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1. Preliminaries
Distance and Open Sets

Here, we do just enough topology so as to be able to talk about smooth manifolds. We
begin with n-dimensional Euclidean space

E,={0p Yy - y) 1y ERJ.

Thus, E, isjust thereal line, E, isthe Euclidean plane, and E; is 3—dimensional Euclidean
space.

The magnitude, or norm, liyll of y = (y,, y,, . . ., y,) In E, isdefined to be

=Ny 4y + .. 2,

which we think of asits distance from the origin. Thus, the distance between two pointsy
=0 Yy - ypadz = (z, 2, - - ., z,) INE, isdefined asthe norm of z — y:

Distance Formula

Distance betweeny andz =1z = yll = \(z, = y)> + (g = ¥ + - . . + (2, — ¥,) .

Proposition 1.1 (Properties of the norm)

The norm satisfies the following:

(@) liyll = 0, and llyll = 0 iff y = 0 (positive definite)

(b) IAyll = 1Allyll forevery A€ R andy € E,.

(©) Ity + zll < liyll + lizll for every y, z € E, (triangle inequality 1)

(d)lly = zll <lly = wll + llw — zll for every y, z, w € E, (triangle inequality 2)

The proof of Proposition 1.1 is an exercise which may require reference to alinear agebra
text (see “inner products’).

Definition 1.2 A Subset U of E, iscalled open if, for every y in U, al points of E, within
some positive distance r of y areaso in U. (The size of r may depend on the point y
chosen. lllustration in class).

Intuitively, an open set isa solid region minus its boundary. If we include the boundary,
we get aclosed set, which formally is defined as the complement of an open set.

Examples 1.3
(@) If a € E,, then the open ball with center a and radiusr is the subset

Ba,r)={x€E,|llx-all <r}.




Open balls are open sets: If x € B(a, r), then, withs = r — llx—all, one has B(x, s) C
B(a, r).

(b) E, is open.

(c) Disopen.

(d) Unions of open sets are open.

(e) Open sets are unions of open balls. (Proof in class)

Definition 1.4 Now let M C E. A subset V C M iscalled open in M (or relatively open)
if, for every y in V, al points of M within some positive distancer of y areasoin V.

Examples 1.5
(a) Open ballsin M
IfMCE,meE M,andr > 0, define

B,(m, 1) = {x EMIlx—-mll < r}.
Then

B,(m, r) = B(m, r) N M,

and so B,,(m, r) isopenin M.

(b) Misopenin M.

(c) Disopenin M.

(d) Unions of open setsin M are openin M.

(e) Open setsin M are unions of open ballsin M.

Parametric Paths and Surfacesin E,
From now on, the three coordinates of 3-space will bereferredto asy,, y,, and y;.

Definition 1.6 A smooth path in E; isaset of three smooth (infinitely differentiable) real-
valued functions of asinglered variabler:

yi =310, y, = y(0), y3 = y3(0).
Thevariable is called the parameter of the curve. The path isnon-singular if the vector
(%L % dgyf ) is nowhere zero.
Notes
(@) Instead of writing y, = y,(?), y, = y,(?), y; = y;(¢), we shal simply writey, = y,(?).

(b) Since there is nothing special about three dimensions, we define asmooth path in E,

in exactly the same way: as a collection of smooth functionsy, = y(r), where thistime i
goes from 1 to n.



Examples 1.7
(a) Straight linesin E;
(b) Curvesin E; (circles, etc.)

Definition 1.8 A smooth surface immersed in E; is acollection of three smooth real-
valued functions of two variables x' and x* (notice that x finally makes a debut).

1 = )’1(351’ xz)
1 2

Y2 = yx, x)
1 2

y3 = )’3(x » X )1

or just
y, =y, D) (=12, 3).

. . . dy;
We also require that the 3 x2 matrix whose ij entry |S£I’f has rank two. We call x' and x*

the parameters or local coordinates.

Examples 1.9

(a) Planesin E,

(b) The paraboloid y, = y,*> + y,’

(c) Thespherey,” + y,” + y,° = 1, using spherical polar coordinates:

y; = Sinx; COSx,
Yy = S.nxl S-an

y3 = COS X,
2

2 2
(d) Theélipsoid XzL + )-;2; + X‘% =1, wherea, b and ¢ are positive constants.
a C

(e) We calculate the rank of the Jacobean matrix for spherical polar coordinates.
(f) Thetoruswith radii a > b:

y, = (a+bcos x*)cos x'
¥, = (a+bcos xz)si nx'
y; = bsinx’

Question The parametric equations of a surface show us how to obtain a point on the
surface once we know the two local coordinates (parameters). In other words, we have

specified afunction E,—F;. How do we obtain the local coordinates from the Cartesian
coordinatesy,, y,, y;?

Answer We need to solve for the local coordinates x' as functions of y;- Thiswedo in one
or two examplesin class. For instance, in the case of a sphere, we get

x' = cos \(y,)



2= %05_1()’1 /Ny +y,0) ify, =0
B - cos™(y, /Ny +y," ) ify, <0

This allows us to give each point on much of the sphere two unique coordinates, x', and
x*. There is a problem with continuity when y, = 0, since then x” switches from 0 to 27t

Thereisalso aproblem at the poles (y, = y, = 0), since then the above functions are not
even defined. Thus, we restrict to the portion of the sphere given by

1
O<x <wm
2
0 < x" < 2m,

which isan open subset U of the sphere. (Think of it as the surface of the earth with the

Greenwich Meridian removed.) Wecall x' and x” the coor dinate functions. They are
functions

x't U—E,
and
X1 U—E,.

We can put them together to obtain asingle function x: U—E, given by

X1, Yo ¥3) = (Xl()’p Y2 ¥3)» xz()’l’ Y2 ¥3))

: -1 %Os_l(yl INY ) if y, >0 5
= %OS ()]3)) -1 3 3 . |:|
B - cos (v, / Wy, 4y, ) ify, <0 B

as specified by the above formulas, asachart.

Definition 1.10 A chart of asurface S isapair of functionsx = (xl(yl, Vo, V3)» xZ(yl, V2
¥3)) which specify each of the local coor dinates (parameters) x' and x> as smooth functions
of ageneral point (global or ambient coor dinates) (y,, y,, y;) on the surface.

Question Why are these functions called a chart?

Answer The chart above assigns to each point on the sphere (away from the meridian) two
coordinates. So, we can think of it as giving atwo-dimensional map of the surface of the
sphere, just like a geographic chart.

Question Our chart for the sphereis very nice, but is only appears to chart a portion of the
sphere. What about the missing meridian?

Answer We can use another chart to get those by using different paramaterization that
places the poles on the equator. (Diagram in class.)



In general, we chart an entire manifold M by “covering” it with open sets U which become
the domains of coordinate charts.

Exercise Set 1
1. Prove Proposition 1.1.(Consult alinear algebratext.)
2. Prove the claim in Example 1.3 (d).

3. Prove that finite intersection of open setsin E,, are open.

4. Parametrize the following curvesin E;.
(a) acircle with center (1, 2, 3) and radius 4

(b) thecurvex = y*; z = 3
(c) the intersection of the planes 3x—3y+z=0 and 4x+y+z=1.
5. Express the following planes parametrically:

@y, +y, = 2y; = 0.

(b) 2y, + y, = y; = 12.
6. Express the following quadratic surfaces parametrically: [Hint. For the hyperboloids,

refer to parameterizations of the ellipsoid, and use the identity cosh’x — sinh’x = 1. For the
double cone, usey, = cx', and x' asafactor of y, and y,.]
2

(3]

2
(a) Hyperboloid of One Shest: )-;]2— + %2- - )% =1
2

2 2
(b) Hyperboloid of Two Sheets: y;% 2 XC:}— =1

b2
Y ’ y ? y :
(C) Cone = == +% .
C a b
won
(d) Hyperbolic Paraboloid: Xci - ;12— _ 222—

7. Solve the parametric equations you obtained in 5(a) and 6(b) for x' and x* as smooth
functions of agenera point (y,, y,, y;) on the surface in question.

2. Smooth M anifolds and Scalar Fields

We now formalize the above ideas.

Definition 2.1 An open cover of M C E_ isacollection {U} of open setsin M such that
M= U_,U,.

Examples

(&) E, can be covered by open balls.

(b) E, can be covered by thesingle set E..

(c) The unit spherein E, can be covered by the collection {U,, U,} where
Uy = {0 y2 y3) 1y > —1/2}
Uy = {1, y2o y3) | y3 < 1/2}.



Definition 2.2 A subset M of E is caled an n-dimensional smooth manifold if we are

. . . 1 2 n .
givenacollection{U,; x,, x, , . . ., x, } where:

(&) The U, form an open cover of M.
(b) Each x," isaC” real-valued function defined on U (that is, x,,: U,—F,), and
extending to an open set of E, called the r-th coordinate, such that the map x: U,—E,

given by x(u) = (xal(u), xaz(u), ..., x,'(u)) isone-to-one. (That is, to each point in U,,,

we are assigned a unique set of » coordinates)) Thetuple (U,; x,', x 2. . x,)iscaleda

a’ a’va ?

local chart of M. The collection of al chartsis called a smooth atlas of M. Further, U, is
called a coor dinate neighbor hood.

() If (U, ¥), and (V, ¥) aretwo local charts of M, and if UNV = @, then we can write

X = xi()_ci)
with inverse

—k =k, 1

X =Xx(x)

for each i and k, where al functionsin sight are C”. These functions are called the change-
of-coor dinates transformations.

By the way, we call the “big” space E, in which the manifold M is embedded the ambient
space.

Notes
1. Always think of thex’ asthe local coor dinates (or parameters) of the manifold. We can
paramaterize each of the open sets U by using the inverse function x~' of x, which assigns

to each point in some neighborhood of E, a corresponding point in the manifold.
2. Condition (c) implies that

detg% ?& 0,
and
' E
det /— == 0,
3

since the associated matrices must be invertible.

3. The ambient space need not be present in the general theory of manifolds; that is, it is
possible to define a smooth manifold M without any reference to an ambient space at
all—see any text on differential topology or differential geometry (or look at Rund's
appendix).

4. More terminology: We shall sometimes refer to the x' as the local coor dinates, and to the

y asthe ambient coor dinates. Thus, apoint in an n-dimensional manifold M in E, hasn
local coordinates, but s ambient coordinates.

Examples 2.3
(@) E, isan n-dimensional manifold, with the single identity chart defined by

xi(yl, ce Y =V



(b) S', the unit circle, with the exponential map, is a 1-dimensiona manifold. Hereisa
possible structure:with two charts as show in in the following figure.

g A 51 A

X

\x

A4
A4

-~
NIA .

One has

x: 8'={(1, 0)}—E,
X §'-{(-1, 0)}—E,,

with0 < x, x < 2z, and the change-of-coordinate maps are given by

+7 ifx<nm

_ _Hgx .
X=H o ifx>a (Seethefigure for the two cases. )

Mmoo

and

B
o
A
S

+
- ifx>n

=

Il
oD
=l =l

Notice the symmetry between x and x. Also notice that these change-of-coordinate
functions are only defined when 6 = 0, . Further,

ox/dx = dx/dx = 1.
Note also that, in terms of complex numbers, we can write, for apoint p = eiz € S,
X = arg(z), x= arg(—z).

(c) Generalized Polar Coordinates
Let ustake M = S", the unit n—sphere,

S" =00 Y2 s Y Yuu) € By | Ziyiz =1},

with coordinates (x', x°, . . . , x") with

1 2 -1
O<x,x,...,. X" " <x

and



0 <x" < 2m,
given by

y, = cosx'
y, =sinx' cosx’
y; = sinx' sinx’ cosx’
y,_, =snx snx’sinx’ sinx" ... cosx""
y, = sinx' sinx’sinx’sinx* ... sinx""' cosx”
y,., =snx snx’sinx’ sinx®...sinx"" sinx"
In the homework, you will be asked to obtain the associated chart by solving for the x'.

Note that if the sphere has radius r, then we can multiply al the above expressions by r,
getting

y, = rcosx'

y, =rsinx' cosx’

y; = rsinx' sinx’ cosx’

y,_, =rsnx' sinx’snx’sinx’ ... cosx"”!

y, = rsinx' snx’sinx’sinx’ ... sinx""' cosx”

Vi1 = rsnx snx’sny sinx® ... sinx™ ! sinx”.

(d) Thetorus T = S' xS', with the following four charts:
x: (8'={(1, O)Hx(S'-{(1, 0)})—E,, given by

x'((cost, sinB), (cosg, sing)) = 6
x*((cosh, sinf), (cosp, Sing)) = ¢.

The remaining charts are defined smilarly, and the change-of -coordinate maps are omitted.
(e) The cylinder (homework)
(f) ", with (again) stereographic projection, is an n-manifold; the two charts are given as

follows. Let P bethepoint (0, 0, . ., 0, 1) and let Q bethe point (0, 0, . . ., 0, —1). Then
define two charts (S"-P, x') and (S"-Q, x') asfollows. (See the figure.)

10



< Y Youp) isapointin S”, let

3 = _yl_;
1+yn+1

P2
1""yn+1

¥
1+yn+1

We can invert these maps asfollows: Let /* = 3, x'x', and7 = =, ¥'%. Then:

M

:1+




The change-of-coordinate maps are therefore:

-1
2x
-2 =1
1 Vi 1+7 X
X = 1 = 1 ) :_—2,
yn+1 1 -r r
=2
1+7
=2
2 X
X =22
7
—n
n X
X =
r

This makes sense, since the maps are not defined when ' = 0 for all i, corresponding to
the north pole.

Note

Since7 is the distance from X' to the origin, this map is hyperbolic reflection in the unit
circle

| —

i
X =

g =L

and squaring and adding gives

r =

S —Q oy

That is, project it to the circle, and invert the distance from the origin. This also gives the
inverse relations, since we can write

In other words, we have the following transformation rules.

Change of Coordinate Transformationsfor Stereographic Projection
Let/* = 3,xx', and7 = =, %% Then

Note
We can put all the coordinate functions x,,: U,—E, together to get asingle map

x, U —W,CE,.

12



A more precise formulation of condition (c) in the definition of amanifold isthen the
following: each W, is an open subset of E,, each x, isinvertible, and each composite

-1
w,te  E, B, W,

is defined on an open subset and smooth.

We now want to discuss scalar and vector fields on manifolds, but how do we specify such
things? First, ascalar field.

Definition 2.4 A smooth scalar field on a smooth manifold M isjust a smooth real-valued
map ®: M—E,. (In other words, it is a smooth function of the coordinates of M asa
subset of E,.) Thus, ® associates to each point m of M aunique scalar ®(m). If Uisa

subset of M, then asmooth scalar field on U is smooth real-valued map ®: U—E,. If U
# M, we sometimes call such ascalar field local.

If ®isascalar field on M and x is a chart, then we can express ® as a smooth function ¢ of
the associated parameters x', xz, ..., x". If the chart isx, we shall write'¢ for the function

of the other parametersx', ¥, . . ., ¥". Note that we must have ¢ = @ at each point of the
manifold (see the transformation rule below).

Examples 2.5
(@) Let M = E, (with itsusual structure) and let @ be any smooth real-valued function in
the usual sense. Then, using the identity chart, we have ® = ¢.
(b) Let M = S, and define D(y,, v,, ¥3) = y;. Using stereographic projection, we find
both ¢ and ¢:
2 1,2 2.2
12, 12 -l )+ () -1

¢(~x ,X) - y3(x ,.X) - r2+1 - (xl)Z + (x2)2 +1
o 1P 1@ - @
¢(x ,)C) - y3(x ,X) - 1+7_2 - 1+ (}’_1)2 + (562)2

(c) Local Scalar Field The most obvious candidate for local fields are the coordinate
functions themselves. If U is acoordinate neighborhood, and x = {x'} isachart on U,
then the maps x’ are local scalar fields.

Sometimes, asin the above example, we may wish to specify ascalar field purely by
specifying it interms of itslocal parameters; that is, by specifying the various functions ¢
instead of the single function ®. The problem is, we can't just specify it any way we want,
sinceit must give avalue to each point in the manifold independently of local coordinates.
That is, if apoint p € M haslocal coordinates (x') with one chart and ()‘ch) with another,
they must be related viathe relationship

¥ = 7.

13



Transformation Rulefor Scalar Fields
) = P

Example 2.6 Look at Example 2.5(b) above. If you substituted ¥ as a function of the x’,
youwould get ¢(x', ¥°) = ¢(x', x°).

Exercise Set 2

1. Give the paraboloid z = x* + y* the structure of a smooth manifold.

2. Find asmooth atlas of E, consisting of three charts.

3. (a) Extend the method in Exercise 1 to show that the graph of any smooth function
f: E,—FE, can be given the structure of a smooth manifold.

(b) Generdlize part (a) to the graph of asmooth functionf: E, — E,.

4. Two atlases of the manifold M give the same smooth structureif their unionisagan a
smooth atlas of M.

(a) Show that the smooth atlases (E,, /), and (E,, g), wheref(x) = x and g(x) = x’ are
incompatible.

(b) Find athird smooth atlas of E, that isincompatible with both the atlasesin part (a).
5. Consider the ellipsoid L C E, specified by

2 vV 2
—2+y—2+—2:1 (a, b, c #0).
a b c

Define f: L—5° by fix, v, 7) = % %, fﬁ

(a) Verify that fisinvertible (by finding itsinverse).

(b) Use the map f, together with a smooth atlas of S, to construct a smooth atlas of L.

6. Find the chart associated with the generalized spherical polar coordinates described in
Example 2.3(c) by inverting the coordinates. How many additional charts are needed to get
an atlas? Give an example.

7. Obtain the equations in Example 2.3(f).

3. Tangent Vectors and the Tangent Space

We now turn to vectors tangent to smooth manifolds. We must first talk about smooth
paths on M.

Definition 3.1 A smooth path on M isasmoothmap r: (-1, 1)—M, wherer(r) = (y,(?),

(1), . .., y(1). We say that r is a smooth path through m € M if r(z,) = m for some
th € (-1, 1). We can specify apath in M at m by its coordinates:

14



y1 = @),

Y2 = ¥,
ys = yg(t)l
where m isthe point (y,(ty), y,(ty), - - -, ¥,(t;)). Equivalently, since the ambient and |ocal

coordinates are functions of each other, we can aso express a path—at least that part of it
inside a coordinate neighborhood—in terms of itsloca coordinates:

x = x0),

K= xz(t),

X' =x").
Examples 3.2

(a) Smooth pathsin E,
(b) A smooth pathin ', and §"

Definition 3.3 A tangent vector at m € M C E, isavector vin E, of theform
v = y'(ty)
for some pathy = y(¢#) in M through m and y(t,) = m.

Examples 3.4
(a) Let M bethesurfacey, = y,> + ,’, which we paramaterize by

1
=%
2
Yo =X

;= )+ @)
This corresponds to the single chart (U=M; x', x%), where
x' =y, andx’ = y,.
To specify atangent vector, let usfirst specify apath in M, such as

i :\/;Sinf

y, =\t cosr
=1t

15



(Check that the equation of the surfaceis satisfied.) This gives the path shown in the
figure.

Now we obtain atangent vector field along the path by taking the derivative:

dy, dy, dy
= ,—3')=(\/;COSI+— \ﬁsnt+— 1).
dt ' dt dt N/t M/t

(To get actua tangent vectors at pointsin M, evaluate this at a fixed point #,.)

Note We can also express the coordinates x’ in terms of 7:

xlzylz\/-tsint
¥ =y, =\l cos

This descibed a path in some chart (that is, in coordinate space) rather than on the
mnanifold itself. We can a so take the derivative,

(d )—(\/;COSt+— \ﬁsnt+—
dt 2N\t

We also think of this as the tangent vector, given in terms of the local coordinates. A lot
more will be said about the relationship between the above two forms of the tangent vector
below.

Algebra of Tangent Vectors: Addition and Scalar Multiplication
The sum of two tangent vectorsis, geometrically, also atangent vector, and the same goes
for scalar multiples of tangent vectors. However, we have defined tangent vectors using
pathsin M, and we cannot produce these new vectors by smply adding or scalar-
multiplying the corresponding paths: if y = f(r) and y = g(¢) are two paths through m €
M wheref(t,) = g(t,) = m, then adding them coordinate-wise need not produce a path in
M. However, we can add these paths using some chart as follows.

Choose a chart x at m, with the property (for convenience) that x(m) = 0. Then the
paths x(f(r)) and x(g(¢)) (defined as in the note above) give two paths through the origin in
coordinate space. Now we can add these paths or multiply them by a scalar without leaving

16



coordinate space and then use the chart map to lift the result back up to M. In other words,
define

(F+8)(1) = x~1(x(f(1) + x(g(1)
and (AN = x~ 1 (Ax(fn)).

Taking their derivatives at the point 7, will, by the chain rule, produce the sum and scalar

multiples of the corresponding tangent vectors. Since we can add and scalar-multiply
tangent vectors

Definition 3.5 If M isan n-dimensional manifold, and m € M, then the tangent space at
mistheset T, of all tangent vectors at m.

The above constructions turn 7,,, into a vector space.

Let usreturn to the issue of the two ways of describing the coordinates of atangent vector
at apoint m € M: writing the path asy; = y,() we get the ambient coordinates of the

tangent vector:

Ry, dy, dy,H : :
! — —_=
y'(ty) = Hd_t’ g , _Hdt 1, Ambient coordinates

and, using some chart x at m, we get the local coor dinates

X! dx? dx"

! —
x'(ty) = d o di Hety

Question In general, how are the dx'/dt related to the dy;/dt?
Answer By the chainrule,

v, _ oy di' oy dX
dr gy dt ox> dt '’

and similarly for dy,/dt and dy,/dt. Thus, we can recover the original three ambient vector
coordinates fromthe local coordinates. In other words, the local vector coordinates
completely specify the tangent vector.

Note The chain rule as used above shows us how to convert local coordinates to ambient
coordinates and vice-versa:

17



Converting Between Local and Ambient Coordinates of a Tangent Vector

If the tangent vector V has ambient coordinates (v,, v,, . . . , v,) and local coordinates (v',

Vv, ..., V"), then they are related by the formulae

and

Note To obtain the coordinates of sums or scalar multiples of tangent vectors, simply take
the corresponding sums and scalar multiples of the coordinates. In other words:

(v+w) = vi + wi
and (Av)i = W/

just as we would expect to do for ambient coordinates. (Why can we do this?)

Examples 3.4 Continued: '
(b) Take M = E,, and let v be any vector in the usual sense with coordinates ¢'. Choose x
tobetheusua chartxi = y,. If p = (p', p°, .. ., p") isapointin M, then v isthe derivative
of the path

x' = pl + ta'

x2 = p2 + ta2;

X' =p'+tad

at t = 0. Thusthisvector hasloca and ambient coordinates equal to each other, and equal
to

which are the same as the original coordinates. In other words, the tangent vectors are “the
same’ as ordinary vectorsin E,,.

(c) Let M = §*, and the path in S° given by

y, =98nt
»=0
y; = COS?

18




Thisisapath (circle) through m = (0, 0, 1) following the line of longitude ¢ = x* = 0,
and has tangent vector

dy, dy, d . .
(%L Eyf ’Eytl) = (cogt, 0, —sing) = (1, 0, 0) at the point m.

(d) We can dso use the local coordinates to describe a path; for instance, the path in part
(b) can be described using spherical polar coordinates by

I_

¥ =0
The derivative

dx' dx’
Cor g ) =00

givesthelocal coordinates of the tangent vector itself (the coordinates of itsimage in
coordinate Euclidean space).

(e) Ingenerd, if (U; x', X%, . . ., x") isacoordinate system near m, then we can obtain
pathsy () by setting

; + const. ifj =i

X)) = FConst. if j =i :

where the constants are chosen to make x'(#,) correspond to m for some 7. (The pathsin
(c) and (d) are an example of this.) To view thisas a path in M, we just apply the
parametric equationsy; = y,(x'), giving the y, as functions of 7.

The associated tangent vector at the point wherer = ¢, iscalled d/dx'. 1t has local

coordinates

— S/
itjei =0

6/ is called the Kronecker Delta, and is defined by

@—%iuii

We can now get the ambient coordinates by the above conversion:

19



=
1

k:] k=1

@
bl
@
bl
o
=

X

. d .
We call this vector ? . Summarizing,
X

Definition of i,
ox

: . a . . .
Pick apoint m € M. Then — isthe vector at m whose local coor dinates are given by

ox'

5 B
i th coordinate = E—EJ
’ '

_ j_ |f]:l
—5'—% it =i

axl
Bx’

Its ambient coordinates are given by

. dy;
J th coordinate = —yf
ox

(everything evaluated at £,) Notice that the path itself has disappeared from the definition...

Now that we have a better fed for local and ambeinet coordinates of vectors, let us state
some more “general nonsense”: Let M be an n-dimensional manifold, and let m € M.

Proposition 3.6 (The Tangent Space)

There is aone-to-one correspondence between tangent vectors at m and plain old vectorsin
E,. In other words, the tangent space “looks like” E,. Technically, this correspondneceisa
linear ismorphism.

Proof (and thiswill explain why local coordinates are better than ambient ones)
Let T, be the set of tangent vectors at m (thet is, the tangent space), and define

F:T,—E,
by assigning to atypical tangent vector itsn local coordinates. Define an inverse

G: E—T,
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. 9 9 0
by theformula GO/', V2, ..., V) =vi— + V= + ... +V'—
0x 0x 0x

; 0

=y =5

ox

Then we can verify that F and G are inverses as follows:

.0
FGOW', WV, ... V) = FEy —)
ox

. 0 0 a0
= local coordinates of thevector v'— + v"— + ... +V'—.
ox ox ox

o . , d ,
But, in view of the simple local coordinate structure of the vectors P the i th coordinate
X

of thisfield is

VIO) + .+ VTO) V) +VT0) = L+ V(0) =V
In other words,

i th coordinate of F(G(v)) = F(G(v))' = v/,

so that F(G(v)) = v. Conversely,

0 5 0 d
G(F —w— +w—= + .. .+ W
(Fw)) =w P w o w 0

where w' arethelocal coordinates of the vector w. Is this the same vector as w? Well, let us
look at the ambient coordinates; since if two vectors have the same ambient coordinates,
they are certainly the same vector! But we know how to find the ambient coordinates of
each term in the sum. So, the j th ambient coordinate of G(F(w)) is
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3y, 3y, 3y,
GFw)), = w2 4 w22 4 4 w2
/ dx ax ox

(using the formula for the ambient coordinates of the 9/0x")
= w; (using the conversion formulas)

Therefore, G(F(w)) = w, and we are done. [

That iswhy we use local coordinates; thereis no need to specify a path every time we want
a tangent vector!

Note Under the one-to-one correspondence in the proposition, the standard basis vectorsin
E, correspond to the tangent vectors a/0x', 9/ax*, . .., 3/ax". Therefore, the latter vectors
are abasis of the tangent space 7,

1. Suppose that v is atangent vector at m € M with the property that there existsalocal
coordinate system x' at m withvi = 0 for every i. Show that v has zero coordinates in every
coefficient system, and that, infact, v = 0.
2. (a) Calculate the ambient coordinates of the vectors 0/06 and 0/0¢ at ageneral point on
S*, where 6 and ¢ are spherical polar coordinates (6 = x!, ¢ = x2).
(b) Sketch these vectors at some point on the sphere.
3. Prove that i_ = %i .
ox'  ox ox
4. Consider the torus 72 with the chart x given by
y; = (a+b cos x!)cos x2
v, = (a+b cosx)sin x2
y3 = bsinx!
0 < x' < 2. Find the ambeint coordinates of the two orthogonal tangent vectorsat a
general point, and sketch the resulting vectors.

4. Contravariant and Covariant Vector Fields

Question How arethelocal coordinates of a given tangent vector for one chart related to
those for another?
Answer Again, we use the chain rule. The formula

&% dY

dt ~ gy dt
(Note: we are using the Einstein Summation Convention: repeated index implies
summation) tells us how the coordinates transform. In other words, a tangent vector
through apoint 7 in M isacollection of n numbersv' = dx'/dt (specified for each chart x at
m) where the quantities for one chart are related to those for another according to the
formula
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o
V==V
YT
Thisleads to the following definition.

Definition 4.1 A contravariant vector at m € M isacollection v’ of n quantities (defined
for each chart at m) which transform according to the formula

ox’

i
V= —

o

It follows that contravariant vectors “are” just tangent vectors. the contravariant vector vi
corresponds to the tangent vector given by

— yl —
V—Vaxi,

so we shall henceforth refer to tangent vectors and contravariant vectors.

A contravariant vector field V on M associates with each chart x a collection of » smooth
real-valued coordinate functions V' of the n variables (x', x°, . . ., x"), such that

evaluating V' at any point gives avector at that point. Further, the domain of the V' isthe
whole of the range of x. Similarly, a contravariant vector field Von U C M isdefined
in the same way, but its domain isrestricted to x(U).

Thus, the coordinates of a smooth vector field transform the same way:

Contravariant Vector Transformation Rule

_. ox
V=—V
ox’
where now the V' and V¥ are functions of the associated coordinates (x', x°, . . ., x"), rather

than real numbers.

Notes 4.2
1. The above formulais reminiscent of matrix multiplication: In fact, if D isthe matrix

!

. . OX : : .
whoseij thentry is ﬁ , then the above equation becomes, in matrix form:

V =DV,
where we think of V and V as column vectors.
2. By “transform,” we mean that the above relationship holds between the coordinate

functions V' of the x' associated with the chart x, and the functions V' of the ¥', associated
with the chart x.
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3. Note the formal symbol cancellation: if we cancel the d's, the x's, and the superscripts
on theright, we are | eft with the symbols on the [ eft!

4. From the proof of 3.6, we saw that, if V isany smooth contravariant vector field on M,
then

0
V=V—.
ox
Examples 4.3
(@) Take M = E,, and let F be any (tangent) vector field in the usual sense with coordinates
F.fp= (' p’ ..., pYisapointin M, thenvisthe derivative of the path
x' =p' +tF'
X = p2 + tFZ;
x'=p" + tF

at t = 0. Thusthis vector field has (ambient and local) coordinate functions

' ;
o =

which are the same as the original coordinates. In other words, the tangent vectorsfields
are “the same” as ordinary vector fieldsin E,.

(b) An Important Local Vector Field Recall from Examples 3.4 (€) above the definition
of the vectors d/dx": At each point m in amanifold M, we have the n vectors 8/0x', 8/0x”, . .
., 0/0x", where the typical vector d/dx" was obtained by taking the derivative of the path:

J _ . , - ; +const. ifj=1i
Y] = vector obtained by differentiating the path x/'(r) = g:onst. it i :

where the constants are chosen to make x'(7,) correspond to m for some ¢,. This gave

%%EL% ifj =i

ifj#i

Now, there s nothing to stop us from defining » different vector fields d/0x', a/0x7, . . .,

d/0x", in exactly the same way: at each point in the coordinate neighborhood of the chart x,
associate the vector above.
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Note: i, isafield, and not the ith coordinate of afield. Its jth coordinate under the chart x

0x
isgiven by
3 _ |f] = l _ Jj _ a_x]
GeH T e T T ad

a every point in theimage of x, and is called the Kronecker Delta, 65 . More about that
later.

Question Since the coordinates do not depend on x, does it mean that the vector field 9/0x’'
is constant?

Answer No. Remember that atangent field isafield on (part of) a manifold, and as such,
itisnot, in general, constant. The only thing that is constant are its coordinates under the
specific chart x. The corresponding coordinates under another chart x are 9x/0x (which are
not constant in general).

(c) Patching Together Local Vector Fields The vector field in the above example has the
disadvantage that islocal. We can “extend” it to the whole of M by making it zero near the
boundary of the coordinate patch, asfollows. If m € M and x isany chart of M, lat x(m) =
y and let D be adisc or some radius r centered at y entirely contained in the image of x.
Now define avector field on the whole of M by

d . .
49,k if pisinD

w(p) = Ty ©
ED otherwise
where
__ k) -l
R_r—lx(p)—yl'

The following figure shows what this field looks like on M.
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Thefact that V is a smooth function of thex’ now follows from the fact that all the partial
derivatives of all orders vanish as you leave the domain of x.

(d) Take M = §", with stereographic projection given by the two charts discussed earlier.

Consider the circulating vector field on S” defined at the point y = (y,, y,, - - -, Y,» Y,up) DY
the paths

t 6 (y,COSt — y,Sint, y,SINt + y,CO, Vs, - - -, Vyuy)-
(For fixedy = (v, ¥, - - -, ¥ Y,ip) thisdefines apath at the point y—see Example 3.2(c)

in the web site) Thisisacirculating field in the y,y,-plane—look at spherical polar

coordinates. See the figure.)

ylyz-plane

Note: Length of tangent vector = radius of circle

In terms of the charts, the local coordinates of thisfield are:
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: 1
Cost — y,Snr dx Snt + y,CoSY
. = 2= - J2w=
L A ySL _ Y y 2

1=y, 1=y, dt 1=y,
2 M NS + ycost d  ycost — ySnt
X = = , = — = =X
1_yn+1 1_yn+l dt3 1_yn+1
d
X = _yL; oV = EAT 0
1_yn+1 dt
n Yy dx"
x = —; so V' = =0.
1_yn+l dt
and
L Sl 1S y,8int o7 = dil __ySint + ycost 22
14y, 1+y,. ’ dt I+y,.4
2 M NS + ycost o d¥’ _ycost - ySnt
X = = , = — = =X
1"'yn+1 1+yn+l dt3 1+yn+1
- dx
¥ = o= =0
1+yn+1 dt
n - dx"
1+yn+l dt

Now let us check that they transform according to the contravariant vector transformation
rule. First, we saw above that

i X
X =,
p
and hence
Er2—2(xi)2 .
=i 1 ifj =1
A S AN
d E —2x'y

In matrix form, thisis:

HFZ—Z(XI)Z S ) S H

D N s Sl ) o R P U D

R I A
[] —2x"x! e I L, T o []

Thus,
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[
}7’2—2()61)2 _2x1x2 2x1x3 _2x1xn ngl —]
3 1 N 2 9022 -2 YN —
DV = — A xXx  r=2x) X XX 0 |;|
7 .. .. 0
L] oy N S, b rF=2(x") DE —
0 L
%—x%’z + 2% = 20y [
221 2.1 221
205 x +rix — 20)x |
1
Ny 0 0
s
E—xz/r2 X
X'

Ll IIFII Il
(O =

IUIIHIIIIJI
<

=i

Covariant Vector Fields
We now look at the (local) gradient. If ¢ isasmooth scalar field on M, and if x isachart,

then we obtain the locally defined vector field ag/dx". By the chain rule, these functions
transform as follows:
ap _op o
ax o ox'’
or, writing C; = d¢/ox’,
X’

C, =—C;.
ox

This leads to the following definition.

Definition 4.4 A covariant vector field C on M associates with each chart x a collection of
n smooth functions C(x', x°, . . . , x") which satisfy:

Covariant Vector Transformation Rule
_ o

¢.=C—
! ox

Notes 4.5
1. If D isthe matrix whose ij th entry isg—; , then the above equation becomes, in matrix

form:
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C = CD,
where now we think of C and C as row vectors.
2. Note that
BD); = a0 ~ o0 o)
and similarly for DD. Thus, D and D are inverses of each other.
3. Note again the formal symbol cancellation: if we cancel the d's, the x's, and the
superscripts on the right, we are |eft with the symbols on the | eft!
4. Guide to memory: In the contravariant objects, the barred x goes on top; in covariant
vectors, on the bottom. In both cases, the non-barred indices matches.

Question Geometrically, a contravariant vector isavector that istangent to the manifold.
How do we think of a covariant vector?
Answer The key to the answer isthis:

Note From now on, all scalar and vector fields are assumed smooth.
Definition 4.6 A smooth 1-form, or smooth cotangent vector field on the manifold M (or

on an open subset U of M) isafunction F that assigns to each smooth tangent vector field
V on M (or on an open subset ) asmooth scalar field F(V), which has the following

properties:
F(V+W) = F(V) + F(W)
F(aV) = aF(V).

for every pair of tangent vector fields V and W, and every scalar «. (In the language of
linear algebra, this saysthat F isalinear transformation.)

Proposition 4.7 (Covariant Fields are One-Form Fields)

There is a one-to-one correspondence between covariant vector fieldson M (or U) and 1-
formson M (or U). Thus, we can think of covariant tangent fields as nothing more than 1-
forms.

Proof Here is the one-to-one correspondence. Let F be the family of 1-formson M (or U)
and let C be the family of covariant vector fields on M (or U). Define

;. C—F
by

O(C)(V) = C V.
In the homework, we see that CkV" isindeed ascalar by checking the transformation rule:

cV=cV.

The linearity property of ® now follows from the distributive laws of arithmetic. We now
definethe inverse
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Y. F—C

by
(P(F)); = F(8/ax).

We need to check that thisis a covariant vector field; that is, that it transforms in the correct
way. But, it x and x are two charts, then

F(i_,.) =F a—)_{i) (if you don't believe this, look at the ambient coordinates)
ox ox' X
w9
=— F(—),
peiewp
by linearity.

That ¥ and ® arein fact inversesis left to the exercise set. [

Examples 4.8
(a) Let M = S" with the charts:
x = ag(z), x = arg(—z)
discussed in 82. There, we saw that the change-of-coordinate maps are given by

x4+ ifx<wm
x—x ifx=x °

=l =l

+m if
- if

=l =l
IV 1A

T g
=0
T x_g

~
Il
[

with
dx/0x = dx/dx = 1,

so that the change-of-coordinates do nothing. It follows that functions C and C specify a
covariant vector field iff C = C. (Then they are automatically a contravariant field aswell).
For example, let

Cx) =1 =C®).
Thisfield circulates around S'. On the other hand, we could define
C(x) =snxand C(x) = — sinx = sSin x.

Thisfield isillustrated in the following figure.

e length of the vector at the point ¢ is given by sin 6.
(Thelength of th he point ¢ b )
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(b) Let ¢ beascalar field. Its ambient gradient, grad ¢, is given by
o¢ o¢
radeg = [—,, ..., —],

gradg = [ o
that is, the garden-variety gradient you learned about in calculus. Thisgradient is, in
general, neither covariant or contravariant. However, we can useit to obtain a1-form as
follows: If Visany contravariant vector field, then the rate of change of ¢ along Visgiven
by V.grad ¢. (If V happensto be a unit vector at some point, then thisis the directional
derivative at that point.) In other words, dotting with grad ¢ assigns to each contravariant
vector field the scalar field F(v) = V.grad ¢ whichtellsit how fast ¢ is changing along V.
We aso get the 1-form identities:

F(V+W) = F(V) + F(W)

F(aV) = aF(V).

The coordinates of the corresponding covariant vector field are

F(3/9x") = (3/9x").grad ¢

9 9 9y, , 99 ¢
= [ l ) l y ot l ] . [ P R A ] ]1
oxt ’ox Ox ay, ay,
_0¢
T oxi’

which isthe example that first motivated the definition.

(c) Generalizing (b), let = be any smooth vector field (in E,) defined on M. Then the

operation of dotting with £ isalinear function from smooth tangent fields on M to smooth
scalar fields. Thus, it is a cotangent field on M with local coordinates given by applying the

linear function to the canonical charts 9/0x":

i~ iz Z.
0x
The gradient is an example of this, since we are taking

2 =grad¢
in the preceding example.

Note that, in general, dotting with 2 depends only on the tangent component of . This
leads us to the next example.

(d) If Visany tangent (contravariant) field, then we can appeal to (c) above and obtain an
associated covariant field. The coordinates of thisfield are not the same asthose of V. To
find them, we write:

V= v‘é}i (See Note 4.2 (4).)
X
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Jd ;0 ;0 0
C.=— .V— = —_——
Toood o ax ax ax'
Note that the tangent vectors d/dx" are not necessarily orthogonal, so the dot products don't

. . d o
behave as smply aswe might suspect. Welet g; = Q ; , SO that
X

C = gile.
We shall seethe quantities g,; again presently.

Definition 4.9 If Vand W are contravariant (or covariant) vector fieldson M, and if o isa
real number, we can define new fields V+W and aV by

V+W=V+W
and (aV) = aV.
Itiseasily verified that the resulting quantities are again contravariant (or covariant) fields.
(Exercise Set 4). For contravariant fields, these operations coincide with addition and scalar
multiplication as we defined them before.

These operations turn the set of all smooth contravariant (or covariant) fieldson M into a
vector space. Note that we cannot expect to obtain a vector field by adding a covariant field
to a contravariant field.

Exercise Set 4

1. Suppose that X’ is a contravariant vector field on the manifold M with the following
property: at every point m of M, there existsalocal coordinate system x' at m with X'(x', x°,
..., x") = 0. Show that X' isidentically zero in any coordinate system.

2. Give and example of acontravariant vector field that is not covariant. Justify your claim.
3. Verify thefollowing clam If V and W are contravariant (or covariant) vector fields on M,
and if o isareal number, then V+W and oV are again contravariant (or covariant) vector
fieldson M.

4. Verify thefollowing claim in the proof of Proposition 4.7: If C, is covariant and V' is
contravariant, then C,V* isascalar.

5. Let ¢: S"—FE, bethescaar field defined by ¢(py, ps, - - -, Prst) = Pusr-

(a) Express ¢ as afunction of thex' and as a function of the @’.

(b) Calculate C; = d¢/0x' and C; = d¢/ox’.

(c) Verify that C; and C; transfprm according to the covariant vector transformation rules.
6. Isit true that the quantities x' themselves form a contravariant vector field? Prove or give
acounterexample.

7. Prove that W and @ in Proposition 4.7 are inverse functions.

8. Prove: Every covariant vector field is of the type given in Example 4.8(d). That is,
obtained from the dot product with some contrravariant field.

32



5. Tensor Fields

Supposethat v = (v, v,, v;) and w = {w,, w,, w,) are vector fieldson E,. Then their
tensor product is defined to consist of the nine quantities vyw;. Let us see how such things
transform. Thus, let V and W be contravariant, and let C and D be covariant. Then:

v = Dy By Iy

and similarly,
i % ox'
Ve = ——V'C,,
U AT A
and
- — ox ox'
CD =——C
T X ox

We call these fields “tensors’ of type (2, 0), (1, 1), and (0, 2) respectively.

Definition 5.1 A tensor field of type (2, 0) on the n-dimensional smooth manifold M
associates with each chart x a collection of n* smooth functions 7/(x', x°, . . ., x") which
satisfy the transformation rules shown below. Similarly, we define tensor fields of type (0,
2), (1, 1), and, more generally, atensor field of type (m, n).

Some Tensor Transformation Rules

Type(2,0): T’= a—xka—)i "
ox .ax
Type(1,1): i _ A
yp T J T oxkew !
_ 8x o'
Type (0, 2): S = a-’ x’S"’

Notes
(1) A tensor field of type (1, 0) isjust a contravariant vector field, while atensor field of
type (0, 1) isacovariant vector field. Similarly, atensor field of type (0, O) isascalar field.
Type (1, 1) tensors correspond to linear transformations in linear algebra.
(2) We add and scalar multiply tensor fields in amanner smilar to the way we do these
thingsto vector fields. For instant, if A and B are type (1,2) tensors, then their sum is
given by

(A+B),,c =A,° + ByC.

Examples 5.2
(a) Of course, by definition, we can take tensor products of vector fields to obtain tensor
fields, aswe did above in Definition 4.1.
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(b) The Kronecker Delta Tensor, given by

i %1 ifj=1i
j a0 ifj=#i
is, infact atensor field of type (1, 1). Indeed, one has
o ox
o ==,
7o

and the latter quantities transform according to the rule
poox o ot o o

Joox ok ax ¥ T axfax !
whence they congtitute atensor field of type (1, 1).

Notes
1. 6; =6; as functionson E,. Also, 6; =6§.Thatis, itisasymmetric tensor.
QmW W i

o o ok

Question OK, so isthis how it works: Given apoint p of the manifold and achart x at p
this strange object assigns the n* quantities 5]’. ; that is, the identity matrix, regardless of

the chart we chose?
Answer Yes.

Question But how can we interpret this strange object?

Answer Just as a covariant vector field converts contravariant fields into scalars (see
Section 3) we shall seethat atype (1,1) tensor converts contravariant fields to other
contravariant fields. This particular tensor does nothing: put in a specific vector field V, out
comes the same vector field. In other words, it is the identity transformation.

(c) We can make new tensor fields out of old ones by taking products of existing tensor
fieldsin various ways. For example,

A/I;k N1 is atensor of type (3, 4),
while
A/I;k N’r]; isatensor of type (1, 2).
Specific examples of these involve the Kronecker delta, and are in the homework.

(d) If X isacontravariant vector field, then the functions % do not define atensor.

ox’
Indeed, let us check the transformation rule directly:
1
¥ ox [ dxk
_ 9 [ Qoxt
axh [T axk g%/

oxt v ot o
oxh axk g3/ IxhoxK




The extraterm on the right violates the transformation rules.

We will see more interesting examples later.

Proposition 5.3 (If It Looks Like a Tensor, It Isa Tensor)

Suppose that we are given smooth local functions g;; with the property that for every pair of
contravariant vector fields X' and Y', the smooth functions g, X'’ determine ascalar field,
then the g,; determine a smooth tensor field of type (0, 2).

Proof Sincethe g,X'¥’ form ascalar field, we must have

gu}_{l? = gthhYk-
On the other hand,

ax Bx’
g XY =g X'V
Equating the right-hand sd&s gives

guX'Y" = g,,ax i D S ——————— 0

Now, if we could only cancel the terms X"Y*. Well, choose a point m € M. It sufficesto
- a_‘

gug ax; , when evaluated at the coordinates of m. By Example 4.3(c),

we can arrange for vector fields X and Y such that

El ifi =h

g 0 otherwise

show that g,, =

X'(coordinates of m) =

and

E 1 ifi=k

QO otherwise

Substituting these into equation (1) now gives the required transformation rule. [J

Y'(coordinates of m) =

Example 5.4 Metric Tensor
Define aset of quantities g;; by

_9 0
" on'
If X' and ¥ are any contravariant fieldson M, then X-Y isascalar, and
d

XY = X—Y/—— Y.
¥ sX

Thus, by proposition 4.3, itisatype (0, 2) tensor. We call this tensor “the metric tensor
inherited from the imbedding of M in E,.”

Exercise Set 5

1. Compute the transformation rules for each of the following, and hence decide whether or
not they are tensors. Sub-and superscripted quantities (other than coordinates) are
understood to be tensors.
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e TN A . L 4
dt o’ o’ ox'ox’ ax'ox’
2. (Rund, p. 95 #3.4) Show that if A; isatype (0, 1) tensor, then
oA, _ 04,
o o

isatype (0, 2) tensor.
3. Show that, if M and N are tensors of type (1, 1), then:

(a) M]’N’; isatensor of type (2, 2)
(b) MJ’N; isatensor of type (1, 1)
© MJZ N/ isatensor of type (0, 0) (that is, ascalar field)

4. Let X be acontravariant vector fie d and suppose that M is such that all change-of-
coordinate maps havetheformx' = a’x’ + k' for certain constantsa” and ¥. (We call such a

manifold affine.) Show that the functi ons% define atensor field of type (1, 1).

5. (Rund, p. 96, 3.12) If B = —B™ show that B’ = 0. Deduce that any type (3, 0)
tensor that is symmetric on the first pair of indices and skew-symmetric on the last pair of
indices vanishes.

6. (Rund, p. 96, 3.16) If A,;; is a skew-symmetric tensor of type (0, 2), show that the

quantities B,,, defined by
0A, 0A 0A,
B = b+ T2k 4
ox ox ox

(a) are the components of atensor; and
(b) are skew-symmetricin al pairsin indices.
(c) How many independent components does B,,, have?
7. Cross Product
(a) If X and Y are contravariant vectors, then their cross-product is defined as the tensor of
type (2, 0) given by

X AY) = XY - XY.
Show that it is a skew-symmetric tensor of type (2, 0).
(b) If M = E;, then the totally antisymmetric third order tensor isdefined by

if (i, j, k) isan even permutation of (1, 2, 3)

€ = 51 if itisan odd permutation of (1, 2, 3)
(or equivalently, &;,; = +1, and ¢, is skew-symmetric in every pair of indices.) Then, the
(usual) cross product on E; is defined by

(X % ¥), = e (X A VY-
(c) What goes wrong when you try to define the “usual” cross product of two vectors on
E,?|sthere any analogue of (b) for E,?
8. Suppose that C” isatype (2, 0) tensor, and that, regarded as an nxn matrix C, it
happensto be invertible in every coordinate system. Define a new collection of functions,
D, by taking
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D.=C".
ij i
the ij the entry of C~' in every coordinate system. Show that Dy, isatype (0, 2) tensor.

[Hint: Write down the transformation equation for C? and invert everything in sight.]
029
9. What iswrong with the following “ proof” that ok = 0 regardless of what smooth

functions x/(x") we use:

x] ﬁ

_ 6‘2x1 a_xl
© Ol 9xk gxh
9
~ Oxk ox! Oxh
0 @R
© oxk [9x/oxh

0 ;g ox!
= o B

=0

6. Riemannian M anifolds

Definition 6.1 A smooth inner product on amanifold M isafunction (—,—) that
associates to each pair of smooth contravariant vector fields X and Y ascalar (field) (X, Y)
satisfying the following properties.
Symmetry: X, V) =(, X) fordl Xand Y,
Bilinearity: (aX, BY) = ap(X, Y) for dl X and Y, and scalars « and 8
X, Y+2) =X, V) + (X, 2)
(X+Y,2) = (X, Z2) + (Y, Z).
Non-degener acy: If (X, Y) = 0forevery Y,thenX = 0.
We also call such agizmo asymmetric bilinear form. A manifold endowed with a smooth
inner product is called a Riemannian manifold.

Before we look at some examples, let us see how these things can be specified. First,
notice that, if x isany chart, and p isany point in the domain of x, then
Jd a9

X, Xy ,

X,V =XY{—= PRRPY — )
This gives us smooth functions

_ Q9

5= o o
such that

X, 7) = gXY
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and which, by Proposition 5.3, constitute the coefficients of atype (0, 2) symmetric
tensor. We call this tensor the fundamental tensor or metric tensor of the Riemannian
manifold.

Examples 6.2
(@ M = E,, withthe usual inner product; g; = 6,;.

(b) (Minkowski Metric) M = E,, with g;; given by the matrix

100 0
50100
G=[To o1 o [}
Lo o 0o -2 U

where ¢ isthe speed of light.

Question How does this effect the length of vectors?

Answer We saw in Section 3 that, in E,, we could think of tangent vectors in the usual
way; as directed line segments starting at the origin. Therole that the metric playsisthat it
tellsyou the length of a vector; in other words, it gives you a new distance formula:

Euclidean 3- space: d(x, y) = V(v — x)% + (0 — 1,)> + (3 — x3)°
Minkowski 4-space: d(x, y) = N, — x,)° + (0 — %)° + (13 — x3)° — ¢ — X,)

2

Geometrically, the set of all pointsin Euclidean 3-space at a distance r from the origin (or
any other point) isasphere of radius r. In Minkowski space, it is ahyperbolic surface. In
Euclidean space, the set of all points adistance of 0 from the origin isjust asingle point; in
M, itisacone, caled the light cone. (See thefigure.)
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Euclidean 3-space

(c) If M isany manifold embedded in E,, then we have seen above that M inherits the
structure of a Riemannian metric from a given inner product on E.. In particular, if M isany

3-dimensional manifold embedded in E, with the metric shown above, then M inherits such
ainner product.

(d) Asaparticular example of (c), let us calculate the metric of the two-sphere M = §7,
with radius r, using polar coordinates x' = 6, x* = ¢. To find the coordinates of g... we
need to calculate the inner product of the basis vectors 9/0x", 9/0x”. We saw in Section 3
that the ambient coordinates of d/dx’ are given by

. ady;
J th coordinate = —y;‘ ,
ox

where
y,=r sin(x") cos(x’)
y, =71 Sin(xl) Sin(xz)

v = r cos(x)
Thus,
8 1 2 1\ - 2 . 1
g = r(cos(x )cos(x”), cos(x )SIn(x"), —sin(x’))
d . | N 2 : 1 2
g =r(—9n(x )sin(x"), sin(x )cos(x"), 0)
Thisgives
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gy = (0/0x", 9/ox"y =
,

gy = (0/0x°, 8/0x°) = > sin’(x")
g, = (a/ax' 9/ax’ ) = 0,

S0 that

5° 0 H

&+=Ho ranta) H

(e) The n-Dimensional Sphere Let M be the n-sphere of radius r with the followihg
generaized polar coordinates.

y, = rcosx'

y, =rsinx' cosx’

y; = rsinx' sinx’ cosx’

y,_, =rsinx' snx’sinx’ sinx’ ... cosx""’

y, = rsinx' sinx’sinx’ sinx* ... sinx""' cosx”
y,., =rsnx' snx’snx’ sinx’ ... sinx"" sinx”.

(Notice that x' is playing therole of ¢ and thex?, x°, . . ., ¥~ therole of 6.) Following the
line of reasoning in the previous example, we have

0 . .
o = (-rsinx', rcosx' cosx’, rcosx' sinx’cosx’, . . .,
X
1 2 . n—1 n 1 2 : n—-1 _; n

rCosx Snx ...sSNx COSx,rCosx snx ...SNx smx)
d : 1 2 . 1 2 3 . n—1 n
F =(0,—I’S|nx Snx, ..., rS9Nx COSx SINx ...S9Nx  COSx,
X

. 1 2 . 3 - n—1 _: n
rnx cosx Sinx ...sNx SNx").

J sl 23 D 3 4
F = (0,0, —rsinx SiNx"SiNnx”, rSINx SINx” COSx” COSx ...,
X

rsinx' sinx*cosx’sinxt... sinx" ' cosx”, rsinx' sinx*cos ¥’ sinx* ... sinx""'sin
n
X)),

and so on.
gy, = (ox', a/ox'y =

gy = (0/0x°, 0/0x°) = r*sin’x’
g3 = (9/0x°, 8/0x°) = rsin’x' sin’ ¥
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g,, = (9/0x", 0/0x") = Pen’ s’ X ... sin’ X

g;=0 ifi #j
s0 that
r2 0 0 0
0 rsin’y! 0 0
G = HO 0  rFsn’xlsin’d® L. 0 H
0 0 0 o rsintxl sin?a? L sin® A

(f) Diagonalizing the Metric Let G be the matrix of g... in somelocal coordinate system,
evaluated at some point p on a Riemannian manifold. Since G is symmetric, it follows from

linear algebrathat thereis an invertible matrix P = (P;) such that

at the point p. Let us call the sequence (x1,£1, . . ., £1) the signatur e of the metric at p.
(Thus, in particular, a Minkowski metric has signature (1, 1, 1, —1).) If we now define

new coordinates X’ by
x = Pj,-)_c/,
(so that we are using the inverse of P for this) then 9x'/9x’ = P;;, and so
_ oxt o’
8ij = gé’abg = Piagaijb
= Piagab(PT)bj = (PGPT)U
showing that, at the point p,
Eil 0O 0 O E
0O =1 0 O
0O 0 0 =1

Thus, in the eyes of the metric, the unit basis vectors e, = 9/dx’ are orthogonal; that is,
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(e, €) = 20,

Note The non-degeneracy condition in Definition 6.1 is equivalent to the requirement that
the locally defined quantities

8= det(gg/)
are nowhere zero.

Here are some things we can do with a Riemannian manifold.

Definition 6.3 If X isa contravariant vector field on M, then define the square norm
norm of X by

IXI” = (X, X) = ;XX

Note that IIXII> may be negative. If I1XII* < 0, we call X timdlike; if IIXII° > 0, we call X
spacelike, and if IXII* = 0, wecal X null. If X isnot spacelike, then we can define

Xt = Vi = Vg, xXx .

In the exercise set you will show that null need not imply zero.

Note Since (X, X) isascaar field, soislIXll isascalar field, if it exists, and satisfies llgpXIl =
lgl-11X1I for every contravariant vector field X and every scalar field ¢. The expected

inequality
X + Yl < lIX1 + Y
need not hold. (See the exercises.)

Arc Length One of the things we can do with ametric isthe following. A path C given by

X = x'(#) isnon-null if lldx'/dnl* # 0. It follows that lldx/d1lI” is either always positive
(“spacelike’) or negative (“timelike”).

Definition 6.4 If C isanon-null path in M, then defineitslength asfollows. Break the

path into segments S each of which lie in some coordinate neighborhood, and define the
length of S by

dx'dy
L(a, b) = ? 3 dt
a
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where the sign +1 ischosen as +1 if the curveis space-likeand —1 if it istime-like. In
other words, we are defining the arc-length differential form by

di'dy

ds” = 18,
To show (aswe must) that this isindependent of the choice of chart x, all we need observe
isthat the quantity under the square root sign, being a contraction product of atype (0, 2)
tensor with atype (2, 0) tensor, isascalar.

Proposition 6.5 (Paramaterization by Arc Length)

Let C beanon-null path x' = x'(#) in M. Fix apoint 7 = a on this path, and define a new
function s (arc length) by

s(t) = L(a, t) = length of path froms = atoz.

Then s isan invertible function of 7, and, using s as a parameter, lldx'/dslI* is constant, and
equals 1 if Cisspacelikeand —1 if itistime-like.

Conversely, if ¢ isany parameter with the property that lldx'/ddl* = <1, then,
choosing any parameter valuet = a in the above definition of arc-length s, we have

t==x5+C
for some constant C. (In other words, r must be, up to a constant, arc length. Physicists

call the parameter T = s/c, where c isthe speed of light, proper time for reasons we shall
see below.)

Proof Inverting s(7) requiress '(r) = 0. But, by the Fundamental theorem of Calculus and
the definition of L(a, 1),

@;ﬁ L
0 T T Sidr dt

for all parameter values . In other words,

X dx'
{ dt ’ dt ) #0.

But thisisthe never null condition which we have assumed. Also,

g e e
ds > ds’ " Sidsds T Sidrdr st T it s

For the converse, we are given a parameter ¢ such that
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& af

<dt’dt>=il'

in other words,

dxi'dy’
8ii dr dr

= +].

But now, with s defined to be arc-length from ¢ = a, we have

%sﬁ _
0 T T8 drdr T

(the signs cancel for time-like curves) so that

2 -

meaning of coursethat t = +s + C.

Exercise Set 6
1. Give an example of a Riemannian metric on E, such that the corresponding metric tensor
g;; isnot constant.

2. Let a; be the components of any symmetric tensor of type (0, 2) such that det(a;) is
never zero. Define

X, 7, = ain' Y.
Show that thisis asmooth inner product on M.
3. Give an exampleto show that the “triangle inequaity” IIX+ Y1l < X1l + Yl isnot always
true on a Riemannian manifold.
4. Give an example of a Riemannian manifold M and a nowhere zero vector field X on M
with the property that IIXIl = 0. We cdll such afield a null field.

5. Show that if g isany smooth type (0, 2) tensor field, and if g = det(gij) %z 0 for some
chart x, theng = det(g,.j) # 0 for every other chart x (at points where the change-of-
coordinates is defined). [Use the property that, if A and B are matrices, then det(AB) =
det(A)det(B).]
6. Suppose that g;; isatype (0, 2) tensor with the property that ¢ = det(g;) isnowhere
zero. Show that the resulting inverse (of matrices) g” isatype (2, 0) tensor. (Note that it
must satisfy g = o 5}’. )
7. (Index lowering and raising) Show that, if R ;. isatype (O, 3) tensor, then R /. given
by

Raic = gibRabm
isatype (1, 2) tensor. (Here, g™ isthe inverse of g...) What is the inverse operation?




8. A type (1, 1) tensor field T is orthogonal in the Riemannian manifold M if, for al pairs
of contravariant vector fields X and Y on M, one has

<7—X’ TY> '= <X, Y))
where (TX)i = T,i Xk, What can be said about the columns of T in a given coordinate

system x? (Note that the ith column of T isthe local vector field given by 7(9/0x!).)
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7. Locally Minkowskian Manifolds: An Introduction to Relativity

First agenera comment: We said in the last section that, at any point p in aRiemannian

manifold M, we can find alocal chart at p with the property that the metric tensor g... is
diagonal, with diagonal terms 1. In particular, we said that Minkowski space comes with
asuch ametric tensor having signature (1, 1, 1, —1). Now there is nothing special about
the number 1 in the discussion: we can also find alocal chart at any point p with the

property that the metric tensor g.... is diagonal, with diagonal terms any non-zero numbers
we like (although we cannot choose the signs).

In relativity, we take dea with 4-dimensional manifolds, and take the first three coordinates

x', x*, x to be spatial (measuring distance), and the fourth one, x*, to be temporal

(measuring time). Let us postul ate that we are living in some kind of 4-dimensional
manifold M (since we want to include time as a coordinate. By the way, we refer to a chart
x a the point p asaframe of reference, or just frame). Suppose now we have a
particle—perhaps moving, perhaps not—in M. Assuming it persists for a period of time,
we can giveit spatial coordinates (x', x*, x°) at every instant of time (x*). Since the first
three coordinates are then functions of the fourth, it follows that the particle determines a
path in M given by

x' = xl(x4)

X = xz(x4)

X=X
4 4

X =x,

so that x” isthe parameter. This path is called the world line of the particle. Mathematically,

there is no need to use x* as the parameter, and so we can describe the world line as a path
of theform

X = xi(t),

where ¢ is some parameter. (Note: 7 is not time; it'sjust a parameter. x”* istime).
Conversely, if ¢ isany parameter, and x' = x'(r) isapath in M, then, if x* isan invertible
function of 7, that is, dx¥dt # 0 (so that, at each time x”, we can solve for the other

coordinates uniquely) then we can solve for x', x*, x* as smooth functions of x*, and hence
picture the situation as a particle moving through space.

Now, let's assume our particle is moving through M with world linex' = x'(r) asseenin
our frame (local coordinate system). The velocity and speed of this particle (as measured in
our frame) are given by

Y af ol

Tt dx‘%
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T I I
B TR Th

The problem is, we cannot expect v to be a vector—that is, satisfy the correct
transformation laws. But we do have a contravariant 4-vector

(T stands for tangent vector. Also, remember that ¢ is not time). If the particle is moving at
the speed of light ¢, then

jzi +§z EW‘:CZ ......... (1)

MJ
I l
Il 4

2 BeB BB EnE
- 32;% +ﬁdt§ +5th = czﬂdt% (using the chain rule)
a'd  R’H | R ' E
- HaB Bt el el -

Now this looks like the norm-squared ||T1I° of the vector 7' under the metric whose matrix is

H 00 O

_ 010 0

g =diagll, L 1L,-cT=[Jg 0 | o []
DOOO —02[|

In other words, the particleismoving at light-speed < ||TII2 =0
= [[Tisnull

under thisrather interesting local metric. So, to check whether aparticleis moving at light
speed, just check whether T isnull.

Question What's the —¢* doing in place of —1 in the metric?
Answer Since physical units of time are (usually) not the same as physical units of space,

we would like to convert the units of x, (the units of time) to match the units of the other
axes. Now, to convert units of time to units of distance, we need to multiply by something
with units of distance/time; that is, by a non-zero speed. Since relativity holds that the
speed of light ¢ isauniversal constant, it seemslogical to use ¢ asthis conversion factor.

Now, if we happen to be living in a Riemannian 4-manifold whose metric diagonalizes to
something with signature (1, 1, 1, —¢), then the physical property of traveling at the speed
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of light is measured by II711°, which is ascalar, and thus independent of the frame of
reference. In other words, we have discovered a metric signature that is consistent with the
requirement that the speed of light is constant in all frames(in which g... has the above

diagoal form, so that ita makes sense to say what the speed if light is).

Definition 7.1 A Riemannian 4-manifold M is called locally Minkowskian if its metric
hassignature (1, 1, 1, —c?).

For the rest of this section, we will be in alocally Minkowskian manifold M.

Note If we now choose a chart x in locally Minkowskian space where the metric has the
diagonal formdiag[1, 1, 1, —c?] shown above at agiven point p, then we have, at the point
p:

(a) If any path C hasIITII* = 0, then

s EH RH et

_ _ . ,
deH deH e H ~ < HBarH 0 (becausethisis how we calculate II711)

(b) If V isany contravariant vector with zero x*-coordinate, then
IVIF = (V' + (VY + (V) (for the same reason as above)
(a) saysthat we measure the world line C as representing a particle traveling with light

speed, and (b) says that we measure ordinary length in the usual way. This motivates the
following definition.

Definition 7.2 A Lorentz frame at the point p € M is any coordinate system X' with the
following properties:

(a) If any path C hasthe scalar ITII” = 0, then, at p,

Ar'd | EH REH HRE
HEE Hd_g HCTE C%—O ...... (1

(Note: In generd, (T, T) isnot of thisform, since g;; may not be be diagonal)
(b) If V isacontravariant vector at p with zero x*-coordinate, then

Ik = (V'Y + (V) + (VW) ()
(Again, this need not be IVII*.)

It follows from the remark preceding the defintion that if x isany chart such that, at the
point p, the metric hasthe niceform diag[1, 1, 1, —c%], then x isa L orentz frame at the
point p. Note that in general, the coordinates of T in the system X' are given by matrix
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multiplication with some possibly complicated change-of-coordinates matrix, and to further
complicate things, the metric may ook messy in the new coordinate system. Thus, very
few frames are going to be Lorentz.

Physical Interpretation of a Lorentz Frame

What the definition means physically isthat an observer in the x-frame who measures a
particle traveling at light speed in the x-frame will a so reach the conclusion that its speed is
¢, because he makes the decision based on (1), which is equivalent to (I1). In other words:

A Lorentz frame in locally Minkowskian space is any frame in which light appearsto be
traveling at light speed, and where we measure length in the usual way.

Question Do al Lorentz frames at p have the property that metric has the nice form
diag[1, 1, 1, —c*]?
Answer Yes, aswe shall see below.

Question OK. But if x and x are two L orentz frames at the point p, how are they related?
Answer Hereisan answer. First, continue to denote a specific Lorentz frame at the point p
by x.

Theorem 7.3 (Criterion for Lorentz Frames)
Thefollowing are equivaent for alocally Minkowskian manifold M

(a) A coordinate system X' is Lorentz at the point p

(b) If x isany frame such that, at p, G = diag[1, 1, 1, —c*], then the columns of the
change-of-coordinate matrix

ok}

A T
D' =—

Iox
satisfy

(column i, column j) = (e, e,

where the inner product is defined by the matrix G.
(© G = diag[l, 1, 1, =7

Pr oof

(a) O (b) Suppose the coordinate system ¥’ is Lorentz at p, and let x be as hypothesized in
(b). We proceed by invoking condition (a) of Definition 7.2 for severa paths. (These paths
will correspond to sending out light rays in various directions.)

Path C:x' = ¢r; ¥’ = x° = 0, x* = ¢ (aphoton traveling along the x'-axisin E,). This
gives

T'=(00,1),
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and hence lITII> = 0, and hence Definition 7.2 (a) applies. Let D be the change-of-basis
matrix to the (other) inertial framex';

i
D' =—,
k axk
so that
T = DT
EDll p', p'; D', He E
2 2 2 2
=D 3 3 3 3 D
p*, p*, p*, p*, L E

By property (a) of Definition 7.2,
@) + @Y + @) - T =0,
so that
(cD,' + D'}’ + (¢D> + D*)’ + (¢D + D)y’ =D, + D)’ =0 ... (%)
If we reverse the direction of the photon, we similarly get
(=cD,' + D'’ + (=cD;> + D’} + (=cD,> + D))’ = (=cD,* + D)’ =0 ...(**)
Noting that this only effects cross-terms, subtracting and dividing by 4c¢ gives

that is,
(column 1, column 4) = 0 = (e,, e,).

In other words, the first and fourth columns of D are orthogonal under the Minkowskian
inner product. Similarly, by sending light beams in the other directions, we see that the
other columns of D are orthogonal to the fourth column.

If, instead of subtracting, we now add (*) and (**), and divide by 2, we get

¢D,'D,' + D> D + D’ D, - ¢’D,* D]
1 1 2 2 3 3 2 4 4

showing that

¢*(column 1, column 1) = —{column 4, column 4).

So, if we write
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(column 1, column 1) = &,
(***)

then
(column 4, column 4) = —c’k

Similarly (by choosing other photons) we can replace column 1 by either column 2 or

column 3, showing that if we take

(column 1, column 1) = k,

we have
ifl<i<3

(column i, column i) = U

1]
N

k> ifi

Let us now take another, more interesting, photon given by

Path D: x' = (c/\/i )t K= —(c/‘\/z )t; X = 0; Xt = t, with

T = (cA2, -cA2, 0, 1).
(Y ou can check to seethat 1711 = 0, so that it doesindeed represent a photon.) Since II711*

= 0, we get

(D,'¢ N2 - D,'c A2 +D,")* + (D,’c N2 - D,’c A2 +D,’)’
+ (D c A2- D, e N2+D]Y - &(D,'c N2 - D)'c N2 +D,*)’=0

and, looking at asimilar photon traveling in the opposite x*-direction,

(D,'c A2+ D,'eA2 +D,'’ + (D,*cA2 + D,’cA2 +D,’)’
+ (D’ cA2 + D,en2 +D,) = E(DeN2 + D, 2 +D,Y= 0
Subtracting these gives
2¢°[D,'D,' + D> D, + D’ D," — ¢’D,* D,
+4cA2(D,'D,' + D,” D’ + D,’ D, - ¢’D,* D, = 0.
But we already know that the second term vanishes, so we are left with

D,'D,) + D’ D} + D’ D, - D' D, =0,

showing that columns 1 and 2 are aso orthogonal.
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Choosing similar photons now shows us that columns 1, 2, and 3 are mutually orthogonal.
Therefore, we have
%) ifi#j

(column i, columny) = ifl<i=j=<3 e (IV)

E—kc ifi=j=4

But, what isk? Let usinvoke condition (b) of Defintion 7.2. To measure the length of a
vector in the new frame, we need to transform the metric tensor using this coordinate

change. Recall that, using matrix notation, the metric G transformsto G = P'GP, where P
isthe matrix inverse of D above. In the exercise set, you will see that the columns of P
have the same property (1V) above, but with & replaced by 1/k. But,

G = P'GpP

Now, since G isjust a constant multiple of an elementary matrix, all it doesis multiply the

last row of P by ¢*. So, when we take P'(GP), we are really getting the funny dot product
of the columns of P back again, which just givesamultiple of G. In other words, we get

G = P'GP = G/k.

Now we invoke condition (b) in Definition 7.2: Takethevector V = (1, 0, 0, 0) inthex-

frame. (Recognize it? It isthe vector 9/0%'.) Sinceits 4th coordinate is zero, condition (b)
says that its norm-squared must be given by the usual length formula:

e = 1.

On the other hand, we can also use G to compuate IIV1I*, and we get

showing that k = 1. Hence, G = G, and also D has the desired form. This proves (b) (and
also (c), by the way).

(b) O (c) If the change of coordinate matrix has the above orthogonality property,

%) ifi#]j

p'D' +D} D} + D’ D} - DD} =10 ifl<i=j<3

i
acz ifi=j=4
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then the argument in (@) O (b) showsthat G = G (sincek = 1/k = 1 here).

(o) O (a) If G =diag[l, 1, 1, —¢’] at the point p, then X is Lorentz at p, by the remarks
preceding Definition 7.2.
U

We will call the transformation from one Lorentz frame to another ageneralized L orentz
transformation.

An Example of a Lorentz Transformation

We would like to give a simple example of such a transformation matrix D, so we look for
amatrix D whose first column has the general form (q, 0, 0, b), with a and b non-zero
constants. (Why? If wetake b = 0, we will wind up with alessinteresting transformation:
arotation in 3-space.) Thereisno loss of generality intakinga = 1, solet ususe(1, 0,

0, —pB/c). Here, ¢ isthe speed of light, and 3 is a certain constant. (The meaning of S will
emerge in due course). Its norm-squared is (1 — /32), and we want thisto be 1, so we
replace the vector by

S Y
<v—ﬁ vl-—ﬁz>'

Thisisthefirst column of D. To keep things simple, let us take the next two columns to be
the corresponding basis vectors e,, e;. Now we might be tempted to take the forth vector to

be ¢,, but that would not be orthogona to the above first vector. By symmetry (to get a
zero inner product) we are forced to take the last vector to be

0,

B 1

This gives the transformation matrix as

1
Hi ° 7
p=[]

and hence the new coordi nates (by integrating everything in sight; using the boundary
conditionsx' = 0 whenx' = 0) as

=
S

mI\J

O =
—_ O
-0 O =
LT ]

= o o
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1 4 4 1
P =B o2_2 3_3 o X Pl

SN T T Vi-g

Notice that solving the first equation for x' gives

x' = 5(1\/1—/3’2 + /3’cx4.

Sincex* isjust time ¢ here, it means that the origin of the x-system has coordinates (Bet, 0O,
0) interms of the original coordinates. In other words, it is moving in the x-direction with a
velocity of

v = fc,

so we must interpret 8 as the speed in “warp;”

o<

p=

This gives us the famous

L orentz Transformations of Special Relativity

If two Lorentz frames x and x have the same coordinates at (x, y, z, ) = (0, 0, 0, 0), and if
the x-frame is moving in the x-direction with a speed of v, then the x-coordinates of an
event are given by

X — vt f_t—vx/cz

te \/1—\/2/02 ! ey e - ‘\/1—1/2/c2




Exercise Set 7

1. What can be said about the scalar lldxi/dtlI? in a Lorentz frame for a particle traveling at (a)
sub-light speed (b) super-light speed.

2. (a) Show that, if xi(7) is atimelike path in the Minkowskian manifold M so that dx*/dt #
0, then dx#/dt # 0 in every Lorentz framex. In other words, if a particle is moving at sub-
light speed in any one Lorentz frame, then it ismoving at sub-light speed in al Lorentz
frames.

(b) Conclude that, if aparticleistraveling at super-light speed in one Lorentz frame, then it
istraveling at super-light speedsin all such frames.

3. Referring to the Lorentz transformations for special relativity, consider a*“photon clock”
constructed by bouncing a single photon back and forth bewtwwen two parallel mirrors as

shown in in the following figure.
tick tock

ﬂ

l<
I 1 meter >|

Now place this clock in atrain moving in the x-direction with velocity v. By comparing the
time it takes between atick and atock for a stationary observer and one on the train, obtain
the time contraction formula (Az in terms Ar) from the length contraction one.

4. Prove the claim in the proof of 7.3, that if D isa4 x4 matrix whose columns satisfy

%) ifi#]j

(column i, columny) = Lk ifl<i=j<3 ,

ki ifi=j=4
using the Minkowski inner product G (not the standard inner product), then D™' hasits
columns satisfying
%) ifi=j

(column i, columny) = [ Wk ifl<i=j<3

Ercz/k ifi=j=4

[Hint: use the given property of D to write down the entries of itsinverse P in terms of the
entriesof D.]
5. Invariance of the Minkowski Form

Show that, if P = ¥, and Q = x', + Ax' areany two eventsin the Lorentz frame x', then,
for al Lorenz frames¥', one has

(Axl)Z + (Ax2)2+ (Ax3)2— cz(Ax4)2 _ (A}l)Z + (&2)24_ (&3)2_ 62(&4)2
[Hint: Consider the path x'() = x," + Ax't, so that dx'/d isindependent of . Now use the
transformation formulato conclude that dx"/dt is also independent of 7. (Y ou might have to
transpose a matrix before multiplying...) Deduce that X'(7) = 7' + r't for some constants r*
and s'. Finally, set = 0 and 7 = 1 to conclude that ¥(r) = x,' + A¥'t, and apply (c) above]
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6. If the x'-system is moving with avelocity v in a certain direction with resepct to the x'-
system, we call thisaboost in the given direction. Show that successive boostsin two
perpendicular directions do not give a*“pure’ boost (the spatial axes are rotated—no longer
paralle to the origina axes). Now do some reading to find the transformation for a pure
boost in an arbitrary direction.

8. Covariant Differentiation

Intuitively, by a parallel vector field, we mean avector field with the property that the
vectors at different points are parallel. Is there anotion of aparalel field on amanifold? For
instance, in E,, there is an obvious notion: just take a fixed vector v and translate it around.
On the torus, there are good candidates for paralldl fields (see the figure) but not on the 2-
sphere. (There are, however, parallel fields on the 3-sphere...)

Let us restrict attention to paralle fields of constant length. Usually, we can recognize such
afield by taking the derivatives of its coordinates, or by following a path, and taking the
derivative of the vector field with respect to 7. we should come up with zero. The problem
is, we won't dways come up with zero if the coordinates are not rectilinear, since the
vector field may change direction as we move aong the curved coordinate axes.

Technically, this saysthat, if X’ was such afield, we should check for its parallelism by

taking the derivatives dX'/dr along some pathx' = x/(¢). However, there are two catches to
this approach: one geometric and one algebraic.

Geometric Look, for example, at the filed on either torusin the above figure. Sinceit is
circulating and hence non-constant, dX/dt # 0, which is not what we want. However, the
projection of dX/dt parallel to the manifold does vanish—we will make this precise below.

Algebraic Since
o
¥-Zx

0x

one has, by the product rule,
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& 0 bt o "
dl. - axkaxh df + axh dt 5 eeecevssccsseccrcrcscarene

showing that, unless the second derivatives vanish, dX/dt does not transform as a vector
field. What thismeansin practical termsis that we cannot check for parallelism at
present—even in E; if the coordinates are not linear.

The projection of dX/dt along M will be called the covariant derivative of X (with
respect to ¢), and written DX/dt. To compute it, we need to do alittle work. First, some
linear algebra.

Lemma 8.1 (Projection onto the Tangent Space)
Let M be a Riemannian n-manifold with metric g, and let V be avector in E,,. The

projection zV of V onto 7,, has (local) coordinates given by

(@V)i = gik(V.0/9xk),

where [¢7] isthe matrix inverse of Lg;l, and 8ij = (9/0x7).(0/0x7) as usudl.

Pr oof
We can represent V' asasum,

V=gV + VH
where VU is the component of V normal to T,,,. Now write 9/dx* as e, and write
7V = ale; + ... + ae,,

where the ¢’ are the desired local coordinates. Then

V=naV+ VU
=ale; + ... + a"e, + VH
and so
Veq = aleje; + ... + a’e,e + 0
Ve, = aleje, + ... + ae, e,
Ve, = aleje, + ... + ae, e,

whci we can write in matrix form as
[V.ei] = [ai]g**

whence
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[a'] = [V.elg™.

Finaly, since g** is symmetric, we can transpose everything in sight to get
[a'] = g"[V.el,

as required.

For reasons that will become clear later, let us now look at some partial derivatives of the
fundamental matrix [g.-] in terms of ambeint coordinates.

9 0y anH

77 8ol = 55 ed oxH
9%y, Ay Oy, Iy,
= owoxd av T oxoxr oxd
or
gqr,p = ys,pq Ys,r + ys,rp ys,q

Look now at what happensto theindices g, r, and p if we permute them (they're just
letters, after al) cyclically in the above formula (that is, p — g — r), we get two more
formulas.

gqr,p = ys,pq ys,r + ys,rp ys’q (Or|g| nal formul a)
g"qu = yS:qV ys,p + ys,pq ys,r
8pgr = |VspVsg + Ys.gr Vsp

Note that each term on the right occurs twice altogether as shown by the boxes. This
permits usto solve for the completely boxed term y, . v, . by addin gthe first two equations

and subtracting the third:

1
Yspa Ysr = 51 &qrp + 8pg — 8pgr 1

Definition 8.2 Christoffel Symbols
We make the following definitions.

4. 71 = 5[ 8rp + &ipg — 8pqr ] Christoffel Symbols of the First Kind
88
équ = ¢" [pq, r] Christoffel Symbols of the Second Kind

1 ir
= Eg [ gqr,p + grp,q - gpq,r]
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Neither of these gizmos are tensors, but instead transform as follows (Which you will
provein the exercises!)

Transformation Law for Christoffel Symbols of the First Kind
i oW o %
ox" o5 o5 Bigxlaxt ox

[hk, 1] = [ri, j]

Transformation Law for Christoffel Symbols of the Second Kind

%g Etﬂ o ox o o oF
kg~ g ax ox ax* T ox ox'ox

(Look at how the patterns of indices match those in the Christoffel symboals...)

Proposition 8.2 (Formula for Coavariant Derivative)

Proof By definition,

DX _ dX
dt dt '’

which, by the lemma, has local coordinates given by

DX lr@
g%a@

To evaluate the term in parentheses, we use ambeint coordinates. dX/dt has ambient
coordinates

d 6‘y E pr ay
dt 8xp

Py, dit
oxPoxd dt -~

4

Thus, dotting with 9/0x* = 9y /ox" gives

dxv O By, P Wt
dr oxP axr 0xPoxd gy dt
axpP q

dx
- dt gp+X[pq,r] dt -’
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—5"ﬁ % EXl”di Defn of Christoffel symbols of the 2nd Kind
_pdt+Q?qut( 0 istoffel symbols of the ind)

as required.
In the exercises, you will check directly that the covariant derivative transforms correctly.

Thisallows usto say whether afield is parallel and of constant length by seeing whether
this quantity vanishes. This claim is motivated by the following.

Proposition 8.3 (Parallel Fields of Constant Length)
X isapardlé field of constant length in E, iff DX'/dr = 0 for all pathsinE,.

Proof Designate the usual coordinate system by x'. Then X' is parallel and of constant
length iff its coordinates with respect to the chart x are constant; that is, iff

ax
dt

But, since for this coordinate system, g,; = §,
SO

the Christoffel symbols clearly vanish, and

l]’

But, if the contravariant vector DX'/dr vanishes under one coordinate system (whose
domain happens to be the whole manifold) it must vanish under al of them. (Notice that we

can't say that about things that are not vectors, such as dX'/dt.) O
Partial Derivatives

Write

ox' dxq El B dxa

- EIP—

T ooxd dt Q?QE
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B Xi deq
- E dt
The quantity in brackets converts the vector dx?/dr into the vector DX'/dt. Moreover, since

every contravariant vector hasthe form dx?/dt (recall the definition of tangent vectorsin
terms of paths), it follows that the quantity in brackets “looks like” atensor of type (1, 1),

and we call it the ¢ covariant partial derivative of X":

Definition 8.4 The covariant partial derivative of the contravariant field X” is the type (1,
1) tensor given by

Covariant PartlaJ Derivative of X'

(Sometexts use Vqu .) Do you see now why it is called the “covariant” derivative?
Similarly, we can obtain the type (0, 2) tensor (check that it transforms corectly)

Covariant Partial Derivativeof Y,
9y, HiE
Y

Plg = axq Q’CIQY’

Notes
1. All these forms of derivatives satisfy the expected rules for sums and also products. (See
the exercises.)
2.1f C isapath on M, then we obtain the following analogue of the chain rule:
DXi dx*
dt =Xy dr -
(See the definitions.)

Exercise Set 8

IZI IZI -
1. (a) Show that kg = %ﬂ@

(b) If Fj’k are functions that transform i n the sameway as Christoffel symbols of the second
kind (called aconnection) show that '}, — T, isaways atype (1, 2) tensor (called the
associated tor sion tensor).

(0) If a; and g;; are any two symmetric non degenerate type (0, 2) tensor fields with
associated Christoffel symbols D D D D respectively. Show that

95k,
3o G
gke, Ok
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isatype (1, 2) tensor.
2. Covariant Differential of a Covariant Vector Field Show that, if Y; isacovariant
vector, then

i
DY, = dY, - B B, dx'.

are the components of a covariant vector field. (That is, check that it transforms correctly.)
3. Covariant Differential of a Tensor Field Show that, it we define

- O o 9_0 O
DT, =dT) + mr’ dx @q@ﬂ’ dx’.
then the coordl nates transform like a (1, 1) tensor.

4. Obtain the transformation equations for Chritstoffel symbols of the first and second
kind. (Y ou might wish to consult an earlier printing of these notes or the Internet site...)

5. Show directly that the coordinates of DX?/dr transform as a contravariant vector.
6. Show that, if X' isany vector field on E,, then its ordinary partial derivatives agree with
X’ Ik
7. Show that, if X' and ¥ are any two (contravariant) vector fields on M, then

(X + Yy = Xy + Yy

X'y, = Xy ¥ + X¥),
8. Show that, if C isapath on M, then

DX dx*

dt Xl"‘ dt -

9. Show that, if X and Yare vector fields, then

d DY
SN =(2 e wan),

wherethe big D's denote covariant differentiation.
10. (8) What is ¢,. if ¢ isascalar field?

(b) Give adefinition of the “contravariant” derivative, X*” of X* with respect to x*, and
show that X = 0 if and only if X, = 0.

9. Geodesicsand Local Inertial Frames

Let us now apply some of this theory to curves on manifolds. If anon-null curve Con M is
paramaterized by x'(z), then we can reparamaterize the curve using arc length,

t

ﬁ dx'dx’
50 = YN #iig s

a

(starting at some arbitrary point) as the parameter. The reason for wanting to do thisis that

the tangent vector T' = dx'/ds isthen aunit vector (see the exercises) and also independent
of the paramaterization.
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If we were talking about a curvein E;, then the derivative of the unit tangent vector (again
with respect to s to make it independent of the paramaterization) is normal to the curve, and
its magnitude is a measure of how fast the curveis“turning,” and so we call the derivative

of T* the curvature of C.

If C happensto be on amanifold, then the unit tangent vector is till

&

T =

L gds __ dvidr
s d dt . A do?

\ ¥ dr ar
(thelast formulaisthereif you want to actually computeit). But, to get the curvature, we
need to take the covariant derivative:

ISH

. DT
T ds
D(dx'/ds)
- ds
&X' El @a{xp dx?

T ds? Q’(I@ ds ds
Definitions 9.1 Thefirst curvature vector P of thecurveC is

 _ dx Ez Sy’ dx’
T ods? Q’CIEds ds

A curve on M whose first curvature is zero is called ageodesic. Thus, ageodesicisacurve
that satisfies the system of second order differential equations

X gi By’ dx?
ds’ " BqEds ds

In terms of the parameter ¢, this becomes (see the exercises)

dxds  did’s  Bi BdY’ dx? ds

= — 4+ 0 ===

di dt  dt gf Y a8 dr dr dr " 0,

where

Note that P is atangent vector at right angles to the curve C which measuresiits change
relative to M.
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Question Why is P at right anglesto C?
Answer This can be checked as follows:

Lan=EE 0412 (Execisesasi)
= 2(% , ) (symmetry of the scalar product)
=2%P, T) (definition of P)
so that (P, T) = %% (T, T).
But (T, T) = +1 (refer back to the Proof of 6.5 to check this)
whence (P, T) = %dis(il) =0,

as asserted.

Local Flatness, or “Local Inertial Frames’

In“flat space” E; all the Christoffel symbols vanish, so the following question arises:

Question Can we find a chart (local coordinate system) such that the Christoffel symbols
vanish—at least in the domain of the chart?

Answer Thisisasking too much; we shall see later that the derivatives of the Christoffel
symbols give an invariant tensor (called the curvature) which does not vanish in general.
However, we do have the following.

Proposition 9.2 (Existence of a Local I nertial Frame)
If m isany point in the Riemannian manifold M, then there exists alocal coordinate system

x' at m such that:

Bl ifj=i
a) g;(m) =0 =10,
@ g B ifjzi !

de..
(b) agk m) =0
X

We call such a coordinate system alocal inertial frame or anormal frame.

(It follows that Fiik(m) = 0.) Note that, if M islocally Minkowskian, then local intertial
frames are automatically Lorentz frames.

Before proving the proposition, we need alemma.




Lemma 9.3 (Some Equivalent Things)
Let m € M. Then the following are equivalent:

@ 85 r(m) = 0fordlp,q, r.
(b) [pg, r]m = 0fordlp,q,r.
Br B
[

(© Bqlm = 0 fordlp,q,r.

Pr oof
(@ O (b) follows from the definition of Christoffel symbols of the first kind.
(b) O (a) follows from the identity

8

gr = 147> P1 = P, 4l (Check it!)

(b) O (c) follows from the definition of Christoffel symbols of the second kind.
(c) O (b) follows from the inverse identity

7 g
[pq) }"] = gsr@qg
23
Proof of Proposition 9.2* First, we need afact from linear algebra: if (—,—) isaninner
product on the vector space L, then there existsabasis {V(1), V(2), . . ., V(n)} for L such
that
Bl ifj=i
V@), v = U =0,
B ifjzi !

(To provethis, use the fact that any symmetric matrix can be diagonalized using apP-P"
type operation.)

To start the proof, fix any chart ' near m with x'(m) = 0 for al i, and choose abasis { V(i)}
of the tangent space at m such that they satisfy the above condition. With our bare hands,

we are now going to specify anew coordinate system beX' = ¥(x') such that
g; = V@), V() (showing part (a)).

The functionsX' = x'(x’) will be specified by constructing their inverse x' = x'(¥') using a
guadratic expression of the form:

* Thisis my own version of the proof. There is aversion in Bernard Schutz's book, but the proof there
seems overly complicated and also has some gaps relating to consistncy of the systems of linear equations.
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X = ¥A(ij) + 3¥%B(i,j k)where A(i j) and B(i,j k) are constants. It will follow from

Taylor's theorem (and the fact that x(m) =0 )that A(iy) = %Eﬂ and B(ij,k)
3 oY E

- %fg’ax" H,

so that

i o xig 1_jk O’ E
x—xj%5’+2x’x )_C]aj_ck%q

where all the partia derivatives are evaluated at m.

Note These partia derivatives arejust (yet to be determined) numbers which, if we
differentiate the above quadratic expression, turn out to beits actual partial derivatives
evauated at m.

In order to specify thisinverse, all we need to do is specify the terms A(i,j) and B(i,j k)
abqve. In order to make the map invertible, we must also guarantee that the Jacobean
(x'/0x’),, = A(i,j) isinvertible, and this we shall do.

We also have the transformation equations

ox* ox'
_.‘ = T T O i e e I
glj 83(1 a_( gkl ( )

and we want these to be specified and equal to (V(i), V(j)) when evaluated at m. Thisis
easy enough to do: Just set

Ai)) = %Eﬂ = V().

For then, no matter how we choose the B(i,j,k) we have

g;(m) = @%% %Eﬂgkl

= V()" V() gy
= V@), V),
asdesired. Notice also that, since the { V(i)} are abasis for the tangent space, the change-

of-coordinates Jacobean, whose columns are the V(i), is automatically invertible. Also, the
V(i) are the coordinate axes of the new system.
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(An Aside Thisis not the only choice we can make: We are solving the system of
equations (1) for the »* unknowns dx'/d%’],,. The number of equationsin (1) is not

the expected n*, since switching i and j results in the same equation (due to
symmetry of the g's). The number of distinct equationsis

-t

leaving us with atotal of

' nn+l)  nn-1)
" 2 T2

of the partial derivatives dx'/0x’ that we can choose arbitrarily.”)

Next, we want to kill the partial derivatives ag,/ax“ by choosing appropriate values for the
B(i, j, k) (that is, the second-order partial derivatives °x'/9¥'9x"). By the lemma, it suffices
to arrange that

Hp B
% (m) = 0.
Bp B tBoxP ax ox o’ 0%
But Om) = 0 00— — — , —
kg ™) %lﬁ o vt ox | ox axhaxkgm)
ox’ HirE ox” ox 0% E
= it = =t = am)
o HIB ¥ o ox''oxF
so it sufficesto arrange that
0% He B o’ o
0 g
oxloxk Bilax" o3k

That is, all we need to do isto define

Br8ox ox!
B(t, h, k) = —5,-599 (m),

and we are done. J

TInthe real world, where n = 4, thisisinterpreted as saying that we are |eft with 6 degrees of freedom in
choosing local coordinatesto bein aninertial frame. Three of these correspond to changing the coordinates
by a constant velocity (3 degrees of freedom) or rotating about some axis (3 degrees of freedom: two angles
to specify the axis, and a third to specify the rotation).
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Corollary 9.4 (Partial Derivatives Look Nicein Inertial Frames)
Given any point m € M, there exist local coordinates such that

cum-B

Also, the coordinates of @% Eﬂ in an inertial frame transform to those of X”,(m) in every
X

frame.

Corollary 9.5 (Geodesicsare Locally Straight in Inertial Frames)
If C isageodesic passing through m € M, then, in any inertial frame, it has zero classical
curvature at m. (that is, d*x"/ds*> = 0).

Thisisthe reason we call them “inertia” frames: freely falling particlesfall in straight lines
in such frames (that is, with zero ciurvature, at least near the origin).

Question Isthere aloca coordinate system such that al geodesics arein fact straight lines?
Answer Not in general; if you make some geodesics straight, then others wind up curved.
It isthe curvature tensor that isresponsible for this. Thisinvolves the derivatives of the
Christoffel symbols, and we can't make it vanish.

Question If | throw aball in the air, then the path is curved and also a geodesic. Does this
mean that our earthly coordinates are not inertial ?

Answer Yes. At each instant in time, we can construct alocal inertial frame corresponding
to that event. But this frame varies from point to point along our world lineif our world
lineis not a geodesic (more about this below), and the only way our world line can be a
geodesicisif we were freely faling (and therefore felt no gravity). Technically speaking,
the “earthly” coordinates we use constitute amomentary comoving referenceframe; it is
inertial at each point along our world line, but the direction of the axes are constantly
changing in space-time.

Proposition 9.6 (Changing Inertial Frames)
If x and x areinertial framesat m € M, then, recalling that D is the matrix whose ij th entry

is (9x'/0%), one has

det D = det D = +1

Proof By definition of inertial frames,
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el ifj=i
=0

gl(m) . ij

/ B ifj=i /
and similarly for 3/, sothat 3/ = +g”, whence det(g..) = + det(g..) = +1. On the other
hand,

8ij = % ov 8k

which, in matrix form, becomes

Taking determinants gives
det(g..) = det(D") det(g..) det(D) = det(D) det(g...),

giving
+] = +det(D)’,

which must mean that det(D)* = +1, so that det(D) = +1 asclaimed. O

Note that the above theorem also workdsif we use unitsin which det g = —¢? asin
Lorentz frames.

Definition 9.7 Two (not necessarily inertial) frames x and x have the same parity if det D
> 0. Anorientation of M isan atlas of M such that al the charts have the same parity. M
iscalled orientableif it has such an atlas, and oriented if it is equipped with one.

Notes

1. Reversing the direction of any one of the axes reverses the orientation.

2. It follows that every orientable manifold has two orientations; one corresponding to each
choice of equivalence class of orientations.

3. If Misan oriented manifold and m € M, then we can choose an oriented inertia framex
at m, so that the change-of-coordinates matrix D has positive determinant. Further, if D
happens to be the change-of-coordinates from one oriented inertial frame to another, then
det(D) = +1.

4. E, hastwo orientations: one given by any |eft-handed system, and the other given by
any right-handed system.

5. In the homework, you will see that spheres are orientable, whereas Klein bottles are not.

We now show how we can use inertial frames to construct a tensor field.
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Definition 9.8 Let M be an oriented n-dimensional Riemannian manifold. The L evi-Civita
tensor € of type (0, n) or volume form is defined as follows. If X is any coordinate
system and m € M, then define

™

i, (m=0et(D; D; ...D; )
= determinant of D with columns permuted according to the indices

iliz
where D; isthe j th column of the change-of-coordinates matrix ax*/0x', and where x is any
oriented inertial frame at m.""

Note ¢ isacompletely antisymmetric tensor. If x isitself aninertia frame, then, since
det(D) = +1 (see Note 2 above) the coordinates of e(m) are given by

H if (i,,1,, ... ,1,) isaneven permutation of (1, 2, ... , n)
&ii...i, M =2
rente B-1 o ifif (i), iy ..., i,) isan odd permutation of (1, 2, ... , n)

(Compare this with the metric tensor, which isaso “nice” ininertial frames.)

Proposition 9.9 (L evi-Civita Tensor)
The Levi-Civitatensor is awell-defined, smooth tensor field.

Proof To show that it iswell-defined, we must show independence of the choice of
inertial frames. But, if ¢ and u are defined at m € M as above by using two different
inertial frames, with corresponding change-of-coordinates matrices D and E, then DE is
the change-of coordinates from one inertial frame to another, and therefore has determinant
1. Now,

E. . i (fn) = (jEI (£2i !2i . £2i )
g-eely 1 2 n

=0tDE;;

(where fi1i2- i isthe identity matrix with columns ordered as shown in the indices)
=detDDEE;;

(since DE has determinant 1; this being where we use the fact that things are oriented!)
=det E E; .

=i .
Iyl

Iiy...0, ]

showing it iswell-defined at each point. We now show that it isatensor. If X and y are any
two oriented coordinate systems at m and change-of-coordinate matrices D and E with
respect to some inertial frame x at m, and if the coordinates of the tensor with respect to

™ Note that this tensor cannot be defined without a metric being present. In the absence of a metric, the best
you can do is define a“relative tensor,” which is not quite the same, and what Rund calls the “Levi-Civita
symbols” in his book. Wheeler, et al. just define it for Minkowski space.
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these coordinat%areéklkz_“kn and ﬁrlrz---”n = det (Erl Erz Ern ) respectively, then
at the point m,

Sk, k, = DO Dy ... Dy )
. ax't gx" Jx'n
T Chedy g3k gzke T ke

(by definition of the determinant! sincee; ; , isjustthesign of the permutation!)
1%2***"n

. oxlt ax:  ax 9y 9y 9y
Lly...1, ayrl ayrz "'a)—/r,, afckl (9}](2 "'axkn
B ay”l ay”z ay”n

= Mrlrz...rn aickl 83/‘2 aick" !

showing that the tensor transforms correctly. Finally, we assert that det (D, D; ... D )
1 2 n

isasmooth function of the point m. This depends on the change-of-coordinate matrices to
theinertial coordinates. But we saw that we could construct inertial frames by setting

g%% = V()

where the V(j) were an orthogonal base of the tangent space at m. Since we can vary the
coordinates of this base smoothly, the smoothness follows. [

Example In E;, the Levi-Civitatensor coincides with the totally antisymmetric third-order

tensor ¢, in Exercise Set 5. In the Exercises, we see how to use it to generalize the cross-
product.

Exercise Set 9
1. Recadll that we can define the arc length of a smooth non-null curve by

h dx'dy
50 =\ %,
a

Assuming that this function isinvertible (so that we can express x' as afunction of s) show
that

'

s

= 1.

2. Derive the equations for a geodesic with respect to the parameter .
3. Obtain an analogue of Corollary 8.3 for the covariant partia derivatives of type (2, 0)
tensors.
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4. Useinertial frames argument to provethat g, = g*,. = 0. (Also see Exercise Set 4

#1.)
5. Show that, if the columns of amatrix D are orthonormal, thendet D = +1.
6. Provethat, if € isthe Levi-Civitatensor, then, inany frame, e. . . = 0 whenever two

Lly...1,

of theindices are equal. Thus, the only non-zero coordinates occur when all the indices
differ.

7. Use the Levi-Civitatensor to show that, if x isany inertial frame at m, and if X(1), ...,
X(n) are any n contravariant vectors at m, then

det (X(1)| . .. X(n))

isascalar.
8. The Volume 1-Form (A Generalization of the Cross Product) If we are given n—1
vector fields X(2), X(3), . . ., X(n) on the n-manifold M, define a covariant vector field by

XOAXGIA-AX); = &) X2)2 XBYs ... X(n)lu
where ¢ isthe Levi-Civitatensor. Show that, in any inertial frame at apoint m on a

Riemannian 4-manifold, IIX(2)AX(3)AX(4)II* evaluated at the point m, coincides, up to sign,
with the square of the usual volume of the three-dimensional parallelepiped spanned by
these vectors by justifying the following facts.

(a) Restricting your attention to Riemannian 4-manifolds, let A, B, and C be vectors at m,
and suppose—as you may—that you have chosen an inertial frame at m with the property
that A' = B' = C' = 0. (Think about why you can you do this.) Show that, in this frame,
AABAC has only one nonzero coordinate: the first.

(b) Show that, if we consider A, B and C as 3-vectors a, b and ¢ respectively by ignoring
their first (zero) coordinate, then

(AABAC), = a.(bxc),
which we know to be + the volume of the parallelepiped spanned by a, b and c.
() Defining ICI* = C,C;g” (recall that g” isthe inverse of g,,), deduce that the scalar
IAABACIF is numerically equal to square of the volume of the parallelepiped spanned by
the vectorsa, b and c. (Note also that IAABACI, being a scalar, does not depend on the
choice of coordinate system—we always get the same answer, no matter what coordinate
system we choose.)
9. Define the L evi-Civita tensor of type (n, 0), and show that

.. . B ifd,,...,i)isaneven permutation of (j, ... ,j,)
rar B-1if (i, ..., i) isan odd permutation of (j,, ... , j,)

10. The Riemann Curvature Tensor

First, we need to know how to trandate avector along acurve C. Let X; be a vector field.
We have seen that a parallel vector field of constant length on M must satisfy

DX

7 =0 )
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for any path C in M.
Definition 10.1 The vector field X’ is parallel along the curve C if it satisfies

DX dx N
DX X o,

B; 8 ;
for the specific curve C, where we are writing the Christoffel symbols B’hé asT/,.

If X’ isparalel along C, which has parametrization with domain [«, 5] and corresponding
points « and 8 on M, then, since

dx’ !
E — _FiJth Z ......... (|)

we can integrate to obtain
b

g
XPB) = X(a) - %Fﬂhx’% dr e (I

Question Given afixed vector X/(«) at the point & € M, and acurve C originating at ¢, it
is possible to define a vector field along C by transporting the vector along C in aparallel
fashion?

Answer Yes. Notice that the formula (1) isno good for this, since the integral already
requires X’ to be defined along the curve before we start. But we can go back to (1), which
isasystem of first order linear differential equations. Such a system always has a unique
solution with given initial conditions specified by X’(z). Note however that it gives X’ asa
function of the parameter ¢, and not necessarily as awell-defined function of position on M.
In other words, the parallel transport of X at p € M depends on the path to p. (Seethe
figure.) If it does not, then we have a parallelizable manifold.

X

AN (2
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Definition 10.2 If X'(«) is any vector at the point & € M, and if C isany path from ¢ to 8
in M, then the parallel transport of X’(a) along C isthe vector X'(8) given by the
solution to the system (1) with initial conditions given by X'(«).

Examples 9.3

(a) If Cisageodesicin M given by x' = x'(s), where we are using arc-length s as the
parameter (see Exercise Set 8 #1) then the vector field dx'/ds isparallel dong C. (Note that
thisfield isonly defined along C, but (1) still makes sense.) Why? because

D@dd/ds) dx _jd ax'

Ds ds2+ thds ds’

which must be zero for ageodesic.

(b) Proper Coordinatesin Relativity Along Geodesics
According to relativity, we live in a Riemannian 4-manifold M, but not the flat Minkowski
space. Further, the metricin M has signature (1, 1, 1, —1). Suppose C isageodesic in M

given by X' = x'(#), satisfying the property

& af

<a’t’aft

) < 0.

Recall that we refer to such ageodesic astimelike. Looking at the discussion before
Definition 7.1, we see that this corresponds, in Minkowski space, to a particle traveling at
sub-light speed. It follows that we can choose an orthonormal basis of vectors {V(1), V(2),
V(3), V(4)} of the tangent space at m with the property given in the proof of 9.2, with V(4)
= dx'/ds (actualy, it is dx'/dr instead if our unitshave c = 1). Wethink of V(4) asthe unit
vector in the direction of time, and V(1), V(2) and V(3) asthe spatial basis vectors. Using
parald trandation, we obtain asimilar set of vectors at each point along the path. (The fact
that the curve is a geodesic guaranteesthat parallel trandation of the time axiswill remain
parald to the curve.) Finaly, we can use the construction in 8.2 to flesh these frames out
to full coordinate systems defined along the path. (Just having a set of orthogonal vectors
in amanifold does not give a unique coordinate system, so we choose the unique local
inertial one there, because in the eyes of the observer, spacetime should be flat.)

Question Does paraléel transport preserve the relationship of these vectors to the curve.
That is, does the vector V(4) remain parallel, and do the vectors {V(1), V(2), V(3), V(4)}
remain orthogonal in the sense of 8.2?

Answer If X and Y are vector fields, then

4
dt

DY

0= (25 1+ x20),
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where the big D's denote covariant differentiation. (Exercise Set 8 #9). But, since the terms
on the right vanish for fields that have been parallel transported, we seethat (X, V) is
independent of ¢, which means that orthogonal vectors remain orthogonal and that al the
directions and magnitudes are preserved, as claimed.

Note At each point on the curve, we have adifferent coordinate system! All thismeansis
that we have a huge collection of chartsin our atlas; one corresponding to each point on the
path. This (moving) coordinate system is called the momentary comoving frame of

refer ence and corresponds to the “red life” coordinate systems.

(c) Proper Coordinatesin Relativity Along Non-Geodesics

If the curve is not ageodesic, then parallel transport of atangent vector need no longer be

tangent. Thus, we cannot smply parallel trandate the coordinate axes along the world line
to obtain new ones, since the resulting frame may not be Lorentz. We shall seein Section

11 how to correct for that when we construct our comoving reference frames.

Question Under what conditionsis parallel transport independent of the path? If thiswere
the case, then we could use formula (1) to create awhole paralel vector field of constant

length on M, since then DX'/dr = 0.

Answer To answer this question, let us experiment alittle with afixed vector V = X/(a) by
parale trandating it around alittle rectangle consisting of four little paths. To smplify
notation, let the first two coordinates of the starting point of the path (in some coordinates)
be given by

xl(a) =r, xz(a) = .

Then, choose 6r and ds so small that the following paths are within the coordinate
neighborhood in question:

. Hi(@ ifi=1lor2
Cp: X0 = O+tor ifi=1
&) ifi =2

Hi(@ ifi#1lor2
Cy Xty = O+or ifi =

+t0s ifi =2
_ '(a) if i #1or2
Cy X(0) = I+(1-0dr ifi =1
+0s ifi=2
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_ B (@) ifi=1or2
Cp: X =Ll ifi =1
B+(1-pos ifi=2

These paths are shown in the following diagram.

xl=r+6Or

X2 =g

Now, if we parallel transport X'(cz) along C,, wemust have, by (I1),

1

&] Cd)d

X(b) = X(a) - TF"JhXiZ dt  (sincergoesfrom0tolinCy)
0

1

= X(a) - j T/ X'6rdr.  (usingthe definition of C; above)
0

Warning: Theintegrand term F,.j , X' is not congtant, and must be eval uated as a function of

t using the path C,. However, if the path is asmall one, then the integrand is approximately
equal to its value at the midpoint of the path segment:

X(b) = X(a) - T}, X'(midpoint of Cy) or
~ X(a) - E‘jl X(a) + 0.5887( r/, X) 5%&
where the partial derivativeis evaluated at the point . Similarly,
X(c) = X(b) - ir{zx" Ss dt
~ X(b) — I?l.j2 X'(midpoint of C,)ds
~ X(b) - E‘jz X(a) + %(rfz X)or + 0.5%( r/, X' m%as

where dl partial derivatives are evaluated at the point a. (This makes sense because the field
is defined where we need it.)
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1
X(d) = X(c) + | T/ X' or dt
0
~ X(c) + T/, X(midpoint of C3)or

~ X/(c) + %‘jl X(a) + 0.5 (T Xy or + (17, X) 5s05r
ox ox H

and the vector arrives back at the point a according to
1

X#(a) = X/(d) + | T/, X 65 di
0
~ X'(d) +T;, X'(midpoint of C,) ds

~ X(d) +%‘,@ X(a) + 0.5%( r/,x) 5%&
X

To get the total change in the vector, you substitute back afew times and cancel |ots of
terms (including the ones with 0.5 in front), being left with

8X = X¥(a) - X(a) ~ %%(rfl X - %(rjz X Eér@s
X X
To analyze the partia derivativesin there, we first use the product rule, getting

, 9 C 9 9 : :
6X] = _zrljl + ].—‘ljl_2Xl - Xl_lrljz - ]._‘ljz 1XIE6’.5S ......... (lll)
ox ox ox H

£ |

Next, we recdl the "chain rule' formula

DX _ . df'
dt I s

in the homework. Since the term on the right must be zero along each of the path segments
we seethat (1) isequivalent to saying that the partial derivatives

Xy, =0

for every index p and k (and along the relevant path segment)” since the terms dx’/dt are
non-zero. By definition of the partial derivatives, this means that

" Notice that we are taking partial derivativesin the direction of the path, so that they do make sense for
this curious field that is only defined along the square path!
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ox'

ﬁ +l",.thi=O,
X
s0 that
ax’ o
P

We now substitute these expressionsin (I11) to obtain

. 9 i P 0 P
oX = %{a—xzr{l - T/ T, X - Xla—xlr.’2 +T/,T, IXPE(SF(SS

] ]

where everything in the bracketsis evaluated at . Now change the dummy indicesin the
first and third terms and obtain

B9 i 0 Ji

Thisformula hasthe form

OX = R/ ,X" 5rds ST (1Y)

(indices borrowed from the Christoffel symbol in the first term, with the extraindex from
the x in the denominator) where the quantity Rp’ 1> ISknown asthe curvatur e tensor.

Curvature Tensor

: : ar,.  ar,"H
Ra — lF.a—FlF.a+ bc b d
b cd %bc id bd-ic axd axCH

The terms are rearranged (and the Christoffel symbols switched) so you can see the index
pattern, and also that the curvature is antisymmetric in the last two covariant indices.

Rbacd == Rbadc
Thefact that it is atensor follows from the homework.
It now follows from a grid argument, that if C isany (possibly) large planar closed path

within a coordinate neighborhood, then, if X is parallel transported around the loop, it
arrives back to the starting point with change given by a sum of contributions of the form
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(IV). If theloop istoo large for asingle coordinate chart, then we can break it into agrid so
that each piece falls within a coordinate neighborhood. Thus we see the following.

Proposition 10.4 (Curvature and Parallel Transport)
Assume M isssmply connected. A necessary and sufficient condition that parallel transport
be independent of the path is that the curvature tensor vanishes.

Definition 10.5 A manifold with zero curvatureis called flat.

Propertiesof the Curvature Tensor We first obtain amore explicit description of R,”
interms of the partial derivatives of the g,.. First, introduce the notation

ok}

Q.
gl],k axk

for partial derivatives, and remember that these are not tensors. Then, the Christoffel
symbols and curvature tensor are given in the convenient form

1
Fbac = Ega 8ekp + 8rve — 8ber)

a i a i a a a
Ry =10, Uiy =Ly b+ Ty g =Tyl

We can lower the index by defining

i
Ripea = &Ry ca

Substituting the first of the above (boxed) formulas into the second, and using symmetry of
the second derivatives and the metric tensor, we find (exercise set)

Covariant Curvature Tensor in Termsof the Metric Tensor

1 . .
— = J J
Rabcd - Z(gbc,ad - gbd,ac + gad,bc - gac,bd) + ra drbjc - Fa crbjd

(We can remember this by breaking theindicesa, b, ¢, d into pairs other than ab, cd (we
can do this two ways) the pairs with a and d together are positive, the others negative.)

Notes
1. We have new kinds of Christoffel symbolsT;; given by

Lo = &5 Tk
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2. Some symmetry properties: R,,.; = —Rgpgc = ~Rpgeq@dR,, =R, (seethe

exercise set)
3. We can raise the index again by noting that

bi bi j b b
8 Raicd =8 ginajcd = 6] Rajcd = Ra cb*

Now, let us evaluate some partial derivativesin an inertial frame (so that we can ignore the
Christoffel symbols) cyclically permuting the last three indices as we go:

Rabcd,e + Rabec,d + Rabde,c

= E(gad,bce - gac,bde + gbc,ade - gbd,ace
+ gac,bed - gae,bcd + gbe,acd - gbc,aed

+ gae,bdc - gad,bec + gbd,aec - gbe,adc)
=0

Now, | claim thisis also true for the covariant partial derivatives.

Bianchi I dentities

Ripeae + Rapeca + Rupgerc = 0

abecl

Indeed, let us evaluate the |eft-hand side at any point m € M. Choose an inertial frame at

m. Then the left-hand side coincideswith R .., . + R .cq + Rupae» Which we have shown
to be zero. Now, since atensor which is zero is sone frameis zero in al frames, we get the
result!

Definitions 10.6 The Ricci tensor is defined by

_pi _ i
Ry=R,;i=8 Rajbi

we can raise the indices of any tensor in the usua way, getting
ab __ai _bj
R =gg¢ Rl-j.

In the exercise set, you will show that it is symmetric, and also (up to sign) isthe only non-
zero contraction of the curvature tensor.

We also define the Ricci scalar by

ab cd

ab
R:g Rab:g 8 Racbd

The last thing we will do in this section is play around with the Bianchi identities.
Multiplying them by g™
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bc
8 [Rabcdle + Rahecld + Rabdelc] =0

Since g, = 0 (see Exercise Set 8), we can slip the g™ into the derivative, getting

_R + Raeld + R ¢ O.

adle a dele =

Contracting again gives

gad[_Radle + Roa + Rl = 0,
or

-R, + Rdeld + Rdcdelc =0,
or

-R, + Rdeu + R, =0.

Combining terms and switching the order now gives

b 1, _
R elb — 2R|e - 0’
or

NI

b
Rbelb - 5e R, =0
Multiplying this by g*, we now get

a 14 ab - .
R, - 3¢"R, =0, (R" is symmetric)
or

where we make the following definition:

Einstein Tensor

Einstein's field equation for a vacuum states that
Gab =0
(aswe shall see later...).

Example 10.7
Take the 2-sphere of radius r with polar coordinates, where we saw that
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rsing 0 E

_H
g**-% 0 rZH

The coordinates of the covariant curvature tensor are given by

Riypea = %(gbc,ad — 8bdac + Sadpe ~ Sacpd) T rajcrjbd - rajdrjbc'
Let us calculate Ry,,,. (Note: when we use Greek |etters, we are referring to specific terms,
so thereis no summation when the indicesrepeat!) So,a = ¢ = 6,and b = d = ¢.
(Incidentally, thisis the same as R, by the last exercise below.)
The only non-vanishing second derivative of g... is
Bovgp = 21 Y(cos’p - sin’p),
giving
%(gw,e(p = 8pp00 T 8opgo — Boogy) =T gC) n2¢ — cos’ ?).
The only non-vanishing first derivative of g... is
8o0p = 21°SiN § COS @,
giving

Fa]crjbd = rejerjw =0,

snceb = d = ¢ eliminates the second term (two of these indices need to be 6 in order for
the term not to vanish.)

j o _ 1 COS¢ 2 . _ 2
L)Ly =T4 D=3 ﬁw (—=2r°sin ¢ cos ¢) = —r°coS’p

Combining all these terms gives

2,2 2 2. 2
Rypop = rz(S?¢_ COS’p) + 1°cos’¢p
= r'sin‘g.

We now calculate
cd
Rab =8 Racbd

)
Ryy = g¢¢R9¢e¢ =8y
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and

66
Ry = 8 Ryppo
B sn'g 3
T sin'g

1.

All other terms vanish, since g isdiagonal and R....... iS antisymmetric. This gives

ab 06
R =g"R, = g"Ryy + g"R,,

1 . 5 1 2
sSn'g) + 5 =5
rzsin2¢>( P+75 =73

Summary of Some Propertiesof Curvature Etc.

r>=rt r =T
ac ca abc cba
b _ b
Ra cd ~ Ra de
Rabcd = _Rbacd Rabcd = _Rabdc

R, =R, | Note that a,b and ¢,d ways go together

Rab = Raihi = gl]R

aibi

Rab = Rba
R = gabRab = gacgbdRabcd
R, = 8"R,,

Gab = Rab _ %gabR

Exercise Set 10
1. Derive the formulafor the curvature tensor in terms of the g,..
2. (a) Show that the curvature tensor is antisymmetric in the last pair of variables:
Rbacd =~ Rbadc
(b) Use part (a) to show that the Ricci tensor is, up to sign, the only non-zero contraction
of the curvature tensor.
(c) Provethat the Ricci tensor is symmetric.
3. (cf. Rund, pp. 82-83)
(a) Show that

. 9 . . o
Xk = o Xy + 0" = ThX) )
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82Xj X[ d j j d j d jpm Xl I i
= 9o + a_xkrlh +rlha_kaJ + kaa_xth + L 0X = X )
(b) Deduce that

j j i | i j {
Xy = Xy, = RuX = 8%, = R, X
where
[ l l
Spr = Dy = T = 0. o
(c) Now deduce that the curvature tensor is indeed atype (1, 3) tensor.
4. Show that R, , is antisymmetric on the pairs (a, b) and (¢, d).
5. ShowthatR , =R, by firstchecking theidentity in aninertial frame.

11. A Little More Relativity: Comoving Frames and Proper Time

Definition 11.1 A Minkowskian 4-manifold is a4-manifold in which the metric has
signature (1, 1, 1, —1) (eg., the world according to Einstein).

By Proposition 9.2, if M is Minkowskian and m € M, then one can find alocally inertia
frame at m such that the metric at m hastheformdiag(1, 1, 1, —1). We actually have some
flexibility: we can, if welike, adjust the scaling of the x*-coordinate to make the metric ook
likediag(l, 1, 1, —cz). In that case, the last coordinate is the local time coordinate. Later,
we shall convert to units of time to make ¢ = 1, but for now, let us use this latter kind of
inertial frame.

Note If M isMinkowski space E,, then inertial frames are nothing more than Lorentz
frames. (We saw in Theorem 7.3 that L orentz frames were characterized by the fact that the
metric had the form diag(1, 1, 1, —¢?) at every point, so they are automatically inertial
everywhere.)

Now let C be atimdike curve in the Minkowskian 4-manifold M.

Definition 11.2 A momentary comoving reference frame for C (M CRF) associates to
each point m € C alocaly inertial frame whose last basis vector is parallel to the curve and
in the direction of increasing parameter s. Further, we require the frame coordinatesto vary
smoothly with the parameter of the curve.

Proposition 11.3 (Existence of MCRF'S)
If C isany timelike curve in the Minkowskian 4-manifold M, then there exists an MCRF
for C.

Pr oof
Fix Py € C and aLorentz frame W(1), W(2), W(3), W(4) of Mp0 (so that

g.. = diag(1, 1, 1, —c?).) We want to change this set to anew Lorentz frame V(1), V(2),
V(3), V(4) with




i
V(4) = dil_ Recall that T = s/c

So let ustake V(4) as above. Thenitistangent to C at p,,. Further,

IV@I? = @i% @]’;% = (-1)c? = -2

Intuitively, V(4) isthe time axisfor the observer at Py it pointsin the direction of

increasing proper time . We can now flesh out this orthonormal set to obtain an inertia
frameat p . For the other vectors, take

V(i) = W() + Cz—z(W(z‘), V(4)) V(4)
fori = 1, 2, 3. Then

(V(),V()) = (W), W()) +C4—2(W(i),W(4)> (W(),W(4)) + j—4(W(i),V(4)>(W(/'),V(4)>IIV(4)II2
=0

by orthogonality of the W's and the calculation of 11V(4)II> above. Also,

(V(), V() = (W), W(@)) + j—z(W(i),W(4))2 + j—4(W(i),V(4))2IIV(4)II2
=W = 1

so there is no need to adjust the lengths of the other axes. Call this adjustment atime
shear. Since we now have our inertial frame at p,, we can use 9.2 to flesh this out to an

inertial frame there.

At another point p points along the curve, proceed as follows. For V(4), again use dx'/dt
(evaluated at p). For the other axes, start by talking W(1), W(2), and W(3) to be the parallel
trand ates of the V(i) along C. These may not be orthogonal to V(4), although they are
orthogonal to each other (since parallel trandation preserves orthogonality). To fix this, use
the same time shearing trick as above to obtain the V(i) at p. Note that the spatial
coordinates have not changed in passing from W(i) to V(i)—all that is changed are the time-
coordinates. Now again use 9.2 to flesh this out to an inertial frame.
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path of the particle

By construction, the frame varies smoothly with the point on the curve, so we have a
smooth set of coordinates. [J

Proposition 11.4 (Proper TimeisTimein a MCRF)
In aMCRF %, the x*-coordinate (time) is proper time z.

" Proof"
We are assuming starting with some coordinate system x, and then switching to the MCRF
x. Notice that, at the point m,

& _ X
d’[ - a_xi dT
x
= ?V(4)’ (by definition of V(4))
X

= V@' = 1. (since V(4) has coordinates (0,0,0,1) in the barred system)
In other words, the time coordinate x* is moving at arate of one unit per unit of proper time
7. Therefore, they must agree.
|

A particular (and interesting) case of thisisthe following, for specia relativity.

Proposition 11.5 (In SR, Proper Time = Timein the Moving Frame)
In SR, the proper time of a particle moving with a constant velocity v is the r-coordinate of
the Lorentz frame moving with the particle.

Pr oof

| vn

T =

1 h di'dy’
c ZF N “Svarar &

The curve C has parametrization (vz, 0, 0, ) (we are assuming here movement in the x'-
direction), and g... = diag (1, 1, 1, —cz). Therefore, the above integral boils down to
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_1@ T
T=7 -(v'=¢") dt
1 2, 2
:;[ch 1-v/c” dt
:t\jl—vz/cz.

But, by the (inverse)L orentz transformations:

. 7 + /et B t
\/1 v ‘\/1—v2/c2

, sinceXx = 0 for the particle.

Thus,

1= t\/l—vz/c2 =T,

as required.[]

Definition 11.6 Let C be the world line of a particle in aMinkowskian manifold M. Its
four velocity is defined by

u =—

dr -’

Note By the proof of Proposition 10.3, we have

(u, u) = %%2 = —(2.

In other words, four-velocity istimelike and of constant magnitude.

Example 11.7 Four Velocity in SR
Let us calculate the four-velocity of a particle moving with uniform velocity v with respect

to some (Lorentz) coordinate system in Minkowski space M = E,. Thus, x' are the
coordinates of the particle at proper time r. We need to caculate the partid derivatives
dxi/dr, and we use the chain rule:

di _di dit
dr ~ dx* dr
:vi@ fori=1,2,3
dr
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since x* is time in the unbarred system. Thus, we need to know dx#/dr. (In the barred

system, thisisjust 1, but thisisthe unbarred system...) Since x* = 7, we use the (inverse)
Lorentz transformation:

x4+ vxl/c?

V1 - v2/e2 ,

assuming for the moment that v = (v, 0, 0). However, in the frame of the particle, x! = 0,
and x* = 7, giving

x4 =

4 = - T ,
V1 = v2/e?
and hence
dx* 1

Now, using the more genera boost transformations, we can show that this is true
regardless of the direction of v if wereplacev2 intheformulaby (v1)2 + (v2)2 + (v3)2 (the
sguare magnitude of v). Thus we find

P Y L
dr dr V1 = v2/c2 o
and
dx* 1

Hence the coordinates of four velocity in the unbarred system are given by

Four Velocity in SR

uk = (1, v2, v3, DA 1-v2/c2

We can now calculate (u, u) directly as

HOOOH

_*0100 ,
u, u) ”D0010[|”
[Jo 0 0 —¢2
_ﬂ__cz_

- V1-v2/c2 -
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Special Relativistic Dynamics
If acontravariant “force”’ field F (such as an electromagnetic force) acts on a particle, then
its motion behaves in accordance with

du

moE =F,

where m,, isascalar the rest mass of the particle; its mass as measured in itsrest (that is,
comoving) frame.
We use the four velocity to get four momentum, defined by

pi = moui.

Its ener gy is given by the fourth coordinate, and is defined as

2
2 4 my¢

E=cp = .
‘\/l—vz/c2
Note that, for small v,

172

- 1
E = mo(l—vz/cz) = m002 + Emovz.

In the eyes of athe comoving frame, v = 0, so that
E = mocz.
Thisiscalled therest energy of the particle, sinceit is the energy in acomoving frame.

Definitions 11.7 If M isany locally Minkowskian 4-manifold and C is atimelike path or
gpacelike (thought of as the world line of aparticle), we can define its four momentum as
itsfour velocity timesits rest mass, where the rest massis the mass as measured in any
MCRF.

Exercise Set 11

1. What are the coordinates of four velocity in acomoving frame? Use the result to check
that (u, u) = —c2 directly in an MCRF.

2. What can you say about (p, p), where p is the 4-momentum?

3. Isenergy ascalar? Explain

4. Look up and obtain the classical Lorentz transformations for velocity. (We have kind of
doneit already.)

5. Look up and obtain the classical Lorentz transformations for mass.
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12. The Stress Tensor and the Relativistic Stress-Energy Tensor

Classical Stress Tensor

The classical stress tensor measures the internal forces that parts of amedium—such asa
fluid or the interior of a star—exert on other parts (even though there may be zero net force
at each point, asin the case of afluid at equilibrium).

Thisis how you measureit: if AS isan element of surface in the medium, then the material
on each side of thisinterface is exerting aforce on the other side. (In equilibrium, these
forceswill cancel out.) To measure it physically, pretend that al the material on onesideis
suddenly removed. Then the force that would be experienced is the force we are talking
about. (It can go in either direction: for aliquid under pressure, it will push out, whereas
for astretched medium, it will tend to contract in.)

To make this more precise, we need to distinguish one side of the surface AS from the
other, and for thiswe replace AS by avector AS = nAS whose magnitudeis AS and
whose direction is normal to the surface element (n isaunit normal). Then associated to
that surface element thereis avector AF representing the force exerted by the fluid behind
the surface (on the side opposite the direction of the vector AS) on the fluid on the other
side of the interface.

n AF

57/

Since wethisforceis clearly effected by the magnitude AS, we use instead the force per
unit area (the pressure) given by

AF
T = lim—.
(n) AS 0 AS

Note that T isafunction only of the direction n (as well as being afunction of the point in
gpace at which we are doing the slicing of the medium); specifying n at some point in turn
specifies an interface (the surface normal to » at that point) and hence we can define T..

One last adjustment: why insist that n be a unit vector? If we replace n by an arbitrary

vector v, still normal to AS, we can still define T(v) by multiplying T(v/Ivl) by Ivl. Thus,
for general v normal to AS,
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. AF
m_

T(v) = li vl
(v) ATV AS v

We now find that T has this rather interesting algebraic property: T operates on vector
fields to give new vector fields. If iswere alinear operator, it would therefore be atensor,
and we could define its coordinates by

T = T(e,)",

the a-component of stress on the b-interface. In fact, we have

Proposition 12.1 (Linearity and Symmetry)
T isasymmetric tensor, called the stress tensor

Sketch of Proof To show it's atensor, we need to establish linearity. By definition, we
aready have

T(Av) = AT(v)

for any constant A. Thus, al we need show isthat if a, b and ¢ are three vectors whose
sum is zero, that

T(a) + T(b) + T(c) = 0.

Further, we can assume that the first two vectors are at right angles.* Since al three vectors
are coplanar, we can think of the three forces above as stresses on the faces of a prism as
shown in the figure. (Note that the vector ¢ in the figure is meant to be at right anglesto the
bottom face, pointing downwards, and coplanar with a and b.)

! If we have proved the additive property for vectors at right-angles, then we have it for all pairs:
P(a+b) = P(a’*P+kb + b) for some constnat k, where a?¢'? is orthogonal to a
= P(a7*? + (k+1)b)
= P(a*’?) + (k+1)P(b) by hypothesized linearlity
= P(a) + P(b)
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If we take a prism that is much longer that it isthick, we can ignore the forces on the ends.
It now follows from Pythagoras theorem that the areas in this prism are proportional to the
three vectors. Therefore, multiplying through by a constant reduces the equation to one
about actual forces on the faces of the prism, with T(a) + T(b) + T(c) the resultant force
(since the lengths of the vectorsa, b and ¢ are equal to the respective areas). If thisforce
was not zero, then there would be aresultant force F on the prism, and hence an
acceleration of its material. Thetroubleis, if we cut al the areasin half by scaling all linear
dimensions down by afactor «, then the areas scale down by afactor of o, whereas the

volume (and hence mass) scales down by afactor ¢’ In other words,
T(’a) + T(a’b) + T(a’c) = &’F

isthe resultant force on the scaled version of the prism, whereas its massis proportional to

. Thusits acceleration is proportional to L/ (using Newton's law). This means that, as
a becomes small (and hence the prism shrinks ™ ) the accel eration becomes infinite—hardly
alikely proposition.

The argument that the resulting tensor is symmetric follows by a smilar argument applied
to a square prism; the asymmetry resultsin arotational force on the prism, and its angular
acceleration would become infinite if this were not zero. [

The Relativistic Stress-Energy Tensor

Now we would like to generalize the stress tensor to 4-dimensional space. First we set the
scenario for our discussion:

We now work in a 4-manifold M whose metric hassignature (1, 1, 1, —1).

We have already call such amanifold alocally Minkowskian 4-manifold. (All this means
isthat we are using different units for timein our MCRFs.)

"~ Honey, | shrank the prism.
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Example 12.2

Let M be Minkowski space, where one unit of time is defined to be the time it takes light to
travel one spacia unit. (For example, if units are measured in meters, then a unit of time
would be approximately 0.000 000 003 3 seconds.) In these units, ¢ = 1, so the metric
does have thisform.

The use of MCRFs allows us to define new physical scalar fields asfollows: If we are,
say, intheinterior of astar (which we think of as a continuous fluid) we can measure the
pressure at a point by hitching aride on asmall solid object moving with the fluid. Since
this should be a smooth function, we consider the pressure, so measured, to be ascalar
field. Mathematically, we are defining the field by specifying its value on MCRFs. Note
that there is a question here about ambiguity: MCRFs are not unique except for the time
direction: once we have specified the time direction, the other axes might be “spinning”
about the path—it is hard to prescribe directions for the remaining axes in a convol uted
twisting path. However, since we are using a small solid object, we can choose directions
for the other axes at proper time 0, and then the "solid-ness' hypothesis guarantees (by
definition of solid-ness!) that the other axes remain at right angles; that is, that we continue
to have an MCRF aftger dlplying atime-shear asin Lecture 11.

Now, we would like to measure a 4-space analogue of the force exerted across a plane,
except thistime, the only way we can divide 4-space is by using a hyperplane; the span of
three vectors in some frame of reference. Thus, we seek a4-dimensional analogue of the
quantity nAS. By coincidence, we just happen to have such a gizmo lying around: the Levi-
Civitatensor. Namely, if a, b, and ¢ are any three vectors in 4-space, then we can define
an analogue of nAS to be ¢,;,albkc!, where ¢ is the Levi-Civita tensor. (See the exercises.)

Next, we want to measure stress by generalizing the classical formula
AF
stress=T(n) = AS

for such a surface element. Hopefully, the space-coordinates of the stress will continue to
measure force. Thefirst step isto get rid of all mention of unit vectors—they just dont arise
in Minkowski space (recall that vectors can be time-like, space-like, or null...). We first
rewrite the formulaas

T(nAS) = AF,

the total force across the areaelement AS. Now multiply both sides by atime coordinate
increment:

T(nASA¥) = AFA = Ap,
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where p isthe 3-momentum.” Thisis fine for three of the dimensions. In other words,

T(nAV) = Ap, o T(n) = % N ()

where Visvolumein Euclidean 4-space, and where we take the limit as AV—0.

But now, generalizing to 4-space isforced on us: first replace momentum by the 4-
momentum P, and then, noting that nASAx* is a 3-volume element in 4-space (becauseit is
aproduct of three coordinate invrements), replace it by the correct analogue for Minkowski
space,

(AV); = gijklei N A,
getting
T(AV) = AP,

where AP is4-momentum exerted on the positive side of the 3-volume AV by the opposite
side. But, there isa catch: the quantity AV hasto bereally small (in terms of coordinates)
for thisformulato be accurate. Thus, we rewrite the above formulain differential form:

T(dV) = T(ndV) = dP

This describes T as a function which converts the covariant vector dV into a contravariant
field (P), and thus suggests atype (2, 0) tensor. To get an honest tensor, we must define T
on arbitrary covariant vectors (not just those of the form AV). However, every covariant
vector Y. defines a 3-volume as follows.

Recall that aone-form at apoint p isalinear real-valued function on the tangent space 7, at

that point. If it isnon-zero, then its kernel, which consists of all vectors which map to zero,
is athree-dimensional subspace of 7,,. This describes (locally) a (hyper-)surface. (In the

special case that the one-form isthe gradient of ascalar field ¢, that surface coincides with
the level surface of ¢ passing through p.) If we choose abasis {v, w, u} for this subspace
of 7,,, then we can recover the one-form at p (up to constant multiples) by forming

sl.jkl\/wku’.T This gives us the following formal definition of the tensor T at a point:

Definition 12.3 (The Stress Energy Tensor) For an arbitrary covariant vector Y at p, we
choose abasis {v, w, u} for itskemnel, scaled so that ¥; = &,,,v'w's’, and define T(Y) as
follows: Form the parallelepiped AV = {r;v + r,w + rzu |1 0 < r; < 1} in the tangent
space, and compute the total 4-momentum P exerted on the positive side of the volume

# Classically, force is the time rate of change of momentum.

" Indeed, all you have to check is that the covariant vector Eijklvj w'u has u, w, and v initskernel. But that
isimmediate from the anti-symmetric properties of the Levi-Civita tensor.
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element AV on the positive side” of this volume element by the negative side. Call this
quantity P(1). More generaly, define

total 4-momentum P exerted on the positive side of the (scaled) volume
P(¢) = €element e3AV on the positive side of this volume element by the negative
side.

Then define

. P(e)

T(Y) = 8ll_m)0 3

Note Of course, physical redlity intervenes here: how do you measure momentum across
volume elementsin the tangent space? Well, you do all your measurementsin alocally
intertial frame. Proposition 8.5 then guarnatees that you get the same physical
measurements near the origin regardless of the inertial frame you use (we are, after al,
letting & approach zero).

To evaluate its coordinates on an orthonormal (L orentz) frame, we define
T‘ab = T(eb)a!

so that we can take u, w, and v to be the other three basis vectors. This permits usto use
the smpler formula (1) to obtain the coordinates. Of interest to usisamore usable
form—in terms of quantities that can be measured. For this, we need to move into an
MCRF, and look at an example.

Note It can be shown, by an argument similar to the one we used at the beginning of this
section, that 7' is a symmetric tensor.

Definition 11.4 Classically, afluid has no viscosity if its stress tensor isdiagonal in an
MCFR (viscosity isaforce paralél to the interfaces).

Thus, for aviscosity-free fluid, the top 3 x3 portion of matrix should be diagonal in all
MCRFs (independent of spacia axes). Thisforcesit to be a constant multiple of the identity
(since every vector isan eigenvector impliesthat all the eigenvaluesareequal...). This
single eigenvector measures the force at right-angles to the interface, and is called the
pressure, p.

Question Why the pressure?
Answer Let uscalculate T!! (in an MCRF). It isgiven by

AP!

T =T(e)' = &7

2“positive” being given by the direction of Y
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where the 4-momentum is obtained physically by suddenly removing all material on the
positive side of the x!-axis, and then measuring 1-component of the 4-momentum at the
origin. Since we are in an MCRF, we can use the SR 4-velocity formula:

P = my(v!, v2, 13, DA1=v2/c2 .
At the instant the materia is removed, the velocity is zero in the MCRF, so
P(1=0) = my(0, 0, 0, 1).

After an interva Ar in thisframe, the 4-momentum changesto

P(t=1) = my(Av, 0, 0, 1)/ V1-(Av)%/c?

since there is no viscosity (we must take Av2 = Av3 = 0 or else we will get off-diagonal
gpatial termsin the stress tensor). Thus,

AP = my(Av, 0, 0, 1)/ V1-(Av)2/c2

Thisgives
moAV .
(AP)! = —F/————= = mAv (m isthe apparent mass)
V1-(Av)%/c2
= A(mv)
= Change of measured momentum
Thus,

AP! A(mv) AF -
AV T NN T NN (force = rate of change of momentum)

and we interpret force per unit area as pressure.

What about the fourth coordinate? The 4th coordinate of the 4-momentum isthe energy. A
component of the form 7*' measures energy-flow per unit time, per unit area, in the

direction of the x'-axis. In aperfect fluid, we insist that, in addition to zero viscosity, we
also have zero heat conduction. Thisforces all these off-diagonal termsto be zero as well.

Finally, 7** measures energy per unit volume in the direction of the time-axis. Thisisthe
total energy density, p. Think of isasthe “energy being transferred from the past to the
future.”

This gives the stress-energy tensor in acomoving frame of the particle as
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0 p 0O
=Moo p o]

o 0 0 p U

What about other frames? To do this, all we need do is express T as a tensor whose
coordinates in athe comoving frame happen to be as above. To help us, we recall from
above that the coordinates of the 4-velocity in the particles frame are

u=[0 0 0 1] (just set v = 0 in the 4-velocity).

(It follows that

HOOOOH
., oooo
wu=Tlo o o o[

[lo 0 0 1 [

in thisframe.) We can use that, together with the metric tensor

5100 0
o 10 o
§=[To o1 o [
[Jo 0 0 -1 [
to express T as

T = (o + p)uaub + pgab.

Stress-Energy Tensor for Perfect Fluid

The stress-energy tensor of a perfect fluid (no viscosity and no heat conduction) is given at

apointm € M by
T = (p + pyu'u” + pg”,

where;
o isthe mass energy density of the fluid
p isthe pressure
u' isits 4-velocity

Note that the scalars in this definition are their physical magnitudes as measured in a
MCRF.
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Conservation Laws

Let us now go back to the general formulation of 7' (not necessarily in a perfect fluid),
work in an MCREF, and calculate some covariant derivatives of 7. Consider alittle cube

with each side of length A/, oriented along the axes (in the MCRF). We saw above that 7*'
measures energy-flow per unit time, per unit area, in the direction of the x'-axis. Thus, the
quantity

™ AN

isthe approximate increase of that quantity (per unit area per unit time). Thus, the increase
of outflowing energy per unit timein thelittle cubeis

741’1(N)3

due to energy flow in the x'-direction. Adding the corresponding quantities for the other
directions gives

- %—If = T (A + TP (A + TP y(N)Y’,

which is an expression of the law of conservation of energy. Since E is given by 7*(Al)’,
and 7 = x*, we therefore get

- Ay = @+ T, + TP ),
giving
™ + 717, + 1, + 7%, =0

A smilar argument using each of the three components of momentum instead of energy
now gives usthe law of conservation of momentum (3 coordinates):

1 2 4
T+ T2, + 17, + T, =0

fora = 1, 2, 3. Combining al of these and reverting to an arbitrary frame now gives us:

Einstein's Conservation L aw
VT =0

where VT is the contravariant vector given by (V.TY = T,.
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Thislaw combines both energy conservation and momentum conservation into asingle
elegant law.

Exercise Set 12
1. If a, b, and ¢ are any three vector fieldsin locally Minkowskain 4-manifold, show that
the field ¢, aibc! is orthogonal to a, b, and c.(¢ isthe Levi-Civitatensor.)

13. Three Basic Premises of General Relativity
Spacetime
Genera relativity postulates that spacetime (the set of all events) is a smooth 4-dimensional

Riemannian manifold M, where points are called events, with the properties A1-A3 listed
below.

Al Localy, M is Minkowski spacetime (so that special relativity holds locally).

Thismeansthat, if we diagonalize the scalar product on the tangent space at any point, we
obtain the matrix

100 0
500 o H
(o o1 o[
[lo 0 0 -1 01

The metric is measurable by clocks and rods.

Before stating the next axiom, we recall some definitions.

Definitions 13.1 Let M satisfy axiom Al. If V' isacontravariant vector at apointin M,
define

IVI? = (V, V) = Vg,

(Note that we are not defining lIV/Il here.) We say the vector V' is
timelikeif IVIP< 0,
lightlikeif IVII*= 0,
and  spacdlikeif IVII*> 0,
Examples 13.2
(a) If aparticle moves with constant velocity v in some Lorentz frame, then at time ¢ = x*
itspositionis

4
X=a + vx.
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Using the local coordinate x* as a parameter, we obtain apath in M given by

, B+ ifi=1,23
X =0
B ifi =4

so that the tangent vector (velocity) dx'/dx* has coordinates (v', v*, v*, 1) and hence square
magnitude

1 2 3 2 2 2
v, v, v, DIF = vlI® = ¢

Itistimelike at sub-light speeds, lightlike at light speed, and spacelike at faster-than-light
Speeds.
(b) If u isthe proper velocity of some particlein locally Minkowskian spacetime, then we

saw (normal condition in Section 10) that (u, ) = —¢* = —1 in our units.

A2. Fredly falling particles move on timelike geodesics of M.

Here, afredly falling particle isone that is effected only by gravity, and recall that a
timelike geodesic is a geodesic x'(#) with the property that lldx'/dil* < 0 in any
paramaterization. (This property isindependent of the parameterization—see the exercise
set.)

A3 (Strong Equivalence Principle) All physical lawsthat hold in flat Minkowski space
(ie. “specid relativity™) are expressible in terms of vectors and tensors, and are meaningful
in the manifold M, continue to hold in every frame (provided we replace derivatives by
covariant derivatives).

Note Here are some consequences.

1. No physical laws can use the term “straight line,” since that concept has no meaning in
M; what's straight in the eyes of one chart is curved in the eyes of another. “ Geodesic,” on
the other hand, does make sense, since it isindependent of the choice of coordinates.

2. If we can write down physical laws, such as Maxwell's equations, that work in
Minkowski space, then those same laws must work in curved space-time, without the
addition of any new terms, such as the curvature tensor. In other words, there can be no
form of Maxwell's equations for general curved spacetime that involve the curvature
tensor.

An example of such alaw isthe conservation law, V.T = 0, which is thus postulated to
hold in all frames.

A Consequence of the Axioms: Forcesin Almost Flat Space

Suppose now that the metric in our frame is almost Lorentz, with adlight, not necessarily
constant, deviation ¢ from the Minkowski metric, as follows.
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Hl+2¢ 0 0 0 H
o 1420 0 0
=11 o 0 1+2¢ 0 [
L] o 0 0 —1+2¢ LI
)
or
ds’ = (1+29)(dx" + dy* + dz°) — (1-2¢)dr".
Notes

1. Wearenot in an inertial frame (modulo scaling) since ¢ need not be constant, but we are
inaframethat isalmost inertial.

2. The metric g... is obtained from the Minkowski g by adding a small multiple of the
identity matrix. We shall see that such ametric does arise, to first order of approximation,
as a consequence of Einstein's field equations.

Now, we would like to examine the behavior of a particle falling freely under the influence
of thismetric. What do the timelike geodesics look like? Let us assume we have a particle
falling freely, with 4-momentum P = m,U, where U isits 4-velocity, dx'/dt. The
paramaterized path x'(7) must satisfy the geodesic equation, by A2. Definition 8.1 givesthis
as

d'x i dy dy’

d'yz * "Sdr dt

Multiplying both sides by m,” gives

d?(mx?) . d(mgx") d(mgx’)
my er T 1, dr dr =0,
or
dPi i . i i
my— +T, PP =0 (since P' = d(myx'/dr))

where, by the (ordinary) chain rule (note that we are not taking covariant derivatives here...
that is, dP'/dt is not a vector—see Section 7 on covariant differentiation),

dt ~ " kdr

s0 that

k
p A pipp g
k dT rs
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or
PP T/ PP =0 i (1)

Now let us do some estimation for lowly-moving particlesv << 1 (the speed of light),

where we work in aframe where g has the given form.* First, since the frame is almost

inertial (Lorentz), we are closeto being in SR, so that

P* = moU* = mg[vl, v2,v3, 1]  (wearetaking ¢ = lhere)
= [0, 0, 0, my] (sincev << 1)

(in other words, the frame is almost comoving) Thus (I) reducesto
Pi’4mo+f‘4i4 my? = 0 (1

Let us now look at the spatial coordinates, i = 1, 2, 3. By definition,
T/, = %817(841,4 + 8iaa ~ 8a4)-

We now evaluate this at a specific coordinatei = 1, 2 or 3, where we use the definition of
the metric g, recalling that g** = (g+«) ', and obtain

(142970 + 0 - 20, = %(1—2@(—245,,') ==,

*Why don't we work in an inertial frame (the frame of the particle)? Well, in an inertial frame, we adjust
the coordinatesto make g = diag[1, 1, 1, —1] at the origin of our coordinate system. The first requirement
of aninertail frameisthat, ¢(0, 0, 0, 0) = 0. Thisyou can certainly do, if you like; it doesn't effect the
ensuing calculation at all. The next requirement is more serious: that the partial derivatives of the g;,
vanish. Thiswould force the geodesics to be uninteresting (straight) at the origin, since the Christoffel
symbols vanish, and (I1) becomes

PP =0,
that is, since P* = m, and P/, = % (my") = rate of change of momentum, that

rate of change of momentum = 0,
so that the particle is experiencing no force (even though it's in a gravitational field).
Question But what does this mean? What is going on here?
Answer All thisistelling usisthat aninertial frame in a gravitational field is one in which a particle
experiences no force. That is, itisa“freely falling” frame. To experience one, try bungee jumping off the
top of atall building. Asyou fall, you experience no gravitational force—as though you were in outer

space with no gravity present.
Thisis not, however, the situation we are studying here. We want to be in a frame where the metric is not
locally constant. so it would defeat the purpose to choose an inertia frame.
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(Here and in what follows, we are ignoring terms of order O(¢").) Substituting this
information in (I1), and using the fact that

d )
— (myy),

P, =
A ox

the time-rate of change of momentum, or the “force” as measured in that frame (see the
exercise set), we can rewrite (1) as

' 2
my~=— (mo"l) -my ¢, =0,
ox
or

d ,
P (myv) — myp, = 0.

Thinking of x* astime ¢, and adopting vector notation for three-dimensional objects, we
have, in old fashioned 3-vector notation,

that is
F = mV¢.

Thisisthe Newtonian force experienced by aparticlein aforcefield potential of ¢. (See the
exercise set.) In other words, we have found that we can duplicate, to a good
approximation, the physical effects of Newton-like gravitational force from asimple
distortion of the metric. In other words—and thisis what Einstein realized—gravity is
nothing more than the geometry of spacetime; it isnot amysterious “force” at al.

Exercise Set 13
1. Show that, if X' = x'(¢) has the property that lldx'/d1lI* < 0 for some parameter 7, then

lldx'/disI> < O for any other parameter s such that ds/d: = 0 along the curve. In other words,

the property of being timelike does not depend on the choice of paramaterization.

2. What iswrong with the following (dickly worded) argument based on the Strong

Equivaence Principle?
| claim that there can be no physical law of theform A = R in curved spacetime, where A
is some physical quantity and R is any quantity derived from the curvature tensor. (Since
we shall see that Einstein’'s Field Equations have this form, it would follow from this
argument that he was wrong!) Indeed, if the postulated law A = R wastrue, then in flat
spacetime it would reduceto A = 0. But then we have aphysical law in SR, which must,
by the Strong Equivalence Principle, generalizeto A = 0 in curved spacetime as well.
Hencetheoriginal law A = R waswrong.
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3. Gravity and Antigravity Newton's law of gravity saysthat a particle of mass M exerts
aforce on another particle of mass m according to the formula

F:_GM3mr’
r

where r = (x, y, z), r = Irl, and G is a constant that depends on the units; if the masses M
and m are given in kilograms, then G = 6.67 x 10~!1, and the resulting force is measured
in newtons." (Note that the magnitude of F is proportiona to the inverse square of the
distance r. The negative sign makes the force an attractive one.) Show by direct calculation
that

F = mVg,

where

Hence write down a metric tensor that would result in an inverse square repelling force
(“antigravity”).

14. The Einstein Field Equations and Derivation of Newton's L aw

Einstein's field equations show how the sources of gravitational fields alter the metric.
They can actually be motivated by Newton's law for gravitational potential ¢, with which
we begin this discussion.

First, Newton's law postul ates the existence of a certain scalar field ¢, called gravitational
potential which exerts aforce on a unit mass given by

F =V¢ (classical gravitationa field)
Further, ¢ satisfies

V¢ = V(Vp) = 42Gp ... ()
Div(gravitational field) = constant x mass density

where p isthe mass density and G is a constant. (The divergence theorem then givesthe
more familiar F = V¢ = GM/r* for aspherical source of mass M—see the exercise set.) In
relativity, we need an invariant analogue of (1). First, we generalize the mass density to
energy density (recall that energy and mass are interchangeable according to relativity),

" A Newton is the force that will cause a 1-kilogram mass to accelerate at 1 m/sec?.
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which in turn is only one of the components of the stress-energy tensor 7. Thus we had
better use the whole of 7.

Question What about the mysterious gravitational potential ¢?

Answer That isamore subtleissue. Since the second principle of general relativity tells us
that particles move along geodesics, we should interpret the gravitational potential as
somehow effecting the geodesics. But the most fundamental determinant of geodesicsisthe
underlying metric g. Thus we will generalize ¢ to g. In other words, Einstein replaced a
mysterious “force” by a purely geometric quantity. Put another way, gravity is nothing but
adistortion of the local geometry in space-time. But we are getting ahead of ourselves...

Finally, we generalize the (second order differential) operator V to some yet-to-be-
determined second order differential operator A. Thisalows usto generaize (1) to

Ag™) = kT,
where k is some constant. In an MCRF, A(g) is some linear combination of g*° i g” ;and

g‘”’ , and must also be symmetric (since T is). Examples of such atensors are the Ricci
tensors R, g"’R, aswell as g, Let us take alinear combination as our candidate:

R + /,LgabR + Agab = kT® ()]
We now apply the conservation laws T“”lb = 0, giving

(R + ug"R), = 0 .. @

sinceg“blb = 0 dready (Exercise Set 8 #4). But in 89 we also saw that
ab 1 w
R” -3¢ R), =0, (b)

where the term in parentheses is the Einstein tensor G*. Calculating (a) — (b), using the
product rule for differentiation and the fact that g, = 0, wefind

1 4
(u+3)g" Ry, = 0

giving (upon multiplication by g**)
1
(u+3 )le =0
which surely implies, in general, that u must equal — % . Thus, (I1) becomes

G + Ag™ = kT™.
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Finaly, the requirement that these equations reduce to Newton'sfor v << 1 tellsusthat £
= 8 (discussed below) so that we have

Einstein's Field Equations

G? + Ag™ = 8aT®

The constant A is called the cosmological constant. Einstein at first put A = 0, but later
changed his mind when looking at the large scale behavior of the universe. Later till, he
changed his mind again, and expressed regret that he had ever come up with it in the first
place. The cosmological constant remains a problem child to this day.” We shall set it equal
to zero.

Solution of Einstein's Equationsfor Static Spherically Symmetric Stars
In the case of spherical symmetry, we use polar coordinates (r, 6, ¢, t) with origin thought

of as at the center of the star as our coordinate system (noteit is singular there, so in fact
this coordinate system does not include the origin) and restrict attention to g of the form

Her 00 0 g
0 20 0

e = Eo 0 Asn’ 0 E
81t 0 0 —8i

or
ds’ = 2g drdi+ g dr' + *dO0° + r’ sin d¢* — g, dr’,

where each of the coordinatesisafunction of » and 7 only. In other words, at any fixed
time ¢, the surfaces @ = const, ¢ = const and r = const are al orthogonal. (This causes the
zeros to be in the positions shown.)

T The requirement that Newton's laws be the limit of general relativity for small v forces lambdato be very

small. Setting it equal to zero gives al the correct predictions for the motions of planets to within

measurable accuracy. Put another way, if A # 0, then experimental data shows that it must be very small

indeed. Also, we could take that term over to the right-hand side of the equation and incorporateit into the

stress-energy tensor, thus regarding —Ag™/8x as the stress-energy tensor of empty space.

Following is an excerpt from an article in Scientific American (September, 1996, p. 22):

.. Yet the cosmological constant itself is a source of much puzzlement. Indeed, Christopher T.

Hill of Fermilab callsit “the biggest problem in all of physics.” Current big bang models require
that lambda is small or zero, and various observations support that assumption. Hill points out,
however, that current particle physics theory predicts a cosmological constant much, much
greater—by afactor of at least 10%, large enough to have crunched the universe back down to
nothing immediately after the big bang. “ Something is happening to suppress this vacuum
density,” says Alan Guth of MIT, one of the developers of the inflationary theory. Nobody knows,
however, what that something is ...
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Question Explain why the non-zeros terms have the above form.
Answer For motivation, let usfirst look at the standard metric on a 2-sphere of radiusr:
(see Example 5.2(d))

B r2 0 ﬁ
8= =10 r2sin2g O
If wethrow r in as the third coordinate, we could calcul ate

51 0 0 {

Guxe = 4o 7"2 0 D
Ho o r2sinze H

Moving into Minkowski space, we have

ds? = dx? + dy? + dz? - dr?
= dr? + r2(d6? + sin20 d¢?) — dr,

giving usthe metric

Hl 0 0 0 H

0 r? 0 0 . : .

g = [y r() 26260 0 [ . (Minkowski space metrticin
(b o o -10

polar coords.)

For the genera spherically symmetric stellar medium, we can still define the radial
coordinate to make g, = r? (through adjustment by scaling if necessary). Further, we take
asthe definition of spherical symmetry, that the geometry of the surfacesr = r = condt. are
spherical, thus foring us to have the central 2x2 block.

For static spherical symmetry, we aso require, among other things, (a) that the geometry
be unchanged under time-reversal, and (b) that ¢ be independent of time . For (a), if we
change coordinates using

(r,0,¢, 1) —(r, 0, ¢, —1),
then the metric remains unchanged; that is, g = g. But changing coordinates in this way

amounts to multiplying on the left and right (we have an order 2 tensor here) by the change-
of-coordinates matrix diag (1, 1, 1, —1), giving
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Setting g = g gives g,, = 0. Combining thiswith (b) resultsin g of theform

Eem 0 0 0 E
[0 20 0 7
= F0 0 Asnfe 0 [

0 0 0 —ez“’%

where we have introduced the exponentialsto fix the signs, and where A = A(r), and ® =
d(r). Using thisversion of g, we can calculate the Einstein tensor to be (see the exercise

set!)
a1 )
[Bore-Long_e 0 0
r l
_ @' A
|j 0 ¢ N +(@") @A 0
¢" =] G"
0 0 ~
D [an e 1
D 0 0 0 e
r

We also need to calculate the stress energy tensor,

= (p+p)uaub + pgab.

In the static case, there is assumed to be no flow of star material in our frame, so that u'

u> = u’ = 0. Further, the normal condition for four velocity, (u, u) = —1, gives

Hemo 0 0 EHOH

0 # 0 0
0,0,0, u4 L] ) =1
[ bl b bl l/t ] O O r2sn 0
Eo 0 —® EDM“
whence
4 -o
u =e ,

sothat 7% = (p+p)e >® + p(—e¢>®) (note that weareusing g~ here). Hence,
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00 0 0 H Eem 0 0 0 E

0 00 0 0 0 0
=0 0 0 0 []+P 0 Fsin8 0

o 0 0 (p+pre2e [ 0 0 _ewg

[]
o
S O Tz o

(a) Equations of Motion 7%, = 0

To solve these, we first notice that we are not in an inertial frame (the metric g isnot nice at
the origin; in fact, nothing is even defined there!) so we need the Christoffel symbols, and
use

o7
b a b b k

where

1, Hegy | dgw  dgw [
thk=2gp%hﬁ+_m _MH

axl
Now, lots of thetermsin T”’lb vanish by symmetry, and the restricted nature of the
functions. We shall focuson a = 1, the r-coordinate. We have:
lelb — Tll|1 + TIZ|2 + T13|3 + T14|4 ’
and we cal cul ate these terms one-at-a-time.

1l b=l 7l _3L11 rl7l .l
a=10b6=1 |1—ax1+11+11-

To evaluate this, first ook at theterm T, :

1 1 15
Iyy=3%8 Qi + 81— &y

1 o
= §g“(g111 + g1 = &) (because g is diagonal, whence [ = 1)

=3¢’ (e,
= 2PN = A,
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1 _ d_]? -2A oy —2A . -2A _d_l? -2A
T, = € + (= 2pAN'(r)e =) + 2A'(r)pe = = e
Now for the next term:

=1,b=2: T" _9T” r,. 7%+ 1%, 17"
a=1b=2 '2_ax2+22 + 1,
15 2 1 p 11
=0+3g (821,2+812,2_822,1)T2 + 28 (8uat8n1—8n )T
1 2 1 » 11
g (—8xn1) T+ 28 (8T

2

1 oA D 1 1 . —2A
5e =2r= + 55— 2r9nfpe

2 ( )r2 2 7’sing P

0

Similarly (exercise set)
Finally,

1 b= a: 14_5T14 g 411

1 1

2 g”(—g44,1) T+ 2 g44(g44,1)T”

= 3PP + 5 (- 2D () pe
e ' ()lp + pl

Hence, the conservation equation becomes

Tlala -0
p 4o H oA
N %+ W+p) e =0
dp dod
“ ar T ~(p+p) dr

This gives the pressure gradient required to keep the plasmastatic in a star.

Note In classical mechanics, the term on the right has p rather than p+p. Thus, the
pressure gradient is larger in relativistic theory than in classical theory. Thisincreased
pressure gradient corresponds to greater values for p, and hence bigger valuesfor al the
components of 7. By Einstein's field equations, this now leads to even greater values of ®
(manifested as gravitational force) thereby causing even larger values of the pressure
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gradient. If p islarge to begin with (big stars) this vicious cycle diverges, ending in the
gravitational collapse of a star, leading to neutron stars or, in extreme cases, black holes.

(b) Einstein Field Equations G** = 8aT*

Looking at the (4,4) component first, and substituting from the expressionsfor G and 7,
we find

1 _ed _ _
r—ze ZCDE [r(1-e 2A)] = 8npe 2

If we define

1 -2A

2r(1-e ™) = m(r),
then the equation becomes

L)

L _2adm(r) _ -2
T e = 4npe 7,

r dr

or

Thislooks like an equation for classical mass, since classically,

MR = [[¥ azrpe) ar

where the integrand is the mass of a shell whose thicknessisdr. Thus,

Here, p isenergy density, and by our choice of units, energy is equal to rest mass, so we
interpret m(r) asthe total mass of the star enclosed by a sphere of radiusr.

Now look at the (1, 1) component:

_ 1 _ _
QoM _ = (1-e 2A) = 8pe 2
r

2
.
2 no
S0 - S (1= = 8mpe

A

2A
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O 2rd' - & (1-¢ ) = 8mr'pe™
on (1= + 8ar’p
2r )

0 &' '=e

In the expression for m, solve for ¢** to get

2A 1
1-2m/r’
giving
do  8mur’p + 2mir
dr — 2r(1-2m/r) '
or

o 4m"3p + m I
o —r(r—Zm) ......... (n

It can be checked using the Bianchi identitiesthat we in fact get no additional information
from the (2,2) and (3,3) components, so we ignore them.

Consequences of the Field Equations: Outside the Star

Outside the star wetakep = p = 0, and m(r) = M, the total stellar mass, getting

(1: e 0 (nothing new, sincem = M = constant)
(||): d;() — L ,
dr r(r—2M)

which isaseparable first order differential equation with solution

- oM
=1 - =—.
r

if we impose the boundary condition ®—0 as r—+x. (See the exercise Set).

Recalling from the definition of m that

w1
T 1-2M/r’

we can now express the metric outside a star asfollows:
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Schwar zschild Metric

1
Hl—ZM/r U L H
Gu = o £ 0 0
H 0 0 r’sin’0 0 H
0 0 0 —(1-2M/r)

In the exercise set, you will see how thisleads to Newton's Law of Gravity.

Exercise Set 14

1. Use V’¢ = 47Gp and the divergence theorem to deduce Newton's law V¢ = GM/r” for
a spherical mass of uniform density p.

2. Calculate the Einstein tensor for the metric ¢ = diag(¢™, 7%, r°sind, —¢**), and verify
that it agrees with that in the notes.

3. Referring to the notes above, show that 7°; = 0.

4. Show that 7%, = O fori = 2, 3, 4.

5. If we impose the condition that, far from the star, spacetime isflat, show that thisis

equivaenttosayingthat Iim &) = lim A(r) = 0. Hence obtain the formula
ro 40 ro -+

20 2M
=1 -=.
r
6. A Derivation of Newton's Law of Gravity
(a) Show that, at alarge distance R from a static stable star, the Schwarzschild metric can
be gpproximated as

142M/IR 0 0 0 %

g o R 0 0 0
Eur = 0 0 Rsn% 0 '
E 0 0 0 —(1-2M/R) E

(b) (Schutz, p. 272 #9) Define anew coordinate R by R = R(1+M/R)*, and deduce that, in
terms of the new coordinates (ignoring terms of order 1/R)

1+2M/R 0 0 0
0 R(1+2MR) 0 0
gw = [ 0 0 R (1+2M/R)’sin’0 0 -
% 0 0 0 —(1-2M/R)

(c) Now convert to Cartesian coordinates, (x, y, z, t) to obtain
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H 1+2M/R 0 0 0 H
0 1+2M/R 0 0

£«~11 o 0  1+2M/R 0 ]
0 0 0o -(-2m/R) U
(d) Now refer to the last formulain Section 10, and obtain Newton's Law of Gravity. To
how many kilograms does one unit of M correspond?

15. The Schwar zschild Metric and Event Horizons

We saw that the metric outside a spherically symmetric static stable star (Schwarzschild
metric) is given by

ds® = dr* + rrdQ* — (1-2M/r)df’,

T 1-2M/r

where dQ* = d&” + sin’6 d¢’. We see immediately that something strange happens when
2M = r, and we look at two cases.

Case 1 (Not-So-Dense Stars) Radius of the star, r, > 2M.

If we recall that the Schwarzschild metricisonly valid for outside a star; that is, r > r,, we
find that » > 2M aswell, and so 1-2M/r is positive, and never zero. (If r < 2M, we are
inside the star, and the Schwarzschild metric no longer applies.)

Case 2 (Extremely Dense Stars) Radius of the star, r, < 2M.

Here, two things happen: First, as a consequence of the equations of motion, it can be
shown that in fact the pressure inside the star is unable to hold up against the gravitational
forces, and the star collapses (see the next section) overwhelming even the quantum
mechanical forces. In fact, it collapses to a singularity, apoint with infinite density and no
physical dimension, ablack hole. For such objects, we have two distinct regions, defined
by r > 2M and r < 2M, separated by the event horizon, r = 2M, where the metric goes
infinite.
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Gravitationa Collapse
_— >

Event Horizon Event Horizon
(r=2M) (r=2M)

Particles Falling Inwards
Suppose a particle isfalling radialy inwards. Let us see how long, on the particle's clock
(proper time), it takes to reach the event horizon. Out approach will be asfollows:
(1) Use the principle that the path is a geodesic in space time.
(2) Deduce information about dr/dt.
(3) Integrate dr to see how long it takes.
Recall first the geodesic equation for such aparticle,
PP +T PP =0.
We saw in the derivation (look back) that it came from the equation

dP i s
d,l. +FrA_PrP‘_O ......... (I)

Thereis acovariant version of this:

dP,
my~ ~ T, \P'P, = 0.

Derivation Thisis obtained as follows:

Multiplying both sides of (I) by g,, gives

i

dP i n'pS
mOE 8ia + rrsPPgia = 0’

or

P
m B8y i piy i prprg

dr d
apr) dg
mO e d P+F PrPsgla—
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diP) i Dg, k dx’ k dx’ i
—_— —ld —_ —_ —
mO d‘L' mOP(DT + rrigkadr + ra rgikdr ) + FrsPrPSgia - 0
| (by definition of Dg,,/D)
0
dpa i i i ' pS
my (dr) - rrkiPnga - rakrPPgik +I,,PPg,=0,

leaving

d(P) i
my= == - T\ PPg, =0,

or

dP,)
" r

- FakrPkPr = 01
which isthe claimed covariant version.
Now take this covariant version and write out the Christoffel symbols:
- = 1—‘risPrPi
l ik r
- 2g (grk,s + gks,r - gsr,k)PPi

1 7 ok
my, dr = E(grk,s + gks,r - gsr,k) PP

But the sum of the second and third termsin parentheses is skew-symmetric in r and k,
whereas the term outside is symmetric in them. Thisresultsin them canceling when we
sum over repeated indices. Thus, we are left with

P 1 " pk
my—/=" =58, PP ... (D)

But by spherical symmetry, g isindependent of x' if i = 2, 3, 4. Therefore grs = O unless

s = 1. Thismeansthat P,, P; and P, are constant along the trajectory. Since P, is constant,
we define

E = -P,/m,,
another constant.
Question What isthe meaning of E?
Answer Recall that the fourth coordinate of four momentum is the energy. Suppose the

particle starts at rest at r = o and then fallsinward. Since space isflat there, and the
particleis at rest, we have
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P* =10, 0, 0, my] (fourth coordinate is rest energy = my)

(which correspondsto P« = [0, 0, 0, —my], since P* = P.g*™). Thus, E = —P,/m = 1,
the rest energy per unit mass.

Asthe particle moves radialy inwards, P2 = P3 = 0. What about P1? Now we know the
first coordinate of the contravariant momentum is given by

i
P = m(% (by definition, P = mo‘% ,and x! = )

Thus, using the metric to get the fourth contravariant coordinate,
. d -
P' = (my=—,0, 0, mE(1-2M/r)”")
dr
we now invoke the normalization condition {u, u) = —1, whence (P, P) = —moz, 30 that
-m,> = mﬁ@}ﬁ (1-2M/r)~" = m"E*(1-2M/r)”",
giving
@}ﬂ =E -1+ 2M/r,
T|

which isthe next step in our quest:

dr

NE-142mr

where we have introduced the negative sign since r is adecreasing function of 7.
Therefore, the total time elapsed is

dr = -

[\

M

7 %

dr

NE-142Mm)r

which, though improper, isfinite.” Thisisthe timeit takes, on the hapless victim's clock,
to reach the event horizon.

" See Schutz, p. 289.

117



Now let's recalculate this from the point of view of an observer who is stationary with

respect to the star. That is, let us use the coordinate x* astimer. How isit related to proper
time? Well, the four velocity tells how:

v“ a*  dt
=dean =$-

We can get V* from the formulafor P* (and divide by m,) SO that
dt = Vidr = E(1-2M/r)™" dv

giving atotal time of

2M

dr
Y EQ—2miNE—1+20r
R

T =

Thisintegral diverges! So, in the eyes of an outside observer, it takesthat particle infinitely
long to get there!

Inside the Event Horizon—A Dialogue

Tortoise: | seemto recal that the metric for a stationary observer (situated inside the event
horizon) is still given by the Schwarzschild metric

ds* = (1=2M/r)"'dr* + ¥* dQ* — (1-2M/r)df’.

Achilles: Indeed, but notice that now the coefficient of dr” is negative, while that of dr is
positive. What could that signify (if anything)?

Tortoise: Let usdo alittle thought experiment. If we are unfortunate(?) enough to be there
watching a particle follow either anull or timelike world line, then, with respect to any
parameter (such as 7) we must have dr/dt = 0. In other words, » must always change with
the parameter!

Achilles: So you mean nothing can sit still. Why so?
Tortoise: Simple. First: for any world line, the vector dx'/dr is non-zero, (or else it would

not be a path at al!) so some coordinate must be non-zero. But now if we calculate lldx'/dell®
using the signature (-, +, +, +) we get
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— somethi ngx%%@ + somethingx the others,

so the only way the answer can come out zero or negative isif the first coordinate (dr/dt) is
non-zero.

Achilles: | think | see your reasoning... we could get anull path if al the coordinates were
zero, but that just can't happen in apath! So you mean to tell me that thisis true even of
light beams. Mmm.... So you're telling me that » must change along the world line of any
particle or photon! But that begs a question, since r is always changing with 7, does it
increase or decrease with proper time 7?

Tortoise: Totell you the truth, | looked in the Green Book, and all it said was the
“obvioudly” r must decrease with , but | couldn't see anything obvious about that.

Achilles: Wéll, let me try athought experiment for a change. If you accept for the moment
the claim that a particle fired toward the black hole will move so as to decrease r, then there
isat least one direction for which dr/dt < 0. Now imagine a particle being fired in any
direction. Since dr/dt will be a continuous function of the angle in which the particleis
fired, we conclude that it must always be negative.

Tortoise: Nicetry, my friend, but you are being too hasty (as usual). That argument can
work against you: suppose that a particle fired away from the black hole will move (initially
at least) so asto increase r, then your argument proves that r increases no matter what
direction the particle isfired. Back to the drawing board.

Achilles: | see your point...

Tortoise (interrupting): Not only that. Y ou might recall from Lecture 38 (or thereabouts)
that the 4-velocity of asradially moving particlein free-fall is given by

. d .
V= (d—;,o, 0, E(1-2M/r) 7",

so that the fourth coordinate, dr/dr = E(1-2M/r)”", is negative inside the horizon.
Therefore, proper time moves in the opposite direction to coordinate time!

Achilles: Now I'm really confused. Does this mean that for r to decrease with coordinate
time, it has to increase with proper time?

Tortoise: Yes. So you were (as usual) totally wrong in your reason for asserting that dr/dt
is negative for an inward falling particle.

Achilles: OK. So now the burden of proof ison you! You haveto explain what the hell is
going on.
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Tortoise: That'seasy. You might dimly recall the equation

@}rﬁ —E>— 1+ 2M/r
T

on p. 112 of those excellent differential geometry notes, wherein we saw that we can take E
= 1 for aparticle starting at rest far from the black hole. In other words,

@;ﬁ = 2M/r.
T

Notice that thisis constant and never zero, so that dr/dt can never change sign during the
trgjectory of the particle, even as (in its comoving frame) it passes through the event
horizon. Therefore, since r was initially decreasing with = (outside, in “normal” space-
time), it must continue to do so throughout its world line. In other words, photons that
originate outside the horizon can never escape in their comoving frame. Now (and here's
the catch), since there are some particles whose world-lines have the property that the arc-
length parameter (proper time) decreases with increasing r, and since r is the unique
coordinate in the stationary frame that plays the formal role of time, and further since, in
any frame, al world lines must move in the same direction with respect to the local time
coordinate (meaning r) astheir parameter increases, it follows that all world lines must
decrease r with increasing proper time. Ergo, Achilles, r must aways decrease with
increasing proper time 7.

Of course, a consegquence of all of thisisthat no light, communication, or any physical
object, can escape from within the event horizon. They are all doomed to fall into the
singularity.

Achilles: But what about the stationary observer?

Tortoise: Interesting point...the quantity dr/dr = E(1-2M/r)”" is negative, meaning proper
time goes in the opposite direction to coordinate time and also becomeslarge asiit
approaches the horizon, so it would seem to the stationary observer inside the event
horizon that things do move out toward the horizon, but take infinitely long to get there.
There isacatch, however, there can be no “ stationary observer” according to the above
analysis...

Achilles: Oh.

Exercise Set 15

1. Verify that the integral for theinfalling particle divergesthecase E = 1.

2. Mini-Black Holes How heavy isablack hole with event horizon of radius one meter?
[Hint: Recall that the “M” corresponds to G xtotal mass.]
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3. Calculate the Riemann coordinates of curvature tensor R ., @ the event horizon. r =
2M.

16. White Dwarfs, Neutron Stars and Black Holes—Guest Lecture by Gregory C.
Levine

| Introduction

In this section we will look at the physical mechanisms responsible for the formation
compact stellar objects. Compact objects such as white dwarf stars, neutron stars, and
ultimately black holes, represent the final state of a star's evolution. Starsare bornin
gaseous nebulae in which clouds of hydrogen coal esce becoming highly compressed and
heated through the gravitational interaction. At atemperature of about 107 K, anuclear
reaction begins converting hydrogen into the next heavier eement, helium, and releasing a
large quantity of electromagnetic energy (light). The helium accumulates at the center of the
star and eventually becomes compressed and heated enough (108 K) to initiate nuclear
fusion of helium into heavier elements.

So far, the star isheld in "near-equilibrium” by the countervailing forces of gravity, which
compresses the star, and pressure from the vast electromagnetic energy produced during
nuclear fusion, which tends to make it expand. However, as the star burns hotter and
ignites heavier elements which accumulate in the core, electromagnetic pressure becomes
less and less effective against gravitational collapse. In most stars, this becomes a serious
problem when the core has reached the carbon rich phase but the temperatureis still
insufficient to fuse carbon into iron. Even if astar has reached sufficient temperature to
create iron, no other nuclear fusion reactions producing heavier elements are exothermic
and the star has exhausted its nuclear fuel. Without electromagnetic energy to hold the core
up, one would think that the core would become unstable and begin to collapse---but
another mechanism intervenes.

Il The Electron Gas

But thereis another "force" that holds the core up; now we will turn to a study of thisforce
and how the balance between this force and gravity lead to the various stellar compact
objects: white dwarfs, neutron stars and black holes.

The stabilizing force that keeps the stellar core from collapsing operates at terrestrial scales
aswell. All solid matter resists compression and we will trace the origin of this behavior in
amaterial that turns out to most resemble a stellar compact object: ordinary metal.

Although metal is"hard" by human standards, it is to some degree el astic---capabl e of
stretching and compression. Metals al have asimilar atomic structure. Positively charged
metal ion cores form aregular crystalline lattice and negatively charged valence electrons
form akind of gasthat uniformly permestes the lattice.
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Suprisingly, the bulk properties of the metal such as heat capacity, compressibility, and
thermal conductivity are amost exclusively properties of the electron gas and not the
underlying framework of the metal ion cores. We will begin by studying the properties of
an electron gas aone and then see if it is possible to justify such asimple model for ametal
(or astar).

To proceed, two very important principles from Quantum Mechanics need to be
introduced:

Pauli Exclusion Principle: Electrons cannot be in the same quantum state. For our
purposes, this will effectively mean that electrons cannot be at the same point in space.
Heisenberg Uncertainty Principle: A quantum particle has no precise position, x, or
momentum, p. However, the uncertaintiesin the outcome of experiment aimed at
simultaneously determining both quantitiesis constrained in the following way. Upon
repeated measurements, the "spread” in momentum, Ap, of a particle absolutely confined to
aregion in space of sizeAx, is constrained by

AN
A

sz?

where 24 = 6.6x10-34 Joule-sec is afundamental constant of nature (the Planck
constant).

Here is how these two laws act together to give one of the familiar properties of metals.
The Pauli Exclusion Principle tends to make electrons stay as far apart as possible. Each of
N electrons confined in abox of volume R3 will typically have R3/N space of its own.
Therefore, the average interparticle spacing isa, = R/N'3. (The situation is actually abit
more complicated than this*link*). Since the electrons are spatialy confined within a
region of linear size a,,, the uncertainty in momentum is Ap = “%/a,. The precise meaning
of Ap?isthevariance of alarge set of measurements of momentum. Denoting average by
angle brackets,

Ap? = A(p - P)? = P2 - P>~
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Therefore, the average value of p2 must be greater than or equal toAp?2.

Based on these resullts, let us calculate how the energy of an electron gas depends upon the
size of the box containing it. The kinetic energy of a particle of massm and speed v is

Now, taking the minimum value of momentum, p2 = Ap? = 222%/q,?, we arrive at the
energy, € = “22%/m,ay%, for asingle electron of massm,. Thetotal kinetic energy of N
electronsisthen E, = Ne. Finaly, putting in the dependence of a, on N and the system
Size, R, weget for E,,

Asthe system size R isreduced, the energy increases. Even though the electrons do not
interact with one another, there is an effective repulsive force resisting compression. The
origin of thisforce isthe uncertainty principle! (neglecting e-e interactions and neglecting
temperature.)

Let ustest out this model by calculating the compressibility of metal. Consider ameta
block that undergoes a small change in volume, AV, due to an applied pressure P.

The bulk modulus, B, is defined as the constant of proportionality between the applied
pressure and the fractional volume change.

AV
P=BV.

The outward pressure (towards positive R) exerted by the electron gasis defined in the
usua way in terms of aderivative of the total energy of the system:
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The bulk modulusis then defined as

— |— — = ~ -10 -11 2
B=Vay = =5 ~ 10 10-11 N/m2,

(We've taken the volume per electron to be 1 nm3.) The values of B for Steel and
Aluminum are Bgegq = 610710 N/m2 and B, = 2x10~10 N/m2. It is hard to imagine that
this excellent agreement in magnitude is wholly fortuitous (it is not). Having seen that the
Heisenberg uncertainty principle is the underlying physics behind the rigidity of metal, we
will now seethat it is also physica mechanism that keeps stars from collapsing under their
own weight.

11 Compact Objects

A star can only bein acondition of static equilibrium if there is some force to counteract the
compressive force of gravity. In large stars this countervailing force is the radiation
pressure from thermally excited atoms emitting light. But in awhite dwarf star, the force
counteracting gravity hasitsorigin in the uncertainty principle, asit didinametal. The
elements making up the star (mostly iron) exist in acompletely ionized state because of the
high temperatures. One can think of the star as a gas of positive charge atomic nuclel and
negative charge electrons. Each metal nucleusis afew thousand times heavier than the set
of electronsthat were attached to it, so the nuclei (and not the electrons) are responsible for
the sizable gravitational force holding the star together. The electrons are strongly
electrostatically bound to core of the star and therefore coexist in the same volume as the
nuclear core---gravity pulling the nuclel together and the uncertainty principle effectively
pushing the electrons apart.

<® -
N

D-— D @f
» 4 3

@, o

We will proceed in the same way asin the calculation of the bulk modulus by finding an
expression for the total energy and taking its derivative with respect to R to find the
effective force.

The gravitational potentia energy of sphere of mass M and radius R is approximately
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where G = 7 x 10-11 Nm2/kg? is the gravitational constant. (The exact result has a coeffient
of order unity in front; we are doing only "order-of-magnitude” calculations and ignoring
such factors.) The negative sign means that the force of gravity is attractive---energy
decreases with decreasing R. We would like to express E, in terms of N, like E,---this will

make the resulting expressions easier to adapt to neutron stars later on. The mass M of the
star isthe collective mass of the nucleons, to an excellent approximation. Asyou may
know from chemisty, the number of nucleons (protons and neutrons) is roughly double the
number of electrons, for light elements. If u isthe average number of nucleons per
electron, for the heavier elements making up the star, The mass of the star is expressed as
M=um,N. Putting the expressions for the electron kinetic energy and the gravitational

potential energy together, we get the total energy E:

22NS3 GuPm,2N?
e % mpR2 T R

The graph of the function E(R)

Ed

\

revealsthat thereis aradius at which the energy is minimum---that isto say, aradius R,

wheretheforce F = —9dE/0R is zero and the star isin mechanical equilibrium. A rough
calculation of R, gives:.

CA2N-1/3

= =107 m=
Ry Gmi2m 2 107 m = 10,000 km.

where we have used N = 10°7, areasonable value for astar such as our sun. R,
corresponds to a star that isalittle bigger than earth---a reasonable estimate for awhite
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dwarf star! The mass density p may also be calculated assuming theradius R, p = 109

kg/m3 = 10° x density of steel. On the average, the electrons are much closer to the nuclel
in the white dwarf than they are in ordinary matter.

Under some circumstances, the star can collapse to an object even more compact than a
white dwarf---a neutron star. The Specia Theory of Relatvity plays animportant role in
thisfurther collapse. If we calculate the kinetic energy of the most energetic electronsin the
white dwarf, we get:

a2 a2 2/3
€= 2 = %ﬁ ~ 100-14 Joules.
m.,a m

e

Thisenergy is actually quite close to the rest mass energy of the electron itself, m,¢2 = 10

13 Joules. Recall that the expression for the kinetic energy, ¢ = p2/2m, isonly a
nonrelativistic approximation. Rest mass energy is ascaar formed from the product

g2
pipy= 7 = p* = (me).

The exact expression for the energy ¢ of arelativistic particle isthen:

2
£ = \/(pc)2+(mc2)2 = mc? + 5—m + terms of order > %ﬁ .

When p = mc (or, equivalently, when p2/m =~ mc? as above) the higher order terms cannot
be neglected.

Since the full expression for ¢ isunwieldy for our simple approximation schemes, we will
look at the extreme relativistic limit, p >> mc. Inthiscase, € = pc. Thislimit is effectively
the limit for extremely massive stars, where the huge compressive force of gravity will
force the electrons to have compensatingly high kinetic energies and enter the extreme
relativistic regime.

The different form for the energy of the electrons (now linear rather than quadratic in p)
will have dramatic consequences for the stability equation for the radius R, derived earlier.

The calculation proceeds as before; according to the uncertainty principle the estimate for
the momentum of an electron within the star is

o 2aN13

p:a(): R

Therefore, the total electron energy is given by

acNA3
R

EezNE:::Npc:::
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The same expression as before for E, resultsin the following expression for the total
energy:

aeNA3 Gu’m,’N?
E+E +E~—fp— - —F%H .
The energy E(R) has acompletely different behavior than in the nonrelativistic case. If we
look at theforce F = —dE/dR itisjust equal to E/R. If the total energy is positive, the force
alwaysinduces expansion; if the total energy is negative, the force aways induces
compression. Thus, if the total energy E is negative, the star will continue to collapse (with
an ever increasing inward force) unless some other force intervenes. These behaviors are
suggested in the figure below.

Fi

N > Nc

N < N¢

Neutron star or ??

The expression for total energy tells us that the critical value of N (denoted by N) for
which the energy crosses over to negative valueis

LE%C %/2

Ne¢ = u3 BSngH :

Thisis conventionally written in terms of acritical mass for astar, M, that separates the
two behaviors. expansion or collapse. The critical massis

1 cl372
Mc = uNem, = 75,3 %ﬁ :
n

If M > M, the star will continue to collapse and its electrons will be pushed closer and
closer to the nuclei. At some point, a nuclear reaction begins to occur in which electrons
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and protons combine to form neutrons (and neutrinos which are nearly massless and
noninteracting). A sufficiently dense star is unstable against such an interaction and all
electrons and protons are converted to neutrons leaving behind a chargeless and
nonluminous star: a neutron star.

Y ou may be wondering: what holds the neutron star up? Neutrons are chargeless and the
nuclear force between neutrons (and protons) is only attractive, so what keeps the neutron
star from further collapse? Just as with electrons, neutrons obey the Pauli Exclusion
Principle. Consequently, they avoid one another when they are confined and have a sizable
kinetic energy due to the uncertainty principle. If the neutrons are nonrelativistic, the
previous calculation for the radius of the white dwarf star will work just the same, with the
replacement m, — m,,. This change reduces the radius R, of the neutron star by afactor

of =2000 (the ratio of m,, to m,) and R, = 10 km. One of these would comfortably fit on
Long Island but would produce somewhat disruptive effects.

Finally, if the neutron star is massive enough to make its neutrons relativistic, continued
collapseis possibleif the total energy is negative, as before in the white dwarf case. The
expression for the critical mass M- is easily adapted to neutrons by settingu = 1. Since u
~ 2 for awhite dwarf, we would expect that a star about four times more massive than a
white dwarf is susceptible to unlimited collapse. No known laws of physics are capable of
interrupting the collapse of aneutron star. 1n a sense, the laws of physics |leave the door
open for the formation of stellar black holes.
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