� ð13Þ

The parametric equations of the line segments constituting the contour of the
frames can be written as
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x ¼ xb þ ðxe 2 xbÞt ð14Þ

y ¼ yb þ ðye 2 ybÞt ð15Þ

where the indices b and e correspond to the start and end points of the segments,
respectively, and t represents a parameter assuming values in the interval [0, 1].
Using the parametric representations (14) and (15), the infinitesimal tangential
contour vector can be expressed as

d~C ¼ ½xe 2 xb; ye 2 yb; 0� dt ð16Þ

Using equations (7-16), the surface area, coordinates of the mass center and the
moment of inertia can be written as a sum of definite integrals over [0, 1]
intervals corresponding to the subsequent line segments constituting the
contour of the frame.

3.3 Genetic algorithm
The evaluation of the optimal geometry of the frame, in the sense of minimum
heat losses subject to the constraints defined in the previous section, has been
accomplished using a standard genetic algorithm. The details of this technique
have been described in Goldberg (1989).

The main features of the implemented version of the algorithm are given in
the following description.

The procedure starts with the creation of an initial population consisting of
NG identical members. The fitness function used is expressed in terms of heat
losses QL by relationship fitness ¼ ðQLÞ

2p; where p is a user defined constant.
In the subsequent steps of the procedure, new generations are created. The

number of individuals in a generation does not change throughout the iterative
process and the new generation is generated in three stages: selection, mutation
and mating.

The probability of selecting candidates for the next generation is
proportional to their fitness functions. The genes of the selected members
undergo creeping mutation and the probability of this process is Pm. If after
this operation the genes of the member fulfill the prescribed constraints, then
the individual is included in the new generation, otherwise, the procedure of
generating a new member is repeated.

Mating starts with the random selection of two members of the new
population. The probability of selection is the same for all members. After a
pair is selected, the crossover is triggered with a probability of Pc. In the
process of procreation, the location of the chromosome interchange is selected
at random. If the offspring fulfill the constraints, then they substitute the
parents, otherwise, the parents remain in the population. The number of
individuals selected for crossover is equal to the number of individuals in the
generation. The version of the genetic algorithm used in this work uses the
predefined number Np of generations that have been created as the stopping
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criterion. The termination condition can also be formulated in terms of the
convergence defined as the improvement of the fitness in the best member of
the subsequent generations.

The coordinates of the control points are coded as genes associated with a
given member of the population. Gen is coded as a sequence of 32 bits. The
smallest change of the displacement within the procedure is defined as
0.001 mm. This is much higher than the accuracy of frame manufacturing. From
the practical point of view, the changes of the geometry can therefore be treated
as continuous. The number of genes in a chromosome is equal to the number of
degrees of freedom, i.e. admissible displacements of the control points.

4. Numerical examples
Even in the very simplified geometry considered in this paper, the number of
design parameters is very large. The present study is an introductory step to
the optimization of a movable and fixed window framework taking into
account their thermal interaction with the glass pane and the wall. The aim of
the numerical examples discussed in this paper is to identify the crucial degrees
of freedom whose change would significantly influence the objective function.
Another purpose of this paper is to tune the genetic algorithm by finding out
the values of its characteristic parameters controlling the convergence of the
procedure. Because of the required CPU times, this kind of parametric study
would be difficult to perform in the case of the target being a large
computational domain.

4.1 Example 1
In this example, the initial moment of inertia of the metal insert has been
chosen as 2.12 cm4, i.e. it was larger than the minimum required value of
1.3 cm4. The motivation for such a choice of the starting solution was to check
whether the procedure will reduce, as the common sense suggests, the moment
of inertia to the predefined minimum. The stiffener has been allowed to bend in
the center of its segments. The surface area of the insert was constant
throughout the optimization process, namely 1.17 cm2. The design parameters
used in this example are shown in Figure 2.

This example has been used to study the influence of the control parameters
of the genetic algorithm on the convergence and numerical efficiency.

The efficiency and accuracy of the genetic algorithm depends on the values
of a set of tuning parameters:

. number of individuals in the generation, Ng ;

. probability of mutation, Pm;

. probability of crossover, Pc ;

. power used in the definition of the fitness function, p;

. number of populations, Np.
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Only the last quantity can be adjusted during the computations by a simple
check of the convergence. There is no sound theory on how the remaining
parameters should be selected. Thus, it is a common practice to choose these
values using heuristic reasoning. To gain some experience on how these
parameters influence the convergence rate, several test runs have been made.
The best set of parameters have been used in the next numerical examples.

The methodology used in these tests is simple: while keeping the values of
all but one parameter at the same level, the parameter of interest was changed.
The standard values of the parameters used in these tests were as follows:
number of individuals in the generation Ng ¼ 30; number of populations
Np ¼ 100; probability of mutation Pm ¼ 0:15; probability of crossover
Pc ¼ 0:5 and power of the fitness function p ¼ 1:

In the first set of calculations, the power used in the definition of the fitness
function has been examined. The selected values were p ¼ 0:3; 1 and 3. As can
be seen in Figure 3, this parameter has practically no influence on both the
convergence rate and the value of the optimum.

Figure 2.
Design parameters
used – example 1

Figure 3.
Plots of the lowest heat
losses with a given
population showing the
influence of the power
used in the fitness
function. The parameter
on the curves are
the values of p in
the definition
fitness ¼ 1=Qp

L
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In the second set of calculations, the number of individuals in the generation
has been varied. The values used in calculations were Ng ¼ 10; 20 and 30.
Figure 4 shows that for Ng ¼ 10; the convergence rate is much lower than the
other values. Populations of 20 and 30 individuals produce almost the same
results.

Similar tests have been conducted out for different values of the probability
of mutation. Here, values of Pm ¼ 0:05; 0.15 and 0.45 have been selected. The
results are shown in Figure 5. While Pm ¼ 0:05 result in a slow convergence,
probabilities Pm ¼ 0:15 and 0.45 give practically the same results.

The final result of the optimization was a reduction in the heat losses from
1.94 to 1.38 W/m, i.e. about 30 per cent. At the optimal point, the moment
of inertia has, as expected, reached the lowest admissible value of 1.3 cm4.
These results have been obtained taking 100 generations with population of
one generation equal to 30 and the probabilities of mutation Pm ¼ 0:15 and
mating Pc ¼ 0:5: Figure 6 shows the history of the reduction of the heat losses
within the optimization process and Figures 7 and 8 show the initial and
resulting geometries of the frame.

Figure 4.
Plots of the lowest heat

losses within a given
generation showing the
influence of the number

of individuals in the
population

Figure 5.
Plots of the lowest heat

losses within a given
generation showing the

influence of the
probability of mutation
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Another outcome of these tests was the observation that the optimum can be
achieved for two different configurations of walls separating the three leftmost
cavities. Thus, more than one optimal configurations of the frame may exist.

4.2 Example 2
In this example, the starting configuration was the same as in the previous
example. The moment of inertia has been kept constant at the level of 2.12 cm4.

Figure 6.
Plots of the lowest heat
losses within a given
generation showing the
reduction of heat losses
in the course of iterations

Figure 7.
Starting configuration of
the frame – example 1

Figure 8.
Resulting geometry of
the frame after
optimization – example 1
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A constant value for the surface area has been taken as in the previous
example, namely 1.17 cm2. The thickness and length of the horizontal and
vertical arms of the stiffener were allowed to change independently and the
initial value of the thickness was 1.5 mm. The lowest admissible thickness was
set to 1 mm. This condition was introduced to prevent solutions with too
slender profiles. The angle of inclination of the vertical arms were allowed to
vary. The surface area of the insert was constant. The remaining parameters of
the genetic algorithm were taken as in the previous example. A sketch of the
degrees of freedom is shown in Figure 9.

The result of the optimization was a reduction in the heat losses from 1.94 to
1.72 W/m, i.e. about 13 per cent. These results have been obtained by taking
250 generations. Figures 10 and 11 show the initial and resulting geometries
of the frame. The optimal values of the thicknesses were d7 ¼ 2:43 mm;
d8 ¼ 2:27 mm and d9 ¼ 1 mm: It should be noted that the latter value is the
lowest admissible thickness of the profile.

Figure 9.
Design parameters
used – example 2

Figure 10.
Starting configuration of

the frame – example 2
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4.3 Example 3
In this example, the initial moment of inertia has been kept constant at the level
of the admissible value, i.e. 1.3 cm4. The thickness and length of the horizontal
and vertical arms of the stiffener were allowed to change. While the thickness
of the left and right arm were the same, their lengths could vary independently.
No constraint has been imposed on the minimum thickness of the profile and
the surface area of the insert was constant. The remaining parameters of the
genetic algorithm were taken as in the previous example. A sketch of the
degrees of freedom is shown in Figure 12.

The final result of the optimization was a reduction in the heat losses
from 1.66 to 1.44 W/m, i.e. about 12 per cent. These results have been
obtained by taking 450 generations. Figures 13 and 14 show the initial and
resulting geometries of the frame. The obtained thickness of the vertical
arms was d5 ¼ 3:28 mm while the thickness of the horizontal arm was
d6 ¼ 0:87 mm:

Figure 11.
Resulting geometry of
the frame after
optimization – example 2

Figure 12.
Design parameters used
in example 3
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5. Conclusions
The application of genetic algorithms with fitness calculated by the BEM has
proved to be a robust technique in dealing with the shape optimization
problem, where heat transfer and elasticity interact. The calculations carried
out show the possibility of a substantial reduction in the heat losses from a
window frame. This can be achieved by a simple modification of the geometry
of the plastic frame and the steel stiffener. In the final configuration, the heat
losses may be reduced by as much as 30 per cent. The heat losses can be
reduced by decreasing the length of the horizontal arm of the stiffener and its
thickness, while increasing the thickness of the vertical arms and changing
their inclination and shape.

Test runs have given some optimal values of the tuning parameters of
the algorithm. This knowledge and the observations concerning the
possible degrees of freedom will be used in the next stage of the research,
when more complex configurations of the computational domain will be
considered.

Figure 13.
Starting configuration of

the frame – example 3

Figure 14.
Resulting geometry of

the frame after
optimization – example 3
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Abstract We report on the progress in the development and application of a coupled boundary
element/finite volume method temperature-forward/flux-back algorithm developed to solve
conjugate heat transfer arising in 3D film-cooled turbine blades. We adopt a loosely coupled
strategy where each set of field equations is solved to provide boundary conditions for the other.
Iteration is carried out until interfacial continuity of temperature and heat flux is enforced. The
NASA-Glenn explicit finite volume Navier-Stokes code Glenn-HT is coupled to a 3D BEM
steady-state heat conduction solver. Results from a CHT simulation of a 3D film-cooled blade
section are compared with those obtained from the standard two temperature model, revealing
that a significant difference in the level and distribution of metal temperatures is found between the
two. Finally, current developments of an iterative strategy accommodating large numbers of
unknowns by a domain decomposition approach is presented. An iterative scheme is developed
along with a physically-based initial guess and a coarse grid solution to provide a good starting
point for the iteration. Results from a 3D simulation show the process that converges efficiently and
offers substantial computational and storage savings.

1. Introduction
Engineering analysis of complex mechanical devices such as turbomachines
requires an ever-increasing fidelity in numerical models upon which designers
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rely in their efforts to attain demanding specifications placed on the efficiency
and durability of modern machinery. Consequently, the trend in computational
mechanics is to adopt coupled-field analysis to obtain computational models,
which attempt to better mimic the physics under consideration (Kassab and
Aliabadi, 2001). The coupled-field problem, which we address in this paper is
conjugate heat transfer (CHT), i.e. the coupling of convective heat transfer
external to the solid body of a thermal component coupled to conduction heat
transfer within the solid body of that component (Figure 1). CHT thus applies
to any thermal system in which the multi-mode convective/conduction heat
transfer is of particular importance to thermal design, and thus CHT in most
instances arises naturally where the external and internal temperature fields
are coupled.

Conjugacy is often ignored in most analytical solutions and numerical
simulations. For instance, it is in common practice in the analysis of
turbomachinery (Heidmann et al., 2002) to carry out separate flow and heat
conduction analyses. Heat transfer coefficient as well as film effectiveness
values are predicted using two independent external flow solutions, each
computed by imposing a different constant wall temperature at the surfaces of
the turbine blade exposed to hot gases and film cooling air. The film
effectiveness determines the reference temperature for the computed film
coefficients. In turn, these values are used to impose convective boundary
conditions to a conduction solver to obtain predicted metal temperatures. As
shown in the example section of this paper, the shortcomings of this approach,
which neglects the effects of the wall temperature distribution on the
development of the thermal boundary layer are readily overcome by a CHT
analysis, in which the coupled nature of the field problem is explicitly taken
into account in the analysis.

There are two basic approaches to solve the coupled field problems. In the
first approach, a direct coupling is implemented in which different fields are
solved simultaneously in one large set of equations. Direct coupling is mostly
applicable for problems where time accuracy is critical, for instance, in
aero-elasticity applications where the timescale of the fluid motion is of the
same order as the structural modal frequency. However, this approach suffers a
major disadvantage due to mismatch in the structure of the coefficient matrices
arising from boundary element method (BEM), finite element method (FEM)
and/or finite volume method (FVM) solvers. That is, given the fully populated
nature of the BEM coefficient matrix, the direct coupling approach would

Figure 1.
CHT problem: external
convective heat transfer
coupled to heat
conduction within the
solid

HFF
13,5

582



severely degrade the numerical efficiency of the solution by directly
incorporating the fully populated BEM equations into the sparsely banded
FEM or FVM equations. A second approach which may be followed is a loose
coupling strategy where each set of field equations is solved separately to
produce boundary conditions for the other. The equations are solved in turn
until an iterated convergence criterion, namely continuity of temperature and
heat flux, is met at the fluid-solid interface. The loose coupling strategy is
particularly attractive when coupling auxiliary field equations to
computational fluid dynamics codes as the structure of neither solver
interferes in the solution process.

Several approaches can be taken to solve the coupled field problems and are
mostly based on either FEM or FVM or a combination of these two field
solvers. Examples of such loosely coupled approaches applied to a variety of
CHT problems ranging from engine block models to turbomachinery can be
found in Bohn et al. (1997, 1999), Comini et al. (1993), Hahn et al. (2000), Kao and
Liou (1997), Patankar (1978), Shyy and Burke (1994), and in Tayala et al. (2000)
where multi-disciplinary optimization is considered for CHT modelled turbine
airfoil designs. Hassan et al. (1998) developed a conjugate algorithm, which
loosely couples a FVM-based hypersonic CFD code to an FEM heat conduction
solver in an effort to predict ablation profiles in hypersonic re-entry vehicles.
Here, the structured grid of the flow solver is interfaced with the unstructured
grid of heat conduction solvers in a quasi-transient CHT solution tracing the
re-entry vehicle trajectory. Issues in loosely coupled analysis of the elastic
response of the solid structures perturbed by the external flowfields arising in
aero-elastic problems can be found in Brown (1997) and Dowell and Hall (2001).
In either case, the coupled field solution requires complete meshing of both
fluid and solid regions while enforcing solid/fluid interface continuity of fluxes
and temperatures, in the case of CHT analysis, or displacement and traction, in
the case of aero-elasticity analysis.

A different approach was taken by Li and Kassab (1994a, b) and Ye et al.
(1998), to develop a BEM-based CHT algorithm thereby avoiding meshing of
the solid region for the conduction solution. The method couples the BEM to a
FVM Navier-Stokes solver and was applied to solve the two-dimensional
steady-state compressible subsonic CHT problems over the cooled and
uncooled turbine blades. The conduction problem requires solution of the
Laplace equation for the temperature (or the Kirchhoff transform in the case of
temperature dependent conductivity), and, as such, only requires a boundary
discretization thereby eliminating the onerous task of grid generation within
the intricate regions of the solid. The boundary discretization utilized to
generate the computational grid for the external flow-field can be considerably
coarsened to provide the boundary discretization required for the BEM. Most
modern grid generators used in the computational fluid dynamics, for instance,
GridProe (Program Development Corporation, 1997), the topology-based
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algebraic grid generator used in the examples presented in this paper, allow the
multigrid option. Several levels of coarse discretization can thus be readily
obtained. Furthermore, the BEM/FVM methods offer the additional advantage
of providing heat flux values and this stems from the fact that nodal unknowns
which appear in the BEM are the surface temperatures and heat fluxes.
Consequently, solid/fluid interfacial heat fluxes that are required to enforce
continuity in the CHT problems are naturally provided by the BEM conduction
analysis. This is in sharp contrast to the domain meshing methods, such as
FVM and FEM where heat fluxes are computed by the numerical
differentiation in a post-processing stage. He et al. (1995a, b) adopted the
BEM/FVM approach in the further studies of CHT in incompressible flow in
ducts subjected to a constant wall temperature and constant heat flux
boundary conditions. Kontinos (1997) also adopted the BEM/FVM coupling
algorithm to solve the CHT over metallic thermal protection panels at the
leading edge of the X-33 in a Mach 15 hypersonic flow regime. Rahaim et al.
(1997, 2000) adopted a BEM/FVM strategy to solve the time-accurate CHT
problems for supersonic compressible flow over a 2D wedged, and they present
experimental validation of this CHT solver. In their studies, the dual reciprocity
BEM (Partridge et al., 1992) was used for transient heat conduction, while a
cell-centered FVM was chosen to resolve the compressible turbulent
Navier-Stokes equations.

In this paper, we report on the progress in the development and application
of a BEM-based temperature forward/flux back (TFFB) coupling algorithm
developed to solve the CHT arising in the 3D film-cooled turbine blades. The
NASA-Glenn turbomachinery Navier-Stokes code Glenn-HT is coupled to a 3D
BEM steady-state heat conduction solver. The steady-state solution is sought
by marching in time until dependent variables reach their steady-state values,
and, as such, intermediate temporal solutions are not physically meaningful. In
this mode of solving the steady-state problem, time-marching can be viewed as a
relaxation scheme, and local time-stepping and implicit residual smoothing are
used to accelerate convergence. The steady heat conduction equation reduces to
the Laplace equation, and it is solved using the BEM with isoparametric bilinear
discontinuous elements. We chose to employ discontinuous elements as they
provide high levels of accuracy in computed heat flux values especially at sharp
corner regions where first kind boundary conditions are imposed without
resorting to special treatment of corner points required by continuous elements
in particular, when first kind boundary conditions are imposed (Kane, 1994;
Kassab and Nordlund, 1994). In this application, sharp corners occur in many
locations and first kind boundary conditions are imposed on all metal surfaces.
Moreover, the use of discontinuous elements throughout the BEM model
eliminates much of the overhead associated with continuous elements, in
particular, there is no need to generate, store, or access a connectivity matrix
when using the discontinuous elements.
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In order to resolve the flow physics, the CFD grid must be clustered in many
regions. The BEM grid does not require such fine clustering and consequently,
the two grids are of quite different coarsenesses. The details of the interpolation
used to exchange nodal temperature and flux information from the disparate
CFD and BEM grids are presented. Results from a CHT numerical simulation
of a 3D film-cooled blade section are presented and results are compared with
those obtained from the standard approach of a two-temperature model.
Significant difference in the level and distribution of the metal temperature is
found between the two-temperature and CHT models. Finally, in order to
address the large number of unknowns appearing in the 3D BEM model,
current developments of a strategy of artificial subsectioning of the blade are
presented. Here, the approach is to subsection the blade in the spanwise
direction. A specially tailored iterative scheme is developed to solve the
conduction problem with each subsection BEM problem solved using a direct
LU solver. A physically based initial guess is used to provide a good starting
point for the iterative algorithm. Results from the 2D and 3D simulations show
the process converging efficiently and offers a substantial computational and
storage savings.

2. Governing equations
We first present the governing equations for the coupled field problem under
consideration. The CHT problems arising in turbomachinery involves external
flow-fields that are generally compressible and turbulent, and these are
governed by the compressible Navier-Stokes equations supplemented by a
turbulence model. Heat transfer within the blade is governed by the heat
conduction equation. Linear as well as non-linear options are considered.
However, fluid flows within the internal structures to the blade, such as film
cooling holes and channels, are usually of low-speed and are incompressible.
Consequently, density-based compressible codes tend to experience numerical
difficulties in modeling such flows, unless low Mach number pre-conditioning
is implemented (Turkel, 1987, 1993). The Glenn-HT code is specialized to
turbomachinery applications for which air is the working fluid and is modelled
as an ideal gas.

2.1 Governing equations for the flow-field
The governing equations for the flow-field are the compressible Navier-Stokes
equations, which describe the conservation of mass, momentum and energy.
These can be written in integral form as

Z
V

›
~

W

›t
dVþ

Z
G

ð
~
F 2

~
TÞ · n̂ dG ¼

Z
V~

S dV ð1Þ
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where V denotes the volume, G denotes the surface bounded by the volume V,
and n̂ is the outward-drawn normal. The conserved variables are contained in
the vector

~
W ¼ ðr; ru; rv; rw; re; rk; rvÞ; where, r, u, v, w, e, k, v are the

density, the velocity components in x-, y-, and z-directions, and the specific total
energy. The kinetic energy of turbulent fluctuations is denoted by k and the
specific dissipation rate is denoted by v and both appear in the two equation –
Wilcox turbulence model (Wilcox, 1993, 1994) with modifications by Menter
(1993) and Chima (1996) as implemented in Glenn-HT. The vectors

~
F and

~
T are

convective and diffusive fluxes, respectively,
~
S is a vector containing all terms

arising from the use of a non-inertial reference frame as well as in the
production and dissipation of turbulent quantities. The working fluid is air,
and it is modeled as an ideal gas. A rotating frame of reference can be adopted
for the modeling of rotating flows. The effective viscosity is given by

m ¼ ml þ mt ð2Þ

where mt ¼ rk=v: The thermal conductivity of the fluid is then computed by a
Prandtl number analogy where

kf ¼
g

g2 1

ml

Prl

þ
mt

Prt

� �
ð3Þ

where Pr is the Prandtl number and g is the specific heat ratio. The subscripts l
and t refer to laminar and turbulent values, respectively.

2.2 The governing equations of the heat conduction field
In the steady-state CHT solutions obtained in this paper, the NS equations are
solved to steady-state by a time marching scheme converging towards
steady-state. A steady heat conduction analysis is carried out using the BEM at
each time level chosen for the external flow-field and internal conduction field
to interact in the iterative process. As such, the governing equation under
consideration is

7 · ½kðTsÞ7Ts� ¼ 0 ð4Þ

where Ts denotes the temperature of the solid, and ks is the thermal
conductivity of the solid material. If the thermal conductivity is taken as
constant, then the above equation reduces to the Laplace equation for the
temperature. When the thermal conductivity variation with temperature is an
important concern, the nonlinearity in the steady-state heat conduction
equation can readily be removed by introducing the classical Kirchhoff
transform, U(T ) ( Azevedo and Wrobel, 1988; Bialecki and Nhalik, 1989;
Kassab and Wrobel, 2000), which is defined as

U ðTÞ ¼
1

ko

Z T

To

ksðTÞ dT ð5Þ
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where To is the reference temperature and ko is the reference thermal
conductivity. The transform and its inverse are readily evaluated, either
analytically or numerically, and the heat conduction equation transforms to a
Laplace equation for the transform parameter U(T ). The heat conduction
equation thus reduces to the Laplace equation in any case, and this equation is
readily solved by the BEM.

In the conjugate problem, continuity of temperature and heat flux at the
blade surface, G, must be satisfied:

Tf ¼ Ts

kf
›Tf

›n
¼ 2ks

›Ts

›n

ð6Þ

Here, Tf is the temperature computed from the N-S solution, Ts is the
temperature within the solid which is computed from the BEM solution, and
›/›n denotes the normal derivative. Both first kind and second kind boundary
conditions transform linearly in the case of temperature-dependent
conductivity. In such a case, the fluid temperature is used to evaluate the
Kirchhoff transform and this used a boundary condition of the first kind for the
BEM conduction solution in the solid. Subsequently, the computed heat flux, in
terms of U, is scaled to provide the heat flux which is in turn used as an input
boundary condition for the flow-field.

3. Field solver solution algorithms
A brief description of the Glenn-HT code is given in this section. Details of the
code and its verification in turbomachinery application can be found in Ameri
et al. (1997), Heidmann et al. (2002), Rigby et al. (1997), Steinthorsson et al. (n.d.,
1993). The heat conduction equation is solved using the BEM.

3.1 Navier-Stokes solver
Glenn-HT uses a cell-centered FVM to discretize the NS equations. Equation (1),
is integrated over a hexahedral computational cell with the nodal unknowns
located at the cell center (i, j, k). The convective flux vector is discretized by a
central difference supplemented by artificial dissipation as described in
Jameson et al. (1981). The artificial dissipation is a blend of first and third order
differences with the third order term active everywhere except at shocks and
locations of strong pressure gradients. The viscous terms are evaluated using
central differences. The overall accuracy of the code is second order (Heidmann
et al., 2002). The resulting finite volume equations can be written at every
computational node as

V i; j; k

dW�
~

i; j; k

dt
þ

~
q

i; j; k

2
~
d

i; j; k
¼
~
s

i; j; k
ð7Þ
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where W
�

~
i; j; k is the cell-volume averaged vector of conserved variables,

~
q

i; j; k

and
~
d

i; j; k
are the net flux and dissipation for the finite volume obtained

by the surface integration of equation (1), and
~
s

i; j; k
is the net finite source

term. The above is solved using a time marching scheme based on a fourth
order explicit Runge-Kutta time-stepping algorithm. The steady-state solution
is sought by marching in time until the dependent variables reach their
steady-state values, and, as such, intermediate temporal solutions are not
physically meaningful. In this mode of solving the steady-state problem,
time-marching can be viewed as a relaxation scheme, and local time-stepping
and implicit residual smoothing are used to accelerate convergence. A
multigrid option is available in the code. The code also adopts a multi-block
strategy to model complex geometries associated with the film-cooled blade
problems. Here, locally structured grid blocks are generated into a globally
unstructured assembly.

Glenn-HT adopts a k-v turbulence model, which integrates to the wall and
does not require maintaining a specified distance from the wall, as no wall
functions are used. The computational grid is sufficiently fine near the wall to
yield a y + value of less than 1.0 at the first grid point away from the wall. A
constant value of 0.9 is taken for the turbulent Prandlt number in all heat
transfer computations, while a constant value of 0.72 is used for the laminar
Prandtl number. Moreover, the temperature variation of the laminar viscosity
is taken as a 0.7 power law (Schlichting, 1979), and cp is taken as constant.

3.2 Heat conduction boundary element solution
The heat conduction equation reduces to the same governing Laplace equation
in the temperature or the Kirchhoff transform. In the boundary element
method, this governing partial differential equation is converted into a
boundary integral equation (BIE) (Banerjee, 1994; Brebbia and Dominguez,
1989; Brebbia et al., 1984), as

Cðj ÞTðj Þ þ

I
S

TðxÞq* ðx; j Þ dSðxÞ ¼

I
S

qðxÞT* ðx; j Þ dSðxÞ ð8Þ

where S(x) is the surface bounding the domain of interest, j is the source point,
x is the field point, qðxÞ ¼ 2k ›T=›n is the heat flux, T *(x, j ) is the so-called
fundamental solution, and q*(x, j ) is its normal derivative with ›/›n denoting
the normal derivative with respect to the outward-drawn normal. The
fundamental solution (or Green free space solution) is the response of the
adjoint governing differential operator at any field point x due to perturbation
of a Dirac delta function acting at the source point j. In our case, since the
steady-state heat conduction equation is self-adjoint, we have

k72T* ðx; j Þ ¼ 2dðx; j Þ ð9Þ

HFF
13,5

588



Solution to this equation can be found by several means, see for instance
Kellogg (1953), Liggett and Liu (1983) and Morse and Feshbach (1953), as

T* ðx; j Þ ¼
1

4pkrðx; j Þ
in 3D ð10Þ

where r(x, j ) is the Euclidean distance from the source point j. The free term
C(j ) can be shown analytically to be:

Cðj Þ ¼

I
SðxÞ

2k
h ›T* ðx; j Þ

›n

i
dSðxÞ:

Moreover, introducing the definition of the fundamental solution in the above
equation, it can be readily determined that, in 3D, C(j ) is the internal angle
(in steradians) subtended at source point divided by 4p when the source point j
is on the boundary and takes on a value of one when the source point j is at
the interior.

In the standard BEM, the BIE is discretized using two levels of
discretization: Firstly, the surface S is discretized into a series of
j ¼ 1; 2; . . .;N elements DSj, traditionally accomplished using polynomial
interpolation, bilinear and biquadratic being the most common, and secondly,
the distribution of the temperature and heat flux is modeled on the surface, and
this is usually accomplished using the polynomial interpolation as well. It is
noted that the order of discretization of the temperature and heat flux need not
be same as that used for the geometry, leading to subparametric (lower order
than that used for the geometry), isoparametric (same order than that used for
the geometry), and superparametric (higher order than that used for the
geometry) discretizations. Moreover, the temperature and heat flux are
discretized using k ¼ 1; 2; . . .;NPE number of nodal points per element whose
location within the element j can be chosen to coincide with the location of the
geometric nodes leading to continuous elements or to be located offset from
the geometric nodes leading to discontinuous elements. We chose to employ
the bilinear discontinuous isoparametric elements as they provide high levels
of accuracy in computed heat flux values, especially at sharp corner regions
where first kind boundary conditions are imposed without resorting to special
treatment of corner points required by continuous elements (Kane, 1994;
Kassab and Nordlund, 1994). In this type of boundary element, the field
variables T and q are modeled with discontinuous bilinear shape functions
across each element, while the geometry is represented locally as continuous
bilinear surfaces. We also employed constant elements for the coarse grid
solution as will be discussed later (Figure 2).

The discretized BIE is collocated at each of the boundary nodes ji and there
results
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CðjiÞTðjiÞ þ
XN

j¼1

XNPE

k¼1

Hk
ijT

k
j ¼

XN

j¼1

XNPE

k¼1

G k
ijq

k
j ð11Þ

where

Hk
ij ¼

I
DSj

q* ðx; jiÞM
kðh; z Þ dSðxÞ

and

G k
ij ¼

I
DSj

T* ðx; jiÞM
kðh; z Þ dSðxÞ

are evaluated numerically via Gauss-Legendre quadratures with special
adaption when evaluating the integrals on DSi and heuristic adaptive

Figure 2.
Constant and bilinear
isoparameteric
discontinuous boundary
elements used in analysis

HFF
13,5

590



quadratures for elements that are close to the node of interest, and M k(h, z ) are
the discontinuous shape functions used to model T and q, whose nodes located
at an off-set position of 12.5 percent from the edges of the element. Upon
assembly of the collocated BIEs, the following algebraic form is obtained:

½H �{Ts} ¼ ½G�{qs} ð12Þ

Here the influence matrices [H ] and [G ] are evaluated numerically using
quadratures. Once the boundary conditions are specified, the above is
re-arranged in the standard form ½A�{x} ¼ {b}; and the ensuing equations are
solved by direct or iterative methods. In a fully conjugate solution using the
algorithm described in this paper, these BEM equations are solved subject to
the following boundary condition at external and internal bounding walls,
which are in contact with the fluid and denoted by Gconjugate:

TsjGconjugate
¼ Tf ð13Þ

In the reduced periodic 3D computational model to be discussed in the example
section, adiabatic conditions are also imposed at the flowfield periodic surfaces
in the spanwise direction, i.e. there

qs ¼ 0 ð14Þ

Once these equations are solved, the heat flux is known at all surface nodes.
This is the sought-after quantity in the CHT algorithm to be shortly outlined. In
the case, where the conduction problem is solved without further treatment, the
basic BEM code had options of using an LU decomposition for small numbers
of equations and a GMRES iterative solver with an incomplete LU (ILU)
pre-conditioning for large numbers of equations. When the number of
equations gets very large, storage becomes an important issue, as the
coefficient matrix is fully-populated. We will discuss an effective treatment of
such problems in a later section.

3.3 CHT algorithm
The Navier-Stokes equations for the external fluid flow and the heat conduction
equation for heat conduction within the solid are interactively solved to
steady-state through a time-marching algorithm. The surface temperature
obtained from the solution of the Navier-Stokes equations is used as the
boundary condition of the BEM for the calculation of heat flux through
the solid surface. This heat flux is in turn used as a boundary condition for the
Navier-Stokes equations in the next time-step. This procedure is repeated until
a steady-state solution is obtained. In practice, the BEM is solved at every few
cycles of the FVM to update the boundary conditions, as intermediate solutions
are not physical in this scheme. In the calculations carried out in this study,
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BEM solution was run for every ten cycles of the finite volume solver. This is
referred to as the TFFB coupling algorithm as outlined below:

(1) FVM Navier-Stokes solver:
. begins with initial adiabatic boundary condition at solid surface;
. solves compressible NS for fluid region;
. provides temperature distribution to the BEM conduction solver after

a number of iterations;
. receives flux boundary condition from the BEM as input for next set

of iterations.

(2) BEM conduction solver:
. receives temperature distribution from the FVM solver;
. solves steady-state conduction problem;
. provides flux distribution to the FVM solver.

The transfer of heat flux from the BEM to the FVM solver is accomplished as

q ¼ bqBEM
old þ ð1 2 bÞqBEM

new ð15Þ

with an under-relaxation is used setting the parameter b as 0.2 in all reported
calculations. The choice of the relaxation parameter is through trial and error.
In certain cases, it has been our experience that a choice of larger relaxation
parameter can lead to nonconvergent solutions (Bialecki et al., 2001). The
process is continued until the NS solver converges and wall temperatures and
heat fluxes converge, i.e. until equation (6) is satisfied within a set tolerance

jj
~
T

f
2

~
T

s
jj , 1T

jj
~
q
f

2
~
q

s

jj , 1q

ð16Þ

where the tolerances 1T and 1q are taken as 0.001.
It should be noted that alternatively the flux could be specified as a

boundary condition for the BEM code leading to a flux forward temperature
back (FFTB) approach. However, when a fully conjugate solution is
undertaken, this would amount to specify second kind boundary conditions
completely around the surface of a domain governed by an elliptic equation,
resulting in a nonunique solution. The TFFB algorithm avoids such a situation.

3.4 Interpolation between BEM and FVM grids
An issue arises in information transfer between the CFD and the BEM as there
exists a significant difference in the levels of discretization between the two
meshes in a typical CHT simulation. Accurate resolution of the boundary layer
requires a FVM surface grid, which is much too fine to be used directly in the
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BEM. A much coarser surface grid is typically generated for the BEM solution
of the conduction problem. The disparity between the two grids requires a
general interpolation of the surface temperature and heat flux between the two
solvers as it is not possible in general to isolate a single BEM node and identify
a set of nearest FVM nodes. Indeed in certain regions where the CFD mesh is
very fine, a BEM node can readily be surrounded by ten or more FVM nodes.

A distance-weighted interpolation, reminiscent of radial basis function
(RBF) interpolation (Partridge et al., 1992), is adopted for the transfer of
temperature and flux values between the BEM and the CFD grids. Consider
Figure 3(a), where the location of a BEM node is identified on the right-hand
side by a star-like symbol. Let us consider the problem of transferring the
temperature from the FVM grid to the BEM grid. Let us denote the position of
the BEM node of interest by ~ri; and the location of an FVM node by ~rj: The
radial distance from every FVM node to the BEM node of interest is then
rij ¼ j~rj 2 ~rij: Let us suppose that the number of all FVM surface nodes lying
within a ball of radius Rmax centered about ~r is Nball. Moreover, let us denote
two cases. In case I, all rij.1 and in case II, there is an FVM node located at ~rj;1

Figure 3.
Transfer of nodal values

from FVM and BEM
(and back) independent

surface meshes is
performed with a

distance weighted radial
interpolation
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such that rij # 1, where 1 is a tolerance. Then, the value of the temperature at
the BEM node ~rj is evaluated as

TBEMð~riÞ ¼

XNball

j¼1

TCFDð~riÞ

rij

XNball

j¼1

1

rij

for case I

¼ TCFDð~rj;1Þ for case II

ð17Þ

In all calculations, the maximum radius Rmax of the sphere is set to 2.5 percent
of the maximum distance within the solid region and 1 is set to Rmax£10220.
These limits may be adjusted to suit the problems at hand.

4. A domain decomposition strategy for BEM models of large-scale
three-dimensional heat conduction problems
As mentioned, the BEM is ideally suited for the solution of linear and
non-linear heat conduction problems and is particularly a advantageous
numerical method due to its boundary-only feature, however, the coefficient
matrix of the resulting system of algebraic equations is fully populated. For
large-scale 3D problems, this poses very serious numerical challenges due to its
large storage requirements and iterative solution of large sets of non-sparse
equations. This problem has been approached in the BEM community by one
of the two approaches: one is the artificial subsectioning of the 3D model into a
multi-region model in conjunction with block-solvers reminiscent of the FEM
frontal solvers (Bialecki et al., 1996; Kane et al., 1990) and (2) the adoption of
multipole methods in conjunction with the GMRES nonsymmetric iterative
solver (Greengard and Strain, 1990; Hackbush and Nowak, 1989). The first
approach of domain decomposition (or subsectioning) produces a sparse block
coefficient matrix that is efficiently stored and has been successfully
implemented in commercial codes such as BETTI and GPBEST in the context
of continuous boundary elements. However, the method requires generation of
complex data-structures identifying connecting regions and interfaces prior to
analysis. The second approach is very efficient, however, it requires complete
re-writing of the BEM code to adopt multipole formulation. Recently, a novel
technique using wavelet decomposition has been proposed to reduce matrix
storage requirements without a need for major alteration of traditional BEM
codes (Bucher and Wrobel, 2000).

We propose to adopt the first approach, however, we do not use a block
solver but rather a region-by-region iterative solver. Although, it was reported
in the literature that this process sometimes has difficulty in converging the
non-linear problems (Chima, 1996; Azevedo and Wrobel, 1988), it is shown that
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the process converges very efficiently in the linear case and can offer very
substantial savings in memory. Moreover, the technique does not require any
complex data-structure preparation. Indeed, the approach is somewhat
transparent to the user, a significant advantage in coupling the BEM to
other field solvers. It should be noted that this subsectioning method is under
current development and has not yet been integrated into the CHT solver at the
point of writing this paper, and thus the technique along with an example of 3D
conduction solution is presented herein with this explicit caveat.

In the standard BEM, if N is the number of boundary nodes used to
discretize the problem, the number of floating point operations (FLOPS)
required to arrive at the algebraic system is proportional to N 2 as well as direct
memory allocation also is proportional to N 2. Enforcing imposed boundary
conditions, yields

½H�{T} ¼ ½G�{q} ) ½A�{x} ¼ {b} ð18Þ

where {x} contains nodal unknowns T or q, whichever is not specified in the
boundary conditions. The solution of the algebraic system for the boundary
unknowns can be performed using a direct solution method such as LU
decomposition, requiring proportional to N 3 FLOPS or iterative methods such
as bi-conjugate gradient or general minimization of residuals that, in general,
require FLOPS proportional to N 2 to achieve convergence. In 3D problems of
any appreciable size this approach is computationally prohibitive and leads to
enormous memory demands.

If a domain decomposition solution process is adopted instead, the domain
is decomposed into K subdomains and each one is independently discretized
and solved by the standard BEM while enforcing continuity of temperature
and heat flux at the interfaces. It is worth mentioning that discretization of
neighboring subdomains does not have to be coincident, this is, at the
connecting interface, boundary elements and nodes from the two adjoining
sub-domains are not required to be structured following a sequence or
particular position. The only requirement at the connecting interface is that it
forms a closed boundary with the same path on both sides. The information
between the neighboring sub-domains separated by an interface can be
passed through an interpolation.

The process is shown in two-dimension in Figure 4, with a decomposition
four ðK ¼ 4Þ subdomains. The boundary value problem is solved
independently over each subdomain where initially, a guessed boundary
condition is imposed over the interfaces in order to ensure the well-posedness of
each subproblem. The problem in subdomain V1 is transformed into

72TV1
ðx; yÞ ¼ 0 ) ½HV1

�{TV1
} ¼ ½GV1

�{qV1
} ð19Þ

The composition of this algebraic system requires (n 2) FLOPS where n is the
number of boundary nodes in the subdomain as well as (n 2) for direct memory
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allocation. This new proportionality number n is roughly equivalent to n <
2N=K þ 1; as long as the discretization along the interfaces has the same level
of resolution as the discretization along the boundaries. Direct memory
allocation requirement for later algebraic manipulation is now reduced to a
proportion of n 2 as the influence coefficient matrices can easily be stored in
ROM memory for later use after the boundary value problems on remaining
subdomains have been effectively solved. For the example shown here, where
the number of subdomains is K ¼ 4; the new proportionality value n is
approximately equal to n<2N/5. This simple multi-region example reduces the
memory requirements to about n2=N 2 ¼ ð4=25Þ ¼ 16 percent of the standard
BEM approach.

The algebraic system for subdomain V1 is re-arranged, with the aid of given
and guessed boundary conditions, as:

½HV1
�{TV1

} ¼ ½GV1
�{qV1

} ) ½AV1
�{xV1

} ¼ {bV1
} ð20Þ

Now, the solution of the new algebraic system of subdomain V1 requires a
number FLOPS proportional to n3=N 3 ¼ ð8=125Þ ¼ 6:4 percent of the
standard BEM approach if a direct algebraic solution method is employed,
or a number of FLOPS proportional to n2=N 2 ¼ ð4=25Þ ¼ 16 percent of the
standard BEM approach if an indirect algebraic solution method is employed.
For both, FLOPS count and direct memory requirement, the reduction is
dramatic. However, as the first set of solutions for the subdomains were
obtained using guessed boundary conditions along the interfaces, the global
solution needs to follow an iteration process and satisfy a convergence criteria.

Globally, the FLOPS count for the formation of the algebraic setup for all K
subdomains must be multiplied by K, therefore, the total operation count for
the coefficient matrices computation is given by: Kn2=N 2 < 4K=ðK þ 1Þ2:
For this particular case with K ¼ 4; Kn2=N 2 ¼ 16=25 ¼ 64 percent of the
standard BEM approach. Moreover, the more significant reduction is revealed
in the RAM memory requirements as only the memory needs for one of the
subdomains must be allocated at a time. The rest of the coefficient matrices for
the remaining subdomains can be temporarily stored in ROM memory until
access and manipulation is required or if a parallel strategy is adopted the
matrices for each subdomain are stored by its assigned processor. Therefore,
for this case of K ¼ 4; the true memory reduction is n2=N 2 ¼ 4=25 ¼
16 percent of the standard BEM.

Figure 4.
BEM single region
discretization and four
domain BEM
decomposition
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With respect to the algebraic solution of the system of equation (20), if a
direct approach as the LU factorization is employed for all subdomains, the LU
factors of the coefficient matrices for all subdomains can be computed only
once at the first iteration step and stored in ROM memory, or on disc, for later
use during the iteration process for which only a forward and a backward
substitution will be required. This feature allows a significant reduction in the
operational count through the iteration process until convergence is achieved,
as only a number of floating point operations proportional to n as opposed to
n 3 is required at each iteration step. To this computation time the access to
ROM memory is added at each iteration step, which is usually larger than
access to RAM. Alternatively, if the overall convergence of the problem
requires few iterations, iterative solvers such as GMRES offer an efficient
alternative.

Providing a good initial guess is crucial to the success of any iteration.
To this end, first we typically solve the problem using a coarse grid constant
model (Figure 2) obtained by collapsing the nodes of the discontinuous bilinear
element to the centroid, and supply that model with a physically-based initial
guess for interface temperatures. An efficient initial guess can be made using a
physically based 1D heat conduction argument for every node on the external
surfaces to every node at the interface. The initial guess for any interfacial node
is provided algebraically as:

Ti ¼

XNT

j¼1

BijTj 2
XNq

j¼1

BijRijqj þ
XNh

j¼1

BijH ijT1j

H ij þ 1

Si 2
XNT

j¼1

Bij þ
XNh

j¼1

Bij Hij

H ij þ 1

ð21Þ

where NT, Nq, and Nh are the number of first, second, and third kind boundary
conditions specified at the external (non-interfacial) surfaces and

Bij ¼
Aj

jrijj
; Rij ¼

~rij · n̂j

k
; Hij ¼

hj

k
ð~rij · n̂jÞ; Si ¼

XN

j¼1

Aj

jrijj
ð22Þ

with N ¼ NT þ Nq þ Nh; the thermal conductivity of the medium is k, the
film coefficient at the j-th convective surface is hj, the outward-drawn normal to
any surface is n̂j, the position vector from the interfacial node i to the external
surface node j is ~rij and its magnitude is rij ¼ j~rijj; while the area of element j
denoted is readily computed as:

Aj ¼

I
Gj

dGðx; y; zÞ ¼

Z þ1

21

Z þ1

21

j J jðh; zÞj dh dz:
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Once the initial temperatures are imposed as boundary conditions at the
interfaces, a resulting set of normal heat fluxes along the interfaces will be
computed. These are then non-symmetrically averaged in an effort to match
the heat flux from neighboring subdomains. Considering a two-domain
substructure, the non-symmetric averaging at the interface is explicitly
given as,

qI
V1

¼ qI
V1

2
qI
V1

þ qI
V2

2
and qI

V2
¼ qI

V2
2

qI
V2

þ qI
V1

2
ð23Þ

to ensure the flux continuity condition qI
V1

¼ 2qI
V2

after averaging.
Compactly supported radial basis interpolation can be employed for the flux
average to account for the unstructured grids along the interface from
neighboring subdomains.

Using these fluxes, the BEM equations are again solved leading to
mismatched temperatures along the interfaces for neighboring subdomains.
These temperatures are interpolated, if necessary, from one side of the interface
to the other side using a compactly supported radial basis functions to account
for the possibility of interface mismatch between the adjoining substructure
grids. Once this is accomplished, the temperature is averaged out at each
interface. Illustrating this for a two-domain substructure, again we have for
regions 1 and 2 interfaces,

TI
V1

¼
TI

V1
þ TI

V2

2
þ R 00qI

V1
and TI

V2
¼

TI
V1

þ TI
V2

2
þ R 00qI

V2
ð24Þ

in general, to account for a case where a physical interface exists and a thermal
contact resistance is present between the connecting subdomains, where R 00 is
the thermal contact resistance imposing a jump on the interface temperature
values. These now matched temperatures along the interfaces are used as the
next set of boundary conditions.

The iteration process is continued until a convergence criterion is satisfied.
A measure of convergence may be defined as the L2 norm of mismatched
temperatures along all interfaces as:

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K · N I

XK

k¼1

XN I

i¼1

ðT I 2 TI
uÞ

2

vuut ð25Þ

This norm measures the standard deviation of BEM computed interface
temperatures T I and averaged-out updated interface temperatures TI

u . The
iteration routine can be stopped once this standard deviation reaches a small
fraction 1 of DTmax, where DTmax is the maximum temperature span of the
global field. It is noted, that we refer to an iteration as the process by which an
iterative sweep is carried out to update both the interfacial fluxes and
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temperatures such that the above norm may be computed. We set 1 ¼ 5 £ 1023

in our computations.

5. Numerical results and discussion
We now present results of a full conjugate solution of a film-cooled blade under
operating conditions, which match a planned experiment at NASA Glenn
Research center and assumes periodicity in the spanwise direction for one pitch
of film-cooling hole patterns. We compare results of this simulation to those
obtained from the standard two temperature method. This simulation uses the
standard BEM approach to heat conduction. We also present results from a
heat conduction simulation for a cooled turbine vane using the subsectioning
method described in this paper.

5.1 CHT simulation of a 3D film-cooled turbine blade
Film cooling is commonly used in turbine designs to produce a buffer layer of
relatively cool air between the turbine blade and the hot freestream gas in the
first and second rows of blades and vanes. The CHT computation is carried out
on a computational model of a realistic film-cooled turbine vane according to
the three-dimensional vane geometry including plena and film holes and is
based on a Honeywell film-cooled engine design, (Heidmann et al., 2002).
The geometry of this test vane is based on the engine vane midspan
coordinates, and is scaled up by a factor of 2.943 to allow matching of engine
exit Mach number (0.876) and exit Reynolds number (2.9£ 106 based on true
chord) with atmospheric inlet conditions. The test vane has a true chord of
0.206 m. Since the test vane is of constant cross-section, only one spanwise
pitch of the film hole pattern was discretized, with periodicity of the flow-field
enforced at each end. This simplification assumes no effect of endwalls, but
greatly reduces the number of grid points required to model the vane. However,
the thermal boundary conditions enforced at these ends in the conduction
analysis were adiabatic. The vane has two plena, which feed 12 rows of film
cooling holes as well as trailing-edge ejection slots, (Figure 5). Trailing edge
ejection is blocked in the computation as the planned experiment has no slot
cooling. Detailed geometrical data for each row of film holes as well as hole
distribution are provided in Heidmann et al. (2002). A multi-block grid
approach is adopted to model this complex geometry and generated the FVM
grid using the topology-based algebraic grid-generation program GridProe
(Program Development Corporation, 1997) with the final grid consisting of
140 blocks and a total of 1.2£ 106 finite volume computational cells. The FVM
grid consists of 20 cells across both the inlet and outlet boundaries, 60 cells on
the periodic boundary, over 200 cells around the vane, and 44 cells from the
vane to the periodic boundary.

A blade-to-blade view of the FVM grid is shown in Figure 6. Figure 7 shows
the FVM grid in the leading edge region of the vane.
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Figure 5.
Film-cooled blade profile
used in the CHT
simulation

Figure 6.
Blade-to-blade
computational grid
cross-section
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The flow conditions for all simulations use a free-stream inlet flow to the vane
at an angle of 08 to the axial direction, with all temperatures and pressures
normalized by the inlet stagnation values of 3,109 R and 10 atmospheres,
respectively. The inlet turbulence intensity is set at 8.0 percent and the
turbulence scale is 15.0 percent of vane true chord. Other inflow quantities are
set by means of the upstream-running Riemann invariant. The vane
downstream exit flow is defined by imposing a constant normalized static
pressure of 0.576, which was empirically determined to yield a desired exit
Mach number of 0.876. Periodicity was enforced in both the blade-to-blade and
spanwise directions based on vane and film hole pitches, respectively.
Moreover, in order to maintain a true periodic solution, inflow to the plena was
provided by defining a region of each plenum wall as an inlet and introducing
uniform flow normal to the wall. In Figure 6, these regions are shown to lie on
either side of the internal wall that separates the two plena. In practice, there
will be spanwise flow in the plenum, but bleed of the plenum flow into the film
holes results in a spanwise-varying mass flow rate and static pressure, which
would violate spanwise periodicity imposed in this particular reduced
computational model. The non-dimensionalized inflow stagnation temperature
to the plena was 0.5, corresponding to a coolant temperature of 1554.5 R. The
velocity was fixed to the constant value required to provide the design mass
flow rate to each plenum, and static pressure was extrapolated from the
interior. The inflow patch for each plenum was defined to be sufficiently large
to yield very low inlet velocities (Mach number, 0.05), allowing each plenum
to approximate an ideal plenum. All solid walls were imposed with a no-slip

Figure 7.
FVM grid in the leading
edge region of the blade

BEM/FVM
conjugate heat

transfer analysis

601



boundary condition. The blade metal material is taken as Inconel with a
conductivity of kblade ¼ 1:34 Btu/h in R taken at 2174.9 R which is estimated to
be the average blade temperature.

The FVM metal surface grid consists of 38,000 cells at the 4th level of
multi-grid. The grid was coarsened to generate a BEM grid of 13,000 bilinear
cells with 52,000 nodal unknowns. Two cases are computed in the numerical
simulation in order to obtain the metal temperature:

(1) The traditional two-temperature approach, whereby two different
isothermal wall boundary conditions extended to all wall surfaces, including
the film hole surfaces and plenum surfaces. Two solutions were generated with
constant wall temperatures Tw of Tw;1 ¼ 2174:9 R and Tw;2 ¼ 2485:6 R
imposed on all blade surfaces. The flow-field was computed from the plena
through the cooling holes and over the blade. The predicted wall heat fluxes at
each node q00w computed from each of these isothermal solutions were used to
simultaneously solve adiabatic wall temperature, Taw, and heat transfer
coefficient, h, referenced to the computed adiabatic wall temperature, under the
assumption that Taw and h are independent of the wall temperature. That is at
each node we have

q00w ¼ hðTw;1 2 TawÞ

q00w ¼ hðTw;2 2 TawÞ

ð26Þ

In turn, these film coefficient and associated adiabatic wall distributions were
used in the BEM to compute metal temperatures.

(2) A full CHT solution was carried out using the same grids and boundary
conditions as above except at the blade surface where conjugate conditions
were imposed. The conjugate solutions converged in 1,000 iterations with a
BEM conduction calculation performed each ten FVM iterations. The BEM
code was written as a subroutine to the Glenn-HT code and subroutines were
coded to exchange information between the two codes in terms of the FVM and
BEM grids as well as boundary condition information. The Glenn-HT code was
modified to allow non-isothermal boundary condition specification.

All computations were performed at NASA Glenn Research Center on an
SGI Origin 2000 cluster with 32 processors. Flow computations were carried
out and considered converged when residuals were driven below 1025. Results
of the blade surface temperatures predicted by the simulations are shown in
Figure 8 for the CHT solution and in Figure 9 for the two constant temperature
approaches. The two temperature distributions are markedly different with a
temperature span of DT ¼ 1720 2 2420 R across the surface of the blade while
the CHT solution predicted a temperature span of DT ¼ 1620 2 2620 R across
the blade. In addition to CHT computations predicting lower minimum (100 R
colder) and higher maximum temperatures (200 R hotter), the distribution of
cold and hot regions are quite different as is evident from the surface plots.
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Figure 8.
Blade surface

temperature predicted by
the CHT solution

Figure 9.
Blade surface

temperature predicted by
the BEM using h and

Taw provided from the
two-temperature

approach
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For instance, with conduction taken into consideration in the CHT simulation,
the thin trailing regions are seen to reach higher temperatures than predicted
by the isothermal approach, while the forward plenum region is seen to be
effectively cooler. This has severe implications in materials design and
subsequent thermal stress analysis of the blade carried out using these metal
temperatures.

Results are now presented for a simulation using the subsectioning iterative
method for a pure heat conduction problem. Here, a blade with a 10 cm chord
and 14 cm in the spanwise direction is taken. The blade is cooled by two plena
(Figure 10). The blade is discretized using GridProTM (Program Development
Corporation, 1997) into six subsections with a surface grid of a total of nearly
6,000 bilinear elements or nearly 24,000 degrees of freedom (Figure 11). Each
block is kept at a discretization level nearer to 1,000 bilinear boundary
elements. Adiabatic conditions are imposed on the top and bottom surfaces of
the blade. Convective boundary conditions are imposed on all other surfaces.
The film coefficient on the outer surface of the blade is taken as
h ¼ 1; 000 W=m2K with the reference temperature taken as 1,000 K, while
the cooling plena are both imposed with film coefficients h ¼ 500 W=m2K with
the reference temperature taken as linearly varying from 300 K to 400 K in the
increasing z-direction of the cooling plenum closest to the leading edge, while

Figure 10.
BEM grid for 3D cooled
blade
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linearly varying from 500 K to 400 K in the decreasing z-direction of the cooling
plenum closest to the trailing edge.

All computations were performed on a Pentium 4, 1.8 GHz PC with 512 MB
800 MHz RDRAM. The initial guess using equation (21) alone without the
coarse grid model provided an excellent starting point for the iteration, which
converged on 8 steps to provide an L2 iterative norm, defined in equation (25),
of 0.00011698. It took 34,905 s to set up the matrices, obtain and store their LU
factors, and 813 s to solve the problem iteratively. The resulting temperature
plots shown in Figures 11 and 12 reveal a very smooth distribution across all
blocks. The resulting surface heat fluxes are presented in Figure 13 revealing a
very smooth distribution from a minimum of 2180,000 W/m2K to a maximum
of 230,000 W/m2K. It should be noted that the subsectioning approach is ideally
suited for parallel implementation. The authors are pursuing this avenue prior
to integration of the algorithm with the CHT solver. This concludes the
example section.

6. Conclusions
A combined BEM/FVM approach using the TFFB conjugate method has been
implemented in a 3D context to model CHT in cooled turbine blades. As a

Figure 11.
Domain decomposition
of a 3D plenum-cooled

turbine blade
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boundary-only grid is used by the BEM, the computational time for the heat
conduction analysis is insignificant compared to the time used for the NS
analysis. The proposed method produces realistic results without using
arbitrary assumptions for the thermal condition at the conductor surface.
Results from a CHT numerical simulation of a 3D film-cooled blade section are
presented and are compared with those obtained from the standard approach of
a two temperature model. A significant difference in the level and distribution
of the metal temperatures is found between the two models. These differences
have severe implications in materials design and subsequent thermal stress
analysis of the blade carried out using these metal temperatures. In practice,
turbomachinery components such as modern cooled turbine blades often
contain several hundred film cooling holes and intricate internal serpentine
cooling passages with complex convective enhancement configurations such as
turbulating trip strips. This poses a real computational challenge to BEM
modeling. The subsectioning iterative approach outlined in this paper offers
promising technique to address this problem. It is proposed to extend the
current work by implementing the parallel implementation of iterative domain

Figure 12.
Converged surface
temperature
distribution (K)
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decomposition approach for the BEM in order to address large-scale CHT
problems and results of such simulations will soon be reported elsewhere
(Divo et al., 2003; Heidmann et al., 2003).
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Abstract This paper is concerned with the application of radial basis function networks
(RBFNs) as interpolation functions for all boundary values in the boundary element method
(BEM) for the numerical solution of heat transfer problems. The quality of the estimate of
boundary integrals is greatly affected by the type of functions used to interpolate the
temperature, its normal derivative and the geometry along the boundary from the nodal values.
In this paper, instead of conventional Lagrange polynomials, interpolation functions
representing these variables are based on the “universal approximator” RBFNs, resulting in
much better estimates. The proposed method is verified on problems with different variations of
temperature on the boundary from linear level to higher orders. Numerical results obtained
show that the BEM with indirect RBFN (IRBFN) interpolation performs much better than the
one with linear or quadratic elements in terms of accuracy and convergence rate. For example,
for the solution of Laplace’s equation in 2D, the BEM can achieve the norm of error of the
boundary solution of O(1025) by using IRBFN interpolation while quadratic BEM can achieve
a norm only of O(1022) with the same boundary points employed. The IRBFN-BEM also
appears to have achieved a higher efficiency. Furthermore, the convergence rates are of
O(h1.38) and O(h4.78) for the quadratic BEM and the IRBFN-based BEM, respectively, where h
is the nodal spacing.

1. Introduction
Boundary element methods (BEMs) have become one of the popular techniques
for solving boundary value problems in continuum mechanics. For linear
homogeneous problems, the solution procedure of BEM consists of two main
stages:

(1) estimate the boundary solution by solving boundary integral equations
(BIEs), and

(2) estimate the internal solution by calculating the boundary integrals (BIs)
using the results obtained from the stage (1).
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The first stage plays an important role, because the solution obtained here
provides sources to compute the internal solution. However, it can be seen that
both stages involve the evaluation of BIs, of which any improvements achieved
result in the betterment of the overall solution to the problem. In the evaluation
of BIs, the two main topics of interest are how to represent the variables along
the boundary adequately and how to evaluate the integrals accurately,
especially in the cases where the moving field point coincides with the source
point (singular integrals). In the standard BEM (Banerjee and Butterfield, 1981;
Brebbia et al., 1984), the boundary of the domain of analysis is divided into a
number of small segments (elements). The geometry of an element and the
variation of temperature and temperature gradient over such an element are
usually represented by Lagrange polynomials, of which the constant, linear
and quadratic types are the most widely applied. With regard to the evaluation
of integrals, including weakly and strongly singular integrals, considerable
achievements have been reported by Sladek and Sladek (1998). It is observed
that the accuracy of solution by the standard BEM greatly depends on the type
of elements used. On the other hand, neural networks (NN) which deal with
interpolation and approximation of functions, have been developed recently
and become one of the main fields of research in numerical analysis (Haykin,
1999). It has been proved that the NNs are capable of universal approximation
(Cybenko, 1989; Girosi and Poggio, 1990). Interest in the application of NNs
(especially the multiquadric (MQ) radial basis function networks (RBFNs)) for
numerical solution of PDEs has been increasing (Kansa, 1990; Mai-Duy and
Tran-Cong, 2001a, b, 2002; Sharan et al., 1997; Zerroukat et al., 1998). In this
study, “universal approximator” RBFNs are introduced into the BEM scheme
to represent the variables along the boundary. Although RBFNs have an
ability to represent any continuous function to a prescribed degree of
accuracy, practical means to acquire sufficient approximation accuracy still
remain an open problem. Indirect RBFNs (IRBFNs) which perform better than
direct RBFNs in terms of accuracy and convergence rate (Mai-Duy and
Tran-Cong, 2001a, 2002) are utilised in this work. Due to the presence of NNs in
BIs, the treatment of the singularity in CPV integrals requires some
modification in comparison with the standard BEM. The paper is organised as
follows. In Section 2, the IRBFN interpolation of functions is presented and its
performance is then compared with linear and quadratic element results via
a numerical example. Section 3 is to introduce the IRBFN interpolation into
the BEM scheme to represent the variable in BIEs. In Section 4, some
2D heat transfer problems governed by Laplace’s or Poisson’s equations are
simulated to validate the proposed method. Section 5 gives some concluding
remarks.

2. Interpolation with IRBFN
The task of interpolation problems is to estimate a function y(s) for arbitrary s
from the known value of y(s) at a set of points s ð1Þ; s ð2Þ; . . .; s ðnÞ and therefore,
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the interpolation must model the function by some plausible functional form.
The form is expected to be sufficiently general in order to describe large classes
of functions which might arise in practice. By far the most common functional
forms used are based on polynomials (Press et al., 1988). Generally, for
problems of interpolation, universal approximators are highly desired in order
to handle large classes of functions. It has been proved that RBFNs, which can
be considered as approximation schemes, are able to approximate arbitrarily
well continuous functions (Girosi and Poggio, 1990). The function y to be
interpolated/approximated is decomposed into radial basis functions as

yðxÞ < f ðxÞ ¼
Xm

i¼1

w ði Þg ði ÞðxÞ; ð1Þ

where m is the number of radial basis functions, {g ði Þ}
m

i¼1 is the set of chosen
radial basis functions and {w ðiÞ}

m

i¼1 is the set of weights to be found.
Theoretically, the larger the number of radial basis functions used, the more
accurate the approximation will be as, stated in Cover’s theorem (Haykin, 1999).
However, the difficulty here is how to choose the network’s parameters such as
RBF widths properly. IRBFNs were found to be more accurate than direct
RBFNs with relatively easier choice of RBF widths (Mai-Duy and Tran-Cong,
2001a, 2002) and will be employed in the present work. In this paper, only the
problems in 2D are discussed. In view of the fact that the interpolation IRBFN
method will be coupled later with the BEM where the problem dimensionality
is reduced by one, only the MQ-IRBFN for function and its derivatives (e.g. up
to the second order) in 1D needs to be employed here and its formulation is
briefly recaptured as follows:

y 00ðsÞ < f 00ðsÞ ¼
Xm

i¼1

w ðiÞg ðiÞðsÞ; ð2Þ

y 0ðsÞ < f 0ðsÞ ¼
Xm

i¼1

w ðiÞH ðiÞðsÞ þ C1; ð3Þ

yðsÞ < f ðsÞ ¼
Xm

i¼1

w ðiÞ �H ðiÞðsÞ þ C1s þ C2; ð4Þ

where s is the curvilinear coordinate (arclength), C1 and C2 are constants of
integration and

g ðiÞðsÞ ¼ ððs 2 c ðiÞÞ2 þ a ðiÞ2Þ1=2; ð5Þ
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H ðiÞðsÞ ¼

Z
g ðiÞðsÞ ds ¼

ðs 2 c ðiÞÞððs 2 c ðiÞÞ2 þ a ðiÞ2Þ1=2

2

þ
a ðiÞ2

2
lnððs 2 c ðiÞÞ þ ððs 2 c ðiÞÞ2 þ a ðiÞ2Þ1=2Þ;

ð6Þ

�H ðiÞðsÞ ¼

Z
H ðiÞðsÞ ds ¼

ððs 2 c ðiÞÞ2 þ a ðiÞ2Þ3=2

6

þ
a ðiÞ2

2
ðs 2 c ðiÞÞlnððs 2 c ðiÞÞ þ ððs 2 c ðiÞÞ2 þ a ðiÞ2Þ1=2Þ

2
a ðiÞ2

2
ððs 2 c ðiÞÞ2 þ a ðiÞ2Þ1=2;

ð7Þ

in which {c ðiÞ}
m

i¼1 is the set of centres and {a ðiÞ}
m

i¼1 is the set of RBF widths.
The RBF width is chosen based on the following simple relation

a ðiÞ ¼ bd ðiÞ;

where b is a factor and d (i) is the minimum arclength between the ith centre
and its neighbouring centres. Since C1 and C2 are to be found, it is convenient to
let w ðmþ1Þ ¼ C1; w ðmþ2Þ ¼ C2; �H ðmþ1Þ ¼ s and �H ðmþ2Þ ¼ 1 in equation (4),
which becomes

yðsÞ < f ðsÞ ¼
Xmþ2

i¼1

w ðiÞ �H ðiÞðsÞ; ð8Þ

�H ðiÞ ¼ RHS of equation ð7Þ; i ¼ 1; . . .;m; ð9Þ

�H ðmþ1Þ ¼ s; ð10Þ

�H ðmþ2Þ ¼ 1: ð11Þ

The detailed implementation and accuracy of the IRBFN method were reported
previously (Mai-Duy and Tran-Cong, 2002). In all the numerical examples
carried out in this paper, the value of b is simply chosen to be in the range of
7-10. Before introducing the IRBFN interpolation into the BEM scheme, the
performance of the IRBFN and element-based method are compared using the
interpolation of the following function
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y ¼ 0:02ð12 þ 3s 2 3:5s2 þ 7:2s3Þð1 þ cos 4psÞð1 þ 0:8 sin 3psÞ;

where 0 # s # 1 (Figure 1). The accuracy achieved by each technique is
evaluated via the norm of relative error of the solution Ne defined by

N e ¼

Pq
i¼1

ð yðs ðiÞÞ2 f ðs ðiÞÞÞ2

Pq
i¼1

yðs ði ÞÞ2

0
BB@

1
CCA

1=2

; ð12Þ

where y(s (i ) ) and f (s (i ) ) are the exact and approximate solutions at the point i,
respectively, and q is the number of test points. The performance of linear,
quadratic and IRBFN interpolations are assessed using four data sets of 13, 15,
17 and 19 known points. For each data set, the function y is estimated at 500
test points. Note that the known and test points here are uniformly distributed.
The results obtained using b ¼ 10 are displayed in Figure 2 showing that the
IRBFN method achieves superior accuracy and convergence rate to the
element-based method. The solution converges apparently as O(h 1.95), O(h 1.98)
and O(h 9.47) for linear, quadratic and IRBFN interpolations, respectively, where
h is the grid point spacing. At h ¼ 0:06, which corresponds to a set of 19 grid

Figure 1.
Interpolation of function

y ¼ 0.02(12 + 3x
2 3.5x 2+ 7.2x 3)

(1 + cos 4px)
(1 + 0.8 sin 3px) from

a set of grid points
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points, the error norms obtained are 4:06e 2 2; 1:81e 2 2 and 1:98e 2 4 for
linear, quadratic and IRBFN schemes, respectively.

3. A new interpolation method for the evaluation of BIs
For heat transfer problems, the governing equations take the form

72u ¼ b; x [ V; ð13Þ

u ¼ �u; x [ Gu; ð14Þ

q ;
›u

›n
¼ �q; x [ Gq; ð15Þ

where u is the temperature, q is the temperature gradient across the surface,
n is the unit outward normal vector, �u and �q are the prescribed boundary
conditions, b is a known function of position and G ¼ Gu þ Gq is the boundary
of the domain V.

Integral equation (IE) formulations for heat transfer problems are well
documented in a number of texts (Banerjee and Butterfield, 1981; Brebbia et al.,
1984). Equations (13)-(15) can be reformulated in terms of the IEs for a given
spatial point j as follows

Figure 2.
Interpolation of function
y ¼ 0.02(12 + 3x 2
3.5x 2+7.2x 3)(1+cos 4px)
(1+0.8 sin 3px). The rate
of convergence with grid
point spacing refinement.
The solution converges
apparently as O(h 1.95),
O(h 1.98) and O(h 9.47) for
linear, quadratic and
IRBFN interpolations,
respectively, where h is
the grid point spacing
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cðjÞuðjÞ þ

Z
G

q* ðj; xÞuðxÞ dGþ

Z
V

bðxÞu* ðj; xÞ dV

¼

Z
G

u* ðj; xÞqðxÞ dG; ð16Þ

where u* is the fundamental solution to the Laplace equation, e.g. for a 2D
isotropic domain u* ¼ ð1=2pÞlnð1=rÞ in which r is the distance from the point j
to the current point of integration x, q* ¼ ›u*=›n; cðjÞ ¼ u=2p with u being
the internal angle of the corner in radians, if j is a boundary point and cðjÞ ¼ 1;
if j is an internal point. Note that the volume integral here does not introduce
any unknowns because the function b is given and furthermore, it can be
reduced to the BIs by using the particular solution (PS) techniques (Zheng et al.,
1991) or the dual reciprocity method (DRM) (Partridge et al., 1992). Without loss
of generality, the following discussions are based on equation (16) with b ¼ 0
(Laplace’s equation).

For the standard BEM, the numerical procedure for equation (16) involves a
subdivision of the boundary G into a number of small elements. On each
element, the geometry and the variation of u and q are assumed to have a
certain shape such as linear and quadratic ones. The study on the interpolation
of function in Section 2 shows that the IRBFN interpolation achieves an
accuracy and convergence rate superior to the linear and quadratic
element-based interpolations. The question here is whether the employment
of IRBFN interpolation in the BEM scheme can improve the solution in terms of
accuracy and convergence rate as in the case of function approximation. The
answer is positive and substantiated in the remainder of this paper.

The first issue to be considered is about the implementation of singular
integrals when IRBFNs are present within integrands. The difference between
the IRBFN and the Lagrange-type interpolation is that in the present IRBFN
interpolation, none of the basis functions are null at the singular point
(the point_ where the field point x and the source point j coincide) and hence
the corresponding integrands obtained are not regular. Consequently, at the
singular point all CPV integrals associated with the IRBFN weights are
singular and cannot be evaluated by using the hypothesis of constant potential
directly over the whole domain as in the case of the standard BEM. To
overcome this difficulty, the treatment of singular CPV integrals needs to be
slightly modified. The BIEs can be written in the following form (Hwang et al.,
2002; Tanaka et al., 1994)

uðjÞ

Z
G1;1!0

q* ðj; xÞ dGþ CPV

Z
G

q* ðj; xÞuðxÞ dG ¼

Z
G

u* ðj; xÞqðxÞ dG; ð17Þ

where G1 is part of a circle that excludes its origin (or the singular point) from
the domain of analysis. Assume that the temperature u(x) is a constant unit on
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the whole domain, i.e. uðjÞ ¼ uðxÞ ¼ 1; and hence the gradient q(x) is
everywhere zero. Equation (17) then simplifies toZ

G1;1!0

q* ðj; xÞ dG ¼ 2CPV

Z
G

q* ðj; xÞ dG: ð18Þ

Substitution of equation (18) into equation (17) yields

CPV

Z
G

q* ðj; xÞðuðxÞ2 uðjÞÞ dG ¼

Z
G

u* ðj; xÞqðxÞ dG: ð19Þ

The CPV integral is now written in the non-singular form, where the standard
Gaussian quadrature can be applied. For weakly singular integrals, some
well-known treatments such as logarithmic Gaussian quadrature and Telles’
transformation technique (Telles, 1987) can be applied directly as in the case of
the standard BEM.

The second issue is concerned with the employment of the IRBFNs in the
BEM scheme to represent the variables in the BIs. In the present method, the
boundary G of the domain of analysis is also divided into a number of segments
Ns, i.e.

G ¼
XN s

j¼1

Gj;

which are 1D domains to be represented by networks. Note that the size of the
segment Gj can be much larger than the size of elements in the standard BEM
provided that the associated boundary is smooth and the prescribed boundary
conditions are of the same type. Equation (19) can be written in the discretised
form as

XN s

j¼1

Z
Gj

q* ðj; xÞðujðxÞ2 ulðj ÞÞ dGj ¼
XN s

j¼1

Z
Gj

u* ðj; xÞqjðxÞ dGj; ð20Þ

where the subscript j denotes the general segments and the subscript l indicates
the segment containing the source point j. The variation of temperature u and
gradient q on the segment Gj is now represented by the IRBFNs in terms of the
curvilinear coordinate s as (equation (9))

uj ¼
Xmjþ2

i¼1

wðiÞ
uj
�H
ðiÞ

j ðsÞ; ð21Þ
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qj ¼
Xmjþ2

i¼1

wðiÞ
qj
�H
ðiÞ

j ðsÞ; ð22Þ

where s [ Gj; mj þ 2 is the number of IRBFN weights, {wðiÞ
uj }

mjþ2

i¼1
and

{wðiÞ
qj }

mjþ2

i¼1
are the sets of weights of networks for the temperature u and

temperature gradient q, respectively. Similarly, the geometry can be
interpolated from the nodal value by using the IRBFNs as

x1j ¼
Xmjþ2

i¼1

wðiÞ
x1j

�H
ðiÞ

j ðsÞ; ð23Þ

x2j ¼
Xmjþ2

i¼1

wðiÞ
x2j

�H
ðiÞ

j ðsÞ: ð24Þ

Substitution of equations (21) and (22) into equation (20) yields

XN s

j¼1

Z
Gj

q* ðj; sÞ
Xmjþ2

i¼1

wðiÞ
uj
�H
ðiÞ

j ðsÞ2
Xmlþ2

i¼1

wðiÞ
ul
�H
ðiÞ

l ðjÞ

 !
dGj

¼
XN s

j¼1

Z
Gj

u* ðj; sÞ
Xmjþ2

i¼1

wðiÞ
qj
�H
ðiÞ

j ðsÞ

 !
dGj;

ð25Þ

or,

XN s

j¼1

Xmjþ2

i¼1

wðiÞ
uj

Z
Gj

q* ðj; sÞ �H
ðiÞ

j ðsÞ dGj

 !
2
Xmlþ2

i¼1

wðiÞ
ul

Z
Gj

q* ðj; sÞ �H
ðiÞ

l ðsÞ dGj

 !( )

¼
XN s

j¼1

Xmjþ2

i¼1

wðiÞ
qj

Z
Gj

u* ðj; sÞ �H
ðiÞ

j ðsÞ dGj

 !
;

ð26Þ

where mj is the number of training points on the segment j, which can vary
from segment to segment. Equation (26) is formulated in terms of the IRBFN
weights of networks for u and q rather than the nodal values of u and q as in the
case of the standard BEM. Locating the source point j at the boundary training
points results in the underdetermined system of algebraic equations with the
unknown being the IRBFN weights. Thus, the system of equations obtained,
which can have many solutions, needs to be solved in the general least squares
sense. The preferred solution is the one whose values are smallest in the least
squares sense (i.e. the norm of components is minimum). This can be achieved
by using singular value decomposition technique (SVD). The procedural flow
chart can be briefly summarised as follows:
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(1) divide the boundary into a number of segments over each of which the
boundary is smooth and the prescribed boundary conditions are of the
same type;

(2) apply the IRBFN for approximation of the prescribed physical boundary
conditions in order to obtain the IRBFN weights which are the boundary
conditions in the weight space;

(3) form the system matrices associated with the IRBFN weights wu and wq;

(4) impose the boundary conditions obtained from the step 2 and then solve
the system for IRBFN weights by the SVD technique;

(5) compute the boundary solution by using the IRBFN interpolation;

(6) evaluate the temperature and its derivatives at selected internal points;

(7) output the results.

Note that for the numerical solution of Poisson’s equations using the BEM-PS
approach, the PS is first found by expressing the known function b as a linear
combination of radial basis functions and the volume integral is then
transformed into the BIs (Zheng et al., 1991). However, the first stage of this
process produces a certain error which is separate from the error in the
evaluation of the BIs. In order to confine the error of solution only to the
evaluation of BIs, the following numerical examples of heat transfer problems
governed by the Laplace’s equations or Poisson’s equations are chosen where
the associated analytical PSs exist for the latter.

4. Numerical examples
In this section, the proposed method is verified and compared with the
standard BEM on heat transfer problems governed by the Laplace’s or
Poisson’s equations. In order to make the BEM programs general in the sense
that they can deal with any types of boundary conditions at the corners, all
BEM codes with linear, quadratic and IRBFN interpolations employ
discontinuous elements at the corner. The extreme boundary point at the
corner is shifted into the element by one-fourth of the length of the element.
Integrals are evaluated by using the standard Gaussian quadrature for regular
cases and logarithmic Gaussian quadrature or Telles’ quadratic transformation
(Telles, 1987) for weakly singular cases with nine integration points. For the
purpose of error estimation and convergence study, the error norm defined in
equation (12) will be utilised here with the function y being the temperature u
and its normal derivative q in the case of the boundary solution or the
temperature u in the case of the internal solution.

4.1 Boundary geometry with straight lines
It can be seen that the linear interpolation is able to represent exactly the
geometry for a straight line and hence on the straight line segment the IRBFN
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interpolation needs only to be used for representing the variation of
temperature and gradient.

4.1.1 Example 1. Consider a square closed domain whose dimensions are
taken to be 6 by 6 units as shown in Figure 3. The temperature on the left and
right edges is maintained at 300 and 0, respectively, while the homogeneous
Neumann conditions q ¼ 0 are imposed on the other edges. Inside the square,
the steady-state temperature satisfies the Laplace’s equation. The analytical
solution is

uðx1; x2Þ ¼ 300 2 50x1:

This is a simple problem where the variation of temperature is linear. It can be
seen that the use of linear interpolation is the best choice for this problem. Both
linear and IRBFN ðb ¼ 10Þ interpolations are employed and the corresponding
BEM results on the boundary and at some internal points are displayed in
Table I showing that the proposed method as well as the linear-BEM works.
Significantly, the IRBFN-BEM works increasingly better than the linear-BEM
as the number of boundary points increases, which seems to indicate that the
IRBFN-BEM does not suffer numerical ill-conditioning as in the case of
the standard BEM. Note that in the case of the IRBFN interpolation, each
edge of the square domain and the boundary points on it become the
domain and training points of the network associated with the edge,
respectively. It is expected that the IRBFN-BEM approach performs better in
dealing with higher order variations of temperature, which is verified in the
following examples.

Figure 3.
Example 1 – geometry,

boundary conditions,
boundary points and

internal points
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4.1.2 Example 2. The problem is to find the temperature field such that

72u ¼ 0 inside the square 0 # x1 # p; 0 # x2 # p; ð27Þ

uðx1;pÞ ¼ sin ðx1Þ on the top edge ð0 # x1 # pÞ; ð28Þ

uðx1; x2Þ ¼ 0 on the other three sides: ð29Þ

The exact solution of this problem is given by Snider (1999)

uðx1; x2Þ ¼
1

sinhðpÞ
sinðx1Þ sinhðx2Þ:

This is a Dirichlet problem for which the essential boundary condition is
imposed along the boundary. Using discontinuous boundary elements at
the corner for the case of the standard BEM or shifting the training points at the
corner into the adjacent segments for the case of the IRBFN-BEM allows the
correct description of multi-valued gradient q at the corner. In the case of
IRBFN interpolation, each side of the square domain becomes the domain of
network and the boundary points on it are utilised as training points. To study
the convergence of the present method, four boundary point densities, namely
5 £ 4; 7 £ 4; 9 £ 4 and 11 £ 4, and b ¼ 7 are employed. Some internal points are
selected at ðp=3;p=3Þ; ðp=3; 2p=3Þ; ðp=2;p=2Þ; ð2p=3;p=3Þ and
ð2p=3; 2p=3Þ: The performance of the BEM with linear, quadratic and
IRBFN interpolations is assessed using the error norms of the boundary
and internal solution. The boundary solution is displayed in Figure 4 showing
that the proposed method is the most accurate one with higher convergence
rate achieved. With these given boundary point densities, the solution
converges as O(h 2.24), O(h 2.04) and O(h 3.83) for linear, quadratic and IRBFN
interpolations, respectively. At h ¼ 0:31, which corresponds to the boundary
point density of 11 £ 4; error norms obtained are 1:27e 2 2; 1:17e 2 2

Boundary points 3 £ 4 4 £ 4 5 £ 4 6 £ 4

Linear elements 8 12 16 20
Error norm of the boundary solution
Linear-BEM 3.01e 2 7 3.08e 2 7 3.72e 2 7 4.30e 2 7
IRBFN-BEM 7.22e 2 6 1.17e 2 6 4.33e 2 7 1.60e 2 7
Error norm of the internal solution
Linear-BEM 1.86e 2 7 1.43e 2 7 1.22e 2 7 1.07e 2 7
IRBFN-BEM 3.97e 2 6 4.07e 2 7 1.57e 2 7 5.17e 2 8

Note: The selected internal points are (2, 2), (2, 4), (3, 3), (4, 2) and (4, 4). In the first row, n £ m
means n boundary points per segment and m segments. The number of boundary elements in
each case results in the same total number of boundary points

Table I.
Example 1 – error
norms Nes of the
IRBFN-BEM and
linear-BEM
solutions
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and 2:80e 2 5 for linear, quadratic and IRBFN interpolations, respectively.
The internal results are recorded in Table II showing that the IRBFN-BEM
achieves a solution accuracy better than the linear/quadratic-BEM results by
several orders of magnitude.

4.1.3 Example 3. The problem is to find the temperature field such that

72u ¼ 0 inside the square 0 # x1 # p; 0 # x2 # p; ð30Þ

uðp; x2Þ ¼ sin3ðx2Þ on the right edge ð0 # x2 # pÞ; ð31Þ

uðx1; x2Þ ¼ 0 on the other three sides: ð32Þ

The analytical solution of this problem (Snider, 1999) is

uðx1; x2Þ ¼
3

4 sinhðpÞ
sinðx2Þ sinhðx1Þ2

1

4 sinhð3pÞ
sinð3x2Þ sinhð3x1Þ:

The shape of this solution is more complicated than the one in the previous
example and provides a good test for the present method. The boundary point

Figure 4.
Example 2 – error norm

Ne of the boundary
solution versus

boundary point spacing
h obtained by the BEM

with different
interpolation techniques

RBF
interpolation of

boundary values
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densities are chosen to be 9 £ 4; 11 £ 4; 13 £ 4 and 15 £ 4: The selected internal
points are ðp=3;p=3Þ; ðp=3; 2p=3Þ; ðp=2;p=2Þ; ð2p=3;p=3Þ and ð2p=3; 2p=3Þ:
The proposed method also performs much better than the standard BEM and
similar remarks as mentioned in Example 2 apply. With b ¼ 7; the error norms
of the boundary solution and the internal solution are displayed in Figure 5 and
Table III, respectively. The rates of convergence of the boundary solution are of
O(h 2.14), O(h 1.38) and O(h 4.78) for linear, quadratic and IRBFN interpolations,

Boundary points 5 £ 4 7 £ 4 9 £ 4 11 £ 4

Linear 2.96e 2 2 1.25e 2 2 6.90e 2 3 4.30e 2 3
Quadratic 2.80e 2 3 5.90e 2 4 1.82e 2 4 7.66e 2 5
IRBFN 1.27e 2 5 4.79e 2 7 1.49e 2 7 3.40e 2 8

Note: The IRBFN-BEM yields a solution more accurate than the linear/ quadratic-BEM by
several orders of magnitude

Table II.
Example 2 – error
norms Nes of the
internal solution
obtained by the
BEM with different
interpolation
techniques

Figure 5.
Example 3 – error norm
Ne of the boundary
solution versus
boundary point spacing
h obtained from the BEM
with different
interpolation techniques
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respectively. At h ¼ 0:07; which corresponds to the boundary point density of
15 £ 4; the achieved error norms are 3:91e 2 2; 2:79e 2 2 and 6:88e 2 5 for
linear, quadratic and IRBFN interpolations, respectively. The accuracy of the
internal solution by the present method is also better, by several orders of
magnitude, than the ones by linear and quadratic BEMs. Furthermore, the CPU
time requirements for the two methods are compared in Table IV. The
structures of the MATLAB codes are the same and therefore it is believed that
the higher efficiency achieved by the IRBFN-BEM is due to the fact that the
number of segments (elements) used in the IRBFN-BEM is significantly less
than that used in the standard BEM, resulting in a better vectorised
computation for the former (MATLAB’s internal vectorisation).

4.2 Boundary geometry with curved and straight segments
NNs are employed to interpolate not only the variables u and q by using
equations (21) and (22), but also the geometry of the curved segments by using
equations (23) and (24). All quantities in the BIs such as u, q and dG are
represented by IRBFNs necessarily in terms of the curvilinear coordinate
(arclength) s. Special attention is given to the transformation of the quantity dG
from rectangular to curvilinear coordinates where the use of a Jacobian is
required as follows

dG ¼
›x1

›s

� �2

þ
›x2

›s

� �2
 !1=2

ds; ð33Þ

in which the derivatives of x1 and x2 on the segment Gj can be expressed in
terms of the basis function H (equation (6)) as

Linear-BEM IRBFN-BEM
Mesh Boundary solution Total solution Boundary solution Total solution

9 £ 9 1.98 4.57 2.07 2.19
11 £ 11 3.02 8.39 3.08 3.27
13 £ 13 4.29 13.88 4.27 4.63
15 £ 15 5.78 21.56 5.70 6.33

Note: The code is written in the MATLAB language (version R11.1 by The MathWorks, Inc.),
which is run on a 548 MHz Pentium PC. Note that MATLAB language is interpretative

Table IV.
Example 3 – CPU

times (s) used to
obtain the boundary

solution and the
total solution by the

linear-BEM and
IRBFN-BEM

Boundary points 9 £ 4 11 £ 4 13 £ 4 15 £ 4

Linear 6.60e 2 3 4.20e 2 3 2.90e 2 3 2.20e 2 3
Quadratic 3.25e 2 4 1.74e 2 4 7.84e 2 5 4.09e 2 5
IRBFN 2.79e 2 6 1.91e 2 6 7.97e 2 7 9.64e 2 7

Note: The IRBFN-BEM yields a solution more accurate than the linear/quadratic-BEM by
several orders of magnitude

Table III.
Example 3 – error

norms Nes of the
internal solution
obtained by the

BEM with different
interpolation

techniques

RBF
interpolation of

boundary values

625



›x1j

›s
¼
Xmjþ2

i¼1

wði Þ
x1jH

ði Þ
j ðsÞ; ð34Þ

›x2j

›s
¼
Xmjþ2

i¼1

wðiÞ
x2jH

ði Þ
j ðsÞ: ð35Þ

Clearly, these derivatives can be calculated straightforwardly, once the
interpolation of the function is done after solving equations (23) and (24).
For more details covering the calculation of derivative functions by IRBFNs,
the reader is referred to Mai-Duy and Tran-Cong (2002). Normally, the orders of
IRBFN approximation for the boundary geometry and the variation of u and q
are chosen to be the same. However, they can be different and are discussed
shortly.

4.2.1 Example 4. Consider the boundary value problem governed by the
Laplace equation

72u ¼ 0

as shown in Figure 6. The domain of analysis is one quarter of the ellipse and
the boundary conditions are

Figure 6.
Example 4 – geometry
definition and training
points
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u ¼ 0;
on OA and BO and

›u

›n
¼ 2

a2 2 b2

ða4x2
2 þ b4x2

1Þ
1=2

x1x2;

on AB with a and b being the half lengths of the major and minor axes,
respectively. This problem with a¼ 10 and b ¼ 5 was solved by quadratic
BEM (Brebbia and Dominguez, 1992) using five and ten quadratic elements
with two selected internal points (2, 2) and (4, 3.5). For the present method, the
boundary is divided into three segments (two straight lines and one curve) and
the training points are taken to be the same as the boundary nodes used in the
case of the quadratic BEM. Thus, the densities are 5, 5 and 3 on segments OA,
AB and BO, respectively, which corresponds to the case of five quadratic
elements and densities 9, 9 and 5 corresponding to the case of ten quadratic
elements. In order to compare the present results with the results obtained by
quadratic BEM (Brebbia and Dominguez, 1992) and the exact solution, some
values of the function u are extracted and the errors obtained by the two
methods are displayed in Tables V and VI, which show that the present method
yields better accuracy. For example, with four digit scaled fixed point, for the
coarse density the range of the error is (0.02-0.2 per cent) and (0.84-2.32 per cent)
for IRBFN-BEM and quadratic BEM, respectively, while for the fine density the
error range is (0.00-0.02 per cent) and (0.02-0.14 per cent) for IRBFN-BEM and
quadratic BEM, respectively.

4.2.2 Example 5. The distribution of the function u in an ellipse with a
semi-major axis a ¼ 2 and a semi-minor axis b ¼ 1 is described by

72u ¼ 22; ð36Þ

subject to the condition u ¼ 0 along the boundary G. The exact solution is

uðx1; x2Þ ¼ 20:8
x2

1

a2
þ

x2
2

b2
2 1

� �
:

Exact IRBFN-BEM Quadratic BEM
x1 x2 u u Error (per cent) u Error (per cent)

8.814 2.362 212.489 212.514 0.20 212.779 2.32
6.174 3.933 214.570 214.579 0.06 214.839 1.85
3.304 4.719 29.356 29.354 0.02 29.435 0.84
2.000 2.000 22.400 22.404 0.17 22.431 1.29
4.000 3.500 28.400 28.413 0.15 28.472 0.86

Note: Comparison of the error obtained by the present IRBFN-BEM (b ¼ 7) and the quadratic
BEM using the same boundary nodes (five quadratic elements)

Table V.
Example 4 –

comparison (five
quadratic elements)

RBF
interpolation of

boundary values

627



This problem is governed by the Poisson’s equation and hence the BEM with
PS can be applied here for obtaining the numerical solution. The solution u can
be decomposed into a homogeneous part uH and a PS part uP as

u ¼ uH þ uP:

The PS to equation (36) can be verified to be

uP ¼ 2
x2

1 þ x2
2

2

while the complementary one satisfies the Laplace’s equation 72uH ¼ 0 with
the boundary condition uH ¼ 2uP on G. The latter is to be solved by BEM.
Partridge et al. (1992) used this approach to solve the problem in which 16
linear boundary elements are employed and the solution obtained was
displayed at seven internal points. In the present method, the boundary G is
divided into two segments as shown in Figure 7. Four data densities, namely
9 £ 2; 11 £ 2; 13 £ 2 and 15 £ 2; and b ¼ 8 are employed to simulate the
problem. Error norms of the boundary solution obtained are 0.0105, 0.0037,
9:4436e 2 4 and 5:8135e 2 4 for the four densities, respectively, with the
convergence rate achieved being OðN ð25:9289ÞÞ; where N is the number of
the training boundary points employed (Figure 8). In order to compare with
the linear BEM (Partridge et al., 1992), the solution at seven internal points is
also computed by the present method and the corresponding error norms
obtained are 0.0063, 0.0026, 8:0387e 2 4 and 3:4900e 2 5 for the four
densities, respectively. Hence with the coarse density of 9 £ 2 that
corresponds to 16 linear boundary elements, the present method achieves
the error norm of 0.0063, while the linear BEM achieves only N e ¼ 0:0109:
The latter number is calculated by the present authors using the table shown
in Partridge et al. (1992). Numerical result for the finest density is displayed
in Table VII.

4.2.3 Interpolation for geometry and boundary variables. In the last two
examples, the IRBFN interpolations for the geometry and the variables u and q

Exact IRBFN-BEM Quadratic BEM
x1 x2 u u Error (per cent) u Error (per cent)

8.814 2.362 212.489 212.487 0.02 212.506 0.14
6.174 3.933 214.570 214.568 0.01 214.576 0.04
3.304 4.719 29.356 29.355 0.01 29.363 0.07
2.000 2.000 22.400 22.400 0.00 22.399 0.04
4.000 3.500 28.400 28.400 0.00 28.402 0.02

Note: Comparison of the error obtained by the present IRBFN-BEM (b ¼ 7) and the quadratic
BEM using the same boundary nodes (ten quadratic elements)

Table VI.
Example 4 –
comparison (ten
quadratic elements)
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have the same order, i.e. the training points used are same for both the cases.
However, the order of IRBFN interpolation can be chosen differently for the
geometry and the variables u and q in order to obtain high quality solutions
with low cost as possible. The geometry is usually known and hence the

Figure 8.
Example 5 – error norm

Ne of the boundary
solution versus the

number of boundary
points N by the present
IRBFN-BEM. With the
given boundary point

densities of 9£ 2, 11 £ 2,
13 £ 2 and 15 £ 2, the

rate of convergence
appears as O(N 25.9289),

where N is the number of
the boundary points

employed

Figure 7.
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number of training points for the geometry interpolation can be estimated. It is
emphasised that the size of the final system of equations only depends on the
order of IRBFN interpolation for the variables u and q and hence in the case of
highly curved boundary, it is recommended that the order of IRBFN
interpolation can be chosen higher for the geometry than for the variables u
and q. The problem in the last example is solved again with the increasing
number of training points for the geometry interpolation. The density of
training points employed is 9 £ 2 for the variables u and q while they are 12 £ 2
and 14 £ 2 for the geometry. The solution is improved as shown in Table VIII.
For example, the error norm of the boundary solution decreases from 0.0105 for
the normal case (the same order) to 9:5093e 2 4 and 8:2902e 2 4 for the
increasing order of geometry interpolation.

5. Concluding remarks
In this paper, the introduction of IRBFN interpolation into the BEM scheme to
represent the variables in BIEs for numerical solution of heat transfer problems
is implemented and verified successfully. Numerical examples show that the
proposed method considerably improves the estimate of the BIs resulting in

Coordinates Exact Computed
x1 x2 Gradient q Gradient q

1.997 0.056 20.804 20.802
1.950 0.223 20.857 20.859
1.802 0.434 21.001 21.000
1.564 0.623 21.177 21.178
1.247 0.782 21.347 21.347
0.868 0.901 21.483 21.483
0.445 0.975 21.570 21.570
0.000 1.000 21.600 21.600

Note: Although no symmetry condition was imposed in the numerical model, the results
obtained are accurately symmetrical. Owing to symmetry, the displayed results corresponds to
only a quarter of the elliptical domain

Table VII.
Example 5 – the
boundary solution
obtained by the
present
IRBFN-BEM using
the density of 15 £ 2

Ne 9£ 2 12 £ 2 14 £ 2

Boundary solution 0.0105 9.5093e 2 4 8.2902e 2 4
Internal solution 0.0063 1.5961e 2 4 9.8966e 2 5

Note: The densities of IRBFN interpolation are 9 £ 2 for the boundary variables and 9 £ 2,
12 £ 2 and 14 £ 2 for the geometry

Table VIII.
Example 5 – error
norms obtained by
the present method
with increasing
order of the IRBFN
interpolation for the
geometry
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better solutions not only in terms of the accuracy but also in terms of the rate of
convergence. The CPV integral is written in the non-singular form where the
standard Gaussian quadrature can be applied while the weakly singular
integrals are evaluated by using the well-known numerical techniques as in the
case of the standard BEM. The method can be extended to problems of viscous
flows which will be carried out in future work.
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Abstract This paper presents an application of the dual reciprocity boundary element method
(DRBEM) to transient advection-diffusion problems. Radial basis functions and augmented thin
plate splines (TPS) have been used as coordinate functions in DRBEM approximation in addition
to the ones previously used in the literature. Linear multistep methods have been used for time
integration of differential algebraic boundary element system. Numerical results are presented for
the standard test problem of advection-diffusion of a sharp front. Use of TPS yields the most
accurate results. Further, considerable damping is seen in the results with one step backward
difference method, whereas higher order methods produce perceptible numerical dispersion for
advection-dominated problems.

1. Introduction
The phenomenon of advection-diffusion is observed in many physical
situations involving transport of energy and chemical species. Some of the
examples are the transport of pollutants – thermal, chemical or radioactive –
in the environment, flow in porous media, impurity redistribution in
semiconductors, travelling magnetic field etc. The governing equation for
advection-diffusion is usually characterized by a dimensionless parameter,
called Peclét number, Pe, which is defined as

Pe ¼ jvj
L

D
; ð1Þ

where v is the advective velocity, L is the characteristic length and D is the
diffusivity associated with the transport process. When Pe is small, diffusion
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dominates and the advection-diffusion equation is nearly parabolic. On the
other hand, if Pe is large, then advection dominates and the governing equation
becomes hyperbolic. Accurate numerical solution of the advection-diffusion
equation becomes increasingly difficult as the Pe increases due to the onset of
spurious oscillations or excessive numerical damping, if standard finite
difference or finite element formulations are used. To deal with such advection
dominated problems, numerous innovative algorithms have been suggested
based on the local analytical solution of the advection-diffusion equation in the
finite difference and finite element literature (Carey and Jiang, 1988; Celia et al.,
1989; Chen and Chen, 1984; Demkowicz and Oden, 1986; Ding and Liu, 1989;
Donea et al., 1984; Hughes and Brooks, 1982; Li et al., 1992; Park and Ligget,
1990; Raithby and Torrance, 1974; Spalding, 1972; Westerink and Shea, 1989;
Yu and Heinrich, 1986).

The reduction in the effective dimensionality of a problem offered by the
boundary element method has attracted its application to the
advection-diffusion problem as well, and it has been observed that the BEM
solutions seem to be relatively free from spurious oscillations or excessive
numerical damping (vis-à-vis finite element or finite difference solutions). The
basic reason being the correct amount of upwinding provided by the
fundamental solution in the BEM. Various formulations have been proposed
for the transient advection-diffusion problems. Boundary element formulations
based on time-dependent fundamental solutions have been suggested by
Brebbia and Skerget (1984) and Ikeuchi and Onishi (1983). Ikeuchi and Onishi
(1983) derived time-dependent fundamental solution to the advection-diffusion
equation in Rn, and proved that the boundary element solution is stable for
large diffusion number and Courant number. This formulation is used by
Ikeuchi and Tanaka (1985) for the solution of magnetic field problems. Tanaka
et al. (1987) used the same formulation with mixed boundary elements and
studied the dependence of the relative error on space and time discretization.
On the other hand, Brebbia and Skerget (1984) used the fundamental solution of
diffusion equation and treated the convective terms as a pseudo source term.
Okamoto (1989, 1991) used Laplace transforms in conjunction with combined
boundary and finite element methods for the solution of transient
advection-diffusion problem on an unbounded domain.

Another class of boundary element formulations use the fundamental
solution of a related steady-state operator and treat the time derivative and any
other remaining terms as a pseudo source term. These formulations result in a
system of differential-algebraic equations in time which can be solved using a
suitable time integration algorithm. Taigbenu and Liggett (1986) proposed one
such formulation. They use the fundamental solution of Laplace equation and
treat the time derivative and convective terms as source terms which are
incorporated in the boundary element formulation by domain discretization.
Single step time-differencing scheme is used for time marching and solutions
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are presented for a wide range of Pe – from very low (diffusion-dominated
problems) to infinite (pure advection problems). Aral and Tang (1989) also used
the fundamental solution of the Laplace equation, but made use of a secondary
reduction process, called SR-BEM (Aral and Tang, 1988), to arrive at a
boundary-only formulation. They present the results of the advection-diffusion
problems with or without first order chemical reaction for low to moderate Pe.
Two other formulations in this category are based on the dual reciprocity
boundary element method (DRBEM) (Partridge et al., 1991). The first one
employs the fundamental solution to Laplace equation and applies the dual
reciprocity treatment to time derivative and convective terms. The second one
uses the fundamental solution to the steady-state advection-diffusion equation
and transforms the domain integral arising from the time derivative term using
a set of coordinate functions and particular solutions which satisfy the
associated nonhomogeneous steady-state advection-diffusion equation
(DeFigueiredo and Wrobel, 1990). In both these formulations, the resulting
differential-algebraic equation is solved using one step u-method. Partridge
et al. (1991) used u ¼ 0:5 in computations with first formulation and u ¼ 1:0;
with the second one, and observed that the accuracy of both the dual
reciprocity formulations is very good for all problems considered, with no
oscillations and only a minor damping of the wave front. They further indicate
that the second formulation is more accurate than the first one. However, all the
DRBEM applications have considered only the problems involving low values
of Pe.

In this work, we concentrate on the application of the DRBEM based on the
fundamental solution to the steady-state advection-diffusion equation to obtain
a clear picture of its performance for advection-diffusion problems involving
moderate to high Pe, since advection-dominated problems have received little
attention in DRBEM literature. Further, only a simple set of radial basis
functions has been previously used in this formulation. We consider two other
sets of coordinate functions – complete radial basis functions and augmented
thin plate splines (TPS), and analyse their performance in conjunction with
higher order time integration algorithms for advection-dominated problems.
We start with a brief review of the governing equations and the boundary
element formulation, give the description of the coordinate functions and time
integration schemes and present numerical results for a standard test problem
of advection-diffusion of a sharp front.

2. Advection-diffusion equation
Let us consider a homogeneous isotropic region V , R2 bounded by a
piece-wise smooth boundary G. Let f be the transported quantity, and ð0;T� ,
R be the time interval of interest. Let x represent the spatial coordinate, and t
the time. The transport of f in the presence of a first order reaction is governed
by the equation
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›

›t
þ v ·7þ k 2 D72

� �
fðx; tÞ ¼ 0 in V £ ð0;T�; ð2Þ

with the initial condition

fðx; 0Þ ¼ f0ðxÞ on �V; ð3Þ

and the boundary conditions

fðx; tÞ ¼ �fðx; tÞ on Gf £ ð0;T�; ð4Þ

qðx; tÞ ¼ �qðx; tÞ on Gq £ ð0;T�; ð5Þ

qðx; tÞ ¼ hðx; tÞ{frðx; tÞ2 fðx; tÞ} on Gr £ ð0;T�; ð6Þ

where v denotes the velocity field, D is the diffusivity and k is the reaction rate.
f0; �f; �q;fr and h are known functions and q ¼ ›f=›n; n being the unit
outward normal. Further, Gf, Gq and Gr denote the disjoint segments (some of
which may be empty) of the boundary such that Gu < Gq < Gr ¼ G: In this
work, we assume that the advective velocity v and diffusivity D remain
constant.

3. Boundary element formulation
This section presents a brief review of the dual reciprocity boundary element
formulation for transient advection-diffusion based on the fundamental
solution of the steady-state advection-diffusion equation. Further details are
given in DeFigueiredo and Wrobel (1990) and Partridge et al. (1991).

To transform the advection-diffusion equation (2) into an equivalent
boundary integral equation, we start with the weighted residual statementZ

V

›f

›t
þ v ·7fþ kf2 D72f

� �
f* dV ¼ 0; ð7Þ

where f* is the fundamental solution of the steady-state advection-diffusion
equation, i.e. the solution of

D72f* þ v ·7f* 2 kf* þ dðj; xÞ ¼ 0: ð8Þ

In the preceding equation, d is the Dirac delta function, and j and x denote the
source and field points, respectively. For two-dimensional problems, f* is
given by (Partridge et al., 1991)

f* ¼
1

2pD
exp 2

v · r

2D

� �
K0ðmrÞ; ð9Þ

where

HFF
13,5

636



m ¼
jvj

2D

� �2

þ
k

D

" #1=2

; ð10Þ

and K0 is the Bessel function of the second kind of order zero. Application of
Green’s second identity and relation (8) to the statement (7) yields

cifi þ D

Z
G

q* þ
vn

D
f*

� �
f2 f*q

h i
dG ¼ 2

Z
V

›f

›t
f* dV; ð11Þ

where the index i stands for the source point j, q* ¼ ›f*=›n; vn ¼ v · n and

ci ¼

Z
V

dðj; xÞ dV:

To transform the domain integral in equation (11), the time derivative is
approximated by

_f ¼
XNP

j¼1

f jðxÞa jðtÞ; ð12Þ

where the dot f on denotes the temporal derivative, a j are unknown functions
of time and f j are known coordinate functions. Further, it is assumed that for
each function f j, there exists a function c j which is a particular integral of the
equation

D72c2 v ·7c2 kc ¼ f : ð13Þ

Introducing approximation (12) into equation (11) and applying integration by
parts, we obtain the following boundary integral equation:

cifi þ D

Z
G

q* þ
vn

D
f*

� �
f2 f*q

h i
dG

¼
XNP

j¼1

a j cic
j

i þ D

Z
G

q* þ
vn

D
f*

� �
c j 2 f*h j

h i
dG

� �
; ð14Þ

where h j ¼ ›c j=›n:
Application of the standard boundary element discretization procedure and

approximation of f, q, c, and h by the same set of interpolation functions
within each boundary element followed by the collocation of the discretized
boundary integral equation at all the freedom nodes (boundary plus internal)
results in the system of equations

Hf2 Gq ¼ ðHC2 GEÞa; ð15Þ
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where H and G are the global matrices of the boundary integrals with kernels
ðq* þ vnf*=DÞ and f*, respectively; C and E are the coordinate function
matrices of functions c and h, respectively; and a, f and q denote global nodal
vectors of respective functions. Equation (12) can be used to eliminate a from
the preceding equation and thus, obtain the differential algebraic system

C _fþ Hf2 Gq ¼ 0; ð16Þ

where C ¼ ðGE 2 HCÞF21; F being the coordinate function matrix of the
functions f j.

4. Coordinate functions
Various sets of coordinate functions have been used in the dual reciprocity
method for different class of problems. These include radial basis functions,
TPS, multiquadrics etc. (Goldberg et al., 1996, 1998). However, in the case of
the dual reciprocity formulation for the advection-diffusion problems based on
the fundamental solution of the steady-state advection-diffusion equation, the
situation is quite different, probably due to the difficulty in obtaining closed
form particular solutions to equation (13) for a given choice of f j. Only the
following set of coordinate functions has been used so far (DeFigueiredo and
Wrobel, 1990):

c ¼ r 3; h ¼ 3 r r · n; f ¼ 9D r 2 3 r r · v 2 kr 3: ð17Þ

To obtain the preceding set, DeFigueiredo and Wrobel (1990) choose function c
and obtained h and f by substituting directly into equation (13). This set would
be referred to as RBF1 hereafter. This choice of the particular solution c
essentially corresponds to the choice of f ¼ 9r for the Poisson’s equation. We
can follow the same approach to obtain the other sets of coordinate functions.
We consider two more alternative sets corresponding to f ¼ 1 þ r and
augmented TPS for the Poisson’s equation, both of which are known to possess
better interpolation properties (Goldberg et al., 1998), and thus are likely to
yield more accurate results in the present context as well. If we choose c ¼
r 2=4 þ r 3=9; corresponding to the choice of f ¼ 1 þ r for Poisson’s equation,
we can obtain the following set (which would be referred to as RBF2):

c ¼ r 2=4 þ r 3=9;

h ¼ ð1=2 þ r=3Þr · n;

f ¼ Dð1 þ rÞ2 ð1=2 þ r=3Þr · v 2 kð9r 2 þ 4r 3Þ=36:

ð18Þ

Further, if we choose c corresponding to augmented TPS for the Poisson’s
equation, we obtain the following set:
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c ¼ r 4ð2 log r 2 1Þ=32 þ r 2=4 þ r 3=9;

h ¼ ð12r 2 log r 2 3r 2 þ 16r þ 24Þ r · n=48;

f ¼ Dð1 þ r þ r 2 log rÞ2 ð12r 2 log r 2 3r 2 þ 16r þ 24Þ r · v=48 2 kc:

ð19Þ

5. Temporal discretization
The differential algebraic system (16) has a form similar to the one obtained
using the finite element method and hence, can be solved by any standard
time integration scheme by incorporating suitable modifications to account
for its mixed-nature. Based on our previous experience (Singh and Kalra, 1996;
Singh and Tanaka, 1998), we opt for one and multistep u-methods of
SSp1 family (Wood, 1990) in this work. Further details on the temporal
discretization aspects are available in Singh and Kalra (1996) and Singh and
Tanaka (1998).

The general form of a p-step algorithm of SSp1 family (Zienkiewicz et al.,
1984) for the differential-algebraic boundary element system (16) can be
expressed as

Xp

j¼0

{ðgjC þ bjDtHÞfaj
2 bjDtGqaj

} ¼ 0; ð20Þ

where aj ¼ n þ j þ 1 2 p; and gj, bj are scalar coefficients which can be
expressed as functions of p u-parameters (Wood, 1990). Table I lists some
schemes of this family and related parameters. The choice of the schemes has
been made keeping in view the stringent stability requirements of a differential
algebraic system. Of these algorithms, one step backward difference scheme is
the most stable, but the least accurate. The Crank-Nicolson scheme is supposed
to be the most accurate amongst the linear multistep methods, but is only
marginally stable and prone to oscillations. Two and three step backward
difference methods are likely to provide a compromise on accuracy and
algorithmic damping.

Algorithm Abbreviations Parameters

Crank-Nicolson method SS1C u ¼ 1/2
One step backward difference SS1B u ¼ 1
Two step backward difference SS2B u1¼1.5, u2¼ 2
Three step backward difference SS3B u1¼2, u2 ¼ 11=3; u3¼ 6

Table I.
Time integration
algorithms from
SSp1 family for

advection-diffusion
problem

Dual reciprocity

639



Let us note that the multistep methods require additional starting values. Use
of a higher order single step scheme such as the Runge-Kutta method is
generally recommended in the literature for the generation of these additional
initial conditions. However, numerical experiments by Singh and Kalra (1996)
show that the higher order one step schemes are prone to numerical oscillations
for differential-algebraic systems. Hence, we opt for the one step backward
difference method with a reduced time step to generate additional starting
values.

6. Error indicators
To measure the quality of the approximate solution, we need to utilize some
appropriate norms. In the context of the boundary element analysis, the
boundary L2 norm is usually preferred, as it can be easily evaluated from the
boundary solution alone in contrast to the energy norm which requires
solutions to be known at internal points as well (Rencis and Jong, 1989).

The absolute error in the approximate solution of function v is defined as

evðx; tÞ ¼ vðx; tÞ2 vaðx; tÞ; ð21Þ

where v(x, t) denotes the exact value and va(x, t) is the approximate value
obtained from the boundary element analysis. The L2 global error norm is
defined by

kevk
2
2 ¼

Z
G

e2
v dG ¼

XNe

i¼1

Z
Gi

e2
v dG; ð22Þ

where Ne is the total number of boundary elements. To obtain a more
transparent measure of solution error, exact relative L2 error (in per cent) can be
defined as (Rencis and Jong, 1989)

hv ¼
kevk2

kvk2
£ 100; ð23Þ

in which

kvk
2
2 ¼

Z
G

v2 dG:

For the computation of L2-norms, we have used Gaussian quadrature with
24 integration points.

7. Numerical results
Let us consider the standard test problem of advection-diffusion of a sharp
front along a line in uniform flow with the initial condition
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fðx1; 0Þ ¼ 0 x1 [ ½0;1Þ; ð24Þ

and the boundary conditions

fð0; tÞ ¼ 1; fð1; tÞ ¼ 0: ð25Þ

With uniform advective velocity u, and absence of external or internal sources
and reaction term, the exact solution of this problem is given by

fðx1; tÞ ¼
1

2
erfcðz1Þ þ exp

ux1

D

� �
· erfcðz2Þ

h i
; ð26Þ

where z1 ¼ ðx1 2 utÞ=
ffiffiffiffiffiffiffiffi
4Dt

p
and z2 ¼ ðx1 þ utÞ=

ffiffiffiffiffiffiffiffi
4Dt

p
: This problem is

modelled as a two-dimensional problem over the rectangular domain V
defined as

V ¼ {ðx1; x2Þ : x1 [ ð0; 1Þ; x2 [ ð0; 0:1Þ}; ð27Þ

with the zero initial condition. Boundary conditions are: fðx; tÞ ¼ 1 on
the boundary x1 ¼ 0; qðx; tÞ ¼ 0 along upper ðx2 ¼ 0:1Þ and lower boundary
ðx2 ¼ 0Þ; and fðx; tÞ ¼ 0 on the boundary x1 ¼ 1: The last boundary condition
represents an approximation of the boundary condition fð1; tÞ ¼ 0:

Equal linear elements ðDG ¼ 0:05Þ have been used for the discretisation of
the boundary G, with partially discontinuous elements at the corners. We take
u ¼ 1:0; and thus with the unit value of the characteristic length L, Pe ¼ 1=D:
We present results with two values of D which correspond to Pe ¼ 500; and
1,000, respectively. These two cases represent moderate to heavily
advection-dominated transport process.

We summarize the errors in the numerical solutions for both the cases for
different sets of the coordinate functions in Table II. It can be observed that for
both the problems, the higher order multistep methods produce very accurate
results, and the three step backward difference scheme is the most accurate.
Further, choice of augmented TPS as coordinate functions yields the most
accurate results, whereas the previously used choice, RBF1, is the least
accurate.

Figures 1 and 2 present the profile of the sharp front at t ¼ 0:5 with SS1B
and SS3B, respectively. For both the cases, considerable damping of the front is
observed with the one step backward difference method, whereas perceptible

Relative L2 error (per cent) with Dt¼0.005
Pe ¼ 500 Pe ¼ 1,000

Scheme RBF1 RBF2 TPS RBF1 RBF2 TPS

SS1B 6.11 6.07 5.96 8.15 8.06 7.72
SS1C 4.29 4.07 3.81 6.08 5.75 5.18
SS2B 3.88 3.68 3.41 5.81 5.50 4.97
SS3B 3.60 3.41 3.18 5.50 5.18 4.67

Table II.
Errors in the

boundary element
solution of sharp
front problem for

Pe ¼ 500 and 1,000
(t ¼ 0.5)
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Figure 1.
Profile of the sharp front
at t ¼ 0.5 with SS1B and
different coordinate
functions. (a) Pe ¼ 500
and (b) Pe ¼ 1,000
(Dt ¼ 0.005)
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Figure 2.
Profile of the sharp front
at t ¼ 0.5 with SS3B and

different coordinate
functions (Dt ¼ 0.005)
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numerical dispersion is present in the solution with SS3B (results with other
two higher order schemes are very similar).

8. Concluding remarks
We have presented an application DRBEM to the transient advection-diffusion
problems. In addition to the previously used set of coordinate functions of
radial basis type, two more sets of coordinate functions – the radial basis and
TPS type – have been evaluated. Of these, the use of the augmented TPS yields
the most accurate results. Linear multistep methods have been used for time
integration of the differential algebraic boundary element system. Of these, one
step backward difference method produces considerable damping of the wave
front. The higher order schemes yield good overall accuracy, although some
numerical dispersion is present in the solution for the advection-dominated
problems.
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