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Preface

Roughly speaking two kinds of operator and/or matrix inequalities are known,
of course with many important exceptions. Operators admit several natural
notions of orders (such as positive semidefiniteness order, some majorization
orders and so on) due to their non-commutativity, and some operator in-
equalities clarify these order relations. There is also another kind of operator
inequalities comparing or estimating various quantities (such as norms, traces,
determinants and so on) naturally attached to operators.

Both kinds are of fundamental importance in many branches of math-
ematical analysis, but are also sometimes highly non-trivial because of the
non-commutativity of the operators involved. This monograph is mainly de-
voted to means of Hilbert space operators and their general properties with
the main emphasis on their norm comparison results. Therefore, our operator
inequalities here are basically of the second kind. However, they are not free
from the first in the sense that our general theory on means relies heavily on
a certain order for operators (i.e., a majorization technique which is relevant
for dealing with unitarily invariant norms).

In recent years many norm inequalities on operator means have been in-
vestigated. We develop here a general theory which enables us to treat them in
a unified and axiomatic fashion. More precisely, we associate operator means
to given scalar means by making use of the theory of Stieltjes double integral
transformations. Here, Peller’s characterization of Schur multipliers plays an
important role, and indeed guarantees that our operator means are bounded
operators. Basic properties on these operator means (such as the convergence
property and norm bounds) are studied. We also obtain a handy criterion (in
terms of the Fourier transformation) to check the validity of norm comparison
among operator means.

Sendai, June 2003 Fumio Hiai

Fukuoka, June 2003 Hideki Kosaki
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1

Introduction

The present monograph is devoted to a thorough study of means for Hilbert
space operators, especially comparison of (unitarily invariant) norms of oper-
ator means and their convergence properties in various aspects.

The Hadamard product (or Schur product) A ◦ B of two matrices A =
[aij ], B = [bij ] means their entry-wise product [aijbij ]. This notion is a com-
mon and powerful technique in investigation of general matrix (and/or opera-
tor) norm inequalities, and particularly so in that of perturbation inequalities
and commutator estimates. Assume that n × n matrices H, K, X ∈ Mn(C)
are given with H, K ≥ 0 and diagonalizations

H = Udiag(s1, s2, . . . , sn)U∗ and K = V diag(t1, t2, . . . , tn)V ∗.

In our previous work [39], to a given scalar mean M(s, t) (for s, t ∈ R+), we
associated the corresponding matrix mean M(H, K)X by

M(H, K)X = U ([M(si, tj)] ◦ (U∗XV ))V ∗. (1.1)

For a scalar mean M(s, t) of the form
∑n

i=1 fi(s)gi(t) one easily observes
M(H, K)X =

∑n
i=1 fi(H)Xgi(K), and we note that this expression makes

a perfect sense even for Hilbert space operators H, K, X with H, K ≥ 0.
However, for the definition of general matrix means M(H, K)X (such as A-
L-G interpolation means Mα(H, K)X and binomial means Bα(H, K)X to
be explained later) the use of Hadamard products or something alike seems
unavoidable.

The first main purpose of the present monograph is to develop a reason-
able theory of means for Hilbert space operators, which works equally well
for general scalar means (including Mα, Bα and so on). Here two difficul-
ties have to be resolved: (i) Given (infinite-dimensional) diagonal operators
H, K ≥ 0, the definition (1.1) remains legitimate for X ∈ C2(H), the Hilbert-
Schmidt class operators on a Hilbert space H, as long as entries M(si, tj)
stay bounded (and M(H, K)X ∈ C2(H)). However, what we want is a mean
M(H, K)X (∈ B(H)) for each bounded operator X ∈ B(H). (ii) General

F. Hiai and H. Kosaki: LNM 1820, pp. 1–6, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 1 Introduction

positive operators H, K are no longer diagonal so that continuous spectral
decomposition has to be used. The requirement in (i) says that the concept
of a Schur multiplier ([31, 32, 66]) has to enter our picture, and hence what
we need is a continuous analogue of the operation (1.1) with this concept
built in. The theory of (Stieltjes) double integral transformations ([14]) due
to M. Sh. Birman, M. Z. Solomyak and others is suited for this purpose. With
this apparatus the operator mean M(H, K)X is defined (in Chapter 3) as

M(H, K)X =
∫ ‖H‖

0

∫ ‖K‖

0

M(s, t) dEsXdFt (1.2)

with the spectral decompositions

H =
∫ ‖H‖

0

s dEs and K =
∫ ‖K‖

0

t dFt.

Double integral transformations as above were actually considered with
general functions M(s, t) (which are not necessarily means). This subject has
important applications to theories of perturbation, Volterra operators, Hankel
operators and so on (see §2.5 for more information including references), and
one of central problems here (besides the justification of the double integral
(1.2)) is to determine for which unitarily invariant norm the transformation
X �→ M(H, K)X is bounded. Extensive study has been made in this direc-
tion, and V. V. Peller’s work ([69, 70]) deserves special mentioning. Namely,
he completely characterized (C1-)Schur multipliers in this setting (i.e., bound-
edness criterion relative to the trace norm ‖ · ‖1, or equivalently, the operator
norm ‖ ·‖ by the duality), which is a continuous counterpart of U. Haagerup’s
characterization ([31, 32]) in the matrix setting. Our theory of operator means
is built upon V. V. Peller’s characterization (Theorem 2.2) although just an
easy part is needed. Unfortunately, his work [69] with a proof (while [70] is
an announcement) was not widely circulated, and details of some parts were
omitted. Moreover, quite a few references there are not easily accessible. For
these reasons and to make the monograph as self-contained as possible, we
present details of his proof in Chapter 2 (see §2.1).

As emphasized above, the notions of Hadamard products and double inte-
gral transformations play important roles in perturbation theory and commu-
tator estimates. In this monograph we restrict ourselves mainly to symmetric
homogeneous means (except in Chapter 8 and §A.1) so that these important
topics will not be touched. However, most of the arguments in Chapters 2 and
3 are quite general and our technique can be applicable to these topics (which
will be actually carried out in our forthcoming article [55]). It is needless to
say that there are large numbers of literature on matrix and/or operator norm
inequalities (not necessarily of perturbation and/or commutator-type) based
on closely related techniques. We also remark that the technique here is useful
for dealing with certain operator equations such as Lyapunov-type equations
(see §3.7 and [39, §4]). These related topics as well as relationship to other
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standard methods for study of operator inequalities (such as majorization
theory and so on) are summarized at the end of each chapter together with
suitable references, which might be of some help to the reader.

In the rest we will explain historical background at first and then more
details on the contents of the present monograph. In the classical work [36]
E. Heinz showed the (operator) norm inequality

‖HθXK1−θ + H1−θXKθ‖ ≤ ‖HX + XK‖ (for θ ∈ [0, 1]) (1.3)

for positive operators H, K ≥ 0 and an arbitrary operator X on a Hilbert
space. In the 1979 article [64] A. McIntosh presented a simple proof of

‖H∗XK‖ ≤ 1
2
‖HH∗X + XKK∗‖,

which is obviously equivalent to the following estimate for positive operators:

‖H1/2XK1/2‖ ≤ 1
2
‖HX + XK‖ (H, K ≥ 0).

It is the special case θ = 1/2 of (1.3), and he pointed out that a simple and
unified approach to so-called Heinz-type inequalities such as (1.3) (and the
“difference version” (8.7)) is possible based on this arithmetic-geometric mean
inequality. The closely related eigenvalue estimate

µn(H1/2K1/2) ≤ 1
2
µn(H + K) (n = 1, 2, . . . )

for positive matrices is known ([12]). Here, {µn(·)}n=1,2,··· denotes singular
numbers, i.e., µn(Y ) is the n-th largest eigenvalue (with multiplicities counted)
of the positive part |Y | = (Y ∗Y )1/2. This means |H1/2K1/2| ≤ 1

2U(H +K)U∗

for some unitary matrix U so that we have

|||H1/2K1/2||| ≤ 1
2
|||H + K|||

for an arbitrary unitarily invariant norm ||| · |||.
In the 1993 article [10] R. Bhatia and C. Davis showed the following

strengthening:

|||H1/2XK1/2||| ≤ 1
2
|||HX + XK||| (1.4)

for matrices, which of course remains valid for Hilbert space operators H, K ≥
0 and X by the standard approximation argument. On the other hand, in [3]
T. Ando obtained the matrix Young inequality

µn

(
H

1
p K

1
q

)
≤ µn

(
1
p
H + 1

q
K

)
(n = 1, 2, . . . ) (1.5)

for p, q > 1 with p−1 + q−1 = 1. Although the weak matrix Young inequality
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|||H 1
p XK

1
q ||| ≤ κp||| 1pHX + 1

q
XK||| (1.6)

holds with some constant κp ≥ 1 ([54]), without this constant the inequality
fails to hold for the operator norm ||| · ||| = ‖ · ‖ (unless p = 2) as was pointed
out in [2]. Instead, the following slightly weaker inequality holds always:

|||H 1
p XK

1
q ||| ≤ 1

p
|||HX ||| + 1

q
|||XK|||. (1.7)

In the recent years the above-mentioned arithmetic-geometric mean and
related inequalities have been under active investigation by several authors,
and very readable accounts on this subject can be found in [2, 8, 84]. Motivated
by these works, in a series of recent articles [54, 38, 39] we have investigated
simple unified proofs for known (as well as many new) norm inequalities in a
similar nature, and our investigation is summarized in the recent survey article
[40]. We also point out that closely related analysis was made in the recent
article [13] by R. Bhatia and K. Parthasarathy. For example as a refinement
of (1.4) the arithmetic-logarithmic-geometric mean inequality

|||H1/2XK1/2||| ≤ |||
∫ 1

0

HxXK1−xdx||| ≤ 1
2
|||HX + XK||| (1.8)

was obtained in [38]. The technique in this article actually permitted us to
compare these quantities with

||| 1
m

m∑

k=1

H
k

m+1 XK
m+1−k

m+1 |||, ||| 1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 |||, (1.9)

and moreover in the appendix to [38] we discussed the ||| · |||-convergence





1
m

m∑

k=1

H
k

m+1 XK
m+1−k

m+1 →
∫ 1

0

HxXK1−xdx (as m → ∞),

1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 →
∫ 1

0

HxXK1−xdx (as n → ∞)

(1.10)

under certain circumstances.
The starting point of the analysis made in [39] was an axiomatic treat-

ment on matrix means (i.e., matrix means M(H, K)X (see (1.1)) associated
to scalar means M(s, t) satisfying certain axioms), and a variety of generaliza-
tions of the norm inequalities explained so far were obtained as applications.
As in [39] a certain class of symmetric homogeneous (scalar) means is con-
sidered in the present monograph, but our main concern here is a study of
corresponding means for Hilbert space operators instead. In order to be able
to define M(H, K)X (∈ B(H)) for each X ∈ B(H) (by the double integral
transformation (1.2)), our mean M(s, t) has to be a Schur multiplier in ad-
dition. For two such means M(s, t), N(s, t) we introduce the partial order:
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M � N if and only if M(ex, 1)/N(ex, 1) is positive definite. If this is the case,
then for non-singular positive operators H, K we have the integral expression

M(H, K)X =
∫ ∞

−∞
Hix(N(H, K)X)K−ixdν(x) (1.11)

with a probability measure ν (see Theorems 3.4 and 3.7 for the precise state-
ment), and of course the Bochner theorem is behind. Under such circum-
stances (thanks to the general fact explained in §A.2) we actually have

|||M(H, K)X ||| ≤ |||N(H, K)X ||| (1.12)

(even without the non-singularity of H, K ≥ 0). This inequality actually char-
acterizes the order M � N , and is a source for a variety of concrete norm
inequalities (as was demonstrated in [40]). The order � and (1.11), (1.12)
were also used in [39] for matrices, but much more involved arguments are re-
quired for Hilbert space operators, which will be carried out in Chapter 3. It
is sometimes not an easy task to determine if a given mean M(s, t) is a Schur
multiplier. However, the mean M∞(s, t) = max{s, t} comes to the rescue: (i)
The mean M∞ itself is a Schur multiplier. (ii) A mean majorized by M∞
(relative to �) is a Schur multiplier. These are consequences of (1.11), (1.12),
and enable us to prove that all the means considered in [39] are indeed Schur
multipliers. The observation (i) also follows from the discrete decomposition
of max{s, t} worked out in §A.3, which might be of independent interest. Fur-
thermore, a general norm estimate of the transformation X �→ M(H, K)X
is established for means M � M∞. In Chapter 4 we study the convergence
M(Hn, Kn)X → M(H, K)X (in ||| · ||| or in the strong operator topology)
under the strong convergence Hn → H , Kn → K of the positive operators
involved.

The requirement for the convergence (1.10) in the appendix to [39] was the
following finiteness condition: either |||H |||, |||K||| < ∞ or |||X ||| < ∞. This
requirement is somewhat artificial (and too restrictive), and the arguments
presented there were ad hoc. The second main purpose of the monograph is
to present systematic and thorough investigation on such convergence phe-
nomena. In [39] we dealt with the following one-parameter families of scalar
means:

Mα(s, t) =
α − 1

α
× sα − tα

sα−1 − tα−1
(−∞ ≤ α ≤ ∞),

Aα(s, t) =
1
2
(sαt1−α + s1−αtα) (0 ≤ α ≤ 1),

Bα(s, t) =
(

sα + tα

2

)1/α

(−∞ ≤ α ≤ ∞).

It is straight-forward to see that Mα(s, t), Aα(s, t) are Schur multipliers,
and also so is B1/n(s, t) thanks to the the binomial expansion B1/n(s, t) =
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2−n
∑n

k=0

(
n
k

)
s

k
n t

n−k
n . We indeed show that all of Bα(s, t) are (by prov-

ing Bα � M∞). Thus, all of the above give rise to operator means. Note
M1/2(s, t) =

√
st (the geometric mean), M2 = 1

2 (s + t) (the arithmetic mean)
and

M1(s, t)
(
= lim

α→1
Mα(s, t)

)

=
s − t

log s − log t
=

∫ 1

0

sxt1−xdx (the logarithmic mean).

Because of these reasons {Mα(s, t)}−∞≤α≤∞ will be referred to as the A-L-G
interpolation means. The convergence (1.10) (see also (5.1)) means

lim
m→∞ |||M m

m+1
(H, K)X − L||| = lim

n→∞ |||M n
n−1

(H, K)X − L||| = 0

with the logarithmic mean L = M1(H, K)X =
∫ 1

0 HxXK1−xdx, and the main
result in Chapter 5 is the following generalization:

lim
α→α0

|||Mα(H, K)X − Mα0(H, K)X ||| = 0

under the assumption |||Mβ(H, K)X ||| < ∞ for some β > α0. This is a
“dominated convergence theorem” for the A-L-G means, the proof of which
is indeed based on Lebesgue’s theorem applied to the relevant integral ex-
pression (1.11) with the concrete form of the density dν(x)/dx. Similar
dominated convergence theorems for the Heinz-type means Aα(H, K)X =
1
2 (HαXK1−α + H1−αXKα) (or rather the single components HαXK1−α)
and the binomial means Bα(H, K)X are also obtained together with other
related results in Chapters 6 and 7.

A slightly different subject is covered in Chapter 8, that might be of inde-
pendent interest. The homogeneous alternating sums






A(n) =
n∑

k=1

(−1)k−1H
k

n+1 XK
n+1−k

n+1 (with n = 1, 2, · · · ),

B(m) =
m−1∑

k=0

(−1)kH
k

m−1 XK
m−1−k

m−1 (with m = 2, 3, · · · )

are not necessarily symmetric (depending upon parities of n, m), but our
method works and integral expressions akin to (1.11) (sometimes with signed
measures ν) are available. This enables us to determine behavior of unitar-
ily invariant norms of these alternating sums of operators such as mutual
comparison, uniform bounds, monotonicity and so on.

Some technical results used in the monograph are collected in Appen-
dices, and §A.1 is concerned with extension of our arguments to certain non-
symmetric means.
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Double integral transformations

Throughout the monograph a Hilbert space H is assumed to be separable.
The algebra B(H) of all bounded operators on H is a Banach space with the
operator norm ‖ · ‖. For 1 ≤ p < ∞ let Cp(H) denote the Schatten p-class
consisting of (compact) operators X ∈ B(H) satisfying Tr(|X |p) < ∞ with
|X | = (X∗X)1/2, where Tr is the usual trace. The space Cp(H) is an ideal of
B(H) and a Banach space with the Schatten p-norm ‖X‖p = (Tr(|X |p))1/p.
In particular, C1(H) is the trace class, and C2(H) is the Hilbert-Schmidt class
which is a Hilbert space with the inner product (X, Y )C2(H) = Tr(XY ∗)
(X, Y ∈ C2(H)). The algebra B(H) is faithfully (hence isometrically) rep-
resented on the Hilbert space C2(H) by the left (also right) multiplication:
X ∈ C2(H) �→ AX, XA ∈ C2(H) for A ∈ B(H). Standard references on these
basic topics (as well as unitarily invariant norms) are [29, 37, 77].

In this chapter we choose and fix positive operators H, K on H with the
spectral decompositions

H =
∫ ‖H‖

0

s dEs and K =
∫ ‖K‖

0

t dFt

respectively. We will use both of the notations dEs, EΛ (for Borel sets Λ ⊆
[0, ‖H‖]) interchangeably in what follows (and do the same for the other
spectral measure F ). Let λ (resp. µ) be a finite positive measure on the interval
[0, ‖H‖] (resp. [0, ‖K‖]) equivalent (in the absolute continuity sense) to dEs

(resp. dFt). For instance the measures

λ(Λ) =
∞∑

n=1

1
n2

(EΛen, en) (Λ ⊆ [0, ‖H‖]),

µ(Ξ) =
∞∑

n=1

1
n2

(FΞen, en) (Ξ ⊆ [0, ‖K‖])

do the job, where {en}n=1,2,··· is an orthonormal basis for H. We choose and
fix a function φ(s, t) in L∞([0, ‖H‖] × [0, ‖K‖]; λ × µ). For each operator

F. Hiai and H. Kosaki: LNM 1820, pp. 7–32, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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X ∈ B(H), the algebra of all bounded operators on H, we would like to
justify its “double integral” transformation formally written as

Φ(X) =
∫ ‖H‖

0

∫ ‖K‖

0

φ(s, t) dEsXdFt

(see [14]). As long as X ∈ C2(H), the Hilbert-Schmidt class operators, desired
justification is quite straight-forward and moreover under such circumstances
we have Φ(X) ∈ C2(H) with the norm bound

‖Φ(X)‖2 ≤ ‖φ‖L∞(λ×µ) × ‖X‖2. (2.1)

In fact, with the left multiplication π� and the right multiplication πr, π�(EΛ)
and πr(FΞ) (with Borel sets Λ ⊆ [0, ‖H‖] and Ξ ⊆ [0, ‖K‖]) are commut-
ing projections acting on the Hilbert space C2(H) so that π�(EΛ)πr(FΞ) is
a projection. It is plain to see that one gets a spectral family acting on the
Hilbert space C2(H) from those “rectangular” projections so that the ordinary
functional calculus via φ(s, t) gives us a bounded linear operator on C2(H).
With this interpretation we set

Φ(X) =

(∫ ‖H‖

0

∫ ‖K‖

0

φ(s, t) d(π�(E)πr(F ))

)

X. (2.2)

Note that the Hilbert-Schmidt class operator X in the right side here is re-
garded as a vector in the Hilbert space C2(H), and (2.1) is obvious.

In applications of double integral transformations (for instance to stability
problems of perturbation) it is important to be able to specify classes of
functions φ for which the domain of Φ(·) can be enlarged to various operator
ideals (such as Cp-ideals). In fact, some useful sufficient conditions (in terms of
certain Lipschitz conditions on φ(·, ·)) were announced in [14] (whose proofs
were sketched in [15]), but unfortunately they are not so helpful for our later
purpose. More detailed information on double integral transformations will
be given in §2.5.

2.1 Schur multipliers and Peller’s theorem

We begin with the definition of Schur multipliers (acting on operators on H).

Definition 2.1. When Φ (= Φ | C1(H)) : X �→ Φ(X) gives rise to a bounded
transformation on the ideal C1(H) (⊆ C2(H)) of trace class operators, φ(s, t)
is called a Schur multiplier (relative to the pair (H, K)).

When this requirement is met, by the usual duality B(H) = (C1(H))∗

the transpose of Φ gives rise to a bounded transformation on B(H) (i.e.,
the largest possible domain) as will be explained in the next §2.2. The next
important characterization due to V. V. Peller will play a fundamental role
in our investigation on means of operators:
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Theorem 2.2. (V.V. Peller, [69, 70]) For φ ∈ L∞([0, ‖H‖]× [0, ‖K‖]; λ×µ)
the following conditions are all equivalent :

(i) φ is a Schur multiplier ;
(ii) whenever a measurable function k : [0, ‖H‖]× [0, ‖K‖] → C is the kernel

of a trace class operator L2([0, ‖H‖]; λ) → L2([0, ‖K‖]; µ), so is the product
φ(s, t)k(s, t);

(iii) one can find a finite measure space (Ω, σ) and functions α ∈ L∞([0, ‖H‖]
×Ω; λ × σ), β ∈ L∞([0, ‖K‖]× Ω; µ × σ) such that

φ(s, t) =
∫

Ω

α(s, x)β(t, x)dσ(x) for all s ∈ [0, ‖H‖], t ∈ [0, ‖K‖]; (2.3)

(iv) one can find a measure space (Ω, σ) and measurable functions α, β on
[0, ‖H‖]×Ω, [0, ‖K‖]×Ω respectively such that the above (2.3) holds and

∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

L∞(λ)

∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

L∞(µ)
< ∞.

A few remarks are in order. (a) The implication (iii) ⇒ (iv) is trivial. (b)
The finiteness condition in (iv) and the Cauchy-Schwarz inequality guarantee
the integrability of the integrand in the right-hand side of (2.3). (c) The
condition (iii) is stronger than what was stated in [69, 70], but the proof
in [69] (presented below) actually says (ii) ⇒ (iii).

Unfortunately Peller’s article [69] (with a proof) was not widely circulated.
Because of this reason and partly to make the present monograph as much as
self-contained, the proof of the theorem is presented in what follows.

Proof of (iv) ⇒ (i)
Although this is a relatively easy part in the proof, we present detailed ar-
guments here because its understanding will be indispensable for our later
arguments. So let us assume that φ(s, t) admits an integral representation
stated in (iv). For a rank-one operator X = ξ⊗ηc we have π�(EΛ)πr(FΞ)X =
(EΛξ) ⊗ (FΞη)c so that from (2.3) we get

Φ(X) =
∫ ‖H‖

0

∫ ‖K‖

0

∫

Ω

α(s, x)β(t, x) (dEsξ) ⊗ (dFtη)c dσ(x)

=
∫

Ω

ξ(x) ⊗ η(x)c dσ(x)

with

ξ(x) =
∫ ‖H‖

0

α(s, x) dEsξ and η(x) =
∫ ‖K‖

0

β(t, x) dFtη. (2.4)

More precisely, the above integral can be understood for example in the weak
sense:
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(Φ(X)ξ′, η′) =
∫

Ω

((ξ(x) ⊗ η(x)c)ξ′, η′) dσ(x)

=
∫

Ω

(ξ′, η(x))(ξ(x), η′) dσ(x). (2.5)

The above ξ(x), η(x) are vectors for a.e. x ∈ Ω as will be seen shortly. We use
Theorem A.5 in §A.2 and the Cauchy-Schwarz inequality to get

‖Φ(ξ ⊗ ηc)‖1 ≤
∫

Ω

‖ξ(x) ⊗ η(x)c‖1dσ(x) =
∫

Ω

‖ξ(x)‖ × ‖η(x)‖ dσ(x)

≤
(∫

Ω

‖ξ(x)‖2dσ(x)
)1/2 (∫

Ω

‖η(x)‖2dσ(x)
)1/2

. (2.6)

Since ‖ξ(x)‖2 =
∫ ‖H‖

0

|α(s, x)|2d(Esξ, ξ) with the total mass of d(Esξ, ξ) be-

ing ‖ξ‖2, we have

∫

Ω

‖ξ(x)‖2dσ(x) =
∫ ‖H‖

0

(∫

Ω

|α(s, x)|2dσ(x)
)

d(Esξ, ξ)

≤
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

L∞(λ)
× ‖ξ‖2 (2.7)

by the Fubini-Tonneli theorem. A similar bound for
∫

Ω
‖η(x)‖2dσ(x) is also

available, and consequently from (2.6), (2.7) we get

‖Φ(ξ ⊗ ηc)‖1 ≤ ‖ξ‖ × ‖η‖ ×
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)

×
∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)
.

Therefore, we have shown

‖Φ(X)‖1 ≤
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)

×
∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)
× ‖X‖1 (2.8)

for rank-one operators X . Note that (2.7) (together with the finiteness re-
quirement in the theorem) shows ‖ξ(x)‖ < ∞, i.e., ξ(x) is indeed a vector for
a.e. x ∈ Ω. Also (2.8) guarantees that Φ(X) =

∫
Ω

ξ(x)⊗ η(x)cdσ(x) falls into
the ideal C1(H) of trace class operators.

We claim that the estimate (2.8) remains valid for finite-rank operators.
Indeed, thanks to the standard polar decomposition and diagonalization tech-
nique, such an operator X admits a representation X =

∑n
i=1 ξi⊗ηc

i satisfying
‖X‖1 =

∑n
i=1 ‖ξi‖ × ‖ηi‖. Then, we estimate
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‖Φ(X)‖1 ≤
n∑

i=1

‖Φ(ξi ⊗ ηc
i )‖1

≤
n∑

i=1

‖ξi‖ × ‖ηi‖ ×
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)

×
∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)

(by (2.8) for rank-one operators)

=
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)
×

∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)
× ‖X‖1.

We now assume X ∈ C1(H). Choose a sequence {Xn}n=1,2,··· of finite-
rank operators converging to X in ‖ · ‖1. Since convergence also takes place
in ‖ · ‖2 (≤ ‖ · ‖1), we see that Φ(Xn) tends to Φ(X) in ‖ · ‖2 (by (2.1)) and
consequently in the operator norm ‖ · ‖. The lower semi-continuity of ‖ · ‖1

relative to the ‖ · ‖-topology thus yields

‖Φ(X)‖1 ≤ lim inf
n→∞ ‖Φ(Xn)‖1

≤ lim inf
n→∞

(∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)

×
∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)
× ‖Xn‖1

)

(by (2.8) for finite-rank operators)

=
(∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(λ)
×

∥
∥
∥

∫

Ω

|β(·, x)|2dσ(x)
∥
∥
∥

1/2

L∞(µ)

)
‖X‖1.

Therefore, Φ(X) belongs to C1(H), and moreover Φ(·) restricted to C1(H) gives
rise to a bounded transformation as desired.

Proof of (i) ⇒ (ii)
One can choose a sequence {ξm} in H with

∑
m ‖ξm‖2 < ∞ such that {EΛξm :

Λ ⊆ [0, ‖H‖} (m = 1, 2, . . . ) are mutually orthogonal and λ is equivalent
to the measure

∑
m(EΛξm, ξm). In fact, choose a sequence {ξm} for which∑

m ‖ξm‖2 < ∞ and
∑

m(EΛξm, ξm) is equivalent to λ. We set

Λm =
{

s ∈ [0, ‖H‖] :
d(Esξm, ξm)

dλ(s)
> 0

}

with the Radon-Nikodym derivative d(Esξm, ξm)/dλ(s) with respect to λ.
Choose mutually disjoint measurable subsets Λ0

m ⊆ Λm (m = 1, 2, . . . ) with⋃
m Λ0

m =
⋃

m Λm; then a required sequence is obtained by replacing ξm by
EΛ0

m
ξm. Furthermore, we easily observe that the condition (ii) (as well as (i)) is

unchanged for equivalent measures (by considering the unitary multiplication
operator induced by the square root of the relevant Radon-Nikodym deriva-
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tive). So one can assume λ(Λ) =
∑

m(EΛξm, ξm) with {ξm} as above and sim-
ilarly µ(Ξ) =

∑
n(FΞηnηn) where

∑
m ‖ηn‖2 < ∞ and {FΞηn : Ξ ⊆ [0, ‖K‖]}

(n = 1, 2, . . . ) are mutually orthogonal.
Let H1 be the closed subspace of H spanned by {EΛξm : Λ ⊆ [0, ‖H‖], m ≥

1} and H2 be spanned by {FΞηn : Ξ ⊆ [0, ‖K‖], n ≥ 1}; then L2(λ) =
L2([0, ‖H‖]; λ) and L2(µ) = L2([0, ‖K‖]; µ) are isometrically isomorphic to
H1 and H2 respectively by the correspondences

χΛ ↔
∑

m

EΛξm and χΞ ↔
∑

n

FΞηn.

Assume that a measurable function k on [0, ‖H‖] × [0, ‖K‖] is the kernel
of a trace class operator R : L2(λ) → L2(µ), i.e.,

(Rf)(t) =
∫ ‖H‖

0

k(s, t)f(s) dλ(s) for f ∈ L2(λ).

The assumption implies in particular that k(s, t) and hence φ(s, t)k(s, t) are
square integrable with respect to λ × µ so that the latter is the kernel of
a Hilbert-Schmidt class operator. We prove under the assumption (i) that
φ(s, t)k(s, t) is indeed the kernel of a trace class operator. Define X ∈ C1(H)
by composing R with the orthogonal projection PH1 as follows:

H PH1−→ H1
∼= L2(λ) R−→ L2(µ) ∼= H2 ↪→ H .

Then (i) yields Φ(X) ∈ C1(H). For each Λ ⊆ [0, ‖H‖] and Ξ ⊆ [0, ‖K‖] we
have

(
Φ(X)

(∑

m

EΛξm

)
,
∑

n

FΞηn

)

=
∑

m,n

(
Φ(X), (EΛξm) ⊗ (FΞηn)c

)

C2(H)

=
∑

m,n

(
X, Φ∗ ((EΛξm) ⊗ (FΞηn)c)

)

C2(H)

=
∑

m,n

(
X,

∫ ‖H‖

0

∫ ‖K‖

0

φ(s, t) d(πl(Es)πr(Ft))((EΛξm) ⊗ (FΞηn)c)
)

C2(H)

=
∑

m,n

(
X,

∫

Λ

∫

Ξ

φ(s, t) (dEsξm) ⊗ (dFtηn)c
)

C2(H)

=
∑

m,n

∫

Λ

∫

Ξ

φ(s, t) (XdEsξm, dFtηn)

=
∫

Λ

∫

Ξ

φ(s, t)k(s, t) dλ(s) dµ(t)

because of
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∑

m,n

(XEΛξm, FΞηn) = (RχΛ, χΞ)L2(µ) =
∫

Λ

∫

Ξ

k(s, t) dλ(s) dµ(t).

We thus conclude that φ(s, t)k(s, t) is the kernel of the trace class operator
L2(λ) → L2(µ) corresponding to Φ(X)|H1 : H1 → H2.

Proof of (ii) ⇒ (iii)
This is the most non-trivial part in Peller’s theorem, and requires the notion
of one-integrable operators (between Banach spaces) and the Grothendieck
theorem. Assume that φ satisfies (ii) and define an integral operator T0 :
L1(λ) → L∞(µ) by

(T0f)(t) =
∫ ‖H‖

0

φ(s, t)f(s) dλ(s) for f ∈ L1(λ).

What we need to show is that T0 falls into the operator ideal I1(L1(λ), L∞(µ))
consisting of one-integral operators in the space of bounded operators L1(λ) →
L∞(µ). Our standard reference for the theory on operator ideals on Banach
spaces is Pietsch’s textbook [72] (see especially [72, §19.2]).

It is known (see [72, 19.2.13]) that I1(L1(λ), L∞(µ)) is dual to the space
of compact operators L∞(µ) → L1(λ). Thanks to [72, 10.3.6 and E.3.1], to
show T0 ∈ I1(L1(λ), L∞(µ)), it suffices to prove that there exists a constant
C such that

|trace(T0Q)| ≤ C‖Q‖ (2.9)

for finite-rank operators Q : L∞(µ) → L1(λ) of the form Q =
∑l

k=1〈 ·, hk〉gk

with gk ∈ L1(λ) and hk ∈ L1(µ). Here, 〈 ·, · 〉 denotes the duality between
L∞(µ) and L1(µ) and

trace(T0Q) =
n∑

k=1

〈T0gk, hk〉

for T0Q =
∑l

k=1〈 ·, hk〉T0gk.
To show (2.9), one may and do assume that gk, hk are finite linear combi-

nations of characteristic functions, say gk =
∑m

i=1 αkiχΛi , hk =
∑n

j=1 βkjχΞj

where A = {Λ1, . . . , Λm} and B = {Ξ1, . . . , Ξn} are measurable partitions
of [0, ‖H‖] and [0, ‖K‖] respectively. For p = 1, 2,∞ write Lp(A, λ) for the
(finite-dimensional) subspace of Lp(λ) consisting of A-measurable functions
(i.e., linear combinations of χΛi ’s) and Lp(B, µ) similarly. The conditional
expectation EB : Lp(µ) → Lp(B, µ) is given by

EBf =
n∑

j=1

µ(Ξj)−1

(∫

Ξj

f dµ

)

χΞj .

Set Q̃ = Q|L∞(B,µ) : L∞(B, µ) → L1(A, λ) so that we have Q = Q̃ ◦ EB.
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According to [61, Theorem 4.3] (based on the Grothendieck theorem) to-
gether with [61, Proposition 3.1], we see that Q̃ admits a factorization

L∞(B, µ) M̃2−→ L2(B, µ) R̃−→ L1(A, λ), (2.10)

where M̃2 is the multiplication by a function η̃ ∈ L2(B, µ) and R̃ is an operator
such that

‖η̃‖L2(µ) = 1 and ‖R̃‖ ≤ KG‖Q̃‖ (2.11)

with the Grothendieck constant KG. Apply [61, Theorem 4.3] once again to
the transpose R̃t : L∞(A, λ) → L2(B, µ) to get the following factorization of
R̃t:

L∞(A, λ) M̂1−→ L2(A, λ) Ŝ−→ L2(B, µ),

where M̂1 is the multiplication by a function ξ̃ ∈ L2(A, λ) and Ŝ is an operator
such that

‖ξ̃‖L2(λ) = 1 and ‖Ŝ‖ ≤ KG‖R̃t‖ = KG‖R̃‖. (2.12)

Hence R̃ is factorized as

L2(B, µ) S̃=Ŝt−→ L2(A, λ)
M̃1=M̂t

1−→ L1(A, λ), (2.13)

where M̃1 is again the multiplication by ξ̃. Combining (2.10) and (2.13) implies
that Q is factorized as

L∞(µ) EB−→ L∞(B, µ) M̃2−→ L2(B, µ) S̃−→ L2(A, λ) M̃1−→ L1(A, λ) ↪→ L1(λ).

Let S = S̃EB : L2(µ) → L2(B, µ) → L2(A, λ) ⊆ L2(λ) and M1 : L2(λ) →
L1(λ), M2 : L∞(µ) → L2(µ) be the multiplications by ξ̃, η̃ respectively. Since

Q = M̃1S̃M̃2EB = M̃1S̃EBM2 = M1SM2,

we finally obtain a factorization of Q as follows:

L∞(µ) M2−→ L2(µ) S−→ L2(λ) M1−→ L1(λ)

with
‖S‖ = ‖S̃‖ ≤ KG‖R̃‖ ≤ K2

G‖Q̃‖ = K2
G‖Q‖ (2.14)

thanks to (2.11) and (2.12).
Notice that M2T0M1 : L2(λ) → L2(µ) is the integral operator

(M2T0M1f)(t) =
∫ ‖H‖

0

φ(s, t)ξ̃(s)η̃(t)f(s) dλ(s).

Since ξ̃(s)η̃(t) is obviously a kernel of a rank-one operator L2(λ) → L2(µ),
the assumption (ii) implies that M2T0M1 is a trace class operator. Now, it is
easy to see that
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trace(T0Q) = trace(T0M1SM2) = Tr(M2T0M1S) (2.15)

with the (ordinary) trace Tr for the trace class operator M2T0M1S on L2(µ).
For every ξ ∈ L2(λ) and η ∈ L2(µ), the assumption (ii) guarantees that

one can define a trace class operator A(ξ, η) : L2(λ) → L2(µ) by

(A(ξ, η)f)(t) =
∫ ‖H‖

0

φ(s, t)ξ(s)η(t)f(s) dλ(s);

in particular, M2T0M1 = A(ξ̃, η̃). Write C1(L2(λ), L2(µ)) for the Banach space
(with trace norm ‖·‖C1(L2(λ),L2(µ))) consisting of trace class operators L2(λ) →
L2(µ).

Lemma 2.3. There exists a constant C̃ such that

‖A(ξ, η)‖C1(L2(λ),L2(µ)) ≤ C̃‖ξ‖L2(λ)‖η‖L2(µ) (2.16)

for each ξ ∈ L2(λ) and η ∈ L2(µ).

Proof. For a fixed ξ ∈ L2(λ) let us consider the linear map

A(ξ, ·) : η ∈ L2(µ) �→ A(ξ, η) ∈ C1(L2(λ), L2(µ)),

whose graph is shown to be closed. We assume

ηn −→ η in L2(µ) and A(ξ, ηn) −→ B in C1(L2(λ), L2(µ)).

Choose and fix f ∈ L2(λ), and notice

‖A(ξ, ηn)f − Bf‖L2(µ) ≤ ‖A(ξ, ηn) − B‖B(L2(λ),L2(µ))‖f‖L2(λ)

≤ ‖A(ξ, ηn) − B‖C1(L2(λ),L2(µ))‖f‖L2(λ) −→ 0.

From these L2-convergences, after passing to a subsequence if necessary, we
may and do assume

ηn(t) −→ η(t) and (A(ξ, ηn)f)(t) −→ (Bf)(t) for µ-a.e. t.

We then estimate

|(A(ξ, ηn)f)(t) − (A(ξ, η)f)(t)|

≤
∣
∣
∣
∣
∣

∫ ‖H‖

0

φ(s, t)
(
ηn(t) − η(t)

)
ξ(s)f(s)dλ(s)

∣
∣
∣
∣
∣

≤ |ηn(t) − η(t)| × ‖φ‖∞ ×
∫ ‖H‖

0

|ξ(s)f(s)| dλ(s).

The last integral here being finite (due to ξ, f ∈ L2(λ)), we conclude
(Bf)(t) = (A(ξ, η)f)(t) for µ-a.e. t. This means Bf = A(ξ, η)f ∈ L2(µ)
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and the arbitrariness of f ∈ L2(λ) shows B = A(ξ, η) as desired. Therefore,
the closed graph theorem guarantees the boundedness of A(ξ, ·), i.e.,

‖A(ξ, ·)‖ = sup
{‖A(ξ, η)‖C1(L2(λ),L2(µ)) : η ∈ L2(µ), ‖η‖L2(µ) ≤ 1

}
< ∞,

‖A(ξ, η)‖C1(L2(λ),L2(µ)) ≤ ‖A(ξ, ·)‖ × ‖η‖L2(µ). (2.17)

We next consider the linear map

A : ξ ∈ L2(λ) �→ A(ξ, ·) ∈ B(L2(µ), C1(L2(λ), L2(µ))).

To show the closedness of the graph again, we assume

ξn −→ ξ in L2(λ) and A(ξn, ·) −→ C in B(L2(µ), C1(L2(λ), L2(µ))).

We need to show A(ξ, ·) = C ∈ B(L2(µ), C1(L2(λ), L2(µ))), i.e., A(ξ, η) =
C(η) ∈ C1(L2(λ), L2(µ)) (η ∈ L2(µ)). For each fixed f ∈ L2(λ) (and η ∈
L2(µ)), we have A(ξn, η)f → C(η)f in L2(µ). From this L2-convergence and
the fact η ∈ L2(µ), after passing to a subsequence, we have

(A(ξn, η)f)(t) −→ (C(η)f)(t) and |η(t)| < ∞ for µ-a.e. t.

We estimate

|(A(ξn, η)f)(t) − A(ξ, η)f)(t)|

≤
∣
∣
∣
∣
∣

∫ ‖H‖

0

φ(s, t)η(t)(ξn(s) − ξ(s))f(s)dλ(s)

∣
∣
∣
∣
∣

≤ ‖φ‖∞ × |η(t)| ×
∫ ‖H‖

0

|(ξn(s) − ξ(s))f(s)| dλ(s)

≤ ‖φ‖∞ × |η(t)| × ‖ξn − ξ‖L2(λ)‖f‖L2(λ).

Therefore, we have (A(ξ, η)f)(t) = (C(η)f)(t) for µ-a.e. t, showing A(ξ, η)f =
C(η)f ∈ L2(µ) (f ∈ L2(λ)) and A(ξ, η) = C(η) ∈ C1(L2(λ), L2(µ)) (for each
η ∈ L2(µ)). Thus, the closed graph theorem shows the boundedness

‖A(ξ, ·)‖ ≤ C̃‖ξ‖L2(λ) for some C̃,

which together with (2.17) implies the inequality (2.16). ��
We are now ready to prove (iii). By combining the above estimates (2.15),

(2.16), (2.11), (2.12) and (2.14) altogether, we get

|trace(T0Q)| ≤ ‖A(ξ̃, η̃)S‖C1(L2(µ)) ≤ C̃‖ξ̃‖L2(λ)‖η̃‖L2(µ)‖S‖ ≤ C̃K2
G‖Q‖,

proving (2.9) with a constant C = C̃K2
G (independent of Q). Thus, T0 ∈

I1(L1(λ), L∞(µ)) is established.
The following fact is known among other characterizations (see [72, 19.2.6]):

a bounded operator T : L1(λ) → L∞(µ) belongs to I1(L1(λ), L∞(µ)) if
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and only if there exist a probability space (Ω, σ) and bounded operators
T1 : L1(λ) → L∞(Ω; σ), T2 : L1(Ω; σ) → L∞(µ)∗∗ such that

L1(λ) T−→ L∞(µ) ↪→ L∞(µ)∗∗

T1 ↓ ↑ T2

L∞(Ω; σ) ↪→ L1(Ω; σ)

is commutative. Therefore, we can factorize T0 as follows:

L1(λ) T1−→ L∞(Ω; σ) ↪→ L1(Ω; σ) T2−→ L∞(µ),

where (Ω, σ) is a finite measure space and T1, T2 are bounded operators. In-
deed, L∞(µ) is complemented in L∞(µ)∗∗, and this T2 is the composition
of a projection map (actually a norm-one projection due to M. Hasumi’s re-
sult in [35], and also see [76, p. 148, Exercise 22 and p. 299, Exercise 10])
L∞(µ)∗∗ → L∞(µ) and the preceding T2 : L1(Ω; σ) → L∞(µ)∗∗.

Thanks to Lemma 2.4 below applied to the preceding bounded operators
T1, T2, there exist α ∈ L∞([0, ‖H‖]×Ω; λ×σ) and β ∈ L∞([0, ‖K‖]×Ω; µ×σ)
such that

(T1f)(x) =
∫ ‖H‖

0

α(s, x)f(s) dλ(s) for f ∈ L1(λ),

(T2g)(t) =
∫

Ω

β(t, x)g(x) dσ(x) for g ∈ L1(Ω, σ).

Therefore, we have

(T0f)(t) =
∫

Ω

∫ ‖H‖

0

α(s, x)β(t, x)f(s) dλ(s) dσ(x)

=
∫ ‖H‖

0

(∫

Ω

α(s, x)β(t, x) dσ(x)
)

f(s) dλ(s) for f ∈ L1(λ),

which yields (iii) and the proof of Theorem 2.2 is completed.

The next result can be found in [47] as a corollary of a more general result
(see [47, §XI.1, Theorem 6]), and a short direct proof is presented below for
the reader’s convenience.

Lemma 2.4. Let (Ω1, σ1) and (Ω2, σ2) be finite measure spaces. For a given
bounded operator T : L1(Ω1; σ1) → L∞(Ω2; σ2) there exists a unique τ ∈
L∞(Ω1 × Ω2; σ1 × σ2) satisfying

(Tf)(y) =
∫

Ω1

τ(x, y)f(x) dσ1(x) for f ∈ L1(Ω1; σ1).

Proof. Choose and fix a measurable set Ξ ⊆ Ω2. For each f ∈ L1(σ1) we
observe the trivial estimate
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|〈Tf, χΞ〉σ2 | ≤ σ2(Ξ) × ‖Tf‖L∞(σ2) ≤ σ2(Ξ) × ‖T ‖ × ‖f‖L1(σ1)

(with the standard bilinear form 〈 ·, · 〉σ2 giving rise to the duality between
L∞(σ2) and L1(σ2)), showing the existence of hΞ ∈ L∞(Ω1; σ1) satisfying
‖hΞ‖L∞(σ1) ≤ ‖T ‖ and

〈Tf, χΞ〉σ2 = σ2(Ξ) × 〈hΞ , f〉σ1 for f ∈ L1(σ1).

Let Π denote the set of all finite measurable partitions of Ω2, which is a
directed set in the order of refinement. For every π ∈ Π we set

τπ(x, y) =
∑

Ξ∈π

hΞ(x)χΞ (y), (x, y) ∈ Ω1 × Ω2,

so that a net {τπ}π∈Π in L∞(σ1 × σ2) satisfies ‖τπ‖L∞(σ1×σ2) ≤ ‖T ‖ and

〈Tf, χΞ〉σ2 = 〈τπ , f × χΞ〉σ1×σ2 for f ∈ L1(σ1)

for each π-measurable Ξ (i.e., π refines {Ξ, Ω2 \ Ξ}). Thanks to the w*-
compactness of

{
φ ∈ L∞(σ1 × σ2); ‖φ‖L∞(σ1×σ2) ≤ ‖T ‖} one can take a

w*-limit point τ of {τπ}π∈Π . Then it is easy to see that

〈Tf, χΞ〉σ2 = 〈τ, f × χΞ〉σ1×σ2 =
∫

Ξ

(∫

Ω1

τ(x, y)f(x) dσ1(x)
)

dσ2(y)

for each f ∈ L1(Ω1; σ1) and each measurable set Ξ ⊆ Ω2. This implies the
desired integral expression, and the uniqueness of τ is obvious. ��

2.2 Extension to B(H)

We assume the condition (iv) in Theorem 2.2 (i.e., φ(s, t) admits the integral
expression (2.3) with the finiteness condition described in (iv)) and will explain
how to extend Φ(·) to a bounded transformation on B(H) by making use of
the duality B(H) = C1(H)∗ via

(X, Y ) ∈ C1(H) × B(H) 	→ Tr(XY ) ∈ C.

To do so, we first note that the roles of the variables s, t (and those of dEs

and dFt) are symmetric. Thus, the function

φ̃(t, s) = φ(s, t) =
∫

Ω

β(t, x)α(s, x) dσ(x)

gives rise to the following transformation on C1(H):

Φ̃(X) =
∫ ‖K‖

0

∫ ‖H‖

0

φ̃(t, s) dFtXdEs.
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We consider its transpose Φ̃t on B(H) = C1(H)∗, that is,

Tr(XΦ̃t(Y )) = Tr(Φ̃(X)Y ) for X ∈ C1(H), Y ∈ B(H). (2.18)

Let us take X = ξ ⊗ ηc here. Then, the left side of (2.18) is obviously the
inner product (Φ̃t(Y )ξ, η). On the other hand, we have

Φ̃(X) =
∫

Ω

ξ̃(x) ⊗ η̃(x)c dσ(x)

with

ξ̃(x) =
∫ ‖K‖

0

β(t, x) dFtξ and η̃(x) =
∫ ‖H‖

0

α(s, x) dEsη (2.19)

(see (2.4), but recall that the roles of α and β were switched). We claim that
the right side of (2.18) (when X = ξ ⊗ ηc) is

∫
Ω

(Y ξ̃(x), η̃(x))dσ(x). In fact,
for vectors ξ′, η′ we have

(Φ̃(X)Y ξ′, η′) =
∫

Ω

(Y ξ′, η̃(x))(ξ̃(x), η′) dσ(x)

=
∫

Ω

(ξ̃(x), η′)(ξ′, Y ∗η̃(x)) dσ(x)

thanks to (2.5). Let {en}n=1,2,··· be an orthonormal basis for H. Since
Φ̃(X)Y ∈ C1(H), from the preceding expression we get

Tr(Φ̃(X)Y ) =
∞∑

n=1

(Φ̃(X)Y en, en) =
∞∑

n=1

∫

Ω

(ξ̃(x), en)(en, Y ∗η̃(x)) dσ(x)

(see [29, Chapter III, §8]). Here, we would like to switch the order of
∑∞

n=1

and
∫

Ω, which is guaranteed by the Fubini theorem thanks to the following
integrability estimate:

∫

Ω

∞∑

n=1

|(ξ̃(x), en)(en, Y ∗η̃(x))| dσ(x)

≤
∫

Ω

( ∞∑

n=1

|(ξ̃(x), en)|2
)1/2 ( ∞∑

n=1

|(en, Y ∗η̃(x))|2
)1/2

dσ(x)

=
∫

Ω

‖ξ̃(x)‖ × ‖Y ∗η̃(x)‖ dσ(x) ≤ ‖Y ‖
∫

Ω

‖ξ̃(x)‖ × ‖η̃(x)‖ dσ(x) < ∞

(see (2.6) and (2.7)). Hence, we get

Tr(Φ̃(X)Y ) =
∫

Ω

∞∑

n=1

(ξ̃(x), en)(en, Y ∗η̃(x)) dσ(x)

=
∫

Ω

(ξ̃(x), Y ∗η̃(x)) dσ(x) =
∫

Ω

(Y ξ̃(x), η̃(x)) dσ(x).
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Therefore, the claim has been proved, and (for X = ξ ⊗ ηc) (2.18) means

(Φ̃t(Y )ξ, η) =
∫

Ω

(Y ξ̃(x), η̃(x)) dσ(x) (2.20)

with the vectors ξ̃(x) and η̃(x) defined by (2.19).
When Y = ξ′ ⊗ η′c, the right side of (2.20) is

∫

Ω

(ξ̃(x), η′)(ξ′, η̃(x)) dσ(x)

=
∫

Ω

(∫ ‖K‖

0

β(t, x)dFtξ, η
′
) (

ξ′,
∫ ‖H‖

0

α(s, x)dEsη

)

dσ(x)

=
∫

Ω

(

ξ,

∫ ‖K‖

0

β(t, x)dFtη
′
) (∫ ‖H‖

0

α(s, x)dEsξ
′, η

)

dσ(x)

=
∫

Ω

(Y (x)ξ, η) dσ(x)

with the rank-one operator

Y (x) =

(∫ ‖H‖

0

α(s, x) dEsξ
′
)

⊗
(∫ ‖K‖

0

β(t, x) dFtη
′
)c

.

But, notice that the two involved vectors here are exactly those defined from
ξ′ and η′ according to the formula (2.4). Therefore, we have shown

Φ̃t(Y ) =
∫

Ω

Y (x) dσ(x) = Φ(Y ) (2.21)

for a rank-one (and hence finite-rank) operator Y .
For a general Hilbert-Schmidt class operator Y , we choose a sequence

{Yn}n=1,2,··· of finite-rank operators tending to Y in ‖ · ‖2. Since the conver-
gence is also valid in the operator norm and Φ̃t (being defined as a transpose) is
bounded relative to the operator norm, we have Φ̃t(Y ) = ‖·‖- limn→∞ Φ̃t(Yn).
On the other hand, we know

Φ(Y ) = ‖ · ‖2- lim
n→∞Φ(Yn) = ‖ · ‖2- lim

n→∞ Φ̃t(Yn)

thanks to (2.1) and (2.21). Therefore, we conclude Φ̃t(Y ) = Φ(Y ) so that Φ̃t

is indeed an extension of Φ (originally defined on C2(H)).
The discussions so far justify the use of the notation Φ(Y ) (for Y ∈ B(H))

for expressing Φ̃t(Y ), and we shall also use the symbolic notation

Φ(Y ) (= ΦH,K(Y )) =
∫ ‖H‖

0

∫ ‖K‖

0

φ(s, t) dEsY dFt (for Y ∈ B(H))

in the rest of the monograph.
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Remark 2.5.

(i) The map Φ : X ∈ B(H) �→ Φ(X) ∈ B(H) is always w*-w*-continuous
(i.e., σ(B(H), C1(H))-σ(B(H), C1(H))-continuous) because it was defined
as the transpose of the bounded transformation Φ̃ on C1(H).

(ii) From (2.19) and (2.20) we observe

(Φ(Y )ξ, η) =
∫

Ω

(Y β(K, x)ξ, α(H, x)∗η) dσ(x)

=
∫

Ω

(α(H, x)Y β(K, x)ξ, η) dσ(x)

with the usual function calculus

α(H, x) =
∫ ‖H‖

0

α(H, x) dEs and β(K, x) =
∫ ‖K‖

0

β(t, x) dFt.

Therefore, Φ(X) (for X ∈ B(H)) can be simply written as the integral

Φ(X) =
∫

Ω

α(H, x)Xβ(K, x) dσ(x)

in the weak sense. Remark that the integral expression (2.3) for ϕ(s, t) is far
from being unique. Nevertheless, there is no ambiguity for the definition of
Φ(X). Indeed, the definition of Φ̃(X) (= Φ̃ |C1(H) (X)) for X ∈ C1(H) (⊆
C2(H)) does not depend on this expression (see (2.2)), and Φ(X) (for
X ∈ B(H) = C(H)∗) was defined as the transpose.

(iii) From the expression in (ii) we obviously have

f(H)(Φ(X))g(K) = Φ(f(H)Xg(K))

for all bounded Borel functions f, g.

2.3 Norm estimates

We begin by investigating a relationship between the two norms

‖Φ‖(∞,∞) = sup{‖Φ(X)‖ : ‖X‖ ≤ 1},
‖Φ‖(1,1) = sup{‖Φ(X)‖1 : ‖X‖1 ≤ 1}.

To do so, besides Φ and Φ̃ we also make use of the following auxiliary double
integral operator:

Φ̄(X) =
∫ ‖H‖

0

∫ ‖K‖

0

φ(s, t) dEsXdFt.
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Proposition 2.6. (M. Sh. Birman and M. Z. Solomyak, [16]) For a Schur
multiplier φ ∈ L∞([0, ‖H‖]× [0, ‖K‖]; λ × µ) we have

‖Φ‖(1,1) = ‖Φ‖(∞,∞).

Proof. For X ∈ C2(H) we easily observe Φ̄(X∗)∗ = Φ̃(X) and hence ‖Φ̃‖(1,1) =
‖Φ̄‖(1,1) by restricting the both sides to C1(H) (⊆ C2(H)). On the other hand,
‖Φ‖(∞,∞) = ‖Φ̃‖(1,1) is obvious from the definition, i.e., Φ was defined as a
transpose. Therefore, to prove the proposition it suffices to see ‖Φ‖(1,1) =
‖Φ̄‖(1,1).

One expresses H and E in the direct integral form as follows:

H =
∫ ⊕

[0,‖H‖]

H(s) dλ(s), EΛ =
∫ ⊕

[0,‖H‖]

χΛ(s)1H(s) dλ(s)

for Borel sets Λ ⊆ [0, ‖H‖]. Note that it is the central decomposition of the
von Neumann algebra {EΛ : Λ ⊆ [0, ‖H‖]}′ over its center

{EΛ : Λ ⊆ [0, ‖H‖]}′′ ∼= L∞([0, ‖H‖]; λ).

(See [17, Chapter 7, §2] for more “operator-theoretical description”.) Similarly,
one can write

H =
∫ ⊕

[0,‖K‖]

H̃(t) dµ(t), FΞ =
∫ ⊕

[0,‖K‖]

χΞ(t)1H̃(t) dµ(t)

for Borel sets Ξ ⊆ [0, ‖K‖]. A standard argument in the theory of direct
integral shows that C2(H) is represented as the direct integral

C2(H) =
∫ ⊕

[0,‖H‖]×[0,‖K‖]

C2(H(s), H̃(t)) d(λ × µ)(s, t)

with the Hilbert-Schmidt class operators C2(H(s), H̃(t)) from H(s) into H̃(t).
Take an X =

∫ ⊕
[0,‖H‖]×[0,‖K‖] X(s, t) d(λ × µ)(s, t) in C2(H). Since

EΛXFΞ =
∫ ⊕

[0,‖H‖]×[0,‖K‖]

χΛ×Ξ(s, t)X(s, t) d(λ × µ)(s, t)

for Borel sets Λ ⊆ [0, ‖H‖] and Ξ ⊆ [0, ‖K‖], it is immediate to see that Φ(X)
and Φ̄(X) are written as

Φ(X) =
∫ ⊕

[0,‖H‖]×[0,‖K‖]

φ(s, t)X(s, t) d(λ × µ)(s, t),

Φ̄(X) =
∫ ⊕

[0,‖H‖]×[0,‖K‖]

φ(s, t)X(s, t) d(λ × µ)(s, t)
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respectively. The measurable cross-section theorem guarantees that one can
select measurable fields

{J(s) : s ∈ [0, ‖H‖]} and {J̃(s) : s ∈ [0, ‖K‖]}
of (conjugate linear) involutions J(s) : H(s) → H(s), J̃(s) : H̃(s) → H̃(s),
and they give rise to the global involutions

J =
∫ ⊕

[0,‖H‖]

J(s) dλ(s) and J̃ =
∫ ⊕

[0,‖K‖]

J̃(t) dµ(t)

on the Hilbert space H. Then we observe

J̃Φ(X)J =
∫ ⊕

[0,‖H‖]×[0,‖K‖]

φ(s, t)J̃(t)X(s, t)J(s) d(λ × µ)(s, t) = Φ̄(J̃XJ).

Since the map X �→ J̃XJ is obviously isometric on C1(H), the equality
‖Φ‖(1,1) = ‖Φ̄‖(1,1) is now obvious and the proposition has been proved. ��

For each unitarily invariant norm ||| · |||, let I|||·||| and I(0)
|||·||| be the associ-

ated symmetrically normed ideals, that is,

I|||·||| = {X ∈ B(H) : |||X ||| < ∞},
I(0)
|||·||| = the ||| · |||-closure of Ifin in I|||·|||,

where Ifin is the ideal of finite-rank operators (see [29, 37, 77] for details). For
a Schur multiplier φ(t, s) we have shown

‖Φ(X)‖1 ≤ k‖X‖1 (X ∈ C1(H)) and ‖Φ(X)‖ ≤ k‖X‖ (X ∈ B(H)) (2.22)

with k = ‖Φ‖(1,1) = ‖Φ‖(∞,∞) (Proposition 2.6). The next result says that
φ(s, t) is automatically a “Schur multiplier for all operator ideals I|||·|||, I(0)

|||·|||”
with the same bound for

‖Φ‖(|||·|||, |||·|||) = sup{|||Φ(X)||| : |||X ||| ≤ 1}.
Proposition 2.7. Let φ(s, t) be a Schur multiplier with

κ = ‖Φ‖(1,1) = ‖Φ‖(∞,∞) (< ∞).

For any unitarily invariant norm ||| · ||| we have

|||Φ(X)||| ≤ κ|||X ||| (≤ ∞)

for all X ∈ B(H) so that Φ maps I|||·||| into itself. Moreover, Φ also maps
the separable operator ideal I(0)

|||·||| into itself. In particular, Φ(X) is a compact
operator as long as X is.
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Proof. Recall the following expression for the Ky Fan norm as a K-functional:

|||X |||(n) =
n∑

k=1

µk(X)

= inf{n‖X0‖ + ‖X1‖1 : X = X0 + X1} (n = 1, 2, · · · ),

where {µk(·)}k=1,2,··· denotes the singular numbers (see [26, p. 289] for ex-
ample). This expression together with (2.22) clearly shows |||Φ(X)|||(n) ≤
κ|||X |||(n) for each n, which is known to be equivalent to the validity of
|||Φ(X)||| ≤ κ|||X ||| for each unitarily invariant norm (see [37, Proposition
2.10]).

It remains to show Φ
(
I(0)
|||·|||

)
⊆ I(0)

|||·|||. When X is a finite-rank operator,
Φ(X) is of trace class and can be approximated by a sequence {Yn}n=1,2,··· of
finite-rank operators in the ‖ · ‖1-norm. Notice

|||Φ(X) − Yn||| ≤ ‖Φ(X) − Yn‖1 −→ 0,

showing Φ(X) ∈ I(0)
|||·|||. For a general X ∈ I(0)

|||·|||, one chooses a sequence
{Xn}n=1,2,··· of finite-rank operators satisfying limn→∞ |||X−Xn||| = 0. Since
Φ(Xn) ∈ I(0)

|||·||| is already shown, the estimate |||Φ(X) − Φ(Xn)||| ≤ κ|||X −
Xn||| → 0 (as n → ∞) guarantees Φ(X) ∈ I(0)

|||·|||. ��

2.4 Technical results

Here we collect technical results. When we deal with integral expressions of
means of operators in later chapters, a careful handling for supports of relevant
operators will be required and some lemmas are prepared for this purpose. In
the sequel we will denote the support projection of H by sH .

Lemma 2.8. Let φ, ψ be Schur multipliers (relative to (H, K)) with the cor-
responding double integral transformations Φ, Ψ respectively. Then, the point-
wise product φ(s, t)ψ(s, t) is also a Schur multiplier, and the corresponding
double integral transformation is the composition Φ ◦ Ψ (= Ψ ◦ Φ).

Proof. As in Theorem 2.2, (iv) we can write

φ(s, t) =
∫

Ω

α(s, x)β(t, x) dσ(x),

ψ(s, t) =
∫

Ω′
α′(s, y)β′(t, y) dσ′(y).

We consider the product space Ω × Ω′ equipped with the product measure
σ × σ′, and set
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a : (s, x, y) ∈ [0, ‖H‖]× Ω × Ω′ �→ α(s, x)α′(s, y),
b : (t, x, y) ∈ [0, ‖K‖]× Ω × Ω′ �→ β(t, x)β′(t, y).

At first we note
∫

Ω×Ω′
|a(s, x, y)|2d(σ × σ′)(x, y) =

∫

Ω

|α(s, x)|2dσ(x) ×
∫

Ω′
|α′(s, y)|2dσ′(y)

≤
∥
∥
∥

∫

Ω

|α(·, x)|2dσ(x)
∥
∥
∥

L∞(λ)
×

∥
∥
∥

∫

Ω′
|α′(·, y)|2dσ′(y)

∥
∥
∥

L∞(λ)

(and the similar estimate for b). Secondly, the Cauchy-Schwarz inequality
implies

∫

Ω×Ω′
|a(s, x, y)b(t, x, y)| d(σ × σ′)(x, y)

≤
(∫

Ω×Ω′
|a(s, x, y)|2d(σ × σ′)(x, y)

)1/2

×
(∫

Ω×Ω′
|b(t, x, y)|2d(σ × σ′)(x, y)

)1/2

.

From the two estimates we see the σ × σ′-integrability of a(s, x, y)b(t, x, y),
and the Fubini theorem clearly shows

∫

Ω×Ω′
a(s, x, y)b(t, x, y) d(σ × σ′)(x, y)

=
∫

Ω

α(s, x)β(t, x) dσ(x) ×
∫

Ω′
α′(s, y)β′(t, y) dσ′(y) = φ(s, t)ψ(s, t).

Therefore, the conditions stated in Theorem 2.2, (iv) have been checked for
the product φ(s, t)ψ(s, t), and it is indeed a Schur multiplier.

Let Π be the double integral transformation corresponding to φ(s, t)ψ(s, t).
Then, it is straight-forward to see Π(X) = Φ(Ψ(X)) for each rank-one (hence
finite-rank) operator X . Let {pn}n=1,2,··· be a sequence of finite-rank projec-
tions tending to 1 in the strong operator topology. Then, for each X ∈ B(H)
the sequence {pnXpn} tends to X strongly and hence in the σ(B(H), C1(H))-
topology (because of ‖pnXpn‖ ≤ ‖X‖). Since Π(pnXpn) = Φ(Ψ(pnXpn)) as
remarked above, by letting n → ∞ here, we conclude Π(X) = Φ(Ψ(X)) due
to the continuity stated in Remark 2.5, (i). ��

The additive version (which is much easier) is also valid. Namely, when φ, ψ
are Schur multipliers, then so is the sum φ(s, t)+ψ(s, t) and the corresponding
double integral transformation sends X to Φ(X) + Ψ(X).

Lemma 2.9. Let φ(s, t) be a Schur multiplier (relative to (H, K)) with the
corresponding double integral transformation Φ. With the support projections
sH , sK of H, K we have sH(Φ(X))sK = Φ(sHXsK) and
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Φ(X) = sHΦ(X)sK + φ(H, 0)sHX(1 − sK) + (1 − sH)XsKφ(0, K)
+φ(0, 0)(1 − sH)X(1 − sK).

Proof. The equation sH(Φ(X))sK = Φ(sHXsK) is seen from Remark 2.5, (iii).
Recall the following expression mentioned in Remark 2.5, (ii):

Φ(X) =
∫

Ω

α(H, x)Xβ(K, x) dσ(x)

in the weak sense. Since

α(H, x) = α(H, x)sH + α(0, x)(1 − sH),
β(K, x) = β(K, x)sK + β(0, x)(1 − sK),

we have

α(H, x)Xβ(K, x)
= α(H, x)sHXsKβ(K, x)

+β(0, x)α(H, x)sHX(1 − sK) + α(0, x)(1 − sH)XsKβ(K, x)
+α(0, x)β(0, x)(1 − sH)X(1 − sK).

The integration of the first term over Ω is Φ(sHXsK). The second term gives
us

∫

Ω

β(0, x)α(H, x)sHX(1 − sK) dσ(x)

=

(∫

Ω

∫ ‖H‖

0

α(s, x)β(0, x) dEs dσ(x)

)

sHX(1 − sK)

=

(∫ ‖H‖

0

∫

Ω

α(s, x)β(0, x) dσ(x) dEs

)

sHX(1 − sK)

=

(∫ ‖H‖

0

φ(s, 0) dEs

)

sHX(1 − sK) = φ(H, 0)sHX(1 − sK).

Of course the third term admits a similar integration. The last term gives us
∫

Ω

α(0, x)β(0, x)(1 − sH)X(1 − sK) dσ(x)

=
(∫

Ω

α(0, x)β(0, x) dσ(x)
)

(1 − sH)X(1 − sK)

= φ(0, 0)(1 − sH)X(1 − sK).

The above estimates altogether yield the desired expression for Φ(X). ��
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We can consider sH(ΦH,K(X))sK as an operator from sKH to sHH, and
denote it by ΦHsH ,KsK (sHXsK). It is possible to justify this (symbolic) no-
tation by making use of double integral transformation for operators between
two different spaces. The above lemma actually shows

sH(ΦH,K(X))sK = ΦHsH ,KsK (sHXsK),
sH(ΦH,K(X))(1 − sK) = sHφ(H, 0)X(1 − sK),
(1 − sH)(ΦH,K(X))sK = (1 − sH)Xφ(0, K)sK ,

(1 − sH)(ΦH,K(X))(1 − sK) = φ(0, 0)(1 − sH)X(1 − sK).

When dealing with means in later chapters we will mainly use Schur mul-
tipliers satisfying φ(s, 0) = φ(0, s) = bs (s ≥ 0) for some constant b ≥ 0. Then,
the expression in Lemma 2.9 becomes

ΦH,K(X) = sH(ΦH,K(X))sK + b (HX(1 − sK) + (1 − sH)XK) (2.23)

thanks to

φ(H, 0)sH = bHsH = bH, φ(0, K)sK = bKsK = bK and φ(0, 0) = 0.

We fix signed measures νk (k = 1, 2, 3) on the real line R with finite total
variation and also a scalar a. With the Fourier transforms of these measures
we set a bounded function π on [0,∞) × [0,∞) as

π(s, t) =






ν̂1(log s − log t) if s, t > 0,
ν̂2(log s) if s > 0 and t = 0,
ν̂3(− log t) if s = 0 and t > 0,
a if s = t = 0.

Lemma 2.10. The above π(s, t) is a Schur multiplier for any pair (H, K) of
positive operators, and the corresponding double integral transformation Π is
given by

Π(X) =
∫ ∞

−∞
(HsH)ixX(KsK)−ixdν1(x)

+
∫ ∞

−∞
(HsH)ixX(1 − sK) dν2(x)

+
∫ ∞

−∞
(1 − sH)X(KsK)−ixdν3(x)

+a(1 − sH)X(1 − sK).

We give a few remarks before proving the lemma. In the above expression,
(HsH)ix for instance denotes a unitary operator on sHH and it is zero on
the orthogonal complement (1 − sH)H, i.e., (HsH)ix = (HsH)ixsH . We will
mainly use this lemma (as well as the next Proposition 2.11) in the following
special circumstances:
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π(s, 0) = π(0, t) = c (s > 0, t > 0) for some constant c and π(0, 0) = 0.

This means ν2 = ν3 = cδ0 and a = 0, and hence in this case the expression in
the lemma simply becomes

Π(X) =
∫ ∞

−∞
(HsH)ixX(KsK)−ixdν1(x)

+c(sHX(1 − sK) + (1 − sH)XsK).

Proof. We decompose the domain {(s, t) : s, t ≥ 0} into the four regions

{(s, t) : s, t > 0}, {(s, t) : s > 0, t = 0},
{(s, t) : s = 0, t > 0}, {(s, t) : s = t = 0}.

We accordingly set

π1(s, t) =
{

π(s, t) if s, t > 0,
0 otherwise, π2(s, t) =

{
π(s, 0) if s > 0 and t = 0,
0 otherwise,

π3(s, t) =
{

π(0, t) if s = 0 and t > 0,
0 otherwise, π4(s, t) =

{
π(0, 0) if s = t = 0,
0 otherwise.

So π(s, t) =
∑4

k=1 πk(s, t) is valid. We consider the following functions on
R+ × R:

α1(s, x) =
{

six dν1
d|ν1| (x) if s > 0,

0 if s = 0,
β1(t, x) =

{
t−ix if t > 0,
0 if t = 0,

α2(s, x) =
{

six dν2
d|ν2| (x) if s > 0,

0 if s = 0,
β2(t, x) =

{
0 if t > 0,
1 if t = 0,

α3(s, x) =
{

0 if s > 0,
1 if s = 0,

β3(t, x) =
{

t−ix dν3
d|ν3| (x) if t > 0,

0 if t = 0,

α4(s) =
{

0 if s > 0,
a if s = 0,

β4(t) =
{

0 if t > 0,
1 if t = 0.

Here, dνk

d|νk| (x) denotes the Radon-Nikodym derivative relative to the absolute
value |νk|. It is plain to observe

πk(s, t) =
∫ ∞

−∞
αk(s, x)βk(t, x) d|νk|(x) (for k = 1, 2, 3)

and also π4(s, t) = α4(s)β4(t). The finiteness condition in Theorem 2.2, (iv)
is obviously satisfied (since dνk

d|νk| ’s are bounded functions and |νk|’s are finite
measures) so that all πk’s are Schur multipliers. Thus, so is the sum π as was
mentioned in the paragraph right after Lemma 2.8.

We begin with π1 (with the corresponding double integral transforma-
tion Π1). Since π1(s, t) = 0 for either s = 0 or t = 0, we note Π1(X) =
sH(Π1(X))sK by Lemma 2.9. For a rank-one operator X = ξ ⊗ ηc, (2.4)
shows
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Π1(X) =
∫ ∞

−∞

(
(sHH)ixξ

) ⊗ (
(sKK)ixη

)c dν1

d|ν1| (x) d|ν1|(x)

=
∫ ∞

−∞
(sHH)ix(ξ ⊗ ηc)(sKK)−ixdν1(x)

=
∫ ∞

−∞
(sHH)ixX(sKK)−ixdν1(x),

which remains of course valid for finite-rank operators. Actually this inte-
gral expression for Π1(X) is also valid for an arbitrary operator X ∈ B(H).
In fact, as in the proof of Lemma 2.8 we approximate X by the sequence
{pnXpn}n=1,2,···. At first Π1(pnXpn) tends to Π1(X) in the weak operator
topology as remarked there. Therefore, it suffices to show the weak conver-
gence

∫ ∞

−∞
(HsH)ixpnXpn(KsK)−ixdν1(x) −→

∫ ∞

−∞
(HsH)ixX(KsK)−ixdν1(x).

However, it simply follows from the Lebesgue dominated convergence theorem.
We next consider π2 (with the double integral transformation Π2). By

Lemma 2.9 (and Remark 2.5) we have

Π2(X) = sH(Π2(X))(1 − sK) = π2(H, 0)sHX(1 − sK).

Recall π2(s, 0) = ν̂2(log s) (s > 0) so that

π2(H, 0)sH =
∫

(0,‖H‖]

ν̂2(log s) dEs

=
∫

(0,‖H‖]

(∫ ∞

−∞
sixdν2(x)

)

dEs =
∫ ∞

−∞
(HsH)ixdν2(x)

due to the Fubini theorem. Therefore, we have

Π2(X) =
∫ ∞

−∞
(HsH)ixX(1 − sK) dν2(x).

Symmetric arguments also show

Π3(X) = (1 − sH)XsKπ3(0, K) =
∫ ∞

−∞
(1 − sH)X(KsK)−ixdν3(x)

while

Π4(X) = (1 − sH)(Π4(X))(1 − sK) = a(1 − sH)X(1 − sK)

is just trivial. By summing up all the Πk’s computed so far, we get the desired
expression for Π(X). ��
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Proposition 2.11. Let π(s, t) be the Schur multiplier in the previous lemma.
If φ(s, t) is a Schur multiplier relative to a pair (H, K), then so is the point-
wise product ψ(s, t) = π(s, t)φ(s, t). Furthermore, for each X ∈ B(H) the
corresponding double integral transformations Φ(X) and Ψ(X) are related by

Ψ(X) =
∫ ∞

−∞
(HsH)ix(Φ(X))(KsK)−ixdν1(x)

+
∫ ∞

−∞
(HsH)ix(Φ(X))(1 − sK) dν2(x)

+
∫ ∞

−∞
(1 − sH)(Φ(X))(KsK)−ixdν3(x)

+a(1 − sH)(Φ(X))(1 − sK).

Proof. The first statement follows from Lemmas 2.8 and 2.10. To get the
expression for Ψ(X), in the formula appearing in Lemma 2.10 we should just
replace X by Φ(X). ��

We end the chapter with the following remark on the standard 2×2-matrix
trick, that will be sometimes useful in later chapters:

Remark 2.12. We set H̃ =
[
H 0
0 K

]

, and assume that φ is a Schur multiplier

relative to (H̃, H̃) (or equivalently, so is φ relative to (H, H), (H, K) and
(K, K)). Then, φ (on [0, ‖H̃‖] × [0, ‖H̃‖]) admits an integral expression as

(2.3) relative to (H̃, H̃). For X̃ =
[
0 X
0 0

]

we compute

α(H̃, x)X̃β(H̃, x) =
[
α(H, x) 0

0 α(K, x)

] [
0 X
0 0

] [
β(H, x) 0

0 β(K, x)

]

=
[
0 α(H, x)Xβ(K, x)
0 0

]

.

Therefore, the (1, 2)-component of ΦH̃,H̃

(
X̃

)
=

∫

Ω

α(H̃, x)X̃β(H̃, x) dσ(x) is

exactly ∫

Ω

α(H, x)Xβ(K, x) dσ(x) = ΦH,K(X).

The support projection of H̃ is of the form

sH̃ =
[
sH 0
0 sK

]

,

and sH(ΦH,K(X))sK is the (1, 2)-component of sH̃

(
ΦH̃,H̃

(
X̃

))
sH̃ .
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2.5 Notes and references

Motivated from perturbations of a continuous spectrum, scattering theory
and triangular representations of Volterra operators (see [30]) as well as study
of Hankel operators (see [71] for recent progress of the subject matter), in
[14, 15, 16] M. Sh. Birman and M. Z. Solomyak systematically developed
theory of double integral transformations formally written as

Y =
∫∫

φ(s, t) dFtXdEs

Besides the definition given at the beginning of this chapter (first defined on
C2(H)), another definition by repeated integration

Y (s) =
(∫

φ(s, t) dFt

)

X , Y =
∫

Y (s) dEs (2.24)

was also taken by Birman and Solomyak, where the latter integration is un-
derstood as the limit of Riemann-Stieltjes sums. Indeed, the articles [15, 16]
were largely devoted to the well-definedness of the repeated integration in cer-
tain symmetric operator ideals in cases when φ is a function in some classes
of Lipschitz type or of Sobolev type. For example, the following criterion was
obtained:
Theorem Let φ(s, t) be a bounded Borel function on [a, b]× [c, d] satisfying
Lipα with respect to variable s with a constant (of Hölder continuity of order
α) independent of t. Assume that Es and Ft are supported in [a, b] and [c, d]
respectively. If α > 1

2 , then φ is a Schur multiplier and for any X ∈ B(H) the
repeated integral (2.24) exists and coincides with Φ(X) (defined in §2.1). If
α ≤ 1

2 , then for any X ∈ Cp(H) with 1
p > 1

2 − α the repeated integral (2.24)
exists as a compact operator.

But this type of results are not so useful in the present monograph because
we mostly treat means (introduced in Definition 3.1) which do not at all satisfy
the Lipschitz type condition.

As was shown in [69, 70] (also [15]), double integral transformations are
closely related to problems of operator perturbations. For a C1-function ϕ on
an interval I (⊆ R) and self-adjoint operators A =

∫
s dEs, B =

∫
t dFt with

spectra contained in I we formally have

ϕ(A) − ϕ(B) =
∫

I

∫

I

ϕ[1](s, t) dEs(A − B)dFt (2.25)

with the divided difference

ϕ[1](s, t) =






ϕ(s) − ϕ(t)
s − t

(if s �= t),

ϕ′(s) (if s = t).
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If ϕ[1](s, t) is known to be a Schur multiplier relative to say some p-Schatten
ideal Cp(H), then (2.25) for A − B sitting in the ideal is justified and hence
one gets the perturbation norm inequality

‖ϕ(A) − ϕ(B)‖p ≤ const. ‖A − B‖p, (2.26)

showing ϕ(A)−ϕ(B) ∈ Cp(H), i.e., the stability of perturbation. The following
is a folk result (whose proof is an easy but amusing exercise): If ϕ(s) is of
the form ϕ(s) =

∫ ∞
−∞ eistdν(t) with a signed measure ν satisfying

∫ ∞
−∞(1 +

|t|) d|ν|(t) < ∞, then ϕ[1](s, t) is a Schur multiplier relative to C1(H) (and
hence relative to any Cp(H)). On the other hand, in [27] Yu. B. Farforovskaya
obtained an example of ϕ ∈ C1(I) for which (2.26) fails to hold for ‖ · ‖1. The
next result due to E. B. Davies is very powerful:
Theorem ([24, Theorem 17]) Let ϕ be a function of the form

ϕ(s) = as + b +
∫ s

−∞
(s − t) dν(t)

with a, b ∈ R and a signed measure ν of compact support. Then, the estimate
(2.26) is valid for any p ∈ (1,∞).

The following “unitary version” of (2.25) is also useful: If ϕ is a C1-function
on the unit circle T (with a Schur multiplier ϕ[1](s, t)), then we have

ϕ(U) − ϕ(V ) =
∫

T

∫

T

ϕ[1](ζ, η) dEζ(U − V ) dFη

for unitary operators U =
∫
T ζ dEζ , V =

∫
T η dFη. This technique was often

used in M. G. Krein’s works and is closely related to his famous spectral shift
function.

Peller’s characterization theorem (Theorem 2.2) was given in [69] ([70] is
an announcement) while general results such as Propositions 2.6 and 2.7 were
shown in [15, 16] by M. Sh. Birman and M. Z. Solomyak. Unfortunately these
articles [15, 16, 69] (especially [69]) were not widely circulated. Our arguments
here are basically taken from their articles, but we have tried to present more
details. In fact, for the reader’s convenience we have supplied some arguments
that were omitted in the original articles.
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Means of operators and their comparison

From now on we will study means M(H, K)X of operators H, K, X with
H, K ≥ 0 (for certain scalar means M(s, t)). In fact, our operator means
M(H, K)X are defined as double integral transformations studied in Chapter
2 so that corresponding scalar means M(s, t) are required to be Schur multi-
pliers. In this chapter general properties of such operator means are clarified
while some special series of concrete means will be exemplified in later chap-
ters. Here we are mostly concerned with integral expressions (Theorem 3.4),
comparison of norms (Theorem 3.7), norm estimate (Theorem 3.12) and the
determination of the kernel and the closure of the range of the “mean trans-
form” M(H, K) (Theorem 3.16).

3.1 Symmetric homogeneous means

We begin by introducing a class of means for positive scalars and a partial
order among them. This order will be quite essential in the sequel of the
monograph. We confine ourselves to that class of means for convenience sake
while all the results in the next §3.2 remain valid (with obvious modification)
for more general means (as will be briefly discussed in §A.1).

Definition 3.1. A continuous positive real function M(s, t) for s, t > 0 is
called a symmetric homogeneous mean (or simply a mean) if M satisfies the
following properties:

(a) M(s, t) = M(t, s),
(b) M(rs, rt) = rM(s, t) for r > 0,
(c) M(s, t) is non-decreasing in s, t,
(d) min{s, t} ≤ M(s, t) ≤ max{s, t}.
We denote by M the set of all such symmetric homogeneous means.

Definition 3.2. We assume M, N ∈ M. We write M � N when the ratio
M(ex, 1)/N(ex, 1) is a positive definite function on R, or equivalently, the

F. Hiai and H. Kosaki: LNM 1820, pp. 33–55, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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matrix
[
M(si, sj)
N(si, sj)

]

i,j=1,··· ,n

is positive semi-definite for any s1, . . . , sn > 0

with any size n. By the Bochner theorem it is also equivalent to the existence
of a symmetric probability measure ν on R satisfying M(ex, 1) = ν̂(x)N(ex, 1)
(x ∈ R), that is,

M(s, t) = ν̂(log s − log t)N(s, t) (s, t > 0). (3.1)

Here, ν̂(x) means the Fourier transform ν̂(x) =
∫ ∞

−∞
eixydν(y) (x ∈ R).

The reason why a symmetric probability ν comes out is that the real func-
tion M(ex, 1)/N(ex, 1) takes value 1 at the origin. (See [39, Theorem 1.1] for
details.) Also, note that the order M � N is strictly stronger than the usual
(point-wise) order M(s, t) ≤ N(s, t) (s, t > 0) (see [39, Example 3.5]). The
domain of M ∈ M naturally extends to [0,∞) × [0,∞) in the following way:

M(s, 0) = lim
t↘0

M(s, t) (s > 0), M(0, t) = lim
s↘0

M(s, t) (t > 0),

M(0, 0) = lim
s↘0

M(s, 0) = lim
t↘0

M(0, t),

and M(s, t) remains continuous on the extended domain. It is easy to check

M(s, 0) = M(0, s) = sM(1, 0) (s > 0) (3.2)

and hence
M(0, 0) = 0. (3.3)

The most familiar means in M are probably

A(s, t) =
s + t

2
(arithmetic mean),

L(s, t) =
s − t

log s − log t
=

∫ 1

0

sxt1−xdx (logarithmic mean),

G(s, t) =
√

st (geometric mean),

Mhar(s, t) =
2

s−1 + t−1
(harmonic mean).

The largest and smallest means in M

M∞(s, t) = max{s, t} and M−∞(s, t) = min{s, t}
will play an important role in our discussions below.

We have the following order relation among the above means:

M−∞ � Mhar � G � L � A � M∞. (3.4)

The proof is found in the more general [39, Theorem 2.1] (i.e., (5.2) right
before Theorem 5.1 in Chapter 5; see also [38, Proposition 1 or more generally
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Theorem 5]). However, here for the reader’s convenience we prove this special
case by bare-handed computations. Firstly Example 3.6, (c) below shows A �
M∞. For L � A we just note

L(ex, 1)
A(ex, 1)

=
ex − 1

x
× 2

ex + 1
=

2 sinh(x/2)
x cosh(x/2)

=
∫ 1

0

cosh(ax/2)
cosh(x/2)

da.

Since cosh(ax/2)/ cosh(x/2) is positive definite for each a ∈ [0, 1] (see §6.3,
1), so is the above integral. (The Fourier transform can be also explicitly
determined; see (6.8) or the computations in [38, p. 305].) For G � L we
observe

G(ex, 1)
L(ex, 1)

= ex/2 × x

ex − 1
=

x

2 sinh(x/2)
.

The well-known formula
∫ ∞

−∞

x

2 sinh(x/2)
eixydx =

1
4 cosh2(πy)

(3.5)

and its inverse transform guarantee the positive definiteness of the ratio. Fi-
nally, both of

Mhar(ex, 1)
G(ex, 1)

=
2

e−x + 1
× e−x/2 =

1
cosh(x/2)

,

M−∞(ex, 1)
Mhar(ex, 1)

= min{ex, 1} × e−x + 1
2

=
e−|x| + 1

2

are obviously positive definite (see (5.8) and (7.3)), and we are done.
Now let H, K be positive operators in B(H) with the spectral decompo-

sitions H =
∫ ‖H‖

0 s dEs and K =
∫ ‖K‖

0 t dFt. For a mean M ∈ M we would
like to define the corresponding double integral transformation relative to the
pair (H, K):

M(H, K)X = MH,K(X) =
∫ ‖H‖

0

∫ ‖K‖

0

M(s, t) dEsXdFt

for X ∈ B(H), and we consider this transformation acting on operators on H
as a “mean of H and K”. The transformation M(H, K) always makes sense
if restricted on the Hilbert-Schmidt class C2(H) (in particular, on the ideal
Ifin); it is the function calculus on C2(H) via M(s, t) of the left multiplication
by H and the right multiplication by K. But, to define M(H, K) = MH,K on
the whole B(H), we have to verify that M is a Schur multiplier relative to
(H, K). For instance, if H, K have finite spectra so that they have the discrete
spectral decompositions

H =
m∑

i=1

siPi and K =
n∑

j=1

tjQj
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with projections Pi, Qj such that
∑m

i=1 Pi =
∑n

j=1 Qj = 1, then each M ∈ M
is a Schur multiplier relative to (H, K) and

M(H, K)X =
m∑

i=1

n∑

j=1

M(si, tj)PiXQj

(this is the case even for any Borel function on [0,∞) × [0,∞)).
In what follows we simply say that M ∈ M is a Schur multiplier if it is so

relative to any pair (H, K) of positive operators. As for the means A, L and
G, the corresponding double integral transformations have the concrete forms

A(H, K)X =
1
2
(HX + XK),

L(H, K)X =
∫ 1

0

HxXK1−xdx,

G(H, K)X = H
1
2 XK

1
2 ,

showing that they are indeed Schur multipliers. But it is not so obvious to
determine whether a given M ∈ M is a Schur multiplier. The next proposition
provides a handy sufficient condition.

Proposition 3.3. Let M, N ∈ M and H, K be positive operators.

(a) If M � N and N is a Schur multiplier relative to (H, K), then so is M .
(b) If M � M∞, then M is a Schur multiplier (relative to any (H, K)).

Proof. (a) By Definition 3.2 there exists a symmetric probability measure ν
satisfying (3.1). Noting M(1, 0) ≤ N(1, 0) (following from M(s, t) ≤ N(s, t)
when s, t > 0) we set c = M(1, 0)/N(1, 0) if N(1, 0) > 0, otherwise c = 0.
Then, thanks to (3.2) and (3.3) we have M(s, t) = π(s, t)N(s, t) for all s, t ≥ 0
with

π(s, t) =






ν̂(log s − log t) if s, t > 0,

c if s > 0 and t = 0,
c if s = 0 and t > 0,
0 if s = t = 0.

(3.6)

Hence the assertion is a consequence of Proposition 2.11 (based on Lemma
2.8).

(b) By virtue of (a) it suffices to show that M∞ is a Schur multiplier. Since
A is obviously a Schur multiplier (as was mentioned above), (a) implies by
(3.4) that M−∞ is a Schur multiplier. Hence so is M∞ because of the simple
formula

M∞(s, t) = 2A(s, t) − M−∞(s, t) (3.7)

(see the remark after Lemma 2.8). ��
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The fact that M±∞ are Schur multipliers can be also seen from the discrete
decompositions explained in §A.3 (see (A.4) and Theorem A.6). All the con-
crete means treated in later chapters satisfy M � M∞ so that they are all
Schur multipliers. It is easy to write down examples of M ∈ M not satisfying
M � M∞; nevertheless we have so far no explicit example of M ∈ M which
is not a Schur multiplier.

3.2 Integral expression and comparison of norms

We begin with the integral expression (Theorem 3.4) for operator means,
which is an adaptation of the integral expression in Proposition 2.11 (also
Lemma 2.9) in the present setting of means in M. (Similar integral expres-
sions for wider classes of means will be worked out in §8.1 and §A.1.) Then,
comparison of norms of means will be an easy consequence.

In [49, p. 138] the following formula appears as an exercise:

∑

t∈R

|µ({t})|2 = lim
T→∞

1
2T

∫ T

−T

|µ̂(t)|2dt

for a complex measure µ on R. A related fact will be needed in the proof of
the theorem, and the proofs for this fact as well as the above formula will be
presented in §A.4 for the reader’s convenience.

Theorem 3.4. Let M, N ∈ M and H, K be positive operators. If M � N with
the representing measure ν for M(ex, 1)/N(ex, 1) (see Definition 3.2) and if
N is a Schur multiplier relative to (H, K), then so is M and

M(H, K)X =
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+M(1, 0)(HX(1− sK) + (1 − sH)XK) (3.8)

for all X ∈ B(H). In this case we also have

M(H, K)X =
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})N(H, K)X. (3.9)

Proof. We use the same notations as in the proof of Proposition 3.3, (a). Use
of Lemma 2.9 (see (2.23)) to N with (3.2) and (3.3) yields

N(H, K)X = sH(N(H, K)X)sK

+N(1, 0)(HX(1− sK) + (1 − sH)XK). (3.10)

Since M(s, t) = π(s, t)N(s, t) for all s, t ≥ 0 with π defined by (3.6), Proposi-
tion 2.11 implies
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M(H, K)X =
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+c
(
sH(N(H, K)X)(1 − sK) + (1 − sH)(N(H, K)X)sK

)
.

Since M(1, 0) = cN(1, 0), the expression (3.8) is obtained by substituting
(3.10) into the above integral expression.

To show (3.9), we begin with the claim M(1, 0) = ν({0})N(1, 0). When
N(1, 0) = 0, we must have M(1, 0) = 0 due to M(1, 0) ≤ N(1, 0) and there is
nothing to prove. Thus we may and do assume N(1, 0) > 0. In this case we
note

lim
x→−∞ ν̂(x) = lim

x→−∞
M(ex, 1)
N(ex, 1)

=
M(0, 1)
N(0, 1)

(

=
M(1, 0)
N(1, 0)

)

,

lim
x→∞ ν̂(x) = lim

x→∞
M(ex, 1)
N(ex, 1)

= lim
x→∞

M(1, e−x)
N(1, e−x)

=
M(1, 0)
N(1, 0)

.

Therefore, we conclude

lim
x→±∞ ν̂(x) =

M(1, 0)
N(1, 0)

,

and the claim follows from Corollary A.8 in §A.4. The claim and (3.8) yield

M(H, K)X

=
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})
(
sH(N(H, K)X)sK + N(1, 0)(HX(1 − sK) + (1 − sH)XK)

)

=
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x) + ν({0})N(H, K)X.

Here, the second equality is due to (3.10). ��
From the expression (3.9) in the preceding theorem and Theorem A.5 we

have

Corollary 3.5. Let M, N ∈ M (M � N) and H, K be as in the theorem.
Then for any unitarily invariant norm ||| · ||| we have

|||M(H, K)X ||| ≤ |||N(H, K)X |||
for all X ∈ B(H). In particular,

‖M(H, K)‖(|||·|||, |||·|||) ≤ ‖N(H, K)‖(|||·|||, |||·|||).

Example 3.6. The following examples are applications of the integral expres-
sion in the above theorem to means in (3.4).



3.2 Integral expression and comparison of norms 39

(a) Since the ratio G(ex, 1)/A(ex, 1) =
(
cosh

(
x
2

))−1 is the Fourier transform
of

(
cosh(πx)

)−1,

H
1
2 XK

1
2 =

∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ix dx

2 cosh(πx)
.

Actually, the observation of this expression is the starting point of our
works on means of operators in a series of recent articles ([54, 38, 39]). We
also point out that the use of this integral transformation was crucial in
[22, 23].

(b) Since M−∞(ex, 1)/G(ex, 1) = e−|x|/2 is the Fourier transform of 1
2π

(
x2 +

1
4

)−1 (see (5.8) and (7.3)),

M−∞(H, K)X =
∫ ∞

−∞
(HsH)

1
2 +ixX(KsK)

1
2−ix dx

2π
(
x2 + 1

4

) .

(c) Since A(ex, 1)/M∞(ex, 1) = 1
2 (1 + e−|x|) is the Fourier transform of the

measure 1
2δ0 + 1

2π (x2 + 1)−1 dx,

HX + XK = M∞(H, K)X

+
∫ ∞

−∞
(HsH)ix(M∞(H, K)X)(KsK)−ix dx

π(x2 + 1)
.

The opposite direction of this is also possible. Since M−∞(ex, 1)/A(ex, 1) =
2e−|x|/(1 + e−|x|) = e−|x|/2/ cosh

(
x
2

)
is the Fourier transform of the con-

volution product

f(x) =
(

1
cosh(πx)

)

∗
(

1
2π

(
x2 + 1

4

)

)

,

one obtains thanks to (3.7)

M∞(H, K)X = HX + XK

− 1
2

∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixf(x) dx. (3.11)

The general comparison theorem for means in M was summarized in [39,
Theorem 1.1] in the setting of matrices, and its extension to the operator
setting was stated at the end of [39]. However, the statement there is quite
rough and its sketch for the proof contains some inaccurate arguments. So,
for completeness let us prove the next theorem in a precise form.

Theorem 3.7. For M, N ∈ M the following conditions are all equivalent :

(i) there exists a symmetric probability measure ν on R with the following
property : if N is a Schur multiplier relative to (H, K) of non-singular
positive operators, then so is M and
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M(H, K)X =
∫ ∞

−∞
Hix(N(H, K)X)K−ixdν(x)

for all X ∈ B(H);
(ii) if N is a Schur multiplier relative to a pair (H, K) of positive operators,

then so is M and

|||M(H, K)X ||| ≤ |||N(H, K)X |||

for all unitarily invariant norms and all X ∈ B(H);
(iii) ‖M(H, H)X‖ ≤ ‖N(H, H)X‖ for all H ≥ 0 and all X ∈ Ifin;
(iv) M � N .

Proof. (iv) ⇒ (i) is contained in Theorem 3.4, and (iv) ⇒ (ii) follows from
Corollary 3.5. When H , K and X are of finite-rank, (ii) and (iii) reduce to
the same condition in the matrix case (of any size). So (ii) ⇒ (iv) and (iii) ⇒
(iv) are seen from [39, Theorem 1.1]. (Necessary arguments under a slightly
weaker assumption will be actually presented in the proof of Theorem A.3 in
§A.1.) For (i) ⇒ (iv) put H = s1 (s > 0) and K = X = 1; then the integral
expression in (i) reduces to M(s, 1) = ν̂(log s)N(s, 1), i.e., M � N .

It remains to show (iv) ⇒ (iii), which is not quite trivial because N in (iii)
is not a priori a Schur multiplier relative to (H, H). At first, when H is also
of finite-rank, the inequality in (iii) follows from (iv) by [39, Theorem 1.1] (or
from (ii) since we have already had (iv) ⇒ (ii)). For a general H choose a
sequence {Hn} of finite-rank positive operators such that ‖Hn‖ ≤ ‖H‖ and
Hn → H in the strong operator topology. Then π�(Hn) → π�(H) strongly on
C2(H) because for a rank-one operator ξ ⊗ ηc we get

‖π�(Hn)(ξ ⊗ ηc) − π�(H)(ξ ⊗ ηc)‖2

= ‖(Hnξ − Hξ) ⊗ ηc‖2 = ‖Hnξ − Hξ‖ × ‖η‖ −→ 0.

Similarly πr(Hn) → πr(H) strongly on C2(H). Since M(s, t) is uniformly
approximated on [0, ‖H‖]× [0, ‖H‖] by polynomials in two variables s and t,
it follows that M(Hn, Hn) → M(H, H) strongly on C2(H). For every X ∈ Ifin

(⊆ C2(H)) we thus get

‖M(Hn, Hn)X − M(H, H)X‖ ≤ ‖M(Hn, Hn)X − M(H, H)X‖2 → 0

and the same is true for N too. Hence the required inequality is obtained by
taking the limit from ‖M(Hn, Hn)X‖ ≤ ‖N(Hn, Hn)X‖. 
�

3.3 Schur multipliers for matrices

In estimating the norm of a double integral transformation, it is sometimes
useful to reduce the problem to the matrix case by approximation (though
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computing the Schur multiplication norm is usually difficult even in the ma-
trix case). Such an approximation technique is developed here, which will be
indispensable in §3.5.

We begin with basics on Schur multiplication on matrices. Let A =
[aij ]i,j=1,2,··· be an infinite complex matrix such that supi,j |aij | < ∞. Then
one can formally define a Schur multiplication operator SA on the space of
infinite matrices as

SA(X) = A ◦ X = [aijxij ] for X = [xij ],

where ◦ is the Schur product or the Hadamard product (i.e., the entry-wise
product). Consider the Hilbert space �2 with the canonical basis {ei}i=1,2,···
and identify an operator X ∈ B(�2) as the matrix

[
(Xej, ei)

]
i,j=1,2,···. We then

say that A is a Schur multiplier if SA gives rise to a bounded transformation of
C1(�2) into itself (or equivalently, of B(�2) into itself). A Schur multiplication
operator SA as above is realized as a double integral transformation of discrete
type. In fact, assume that H, K ≥ 0 are diagonalizable with

H =
∞∑

i=1

siξi ⊗ ξc
i and K =

∞∑

i=1

tiηi ⊗ ηc
i

for some orthonormal bases {ξi} and {ηi}. For any Borel function φ on
[0,∞) × [0,∞) the corresponding double integral transformation ΦH,K can
be represented as

ΦH,K(UXV ∗) = USA(X)V ∗ for X = [xij ] ∈ B(�2), (3.12)

where A = [φ(si, tj)]i,j=1,2,··· and U, V are unitary operators given by Uei =
ξi, V ei = ηi. In this way, φ is a Schur multiplier relative to (H, K) if and only
if A = [φ(si, tj)] is a Schur multiplier, and in this case

‖ΦH,K‖(1,1) = ‖SA‖(1,1). (3.13)

Moreover, the characterization (iv) of Theorem 2.2 reads as follows: there exist
a Hilbert space K (= L2(Ω, σ) there) and bounded sequences {ui} and {vj}
of vectors in K such that

aij (= φ(si, tj)) = (ui, vj)K (i, j = 1, 2, . . . ).

This criterion (known as Haagerup’s criterion) was independently obtained
by U. Haagerup (see 4 in §3.7). In particular, when A = [aij ]i,j=1,··· ,n is an
n× n matrix, the Schur multiplication operator SA is defined on Mn(C), the
algebra of n × n matrices, and furthermore the following is known (see 4 in
§3.7):

‖SA‖(1,1)

(
= ‖SA‖(∞,∞)

)

= min{κ ≥ 0 : there are ξ1, . . . , ξn, η1, . . . , ηn ∈ Cn such that
‖ξi‖ ≤ κ1/2, ‖ηj‖ ≤ κ1/2, aij = (ξi, ηj) for i, j = 1, . . . , n}. (3.14)
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If A is a positive semi-definite matrix, then

‖SA‖(∞,∞) = max
i

aii. (3.15)

In fact, this is immediately seen from (3.14); if ξ1, . . . , ξn are the row vectors
of A1/2, then aij = (ξi, ξj) for all i, j. (A different proof without using (3.14)
can be found in [4, 42].)

Lemma 3.8. An infinite matrix A = [aij ]i,j=1,2,··· is a Schur multiplier if and
only if

sup
n≥1

∥
∥S[aij ]i,j=1,··· ,n

∥
∥

(1,1)
< ∞.

In this case, ‖SA‖(1,1) is equal to the above supremum.

Proof. If A is a Schur multiplier, then it is obvious that

‖S[aij]i,j=1,··· ,n
‖(1,1) ≤ ‖SA‖(1,1) (for n = 1, 2, . . . ).

Conversely, assume that

κ = sup
n≥1

‖S[aij]i,j=1,··· ,n
‖(1,1) < ∞.

Let pn =
∑n

i=1 ei⊗ec
i with the canonical basis {ei} for �2. For every X ∈ C1(�2)

and n = 1, 2, . . . we get

‖SA(pnXpn)‖1 = ‖[aijxij ]i,j=1,··· ,n‖1 ≤ κ‖pnXpn‖1 ≤ κ‖X‖1,

and
‖SA(pmXpm) − SA(pnXpn)‖1 ≤ κ‖pmXpm − pnXpn‖1.

By approximating X by finite-rank operators in the norm ‖ · ‖1, one observes
limm,n→∞ ‖pmXpm−pnXpn‖1 = 0 so that {SA(pnXpn)}n=1,2,··· is Cauchy in
C1(�2) from the second inequality and ‖SA(pnXpn) − Y ‖1 → 0 for some Y ∈
C1(�2). Since the convergence also takes place in the weak operator topology,
this limit Y must be equal to SA(X) and consequently

‖SA(X)‖1 = lim
n→∞ ‖SA(pnXpn)‖1 ≤ κ‖X‖1

from the above first estimate. ��
The next lemma will play a key role in §3.5. The assumption of φ here

may not be best possible, however it is enough for our purpose.

Lemma 3.9. Let φ(s, t) be a function on [0, α] × [0, α] where 0 < α < ∞,
and assume that φ is bounded and continuous at any point possibly except at
(0, 0). Then the following conditions are equivalent :

(i) φ is a Schur multiplier relative to every pair (H, K) of positive operators
with ‖H‖, ‖K‖ ≤ α;
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(ii) sup
{∥
∥S[φ(si,sj)]i,j=1,··· ,n

∥
∥

(1,1)
: 0 ≤ s1, . . . , sn ≤ α, n ≥ 1

}
< ∞, where

repetition is allowed for s1, . . . , sn.

Furthermore, if (ii) holds with finite supremum κ, then ‖ΦH,K‖(1,1) ≤ κ for
any (H, K) with ‖H‖, ‖K‖ ≤ α.

Proof. (i) ⇒ (ii). By assuming (i) and the failure of (ii), we will obtain a
contradiction. Since (ii) fails to hold, for each n one can choose s

(n)
1 , . . . , s

(n)
n

from [0, α] in such a way that

sup
n≥1

∥
∥S[

φ(s
(n)
i ,s

(n)
j )

]
i,j=1,··· ,n

∥
∥

(1,1)
= ∞.

Let {si}i=1,2,··· be the sequence

s
(1)
1 , s

(2)
1 , s

(2)
2 , s

(3)
1 , s

(3)
2 , s

(3)
3 , · · · , s

(n)
1 , . . . , s(n)

n , · · ·

obtained so far. We set A = [φ(si, sj)]i,j=1,2,··· and H =
∑∞

i=1 siξi ⊗ ξc
i where

{ξi} is an orthonormal basis. Then (i) implies that φ is a Schur multiplier
relative to (H, H), so A must be a Schur multiplier as remarked just after
(3.12). But, since

[
φ(s(n)

i , s
(n)
j )

]
i,j=1,··· ,n

is a principal submatrix of A, it is
obvious that ∥

∥S[
φ(s

(n)
i ,s

(n)
j )

]
i,j=1,··· ,n

∥
∥

(1,1)
≤ ‖SA‖(1,1)

for all n. The supremum of the above left-hand side is ∞, a contradiction.
(ii) ⇒ (i). Assume that the supremum κ in (ii) is finite. Let H be a positive

operator with ‖H‖ ≤ α and the spectral decomposition H =
∫ α

0 s dEs. For
each n = 1, 2, . . . we divide [0, α] into subintervals

Λ
(n)
i =

[ i − 1
n

α,
i

n
α
)

(i = 1, . . . , n − 1) and Λ(n)
n =

[n − 1
n

α, α
]
,

and let t
(n)
i = i−1

n α (i = 1, . . . , n). Define

φn(s, t) =
n∑

i,j=1

φ(t(n)
i , t

(n)
j )χ

Λ
(n)
i ×Λ

(n)
j

(s, t) for (s, t) ∈ [0, α] × [0, α]

and

Hn =
n∑

i=1

t
(n)
i E

Λ
(n)
i

.

Then the double integral transformation Φn = ΦHn,Hn corresponding to φn is
given by

Φn(X) =
n∑

i,j=1

φ(t(n)
i , t

(n)
j )E

Λ
(n)
i

XE
Λ

(n)
j

.
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Since Hn is obviously diagonalizable, we write Hn =
∑∞

i=1 s
(n)
i ξ

(n)
i ⊗ ξ

(n)c
i

with an orthonormal basis {ξ(n)
i }i=1,2,··· and set An =

[
φ(s(n)

i , s
(n)
j )

]
i,j=1,2,···.

Then, thanks to (3.13) we get

‖Φn‖(1,1) = ‖SAn‖(1,1).

By assumption (ii) we apply Lemma 3.8 to conclude ‖SAn‖(1,1) ≤ κ so that
‖Φn‖(1,1) ≤ κ for all n.

Now let ξ, η, ξ′, η′ ∈ H be arbitrary. For Φ = ΦH,H we get

(Φ(ξ ⊗ ηc)ξ′, η′) =
(
Φ(ξ ⊗ ηc), η′ ⊗ ξ′c

)
C2(H)

=
∫ α

0

∫ α

0

φ(s, t) d
(
Es(ξ ⊗ ηc)Et, η

′ ⊗ ξ′c
)
C2(H)

=
∫ α

0

∫ α

0

φ(s, t) d(Esξ, η
′) d(ξ′, Etη),

and similarly

(Φn(ξ ⊗ ηc)ξ′, η′) =
∫ α

0

∫ α

0

φn(s, t) d(Esξ, η
′) d(ξ′, Etη).

Here, the complex-valued measures d(Esξ, η
′), d(ξ′, Etη) are denoted by λ, µ

respectively with their absolute values |λ|, |µ|. By assumption, |φ(s, t)| ≤ m (so
|φn(s, t)| ≤ m as well) on [0, α] × [0, α] for some m < ∞. For each 0 < δ < α,
since φn(0, 0) = φ(0, 0), we estimate

|(Φn(ξ ⊗ ηc)ξ′, η′) − (Φ(ξ ⊗ ηc)ξ′, η′)|
≤

∣
∣
∣

∫

([0,α]×[0,α])\([0,δ)×[0,δ))

(φn(s, t) − φ(s, t)) d(λ × µ)(s, t)
∣
∣
∣

+
∣
∣
∣

∫

([0,δ)×[0,δ))\{(0,0)}
φn(s, t) d(λ × µ)(s, t)

∣
∣
∣

+
∣
∣
∣

∫

([0,δ)×[0,δ))\{(0,0)}
φ(s, t) d(λ × µ)(s, t)

∣
∣
∣

≤
∫

([0,α]×[0,α])\([0,δ)×[0,δ))

|φn(s, t) − φ(s, t)| d(|λ| × |µ|)(s, t)

+2m(|λ| × |µ|)(([0, δ) × [0, δ)) \ {(0, 0)}).

For any δ > 0 the first term of the latter expression tends to 0 as n → ∞
because φ is continuous (hence uniformly continuous) on

(
[0, α] × [0, α]

) \(
[0, δ) × [0, δ)

)
so that φn → φ uniformly there. But the second term can be

arbitrarily small when δ > 0 is small enough. Therefore, we arrive at

lim
n→∞(Φn(ξ ⊗ ηc)ξ′, η′) = (Φ(ξ ⊗ ηc)ξ′, η′).
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This implies that Φn(X) → Φ(X) in the weak operator topology for all X ∈
Ifin. Since ‖Φn‖(1,1) ≤ κ for all n as stated above, the lower semi-continuity
of ‖ · ‖1 in the weak operator topology (see [37, Proposition 2.11]) yields

‖Φ(X)‖1 ≤ lim inf
n→∞ ‖Φn(X)‖1 ≤ κ‖X‖1

for all X ∈ Ifin. For each X ∈ C1(H) we approximate X by pnXpn with finite-
rank projections pn ↗ 1. Then {Φ(pnXpn)} is ‖·‖1-Cauchy and Φ(pnXpn) →
Y ∈ C1(H) in the norm ‖ · ‖1 as in the proof of Lemma 3.8. However, we
claim Y = Φ(X). In fact, since Φ is a bounded operator on C2(H), we have
‖Φ(pnXpn) − Φ(X)‖2 → 0 (as well as ‖Φ(pnXpn) − Y ‖2 → 0 thanks to
‖ · ‖2 ≤ ‖ · ‖1). Since Y = Φ(X), from the above estimate for operators in
∈ Ifin we have

‖Φ(X)‖1 = lim
n→∞ ‖Φ(pnXpn)‖1 ≤ κ‖X‖1

for all X ∈ C1(H).
Finally, the standard 2×2-matrix trick can be conveniently used to extend

this inequality to a pair (H, K) with ‖H‖, ‖K‖ ≤ α. In fact, with H̃ and X̃
as in Remark 2.12 we notice

ΦH̃,H̃(X̃) =
[
0 ΦH,K(X)
0 0

]

,

which implies

‖ΦH,K(X)‖1 = ‖ΦH̃,H̃(X̃)‖1 ≤ κ‖X̃‖1 = κ‖X‖1

for X ∈ C1(H). Thus, φ is a Schur multiplier relative to (H, K) and
‖ΦH,K‖(1,1) ≤ κ. ��

3.4 Positive definite kernels

We say that M ∈ M is a positive definite kernel if [M(si, sj)]i,j=1,··· ,n is
positive semi-definite for any s1, . . . , sn > 0 with any n. If N ∈ M is a
positive definite kernel, then so is M ∈ M with M � N . This is an immediate
consequence of the famous Schur theorem on the Schur product of two positive
semi-definite matrices. The next proposition says that the geometric mean G
is the largest in the order � among means in M that are positive definite
kernels. When H is a matrix with eigenvalues s1, . . . , sn ≥ 0, M(H, H) is
essentially equal to the Schur multiplication by [M(si, sj)]i,j=1,··· ,n (up to
unitary conjugation, see (3.12)). So one may consider the property (i) below
as a generalization of the Schur theorem.

Proposition 3.10. The following conditions are equivalent for M ∈ M:



46 3 Means of operators and their comparison

(i) M is a Schur multiplier and M(H, H)X is positive if so are H, X ∈ B(H);
(ii) M is a positive definite kernel ;
(iii) M � G.

If this is the case, then ‖M(H, K)‖(1,1) ≤
√‖H‖ × ‖K‖ for all H, K ≥ 0.

Proof. (i) ⇒ (ii). Choose an orthonormal basis {ξi}. For each n, by setting
X =

∑n
i,j=1 ξi ⊗ ξc

j and H =
∑n

i=1 siξi ⊗ ξc
i with s1, . . . , sn ≥ 0, we get

M(H, H)X =
n∑

i,j=1

M(si, sj)ξi ⊗ ξc
j .

Hence (i) implies the positive definiteness of [M(si, sj)]i,j=1,··· ,n.
(ii) ⇒ (iii). This is immediate because of
[
M(si, sj)
G(si, sj)

]

= diag(s−1/2
1 , . . . , s−1/2

n )
[
M(si, sj)

]
diag(s−1/2

1 , . . . , s−1/2
n )

for any s1, . . . , sn > 0.
(iii) ⇒ (i). Assume (iii) with the representing measure ν for the ratio

M(ex, 1)/G(ex, 1). Then Theorem 3.4 implies that M is a Schur multiplier
and

M(H, H)X =
∫ ∞

−∞
(HsH)ix(H1/2XH1/2)(HsH)−ixdν(x),

(because of M(1, 0) = 0), which is positive if so is X . Furthermore, by Corol-
lary 3.5 we get

|||M(H, K)X ||| ≤ |||H1/2XK1/2||| ≤
√
‖H‖ × ‖K‖ |||X |||

for any unitarily invariant norm. Therefore, ‖M(H, K)‖(1,1) ≤
√‖H‖ × ‖K‖.

�	

3.5 Norm estimates for means

When M is one of A, L and G, it is straight-forward to see ‖M(H, K)‖(1,1) ≤
M(‖H‖, ‖K‖). In fact, this was noticed for G in the proof of Proposition 3.10,
and for L we have

|||L(H, K)X ||| ≤
∫ 1

0

|||HxXK1−x||| dx

≤
∫ 1

0

‖H‖x‖K‖1−x dx × |||X ||| = L(‖H‖, ‖K‖) |||X |||

for any unitarily invariant norm. As long as M � M∞ we also get the estimate
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|||M(H, K)X ||| ≤ |||M∞(H, K)X ||| ≤ 3
2
|||HX + XK|||

≤ 3
2
(‖H‖ + ‖K‖) |||X ||| (3.16)

which is a consequence of Corollary 3.5 and (3.11).
The problem to compute the best possible bound of ‖M(H, K)‖(1,1) (in

terms of ‖H‖ and ‖K‖) is not easy in general. In this section the optimal
bound will computed for the mean M = M∞.

Lemma 3.11. For every s1, . . . , sn ≥ 0,

∥
∥S[si∨sj ]i,j=1,··· ,n

∥
∥

(1,1)
≤ 2√

3

(
max

i
si − min

i
si

)
+ min

i
si ≤ 2√

3
max

i
si,

where si∨ tj = max{si, tj}. Moreover, 2/
√

3 is the optimal bound in the above
estimate.

Proof. The explicit formula of ‖SA‖(∞,∞) for a real 2 × 2 matrix A was ob-
tained in [21] by using Haagerup’s criterion (3.14) and it indeed says

∥
∥S�

�1 1
1 0

�
�

∥
∥

(∞,∞)
=

2√
3
. (3.17)

(In fact, a direct computation of (3.17) with Haagerup’s criterion is also easy.)
Next, let s1, . . . , sn ≥ 0. For a permutation γ on {1, 2, . . . , n} with the corre-
sponding permutation matrix Γ we obviously have

S[sγ(i)∨sγ(j)](X) = Γ
(
S[si∨sj ](Γ−1XΓ )

)
Γ−1.

Thus, we may and do assume s1 ≥ s2 ≥ · · · ≥ sn ≥ 0, and the matrix [si ∨ sj ]
can be written as

[si ∨ sj ] = (s1 − s2)J
(n)
1 + (s2 − s3)J

(n)
2 + · · · + (sn−1 − sn)J (n)

n−1 + snJ (n)
n ,

where

J
(n)
k =













1 · · · 1 1 · · · 1
...

. . .
...

...
. . .

...
1 · · · 1 1 · · · 1
1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
1 · · · 1 0 · · · 0













(the zero block is (n − k) × (n − k)).

According to (3.17) and Haagerup’s criterion, there are u1, u2, v1, v2 ∈ C2

such that ‖ui‖2, ‖vj‖2 ≤ 2/
√

3 and
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(u1, v1) = (u1, v2) = (u2, v1) = 1, (u2, v2) = 0.

For k = 1, . . . , n − 1 we get J
(n)
k =

[
(ξi, ηj)

]
when ξ1 = · · · = ξk = u1,

ξk+1 = · · · = ξn = u2, η1 = · · · = ηk = v1 and ηk+1 = · · · = ηn = v2. This
implies

‖S
J

(n)
k

‖(∞,∞) ≤ 2√
3

(for k = 1, . . . , n − 1),

and obviously ‖S
J

(n)
n

‖(∞,∞) = 1. Since

S[si∨sj ] = (s1 − s2)SJ
(n)
1

+ (s2 − s3)SJ
(n)
2

+ · · · + (sn−1 − sn)S
J

(n)
n−1

+ snS
J

(n)
n

with positive coefficients, we get

‖S[si∨sj ]‖(∞,∞) ≤ 2√
3
(s1 − sn) + sn

as desired. Finally the optimality of 2/
√

3 is clear from (3.17). ��
The next theorem is a consequence of Lemmas 3.11 and 3.9 (for φ = M∞)

together with Corollary 3.5 (or Theorem 3.7).

Theorem 3.12. If M ∈ M satisfies M � M∞, then

‖M(H, K)‖(1,1) ≤ 2√
3

max{‖H‖, ‖K‖}

for all H, K ≥ 0. Consequently, for any unitarily invariant norm ||| · ||| we
have

|||M(H, K)X ||| ≤ 2√
3

max{‖H‖, ‖K‖} |||X |||

for all X ∈ B(H).

For each mean M ∈ M one can define the mean M (−) ∈ M dual to M by

M (−)(s, t) = M(s−1, t−1)−1 for s, t > 0 (3.18)

(see [39, §1]). For M, N ∈ M note that M � N is equivalent to N (−) � M (−).
For example, G(−) = G, A(−) = Mhar and M

(−)
∞ = M−∞ concerning means

in (3.4). It is easy to see that if H, K are invertible positive operators, then

M (−)(H−1, K−1)(M(H, K)X)
= M(H, K)(M (−)(H−1, K−1)X) = X (3.19)

for all X ∈ C2(H). Indeed, this is the application of function calculus to the
equality M (−)(s−1, t−1)M(s, t) = 1. Whenever both M and M (−) are Schur
multipliers, (3.19) remains valid for all X ∈ B(H) so that M (−)(H−1, K−1)
is the inverse of M(H, K) on B(H). Hence Theorem 3.12 implies
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Proposition 3.13. If M ∈ M satisfies M−∞ � M � M∞ and H, K are
invertible positive operators, then

|||M(H, K)X ||| ≥
√

3
2

min{‖H−1‖−1, ‖K−1‖−1} |||X |||

for all unitarily invariant norms and all X ∈ B(H).

Remark 3.14. The “mean transform” M(H, K) (when M � M∞ for example)
sends I|||·||| (and I(0)

|||·|||) into itself (see Propositions 2.7 and 3.3). However, if
H, K are positive compact operators in some Schatten class, then one can do
better. For example, let us assume H, K ∈ Cp0(H) (1 ≤ p0 ≤ ∞) and M = A,
the arithmetic mean. Then, thanks to the (generalized) Hölder inequality

‖XY ‖p2 ≤ ‖X‖p1‖Y ‖p0

(
with p−1

1 + p−1
0 = p−1

2

)
, (3.20)

M(H, K) sends the Schatten class Cp1(H) into the smaller one Cp2(H) with
the norm bound

‖A(H, K)X‖p2 ≤ 1
2
(‖HX‖p2 + ‖XK‖p2)

≤ 1
2
(‖H‖p0 + ‖K‖p0) ‖X‖p1 ≤ max{‖H‖p0, ‖K‖p0} ‖X‖p1.

We point out that this is a general phenomenon. Namely, let us assume M �
M∞ and p−1

1 + p−1
0 = p−1

2 (1 ≤ p0, p1, p2 ≤ ∞). If positive operators H, K
belong to Cp0(H), then M(H, K) is a bounded linear operator from Cp1(H)
into Cp2(H) satisfying

‖M(H, K)X‖p2 ≤ 3 max{‖H‖p0, ‖K‖p0} ‖X‖p1.

In fact, the general estimate (3.16) gives

‖M(H, K)X‖p2 ≤ 3
2
‖HX + XK‖p2 ≤ 3

2
(‖HX‖p2 + ‖XK‖p2)

so that the assertion follows from (3.20) as before.

3.6 Kernel and range of M(H, K)

Assume M−∞ � M � M∞. When both of H, K ≥ 0 are invertible, the
mean transform M(H, K) : B(H) → B(H) is bijective due to (3.19) (for each
X ∈ B(H)). In this section we determine the kernel and the closure of the
range for general positive H, K.

Lemma 3.15. Assume that M ∈ M satisfies M−∞ � M � M∞, and let H
be a non-singular positive operator.
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(i) If X ∈ B(H) and M(H, H)X = 0, then X = 0.
(ii) The range of M(H, H) is dense in B(H) in the strong operator topology.

Proof. (i) For δ > 0 we note

0 = E(δ,∞)(M(H, H)X)E(δ,∞) = M(HE(δ,∞), HE(δ,∞))(E(δ,∞)XE(δ,∞))

with the spectral projection E(δ,∞) of H . Here, the second equality easily
follows from the integral expression pointed out in Remark 2.5, (ii). By re-
stricting everything to the subspace E(δ,∞)H (where HE(δ,∞) is an invertible
operator), from Proposition 3.13 (and (3.19)) we get E(δ,∞)XE(δ,∞) = 0. We
then see X = 0 because the non-singularity of H yields the strong convergence
E(δ,∞) ↗ 1 (as δ ↘ 0).

(ii) Choose and fix X ∈ B(H) and δ > 0 at first. As above we regard
E(δ,∞)XE(δ,∞) and HE(δ,∞) (≥ δ) as operators on E(δ,∞)H. Then, the oper-
ator equation

M(HE(δ,∞), HE(δ,∞))Y = E(δ,∞)XE(δ,∞)

for an unknown operator Y ∈ B(E(δ,∞)H) possesses a solution, i.e.,

Y = M (−)((HE(δ,∞))−1, (HE(δ,∞))−1)(E(δ,∞)XE(δ,∞)) (see (3.19)).

However, since Y ∈ B(E(δ,∞)H) (⊆ B(H)), we observe

M(HE(δ,∞), HE(δ,∞))Y = M(H, H)Y

once again based on the expression in Remark 2.5, (ii). Consequently we have
M(H, H)Y = E(δ,∞)XE(δ,∞), meaning that E(δ,∞)XE(δ,∞) sits in the range
of M(H, H). We thus get the conclusion by letting δ ↘ 0. ��
Theorem 3.16. Assume that M ∈ M satisfies M−∞ � M � M∞, and let
H, K be positive operators.

I. Case M(1, 0) = 0.
(i) For X ∈ B(H) we have M(H, K)X = 0 if and only if sHXsK = 0.
(ii) The closure of the range of M(H, K) in the strong operator topology

is sHB(H)sK .
II. Case M(1, 0) > 0.

(iii) For X ∈ B(H) we have M(H, K)X = 0 if and only if

sHXsK = sHX(1 − sK) = (1 − sH)XsK = 0.

(iv) The closure of the range of M(H, K) in the strong operator topology
is

{X ∈ B(H) : (1 − sH)X(1 − sK) = 0}.
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Proof. We begin with the special case H = K. We recall

M(H, H)X
= sH(M(H, H)X)sH + M(1, 0)(HX(1 − sH) + (1 − sH)XH)
= M(HsH , HsH)(sHXsH) + M(1, 0)(HX(1 − sH) + (1 − sH)XH)

(see Lemma 2.9 and (3.10)). By restricting everything to the subspace sHH
(where HsH is non-singular) Lemma 3.15, (i) says M(HsH , HsH)(sHXsH) =
0 if and only if sHXsH = 0, showing (i). When M(1, 0) > 0, the additional
requirement HX(1 − sH) = (1 − sH)XH = 0 is needed. However, this is
obviously equivalent to sHX(1−sH) = (1−sH)XsH = 0, which corresponds to
(iii). On the other hand, from Lemma 3.15, (ii) (and the above decomposition)
we easily get (ii) and (iv). Note that to show (iv) we need the following obvious
fact for instance: HB(H)(1 − sH) is strongly dense in

{X ∈ B(H) : sHXsH = (1 − sH)XsH = (1 − sH)X(1 − sH) = 0},
i.e., operators with only (non-zero) “(1, 2)-components”.

In the rest of the proof we will deal with the general case. With H̃, X̃ in
Remark 2.12 we have

M(H, K)X = 0 ⇐⇒ M(H̃, H̃)X̃ = 0,

which is also equivalent to sH̃X̃sH̃ = 0 (with the additional requirement
sH̃X̃(1 − sH̃) = (1 − sH̃)X̃sH̃ = 0 when M(1, 0) > 0) from the first part of

the proof. But, since sH̃ =
[
sH 0
0 sK

]

, we easily get (i) and (iii) (in the general

setting). Indeed, we have

sH̃X̃sH̃ = 0 ⇐⇒ sHXsK = 0,

sH̃X̃(1 − sH̃) = 0 ⇐⇒ sHX(1 − sK) = 0,

(1 − sH̃)X̃(1 − sH̃) = 0 ⇐⇒ (1 − sH)X(1 − sK) = 0.

To investigate the range, we consider the projections

P1 =
[
1 0
0 0

]

, P2 =
[
0 0
0 1

]

(in B(H⊕H)).

The range M(H, K)(B(H)) is P1(M(H̃, H̃)(B(H⊕H))P2 (see Remark 2.12)
with the natural identification of the (1, 2)-corner of B(H ⊕ H) with B(H).
We claim

P1(M(H̃, H̃)(B(H⊕H))P2 = P1(M(H̃, H̃)(B(H⊕H))P2.

At first, ⊇ is obvious. To see ⊆, we choose and fix Y from the left-hand side. We
note Y = P1Y P2 and can choose Yλ = M(H̃, H̃)Zλ (for some Zλ ∈ B(H⊕H))
such that P1YλP2 → Y strongly. But notice
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P1YλP2 = P1(M(H̃, H̃)Zλ)P2 = M(H̃, H̃)(P1ZλP2)

due to the fact that P1 and P2 commute with H̃ (recall the integral ex-
pression in Remark 2.12). Therefore, each P1YλP2 actually belongs to the
range M(H̃, H̃)(B(H ⊕ H)) so that the limit Y sits in the strong closure
M(H̃, H̃)(B(H ⊕H)). Hence, we have

Y = P1Y P2 ∈ P1M(H̃, H̃)(B(H⊕H))P2,

and the claim is established.
From the discussions so far we have

M(H, K)(B(H)) = P1(M(H̃, H̃)(B(H⊕H))P2

= P1(M(H̃, H̃)(B(H⊕H))P2. (3.21)

When M(1, 0) = 0, we have

M(H, K)(B(H)) = P1sH̃B(H⊕H)sH̃P2

= sH̃P1B(H⊕H)P2sH̃ = sH̃B(H)sH̃ .

Here, the first equality follows from (3.21) and the first part of the proof
(i.e, (ii) in the special case H = K) while the second is a consequence of
the commutativity of P1, P2 with H̃. The last equality comes from the above-
mentioned natural identification. We note that the B(H) (appearing in the far
right side) is the one sitting at the (1, 2)-corner so that sH̃B(H)sH̃ actually
means sHB(H)sK (sitting at the same place). Therefore, we have shown (ii).

On the other hand, when M(1, 0) > 0, from (3.21) (and (iv) in the special
case) we similarly get

M(H, K)(B(H))

= P1

(
sH̃B(H⊕H)sH̃

+(1 − sH̃)B(H⊕H)sH̃ + sH̃B(H⊕H)(1 − sH̃)
)
P2

= sH̃P1B(H⊕H)P2sH̃

+(1 − sH̃)P1B(H⊕H)P2sH̃ + sH̃P1B(H⊕H)P2(1 − sH̃)
= sH̃B(H)sH̃ + (1 − sH̃)B(H)sH̃ + sH̃B(H)(1 − sH̃).

The B(H) appearing at the end is once again the one at the (1, 2)-corner, and
the same reasoning as in the last part of the preceding paragraph yields (iv)
in the general case. ��
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3.7 Notes and references

1. Means of operators
In [39] the class M (in Definition 3.1) of homogeneous symmetric means

was introduced, and for matrices H, K, X (with H, K ≥ 0) and M ∈ M the
matrix mean M(H, K)X was defined by (1.1). With this definition Theorem
3.7 was obtained for matrices (as [39, Theorem 1.1]), and many norm inequali-
ties were obtained. We cannot determine if every M ∈ M is a Schur multiplier
(probably not), and this problem seems to deserve further investigation. Any-
way the criterion M � M∞ obtained in Proposition 3.3, (b) is good enough in
almost all circumstances. The implication (iv) ⇒ (ii) in Theorem 3.7 (at least
in the matrix case, or equivalently (3.15)) has been known to many special-
ists ([42, p. 343] and [4, p. 363] for example) and indeed used as a standard
tool for showing norm inequalities. We actually have the bi-implication here.
Therefore, the theorem can be also used to check failure of certain norm in-
equalities, which will be carried out in our forthcoming article [55]. In §8.1
and §A.1 we will deal with “operator means” M(H, K)X for functions M in
wider classes. This will make it possible to study norm inequalities for certain
operators which are not operator means in the sense of the present chapter.

Our theory of operator means is useful in study of certain operator equa-
tions. Let us assume the invertibility of H, K ≥ 0 for simplicity and regard

M(H, K)X = Y

as an operator equation with an unknown operator X . Then, (3.18) and (3.19)
show that X = M (−)(H−1, K−1)Y gives rise to a solution. With this idea
concrete integral expressions for solutions to many operator equations were
obtained in [39, §4]. In [68] related analysis was also made by G. K. Pedersen
from the viewpoint of “operator differentials” (see also [33, 67]). Theorem 3.16
in §3.6 provides us useful information on uniqueness of solutions to the above
operator equation.

Another important notion of operator means, quite different from those
treated in the present monograph, is the one axiomatically introduced by
F. Kubo and T. Ando in [57]. An operator mean in their sense is a bi-
nary operation B(H)+ × B(H)+ → B(H)+, and it bijectively corresponds
to an operator monotone function on R+. For example, the geometric mean
(formerly introduced by W. Pusz and L. Woronowicz in [73]) is given as
H#K = H

1
2 (H− 1

2 KH− 1
2 )

1
2 H

1
2 for positive invertible H, K ∈ B(H) while

our geometric mean G(H, K)X = H
1
2 XK

1
2 is no longer positive even when

X = 1.

2. Arithmetic-geometric mean inequality and related topics

The arithmetic-geometric mean inequality (1.4) for unitarily invariant
norms was first noticed by R. Bhatia and C. Davis in [10], and its alternative
proofs (and/or some discussions) were worked out by many authors including
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R. A. Horn ([41]), F. Kittaneh ([50, 51]), R. Mathias ([63]) and probably some
others. Proofs presented in [41, 63] are indeed based on the method explained
in 1. The article [13] by R. Bhatia and K. Parthasarathy is closely related to
our previous works [38, 39, 54], and this method was systematically used to
derive an abundance of known and new norm inequalities. The same method
was used by X. Zhan ([83, Theorem 6 and Corollary 7]) to show the following
generalizations of the arithmetic-geometric mean inequality (as well as the
Heinz inequality (1.3)):

(i) for x ∈ (−2, 2] and θ ∈ [1/4, 3/4],

2 + x

2
|||HθXK1−θ + H1−θXKθ||| ≤ |||HX + XK + xH1/2XK1/2|||;

(ii) for x ∈ (−2, 2],

(2 + x)|||H1/2XK1/2||| ≤ |||HX + XK + xH1/2XK1/2|||.
Similar results (based on the similar method) were also obtained in [78].

The following inequality was obtained by D. Jocić ([45, Theorem 3.1]) as
an application of the arithmetic-geometric mean inequality:

||| |HX + XK|p ||| ≤ 2p−1‖X‖p−1||| |H |p−1HX + XK|K|p−1|||
for p ≥ 3 and self-adjoint operators H, K. It generalizes the earlier result

|||(H − K)2n+1||| ≤ 22n|||H2n+1 − K2n+1|||
due to D. Jocić and F. Kittaneh ([46], and also see [7]). In fact, when p = 2n+1
odd, by setting X = 1 and using −K instead one gets |H |2nH = H2n+1 and
(−K)|(−K)|2n = −K2n+1. This perturbation estimate in particular shows
H − K ∈ C(2n+1)p as long as H2n+1 − K2n+1 ∈ Cp and p ∈ [1,∞), which
improves L. S. Koplienko’s result in [52].

G. Corach, H. Porta and L. Recht studied the set of invertible self-adjoint
operators (and some other sets) as a space equipped with a certain natural
Finsler metric (see [60]). In [19] from the differential geometry viewpoint they
arrived at the inequality

‖X‖ ≤ 1
2
‖HXH−1 + H−1XH‖

for an invertible self-adjoint operator H . This corresponds to the norm-
decreasing property of a certain tangential map, and their proof actually uses
Schur products. As noticed in [28, 51] for example (change X to HXH and
use the standard 2× 2-matrix trick in Remark 2.12), their inequality is noth-
ing but the arithmetic-geometric mean inequality (in the operator norm). In
[20] they also gave a geometric interpretation of the Segal inequality

‖eH+K‖ ≤ ‖eH/2eKeH/2‖ (≤ ‖eHeK‖)
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for self-adjoint operators H, K.

3. Arithmetic-logarithmic-geometric mean inequality
The arithmetic-logarithmic-geometric mean inequality (1.8) (as well as

some further extensions such as monotonicity of the norms (1.9) in m and n)
was proved in [38]. In [9] R. Bhatia pointed out a close connection between the
logarithmic-geometric mean inequality and the Golden-Thompson-type norm
inequality (extending the Segal inequality)

|||eH+K ||| ≤ |||eHeK |||

for self-adjoint operators H, K based on the differential geometry viewpoint
(akin to [19, 20]). (See [8, 37, 77] for the Golden-Thompson-type inequality.)

4. Schur multipliers in the matrix case

Haagerup’s criterion and (3.14) were presented in his unpublished notes
[31, 32], and a proof is available in the literature. Namely, the formula was
shown in the article [5] by T. Ando and K. Okubo as a consequence of its
variant for the numerical radius norm. The Ando-Okubo theorem was recently
extended to B(H) by T. Itoh and M. Nagisa in [44].

Materials in §3.3 are somewhat technical. But, we need them (especially
Lemma 3.9) to reduce the proof of Theorem 3.12 in §3.5 to the matrix case. In
fact, this technique enables us to make use of Lemma 3.11 (based on (3.14)).

(Sub)majorization theory for eigenvalues and singular values of matrices
provides a powerful tool in study of matrix (also operator) norm inequalities
for unitarily invariant norms (see [34, 62] and also [1, 2, 8] for surveys on recent
results). Among others, T. Ando, R. A. Horn and C. R. Johnson obtained in
[4] a fundamental majorization for singular values of Hadamard (or Schur)
products of matrices, which implies (3.15) as a corollary. Majorization method
was implicitly used in the proof of Proposition 2.6; however it does not have
much to do with the present monograph.
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Convergence of means

In this chapter we will investigate continuity properties of means (in operator
variables). In fact, the convergence M(Hn, Kn)X → M(H, K)X in a unitarily
invariant norm is discussed under the strong convergence Hn → H , Kn → K.
Our main result here is Theorem 4.1 in §4.1, and some related convergence
results are also presented in §4.2 as variants of (the proof of) the main theorem.

4.1 Main convergence result

Norm convergence is guaranteed under many circumstances. Although the
conditions imposed in the theorem below may not be optimal, many practical
situations are being covered.

Theorem 4.1. Let M ∈ M be such that M � M∞, and ||| · ||| be a unitarily
invariant norm. Let H, K, Hn and Kn (n = 1, 2, . . . ) be positive operators
such that Hn → H and Kn → K in the strong operator topology. Assume in
addition one of the following assumptions:

(a) ||| · ||| is dominated by ‖ · ‖2,
(b) sHn → sH and sKn → sK strongly,
(c) M � L, where L denotes the logarithmic mean.

Then we have

lim
n→∞ |||M(Hn, Kn)X − M(H, K)X ||| = 0

for all X ∈ I(0)
|||·|||.

Proof. Thanks to the assumption M � M∞ and the boundedness of ‖Hn‖
and ‖Kn‖, Theorem 3.12 implies that there is a κ < ∞ such that

|||M(Hn, Kn)X ||| ≤ κ|||X |||

F. Hiai and H. Kosaki: LNM 1820, pp. 57–63, 2003.
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for all n = 1, 2, . . . and all X ∈ B(H). Since Ifin is dense in I(0)
|||·|||, it suffices

to show the required norm convergence for rank-one operators X .
Case (a). This case is immediately seen because M(Hn, Kn) → M(H, K)

strongly as operators acting on the Hilbert-Schmidt class C2(H) (see the proof
(iv) ⇒ (iii) of Theorem 3.7).

Case (b). Any unitarily invariant norm is dominated by ‖ · ‖1, and hence
we may prove the case ||| · ||| = ‖ · ‖1. Put H̃n = Hn + (1 − sHn) and H̃ =
H +(1−sH), so H̃n and H̃ are non-singular positive operators. Since H̃n → H̃
strongly, it is well-known that H̃ix

n → H̃ix strongly for all x ∈ R. Hence

(HnsHn)ix = H̃ix
n sHn −→ H̃ixsH = (HsH)ix

strongly for all x ∈ R. Similarly, (KnsKn)ix → (KsK)ix strongly. For a rank-
one operator X , we claim that

lim
n→∞ ‖M∞(Hn, Kn)X − M∞(H, K)X‖1 = 0. (4.1)

In fact, (3.11) shows

M∞(Hn, Kn)X = − 1
2

∫ ∞

−∞
(HnsHn)ix(HnX + XKn)(KnsKn)−ixf(x) dx

+HnX + XKn,

M∞(H, K)X = − 1
2

∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixf(x) dx

+HX + XK.

It is straight-forward to see ‖(HnX + XKn)− (HX + XK)‖1 → 0 since X is
of rank-one. So it suffices to show

lim
n→∞ ‖(HnsHn)ix(HnX + XKn)(KnsKn)−ix

−(HsH)ix(HX + XK)(KsK)−ix‖1 = 0 (4.2)

for all x ∈ R. Indeed, we can then apply Theorem A.5 and the Lebesgue
dominated convergence theorem to get (4.1). However, the ‖ ·‖1-norm in (4.2)
is majorized by

‖(HnsHn)ix((HnX + XKn) − (HX + XK))(KnsKn)−ix‖1

+‖((HnsHn)ix − (HsH)ix)(XH + XK)(KnsKn)−ix‖1

+‖(HsH)ix(HX + XK)((KnsKn)−ix − (KsK)−ix)‖1

≤ ‖(HnX + XKn) − (HX + XK)‖1

+‖((HnsHn)ix − (HsH)ix)(XH + XK)‖1

+‖(HX + XK)((KnsKn)−ix − (KsK)−ix)‖1

so that (4.2) is obtained from the strong convergence
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(HnsHn)ix −→ (HsH)ix, (KnsKn)−ix −→ (KsK)−ix.

When M � M∞ Theorem 3.4 (see (3.8)) guarantees

M(Hn, Kn)X =
∫ ∞

−∞
(HnsHn)ix(M∞(Hn, Kn)X)(KnsKn)−ixdν(x)

+M(1, 0)(sHnX(1 − sKn) + (1 − sHn)XsKn),

M(H, K)X =
∫ ∞

−∞
(HsH)ix(M∞(H, K)X)(KsK)−ixdν(x)

+M(1, 0)(sHX(1 − sK) + (1 − sH)XsK).

The strong convergence sHn → sH , sKn → sK is assumed while the preceding
claim says (4.1). Therefore, by making use of these we can repeat the argu-
ments in the proof of the claim for the above M(Hn, Kn)X and M(H, K)X
to conclude

‖M(Hn, Kn)X − M(H, K)X‖1 = 0.

Case (c). As usual we may and do assume Hn = Kn and H = K thanks
to the 2 × 2-matrix trick, and we set α = supn ‖Hn‖ (< ∞). Choose and
fix δ > 0. Let us assume E{δ}(H) = 0 (where EΛ(H) denotes the spectral
measure for H) so that we have the strong convergence

Pn = E[0,δ)(Hn) −→ P = E[0,δ)(H)

(see [74, Theorem VIII.24]). We consider the decomposition

Hn = HnPn + HnP⊥
n , H = HP + HP⊥.

Based on the integral expression in Remark 2.5, (ii) we easily have

M(Hn, Hn)X = M(HnPn, HnPn)(PnXPn) + M(HnPn, HnP⊥
n )(PnXP⊥

n )
+M(HnP⊥

n , HnPn)(P⊥
n XPn) + M(HnP⊥

n , HnP⊥
n )(P⊥

n XP⊥
n )

(and the similar decomposition of M(H, H)X).
We recall the general fact

|||L(H, K)X ||| ≤ L(‖H‖, ‖K‖) |||X |||
(see the paragraph before Lemma 3.11). Corollary 3.5 together with this im-
plies

|||M(HnPn, HnP⊥
n )(PnXP⊥

n )||| ≤ |||L(HnPn, HnP⊥
n )(PnXP⊥

n )|||
≤ L(‖HnPn‖, ‖HnP⊥

n ‖) |||PnXP⊥
n |||

≤ L(δ, α) |||X ||| (4.3)

thanks to ‖HnPn‖ ≤ δ, ‖HnP⊥
n ‖ ≤ α. Of course the same estimate is available

for
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|||M(HnP⊥
n , HnPn)(P⊥

n XPn)|||, |||M(HP, HP⊥)(PXP⊥)|||
and |||M(HP⊥, HP )(P⊥XP )|||.

Similarly we have
{ |||M(HnPn, HnPn)(PnXPn)||| ≤ δ|||X |||,
|||M(HP, HP )(PXP )||| ≤ δ|||X |||. (4.4)

The estimates so far imply

|||M(Hn, Hn)X − M(H, H)X |||
≤ |||M(HnP⊥

n , HnP⊥
n )(P⊥

n XP⊥
n ) − M(HP⊥, HP⊥)(P⊥XP⊥)|||

+(2δ + 4L(δ, α))|||X |||. (4.5)

Note L(δ, α) ↘ 0 as δ ↘ 0. For each ε > 0, we can choose δ > 0 such that

(2δ + 4L(δ, α))|||X ||| ≤ ε and E{δ}(H) = 0

(due to the separability of our Hilbert space). Then, we have

|||M(Hn, Hn)X − M(H, H)X |||
≤ |||M(HnP⊥

n , HnP⊥
n )(P⊥

n XP⊥
n ) − M(HP⊥, HP⊥)(P⊥XP⊥)||| + ε.

Since E{δ}(H) = 0, we have the strong convergence

sHnP ⊥
n

= P⊥
n −→ sHP ⊥ = P⊥, HnP⊥

n −→ HP⊥

as was remarked at the beginning, and Case (b) (or more precisely Re-
mark 4.2, (1) below together with the obvious fact limn→∞ |||P⊥

n XP⊥
n −

P⊥XP⊥||| = 0) guarantees

lim
n→∞ |||M(HnP⊥

n , HnP⊥
n )(P⊥

n XP⊥
n ) − M(HP⊥, HP⊥)(P⊥XP⊥)||| = 0.

Therefore, we have

lim sup
n→∞

|||M(Hn, Hn)X − M(H, H)X ||| ≤ ε,

and the proof is completed. ��
Remark 4.2. Some remarks are in order.

(1) The conclusion of Theorem 4.1 can be a bit strengthened: if Xn, X ∈ I(0)
|||·|||

and |||Xn − X ||| → 0, then

lim
n→∞ |||M(Hn, Kn)Xn − M(H, K)X ||| = 0

under the same situation. The result indeed follows from

|||M(Hn, Kn)Xn − M(H, K)X |||
≤ |||M(Hn, Kn)(Xn − X)||| + |||M(Hn, Kn)X − M(H, K)X |||
≤ κ|||Xn − X ||| + |||M(Hn, Kn)X − M(H, K)X |||.
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(2) The case (a) covers the Schatten p-norm ‖ · ‖p for 2 ≤ p < ∞ and the
operator norm ‖ · ‖, so if M � M∞ and Hn → H , Kn → K strongly, then
we have

lim
n→∞ ‖M(Hn, Kn)X − M(H, K)X‖ = 0

for all X ∈ C(H)
(
= I(0)

‖·‖
)
, the algebra of all compact operators.

(3) The condition (b) is automatic as long as sH ≥ sHn (for n large enough).
Hence, for example when either Hn ↗ H , Kn ↗ K or H, K are non-
singular, the condition (b) is satisfied. In fact, thanks to sHn ≥ Hn(ε +
Hn)−1 (ε > 0) and the strong convergence Hn → H we have

(sHξ, ξ) ≥ lim sup
n→∞

(sHnξ, ξ) ≥ lim inf
n→∞ (sHnξ, ξ)

≥ lim inf
n→∞ (Hn(ε + Hn)−1ξ, ξ) = (H(ε + H)−1ξ, ξ)

for each vector ξ. By letting ε ↘ 0 one gets limn→∞(sHnξ, ξ) = (sHξ, ξ),
showing sHn → sH strongly.

(4) When M ∈ M is a Schur multiplier, one can observe from the argument
before Remark 2.5 that M(H, K) on I|||·||| is the transpose of M(K, H) on

I(0)
|||·|||′ under the duality I|||·||| =

(
I(0)
|||·|||′

)∗
. Here, ||| · |||′ is the conjugate

norm of |||·|||, and the duality is given by the bilinear form (X, Y ) ∈ I|||·|||×
I(0)
|||·|||′ 
→ Tr(XY ) ∈ C. Hence M(H, K) on I|||·||| is w*-w*-continuous, that

is σ
(I|||·|||, I(0)

|||·|||′
)
-σ

(I|||·|||, I(0)
|||·|||′

)
-continuous, as in Remark 2.5, (i). It is

seen from this fact that M(Hn, Kn)X → M(H, K)X in σ
(I|||·|||, I(0)

|||·|||′
)

for all X ∈ I|||·||| in the situation of (b) or (c) in Theorem 4.1.

4.2 Related convergence results

Variants of the arguments presented in the proof of Theorem 4.1 enable us to
obtain some related convergence criteria in many settings. We begin with the
strong convergence M(Hn, Kn)X → M(H, K)X , which is somewhat easier to
handle.

Proposition 4.3. Assume that M ∈ M satisfies M � M∞. Let H, K, Hn

and Kn (n = 1, 2, . . . ) be positive operators such that Hn → H, Kn → K,
sHn → sH and sKn → sK in the strong operator topology. Then, for each
X ∈ B(H), means M(Hn, Kn)X tend to M(H, K)X in the strong operator
topology.

Proof. As remarked in the proof of Theorem 4.1, we have the strong con-
vergence (HnsHn)ix → (HsH)ix, (KnsKn)ix → (KsK)ix (for each x ∈ R).
We consider the special case M = M∞ at first. By substituting the integral
expression (3.11) to the right-hand side of the obvious equation
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‖ (M∞(Hn, Kn)X − M∞(H, K)X) ξ‖
= sup

‖η‖≤1

| ((M∞(Hn, Kn)X − M∞(H, K)X) ξ, η) |,

we easily observe

‖ (M∞(Hn, Kn)X − M∞(H, K)X) ξ‖
≤ ‖((HnX + XKn) − (HX + XK))ξ‖

+
1
2

∫ ∞

−∞

∥
∥
(
(HnsHn)ix(HnX + XKn)(KnsKn)−ix

−(HsH)ix(HX + XK)(KsK)−ix
)
ξ
∥
∥f(x) dx.

Since

(HnsHn)ix(HnX + XKn)(KnsKn)−ix −→ (HsH)ix(HX + XK)(KsK)−ix

strongly, the above estimate (together with the Lebesgue dominated conver-
gence theorem) implies the strong convergence

M∞(Hn, Kn)X −→ M∞(H, K)X.

Moreover, since Theorem 3.12 implies the uniform boundedness

sup
n

‖M∞(Hn, Kn)X‖ < ∞, (4.6)

the following strong convergence is also valid:

(HnsHn)ix(M∞(Hn, Kn)X)(KnsKn)−ix

−→ (HsH)ix(M∞(H, K)X)(KsK)−ix. (4.7)

We now assume M � M∞. Then, based on Theorem 3.4 (i.e., (3.8)) we
obtain the similar estimate for ‖(M(Hn, Kn)X−M(H, K)X)ξ‖ as above with
the integrand

∥
∥
(
(HnsHn)ix(M∞(Hn, Kn)X)(KnsKn)−ix

−(HsH)ix(M∞(H, K)X)(KsK)−ix
)
ξ
∥
∥.

Therefore, (4.6), (4.7) and another use of the Lebesgue dominated convergence
theorem yield the strong convergence M(Hn, Kn)X → M(H, K)X . ��

The strong convergence of M(Hn, Kn)X to M(H, K)X is also guaranteed
by (i) the strong convergence Hn → H, Kn → K, (ii) X ∈ C(H) (i.e., X is
compact) and (iii) M � L (i.e., the condition (c) in Theorem 4.1). We will
just sketch the arguments, and full details are left to the reader. In fact, by
using the same decomposition (as well as the notations) as in the proof of
Theorem 4.1, (c) and the estimates (4.3), (4.4) for ||| · ||| = ‖ · ‖ the operator
norm, we obtain the following estimate for each vector ξ:
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‖ (M(Hn, Hn)X − M(H, H)X) ξ‖
≤ ∥

∥
(
M(HnP⊥

n , HnP⊥
n )(P⊥

n XP⊥
n ) − M(HP⊥, HP⊥)(P⊥XP⊥)

)
ξ
∥
∥

+(2δ + 4L(δ, α))‖X‖ × ‖ξ‖.

Therefore, we can repeat the arguments at the end of the part (c) in the proof
of Theorem 4.1 to get the desired convergence; in fact, use the above estimate
in place of (4.5) and apply Proposition 4.3 (see also Remark 4.2, (1)) together
with ‖P⊥

n XP⊥
n − P⊥XP⊥‖ → 0, which is a consequence of the compactness

of X .
We point out that the arguments in Case (b) in Theorem 4.1 gives us

the norm convergence M(Hn, Kn)X → M(H, K)X valid for all X ∈ I|||·|||
(instead of I(0)

|||·||| under a stronger condition).

Proposition 4.4. Assume that M ∈ M satisfies M � M∞. Let H, K, Hn

and Kn (n = 1, 2, . . . ) be positive operators such that H, K are invertible,
‖Hn − H‖ → 0 and ‖Kn − K‖ → 0. Then for any unitarily invariant norm
||| · ||| we have

lim
n→∞ |||M(Hn, Kn)X − M(H, K)X ||| = 0

for all X ∈ I|||·|||. In particular,

lim
n→∞ ‖M(Hn, Kn)X − M(H, K)X‖ = 0

for all X ∈ B(H).

Proof. Note that Hn, Kn are invertible for large n and ‖Hix
n − Hix‖ → 0,

‖Kix
n −Kix‖ → 0 for all x ∈ R. By using the expression (3.11) (together with

Theorem A.5 and the Lebesgue dominated convergence theorem) it is easy to
see that

lim
n→∞ |||M∞(Hn, Kn)X − M∞(H, K)X ||| = 0

for all X ∈ I|||·|||. Next, by using the expression

M(Hn, Kn)X =
∫ ∞

−∞
Hix

n (M∞(Hn, Kn)X)K−ix
n dν(x)

and the same for H, K we obtain the conclusion. ��
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A-L-G interpolation means Mα

Three special one-parameter families of symmetric homogeneous means were
investigated in our previous article [39]: A-L-G interpolation means Mα,
Heinz-type means Aα and binomial means Bα (see also Chapter 1). We
obtained there a variety of comparison (in terms of the order �) among
those means, which give norm inequalities including the familiar arithmetic-
logarithmic-geometric mean inequality for Hilbert space operators based on
Theorem 3.7 (though in [39] we restricted ourselves to the case of matrices).
In the rest we will deal with the same one-parameter families of means once
again, but our main aim here is to establish the norm continuity of their means
of operators in the parameter α (see Theorem 5.7 for instance). In this chap-
ter we begin with A-L-G interpolation means Mα while Heinz-type means Aα

and binomial means Bα will be dealt with in the subsequent two chapters.

5.1 Monotonicity and related results

The most typical one-parameter family of means in M is the following Mα

(−∞ ≤ α ≤ ∞):

Mα(s, t) =






α − 1
α

× sα − tα

sα−1 − tα−1
(s �= t),

s (s = t),

where Mα for α = −∞, 0, 1,∞ are understood as M−∞, G, L, M∞ respectively
mentioned in (3.4). Indeed, notice

G(s, t) = lim
α→0

Mα(s, t), L(s, t) = lim
α→1

Mα(s, t), M±∞(s, t) = lim
α→±∞ Mα(s, t).

In this way, the one-parameter family Mα interpolates familiar means such as

F. Hiai and H. Kosaki: LNM 1820, pp. 65–78, 2003.
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M2 = A (the arithmetic mean),
M1 = L (the logarithmic mean),

M1/2 = G (the geometric mean),
M−1 = Mhar (the harmonic mean).

The means Mα for the special values α = n
n−1 (n = 2, 3, . . . ) and α = m

m+1
(m = 1, 2, . . . ) are written as






M n
n−1

(s, t) =
1
n
× s

n
n−1 − t

n
n−1

s
1

n−1 − t
1

n−1
=

1
n

n−1∑

k=0

s
k

n−1 t
n−1−k

n−1 ,

M m
m+1

(s, t) =
1
m

× s
m

m+1 − t
m

m+1

s
−1

m+1 − t
−1

m+1

=
1
m

m∑

k=1

s
k

m+1 t
m+1−k

m+1 .

(5.1)

The former (resp. latter) means discretely interpolate A and L (resp. G and
L), and the corresponding operator means were thoroughly investigated in
[38] (where the notations An and Gm were used instead).

It was proved in [39] that

Mα � Mβ if −∞ ≤ α < β ≤ ∞ (5.2)

(see (3.4) and its proof for typical cases). Hence Proposition 3.3 and Corollary
3.5 imply the following monotonicity:

Theorem 5.1. For every −∞ ≤ α ≤ ∞ the mean Mα is a Schur multiplier,
and if −∞ ≤ α < β ≤ ∞, then

|||Mα(H, K)X ||| ≤ |||Mβ(H, K)X |||
for all H, K, X ∈ B(H) with H, K ≥ 0 and for any unitarily invariant norm
||| · |||.

The estimate (3.16) and Theorem 5.1 guarantee the equivalence of the
norms of Mα(H, K)X for 2 ≤ α ≤ ∞. The equivalence actually remains valid
for 1 < α ≤ ∞ (but not for α ≤ 1), as will be seen in the proposition below
together with mutual norm bounds. This difference comes from the fact that
Mα(1, 0) > 0 for α > 1 in contrast with Mα(1, 0) = 0 for α ≤ 1 (see Remark
5.5, (i)).

Proposition 5.2. Let H, K be positive operators, X ∈ B(H) and ||| · ||| be
any unitarily invariant norm. If 1 < α < β ≤ ∞, then we have

|||Mα(H, K)X ||| ≤ |||Mβ(H, K)X |||
≤ (α + 1)β − 2α

(α − 1)β
× |||Mα(H, K)X |||, (5.3)

and
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|||Mα(H, K)X − Mβ(H, K)X ||| ≤ 2(β − α)
(α − 1)β

× |||Mα(H, K)X |||. (5.4)

Here, for β = ∞ the constants (α+1)β−2α
(α−1)β and 2(β−α)

(α−1)β are understood as α+1
α−1

and 2
α−1 respectively.

Proof. The first inequality in (5.3) is due to Theorem 5.1. To show the second,
we first assume 1 < α < β < ∞. Direct computations yield

Mβ(ex, 1)
Mα(ex, 1)

=
α(β − 1)
(α − 1)β

× e(α−1)x − 1
eαx − 1

× eβx − 1
e(β−1)x − 1

=
α(β − 1)
(α − 1)β

× sinh
(

α−1
2 x

)

sinh
(

α
2 x

) × sinh
(

β
2 x

)

sinh
(

β−1
2 x

) . (5.5)

From this we easily observe

1 − (α − 1)β
α(β − 1)

× Mβ(ex, 1)
Mα(ex, 1)

=
sinh

(
α
2 x

)
sinh

(
β−1

2 x
) − sinh

(
α−1

2 x
)
sinh

(
β
2 x

)

sinh
(

α
2 x

)
sinh

(
β−1

2 x
)

=
sinh

(
x
2

)

sinh
(

α
2 x

) × sinh
(

β−α
2 x

)

sinh
(

β−1
2 x

) (5.6)

by using sinh
(

α
2 x

)
= sinh

(
α−1

2 x
)
cosh

(
x
2

)
+cosh

(
α−1

2 x
)
sinh

(
x
2

)
(and the sim-

ilar formula for sinh
(

β
2 x

)
). Thanks to 1 < α < β < ∞, the two functions

sinh
(

x
2

)
/ sinh

(
α
2 x

)
and sinh

(
β−α

2 x
)
/ sinh

(
β−1

2 x
)

here are positive definite (see
[39, (1.4)]) so that (5.6) is the Fourier transform of a positive measure with
total mass β−α

α(β−1) . This means that

M(s, t) =
α(β − 1)
β − α

Mα(s, t) − (α − 1)β
β − α

Mβ(s, t)

is a mean in M and M � Mα is satisfied. Therefore, from Corollary 3.5 we
get

|||α(β − 1)
β − α

Mα(H, K)X − (α − 1)β
β − α

Mβ(H, K)X ||| ≤ |||Mα(H, K)X ||| (5.7)

so that
(α − 1)β
β − α

|||Mβ(H, K)X |||

≤ α(β − 1)
β − α

|||Mα(H, K)X |||

+|||α(β − 1)
β − α

Mα(H, K)X − (α − 1)β
β − α

Mβ(H, K)X |||

≤
(

α(β − 1)
β − α

+ 1
)

|||Mα(H, K)X ||| =
(α + 1)β − 2α

β − α
× |||Mα(H, K)X |||,
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implying the second inequality in the case β < ∞.
The proof in the limiting case β = ∞ is similar. Indeed, we can replace

the expressions (5.5) and (5.6) by

α

α − 1
× e

|x|
2 sinh

(
α−1

2 x
)

sinh
(

α
2 x

) and e
1−α

2 |x| × sinh
(

x
2

)

sinh
(

α
2 x

)

respectively, and then we proceed as in the above case β < ∞. Here, we point
out that the function e

1−α
2 |x| is positive definite thanks to

e−a|x| =
a

π

∫ ∞

−∞

eixy

y2 + a2
dy (a > 0) (5.8)

(see also (7.3)).
Finally, by noting α(β−1)

(α−1)β > 1 and recalling (5.7), we estimate

|||Mα(H, K)X − Mβ(H, K)X |||
≤

(
α(β − 1)
(α − 1)β

− 1
)

|||Mα(H, K)X |||

+|||α(β − 1)
(α − 1)β

Mα(H, K)X − Mβ(H, K)X |||

≤
(

α(β − 1)
(α − 1)β

− 1 +
β − α

(α − 1)β

)

|||Mα(H, K)X |||.

The last coefficient here is 2(β−α)
(α−1)β so that (5.4) is obtained. ��

From the means Mα with α = n
n−1 (n = 2, 3, . . . ) we get

M n
n−1

(H, K)X =
1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1

(see (5.1)). We showed in [38] that the norm ||| 1
n

∑n−1
k=0 H

k
n−1 XK

n−1−k
n−1 ||| is

monotone decreasing in n (which can be thought of as a special case of Theo-
rem 5.1). Complementing this, we state the following special case of the above
proposition:

Corollary 5.3. Let H, K, X and |||·||| be as above. For all integers n > m ≥ 2,

||| 1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 ||| ≤ ||| 1
m

m−1∑

k=0

H
k

m−1 XK
m−1−k

m−1 |||

≤ 2n − m

m
× ||| 1

n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 |||

and
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||| 1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 − 1
m

m−1∑

k=0

H
k

m−1 XK
m−1−k

m−1 |||

≤ 2(n − m)
m

× ||| 1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 |||.

5.2 Characterization of |||M
�

(H, K)X||| < ∞
The following is also a consequence of Proposition 5.2:

Proposition 5.4. For every H, K ≥ 0, X ∈ B(H) and any unitarily invari-
ant norm ||| · |||, the following conditions are mutually equivalent :

(i) |||Mα(H, K)X ||| < ∞ for some 1 < α < ∞;
(ii) |||M∞(H, K)X ||| < ∞;
(iii) |||HX + XK||| < ∞.

Moreover, when one (and hence all) of these conditions is satisfied, then we
have the norm convergence

lim
α→β

|||Mα(H, K)X − Mβ(H, K)X ||| = 0

for every 1 < β ≤ ∞.

Remark 5.5. A few remarks are in order.

(i) An estimate from the above such as the second inequality in (5.3) is
impossible (even for scalars) for α ≤ 1. In fact, it is straight-forward to
see lims↘0 Mβ(s, 1)/Mα(s, 1) = ∞ for any β > α as long as α ≤ 1.

(ii) In [53] unitarily invariant norms ||| · ||| under which the map A �→ |A| is
Lipschitz continuous were characterized as interpolation norms (see [6, 56]
for general facts on interpolation spaces) between ‖·‖p1 and ‖·‖p2 with 1 <
p1, p2 < ∞, where the boundedness of the “upper triangular projection”
played a crucial role (see [30, 59]). For such norms the inequality (5.9) in
Proposition 5.6 below shows that the finiteness condition |||HX +XK||| <
∞ in Proposition 5.4 is equivalent to the requirement:

|||HX ||| < ∞ and |||XK||| < ∞.

Proposition 5.6. If ||| · ||| is an interpolation norm between some Schatten
p-norms ‖ · ‖p1 and ‖ · ‖p2 with 1 < p1, p2 < ∞, then one can find a constant
κ (depending only on ||| · |||) such that

|||HX − XK||| ≤ κ|||HX + XK||| (5.9)

is valid for all H, K, X with H, K ≥ 0.
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Proof. The inequality (5.9) for matrices is known (see [24] and also [53]),
where κ is a constant depending only upon ||| · ||| (independent of the size
of matrices). We have to generalize this inequality for infinite-dimensional
operators. Thanks to the standard 2 × 2-matrix trick we may and do assume
H = K ≥ 0. Then, for any given ε > 0 one can find a decomposition H =
Dε + Hε into self-adjoint operators such that |||Hε||| ≤ ε and Dε is diagonal
(see [58] or [48, Chapter X, §2.2]). Note |||H − |Dε| ||| ≤ const. |||Hε||| (with a
constant depending only upon ||| · |||) thanks to [53, Corollary 7]. Hence, by
replacing Dε, Hε by |Dε|, H − |Dε|, we may and do assume the positivity of
the diagonal operator Dε. Notice

∣
∣ |||DεX ± XDε||| − |||HX ± XH ||| ∣∣

≤ |||HεX ||| + |||XHε||| ≤ 2|||Hε||| × ‖X‖ ≤ 2ε‖X‖.
Thus, to show (5.9) for infinite-dimensional operators we may and do assume
that H (= K) is a positive diagonal operator from the beginning, and hence
one finds a sequence {pn}n=1,2,··· of finite-rank projections such that pn tends
to 1 in the strong operator topology and Hpn = pnH . We then estimate

|||HX − XH ||| ≤ lim inf
n→∞ |||(pnHpn)(pnXpn) − (pnXpn)(pnHpn)|||

≤ κ lim inf
n→∞ |||(pnHpn)(pnXpn) + (pnXpn)(pnHpn)|||

(by (5.9) in the matrix case)
= κ lim inf

n→∞ |||pn(HX + XH)pn|||
≤ κ|||HX + XH |||

so that (5.9) for general operators is established. ��

5.3 Norm continuity in parameter

In this section we will show the next theorem concerning the norm continuity
of Mα(H, K)X in the parameter α.

Theorem 5.7. Let H, K ≥ 0, X ∈ B(H) and ||| · ||| be a unitarily invariant
norm. If −∞ ≤ α0 ≤ ∞ and |||Mβ(H, K)X ||| < ∞ for some β > min{α0, 1},
then

lim
α→α0

|||Mα(H, K)X − Mα0(H, K)X ||| = 0.

At first we prepare two easy lemmas for the proof of the theorem.

Lemma 5.8. Let ϕ, ϕn (n = 1, 2, . . . ) be nonnegative functions in L1(R) such
that

lim
n→∞

∫ ∞

−∞
ϕn(x) dx =

∫ ∞

−∞
ϕ(x) dx.

If the Fourier transforms

Administrator
ferret
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ϕ̂(x) =
∫ ∞

−∞
eixyϕ(y) dy, ϕ̂n(x) =

∫ ∞

−∞
eixyϕn(y) dy

are in L2(R) and
lim

n→∞ ‖ϕ̂n − ϕ̂‖2 = 0,

then
lim

n→∞ ‖ϕn − ϕ‖1 = 0.

Proof. By the Fourier inversion formula we get ϕ, ϕn ∈ L2(R) and

‖ϕn − ϕ‖2 =
1
2π

‖ϕ̂n − ϕ̂‖2 −→ 0 (n → ∞).

In particular, we have the convergence ϕn(x) → ϕ(x) in measure. The as-
sumption means

lim
n→∞

∫ ∞

−∞
(ϕn(x) + ϕ(x)) dx = 2

∫ ∞

−∞
ϕ(x) dx.

Hence, by applying the extended form of the Lebesgue dominated convergence
theorem (see [75, Chapter 11, Proposition 18] or [26, Theorem 3.6]) to |ϕn(x)−
ϕ(x)| ≤ ϕn(x) + ϕ(x), we conclude ‖ϕn − ϕ‖1 → 0. ��
Lemma 5.9. For any θ > 0 and x > 0 the following inequalities hold :

(i)
θ

sinh(θx)
≤ 1

x
, (ii)

sinh(θx)
θ sinh((1 + θ)x)

≤ x

sinh(x)
.

Proof. (i) is just the well-known inequality x ≤ sinh(x) for x ≥ 0. The in-
equality (ii) is equivalent to

xθ sinh((1 + θ)x) − sinh(θx) sinh(x) ≥ 0.

However, it is indeed the case because the derivative (with respect to θ) of
the above left-hand side is

x sinh((1 + θ)x) + x2θ cosh((1 + θ)x) − x cosh(θx) sinh(x)
= x sinh(θx) cosh(x) + x2θ cosh((1 + θ)x) ≥ 0.

��
Proof of Theorem 5.7. The assertion for the case 1 < α0 ≤ ∞ was already
shown in Proposition 5.4. To deal with the case −∞ ≤ α0 ≤ 1, we will consider
the following cases separately:

(a) 0 < α0 < 1, (b) α0 < 0, (c) α0 = 1, (d) α0 = 0. (e) α0 = −∞,
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(a) Case 0 < α0 < 1. By the assumption (also Corollary 3.5 and (5.2)) we
can choose α0 < β < 1 such that |||Mβ(H, K)X ||| < ∞. For 0 < α < β we
compute

Mα(ex, 1)
Mβ(ex, 1)

=
(α − 1)β
α(β − 1)

× eαx − 1
e(α−1)x − 1

× e(β−1)x − 1
eβx − 1

=
(α − 1)β
α(β − 1)

× sinh
(

α
2 x

)

sinh
(

β
2 x

) × sinh
(

1−β
2 x

)

sinh
(

1−α
2 x

)

= ϕ̂α,β(x)

for some positive function ϕα,β ∈ L1(R) with
∫ ∞
−∞ ϕα,β(x)dx = 1 (see the

proof of [39, Theorem 2.1] or [39, (1.4)]). We note

sinh
(

α
2 x

)

sinh
(

β
2 x

) × sinh
(

1−β
2 x

)

sinh
(

1−α
2 x

) = O(e(α−β)|x|) (as |x| → ∞),

and take δ > 0 satisfying 0 < α0 −δ < α0 +δ < β. Then, ϕ̂2
α,β for |α−α0| < δ

are uniformly integrable. Moreover, it is obvious that ϕ̂α,β(x) → ϕ̂α0,β(x) as
α → α0 for all x ∈ R. Thus, the Lebesgue dominated convergence theorem
yields

lim
α→α0

‖ϕ̂α,β − ϕ̂α0,β‖2 = 0,

and so Lemma 5.8 implies

lim
α→α0

‖ϕα,β − ϕα0,β‖1 = 0.

Since

Mα(H, K)X =
∫ ∞

−∞
(HsH)ix(Mβ(H, K)X)(KsK)−ixϕα,β(x) dx

(0 < α < β) by Theorem 3.4 and (5.2), we have

|||Mα(H, K)X − Mα0(H, K)X ||| ≤ ‖ϕα,β − ϕα0,β‖1 × |||Mβ(H, K)X ||| −→ 0

as α → α0.
(b) Case α0 < 0. We can choose α0 < β < α0

2 (or 2β < α0 < β) such
that |||Mβ(H, K)X ||| < ∞. When 2β < α < β, we have (see the proof of [39,
Theorem 2.1])

Mα(ex, 1)
Mβ(ex, 1)

=
(1 − α)(−β)
(−α)(1 − β)

× sinh
(−α

2 x
)

sinh
(

1−α
2 x

) × sinh
(

1−β
2 x

)

sinh
(−β

2 x
)

=
(1 − α)(−β)
(−α)(1 − β)

(

1 +
sinh

(
x
2

)

sinh
(

1−α
2 x

) × sinh
(

β−α
2 x

)

sinh
(−β

2 x
)

)

=
(1 − α)(−β)
(−α)(1 − β)

+ ϕ̂α,β(x) (5.10)
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for some positive function ϕα,β ∈ L1(R) with
∫ ∞

−∞
ϕα,β(x) dx = 1 − (1 − α)(−β)

(−α)(1 − β)
.

In the same way as in Case (a) we have

lim
α→α0

‖ϕ̂α,β − ϕ̂α0,β‖2 = 0

so that Lemma 5.8 implies ‖ϕα,β − ϕα,β‖1 → 0 as α → α0. Since

Mα(H, K)X =
∫ ∞

−∞
(HsH)is(Mβ(H, K)X)(KsK)−ixϕα,β(x) dx

+
(1 − α)(−β)
(−α)(1 − β)

Mβ(H, K)X

by (3.9) in Theorem 3.4, we get

|||Mα(H, K)X − Mα0(H, K)X |||
≤

(

‖ϕα,β − ϕα0,β‖1 +
∣
∣
∣
∣
(1 − α)(−β)
(−α)(1 − β)

− (1 − α0)(−β)
(−α0)(1 − β)

∣
∣
∣
∣

)

×|||Mβ(H, K)X ||| −→ 0

as α → α0.
(c) Case α0 = 1. Choose 1 < β < 2 such that |||Mβ(H, K)X ||| < ∞. We

have
M1(ex, 1)
Mβ(ex, 1)

=
β

β − 1
× sinh

(
x
2

)
sinh

(
β−1

2 x
)

(
x
2

)
sinh

(
β
2 x

) = ψ̂1,β(x)

for some positive function ψ1,β ∈ L1(R) with
∫ ∞
−∞ ψ1,β(x) dx = 1 by [39,

Corollary 2.4]. Notice ψ̂1,β ∈ L2(R) because of ψ̂1,β(x)2 = O(x−2) as |x| → ∞.
Now we deal with the two cases 1 < α < β and 0 < α < 1 separately.

First, consider the case 1 < α < β. We notice

Mα(ex, 1)
Mβ(ex, 1)

=
(α − 1)β
α(β − 1)

(

1 +
sinh

(
x
2

)
sinh

(
β−α

2 x
)

sinh
(

α−1
2 x

)
sinh

(
β
2 x

)

)

=
(α − 1)β
α(β − 1)

+ ψ̂α,β(x)

for some positive function ψα,β ∈ L1(R) with
∫ ∞

−∞
ψα,β(x) dx = 1 − (α − 1)β

α(β − 1)
.
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Indeed, choose α = a0 < a1 < · · · < am = β such that ak < 2ak−1 − 1
(1 ≤ k ≤ m). By the proof of [39, Theorem 2.1] there are positive functions
f1, . . . , fm ∈ L1(R) such that

Mak−1(e
x, 1)

Mak
(ex, 1)

=
(ak−1 − 1)ak

ak−1(ak − 1)
+ f̂k(x) (1 ≤ k ≤ m)

so that

Mα(ex, 1)
Mβ(ex, 1)

=
m∏

k=1

(
(ak−1 − 1)ak

ak−1(ak − 1)
+ f̂k(x)

)

=
(α − 1)β
α(β − 1)

+ ψ̂α,β(x).

Here, ψα,β is a linear combination (with positive coefficients) of the convolu-
tions fk1 ∗ fk2 ∗ · · · ∗ fkl

for 1 ≤ k1 < k2 < · · · < kl ≤ m so that the positivity
of ψα,β is clear.

We have

ψ̂α,β(x) =
(α − 1)β
α(β − 1)

× sinh
(

x
2

)
sinh

(
β−α

2 x
)

sinh
(

α−1
2 x

)
sinh

(
β
2 x

)

≤ β

α(β − 1)
× sinh

(
x
2

)
sinh

(
β−1

2 x
)

(
x
2

)
sinh

(
β
2 x

)

=
1
α
× ψ̂1,β(x) ≤ ψ̂1,β(x)

thanks to (α−1)/ sinh
(

α−1
2 x

) ≤ 2
x (see Lemma 5.9, (i)) and the increasingness

sinh
(

β−α
2 x

) ≤ sinh
(

β−1
2 x

)
(x ≥ 0). Moreover, ψ̂α,β(x) → ψ̂1,β(x) as α ↘ 1

for all x ∈ R. Therefore, the dominated convergence theorem shows

‖ψ̂α,β − ψ̂1,β‖2 = 0,

and Lemma 5.8 implies ‖ψα,β − ψ1,β‖1 → 0 as α ↘ 1. Since

M1(H, K)X =
∫ ∞

−∞
(HsH)ix(Mβ(H, K)X)(KsK)−ixψ1,β(x) dx,

Mα(H, K)X =
∫ ∞

−∞
(HsH)ix(Mβ(H, K)X)(KsK)−ixψα,β(x) dx

+
(α − 1)β
α(β − 1)

Mβ(H, K)X,

we get

|||Mα(H, K)X − M1(H, K)X |||
≤

(

‖ψα,β − ψ1,β‖1 +
(α − 1)β
α(β − 1)

)

|||Mβ(H, K)X ||| −→ 0

as α ↘ 1.
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Next, consider the case 0 < α < 1. Since

Mα(ex, 1)
Mβ(ex, 1)

=
Mα(ex, 1)
M1(ex, 1)

× ψ̂1,β(x)

and Mα(ex, 1)/M1(ex, 1) is a positive definite function, there is a positive
function ϕα,β ∈ L1(R) such that

Mα(ex, 1)
Mβ(ex, 1)

=
(1 − α)β
α(β − 1)

× sinh
(

α
2 x

)
sinh

(
β−1

2 x
)

sinh
(

1−α
2 x

)
sinh

(
β
2 x

) = ϕ̂α,β(x).

We have

ϕ̂α,β(x) ≤ β

α(β − 1)
× sinh

(
x
2

)
sinh

(
β−1

2 x
)

(
x
2

)
sinh

(
β
2 x

) =
1
α
× ψ̂1,β(x),

because of (1 − α)/ sinh
(

1−α
2 x

) ≤ 2
x (see Lemma 5.9, (i)) and the increasing-

ness sinh
(

α
2 x

) ≤ sinh
(

x
2

)
(x ≥ 0). Hence we get

lim
α↗1

‖ϕ̂α,β − ψ̂1,β‖2 = 0

by the dominated convergence theorem. Therefore, Lemma 5.8 implies ‖ϕα,β−
ψ1,β‖1 → 0 as α ↗ 1, and consequently

lim
α↗1

|||Mα(H, K)X − M1(H, K)X ||| = 0

as before.
(d) Case α0 = 0. Choose 0 < β < 1 such that |||Mβ(H, K)X ||| < ∞, and

deal with the two cases 0 < α < β and −β < α < 0 separately. For 0 ≤ α < β
we have

Mα(ex, 1)
Mβ(ex, 1)

=
(1 − α)β
α(1 − β)

× sinh
(

α
2 x

)

sinh
(

β
2 x

) × sinh
(

1−β
2 x

)

sinh
(

1−α
2 x

) = ϕ̂α,β(x)

for some positive function ϕα,β ∈ L1(R). (Here, 1
α sinh

(
α
2 x

)
for α = 0 means

x
2 .) Since Lemma 5.9, (ii) gives

1
α
× sinh

(α

2
x
)
≤

(
x
2

)
sinh

(
1+α

2 x
)

sinh
(

x
2

) ,

we get

ϕ̂α,β(x) ≤ (1 − α)β
1 − β

×
(

x
2

)
sinh

(
1+α

2 x
)
sinh

(
1−β

2 x
)

sinh
(

x
2

)
sinh

(
β
2 x

)
sinh

(
1−α

2 x
)

≤ (1 − α)β
1 − β

×
(

x
2

)
sinh

( 1+(β/2)
2 x

)
sinh

(
1−β

2 x
)

sinh
(

x
2

)
sinh

(
β
2 x

)
sinh

( 1−(β/2)
2 x

)

≤ O(e−
β
4 |x|) (as |x| → ∞)
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when for example 0 < α < β
2 . Hence, as usual we have limα↘0 ‖ϕ̂α,β−ϕ̂0,β‖2 =

0 and so limα↘0 ‖ϕα,β − ϕ0,β‖1 = 0. Consequently

lim
α↘0

|||Mα(H, K)X − M0(H, K)X ||| = 0.

Now, consider the case −β < α < 0. We have

Mα(ex, 1)
Mβ(ex, 1)

=
(1 − α)β

(−α)(1 − β)
× sinh

(−α
2 x

)

sinh
(

β
2 x

) × sinh
(

1−β
2 x

)

sinh
(

1−α
2 x

) = ϕ̂α,β(x)

for some positive ϕα,β ∈ L1(R). Since the estimate

sinh
(−α

2 x
)

(−α) sinh
(

1−α
2 x

) ≤
(

x
2

)

sinh
(

x
2

)

(Lemma 5.9, (ii)) guarantees

ϕ̂α,β(x) ≤ (1 − α)β
1 − β

×
(

x
2

)
sinh

(
1−β

2 x
)

sinh
(

x
2

)
sinh

(
β
2 x

) = (1 − α)ϕ̂0,β(x),

we get limα↗0 ‖ϕ̂α,β−ϕ̂0,β‖2 = 0. Therefore, we get limα↗0 ‖ϕα,β−ϕ0,β‖1 = 0
and

lim
α↗0

|||Mα(H, K)X − M0(H, K)X ||| = 0

as before.
(e) Case α0 = −∞. We may and do assume that |||Mβ(H, K)X ||| < ∞

for some β < −1. Then, for α < β we have sinh
(

β−α
2 x

)
/ sinh

(
1−α

2 x
) ≤ 1, and

hence ϕ̂α,β(x) in (5.10) is majorized by the L2-function

(1 − α)(−β)
(−α)(1 − β)

× sinh
(

x
2

)

sinh
(−β

2 x
) .

Therefore, it follows that ϕ̂α,β converges in the ‖ · ‖2-norm to the function

−β

1 − β
× e

β−1
2 |x| × sinh

(
x
2

)

sinh
(−β

2 x
)

as α → −∞. On the other hand, we notice

M−∞(ex, 1)
Mβ(ex, 1)

=
−β

1 − β
× e−

|x|
2 × sinh

(
1−β

2 x
)

sinh
(−β

2 x
)

=
−β

1 − β

(

1 + e
β−1
2 |x| × sinh

(
x
2

)

sinh
(−β

2 x
)

)

so that the desired convergence is obtained as before. ��

For the operator norm ||| · ||| = ‖ · ‖, the boundedness requirement in
Theorem 5.7 is automatic and hence we state
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Corollary 5.10. For each H, K ≥ 0, X ∈ B(H) and for each −∞ ≤ α0 ≤ ∞
we have

lim
α→α0

‖Mα(H, K)X − Mα0(H, K)X‖ = 0.

In Theorem 5.7 we required the existence of β > α0 satisfying the finiteness
condition |||Mβ(H, K)X ||| < ∞, which enabled us to combine relevant integral
expressions with the Lebesgue dominated convergence theorem. We now deal
with the limiting case β = α0.

Proposition 5.11. Let H, K ≥ 0, X ∈ B(H) and ||| · ||| be a unitarily invari-
ant norm.

(i) For each −∞ ≤ α0 ≤ ∞ we have

lim
α↗α0

|||Mα(H, K)X ||| = |||Mα0(H, K)X ||| (≤ ∞).

(ii) Assume −∞ < α0 ≤ ∞. If I|||·||| is uniformly convex, then as long as
Mα0(H, K)X ∈ I|||·||| we have Mα(H, K)X ∈ I|||·||| for each α ≤ α0 and
the norm convergence

lim
α↗α0

|||Mα(H, K)X − Mα0(H, K)X ||| = 0.

The result also remains valid for the ideal C1(H) of trace class operators.

Note that the uniform convexity of I|||·||| is the same requirement as that of
I(0)
|||·|||. In fact, this condition actually implies the separability of I|||·|||, i.e.,

I|||·||| = I(0)
|||·||| (see [29, §III.6]), and that of the dual

(I|||·|||
)∗ (see Corollary

A.11 in §A.5).

Proof. (i) By the lower semi-continuity of ||| · ||| in the weak operator topology
(see [37, Proposition 2.11]), Corollary 5.10 guarantees

|||Mα0(H, K)X ||| ≤ lim inf
α↗α0

|||Mα(H, K)X |||,

which (together with the monotonicity obtained in Theorem 5.1) shows the
result.

(ii) From (i) and the uniform convexity of I|||·|||, it suffices to show

lim
α↗α0

φ(Mα(H, K)X) = φ(Mα0(H, K)X)

for each φ ∈ (I|||·|||
)∗. However, thanks to the boundedness of |||Mα(H, K)X |||

for α < α0, we need to check this weak convergence only against φ’s in a dense
subset of

(I|||·|||
)∗. Thanks to the separability of

(I|||·|||
)∗, φ’s of the form

Tr(F ·) with a finite-rank operator F form a dense subspace in
(I|||·|||

)∗. But,
for φ = Tr(F ·) the above convergence is trivial by Corollary 5.10. Finally, the
assertion for C1(H) is seen from for example [77, Theorem 2.19]. ��
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Proposition 5.11, (ii) is meaningful only in the case α0 ≤ 1. Actually,
a situation is much better in the case α0 > 1; in fact, the latter case is
automatically covered in Theorem 5.7. It is known ([18]) that the uniform
convexity of I|||·||| is equivalent to that of the corresponding sequence Banach
space. For example, the Schatten p-class Cp(H) for 1 < p < ∞ is uniformly
convex.

5.4 Notes and references

In [39] A-L-G interpolation means {Mα}−∞≤α≤∞ were introduced and the
monotonicity (Theorem 5.1) was proved (at least for matrices) as a refine-
ment of the arithmetic-logarithmic-geometric mean inequality (1.8). For the
special values α = n

n−1 and α = m
m+1 the operator means M n

n−1
(H, K)X and

M m
m+1

(H, K)X are easy to handle for Hilbert space operators (at least as far
as the definition is concerned). In fact, the expression (5.1) enables us to set






M n
n−1

(H, K)X =
1
n

n−1∑

k=0

H
k

n−1 XK
n−1−k

n−1 ,

M m
m+1

(H, K)X =
1
m

m∑

k=1

H
k

m+1 XK
m+1−k

m+1

directly so that detailed analysis on Schur multipliers (in Chapter 2) is ir-
relevant in this special case. Besides (1.8) these operator means were studied
in [38]. In fact, the monotonicity of their norms (i.e., (1.9)) was shown as a
refinement of (1.8).

In the appendix to [38] the norm convergence of M n
n−1

(H, K)X and
M m

m+1
(H, K)X to the logarithmic mean M1(H, K)X was examined under

suitable assumptions ([38, Propositions 6, 7, 8]). Theorem 5.7 (together with
the finiteness criterion Proposition 5.4) and Proposition 5.11, (ii) in this chap-
ter give rise to quite complete and satisfactory answers to such convergence
problems to all Mα’s.



6

Heinz-type means Aα

In this chapter we will deal with the following means in M:

Aα(s, t) = A1−α(s, t) =
1
2
(sαt1−α + s1−αtα) (0 ≤ α ≤ 1),

that interpolates the arithmetic mean A0 = A and the geometric one A1/2 =
G. Obviously, each Aα is a Schur multiplier, and one has

Aα(H, K)X =
1
2
(HαXK1−α + H1−αXKα) (6.1)

for all H, K ≥ 0 and X ∈ B(H) (with the convention H0 = K0 = 1 in the
case α = 0, 1). We point out that operators of this form appear in Heinz-type
inequalities ([36]).

We noticed in [39] that

Aα � Aβ if 0 ≤ β < α ≤ 1
2
. (6.2)

Hence, Corollary 3.5 implies that |||HαXK1−α + H1−αXKα||| is monotone
decreasing in α ∈ [0, 1

2 ] for unitarily invariant norms, corresponding to the
well-known fact: the Heinz inequality (1.3) remains valid for these norms (see
§6.3, 1).

6.1 Norm continuity in parameter

The norm continuity of the Heinz mean Aα(H, K)X in the parameter α is
given as follows: Let ||| · ||| be a unitarily invariant norm and 0 < α0 ≤ 1

2 . If
|||HβXK1−β + H1−βXKβ||| < ∞ for some 0 ≤ β < α0, then

lim
α→α0

|||(HαXK1−α + H1−αXKα) − (HβXK1−β + H1−βXKβ)||| = 0.

This can be proved by using the integral expression

F. Hiai and H. Kosaki: LNM 1820, pp. 79–87, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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HαXK1−α + H1−αXKα

=
∫ ∞

−∞
(HsH)ix(HβXK1−β + H1−βXKβ)(KsK)−ixfα,β(x) dx

for 0 ≤ β < α ≤ 1
2 , where fα,β is a positive function with

∫ ∞
−∞ fα,β(x) dx = 1

such that
Aα(ex, 1)
Aβ(ex, 1)

=
cosh

((
1
2 − α

)
x
)

cosh
((

1
2 − β

)
x
) = f̂α,β(x).

In fact, we have an explicit form of the function fα,β (see [39, (1.5)]), and so
the proof is much easier than that of Theorem 5.7. Moreover, the above norm
convergence can be improved in Proposition 6.1 below.

Note that the convergence Aα(H, K)X → A(H, K)X as α → 0 is not true
even in the matrix case. In fact, when P, Q are orthogonal projections with
P ⊥ Q and X = 1, we have A(P, Q)1 = 1

2 (P + Q) but Aα(P, Q)1 = 0 for all
0 < α ≤ 1

2 .
One piece HαXK1−α of the mean (6.1) is asymmetric, however our

method using integral expressions can still work to treat it. Actually, the
following integral formula was obtained in [54, Theorem 6]:

HαXK1−α =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ix

× dx

2 cosh
(
πx + πi

(
α − 1

2

)) (6.3)

for each 0 < α < 1 and for all H, K, X ∈ B(H) with H, K ≥ 0. (A particular
case of this was given in Example 3.6, (a).) Let gα(x) be the density appearing
in (6.3). Then, Theorem A.5 implies

|||HαXK1−α||| ≤
(∫ ∞

−∞
|gα(x)| dx

)

|||HX + XK|||, (6.4)

which is the weak matrix Young inequality in [54] (see also [3]).

Proposition 6.1. Let H, K ≥ 0, X ∈ B(H) and |||·||| be a unitarily invariant
norm. If 0 < α0 < 1 and |||HβXK1−β + HγXK1−γ ||| < ∞ for some 0 ≤ γ <
α0 < β ≤ 1 (this is the case in particular when |||HX + XK||| < ∞), then

lim
α→α0

|||HαXK1−α − Hα0XK1−α0 ||| = 0.

Proof. Since

HβXK1−β + HγXK1−γ = Hβ−γ(HγXK1−β) + (HγXK1−β)Kβ−γ

and
HαXK1−α = (Hβ−γ)

α−γ
β−γ (HγXK1−β)(Kβ−γ)1−

α−γ
β−γ ,
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we may and do assume |||HX+XK||| < ∞ (i.e., β = 1 and γ = 0) by replacing
H, K, X by Hβ−γ , Kβ−γ, HγXK1−β respectively. Then by (6.3) and Theorem
A.5, we get

|||HαXK1−α − Hα0XK1−α0 ||| ≤ ‖gα − gα0‖1 × |||HX + XK|||
for 0 < α, α0 < 1. Thus, it suffices to see that ‖gα − gα0‖1 → 0 as α → α0.
However, by recalling ([54, p. 443])

|gα(x)| =
1

2
√

sinh2(πx) + cos2
(
π
(
α − 1

2

)) , (6.5)

we see that the above L1-convergence is an immediate consequence of the
Lebesgue dominated convergence theorem. ��

6.2 Convergence of operator Riemann sums

We present another application of the integral expression (6.3) in a similar
nature. Let us consider the following operator Riemann sum:

R(n) =
1
n

n∑

k=1

HξkXK1−ξk (with ξk ∈ [k−1
n , k

n ]).

From (6.3) we get

R(n) =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixφn(x) dx

with

φn(x) =
1
n

n∑

k=1

1
2 cosh

(
πx + πi

(
ξk − 1

2

)) .

For a moment we assume that Riemann sums are chosen symmetrically, i.e.,
ξn+1−k = 1 − ξk for each n and k. (Asymmetric Riemann sums will be con-
sidered in Proposition 6.3.) Then, we easily compute

φ2m(x) =
1

2m

2m∑

k=1

1
2 cosh

(
πx + πi

(
ξk − 1

2

))

=
1

2m

m∑

k=1

cosh(πx) cos
(
π
(
ξk − 1

2

))

cos2
(
π
(
ξk − 1

2

))
+ sinh2(πx)

(6.6)

thanks to

cosh
(
πx + πi

(
ξk − 1

2

))

= cosh(πx) cos
(
π
(
ξk − 1

2

))
+ i sinh(πx) sin

(
π
(
ξk − 1

2

))
.
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We similarly get

φ2m+1(x)

=
1

2m + 1

(
m∑

k=1

cosh(πx) cos
(
π
(
ξk − 1

2

))

cos2
(
π
(
ξk − 1

2

))
+ sinh2(πx)

+
1

2 cosh(πx)

)

, (6.7)

where the last term arises from the midpoint ξm+1 = 1
2 . On the other hand,

the logarithmic mean is given by

L =
∫ 1

0

HsXK1−sds =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixφ(x) dx

with
φ(x) =

1
π

log
∣
∣
∣coth

(πx

2

)∣
∣
∣ (6.8)

(see [38, p. 305]).

Proposition 6.2. Let H, K ≥ 0, X ∈ B(H), and we assume |||HX+HK||| <
∞ for a unitarily invariant norm ||| · |||. Then, as long as Riemann sums R(n)
are chosen symmetrically (i.e., ξn+1−k = 1 − ξk for each n and k) we have

lim
n→∞ |||R(n) −

∫ 1

0

HsXK1−sds||| = 0.

Proof. From the preceding integral expressions for R(n) and L we see

R(n) − L =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ix(φn(x) − φ(x)) dx

so that Theorem A.5 shows

|||R(n) − L||| ≤ ‖φn − φ‖1 × |||HX + XK|||.
Hence, as usual it suffices to see limn→∞ ‖φn−φ‖1 = 0. The Fourier transform
of the positive and positive definite function φ is 1

x tanh
(

x
2

)
(see [38, p. 306])

and hence ∫ ∞

−∞
φ(x) dx =

1
2
.

On the other hand, the positive (and actually positive definite) function φn

also satisfies ∫ ∞

−∞
φn(x) dx =

1
2

because of (6.6), (6.7) and
∫ ∞

−∞

cosh(πx)
cos2

(
π
(
ξk − 1

2

))
+ sinh2(πx)

dx =
1

cos
(
π
(
ξk − 1

2

)) ,

∫ ∞

−∞

1
cosh(πx)

dx = 1.
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(The fact
∫ ∞
−∞ φ(x)dx =

∫ ∞
−∞ φn(x)dx = 1

2 can be also seen by simply setting
H = K = X = 1 in the integral expressions for R(n) and L.) We claim

lim
n→∞φn(x) = φ(x).

Indeed, from (6.6) and (6.7) we observe that the limit in the left-hand side is
equal to the following definite integral:

cosh(πx)
∫ 0

− 1
2

cos(πα)
cos2(πα) + sinh2(πx)

dα

= cosh(πx)
∫ 0

− 1
2

cos(πα)
cosh2(πx) − sin2(πα)

dα

=
cosh(πx)

π

∫ 0

−1

1
cosh2(πx) − t2

dt

=
1
2π

∫ 0

−1

(
1

cosh(πx) + t
+

1
cosh(πx) − t

)

dt

= − 1
2π

log
∣
∣
∣
∣
cosh(πx) − 1
cosh(πx) + 1

∣
∣
∣
∣ ,

which is obviously φ(x). The desired L1-convergence thus follows from the ex-
tended Lebesgue dominated convergence theorem (see [75, Chapter 11, Propo-
sition 18]). ��

Proposition 6.2 (as well as Theorem 5.7) is a considerable generalization
of the convergence results obtained in the appendix to [38]. If Riemann sums
are asymmetric, then |||R(n)||| < ∞ is no longer guaranteed (under the as-
sumption |||HX + XK||| < ∞). However, for interpolation norms between
‖ · ‖p1 and ‖ · ‖p2 with 1 < p1, p2 < ∞ (see Remark 5.5, (ii)), the finiteness
|||R(n)||| < ∞ is indeed guaranteed (see the inequality at the beginning of
the proof of the proposition below). Actually, for such norms we have the
following strengthening of Proposition 6.2:

Proposition 6.3. For an interpolation norm between ‖ · ‖p1 and ‖ · ‖p2 with
1 < p1, p2 < ∞ the convergence in Proposition 6.2 remains valid for general
Riemann sums (which are not necessarily symmetric).

Proof. We choose and fix a small ε > 0, and split the sum
∑n

k=1 HξkXK1−ξk

(appearing in the definition of the Riemann sum R(n)) into the following two
parts:

{ ∑ ′ : summation over k’s satisfying [k−1
n , k

n ] ⊆ [ε, 1 − ε],∑ ′′ : summation over other k’s.

Thanks to the assumption on the norm ||| · |||, we have

|||HαXK1−α||| ≤ κ|||HX + XK||| (for each α ∈ [0, 1])
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with a constant κ (depending only on ||| · |||) (see [39, Proposition 3.1] and
Proposition 5.6). By counting the number of subintervals “near the end-
points”, this inequality guarantees

||| 1
n

∑ ′′HξkXK1−ξk ||| ≤ 2(nε + 1)
n

× κ|||HX + XK|||

= 2
(

ε +
1
n

)

κ|||HX + XK|||.

We similarly get

|||
∫ ε

0

HsXK1−sds +
∫ 1

1−ε

HsXK1−sds||| ≤ 2εκ|||HX + XK|||.

From the estimates so far (near the endpoints), we conclude

|||R(n) −
∫ 1

0

HsXK1−sds|||

≤ ||| 1
n

∑ ′HξkXK1−ξk −
∫ 1−ε

ε

HsXK1−sds|||

+2
(

2ε +
1
n

)

κ|||HX + XK|||. (6.9)

To see the limit (as n → ∞) of the first quantity in the right-hand side of
(6.9), we need to check the behavior of Riemann sums corresponding to the
interval [ε, 1 − ε]. From (6.3) we get

1
n

∑ ′HξkXK1−ξk =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixψn(x) dx,

∫ 1−ε

ε

HsXK1−sds =
∫ ∞

−∞
(HsH)ix(HX + XK)(KsK)−ixψ(x) dx

with the densities

ψn(x) =
1
n

∑ ′ 1
2 cosh

(
πx + πi

(
ξk − 1

2

)) ,

ψ(x) =
∫ 1−ε

ε

1
2 cosh

(
πx + πi

(
α − 1

2

)) dα.

Of course we have limn→∞ ψn(x) = ψ(x) from the definition of
∑ ′ and the

continuity of the involved function. On the other hand, from (6.5) we observe

|ψn(x)| ≤ 1
2n

∑ ′ 1
√

sinh2(πx) + cos2
(
π
(
ξk − 1

2

)) .

From the definition of
∑ ′ we have ε ≤ ξk ≤ 1 − ε and hence
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cos
(
π
(
ξk − 1

2

)) ≥ cos
(
π
(

1
2 − ε

))
> 0,

which enables us to obtain the following uniform (independent of n) bound:

|ψn(x)| ≤ 1
2

min

{
1

| sinh(πx)| ,
1

cos
(
π
(

1
2 − ε

))

}

.

The right side here being an L1-function, we see limn→∞ ‖ψn−ψ‖1 = 0 by the
Lebesgue dominated convergence theorem. The usual argument thus shows

||| 1
n

∑ ′HξkXK1−ξk −
∫ 1−ε

ε

HsXK1−sds|||
≤ ‖ψn − ψ‖1 × |||HX + XK||| → 0

as n → ∞. Therefore, (6.9) implies

lim sup
n→∞

|||R(n) −
∫ 1

0

HsXK1−sds||| ≤ 4εκ|||HX + XK|||,

and consequently we get

lim
n→∞ |||R(n) −

∫ 1

0

HsXK1−sds||| = 0

due to the arbitrariness of ε > 0. ��

6.3 Notes and references

1. Heinz inequality
The Heinz inequality (1.3) (in the operator norm) is equivalent to the

decreasingness of the function

α ∈ [0, 1/2] 	→ ‖HαXK1−α + H1−αXKα‖.
For the special value α = 1

2 the Heinz inequality reduces to the arithmetic-
geometric inequality (1.4) (in the operator norm). The original proof in [36]
was quite involved, and in [64] A. McIntosh presented a simpler proof in two
steps: (i) a direct proof of the latter is obtained, (ii) the former is proved
from the latter by certain iteration arguments. In [10] the latter was shown
to remain valid for unitarily invariant norms, and hence so does the former
(i.e., the Heinz inequality). In fact, (although quite ingenious) the step (ii) is
based on just the triangle inequality (see [64, Theorem 4]). A slightly different
proof can be found in [63, Theorem 2.3]. Proofs can be also found in [13, 54].
The proof in [13] uses a Schur multiplier while that in [54, 39] uses an integral
formula of the form (3.9) (which arises from the Poisson integral formula
below). Both proofs are essentially based on the positive definiteness of
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cosh(ax)
cosh(x)

=
∫ ∞

−∞

cos(πa/2) cosh(πy/2)
cosh(πy) + cos(πa)

eixydy (0 ≤ a < 1).

On the other hand,

sinh(ax)
sinh(x)

=
1
2

∫ ∞

−∞

sin(πa)
cosh(πy) + cos(πa)

eixydy (0 < a < 1)

is also positive definite, which corresponds to the difference version

|||HθXK1−θ − H1−θXKθ||| ≤ |2θ − 1| × |||HX − XK||| (for θ ∈ [0, 1])

of the Heinz inequality (see [13, p. 219] or [54, p. 435] for instance). From this
we get the following inequality (see [53, Theorem 4]):

|||HX − XK||| ≤ |||eH/2Xe−K/2 − e−H/2XeK/2|||,
where H, K are self-adjoint operators. This commutator estimate also follows
from the positive definiteness of the function x/ sinh(x) (see (3.5)).

2. Matrix Young inequality and related topics
Almost all results in this chapter are based on the integral expression (6.3).

This formula appeared in [54], from which the weak Young inequality ((1.6)
and (6.4)) was derived. This inequality was motivated by T. Ando’s work [3]
on the (operator) Young inequality (1.5). The special case p = q = 2 was
obtained earlier by R. Bhatia and F. Kittaneh ([12]). Note that (1.5) actually
implies

|||f(|H 1
p K

1
q |)||| ≤ |||f( 1

p
H + 1

q
K)|||

for p, q > 1 with p−1 + q−1 = 1 and a continuous increasing function f on
[0,∞) satisfying f(0) = 0.

We observed

H
1
p XK

1
q =

∫ ∞

−∞
Hix(HX)K−ix sin(π/q)

2 (cosh(πx) − cos(π/q))
dx

+
∫ ∞

−∞
Hix(XK)K−ix sin(π/q)

2 (cosh(πx) + cos(π/q))
dx

in [54, §2]. This is nothing but the Poisson integral formula (for the strip
0 ≤ Im z ≤ 1) applied for f(z) = H−izXK1+iz, and the reason why the
Fourier transform of sin(ax)/ sin(x) is given as above was also explained in
[54, Appendix B]. This integral expression immediately yields (1.7). We point
out that (1.7) is actually equivalent to the following multiplicative version:

|||H 1
p XK

1
q ||| ≤ |||HX |||1/p|||XK|||1/q.

Indeed, (1.7) comes from the multiplicative version together with the Young
inequality (for scalars). On the other hand, with tpH and K/tq (t > 0) instead
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of H, K (1.7) gives us |||H 1
p XK

1
q ||| ≤ tp

p
|||HX |||+ t−q

q
|||XK|||. The minimum

of the right side here is |||HX |||1/p|||XK|||1/q as desired. The multiplicative
version first appeared in [11] by R. Bhatia and C. Davis (see also [64, Theorem
4, (iii)]). It can be further extended for example to

||| |H 1
p XK

1
q |r ||| ≤ ||| |HX |r|||1/p||| |XK|r|||1/q

(
≤ 1

p
||| |HX |r||| + 1

q
||| |XK|r|||

)

with r > 0 (see [43, Theorem 3], [54, Theorem 3] for instance). An updated
survey on these Hölder-type norm inequalities can be found in [84, §4.4].



7

Binomial means Bα

The “binomial means” introduced in [39] are

Bα(s, t) =
(

sα + tα

2

)1/α

(−∞ ≤ α ≤ ∞).

For special values of α we have

B1 = A (the arithmetic mean)
B0 = G (the geometric mean)

B∞ = M∞.

In fact, notice limα→0 Bα(s, t) = G(s, t) and limα→±∞ Bα(s, t) = M±∞(s, t).
In this chapter we will prove that the binomial means are Schur multipliers,
and norm continuity (in parameter) will be also discussed.

7.1 Majorization B
�

� M
�

For means M (= Mα, Aα) in the preceding chapters the majorization M �
M∞ (which ensures that M is a Schur multiplier) is relatively easy to establish.
We also have Bα � M∞, however more involved arguments are needed.

In what follows we (mainly) assume α > 0 and α �= 1
n (n = 1, 2, . . . ). It is

plain to see
Bα(ex, 1)
M∞(ex, 1)

=
(

1 + e−α|x|

2

)1/α

(7.1)

so that we have

Bα(ex, 1)
M∞(ex, 1)

− 2−1/α = 2−1/α

((
1 + e−α|x|

)1/α

− 1
)

.

We set

F. Hiai and H. Kosaki: LNM 1820, pp. 89–104, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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φα(x) =
(
1 + e−α|x|

)1/α

− 1 =
(
1 + e−α|x|

)β

− 1 (7.2)

with β = 1/α ∈ R+ \ N.
We consider the power series expansion of the analytic function

fβ(z) = (1 − z)β.

The radius of convergence here is obviously 1, and the n-th coefficient is given
by

an =
(−1)n

n!
× β(β − 1)(β − 2) · · · (β − (n − 1))

for n = 1, 2, . . . and a0 = 1.
The next lemma is an obvious extension of the one presented in [74, p. 195],

which will be repeatedly used.

Lemma 7.1. We have the absolute convergence
∞∑

n=0

|an| < ∞.

Proof. From the above expression we observe that an’s are either all negative
or all positive (depending upon the parity of n0) for each n ≥ n0 = [β] + 1.

We first assume an < 0 for n ≥ n0. For a real t with 0 < t < 1 we have

(1 − t)β −
n0−1∑

n=0

antn =
N∑

n=n0

antn +
∞∑

n=N+1

antn ≤
N∑

n=n0

antn

for N large enough. Therefore, we have

N∑

n=n0

|an| = −
N∑

n=n0

an = − lim
t↗1

N∑

n=n0

antn

≤ lim
t↗1

(
n0−1∑

n=0

antn − (1 − t)β

)

=
n0−1∑

n=0

an.

By letting N → ∞, we see

∞∑

n=n0

|an| ≤
n0−1∑

n=0

an.

We next assume an > 0 for n ≥ n0 so that we have the reversed inequality

(1 − t)β −
n0−1∑

n=0

antn ≥
N∑

n=n0

antn

for 0 < t < 1. In this case we estimate
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N∑

n=n0

|an| =
N∑

n=n0

an = lim
t↗1

N∑

n=n0

antn

≤ lim
t↗1

(

(1 − t)β −
n0−1∑

n=0

antn

)

= −
n0−1∑

n=0

an,

and hence
∞∑

n=n0

|an| ≤ −
n0−1∑

n=0

an

by letting N → ∞ again. ��
By substituting z = −e−α|x| ∈ [−1, 0) to fβ(z) and then subtracting 1, we

have

φα(x) =
∞∑

n=0

an(−e−α|x|)n − 1 =
∞∑

n=1

(−1)nane−nα|x| =
∞∑

n=1

bne−nα|x|

(see (7.2)) with

bn = (−1)nan =
1
n!

× β(β − 1)(β − 2) · · · (β − (n − 1))

for n ≥ 1. Note bn > 0 up to n = n0 and then the signs of bn’s oscillates
(i.e., bn0+1, bn0+3, · · · < 0). The above expression of φα(t) is absolutely con-
vergent thanks to Lemma 7.1, which guarantees the validity of the following
re-grouping of terms:

φα(x) = φα,+(x) − φα,−(x)

with





φα,+(x) =
∑

bn>0

bne−nα|x| =
n0−1∑

n=1

bne−nα|x| +
∞∑

n=0

bn0+2ne−(n0+2n)α|x|,

φα,−(x) =
∑

bn<0

(−bn)e−nα|x| =
∞∑

n=0

(−bn0+2n+1)e−(n0+2n+1)α|x|

(with the convention
n0−1∑

n=1

= 0 in the case n0 = 1).

Theorem 7.2. For each α ∈ [−∞,∞] we have Bα � M∞.

Proof. Recall B±∞ = M±∞ and B0 = G = M1/2 (the geometric mean),
for which the result is known (Theorem 5.1). For α = 1/n we obviously
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have Bα � M∞ because the binomial expansion is available. We also recall
M1/2 � B−α for α < 0 ([39, Proposition 3.3]) so that we observe

Bα = B
(−)
−α � M

(−)
1/2 = M1/2 � M∞

(see (3.18)). Therefore, in the rest of the proof we may and do assume α > 0
and α �= 1

n (n = 1, 2, · · · ), and it suffices to see that the function φα(t) (see
(7.2)) is positive definite.

Recall that the Fourier transform of e−a|x| (with a > 0) is 2a(x2 + a2)−1:
∫ ∞

−∞
e−a|y|eixydy = 2π × a

π
× 1

x2 + a2
=

2a

x2 + a2
(7.3)

(thanks to (5.8) or by elementary direct computations). Lemma 7.1 and the
obvious estimate e−nα|x| ≤ e−α|x| enable us to perform term-wise Fourier
transform for the above φα,±(x) (thanks to the dominated convergence theo-
rem), and we get






φ̂α,+(x) =
n0−1∑

n=1

bn
2nα

x2 + (nα)2
+

∞∑

n=0

bn0+2n
2(n0 + 2n)α

x2 + (n0 + 2n)2α2
,

φ̂α,−(x) =
∞∑

n=0

(−bn0+2n+1)
2(n0 + 2n + 1)α

x2 + (n0 + 2n + 1)2α2

due to (7.3). To establish the positivity of φ̂α(x) = φ̂α,+(x) − φ̂α,−(x) (i.e.,
the positive definiteness of φα), we will make use of the expression

φ̂α(x) − 2
n0−1∑

n=1

bn
nα

x2 + (nα)2

= 2
∞∑

n=0

(
bn0+2n

(n0 + 2n)α
x2 + (n0 + 2n)2α2

−(−bn0+2n+1)
(n0 + 2n + 1)α

x2 + (n0 + 2n + 1)2α2

)
.

Indeed, because of nα
x2+n2α2 ≤ 1

nα ≤ 1
α and Lemma 7.1, the above sums for

φ̂α,±(x) are once again absolutely convergent so that re-grouping terms is
certainly legitimate. We note

−bn0+2n+1

bn0+2n
=

−(β − (n0 + 2n))
n0 + 2n + 1

=
n0 + 2n− β

n0 + 2n + 1
=

2n + γ

n0 + 2n + 1

with γ = n0 − β = [β] + 1 − β ∈ (0, 1). Therefore, we can rewrite the above
quantity as follows:
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φ̂α(x) − 2
n0−1∑

n=1

bn
nα

x2 + (nα)2

= 2
∞∑

n=0

bn0+2n

( (n0 + 2n)α
x2 + (n0 + 2n)2α2

− 2n + γ

n0 + 2n + 1
× (n0 + 2n + 1)α

x2 + (n0 + 2n + 1)2α2

)

= 2
∞∑

n=0

αbn0+2n

( n0 + 2n

x2 + (n0 + 2n)2α2
− 2n + γ

x2 + (n0 + 2n + 1)2α2

)
.

Hence, it suffices to check that the difference appearing in the above last
parenthesis is positive. However, by elementary computation this quantity is
equal to

(n0 − γ)x2 + (n0 + 2n) (1 + (n0 + 2n)(n0 − γ + 2))α2

(x2 + (n0 + 2n)2α2) (x2 + (n0 + 2n + 1)2α2)
.

It is certainly positive as desired because of n0 − γ = β = 1/α > 0. ��
Proposition 3.3, (b) and Theorem 7.2 guarantee that Bα(s, t) is a Schur

multiplier for each α ∈ [−∞,∞] so that Bα(H, K)X (∈ B(H)) makes sense
for each operators H, K, X with H, K ≥ 0, and moreover we have

|||Bα(H, K)X ||| ≤ |||M∞(H, K)X |||. (7.4)

7.2 Equivalence of |||B
�
(H, K)X||| for α > 0

In this section we investigate mutual comparison for |||Bα(H, K)X ||| akin to
Propositions 5.2 and 5.4.

Proposition 7.3. For each α > 0 one can find a positive constant κα such
that

|||Bα(H, K)X ||| ≤ |||M∞(H, K)X ||| ≤ κα|||Bα(H, K)X |||
for each operators H, K, X with H, K ≥ 0 and each unitarily invariant norm
||| · |||. In particular, the following three conditions are mutually equivalent :

(i) |||Bα(H, K)X ||| < ∞ for some α > 0;
(ii) |||M∞(H, K)X ||| < ∞;
(iii) |||HX + XK||| < ∞.

Proof. The first inequality was already pointed out (see (7.4)), and it remains
to show the second. To do so, we note
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M∞(ex, 1)
Bα(ex, 1)

=
max{ex, 1}
(

1+eαx

2

)1/α
= 21/α max{ex, 1}

(1 + eαx)1/α

= 21/α

(
1

1 + e−α|x|

)1/α

= 21/α

(
e

α|x|
2

e
α|x|

2 + e−
α|x|

2

)1/α

= 21/α

(

1 − e−
α|x|

2

e
α|x|

2 + e−
α|x|

2

)1/α

= 21/α

(

1 − e−
α|x|

2

2 cosh
(

αx
2

)

)1/α

. (7.5)

Recalling the Taylor series expansion of (1 − z)1/α (see Lemma 7.1 and the
paragraph before the lemma), we have

M∞(ex, 1)
Bα(ex, 1)

= 21/α
∞∑

n=0

an

2n
× e−

nα|x|
2

coshn
(

αx
2

)

with the absolutely convergent coefficients
∑∞

n=0 2−n|an| < ∞ (and a0 = 1).
For each n ≥ 1 both of the functions e−

nα|x|
2 and 1/ coshn

(
αx
2

)
are posi-

tive definite (see (5.8), (7.3) and Example 3.6, (a)) and hence their product
e−

nα|x|
2 / coshn

(
αx
2

)
is the Fourier transform of a positive integrable function

fn(x) with
∫ ∞
−∞ fn(x) dx = 1. In particular, by considering the sums over n’s

with an > 0 and an < 0 separately, we observe that M∞(ex, 1)/Bα(ex, 1)
is the Fourier transform of a signed measure ν with finite total variation.
Therefore, we have

M∞(H, K)X =
∫ ∞

−∞
(HsH)ix(Bα(H, K)X)(KsK)−ixdν(x),

and consequently the second inequality is valid with the constant κα = |ν|(R).
��

From the above proof we obviously have κα = |ν|(R) ≤ 21/α
∑∞

n=0 2−n|an|.
But this quantity diverges as α ↘ 0. On the other hand, for α > 1 one can
obtain a somewhat more precise estimate. To do so, we at first point out

Lemma 7.4. If α > 1 and f(x) is a positive definite function satisfying 0 ≤
f(x) ≤ 1, then so is

g(x) = 1 − (1 − f(x))1/α.

Proof. As was seen in the proof of Lemma 7.1, the Taylor series expansion

(1 − z)1/α =
∞∑

k=0

anzn

(with
∑∞

n=0 |an| < ∞) satisfies an < 0 for each n ≥ 1 (and a0 = 1) due to
0 < 1/α < 1. By substituting z = f(x) ∈ [0, 1], we observe
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g(x) = 1 − (1 − f(x))1/α =
∞∑

n=1

(−an)f(x)n.

The desired conclusion is clear from this expression since all the powers of
f(x) are positive definite. ��

For instance, with α = 2 and f(x) = 1/ cosh2(x), we see the positive
definiteness of g(x) = 1 − | tanh(x)|.
Proposition 7.5. Let H, K be positive operators, X ∈ B(H) and ||| · ||| be
any unitarily invariant norm. For α > 1 we have

|||Bα(H, K)X ||| ≤ |||M∞(H, K)X ||| ≤ (21+ 1
α − 1) |||Bα(H, K)X ||| (7.6)

and

|||Bα(H, K)X − M∞(H, K)X ||| ≤ 2(21/α − 1) |||Bα(H, K)X |||. (7.7)

Proof. With the special choice

f(x) =
e−

α|x|
2

2 cosh
(

αx
2

)

(see (7.5)) in Lemma 7.4 we observe that the function

g(x) = 1 −
(

1
1 + e−α|x|

)1/α

is positive definite. Therefore, it is the Fourier transform of a positive measure
with total mass g(0) = 1 − 2−1/α. We actually have

g(x) = 1 − 2−1/α M∞(ex, 1)
Bα(ex, 1)

due to (7.5), and as usual we get

|||Bα(H, K)X − 2−1/α M∞(H, K)X ||| ≤ (1 − 2−1/α) |||Bα(H, K)X |||. (7.8)

From this we estimate

|||M∞(H, K)X ||| ≤ |||M∞(H, K)X − 21/αBα(H, K)X |||
+21/α|||Bα(H, K)X |||

≤ (21/α − 1) |||Bα(H, K)X ||| + 21/α|||Bα(H, K)X |||
= (21+ 1

α − 1) |||Bα(H, K)X |||,
which (together with (7.4)) shows (7.6). On the other hand, (7.7) is shown
from (7.8) as follows:

|||M∞(H, K)X − Bα(H, K)X |||
≤ |||M∞(H, K)X − 21/αBα(H, K)X ||| + (21/α − 1) |||Bα(H, K)X |||
≤ 2(21/α − 1) |||Bα(H, K)X |||.

��
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7.3 Norm continuity in parameter

Our goal in the section is to show the following norm continuity (and related
results):

Theorem 7.6. Let H, K, X ∈ B(H) with H, K ≥ 0, and ||| · ||| be a unitarily
invariant norm. If |||M∞(H, K)X ||| < ∞ (see Proposition 7.3), then one gets

lim
α→α0

|||Bα(H, K)X − Bα0(H, K)X ||| = 0

for each α0 ∈ [0,∞].

Proposition 7.5 yields the case α0 = ∞ in Theorem 7.6, and hence it
remains to show the case α0 ∈ [0,∞). The proof for the case α0 ∈ (0,∞) is
not so hard while we will make use of a certain uniform integrability (as in
the Vitali convergence theorem) to deal with the case α0 = 0 (see (7.11)).

For α > 0 the proof of Theorem 7.2 shows that

ψ̂α(x) =
Bα(ex, 1)
M∞(ex, 1)

− 2−1/α = 2−1/α

((
1 + e−α|x|

)1/α

− 1
)

(
= 2−1/α φα(x) (see (7.2))

)

with a positive integrable function ψα(x). For the limiting case α = 0 we have

ψ̂0(x) =
B0(ex, 1)
M∞(ex, 1)

= e−|x|/2
(
= lim

α↘0
ψ̂α(x)

)

with ψ0(x) = 1
2π

(
x2 + 1

4

)−1 (see (5.8) and (7.3)). At first we compute

∂

∂α

(
1 + e−α|x|

)1/α

= −
(
1 + e−α|x|

)1/α
(

|x|e−α|x|

α(1 + e−α|x|)
+

log
(
1 + e−α|x|)

α2

)

< 0,

and hence

Lemma 7.7. The function φα(x) is monotone decreasing in α > 0.

The assertion (ii) of the next lemma will be proved after we prepare a few
lemmas.

Lemma 7.8.

(i) lim
α→α0

‖ψ̂α − ψ̂α0‖2 = 0 for α0 > 0, (ii) lim
α↘0

‖ψ̂α − ψ̂0‖2 = 0.
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We at first assume α0 > 0 and choose a positive integer n0 with 1
n0

< α0.
For α ≥ 1

n0
, thanks to Lemma 7.7 we observe

ψ̂α(x) = 2−1/α φα(x) ≤ φα(x) ≤ φ 1
n0

(x).

Notice

φ 1
n0

(x) =
(
1 + e−

|x|
n0

)n0

− 1 =
n0∑

k=1

(
n0

k

)

e−
k

n0
|x|

≤ (2n0 − 1)e−
|x|
n0 ∈ L2(R).

When α → α0 (with α ≥ 1
n0

), we obviously have ψ̂α(x) → ψ̂α0(x) for each x ∈
R so that (i) in Lemma 7.8 follows from the Lebesgue dominated convergence
theorem.

We next deal with the case α0 = 0 (i.e., Lemma 7.8, (ii)). We begin with
the special case

lim
n→∞ ‖ψ̂ 1

n
− ψ̂0‖2 = 0.

Since all the relevant functions here are even, what we really have to show is

lim
n→∞

∫ ∞

0

|fn(t) − f∞(t)|2dt = 0 (7.9)

where

fn(t) = 2−n
((

1 + e−
t
n

)n

− 1
)

and f∞(t) = e−t/2 (t ≥ 0).

To show (7.9) we use the binomial expansion

fn(t) = 2−n
n∑

k=1

(
n

k

)

e−
k
n t.

Choose and fix δ > 0 small, and we split the sum
∑n

k=1 into the following two
parts: { ∑ ′ : summation over k ∈ {1, 2, . . . , n} with k

n > δ,∑ ′′ : summation over k ∈ {1, 2, . . . , n} with k
n ≤ δ.

We observe

fn(t) ≤ 2−n
∑ ′

(
n

k

)

e−δt + 2−n
∑ ′′

(
n

k

)

e−
k
n t

≤ e−δt + 2−n
∑ ′′

(
n

k

)

e−
k
n t.

By making use of the obvious fact 0 ≤ fn(t) ≤ 1, from the above inequality
we estimate
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∫ ∞

M

fn(t)2dt ≤
∫ ∞

M

fn(t) dt ≤
∫ ∞

M

e−δtdt + 2−n
∑ ′′

(
n

k

) ∫ ∞

M

e−
k
n tdt

=
1
δ

e−δM + 2−n
∑ ′′

(
n

k

)
n

k
e−

k
n M

≤ 1
δ

e−δM + 2−n
∑ ′′

(
n

k

)
n

k
(7.10)

for M > 0 (to be specified shortly). Note that the second factor (containing
binomial coefficients) in the above far right side is no longer depending upon
M .

Lemma 7.9. When δ > 0 is small enough, we have

lim
n→∞ 2−n

∑ ′′
(

n

k

)
n

k
= 0.

Proof. Based on the Stirling formula we estimate

log
(

2−n

(
n

k

)
n

k

)

= −n log 2 + log(n!) − log(k!) − log((n − k)!) + log n − log k

= −n log 2 + n log n − n +
1
2

log n

−k log k + k − 1
2

log k − (n − k) log(n − k) + (n − k) − 1
2

log(n − k)

+ log n − log k + O(1)

≤ −n log 2 − k log
(

k

n

)

− (n − k) log
(

n − k

n

)

+
3
2

log n + O(1)

= −n

(

log 2 +
k

n
log

(
k

n

)

+
(

1 − k

n

)

log
(

1 − k

n

))

+
3
2

log n + O(1).

We set θ(x) = x log x, and notice θ(0) = θ(1) = 0 and θ(x) < 0 for x ∈ (0, 1).
Choose and fix 0 < ε0 < log 2, and assume that δ > 0 is chosen small enough
in such a way that

θ(x) + θ(1 − x) ≥ −ε0 for 0 < x ≤ δ

is guaranteed. Then, since k
n ≤ δ for k’s appearing in the sum

∑ ′′, we get

log 2 +
k

n
log

(
k

n

)

+
(

1 − k

n

)

log
(

1 − k

n

)

≥ log 2 − ε0.

Thus, from the preceding estimate we get

log
(

2−n

(
n

k

)
n

k

)

≤ −n(log 2 − ε0) +
3
2

log n + O(1),
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that is,

2−n

(
n

k

)
n

k
≤ K × n3/2

(
eε0

2

)n

(as long as k
n ≤ δ)

for some constant K. Therefore, we conclude

1
2n

∑ ′′
(

n

k

)
n

k
≤ K × n5/2

(
eε0

2

)n

,

showing the desired convergence due to eε0

2 < 1. ��
Lemma 7.10. The L2-convergence (7.9) is valid, that is, we have

lim
n→∞ ‖ψ̂ 1

n
− ψ̂0‖2 = 0.

Proof. Let ε > 0. We claim the following uniform integrability: one can find
an integer N and a positive M such that

∫ ∞

M

fn(t)2dt < ε for each n ≥ N. (7.11)

In fact, we recall the estimate (7.10), and fix a small δ > 0 so that Lemma 7.9
is valid. From this lemma, we have 2−n

∑ ′′(n
k

)
n
k < ε/2 for n large enough.

Then, one can choose M > 0 large enough so that 1
δ e−δM < ε/2.

We estimate
∫ ∞

0

|fn(t) − f∞(t)|2dt

≤
∫ M

0

|fn(t) − f∞(t)|2dt +
∫ ∞

M

(fn(t) + f∞(t))2dt

≤
∫ M

0

|fn(t) − f∞(t)|2dt + 2
∫ ∞

M

fn(t)2dt + 2
∫ ∞

M

f∞(t)2dt.

Fatou’s lemma shows
∫ ∞

M

f∞(t)2dt ≤ lim inf
n→∞

∫ ∞

M

fn(t)2dt.

Thus, from the estimates so far and (7.11) we get
∫ ∞

0

|fn(t) − f∞(t)|2dt ≤
∫ M

0

|fn(t) − f∞(t)|2dt + 4ε

for n large enough, and hence

lim sup
n→∞

∫ ∞

0

|fn(t) − f∞(t)|2dt ≤ lim sup
n→∞

∫ M

0

|fn(t) − f∞(t)|2dt + 4ε.

Note that lim sup in the right-hand side is 0 since fn(t) ≤ 1 enables us to use
the Lebesgue dominated convergence theorem on the finite interval [0, M ].
Since ε > 0 is arbitrary, we are done. ��



100 7 Binomial means Bα

Proof of Lemma 7.8, (ii). What we have to show is limk→∞ ‖ψ̂αk
− ψ̂0‖2 = 0

for each decreasing sequence {αk}k=1,2,··· converging to 0. For each k one takes
the natural number nk such that nk − 1 < 1/αk ≤ nk so that {nk}k=1,2,···
is an increasing sequence tending to ∞. Notice 2−nk ≤ 2−1/αk < 2 × 2−nk .
Hence, from Lemma 7.7 we have

ψ̂αk
(x) ≤ 2 × 2−nk

((
1 + e−αk|x|

)1/αk − 1
)

≤ 2 × 2−nk

((

1 + e
− |x|

nk

)nk

− 1
)

= 2 × ψ̂ 1
nk

(x).

Therefore, the Lp-version of the extended Lebesgue convergence theorem (see
[25, p. 122] or [26, Theorem 3.6]) and Lemma 7.10 yield limk→∞ ‖ψ̂αk

−ψ̂0‖2 =
0 as desired. ��
Proof of Theorem 7.6. As was pointed out right after the theorem, we may
and do assume α0 ∈ [0,∞). Lemmas 5.8 and 7.8 yield

lim
α→α0

‖ψα − ψα0‖1 = 0 (α0 > 0) and lim
α↘0

‖ψα − ψ0‖1 = 0.

Thus, from the integral expressions

Bα(H, K)X = 2−1/αM∞(H, K)X

+
∫ ∞

−∞
(HsH)ix(M∞(H, K)X)(KsK)−ixψα(x) dx,

B0(H, K)X =
∫ ∞

−∞
(HsH)ix(M∞(H, K)X)(KsK)−ixψ0(x) dx,

we get
lim

α→α0
|||Bα(H, K)X − Bα0(H, K)X ||| = 0

and
lim
α↘0

|||Bα(H, K)X − B0(H, K)X ||| = 0.

It remains to show

lim
α↗0

|||Bα(H, K)X − B0(H, K)X ||| = 0.

Thus, we assume α < 0 and set

ϕα(x) =
Bα(ex, 1)
M∞(ex, 1)

=
(

1 + e−α|x|

2

)1/α

(see (7.1))

= e−|x|/2 cosh1/α

(
α|x|
2

)

= e−|x|/2

(
1

cosh
( (−α)x

2

)

) 1
−α

,

ϕ0(x) =
B0(ex, 1)
M∞(ex, 1)

= e−|x|/2.
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Then, ϕα is a positive definite function and ϕα = ψ̂α (α ≤ 0) with a positive
integrable function ψα (see (5.8) and the proof of [39, Proposition 3.3], and also
see §A.6). Since ϕα(x) ≤ ϕ0(x) = e−|x|/2 ∈ L2(R) and limα↗0 ϕα(x) = ϕ0(x),
we have limα↗0 ‖φα − φ0‖2 = 0 by the Lebesgue dominated convergence
theorem. Since

∫ ∞

−∞
ψα(x) dx = ϕα(0) = 1 (α ≤ 0),

Lemma 5.8 shows
lim
α↗0

‖ψα − ψ0‖1 = 0

and the desired convergence follows from the integral expression

Bα(H, K)X =
∫ ∞

−∞
(HsH)ix(M∞(H, K)X)(KsK)−ixψα(x) dx (α ≤ 0).

��
Recall B0(H, K)X = G(H, K)X = H1/2XK1/2, the geometric mean. For

operator means Bα(H, K)X with α < 0 we have

Proposition 7.11. If |||H1/2XK1/2||| < ∞, then

lim
α→α0

|||Bα(H, K)X − Bα0(H, K)X ||| = 0

for every α0 ∈ [−∞, 0).

Proof. We set

ϕα(x) =
Bα(ex, 1)
G(ex, 1)

= e−x/2

(
eαx + 1

2

)1/α

= cosh1/α
(αx

2

)
=

(
1

cosh
( (−α)x

2

)

) 1
−α

for α < 0. Then, ϕα is a positive definite function and ϕα = ψ̂α with a positive
function ψα ∈ L1(R) (see the proof of [39, Proposition 3.3] or §A.6). Note that
ϕα(x) is monotone increasing in α because so is Bα(ex, 1) as noted just after
(7.4).

Let us assume α0 �= −∞. When |α − α0| ≤ −α0
2 , we have α ≤ α0

2 and
consequently 0 ≤ ϕα(x) ≤ ϕα0

2
(x) with ϕα0

2
∈ L1(R). Of course we have

limα→α0 ϕα(x) = ϕα0(x), and the Lebesgue dominated convergence theorem
implies

lim
α→α0

‖ϕα − ϕα0‖1 = 0.

Hence, for each sequence {αk}k=1,2,··· converging to α0 we get
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|ψαk
(x) − ψα0(x)|
≤ 1

2π

∣
∣
∣
∣

∫ ∞

−∞
(ϕαk

(y) − ϕα0(y))eixydy

∣
∣
∣
∣ ≤

1
2π

× ‖ϕαk
− ϕα0‖1 −→ 0

for a.e. x ∈ R. Since
∫ ∞

−∞
ψα(x) dx = ϕα(0) = 1 for each α < 0,

we have
lim

α→α0
‖ψα − ψα0‖1 = 0

as usual, and the required convergence can be seen from the integral expression

Bα(H, K)X =
∫ ∞

−∞
(HsH)ix(H1/2XK1/2)(KsK)−ixψα(x) dx.

Obviously the same proof works for α0 = −∞ as well with ϕ−∞(x) = e−|x|/2

and ψ−∞(x) = 1
2π

(
x2 + 1

4

)−1 (see (5.8) and (7.3)), and details are left to the
reader. ��
Alternative proof of Proposition 7.11. As in the above proof we set

ϕα(x) =

(
1

cosh
( (−α)x

2

)

) 1
−α

(α < 0) and ϕ−∞(x) = e−|x|/2.

Then, ϕα is a positive definite function. In fact, we have ϕα = ψ̂α with the
function

ψα(x) =
1
2π

× 2
1

−α

(−α)Γ
(

1
−α

) ×
∣
∣
∣
∣Γ

(
1

2(−α)
+

ix

−α

)∣
∣
∣
∣

2

≥ 0.

Details are worked out in §A.6 (see (A.10)), and this explicit form was pointed
out in [13].

The obvious continuity of the Γ -function Γ (z) shows

lim
α→α0

ψα(x) = ψα0(x) (7.12)

for α0 < 0. This fact remains valid for α0 = −∞ as well. In fact, thanks to
Γ (z + 1) = zΓ (z) we compute

lim
α→−∞ψα(x) =

1
2π

lim
β↘0

(
2ββ

Γ (β)
×

∣
∣
∣
∣Γ

(
β

2
+ ixβ

)∣
∣
∣
∣

2
)

=
1
2π

lim
β↘0

(
2ββ2

Γ (β + 1)
×

∣
∣
∣
∣Γ

(
β

2
+ ixβ

)∣
∣
∣
∣

2
)

=
1
2π

lim
β↘0

β2

∣
∣
∣
∣Γ

(
β

2
+ ixβ

)∣
∣
∣
∣

2

.
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Recall that 0,−1,−2,−3, . . . are simple poles of Γ (z) (see [80] for example).
The residue at 0 is 1 so that near the origin Γ (z) is of the form 1

z + f(z) with
a holomorphic function f(z). This means Γ

(
β
2 + ixβ

) ∼ (
β
2 + ixβ

)−1 for β
small, and we conclude

lim
α→−∞ψα(x) =

1
2π

lim
β↘0

β2

∣
∣β
2 + ixβ

∣
∣2

=
1
2π

× 1
∣
∣ 1
2 + ix

∣
∣2

=
1
2π

× 1
x2 + 1

4

.

This limit function is exactly ψ−∞(x) (see (5.8) and (7.3)), and hence (7.12)
has been checked for α0 = −∞.

We have
∫ ∞

−∞
ψα(x) dx = ϕα(0) = 1 for each α ∈ [−∞, 0).

Hence, (7.12) and the extended Lebesgue dominated convergence theorem
yield

lim
α→α0

‖ψα − ψα0‖1 = 0,

and as usual the required convergence can be seen from the integral expression

Bα(H, K)X =
∫ ∞

−∞
(HsH)ix(H1/2XK1/2)(KsK)−ixψα(x) dx.

��
From Theorem 7.6 and Proposition 7.11 we get

Corollary 7.12. For each H, K, X ∈ B(H) with H, K ≥ 0 and each −∞ ≤
α0 ≤ ∞ we always have

lim
α→α0

‖Bα(H, K)X − Bα0(H, K)X‖ = 0

in the operator norm ‖ · ‖.

7.4 Notes and references

The binomial means {Bα}−∞≤α≤∞ and the corresponding means Bα(H, K)X
were studied in [39]. Only matrices were dealt with there so that the majoriza-
tion Bα 	 M∞ (Theorem7.2) was not necessary. This majorization (together
with Proposition 3.3, (b)) makes the notion of operator means Bα(H, K)X
legitimate for Hilbert space operators.

We note that Bα(s, t) is monotone increasing in α ∈ [−∞,∞] for each
fixed s, t > 0. Indeed, when 0 < α < β, the concavity of the function tα/β

(t > 0) gives
sα + tα

2
≤

(
sβ + tβ

2

)α/β

,
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i.e., Bα(s, t) ≤ Bβ(s, t). The case α < β < 0 is similarly checked. However, the
comparison Bα � Bβ (similar to (5.2) and (6.2)) for general −∞ ≤ α < β ≤
∞ is an interesting open problem. The following partial results were obtained
in [39, Proposition 3.3]:

(i) for α ≥ 0 we have B0 (= M1/2) � Bα

(� B∞ (= M∞)
)
;

(ii) we have B 1
m

� B 1
n

as long as n (∈ N) divides m.



8

Certain alternating sums of operators

In this chapter we will deal with alternating sums

H
1
2 XK

1
2

H
1
3 XK

2
3 − H

2
3 XK

1
3

H
1
4 XK

3
4 − H

2
4 XK

2
4 + H

3
4 XK

1
4

H
1
5 XK

4
5 − H

2
5 XK

3
5 + H

3
5 XK

2
5 − H

4
5 XK

1
5

· · ·
XK − HX

XK − H
1
2 XK

1
2 + HX

XK − H
1
3 XK

2
3 + H

2
3 XK

1
3 − HX

XK − H
1
4 XK

3
4 + H

2
4 XK

2
4 − H

3
4 XK

1
4 + HX

· · · ,

and investigate behavior of unitarily invariant norms of these operators such
as mutual comparison, uniform bounds (independent of n, m), monotonicity
and so on (in §8.2 and §8.3). For convenience we set

A(n) =
n∑

k=1

(−1)k−1H
k

n+1 XK
n+1−k

n+1 (n = 1, 2, 3, · · · ),

B(m) =
m−1∑

k=0

(−1)kH
k

m−1 XK
m−1−k

m−1 (m = 2, 3, 4, · · · ),

and these notations will be kept throughout. We note

B(m) =
{

HX + XK − A(m − 2) for m = 3, 5, 7, · · · ,
−HX + XK − A(m − 2) for m = 4, 6, 8, · · · . (8.1)

The nature of the above two series of operators depends strongly on parities
of n and m, and it is quite obvious that we will have to treat odd and even
cases separately.

F. Hiai and H. Kosaki: LNM 1820, pp. 105–121, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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8.1 Preliminaries

For n = 1, 2, · · · and m = 2, 3, · · · we set

an(s, t) =
n∑

k=1

(−1)k−1s
k

n+1 t
n+1−k

n+1 and bm(s, t) =
m−1∑

k=0

(−1)ks
k

m−1 t
m−1−k

m−1

(s, t ≥ 0) as scalar “means” corresponding to A(n) and B(m). For s, t > 0 we
compute

an(s, t) =
s

1
n+1 t

n
n+1

(
1 − (−1)n

(
s
t

) n
n+1

)

1 +
(

s
t

) 1
n+1

=
t
(

s
t

) 1
n+1

(
1 − (−1)n

(
s
t

) n
n+1

)

1 +
(

s
t

) 1
n+1

= t
(s

t

) 1
2 ×

(
s
t

)− 1
2× n

n+1 − (−1)n
(

s
t

) 1
2× n

n+1

(
s
t

)− 1
2× 1

n+1 +
(

s
t

) 1
2× 1

n+1

= (st)
1
2 ×

(
s
t

)− 1
2× n

n+1 − (−1)n
(

s
t

) 1
2× n

n+1

(
s
t

)− 1
2× 1

n+1 +
(

s
t

) 1
2× 1

n+1
.

Note that the denominator can be always expressed in terms of the hyperbolic
cosine function while for the numerator the hyperbolic sine function is also
needed for n even. Exactly the same computations yield

bm(s, t) = (st)
1
2 ×

(
s
t

)− 1
2× m

m−1 − (−1)m
(

s
t

) 1
2× m

m−1

(
s
t

)− 1
2× 1

m−1 +
(

s
t

) 1
2× 1

m−1
.

These formulas will be freely and repeatedly used. We note the homogeneity

an(rs, rt) = ran(s, t), bm(rs, rt) = rbm(s, t)

(with r ≥ 0) and

an(t, s) = (−1)n+1an(s, t), bm(t, s) = (−1)m+1bm(s, t)

(see Proposition 8.2, (iii)).
We will repeatedly make use of the positive definiteness of the following

functions (see §6.3, 1):

1
cosh(αx)

,
cosh(βx)
cosh(αx)

,
sinh(βx)
sinh(αx)

with 0 < β < α (as was done in preceding chapters). The next observation is
also useful.
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Lemma 8.1. For α, β > 0 one can find a signed measure ν on R such that

cosh((α + β)x)
cosh(αx) cosh(βx)

= ν̂(x)
(

=
∫ ∞

−∞
eixydν(y)

)

with |ν|(R) ≤ 5.

Proof. By the addition rule for the hyperbolic cosine function we observe

cosh((α + β)x)
cosh(αx) cosh(βx)

= 1 +
sinh(αx) sinh(βx)
cosh(αx) cosh(βx)

= 1 + | tanh(αx)| × | tanh(βx)|.

We set
p(x) = 1 − | tanh(αx)|, q(x) = 1 − | tanh(βx)|.

As was shown in Lemma 7.4 (see the paragraph right after the lemma), they
are positive definite and we observe

cosh((α + β)x)
cosh(αx) cosh(βx)

= 1 + (1 − p(x))(1 − q(x))

= (2 + p(x)q(x)) − (p(x) + q(x)).

Note that both of 2 + p(x)q(x) and p(x) + q(x) are positive definite with

2 + p(0)q(0) = 3 and p(0) + q(0) = 2.

By the Bochner theorem there exist positive measures ν1, ν2 with the Fourier
transforms 2 + p(x)q(x), p(x) + q(x) respectively and ν1(R) = 3, ν2(R) = 2.
Hence, the difference measure ν = ν1 − ν2 does the job. ��

Let M(s, t), N(s, t) be continuous functions on [0,∞) × [0,∞) satisfying
the homogeneity condition

M(rs, rt) = rM(s, t) and N(rs, rt) = rN(s, t) (for r ≥ 0),

from which we obviously have
{

M(s, 0) = sM(1, 0), N(s, 0) = sN(1, 0),
M(0, t) = tM(0, 1), N(0, t) = tN(0, 1). (8.2)

We further assume that M(s, t), N(s, t) are Schur multipliers (relative to any
pair (H, K)) in the sense explained in §2.1. This assumption is not harmful
at all because the proposition below will be applied for an’s and bm’s (which
are obviously Schur multipliers). The corresponding “operator means” will be
denoted by M(H, K)X, N(H, K)X as in Chapter 3.

Many integral expressions were obtained in Chapter 3 to establish norm in-
equalities. In particular, Theorem 3.4 deals with the symmetric homogeneous



108 8 Certain alternating sums of operators

means; the proof is still valid if M(s, t), N(s, t) are symmetric homogeneous
functions and ν is a signed measure such that M(ex, 1)/N(ex, 1) = ν̂(x). The
next proposition (as well as its proof) is a variant of this result in the non-
symmetric case. The part (iii) plays a fundamental role in the present chapter
while the part (ii) will be used in our forthcoming article [55].

Proposition 8.2. We assume that homogeneous Schur multipliers as above
satisfy

M(ex, 1)
N(ex, 1)

= ν̂(x)

with a signed measure ν on R.

(i) When H, K ≥ 0 are non-singular, we have

M(H, K)X =
∫ ∞

−∞
Hix(N(H, K)X)K−ixdν(x).

(ii) When M(1, 0) = M(0, 1) = 0, we have

M(H, K)X =
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x).

(iii) When M(s, t) = −M(t, s) and N(s, t) = −N(t, s), we have

M(H, K)X =
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})N(H, K)X.

Proof. The assertions (i), (ii) directly follow from Proposition 2.11, and it
remains to prove (iii). To do so, we firstly note

M(s, t)
N(s, t)

=
M(t, s)
N(t, s)

(8.3)

by the assumption in (iii). Secondly, Lemma 2.9 and (8.2) show

N(H, K)X = sH(N(H, K)X)sK

+N(1, 0)HX(1− sK) + N(0, 1)(1 − sH)XK (8.4)

(which is a replacement of (3.10) in the proof of Theorem 3.4).
We claim

M(1, 0) = ν({0})N(1, 0) and M(0, 1) = ν({0})N(0, 1). (8.5)

To see the claim, we begin by noting
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M(s, t) = tM(s/t, 1) = tN(s/t, 1)
∫ ∞

−∞
eix(log s−log t)dν(x)

= N(s, t)
∫ ∞

−∞
(s/t)ixdν(x) (for s, t > 0)

(thanks to the assumption and the homogeneity). Thus, by the obvious con-
tinuity we get

|M(1, 0)| ≤ |ν|(R) × |N(1, 0)|. (8.6)

Firstly, if N(1, 0) = 0 (or equivalently N(0, 1) = 0), then we get M(1, 0) =
M(0, 1) = 0 by (8.6) and (8.5) is certainly valid. Secondly, let us assume
N(1, 0) �= 0. Since ν is a symmetric measure (by (8.3)), we have

lim
x→±∞ ν̂(x) = lim

x→∞
M(ex, 1)
N(ex, 1)

= lim
x→∞

M(1, e−x)
N(1, e−x)

=
M(1, 0)
N(1, 0)

.

Therefore, the claim (i.e., (8.5)) follows from Corollary A.8 thanks to

lim
x→±∞ ν̂(x) =

M(1, 0)
N(1, 0)

=
M(0, 1)
N(0, 1)

.

From Proposition 2.11 together with (8.5) we see

M(H, K)X =
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})
(
sH(N(H, K)X)(1 − sK) + (1 − sH)(N(H, K)X)sK

)
.

Therefore, with (8.4) we compute

M(H, K)X

=
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})
(
N(1, 0)HX(1− sK) + N(0, 1)(1 − sH)XK

)

=
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+ν({0})
(
sH(N(H, K)X)sK

+N(1, 0)HX(1− sK) + N(0, 1)(1 − sH)XK
)

=
∫

{x �=0}
(HsH)ix(N(H, K)X)(KsK)−ixdν(x) + ν({0})N(H, K)X,

showing (iii). ��
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The integral expressions in the proposition yield

|||M(H, K)X ||| ≤ |ν|(R) × |||N(H, K)X |||

for each unitarily invariant norm |||·||| (when one of the conditions (i), (ii), (iii)
is satisfied). In fact, it follows from the Hahn decomposition ν = ν+ − ν− and
Theorem A.5. In the next two sections we will deal with signed measures ν
satisfying M(e2x, 1)/N(e2x, 1) = ν̂(x) instead. This means that our integral
expression is actually of the form

M(H, K)X =
∫

{x �=0}
(HsH)

ix
2 (N(H, K)X)(KsK)−

ix
2 dν(x)

+ν({0})N(H, K)X

(for example in case (iii)), and hence we have the same estimate as above.

8.2 Uniform bounds for norms

In this section we investigate uniform (upper and lower) bounds for |||A(n)|||’s
and |||B(m)|||’s. We begin with comparison between |||A(n)||| and |||B(m)|||.
As was remarked before, odd and even cases have to be studied separately.

Theorem 8.3.

(i) For n = 1, 3, 5, · · · and m = 3, 5, 7, · · · we have

|||A(n)||| ≤ |||B(m)|||.

(ii) For n = 2, 4, 6, · · · and m = 2, 4, 6, · · · we have

n + 1
n

× |||A(n)||| ≤ m − 1
m

× |||B(m)|||.

Proof. We set

α =
1

n + 1
and β =

1
m − 1

.

(i) We compute

an(e2x, 1)
bm(e2x, 1)

=
cosh

(
n

n+1x
)

cosh
(

1
n+1x

) ×
cosh

(
1

m−1x
)

cosh
(

m
m−1x

)

=
cosh((1 − α)x)

cosh(αx)
× cosh(βx)

cosh((β + 1)x)

=
cosh((1 − α + β)x) + cosh((1 − α − β)x)

2 cosh(αx) cosh((β + 1)x)
.
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We note

1 − α + β =
nm + 1

(n + 1)(m − 1)
> 0 and 1 − α − β =

n(m − 2) − 1
(n + 1)(m − 1)

≥ 0

thanks to n ≥ 1 and m ≥ 3. Since they are majorized by

β + 1 =
m

m − 1
=

m(n + 1)
(n + 1)(m − 1)

,

the ratio an(e2x, 1)/bm(e2x, 1) (whose value at x = 0 is 1) is positive definite.
(ii) In this case, we compute

an(e2x, 1)
bm(e2x, 1)

=
sinh((1 − α)x)

cosh(αx)
× cosh(βx)

sinh((β + 1)x)

=
sinh((1 − α + β)x) + sinh((1 − α − β)x)

2 cosh(αx) sinh((β + 1)x)

instead. When m ≥ 4 (i.e., m �= 2), as in (i) both of 1 − α ± β are positive
and majorized by β + 1 so that we have the positive definiteness as above. If
m = 2, then 1 − α − β = −(n + 1)−1 < 0 so that the above argument does
not work. However, since β = 1 in this case, we have

an(e2x, 1)
b2(e2x, 1)

=
sinh((1 − α)x)

cosh(αx)
× cosh(x)

sinh(2x)
=

sinh((1 − α)x)
2 cosh(αx) sinh(x)

,

which is also positive definite thanks to 0 < 1 − α = n
n+1 < 1. Therefore, the

ratio an(e2x, 1)/bm(e2x, 1) is always positive definite, and we have

1 − α

β + 1
=

n

n + 1
× m − 1

m

as the value at x = 0. ��
The difference version of the Heinz inequality (see [36] and also §6.3, 1)

states

|||HθXK1−θ − H1−θXKθ|||
≤ |2θ − 1| × |||HX − XK||| (for θ ∈ [0, 1]). (8.7)

Theorem 8.3, (ii) with n = m = 2 means

|||H 1
3 XK

2
3 − H

2
3 XK

1
3 ||| ≤ 1

3
|||HX − XK|||,

which is exactly (8.7) for the special value θ = 1
3 . More generally, the theorem

(with m = 2) states

|||A(2n)||| ≤ n

2n + 1
× |||HX − XK|||.
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If one breaks the alternating sum A(2n) into pieces, then the repeated use of
(8.7) (together with the triangle inequality) gives us the constant

n∑

k=1

∣
∣
∣
∣2 × k

2n + 1
− 1

∣
∣
∣
∣ =

n∑

k=1

2k − 1
2n + 1

=
n2

2n + 1

so that the constant we obtained is far better.
In the next §8.3 we will see that both of

n �→ |||A(2n − 1)||| and n �→ 2n + 1
2n

× |||A(2n)|||

are monotone increasing (see Proposition 8.8) so that we have the following
uniform lower bounds:

|||H 1
2 XK

1
2 ||| = |||A(1)||| ≤ |||A(2n − 1)|||,

3n

2n + 1
× |||H 1

3 XK
2
3 − H

2
3 XK

1
3 ||| =

2n

2n + 1
× 3

2
× |||A(2)||| ≤ |||A(2n)|||.

On the other hand, from Theorem 8.3 we have the upper bounds

|||A(2n − 1)||| ≤ |||B(3)||| = |||HX + XK − H
1
2 XK

1
2 |||,

|||A(2n)||| ≤ |||B(2)||| = |||HX − XK|||,

that can be improved as is seen shortly (the remark below and Theorem 8.5).

Remark 8.4. The bound |||B(3)||| is comparable with |||HX + XK|||:
1
2
|||HX + XK||| ≤ |||HX + XK − H

1
2 XK

1
2 ||| ≤ 3

2
|||HX + XK|||.

The arithmetic-geometric mean inequality (see (1.8)) actually shows the sec-
ond inequality, and the constant 3

2 can be removed for the Hilbert-Schmidt
norm ||| · ||| = ‖ ·‖2. Indeed, the ratio (2 cosh(x)−1)/2 cosh(x) is majorized by
1 (see [39, proposition 1.2]). But, since it is not positive definite, the constant
3
2 (for general unitarily invariant norms) seems optimal. On the other hand,
we estimate

|||HX + XK||| ≤ |||HX + XK − H
1
2 XK

1
2 ||| + |||H 1

2 XK
1
2 |||

≤ |||HX + XK − H
1
2 XK

1
2 ||| + 1

2
|||HX + XK|||.

Thus, by subtracting 1
2 |||HX + XK||| from the both sides, we get the first

inequality.

We actually have
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Theorem 8.5.

(i) For each n = 1, 2, 3, · · · we have

|||A(2n − 1)||| ≤ 1
2
|||HX + XK|||.

(ii) For each n = 1, 2, 3, · · · we have

|||A(2n)||| ≤ n

2n + 1
× |||HX − XK|||

(

≤ 1
2
|||HX − XK|||

)

.

Proof. The arithmetic mean 1
2 (HX +HK) corresponds to M2(s, t) = 1

2 (s+ t)
(see §5.1) and we have

a2n−1(e2x, 1)
M2(e2x, 1)

=
cosh

(
2n−1
2n x

)

cosh(x) cosh
(

1
2nx

) .

On the other hand, we compute

a2n(s, t)
−s + t

=
a2n(s, t)

(st)
1
2

((
s
t

)− 1
2 − (

s
t

) 1
2
)

=

(
s
t

)− 1
2× 2n

2n+1 − (
s
t

) 1
2× 2n

2n+1

((
s
t

)− 1
2 − (

s
t

) 1
2
)((

s
t

)− 1
2× 1

2n+1 +
(

s
t

) 1
2× 1

2n+1
) .

Therefore, the corresponding function (i.e., s = e2x and t = 1) is

a2n(e2x, 1)
−e2x + 1

=
sinh

(
2n

2n+1x
)

2 sinh(x) cosh
(

1
2n+1x

) .

The two functions are obviously positive definite so that we have the desired
inequalities. Notice that the coefficient n

2n+1 in (ii) appears as the value of the
second function at x = 0. ��

Let us try to estimate |||A(2n − 1)|||, |||A(2n)||| (from above and below)
in terms of the norms of the “leading terms”

H
1
2n XK

2n−1
2n + H

2n−1
2n XK

1
2n , H

1
2n+1 XK

2n
2n+1 − H

2n
2n+1 XK

1
2n+1 .

For instance the repeated use of the Heinz inequality (1.3) yields

|||A(5)||| = |||H 1
6 XK

5
6 − H

2
6 XK

4
6 + H

3
6 XK

3
6 − H

4
6 XK

2
6 + H

5
6 XK

1
6 |||

≤ |||H 1
6 XK

5
6 + H

5
6 XK

1
6 ||| + |||H 2

6 XK
4
6 + H

4
6 XK

2
6 ||| + |||H 3

6 XK
3
6 |||

≤ 5
2
|||H 1

6 XK
5
6 + H

5
6 XK

1
6 |||.
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Note that this type of reasoning gives us only

|||A(2n − 1)||| ≤ 2n − 1
2

× |||H 1
2n XK

2n−1
2n + H

2n−1
2n XK

1
2n |||,

where the constant 2n−1
2 blows up. Instead, we actually have

Proposition 8.6.

(i) We have
1
2
≤ |||A(2n − 1)|||

|||H 1
2n XK

2n−1
2n + H

2n−1
2n XK

1
2n |||

≤ 5
2

for each n.
(ii) We have

n

2n − 1
≤ |||A(2n)|||

|||H 1
2n+1 XK

2n
2n+1 − H

2n
2n+1 XK

1
2n+1 |||

≤ 3n − 2
2n − 1

for each n.

Proof. (i) Note that the sum 1
2

(
H

1
2n XK

2n−1
2n + H

2n−1
2n XK

1
2n

)
is the Heinz-

type mean A 1
2n

(H, K)X (see (6.1)) and we have

A 1
2n

(s, t) =
1
2

(
s

1
2n t

2n−1
2n + s

2n−1
2n t

1
2n

)

=
(st)

1
2

2
×

((s

t

) 1
2×n−1

n

+
(s

t

)− 1
2×n−1

n

)

.

Since

A 1
2n

(e2x, 1)

a2n−1(e2x, 1)
=

cosh
(

1
2nx

)
cosh

(
n−1

n x
)

cosh
(

2n−1
2n x

) =
1
2

(

1 +
cosh

(
2n−3
2n x

)

cosh
(

2n−1
2n x

)

)

is positive definite, we get the first inequality. To see the second estimate, we
need to look at the reciprocal

a2n−1(e2x, 1)
A 1

2n
(e2x, 1)

=
cosh

(
2n−1
2n x

)

cosh
(

1
2nx

)
cosh

(
n−1

n x
)

and Lemma 8.1 says the desired inequality.
(ii) To see the first inequality, we have to look at the ratio

cosh
(

1
2n+1x

)
sinh

(
2n−1
2n+1x

)

sinh
(

2n
2n+1x

) =
1
2



1 +
sinh

(
2n−2
2n+1x

)

sinh
(

2n
2n+1x

)



 .

This is positive definite and the value at x = 0 is
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1
2

(

1 +
2n − 2

2n

)

=
2n − 1

2n
.

The reciprocal
sinh

(
2n

2n+1x
)

cosh
(

1
2n+1x

)
sinh

(
2n−1
2n+1x

)

is equal to

sinh
(

1
2n+1x

)
cosh

(
2n−1
2n+1x

)
+ cosh

(
1

2n+1x
)

sinh
(

2n−1
2n+1x

)

cosh( 1
2n+1x) sinh(2n−1

2n+1x)

= 2 +
sinh

(
1

2n+1x
)

cosh
(

2n−1
2n+1x

)
− cosh

(
1

2n+1x
)

sinh
(

2n−1
2n+1x

)

cosh
(

1
2n+1x

)
sinh

(
2n−1
2n+1x

)

= 2 −
sinh

(
2n−2
2n+1x

)

cosh
(

1
2n+1x

)
sinh

(
2n−1
2n+1x

) .

Note that the subtracted ratio in the last expression is positive definite with
the value 2n−2

2n−1 at x = 0. Thus, the whole function can be expressed as the
Fourier transform of a signed measure with total variation at most

2 +
2n − 2
2n − 1

=
2(3n − 2)
2n − 1

,

showing the second inequality. ��
We next try to obtain uniform (upper and lower) bounds for |||B(m)|||’s,

and begin with the case m = 3, 5, 7, · · · (odd). At first we note

M2(s, t)
bm(s, t)

=

(
s
t

) 1
2 +

(
s
t

)− 1
2

2
×

(
s
t

) 1
2× 1

m−1 +
(

s
t

)− 1
2× 1

m−1

(
s
t

) 1
2× m

m−1 +
(

s
t

)− 1
2× m

m−1
.

Since

M2(e2x, 1)
bm(e2x, 1)

=
cosh(x) cosh

(
1

m−1x
)

cosh
(

m
m−1x

) =
1
2



1 +
cosh

(
m−2
m−1x

)

cosh
(

m
m−1x

)





is positive definite, we conclude

1
2
|||HX + XK||| = |||M2(H, K)X ||| ≤ |||B(m)||| (m = 3, 5, 7, · · · ).

For an upper bound we obviously have
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|||B(m)||| ≤ |||HX + XK|||+ |||A(m − 2)||| ≤ 3
2
|||HX + XK|||

thanks to (8.1) and Theorem 8.5, (i). (Note that a slightly different estimate
based on Proposition 8.6, (i) is also possible.) We however point out that a
multiple of the norm ||| ∫ 1

0
HxXK1−xdx||| of the logarithmic mean cannot

majorize |||B(m)|||. Indeed, the leading term of bm(s, 1) is s while we have

M1(s, 1) =
∫ 1

0

sxdx =
s − 1
log s

.

We next consider the case m = 2, 4, 6, · · · (even). Theorem 8.5, (ii) and
(8.1) give rise to an upper bound for |||B(m)||| as follows:

|||B(m)||| ≤ |||HX − XK||| + |||A(m − 2)|||
≤ |||HX − XK||| + m − 2

m − 1
× 1

2
× |||HX − XK|||

=
(

1 +
m − 2

2(m − 1)

)

× |||HX − XK|||

for m = 2, 4, 6, · · · . To get a lower bound for |||B(m)||| (with m even), as in
the proof of Theorem 8.5 we compute

−e2x + 1
bm(e2x, 1)

=
cosh

(
1

m−1x
)

sinh
(

m
m−1x

) × sinh(x)

=
sinh

((
1 + 1

m−1

)
x
)

+ sinh
((

1 − 1
m−1

)
x
)

2 sinh
(

m
m−1x

)

=
1
2



1 +
sinh

(
m−2
m−1x

)

sinh
(

m
m−1x

)



 .

This function is positive definite (thanks to m−2
m−1 < m

m−1 ) with the value m−1
m

at x = 0 so that we conclude
1
2
|||HX − XK||| ≤ m − 1

m
× |||B(m)|||.

Summing up the discussions so far we have shown
Theorem 8.7.

(i) For m = 3, 5, 7, · · · we have

1
2
≤ |||B(m)|||

|||HX + XK||| ≤
3
2
.

(ii) For m = 2, 4, 6, · · · we have
(

1
2
≤

)
m

2(m − 1)
≤ |||B(m)|||

|||HX − XK||| ≤ 1 +
m − 2

2(m − 1)

(

≤ 3
2

)

.
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8.3 Monotonicity of norms

Monotonicity for |||A(n)||| and |||B(m)||| (either odd or even) is studied in
this section. We begin with the former (which is quite straight-forward).

Proposition 8.8.

(i) The norm |||A(2n − 1)||| is monotone increasing in n (n = 1, 2, 3, · · · ).
(ii) The quantity

2n + 1
2n

× |||A(2n)||| is also monotone increasing in n (n =

1, 2, 3, · · · ).
Proof. For n′ ≥ n (odd) we have

an(e2x, 1)
an′(e2x, 1)

=
cosh

(
n

n+1x
)

cosh
(

1
n+1x

) ×
cosh

(
1

n′+1x
)

cosh
(

n′
n′+1x

) .

Because of n
n+1 ≤ 1, 1

n′+1 ≤ 1
n+1 and n

n+1 ≤ n′
n′+1 both functions are positive

definite and the values at x = 0 are 1. On the other hand, for n′ ≥ n (even)
we have

an(e2x, 1)
an′(e2x, 1)

=
sinh

(
n

n+1x
)

cosh
(

1
n+1x

) ×
cosh

(
1

n′+1x
)

sinh
(

n′
n′+1x

) .

Because of 1
n′+1 ≤ 1

n+1 and n
n+1 ≤ n′

n′+1 this function is positive definite and
the value at x = 0 is n′+1

n′ × n
n+1 . ��

The case |||B(m)||| is more involved, and monotone decreasingness is ob-
tained only in a weak sense (except for the Hilbert-Schmidt norm ‖ · ‖2).

Theorem 8.9.

(i) We have

|||B(2m + 3) − B(2m + 1)||| ≤ |||B(2m + 1)|||
for m = 1, 2, 3, · · · , and in particular

|||B(2m + 3)||| ≤ 2|||B(2m + 1)|||.
(ii) We have

|||B(2m + 2) − B(2m)||| ≤ 2m − 1
2m

× |||B(2m)|||

for m = 1, 2, 3, · · · , and in particular

|||B(2m + 2)||| ≤
(

1 +
2m − 1

2m

)

× |||B(2m)|||
(
≤ 2 × |||B(2m)|||

)
.
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(iii) For the Hilbert-Schmidt norm ‖·‖2 we have the monotone decreasingness

‖B(2m + 3)‖2 ≤ ‖B(2m + 1)‖2 and ‖B(2m + 2)‖2 ≤ ‖B(2m)‖2.

(iv) The monotone decreasingness

|||B(m′)||| ≤ |||B(m)||| (for m′ > m odd )

fails to hold for general unitarily invariant norms.

Proof. (i) For m′ ≥ m ≥ 3 (odd) we have

bm′(e2x, 1)
bm(e2x, 1)

=
cosh

(
1

m−1x
)

cosh
(

m
m−1x

) ×
cosh

(
m′

m′−1x
)

cosh
(

1
m′−1x

) . (8.8)

For convenience we set

α =
1

m′ − 1
and β =

1
m − 1

.

We compute

bm′(e2x, 1)
bm(e2x, 1)

− 1 =
cosh((α + 1)x) cosh(βx)
cosh((β + 1)x) cosh(αx)

− 1

=
cosh((α + 1)x) cosh(βx) − cosh((β + 1)x) cosh(αx)

cosh((β + 1)x) cosh(αx)

=
1

cosh((β + 1)x) cosh(αx)
×

{(
cosh(αx) cosh(x) + sinh(αx) sinh(x)

)
cosh(βx)

−
(
cosh(βx) cosh(x) + sinh(βx) sinh(x)

)
cosh(αx)

}

=
sinh(x)

cosh((β + 1)x) cosh(αx)
×

{
sinh(αx) cosh(βx) − cosh(αx) sinh(βx)

}

=
sinh(x) sinh((α − β)x)

cosh((β + 1)x) cosh(αx)
.

Since m′ ≥ m, i.e., 0 < α ≤ β, the above last quantity is negative so that we
have the (point-wise) monotone decreasingness

(0 ≤) bm′(s, t) ≤ bm(s, t),

showing (iii) in the odd case (see [39, Proposition 1.2]). Notice

bm′(e2x, 1)
bm(e2x, 1)

= 1 +
sinh(x) sinh((α − β)x)

cosh((β + 1)x) cosh(αx)

= 1 +
cosh((α − β + 1)x) − cosh((α − β − 1)x)

2 cosh((β + 1)x) cosh(αx)
. (8.9)



8.3 Monotonicity of norms 119

We now assume m′ = m + 2 (i.e., α = 1
m+1 and β = 1

m−1) so that





α − β + 1 = m2−3
(m+1)(m−1) > 0,

α − β − 1 = − m2+1
(m+1)(m−1) < 0.

(8.10)

Notice that the hyperbolic cosine function is even and

m2 − 3
(m + 1)(m − 1)

≤ m

m − 1
and

m2 + 1
(m + 1)(m − 1)

≤ m

m − 1
(8.11)

with
m

m − 1
= β + 1. Consequently, the second term in the far right side of

(8.9) is a difference of two positive definite functions (with the value 1
2 at

x = 0), showing (i).

(ii) For m′ ≥ m ≥ 2 (even) we have

bm′(e2x, 1)
bm(e2x, 1)

=
cosh

(
1

m−1x
)

sinh
(

m
m−1x

) ×
sinh

(
m′

m′−1x
)

cosh
(

1
m′−1x

) =
sinh((α + 1)x) cosh(βx)
sinh((β + 1)x) cosh(αx)

instead with α and β appearing above. Hence, the computations in (i) are
changed as follows:

bm′(e2x, 1)
bm(e2x, 1)

− 1 =
sinh((α + 1)x) cosh(βx) − sinh((β + 1)x) cosh(αx)

sinh((β + 1)x) cosh(αx)

=
1

sinh((β + 1)x) cosh(αx)
×

{(
sinh(αx) cosh(x) + cosh(αx) sinh(x)

)
cosh(βx)

−
(
sinh(βx) cosh(x) + cosh(βx) sinh(x)

)
cosh(αx)

}

=
cosh(x)

sinh((β + 1)x) cosh(αx)
×

{
sinh(αx) cosh(βx) − cosh(αx) sinh(βx)

}

=
cosh(x) sinh((α − β)x)
sinh((β + 1)x) cosh(αx)

.

Since 0 < α ≤ β, the above last quantity is negative so that once again we
have the point-wise monotone decreasingness

|bm′(s, t)| ≤ |bm(s, t)|,
showing (iii) in the even case. We have

bm′(e2x, 1)
bm(e2x, 1)

= 1 +
cosh(x) sinh((α − β)x)
sinh((β + 1)x) cosh(αx)

= 1 +
sinh((α − β + 1)x) + sinh((α − β − 1)x)

2 sinh((β + 1)x) cosh(αx)
.
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We now assume m′ = m + 2 as before. Since α− β− 1 is negative (see (8.10))
and the hyperbolic sine function is odd, we have

bm+2(e2x, 1)
bm(e2x, 1)

= 1 +
sinh((α − β + 1)x) − sinh((−α + β + 1)x)

2 sinh((β + 1)x) cosh(αx)
.

Therefore, (8.11) once again yields that the above ratio is a difference of
positive definite functions. Note that their values at x = 0 are

α − β + 1
β + 1

=
m2 − 3

(m + 1)(m − 1)
× 1

2
× m − 1

m
=

m2 − 3
2m(m + 1)

,

−α + β + 1
β + 1

=
m2 + 1

(m + 1)(m − 1)
× 1

2
× m − 1

m
=

m2 + 1
2m(m + 1)

respectively. They sum up to m−1
m so that (by changing (even) m to 2m) we

get the inequality in (ii).

(iv) When m is odd, it is obvious that the function bm(s, t) in s, t > 0 is
a symmetric homogeneous function such that bm(s, s) = s for all s > 0. Al-
though bm(s, 1) is not non-decreasing in s, the proof of (ii) ⇒ (iv) in Theorem
3.7 (i.e., (ii) ⇒ (v) in [39, Theorem 1.1]) works well (see also the proof of
Theorem A.3 in §A.1). Thus, if |||B(m′)||| ≤ |||B(m)||| (for odd m′ > m ≥ 3)
were valid for all unitarily invariant norms, then

f(x) =
bm′(e2x, 1)
bm(e2x, 1)

would be a positive definite function, i.e., f(x) = ν̂(x) for some probability
measure ν (because of f(0) = 1). However, by Proposition A.7 and (8.8) we
would have

ν({0}) = lim
x→±∞ f(x) = 1,

meaning f(x) = 1, a contradiction. ��
In the part (iv) of the theorem, the monotone decreasingness |||B(m′)||| ≤

|||B(m)||| (for m′ > m odd) actually fails to hold for the operator norm
||| · ||| = ‖ · ‖ and for the trace norm ||| · ||| = ‖ · ‖1. Indeed, the proof of [39,
Theorem 1.1] says that if the decreasingness (in case of matrices) were valid
for one of these norms then we would have the positive definiteness of the
above function f(x).

We are unable to determine what happens in the even case.

8.4 Notes and references

Trivial modification of the argument for the proof of the first inequality in
Remark 8.4 enables us to obtain
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2 + x

2
|||HX + XK||| ≤ |||HX + XK + xH1/2XK1/2|||

for x ∈ (−2, 0]. This fact and the ordinary Heinz inequality (1.3) imply that
the inequality (i) in §3.7, 2 holds true for each θ ∈ [0, 1] as long as x ∈ (−2, 0].
Inequalities involving the norm of an operator of the form

HθXK1−θ + H1−θXKθ + xH
1
2 XK

1
2

have been studied by many authors (see [13, 78, 83] for instance). Note that
the cases θ = 3

4 , 1 (and x = −1) correspond to A(3),B(3) respectively, and
quite thorough investigation on inequalities involving these quantities will be
carried out in the forthcoming article [55].

Note that the logarithmic-geometric mean inequality (see (1.8)) says

|||A(1)||| = |||H 1
2 XK

1
2 ||| ≤ |||

∫ 1

0

HxXK1−xdx|||,

which should be compared with Theorem 8.5, (i). The estimate of this form
is no longer valid for |||A(3)|||, but it is possible to estimate (more generally)
|||A(2n − 1)||| by a constant multiple of ||| ∫ 1

0
HxXK1−xdx||| ([55]).



A

Appendices

We collect six appendices here. In §A.1 we will deal with certain non-
symmetric means (by weakening the axioms stated in Definition 3.1), and
we will see that all the results in §3.2 remain valid for such means (sometimes
with obvious modification). In §A.2–A.6 some technical results used in the
main body of the monograph are clarified.

A.1 Non-symmetric means

We can deal with a wider class of (not necessarily symmetric) homogeneous
means for positive scalars. We denote by M̃ the set of all continuous positive
real functions M(s, t) for s, t > 0 satisfying

{
the properties (b), (c) in Definition 3.1,
and M(s, s) = s for s > 0 in place of (d) there.

For M, N ∈ M̃ the order M � N is introduced in the same way as in Definition
3.2, that is, M � N if and only if there exists a symmetric measure ν on R
such that M(ex, 1) = ν̂(x)N(ex, 1) (x ∈ R).

Remark A.1. Here are some remarks on the above measure ν.

(i) The measure ν in Definition 3.2 was automatically symmetric (since so
are M(s, t) and N(s, t)) while it is now a part of the requirement.

(ii) When M � N , we have

M(s, t)/N(s, t) = M(t, s)/N(t, s)

(although M(s, t) and N(s, t) might be asymmetric). In fact, since ν is
symmetric, we compute

M(s, t)/N(s, t) = M(s/t, 1)/N(s/t, 1) = ν̂(log s − log t)
= ν̂(log t − log s) = M(t/s, 1)/N(t/s, 1) = M(t, s)/N(t, s).

F. Hiai and H. Kosaki: LNM 1820, pp. 123–139, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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(iii) The measure ν is a probability measure because of

M(e0, 1) = N(e0, 1) = 1.

As in the case of a mean in M, the domain of M ∈ M̃ extends to [0,∞)×
[0,∞) as follows:

M(s, 0) = lim
t↘0

M(s, t) = sM(1, 0) (s > 0),

M(0, t) = lim
s↘0

M(s, t) = tM(0, 1) (t > 0),

and M(0, 0) = 0 while M(1, 0) �= M(0, 1) in general. So, for positive operators
H, K ∈ B(H) one can define the double integral transformation M(H, K)X
first for X ∈ C2(H) and then for all X ∈ B(H) whenever M is a Schur
multiplier relative to (H, K).

We will show that the main results in §3.2 remain valid also for means in
M̃, and we begin with generalizations of Theorem 3.4 and Corollary 3.5 (see
also Proposition 8.2).

Theorem A.2. Assume that means M, N in M̃ satisfy M � N .

(i) The integral expressions (i.e., (3.8) and (3.9)) in Theorem 3.4 remain
valid with the modification of (3.8) by

M(H, K)X =
∫ ∞

−∞
(HsH)ix(N(H, K)X)(KsK)−ixdν(x)

+M(1, 0)HX(1− sK) + M(0, 1)(1 − sH)XK.

(ii) The norm inequality in Corollary 3.5 also holds true.

Proof. The proof of Proposition 8.2 works here thanks to (8.3) and Remark
A.1, (ii). Note that the estimate (8.6) there is not necessary since we have the
stronger estimate M(1, 0) ≤ N(1, 0) (due to Remark A.1, (iii)) as in the proof
of Theorem 3.4. Of course (ii) follows from Theorem A.5 as usual. ��

We are now ready to prove a generalization of Theorem 3.7.

Theorem A.3. The conditions (i)–(iv) in Theorem 3.7 are all equivalent for
means M, N in M̃.

Proof. Theorem A.2, (i) and (ii) guarantee (iv) ⇒ (i) and (iv) ⇒ (ii) respec-
tively. The proof of (iv) ⇒ (iii) is the same as in the proof of Theorem 3.7
while (i) ⇒ (iv) is trivial as in the proof of Theorem 3.7.

It remains show (ii) ⇒ (iv) and (iii) ⇒ (iv). To this end, it suffices to prove
M � N under the assumption that (iii) holds for all matrices H ≥ 0 and X
of any size. Now, for any s1, . . . , sn > 0 put H = diag(s1, . . . , sn). Since (iii)
means
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‖[M(si, sj)] ◦ X‖ ≤ ‖[N(si, sj)] ◦ X‖
for all n×n matrices X , one gets ‖T ◦X‖ ≤ ‖X‖ with T =

[M(si,sj)
N(si,sj)

]
i,j=1,··· ,n

.
Since Tr((T ◦ X)Y ) = Tr(X(T t ◦ Y )) for all n × n matrices X, Y , one has
‖T t ◦ Y ‖1 ≤ ‖Y ‖1 so that

‖T ◦ Y ‖1 = ‖(T ◦ Y )t‖1 = ‖T t ◦ Y t‖1 ≤ ‖Y t‖1 = ‖Y ‖1.

Choose the matrix of all entries 1 for Y ; then the above estimate gives

‖T ‖1 = ‖T ◦ Y ‖ ≤ ‖Y ‖1 = n.

On the other hand, since M(s, s) = N(s, s) = s, the diagonals of T are all 1
and consequently

‖T ‖1 ≥ TrT = n.

Hence we have seen ‖T ‖1 = TrT . Let T = V |T | with a unitary matrix V , and
assume that |T | is diagonalized with a unitary matrix U as follows:

|T | = Udiag(λ1, . . . , λn)U∗.

Then, we observe

n∑

i=1

λi = ‖T ‖1 = TrT = Tr
(
U∗V Udiag(λ1, . . . , λn)

)
=

n∑

i=1

λiuii

with the unitary matrix U∗V U = [uij ]. Note uii = 1 as long as λi > 0 (thanks
to the obvious facts |uii| ≤ 1 and λi ≥ 0). Hence, by assuming say

λ1, . . . , λk > 0 = λk+1 = λk+2 = · · · = λn,

we can write
U∗V U = Ik ⊕ Wn−k,

and consequently

T = U(Ik ⊕ Wn−k)U∗Udiag(λ1, . . . , λk, 0, . . . , 0)U∗

= Udiag(λ1, . . . , λk, 0, . . . , 0)U∗.

This means T = |T | ≥ 0, and M � N is shown. ��
Let us present two simple examples for which Theorem A.2 is useful. Firstly

let us assume
0 < α ≤ β < 1, 0 ≤ δ ≤ min{α, 1 − β},

and we set

M(s, t) = sαt1−α + sβt1−β ,

N(s, t) = sα−δt1−α+δ + sβ+δt1−β−δ.
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Although M, N fail to be symmetric, 1
2M, 1

2N fall into M̃ and they satisfy

M(ex, 1)
N(ex, 1)

=
eαx + eβx

e(α−δ)x + e(β+δ)x

=
e−

β−α
2 x + e

β−α
2 x

e−( β−α
2 +δ)x + e( β−α

2 +δ)x
=

cosh
(

β−α
2 x

)

cosh
(
(β−α

2 + δ)x
) ,

which is positive definite (see [39, (1.5)] for example). Therefore, we have
M � N , and Theorem A.2, (ii) implies

|||HαXK1−α + HβXK1−β||| ≤ |||Hα−δXB1−α+δ + Aβ+δXK1−β−δ|||
for all unitarily invariant norms and all operators H, K ≥ 0 and X . It is also
possible to derive this inequality from Heinz-type inequalities (see Chapter
6), and details are left to the reader.

Secondly we assume

0 < α1, . . . , αk < 1 and 0 < β < min{α1, . . . , αk, 1 − α1, . . . , 1 − αk}.

For λ1, . . . , λk ≥ 0 with
∑k

i=1 λi = 1 we consider M, N ∈ M̃ defined by

M(s, t) =
k∑

i=1

λis
αit1−αi ,

N(s, t) =
1
2

k∑

i=1

λi

(
sαi+βt1−αi−β + sαi−βt1−αi+β

)
.

Note N(s, t) = sβt−β+s−βtβ

2 × M(s, t) and

M(ex, 1)
N(ex, 1)

=
1

cosh(βx)

is positive definite (see Example 3.6, (a)). Thus, once again Theorem A.2, (ii)
implies

|||
k∑

i=1

λiH
αiXK1−αi|||

≤ 1
2
|||

k∑

i=1

λi

(
Hαi+βXK1−αi−β + Hαi−βXK1−αi+β

)|||.

In particular,

|||λHαXK1−α + (1 − λ)H1−αXKα|||
≤ 1

2
|||λH2α− 1

2 XK
3
2−2α + H

1
2 XK

1
2 + (1 − λ)H

3
2−2αXK2α− 1

2 |||
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for every 1
4 ≤ α ≤ 3

4 and 0 ≤ λ ≤ 1.
The equivalent conditions for M, N ∈ M̃ obtained in Theorem A.3 are

somewhat too restrictive, and it is also interesting to characterize the sit-
uation where |||M(H, K)X ||| ≤ C|||N(H, K)X ||| holds with some univer-
sal constant C (for all H, K ≥ 0 and X). A sufficient condition is that
M(ex, 1)/N(ex, 1) = µ̂(x) (x ∈ R) for some signed measure µ on R. This
condition implies the above inequality with C = ‖µ‖ (the total variation of
µ). A typical application of this reasoning is the weak Young inequality (6.4)
whose full details were worked out in [54]. Note that this method was employed
in Chapter 8 (although an(s, t), bm(s, t) there need not fall into M̃).

A.2 Norm inequality for operator integrals

We assume that F : Ω → B(H) is a weakly measurable operator-valued
function on a measure space (Ω, µ) in the sense that the function x ∈ Ω �→
(F (x)ξ, η) is measurable for each vectors ξ, η ∈ H. In this section the operator
integral ∫

Ω

F (x) dµ(x)

is considered, and its (unitarily invariant) norm estimate will be studied.
The proof of the next lemma is based on the separability assumption on

the ambient Hilbert space H.

Lemma A.4. For each unitarily invariant norm ||| · |||, the function

x ∈ Ω �→ |||F (x)||| ∈ [0,∞]

is measurable.

Proof. At first we claim that x �→ µn(F (x)) is measurable for each n =
0, 1, . . . , where µn(·) denotes the n-th singular number. When n = 0, we note
µ0(F (x)) = ‖F (x)‖, i.e., the operator norm, and by choosing a dense sequence
{ξi}i=1,2,··· in the unit ball of H we have

‖F (x)‖ = sup
i,j

|(F (x)ξi, ξj)|.

Therefore, the weak measurability guarantees the measurability of x �→
µ0(F (x)). To deal with general n’s, we recall the famous trick appearing for
example in the proof of the Weyl inequality (see [77, §1, (v)] for details) based
on anti-symmetric tensors. The main ingredient of the trick is the fact that
the n-fold anti-symmetric tensor product ∧n(F (x)) ∈ B(∧nH) satisfies

‖ ∧n (F (x))‖ =
n−1∏

k=0

µk(F (x)).
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Hence, the preceding argument (using a dense sequence) applied for ∧n(F (x))
guarantees the measurability of x �→ ∏n−1

k=0 µk(F (x)) (for each n) and we are
done.

Let Φ be the symmetric norm for (finite) sequences corresponding to ||| · |||.
Since

|||F (x)||| = lim
n→∞Φ(µ0(F (x)), µ1(F (x)), . . . , µn(F (x)), 0, 0, . . . ),

to prove the lemma it suffices to check the measurability of

x ∈ Ω �→ Φ(µ0(F (x)), µ1(F (x)), . . . , µn(F (x)), 0, 0, . . . ) ∈ [0,∞)

for each fixed n. Note that this map is the composition of the measurable
map x �→ (µ0(F (x)), µ1(F (x)), . . . , µn(F (x))) (thanks to the first half of the
proof) followed by

(a0, a1, . . . , an) ∈ Rn+1 �→ Φ(a0, a1, . . . , an, 0, 0, . . . ) ∈ [0,∞).

However, the latter is a norm and hence continuous so that the composition
is clearly measurable. ��

Next, we further require that a weakly measurable operator-valued func-
tion F : Ω → B(H) satisfies the ‖ · ‖-integrability

∫

Ω

‖F (x)‖ dµ(x) < ∞.

Then, the operator integral Z =
∫

Ω F (x)dµ(x) ∈ B(H) can be defined in the
weak sense, i.e.,

(Zξ, η) =
∫

Ω

(F (x)ξ, η) dµ(x) (for ξ, η ∈ H),

and the following estimate is straight-forward:

‖Z‖ ≤
∫

Ω

‖F (x)‖ dµ(x).

The next theorem asserts that a similar norm estimate remains valid for every
unitarily invariant norm.

Theorem A.5. Let ||| · ||| be a unitarily invariant norm, and we assume that
a weakly measurable operator-valued function F : Ω → B(H) on a measure
space (Ω, µ) satisfies the ‖ · ‖-integrability

∫

Ω

‖F (x)‖ dµ(x) < ∞.

Then, the norm of the operator Z =
∫

Ω F (x)dµ(x) ∈ B(H) (defined in the
weak sense as above) admits the following estimate :

|||Z||| ≤
∫

Ω

|||F (x)||| dµ(x) (≤ ∞).



A.2 Norm inequality for operator integrals 129

Proof. We at first point out that one can reduce the proof to the case where
(Ω, µ) is a finite measure and |||F (·)||| is bounded.

(i) We can assume µ(Ω) < ∞. Indeed, (Ω, µ) can be assumed to be σ-
finite because F is supported on a σ-finite measurable set. So let {Ωi}i=1,2,···
be an increasing sequence of measurable subsets with µ(Ωi) < ∞ (for each i)
exhausting the whole space Ω. We set

Zi =
∫

Ωi

F (x) dµ(x) (in the weak sense).

Then, the ‖ · ‖-integrability of F (·) implies

| ((Z − Zi)ξ, η) | ≤ ‖ξ‖ × ‖η‖ ×
∫

Ω\Ωi

‖F (x)‖ dµ(x) (ξ, η ∈ H),

which tends to 0 as i → ∞ due to the Lebesgue dominated convergence
theorem, i.e., {Zi}i=1,2,··· tends to Z in the weak operator topology. Therefore,
if the result is known for Ωi’s (of finite measure), then by the lower semi-
continuity of ||| · ||| in the weak operator topology (see [37, Proposition 2.11])
we get

|||Z||| ≤ lim inf
i→∞

|||Zi||| ≤ lim inf
i→∞

∫

Ωi

|||F (x)||| dµ(x) =
∫

Ω

|||F (x)||| dµ(x).

Here, the last equality follows from the monotone convergence theorem.
(ii) We can assume the |||·|||-boundedness of F . Indeed, if

∫
Ω
|||F (x)|||dµ(x)

= ∞, we have nothing to prove. Hence, we may and do assume the integrability
of |||F (·)|||. In particular, we have |||F (x)||| < ∞ for µ-a.e. x. We set

Ω̃n = {x ∈ Ω : |||F (x)||| ≤ n} and Z̃n =
∫

Ω̃n

F (x) dµ(x) (in the weak sense).

Then {Ω̃n}n=1,2,··· is increasing with
⋃

n Ω̃n = Ω (up to a null set). The same
arguments as in (i) show that {Z̃n}n=1,2,··· tends to Z in the weak operator
topology, and we have |||Z||| ≤ ∫

Ω |||F (x)|||dµ(x) (if the result is known for
Ω̃n’s).

Thanks to (i) and (ii), we can assume µ(Ω) < ∞ and the |||·|||-boundedness
of F in the rest of the proof. We choose and fix ε > 0 and α satisfying α <
|||Z|||. (|||Z||| could be ∞ a priori, in which case α can be anything. However,
our arguments in what follows will rule out the possibility of |||Z||| = ∞.)

The set {X ∈ B(H) : |||X ||| > α} is an open neighborhood of Z relative
to the weak topology from the lower semi-continuity of ||| · |||. Hence, vectors
ξ1, ξ2, . . . , ξN ∈ H and δ > 0 can be chosen in such a way that

| ((X − Z)ξs, ξt) | ≤ δ (s, t = 1, . . . , N) =⇒ |||X ||| > α. (A.1)

Choose and fix a pair (s, t) ∈ {1, 2, . . . , N}2 for a moment. Since ‖ · ‖ is
majorized by ||| · |||, (F (·)ξs, ξt) is a bounded measurable function. By dividing
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the range of the function into small pieces and considering the corresponding
preimages, one can choose a finite measurable partition {S1, S2, . . . , S�} of Ω
such that | (F (x)ξs, ξt) − (F (x′)ξs, ξt) | ≤ δ

µ(Ω) if x, x′ belong to the same Si.
Note that we have finitely many (s, t)’s and do the same for each of (s, t)’s.
By considering the common refinement of all the partitions obtained in this
procedure (the refinement is denoted by {S1, S2, . . . , S�} again), we conclude

| (F (x)ξs, ξt) − (F (x′)ξs, ξt) | ≤ δ

µ(Ω)
(for all s, t) (A.2)

as long as x, x′ sit in the same Si (i = 1, 2, . . . , �).
On the other hand, since |||F (·)||| is bounded, we can also take a finite

measurable partition {T1, T2, . . . , Tm} of Ω such that

m∑

j=1

Mjµ(Tj) ≤
∫

Ω

|||F (x)||| dµ(x) + ε (A.3)

with
Mj = sup{|||F (x)||| : x ∈ Tj} (j = 1, 2, . . . , m).

Let {Qk}k=1,2,··· ,n be a renumbering of {Si∩Tj}i=1,2,··· ,�; j=1,2,··· ,m, and we
choose xk from each Qk (k = 1, 2, . . . , n). Being a refinement of {Si}i=1,2,··· ,�,
the property (A.2) remains valid for the Qk’s. Firstly, for each s, t we estimate

∣
∣
∣

(( n∑

k=1

F (xk)µ(Qk) − Z

)

ξs, ξt

)
∣
∣
∣ =

∣
∣
∣

n∑

k=1

∫

Qk

((F (xk) − F (x))ξs, ξt) dµ(x)
∣
∣
∣

≤
n∑

k=1

∫

Qk

|((F (xk) − F (x))ξs, ξt)| dµ(x)

≤ δ

µ(Ω)

n∑

k=1

µ(Qk) = δ.

This means that

X =
n∑

k=1

F (xk)µ(Qk) ∈ B(H)

satisfies the assumption of (A.1), and consequently we get |||X ||| > α. Sec-
ondly, from the above definition of Mj we observe

|||X ||| = |||
n∑

k=1

F (xk)µ(Qk)||| ≤
n∑

k=1

|||F (xk)|||µ(Qk) ≤
m∑

j=1

Mjµ(Tj)

since {Qk}k=1,2,··· ,n is a refinement of {Tj}j=1,2,··· ,m. This estimate and (A.3)
imply

|||X ||| ≤
∫

Ω

|||F (x)||| dµ(x) + ε.
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Therefore, we conclude

α < |||X ||| ≤
∫

Ω

|||F (x)||| dµ(x) + ε.

Since α (< |||Z|||) and ε (> 0) were arbitrary, we are done. ��

The following proof based on the duality I|||·||| =
(
I(0)
|||·|||′

)∗
(see Remark

4.2, (4) and the first part of the proof below) is also worth pointing out:

Alternative proof of Theorem A.5. Let ||| · |||′ be the conjugate norm of ||| · |||,
and recall that the duality I|||·||| =

(
I(0)
|||·|||′

)∗
is given by the bilinear form

(X, Y ) ∈ I|||·|||×I(0)
|||·|||′ �→ Tr(XY ) ∈ C. On the other hand, from the definition

of the separable ideal I(0)
|||·|||′ each Y ∈ I(0)

|||·|||′ can be approximated by finite-
rank operators with norm at most |||Y |||′. Therefore, we have

|||X ||| = sup{|Tr(XY )| : Y is of finite-rank and |||Y |||′ ≤ 1}

(see the proof of [37, Proposition 2.11]). For each Y =
∑n

i=1 ξi ⊗ ηc
i with

|||Y |||′ ≤ 1 we estimate

|Tr(ZY )| =
∣
∣
∣

n∑

i=1

(Zξi, ηi)
∣
∣
∣ =

∣
∣
∣

∫

Ω

n∑

i=1

(F (x)ξi, ηi) dµ(x)
∣
∣
∣

≤
∫

Ω

∣
∣
∣

n∑

i=1

(F (x)ξi, ηi)
∣
∣
∣ dµ(x) =

∫

Ω

∣
∣
∣Tr(F (x)Y ))

∣
∣
∣ dµ(x)

≤
∫

Ω

|||F (x)||| dµ(x).

Thus, by taking the supremum over Y ’s, we get the conclusion. ��

A.3 Decomposition of max{s, t}
We assume that the integral operator T acting on L2([a, b]) with a kernel
k(s, t) (∈ L2([a, b] × [a, b])) is positive (i.e., k(s, t) is a positive definite in
the sense of §3.4), and let {λn}n=1,2,··· be the (strictly) positive eigenvalues
λ1 ≥ λ2 ≥ λ3 ≥ · · · > 0 (with multiplicities counted). The spectral de-
composition theorem states T =

∑
n λnφn ⊗ φc

n for an orthonormal system
{φn(t)}n=1,2,··· (⊆ L2([a, b])) of corresponding eigenvectors. The following re-
sult (that is a consequence of Dini’s theorem) is known as Mercer’s theorem
(see [79, Theorem 7.7.2], [81, p. 125] or [82, Chapter 3 §2 32]): If a positive
definite kernel k(s, t) is a continuous function on [a, b] × [a, b], then so are
eigenfunctions φn(t) and moreover we have
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k(s, t) =
∑

n

λnφn(s)φn(t),

the series being uniformly and absolutely convergent on [a, b] × [a, b]. Based
on this theorem one can prove the absolute convergence

min{s, t} = 2
∞∑

n=1

(
2

(2n − 1)π

)2

sin
(

(2n − 1)πs

2

)

sin
(

(2n − 1)πt

2

)

(A.4)

for (s, t) ∈ [0, 1] × [0, 1] (see the end of the section), which plays an impor-
tant role in analysis of the Brownian process. With slightly more involved
arguments the next decomposition can be also obtained.

Theorem A.6. The function max{s, t} on [0, 1]× [0, 1] admits the absolutely
convergent decomposition

max{s, t} = 2
(α2 − 1

α4
× cosh(αs) cosh(αt)

−
∞∑

n=1

1 + α2
n

α4
n

× cos(αns) cos(αnt)
)
.

Here, α (> 1) is a unique positive real satisfying tanh(α) − 1
α = 0 while

α1 < α2 < · · · are the positive roots for the equation tan(x) + 1
x = 0.

Proof. We consider the integral operator with the kernel max{s, t} acting
on the Hilbert space L2([0, 1]; dt), which is a self-adjoint operator sitting in
C2(L2([0, 1])). Let x(t) be an eigenvector with an eigenvalue λ ∈ R:

λx(t) =
∫ 1

0

max{t, s}x(s) ds = t

∫ t

0

x(s) ds +
∫ 1

t

sx(s) ds. (A.5)

When λ = 0, the differentiation of the right-hand side gives us

(0 =)
∫ t

0

x(s) ds + tx(t) − tx(t) =
∫ t

0

x(s) ds.

Hence, we must have x(s) = 0, that is, the operator is non-singular. In the
rest let us assume λ �= 0. Because of

∫ t

0

x(s) ds = λx′(t)

we observe x′(0) = 0 and x(t) = λx′′(t).
We begin with the case λ > 0. The general solution for the differential

equation x′′ − λ−1x = 0 is

x(t) = A exp
(
λ− 1

2 t
)

+ B exp
(
−λ− 1

2 t
)

.
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However, the boundary condition x′(0) = 0 forces A = B so that an eigenvec-
tor must be a constant multiple of

x(t) = cosh
(
λ− 1

2 t
)

.

The direct computation of the right side of (A.5) with this function yields

t

∫ t

0

cosh
(
λ− 1

2 s
)

ds +
∫ 1

t

s cosh
(
λ− 1

2 s
)

ds

= λ
1
2 sinh

(
λ− 1

2

)
− λ cosh

(
λ− 1

2

)
+ λ cosh

(
λ− 1

2 t
)

. (A.6)

Therefore, x(t) is an eigenvector if and only if

sinh
(
λ− 1

2

)
− λ

1
2 cosh

(
λ− 1

2

)
= 0, i.e., λ− 1

2 = α,

showing that λ = 1/α2 is the only positive eigenvalue. The square of the
L2-norm of the eigenvector x(t) = cosh(αt) is

∫ 1

0

cosh2(αs) ds =
1
2

∫ 1

0

(
1 + cosh(2αs)

)
ds

=
1
2

(

1 +
sinh(2α)

2α

)

=
1
2

(

1 +
sinh(α) cosh(α)

α

)

.

We note

sinh(α) cosh(α) = tanh(α) cosh2(α) =
tanh(α)

1 − tanh2(α)

so that the above quantity is equal to

1
2

(

1 +
1
α
×

1
α

1 − (
1
α

)2

)

=
α2

2(α2 − 1)
.

Therefore, a unit eigenvector (for the eigenvalue λ = 1/α2) is given by

x0(t) =
√

2
√

α2 − 1
α

× cosh(αt).

We next move to the case λ < 0. By setting λ̃ = −λ > 0, we consider the
differential equation x′′ + λ̃−1x = 0 with the general solution

A sin
(
λ̃− 1

2 t
)

+ B cos
(
λ̃− 1

2 t
)

.

As before the boundary condition x′(0) = 0 forces A = 0 and we set

x(t) = cos
(
λ̃− 1

2 t
)

.
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Note that the computation (A.6) is replaced by

t

∫ t

0

cos
(
λ̃− 1

2 s
)

ds +
∫ 1

t

s cos
(
λ̃− 1

2 s
)

ds

= λ̃
1
2 sin

(
λ̃− 1

2

)
+ λ̃ cos

(
λ̃− 1

2

)
− λ̃ cos

(
λ̃− 1

2 t
)

.

Therefore, x(t) is an eigenvector if and only if

sin
(
λ̃− 1

2

)
+ λ̃

1
2 cos

(
λ̃− 1

2

)
= 0,

that is, λ̃− 1
2 must be a (positive) solution for tan(x) + 1

x = 0. We assume
λ̃− 1

2 = αn (n = 1, 2, · · · ). This means that λ = −λ̃ = −1/α2
n is a negative

eigenvalue with an eigenvector x(t) = cos(αnt). The preceding computations
for normalization should be modified in the following way:

∫ 1

0

cos2(αns) ds =
1
2

∫ 1

0

(
1 + cos(2αns)

)
ds

=
1
2

(

1 +
sin(2αn)

2αn

)

=
1
2

(

1 +
sin(αn) cos(αn)

αn

)

=
1
2

(

1 +
1

αn
× tan(αn)

1 + tan2(αn)

)

=
1
2




1 +

1
αn

× − 1
αn

1 +
(
− 1

αn

)2




 =

α2
n

2(1 + α2
n)

.

Thus, we conclude that

xn(t) =

√
2
√

1 + α2
n

αn
× cos(αnt) (n = 1, 2, · · · )

is a normalized eigenvector for the negative eigenvalue λ = −1/α2
n.

The arguments so far show that the integral operator T with the kernel
max{s, t} admits the spectral decomposition

T =
1
α2

x0 ⊗ xc
0 −

∞∑

n=1

1
α2

n

xn ⊗ xc
n.

Since the difference 1
α2 x0 ⊗ xc

0 − T is a positive integral operator with the
continuous kernel

1
α2

x0(s)x0(t) − max{s, t}

=
1
α2

× 2(α2 − 1)
α2

× cosh(αs) cosh(αt) − max{s, t},

the desired convergence follows from Mercer’s theorem. ��
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Assume 0 ≤ H, K ≤ 1 for instance. Then, the above theorem permits the
following alternative definition:

M∞(H, K)X = 2
(α2 − 1

α4
× cosh(αH)X cosh(αK)

−
∞∑

n=1

1 + α2
n

α4
n

× cos(αnH)X cos(αnK)
)
, (A.7)

which coincides with the one considered in previous chapters (see Remark
2.5, (ii)). Substitutions s = t = 0 and s = t = 1 to the series in the theorem
give rise to

α2 − 1
α4

=
∞∑

n=1

1 + α2
n

α4
n

, (A.8)

α2 − 1
α4

× cosh2 α =
1
2

+
∞∑

n=1

1 + α2
n

α4
n

× cos2 αn. (A.9)

The expression (A.7) clearly shows |||M∞(H, K)H ||| ≤ κ|||X ||| with

κ = 2

(
α2 − 1

α4
× cosh2 α +

∞∑

n=1

1 + α2
n

α4
n

)

.

Note that (A.8) and tanhα = 1/α yield

κ = 2 × α2 − 1
α4

× (cosh2 α + 1) = 2 × 2α2 − 1
α4

while (A.9) and tanαn = −1/αn show

κ = 2

(
1
2

+
∞∑

n=1

1 + α2
n

α4
n

× (cos2 αn + 1)

)

= 1 + 2
∞∑

n=1

2α2
n + 1
α4

n

.

From the first expression for κ and α > 1 we observe κ < 2. On the other
hand, the second and the obvious fact αn < nπ (for n = 1, 2, · · · ) imply

κ > 1 + 2
∞∑

n=1

2π2n2 + 1
π4n4

= 1 +
4
π2

∞∑

n=1

1
n2

+
2
π4

∞∑

n=1

1
n4

= 1 +
31
45

(thanks to
∑∞

n=1 n−2 = π2/6 and
∑∞

n=1 n−4 = π4/90). Hence, (although the
expression (A.7) makes it trivial that max{s, t} is a Schur multiplier) it seems
impossible to get the optimal constant 2√

3
obtained in Theorem 3.12.

Both of positive and negative eigenvalues appeared in the proof of Theorem
A.6. This phenomenon corresponds to the fact that M∞ is not majorized (in
the sense of Definition 3.2) by the geometric mean G = M1/2 (see Proposition
3.10). The proof for (A.4) is easier since all the eigenvalues (which are actually
(2/(2n − 1)π)2 with n = 1, 2, · · · ) are positive due to M−∞ � G. Details are
left to the reader as an easy exercise.
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A.4 Cesàro limit of the Fourier transform

In this section the formula (i.e., Proposition A.9) that have appeared before
Theorem 3.4 and some related results are explained.

Proposition A.7. For every complex measure µ on R, we have

µ({0}) = lim
T→∞

1
2T

∫ T

−T

µ̂(t) dt .

Proof. To prove the proposition, it suffices to show

µ({0}) = 0 =⇒ lim
T→∞

1
2T

∫ T

−T

µ̂(t) dt = 0

(by considering µ−µ({0})δ0), and hence let us assume µ({0}) = 0. The Fubini
theorem shows

1
2T

∫ T

−T

µ̂(t) dt =
1

2T

∫ T

−T

(∫ ∞

−∞
eist dµ(s)

)

dt

=
∫ ∞

−∞

(
1

2T

∫ T

−T

eist dt

)

dµ(s)

=
∫ ∞

−∞

1
2T

× eisT − e−isT

is
dµ(s)

=
∫ ∞

−∞

sin(sT )
sT

dµ(s).

Therefore, for each (small) δ > 0 we estimate
∣
∣
∣
∣

1
2T

∫ T

−T

µ̂(t) dt

∣
∣
∣
∣ ≤

∫

|s|<δ

∣
∣
∣
sin(sT )

sT

∣
∣
∣ d|µ|(s) +

∫

|s|≥δ

∣
∣
∣
sin(sT )

sT

∣
∣
∣ d|µ|(s)

≤ |µ|((−δ, δ)) +
1

δT
|µ|(R) ,

and hence

lim sup
T→∞

∣
∣
∣
∣

1
2T

∫ T

−T

µ̂(t) dt

∣
∣
∣
∣ ≤ |µ|((−δ, δ)) .

Note that the assumption µ({0}) = 0 implies |µ|({0}) = 0. Since |µ|(R) < ∞,
we have |µ|((−δ, δ)) → 0 as δ → +0 and consequently

lim sup
T→∞

∣
∣
∣
∣

1
2T

∫ T

−T

µ̂(t) dt

∣
∣
∣
∣ = 0

as desired. ��



A.5 Reflexivity and separability of operator ideals 137

If µ̂(t) → α as t → ±∞, then it is plain to observe

lim
T→∞

1
2T

∫ T

−T

µ̂(t) dt = α,

and hence we have

Corollary A.8. If lim
|t|→∞

µ̂(t) exists, then it is equal to µ({0}).

Here is the formula mentioned before Theorem 3.4.

Proposition A.9. For a complex measure µ on R we have

∑

t∈R

|µ({t})|2 = lim
T→∞

1
2T

∫ T

−T

|µ̂(t)|2 dt .

Proof. Let us set µ̃(S) = µ(−S) for S ⊂ R. Then we easily observe ˆ̃µ(t) = µ̂(t)
and hence

µ̂ ∗ µ̃(t) = µ̂(t)ˆ̃µ(t) = |µ̂(t)|2.
On the other hand, we note

µ ∗ µ̃({0}) =
∫ ∞

−∞
µ̃({−t}) dµ(t) =

∫ ∞

−∞
µ({t})dµ(t) =

∑

t∈R

|µ({t})|2 .

Hence, Proposition A.7 applied to µ ∗ µ̃ gives the result. ��

A.5 Reflexivity and separability of operator ideals

Here the reflexivity and separability of symmetrically normed ideals are dis-
cussed, and we need the following general facts on Banach spaces:

(i) The uniform convexity implies the reflexivity ([74, Chapter V, Problem
15]).

(ii) A Banach space X is reflexive if and only if so is the dual X∗ ([25,
Corollary II.3.24]).

(iii) If X∗ is separable, then so is X ([74, Theorem III.7]).

Proposition A.10. Let |||·||| be a unitarily invariant norm. If either I|||·||| or
I(0)
|||·||| is reflexive, then I|||·||| is separable, i.e., I|||·||| = I(0)

|||·||| (see [29, §III.6]).

Proof. We assume that I|||·||| is reflexive, and let ||| · |||′ be the conjugate

norm of ||| · |||. Then, the general duality I|||·||| =
(
I(0)
|||·|||′

)∗
and (ii) yield the

reflexivity of I(0)
|||·|||′ so that we have

(I|||·|||
)∗ =

(
I(0)
|||·|||′

)∗∗
= I(0)

|||·|||′.
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Hence
(I|||·|||

)∗ is separable and so is I|||·||| by (iii).
Next, we assume that I(0)

|||·||| is reflexive. Since the dual space I|||·|||′ =
(
I(0)
|||·|||

)∗
is reflexive by (ii), the first half of the proof (applied to ||| · |||′)

guarantees that I|||·|||′ = I(0)
|||·|||′ so that we observe

I|||·||| =
(
I(0)
|||·|||′

)∗
=

(I|||·|||′
)∗ =

(
I(0)
|||·|||

)∗∗
= I(0)

|||·|||,

showing the separability of I|||·|||. ��
Corollary A.11. If one of I|||·|||, I(0)

|||·|||, I|||·|||′ and I(0)
|||·|||′ is reflexive, then

all of them are reflexive and we have the separability I|||·||| = I(0)
|||·|||, I|||·|||′ =

I(0)
|||·|||′. We also get the same conclusion when one of I|||·|||, I(0)

|||·|||, I|||·|||′ and

I(0)
|||·|||′ is uniformly convex.

Proof. The proof of Proposition A.10 actually shows





the reflexivity of I|||·||| ⇒ the reflexivity of I(0)
|||·|||′

and the separability of I|||·|||,
the reflexivity of I(0)

|||·||| ⇒ the reflexivity of I|||·|||′
and the separability of I|||·|||.

Application of these to ||| · ||| and ||| · |||′ easily shows the first statement while
the second statement follows from the first and (i). ��

A.6 Fourier transform of 1/cosh�(t)

The Fourier transform of 1/ coshα(t) for α > 0 can be found in standard tables
of Fourier transforms (see [65, p. 33] for instance). However, the authors are
unable to find details in the literature so that computations are given here.

Since the function in question is even, we note

I =
∫ ∞

−∞

1
coshα(t)

eistdt =
∫ ∞

−∞

cos(st)
coshα(t)

dt = 2α

∫ ∞

−∞

cos(st)
(et + e−t)α

dt.

The change of variables t = 1
2 log

(
x

1−x

)
(hence x

1−x = e2t and dt = dx
2x(1−x))

gives us

I = 2α−1

∫ 1

0

cos
(

s
2 log

(
x

1−x

))

(√
x

1−x +
√

1−x
x

)α × dx

x(1 − x)

= 2α−1

∫ 1

0

(x(1 − x))
α
2 × cos

(
s
2 log

(
x

1−x

)) × dx

x(1 − x)

= 2α−1

∫ 1

0

x
α
2 −1(1 − x)

α
2 −1 cos

(
s
2 log

(
x

1−x

))
dx.
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Notice





cos
(

s
2 log

(
x

1−x

))
= cos

(
s
2 log x

)
cos

(
s
2 log(1 − x)

)

+ sin
(

s
2 log x

)
sin

(
s
2 log(1 − x)

)
,

xz = xRe z cos(Im z log x) + ixRe z sin(Im z log x) (for x > 0).

Based on these we easily observe

x
α
2 −1(1 − x)

α
2 −1 cos

(
s
2 log

(
x

1−x

))
= Re

(
x

α
2 −1+ is

2 (1 − x)
α
2 −1− is

2
)
,

and consequently

I = 2α−1Re
(∫ 1

0

x
α
2 −1+ is

2 (1 − x)
α
2 −1− is

2 dx

)

.

The integral here is

B

(
α

2
+

is

2
,

α

2
− is

2

)

=
Γ

(
α
2 + is

2

)
Γ

(
α
2 − is

2

)

Γ (α)

in terms of the B-function (and the Γ -function), showing

I =
2α−1

Γ (α)
× Re

(

Γ

(
α

2
+

is

2

)

Γ

(
α

2
− is

2

))

.

Note Γ (z̄) = Γ (z) by the Schwarz reflection principle so that the above for-
mula actually means

∫ ∞

−∞

1
coshα(t)

eistdt =
2α−1

Γ (α)
×

∣
∣
∣
∣Γ

(
α

2
+

is

2

)∣
∣
∣
∣

2

,

or equivalently,

∫ ∞

−∞

1

cosh1/α(αt)
eistdt =

2
1
α−1

αΓ
(

1
α

) ×
∣
∣
∣
∣Γ

(
1 + is

2α

)∣
∣
∣
∣

2

. (A.10)
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Hölder-type norm inequality, 87
Haagerup, 2, 55
Haagerup’s criterion, 41, 47
Hadamard product, 1, 41
Hahn decomposition, 110
harmonic mean, 34, 66



Index 147

Hasumi, 17
Heinz inequality, 3, 79, 85, 113, 126
Heinz inequality (difference version),

111
Heinz-type mean, 6, 79, 114
Hilbert space, 7
Hilbert-Schmidt class operator, 1, 7, 8
Hilbert-Schmidt norm, 112, 118
Horn, 54

inner product, 7, 19
integral expression, 5, 21, 27, 29, 30, 37,

39, 40, 80, 81, 82, 100, 101, 102,
103, 108, 124

integral operator, 131
interpolation norm, 69, 83
involution, 23
Itoh and Nagisa, 55

Jocić, 54
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