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Foreword

Bertrand Russell once wrote, “Mathematics possesses not only truth but
supreme beauty, a beauty cold and austere, like that of sculpture, sublimely
pure and capable of a stern perfection, such as only the greatest art can
show.”

Can this be the same Russell who, together with Alfred Whitehead,
authored the monumental Principia Mathematica, which can by no means
be regarded as a work of art, much less as sublimely beautiful? So what
are we to believe?

Let me begin by saying that I agree completely with Russell’s statement,
which I first read some years ago. However, I had independently arrived
at the same conviction decades earlier when, as a 10- or 12-year-old,
I first learned of the existence of the Platonic solids (these are perfectly
symmetric three-dimensional figures, called polyhedra, where all faces,
edges, and angles are the same—there are five such). I had been reading
a book on recreational mathematics, which contained not only pictures of
the five Platonic solids, but patterns that made possible the easy construc-
tion of these polyhedra. These pictures made a profound impression on
me; I could not rest until I had constructed cardboard models of all five.
This was my introduction to mathematics. The Platonic solids are, in fact,
sublimely beautiful (as Russell would say) and, at the same time, the sym-
metries they embody have important implications for mathematics with
consequences for both geometry and algebra. In a very real sense, then,
they may be regarded as providing a connecting link between geometry
and algebra. Although I cannot possibly claim to have understood the full
significance of this relationship some 7 decades ago, I believe it fair to
say that this initial encounter inspired my subsequent 70-year love affair
with mathematics.

ix



x Foreword

Our next meeting is shrouded in the mists of time, but I recall with cer-
tainty that it was concerned with curves. I was so fascinated by the shape
and mathematical description of a simple curve (cardioid or cissoid per-
haps) that I had stumbled across in my reading that again I could not
rest until I had explored in depth as many curves as I could find in the
encyclopedia during a 2-month summer break. I was perhaps 13 or 14 at
the time. I found their shapes, infinite variety, and geometric properties to
be indescribably beautiful.

At the beginning of this never-to-be-forgotten summer, I could not pos-
sibly have understood what was meant by the equation of a curve that
invariably appeared at the very beginning of almost every article. How-
ever, one cannot spend 4 or 5 hours a day over a 2-month period without
finally gaining an understanding of the relationship between a curve and
its equation, between geometry and algebra, a relationship itself of pro-
found beauty. In this way, too, I learned analytic geometry, painlessly
and effortlessly, in fact, with pleasure, as each curve revealed its hidden
treasures—all beautiful, many profound. Is it any wonder, then, that this
was a summer I shall never forget?

Now, the cycloid is only one of an infinite variety of curves, some planar,
others twisted, having a myriad of characteristic properties aptly described
by Russell as “sublimely beautiful” and capable of a stern perfection. The
examples given here clearly show that the great book of mathematics lies
ever open before our eyes and the true philosophy is written in it (to
paraphrase Galileo); the reader is invited to open and enjoy it. Is it any
wonder that I have never closed it?

I would like to tell you about one of these beautiful curves, but it is
more appropriate that the discussion be relegated to a unit of this won-
derful book. So if you wish to see the sort of thing that turned me on to
mathematics in my youth, see Unit 8.13.

Why do I relate these episodes now? You are about to embark on a lovely
book that was carefully crafted to turn you, the reader, and ultimately your
students, on to mathematics. It is impossible to determine what an individ-
ual will find attractive. For me, it was symmetrically shaped solid figures
and curves; for you, it may be something entirely different. Yet, with the
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wide variety of topics and themes in this book, there will be something for
everyone and hopefully much for all. Dr. Alfred S. Posamentier and I have
worked on several writing projects together, and I am well acquainted with
his eagerness to demonstrate mathematics’ beauty to the uninitiated. He
does this with an admirable sense of enthusiasm. This is more than evident
in this book, beginning with the selection of topics, which are fascinat-
ing in their own right, and taken through with his clear and comfortable
presentation. He has made every effort to avoid allowing a possibly unfa-
miliar term or concept to slip by without defining it.

You have, therefore, in this book all the material that can evoke the beauty
of mathematics presented in an accessible style—the primary goal of this
book. It is the wish of every mathematician that more of society would
share these beautiful morsels of mathematics with us. In my case, I took
this early love for mathematics to the science research laboratories, where
it provided me with insights that many scientists didn’t have. This intrinsic
love for mathematical structures allowed me to solve problems that stifled
the chemical community for decades. I was surprisingly honored to be
rewarded for my work by receiving the Nobel Prize for Chemistry in
1985. I later learned that I was the first mathematician to win the Nobel
Prize. All this, as a result of capturing an early love for the beauty of
mathematics. Perhaps this book will open new vistas for your students,
where mathematics will expose its unique beauty to them. You may be
pleasantly surprised in what ways this book might present new ideas or
opportunities for them. Even you will benefit from having a much more
motivated class of students to take through the beauties and usefulness of
mathematics.

Herbert A. Hauptman, Ph.D.
Nobel Laureate 1985

CEO and President
Hauptman-Woodward Medical Research Institute

Buffalo, New York



Preface

This book was inspired by the extraordinary response to an Op-Ed article
I wrote for The New York Times.∗ In that article, I called for the need
to convince people of the beauty of mathematics and not necessarily its
usefulness, as is most often the case when trying to motivate youngsters
to the subject. I used the year number, 2,002,∗∗ to motivate the reader
by mentioning that it is a palindrome and then proceeded to show some
entertaining aspects of a palindromic number. I could have taken it even
further by having the reader take products of the number 2,002, for that,
too, reveals some beautiful relationships (or quirks) of our number system.
For example, look at some selected products of 2,002:

2,002 � 4 = 8,008
2,002 � 37 = 74,074
2,002 � 98 = 196,196
2,002 � 123 = 246,246
2,002 � 444 = 888,888
2,002 � 555 = 1,111,110

Following the publication of the article, I received more than 500 letters
and e-mail messages supporting this view and asking for ways and mate-
rials to have people see and appreciate the beauty of mathematics. I hope
to be able to respond to the vast outcry for ways to demonstrate the beauty
of mathematics with this book. Teachers are the best ambassadors to the
beautiful realm of mathematics. Therefore, it is my desire to merely open
the door to this aspect of mathematics with this book. Remember, this is
only the door opener. Once you begin to see the many possibilities for
enticing our youth toward a love for this magnificent and time-tested sub-
ject, you will begin to build an arsenal of books with many more ideas to
use when appropriate.

∗ January 2, 2002.
∗∗ Incidentally, 2,002 is the product of a nice list of prime numbers: 2, 7, 11, and 13.

xii
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This brings me to another thought. Not only is it obvious that the topic
and level must be appropriate for the intended audience, but the teacher’s
enthusiasm for the topic and the manner in which it is presented are
equally important. In most cases, the units will be sufficient for your
students. However, there will be some students who will require a more
in-depth treatment of a topic. To facilitate this, references for further infor-
mation on many of the units are provided (usually as footnotes).

When I meet someone socially and they discover that my field of interest
is mathematics, I am usually confronted with the proud exclamation: “Oh,
I was always terrible in math!” For no other subject in the curriculum
would an adult be so proud of failure. Having been weak in mathematics
is a badge of honor. Why is this so? Are people embarrassed to admit
competence in this area? And why are so many people really weak in
mathematics? What can be done to change this trend? Were anyone to
have the definitive answer to this question, he or she would be the nation’s
education superstar. We can only conjecture where the problem lies and
then from that perspective, hope to repair it. It is my strong belief that
the root of the problem lies in the inherent unpopularity of mathematics.
But why is it so unpopular? Those who use mathematics are fine with it,
but those who do not generally find it an area of study that may have
caused them hardship. We must finally demonstrate the inherent beauty of
mathematics, so that those students who do not have a daily need for it can
be led to appreciate it for its beauty and not only for its usefulness. This,
then, is the objective of this book: to provide sufficient evidence of the
beauty of mathematics through many examples in a variety of its branches.
To make these examples attractive and effective, they were selected on the
basis of the ease with which they can be understood at first reading and
their inherent unusualness.

Where are the societal shortcomings that lead us to such an overwhelming
“fear” of mathematics, resulting in a general avoidance of the subject?
From earliest times, we are told that mathematics is important to almost
any endeavor we choose to pursue. When a young child is encouraged to
do well in school in mathematics, it is usually accompanied with, “You’ll
need mathematics if you want to be a _______________.” For the young
child, this is a useless justification since his career goals are not yet of
any concern to him. Thus, this is an empty statement. Sometimes a child
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is told to do better in mathematics or else_________________.” This,
too, does not have a lasting effect on the child, who does just enough
to avoid punishment. He will give mathematics attention only to avoid
further difficulty from his parents. Now with the material in this book, we
can attack the problem of enticing youngsters to love mathematics.

To compound this lack of popularity of mathematics among the populace,
the child who may not be doing as well in mathematics as in other subject
areas is consoled by his parents by being told that they, too, were not
too good in mathematics in their school days. This negative role model
can have a most deleterious effect on a youngster’s motivation toward
mathematics. It is, therefore, your responsibility to counterbalance these
mathematics slurs that seem to come from all directions. Again, with the
material in this book, you can demonstrate the beauty, not just tell the
kids this mathematics stuff is great.∗ Show them!

For school administrators, performance in mathematics will typically be
the bellwether for their schools’ success or weakness. When their schools
perform well either in comparison to normed data or in comparison to
neighboring school districts, then they breathe a sigh of relief. On the other
hand, when their schools do not perform well, there is immediate pressure
to fix the situation. More often than not, these schools place the blame on
the teachers. Usually, a “quick-fix” in-service program is initiated for the
math teachers in the schools. Unless the in-service program is carefully
tailored to the particular teachers, little can be expected in the way of
improved student performance. Very often, a school or district will blame
the curriculum (or textbook) and then alter it in the hope of bringing
about immediate change. This can be dangerous, since a sudden change
in curriculum can leave the teachers ill prepared for this new material and
thereby cause further difficulty. When an in-service program purports to
have the “magic formula” to improve teacher performance, one ought to
be a bit suspicious. Making teachers more effective requires a considerable
amount of effort spread over a long time. Then it is an extraordinarily
difficult task for a number of reasons. First, one must clearly determine
where the weaknesses lie. Is it a general weakness in content? Are the
pedagogical skills lacking? Are the teachers simply lacking motivation? Or
is it a combination of these factors? Whatever the problem, it is generally

∗ For general audiences, see Math Charmers: Tantalizing Tidbits for the Mind (Prometheus, 2003).
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not shared by every math teacher in the school. This, then, implies that
a variety of in-service programs would need to be instituted for meeting
the overall weakness of instruction. This is rarely, if ever, done because of
organizational and financial considerations of providing in-service training
on an individual basis. The problem of making mathematics instruction
more successful by changing the teachers’ performance is clearly not the
entire solution. Teachers need ideas to motivate their students through
content that is appropriate and fun.

International comparative studies constantly place our country’s schools
at a relatively low ranking. Thus, politicians take up the cause of raising
mathematics performance. They wear the hat of “education president,”
“education governor,” or “education mayor” and authorize new funds to
meet educational weaknesses. These funds are usually spent to initiate
professional development in the form of the in-service programs we just
discussed. Their effectiveness is questionable at best for the reasons out-
lined above.

What, then, remains for us to do to improve the mathematics performance
of youngsters in the schools? Society as a whole must embrace mathe-
matics as an area of beauty (and fun) and not merely as a useful subject,
without which further study in many areas would not be possible (although
this latter statement may be true). We must begin with the parents, who
as adults already have their minds made up on their feelings about math-
ematics. Although it is a difficult task to turn on an adult to mathematics
when he or she already is negatively disposed to the subject, this is another
use for this book—provide some parent “workshops” where the beauty of
mathematics is presented in the context of changing their attitude to the
subject matter. The question that still remains is how best to achieve this
goal.

Someone not particularly interested in mathematics, or someone fearful of
the subject, must be presented with illustrations that are extremely easy to
comprehend. He or she needs to be presented with examples that do not
require much explanation, ones that sort of “bounce off the page” in their
attractiveness. It is also helpful if the examples are largely visual. They
can be recreational in nature, but need not necessarily be so. Above all,
they should elicit the “Wow!” response, that feeling that there really is
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something special about the nature of mathematics. This specialness can
manifest itself in a number of ways. It can be a simple problem, where
mathematical reasoning leads to an unexpectedly simple (or elegant) solu-
tion. It may be an illustration of the nature of numbers that leads to a
“gee whiz” reaction. It may be a geometrical relationship that intuitively
seems implausible. Probability also has some such entertaining phenom-
ena that can evoke such responses. Whatever the illustration, the result
must be quickly and efficiently obtained. With enough of the illustrations
presented in this book, you could go out and proselytize to parents so that
they can be supportive in the home with a more positive feeling about
mathematics.

At the point that such a turnaround of feelings occurs, the parents usually
ask, “Why wasn’t I shown these lovely things when I was in school?”
We can’t answer that and we can’t change that. We can, however, make
more adults goodwill ambassadors for mathematics and make teachers
more resourceful so that they bring these mathematics motivators into
their classrooms. Teaching time isn’t lost by bringing some of these moti-
vational devices into the classroom; rather, teaching time is more effective
since the students will be more motivated and therefore more receptive
to new material. So parent and teacher alike should use these mathemat-
ics motivators to change the societal perception of mathematics, both in
the classroom and outside it. Only then will we bring about meaningful
change in mathematics achievement, as well as an appreciation of mathe-
matics’ beauty.



1 The Beauty
in Numbers

We are accustomed to seeing numbers in charts and tables on the sports
or business pages of a newspaper. We use numbers continuously in our
everyday life experiences, either to represent a quantity or to designate
something such as a street, address, or page. We use numbers without
ever taking the time to observe some of their unusual properties. That
is, we don’t stop to smell the flowers as we walk through a garden, or
as it is more commonly said: “take time to smell the roses.” Inspecting
some of these unusual number properties provides us with a much deeper
appreciation for these symbols that we all too often take for granted.
Students too often are taught mathematics as a dry and required course of
instruction. As teachers, we have an obligation to make it interesting. To
show some of the number oddities brings some new “life” to the subject.
It will evoke a “gee whiz” response from students. That’s what you ought
to strive for. Make them curious about the subject. Motivate them to “dig”
further.

There are basically two types of number properties, those that are “quirks”
of the decimal system and those that are true in any number system.
Naturally, the latter gives us better insight into mathematics, while the
former merely points out the arbitrary nature of using a decimal system.
One might ask why we use a decimal system (i.e., base 10) when today we
find the foundation of computers relies on a binary system (i.e., base 2).
The answer is clearly historical, and no doubt emanates from our number
of fingers.

On the surface, the two types of peculiarities do not differ much in
their appearance, just their justification. Since this book is intended for
the average student’s enjoyment (of course, presented appropriately), the

1
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justifications or explanations will be kept simple and adequately intel-
ligible. By the same token, in some cases the explanation might lead
the reader to further research into or inspection of the phenomenon. The
moment you can bring students to the point where they question why
the property exhibited occurred, they’re hooked! That is the goal of this
chapter, to make students want to marvel at the results and question
them. Although the explanations may leave them with some questions,
they will be well on their way to doing some individual explorations.
That is when they really get to appreciate the mathematics involved. It
is during these “private” investigations that genuine learning takes place.
Encourage it!

Above all, they must take note of the beauty of the number relationships.
Without further ado, let’s go to the charming realm of numbers and num-
ber relationships.

1.1 Surprising Number Patterns I

There are times when the charm of mathematics lies in the surprising
nature of its number system. There are not many words needed to demon-
strate this charm. It is obvious from the patterns attained. Look, enjoy, and
spread these amazing properties to your students. Let them appreciate the
patterns and, if possible, try to look for an “explanation” for this. Most
important is that the students can get an appreciation for the beauty in
these number patterns.

1 � 1 = 1
11 � 11 = 121

111 � 111 = 12�321
1�111 � 1�111 = 1�234�321

11�111 � 11�111 = 123�454�321
111�111 � 111�111 = 12�345�654�321

1�111�111 � 1�111�111 = 1�234�567�654�321
11�111�111 � 11�111�111 = 123�456�787�654�321

111�111�111 � 111�111�111 = 12�345�678�987�654�321
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1 � 8 + 1 = 9
12 � 8 + 2 = 98

123 � 8 + 3 = 987
1�234 � 8 + 4 = 9�876

12�345 � 8 + 5 = 98�765
123�456 � 8 + 6 = 987�654

1�234�567 � 8 + 7 = 9�876�543
12�345�678 � 8 + 8 = 98�765�432

123�456�789 � 8 + 9 = 987�654�321

Notice (below) how various products of 76,923 yield numbers in the same
order but with a different starting point. Here the first digit of the product
goes to the end of the number to form the next product. Otherwise, the
order of the digits is intact.

76�923 � 1 = 076�923
76�923 � 10 = 769�230
76�923 � 9 = 692�307
76�923 � 12 = 923�076
76�923 � 3 = 230�769
76�923 � 4 = 307�692

Notice (below) how various products of 76,923 yield different numbers
from those above, yet again, in the same order but with a different starting
point. Again, the first digit of the product goes to the end of the number
to form the next product. Otherwise, the order of the digits is intact.

76�923 � 2 = 153�846
76�923 � 7 = 538�461
76�923 � 5 = 384�615
76�923 � 11 = 846�153
76�923 � 6 = 461�538
76�923 � 8 = 615�384

Another peculiar number is 142,857. When it is multiplied by the numbers
2 through 8, the results are astonishing. Consider the following products
and describe the peculiarity.
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142�857 � 2 = 285�714
142�857 � 3 = 428�571
142�857 � 4 = 571�428
142�857 � 5 = 714�285
142�857 � 6 = 857�142

You can see symmetries in the products but notice also that the same
digits are used in the product as in the first factor. Furthermore, consider
the order of the digits. With the exception of the starting point, they are
in the same sequence.

Now look at the product, 142�857 � 7 = 999�999. Surprised?

It gets even stranger with the product, 142�857 � 8 = 1�142�856. If we
remove the millions digit and add it to the units digit, the original number
is formed.

It would be wise to allow the students to discover the patterns themselves.
You can present a starting point or a hint at how they ought to start and
then let them make the discoveries themselves. This will give them a sense
of “ownership” in the discoveries. These are just a few numbers that yield
strange products.



The Beauty in Numbers 5

1.2 Surprising Number Patterns II

Here are some more charmers of mathematics that depend on the surpris-
ing nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy, and
share these amazing properties with your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this.

12345679 � 9 = 111�111�111
12345679 � 18 = 222�222�222
12345679 � 27 = 333�333�333
12345679 � 36 = 444�444�444
12345679 � 45 = 555�555�555
12345679 � 54 = 666�666�666
12345679 � 63 = 777�777�777
12345679 � 72 = 888�888�888
12345679 � 81 = 999�999�999

In the following pattern chart, notice that the first and last digits of the
products are the digits of the multiples of 9.

987654321 � 9 = 08 888 888 889
987654321 � 18 = 17 777 777 778
987654321 � 27 = 26 666 666 667
987654321 � 36 = 35 555 555 556
987654321 � 45 = 44 444 444 445
987654321 � 54 = 53 333 333 334
987654321 � 63 = 62 222 222 223
987654321 � 72 = 71 111 111 112
987654321 � 81 = 80 000 000 001

It is normal for students to want to find extensions of this surprising
pattern. They might experiment by adding digits to the first multiplicand
or by multiplying by other multiples of 9. In any case, experimentation
ought to be encouraged.
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1.3 Surprising Number Patterns III

Here are some more charmers of mathematics that depend on the surpris-
ing nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy,
and spread these amazing properties to your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this. You
might ask them why multiplying by 9 might give such unusual results.
Once they see that 9 is one less than the base 10, they might get other
ideas to develop multiplication patterns. A clue might be to have them
consider multiplying by 11 (one greater than the base) to search for a
pattern.

0 � 9 + 1 = 1
1 � 9 + 2 = 11

12 � 9 + 3 = 111
123 � 9 + 4 = 1�111

1�234 � 9 + 5 = 11�111
12�345 � 9 + 6 = 111�111

123�456 � 9 + 7 = 1�111�111
1�234�567 � 9 + 8 = 11�111�111

12�345�678 � 9 + 9 = 111�111�111

A similar process yields another interesting pattern. Might this give your
students more impetus to search further?

0 � 9 + 8 = 8
9 � 9 + 7 = 88

98 � 9 + 6 = 888
987 � 9 + 5 = 8�888

9�876 � 9 + 4 = 88�888
98�765 � 9 + 3 = 888�888

987�654 � 9 + 2 = 8�888�888
9�876�543 � 9 + 1 = 88�888�888

98�765�432 � 9 + 0 = 888�888�888
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Now the logical thing to inspect would be the pattern of these strange
products.

1 � 8 = 8
11 � 88 = 968

111 � 888 = 98568
1111 � 8888 = 9874568

11111 � 88888 = 987634568
111111 � 888888 = 98765234568

1111111 � 8888888 = 9876541234568
11111111 � 88888888 = 987654301234568

111111111 � 888888888 = 98765431901234568
1111111111 � 8888888888 = 987654321791234568

How might you describe this pattern? Let students describe it in their own
terms.

1.4 Surprising Number Patterns IV

Here are some more curiosities of mathematics that depend on the sur-
prising nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. Yet in this case,
you will notice that much is dependent on the number 1,001, which is
the product of 7, 11, and 13. Furthermore, when your students multiply
1,001 by a three-digit number the result is nicely symmetric. For example,
987 � 1�001 = 987�987. Let them try a few of these on their own before
proceeding.

Now let us reverse this relationship: Any six-digit number composed of
two repeating sequences of three digits is divisible by 7, 11, and 13. For
example,

643�643
7

= 91�949
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643�643
11

= 58�513

643�643
13

= 49�511

We can also draw another conclusion from this interesting number 1�001.
That is, a number with six repeating digits is always divisible by 3� 7� 11,
and 13. Here is one such example. Have your students verify our conjec-
ture by trying others.

111�111
3

= 37�037

111�111
7

= 15�873

111�111
11

= 10�101

111�111
13

= 8�547

What other relationships can be found that play on the symmetric nature
of 1�001?
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1.5 Surprising Number Patterns V

Here are some more charmers of mathematics that depend on the sur-
prising nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. These depend
on the property described in Unit 1.4 and the unusual property of the
number 9.

999�999 � 1 = 0�999�999
999�999 � 2 = 1�999�998
999�999 � 3 = 2�999�997
999�999 � 4 = 3�999�996
999�999 � 5 = 4�999�995
999�999 � 6 = 5�999�994
999�999 � 7 = 6�999�993
999�999 � 8 = 7�999�992
999�999 � 9 = 8�999�991
999�999 � 10 = 9�999�990

Again, the number 9, which owes some of its unique properties to the fact
that it is 1 less than the base 10, presents some nice peculiarities.

9 � 9 = 81
99 � 99 = 9�801

999 � 999 = 998�001
9�999 � 9�999 = 99�980�001

99�999 � 99�999 = 9�999�800�001
999�999 � 999�999 = 999�998�000�001

9�999�999 � 9�999�999 = 99�999�980�000�001

While playing with the number 9, you might ask your students to find an
eight-digit number in which no digit is repeated and which when multi-
plied by 9 yields a nine-digit number in which no digit is repeated. Here
are a few correct choices:

81�274�365 � 9 = 731�469�285
72�645�831 � 9 = 653�812�479
58�132�764 � 9 = 523�194�876
76�125�483 � 9 = 685�129�347
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1.6 Surprising Number Patterns VI

Here is another nice pattern to further motivate your students to search on
their own for other patterns in mathematics. Again, not many words are
needed to demonstrate the beauty of this pattern, for it is obvious at first
sight.

1 = 1 = 1 � 1 = 12

1 + 2 + 1 = 2 + 2 = 2 � 2 = 22

1 + 2 + 3 + 2 + 1 = 3 + 3 + 3 = 3 � 3 = 32

1 + 2 + 3 + 4 + 3 + 2 + 1 = 4 + 4 + 4 + 4 = 4 � 4 = 42

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 5 + 5 + 5 + 5 + 5 = 5 � 5 = 52

1 + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1 = 6 + 6 + 6 + 6 + 6 + 6 = 6 � 6 = 62

1 + 2 + 3 + 4 + 5 + 6 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 7 � 7 = 72

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 8 � 8 = 82

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 = 9 � 9 = 92

1.7 Amazing Power Relationships

Our number system has many unusual features built into it. Discovering
them can certainly be a rewarding experience. Most students need to be
coaxed to look for these relationships. This is where the teacher comes in.

You might tell them about the famous mathematician Carl Friedrich Gauss
(1777–1855), who had superior arithmetic abilities to see relationships and
patterns that eluded even the brightest minds. He used these uncanny skills
to conjecture and prove many very important mathematical theorems. Give
your students a chance to “discover” relationships. Don’t discourage the
trivial discoveries, for they could lead to more profound results later on.

Show them the following relationship and ask them to describe what is
going on here.

81 = �8 + 1�2 = 92
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Then ask them to see if there is another number for which this relationship
might hold true. Don’t wait too long before showing them the following.

4�913 = �4 + 9 + 1 + 3�3 = 173

By now the students should realize that the sum of the digits of this
number taken to a power equals the number. This is quite astonishing, as
they will see if they try to find other examples.

The list below will provide you with lots of examples of these unusual
numbers. Enjoy yourself!

Number (Sum of the digits)n Number (Sum of the digits)n

81 = 92 34,012,224 = 186

8,303,765,625 = 456

512 = 83 24,794,911,296 = 546

4,913 = 173 68,719,476,736 = 646

5,832 = 183

17,576 = 263 612,220,032 = 187

19,683 = 273 10,460,353,203 = 277

27,512,614,111 = 317

2,401 = 74 52,523,350,144 = 347

234,256 = 224 271,818,611,107 = 437

390,625 = 254 1,174,711,139,837 = 537

614,656 = 284 2,207,984,167,552 = 587

1,679,616 = 364 6,722,988,818,432 = 687

17,210,368 = 285 20,047,612,231,936 = 468

52,521,875 = 355 72,301,961,339,136 = 548

60,466,176 = 365 248,155,780,267,521 = 638

205,962,976 = 465

20�864�448�472�975�628�947�226�005�981�267�194�447�042�584�001= 20720
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1.8 Beautiful Number Relationships

Who said numbers can’t form beautiful relationships! Showing your stu-
dents some of these unique situations might give them the feeling that
there is more to “numbers” than meets the eye. They should be encour-
aged not only to verify these relationships, but also to find others that can
be considered “beautiful.”

Notice the consecutive exponents.

135 = 11 + 32 + 53

175 = 11 + 72 + 53

518 = 51 + 12 + 83

598 = 51 + 92 + 83

Now, taken one place further, we get

1�306 = 11 + 32 + 03 + 64

1�676 = 11 + 62 + 73 + 64

2�427 = 21 + 42 + 23 + 74

The next ones are really amazing. Notice the relationship between the
exponents and the numbers.∗

3�435 = 33 + 44 + 33 + 55

438�579�088 = 44 + 33 + 88 + 55 + 77 + 99 + 00 + 88 + 88

Now it’s up to the class to verify these and discover other beautiful
relationships.

∗ In the second illustration, you will notice that, for convenience and for the sake of this unusual
situation, we have considered 00 as though its value is 0, when, in fact, it is indeterminate.
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1.9 Unusual Number Relationships

There are a number of unusual relationships between certain numbers (as
represented in the decimal system). There is not much explanation for
them. Just enjoy them and see if your students can find others.

We are going to present pairs of numbers where the product and the sum
are reversals of each other. Present them one at a time to your students so
that they can really appreciate them.

The two numbers Their product Their sum
9 9 81 18
3 24 72 27
2 47 94 49
2 497 994 499

Ask students if they can find another pair of numbers that exhibits this
unusual property. (They may have difficulty with this.)

Here’s another strange relationship∗ �

1 = 1!
2 = 2!

145 = 1! + 4! + 5!
40�585 = 4! + 0! + 5! + 8! + 5!

(Remember that 0! = 1.)

That appears to be all of this sort that exists, so don’t bother having
students search for more.

∗ The exclamation mark is called a factorial and represents the product of consecutive integers
from 1 to the number before the factorial symbol. That is, n! = 1 � 2 � 3 � 4 · · · · · �n − 2��n − 1�n.
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1.10 Strange Equalities

There are times when the numbers speak more effectively than any expla-
nation. Here is one such case. Just have your students look at these equal-
ities and see if they can discover others of the same type.

11 + 61 + 81 = 15 = 21 + 41 + 91

12 + 62 + 82 = 101 = 22 + 42 + 92

11 + 51 + 81 + 121 = 26 = 21 + 31 + 101 + 111

12 + 52 + 82 + 122 = 234 = 22 + 32 + 102 + 112

13 + 53 + 83 + 123 = 2�366 = 23 + 33 + 103 + 113

11+51+81+121+181+191=63=21+31+91+131+161+201

12+52+82+122+182+192=919=22+32+92+132+162+202

13+53+83+123+183+193=15�057=23+33+93+133+163+203

14+54+84+124+184+194=260�755=24+34+94+134+164+204

Not much more one can say here. Your students will probably say Wow!
If that is achieved, then you have met your goal.
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1.11 The Amazing Number 1,089

This unit is about a number that has some truly exceptional properties. We
begin by showing how it just happens to “pop up” when least expected.
Begin by having your students, all working independently, select a three-
digit number (where the units and hundreds digits are not the same) and
follow these instructions:

1. Choose any three-digit number (where the units and hundreds digits
are not the same).

We will do it with you here by arbitrarily selecting 825.

2. Reverse the digits of this number you have selected.

We will continue here by reversing the digits of 825 to get 528.

3. Subtract the two numbers (naturally, the larger minus the smaller).

Our calculated difference is 825− 528 = 297.

4. Once again, reverse the digits of this difference.

Reversing the digits of 297 we get the number 792.

5. Now, add your last two numbers.

We then add the last two numbers to get 297 + 792 = 1�089.

Their result should be the same∗ as ours even though their starting num-
bers were different from ours.

They will probably be astonished that regardless of which numbers they
selected at the beginning, they got the same result as we did, 1,089.

How does this happen? Is this a “freak property” of this number? Did we
do something devious in our calculations?

∗ If not, then you made a calculation error. Check it.
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Unlike other numerical curiosities, which depended on a peculiarity of the
decimal system, this illustration of a mathematical oddity depends on the
operations. Before we explore (for the more motivated students) why this
happens, we want you to be able to impress your students with a further
property of this lovely number 1,089.

Let’s look at the first nine multiples of 1,089:

1�089 � 1 = 1�089

1�089 � 2 = 2�178

1�089 � 3 = 3�267

1�089 � 4 = 4�356

1�089 � 5 = 5�445

1�089 � 6 = 6�534

1�089 � 7 = 7�623

1�089 � 8 = 8�712

1�089 � 9 = 9�801

Do you notice a pattern among the products? Look at the first and ninth
products. They are the reverses of one another. The second and the eighth
are also reverses of one another. And so the pattern continues, until the
fifth product is the reverse of itself, known as a palindromic number.∗

Notice, in particular, that 1�089 � 9 = 9�801, which is the reversal of the
original number. The same property holds for 10�989 � 9 = 98�901, and
similarly, 109�989 � 9 = 989�901. Students will be quick to offer exten-
sions to this. Your students should recognize by now that we altered the
original 1,089 by inserting a 9 in the middle of the number, and extended
that by inserting 99 in the middle of the 1,089. It would be nice to con-
clude from this that each of the following numbers have the same property:
1,099,989, 10,999,989, 109,999,989, 1,099,999,989, 10,999,999,989, and
so on.

∗ We have more about palindromic numbers in Unit 1.16.
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As a matter of fact, there is only one other number with four or fewer
digits where a multiple of itself is equal to its reversal, and that is the num-
ber 2,178 (which just happens to be 2 � 1�089), since 2�178 � 4 = 8�712.
Wouldn’t it be nice if we could extend this as we did with the above
example by inserting 9s into the middle of the number to generate other
numbers that have the same property? Your students ought to be encour-
aged to try this independently and try to come to some conclusion. Yes,
it is true that

21�978 � 4 = 87�912

219�978 � 4 = 879�912

2�199�978 � 4 = 8�799�912

21�999�978 � 4 = 87�999�912

219�999�978 � 4 = 879�999�912

2�199�999�978 � 4 = 8�799�999�912
���

As if the number 1,089 didn’t already have enough cute properties, here
is another one that (sort of) extends from the 1,089: We will consider 1
and 89 and notice what happens when you take any number and get the
sum of the squares of the digits and continue the same way. Each time,
you will eventually reach 1 or 89. Take a look at some examples that
follow.

n = 30�

32 + 02 = 9 → 92 = 81 → 82 + 12 = 65 → 62 + 52 = 61 →
62 + 12 = 37 → 32 + 72 = 58 → 52 + 82 = 89 →
82 + 92 = 145 → 12 + 42 + 52 = 42 → 42 + 22 = 20 →
22 + 02 = 4 → 42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

Notice that, when we reached 89 for a second time, it is obvious that we
are in a loop and that we will continuously get back to 89. For each of
the following, we get into a loop that will continuously repeat.
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n = 31� 32 + 12 = 10 → 12 + 02 = 1 → 12 = 1

n = 32� 32 + 22 = 13 → 12 + 32 = 10 → 12 + 02 = 1 → 12 = 1

n = 33� 32 + 32 = 18 → 12 + 82 = 65 → 62 + 52 = 61 →
62 + 12 = 37 → 32 + 72 = 58 → 52 + 82 = 89 →
82 + 92 = 145 → 12 + 42 + 52 = 42 → 42 + 22 = 20 →
22 + 02 = 4 → 42 = 16 → 12 + 62 = 37 →
32 + 72 = 58 → 52 + 82 = 89 → . . .

n = 80� 82 + 02 = 64 → 62 + 42 = 52 → 52 + 22 = 29 →
22 + 92 = 85 → 82 + 52 = 89 → 82 + 92 = 145 →
12 + 42 + 52 = 42 → 42 + 22 = 20 → 22 + 02 = 4 →
42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

n = 81� 82 + 12 = 65 → 62 + 52 = 61 → 62 + 12 = 37 →
32 + 72 = 58 → 52 + 82 = 89 → 82 + 92 = 145 →
12 + 42 + 52 = 42 → 42 + 22 = 20 → 22 + 02 = 4 →
42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

n = 82� 82 + 22 = 68 → 62 + 82 = 100 → 12 + 02 + 02 = 1 →
12 = 1

n = 85� 82 + 52 = 89 → 82 + 92 = 145 → 12 + 42 + 52 = 42 →
42 + 22 = 20 → 22 + 02 = 4 → 42 = 16 →
12 + 62 = 37 → 32 + 72 = 58 → 52 + 82 = 89 → . . .

Now let’s return to the original oddity of the number 1,089. We assumed
that any number we chose would lead us to 1,089. Ask students how they
can be sure. Well, they could try all possible three-digit numbers to see if it
works. That would be tedious and not particularly elegant. An investigation
of this oddity is within reach of a good elementary algebra student. So for
the more ambitious students, who might be curious about this phenomenon,
we will provide an algebraic explanation as to why it “works.”
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We shall represent the arbitrarily selected three-digit number, htu, as
100h + 10t + u, where h represents the hundreds digit, t represents the
tens digit, and u represents the units digit.

Let h > u, which would be the case in either the number you selected or
the reverse of it. In the subtraction, u − h < 0; therefore, take 1 from the
tens place (of the minuend), making the units place 10 + u.

Since the tens digits of the two numbers to be subtracted are equal, and 1
was taken from the tens digit of the minuend, then the value of this digit
is 10�t − 1�. The hundreds digit of the minuend is h − 1, because 1 was
taken away to enable subtraction in the tens place, making the value of
the tens digit 10�t − 1� + 100 = 10�t + 9�.

We can now do the first subtraction:

100�h − 1� + 10�t + 9� + �u + 10�
100u + 10t + h

100�h − u − 1� + 10�9� + u − h + 10

Reversing the digits of this difference gives us

100�u − h + 10� + 10�9� + �h − u − 1�

Now adding these last two expressions gives us

100�9� + 10�18� + �10 − 1� = 1�089

It is important to stress that algebra enables us to inspect the arithmetic
process, regardless of the number.

Before we leave the number 1,089, we should point out to students that
it has one other oddity, namely,

332 = 1�089 = 652 − 562

which is unique among two-digit numbers.

By this time your students must agree that there is a particular beauty in
the number 1,089.
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1.12 The Irrepressible Number 1

This is not a trick. Yet mathematics does provide curiosities that appear
to be magic. This is one that has baffled mathematicians for many years
and still no one knows why it happens. Try it, you’ll like it—or at least
the students will!

Begin by asking your students to follow two rules as they work with any
arbitrarily selected number.

If the number is odd, then multiply by 3 and add 1.
If the number is even, then divide by 2.

Regardless of the number they select, they will always end up with 1,
after continued repetition of the process.

Let’s try it for the arbitrarily selected number 12:
12 is even; therefore, we divide by 2 to get 6.
6 is also even, so we again divide by 2 to get 3.
3 is odd; therefore, we multiply by 3 and add 1 to get 3 � 3 + 1 = 10.
10 is even, so we simply divide by 2 to get 5.
5 is odd, so we multiply by 3 and add 1 to get 16.
16 is even, so we divide by 2 to get 8.
8 is even, so we divide by 2 to get 4.
4 is even, so we divide by 2 to get 2.
2 is even, so we divide by 2 to get 1.

It is believed that, no matter which number we begin with (here we started
with 12), we will eventually get to 1. This is truly remarkable! Try it for
some other numbers to convince yourself that it really does work. Had we
started with 17 as our arbitrarily selected number, we would have required
12 steps to reach 1. Starting with 43 will require 29 steps. You ought to
have your students try this little scheme for any number they choose and
see if they can get the number 1.

Does this really work for all numbers? This is a question that has con-
cerned mathematicians since the 1930s, and to date no answer has been
found, despite monetary rewards having been offered for a proof of this
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conjecture. Most recently (using computers) this problem, known in the
literature as the “3n + 1” problem, has been shown to be true for the
numbers up to 1018 − 1.

For those who have been turned on by this curious number property, we
offer you a schematic that shows the sequence of start numbers 1–20.

Notice that you will always end up with the final loop of 4–2–1. That is,
when you reach 4 you will always get to the 1 and then were you to try to
continue after having arrived at the 1, you will always get back to the 1,
since, by applying the rule, 3 � 1 + 1 = 4 and you continue in the loop:
4–2–1.

We don’t want to discourage inspection of this curiosity, but we want to
warn you not to get frustrated if you cannot prove that it is true in all
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cases, for the best mathematical minds have not been able to do this for
the better part of a century! Explain to your students that not all that we
know or believe to be true in mathematics has been proved. There are still
many “facts” that we must accept without proof, but we do so knowing
that there may be a time when they will either be proved true for all cases,
or someone will find a case for which a statement is not true, even after
we have “accepted it.”

1.13 Perfect Numbers

In mathematics, is there anything more perfect than something else? Most
mathematics teachers constantly tell students that mathematics is perfect.
Well, now we will introduce perfection in numbers—as it is defined by
the mathematics community. According to tradition in number theory, we
have an entity called a “perfect number.” This is defined as a number equal
to the sum of its proper factors (i.e., all the factors except the number
itself). The smallest perfect number is 6, since 6 = 1 + 2 + 3, which is
the sum of all its proper factors.∗

The next larger perfect number is 28, since again 28 = 1+ 2+ 4+ 7+ 14.
And the next one is 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248,
which is the sum of all the proper factors of 496.

The first four perfect numbers were known to the Greeks. They are 6, 28,
496, and 8,128.

It was Euclid who came up with a theorem to generalize how to find a
perfect number. He said that if 2k −1 is a prime number, then 2k−1�2k −1�
is a perfect number. This is to say, whenever we find a value of k that
gives us a prime for 2k − 1, then we can construct a perfect number.

∗ It is also the only number that is the sum and product of the same three numbers: 6 = 1 � 2 � 3 =
3! Also 6 = √

13 + 23 + 33. It is also interesting to notice that 1
1 = 1

2 + 1
3 + 1

6 . By the way, while
on the number 6, it is nice to realize that both 6 and its square, 36, are triangular numbers (see
Unit 1.17).
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We do not have to use all values of k, since if k is a composite number,
then 2k − 1 is also composite.∗

Using Euclid’s method for generating perfect numbers, we get the follow-
ing table:

Values of 2k−1�2k − 1� when 2k − 1
Values of k is a prime number

2 6
3 28
5 496
7 8,128

13 33,550,336
17 8,589,869,056
19 137,438,691,328

On observation, we notice some properties of perfect numbers. They all
seem to end in either a 6 or a 28, and these are preceded by an odd digit.
They also appear to be triangular numbers (see Unit 1.17), which are the
sums of consecutive natural numbers (e.g., 496 = 1 + 2 + 3 + 4 + · · · +
28 + 29 + 30 + 31�.

To take it a step further, every perfect number after 6 is the partial sum of
the series: 13 + 33 + 53 + 73 + 93 + 113 + · · · . For example, 28 = 13 + 33,
and 496 = 13 + 33 + 53 + 73. You might have your students try to find the
partial sums for the next perfect numbers.

We do not know if there are any odd perfect numbers, but none has been
found yet. Using today’s computers, we have much greater facility at
establishing more perfect numbers. Your students might try to find larger
perfect numbers using Euclid’s method.

∗ If k = pq, then 2k − 1 = 2pq − 1 = �2p − 1��2p�q−1� + 2p�q−2� + · · · + 1�. Therefore, 2k − 1 can
only be prime when k is prime, but this does not guarantee that when k is prime, 2k − 1 will also
be prime, as can be seen from the following values of k:

k 2 3 5 7 11 13

2k − 1 3 7 31 127 2,047 8,191

where 2�047 = 23 � 89 is not a prime and so doesn’t qualify.
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1.14 Friendly Numbers

What could possibly make two numbers friendly? Your students’ first
reaction might be numbers that are friendly to them. Remind them that
we are talking here about numbers that are “friendly” to each other. Well,
mathematicians have decided that two numbers are considered friendly
(or as often used in the more sophisticated literature, “amicable”) if the
sum of the proper divisors of one equals the second and the sum of the
proper divisors of the second number equals the first number.

Sounds complicated? Have your students look at the smallest pair of
friendly numbers: 220 and 284.

The proper divisors of 220 are 1� 2� 4� 5� 10� 11� 20� 22� 44� 55, and 110.
Their sum is 1+ 2+ 4+ 5+ 10+ 11+ 20+ 22+ 44+ 55+ 110 = 284.

The proper divisors of 284 are 1, 2, 4, 71, and 142, and their sum is
1 + 2 + 4 + 71 + 142 = 220.

This shows the two numbers are friendly numbers.

The second pair of friendly numbers to be discovered (by Pierre de
Fermat, 1601–1665) was 17,296 and 18,416:

17�296 = 24 � 23 � 47 and 18�416 = 24 � 1�151

The sum of the proper factors of 17,296 is

1 + 2 + 4 + 8 + 16 + 23 + 46 + 47 + 92 + 94 + 184 + 188 + 368

+ 376 + 752 + 1�081 + 2�162 + 4�324 + 8�648 = 18�416

The sum of the proper factors of 18,416 is

1 + 2 + 4 + 8 + 16 + 1�151 + 2�302 + 4�604 + 9�208 = 17�296
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Here are a few more friendly pairs of numbers:

1,184 and 1,210
2,620 and 2,924
5,020 and 5,564
6,232 and 6,368
10,744 and 10,856
9,363,584 and 9,437,056
111,448,537,712 and 118,853,793,424

Your students might want to verify the above pairs’ “friendliness”!

For the expert, the following is one method for finding friendly numbers.
Let

a = 3 � 2n − 1

b = 3 � 2n−1 − 1

c = 32 � 22n−1 − 1

where n is an integer greater than or equal to 2 and a� b, and c are all
prime numbers. Then 2nab and 2nc are friendly numbers.

(Notice that for n ≤ 200, the values of n = 2� 4, and
7 give us a� b, and c to be prime.)
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1.15 Another Friendly Pair of Numbers

We can always look for nice relationships between numbers. Some of
them are truly mind-boggling! Take, for example, the pair of numbers:
6,205 and 3,869.

Guide your students to do the following to verify these fantastic results.

6�205 = 382 + 692 and 3�869 = 622 + 052

Notice the pattern and then follow with these numbers:

5�965 = 772 + 062 and 7�706 = 592 + 652

Beyond the enjoyment of seeing this wonderful pattern, there isn’t much.
However, the manner in which this is presented to the class can make all
the difference!

1.16 Palindromic Numbers

It is sometimes nice to show your class some amusing mathematics that
parallels amusing word games. Think of it not as time wasted, but rather as
time spent to motivate youngsters to like mathematics more. A palindrome
is a word, phrase, or sentence that reads the same in both directions. Here
are a few amusing palindromes:

RADAR
REVIVER
ROTATOR

LEPERS REPEL
MADAM I’M ADAM
STEP NOT ON PETS

NO LEMONS, NO MELON
DENNIS AND EDNA SINNED
ABLE WAS I ERE I SAW ELBA

A MAN, A PLAN, A CANAL, PANAMA
SUMS ARE NOT SET AS A TEST ON ERASMUS
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Palindromic numbers are those that read the same in both directions. This
leads us to consider that dates can be a source for some symmetric inspec-
tion. For example, the year 2002 is a palindrome, as is 1991.∗ There
were several dates in October 2001 that appeared as palindromes when
written in American style: 10/1/01, 10/22/01, and others. In February,
Europeans had the ultimate palindromic moment at 8:02 p.m. on February
20, 2002, since they would have written it as 20.02, 20-02-2002. It is a
bit thought provoking to have students come up with other palindromic
dates. You might ask them to list the palindromic dates closest to one
another.

Looking further, the first four powers of 11 are palindromic numbers:

111 = 11

112 = 121

113 = 1�331

114 = 14�641

A palindromic number can be either a prime number or a composite num-
ber. For example, 151 is a prime palindrome and 171 is a composite
palindrome. Yet with the exception of 11, a palindromic prime must have
an odd number of digits. Have your students try to find some palindromic
primes.

It is interesting to show students how a palindromic number can be gen-
erated from any given number. All they need to do is to continually add
a number to its reversal (i.e., the number written in the reverse order of
digits) until a palindrome is arrived at.

∗ Those of us who have lived through 1991 and 2002 will be the last generation who will have
lived through two palindromic years for over the next 1,000 years (assuming the current level of
longevity).
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For example, a palindrome can be reached with a single addition such as
with the starting number 23:

23 + 32 = 55� a palindrome

Or it might take two steps, such as with the starting number 75:

75 + 57 = 132 132 + 231 = 363� a palindrome

Or it might take three steps, such as with the starting number 86:

86+68=154 154+451=605 605+506=1111� a palindrome

The starting number 97 will require six steps to reach a palindrome, while
the number 98 will require 24 steps. Be cautioned about using the starting
number 196; this one will go far beyond your capabilities to reach a
palindrome.

There are some lovely patterns when dealing with palindromic numbers.
For example, numbers that yield palindromic cubes are palindromic them-
selves.

Students should be encouraged to find more properties of palindromic
numbers∗—they’re fun to play with.

∗ One source for more information on palindromic numbers is A. S. Posamentier and J. Stepelman,
Teaching Secondary School Mathematics: Techniques and Enrichment Units, 6th ed. (Upper Saddle
River, NJ: Prentice Hall/Merrill, 2002), pp. 257–258.
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1.17 Fun with Figurate Numbers

How can numbers have a geometric shape? Well, although the numbers
do not have a geometric shape, some can be represented by dots that can
be put into a regular geometric shape. Let’s take a look at some of these
now.

Students should notice how the dots can be placed to form the shape of a
regular polygon.

From the following arrangements of these figurate numbers, you ought to
be able to discover some of their properties. It ought to be fun trying to
relate these numbers to one another. For example, the nth square number is
equal to the sum of the nth and the (n − 1)th triangular numbers. Another
example is that the nth pentagonal number is equal to the sum of the nth
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square number and the (n− 1)th triangular number. There are lots of other
such relationships to be found (or discovered!).

TRIANGULAR NUMBERS

15 10 63   1 

SQUARE

 

NUMBERS

25 16 9 4  1 

PENTAGONAL NUMBERS

35 22 12 5 1 

HEXAGONAL NUMBERS

45 28 15 6  1 

We can introduce students to oblong numbers, which look like n(n + 1),
or rectangular arrays of dots such as

1 � 2 = 2

2 � 3 = 6

3 � 4 = 12

4 � 5 = 20

5 � 6 = 30
���
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So here are some relationships involving oblong numbers; although exam-
ples are provided, your students should find additional examples to show
these may be true. The more sophisticated can try to prove they are true.

An oblong number is the sum of consecutive even integers:

2 + 4 + 6 + 8 = 20

An oblong number is twice a triangular number:

15 � 2 = 30

The sum of two consecutive squares and the square of the oblong between
them is a square:

9 + 16 + 122 = 169 = 132

The sum of two consecutive oblong numbers and twice the square between
them is a square:

12 + 20 + 2 � 16 = 64 = 82

The sum of an oblong number and the next square is a triangular number:

20 + 25 = 45

The sum of a square number and the next oblong number is a triangular
number:

25 + 30 = 55

The sum of a number and the square of that number is an oblong number:

9 + 81 = 90

Your students should now discover other connections between the various
figurate numbers presented here.
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1.18 The Fabulous Fibonacci Numbers

There aren’t many themes in mathematics that permeate more branches
of mathematics than the Fibonacci numbers. They come to us from
one of the most important books in Western history. This book, Liber
abaci, written in 1202 by Leonardo of Pisa, more popularly known as
Fibonacci (1180–1250),∗ or son of Bonacci, is the first European publi-
cation using the Hindu–Arabic numerals that are the basis for our base
10 number system. This alone would qualify it as a landmark book. How-
ever, it also contains a “harmless” problem about the regeneration of
rabbits. It is the solution of that problem that produces the Fibonacci
numbers.

You might have your students try to set up a chart and solve the problem
independently before progressing further. It may be stated as follows:

How many pairs of rabbits will be produced in a year, beginning
with a single pair, if in every month each pair bears a new pair,
which becomes productive from the second month on?

It is from this problem that the famous Fibonacci sequence emerged. If
we assume that a pair of baby (B) rabbits matures in one month to become

∗ Fibonacci was not a clergyman, as might be expected of early scientists; rather, he was a mer-
chant who traveled extensively throughout the Islamic world and took advantage of reading all
he could of the Arabic mathematical writings. He was the first to introduce the Hindu–Arabic
numerals to the Christian world in his Liber abaci (1202 and revised in 1228), which first cir-
culated widely in manuscript form and was first published in 1857 as Scritti di Leonardo Pisano
(Rome: B. Buoncompagni). The book is a collection of business mathematics, including linear and
quadratic equations, square roots and cube roots, and other new topics, seen from the European
viewpoint. He begins the book with the comment: “These are the nine figures of the Indians 9 8 7 6
5 4 3 2 1. With these nine figures, and with the symbol 0, which in Arabic is called zephirum, any
number can be written, as will be demonstrated below”. From here on, he introduces the decimal
position system for the first time in Europe. (Note: The word “zephirum” evolved from the Arabic
word as-sifr, which comes from the Sanskrit word, used in India as early as the fifth century,
“sunya,” referring to empty.)
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offspring-producing adults (A), then we can set up the following chart:
Number Number
of pairs of pairs
of adults of babies Total

Month Pairs (A) (B) pairs

January 1 A 1 0 1
��

February 1 A B 1 1 2
�� 

March 1 A B A 2 1 3
✚✚

April 1 A B A A B 3 2 5
✪✪ ❊❊ �� ❏❏

◗◗◗
May 1 A B A A B A B A 5 3 8

�� ✁✁ ✪✪ ✄✄ ❈❈ �� ❈❈ ❊❊
June 1 A B A A B A B A A B A A B 8 5 13

July 1 13 8 21

August 1 21 13 34

September 1 34 21 55

October 1 55 34 89

November 1 89 55 144

December 1 144 89 233

January 1 233 144 377

The number of pairs of mature rabbits living each month determines
the Fibonacci sequence (column 1): 1� 1� 2� 3� 5� 8� 13� 21� 34� 55� 89,
144� 233� 377� � � � .

If we let fn be the nth term of the Fibonacci sequence, then

f1 = 1
f2 = 1
f3 = f2 + f1 = 1 + 1 = 2
f4 = f3 + f2 = 2 + 1 = 3
f5 = f4 + f3 = 3 + 2 = 5

���
���

fn = fn−1 + fn−2 for n an integer ≥ 3

That is, each term after the first two terms is the sum of the two preceding
terms.
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Your students may (rightly) ask at this point, What makes this sequence
of numbers so spectacular? For one thing, there is a direct relationship
between (believe it or not) it and the Golden Section! Consider successive
quotients of the Fibonacci numbers:

fn+1

fn

fn+1

fn

1
1

= 1�000000000
55
34

= 1�617647059

2
1

= 2�000000000
89
55

= 1�6182181618

3
2

= 1�500000000
144
89

= 1�617977528

5
3

= 1�666666667
233
144

= 1�618055556

8
5

= 1�600000000
377
233

= 1�618025751

13
8

= 1�625000000
610
377

= 1�618037135

21
13

= 1�615384615
987
610

= 1�618032787

34
21

= 1�619047619

Furthermore, you can refer students to Unit 4.8 to notice that successive
powers of �∗ present us with the Fibonacci numbers.

�2 = � + 1

�3 = 2� + 1

�4 = 3� + 2

�5 = 5� + 3

�6 = 8� + 5

�7 = 13� + 8

∗� represents the Golden Ratio.
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If, by now, the students didn’t see the connection, highlight the coefficients
and the constants. This is quite incredible; two completely (seemingly)
unrelated things suddenly in close relationship to one another. That’s what
makes mathematics so wonderful!

1.19 Getting into an Endless Loop

This unit demonstrates an unusual phenomenon that arises out of the pecu-
liarities of our decimal number system. There isn’t much you can do with
it, other than to marvel at the outcome. This is not something we can prove
true for all cases; yet no numbers have been found for which it won’t
work. That, in itself, suffices to establish that it is apparently always true.
You may wish to have your students use a calculator, unless you want
them to have practice in subtraction. Here is how this procedure goes:

Begin by having them select a four-digit number (except one that has
all digits the same).

Rearrange the digits of the number so that they form the largest number
possible. Then rearrange the digits of the number so that they form
the smallest number possible.

Subtract these two numbers (obviously, the smaller from the larger).
Take this difference and continue the process, over and over and over,
until you notice something disturbing happening. Don’t give up before
something unusual happens.

Eventually, you will arrive at the number 6,174, perhaps after one sub-
traction or after several subtractions. When you do, you will find yourself
in an endless loop.

When you have reached the loop, remind students that they began with
a randomly selected number. Isn’t this quite an astonishing result? Some
students might be motivated to investigate this further. Others will just sit
back in awe. Either way, they have been charmed again with the beauty
of mathematics.

Here is an example of this activity.
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We will (randomly) select the number 3,203.

The largest number formed with these digits is 3,320.
The smallest number formed with these digits is 0,233.
The difference is 3,087.

The largest number formed with these digits is 8,730.
The smallest number formed with these digits is 0,378.
The difference is 8,352.

The largest number formed with these digits is 8,532.
The smallest number formed with these digits is 2,358.
The difference is 6,174.

The largest number formed with these digits is 7,641.
The smallest number formed with these digits is 1,467.
The difference is 6,174.

And so the loop is formed, since you keep getting 6,174 if you continue.

1.20 A Power Loop

Can you imagine that a number is equal to the sum of the cubes of its
digits? Take the time to explain exactly what this means. This should begin
to “set them up” for this most unusual phenomenon. By the way, this is
true for only five numbers. Below are these five most unusual numbers.

1 → 13 = 1

153 → 13 + 53 + 33 = 1 + 125 + 27 = 153

370 → 33 + 73 + 03 = 27 + 343 + 0 = 370

371 → 33 + 73 + 13 = 27 + 343 + 1 = 371

407 → 43 + 03 + 73 = 64 + 0 + 343 = 407

Students should take a moment to appreciate these spectacular results and
take note that these are the only such numbers for which this is true.

Taking sums of the powers of the digits of a number leads to interesting
results. We can extend this procedure to get a lovely (and not to mention,
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surprising) technique you can use to have students familiarize themselves
with powers of numbers and at the same time try to get to a startling
conclusion.

Have them select any number and then find the sum of the cubes of the
digits, just as we did previously. Of course, for any other number than
those above, they will have reached a new number. They should then
repeat this process with each succeeding sum until they get into a “loop.”
A loop can be easily recognized. When they reach a number that they
reached earlier, then they are in a loop. This will become clearer with an
example.

Let’s begin with the number 352 and find the sum of the cubes of the
digits.

The sum of the cubes of the digits of 352 is 33 + 53 + 23 = 27 + 125 +
8 = 160. Now we use this sum, 160, and repeat the process:

The sum of the cubes of the digits of 160 is 13 +63 +03 = 1+216+0 =
217. Again repeat the process with 217:

The sum of the cubes of the digits of 217 is 23 +13 +73 = 8+1+343 =
352. Surprise! This is the same number (352) we started with.

You might think it would have been easier to begin by taking squares.
You are in for a surprise. Let’s try this with the number 123.

Beginning with 123, the sum of the squares of the digits is 12 + 22 + 32 =
1 + 4 + 9 = 14.

1. Now using 14, the sum of the squares of the digits is 12 + 42 =
1 + 16 = 17.

2. Now using 17, the sum of the squares of the digits is 12 + 72 =
1 + 49 = 50.

3. Now using 50, the sum of the squares of the digits is 52 + 02 = 25.
4. Now using 25, the sum of the squares of the digits is 22 + 52 =

4 + 25 = 29.
5. Now using 29, the sum of the squares of the digits is 22 + 92 = 85.
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6. Now using 85, the sum of the squares of the digits is 82 + 52 =
64 + 25 = 89.

7. Now using 89, the sum of the squares of the digits is 82 + 92 =
64 + 81 = 145.

8. Now using 145, the sum of the squares of the digits is 12 + 42 + 52 =
1 + 16 + 25 = 42.

9. Now using 42, the sum of the squares of the digits is 42 + 22 =
16 + 4 = 20.

10. Now using 20, the sum of the squares of the digits is 22 + 02 = 4�
11. Now using 4, the sum of the squares of the digits is 42 = 16�
12. Now using 16, the sum of the squares of the digits is 12 + 62 =

1 + 36 = 37.
13. Now using 37, the sum of the squares of the digits is 32 + 72 =

9 + 49 = 58.
14. Now using 58, the sum of the squares of the digits is 52 + 82 =

25 + 64 = 89.

Notice that the sum, 89, that we just got in step 14 is the same as in step
6, and so a repetition will now begin after step 14. This indicates that we
would continue in a loop.

Students may want to experiment with the sums of the powers of the
digits of any number and see what interesting results it may lead to. They
should be encouraged to look for patterns of loops, and perhaps determine
the extent of a loop based on the nature of the original number.

In any case, this intriguing unit can be fun just as it is presented here or
it can be a source for further investigation by interested students.
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1.21 A Factorial Loop

This charming little unit will show an unusual relationship for certain
numbers. Before beginning, however, review with your class the definition
of n!.

n! = 1 · 2 · 3 · 4 · · · �n − 1� · n

Now that they have an understanding of the factorial concept, have them
find the sum of the factorials of the digits of 145.

1! + 4! + 5! = 1 + 24 + 120 = 145

Surprise! We’re back to 145.

Only for certain numbers, will the sum of the factorials of the digits equal
the number itself.

Have your students try this again with the number 40,585:

4! + 0! + 5! + 8! + 5! = 24 + 1 + 120 + 40�320 + 120 = 40�585

At this point, students will expect this to be true for just about any number.
Well, just let them try another number. Chances are that it will not work.

Now have them try this scheme with the number 871. They will get

8! + 7! + 1! = 40�320 + 5�040 + 1 = 45�361

at which point they will feel that they have failed again.

Not so fast. Have them try this procedure again with 45,361. This will
give them

4! + 5! + 3! + 6! + 1! = 24 + 120 + 6 + 720 + 1 = 871

Isn’t this the very number we started with? Again, we formed a loop.

If they repeat this with the number 872, they will get

8! + 7! + 2! = 40�320 + 5�040 + 2 = 45�362
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Then repeating the process will give them

4! + 5! + 3! + 6! + 2! = 24 + 120 + 6 + 720 + 2 = 872�

Again, we’re in a loop.

Students are usually quick to form generalizations, so they might conclude
that if the scheme of summing factorials of the digits of a number doesn’t
get you back to the original number then try it again and it ought to work.
Of course, you can “stack the deck” by giving them the number 169 to try.
Two cycles do not seem to present a loop. So have them proceed through
one more cycle. And sure enough, the third cycle leads them back to the
original number.

Starting number Sum of the factorials

169 1! + 6! + 9! = 363�601
363,601 3! + 6! + 3! + 6! + 0! + 1!

= 6 + 720 + 6 + 720 + 1 + 1 = 1�454
1,454 1! + 4! + 5! + 4!

= 1 + 24 + 120 + 24 = 169

Be careful about having students draw conclusions. These factorial oddi-
ties are not so pervasive that you should tell students to find others. There
are “within reach” three groups of such loops. We can organize them
according to the number of times you have to repeat the process to reach
the original number. We will call these repetitions “cycles.”

Here is a summary of the way our numbers behave in this factorial loop.

1 cycle 1, 2, 145, 40,585
2 cycle 871, 45,361 and 872, 45,362
3 cycle 169, 363,601, 1,454

The factorial loops shown in this charming little number oddity can be
fun, but students must be cautioned that there are no other such numbers
less than 2,000,000 for which this works. So let them not waste their time.
Just appreciate some little beauties!
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1.22 The Irrationality of
√
2

When we say that
√
2 is irrational, what does that mean? Students should

be encouraged to inspect the word “irrational” to determine its meaning
in English.

Irrational means not rational.
Not rational means it cannot be expressed as a ratio of two integers.
Not expressible as a ratio means it cannot be expressed as a common
fraction.

That is, there is no fraction a
b

= √
2 (where a and b are integers).

If we compute
√
2 with a calculator we will get

√
2 = 1�41421356237309504880168872420969807856967187537694

8073176679737990732478462107038850387534327641572 · · ·
Notice that there is no pattern among the digits, and there is no repetition
of groups of digits. Does this mean that all rational fractions will have a
period of digits∗? Let’s inspect a few common fractions.

1
7

= 0�142857142857142857142857 · · ·

which can be written as 0�142857 (a six-digit period).

Suppose we consider the fraction 1
109 :

1
109

= 0�009174311926605504587155963302752293577981651376

14678899082568807339449541284403669724770642201834

8623 · · ·
Here we have calculated its value to more than 100 places and no period
appears. Does this mean that the fraction is irrational? This would destroy
our previous definition. We can try to calculate the value a bit more

∗ A period of a sequence of digits is a group of repeating digits.
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accurately, that is, say, to another 10 places further:

1
109

= 0�00917431192660550458715596330275229357798165137614

6788990825688073394495412844036697247706422018348623

8532110091

Suddenly it looks as though a pattern may be appearing; the 0091 also
began the period.

We carry out our calculation further to 220 places and notice that, in fact,
a 108-digit period emerges:

1
109

= 0�0091743119266055045871559633027522935779816513761

467889908256880733944954128440366972477064220183486

238532110091743119266055045871559633027522935779816

513761467889908256880733944954128440366972477064220

18348623853211009174

If we carry out the calculation to 332 places, the pattern becomes clearer:

1
109

= 0�009174311926605504587155963302752293577981651376

14678899082568807339449541284403669724770642201834

86238532110091743119266055045871559633027522935779

81651376146788990825688073394495412844036697247706

42201834862385321100917431192660550458715596330275

22935779816513761467889908256880733944954128440366

97247706422018348623853211009174

We might be able to conclude (albeit without proof) that a common frac-
tion results in a decimal equivalent that has a repeating period of digits.
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Some common ones we are already familiar with, such as

1
3

= 0�333333333

1
13

= 0�0769230769230769230769230769230

To this point, we saw that a common fraction will result in a repeating
decimal, sometimes with a very long period (e.g., 1

109 ) and sometimes with
a very short period (e.g., 1

3 ). It would appear, from the rather flimsy evi-
dence so far, that a fraction results in a repeating decimal and an irrational
number does not. Yet this does not prove that an irrational number cannot
be expressed as a fraction.

Here is a cute proof that
√
2 cannot be expressed as a common fraction

and therefore, by definition is irrational.

Suppose a
b is a fraction in lowest terms, which means that a and b

do not have a common factor.
Suppose a

b = √
2. Then a2

b2 = 2, or a2 = 2b2, which implies that a2

and a are divisible by 2; written another way, a = 2r, where r is an
integer.
Then 4r2 = 2b2, or 2r2 = b2.
So we have b2 or b is divisible by 2.
This contradicts the beginning assumption about the fact that a and
b have no common factor, so

√
2 cannot be expressed as a common

fraction.

Understanding this proof may be a bit strenuous for some students, but a
slow and careful step-by-step presentation should make it understandable
for most algebra students.



44 Math Wonders to Inspire Teachers and Students

1.23 Sums of Consecutive Integers

Ask your students: Which numbers can be expressed as the sum of con-
secutive integers? You may have your students try to establish a rule for
this by trying to express the first batch of natural numbers as the sum of
consecutive integers. We will provide some in the following list.

2 = not possible 21 = 1 + 2 + 3 + 4 + 5 + 6
3 = 1 + 2 22 = 4 + 5 + 6 + 7
4 = not possible 23 = 11 + 12
5 = 2 + 3 24 = 7 + 8 + 9
6 = 1 + 2 + 3 25 = 12 + 13
7 = 3 + 4 26 = 5 + 6 + 7 + 8
8 = not possible 27 = 8 + 9 + 10
9 = 4 + 5 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7
10 = 1 + 2 + 3 + 4 29 = 14 + 15
11 = 5 + 6 30 = 4 + 5 + 6 + 7 + 8
12 = 3 + 4 + 5 31 = 15 + 16
13 = 6 + 7 32 = not possible
14 = 2 + 3 + 4 + 5 33 = 10 + 11 + 12
15 = 4 + 5 + 6 34 = 7 + 8 + 9 + 10
16 = not possible 35 = 17 + 18
17 = 8 + 9 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
18 = 5 + 6 + 7 37 = 18 + 19
19 = 9 + 10 38 = 8 + 9 + 10 + 11
20 = 2 + 3 + 4 + 5 + 6 39 = 19 + 20

40 = 6 + 7 + 8 + 9 + 10

These consecutive number sum representations are clearly not unique.
For example, 30 can be expressed in other ways such as 9 + 10 + 11
or 6 + 7 + 8 + 9. An inspection of the table shows that those where a
consecutive number sum was not possible were the powers of 2.

This is an interesting fact. It is not something that one would expect. By
making a list of these consecutive number sums, students will begin to see
patterns. Clearly, the triangular numbers are equal to the sum of the first
n natural numbers. A multiple of 3, say 3n, can always be represented
by the sum: �n − 1� + n + �n + 1�. Students will discover other patterns.
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That’s part of the fun of it (not to mention its instructional value—seeing
number patterns and relationships).

For the more ambitious students, we now will provide a proof of this
(until-now) conjecture. First, we will establish when a number can be
expressed as a sum of at least two consecutive positive integers.

Let us analyze what values can be taken by the sum of (two or more)
consecutive positive integers from a to b (b > a)

S =a+�a+1�+�a+2�+···+�b−1�+b=
(a+b

2

)
�b−a+1�

by applying the formula for the sum of an arithmetic series.∗ Then, dou-
bling both sides, we get:

2S = �a + b��b − a + 1�

Calling �a + b� = x and �b − a + 1� = y, we can note that x and y are
both integers and that since their sum, x + y = 2b + 1, is odd, one of x,
y is odd and the other is even. Note that 2S = xy.

Case 1 S is a power of 2.

Let S = 2n. We have 2�2n� = xy, or 2n+1 = xy. The only way we can
express 2n+1 as a product of an even and an odd number is if the odd
number is 1. If x = a + b = 1, then a and b cannot be positive integers.
If y = b − a + 1 = 1, then we have a = b, which also cannot occur.
Therefore, S cannot be a power of 2.

Case 2 S is not a power of 2.

Let S = m2n, where m is an odd number greater than 1. We have
2�m2n� = xy, or m2n+1 = xy. We will now find positive integers a and b
such that b > a and S = a + �a + 1� + · · · + b.

The two numbers 2n+1 and m are not equal, since one is odd and the
other is even. Therefore, one is bigger than the other. Assign x to be

∗ S = n
2 �a + l�, where n is the number of terms and a is the first term and l is the last term.
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the bigger one and y to be the smaller one. This assignment gives us a
solution for a and b, as x + y = 2b + 1, giving a positive integer value
for b, and x − y = 2a − 1, giving a positive integer value for a. Also,
y = b − a + 1 > 1, so b > a, as required. We have obtained a and b.

Therefore, for any S that is not a power of 2, we can find positive integers
a and b, b > a, such that S = a + �a + 1� + · · · + b.

In conclusion, a number can be expressed as a sum of (at least two)
consecutive positive integers if and only if the number is not a power of 2.



2 Some Arithmetic
Marvels

Students often see arithmetic as a burden. They “have to” memorize the
algorithms and don’t have much chance to enjoy the nature of arithmetic.
There are clever shortcuts around some arithmetic procedures and there are
“tricks” for avoiding cumbersome arithmetic processes. For example, an
almost visual inspection of numbers for divisors is a very useful technique,
while some alternate forms of multiplication are more amusing than actu-
ally useful. In either case, they help to bring the topic of arithmetic to life.

This chapter also includes some recreational units that will strengthen
students’ understanding of the nature of arithmetic processes. For example,
the unit on alphametics provides the student an opportunity to really work
within the place value system, beyond the mere rote algorithms they learn.

The unit on the Rule of 72 is of particular use when dealing with compound
interest and wanting to get some insight into the power of the compounding
effect. The level at which this unit should be presented depends on the level
of the students and their interests. It can be presented as an algorithm or
presented as an investigation to discover why it works as it does.

There are several shortcuts for determining divisibility that can be used in
everyday life, but in any case give students a more solid understanding of
the nature of arithmetic. In each unit there are suggestions for using the
unit. In some cases the enrichment provided is merely for entertainment,
while in others there can be some rather helpful techniques to be learned.

Essentially, this chapter presents a variety of aspects of arithmetic appli-
cations, with the sole purpose of turning the students on to a subject that
has been mostly tedious work for them.

47
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2.1 Multiplying by 11

Here is a very nifty way to multiply by 11. This one always gets a rise
out of students, because it is so simple—and, believe it or not, even easier
than doing it on a calculator!

The rule is very simple: To multiply a two-digit number by 11, just add
the two digits and place the sum between the two digits.∗

For example, suppose you need to multiply 45 by 11. According to the
rule, add 4 and 5 and place it between the 4 and 5 to get 495. It’s as
simple as that.

This can get a bit more difficult, as students will be quick to point out. If
the sum of the two digits is greater than 9, then we place the units digit
between the two digits of the number being multiplied by 11 and “carry”
the tens digit to be added to the hundreds digit of the multiplicand. Let’s
try it with 78 � 11. Since, 7 + 8 = 15, we place the 5 between the 7 and 8
and add the 1 to the 7, to get �7 + 1��5��8� or 858.

Your students will next request that you extend this procedure to numbers
of more than two digits. Let’s go right for a larger number such as 12,345
and multiply it by 11.

Here we begin at the right-side digit and add every pair of digits going to
the left:

1�1 + 2��2 + 3��3 + 4��4 + 5�5 = 135�795

If the sum of two digits is greater than 9, then use the procedure described
before: Place the units digit appropriately and carry the tens digit. We will
do one of these for you here. Multiply 456,789 by 11. We carry out the
process step by step:

4�4 + 5��5 + 6��6 + 7��7 + 8��8 + 9�9

4�4 + 5��5 + 6��6 + 7��7 + 8��17�9

4�4 + 5��5 + 6��6 + 7��7 + 8 + 1��7�9

∗ With appropriate “causes” as explained later.
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4�4 + 5��5 + 6��6 + 7��16��7�9

4�4 + 5��5 + 6��6 + 7 + 1��6��7�9

4�4 + 5��5 + 6��14��6��7�9

4�4 + 5��5 + 6 + 1��4��6��7�9

4�4 + 5��12��4��6��7�9

4�4 + 5 + 1��2��4��6��7�9

4�10��2��4��6��7�9

�4 + 1��0��2��4��6��7�9

�5��0��2��4��6��7�9

5�024�679

Students will be enthusiastic about this procedure, because it is so simple.
They will go home and show it to their family and friends. By show-
ing it and doing it, it will stay with them. Your goal is to maintain this
enthusiasm.

2.2 When Is a Number
Divisible by 11?

Try to convince your students that at the oddest times the issue can come
up of a number being divisible by 11. If you have a calculator at hand, the
problem is easily solved. But that is not always the case. Besides, there
is such a clever “rule” for testing for divisibility by 11 that it is worth
showing students just for its charm.

The rule is quite simple: If the difference of the sums of the alternate
digits is divisible by 11, then the original number is also divisible
by 11. It sounds a bit complicated, but it really isn’t. Have your students
take this rule a piece at a time. The sums of the alternate digits means
you begin at one end of the number taking the first, third, fifth, etc. digits
and add them. Then add the remaining (even placed) digits. Subtract the
two sums and inspect for divisibility by 11.
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It is probably best shown to your students by example. We shall test
768,614 for divisibility by 11. Sums of the alternate digits are

7 + 8 + 1 = 16 and 6 + 6 + 4 = 16

The difference of these two sums, 16 − 16 = 0, which is divisible by 11.∗

Another example might be helpful to firm up your students’ understanding.
To determine if 918,082 is divisible by 11, find the sums of the alternate
digits:

9 + 8 + 8 = 25 and 1 + 0 + 2 = 3

Their difference is 25 − 3 = 22, which is divisible by 11, and so the
number 918,082 is divisible by 11.∗∗ Now just let your students practice
with this rule. They will like it better with more practice, and they will
love showing it to their family and friends.

∗ Remember that 0
11 = 0.

∗∗ For the interested student, here is a brief discussion about why this rule works as it does.

Consider the number ab�cde, whose value can be expressed as

N = 104a + 103b + 102c + 10d + e

= 
11 − 1�4a + 
11 − 1�3b + 
11 − 1�2c + 
11 − 1�d + e

= �11M + 
−1�4�a + �11M + 
−1�3�b + �11M + 
−1�2�c + �11 + 
−1��d + e

= 11M�a + b + c + d� + a − b + c − d + e

which implies that divisibility by 11 of N depends on the divisibility of a − b + c − d + e =

a + c + e� − 
b + d�, the difference of the sums of the alternate digits.

Note: 11M refers to a multiple of 11.
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2.3 When Is a Number Divisible by 3 or 9?

The question of divisibility by 3 or 9 comes up quite often in everyday
situations. Sometimes it’s not too obvious, but you can put the ques-
tion to your students and they will surely come up with examples. These
examples should be ones where it becomes impracticable to take out a
calculator to try the divisibility and where the actual quotient is not too
important, just the question of divisible or not.

The rule, simply stated, is: If the sum of the digits of a number is
divisible by 3 (or 9), then the original number is divisible by 3 (or 9).∗

Perhaps an example would best firm up an understanding of this rule.
Consider the number 296,357. Let’s test it for divisibility by 3 (or 9). The
sum of the digits is 2 + 9 + 6 + 3 + 5 + 7 = 32, which is not divisible by
3 or 9 and, therefore, neither is the original number, 296,357.

Another example: Is the number 457,875 divisible by 3 or 9? The sum of
the digits is 4 + 5 + 7 + 8 + 7 + 5 = 36, which is divisible by 9 (and then,
of course, by 3 as well), so the number 457,875 is divisible by 3 and by 9.

A last example: Is the number 27,987 divisible by 3 or 9? The sum of the
digits is 2 + 7 + 9 + 8 + 7 = 33, which is divisible by 3 but not by 9;
therefore, the number 27,987 is divisible by 3 and not by 9.

Students should be encouraged to practice this rule for a variety of
numbers.

∗ For the interested student, here is a brief discussion about why this rule works as it does.

Consider the number ab�cde, whose value can be expressed as

N = 104a + 103b + 102c + 10d + e

= 
9 + 1�4a + 
9 + 1�3b + 
9 + 1�2c + 
9 + 1�d + e

= �9M + 
1�4�a + �9M + 
1�3�b + �9M + 
1�2�c + �9 + 
1��d + e

= 9M�a + b + c + d� + a + b + c + d + e

which implies that divisibility by 9 of N depends on the divisibility of a + b + c + d + e, the sum
of the digits.

Note: 9M refers to a multiple of 9.
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2.4 Divisibility by Prime Numbers

In the previous unit, we presented a nifty little technique for determining
if a number is divisible by 3 or by 9. Most students can determine when a
number is divisible by 2 or by 5, simply by looking at the last digit (i.e.,
the units digit) of the number. That is, if the last digit is an even number
(such as 2� 4� 6� 8� 0), then the number will be divisible by 2.∗ Similarly
for 5: If the last digit of the number being inspected for divisibility is
either a 0 or 5, then the number itself will be divisible by 5.∗∗ The question
then is: Are there also rules for divisibility by other numbers? What about
prime numbers?

With the proliferation of the calculator, there is no longer a crying need
to be able to detect by which numbers a given number is divisible. You
can simply do the division on a calculator. Yet, for a better appreciation
of mathematics, divisibility rules provide an interesting “window” into the
nature of numbers and their properties. For this reason (among others),
the topic of divisibility still finds a place on the mathematics-learning
spectrum and ought to be presented to students.

Most perplexing has always been to establish rules for divisibility by
prime numbers. This is especially true for the rule for divisibility by 7,
which follows a series of very nifty divisibility rules for the numbers 2
through 6.∗∗∗ Students should be told up front that some of the divisi-
bility rules for prime numbers are almost as cumbersome as the division

∗ Incidentally, if the number formed by the last two digits is divisible by 4, then the number itself
is divisible by 4. Also, if the number formed by the last three digits is divisible by 8, then the
number itself is divisible by 8. You ought to be able to extend this rule to divisibility by higher
powers of 2 as well.
∗∗ If the number formed by the last two digits is divisible by 25, then the number itself is divisible

by 25. This is analogous to the rule for powers of 2. Have you guessed what the relationship here
is between powers of 2 and 5? Yes, they are the factors of 10, the basis of our decimal number
system.
∗∗∗ The rule for divisibility by 6 is simply to apply the rule for divisibility by 2 and by 3—both

must hold true for a number to be divisible by 6.
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algorithm, yet they are fun, and, believe it or not, can come in handy. You
must present this unit as a “fun unit” so that students will not see this as
something that they must memorize. Rather, they should try to understand
the underpinnings of the rules.

Let us consider the rule for divisibility by 7 and then, as we inspect it,
see how this can be generalized for other prime numbers.

Rule for Divisibility by 7 Delete the last digit from the given number
and then subtract twice this deleted digit from the remaining number.
If the result is divisible by 7, the original number is divisible by 7. This
process may be repeated if the result is too large for simple inspection
of divisibility of 7.

Let’s try one as an example of how this rule works. Suppose we want to
test the number 876,547 for divisibility by 7.

Begin with 876,547 and delete its units digit, 7, and subtract its double,
14, from the remaining number: 87�654 − 14 = 87�640. Since we cannot
yet visually inspect the resulting number for divisibility by 7, we continue
the process.

Continue with the resulting number 87�640 and delete its units digit, 0, and
subtract its double, still 0, from the remaining number; we get 8�764−0 =
8�764. Since this did not change the resulting number, 8,764, as we seek
to check for divisibility by 7, we continue the process.

Continue with the resulting number 8,764 and delete its units digit, 4,
and subtract its double, 8, from the remaining number; we get 876 − 8 =
868. Since we still cannot visually inspect the resulting number, 868, for
divisibility by 7, we continue the process.

Continue with the resulting number 868 and delete its units digit, 8, and
subtract its double, 16, from the remaining number; we get 86 − 16 = 70,
which is divisible by 7. Therefore, the number 876,547 is divisible by 7.

Before continuing with our discussion of divisibility of prime numbers,
you ought to have students practice this rule with a few randomly selected
numbers and then check their results with a calculator.
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Now for the beauty of mathematics! Why does this rather strange pro-
cedure work? To see why it works is actually the wonderful thing
about mathematics. It doesn’t do things that for the most part we cannot
justify.∗ This will all make sense to your students after they see what is
happening with this procedure.

To justify the technique of determining divisibility by 7, consider the
various possible terminal digits (that you are “dropping”) and the corre-
sponding subtraction that is actually being done by dropping the last digit.
In the chart below, students will see how dropping the terminal digit and
doubling it to get the units digit of the number being subtracted gives us
in each case a multiple of 7. That is, they have taken “bundles of 7” away
from the original number. Therefore, if the remaining number is divisible
by 7, then so is the original number, because they have separated the orig-
inal number into two parts, each of which is divisible by 7, and therefore
the entire number must be divisible by 7.

Terminal Number subtracted Terminal Number subtracted
digit from original digit from original

1 20 + 1 = 21 = 3 � 7 5 100 + 5 = 105 = 15 � 7
2 40 + 2 = 42 = 6 � 7 6 120 + 6 = 126 = 18 � 7
3 60 + 3 = 63 = 9 � 7 7 140 + 7 = 147 = 21 � 7
4 80 + 4 = 84 = 12 � 7 8 160 + 8 = 168 = 24 � 7

9 180 + 9 = 189 = 27 � 7

Rule for Divisibility by 13 This is similar to the rule for testing divis-
ibility by 7, except that the 7 is replaced by 13 and instead of sub-
tracting twice the deleted digit, we subtract nine times the deleted
digit each time.

Let’s check for divisibility by 13 of the number 5,616.

∗ There are a few phenomena in mathematics that have not yet found an acceptable justification
(or proof) but that doesn’t mean we won’t find one in the future. It took us 350 years to justify
Fermat’s conjecture! It was done by Dr. Andrew Wiles a few years ago.
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Begin with 5,616 and delete its units digit, 6, and subtract it nine times,
54, from the remaining number: 561 − 54 = 507. Since we still cannot
visually inspect the resulting number for divisibility by 13, we continue
the process.

Continue with the resulting number 507 and delete its units digit and
subtract nine times this digit from the remaining number: 50 − 63 = −13,
which is divisible by 13; therefore, the original number is divisible by 13.

To determine the “multiplier,” 9, we sought the smallest multiple of 13
that ends in a 1. That was 91, where the tens digit is 9 times the units
digit. Once again, consider the various possible terminal digits and the
corresponding subtractions in the following table.

Terminal Number subtracted Terminal Number subtracted
digit from original digit from original

1 90 + 1 = 91 = 7 � 13 5 450 + 5 = 455 = 35 � 13
2 180 + 2 = 182 = 14 � 13 6 540 + 6 = 546 = 42 � 13
3 270 + 3 = 273 = 21 � 13 7 630 + 7 = 637 = 49 � 13
4 360 + 4 = 364 = 28 � 13 8 720 + 8 = 728 = 56 � 13

9 810 + 9 = 819 = 63 � 13

In each case, a multiple of 13 is being subtracted one or more times from
the original number. Hence, if the remaining number is divisible by 13,
then the original number is divisible by 13.

Divisibility by 17 Delete the units digit and subtract five times the
deleted digit each time from the remaining number until you reach a
number small enough to determine its divisibility by 17.

We justify the rule for divisibility by 17 as we did the rules for 7 and 13.
Each step of the procedure subtracts a “bunch of 17s” from the original
number until we reduce the number to a manageable size and can make
a visual inspection of divisibility by 17.

The patterns developed in the preceding three divisibility rules (for 7, 13,
and 17) should lead students to develop similar rules for testing divisibility
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by larger primes. The following table presents the “multipliers” of the
deleted digits for various primes.

To test
7 11 13 17 19∗ 23 29 31 37 41 43 47

divisibility by
Multiplier 2 1 9 5 17 16 26 3 11 4 30 14

You may want to extend this table. It’s fun, and it will increase their
perception of mathematics. You may also want to extend their knowledge
of divisibility rules to include composite (i.e., nonprime) numbers. Why
the following rule refers to relatively prime factors and not just any factors
is something that will sharpen their understanding of number properties.
Perhaps the easiest response to this question is that relatively prime factors
have independent divisibility rules, whereas other factors may not.

Divisibility by Composite Numbers A given number is divisible by a
composite number if it is divisible by each of its relatively prime
factors.

The table below offers illustrations of this rule. You or your students
should complete the chart to 48.

To be divisible by 6 10 12 15 18 21 24 26 28

The number must
2, 3 2, 5 3, 4 3, 5 2, 9 3, 7 3, 8 2, 13 4, 7

be divisible by

At this juncture, your students have not only a rather comprehensive list of
rules for testing divisibility, but also an interesting insight into elementary
number theory. It is advisable to have students practice using these rules
(to instill greater familiarity) and try to develop rules to test divisibility
by other numbers in base 10 and to generalize these rules to other bases.
Unfortunately, lack of space prevents a more detailed development here.
Yet we have now whetted the appetites of this important population—our
students!

∗ There is another curious rule for divisibility by 19. Delete the last digit of the number being
tested for divisibility by 19 and add its double to the remaining number. Continue this process
until you can recognize divisibility by 19.
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2.5 The Russian Peasant’s Method
of Multiplication

You ought to begin the unit by mentioning to the students that it is said
that the Russian peasants used a rather strange, perhaps even primitive,
method to multiply two numbers. It is actually quite simple, yet somewhat
cumbersome. Let’s take a look at it.

Consider the problem of finding the product of 43 � 92. Let’s work this
multiplication together. We begin by setting up a chart of two columns
with the two members of the product in the first row. Below you will see
the 43 and 92 heading up the columns. One column will be formed by dou-
bling each number to get the next, while the other column will take half
the number and drop the remainder. For convenience, our first column will
be the doubling column; the second column will be the halving column.
Notice that by halving the odd number such as 23 (the third number in
the second column) we get 11 with a remainder of 1 and we simply drop
the 1. The rest of this halving process should now be clear. The process
ends when the “halving” column is 1.

We make a list below each number. One list will be doubling the number;
the other will take half the number (dropping the remainder).

43 92
86 46
172 23
344 11
688 5

1,376 2
2,752 1

Now have students locate the odd numbers in the halving column (here
the right column). Then have them get the sum of the partner numbers in
the doubling column (in this case the left column). These are highlighted
in bold type. Therefore, 43 � 92 = 172 + 344 + 688 + 2�752 = 3�956.
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This could also have been done by halving the numbers in the first column
and doubling those in the second. See below.

43 92
21 184
10 368
5 736
2 1�472
1 2�944

Again, find the odd numbers in the halving column (in bold type), and
then get the sum of their partner numbers in the second column (now the
doubling column). Thus, 43 � 92 = 92 + 184 + 736 + 2�944 = 3�956.

Although this multiplication algorithm∗ is not efficient, it does allow stu-
dents to inspect what goes on in the multiplication process. You might
want to explain it with either of the following representations.

Here you see what was done in the above multiplication algorithm.

∗43 � 92 = 
21 � 2 + 1�
92� = 21 � 184 + 92 = 3�956
∗21 � 184 = 
10 � 2 + 1�
184� = 10 � 368 + 184 = 3�864

10 � 368 = 
5 � 2 + 0�
368� = 5 � 736 + 0 = 3�680
∗5 � 736 = 
2 � 2 + 1�
736� = 2 � 1�472 + 736 = 3�680

2 � 1�472 = 
1 � 2 + 0�
1�472� = 1 � 2�944 + 0 = 2�944
∗1 � 2�944 = 
0 � 2 + 1�
2�944� = 0 + 2�944 = 2�944

3�956

For those familiar with the binary system, one can also explain the Russian
peasant’s method with the following representation:


43�
92� = 
1 � 25 + 0 � 24 + 1 � 23 + 0 � 22 + 1 � 21 + 1 � 20�
92�

= 20 � 92 + 21 � 92 + 23 � 92 + 25 � 92

= 92 + 184 + 736 + 2�944

= 3�956

∗ Several years ago, I had a student in my class to whom I had shown this algorithm, who later
mentioned that her mother multiplied numbers that way. Yes, she did emigrate from Russia.
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The extent to which you choose to justify this method for the class is
entirely up to you and the nature and level of the class. It is important
that students get a chance to see that there is an alternate method to do
multiplication, even though it is not more efficient. At least they will see
that there is no universal way to multiply two numbers.

2.6 Speed Multiplying by 21, 31, 41

There are times when the multiplication algorithm gives you some shortcut
multiplications if you just inspect what you are doing. Have your students
perform various multiplications with the numbers 21� 31� 41� 51�    .

They will soon stumble on a neat little multiplication shortcut.

To multiply by 21: Double the number, then multiply by 10 and
add the original number.

For example: To multiply 37 by 21,

Double 37 yields 74, multiply by 10 to get 740�
and then add the original number 37 to get 777.

To multiply by 31: Triple the number, then multiply by 10 and add
the original number.

For example: To multiply 43 by 31,

Triple 43 yields 129, multiply by 10 to get 1,290�
and then add the original number 43 to get 1,333.

To multiply by 41: Quadruple the number, then multiply by 10 and
add the original number.

For example: To multiply 47 by 41,

Quadruple 47 yields 188, multiply by 10 to get 1,880�

and then add the original number 47 to get 1,927.

By now your students should be able to recognize the pattern. Have them
extend the rule further to other numbers.
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2.7 Clever Addition

One of the most popularly repeated stories from the history of math-
ematics is the tale of the famous mathematician Carl Friedrich Gauss
(1777–1855) who at age 10 was said to have mentally added the num-
bers from 1 to 100 in response to a busy-work assignment given by the
teacher.∗ Although it is a cute story and generally gets a very favor-
able reaction, its usefulness in the learning process is obtained when this
scheme is used to develop a general formula for the sum of an arithmetic
progression.

What Gauss did to get the sum of the first 100 natural numbers without
writing a single number was not to add the numbers in the order in which
they appear, but rather to add them in the following way: the first plus the
last, the second plus the next to last, the third plus the third from last, and
so on.

1 + 100 = 101

2 + 99 = 101

3 + 98 = 101

4 + 97 = 101


50 + 51 = 101

The sum of these 50 pairs of numbers is 50 � 101 = 5�050.

It would be interesting to see if you have any prodigies in your class
by giving the class the task of the addition before exposing the Gauss
method. Remember, however, that Gauss was presumably 10 years old at
the time.

∗ According to E. T. Bell in his book, Men of Mathematics (New York: Simon & Schuster, 1937),
the problem given to Gauss was of the sort: 81�297 + 81�495 + 81�693 + · · · + 100�899, where
the common difference between consecutive terms was 198 and the number of terms was 100.
Today’s lore uses the numbers to be summed from 1 to 100, which makes the point just as well,
but in simpler form.
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To get a general formula for an arithmetic series of n terms, where a is
the first term and l is the last term, just use Gauss’ method:

Sum = n

2

a + l�

2.8 Alphametics

One of the great strides made by Western civilization (which was learned
from Arabic civilization) was the use of a place value system for our arith-
metic. Working with Roman numerals was not only cumbersome but made
many algorithms impossible. The first appearance of the Hindu–Arabic
numerals, as mentioned earlier, was in Fibonacci’s book, Liber abaci, in
1202. Beyond its usefulness, the place value system can also provide us
with some recreational mathematics that can stretch our understanding and
facility with the place value system.

Applying reasoning skills to analyzing an addition algorithm situation can
be very important in training mathematical thinking. Be forewarned that
some students may struggle with this for a while, but all will “get it”
if the teacher is sensitive to the limited knowledge that many students
have when it comes to analyzing algorithms. Begin by considering the
following problem.

The following letters represent the digits of a simple addition:

S E N D
+ M O R E

M O N E Y

Find the digits that represent the letters to make this addition correct, if
each letter represents a unique digit and M is not equal to D.

Then have your students show that the solution is unique, that is, that
there is only one possible solution. Most important in this activity is the
analysis, and particular attention should be given to the reasoning used.
We will do it step by step (in small increments) so that we can model a
way it can be shown to students.
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The sum of two four-digit numbers cannot yield a number greater than
19,999. Therefore, M = 1.

We then have MORE < 2,000 and SEND < 10,000. It follows that
MONEY < 12,000. Thus, O can be either 0 or 1. But the 1 is already used;
therefore, O = 0.

We now have

S E N D
+ 1 0 R E

1 0 N E Y

Now MORE < 1,100. If SEND were less than 9,000, then MONEY <
10,100, which would imply that N = 0. But this cannot be since 0 was
already used; therefore, SEND > 9,000, so that S = 9.

We now have

9 E N D
+ 1 0 R E

1 0 N E Y

The remaining digits from which we may complete the problem are
�2� 3� 4� 5� 6� 7� 8�.

Let us examine the units digits. The greatest sum is 7 + 8 = 15 and the
least sum is 2 + 3 = 5. If D + E < 10, then D + E = Y, with no carryover
into the tens column. Otherwise, D + E = Y + 10, with a 1 carried over
to the tens column.

Taking this argument one step further to the tens column, we get N + R =
E, with no carryover, or N + R = E + 10, with a carryover of 1 to the
hundreds column. However, if there is no carryover to the hundreds col-
umn, then E + 0 = N, which implies that E = N. This is not permissible.
Therefore, there must be a carryover to the hundreds column. So N + R =
E + 10, and E + 0 + 1 = N, or E + 1 = N. Substituting this value for N
into the previous equation, we get (E + 1) + R = E + 10, which implies
that R = 9. But this has already been used for the value of S. We must
try a different approach.
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We shall assume, therefore, that D + E = Y + 10, since we apparently
need a carryover into the tens column, where we just reached a dead end.

Now the sum in the tens column is 1 + 2 + 3 < 1 + N + R < 1 + 7 + 8.
If, however, 1 + N + R < 10, there will be no carryover to the hundreds
column, leaving the previous dilemma of E = N, which is not allowed.
We then have 1 + N + R = E + 10, which ensures the needed carryover
to the hundreds column. Therefore, 1 + E + 0 = N, or E + 1 = N.

Substituting this in the above equation (1 + N + R = E + 10) gives us
1 + (E + 1) + R = E + 10, or R = 8.

We now have

9 E N D
+ 1 0 8 E

1 0 N E Y

From the remaining list of available digits, we find that D + E < 14.

So from the equation D + E = Y + 10, Y is either 2 or 3. If Y = 3, then
D + E = 13, implying that the digits D and E can take on only 6 or 7.

If D = 6 and E = 7, then from the previous equation E +1 = N, we would
have N = 8, which is unacceptable since R = 8.

If D = 7 and E = 8, then from the previous equation E +1 = N, we would
have N = 9, which is unacceptable since S = 9. Therefore, Y = 2.

We now have

9 E N D
+ 1 0 8 E

1 0 N E 2

Thus, D + E = 12. The only way to get this sum is with 5 and 7. If E = 7,
we once again get from E + 1 = N, the contradictory N = 8, which is
not acceptable. Therefore, D = 7 and E = 5. We can now again use the
equation E + 1 = N to get N = 6.
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Finally, we get the solution:

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

This rather strenuous activity should provide your students with some
important training and insight into mathematics.

2.9 Howlers

Students sometimes provide us with some ideas for exploring mathemat-
ical oddities. How often do we see students do something entirely math-
ematically incorrect and still end up with the correct answer? This could
even lead students to justify their wrong work because it produced the
right result. Let’s consider the reduction of fractions.

In his book, Fallacies in Mathematics,∗ E. A. Maxwell refers to the fol-
lowing cancellations as howlers:

1� 6
� 6 4

= 1
4

2 � 6
� 6 5

= 2
5

Begin your presentation by asking students to reduce to lowest terms the
following fractions: 16

64� 19
95� 26

65 , and 49
98 . After they have reduced to lowest

terms each of the fractions in the usual manner, ask why they didn’t simply
do it in the following way:

1� 6
� 6 4

= 1
4

1� 9
� 9 5

= 1
5

2 � 6
� 6 5

= 2
5

4 � 9
� 9 8

= 4
8

= 1
2

∗ London: Cambridge University Press, 1959.
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At this point, your students will be somewhat amazed. Their first reaction
will probably be to ask if this may be done to any fraction composed of
two-digit numbers of this sort. Challenge your students to find another
fraction (composed of two-digit numbers) where this type of cancellation
will work. Students might cite 55

55 = 5
5 = 1 as an illustration of this type

of cancellation. Indicate to them that although this will hold true for all
multiples of 11 yielding two-digit results, it is trivial, and our concern will
be only with proper fractions (i.e., whose value is less than 1).

For a better class, or one that has a good working knowledge of elementary
algebra, you may wish to “explain” this situation. That is, why are the four
fractions above the only ones (composed of two-digit numbers) where this
type of cancellation will hold true?

Have students consider the fraction 10x+a
10a+y

.

The above four cancellations were such that when cancelling the a’s the
fraction was equal to x

y
.

Therefore,

10x + a

10a + y
= x

y

This yields

y
10x + a� = x
10a + y�

10xy + ay = 10ax + xy

9xy + ay = 10ax

Therefore,

y = 10ax

9x + a

At this point, have students inspect this equation. They should realize that
it is necessary that x� y, and a are integers since they were digits in the
numerator and denominator of a fraction. It is now their task to find the
values of a and x for which y will also be integral.
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To avoid a lot of algebraic manipulation, you might have students set up
a chart that will generate values of y from y = 10ax

9x+a
. Remind them that

x� y, and a must be single-digit integers. Below is a portion of the table
they will construct. Notice that the cases where x = a are excluded since
x
y

= 1.

a

X 1 2 3 4 5 6 · · · 9

1 20
11

30
12

40
13

50
14

60
15 = 4

90
18 = 5

2 20
19

60
21

80
22

100
23

120
24 = 5

3 30
28

60
29

120
31

150
32

180
33

4 360
45 = 8



9

The portion of the chart pictured above generated the four integral values
of y. Two of which are as follows: if x = 1, a = 6, then y = 4, and if x = 2,
a = 6, then y = 5. These values yield the fractions 16

64 and 26
65 , respectively.

The remaining two integral values of y will be obtained when x = 1 and
a = 9, yielding y = 5, and when x = 4 and a = 9, yielding y = 8. These
yield the fractions 19

95 and 49
98 , respectively. This should convince students

that there are only four such fractions composed of two-digit numbers.

Students may now wonder if there are fractions composed of numerators
and denominators of more than two digits where this strange type of
cancellation holds true. Have students try this type of cancellation with
499
998 . They should find that

499
998

= 4
8

= 1
2
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Soon they will realize that

49
98

= 499
998

= 4�999
9�998

= 49�999
99�998

= · · ·

16
64

= 166
664

= 1�666
6�664

= 16�666
66�664

= 166�666
666�664

= · · ·

19
95

= 199
995

= 1�999
9�995

= 19�999
99�995

= 199�999
999�995

= · · ·

26
65

= 266
665

= 2�666
6�665

= 26�666
66�665

= 266�666
666�665

= · · ·

Enthusiastic students may wish to justify these extensions of the original
howlers. Students who at this point have a further desire to seek out
additional fractions that permit this strange cancellation should be shown
the following fractions. They should verify the legitimacy of this strange
cancellation and then set out to discover more such fractions.

3� 3 2
8� 3 0

= 32
80

= 2
5

3� 8 5
8� 8 0

= 35
80

= 7
16

1� 3 8
� 3 45

= 18
45

= 2
5

2 � 7 5
7� 7 0

= 25
70

= 5
14

1� 6 � 3
� 3 2 � 6 = 1

2

Aside from providing an algebraic application, which can be used to intro-
duce a number of important topics in a motivational way, this topic can
also provide some recreational activities. Here are some more of these
“howlers.”
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4 � 8 � 4
� 8 � 4 7

= 4
7

� 5 � 4 5
6� 5 � 4 = 5

6

� 4 � 2 4
7� 4 � 2 = 4

7
24 � 9
� 9 96

= 24
96

= 1
4

4 � 8 � 4 � 8 � 4
� 8 � 4 � 8 � 4 7

= 4
7

� 5 � 4 � 5 � 4 5
6� 5 � 4 � 5 � 4 = 5

6

� 4 � 2 � 4 � 2 4
7� 4 � 2 � 4 � 2 = 4

7

� 3 � 2 � 4 3
4 � 3 � 2 � 4 = 3

4

� 6 � 4 � 8 6
8� 6 � 4 � 8 = 6

8
= 3

4

14 � 7 � 1 � 4
� 7 � 1 � 4 68

= 14
68

= 7
34

� 8 � 7 � 8 � 0 � 4 8
9� 8 � 7 � 8 � 0 � 4 = 8

9

1� 4 � 2 � 8 � 5 � 7 � 1
� 4 � 2 � 8 � 5 � 7 � 1 3

= 1
3

2 � 8 � 5 � 7 � 1 � 4 � 2
� 8 � 5 � 7 � 1 � 4 � 2 6

= 2
6

= 1
3

3� 4 � 6 � 1 � 5 � 3 � 8
� 4 � 6 � 1 � 5 � 3 � 8 4

= 3
4

� 7 � 6 � 7 � 1 � 2 � 3 � 2 � 8 7
8� 7 � 6 � 7 � 1 � 2 � 3 � 2 � 8 = 7

8

� 3 � 2 � 4 � 3 � 2 � 4 � 3 � 2 � 4 3
4 � 3 � 2 � 4 � 3 � 2 � 4 � 3 � 2 � 4 = 3

4

� 1 � 0 � 2 � 5 � 6 � 4 1
4 � 1 � 0 � 2 � 5 � 6 � 4 = 1

4

� 3 � 2 � 4 � 3 � 2 � 4 3
4 � 3 � 2 � 4 � 3 � 2 � 4 = 3

4
4 � 5 � 7 � 1 � 4 � 2 � 8
� 5 � 7 � 1 � 4 � 2 � 8 5

= 4
5

4 � 8 � 4 � 8 � 4 � 8 � 4
� 8 � 4 � 8 � 4 � 8 � 4 7

= 4
7

5� 9 � 5 � 2 � 3 � 8 � 0
� 9 � 5 � 2 � 3 � 8 � 0 8

= 5
8

� 4 � 2 � 8 � 5 � 7 � 1 4
6� 4 � 2 � 8 � 5 � 7 � 1 = 4

6
= 2

3

� 5 � 4 � 5 � 4 � 5 � 4 5
6� 5 � 4 � 5 � 4 � 5 � 4 = 5

6
6� 9 � 2 � 3 � 0 � 7 � 6
� 9 � 2 � 3 � 0 � 7 � 6 8

= 6
8

= 3
4

� 4 � 2 � 4 � 2 � 4 � 2 4
7� 4 � 2 � 4 � 2 � 4 � 2 = 4

7

� 5 � 3 � 8 � 4 � 6 � 1 5
7� 5 � 3 � 8 � 4 � 6 � 1 = 5

7

� 2 � 0 � 5 � 1 � 2 � 8 2
8� 2 � 0 � 5 � 1 � 2 � 8 = 2

8
= 1

4

� 3 � 1 � 1 � 6 � 8 � 8 3
8� 3 � 1 � 1 � 6 � 8 � 8 = 3

8

� 6 � 4 � 8 � 6 � 4 � 8 6
8� 6 � 4 � 8 � 6 � 4 � 8 = 6

8
= 3

4
4 � 8 � 4 � 8 � 4 � 8 � 4 � 8 � 4
� 8 � 4 � 8 � 4 � 8 � 4 � 8 � 4 7

= 4
7

This unit provides a motivating application of elementary algebra to inves-
tigate an algebraic situation. It is a good use of “literal equations.”
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2.10 The Unusual Number 9

Students will be fascinated to learn that the first occurrence in Western
Europe of the Hindu–Arabic numerals we use today was in 1202 in the
book, Liber abaci, by Leonardo of Pisa (otherwise known as Fibonacci).
This merchant traveled extensively throughout the Middle East and in the
first chapter states that

these are the nine figures of the Indians 9� 8� 7� 6� 5� 4� 3� 2� 1. With these nine figures, and
with the symbol, 0, which in Arabic is called zephirum, any number can be written, as will
be demonstrated below.

With this book, the use of these numerals was first publicized in Europe.
Before that, Roman numerals were used. They were, certainly, much more
cumbersome. Take a moment to have students ponder how they would
do their calculations if all they had at their disposal were the Roman
numerals.

Fibonacci, fascinated by the arithmetic calculations used in the Islamic
world, first introduced the system of “casting out nines”∗ as a check for
arithmetic in this book. Even today, it still comes in useful. However, the
nice thing about it is that it again demonstrates a hidden magic in ordinary
arithmetic.

Before we discuss this arithmetic-checking procedure, we will consider
how the remainder of a division by 9 compares to removing nines from
the digit sum of the number. Let us find the remainder when 8,768 is
divided by 9. The quotient is 974 with a remainder of 2.

This remainder can also be obtained by “casting out nines” from the digit
sum of the number 8,768: 8 + 7 + 6 + 8 = 29, again casting out nines:
2 + 9 = 11, and again: 1 + 1 = 2, which was the remainder from before.

Consider the product 734 � 879 = 645�186. We can check this by division,
but that would be somewhat lengthy. We can see if this could be correct by

∗ “Casting out nines” means taking bundles of nines away from the sum, or subtracting a specific
number of nines from this sum.
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“casting out nines.” Take each factor and the product and add the digits,
and then add the digits if the sum is not already a single digit number.
Continue this until a single digit number is reached:

For 734: 7 + 3 + 4 = 14; then 1 + 4 = 5
For 879: 8 + 7 + 9 = 24; then 2 + 4 = 6
For 645�186: 6 + 4 + 5 + 1 + 8 + 6 = 30

Since 5 � 6 = 30, which yields 3 (casting out nines: 3 + 0 = 3), is the
same as for the product, the answer could be correct.

For practice, have students do another casting-out-nines “check” for the
following multiplication:

56�589 � 983�678 = 55�665�354�342

For 56�589: 5 + 6 + 5 + 8 + 9 = 33 3 + 3 = 6

For 983�678: 9 + 8 + 3 + 6 + 7 + 8 = 41 4 + 1 = 5

For 55�665�354�342: 5 + 5 + 6 + 6 + 5 + 3
+ 5 + 4 + 3 + 4 + 2 = 48 4 + 8 = 12

1 + 2 = 3

To check for possibly having the correct product: 6 � 5 = 30 or 3 + 0 = 3,
which matches the 3 resulting from the product digits.

The same scheme can be used to check the likelihood of a correct sum
or quotient, simply by taking the sum (or quotient) and casting out nines,
taking the sum (or quotient) of these “remainders” and comparing it with
the remainder of the sum (or quotient). They should be equal if the answer
is to be correct.

The number 9 has another unusual feature, which enables us to use a
surprising multiplication algorithm. Although it is somewhat complicated,
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it is nevertheless fascinating to see it work and perhaps try to determine
why this happens. This procedure is intended for multiplying a number of
two digits or more by 9.

It is best to discuss the procedure with your students in context: Have
them consider multiplying 76,354 by 9.

Step 1 Subtract the units digit
of the multiplicand
from 10

10 − 4 = 6

Step 2 Subtract each of the
remaining digits
(beginning with the
tens digit) from 9
and add this result to
the previous digit in
the multiplicand (for
any two-digit sums
carry the tens digit to
the next sum)

9 − 5 = 4, 4 + 4 = 8
9 − 3 = 6, 6 + 5 = 11, 1
9 − 6 = 3, 3 + 3 = 6, 6 + 1 = 7
9 − 7 = 2, 2 + 6 = 8

Step 3 Subtract 1 from the
leftmost digit of the
multiplicand

7 − 1 = 6

Step 4 List the results in
reverse order to get
the desired product

687,186

Although it is a bit cumbersome, especially when compared to the calcu-
lator, this algorithm provides some insight into number theory. But above
all, it’s cute!
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2.11 Successive Percentages

Percentage problems have long been the nemesis of most students. Prob-
lems get particularly unpleasant when multiple percentages need to be
processed in the same problem. This unit can turn this one-time nemesis
into a delightfully simple arithmetic algorithm that affords lots of useful
applications. This little-known scheme will enchant your students. We will
begin by considering the following problem:

Wanting to buy a coat, Lisa is faced with a dilemma. Two competing
stores next to each other carry the same brand coat with the same
list price, but with two different discount offers. Store A offers a
10% discount year round on all its goods, but on this particular
day offers an additional 20% on top of its already discounted price.
Store B simply offers a discount of 30% on that day in order to
stay competitive. How many percentage points difference is there
between the two options open to Lisa?

At first glance, students will assume there is no difference in price, since
10 +20 = 30, yielding the same discount in both cases. The clever student
will see that this is not correct, since in store A only 10% is calculated on
the original list price, with the 20% calculated on the lower price, while
at store B, the entire 30% is calculated on the original price. Now, the
question to be answered is, what percentage difference is there between
the discount in store A and store B?

One expected procedure will have the student assume the cost of the coat
to be $100, calculate the 10% discount, yielding a $90 price, and an
additional 20% of the $90 price (or $18) will bring the price down to
$72. In store B, the 30% discount on $100 would bring the price down
to $70, giving a discount difference of $2, which in this case is 2%. This
procedure, although correct and not too difficult, is a bit cumbersome and
does not always allow a full insight into the situation.

An interesting and quite unusual procedure∗ is provided for entertainment
and fresh insight into this problem situation.

∗ It is provided without justification of its validity so as not to detract from the solution of the prob-
lem. However, for further discussion of this procedure, the reader is referred to A. S. Posamentier
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Here is a mechanical method for obtaining a single percentage discount (or
increase) equivalent to two (or more) successive discounts (or increases).

1. Change each of the percentages involved into decimal form: .20 and .10.
2. Subtract each of these decimals from 1.00: .80 and .90 (for an increase,

add to 1.00).
3. Multiply these differences: 
80�
90� = 72.
4. Subtract this number (i.e., .72) from 1.00: 100 − 72 = 28, which

represents the combined discount.
(If the result in step 3 is greater than 1.00, subtract 1.00 from it to
obtain the percentage of increase.)
When we convert .28 back to percentage form, we obtain 28%, the
equivalent of successive discounts of 20% and 10%.

This combined percentage of 28% differs from 30% by 2%.

This procedure can also be used to combine more than two successive
discounts following the same approach. In addition, successive increases,
combined or not combined with a discount, can also be accommodated in
this procedure by adding the decimal equivalent of the increase to 1.00,
where the discount was subtracted from 1.00 and then continue in the
same way. If the end result comes out greater than 1.00, then this reflects
an overall increase rather than the discount as found in the above problem.

This procedure not only streamlines a typically cumbersome situation,
but also provides some insight into the overall picture. For example, the
question “Is it advantageous to the buyer in the above problem to receive
a 20% discount and then a 10% discount, or the reverse, a 10% discount
and then a 20% discount?” The answer to this question is not immediately
intuitively obvious. Yet, since the procedure just presented shows that
the calculation is merely multiplication, a commutative operation, we find
immediately that there is no difference between the two.

So here you have a delightful algorithm for combining successive dis-
counts or increases or combinations of these. Not only is it useful, but it
will enchant your students (and probably your colleagues as well).

and J. Stepelman, Teaching Secondary School Mathematics: Techniques and Enrichment Units, 6th
ed. (Columbus, OH: Merrill/Prentice Hall, 2002), pp. 272–274.
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2.12 Are Averages Averages?

Begin by asking students to explain what a “baseball batting average” is.
Most people, especially after trying to explain this concept, will begin
to realize that it is not an average in the way they usually define an
“average”—the arithmetic mean. It might be good to search the sports
section of the local newspaper to find two baseball players who currently
have the same batting average but who have achieved their respective
averages with a different number of hits. We shall use a hypothetical
example here.

Consider two players, David and Lisa, each with a batting average of .667.
David achieved his batting average by getting 20 hits for 30 at bats, while
Lisa achieved her batting average by getting 2 hits for 3 at bats.

On the next day, both performed equally, getting 1 hit for 2 at bats (for
a .500 batting average); one might expect that they then still have the
same batting average at the end of the day. Calculating their respective
averages: David now has 20 + 1 = 21 hits for 30 + 2 = 32 at bats for
a 21

32 = 656 batting average. Lisa now has 2 + 1 = 3 hits for 3 + 2 = 5
at bats for a 3

5 = 600 batting average. Surprise! They do not have equal
batting averages.

Suppose we consider the next day, where Lisa performs considerably bet-
ter than David does. Lisa gets 2 hits for 3 at bats, while David gets 1
hit for 3 at bats. We shall now calculate their respective averages: David
has 21 + 1 = 22 hits for 32 + 3 = 35 at bats for a batting average of
22
35 = 629. Lisa has 3 + 2 = 5 hits for 5 + 3 = 8 at bats for a batting
average of 5

8 = 625.

Amazingly, despite Lisa’s superior performance on this day, her batting
average, which was the same as David’s at the start, is now lower.

There is much to be learned from this “misuse” of the word “average,”
but more importantly, students will get an appreciation of the notion of
varying weights of items being averaged.
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2.13 The Rule of 72

Although lately the school curriculum pays less attention to compound-
interest problems than in the past, there is a curious little scheme that
works well and is somewhat puzzling to verify. It is called the “Rule
of 72,” and may still generate some interest in the compound-interest
formula.

The Rule of 72 states that, roughly speaking, money will double in 72
r

years when it is invested at an annual compounded interest rate of
r%. So, for example, if we invest money at an 8% compounded annual
interest rate, it will double its value in 72

8 = 9 years. Similarly, if we leave
our money in the bank at a compounded rate of 6%, it would take 12
years for this sum to double its value.

The interested teacher might want to better understand why this is so, and
how accurate it really is. The following discussion will explain that.

To investigate why or if this really works, we consider the compound-
interest formula:

A = P

(
1 + r

100

)n

where A is the resulting amount of money and P is the principal invested
for n interest periods at r% annually. We need to investigate what happens
when A = 2P .

The above equation then becomes

2 =
(

1 + r

100

)n

(1)

It then follows that

n = log 2
log
1 + r

100�
(2)
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Let us make a table of values from the above equation with the help of a
scientific calculator:

r n nr

1 6966071689 6966071689
3 2344977225 7034931675
5 1420669908 7103349541
7 1024476835 7171337846
9 8043231727 7238908554

11 6641884618 730607308
13 5671417169 7372842319
15 4959484455 7439226682

If we take the arithmetic mean (the usual average) of the nr values, we
get 7204092314, which is quite close to 72, and so our Rule of 72 seems
to be a very close estimate for doubling money at an annual interest rate
of r% for n interest periods.

An ambitious teacher or one with a very strong mathematics class might
try to determine a “rule” for tripling and quadrupling money, similar to
the way we dealt with the doubling of money. The above equation (2) for
k-tupling would be

n = log k

log
1 + r
100�

which, for r = 8, gives us n = 2991884022
log k�.

Thus, nr = 2393507218 log k, which, for k = 3 (the tripling effect), gives
us nr = 1141993167. We could then say that for tripling money we would
have a “Rule of 114.”

However far this topic is explored, the important issue here is that the
common Rule of 72 can be a nice way to interest students and at the same
time give them a useful tool.
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2.14 Extracting a Square Root

Why would anyone want to find the square root of a number without using
a calculator? Surely, no one would do such a thing, except a teacher trying
to demonstrate what the square root of a number really is. Introducing the
notion of the extraction of a square root through a manual method, which
relies on the notion of what a square root is, makes the concept easier to
understand. Experience has shown that students will have a much better
appreciation of what the square root of a number represents after this
discussion than they have before it. It ought to be stressed at the outset
that you are in no way implying that this procedure ought to be used in
place of a calculator.

This method was first published in 1690 by the English mathematician
Joseph Raphson (or Ralphson) in his book, Analysis Alquationum Uni-
versalis, attributing it to Newton, and therefore the algorithm bears both
names, the Newton–Raphson method.

It is perhaps best to see the method used in a specific example: Suppose we
wish to find

√
27. Obviously, the calculator would be used here. However,

you might like to introduce the task by having students guess at what this
value might be. Certainly it is between

√
25 and

√
36, or between 5 and

6, but closer to 5.

Suppose we guess at 5.2. If this were the correct square root, then if we
were to divide 27 by 5.2, we would get 5.2. But this is not the case here,
since

√
27 �= 52.

We seek a closer approximation. To do that, we find 27
52 ≈ 5192. Since

27 ≈ 52 � 5192, one of the factors (5.2 in this case) must be bigger than√
27 and the other factor (5.192 in this case) must be less than

√
27.

Hence,
√

27 is sandwiched between the two numbers 5.2 and 5.192,
that is,

5192 <
√

27 < 52

so that it is plausible to infer that the average (5.196) is a better approxi-
mation for

√
27 than either 5.2 or 5.192.
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This process continues, each time with additional decimal places, so that
an allowance is made for a closer approximation. That is, 5192+5196

2 =
5194, then 27

5194 = 519831. This continuous process provides insight into
the finding of the square root of a number that is not a perfect square.

As cumbersome as the method may be, it surely gives some insight into
what a square root represents.



3 Problems with
Surprising Solutions

Perhaps the most time-tested aspect of mathematics instruction is the role
of problem solving. Frequently, problem solving is seen as doing the exer-
cises in the textbook. This is a very narrow aspect of the concept of prob-
lem solving. There are many strategies that should be consciously used
to solve problems, yet what is most enchanting about problem solving
is when you are presented with a simple-to-understand problem and the
solution is not directly apparent. Moreover, sometimes the solution comes
after some tedious work. This is not always terribly rewarding. What is
most interest provoking is when a problem is easily stated, quickly under-
stood, and the solution that is ultimately demonstrated is most unusual
and not typically anticipated. These “surprise attacks” are what generate
excitement among students.

This chapter offers just such problems. Some of them will end up becom-
ing your favorites (even to show your personal friends—just to impress
them with your cleverness!) and will leave your students with “their jaws
dropped.” With each one of the problems presented here, there is a specific
message or strategy that ought to be stressed. Be sure to point these out,
even if the students are consumed (or overwhelmed) by the cleverness of
the solution.

You must keep focused on the intent of the solution. So go to it. Present
the problems, let students struggle a bit, and then enlighten them with the
solutions provided in the chapter. You will certainly enjoy the students’
reaction to the unusual nature of the solutions. Remember, don’t let them
get discouraged by thinking that they could never come up with such
a clever solution. Just tell them that one aspect of problem solving is
recalling previously solved problems and trying these strategies again.

79
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3.1 Thoughtful Reasoning

When students are confronted with a problem, they often resort to rather
primitive ways of thinking. Sometimes well-trained students will con-
sciously think of analogous problems previously solved to see if there is
anything that these previous experiences can bring to the current problem.
When primitive methods are used (which can be called the “peasant’s
way”), a solution is unlikely, and if it emerges it will have taken consider-
ably more time than an elegant solution (which can be called the “poet’s
way”) that may result from thoughtful reasoning.

Just such a case follows. Your students will enjoy it for it will show the
weakness in their ways and open the door to correcting them in the future.
It is also entertaining!

Given a chessboard and 32 dominos, each the exact size of two of
the squares on the chessboard, can you show how 31 of these domi-
nos can cover the chessboard, when a pair of diagonally opposite
squares has been removed?

As soon as the question (above) is posed, students get busy trying various
arrangements of square covering. This may be done with actual squares
or with a graph grid drawn on paper and then shading adjacent squares
two at a time. Before long, frustration begins to set in since no one is
likely to be successful.
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Here the issue is to go back to the question. First of all, the question
does not say to do this square covering; it asks if it can be done. Yet,
because of the way we have been trained, the question is often misread
and interpreted as “do it.” A bit of clever insight helps. Ask yourself the
question: “When a domino tile is placed on the chessboard, what kind of
squares are covered?” A black square and a white square must be covered
by each domino placed on the chessboard. Are there an equal number
of black and white squares on the truncated chessboard? No! There are
two fewer black squares than white squares. Therefore, it is impossible to
cover the truncated chessboard with the 31 domino tiles.

Asking the right questions and inspecting the question asked is an impor-
tant aspect of being successful in mathematics. This unit shows the beauty
of mathematical thinking at a very simple, yet profound, level.

3.2 Surprising Solution

Here is a very simple problem with an even simpler solution. Yet the
solution most students will come up with is much more complicated.
Why? Because they look at the problem in the psychologically traditional
way. After you present the problem (without any warning of a surprise
solution), have students work the problem in whatever way they wish. Do
not try to force them to look for an elegant solution.

Try the problem yourself (don’t look below at the solution) and see
whether you fall into the “majority-solvers” group.

A single elimination (one loss and the team is eliminated) basketball
tournament has 25 teams competing. How many games must be
played until there is a single tournament champion?

Typically, the majority-solvers will begin to simulate the tournament, by
taking two groups of 12 teams, playing the first round, and thereby elimi-
nating 12 teams (12 games have now been played). The remaining 13 teams
play, say 6 against another 6, leaving 7 teams in the tournament (18 games
have been played now). In the next round, of the 7 remaining teams, 3 can
be eliminated (21 games have so far been played). The four remaining
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teams play, leaving 2 teams for the championship game (23 games have
now been played). This championship game is the 24th game.

A much simpler way to solve this problem, one that most people do not
naturally see, is to focus only on the losers and not on the winners as we
have done above. We ask students the key question: “How many losers
must there be in the tournament with 25 teams in order for there to be
one winner?” The answer is simple: 24 losers. How many games must be
played to get 24 losers? Naturally, 24. So there you have the answer, very
simply done.

Now most people will ask themselves, “Why didn’t I think of that?” The
answer is, it was contrary to the type of training and experience we have
had. Making youngsters aware of the strategy of looking at the problem
from a different point of view may sometimes reap nice benefits, as was the
case here. One never knows which strategy will work; just try one and see!

3.3 A Juicy Problem

When students are challenged by a problem, they often set it aside if it
involves too much reading, for fear that the concentration required would
be too exhausting to make the problem pleasurable. Although this problem
does require a fair bit of reading, it is rather easy to explain to a class, and
could even be dramatized. Once past the statement of the problem, it is
very easy to understand, but quite difficult to solve by conventional means.

This is where the beauty of the problem comes in. The solution—as unex-
pected as it is—almost makes the problem trivial. That is, the problem
and its conventional solution will not get much of an enthusiastic reaction
from students, but after having struggled with a solution attempt, the novel
approach we will present here will gain you much favor with the class.

So let’s state the problem:

We have two 1-gallon bottles. One contains a quart of grape juice
and the other, a quart of apple juice. We take a tablespoonful
of grape juice and pour it into the apple juice. Then we take a
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tablespoon of this new mixture (apple juice and grape juice) and
pour it into the bottle of grape juice. Is there more grape juice in
the apple juice bottle, or more apple juice in the grape juice bottle?

To solve the problem, we can figure this out in any of the usual ways—
often referred to as “mixture problems”—or we can use some clever log-
ical reasoning and look at the problem’s solution as follows.

With the first “transport” of juice, there is only grape juice on the table-
spoon. On the second “transport” of juice, there is as much apple juice
on the spoon as there is grape juice in the “apple juice bottle.” This may
require students to think a bit, but most should “get it” soon.

The simplest solution to understand and the one that demonstrates a very
powerful strategy is that of using extremes. We use this kind of reasoning
in everyday life when we resort to the option: “Such and such would occur
in a worst case scenario � � � .”

Let us now employ this strategy for the above problem. To do this, we
will consider the tablespoonful quantity to be a bit larger. Clearly, the
outcome of this problem is independent of the quantity transported. So
we will use an extremely large quantity. We’ll let this quantity actually be
the entire 1 quart. That is, following the instructions given in the problem
statement, we will take the entire amount (1 quart of grape juice) and pour
it into the apple juice bottle. This mixture is now 50% apple juice and
50% grape juice. We then pour 1 quart of this mixture back into the grape
juice bottle. The mixture is now the same in both bottles. Therefore, there
is as much apple juice in the grape juice bottle as there is grape juice in
the apple juice bottle!

We can consider another form of an extreme case, where the spoon doing
the juice transporting has a zero quantity. In this case, the conclusion
follows immediately: There is as much grape juice in the apple juice bottle
as there is apple juice in the grape juice bottle, that is, zero!

Carefully presented, this solution can be very significant in the way stu-
dents approach future mathematics problems and even how they may
analyze everyday decision making.
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3.4 Working Backward

There are many situations where a straightforward approach is by far not
the best way to solve a problem. Students are rarely shown problems
that can be best solved by working backward. A case in point is when a
student is asked to prove a theorem deductively. The appropriate approach
would be to work backward (analysis) from what is being asked to prove
and then write it up in the forward order (synthesis) for presentation. This
would make the geometric proofs that students are required to learn much
simpler to do. Unfortunately, this is not often shown to students.

Reasoning in reverse order is also useful in everyday life as well as
in mathematics. For example, if you want to see a movie that starts at
8:30 p.m., and you know you have certain things to do before you can
be at the movie theater, you would be best off to begin at 8:30 p.m. and
calculate backward to determine when to start getting ready to leave for
the theater. You may figure that it will take you 30 minutes travel time,
1 hour for dinner, 15 minutes to get dressed, and 45 minutes to finish a
task you are involved with. This would mean that you would begin to get
ready for the theater at 6 p.m.

In mathematics, there are lots of examples where working backward is a
truly rewarding way to lead you to an elegant solution. One of the best
examples of this is a problem that may be a bit “off the beaten path,” but
certainly within reach of a good algebra student.

If the sum of two numbers is 2 and the product of the same two
numbers is 3, find the sum of the reciprocals of the two numbers.

The usual reaction to this problem is to set up equations that reflect the
situation described verbally. Most students would probably get:

x + y = 2 and xy = 3
The usual reaction to solving these equations simultaneously is to solve for
y in the first equation to get y = 2−x and substitute this value for y in the
second equation. This will certainly lead to a correct solution, but as you
plow along, you will come to realize that this must be the “peasant’s way”
and not the “poet’s way.” When x and y are finally obtained, you will find



Problems with Surprising Solutions 85

them to be complex numbers and then you will have to find the reciprocals
and add them.

Working backward, the clever alternative, requires that you ask the ques-
tion: “Where will we end up with the solution?” Since the sum of the
reciprocals is being sought, we must end up with 1

x
+ 1

y
. Continuing in

this spirit, we must ask: “What might this have come from?” One possi-
bility is the sum of these fractions, namely, x+y

xy
. A clever person might

now realize that we have the solution to the problem staring us in the
face. Remember the two original equations, x + y = 2 and xy = 3. They
essentially give us the numerator value, 2, and the denominator value, 3.
So the answer to the original question (problem) is 23 .

Be sure to properly dramatize the savings in time and effort to working
backward. This illustration does it as well as any might.

3.5 Logical Thinking

When a problem is posed that at first looks a bit daunting, and then a
solution is presented—one easily understood—we often wonder why we
didn’t think of that simple solution ourselves. It is exactly these problems
that have a dramatic effect on the learner. Here is one such problem. You
might try to actually simulate with your students the situation described.

On a shelf in Barbara’s basement, there are three boxes. One con-
tains only nickels, one contains only dimes, and one contains a
mixture of nickels and dimes. The three labels, “Nickels,” “Dimes,”
and “Mixed,” fell off and were all put back on the wrong boxes.
Without looking, Barbara can select one coin from one of the mis-
labeled boxes and then correctly label all three boxes. From which
box should Barbara select the coin?

The box labeled “Nickels”

The box labeled “Dimes”

The box labeled “Mixed”
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Students may reason that the “symmetry” of the problem situation dictates
that whatever we can say about the box mislabeled “Nickels” could just as
well have been said about the box mislabeled “Dimes.” Thus, if Barbara
chooses a coin from either of these boxes, the results would be the same.
This eliminates choices A and B. They should, therefore, concentrate their
investigations on what happens if we choose from the box mislabeled
“Mixed.”

Suppose Barbara selects a nickel from the mixed box. Since this box is
mislabeled, it cannot be the mixed box and must be, in reality, the nickel
box. Since the box marked dimes cannot really be dimes, it must be the
mixed box. This leaves the third box to be the dime box.

Stress with your students the importance of the logical reasoning used.
Perhaps you can have them recap the argument for the sake of better
understanding it.

3.6 It’s Just How You Organize the Data

Here is a problem that will draw just a bit on the students’ facility with
algebra (very elementary!). When the problem is presented, the symmetry
makes it look disarmingly simple, but just wait.

Here is the problem:

Find the numerical value of the following expression:

(
1− 1

4

)(
1− 1

9

)(
1− 1

16

)(
1− 1

25

)
· · ·
(
1− 1

225

)

The usual first attempt by a student faced with this problem is to simplify
each of the 15 parentheses expressions to get:

(
3
4

)(
8
9

)(
15
16

)(
24
25

)
· · ·
(
224
225

)
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Typically, students try to change each fraction to a decimal (with a cal-
culator) and multiply the results (again with their calculators). This is
obviously a very cumbersome calculation.

An alternative method would be to organize the data in a different way.
This will permit the students to look at the problem from a different
point of view, hoping to see some sort of pattern that will enable them to
simplify their work.

(
12 − 1

22

)(
12 − 1

32

)(
12 − 1

42

)(
12 − 1

52

)
· · ·
(
12 − 1

152

)

They can now factor each parenthetical expression as the difference of
two perfect squares, which yields

(
1− 1
2

)(
1+ 1
2

)(
1− 1
3

)(
1+ 1
3

)(
1− 1
4

)(
1+ 1
4

)(
1− 1
5

)

×
(
1+ 1
5

)
· · ·
(
1− 1
15

)(
1+ 1
15

)

Now have students do the subtraction or addition within each pair of
parentheses to get

(
1
2

)(
3
2

)(
2
3

)(
4
3

)(
3
4

)(
5
4

)(
4
5

)(
6
5

)
· · ·
(
13
14

)(
15
14

)(
14
15

)(
16
15

)

A pattern is now evident, and they may “cancel” throughout the expres-
sion. As a result, they are left with

(
1
2

)(
16
15

)
= 8
15

Students will probably appreciate the ease with which this seemingly
“impossible” problem was solved.
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3.7 Focusing on the Right Information

When faced with a problem with various bits of information, the trick is
not to be distracted from the necessary information. This point is perhaps
best made with the following problem.

To extend the amount of orange juice in a 16-ounce bottle, Alice
decides upon the following procedure:

On the first day, she will drink only 1 ounce of the orange juice
and then fill the bottle with water.

On the second day, she will drink 2 ounces of the mixture and
then again fill the bottle with water.

On the third day, she will drink 3 ounces of the mixture and again
fill the bottle with water.

She will continue this procedure for succeeding days until she emp-
ties the bottle by drinking 16 ounces of mixture on the 16th day.
How many ounces of water will Alice drink altogether?

It is very easy for a student to get bogged down with a problem like this
one. Many students will begin to make a table showing the amount of
orange juice and water in the bottle on each day and attempt to compute
the proportional amounts of each type of liquid Alice drinks on any given
day. We could more easily resolve the problem by examining it from
another point of view, namely, “How much water does Alice add to the
mixture each day?” Don’t get bogged down with the quantity of orange
juice; this is merely a distractor in this problem situation. Since she even-
tually empties the bottle (on the 16th day), and it held no water to begin
with, she must have consumed all the water that was put into the bottle.
So we merely calculate the amount of water Alice added each time.

On the first day, Alice added 1 ounce of water.
On the second day, she added 2 ounces of water.
On the third day, she added 3 ounces of water.
On the 15th day, she added 15 ounces of water. (You should ask your
students why no water was added on the 16th day.)
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Therefore, the number of ounces of water Alice consumed was

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15
= 120 ounces

While this solution is indeed valid, a slightly simpler analogous problem to
consider would be to find out how much liquid Alice drank altogether and
then simply deduct the amount of orange juice, namely, 16 ounces. Thus,

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15
+ 16− 16 = 120

Alice consumed 136 ounces of liquid, of which 16 ounces was orange
juice and the rest, 120 ounces, must have been water.

3.8 The Pigeonhole Principle

One of the famous (although often neglected in the instructional program)
problem-solving techniques is to consider the pigeonhole principle. In its
simplest form, the pigeonhole principle states that if you have k+1 objects
that must be put into k holes, then there will be at least one hole with 2
or more objects in it.

Here is one illustration of the pigeonhole principle at work. Present your
students with this problem to see how they will approach it.

There are 50 teachers’ letterboxes in the school’s general office. One
day the letter carrier delivers 151 pieces of mail for the teachers.
After all the letters have been distributed, one mailbox has more
letters than any other mailbox. What is the smallest number of
letters it can have?

Students have a tendency to “fumble around” aimlessly with this sort of
problem, usually not knowing where to start. Sometimes, guess and test
may work here. However, the advisable approach for a problem of this
sort is to consider extremes. Naturally, it is possible for one teacher to get
all the delivered mail, but this is not guaranteed.
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To best assess this situation, we shall consider the extreme case, where
the mail is as evenly distributed as possible. This would have each teacher
receiving three pieces of mail with the exception of one teacher, who
would have to receive the 151st piece of mail. Therefore, the least number
of letters that the box with the most letters received is 4.

By the pigeonhole principle, there were 50 3-packs of letters for the 50
boxes. The 151st letter had to be placed into one of those 50 boxes. Your
students may want to try other problems that use the pigeonhole principle.

3.9 The Flight of the Bumblebee

Problem solving is not only done to solve the problem at hand; it is also
provided to present various types of problems and, perhaps more impor-
tant, various procedures for solution. It is from these types of solutions
that students really learn problem solving, since one of the most use-
ful techniques in approaching a problem to be solved is to ask yourself:
“Have I ever encountered such a problem before?” With this in mind, a
problem with a very useful “lesson” is presented here. Do not let your stu-
dents be deterred by the relatively lengthy reading required to get through
the problem. They will be delighted with the unexpected simplicity of
its solution.

Two trains, serving the Chicago to New York route, a distance of
800 miles, start toward each other at the same time (along the same
tracks). One train is traveling uniformly at 60 miles per hour, and
the other at 40 miles per hour. At the same time, a bumblebee
begins to fly from the front of one of the trains, at a speed of
80 miles per hour, toward the oncoming train. After touching the
front of this second train, the bumblebee reverses direction and flies
toward the first train (still at the same speed of 80 miles per hour).
The bumblebee continues this back-and-forth flying until the two
trains collide, crushing the bumblebee. How many miles did the
bumblebee fly before its demise?
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Students will be naturally drawn to find the individual distances that the
bumblebee traveled. An immediate reaction by many students is to set up
an equation based on the relationship: “rate times time equals distance.”
However, this back-and-forth path is rather difficult to determine, requiring
considerable calculation. Just the notion of having to do this will cause
frustration among the students. Do not allow this frustration to set in.
Even if they were able to determine each part of the bumblebee’s flight,
it is still very difficult to solve the problem in this way.

A much more elegant approach would be to solve a simpler analogous
problem (one might also say we are looking at the problem from a differ-
ent point of view). We seek to find the distance the bumblebee traveled. If
we knew the time the bumblebee traveled, we could determine the bum-
blebee’s distance because we already know the speed of the bumblebee.
Again, have your students realize that having two parts of the equation
“rate × time = distance” will provide the third part. So having the time
and the speed will yield the distance traveled, albeit in various directions.

The time the bumblebee traveled can be easily calculated, since it trav-
eled the entire time the two trains were traveling toward each other (until
they collided). To determine the time, t, the trains traveled, we set up an
equation as follows: The distance of the first train is 60t and the distance
of the second train is 40t. The total distance the two trains traveled is
800 miles. Therefore, 60t + 40t = 800, so t = 8 hours, which is also the
time the bumblebee traveled. We can now find the distance the bumblebee
traveled, using the relationship, rate × time = distance, which gives us
(8)(80) = 640 miles.

It is important to stress to students how to avoid falling into the trap of
always trying to do what the problem calls for directly. Sometimes a more
circuitous method is much more efficient. Lots can be learned from this
solution. It must be emphasized to your class. You see, dramatic solutions
are often more useful than traditional solutions, since they give students
an opportunity “to think outside of the box.”
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3.10 Relating Concentric Circles

More important than the problem itself is the solution method that will be
used. More about that later (so as not to spoil the surprise awaiting the class).

Consider the following problem:

Two concentric circles are 10 units apart, as shown below. What is
the difference between the circumferences of the circles?

10

The traditional, straightforward method for solving this problem is to find
the diameters of the two circles, find the circumference of each circle,
and then find their difference. Since the lengths of the diameters are not
given, the problem is a bit more complicated than usual. Let d represent
the diameter of the smaller circle. Then d + 20 is the diameter of the
larger circle. The circumferences of the two circles will then be �d and
��d + 20	, respectively. Their difference is ��d + 20	 − �d = 20�.

10

d+20

d
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A more elegant, and vastly more dramatic, procedure would be to use an
extreme case. To do this, we will let the smaller of the two circles become
smaller and smaller until it reaches an “extreme smallness” and becomes
a “point.” In this case, it would become the center of the larger circle. The
distance between the two circles now becomes simply the radius of the
larger circle. The difference between the lengths of the circumferences of
the two circles at the start now becomes merely the circumference of the
larger circle,∗ or 20�.

Although both procedures yield the same answer, notice how much more
work is used for the traditional solution by actually taking the differ-
ence of the lengths of the circumferences of the two circles, and how
using the idea of considering an extreme situation (without compromising
any generality) we reduce the problem to something trivial. Thus, here
the beauty of mathematics is manifested in the procedure by which we
approach a problem. Clearly, this point needs to be emphasized for the
students.

3.11 Don’t Overlook the Obvious

Here is a very entertaining problem that often elicits feelings of self-
disappointment when the solution is exposed.

It is a problem that is certainly solvable when a student has been shown
the Pythagorean theorem. As a matter of fact, that knowledge often gets in
the way of an elegant solution. Have the students consider the following
problem:

The point P is any point on the circle with center O. Perpendicular
lines are drawn from P to perpendicular diameters, AB and CD,
meeting them at points F and E, respectively. If the diameter of the
circle is 8, what is the length of EF?

∗ Since the big circle’s circumference minus the smaller circle’s circumference, which is now 0,
is the big circle’s circumference.
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E

F

B

A

D
O

C

P

From the training we give students, they would most likely look to apply
the Pythagorean theorem and find that there is no “neat” way to use it.
Stepping back from the problem and looking at it in a refreshed way will
expose the fact that the quadrilateral PFOE is a rectangle (it was given
to have three right angles). Since the diagonals of a rectangle are equal
in length, FE must equal PO, which is the radius of the circle and equals
half the diameter, or 4.

Another way to look at the problem is to take the location of P at a more
convenient point, say at point A. In that case, F E would coincide with
AO, which is the radius of the circle.

With either solution, the student is caught off guard. This is not only
entertaining but also a good illustration for future use.
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3.12 Deceptively Difficult (Easy)

Here is a problem that looks very simple and is not. It has baffled entire
high school mathematics departments! Yet once the solution is shown,
it becomes quite simple. The result is that you are disappointed in not
having seen the solution right from the start. So here it is. Try it without
looking at the second diagram. It will give away the solution. You might
have students try this one at home so that they have ample time to ponder
the solution.

In the figure shown below, point E lies on AB and point C lies on
FG. The area of parallelogram ABCD = 20 square units. Find the
area of parallelogram EFGD.

F

A

D
C

BE

G

Although the solution is not one that would occur to many students at
first thought, the problem can be readily solved using only the tools found
in a high school geometry course. Begin by drawing EC as in the figure
below.

F

A

D
C

BE

G
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Since triangle EDC and parallelogram ABCD share a common base �DC	
and a common altitude (a perpendicular from E to DC), the area of tri-
angle EDC is equal to one-half the area of parallelogram ABCD.

Similarly, since triangle EDC and parallelogram EFGD share the same
base �ED	 and the same altitude to that base (a perpendicular from C
to ED), the area of triangle EDC equals one-half the area of parallelo-
gram EFGD.

Now, since the area of parallelogram ABCD and the area of parallelogram
EFGD are both equal to twice the area of triangle EDC, the areas of the
two parallelograms must be equal. Thus, the area of parallelogram EFGD
equals 20 square units.

Although the solution method that we have just shown is not often used,
it is effective and efficient.

Nevertheless, this problem can be solved quite elegantly by solving a
simpler analogous problem (without loss of generality). Recall that the
original given conditions were that the two parallelograms had to have a
common vertex �D	, and a vertex of one had to be on the side of the
other as shown with points E and C. Now, let us suppose that C coincided
with G, and E coincided with A. This satisfies the given condition of the
original problem and makes the two parallelograms coincide. Thus, the
area of parallelogram EFGD = 20 square units.
We could also look at this last solution as one of using extremes. That
is, we might consider point E on AB, yet placed at an extreme, such
as on point A. Similarly, we could place C on G and satisfy all the
conditions of the original problem. Thus, the problem is trivial, in that
the two parallelograms coincide. This point is one of the more neglected
techniques for solving problems. It ought to be emphasized now.

Remember how difficult you perceived the problem at the start?
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3.13 The Worst Case Scenario

Reasoning with extremes is a particularly useful strategy to solve some
problems. It can also be seen as a “worst case scenario” strategy. The best
way to appreciate this kind of thinking is through example. So let’s begin
to appreciate some really nice reasoning strategies.

In a drawer, there are 8 blue socks, 6 green socks, and 12 black
socks. What is the minimum number of socks Henry must take
from the drawer, without looking, to be certain that he has two
socks of the same color?

The phrase “ � � � certain � � � two socks of the same color” is the key to
the problem. The problem does not specify which color, so any of the
three would be correct. To solve this problem, have your students reason
from a “worst case scenario.” Henry picks one blue sock, one green sock,
and then one black sock. He now has one of each color, but no matching
pair. (True, he might have picked a pair on his first two selections, but
the problem calls for “certain.”) Notice that as soon as he picks the fourth
sock, he must have a pair of the same color.

Consider a second problem:

In a drawer, there are 8 blue socks, 6 green socks, and 12 black
socks. What is the minimum number of socks that Evelyn must
take from the drawer, without looking, to be certain that she has
two black socks?

Although this problem appears to be similar to the previous one, there
is one important difference. In this problem, a specific color has been
specified. Thus, it is a pair of black socks that we must guarantee being
selected. Again, let’s use deductive reasoning and construct the “worst
case scenario.” Suppose Evelyn first picks all of the blue socks (8). Next
she picks all of the green socks (6). Still not one black sock has been
chosen. She now has 14 socks in all, but none of them is black. However,
the next two socks she picks must be black, since that is the only color
remaining. To be certain of picking two black socks, Evelyn must select
8 + 6 + 2 = 16 socks in all. Have students create similar problems and
present solutions.



4 Algebraic
Entertainments

It is not easy to imagine algebra as a form of entertainment. Students often
see algebra as a series of rules to follow—a language of mathematics that
has to be learned. Well, in this chapter algebra is used to make some sense
of mathematical phenomena, for example, in the behavior of numbers.
Arithmetic shortcuts are explored, some unusual number relationships are
explained, and some beautiful patterns in mathematics are exploited. All of
this makes for a rather refreshing use of algebra, which usually manifests
itself in the form of tedious exercises that often do not impress students
as being particularly useful. When algebra is used in the school setting, it
is used to solve rather routine problems. Here we use algebra to explore
other branches of mathematics. For example, the unit on Pythagorean
triples gives some very deep insight into these popular triples.

Show your students how algebra can be used to shed new light on and a
deeper appreciation for mathematical relationships. It will entertain them
while demonstrating the beauty of algebraic processes.

98
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4.1 Using Algebra to Establish
Arithmetic Shortcuts

Suppose you needed to calculate 362 − 352. This is rather simple to do
with a calculator. But suppose that calculators were not readily available.
Ask your students how they would get the answer in a simple way.

We could employ factoring the difference of two squares: x2 − y2 =
�x − y��x + y�. That would give us

362 − 352 = �36− 35��36+ 35� = �1��71� = 71

Your students will be quite amazed at how this common form of factoring
has reduced this multiplication problem to a trivial situation.

The distributive property is always useful, as for multiplying 8 � 67.
Replacing 67 with �70 − 3� allows us to rewrite the multiplication as
8�70 − 3� = 8�70� − 8�3� = 560 − 24 = 536.

Or to multiply 36 � 14, we can rewrite this as 36�10 + 4� = 36�10� +
36�4� = 360 + 144 = 504. In the absence of a calculator, this is a much
more efficient way to look at multiplication.

Multiplying two numbers with a difference of 4 can also be simply
done by first inspecting the situation in general terms (i.e., algebraically):

The two numbers can be (x + 2) and (x − 2). These have a difference
of 4. Their product is �x + 2��x − 2� = x2 − 4. Thus, we must find the
average of the two numbers, x, and square it and subtract 4.

For example, to use this notion to multiply 67 by 71, we find the average,
69. Then square 69 to get 4,761 and subtract 4 to get 4,757. It may not
always be easier to do the multiplication, but it will give the students a
sense of “usefulness” of some of the algebra they know.

Multiplying two consecutive numbers uses the property x�x + 1� =
x2 + x. This applied to 23 � 24 = 232 + 23 = 529 + 23 = 552 provides a
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refreshing alternative to the usual multiplication algorithm. Again, it must
be stressed that this is not a replacement for the calculator—something
students would clearly not accept.

By this time, students might be motivated to discover or establish their
own shortcut algorithms. It ought to be done for fun—though not a cal-
culator replacement!

4.2 The Mysterious Number 22

At first, this unit will enchant your students and then (if properly pre-
sented) have them wonder why the result is what it is. This is a wonderful
opportunity to show your students the usefulness of algebra, for it will be
through algebra that their curiosity will be quenched.

Have the students work individually with the following oral instructions:

Select any three-digit number with all digits different from one
another. Write all possible two-digit numbers that can be formed
from the three-digits selected earlier. Then divide their sum by the
sum of the digits in the original three-digit number.

Students should all get the same answer, 22. There ought to be a big
resulting “Wow!”

For example, consider the three-digit number 365. Take the sum of all
the possible two-digit numbers that can be formed from these three digits:
36+ 35+ 63+ 53+ 65+ 56 = 308. The sum of the digits of the original
number is 3+ 6+ 5 = 14. Then 308

14 = 22.

To analyze this unusual result, we will begin with a general representation
of the number: 100x + 10y + z.
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We now take the sum of all the two-digit numbers taken from the three
digits:

�10x+y�+�10y+x�+�10x+z�+�10z+x�+�10y+z�+�10z+y�

=10�2x+2y+2z�+�2x+2y+2z�

=11�2x+2y+2z�

=22�x+y+z�

which, when divided by the sum of the digits, �x + y + z�, is 22.

These illustrations show the value of algebra in explaining simple arith-
metic phenomena.

4.3 Justifying an Oddity

Here is a fun activity that can be presented in a number of different ways.
The best suited method should be selected by the classroom teacher. The
justification uses simple algebra, but the fun is in the oddity. Have your
students consider this very unusual relationship.

Any two-digit number ending in 9 can be expressed as the sum of
the product of the digits and the sum of the digits.

More simply stated:

Any two-digit number ending in 9
= �product of digits� + �sum of digits�

One of the real advantages of algebra is the facility with which, through
its use, we can justify many mathematical applications. Why is it possible
to represent a number ending in a 9 in the following way?

9 = �0 � 9� + �0 + 9�

19 = �1 � 9� + �1+ 9�

29 = �2 � 9� + �2 + 9�

39 = �3 � 9� + �3+ 9�
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49 = �4 � 9� + �4 + 9�

59 = �5 � 9� + �5+ 9�

69 = �6 � 9� + �6+ 9�

79 = �7 � 9� + �7+ 9�

89 = �8 � 9� + �8+ 9�

99 = �9 � 9� + �9+ 9�

Students will certainly be turned on by this neat pattern of calculation. You
must be careful not to allow this pattern to be an end in itself, but rather
a means to an end, namely, a consideration of why this actually works.

Let’s use algebra to clear up this very strange result, established above by
example. Point out to students that we will be using algebra to help us
understand this mathematical quirk.

We typically represent a two-digit number as 10t + u, where t represents
the tens digit and u represents the units digit. Then the sum of the digits
is t + u and the product of the digits is tu.

The number meeting the above conditions = 10t + u
= �tu� + �t + u�

10t = tu + t
9t = tu
u = 9 �for t �= 0∗�

This discussion should evoke a curiosity among students about numbers
with more than two digits. For example:

109 = �10 � 9� + �10 + 9�

119 = �11 � 9� + �11+ 9�

129 = �12 � 9� + �12 + 9�

Here the digits to the left of the 9 are considered as a number and treated
just as we treated the tens digit above. The results are the same.

This can be extended to any number of digits as long as the units digit is
a 9.
∗ In this case, the rule also holds if t = 0.
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4.4 Using Algebra for Number Theory

There are lots of unusual number patterns and relationships. Some cannot
be proved (as yet!), such as the famous Goldbach conjecture,∗ which states
that every even number greater than 2 can be expressed as the sum of
two prime numbers. He also asserted that every odd number greater than
5 can be expressed as the sum of three primes.

Have students experiment with a calculator and discover the following
conjecture on their own:

One plus the sum of the squares of any three consecutive odd num-
bers is always divisible by 12.

The beauty and the instructional benefit of this are manifested in the
simplicity of the procedure used to prove this statement. First, establish a
way to represent an odd and an even number. For any integer n, 2n will
always be even and 2n + 1 must then be odd.

We begin by letting 2n + 1 be the middle number of the three consecutive
odd numbers under consideration. Then �2n + 1� − 2 = 2n − 1 is the
next smaller odd number and �2n + 1� + 2 = 2n + 3 is the next larger
odd number. We are now ready to represent the relationship we are seeking
to prove.

�2n − 1�2 + �2n + 1�2 + �2n + 3�2 + 1 = 12n2 + 12n + 12

= 12�n2 + n + 1� = 12M

where M represents some integer.∗∗

We can then conclude that this sum of squares plus 1 is always divisible
by 12. This should be merely a springboard to other similar algebraic
investigations into number theory.

∗ Named for Christian Goldbach (1690–1764) and transmitted in a letter to the famous mathe-
matician Leonhard Euler in 1742.
∗∗ Since n is an integer, n2 is also an integer, so the sum n2 + n + 1 must also be an integer.
Represent that integer as M .
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4.5 Finding Patterns Among
Figurate Numbers

We should recall that figurate numbers are those that can be represented
by dots in polygonal fashion, as shown below. There are lots of very
surprising relationships that occur with these numbers. We shall present
just a few of these here, with the hope that your students will want to
explore further and find some that they can claim as “their own.”
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Consider the following table:

Triangular Square Pentagonal Hexagonal
numbers numbers numbers numbers

1 1 1 1 1
2 3 4 5 6
3 6 9 12 15
4 10 16 22 28
5 15 25 35 45
6 21 36 51 66
7 28 49 70 91
8 36 64 92 120
9 45 81 117 153
10 55 100 145 190
11 66 121 176 231
12 78 144 210 276
13 91 169 247 325
14 105 196 287 378
15 120 225 330 435
16 136 256 376 496
17 153 289 425 561
18 171 324 477 630
19 190 361 532 703
20 210 400 590 780

n n�n+1�∗
2

n�2n−0�
2 = n2 n�3n−1�

2
n�4n−2�

2

Based on the pattern developing across the nth row, have your students
determine what the general forms of the heptagonal, octagonal, decagonal,
etc., numbers are.

They are

n�5n − 3�
2

�
n�6n − 4�

2
�

n�7n − 5�
2

�   

∗ This comes from n�1n−�−1��
2 = n�n+1�

2 .
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In Unit 1.17, we introduced oblong numbers, which are the product of
two consecutive natural numbers in the form n�n + 1�,

1 � 2 = 2

2 � 3 = 6

3 � 4 = 12

4 � 5 = 20

5 � 6 = 30


You now have the option of having your students try to justify the follow-
ing relationships by using algebra or by convincing themselves through
examples that they are, in fact, true. Remember, only a general proof will
show they hold for all cases.

An oblong number can be expressed as the sum of consecutive even inte-
gers, beginning with 2:

2 + 4 + 6+ 8 = 20

An oblong number is twice a triangular number:

15 � 2 = 30

The sum of two consecutive squares and the square of the oblong between
them is a square∗:

9+ 16+ 122 = 169 = 132

∗ This is a tricky one so it is provided for you here. Represent the statement algebraically as
n2 + �n + 1�2 + �n�n + 1��2. Expanding and collecting like terms gives us

n2 + n2 + 2n + 1+ �n2 + n�2 = 2n2 + 2n + 1+ n4 + 2n3 + n2

= n4 + 2n3 + 3n2 + 2n + 1 = �n2 + n + 1�2

Obviously, we have a square!
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The sum of two consecutive oblong numbers and twice the square between
them is a square:

12 + 20 + 2 � 16 = 64 = 82

The sum of an oblong number and the next square is a triangular number:

20 + 25 = 45

The sum of a square number and the next oblong number is a triangular
number:

25+ 30 = 55

The sum of a number and the square of that number is an oblong number:

9+ 81 = 90

Here are some relationships to have your students try to establish. They
might try to convince themselves that they are true using some specific
examples, and then do them algebraically.

• Every odd square number is the sum of eight times a triangular number
and 1.

• Every pentagonal number is the sum of three triangular numbers.
• Hexagonal numbers are equal to the odd-numbered triangular numbers.

Students ought to be encouraged to find other patterns and then prove that
they are true—algebraically.
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4.6 Using a Pattern to Find
the Sum of a Series

Faced with summing a series, most students would just plow right into the
problem, using whatever means they learned to sum series. If this did not
look promising, many would just begin to add the terms. Very inelegant!

Let’s look at a situation that lends itself to a few nifty alternatives. Con-
sider the problem of finding the sum of the following series:

1
1 � 2 + 1

2 � 3 + 1
3 � 4 + · · · + 1

49 � 50

One way to begin is to see if there is any visible pattern.

1
1 � 2 = 1

2
1

1 � 2 + 1
2 � 3 = 2

3
1

1 � 2 + 1
2 � 3 + 1

3 � 4 = 3
4

1
1 � 2 + 1

2 � 3 + 1
3 � 4 + 1

4 � 5 = 4
5

From this pattern, we guess the following pattern:

1
1 � 2 + 1

2 � 3 + 1
3 � 4 + 1

4 � 5 + · · · + 1
49 � 50 = 49

50

Another pattern for this series can be obtained by representing each frac-
tion in the series as a difference in the following way:

1
1 � 2 = 1

1
− 1
2

1
2 � 3 = 1

2
− 1
3
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1
3 � 4 = 1

3
− 1
4


1

49 � 50 = 1
49

− 1
50

Adding these equations, the left-hand side gives us our sought-after sum,
and on the right-hand side almost all the fractions drop out, leaving
1
1 − 1

50 = 49
50 .

These very surprising illustrations of useful patterns will get a reaction
from your students, “Oh, I would never be able to do this on my own,”
but this should be an unacceptable response, for “practice makes perfect”!

4.7 Geometric View of Algebra

There are times when the rudiments of algebra can be made concrete
by showing that they also “make sense” from a geometric point of view.
More important, it is fun to show the algebraic identities geometrically.
Students will also want to try some for themselves after you have shown
them a few of these.

The concept that an algebraic identity can be demonstrated geometrically
by using areas to show, for example, �a + b�2 = a2 + 2ab + b2.

To begin, have students draw a square of side length �a + b�. The square
should then be partitioned into various squares and rectangles, as shown
in Figure 4.1. The lengths of the various sides are appropriately labeled.

a b

a 2a ab

b ab 2b  

Figure 4.1
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Students can easily determine the area of each region. Since the area of
the large square equals the sum of the areas of the four quadrilaterals into
which it was partitioned, students should get

�a + b�2 = a2 + ab + ab + b2 = a2 + 2ab + b2

A more rigorous proof can be found in Euclid’s Elements, Proposition 4,
Book 11.

Next, illustrate geometrically the identity a�b + c� = ab + ac. To begin,
have students draw a rectangle whose adjacent sides are of lengths a and
�b + c�. The rectangle should then be partitioned into smaller rectangles,
as shown in Figure 4.2. The lengths of these sides are also labeled.

 c b

a   ab       ac 

Figure 4.2

Students can easily determine the area of each region. Elicit from students
that since the area of the large rectangle equals the sum of the areas of
the two quadrilaterals into which it was partitioned, the diagram illustrates
a�b + c� = ab + ac.

Have students consider the identity �a + b��c + d� = ac + ad + bc + bd.

Guide students to draw the appropriate rectangle with side lengths �a + b�
and �c +d�. The rectangle should be partitioned into smaller rectangles, as
shown in Figure 4.3. The lengths of sides and areas of regions have been

a b

c        ac bc

d ad bd

Figure 4.3
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labeled. As in the other cases, the area of the large rectangle equals the
sum of the areas of the four quadrilaterals into which it was partitioned.

The diagram (Figure 4.3) illustrates the identity �a + b��c + d� = ac +
ad + bc + bd.

Explain to students that the method of application of areas can be used
to prove most algebraic identities. The difficulty will lie in their choice of
dimensions for the quadrilateral and the partitions made.

After students feel comfortable using areas to represent algebraic iden-
tities, have them consider the Pythagorean relationship, a2 + b2 = c2.
Although this is not an identity, the application of areas is still appropri-
ate. Have students draw a square of side length �a + b�. Show students
how to partition this square into four congruent triangles and a square, as
shown in Figure 4.4. The lengths of the sides have been labeled.

The diagram (Figure 4.4) illustrates:

1. AreaDEFG = 4�Area�GNM� + AreaKLMN .
2. Therefore, �a + b�2 = 4� 12ab� + c2.
3. If we now substitute the identity for �a+b�2, which was proved above,

we obtain a2 + 2ab + b2 = 2ab + c2.

Then clearly a2 + b2 = c2, which is, of course, the Pythagorean theorem.

b

b

b

b

c

c

c

c

a

a

a

a

M

N

F

D E

G

K

L

Figure 4.4
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4.8 Some Algebra of the Golden Section

When we talk about the beauty of mathematics, we tend to think of the
most beautiful rectangle. This rectangle, often called the Golden Rectan-
gle, has been shown by psychologists to be the most esthetically pleasing
rectangle. We treat it in Unit 5.11. Now we will look at this Golden
Section from the algebraic point of view.

Begin by having students recall the Golden Ratio:

1− x

x
= x

1

This gives us

x2 + x − 1 = 0 and x =
√
5− 1
2

� for positive x

We let
√
5− 1
2

= 1
�

Not only does � � 1
�

= 1 (obviously!), but � − 1
�

= 1.

This is the only number for which this is true.

Your students may want to verify this.∗

∗ Here is the result derived.
Since

1
�

=
√
5− 1
2

then

� = 2√
5− 1

�
√
5+ 1√
5+ 1

=
√
5+ 1
2

and

� − 1
�

=
√
5+ 1
2

−
√
5− 1
2

= 1
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By the way, students may want to know what value � has. They can easily
determine it with the help of a calculator:

�=161803398874989484820458683436563811772030917980576

and

1
�

=061803398874989484820458683436563811772030917980576

There are lots of other interesting features of �. Your students ought to be
guided to develop some after you give them the proper hints. They might
want to show that this infinite continued fraction has the value �.

� = 1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1
1+ · · ·

To do this, students ought to realize that nothing is lost by truncating the
continued fraction at the first numerator. This will give them the following:

� = 1+ 1
�

which yields the Golden Ratio.

Another curious relationship is

� =

√√√√√√√1+

√√√√√√1+

√√√√√
1+

√√√√
1+

√
1+

√
1+

√
1+ √

1+ · · ·
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Each of these is easily verifiable and can be done with a similar technique.
We shall do the second one here and leave the first one to be justified by
your students.

x =

√√√√√√√1+

√√√√√√1+

√√√√√
1+

√√√√
1+

√
1+

√
1+

√
1+ √

1+ · · ·

x2 = 1+

√√√√√√√1+

√√√√√√1+

√√√√√
1+

√√√√
1+

√
1+

√
1+

√
1+ √

1+ · · ·

x2 = 1+ x

x = � from the definition of �

It is fascinating to observe what happens when we find the powers of �.

�2 =
(√

5+ 1
2

)2

=
√
5+ 3
2

=
√
5+ 1
2

+ 1 = � + 1

�3 = � � �2 = ��� + 1� = �2 + �

= �� + 1� + � = 2� + 1

�4 = �2 � �2 = �� + 1��� + 1� = �2 + 2� + 1

= �� + 1� + 2� + 1 = 3� + 2

�5 = �3 � �2 = �2� + 1��� + 1� = 2�2 + 3� + 1

= 2�� + 1� + 3� + 1 = 5� + 3

�6 = �3 � �3 = �2� + 1��2� + 1� = 4�2 + 4� + 1

= 4�� + 1� + 4� + 1 = 8� + 5

�7 = �4 � �3 = �3� + 2��2� + 1� = 6�2 + 7� + 2

= 6�� + 1� + 7� + 2 = 13� + 8
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A summary chart reveals a pattern among the coefficients of �:

�2 = � + 1

�3 = 2� + 1

�4 = 3� + 2

�5 = 5� + 3

�6 = 8� + 5

�7 = 13� + 8

These are the Fibonacci numbers (see Unit 1.18).

By this time, your students are probably thinking that there is no end to
the connections that one can draw to the Golden Section. Indeed, they are
correct!

4.9 When Algebra Is Not Helpful

There are lots of examples to exhibit the power of algebra. However, there
are times when an algebraic solution to a problem is not an advantage.
This approach may seem strange to students, but as this unit will show
you, the point is to be made. Consider the challenge:

Find four consecutive numbers whose product is 120.

Give your students a bit of time to begin to tackle this question. Most will
probably write an algebraic equation to depict the situation. It may look
like this:

x�x + 1��x + 2��x + 3� = 120

Ridding the parentheses here leaves us with a fourth-degree equation
(a quartic equation) in one variable. Rather than to try to solve this quar-
tic equation, a nonalgebraic solution might be preferable. Simply guess
intelligently and check to get the solution: 2 � 3 � 4 � 5 = 120. The students
should see from this demonstration that although algebra is very useful
to introduce or explain some arithmetic relationships, it is not always the
best method.
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4.10 Rationalizing a Denominator

Students often find the exercise of rationalizing a denominator as merely
an exercise without much purpose, although it is clearly easier to divide by
an integer than an irrational number. Naturally, they are given applications
that show a need for this technique, but somehow these applications usu-
ally do not convince students of the usefulness of the procedure. There are
applications (albeit, somewhat dramatic) that drive home the usefulness
argument quite nicely.

Consider the following series for which we are asked to find the sum:

1√
1+ √

2
+ 1√

2 + √
3

+ 1√
3+ √

4

+ · · · + 1√
2001+ √

2002
+ 1√

2002 + √
2003

Students are taught that they cannot do much with a fraction where the
denominator is irrational and so must seek to change it to an equivalent
fraction with a rational denominator. To do this, they know to multiply
the fraction by 1 so as not to change its value. Yet, the form that 1 should
take on is the conjugate of the current denominator in both the numerator
and the denominator.

The general term of this series may be written as 1√
k+√

k+1
.

We shall now rationalize the denominator of this fraction by multiplying
it by 1 in the form of

√
k−√

k+1√
k−√

k+1
to get

1√
k + √

k + 1
�
√

k − √
k + 1√

k − √
k + 1

=
√

k − √
k + 1

−1

That is, we have found

1√
k + √

k + 1
= √

k + 1− √
k

We can then rewrite the series as

�
√
2 − √

1� + �
√
3− √

2� + �
√
4 − √

3�

+ · · · + �
√
2002 − √

2001� + �
√
2003− √

2002�
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which then becomes simply

√
2003− 1 ≈ 44754888− 1 = 43754888

Students can readily see how rationalizing the denominator is not just
an exercise without purpose. It is useful, and here we have had a prime
example.

4.11 Pythagorean Triples

When the Pythagorean theorem is mentioned, one immediately recalls the
famous relationship: a2 + b2 = c2. Then while presenting the Pythagorean
theorem, teachers often suggest that students recognize (and memorize)
certain common ordered triples that can represent the lengths of the sides
of a right triangle. Some of these ordered sets of three numbers, known as
Pythagorean triples, are (3� 4� 5), (5� 12� 13), (8� 15� 17), and (7� 24� 25).
The student is asked to discover these Pythagorean triples as they come up
in selected exercises. How can one generate more triples without a guess-
and-test method? This question, often asked by students, will be answered
here and, in the process, will show some really nice mathematics, all too
often not presented to students. This is an unfortunate neglect that ought
to be rectified.

Ask your students to supply the number(s) that will make each a
Pythagorean triple:

1. (3� 4� __)
2. (7� __� 25)
3. (11� __� __)

The first two triples can be easily determined using the Pythagorean the-
orem. However, this method will not work with the third triple. At this
point, your students will be quite receptive to learning about a method to
discover the missing triple. So, with properly motivated students as your
audience, you can embark on the adventure of developing a method for
establishing Pythagorean triples.
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However, before beginning to develop formulas, we must consider a few
simple “lemmas” (these are “helper” theorems).

Lemma 1 When the square of an odd number is divided by 8, the
remainder is 1.

Proof We can represent an odd number by 2k + 1, where k is an integer.
The square of this number is

�2k + 1�2 = 4k2 + 4k + 1 = 4k�k + 1� + 1

Since k and k + 1 are consecutive, one of them must be even. Therefore,
4k�k + 1� must be divisible by 8. Thus, �2k + 1�2, when divided by 8,
leaves a remainder of 1.

The next lemmas follow directly.

Lemma 2 When the sum of two odd square numbers is divided by 8, the
remainder is 2.

Lemma 3 The sum of two odd square numbers cannot be a square
number.

Proof Since the sum of two odd square numbers, when divided by 8,
leaves a remainder of 2, the sum is even, but not divisible by 4. It therefore
cannot be a square number.

We are now ready to begin our development of formulas for Pythagorean
triples. Let us assume that �a� b� c� is a primitive Pythagorean triple. This
implies that a and b are relatively prime.∗ Therefore, they cannot both be
even. Can they both be odd?

If a and b are both odd, then, by Lemma 3, a2 + b2 �= c2. This contradicts
our assumption that �a� b� c� is a Pythagorean triple; therefore, a and b
cannot both be odd. Therefore, one must be odd and one even.

∗ Relatively prime means that they do not have any common factors aside from 1.
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Let us suppose that a is odd and b is even. This implies that c is also
odd. We can rewrite a2 + b2 = c2 as

b2 = c2 − a2

b2 = �c + a��c − a�

Since the sum and the difference of two odd numbers are even, c +a = 2p
and c − a = 2q (p and q are natural numbers).

By solving for a and c, we get

c = p + q and a = p − q

We can now show that p and q must be relatively prime. Suppose p and
q were not relatively prime; say g > 1 was a common factor. Then g
would also be a common factor of a and c. Similarly, g would also be a
common factor of c + a and c − a. This would make g2 a factor of b2,
since b2 = �c + a��c − a�. It follows that g would then have to be a factor
of b. Now if g is a factor of b and also a common factor of a and c,
then a, b, and c are not relatively prime. This contradicts our assumption
that (a� b� c) is a primitive Pythagorean triple. Thus, p and q must be
relatively prime.

Since b is even, we may represent b as

b = 2r

But

b2 = �c + a��c − a�

Therefore,

b2 = �2p��2q� = 4r2 or pq = r2

If the product of two relatively prime natural numbers (p and q) is the
square of a natural number (r), then each of them must be the square of
a natural number.
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Therefore, we let p = m2 and q = n2, where m and n are natural numbers.
Since they are factors of relatively prime numbers (p and q), they (m and
n) are also relatively prime.

Since a = p − q and c = p + q, it follows that a = m2 − n2 and c =
m2 + n2.

Also, since b = 2r and b2 = 4r2 = 4pq = 4m2n2, b = 2mn.

To summarize, we now have formulas for generating Pythagorean triples:

a = m2 − n2 b = 2mn c = m2 + n2

The numbers m and n cannot both be even, since they are relatively prime.
They cannot both be odd, for this would make c = m2 + n2 an even
number, which we established earlier as impossible. Since this indicates
that one must be even and the other odd, b = 2mn must be divisible
by 4. Therefore, no Pythagorean triple can be composed of three prime
numbers. This does not mean that the other members of the Pythagorean
triple may not be prime.

Let us reverse the process for a moment. Consider relatively prime num-
bers m and n (where m > n), where one is even and the other odd.

We will now show that (a� b� c) is a primitive Pythagorean triple where
a = m2−n2, b = 2mn, and c = m2+n2. It is simple to verify algebraically
that (m2 − n2�2 + �2mn�2 = �m2 + n2�2, thereby making it a Pythagorean
triple. What remains is to prove that (a� b� c) is a primitive Pythagorean
triple.

Suppose a and b have a common factor h > 1. Since a is odd, h must
also be odd. Because a2 + b2 = c2� h would also be a factor of c. We also
have h a factor of m2 − n2 and m2 + n2 as well as of their sum, 2m2, and
their difference, 2n2.

Since h is odd, it is a common factor of m2 and n2. However, m and n
(and as a result, m2 and n2) are relatively prime. Therefore, h cannot be
a common factor of m and n. This contradiction establishes that a and b
are relatively prime.
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Having finally established a method for generating primitive Pythagorean
triples, students should be eager to put it to use. The table below gives
some of the smaller primitive Pythagorean triples.

Pythagorean Triples
m n a b c

2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 3 7 24 25
5 2 21 20 29
5 4 9 40 41
6 1 35 12 37
6 5 11 60 61
7 2 45 28 53
7 4 33 56 65
7 6 13 84 85

A fast inspection of the above table indicates that certain primitive
Pythagorean triples (a� b� c) have c = b + 1. Have students discover the
relationship between m and n for these triples.

They should notice that for these triples m = n + 1. To prove this will be
true for other primitive Pythagorean triples (not in the table), let m = n+1
and generate the Pythagorean triples.

a = m2 − n2 = �n + 1�2 − n2 = 2n + 1

b = 2mn = 2n�n + 1� = 2n2 + 2n

c = m2 + n2 = �n + 1�2 + n2 = 2n2 + 2n + 1

Clearly, c = b + 1, which was to be shown!

A natural question to ask your students is to find all primitive Pythagorean
triples that are consecutive natural numbers. In a method similar to that
used above, they ought to find that the only triple satisfying that condition
is (3� 4� 5).
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Students should have a far better appreciation for Pythagorean triples and
elementary number theory after completing this unit. Other investigations
that students may wish to explore are presented below.

1. Find six primitive Pythagorean triples that are not included in the table.
2. Prove that every primitive Pythagorean triple has one member that is

divisible by 3.
3. Prove that every primitive Pythagorean triple has one member that is

divisible by 5.
4. Prove that for every primitive Pythagorean triple the product of its

members is a multiple of 60.
5. Find a Pythagorean triple (a� b� c), where b2 = a + 2.



5 Geometric Wonders

This chapter is larger than the others since the visual effect of geometry
lends itself to entertaining students at various levels. Most of the units can
be used by students at the pre-geometry-course level. Those that appear
to require some level of geometric sophistication can also be treated in a
more elementary fashion. Once you become familiar with the scope of this
chapter, you will be in a better position to select and modify appropriate
units for your class.

There are a number of units that demonstrate the beautiful concept of an
invariant in geometry. What that means is that, in some situations, critical
aspects of a figure remain constant even when other parts are changed.
These invariants can be nicely demonstrated on the computer with the help
of the Geometer’s Sketchpad program. For example, the perpendiculars
drawn to the three sides of a triangle from any point on its circumcircle
intersect the sides in three collinear points (Simson’s invariant). These
points will always be on a straight line. This invariant is just one of several
shown in this chapter.

There are several very entertaining proofs of the Pythagorean theorem, one
by paper folding, one extraordinarily simple, and one done by a former
U.S. president. There are units that will require the students to do some
activities, “moving” along a figure, paper folding, and exposing some
extraordinary properties/phenomena.

The chapter is full of unusual geometric properties, all pointing to the
beauty of the subject matter. It is for you to present the material in
the most interesting way possible. This will, of course, depend in large
measure on your personality and your taste for the delights of the geo-
metric menu offered here.

123
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5.1 Angle Sum of a Triangle

Students are often “told” that the sum of (the measures of) the angles of a
triangle is 180�. This by no means ensures that they know what that really
means and consequently it doesn’t etch a lasting mark in their memory.
This basis for Euclidean geometry ought to be genuinely understood by
all. Most people know that when they make one complete revolution, that
represents 360�. There is nothing sacrosanct about this measure, other than
it is generally accepted and so used.

So now how does the angle sum of a triangle relate to this? The simplest
and perhaps the most convincing way to demonstrate this angle sum is to
tear the three vertices from a paper triangle and place them together to
form a straight line. This straight line represents one-half of a complete
revolution, hence, the 180�.

It is perhaps more elegant to use a folding procedure. Students should be
told to cut a conveniently large scalene triangle from a piece of paper.
They should then fold one vertex so that it touches the opposite side and
so that the crease is parallel to that side. (See Figure 5.1).

Figure 5.1
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Figure 5.2

Figure 5.3

A

B
C

D
E

F

M

Figure 5.4
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They should then fold the remaining two vertices to meet the first vertex
at a common point (Figure 5.2). Students will notice that the three angles
of the triangle together form a straight line, and hence have an angle sum
of 180� (Figure 5.3).

However, it is also nice to show why this folding procedure has the ver-
tices meet at a point on the side of the triangle. Establishing this phe-
nomenon is tantamount to proving the theorem of the angle sum of a
triangle.

The proof of this theorem follows directly from the paper-folding exer-
cise. By folding the top vertex along a parallel crease (i.e., DE � BC),
AF⊥ED at M . Since MF � AM , or M is the midpoint of AF , D and
E are midpoints of AB and AC, respectively, since a line parallel to one
side of a triangle (either �BAF or �CAF ) and bisecting a second side
�AF 	 of the triangle also bisects the third side. It is then easy to show
that since AD � DF , DB � DF and similarly EF � EC, so that the
folding over of vertices B and C would fit at F , forming a straight line

along
←→
BFC (Figure 5.4, p. 125).

The most important part of this unit is to convince your students that
a paper-folding exercise can be quite valid in demonstrating a prop-
erty. Mention the difference between a paper-folding demonstration and a
proof.

5.2 Pentagram Angles

The pentagram is one of the favorite figures in geometry. It contains the
Golden Ratio, when it is a regular pentagram, and in that shape it adorns
our flag 50 times!

Most students know that the sum of the angles of a triangle is 180� and
a quadrilateral’s angles have a sum of 360�. But what is the sum of the
angles of a pentagram? Although easily provable, we shall assume that all
pentagrams have the same angle sum. This implies that we ought to be
able to get the answer by finding the angle sum of a regular pentagram and
then simply generalize it to all pentagrams. Students ought to be able to
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“stumble” on this angle sum once they have been able to find the measure
of one vertex angle, not very difficult since the angles are all congruent
and there is lovely symmetry throughout.

However, suppose we didn’t make this connection and were simply trying
to get the angle sum of an “ugly” pentagram, such as the one below.

A

D

B

E

C

We could determine this by placing a pencil on AC in the direction point-
ing at A and rotating it through ∠A, so that it is now on AD pointing at A.
Then rotate it through ∠D so that it is now on BD pointing at B. Then
rotate it through ∠B so that it is now on BE pointing at B. Then rotate it
through ∠E so that it is now on EC pointing at C. Lastly, rotate it through
∠C so that it is now on AC pointing at C, which is the opposite direction
of its starting position. Therefore, the pencil reversed its direction, which
is the same thing as a rotation of 180�, implying that the angle sum of the
pentagram (through which the pencil was rotated, angle by angle) is 180�.

A

D

B

E

C
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A

D

B

E

C

A

D

B

E

C

Again, notice how, through the sequence of angle moves, the pencil’s
direction changed by 180�.



130 Math Wonders to Inspire Teachers and Students

For those who feel more comfortable with a geometric “proof,” the fol-
lowing demonstration is provided. Note that we are accepting the notion
that the angle sum of the “corners” of a pentagram is the same for all pen-
tagrams. Since the type of pentagram was not specified, we can assume
the pentagram to be regular, or that it is one, which is inscribable in a
circle (i.e., all of its vertices lie on the circle). In either case, we notice
that each of the angles is now an inscribed angle of the circle, and so has
half the measure of the intercepted arc (see below).

A
C

E

B

D

Consequently, we obtain the following:

m∠A = 1
2
m
�
CD (this reads “the measure of angle A

equals one-half the measure of arc CD”)

m∠B = 1
2
m
�
ED

m∠C = 1
2
m
�
AE

m∠D = 1
2
m
�
AB

m∠E = 1
2
m
�
BC
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If we add these equalities, we obtain

m∠A + m∠B + m∠C + m∠D + m∠E

= 1
2
m�

�
CD + �

ED + �
AE + �

AB + �
BC	

= 1
2


 360� = 180�

That is, the sum (of the measures) of the angles of a pentagram is one-half
the degree measure of a circle, or 180�. Again, note that there was no loss
of generality by allowing the nonspecified pentagram to assume a more
useful configuration.

5.3 Some Mind-Bogglers on �

From early exposure to mathematics, students become familiar with �.
As the most popular formulas in elementary mathematics (and those that
seem to stick with us long after we really know what they mean) are 2�r
and �r2, many students begin to lose sight of what � means and may
need some reminding. The best way to accomplish this is to show them
something a bit dramatic. Perhaps starting with the following “experi-
ment” would do the trick.

Take a tall and narrow cylindrical drinking glass. Ask a student if the
circumference is greater than or less than the height. The glass should be
chosen so that it would “appear” to have a longer height than its circum-
ference. (The typical tall narrow drinking glass fits this requirement.) Now
ask the student how he/she might test his/her conjecture (aside from using
a piece of string). Recall for him/her that the formula for the circumfer-
ence of a circle is C = �d (� times the diameter). He/she may recall that
� = 3�14 is the usual approximation, but we’ll be even more crude and
use � = 3. Thus, the circumference will be 3 times the diameter, which
can be easily “measured” with a stick or a pencil and then marked off 3
times along the height of the glass. Usually, you will find that the circum-
ference is longer than the tall glass, even though it does not “appear” to
be so. This little optical trick is useful to demonstrate the value of �.
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Now for a real “mindblower”! To appreciate the next revelation on �, you
need to know that virtually all the books on the history of mathematics
state that in its earliest manifestation in history, namely the Bible (Old
Testament), its value is given as 3. Yet recent “detective work” shows
otherwise.∗

Students always relish the notion that a hidden code can reveal long
lost secrets. Such is the case with the common interpretation of the value
of � in the Bible. There are two places in the Bible where the same
sentence appears, identical in every way except for one word, spelled dif-
ferently in the two citations. The description of a pool or fountain in King
Solomon’s temple is referred to in the passages that may be found in 1
Kings 7:23 and 2 Chronicles 4:2 and that read as follows:

And he made the molten sea of ten cubits from brim to brim, round in compass, and the
height thereof was five cubits; and a line of thirty cubits did compass it round about.

The circular structure described here is said to have a circumference of
30 cubits and a diameter of 10 cubits. (A cubit is the length of a person’s
fingertip to his elbow.) From this, we notice that the Bible has � = 30

10 = 3.

This is obviously a very primitive approximation of �. A late-18th-century
rabbi, Elijah of Vilna (Poland), one of the great modern biblical scholars,
who earned the title “Gaon of Vilna” (meaning brilliance of Vilna), came
up with a remarkable discovery, one that could make most history of
mathematics books faulty if they say that the Bible approximated the value
of � as 3. Elijah of Vilna noticed that the Hebrew word for “line measure”
was written differently in each of the two biblical passages mentioned
above.

In 1 Kings 7:23, it was written as , whereas in 2 Chronicles 4:2 it
was written as . Elijah applied the biblical analysis technique (still used
today) called gematria, where the Hebrew letters are given their appropriate
numerical values according to their sequence in the Hebrew alphabet, to
the two spellings of the word for “line measure” and found the following.

∗ Alfred S. Posamentier and Noam Gordon, “An Astounding Revelation on the History of �,”
Mathematics Teacher, Vol. 77, No. 1, Jan. 1984, p. 52.
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The letter values are = 100, = 6, and = 5. Therefore, the spelling
for “line measure” in 1 Kings 7:23 is = 5 + 6 + 100 = 111, while
in 2 Chronicles 4:2 the spelling = 6 + 100 = 106. He then took the
ratio of these two values: 111

106 = 1�0472 (to four decimal places), which
he considered the necessary correction factor, for when it is multiplied
by 3, which is believed to be the value of � stated in the Bible, one gets
3.1416, which is � correct to four decimal places! “Wow!” is a usual
reaction. Such accuracy is quite astonishing for ancient times. To support
this notion, have students take string to measure the circumference and
diameter of several circular objects and find their quotient. They will most
likely not get near this four-place accuracy. Moreover, to really push the
point of the high degree of accuracy of four decimal places, chances are
if you took the average of all the students’ � measurements, you still
probably wouldn’t get to four-place accuracy.

5.4 The Ever-Present Parallelogram

Have each of your students draw an ugly (i.e., any shaped) quadrilateral.
Then have them (very carefully) locate the midpoints of the four sides of
the quadrilateral. Now have them join these points consecutively. Every-
one’s drawing should have resulted in a parallelogram. Wow! How did
this happen? Everyone began (most likely) with a different-shaped quadri-
lateral. Yet everyone ended up with a parallelogram.

Here are a few possible results:
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A question that ought to be asked at this point is how might the original
quadrilateral have been shaped for the parallelogram to be a rectangle,
rhombus, or square?

Either through guess and check or by an analysis of the situation, stu-
dents should discover the following: When the diagonals of the original
quadrilateral are perpendicular, the parallelogram is a rectangle.

When the diagonals of the original quadrilateral are congruent, then the
parallelogram is a rhombus.
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When the diagonals of the original quadrilateral are congruent and per-
pendicular, then the parallelogram is a square.

For the teacher who wishes to demonstrate this for the class, the Geome-
ter’s Sketchpad software is highly recommended. For the teacher who
wishes to prove that all of the above is “really true,” a short proof out-
line is provided, one that should be within easy reach for a high school
geometry student.

Proof Outline The proof is based on a simple theorem that states that a
line segment joining the midpoints of two sides of a triangle is parallel to
and half the length of the third side of the triangle. This is precisely what
happens here.

In �ADB, the midpoints of sides AD and AB are F and G, respectively.

Therefore, FG � DB and FG = 1
2BD, and EH � DB and EH = 1

2BD.

Therefore, FG � EH and FG = EH . This establishes that FGHE is a
parallelogram (see p. 136).
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Furthermore, if the diagonals, DB and AC, are congruent (as above), then
the sides of the parallelogram must also be congruent, since they are each
one-half the length of the diagonals of the original quadrilateral. This
results in a rhombus.

Similarly, if the diagonals of the original quadrilateral are perpendicular
and congruent, then since the sides of the parallelogram are, in pairs,
parallel to the diagonals and half their length, the adjacent sides of the
parallelogram must be perpendicular and congruent to each other, making
it a square.
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5.5 Comparing Areas and Perimeters

Comparing areas and perimeters is a very tricky thing. A given perimeter
can yield many different areas. You might use a string and form different-
shaped rectangles with it. This would allow you to show your students
how a fixed perimeter can generate a variety of different areas. Let’s take,
for example, rectangles of perimeter 20. As seen below, they may have
very different areas.

6

4

9

1

5

5

A B

CD

H I

K J
P Q

RS

With a perimeter of 20, the area of rectangle ABCD is 24.
With a perimeter of 20, the area of rectangle HIJK is 9.
With a perimeter of 20, the area of rectangle PQRS is 25.

It can be shown that the maximum area of a rectangle with a fixed perime-
ter is the one with equal length and width, that is, a square.

It is interesting to compare areas of similar figures. We will consider
circles.

Suppose you have four equal pieces of string. With the first piece of
string, one circle is formed. The second piece of string is cut into two
equal parts and two congruent circles are formed. The third piece of
string is cut into three equal pieces and three congruent circles are formed.
In a similar way, four congruent circles are formed from the fourth piece
of string. Note that the sum of the circumferences of each group of con-
gruent circles is the same (see p. 138 for illustration).
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P R R

Q Q Q S S S S

Percentage
of area

of circle P
represented
by the sum

Sum of Each Sum of of the areas
Each circle’s the circles’ circle’s the circles’ of the smaller

Circle Diameter circumference circumferences area areas circles

P 12 12� 12� 36� 36� 100
R 6 6� 12� 9� 18� 50
Q 4 4� 12� 4� 12� 331

3
S 3 3� 12� 2.25� 9� 25

An inspection of the above chart shows that the sum of the circumferences
for each group of circles is the same yet the sum of the areas is quite
different. The more circles we formed with the same total length of string,
the smaller the total area of the circles. Just what you would not expect
to happen!

That is, when two equal circles were formed, the total area of the two
circles was one-half that of the large circle. Similarly, when four equal
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circles were formed, the total area of the four circles was one-fourth of
the area of the large circle.

This seems to go against one’s intuition. Yet if we consider a more extreme
case, with say 100 smaller equal circles, we would see that the area of
each circle becomes extremely small and the sum of the areas of these
100 circles is one-hundredth of the area of the larger circle.

Have students explain this rather disconcerting concept. It ought to give
them an interesting perspective on comparison of areas.

5.6 How Eratosthenes Measured
the Earth

Measuring the earth today is not terribly difficult, but thousands of years
ago this was no mean feat. Remember, the word “geometry” is derived
from “earth measurement.” Therefore, it is appropriate to consider this
issue in one of its earliest forms. One of these measurements of the cir-
cumference of the earth was made by the Greek mathematician, Eratos-
thenes, about 230 b.c. His measurement was remarkably accurate, having
less than a 2% error. To make this measurement, Eratosthenes used the
relationship of alternate-interior angles of parallel lines.

As librarian of Alexandria, Eratosthenes had access to records of calendar
events. He discovered that at noon on a certain day of the year, in a
town on the Nile called Syene (now called Aswan), the sun was directly
overhead. As a result, the bottom of a deep well was entirely lit and a
vertical pole, being parallel to the rays hitting it, cast no shadow.

At the same time, however, a vertical pole in the city of Alexandria did
cast a shadow. When that day arrived again, Eratosthenes measured the
angle (∠1 in the figure on page 140) formed by such a pole and the ray
of light from the sun going past the top of the pole to the far end of the
shadow. He found it to be about 7�12′, or 1

50 of 360�.
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Sun's rays Sun
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(Aswan)

center

Alexandria

1

1

Earth

Assuming the rays of the sun to be parallel, he knew that the angle at the
center of the earth must be congruent to ∠1, and hence must also measure
approximately 1

50 of 360�. Since Syene and Alexandria were almost on
the same meridian, Syene must be located on the radius of the circle,
which was parallel to the rays of the sun. Eratosthenes thus deduced that
the distance between Syene and Alexandria was 1

50 of the circumference
of the earth. The distance from Syene to Alexandria was believed to be
about 5,000 Greek stadia. A stadium was a unit of measurement equal
to the length of an Olympic or Egyptian stadium. Therefore, Eratosthenes
concluded that the circumference of the earth was about 250,000 Greek
stadia, or about 24,660 miles. This is very close to modern calculations.
So how’s that for some real geometry! Your students should be able to
appreciate this ancient use of geometry.



Geometric Wonders 141

5.7 Surprising Rope Around the Earth

This unit will show your students that their intuition cannot always be
trusted. This unit will surprise (or even shock) them. As always, take time
to understand the situation and then try to grapple with it. Only then will
the conclusion have its dramatic effect.

Consider the globe of the earth with a rope wrapped tightly around the
equator. The rope will be about 24,900 miles long. We now lengthen the
rope by exactly 1 yard. We position this (now loose) rope around the
equator so that it is uniformly spaced off the globe. Will a mouse fit under
the rope?

The traditional way to determine the distance between the circumferences
is to find the difference between the radii. Let R be the length of the
radius of the circle formed by the rope (circumference C + 1) and r the
length of the radius of the circle formed by the earth (circumference C).

Earth

Rope
r R
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The familiar circumference formulas give us

C = 2�r or r = C

2�

and

C + 1 = 2�R or R = C + 1
2�

We need to find the difference of the radii, which is

R − r = C + 1
2�

− C

2�
= 1

2�
≈ 0�159 yards ≈ 5�7 inches

Wow! There is a space of more than 51
2 inches for a mouse to crawl

under.

Your students must really appreciate this astonishing result. Imagine, by
lengthening the 24,900-mile rope by 1 yard, it lifted off the equator about
51

2 inches!

Now for an even more elegant solution. This unit lends itself to a very
powerful problem-solving strategy that may be called considering extreme
cases.

Have students consider the original problem mentioned above. They
should realize that the solution was independent of the circumference of
the earth, since the end result did not include the circumference in the
calculation. It only required calculating 1

2� .

Here is a really nifty solution using an extreme case.

Suppose the inner circle (on the previous page) is very small, so small
that it has a zero-length radius (that means it is actually just a point). We
were required to find the difference between the radii, R− r = R− 0 = R.

So all we need to find is the length of the radius of the larger circle and
our problem will be solved. With the circumference of the smaller circle
now 0, we apply the formula for the circumference of the larger circle:

C + 1 = 0 + 1 = 2�R� then R = 1
2�
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This unit has two lovely little treasures. First, it reveals an astonishing
result, clearly not to be anticipated at the start, and, second, it provides
your students with a nice problem-solving strategy that can serve as a
useful model for future use.

5.8 Lunes and Triangles

Begin by reminding students that a lune is a crescent-shaped figure (such
as that in which the moon often appears) formed by two circular arcs.
You ought to take a moment to point out to the students that the area of
a circle is not typically commensurate with the areas of rectilinear fig-
ures. A case in point is one of the so-called “Three Famous Problems of
Antiquity,” namely, squaring the circle. That means we have now proved
it impossible to construct a square (with unmarked straightedge and com-
passes) equal in area to a given circle. However, we shall provide you
with a delightfully simple example where a circular area is equal to the
area of a triangle.

Let’s first recall the Pythagorean theorem. It stated the following:

The sum of the squares of the legs of a right triangle is equal to
the square of the hypotenuse.

This can be stated a bit differently with the same effect.

The sum of the squares on the legs of a right triangle is equal to
the square on the hypotenuse.

We can take this a step further.

The sum of the areas of the squares on the legs of a right triangle
is equal to the area of the square on the hypotenuse.

As a matter of fact, we can easily show that the square can be replaced
by any similar figures drawn on the sides of a right triangle:

The sum of the areas of the similar polygons on the legs of a right
triangle is equal to the area of the similar polygon on the hypotenuse.
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This can then be restated for the specific case of semicircles (which are,
of course, similar) to read:

The sum of the areas of the semicircles on the legs of a right triangle
is equal to the area of the semicircle on the hypotenuse.

Thus, for the figure below, we can say that the areas of the semicircles
relate as follows:

AreaP = AreaQ + AreaR

R

Q

P

T

A

C
B

Suppose we now flip semicircle P over the rest of the figure (using AB
as its axis). We would get a figure as shown below.

J2

J1
T

L2

L1

C

A

B
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Let us now focus on the lunes formed by the two semicircles. We mark
them L1 and L2.

J2

J1 T

L2

L1

C

A

B

Earlier we established that

AreaP = AreaQ + AreaR

In the figure above, that same relationship can be written as follows:

Area J1+Area J2+Area T =Area L1+Area J1+Area L2+Area J2

If we subtract Area J1 + Area J2 from both sides, we get the astonishing
result:

Area T = Area L1 + Area L2

That is, we have a rectilinear figure (the triangle) equal to some nonrecti-
linear figures (the lunes).
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5.9 The Ever-Present Equilateral Triangle

One of the most astonishing relationships in Euclidean geometry is a theo-
rem first published by Frank Morley (writer Christopher Morley’s father).
In 1904, he discussed it with his colleagues at Cambridge University, yet
didn’t publish it until 1924, while he was in Japan. To really appreciate
the beauty of this theorem, you would be best off examining it with the
Geometer’s Sketchpad program. We will do the best we can to appreci-
ate it here on these pages. Don’t allow students to get confused with the
trisection of an angle using an unmarked straightedge and a pair of com-
passes (which is impossible) and merely trisecting an angle with other
tools.

The theorem states the following:

The adjacent angle trisectors of any triangle intersect at three
points determining an equilateral triangle.

Let us look at the following figure.

F

E

D

A

B

C
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Notice how the points D, E, and F are the intersection points of the adja-
cent trisectors of the angles of �ABC� and �DEF is an equilateral trian-
gle. Wow! This equilateral triangle evolved by beginning with any shaped
triangle. Drawing on the Geometer’s Sketchpad allows you to change the
shape of the original �ABC and observe that each time �DEF remains
equilateral, although of different size.

The following figures demonstrate a few variations that you can create
on the Geometer’s Sketchpad to witness this amazing relationship. This is
truly one of the most dramatic (i.e., surprising) relationships in geometry
and should be presented that way. Be cautioned, the proof is one of the
most difficult in Euclidean geometry.∗

F

E

D

A

B

C

∗ Several proofs can be found in A. S. Posamentier and C. T. Salkind, Challenging Problems in
Geometry (New York: Dover, 1996), pp. 158–161.
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5.10 Napoleon’s Theorem

At the beginning of the typical high school geometry course, things don’t
get interesting until students get to establish (and, of course, prove) trian-
gles congruent. Even then, most of the exercises are rather dry and routine.
There is, however, one relationship that can be proved with the barest
minimum of geometry knowledge, yet appears to be deceptively difficult
to prove. This may sound like a contradiction, but you will see what it
entails. It’s actually rewarding to prove and the result of the proof, that
is, the theorem that is established, is extraordinarily powerful, with lots of
extensions. In other words, to do the proof can be fun (or at least generate
a feeling of accomplishment), but the real nice “stuff” comes once we can
work with the results.

The theorem bears the name of Napoleon, but today’s historians instead
credit one of Napoleon’s military engineers.

The theorem states that the segments joining each vertex of a given trian-
gle (of any shape) with the remote vertex of the equilateral triangle (drawn
externally on the opposite side of the given triangle) are congruent.

O

F

E

D

BC

A

Figure 5.10a

That is, when �ADC��BCE, and �ABF are equilateral, AE, BD, and
CF are congruent to one another (Figure 5.10a). Your students should
take note of the unusual nature of this situation, since we started with
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any triangle and still this relationship holds true. If each of your stu-
dents were to draw an original triangle, each would come up with the
same conclusion. Either straight edge and compasses or the Geome-
ter’s Sketchpad would be fine for this; however, the latter would be
better.

Before we embark on the adventures that this theorem holds, it may be
helpful to give your students a hint as to how to prove this theorem. The
trick is to identify the proper triangles to prove congruent. They are not
easy to identify. One pair of these triangles is shown in Figure 5.10b.
These two congruent triangles will establish the congruence of AE and
BD. The other segments can be proved congruent in a similar way with
another pair of congruent triangles, embedded in the figure as these are.

O

D

F

E

C
B

A

Figure 5.10b

There are quite a few most unusual properties in this figure. For example,
your students probably paid little attention to the notion that the three seg-
ments AE, BD, and CF are also concurrent. This concept is not explored
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much in the typical high school geometry course. Yet, they ought not take
this for granted. It must be proved, but for our purposes we shall accept
it without proof.∗

Not only is point O a common point for the three segments, but it is also
the only point in the triangle where the sum of the distances to the vertices
of the original triangle is a minimum. This is often called the minimum
distance point of the triangle ABC.

As if this weren’t enough, this point, O, is the only point in the triangle
where the sides subtend equal angles (Figure 5.10c). That is, m∠AOC =
m∠COB = m∠BOA = 120�.

120 ̊

120 ̊120 ̊

A

B
C

O

Figure 5.10c

There is more! Have your students locate the center of each of the three
equilateral triangles. They can do this in a variety of ways: Find the point
of intersection of the three altitudes, medians, or angle bisectors. Joining
these center points reveals that an equilateral triangle appears (see Fig-
ure 5.10d). Remember, we began with just any randomly drawn triangle
and now all of these lovely properties appear.

∗ For a proof of this theorem and its extensions, see A. S. Posamentier, Advanced Euclidean
Geometry: Excursions for Secondary Teachers and Students (Emeryville, CA: Key College Press,
2002), Chapter 4.
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Figure 5.10d

With a computer geometry program, such as the Geometer’s Sketchpad,
you can see that, regardless of the shape of the original triangle, the above
relationships all hold true. The question you might ask your students is
what would they expect to happen if point C were to be on AB, thereby
collapsing the original triangle. See Figure 5.10e.
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Figure 5.10e
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Lo and behold, our equilateral triangle is preserved. Perhaps even more
astonishing (if anything could be) is the generalization of this theorem.
That is, suppose we constructed similar triangles, appropriately placed on
the sides of our randomly drawn triangle, and joined their centers (this
time we must be consistent as to which “centers” we choose to use—
centroid, orthocenter, incenter, etc.). The resulting figure will be similar
to the three similar triangles.

With the aid of a computer drawing program, students can see that all
that we said above about triangles drawn externally on the sides of our
randomly selected triangle can be extended to triangles drawn internally
as well.

5.11 The Golden Rectangle

When we talk about the beauty of mathematics, we could talk about that
which most artists think is the most beautiful rectangle. This rectangle,
often called the Golden Rectangle, has been shown by psychologists to be
the most aesthetically pleasing rectangle. It is often used in architecture
and art. For example, the Parthenon in Athens is based on the shape of a
Golden Rectangle. If we outline many figures in classical art, the Golden
Rectangle will predominate.
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Have students try to find some Golden Rectangles in their environment.

To construct a Golden Rectangle, begin with a square (see Figure 5.11a).
Locate the midpoint M of one side and make a circular arc with center
at M and radius length ME. Call the point D where the arc intersects←→
AF . Then erect a perpendicular to AD at D to meet ←→

BE at C. Rectangle
ABCD is a Golden Rectangle. This can be done with straightedge and
compasses, or students may be adept at using the Geometer’s Sketchpad
and then ought to be encouraged to use it.

C

DM F

B

A

E

Figure 5.11a
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Here is a nice extension of the Golden Rectangle. If we continuously
construct squares in the Golden Rectangle, as shown below (Figure 5.11b),
each resulting rectangle is a Golden Rectangle; that is, it is similar to the
original rectangle, since all Golden Rectangles are similar.

P

S R

K

LH Q

T

N J

G

DM F

B

A

E

Figure 5.11b

Remove square ABEF from Golden Rectangle ABGD to get Golden
Rectangle EGDF.
Remove square EGJN from Golden Rectangle EGDF to get Golden
Rectangle JDFN .
Remove square PJDT from Golden Rectangle JDFN to get Golden
Rectangle TFNP.
Remove square TFHQ from Golden Rectangle TFNP to get Golden
Rectangle HNPQ.
Remove square HNKL from Golden Rectangle HNPQ to get Golden
Rectangle KPQL.
Remove square KPRS from Golden Rectangle KPQL to get Golden
Rectangle SRQL.
And so on.
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Notice that each time a square is taken from a Golden Rectangle the
resulting rectangle is also a Golden Rectangle.

Once they have drawn the above figure, students ought to be encouraged
to draw quarter circular arcs, as shown in Figure 5.11c. The resulting
figure approximates a logarithmic spiral.
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Figure 5.11c

We can locate the vanishing point of the spiral by drawing the diagonals
of the two largest Golden Rectangles, as shown in Figure 5.11d.
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Figure 5.11d

Students who construct this figure accurately will see that BD and GF
contain the diagonals of the other Golden Rectangles as well. Moreover,
BD⊥GF .
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A similar spiral can be drawn by locating the centers of each of the squares
in succession from largest to smallest and drawing (see Figure 5.11e).
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A

Figure 5.11e

There is no end to the beauty of this rectangle!
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5.12 The Golden Section Constructed
by Paper Folding

There are many things in mathematics that are “beautiful,” yet sometimes
the beauty is not apparent at first sight. This is not the case with the
Golden Section, which ought to be beautiful at first sight, regardless of the
form in which it is presented. The Golden Section refers to the proportion
in which a line segment is divided by a point.

B P A

Simply, for the segment AB, the point P partitions (or divides) it into two
segments, AP and PB, such that

AP

PB
= PB

AB

This proportion, apparently already known to the Egyptians and the
Greeks, was probably first named the “Golden Section” or “sectio aurea”
by Leonardo da Vinci, who drew geometric diagrams for Fra Luca
Pacioli’s book, De Divina Proportione (1509), which dealt with this
topic.

There are probably endless beauties involving this Golden Section. One of
these is the relative ease with which one can construct the ratio by merely
folding a strip of paper.

Simply have your students take a strip of paper, say about 1–2 inches
wide, and make a knot. Then very carefully flatten the knot as shown
in the next figure. Notice the resulting shape appears to be a regular
pentagon, that is, a pentagon with all angles congruent and all sides the
same length.
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If the students use relatively thin translucent paper and hold it up to a
light, they ought to be able to see the pentagon with its diagonals. These
diagonals intersect each other in the Golden Section (see below).

Let’s take a closer look at this pentagon (Figure 5.12a). Point D divides
AC into the Golden Section, since

DC

AD
= AD

AC

We can say that the segment of length AD is the mean proportional between
the lengths of the shorter segment (DC) and the entire segment (AC).
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A

B C

D

HG

Figure 5.12a
For some student audiences, it might be useful to show what the value of
the Golden Section is. To do this, begin with the isosceles triangle ABC,
whose vertex angle has measure 36�. Then consider the bisector BD of
∠ABC (Figure 5.12b).

72°
36°

36°

36°

x

x

x

1

CB

A

D

Figure 5.12b
We find that m∠DBC = 36�. Therefore, �ABC ∼ �BCD. Let AD = x and
AB = 1. However, since �ADB and �DBC are isosceles, BC = BD =
AD = x.

From the similarity above,
1 − x

x
= x

1
This gives us

x2 + x − 1 = 0 and x =
√

5 − 1
2

(The negative root cannot be used for the length of AD.)
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We recall that
√

5 − 1
2

= 1
�

The ratio for �ABC of

side
base

= 1
x

= �

We therefore call this a Golden Triangle.

5.13 The Regular Pentagon That Isn’t

One of the more difficult constructions to do using unmarked straightedge
and compasses is the regular pentagon. There are many ways to do this
construction, none particularly easy. Your students might try to develop a
construction on their own, realizing that the Golden Section is very much
involved here.

For years, engineers have been using a method for drawing what appears
to be a regular pentagon; yet careful inspection will show that the con-
struction is a tiny bit irregular.∗ This method, which we will provide below,
was developed in 1525 by the famous German artist, Albrecht Dürer.

We refer to Fig 5.13a on page 162. Beginning with a segment AB, five
circles of radius AB are constructed as follows:

1. Circles with centers at A and B are drawn and intersect at Q and N .
2. Then the circle with center Q is drawn to intersect circles A and B at

points R and S, respectively.
3. QN intersects circle Q at P .
4.

−→
SP and −→

RP intersect circles A and B at points E and C, respectively.
5. Draw the circles with centers at E andC with radius AB to intersect atD.
6. The polygon ABCDE is (supposedly) a regular pentagon.

∗ For a discussion of where the error lies, see A. S. Posamentier and H. A. Hauptman, 101 Great
Ideas for Introducing Key Concepts in Mathematics (Thousand Oaks, CA: Corwin Press, 2001),
pp. 141–146.
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Figure 5.13a

Joining the points in order, we get the pentagon ABCDE in Figure 5.13b.
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Figure 5.13b
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Although the pentagon “looks” regular, the m∠ABC is about 22
60 of a

degree too large. That is, for ABCDE to be a regular pentagon, each angle
must measure 108�; instead, we have that m∠ABC ≈ 108�3661202�. You
might try to draw this with the Geometer’s Sketchpad or simply on the
chalkboard. It ought to be easy to draw this artwork, following the instruc-
tions provided.

5.14 Pappus’s Invariant

One of the lovely relationships in geometry occurs when something
remains true regardless of the shape of the figure. That is, we can draw
something from instructions given over the telephone, where the appear-
ance of the figure drawn will vary with each individual, but one part of it
will be common to all drawings. We call this an invariant. Such a situation
has been handed down to us by Pappus of Alexandria (ca. a.d. 300–350)
from his book, Collection, which is a compilation of most of what was
known in geometry at that time. Let us look at what he presents∗ and just
marvel at it.

You ought to try this with your class. Have students independently draw
the figure described below and then have them compare their resulting
diagrams.

Consider any two lines, each with three points located anywhere on the
lines. Then connect the points of the first line to those on the second line,
but do not connect the corresponding points. That is, don’t connect the
rightmost point on one line to the rightmost point on the other line or
don’t connect the two middle points.

∗ It is listed in the Collection as Lemma 13, proposition 139.
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g
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Figure 5.14

In Figure 5.14 we did just that. We marked the three points of intersection
G, H , and I . Now here is the amazing part: Regardless of how you drew
the original lines or where you located the points on the lines, the points
G, H , and I are always collinear (i.e., they lie on the same straight line)!∗∗

You might have your students either do their drawings on an overhead
transparency or on a computer drawing program so that the rest of the
class can see each student’s drawing.

∗∗ For a proof of Pappus’s theorem, see A. S. Posamentier, Advanced Euclidean Geometry: Excur-
sions for Secondary Teachers and Students (Emeryville, CA: Key College Press, 2002).
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5.15 Pascal’s Invariant

This unit is analogous to the unit on Pappus’ invariant in that it presents
a common feature to a rather liberally drawn figure (but holding to the
instructions). That is, students can draw something from instructions given
over the telephone, where the appearance of the figure drawn will vary
with each individual, but one part of it will be common to all draw-
ings. We call this an invariant. This invariant also has an interesting
history.

In 1640, at the age of 16, the famous mathematician Blaise Pascal pub-
lished a one-page paper titled Essay Pour les Coniques, which presents us
with a most insightful theorem. What he called mysterium hexagrammicum
states that the intersections of the opposite sides of a hexagon inscribed
in a conic section are collinear.∗ We shall use the most common conic
section, a circle.

Consider the hexagon ABCDEF inscribed in the circle (i.e., all its vertices
are on the circle). You might have your class try this independently, either
on paper or on a computer geometry program. The trick is to draw the
hexagon shape that will allow you to get intersections of opposite sides—
so don’t make the opposite sides parallel.

See Figure 5.15a to identify the pairs of opposite sides (extended) and
their intersections:

AB and DE intersect at point I .
BC and EF intersect at point H .
DC and FA intersect at point G.

∗ For a proof of Pascal’s theorem, see A. S. Posamentier, Advanced Euclidean Geometry: Excur-
sions for Secondary Teachers and Students (Emeryville, CA: Key College Press, 2002).
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Figure 5.15a

Here is a different-shaped hexagon inscribed in a circle (see Figure 5.15b).
Again notice that, regardless of the shape, the points of intersection of the
opposite sides of the hexagon meet at three points on a straight line (i.e.,
they are collinear).
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Figure 5.15b
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If you do it on a computer, say, using the Geometer’s Sketchpad, you can
actually see how, by changing the shape of the hexagon, the points G, H ,
and I always remain collinear. The amazing thing about this situation is
that it is independent of the shape of the hexagon. You can even distort
the hexagon so that it doesn’t look like a polygon anymore, and as long
as you keep track of what were the opposite sides, the above collinear-
ity will remain intact. Again, this is very easily and very dramatically
demonstrated with the Geometer’s Sketchpad.

In Figure 5.15c, you can identify the original hexagon only by referring
to the sides of the original one. The pairs of opposite sides and their
intersections are

AB and DE intersect at point I .
BC and EF intersect at point H .
DC and FA intersect at point G.

These intersection points, G, H , and I , are still collinear.

G

I

H

F
E

D

CA

B

Figure 5.15c

This truly amazing relationship can give us motivation to look into why
this behaves as it appears in the above illustrations.
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5.16 Brianchon’s Ingenius Extension
of Pascal’s Idea

This unit should be shown right after the previous one on Pascal’s invariant
since it is related to it by a relationship called duality. This may be a new
concept for most students, but is very easy to understand and lots of fun
to work with. It will be described a bit later in this unit. First, a bit of
history.

In 1806, at the age of 21, a student at the École Polytechnique, Charles
Julien Brianchon (1785–1864), published an article in the Journal de
L’École Polytechnique that was to become one of the fundamental contri-
butions to the study of conic sections in projective geometry. His devel-
opment led to a restatement of the somewhat forgotten theorem of Pascal
and its extension, after which Brianchon stated a new theorem, which later
bore his name. Brianchon’s theorem,∗ which states “In any hexagon cir-
cumscribed about a conic section, the three diagonals cross each other in
the same point,”∗∗ bears a curious resemblance to Pascal’s theorem, which
we presented in the preceding unit on Pascal’s invariant.

To fully appreciate the relationship between Pascal’s theorem and what
Brianchon discovered, it is best to first appreciate what the concept of
duality in mathematics is. Two statements are duals of one another when
all of the key words in the statements are replaced by their dual words.
For example, point and line are dual words, collinearity and concurrency
are duals, inscribed and circumscribed are duals, sides and vertices are
duals, and so on. You might have your students practice with a few simple
statements. Here is an example of the duality relationship. Notice how the
terms “point” and “line” have been interchanged.

Two points determine a line.
Two lines (intersecting, of course) determine a point.

∗ For a proof of Brianchon’s theorem, see A. S. Posamentier, Advanced Euclidean Geometry:
Excursions for Secondary Teachers and Students (Emeryville, CA: Key College Press, 2002).
∗∗ Source Book in Mathematics, edited by D. E. Smith (New York: McGraw–Hill, 1929), p. 336.
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Below you will see Pascal’s theorem restated and next to it Brianchon’s
theorem. Notice that the underlined words in Pascal’s statement are
replaced by their duals forming Brianchon’s statement. Thus, they are, in
fact, duals of one another.

Pascal’s Theorem Brianchon’s Theorem
The points of intersection of the
opposite sides of a hexagon
inscribed in a conic section are
collinear.

The lines joining the oppo-
site vertices of a hexagon
circumscribed about a conic
section are concurrent.

In Figure 5.16a, the hexagon ABCDEF is circumscribed about the circle.
As with Pascal’s theorem, we shall consider only the conic section that is
a circle. According to Brianchon’s statement, the lines containing opposite
vertices are concurrent. Your students can easily experiment with different-
shaped circumscribed hexagons to verify that it is true. Again, we see that
the simplicity of this figure and its result makes for its beauty.

F

E

D

C

B

A

Figure 5.16a

Right after stating his theorem, he suggested that if points A, F , and E
were to be moved so that they would be collinear, with vertex F becoming
a point of tangency, and thereby forming a pentagon, the same statement
could be made. That is, since pentagon ABCDE is circumscribed about a
circle, then CF�AD, and BE are concurrent (see Figure 5.16b).
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Figure 5.16b

You are encouraged to demonstrate this wonderful relationship with the
Geometer’s Sketchpad to get the full dramatic effect.

5.17 A Simple Proof of the
Pythagorean Theorem

One of the most celebrated relationships in mathematics is the Pythag-
orean theorem. Why is this so much in the minds of adults, who usually
remember this above all else learned in school mathematics? Could this be
because we usually refer to the theorem with the first three letters of the
alphabet, and it is like learning your ABCs? Whatever makes it popular,
it still requires a proof for us to be able to accept it as a theorem. This
unit presents a very simple proof that you might want to use instead of
the one usually provided in the textbook. Because it is rather simple, you
may want to present it out of context a bit earlier than usual. You must
be cautioned that it does depend on a theorem about the chord of a circle
that must be presented first.

Clearly, the Pythagorean theorem is the basis for much of geometry and
all of trigonometry. For this reason, be careful about discovering a new
proof to make sure that it is not based on a relationship established by the
Pythagorean theorem itself. Such is the case with trigonometry. No proof
of the Pythagorean theorem can use trigonometric relationships because
they are based on the Pythagorean theorem—a clear case of circular rea-
soning. Students should be clear on what is meant by circular reasoning.
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Now to the proof. It is very simple, but it is based on a theorem that states
that when two chords intersect in the circle, the product of the segments
of one chord is equal to the product of the segments of the other chord.
In the figure below, this would mean that for the two intersecting chords:
p 
 q = r 
 s.

s

q

r
p

Now consider the circle with diameter AB perpendicular to chord CD:

c+b

a

c
b

c-b

a

c

DC

A

O

B

E

From the theorem stated above, �c − b	�c + b	 = a2. Then c2 − b2 = a2

and, therefore, a2 + b2 = c2. The Pythagorean theorem is proved again.
Although there have been many proofs after its publication, a nice collec-
tion of 370 proofs of the Pythagorean theorem is by Elisha S. Loomis.∗
This is a lovely resource for all mathematics teachers.

∗ A classic source for 370 proofs of the Pythagorean theorem is E. S. Loomis, The Pythagorean
Proposition (Reston, VA: NCTM, 1968).
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5.18 Folding the Pythagorean Theorem

You are now about to embark on a unit that will surely win favor among
your students. They ought to appreciate this if for no other reason than
they will be able to “see” the Pythagorean theorem before them. After
all the struggles students go through to prove the Pythagorean theorem,
imagine that we will now prove this famous theorem by simply folding a
piece of paper. Your first thought might be, why didn’t my teachers ever
show me this when I was in school? A good question, but perhaps that
is one of the reasons many adults need to be convinced that mathematics
is beautiful and holds many delights. So here is an opportunity to show
your students a beauty they are not likely to forget.

We can extend from the statement of the Pythagorean theorem:

The sum of the squares on the legs of a right triangle is equal to
the square on the hypotenuse of the triangle.

By replacing the word “squares” with “areas of similar polygons,” to read:

The sum of the areas of similar polygons on the legs of a right tri-
angle is equal to the area of the similar polygon on the hypotenuse
of the triangle.

This replacement can be shown to be correct and holds true for any similar
polygons appropriately (correspondingly) placed on the right triangle’s
sides.

Consider the following right triangle with altitude CD. Figure 5.18a shows
this with three triangular flaps folded over the �ABC. The flaps are
�ABC, �ADC, and �BDC. Each student should be working along with
you as you develop this demonstration.
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D

B
C

A

Figure 5.18a

Notice that �ADC ∼ �CDB ∼ �ACB. In Figure 5.18a, �ADC and
�CDB are folded over �ACB. So clearly Area �ADC + Area �CDB =
Area �ACB. If we unfold the triangles (including the �ACB itself), we
get the following (see Figure 5.18b) that shows that the relationship of the
similar polygons (here right triangles) is the extension of the Pythagorean
theorem:

The sum of the areas of similar right triangles on the legs of a right
triangle is equal to the area of the similar right triangle on the
hypotenuse of the triangle.

This essentially “proves” the Pythagorean theorem by paper folding!

P'

Q'

Q'

Q

P'
P

C'

D'

D'' D

C

B

A

Figure 5.18b
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5.19 President Garfield’s
Contribution to Mathematics

You can begin by asking your class what the following three men have
in common: Pythagoras, Euclid, and James A. Garfield (1831–1881), the
20th president of the United States.

After some moments of perplexity, you can relieve the class of their frus-
tration by telling them that all three fellows proved the Pythagorean the-
orem. The first two bring no surprise, but President Garfield? He wasn’t
a mathematician. He didn’t even study mathematics. As a matter of fact,
his only study of geometry, some 25 years before he published his proof
of the Pythagorean theorem, was informal and alone.∗

While a member of the House of Representatives, Garfield, who enjoyed
“playing” with elementary mathematics, came upon a cute proof of this
famous theorem. It was subsequently published in the New England Jour-
nal of Education after being encouraged by two professors (Quimby and
Parker) at Dartmouth College, where he went to give a lecture on March 7,
1876. The text begins with

In a personal interview with General James A. Garfield, Member of Congress from Ohio,
we were shown the following demonstration of the pons asinorum,∗∗ which he had hit upon
in some mathematical amusements and discussions with other M.C.’s. We do not remember
to have seen it before, and we think it something on which the members of both houses can
unite without distinction of party.

By this time, students are probably motivated to see what a nonmathemati-
cian U.S. president could possibly have done with this famous theorem.
Garfield’s proof is actually quite simple and therefore can be consid-
ered “beautiful.” We begin the proof by placing two congruent right
triangles (�ABE � �DCE	 so that points B, C, and E are collinear, as

∗ In October 1851, he noted in his diary that “I have today commenced the study of geometry
alone without class or teacher.”
∗∗ This would appear to be a wrong reference, since we usually consider the proof that the base

angles of an isosceles triangle are congruent as the pons asinorum, or “bridge of fools.”
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shown in Figure 5.19, and that a trapezoid is formed. Notice also that
since m∠AEB + m∠CED = 90�, m∠AED = 90�, making �AED a right
triangle.

a

c

c

a

b

b

B

C

A

D

E

Figure 5.19

The area of the trapezoid = 1
2
(sum of bases)(altitude)

= 1
2
�a + b	�a + b	

= 1
2
a2 + ab + 1

2
b2

The sum of the areas of the three triangles (also the area of the trapezoid)

= 1
2
ab + 1

2
ab + 1

2
c2

= ab + 1
2
c2
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We now equate the two expressions for the area of the trapezoid

1
2
a2 + ab + 1

2
b2 = ab + 1

2
c2

1
2
a2 + 1

2
b2 = 1

2
c2

which is the familiar a2 + b2 = c2, the Pythagorean theorem.

There are more than 400 proofs∗ of the Pythagorean theorem available
today; many are ingenious, yet some are a bit cumbersome. However, none
will ever use trigonometry. Why is this? An astute student will tell you
that there can be no proof of the Pythagorean theorem using trigonometry,
since trigonometry depends (or is based) on the Pythagorean theorem.
Thus, using trigonometry to prove the very theorem on which it depends
would be circular reasoning. Encourage your students to discover a new
proof of this most famous theorem.

5.20 What Is the Area of a Circle?

Students are often “told” that the area of a circle is found by the formula
A = �r2. Too often, they are not given an opportunity to discover where
this formula may have come from or how it relates to other concepts they
have learned. It is not only entertaining, but also instructionally sound, to
have the formula evolve from previously learned concepts. Assuming that
the students are aware of the formula for finding the area of a parallelo-
gram, this unit presents a nice justification for the formula for the area of
a circle.

∗ A classic source for 370 proofs of the Pythagorean theorem is E. S. Loomis, The Pythagorean
Proposition (Reston, VA: NCTM, 1968).



Geometric Wonders 177

Begin by drawing a conveniently sized circle on a piece of cardboard.
Divide the circle into 16 equal arcs. This may be done by marking off
consecutive arcs of 22.5� or by consecutively dividing the circle into two
parts, then four parts, then bisecting each of these quarter arcs, and so on.

These sectors, shown above, are then cut apart and placed in the manner
shown in the figure below.

This placement suggests that we have a figure that approximates a par-
allelogram. That is, were the circle cut into more sectors, then the fig-
ure would look even more like a true parallelogram. Let us assume it
is a parallelogram. In this case, the base would have length 1

2C, where
C = 2�r (r is the radius). The area of the parallelogram is equal to the
product of its base and altitude (which here is r). Therefore, the area of
the parallelogram is � 1

2C	r = 1
2�2�r	�r	 = �r2, which is the commonly
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known formula for the area of a circle. This should certainly impress your
students to the point where this area formula begins to have some intuitive
meaning.

5.21 A Unique Placement of Two Triangles

Most of the geometry that we study in school is not dependent on the
placement of the figures. Students are not concerned with where two tri-
angles are placed; rather they are concerned with their relative shape:
congruent, similar, or equal in area. That is, they can be placed anywhere
on the plane (a sheet of paper) as long as their relationship is held intact.
Usually where they are placed in relation to other figures is not consid-
ered. There is a very important relationship that we will inspect since it
has some remarkable results. This relationship actually forms the basis for
a branch of geometry called projective geometry and was discovered in
1648 by Gérard Desargues (1591–1661).

We are going to consider two triangles, whose “corresponding vertices”
we will designate with the same letter and that will also determine their
corresponding sides. This is important to keep in mind as we move along.
The two triangles are going to be situated in a very specific manner,
and their shape (or relative shape) is of no real concern to us. This is
quite different from the kind of thinking used in the high school study of
geometry.

We will be placing any two triangles in a position that will enable the
three lines joining corresponding vertices to be concurrent. Remarkably
enough, when this is achieved, the pairs of corresponding sides meet in
three collinear points. Let’s see how this looks in a more formal setting.

Desargues’s Theorem If �A1B1C1 and �A2B2C2 are situated so that

the lines joining the corresponding vertices,
←→
A1A2,

←→
B1B2, and

←→
C1C2,

are concurrent, then the pairs of corresponding sides intersect in three
collinear points.
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In Figure 5.21, the lines joining the corresponding vertices,
←→
A1A2,

←→
B1B2,

and
←→
C1C2, all meet at P . The extensions of the corresponding sides meet

at points A′, B′, and C ′ as follows:

Lines
←→
B2C2 and

←→
B1C1 meet at A′.

Lines
←→
A2C2 and

←→
A1C1 meet at B′.

Lines
←→
B2A2 and

←→
B1A1 meet at C ′.

1

2

2

1

2

1

C' B'A'

C

B

A

C

B

A

P

Figure 5.21

This is truly remarkable, but to make it even more astonishing, the con-
verse is also true. Namely, if �A1B1C1 and �A2B2C2 are situated so that
the pairs of corresponding sides intersect in three collinear points, then

the lines joining the corresponding vertices,
←→
A1A2,

←→
B1B2, and

←→
C1C2, are

concurrent. For the teacher who wishes to pursue this theorem further, it
is useful to know that it is a self-dual. That is, the dual∗ of the theorem
is the converse.∗∗

∗ See Unit 5.16 for a review of duality.
∗∗ The proof of the theorem can be found in A. S. Posamentier, Advanced Euclidean Geometry:
Excursions for Secondary Teachers and Students (Emeryville, CA: Key College Press, 2002).
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5.22 A Point of Invariant Distance
in an Equilateral Triangle

Equilateral triangles are the most symmetric triangles. The angle bisectors,
the altitudes, and the medians are all the same line segments. No other
triangle can boast this property. Their point of intersection is the center
of the inscribed and circumscribed circles, again a unique property. These
ought to be well-known properties. What is not well known is that if any
point is chosen in an equilateral triangle, the sum of the distances to the
sides of the triangle is constant. As a matter of fact, this sum is equal to
the length of the altitude of the triangle. Rather than simply present this
fact to your students, it would be advisable for them to experiment with
several points in an equilateral triangle. They should measure the distances
(perpendicular, of course) to each of the sides. They should notice that
the sum of the distances is the same for each selected point. Then by
measuring the length of the altitude of the triangle, they will find that
these distance sums are equal to the length of the altitude.

A very elegant (or somewhat sophisticated) method for verifying this is
by taking an “extreme” point. By taking “any point” to be at a vertex,
this can be easily established. Then the sum of the distances to two of the
sides is 0, leaving the distance to the third side as the sum. This distance
to the third side is simply the altitude.

We can show this in a number of more traditional ways.

We seek to prove: The sum of the distances from any point in the interior
of an equilateral triangle to the sides of the triangle is constant (the length
of the altitude of the triangle).

Here you can see an example of this with actual measurements (see
Figure 5.22a).

mPF = 3�38 cm

mPD = 0�88 cm

mPE = 1�39 cm

mPF + mPD+ mPE = 5�65 cm

mBG = 5�65 cm
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Figure 5.22a

Two proofs of this interesting property are provided here. The first com-
pares the length of each perpendicular segment to a portion of the altitude,
and the second involves area comparisons.

Proof I In equilateral �ABC, PR⊥AC, PQ⊥BC, PS⊥AB, and
AD⊥BC. Draw a line through P parallel to BC, meeting AD, AB, and
AC at G, E, and F , respectively (see Figure 5.22b).
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Figure 5.22b

Since PGDQ is a rectangle, PQ = GD. Draw ET ⊥AC. Since �AEF
is equilateral, AG � ET (all the altitudes of an equilateral triangle are
congruent). Draw PH �AC, meeting ET at N . NT � PR. Since �EHP
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is equilateral, altitudes PS and EN are congruent. Therefore, we have
shown that PS + PR = ET = AG. Since PQ = GD, PS + PR + PQ =
AG + GD = AD, a constant for the given triangle.

Proof II In equilateral �ABC, PR⊥AC, PQ⊥BC, PS ⊥AB, and
AD⊥BC. Draw PA, PB, and PC (see Figure 5.22c).

R

S

Q DB C

A

Figure 5.22c

Area �ABC = Area �APB+ Area �BPC + Area �CPA
= 1

2
�AB	�PS	 + 1

2
�BC	�PQ	 + 1

2
�AC	�PR	

Since AB = BC = AC, the area of �ABC = 1
2�BC	%PS + PQ + PR&.

However, the area of �ABC = 1
2�BC	�AD	. Therefore, PS + PQ+ PR =

AD, a constant for the given triangle.

Your students now have ample justification for this very interesting phe-
nomenon.
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5.23 The Nine-Point Circle

Perhaps one of the true joys in geometry is to observe how some seem-
ingly unrelated points are truly related to each other. We begin with the
very important notion that any three noncollinear points determine a circle.
When a fourth point also emerges on the same circle, it is quite note-
worthy. Yet when nine points all end up being on the same circle, that is
phenomenal! These nine points, for any given triangle, are

• The midpoints of the sides
• The feet of the altitudes
• The midpoints of the segments from the orthocenter to the vertices

Have your students do the necessary construction to locate each of these
nine points. Careful construction will allow them to be on the same cir-
cle. This circle is called the nine-point circle of the triangle. Unmarked
straightedge and compasses or the Geometer’s Sketchpad computer pro-
gram would be fine for this activity.

In 1765, Leonhard Euler showed that six of these points, the midpoints of
the sides and the feet of the altitudes, determine a unique circle. Yet not
until 1820, when a paper∗ published by Brianchon and Poncelet appeared,
were the remaining three points (the midpoints of the segments from the
orthocenter to the vertices) found to be on this circle. The paper contains
the first complete proof of the theorem and uses the name “the nine-point
circle” for the first time.

Theorem In any triangle, the midpoints of the sides, the feet of the
altitudes, and the midpoints of the segments from the orthocenter to the
vertices lie on a circle.

Proof To simplify the discussion of this proof, we shall consider each
part with a separate diagram. Bear in mind, though, that each of the Fig-
ures 5.23b–5.23e is merely an extraction from Figure 5.23a, which is the
complete diagram.

∗ Recherches sur la determination d’une hyperbole équilatèau moyen de quartes conditions don-
nées (Paris, 1820).
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Figure 5.23a

In Figure 5.23b, points A′, B′, and C ′ are the midpoints of the three sides
of �ABC opposite the respective vertices. CF is an altitude of �ABC.
Since A′B′ is a midline of �ABC, A′B′ �AB. Therefore, quadrilateral
A′B′C ′F is a trapezoid. B′C ′ is also a midline of �ABC, so that B′C ′ =
1
2BC. Since A′F is the median to the hypotenuse of right �BCF, A′F =
1
2BC. Therefore, B′C ′ = A′F and trapezoid A′B′C ′F is isosceles.

You will recall that when the opposite angles of a quadrilateral are sup-
plementary, as in the case of an isosceles trapezoid, the quadrilateral is
cyclic. Therefore, quadrilateral A′B′C ′F is cyclic.∗

So far, we have four of the nine points on one circle.

To avoid any confusion, we redraw �ABC (see Figure 5.23a) and include
altitude AD. Using the same argument as before, we find that quadrilateral
A′B′C ′D is an isosceles trapezoid and therefore cyclic. So we now have
five of the nine points on one circle (i.e., points A′, B′, C ′, F , and D).

By repeating the same argument for altitude BE, we can then state that
points D, F , and E lie on the same circle as points A′, B′, and C ′. These
six points are as far as Euler got with this configuration.

∗ A cyclic quadrilateral is one whose four vertices lie on the same circle.
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Figure 5.23b

With H as the orthocenter (the point of intersection of the altitudes), M
is the midpoint of CH (see Figure 5.23d). Therefore, B′M , a midline of
�ACH, is parallel to AH , or altitude AD. Since B′C ′ is a midline of
�ABC, B′C ′ �BC. Therefore, since ∠ADC is a right angle, ∠MB′C ′ is
also a right angle. Thus, quadrilateral MB′C ′F is cyclic (opposite angles
are supplementary). This places point M on the circle determined by
points B′, C ′, and F . We now have a seven-point circle.

We repeat this procedurewith pointL, themidpoint ofBH (seeFigure 5.23e).
As before, ∠B′A′L is a right angle, as is ∠B′EL. Therefore, points B′,
E, A′, and L are concyclic (opposite angles are supplementary). We now
have L as an additional point on our circle, making it an eight-point circle.

C'

B' A'

C

D

BA

Figure 5.23c
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Figure 5.23d

To locate our final point on the circle, consider point K, the midpoint
of AH . As we did earlier, we find ∠A′B′K to be a right angle, as is
∠A′DK. Therefore, quadrilateral A′DKB′ is cyclic and point K is on the
same circle as points B′, A′, and D. We have therefore proved that nine
specific points lie on this circle. This is not to be taken lightly; it is quite
spectacular!
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Figure 5.23e
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5.24 Simson’s Invariant

One of the great injustices in the history of mathematics involves
a theorem originally published by William Wallace in Thomas Ley-
bourn’s Mathematical Repository (1799–1800), which through careless
misquotes has been attributed to Robert Simson (1687–1768), a famous
English interpreter of Euclid’s Elements. To be consistent with the his-
toric injustice, we shall use the popular reference and call it Simson’s
theorem.

The beauty of this theorem lies in its simplicity. Begin by having your
students all draw a triangle with its vertices on a circle (something that
is always possible, since any three noncollinear points determine a circle)
and then they should select a point on the circle that is not at a vertex
of the triangle. From that point, they should draw a perpendicular line
to each of the three sides. The three points where these perpendiculars
intersect the sides (points X, Y , and Z in Figure 5.24 on the next page)
are always collinear (i.e., they lie on a straight line). Each accurate student
drawing should reflect this fact. The line that these three points determine
is often called the Simson line (further “injustice”!).

This can be more formally stated as follows.

Simson’s Theorem The feet of the perpendiculars drawn from any
point on the circumcircle of a triangle to the sides of the triangle are
collinear.

In Figure 5.24, point P is on the circumcircle of �ABC.
←→
PY ⊥ ←→

AC at

Y ,
←→
PZ ⊥ ←→

AB at Z, and
←→
PX ⊥ ←→

BC at X. According to Simson’s (i.e.,
Wallace’s) theorem, points X, Y , and Z are collinear. This line is usually
referred to as the Simson line.
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Figure 5.24

Because of the unconventional nature of the proof of this theorem, it is
offered here.

Proof ∗ Since ∠PYA is supplementary to ∠PZA, quadrilateral PZAY is
cyclic.∗∗ Draw PA� PB, and PC.

Therefore,

m∠PYZ = m∠PAZ (I)

Similarly, since ∠PYC is supplementary to ∠PXC, quadrilateral PXCY is
cyclic, and

m∠PYX = m∠PCB (II)

However, quadrilateral PACB is also cyclic, since it is inscribed in the
given circumcircle, and therefore

m∠PAZ = m∠PCB (III)

∗ For other proofs of Simson’s theorem, see A. S. Posamentier and C. T. Salkind, Challenging
Problems in Geometry (New York: Dover, 1996), pp. 43–45.
∗∗ A quadrilateral whose opposite angles are supplementary is cyclic; that is, its vertices all lie

on the same circle.
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From (I)–(III), m∠PYZ = m∠PYX, and thus points X, Y , and Z are
collinear.

This invariant is beautifully demonstrated with the Geometer’s Sketchpad.
There students would draw the figure and then, by moving the point on
the circle to various positions, they can observe how the collinearity is
preserved under all positions of the point P . Dynamic geometry of this
kind can go a long way to impress your students and win them over
toward a love for mathematics.

5.25 Ceva’s Very Helpful Relationship

One of the most neglected topics in high school geometry is the concept
of concurrency. In many cases, it is taken for granted. Oftentimes, we just
“know” that the altitudes of a triangle are concurrent; that is, they contain a
common point of intersection. Similarly, we often take for granted that the
medians of a triangle are concurrent, or the same for the angle bisectors
of a triangle. The topic of concurrency of lines in a triangle deserves
more attention than it usually gets in an elementary geometry course.
To put these assumptions to rest, we must establish an extremely useful
relationship. This will be done with the help of the famous theorem first
published∗ by the Italian mathematician Giovanni Ceva (1647–1734) and
which now bears his name.

In simple terms, the relationship that Ceva established says that if you
have three concurrent line segments (AL, BM , and CN ), joining a vertex
of a triangle with a point on the opposite side, then the products of the
alternate segments along the sides are equal. In Figure 5.25a, you can see
this, noting that the products of the alternate segments along the sides of
the triangle are equal: AN 
 BL 
 CM = NB 
 LC 
 MA.

∗ De lineis se invicem secantibus statica constructio (Milan, 1678).
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P

A

B CL

M

N

Figure 5.25a

This can be more formally stated as follows.

Ceva’s Theorem∗ The three lines containing the vertices A, B, and C
of �ABC and intersecting the opposite sides at points L, M , and N ,
respectively, are concurrent if and only if

AN

NB

 BL
LC


 CM
MA

= 1

or AN 
 BL 
 CM = NB 
 LC 
 MA.

P

L

M

N

CB

A

P

L

M

N

CB

A

Figure 5.25b

There are two possible situations in which the three lines drawn from the
vertices may intersect the sides and still be concurrent (see Figure 5.25b).

∗ The proof of Ceva’s Theorem is beyond the focus of this book, but can be found in A. S.
Posamentier Advanced Euclidean Geometry (Emeryville, CA: Key College Publishing, 2002), pp.
27–31.
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It is perhaps easier to understand the left side diagram, and verify the
theorem with the right side diagram.

Now having “accepted” this theorem for use, let’s see how simple it is to
prove some of the earlier mentioned relationships.

We shall begin with the task of proving that the medians of a triangle
are concurrent. Normally (i.e., without the help of Ceva’s theorem), this
would be a very difficult proof to do, and therefore it is often omitted from
the typical high school course. Now observe how simple it is to prove this
concurrency.

Proof In �ABC, (Figure 5.25c) AL, BM , and CN are medians. There-
fore, AN = NB, BL = LC, and CM = MA. Multiplying these equalities
gives us

�AN	�BL	�CM	 = �NB	�LC	�MA	 or
AN

NB

 BL
LC


 CM
MA

= 1

Thus, by Ceva’s theorem, AL, BM , and CN are concurrent.

M
P

L

N

CB

A

Figure 5.25c

Again, it would be advisable to compare the conventional proof (that
presented in the context of elementary geometry) for the concurrency of
the altitudes of a triangle to the following proof, using Ceva’s theorem.
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We will prove that the altitudes of a triangle are concurrent using Ceva’s
theorem.

H

H

A

B
C

N

L

M
A

B C

N

L

M

Figure 5.25d

Proof In �ABC, (Figure 5.25d) AL, BM , and CN are altitudes. You
may follow this proof for both of the above diagrams, since the same
proof holds true for both an acute and an obtuse triangle.

�ANC ∼ �AMB� so that
AN

MA
= AC

AB
(I)

�BLA ∼ �BNC� so that
BL

NB
= AB

BC
(II)

�CMB ∼ �CLA� so that
CM

LC
= BC

AC
(III)

Multiplying (I), (II), and (III) gives us

AN

MA
· BL
NB

· CM
LC

= AC

AB
· AB
BC

· BC
AC

= 1

This indicates that the altitudes are concurrent (by Ceva’s theorem).

Students should become familiar with this very powerful theorem, as it
can prove quite helpful in other similar situations.
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5.26 An Obvious Concurrency?

A fascinating point of concurrency in a triangle was first established by
Joseph-Diaz Gergonne (1771–1859), a French mathematician. Gergonne
reserved a distinct place in the history of mathematics as the initiator
(1810) of the first purely mathematical journal, Annales des mathéma-
tiques pures et appliqués. The journal appeared monthly until 1832 and
was known as Annales del Gergonne. During the time of its publication,
Gergonne published about 200 papers, mostly on geometry. Gergonne’s
Annales played an important role in the establishment of projective and
algebraic geometry as it gave some of the greatest minds of the times
an opportunity to share information. We will remember Gergonne for a
rather simple theorem that can be shown as follows.

Begin by having the students construct a circle inscribed in a given trian-
gle. This can be done by first locating the center of the circle, which is the
point of intersection of the angle bisectors of the triangle, and then finding
the perpendicular distance from the center to one of the sides. This gives
them the radius. Then fortified with the center of the circle and the length
of the radius, they can draw the inscribed circle. They now have a triangle
with a circle inscribed in it. The line segments joining the vertices of the
triangle with the three points of tangency should then be drawn, and, lo
and behold, they are concurrent.

To prove this relationship involving concurrency of lines in a triangle, we
can use Ceva’s theorem (see 5.25, p. 189).

Gergonne’s Theorem The lines containing a vertex of a triangle and
the point of tangency of the opposite side with the inscribed circle are
concurrent.
This point of concurrency is known as the Gergonne point of the triangle.

Proof In Figure 5.26, circle O is tangent to sides AB, AC, and BC at
points N , M , and L, respectively. It follows that AN = AM , BL = BN ,
and CM = CL. These equalities may be written as

AN

AM
= 1

BL

BN
= 1

CM

CL
= 1
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P

O

A

B

C

N

M

L

Figure 5.26

By multiplying these three fractions, we get

AN

AM

 BL
BN


 CM
CL

= 1

Therefore,

AN

BN

 BL
CL


 CM
AM

= 1

which, as a result of Ceva’s theorem (see Unit 5.25), implies that AL,
BM , and CN are concurrent. This point is the Gergonne point of �ABC.

Neat and (relatively) simple! Yet a fact not well known. These easy-to-
understand relationships make geometry fun.
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5.27 Euler’s Polyhedra

We often see geometric shapes in our daily comings and goings. Leonhard
Euler, in the 18th century, discovered a lovely relationship among the
vertices, faces, and edges of polyhedra (which are basically geometric
solids).

You might begin by having students find various polyhedra and count the
number of vertices (V ), faces (F ), and edges (E), make a chart of these
findings, and then search for a pattern. They ought to discover that for all
these figures the following relationship holds true: V + F = E + 2.

In the complete cube, the relationship holds true as 8 + 6 = 12 + 2.

If we pass a plane cutting all the edges of a trihedral angle of the poly-
hedron (i.e., a cube here), we separate one of the vertices from the rest of
the polyhedron. But, in the process, we add to the polyhedron one face,
three edges, and two new vertices. If V is increased by 2, F increased by
1, and E increased by 3, then V − E + F remains unchanged. That is,
V + F = E + 2 = �8 + 2	 + �6 + 1	 = �12 + 3	 + 2.

We can obtain a similar result for any polyhedral angle. The new poly-
hedron will have a new face with the same number of vertices as edges.
Since we lose one vertex but gain one face, there is no change in the
expression V − E + F .

We know the Euler formula applies to a tetrahedron (a “cut-off pyramid”:
V + F = E + 2 here is 4 + 4 = 6 + 2). From the above argument, we can
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conclude that it applies to any polyhedron that can be derived by passing
a plane that cuts off a vertex of a tetrahedron a finite number of times.
However, we would like it to apply to all simple polyhedra. In the proof,
we need to show that in regard to the value of the expression V −E + F ,
any polyhedron agrees with the tetrahedron. To do this, we need to discuss
a new branch of mathematics called topology.

Topology is a very general type of geometry. Establishment of Euler’s
formula is a topological problem. Two figures are topologically equivalent
if one can be made to coincide with the other by distortion, shrinking,
stretching, or bending, but not by cutting or tearing. A teacup and a dough-
nut are topologically equivalent. The hole in the doughnut becomes the
inside of the handle of the teacup. Have students give other examples of
topologically equivalent objects.

Topology has been called “rubber-sheet geometry.” If a face of a poly-
hedron is removed, the remaining figure is topologically equivalent to a
region of a plane. We can deform the figure until it stretches flat on a
plane. The resulting figure does not have the same shape or size, but its
boundaries are preserved. Edges will become sides of polygonal regions.
There will be the same number of edges and vertices in the plane figure
as in the polyhedron. Each face of the polyhedron, except the one that
was removed, will be a polygonal region in the plane. Each polygon not a
triangle can be cut into triangles, or triangular regions, by drawing diag-
onals. Each time a diagonal is drawn, we increase the number of edges
by 1 but we also increase the number of faces by 1. Hence, the value of
V − E + F is undisturbed.

Triangles on the outer edge of the region will have either one edge on
the boundary of the region, as �ABC in Figure 5.27, or have two edges on
the boundary, as �DEF. We can remove triangles like �ABC by removing
the one boundary side. In the figure, this is AC. This decreases the faces
by 1 and the edges by 1. Still, V −E + F is unchanged. If we remove the
other kind of boundary triangle, such as �DEF, we decrease the number
of edges by 2, the number of faces by 1, and the number of vertices by
1. Again, V − E + F is unchanged. This process can be continued until
one triangle remains.
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Figure 5.27

The single triangle has three vertices, three edges, and one face. Hence,
V −E+F = 1. Consequently, V −E+F = 1 in the plane figure obtained
from the polyhedron by distortion. Since one face had been eliminated,
we conclude that for the polyhedron

V − E + F = 2

This procedure applies to any simple polyhedron, even if it is not convex.
Can you see why it cannot be applied to a nonsimple polyhedron?

An alternate to the approach of distorting the polyhedron to a plane after
a face has been eliminated can be called “shrinking a face to a point.” If
a face is replaced by a point, we lose the n edges of the face and the n
vertices of the face, and we lose a face and gain a vertex (the point that
replaces the face). This leaves V − E + F unchanged. This process can
be continued until only four faces remain. Then any polyhedron has the
same value for V −E + F as does a tetrahedron. The tetrahedron has four
faces, four vertices, and six edges: 4 − 6 + 4 = 2.

This unit will give students a widely enriched outlook into geometric
shapes in three dimensions.



6 Mathematical
Paradoxes

A paradox or fallacy in mathematics generally results from a violation of
some rule or law of mathematics. This makes these paradoxes excellent
vehicles for presenting these rules, for their violation leads to some rather
“curious” results, such as 1 = 2, or 1 = 0, just absurd! They are clearly
entertaining since they very subtly lead the student to an impossible result.
Often the student becomes frustrated by the fact that every step to this
weird result seemed correct. This is quite motivating and will make the
conclusion that much more impressive.

Again, it is a fine source for investigating mathematical boundaries. Why
isn’t division by 0 permissible? Why isn’t the product of the radicals
always equal to the radical of the product? These are just a few of the
questions that this chapter entertainingly investigates. The “funny” results
are entertaining to expose and high in instructional value. Students are not
apt to violate rules that lead to some of these fallacies but they usually
make a lasting impression.

198
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6.1 Are All Numbers Equal?

The title of this charmer is clearly preposterous! But as you will see
from the demonstration below, such may not be the case. Present this
demonstration line by line and let students draw their own conclusions.

We shall begin with the easily accepted equation:

x − 1
x − 1

= 1

Each succeeding row can be easily justified with elementary algebra.
There is nothing wrong with the algebra. See if your students can find the
flaw.

For x = 1

x − 1
x − 1

= 1
0
0

= 1

x2 − 1
x − 1

= x + 1
0
0

= 1 + 1 = 2

x3 − 1
x − 1

= x2 + x + 1
0
0

= 1 + 1 + 1 = 3

x4 − 1
x − 1

= x3 + x2 + x + 1
0
0

= 1 + 1 + 1 + 1 = 4

���

xn − 1
x − 1

= xn−1 + xn−2 + · · · + x2 + x + 1
0
0

= 1 + 1 + 1 + · · · + 1 = n

When x = 1, the numbers 1� 2� 3� 4� � � � � n are each equal to 0
0 , which

would make them all equal to each other. Of course, this cannot be true.
For this reason, we define 0

0 to be meaningless. To define something to
make things meaningful or consistent is what we do in mathematics to
avoid ridiculous statements, as was the case here. Be sure to stress this
point with your students before leaving this unit.
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6.2 −1 Is Not Equal to +1
Your students should be aware of the notion that

√
6 = √

2 � √3, and then
they might conclude that

√
ab = √

a � √b.

From this, have your students multiply and simplify:
√−1 � √−1.

Some students will do the following to simplify this expression:√−1 � √−1 = √
�−1��−1� = √+1 = 1.

Other students may do the following with the same request:
√−1 � √−1 =(√−1

)2 = −1.

If both groups of students were correct, then this would imply that 1 = −1,
since both are equal to

√−1 � √−1. Clearly, this can’t be true!

What could be wrong? Once again, a “fallacy” appears when we violate
a mathematics rule. Here (for obvious reasons) we define that

√
ab =√

a � √b is only valid when at least one of a or b is nonnegative. This
would indicate that the first group of students who got

√−1 � √−1 =√
�−1��−1� = √+1 = 1 was wrong.
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6.3 Thou Shalt Not Divide by 0

Every math teacher knows that division by 0 is forbidden. As a matter of
fact, on the list of commandments in mathematics, this is at the top. But
why is division by 0 not permissible? We in mathematics pride ourselves
on the order and beauty in which everything in the realm of mathematics
falls neatly into place. When something arises that could spoil that order,
we simply define it to suit our needs. This is precisely what happens with
division by 0. You give students a much greater insight into the nature
of mathematics by explaining why “rules” are set forth. So let’s give this
“commandment” some meaning.

Consider the quotient n
0 , with n �= 0. Without acknowledging the division-

by-zero commandment, let us speculate (i.e., guess) what the quotient
might be. Let us say it is p. In that case, we could check by multiplying
0 � p to see if it equals n, as would have to be the case for the division to
be correct. We know that 0 � p �= n, since 0 � p = 0. So there is no number
p that can take on the quotient to this division. For that reason, we define
division by 0 to be invalid.

A more convincing case for defining away division by 0 is to show stu-
dents how it can lead to a contradiction of an accepted fact, namely, that
1 �= 2. We will show them that were division by 0 acceptable, then 1 = 2,
clearly an absurdity!

Here is the “proof” that 1 = 2:
Let a = b

Then a2 = ab (multiplying both sides by a)
a2 − b2 = ab − b2 (subtracting b2 from both sides)

�a − b��a + b� = b�a − b� (factoring)
a + b = b [dividing by (a − b)]

2b = b (replacing a by b)
2 = 1 (dividing both sides by b)

In the step where we divided by (a−b), we actually divided by 0, because
a = b, so a − b = 0. That ultimately led us to an absurd result, leaving
us with no option other than to prohibit division by 0. By taking the time
to explain this rule about division by 0 to your students, they will have a
much better appreciation for mathematics.
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6.4 All Triangles Are Isosceles

George Pólya, one of the great mathematicians of our time, said, “Geom-
etry is the science of correct reasoning on incorrect figures.” We will
demonstrate below that making conclusions based on “incorrect” figures
can lead us to impossible results. Even the statements of the fallacies
sound absurd. However, students will find the demonstration of proving
something that is absurd to be either frustrating or enchanting, depending
on the spin the teacher puts on it. Nevertheless, follow each statement of
the “proof” and see if you can detect the mistake. It rests on something
that Euclid in his Elements would not have been able to resolve because
of a lack of a definition.

The Fallacy Any scalene triangle (a triangle with three unequal sides)
is isosceles (a triangle having two equal sides).

To prove that scalene �ABC is isosceles, we must draw a few auxiliary
line segments. Draw the bisector of ∠C and the perpendicular bisector
of AB. From their point of intersection, G, draw perpendiculars to

←→
AC

and
←→
CB , meeting them at points D and F , respectively.

It should be noted that there are four possibilities for the above description
for various scalene triangles:

Figure 6.1, where
←→
CG and

←→
GE meet inside the triangle.

A B

C

D

E

F

G

Figure 6�1
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G

F

E

D

C

BA

Figure 6.2

Figure 6.2, where CG and GE meet on AB.

Figure 6.3, where CG and GE meet outside the triangle, but the perpen-
diculars GD and GF fall on AC and CB.

Figure 6.4, where CG and GE meet outside the triangle, but the perpen-
diculars GD and GF meet

−→
CA and

−→
CB outside the triangle.

A B

C

D

E

F

G

Figure 6.3
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A B

C

D

E F

G

Figure 6.4

The “proof” of the fallacy can be done with any of these figures. Follow
the “proof” on any (or all) of these figures.

Given �ABC is scalene.

Prove AC = BC (or �ABC is isosceles).

Proof Since ∠ACG� ∠BCG and right ∠CDG� right ∠CFG, �CDG�
�CFG (SAA). Therefore, DG = FG and CD = CF. Since AG = BG
(a point on the perpendicular bisector of a line segment is equidistant
from the endpoints of the line segment) and ∠ADG and ∠BFG are right
angles, �DAG � �FBG (hypotenuse leg). Therefore, DA = FB. It then
follows that AC = BC (by addition in Figures 6.1–6.3 and by subtraction
in Figure 6.4).

At this point, you may be somewhat disturbed, wondering where the
error was committed that permitted this fallacy to occur. By rigorous
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construction, you will find a subtle error in the figures:

a. The point G must be outside the triangle.
b. When perpendiculars meet the sides of the triangle, one will meet a

side between the vertices, while the other will not.

In the general terms used by Euclid, this dilemma would remain an
enigma, since the concept of betweenness was not defined in his Ele-
ments. In the following discussion, we shall prove that errors exist in the
fallacious proof above. Our proof uses Euclidean methods, but assumes a
definition of betweenness.

Begin by considering the circumcircle of �ABC (see Figure 6.5).

The bisector of ∠ACB must contain the midpoint G, of
�

AB (since ∠ACG
and ∠BCG are congruent inscribed angles). The perpendicular bisector of

AB must bisect
�

AB and therefore pass through G. Thus, the bisector of
∠ACB and the perpendicular bisector of AB intersect outside the triangle
at G. This eliminates the possibilities illustrated in Figures 6.1 and 6.2.

Now consider inscribed quadrilateral ACBG. Since the opposite angles
of an inscribed (or cyclic) quadrilateral are supplementary, m∠CAG +
m∠CBG = 180�. If ∠CAG and ∠CBG are right angles, then CG would

G

F

ED

C

BA

Figure 6.5
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be a diameter and �ABC would be isosceles. Therefore, since �ABC is
scalene, ∠CAG and ∠CBG are not right angles. In this case, one must be
acute and the other obtuse. Suppose ∠CBG is acute and ∠CAG is obtuse.
Then in �CBG the altitude on CB must be inside the triangle, while in
obtuse �CAG, the altitude on AC must be outside the triangle. (This is
usually readily accepted without proof, but can be easily proved.) The
fact that one and only one of the perpendiculars intersects a side of the
triangle between the vertices destroys the fallacious “proof.”

This rather thorough discussion of this famous geometric fallacy will give
the teacher lots of options as to how to best present it to a class. It must be
presented in an entertaining way and yet the explanation must be tailored
to the particular class. Some may require a rigorous explanation, while
others will be satisfied with one less formal.

6.5 An Infinite-Series Fallacy

Here is one that will leave many students somewhat baffled. Yet the
“answer” is a bit subtle and may be beyond the reach of some students to
whom you may be tempted to show this.

By ignoring the notion of a convergent series,∗ we get the following
dilemma:

Let

S = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · ·
= �1 − 1� + �1 − 1� + �1 − 1� + �1 − 1� + · · ·
= 0 + 0 + 0 + 0 + · · ·
= 0

∗ In simple terms, a series converges if it appears to be approaching a specific finite sum. For
example, the series 1 + 1

2 + 1
4 + 1

8 + 1
16 + 1

32 + · · · converges to 2, while the series 1 + 1
2 + 1

3 +
1
4 + 1

5 + 1
6 + · · · does not converge to any finite sum, but continues to grow indefinitely.
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However, were we to group this differently, we would get the following:

Let

S = 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + · · ·
= 1 − �1 − 1� − �1 − 1� − �1 − 1� − · · ·
= 1 − 0 − 0 − 0 − · · ·
= 1

Therefore, since S = 1 and S = 0, it would follow that 1 = 0. What’s
wrong with this argument?

If this hasn’t upset you enough, consider the following argument:

Let

S = 1 + 2 + 4 + 8 + 16 + 32 + 64 + · · · (1)

Here S is clearly positive.

Also,

S − 1 = 2 + 4 + 8 + 16 + 32 + 64 + · · · (2)

Now, by multiplying both sides of (1) by 2, we get

2S = 2 + 4 + 8 + 16 + 32 + 64 + · · · (3)

Substituting (2) into (3) gives us

2S = S − 1

from which we can conclude that S = −1.

This would have us conclude that −1 is positive, since we established
earlier that S was positive. What should students make of this weird result?
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Have them look back to see if there was any obvious error made. Actually,
the flaw here has to do with convergence.

To clarify the last fallacy, you might want students to compare the fol-
lowing correct form of a convergent series:

Let

S = 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

+ · · ·

We then have

2S = 2 + 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

+ · · ·

Then 2S = 2 + S, and S = 2, which is true. The difference lies in the
notion of a convergent series, as this last one is. What we did above for a
divergent series was not permissible.

6.6 The Deceptive Border

Have you ever been frustrated by a map book that forced you to turn to
the next map page, when the town you were searching for was “just off
the map?” Most of these map books, in order to appear attractive, place a
border around the map on each page. Have you ever wondered how much
space these borders take up?

It probably would be an eye-opener for students to discover this, but,
more important, it will make them more alert about the quantitative world
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around them. Let us consider a map book that has dimensions of 8 inches
by 10 inches. A modest border might be 1

2 inch in width and not be
considered obtrusive. Let us inspect that situation.

10

8

8

10

7

99

7

C

The area of the entire page is 80 square inches and the area of the map
is 63 square inches. Therefore, the area of the border region is 80 − 63 =
17 square inches. This happens to be

17
80

= 0�2125 = 21�25%

or more than one-fifth of the area of the page! Wouldn’t it be nice if
the “useless” borders did not take up over 20% of the map book? There
would then be fewer pages, and perhaps even a lower cost. But above all,
you wouldn’t have to turn the page to find your town that just got cut off
by the border.

What is essential here is to make students alert to the quantitative world
around them. There are lots of examples in everyday life that could pro-
voke this kind of astonishment.
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6.7 Puzzling Paradoxes

Paradoxes are fun to observe and yet have a very important message
embedded within them. There is much to be learned through this enter-
tainment.

Here are some paradoxes that will give you something to think about and
that will initially perplex your students. Let them ponder the difficulty,
when it arises, before enlightening them.

2 pounds = 32 ounces
1
2

pound = 8 ounces

By multiplying these equalities:

(
2 � 1

2

)
pounds = �32 � 8� ounces

or

1 pound = 256 ounces!

This paradox lies in the fact that the units were not treated properly and
can be best answered by considering the following example:

2 feet = 24 inches
1
2

foot = 6 inches

By multiplying, we get

1 square foot = 144 square inches

Another paradox is seen below:

1 � 0 = 2 � 0
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And we know that

0 = 0

Dividing these equalities, gives us

1 = 2

Here, of course, we see the familiar rule, not allowing us to divide by
zero, being broken and thus leading us to an absurd result.

The messages of each of these paradoxes should remain clear for your
students.

6.8 A Trigonometric Fallacy

The basis for trigonometry is the Pythagorean theorem. In trigonometry, it
often manifests itself as cos2 x + sin2 x = 1. Students should know that if a
right triangle has sides of lengths sin x, cos x, and 1, then the trigonometric
functions hold and the Pythagorean theorem yields cos2 x + sin2 x = 1.

From this, we can show that 4 = 0. It is to be assumed that your students
know this cannot be true. So it is up to them to find the fallacy as it is
made. Don’t expose it until they reach the end of the unit.

The Pythagorean identity can be written as

cos2 x = 1 − sin2 x

If they take the square root of each side of this equation, they get

cos x = �1 − sin2 x�1/2

Tell them to add 1 to each side of the equation to get

1 + cos x = 1 + �1 − sin2 x�1/2
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Then they are to square both sides:

�1 + cos x�2 = [
1 + �1 − sin2 x�1/2

]2

Ask them to find the value of this when x = 180�:

cos 180� = −1 and sin 180� = 0

Substituting into the above equation gives them:

�1 − 1�2 = [
1 + �1 − 0�1/2

]2

Then

0 = �1 + 1�2 = 4

Since 0 �= 4, there must be some error. Where is it? Here is a hint you
can give them:

When x2 = p2, then x = +p and x = −p.

Students should realize that a quadratic equation must have two roots.
Sometimes a root is rejected in context since it may lead to an absurd
result.



Mathematical Paradoxes 213

6.9 Limits with Understanding

The concept of a limit is not to be taken lightly. It is a very sophisticated
concept that can be easily misinterpreted. Sometimes the issues surround-
ing the concept are quite subtle. Misunderstanding of these can lead to
some curious (or humorous, depending on your viewpoint) situations. This
can be nicely exhibited with the following two illustrations. Consider them
separately and then notice their connection.

Illustration 1 It is simple to see that the sum of the lengths of the bold
segments (the “stairs”) is equal to a + b.

P 

a 

O b Q

The sum of the bold segments (“stairs”), found by summing all the hor-
izontal and all the vertical segments, is a + b. If the number of stairs
increases, the sum is still a + b. The dilemma arises when we increase
the stairs to a “limit,” so that the set of stairs appears to be a straight
line, in this case the hypotenuse of �POQ. It would then appear that
PQ has length a + b. Yet we know from the Pythagorean theorem that
PQ = √

a2 + b2 and not a + b. So what’s wrong?

Nothing is wrong! While the set consisting of the stairs does indeed
approach closer and closer to the straight line segment PQ, it does not
therefore follow that the sum of the bold (horizontal and vertical) lengths
approaches the length of PQ, contrary to intuition. There is no contradic-
tion here, only a failure on the part of our intuition.

Another way to “explain” this dilemma is to argue the following. As the
“stairs” get smaller, they increase in number. In an extreme situation, we
have zero-length dimensions (for the stairs) used an infinite number of
times, which then leads to considering 0 � �, which is meaningless!
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A similar situation arises with the following example.

Illustration 2 In the figure below, the smaller semicircles extend from
one end of the large semicircle’s diameter to the other.

a b c d eA B

It is easy to show that the sum of the arc lengths of the smaller semicircles
is equal to the arc length of the larger semicircle. That is, the sum of the
smaller semicircles

= �a

2
+ �b

2
+ �c

2
+ �d

2
+ �e

2
= �

2
�a + b + c + d + e� = �

2
�AB�

which is the arc length of the larger semicircle. This may not “appear” to
be true, but it is! As a matter of fact, as we increase the number of smaller
semicircles (where, of course, they get smaller), the sum “appears” to be
approaching the length of the segment AB, but, in fact, does not!

Again, the set consisting of the semicircles does indeed approach the
length of the straight line segment AB. It does not follow, however, that
the sum of the semicircles approaches the length of the limit, in this case
AB.

This “apparent limit sum” is absurd, since the shortest distance between
points A and B is the length of segment AB, not the semicircle arc AB
(which equals the sum of the smaller semicircles). This is an important
concept to present to students, best done with the help of these motivating
illustrations, so that future misinterpretations can be avoided.



7 Counting and
Probability

In today’s world, mathematically sophisticated ways of counting are
becoming an important aspect of what youngsters are expected to learn in
their mathematics instruction. Concepts of probability are being infused
into the curriculum more than ever before. Both of these have an enter-
taining side as well. It is that which we will savor here.

For example, did you know that the 13th of the month is most likely to
fall on a Friday, or have you considered the probability of two people in
your class sharing the same birthday? Perhaps one of the most controver-
sial topics for discussion several years ago was the ideal strategy that a
contestant on the TV show “Let’s Make a Deal” should use. These are
just a few of the topics presented in this chapter. It is short and sweet and,
we hope, also entertaining.
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7.1 Friday the 13th!

The number 13 is usually associated with being an unlucky number. Build-
ings with more than 13 stories typically will omit the number 13 from
the floor numbering. This is immediately noticeable in the elevator, where
there is sometimes no button for 13. You might ask your students for other
examples where the number 13 is associated with bad luck. They ought to
stumble on the notion that when the 13th of a month turns up on a Friday,
then it is particularly bad. This may derive from the belief that there were
13 people present at the Last Supper, which resulted in the crucifixion on
a Friday.

Ask your students if they think that the 13th comes up on a Friday with
equal regularity as on the other days of the week. They will be astonished
that, lo and behold, the 13th comes up more frequently on Friday than on
any other day of the week.

This fact was first published by B. H. Brown.∗ He stated that the Gregorian
calendar follows a pattern of leap years, repeating every 400 years. The
number of days in one 4-year cycle is 3 � 365 + 366. So in 400 years
there are 100�3 � 365 + 366� − 3 = 146�097 days. Note that the century
year, unless divisible by 400, is not a leap year; hence the deduction of 3.
This total number of days is exactly divisible by 7. Since there are 4,800
months in this 400-year cycle, the 13th comes up 4,800 times according to
the following table. Interestingly enough, the 13th comes up on a Friday
more often than on any other day of the week. Students might want to
consider how this can be verified.

Day of the week Number of 13s Percentage
Sunday 687 14.313
Monday 685 14.271
Tuesday 685 14.271
Wednesday 687 14.313
Thursday 684 14.250
Friday 688 14.333
Saturday 684 14.250

∗ “Solution to Problem E36,” American Mathematical Monthly, Vol. 40, 1933, p. 607.
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7.2 Think Before Counting

Very often a problem situation seems so simple that we plunge right
in without first thinking about a strategy to use. This impetuous begin-
ning for the solution often leads to a less elegant solution than one
that results from a bit of forethought. Here are two examples of simple
problems that can be made even simpler by thinking before working
on them.

Find all pairs of prime numbers whose sum equals 999.

Many students will begin by taking a list of prime numbers and trying
various pairs to see if they obtain 999 for a sum. This is obviously very
tedious as well as time consuming, and students would never be quite
certain that they had considered all the prime number pairs.

Let’s use some logical reasoning to solve this problem. In order to obtain
an odd sum for two numbers (prime or otherwise), exactly one of the
numbers must be even. Since there is only one even prime, namely 2,
there can be only one pair of primes whose sum is 999, and that pair is 2
and 997. That, now, seems so simple.

A second problem where preplanning, or some orderly thinking, makes
sense is as follows:

A palindrome is a number that reads the same forward and back-
ward, such as 747 or 1,991. How many palindromes are there
between 1 and 1,000 inclusive?

The traditional approach to this problem would be to attempt to write
out all the numbers between 1 and 1,000 and then see which ones are
palindromes. However, this is a cumbersome and time-consuming task at
best, and one could easily omit some of them.

Let’s see if we can look for a pattern to solve the problem in a more direct
fashion.
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Range Number of palindromes Total number
1–9 9 9

10 –99 9 18
100 –199 10 28
200 –299 10 38
300 –399 10 48

· · ·
· · ·
· · ·

There is a pattern. There are exactly 10 palindromes in each group of
100 numbers (after 99). Thus, there will be 9 sets of 10, or 90, plus the
18 from numbers 1 to 99, for a total of 108 palindromes between 1 and
1,000.

Another solution to this problem would involve organizing the data in a
favorable way. Consider all the single-digit numbers (self-palindromes),
which number 9. The two-digit palindromes (two same digits) also num-
ber 9. The three-digit palindromes have 9 possible “outside digits” and 10
possible “middle digits,” so there are 90 of these. In total, there are 108
palindromes between 1 and 1,000, inclusive.

Clever counting can often make work much easier. The motto is: Think
first, then begin a solution!
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7.3 The Worthless Increase

Present the following situation to your students.

Suppose you had a job where you received a 10% raise. Because
business was falling off, the boss was soon forced to give you a 10%
cut in salary. Will you be back to your starting salary?

The answer is a resounding (and very surprising) No!

Telling students this little story is quite disconcerting, since one would
expect that with the same percentage increase and decrease you should
be back to where you started. This is intuitive thinking, but wrong. Let
students convince themselves of this by choosing a specific amount of
money and trying to follow the instructions.

Begin with $100. Calculate a 10% increase on the $100 to get $110. Now
take a 10% decrease of this $110 to get $99—$1 less than the beginning
amount.

Students may wonder whether the result would have been different if we
had first calculated the 10% decrease and then the 10% increase. Using the
same $100 basis, we first calculate a 10% decrease to get $90. Then the
10% increase yields $99, the same as before. So order apparently makes
no difference.

A similar situation, one that is deceptively misleading, can be faced by a
gambler. Have your students consider the following situation. They may
want to even simulate it with a friend to see if their intuition bears out.

You are offered a chance to play a game. The rules are simple.
There are 100 cards, face down. Fifty-five of the cards say “win”
and 45 of the cards say “lose.” You begin with a bankroll of $10,000.
You must bet one-half of your money on each card turned over,
and you either win or lose that amount based on what the card
says. At the end of the game, all cards have been turned over. How
much money do you have at the end of the game?
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The same principle as above applies here. It is obvious that you will win
10 times more than you will lose, so it appears that you will end with
more than $10,000. What is obvious is often wrong, and this is a good
example. Let’s say that you win on the first card; you now have $15,000.
Now you lose on the second card; you now have $7,500. If you had first
lost and then won, you would still have $7,500. So every time you win
one and lose one, you lose one-fourth of your money. So you end up with

10�000 �
(
3
4

)45

�
(
3
2

)10

This is $1.38 when rounded off. Surprised? What reaction might you get
from your students?

7.4 Birthday Matches

This charmer presents one of the most surprising results in mathematics.
It is best that you present it to your class with as much “drama” as you
can. This unit will win converts to probability as no other example can,
since it combats the students’ intuition quite dramatically.

Let us suppose you have a class with about 35 students. Begin by asking
the class what they think the chances (or probability) are of two classmates
having the same birth date (month and day only) in their class of about
30+ students. Students usually begin to think about the likelihood of two
people having the same date out of a selection of 365 days (assuming no
leap year). Perhaps 2 out of 365?

Ask them to consider the “randomly” selected group of the first 35 pres-
idents of the United States. They may be astonished that there are two
with the same birth date:

the 11th President, James K. Polk (November 2, 1795)
the 29th President, Warren G. Harding (November 2, 1865)
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The class will probably be surprised to learn that for a group of 35 the
probability that two members will have the same birth date is greater than
8 out of 10, or 80%.

Students may wish to try their own experiment by visiting 10 nearby
classrooms to check on date matches. For groups of 30, the probability
that there will be a match is greater than 7 out of 10, or in 7 of these 10
rooms there ought to be a match of birth dates. What causes this incredible
and unanticipated result? Can this be true? It seems to go against our
intuition.

To relieve students of their curiosity, guide them as follows:

First, ask what the probability is that one selected student matches his
own birth date? Clearly, certainty, or 1. This can be written as 365

365 .

The probability that another student does not match the first student is

365 − 1
365

= 364
365

The probability that a third student does not match the first and second
students is

365 − 2
365

= 363
365

The probability of all 35 students not having the same birth date is the
product of these probabilities:

p = 365
365

� 365 − 1
365

� 365 − 2
365

� · · · � 365 − 34
365

Since the probability (q� that two students in the group have the same
birth date and the probability (p) that two students in the group do not
have the same birth date is a certainty, the sum of those probabilities must
be 1. Thus, p + q = 1.

In this case,

q = 1 − 365
365

� 365 − 1
365

� 365 − 2
365

� · · · � 365 − 33
365

� 365 − 34
365

≈ 0�8143832388747152
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In other words, the probability that there will be a birth date match in a
randomly selected group of 35 people is somewhat greater than 8

10 . This
is quite unexpected when one considers there were 365 dates from which
to choose. Students may want to investigate the nature of the probability
function. Here are a few values to serve as a guide:

Number of people Probability of a birth
in group date match

10 0.1169481777110776
15 0.2529013197636863
20 0.4114383835805799
25 0.5686997039694639
30 0.7063162427192686
35 0.8143832388747152
40 0.891231809817949
45 0.9409758994657749
50 0.9703735795779884
55 0.9862622888164461
60 0.994122660865348
65 0.9976831073124921
70 0.9991595759651571

Students should notice how quickly almost-certainty is reached. With
about 60 students in a room, the table indicates that it is almost certain
(0.99) that two students will have the same birth date.

Were one to do this with the death dates of the first 35 presidents, one
would notice that two died on March 8 (Millard Fillmore in 1874 and
William H. Taft in 1930) and three presidents died on July 4 (John Adams
and Thomas Jefferson in 1826 and James Monroe in 1831).

Above all, this astonishing demonstration should serve as an eye-opener
about the inadvisability of relying entirely on intuition.
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7.5 Calendar Peculiarities

The calendar holds many recreational ideas that can be exploited to turn
students on to mathematics—or at least to explore number relationships.

Consider any calendar page, say, October 2002.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Have students select a (3 by 3) square of any nine dates on the calendar.
We will select those shaded above. Students should add 8 to the smallest
number in the shaded region and then multiply by 9:

�9 + 8� � 9 = 153

Then have students multiply the sum of the numbers of the middle row
(51) of this shaded matrix by 3. Surprise! It is the same as the previously
arrived at answer, 153. But why? Here are some clues: The middle number
is the mean (or average) of the nine shaded numbers. The sum of the
numbers in the middle column is one-third of the sum of the nine numbers.
Their investigations will have favorable results.

Now that your students have an appreciation for the calendar, ask them
what the probability is of 4/4,∗ 6/6, 8/8, 10/10, and 12/12 all falling on
the same day of the week. More than likely the “knee-jerk reaction” will
be about one-fifth. Wrong! The probability is 1, certainty! But why this
surprising result? They are all exactly nine weeks apart. Such little known
facts always draw an interest that otherwise would be untapped.

∗ 4/4 represents April 4, 6/6 represents June 6, and so on.



224 Math Wonders to Inspire Teachers and Students

7.6 The Monty Hall Problem
(“Let’s Make a Deal”)

“Let’s Make a Deal” was a long-running television game show that fea-
tured a problematic situation. A randomly selected audience member
would come on stage and be presented with three doors. He was asked to
select one, hopefully the one behind which there was a car, and not one
of the other two doors, each of which had a donkey behind it. There was
only one wrinkle in this: After the contestant made his selection, the host,
Monty Hall, exposed one of the two donkeys behind a not-selected door
(leaving two doors still unopened) and the audience participant was asked
if he wanted to stay with his original selection (not yet revealed) or switch
to the other unopened door. At this point, to heighten the suspense, the
rest of the audience would shout out “stay” or “switch” with seemingly
equal frequency. The question is what to do? Does it make a difference?
If so, which is the better strategy (i.e., the greater probability of winning)
to use here?

You might have students speculate about what they think intuitively is the
best strategy. Most will probably say that there is no difference, since at
the end you have a one out of two chance of getting the car. Tell them
they are wrong, and then you will have a very curious audience in front
of you.

Let’s look at this now step by step. The result gradually will become clear.

There are two donkeys and one car behind these doors.

You must try to get the car. You select Door 3.

 1  2  3
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Monty Hall opens one of the doors that you did not select and exposes a
donkey.

1 2 3 Your original selection  

He asks, “Do you still want your first-choice door, or do you want to
switch to the other closed door ?”

To help make a decision, consider an extreme case:

Suppose there were 1,000 doors instead of just three doors.

1  2  3  4 997 998 999 1000…

You choose Door 1,000. How likely is it that you chose the right door?

“Very unlikely,” since the probability of getting the right door is 1
1�000 .

How likely is it that the car is behind one of the other doors?
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“Very likely”: 999
1�000 .

1 

These are all “ very likely”  doors!

 2  3  4 996 997 998 999…

Monty Hall now opens all the doors (2– 999) except one (say, Door 1)
and shows that each one has a donkey

A “ very likely”  door is left: Door 1.

1  2  3  4 997 998 999 1000…

We are now ready to answer the question. Which is a better choice:

• Door 1,000 (“very unlikely” door)?
• Door 1 (“very likely” door)?

The answer is now obvious. We ought to select the “very likely” door,
which means “switching” is the better strategy for the audience participant
to follow.

In the extreme case, it is much easier to see the best strategy than had
we tried to analyze the situation with the three doors. The principle is the
same in either situation.
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There is another way to look at this problem. Consider the three cases
shown in the chart below.

Case Door 1 Door 2 Door 3
1 Car Donkey Donkey
2 Donkey Car Donkey
3 Donkey Donkey Car

If you chose Door 1, your chances of having a car is 1
3 .

Monty Hall opens the door you selected and reveals a donkey. In cases 2
and 3, you should select a different door (only in case 1 should you select
the same door). In other words, in 2 of the 3 cases, switching is better.
Therefore, you are better off switching doors 2 out of 3 times.

You might want to mention to students that this problem has caused many
an argument in academic circles, and was also a topic of discussion in
the New York Times and other popular publications. John Tierney wrote in
the New York Times (Sunday, July 21, 1991) that “perhaps it was only an
illusion, but for a moment here it seemed that an end might be in sight to
the debate raging among mathematicians, readers of Parade magazine, and
fans of the television game show ‘Let’s Make a Deal.’ They began arguing
last September after Marilyn vos Savant published a puzzle in Parade. As
readers of her ‘Ask Marilyn’ column are reminded each week, Ms. vos
Savant is listed in the Guinness Book of World Records Hall of Fame
for ‘Highest I.Q.,’ but that credential did not impress the public when she
answered this question from a reader.” She gave the right answer, but still
many mathematicians argued.
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7.7 Anticipating Heads and Tails

This lovely little unit will show you how some clever reasoning, along
with algebraic knowledge of the most elementary kind, will help you solve
a seemingly “impossibly difficult” problem.

Have your students consider the following problem.

You are seated at a table in a dark room. On the table there are
12 pennies, 5 of which are heads up and 7 are tails up. (You know
where the coins are, so you can move or flip any coin, but because it
is dark you will not know if the coin you are touching was originally
heads up or tails up.) You are to separate the coins into two piles
(possibly flipping some of them) so that when the lights are turned
on there will be an equal number of heads in each pile.

Their first reaction is likely to be: “You must be kidding! How can anyone
do this task without seeing which coins are heads or tails up?” This is
where a most clever (yet incredibly simple) use of algebra will be the key
to the solution.

Let’s “cut to the quick.” You might actually want to have your students try
it with 12 coins. Here is what you have them do. Separate the coins into
two piles of five and seven coins, respectively. Then flip over the coins
in the smaller pile. Now both piles will have the same number of heads!
That’s all! They will think this is magic. How did this happen? Well, this
is where algebra helps to understand what was actually done.

Let’s say that when they separate the coins in the dark room, h heads will
end up in the seven-coin pile. Then the other pile, the five-coin pile, will
have 5 − h heads and 5 − �5 − h� = h tails. When they flip all the coins
in the smaller pile, the 5 − h heads become tails and the h tails become
heads. Now each pile contains h heads! What an awed reaction you will
get!



8 Mathematical
Potpourri

All the topics that could not find a proper home in the first seven chapters
of the book reside in this chapter. We have a mixture of delightful topics
that are sure to interest your students in mathematics. Do not be fooled
by their location; less important topics are not relegated to the last chapter
(as may be the case with some textbooks). Quite the contrary.

Here you will see one of the most amazing magic squares, presented from
its first appearance in Albrecht Dürer’s Melencolia I to the plethora of
properties that it has, above and beyond those of normal magic squares.
You will be exposed to mathematical manifestations in nature and you will
be presented ultimately with some famous unsolved problems (no, your
students are not expected to solve problems that, for hundreds of years,
have not been solved). It is quite likely that this last chapter could prove
most entertaining, as it seems to cover a very wide range of topics, none
of which allows itself to be categorized in the previous seven chapters.
Perhaps we should have called this Chapter 1!
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8.1 Perfection in Mathematics

What is perfect in mathematics, a subject where most think everything is
already perfect? Over the years, various authors have been found to name
perfect squares, perfect numbers, perfect rectangles, and perfect triangles.
You might ask your students to try to add to the list of “perfection.” What
other mathematical things may be worthy of the adjective “perfect”?

Begin with the perfect squares. They are well known: 1, 4, 9, 16, 25,
36, 49, 64, 81, 100, � � � . They are numbers whose square roots are natural
numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, � � � .

A perfect number is one having the property that the sum of its factors
(excluding the number itself) equals the number. The first four perfect
numbers are

6 �1+ 2+ 3�
28 �1+ 2+ 4+ 7+ 14�
496 �1+ 2+ 4+ 8+ 16+ 31+ 62+ 124+ 248�
8,128 (have your students find the sum of the factors)

They were already known to the ancient Greeks (Introductio Arithmeticae
by Nichomachus, ca. 100 c.e.). Interestingly, the Greeks felt that there
was exactly one perfect number for each digit group of numbers. The first
four perfect numbers seemed to fit this pattern; namely, among the single-
digit numbers, the only perfect number is 6, among the two-digit numbers,
there is only 28, then 496 is the only three-digit perfect number, and 8,128
is the only four-digit perfect number. Try asking your students to predict
the number of digits in the next larger perfect number. No doubt, they will
say it must be a five-digit number. Furthermore, if you ask your students
to make other conjectures about perfect numbers, they may conclude that
perfect numbers must end in a 6 or an 8 alternately.

As a matter of fact, there is no five-digit perfect number at all. This should
teach students to be cautious about making predictions with relatively little
evidence. The next larger perfect number has eight digits: 33,550,336.
Then we must take a large leap to the next perfect number: 8,589,869,056.
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Here we also see that our conjecture (although reasonable) of getting
alternate final digits of 6 and 8 is false.∗ This is a good lesson about
drawing inductive conclusions prematurely.

Perfect rectangles are those whose areas are numerically equal to their
perimeters. There are only two perfect rectangles, namely, one having
sides of length 3 and 6, and the other with sides of lengths 4 and 4.

There are also perfect triangles.∗∗ These are defined as triangles whose
areas are numerically equal to their perimeters. Students should be able to
identify the right triangles that fit that pattern by simply setting the area
and perimeter formulas equal to each other. Among the right triangles,
there are only two triangles, one with sides of lengths 6, 8, and 10, and
the other with sides of lengths 5, 12, and 13.

Among the non–right triangles, there are only three whose areas are
numerically equal to their perimeters. They are

6� 25� 29
7� 15� 20
9� 10� 17

These three cases can be verified using Heron’s formula:

Area = √
s�s − a��s − b��s − c�

where a� b, and c are the lengths of the sides and s is the semiperimeter.

What does this do for us? Very little, except to allow us to appreciate
the “perfection” in mathematics. Students ought to be encouraged to find
other candidates for perfection.

∗ The formula for a perfect number is that if 2k − 1 is a prime number �k > 1�, then 2k−1�2k − 1�
is an even perfect number.

∗∗ See M. V. Bonsangue, G. E. Gannon, E. Buchman, and N. Gross, “In Search of Perfect
Triangles,” The Mathematics Teacher, Vol. 92, No. 1, January 1999, pp. 56–61.
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8.2 The Beautiful Magic Square

There are entire books written about magic squares∗ of all kinds. There
is one magic square, however, that stands out from the rest for its origin
and the many properties it has beyond those required for a square matrix
of numbers to be considered “magic.” This magic square even comes to
us through art and not through the usual mathematical channels. It is
depicted in the background of the famous engraving produced in 1514 by
the renowned German artist Albrecht Dürer (1471–1528), who lived in
Nürnberg, Germany.

∗ See W. H. Benson and O. Jacoby, New Recreations with Magic Squares (New York: Dover, 1976)
and W. S. Andrews, Magic Squares and Cubes (New York: Dover, 1960). A concise treatment
can be found in A. S. Posamentier and J. Stepelman, Teaching Secondary School Mathematics:
Techniques and Enrichment Units, 6th ed. (Upper Saddle River, NJ: Prentice Hall/Merrill, 2002),
pp. 240–244.
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A magic square is a square matrix of numbers, where the sum of the
numbers in each of its columns, rows, and diagonals is the same. Just for
practice, you might have your students try to construct a 3-by-3 magic
square. Here is the solution (for your convenience).

4 9 2
3 5 7
8 1 6

You might then ask them to construct a 4-by-4 magic square.∗ After they
have had ample time to construct this magic square, begin the discussion
of the Dürer square. Most of Dürer’s works were signed by him with his
initials, one over the other, with the year in which the work was made
included there. Here we find it near the lower right side of the picture.
We notice that it was made in the year 1514. Astute students may notice
that the two center cells of the bottom row depict the year as well. Let us
look at this magic square more closely.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

First, let’s make sure that it is a magic square. The sums of all the rows,
all the columns, and the two diagonals must be equal. Well, they are,
each having a sum of 34. So that is all that would be required for this
square matrix of numbers to be considered a “magic square.” However,
this Dürer magic square has lots more properties that other magic squares
do not have. We shall list some here.

• The four corner numbers have a sum of 34:

16+ 13+ 1+ 4 = 34

∗ A 4-by-4 magic square is usually constructed by writing the numbers from 1 to 16 in proper
order, row by row, and then striking out the numbers in the two diagonals. Each of these struck-out
numbers is then replaced by its complement, that is, the number which when added to it yields a
sum of 17 (one greater than the number of cells). However, the Dürer square interchanged the two
middle columns to get the date of the etching in the two bottom center cells.
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• Each of the four corner 2-by-2 squares has a sum of 34:

16+ 3+ 5+ 10 = 34

2+ 13+ 11+ 8 = 34

9+ 6+ 4+ 15 = 34

7+ 12+ 14+ 1 = 34

• The center 2-by-2 square has a sum of 34:

10+ 11+ 6+ 7 = 34

• The sum of the numbers in the diagonal cells equals the sum of the
numbers in the cells not in the diagonals:

16+ 10+ 7+ 1+ 4+ 6+ 11+ 13

= 3+ 2+ 8+ 12+ 14+ 15+ 9+ 5 = 68

• The sum of the squares of the numbers in the diagonal cells equals the
sum of the squares of the numbers not in the diagonal cells:

162 + 102 + 72 + 12 + 42 + 62 + 112 + 132

= 32 + 22 + 82 + 122 + 142 + 152 + 92 + 52 = 748

• The sum of the cubes of the numbers in the diagonal cells equals the
sum of the cubes of the numbers not in the diagonal cells:

163 + 103 + 73 + 13 + 43 + 63 + 113 + 133

= 33 + 23 + 83 + 123 + 143 + 153 + 93 + 53 = 9�248

• The sum of the squares of the numbers in the diagonal cells equals the
sum of the squares of the numbers in the first and third rows:

162 + 102 + 72 + 12 + 42 + 62 + 112 + 132

= 162 + 32 + 22 + 132 + 92 + 62 + 72 + 122 = 748
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• The sum of the squares of the numbers in the diagonal cells equals the
sum of the squares of the numbers in the second and fourth rows:

162 + 102 + 72 + 12 + 42 + 62 + 112 + 132

= 52 + 102 + 112 + 82 + 42 + 152 + 142 + 12 = 748

• The sum of the squares of the numbers in the diagonal cells equals the
sum of the squares of the numbers in the first and third columns:

162 + 102 + 72 + 12 + 42 + 62 + 112 + 132

= 162 + 52 + 92 + 42 + 22 + 112 + 72 + 142 = 748

• The sum of the squares of the numbers in the diagonal cells equals the
sum of the squares of the numbers in the second and fourth columns:

162 + 102 + 72 + 12 + 42 + 62 + 112 + 132

= 32 + 102 + 62 + 152 + 132 + 82 + 122 + 12 = 748

• Notice the following beautiful symmetries:

2+ 8+ 9+ 15 = 3+ 5+ 12+ 14 = 34

22 + 82 + 92 + 152 = 32 + 52 + 122 + 142 = 374

23 + 83 + 93 + 153 = 33 + 53 + 123 + 143 = 4�624

• The sum of each adjacent upper and lower pair of numbers (vertically)
produces a pleasing symmetry:

16+ 5 = 21 3+ 10 = 13 2+ 11 = 13 13+ 8 = 21
9+ 4 = 13 6+ 15 = 21 7+ 14 = 21 12+ 1 = 13

• The sum of each adjacent upper and lower pair of numbers (horizon-
tally) produces a pleasing symmetry:

16+ 3 = 19 2+ 13 = 15
5+ 10 = 15 11+ 8 = 19
9+ 6 = 15 7+ 12 = 19
4+ 15 = 19 14+ 1 = 15

Can your students find some other patterns in this beautiful magic square?
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8.3 Unsolved Problems

This may come as a shock to some of your students, but who says that
all mathematical problems get solved? Unsolved problems have a very
important role in mathematics. Attempts to solve them oftentimes lead to
very important findings of other sorts. Yet an unsolved problem—one not
yet solved by the world’s most brilliant minds—tends to pique our interest
by quietly asking us if we can solve it, especially when the problem
itself is exceedingly easy to understand. We shall look at some unsolved
problems to get a better understanding of the history of mathematics.
Twice in recent years, mathematics has made newspaper headlines, each
time with the solution to a long-time unsolved problem.

The four-color problem dates back to 1852, when Francis Guthrie, while
trying to color the map of counties of England, noticed that four colors
sufficed. He asked his brother Frederick if it was true that any map can be
colored using four colors in such a way that adjacent regions (i.e., those
sharing a common boundary segment, not just a point) receive different
colors. Frederick Guthrie then communicated the conjecture to the famous
mathematician, Augustus DeMorgan. In 1977, the four-color-map problem
was solved by two mathematicians, K. Appel and W. Haken, who, using
a computer, considered all possible maps and established that it was never
necessary to use more than four colors to color a map so that no two
territories sharing a common border would be represented by the same
color.

More recently, on June 23, 1993, Andrew Wiles, a Princeton Univer-
sity mathematics professor, announced that he solved the 350-year-old
Fermat’s Last Theorem. It took him another year to fix some errors in
the proof, but it puts to rest a nagging problem that occupied scores of
mathematicians for centuries. The problem, which Pierre de Fermat wrote
(ca. 1630) in the margin of a mathematics book (Diophantus’ Arithmetica)
he was reading, was not discovered by his son until after his death. In
addition to the statement of the theorem, Fermat stated that his proof was
too long to fit the margin, so he effectively left to others the job of proving
his statement.
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Fermat’s theorem xn + yn = zn has no nonzero integer solutions for
n > 2.

During this time, speculation began about other unsolved problems,
of which there are still many. Two of them are very easy to under-
stand but apparently exceedingly difficult to prove. Neither has yet been
proved.

Christian Goldbach (1690–1764), a Prussian mathematician, in a 1742
letter to the famous Swiss mathematician, Leonhard Euler, posed the fol-
lowing problem, which to this day has yet to be solved.

Goldbach’s conjecture Every even number greater than 2 can be
expressed as the sum of two prime numbers.

Even numbers greater than 2 Sum of two prime numbers

4 2+ 2
6 3+ 3
8 3+ 5
10 3+ 7
12 5+ 7
14 7+ 7
16 5+ 11
18 7+ 11
20 7+ 13
���

���
48 19+ 29
���

���
100 3+ 97

Can you find some more examples of this?

Goldbach’s second conjecture Every odd number greater than 5 is the
sum of three primes.
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Let us consider the first few odd numbers:

Odd numbers greater than 5 Sum of three prime numbers

7 2+ 2+ 3
9 3+ 3+ 3
11 3+ 3+ 5
13 3+ 5+ 5
15 5+ 5+ 5
17 5+ 5+ 7
19 5+ 7+ 7
21 7+ 7+ 7
���

���
51 3+ 17+ 31
���

���
77 5+ 5+ 67
���

���
101 5+ 7+ 89

Your students may wish to see if there is a pattern here and generate other
examples.
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8.4 An Unexpected Result

Present your class with the following sequence and ask them to tell you
the next number: 1, 2, 4, 8, 16.

When the next number is given as 31 (instead of the expected 32), cries
of “wrong!” are usually heard. Just tell your students that this is a correct
answer, and that 1, 2, 4, 8, 16, 31 can be a legitimate sequence.

You must now convince your students of the legitimacy of this sequence.
It would be nice if it could be done geometrically, as that would give
convincing evidence of a physical nature. Let us first find the succeeding
number in this “curious sequence.”

We shall set up a table of differences (i.e., a chart showing the differences
between terms of a sequence), beginning with the given sequence up to
31, and then work backward once a pattern is established (here at the third
difference).

Original sequence 1 2 4 8 16 31
First difference 1 2 4 8 15
Second difference 1 2 4 7
Third difference 1 2 3
Fourth difference 1 1

With the fourth differences forming a sequence of constants, we can
reverse the process (turn the table upside down), and extend the third
differences a few more steps with 4 and 5.

Fourth difference 1 1 1 1
Third difference 1 2 3 4 5
Second difference 1 2 4 7 11 16
First difference 1 2 4 8 15 26 42
Original sequence 1 2 4 8 16 31 57 99

The boldface numbers are those that were obtained by working backward
from the third-difference sequence. Thus, the next numbers of the given
sequence are 57 and 99. The general term is a fourth-power expression
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since we had to go to the third differences to get a constant. The general
term (n� is

n4 − 6n3 + 23n2 − 18n + 24
24

One should not think that this sequence is independent of others parts of
mathematics. Consider the Pascal triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1









1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Consider the horizontal sums of the rows of the Pascal triangle to the right
of the bold line drawn: 1, 2, 4, 8, 16, 31, 57, 99, 163. This is again our
newly developed sequence.

A geometric interpretation can help convince students of the beauty and
consistency inherent in mathematics. To do this, we shall make a chart of
the number of regions into which a circle can be partitioned by joining
points on the circle. This ought to be done by the class. Just make sure
that no three lines meet at one point, or else you will lose a region.

Number of points Number of regions into
on the circle which the circle is partioned

1 1
2 2
3 4
4 8
5 16
6 31
7 57
8 99
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Now that students can see that this unusual sequence appears in various
other fields, a degree of satisfaction may be setting in. Remind them of
their initial disbelief.

8.5 Mathematics in Nature

The famous Fibonacci numbers, a sequence of numbers that was the direct
result of a problem posed by Leonardo of Pisa in his book Liber abaci
(1202), regarding the regeneration of rabbits (see Unit 1.18), has many
other applications in nature. At first sight, it may appear that these appli-
cations are coincidental, but eventually you will be amazed at the vastness
of the appearance of this famous sequence of numbers.

The original problem posed by Fibonacci asks for the number of pairs of
rabbits accumulating each month and leads to the sequence: l, l, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, � � � .

Before you enchant your students with the many applications of the
Fibonacci numbers, you ought to have them bring to class various species
of pine cones, a pineapple, a plant (see below), and, if possible, other
spiral examples in nature (e.g., a sunflower).

Have students divide each number in the Fibonacci sequence by its right-
hand partner to see what sequence develops. They will get a series of
fractions:

1

1
�
1
2

�
2
3

�
3
5

�
5
8

�
8
13

�
13
21

�
21
34

�
34
55

�
55
89

�
89
144

� · · ·

Ask students if they can determine a relationship between these numbers
and the leaves of a plant (have a plant on hand). From the standpoint of
the Fibonacci numbers, one may observe two items: (1) the number of
leaves it takes to go (rotating about the stem) from any given leaf to the
next one “similarly placed” (i.e., above it and in the same direction) on
the stem and (2) the number of revolutions as one follows the leaves in
going from one leaf to another one “similarly placed.” In both cases, these
numbers turn out to be the Fibonacci numbers.
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In the case of leaf arrangement, the following notation is used: 38 means
that it takes three revolutions and eight leaves to arrive at the next leaf
“similarly placed.” In general, if we let r equal the number of revolutions
and s equal the number of leaves it takes to go from any given leaf to one
“similarly placed,” then r

s
will be the phyllotaxis (the arrangement of leaves

in plants). Have students look at the figure below and try to find the plant
ratio. Draw a diagram on the board and, if possible, provide a live plant.

Figure 8.1

In this figure, the plant ratio is 5
8 .
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The pine cone also presents a Fibonacci application. The bracts on the
cone are considered to be modified leaves compressed into smaller space.
Upon observation of the cone, one can notice two spirals, one to the
left (clockwise) and the other to the right (counterclockwise). One spiral
increases at a sharp angle, while the other spiral increases more gradually.
Have students consider the steep spirals and count them, as well as the
spirals that increase gradually. Both numbers should be Fibonacci num-
bers. For example, a white pine cone has five clockwise spirals and eight
counterclockwise spirals. Other pine cones may have different Fibonacci
ratios. Later, have students examine the daisy or sunflower to see where
the Fibonacci ratios apply to them.

We noticed that the ratios of consecutive Fibonacci numbers approach the
Golden Section ratio (or Golden Ratio). See Unit 1.18.

If we look closely at the ratios of consecutive Fibonacci numbers, we can
approximate their decimal equivalents. The early Fibonacci ratios are

2
3

= 0�666667

3
5

= 0�600000

Then, as we go further along the sequence of Fibonacci numbers, the
ratios begin to approach �:

89
144

= 0�618056

144
233

= 0�618026

The Golden Ratio � = 0�61803398874989484820458683436564 � � � .

Geometrically, point B in Figure 8.2 divides line AC into the Golden Ratio:

AB

BC
= BC

AC
≈ 0�618034

B
A

C

Figure 8.2
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Figure 8.3

Now consider the series of Golden Rectangles (Figure 8.3), those whose
dimensions are chosen so that the ratio of width

length is the Golden Ratio
w
l

=
l

w+l
.

If the rectangle is divided by a line segment (EF ) into a square �ABEF �
and a Golden Rectangle �EFDG�, and if we keep partitioning each new
Golden Rectangle in the same way, we can construct a “logarithmic spiral”
in the successive squares (Figure 8.3). This type of curve is frequently
found in the arrangements of seeds in flowers or in the shapes of seashells
and snails. If possible, you ought to have students bring in illustrations to
show these spirals (Figure 8.4).

Figure 8.4
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Figure 8.5

For another example of mathematics in nature, students should consider
the pineapple. Here there are three distinct spirals of hexagons: a group of
5 spirals winding gradually in one direction, a second group of 13 spirals
winding more steeply in the same direction, and a third group of 8 spirals
winding in the opposite direction. Each group of spirals consists of a
Fibonacci number. Each pair of spirals interacts to give Fibonacci num-
bers. Figure 8.5 shows a representation of the pineapple with the scales
numbered in order. This order is determined by the relative distance
each hexagon is from the bottom. That is, the lowest is numbered 0, the
next higher one is numbered 1. Note hexagon 42 is slightly higher than
hexagon 37.

See if students can note three distinct sets of spirals in Figure 8.5 that cross
each other, starting at the bottom. One spiral is the 0, 5, 10, � � � sequence,
which increases at a slight angle. The second spiral is the 0, 13, 26, � � �
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sequence, which increases at a steeper angle. The third spiral has the 0, 8,
16, � � � sequence, which lies in the opposite direction from the other two.
Have students figure out the common difference between the numbers in
each sequence. In this case, the differences are 5, 8, 13, all of which are
Fibonacci numbers. Different pineapples may have different sequences.

Not to be cute, but to move these applications to a completely different
venue, have students consider the regeneration of male bees. They must
be told and accept that male bees hatch from unfertilized eggs, female
bees from fertilized eggs. You should then guide students in tracing the
regeneration of the male bees. The following pattern develops:

Figure 8.6

It should be obvious by now that this pattern is the Fibonacci sequence.

As was said earlier, there are endless applications of the Fibonacci num-
bers (sometimes through their relative, the Golden Ratio) in nature, archi-
tecture, art, and many other fields of interest. Impress upon your students
the independence of these applications, as a part of the amazement these
applications usually generate.
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8.6 The Hands of a Clock

The clock can be an interesting source of mathematical applications. These
can be applications in mathematics, and not in other disciplines as we
usually find mathematics being applied.

Begin by asking your students to determine the exact time that the hands
of a clock will overlap after 4:00 o’clock. Your students’ first reaction
to the solution to this problem will most likely be that the answer is
simply 4:20.

When you remind them that the hour hand moves uniformly while the
minute hand moves faster, they will begin to estimate the answer to be
between 4:21 and 4:22. They should realize that the hour hand moves
through an interval between minute markers every 12 minutes. Therefore,
it will leave the interval 4:21–4:22 at 4:24. This, however, doesn’t answer
the original question about the exact time of this overlap.

You could show them a technique, once they realize that this is not the
correct answer, since the hour hand does not remain stationary and moves
when the minute hand moves. The trick: Simply multiply the 20 (the
wrong answer) by 12

11 to get 21
9
11 , which yields the correct answer: 4:21

9
11 .

One way to have students begin to understand the movement of the hands
of a clock is by having them consider the hands traveling independently
around the clock at uniform speeds. The minute markings on the clock
(from now on referred to as “markers”) will serve to denote distance as
well as time. An analogy should be drawn here to the “uniform motion” of
automobiles (a popular topic for verbal problems in an elementary algebra
course). A problem involving a fast automobile overtaking a slower one
would be analogous.

Experience has shown that the analogy might be helpful in guiding the
class to find the distance necessary for a car traveling at 60 mph to over-
take a car with a head start of 20 miles and traveling at 5 mph.

Now have the class consider 4 o’clock as the initial time on the clock. Our
problem will be to determine exactly when the minute hand will overtake
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the hour hand after 4 o’clock. Consider the speed of the hour hand to be
r ; then the speed of the minute hand must be 12r . We seek the distance,
measured by the number of markers traveled, that the minute hand must
travel to overtake the hour hand.

Let us refer to this distance as d markers. Hence, the distance that the
hour hand travels is d − 20 markers, since it has a 20-marker head start
over the minute hand.

For this to take place, the times required for the minute hand, d
12r , and for

the hour hand, d−20
r
, are the same. Therefore,

d

12r
= d − 20

r

and

d = 12
11

� 20 = 21
9
11

Thus, the minute hand will overtake the hour hand at exactly 4:21 911 .

Consider the expression d = 12
11

� 20. The quantity 20 is the number of
markers that the minute hand had to travel to get to the desired position, if
we assume the hour hand remained stationary. However, quite obviously,
the hour hand does not remain stationary. Hence, we must multiply this
quantity by 12

11 , since the minute hand must travel
12
11 as far. Let us refer
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to this fraction, 1211 , as the correction factor. You might wish to have the
class verify this correction factor both logically and algebraically.

To begin to familiarize the students with use of the correction factor,
choose some short and simple problems. For example, you may ask them
to find the exact time when the hands of a clock overlap between 7 and
8 o’clock. Here the students would first determine how far the minute
hand would have to travel from the “12” position to the position of the
hour hand, assuming again that the hour hand remains stationary. Then by
multiplying the number of markers, 35, by the correction factor, 1211 , they
will obtain the exact time, 7:38 211 , that the hands will overlap.

To enhance students’ understanding of this new procedure, ask them
to consider a person checking a wristwatch against an electric clock
and noticing that the hands on the wristwatch overlap every 65 minutes
(as measured by the electric clock). Ask the class if the wristwatch is fast,
slow, or accurate.

You may wish to have them consider the problem in the following way.
At 12 o’clock the hands of a clock overlap exactly. Using the previously
described method, we find that the hands will again overlap at exactly
1:05 511 , and then again at exactly 2:10

10
11 , and again at exactly 3:16

4
11 , and

so on. Each time there is an interval of 65 511 minutes between overlapping
positions. Hence, the person’s watch is inaccurate by 5

11 of a minute. Have
students now determine if the wristwatch is fast or slow.

There are many other interesting, and sometimes rather difficult, problems
made simple by this correction factor. You may very easily pose your own
problems. For example, you may ask your students to find the exact times
when the hands of a clock will be perpendicular (or form a straight angle)
between, say, 8 and 9 o’clock.

Again, you would have the students determine the number of markers
that the minute hand would have to travel from the “12” position until it
forms the desired angle with the stationary hour hand. Then have them
multiply this number by the correction factor, 1211 , to obtain the exact actual
time. That is, to find the exact time that the hands of a clock are first
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perpendicular between 8 and 9 o’clock, determine the desired position
of the minute hand when the hour hand remains stationary (here, on the
25-minute marker). Then multiply 25 by 12

11 to get 8:27
3
11 , the exact time

when the hands are first perpendicular after 8 o’clock.

For students who have not yet studied algebra, you might justify the 12
11

correction factor for the interval between overlaps in the following way:

Think of the hands of a clock at noon. During the next 12 hours
(i.e., until the hands reach the same position at midnight), the hour
hand makes one revolution, the minute hand makes 12 revolutions,
and the minute hand coincides with the hour hand 11 times (includ-
ing midnight, but not noon, starting just after the hands separate
at noon).

Since each hand rotates at a uniform rate, the hands overlap each
12
11 of an hour, or 65

5
11 minutes.

This can be extended to other situations.

Your students should derive a great sense of achievement and enjoyment as
a result of employing this simple procedure to solve what usually appears
to be a very difficult clock problem.
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8.7 Where in the World Are You?

This is a popular riddle that has some very interesting extensions, seldom
considered. It requires some “out of the box” thinking that can have some
favorable lasting effects on students. Let’s consider the question:

Where on earth can you be so that you can walk 1 mile south, then
1 mile east, and then 1 mile north and end up at the starting point?

(Not drawn to scale, obviously!)

Mostly through guess and test, a clever student will stumble on the right
answer: the North Pole. To test this answer, try starting from the North Pole
and travel south 1 mile and then east 1 mile. This takes you along a latitudi-
nal line that remains equidistant from the North Pole, 1 mile from it. Then
travel 1 mile north to get you back to where you began, the North Pole.

Most people familiar with this problem feel a sense of completion. Yet we
can ask: Are there other such starting points, where we can take the same
three “walks” and end up at the starting point? The answer, surprising
enough for most people, is yes.

One set of starting points is found by locating the latitudinal circle, which
has a circumference of 1 mile and is nearest the South Pole. From this
circle, walk 1 mile north (along a great circle, naturally) and form another
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latitudinal circle. Any point along this second latitudinal circle will qual-
ify. Let’s try it.

Begin on this second latitudinal circle (the one farther north). Walk 1 mile
south (takes you to the first latitudinal circle), then 1 mile east (takes you
exactly once around the circle), and then 1 mile north (takes you back to
the starting point).

Suppose the first latitudinal circle, the one we would walk along, had a
circumference of 12 mile. We could still satisfy the given instructions, yet
this time walking around the circle twice, and get back to our original
starting point. If the first latitudinal circle had a circumference of 14 mile,
then we would merely have to walk around this circle four times to get
back to the starting point on this circle and then go north 1 mile to the
original starting point.

At this point, we can take a giant leap to a generalization that will lead
us to many more points that satisfy the original stipulations, actually an
infinite number of points! This set of points can be located by beginning
with the latitudinal circle, located nearest the South Pole, which has a
1
n
th-mile circumference, so that the 1-mile walk east (which is composed
of n circumnavigations) will take you back to the point on this latitudinal
circle at which you began your walk. The rest is the same as before, that
is, walking 1 mile south and then later 1 mile north. Is this possible with
latitude circle routes near the North Pole? Yes, of course!
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This unit will provide your students with some very valuable “mental
stretches,” not normally found in the school curriculum. You will not
only entertain them, but you will be providing them with some excellent
training in thinking logically.

8.8 Crossing the Bridges

The famous Königsberg Bridge Problem is a lovely application of a topo-
logical problem with networks. It is very nice to observe how mathematics
used properly can put a practical problem to rest. Before we embark on
the problem, we ought to become familiar with the basic concept involved.
Toward that end, have students try to trace with a pencil each of the fol-
lowing configurations, without missing any part, without going over any
part twice, and without lifting their pencils off the paper. Ask students to
determine the number of arcs or line segments, which have an endpoint
at each of the points A� B� C� D, and E.

Network 1
Network 2

Network 3

Network 5

Network 4

E

C

A

B

D E

A

C

B

D

A

C

D

B

A

C

B

D

C

D

A

B

E

Configurations such as the five figures above, made up of line segments
and/or continuous arcs, are called networks. The number of arcs or line
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segments that have an endpoint at a particular vertex is called the degree
of the vertex.

After trying to trace these networks without taking their pencils off the
paper and without going over any line more than once, students should
notice two direct outcomes. The networks can be traced (or traversed)
if they have (1) all even-degree vertices or (2) exactly two odd-degree
vertices. The following two statements establish this.∗

1. There is an even number of odd-degree vertices in a connected network.
2. A connected network can be traversed only if it has at most two odd-
degree vertices.

Have students now draw both traversible and nontraversible networks
(using these two theorems).

Network 1 has five vertices. Vertices B� C, and E are of even degree and
vertices A and D are of odd degree. Since Network 1 has exactly two
odd-degree vertices, as well as three even-degree vertices, it is traversible.
If we start at A, then go down to D, across to E, back up to A, across to
B, and down to D, we have chosen a desired route.

Network 2 has five vertices. Vertex C is the only even-degree vertex.
Vertices A� B� E, and D are all of odd degree. Consequently, since the
network has more than two odd vertices, it is not traversible.

Network 3 is traversible because it has two even vertices and exactly two
odd-degree vertices.

Network 4 has five even-degree vertices and can be traversed.

Network 5 has four odd-degree vertices and cannot be traversed.

To generate interest among your students, present them with the famous
Königsberg Bridge Problem. In the 18th century, the small Prussian city

∗ The proof of these two theorems can be found in A. S. Posamentier and J. Stepelman, Teach-
ing Secondary School Mathematics: Techniques and Enrichment Units, 6th ed. (Columbus, OH:
Merrill/Prentice Hall, 2002).
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of Königsberg, located where the Pregel River divided into two branches,
was faced with a recreational dilemma: Could a person walk over each of
the seven bridges exactly once in a continuous walk through the city?

Network 6

In 1735, the famous mathematician Leonhard Euler (1707–1783) proved
that this walk could not be performed. Indicate to students that the ensuing
discussion will tie in their earlier work with networks to the solution of
the Königsberg Bridge Problem.

Tell pupils to indicate the island by A, the left bank of the river by B, the
right one by C, and the area between the two arms of the upper course
by D. If we start at Holzt, walk to Sohmede, and then walk through
Honig, through Hohe, through Kottel, through Grüne, we will never cross
Kramer. On the other hand, if we start at Kramer and walk to Honig,
through Hohe, through Kottel, through Sohmede, through Holzt, we will
never travel through Grüne.

The Königsberg Bridge Problem is the same problem as the one posed
in Network 5. Let’s take a look at Networks 5 and 6 and note the simi-
larity. There are seven bridges in Network 6 and there are seven lines in
Network 5. In Network 5, each vertex is of odd degree. In Network 6, if
we start at D, we have three choices: We could go to Hohe, Honig, or
Holzt. If, in Network 5, we start at D, we have three line paths to choose
from. In both networks, if we are at C, we have either three bridges we
could go on or three lines. A similar situation exists for locations A and
B in Network 6 and vertices A and B in Network 5. Emphasize that this
network cannot be traversed.

By reducing the bridges and islands to a network problem, we can easily
solve it. This is a clever tactic to solve problems in mathematics.
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8.9 The Most Misunderstood Average

Most uninformed students, when asked to calculate the average speed for
a round trip with a “going” average speed of 30 miles per hour and a
“returning” average speed of 60 miles per hour, would think that their
average speed for the entire trip is 45 miles per hour (calculated as 30+602 =
45�. The first task is to convince the students that this is the wrong answer.
For starters, you might ask the students if they believe it is fair to consider
the two speeds with equal “weight.” Some may realize that the two speeds
were achieved for different lengths of time and therefore cannot get the
same weight. This might lead someone to offer that the trip at the slower
speed, 30 mph, took twice as long and, therefore, ought to get twice the
weight in the calculation of the average round-trip speed. This would then
bring the calculation to the following:

30+ 30+ 60
3

= 40

which happens to be the correct average speed.

For those not convinced by this argument, try something a bit closer to
“home.” A question can be posed about the grade a student deserves who
scored 100% on nine of ten tests in a semester and on one test scored
only 50%. Would it be fair to assume that this student’s performance for
the term was 75% (i.e., 100+502 )? The reaction to this suggestion will tend
toward applying appropriate weight to the two scores in consideration. The
100% was achieved nine times as often as the 50% and therefore ought
to get the appropriate weight. Thus, a proper calculation of the student’s
average ought to be

9�100� + 50
10

= 95

This clearly appears more just!

An astute student may now ask, “What happens if the rates to be averaged
are not multiples of one another?” For the speed problem above, one could
find the time “going” and the time “returning” to get the total time, and
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then, with the total distance, calculate the “total rate,” which is, in fact,
the average rate.

There is a more efficient way and that is the highlight of this unit. We are
going to introduce a concept called the harmonic mean, which is the mean
of a harmonic sequence. The name harmonic may come from the fact that
one such harmonic sequence is 1

2�
1
3�

1
4�

1
5�

1
6�

1
7�

1
8 , and if one takes guitar

strings of these relative lengths and strums them together, a harmonious
sound results.

This frequently misunderstood mean (or average) usually causes confu-
sion, but to avoid this, once we identify that we are to find the average
of rates (i.e., the harmonic mean), then we have a lovely formula for cal-
culating the harmonic mean for rates over the same base. In the above
situation, the rates were for the same distance (round-trip legs).

The harmonic mean for two rates, a and b, is 2ab
a+b
, and for three rates, a,

b, and c, the harmonic mean is 3abc
ab+bc+ac

.

You can see the pattern evolving, so that for four rates the harmonic mean
is 4abcd

abc+abd+acd+bcd
.

Applying this to the above speed problem gives us

2 � 30 � 60
30+ 60

= 3�600
90

= 40

Begin by posing the following problem:

On Monday, a plane makes a round-trip flight from New York City
to Washington with an average speed of 300 miles per hour. The
next day, Tuesday, there is a wind of constant speed (50 miles per
hour) and direction (blowing from New York City to Washington).
With the same speed setting as on Monday, this same plane makes
the same round trip on Tuesday. Will the Tuesday trip require more
time, less time, or the same time as the Monday trip?

This problem should be slowly and carefully posed, so that students notice
that the only thing that has changed is the “help and hindrance of the
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wind.” All other controllable factors are the same: distances, speed reg-
ulation, airplane’s conditions, etc. An expected response is that the two
round-trip flights ought to be the same, especially since the same wind is
helping and hindering two equal legs of a round-trip flight.

Realization that the two legs of the “wind trip” require different amounts
of time should lead to the notion that the two speeds of this trip cannot be
weighted equally as they were done for different lengths of time. There-
fore, the time for each leg should be calculated and then appropriately
apportioned to the related speeds.

We can use the harmonic mean formula to find the average speed for the
“windy trip.” The harmonic mean is

�2��350��250�
250+ 350

= 291�667

which is slower than the no-wind trip.

What a surprise!

This topic is not only useful, but also serves to sensitize students to the
notion of weighted averages.
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8.10 The Pascal Triangle

Perhaps one of the most famous triangular arrangements of numbers is the
Pascal triangle (named after Blaise Pascal, 1623–1662). Although used
primarily in conjunction with probability, it has many interesting prop-
erties beyond that field. To better familiarize students with the Pascal
triangle, have them construct it.

Begin with a 1, then beneath it 1, 1, and then begin and end each suc-
ceeding row with a 1 and get the other numbers in the row by adding the
two numbers above them and to their right and left. So far, we would then
have the following:

1
1 1

1 2 1
1 3 3 1

Continuing with this pattern, the next row would be 1– (1+ 3) – (3+ 3) –
(3+ 1) –1 , or 1– 4 – 6 – 4 –1.

A larger version of the Pascal triangle is shown below:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

In probability, the Pascal triangle emerges from the following example.
We will toss coins and calculate the frequency of each event.
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Number of coins Number of heads Number of arrangements

1 coin 1 head 1
0 heads 1

2 coins 2 heads 1
1 head 2
0 heads 1

3 coins 3 heads 1
2 heads 3
1 head 3
0 heads 1

4 coins 4 heads 1
3 heads 4
2 heads 6
1 head 4
0 heads 1

Students should be encouraged to do some investigating of this result by
flipping coins and tabulating their results.

What makes the Pascal triangle so truly outstanding is the many fields of
mathematics it touches (or involves). In particular, there are many number
relationships present in the Pascal triangle. For the sheer enjoyment of it,
we shall consider some here. You might try to have your students see if they
can locate some of these, perhaps after you show them a few such properties.

The sum of the numbers in the rows of the Pascal triangle are the powers
of 2:

1 · · · · · · · · · · 20
1 1 · · · · · · · · · 21

1 2 1 · · · · · · · · 22
1 3 3 1 · · · · · · · 23

1 4 6 4 1 · · · · · · 24
1 5 10 10 5 1 · · · · · 25

1 6 15 20 15 6 1 · · · · 26
1 7 21 35 35 21 7 1 · · · 27

1 8 28 56 70 56 28 8 1 · · 28
1 9 36 84 126 126 84 36 9 1 · 29

1 10 45 120 210 252 210 120 45 10 1 210
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If we consider each row as a number, with the members of the row the
digits, such as 1� 11� 121� 1�331� 14�641, etc. (until we have to regroup
from the sixth row on), you will find the powers of 11.

1 · · · · · · · · · · 110
1 1 · · · · · · · · · 111

1 2 1 · · · · · · · · 112
1 3 3 1 · · · · · · · 113

1 4 6 4 1 · · · · · · 114
1 5 10 10 5 1 · · · · · ·

1 6 15 20 15 6 1 · · · · ·
1 7 21 35 35 21 7 1 · · · ·

1 8 28 56 70 56 28 8 1 · ·
1 9 36 84 126 126 84 36 9 1 ·

1 10 45 120 210 252 210 120 45 10 1

The oblique path marked below indicates the natural numbers. Then to
the right of it (and parallel to it), your students will notice the triangular
numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, � � � .

From the triangle, the students ought to notice how the triangular numbers
evolve from the sum of the natural numbers. That is, the sum of the natural
numbers (listed to the left of the line) to a certain point may be found by
simply looking to the number below and to the right of that point (e.g.,
the sum of the natural numbers from 1 to 7 is below and to the right, 28).



262 Math Wonders to Inspire Teachers and Students

Students ought to be encouraged to look for the square numbers. They are
embedded as the sum of two consecutive triangular numbers: 1+ 3 = 4,
3+ 6 = 9, 6+ 10 = 16, 10+ 15 = 25, 15+ 21 = 36, etc.

They may also find the square numbers in groups of four: 1+ 2+ 3+ 3 =
9, 3+ 3+ 6+ 4 = 16, 6+ 4+ 10+ 5 = 25, 10+ 5+ 15+ 6 = 36, etc.

In the above Pascal triangle, your students should add the numbers along
the lines indicated. They will be astonished to find that they have, in
fact, located the Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, � � � .

There are many more numbers embedded in the Pascal triangle. Students
may wish to find the pentagonal numbers: 1, 5, 12, 22, 35, 51, 70, 92,
117, 145, � � � . The turf is fertile. The challenge to find more gems in this
triangular arrangement of numbers is practically boundless!
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8.11 It’s All Relative

With this unit, your students will appreciate and no longer fear the concept
of relativity. It will be discussed in a familiar setting, so students will not
feel uncomfortable with this idea.

It is expected that the class will comprehend this concept at varying rates.
As a matter of fact, it might be wise to present this unit and have students
reflect on it at home, where they can do so at their own pace and without
outside distractions.

Begin by presenting the following problem:

While rowing his boat upstream, David drops a cork overboard
and continues rowing for 10 more minutes. He then turns around,
chasing the cork, and retrieves it when the cork has traveled 1 mile
downstream. What is the rate of the stream?

Rather than approaching this problem by the traditional methods, common
in an algebra course, consider the following. The problem can be made
significantly easier by considering the notion of relativity. It does not
matter if the stream is moving and carrying David downstream, or is still.
We are concerned only with the separation and the coming together of
David and the cork. If the stream were stationary, David would require as
much time rowing to the cork as he did rowing away from the cork. That
is, he would require 10+ 10 = 20 minutes. Since the cork travels 1 mile
during these 20 minutes, its (i.e., the stream’s) rate of speed is 3 miles
per hour.

Again, this may not be an easy concept to grasp for some students and is
best left to them to ponder in quiet. It is a concept worth understanding,
for it has many useful applications in everyday life thinking processes.
This is, after all, one of the purposes for learning mathematics.
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8.12 Generalizations Require Proof

It can be very tempting to let lots of consistent examples lead you to
a generalization. Many times the generalization is correct, but it doesn’t
have to be. The famous mathematician Carl Friedrich Gauss was known
to have used his brilliance at calculating and mentally processing number
relationships to form some of his theories. Then he proved his conjectures,
and these contributions to the field of mathematics have become legendary.
Students must be cautious not to draw conclusions just because lots of
examples fit a pattern. For example, there is the belief that every odd
number greater than 1 can be expressed as the sum of a power of 2 and a
prime number. So when we inspect the first few cases, it works.

3 = 20 + 2

5 = 21 + 3

7 = 22 + 3

9 = 22 + 5

11 = 23 + 3

13 = 23 + 5

15 = 23 + 7

17 = 22 + 13

19 = 24 + 3
���

51 = 25 + 19
���

125 = 26 + 61

127 = ?

129 = 25 + 97

131 = 27 + 3

This scheme worked for each number we tested, up to 126, but when we
reached 127 there was no solution. Yet, then it continued to work. Thus,



Mathematical Potpourri 265

this cannot be generalized. Caution should be taken before jumping to
conclusions, especially when no proof has been developed. This is a good
example of drawing premature conclusions. Yet, above all, it is instructive.

8.13 A Beautiful Curve∗

One of the most wonderful curves I can think of, and one that had a great
influence on me in my youth, is called a cycloid, which is the locus∗∗ of
a fixed point on the circumference of a circle as it rolls, without slipping,
along a straight line (Figure 8.8). This curve has lots of amazing properties
that will be revealed to you now.

Figure 8.8 The cycloid. As the circle rolls along the line 0x, the
point P , fixed on the circle, generates the cycloid.

We are going to focus on this curve, or arch, called a cycloid. Suppose we
turn this arch upside down and place a weighted ball at the point on the
vertical line Oy that is 4r units from O, where r is the radius of the circle
generating the cycloid. Pretend that this vertical line is a string with the
weighted ball and can swing as a pendulum. We see this in Figure 8.9,
where A and B are the midpoints of the respective arches of the cycloid.

The cycloidal pendulum, also called the isochronous pendulum (from the
Greek isochrones, occurring at equal intervals of time), invented by Chris-
taan Huygens about 350 years ago, consists of a small mass P (we called
it a weighted ball before) suspended from the point O by means of a string

∗ By Dr. Herbert A. Hauptman.
∗∗ This is the set of points that a fixed point on the rolling circle traces out as it moves along a
straight line.
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of length equal to the arc length AO (or BO) and free to oscillate between
the inverted half-cycloidal arches AO and BO generated by a circle of
radius r .

First, it turns out that the length of the pendulum is 4r , precisely one-half
the length of the full-cycloidal arch. Next, if the mass P swings from A to
B (and in a sense, the pendulum string “wraps” itself onto the cycloidal
arches AO and BO when it reaches an extreme), then P itself traces out
a full cycloidal arch (of length 8r� generated by a circle having the same
radius, r , as the one which generated the half arcs AO and BO. This can be
seen in Figure 8.9, where arch APB has length 8r . Furthermore, and this
was Huygens great discovery, the period of the oscillation is independent
of the amplitude, in sharp contrast to the simple pendulum where the
period increases with increasing amplitude. The cycloidal pendulum is
therefore said to be isochronous.

Enough with the pendulum property of a cycloid. Let’s look at the cycloid
curve itself. Again, we will look at the inverted (i.e., upside down) curve.
The cycloid is also said to be a tautochrone (from the Greek tautos, or
identical, and khronos, or time). We will demonstrate a property of the
cycloid that will justify this name.

The inverted cycloid (with a vertical axis) is the curve (see Figure 8.10)
along which a particle sliding under the influence of gravity from a vari-
able point A (A′ or A′′, for example) on the curve to the fixed point B
on the curve will arrive at B at the same time no matter where the point
A is chosen (for example at A′ or A′′, etc.). Now, you may find this hard
to believe. You may be thinking, how could a point A′′� far away from
B, reach point B as quickly as a point A that is right next to B. Well,

Figure 8.9 The cycloidal (isochronous) pendulum.
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Figure 8.10 The cycloid as tautochrone.

it can and does. You can justify it to yourself, intuitively, by seeing that
the cycloid curve has a much greater slope farther away from B than it
does right next to B, accounting for the faster speed of the point A farther
away from B than one close to B.

Finally, the cycloid is also said to be the brachistochrone (from the Greek
brakhistos, or shortest, and khronos, or time) because it is the path of an
object falling freely from the fixed point A to the fixed point B in the
shortest possible time. In other words, among all curves joining A to B
(including a straight line, which can also be considered a curve), it is the
cycloid along which a body moves in the least possible time under the
influence of gravity (Figure 8.11). This may seem hard to accept, but if
you think of a straight line, which is an “extreme curve,” then you will
see that the initial slope of the cycloid is much greater than that of the
straight line; this accounts for the faster speed along the cycloid.

A final property of the cycloid is that the area under the arch is precisely
equal to three times the area of the generating circle; that is, the area
under the curve (right side up, as it was originally) is 3�r2.

The cycloid is only one of an infinite variety of curves, some planar, oth-
ers twisted, having a myriad of characteristic properties aptly described
by Bertrand Russell as “sublimely beautiful” and capable of a stern per-
fection. The examples given here clearly show that the great book of
mathematics lies ever open before our eyes and the true philosophy is
written in it (to paraphrase Galileo); the reader is invited to open and
enjoy it.

Figure 8.11 The cycloid as brachistochrone.
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Now that you have reached the end of the book, you should have ample
ammunition to convert your students into lovers of mathematics. This was,
after all, the aim of this book. If we can convert students to have a very
positive feeling of mathematics at school—the earlier the better—then we
will be able to rid our society from the ever-popular notion that it is chic
to claim weakness in mathematics. For no other school subject would any-
one blatantly claim this deficit. We covered the spectrum of elementary
mathematics, and for each area we have selected easily understood exam-
ples that would motivate your students to seek further entertainments in
this most important subject.

Our goal was to make mathematics enticing for its own beauty and not
because students are constantly told they must do well in mathematics
or else they will have little chance for success in other subjects, most
notably the sciences. When Gauss referred to mathematics as the queen
of the sciences,∗ he had not intended that scientists from other disciplines
would refer to mathematics as the handmaiden of the sciences; that is,
they would judge its value by its usefulness to the other sciences. By
this time in your reading of this book, you should get the feeling that
there is much to admire in mathematics in its own right, and not that its
primary appeal is its usefulness to other disciplines. Naturally, the latter
point is one that keeps mathematics high on the list of important areas of
study in our society, but it would be so much more effectively taught and
maintained if its appeal could be one that rests only on its own inherent
beauty.

∗ Carl Friedrich Gauss (1777–1855), one of the greatest mathematicians of all time, actually
said, “Mathematics is the Queen of the Sciences and Arithmetic the Queen of Mathematics. She
often condescends to render service to astronomy and the other natural sciences, but under all
circumstances the first place is her due.”

268



Epilogue 269

The effort to show this beauty in mathematics was done through a variety
of ways. First, there are the truly delightful, arithmetically clever pro-
cesses that have become well-kept secrets and that we have attempted to
expose for the purpose of exhibiting other ways of thinking. The quirks
in our number system present us with some truly amazing number pat-
terns or almost inexplicable phenomena, all presented to delight your
students and to announce to them that there are some really nice things
in mathematics. Further, the completely unexpected connections between
various seemingly unrelated branches of mathematics always have great
appeal. For example, the many fields of mathematics invaded by such top-
ics as the Golden Ratio, the Fibonacci numbers, and the Pascal triangle
show the interconnectedness of this rich discipline. While on the notion
of the unexpected, the problems presented in Chapter 4 show how, with
some out-of-the-box thinking, some problems lend themselves to very
clever solutions—the kind of solutions that evoke a “gee-whiz” response
and, hopefully, entice the student to search for other examples to try these
unusual techniques.

The chapter on geometry is the one where we can see some visual beauty
in mathematics. How surprisingly invariants appear. Of course, these
can be best seen by using a computer program such as the Geometer’s
Sketchpad, where a dynamic presentation is possible. If your school
doesn’t have the program, then it would be advisable for you to get a
copy of it. It is a most worthwhile computer application.

Where possible (and appropriate), historical notes have been provided so
that you can put much of these wonderful ideas in historical context. There
is always something appealing when the human element is infused into
the discussion of mathematics. Students like to see that mathematics also
has some history to it. This is too often missing from the instructional
program. Teachers are not willing to give up valuable class time to present
this “human side” of mathematics. This little investment of time (just as
time taken to show some of the beauties in this book) can go a long way
to motivate students, so that they will, in turn, be more receptive learners
for the curriculum material.

You ought to begin to collect books on recreational mathematics, read
them, and hold them for reference. There are many books on topics not
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usually taught in the schools. These could include books on the history of
mathematics, books on problem solving (at various levels), and books on
special topics (e.g., magic squares, mathematical entertainments). What
has been provided in this book is merely a whetting of an appetite that
you should have for motivating youngsters toward mathematics.

As an ongoing exercise, you might challenge yourself to make a list of
suitable applications of mathematics in the daily newspapers. Of particu-
lar interest is finding mathematical errors and then showing them to your
students. This will make them much more critical readers. Examples of
these may be found in a journalist’s reasoning, a summary of data pre-
sented, the slanting of a story by (mis)use of data, the calculation of
data (sometimes incorrectly), geometrical mistakes, or the interpretation of
data, which sometimes can be explained in a manner completely opposite
to what the writer has done.

In 1987, as I was reading the New York Times with my daughter, we
noticed a journalist’s error regarding the Pythagorean theorem. She urged
me to send a correction to the editors, which I did. This experience made
me a much more vigilant reader of the newspaper. So whenever there are
corrections or comments needed, I am quick to respond. As I mentioned
in the Introduction, this book is the outgrowth of the almost 500 letters
I received in response to my comments in the New York Times (Op-Ed)
on January 2, 2002. I hope that others will also read the newspapers
and comment where appropriate to keep the mathematics correct. Now
fortified with this newly developed love for mathematics, this is the least
one could expect for you to model for your students.
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