
Lecture Notes in Mathematics 1837
Editors:
J.--M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris



3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo
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Preface

Three series of lectures were given at the 31st Probability Summer School in
Saint-Flour (July 8–25, 2001), by the Professors Catoni, Tavaré and Zeitouni.
In order to keep the size of the volume not too large, we have decided to
split the publication of these courses into two parts. This volume contains
the courses of Professors Tavaré and Zeitouni. The course of Professor Catoni
entitled “Statistical Learning Theory and Stochastic Optimization” will be
published in the Lecture Notes in Statistics. We thank all the authors warmly
for their important contribution.

55 participants have attended this school. 22 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end
of the volume.

Finally, we give the numbers of volumes of Springer Lecture Notes where
previous schools were published.

Lecture Notes in Mathematics

1971: vol 307 1973: vol 390 1974: vol 480 1975: vol 539
1976: vol 598 1977: vol 678 1978: vol 774 1979: vol 876
1980: vol 929 1981: vol 976 1982: vol 1097 1983: vol 1117
1984: vol 1180 1985/86/87: vol 1362 1988: vol 1427 1989: vol 1464
1990: vol 1527 1991: vol 1541 1992: vol 1581 1993: vol 1608
1994: vol 1648 1995: vol 1690 1996: vol 1665 1997: vol 1717
1998: vol 1738 1999: vol 1781 2000: vol 1816

Lecture Notes in Statistics

1986: vol 50 2003: vol 179
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1 Introduction

One of the most important challenges facing modern biology is how to make
sense of genetic variation. Understanding how genotypic variation translates
into phenotypic variation, and how it is structured in populations, is funda-
mental to our understanding of evolution. Understanding the genetic basis
of variation in phenotypes such as disease susceptibility is of great impor-
tance to human geneticists. Technological advances in molecular biology are
making it possible to survey variation in natural populations on an enormous
scale. The most dramatic examples to date are provided by Perlegen Sciences
Inc., who resequenced 20 copies of chromosome 21 (Patil et al., 2001) and by
Genaissance Pharmaceuticals Inc., who studied haplotype variation and link-
age disequilibrium across 313 human genes (Stephens et al., 2001). These are
but two of the large number of variation surveys now underway in a number
of organisms. The amount of data these studies will generate is staggering,
and the development of methods for their analysis and interpretation has be-
come central. In these notes I describe the basics of coalescent theory, a useful
quantitative tool in this endeavor.

1.1 Genealogical processes

These Saint Flour lectures concern genealogical processes, the stochastic mod-
els that describe the ancestral relationships among samples of individuals.
These individuals might be species, humans or cells – similar methods serve
to analyze and understand data on very disparate time scales. The main theme
is an account of methods of statistical inference for such processes, based pri-
marily on stochastic computation methods. The notes do not claim to be
even-handed or comprehensive; rather, they provide a personal view of some
of the theoretical and computational methods that have arisen over the last
20 years. A comprehensive treatment is impossible in a field that is evolving
as fast as this one. Nonetheless I think the notes serve as a useful starting
point for accessing the extensive literature.

Understanding molecular variation data

The first lecture in the Saint Flour Summer School series reviewed some basic
molecular biology and outlined some of the problems faced by computational
molecular biologists. This served to place the problems discussed in the re-
maining lectures into a broader perspective. I have found the books of Hartl
and Jones (2001) and Brown (1999) particularly useful.

It is convenient to classify evolutionary problems according to the time
scale involved. On long time scales, think about trying to reconstruct the
molecular phylogeny of a collection of species using DNA sequence data taken
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from a homologous region in each species. Not only is the phylogeny, or branch-
ing order, of the species of interest but so too might be estimation of the di-
vergence time between pairs of species, of aspects of the mutation process that
gave rise to the observed differences in the sequences, and questions about the
nature of the common ancestor of the species. A typical population genetics
problem involves the use of patterns of variation observed in a sample of hu-
mans to locate disease susceptibility genes. In this example, the time scale
is of the order of thousands of years. Another example comes from cancer
genetics. In trying to understand the evolution of tumors we might extract a
sample of cells, type them for microsatellite variation at a number of loci and
then use the observed variability to infer the time since a checkpoint in the
tumor’s history. The time scale in this example is measured in years.

The common feature that links these examples is the dependence in the
data generated by common ancestral history. Understanding the way in which
ancestry produces dependence in the sample is the key principle of these notes.
Typically the ancestry is never known over the whole time scale involved. To
make any progress, the ancestry has to be modelled as a stochastic process.
Such processes are the subject of these notes.

Backwards or Forwards?

The theory of population genetics developed in the early years of the last
century focused on a prospective treatment of genetic variation (see Provine
(2001) for example). Given a stochastic or deterministic model for the evolu-
tion of gene frequencies that allows for the effects of mutation, random drift,
selection, recombination, population subdivision and so on, one can ask ques-
tions like ‘How long does a new mutant survive in the population?’, or ‘What
is the chance that an allele becomes fixed in the population?’. These questions
involve the analysis of the future behavior of a system given initial data. Most
of this theory is much easier to think about if the focus is retrospective. Rather
than ask where the population will go, ask where it has been. This changes
the focus to the study of ancestral processes of various sorts. While it might
be a truism that genetics is all about ancestral history, this fact has not per-
vaded the population genetics literature until relatively recently. We shall see
that this approach makes most of the underlying methodology easier to derive
– essentially all classical prospective results can be derived more simply by
this dual approach – and in addition provides methods for analyzing modern
genetic data.

1.2 Organization of the notes

The notes begin with forwards and backwards descriptions of the Wright-
Fisher model of gene frequency fluctuation in Section 2. The ancestral pro-
cess that records the number of distinct ancestors of a sample back in time is
described, and a number of its basic properties derived. Section 3 introduces
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the effects of mutation in the history of a sample, introduces the genealogical
approach to simulating samples of genes. The main result is a derivation of the
Ewens sampling formula and a discussion of its statistical implications. Sec-
tion 4 introduces Kingman’s coalescent process, and discusses the robustness
of this process for different models of reproduction.

Methods more suited to the analysis of DNA sequence data begin in
Section 5 with a theoretical discussion of the infinitely-many-sites mutation
model. Methods for finding probabilities of the underlying reduced genealog-
ical trees are given. Section 6 describes a computational approach based on
importance sampling that can be used for maximum likelihood estimation of
population parameters such as mutation rates. Section 7 introduces a number
of problems concerning inference about properties of coalescent trees condi-
tional on observed data. The motivating example concerns inference about
the time to the most recent common ancestor of a sample. Section 8 develops
some theoretical and computational methods for studying the ages of muta-
tions. Section 9 discusses Markov chain Monte Carlo approaches for Bayesian
inference based on sequence data. Section 10 introduces Hudson’s coalescent
process that models the effects of recombination. This section includes a dis-
cussion of ancestral recombination graphs and their use in understanding link-
age disequilibrium and haplotype sharing.

Section 11 discusses some alternative approaches to inference using approx-
imate Bayesian computation. The examples include two at opposite ends of the
evolutionary time scale: inference about the divergence time of primates and
inference about the age of a tumor. This section includes a brief introduction
to computational methods of inference for samples from a branching process.
Section 12 concludes the notes with pointers to some topics discussed in the
Saint Flour lectures, but not included in the printed version. This includes
models with selection, and the connection between the stochastic structure of
certain decomposable combinatorial models and the Ewens sampling formula.

1.3 Acknowledgements

Paul Marjoram, John Molitor, Duncan Thomas, Vincent Plagnol, Darryl Shi-
bata and Oliver Will were involved with aspects of the unpublished research
described in Section 11. I thank Lada Markovtsova for permission to use some
of the figures from her thesis (Markovtsova (2000)) in Section 9. I thank Mag-
nus Nordborg for numerous discussions about the mysteries of recombination.
Above all I thank Warren Ewens and Bob Griffiths, collaborators for over 20
years. Their influence on the statistical development of population genetics
has been immense; it is clearly visible in these notes.

Finally I thank Jean Picard for the invitation to speak at the summer
school, and the Saint-Flour participants for their comments on the earlier
version of the notes.
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2 The Wright-Fisher model

This section introduces the Wright-Fisher model for the evolution of gene fre-
quencies in a finite population. It begins with a prospective treatment of a
population in which each individual is one of two types, and the effects of mu-
tation, selection, . . . are ignored. A genealogical (or retrospective) description
follows. A number of properties of the ancestral relationships among a sample
of individuals are given, along with a genealogical description in the case of
variable population size.

2.1 Random drift

The simplest Wright-Fisher model (Fisher (1922), Wright (1931)) describes
the evolution of a two-allele locus in a population of constant size undergoing
random mating, ignoring the effects of mutation or selection. This is the so-
called ‘random drift’ model of population genetics, in which the fundamental
source of “randomness” is the reproductive mechanism.

A Markov chain model

We assume that the population is of constant size N in each non-overlapping
generation n, n = 0, 1, 2, . . . . At the locus in question there are two alleles,
denoted by A and B. Xn counts the number of A alleles in generation n.
We assume first that there is no mutation between the types. The population
at generation r + 1 is derived from the population at time r by binomial
sampling of N genes from a gene pool in which the fraction of A alleles is its
current frequency, namely πi = i/N. Hence given Xr = i, the probability that
Xr+1 = j is

pij =
(

N

j

)
πj

i (1 − πi)N−j , 0 ≤ i, j ≤ N. (2.1.1)

The process {Xr, r = 0, 1, . . .} is a time-homogeneous Markov chain. It
has transition matrix P = (pij), and state space S = {0, 1, . . . , N}. The states
0 and N are absorbing; if the population contains only one allele in some
generation, then it remains so in every subsequent generation. In this case,
we say that the population is fixed for that allele.

The binomial nature of the transition matrix makes some properties of the
process easy to calculate. For example,

E(Xr|Xr−1) = N
Xr−1

N
= Xr−1,

so that by averaging over the distribution of Xr−1 we get E(Xr) = E(Xr−1),
and

E(Xr) = E(X0), r = 1, 2, . . . . (2.1.2)
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The result in (2.1.2) can be thought of as the analog of the Hardy-Weinberg
law: in an infinitely large random mating population, the relative frequency
of the alleles remains constant in every generation. Be warned though that
average values in a stochastic process do not tell the whole story! While on
average the number of A alleles remains constant, variability must eventually
be lost. That is, eventually the population contains all A alleles or all B alleles.

We can calculate the probability ai that eventually the population contains
only A alleles, given that X0 = i. The standard way to find such a probability
is to derive a system of equations satisfied by the ai. To do this, we condition
on the value of X1. Clearly, a0 = 0, aN = 1, and for 1 ≤ i ≤ N − 1, we have

ai = pi0 · 0 + piN · 1 +
N−1∑
j=1

pijaj . (2.1.3)

This equation is derived by noting that if X1 = j ∈ {1, 2, . . . , N − 1}, then
the probability of reaching N before 0 is aj . The equation in (2.1.3) can be
solved by recalling that E(X1 | X0 = i) = i, or

N∑
j=0

pijj = i.

It follows that ai = Ci for some constant C. Since aN = 1, we have C = 1/N ,
and so ai = i/N . Thus the probability that an allele will fix in the population
is just its initial frequency.

The variance of Xr can also be calculated from the fact that

Var(Xr) = E(Var(Xr|Xr−1)) + Var(E(Xr |Xr−1)).

After some algebra, this leads to

Var(Xr) = E(X0)(N − E(X0))(1 − λr) + λrVar(X0), (2.1.4)

where
λ = 1 − 1/N.

We have noted that genetic variability in the population is eventually lost.
It is of some interest to assess how fast this loss occurs. A simple calculation
shows that

E(Xr(N − Xr)) = λrE(X0(N − X0)). (2.1.5)

Multiplying both sides by 2N−2 shows that the probability h(r) that two
genes chosen at random with replacement in generation r are different is

h(r) = λrh(0). (2.1.6)

The quantity h(r) is called the heterozygosity of the population in generation
r, and it measures the genetic variability surviving in the population. Equation
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(2.1.6) shows that the heterozygosity decays geometrically quickly as r → ∞.
Since fixation must occur, we have h(r) → 0.

We have seen that variability is lost from the population. How long does
this take? First we find an equation satisfied by mi, the mean time to fixation
starting from X0 = i. To do this, notice first that m0 = mN = 0, and, by
conditioning on the first step once more, we see that for 1 ≤ i ≤ N − 1

mi = pi0 · 1 + piN · 1 +
N−1∑
j=1

pij(1 + mj)

= 1 +
N∑

j=0

pijmj . (2.1.7)

Finding an explicit expression for mi is difficult, and we resort instead to an
approximation when N is large and time is measured in units of N generations.

Diffusion approximations

This takes us into the world of diffusion theory. It is usual to consider not the
total number Xr ≡ X(r) of A alleles but rather the proportion Xr/N . To get
a non-degenerate limit we must also rescale time, in units of N generations.
This leads us to study the rescaled process

YN (t) = N−1X(�Nt�), t ≥ 0, (2.1.8)

where �x� is the integer part of x. The idea is that as N → ∞, YN (·) should
converge in distribution to a process Y (·). The fraction Y (t) of A alleles at
time t evolves like a continuous-time, continuous state-space process in the
interval S = [0, 1]. Y (·) is an example of a diffusion process. Time scalings in
units proportional to N generations are typical for population genetics models
appearing in these notes.

Diffusion theory is the basic tool of classical population genetics, and there
are several good references. Crow and Kimura (1970) has a lot of the ‘old
style’ references to the theory. Ewens (1979) and Kingman (1980) introduce
the sampling theory ideas. Diffusions are also discussed by Karlin and Taylor
(1980) and Ethier and Kurtz (1986), the latter in the measure-valued setting.
A useful modern reference is Neuhauser (2001).

The properties of a one-dimensional diffusion Y (·) are essentially deter-
mined by the infinitesimal mean and variance, defined in the time-homogeneous
case by

µ(y) = lim
h→0

h−1E(Y (t + h) − Y (t) | Y (t) = y),

σ2(y) = lim
h→0

h−1E((Y (t + h) − Y (t))2 | Y (t) = y).
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For the discrete Wright-Fisher model, we know that given Xr = i, Xr+1 is
binomially distributed with number of trials N and success probability i/N .
Hence

E(X(r + 1)/N − X(r)/N | X(r)/N = i/N) = 0,

E((X(r + 1)/N − X(r)/N)2 | X(r)/N = i/N) =
1
N

i

N

(
1 − i

N

)
,

so that for the process Y (·) that gives the proportion of allele A in the popu-
lation at time t, we have

µ(y) = 0, σ2(y) = y(1 − y), 0 < y < 1. (2.1.9)

Classical diffusion theory shows that the mean time m(x) to fixation, start-
ing from an initial fraction x ∈ (0, 1) of the A allele, satisfies the differential
equation

1
2
x(1 − x)m′′(x) = −1, m(0) = m(1) = 0. (2.1.10)

This equation, the analog of (2.1.7), can be solved using partial fractions, and
we find that

m(x) = −2(x log x + (1 − x) log(1 − x)), 0 < x < 1. (2.1.11)

In terms of the underlying discrete model, the approximation for the ex-
pected number mi of generations to fixation, starting from i A alleles, is
mi ≈ Nm(i/N). If i/N = 1/2,

Nm(1/2) = (−2 log 2)N ≈ 1.39N generations,

whereas if the A allele is introduced at frequency 1/N ,

Nm(1/N) = 2 logN generations.

2.2 The genealogy of the Wright-Fisher model

In this section we consider the Wright-Fisher model from a genealogical per-
spective. In the absence of recombination, the DNA sequence representing
the gene of interest is a copy of a sequence in the previous generation, that
sequence is itself a copy of a sequence in the generation before that and so on.
Thus we can think of the DNA sequence as an ‘individual’ that has a ‘parent’
(namely the sequence from which is was copied), and a number of ‘offspring’
(namely the sequences that originate as a copy of it in the next generation).

To study this process either forwards or backwards in time, it is conve-
nient to label the individuals in a given generation as 1, 2, . . . , N , and let νi

denote the number of offspring born to individual i, 1 ≤ i ≤ N . We suppose
that individuals have independent Poisson-distributed numbers of offspring,
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subject to the requirement that the total number of offspring is N . It follows
that (ν1, . . . , νN ) has a symmetric multinomial distribution, with

IP(ν1 = m1, . . . , νN = mN ) =
N !

m1! · · ·mN !

(
1
N

)N

(2.2.1)

provided m1 + · · · + mN = N . We assume that offspring numbers are inde-
pendent from generation to generation, with distribution specified by (2.2.1).

To see the connection with the earlier description of the Wright-Fisher
model, imagine that each individual in a given generation carries either an A
allele or a B allele, i of the N individuals being labelled A. Since there is no
mutation, all offspring of type A individuals are also of type A. The distribu-
tion of the number of type A in the offspring therefore has the distribution of
ν1 + · · · + νi which (from elementary properties of the multinomial distribu-
tion) has the binomial distribution with parameters N and success probability
p = i/N . Thus the number of A alleles in the population does indeed evolve
according to the Wright-Fisher model described in (2.1.1).

This specification shows how to simulate the offspring process from par-
ents to children to grandchildren and so on. A realization of such a process for
N = 9 is shown in Figure 2.1. Examination of Figure 2.1 shows that individ-
uals 3 and 4 have their most recent common ancestor (MRCA) 3 generations
ago, whereas individuals 2 and 3 have their MRCA 11 generations ago. More

Fig. 2.1. Simulation of a Wright-Fisher model of N = 9 individuals. Generations are
evolving down the figure. The individuals in the last generation should be labelled
1,2,. . . ,9 from left to right. Lines join individuals in two generations if one is the
offspring of the other
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generally, for any population size N and sample of size n taken from the
present generation, what is the structure of the ancestral relationships link-
ing the members of the sample? The crucial observation is that if we view
the process from the present generation back into the past, then individuals
choose their parents independently and at random from the individuals in
the previous generation, and successive choices are independent from genera-
tion to generation. Of course, not all members of the previous generations are
ancestors of individuals in the present-day sample. In Figure 2.2 the ances-
try of those individuals who are ancestral to the sample is highlighted with
broken lines, and in Figure 2.3 those lineages that are not connected to the
sample are removed, the resulting figure showing just the successful ances-
tors. Finally, Figure 2.3 is untangled in Figure 2.4. This last figure shows the
tree-like nature of the genealogy of the sample.

Fig. 2.2. Simulation of a Wright-Fisher model of N = 9 individuals. Lines indicate
ancestors of the sampled individuals. Individuals in the last generation should be
labelled 1,2,. . . , 9 from left to right. Dashed lines highlight ancestry of the sample.

Understanding the genealogical process provides a direct way to study
gene frequencies in a model with no mutation (Felsenstein (1971)). We content
ourselves with a genealogical derivation of (2.1.6). To do this, we ask how long
it takes for a sample of two genes to have their first common ancestor. Since
individuals choose their parents at random, we see that

IP( 2 individuals have 2 distinct parents) = λ =
(

1 − 1
N

)
.
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Fig. 2.3. Simulation of a Wright-Fisher model of N = 9 individuals. Individuals
in the last generation should be labelled 1,2,. . . , 9 from left to right. Dashed lines
highlight ancestry of the sample. Ancestral lineages not ancestral to the sample are
removed.

Fig. 2.4. Simulation of a Wright-Fisher model of N = 9 individuals. This is an
untangled version of Figure 2.3.

7 5 9 1 2 3 4 8 6
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Since those parents are themselves a random sample from their generation,
we may iterate this argument to see that

IP(First common ancestor more than r generations ago)

= λr =
(

1 − 1
N

)r

. (2.2.2)

Now consider the probability h(r) that two individuals chosen with re-
placement from generation r carry distinct alleles. Clearly if we happen to
choose the same individual twice (probability 1/N) this probability is 0. In
the other case, the two individuals are different if and only if their common
ancestor is more than r generations ago, and the ancestors at time 0 are dis-
tinct. The probability of this latter event is the chance that 2 individuals
chosen without replacement at time 0 carry different alleles, and this is just
E2X0(N − X0)/N(N − 1). Combining these results gives

h(r) = λr (N − 1)
N

E2X0(N − X0)
N(N − 1)

= λrh(0),

just as in (2.1.6).
When the population size is large and time is measured in units of N

generations, the distribution of the time to the MRCA of a sample of size
2 has approximately an exponential distribution with mean 1. To see this,
rescale time so that r = Nt, and let N → ∞ in (2.2.2). We see that this
probability is (

1 − 1
N

)Nt

→ e−t.

This time scaling is the same as used to derive the diffusion approximation
earlier. This should be expected, as the forward and backward approaches are
just alternative views of the same underlying process.

The ancestral process in a large population

What can be said about the number of ancestors in larger samples? The
probability that a sample of size three has distinct parents is

(
1 − 1

N

)(
1 − 2

N

)

and the iterative argument above can be applied once more to see that the
sample has three distinct ancestors for more than r generations with proba-
bility [(

1 − 1
N

)(
1 − 2

N

)]r

=
(

1 − 3
N

+
2

N2

)r

.
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Rescaling time once more in units of N generations, and taking r = Nt, shows
that for large N this probability is approximately e−3t, so that on the new
time scale the time taken to find the first common ancestor in the sample of
three genes is exponential with parameter 3. What happens when a common
ancestor is found? Note that the chance that three distinct individuals have
at most two distinct parents is

3(N − 1)
N2

+
1

N2
=

3N − 2
N2

.

Hence, given that a first common ancestor is found in generation r, the con-
ditional probability that the sample has two distinct ancestors in generation
r is

3N − 3
3N − 2

,

which tends to 1 as N increases. Thus in our approximating process the num-
ber of distinct ancestors drops by precisely 1 when a common ancestor is
found.

We can summarize the discussion so far by noting that in our approximat-
ing process a sample of three genes waits an exponential amount of time T3

with parameter 3 until a common ancestor is found, at which point the sample
has two distinct ancestors for a further amount of time T2 having an exponen-
tial distribution with parameter 1. Furthermore, T3 and T2 are independent
random variables.

More generally, the number of distinct parents of a sample of size k indi-
viduals can be thought of as the number of occupied cells after k balls have
been dropped (uniformly and independently) into N cells. Thus

gkj ≡ IP(k individuals have j distinct parents) (2.2.3)

= N(N − 1) · · · (N − j + 1)S(j)
k N−k j = 1, 2, . . . , k

where S
(j)
k is a Stirling number of the second kind; that is, S

(j)
k is the number

of ways of partitioning a set of k elements into j nonempty subsets. The terms
in (2.2.3) arise as follows: N(N − 1) · · · (N − j + 1) is the number of ways to
choose j distinct parents; S

(j)
k is the number of ways assigning k individuals to

these j parents; and Nk is the total number of ways of assigning k individuals
to their parents.

For fixed values of N , the behavior of this ancestral process is difficult
to study analytically, but we shall see that the simple approximation derived
above for samples of size two and three can be developed for any sample size
n. We first define an ancestral process {AN

n (t) : t = 0, 1, . . .} where

AN
n (t) ≡ number of distinct ancestors in generation t of a

sample of size n at time 0.

It is evident that AN
n (·) is a Markov chain with state space {1, 2, . . . , n}, and

with transition probabilities given by (2.2.3):
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IP(AN
n (t + 1) = j|AN

n (t) = k) = gkj .

For fixed sample size n, as N → ∞,

gk,k−1 = S
(k−1)
k

N(N − 1) · · · (N − k + 2)
Nk

=
(

k

2

)
1
N

+ O(N−2),

since S
(k−1)
k =

(
k
2

)
. For j < k − 1, we have

gk,j = S
(j)
k

N(N − 1) · · · (N − j + 1)
Nk

= O(N−2)

and

gk,k = N−k N(N − 1) · · · (N − k + 1)

= 1 −
(

k

2

)
1
N

+ O(N−2).

Writing GN for the transition matrix with elements gkj , 1 ≤ j ≤ k ≤ n. Then

GN = I + N−1Q + O(N−2),

where I is the identity matrix, and Q is a lower diagonal matrix with non-zero
entries given by

qkk = −
(

k

2

)
, qk,k−1 =

(
k

2

)
, k = n, n − 1, . . . , 2. (2.2.4)

Hence with time rescaled for units of N generations, we see that

GNt
N =

(
I + N−1Q + O(N−2)

)Nt → eQt

as N → ∞. Thus the number of distinct ancestors in generation Nt is ap-
proximated by a Markov chain An(t) whose behavior is determined by the
matrix Q in (2.2.4). An(·) is a pure death process that starts from An(0) = n,
and decreases by jumps of size one only. The waiting time Tk in state k is
exponential with parameter

(
k
2

)
, the Tk being independent for different k.

Remark. We call the process An(t), t ≥ 0 the ancestral process for a sample of
size n.

Remark. The ancestral process of the Wright-Fisher model has been studied
in several papers, including Karlin and McGregor (1972), Cannings (1974),
Watterson (1975), Griffiths (1980), Kingman (1980) and Tavaré (1984).
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2.3 Properties of the ancestral process

Calculation of the distribution of An(t) is an elementary exercise in Markov
chains. One way to do this is to diagonalize the matrix Q by writing Q = RDL,
where D is the diagonal matrix of eigenvalues λk = −(k

2

)
of Q, and R and L are

matrices of right and left eigenvalues of Q, normalized so that RL = LR = I.
From this approach we get, for j = 1, 2, . . . , n,

gnj(t) ≡ IP(An(t) = j)

=
n∑

k=j

e−k(k−1)t/2 (2k − 1)(−1)k−jj(k−1)n[k]

j!(k − j)!n(k)
(2.3.1)

where

a(n) = a(a + 1) · · · (a + n − 1)
a[n] = a(a − 1) · · · (a − n + 1)
a(0) = a[0] = 1.

The mean number of ancestors at time t is given by

EAn(t) =
n∑

k=1

e−k(k−1)t/2 (2k − 1)n[k]

n(k)
, (2.3.2)

and the falling factorial moments are given by

E(An(t))[r] =
n∑

k=r

n[k]

n(k)
e−k(k−1)t/2 (2k − 1)

(r + k − 2)!
(r − 1)!(k − r)!

,

for r = 2, . . . , n. In Figure 2.5 EAn(t) is plotted as a function of t for n =
5, 10, 20, 50.

The process An(·) is eventually absorbed at 1, when the sample is traced
back to its most recent common ancestor (MRCA). The time it takes the
sample to reach its MRCA is of some interest to population geneticists. We
study this time in the following section.

The time to the most recent common ancestor

Many quantities of genetic interest depend on the time Wn taken to trace a
sample of size n back to its MRCA. Remember that time here is measured in
units of N generations, and that

Wn = Tn + Tn−1 + · · · + T2 (2.3.3)

where Tk are independent exponential random variables with parameter
(
k
2

)
.

It follows that



20 Simon Tavaré

Fig. 2.5. The mean number of ancestors at time t (x axis) for samples of size
n = 5, 10, 20, 50, from (2.3.2).
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EWn =
n∑

k=2

ETk =
n∑

k=2

2
k(k − 1)

= 2
n∑

k=2

(
1

k − 1
− 1

k

)
= 2

(
1 − 1

n

)
.

Therefore
1 = EW2 ≤ EWn ≤ EWN < 2,

where WN is thought of as the time until the whole population has a single
common ancestor. Note that EWn is close to 2 even for moderate n. Also

E(WN − Wn) = 2
(

1
n
− 1

N

)
<

2
n

so the mean difference between the time for a sample to reach its MRCA, and
the time for the whole population to reach its MRCA, is small.

Note that T2 makes a substantial contribution to the sum (2.3.3) defining
Wn. For example, on average for over half the time since its MRCA, the sample
will have exactly two ancestors. Further, using the independence of the Tk,

VarWn =
n∑

k=2

VarTk =
n∑

k=2

(
k

2

)−2

= 8
n−1∑
k=1

1
k2

− 4
(

1 − 1
n

)(
3 +

1
n

)

It follows that
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1 = VarW2 ≤ VarWn ≤ lim
n→∞VarWn = 8

π2

6
− 12 ≈ 1.16.

We see that T2 also contributes most to the variance.
The distribution of Wn can be obtained from (2.3.1):

IP(Wn ≤ t) = IP(An(t) = 1) =
n∑

k=1

e−k(k−1)t/2 (2k − 1)(−1)k−1n[k]

n(k)
. (2.3.4)

From this it follows that

IP(Wn > t) = 3
n − 1
n + 1

e−t + O(e−3t) as t → ∞.

Now focus on two particular individuals in the sample and observe that if
these two individuals do not have a common ancestor at t, the whole sample
cannot have a common ancestor. Since the two individuals are themselves a
random sample of size two from the population, we see that

IP(Wn > t) ≥ IP(W2 > t) = e−t,

an inequality that also follows from (2.3.3). A simple Markov chain argument
shows that

IP(Wn > t) ≤ 3(n − 1)e−t

n + 1
,

so that
e−t ≤ IP(Wn > t) ≤ 3e−t

for all n and t (see Kingman (1980), (1982c)).
The density function of Wn follows immediately from (2.3.4) by differen-

tiating with respect to t:

fWn(t) =
n∑

k=2

(−1)ke−k(k−1)t/2 (2k − 1)k(k − 1)n[k]

2n(k)
. (2.3.5)

In Figure 2.6, this density is plotted for values of n = 2, 10, 100, 500. The
shape of the densities reflects the fact that most of the contribution to the
density comes from T2.

The tree length

In contrast to the distribution of Wn, the distribution of the total length
Ln = 2T2 + · · · + nTn is easy to find. As we will see, Ln is the total length
of the branches in the genealogical tree linking the individuals in the sample.
First of all,

ELn = 2
n−1∑
j=1

1
j
∼ 2 logn,
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Fig. 2.6. Density functions for the time Wn to most recent common ancestor of a
sample of n individuals, from (2.3.5). – n = 2; · · · · · · n = 10; − − − − n = 100;
− · − · n = 500.
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and

VarLn = 4
n−1∑
j=1

1
j2

∼ 2π2/3.

To find the distribution of Ln, let E(λ) denote an exponential random variable
with mean 1/λ, all occurrences being independent of each other, and write
=d for equality in distribution. Then

Ln =
n∑

j=2

jTj =d

n∑
j=2

E((j − 1)/2)

=d

n−1∑
j=1

min
1≤k≤j

Ejk(1/2)

=d max
1≤j≤n−1

Ej(1/2),

the last step following by a coupling argument (this is one of many proofs of
Feller’s representation of the distribution of the maximum of independent and
identically distributed exponential random variables as a sum of independent
random variables). Thus

P(Ln ≤ t) =
(
1 − e−t/2

)n−1

, t ≥ 0.
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It follows directly that Ln − 2 logn has a limiting extreme value distribution
with distribution function exp(− exp(−t/2)),−∞ < t < ∞.

2.4 Variable population size

In this section we discuss the behavior of the ancestral process in the case
of deterministic fluctuations in population size. For convenience, suppose the
model evolves in discrete generations and label the current generation as 0.
Denote by N(j) the number of sequences in the population j generations
before the present. We assume that the variation in population size is due
to either external constraints e.g. changes in the environment, or random
variation which depends only on the total population size e.g. if the population
grows as a branching process. This excludes so-called density dependent cases
in which the variation depends on the genetic composition of the population,
but covers many other settings. We continue to assume neutrality and random
mating.

Here we develop the theory for a particular class of population growth
models in which, roughly speaking, all the population sizes are large. Time
will be scaled in units of N ≡ N(0) generations. To this end, define the relative
size function fN (x) by

fN (x) =
N(�Nx�)

N

=
N(j)
N

,
j − 1
N

< x ≤ j

N
, j = 1, 2, . . . (2.4.1)

We are interested in the behavior of the process when the size of each gener-
ation is large, so we suppose that

lim
N→∞

fN (x) = f(x) (2.4.2)

exists and is strictly positive for all x ≥ 0.
Many demographic scenarios can be modelled in this way. For an example

of geometric population growth, suppose that for some constant ρ > 0

N(j) = �N (1 − ρ/N)j�.

Then
lim

N→∞
fN (x) = e−ρx ≡ f(x), x > 0.

A commonly used model is one in which the population has constant size
prior to generation V , and geometric growth from then to the present time.
Thus for some α ∈ (0, 1)

N(j) =
{ �Nα�, j ≥ V

�Nαj/V �, j = 0, . . . , V
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If we suppose that V = �Nv� for some v > 0, so that the expansion started v
time units ago, then

fN (x) → f(x) = αmin(x/v,1).

The ancestral process

In a Wright-Fisher model of reproduction, note that the probability that two
individuals chosen at time 0 have distinct ancestors s generations ago is

IP(T2(N) > s) =
s∏

j=1

(
1 − 1

N(j)

)
,

where T2(N) denotes the time to the common ancestor of the two individuals.
Recalling the inequality

x ≤ − log(1 − x) ≤ x

1 − x
, x < 1,

we see that
s∑

j=1

1
N(j)

≤ −
s∑

j=1

log
(

1 − 1
N(j)

)
≤

s∑
j=1

1
N(j) − 1

.

It follows that

lim
N→∞

−
�Nt�∑
j=1

log
(

1 − 1
N(j)

)
= lim

N→∞

�Nt�∑
j=1

1
N(j)

.

Since
s∑

j=1

1
N(j)

=
∫ s/N

0

dx

fN (x)
,

we can use (2.4.2) to see that for t > 0, with time rescaled in units of N
generations,

lim
N→∞

IP(T2(N) > �Nt�) = exp
(
−
∫ t

0

λ(u)du

)
,

where λ(·) is the intensity function defined by

λ(u) =
1

f(u)
, u ≥ 0. (2.4.3)

If we define

Λ(t) =
∫ t

0

λ(u)du,
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the integrated intensity function, then (2.4.2) shows that as N → ∞

N−1T2(N) ⇒ T2,

where
IP(T2 > t) = exp(−Λ(t)), t ≥ 0. (2.4.4)

We expect the two individuals to have a common ancestor with probability
one, this corresponding to the requirement that

lim
t→∞Λ(t) = ∞,

which we assume from now on. When the population size is constant, Λ(t) = t
and the time to the MRCA has an exponential distribution with mean 1. From
(2.4.4) we see that

ET2 =
∫ ∞

0

IP(T2 > t)dt =
∫ ∞

0

e−Λ(t)dt.

If the population has been expanding, so that f(t) ≤ 1 for all t, then
Λ(t) ≥ t, and therefore

IP(T2 > t) ≤ IP(T c
2 > t), t ≥ 0,

where T c
2 denotes the corresponding time in the constant population size case.

We say that T c
2 is stochastically larger than T2, so that in particular ET2 ≤

ET c
2 = 1. This corresponds to the fact that if the population size has been

shrinking into the past, it should be possible to find the MRCA sooner than
if the population size had been constant.

In the varying environment setting, the ancestral process satisfies

IP(A2(t + s) = 1|A2(t) = 2) = IP(T2 ≤ t + s|T2 > t)
= IP(t < T2 ≤ t + s)/IP(T2 > t)
= 1 − exp(−(Λ(t + s) − Λ(t))),

so that
IP(A2(t + h) = 1|A2(t) = 2) = λ(t)h + o(h), h ↓ 0.

We see that A2(·) is a non-homogeneous Markov chain. What is the structure
of An(·)?

Define Tk(N) to be the number of generations for which the sample has k
distinct ancestors. In the event that the sample never has exactly k distinct
ancestors, define Tk(N) = ∞. We calculate first the joint distribution of T3(N)
and T2(N). The probability that T3(N) = k, T2(N) = l is the probability
that the sample of size 3 has 3 distinct ancestors in generations 1, 2, . . . ,
k − 1, 2 distinct ancestors in generations k, . . . , k + l − 1, and 1 in generation
l + k. The probability that a sample of three individuals taken in generation
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j − 1 has three distinct parents is N(j)(N(j) − 1)(N(j) − 2)/N(j)3, and the
probability that three individuals in generation k−1 have two distinct parents
is 3N(k)(N(k) − 1)/N(k)3. Hence

IP(T3(N) = k, T2(N) = l)

=




k−1∏
j=1

(N(j) − 1)(N(j) − 2)
N(j)3




3(N(k) − 1)
N(k)2




k+l−1∏
j=k+1

N(j) − 1
N(j)




1
N(k + l)

.

For the size fluctuations we are considering, the first term in brackets is

k−1∏
j=1

(
1 − 3

N(j)
+

2
N(j)2

)
∼ exp

(
−3

∫ k/N

0

dx

fN(x)

)
,

while the second term in brackets is

k+l−1∏
j=k+1

(
1 − 1

N(j)

)
∼ exp

(
−
∫ (k+l)/N

k/N

dx

fN (x)

)
.

For k ∼ Nt3, l ∼ Nt2 with t3 > 0, t2 > 0, we see via (2.4.2) that
N2IP(T3(N) = k, T2(N) = l) converges to

f(t3, t2) := e−3Λ(t3)3λ(t3)e−(Λ(t2+t3)−Λ(t3))λ(t3 + t2) (2.4.5)

as N → ∞. It follows that

N−1(T3(N), T2(N)) ⇒ (T3, T2),

where (T3, T2) have joint probability density f(t3, t2) given in (2.4.5).
This gives the joint law of the times spent with different numbers of ances-

tors, and shows that in the limit the number of ancestors decreases by one at
each jump. Just as in the constant population-size case, the ancestral process
for the Wright-Fisher model is itself a Markov chain, since the distribution
of the number of distinct ancestors in generation r is determined just by the
number in generation r − 1. The Markov property is inherited in the limit,
and we conclude that {A3(t), t ≥ 0} is a Markov chain on the set {3, 2, 1}.
Its transition intensities can be calculated as a limit from the Wright-Fisher
model. We see that

IP(A3(t + h) = j|A3(t) = i) =



(

i
2

)
λ(t)h + o(h), j = i − 1

1 − (
i
2

)
λ(t)h + o(h), j = i

0, otherwise

We can now establish the general case in a similar way. The random vari-
ables Tn(N), . . . , T2(N) have a joint limit law when rescaled:

N−1(Tn(N), . . . , T2(N)) ⇒ (Tn, . . . , T2)
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for each fixed n as N → ∞, and the joint density f(tn, . . . , t2) of Tn, . . . , T2

is given by

f(tn, . . . , t2) =
n∏

j=2

(
j

2

)
λ(sj) exp

{
−
(

j

2

)
(Λ(sj) − Λ(sj+1))

}
, (2.4.6)

for 0 ≤ tn, . . . , t2 < ∞, where sn+1 = 0, sn = tn, sj = tj + · · · + tn, j =
2, . . . , n − 1.

Remark. The joint density in (2.4.6) should really be denoted by fn(tn, . . . , t2),
and the limiting random variables Tnn, . . . , Tn2, but we keep the simpler no-
tation. This should not cause any confusion.

From this it is elementary to show that if Sj ≡ Tn + · · · + Tj, then the
joint density of (Sn, . . . , S2) is given by

g(sn, . . . , s2) =
n∏

j=2

(
j

2

)
λ(sj) exp

(
−
(

j

2

)
(Λ(sj) − Λ(sj+1))

)
,

for 0 ≤ sn < sn−1 < · · · < s2. This parlays immediately into the distribution
of the time the sample spends with j distinct ancestors, given that Sj+1 = s:

IP(Tj > t|Sj+1 = s) = exp
(
−
(

j

2

)
(Λ(s + t) − Λ(s))

)
.

Note that the sequence Sn+1 := 0, Sn, Sn−1, . . . , S2 is a Markov chain. The
approximating ancestral process {An(t), t ≥ 0} is a non-homogeneous pure
death process on [n] with An(0) = n whose transition rates are determined
by

IP(An(t + h) = j|An(t) = i) =



(

i
2

)
λ(t)h + o(h), j = i − 1

1 − (
i
2

)
λ(t)h + o(h), j = i

0, otherwise
(2.4.7)

The time change representation

Denote the process that counts the number of ancestors at time t of a sample
of size n taken at time 0 by {Av

n(t), t ≥ 0}, the superscript v denoting variable
population size. We have seen that Av

n(·) is now a time-inhomogeneous Markov
process. Given that Av

n(t) = j, it jumps to j − 1 at rate j(j − 1)λ(t)/2. A
useful way to think of the process Av

n(·) is to notice that a realization may be
constructed via

Av
n(t) = An(Λ(t)), t ≥ 0, (2.4.8)

where An(·) is the corresponding ancestral process for the constant population
size case. This may be verified immediately from (2.4.7). We see that the vari-
able population size model is just a deterministic time change of the constant
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population size model. Some of the properties of Av
n(·) follow immediately

from this representation. For example,

P(Av
n(t) = j) = gnj(Λ(t)), j = 1, . . . , n

where gnj(t) is given in (2.3.1), and so

EAv
n(t) =

n∑
j=1

e−j(j−1)Λ(t)/2 (2l − 1)n[j]

n(j)
, t ≥ 0.

It follows from (2.4.8) that An(s) = Av
n(Λ−1(s)), s > 0. Hence if An(·)

has a jump at time s, then Av
n(·) has one at time Λ−1(s). Since An(·) has

jumps at Sn = Tn, Sn−1 = Tn + Tn−1, . . . , S2 = Tn + · · · + T2, it follows that
the jumps of Av

n(·) occur at Λ−1(Sn), . . . , Λ−1(S2). Thus, writing T v
j for the

time the sample from a variable-size population spends with j ancestors, we
see that

T v
n = Λ−1(Sn) (2.4.9)

T v
j = Λ−1(Sj) − Λ−1(Sj+1), j = n − 1, . . . , 2.

This result provides a simple way to simulate the times T v
n , T v

n−1, . . . , T
v
2 .

Let Un, . . . , U2 be independent and identically distributed random variables
having the uniform distribution on (0,1).

Algorithm 2.1 Algorithm to generate T v
n , . . . , T v

2 for a variable size process
with intensity function Λ:

1. Generate tj = − 2 log(Uj)
j(j−1) , j = 2, 3, . . . , n

2. Form sn = tn, sj = tj + · · · + tn, j = 2, . . . , n − 1
3. Compute tvn = Λ−1(sn), tvj = Λ−1(sj) − Λ−1(sj+1), j = n − 1, . . . , 2.
4. Return T v

j = tvj , j = 2, . . . , n.

There is also a sequential version of the algorithm, essentially a restatement
of the last one:

Algorithm 2.2 Step-by-step version of Algorithm 2.1.

1. Set t = 0, j = n

2. Generate tj = − 2 log(Uj)
j(j−1)

3. Solve for s the equation

Λ(t + s) − Λ(t) = tj (2.4.10)

4. Set tvj = s, t = t + s, j = j − 1. If j ≥ 2, go to 2. Else return T v
n =

tvn, . . . , T v
2 = tv2.
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Note that tj generated in step 2 above has an exponential distribution
with parameter j(j − 1)/2. If the population size is constant then Λ(t) = t,
and so tvj = tj, as it should.
Example For an exponentially growing population f(x) = e−ρx, so that
Λ(t) = (eρt − 1)/ρ. It follows that Λ−1(y) = ρ−1 log(1 + ρy), and

T v
n = ρ−1 log(1 + ρTn), T v

j =
1
ρ

(
1 + ρSj

1 + ρSj+1

)
, j = 2, . . . , n − 1. (2.4.11)

In an exponentially growing population, most of the coalescence events occur
near the root of the tree, and the resulting genealogy is then star-like; it
is harder to find common ancestors when the population size is large. See
Section 4.2 for further illustrations.
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3 The Ewens Sampling Formula

In this section we bring mutation into the picture, and show how the genealog-
ical approach can be used to derive the classical Ewens sampling formula. This
serves as an introduction to statistical inference for molecular data based ob-
tained from samples.

3.1 The effects of mutation

In Section 2.1 we looked briefly at the process of random drift, the mechanism
by which genetic variability is lost through the effects of random sampling. In
this section, we study the effect of mutation on the evolution of gene frequen-
cies at a locus with two alleles.

Now we suppose there is a probability µA > 0 that an A allele mutates
to a B allele in a single generation, and a probability µB > 0 that a B allele
mutates to an A. The stochastic model for the frequency Xn of the A allele
in generation n is described by the transition matrix in (2.1.1), but where

πi =
i

N
(1 − µA) +

(
1 − i

N

)
µB. (3.1.1)

The frequency πi reflects the effects of mutation in the gene pool. In this
model, it can be seen that pij > 0 for all i, j ∈ S. It follows that the
Markov chain {Xn} is irreducible; it is possible to get from any state to
any other state. An irreducible finite Markov chain has a limit distribution
ρ = (ρ0, ρ1, . . . , ρN ):

lim
n→∞ P(Xn = k) = ρk > 0,

for any initial distribution for X0. The limit distribution ρ is also invariant
(or stationary), in that if X0 has distribution ρ then Xn has distribution ρ for
every n. The distribution ρ satisfies the balance equations

ρ = ρP,

where ρ0 + · · · + ρN = 1.
Once more, the binomial conditional distributions make some aspects of

the process simple to calculate. For example,

E(Xn) = EE(Xn|Xn−1) = NµB + (1 − µA − µB)E(Xn−1).

At stationarity, E(Xn) = E(Xn−1) ≡ E(X), so

E(X) =
NµB

µA + µB
. (3.1.2)

This is also the limiting value of E(Xn) as n → ∞.
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Now we investigate the stationary distribution ρ when N is large. To get
a non-degenerate limit, we assume that the mutation probabilities µA and µB

satisfy
lim

N→∞
2NµA = θA > 0, lim

N→∞
2NµB = θB > 0, (3.1.3)

so that mutation rates are of the order of the reciprocal of the population size.
We define the total mutation rate θ by

θ = θA + θB .

Given Xn = i, Xn+1 is binomially distributed with parameters N and πi given
by (3.1.1). Exploiting simple properties of the binomial distribution shows that
the diffusion approximation for the fraction of allele A in the population has

µ(x) = −xθA/2 + (1 − x)θB/2, σ2(x) = x(1 − x), 0 < x < 1. (3.1.4)

The stationary density π(y) of Y (·) satisfies the ordinary differential equation

−µ(y)π(y) +
1
2

d{σ2(y)π(y)}
dy

= 0,

and it follows readily that

π(y) ∝ 1
σ2(y)

exp
(∫ y

2
µ(u)
σ2(u)

du

)
.

Hence π(y) ∝ yθB−1(1 − y)θA−1 and we see that at stationarity the fraction
of A alleles has the beta distribution with parameters θB and θA. The density
π is given by

π(y) =
Γ (θ)

Γ (θA)Γ (θB)
yθB−1(1 − y)θA−1, 0 < y < 1.

In particular,

E(Y ) =
θB

θ
, Var(Y ) =

θAθB

θ2(θ + 1)
. (3.1.5)

Remark. An alternative description of the mutation model in this case is as
follows. Mutations occur at rate θ/2, and when a mutation occurs the resulting
allele is A with probability πA and B with probability πB . This model can be
identified with the earlier one with θA = θπA, θB = θπB .

Remark. In the case of the K-allele model with mutation rate θ/2 and mu-
tations resulting in allele Ai with probability πi > 0, i = 1, 2, . . . , K, the
stationary density of the (now (K − 1)-dimensional) diffusion is

π(y1, . . . , yK) =
Γ (θ)

Γ (θπ1) · · ·Γ (θπK)
yθπ1−1
1 · · · yθπK−1

K ,

for yi > 0, i = 1, . . . , K, y1 + · · · + yK = 1.
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3.2 Estimating the mutation rate

Modern molecular techniques have made it possible to sample genomic vari-
ability in natural populations. As a result, we need to develop the appro-
priate sampling theory to describe the statistical properties of such samples.
For the models described in this section, this is easy to do. If a sample of n
chromosomes is drawn with replacement from a stationary population, it is
straightforward to calculate the distribution of the number NA of A alleles in
the sample. This distribution follows from the fact that given the population
frequency Y of the A allele, the sample is distributed like a binomial random
variable with parameters n and Y . Thus

P(NA = k) = E

((
n

k

)
Y k(1 − Y )n−k

)
.

Since Y has the Beta(θB, θA) density, we see that NA has the Beta-Binomial
distribution:

P(NA = k) =
(

n

k

)
Γ (θ)Γ (k + θB)Γ (n − k + θA)

Γ (θB)Γ (θA)Γ (n + θ)
, k = 0, 1, . . . , n. (3.2.1)

It follows from this that

E(NA) = n
θB

θ
, Var(NA) =

n(n + θ)θAθB

θ2(θ + 1)
. (3.2.2)

The probability that a sample of size one is an A allele is just p ≡ θB/θ.
Had we ignored the dependence in the sample, we might have assumed that
the genes in the sample were independently labelled A with probability p.
The number NA of As in the sample then has a binomial distribution with
parameters n and p. If we wanted to estimate the parameter p, the natural
estimator is p̂ = NA/n, and

Var(p̂) = p(1 − p)/n.

As n → ∞, this variance tends to 0, so that p̂ is a (weakly) consistent estimator
of p. Of course, the sampled genes are not independent, and the true variance
of NA/n is, from (3.2.2),

Var(NA/n) =
(

1 +
θ

n

)
θAθB

θ2(1 + θ)
.

It follows that Var(NA/n) tends to the positive limit Var(Y ) as n → ∞.
Indeed, NA/n is not a consistent estimator of p = θA/θ, because (by the
strong law of large numbers) NA/n → Y , the population frequency of the A
allele. This simple example shows how strong the dependence in the sample
can be, and shows why consistent estimators of parameters in this subject are
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the exception rather than the rule. Consistency typically has to be generated,
at least in principle, by sampling variability at many independent loci.

The example in this section is our first glimpse of the difficulties caused
by the relatedness of sequences in the sample. This relatedness has led to a
number of interesting approaches to estimation and inference for population
genetics data. In the next sections we describe the Ewens sampling formula
(Ewens (1972)), the first systematic treatment of the statistical properties of
estimators of the compound mutation parameter θ.

3.3 Allozyme frequency data

By the late 1960s, it was possible to sample, albeit indirectly, the molecular
variation in the DNA of a population. These data came in the form of allozyme
frequencies. A sample of size n resulted in a set of genes in which differences
between genes could be observed, but the precise nature of the differences
was irrelevant. Two Drosophila allozyme frequency data sets, each having 7
distinct alleles, are given below:

• D. tropicalis Esterase-2 locus [n = 298]
234, 52, 4, 4, 2, 1, 1

• D. simulans Esterase-C locus [n = 308]
91, 76, 70, 57, 12, 1, 1

It is clear that these data come from different distributions. Of the first set,
Sewall Wright (1978, p303) argued that

. . . the observations do not agree at all with the equal frequencies ex-
pected for neutral alleles in enormously large populations.

This raises the question of what shape these distributions should have
under a neutral model. The answer to this was given by Ewens (1972). Because
the labels are irrelevant, a sample of genes can be broken down into a set of
alleles that occurred just once in the sample, another collection that occurred
twice, and so on. We denote by Cj(n) the number of alleles represented j
times in the sample of size n. Because the sample has size n, we must have

C1(n) + 2C2(n) + · · · + nCn(n) = n.

In this section we derive the distribution of (C1(n), . . . , Cn(n)), known as the
Ewens Sampling Formula (henceforth abbreviated to ESF). To do this, we
need to study the effects of mutations in the history of a sample.

Mutations on a genealogy

In Section 3 we will give a detailed description of the ancestral relationships
among a sample of individuals. For now, we recall from the last section that
in a large population, the number of distinct ancestors at times t in the past
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is described by the ancestral process An(t). It is clear by symmetry that when
the ancestral process moves from k to k − 1, the two ancestors chosen to
join are randomly chosen from the k possibilities. Thus the ancestral relation-
ships among a sample of individuals can be represented as a random rooted
bifurcating tree that starts with n leaves (or tips), and joins random pairs
of ancestors together at times Tn, Tn + Tn−1, . . . , Wn = Tn + · · · + T2. All
the individuals in the sample are traced back to their most recent common
ancestor at time Wn.

Next we examine the effects of mutation in the coalescent tree of a sample.
Suppose that a mutation occurs with probability u per gene per generation.
The expected number of mutations along a lineage of g generations is therefore
gu. With time measured in units of N generations, this is of the form tNu
which is finite if u is of order 1/N . Just as in (3.1.3), we take

θ = 2Nu

to be fixed as N → ∞. In the discrete process, mutations arise in the ancestral
lines independently on different branches of the genealogical tree. In the limit,
it is clear that they arise at the points of independent Poisson processes of
rate θ/2 on each branch.

We can now superimpose mutations on the genealogical tree of the sample.
For allozyme frequency data, we suppose that every mutation produces a type
that has not been seen in the population before. One concrete way to achieve
this is to label types by uniform random variables; whenever a mutation oc-
curs, the resulting individual has a type that is uniformly distributed on (0,1),
independently of other labels. This model is an example of an infinitely-many
alleles model.

3.4 Simulating an infinitely-many alleles sample

As we will see, the reason that genealogical approaches have become so useful
lies first in the fact that they provide a simple way to simulate samples from
complex genetics models, and so to compare models with data. To simulate a
sample, one need not simulate the whole population first and then sample from
that – this makes these methods extremely appealing. Later in these notes we
will see the same ideas applied in discrete settings as well, particularly for
branching process models. This top down, or ‘goodness-of-fit’, approach has
been used extensively since the introduction of the coalescent by Kingman
(1982), Tajima (1983) and Hudson (1983) to simulate the behavior of test
statistics which are intractable by analytical means.

To simulate samples of data following the infinitely-many-alleles model
is, in principle, elementary. First simulate the genealogical tree of the sam-
ple by simulating observations from the waiting times Tn, Tn−1, . . . , T2 and
choosing pairs of nodes to join at random. Then we superimpose mutations
according to a Poisson process of rate θ/2, independently on each branch.
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The effects of each mutation are determined by the mutation process. In the
present case, the result of a mutation on a branch replaces the current la-
bel with an independently generated uniform random variable. An example
is given in Figure 3.1, and the types represented in the sample are labelled
U5, U2, U2, U3, U3 respectively.

Fig. 3.1. A coalescent tree for n = 5 with mutations

x
x

x

x
x

x

U0U1

U2

U3
U4

U5

U2U2 U3 U3U5

3.5 A recursion for the ESF

To derive the ESF, we use a coalescent argument to find a recursion satisfied
by the joint distribution of the sample configuration in an infinitely-many-
alleles model. Under the infinitely-many-alleles mutation scheme, a sample of
size n may be represented as a configuration c = (c1, . . . , cn), where

ci = number of alleles represented i times

and |c| ≡ c1 + 2c2 + · · · + ncn = n. It is convenient to think of the con-
figuration b of samples of size j < n as being an n-vector with coordinates
(b1, b2, . . . , bj, 0, . . . , 0), and we assume this in the remainder of this section.
We define ei = (0, 0, . . . , 0, 1, 0, . . . , 0), the ith unit vector.

We derive an equation satisfied by the sampling probabilities q(c), n =
|c| > 1 defined by

q(c) = IP(sample of size |c| taken at stationarity has configuration c),
(3.5.1)

with q(e1) = 1. Suppose then that the configuration is c. Looking at the
history of the sample, we will either find a mutation or we will be able to
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trace two individuals back to a common ancestor. The first event occurs with
probability

nθ/2
nθ/2 + n(n − 1)/2

=
θ

θ + n − 1
,

and results in the configuration c if the configuration just before the mutation
was b, where

(i) b = c, and mutation occurred to one of the c1 singleton lines (probability
c1/n);

(ii) b = c− 2e1 + e2, and a mutation occurred to an individual in the 2-class
(probability 2(c2 + 1)/n);

(iii) b = c − e1 − ej−1 + ej and the mutation occurred to an individual in a
j-class, producing a singleton mutant and a new (j − 1)-class (probability
j(cj + 1)/n).

On the other hand, the ancestral join occurred with probability (n−1)/(θ+
n−1), and in that case the configuration b = c+ej −ej+1, and an individual
in one of cj + 1 allelic classes of size j had an offspring, reducing the number
of j-classes to cj , and increasing the number of (j + 1)-classes to cj+1. This
event has probability j(cj + 1)/(n − 1), j = 1, . . . , n − 1. Combining these
possibilities, we get

q(c) =
θ

θ + n − 1


c1

n
q(c) +

n∑
j=2

j(cj + 1)
n

q(c − e1 − ej−1 + ej)




+
n − 1

θ + n − 1


n−1∑

j=1

j(cj + 1)
n − 1

q(c + ej − ej+1)


 , (3.5.2)

where we use the convention that q(c) = 0 if any ci < 0. Ewens (1972)
established the following result.

Theorem 3.1 In a stationary sample of size n, the probability of sample
configuration c is

q(c) = P(C1(n) = c1, . . . , Cn(n) = cn)

= 1l(|c| = n)
n!

θ(n)

n∏
j=1

(
θ

j

)cj 1
cj !

, (3.5.3)

where (as earlier) we have written x(j) = x(x + 1) · · · (x + j − 1), j = 1, 2, . . . ,
and |c| = c1 + 2c2 + · · · + ncn.

Proof. This can be verified by induction on n = |c| and k = ||c|| := c1+· · ·+cn

in the equation (3.5.2) by noting that the right-hand side of the equation has
terms with |b| = n − 1 and ||b|| ≤ k, or with |b| = n and ||b|| < k.
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Remark. Watterson (1974) noted that if Z1, Z2, . . . are independent Poisson
random variables with EZj = θ/j, then

L(C1(n), C2(n), . . . , Cn(n)) = L

(
Z1, Z2, . . . , Zn|

n∑
i=1

iZi = n

)
, (3.5.4)

where L(X) means ‘the distribution of X .’
The ESF typically has a very skewed distribution, assigning most mass to

configurations with several alleles represented a few times. In particular, the
distribution is far from ‘flat’; recall Wright’s observation cited in the intro-
duction of this section. In the remainder of the section, we will explore some
of the properties of the ESF.

Remark. The ESF arises in many other settings. See Tavaré and Ewens (1997)
and Ewens and Tavaré (1998) for a flavor of this.

3.6 The number of alleles in a sample

The random variable Kn = C1(n)+· · ·+Cn(n) is the number of distinct alleles
observed in a sample. Its distribution can be found directly from (3.5.3):

P(Kn = k) =
∑

c:||c||=k

q(c) =
θk

θ(n)
n!

∑
c:||c||=k

(
1
j

)cj 1
cj!

=
θk|Sk

n|
θ(n)

, (3.6.1)

where |Sk
n| is the Stirling number of the first kind,

|Sk
n| = coefficient of xk in x(x + 1) · · · (x + n − 1),

and the last equality follows from Cauchy’s formula for the number of permu-
tations of n symbols having k distinct cycles.

Another representation of the distribution of Kn can be found by noting
that

EsKn =
n∑

l=1

sl θ
l|Sl

n|
θ(n)

=
(θs)(n)

θ(n)
=

θs(θs + 1) · · · (θs + n − 1)
θ(θ + 1) · · · (θ + n − 1)

= s

(
1

θ + 1
+

θ

θ + 1
s

)
· · ·

(
n − 1

θ + n − 1
+

θ

θ + n − 1
s

)
=

n∏
j=1

Esξj

where the ξj are independent Bernoulli random variables satisfying

IP(ξj = 1) = 1 − IP(ξj = 0) =
θ

θ + j − 1
, j = 1, . . . , n. (3.6.2)

It follows that we can write
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Kn = ξ1 + · · · + ξn, (3.6.3)

a sum of independent, but not identically distributed, Bernoulli random vari-
ables. Therefore

E(Kn) =
n∑

j=1

Eξj =
n−1∑
j=0

θ

θ + j
, (3.6.4)

and

Var(Kn) =
n∑

j=1

Var(ξj) =
n−1∑
j=0

θ

θ + j
−

n−1∑
j=0

θ2

(θ + j)2
=

n−1∑
j=0

θj

(θ + j)2
. (3.6.5)

For large n, we see that EKn ∼ θ log n and Var(Kn) ∼ θ log n. It can be
shown (cf. Barbour, Holst and Janson (1992)) that the total variation distance
between a sum W = ξ1 + · · · + ξn of independent Bernoulli random variables
ξi with means pi, and a Poisson random variable P with mean p1 + · · · + pn

satisfies

dTV (L(W ), L(P )) ≤ p2
1 + · · · + p2

n

p1 + · · · + pn
.

It follows from the representation (3.6.3) that there is a constant c such that

dTV (L(Kn), L(Pn)) ≤ c

log n
, (3.6.6)

where Pn is a Poisson random variable with mean EKn. As a consequence,

Kn − EKn√
VarKn

⇒ N(0, 1), (3.6.7)

and the same result holds if the mean and variance of Kn are replaced by
θ log n.

3.7 Estimating θ

In this section, we return to the question of inference about θ from the sample.
We begin with an approach used by population geneticists prior to the advent
of the ESF.

The sample homozygosity

It is a simple consequence of the ESF (with n = 2) that

IP(two randomly chosen genes are identical) =
1

1 + θ
.

In a sample of size n, define for i �= j
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δij =

{
1 if genes i and j are identical
0 otherwise

and set
F ∗

n =
2

n(n − 1)

∑
i<j

δij .

We call F ∗
n the homozygosity of the sample; it is the probability that two

randomly chosen distinct members of the sample of size n have identical types.
It is elementary to show that

E(F ∗
n ) =

1
1 + θ

. (3.7.1)

The variance of F ∗
n is more difficult to calculate, but it can be shown that

E(F ∗
n )2 =

1
n(n − 1)

(
2

1 + θ
+

8(n − 2)
(1 + θ)(2 + θ)

+
(n − 2)(n − 3)(6 + θ)
(1 + θ)(2 + θ)(3 + θ)

)
.

(3.7.2)
The results in (3.7.1) and (3.7.2) can be combined to calculate Var(F ∗

n).
We see that as n → ∞,

Var(F ∗
n) → 2θ

(1 + θ)2(2 + θ)(3 + θ)
, (3.7.3)

as found by Stewart (1976). It turns out that F ∗
n converges in distribution as

n → ∞ to a limiting random variable F ∗ having variance given in (3.7.3).
If there are l types in the sample, with µj of type j, j = 1, . . . , l, then

F ∗
n =

l∑
j=1

µj(µj − 1)
n(n − 1)

. (3.7.4)

We note that the homozygosity is often calculated as

Fn =
l∑

j=1

(µj

n

)2

. (3.7.5)

The difference between Fn and F ∗
n is of order n−1: Fn is the probability that

two genes taken with replacement are identical, F ∗
n the probability that two

genes sampled without replacement are identical.
We have seen that E(F ∗

n) = 1/(1+θ). This suggests a method of moments
estimator for θ obtained by equating the observed sample homozygosity to its
expectation:

θ̃ =
1

F ∗
n

− 1

The right hand side of (3.7.4) shows that θ̃ depends largely on the partition
of the data into types, and not on the number of types. We will see that the
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latter is sufficient for θ, so standard statistical theory suggests that θ̃ might
not be a good estimator – it is based largely on those parts of the data which
are uninformative for θ. To examine this issue further, we used a coalescent
simulation to generate 10,000 samples of size 100 from the infinitely-many-
alleles process for different values of the target θ, and computed the estimator
θ̃ for each of them. In Table 1 below are some summary statistics from these
simulations.

Table 1. Simulated properties of θ̃ in samples of size n = 100

θ = 0.1 θ = 1.0 θ = 5.0 θ = 10.0

mean 0.15 1.38 6.00 11.38
std. dev. 0.32 1.03 2.60 4.15
RMSE† 0.32 1.10 2.79 4.37
median 0.00 1.19 5.73 11.01
5th %ile 0.00 0.09 2.21 5.25
95th %ile 0.94 3.36 10.73 18.80

†RMSE: root mean square error. 10,000 replicates used.

It can be seen that the estimator θ̃ is biased upwards. This might be
anticipated, because

E(θ̃) = E(1/F ∗
n − 1) ≥ 1/E(F ∗

n) − 1 = θ,

the inequality following from an application of Jensen’s Inequality. We note
that the estimator θ̃ has a non-degenerate limit as n → ∞, precisely because
F ∗

n does. Thus θ̃ is not a consistent estimator of θ. However, a consistent
estimator can be derived by using the number of types observed in the sample,
as we now show.

Estimation using the number of types in the sample

Notice from (3.5.3) and (3.6.1) that the conditional distribution of c, given
that Kn = k, does not depend on θ:

P(c|Kn = k) = q(c) /IP(Kn = k)

=
n!θk

θ(n)

n∏
j=1

(
1
j

)cj 1
cj !

/
θk|Sk

n|
θ(n)

=
n!
|Sk

n|
n∏

j=1

(
1
j

)cj 1
cj !

. (3.7.6)
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It follows that Kn is a sufficient statistic for θ; it contains all the information
useful for estimating θ. The maximum likelihood estimator of θ may be found
from (3.6.1). If k alleles are observed in the sample, then the log-likelihood is

log L(θ) = log(|Sk
n|) + k log θ −

n−1∑
j=0

log(θ + j).

Differentiating with respect to θ shows that the maximum likelihood estimator
θ̂ of θ may be found by solving the equation

k =
n−1∑
j=0

θ

θ + j
. (3.7.7)

As can be seen from (3.6.4), this is also the moment estimator of θ. The
Fisher information may be calculated readily from the log-likelihood, and we
find that the asymptotic variance of θ̂ is

Var(θ̂) ≈ θ2/Var(Kn). (3.7.8)

Therefore θ̂ is consistent for θ. Indeed, asymptotically θ̂ has a Normal distribu-
tion with mean θ and variance θ/ logn. We used the simulated data described
above to assess the properties of the estimator θ̂. Some results are given in
Table 2. It can be seen that the distribution of θ̂ is much more concentrated
than that of θ̃, and θ̂ seems to be somewhat less biased than θ̃. Histograms
comparing the two estimators appear in Figure 3.2.

It is worth relating these two approaches to estimating θ. If we were given
the values of each δij , 1 ≤ i < j ≤ n, then we would be able to calculate the
value of Kn, and each of the allele frequencies. We can see that summarizing
the δij in the form of F ∗

n throws away a lot of information – for example, the
summary statistic results in an inconsistent estimator of θ. We shall meet this
phenomenon again when we investigate estimation in the infinitely-many-sites
model.

3.8 Testing for selective neutrality

One might try to perform a “goodness of fit” test on genetic data to see
whether the Ewens sampling formula is appropriate. If the fit is rejected,
it may be evidence of selection (or of geographical structure, variation in
population sizes, other mutation mechanisms or other unnamed departures
from the model). Watterson (1977) suggested using the sample homozygosity
Fn defined in (3.7.5) as a test statistic. Under neutrality, the conditional
distribution of the counts is given by (3.7.6), from which the null distribution
of Fn follows. Fn will tend to have larger values when the allele frequencies
are skewed, and smaller values when the allele frequencies are more equal.
When testing for heterosis, small values of the test statistic lead to rejection
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Table 2. Simulated properties of θ̂ in samples of size n = 100.

θ = 0.1 θ = 1.0 θ = 5.0 θ = 10.0

mean 0.11 1.03 5.12 10.17
std. dev. 0.15 0.54 1.57 2.70
RMSE 0.15 1.03 1.57 2.71
median 0.00 0.95 5.14 9.70
5th %ile 0.00 0.20 2.95 6.15
95th %ile 0.43 1.87 7.82 15.00

Fig. 3.2. Histograms of 10,000 replicates of estimators of θ based on samples of size
n = 100. Left hand column is MLE θ̂, right hand column is θ̃. First row corresponds
to θ = 0.1, second to θ = 1.0, third to θ = 5.0, and fourth to θ = 10.0.
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of neutrality. For the D. tropicalis data in the introduction we have F298 =
0.6475, while for the D. simulans data we have F308 = 0.2356. Significance
points of the distribution under neutrality were given in Watterson (1978),
but they can be simulated rapidly. One approach, with ties to combinatorics,
is outlined in the complements. Using this method, the P-value for the first
set is 0.87, while for the second set it is 0.03. Thus, in contrast to Wright’s
expectation, the D. simulans do not fit neutral expectations. We will not focus
further on tests of neutrality in these notes. An up-to-date discussion about
detecting neutrality is given in Kreitman (2000).
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4 The Coalescent

In the last two sections we studied the behavior of the genealogy of a sam-
ple from a Wright-Fisher model when the population size N is large. We
introduced the ancestral process An(t) that records the number of distinct
ancestors of a sample of size n a time t earlier, and we studied some of its
properties. In this section we describe in more detail the structure of King-
man’s coalescent, a continuous time process whose state space is the set of
equivalence relations on the set [n] ≡ {1, 2, . . . , n}. We also give an alternative
representation as a bifurcating tree, and we discuss the robustness of these
approximations to different models of reproduction.

4.1 Who is related to whom?

We record information not only about the number of ancestors at various
times in the past, but also information about which individuals are descended
from which ancestors. For some fixed time t, one way of doing this is by
labelling the individuals in the sample from the set {1, . . . , n} and defining a
(random) equivalence relation ∼ on [n] by

i ∼ j if and only if individuals i and j share a common ancestor at time t.

It is often easiest to describe the equivalence relation by listing the equivalence
classes. Note that each equivalence class corresponds to a particular ancestor
of the sample at time t, and that the individuals in the equivalence class are
exactly those who are descended from the ancestor of the class.

More formally, we could label the individuals in the sample from the set [n].
If at time t there are An(t) = k ancestors of the sample, we could list the mem-
bers of the sample descended from each particular ancestor. This would give
us an unordered collection E1 ≡ {i11, · · · , i1l1}, E2 ≡ {i21, · · · , i2l2}, . . . , Ek ≡
{ik1, · · · , iklk} of sets which would partition [n], i.e. Ei ∩ Ej = ∅ i �= j and
E1 ∪ · · · ∪Ek = [n]. We often refer to the sets E1, . . . , Ek as classes, or equiv-
alence classes.

Denote by C(t) the (random) partition (or equivalently, equivalence rela-
tion) which is obtained from the genealogy in this way. What are the dynamics
of the process {C(t) : t ≥ 0}? Suppose that C(t) = α for some partition α
with k classes (we write |α| = k). As t increases and we go further into the
past, the process will remain constant until the first occasion that two of the k
individuals who are the ancestors of the classes are involved in a coalescence.
When this happens, those two individuals and hence all their descendants in
the two equivalence classes will share a common ancestor. The effect is to
merge or coalesce the two classes corresponding to these two individuals. The
rate at which this happens to a particular pair of individuals (and hence to
a particular pair of classes) is 1. Note that this argument and the fact that
population events happen at the points of a Poisson process ensures that the
process C(·) is Markovian.
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In summary, denote by En the set of equivalence relations on [n]. The
process {C(t) : t ≥ 0} is a continuous-time Markov chain on En with

C(0) = ∆ ≡ {(i, i), i = 1, 2, . . . , n}
≡ {{1}{2} . . .{n}},

the state in which “nobody is related to anyone else”, and transition rates
{qαβ , α, β ∈ En} given by

qαβ =



−(k

2

)
if α = β, |α| = k

1 if α ≺ β

0 otherwise
(4.1.1)

where the notation α ≺ β means that the partition β may be obtained from
α by merging two of the classes in α. The observation that the sample may
eventually be traced back to a single common ancestor means that almost
surely

lim
t→∞C(t) = Θ ≡ {(i, j), i, j = 1, 2, . . . , n}

= {{1, 2, . . . , n}}
so that everybody is related to everybody else and there is just one class.

The process {C(t), t ≥ 0} is known as the n−coalescent, or coalescent. To
calculate its distribution, it is convenient to study the discrete time (em-
bedded) jump chain {Ck; k = n, n − 1, . . . , 1} obtained by watching the
continuous-time process C(·) only at those times when it changes state. This
chain starts from Cn = ∆ and has transition probabilities

IP(Ck−1 = β|Ck = α) =

{(
k
2

)−1
if α ≺ β, |α| = k

0 otherwise.

Thus C(·) moves through a sequence ∆ = Cn ≺ Cn−1 ≺ · · · ≺ C1 = Θ,
spending (independent) exponential amounts of time in each state Ck ∈ En

with respective parameters
(
k
2

)
, k = n, n − 1, . . . , 2, before being absorbed in

state Θ.
Notice that in C(·) transition rates from a state α (and hence the time

spent in α) depend on α only through |α|, and that

|C(t)| = An(t),

since classes in C(t) correspond to ancestors of the sample. Thus the joint
distributions of {An(t); t ≥ 0} conditional on the sequence Cn, . . . , C1 are
just the same as its unconditional distributions. Hence {Ck} and {An(t)} are
independent processes. Thus

C(t) = CAn(t), t ≥ 0
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and

IP(C(t) = α) =
n∑

j=1

IP(C(t) = α|An(t) = j)IP(An(t) = j)

=
n∑

j=1

IP(Cj = α)IP(An(t) = j)

= IP(An(t) = |α|)IP(C|α| = α).

The distribution of An(t) has been given earlier. That of Cj is given in the
following theorem of Kingman (1982a).

Theorem 4.1 For the jump chain of the n-coalescent,

IP(Cj = α) =
(n − j)!j!(j − 1)!

n!(n − 1)!
λ1! · · ·λj !

where |α| = j and λ1, . . . , λj are the sizes of the equivalence classes of α.

Proof. Use backward induction. The result is clearly true when j = n. Then

IP(Cj−1 = β) ≡ pj−1(β) =
∑

α∈En

pj(α)IP(Cj−1 = β|Cj = α)

=
∑
α≺β

pj(α)
2

j(j − 1)

Write λ1, . . . , λj−1 for the sizes of the equivalence classes of β. Then those of
α are λ1, . . . , λl−1, m, λl − m, λl+1, . . . , λj−1 for some l, l = 1, . . . , j − 1 and
some m, m = 1, 2, . . . , λl − 1. Using the inductive hypothesis, we have

pj−1(β) =
j−1∑
l=1

λl−1∑
m=1

2
j(j − 1)

(n − j)!j!(j − 1)!
n!(n − 1)!

× λ1! · · ·λl−1!m!(λl − m)!λl+1! · · ·λj−1!
1
2

(
λl

m

)

=
(n − j)!(j − 1)!(j − 2)!

n!(n − 1)!
λ1! · · ·λj−1!

j−1∑
l=1

λl−1∑
m=1

1

=
(n − j + 1)(n − j)!(j − 1)!(j − 2)!

n!(n − 1)!
λ1! · · ·λj−1!

as required. ��

Note that the distribution of C and hence C(·) depends only on the sizes of
the equivalence classes rather than on which individuals are in these classes.



Ancestral Inference in Population Genetics 47

4.2 Genealogical trees

Knowledge of a sample path of the n-coalescent, the value of C(t) for all t ≥ 0,
specifies the time for which there are n distinct ancestors of the sample, which
two individuals share an ancestor when the number of ancestors drops by 1,
the time for which there are n−1 distinct ancestors, which two ancestors share
an ancestor when the number drops from n−1 to n−2, and so on. Eventually
we have information about the times between coalescences and knowledge of
which ancestors coalesce. Another, perhaps more natural, way of representing
this information is as a genealogical tree. The lengths of the various branches
are proportional to the times between the various events.

It is convenient to think of the n-coalescent as a random, rooted, binary
tree, with lengths attached to the edges, instead of its original form as a
stochastic process where values are partitions of [n]. The structure of the
genealogical process translates easily to the random tree: the leaves of the
tree represent the n sequences in the sample. The first join in the tree occurs
at time Tn, and results in the joining of two randomly chosen sequences. There
are now n− 1 nodes in the tree, and the next coalescence event occurs a time
Tn−1 later, and results in the joining of two nodes chosen at random from the
n − 1. This structure is continued until the final two nodes are joined at the
most common ancestor, at time Wn.

Some simulated genealogical trees for a sample of size 5 from a constant
population are shown in Figure 4.1. It is instructive derive the values of the
coalescent process from such a tree.

In Figure 4.2 coalescent trees for samples of size 6 and 32 from a constant
size population are shown, and in Figure 4.3 trees for samples of size 6 in both
constant and exponentially growing populations are shown. One of the most
striking qualitative properties, which is evident in Figure 4.2, is the extent
to which the tree is dominated by the last few branches. The mean time for
which the tree has two branches is 1. The mean time for which the tree has
more than two branches, namely (1 − 2/n), is smaller: for much of the time
since its common ancestor, the sample has only two ancestors. Further, for any
sample size n, the variability in the time T2 for which there are two branches
in the tree accounts for most of the variability in the depth of the whole tree.
These observations reinforce the theoretical results given earlier in Section 2.3.
The simulated tree with exponential growth in Figure 4.3 clearly displays the
star-like nature of the tree alluded to in Section 2.4.

4.3 Robustness in the coalescent

We have seen that the genealogy of the Wright-Fisher model can be described
by the coalescent when the population size is large. In this section, we outline
how the coalescent arises as an approximation for a wide variety of other
reproduction models having constant population size.
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Fig. 4.1. Six realizations, drawn on the same scale, of coalescent trees for a sample
of n = 5. (In each tree the labels 1,2,3,4,5 should be assigned at random to the
leaves.)

We noted earlier that in the Wright-Fisher model individuals have indepen-
dent Poisson-distributed numbers of offspring, conditioned on the requirement
that the total population size be fixed at N . Let νi be the number of offspring
born to individual i, i = 1, 2, . . . , N . We saw in (2.2.1) that ν = (ν1, . . . , νN )
has a multinomial distribution:

IP(ν1 = m1, . . . , νN = mN ) =
N !

m1! · · ·mN !

(
1
N

)N

provided m1 + · · · + mN = N . In particular the νi are identically distributed
(but not of course independent), and
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Fig. 4.2. Coalescent trees for samples of size 6 and 32 from a population of constant
size

Fig. 4.3. The coalescent tree of a sample of size 6 (constant population size in left
panel, exponentially growing population in right panel )

E(ν1) = 1, σ2
N ≡ Var(ν1) = 1 − 1

N
. (4.3.1)

Next we consider two other reproduction models that capture some of the
features of the Wright-Fisher case. Suppose first that ν ≡ (1, 1, . . . , 1), so
that each individual has precisely one offspring. For this model,

E(ν1) = 1, σ2
N = 0.

Now consider the opposite extreme, in which precisely one individual has all
the offspring. Then ν = Nei = N(0, . . . , 1, 0, . . . , 0) for some i = 1, . . . , N .
For this case,

E(ν1) = 1, σ2
N = N − 1. (4.3.2)

Our interest focuses on the asymptotic behavior of the genealogy as N →
∞. In the second model the individuals in the sample never share common
ancestors, and in the third the sample can be traced back to a single individual
in one generation. Clearly neither of these models has an interesting genealogy!
We shall see that the way to distinguish the three models can be based on the
behavior of σ2

N : for the Wright-Fisher model, σ2
N → 1, for the second model

σ2
N = 0, and for the third model σ2

N → ∞. If time is to be rescaled in units
proportional to N , then we get a non-degenerate genealogy if σ2

N → σ2 ∈
(0,∞).
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General reproduction models with reproductive symmetry, introduced by
Cannings (1974), can be formulated as follows.

(i) Constant population size requires that ν1 + · · · + νN = N .
(ii) The collection of random variables ν1, . . . , νN is exchangeable. That is, the

distribution of offspring numbers does not depend on the way in which
the individuals are labelled.

(iii) The distribution of (ν1, . . . , νN ) is the same in each generation. This is
time stationarity.

(iv) The joint distribution of (ν1, . . . , νN ) is independent of family sizes in other
generations. This is neutrality: offspring numbers for particular individuals
do not depend on ancestral offspring numbers.

Some properties of this general model are elementary to obtain. For ex-
ample, since

ν1 + · · · + νN = N (4.3.3)

and the νi have identical distributions it follows that

E(ν1) = 1.

Squaring (4.3.3) and taking expectations shows that

Cov(ν1, ν2) =
−σ2

N

N − 1
. (4.3.4)

Any particular distribution for (ν1, . . . , νN ) which satisfies the conditions
above specifies a model for the reproduction of the population. The main
result is that under minor additional conditions, the n-coalescent provides a
good approximation of the genealogy of such a model when the population
size is large, and time is measured in units proportional to N generations.

We begin by studying the ancestral process in a sample of size n from a
population model of size N . The analog of (2.2.3) is given in the next lemma;
cf. Cannings (1974) and Gladstien (1978).

Lemma 4.2 For 1 ≤ k ≤ n, we have

gkj =
(

N

k

)−1(
N

j

) ∑
b∈∆k

j

E

(
ν1

b1

)
· · ·

(
νj

bj

)
(4.3.5)

where

∆k
j = {(l1, . . . , lj) : li ∈ IN, i = 1, . . . , j; l1 + · · · + lj = k}.

Proof. Conditional on the offspring numbers ν = (ν1, . . . , νN ) we have
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IP(k have j distinct parents|ν) =
∑

l1,...,lj
distinct ∈[N ]

∑
b∈∆k

j

(
N

k

)−1 j∏
m=1

(
νlm

bm

)
.

Taking expectations and using the exchangeability assumption completes the
proof. ��

Kingman’s celebrated result gives conditions under which the genealogy of
a sample is approximated by the coalescent. He showed (Kingman (1982b))
that if

(i) σ2
N ≡ Var(ν1) → σ2 ∈ (0,∞) as N → ∞;

(ii) supN E(νk
1 ) < ∞ k = 3, 4, . . ..

and time is measured in units of Nσ−2 generations, then in the limit as
N → ∞, the genealogical structure of the sample is well approximated by the
coalescent. Thus any result which follows from the fact that sample genealogies
are described by an n-coalescent will be approximately true for any large
population evolving according to an exchangeable model. The assumption of
large population is reasonable in many genetics applications.

Note that the variance of the offspring distribution plays a role in the
approximation of genealogy by the coalescent. If time is scaled in units of N
generations, then the ancestral process appropriate for the sample is given by
An(σ2t), t ≥ 0. On this time scale, the waiting time Tj while the sample has
j distinct ancestors has an exponential distribution with mean

ETj =
2

σ2j(j − 1)

in coalescent units, or
2N

σ2j(j − 1)

in units of generations. It should be clear that when inferring properties of
the ancestral tree from data, the parameter σ2 has to be estimated.

Remark. As noted in Kingman (2000)), his attempt to understand the struc-
ture of the Ewens sampling formula led directly to his development of the
coalescent. Kingman (1982c) derives the Ewens Sampling Formula in (3.5.3)
directly from the effects of mutation in the coalescent. Define a relation R ∈ En

which contains (i, j) if, on watching the equivalence classes of C(t) contain-
ing i and j until the time they coincide, we observe no mutations to either.
Kingman gives the distribution of R as

P(R = ξ) =
θk

θ(n)

k∏
j=1

(λj − 1)!, (4.3.6)
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where λ1, . . . , λk are the sizes of the equivalence classes of R. If we multiply
this by the number of ξ that have the given sizes, namely

n!
λ1! · · ·λk!c1! · · · cn!

,

where cj is the number of the λi equal to j, we obtain the ESF. Thus the ESF
is indeed a consequence of mutation in the coalescent.

4.4 Generalizations

Since the introduction of Kingman’s coalescent several authors have studied
related approximations. For populations of constant size, Möhle (1998) has
phrased the approximations in terms of the parameter

cN =
Var(ν1)
N − 1

,

which is the probability that two individuals chosen at random without re-
placement from the same generation have the same parent; cf. (4.3.4). The
natural time scale is then in units of �c−1

N � generations.
We assume in what follows that cN > 0 for sufficiently large N , and that,

for integers k1 ≥ · · · ≥ kj ≥ 2 the limits

φj(k1, . . . , kj) = lim
N→∞

E((ν1)[k1] · · · (νj)[kj ])
Nk1+···+kj−jcN

(4.4.1)

exist, and that
c = lim

N→∞
cN (4.4.2)

exists.
A complete classification of the limiting behavior of the finite population

coalescent process (run on the new time scale) is given by Möhle and Sagitov
(2001). In the case

c = 0, φj(k1, . . . , kj) = 0 for j ≥ 2

the limiting process is Kingman’s coalescent described earlier.
More generally, when c = 0 the limiting process is a continuous time

Markov chain on the space of equivalence relations En, with transition rates
given by

qαβ =
{

φa(b1, . . . , ba) if α ⊆ β,
0 otherwise (4.4.3)

In (4.4.3), a is the number of equivalence classes in α, b1 ≥ b2 ≥ · · · ≥ ba

are the ordered sizes of the groups of merging equivalence classes of β, and b
is the number of equivalence classes of β. Note that φ1(2) = 1, so this does
indeed reduce to the transition rates in (4.1.1) in the Kingman case. For rates
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of convergence of such approximations see Möhle (2000), and for analogous
results in the case of variable population size see Möhle (2002).

When c > 0, the limit process is a discrete time Markov chain on En,
with transition matrix P given by P = I + cQ, where Q has entries given in
(4.4.3). This case obtains, for example, when some of the family sizes are of
order N with positive probability. In these limits many groups of individuals
can coalesce at the same time, and the resulting coalescent tree need not be
bifurcating. Examples of this type arise when a small number of individuals
has a high chance of producing most of the offspring, as is the case in some
fish populations. For related material, see also Pitman (1999), Sagitov (1999)
and Schweinsberg (2000).

4.5 Coalescent reviews

Coalescents have been devised for numerous other population genetics set-
tings, most importantly to include recombination (Hudson (1983)), a subject
we return to later in the notes. There have been numerous reviews of aspects
of coalescent theory over the years, including Hudson (1991, 1992), Ewens
(1990), Tavaré (1993), Donnelly and Tavaré (1995), Fu and Li (1999), Li and
Fu (1999) and Neuhauser and Tavaré (2001). Nordborg (2001) has the most
comprehensive review of the structure of the coalescent that includes selfing,
substructure, migration, selection and much more.
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5 The Infinitely-many-sites Model

We begin this section by introducing a data set that will motivate the de-
velopments that follow. The data are part of a more extensive mitochondrial
data set obtained by Ward et al. (1991). Table 3 describes the segregating
sites (those nucleotide positions that are not identical in all individuals in the
sample) in a collection of sequences of length 360 base pairs sampled from the
D-loop of 55 members of the Nuu Chah Nulth native American Indian tribe.
The data exhibit a number of important features. First, each segregating site
is either purine (A, G) or pyrimidine (C, T); no transversions are observed
in the data. Thus at each segregating site one of two possible nucleotides is
present. The segregating sites are divided into 5 purine sites and 13 pyrimi-
dine sites. The right-most column in the table gives the multiplicity of each
distinct allele (here we call each distinct sequence an allele). Notice that some
alleles, such as e and j, appear frequently whereas others, such as c and n
appear only once. We would like to explore the nature of the mutation process
that gave rise to these data, to estimate relevant genetic parameters and to
uncover any signal the data might contain concerning the demographic his-
tory of the sample. Along the way, we introduce several aspects of the theory
of the infinitely-many-sites model.

The mutations represented on a tree

In our example, there are n = 14 distinct sequences, and each column con-
sists of two possible characters, labelled 0 and 1 for simplicity. In order to
summarize these data, we compute the numbers Π(i, j) giving the number of
coordinates at which the ith and jth of the n sequences differ. Π(i, j) is the
Hamming distance between sequences i and j. This results in a symmetric
n × n matrix Π with 0 down the diagonal. For our example, the off-diagonal
elements of Π are given in Table 4

It is known (cf. Buneman (1971), Waterman (1995) Chapter 14, Gusfield
(1997) Chapter 17) that if an n×s data matrix representing n sequences each
of k binary characters, satisfies the four-point condition

For every pair of columns, not more than three
of the patterns 00, 01, 10, 11 occur (5.0.1)

then there is an unrooted tree linking the n sequences in such a way that the
distance from sequence i to sequence j is given by the elements of the matrix
D. Our example set does indeed satisfy this condition.

If the character state 0 corresponds to the ancestral base at each site, then
we can check for the existence of a rooted tree by verifying the three-point
condition

For every pair of columns, not more than two
of the patterns 01, 10, 11 occur (5.0.2)
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Table 3. Segregating sites in a sample of mitochondrial sequences

1 1 2 2 3 1 1 1 1 1 2 2 2 2 3 3
Position 0 9 5 9 4 8 9 2 4 6 6 9 3 6 7 7 1 3 allele

6 0 1 6 4 8 1 4 9 2 6 4 3 7 1 5 9 9 freqs.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

allele
a A G G A A T C C T C T T C T C T T C 2
b A G G A A T C C T T T T C T C T T C 2
c G A G G A C C C T C T T C C C T T T 1
d G G A G A C C C C C T T C C C T T C 3
e G G G A A T C C T C T T C T C T T C 19
f G G G A G T C C T C T T C T C T T C 1
g G G G G A C C C T C C C C C C T T T 1
h G G G G A C C C T C C C T C C T T T 1
i G G G G A C C C T C T T C C C C C T 4
j G G G G A C C C T C T T C C C C T T 8
k G G G G A C C C T C T T C C C T T C 5
l G G G G A C C C T C T T C C C T T T 4
m G G G G A C C T T C T T C C C T T C 3
n G G G G A C T C T C T T C C T T T C 1

Mitochondrial data from Ward et al. (1991). Variable purine and pyrimidine
positions in the control region. Position 69 corresponds to position 16,092

in the human reference sequence published by Anderson et al. (1981)

It is known that if the most frequent type at each site is labelled 0 (ancestral),
then the unrooted tree exists if and only if the rooted tree exists. Gusfield
(1991) gives a O(ns) time algorithm for finding a rooted tree:

Algorithm 5.1 Algorithm to find rooted tree for binary data matrix

1. Remove duplicate columns in the data matrix.
2. Consider each column as a binary number. Sort the columns into decreas-

ing order, with the largest in column 1.
3. Construct paths from the leaves to the root in the tree by labelling nodes

by mutation column labels and reading vertices in paths from right to left
where 1s occur in rows.
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Table 4. Distance between sequences for the Ward data

a b c d e f g h i j k l m n

a
b 1
c 6 7
d 6 7 4
e 1 2 5 5
f 2 3 6 6 1
g 7 8 3 5 6 7
h 8 9 4 6 7 8 1
i 7 8 3 5 6 7 4 5
j 6 7 2 4 5 6 3 4 1
k 4 5 2 2 3 4 3 4 3 2
l 5 6 1 3 4 5 2 3 2 1 1
m 5 6 3 3 4 5 4 5 4 3 1 2
n 6 7 4 4 5 6 5 6 5 4 2 3 3

Figure 5.1 shows the resulting rooted tree for the Ward data, and Figure
5.2 shows corresponding unrooted tree. Note that the distances between any
two sequences in the tree is indeed given by the appropriate entry of the matrix
in Table 4. We emphasize that these trees are equivalent representations of
the original data matrix.

In this section we develop a stochastic model for the evolution of such
trees, beginning with summary statistics such as the number of segregating
sites seen in the data.

5.1 Measures of diversity in a sample

We begin our study by describing some simple measures of the amount of
diversity seen in a sample of DNA sequences. For a sample of n sequences of
length s base pairs, write yi = (yi1, yi2, . . . , yis) for the sequence of bases from
sequence i, 1 ≤ i ≤ n, and define Π(i, j) to be the number of sites at which
sequences i and j differ:

Π(i, j) =
s∑

l=1

1l(yil �= yjl), i �= j. (5.1.1)

The nucleotide diversity Πn in the sample is the mean pairwise difference
defined by

Πn =
1

n(n − 1)

∑
i
=j

Π(i, j), (5.1.2)

and the per site nucleotide diversity is defined as
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Fig. 5.1. Rooted tree for the Ward data found from Gusfield’s algorithm

Fig. 5.2. Unrooted tree for the Ward data found from Figure 5.1. The numbers on
the branches correspond to the number of sites on that branch.
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πn = Πn/s.

Suppose that each position in the sequences being compared is from an
alphabet A having α different letters (so that α = 4 in the usual nucleotide
alphabet), and write nla for the number of times the letter a appears in site
l in the sample. Then it is straightforward to show that

Πn =
1

n(n − 1)

s∑
l=1

∑
a∈A

nla(n − nla) :=
n

n − 1

s∑
l=1

Hl, (5.1.3)

where Hl is the heterozygosity at site l, defined by

Hl =
∑
a∈A

nla

n

(
1 − nla

n

)
.

Thus, but for the correction factor n/(n− 1), the per site nucleotide diversity
is just the average heterozygosity across the region; that is,

πn =
n

n − 1
1
s

s∑
l=1

Hl.

The sampling distribution of Πn depends of course on the mutation mech-
anism that operates in the region. In the case of the infinitely-many-sites
mutation model, we have

EΠn =
1

n(n − 1)

∑
i
=j

Π(i, j)

= EΠ(1, 2) ( by symmetry)
= E(# of segregating sites in sample of size 2)
= θE(T2),

where T2 is the time taken to find the MRCA of a sample of size two. In the
case of constant population size, we have

EΠn = θ. (5.1.4)

The variance of Πn was found by Tajima (1983), who showed that

Var(Πn) =
n + 1

3(n − 1)
θ +

2(n2 + n + 3)
9n(n − 1)

θ2. (5.1.5)

The nucleotide diversity statistic is a rather crude summary of the vari-
ability in the data. In the next section, we study pairwise difference curves.
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5.2 Pairwise difference curves

The random variables Π(i, j) are identically distributed, but they are of course
not independent. Their common distribution can be found from the observa-
tion, exploited several times already, that

P(Π(1, 2) = k) = EP(Π(1, 2) = k|T2),

Conditional on T2, Π(1, 2) has a Poisson distribution with parameter 2T2θ/2 =
θT2, so that for a population varying with rate function λ(t),

P(Π(1, 2) = k) =
∫ ∞

0

e−θt (θt)
k

k!
λ(t)e−Λ(t)dt. (5.2.1)

In the case of a constant size, when λ(t) = 1 and Λ(t) = t, the integral can
be evaluated explicitly, giving

P(Π(1, 2) = k) =
1

1 + θ

(
θ

1 + θ

)k

, k = 0, 1, . . . . (5.2.2)

Thus Π(1, 2) has a geometric distribution with mean θ.
The pairwise difference curve is obtained by using the empirical distribu-

tion of the set Π(i, j), 1 ≤ i �= j ≤ n} to estimate the probabilities in (5.2.1).
Define

Πnk =
1

n(n − 1)

∑
i
=j

1l(Π(i, j) = k), (5.2.3)

the fraction of pairs of sequences separated by k segregating sites. By sym-
metry, we have

E(Πnk) = P(Π(1, 2) = k), k = 0, 1, . . . . (5.2.4)

5.3 The number of segregating sites

The basic properties of the infinitely-many-sites model were found by Watter-
son (1975). Because each mutation is assumed to produce a new segregating
site, the number of segregating sites observed in a sample is just the total
number of mutations Sn since the MRCA of the sample. Conditional on Ln,
Sn has a Poisson distribution with mean θLn/2. We say that Sn has a mixed
Poisson distribution, written Sn ∼ Po(θLn/2). It follows that

E(Sn) = E(E(Sn|Ln))
= E (θLn/2)

=
θ

2

n∑
j=2

j
2

j(j − 1)
= θ

n−1∑
j=1

1
j
. (5.3.1)
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Notice that for large n, E(Sn) ∼ θ log(n).
We can write Sn = Y2 + · · · + Yn where Yj is the number of mutations

that arise while the sample has j ancestors. Since the Tj are independent,
the Yj are also independent. As above, Yj has a mixed Poisson distribution,
Po(θjTj/2). It follows that

E(sYj ) = E(E(sYj |Tj))
= E(exp(−[θjTj/2](1 − s)))

=
j − 1

j − 1 + θ(1 − s)
, (5.3.2)

showing (Watterson (1975)) that Yj has a geometric distribution with param-
eter (j − 1)/(j − 1 + θ):

IP(Yj = k) =
(

θ

θ + j − 1

)k (
j − 1

θ + j − 1

)
k = 0, 1, . . . (5.3.3)

Since the Yj are independent for different j, it follows that

Var(Sn) =
n∑

j=2

Var(Yj) = θ

n−1∑
j=1

1
j

+ θ2
n−1∑
j=1

1
j2

. (5.3.4)

The probability generating function of Sn satisfies

E(sSn) =
n∏

j=2

E(sYj ) =
n∏

j=2

j − 1
j − 1 + θ(1 − s)

(5.3.5)

from which further properties may be found. In particular, it follows from this
that for m = 0, 1, . . .

IP(Sn = m) =
n − 1

θ

n−1∑
l=1

(−1)l−1

(
n − 2
l − 1

)(
θ

l + θ

)m+1

. (5.3.6)

Estimating θ

It follows from (5.3.1) that

θW = Sn

/
n−1∑
j=1

1
j

(5.3.7)

is an unbiased estimator of θ. From (5.3.4) we see that the variance of θW is

Var(θW ) =


θ

n−1∑
j=1

1
j

+ θ2
n−1∑
j=1

1
j2




n−1∑

j=1

1
j



−2

. (5.3.8)
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Notice that as n → ∞, Var(θW ) → 0, so that the estimator θW is weakly
consistent for θ.

An alternative estimator of θ is the moment estimator derived from (5.1.4),
namely

θT = Πn. (5.3.9)

The variance of θT follows immediately from (5.1.5). In fact, Πn has a non-
degenerate limit distribution as n → ∞, so that θT cannot be consistent. This
parallels the discussion in Section 3 about estimating θ on the basis of the
number Kn of alleles or via the sample homozygosity Fn. The inconsistency
of the pairwise estimators arises because these summary statistics lose a lot
of information available in the sample.

We used the coalescent simulation algorithm to assess the properties of
the estimators θW and θT for samples of size n = 100. The results of 10,000
simulations are given in Tables 5 and 6 for a variety of values of θ. It can be
seen that the distribution of θW is much more concentrated than that of θT .
Histograms comparing the two estimators appear in Figure 5.3.

Table 5. Simulated properties of θW in samples of size n = 100.

θ = 0.1 θ = 1.0 θ = 5.0 θ = 10.0

mean 0.18 1.10 5.03 9.99
std dev 0.23 0.48 1.53 2.75
median 0.00 0.97 4.83 9.66
5th %ile 0.00 0.39 2.90 6.18
95th %ile 0.39 1.93 7.73 15.07

Table 6. Simulated properties of θT in samples of size n = 100.

θ = 0.1 θ = 1.0 θ = 5.0 θ = 10.0

mean 0.10 1.00 4.95 9.97
std dev 0.19 0.75 2.65 4.98
median 0.00 0.84 4.35 8.91
5th %ile 0.00 0.08 1.79 4.13
95th %ile 0.40 2.42 10.16 19.48
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Fig. 5.3. Histograms of 10,000 replicates of estimators of θ based on samples of size
n = 100. Left hand column is θW , right hand column is θT . First row corresponds
to θ = 0.1, second to θ = 1.0, third to θ = 5.0, and fourth to θ = 10.0.
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How well can we do?

The estimators θW and θT are based on summary statistics of the original
sequence data. It is of interest to know how well these unbiased estimators
might in principle behave. In this section, we examine this question in more
detail for the case of constant population size.

If we knew how many mutations had occurred on each of the j branches
of length Tj, j = 2, . . . , n in the coalescent tree, then we could construct a
simple estimator of θ using standard results for independent random variables.
Let Yjk, k = 1, . . . , j; j = 2, . . . , n denote the number of mutations on the kth

branch of length Tj and set Yj =
∑j

k=1 Yjk. Yj is the observed number of
mutations that occur during the time the sample has j distinct ancestors.
Since each mutation produces a new segregating site, this is just the number
of segregating sites that arise during this time. Since the Tj are independent,
so too are the Yj . We have already met the distribution of Yj in equation
(5.3.3), and it follows that the likelihood for observations Yj , j = 2, . . . , n is
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Ln(θ) =
n∏

j=2

(
θ

j − 1 + θ

)Yj
(

j − 1
j − 1 + θ

)

= θSn(n − 1)!
n∏

j=2

(j − 1 + θ)−(Yj+1),

where Sn =
∑n

j=2 Yj is the number of segregating sites. The maximum likeli-
hood estimator based on this approach is therefore the solution of the equation

θ = Sn

/
n∑

j=2

Yj + 1
j − 1 + θ

. (5.3.10)

Furthermore,
∂2 log Ln

∂θ2
= −Sn

θ2
+

n∑
j=2

(Yj + 1)
(j − 1 + θ)2

,

so that

−E

(
∂2 log Ln

∂θ2

)
=

θ
∑n−1

1
1
j

θ2
−

n∑
j=2

(
θ

j − 1
+ 1

)
1

(j − 1 + θ)2

=
1
θ

n−1∑
1

1
j
−

n−1∑
1

1
j(j + θ)

=
1
θ

n−1∑
1

1
j + θ

(5.3.11)

Hence the variance of unbiased estimators θU of θ satisfies

Var(θU ) ≥ θ

/
n−1∑

1

1
j + θ

,

as shown by Fu and Li (1993). The right-hand side is also the large-sample
variance of the estimator θF in (5.3.10).

How does this bound compare with that in (5.3.8)? Certainly

Var(θF ) ≤ Var(θW ), (5.3.12)

and we can see that if θ is fixed and n → ∞ then

Var(θF )
Var(θW )

→ 1.

If, on the other hand, n is fixed and θ is large, we see that

Var(θF )
Var(θW )

→
(

n−1∑
1

1
j

)2 /
(n − 1)

n−1∑
1

1
j2

,
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so that there can be a marked decrease in efficiency in using the estimator θW

when θ is large. We cannot, of course, determine the numbers Yj from data;
this is more information than we have in practice. However, it does suggest
that we explore the MLE of θ using the likelihoods formed from the full data
rather than summary statistics. Addressing this issue leads us to study the
underlying tree structure of infinitely-many-sites data in more detail, as well
as to develop some computational algorithms for computing MLEs.

5.4 The infinitely-many-sites model and the coalescent

The infinitely-many-sites model is an early attempt to model the evolution
of a completely linked sequence of sites in a DNA sequence. The term ‘com-
pletely linked’ means that no recombination is allowed. Each mutation on the
coalescent tree of the sample introduces a mutant base at a site that has not
previously experienced a mutation. One formal description treats the type
of an individual as an element (x1, x2, . . .) of E = ∪r≥1[0, 1]r. If a mutation
occurs in an offspring of an individual of type (x1, x2, . . . , xr), then the off-
spring has type (x1, x2, . . . , xr , U), where U is a uniformly distributed random
variable independent of the past history of the process.

Figure 3.1 provides a trajectory of the process. It results in a sample of
five sequences, their types being (U1, U2), (U1, U2), (U1, U2, U4, U5), (U0, U3),
(U0, U3) respectively.

There are several other ways to represent such sequences, of which we
mention just one. Consider the example above once more. Each sequence
gives a mutational path from the individual back to the most recent common
ancestor of the sample. We can think of these as labels of locations at which
new mutant sites have been introduced. In this sample there are six such
sites, each resulting in a new segregating site. We can therefore represent
the sequences as strings of 0s and 1s, each of length six. At each location, a 1
denotes a mutant type and a 0 the original or ‘wild’ type. Arbitrarily labelling
the sites 1, 2, . . . , 6 corresponding to the mutations at U0, U1, . . . , U5, we can
write the five sample sequences as

(U1, U2, U4, U5) = 011011
(U1, U2) = 011000
(U1, U2) = 011000
(U0, U3) = 100100
(U0, U3) = 100100

These now look more like aligned DNA sequences! Of course, in reality we
do not know which type at a given segregating site is ancestral and which is
mutant, and the ordering of sites by time of mutation is also unknown.
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5.5 The tree structure of the infinitely-many-sites model

We have just seen that in the infinitely-many-sites model, each gene can be
thought of as an infinite sequence of completely linked sites, each labelled 0
or 1. A 0 denotes the ancestral (original) type, and a 1 the mutant type. The
mutation mechanism is such that a mutant offspring gets a mutation at a
single new site that has never before seen a mutation. This changes the 0 to
a 1 at that site, and introduces another segregating site into the sample. By
way of example, a sample of 7 sequences might have the following structure:

gene 1 . . . 1 0 1 0 0 0 1 0 1 0 0 . . .
gene 2 . . . 1 0 1 0 0 0 0 0 0 0 0 . . .
gene 3 . . . 1 0 0 1 0 1 0 0 0 0 1 . . .
gene 4 . . . 1 0 0 1 0 1 0 1 0 0 0 . . .
gene 5 . . . 1 0 0 1 0 1 0 1 0 0 0 . . .
gene 6 . . . 1 0 0 1 0 1 0 1 0 0 0 . . .
gene 7 . . . 0 1 0 0 1 0 0 0 0 1 0 . . .

the dots indicating non-segregating sites. Many different coalescent trees can
give rise to a given set of sequences. Figure 5.4 shows one of them.

Fig. 5.4. Coalescent tree with mutations
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The coalescent tree with mutations can be condensed into a genealogical
tree with no time scale by labelling each sequence by a list of mutations up
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to the common ancestor. For the example in Figure 5.4, the sequences may
be represented as follows:

gene 1 (9,7,3,1,0)
gene 2 (3,1,0)
gene 3 (11,6,4,1,0)
gene 4 (8,6,4,1,0)
gene 5 (8,6,4,1,0)
gene 6 (8,6,4,1,0)
gene 7 (10,5,2,0)

The condensed genealogical tree is shown in Figure 5.5. The leaves in the tree

Fig. 5.5. Genealogical tree corresponding to Figure 5.4

are the tips, corresponding to the sequences in the sample. The branches in
the tree are the internal links between different mutations. The 0s in each
sequence are used to indicate that the sequences can be traced back to a
common ancestor.

Thus we have three ways to represent the sequences in the sample: (i) as a
list of paths from the sequence to the root; (ii) as a rooted genealogical tree; and
(iii) as a matrix with entries in {0, 1} where a 0 corresponds to the ancestral
type at a site, and a 1 the mutant type. In our example, the 0-1 matrix given
above is equivalent to the representations in Figures 5.4 and 5.5. Finally, the
number of segregating sites is precisely the number of mutations in the tree.
In the next section, we discuss the structure of these tree representations in
more detail.
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5.6 Rooted genealogical trees

Following Ethier and Griffiths (1987), we think of the ith gene in the sample as
a sequence xi = (xi0, xi1, . . .) where each xij ∈ ZZ+. (In our earlier parlance,
the type space E of a gene is the space ZZ∞

+ .) It is convenient to think of
xi0, xi1, . . . as representing the most recently mutated site, the next most
recently, and so on. A sample of n genes may therefore be represented as n
sequences x1, x2, . . . , xn. The assumption that members of the sample have
an ancestral tree and that mutations never occur at sites that have previously
mutated imply that the sequences x1, . . . , xn satisfy:

(1) Coordinates within each sequence are distinct
(2) If for some i, i′ ∈ {1, . . . , n} and j, j′ ∈ ZZ+ we have xij = xi′j′ , then

xi,j+k = xi′,j′+k, k = 1, 2, . . .
(3) there is a coordinate common to all n sequences.

Rules (2) and (3) above say that the part of the sequences inherited from
the common ancestor appears at the right-hand end of the sequences. In prac-
tice we can discard from each x sequence those entries that are common to
all of the sequences in the sample; these are the coordinates after the value
common to all the sequences. It is the segregating sites, and not the non-
segregating sites, that are important to us. In what follows, we use these
representations interchangeably.

Trees are called labelled if the sequences (tips) are labelled. Two labelled
trees are identical if there is a renumbering of the sites that makes the labelled
trees the same. More formally, let Tn = {(x1, . . . , xn) is a tree}. Define an
equivalence relation ∼ by writing (x1, . . . , xn) ∼ (y1, . . . , yn) if there is a
bijection ξ : ZZ+ → ZZ+ with yij = ξ(xij), i = 1, . . . , n, j = 0, 1, . . .. Then
Tn/ ∼ corresponds to labelled trees. Usually, we do not distinguish between
an equivalence class and a typical member.

An ordered labelled tree is one where the sequences are labelled, and con-
sidered to be in a particular order. Visually this corresponds to a tree di-
agram with ordered leaves. An unlabelled (and so unordered) tree is a tree
where the sequences are not labelled. Visually two unlabelled trees are iden-
tical if they can be drawn identically by rearranging the leaves and corre-
sponding paths in one of the trees. Define a second equivalence relation ≈ by
(x1, . . . , xn) ≈ (y1, . . . , yn) if there is a bijection ξ : ZZ+ → ZZ+ and a per-
mutation σ of 1, 2, . . . , n such that yσ(i),j = ξ(xij), i = 1, . . . , n, j = 0, 1, . . ..
Then Tn/ ≈ corresponds to unlabelled trees.

Usually trees are unlabelled, with sequences and sites then labelled for
convenience. However it is easiest to deal with ordered labelled trees in a
combinatorial and probabilistic sense, then deduce results about unlabelled
trees from the labelled variety. Define

(Td/ ∼)0 = {T ∈ Td/ ∼: x1, . . . , xd all distinct}
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and similarly for (Td/ ≈)0. T ∈ ∪d≥1(Td/ ∼)0 corresponds to the conventional
graph theoretic tree, with multiple tips removed. There is a one-to-one corre-
spondence between trees formed from the sequences and binary sequences of
sites. Let x1, . . . , xd be distinct sequences of sites satisfying (1), (2) and (3),
and let I be the incidence matrix of segregating sites. If u1, . . . , uk are the
segregating sites (arranged in an arbitrary order) then

Iij = 1 if uj ∈ xi, i = 1, . . . , d, j = 1, . . . , k.

The sites which are not segregating do not contain information about the tree.
Deducing the tree from a set of d binary sequences is not a priori simple,

because sites where mutations occur are unordered with respect to time and
any permutation of the columns of I produces the same tree. In addition,
binary data often have unknown ancestral labelling, adding a further compli-
cation to the picture. However, these trees are equivalent to the rooted trees
discussed in the introduction. It follows that we can use the three-point condi-
tion in (5.0.2) to check whether a matrix of segregating sites is consistent with
this model, and if it is, we can reconstruct the tree using Gusfield’s algorithm
5.1. We turn now to computing the distribution of such a rooted tree.

5.7 Rooted genealogical tree probabilities

Let p(T, n) be the probability of obtaining the alleles T ∈ (Td/ ∼)0 with
multiplicities n = (n1, . . . , nd) and let n =

∑d
1 ni. This is the probability of

getting a particular ordered sample of distinct sequences with the indicated
multiplicities. Ethier and Griffiths (1987) and Griffiths (1989) established the
following:

Theorem 5.1 p(T, n) satisfies the equation

n(n − 1 + θ)p(T, n) =
∑

k:nk≥2

nk(nk − 1)p(T, n − ek)

+ θ
∑

k:nk=1, xk0 distinct,
Sxk �=xj ∀ j

p(SkT, n) (5.7.1)

+ θ
∑

k:nk=1,

xk0 distinct.

∑
j:Sxk=xj

p(RkT, Rk(n + ej)).

In equation (5.7.1), ej is the jth unit vector, S is a shift operator which deletes
the first coordinate of a sequence, SkT deletes the first coordinate of the kth

sequence of T , RkT removes the kth sequence of T , and ‘xk0 distinct’ means
that xk0 �= xij for all (x1, . . . , xd) and (i, j) �= (k, 0). The boundary condition
is p(T1, (1)) = 1.

Remark. The system (5.7.1) is recursive in the quantity {n − 1+ number of
vertices in T }.

Administrator
ferret
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Proof. Equation (5.7.1) can be validated by a simple coalescent argument, by
looking backwards in time for the first event in the ancestry of the sample.
The first term on the right of (5.7.1) corresponds to a coalescence occurring
first. This event has probability (n − 1)/(θ + n − 1). For any k with nk ≥ 2,
the two individuals who coalesce may come from an allele with nk copies, and
the tree after the coalescence would be (T, n−ek). The contribution to (T, n)
form events of this sort is therefore

n − 1
θ + n − 1

∑
k:nk≥2

nk

n

(
nk − 1
n − 1

)
p(T, n − ek).

The second terms on the right of (5.7.1) correspond to events where a mu-
tation occurs first. Suppose then that the mutation gave rise to sequence xk.
There are two different cases to consider, these being determined by whether
or not the sequence Sxk that resulted in xk is already in the sample, or not.
These two cases are illustrated in the tree in Figure 5.6. The sequences are

Fig. 5.6. Representative tree

x1 = (0)
x2 = (5 1 0)
x3 = (3 0)
x4 = (2 4 0)
x5 = (1 0)

Note that Sx2 = (1 0) = x5, so the ancestral type of x2 is in the sample.
This corresponds to the third term on the right of (5.7.1). On the other hand,
Sx4 = (4 0), a type not now in the sample. This corresponds to second term on
the right of (5.7.1). The phrase ‘xk0 distinct’ that occurs in these two sums is
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required because not all leaves with nk = 1 can be removed; some cannot have
arisen in the evolution of the process. The sequence x5 provides an example.

Combining these probabilities gives a contribution to p(T, n) of

θ

θ + n − 1

{∑ 1
n

p(SkT, n) +
∑∑ 1

n
p(RkT, Rk(n + ej))

}
,

and completes the proof. ��

It is sometimes more convenient to consider the recursion satisfied by the
quantities p0(T, n) defined by

p0(T, n) =
n!

n1! . . . nd!
p(T, n). (5.7.2)

p0(T, n) is the probability of the labelled tree T , without regard to the order
of the sequences in the sample. Using (5.7.1), this may be written in the form

n(n − 1 + θ)p0(T, n) =
∑

k:nk≥2

n(nk − 1)p0(T, n − ek)

+ θ
∑

k:nk=1, xk0 distinct,

Sxk �=xj ∀ j

p0(SkT, n) (5.7.3)

+ θ
∑

k:nk=1,

xk0 distinct.

∑
j:Sxk=xj

(nj + 1) p0(RkT, Rk(n + ej)).

Let p∗(T, n) be the probability of a corresponding unlabelled tree with
multiplicity of the sequences given by n. p∗ is related to p0 by a combinatorial
factor, as follows. Let Sd denote the set of permutations of (1, . . . , d). Given a
tree T and σ ∈ Sd, define Tσ = (xσ(1), . . . , xσ(d)) and nσ = (nσ(1), . . . , nσ(d)).
Letting

a(T, n) = |{σ ∈ Sd : Tσ = T, nσ = n}|, (5.7.4)

we have
p∗(T, n) =

1
a(T, n)

p0(T, n). (5.7.5)

Informally, the number of distinct ordered labelled trees corresponding to the
unlabelled tree is

n!
n1! · · ·nd!a(T, n)

.

In the tree shown in Figure 5.5, a(T, n) = 1. A subsample of three genes
(9, 7, 3, 1, 0), (11, 6, 4, 1, 0), (10, 5, 2, 0), forming a tree T ′ with frequencies n′ =
(1, 1, 1), has a(T ′, n′) = 2, because the first two sequences are equivalent in
an unlabelled tree.

These recursions may be solved for small trees, and the resulting genealogi-
cal tree probabilities used to estimate θ by true maximum likelihood methods.
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One drawback is that the method depends on knowing the ancestral type at
each site, an assumption rarely met in practice. We turn now to the tree
structure that underlies the process when the ancestral labelling is unknown.

5.8 Unrooted genealogical trees

When the ancestral base at each site is unknown there is an unrooted ge-
nealogical tree that corresponds to the sequences. In these unrooted trees, the
vertices represent sequences and the number of mutations between sequences
are represented by numbers along the edges; see Griffiths and Tavaré (1995).
It is convenient to label the vertices to show the sequences they represent.
The unrooted tree for the example sequences is shown in Figure 5.7.

Fig. 5.7. Unrooted genealogical tree corresponding to Figure 5.4
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Given a single rooted tree, the unrooted genealogy can be found. The
constructive way to do this is to put potential ancestral sequences at the
nodes in the rooted tree (ignoring the root). There are three such nodes in
the example in Figure 5.5. The ancestral sequence might be represented in the
sample (as with sequence 2 in that figure), or it may be an inferred sequence
not represented in the sample.

Given a rooted genealogy, we have seen how the corresponding unrooted
tree can be found. Conversely, the class of rooted trees produced from an
unrooted genealogy may be constructed by placing the root at one of the
sequences, or between mutations along an edge. This corresponds to picking
up the unrooted tree at that point and shaking it. Two examples are given in
Figure 5.8. In the first, the root corresponds to the third sequence, and in the
second it is between the two mutations between the two inferred sequences.
The unrooted tree constructed from any of these rooted trees is of course
unique.
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Fig. 5.8. Moving the root

Tree with root between mutations

Tree with root the third sequence

If there are α sequences (including the inferred sequences), with m1, m2, . . .
mutations along the edges, and s segregating sites, then there are

α +
∑

j

(mj − 1) = s + 1 (5.8.1)

rooted trees when the sequences are labelled. There may be fewer unlabelled
rooted trees, as some can be identical after unlabelling the sequences. In the
example there are 11 segregating sites, and so 12 labelled rooted trees, which
correspond to distinct unlabelled rooted trees as well.
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The class of rooted trees corresponds to those constructed from toggling
the ancestor labels 0 and 1 at sites. The number of the 2s possible relabellings
that are consistent with the sequences having come from a tree is

α +
∑

j

mj−1∑
k=1

(
mj

k

)
= α +

∑
j

(2mj − 2). (5.8.2)

This follows from the observation that if there is a collection of m segregating
sites which correspond to mutations between sequences, then the correspond-
ing data columns of the 0-1 sequences (with 0 the ancestral state) are identical
or complementary. Any of the

(
m
k

)
configurations of k identical and m−k com-

plementary columns correspond to the same labelled tree with a root placed
after the kth mutation. The correspondence between different rooted labelled
trees and the matrix of segregating sites can be described as follows: in order
to move the root from one position to another, toggle those sites that occur
on the branches between the two roots.

The upper tree in Figure 5.8 has incidence matrix

gene 1 0 0 1 1 0 0 1 0 1 0 0
gene 2 0 0 1 1 0 0 0 0 0 0 0
gene 3 0 0 0 0 0 1 0 0 0 0 1
gene 4 0 0 0 0 0 1 0 1 0 0 0
gene 5 0 0 0 0 0 1 0 1 0 0 0
gene 6 0 0 0 0 0 1 0 1 0 0 0
gene 7 1 1 0 1 1 0 0 0 0 1 0

whereas the lower tree in Figure 5.8 has incidence matrix

gene 1 0 0 1 1 0 1 1 0 1 0 1
gene 2 0 0 1 1 0 1 0 0 0 0 1
gene 3 0 0 0 0 0 0 0 0 0 0 0
gene 4 0 0 0 0 0 0 0 1 0 0 1
gene 5 0 0 0 0 0 0 0 1 0 0 1
gene 6 0 0 0 0 0 0 0 1 0 0 1
gene 7 1 1 0 1 1 1 0 0 0 1 1

It can readily be checked that the sites between the two roots are those num-
bered 6 and 11, and if these are toggled then one tree is converted into the
other.

5.9 Unrooted genealogical tree probabilities

A labelled unrooted genealogical tree of a sample of sequences has a vertex
set V which corresponds to the labels of the sample sequences and any in-
ferred sequences in the tree. Let Q be the edges of the tree, described by
(mij , i, j ∈ V ), where mij is the number of mutations between vertices i and
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j. Let n denote the multiplicities of the sequences. It is convenient to include
the inferred sequences � ∈ V with n� = 0. Then the unrooted genealogy is
described by (Q, n).

Define p(Q, n), p0(Q, n), p∗(Q, n) analogously to the probabilities for T .
The combinatorial factor relating p∗(Q, n) and p0(Q, n) is

a(Q, n) = |{σ ∈ S|V | : Qσ = Q, nσ = n}|. (5.9.1)

The quantities p(Q, n) and p0(Q, n) satisfy recursions similar to (5.7.1) and
(5.7.3), which can be derived by considering whether the last event back in
time was a coalescence or a mutation. The recursion for p(Q, n) is

n(n − 1 + θ)p(Q, n) =
∑

k:nk≥2

nk(nk − 1)p(Q, n − ek)

+ θ
∑

k:nk=1, |k|=1,

k→j, mkj>1

p(Q − ekj , n) (5.9.2)

+ θ
∑

k:nk=1, |k|=1,

k→j, mkj=1

p(Q − ekj , n + ej − ek),

where |k| = 1 means that the degree of the vertex k is 1 (that is, k is a leaf),
and k → j means that vertex k is joined to vertex j. In the last term on
the right of (5.9.2), vertex k is removed from Q. The boundary conditions in
(5.9.2) for n = 2 are

p((0), 2e1) =
1

1 + θ
,

and

p((m), e1 + e2) =
(

θ

1 + θ

)m 1
1 + θ

, m = 1, 2, . . . .

The probability of a labelled unrooted genealogical tree Q is

p(Q, n) =
∑

T∈C(Q)

p(T, n), (5.9.3)

where C(Q) is the class of distinct labelled rooted trees constructed from Q.
The same relationship holds in (5.9.3) if p is replaced by p0.

5.10 A numerical example

In this example we suppose that the ancestral states are unknown, and that
the sequences, each with multiplicity unity, are:

1 0 0 0
0 0 0 1
0 1 1 0



Ancestral Inference in Population Genetics 75

For convenience, label the segregating sites 1, 2, 3, and 4 from the left. When
0 is the ancestral state, a possible rooted tree for these sequences has paths
to the root of (1, 0), (2, 3, 0), and (4, 0). It is then straightforward to con-
struct the corresponding unrooted genealogy, which is shown in Figure 5.9.
The central sequence is inferred. There are five possible labelled rooted trees

Fig. 5.9. Unrooted Genealogy
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constructed from the unrooted genealogy, corresponding to the root being at
one of the sequences, or between the two mutations on the edge. These five
trees are shown in Figure 5.10, together with their probabilities p(T, n), com-
puted exactly from the recursion (5.7.1) when θ = 2.0. p(Q, n) is the sum of
these probabilities, 0.004973. The factor in (5.9.1) is 2, and the multinomial
coefficient 3!/1!1!1! = 6 so p∗(Q, n) = 3 × 0.00497256 = 0.014919. Note that
the trees (b) and (e) are identical unlabelled rooted trees, but are distinct
labelled rooted trees, so are both counted in calculating p∗(Q, n).

In this small genealogy, the coalescent trees with four mutations can be
enumerated to find the probability of the genealogy. The trees which produce
the tree in Figure 5.9 are shown in Figure 5.11, with the correspondence to
the trees in Figure 5.10 highlighted.

Let T3 be the time during which the sample has three ancestors, and T2 the
time during which it has two. T3 and T2 are independent exponential random
variables with respective rates 3 and 1. By considering the Poisson nature of
the mutations along the edges of the coalescent tree, the probability of each
type of tree can be calculated. For example, the probability p(a1) of the first
tree labelled (a1) is

p(a1) = E

[(
e−θT3/2 θT3

2

)2

e−θT2/2 e−θ(T2+T3)/2 1
2!

(θ(T2 + T3)/2)2
]

=
θ4

32
E

[
e−θ(3T3/2+T2)T 2

3 (T2 + T3)2
]

=
θ4(17θ2 + 46θ + 32)
27(θ + 1)3(θ + 2)5

.

In a similar way the other tree probabilities may be calculated. We obtain
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Fig. 5.10. Labelled rooted tree probabilities

Fig. 5.11. Possible coalescent trees leading to the trees in Figure 5.10

(a1)
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p(a2) =
θ4

16
E

[
2e−θ(3T3/2+T2)T 3

3 (T2 + T3)/2
]

=
2θ4(11θ + 14)

27(θ + 1)2(θ + 2)5
,

p(b) = p(e) =
θ4

16
E

[
e−θ(3T3/2+T2)T 3

3 T2/2
]

=
θ4

9(θ + 1)2(θ + 2)4
,

p(c) =
θ4

16
E

[
e−θ(3T3/2+T2)(T2 + T3)T 2

3 T2

]

=
θ4(2θ + 3)

9(θ + 1)3(θ + 2)4
,

p(d) =
θ4

16
E

[
e−θ(3T3/2+T2)T 2

3 T 2
2 /2

]

=
2θ4

9(θ + 1)3(θ + 2)3
.
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Note that there are two coalescent trees that correspond to case (a2),
depending on whether 1 coalesced with 3 first, or 2 did. When θ = 2,
these probabilities reduce to p(a1) = 0.004115, p(a2) = 0.004630, p(b),(e) =
0.000772, p(c) = 0.003601, p(d) = 0.001029. From these we deduce that
p(T (a), n) = (0.004115 + 0.004630)/3 = 0.002915, p(T (b), n) = p(T (e), n) =
0.000772/3 = 0.000257, p(T (c), n) = 0.003601/3 = 0.001203, and p(T (d), n) =
0.001029/3 = 0.000343, so that p(Q, n) = 0.004973, in agreement with the
recursive solution.

5.11 Maximum likelihood estimation

For the example in the previous section, it can be shown that the likelihood
is

p(Q, n) =
4θ4(5θ2 + 14θ + 10)
27(θ + 1)3(θ + 2)5

.

This has the value 0.004973 when θ = 2, as we found above. The maximum
likelihood estimator of θ is θ̂ = 3.265, and the approximate variance (found
from the second derivative of the log-likelihood) is 8.24. The likelihood curves
are plotted in Figure 5.12.

Fig. 5.12. Likelihood p(Q, n) plotted as a function of θ, together with log-likelihood.
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As might be expected, there is little information in such a small sample.
Now consider a data set with 20 sequences, 5 segregating sites and multiplic-
ities given below. The reduced genealogical tree is given in Figure 5.13.

0 1 0 1 0 : 8
0 1 1 1 0 : 3
0 0 0 0 0 : 1
0 1 0 0 1 : 1
1 1 0 0 0 : 7

Assuming that the ancestral labels are known, the probabilities p∗(T, n)
may be found using the recursion in (5.7.1), and they give a value of the MLE
as θ̂ = 1.40.
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Fig. 5.13. Rooted genealogical tree for example data set. [Here, leaf labels refer to
multiplicities of sequences]

To develop a practical method of maximum likelihood we need to be able
to solve the recursions for p0 for large sample sizes and large numbers of
segregating sites. A general method for doing this is discussed in the next
section.

7 1 8 3 1

1

2

3

4

5



Ancestral Inference in Population Genetics 79

6 Estimation in the Infinitely-many-sites Model

In this section we describe some likelihood methods for the infinitely-many-
sites model, with a view to estimation of the compound mutation parameter θ.
The method described here originated with Griffiths and Tavaré (1994), and
has since been revisited by Felsenstein et al. (1999) and Stephens and Don-
nelly (2000). As we saw at the end of the previous section, exact calculation
using the recursion approach is possible for relatively small sample sizes. For
larger samples a different approach is required. We begin this section with
Monte Carlo-based method for approximating these sampling probabilities
by simulation backwards along the sample paths of the coalescent. Later in
the section we relate this approach to importance sampling and show how to
improve the original approach.

6.1 Computing likelihoods

Griffiths and Tavaré’s approach is based on an elementary result about Markov
chains given below.

Lemma 6.1 Let {Xk; k ≥ 0} be a Markov chain with state space S and
transition matrix P . Let A be a set of states for which the hitting time

η = inf{k ≥ 0 : Xk ∈ A}

is finite with probability one starting from any state x ∈ T ≡ S \A. Let f ≥ 0
be a function on S, and define

ux(f) = Ex

η∏
k=0

f(Xk) (6.1.1)

for all X0 = x ∈ S, so that

ux(f) = f(x), x ∈ A

Then for all x ∈ T

ux(f) = f(x)
∑
y∈S

pxyuy(f). (6.1.2)
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Proof.

ux(f) = Ex

( η∏
k=0

f(Xk)
)

= f(x)Ex

( η∏
k=1

f(Xk)
)

= f(x)Ex

(
Ex

( η∏
k=1

f(Xk)
)
|X1

)

= f(x)Ex

(
EX1

( η∏
k=0

f(Xk)
))

(by the Markov property)

= f(x)Exu(X1)

= f(x)
∑
y∈S

pxyuy(f).

��

This result immediately suggests a simulation method for solving equations
like that on the right of (6.1.2): simulate a trajectory of the chain X starting
at x until it hits A at time η, compute the value of the product

∏η
k=0 f(Xk),

and repeat this several times. Averaging these values provides an estimate of
ux(f).

One application of this method is calculation of the sample tree probabili-
ties p0(T, n) for the infinitely-many-sites model using the recursion in (5.7.3).
In this case the appropriate Markov chain {Xk, k ≥ 0} has a tree state space,
and makes transitions as follows:

(T, n) → (T, n − ek) with probability
(nk − 1)

f(T, n)(n + θ − 1)
(6.1.3)

→ (SkT, n) with probability
θ

f(T, n)n(n + θ − 1)
(6.1.4)

→ (RkT, Rk(n + ej)) with prob.
θ(nj + 1)

f(T, n)n(n + θ − 1)
(6.1.5)

The first type of transition is only possible if nk > 1, and the second or
third if nk = 1. In the last two transitions a distinct singleton first coordinate
in a sequence is removed. The resulting sequence is still distinct from the
others in (6.1.4), but in (6.1.5) the shifted kth sequence is equal to the jth
sequence. The scaling factor is

f(T, n) ≡ fθ(T, n) =
d∑

k=1

(nk − 1)
(n + θ − 1)

+
θm

n(n + θ − 1)
,

where m is given by
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m = |{k : nk = 1, xk,0 distinct, Sxk �= xj ∀ j}|
+

∑
k:nk=1, xk,0 distinct

∑
j:Sxk=xj

(nj + 1).

The idea is to run the process starting from an initial tree (T, n) until the
time τ at which there are two sequences (x10, . . . , x1i) and (x20, . . . , x2j) with
x1i = x2j (corresponding to the root of the tree) representing a tree T2. The
probability of such a tree is

p0(T2) = (2 − δi+j,0)
(

i + j

j

)[
θ

2(1 + θ)

]i+j 1
1 + θ

.

The representation of p0(T, n) is now

p0(T, n) = E(T,n)

[
τ−1∏
l=0

f(T (l), n(l))

]
p0(T2), (6.1.6)

where X(l) ≡ (T (l), n(l)) is the tree at time l. Equation (6.1.6) may be used to
produce an estimate of p0(T, n) by simulating independent copies of the tree
process {X(l), l = 0, 1, . . .}, and computing

[∏τ−1
l=0 f(T (l), n(l))

]
p0(T2) for

each run. The average over all runs is then an unbiased estimator of p0(T, n).
An estimate of p∗(T, n) can then be found by dividing by a(T, n).

6.2 Simulating likelihood surfaces

The distribution p0(T, n) provides the likelihood of the data (T, n), and so
can be exploited for maximum likelihood approaches. One way to do this is
to simulate the likelihood independently at a grid of points, and examine the
shape of the resulting curve. In practice, this can be a very time consuming
approach. In this section we describe another approach, based on importance
sampling, for approximating a likelihood surface at a grid of points using just
one run of the simulation algorithm.

The method uses the following lemma, a generalization of Lemma 6.1. The
proof is essentially the same, and is omitted.

Lemma 6.2 Let {Xk; k ≥ 0} be a Markov chain with state space S and
transition matrix P . Let A be a set of states for which the hitting time

η ≡ ηA = inf{k ≥ 0 : Xk ∈ A}
is finite with probability one starting from any state x ∈ T ≡ S \A. Let h ≥ 0
be a given function on A, let f ≥ 0 be a function on S × S and define

ux(f) = Exh(Xη)
η−1∏
k=0

f(Xk, Xk+1) (6.2.1)
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for all X0 = x ∈ S, so that

ux(f) = h(x), x ∈ A.

Then for all x ∈ T

ux(f) =
∑
y∈S

f(x, y)pxyuy(f). (6.2.2)

It is convenient to recast the required equations in a more generic form,
corresponding to the notation in Lemma 6.2. We denote by qθ(x) the proba-
bility of the data x when the unknown parameters have value θ, which might
be vector-valued. Equations such as (5.7.3) can then be recast in the form

qθ(x) =
∑

y

fθ(x)pθ(x, y)qθ(y) (6.2.3)

for some appropriate transition matrix pθ(x, y). Now suppose that θ0 is a
particular set of parameters satisfying

fθ(x)pθ(x, y) > 0 ⇒ pθ0(x, y) > 0.

We can recast the equations (6.2.3) in the form

qθ(x) =
∑

y

fθ(x)
pθ(x, y)
pθ0(x, y)

pθ0(x.y) qθ(y) (6.2.4)

so that from Lemma 6.2

qθ(x) = Exqθ(X(η))
η−1∏
j=0

fθ,θ0(X(j), X(j + 1)) (6.2.5)

where {X(k), k ≥ 0} is the Markov chain with parameters θ0 and

fθ,θ0(x, y) = fθ(x)
pθ(x, y)
pθ0(x, y)

. (6.2.6)

It follows that qθ(x) can be calculated from the realizations of a single
Markov chain, by choosing a value of θ0 to drive the simulations, and evaluat-
ing the functional q(X(η))

∏η−1
j=0 fθ,θ0(X(j), X(j + 1)) along the sample path

for each of the different values of θ of interest.

6.3 Combining likelihoods

It is useful to use independent runs for several values of θ0 to estimate qθ(x)
on a grid of θ-values. For each such θ, the estimates for different θ0 have the
required mean qθ(x), but they have different variances for different θ0. This
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raises the question about how estimated likelihoods from different runs might
be combined. Suppose then that we are approximating the likelihood on a set
of g grid points, θ1, . . . , θg, using r values of θ0 and t runs of each simula-
tion. Let q̂ij be the sample average of the t runs at the jth grid point for the
ith value of θ0. For large t, the vectors q̂i ≡ (q̂i1, . . . , q̂ig), i = 1, . . . , r have
independent and approximately multivariate Normal distributions with com-
mon mean vector (qθ1(x), . . . , qθg(x)) and variance matrices t−1Σ1, . . . , t

−1Σr

respectively. The matrices Σ1, . . . , Σr are unknown but may be estimated in
the conventional way from the simulations. Define the log-likelihood estimates
l̂i ≡ (l̂ij , j = 1, 2, . . . , g) by

l̂ij = log q̂ij , j = 1, . . . , g, i = 1, . . . , r.

By the delta method, the vectors l̂i, i = 1, . . . , r are independent, asymptoti-
cally Normal random vectors with common mean vector l ≡ (l1, . . . , lg) given
by

li = log qθi(x),

and covariance matrices t−1Σ∗
i determined by

(Σ∗
i )lm =

(Σi)lm

qθl
(x) qθm(x)

. (6.3.1)

If the Σ∗
j were assumed known, the minimum variance unbiased estimator of

l would be

l̂ =


 r∑

j=1

(
Σ∗

j

)−1




−1
r∑

j=1

(
Σ∗

j

)−1
q̂′

j . (6.3.2)

If the observations for different Θj are not too correlated, it is useful to con-
sider the simpler estimator with Σ′

j ≡ diag Σ∗
j replacing Σ∗

j in (6.3.2). This
estimator requires a lot less computing than that in (6.3.2). In practice, we
use the estimated values q̂il and q̂im from the ith run to estimate the terms
in the denominator of (6.3.1).

6.4 Unrooted tree probabilities

The importance sampling approach can be used to find the likelihood of an
unrooted genealogy. However it seems best to proceed by finding all the pos-
sible rooted labelled trees corresponding to an unrooted genealogy, and their
individual likelihoods. Simulate the chain {(T (l), n(l)), l = 0, 1, . . .} with a
particular value θ0 as parameter, and obtain the likelihood surface for other
values of θ using the representation

p0
θ(T, n) = E

θ0
(T,n)

[
τ−1∏
l=0

h((T (l), n(l)), (T (l + 1), n(l + 1)))

]
p0

θ(T2), (6.4.1)
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where (T (l), n(l)) is the tree at time l, and h is determined by

h((T, n), (T, n − ek)) = fθ0(T, n)
n + θ0 − 1
n + θ − 1

,

and

h((T, n), (T ′, n′)) = fθ0(T
′, n′)

θ(n + θ0 − 1)
θ0(n + θ − 1)

.

where the last form holds for both transitions (6.1.4), when (T ′, n′) =
(SkT, n), and (6.1.5), when (T ′, n′) = (RkT, Rk(n + ej)).

Example

To illustrate the method we consider the following set of 30 sequences, with
multiplicities given in parentheses:

0 0 1 0 0 0 1 (3)
0 0 0 0 0 0 1 (4)
0 0 0 0 0 0 0 (4)
1 0 0 1 0 0 0 (11)
1 0 0 0 0 0 0 (1)
0 1 0 0 0 0 0 (2)
0 0 0 0 1 0 1 (2)
0 0 0 0 1 1 1 (3)

Simulations of the process on a grid of θ-values θ = 0.6(0.2)3.0 for θ0 =
1.0, 1.8, and 2.6 were run for 30,000 replicates each. The curves of log p0 were
combined as described earlier. This composite curve is compared with the true
curve, obtained by direct numerical solution of the recursion, in Figure 6.1.

6.5 Methods for variable population size models

The present approach can also be used when the population size varies, as
shown by Griffiths and Tavaré (1996, 1997). The appropriate recursions have
a common form that may be written

q(t, x) =
∫ ∞

t

∑
y

r(s; x, y)q(s, y)g(t, x; s)ds (6.5.1)

where r(s; x, y) ≥ 0 and g(t, x; s) is the density of the time to the first event
in the ancestry of the sample after time t:

g(t, x; s) = γ(s, x) exp
(
−
∫ s

t

γ(u, x)du

)
. (6.5.2)
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Fig. 6.1. Log-likelihood curves. Dashed line: exact values. Solid line: Monte Carlo
approximant.
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Define

f(s; x) =
∑

y

r(s; x, y)

P (s; x, y) =
r(s; x, y)
f(s; x)

, (6.5.3)

and rewrite (6.5.1) as

q(t, x) =
∫ ∞

t

f(s; x)
∑

y

P (s; x, y)q(s, y) g(t, x; s)ds. (6.5.4)

We associate a non-homogeneous Markov chain {X(t), t ≥ 0} with (6.5.4) as
follows: Given that X(t) = x, the time spent in state x has density g(t, x; s),
and given that a change of state occurs at time s, the probability that the
next state is y is P (s; x, y). The process X(·) has a set of absorbing states,
corresponding to those x for which q(·, x) is known. X(·) may be used to give
a probabilistic representation of q(t, x) analogous to the result in Lemma 6.1
in the following way: Let τ1 < τ2 · · · < τk = τ be the jump times of X(·),
satisfying τ0 ≡ t < τ1, where τ is the time to hit the absorbing states. Then

q(t, x) = E(t,x)q(τ, X(τ))
k∏

j=1

f(τj ; X(τj−1)), (6.5.5)

where E(t,x) denotes expectation with respect to X(t) = x.
Once more, the representation in (6.5.5) provides a means to approximate

q(x) ≡ q(0, x): Simulate many independent copies of the process {X(t), t ≥ 0}
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starting from X(0) = x, and compute the observed value of the functional
under the expectation sign in (6.5.5) for each of them. The average of these
functionals is an unbiased estimate of q(x), and we may then use standard
theory to see how accurately q(x) has been estimated.

We have seen that it is important, particularly in the context of variance
reduction, to have some flexibility in choosing the stopping time τ . Even in the
varying environment setting, there are cases in which q(·, x) can be computed
(for example by numerical integration) for a larger collection of states x, and
then it is useful to choose τ to be the hitting time of this larger set.

The probability q(t, x) is usually a function of some unknown parameters,
which we denote once more by θ; we write qθ(t, x) to emphasize this depen-
dence on θ. Importance sampling may be used as earlier to construct a single
process X(·) with parameters θ0, from which estimates of qθ(t, x) may be
found for other values of θ. We have

qθ(t, x) =
∫ ∞

t

∑
y

fθ,θ0(t, x; s, y)Pθ0(s; x, y)qθ(s, y) gθ0(t, x; s)ds (6.5.6)

where

fθ,θ0(t, x; s, y) =
fθ(s; x)gθ(t, x; s)Pθ(s; x, y)

gθ0(t, x; s)Pθ0 (s; x, y)

and fθ(s; x) and Pθ(s; x, y) are defined in (6.5.3). The representation analogous
to (6.5.5) is

qθ(t, x) = E(t,x)q(τ, X(τ))
k∏

j=1

fθ,θ0(τj−1, X(τj−1); τj , X(τj)), (6.5.7)

and estimates of qθ(t, x) may be simulated as described earlier in the Section.

6.6 More on simulating mutation models

The genetic variability we observe in samples of individuals is the consequence
of mutation in the ancestry of these individuals. In this section, we continue
the description of how mutation processes may be superimposed on the co-
alescent. We suppose that genetic types are labelled by elements of a set E,
the ‘type space’. As mutations occur, the labels of individuals move around
according to a mutation process on E.

We model mutation by supposing that a particular offspring of an individ-
ual of type x ∈ E has a type in the set B ⊆ E with probability Γ (x, B). The
mutation probabilities satisfy∫

E

Γ (x, dy) = 1, for all x ∈ E.

When E is discrete, it is more usual to specify a transition matrix Γ = (γij),
where γij is the probability that an offspring of an individual of type i is of
type j. Such a mutation matrix Γ satisfies
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γij ≥ 0,
∑
j∈E

γij = 1 for each i.

We assume that conditional its parent’s type, the type of a particular off-
spring is independent of the types of other offspring, and of the demography
of the population. In particular, the offspring of different individuals mutate
independently.

In Section 3.4 we described a way to simulate samples from an infinitely-
many-alleles model. This method can be generalized easily to any mutation
mechanism. Generate the coalescent tree of the sample, sprinkle Poisson num-
bers of mutations on the branches at rate θ/2 per branch, and superimpose
the effects of the mutation process at each mutation. For discrete state spaces,
this amounts to changing from type i ∈ E to jinE with probability γij at each
mutation. This method works for variable population size, by running from
the bottom up to generate the ancestral history, then from top down to add
mutations.

When the population size is constant, it is possible to perform the simu-
lation from the top down in one sweep.

Algorithm 6.1 To generate a stationary random sample of size n.

1. Choose a type at random according to the stationary distribution π of Γ .
Copy this type, resulting in 2 lines.

2. If there are currently k lines, wait a random amount of time having ex-
ponential distribution with parameter k(k + θ − 1)/2 and choose one of
the lines at random. Split this line into 2 (each with same type as parent
line) with probability (k − 1)/(k + θ − 1), and otherwise mutate the line
according to Γ .

3. If there are fewer than n + 1 lines, return to step 2. Otherwise go back to
the last time at which there were n lines and stop.

This algorithm is due to Ethier and Griffiths (1987); See also Donnelly and
Kurtz (1996). Its nature comes from the ‘competing exponentials’ world, and
it only works in the case of constant population size. For the infinitely-many-
alleles and infinitely-many-sites models, the first step has to be modified so
that the MRCA starts from an arbitrary label.

6.7 Importance sampling

The next two sections are based on the papers of Felsenstein et al. (1999),
and Stephens and Donnelly (2000). The review article of Stephens (2001) is
also useful. In what follows, we assume a constant size population.

The typed ancestry A of the sample is its genealogical tree G, together
with the genetic type of the most recent common ancestor (MRCA) and the
details and positions of the mutation events that occur along the branches of



88 Simon Tavaré

G. An example is given in Figure 6.2. Algorithm 6.1 can be used to simulate
observations having the distribution of A.

The history H is the typed ancestry A with time and topology infor-
mation removed. So H is the type of the MRCA together with an ordered
list of the split and mutation events which occur in A (including the de-
tails of the types involved in in each event, but not including which line
is involved in each event). The history H contains a record of the states
(H−m, H−m+1, . . . , H−1, H0) visited by the process beginning with the type
H−m ∈ E of the MRCA and ending with genetic types H0 ∈ En of the
sample. Here m is random, and the Hi are unordered lists of genetic types.
Think of H as (H−m, H−m+1, . . . , H−1, H0), although it actually contains the
details of which transitions occur between these states. In Figure 6.2, we have
H = ({A}, {A, A}, {A, G}, {A, A, G}, {A, C, G}, {A, C, G, G}, {A, C, C, G},
{A, C, C, C, G}, {A, C, C, G, G}).

Fig. 6.2. Genealogical tree G, typed ancestry A and history H

A to G

A

A to C

C to G

G to C

C G A G C

If Hi is obtained from Hi−1 by a mutation from α to β, write Hi =
Hi−1 − α + β, whereas if Hi is obtained from Hi−1 by the split of a line of
type α, write Hi = Hi−1+α. The distribution Pθ(H) of H is determined by the
distribution π of the type of the MRCA, by the stopping rule in Algorithm 6.1,
and by the Markov transition probabilities
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p̃θ(Hi | Hi−1) =




nα

n

θ

n − 1 + θ
Γαβ if Hi = Hi−1 − α + β

nα

n

n − 1
n − 1 + θ

if Hi = Hi−1 + α

0 otherwise

(6.7.1)

where nα is the number of chromosomes of type α in Hi−1 and n =
∑

nα.
We want to compute the distribution qθ(·) of the genetic types Dn =

(a1, . . . , an) in a random ordered sample. A sample from H provides, through
H0, a sample from qθ. To get the ordered sample, we have to label the elements
of H0, so that

qθ(Dn | H) =
{

(
∏

α∈E nα!)/n! if H0 is consistent with Dn

0 otherwise. (6.7.2)

We regard L(θ) ≡ qθ(Dn) as the likelihood of the data Dn. The Griffiths-
Tavaré method uses the representation

L(θ) = E


 τ∏

j=0

F (Bj) | B0 = Dn


 , (6.7.3)

where B0, B1, . . . is a particular Markov chain and τ a stopping time for the
chain; recall (6.1.6). Using (6.7.2), we can calculate

L(θ) =
∫

qθ(Dn | H)Pθ(H)dH (6.7.4)

This immediately suggests a naive estimator of L(θ):

L(θ) ≈ 1
R

R∑
i=1

qθ(Dn | Hi) (6.7.5)

where Hi, i = 1, . . . , R are independent samples from Pθ(H). Unfortunately
each term in the sum is with high probability equal to 0, so reliable estimation
of L(θ) will require enormous values of R.

The importance sampling approach tries to circumvent this difficulty. Sup-
pose that Qθ(·) is a distribution on histories that satisfies {H : Qθ(H) > 0} ⊃
{H : Pθ(H) > 0}. Then we can write

L(θ) =
∫

qθ(Dn | H)
Pθ(H)
Qθ(H)

Qθ(H)dH (6.7.6)

≈ 1
R

R∑
i=1

qθ(Dn | H)
Pθ(Hi)
Qθ(Hi)

:=
1
R

R∑
i=1

wi, (6.7.7)
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where H1, . . . , HR are independent samples from Qθ(·).
We call the distribution Qθ the IS proposal distribution, and the wi are

called the IS weights. The idea of course is to choose the proposal distribution
in such a way that the variance of the estimator in (6.7.7) is much smaller
than that of the estimator in (6.7.5). The optimal choice Q∗

θ of Qθ is

Q∗
θ(H) = Pθ(H | Dn); (6.7.8)

in this case

qθ(Dn | H)
Pθ(H)
Q∗

θ(H)
= L(θ),

so the variance of the estimator is 0. Unfortunately, the required conditional
distribution of histories is not known, so something else has to be tried.

In Section 6.2 we mentioned that estimating L(θ) on a grid of points can be
done independently at each grid point, or perhaps by importance sampling,
which in the present setting reduces to choosing the driving value θ0, and
calculating

L(θ) ≈ 1
R

R∑
i=1

qθ(Dn | H)
Pθ(Hi)
Qθ0(Hi)

(6.7.9)

where H1, . . . , HR are independent samples from Qθ0(·).

6.8 Choosing the weights

A natural class of proposal distributions on histories arises by consider-
ing randomly reconstructing histories backward in time in a Markovian
way, from the sample Dn back to an MRCA. So a random history H =
(H−m, . . . , H−1, H0) may be sampled by choosing H0 = Dn, and successively
generating H−1, . . . , H−m according to prespecified backward transition prob-
abilities pθ(Hi−1 | Hi). The process stops at the first time that the configura-
tion H−m consists of a single chromosome.

In order for (6.7.6) to hold, we need to look at the subclass M of these
distributions for which, for each i, the support of pθ(· | Hi) is the set

{Hi−1 : p̃θ(Hi | Hi−1) > 0}

where p̃θ is given in (6.7.1). Such a pθ then specifies a distribution Qθ whose
support is the set of histories consistent with the data Dn.

Felsenstein et al. (1999) showed that the Griffiths-Tavaré scheme in (6.7.3)
is a special case of this strategy, with

pθ(Hi−1 | Hi) ∝ p̃θ(Hi−1 | Hi). (6.8.1)

The optimal choice of Q∗
θ turns out to be from the class M. Stephens and

Donnelly (2000) prove the following result:
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Theorem 6.3 Define π(· | D) to be the conditional distribution of the type of
an (n + 1)th sampled chromosome, given the types D of the first n sampled
chromosomes. Thus

π(α | D) =
qθ({D, α})

qθ(D)
.

The optimal proposal distribution Q∗
θ is in the class M, with

p∗θ(Hi−1 | Hi) =




C−1 θ

2
nα

π(β | Hi − α)
π(α | Hi − α)

Γβα if Hi−1 = Hi − α + β,

C−1

(
nα

2

)
1

π(α | Hi − α)
if Hi−1 = Hi − α,

0 otherwise,
(6.8.2)

where nα is the number of chromosomes of type α in Hi, and C = n(n−1+θ)/2
where n is the number of chromosomes in Hi.

It is clear that knowing p∗θ is equivalent to knowing Q∗
θ, which in turn

is equivalent to knowing L(θ). So it should come as no surprise that the
conditional probabilities are unknown for most cases of interest. The only
case that is known explicitly is that in which Γαβ = Γβ for all α, β. In this
case

π(β | D) =
nβ + θΓβ

n + θ
. (6.8.3)

Donnelly and Stephens argue that under the optimal proposal distribution
there will be a tendency for mutations to occur towards the rest of the sample,
and that coalescences of unlikely types are more likely than those of likely
types. This motivated their choice of approximation π̂(· | D) to the sampling
probabilities π(· | D). They define π̂(· | D) by choosing an individual from
D at random, and mutating it a geometric number of times according to the
mutation matrix Γ . So

π̂(β | D) =
∑
α∈E

nα

n

∞∑
m=0

(
θ

θ + n

)m
n

θ + n
Γ m

αβ (6.8.4)

≡
∑
α∈E

nα

n
M

(n)
αβ . (6.8.5)

π̂ has a number of interesting properties, among them the fact that when
Γαβ = Γβ for all α, β we have π̂(· | D) = π(· | D) and the fact that π̂(· | D) =
π(· | D) when n = 1 and Γ is reversible.

The proposal distribution Q̂∗
θ, an approximation to Q∗

θ, is defined by sub-
stituting π̂(· | D) into (6.8.2):
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p̂θ(Hi−1 | Hi) =




C−1 θ

2
nα

π̂(β | Hi − α)
π̂(α | Hi − α)

Γβα if Hi−1 = Hi − α + β,

C−1

(
nα

2

)
1

π̂(α | Hi − α)
if Hi−1 = Hi − α,

0 otherwise,
(6.8.6)

In order to sample from p̂θ efficiently, one can use the following algorithm.

Algorithm 6.2

1. Choose a chromosome uniformly at random from those in Hi, and denote
its type by α.

2. For each type β ∈ E for which Γβα > 0, calculate π̂(β | Hi − α) from
equation (6.8.5).

3. Sample Hi by setting

Hi−1 =
{

Hi − α + β w.p. ∝ θπ̂(β | Hi − α)Γβα

Hi − α w.p. ∝ nα − 1.

Example

Stephens and Donnelly give a number of examples of the use of their proposal
distribution, including for the infinitely-many-sites model. In this case, the
foregoing discussion has to be modified, because the type space E is uncount-
ably infinite. However the principles behind the derivation of the proposal
distribution Q̂θ can be used here too. Namely, we choose a chromosome uni-
formly at random from those present, and assume this chromosome is involved
in the most recent event back in time. As we have seen (recall Theorem 5.1),
the configuration of types Hi is equivalent to an unrooted genealogical tree,
and the nature of mutations on that tree means that the chromosomes that
can be involved in the most recent event backwards in time from Hi are lim-
ited:

(a) any chromosome which is not the only one of its type may coalesce with
another of that type;

(b) any chromosome which is the only one of its type and has only one neigh-
bor on the unrooted tree corresponding to Hi may have arisen from a
mutation to that neighbor.

So their proposal distribution chooses the most recent event back in time
by drawing a chromosome uniformly at random from those satisfying (a) or
(b). Notice that this distribution does not depend on θ. In Figure 6.3 are
shown a comparison of the Griffiths-Tavaré method with this new proposal
distribution.
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Fig. 6.3. (a) Likelihood surface estimate with ±2 standard deviations from 100,000
runs of GT method, with θ0 = 4. (b) the same using 100,000 runs of the SD IS
function. This is Fig. 7 from Stephens and Donnelly (2000).

It is an open problem to develop other, perhaps better, IS distributions for
rooted and unrooted trees as well. The method presented here is also not ap-
propriate for variable population size models, where the simple Markov struc-
ture of the process is lost. The representation of the Griffiths-Tavaré method
as importance sampling, together with the results for the constant population
size model, suggest that the development of much more efficient likelihood
algorithms in that case. See Chapter 2 of Liu (2001) for an introduction to
sequential importance sampling in this setting. The paper of Stephens and
Donnelly has extensive remarks from a number of discussants on the general
theme of computational estimation of likelihood surfaces.
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7 Ancestral Inference in the Infinitely-many-sites Model

The methods in this section are motivated by the problem of inferring prop-
erties of the time to the most recent common ancestor of a sample given the
data from that sample. For example, Dorit et al. (1996) sequenced a 729 bp
region of the ZFY gene in a sample of n = 38 males and observed no vari-
ability; the number of segregating sites in the data is then S38 = 0. What can
be said about the time to the MRCA (TMRCA) given the observation that
S38 = 0?

Note that the time to the MRCA is an unobservable random variable in
the coalescent setting, and so the natural quantity to report is the conditional
distribution of Wn given the data D, which in this case is just just the event
{Sn = 0}. In this section we derive some of properties of such conditional
distributions. In later sections we consider much richer problems concerning
inference about the structure of the coalescent tree conditional on a sample.
The main reference for the material in this section is Tavaré et al. (1997).

7.1 Samples of size two

Under the infinitely-many-sites assumption, all of the information in the two
sequences is captured in S2, the number of segregating sites. Our goal, then,
is to describe T2, the time to the most recent common ancestor of the sample
in the light of the data, which is the observed value of S2.

One approach is to treat the realized value of T2 as an unknown param-
eter which is then naturally estimated by T̃2 = S2/θ, since E(S2|T2) = θT2.
Such an approach, however, does not use all of the available information. In
particular, the information available about T2 due to the effects of genealogy
and demography are ignored.

Under the coalescent model, when n = 2 the coalescence time T2 has an
exponential distribution with mean 1 before the data are observed. As Tajima
(1983) noted, it follows from Bayes Theorem that after observing S2 = k, the
distribution of T2 is gamma with parameters 1 + k and 1 + θ, which has
probability density function

fT2(t|S2=k) =
(1 + θ)1+k

k!
tke−(1+θ)t, t ≥ 0. (7.1.1)

In particular,

E(T2|S2=k) =
1 + k

1 + θ
, (7.1.2)

var(T2|S2=k) =
1 + k

(1 + θ)2
. (7.1.3)

The pdf (7.1.1) conveys all of the information available about T2 in the
light of both the data and the coalescent model.
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If a point estimate were required, equation (7.1.2) suggests the choice
T̂2 = (1+S2)/(1+θ). Perhaps not surprisingly, the estimator T̂2, which is
based on all of the available information, is superior to T̃2 which ignores the
pre-data information. For example, writing MSE for the mean square error of
an estimator, straightforward calculations show that

MSE(T̂2) =
1

1 + θ
<

1
θ

= MSE(T̃2).

The difference in mean square errors could be substantial for small θ. In
addition, the estimator T̃2 is clearly inappropriate when S2 = 0.

7.2 No variability observed in the sample

We continue to assume the infinitely-many-sites mutation model with param-
eter θ, and derive the distribution of Wn := Tn + · · · + T2 given Sn = 0 for
the case of constant population size. Several authors have been motivated to
study this particular problem, among them Fu and Li (1996), Donnelly et al.
(1996) and Weiss and von Haeseler (1996). Because mutations occur accord-
ing to independent Poisson processes on the branches of the coalescent tree,
we see that

E(exp(−uWn)1l(Sn = 0)) = E[E(exp(−uWn)1l(Sn = 0) | Tn, . . . , T2)]
= E[exp(−uWn)E(1l(Sn = 0) | Tn, . . . , T2)]
= E[exp(−uWn) exp(−θLn/2)]

=
n∏

j=2

E exp(−(u + θj/2)Tj)

=
n∏

j=2

(
j
2

)
(

j
2

)
+ u + θj

2

Since

P(Sn = 0) =
n−1∏
j=1

j

j + θ
,

we see that

E(exp(−uWn)|Sn = 0) =
n∏

j=2

j(j + θ − 1)/2
u + j(j + θ − 1)/2

. (7.2.1)

Let W̃n denote a random variable with the same distribution as the conditional
distribution of Wn given Sn = 0. Equation (7.2.1) shows that we can write

W̃n = T̃n + · · · + T̃2 (7.2.2)
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where the T̃i are independent exponential random variables with parameters(
i
2

)
+ iθ

2 respectively. Many properties of W̃n follow from this. In particular

E(Wn|Sn = 0) =
n∑

j=2

2
j(j + θ − 1)

. (7.2.3)

The conditional density function of Wn may be calculated from a partial
fraction expansion, resulting in the expression

fWn(t|Sn = 0) =
n∑

j=2

(−1)j (2j + θ − 1)n[j](θ + 1)(j)
2(j − 2)!(θ + n)(j)

e−j(θ+j−1)t/2. (7.2.4)

The corresponding distribution function follows from

P(Wn > t|Sn = 0) =
n∑

j=2

(−1)j−2 (2j + θ − 1)n[j](θ + 1)(j)
(j − 2)!j(j + θ − 1)(θ + n)(j)

e−j(θ+j−1)t/2.

Intuition suggests that given the sample has no variability, the post-data
TMRCA of the sample should be stochastically smaller than the pre-data
TMRCA. This can be verified by the following simple coupling argument.
Let E2, . . . , En be independent exponential random variables with parame-
ters θ, . . . , nθ/2 respectively, and let T2, . . . , Tn be independent exponential
random variables with parameters

(
2
2

)
, . . . ,

(
n
2

)
respectively, independent of

the Ei. Noting that T̃i = min(Ti, Ei), we see that

W̃n = T̃n + · · · + T̃2

= min(Tn, En) + · · · + min(T2, E2)
≤ Tn + · · · + T2

= Wn,

establishing the claim.

7.3 The rejection method

The main purpose of this section is to develop the machinery that allows us to
find the joint distribution of the coalescent tree T conditional on the sample of
size n having configuration D. Here D is determined by the mutation process
acting on the genealogical tree T of the sample. Such conditional distributions
lead directly to the conditional distribution of the height Wn of the tree.

The basic result we exploit to study such quantities is contained in

Lemma 7.1 For any real-valued function g for which E|g(T)| < ∞, we have

E(g(T)|D) =
E(g(T)P(D|T))

P(D)
. (7.3.1)
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Proof. We have

E(g(T)1l(D)) = E(E(g(T)1l(D|T))
= E(g(T)E(1l(D)|T))
= E(g(T)P(D|T)).

Dividing this by P(D) completes the proof. ��

For most mutation mechanisms, explicit results are not available for these
expectations, but we can develop a simple simulation algorithm. The expec-
tation in (7.3.1) has the form

E(g(T)|D) =
∫

g(t)
P(D|t)
P(D)

fn(t)dt, (7.3.2)

where fn(t) denotes the density of T. The expression in (7.3.2) is a classical
set-up for the rejection method:

Algorithm 7.1 To simulate from the distribution of T given D.

1. Simulate an observation t from the coalescent distribution of T.
2. Calculate u = P(D|t).
3. Keep t with probability u, else go to Step 1.

The joint distribution of the accepted trees t is precisely the conditional dis-
tribution of T given D.

The average number of times the rejection step is repeated per output
observation is 1/P(D), so that for small values of P(D) the method is likely
to be inefficient. It can be improved in several ways. If, for example, there is
a constant c such that

P(D|t) ≤ c for all values of t,

then u in Step 2 of the algorithm can be replaced by u/c.
Note that if properties of Wn are of most interest, observations having the

conditional distribution of Wn given D can be found from the trees generated
in algorithm 7.1. When the data are summarized by the number Sn of seg-
regating sites, these methods become somewhat more explicit, as is shown in
the next section.

7.4 Conditioning on the number of segregating sites

In this section we consider events of the form

D ≡ Dk = {Sn = k},
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corresponding to the sample of size n having k segregating sites. Since each
mutation in the coalescent tree corresponds to a segregating site, it follows
that

P(D|T) = P(Dk|Ln) = Po(θLn/2){k},
where Ln = 2T2 + · · · + nTn is the total length of the ancestral tree of the
sample and Po(λ){k} denotes the Poisson point probability

Po(λ){k} = e−λ λk

k!
, k = 0, 1, . . . .

Therefore

E(g(Wn)|Dk) =
E(g(Wn)Po(θLn/2){k})

E(Po(θLn/2){k}) (7.4.1)

The simulation algorithm 7.1 then becomes

Algorithm 7.2 To simulate from the joint density of T2, . . . , Tn given Dk.

1. Simulate an observation t = (tn, . . . , t2) from the joint distribution of
T n = (Tn, . . . , T2). Calculate l = 2t2 + · · · + ntn.

2. Calculate u = P(Dk|t) = Po(θl/2){k}.
3. Keep t with probability u, else go to Step 1.

The joint distribution of the accepted vectors t is precisely the conditional
distribution of T n given Dk.

Since
P(Sn = k|t) = Po(θln/2){k} ≤ Po(k){k},

where we define Po(0,0) = 1, the modified algorithm becomes:

Algorithm 7.3 To simulate from the joint density of T2, . . . , Tn given Sn = k.

1. Simulate an observation t = (tn, . . . , t2) from the joint distribution of
T n = (Tn, . . . , T2).

2. Calculate l = 2t2 + · · · + ntn, and set

u =
Po(lθ/2){k}
Po(k){k}

3. Keep t with probability u, else go to Step 1.

Values of wn = t2 + · · · + tn calculated from accepted vectors t have the
conditional distribution of Wn given Sn = k.

Notice that nowhere have we assumed a particular form for the distribution
of T n. In particular, the method works when the population size is variable so
long as T n has the distribution specified by (2.4.8). For an analytical approach
to the constant population size case, see Fu (1996).
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Remark. In these examples, we have simulated the ancestral process back
to the common ancestor. It is clear, however, that the same approach can be
used to simulate observations for any fixed time t into the past. All that is
required is to simulate coalescence times back into the past until time t, and
then the effects of mutation (together with the genetic types of the ancestors
at time t) can be superimposed on the coalescent forest.

Example

We use this technique to generate observations from the model with variable
population size when the conditioning event is D0. The particular population
size function we use for illustration is

f(x) = αmin(t/v,1), (7.4.2)

corresponding to a population of constant relative size α more than (coales-
cent) time v ago, and exponential growth from time v until the present relative
size of 1.

In the illustration, we chose V = 50, 000 years, N = 108, a generation time
of 20 years and α = 10−4. Thus v = 2.5 × 10−5. We compare the conditional
distribution of Wn given D0 to that in the constant population size case with
N = 104. Histograms of 5000 simulated observations are given in Figures 7.1
and 7.2. The mean of the conditional distribution in the constant population
size case is 313,200 years, compared to 358,200 years in the variable case.
Examination of other summary statistics of the simulated data (Table 7)
shows that the distribution in the variable case is approximately that in the
constant size case, plus about V years. This observation is supported by the
plot of the empirical distribution functions of the two sets in Figure 7.3.

The intuition behind this is clear. Because of the small sample size relative
to the initial population size N , the sample of size n will typically have about n
distinct ancestors at the time of the expansion, V . These ancestors themselves
form a random sample from a population of size αN .

Table 7. Summary statistics from 5000 simulation runs

constant variable

mean 313,170 358,200
std dev 156,490 158,360
median 279,590 323,210
5% 129,980 176,510
95% 611,550 660,260
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Fig. 7.1. Histogram of 5000 replicates for constant population size, N = 104
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Fig. 7.2. Histogram of 5000 replicates for variable population size, N = 108, T =
50, 000, α = 10−4
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Fig. 7.3. Empirical distribution function. Solid line is constant population size case.
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7.5 An importance sampling method

If moments of the post-data distribution of Wn, say, are required, then they
can be found in the usual way from observations generated by Algorithm 7.2.
As an alternative, an importance sampling scheme can be used. This is best
illustrated by an example. Consider then the expression in (7.4.1). We have

E(g(Wn)|Dk) =
E(g(Wn)Po(θLn/2){k})

E(Po(θLn/2){k}) .

Point estimates of this quantity can be found by simulating independent copies
(W (j)

n , L
(j)
n ), j = 1, 2, . . . , R of the height and length of the ancestral tree and

computing the ratio estimator

rR =

∑R
j=1 g(W (j)

n )Po(θL(j)
n /2){k}∑R

j=1 Po(θL(j)
n /2){k}

. (7.5.1)

One application provides an estimate of the conditional distribution function
of Wn given Dk: Suppose that we have ordered the points W

(j)
n and listed

them as W
[1]
n < W

[2]
n < · · · < W

[R]
n . Let L

[1]
n , . . . , L

[R]
n be the corresponding

L-values. The empirical distribution function then has jumps of height

e−θL[l]
n /2

∑R
j=1 e−θL

[j]
n /2

at the points W
[l]
n , l = 1, 2, . . . , R.

This approach uses all the simulated observations, but requires either
knowing which g are of interest, or storing a lot of observations. Asymptotic
properties of the ratio estimator can be found from standard theory.

7.6 Modeling uncertainty in N and µ

In this section, we use prior information about the distribution of µ, as well
as information that captures our uncertainty about the population size N .
We begin by describing some methods for generating observations from the
posterior distribution of the vector (Wn, N, µ) given the data D. We use this
to study the posterior distribution of the time Wn to a common ancestor,
measured in years:

W y
n = N × G × Wn.

The rejection method is based on the analog of (7.3.1):

E(g(T n, N, µ)|D) =
E(g(T n, N, µ)P(D|T n, N, µ))

P(D)
. (7.6.1)

This converts once more into a simulation algorithm; for definiteness we sup-
pose once more that D = {Sn = k}.
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Algorithm 7.4 To simulate from conditional distribution of T n, N, µ given
Sn = k.

1. Generate an observation t, N, µ from the joint distribution of T n, N, µ.
2. calculate l = 2t2 + · · · + ntn, and

u =
Po(lNµ){k}
Po(k){k}

3. accept t, N, µ with probability u, else go to Step 1.

Usually we assume that N and µ are independent of T n, and that N and µ
are themselves independent.

Examples

Suppose that no variation is observed in the data, so that D0. Suppose that
N has a lognormal distribution with parameters (10, 1), and that µ has a
Gamma distribution with mean µ0 and standard deviation Cµ0. A constant
size population is assumed. In the example, we took µ0 = 2 × 10−5 and
C = 1/20 and C = 1.0. Histograms appear in Figures 7.4 and 7.5, and some
summary statistics are given in Table 8.

Fig. 7.4. Histogram of 5000 replicates C = 1/20
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Here we illustrate for the exponential growth model described earlier, with
initial population size N = 108, and α = 10−4. We took N lognormally
distributed with parameters 17.92, 1. (The choice of 17.92 makes the mean of
N = 108.) For µ we took the Gamma prior with mean = µ0, and standard
deviation Cµ0. In the simulations, we used C = 1 and C = 1/20. Histograms
of 5000 simulated observations are given in Figures 7.6 and 7.7. Some summary
statistics are given in Table 9.

The importance sampling method also readily adapts to this Bayesian
setting: apply the approach outlined in (7.5.1) to the expectation formula in
(7.6.1).



Ancestral Inference in Population Genetics 103

Fig. 7.5. Histogram of 5000 replicates C = 1
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Table 8. Summary statistics from 5000 simulation runs. Prior mean µ0 = 2 ×
10−5, D = D0

C = 1.0 C = 1/20

mean 647,821 262,590
median 369,850 204,020
5% 68,100 52,372
95% 2,100,000 676,890

Fig. 7.6. Histogram of 5000 replicates. Variable size model. C = 1/20
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Fig. 7.7. Histogram of 5000 replicates. Variable size model. C = 1
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Table 9. Summary statistics from 5000 simulation runs. Prior mean µ0 = 2×10−5,
D = D0

C = 1 C = 1/20

mean 292,000 186,000
median 194,000 141,490
5% 70,600 65,200
95% 829,400 462,000

7.7 Varying mutation rates

These rejection methods can be employed directly to study the behavior of
the infinitely-many-sites model that allows for several regions with different
mutation rates. Suppose then that there are r regions, with mutation rates
µ1, . . . , µr. The analysis also applies, for example, to r different types of mu-
tations within a given region. We sample n individuals, and observe k1 seg-
regating sites in the first region, k2 in the second, . . . , and kr in the rth.
The problem is to find the conditional distribution of T, given the vector
(k1, . . . , kr).

When N and the µi are assumed known, this can be handled by a mod-
ification of Algorithm 7.2. Conditional on Ln, the probability of (k1, . . . , kr)
is

h(Ln) = Po(k1, Lnθ1/2) × · · · × Po(kr, Lnθr/2),

where θi = 2Nµi, i = 1, 2, . . . , r. It is easy to check that h(Ln) ≤ h(k/θ),
where

k = k1 + · · · + kr, θ = θ1 + · · · + θr.

Therefore in the rejection algorithm we may take u = h(Ln)/h(k/θ) which
simplifies to

u = h(Ln)/h(k/θ) =
Po(Lnθ/2){k}

Po(k){k} . (7.7.1)

Equation (7.7.1) establishes the perhaps surprising fact that the conditional
distribution of Wn given (k1, . . . , kr) and (θ1, . . . , θr) depends on these values
only through their respective totals: the total number of segregating sites k and
the total mutation rate θ. Thus Algorithm 7.2 can be employed directly with
the appropriate values of k and θ. This result justifies the common practice
of analyzing segregating sites data through the total number of segregating
sites, even though these sites may occur in regions of differing mutation rate.

If allowance is to be made for uncertainty about the µi, then this simpli-
fication no longer holds. However, Algorithm 7.3 can be employed with the
rejection step replaced by (7.7.2):

u =
Po(Lnθ1/2){k1}

Po(k1){k1} · · · Po(Lnθr/2){kr}
Po(kr){kr} . (7.7.2)
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In this case, Step 2 requires generation of a vector of rates µ = (µ1, . . . , µr)
from the joint prior πµ. Furthermore, the algorithm immediately extends to
the case of variable population size.

7.8 The time to the MRCA of a population given data from a
sample

In this section, we show how the rejection technique can be used to study the
time Tm to the MRCA of a sample of m individuals, conditional on the number
of segregating sites in a subsample of size n. In many applications of ancestral
inference, the real interest is on the time to the MRCA of the population,
given data on a sample. This can be obtained by setting m = N below. See
Tavaré (1997) and Tavaré et al. (1997) for further details and examples.

The quantities of interest here are Am (the number of distinct ancestors
of the sample), An (the number of distinct ancestors of the subsample), and
Wn (the time to the MRCA of the subsample). The results of Saunders et al.
(1984) justify the following algorithm:

Algorithm 7.5 Rejection algorithm for fWm(t|Sn=k).

1. Set Am = m, An = n, Wn = 0, Ln = 0
2. Generate E, exponential of rate Am(Am − 1)/2. Set Wn = Wn + W, Ln =

Ln + An · E.
3. Set p = An(An−1)

Am(Am−1) . Set Am = Am−1. With probability p set An = An−1.
If An > 1 go to 2.

4. Set u = Po(θLn/2){k}/Po(k){k}. Accept (Am, Wn) with probability u,
else go to 1.

5. If Am = 1, set Tnm = 0, and return Wm = Wn. Else, generate independent
exponentials Ej with parameter j(j − 1)/2, for j = 2, 3, . . . , Am, and set
Tnm = E2 + · · · + EAm . Return Wm = Wn + Tnm.

Many aspects of the joint behavior of the sample and a subsample can be
be studied using this method. In particular, values of (Am, Wn) accepted at
step 5 have the joint conditional distribution of the number of ancestors of
the sample at the time the subsample reaches its common ancestor and the
time of the MRCA of the subsample, conditional on the number of segregating
sites in the subsample. In addition, values of Tnm produced at step 5 have
the conditional distribution of the time between the two most recent common
ancestors. It is straightforward to modify the method to cover the case of
variable population size, and the case where uncertainty in N and µ is mod-
eled. With high probability, the sample and the subsample share a common
ancestor and therefore a common time to the MRCA. However, if the two
common ancestors differ then the times to the MRCA can differ substantially.
This is explored further in the examples below.
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Examples

Whitfield et al. (1995) describe another Y chromosome data set that includes
a sample of n = 5 humans. The 15,680 bp region has three polymorphic nu-
cleotides that once again are consistent with the infinitely-many-sites model.
They estimated the coalescence time of the sample to be between 37,000 and
49,000 years. Again, we present several reanalyses, each of which is based on
the number of segregating sites in the data. The results are summarized in
Table 10 and illustrated in Figure 7.8.

Table 10. Results of re-analyses of the data of Whitfield et al. In each case the
data are S5 = 3. Line (a) gives the interval reported by the authors (but note that
they assigned no probability to their interval). Mean and 95% interval are estimated
from samples of size 10,000. Details of the gamma and lognormal distributions are
given in the text.

Model Mean of W5 (×103) 95% Interval (×103)

pre-data post-data pre-data post-data

(a) Whitfield et al. 37 – 49

(b) N = 4, 900 157 87 31 – 429 30 – 184

µS = 3 · 52 × 10−4

(c) N = 4, 900 157 125 31– 429 32 – 321

µS gamma

(d) N gamma 159 80 21 – 517 26 – 175

µS = 3 · 52 × 10−4

(e) N gamma 159 117 21– 517 25 – 344

µS gamma

(f) N lognormal 428 149 19 – 2,200 22 – 543

µS gamma

In estimating the coalescence time, Whitfield et al. adopt a method which
does not use population genetics modeling. While the method is not sys-
tematically biased, it may be inefficient to ignore pre-data information about
plausible values of the coalescence time. In addition, the method substantially
underrepresents the uncertainty associated with the estimates presented. Here,
we contrast the results of such a method with those of one which does incor-
porate background information.

To determine the mutation rate, we use the average figure of 1 ·123×10−9

substitutions per nucleotide position per year given in Whitfield et al., and a
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Fig. 7.8. Probability density curves for W5. In each panel the three curves corre-
spond to: solid, pre-data; dashed, post-data, assuming µS gamma; dotted, post-data
assuming µS = 3 · 52 × 10−4. The three panels correspond to (a) N = 4, 900; (b) N
gamma; (c) N lognormal.
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generation time of 20 years, to give µ = 15, 680×1·123×10−9×20 = 3·52×10−4

substitutions per generation. For these parameter values, the post-data mean
of W5 is 87,000 years.

As noted in the previous section, the appropriate values of the parameters
are not known. Analysis (c) incorporates uncertainty about µ, in the form of
a gamma distribution with shape parameter 2 and mean 3 · 52 × 10−4, while
continuing to assume that N is known to be 4,900. The effect is to greatly
increase the post-data mean of W5. Allowing N to be uncertain while µS is
known has, on the other hand, the effect of slightly reducing the post-data
estimates of W5, compared with the case that N and µS are both known. This
may be attributed to the data favoring values of N smaller than 4,900.

Analyses (e) and (f) incorporate uncertainty about both N and µS . They
use the same prior distributions as analyses (g) and (i) respectively of the
previous section. Note that, as should be expected, the uncertainty about T
is larger than when one or both of N and µS are assumed known exactly.

Whitfield et al. (1995) point to their estimated coalescence time as be-
ing substantially shorter than those published for the human mitochondrial
genome. In contrast, the ranges in each of our analyses (b) – (e) overlap with
recent interval estimates for the time since mitochondrial Eve. In addition, re-
call that the quantity W5 being estimated in Table 10 is the coalescence time
of the sample of 5 males sequenced in the study. This time may be different
from, and substantially shorter than, the coalescence time of all existing Y
chromosomes. Under the assumption that N = 4, 900 and µ = 3·52×10−4, Al-
gorithm 7.5 can be used to show that the mean time to the common ancestor
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of the male population, given S5 = 3, is 157,300 years, with a corresponding
95% interval of (58,900 – 409,800) years. These figures differ markedly from
the corresponding values for the sample, given at line (b) of Table 10. It is
the population values which are likely to be of primary interest.

7.9 Using the full data

The approach that conditions on the number of segregating sites in the data
is convenient primarily because the rejection methods are quick and easy to
program. However, it does not make full use of the data. In this section, we
discuss how we can approximate the conditional distribution of TMRCA given
the infinitely-many-sites rooted tree (T, n) that corresponds to the data, or
the corresponding unrooted tree (Q, n). See Griffiths and Tavaré (1994, 1999)
for further details.

Consider first the rooted case. The probability q(t, x) that a sample taken
at time t has configuration x satisfies an equation of the form

q(t, x) =
∫ ∞

t

∑
y

r(s; x, y)q(s, y)g(t, x; s)ds

for a positive kernel r. For the case of an unrooted tree, we have x = (T, n).
Now define

q(t, x, w) = P(sample taken at time t has configuration x

and TMRCA ≤ t + w)

By considering the time of the first event in the history of the sample, it can
be seen that q(t, x, w) satisfies the equation

q(t, x, w) =
∫ ∞

t

∑
y

r(s; x, y)q(s, y, t + w − s)g(t, x; s)ds (7.9.1)

where we assume that q(t, x, y) = 0 if y < t. Recursions of this type can be
solved using the Markov chain simulation technique described in Section 6.
The simplest method is given in (6.5.3): we define

f(s; x) =
∑

y

r(s; x, y)

P (s; x, y) =
r(s; x, y)
f(s; x)

,

and rewrite (7.9.1) in the form

q(t, x, w) =
∫ ∞

t

f(s; x)
∑

y

P (s; x, y)q(s, y, t + w − s)g(t, x; s)ds. (7.9.2)
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The Markov chain associated with the density g and the jump matrix P is
once again denoted by X(·). The representation we use is then

q(t, x, w) = E(t,x)q(τ, X(τ), t + w − τ)
k∏

j=1

f(τj ; X(τj−1)), (7.9.3)

where t = τ0 < τ1 < · · · < τk = τ are the jump times of X(·), and τ is the
time taken to reach the set A that corresponds to a sample configuration x
for a single individual. For the infinitely-many-sites tree, this corresponds to
a tree of the form (T, e1).

The natural initial condition is

q(t, x, w) = 1l(w ≥ 0), x ∈ A,

so that
q(τ, X(τ), t + w − τ) = 1l(τ < t + w).

The Monte Carlo method generates R independent copies of the X process,
and for the ith copy calculates the observed value

Fi =
ki∏

j=1

f(τ i
j ; X

i(τ i
j−1)).

and estimates q(t, x, w) by

q̂(t, x, w) =
∑R

i=1 Fi1l(τ i ≤ t + w)∑R
i=1 Fi

.

The distribution function of TMRCA given the data (t, x) can be therefore be
approximated by a step function that jumps a height F(l)/

∑
Fi at the point

τ(l), where the τ(l) are the increasing rearrangement of the times τ i, and the
F(l) are the corresponding values of the Fi.

This method can be used immediately when the data correspond to a
rooted tree (T, n). When the data correspond to an unrooted tree (Q, n) we
proceed slightly differently. Corresponding to the unrooted tree (Q, n) are
rooted trees (T, n). An estimator of P(TMRCA ≤ t + w, (T, n)) is given by

1
R

R∑
i=1

Fi(T )1l(τi(T ) ≤ t + w),

the T denoting a particular rooted tree. Recalling (5.9.3), an estimator of
q(t, (Q, n), w) is therefore given by

∑
T

1
R

R∑
i=1

Fi(T )1l(τi(T ) ≤ t + w),
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and the conditional probability q(t, (Q, n), w)/q(t, (Q, n)) is estimated by

∑
T

∑R
i=1 Fi(T )1l(τi(T ) ≤ t + w)∑

T

∑R
i=1 Fi(T )

.

The distribution of TMRCA given data (Q, n) taken at time t is found by
ranking all the times τj(T ) over different T to get the increasing sequence
τ(j), together with the corresponding values F(j), and then approximating the
distribution function by jumps of height F(j)/

∑
F(j) at the point τ(j). Usually

we take t = 0 in the previous results.
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8 The Age of a Unique Event Polymorphism

In this section we study the age of an allele observed in a sample of chromo-
somes. Suppose then that a particular mutation ∆ has arisen just once in the
history of the population of interest. This mutation has an age (the time into
the past at which it arose), and we want to infer its distribution given data
D. These data can take many forms:

• the number of copies, b, of ∆ observed in a sample of size n. Here we
assume that 1 ≤ b < n, so that the mutation is segregating in the sample.

• the number of copies of ∆ together with other molecular information about
the region around ∆. For example, we might have an estimate of the
number of mutations that have occurred in a linked region containing ∆.

• in addition, we might also have molecular information about the individ-
uals in the sample who do not carry ∆.

The unique event polymorphism (UEP) assumption leads to an interesting
class of coalescent trees that we study in the next section.

8.1 UEP trees

Suppose that the mutation ∆ is represented b times in the sample. The UEP
property means that the b sequences must coalesce together before any of the
non-∆ sequences share any common ancestors with them. This situation is
illustrated in Figure 8.1 for n = 7 and b = 3.

Fig. 8.1. Tree with UEP. The individuals carrying the special mutation ∆ are
labeled C, those not carrying the mutation are labeled c.

MRCA of sample

Mutation must occur 
on this branch

MRCA of 
mutation

c c c c C C C
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To understand the structure of these trees, we begin by studying the prop-
erties of trees that have the property E that a particular b sequences coalesce
together before any of the other n − b join their subtree. To this end, let
n > Jb−1 > · · · > J1 be the total number of distinct ancestors of the sample at
the time the b first have b−1, . . . , 1 distinct ancestors, and let J0 (1 ≤ J0 < J1)
be the number of ancestors in the sample at the time the first of the other n−b
sequences shares a common ancestor with an ancestor of the b. In Figure 8.1,
we have J2 = 5, J1 = 4, J0 = 2.

It is elementary to find the distribution of Jb−1, . . . , J0. Recalling that in
a coalescent tree joins are made at random, we find that

P(Jr = jr, r = b − 1, . . . , 0) =
b∏

r=2

{(
jr−r

2

)
(
jr

2

) · · ·
(
jr−1+2−r

2

)
(
jr−1

2

)
(
r
2

)
(
jr−1+1

2

)
}

×
(
j1−1

2

)
(
j1
2

) · · ·
(
j0+2−1

2

)
(
j0+2

2

) j0(
j0+1

2

)
where we have defined jb = n, and where 1 ≤ j0 < j1 < · · · < jb−1 < n. This
expression can be simplified to give

P(Jr = jr, r = b − 1, . . . , 0) =
2b!(b − 1)!(n − b)!(n − b − 1)!j0

n!(n − 1)!
. (8.1.1)

We can find P(E) by summing 1 ≤ j0 < j1 < · · · < jb−1 < n. Note that

n−b∑
j0=1

∑
j0<j1<···<jb−1<n

1 =
n−b∑
j0=1

j0

(
n − j0 − 1

b − 1

)

=
n−b−1∑

l=0

(l + 1)
(

n − 1 − l − 1
n − b − 1 − l

)

=
(

n

n − b − 1

)
,

the last equality coming from the identity

c∑
k=1

(
c

k

)(
d + k

d + 1

)
=
(

d

c − 1

)
,

valid for integral c, d with c = b, d = 2. It follows that

P(E) =
2b!(b − 1)!(n − b)!(n − b − 1)!

n!(n − 1)!

(
n

n − b − 1

)

=
2

b + 1

(
n − 1
b − 1

)−1

, (8.1.2)

as found by Wiuf and Donnelly (1999).
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Now we can compute the conditional distribution of ‘everything’ given E.
For example it follows that for 1 ≤ j0 < j1 < · · · < jb−1 < n

P(Jr = jr, r = b − 1, . . . , 0 | E) = j0

(
n

b + 1

)−1

, (8.1.3)

while for 1 ≤ j0 < j1 < n,

P(J1 = j1, J0 = j0 | E) = j0

(
n − j1 − 1

b − 2

)(
n

b + 1

)−1

(8.1.4)

and for 1 < j1 < j2 · · · < jb−1 < n,

P(Jr = jr, r = b − 1, . . . , 2 | J1 = j1, J0 = j0, E) =
(

n − j1 − 1
b − 2

)−1

. (8.1.5)

Having discussed the topological properties of UEP coalescent trees, we
move on to the age of the mutation itself.

The distribution of J∆

Suppose that ∆ mutations occur at rate µ/2 on the branches of the coalescent
tree. The random variable J∆ gives the number of ancestors of the sample of
size n when the mutation ∆ occurs. Clearly, J0 < j∆ ≤ J1. Its distribution
can be found as follows. To get J∆ = k, a single mutation must arise on the
branch of length Tk, and no other mutations must occur in the remainder of
the coalescent tree. It follows from (8.1.4) that for 1 ≤ j0 < k ≤ j1 ≤ n−b+1,

P(J1 = j1, J∆ = k, J0 = j0 | T , E) =
µ

2
Tke−Lnµ/2j0

(
n − j1 − 1

b − 2

)(
n

b + 1

)−1

,

where T = (Tn, . . . , T2) and Ln = nTn + · · · + 2T2 is the total length of the
tree. Using the fact that for integral k,

k∑
j=0

(
c + k − j − 1

k − j

)(
d + j − 1

j

)
=
(

c + d + k − 1
k

)

we see that
n−b+1∑
j1=k

(
n − j1 − 1

b − 2

)
=
(

n − k

b − 1

)
,

so that
k−1∑
j0=1

n−b+1∑
j1=k

j0

(
n − j1 − 1

b − 2

)
=

k(k − 1)
2

(
n − k

b − 1

)
.

Hence
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P(J∆ = k | T , E) =
µ

2
Tke−Lnµ/2 k(k − 1)

2

(
n − k

b − 1

)(
n

b + 1

)−1

, (8.1.6)

and

P(J∆ = k | E) = E(
µ

2
Tke−Lnµ/2)

k(k − 1)
2

(
n − k

b − 1

)(
n

b + 1

)−1

.

Letting U denote the event that there is indeed a UEP, we have

P(U | E) =
n−b+1∑

k=2

P(J∆ = k | E),

so that for k = 2, . . . , n − b + 1,

P(J∆ = k | U ∩ E) =
k(k − 1)

(
n−k
b−1

)
E
[
Tke−Lnµ/2

]
∑n−b+1

l=2 l(l − 1)
(
n−l
b−1

)
E
[
Tle−Lnµ/2

] . (8.1.7)

Remark. In the constant population size case, this gives

P(J∆ = k | U ∩ E) =
(k − 1)

(
n−k
b−1

)
1

k−1+µ∑n−b+1
l=2 (l − 1)

(
n−l
b−1

)
1

l−1+µ

,

as given by Stephens (2000).
Similar arguments show that for k ≤ j1 < j2 · · · < jb−1 < n,

P(J1 = j1, . . . , Jb−1 = jb−1 | J∆ = k, U ∩ E) =
(

n − k

b − 1

)−1

, (8.1.8)

so that given J∆ = k, the places where the subtree has joins form a random
(ordered)(b− 1)− subset of the integers k, k + 1, . . . , n− 1. Hence for 1 ≤ i ≤
b − 1 and k ≤ j1 < · · · < ji < n − i + b,

P(J1 = j1, . . . , Ji = ji | J∆ = k, U ∩ E) =
(

n − ji − 1
b − i − 1

)(
n − k

b − 1

)−1

. (8.1.9)

8.2 The distribution of T∆

We let J∆ be the number of ancestors of the sample at the time the unique
∆ mutation occurs. Clearly J0 < J∆ ≤ J1. We can find the conditional
distribution of the age T∆ as follows. We have
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E(e−φT∆ | E)

=
n−b+1∑

k=2

E(e−φT∆1l(J∆ = k) | E)

=
n−b+1∑

k=2

E(E(e−φT [k]
1l(J∆ = k) | T , E))

=
n−b+1∑

k=2

E(e−φT [k]
P(J∆ = k | T , E))

=
n−b+1∑

k=2

E(e−φT [k] Tkµ

2
e−Lnµ/2)

k(k − 1)
2

(
n − k

b − 1

)(
n

b + 1

)−1

(8.2.1)

where
T [k] = Tn + · · · + Tk+1 + UTk, (8.2.2)

and U is uniformly distributed on (0, 1), independent of T . The penultimate
inequality comes from (8.1.6). This gives us:

Theorem 8.1 The Laplace transform of the conditional distribution of the
age T∆ of a UEP observed b times in a sample of size n (where 0 < b < n) is
given by

E(e−φT∆ | U ∩ E)

=

∑n−b+1
k=2 k(k − 1)

(
n−k
b−1

)
E

[
e−φT [k]

Tke−Lnµ/2
]

∑n−b+1
k=2 k(k − 1)

(
n−k
b−1

)
E
[
Tke−Lnµ/2

]

=
n−b+1∑

k=2

P(J∆ = k | U ∩ E)
E(e−φT [k]

Tke−Lnµ/2)
E(Tke−Lnµ/2)

, (8.2.3)

where T [k] is defined in (8.2.2).

Proof. This follows from the previous steps and (8.1.7).

Remark. The representation in (8.2.3) provides a useful way to simulate ob-
servations from T∆; this is exploited later. Note that the original random
variables T can be tilted by the size-biasing function e−Lnµ/2, so that

Eµf(Tn, . . . , T2) =
E(f(Tn, . . . , T2)e−Lnµ/2)

E(e−Lnµ/2)
.

In what follows we refer to this as µ-biasing. The previous results can then be
written in terms of these µ-biased times:

Pµ(J∆ = k | U ∩ E) =
k(k − 1)

(
n−k
b−1

)
EµTk∑n−b+1

l=2 l(l − 1)
(
n−l
b−1

)
EµTl

, (8.2.4)
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and

Eµ(e−φT∆ | U ∩ E) =
n−b+1∑

k=2

Pµ(J∆ = k | U ∩ E)
Eµ(e−φT [k]

Tk)
EµTk

. (8.2.5)

8.3 The case µ = 0

It is of great interest in practice to consider the limiting case in which the
mutation rate at the special locus is extremely small. In this case rather more
can be said about the age of a neutral mutation. An immediate specialization
of Theorem 8.1 provides a proof of Griffiths and Tavaré’s (1998) result:

Lemma 8.2 The Laplace transform of the conditional distribution of the age
T∆ of a UEP observed b times in a sample of size n has limit as µ → 0 given
by

E(e−φT∆ | U ∩ E) =

∑n−b+1
k=2 k(k − 1)

(
n−k
b−1

)
E(e−φT [k]

Tk)∑n−b+1
k=2 k(k − 1)

(
n−k
b−1

)
ETk

. (8.3.1)

This result provides the distribution of T∆ in reasonably explicit form. If
we define

Sk = Tn + · · · + Tk,

then

E(Tke−φ(UTk+Tk+1+···+Tn)) = E

[∫ 1

0

Tke−φuTkdu e−φ(Tk+1+···+Tn)

]

= E

[
φ−1(1 − e−φTk)e−φ(Tk+1+···+Tn)

]

= E

[
φ−1e−φ(Tk+1+···+Tn) − φ−1e−φ(Tk+···+Tn)

]

=
∫ ∞

0

e−φt{P(Sk+1 ≤ t) − P(Sk ≤ t)}dt

=
∫ ∞

0

e−φtP(An(t) = k)dt,

the last equality following from the fact that the ancestral process An(t) = k
if, and only if, Sk > t and Sk+1 ≤ t. Hence we have

Theorem 8.3 Assuming the times Tj have continuous distributions, the den-
sity of the age T∆ is given by

f∆(t) =

∑n−b+1
k=2 k(k − 1)

(
n−k
b−1

)
P(An(t) = k)∑n−b+1

k=2 k(k − 1)
(
n−k
b−1

)
ETk

, t > 0. (8.3.2)



Ancestral Inference in Population Genetics 117

Moments of T∆can be found in a similar way, and one obtains

E(T j
∆) =

∑n
k=2 k(k − 1)

(
n−k
b−1

)
1

j+1E

(
Sj+1

k − Sj+1
k+1

)
∑n

k=2 k(k − 1)
(
n−k
b−1

)
E(Tk)

, j = 1, 2 . . . , (8.3.3)

from which the mean and variance of T∆ can be obtained. For example, in
the constant population size case, we obtain

E(T∆) = 2
(

n − 1
b

)−1 n∑
j=2

(
n − j

b − 1

)
n − j + 1
n(j − 1)

. (8.3.4)

The age of an allele in the population

To derive the population version of (8.3.3), we assume that {An(t), t ≥ 0}
converges in distribution to a process {A(t), t ≥ 0} as n → ∞, and that the
time taken for A(·) to reach 1 is finite with probability 1. Then as n → ∞,
and b/n → x, 0 < x < 1, we see that

E(T j
∆) =

∑∞
k=2 k(k − 1)(1 − x)k−2 1

j+1E

(
Sj+1

k − Sj+1
k+1

)
∑∞

k=2 k(k − 1)(1 − x)k−2E(Tk)
, j = 1, 2 . . . . (8.3.5)

In this population limit the density of the age of a mutant gene that has
a relative frequency x is, from Theorem (8.2),

gx(t) =
∑∞

k=2 k(k − 1)(1 − x)k−2P(A(t) = k)∑∞
k=2 k(k − 1)(1 − x)k−2E(Tk)

=
E

(
A(t)(A(t) − 1)(1 − x)A(t)−2

)
∑∞

k=2 k(k − 1)(1 − x)k−2E(Tk)
. (8.3.6)

The mean age of the mutation known to have frequency x in the population
follows from (8.3.4) by letting n → ∞, b/n → x:

E(T∆) =
−2x

1 − x
log x. (8.3.7)

Equation (8.3.4) is the well known formula derived by Kimura and Ohta
(1973). The density (8.3.6) is also known in various forms (e.g. Watterson
(1977) and Tavaré (1984).

Remark. There have been numerous papers written about the ages of alleles
over the years, mostly using diffusion theory and reversibility arguments. This
section sets the problem in a coalescent framework (although the results are
much more general than they seem!). Watterson (1996) discusses Kimura’s
contribution to this problem. A modern perspective is given by Slatkin and
Rannala (2000).
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8.4 Simulating the age of an allele

An alternative to the analytical approach is to simulate observations from
the joint conditional distribution of those features of the process that are of
interest, for example the age T∆ of the mutation ∆, and the time TMRCA∆

to the MRCA of the individuals carrying ∆. In order to simulate such times,
we can use the following algorithm based on Theorem 8.2.3 and (8.1.7).

Algorithm 8.1 To simulate from conditional distribution of T∆ and TMRCA∆.

1. Choose k according to the distribution of J∆ in (8.1.7).
2. Choose j1 from the conditional distribution of J1 given J∆ = k in (8.1.9)

with i = 1.
3. Simulate an observation from the (unconditional) µ-biased joint distribu-

tion of the coalescence times Tn, . . . , Tk+1.
4. Conditional on the results of step 3, simulate from the random variable

Z having the (standard) size-biased distribution of Tk and set T ∗ = UZ,
where U is an independent U(0,1) random variable.

5. Return TMRCA∆ = Tn+· · ·+Tj1+1, T∆ = TMRCA∆+Tj1 +· · ·+Tk+1+T ∗.

Remark. Generating the appropriate size-biased distributions can be difficult
when the population size varies. Another way to implement this is to replace
steps 3 and 4 above with a rejection step:

3′. Generate T = (Tn, . . . , T2) from the coalescent model, and compute Ln =
2T2 + · · · + nTn. Accept T with probability

Tkµ

2
e−Tkµ/2e e−Lnµ/2; (8.4.1)

otherwise repeat.
4′. Set T ∗ = UTk, where U is an independent U(0,1) random variable.
5′. Return TMRCA∆ = Tn+· · ·+Tj1+1, T∆ = TMRCA∆+Tj1 +· · ·+Tk+1+T ∗.

The extra factor of e comes from the fact that Po(Tkµ/2){1} ≤ Po(1){1}. In
the limiting case µ = 0 an independence sampler can be used.

8.5 Using intra-allelic variability

Rannala and Slatkin (1997) discussed a method for estimating the age of an
allele known to have frequency b in a sample of size n, given an estimate of the
number of mutations, m, that have arisen in the region around the mutation
locus. There are at least three versions of this problem, depending on where
these new mutations are assumed to occur. For example, we might sequence
in the region of the mutation ∆ and find the number of additional segregating
sites in the region. We suppose once more that these additional mutations
occur at rate θ/2 on the branches of the coalescent tree.
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If one wants to simulate observations from the posterior distribution of
trees and times conditional on the number m of segregating sites appearing
in the b individuals carrying the mutation in a region completely linked to ∆,
then a modification of Algorithm 8.1 can be used:

Algorithm 8.2 To simulate from conditional distribution of age of mutation
and TMRCA∆ given m additional segregating sites in the ∆ subtree.

1. Choose k according to the distribution of J∆ in (8.1.7).
2. Choose j1, j2, . . . , jb−1 from the conditional distribution of J1, J2, . . . , Jb−1

given J∆ = k in (8.1.8).
3. Simulate an observation from the (unconditional) joint distribution of

the coalescence times Tn, . . . , Tk+1, and use the indices in step 2 to com-
pute the coalescence times T ∗

b , . . . , T ∗
2 in the ∆-subtree, together with the

length Lnb =
∑b

j=2 jT ∗
j of the ∆-subtree.

4. Accept these statistics with probability

Po(θLnb/2){m}/Po(m){m},

else return to step 1.
5. Conditional on the results of step 3, simulate from the random variable

Z having the size-biased distribution of Tk and set T ∗ = UZ, where U is
an independent U(0,1) random variable.

6. Return TMRCA∆ = Tn+· · ·+Tj1+1, T∆ = TMRCA∆+Tj1 +· · ·+Tk+1+T ∗.

Example

The conditional distribution of T∆ and TMRCA∆ in the constant population
size case were simulated using 50,000 runs of Algorithm 8.2 for the case n =
200, b = 30, θ = 4.0 and m = 5 segregating sites observed in the subtree. The
mean age was 1.01 with standard deviation 0.91, while the mean subtree height
was 0.40 with a standard deviation of 0.25. Percentiles of the distributions
are given below, together with the estimated densities. For further details and
alternative simulation algorithms, see Griffiths and Tavaré (2003).

2.5% 25% 50% 75% 97.5%
age 0.156 0.412 0.721 1.289 3.544
subtree height 0.099 0.218 0.334 0.514 1.056
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Fig. 8.2. Density of age of mutation.
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Fig. 8.3. Density of height of subtree.
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9 Markov Chain Monte Carlo Methods

In this section we introduce some models for DNA sequence data, and explore
some computer intensive methods that can be used to estimate population
parameters. The main inference technique discussed here is Markov chain
Monte Carlo, introduced into this field by Kuhner et al. (1995, 1998).

We assume that mutations occur on the coalescent tree of the sample at
rate θ/2, independently in each branch of the tree. Here we study the case in
which the type space E is finite, and we suppose that the mutation process is
determined by

γij = P(mutation results in type j | type was i)

We write Γ = (γij), and we note that γii may be non-zero.
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9.1 K-Allele models

One of the first models studied in any depth in this subject was the so-called
K-allele model, in which E = {A1, . . . , AK} corresponding to K possible
alleles in the type space. Let Xi(t) denote the fraction of the population that
has allele Ai at time t. Many of the results concern the diffusion model for the
process {(X1(t), . . . , XK(t)), t ≥ 0} with mutations determined according to
the transition matrix Γ . The state space of the process is {x = (x1, . . . , xK) ∈
[0, 1]K :

∑K
1 xi = 1} and its generator has the form

L =
1
2

K∑
i=1

K∑
j=1

xi(δij − xj)
∂2

∂xi∂xj
+

K∑
j=1

(
K∑

i=1

xirij

)
∂

∂xj
,

where
R = (rij) =

θ

2
(Γ − I).

When the distribution of the type of a mutant is independent of its parental
type, so that

γij = πj , j ∈ E

where πj > 0,
∑

j∈E πj = 1, we recover the process studied in Section 3.1.
The stationary distribution π of the diffusion is the Dirichlet distribution

π(x1, . . . , xK) =
Γ (θ)

Γ (θπ1) · · ·Γ (θπK)
xθπ1−1

1 · · ·xθπK−1
K . (9.1.1)

Surprisingly perhaps, the distribution is known for essentially no other mu-
tation matrices Γ . Suppose now that we take a sample of n genes from the
stationary process with frequencies (X1, . . . , XK). The sample comprises ni

genes of type i, 1 ≤ i ≤ K. Writing n = (n1, . . . , nK), the probability q(n)
that the sample has configuration n is

q(n) = E
n!

n1! · · ·nK !
Xn1

1 · · ·XnK

K . (9.1.2)

For the model (9.1.1), this gives

q(n) =
∫

· · ·
∫

n!
n1! · · ·nK !

xn1
1 · · ·xnK

K π(x1, . . . , xK)dx1 · · ·dxK−1

=
n!Γ (θ)Γ (θπ1 + n1) · · ·Γ (θπK + nK)
n1! · · ·nK !Γ (θπ1) · · ·Γ (θπK)Γ (θ + n)

=
(

θ + n − 1
n

)−1 K∏
j=1

(
θπj + nj − 1

nj

)
. (9.1.3)

In particular, the mean number of type i in the sample of size n is
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E(number of allele Ai) = nEXi = nπi.

It is worth pointing out that a sample from any two-allele model can be
described by (9.1.3), possibly after rescaling θ and Γ . To see this, suppose the
matrix Γ has the form

Γ =
(

1 − α α
β 1 − β

)

Then the stationary distribution is π =
(

β
α+β , α

α+β

)
. Hence

R ≡ θ

2
(Γ − I)

=
θ

2

((
1 − α α

β 1 − β

)
−
(

1 0
0 1

))

=
θ

2

(−α α
β −β

)

=
θ

2
(α + β)

(
− α

α+β
α

α+β
β

α+β − β
α+β

)

=
θ

2
(α + β)

((
β

α+β
α

α+β
β

α+β
α

α+β

)
−
(

1 0
0 1

))
.

We may therefore use the sampling formula (9.1.3) with θπ1 replaced by θβ,
and θπ2 replaced by θα.

The number of real mutations

Suppose that mutations occur at rate ν/2 on the coalescent tree (the switch
from θ to ν will be explained shortly). At any mutation point, the current
allele is changed according to the transition matrix Γ . We note that not
all potential substitutions have to result in changes to the existing allele, as
γjj > 0 is allowed. The effective mutation rate θ/2 is defined to be the expected
number of mutations per unit time that result in a change of allele:

θ

2
=

ν

2

K∑
j=1

πj(1 − γjj), (9.1.4)

where πj , j = 1, . . . , K denotes the stationary distribution of Γ .

Felsenstein’s model

It is convenient to describe here one useful model for the case K = 4, cor-
responding to models for the base at a given site in a DNA sequence. Here,
E = {A, G, C, T }. Because many of our applications focus on mitochondrial
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DNA, in which transitions occur with much higher frequency than transver-
sions, we use a model which allows for transition-transversion bias.

Suppose then that mutations arise at rate ν/2. When a potential substi-
tution occurs, it may be one of two types: general, in which case an existing
base j is substituted by a base of type k with probability πk, 1 ≤ j, k ≤ 4; or
within-group, in which case a pyrimidine is replaced by C or T with probabil-
ity proportional to πC and πT respectively, and a purine is replaced by A or
G with probability proportional to πA and πG respectively. The conditional
probability of a general mutation is defined to be 1/(1 + κ), while the condi-
tional probability of a within-group mutation is defined to be κ/(1+κ), where
κ ≥ 0 is the transition-transversion parameter. Thus the mutation matrix Γ
is given by

Γ =
1

1 + κ
Γ1 +

κ

1 + κ
Γ2, (9.1.5)

where Γ1,ij = πj , j ∈ E and

Γ2 =




πA

πA+πG

πG

πA+πG
0 0

πA

πA+πG

πG

πA+πG
0 0

0 0 πC

πC+πT

πC

πC+πT

0 0 πC

πC+πT

πC

πC+πT




In Γ1 and Γ2, the states are written in order A, G, C, T . It is readily checked
that he stationary distribution of Γ is π = (πA, πC , πG, πT ). If we define

g =
ν

2(1 + κ)
, w = κg, (9.1.6)

then κ is the ratio of the within-class to general substitution rates. From
(9.1.4), the effective mutation rate is given by

θ

2
= g


1 −

∑
j∈E

π2
j


+ 2w

(
πAπG

πA + πG
+

πCπT

πC + πT

)
(9.1.7)

The transition matrix eRt of the mutation process with transition intensity
matrix R = ν(Γ − I)/2 is known. We denote the jk-th element by rjk(t); this
is the probability that a base of type j has changed to a base of type k a time
t later. Thorne et al. (1992) show that

rjk(t) =


e−(g+w)t + e−gt(1 − e−wt) πk

πH(k)
+ (1 − e−gt)πk j = k

e−gt(1 − e−wt) πk

πH(k)
+ (1 − e−gt)πk, j �= k, H(j) = H(k)

(1 − e−gt)πk H(j) �= H(k)

where πR = πA + πG, πY = πC + πT , and H(i) denotes whether base i is a
purine or a pyrimidine, so that H(A) = H(G) = R and H(C) = H(T ) = Y .
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9.2 A biomolecular sequence model

Of particular interest to us is the case in which the types represent DNA
or protein sequences of length s, say. Then the type space E has the form
E = Es

0 , where E0 is the type space of a single position, or site, in the se-
quence. The sites of the sequence may be labeled in many ways. The DNA
alphabet E0 = {A, C, G, T } is one possibility, as is the 20 letter amino-acid
sequence alphabet, or the 64 letter codon alphabet. Also common are the
purine-pyrimidine alphabet, where E0 = {Y, R} and Y = {A, G} denotes
purines, R = {C, T } the pyrimidines. In many evolutionary studies, transver-
sions are not observed, and it might then be natural to think of sites as being
binary, with E0 = {A, G} or E0 = {C, T }. There are many possible models
for the mutation process Γ , depending on what is assumed about the effects
of mutation. Here we suppose that when a mutation occurs, it results in a
substitution, the replacement of one element of E0 by another one. The sim-
plest version of this model supposes that the substitution occurs at site j with
probability hj, where

hj ≥ 0,

s∑
j=1

hj = 1. (9.2.1)

The hj are identical (and so equal to 1/s) if there are no mutational
hotspots, and hj may be 0 if site j is invariable. Thus the hj add some flex-
ibility in modeling variable mutation rates across the sequences. A muta-
tion occurring at site j produces substitutions according to transition matrix
Pj = (p(j)

lm). Thus substitutions change a sequence of type (i1, . . . , is) to one
of type (j1, . . . , js) as follows:

(i1, . . . , is) → (i1, . . . , il−1, jl, il+1, . . . , is)

with probability hlp
(l)
iljl

, 1 ≤ l ≤ s. We may write Γ in the form

Γ =
s∑

l=1

hlI ⊗ · · · ⊗ I ⊗ Pl ⊗ I ⊗ · · · ⊗ I (9.2.2)

where I denotes the identity matrix, and ⊗ denotes direct (or Kronecker)
product: A⊗B = (aijB). Recall that if A, B, C, D are conformable matrices,
then (A ⊗ B)(C ⊗ D) = AC ⊗ BD. If πl denotes the stationary distribution
of Pl, and π denotes the stationary distribution of Γ , then it is easy to show
that π = π1 ⊗ · · · ⊗ πs.

Many properties of this process may be studied using the coalescent simu-
lation described in Section 6.6. The previous result shows that for simulating
sequences from a stationary population, the ancestral sequence may be gen-
erated by simulating independently at each site, according to the stationary
distribution of each site.
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9.3 A recursion for sampling probabilities

Return now to the K-allele model with mutation matrix Γ = (γij), and
R = θ

2 (Γ − I). Let q(n) be the probability that a sample of n genes has
a type configuration of n = (n1, . . . , nK), and define [K] = {1, 2, . . . , K}. A
fundamental recursion is given in

Theorem 9.1

q(n) =

θ

n + θ − 1


 K∑

i=1

ni

n
γiiq(n) +

∑
i,j∈[K],nj>0,i
=j

ni + 1
n

γijq(n + ei − ej)




+
n − 1

n + θ − 1

∑
j∈[K],nj>0

nj − 1
n − 1

q(n − ej), (9.3.1)

where {ei} are the K unit vectors. Boundary conditions are required to deter-
mine the solution to (9.3.1). These have the form

q(ei) = π∗
i , i = 1, . . . , K, (9.3.2)

where π∗
i is the probability that the most recent common ancestor is of type i.

Proof. To derive (9.3.1) consider the first event back in time that happened
in the ancestral tree. Relative rates of mutation and coalescence for n genes
are nθ/2 : n(n − 1)/2, so the probability that the first event is a mutation is
θ/(n+ θ− 1). To obtain a configuration of n after mutation the configuration
before must be either n, and a transition i → i takes place for some i ∈ [K]
(the mutation resulted in no observable change), or n+ei−ej , i, j ∈ [K], nj >
0, i �= j and a transition i → j take place. If a coalescence was the first event
back in time, then to obtain a configuration n the configuration must be
n − ej for some j ∈ [K] with nj > 0 and the ancestral lines involved in the
coalescence must be of type j. ��

The recursion in (9.3.1) is on n, the sample size. Given {q(m); m < n},
simultaneous equations for the

(
n+K−1

K−1

)
unknown probabilities {q(m); m = n}

are non-singular, and in theory can be solved; cf. Lundstrom (1990). It is
common to assume that

π∗
i = πi, i = 1, . . . , K, (9.3.3)

where π = (π1, . . . , πK) is the stationary distribution of Γ . With this assump-
tion, q(n) is the stationary sampling distribution.

It is worth emphasizing that the probability q(n) satisfying (9.3.1) is de-
termined solely by the rate matrix R. Indeed, (9.3.1) can be rewritten in the
form
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q(n) =

2
n(n − 1)


 K∑

i=1

niriiq(n) +
∑

i,j∈[K],nj>0,i
=j

(ni + 1)rijq(n + ei + ej)




+
1

n − 1

∑
j∈[K],nj>0

(nj − 1)(n − ej).

The point here is that different combinations of θ and Γ can give rise to the
same R matrix. Nonetheless, we prefer to think of the model in terms of an
overall rate θ and a matrix of substitution probabilities Γ . In practice, we
often assume that Γ is known, and the aim might then be to estimate the
single parameter θ, which reflects both the effective population size N and
the mutation probability u.

Remark. The recursion in (9.3.1) has appeared in a number of guises in
the literature, such as Sawyer et al. (1987) and Lundstrom et al. (1992). In
the latter references, a quasi-likelihood approach for estimation of θ in the
finitely-many-sites model is developed. The recursion (9.3.1) is used to find
the probability distribution at each site, and the quasi-likelihood is computed
by assuming independence across the sites.

Griffiths and Tavaré (1994) used the recursion for the finitely-many-sites
model to find the likelihood. Conventional numerical solutions in this case are
difficult to obtain because of the large number of equations. This prompted
them to develop their Markov chain approach. See Forsythe and Leibler (1950)
for an early application of Monte Carlo approaches to matrix inversion. We
note here that early experience with the Griffiths-Tavaré method suggests it
is not feasible for analyzing large amounts of sequence data. In the remainder
of this section, we discuss a Markov chain Monte Carlo approach and give a
number of examples of its use.

9.4 Computing probabilities on trees

For definiteness, assume we are dealing with DNA sequence data D having s
aligned sites in a sample of size n. We will use Λ to denote the (labeled) coa-
lescent tree topology, and T = (T2, . . . , Tn) to denote the coalescence times in
the tree. For a given model of substitution at a particular site in the sequence,
we will need to compute the probability of the bases in the sample, given a
particular value of Λ and T . This can be done using a recursive method, known
as the peeling algorithm, described by Felsenstein (1973, 1981). The idea is
to compute the probability of the bases b1, . . . , bn observed at a particular
position in sequences 1,. . . ,n. Each node l in the tree is assigned a vector of
length 4, the i-th entry of which gives the probability of the data below that
node, assuming node l is base i. The algorithm is initialized by assigning the
vector associated with a leaf i the vector with elements δbi,j , j = 1, . . . , 4.
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The calculation now proceeds recursively. Imagine that the probability vec-
tors (wu1, . . . , wu4) and (wv1, . . . , wv4) have been computed for the descendant
nodes u and v respectively of node l. To compute the vector (wl1, . . . , wl4) at
node l, we need to calculate the time tlu along the branch from l → u, and
the time tlv from l → v. Then we calculate

wlz =

(∑
x

rzx(tlu)wux

)
·
(∑

y

rzy(tlv)wvy

)
,

where rij(t) is the probability that base i has mutated to base j a time t later.
This scheme allows us to recurse up to the root of the tree. That node has

label l = 2n− 1 and descendant nodes u and v. We finish the computation of
the probability L of the configuration at that site by computing

L =
∑

z

π0
zwuzwvz

where π0
z , z = 1, . . . , 4 is the distribution of the ancestral base.

Once the likelihood at a single base position is calculated, the likelihood of
the set of n sequences can be calculated using the fact that for the mutation
model in Section 9.2 the sites evolve independently, conditional on Λ and T .
Hence if Li denotes the likelihood of the i-th site, the overall likelihood is

P(D | Λ, T ) =
s∏

i=1

Li. (9.4.1)

9.5 The MCMC approach

Here we discuss a version of the Metropolis-Hastings algorithm, due originally
to Metropolis et al. (1953) and Hastings (1970) that will be exploited for infer-
ence on coalescent trees. Our presentation follows that of Markovtsova (2000).
The algorithm produces correlated samples from a posterior distribution π of
interest, in our case π(G) ≡ f(G | D), where G ≡ (Λ, T , M), M representing
the mutation parameters and D representing the sequence data. We use these
samples to make inferences about parameters and statistics of interest. Exam-
ples include the effective mutation rate θ, the time to the most recent common
ancestor, ages of a particular event in the sample, or population growth rates.
We can write

f(G | D) = IP(D | G)g1(Λ)g2(T )g3(M)/f(D). (9.5.1)

The first term on the right can be computed using the peeling algorithm
described in the last section and an appropriate model for mutation among the
sequences. The term g1(Λ) on the right of (9.5.1) is the coalescent tree topology
distribution, g2(T ) is the density of the coalescence times T , and g3(M) is the
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prior distribution for the mutation parameters M . The normalizing constant
f(D) is unknown and hard to compute. The algorithm starts with an arbitrary
choice of Λ, T and M . New realizations of G are then proposed, and accepted
or rejected, according to the following scheme.

Algorithm 9.1 Basic Metropolis-Hastings method:

1. Denote the current state by G = (Λ, T , M).
2. Output the current value of G.
3. Propose G′ = (Λ′, T ′, M ′) according to a kernel Q(G → G′).
4. Compute the Hastings ratio

h = min
{

1,
π(G′)Q(G′ → G)
π(G)Q(G → G′)

}
. (9.5.2)

5. Accept the new state G′ with probability h, otherwise stay at G.
6. Return to step 1.

Let X(t) denote the state of this chain after t iterations. Once X(t)
has ‘reached stationarity’ its values represent samples from the distribution
π(G) = π(Λ, T , M). The nature of the algorithm is such that consecutive out-
puts will be correlated. For many problems this might be not a bad thing,
however one should be careful with using the output for calculating standard
errors. But in some cases it is desirable to simulate approximately indepen-
dent samples from the posterior distribution of interest, in which case we use
output from every mth iteration, for a suitable choice of m.

Current methods

In this section we describe some methods of sampling genealogies. Most of
these algorithms are very similar and often differ only in tree representation
and useful tricks to speed up the computations. All of them start with an
initial genealogy (random or UPGMA) and make small modifications to it.
Choices among possible modifications may be random or deterministic.

The first is due to Kuhner et al. (1995). As before, the genealogy consists
of two parts: the tree topology and a set of times between coalescent events,
but time is rescaled in terms of the overall mutation rate in such a way that
in one unit of time the expected number of mutations per site is 1. Figure 9.1
shows the updating process: choosing a neighborhood (the region of genealogy
to be changed), rearranging the topology in that neighborhood, and choosing
new branch lengths within the neighborhood. This fundamental operation is
applied repeatedly. To make rearrangements, a node is chosen at random from
among all nodes that have both parents and children (i.e., are neither leaves
nor the bottom-most node of the genealogy). This node is referred to as the
target. The neighborhood of rearrangement consists of the target node, its
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child, parent, and parent’s other child. A rearrangement makes changes of
two types: reassorts the tree children among target and parent, and modifies
the branch length within the neighborhood. The lineages to be redrawn are
referred to as active lineages, and the lineages outside of the neighborhood as
inactive lineages.

The times of the target and parent nodes are drawn from a conditional
coalescent distribution with the given mutation rate, conditioned on the num-
ber of inactive lineages. For each time interval, the probability of coalescence
among the active lineages depends on the number of active and inactive lin-
eages present in the genealogy during that time interval. A random walk,
weighted by these probabilities, is used to select a specific set of times.

Fig. 9.1. Steps in rearranging a genealogy. Top left: selecting a neighborhood.
Top right: erasing the active lineages. Bottom: redrawing the active lineages.
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Yang and Rannala (1997) use a stochastic representation of the nearest
neighbor interchange (NNI) algorithm as a core of the transition kernel. This
algorithm generates two neighboring topologies for each internal branch (see
Figure 9.2). Consider an interior branch a − b, where a is the ancestral node
and b is the descendant node. Node c is the other descendant of a, and nodes
d and e are descendants of b. The two neighbors of tree 1 are generated by
interchanging node c with node d (tree 2), and node c with node e (tree 3).

Equal probabilities are assigned to each of the neighboring topologies. The
NNI algorithm modifies the topology but ignores the ordering of the nodes
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Fig. 9.2. NNI algorithm for a rooted binary tree topology.
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(i.e., labeled history). To modify the NNI algorithm so that the chain moves
between labeled histories, they assign an equal probability to each of the
possible labeled histories for a nominated topology. This involves enumerating
and recording all the labeled histories for that topology. The move to another
labeled history that belongs to the current tree topology is allowed with the
specified probability if the topology has more than one labeled history. Yang
and Rannala use this transition kernel in the study of species data; the time
to the MRCA is scaled to be 1 and times between speciation events have
different distributions than those specified by the coalescent.

Wilson and Balding (1998) designed an algorithm to deal with microsatel-
lite (or short tandem repeat) data. A step-wise model is chosen for the changes
in repeat number at each mutation event. Although calculation of the like-
lihood via peeling is feasible for problems of moderate size, increasing the
dimension of the parameter space by introducing the allelic state of the in-
ternal nodes permits much faster likelihood calculations. The algorithm uses
a very simple method for generating candidate trees. It involves removing
a branch from the tree at random and adding it anywhere in the tree, but
locations close to similar allelic types are preferentially chosen.

Larget and Simon (1999) use an algorithm for moving in a tree space that
is very close to the one developed by Mau et al. (1999). It uses the fact that
for a given choice of ordering all sub-trees from left to right there is a unique
in-order traversal of the tree. Each internal node is adjacent to two leaves in
this traversal, the right-most leaf of its left sub-tree and the left most leaf
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of its right sub-tree. Given the ordering of the nodes and distances between
adjacent nodes, the tree topology and branch lengths are uniquely determined.
Each taxon appears at a peak of the graph, and each internal node is a valley
(see Figure 9.3).

Fig. 9.3. A tree representation.
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The transition kernel consists of two different moves: global and local.
For a global move one representation of the current tree is selected uniformly
at random by choosing left/right orientation of the two sub-trees with equal
probability for each internal node. Then the valley depths are simultaneously
and independently modified by adding to each a perturbation in either direc-
tion, keeping the depth between 0 and a specified maximum. The local move
modifies a tree only in a small neighborhood of a randomly chosen internal
branch, leaving the remainder of the tree unchanged. Let u and v be the nodes
joined by the randomly chosen edge (see Figure 9.4).

Fig. 9.4. A tree before and after a local move.

h3

h1

h2 a

u

b

v

c

w

a

c

u*

v*

w

b
h3

h2

h1

max(x,y)

min(x,y)

0 0

Leaving positions of a, b, c, and w fixed, new positions for nodes u and v
are picked. Let h1 < h2 < h3 be the distances between c and w, a and w, and
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b and w correspondingly. In the local move, x is chosen uniformly at random
from [0, h2], and y is chosen uniformly at random from [0, h1]. Proposed nodes
u∗ and v∗ will be distances max(x, y) and min(x, y) from w, respectively. If
max(x, y) < h1, there are three possible tree topologies. One of the children,
a, b, and c, is randomly chosen to be joined to v∗, with the others becoming
children of u∗. If v is the root of the tree, the distances between v and the
children a, b, and c are changed and the new location of u is chosen. The local
move is very similar in character to the method of Kuhner et al. (1995).

9.6 Some alternative updating methods

We have some freedom in choosing the proposal kernel Q(·, ·). Ideally Q(·, ·)
is relatively easy to calculate since the scheme above may need to iterated
many times in order to converge to stationarity. Furthermore we have to
demonstrate that the chain X(t) satisfies the conditions of irreducibility and
positive recurrence in order to show that the ergodic theorem applies and so
the limiting distribution is indeed f(Λ, T , M | D).

We define level l of the genealogy to be the first point at which there are l
distinct ancestors of the sample. The bottom of a genealogy of n individuals
is therefore referred to as level n, and the MRCA of the sample is level 1.
Recall that Tl denotes the time between levels l and l − 1. To propose a new
graph (Λ′, T ′) we considered three different proposal kernels.

A bad sampler

Here is a simple algorithm:

1. Pick a level, l say (l = n, n− 1, . . . , 2), according to an arbitrary distribu-
tion F .

2. Delete upper part of the tree starting from level l.
3. Attach a new top of the tree generated according to the coalescent prior

for a sample of l individuals.
4. Generate a new time T ′

l , to replace the old Tl according to an exponential
distribution with parameter l(l − 1)/2.

This algorithm works poorly, mainly because the suggested changes were too
global. If we chose level l close to the bottom of the tree and attach a random
top to it, then the new tree will be very different from the old one and has
small chance of being accepted. As a result our sample will consists of trees
with similar topologies and almost the same likelihood. But sometimes quite
a different tree might be accepted and our Markov chain would move to other
part of state space and stay there for long time. Figure 9.5 is an example of
such a chain. This algorithm seems not to be very efficient in exploring the
state space of trees.

The following algorithm looks simple and is easy to implement. It makes
changes which are more local than the algorithm described above.
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Fig. 9.5. Time series plot of log-likelihood
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1. Pick a level, l say (l = n, n− 1, . . . , 2), according to an arbitrary distribu-
tion F .

2. Label the l lines 1, 2, . . . , l.
3. Let Li and Lj be the two lines which coalesce.
4. With probability 1/2 replace this coalescence by one between Li and a

randomly chosen line (possibly resulting in the same topology as before).
5. Otherwise replace this coalescence by one between Lj and a randomly

chosen line (also possibly resulting in the same topology as before).
6. Generate a new time T ′

l , to replace the old Tl according to an exponential
distribution with parameter l(l − 1)/2.

An example of a possible move, for a genealogy of five individuals, is shown
in Figure 9.6.

This algorithm also does not work well, primarily because it is relatively
hard to switch the order of two coalescence events. For example, we need
several iterations of the algorithm to move from G to G′ as illustrated in
Figure 9.7.

Theoretically, this kernel has all the required properties, but it is simply
not efficient. We might try other distributions for the choice of level l, or for
the new time T ′

l , but it is doubtful these would help. Our experience was that
the algorithm became stuck in local maxima which required a re-ordering of
coalescences in order to escape.
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Fig. 9.6. A move in the sampler

Fig. 9.7. Change of order of two coalescences
G

G’

A good sampler

Lack of success with first two algorithms leads to the following approach,
described in Markovtsova et al. (2000).

Algorithm 9.2 Local updating method.

1. Pick a level, l say (l = n, n− 1, . . . , 3), according to an arbitrary distribu-
tion F .

2. For the chosen l observe the pattern of coalescence at levels l−1 and l−2.
This pattern falls into two cases, according to whether the coalescence at
level l − 2 involves the line which results from the coalescence at level
l − 1. These are illustrated in Figure 9.8. In Case A our kernel randomly
generates a new topology involving the same three lines of ancestry; this
new topology will also be Case A and may be the same topology with
which we began. These are illustrated in Figure 9.9. In Case B we change

G G‘

Level 3
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Fig. 9.8. Two possible coalescence patterns
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the order of the two coalescence events. So, for the example drawn above,
we move to the state shown in Figure 9.10.

3. Generate new times T ′
l and T ′

l−1 according to an arbitrary distribution,
and leave other times unchanged. Thus we only alter the times correspond-
ing to the levels at which the topology has been changed. This ensures
that (Λ′, T ′) is similar to (Λ, T ) and therefore has a reasonable probability
of being accepted.

There are several variants of Step 2 of the above scheme. For example, one
can allow the topology to remain the same in Case B, but not in Case A. We
also tried a variant of Case B in which we proposed a new Case B topology
uniformly from the six possible choices in which the four lines are paired
randomly. None of these variations impacts significantly on the results.

Fig. 9.9. Possible moves in Case A
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There are many possible choices for the updating times T ′
l and T ′

l−1. One
might propose new values of T ′

j from the pre-data coalescent distribution as
it was done in first two algorithms. Second, one might generate times from
a Normal distribution with mean equal to the currently accepted value Tj .
We chose to truncate the Normal distribution in order to ensure that nega-
tive times were not proposed. The variances of the Normal distributions are
parameters that can be tuned to get good mixing properties. Unfortunately,
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Fig. 9.10. Possible moves in Case B

the optimal choice of variance appears to be highly data-dependent. In prin-
ciple all choices are valid, but the rate of approach to stationarity, and the
correlation between consecutive iterations, can vary significantly. The second
approach might work better when trees are much shorter, or longer, than
would be expected a priori.

Finally, we update the mutation parameter M = (g) every k iterations.
There are several ways to do it. First one is to propose new value g′ from
prior distribution. This updating mechanism works well in the case when
the prior for g is very concentrated, i.e. a uniform with narrow support or a
Normal distribution with small variance. This approach might be used when
some external information is available. Second one is to generate new value g′

according to truncated Normal distribution with mean g. The variance of this
distribution requires some tuning to ensure well-behaved, i.e. uncorrelated,
output. This approach works fine in case of uninformative prior or prior with
wide support.

The Hastings ratio

Writing G = (Λ, T , M), the kernel Q can be expressed as the product of three
terms:

Q(G → G′) = Q1(Λ → Λ′) Q2(T → T ′ | Λ → Λ′) Q3(M → M ′).

Consequently the Hastings ratio can be written in the form

h = min
{

1,
IP(D | G′)
IP(D | G)

g1(Λ′)
g1(Λ)

g2(T ′)
g2(T )

g3(M ′)
g3(M)

× Q1(Λ′ → Λ)
Q1(Λ → Λ′)

Q2(T ′ → T | Λ′ → Λ)
Q2(T → T ′ | Λ → Λ′)

Q3(M ′ → M)
Q3(M → M ′)

}
, (9.6.1)

the unknown term f(D) cancelling. We can further simplify (9.6.1) by noting
that, since pairs of lines are chosen uniformly to coalesce, all topologies are,
a priori, equally likely. Hence g1(Λ′) = g1(Λ). Furthermore, our transition

1 2 3 4 1 2 3 4



Ancestral Inference in Population Genetics 137

kernel changes only two of the times on the tree, Tl and Tl−1 say. Finally, it
is easy to show that Q1(Λ → Λ′) = Q1(Λ′ → Λ), reducing (9.6.1) to

h = min
{

1,
IP(D | G′)
IP(D | G)

g2(T ′)g3(M ′)
g2(T )g3(M)

fl(tl)fl−1(tl−1)
fl(t′l)fl−1(t′l−1)

Q3(M ′ → M)
Q3(M → M ′)

}
,

(9.6.2)
where fl(·) and fl−1(·) are the densities of the time updating mechanism at
levels l and l − 1.

If one uses a transition kernel which proposes new times that are expo-
nential with parameter l(l − 1)/2 at level l, (i.e. the unconditional coalescent
distribution for times), then further cross-cancellation reduces (9.6.2) to

h = min
{

1,
IP(D | G′)
IP(D | G)

g3(M ′)
g3(M)

Q3(M ′ → M)
Q3(M → M ′)

}
. (9.6.3)

A similar simplification also follows if one proposes new mutation rates inde-
pendently of the currently accepted rate and

h = min
{

1,
IP(D | G′)
IP(D | G)

}
. (9.6.4)

In order to test the algorithm for moving around tree space, we can use
a simple mutation model for which there are alternative algorithms. One ob-
vious choice is the infinitely-many-sites model, for which we have already
developed some theory in Section 7. The data take the form of the number
of segregating sites in the sample, and Algorithm 7.3 can be used to generate
observations from the posterior distribution of features of the tree, conditional
on the number of segregating sites observed.

9.7 Variable population size

The methods discussed in above can easily be adapted to model populations
which are not of a fixed constant size. As in Section 2.4, let N(t) denote
the population size at time t, where time is measured in units of N = N(0)
generations, and write

N(t) = f(t)N(0), Λ(t) =
∫ t

0

1
f(u)

du.

If An(t) is the ancestral process for a sample of size n evolving in a population
of constant size, Av

n(t) = An(Λ(t)) is the coalescent process appropriate for
the population of varying size.

We let T v
k record the coalescent time spent with k lines of descent in

a growing population. The algorithm works by manipulating the underly-
ing coalescent times, {Ti}, defined on the original coalescent time-scale, and
subsequently transforming them to times in the varying population while cal-
culating probability of data given tree.
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Define Si =
∑n

j=i+1 Tj . Si represents the amount of standard coalescent
time taken to get to a level with i lines of descent present. Similarly, Sv

i =∑n
j=i+1 T v

j in the varying population. We transform the Si to the Sv
i via

Sv
i = min {s : Λ(s) = Si}. The proposal kernel works by manipulating the

underlying coalescent times, {Ti}. Assuming we have picked level l in our
updating step, new times T v

l

′
, T v

l−1

′
are proposed as follows. We begin by

generating new times T ′
l = t′l and T ′

l−1 = t′l−1. Having done so, we recalculate
Sk for all k ≤ l. From these values we derive the new {Sv

i

′}, noting that
Sv

i

′
= Sv

i for i > l.

9.8 A Nuu Chah Nulth data set

We illustrate our approach with a sample of mitochondrial sequences from
the Nuu Chah Nulth obtained by Ward et al. (1991). The data D are 360
bp sequences from region I of the control region obtained from a sample of
n = 63 individuals. The observed base frequencies are (πA, πG, πC , πT ) =
(0.3297, 0.1120, 0.3371, 0.2212). The data have 26 segregating sites and a mean
heterozygosity of 0.0145 per site. There are 28 distinct haplotypes with a
haplotype homozygosity of 0.0562. We fit two models to these data, both of
which are variants of Felsenstein’s model described in Section 9.2:

Model 1. All sites mutate at the same rate, so that gi ≡ g for all sites i.
Here M = (g, κ).
Model 2. The special case of Model 1 in which κ is assumed known, so
that M = (g).

Model 2 above serves as the simplest description of mutation in hypervariable
region I of mtDNA. It was used by Kuhner et al. (1995) in their analysis of
the same data set.

We implemented the MCMC approach described in Algorithm 9.2. One
should begin to sample from the process X(·) once it has “reached stationar-
ity”. There are many heuristic tests for this, none of which is infallible. For
a critique see Gilks et al. (1996). Some simple diagnostics are functions of
the statistics of interest such as autocorrelations and moving averages. It is
also valuable to run the chain from several different, widely spaced, starting
points, and compare the long-term behavior.

The output typically appeared to be non-stationary for up to 200,000
iterations of the algorithm. We sampled every 10,000th iteration in order
to approximate a random sample from the stationary distribution. In a bid
to be very conservative, and since the algorithms run rapidly, we generally
discarded the first 2500 samples. After this, our output is typically based
on 5000 samples. The acceptance rate was typically around 80%. For runs
in which, for example, we needed to tune the variance parameter, the burn-
in length varied but the estimated parameter values were unchanged for the
different variances we tried.
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Figure 9.11 shows the resultant time series for the log-likelihood, the muta-
tion parameter θ, the time to the MRCA and their associated autocorrelation
functions. These appear fine, with the proviso that the time series of log-
likelihoods is correlated for several lags. While this is not in itself a problem
it means one must interpret standard errors with care. As a further check for
convergence to stationarity we used the package of diagnostics provided in
CODA (Best et al. (1995)). All tests were passed.

Fig. 9.11. Example diagnostics
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Some time can be saved by starting the process from a genealogy (Λ, T ) for
which P(Λ, T | D) is relatively high. The rationale for this is that it is sensible
to start from a region of the state-space which is well supported by the data.
As an example of this one might use the UPGMA tree for the data-set, as
described in Kuhner et al. (1995). However, we prefer to start from random
tree topologies since convergence from different starting points is potentially
a useful diagnostic for stationarity.

The analysis of Model 1 gave a median for κ of 65.1, with 25th and 75th
percentiles of 32.7 and 162.7 respectively. Note that the data are consistent
with no transversions having occurred during the evolution of the sample.
Consequently, the posterior distribution for κ has a very long right tail and
statistics for the mean, which are strongly influenced by outliers, are poten-
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tially misleading and are therefore not presented. The median value of g was
6.87 × 10−4 and the median value for w was 4.47 × 10−2. These results show
that the data are consistent with a value of κ = 100, as assumed by Kuhner
et al. (1995).

In what follows we also took κ = 100, and a uniform prior on (0, 100) for θ.
The posterior distribution of the effective mutation rate has a median of 0.038,
mean 0.039 and 25th and 75th percentiles of 0.033 and 0.045 respectively.
Figure 9.12 shows the posterior distribution of θ.

Fig. 9.12. Posterior density of per site effective mutation rate θ
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Since the posterior density of θ is proportional to the likelihood in this
case, we may use an estimate of the posterior density to find the maximum
likelihood estimate of θ. From the density shown in Figure 9.12, we obtained
an MLE of θ̂ = 0.038. Kuhner et al. (1995) obtained the value θ̂ = 0.040
for these data, using the same value of κ. Presumably the difference in the
estimates arises from both the parameters chosen for the density estimation,
and the different approaches to the optimization. From an estimate of the
curvature of the log-density we get an estimate of the standard error of θ̂ of
0.010, resulting in an approximate 95% confidence interval of (0.018, 0.058).

Remark. Estimates of standard errors based on curvature of the log-density
should be treated as heuristic. In problems such as these, θ cannot be esti-
mated consistently so the standard theory does not apply.

For comparison, the Watterson estimator (5.3.7) of θ, based on 26 segre-
gating sites in the data, is 0.015 with an estimated standard error of 0.005; the
95% confidence interval for θ is then (0.005, 0.025). The lower MLE obtained
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using the Watterson estimator is expected, because multiple mutations at the
same site are ignored.

The prior distribution of the time to MRCA of a sample of n = 63 has
a mean of 2(1 - 1/63) = 1.97. With an effective size of N = 600, a 20 year
generation time and a value of σ2 = 1 for the variance of the offspring dis-
tribution, this is about 23,600 years. The posterior distribution of the time
TMRCA to the MRCA (in years) has median 7700, mean 8100 and 25th and
75th percentiles of 6500 and 9300 respectively. The corresponding posterior
density appears in Figure 9.13. The joint posterior density of TMRCA and θ
is given in Figure 9.14. For a frequentist approach to inference about TMRCA,
see Tang et al. (2002).

Fig. 9.13. Posterior density of time to MRCA
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Testing goodness-of-fit

The adequacy of the fit of models like these can be assessed using the Bayesian
posterior predictive distribution. To implement this, we use a variant of the
parametric bootstrap. The idea is to simulate observations from the posterior
distribution of (Λ, T , M), and then for each of the trees (Λ, T ) to simulate
the mutation process with parameters specified by M . The distribution of
certain summary statistics observed in the simulated data is found, and the
values of the statistics actually observed in the data are compared to these
distributions. We chose to use the number of haplotypes, the maximal haplo-
type frequency, the haplotype homozygosity, the number of segregating sites
and a measure of nucleotide diversity. In practice, we use the output from
the MCMC runs to generate the observations on (Λ, T , M). In Table 11 we
give the results of this comparison for Model 2 using 4000 values from each
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Fig. 9.14. Joint posterior density of TMRCA and θ
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posterior distribution. There is some evidence that the constant rate model
does not fit well, particularly regarding the haplotype distribution. The total
number of segregating sites observed in the bootstrap samples gives some ev-
idence of lack-of-fit; the model predicts more segregating sites than are seen
in the data. One explanation for this apparent discrepancy might be that the
model is not allowing for rate heterogeneity, and therefore does not typically
produce enough recurrent mutations. This will lead to a tendency for the mu-
tations which do occur to be spread over a greater number of sites. A model
that allows for multiple classes of rates appears in Markovtsova et al. (2000b).

Remark. For an implementation of Bayesian methods for the coalescent
(and many other species tree problems), using Metropolis-coupled MCMC,
see Huelsenbeck and Ronquist’s MrBayes program, at

http://morphbank.ebc.uu.se/mrbayes/info.php .

9.9 The age of a UEP

In this section we provide an MCMC approach that can be used to find the
posterior distribution of the age of a unique event polymorphism (UEP). As
in the introduction of Section 8, there are several versions of this problem.
For the most part, we assume that we have sequenced a region of DNA, and
have determined for each of them whether or not the UEP is present. The
key figure is given in Figure 8.1. Let U denote the single event that causes
the UEP mutation ∆. The scaled mutation rate at the UEP locus is µ/2. The
event that the coalescent tree has the UEP property is, once again, denoted
by E. For definiteness we assume that the sequences are evolving according to
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Table 11. Assessing goodness-of-fit of Model 2

Model 2
Fraction of

Observed simulations ≤
Statistic value observed value

# haplotypes 28 0.83
max. haplotype

frequency 9 0.36
homozygosity 0.0562 0.12

heterozygosity
per site 0.0145 0.36

# segregating
sites 26 0.05

Felsenstein’s model. The material in this section comes from Markovtsova et
al. (2000a).

Modification of Markov chain Monte Carlo method

The event U corresponds to a single mutation arising on the branch indicated
in Figure 8.1 and no other mutations on the rest of the coalescent tree. Let
A denote the age of the UEP, and denote the mutation parameters by M =
(g, κ, µ). In what follows we assume a prior distribution for M , and apply
an MCMC method for generating observations from the conditional density
f(A, G | D, E ∩ U) of A and G = (Λ, T , M) given D, E and U. To do this we
express the required conditional density as a product of simpler terms and
describe how each can be calculated.

First we note that

f(A, G | D, U ∩ E) = f(A | G, D, U ∩ E)f(G | D, U ∩ E). (9.9.1)

The first term on the right of (9.9.1) can be evaluated by considering Figure 8.1
once more. Given that a single mutation occurs on the indicated branch, the
Poisson nature of the mutation process for the UEP means that the location of
the mutation is uniformly distributed over that branch. Thus we can simulate
observations from the conditional distribution of A by simulating from the
second term on the right of (9.9.1), reading off the length of the branch on
which the UEP mutation occurs, and adding a uniformly distributed fraction
of that length to the height of the subtree containing all the chromosomes
carrying the UEP. Our task is therefore reduced to simulating from the second
term on the right of (9.9.1).

Let g1(Λ | E) denote the conditional distribution of the coalescent tree Λ
given E, g2(T ) the density of the coalescence times T , and g3(M) the prior
for the mutation rates M = (g, κ, µ). We can then write
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f(G | D, U ∩ E) = IP(D, U | G, E)g1(Λ | E)g2(T )g3(M)/IP(D, U | E). (9.9.2)

The term IP(D, U | G, E) is the product of two terms,

IP(D, U | G, E) = IP(D | G, E)IP(U | G, E).

The first of these, the likelihood of D, can be computed using the peeling
algorithm and the mutation model described above, while the second is

µS

2
e−µS/2 × e−µ(Ln−S)/2 =

µS

2
e−µLn/2, (9.9.3)

where S is the length of the branch on which the single UEP mutation must
occur, and Ln =

∑n
i=2 iTi is the total length of the tree. The normalizing

constant IP(D, U ∩ E) is unknown, and hard to compute. As a consequence,
we use a version of the Metropolis-Hastings algorithm to simulate from the
required conditional distribution.

Proposal kernel

We make a minor modification to Algorithm 9.2 in order to ensure that new
trees are also consistent with the event E. If, when we pick a level, we find
we are in case A, and exactly two of the lines carry the UEP, then we cannot
change the order in which the two coalescences occur, since such a change
would produce a new tree topology which is inconsistent with E. In such a
situation we leave the topology unchanged.

Having constructed a new topology, which may be the same as the existing
topology, we generate a new set of times in the same way as it was described
in Section 9.5. We found that a kernel which proposes new values of T ′

l and
T ′

l−1 having the pre-data coalescent distribution worked well.
Finally, we update M = (g, κ, µ), where g and κ are the rate parameters for

the sequence model and µ is the rate parameter for the UEP. The parameters
g and κ were updated every tenth iteration, and µ was updated on each
iteration for which g was not updated. These were updated using truncated
Normals, whose variances require some tuning.

The Hastings ratio

Writing G = (Λ, T , M), the kernel Q can be expressed as the product of three
terms:

Q(G′ → G) = Q1(Λ′ → Λ) Q2(T ′ → T | Λ′ → Λ) Q3(M ′ → M).

Using (9.9.1), (9.9.2) and (9.9.3), the Hastings ratio (the probability with
which we accept the new state) can be written in the form
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h = min
{

1,
IP(D | G′, E)
IP(D | G, E)

IP(U | G′, E)
IP(U | G, E)

g1(Λ′ | E)
g1(Λ | E)

g2(T ′)
g2(T )

g3(M ′)
g3(M)

× Q1(Λ′ → Λ)
Q1(Λ → Λ′)

Q2(T ′ → T | Λ′ → Λ)
Q2(T → T ′ | Λ → Λ′)

Q3(M ′ → M)
Q3(M → M ′)

}
,

the unknown term IP(D, U∩ E) cancelling. For our choice of transition kernel
Q, it can be shown that g1(Λ′ | E) = g1(Λ | E). We also have Q1(Λ → Λ′) =
Q1(Λ′ → Λ), and we note that Q changes only two of the times associated
with T or T ′. Hence h reduces to

h = min
{

1,
IP(D | G′, E)
IP(D | G, E)

IP(U | G′, E)
IP(U | G, E)

g2(T ′)g3(M ′)
g2(T )g3(M)

× fl(tl)fl−1(tl−1)
fl(t′l)fl−1(t′l−1)

Q3(M ′ → M)
Q3(M → M ′)

}
, (9.9.4)

where fl(·) and fl−1(·) are the densities of the time updating mechanism given
that changes occur to the tree Λ at levels l and l − 1.

In Section 8 we derived a number of theoretical results concerning the
age of a UEP given its frequency in the sample in the limiting case µ →
0. In order to compare these results with those obtained by including the
sequence information, we modified our algorithm to allow µ = 0. Assuming
κ is known, the mutation parameter M is now one-dimensional: M = (g).
The other change occurs to the conditional probability in (9.9.3), since now
IP(U | G, E) ∝ S, the length of the branch on which the UEP mutation must
occur. This change appears in the Hastings ratio (9.9.4), where

IP(U | G′, E)
IP(U | G, E)

=
S′

S
.

In order to check tree moves, we can again use the infinitely-many-sites
model of mutation. We compare distributions of time to the most recent com-
mon ancestor of the group of individuals carrying a specific mutation, the
length of the corresponding sub-tree and the time to the mutation generated
by the rejection method described in Algorithm 8.2 for the µ = 0 case, and
the modified version of our general MCMC scheme.

9.10 A Yakima data set

To illustrate the method we find the conditional distribution of the age of the
9 basepair mitochondrial region V deletion in a sample of Yakima described
by Shields et al. (1993) The sample comprise n = 42 individuals, of whom
b = 26 have the deletion. The data D comprise 360 basepairs from hyper-
variable region I of the control region, sequenced for all 42 individuals. The
observed base frequencies are (πA, πG, πC , πT ) = (0.328, 0.113, 0.342, 0.217).
We note that all individuals having a given control region sequence had the
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same deletion status, as might be expected if the deletion arose once quite
recently.

For the analysis discussed here, the output typically appeared to be non-
stationary for at least 200,000 iterations of the algorithm. We generally dis-
carded the first 25 million iterations. After this, we sampled every 5,000th
iteration. Our output is typically based on 5000 samples from our stationary
process. The acceptance rate was generally around 70%.

Preliminary analysis of the sequence data (without regard to presence
or absence of the deletion) was performed using the approach outlined in
Section 9.5. For the present mutation model, we took uninformative priors (in
the form of uniform densities having wide but finite support) for the mutation
rates g and w and examined the posterior distribution of κ = w/g. The
posterior median was 65.9, the distribution having 25th percentile of 34.0 and
75th percentile of 160.2. The data are certainly consistent with the value of
κ = 100 we used in the Nuh Chah Nulth example in Section 9.8. We therefore
treat κ = 100 as fixed in the subsequent analyses; from (9.1.7) we find that
θ = 88.17g.

We repeated the analysis with an uninformative prior, uniform on (0, 0.1),
for the single parameter g. This resulted in the posterior density for θ given
in Figure 9.15. Summary statistics are shown in Table 12. Our approach also
provides a way to find the maximum likelihood estimator of θ, since with a
flat prior the posterior is proportional to the likelihood. From a kernel density
estimate we obtained an MLE of θ̂ = 0.039 with an estimated standard error
of 0.010. This is consistent with the estimate of θ we found for the Nuu Chah
Nulth data. Since the base frequencies in both data sets are similar and the
mutation rates are likely to be the same, we conclude that the effective sizes
of the two populations are also approximately equal. The effective population
size of the Nuu Chah Nulth was estimated from anthropological data by Ward
et al. (1991) to be about N = 600, a number we take for the Yakima as well.

Under the pre-data coalescent distribution, the mean time to the MRCA of
a sample of n = 42 is 2(1 - 1/42) = 1.95. With an effective size of N = 600 and
a 20 year generation time, this is about 23,500 years. The posterior density of
the time to the MRCA given the control region data D is shown in Figure 9.16.
The posterior mean is 0.72, or about 8,600 years. Summary statistics are given
in Table 13. The posterior distribution of the total tree length L42 =

∑42
j=2 jTj

has mean 5.68.
We turn now to the deletion data. We ran our MCMC algorithm using

a uniform (0, 10) prior for µ, and a uniform (0, 0.1) prior for g. The poste-
rior density of θ is shown in Figure 9.15. Summary statistics are presented
in Table 12. The distribution is qualitatively the same as that obtained by
ignoring the deletion data. The posterior distribution of the deletion param-
eter µ has mean is 0.75 and median 0.61; the 25th percentile is 0.34 and the
75th percentile is 0.99. The posterior density of the time to the MRCA of the
group carrying the deletion is shown in Figure 9.17. The summary statistics
are found in Table 14.
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Fig. 9.15. Posterior density of mutation rate θ
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Fig. 9.16. Posterior density of TMRCA
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Table 12. Summary statistics for θ

θ no deletion µ variable µ = 0

mean 0.044 0.045 0.041

median 0.042 0.043 0.040

25th percentile 0.036 0.037 0.034

75th percentile 0.050 0.051 0.047
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Table 13. Summary statistics for time to MRCA of the sample.

Time to MRCA no deletion µ variable µ = 0

mean 0.72 0.70 0.76
(8,600 yrs) (8,400 yrs) (9,200 yrs)

median 0.69 0.67 0.73
(8,300 yrs) (8,000 yrs) (8,800 yrs)

25th percentile 0.57 0.56 0.61
(6,800 yrs) (6,700 yrs) (7,300 yrs)

75th percentile 0.84 0.81 0.88
(10,100 yrs) (9,700 yrs) (10,600 yrs)

Fig. 9.17. Posterior density of TMRCA of deletion
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The deletion arises uniformly on the branch indicated in Figure 8.1, so that
the age of the mutation is the time to the MRCA of the deletion group plus
a uniform fraction of the mutation branch length. The posterior distribution
of the age is given in Figure 9.18, and summary statistics in Table 15.

We also looked at the time to the MRCA of the entire sample when the
deletion status of each sequence is included. The posterior density of this
time is shown in Figure 9.16, with summary statistics given in Table 13. For
these data the inclusion of deletion status has little effect on the posterior
distribution.

The output from the MCMC runs can be used to assess whether the UEP
assumption is reasonable. We first generated 5000 observations of the tree
length L42 conditional on the data D; as noted above, the sample mean is
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Table 14. Summary statistics for the time to MRCA of the group carrying the
deletion.

Time to MRCA µ variable µ = 0

mean 0.20 0.21
(2400 yrs) (2600 yrs)

median 0.19 0.20
(2300 yrs) (2400 yrs)

25th percentile 0.15 0.16
(1800 yrs) (1900 yrs)

75th percentile 0.24 0.25
(2900 yrs) (3100 yrs)

Fig. 9.18. Posterior density of age of deletion
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5.68. The modal posterior value of µ is 0.30, a value that we treat as a point
estimate of µ. The expected number of deletions arising on the coalescent
tree is then 0.30 E(L42|D)/2, which we estimate from the posterior mean tree
length as 0.30 × 5.68/2 = 0.85. We can also use this value of µ and the
simulated values of L42 to estimate the probability that exactly one mutation
would occur on such a tree; we obtained an estimate of 0.36. Similarly, we
estimated the probability of at least one mutation occurring as 0.57, so that
the conditional probability that the mutation occurred once, given it occurred
at least once, is estimated to be 0.63. Thus it is not unreasonable to assume
that the deletion arose just once.

When µ = 0, the posterior density of θ is shown in Figure 9.15, with sum-
mary statistics given in Table 12; there is little difference from the case where
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Table 15. Summary statistics for age of the deletion.

Age of deletion µ variable µ = 0

mean 0.34 0.36
(4100 yrs) (4400 yrs)

median 0.31 0.33
(3700 yrs) (4000 yrs)

25th percentile 0.23 0.25
(2800 yrs) (3000 yrs)

75th percentile 0.41 0.44
(5000 yrs) (5300 yrs)

µ is allowed to vary. The posterior density of the time to the MRCA is given
in Figure 9.16, with summary statistics in Table 13. The mean time of 0.76
(or about 9,100 years) stands in marked contrast to the value of 2.68 (about
32,200 years) obtained from Griffiths and Marjoram (1996). The summary
statistics for the posterior distribution of the time to the MRCA of the group
carrying the deletion are given in Table 14. The results are qualitatively the
same as the case of variable µ. The posterior density of the age of the deletion
appears in Figure 9.18, with summary statistics shown in Table 15. The pos-
terior mean is 0.36 (or about 4,400 years), compared to the value of 1.54 (or
about 18,500 years) obtained from equation (8.3.4) when the sequence data
are ignored. As expected, the mean age is higher than it is when µ is non-zero.
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10 Recombination

In this section we study the generalization of the coalescent to the case of
recombination. The basic groundwork of the subject comes from the seminal
paper of Hudson (1983) and the ancestral recombination graph described by
Griffiths (1991). We study the two locus model first, and then generalize to
a model with arbitrary recombination rates. Later in the section we discuss
methods for estimating the recombination rate, the behavior of measures of
linkage disequilibrium, and uses of the coalescent for fine-scale mapping of
disease genes.

10.1 The two locus model

Consider two linked loci, A and B, in a population of fixed size N chromo-
somes; neutrality, random mating and constant population size are assumed
as before. For convenience, suppose the population reproduces according to a
Wright-Fisher model with recombination: independently across offspring, in
the next generation

(i) with probability 1 − r the individual chooses a chromosome from the
previous generation and inherits the genes at the A and B loci.

(ii) with probability r the individual chooses 2 chromosomes from the previous
generation and inherits the gene at the A locus from one and the gene at
the B locus from the other.

In this model recombination is possible only between the two loci. If we focus
on either of the two loci alone, we are watching a Wright-Fisher process evolve.
It follows that the genealogical tree of a sample from one of the loci is described
by the coalescent. There is thus a genealogical tree for each of the two loci. The
effect of recombination is to make these two trees correlated. If r = 0, the loci
are completely linked and the trees at each locus are identical. Early results
for this model were obtained by Strobeck and Morgan (1978) and Griffiths
(1981).

We consider the case in which N is large and r is of order N−1; this
balances the effects of drift and recombination. We define the (scaled) recom-
bination rate ρ by

ρ = lim
N→∞

2Nr (10.1.1)

The ancestral process

Just as in the earlier model, we can calculate the chance that if there are
currently k ancestors of the sample then in the previous generation there are
also k. To the order of approximation we need, this occurs only if there are
no recombination events in the k ancestors as they choose their parents, and
the k also chose distinct parents. This event has probability
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(1 − r)k

(
1 − 1

N

)
· · ·

(
1 − k − 1

N

)
,

which, in the light of (10.1.1) is just

1 − kρ

2N
− k(k − 1)

2N
+ O(N−2).

In a similar way, we can compute the probability that the number of distinct
parents chosen in the previous generation increases from k to k + 1. To the
order we need, this occurs if precisely one recombination event occurs and the
other k − 1 ancestors choose distinct parents. A straightforward calculation
shows that this probability is

kρ

2N
+ O(N−2).

Finally we can compute the chance that the number of ancestors goes down
by 1, from k to k − 1. The same sort of calculation shows this is

k(k − 1)
2N

+ O(N−2).

All other possibilities have smaller order. Thus we conclude that the number
AN

n (Nt) behaves in the limit as N → ∞ like continuous time birth and death
process in which the transition rates are

k → k + 1 at rate kρ/2
k → k − 1 at rate k(k − 1)/2

starting from state n. Because of the quadratic death rate compared to the
linear growth rate, it is clear that the process will visit the value 1 infinitely
often. The first occurrence of 1 corresponds to an MRCA.

A number of properties of the ancestral process Aρ
n(·) can be found simply.

Let Mn denote the maximum number of ancestors of the sample before it
reaches its MRCA, and let τn denote the time to this MRCA. Griffiths (1991)
proved:

Lemma 10.1 The expected TMRCA is given by

Eτn =
2
ρ

∫ 1

0

(
1 − vn−1

1 − v

)
(eρ(1−v) − 1)dv, (10.1.2)

and the distribution of Mn is given by

IP(Mn ≤ k) =

∑k−1
j=n−1 j!ρ−j

∑k−1
j=0 j!ρ−j

, k ≥ n. (10.1.3)
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Proof. The expected height follows from standard results for birth-and-death
processes. Define

ρi =
µ2 · · ·µi−1

λ2 · · ·λi
, i ≥ 2.

For the ancestral process, it can be checked that ρi = 2ρi−2/i!. The waiting
time to reach 1 has mean given by

Eτn =
n−1∑
r=1

(
r∏

k=2

µk

λk

) ∞∑
j=r+1

ρj,

where empty products have value 1 by convention. In our setting, this reduces
to

Eτn = 2
n∑

m=2

∑
l≥0

ρl (m − 2)!Γ (m + 2)
(l + m)!(m + 1)!

=
2
ρ

∫ 1

0

(
1 − vn−1

1 − v

)
(eρ(1−v) − 1)dv.

To find the distribution of Mn, define pn(k) = IP(Mn ≤ k), with p1(k) =
1, k ≥ 1 and pn(k) = 0 if n > k. By considering whether a coalescence or a
recombination occurs first in the ancestry of the sample, we see that

pn(k) =
n − 1

ρ + n − 1
pn−1(k) +

ρ

ρ + n − 1
pn+1(k),

and it may readily be checked by induction that the solution is given by
(10.1.3). ��

As ρ ↓ 0, we see from (10.1.2) that Eτn → 2
∫ 1

0
(1 − vn−1)dv = 2(1− 1/n),

as expected from our study of the coalescent. As ρ → ∞, Eτn → ∞ also.
When n = 2, we have

Eτ2 = 2ρ−2(eρ − 1 − ρ),

and as n → ∞,

Eτ∞ =
2
ρ

∫ 1

0

v−1(eρv − 1)dv.

This last can be interpreted as the time taken for the whole population to be
traced back to its common ancestor.

It follows from (10.1.3) that Mn/n → 1 in probability as n → ∞, showing
that the width of the graph does not exceed n by very much.

The ancestral recombination graph

We have seen that the ancestral process starts from Aρ
n(0) = n, and has the

property that if there are currently k ancestors then
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(i) Any particular pair of branches coalesce at rate 1.
(ii) Any given branch splits into two at rate ρ/2.

The ancestral process Aρ
n(·) is of limited use on its own; just as in the coa-

lescent setting it is the way these individuals are related that matters. This
leads to the idea of the ancestral recombination graph (or ARG). We construct
such an ancestral recombination graph in such a way that when two edges are
added at a recombination event, the genes represented by the left branch cor-
respond to the A locus, and the right edges correspond to the B locus. In this
way the ancestry of the A locus may be traced by following the left branch
at each split, and the ancestry of the B locus by following the right branch.
The ancestry of the A locus is a coalescent tree TA, and the ancestry of the
B locus is a coalescent tree TB. These trees are dependent. Each tree has its
own MRCA (which might be the same). An example of the ancestral graph,
together with the two subtrees TA and TB is given in Figure 10.1. The MRCA
at each locus marginally is denoted by a •.

Fig. 10.1. Two locus ancestral recombination graph

Ancestral graphAncestral tree Ancestral tree

Note that τn may now be interpreted as the height of the ARG, and Mn

may be interpreted as its width. Of course, τn is at least as great as the time
taken to find the MRCA at the A locus and at the B locus.

The structure of the ARG

In this section, we study the structure of the genealogical graph G in more
detail. The graph includes the coalescent tree TA of the A locus and the
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coalescent tree TB of the B locus. Denote the edge set of a graph by E(·). It
is useful to partition the edges E(G) into four disjoint sets:

A = E(TA) ∩ E(TB)c;
B = E(TA)c ∩ E(TB);
C = E(TA) ∩ E(TB);
D = E(G) ∩ E(TA)c ∩ E(TB)c.

Those edges in A represent ancestors who contribute to the genetic mate-
rial of the sample at the A locus only, and similarly for B and the B locus.
Edges in C correspond to ancestors that contribute genetic material at both
loci, and those in D contribute no genetic material to the sample.

At any given time t, the ancestors of the sample (i.e. the edges E(Gt) of
the ancestral graph Gt of a cross section of G taken at time t) can be divided
into these four types. Define

nA(t) = |E(Gt) ∩ A|
nB(t) = |E(Gt) ∩ B|
nC(t) = |E(Gt) ∩ C|
nD(t) = |E(Gt) ∩ D|,

where | · | denotes the number of elements in a set. Clearly

nA(t) + nB(t) + nC(t) + nD(t) = |E(Gt)| ≡ Aρ
n(t),

where Aρ
n(t) is the ancestral process of the ARG. Furthermore,

nA(t) + nC(t) = |E(TA(t))| ≡ An(t), (10.1.4)

and
nB(t) + nC(t) = |E(TB(t))| ≡ Bn(t), (10.1.5)

where An(·) and Bn(·) are the marginal ancestral processes for the A and B
loci respectively.

Of interest is the evolution of the process

m(t) = (nA(t), nB(t), nC(t), nD(t)), t ≥ 0.

One way to think of the process m is to label edges as (1,0), (0,1), (1,1), or
(0,0) according as the edge is in A, B, C, or D respectively. When a coalescence
occurs to two edges of type (α, β) and (γ, δ) the resultant ancestor is of type
(max(α, γ), max(β, δ)), and if a recombination occurs to an edge of type (α, β),
the two new edges are of type (α, 0) and (0, β).

Ethier and Griffiths (1990a) show that the process is Markovian. If the
current state is (a, b, c, d), the next state and its transition rate are given by



156 Simon Tavaré

(a + 1, b + 1, c − 1, d) cρ/2
(a − 1, b − 1, c + 1, d) ab
(a − 1, b, c, d) ac + a(a − 1)/2
(a, b − 1, c, d) at rate bc + b(b − 1)/2
(a, b, c − 1, d) c(c − 1)/2
(a, b, c, d + 1) (a + b + d)ρ/2
(a, b, c, d − 1) d(a + b + c) + d(d − 1)/2.

To see this, consider first the transition (a, b, c, d) → (a+1, b+1, c−1, d): this
occurs if a recombination event occurs on an edge of type (1,1). This results in
loss of a (1,1) edge, and the addition of one (1,0) edge and one (0,1) edge. The
rate of such changes is cρ/2. Considering the change (a, b, c, d) → (a−1, b, c, d)
for example, we see that this results from a coalescence of a (1,0) edge and a
(1,1) edge, or the coalescence of two (1,0) edges. Both possibilities result in
the net loss of a (1,0) edge. The first type of change occurs at rate ac and the
second sort at rate a(a−1)/2. In a similar way the other transitions and their
rates may be verified. The overall transition rate is the sum of these rates; if
a + b + c + d = n, this rate is given by dn ≡ cρ/2 + n(n − 1)/2.

There is a reduced version of the Markov chain m(·) that records only the
first three coordinates:

n(t) = (nA(t), nB(t), nC(t)), t ≥ 0.

Examining the transition rates of m(·) given above shows that n(·) is also
Markovian, and from a state of the form (a, b, c) its transitions are to

(a1, b1, c1) =




(a + 1, b + 1, c − 1) r1 = cρ/2
(a − 1, b − 1, c + 1) r2 = ab
(a − 1, b, c) at rate r3 = ac + a(a − 1)/2
(a, b − 1, c) r4 = bc + b(b − 1)/2
(a, b, c − 1) r5 = c(c − 1)/2

(10.1.6)

Note that recombination takes place only on the edges in C. The rate of change
from a state (a, b, c) with n = a + b + c is given by

dn ≡ cρ

2
+

n(n − 1)
2

. (10.1.7)

Since the values of both nA(t) + nC(t) and nB(t) + nC(t) cannot increase as t
increases, and eventually both must have the value 1, we see that the reduced
process has absorbing states at (1, 0, 0), (0, 1, 0) and {(1, 1, 0), (0, 0, 1)}. It
starts from n(0) = (0, 0, n). We might also consider the case in which only
some of the genes, say c < n, are typed at both loci, while a are typed only
at the A locus and the remaining b = n− a− c are typed only at the B locus.
In this case, n(0) = (a, b, c).
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10.2 The correlation between tree lengths

In this section, we derive a recursion satisfied by the covariance of the tree
lengths LA and LB of the marginal trees TA and TB respectively. The devel-
opment here follows that of Pluzhnikov (1997).

For an initial configuration n(0) = (a, b, c) define F (a, b, c; ρ) to be the
covariance between LA and LB. Thus F (0, 0, n; ρ) is the covariance of the
marginal tree lengths for a sample of size n typed at both loci. We watch the
Markov chain n(·) only at the points it changes state. The resulting jump
chain is denoted by N(·). Let Z be a random variable that gives the outcome
of a one-step jump of the chain N(·) starting from (a, b, c), and let Z = z1

correspond to the move to (a+1, b+1, c− 1), Z = z2 correspond to the move
to (a − 1, b − 1, c + 1) and so on, in the order given in (10.1.6). The jump
probabilities are

pi = P(Z = zi) = ri/dn, i = 1, . . . , 5. (10.2.1)

Pluzhnikov (1997) established the following representation, which follows im-
mediately from the properties of the coalescent trees TA and TB and the
ARG.

Lemma 10.2 Conditional on Z = (a1, b1, c1), we have

LA = XA + TA (10.2.2)

where

(i) XA ∼ La1+c1 , where Lm denotes the length of an m-coalescent tree;
(ii) TA ∼ n1T, where T is exponential(dn) and n1 = a + c;
(iii) XA and TA are independent.

Furthermore, a similar representation holds for LB given Z:

LB = XB + TB ∼ Lb1+c1 + n2T, (10.2.3)

where n2 = b + c. In addition, XB and TA are independent, as are XA and
TB.

This leads to the main result of this section, derived originally in somewhat
different form by Kaplan and Hudson (1985).

Theorem 10.3 For any ρ ∈ [0,∞), the covariance Cov(LA, LB) := F (a, b, s; ρ)
satisfies the linear system

dnF (a, b, c; ρ) = r1F (a + 1, b + 1, c − 1; ρ) + r2F (a − 1, b − 1, c + 1; ρ)
+r3F (a − 1, b, c; ρ) + r4F (a, b − 1, c; ρ) (10.2.4)
+r5F (a, b, c − 1; ρ) + Rn
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where n = a + b + c, n1 = a + c, n2 = b + c, dn = (n(n − 1) + cρ)/2, the ri are
given in (10.1.6), and Rn = 2c(c− 1)/((n1− 1)(n2− 1)). The system (10.2.4)
has a unique solution satisfying the boundary conditions

F (a, b, c; ρ) = 0 whenever n1 < 2, or n2 < 2, or a < 0, or b < 0, or c < 0.
(10.2.5)

Proof. The proof uses the formula for conditional covariances, namely

Cov(X, Y ) = E(Cov(X, Y | Z)) + Cov(E(X | Z), E(Y | Z)),

with X = LA, Y = LB and Z as defined above. Clearly,

E(Cov(X, Y | Z)) =
5∑

i=1

piCov(X, Y | Z = zi),

where the pi are defined in (10.2.1). Now

Cov(X, Y | Z = z1) = Cov(XA + TA, XB + TB)
= Cov(XA, XB) + Cov(TA, TB)
= F (a + 1, b + 1, c− 1, ; ρ) + n1n2Var(T )
= F (a + 1, b + 1, c− 1, ; ρ) + n1n2d

−2
n (10.2.6)

Using similar arguments gives

E(Cov(X, Y | Z)) = r1F (a + 1, b + 1, c − 1; ρ) + r2F (a − 1, b − 1, c + 1; ρ)
r3F (a − 1, b, c; ρ) + r4F (a, b − 1, c; ρ) (10.2.7)
+r5F (a, b, c − 1; ρ) + n1n2d

−2
n .

Next, recall that

Cov(E(Y | Z), E(Y | Z)) = E[(E(X | Z) − E(X))(E(Y | Z) − E(Y ))].

Using basic properties of the regular coalescent, we can derive the distributions
of f(Z) = E(X | Z) − E(X) and g(Z) = E(Y | Z) − E(Y ); these are given in
Table 16. Hence we find that

Cov(E(X | Z), E(Y | Z)) = E(f(Z)g(Z))

=
5∑

i=1

pif(zi)g(zi)

= −n1n2

d2
n

+
2c(c − 1)

dn(n1 − 1)(n2 − 1)
(10.2.8)

Adding (10.2.7) and (10.2.8) yields (10.2.4).
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Table 16. The probability distribution of f(Z) and g(Z)

Z f(Z) g(Z) P(Z = zi)

(a + 1, b + 1, c − 1) n1/dn n2/dn p1

(a − 1, b − 1, c + 1) n1/dn n2/dn p2

(a − 1, b, c) n1/dn − 2/(n1 − 1) n2/dn p3

(a, b − 1, c) n1/dn n2/dn − 2/(n2 − 1) p4

(a, b, c − 1) n1/dn − 2/(n1 − 1) n2/dn − 2/(n2 − 1) p5

The boundary conditions follow from the restriction that the ancestral
process for each locus be considered no further back than its MRCA. ��

Equations like (10.2.4) can be solved by observing that if the degree of
F (a, b, c) is defined as a + b + 2c, then the degree on the right is at most
the degree on the left; knowing lower degree terms allows the higher degree
terms to be found by solving a lower triangular system of equations. Ethier
and Griffiths (1990) developed an efficient computational method for solving
such systems. The solution is known explicitly in very few cases, among them
Griffiths’ (1981) result

F (0, 0, 2; ρ) =
4(ρ + 18)

ρ2 + 13ρ + 18
. (10.2.9)

Some other examples

The equation in (10.2.4) can be written in the form

F (a, b, c; ρ) = LF + g(a, b, c; ρ) (10.2.10)

where in (10.2.4) we had g(a, b, c; ρ) = d−1
n Rn. The same type of equation

arises in studying many properties of the ARG. We mention two of them,
derived by Griffiths (1991).

Define the time Wn = max(TA, TB) by which the sample of size n has a
common ancestor at both the A and B loci. This is the time taken to reach the
states {(1, 1, 0), (0, 0, 1)} starting from (0, 0, n). Starting from a configuration
of (a, b, c) with a + b + c = n, the expected waiting time f(a, b, c; ρ) satisfies
(10.2.10) with

g(a, b, c; ρ) = d−1
n ,

and boundary conditions

f(1, 0, 0; ρ) = 0, f(0, 1, 0; ρ) = 0, f(1, 1, 0; ρ) = 0, f(0, 0, 1; ρ) = 0. (10.2.11)

We are interested in EWn = f(0, 0, n; ρ). When n = 50, representative times
are EW50 = 1.96 (ρ = 0), = 2.14 (ρ = 0.5), = 2.36 (ρ = 2.0), = 2.50 (ρ =
10), = 2.52 (ρ = ∞).
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Hudson and Kaplan (1985) studied the number of recombination events
R0

n that occur in the history of the sample up to time Wn to ancestors of the
sample having material belonging to both marginal trees. Define f0(a, b, cρ)
to be the expected number of transitions of the form (a′, b′, c′) → (a′ + 1, b′ +
1, c′− 1) until reaching the state {(1, 1, 0), (0, 0, 1)}, starting from (a, b, c). By
considering the type of the first transition, we see that f0 satisfies an equation
of the form (10.2.10), with

g(a, b, c; ρ) =
cρ

n(n − 1) + cρ
,

and boundary conditions (10.2.11). The quantity we want is ER0
n = f0(0, 0, n; ρ).

When n = 50, representative values are ER0
50 = 0.00 (ρ = 0), = 2.13 (ρ =

0.5), = 7.51 (ρ = 2.0), = 25.6 (ρ = 10).
In contrast, the expected number of recombination events ERn in the

entire history back to the grand MRCA can be found from the random walk
which makes transitions according to

m → m + 1 with probability ρ/(ρ + m − 1), m ≥ 0
m → m − 1 with probability (m − 1)/(ρ + m − 1), m ≥ 1.

Rn is the number of times the random walk makes a move of the form m′ →
m′ + 1 before reaching value 1. Standard random walk theory shows that

ERn = ρ

∫ 1

0

1 − (1 − v)n−1

v
eρvdv. (10.2.12)

When n = 50, representative times are ER50 = 0.00 (ρ = 0), = 2.52 (ρ =
0.5), = 16.2 (ρ = 2.0), = 24, 900 (ρ = 10). A comparison with the values of
ER0

n shows that ERn and ER0
n may differ dramatically.

10.3 The continuous recombination model

We now consider a more general class of model in which each chromosome is
represented by the unit interval [0, 1]. This (and the figures in this section)
comes from Griffiths and Marjoram (1997). If a recombination occurs, a posi-
tion Z for the break point is chosen (independently from other break points)
according to a given distribution, and the recombined chromosome is formed
from the lengths [0, Z] and [Z, 1] from the first and second parental chromo-
somes. Other details are as for the 2-locus model. There are several interesting
potential choices for the break point distribution Z: Z is constant at 0.5, giv-
ing rise to the two-locus model studied earlier; Z is discrete, taking values
1
m , . . . , m−1

m , giving rise to a m-locus model; and Z has a continuous distri-
bution on [0, 1], where breaks are possible at any point in [0, 1]; a particular
choice might be the uniform distribution on [0, 1].

As for the 2-locus model we are lead to the concept of ancestral graphs, but
now the position at which a recombination occurs is also relevent. Figure 10.2
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illustrates an ancestral graph for a sample of n = 4 individuals. Positions
Z1, Z2, . . . where recombination breaks occur are labeled on the graph. The
process Aρ

n(t) which records the number of ancestors of a sample of size n has
identical transition rates as the corresponding process for the 2-locus model.

Fig. 10.2. Ancestral recombination graph.

a
b

c
d

Whereas in the 2-locus model there were two ancestral trees corresponding
to the ancestral graph, one for each locus, we now find that each point x ∈ [0, 1]
has an ancestral tree T(x) associated with it, and marginally each of these
trees is described by the coalescent. To obtain T(x) we trace from the leaves
of the ARG upward toward the MRCA. If there is a recombination vertex
with label z, we take the left path if x ≤ z, or right path if x > z. The MRCA
in T(x) may occur in the graph before the grand MRCA. Figure 10.2 shows
an example of T(x) when x > b and x < c, d.

Since there are a finite number of recombination events in the graph, there
are only a finite number of trees in {T(x); x ∈ [0, 1]}. There are potentially 2R

if R recombination events have occurred, but some trees may be identical, or
may not exist, depending on the ordering of the recombination break points.
Of course (just as before) different trees share edges in the graph, and so are
not independently distributed.

Figure 10.4 shows all possible trees corresponding to the ancestral graph
in Figure 10.2. Trees 1 and 9 are identical; the other trees are all distinct. If
b > a then all trees exist as marginal trees in the graph, otherwise if b < a



162 Simon Tavaré

Fig. 10.3. Marginal tree T(x), when x > b and x < c, d.

b

c
d

trees in Figure 10.4 with the right edge at vertex a do not exist as marginal
trees.

Just as for the two-locus ARG, ancestor individuals may now only have
part of their gametic material in common with the sample. It is also possible
that some ancestors in the graph contain no material in common. A point x
on an ancestor represented by an edge e in the graph has ancestral material in
common with the sample if and only if e is included in T(x). Thus the subset
of [0, 1] over which that ancestor has ancestral material in common with the
sample is Pe = {x; T(x) � e, x ∈ [0, 1]}. Pe is a union of a finite number of
intervals, whose endpoints are a subset of the positions where recombination
breaks have occurred. If e and f are two edges, and e∨ f denotes a coalesced
edge from e and f , then Pe∨f = Pe

⋃
Pf . If a recombination break occurs at

z, to an edge e, then the left and right hand edges from e in the graph are
Pe

⋂
[0, z] and Pe

⋂
[z, 1].

In the ancestral graph each ancestor can be labeled by which sample
genes, and subsets of material it is ancestral to. The sample is represented
as

⊗n
i=1(i, [0, 1]) and at any given time the ancestors of the sample can be

thought of as a partition of this set. An illustration of this is given in Fig-
ure 10.5, adapted from Nordborg and Tavaré (2002). The figure shows the
regions of various ancestral segments that are ancestral to the members of the
sample.
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Fig. 10.4. All possible marginal trees for the graph in Figure 10.2.

10.4 Mutation in the ARG

Mutation is superimposed on the ARG just as it was in the single locus case:
Mutations arise at rate θ/2 independently on different branches of the tree,
and their effects are modeled by the mutation operator Γ . In the coalescent
model with recombination, it often makes no sense to consider mutations that
arise on lineages that are lost in the history of the sample due to recombi-
nation. Instead, we consider just those mutations which occurred on lineages
having meterial in common with the sample. In the m-locus model, there are
now m marginal trees, denoted by T1, . . . , Tm. In we denote by M

(i)
n the num-

ber of mutations occurring on the ith subtree back to its common ancestor,
then the total number of mutations is

Mn =
m∑

i=1

M (i)
n . (10.4.1)

If the mutation rate at each locus is the same, then the overall mutation rate
is Θ = mθ, so that

EMn =
m∑

i=1

EM (i)
n = Θ

n−1∑
j=1

1
j
. (10.4.2)

Furthermore

Var(Mn) =
m∑

i=1

Var(M (i)
n + 2

m∑
i=1

m∑
k=i+1

Cov(M (i)
n , M (k)

n ).
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Fig. 10.5. The history of segments in an ancestral recombination graph
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To evaluate the second term Σ2, note that conditional on the two marginal
subtrees, the mutation processes on those trees are independent. Denoting the
tree length at the ith locus by L

(i)
n , this leads to Hudson’s (1983) observation

that

Cov(M (i)
n , M (k)

n ) =
θ2

4
Cov(L(i)

n , L(k)
n ).

In Theorem 10.3 we found the covariance Fn(ρ) ≡ F (0, 0, n; ρ) of the tree
lengths in a two locus model with recombination parameter ρ. We can use
this to find the covariances in the m-locus model in which the recombination
rate ρ between any two adjacent loci is assumed to be the same. The overall
recombination rate is R = (m − 1)ρ, and for 1 ≤ i < k ≤ m, the covariance
between L

(i)
n and L

(j)
n is given by Fn((k − i)ρ). Hence
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Σ2 =
θ2

2

m−1∑
i=1

m∑
k=i+1

Fn((k − i)ρ) =
θ2

2

m−1∑
k=1

(m − k)Fn(kρ).

Combining these results, we see that

Var(Mn) = m


θ

n−1∑
j=1

1
j

+ θ2
n−1∑
j=1

1
j2


+

θ2

2

m−1∑
k=1

(m − k)Fn(kρ)

= Θ

n−1∑
j=1

1
j

+
Θ

m

n−1∑
j=1

1
j2

+
Θ2

2m

m−1∑
k=1

(
1 − k

m

)
Fn

(
kR

m − 1

)
.

Hudson considered the limiting case in which m → ∞ while Θ and R are
held fixed. This results in

Var(Mn) = Θ

n−1∑
j=1

1
j

+
Θ2

2

∫ 1

0

(1 − w)Fn(Rw)dw (10.4.3)

= Θ

n−1∑
j=1

1
j

+
1
2

Θ2

R2

∫ R

0

(R − w)Fn(w)dw.

10.5 Simulating samples

We consider first the two-locus case. Suppose that there is an overall mutation
rate of θA at the A locus, and θB at the B locus, and let θ = θA + θB. We
begin by describing the sequence of mutation, recombination, and coalescence
events that occur in the history of the sample back to the MRCA.

Since mutations occur according to independent Poisson processes of rate
θ/2 along each lineage, we see that if there are currently m edges in the
ancestral graph then the next event on the way back to the MRCA will be a
mutation with probability mθ/(m(m − 1) + mθ + mρ) = θ/(m − 1 + ρ + θ),
a recombination with probability ρ/(m − 1 + θ + ρ), and a coalescence with
probability (m − 1)/(m − 1 + ρ + θ). With these events, we may associate a
random walk {Tk, k ≥ 0} which makes transitions according to

m → m + 1 with probability ρ/(θ + ρ + m − 1),
m → m with probability θ/(θ + ρ + m − 1),
m → m − 1 with probability (m − 1)/(θ + ρ + m − 1),

for m ≥ 1. To describe a sample of size n, the process starts from T0 = n, and
ends at the MRCA when T· = 1.

The effects of each mutation can be modeled in many different ways, for
example allowing different combinations of infinitely-many-alleles, infinitely-
many-sites, and finitely-many-sites at each locus. In the constant population
size model, we can exploit the Markov chain {Tk, k ≥ 0} to provide an urn
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model that can be used to simulate samples efficiently, particularly when the
recombination rate ρ is not too large. First we have to generate the sequence of
mutation, recombination, and coalescence events back to the MRCA, starting
at the sample, and then superimpose the effects of each type of event starting
at the MRCA and going down to the sample. Here is how this works.

Algorithm 10.1 To simulate from two-locus model.

(i) Simulate the random walk Tk starting from n until it reaches 1 at step τ .
For k = 1, . . . , τ , write Uk = Tτ−k+1 − Tτ−k.

(ii) Start by generating the type of the MRCA. For example, for a station-
ary sample choose the type of this individual according to the stationary
distribution of the mutation process. If mutation is independent at each
locus this is the product of the stationary distributions of each mutation
process.

(iii) We now use the sequence U1, U2, . . . Uτ (in that order) to generate the
sample. For k = 1, 2, . . . , τ :
• If Uk = −1 then a recombination event has occurred. Choose two indi-

viduals at random without replacement from the current individuals,
and recombine them. The first individual chosen contributes the A
locus allele, the second the B locus allele.

• If Uk = 0, a mutation has occurred. Choose an individual at random
and generate a mutation. With probability θA/θ the mutation occurs
at the A locus, in which case a transition is made according to the
mutation distribution Γ A(x, ·) if the type is currently x, and similarly
for the B locus.

• If Uk = 1, then a coalescence has occurred. Choose an individual at
random and duplicate its type.

(iv) After τ steps of the process, the sample has size n and the distribution of
the sample is just what we wanted.

It can be seen that the efficiency of this algorithm depends on the expected
value of τ . When either ρ or θ is large, Eτ can be very large, making the
simulation quite slow.

This method extends directly to simulations of samples from the general
ARG. Once the locations of the recombination events have been simulated
according to Algorithm 10.1, we can choose recombination break points ac-
cording to any prescribed distribution on [0,1]. Essentially any mutation mech-
anism can be modeled too. For example, for the infinitely-many-sites model we
can suppose that mutations occur according to a continuous distribution on
(0,1), and that the label of a mutation is just the position at which it occurs.
In the case of variable population size this method does not work, and the
ancestral recombination graph needs to be simulated first, and then mutations
are superimposed from the MRCAs. Hudson (1991) is a useful reference.
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10.6 Linkage disequilibrium and haplotype sharing

Because the genealogical trees at different linked positions in a segment are
not independent of one another, neither will be the allelic states of these loci –
there will be linkage disequilibrium (LD) between the loci. LD is usually quan-
tified by using various measures of association between pairs of loci. Consider
two such loci, each of which has two possible alleles, and denote the relative
frequency of the AiBj haplotype by p(Ai, Bj), and let p(Ai), p(Bj) denote the
relative frequency of each allele. Among the pairwise measures of LD are

• D′, the value of D = p(A1, B1) − p(A1)p(B1), normalized to have values
between -1 and 1 regardless of allele frequencies;

• r2, the correlation in allelic state between the two loci as they occur in
haplotypes;

• d2 = (p(B1 |A2) − p(B1 |A1))2, which measures the association between
the alleles at (marker) locus B and the alleles at (disease) locus A.

These and other measures of LD are discussed further in Guo (1997), Hudson
(2001) and Pritchard and Przeworski (2001).

Because of the history of recombination and mutation in a sample, pair-
wise LD is expected to be extremely variable. This is illustrated in Figure 10.6,
adapted from Nordborg and Tavaré (2002). The horizontal axis, which rep-
resents chromosomal position, corresponds to roughly 100 kb. The plots il-
lustrate the haplotype sharing and LD with respect to particular focal mu-
tations. In the left column, a relatively low-frequency mutation (5/50=10%)
was chosen as focus, and in the right column, a relatively high-frequency one
(22/50=44%). The chromosomal position of these mutations are indicated by
the vertical lines. The top row of plots shows the extent of haplotype sharing
with respect to the MRCA of the focal mutation among the 50 haplotypes.
The horizontal lines indicate segments that descend from the MRCA of the
focal mutation. Light lines indicates that the current haplotype also carries
the focal mutation, dark lines that it does not. Note that the light segments
necessarily overlap the position of the focal mutation. For clarity, segments
that do not descend from the MRCA of the focal mutation are not shown at
all, and haplotypes that do not carry segments descended from the MRCA of
the focal mutation are therefore invisible. The second row of plots shows the
behavior of LD as measured by d2 for different choices of markers. In each plot,
the horizontal position of a dot represents the chromosomal position of the
marker, and the vertical position the value of the measure (on a zero-to-one
scale).

Because of interest in mapping disease susceptibility genes, the extent of
LD across the human genome has been much debated. What is clear is that
while there is a relationship between LD measures and distance, the inherent
variability in LD makes this relationship hard to infer. In particular, it is
difficult to compare studies that use different measures of pairwise LD as
these measures can differ dramatically in their estimates of the range of LD.
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Fig. 10.6. Decay of haplotype sharing
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For reviews of these issues in relation to mapping, see for example Clayton
(2000), Weiss and Clark (2002), Nordborg and Tavaré (2002) and Ardlie et
al. (2002).

Estimating the recombination fraction

There is a sizable literature on estimation of the scaled recombination rate
ρ, among them methods that use summary statistics of the data such as
Hudson (1987), Hey and Wakeley (1997), and Wakeley (1997). Griffiths and
Marjoram (1996) and Fearnhead and Donnelly (2001) exploit the importance
sampling approach developed in Section 6 for the infinitely-many-sites model,
while Nielsen (2000) and Kuhner et al. (2000) use MCMC methods, the latter
specifically for DNA sequence data. Wall (2000) has performed an extensive
comparison of these approaches. One conclusion is that (reliable) estimation
of pairwise recombination fractions is extremely difficult. See Fearnhead and
Donnelly (2002) for another approach, and Morris et al. (2002) and the ref-
erences contained therein for approaches to mapping disease genes using the
coalescent.
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11 ABC: Approximate Bayesian Computation

Several of the previous sections have described methods for simulating obser-
vations from a posterior distribution. One key ingredient in these methods is
the likelihood function; we have until now assumed this could be computed
numerically, for example using the peeling algorithm described in Section 9.4.
In this section we describe some methods that can be used when likelihoods
are hard or impossible to compute.

In this section, data D are generated from a model M determined by
parameters θ. We denote the prior for θ by π(θ). The posterior distribution
of interest is f(θ | D) given by

f(θ | D) = P(D | θ)π(θ)/P(D),

where P(D) =
∫

P(D | θ)π(θ) dθ is the normalizing constant.

11.1 Rejection methods

We have already seen examples of the rejection method for discrete data:

Algorithm 11.1

1. Generate θ from π(·)
2. Accept θ with probability h = P(D | θ), and return to 1.

It is easy to see that accepted observations have distribution f(θ | D), as
shown for example in Ripley (1987). As we saw in Section 7.3, the computa-
tions can often be speeded up if there is constant c such that P(D | θ) ≤ c for
all θ. h can then then be replaced by h/c.

There are many variations on this theme. Of particular relevance here is
the case in which the likelihood P(D | θ) cannot be computed explicitly. One
approach is then the following:

Algorithm 11.2

1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ
3. Accept θ if D′ = D, and return to 1.

The success of this approach depends on the fact that the underlying
stochastic process M is easy to simulate for a given set of parameters. We
note also that this approach can be useful when explicit computation of the
likelihood is possible but time consuming.

The practicality of algorithms like these depends crucially on the size of
P(D), because the probability of accepting an observation is proportional to
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P(D). In cases where the acceptance rate is too small, one might resort to
approximate methods such as the following:

Algorithm 11.3

1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ
3. Calculate a measure of distance ρ(D, D′) between D′ and D

4. Accept θ if ρ ≤ ε, and return to 1.

This approach requires selection of a suitable metric ρ as well as a choice
of ε. As ε → ∞, it generates observations from the prior, and as ε → 0,
it generates observations from the required density f(θ | D). The choice of
ε reflects the interplay between computability and accuracy. For a given ρ
and ε accepted observations are independent and identically distributed from
f(θ | ρ(D, D′) ≤ ε).

11.2 Inference in the fossil record

In this section, we give an application of Algorithm 11.3 to a problem concern-
ing estimation of the time to the most recent common ancestor of primates.
Our inference is based not on molecular data but on a sampling of the fossil
record itself.

The problem

In Table 17 the number of primate species found as fossils in a series of strati-
graphic intervals is given. Tavaré et al. (2002) developed a statistical method
for estimating the temporal gap between the base of the stratigraphic interval
in which the oldest fossil was found and the initial point of divergence of the
species in the sample. The bias in the estimators and approximate confidence
intervals for the parameters were found by using a parametric bootstrap ap-
proach. Estimates of the divergence time of primates (more accurately, the
time of the haplorhine-strepsirrhine split) based on molecular sequence data
give a time of about 90 million years. A literal interpretation of the fossil
record suggests a divergence time of about 60 million years. One reason for
the present studies is to reconcile these two estimates. A more detailed account
of the problem is given in Soligo et al. (2002).

A model for speciation and sampling

We adopt the same framework as in Tavaré et al. (2002). We model speciation
with a non-homogeneous Markov birth-and-death process. To model evolution
from the last common ancestor of all living and fossil species included in the
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Table 17. Data for the primate fossil record. References can be found in the sup-
plemental material in Tavaré et al. (2002).

Observed
Epoch k Tk number of

species (Dk)

Late Pleistocene 1 0.15 19
Middle Pleistocene 2 0.9 28
Early Pleistocene 3 1.8 22
Late Pliocene 4 3.6 47
Early Pliocene 5 5.3 11
Late Miocene 6 11.2 38
Middle Miocene 7 16.4 46
Early Miocene 8 23.8 36
Late Oligocene 9 28.5 4
Early Oligocene 10 33.7 20
Late Eocene 11 37.0 32
Middle Eocene 12 49.0 103
Early Eocene 13 54.8 68
Pre-Eocene 14 0

analysis, we start with two species at time 0. Species go extinct at rate λ, and
so have exponential lifetimes with mean 1/λ, time being measured in millions
of years. A species that goes extinct at time u is replaced by an average of
m(u) new species. We denote by Zt the number of species alive at time t. The
expected number of species extant at time t is given by

EZt = 2 exp
{

λ

∫ t

0

(m(u) − 1)du

}
; (11.2.1)

cf. Harris (1963), Chapter 5. Furthermore, if B(s, t] denotes the number of
species born in the interval (s, t], then

EB[s, t) = λ

∫ t

s

m(u) EZu du, s < t. (11.2.2)

We divide time into k stratigraphic intervals, following this sequence (see
Table 17 and Figure 11.1). The base of the first (youngest) stratigraphic inter-
val is at T1 mya and the base of the kth is at Tk million years ago (mya). The
earliest known fossil is found in this interval. The founding species originate
at time T := Tk + τ mya, and we define a (k + 1)st stratigraphic interval that
has its base at Tk+1 := T mya and ends Tk mya. Note that no fossils have
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Fig. 11.1. An illustration of the stochastic model of fossil finds. Bases of 5 strati-
graphic intervals at T1, , . . . , T5 mya are shown along the x-axis. The temporal gap
between the base of the final interval and the point at which the two founding species
originate is denoted by τ . Thick lines indicate species found in the fossil record. Time
0 is the present day.

been found in this interval. We wish to approximate the posterior distribution
of the time τ and other parameters of the model, using as data the number of
different species found in the fossil record in the first, second, . . . , kth inter-
vals. We model the number of species alive u mya by the value ZT−u of the
Markov branching process described earlier.

The number Nj of distinct species living in the jth stratigraphic interval
having base Tj mya is the sum of those that were extant at the beginning of the
interval, ZT−Tj , plus those that originated in the interval, B[T −Tj, T −Tj−1).
It follows from (11.2.1) and (11.2.2) that the expected number of distinct
species that can be sampled in the jth stratigraphic interval is

ENj = EZT−Tj−1 + λ

∫ T−Tj−1

T−Tj

EZu du, j = 1, . . . , k + 1. (11.2.3)

We assume that, conditional on the number of distinct species Nj that lived
in the jth stratigraphic interval, the number of species Dj actually found in
the fossil record in this interval is a binomial random variable with parameters
Nj and αj , j = 1, 2, . . . , k. Furthermore, the Dj are assumed to be condi-
tionally independent given the Nj . The parameter αj gives the probability of

0T1T2T3T4T5T τ
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sampling a species in the jth stratigraphic interval. A typical data set is given
in Table 17.

A Bayesian approach

We write D = (D1, . . . , Dk+1) for the counts observed in the k+1 stratigraphic
intervals, and we write θ for the vector of parameters of the process, one of
which is τ , the temporal gap. The likelihood can be written in the form

P(D | θ) = E

k+1∏
j=1

(
Nj

Dj

)
α

Dj

j (1 − αj)Nj−Dj , (11.2.4)

where the expectation is over trajectories of the speciation process Z that run
for time T with parameter θ, and such that both initial branches have offspring
species surviving to time T . By convention the term under the expectation
sign is 0 if any Dj > Nj .

While the acceptance probability is difficult to compute, the stochastic
process itself can be simulated easily, and Algorithm 11.3 comes into play.
One crucial aspect of this method is the choice of ρ in Algorithm 11.3. The
counts D1, . . . , Dk+1 can be represented as the total number of fossils found,

D+ = D1 + · · · + Dk+1,

and a vector of proportions

(Q1, . . . , Qk+1) :=
(

D1

D+
, . . . ,

Dk+1

D+

)
.

We can therefore measure the distance between D and a simulated data set
D′ by

ρ(D, D′) =
∣∣∣∣D

′
+

D+
− 1

∣∣∣∣+ 1
2

k+1∑
j=1

|Qj − Q′
j|. (11.2.5)

The first term measures the relative error in the total number of fossils found
in a simulated data set and the actual number, while the second term is the
total variation distance between the two vectors of proportions.

Results

Tavaré et al. (2002) modelled the mean diversification via the logistic function,
for which

EZt = 2/{γ + (1 − γ)e−ρt}. (11.2.6)

This form is quite flexible; for example, γ = 0 corresponds to exponential
growth. They equated the expected number of species known at the present
time with the observed number, and also specified the time at which the mean
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diversification reached 90% of its current value. These two equations serve to
determine the form of the speciation curve. They also assumed a mean species
lifetime of 2.5 my (although their results were little changed by assuming a 2
my or 3 my lifetime). They modelled the sampling fractions αj in the form

αj = αpj , j = 1, 2, . . . , k + 1, (11.2.7)

where the pj are known proportions, and α is a scale parameter to be estimated
from the data. The particular values of the pj they used are given in Table 18.
The average value is p̄ = 0.73.

Table 18. Sampling proportions pj

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pj 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.5 0.1 0.5 1.0 1.0 1.0 0.1

Using the data from Table 17, they estimated a temporal gap of 26.7 my
with an approximate 95% confidence interval of 17.2 my to 34.8 my. As the
oldest known fossil primate is 54.8 my old, this is equivalent to an age of 81.5
my for the last common ancestor of living primates. The average sampling
fraction ᾱ, defined as

ᾱ = αp̄ (11.2.8)

was estimated to be 5.7% with an upper 95% confidence limit of 7.4%.
For comparison with the earlier approach, we treat both ρ and γ as fixed

parameters, so that the parameter θ is given by θ = (τ, α). The prior distri-
butions were chosen as

τ ∼ U(0, 100)
α ∼ U(0, 0.3)

the notation U(a, b) denotes the uniform density on (a, b). In Tavaré et al.
(2002), we used fixed values of ρ = 0.2995, γ = 0.0085. From 500 accepted ob-
servations with ε = 0.1, we obtain the summaries in Figure 11.2 and Table 19.
A median value of 27.6 my for the posterior value of the temporal gap τ is
very close to that estimated in the previous analysis (Tavaré et al. (2002))
and is equivalent to an age of 82.4 my for the last common ancestor of living
primates. The 2.5% and 97.5% points of the posterior of τ are estimated to
be 15.4 my and 57.9 my, and the 95% point of the posterior for ᾱ is 10%;
these values are all broadly consistent with the previously published analysis.
The posterior distribution of the number of present-day species serves as a
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Fig. 11.2. Left panel: posterior for τ . Right panel: posterior for ᾱ.

8070605040302010

0.05

0.04

0.03

0.02

0.01

0.00

D
en

si
ty

0.100.050.00

15

10

5

0

D
en

si
ty

Table 19. Summary statistics for τ , ᾱ and N0 when ρ and γ are fixed.

τ ᾱ(%) N0

25th percentile 22.4 3.7 180
median 27.6 5.4 253
mean 30.1 5.7 294
75th percentile 36.6 7.5 357

goodness-of-fit assessment. The observed number of extant primates, 235, is
clearly a typical value under the posterior.

The analysis here can be compared to a full MCMC approach. The results
are essentially indistinguishable; see Plagnol and Tavaré (2003) for further de-
tails. One advantage of approximate Bayesian approaches are their flexibility.
A number of other scenarios, such as different species diversity curves and
sampling schemes, can be examined quickly. For further details, see Will et
al. (2003).

11.3 Using summary statistics

In Section 7 we found the posterior distribution conditional on a summary
statistic rather than the full sequence data. The motivating idea behind this
is that if the set of statistics S = (S1, . . . , Sp) is sufficient for θ, in that
P(D | S, θ) is independent of θ, then f(θ | D) =f(θ | S). The normalizing
constant is now P(S) which is typically larger than P(D), resulting in more
acceptances.

In practice it is be hard, if not impossible, to identity a suitable set of
sufficient statistics, and we might then resort to a more heuristic approach
that uses knowledge of the particular problem at hand to suggest summary
statistics that capture information about θ. With these statistics in hand,
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we have the following approximate Bayesian computation scheme for data D

summarized by S:

Algorithm 11.4

1. Generate θ from π(·)
2. Simulate D′ from model M with parameter θ, and compute the corre-

sponding statistics S′

3. Calculate the distance ρ(S, S′) between S and S′

4. Accept θ if ρ ≤ ε, and return to 1.

Examples of this algorithm approach appear frequently in the population
genetics literature, including Fu and Li (1997), Weiss and von Haeseler (1998),
Pritchard et al. (1999) and Wall (2000). Beaumont et al. (2002) describes a
novel generalization of the rejection method in which all observations gener-
ated in steps 1 and 2 of Algorithm 11.4 are used in a local-linear regression
framework to improve the simulation output. They also describe a number of
other examples of this approach.

11.4 MCMC methods

There are several advantages to these rejection methods: they are usually
easy to code, they generate independent observations (and so can use embar-
rassingly parallel computation), and they readily provide estimates of Bayes
factors, which can be used for model comparison. On the other hand, for com-
plex probability models sampling from the prior does not make good use of
accepted observations, so these methods can be prohibitively slow. Here we
describe an MCMC approach to problems in which the likelihood cannot be
readily computed.

As we saw in Section 9, the Metropolis-Hastings Algorithm for generat-
ing observations from f(θ | D) uses output from a Markov chain. It can be
described as follows:

Algorithm 11.5

1. If at θ, propose a move to θ′ according to a transition kernel q(θ → θ′)
2. Calculate

h = min
(

1,
P(D | θ′)π(θ′)q(θ′ → θ)
P(D | θ)π(θ)q(θ → θ′)

)

3. Move to θ′ with probability h, else stay at θ; go to 1.

In Marjoram et al. (2003) we describe an MCMC approach that is the
natural analog of Algorithm 11.4, in that no likelihoods are used (or estimated)
in its implementation. It is based on the following steps:
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Algorithm 11.6

1. If at θ propose a move to θ′ according to a transition kernel q(θ → θ′)
2. Generate D′ using model M with parameters θ′

3. If ρ(S′, S) ≤ ε, go to 4, and otherwise stay at θ and return to 1,
4. Calculate

h = h(θ, θ′) = min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)

5. Move to θ′ with probability h, else stay at θ; go to 1.

The stationary distribution of the chain is indeed f(θ | ρ(S′, S) ≤ ε).
Applications of this approach to inference about mutation rates are given in
Marjoram et al. (2003) and Plagnol and Tavaré (2003). The method usually
has to be implemented by including part of the underlying coalescent tree and
the mutation process as part of the MCMC update (making it part of θ, as it
were).

The method seems to allow some flexibility in studying problems where ex-
isting methods don’t work well in practice, such as analyzing complex models
of mutation and analyzing restriction fragment length polymorphism data.
There is a need for research on implementable methods for identifying ap-
proximately sufficient statistics, and for the development of more sophisti-
cated MCMC methods that do not use likelihoods. Such approaches will be
necessary when addressing problems involving high-dimensional parameters.

11.5 The genealogy of a branching process

Thus far the genealogical processes used in these notes have been evolving in
continuous time. In this section, we describe informally a method for generat-
ing the genealogical history of a sample of individuals evolving according to
a discrete-time branching process.

The conventional way to describe the evolution of a Galton-Watson process
is as a series of population sizes Z0, Z1, Z2, . . . at times 0,1,2, . . . . The number
of individuals Zm+1 is a random sum:

Zm+1 =
Zm∑
j=1

ξmj ,

where ξmj , j ≥ 1 are identically distributed random variables having a dis-
tribution that may depend on m. A more detailed description of the process
gives the number of families Fmk born into generation m that have k members,
k = 0, 1, 2, . . .. Given Zm−1, the joint distribution of Fmj , j ≥ 0 is multinomial
with sample size Zm−1 and qm−1,k, k ≥ 0; here,

qm−1,k = P(ξm−1,1 = k).
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To simulate the genealogy of a random sample of size n from generation g
of the process we proceed as follows; cf. Weiss and von Haeseler (1997). Start-
ing from Z0 individuals, generate the family size statistics F1k, k ≥ 0. These
determine Z1, after which the family sizes F2k, k ≥ 0 can be generated. Con-
tinuing in this way we finally generate the family sizes Fgk, k ≥ 0. This done,
a random subtree with n leaves can be generated backwards from generation
g as follows. Randomly choose n individuals without replacement, recording
which family they belong to (there being Fgk families of size k). Count the
number A of families represented, each one corresponding to a distinct ances-
tor in generation g− 1. Next, sample A individuals from generation g− 1 and
record which families they belong to (there now being Fg−1,k families of size
k), and so on. Iterating this scheme back through generations g−1, g−2, . . . , 1
produces a genealogical tree having the required distribution.

Versions of this scheme have been used to study the polymerase chain
reaction by Weiss and von Haeseler (1997), and to estimate the time to loss
of mismatch repair in a colon tumor by Tsao et al. (2000) and Tavaré (2004).
In both examples, the effects of a mutation process are superimposed on the
genealogy, thereby generating sample data. Because the simulated genealogies
are relatively quick to produce, they can be used for statistical inference such
as implementations of Algorithm 11.4.

Finally we note that the simulation scheme can be used in much more
general settings. For example, the distribution qmj , j ≥ 0 can depend on
the history of the process in generations 0, 1, . . . , m; this covers cases of den-
sity dependent reproduction. This approach can also be applied to multitype
branching processes.
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12 Afterwords

This section concludes the lecture notes by giving some pointers to topics that
were mentioned in the Saint Flour lectures, but have not been written up for
the printed version.

12.1 The effects of selection

The previous sections have focussed on neutral genes, in which the effects
of mutation could be superimposed on the underlying coalescent genealogy.
When selection is acting at some loci, this separation is no longer possible and
the analysis is rather more complicated.

Two basic approaches have emerged. In the first the evolution of the se-
lected loci is modelled forward in time, and then the neutral loci are studied
by coalescent methods (cf. Kaplan et al. (1988, 1989). In the second a ge-
nealogical process known as the ancestral selection graph, the analog of the
neutral coalescent, is developed by Neuhauser and Krone (1997) and Krone
and Neuhauser (1997). See Neuhauser (2001), Neuhauser and Tavaré (2002)
and Nordborg (2001) for reviews. Methods for simulating selected genealogies
are an important current area of research; see Slatkin (2001), Slade (2000,
2001) and Fearnhead (2001) for some examples. Such simulations can be used
to explore the consequences of different selection mechanisms on the pattern
of variation observed in data. Methods for detecting selection in sequence
data are reviewed in Kreitman (2000). Methods for inference and estimation
using coalescent methods are an active area of research. For an introduction
to models with spatial structure, see Nordborg (2001) for example.

12.2 The combinatorics connection

Mathematical population genetics in the guise of the Ewens Sampling Formula
(3.5.3) and Poisson approximation intersect in an area of probabilistic combi-
natorics. This leads directly to an extremely powerful and flexible method for
studying the asymptotic behavior of decomposable combinatorial structures
such as permutations, polynomials over a finite field, and random mappings.
The joint distribution of counts of components of different sizes can be rep-
resented as the distribution of independent random variables conditional on
a weighted sum; recall (3.5.4). Consequences of this representation are ex-
ploited in Arratia and Tavaré (1994). Connections with prime factorization
are outlined in the expository article of Arratia et al. (1997). The book of
Arratia, Barbour and Tavaré (2003) provides a detailed account of the theory,
which places the Ewens Sampling Formula in much the same position as the
Normal distribution in the central limit theorem: informally, many decom-
posable combinatorial models behave asymptotically like the Ewens Sampling
Formula, and the closeness of the approximation can be measured in the total
variation metric. A preprint of the book can be found at
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http://www-hto.usc.edu/books/tavare/ABT/index.html
Pitman’s lecture notes, Combinatorial Stochastic Processes, from the 2002

Saint Flour lectures contains related material. A draft may be obtained from
http://stat-www.berkeley.edu/users/pitman/bibliog.html

12.3 Bugs and features

Errors and typos will be reported at
http://www-hto.usc.edu/papers/abstracts/coalescent.html

I also intend to make a set of exercises available there.
I leave it to Søren Kierkegaard (1813-1855) to summarize why coalescents

are interesting and why these notes end here:

Life can only be understood going backwards, but it must be lived going
forwards.

References

1. S. Anderson, A. T. Bankier, B. G. Barrell, M. H. de Bruijn, A. R. Coulson,
J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier,
A. J. Smith, R. Staden, and I. G. Young. Sequence and organization of the
human mitochondrial genome. Nature, 290:457–465, 1981.

2. K. G. Ardlie, L. Kruglyak, and M. Seielstad. Patterns of linkage disequilibrium
in the human genome. Nature Rev. Genet., 3:299–309, 2002.

3. R. Arratia, A. D. Barbour, and S. Tavaré. Random combinatorial structures
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101. C. Neuhauser and S. Tavaré. The coalescent. In S. Brenner and J. Miller.,
editors, Encyclopedia of Genetics, Volume 1, pages 392–397. Academic Press,
New York, 2001.

102. R. Nielsen. Estimation of population parameters and recombination rates from
single nucleotide polymorphisms. Genetics, 154:931–942, 2000.

103. M. Nordborg. Coalescent theory. In D. J. Balding, M. J. Bishop, and C. Can-
nings, editors, Handbook of Statistical Genetics, pages 179–208. John Wiley
and Sons, Inc., New York, New York., 2001.
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Preface

These notes on random walks in random environments (RWRE) reflect what I
hoped to cover in the 15 hours of the St Flour course on this topic, July 9–25,
2001. Of course, this turned out to be over optimistic. Departing even further
from the actually delivered lectures, I have taken advantage of the year that
elapsed to add some material (especially, related to multi-dimensional walks)
and to correct numerous mistakes and omissions.

The manuscript consist roughly of two parts: the first deals with RWRE
on Z. The interest in the model began in the early 70’s, and with the detailed
analysis of RWRE asymptotics in the last decade, has now reached maturity
(for an account of the history of the subject and many of the results through
the early 90’s, see [37]). I have tried to present different tools for the study
of such walks, risking some repetition of results in a few cases, and deferring
to the bibliographical notes a discussion of refinements and sharpening of the
results. It is worthwhile to point out that RWRE’s on Z have already been
considered in previous St Flour courses (most notably by Ledrappier [50] and
by Molchanov [53]), but the emphasis in this presentation is quite different.

The second part of the notes deals with Zd. This is currently an active
research area, and one hopes that much progress will be made in the next
few years. My goal here was to expose the audience to some tools which have
proved useful, and to point out several directions where further progress could
be made. In several places, I have tried to lay the groundwork for relaxing the
often made assumption of i.i.d. environment.

When preparing the notes, and taking into account the time frame of these
lectures, it became clear that there were topics that had to be left out. Even
the uninitiated will quickly realize that the most glaring omission is the study
of RWRE’s by renormalization techniques. There are three reasons for this:
first, it would take too long to properly expose it. Second, these methods have
not yet reached the full scope of their applicability, and in view of very active
current research efforts in this direction, any account written now risks being
outdated very quickly. And third, an overview of the current status of these
techniques can be found in [69] and [70]. Time constraints also did not allow
me to discuss random walks on Galton-Watson trees, a topic that has seen
much progress in recent years.

Parts of the material presented here is based on joint work, some still
unpublished, with F. Comets, A. Dembo, N. Gantert, and Y. Peres. I thank
them all, both for the many hours spent together on thinking about RWRE,
and for their generosity. I would also like to thank my colleagues in Haifa
who suffered through a first draft of these notes in the winter of 2000. In
particular, comments from D. Ioffe, H. Kaspi, E. Mayer-Wolf, A. Roitershtein
and M. Zerner are gratefully acknowledged. Similarly acknowledged are useful
remarks from D. Cheliotis, A. Dembo, N. Gantert, A. Guionnet, H. Kesten,
D. Piau, and S.R.S. Varadhan. Comments from participants at the St Flour
summer school helped improve the presentation and strengthen numerous re-
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sults. I am particularly grateful to P. Bougerol who allowed me to incorporate
some of his suggestions in the final text of these notes, and D. Ocone and F.
Rassoul-Agha for stimulating discussions. Last but not least, I am grateful to
J. Picard for the smooth and gentle running of the summer school.

A typographical comment: for aesthetic reasons, I consistently use P o
ω , Eo

ω ,
Po, Eo, etc., when I mean P 0

ω , E0
ω, P0, E0.

1 Introduction

The definition of a RWRE involves two components: first, the environment,
which is randomly chosen but kept fixed throughout the time evolution, and
second, the random walk, which, given the environment, is a time homoge-
neous Markov chain whose transition probabilities depend on the environment.
We do not attempt here a historical review of RWRE’s, or in greater gener-
ality of motion in homogeneous media, except for stating that we insist on
the environment being static, i.e. time independent, and that in general the
random walk (conditioned on the environment) is not necessarily reversible.

1.1 Model

We begin with a general setup, that will be specialized later to the cases of
interest to us. Let (V, E) denote an (infinite, oriented) graph with countable
vertex set V and edges set E = {(v, w)} (we allow, but do not require, (v, v) ∈
E). For each v ∈ V , we define its neighborhood Nv by

Nv = {w ∈ V : (v, w) ∈ E} ,

throughout assuming that |Nv| < ∞, for all v ∈ V .
For each v ∈ V , let M1(Nv) denote the collection of probability measures on
V with support Nv. Formally, an element of M1(Nv), called a transition law
at v, is a measurable function ωv : V → [0, 1] satisfying:

(a) ωv(w) ≥ 0 ∀ w ∈ V

(b) ωv(w) = 0 ∀ w �∈ Nv

(c)
∑

w∈Nv

ωv(w) = 1
(1.1.1)

Note that if v ∈ Nv then in (1.1.1c) we allow for ωv(v) > 0.
We equip M1(Nv) with the weak topology on probability measures, which

makes it into a Polish space. Further, it induces a Polish structure on Ω =∏
v∈V M1(Nv). We let F denote the Borel σ-algebra on Ω (which is the same as

the σ-algebra generated by cylinder functions). Given a probability measure P
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on (Ω, F), a random environment is an element ω of Ω distributed according
to P .

We turn next to define the class of random walks of interest to us. For
each ω ∈ Ω, we define the random walk in the environment ω as the time-
homogeneous Markov chain {Xn} taking values in V with transition proba-
bilities

Pω(Xn+1 = w|Xn = v) = ωv(w) .

We use P v
ω to denote the law induced on (V N, G) where G is the σ-algebra

generated by cylinder functions and

P v
ω(X0 = v) = 1 .

In the sequel, we refer to P v
ω(·) as the quenched law of the random walk {Xn}.

Note that for each G ∈ G, the map

ω �→ P v
ω(G)

is F-measurable. Hence, we may define the measure Pv := P ⊗ P v
ω on (Ω ×

V N, F × G) from the relation

Pv(F × G) =
∫

F

P v
ω(G)P (dω), F ∈ F, G ∈ G . (1.1.2)

The marginal of Pv on V N, denoted also Pv whenever no confusion occurs, is
called the annealed law of the random walk {Xn}; note that under Pv, the
random walk in random environment (RWRE) {Xn} is not a Markov chain!

1.2 Examples

Throughout these notes, we only treat nearest neighbor RWRE’s on Zd:

Nearest neighbor RWRE on Z

Here, we take V = Z and E = ∪z∈Z{(z, z+1), (z, z)}. Then, Nv = {v−1, v, v+
1} and M1(Nv) can be identified with the three dimensional simplex; We let
ω+

z := ωz(z + 1), ω−
z := ωz(z − 1), and ω0

z := ωz(z). One defines naturally the
shift θ on Ω by (θω)z = ωz+1. We always make the following assumption:
(ω, F, P, θ) is an ergodic system.
It is worthwhile commenting, already at this stage, that for each ω there
exists a reversing measure that makes the RWRE reversible. More details are
provided in Section 2.1.
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Nearest neighbor RWRE on Zd

Here, V = Zd and E = ∪z∈Z{∪y∼z(z, y)∪(z, z)}. For each v ∈ V , Nv contains
2d+1 vertices, and M1(Nv) is identified with the 2d+1-dimensional simplex.
One may define the family of shifts {θe}|e|1=1. As in the case of d = 1, we al-
ways require P to be ergodic with respect to this family. We write throughout
ω(x, e) := ωx(x+ e). Unlike the case with d = 1, the Markov chain defined by
P v

ω is, in general, not reversible.

Bibliographical notes: the preface section contains relevant bibliography on the
RWRE model in Zd, d ≥ 1. We mention here some other models of ran-
dom walks in random media that can be adapted into the general framework
presented above, but that will not be considered in these notes:

• Non nearest neighbor walks: For Z1, see the recent thesis [7], that includes
also a summary of earlier work and in particular of [43]. I am not aware
of a systematic study of non nearest neighbor RWRE’s on Zd, see however
[79] for some results valid in that generality.

• Reversible random walks in random environments in Zd, d > 1: the prime
example is the random conductance model, in which bonds on Zd carry
i.i.d. conductances and modulate the transition mechanism of the walk,
see [14]. Other models in the same spirit, and their surprising behavior,
are described in [6] and the references therein.

• Random walks on Galton-Watson trees: see [15, 51, 52, 59] for recent
developments.

2 RWRE – d=1

This chapter is devoted to the study of the one-dimensional model, where
sharp results are available. As a warm-up to the high dimensional case, we
sometimes present different proofs of the same statement.

Our exposition progresses from ergodic properties and law of large num-
bers (Section 2.1), to the study of central limit theorems (Section 2.2), large
deviations (Section 2.3), subexponential tail estimates (2.4), and subdiffusive
behaviour and aging (Section 2.5). Each section contains a (non-exhaustive!)
list pointing to the literature.

2.1 Ergodic theorems

In this section, we are interested in questions concerning transience, recur-
rence and laws of large numbers, in the most general nearest neighbour one-
dimensional setup. Define ρz = ω−

z /ω+
z .

Assumption 2.1.1

(A1) P is stationary and ergodic.
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(A2) EP (log ρ0) is well defined (with +∞ or −∞ as possible values).
(A3) P (ω+

0 + ω−
0 > 0) = 1 .

Theorem 2.1.2 Assume Assumption 2.1.1. Then,

(a) EP (log ρ0) < 0 ⇒ lim
n→∞Xn = +∞, Po a.s.

(b) EP (log ρ0) > 0 ⇒ lim
n→∞Xn = −∞, Po a.s.

(c) EP (log ρ0) = 0 ⇒ −∞ = lim inf
n→∞ Xn < lim sup

n→∞
Xn = ∞, Po a.s.

(Note that (a), (b) above imply that Xn is Po-a.s. transient, whereas (c)
implies it is recurrent).

Proof. Due to (A2) and (A3), if P (ω+
0 = 0) > 0 then P (ω−

0 = 0) = 0, and
then EP (log ρ0) = ∞. To see that (b) holds in this case, let n0 = min{z > 0 :
ω+

z = 0} and ni = max{z < ni−1 : ω+
z = 0}. Then, P (n0 < ∞) = 1, hence

lim supn→∞ Xn < ∞, Po-a.s. Note that by ergodicity, P (ni > −∞) = 1, and
further Pni

ω (Xn does not hit ni+1) = 0, as can be seen either from a coupling
with (biased) random walk or from (2.1.4) below. This completes the proof of
(b) when P (ω+

0 = 0) > 0.
A similar argument applies to proving (a) in case P (ω−

0 = 0) > 0. Thus,
using (A3), we assume in the sequel that P (min(ω+

0 , ω−
0 ) = 0) = 0. We

begin by deriving some formulae related to one-dimensional random walks in
a fixed environment. These can be derived concisely by using the link between
nearest-neighbor random walks on z and electrical networks, see appendix A.

Fix an environment ω with | log ρz| < ∞ for each z ∈ Z. For z ∈
[−m−, m+], define

Vm−,m+,ω(z) := P z
ω({Xn} hits −m− before hitting m+) .

Note that due to the assumption | log ρz| < ∞, for each z, it holds that
Vm−,m+,ω(z) is well defined as

P z
ω({Xm} never hits [−m−, m+]c) = 0 .

The Markov property implies that Vm−,m+,ω(·) is harmonic, that is it satisfies


(ω+
z + ω−

z )Vm−,m+,ω(z) = ω−
z Vm−,m+,ω(z − 1)

+ ω+
z Vm−,m+,ω(z + 1), z ∈ (−m−, m+) ,

Vm−,m+,ω(−m−) = 1, Vm−,m+,ω(m+) = 0 .
(2.1.3)

Solving (2.1.3), we find

Vm−,m+,ω(z) =

m+∑
i=z+1

i−1∏
j=z+1

ρj

m+∑
i=z+1

i−1∏
j=z+1

ρj +
z∑

i=−m−+1


 z∏

j=i

ρ−1
j




. (2.1.4)
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(Note that the solution to (2.1.3) is unique due to the maximum principle,
hence it is enough to verify that the function in (2.1.4) satisfies (2.1.3).)

Define S(ω) =
∑∞

n=1 ρ1 · · · ρn, F (ω) =
∑∞

n=0 ρ−1
0 . . . ρ−1

−n. Further, define
the events

S+ = {S(ω) < ∞}, F+ = {F (ω) < ∞} .

Then:

– on T+ := {S+ ∩ Fc
+}, it holds that

lim
m→∞

[
1 − V1,m,ω(0)

]
> 0, lim

k→∞
lim

m→∞

[
1 − Vk,m,ω(0)

]
= 1.

Hence, for ω ∈ T+,
P o

ω( lim
n→∞Xn = ∞) = 1 .

– Similarly, for ω ∈ T− := {Sc
+ ∩ F+},

P o
ω( lim

n→∞ Xn = −∞) = 1 .

– Finally, if ω ∈ R := {Sc
+ ∩ Fc

+} then, for any fixed k,

1 − lim
m→∞Vk,m,ω(0) = lim

m→∞Vm,k,ω(0) = 0 ,

and hence, for ω ∈ R,

P o
ω

(
−∞ = lim inf

n→∞ Xn < lim sup
n→∞

Xn = ∞
)

= 1 .

We observe next that both S+ and F+ are invariant events, hence P (S+) ∈
{0, 1}, P (F+) ∈ {0, 1} by the ergodicity of P . Next, P (S+) = 1 ⇒ P (F+) = 0
by the shift-invariance of P . Thus, it is enough to prove that P (S+) = 1 if
and only if EP (log ρ0) < 0 and P (F+) = 1 if and only if EP (log ρ0) > 0. We
prove the first claim only, the second one possessing a similar proof.

Assume first c := EP (log ρ0) < 0. Then, by the ergodic theorem, there
exists an n0(ω) with P (n0(ω) < ∞) = 1 such that 1

n

∑n
i=1 log ρi ≤ c/2 < 0

for all n > n0(ω). But then, for some C1(ω) < ∞ P -a.s.,

∞∑
n=1

ρ1 · · · ρn ≤ C1(ω) +
∞∑

k=n0(ω)+1

ekc/2 < ∞, P -.a.s

implying P (S+) = 1. Conversely, for ω ∈ S+, limn→∞
∑n

k=1 log ρk = −∞.
But, {Yi = − log ρi} are stationary, and the claim follows from the following
well known:

Lemma 2.1.5 (Kesten[40]) For any real valued, stationary sequence {Yi},
fix Zn =

∑n
i=1 Yi. Then, one has with probability 1 that the event {Zn →n→∞

∞} implies {lim infn→∞ Zn/n > 0}.



198 Ofer Zeitouni

Indeed, Kesten’s lemma implies that on S+,

EP (log ρ0) = lim
n→∞

1
n

n∑
k=1

log ρk < 0, P − a.s., (2.1.6)

and P (S+) = 1 thus implies EP (log ρ0) < 0 and completes the proof of The-
orem 2.1.2. ��
Remarks: 1. P. Bougerol has kindly indicated to me the followig proof of the
implication P (S+) = 1 ⇒ EP (log ρ0) < 0, which bypasses the use of Kesten’s
lemma: define the function f(ω) = log S(ω). P (S+) = 1 implies that f(ω) is
well defined. Since S(ω) = ρ1 + ρ1S(θω), it holds that f(ω) > log ρ1 + f(θω),
and we conclude by (A2) that (f(θω) − f(ω))+ is P -integrable and hence
EP [f(ω) − f(θω)] = 0 (this is Mañe’s lemma, apply the ergodic theorem to
see it!). Using again f(ω) > log ρ1+f(θω), one concludes that 0 > EP log ρ1 =
EP log ρ0, as claimed.

2. If P is i.i.d., Theorem 2.1.2 remains valid when the left hand side of
conditions (a), (b), (c) is replaced, respectively, by

(a′) :
∞∑

n=1

n−1P


 n∏

j=1

ρj > 1


 < ∞.

(b′) :
∞∑

n=1

n−1P


 n∏

j=1

ρj < 1


 < ∞.

(c′) :
∞∑

n=1

n−1P


 n∏

j=1

ρj < 1


 =

∞∑
n=1

n−1P


 n∏

j=1

ρj > 1


 = ∞.

This is useful in particular when EP (log ρ0) is not well defined. See [67] for
details.

Having developed transience and recurrence criteria, we turn to the law of
large numbers. We first note that one cannot apply directly ergodic theorems
to the sequence Xn/n: The sequence {Xn − Xn−1} is not even stationary!
We will exhibit two approaches to the LLN: The first is based on a hitting
times decomposition. The second approach is based on the point of view of
the “environment viewed from the particle”.

LLN-version I: hitting time decompositions

Introduce the following notations:

S =
∞∑

i=1

1
ω+

(−i)

i−1∏
j=0

ρ(−j) +
1

ω+
0

(2.1.7)

F =
∞∑

i=1

1
ω−

i

i−1∏
j=0

ρ−1
j +

1
ω−

0

(2.1.8)
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Theorem 2.1.9 Assume Assumption 2.1.1. Then,

(a) EP (S) < ∞ ⇒ lim
n→∞

Xn

n
=

1
EP (S)

, Po a.s.

(b) EP (F ) < ∞ ⇒ lim
n→∞

Xn

n
= − 1

EP (F )
, Po a.s.

(c) EP (S) = ∞ and EP (F ) = ∞ ⇒ lim
n→∞

Xn

n
= 0, Po a.s.

Remark: In the case that P is i.i.d., (a)–(c) of Theorem 2.1.9 become

(a′) EP (ρ0) < 1 ⇒ lim
n→∞

Xn

n
=

1 − EP (ρ0)

EP

(
1

ω+
0

) , Po a.s.

(b′) EP (ρ−1
0 ) < 1 ⇒ lim

n→∞
Xn

n
= −

1 − EP

(
1
ρ0

)

EP

(
1

ω−
0

) , Po a.s.

(c′)
1

EP (ρ0)
≤ 1 ≤ EP (ρ−1

0 ) ⇒ lim
n→∞

Xn

n
= 0, Po a.s.

since EP log ρ0 ≤ log EP ρ0 with a strict inequality whenever P is non-
degenerate, it follows that one can find examples where Xn → ∞ Po-a.s.
but Xn/n → 0, Po-a.s. This does not contradict Kesten’s lemma (Lemma
2.1.5) because {Xn −Xn−1} is not in general a stationary sequence under Po.

Proof of Theorem 2.1.9

We introduce hitting times which will serve us later too. Let T0 = 0, and

Tn = min{k : Xk = n}

with the usual convention that the minimum over an empty set is +∞. Set
τ0 = 0 and

τn = Tn − Tn−1, n ≥ 1 .

Similarly, set
T−n = min{k : Xk = −n}

and
τ−n = T−n − T−n+1, n ≥ 1 ,

the convention being that τ±n = ∞ if T±n = ∞. We have the following lemma:

Lemma 2.1.10 If lim supn→∞ Xn = +∞, Po-a.s., then {τi}i≥1 is a station-
ary and ergodic sequence. If further P is strongly mixing, then {τi}i≥1 is also
strongly mixing.
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Proof of Lemma 2.1.10

The stationarity of {τi}i≥1 follows from the stationarity of the environment.
To see the ergodicity, let Ξ = [0, 1]N, let UΞ denote the measure on Ξ making
all coordinates {ξi} independent and of uniform law on [0, 1], and note that
{Xn} may be constructed by writing

Xn+1 = Xn + 1{ω+
Xn

<ξn+1} − 1{ξn+1∈[ω+
Xn

,ω+
Xn

+ω−
Xn

)} .

Suppose A = A(ω, ξ) = A(τ) is an event, measurable w.r.t. Gn = σ{τi, i ≥ 1},
which is invariant with respect to the shift (θτ)i = τi+1 (we write in the sequel
θA = A(θτ)). We need only show that P ⊗UΞ(A) ∈ {0, 1}. Note however that
θkA, conditioned on σ{ωi, i ∈ Z}, is independent of ξ1, . . . , ξk. Thus, since UΞ

is an i.i.d. law and hence the tail sigma-field of {ξi} is trival, it follows that
A = θkA is, under the above conditioning, independent of σ{ξi, i ≥ 1}. Thus
A depends only on ω. But the shift θ on the sequence {τi} induces the usual
shift θ on Ω. Thus, θA = A(θω) = A(ω) and hence P (A) ∈ {0, 1}.

To prove the strong mixing properties (which we do not actually need in
the sequel), consider sets A1 · · ·Ak, B1 · · ·Bj ⊂ Z, and let

A =
k⋂

i=1

{τi ∈ Ai}, Bm =
j⋂

i=1

{τm+i ∈ Bi}, .

Clearly, Po(Bm) = Po(B0), and thus we need to prove that whenever
lim supn→∞ Xn = ∞ Po-a.s., then

lim
m→∞ Po(A ∩ Bm) = Po(A)Po(B0) .

Toward this end, let

BK
i = Bi ∩ [0, K] and Bm,K =

j⋂
i=1

{τm+i ∈ BK
i } .

Fix ε > 0 and then K = K(ε) large enough such that

Po(Bm \ Bm,K) = Po(B0 \ B0,K) ≤ ε

which is possible since lim supn→∞ Xn = ∞, Po-a.s. Note that, for m > k,

P o
ω(A ∩ BK,m) = P o

ω(A)P o
ω(BK,m)

and that P o
ω(A) is measurable with respect to σ(ωi, i ≤ k − 1). On the other

hand, since |Xn+1 − Xn| = 1, on the event {τm+i ≤ K, 1 ≤ i ≤ j}, it holds
that Xn ≥ m − K for Tm ≤ n ≤ Tm+j+1. Thus, for m > K + k, P o

ω(BK,m)
is measurable with respect to σ(ωi, i ≥ m − K). It follows from the strong
mixing of P that
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lim
m→∞ Po(A ∩ BK,m) = lim

m→∞EP (P o
ω(A)P o

ω(BK,m))

= EP (P o
ω(A)) · EP (P o

ω(BK,0))

= Po(A)Po(BK,0) . (2.1.11)

On the other hand,

Po(A ∩ Bm) − ε ≤ Po(A ∩ BK,m) ≤ Po(A ∩ Bm)

while
Po(Bm) − ε ≤ Po(BK,m) ≤ Po(Bm)

and one concludes from (2.1.11) that
∣∣∣ lim
m→∞ Po(A ∩ Bm) − Po(A)Po(B0)

∣∣∣ ≤ ε

which implies the claim since ε is arbitrary. ��
Remark: Note that an attempt to mimick this argument in Zd, d ≥ 1, with
Ti denoting the hitting times of hyperplanes at distance i from the origin, fails
because of the extra information contained in the hitting location.

Our strategy consists now of applying the ergodic theorem to the sequence
{τi}. As a first step, we have the

Lemma 2.1.12 Assume Assumption 2.1.1. Then,

(a) EPo(τ1) = EP (S) ,

(b) EPo(τ−1) = EP (F ) .

Proof. We prove only (a), the proof of (b) being similar. Decompose, with
X0 = 0,

τ1 = 1X1=1 + 1X1=0(1 + τ ′
1) + 1X1=−1(1 + τ ′′

0 + τ ′′
1 ) . (2.1.13)

Here, (τ ′
1) is the first hitting time of 1 after time 1 (possibly infinite), (1+ τ ′′

0 )
is the first hitting time of 0 after time 1, and 1 + τ ′′

0 + τ ′′
1 is the first hitting

time of 1 after time 1 + τ ′′
0 .

Under P o
ω , the law of τ ′

1 conditioned on the event {X1 = 0} is identical to
the law of τ1, the law of τ ′′

0 conditioned on the event {X1 = −1} is P o
θ−1ω(τ1 ∈

·), while conditioned on the event {X1 = −1} ∩ {τ ′′
0 < ∞}, τ ′′

1 also has law
identical to that of τ1.

Consider first the case EPo(τ1) < ∞. Then, both Eo
ω(τ1) < ∞ and

Eθ−1ω(τ1) < ∞, P -a.s. Taking expectations in (2.1.13), one gets then

Eo
ω(τ1) = 1 + (1 − ω+

0 )Eo
ω(τ1) + ω−

0 Eo
θ−1ω(τ1) .

Hence,

Eo
ω(τ1) =

1
ω+

0

+ ρ0E
o
θ−1ω(τ1) .
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Iterating this equation, we get

Eo
ω(τ1) =

1
ω+

0

+
ρ0

ω+
(−1)

+
ρ0ρ(−1)

ω+
(−2)

+ · · · +
∏−(m−1)

i=0 ρ(−i)

ω+
(−m)

+

(−m+1∏
i=0

ρ(−i)

)
Eo

θ−mω(τ1) . (2.1.14)

Omitting the last term, taking expectations on both sides, and then taking
m → ∞ using dominated convergence, we get

EPo(τ1) ≥ EP (S) . (2.1.15)

To see the reverse inequality, note that by (2.1.13), for any M < ∞,

Eo
ω(τ11τ1<M ) ≤ 1 + (1 − ω+

0 )Eo
ω(τ11τ1<M ) + ω−

0 Eo
θ−1ω(τ11τ1<M ) .

Iterating, we get that

Eo
ω(τ11τ1<M ) ≤ S + M

−m+1∏
i=0

ρ(−i) .

Taking expectations, we get that

EPo(τ11τ1<M ) ≤ EP (S) + MEP

(−m+1∏
i=0

ρ(−i)

)
.

Assuming EP (S) < ∞ and hence EP

(∏−m+1
i=0 ρ(−i)

)
−→

m→∞ 0, we get that

EPo(τ11τ1<M ) ≤ EP (S) .

Taking M → ∞ and using monotone convergence we conclude, using also
(2.1.15), that

EPo(τ11τ1<∞) = EP (S) ,

completing the proof that EPo(τ1) < ∞ ⇒ EPo(τ1) = EP (S).
It thus remains to show that EPo(τ1) = ∞ ⇒ EP (S) = ∞. Note next that

if EP (log ρ0) ≤ 0, we have by Theorem 2.1.2 that

EPo(τ11τ1<∞) = EPo(τ1)

hence EPo(τ1) = ∞ implies EP (S) = ∞. On the other hand, if EP (log ρ0) > 0
then

∏0
i−1 ρ(−j) →j→∞ ∞, P -a.s. by the ergodic theorem and hence also

EP (S) = ∞. This concludes the proof of Lemma 2.1.12. ��
Remark: In fact, a similar proof shows that in the uniformly elliptic case,
Eo

ω(τ1) = S, for every environment ω.



Random Walks in Random Environment 203

An application of Lemmas 2.1.10 and 2.1.12 yields that in case (a)

Tn

n
=

∑n
i=1 τi

n
−→n→∞ EPo(τ1) < ∞, Po-a.s. . (2.1.16)

On the other hand, we have the following:

Lemma 2.1.17 Assume Tn/n → α, for some constant α < ∞. Then,

Xn

n
−→

n→∞
1
α

.

Proof of Lemma 2.1.17

Let kn be the unique (random) integers such that

Tkn ≤ n < Tkn+1 .

Note that Xn < kn + 1 while Xn ≥ kn − (n − Tkn). Hence,

kn

n
−
(

1 − Tkn

n

)
≤ Xn

n
≤ kn + 1

n
.

But, limn→∞ kn/n = limn→∞ n/Tn (due to the existence of the second limit
and the definition of kn). Thus,

1
α

≥ lim sup
n→∞

Xn

n
≥ lim inf

n→∞
Xn

n
≥ 1

α
. ��

Lemma 2.1.17 and (2.1.16) complete the proof of Theorem 2.1.9 in case
(a). Case (b) is similar, while case (c) is a minor modification of the above
argument and is left out. ��
Bibliographical notes: The proof of Theorem 2.1.2 is essentially from [67],
except that the use of Kesten’s lemma is borrowed from [1]. See also [50] for
an “ergodic” approach. The rest of the section is an adaptation of the argument
in [67], which requires a strongly mixing assumption. The proof of ergodicity
in Lemma 2.1.10 was suggested to me by P. Bougerol. F. Rassoul-Agha has
kindly shown me a different proof of this fact.

Transience and recurrence results for non nearest-neighbour RWRE on Z,
in terms of certain Lyapunov exponents of products of random matrices, are
developed in [43], see also [50] and [7]. This is further developed in [3], [39],
where transience and recurrence criteria for RWRE on graphs of the form
Z × G, G finite, are derived.

LLN-version II: auxiliary Markov chains

We use the evaluation of the LLN as an excuse for introducing the machin-
ery of the “environment viewed from the particle”. The first step consists of
introducing an auxiliary Markov chain.

Starting from the RWRE Xn, define ω(n) = θXnω. The sequence {ωn} is
a process with paths in ΩN. What is maybe more useful is that it is in fact a
Markov process. More precisely:
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Lemma 2.1.18 The process {ω(n)} is a Markov process under either P 0
ω or

P0, with state space Ω and transition kernel

M(ω, dω′) = ω+
0 δθω=ω′ + ω−

0 δθ−1ω=ω′ + ω0
0δω=ω′ .

Proof. For bounded functions fi : Ω → R,

Eo
ω

(
n∏

i=1

fi(ω(i))

)
= Eo

ω

(
n∏

i=1

fi(θXiω)

)

= Eo
ω

(
n−1∏
i=1

fi(θXiω)EXn−1
ω (fn(θXnω))

)

= Eo
ω

(
n−1∏
i=1

fi(θXiω)
[
ω+

Xn−1
fn(θ · θXn−1ω)

+ω−
Xn−1

fn(θ−1 · θXn−1ω) + ωo
Xn−1

fn(θXn−1ω)
])

= Eo
ω

(
n−1∏
i=1

fi(θXiω)Mfn(ω(n − 1))

)
(2.1.19)

where
Mf(ω) =

∫
f(ω′)M(ω, dω′) ,

which proves the Markov property of {ω(n)} under P o
ω. Integrating both sides

of (2.1.19) with respect to P yields the Markov property under Po. ��
Our next step is to construct an invariant measure for the transition kernel

M . In most of this section we will assume that EP log ρ0 < 0, implying, by
Theorem 2.1.2, that T1 < ∞, Po-a.s. Whenever EPo(T1) < ∞, define the
measures

Q(B) = EPo

(
T1−1∑
i=0

1{ω(i)∈B}

)
, Q(B) =

Q(B)
Q(Ω)

=
Q(B)
EPoT1

.

Using Lemma 2.1.12, one checks that under Assumption 2.1.1 and if EP (S̄) <
∞ then EPoT1 < ∞, and Q(·) in this case is a probability measure.

Lemma 2.1.20 Assume Assumption 2.1.1 and EP (S̄) < ∞. Then, Q(·) is
invariant under the Markov kernel M , that is

Q(B) =
∫∫

1ω′∈BM(ω, dω′)Q(dω) .

Proof. We have
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1ω′∈BM(ω, dω′)Q(dω)

=
∞∑

k=0

EPo

(
T1 > k; 1ω(k+1)∈B

)

=
∞∑

k=0

EPo

(
T1 = k + 1; 1ω(k+1)∈B

)
+

∞∑
k=0

EPo

(
T1 > k + 1; 1ω(k+1)∈B

)

= Po(T1 < ∞; ω(T1) ∈ B) +
∞∑

k=1

Po(T1 > k; ω(k) ∈ B) .

But Po(T1 < ∞) = 1 while Po(ω(T1) ∈ B) = P (θω ∈ B) = P (ω ∈ B), hence

=
∞∑

k=0

Po(T1 > k; ω(k) ∈ B) = Q(B) . ��

Define next

Λ(ω) =
1

ω+
0


1 +

∞∑
i=1

i∏
j=1

ρj


 .

It is not hard to check, by the shift invariance of P , that the condition
EP (Λ(ω)) < ∞ is equivalent to EP (S) < ∞, c.f. Section 2.1. We next claim
the

Lemma 2.1.21 Under the assumptions of Lemma 2.1.20, it holds that

dQ

dP
= Λ(ω) .

Proof. Note first that by Jensen’s inequality, EP (Λ) < ∞ implies that
EP (log ρ0) < 0 and hence Xn →n→∞ ∞, Po-a.s., by Theorem 2.1.2. Let
f : Ω → R be measurable. Then,

∫
fdQ = EPo

(
T1−1∑
i=0

f(ωi)

)
= EPo


∑

i≤0

f(θiω)Ni




where Ni = {#k ∈ [0, T1) : Xk = i} (note the difference in the role the index
i plays in the two sums!). Using the shift invariance of P , we get

∫
fdQ =

∑
i≤0

EP

(
f(θiω)Eo

ωNi

)

=
∑
i≤0

EP

(
f(ω)Eo

θ−iωNi

)
= EP


f(ω)


∑

i≤0

Eo
θ−iωNi




 .
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Hence,
dQ

dP
=
∑
i≤0

Eo
θ−iωNi , (2.1.22)

and the right hand side converges, P -a.s.
In order to prove both the convergence in (2.1.22) and the lemma, we turn

to evaluate Eo
ωNi. Define, for i ≤ 0,

ηi,0 = min{k ≤ T1 : Xk = i}
θi,0 = min{ηi,0 < k ≤ T1 : Xk−1 = i, Xk = i − 1}

and, for j ≥ 1,

ηi,j = min{θi,j−1 < k ≤ T1 : Xk = i}
θi,j = min{ηi,j < k ≤ T1 : Xk−1 = i, Xk = i − 1}

(with the usual convention that the minimum over an empty set is +∞). We
refer to the time interval (θi,j−1, ηi,j) as the j-th excursion from i − 1 to i.
For any j ≥ 0, any i ≤ 0, define

Ui,j = {#� ≥ 0 : θi+1,j < θi,� < ηi+1,j+1}
Zi,j = {#k ≥ 0 : Xk−1 = i, Xk = i, θi+1,j < k < ηi+1,j+1} .

Note that Ui,j is the number of steps from i to i − 1 during the j + 1-th
excursion from i to i + 1, whereas Zi,j is the number of steps from i to i
during the same excursion. The Markov property implies that

P o
ω

(
Ui,� = k�, Zi,� = m� , � = 1, . . . , L

∣∣∣{Ui′,j}i′>i, ηi+1,L+1 < ∞
)

=
L∏

�=1

[(
ω−

i

ω−
i + ω+

i

)k� (
ω+

i

ω−
i + ω+

i

)(
ω0

i

ω0
i + ω+

i

)m�
(

ω+
i

ω0
i + ω+

i

)]
. (2.1.23)

Defining Ui =
∑

j Ui,j , Zi =
∑

j Zi,j , and noting that Po({Ui < ∞} ∩ {Zi <
∞}) = 1 because Xn → ∞, Po-a.s., (2.1.23) implies that {Ui} is under P o

ω

an (inhomogeneous) branching process with geometric offspring distribution

of parameter ω−
i

ω−
i +ω+

i

. Further,

Eo
ω(Ui|Ui+1, · · · , U0) = ρiUi+1

Eo
ω(Zi|Ui+1, · · · , U0) =

ω0
i

ω+
i

Ui+1 (2.1.24)

and using the relation Ni = Ui + Ui+1 + Zi, Po-a.s., we get

Eo
ω(Ni|Ui+1, . . . , U0) = Eo

ω

(
Ui + Ui+1 + Zi|Ui+1, · · · , U0

)
=

1
ω+

i

Eo
ωUi+1 .
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Iterating (2.1.24), one gets

Eo
ωNi =

1
ω+

i

ρ0 · · · ρi+1 .

Hence, using (2.1.22), and the assumption,

dQ

dP
=

1
ω+

0


1 +

∞∑
i=1

i∏
j=1

ρj


 < ∞, P -a.s.

which completes the proof of the Lemma. ��
Remark: Note that dQ/dP > 0, P -a.s., and hence under the assumption
EP (S̄) < ∞ it holds that Q ∼ P . This fact is true in greater generality, see
the discussion in [69] and in Section 3.3 below.

Corollary 2.1.25 Under the law induced by Q⊗ P o
ω, the sequence {ω(n)} is

stationary and ergodic.

Proof. The stationarity follows from the stationarity of Q. Let θ denote the
shift on Ω = ΩN, that is, for ω ∈ Ω, θω(n) = ω(n + 1). Denote by Pω the
law of the sequence {ω(n)} with ω(0) = ω, that is, for any measurable sets
Bi ⊂ Ω,

Pω

(
ω(i) ∈ Bi, i = 1, . . . , �

)

=
∫

B1

· · ·
∫

B�

M(ω, dω1)M(ω1, dω2) · · ·M(ω�−1, dω�)

and set Q = Q ⊗ Pω (as usual, we also use Q to denote the corresponding
marginal induced on Ω).

We need to show that for any invariant A, that is A ∈ Ω such that θA = A,
Q(A) ∈ {0, 1}. Set ϕ(ω) = Pω(A), we claim that {ϕ(ω(n))} is a martingale
with respect to the filtration Gn = σ(ω(0), . . . , ω(n)): indeed,

ϕ(ω(n)) = Pω(n)(A) = EQ

(
1θnA|Gn

)
= EQ

(
1A|Gn

)
,

where the second equality is due to the Markov property and the third due
to the invariance of A. Hence, by the martingale convergence theorem,

ϕ(ω(n)) −→
n→∞ 1A, Q-a.s. (2.1.26)

Further, Q(ϕ(ω) �∈ {0, 1}) = 0 because otherwise there exists an interval [a, b]
with {0}, {1} �∈ [a, b] and Q(ϕ(ω) ∈ [a, b]) > 0, while

1
n

n−1∑
0

1{ϕ(ω(n))∈[a,b]} → EQ

(
1{ϕ(ω(0))∈[a,b]}|I

)
, (2.1.27)
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where I is the invariant σ-field.
Taking expectations in (2.1.27) and using (2.1.26), one concludes that

0 = Q
(
ϕ(ω(0)) ∈ [a, b]

)
= Q

(
ϕ(ω) ∈ [a, b]

)
,

a contradiction. Thus for some measurable B ⊂ Ω, ϕ(ω) = 1B , Q − a.s..
Further, the Markov property and invariance of A yield that M1B = 1B ,
Q-a.s. and hence P -a.s. But then,

1B = M1B ≥ ω+
0 1θB, P -a.s. .

Since EΛ(ω) < ∞ implies P (ω+
0 = 0) = 0, it follows that 1B ≥ 1θB, P -

a.s., and then EP (1B) = EP (1θB) implies that 1B = 1θB, P -a.s. But then,
by ergodicity of P , P (B) ∈ {0, 1}, and hence Q(B) ∈ {0, 1}. Since Q(A) =
EQϕ(ω) = Q(B), the conclusion follows. ��

We are now ready to give the:
Proof of Theorem 2.1.9 - Environment version We begin with case (a), noting
that the proof of case (b) is identical by the transformation ωi �→ ω̂−i, where
ω̂+

i = ω−
i , ω̂−

i = ω+
i . Set d(x, ω) = Ex

ω(X1 − x). Then

Xn =
n∑

i=1

(Xi − Xi−1) =
n∑

i=1

(
Xi − Xi−1 − d(Xi−1, ω)

)
+

n∑
i=1

d(Xi−1, ω)

:= Mn +
n∑

i=1

d(Xi−1, ω) . (2.1.28)

But, under P o
ω, Mn is a martingale, with |Mn+1 − Mn| ≤ 2; Hence, with

Gn = σ(M1, · · ·Mn),

Eo
ω(eλMn) = Eo

ω

(
eλMn−1Eo

ω(eλ(Mn−Mn−1)|Gn−1)
)

≤ Eo
ω

(
eλMn−1e2λ2

)

and hence, iterating, Eo
ω(eλMn) ≤ e2nλ2

(this is a version of Azuma’s inequal-
ity, see [19, Corollary 2.4.7]). Chebycheff’s inequality then implies

Mn

n
→ 0, Po-a.s.

(and even with exponential rate). Next, note that

n∑
i=1

d(Xi−1, ω) =
n∑

i=1

d(0, ω(i − 1)) .

The ergodicity of {ω(i)} under Q ⊗ P o
ω implies that
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1
n

n∑
i=1

d(0, ω(i − 1)) −→ EQ(d(0, ω(0))), Q ⊗ P o
ω-a.s. . (2.1.29)

But,

EQ(d(0, ω(0)))

=
EP

[
Λ(ω)(ω+

0 − ω−
0 )
]

EP (Λ(ω))

=
1 + EP

(
ω−

1

[
1

ω+
1

+
∑∞

i=2

∏i
j=2 ρj

]
− ω−

0

[
1

ω+
0

+
∑∞

i=1

∏i
j=1 ρj

])
EP (Λ(ω))

=
1

EP (Λ(ω))
=

1
EP (S(ω))

.

Finally, since EP (Λ(ω)) < ∞, (2.1.29) holds also Po-a.s., completing the proof
of the theorem in cases (a),(b).

Case (c) is handled by appealing to Lemma 2.1.12. Suppose lim supXn

= +∞, Po − a.s.. Then, τ1 < ∞, Po-a.s.. Define τK
i = min(τi, K). Note that

under P o
ω , the random variables {τK

i } are independent and bounded, and
hence, with GK

n = n−1
∑n

i=1 τK
i , we have

|GK
n − Eo

ωGK
n | →n→∞ 0 , P o

ω − a.s.

But f(ω) := Eo
ωτK

1 is a bounded, measurable, local function on Ω, and
Eo

ωGK
n = n−1

∑n
i=1 f(θiω). Hence, by the ergodic theorem, Eo

ωGK
n →n→∞

EPoτK
1 , P − a.s.. Since, by Lemma 2.1.12 we have EPoτK

1 →K→∞ ∞, we con-
clude that

lim inf
n→∞

1
n

n∑
i=1

τi ≥ lim
K→∞

EPoτK
1 = ∞ , Po − a.s.

This immediately implies lim supn→∞ Xn/n ≤ 0, Po − a.s.. The reverse in-
equality is proved by considering the sequence {τ−i}, yielding part (c) of the
Theorem. ��
Remark: Exactly as in Lemma 2.1.17, it is not hard to check that under
Assumption 2.1.1, it holds that

lim
n→∞

Tn

n
= EP (S) , Po − a.s. (2.1.30)

Bibliographical notes: The construction presented here goes back at least to
[45]. Our presentation is heavily influenced by [1] and [69].

2.2 CLT for ergodic environments

In this section, we continue to look at the environment from the point of view
of the particle. Our main goal is to prove the following:
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Theorem 2.2.1 Assume 2.1.1. Further, assume that for some ε > 0,

EQ(S
2+ε

(ω) + S(θ−1ω)2+ε) < ∞ , (2.2.2)

and that

∑
n≥1

√
EP

(
EP

(
vP S(ω) − 1

∣∣∣σ(ωi, i ≤ −n)
)2)

< ∞, (2.2.3)

where vP := 1/EP (S(ω)). Then, with

σ2
P,1 := v2

P EQ

(
ω+

0 (S(ω) − 1)2 + ω−
0 (S(θ−1ω) + 1)2 + ω0

0

)
,

and

σ2
P,2 := EP (vP S(ω) − 1)2 + 2

∞∑
n=1

EP

((
vP S(ω) − 1

) (
vP S(θnω) − 1

))
,

we have that

Po

(
Xn − nvP

σP
√

n
> x

)
−→n→∞ Φ(−x) ,

where
Φ(x) :=

1√
2π

∫ x

−∞
e−

θ2
2 dθ ,

and σ2
P = σ2

P,1 + vP σ2
P,2 .

Proof. The basic idea in the proof is to construct an appropriate martingale,
and then use the Martingale CLT and the CLT for stationary ergodic se-
quences. We thus begin with recalling the version of these CLT’s most useful
to us.

Lemma 2.2.4 ([26], pg. 417) Suppose (Zn, Fn)n≥0 is a martingale differ-
ence sequence, and let Vn =

∑
1≤k≤n E(Z2

k |Fk−1). Assume that

(a)
Vn

n
→n→∞ σ2, in probability.

(b)
1
n

∑
m≤n

E
(
Z2

m1{|Zm|>ε
√

n}
)
→n→∞ 0 .

Then,
∑n

i=1 Zi/σ
√

n converges in distribution to a standard Gaussian random
variable.

Lemma 2.2.5 ([26], p. 419) Suppose {Zn}n∈Z is a stationary, zero mean,
ergodic sequence, and set Fn = σ(Zi, i ≤ n). Assume that

∑
n≥0

√
E (E (Z0|F−n))2 < ∞ . (2.2.6)
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Then,
{∑nt

i=1 Zi/σ
√

n
}

t∈[0,1]
converges in distribution to a standard Brown-

ian motion, where

σ2 = EZ2
0 + 2

∞∑
n=1

E(Z0Zn) .

We next recall that by Theorem 2.1.9,

Xn

n
→ vP , Po-a.s.,

where vP := 1/EP (S). One is tempted to use the martingale Mn appearing in
the environment proof of Theorem 2.1.9 (see (2.1.28)), however this strategy
is not so successful because of the difficulties associated with separating the
fluctuations in Mn and

∑n
i=1 d(Xi−1, ω). Instead, write

f(x, n, ω) = x − vP n + h(x, ω), x ∈ Z .

We want to make f(Xn, n, ω) into a martingale w.r.t. Fn := σ(X1, . . . , Xn)
and the law P o

ω . This is automatic if we can ensure that

EXn
ω f(Xn+1, n + 1, ω) = f(Xn, n, ω), P o

ω-a.s. (2.2.7)

Developing this equality and defining ∆(x, ω) = h(x + 1, ω)− h(x, ω), we get
that (2.2.7) holds true if a bounded solution to the equation

∆(x, ω) = −
[
ω+

x − ω−
x − vP

ω+
x

]
+

ω−
x

ω+
x

∆(x − 1, ω)

exists. One may verify that ∆(x, ω) = −1 + vP S(θxω) is such a solution.
Fixing h(0, ω) = 0, and defining M0 = 0 and Mn = f(Xn, n, ω), one

concludes that Mn is a martingale, and further

Eo
ω

(
(Mk+1 − Mk)2|Fk

)

= ω+
Xk

v2
P (S(θXk ω) − 1)2 + ω−

Xk
v2

P (S(θXk−1ω) + 1)2 + ω0
Xk

v2
P

= v2
P

[
ω(k)+0 (S(ωk) − 1)2 + ω(k)−0 (S(θ−1ωk) + 1)2 + ω(k)00

]
.

Hence,

Vn

n
=

1
n

n∑
k=1

Eo
ω

(
(Mk+1 − Mk)2|Fk

)
−→

n→∞ σ2
P,1 , Po-a.s.,

using the machinery developed in Section 2.1. The integrability condition
(2.2.2) is enough to apply the Martingale CLT (Lemma 2.2.4), and one con-
cludes that for any δ > 0,
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P

(∣∣∣∣P o
ω

(
Mn

σP,1
√

n
≥ x

)
− Φ(−x)

∣∣∣∣ > δ

)
→n→∞ 0 . (2.2.8)

Note that since both P o
ω(Mn ≥ xσP,1

√
n) and Φ(x) are monotone in x, and

that Φ(·) is continuous, the convergence in (2.2.8) actually is uniform on R.
Further, note that

h(Xn, ω) =
Xn−1∑
j=1

∆(j, ω) =
nvP∑
j=1

∆(j, ω) + Rn := Zn + Rn .

Note that, for every δ > 0 and some δn → 0,

Po

( |Rn|√
n

≥ δ

)
≤ Po

(
|Xn − nvP | ≥ δnn

)

+P


 max

j−,j+∈(−nδn,nδn)

∣∣ j+∑
i=j−

∆(i, ω)√
n

∣∣ ≥ δ


 := P1,n(δn)+P2,n(δ, δn) −→

n→∞ 0,

(2.2.9)

where the convergence of the first term is due (choosing an appropriate
δn →n→∞ 0 slowly enough) to Theorem 2.1.9 and that of the second one
due to EP ∆(i, ω) = 0 and the stationary invariance principle (Lemma 2.2.5),
which can be applied, for any δn →n→∞ 0, due to (2.2.3).

Another application of Lemma 2.2.5 yields that

lim
n→∞ P (Zn ≥ z

√
nvP σP,2) = Φ(−z) . (2.2.10)

Writing Xn − nvP = Mn − Zn − Rn, and using that Rn/
√

n →n→∞ 0 in
Po-probability, one concludes that

lim
n→∞ Po(

Xn − nvP√
n

> x) = lim
n→∞EP (P o

ω(Mn/
√

n > x + Zn/
√

n))

= lim
n→∞EP (Φ

(
− x + Zn/

√
n

σP,1

)
) , (2.2.11)

where the second equality is due to the uniform convergence in (2.2.8). Com-
bining (2.2.11) with (2.2.10) yields the claim. ��
Remark: The alert reader will have noted that under assumptions (2.1.1)
and (2.2.2), and a mild mixing assumption on P which ensures that for any
δ > 0 and δn → 0, P2,n(δ, δn) →n→∞ 0, c.f. (2.2.9),

P o
ω

(Xn − vP n − Zn√
nσP,1

> x
)
→n→∞ Φ(−x) .

That is, using a random centering one also has a quenched CLT.
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Exercise 2.2.12 Check that the integrability conditions (2.2.2) and (2.2.3)
allow for the application of Lemmas 2.2.4 and 2.2.5 in the course of the proof
of Theorem 2.2.1.

Exercise 2.2.13 Check that in the case of P being a product measure, the
assumption (2.2.2) in Theorem 2.2.1 can be dropped.

Bibliographical notes: The presentation here follows the ideas of [45], as de-
veloped in [53]. The latter provides an explicit derivation of the CLT in case
P (ω0

0 = 0) = 1, but it seems that in his derivation only the quenched CLT
is derived and the random centering then is missing. A different approach to
the CLT is presented in [1], using the hitting times {τi}; It is well suited to
yield the quenched CLT, and under strong assumptions on P which ensure
that the random quenched centering vanishes P -a.s., also the annealed CLT.
Note however that the case of P being a product measure is not covered in the
hypotheses of [1]. See [7] for some further discussion and extensions.

There are situations where limit laws which are not of the CLT type can
be exhibited. The proof of such results uses hitting time decompositions, and
techniques as discussed in Section 2.4. We refer to Section 2.5 and its biblio-
graphical notes for an example of such a situation and additional information.

2.3 Large deviations

Having settled the issue of the LLN, the next logical step (even if not following
the historical development) is the evaluation of the probabilities of large devi-
ations. As already noted in the evaluation of the CLT in Section 2.2, there can
be serious differences between quenched and annealed probabilities of devia-
tions. In order to address this, we make the following definitions; throughout
this section, X denotes a completely regular topological space.

Definition 2.3.1 A function I : X → [0,∞] is a rate function if it is lower
semicontinuous. It is a good rate function if its level sets are compact.

Definition 2.3.2 A sequence of X valued random variables {Zn} satisfies the
quenched Large Deviations Principle (LDP) with speed n and deterministic
rate function I if for any Borel set A,

− I(Ao) ≤ lim inf
n→∞

1
n

log P o
ω(Zn ∈ A) ≤ lim sup

n→∞
1
n

log P o
ω(Zn ∈ A) ≤ −I(A)

P -a.s. (2.3.3)

where Ao denotes the interior of A, A the closure of A, and for any Borel set
F ,

I(F ) = inf
x∈F

I(x) . (2.3.4)
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Definition 2.3.5 A sequence of X valued random variables {Zn} satisfies the
annealed LDP with speed n and rate function I if, for any Borel set A,

−I(Ao) ≤ lim inf
n→∞

1
n

log Po(Zn ∈ A) ≤ lim sup
n→∞

1
n

log Po(Zn ∈ A) ≤ −I(A) .

(2.3.6)

Finally, we note the

Definition 2.3.7 A LDP is called weak if the upper bound in (2.3.3) or
(2.3.6), holds only with A compact.

For background on the LDP we refer to [19]. It is well known, c.f. [19, Lemma
4.1.4] that if the LDP holds then the rate function is uniquely defined. The
following easy lemma is intuitively clear: annealed deviation probabilities al-
low for atypical fluctuations of the environment and hence are not smaller
than corresponding quenched deviation probabilities:

Lemma 2.3.8 Let {An} be a sequence of events, subsets of Ω × ZN . Then,

c := lim sup
n→∞

1
n

log Po(An) ≥ lim sup
n→∞

1
n

log P o
ω(An), P − a.s. (2.3.9)

Further,

lim inf
n→∞

1
n

log Po(An) ≥ lim inf
n→∞

1
n

log P o
ω(An) , P − a.s. (2.3.10)

In particular, if a sequence of X valued random variables {Zn} satisfies an-
nealed and quenched LDP’s with rate functions Ia(·), Iq(·), respectively, then,

Ia(x) ≤ Iq(x) , ∀x ∈ X.

Proof. Assume first c < 0. Fix δ > 0 and let Bδ
n = {ω : P o

ω(An) ≥ exp((c +
δ)n)}. Then, by the definition of c, see (2.3.9), and Markov’s bound, for n
large enough,

P (Bδ
n) ≤ e−δn/2 .

Hence, ω ∈ Bδ
n occurs only finitely many times, P -a.s., implying that for P -

almost all ω there exists an n0(ω) such that for all n ≥ n0(ω), P o
ω(An) <

exp((c + δ)n) . Hence,

lim sup
n→∞

1
n

log P o
ω(An) ≤ c + δ , P − a.s.

(2.3.9) follows by the arbitrariness of δ > 0. Next, set lim infn→∞ 1
n log Po(An)

:= c1 ≤ c. Define {nk} such that

lim
k→∞

1
nk

log Po(Ank
) = c1 .
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Apply now the first part of the lemma to conclude that

c1 ≥ lim sup
k→∞

1
nk

log P o
ω(Ank

) ≥ lim inf
k→∞

1
nk

log P o
ω(Ank

) ≥ lim inf
n→∞

1
n

log P o
ω(An)

P − a.s.

The case c = 0 is the same, except that (2.3.9) is trivial. This completes the
proof. ��

Quenched LDP’s

The LDP in the quenched setting makes use in its proof of the hitting times
{τi}. Introduce, for any λ ∈ R,

ϕ(λ, ω) = Eo
ω(eλτ1 1{τ1<∞}) , f(λ, ω) = log ϕ(λ, ω)

G(λ, P, u) = λu − EP

(
f(λ, ω)

)
.

We need throughout the following modification of Assumption 2.1.1.

Assumption 2.3.11

(B1) P is stationary and ergodic,
(B2) There exists an ε > 0 such that P (ω+

0 �∈ (0, ε))P (ω−
0 �∈ (0, ε)) = 1,

(B3) P (ω+
0 + ω−

0 > 0) = 1, P (ω0
0 > 0, ω+

0 ω−
0 = 0) = 0, and P (ω+

0 =
0)P (ω−

0 = 0) = 0.

Note that we allow for the possibility of having one sided transitions (e.g.,
moves to the right only) of the RWRE. This allows one to deal with the case
where “random nodes” are present.

Define

ρmin := inf[ρ : P (ρ0 < ρ) > 0] ,
ρmax := sup[ρ : P (ρ0 > ρ) > 0] ,

ω0
max := sup[α : P (ω0

0 > α) > 0] .

With PN denoting the restriction of P to the first N coordinates {ωi}N−1
i=0 ,

we say that P is locally equivalent to the product of its marginals if for any
N finite, PN ∼ ⊗NP1.

Finally, we say that a measure P is extremal if it is locally equivalent to
the product of its marginals and in addition it satisfies the following condition:

(C5) Either ρmin ≤ 1 and ρmax ≥ 1, or if ρmin > 1 then for all δ > 0,
P (ρ0 < ρmin + δ, ω0

0 > ω0
max − δ) > 0, or if ρmax < 1 then for all δ > 0,

P (ρ0 > ρmax − δ, ω0
0 > ω0

max − δ) > 0.



216 Ofer Zeitouni

Note that (C5), which is used only in the proof of the annealed LDP, can
be read off the support of P0 and represents an assumption concerning the
inclusion of “extremal environments” in the support of P . The introduction
of this assumption is not essential and can be avoided at the cost of a slightly
more cumbersome proof, see the remarks at the end of this chapter.

For a fixed ε > 0, we denote by M e,ε
1 the set of probability measures

satisfying Assumption 2.3.11 with parameter ε in (B2). Define also the maps
F : Ω �→ Ω by (Fω)+k = ω−

k , (Fω)−k = ω+
k , and (Inv ω)k = (Fω)−k. We now

have:

Theorem 2.3.12 Assume Assumption 2.3.11.
a) The random variables {Tn/n} satisfy the weak quenched LDP with speed n
and convex rate function

Iτ,q
P (u) = sup

λ∈R

G(λ, P, u) .

b) Assume further that EP log ρ0 ≤ 0. Then, the random variables Xn/n
satisfy the quenched LDP with speed n and good convex rate function

Iq
P (v) =




v Iτ,q
P

(
1
v

)
, 0 < v ≤ 1

|v|
(

Iτ,q
P

(
1
|v|
)
− EP (log ρ0)

)
, −1 ≤ v < 0

and

Iq
P (0) = lim

v↓0
vIτ,q

P

(
1
v

)
.

c) Finally, if EP log ρ0 > 0, define P Inv := P ◦Inv−1. Then, EP Inv (log ρ0)
< 0, and the LDP for (Xn/n) holds with good convex rate function

Iq
P (v) = Iq

P Inv (−v) .

Proof. It should come as no surprise that we begin with the LDP for Tn/n.
We divide the proof of Theorem 2.3.12 into the following steps:

Step I: EP log ρ0 ≤ 0, quenched LDP for Tn/n with convex rate function
Iτ,q
P (·):

(I.1) upper bound, lower tail: P o
ω(Tn ≤ nu)

(I.2) upper bound, upper tail: P o
ω(Tn ≥ nu)

(I.3) lower bound

Step II: EP log ρ0 > 0, quenched LDP for Tn/n with convex rate function
Iτ,q
P (·) + EP (log ρ0),

Step III: quenched LDP for Xn/n with convex rate function Iq
P (·).
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As a preliminary step we have the following technical lemma, whose proof is
deferred:

Lemma 2.3.13 Assume P ∈ M e,ε
1 and EP (log ρ0) ≤ 0; Then

(a) The convex function Iτ,q
P (·) : R �→ [0,∞] is nonincreasing on [1, EP (S)],

nondecreasing on [EP (S),∞). Further, if EP (S) < ∞ then Iτ,q
P (EP (S)) = 0.

(b) For any 1 < u < EP (S), there exists a unique λ0 = λ0(u, P ) such that
λ0 < 0 and

u =
∫

d

dλ
log ϕ(λ, ω)

∣∣∣∣
λ=λ0

P (dω) . (2.3.14)

Further,
inf

P∈Me,ε
1

λ0(u, P ) > −∞ . (2.3.15)

(c) There is a deterministic λcrit := λcrit(P ) ∈ [0,∞] such that

ϕ(λ, ω)

{
< ∞ , λ < λcrit , P - a.s.
= ∞ , λ > λcrit , P - a.s.

with λcrit < ∞ if P (ω+
0 ω−

0 = 0) = 0. In the latter case, Eo
ω(eλcritτ1) <

e−λcrit/ε, P -a.s., and with

ucrit =




∞ , EP

[
Eo

ω(τ1 eλcrit τ1)

Eo
ω(eλcrit τ1 )

]
= ∞

EP

(
d

dλ log ϕ(λ, ω)
∣∣∣∣
λ=λcrit

)
, EP

[
Eo

ω(τ1 eλcrit τ1)

Eo
ω(eλcrit τ1 )

]
< ∞ ,

and EP (S) ≤ u < ucrit, there exists a unique λ0 := λ0(u, P ) such that λ0 ≥ 0
and (2.3.14) holds.
(d) Assume P is extremal and further assume that ρmax < 1. Then,

λcrit = λ := − log
(

ω0
max +

2(1 − ω0
max)

√
ρmax

1 + ρmax

)
.

Further, define

ω̂+ = (1 − ω0
max)/(1 + ρmax) , ω̂− = ρmaxω̂

+ , ω̂0 = ω0
max ,

and let ω̃min denote the deterministic environment with ω̃min
k = ω̂. Then, for

any λ ≤ λcrit, and any ω such that ω0
i ≤ ω0

max, ρi ≤ ρmax,

ϕ(λ, ω) ≤ ϕ(λ, ω̃min) < ∞ . (2.3.16)

Step I.1: Obviously, it is enough to deal with u ≤ EP (S). Indeed, for u >
EP (S) we have by (2.1.30) that Po(Tn ≤ nu) −→

n→∞ 1, and there is nothing
to prove. Next, by Chebycheff’s inequality, for all λ ≤ 0,
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P o
ω

(
Tn

n
≤ u

)
≤ e−λnu Eo

ω

(
eλ

∑n
i=1 τi

)
= e−λnu

n∏
i=1

Eo
θiω

(
eλτ1

)

= e−λnu
n∏

i=1

ϕ(λ, θiω) , P - a.s.

(2.3.17)

where the first equality is due to the Markov property and the second due
to τi < ∞, Po - a.s. (the null set in (2.3.17) does not depend on λ).
An application of the ergodic theorem yields that

1
n

log
n∏
1

ϕ(λ, θiω) −→ EP

(
f(λ, ω)

)
, P - a.s.

first for all λ rational and then for all λ by monotonicity. Thus,

lim sup
n→∞

1
n

log P o
ω

(
Tn

n
≤ u

)
≤ − sup

λ≤0
G(λ, P, u) , P - a.s.

Note that if EP (S) = ∞ then clearly EP [log Eo
ω(eλτ1)] = ∞ by Jensen’s

inequality for λ > 0, and then supλ≤0 G(λ, P, u) = Iτ,q
P (u). If EP (S) < ∞

then, because u < EP (S), it holds that for any λ > 0,

λu − EP f(λ, ω) ≤ λEP (S) − EP f(λ, ω) ≤ 0 ,

where Jensen’s inequality was used in the last step. Since G(0, P, u) = 0,
it follows that also in this case supλ≤0 G(λ, P, u) = Iτ,q

P (u). Hence,

lim sup
n→∞

1
n

log P o
ω

(
Tn

n
≤ u

)
≤ −Iτ,q

P (u) = − inf
w≤u

Iτ,q
P (w) ,

where the last inequality is due to part a) of Lemma 2.3.13, completing
Step I.1.

Step I.2: is similar, using this time λ ≥ 0.
Step I.3: The proof of the lower bound is based on a change of measure

argument. We present it here in full detail for u < ucrit. Fix λ0 = λ0(u, P )
as in Lemma 2.3.13, and set a probability measure Qo

ω,n such that

dQo
ω,n

dP o
ω

=
1

Zn,ω
exp

(
λ0Tn

)
, Zn,ω = Eo

ω

(
exp

(
λ0Tn

))
,

and let Q
o

ω,n denote the induced law on {τ1 , . . . , τn}. Due to the Markov
property, Q

o

ω,n is a product measure, whose first n marginals do not de-
pend on n, hence we will write Q

o

ω instead of Q
o

ω,n when integrating over
events depending only on {τi}i<n. But, for any δ > 0,
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P o
ω

(
Tn

n
∈ (u − δ, u + δ)

)

≥ exp
(
−nuλ0 − nδ|λ0| +

n∑
i=1

log ϕ
(
λ0, θiω

))
Q

o

ω

(∣∣∣∣Tn

n
− u

∣∣∣∣ ≤ δ

)
.

(2.3.18)

By the ergodic theorem and the fact that u < ucrit, it holds that

EQ
o
ω
(Tn/n) →n→∞ EP

(
EQ

o
ω
(τ1)

)
= u , P - a.s. (2.3.19)

where we used again (2.3.14). On the other hand, again because λ0 < λcrit it
holds that there exists an η > 0 such that

EP

(
EQ

o
ω

(
eητ1

))
< ∞ ,

implying that

Q
o

ω

(∣∣∣∣Tn

n
− u

∣∣∣∣ ≥ δ

)
−→

n→∞ 0 , P - a.s. (2.3.20)

Combining (2.3.20) with (2.3.18), we get

lim inf
n→∞

1
n

log P o
ω

(
Tn

n
∈ (u − δ, u + δ)

)

≥ −uλ0 − δ|λ0| + lim inf
n→∞

1
n

n∑
i=1

log ϕ(λ0, θ
iω)

= −uλ0 − δ|λ0| + EP (log ϕ(λ0, ω))
= −G(λ0, P, u) − δ|λ0| = −Iτ,q

P (u) − δ|λ0| , P - a.s.

where the first equality is due to the ergodic theorem and the last one to
Lemma 2.3.13. This completes Step I.3 when u < ucrit, since δ > 0 is arbitrary.
For u > ucrit, the proof is similar, except that one needs to truncate the
variables {τi}, we refer to [12, Theorem 4] for details. Step I is complete,
except for the:

Proof of Lemma 2.3.13

We consider in what follows only the case P (ω+
0 ω−

0 = 0) = 0, the modifications
in the case where random nodes are allowed are left to the reader.
a) The convexity of Iτ,q

P (·) is immediate from its definition as a supremum of
affine functions.

As in the course of the proof of Step I, recall that

sup
λ∈R

G(λ, u, P ) =




supλ≤0 G(λ, u, P ) , u < EP (S)
supλ≥0 G(λ, u, P ) , u > EP (S)
0 , u = EP (S) .
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The stated monotonicity properties are then immediate.
b)+c) Recall the path decomposition (2.1.13). Exponentiating and taking

expectations using τ1 < ∞ , Po - a.s., we have that if ϕ(λ, ω) < ∞ then

ϕ(λ, ω) = ω+
0 eλ + ω0

0 eλ ϕ(λ, ω) + ω−
0 eλϕ(λ, ω)ϕ(λ, θ−1ω) . (2.3.21)

Thus ϕ(λ, ω) < ∞ implies ϕ(λ, θ−1ω) < ∞, yielding that 1ϕ(λ,ω)<∞ is con-
stant P - a.s., and hence for all λ rational, P (ϕ(λ, ω) < ∞) ∈ {0, 1}. This,
and the monotonicity of ϕ(λ, ω) in λ, immediately yields the existence of a
deterministic λcrit. (We note in passing that (2.3.21) gives, by iterating, a rep-
resentation of ϕ(λ, ω) as a continued fraction, but we do not need this now.)
We also conclude from (2.3.21) that for λ < λcrit it holds that ϕ(λ, ω) ≤ e−λ/ε,
P -a.s., which implies by monotone convergence that ϕ(λcrit, ω) < ∞, P -a.s.

Next, for λ < 0 we have that

g(λ) :=
∫

Eo
ω(τ1 eλτ1)
Eo

ω (eλτ1)
P (dω) =

∫
d

dλ
log ϕ(λ, ω)P (dω) .

Further, g(0) = EPo(τ1), whereas g(·) ≥ 1 is strictly monotone increasing,
satisfying g(λ) −→

λ→−∞
1. This implies (2.3.14). Finally, to see (2.3.15), note

that

1 ≤ Eo
ω(τ1 eλτ1)
Eo

ω(eλτ1)
≤ ω+

0 eλ + Eω(τ1 eλτ1 1τ1≥2)
ω+

0 eλ

≤ 1 +
c e3λ/2

ω+
0 eλ

≤ 1 +
c

ε
eλ/2 −→

λ→−∞
1 ,

where c is a constant independent of ω or λ. Hence, g(λ) −→
λ→−∞

1 uniformly

in M e,ε
1 .

d) Assume that P is extremal. The first inequality in (2.3.16) follows from a
simple coupling argument: let ϕ̄(λ) := Eo

ω̃min[eλτ1 ]. By the recursions (2.3.21),
it holds that if ϕ̄(λ) < ∞ then as long as λ ≤ λ it holds that

ϕ̄(λ) =
(1 − ω0

maxe
λ) −√

(1 − ω0
maxe

λ)2 − 4ω̂+ω̂−e2λ

2ω̂−eλ
.

Thus, we have to show that if λ > λcrit then Eo
ω(eλτ1) = ∞, P -a.s. Since

Eo
ω̃min(eλτ1) = ∞, we may find an M large enough such that Eo

ω̃min(eλτ11τ1<M )
> 1/ε+1. Since the last expression is local, i.e. depends only on {ωi}−M+1

i=0 , it
follows (from the assumption of local equivalence to the product of marginals)
that with P positive probability, Eo

ω(eλτ1) > 1/ε, and hence by part (c) actu-
ally E0

ω(eλτ1) = ∞ with P positive probability, and hence with P probability
1. ��
Remark: Before proceeding, we note that a direct consequence of Lemma
2.3.13 is that if EP (log ρ0) ≤ 0, then for u < EP (S),



Random Walks in Random Environment 221

Iτ,q
P (u) = λ0u − EP (f(λ0, ω)) = sup

λ∈R

G(λ, P, u) > G(0, P, u) = 0

since the function G(·, P, u) is strictly concave.
Step II: Recall the transformation Inv : Ω �→ Ω and the law P Inv = P ◦
Inv−1. Proving the LDP for Tn/n when EP (log ρ0) > 0 is the same, by space
reversal, as proving the quenched LDP for T−n/n under the law P Inv on the
environment. Note that in this case, EP Inv (log ρ0) < 0, and further, P ∈ M e,ε

1

implies that P Inv ∈ M e,ε
1 . Thus, Step II will be completed if we can prove a

quenched LDP for T−n/n for P ∈ M e,ε
1 satisfying EP log ρ0 < 0. We turn to

this task now.
Note that if P (ω−

0 = 0) > 0 then P o
ω(T−n < ∞) = 0 for some n = n(ω)

large enough, and the LDP for T−n/n is trivial. We thus assume throughout
that ω−

0 ≥ ε, P -a.s. As a first step in the derivation of the LDP, we compute
logarithmic moment generating functions. Define, for any λ ∈ R,

ϕ(λ, ω) = Eo
ω(eλτ−1 1{τ−1<∞}) , f(λ, ω) = log ϕ(λ, ω) .

Lemma 2.3.22 Assume P ∈ M e,ε
1 and further assume that min(ω+

0 , ω−
0 ) >

ε, P -a.s. Then,

EP (f(λ, ω)) = EP (f(λ, ω)) + EP log ρ0 . (2.3.23)

Proof of Lemma 2.3.22:

Define the map In : Ω �→ Ω by

(Inω)k =
{

ωk , k �∈ [0, n]
(Fω)n−k , k ∈ [0, n] .

Introduce

ϕn(λ, ω) = Eo
ω(eλτ1 ; τ1 < T−(n+1)) , ϕn(λ, ω) = Eo

ω(eλτ−1 ; τ−1 < T(n+1)) .

We will show below that

Gn(λ, ω) := ϕn(λ, θnω)ϕn−1(λ, ω) = ϕn−1(λ, θnω)ϕn(λ, ω) := Fn(λ, ω) .
(2.3.24)

Because min(ω+
0 , ω−

0 ) > ε, P -a.s., the function log ϕn(λ, ω) and log ϕn(λ, ω)
are P -integrable for each n. Taking logarithms in (2.3.24), we find that
EP (log ϕn(λ, ω))−EP (log ϕn(λ, ω)) does not depend on n. On the other hand,
both terms are monotone in n, hence by monotone convergence either both
sides of (2.3.24) are +∞ or both are finite, in which case

EP (log ϕ(λ, ω)) − EP (log ϕ(λ, ω)) = EP

(
log

(
ϕ0(λ, ω)
ϕ0(λ, ω)

))
= −EP (log ρ0) ,

yielding (2.3.23).
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We thus turn to the proof of (2.3.24). It is straight forward to check, by
space inversion, that Fn(λ, Inω) = Gn(λ, ω). Thus, the proof of (2.3.24) will
be complete once we show that Fn(λ, Inω) = Fn(λ, ω). Toward this end, note
that by the Markov property,

ϕn(λ, ω) = Eo
ω(eλT−1 ; T−1 < Tn+1)

= Eo
ω(eλT−1 ; T−1 < Tn)

+ Eo
ω(eλTn ; Tn < T−1)En

ω(eλT−1 ; T−1 < Tn+1) .

Hence, defining
Bn(λ, ω) := Eo

ω(eλT−1 ; T−1 < Tn) ,

Cn(λ, ω) := Eo
ω(eλTn ; Tn < T−1) ,

one has, using again space reversal and the Markov property in the second
equality,

Fn(λ, ω) = En
ω(eλTn+1 ; Tn+1 < T0)Eo

ω(eλT−1 ; T−1 < Tn)

+ En
ω(eλTn+1 ; Tn+1 < T0)En

ω(eλT−1 ; T−1 < Tn+1)Eo
ω(eλTn ; Tn < T−1)

= Bn(λ, ω)Bn(λ, Inω)

+ En
ω(eλTn+1 ; Tn+1 < T0)En

ω(eλT0 ; T0 < Tn+1)Eo
ω(eλT−1 ; T−1 < Tn+1)

Eo
ω(eλTn ; Tn < T−1)

= Bn(λ, ω)Bn(λ, Inω) + Cn(λ, ω)Cn(λ, Inω)Fn(λ, ω) ,

implying the invariance of Fn(λ, ω) under the action of In on Ω, except pos-
sibly at λ where Cn(λ, ω)Cn(λ, Inω) = 1. The latter λ is then handled by
continuity. This completes the proof of Lemma 2.3.22 ��
Step II now is completed by following the same route as in the proof of Step
I, using Lemma 2.3.22 to transfer the analytic results of Lemma 2.3.13 to
this setup. The details, which are straightforward and are given in [12], are
omitted here. ��
Remarks: 1. Note that the conclusion of Lemma 2.3.22 extends immediately,
by the ergodic decomposition, to stationary measures P ∈ M s,ε

1 .
2. Lemma 2.3.22 is the key to the large deviations principle, and deserves
some discussion. First, by taking λ ↑ 0, one sees that if EP (log ρ0) ≤ 0 then
EP [log P o

ω(τ−1 < ∞)] = EP (log ρ0). Next, let τ̄−1, τ̄−2, τ̄−3, ..., τ̄−N have the
distribution of τ−1, τ−2, τ−3, ...τ−N under P o

ω conditioned on T−N < ∞. In
fact the law of {τ̄−i}N

i=1 does not depend on N . This can be seen by a discrete
h-transform: the distributions of X

T−N

0 := (X0, . . . , XT−N ) under P o
ω , condi-

tioned on T−N < ∞, N = 1, 2, ... form a consistent family whose extension is
again a Markov chain. To see this, let P̃ o

ω,N := P o
ω(·|T−N < ∞), restricted to

X
T−N

0 . Denoting xn
1 := (x1, ..., xn), compute (with xi > −N),
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P̃ o
ω,N (Xn+1 = xn+ 1|Xn

1 = xn
1 )

=
P̃ o

ω,N (Xn+1 = xn+ 1, Xn
1 = xn

1 )

P̃ o
ω,N (Xn

1 = xn
1 )

=
P o

ω(Xn+1 = xn+ 1, Xn
1 = xn

1 , T−N < ∞)
P o

ω(Xn
1 = xn

1 , T−N <∞)

=
P o

ω(Xn+1 = xn+ 1, Xn
1 = xn

1 )P o
θxn+1ω(T−N−xn−1 < ∞)

P o
ω(Xn

1 = xn
1 )P o

θxn ω(T−N−xn < ∞)

= P o
ω(Xn+1 = xn+1|Xn

1 = xn
1 )Pθxn+1ω(T−1 <∞)

= ω+
xn

P o
θxn+1ω(T−1 <∞) ,

where we used the Markov property in the third and in the fourth equality.
The last term depends neither on N nor on xn−1

1 . Therefore, the extension of
(P̃ω,N )N≥1 is the distribution of the Markov chain with transition probabilities
ω̃+

i = ω+
i Pθi+1ω(T−1 < ∞), ω̃0

i = ω0
i , i ∈ Z. In particular, τ̄−1, τ̄−2, τ̄−3, ... are

independent under P o
ω and, with a slight abuse of notations, form a stationary

sequence under Po. Note now that if we set

φ(λ, ω) := Eo
ω(eλτ̄−1) =

ϕ(λ, ω)
P o

ω(T−1 < ∞)
(2.3.25)

then Lemma 2.3.22 tells us that EP φ(λ, ω) = EP ϕ(λ, ω). In particular,
Eo

P (τ̄1) = Eo
P (τ1) = EP (S) if EP (log ρ0) ≤ 0 and, repeating the arguments

leading to the LDP of Tn/n, we find that the sequence of random variables
T−n/n, conditioned on T−n < ∞, satisfy a quenched LDP under P o

ω with the
same rate function as Tn/n!
Step III: By space reversal, it is enough to prove the result for EP (log ρ0) ≤
0. Further, as in Step II, it will be enough to consider the case where
min(ω+

0 , ω−
0 ) ≥ ε, P -a.s. Since Iτ,q

P (·) is convex, and since x �→ xf(1/x)
is convex if f(·) is convex, it follows that Iq

P (·) is convex on (0, 1] and on
[−1, 0) separately. If λcrit(P ) = 0 then Iq

P (0) = 0 and the convexity on
[−1, 1] follows. In the general case, note that Iq

P is continuous at 0, and
(Iq

P )′(0−) = −(Iq
P )′(0+) + EP (log ρ0) . Note that for λ ≤ λcrit, by the Markov

property,

Eo
ω(eλTM 1τ−1<τM ) = Eo

ω(eλτ−11τ−1<τM )ϕ(λ, θ−1ω)Eo
ω(eλTM ) ,

and hence,
1 ≥ Eo

ω(eλτ−11τ−1<τM )ϕ(λ, θ−1ω) ,

leading (by taking M → ∞) to the conclusion that

ϕ(λ, ω)ϕ̄(λ, θ−1ω) ≤ 1 .

Taking logarithms and P -expectations, we conclude that

EP f(λ, ω) + EP f̄(λ, ω) ≤ 0.
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Combined with Lemma 2.3.22, we deduce that for all λ ≤ λcrit, 2EP (f(λ, ω))
≤ −EP (log ρ0) . Hence,

(Iq
P )′(0+) = −EP

(
log Eω(eλcritτ1)

)
= −EP (f(λcrit, ω)) ≥ 1

2
EP (log ρ0) ,

implying that (Iq
P )′(0−) ≤ (Iq

P )′(0+), and hence that Iq
P (·) is convex on [−1, 1].

Using the monotonicity of Iτ,q
P (·), c.f. the remark following the proof of Step

I, it follows easily that Iq
P (·) is non increasing on [−1, vP ] and non decreasing

on [vP , 1].
Let v > vP . We have

P o
ω

(
Xn

n
≥ v

)
≤ P o

ω

(
T�nv� ≤ n

)
= P o

ω

(
T�nv�
�nv� ≤ n

�nv�
)

.

Step I and the monotonicity of Iτ,q
P (·) now imply

lim sup
n→∞

1
n

log P o
ω

(
Xn

n
≥ v

)
≤ −vIτ,q

P

(
1
v

)
,

which yields the required upper bound by the monotonicity of Iq
P (·). The same

argument applies to yield the desired upper bound on P o
ω

(
Xn

n ≤ v
)

for v < 0,
by considering the hitting times T�nv�.

In the same way, for any 0 < η < δ/2,

P o
ω

(
(v + δ) ≥ Xn

n
≥ (v − δ)

)
≥ P o

ω

(
(1 − η)n ≤ T�nv� ≤ n

)
,

hence, from Step I it follows that for v ≥ 0,

lim inf
n→∞

1
n

log P o
ω

(
Xn

n
∈ (v − δ, v + δ)

)
≥ −vIτ,q

P

(
1 − η

v

)
, P − a.s. ,

and the lower bound is obtained by letting η → 0. The same argument also
yields the lower bounds for v < 0, using this time the function I−τ,q

P (·).
Next, we turn to evaluate an upper bound on P o

ω(Xn/n ≤ v), 0 ≤ v < vP ,
with vP ≥ 0. Starting with v = 0, let η, δ > 0, with δ < vP . Then,

P o
ω (Xn ≤ 0) ≤ P o

ω

(
T[nδ] ≥ n

)
+P o

ω

(
T[nδ] < n,

Xn

n
≤ 0

)
(2.3.26)

≤ P o
ω

(
T[nδ] ≥ n

)
+

∑
1/η≤k,l;(k+l)η≤1/δ

P o
ω

(T[nδ]

nδ
∈ [kη, (k + 1)η)

)
×

P o
θ[nδ]ω

(T−[nδ]

nδ
∈ [lη, (l + 1)η)

) ∑
−2nδη≤m−n(1−(k+l)δη)≤0

P o
ω (Xm ≤ 0) ,

by the strong Markov property. Define the random variable
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a = lim sup
n→∞

1
n

sup
m:−2nδη≤m−n≤0

log P o
ω (Xm ≤ 0) ,

and note, using the inequality

P o
ω(Xn ≤ 0) ≥ P o

ω(Xm ≤ 0) inf
i≤0

P o
θiω[Xn−m = −(n − m)]

with a worst-environment estimate, that

a − Cδη ≤ lim sup
n→∞

1
n

log P o
ω [Xn ≤ 0] ≤ a (2.3.27)

with C = −2 log ε > 0. The first two probabilities in the right-hand side of
(2.3.26) will be estimated using Step I. By convexity, the rate functions Iτ,q

P

and I−τ,q
P := Iτ,q

P − EP (log ρ0) are continuous, so that the oscillation

w(δ; η) =

max{|Iτ,q
P (u) − Iτ,q

P (u′)| + |I−τ,q
P (u) − I−τ,q

P (u′)|; u, u′ ∈ [1, 1/δ], |u − u′| ≤ η}
tends to 0 with η, for all fixed δ. From the proof of Step II, it is not difficult
to see that the third term in the right-hand side of (2.3.26) can be estimated
similarly (it does not cause problems to consider P o

θ[nδ]ω
instead of P o

ω):

lim sup
n→∞

1
n

log P o
θ[nδ]ω

(T−[nδ]

nδ
∈ [lη, (l+1)η)

)
≤ −δ

(
I−τ,q
P (lη) − w(δ; η)

)
P−a.s.

Finally, we get from (2.3.27) and (2.3.26)

a ≤ Cδη + max{−Iq
P (δ), max

1/η≤k,l;(k+l)η≤1/δ

[−δη(kIq
P (1/kη) + lIq

P (−1/lη)) + 2δw(δ; η) + (1−(k+l+2)δη)a]} .

By convexity and since δ ≤ vP , it holds kIq
P (1/kη) + lIq

P (−1/lη) ≥ (k +
l)Iq

P (0) ≥ (k + l)Iq
P (δ), and therefore a′ := a + Iq

P (δ) is such that

a′≤Cδη +
(

max
1/η≤k,l;(k+l)η≤1/δ

[2δw(δ; η) + 2δηIq
P (δ) + (1−(k + l + 2)δη)a′]

)+
.

Computing the maximum for positive a′, we derive that 2a′ ≤ Cη+2(w(δ; η)+
ηIq

P (δ)). Letting now η → 0 and δ → 0, we conclude that

lim sup
n→∞

1
n

log P o
ω

(
Xn ≤ 0

)
≤ −Iq

P (0) , P − a.s. (2.3.28)

In fact, the same proof actually shows that

lim sup
n→∞

1
n

log P o
ω

(
∃� ≥ n : X� ≤ 0

)
≤ −Iq

P (0) , P − a.s. (2.3.29)
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For an arbitrary v ∈ [0, vP ), we write

P o
ω

(Xn

n
≤ v

)
≤ P o

ω(∃� ≥ n : X� ≤ nv) ≤ P o
ω

(
T[nv] ≥ n

)

+
∑

k:v/η≤k<1/η

P o
ω

(T[nv]

n
∈ [kε, (k+1)ε)

)
P o

θ[nv]ω

(
∃� ≥ n−n(k+1)η : X� ≤ 0

)

(2.3.30)

where the two first probabilities in the right-hand side can be estimated using
Step I, and concerning the last one we note that from (2.3.29) one has that

1
n − n(k + 1)η

log P o
θ[nv]ω

(
∃� ≥ n − n(k + 1)η : X� ≤ 0

)
→n→∞ −Iq

P (0) ,

in probability, and hence a.s. along a random subsequence. Therefore,

lim inf
n→∞

1
n

log P o
ω

(
∃� ≥ n : X� ≤ nv

)

≤ lim sup
η→0

(
−Iq

P (v) ∨ max
v/η≤k≤1/η

[−kηIq
P (v/kη) − (1 − kη)Iq

P (0)]
)

= −Iq
P (v) , (2.3.31)

by convexity. But, due to Kingman’s sub-additive ergodic theorem, the left
hand side of the last expression converges P -a.s., resulting with

lim sup
n→∞

1
n

log P o
ω

(
Xn ≤ nv

)
≤ −Iq

P (v) , P − a.s..

The upper bound for general subsets of [0, 1] follows by noting the convexity
of Iq

P (·). ��
Remarks 1. If P is extremal, a simpler proof of (2.3.28) can be given. Indeed,
note that Iq

P (0) = λcrit(0), and, by extremality,

P o
ω(Xn ≤ 0) ≤ Pω(Xm ≤ 0, somem ≥ 0) ≤ Pω̃min(Xm ≤ 0, somem ≥ 0)

≤
∞∑

m=n

Pω̃min(Xm ≤ 0) .

A simple computation reveals that Pω̃min(Xm ≤ 0) ≤ Cλe−λm for any λ <
λcrit, yielding that

lim sup
n→∞

1
n

log P o
ω(Xn ≤ 0) ≤ −Iq

P (0) , P − a.s. (2.3.32)

2. A lot of information is available concerning the shape of the rate function
Iq
P (·), and in particular concerning the existence of pieces where the rate

function is not strictly convex. We refer to the discussion in [12] for details.
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Annealed LDP’s

The LDP in the annealed setting also makes use of the hitting times Tn

and T−n. For technical reasons, we need to make stronger hypotheses on the
environment. To state these, define the empirical process

Rn(ω) :=
1
n

n−1∑
i=0

δθiω .

Rn takes values in the space M1(Ω) of probability measures on Ω, which we
equip with the topology of weak convergence. We also need to introduce the
specific relative entropy

h(·|P ) : M1(Ω) �→ [0,∞], h(Q|P ) :=
{

limN→∞ 1
N H(QN |PN ) , Q stationary

∞ , otherwise ,

where QN , PN denote the restriction of Q, P to the first N coordinates
{ωi}N−1

i=0 and H(·|·) denotes the relative entropy:

H(µ|ν) =

{∫
log

(
dµ
dν (x)

)
µ(dx) , µ # ν

∞ , otherwise
.

Assumption 2.3.33

(C1) P is stationary and ergodic
(C2) There exists an ε > 0 such that min(ω+

0 , ω−
0 ) > ε , P − a.s.,

(C3) {Rn} satisfies under P the process level LDP in M1(Ω) with good rate
function h(·|P ),

(C4) P is locally equivalent to the product of its marginals and, for any sta-
tionary measure η ∈ M1(Ω) there is a sequence {ηn} of stationary, ergodic
measures with ηn −→n→∞ η weakly and h(ηn|P ) → h(η|P ).

(C5) P is extremal.

We note that product measures and Markov processes with bounded transition
kernels satisfy (C1)–(C4) of Assumption 2.3.33, see [27, Lemma 4.8] and [23].
Define now

Iτ,a
P (u) = inf

η∈Me,ε
1 (Ω)

[
Iτ,q
η (u) + h(η|P )

]
, Ia

P (v) = inf
η∈Me,ε

1 (Ω)

[
Iq
η (v) + |v|h(η|P )

]
.

We now have the annealed analog of Theorem 2.3.12:

Theorem 2.3.34 Assume Assumption 2.3.33. Then, the random variables
{Tn/n} satisfy the weak annealed LDP with speed n and rate function Iτ,a

P (·) .
Further, the random variables Xn/n satisfy the annealed LDP with speed n
and good rate function Ia

P (·).
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Proof. Throughout, M s,ε
1 denotes the set of stationary probability mea-

sures η ∈ M1(Ω) satisfying supp η0 ⊂ supp P0. If EP (log ρ0) ≤ 0 then
λcrit = λcrit(P ) is as in Lemma 2.3.13, whereas if EP (log ρ0) > 0 then
λcrit = λcrit(P Inv ).

Let M s,ε,P
1 = {µ ∈ M s,ε

1 : suppµ0 ⊂ supp P0}. The following lemma,
whose proof is deferred, is key to the transfer of quenched LDP’s to annealed
LDP’s:

Lemma 2.3.35 Assume P satisfies Assumption 2.3.33. Then, the function
(µ, λ) �→ ∫

f(λ, ω)µ(dω) is continuous on M s,ε,P
1 × (−∞, λcrit].

Steps I.1 + I.2: weak annealed LDP upper bound for Tn/n: We have,
for λ ≤ 0,

Po (Tn/n ≤ u) ≤ e−λnuEo


exp


λ

n∑
j=1

τj


1τj<∞,j=1,...,n




= e−λnuEP


 n∏

j=1

Eo
ω

(
eλτj1τj<∞

) = e−λnuEP


exp


n−1∑

j=0

f(λ, θjω)






= e−λnuEP

(
exp

(
n

∫
f(λ, ω)Rn(dω)

))
. (2.3.36)

By Assumption 2.3.33, {Rn} satisfies a LDP with rate function h(·|P ).
Lemma 2.3.35 ensures that we can apply Varadhan’s lemma (see [19, Lemma
4.3.6]) to get

lim sup
n→∞

1
n

log EP

(
exp

(
n

∫
f(λ, ω)Rn(dω)

))

≤ sup
η∈Ms,ε

1

[∫
f(λ, ω)η(dω) − h(η|P )

]
. (2.3.37)

Going back to (2.3.36), this yields the upper bound

lim sup
n→∞

1
n

log Po (Tn/n ≤ u) ≤ inf
λ≤0

sup
η∈Ms,ε

1

[∫
f(λ, ω)η(dω) − h(η|P ) − λu

]

= − sup
λ≤0

inf
η∈Ms,ε

1

[G(λ, η, u) + h(η|P )] . (2.3.38)

Since η → − ∫
f(λ, ω)η(dω)+h(η|P ) is lower semi-continuous (for λ ≤ 0) and

M1(Ω) is compact, the infimum in (2.3.38) is achieved for each λ, on measures
in M s,ε

1 , for otherwise h(η|P ) = ∞. Further, by (2.3.15), the supremum over
λ can be taken over a compact set (recall that ∞ > u > 1!). By the Minimax
theorem (see [64, Theorem 4.2] for this version), the min-max is equal to the
max-min in (2.3.38). Further, since taking first the supremum in λ in the right
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hand side of (2.3.38) yields a lower semicontinuous function, an achieving η̄
exists, and then, due to compactness, there exists actually an achieving pair
λ̄, η̄. We will show below that the infimum may be taken over stationary,
ergodic measures only, that is

inf
η∈Ms,ε

1

sup
λ≤0

(G(λ, η, u) + h(η|P )) = inf
η∈Me,ε

1

sup
λ≤0

(G(λ, η, u) + h(η|P )) .

(2.3.39)
Then,

R.H.S. of (2.3.38) = − inf
η∈Me,ε

1

sup
λ≤0

(G(λ, η, u) + h(η|P ))

= − inf
η∈Me,ε

1

inf
w≤u

(
Iτ,q
η (w) + h(η|P )

)
. (2.3.40)

The second equality in (2.3.40) is obtained as follows: set Mu = {η ∈ M e,ε
1 :

Eη(Eo
ω(τ1|τ1 < ∞)) > u}, M−

u = {η ∈ M e,ε
1 : Eη(Eo

ω(τ1|τ1 < ∞)) ≤ u}. For
η ∈ Mu,

inf
w≤u

Iτ,q
η (w) = Iτ,q

η (u) = sup
λ∈R

G(λ, η, u) = sup
λ≤0

G(λ, η, u) .

Further, recall that Iτ,q
η (·) is convex with minimum value max(0, Eη(log ρ0))

achieved at Eη(Eo
ω(τ1|τ1 < ∞)). Then, for η ∈ M−

u ,

inf
w≤u

Iτ,q
η (u) = max(0, Eη(log ρ0))

whereas Jensen’s inequality implies that for such η,

sup
λ≤0

G(λ, η, u) = G(0, η, u) = max(0, Eη(log ρ0)) ,

completing the proof of (2.3.40). Hence,

lim sup
n→∞

1
n

log Po (Tn/n ≤ u) ≤ − inf
w≤u

inf
η∈Me,ε

1

(
Iτ,q
η (w) + h(η|P )

)

= − inf
w≤u

Iτ,a
P (w). (2.3.41)

Turning to the proof of (2.3.39), we have, due to (C4) in Assumption 2.3.33, a
sequence of stationary, ergodic measures with ηn → η̄ and h(ηn|P ) → h(η̄|P ).
Let λn be the maximizers in (2.3.39) corresponding to ηn. We have

inf
η∈Me,ε

1

sup
λ≤0

([
λu −

∫
f(λ, ω)η(dω)

]
+ h(η|P )

)
≤
[
λnu −

∫
f(λn, ω)ηn(dω)

]

+h(ηn|P ) . (2.3.42)

W.l.o.g. we can assume, by taking a subsequence, that λn → λ∗ ≤ 0. Using
the joint continuity in Lemma 2.3.35, we have, for ε′ > 0 and n ≥ N0(ε′),
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λnu −
∫

f(λn, ω)ηn(dω) + h(ηn|P )

≤
[
λ∗u −

∫
f(λ∗, ω)η̄(dω)

]
+ h(η̄|P ) + ε′

≤ inf
η∈Ms,ε

1

sup
λ≤0

([
λu −

∫
f(λ, ω)η(dω)

]
+ h(η|P )

)
+ ε′ .

But this shows the equality in (2.3.39), since the reverse inequality there is
trivial.

The upper bound for the upper tail, that is for 1
n log P [∞ > 1

n

∑n
j=1 τj ≥

u], where 1 < u < ∞, is achieved similarly. We detail the argument since there
is a small gap in the proof presented in [12]. First, exactly as in (2.3.38), one
has

lim sup
n→∞

1
n

log Po (Tn/n ≥ u) ≤ inf
0≤λ≤λcrit

sup
η∈Ms,ε

1

[−G(λ, η, u) − h(η|P )]

= − sup
0≤λ≤λcrit

inf
η∈Ms,ε

1

[G(λ, η, u) + h(η|P )] .

(2.3.43)

One may now apply the min-max theorem to deduce that the right hand side
of (2.3.43) equals

inf
η∈Ms,ε

1

sup
0≤λ≤λcrit

[G(λ, η, u) + h(η|P )] = inf
η∈Me,ε

1

sup
0≤λ≤λcrit

[G(λ, η, u) + h(η|P )] ,

where the second equality is proved by the same argument as in (2.3.39). Here
a new difficulty arises: the supremum is taken over λ ∈ [0, λcrit(P )], but in
general λcrit(η) ≥ λcrit(P ) and hence the identification of the last expression
with a variational problem involving Iτ,q

η (·) is not immediate. To bypass this
obstacle, we note, first by replacing η with (1−n−1)η +n−1P and then using
again (C4) to approximate with an ergodic measure, that the last expression
equals

inf
{η∈Me,ε

1 ,λcrit(η)=λcrit(P )}
sup

0≤λ≤λcrit

[G(λ, η, u) + h(η|P )] .

From here, one proceeds as in the case of the lower tail, concluding that

lim sup
n→∞

1
n

log Po (Tn/n ≥ u)

≤ − inf
{η∈Me,ε

1 ,λcrit(η)=λcrit(P )}
sup

0≤λ≤λcrit

[G(λ, η, u) + h(η|P )]

= − inf
{η∈Me,ε

1 ,λcrit(η)=λcrit(P )}
inf

w≥u
Iτ,q
η (w) ≤ − inf

η∈Me,ε
1

inf
w≥u

Iτ,q
η (w) .

This will then complete the proof of the (weak) upper bound, as soon as we
prove the convexity of Iτ,a

P . But, the function
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sup
λ∈R

inf
η∈Ms,ε

1

[G(λ, η, u) + h(η|P )]

= sup
λ∈R

[
λu + inf

η∈Ms,ε
1

(
−
∫

f(λ, ω)η(dω) + h(η|P )
)]

, (2.3.44)

being a supremum over affine functions in u, is clearly convex in u, while one
shows, exactly as in (2.3.39), that

inf
η∈Ms,ε

1

sup
λ∈R

[G(λ, η, u) + h(η|P )] = inf
η∈Me,ε

1

sup
λ∈R

[G(λ, η, u) + h(η|P )] (2.3.45)

and therefore

inf
η∈Ms,ε

1

sup
λ∈R

[G(λ, η, u) + h(η|P )] = inf
η∈Me,ε

1

[
Iτ,q
η (u) + h(η|P )

]
= Iτ,a

P (u) .

Recalling that, as we saw above, supremum and infimum in (2.3.44) can be
exchanged, this completes the proof of the upper bounds for the annealed
LDP’s for Tn/n.
Step I.3: Annealed lower bounds for Tn/n: We will use the following
standard argument.

Lemma 2.3.46 Let P be a probability distribution, (Fn) be an increasing
sequence of σ-fields and An be Fn-measurable sets, n = 1, 2, 3, . . .. Let (Qn)
be a sequence of probability distributions such that Qn[An] → 1 and

lim sup
n→∞

1
n

H(Qn|P )
∣∣∣
Fn

≤ h

where H(·|P )
∣∣∣
Fn

denotes the relative entropy w.r.t. P on the σ-field Fn and

h is a positive number. Then we have

lim inf
n→∞

1
n

log P [An] ≥ −h .

Proof of Lemma 2.3.46. From the basic entropy inequality ([22], p. 423),

Qn[An] ≤
log 2 + H(Qn|P )

∣∣∣
Fn

log(1 + 1/P [An])
, An ∈ Fn,

we have −Qn[An] log P [An] ≤ log 2 + H(Qn|P )
∣∣∣
Fn

. Dividing by n and taking

limits we obtain the desired result. ��
We prove the lower bound for the lower tail only, the upper tail being handled
by the same truncation as in the quenched case, see [12] for details. For η ∈
M e,ε

1 satisfying Eη(log ρ0) ≤ 0, define Q
o

ω as in Step I.3 of Theorem 2.3.12,
and let Q

o

η = η(dω) ⊗ Q
o

ω. Let An = {|n−1Tn − u| < δ}. We know already
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that Q
o

ω[Ac
n] −→n→∞ 0 , η − a.s. , and this implies Q

o

η[Ac
n] −→n→∞ 0 . Let Fn :=

σ({τi}n
i=1, {ωj}n

j=−∞), Fω
n = σ({ωj}n

j=−∞). Note that

Q
o

η|Fn = η|Fω
n
(dω) ⊗ Q

o

ω|Fn .

Hence,

H(Q
o

η|Po)
∣∣∣
Fn

= H(η|P )
∣∣∣
Fω

n

+
∫

H(Q
o

ω|P o
ω)
∣∣∣
Fn

η(dω) . (2.3.47)

Considering the second term in (2.3.47), we have

1
n

∫
H(Q

o

ω|P o
ω)
∣∣∣
Fn

η(dω)

= − 1
n

∫
log Zn,ωη(dω) + λ0(u, η)

∫
Tn

n
dQ

o

ωη(dω)

= − 1
n

∫ n∑
j=1

log ϕ(λ0(u, η), θj−1ω)η(dω) + λ0(u)
∫

Tn

n
dQ

o

ωη(dω)

and we see, as in the proof of the lower bound of Theorem 2.3.12, that

1
n

∫
H(Q

o

ω|P o
ω)
∣∣∣
Fn

η(dω) −→n→∞λ0(u, η)u − Eηf(λ0(u, η), ω) ≤ Iτ,q
η (u) .

Considering the first term in (2.3.47), we know that

lim sup
n→∞

1
n

H(η|P )
∣∣∣
Fω

n

= h(η|P ) .

Hence,

lim sup
n→∞

1
n

H(Q
o

η|Po)
∣∣∣
Fn

≤ Iτ,q
η (u) + h(η|P ) ,

and we can now apply Lemma 2.3.46 to conclude that for any η ∈ M e,ε
1

satisfying Eη(log ρ0) ≤ 0 one has,

lim inf
n→∞ EP (An) ≥ − (

Iτ,q
η (u) + h(η|P )

)
.

As in the quenched case, one handles η ∈ M e,ε
1 satisfying Eη(log ρ0) > 0

by repeating the above argument with the required (obvious) modifications,
replacing Q

o

ω by Q
o

ω(·|Tn < ∞). This completes the proof of Step I. ��
Proof of Lemma 2.3.35: For κ > 1, decompose ϕ(λ, ω) as follows:

Eo
ω(eλτ11τ1<∞) = Eo

ω(eλτ1 ; τ1 < κ) + Eo
ω(eλτ1 ;∞ > τ1 ≥ κ)

:= ϕκ
1 (λ, ω) + ϕκ

2 (λ, ω) , (2.3.48)

where (λ, ω) → log ϕκ
1 (λ, ω) is bounded and continuous. We also have
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0 ≤ log
(

1 +
ϕκ

2 (λ, ω)
ϕκ

1 (λ, ω)

)
≤ log

(
1 +

ϕκ
2 (λcrit, ω)

εeλ

)
.

Hence, the required continuity of the function (µ, λ) → ∫
f(λ, ω)µ(dω) will

follow from (2.3.48) as soon as we show that for any fixed constant C1 < 1,

lim
κ→∞ sup

µ∈Ms,ε,P
1

∫
log

(
1 +

ϕκ
2 (λcrit, ω)

C1

)
µ(dω) = 0 . (2.3.49)

If ρmin < 1 and ρmax > 1 then one can easily check, by a coupling argument
using (C4), that λcrit = 0 (for a detailed proof see [12, Lemma 4]). Then, for
each ε′ > 0 there exists a κµ = κ(ε′, µ) large enough such that,

Eµ

(
log

(
1 +

P o
ω(∞ > τ1 > κµ)
P o

ω(τ1 < ∞)

))
< ε′ .

Further, in this situation, for stationary, ergodic µ,
∫

f(0, ω)µ(dω) =
(
−
∫

log ρ0(ω)µ(dω)
)
∧ 0 . (2.3.50)

In particular, µ �→ ∫
f(0, ω)µ(dω), being linear, is uniformly continuous on

the compact set M s,ε
1 . Therefore, using (2.3.48), one sees that for each such µ

one can construct a neighborhood Bµ of µ such that, for each ν ∈ Bµ ∩M s,ε
1 ,

Eν

(
log

(
1 +

P o
ω(∞ > τ1 > κµ + 1)

P o
ω(τ1 < ∞)

))
< ε′ .

By compactness, it follows that there exists an κ = κ(ε′) large enough such
that, for all µ ∈ M s,ε

1 ,

Eµ

(
log

(
1 +

P o
ω(∞ > τ1 > κ)
P o

ω(τ1 < ∞)

))
< ε′ .

Using the inequality log(1 + cx) ≤ c log(1 + x), valid for x ≥ 0, c ≥ 1, one
finds that for κ large enough,

sup
µ∈Ms,ε

1

∫
log

(
1 +

ϕκ
2 (0, ω)
C1

)
µ(dω) ≤ ε′/C1 ,

proving (2.3.49) under the condition ρmin < 1, ρmax > 1.
We next handle the case ρmax < 1. We now complete the proof of Lemma

2.3.35 in the case ρmin > 1. We have f(λ, ω) ≥ λ + log ω+
0 ≥ λ + log ε. We

show that (λ, ω) �→ ϕ(λ, ω) is continuous as long as ωi ≤ ωmax, ρi ≤ ρmax and
λ ≤ λcrit, which is enough to complete the proof. Write, for λ ≤ λcrit,

Eω(eλτ11τ1<∞) = Eω(eλτ1 ; τ1 < κ) + Eω(eλτ1 ;∞ > τ1 ≥ κ) (2.3.51)
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and observe that the first term in the right hand side of (2.3.51) is continuous
as a function of ω and the second term goes to 0 for κ → ∞, uniformly in ω.
More precisely, due to (2.3.16), for all ω considered here,

Eω[eλτ1 ;∞ > τ1 ≥ κ] ≤ Eω̃min(eλcritτ1 ; τ1 ≥ κ) →κ→∞ 0 . (2.3.52)

Finally, in the case ρmin > 1, the conclusion follows from the duality formula
(2.3.23) and Remark 1 that follows its proof, by reducing the claim to the
case ρmax < 1. ��
Step II: The proof is identical to Step I, and is omitted.
Step III: The proof of all statements, except for the convexity of Ia

P , and the
upper bound on Po(Xn ≤ nv), follow the argument in the quenched case. The
latter proofs can be found in [12]. ��
Remarks: 1. We note that under the conditions of Theorem 2.3.34, if
EP log ρ0 ≤ 0 then both Ia

P (v) �= 0 and Iq
P (v) �= 0 for v �∈ [0, vP ]. Indeed,

since h(η|P ) �= 0 unless η = P , it holds that Ia
P (v) = 0 only if Iq

P (v) = 0.
If EP log ρ0 = 0, vP = 0 and then for any v �= 0, Iq

P (v) = |v|Iτ,q
P (1/|v|) > 0

by the remark following the proof of Lemma 2.3.13. On the other hand, if
EP log ρ0 < 0, the same argument applies for v > vP while for v < 0 we have
that Iq

P (v) ≥ −|v|EP log ρ0 > 0.
2. The condition (C5) can be avoided altogether. This is not hard to see if
one is interested only in the LDP for Tn/n. Indeed, (C5) was used mainly
in describing a worst case environment in the course of the proof of Lemma
2.3.35, see also part (d) of Lemma 2.3.13. When it is dropped, the following
lemma, whose proof we provide below, replaces Lemma 2.3.35 when deriving
the annealed LDP for Tn/n:

Lemma 2.3.53 Assume P satisfies Assumption 2.3.33 except for (C5).
Then, λcrit(P ) depends only on supp(P0), and the map (µ, λ) �→ Eµ(f(λ, ω))
is continuous on M s,ε,P

1 × (−∞, 0] ∪ [0, λcrit).

Given Lemma 2.3.53, we omit (C5) and replace (C4) in Assumption 2.3.33
by
(C4’) P is locally equivalent to the product of its marginals and, for any sta-
tionary measure η ∈ M1(Ω) with h(η|P ) < ∞ there is a sequence {ηn} of sta-
tionary, ergodic measures, locally equivalent to the product of P ’s marginals,
with supp((ηn)0) = supp(P0), ηn −→n→∞ η weakly and h(ηn|P ) → h(η|P ).

One now checks (we omit the details) that all approximations carried out in
the proof of the upper bound of the upper tail of Tn/n can still be done,
yielding the annealed LDP for Tn/n. To transfer this LDP to an annealed
LDP for Xn/n does require a new argument, we refer to [16] for details.

We conclude our discussion of large deviation principles with the:
Proof of Lemma 2.3.53: Set Ξ = supp (P0) and define λ̄ := infω∈ΞZ λcrit(ω)
where

λcrit(ω) := sup{λ ∈ R : Eo
ω(eλτ11{τ1<∞})} .
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By definition, λcrit(P ) ≥ λ̄. On the other hand, if λ > λ̄ then there exists a
ω̄ ∈ ΞZ with Eo

ω̄(eλτ11{τ1<∞}) = ∞. Fix K = e−λ/ε, and using monotone
convergence, choose an M large enough such that

ϕM,ω̄(λ) := Eo
ω̄(eλτ11{τ1<M}) > K + 1.

Since ϕM,ω̄ depends only on {ωi, i ∈ (−M, 0)}, it holds that with positive
P -probability, Eo

ω(eλτ11{τ1<M}) ≥ K + 1. But, if λ ≤ λcrit(P ) it follows
from the recursions (2.3.21) that ϕ(λ, ω) < K, P -a.s., a contradiction unless
λ̄ = λcrit(P ). In particular, λcrit(P ) depends only on supp(P0). Note that the
characterization of λcrit(P ) as λ̄ implies that for any µ ∈ M s,ε,P

1 it holds that
λcrit(µ) ≥ λcrit(P ).

Next, as in the course of the proof of Lemma 2.3.35, see (2.3.49), it is
enough to show that for any λ < λcrit(P ),

lim
κ→∞ sup

µ∈Ms,ε,P
1

∫
ϕκ

2 (λ, ω)µ(dω) = 0 . (2.3.54)

But, since ϕ(λ, ω) ≤ e−λ/ε µ-a.s. for all µ ∈ M s,ε,P
1 (use again the recursions

(2.3.21) and that λcrit(µ) ≥ λcrit(P )), it holds that
∫

ϕκ
2 (λ, ω)µ(dω) ≤ e(λ−λcrit)M

e−λ

ε
,

yielding immediately (2.3.54). ��
Bibliographical notes: The first quenched LDP result is due to Greven and Den
Hollander, [34], who proved it for i.i.d. environments using the method of the
environment viewed from the particle. Our derivation here follows the hitting
times approach developed in [12], except that the proof of Lemma 2.3.22 follows
the article [58]. Extensions of the LDP’s in this chapter to more general models
allowing for (non geometric) holding times is presented in [16], where the
derivation avoids completely coupling arguments and thus bypasses altogether
the need for (C5) in deriving the annealed LDP for Xn/n.

The “process level LDP” for Rn was first proved in [23] in the context
of Markov chains with law P satisfying appropriate regularity conditions. It
was extended to various ergodic situation in [55] and [56], see also [11]. We
refer to [27] and [19, Chapter 6] for further information. Our presentation
of the annealed LDP follows here [12], where additional information on the
shape of the rate functions etc. can be found. Note that [12] treats the case
P (ω0

0 = 0) = 1. In the exposition here, we corrected and simplified some
of the arguments in [12], following [16], where a RWRE with general (i.e.,
not necessarily geometric) holding times is considered. Finally, a completely
different approach to the derivation of the LDP, both annealed and quenched,
is described in [79].
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2.4 The subexponential regime

We saw in Section 2.3 that, at least when P satisfies Assumption 2.3.33 and
EP log ρ0 ≤ 0, we have that for any δ small enough, any v ∈ [0, vP ],

lim
n→∞

1
n

log P o
ω

(
Xn

n
∈ (v − δ, v + δ)

)

= lim
n→∞

1
n

log Po

(
Xn

n
∈ (v − δ, v + δ)

)
= 0 . (2.4.1)

Our goal in this section is to obtain more precise information on the rate of
convergence in (2.4.1). Surprisingly, it turns out that it is better to consider
first the annealed case.

Throughout this section, we impose the following assumption on the law
P . Together with (C4) there, it implies Assumption 2.3.33.

Assumption 2.4.2

(D1) There exists an ε > 0 such that min(ω+
0 , ω−

0 ) > ε, P -a.s.
(D2) ρmin < 1, ρmax > 1, and EP log ρ0 ≤ 0.
(D3) P is α-mixing with α(n) = exp(−n(log n)1+η) for some η > 0; that is,

for any �-separated measurable bounded by 1 functions f1, f2,

EP

(
f1(ω)(f2(ω) − EP f2(ω))

)
≤ α(�) .

(functions fi are � separated if fi is measurable on σ(ωj , j ∈ Ii) with Ii

intervals satisfying dist(Ii, Ik) > � for any i �= k).

It is known that (D3) implies (C1) and (C3) of Assumption 2.3.33, see [10].
In particular, letting Rk := k−1

∑k−1
i=0 log ρi, it implies that Rk satisfies the

LDP with good rate function J(·). We add the following assumption on J(·):
(D4) J(0) > 0.

Condition (D4) implies that EP (log ρ0) < 0. Define next s := miny≥0
1
yJ(y).

Note that the condition EP (S) < ∞ and the existence of a LDP for Rk

with good rate function J(·) are enough to imply, by Varadhan’s lemma, that
0 ≥ supy(y − J(y)), and in particular that s ≥ 1. (In the case where P is
a product measure, we can identify s as satisfying EP (ρs

0) = 1, and then
EP (S) < ∞, which is equivalent to EP (ρ0) < 1, implies that s > 1.)

Annealed subexponential estimates

Theorem 2.4.3 Assume P satisfies Assumption 2.4.2, and vP > 0. Then,
for any v ∈ (0, vP ) and any δ > 0 small enough,

lim
n→∞

log Po
(

Xn

n ∈ (v − δ, v + δ)
)

log n
= 1 − s .
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Proof. We begin by proving the lower bound. Fix 0 < v−δ < v−4η < v < vP ;
let

Lk = max
{
n ≥ Tk : (k − Xn)

}

denote the largest excursion of {X·} to the left of k after hitting it. Observe
that the event {n−1Xn ∈ (v − δ, v + δ)} contains the event

A :=
{

(v − 4η)n
vP

< T(v−2η)n < n , L(v−2η)n <
ηn

2
, Tvn > n

}
, (2.4.4)

namely, the RWRE hits (v − 2η)n at about the expected time, from which
point its longest excursion to the left is less than ηn/2, but the RWRE does
not arrive at position vn by time n.

Next, note that by (2.1.4),

P o
ω

(
L(v−2η)n ≥ ηn/2

)
≤

∞∑
i=0

i∏
j=−(ηn/2−1)

ρ(v−2η)n+j . (2.4.5)

Hence, using the LDP for Rk, we have for all n large enough

Po
(
L(v−2η)n ≥ ηn/2

)
≤

∞∑
i=0

E
(
e(ηn/2+i)Rηn/2+i

)

≤ e−ηn supy(y−J(y))/4 ≤ e−δ1n (2.4.6)

for some δ1 > 0. Thus, for all n large enough,

Po(A) ≥ Po

(
(v − 4η)n

vP
< T(v−2η)n < n , Tvn > n

)
− e−δ1n

≥ Eo

(
P o

ω

(
(v − 4η)n

vP
< T(v−2η)n < n

)

P (v−η)n
ω

(
Tvn >

4ηn

vP
, L(v−η)n<ηn/2

))
− e−δ1n

≥ B · C − α(ηn/2) − 2e−δ1n ,

where

B = Po

(
(v − 4η)n

vP
< T(v−2η)n < n

)

C = Po

(
Tηn >

4ηn

vP

)
.

and α(·) is as in (D3).
Next, note that B →n→∞ 1 by (2.1.16). We will prove below that for any

δ′ > 0,
C ≥ n1−s−2δ′

(2.4.7)
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and this implies that for all n large, Po(A) ≥ n1−s−4δ′
, which yields the

required lower bound (recall δ′ is arbitrary!) as soon as we prove (2.4.7).
Turning to the proof of (2.4.7), fix y such that J(y)

y ≤ s + δ′
4 , K = [n

δ′
4 ],

k = [ 1y log n], and set mK = [ηn/K]. Now, using (D3),

P


mK⋂

j=1

{Rk(θjKω) ≤ y}



≤ (
P (Rk(ω) ≤ y)

)mK + mKα(K − k)

=
(
1 − P (Rk(ω) > y)

)mK + mKα(K − k)

≤
(
1 − e−k(J(y)+ δ′y

4 )
)mK

+ mKα(K − k) ≤ 1 − n1−s−δ′
,

for all n large enough. Hence,

P
(
∃j ∈ {1, · · · , mK} : Rk(θjK ω) > y

)
≥ n1−s−δ′

. (2.4.8)

On the other hand, let ω and j ≤ mK be such that Rk(θjKω) > y. Then,
using (2.1.6) in the second inequality, for such ω,

P o
ω

(
Tηn >

4ηn

vP

)
≥ P jK

ω

(
Tk >

4ηn

vP

)
≥ (1 − e−ky)

4ηn
vP

≥
(

1 − 1
n

) 6ηn
vP ≥ e

− 8η
vP . (2.4.9)

Combining (2.4.8) and (2.4.9), we conclude that

C ≥ n1−s−δ′ · e− 8η
vP ,

as claimed.
We next turn to the proof of the upper bounds. We may and will assume

that s > 1, for otherwise there is nothing to prove. We first note that, for
some δ′′ := δ′′(δ) > 0,

Po

(
Xn

n
∈ (v − δ, v + δ)

)
≤ Po

(
Xn

n
< v + δ

)

≤ Po(Tn(v+2δ) > n) + Po(L0 > nδ)

≤ Po(Tn(v+2δ) > n) + e−δ′′n (2.4.10)

where the stationarity of P was used in the second inequality, and (2.4.6) in
the third. Thus, the required upper bound follows once we show that for any
v < vP , any δ′ > 0,

Po(Tnv > n) ≤ n1−s+δ′
(2.4.11)
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for all n large enough.
Set a := supy(y − J(y)). Because s > 1 and J(0) > 0, it holds that a < 0.

Fix A > −s/a, and set k = k(n) = A log n. Next, define the process {Yn} in
ZN and the hitting times T̃ik = min(n ≥ 0 : Yn = ik), i = 0, 1, · · · such that
the only change between the processes {Xn} and {Yn} is that the process
{Yn}n≥T̃ik

is reflected at position (i − 1)k (with a slight abuse of notations,
we continue to use P o

ω , Po to denote the law of {Yn} as well as that of {Xn}).
Set mk = [vn/k] + 1, and τ̃

(i)
k = T̃ik − T̃(i−1)k, i = 1, · · · , mk. Note that the

τ̃
(i)
k are identically distributed, each stochastically dominated by Tk. Hence,

EoT̃ik ≤ EoTik. On the other hand, fixing λ ∈ (1/s, 1), we will see below
(cf. Lemma 2.4.16) that Eo(T 1/λ

k ) ≤ ck1/λ for some c := c(λ), yielding, by
Hölder’s inequality, that

EoTk ≤ Eo(T̃k) + Po(L0 ≥ k)1−λEo(T 1/λ
k )λ ≤ Eo(T̃k) + ckPo(L0 ≥ k)1−λ .

Thus, using (2.4.6) and the fact that Eo(Tk)/k = vP , we conclude that
limk→∞ Eo Tk/Eo T̃k = 1, implying that EoT̃k/k →k→∞ 1/vP .

Next, note that on the event {Lik < k for i = 0, · · · , mk}, the processes
{Xn} and {Yn} coincide for n < Tmkk. Hence

Po(Tnv > n) ≤ Po(T̃mkk > n) + mkPo(L0 > k) . (2.4.12)

But, as in (2.4.6), for k large enough

Po(L0 > k) ≤ EP (ek(Rk+δ)) ≤ elog n(Aa+δ′) ≤ n−s+δ′′
,

where δ′′ := δ′′(δ) →δ→0 0. Since mk < n, the second term in (2.4.12) is of
the right order, and the upper bound follows as soon as we prove that, for n
large enough

Po(T̃mkk > n) ≤ n1−s+δ′
. (2.4.13)

To see (2.4.13), note that T̃mkk =
∑mk

i=1 τ̃k, with Eo(τ̃ (i)
k )/k = Eo(T̃k)/k →

1/vP . Hence, for some η > 0, using that kmk ≤ v < vP ,

Po(T̃mkk > n) ≤ Po

(
mk∑
i=1

(
τ̃

(i)
k − Eo(τ̃ (i)

k )
)

> 4ηn

)

≤ 4Po


�mk/4�∑

i=1

(
τ̃

(4i)
k − Eo(T̃k)

)
> ηn


 .

Note that the quenched law of τ̃
(4i)
k depends on {ωj, j ∈ Ii} where Ii =

{4i − k, 4i − k + 1, · · · , 4i + k}. Let {τ (i)
k } be i.i.d. random variables such

that for any Borel set G, P (τ (i)
k ∈ G) = Po(τ̃ (i)

k ∈ G). Then, by iterating the
definition of α(·), one has that
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Po


�mk/4�∑

i=1

(
τ̃

(4i)
k − Eo(T̃k)

)
> ηn


 ≤

P


�mk/4�∑

i=1

(
τ

(4i)
k − Eo(T̃k)

)
> ηn


+

mkα(2k)
4

. (2.4.14)

We recall that
mkα(2k)

4
≤ o(n1−s) . (2.4.15)

The following estimate, whose proof is deferred, is crucial to the proof of
(2.4.13):

Lemma 2.4.16 For each κ < s, there exists a constant c(κ) < ∞ such that

Eo(Tk)κ ≤ c(κ)kκ . (2.4.17)

By Markov’s inequality, for any κ < κ′ < s,

P (τ (4i)
k − Eτ

(4i)
k > ηn) ≤ 1

(ηn)κ′ E|τ (4i)
k − Eτ

(4i)
k |κ′ ≤ n−κ

where n is large enough and we used Lemma 2.4.16 and the fact that
E((τ (4i)

k )κ′
) = Eo((τ̃ (4i)

k )κ′
) ≤ Eo(T κ′

k ). Hence, (see [54, (1.3),(1.7a)]),

P


�mk/4�∑

i=1

(
τ

(4i)
k − Eτ

(4i)
k

)
> ηn




≤ �mk

4
�P (τ (4)

k − Eτ
(4)
k > ηn) +

1
2

n1−κ ≤ n1−κ .

Since κ < s is arbitrary, this completes the proof, modulo the

Proof of Lemma 2.4.16

Note first that by Minkowski’s inequality, for any k ≥ 1,

Eo(T κ
k ) = Eo

(
k∑

i=1

τi

)κ

≤ kκEoτκ
1 .

Hence, it will be enough to prove that

Eo(τκ
1 ) < ∞ . (2.4.18)

To prove (2.4.18), we build upon the techniques developed in the course of
proving Lemma 2.1.21. Indeed, recall the random variables Ui,j , Zi,j and Ni

defined there, and note that since τ1 =
∑o

i=−∞ Ni, it is enough to estimate
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Eo

(
0∑

i=−∞
Ni

)κ

= Eo

(
0∑

i=−∞
Ui + Ui+1 + Zi

)κ

≤ CεEo

(
0∑

i=−∞
Ui

)κ

.

(2.4.19)
An important step in the evaluation of the RHS in (2.4.19) involves the com-
putation of moments of Ui. To present the idea, consider first the case κ > 2,
and write

Ui =
Ui+1∑
j=1

Gj

where, under P o
ω , the Gj are i.i.d. geometric random variables, independent

of {Ui+1, · · ·U0}, of parameter ω−
i

ω−
i +ω+

i

. Hence,

Eo
ω(U2

i ) = Eo
ω


Ui+1∑

j=1

(Gj − Eo
ωGj) +

Ui+1∑
j=1

Eo
ωGj




2

(2.4.20)

≤ cδE
o
ω


Ui+1∑

j=1

(Gj − Eo
ωGj)




2

+ (1 + δ)(Eo
ωGj)2 · Eo

ω(U2
i+1)

≤ c′δE
o
ω(Ui+1) · Eo

ω(G2
j ) + (1 + δ)ρ2

i E
o
ω(U2

i+1) .

Here, cδ, c
′
δ are constants which depend on δ only. Since Eo

ω(G2
j ) is uniformly

(in ω) bounded, and Eo
ω(Ui+1) = ρi, we get

Eo
ω(U2

i ) ≤ c′′δ ρiE
o
ωUi+1 + (1 + δ)ρ2

i E
o
ω(U2

i+1) .

Iterating and using (cf. (2.1.24)) that Eo
ωUi+1 =

∏0
j=i+1 ρj , we conclude the

existence of a constant c′′′δ such that

Eo
ω(U2

i ) ≤ cδ
′′′


 |i|∑

j=0


 0∏

k=−j

ρk +
0∏

k=−j

(
ρ2

k(1 + δ)
)


 ,

and hence

Eo(U2
i ) ≤ cδ

′′′
|i|∑

j=0


EP

0∏
k=−j

ρk + EP

0∏
k=−j

(
ρ2

k(1 + δ)
) . (2.4.21)

Note that, by Varadhan’s lemma (see [19, Theorem 4.3.1]), for any constant
β,

lim
n→∞

1
n

log Eo

(
0∏

k=−n

ρβ
k

)
= sup

y

(
βy − J(y)

)
= sup

y
y

(
β − J(y)

y

)
:= β′(β) ,

(2.4.22)
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and β′(β) < 0 as soon as β < s. Hence, substituting in (2.4.21), and choosing
δ such that log(1 + δ) < β′(β)/4, we obtain that for some constant c′′′′δ ,

Eo(U2
i ) ≤ cδ

′′′′e−iβ′(2)/2,

implying that √√√√Eo

(
0∑

i=−∞
Ni

)2

≤ C
1
2
ε

√√√√ 0∑
i=−∞

Eo(U2
i ) < ∞ .

A similar argument holds for any integer κ < s: mimicking the steps leading
to (2.4.21), we get that

Eo
ω(Uκ

i ) ≤ cδ
′′′


 |i|∑

j=0


 0∏

k=−j

ρ
κ/2
k +

0∏
k=−j

ρκ
k




 ,

and using (2.4.22) and an induction on lower (integer) moments, we get that

Eo
(∑0

i=−∞ Ni

)κ

< ∞ for all κ < s integer. Finally, to handle �s� < κ < s,
we replace (2.4.20) by

Eo
ω(Uκ

i ) ≤ c′δE
o
ω(Uκ/2∨1

i+1 )Eo
ω(Gκ

j ) + (1 + δ)ρκ
i Eo

ω(Uκ
i+1)

≤ cδ
′′(Eo

ωU
�κ/2�
i )

κ/2
�κ/2� + (1 + δ)ρκ

i Eo
ω(Uκ

i+1) ,

and one proceeds as before. ��

Quenched subexponential estimates

Theorem 2.4.23 Assume P satisfies Assumption 2.4.2, and vP > 0. Then,
for any v ∈ (0, vP ), any η > 0, and any δ > 0 small enough,

lim inf
n→∞

1
n1−1/s+η

log P o
ω

(
Xn

n
∈ (v − δ, v + δ)

)
= 0 , P − a.s. (2.4.24)

Further,

lim sup
n→∞

1
n1−1/s−η

log P o
ω

(
Xn

n
< v

)
= −∞ , P − a.s.. (2.4.25)

Proof. Starting with the lower bound, we have, using (2.4.4) and (2.4.5), that
for some δ1(ω) > 0,

P o
ω(

Xn

n
∈ (v − δ, v + δ)) ≥ P o

ω

(
(v − 4η)n

vP
< T(v−2η)n < n

)

P (v−η)n
ω

(
Tvn >

4η

vP
n, L(v−η)n<ηn

)
− e−δ1(ω)n .
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By (2.1.16), P o
ω(Xn

n ∈ (v − δ, v + δ)) →n→∞ 1, P -a.s. On the other hand, as
in the proof of (2.4.8), fix y such that J(y)/y ≤ s + δ′/4, k = �(1 − δ′)/ys�,
and K = nδ′/4. Then, one checks as in the annealed case that

P
(
∀j ∈ {1, · · · , mK} : Rk(θjK ω) ≤ y

)
≤ 1

n2
,

and one concludes by the Borel-Cantelli lemma that there exists an n0(ω) such
that for all n0(ω), there exists a j ∈ {1, . . . , mK} such that Rk(θjKω) > y .
The lower bound (2.4.24) now follows as in the proof of (2.4.9).

Turning to the proof of the upper bound (2.4.25), as in the annealed setup
it is straightforward to reduce the proof to proving

lim
n→∞

1
n1−1/s−δ

log P o
ω(Tn > n/v) = −∞ . (2.4.26)

We provide now a short sketch of the proof of (2.4.26) before getting our hands
dirty in the actual computations. Divide the interval [0, nv] into blocks of size
roughly k = kn := n1/s+δ. By using the annealed bounds of Theorem 2.4.3,
one knows that P (Tk > k/v) ∼ k1−s . Hence, taking appropriate subsequences,
one applies a Borel-Cantelli argument to control uniformly the probability
P ik

ω (T(i+1)k > k/v), c.f. Lemma 2.4.28.
The next step involves a decoupling argument. Define

T (i+1)k = inf {t > Tik : Xt = (i + 1)k or Xt = (i − 1)k} . (2.4.27)

Then one shows that for all relevant blocks, that is i = ±1,±2, . . . ,±n/k,
P ik

ω (T (i+1)k �= T(i+1)k) is small enough. Therefore, we can consider the random
variables T (i+1)k −Tik instead of T(i+1)k −Tik, which have the advantage that
their dependence on the environment is well localized. This allows us to obtain
a uniform bound on the tails of T (i+1)k − Tik, for all relevant i, see (2.4.30).

The final step involves estimating how many of the k-blocks will be tra-
versed from right to left before the RWRE hits the point nv. This is done
by constructing a simple random walk (SRW) St whose probability of jump
to the left dominates P ik

ω (T(i+1) �= T (i+1)k) for all relevant i. The analysis of
this SRW will allow us to claim (c.f. Lemma 2.1.17) that the number of visits
to a k-block after entering its right neighbor is negligible. Thus, the original
question on the tail of Tn is replaced by a question on the sum of (dominated
by i.i.d.) random variables, which is resolved by means of the tail estimates
obtained in the second step.

A slight complication is presented by the need to work with subsequences
in order to apply the Borel-Cantelli lemma at various places. Going from
subsequences to the original n sequence is achieved by means of monotonicity
arguments. Indeed, by monotonicity, note that it is enough to prove the result
when, for arbitrary δ small enough, n is replaced by the subsequence nj =
�j2/δ�, since nj+1/nj →j→∞ 1.
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Turning to the actual proof, fix Cn = nδ, k = kj =
Cnj n

1/s
j

1 − ε
for some

1 > ε > 0, bn = C−δ
n , and Ij =

{
−
[

nj

kj

]
−1 , · · · ,

[
nj

kj

]
+1

}
. Finally, fix v′ < v

and T (i+1)k as in (2.4.27). (We will always use T (i+1)k in conjunction with
the RWRE started at ik!). We now claim the:

Lemma 2.4.28 For P – a.e. ω, there exists a J0(ω) such that for all j >
J0(ω), and all i ∈ Ij,

P ik
ω

(
T(i+1)kj

kj
>

1
v′

)
≤ bnj . (2.4.29)

Further, for all j > J0(ω) , and each i ∈ Ij, and for x ≥ 1,

P (ik)
ω

(
T (i+1)kj

kj
>

x

v′

)
≤ (2bnj)

[x/2]∨1 . (2.4.30)

Proof of Lemma 2.4.28. By Chebycheff’s bound,

P

(
P ik

ω

(T(i+1)kj

kj
>

1
v′
)

> bnj

)
≤ 1

bnj

Pik
(T(i+1)kj

kj
>

1
v′
)

≤ 1
bnj

k
1−s+o(1)
j ,

where the last inequality follows from Theorem 2.4.3. Hence,

P

(
P ik

ω

(T(i+1)kj

kj
>

1
v′
)

> bnj for some i ∈ Ij

)
≤ 3

[nj

kj

]
· 1
bnj

· k1−s+o(1)
j

≤ 3

n
δ(s−o(1)−δ)
j

≤ 4
j2(s−o(1)−δ)

and (2.4.29) follows from the Borel-Cantelli lemma. (2.4.30) follows by iterat-
ing this inequality and using the Markov property. ��

Recall that a = supy(y − J(y)) < 0 and let 0 < θ < − a
1−ε/4 , dθ

n =

e−θn1/s Cn . We now have:

Lemma 2.4.31 For P – a.e. ω, there is a J1(ω) s.t. for all j ≥ J1(ω), all
i ∈ Ij ,

P ik
ω

(
T (i+1)kj

�= T(i+1)kj

)
≤ dθ

nj
.

Proof of Lemma 2.4.31. Again, we use the Chebycheff bound:
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P
(
P ik

ω

(
T (i+1)kj

�= T(i+1)kj

)
> dθ

nj
, some i ∈ Ij

)

≤ 1
dθ

nj

· 3nj

kj
Po
(
T kj �= Tkj

)

≤ 1
dθ

nj

· 3nj

kj
· exp (−kja(1 − ε/2))

≤3 n
1− 1

s−δ
j exp

(
n

1
s +δ
j

(
a

1 − ε/4
+ θ

))
,

where the second inequality follows again from (2.1.4) and the LDP for Rk.
The conclusion follows from the Borel-Cantelli lemma. ��

We need one more preliminary computation related to the bounds in
(2.4.30). Let {Z(i)

kj
}, i = 1, 2, . . . denote a sequence of i.i.d. positive random

variables, with

P


Z

(i)
kj

kj
< µ′


 = 0 , P


Z

(i)
kj

kj
> µ′x


 =

(
2bnj

)[x/2]∨1

, x ≥ 1 .

Note now that for any λ > 0, and any ε > 0,

E
(
exp


λ

Z
(i)
kj

kj


)

=
∫ ∞

0

P
(Z

(i)
kj

kj
>

log u

λ

)
du

≤ eλµ′(1+ε) +
∫ ∞

eλµ′(1+ε)
(2bnj )


 log u

2λµ′(1 + ε)


∨1

du

= eλµ′(1+ε) + gj . (2.4.32)

where gj →j→∞ 0.
In order to control the number of repetitions of visits to kj–blocks, we

introduce an auxiliary random walk. Let St, t = 0, 1 , . . . , denote a simple
random walk with S0 = 0 and

P
(
St+1 = St + 1

∣∣∣St

)
= 1 − P

(
St+1 = St − 1

∣∣∣St

)
= 1 − dθ

n .

Set Mnj =
1

Cnj

n
1− 1

s
j .

Lemma 2.4.33 For θ as in Lemma 2.4.31, and n large enough,

P
(
inf {t : St =

[nj

kj

]
} > Mnj

)
≤ exp

(
−θε

2
nj

)
.
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Proof of Lemma 2.4.33.

P

(
inf

{
t : St =

[nj

kj

]}
> Mnj

)
≤ P

(
S[Mnj

]

Mnj

<
nj

kj Mnj

)

= P

(
S[Mnj

]

Mnj

< 1 − ε

)
≤ 2 e−Mnj

hnj
(1−ε) ,

where the last inequality is a consequence of Chebycheff’s inequality and the
fact that dθ

n < ε. Here,

hn(1 − x) = (1 − x) log
( 1 − x

1 − dθ
n

)
+ x log

x

dθ
n

.

Using hn(1 − x) ≥ − 2
e − x log dθ

n, we get

P

(
S[Mnj

]

Mnj

< 1 − ε

)
≤ 2 e2Mnj

/e e
+εMnj

log dθ
nj ≤ e−

ε
2 θ nj . ��

We are now ready to prove (2.4.26). Note that, for all j > J0(ω), and
all i ∈ Ij , we may, due to (2.4.30), construct {Z(i)

kj
} and {T (i+1)kj

} on the

same probability space such that for all i ∈ Ij , P ik
ω (Z(i)

kj
≥ T (i+1)kj

) = 1. Fix
1/vP > 1/v′ > 1/v and ε > 0 small enough. Recalling that under the law P o

ω ,
the random variables T

(i)

kj
:= T (i+1)kj

−Tikj are independent, we obtain, with
{St} defined before Lemma 2.4.33, and j large enough,

P o
ω(Tnj > nj/v) ≤ P

(
inf

{
t : St =

[nj

kj

]}
> Mnj

)
+ P

(Mnj∑
i=1

Z
(i)
kj

> nj/v
)

≤ e−θεnj/2 + P
( 1

Mnj

Mnj∑
i=1

Z
(i)
kj

kj
> 1/v(1 − ε)

)

≤ e−θεnj/2 +
[
E
(
exp


λ

Z
(i)
kj

k
(i)
j


)

· e−λ(1−ε)/v
]Mnj

≤ e−θεnj/2 +
(
eλ(1/v′+2ε/v−1/v) + gje

−λ(1−ε)/v
)Mnj

≤ e−θεnj/2 +
(
e−λε/v

)Mnj

,

where Lemma 2.4.33 was used in the second inequality and (2.4.32) in the
fourth. Since λ > 0 is arbitrary, (2.4.26) follows. ��
Remarks: 1. A study of the proof of the annealed estimates shows that the
strong mixing condition (D3) can be replaced by the sightly milder one that
α(n) = exp(−Cn) for some C large enough such that (2.4.15) holds, if one
also assumes the existence of a LDP for Rk. In this form, the assumption is
satisfied for many Markov chains satisfying a Doeblin condition.
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2. It is worthwhile noting that the transfer of the annealed estimates to the
quenched setting required very few assumptions on the environment, besides
the existence of a LDP for Rk. This technique, as we will see, is not limited
to the one-dimensional setup, and works well in situations where a drift is
present.
3. One may study by similar techniques also the case where EP (S) < ∞ but
ρmax = 1 with α := P (ρmax = 1) > 0. The rate of decay is then quite different:
at least when the environment is i.i.d., the annealed rate of decay in Theorem
2.4.3 is exponential with exponent n1/3, see [18], whereas the quenched one has
exponent n/(log n)2, see [30], and it seems both proofs extend to the mixing
setup. By adapting the method of enlargement of obstacles to this setup, one
actually can show more in the i.i.d. environment case: it holds then that,

lim
δ→0

lim
n→∞

1
n1/3

log Po

(
Xn

n
∈ (v − δ, v + δ)

)
= −3

2
|π log α

2
|2/3 , (2.4.34)

and

lim
δ→0

lim
n→∞

(log n)2

n
log P o

(
Xn

n
∈ (v − δ, v + δ)

)
= −|π log α|2

8
(1 − v

vP
) ,

(2.4.35)
see [60] and [61]. (Note that the lower bounds in (2.4.34) and (2.4.35) are not
hard to obtain, by constructing “neutral” traps. The difficulty lies in match-
ing the constants in the upper bound to the ones in the lower bound.) The
technique of enlargement of obstacles in this context is based on considerably
refining the classification of blocks used above when going from annealed to
quenched estimates, by introducing the notion of “good” and “bad” blocks
(and double blocks...)
4. One can check, at least in the i.i.d. environment case, that when ρmax = 1
with α = 0 then intermediate decay rates, between Theorems 2.4.3, 2.4.23
and (2.4.34), (2.4.35) can be achieved. We do not elaborate further here.
5. Again in the case of i.i.d. environment and the setup of Theorem 2.4.23,
one can show, c.f. [30], that

lim sup
n→∞

1
n1−1/s

log P o
ω

(
Xn

n
∈ (v − δ, v + δ)

)
= 0 , P − a.s. (2.4.36)

This is due to fluctuations in the length of the “significant” trap where the
walk may stay for large time. Based on the study of these fluctuations, it is
reasonable to conjecture that

lim inf
n→∞

1
n1−1/s

log P o
ω

(
Xn

n
∈ (v − δ, v + δ)

)
= −∞ , P − a.s.,

explaining the need for δ in the statement of Theorem 2.4.23. This conjecture
has been verified only in the case where P (ρmin = 0) > 0, i.e. in the presence
of “reflecting nodes”, c.f. [29, 28].
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Bibliographical notes: The derivation in this section is based on [18] and [30].
Other relevant references, giving additional information not described here,
are described in the remarks at the end of the section, so we only mention
them here without repeating the description given there: [29, 60, 61].

2.5 Sinai’s model: non standard limit laws and aging properties

Throughout this section, define Rk = k−1
∑k−1

i=1 log ρi(sign i). We assume the
following

Assumption 2.5.1

(E1) Assumption 2.1.1 holds.
(E2) EP log ρ0 = 0, and there exists an ε > 0 such that EP | log ρ0|2+ε < ∞.
(E3) P is strongly mixing, and the functional invariance principle holds for√

k Rk/σP ; that is, {√k R[kt]/σP }t∈R converges weakly to a Brownian mo-
tion for some σP > 0 (sufficient conditions for such convergence are as
in Lemma 2.2.4).

(In the i.i.d. case, note that σ2
P = EP (log ρ0)2 ). Define

Wn(t) =
1

log n

�(log n)2t�∑
i=0

log ρi · (sign t)

with t ∈ R. By Assumption 2.5.1, {Wn(t)}t∈R converges weakly to {σP Bt},
where {Bt} is a two sided Brownian motion.

Next, we call a triple (a, b, c) with a < b < c a valley of the path {Wn(·)}
if

Wn(b) = min
a≤t≤c

Wn(t) ,

Wn(a) = max
a≤t≤b

Wn(t) ,

Wn(c) = max
b≤t≤c

Wn(t) .

The depth of the valley is defined as

d(a,b,c) = min(Wn(a) − Wn(b), Wn(c) − Wn(b)) .

If (a, b, c) is a valley, and a < d < e < b are such that

Wn(e) − Wn(d) = max
a≤x<y≤b

Wn(y) − Wn(x)

then (a, d, e) and (e, b, c) are again valleys, which are obtained from (a, b, c)
by a left refinement. One defines similarly a right refinement. Define
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cn
0 = min{t ≥ 0 : Wn(t) ≥ 1}

an
0 = max{t ≤ 0 : Wn(t) ≥ 1}

Wn(bn
0 ) = min

an
0≤t≤cn

0

Wn(t) .

(bn
0 is not uniquely defined, however, due to Assumption 2.5.1, with P -

probability approaching 1 as n → ∞, all candidates for bn
0 are within distance

converging to 0 as n → ∞; we define bn
0 then as the smallest one in absolute

value.)

b

ca
d

e

Fig. 2.5.1. Left refinement of (a, b, c)

One may now apply a (finite) sequence of refinements to find the smallest
valley (an, b

n
, cn) with an < 0 < cn, while d(an,b

n
,cn) ≥ 1. We define similarly

the smallest valley (an
δ , b

n

δ , cn
δ ) such that d(an

δ ,b
n
δ ,cn

δ ) ≥ 1 + δ. Let

AJ,δ
n =




ω ∈ Ω : b
n

= b
n

δ , any refinement (a, b, c) of (an
δ , b

n

δ , cn
δ ) with

b �= b
n

has depth < 1 − δ , |an
δ | + |cn

δ | ≤ J ,

mint∈[an,cn]\[bn−δ,b
n
+δ] W

n(t) − Wn(b
n
) > δ3




then it is easy to check by the properties of Brownian motion that

lim
δ→0

lim
J→∞

lim
n→∞P (AJ,δ

n ) = 1 . (2.5.2)

The following is the main result of this section:

Theorem 2.5.3 Assume P (min(ω−
0 , ω+

0 ) < ε) = 0 and Assumption 2.5.1.
For any η > 0,

Po

(∣∣∣∣ Xn

(log n)2
− b

n
∣∣∣∣ > η

)
→

n→∞ 0 .

Proof. Fix δ < η/2, J and n large enough with ω ∈ AJ,δ
n . For simplic-

ity of notations, assume in the sequel that ω is such that b
n

> 0. Write
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an = an(log n)2, bn = b
n
(log n)2, cn = cn(log n)2, with similar notations for

an
δ , bn

δ , cn
δ . Define

T b,n = min{t ≥ 0 : Xt = bn or Xt = an
δ } .

By (2.1.4),

P o
ω

(
XT b,n

= an
δ

)
≤ 1

1 + exp{(log n)(W n(an
δ )−W n(b

n
))}

Jn(log n)2

≤ J(log n)2

nδ
. (2.5.4)

On the other hand, let T̃b,n have the law of T b,n except that the walk {X·}
is reflected at an

δ , and define similarly τ̃1. Using the same recursions as in
(2.1.14), we have that

Eo
ω(τ̃1) =

1
ω+

0

+
ρ0

ω+
(−1)

+ · · · +
∏an

δ +2
i=0 ρ−i

ω+
an

δ −1

+
an

δ +1∏
i=0

ρ−i .

Hence, with ω̃i = ωi for i �= an
δ and ω̃+

an
δ

= 1, for all n large enough,

Eo
ω(T b,n) ≤ Eo

ω(T̃b,n) =
bn∑
i=1

i−1−an
δ∑

j=0

∏j
k=1 ρi−k

ω+
(i−j−1)

≤ 1
ε

bn∑
i=1

i−1−an
δ∑

j=0

e(log n)(W n(i)−W n(i−j)) ≤ 2J2

ε
elog n(1−δ) ≤ n1− δ

2 .

We thus conclude that

P o
ω

(
T b,n < n, XT b,n

= bn
)

−→
n→∞ 1

implying that
P o

ω

(
Tbn < n

)
→

n→∞ 1 . (2.5.5)

Next note that another application of (2.1.4) yields

P bn−1
ω (X· hits bn before an

δ ) ≥ 1 − n−(1+ δ
2 )

P bn+1
ω (X· hits bn before cn

δ ) ≥ 1 − n−(1+ δ
2 ) . (2.5.6)

On the same probability space, construct a RWRE {X̃t} with the same tran-
sition mechanism as {Xt} except that it is reflected at an

δ , i.e. replace ω by
ω̃. Then, using (2.5.6),

P o
ω

(∣∣∣∣ Xn

(log n)2
− b

n
∣∣∣∣ > δ

)
≤ P o

ω

(
Tbn > n

)
+ max

t≤n
P bn

ω

(∣∣∣∣ Xt

(log n)2
− b

n
∣∣∣∣ > δ

)

≤ P o
ω

(
Tbn > n

)
+
[
1 − (1 − n−(1+ δ

2 ))n
]

+ max
t≤n

P bn

ω

(∣∣∣∣∣
X̃t

(log n)2
− b

n

∣∣∣∣∣ > δ

)
.
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Hence, in view of (2.5.2) and (2.5.5), the theorem holds as soon as we show
that

sup
ω∈AJ,δ

n

max
t≤n

P b
n

ω

(∣∣∣∣∣
X̃t

(log n)2
− b

n

∣∣∣∣∣ > δ

)
−→

n→∞ 0 . (2.5.7)

To see (2.5.7), define

f(z) =

∏
an

δ +1≤i<z ω+
i∏

an
δ +1≤i<z ω−

i+1

, f(z) =
f(z)
f(bn)

(as usual, the product over an empty set of indices is taken as 1. f(·) cor-
responds to the invariant measure for the resistor network corresponding to
X̃.). Next, define the operator

(Ag)(z) = ω +
z−1g(z − 1) + ω −

z+1g(z + 1) + ω 0
z g(z) (2.5.8)

where ωz = ωz for z > an
δ , ω+

an
δ

= 1, ω+
an

δ −1 = 0. Note that Af = f , and
further that

P bn

ω (X̃t = z) = At1bn(z) .

Since f(z) ≥ 1bn(z) and A is a positive operator, we conclude that

P bn

ω (X̃t = z) ≤ f(z) .

But, for z with |z/(logn)2 − b
n| > δ, it holds that f(z) ≤ e−δ3 log n, and hence

P bn

ω (X̃t = z) ≤ n−δ3
.

Thus, for ω ∈ AJ,δ
n , using the fact that the second inequality in (2.5.6) still

applies for X̃ ,

max
t≤n

P b
n

ω

(∣∣∣∣∣
X̃t

(log n)2
− b

n

∣∣∣∣∣ > δ

)
≤(b

n
+δ)(log n)2n−δ3

+1−
(
1 − n−(1+δ/2)

)n

,

yielding (2.5.7) and completing the proof of the theorem. ��
We next turn to a somewhat more detailed study of the random variable b

n
.

By replacing 1 with t in the definition of b
n
, one obtains a process {bn

(t)}t≥0.
Further, due to Assumption 2.5.1, the process {bn

(t/σP )}t≥0 converges weakly
to a process {b(t)}t≥0, defined in terms of the Brownian motion {Bt}t≥0;
Indeed, b(t) is the location of the bottom of the smallest valley of {Bt}t≥0,
which surrounds 0 and has depth t. Throughout this section we denote by
Q the law of the Brownian motion B·. Our next goal is to characterize the
process {b(t)}t≥0. Toward this end, define

m+(t) = min{Bs : 0 ≤ s ≤ t} , m−(t) = min{B−s : 0 ≤ s ≤ t}
T+(a) = inf{s ≥ 0 : Bs − m+(s) = a} ,

T−(a) = inf{s ≥ 0 : B−s − m−(s) = a}
s±(a) = inf{s ≥ 0 : m±(T±(a)) = B±s} ,

M±(a) = sup{B±η : 0 ≤ η ≤ s±(a)} .
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Next, define W±(a) = Bs±(a). It is not hard to check that the pairs
(M+(·), W+(·)) and (M−(·), W−(·)) form independent Markov processes. De-
fine finally

H±(a) = (W±(a) + a) ∨ M±(a) .

a

s (a)

W (a)

M (a)

+

+ +

Fig. 2.5.2. The random variables (M+(a),W+(a), s+(a))

We now have the

Theorem 2.5.9 For each a > 0, Q(b(a) ∈ {s+(a),−s−(a)}) = 1. Further,
b(a) = s+(a) iff H+(a) < H−(a).

Proof. Note that Q(H+(a) = H−(a)) = 0. That b(a) ∈ {s+(a),−s−(a)} is a
direct consequence of the definitions, i.e. assuming b(a) > 0 and b(a) �= s+(a)
it is easy to show that one may refine from the right the valley defining
b(a), contradicting minimality. We begin by showing, after Kesten [41], that
b(a) = s+(a) iff either

W−(a) > W+(a), M+(a) < (W−(a) + a) ∨ M−(a) (2.5.10)

or
W−(a) < W+(a), M−(a) > (W+(a) + a) ∨ M+(a) . (2.5.11)

Indeed, assume b(a) = s+(a), and W−(a) > W+(a). Let (α, b(a), γ) denote
the minimal valley defining b(a). If −s−(a) ≤ α, then

M−(a) = max{B−s : s ∈ (0, s−(a))} ≥ B−α

= max{Bs : −α ≤ s ≤ b(a)} ≥ M+(a) (2.5.12)

implying (2.5.10). On the other hand, if −s−(a) > α, refine (α, b(a), γ) on the
left (find α′, β′ with α < α′ < β′ < b(a)), such that

Bβ′ − Bα′ = max
α<x<y<b(α)

(By − Bx) ≥ M+(a) − W−(a)
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a

a

a

a

Fig. 2.5.3. b(a) = s+(a)

and thus minimality of (α, b(a), γ) implies that M+(a)−W−(a) < a, implying
(2.5.10).

We thus showed that if b(a) = s+(a) and W−(a) > W+(a) then (2.5.10)
holds. On the other hand, if (2.5.10) holds, we show that b(a) = s+(a) by
considering the cases α ≤ −s−(a) and −s−(a) < α separately. In the former
case, necessarily γ > s+, for otherwise M−(α) ≤ Bγ ≤ M+(a) ≤ W−(a) + a
which together with b(a) = −s−(a) would imply that the depth of (α, b(a), γ)
is smaller than a. Thus, under (2.5.10) if α ≤ −s−(a) then γ > s+, and in
this case b(a) = s+(a) since Bs+(a) < B−s−(a). Finally, if α > −s−(a) then
b(a) �= −s−(a) and hence b(a) = s+(a).

Hence, we showed that if W−(a) > W+(a) then (2.5.10) is equivalent to
b(a) = s+(a). Interchanging the positive and negative axis, we conclude that if
W−(a) < W+(a), then b(a) = −s−(a) iff M+(a) < (W+(a)+1)∨M+(a). This
completes the proof that b(a) = s+(a) is equivalent to (2.5.10) or (2.5.11).

To complete the proof of the theorem, assume first W−(a) > W+(a). Then,
b(a) = s+(a) iff (2.5.10) holds, i.e. M+(a) < (W−(a) + a) ∨ M−(a) = H−(a).
But H−(a) ≥ W−(a)+a ≥ W+(a)+a, and hence M+(a) < H−(a) is equivalent
to M+(a) ∨ (W+(a) + a) < H−(a), i.e. H+(a) < H−(a). The case W+(a) <
W−(a) is handled similarly by using (2.5.11). ��

One may use the representation in Theorem 2.5.9 in order to evaluate
explicitly the law of b(a) (note that b(a) L= a2b(1) by Brownian scaling). This
is done in [41], and we do not repeat the construction here. Our goal is to
use Theorem 2.5.9 to show that Sinai’s model exhibits aging properties. More
precisely, we claim that
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Theorem 2.5.13 Assume P (min(ω0, ω
+
0 ) < ε) = 0 and Assumption 2.5.1.

Then, for h > 1,

lim
η→0

lim
n→∞ Po

( |Xnh − Xn|
(log n)2

< η

)
=

1
h2

[
5
3
− 2

3
e−(h−1)

]
. (2.5.14)

Proof. Applying Theorem 2.5.3, the limit in the left hand side of (2.5.14)
equals

Q
(
b(h) = b(1)

)
= 2Q

(
b(h) = b(1) = s+(1) = s+(h)

)
.

Note that

Q(s+(h) = s+(1)) = Q


Brownian motion, started at height 1,

hits h before hitting 0


 =

1
h

.

Hence, using that on s+(1) = s+(h) one has W+(1) = W+(h), M+(1) =
M+(h), and using that the event {s+(h) = s+(1)} depends only on increments
of the path of the Brownian motion after time T+(1), one gets

Q
(
b(h) = b(1)

)
=

2
h

Q
(
H+(1) < H−(1), (W+(1) + h) ∨ M+(1) < H−(h)

)
.

(2.5.15)
Next, let

τ0 = min{t > s−(1) : B−t = W−(1) + 1}
τh = min{t > τ0 : B−t = W−(1) + h or Bt = W−(1)} .

Note that τh − τ0 has the same law as that of the hitting time of {0, h} by a
Brownian motion Zt with Z0 = 1. (Here, Zt = B−(τ0+t) − W−(1)!). Further,
letting Ih = 1{Bτh

=W−(1)}(= 1{Zτh−τ0=0}), it holds that

W−(h) = W−(1) + IhW̃−(h)

M−(h) =

{
M−(1), Ih = 0
M−(1) ∨ (M−(h) + W−(1) + 1) ∨ (M̃−(h) + W−(1)), Ih = 1

where (W̃−(h), M̃−(h)) are independent of (W−(1), M−(1)) and possess the
same law as (W−(h), M−(h)), while M−(h) is independent of both
(W−(1), M−(1)) and (W̃−(h), M̃−(h)) and has the law of the maximum of
a Brownian motion, started at 0, killed at hitting −1 and conditioned not
to hit h − 1. (See figure 2.5.4 for a graphical description of these random
variables.)

Set now

M̂−(h) =

{
h, Ih = 0
1 + M−(h), Ih = 1 ,
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1

h_M (1)

_W (1)

Ih = 0

1

_M (1)

_W (1)

h

~

_

M (h)_

M (h)_

Ih = 1

Fig. 2.5.4. Definition of auxiliary variables

H̃−(h) = (W̃−(h) + h) ∨ M̃−(h) and Γ (h) = max(H̃−(h), M̂−(h)). Note that
H̃−(h) has the same law as H−(h) but is independent of M−(h). Further,
it is easy to check that (W−(h) + h) ∨ M−(h) = (W−(1) + Γh) ∨ M−(1)
(note that either M−(h) = M−(1) or M−(h) > M−(1) but in the latter
case, M−(h) ≤ W−(1) + Γ (h).) We have the following lemma, whose proof is
deferred:

Lemma 2.5.16 The law of Γ (h) is 1
hδh + h−1

h U [1, h], where U [1, h] denotes
the uniform law on [1, h].

Substituting in (2.5.15), we get that

Q(b(h) = b(1)) = Q
(
EQ(b(h) = b(1)|Γ (h))

)
=

2
h2

[∫ h

1

Q(t)dt + Q(h)

]

(2.5.17)
where

Q(t) = Q (H+(1) < H−(1), H+(h) < H−(t) | s+(h) = s+(1), s−(1) = s−(t)) .

In order to evaluate the integral in (2.5.17), we need to evaluate the joint
law of (H+(1), H+(t)) (the joint law of (H−(1), H−(t)) being identical). Since
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0 ≤ H+(1) ≤ 1 and H+(1) ≤ H+(t) ≤ H+(1) + t − 1, the support of the law
of (H+(1), H+(t)) is the domain A defined by 0 ≤ x ≤ 1, x ≤ y ≤ x + t − 1.
Note that for (z, w) ∈ A,

Q(H+(1) ≤ z, H+(t) ≤ w | s+(1) = s+(h))
= Q(M+(1) ≤ z ∧ w, W+(1) ≤ −[(1 − z) ∨ (t − w)]

= Q
(
M+(1) ≤ z, W+(1) ≤ −(t − w)

)
.

We now have the following well known lemma. For completeness, the proof is
given at the end of this section:

Lemma 2.5.18 For z + y ≥ 1, 0 ≤ z ≤ 1, y ≥ 0,

Q(M+(1) ≤ z, W+(1) ≤ −y) = ze−(z+y−1) .

Lemma 2.5.18 implies that, for (z, w) ∈ A, t > 1,

Q(H+(1) ≤ z, H+(t) ≤ w | s+(1) = s+(h)) = ze−(z+t−w−1) . (2.5.19)

Denote by B1 the segment {0 ≤ x = y ≤ 1} and by B2 the segment {t − 1 ≤
y = x + t − 1 ≤ t}. We conclude, after some tedious computations, that the
conditional law of (H+(1), H+(t)):

• possesses the density f(z, ω) = (1 − z)e−ze−w−(t−1), (z, w) ∈ A\(B1 ∪
B2)

• possesses the density f̃(z, y) = (1 − z)e−(t−1), z = w ∈ B1

• possesses the density f(z, z + t − 1) = z, w = z + t − 1 ∈ B2.

Substituting in the expression for Q(t), we find that

Q(t) =
5
12

e−(h−t) +
1
12

e−(h+t−2) .

Substituting in (2.5.19), the theorem follows. ��
Proof of Lemma 2.5.16: Note that Q(Ih = 0) = 1/h, and in this case
Γh = h. Thus, we only need to consider the case where Ih = 1 and show that
under this conditioning, max(H−(h), 1 + M−(h)) possesses the law U [1, h].
Note that by standard properties of Brownian motion,

Q(M̂−(h) ≤ ξ|Ih = 1) =
ξ−1

ξ

h−1
h

.

We show below that the law of H̃−(h), which is identical to the law of H−(h),
is uniform on [0, h]. Thus, using independence, for ξ ∈ [1, h],

Q(Γh < ξ|Ih = 1) =
h(ξ − 1)ξ
ξ(h − 1)h

=
ξ − 1
h − 1

,
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i.e. the law of Γh conditioned on Ih = 1 is indeed U [1, h].
It thus only remains to evaluate the law of H−(h). By Brownian scaling,

the law of H−(h) is identical to the law of hH+(1), so we only need show that
the law of H+(1) is uniform on [0, 1]. This in fact is a direct consequence of
Lemma 2.5.18. ��
Proof of Lemma 2.5.18: Let Qx denote the law of a Brownian motion
{Zt} starting at time 0 at x. The Markov property now yields

Q(M+(1) ≤ z, W+(1) ≤ −y) = Qo({Z·} hits z − 1 before hitting z)
Qz−1(M+(1) ≤ z, W+(1) ≤ −y)

= zQo(M+(1) ≤ 1, W+(1) ≤ −y − z + 1)
= zQo(W+(1) ≤ −(y + z − 1)) . (2.5.20)

For x ≥ 0, let f(x) := Q(W+(1) ≤ −x). The Markov property now implies

f(x + ε) = f(x)Q−x(W+(1) ≤ −(x + ε)) = f(x)f(ε) .

Since f(0) = 1 and f(ε) = 1−ε+o(ε), it follows that f(x) = e−x. Substituting
in (2.5.20), the lemma follows. ��
Bibliographical notes: Theorem 2.5.3 is due to [66]. The proof here follows
the approach of Golosov [31], who dealt with a RWRE reflected at 0, i.e. with
state space Z+. In the same paper, Golosov evaluates the analogue of The-
orem 2.5.9 in this reflected setup, and in [32] he provides sharp (pathwise)
localization results. These are extended to the case of a walk on Z in [33]. The
statement of Theorem 2.5.9 and the proof here follow the article [41], where
an explicit characterization of the law of b(1) is provided. The same character-
ization appears also in [33]. The aging properties of RWRE (Theorem 2.5.13)
were first derived heuristically in [24], to which we refer for additional aging
properties and discussion. The derivation here is based on [17]. The right hand
side of formula (2.5.14) appears also in [33], in a slightly different context.
We mention that results of iterated logarithm types, and results concerning
most visited sites for Sinai’s RWRE, can be found in [35], [36]. See [65] for a
recent review. Finally, extensions of the results in this section and a theorem
concerning the dichotomy between Sinai’s regime and the classical CLT for
ergodic environments can be found in [7].

Limit laws for transient RWRE in an i.i.d. environment appear in [42].
One distinguishes between CLT limit laws and stable laws: recall the parameter
s introduced in Section 2.4. The main result of [42] is that if s > 2, a CLT
holds true (see Section 2.2 for other approaches), whereas for s ∈ (0, 2) a
Stable(s) limit law holds true. Note that this is valid even when s < 1, i.e.
when vP = 0! It is an interesting open problem to extend the results concerning
stable limit laws to non i.i.d. environments. Some results in this direction are
forthcoming in the Technion thesis of A. Roitershtein.
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3 RWRE – d > 1

3.1 Ergodic Theorems

In this section we present some of the general results known concerning 0− 1
laws and laws of large numbers for nearest neighbour RWRE in Zd. Even
if considerable progress was achieved in recent years, the situation here is,
unfortunately, much less satisfying than for d = 1.

A standing assumption throughout this section is the following:

Assumption 3.1.1

(A1) P is stationary and ergodic, and satisfies a φ-mixing condition: there
exists a function φ(l) →

l→∞
0 such that any two l-separated events A, B

with P (A) > 0, ∣∣∣∣P (A ∩ B)
P (A)

− P (B)
∣∣∣∣ ≤ φ(l) .

(A2) P is uniformly elliptic: there exists an ε > 0 such that

P (ω(0, e) ≥ ε) = 1, ∀e ∈ {±ei}d
i=1 .

(Events A, B are l-separated if the shortest lattice path connecting A and B
is of length l or more.)
Remark: I have recently learnt that Assumption (A1) implies, in fact, that
P is finitely dependent, c.f. [5]. On the other hand, the basic structure of what
appears in the rest of this section remains unchanged if P is mixing on cones,
see [13], and thus I have kept the proof in its original form.

Fix � ∈ Rd \ {0}, and consider the events

A±� = { lim
n→∞Xn · � = ±∞} .

We have the

Theorem 3.1.2 Assume Assumption 3.1.1. Then

Po(A� ∪ A−�) ∈ {0, 1} .

Proof. We begin by constructing an extension of our probability space: recall
that the RWRE was defined by means of the law Po = P ⊗ P o

ω on (Ω ×
(Zd)N, F×G). Set W = {0} ∪ {±ei}d

i=1 and W the cylinder σ-algebra on W N.
We now define the measure

P
o

= P ⊗ Qε ⊗ P
o

ω,E

on (
Ω × W N × (Zd)N, F × W × G

)



Random Walks in Random Environment 259

in the following way: Qε is a product measure, such that with E = (ε1, ε2, . . .)
denoting an element of W N, Qε(ε1 = ±ei) = ε, i = 1, · · · , d, Qε(ε1 = 0) =
1 − 2εd. For each fixed ω, E, P

o

ω,E is the law of the Markov chain {Xn} with
state space Zd, such that X0 = 0 and, for each e ∈ W , e �= 0,

P
o

ω,E(Xn+1 = z + e|Xn = z) = 1{εn+1=e} +
1{εn+1=0}
1 − 2dε

[ω(z, z + e) − ε] .

It is not hard to check that the law of {Xn} under P
o

coincides with its law
under Po, while its law under Qε ⊗ P

o

ω,E coincides with its law under P o
ω .

We will prove the theorem for � = (1, 0 . . . 0), the general case being similar
but requiring more cumbersome notations. Note that for any u < v, the walk
cannot visit infinitely often the strip u ≤ z · � ≤ v without crossing the line
z · � = v. More precisely, with

Tv = inf{n ≥ 0 : Xn · � ≥ v}, (3.1.3)

we have
Po
(
#{n > 0 : Xn · � ≥ u} = ∞, Tv = ∞

)
= 0 . (3.1.4)

Indeed, note that for any z with u ≤ z · � ≤ v, and any ω,

P z
ω(Xv−u · � ≥ v) = Qε ⊗ P z

ω,E(Xv−u · � ≥ v) ≥ εv−u ,

yielding (3.1.4) by the strong Markov property.
Assume next that Po(A�) > 0. Set D = inf{n ≥ 0 : Xn · � < X0 · �}.

Clearly, Po(D = ∞) > 0, because if Po(D = ∞) = 0 then Pz(D < ∞) = 1
∀z ∈ Zd, and thus P -a.s., for all z ∈ Zd, P z

ω(D < ∞) = 1. This implies by the
Markov property that

lim inf
n→∞ Xn · � ≤ 0, Po-a.s. ,

contradicting Po(A�) > 0.
Define O� to be the event that Xn · � changes its sign infinitely often. We

next show that whenever Po(A�) > 0, then Po(O�) = 0. Set M = supn Xn · �,
fix v > 0 and note by (3.1.4) that

Po(O� ∩ {M < v}) = 0 . (3.1.5)

We next prove that if Po(A�) > 0 then Po(O�∩{M = ∞}) = 0, by first noting
that

Po(O� ∩ {M = ∞}) = P
o
(O� ∩ {M = ∞}) .

Then, set Gn = σ((εi, Xi), i ≤ n), fix L > 0 and, setting S0 = 0, define
recursively Gn stopping times as follows:

Rk = inf
{
n ≥ Sk : Xn · � < 0} ,

Sk+1 = inf{n ≥ Rk : Xn−L · �
≥ max{Xm · � : m ≤ n − L}, εn−1 = εn−2 = . . . = εn−L = e1

}
.
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L consecutive = eεi 1

space

t

R

S
1

R
0

1

S2

Fig. 3.1.1. Definition of the hitting times (Sk, Rk)

On O� ∩ {M = ∞}, all these stopping times are finite. Now, at each time
Sk−L the walk enters a half space it never visited before, and then due to the
action of the E sequence alone, it proceeds L steps in the direction e1. Formally,
“events in the σ-algebra GSk

are L-separated from σ(ωz : z · � ≥ XSk
· �)”.

Note that, using Po(A�) > 0 in the second inequality,

P
o
(R0 < ∞) = P

o
(D < ∞) < 1 ,

whereas, using θ to denote both time and space shifts as needed from the
context,

P
o
(R1 < ∞) ≤ P

o
(R0 < ∞, R0 ◦ θXS1

< ∞)

=
∑
z∈Zd

P
o
(R0 < ∞, R0 ◦ θz < ∞, XS1 = z)

=
∑
z∈Zd

∑
n∈N

EP⊗Qε

(
P

o

ω,E(R0 < ∞, XS1 = z, S1 = n) · P o

θzω,θnE(R0 < ∞)
)

.

Note that P
o

θzω,θnE(R0 < ∞) is measurable on σ(ωx : x·� ≥ z·�)×σ(εi, i > n),
whereas P

o

ω,E(R0 < ∞, XS1 = z, S1 = n) is measurable on σ(ωx : x · � ≤
z ·�−L)×σ(εi, i ≤ n). Hence, by the φ-mixing property of P and the product
structure of Qε,
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P
o
(R1 < ∞) ≤

∑
z∈Zd

∑
n∈N

[
EP⊗Qε

(
P

o

ω,E(R0 < ∞, XS1 = z, S1 = n)
)

·EP⊗Qε

(
P

o

ω,E(R0 < ∞)
)]

+ φ(L)
∑
z∈Zd

∑
n∈N

EP⊗Qε

(
P

o

ω,E(R0 < ∞, XS1 = z, S1 = n)
)

≤ (P
o
(R0 < ∞))2 + φ(L)P

o
(R0 < ∞) ≤ (P

o
(D < ∞) + φ(L))2 .

Repeating this procedure, we conclude that P
o
(O� ∩ {M = ∞}) ≤ P

o
(Rk <

∞) ≤ (Po(D < ∞) + φ(L))k+1. Since k is arbitrary and φ(L) →
L→∞

0, we

conclude that P
o
(O�∩{M = ∞}) = 0, yielding with the above that Po(O�) = 0

as soon as Po(A�) > 0. In a similar manner one proves that Po(A−�) > 0 also
implies Po(O�) = 0.

Assume now 1 > Po(A�∪A−�). Then one can find a v such that Po(Xn ·� ∈
[−v, v] infinitely often) > 0. Therefore, Po(O�) > 0, implying by the above
Po(A�) = Po(A−�) = 0. ��
Remark: It should be obvious that one does not need the full strength of
(A1) in Assumption 3.1.1, and weaker forms of mixing suffice. For an example
of how this can be relaxed, see [13].
Bibliographical notes: The 0-1 law described in this section is due to Kalikow
[38], who handled the i.i.d. setup. Our proof borrows from [82], which, still
in the i.i.d. case, relaxes the uniform ellipticity assumption A2. In that pa-
per, they show that a stronger 0-1 law holds if P is a product measure and
d = 2, namely they show that Po(A�) ∈ {0, 1}, while that last conclusion is
false for certain mixing environments with elliptic, but not uniformly elliptic,
environments.

3.2 A Law of Large Numbers in Zd

Our next goal is to prove a law of large numbers. Unfortunately, at this point
we are not able to deal with general non i.i.d. environments (see however
Remark 2 following the proof of Theorem 3.2.2), and further the case of i.i.d.
environments does offer some simplifications. Thus, throughout this section
we make the following assumptions:

Assumption 3.2.1 P is a uniformly elliptic, i.i.d. law on Ω.

The main result of this section is the following:

Theorem 3.2.2 Assume Assumption 3.2.1 and that Po(A�∪A−�) = 1. Then,
there exist deterministic v�, v−� (possibly zero) such that

lim
n→∞

Xn · �
n

= v�1A�
+ v−�1A−�

, Po-a.s.
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(See (3.2.8) for an expression for v�. When v� �= 0 for some �, we say that the
walk is ballistic).

Proof. As in Section 3.1 we will take here � = (1, 0, · · · , 0). Further, we assume
throughout that Po(A�) > 0. The proof is based on introducing a renewal
structure, as follows: Define S0 = 0, M0 = � · X0,

S1 = TM0+1 ≤ ∞, R1 = D ◦ θS̄1
+ S1 ≤ ∞,

M1 = sup{� · Xm, 0 ≤ m ≤ R1} ≤ ∞
and by induction, for k ≥ 1,

Sk+1 = TMk+1 ≤ ∞, Rk+1 = D ◦ θS̄k+1
+ Sk+1 ≤ ∞,

Mk+1 = sup{� · Xm, 0 ≤ m ≤ Rk+1} ≤ ∞ .

The times S1, S2, . . . , are called “fresh times”, and the locations XS1
, XS2

,

· · · , are “fresh points”: at the time Sk, the path X· visits for the first time
after Sk−1 and after hitting again the hyperplane XSk−1

· � − 1, a fresh part
of the environment. Note that (Si, Ri) are related to, but differ slightly from,
(Si, Ri) introduced in Section 3.1. Clearly,

0 = S0 ≤ S1 ≤ R1 ≤ S2 ≤ · · · ≤ ∞
and the inequalities are strict if the left member is finite. Define:

K = inf{k ≥ 1 : Sk < ∞, Rk = ∞} ≤ ∞,

τ1 = SK ≤ ∞ .

τ1 is called a “regeneration time”, because after τ1, X· · � never falls behind
Xτ1 · �.

By the same argument as in the proof of Theorem 3.1.2, Po(Rk < ∞) ≤
Po(D < ∞)k −→

k→∞
0 because Po(A�) > 0 implies Po(D < ∞) < 1. On the

other hand, on A�, Rk < ∞ ⇒ Sk+1 < ∞, Po-a.s., and hence

Po(A� ∩ {K = ∞}) = Po(A� ∩ {τ1 = ∞}) = 0 .

Define now the measure

Qo(·) = Po(· |{τ1 < ∞}) = Po(· |A�)

and set
G1 = σ

(
τ1, X0, · · · , Xτ1 , {ω(y, ·)}�·y<�·Xτ1

)
.

Note that since {D = ∞} ⊂ {τ1 < ∞}, we have that {D = ∞} ∈ G1. We have
the following crucial lemma, whose proof is a simple exercise in the application
of the Markov property, is omitted. It is here that the i.i.d. assumption on the
environment plays a crucial role:
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Fig. 3.2.1. Regeneration structure

Lemma 3.2.3 For any measurable sets A, B,

Qo
(
{Xτ1+n − Xτ1}n≥0 ∈ A, {ω(Xτ1 + y, ·)}y·�≥0 ∈ B

)

=Po
(
{Xn}n≥0 ∈ A, {ω(y, ·)}y·�≥0 ∈ B|{D = ∞}

)
.

In fact,

Qo
(
{Xτ1+n − Xτ1}n≥0 ∈ A, {ω(Xτ1 + y, ·)}y·�≥0 ∈ B|G1

)

=Po
(
{Xn}n≥0 ∈ A, {ω(y, ·)}y·�≥0 ∈ B|{D = ∞}

)
. (3.2.4)

Proof of Lemma 3.2.3 Clearly, it suffices to prove (3.2.4). Let h denote a G1

measurable random variable. Set 1A := 1{Xn−X0}n≥0∈A, 1B := 1{ω(y,·)}y·�≥0 .
Further, note that for each k ∈ N, x ∈ Zd, there exists a random variable hx,k,
measurable with respect to σ({ω(y, ·)}�·y<x·�, {Xi}i≤Sk

, Sk), such that on the
event {τ1 = Sk, XSk

= x}, h = hx,k (this follows from the G1 measurability
of h. Then, using θ̄ to denote spatial shift and θ to denote temporal shift,

_
R

S2

no return (K=2)

1
S

_

_

time

space

1
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EPo

(
1A ◦ θτ1 · 1B ◦ θ̄Xτ1 · h · 1τ1<∞

)
=
∑
k≥1

∑
x∈Zd

EP

(
Eo

ω

(
1Sk<∞1Rk=∞1XSk

=x1A ◦ θSk · 1B ◦ θ̄x · hx,k

))

=
∑
k≥1

∑
x∈Zd

EP

(
1B ◦ θ̄xEo

ω

(
1Sk<∞1D◦θ̄S̄k

=∞1XSk
=x1A ◦ θSk · hx,k

))

=
∑
k≥1

∑
x∈Zd

EP

(
1B ◦ θ̄xEx

ω (1D=∞1A)Eo
ω

(
hx,k1Sk<∞1XSk

=x

))

=
∑
k≥1

∑
x∈Zd

EP (1B1D=∞1A)EP

(
hx,k1Sk<∞1XSk

=x

)
,

where we used the Markov property in the next to last equality and the i.i.d.
structure of the environment in the last one. Substituting in the above trivial
A, B, one concludes that

EPo (h · 1τ1<∞) = P ({D = ∞})
∑
k≥1

∑
x∈Zd

EP

(
hx,k1Sk<∞1XSk

=x

)
.

Hence,

EQo

(
1A ◦ θτ1 · 1B ◦ θ̄Xτ1 · h) = EQp(h)EPo (1A1B|{D = ∞}) ,

concluding the proof of the lemma. ��
Consider now τ1 as a function of the path (Xn)n≥0 and set

τk+1 = τk(X·) + τ1(Xτk+· − Xτk
) ,

with τk+1 = ∞ on {τk = ∞} (the sequence {τk} enumerates times such that
for all k < m < n, Xk · � < Xm · � ≤ Xn · �). By the definition and the fact
that Po(A� ∩ {τ1 = ∞}) = 0, we have that Po(A� ∩ {τk = ∞}) = 0. Setting

Gk = σ
(
τ1, . . . , τk, X0, · · · , Xτk

, {ω(y, ·)}�·y<�·Xτk

)
,

an obvious rerun of the proof of Lemma 3.2.3 yields that

Qo
(
{Xτk+n − Xτk

}n≥0 ∈ A, {ω(Xτk+y, ·)}�·y≥0 ∈ B| Gk

)

= Po
(
{Xn}n≥0 ∈ A, {ω(y, ·)}�·y≥0 ∈ B|{D = ∞}

)
.

We thus conclude that under Qo,

(Xτ2 − Xτ1 , τ2 − τ1) , · · · , (Xτk+1 − Xτk
, τk+1 − τk)

are i.i.d. pairs of random variables, independent of (Xτ1 , τ1), such that

Qo(Xτ2 − Xτ1 ∈ C1, τ2 − τ1 ∈ C2) = Po(Xτ1 ∈ C1, τ1 ∈ C2|{D = ∞}) .

Next, we have the following lemma, whose proof is deferred:
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Lemma 3.2.5 (Zerner)

Eo(Xτ1 · �|{D = ∞}) =
1

Po(D = ∞)
.

We are now ready to complete the proof of Theorem 3.2.2. Assume first that
Eo(τ1|{D = ∞}) < ∞. Then, by the law of large numbers, and the renewal
structure,

τk

k
→k→∞ Eo(τ1|{D = ∞}), Qo-a.s. (3.2.6)

Xτk
· �

k
→k→∞ Eo(Xτ1 · �|{D = ∞}), Qo-a.s. (3.2.7)

(note that the finiteness of the expression in the right hand side of (3.2.7) is
trivial if the right hand side of (3.2.6) is finite, and Lemma 3.2.5 is not needed
in this case).

Hence,

Xτk
· �

k
−→k→∞

Eo(Xτ1 · �|{D = ∞})
Eo(τ1|{D = ∞}) =: v�, Q-a.s. (3.2.8)

Mimicking now the argument at the end of the proof of Lemma 2.1.5, we
conclude that Xn·�

n →n→∞ v�, Q
o-a.s., in the case E0(τ1|{D = ∞}) < ∞.

On the other hand, Lemma 3.2.5 implies that (3.2.7) holds true even when
Eo(τ1|{D = ∞}) = ∞. But then, τk/k →k→∞ ∞, Qo-a.s. With v� = 0 in this
case, we conclude that

Xτk
· �

τk
−→k→∞ v� = 0, Qo-a.s.

Finally, setting kn such that τkn ≤ n < τkn+1, we have that kn →n→∞ ∞
and kn/n −→

n→∞ 0, Qo-a.s. because n/kn ≥ τkn/kn. Thus,

Xn · �
n

≤ Xτkn+1 · �
kn + 1

· kn + 1
n

−→
n→∞ 0, Qo-a.s.

Since lim infn→∞ Xn·�
n ≥ 0, Qo-a.s., we conclude

Xn · �
n

−→
n→∞ 0, Qo-a.s. ��

Remarks:

1. Note that on A�, v� > 0 if Eo(τ1|{D = ∞}) < ∞ and v� = 0 otherwise.
2. It is clear from the proof that in fact, if Eo(τ1|{D = ∞}) < ∞, then the

result of Theorem 3.2.2 can be strengthened to

Xn

n
−→n→∞

Eo(Xτ1 |{D = ∞})
Eo(τ1|{D = ∞}) , Qo-.a.s.
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3. In the stationary, φ-mixing case, one can prove that the times {τi} are
well defined, and form a mixing sequence. What I have not been able to
show is that they are identically distributed under Qo (they seem not!).
Modifying slightly the definition of (Rk, Sk) by adding an L-safeguard
as in Section 3.1, the results of this section extend immediately to
the case where the environment is K-dependent (i.e., {ω(x, ·)}x·�≤0 and
{ω(x, ·)}x·�>K are independent). This applies, e.g., in the setup considered
in [63]. The extension to a mixing setup is more complicated, and some
results applicable there can be found in [13].

4. Still discussing mixing environements, some progress has been made using
the approach of the environment viewed from the particle. We mention
here [44] and in particular the recent preprint [62]. The latter preprint
uses a-priori estimates concerning regeneration times in the ballistic case
to construct an invariant measure for the environment viewed from the
particle which is absolutely continuous with respect to P on certain half-
spaces, and deduces a LLN using that measure.

Proof of Lemma 3.2.5

Recall that we consider � = (1, 0, . . . , 0). Then,

Qo
(
{∃k : Xτk

· � = i}
)

=

∑
y∈Zd−1 E

(
P o

ω({∃k : Xτk
= (i, y)}, A�)

)
Po(A�)

=

∑
y∈Zd−1 E

(
P o

ω(Ti < ∞, XTi = (i, y), D ◦ θTi = ∞)
)

Po(A�)

=

∑
y∈Zd−1 E

(
P o

ω(Ti < ∞, XTi = (i, y))P (i,y)
ω (D = ∞)

)
Po(A�)

=
Po(Ti < ∞)Po(D = ∞)

Po(A�)
−→
i→∞

Po(D = ∞) (3.2.9)

(since Po(A� ∪A−�) = 1 and limi→∞ Po({Ti < ∞}∩ A−�) = 0). On the other
hand,

lim
i→∞

Qo
(
{∃k : Xτk

· � = i}
)

= lim
i→∞

Qo
(
{∃k ≥ 2 : Xτk

· � = i}
)

(because Qo(τk > i) −→
i→∞

0)
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= lim
i→∞

∑
n≥1

Qo
(
{∃k ≥ 2 : Xτk

· � = i, Xτ1 · � = n}
)

= lim
i→∞

∑
n≥1

Qo
(
{∃k ≥ 2 : (Xτk

− Xτ1) · � = i − n, Xτ1 · � = n}
)

= lim
i→∞

∑
n≥1

Qo(Xτ1 · � = n) · Qo
(
{∃k ≥ 2 : (Xτk

− Xτ1) · � = i − n}
)

.

But, recall that by the renewal theorem,

Qo
(
∃k ≥ 2 : (Xτk

− Xτ1) · � = i − n
)
−→
i→∞

1
EQo((Xτ2 − Xτ1) · �)

and hence, by dominated convergence,

lim
i→∞

Qo
(
{∃k : Xτk

· � = i}
)

=

∑
n≥1 Qo(Xτ1 · � = n)

EQo((Xτ2 − Xτ1) · �)
=

1
EQo((Xτ2 − Xτ1) · �)

.

(3.2.10)
Comparing (3.2.9) and (3.2.10), we conclude that

EQo

(
(Xτ2 − Xτ1) · �

)
=

1
Po(D = ∞)

< ∞ . ��

Theorem 3.2.2 assumes that Po(A� ∪ A−�) = 1, and in that situation
provided a LLN if Po(A�) ∈ {0, 1}. A recent improvement to Theorem 3.2.2,
due to Zerner [83], actually shows that if a 0-1 law holds true, a LLN holds,
at least for i.i.d. environments. More precisely, one has the following:

Theorem 3.2.11 There exist deterministic v�, v−� (possibly zero) such that

lim
n→∞

Xn · �
n

= v�1A�
+ v−�1A−�

, Po-a.s. (3.2.12)

An immediate corollary, obtained by applying Theorem 3.2.11 d times with
respect to the basis � = ei, i = 1, . . . , d, is the following:

Corollary 3.2.13 Assume that Po(A�) ∈ {0, 1} for every �. Then there exists
a deterministic v (possibly zero) such that

lim
n→∞

Xn

n
= v, Po-a.s.

Proof of Theorem 3.2.11: (sketch) In view of the 0-1 law Theorem 3.1.2 and
of Theorem 3.2.2, all that remains to prove is that if Po(A� ∪ A−�) = 0 then
Xn · �/n → 0, Po-a.s. The complete proof for that is given in [83], and we
provide next a brief description.

Consider the set of visits to the hyperplane Hm := {z : z ·� = m}, defining
τ0
m = Tm and τ i

m = min{n > τ i−1
m : Xn · � = m}. Fixing an integer L, let
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hm,L = sup
i≥0

{τ i
m − τ0

m : τ i
m < Tm+L}

be the diameter of the set of visits to Hm before Tm+L. For any constant
c > 0, let

FM,L(c) =
#{0 ≤ m ≤ M : hm,L ≤ c}

M + 1
denote the fraction of m’s smaller than M such that the time between the
first and last visit to Hm before Tm+L is smaller than c. The first observation,
which is a deterministic (combinatorial) computation that we skip, is that for
any path with lim infn→∞ Xn · �/n > 0 there exists a constant c such that

inf
L≥1

lim sup
M→∞

FM,L(c) > 0 ,

that is, roughly, there is a fraction of m’s for which the time between first and
last visits of Hm (before hitting Hm+L) is not too large.

Assume now that Po(lim sup Xn · �/n > 0) > 0. Then, by the above obser-
vation, there is some c > 0 such that

Po(lim sup
L→∞

lim sup
M→∞

FM,L(c) > 0) > 0 . (3.2.14)

But on the event {hm,L ≤ c}, the last point visited in Hm before hitting
Hm+L is at most at distance c from XTm and has been visited at most c
times before Tm+L. Thus, there is a z ∈ H0 with |z|1 ≤ c, and an 1 ≤ r ≤ c
such that the r-th visit to XTm +z occurs before Tm+L and the walk does not
backtrack from Hm after this r-th visit. Denoting the last event by B1

m,L(z, r),
it follows that

FM,L(c) ≤ 1
M + 1

∑
z∈H0,|z|1≤c

c∑
r=1

M∑
m=0

1B1
m,L(z,r) .

Noting that the summation over r and z is over a finite set, and combining
the last inequality with (3.2.14), it follows that for some z and r,

Po(lim sup
L→∞

lim sup
M→∞

1
M + 1

M∑
m=0

1B1
m,L(z,r) > 0) > 0 . (3.2.15)

While the events {B1
m,L(z, r)}m are not independent, some independence can

be restored in the following way: construct independent (given the environ-
ment) copies Y y

· of the RWRE, starting at y. Define the event Bm,L(z, r) as
the union of B1

m,L(z, r) with the event that X· does not hit XTm + z for the

r-th time before Tm+L, but Y
XTm+z
· does not backtrack from Hm before it

hits Hm+L. An easy computation involving the Markov property shows that
for each fixed i = 0, 1, . . . , L− 1, the events {BjL+i,L(z, r)}j are independent,
with
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Po(BjL+i,L(z, r)) = Po(D ≥ TL) .

(Here and in the sequel, we abuse notations by still using Po to denote the
annealed law on the enlarged probability space that supports the extra Y y

walks). Hence, since we have from (3.2.15) that

Po(lim sup
L→∞

lim sup
M→∞

1
M + 1

L−1∑
i=0

[M/L]∑
j=0

1B1
jL+i,L(z,r) > 0) > 0 , (3.2.16)

it follows, by the standard law of large numbers, that

Po(D = ∞) = lim sup
L→∞

Po(D ≥ TL) > 0 .

But from (3.1.4), we have that Po(A�) ≥ Po(D = ∞) > 0. In particular, this
shows that Po(A�) = 0 implies that lim sup Xn · �/n ≤ 0, Po-a.s. Repeating
this argument with −� instead of � completes the proof of the theorem. ��
Bibliographical notes:
The proof here follows closely [76], except that Lemma 3.2.5 is due to pri-
vate communication with Martin Zerner. The improvement Theorem 3.2.11
is based on [83].

The ballistic LLN has been proved for certain non iid environments in [13].
Alternative approaches to ballistic LLN’s using the environment viewed from
the particle were developped in [44] and in great generality in [62].

There are only a few LLN results in the non-ballistic case, see the biblio-
graphical notes of Section 3.3.

3.3 CLT for walks in balanced environments

The setup in this section is the following:

Assumption 3.3.1

(B1) P is stationary and ergodic.
(B2) P is balanced: for i = 1, · · · , d, P (ω(x, x + ei) = ω(x, x − ei)) = 1 .
(B3) P is uniformly elliptic: there exists an ε > 0 such that for i = 1, · · · , d,

P (ω(x, x + ei) > ε) = 1 .

Unlike the situation in Section 2.1, we do not have an explicit construction of
invariant measures at our disposal. The approach toward the LLN and CLT
uses however (B2) in an essential way: indeed, note that in the notations of
(2.1.28),

d(x, ω) =
d∑

i=1

ei

[
ω(x, x + ei) − ω(x, x − ei)

]
= 0 .

Hence, the processes (Xn(i))n≥0, i = 1, · · · , d, are martingales, with, denoting
Fn = σ(X0, · · ·Xn),



270 Ofer Zeitouni

Eo
ω((Xn(i) − Xn−1(i))(Xn(j) − Xn−1(j))|Fn−1) = 2δijω(Xn−1, Xn−1 + ei) .

Since |ω(·, ·)| ≤ 1 P -a.s., it immediately follows that Xn/n −→
n→∞ 0, Po-a.s.

Further, the multi-dimensional CLT (compare with Lemma 2.2.4) yields that
if there exists a deterministic vector a = (a1, · · · , ad) such that

1
n

n∑
k=1

ω(Xk−1, Xk−1 + ei) −→
n→∞

ai

2
> 0, Po-a.s., (3.3.2)

then, for any bounded continuous function f : Rd → R, and any y ∈ R,

lim
n→∞P o

ω

(
f

(
Xn√

n

)
≤ y

)
(3.3.3)

=
1

(2π)d/2
∏d

i=1

√
ai

∫
Rd

1{f(x)≤y} exp

(
−

d∑
i=1

x2
i

2ai

)
d∏

i=1

dxi, P -a.s.

Our goal in this section is to demonstrate such a CLT, and to study transience
and recurrent questions for the RWRE.

Central limit theorems

Theorem 3.3.4 Assume Assumption 3.3.1. Then, there exists a determin-
istic vector a such that (3.3.2) holds true. Consequently, the quenched CLT
(3.3.3) holds true.

Remark 3.3.5 In fact, the above observations yield not only a CLT in the
form of (3.3.3) but also a trajectorial CLT for the process {X[nt]/

√
n, t ∈

[0, 1]}.
Proof of Theorem 3.3.4

As in Section 2.1, the key to the proof of (3.3.2) is to consider the environment
viewed from the particle. Define ω(n) = θXnω, and the Markov transition
kernel

M(ω, dω′) =
∑
ei

[
ω(0, ei)δθei ω=ω′ + ω(0,−ei)δθ−eiω=ω′

]
. (3.3.6)

As in Lemma 2.1.18, the process ω(n) is Markov under either P o
ω or Po. Mim-

icking the proof of Corollary 2.1.25, if we can construct a measure Q on Ω
which is absolutely continuous with respect to P and such that it is invariant
under the Markov transition M , we will conclude, as in Corollary 2.1.25, that
ω(n) is stationary and ergodic and hence

1
n

n∑
i=1

ω(Xn−1, Xn−1 + ei) =
1
n

n∑
i=1

ω(n)(0, ei) −→
n→∞

ai

2

:= EQω(0, ei) ≥ ε, Po-a.s., (3.3.7)
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yielding (3.3.2). Our effort therefore is directed towards the construction of
such a measure. Naturally, such measures will be constructed from periodic
modifications of the RWRE, and require certain a-priori estimates on har-
monic functions. We state these now, and defer their proof to the end of the
section. The estimates we state are slightly more general than needed, but
will be useful also in the study of transience and recurrence.

We let |x|∞ := maxd
i=1 |xi| and define D = DR(x0) = {x ∈ Zd : |x−x0|∞ <

R}. The generator of the RWRE, under Pω, is the operator

(Lωf)(x) =
d∑

i=1

ω(x, x + ei)
[
f(x + ei) + f(x − ei) − 2f(x)

]
.

For any bounded E ⊂ Zd of cardinality |E|, set ∂E = {y ∈ Ec : ∃x ∈

Fig. 3.3.1. The normal set at x ∈ E

E, |x− y|∞ = 1}, E = E ∪ ∂E, and diam(E) = max{|x− y|∞ : x, y ∈ E}. For
any function u : Zd → R, we define the normal set at a point x ∈ E as

Iu(x) = {s ∈ Rd : u(z) ≤ u(x) + s · (z − x), ∀z ∈ E} .

Finally, for any q > 0, E and u as above, define

‖g‖E,q,u :=
( 1
|E|

∑
x∈E

1{Iu(x) 
=∅}|g(x)|q
)1/q

, ‖g‖E,q :=
( 1
|E|

∑
x∈E

|g(x)|q
)1/q

.

Then we have the following:

Lemma 3.3.8 There exists a constant C = C(ε, d) such that

I

_
x

u(x)

E
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(a) (maximum principle) For any E ⊂ Zd bounded, any functions u and g
such that

Lωu(x) ≥ −g(x), x ∈ E

satisfy

max
x∈E

u(x) ≤ Cdiam(E)|E|1/d‖g‖E,d,u + max
x∈∂E

u+(x) .

(b) (Harnack inequality) Any function u ≥ 0 such that

Lωu(x) = 0, x ∈ DR(x0) , (3.3.9)

satisfies
1
C

u(x0) ≤ u(x) ≤ Cu(x0), x ∈ DR/2(x0) .

We now introduce a periodic structure. Set ∆N = {−N, · · · , N}d ⊂ Zd and
identify elements of TN = Zd/(2N + 1)Zd with a point of ∆N , setting πN :
Zd → TN and π̂N : Zd → ∆N to be the canonical projections. Set ΩN =
{ω ∈ Ω : θxω = ω, ∀x ∈ (2N + 1)Zd}. For any ω ∈ Ω, define ωN ∈ ΩN by
ωN (x) = ω(π̂Nx). Note that ωN is then a well defined function on TN too.

Due to the ergodicity of P , it holds that in the sense of weak convergence,

PN :=
1

(2N + 1)d

∑
x∈∆N

δθxωN −→
N→∞

P, P -a.s. (3.3.10)

Let Ω0 ⊂ Ω denote those environments ω for which the convergence holds in
(3.3.10) (clearly, P (Ω0) = 1).

Fixing ω ∈ Ω0, let (Xn,N)n≥0 denote the RWRE on Zd with law P
X0,N

ωN .
Then, Xn,N := πNX0,N is an irreducible Markov chain with finite state space
TN , and hence it possesses a unique invariant measure µN = 1

(2N+1)d

∑
x∈TN

φN (x)δx. Setting ωN (n) := θXn,N ωN , it follows that ωN (n) is an irreducible
Markov chain with finite state space SN := {θxωN}x∈∆N and transition kernel
M . Its unique invariant measure, supported on ΩN , is then easily checked to
be of the form

QN =
1

(2N + 1)d

∑
x∈∆N

φN (πNx)δθxωN .

Partitioning the state space SN into finitely many disjoint states {ωN
α }K

α=1,
set CN (α) = {x ∈ ∆N : θxωN = ωN

α }. Then,

fN :=
dQN

dPN
=

K∑
α=1

1{ω=ωN
α }

1
|CN (α)|

∑
x∈CN (α)

φN (πNx) .

We show below, as a consequence of part (a) of Lemma 3.3.8, that there
exists a constant C2 = C2(ε, d), independent of N , such that
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‖φN(πN ·)‖DN+1(0),d/d−1 ≤ C2 . (3.3.11)

Thus, using Jensen’s inequality in the first inequality and (3.3.11) in the sec-
ond,

∫
f

d/d−1
N dPN =

K∑
α=1


 1
|CN (α)|

∑
x∈CN(α)

φN (πNx)




d/d−1

|CN (α)|
(2N + 1)d

≤
K∑

α=1

∑
x∈CN (α)

φN (πN (x))d/d−1 1
(2N + 1)d

=
1

(2N + 1)d

∑
x∈∆N

φN (πN (x))d/d−1 ≤ C
(d−1)/d
2 . (3.3.12)

Note that fN extends to a measurable function on Ω, and the latter is, due
to (3.3.12), uniformly integrable with respect to PN . Thus, any weak limit of
QN is absolutely continuous with respect to P , and further it is invariant with
respect to the Markov kernel M .

Let E = {ω : dQ
dP = 0}. By invariance, EQM1E = EQ1E = 0, and

hence M1E ≤ 1E , P -a.s. But, M1E ≥ ε
∑d

i=1(1E ◦ θei + 1E ◦ θ−ei). Hence,
1E ≥ 1E ◦θ±ei , P -a.s. Since P is stationary, 1E = 1E ◦θ±ei , P -a.s., and hence
by ergodicity (considering the invariant event ∩x∈Zd(θx)−1E ) P (E) ∈ {0, 1}.
But Q # P implies P (E) = 0. Hence, Q ∼ P , as claimed (further, by (3.3.7),
Q is then uniquely defined).

It thus only remains to prove (3.3.11). Fix a function g on TN , and define
the resolvent

RωN

g(x) :=
∞∑

j=0

(
1 − 1

N2

)j

Ex
ωN g(Xj,N )

=
∞∑

j=0

(
1 − 1

N2

)j

Ex
ωN g ◦ πN (Xj,N ), x ∈ TN

and the stopping times τ0 = 0, τ1 = τ := min{k ≥ 1 : |Xk,N − X0,N | ≥ N}
and τk+1 = τ ◦ θk + τk. Since for x ∈ Zd with |x − X0,N | < N it holds that

LωN Ex
ωN

(∑τ−1
j=0 g ◦ πN (Xj,N )

)
= −g(x), we have by Lemma 3.3.8(a) that for

some constant C = C(ε, d),

sup
|x−X0,N |<N

∣∣∣∣∣∣E
x
ωN


τ−1∑

j=0

g ◦ πN (Xj,N )



∣∣∣∣∣∣ ≤ CN2‖g‖DN+1(0),d . (3.3.13)

Since (Xn,N )n≥0 is a martingale, it follows from Doob’s inequality that, for
any K ≥ 1,
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P o
θxωN [τ ≤ K] ≤ 2

d∑
i=1

P o
θxωN

[
sup
n≤K

Xn(i) ≥ N

]

≤ 2
N

d∑
i=1

Eo
θxωN

(
(XK(i))+

)
≤ 2d

N

√
K .

Hence, using K = N2/8d2,

Eo
θxωN

((
1 − 1

N2

)τ)
≤ 2d

N

√
K +

(
1 − 1

N2

)K

≤ C3 (3.3.14)

where C3 = C3(d) < 1 is independent of N . Thus, using the strong Markov
property, (3.3.13) and (3.3.14),

|RωN

g(x)| =
∑
m≥0

Ex
ωN


 ∑

τm≤j<τm+1

(
1 − 1

N2

)j

g ◦ πN (Xj,N )




≤
∑
m≥0

Ex
ωN


(

1 − 1
N2

)τm

E
Xτm,N

ωN

τ−1∑
j=0

g ◦ πN (Xj,N )




≤
∑
m≥0

(
sup
x∈Zd

Ex
ωN

((
1 − 1

N2

)τ))m

· sup
x∈Zd

Ex
ωN


τ−1∑

j=0

g ◦ πN (Xj,N )




≤ C4N
2‖g‖DN+1(0),d

where C4 = C4(d, ε). Using the invariance of φN , we now get

‖φN (πN ·)‖DN+1(x0),d/d−1 = ‖φN (πN ·)‖DN+1(0),d/d−1

= sup
g:‖g‖DN+1(0),d≤1

1
|DN+1(0)|

∑
y∈DN+1(0)

φN (πNy)g(y)

=
1

N2
sup

g:‖g‖DN+1(0),d≤1

∑
k≥0

(
1 − 1

N2

)k 1
(2N + 1)d

∑
x∈∆N

φN (x)Ex
ωN

(g ◦ πN (Xk,N ))

≤ C2

with C2 = C2(d, ε), proving (3.3.11). ��

Proof of Lemma 3.3.8

(a) We may assume without loss of generality that maxx∈∂E u(x) ≤ 0, g ≥ 0,
g �= 0 and that u ≥ 0 is not identically 0. Let u = maxx∈E u = u(x0), some
x0 ∈ E. Then, for s satisfying |s|∞ < u/diam(E), it holds that

u(x0) + s·(x − x0) > 0, ∀x ∈ E .
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Hence, with t = inf{ρ ≥ 0 : u(x0) + s(x − x0) + ρ > u(x), ∀x ∈ E}, we have
that u(x) = u(x0) + s·(x− x0) + t, some x ∈ E, and hence u(x) + s·(z − x) =
u(x0) + s·(z − x0) + t ≥ u(z), ∀z ∈ E. Hence,

s ∈ Iu(x) ⊂
⋃

x∈E

Iu(x), for all s with |s|∞ <
u

diam(E)
. (3.3.15)

Assume s ∈ Iu(x). Then, with e ∈ {±ei}, and v(y) = u(x) + s·(y − x),

0 = ω(x, x + e)
(
2v(x) − v(x + e) − v(x − e)

)

≤ ω(x, x + e)(2u(x) − u(x + e) − u(x − e)) ,

and hence,

0 ≤ ω(x, x + e)(2u(x) − u(x + e) − u(x − e))

≤
d∑

i=1

ω(x, x + ei)(2u(x) − u(x + ei) − u(x − ei) = −Lωu(x) ≤ g(x) .

Hence,

(
u(x) − u(x − e)

)
−
(
u(x + e) − u(x)

)
≤ g(x)

ω(x, x + e)
≤ g(x)

ε
.

Because s ∈ Iu(x), it holds that

u(x + e) − u(x) ≤ s · e ≤ u(x) − u(x − e)

and hence

u(x) − u(x − e) − g(x)
ε

≤ s · e ≤ u(x) − u(x − e), ∀s ∈ Iu(x) . (3.3.16)

Using (3.3.15) in the first inequality and (3.3.16) in the second, we have that

(
2u

diam(E)

)d

≤
∣∣∣∣∣
⋃

x∈E

Iu(x)

∣∣∣∣∣ ≤
∑
x∈E

(
g(x)

ε

)d

1{Iu(x) 
=∅} .

Hence,

u ≤ C0(d, ε)diam(E)|E|1/d

(
1
|E|

∑
x∈E

|g(x)|d1{Iu(x) 
=∅}

) 1
d

,

completing the proof of part (a).
(b) It is enough to consider x0 = 0. We begin with some estimates. For
parts of the proof, it is easier to work with L2 (instead of L∞) balls. Set
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BR = {x ∈ Zd : |x|2 < R}. We first deduce from part (a) that for any p ≤ d
and σ < 1, there exists a constant C1 = C1(p, σ, d) such that

max
x∈BσR

u(x) ≤ C1

(
1

|BR|
∑

x∈BR

|u+(x)|p
) 1

p

. (3.3.17)

Indeed, define η(x) =
(
1 − |x|2

R2

)2d/p

. A Taylor expansion reveals that for some
C2 = C2(p, d), it holds that

|η(x ± ei) − η(x)| <
C2

R
, |η(x + e1) + η(x − e1) − 2η(x)| ≤ C2

R2
. (3.3.18)

Fix κi = κi(x) ∈ [0, 1], i = 1, . . . , d, set ν(x) = η(x)u(x), x ∈ BR, and

L̂ων(x) =
d∑

i=1

ω̂(x, x + ei)(ν(x + ei) + ν(x − ei) − 2ν(x))

where

ω̂(x, x + ei) =

{
ω(x, x + ei)

[
κi

η(x−ei)
+ 1−κi

η(x+ei)

]
, |x|2 ≤ R2 − 4R

ω(x, x + ei), R2 ≥ |x|2 > R2 − 4R
.

Then, a tedious computation reveals that, on the set |x|2 ≤ R2 − 4R,

− L̂ων(x) = −Lωu(x)

− 2
∑

i

κi(ν(x + ei) − ν(x))+(1 − κi)(ν(x) − ν(x − ei))
η(x + ei)η(x − ei)

[η(x + ei) − η(x − ei)]

+
∑

i

u(x)
η(x + ei)η(x − ei)[

2 (η(x + ei) − η(x)) (η(x) − η(x − ei)) − η(x)(η(x + ei) + η(x − ei) − 2η(x)
]

≤ C3(d, p)
[∑

i

|κi(ν(x + ei) − ν(x)) + (1 − κi)(ν(x) − ν(x − ei))|
R

+
u(x)
R2

]

where we used (3.3.9) in the first equality.
If for such x, Iν(x) �= φ, then by the proof in part (a), there exists a vector

q ∈ Iν(x) with |q| ≤ ν(x)
R−|x|∞ , and one may find a κi ∈ [0, 1] such that

κi(ν(x + ei) − ν(x)) + (1 − κi)(ν(x) − ν(x − ei)) = qi .

Thus, on {Iν(x) �= φ} ∩ {x : |x|2 ≤ R2 − 4R}, it holds that −L̂ων(x) ≤
C4(d, p)u(x)

R2 . On the other hand, when |x|2 ≥ R2 − 4R, recalling that u ≥ 0,
it holds that
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−
(
ν(x + ei) + ν(x − ei) − 2ν(x)

)
≤ 2η(x)u(x) ≤ C5(d, p)

u(x)
R2

η(x)
d−p

d

and in conclusion,
−L̂ων(x) ≤ g(x), x ∈ BR

where ∣∣∣g(x)1Iν(x) 
=φ

∣∣∣ ≤ C6(d, p)u(x)
R2

.

Applying part (a) of the lemma, we get (3.3.17).
Next, let σ < τ < 1, and set

uσ = min
x∈BσR

u(x), uτ = min
x∈BτR

u(x) .

We claim that (3.3.17) implies the existence of a constant γ = γ(d, σ, τ, ε)
such that

uτ ≥ γuσ . (3.3.19)

Indeed, set η(x) = (R2 − |x|2)β with β > 2 ∨ 1/σ and w(x) = uσR−2βη(x) −
u(x). Then, w(x) ≤ 0 on BσR ∪ Bc

R, and Lωw = uσR−2βLωη on BR. But,
there is an R1(β) such that on BR\BσR, R > R1,

Lωη(x) ≥
{

0, |x| < R
−C(β, d, ε)R2(β−1), |x| = R

,

implying by part (a) that on BR\BσR, R > R1(β),

w(x) ≤ C(β, d, ε)uσR2R−2β


 1

Rd

∑
|x|=R

R2(β−1)d




1
d

≤ C(β, d, ε)
R1/d

uσ .

Thus,

uτ ≥ uσ

[
(1 − τ2)β − C(β, d, ε)

R1/d

]
.

We conclude that there exists an R0 = R0(σ, τ, d, ε) and γ = γ(d, σ, τ, ε) such
that for all R > R0, (3.3.19) holds. On the other hand, for R < R0 (but
(1− τ)R > 1!), (3.3.19) is trivial by finitely many applications of the equality
Lωu = 0. Thus, (3.3.19) is always satisfied.

A conclusion of (3.3.19) is that if Lωu = 0 on BR, σ < 1, and Γ ⊂ BσR ⊂
BτR ⊂ BR, letting uΓ = minx∈Γ u(x), we have that for some δ = δ(ε, d),

|Γ | ≥ δ|BσR| =⇒ uτ ≥ γuΓ . (3.3.20)

Indeed, define ν = uΓ − u and conclude from (3.3.17) that

max
x∈BσR/2

ν(x) ≤ C1

(
1

|BσR |
∑

x∈BσR

ν+(x)

)
≤ C1(1 − δ) max

x∈BσR

ν(x)
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and hence, taking δ < 1 such that C1(1 − δ) < 1/2,

uΓ − min
x∈BσR/2

u(x) ≤ C1(1 − δ)(uΓ − uσ) ≤ 1
2

(uΓ − uσ) ,

from which one concludes that uΓ ≤ uσ/2. (3.3.20) follows from combining
this and (3.3.19).

We finally use the following covering argument. Fix a cube Q ⊂ Zd. For
t > 0, set

Γt = {x ∈ Q : u(x) > t} .

Note that if Q′ = Q′(z, r) is any cube in Zd, centered at z and of side r,
(3.3.20) implies that

|Γt ∩ Q′| ≥ δ|Q′| ⇒ u(x) ≥ γt, some γ = γ(δ, d, ε) . (3.3.21)

Define, for any A ⊂ Q,

Aδ =
⋃
{r,z}

z∈( 1
2 Z)d

{Q′(z, 3r) ∩ Q : |A ∩ Q′(z, r)| ≥ |Q′(z, r)|} .

Then, cf. [78, Lemma 3] for a proof, either Aδ = Q or |Aδ| ≥ |Γ |/δ. Thus,
if |Γt| ≥ δs|Q|, then iterating (3.3.21) and the above, infx∈Q u(x) ≥ γst.
Choosing s such that δs ≤ |Γt|

|Q| ≤ δs−1, we conclude that infx∈DR u(x) ≥
γt
(

|Γt|
|DR|

)log γ/ log δ

. Hence, with p < log δ/ log γ := p′, and u = minDR u, we
have

1
|DR|

∑
x∈DR

|u(x)|p = p

∫ ∞

u

tp−1

(
1

|DR|
∑

x∈Dr

1u(x)≥t

)
dt

= p

∫ ∞

u

tp−1

( |Γt|
|DR|

)
dt

≤ c(p) up′
∫ ∞

u

tp−1

tp′ dt = c(p, p′)up ,

for some constants c(p), c(p, p′), since p′ + 1 − p > 1. Combining this and
(3.3.17) yields the lemma. ��

Transience and recurrence of balanced walks

The main result in this section is the following:

Theorem 3.3.22 Assume Assumption 3.3.1. Then the RWRE (Xn)n≥0 is
transient if d ≥ 3 and recurrent if d = 2.



Random Walks in Random Environment 279

Proof. We begin with the transience statement. Fix d ≥ 3, K large, and define
ri = Ki, with Bi = {x : |x|∞ ≤ ri}. Set τ0 = 1 and

τi = min{n > τi−1 : Xn ∈ ∂Bi} .

We use the following uniform estimate on exit probabilities, that actually is
stronger than needed: there exists some constant C = C(δ, ε, d) > 0 such that,
if Ω0 = {ω : ω(z, z + ei) = ω(z, z − ei) > ε, i = 1, . . . , d, ∀z ∈ Zd},

sup
ω∈Ω0

P o
ω(|Xn| < L, n = 1, · · · , L2(1+δ)) ≤ Ce−CL2δ

. (3.3.23)

There are many ways to prove (3.3.23), including a coupling argument. We
use here an optimal control trick. Let {Bn}n≥0 denote a sequence of i.i.d.
Bernoulli(1/2) random variables, independent of the environment, of law Q.
Then, Xn can be constructed as follows:

P o
ω,B

(
Xn+1 = Xn + ei|Xn = x, Xn−1, · · ·X0

)
= 2ω(x, ei)12Bn+1−1=±1 .

(As in Section 3.1, Q × P o
ω,B , when restricted to (Zd)N, equals P o

ω .) Set Gn =
σ(B0, B1, · · · , Bn, X0, · · · , Xn, (ωz)z∈Zd). An admissible control α = (αn)n≥0

is a sequence of Gn measurable function taking values in A := [2ε, 1
2 −ε(d−1)].

Then define the Z-valued controlled process (Y α
n ) by Y0 = 0 and

P
(
Y α

n+1 = Y α
n ± 1|Gn, Y α

0 , · · · , Y α
n

)
= αn12Bn+1−1=±1 .

Note that, by taking α̂n = 2ω(Xn, e1), we may construct (Y α̂
n ) and Xn on the

same probability space such that Y α̂
n = Xn, Q × P o

ω,B-a.s. Thus,

sup
ω∈Ω0

P o
ω

(
|Xn|∞ < L, n = 1, . . . , L2(1+δ)

)

≤ sup
ω∈Ω0

sup
α

Q × P o
ω,B

(
|Y α

n | < L, n = 1, · · · , L2(1+δ)
)

. (3.3.24)

Let gn,ω(x) = supα Q × Pω,B(|Y α
i | < L, i = 1, · · · , n|Y0 = x) (it turns out

eventually that gn,ω does not depend on ω!) Then, due to the Markov property,
gn,ω(·) must satisfy the dynamic programming equation

gn,ω(x)={
maxα∈A

(
α
2

(
gn+1,ω(x + 1) + gn−1,ω(x − 1)

)
+(1 − α)gn−1,ω(x)

)
,

0,

|x| < L
|x| ≥ L

and g0,ω(x) = 1|x|<L. Next, we note that gn,ω(·) satisfies

gn,ω(x + 1) + gn,ω(x − 1) − 2gn,ω(x) ≤ 0 . (3.3.25)
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For n = 0 this is immediate, and hence

g1,ω(x) = g0,ω(x) + ε
(
g0,ω(x + 1) + g0,ω(x − 1) − 2g0,ω(x)

)
.

We then have that g1,ω(x) satisfies (3.3.25), and the argument can be iterated.
We further conclude that

gn,ω(x) = gn−1,ω(x)+ε
(
gn−1,ω(x+1)+gn−1,ω(x−1)−2gn−1,ω(x)

)
. (3.3.26)

Thus, gn,ω(x) is nothing but the probability that a simple random walk on Z

with geometric (1 − 2ε) holding times, stays confined in a strip of size L for
L2(1+δ) units of time (note that (3.3.26) possesses a unique solution, which
does not depend on ω ∈ Ω0!). The conclusion (3.3.23) follows from solving
(3.3.26) and combining it with (3.3.24).

From (3.3.23), we conclude that Eo
ω(τi+2) ≤ Cr

2(1+δ)
i+2 , for all i large

enough, all ω ∈ Ω0, where P(Ω0) = 1. Thus,

Cr
2(1+δ)
i+2 ≥ Eo

ω

(
Eo

ω(# visits of Xn at Bi−1 for n ∈ (τi + 1, · · · , τi+2)|Xτi)
)

= Eo
ω


 ∑

y∈Bi−1

E
Xτi
ω (# visits at y before τi+2




≥
∑

y∈Bi−1

Eo
ω

(
E

Xτi
−y

θ−yω (# visits at 0 before τi+1)
)

≥ C
∑

y∈Bi−1

max
z∈Ei

(
Ez

θ−yω(# of visits at 0 before τi+1)
)

where Ei = {x : ri

2 < |x|∞ < 3ri

2 }, and Harnack’s inequality (Lemma 3.3.8)
was used in the last step. Taking P -expectations, we conclude that

Cr
2(1+δ)
i+1 ≥ C

∑
y∈Bi−1

Eo
(
max
z∈Ei

Ez
θ−yω(# of visits at 0 before τi+1)

)

≥ C
∑

y∈Bi−1

Eo
(
E

Xτi

θ−yω(# of visits at 0 before τi+1)
)

= C
∑

y∈Bi−1

Eo
(
E

Xτi
ω (# of visits at 0 before τi+1)

)

= C′(ri−1)dEo
(
E

Xτi
ω (# of visits at 0 before τi+1)

)
,

where the shift invariance of P was used in the next to last equality. Therefore,

Eo(# of visits at 0 between τi + 1 and τi+1) ≤ C′′r2+δ−d
i .

Hence, for d ≥ 3,
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Eo(# of visits at 0) ≤ C′′
∞∑

i=1

r2+δ−d
i < ∞ ,

implying that P -a.s., Eo
ω(# of visits at 0) < ∞, i.e. (Xn) is transient if d ≥ 3.

Turning to d = 2, we recall the following lemma:

Lemma 3.3.27 (Derrienic[20]) Let (Yi) be a stationary and ergodic lattice
valued sequence, and set Sn =

∑n
i=1 Yi. Define

Rn = {# of sites visited up to time n} .

Then,
Rn

n
−→

n→∞ Prob(Si �= 0, i ≥ 1) .

Proof. The sequence Rn is sub-additive and hence, by Kingman’s ergodic sub-
additive theorem, Rn/n →n→∞ a, a.s. and in L1, for some constant a. Noting
that Rn+1 = Rn ◦ θ +1Y1 
∈{∪n+1

i=2 Si}, it holds that (Rn+1 −Rn ◦ θ) →
n→∞ 1A ◦ θ,

where A = {Si �= 0, i ≥ 1). Thus, ERn/n →
n→∞ E1A =: a. ��

Under the measure on the environment Q introduced in this section, the
increments {Xn+1 − Xn} are stationary and ergodic. Letting Rn denote the
range of the RWRE up to time n, we have that

Rn

n
−→n→∞ Q × P o

ω(no return to 0), Q-a.s.

But, due to the CLT (Theorem 3.3.4 and Remark 3.3.5), for any δ > 0,

lim inf
n→∞ P o

ω

(
Rn

n
< δ

)
> 0, Q-a.s.

Hence, for any δ > 0,

P o
ω(no return to 0) < δ, Q-a.s.

and hence also P -a.s. This concludes the recurrence proof. ��
Remark: It is interesting to note that the transience (for d ≥ 3) and recur-
rence (for d = 2) results are false for certain balanced, elliptic environments
in Ω0 (however, the P -probability of these environments is, of course, null). A
simple example that exhibits the failure of recurrence for d = 2 was suggested
by N. Gantert: fix 0.25 < p < 0.5 and q = 0.5 − p. With x = (x1, x2) ∈ Z2,
define

ω(x, e) =




1
4 , x1 = x2, |e| = 1

p,




e = ±e2, |x1| > |x2|
or
e = ±e1, |x1| < |x2|

q,




e = ±e1, |x1| > |x2|
or
e = ±e2, |x1| < |x2|
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Fig. 3.3.2. Transient balanced environment, d = 2

Define

ν(x) =
{

1, x �= 0
4q, x = 0 .

Then, ν(·) is an excessive measure, i.e.

(L∗
ων)(x) :=

∑
e:|e|=1

ω(x − e, e)ν(x − e) ≤ ν(x), x ∈ Z2 .

If {Xn} was recurrent, then every excessive measure needs to equal the
(unique) invariant measure. But, with

ν((1, 0)) = 1 > (νLω)((1, 0)) = 2q + 0.5 .

Thus, ν(·) is not invariant, contradicting the recurrence of the chain.
The intuitive idea behind the example above is that for points far from

the origin, the “radial component” of the walk behaves roughly like a Bessel
process of dimension 2 + δ, some δ > 0, implying the transience. A similar
argument, only more complicated, allows one to construct environments in
d ≥ 3 where the radial component behaves like a Bessel process of dimension
2 − δ, some δ > 0. It is not hard to prove, using Lyapunov functions tech-
niques, that there exists a κ(d) < 1/2d such that if d ≥ 3 and the balanced
environment is such that mine:|e|=1 ω(x, e) > κ(d) then the walk is transient.

Bibliographical notes: The basic CLT under Assumption 3.3.1 is due to Lawler
[47], who transfered to the discrete setting some results of Papanicolau and
Varadhan. An extension to the case of non nearest neighbour walks appears
in [48]. The Harnack principle (Lemma 3.3.8) was provided in [49], and in
greater generality in [46], whose approach we follow, after a suggestion by
Sznitman (see also [69]).

The proof of the transience part in Theorem 3.3.22 was suggested by G.
Lawler in private communication. The proof of the recurrence part is due to
H. Kesten, also in private communication. A recent independent proof appears
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in [8]. Finally, the examples mentioned at the end of the section go back to
Krylov (in the context of diffusions), with this version based on discussions
with Comets and Gantert.

We comment that there are very few results on LLN’s and CLT’s for non
balanced, non ballistic walks. One exception is the result in [9], where renor-
malization techniques are used to prove a (quenched) CLT in symmetric (not-
balanced!) environments with small disorder. Another case, in which some of
the RWRE coordinates perform a simple random walk, is analysed in details
in [4], using cut-times of the random walk instead of the regeneration times
used in Section 3.5.

3.4 Large deviations for nestling walks

In this section, we derive an LDP for a class of nearest neighbour random
walks in random environment, in Zd. For reasons that will become clearer
below, we need to restrict attention to environments which satisfy a condition
on the support of P , which we call, after M. Zerner, “nestling environments”.
For technical reasons, we also need to make an independence assumption (see
however the remark at the end of this section).

Define d(ω) :=
∑

e:|e|=1 ω(0, e)e, and let Pd := P ◦ d−1 denote the law of
d(ω) under P .

Assumption 3.4.1

(C1) P is i.i.d.
(C2) P is elliptic: there exists an ε > 0 such that P (ω(z, z + ei) ≥ ε) =

P (ω(z, z − ei) ≥ ε) = 1, i = 1, · · · , d.
(C3) (Nestling property): 0 ∈ conv (supp(Pd)).

We elaborate below on the nestling assumption. Clearly, balanced walks are
nestling, but one may construct examples, as in d = 1, of nestling environ-
ments with ballistic behaviour.

For any y ∈ Rd, we denote by [y] the point in Zd with 1 > yi − [y]i ≥ 0.
For z ∈ Zd, we let Tz = inf{n ≥ 0 : Xn = z}. As in Section 2.3, the key to
our approach to large deviation results for (Xn) is a large deviation principle
for T[nz], z ∈ Rd, stated next.

Theorem 3.4.2 (a) Assume P is ergodic and elliptic. For any z ∈ Rd, |z|1 =
1, any λ ≤ 0, the following deterministic limit exists P -a.s.

a(λ, z) := lim
n→∞

1
n

log Eo
ω(eλT[nz] 1T[nz]<∞) .

(b) Further assume Assumption 3.4.1, and define

IT,z(s) = sup
λ<0

(λs − a(λ, z)) .
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Then, T[nz]/n satisfies, P -a.s., under P o
ω, a (weak) LDP, with rate function

IT,z(s). That is,

lim
δ→0

lim sup
n→∞

1
n

log P o
ω(T[nz]/n ∈ (s − δ, s + δ))

= lim
δ→0

lim inf
n→∞

1
n

log P o
ω(T[nz]/n ∈ (s − δ, s + δ)) = −IT,z(s), P − a.s.

(3.4.3)

(Note that IT,z(s) = ∞ for s < 1).
With Theorem 3.4.2 at hand, we may state the LDP for Xn/n. Define, for

x ∈ Rd,

I(x) =

{
|x|1IT,x/|x|1(1/|x|1) , |x|1 ≤ 1
∞ , otherwise

.

Obviously, a(λ, z) is defined for any z ∈ Rd \ {0}, and is by definition homo-
geneous in |z|1. An easy computation then reveals that I(x) = supλ<0(λ −
a(λ, x)). We have the

Theorem 3.4.4 Assume Assumption 3.4.1. Then, P -a.s., the random vari-
ables Xn/n satisfy the LDP in Rd with good, convex rate function I(·). That
is,

lim
δ→0

lim sup
n→∞

1
n

log P o
ω

(
Xn

n
∈ Bx(δ)

)
= lim

δ→∞
lim inf
n→∞

1
n

log P o
ω

(
Xn

n
∈ Bx(δ)

)

= −I(x) , P − a.s.

Proof of Theorem 3.4.2

The idea behind the proof is relatively simple, and is related to our proof of
large deviations for d = 1. However, there are certain complications in the
proof of the lower bound, which can be overcome at present only under the
nestling assumption.
a) We begin by defining, for λ ≤ 0,

an,m(λ, z) := log E[mz]
ω

(
eλT[nz] 1T[nz]<∞

)
.

We then have (since the time to reach [nz] is not larger than the time to reach
[nz], when one is forced also to first visit [mz]), that

an,0(λ, z) ≥ am,0(λ, z) + an,m(λ, z) .

Further, we note that due to C2, there exists a constant C(λ, ε) such that
n−1|an,0(λ, z)| ≤ C(λ, ε), for all ω with ω(x, x + e) ≥ ε, all x ∈ Zd and e such
that |e| = 1. Thus, by Kingman’s subadditive ergodic theorem,
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an,0(λ, z)
n

−→
n→∞ a(λ, z) , P -a.s. (3.4.5)

b) By Chebycheff’s inequality, (3.4.5) immediately implies the upper bound
in (3.4.3). Thus, all our effort is now concentrated in proving the lower bound.

Toward this end, note that by Jensen’s inequality, the deterministic func-
tion a(·, z) is convex, and thus differentiable a.e. We denote by D the set of
λ < 0 such that a(·, z) is differentiable at λ. Recall that a point s ∈ R+ is
an exposed point of IT,z(·) if for some λ < 0 (“the exposing plane”) and all
t �= s,

λt − IT,z(t) > λs − IT,z(s) .

It is straightforward to check, see e.g., [19, Lemma 2.3.9(b)] that if y = a′(λ, z)
for some λ ∈ D, then IT,z(y) = λy−a(λ, z), and further y is an exposed point
of IT,z(·), with exposing plane λ.

As we already saw, it is then standard (see, e.g., [19, Theorem 2.3.6(b)])
that the lower bound in (3.4.3) holds for any exposed point. Thus, it only
remains to handle points which are not exposed. Toward this end, define
(using the monotonicity to ensure the existence of the limit!)

s+ := lim
λ→0,λ∈D

a′(λ, z) ≤ ∞ .

Note that, for any s ≥ s+, IT,z(s) = − limλ→0 a(λ, z).
The approach toward the lower bound is different when s ≥ s+ (case a)

and s < s+ (case b): in case a, a strategy which will achieve a lower bound
consists of spending first some time in a “trap” at the neighborhood of the
origin, returning to the origin and then getting to [nz] within time roughly
nsη

−, where sη
− < s+ is an exposed point with |IT,z(s

η
−) − IT,z(s+)| ≤ η. The

nestling assumption is crucial to create the trap. In case b, the achieving strat-
egy consists of finding an intermediate point, progressing faster than needed
toward the intermediate point, and then progressing slower than expected to-
ward [nz]. To control the behavior of the walk starting at intermediate points,
the independence assumption comes in handy.

Turning to case a, the role of the nestling assumption is evident in the
following lemma:

Lemma 3.4.6 Assume Assumption 3.4.1. Then, there exists an Ω0 ⊂ Ω with
P (Ω0) = 1 with the following property: for each δ > 0 and each ω ∈ Ω0, there
exists an R(δ, ω) and an n0 = n0(δ, ω) such that, for any n > n0 even,

P o
ω(|Xm|2 ≤ R(δ, ω), m = 1, · · · , n − 1, Xn = 0) ≥ e−δn .

Proof of Lemma 3.4.6

We begin by constructing a “trap”. As a preliminary, with x ∈ Zd, and ı such
that |xı| ≥ |xj |, j = 1, · · · , d (and hence |x|2 ≤ √

d|xı|) we have, defining
yx = x − sign (xi)ei, that
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Fig. 3.4.1. exposed points and differentiability

|x|2 − |yx|2 =
|xı|2 − (|xı| − 1)2

|x|2 + |yx|2 ≥ 1
2
√

d
.

Fix κ = εδ/32
√

d and F (x) = (1− κ2|x|22)∨ 0. Call a site x ∈ Zd “successful”
if

x ·
d∑

i=1

(
ω(x, x + ei)ei − ω(x, x − ei)ei

)
≤ 1 .

Due to (C3),
P (x is successful) > 0 .

and hence, by the independence assumption (C1),

.)

1 s s ss− + 1

I    (  

ηη

T,z

derivative = s

λ

∋D

λa( , z)

right derivative = s

λ

η

left derivative = s−
η+

1
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P (all sites x ∈ B1/κ(0) are successful) > 0 . (3.4.7)

Fix now ω ∈ Ω such that all sites x ∈ B1/κ(0) are successful. We next claim
that for such ω,

∑
i

ω(x, x ± ei)F (x ± ei) ≥ e−δ/3F (x) . (3.4.8)

Indeed, for |x|2 ≥ 1/κ this is obvious, for 1/κ−ε/4
√

d < |x|2 < 1/κ this follows
from the ellipticity assumption (C2) while for |x|2 < 1/κ−ε/4

√
d this follows

from a Taylor expansion. Thus, eδn/3F (Xn) is, for such ω, a submartingale
under P o

ω , and we have that for all n ≥ 1,

e−δn/3 = e−δn/3Eo
ωF (X0) ≤ e−δn/3Eo

ω

(
eδn/3F (Xn)

)
≤ P o

ω

(
|Xn|2 <

1
κ

)
.

(3.4.9)
Fixing n1 even large enough such that e−δn1/3ε

√
d/κ ≥ e−2δn1/3, we conclude

that for such ω,

P o
ω

(
|Xm|∞ ≤ n1, m = 1, . . . , n1 − 1, Xn1 = 0

)
≥ e−2δn1/3 .

Due to (3.4.7) and (C1), there exists (P -a.s.) an x0 = x0(ω, δ) such that all
sites in B1/κ(x0) are successful. Set m0 = m0(ω, δ) :=

∑d
i=1 |x0(ω, δ)(i)|. Due

to the ellipticity assumption (C2), we have

P o
ω

(
Xm0 = x0(ω, δ)

)
≥ εm0 , P x0

ω (Xm0 = 0) ≥ εm0 .

Next set R(δ, ω) := n1 +2m0 +1. Define K = �(n− 2m0)/n1�. We then have,
using the Markov property, that

P o
ω

(
|Xm|2 ≤ R(δ, ω), m = 1, · · · , n, Xn = 0

)

≥ P o
ω

(
Xm0 = x0(ω, δ)

)
P x0

ω

(
|Xm − x0|∞ ≤ n1, Xn1 = 0

)K

P x0
ω (Xm0 = 0)P o

ω(Xn−Kn1−2m0 = 0)

≥ ε2m0εn1 · e− 2δ
3 Kn1 ≥ e−δn ,

for all n > n0(δ, ε, ω). ��
Equipped with Lemma 3.4.6 we may complete the proof in case a. Indeed,

all we need to prove is that for any δ > 0,

lim inf
n→∞

1
n

log P o
ω

(
T[nz]/n ∈ (s − δ, s + δ)

)
= −IT,z(s+) , P − a.s.

Fix η > 0 and an exposed point sη
− with |IT,z(s

η
−)− IT,z(s+)| ≤ η. Due to the

Markov property, for all n such that |nz|∞ > R(δ, ω),
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P o
ω

(
T[nz]/n ∈ (s − δ, s + δ)

)

≥ P o
ω

(
|Xm|2 ≤ R(δ, ω), m = 1, · · · , �n(s − sη

−)�, X�n(s−sη
−)� = 0

)

P o
ω

(
T[nz]/n ∈ (sη

− − δ′, sη
− + δ′)

)

where δ′ = δ · sη
−/2s, and hence,

lim inf
n→∞

1
n

log P o
ω

(
T[nz]/n ∈ (s − δ, s + δ)

)
≥ −δ − IT,z(s

η
−) .

Since δ is arbitrary and IT,z(s
η
−) →

η→0
IT,z(s+), the proof is concluded for

s ≥ s+.
Turning to case b, recall that our plan is to consider intermediate points.

This requires a slight strengthening of the convergence of a(λ, z). We state
this in the following Lemma, whose proof is deferred.

Lemma 3.4.10 Assume Assumption 3.4.1 and set ν ∈ (0, 1). Then, for z ∈
Rd, |z|1 = 1, and any λ < 0, we have

lim
n→∞

1
n

log E[νnz]
ω

(
eλT[nz] 1T[nz]<∞

)
= (1 − ν)a(λ, z) , P − a.s.

Assuming Lemma 3.4.10, we complete the proof of part b. Note the existence,
for any η ≥ 0, of sη

− < s < sη
+ such that sη

−, sη
+ are exposed, and further

∣∣∣∣IT,z(s) −
(

s − sη
−

sη
+ − sη

−

)
IT,z(s

η
−) −

(
sη
+ − s

sη
+ − sη

−

)
IT,z(s

η
+)
∣∣∣∣ < η . (3.4.11)

Set ν := (sη
+ − s)/(sη

+ − sη
−). By the Markov property,

P o
ω

(
T[nz]/n ∈ (s − δ, s + δ)

)
≥ P o

ω

(
T[νnz]/n ∈ (sη

− − δ′, sη
− + δ′)

)
P [νnz]

ω

(
T[nz]/n ∈ (sη

+ − δ′, sη
+ + δ′)

)

where δ′ = min(ν,1−ν)δ
2 . Due to Lemma 3.4.10, and the fact that sη

+, sη
− are

exposed points of IT,z(·), one concludes that

lim
δ→∞

lim inf
n→∞

1
n

log P o
ω

(
T[nz]/n ∈ (s − δ, s + δ)

)

≥ −
[(

s − sη
−

sη
+ − sη

−

)
IT,z(s

η
−) +

(
sη
+ − s

sη
+ − sη

−

)
IT,z(s

η
+)
]

.

Using (3.4.11), this completes the proof of the theorem. ��
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Proof of Theorem 3.4.4

Fix x and δ as in the statement of the theorem. Then, using the ellipticity
assumption (C2), for any n large enough,

P o
ω

(
Xn

n
∈ Bx(δ)

)
≥ P o

ω

(
T[nx] ∈ n

(
1 − δ

2
, 1 +

δ

2

))
εnδ/2

and the lower bound follows from Theorem 3.4.2.
Turning to the upper bound, note that |nBx(δ) ∩ Zd| ≤ Cδn

d, and that

P o
ω

(
Xn

n
∈ Bx(δ)

)
=

∑
y∈nBx(δ)∩Zd

P o
ω(Xn = y) .

Further, note that P o
ω(Xn = y) ≤ P o

ω(T[y] ≤ n), and that due to the ellipticity
(C2),

sup
y∈nBx(δ)

P o
ω(Xn = y) ≤ ε−n

√
dδ P o

ω

(
T[nx] ≤ n(1 + δ)

)

and hence,

lim
δ→∞

lim sup
n→∞

1
n

log P o
ω

(
Xn

n
∈ Bx(δ)

)

≤ lim
δ→∞

lim sup
n→∞

1
n

log P o
ω

(
T[nx] ≤ n(1 + δ)

)

≤ − inf
0≤η≤1

I(ηx) , P − a.s.

The monotonicity of I(η·) in η, which is induced from that of IT,z(·), completes
the proof. ��
Proof of Lemma 3.4.10

By the ellipticity assumption (C2), 1
n log E

[νnz]
ω

(eλT[nz] 1T[nz]<∞) is uniformly bounded. Further, it possesses the same law
as 1

n log Eo
ω(eλT[n(1−η)z] 1T[n(1−η)z]<∞). Thus,

1
n

log E[νnz]
ω

(
eλT[nz] 1T[nz]<∞

)
P−→

n→∞ (1 − ν)a(λ, z) . (3.4.12)

Our goal is thus to prove that the convergence in (3.4.12) is in fact a.s.
Toward this end, as a first step we truncate appropriately the expectation.

Set
Nx = #{ visits at x before T[nz]} ,

and N = supx∈Zd Nx. We show that, for some δ < 1,

lim sup
n→∞

1
n

log
E

[νnz]
ω (eλT[nz] 1T[nz]<∞)

E
[νnz]
ω (eλT[nz] 1T[nz]<∞ 1N<nδ )

= 0 , P − a.s. (3.4.13)
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Indeed, note first that

E[νnz]
ω

(
eλT[nz] 1T[nz]<∞

)
≤ E[νnz]

ω

(
eλT[nz] 1T[nz]<∞ 1N<nδ

)

+
∑
x∈Zd

E[νnz]
ω

(
eλT[nz] 1T[nz]<∞ 1Nx>nδ

)
.

But, due to the Markov property,

E[νnz]
ω

(
eλT[nz] 1T[nz]<∞ 1Nx>nδ

)

≤
∞∑

k=[nδ ]+1

Eω(eλTx1Tx<T[nz])
kE[νnz]

ω

(
eλT[nz] 1Tx<T[nz]<∞

)

≤ eλnδ

1 − eλ
E[νnz]

ω

(
eλT[nz] 1T[nz]<∞

)
,

and hence,

E[νnz]
ω

(
eλT[nz] 1T[nz]<∞

)
≤

E
[νnz]
ω

(
eλT[nz] 1T[nz]<∞ 1N<nδ

)
1 − ndeλnδ/(1 − eλ)

,

yielding (3.4.13). Further, due to the ellipticity assumption (C2), it holds
that for some constant K = K(λ) large enough,

E[νnz]
ω (eλT[nz] 1T[nz]<Kn

1N<nδ) ≥ E[νnz]
ω (eλT[nz] 1T[nz]<∞ 1N<nδ )/2 .

Thus, it suffices to consider

gδ
ω = log E[νnz]

ω (eλT[nz] 1T[nz]<Kn
1N<nδ ) .

Denote by Pk,δ the set of nearest neighbour paths (γn) on Zd with γ0 = [νnz],
γk = [nz], and N(γ) ≤ nδ. For e ∈ {±ei}d

i=1 =: E, set

Nx,e(γ) = #{ steps from x to x + e of γ before T[nz](γ)} .

Then, with β(x, x + e) = log ω(x, x + e) and DKn = {x ∈ Zd : |x|∞ ≤ Kn},

gδ
ω = log

∑
k≤Kn

eλk
∑

γ∈Pk,δ

∏
x∈DKn

∏
e∈E

eβ(x,x+e)Nx,e(γ) .

We use the following concentration inequality, which is a slight variant of
[77, Theorem 6.6].

Lemma 3.4.14 (Talagrand) Let K ⊂ Rd1 be compact and convex. Let µ be
a law supported on K, and let f : KN → R be convex and of Lipschitz constant
L. Finally, let MN denote the median of f with respect to µ⊗N , i.e. MN is
the smallest number such that
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µ⊗N (f ≤ MN ) ≥ 1
2

, µ(f ≥ MN ) ≥ 1
2

.

Then, there exists a constant C = C(K), independent of f, µ, such that for
all t > 0,

µ⊗N (|f − MN | ≥ t) ≤ C exp(−Ct2/L2) .

To apply Lemma 3.4.14, note that

∣∣∣∣ ∂gδ
ω

∂β(x, x + e)

∣∣∣∣
≤ 1

ε

∑
k≤Kn eλk

∑
γ∈Pk,δ

Nx,e(γ)
∏

x′∈DKn

∏
e∈E eβ(x′,x′+e)Nx′,e(γ)

∑
k≤Kn eλk

∑
γ∈Pk,δ

∏
x′∈DKn

∏
e∈E eβ(x′,x′+e)Nx′,e(γ)

.

(3.4.15)

Thus, using Jensen’s inequality in the first inequality,

∑
x∈DKn

∣∣∣∣ ∂gδ
ω

∂β(x, x + e)

∣∣∣∣
2

≤ 1
ε

∑
x∈DKn∑

k≤Kn eλk
∑

γ∈Pk,δ
Nx,e(γ)2

∏
x′∈DKn

∏
e∈E eβ(x′,x′+e)Nx′,e(γ)

∑
k≤Kn eλk

∑
γ∈Pk,δ

∏
x′∈DKn

∏
e∈E eβ(x′,x′+e)Nx,e(γ)

≤ Kn1+δ

ε
.

It is immediate to see that on the other hand gδ
ω is a convex function of

{β(x, x + e)}. Hence, by Lemma 3.4.14 and the above,

P (|gδ
ω − Egδ

ω| > tn) ≤ C1e
−C1n1−δ

,

where C1 = C1(ε, δ). The Borel-Cantelli lemma then completes the proof of
Lemma 3.4.10. ��
Remarks: 1. In the proof above, the independence assumption (C1) was used
in two places. The first is the construction of traps (Lemma 3.4.6), where
the independence assumption may be replaced by the requirement that P ,
when restricted to finite subsets, be equivalent to a product measure. More
seriously, the product structure was used in the application of Talagrand’s
Lemma 3.4.14. It is plausible that this can be bypassed, e.g. using the tech-
niques in [68].
2. S. R. S. Varadhan has kindly indicated to me a direct argument which
gives the quenched LDP for the position, for ergodic environments, without
passing through hitting times. Fix ε > 0, and define Xε

n to be the RWRE
with geometric holding times of parameter 1/ε. Fix a deterministic v, with
|v|1 < 1, and define

g(m, n) = P 0
θ[mv]ω(Xε

m−n − Xε
0 = [(n − m)v]) .
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Then, g(0, n + m) ≥ g(0, m)g(m, n + m) > 0 for all n, m ≥ 1. Consequently,
by Kingman’s ergodic sub-additive theorem,

1
n

log g(0, n) →n→∞ −Iε(v) , P − a.s.,

for some deterministic Iε(v). From this it follows (see e.g. [19, Theorem 4.1.11])
that Xε

n/n satisfies the (quenched) LDP with convex, good rate function Iε(·).
Finally, it is easy to check that Iε(·) →ε→0 I(·) (even uniformly on compacts)
and that

lim sup
ε→0

lim sup
n→∞

1
n

log P o
ω(|Xn − Xε

n| > δn) = −∞ , P − a.s.,

from which it follows that Xn/n satisfies the quenched LDP with determinis-
tic, convex, good rate function I(·).
3. Returning to the i.i.d. nestling setup, a natural question is whether one may
prove an annealed large deviations principle for the position. A partial answer
is given by the following. Fix a direction � and recall the time D = D(�)
introduced in Section 3.2. Define T �

k = min{n : (Xn − X0) · � ≥ k}. Then, for
any λ ∈ R,

Eo(eλT �
k+m1{D(�)=∞})≥EP

(
Eo

ω

(
eλT �

k1{D(�)>T �
k}
)
E

X
T �

k
ω

(
eλT �

m1{D(�)=∞}
))

≥ Eo(eλT �
k1{D(�)=∞})Eo(eλT �

m1{D(�)=∞}) ,

and hence, by sub-additivity, the following limit exists:

lim
k→∞

1
k

log Eo(eλT �
k1{D(�)=∞}) =: g(�, λ) .

One can check that if the conclusions of Lemma 3.5.11 hold then also, for
−λ > 0 small enough,

lim sup
k→∞

1
k

log Eo(eλT �
k ) = lim

k→∞
1
k

log Eo(eλT �
k 1{D′=∞}) ,

and hence for such λ,

g(�, λ) = lim sup
k→∞

1
k

log Eo(eλT �
k ) .

An interesting open question is to use this argument, in the nestling setup, to
deduce a LDP and to relate the annealed and quenched rate functions.

Bibliographical notes: Large deviations for the position Xn of nestling RWRE
in Zd, d > 1 were first derived in Zerner’s thesis [80]. Zerner uses a martin-
gale differences argument instead of Lemma 3.4.14. With the same technique,
he also derives a more general version of Lemma 3.4.10, under the name
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“uniform shape theorem”. The large deviations for the hitting times T[nz] are
implicit in his approach.

A recent paper of Varadhan [79] develops the quenched large deviations
alluded to in remark 2 above, and a corresponding annealed LDP. He also
obtains information on the zero set of the annealed and quenched rate func-
tions, and in particular proves in a great generality that they coincide. The
techniques are quite different from those presented here.

3.5 Kalikow’s condition

We introduce in this section a condition on the environment, due to Kalikow,
which ensures that the RWRE is “ballistic”. Suppose P is elliptic, and let U
be a strict subset of Zd, with 0 ∈ U , and define on U∪∂U an auxiliary Markov
chain with transition probabilities

P̂U (x, x + e) =




Eo[∑ τUc
n=0 1{Xn=x}ω(x,x+e)]

Eo[∑τUc
n=0 1{Xn=x}]

, x ∈ U, |e| = 1

1 x ∈ ∂U, e = 0
(3.5.1)

where τUc = min{n ≥ 0 : Xn ∈ ∂U} (note that the expectations in (3.5.1)
are finite due the Markov property and ellipticity). The transition kernel P̂U

weights the transitions x �→ x + e according to the occupation time of the
vertex x before exiting U . We denote by ÊU expectations with respect to the
measure P̂U .

The following is a basic consequence of the definition of P̂U (·, ·):
Lemma 3.5.2 (Kalikow) Assume P̂U (τUc < ∞) = 1. Then, P̂U (XτUc =
v) = Po(XτUc = v), v ∈ ∂U . In particular, Po(τUc < ∞) = 1.

Proof of Lemma 3.5.2:

Set gω(x) = Eo
ω

(∑τUc

n=0 1{Xn=x}
)
. Then

P̂U (x, y) =
E(gω(x)ω(x, y))

E(gω(x))
, x ∈ U, y ∈ U ∪ ∂U . (3.5.3)

But, due to the Markov property,

gω(x) = 1{x=0} +
∑
z∈U

ω(z, x)gω(z) ,

and hence, using (3.5.3),
∑
x∈U

(
E(gω(x))

)
P̂U (x, y) + 1{y=0} = E(gω(y)) .

Set π̂n(y) = ÊU

(∑τUc∧n
j=0 1{Xj=y}

)
. Then, π̂0(y) = 1{y=0} and
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π̂n+1(y) = 1{y=0} +
∑
x∈U

P̂U (x, y)π̂n(x) .

Then, for y ∈ U ∪ ∂U ,

E
(
gω(y)

)
− π̂n+1(y) =

∑
x∈U

P̂U (x, y)
(
E(gω(x)) − π̂n(x)

)
.

Since E(gω(y)) − π̂0(y) ≥ 0, it follows by the positivity of P̂U (x, y) that for
y ∈ U ∪ ∂U ,

ÊU

(
τUc∑
n=0

1{Xn=y}

)
= lim

n→∞ π̂n(y) ≤ E(gω(y)) .

Taking y ∈ ∂U yields

P̂U (XτUc = y) ≤ Po(XτUc = y), y ∈ ∂U .

On the other hand,
∑

y∈∂U P̂U (XτUc = y) = 1 because P̂U (τUc < ∞) = 1 by
assumption. Hence

Po(XτUc = y) = P̂U (XτUc = y), ∀y ∈ ∂U . ��
We are now ready to introduce Kalikow’s condition. Fix a hyperplane by

picking a point � ∈ Rd\{0}, |�|1 ≤ 1. Define

ε� := inf
U,x∈U

∑
|e|=1

(� · e)P̂U (x, x + e)

where the infimum is over all connected strict subsets of Zd containing 0. We
say that Kalikow’s condition with respect to � holds if ε� > 0. Note that ε�

acts as a drift in the direction � for the Markov chain P̂U .
A consequence of Lemma 3.5.2 is the following:

Theorem 3.5.4 Assume that P satisfies Assumption 3.1.1. If Kalikow’s con-
dition with respect to � holds, then Po(A�) = 1. If further P is an i.i.d. measure
then v� > 0.

Proof. Fix UL = {z ∈ Zd : |z · �| ≤ L}. Let X̂n,L denote the Markov
chain with X̂0,L = 0 and transition law P̂UL(x, x + e). Set the local drift at
x, d̂(x) =

∑
|e|=1 eP̂UL(x, x + e), and recall that X̂n,L − ∑n−1

i=0 d̂(X̂i,L) is a
martingale, with bounded increments. It follows that for some constant C,

P̂UL

(
sup

0≤n≤N
|X̂n,L −

n−1∑
i=0

d̂(X̂i,L)| > δN

)
≤ Ce−Cδ2N . (3.5.5)

On the other hand,
∑n−1

i=0 d̂(X̂i,L) · � ≥ ε�(n ∧ τUc
L
) while |X̂n,L · �| ≤ L + 1.

We thus conclude from (3.5.5) that
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P̂UL

(
τUc

L
>

L + 1
ε�

+
δ

ε�
N

)
≤ Ce−Cδ2N/ε2

� ,

and hence, for some C1 independent of L, and all L large,

P̂UL

(
|X̂τUc

L
· � − L| > 1

)
≤ C1e

−C1L .

It follows from Lemma 3.5.2 that

Po
(
|XτUc

L
· � − L| > 1

)
≤ C1e

−C1L .

A similar argument shows that Po(D = ∞) > 0: indeed, take now UL,+ =
{z ∈ Zd : 0 ≤ z · � ≤ L}. Arguing as above, one finds that for some C2 > 0
independent of L,

P̂UL,+

(
|X̂τUc

L,+
− L| ≤ 1

)
> C2 ,

implying that
Po

(
|XτUc

L,+
− L| ≤ 1

)
> C2 .

Thus, Po(D = ∞) > 0, and then, by an argument as in the proof of Theorem
3.1.2, Po(A�) > 0. By Theorem 3.1.2, it follows that Po(A� ∪ A−�) = 1. Due
to (3.5.5), it holds that Po(lim supn→∞ Xn · � = ∞) = 1. We thus conclude
that Po(A�) = 1.

To see that if P is i.i.d. then v� > 0, recall the regeneration times {τi}i≥1

introduced in Section 3.2. By Lemma 3.2.5, it suffices to prove that Eo(τ1|D =
∞) < ∞. Let Um,k,− = {z ∈ Zd : |z| < k, z · � < m}, and set Tm,k := TUm,k,−
with Tm = limk→∞ Tm,k = min{n : Xn · � ≥ m}, m ≥ 1. By Kalikow’s
condition,

Eo


Tm,k∑

n=0

1{Xn=x}
∑

e:|e|=1

ω(x, x + e)� · e

 ≥ ε�E

o


Tm,k∑

n=0

1{Xn=x}


 ,

and hence, summing over x ∈ Um,k,− and recalling that Xi+1 −Xi − d(θXiω)
is a martingale difference sequence, one gets

1 + m ≥ Eo(XTm,k
· �) ≥ ε�E

o(Tm,k) ,

and taking k → ∞ one concludes that m + 1 ≥ ε�E
o(Tm). In particular,

Eo(lim inf
m→∞ Tm/m) ≤ lim inf

m→∞ Eo(Tm/m) ≤ 1/ε� . (3.5.6)

Since τi →i→∞ ∞, Po-a.s., one may find a (random) sequence km such that
τkm ≤ Tm < τkm+1. By definition,

� · Xτkm
≤ � · XTm ≤ � · Xτkm+1 ,
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and further,

� · Xτk
/k →k→∞ Eo(� · Xτ1 |{D = ∞}) =

1
Po(D = ∞)

< ∞ , Po − a.s. ,

due to Lemma 3.2.5 and (3.2.7). Thus, km/m →m→∞ Eo(Xτ1 ·�|{D = ∞})−1,
Po-a.s. But, since τkm/km →m→∞ Eo(τ1|{D = ∞}) ∈ [1,∞], Po-a.s., it follows
that

lim inf
m→∞

Tm

m
≥ lim inf

m→∞
τkm

km

km

m
= lim

m→∞
τkm

km

km

m
=

Eo(τ1|{D = ∞})
Eo(Xτ1 · �|{D = ∞})

= Eo(τ1|{D = ∞})Po(D = ∞) .

Since (3.5.6) implies that lim infm→∞ Tm/m < ∞, we conclude that Eo(τ1|{D
= ∞}) < ∞, and hence v� > 0. ��
By noting that if Kalikow’s condition holds for some �0 then it holds for all �
in a neighborhood of �0, one gets immediately the

Corollary 3.5.7 Assume that P satisfies assumption 3.2.1. If Kalikow’s con-
dition with respect to some � holds, then there exists a deterministic v such
that

Xn

n
→n→∞ v , P − a.s.

The following is a sufficient condition for Kalikow’s condition to hold true:

Lemma 3.5.8 Assume P is i.i.d. and elliptic. Then Kalikow’s condition with
respect to � holds if

inf
f∈F

E
( ∑

e:|e|=1 ω(0,e)�·e∑
e:|e|=1 ω(0,e)f(e)

)

E
(

1∑
e:|e|=1 ω(0,e)f(e)

) > 0 , (3.5.9)

where F denotes the collection of nonzero functions on {e : |e| = 1} taking
values in [0, 1].

Proof. Fix U a strict subset of Zd, x ∈ U , and let τx = min{n ≥ 0 : Xn = x}.
Define g(x, y, ω) := Ey

ω(1{τx<τUc}). Note that g(x, y, ω) is independent of ωx.
Next,

∑
|e|=1

(� · e)P̂U (x, x + e)

=
E
(
Eo

ω

(∑τUc

n=0 1{Xn=x}
∑

e:|e|=1 ω(x, x + e)e · �
))

E
(
Eo

ω

(∑τUc

n=0 1{Xn=x}
))

=
E
(
g(x, 0, ω)Ex

ω

(∑τUc

n=0 1{Xn=x}
∑

e:|e|=1 ω(x, x + e)e · �
))

E
(
g(x, 0, ω)Ex

ω

(∑τUc

n=0 1{Xn=x}
)) .
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Under P x
ω , the process Xn is a Markov chain with Geometric(

∑
e:|e|=1 ω(x, x+

e)g(x, x + e, ω)) number of visits at x. The last equality and the Markov
property then imply

∑
|e|=1

(� · e)P̂U (x, x + e)

=
E
(
g(x, 0, ω)

∑
e:|e|=1 ω(x,x+e)e·�∑

e:|e|=1 ω(x,x+e)g(x,x+e,ω)

)

E
(
g(x, 0, ω) 1∑

e:|e|=1 ω(x,x+e)g(x,x+e,ω)

)

=
E
( ∑

e:|e|=1 ω(x,e)�·e∑
e:|e|=1 ω(x,e)g(x,x+e,ω)/g(x,0,ω)

)

E
(

1∑
e:|e|=1 ω(x,e)g(x,x+e,ω)/g(x,0,ω)

)

≥ inf
f∈F

E
( ∑

e:|e|=1 ω(x,e)�·e∑
e:|e|=1 ω(x,e)f(e)

)

E
(

1∑
e:|e|=1 ω(x,e)f(e)

) = inf
f∈F

E
( ∑

e:|e|=1 ω(0,e)�·e∑
e:|e|=1 ω(0,e)f(e)

)

E
(

1∑
e:|e|=1 ω(0,e)f(e)

) > 0 ,

where the first inequality is due to the independence of g(x, x+e, ω)/g(x, 0, ω)
in ωx. ��

An easy corollary is the following

Corollary 3.5.10 Assume P satisfies Assumption 3.2.1. If either
(a) supp(Pd) ⊂ {z ∈ Rd : � · z ≥ 0} but supp(Pd) �⊂ {z ∈ Rd : � · z = 0},
or
(b) E((

∑
e:|e|=1 ω(0, e)e · �)+) > 1

εE((
∑

e:|e|=1 ω(0, e)e · �)−) ,
then Kalikow’s condition with respect to � holds.

In particular, non-nestling walks or walks with drift “either neutral or pointing
to the right” satisfy Kalikow’s condition with respect to an appropriate hy-
perplane �. Further there exist truly nestling walks which do satisfy Kalikow’s
condition.
Remark: It is interesting to note that when P is elliptic and i.i.d. and d = 1,
Kalikow’s condition is equivalent to v �= 0, i.e. to the walk being “ballistic”.
For d > 1, it is not clear yet whether there exist walks with Po(A�) > 0 but
with zero speed. Such walks, if they exist, necessarily cannot satisfy Kalikow’s
condition.

Our next goal is to provide tail estimates on Xτ1 ·� and on τ1. Our emphasis
here is in providing a (relatively) simple proof and not the sharpest possible
result. For the latter we refer to [71]. In this spirit we throughout assume
� = e1.

Lemma 3.5.11 Assume P is i.i.d. and satisfies Kalikow’s condition. Then,
there exists a constant c such that

Eo(exp c Xτ1 · �) < ∞ .
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Proof. Recall the notations of Section 3.2 and write

Eo(exp(c Xτ1 · �)) =
∑
k≥1

Eo
(
exp(c Xτ1 · �)1{K=k}

)

=
∑
k≥1

∑
x∈Zd

ec x·�E
(
Eo

ω

(
1{XSk=x}1{Sk<∞}

)
· P x

ω (D = ∞)
)

= Po(D = ∞)E


∑

k≥1

∑
x∈Zd

ecx·�Eo
ω

(
1{XSk=x}1{Sk<∞}

)

= Po(D = ∞)
∑
k≥1

Eo
(
exp(c XSk

· �)1{Sk<∞}
)

. (3.5.12)

But, using the Markov property,

Eo
(
exp(c XSk

· �) 1{Sk<∞}
)

≤ Eo
(
exp(c XSk−l

· �) 1{Sk−1<∞}
)

Eo
(
exp(c M0 · �) 1{D<∞}

)
.

Hence,

Eo
(
exp(c XSk

· �)1{Sk<∞}
)
≤ Po(D = ∞)

∑
k≥0

(
Eo(exp(c M0 · �)1{D<∞}

)k

.

Note, using � = e1, that

Eo
(
ecM1·�1{D<∞}

)

=
∞∑

k=1

eckEo
(
1{M0·�=k}1{D<∞}

)

=
∞∑

k=1

eck
∑

y∈Zd−1

Eo
(
Eo

ω

(
1{XTk

=(k,y)}E(k,y)
ω (T0 < Tk+1)

)
. (3.5.13)

Using Kalikow’s condition and a computation as in Theorem 3.5.4, one has
that for some c1 > 0, Po

(∑
|y|> 2k

ε�

1{XTk
=(k,y)}

)
≤ e−c1k, while Po(T−k <

T1) ≤ e−c1k. Hence, substituting in (3.5.13), one has

Eo
(
ecM1·�1{D<∞}

)
≤

∞∑
k=1

eck

((
4k

ε�

)d−1

+ 1

)
e−c1k .

Taking c < c1, the lemma follows. ��
A direct consequence of Lemma 3.5.11 is that

lim sup
n→∞

1
n

log Po(Xτ1 · � > vn) ≤ −β(v) (3.5.14)

where β(v) > 0 for v > 0.
With a proof very similar to that of Lemma 3.5.11, we have in fact the
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Lemma 3.5.15 Assume P is i.i.d. and satisfies Kalikow’s condition. Set
X∗ = sup0≤n≤τ1

|Xn|. Then, there exists a constant c′ such that

Eo(exp c′X∗) < ∞ .

We next turn to obtaining tail estimates on τ1. Here, due to the presence
of “traps”, one cannot in general expect exponential decay as in (3.5.14). We
aim at proving the following result.

Theorem 3.5.16 Assume P satisfies Assumption 3.2.1. and Kalikow’s con-
dition. Then, with d ≥ 2, there exists an α > 1 such that for all u large,

Po(τ1 > u) ≤ e−(log u)α

.

In particular, τ1 possesses all moments.

Proof. Recall that we take � = e1 and, for L > 0, set cL = (−L, L) ×(
− 2L

ε�
, 2L

ε�

)d−1

. Note that, with c as in Lemma 3.5.11,

Po(τ1 ≥ u) ≤ Po
(
τ1 ≥ u, Xτ1 · � ≤ L

)
+ Po

(
Xτ1 · � ≥ L

)

≤ e−cL/2 + Po(τL > τcL) + Po(τcL = τL ≥ u)

where

τL = inf{t : Xt · � ≥ L} and
τcL = inf{t : Xt �∈ cL} .

Hence, by Kalikow’s condition,

Po(τ1 ≥ u) ≤ e−cL/2 + Po
(
τcL = τL ≥ u

)
(3.5.17)

for some constant c > 0.
The heart of the proof of Theorem 3.5.16 lies in the following lemma,

whose proof is deferred.

Lemma 3.5.18 There exist a β < 1 and ξ > 1 such that for any c > 0,

lim sup
L→∞

1
Lξ

log P

(
P o

ω(XτUL
· � ≥ L) ≤ e−cLβ

)
< 0 ,

where UL = {z ∈ Zd : |z · �| ≤ L}.
Accepting Lemma 3.5.18, let us complete the proof of Theorem 3.5.16. Toward
this end, set ∆(u) = a logu with a small enough such that ε∆(u) > 1

u1/6 , and
set L = L(u) = (log u)α, with N = L/∆ = 1

a (log u)α−1 and 2 − α = β where
β is as in Lemma 3.5.18. Observe that
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Po(τcL ≥ u) ≤
(

1
2

)(log u)α

+ P o

(
∃ x1 ∈ cL, P x1

ω

(
τcL >

u

(log u)α

)
≥ 1

2

)

=:
(

1
2

)(log u)α

+ P (R) . (3.5.19)

Note that
u

(log u)α
· P x1

ω

(
τcL >

u

(log u)α

)

≤ Ex1
ω (τcL) = Ex1

ω

(τcL∑
i=1

1

)
= Ex

ω

(∑
y∈cL

τcL∑
i=1

1{Xn=y}

)

=
∑
y∈cL

Ex
ω

(
1{τy<τcL

}
)

Ey
ω

(
1{τy>τcL

}
) ≤ |cL| 1

inf
y∈cL

P y
ω

(
1{τy} > τcL

) ,

with τy = inf{t : Xt = y}. Hence,

inf
y∈cL

P y
ω (τy > τcL) ≤ |cL|(log u)α

u inf
x1∈cL

P x1
ω

(
τcL >

u

(log u)α

) .

Hence, on R there exists a y with Py
ω(τy > τcL) ≤ 1

u4/5 , for all u large enough.
Set Ai = {z ∈ Zd : z · � = i∆}. By ellipticity (recall ε∆(u) > 1/u1/6),

it follows that on the event R, there exists an i0 ∈ [−N + 2, N − 1] and an
x ∈ Ai0 such that

P x0
ω

(
τ(i0−1)∆ > τcL

)
≤ 1√

u
(3.5.20)

where τ(i0−1)∆ = inf{t : Xt · � = (i0 − 1)∆}. Set

Xi = − log min
z∈Ai∩cL

P z
ω

(
τ(i−1)∆ > τ(i+1)∆

)
.

Then, the Markov property implies that

P x
ω

(
τ(i−1)∆ > τcL

)
≥ exp


−

N−1∑
j=i

Xj


 ε∆(u)

≥ exp


−

N−1∑
j=i

Xj


 1

u1/6
.

Thus, using (3.5.20)

P (R) ≤ P

(
N−1∑

i=−N+1

Xj ≥ log u

12

)
≤ 2N sup

−N+1≤i≤N−1
P

(
Xi ≥ log u

24N

)
.

(3.5.21)



Random Walks in Random Environment 301

But, using the shift invariance of P and the definition of {Xi},

2N sup
N+1≤i≤N−1

P

(
Xi ≥ log u

24N

)
≤ |cL|P

(
P o

ω(τ−∆ > τ∆) ≤ e−(log u)2−αb
)

for b = a
24 . The theorem follows by an application of Lemma 3.5.18. ��

Proof of Lemma 3.5.18
The interesting aspect in proving the Lemma is the fact that one constructs

lower bounds on P o
ω(XτuL

· � ≥ L) for many configurations. Toward this end,

fix 1 > β > β, γ ∈ (
1
2 , 1

)
, χ = 1−β

1−γ < β < 1 such that d(β − χ) > 1 (for β
close enough to 1, one may always find a γ close to 1 such that this condition
is satisfied, if d ≥ 2). Set next L0 = Lχ, L1 = Lβ , N0 = L1/L0 (for simplicity,
assume that L0, L1, L

γ
0 and N0 are all integer).

Let R be a rotation of Zd such that R̃(�) = R̃(e1) = v
|v| , and define

B1(z) = R̃
(
z + [0, L0]d

)
∩ Zd

B2(z) = R̃
(
z + [−Lγ

0 , L0 + Lγ
0 ]d

)
∩ Zd

and ∂+B2(z) = ∂B2(z) ∩
{

x : x · v
|v| ≥ L0 + Lγ

0

}
.

We say that z ∈ L0Zd is good if supx∈B1(z) P x
ω (XτB2(z) �∈ ∂+B2(z)) ≤ 1

2
and say that it is bad otherwise. The following estimate is a direct consequence
of Kalikow’s condition and Lemma 3.5.15.

Lemma 3.5.22 For γ ∈ (1/2, 1),

lim sup
L0→∞

L1−2γ
0 log P (0 is bad ) < 0 .

Proof of Lemma 3.5.22
Set u = max{u : supx∈B2(0) x·� ≥ u} and set Lu = sup{n ≥ 0 : Xn ·� ≤ u}.

Define π(z) = z − z·v
|v|2 v. Setting Kn = sup{k ≥ 0 : τk < n}, it holds that

n ≤ Lu ⇒ Kn ≤ u. Setting w ∈ Rd with w · v = 0, and |w|1 = 1 one has

Xn · w = XτKn
· w + (Xn − XτKn

) · w
≤ XτKn

· w + X∗ ◦ θτKn
.

Hence,
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Po
(

sup
0≤n≤Lu

Xn · w ≥ uγ
)
≤

∑
0≤k≤u

Po
(
Xτk

· w + X∗ ◦ θτk
> uγ

)

≤
∑

0≤k≤u

Po

((
Xτk

− Xτ1

)
· w >

uγ

3

)
+ u Po

(
Xτ1 · w >

uγ

3

)

+ u Po

(
X∗ >

uγ

3
|D = ∞

)

≤
∑

0≤k≤u

Po

((
Xτk

− Xτ1

)
· w >

uγ

3

)
+

2u

Po(D = ∞)
Po

(
X∗ >

uγ

3

)
.

Note that by Lemma 3.5.15, Po
(
X∗ > uγ

3

) ≤ e−c0uγ

while the random vari-
ables (Xτi+1 −Xτi) ·w are i.i.d., of zero mean and finite exponential moments.
In particular,

Po

(∣∣∣∣ (Xτk
− Xτ1) · w

k

∣∣∣∣ >
uγ

3k

)
≤ e−c0k u2γ

9k2 ≤ e−c0u2γ−1

by moderate deviations (see e.g., [19, Section 3.7]).
Since γ > 2γ − 1, we conclude that

lim sup
u→∞

1
u2γ−1

log Po

(
sup

0≤n≤Lu

Xn · w ≥ uγ

)
< 0

and hence

lim sup
u→∞

1
u2γ−1

log Po

(
sup

0≤n≤Lu

|π(Xn)| ≥ uγ

)
< 0 . (3.5.23)

Fix now x ∈ B1(0). Then, for some c = c(d),

Px
(
XτB2(0) �∈ ∂+B2(0)

)
≤ Po

(
sup

0≤n≤Lcu

π(Xn · w) ≥ uγ

)

+ Po
(
XτVu

· � < 0
)

where Vu =
{

z : −Lγ
0

c ≤ z · � ≤ cLγ
0

}
and the conclusion follows from (3.5.23)

and Kalikow’s condition. ��
Construct now the following subsets of UL:

Set M =
{

z ∈ L0Zd, z = (0, z), z ∈
{
−L1

L0
, · · · , 0, L1

L0

}d−1

L0

}
. For z ∈ M ,

set Row(z) = ∪N+(z)
j=N−(z)B1(z + jL0�) where

N−(z) = min{j : B1(z + jL0�) ∩ {x : x · � ≥ 0} �= ∅} ≥ −c
L

L0

N+(z) = max{j : B1(z + jL0�) ∩ {x : x · � ≥ 0} �= ∅} ≤ c
L

L0
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Fig. 3.5.1.

for some constant c depending on v and uniformly bounded, and set T =
∪

j∈
{
−L1

L0
,··· ,0,··· , L1

L0

}d−1{jL0}.
The idea behind the proof is that if one of the rows {R(z)}z∈M , say R(z0),

contains mostly good blocks, a good strategy for the event (XτuL
· �) ≥ L is

to force the walker started at x to first move to z, then move to the right
successively without leaving ∪z∈Row(z0)B2(z) until exiting from uL. More pre-
cisely, let N(z0) denote the number of bad blocks in ∪z∈Row(z0)B1(z). Then,
for some constants ci, using ellipticity and the definition of good boxes,

P o
ω(XτuL

·� ≥ L) ≥ εL1

(
1
2

ε2(d−1)Lγ
0

)cL/L0

(εL0)N(z0)

= e−c4(L
β+LχN(z0)) .

Hence, for an arbitrary constant c6 and all L large enough (L > g(c6, c) for
some fixed function g(·)),

P
(
P o

ω

(
XτuL

·� ≥ L
)
≤ e−cLβ

)
≤ P

(
{� ∃z0 ∈ M : N(z0) ≤ c6L

β−χ}
)

≤
[
P
(
N(0) ≥ c6L

β−χ
)]( cL1

L0

)(d−1)

using the independence between even rows in Figure 3.5.1. But note that
N(0) =

∑L/2L0
i=1 (Yi + Zi) where {Yi} are i.i.d., {Zi} are i.i.d., {0, 1} valued,

P (Yi = 1) = P (B1(0)) is a bad block (the division to (Yi, Zi) reflects the
division to even and odd blocks, which creates independence). Hence,
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P
(
N(0) ≥ c6L

β−x
)
≤ 2P


L/2L0∑

i=1

Yi ≥ c6

2
Lβ−χ


 .

Since, by Lemma 3.5.22,

log E(eYi) ≤ log
(
1 + e−c7L2γ−1

0

)
≤ e−c7L2γ−1

0 ,

we conclude from the independence of the Yi’s that

P
(
N(0) ≥ c6L

β−χ
)
≤ 2e−

c6
2 Lβ−χ

e
e−c7L

2γ−1
0 · L

2L0

≤ e−c8Lβ−χ

.

Hence,
P
(
P o

ω

(
XτuL

·� ≥ L
)
≤ e−cLβ

)
≤ e−c9L(β−χ)d ≤ e−Lξ

for some ξ > 1, as claimed. ��
Remark The restriction to d ≥ 2 in Theorem 3.5.16 is essential: as we have
seen in the case d = 1, one may have ballistic walks (and hence, in d = 1, sat-
isfying Kalikow’s condition) with moments mr := Eo(τr

1 ) of the regeneration
time τ1 being finite only for small enough r > 1.

We conclude this section by showing that estimates of the form of Theorem
3.5.16 lead immediately to a CLT. The statement is slightly more general
than needed, and does not assume Kalikow’s condition but rather some of its
consequences.

Theorem 3.5.24 Assume Assumption 3.2.1, and further assume that Po(A�)
= 1 and that the regeneration time τ1 satisfies Eo(τ (2+δ)

1 ) < ∞ for some δ > 0.
Then, under the annealed measure Po,

Xn/n →n→∞ v :=
Eo(Xτ2 − Xτ1)

Eo(τ2 − τ2)
�= 0 , Po − a.s., (3.5.25)

and (Xn − nv)/
√

n converges in law to a centered Gaussian vector.

Proof. The LLN (3.5.25) is a consequence of Theorem 3.2.2 and its proof. To
see the CLT, set

ξi = Xτi+1 − Xτi − (τi+1 − τi)v , Sn :=
n∑

i=1

ξi ,

and Ξ = Eo(ξ1ξ
T
1 ). It is not hard to check that Ξ is non-degenerate, simply

because Po(|ξ1| > K) > 0 for each K > 0. Then Sn is under Po a sum of
i.i.d. random variables possessing finite 2 + δ-th moments, and thus S[nt]/

√
n

satisfies the invariance principle, with covariance matrix Ξ. Define
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νn = min

{
j :

j∑
i=1

(τi+1 − τi) > n

}
.

Note that in Po probability, n/νn → Eo(τ2−τ1) < ∞. Hence, by time changing
the invariance principle, see e.g. [2, Theorem 14.4], Sνn/

√
νn converges in Po

probability to a centered Gaussian variable of covariance Ξ. On the other
hand, for any positive η,

Po(|Sνn − (Xn − nv)| > η
√

n) ≤ Po(∃i ≤ n : (τi+1 − τi) > η
√

n/2)
+Po(τ1 > η

√
n/2)

≤ (n + 1)Po(τ1 > η
√

n/2)
Po(D′)

→n→∞ 0 ,

where we used the moment bounds on Eo(τ2 − τ1)2+δ and the fact that
Po(D′) > 0 in the last limit. This yields the conclusion. Further, one ob-
serves that the limiting covariance of Xn/

√
n is Ξ/(Eo(τ2 − τ1)). ��

A direct conclusion of Theorem 3.5.24 is that under Kalikow’s condition,
Xn/

√
n satisfies an annealed CLT.

Bibliographical notes: Lemma 3.5.2, Kalikow’s condition, the fact that it im-
plies Po(A�) = 1, and Lemma 3.5.8 appeared in [38]. The argument for v� > 0
under Kalikow’s condition is due to Sznitman and Zerner [76], who also
observed Corollary 3.5.10. [71] proves that in the i.i.d. environment case,
a(0, z) = 0 if and only if z = tv, some t > 0 . The estimates in Theorem
3.5.16 are a weak form of estimates contained in [71]. Finally, [81] char-
acterizes, under Kalikow’s condition, the speed v as a function of Lyapunov
exponents closely related to the functions a(λ, z).

In a recent series of papers, Sznitman has shown that many of the conclu-
sions of this section remain valid under a weaker condition, Sznitman’s (T)
or (T’) conditions, see [74, 73, 75]

Appendix
Markov chains and electrical networks: a quick reminder

With (V, E) as in Section 1.1, let Ce ≥ 0 be a conductance associated to each
edge e ∈ E. Assume that we can write

ωv(w) =
Cvw∑

w∈Nv
Cvw

:=
Cvw

Cv
.

To each such graph we can associate an electrical network: edges are replaced
by conductors with conductance Cvw. The relation between the electrical net-
work and the random walk on the graph is described in a variety of texts,
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see e.g. [25] for an accessible summary or [57] for a crash course. This rela-
tion is based on the uniqueness of harmonic functions on the network, and is
best described as follows: fix two vertices v, w ∈ V , and apply a unit voltage
between v and w. Let V (z) denote the resulting voltage at vertex z. Then,

P z
ω({Xn} hits v before hitting w) = V (z) .

Recall that for any two vertices v, w, the effective conductance Ceff(v ↔ w)
is defined by applying a unit voltage between v and w and measuring the
outflow of current at v. In formula, this is equivalent to

Ceff(v ↔ w) =
∑

v′∈Nv

[1 − V (v′)]Cvv′ =
∑

w′∈Nw

V (w′)Cww′ .

For any integer r, the effective conductance Cv,r between v and the horocycle
of distance r from v is the effective conductance between v and the vertex r′ in
a modified graph where all vertices in the horocycle have been identified. We
set then Cv,∞ := limr→∞ Cv,r. The effective conductance obeys the following
rule:
Combination rule: Edges in parallel can be combined by summing their con-
ductances. Futher, the effective conductance between vertices v, w is not af-
fected if, at any vertex w′ �∈ {v, w} with Nw′ = {v′, z′}, one removes the edges
(v′, w′) and (z′, w′) and replaces the conductance Cv′,z′ by

Cv′,z′ = Cv′,z′ +
(

1
Cv′,w′

+
1

Cz′,w′

)−1

.

(This formula applies even if an edge Cv′.w′ is not present, by taking Cv′,z′ =
0.)

v′ Cv′,w′ w′ Cw′,z′ z′ v′ z′

Cv′,z′ Cv′,z′

Exercise A.1 Prove formulae (2.1.3) and (2.1.4) .

Markov chains of the type discussed here possess an easy criterion for
recurrence: a vertex v is recurrent if and only if the effective conductance
Cv,∞ between v and ∞ is 0. A sufficient condition for recurrence is given by
means of the Nash-Williams criterion (see [57, Corollary 9.2]). Recall that
an edge-cutset Π separating v from ∞ is a set of edges such that any path
starting at v which includes vertices of arbitrarily large distance from v must
include some edge in Π .
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Lemma A.2 (Nash-Williams) If Πn are disjoint edge-cutsets which sepa-
rate v from ∞, then

Cv,∞ ≤

∑

n

( ∑
e∈Πn

Ce

)−1



−1

.

As an application of the Nash-Williams criterion, we prove that a product
of independent Sinai’s walks is recurrent. Recall that a Sinai walk (in dimen-
sion 1) is a RWRE satisfying Assumption 2.5.1. For simplicity, we concentrate
here on Sinai’s walk without holding times and define a product of Sinai’s walk
in dimension d as the RWRE on Zd constructed as follows: for each v ∈ Zd,
set Nv = ×d

i=1(vi − 1, vi + 1) and let Ω = ×d
i=1(M1(Nv))Z. For z ∈ Zd, we set

ω+
i,z = ωi(zi, zi+1), ω−

i,z = ωi(zi, zi−1) and ρi(z) = ω−
i,z/ω+

i,z. We equip Ω with
a product of measures P = ×d

i=1Pi, such that each Pi is a product measure
which also satisfies Assumption 2.5.1. For a fixed ω ∈ Ω, define the RWRE
in environment ω as the Markov chain (of law P o

ω) such that P o
ω(X0 = 0) = 1

and, for v ∈ {−1, 1}d, P o
ω(Xn+1 = x + v|Xn = x) =

∏d
i=1 ωi(xi, xi + vi).

Define

C(x, v) =
d∏

i=1




 −1∏

ji=xi

ρi(ji)




xi−1∏

ji=0

ρi(ji)−1


(

ρi(xi)−1
)(vi+1)/2


 ,

where by definition a product over an empty set of indices equals 1. Then,
the resistor network with conductances C(x, v) is a model for the product of
Sinai’s RWRE. Define

Bn
i (t) = − 1√

n

�nt�∑
j=0

log ρi(j) · (sign t) .

Then,

C(x, v) ≤ ε−d
d∏

i=1

e
√

nBn
i (xi/n) .

Taking as cutsets Πn the set of edges (x, x+ v) with |x|∞ = n, vi ∈ −1, 1 and
|x + v|∞ = n + 1, we thus conclude that

( ∑
e∈Πn

Ce

)
≤ ε−d

d∑
i=1

(e
√

nBn
i (1) + e

√
nBn

i (−1))

d∏
j=1,j 
=i

(
n∑

k=−n

e
√

nBn
j (k/n)

)
=: Dn .

Since Pi are product measures, we have by Kolmogorov’s 0-1 law that
P (lim infn→∞ Dn = 0) ∈ {0, 1}. On the other hand, for all n large enough,
we have by the CLT that
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P (Dn < e−n1/4
) ≥ P (Bn

i (1) ≤ −1, Bn
i (−1)

≤ −1, sup
−1≤t≤1

Bn
i ≤ 1/2d, i = 1, . . . , d) ≥ c ,

for some constant c > 0 independent of n. Thus, by Fatou’s lemma,
P (lim infn→∞ Dn = 0) > 0, and hence = 1 by the above mentioned 0-1 law.
We conclude from Nash’s criterion (Lemma A.2) that C0,∞ = 0, establishing
the recurrence as claimed.

Exercise A.3 Extend the above considerations to Sinai’s walk with holding
times and non product measures Pi.

Bibliographical notes: The classical reference for the link between electrical
networks and Markov chain is the lovely book [25]. The application to the
proof of recurrence of products of Sinai’s walks was prompted by a question of
N. Gantert and Z. Shi.
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