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Preface

This monograph is a study of triangulated categories of mixed motives over a
base scheme S, whose construction is based on the rough ideas I originally outlined
in a lecture at the J.A.M.I. conference on K-theory and number theory, held at the
Johns Hopkins University in April of 1990. The essential principle is that one can
form a categorical framework for motivic cohomology by first forming a tensor cate-
gory from the category of smooth quasi-projective schemes over S, with morphisms
generated by algebraic cycles, pull-back maps and external products, imposing the
relations of functoriality of cycle pull-back and compatibility of cycle products with
the external product, then taking the homotopy category of complexes in this tensor
category, and finally localizing to impose the axioms of a Bloch-Ogus cohomology
theory, e.g., the homotopy axiom, the Künneth isomorphism, Mayer-Vietoris, and
so on.

Remarkably, this quite formal construction turns out to give the same coho-
mology theory as that given by Bloch’s higher Chow groups [19], (at least if the
base scheme is Spec of a field, or a smooth curve over a field). In particular, this
puts the theory of the classical Chow ring of cycles modulo rational equivalence in
a categorical context.

Following the identification of the categorical motivic cohomology as the higher
Chow groups, we go on to show how the familiar constructions of cohomology:
Chern classes, projective push-forward, the Riemann-Roch theorem, Poincaré du-
ality, as well as homology, Borel-Moore homology and compactly supported coho-
mology, have their counterparts in the motivic category. The category of Chow
motives of smooth projective varieties, with morphisms being the rational equiva-
lence classes of correspondences, embeds as a full subcategory of our construction.

Our motivic category is specially constructed to give realization functors for
Bloch-Ogus cohomology theories. As particular examples, we construct realization
functors for classical singular cohomology, étale cohomology, and Hodge (Deligne)
cohomology. We also have versions over a smooth base scheme, the Hodge realiza-
tion using Saito’s category of algebraic mixed Hodge modules. We put the Betti,
étale and Hodge relations together to give the “motivic” realization into the cate-
gory of mixed realizations, as described by Deligne [32], Jannsen [71], and Huber
[67].

The various realizations of an object in the motivic category allow one to relate
and unite parallel phenomena in different cohomology theories. A central example
is Beilinson’s motivic polylogarithm, together with its Hodge and étale realizations
(see [9] and [13]). Beilinson’s original construction uses the weight-graded pieces
of the rational K-theory of a certain cosimplicial scheme over P1 minus {0, 1,∞}
as a replacement for the motivic object; essentially the same construction gives rise

v



vi PREFACE

to the motivic polylogarithm as an object in our category of motives over P1 minus
{0, 1,∞}, with the advantage that one acquires some integral information.

There have been a number of other constructions of triangulated motivic cat-
egories in the past few years, inspired by the conjectural framework for mixed mo-
tives set out by Beilinson [10] and Deligne [32], [33]. In addition to the approach
via mixed realizations mentioned above, constructions of triangulated categories of
motives have been given by Hanamura [63] and Voevodsky [124]. Deligne has sug-
gested that the category of Q-mixed Tate motives might be accessible via a direct
construction of the “motivic Lie algebra”; the motivic Tate category would then
be given as the category of representations of this Lie algebra. Along these lines,
Bloch and Kriz [17] attempt to realize the category of mixed Tate motives as the
category of co-representations of an explicit Lie co-algebra, built from Bloch’s cycle
complex. Kriz and May [81] have given a construction of a triangulated category
of mixed Tate motives (with Z-coefficients) from co-representations of the “May
algebra” given by Bloch’s cycle complex. The Bloch-Kriz category has derived cat-
egory which is equivalent to the Q-version of the triangulated category constructed
by Kriz and May, if one assumes the Beilinson-Soulé vanishing conjectures.

We are able to compare our construction with that of Voevodsky, and show
that, when the base is a perfect field admitting resolution of singularities, the two
categories are equivalent. Although it seems that Hanamura’s construction should
give an equivalent category, we have not been able to describe an equivalence. Re-
lating our category to the motivic Lie algebra of Bloch and Kriz, or the triangulated
category of Kriz and May, is another interesting open problem.

Besides the categorical constructions mentioned above, there have been con-
structions of motivic cohomology which rely on the axioms for motivic complexes
set down by Lichtenbaum [90] and Beilinson [9], many of which rely on a motivic
interpretation of the polylogarithm functions. This began with the Bloch-Wigner
dilogarithm function, leading to a construction of weight two motivic cohomol-
ogy via the Bloch-Suslin complex ([40] and [119]) and Lichtenbaum’s weight two
motivic complex [89]. Pushing these ideas further has led to the Grassmann cy-
cle complex of Beilinson, MacPherson, and Schechtman [15], as well as the mo-
tivic complexes of Goncharov ([50], [51], [52]), and the categorical construction
of Beilinson, Goncharov, Schechtman, and Varchenko [14]. Although we have the
polylogarithm as an object in our motivic category, it is at present unclear how
these constructions fit in with our category.

While writing this book, the hospitality of the University of Essen allowed me
the luxury of a year of undisturbed scholarship in lively mathematical surroundings,
for which I am most grateful; I also would like to thank Northeastern University for
the leave of absence which made that visit possible. Special and heartfelt thanks are
due to Hélène Esnault and Eckart Viehweg for their support and encouragement.
The comments of Spencer Bloch, Annette Huber, and Rick Jardine were most
helpful and are greatly appreciated. I thank the reviewer for taking the time to go
through the manuscript and for suggesting a number of improvements. Last, but
not least, I wish to thank the A.M.S., especially Sergei Gelfand, Sarah Donnelly,
and Deborah Smith, for their invaluable assistance in bringing this book to press.

Boston Marc Levine
November, 1997
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Introduction: Part I

The categorical framework for the universal cohomology theory of algebraic
varieties is the category of mixed motives. This category has yet to be constructed,
although many of its desired properties have been described (see [10] and [1],
especially [70]). Here is a partial list of the expected properties:

1. For each scheme S, one has the category of mixed motives over S, MMS ;
MMS is an abelian tensor category with a duality involution. For each map
of schemes f :T → S, one has the functors f∗, f∗, f ! and f!, corresponding
to the familiar functors for sheaves, and satisfying the standard relations of
functoriality, adjointness, and duality.

2. For each S, there is a functor (natural in S)

M : (Sm/S)op →MMS ,

where Sm/S is the category of smooth S-schemes; M(X) is the motive of
X .

3. There are external products

M(X)⊗M(Y ) →M(X ×S Y )

which are isomorphisms (the Künneth isomorphism).
4. There are objects Z(q), q = 0,±1,±2, . . . in MMS , the Tate objects, with

Z(0) the unit for the tensor product and Z(a) ⊗ Z(b) ∼= Z(a + b).
5. Using the Künneth isomorphism to define the product, the groups

Hp
µ(X,Z(q)) := ExtpMMS

(Z(0),M(X)⊗ Z(q))

form a bi-graded ring which satisfies the axioms of a Bloch-Ogus cohomology
theory: Mayer-Vietoris for Zariski open covers, homotopy property, projec-
tive bundle formula, etc.

6. There are Chern classes from algebraic K-theory

cq,p :K2q−p(X) → Hp
µ(X,Z(q))

which induce an isomorphism

K2q−p(X)(q) ∼= Hp
µ(X,Z(q)) ⊗Q,

with K∗(−)(q) the weight q eigenspace of the Adams operations.
7. The cohomology theory Hp

µ(X,Z(q)) is universal: Each Bloch-Ogus coho-
mology theory X �→ H∗(X,Γ(∗)) gives rise to a natural transformation
H∗µ(−,Z(∗)) → H∗(−,Γ(∗)).

8. MMS⊗Q is a Tannakian category, with the Q-Betti or Ql-étale realization
giving a fiber functor.

3



4 INTRODUCTION: PART I

9. There is a natural weight filtration on the objects ofMMS⊗Q; morphisms in
MMS⊗Q are strictly compatible with the filtration, and the corresponding
graded objects grW∗ are semi-simple.

Assuming one had the category MMS , one could hope to realize the motivic
cohomology theory H∗µ(−,Z(∗)) as the cohomology of some natural complexes, the
motivic complexes. Lichtenbaum (for the étale topology) [90] and Beilinson (for the
Zariski topology) [9] have outlined the desired properties of these complexes. In
[19], Bloch has given a candidate for the Zariski version, and thereby a candidate,
the higher Chow groups CHq(X, 2q − p), for the motivic cohomology Hp

µ(X,Z(p)).
Rather than attempting the construction of MMS , we consider a more modest

problem: The construction of a triangulated tensor category which has the expected
properties of the bounded derived category of MMS .

To be more specific, for a reduced scheme S, let SmS denote the category of
smooth quasi-projective S-schemes. We construct for each reduced scheme S a
triangulated tensor category DM(S); sending S to DM(Sred) defines a pseudo-
functor

DM(−) :Schop → TT,

where TT is the category of triangulated tensor categories. This gives the con-
travariant functoriality in (1).

The category DM(S) is generated (as a triangulated category) by objects
ZX(q), X ∈ SmS , q ∈ Z, together with the adjunction of summands corresponding
to idempotent endomorphisms.

There is an exact duality involution

(−)D :DM(S)pr,op → DM(S)pr,

where DM(S)pr is the pseudo-abelian hull of the full triangulated tensor subcat-
egory of DM(S) generated by objects ZX(q), for X → S projective. This makes
DM(S)pr into a rigid triangulated tensor category. If S = Spec k, with k a perfect
field admitting resolution of singularities, then DM(S)pr = DM(S), giving the
duality property in (1).

We reinterpret (5) by setting

Hp(X,Z(q)) := HomDM(S)(Z(0),ZX(q)[p]).

The properties (2)-(5) expected of motivic cohomology are then realized by prop-
erties satisfied by the objects ZX(q) in the category DM(S). This includes:

(i) Functoriality. Sending X to ZX(q) for fixed q extends to a functor

Z(−)(q) :SmopS → DM(S).

We set M(X) := ZX(0).
(ii) Homotopy. The projection p1 :X ×S A1 → X gives an isomorphism

p∗1 : ZX(q) → ZX×SA1(q).

(iii) Künneth isomorphism. There are external products, giving natural isomor-
phisms

ZX(a)⊗ ZY (b) ∼= ZX×SY (a + b);

ZS is the unit for the tensor product structure.



INTRODUCTION: PART I 5

(iv) Gysin morphism. Let i :Z → X be a smooth closed codimension q em-
bedding in SmS , with complement j :U → X . Then there is a natural
distinguished triangle

ZZ(−q)[−2q] i∗−→ ZX(0)
j∗−→ ZU (0) → ZZ(−q)[−2q + 1].

(v) Mayer-Vietoris. Write X ∈ SmS as a union of Zariski open subschemes,
X = U ∪ V . Then there is a natural distinguished triangle

ZX(0)
j∗U⊕j

∗
V−−−−→ ZU (0)⊕ ZV (0)

j∗U,U∩V −j
∗
V,U∩V−−−−−−−−−−→ ZU∩V (0) −→ ZX(0)[1].

The functoriality (i), isomorphisms (ii) and (iii), and the distinguished triangles (iv)
and (v) then translate into the standard properties of a Bloch-Ogus cohomology
theory.

We have Chern classes as in (6); in case the base is a field, or is a smooth
curve over a field, the Chern character defines an isomorphism of rational motivic
cohomology with weight-graded K-theory, as required by (6).

For a Bloch-Ogus twisted duality theory Γ, defined via cohomology of a complex
of A-valued sheaves for a Grothendieck topology T on SmS , satisfying certain
natural axioms, the motivic triangulated category DM(S) admits a realization
functor

�Γ :DM(S) → D+(ShAT (S)).
We have the Betti, étale and Hodge realizations. Thus, the category DM(S) sat-
isfies a version of the property (7).

We have not investigated the Tannakian property in (8), or the property (9)
(see, however, [62]).

In Chapter I, we construct the motivic DG tensor category Amot(S) and the
triangulated motivic category DM(S), and describe their basic properties.

We examine the motivic cohomology theory:

Hp(X,Z(q)) := HomDM(V(ZS ,ZX(p)[q])

in Chapter II. We define the Chow group of an object Γ of DM(S), CH(Γ), as well
as the cycle class map

clΓ : CH(Γ) → HomDM(S)(1,Γ),

and give a criterion for clΓ to be an isomorphism for all Γ in DM(S). We verify
this criterion in case S = Spec k, or S a smooth curve over k, where k is a field.
This shows in particular that (in these cases) the motivic cohomology Hp(X,Z(q))
agrees with Bloch’s higher Chow groups CHq(X, 2q − p), which puts the higher
Chow groups in a categorical framework. Assuming the above mentioned criterion
is satisfied, we derive a number of additional useful consequences for the motivic
cohomology, such as the existence of a Gersten resolution for the associated (Zariski)
cohomology sheaves.

Chapter III deals with the relationship between motivic cohomology and K-
theory. We construct Chern classes with values in motivic cohomology, for both
K0 and higher K-theory, satisfying the standard properties, e.g., Whitney product
formula, projective bundle formula, etc. We also construct push-forward maps in
motivic cohomology for a projective morphism, and verify the standard properties,
including functoriality and the projection formula. Both the Chern classes, and the
projective push-forward maps are constructed not just for smooth varieties, but also
for diagrams of smooth varieties. We prove the Riemann-Roch theorem without
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denominators, and the usual Riemann-Roch theorem. As an application, we show
that the Chern character gives an isomorphism of rational motivic cohomology with
weight-graded K-theory, for motives over a field or a smooth curve over a field.

In Chapter IV we examine duality in a tensor category and in a triangulated
tensor category, and apply this to the construction of the duality involution on the
full subcategory DM(S)pr of DM(S) generated by smooth projective S-schemes in
SmS . Combined with the operation of cup-product by cycle classes, this gives the
action of correspondences as homomorphisms in the category DM(S), and leads
to a fully faithful embedding of the category of graded Chow motives (over a field
k) into DM(Spec k).

We define the homological motive, the Borel-Moore motive and the compactly
supported motive. We also relate the motive of X with compact support to a
“motive of X̄ relative to infinity” if X admits a compactification X̄ as a smooth
projective S-scheme with a complement a normal crossing scheme.

We then examine extensions of the motivic theory to non-smooth S-schemes.
We give a construction of the Borel-Moore motive and the motive with compact
support for certain non-smooth S-schemes; as an application we prove a Riemann-
Roch theorem for singular varieties. We give a construction of the (cohomological)
motive of k-scheme of finite type, for k a perfect field admitting resolution of sin-
gularities, using the theory of cubical hyperresolutions.

Chapter V deals with realization of the motivic category. We describe the con-
struction of the realization functor �Γ associated to a cohomology theory Γ(∗); we
need to give a somewhat different characterization of the cohomology theory from
that of Bloch-Ogus [20] or Gillet [46], but it seems that this type of cohomology
theory is general enough for many applications. We construct the Betti, étale and
Hodge realizations of DM(V) in subsequent sections; we also give the realization
to Saito’s category of mixed Hodge modules [110] (over a smooth base) and to a
version of Jannsen’s category [71] of mixed absolute Hodge complexes.

In Chapter VI we examine various known “motivic” constructions, and rein-
terpret them in the category DM. We look at Milnor K-theory, prove the motivic
Steinberg relation, and give a version of Beilinson’s polylogarithm. We also relate
the category DM(Spec k) to Voevodsky’s motivic category DMgm(k) [124] (k a
perfect field admitting resolution of singularities), and show the two categories are
equivalent.

There are two appendices. In Appendix A, we give a review of a part of the
theory of equi-dimensional cycles due to Suslin-Voevodsky [117]. In Appendix B,
we collect some foundational notions and results on algebraic K-theory.

We have collected in a second portion of this volume the various categorical
constructions necessary for the paper; we refer the reader to the introduction of
Part II for an overview.



CHAPTER I

The Motivic Category

This chapter begins with the construction of the motivic DG categoryAmot(V).
We construct the triangulated motivic category DM(V) and describe its basic
properties in Section 2; we also define the motives of various types of diagrams
of schemes, e.g., simplicial schemes, cosimplicial schemes, n-cubes of schemes, as
well as giving a general construction for an arbitrary finite diagram. In Section 3,
we define the fundamental motivic cycles functor, and discuss its connection with
the morphisms in the homotopy category of complexes Kb(Amot(V)).

The rough idea of the construction of DM(S) is as follows: Naively, one might
attempt to construct DM(S) by the following process (for simplicity, assume the
base S is Spec of a field):

(i) Form the additive category generated by SmopS ×Z; denote the object (X,n)
by ZX(n), and the morphism pop × idn : ZX(n) → ZY (n) corresponding to
a morphism p :Y → X in SmS by p∗ : ZX(n) → ZY (n).

(ii) For each algebraic cycle Z of codimension d on X , adjoin a map of degree
2d

[Z] : ZS → ZX(d),

with the relation of linearity: [nZ + mW ] = n[Z] + m[W ].
(iii) Impose the relation of functoriality for the cycle maps,

p∗ ◦ [Z] = [p∗(Z)],

where p :Y → X is a map in SmS , and Z is a cycle on X for which p∗(Z)
is defined.

This constructs an additive category A which has the objects, morphisms and
relations needed to generate DM(S). The product of schemes over S, (X,Y ) �→
X ×S Y , extends to give A the structure of a tensor category with unit ZS . The
construction then continues:

(iv) Form the differential graded category of bounded complexes Cb(A) and the
triangulated homotopy category Kb(A). The product × on A extends to
give Kb(A) the structure of a triangulated tensor category.

(v) Localize the category Kb(A) to impose the relations of a Bloch-Ogus coho-
mology theory, e.g.:

(a) (Homotopy) Invert the map p∗1 : ZX(q) → ZX×SA1
S
(q).

(b) (Mayer-Vietoris) Suppose X = U ∪ V , where j :U → X , k :V → X
are open subschemes. Let iU :U ∩ V → U , iV :U ∩ V → V be the
inclusions; the map

j∗ ⊕ k∗ : ZX(q) → ZU (q)⊕ ZV (q)

7



8 I. THE MOTIVIC CATEGORY

extends to the map

j∗ ⊕ k∗ : ZX(q) → cone(i∗U − i∗V )[−1].

Invert this map.
(c) Continue inverting maps until the various axioms of a Bloch-Ogus

cohomology theory are satisfied.
(vi) This forms a triangulated tensor category; take the pseudo-abelian hull to

give the triangulated tensor category DM(S).

There are several problems with this naive approach. The first is that the
relation (iii) is only given for cycles Z for which the pull-back p∗(Z) is defined.

Classically, this type of problem is solved by imposing an adequate equivalence
relation on cycles, giving fully defined pull-backs on the resulting groups of cycle
classes. If one does this on the categorical level, one loses the interesting data
given by the relations among the relations, and all such higher order relations. To
avoid this, we make the operation of cycle pull-back fully defined and functorial by
refining the category SmS , adjoining to a scheme X the data of a map f :X ′ → X .
For such a pair (X, f), we have the group of cycles Z(X)f consisting of those cycles
Z for which the pull-back f∗(Z) is defined. We assemble such pairs (X, f) into a
category L(SmS) for which the assignment (X, f) �→ Z(X)f forms a functor.

Second, one would like a Bloch-Ogus cohomology theory Γ(∗) on SmS to give
rise to a realization functor �Γ from Db(A) to the appropriate derived category of
sheaves on the base S. In attempting to do this, one runs into two related problems:

1. For Z a cycle on X , the cycle class of Z with respect to the Γ-cohomology
is represented by a cocycle in the appropriate representing cochain complex,
but the choice of representing cocycle is not canonical. Thus, the pull-
back of this representing cocycle is not functorial, but only functorial up to
homotopy.

2. For most cohomology theories, the cup products are defined by associative
products on representing cochain complexes, but these products are usually
only commutative up to homotopy; the tensor product we have defined above
on A is, however, strictly commutative.

The problem (1) is solved by replacing strict identities with identities up to
homotopy; in categorical terms, one replaces the additive category sketched above
with a differential graded category. The problem (2) is more subtle, and is solved
by replacing the unit in A with a “fat unit” e. This fat unit generates a DG tensor
subcategory E, in which the various symmetry isomorphisms are made trivial, up
to homotopy and all higher homotopies, in as free a manner as possible. This
absorbs the usual cohomology operations, so that the motivic DG category becomes
homotopy equivalent to a model which is only commutative up to homotopy and
all higher homotopies.

Having made these technical modifications, one can still view the motivic cat-
egory as being built out of the geometry inherent in the category of smooth quasi-
projective S-schemes and the algebraic cycles on such schemes, extended by for-
mally taking complexes, and then superimposing the homological algebra of the
localized homotopy category. From this point of view, all properties of the motivic
category flow from the mixing of homological algebra with the geometry of schemes
and algebraic cycles. In fact, for motives over a field, we actually recover the naive
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description of the motivic category, once we identify the resulting motivic coho-
mology with Bloch’s higher Chow groups (see the introduction to Chapter IV for
further details).

1. The motivic DG category

1.1. The category L(V)

By scheme, we will mean a noetherian separated scheme. For a scheme S, an S-
scheme W is essentially of finite type over S if W is the localization of a scheme of
finite type over S. Let SchS denote the category of schemes over S, and SmS the
full subcategory of smooth quasi-projective S-schemes. We let SmessS denote the
full subcategory of SchS of localizations of schemes in SmS .

1.1.1. Let S be a reduced scheme, and let V be a strictly full subcategory of SmessS .
We assume that S is in V and that V is closed under the operations of product over
S and disjoint union. In particular, the category V is a symmetric monoidal sub-
category of SchS .

1.1.2. Definition. Let L(V) denote the category of equivalence classes of pairs
(X, f), where X is an object of V and f :X ′ → X is a map in SmessS , such that there
is a section s :X → X ′ to f , with s a smooth morphism; two pairs (X, f :X ′ → X),
(X, g :X ′′ → X) being equivalent if there is an isomorphism, h :X ′ → X ′′, with
f = g ◦ h.

For (X, f :X ′ → X) and (Y, g :Y ′ → Y ) in L(V), HomL(V)((Y, g), (X, f)) is the
subset of HomV(Y,X) defined by the following condition: A morphism p :Y → X
in V gives a morphism p : (Y, g) → (X, f) in L(V) if there is a flat map q : Y ′ → X ′

over S making the diagram

Y ′ ��
q

��

g

X ′

��

f

Y ��
p X

commute. Composition is induced from the composition of morphisms in SchS ;
this is well-defined since the composition of flat morphisms is flat.

1.1.3. The condition that a morphism f :X ′ → X have a smooth section s :X → X ′

is the same as saying that we can write X ′ as a disjoint union X ′ = X ′0
∐

X ′1 such
that the restriction of f to f0 :X ′0 → X is an isomorphism. Indeed, a section s must
be a closed embedding, and a smooth closed embedding is both open and closed.
Thus, each object of L(V) is equivalent to a pair of the form (X, f ∪ idX), where
f :Z → X is a map in SmessS . We also note that each morphism f :X → Y in V
can be lifted to a morphism in L(V); for example,

f : (X, idX) → (Y, f ∪ idY )

is one such lifting.

1.1.4. If (X, f), (Y, g) are in L(V), then (X ×S Y, f × g) is also in L(V), as smooth
sections s :X → X ′ to f , t :Y → Y ′ to g determine the smooth section s × t to
f × g. For (X, f), (Y, g) and (Z, h) in L(V), we let (X, f)× (Y, g) denote the object
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(X ×S Y, f × g), and we let

((X, f)× (Y, g))× (Z, h)
a(X,f),(Y,g),(Z,h)−−−−−−−−−−→ (X, f)× ((Y, g)× (Z, h)),

(X, f)× (Y, g)
t(X,f),(Y,g)−−−−−−−→ (Y, g)× (X, f)

be the isomorphisms induced by the associativity and symmetry isomorphisms in
SmessS .

The proof of the following proposition is elementary:

1.1.5. Proposition. (i) The category L(V) with product ×, symmetry t, associa-
tivity a and unit (S, idS) is a symmetric monoidal category.
(ii) The projection p1 :L(V) → V defines a faithful symmetric monoidal functor.

1.2. Cycles for the category L(V)

For a smooth S-scheme X , essentially of finite type over S, we have the subgroup
Zd(X/S) of the group of relative codimension d cycles on X (see Appendix A,
Definition 2.2.1(ii)); for a cycle W , we let supp(W ) denote the support of W .

1.2.1. Definition. Let (X, f :X ′ → X) be in L(V). We let Zd(X)f denote the
subgroup of Zd(X/S) consisting of W ∈ Zd(X/S) such that f∗(W ) is defined, i.e.,

codimX′(f−1(supp(W ))) ≥ d.

The reason for constructing the category L(V) is that pull-back of cycles is now
defined for arbitrary morphisms, without the need of passing to rational equivalence.
This is more precisely expressed in

1.2.2. Lemma. (i) Suppose p : (Y, g) → (X, f) is a map in L(V). Then for each Z
in Zd(X)f , the cycle-theoretic pull-back p∗(Z) is defined, and is in Zd(Y )g.
(ii) Let (W,h)

q−→ (Y, g)
p−→ (X, f) be a sequence of maps in L(V), and let Z be in

Zd(X)f . Then
(p ◦ q)∗(Z) = q∗(p∗(Z)).

Proof. It suffices to prove (i) for effective cycles Z. Let s :Y → Y ′ be the
smooth section to g :Y ′ → Y . By definition, we have a commutative diagram

X ′

��

f

Y ′��
q

��

g

X Y��
p

��

s

with q flat. By assumption, the cycle f∗(Z) is defined. As q is flat and s are
smooth, this implies that (q ◦ s)∗(f∗(Z)) is defined. We have

f ◦ q ◦ s = p ◦ g ◦ s = p;

by (Appendix A, Theorem 2.3.1(iv)), p∗(Z) is defined and is in Zd(Y/S). Similarly,
the cycle q∗(f∗(Z)) is defined; as f ◦ q = p ◦ g, the same argument shows that
g∗(p∗(Z)) is defined, hence p∗(Z) is in Zd(Y )g, completing the proof of (i).

The assertion (ii) follows from (Appendix A, Theorem 2.3.1(v)).

1.3. The category L(V)∗

We consider a set S as a category with objects S and only the identity morphisms.
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1.3.1. In the category L(V)op × Z, denote the object ((X, f), n) by X(n)f ; for a
morphism p : (Y, g) → (X, f) in L(V), denote the corresponding morphism

pop × idn :X(n)f → Y (n)g

by p∗. Giving Z the structure of a symmetric monoidal category with operation +
gives L(V)op × Z the structure of a symmetric monoidal category with symmetry

tX(n)f ,Y (m)g = t∗(Y,g),(X,f) × idn+m.

1.3.2. Definition. Form the category L(V)∗ by adjoining morphisms and relations
to L(V)op × Z as follows: For (X, f) and (Y, g) in V∗, with i :X → X

∐
Y the

inclusion, we adjoin the morphism

i∗ :X(n)f → (X
∐

Y )(n)f` g.

The relations imposed among the morphisms are:

(a) If i :X → X
∐

Y , j :X
∐

Y → X
∐

Y
∐

Z are the natural inclusions, then

(i ◦ j)∗ = i∗ ◦ j∗.

(b) Let pi : (Yi, gi) → (Xi, fi), i = 1, 2, be morphisms in L(V), and let iY1 :Y1 →
Y1
∐

Y2 and iX1 :X1 → X1
∐

X2 be the natural inclusions. Then

iY1∗ ◦ p∗1 = (p1
∐

p2)∗ ◦ iX1∗.

(c) For i :X → X
∐
∅ the canonical isomorphism, we have i∗ ◦ i∗ = id.

1.3.3. One extends the symmetric monoidal structure on L(V)op × Z to one on
L(V)∗ by defining

iX∗ × id∗ :X(n)f × Z(k)h → (X(n)f
∐

Y (m)g)× Z(k)h

to be the composition

X(n)f × Z(k)h = (X ×S Z)(n + k)f×h
iX×SZ∗−−−−−→ (X ×S Z)(n + k)f×h

∐
(Y ×S Z)(m + k)g×h

∼= (X(n)f
∐

Y (m)g)× Z(k)h.

The map id∗ × iX∗ is defined similarly. One checks that the uniquely defined
extension of × to a product × on L(V)∗ does indeed define the structure of
a symmetric monoidal category on L(V)∗. In particular, the canonical functor
L(V)op × Z → L(V)∗ is a symmetric monoidal functor.

The notation for the maps p∗ and i∗ is rather ambiguous, as we have deleted the
dependence on the sets of maps and the integer n. This will usually be clear from the
context. There are some special cases for which it is useful to have another notation
for various morphisms; for instance, let (X, f :X ′ → X) be an object of L(V), and
let g :Z → X be a morphism in V . This gives us the map f ∪ g :X ′

∐
Z → X

and the object (X, f ∪ g) of L(V). The identity on X gives the L(V)-morphism
idX : (X, f) → (X, f ∪ g). We denote the corresponding L(V)∗-morphism id∗X by

ρf,g :X(n)f∪g → X(n)f .(1.3.3.1)
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1.3.4. Remark. The identity in the symmetric monoidal category L(V) is the ob-
ject (S, idS). We will systematically identify the schemes S×S X and X ×S S with
X via the appropriate projection; this gives us the identities in L(V):

(X, f)× (S, idS) = (X, f) (S, idS)× (X, f) = (X, f).

This makes L(V) into a symmetric monoidal category with strict unit (S, idS), i.e.,
the multiplication maps

µr : (X, f)× (S, idS) → (X, f), µl : (S, idS)× (X, f) → (X, f)

are the identity maps. Similarly, this makes L(V)∗ into a symmetric monoidal
category with strict unit S(0)idS .

1.4. The construction of the motivic DG tensor category

We now proceed to define a differential graded tensor category Amot(V) in a series
of steps.

1.4.1. Definition. Let A1(V) be the free additive category on L(V)∗, with the
following relations; we denote X(d)f as an object of A1(V) by ZX(d)f .

(i) Let ∅ be the empty scheme. The canonical map of Z∅(d)f to 0 is an isomor-
phism.

(ii) for (X, f) and (Y, g) in L(V), let iX :X → X
∐

Y , iY :Y → X
∐

Y be the
natural inclusions, and let Γ = Z(X`Y )(n)(f` g). Then

iX∗ ◦ i∗X + iY ∗ ◦ i∗Y = idΓ.

1.4.2. One checks that the linear extension of the product × :L(V)∗ × L(V)∗ →
L(V)∗ descends to the product × :A1(V) ⊗Z A1(V) → A1(V), making A1(V) into
a tensor category; the associativity and symmetry isomorphisms are given by the
corresponding maps in L(V)∗.

1.4.3. Let (C,×, t) be a tensor category without unit. We recall from (Part II,
Chapter I, §2.4.2 and §2.4.3) the construction of the universal commutative external
product on (C,×, t), i.e., a tensor category without unit (C⊗,c,⊗, τ), together with
an additive functor i : C → C⊗,c and a natural transformation � : ⊗◦(i⊗Z i) → i◦×
of the functors

⊗ ◦ (i⊗Z i), i ◦ × : C ⊗Z C → C⊗,c.
The natural transformation � is associative and commutative (cf. Part II, Chap-
ter I, Definition 2.4.1). The category C⊗,c is gotten from the free tensor category
on C, (C⊗,⊗, τ), by adjoining morphisms �X,Y :X ⊗ Y → X × Y for each pair of
objects X and Y , and imposing the relations of

1. (Naturality) For f :X → X ′, g :Y → Y ′ in C, we have

�X′,Y ′ ◦ (f ⊗ g) = (f × g) ◦�X,Y ,

2. (Associativity) For X , Y and Z in C, we have

�X×Y,Z ◦ (�X,Y ⊗ idZ) = �X,Y×Z ◦ (idX ⊗�Y,Z),

3. (Commutativity) For X and Y in C, we have

tX,Y ◦�X,Y = �Y,X ◦ τX,Y .

1.4.4. Definition. Let (A2(V),⊗, τ) be the universal commutative external prod-
uct on A1(V): A2(V) := A1(V)⊗,c, with external products �X,Y :X ⊗ Y → X × Y.
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1.4.5. We recall from (Part II, Chapter II, §3.1), the homotopy one point DG
tensor category (E,⊗, τ). E has the following properties (see Part II, Chapter II,
Proposition 3.1.12)

1. E is a DG tensor category without unit. There is an object e of E which
generates the objects of E, i.e., the objects of E are finite direct sums of the
tensors powers e⊗a, a = 1, 2 . . . .

2. We have HomE(e⊗m, e⊗n)q = 0 if n �= m, or if n = m and q > 0. We have

HomE(e⊗n, e⊗n)0 ∼= Z[Sn],

the isomorphism sending a permutation σ ∈ Sn to the symmetry isomor-
phism τσ : e⊗n → e⊗n. This gives the Hom-module HomE(e⊗n, e⊗n)q the
structure of a module over Z[Sn] by left or right composition.

3. For q < 0, HomE(e⊗n, e⊗n)q is a free Z[Sn]-module by both left and right
composition (or is zero).

4. The cohomology of the Hom-complex is given by

Hq(HomE(e⊗n, e⊗n)∗) =

{
Z with generator ide⊗n for q = 0,
0 for q �= 0.

We consider A2(V) as a DG tensor category without unit, where all differentials
are zero. Let A2(V)[E] denote the coproduct as DG tensor categories without unit.

1.4.6. Definition. Let A3(V) be the DG tensor category formed from A2(V)[E] by
adjoining maps as follows: Let (X, f) be in L(V), and let Z be a non-zero element
of Zd(X)f . Then we adjoin the map of degree 2d:

[Z] : e → ZX(d)f .(1.4.6.1)

For Z = 0 ∈ Zd(X)f , define the map [Z] : e → ZX(d)f to be the zero map.

1.4.7. The cycles functor. We now adjoin homotopies to the category A3(V) which
make the various cycle maps behave as cycle maps should. We require the prelim-
inary construction of the cycles functor Z1 on A1(V).

For each q, let

Zq :L(V)op → Ab(1.4.7.1)

be the functor
Zq(X, f) = Zq(X)f
Zq(p) = p∗,

which is well-defined by Lemma 1.2.2. The functors (1.4.7.1) for q = 0, 1, . . . give
rise to the functor

Z :L(V)∗ → Ab,(1.4.7.2)

defined on objects by Z(X(q)f ) = Zq(X)f . The definition of Z on morphisms is
given by

Z(j∗) = j∗;Z(i∗) = i∗.

It is immediate that Z respects the relations of Definition 1.3.2, and is thus well-
defined. The functor (1.4.7.2) extends to the functor

Z1 :A1(V) → Ab,(1.4.7.3)

using the additive structure of Ab.
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1.4.8. Definition. Form the DG tensor category without unit A4(V) by adjoining
the following morphisms to A3(V):

(i) Let (Y, g), (X, f) be in L(V), and let p : ZX(q)f → ZY (q)g be a map in
A1(V). Let Z be a non-zero cycle in Zq(X)f . From (1.4.7.3), we have the
cycle Z1(p)(Z) ∈ Zq(Y )g. Then we adjoin the map of degree 2q − 1:

hX,Y,[Z],p : e → ZY (q)g

with
dhX,Y,[Z],p = p ◦ [Z]− [Z1(p)(Z)].

(ii) Let (Y, g), (X, f) be in L(V), and let (W, r) = (X, f) × (Y, g). Take cycles
Z ∈ Zq(X)f and T ∈ Zq′(Y )g. Let Γ = ZX(q)f and ∆ = ZY (q′)g, giving
the product Γ×∆ = ZW (q+q′)r. Write 1 for ZS(0)idS . From (Appendix A,
Remark 2.3.3), we have the product cycle Z ×/S T in Zq+q′ (W )q. Then we
adjoin the morphisms of degree 2(q + q′)− 1,

hlX,Y,[Z],[T ] : e⊗ e → ZW (q + q′)r,

hrX,Y,[Z],[T ] : e⊗ e → ZW (q + q′)r,

with

dhlX,Y,[Z],[T ] = �Γ,∆ ◦ ([Z]⊗ [T ])−�Γ×∆,1 ◦ ([(Z ×/S T )]⊗ [S]),

dhrX,Y,[Z],[T ] = �Γ,∆ ◦ ([Z]⊗ [T ])−�1,Γ×∆ ◦ ([S]⊗ [Z ×/S T ]).

Here

[Z] : e → ZX(q)f , [T ] : e → ZY (q′)g,

[Z ×/S T ] : e → ZW (q + q′)r, [S] : e → 1

are the cycle maps defined in Definition 1.4.6, and

�Γ,∆ : Γ⊗∆ → Γ×∆ = ZW (q + q′)r,

�Γ×∆,1 : (Γ×∆)⊗ 1 → (Γ×∆)× 1 = Γ×∆,

�1,Γ×∆ : 1⊗ (Γ×∆) → 1× (Γ×∆) = Γ×∆

are the external products.
(iii) Let (X, f) be in L(V), let Z and Z ′ be elements of Zq(X)f , and let n, n′ be

in Z. Adjoin the map of degree 2q − 1:

hn,n′,[Z],[Z′] : e → ZX(q)f

with
dhn,n′,[Z],[Z′] = [nZ + n′Z ′]− n[Z]− n′[Z ′].

1.4.9. Definition. Let A5(V) denote the category gotten from A4(V) by succes-
sively adjoining morphisms h : e⊗k → ZX(n)f as follows:

Let A5(V)(0) := A4(V). Suppose we have formed the DG tensor category
without unit A5(V)(r−1), r ≥ 1. Let A5(V)(r,0) := A5(V)(r−1), and suppose we
have formed A5(V)(r,k−1) for some k ≥ 1. Form the DG tensor category A5(V)(r,k)

by adjoining morphisms of degree 2n− r − 1,

hs : e⊗k → ZX(n)f ,
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to A4(V)(r,k−1), with dhs = s, for each non-zero morphism s : e⊗k → ZX(n)f in
A4(V)(r,k−1) such that s has degree 2n− r and ds = 0. Let

A4(V)(r) := lim→
k

A4(V)(r,k),

A5(V) := lim→
r

A4(V)(r).

1.4.10. Definition. Amot(V) is defined to be the full additive subcategory ofA5(V)
generated by tensor products of objects of the form ZX(n)f , or e⊗a ⊗ ZX(n)f .

It follows immediately from the definition of the tensor product in A5(V) that
Amot(V) is a DG tensor subcategory of the DG tensor category without unit A5(V).

1.4.11. Remark. We denote the object ZS(0)idS of Amot(V) by 1. Let h : e⊗a →
ZX(n)f be a morphism in A5(V). We let hS : e⊗a ⊗ 1 → ZX(n)f denote the com-
position

e
⊗a ⊗ 1 h⊗id1−−−−→ ZX(n)f ⊗ 1

�ZX (n)f ,1
−−−−−−→ ZX(n)f .

It follows directly from (Part II, Chapter I, Proposition 2.5.2), that the map

HomA5(V)(e
⊗a,Γ) → HomAmot(V)(e

⊗a ⊗ 1,Γ)

f �→ fS

is an isomorphism for all Γ in A1(V). We sometimes omit the S in the notation if
the context makes the meaning clear.

1.4.12. Definition. For n = 4, 5 and n = mot, we letA0n(V) denote the graded ten-
sor category gotten from An(V) by sending to zero all the maps of Definition 1.4.8
and Definition 1.4.9, and the morphisms of degree p < 0 in the category E, as well
as their differentials. We let

Hn :An(V) → A0n(V)(1.4.12.1)

denote the canonical DG functor.

We note that the natural map A04(V) → A05(V) is an isomorphism, and that
A0mot(V) is the full tensor subcategory ofA05(V) generated by the objects ofAmot(V).
Furthermore, A04(V) is isomorphic to the graded tensor category gotten from A3(V)
by imposing the relations (see Definition 1.4.8 for notation):

(i) Let (Y, g), (X, f) be in L(V), and let p : ZX(d)f → ZY (d)g be a map in
A1(V). Let Z be a cycle in Zd(X)f . Then

p ◦ [Z] = [Z1(p)(Z)].

(ii) Let (Y, g), (X, f) be in L(V), and let (W,h) = (X, f) × (Y, g). Take Z in
Zd(X)f and T in Ze(Y )g. Let Γ = ZX(d)f , ∆ = ZY (e)g, so Γ × ∆ =
ZW (d + e)h. Then

�Γ,∆ ◦([Z]⊗ [T ]) = �Γ×∆,1 ◦ ([Z ×S T ]⊗ [|S|]),
�Γ,∆ ◦([Z]⊗ [T ]) = �1,Γ×∆ ◦ ([|S|]⊗ [Z ×S T ]).

(iii) Let (X, f) be in L(V), let Z and Z ′ be elements of Zd(X)f , and let n, n′ be
in Z. Then

[nZ + n′Z ′] = n[Z] + n′[Z ′].
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(iv) Let τe,e : e⊗ e → e⊗ e be the symmetry isomorphism. Then

τe,e = ide⊗e.

2. The triangulated motivic category

In this section, we construct the main object of our study. The idea is quite
simple: We have all the necessary morphisms and relations among them in the
category Amot(V). We construct a triangulated tensor category from Amot(V) by
taking the homotopy category of the category of bounded complexes on Amot(V)
(see Part II, Chapter II, §1.2 and §2.1). We then localize this category, forcing
the various axioms of a Bloch-Ogus cohomology theory, suitably interpreted, to be
valid. Finally, we form the pseudo-abelian hull.

2.1. The definition of the triangulated motivic category

We recall from (Part II, Chapter II, Definition 1.2.7) the functor Cb(−) from DG
categories to DG categories, which associates to a DG category A the category
Cb(A) of bounded complexes in A. We have the functor Kb(−) := Cb(−)/Htp,
which gives a functor from DG categories to triangulated categories (see Part II,
Chapter II, Definition 1.2.7 and Proposition 2.1.6.4). We apply these functors to
the categories constructed in Section 1.

We denote the categories Cb(Amot(V)) and Kb(Amot(V)) by Cb
mot(V) and

Kb
mot(V).

2.1.1. We recall from (Part II, Chapter II, §2.1 and §2.3) the notions of a trian-
gulated category A, a thick subcategory B of A, and the triangulated category A/B
formed by localizing A with respect to B. We recall as well the notions of trian-
gulated tensor category A, a thick tensor subcategory B of A, and the triangulated
tensor category A/B formed by localizing A with respect to B.

If S = {hi :Xi → Yi | i ∈ I} is collection of morphisms in a triangulated
category A, we let A(S) be the thick subcategory generated by the objects Z which
fit into a distinguished triangle X

h−→ Y −→ Z −→ X [1] with h ∈ S, and call A/A(S)
the triangulated category formed by inverting the morphisms in S. Similarly, if
A is a triangulated tensor category, we let A(S)⊗ be the thick tensor subcategory
generated by the objects Z as above. We call A/A(S)⊗ the triangulated tensor
category formed by inverting the morphisms in S.

2.1.2. Suppose we have a morphism f :A → B in a DG category C, with df = 0.
We denote the object cone(f)[−1] of Cb(C) by

A
f−→ B[−1] or

 A
f ↓
B[−1]

 .

2.1.3. Let (X, f :X ′ → X) be in L(V), let X̂ be a closed subset of X , and let
j :U → X be the inclusion of the complement X\X̂. We write j∗f for the map
p1 :U ×X X ′ → U . Suppose that the maps

j :U → X

j∗f :U ×X X ′ → U
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are in V . Define the object ZX,X̂(n)f of Cb
mot(V) by

ZX,X̂(n)f := cone(j∗ : ZX(n)f → ZU (n)j∗f )[−1].(2.1.3.1)

If (Y, g) is in L(V), if Ŷ is a closed subset of Y , with complement i :V := Y \Ŷ → Y ,
and if the maps i and i∗g are in V , then each map p : (X, f) → (Y, g) in L(V), with
p−1(Ŷ ) ⊂ X̂ , induces the map

p∗ : ZY,Ŷ (n)g → ZX,X̂(n)f ,(2.1.3.2)

defined as the map of complexes

 ZY (n)g
i∗ ↓

ZV (n)i∗g[−1]

 p∗

−→

−−−−→
p∗[−1]

 ZX(n)f
j∗ ↓

ZU (n)i∗f [−1]


.

If Z ∈ Zn(X)f is a cycle on X , supported on X̂ , we have the map (see Defini-
tion 1.4.8)

hZ,j∗ : e → ZU (d)j∗A[2n− 1],

dhZ,j∗ = j∗ ◦ [Z]− [j∗Z] = j∗ ◦ [Z].

The pair ([Z], hZ,j∗) then defines the cycle map with support

[Z]X̂ : e → ZX,X̂(n)f [2n](2.1.3.3)

in the category Cb(A5(V)). These cycle maps with support are functorial in the
category Kb(A5(V)).

Let X be a smooth quasi-projective S-scheme, and let X̂ be a closed subset of
X with irreducible components X̂1, . . . , X̂s. We let |X̂ | be the cycle on X defined
by |X̂| =

∑s
i=1 1 ·Xi

2.1.4. Definition. Let V be a strictly full subcategory of SmessS satisfying the
following conditions:

(i) V is closed under finite products over S and finite disjoint union; in partic-
ular, S and the empty scheme are in V .

(ii) If X is in V , and j :U → X an open subscheme of X , then U is in V .
(iii) If X is in V and E → X is a vector bundle, then E and the projective bundle

P(E) are in V .
(iv) If i :Z → X is a closed embedding in V , then the blow-up of X along Z is

in V .

Form the triangulated tensor category Db
mot(V) from Kb

mot(V) by inverting the
following morphisms:

(a) Homotopy. Let p : (X, f) → (Y, g) be a map in L(V), where p :X → Y is the
inclusion of a closed codimension one subscheme. Let Ŷ ⊂ Y be a closed
subset of Y , and let X̂ = p−1(Ŷ ) (scheme-theoretic pull-back). Suppose
that X̂ is in SmessS , and that we have an isomorphism q : X̂ ×S A1S → Ŷ ,
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making the diagram

X̂ ��
p

Ŷ

X̂ × 0

��

p1

⊂ X̂ ×S A1S

��

q

commute. Then invert the map

p∗ : ZY,Ŷ (n)g → ZX,X̂(n)f .

(b) Excision. Let (X, f) be in L(V), X̂ a closed subset of X , j :U → X an open
subscheme containing X̂. Invert the map

j∗ : ZX,X̂(n)f → ZU,X̂(n)∗jf.

(c) Künneth isomorphism. Let X and Y be in A1(V). Invert the map

�X,Y :X ⊗ Y → X × Y.

(d) Gysin isomorphism. Let p : (P, g) → (X, f) be a map in L(V), and suppose
p :P → X is a smooth morphism of relative dimension d. Suppose we have
a section s :X → P to p with |s(X)| in Zd(P )g. Let

α : e⊗ ZX(n− d)f [−2d] → ZP×SP,s(X)×SP (n)g×g

denote the composition

e⊗ ZX(n− d)f [−2d]
[|s(X)|]s(X)⊗p∗

−−−−−−−−−−→ ZP,s(X)(d)g ⊗ ZP (n− d)g
�−→ ZP×SP,s(X)×SP (n)g×g.

Let ρ be the map (1.3.3.1)

ρg×g,∆ : ZP×SP,s(X)×SP (n)g×g∪∆ → ZP×SP,s(X)×SP (n)g×g,

where ∆:P → P ×S P is the diagonal. Invert the map(
α −ρ
0 ∆∗

)
: e⊗ ZX(n− d)f [−2d]⊕ ZP×SP,s(X)×SP (n)g×g∪∆

→ ZP×SP,s(X)×SP (n)g×g ⊕ ZP,s(X)(n)g.

(e) Moving lemma. Let (X, f) be in L(V), and let g :Z → X be a morphism in
V . Invert the morphism (1.3.3.1)

ρf,g : ZX(n)f∪g → ZX(n)f .

(f) Unit. Invert the map

[|S|]⊗ id : e⊗ ZS(0) → ZS(0)⊗ ZS(0).
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2.1.5. For a pre-additive category A, and a commutative ring R, we let A ⊗ R
denote the pre-additive category with the same objects as A, and with

HomA⊗R(X,Y ) = HomA(X,Y )⊗Z R.

If A is a DG tensor category, then A ⊗ R is in a natural way an R-DG tensor
category; if A is a triangulated (tensor) category, and R is a localization of Z, then
A⊗R is in a natural way a triangulated (tensor) category.

Let R be a commutative ring, flat over Z. Let Cb
mot(V)R = Cb(Amot(V)⊗ R)

and let Kb
mot(V)R be the homotopy category of Cb

mot(V)R. Let Db
mot(V)R be the

localization of Kb
mot(V)R with respect to the thick tensor subcategory generated by

the morphisms in Definition 2.1.4. We note that the natural map Db
mot(V)⊗ R→

Db
mot(V)R is an equivalence of triangulated tensor categories if R is a localization

of Z.

2.1.6. Definition. Let R be a commutative ring, flat over Z. Let DM(V)R be
the pseudo-abelian hull [Db

mot(V)R]# of Db
mot(V)R (see Part II, Chapter II, Defini-

tion 2.4.1 and Theorem 2.4.7). We call DM(V)R the triangulated motivic category
of V with R coefficients. We set

DM(S)R := DM(SmS)R.

We have the fully faithful embedding #:Db
mot(V)R → DM(V)R. We will often

denote the categoryDM(V)R byDM, when the reference to R and V is understood.
We let RX(n)f denote the image of ZX(n)f in DM(V)R or in Db

mot(V)R.

2.2. Properties of motives

We begin with a list of fundamental properties of the objects ZX,X̂(q)f in DM(V);
for a commutative ring R, flat over Z, the analogous statements are valid for the
category Db

mot(V)R and DM(V)R as well. For X̂ a closed subset of X ∈ V , we
write ZX,X̂(q) for ZX,X̂(q)id and ZX,X̂ for ZX,X̂(0).

2.2.1. Homotopy. If we take (Y, g) = (X ×S A1, id ∪ i0), where i0 :X → X ×S A1

is the zero section, we have the map i0 : (X, idX) → (Y, g) in L(V). The homotopy
axiom (Definition 2.1.4(a)), with X̂ = X , Ŷ = Y , gives the isomorphism

i∗0 : ZX×SA1(0)id∪i0 → ZX .

If we now apply the moving lemma (Definition 2.1.4(e)), we get the isomorphism
in DM

ρ−1id,i0 ◦ i
∗
0 : ZX×SA1 → ZX .

This then implies that the pull-back by the projection p :X × A1 → X gives the
isomorphism

p∗ : ZX → ZX×SA1 .

More generally, if X̂ is a closed subset of X with complement j :U → X , we have
the commutative diagram

ZU [−1]

��

p∗

�� ZX,X̂

��

p∗

�� ZX

��

p∗

�� ZU

��

p∗

ZU×SA1 [−1] �� ZX×SA1,X̂×SA1 �� ZX×SA1 �� ZU×SA1



20 I. THE MOTIVIC CATEGORY

with the rows distinguished triangles. Thus the map

p∗ : ZX,X̂ → ZX×SA1,X̂×SA1

is also an isomorphism.

2.2.2. Moving lemma. Suppose X̂ is a closed subset of a scheme X ∈ V . Since the
objects ZX,X̂(q)f , for varying f , are, by the isomorphism of Definition 2.1.4(e), all
canonically isomorphic to ZX,X̂(q), we will denote all these objects by ZX,X̂(q),
when the explicit use of the auxiliary f is not required. We let

ρf : ZX,X̂(q)f → ZX,X̂(q)

denote the canonical isomorphism.

2.2.3. Tate Twist. Let Γ be an object of DM, and let q be an integer. Denote
ZS(q) ⊗ Γ by Γ(q). The isomorphism of Definition 2.1.4(c) gives rise to canonical
isomorphisms

µlΓ : Γ(0) = ZS ⊗ Γ
�ZS,Γ−−−−→Γ,

µrΓ : Γ⊗ ZS

�Γ,ZS−−−−→ Γ,

and a canonical isomorphism

ZS(a)⊗ Γ(b) → Γ(a + b).

For Γ = ZX,X̂(n), we have the canonical isomorphism

ZX,X̂(n)(a)
�S,X−−−→ ZX,X̂(a + n).

2.2.4. Unit. We denote the object ZS by 1. We let

νa : e⊗a ⊗ 1 → 1(2.2.4.1)

denote the composition

e
⊗a ⊗ 1

[S]⊗a⊗id1−−−−−−→1⊗a+1
�1,... ,1−−−−→1.

By the morphisms inverted in Definition 2.1.4(c),(f), νa is an isomorphism.

2.2.5. Gysin morphism. Let Kb
mot(V)1 denote the category formed from the trian-

gulated tensor category Kb
mot(V) by inverting the morphisms of Definition 2.1.4(e)

and (f). Let (X, f), (Y, g) be in L(V), and let Z be in Zq(X)f , supported on a
closed subset W , giving the cycle map with support (2.1.3.3). We let ∪[Z]W denote
the composition

ZY (n)g
(µl◦([S]⊗id)−1

−−−−−−−−−→ e⊗ ZY (n)g
[Z]W⊗id−−−−−→ ZX,W (d)f [2d]⊗ ZY (n)g

�X,Y−−−→ ZX×SY,W×SY (n + d)f×g[2d].

For p : (P,B) → (X, f), s :X → P , and ρ as in Definition 2.1.4(d), we denote the
composition

(2.2.5.1) ZX(−d)f [−2d]
p∗

−→ZP (−d)g[−2d]
∪[|s(X)|]s(X)−−−−−−−−→ ZP×SP,s(X)×SP (0)g×g

ρ−1

−−→ZP×SP,s(X̂)×SP
(0)g×g∪∆[2d] ∆

∗
−−→ ZP,s(X)(0)g
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by ∪[|s(X)|]◦p∗. In the categoryKb
mot(V)1, inverting the map of Definition 2.1.4(d)

is the same as inverting the map (2.2.5.1).

2.2.6. Mayer-Vietoris. Let (X, f) be in L(V), and let jU :U → X , jV :V → X be
open subschemes. Let

jU,U∩V :U ∩ V → U, jV,U∩V :U ∩ V → U, jU∩V :U ∩ V → X

be the inclusions. It follows from the inversion of the maps in Definition 2.1.4(b)
that there is a natural distinguished triangle

(2.2.6.1) ZX(n)f
(j∗U ,j∗V )−−−−−→ZU (n)j∗U f ⊕ ZV (n)j∗V f

j∗U,U∩V −j
∗
V,U∩V−−−−−−−−−−→ZU∩V (n)j∗U∩V f −→ ZX(n)f [1]

in DM.

2.2.7. Motivic cohomology. Let X be a scheme in V , X̂ a closed subset. The motivic
cohomology of X with support in X̂ is defined as

Hp

X̂
(X,Z(q)) := HomDM(1,ZX,X̂(q)[p]).

More generally, for an object Γ of DMR, define the motivic cohomology of Γ by

Hp(Γ, R(q)) = HomDMR
(1,Γ(q)[p]).

This is compatible with the above definition because of the Tate twist isomorphism
§2.2.3.

2.2.8. Mod n motivic cohomology. For Γ in Cb
mot(V), define Γ⊗L Z/n as

Γ⊗L Z/n := cone(Γ ×n−−→ Γ),

and the mod-n motivic cohomology of Γ as

Hp(Γ,Z/n(q)) := Hp(Γ⊗L Z/n,Z(q)).

For Γ = ZX,X̂(0), this gives us the mod-n motivic cohomology of X (with support
in X̂)

Hp

X̂
(X,Z/n(q)) := Hp(ZX,X̂(q)⊗L Z/n).

The distinguished triangle

Γ ×n−−→ Γ → Γ⊗L Z/n→ Γ[1]

gives rise to the short exact “universal coefficient” sequence

0 → Hp(Γ,Z(q))/n→ Hp(Γ,Z/n(q)) → nH
p+1(Γ,Z(q)) → 0,

where nH
p+1(Γ,Z(q)) is the n-torsion subgroup of Hp+1(Γ,Z(q)).

2.2.9. Motives and motives with support. Let PV denote the category of pairs
(X, X̂), where X̂ a closed subset of X , and X is in V . A morphism p : (X, X̂) →
(Y, Ŷ ) is a morphism p :X → Y with p−1(Ŷ ) ⊂ X̂ . We define the category PL(V)
similarly as the category of triples (X, X̂, f) with (X, X̂) ∈ PV , and (X, f) ∈ L(V).
Morphisms p : (X, X̂, f) → (Y, Ŷ , g) are maps p :X → Y such that p : (X, f) → (Y, g)
is a morphism in L(V) and p : (X, X̂) → (Y, Ŷ ) is a morphism in PV .
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The maps p∗ of (2.1.3.2) induce maps on the motivic cohomology as follows. If
p : (Y, Ŷ , g) → (X, X̂, f) is a map in PL(V), we have the composition

ZX,X̂(a)[b]
ρ−1
f−−→ ZX,X̂(a)f [b]

p∗

−→ ZY,Ŷ (a)g[b]
ρg−→ ZY,Ŷ (a)[b]

in DM. This defines the functor
Z(a)[b] :PL(V)op → DM

(X, X̂, f) �→ ZX,X̂(a)f [b].

If we make another choice of f and g, with the same underlying map p :Y → X
in V , the resulting composition is the same. We can take for example f = idX ,
g = idY ∪ p. Thus the functor Z(a)[b] descends to the functor

Z(a)[p] :PVop → DM
(X, X̂) �→ ZX,X̂(a)[b].

(2.2.9.1)

We call the object ZX,X̂ the motive of X with support in X̂; the object ZX is called
the motive of X .

Composing Z(q)[p] with the functor HomDM(1,−) gives the motivic cohomol-
ogy functor Hp(−,Z(q)) :PVop → Ab.

If X̂ ′ ⊂ X̂ are closed subsets of X ∈ V , then idX : (X, X̂, idX) → (X, X̂ ′, idX)
induces the map id∗X : ZX,X̂′ → ZX,X̂ which we denote by

iX̂′⊂X̂∗ : ZX,X̂′ → ZX,X̂ .

2.2.10. Mayer-Vietoris and localization for motives with support. The distinguished
triangle of §2.2.6 gives rise to the Mayer-Vietoris distinguished triangle for the union
of two closed subsets: If X̂ = X̂1 ∪ X̂2 are closed subsets of X ∈ V , let X̂12 be the
intersection X̂1 ∩ X̂2. We have the distinguished triangle

ZX,X̂12

(iX̂12⊂X̂1∗
,−iX̂12⊂X̂2∗

)
−−−−−−−−−−−−−−−→ ZX,X̂1

⊕ ZX,X̂2

iX̂1⊂X̂∗+iX̂2⊂X̂∗−−−−−−−−−−−→ ZX,X̂ −→ ZX,X̂12
[1].

We have as well the localization distinguished triangle: If F and X̂ are closed
subsets of X ∈ V , if j :U → X is the complement X\F , and if Û = X̂ ∩ U , then
we have the distinguished triangle

ZX,F

iF⊂F∪X̂∗−−−−−−→ZX,F∪X̂
j∗−→ZU,Û → ZX,F [1].(2.2.10.1)

In particular, taking X̂ = X , we have the distinguished triangle

ZX,F
iF⊂X∗−−−−→ZX

j∗−→ZU → ZX,F [1].(2.2.10.2)

2.2.11. Products. The tensor product operation gives rise to external products in
cohomology. Indeed, the operation ⊗ gives rise to the map

HomDM(Z,X [p])⊗Z HomDM(W,Y [p′]) → HomDM(Z ⊗W,X ⊗ Y [p + p′]),

for X ,Y , Z and W in DM. In particular, we have the map

HomDM(1,ZX(q)[p])⊗Z HomDM(1,ZY (q′)[p′])

→ HomDM(1 ⊗ 1,ZX(q)⊗ ZY (q′)[p + p′]).
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Composing with the morphism �X,Y : ZX(q) ⊗ ZY (q′) → ZX×SY (q + q′), and the
inverse of the multiplication isomorphism µ = �1,1 : 1⊗ 1 → 1, we get the map

∪X,Y :Hp(X,Z(q))⊗Z Hp′
(Y,Z(q′)) → Hp+p′

(X ×S Y,Z(q + q′)).

If we take X = Y , we can compose with the pullback by the diagonal to get products
in cohomology

∪X :Hp(X,Z(q))⊗Z Hp′
(X,Z(q′)) → Hp+p′

(X,Z(q + q′)).

More generally, suppose we have closed subsets X̂ of X and Ŷ of Y , and let
jU :U := X \ X̂ → X and jV :V := Y \ Ŷ → Y be the complements. Letting
ZX,X̂(q)× ZY,Ŷ (q′) denote the complex

ZX×SY (q + q′)
((jU×idY )∗,(idX×jV )∗)−−−−−−−−−−−−−−−→ ZU×SY (q + q′)⊕ ZX×SV (q + q′)

(idU×jV )∗−(jU×idV )∗−−−−−−−−−−−−−−−→ ZU×SV (q + q′),

the external products � give the isomorphism

ZX,X̂(q)⊗ ZY,Ŷ (q′) �−→ ZX,X̂(q)× ZY,Ŷ (q′).(2.2.11.1)

By Mayer-Vietoris (2.2.6), the map

(2.2.11.2) ZU×SY ∪X×SV (q + q′)
((jU×idY )∗,(idX×jV )∗)−−−−−−−−−−−−−−−→

cone
(
ZU×SY (q + q′)⊕ ZX×SV (q + q′)

(idU×jV )∗−(jU×idV )∗−−−−−−−−−−−−−−−→ ZU×SV (q + q′)
)
[−1]

is an isomorphism in DM(V). The map (2.2.11.2), together with the identity map
on ZX×SY (q + q′), gives the map

θX̂,Ŷ
X,Y : ZX×SY,X̂×Ŷ (q + q′) → ZX,X̂(q)× ZY,Ŷ (q′);

θ is therefore an isomorphism in DM(V) as well. Composing θ−1 with the external
product (2.2.11.1) gives us the isomorphism

�X̂,Ŷ
X,Y : ZX,X̂(q)⊗ ZY,Ŷ (q′) → ZX×SY,X̂×Ŷ

in DM(V).
As above, this gives us the external cup products

∪X̂,Ŷ
X,Y :Hp

X̂
(X,Z(q))⊗Z Hp′

Ŷ
(Y,Z(q′)) → Hp+p′

X̂×S Ŷ
(X ×S Y,Z(q + q′)),(2.2.11.3)

and, for X = Y , the cup product

∪X̂,Ŷ
X : Hp

X̂
(X,Z(q)) ⊗Z Hp′

X̂′(X,Z(q′)) → Hp+p′

X̂∩X̂′(X,Z(q + q′)).

2.2.12. The Lefschetz motive. Let i0 :S → P1S and i1 :S → P1S be the sections with
constant value (1 : 0), (1 : 1), respectively, and let L be the image in DM of the
object cone(i∗1 : ZP1S

(0)(i1,id) → ZS)[−1] of Cb
mot(V). By the Gysin isomorphism

(applied to the section i0 to the projection P1S → S), we have the isomorphism in
DM

ZP1S,(1:0)
(0)(ii,id) ∼= ZS(−1)[−2].(2.2.12.1)
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Letting j : A1S → P1S be the inclusion of A1S as the open subscheme P1S \ {i0(S)}, we
have the commutative diagram

ZP1S
(0)(i1,id) ��

j∗

��
i∗1 ���

���
���

�
ZA1

S
(0)(i1,id)

��
i∗1���

���
���

�

ZS

with the right-hand map i∗1 an isomorphism by the homotopy axiom. This, together
with (2.2.12.1), gives the isomorphism L ∼= ZS(−1)[−2] in DM; as the map i1 is
split by the projection P1S → S, we have the isomorphism ZP1S

∼= ZS ⊕ L.

A similar argument, applied to the inclusion in : Pn−1
S → Pn

S as the hyperplane
Xn = 0, gives the isomorphism ZPn

S

∼= ZS⊕Z
P
n−1
S

(−1)[−2]. By induction, this gives
the isomorphism in DM

ZPn
S

∼= ⊕n
i=0L

⊗i.

2.3. Motivic pull-back

In this section, we examine the functoriality of the categories DM(V) in the cate-
gory V .

2.3.1. If p :T → S is a map of schemes, we let p∗ :SchS → SchT denote the functor
X �→ X ×S T .

Let V be a subcategory of SchS and W a subcategory of SchT which satisfy
the conditions of Definition 2.1.4(i)-(iv), so that DM(V) and DM(W) are defined.
Suppose that p∗ restricts to a functor p∗ :V → W . We proceed to construct an exact
tensor functor

DM(p∗) :DM(V) → DM(W).(2.3.1.1)

2.3.2. We first define the functor of DG tensor categories

Amot(p∗) :Amot(V) → Amot(W).(2.3.2.1)

On objects, (2.3.2.1) is given by

Amot(p∗)(ZX(a)f ) = Zp∗(X)(a)p∗(f).(2.3.2.2)

On morphisms h∗ : ZX(a)f → ZY (a)g for a map h : (Y, g) → (X, f) in L(V), (2.3.2.1)
is given by

Amot(p∗)(h∗) = p∗(h)∗.(2.3.2.3)

If i :X → X
∐

Y is the inclusion, let p̃∗(i) : p∗(X) → p∗(Y )
∐

p∗(Z) be the map
induced by p∗(i) and the canonical isomorphism p∗(Y

∐
Z) ∼= p∗(Y )

∐
p∗(Z), and

define

Amot(p∗)(i∗) = p̃∗(i)∗.(2.3.2.4)

Applying Definition 1.4.1 and Definition 1.4.4, the formulas (2.3.2.2), (2.3.2.3)
and (2.3.2.4) extend canonically to define the tensor functor

A2(p∗) :A2(V) → A2(W).(2.3.2.5)
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Now, let Z be an element of Zq(X)f for some (X, f) ∈ L(V). We have the
pull-back homomorphism defined in (Appendix A, Lemma 2.2.3),

p∗ :Zq(X/S) → Zq(X ×S T/T ).

2.3.3. Lemma. Let Z be in Zq(X)f . Then p∗(Z) is in Zq(p∗(X))p∗(f), hence send-
ing Z to p∗(Z) defines a homomorphism

p∗ :Zq(X)f → Zq(p∗(X))p∗(f)

Proof. Write f as f :X ′ → X, giving the map p∗(f) = f × idT :X ′ ×S T →
X ×S T in W . By (Appendix A, Theorem 2.3.1(iv)), we have

p∗(f)∗(p∗(Z)) = p∗(f∗(Z)),

and p∗(f)∗(p∗(Z)) is in Zq(p∗(X ′)/T ). Thus p∗(Z) is inZq(p∗(X))p∗(f), completing
the proof.

2.3.4. By (Appendix A, Theorem 2.3.1), the map p∗ on cycles is compatible with
pull-back by maps in L(V), and we have the functoriality

(p ◦ q)∗ = q∗ ◦ p∗(2.3.4.1)

for a sequence of maps R
q−→ T

p−→ S of reduced noetherian schemes.
Set A3(p∗)([Z]) := [p∗(Z)], where [Z] : e → ZX(q)f [2q] is the map associated to

Z ∈ Zq(X)f (see Definition 1.4.6). This defines the extension of (2.3.2.5) to the
graded tensor functor

A3(p∗) :A3(V) → A3(W).(2.3.4.2)

For the maps h∗ defined in Definition 1.4.8, we define

A4(p∗)(ha,b,...) = hA3(p∗)(a),A3(p∗)(b),....(2.3.4.3)

This gives the extension of (2.3.4.2) to the DG tensor functor

A4(p∗) :A4(V) → A4(W).(2.3.4.4)

Similarly, for the maps hf adjoined in Definition 1.4.9, we inductively define

A5(p∗)(r,k)(hf ) = hA5(p∗)(r,k−1)(f).(2.3.4.5)

This gives the extension of (2.3.4.4) to the DG tensor functor

A5(p∗) :A5(V) → A5(W);(2.3.4.6)

restricting (2.3.4.6) to the full subcategory Amot(V) gives the desired DG tensor
functor

Amot(p∗) :Amot(V) → Amot(W).(2.3.4.7)

2.3.5. Applying the functor Kb to (2.3.4.7) gives rise to the exact tensor functor
Kb
mot(p∗) :Kb

mot(V) → Kb
mot(W); passing to the respective localizations gives the

exact tensor functor Db
mot(p

∗) :Db
mot(V) → Db

mot(W). Finally, taking the pseudo-
abelian hull gives the exact tensor functor

DM(p∗) :DM(V) → DM(W)

as desired.
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2.3.6. Theorem. Suppose we have a sequence of morphisms of reduced noetherian
schemes R

q−→ T
p−→ S and subcategories VR of SmessR , VT of SmessT , and VS of

SmessS , such that the functors q∗ and p∗ restrict to functors p∗ :VS → VT , q∗ :VT →
VR. Suppose in addition that the categories DM(VS), DM(VT ) and DM(VR) are
defined. Then there is a canonical natural isomorphism

θp,q :DM((p ◦ q)∗) → DM(q∗) ◦ DM(p∗)

satisfying the associativity identity of a pseudo-functor.

Proof. As is well known, the canonical isomorphism

θp,q(X) : (p ◦ q)∗(X) → q∗(p∗(X)); X ∈ SchS ,
makes the operation of pull-back into a pseudo-functor. The same identity thus
holds for pull-back in the categories L(−). This then implies that sending p to
the tensor functor A2(p∗) (2.3.2.5) defines a pseudo-functor to tensor categories.
Using the functoriality (2.3.4.1), we see that (2.3.4.2) defines a pseudo-functor to
DG tensor categories; the identities (2.3.4.3) and (2.3.4.5) defining the extension
of A3(p∗) to A4(p∗) and A5(p∗) likewise imply that (2.3.4.7) defines a pseudo-
functor to DG tensor categories. As the functor DM(p∗) is gotten from (2.3.4.7)
by applying natural operations, sending V to DM(V) defines a pseudo-functor to
triangulated tensor categories, as desired.

For a reduced noetherian scheme S, we may take V equal to the category SmS ;
recall that we have defined DM(S) := DM(SmS).

2.3.7. Theorem. Sending S to DM(Sred) and p :T → S to DM(p∗red) defines the
pseudo-functor

DM(−) :Schop → TT,
where Sch is the category of noetherian schemes, and TT is the category of trian-
gulated tensor categories.

2.4. Motives of cosimplicial schemes

In this, and the subsequent three remaining subsections of this section, we describe
how to form objects of DM(V) associated to various functors to V , e.g., cosimplicial
objects of V , simplicial objects of V , etc. We include this material here as a reference
to be used throughout the text; as such, we suggest skipping over these subsections
on the first reading, referring back to them as needed.

We apply the constructions of (Part II, Chapter III, Lemma 1.1.5 and §1.1.1-
§1.1.4) to certain (co)simplicial objects in V ; we refer the reader to (Part II, Chap-
ter III, loc. cit.) for the notations used in this and the next few subsections.

We recall the category ∆ with objects the ordered sets [n] := {0 < . . . < n},
and maps the order-preserving maps of sets. For a category C, we have the category
c.s.C of cosimplicial objects of C, i.e., functors F : ∆ → C, and the category sC of
simplicial objects of C, i.e., functors F : ∆op → C.

We have the full subcategory ∆≤n of ∆, with objects [k], 0 ≤ k ≤ n. The
category of functors ∆≤n → C is the category c.s.≤nC of n-truncated cosimplicial
objects of C; the category s.≤nC of n-truncated simplicial objects of C is defined
similarly.

We let ZC denote the additive category generated by C, i.e., objects are formal,
finite direct sums of objects of C, and HomZC(X,Y ) := Z[HomC(X,Y )].
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2.4.1. Very smooth cosimplicial schemes. Let X∗ : ∆ → V be a cosimplicial object
in V . We call X∗ very smooth if the maps X(σmi ) :Xm → Xm−1 are all flat (where
σmi are the codegeneracy maps cf. Part II, (III.1.1.1.2)). We now describe a lifting
of X∗ to a cosimplicial object

(X∗, f∗X∗) : ∆ → L(V).(2.4.1.1)

For each n ≥ 0, let X≤n be the disjoint union

X≤n =
∐

g : [m]→[n]
g injective, order-preserving

Xm,

and let fnX∗ :X≤n → Xn be the map which is X(g) :Xm → Xn on the component
indexed by g. This determines the object (Xn, fnX∗) of L(V).

For a morphism p : [m] → [n] in ∆, we have the unique factorization of p in ∆
as

[m]
psurj−−−→ [m′]

pinj−−→ [n],

with psurj surjective and pinj injective. Now let h : [n′] → [n] be a map in ∆, and
let g : [m′] → [n′] be an injective map in ∆. We have the factorization of (g ◦ h) as

[m]
(g◦h)surj−−−−−→ [mg,h]

(g◦h)inj−−−−−→ [n];(2.4.1.2)

as each surjective map in ∆ is a composition of the maps σji , the morphism

X((g ◦ h)surj) :Xm′ → Xmg,h

is a flat morphism. Let ig,h :Xmg,h → X≤n be the inclusion as the component
indexed by the map (g ◦ h)inj. Let q(h) :X≤n

′ → X≤n be the map which on the
component Xm′

indexed by g : [m′] → [n′] is the composition ig,h ◦X((g ◦ f)surj);
q(h) is thus a flat morphism in V .

The factorization (2.4.1.2) gives us the commutative diagram

X≤n
′ ��

q(h)

��

fn′
X∗

X≤n

��

fn
X∗

Xn′ ��
X(h)

Xn;

as q(h) is flat, we have the morphism

X(h) : (Xn′
, fn

′

X∗) → (Xn, fnX∗)

in L(V). Thus, sending n to (Xn, fnX∗), h to X(h), defines the desired functor
(2.4.1.1).

2.4.2. Motives associated to cosimplicial schemes. We have the functor

Z(q) :L(V)op → Amot(V)

Z(q)((X, f)) = ZX(0)f ,
(2.4.2.1)

which extends to the functors

Cb(Z(q)) :Cb(ZL(V)op) → Cb
mot(V)∗

Kb(Z(q)) :Kb(ZL(V)op) → Kb
mot(V)∗.
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We have the inclusion functors

jN : ∆≤N → ∆

jN ′,N : ∆≤N → ∆≤N
′
; N < N ′.

If X∗ : ∆ → V is a very smooth cosimplicial object, we have the object

Z⊕N (j∗N (X∗, f∗X∗))

ofCb(L(ZV)op) (cf. (2.4.1.1) and Part II, §1.1.3 and (III.1.1.1.3)); we define Z≤NX∗ (0)
in Cb

mot(V)∗ by

Z≤NX∗ (0) := Cb(Z(0))(Z⊕N (j∗N (X∗, f∗X∗))).(2.4.2.2)

Explicitly, Z≤NX∗ (0) in degree −m is the direct sum

[Z≤NX∗ (0)]−m =
⊕

f : [m]→[N ]
ZXm(0)fm ,

where f : [m] → [N ] runs over injective maps in ∆.
Sending X∗ to Z≤NX∗ (0) determines the functor

Z≤N (0) : c.s.Vvery smooth → Db
mot(V)∗

from the category of very smooth cosimplicial schemes in V to Db
mot(V)∗.

The natural map

χN,n : Z⊕n (j∗n(X∗, f∗X∗)) → Z⊕N (j∗N (X∗, f∗X∗))

induced by the map f : [n] → [N ], f(i) = i (cf. Part II, (III.1.1.4.1)) give rise to
the natural map in Cb

mot(V)∗

χN,n(?) : Z≤n(0)(?) → Z≤N (0)(?),(2.4.2.3)

and define the natural transformation

χN,n : Z≤n(0) → Z≤N (0).(2.4.2.4)

2.4.3. Remark. Suppose we have a cosimplicial object X∗ : ∆ → V , not necessarily
very smooth. One can modify the construction of §2.4.1 and §2.4.2 to define the
motive associated to each truncation X∗≤N : ∆≤N → V of X∗: one replaces the
map fnX∗ :X≤n → Xn with the map fn≤NX∗ :X≤n≤N → Xn, where

X≤n≤N :=
∐

g : [k]→[n]
k≤N

Xk.

As we won’t be using this construction, we omit the details.

2.5. Motives of simplicial schemes

We describe objects of DM(V) associated to simplicial objects of L(V) and V for
later use. We refer the reader to (Part II, Chapter III, §1.1.1-1.1.4) for the various
notations.
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2.5.1. If we have a functor (X, f) : ∆≤nop → L(V), we may compose (X, f)op with
the functor (2.4.2.1), forming the functor

Z(q) ◦ (X, f) : ∆≤n → Amot(V).(2.5.1.1)

We let ZX(q)f ∈ Cb
mot(V) be the object of the category of complexes Cb

mot(V)
associated to the functor (2.5.1.1), i.e., ZX(q)sf := ZX([s])(q)f([s]), and ds is the
alternating sum of the maps X(δsi )∗. For 0 ≤ m ≤ n, we let ZX(q)m≤∗f be the trun-
cation of ZX(q)f to degree ≥ m. We sometimes denote ZX(q)m≤∗f as ZX(q)m≤∗≤nf

if we want to refer to n explicitly.
Sending (X, f) to ZX(q)f or ZX(q)m≤∗f defines the functors

Z(−)(q)(−) : s.≤nL(V) → Cb
mot(V)

Z(−)(q)m≤∗(−) : s.≤nL(V) → Cb
mot(V);

(2.5.1.2)

we may also consider Z(−)(q)(−) and Z(−)(q)m≤∗(−) as functors with values inKb
mot(V)

or Db
mot(V) as the need arises. Clearly the functors (2.5.1.2) factor through the

functor

s.≤nL(V) = c.s.≤nL(V)op → Cb(ZL(V)op)

X �→ X∗,

where X∗ is the complex associated to X .

2.5.2. Lifting simplicial objects to L(V). Let X be a truncated simplicial object in
V : X : ∆op≤n → V . For each m ≤ n, we let fm,n be the map

fm,n =
∐

f : [m]→[k]
0≤k≤n

X(f)
∐

f : [m]→[k]
0≤k≤n

Xk → Xm.

As in §2.4.1, for each g : [k] → [m] in ∆, the map X(g) :Xm → Xk lifts to the map
X(g) : (Xm, fm,n) → (Xk, fk,n) in L(V). We let

(X, fX) : ∆≤nop → L(V)(2.5.2.1)

be the functor lifting X with (X, fX)m = (Xm, fm,n).

2.5.3. Motives. We have the composition

Z(q) ◦ (X, fX) : ∆≤n → Amot(V)(2.5.3.1)

of (2.5.2.1) with the functor (2.4.2.1); we let ZX(q)m≤∗ be the truncated complex
in Cb

mot(V) associated to (2.5.3.1), as in §2.5.1.
Sending X to ZX(q)m≤∗ defines a functor

Z(−)(q)m≤∗ : (s.≤nV)op → Db
mot(V).(2.5.3.2)

Indeed, given a map p :Y → X in s.≤nV , let gm :X ′m → Xm be the map

gm =
∐

f : [m]→[k]
0≤k≤n

X(f) ∪ pm ◦ Y (f)
∐

f : [m]→[k]
0≤k≤n

Xk

∐
Yk → Xm.

This then defines the lifting of X to an object (X, g) of s.≤nL(V), so that the map
p lifts to p : (Y, fY ) → (X, g) and the identity on X lifts to i : (X, fX) → (X, g).
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This gives the diagram in Cb
mot(V)

ZX(q)m≤∗g
��

p∗

��

i∗

ZY (q)m≤∗

ZX(q)m≤∗

with i∗ an isomorphism in Db
mot(V) by Definition 2.1.4(e). As in §2.2.9, this defines

the functor (2.5.3.2). Taking m = 0 gives the functor

Z(−)(q) : (s.≤nV)op → Db
mot(V)

X �→ ZX(q) := ZX(q)0≤∗.

For n′ ≥ n, and X : ∆≤n
′op → V , we have the canonical map

ρn′,n : (X, fX) ◦ jn′,n → (X ◦ jn′,n, fX◦jn′,n);

this defines the natural map

ρ∗n′,n : ZX(q)m≤∗≤n
′ → ZX◦jn′,n(q)m≤∗≤n.(2.5.3.3)

For example, this gives us the map

πm := ρn,m[m] : ZX(q)m≤∗≤n[m] → ZX(q)m≤∗≤m[m] = ZX(q)mfm .(2.5.3.4)

2.5.4. Motives of non-degenerate simplicial schemes. We have the subcategory ∆n.d.
of ∆, with the same objects, but where we only allow injective order-preserving
maps. We call a functor X∗ : ∆opn.d. → C (resp. X∗ : ∆n.d. → C) a non-degenerate
simplicial object (resp. non-degenerate cosimplicial object) of C.

Let (X∗, f∗) be a non-degenerate simplicial object of L(V), with (X∗, f∗)m =
(Xm, fm) for m = 0, 1, . . . . This gives us the non-degenerate cosimplicial object
ZX∗(q)f∗ of Amot(V)∗ with ZX∗(q)mf∗ = ZXm(q)fm . For each N ≥ 0, we may then
form the truncated complex ZX∗(q)∗≤Nf∗

in Cb
mot(V)∗, which is ZX∗(q)mfm in degree

m, and has the usual alternating sum as coboundary.

2.5.5. Motivic cohomology of simplicial schemes. For a truncated simplicial object
of V , X : ∆≤nop → V , we have the motive ZX(q); we define the motivic cohomology
of X by

Hp(X,Z(q)) := HomDM(V)(1,ZX(q)[p]).

Let (N,≤) denote the category with set of objects N and a unique morphism
n→ n′ for each n ≤ n′. For a simplicial object X : ∆op → V of V , the maps (2.5.3.3)
give the functor ZX(q) : (N,≤)op → Cb

mot(V) with

ZX(q)(n) := ZX◦jn(q)

ZX(q)(n ≤ n′) := ρ∗n′,n : ZX(q)(n′) → ZX(q)(n).

We define the motivic cohomology of X by

Hp(X,Z(q)) := lim←
(N,≤)op

[n �→ HomDM(V)(1,ZX(q)(n)[p])]

= lim←
(N,≤)op

[n �→ Hp(X ◦ jn,Z(q))].

Similarly, if we have an n-truncated non-degenerate simplicial object of L(V),
(X, f) : ∆≤nopn.d. → L(V), define Hp((X, f),Z(q)) := HomDM(V)(1,ZX(q)f [p]), and if
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we have a (non-truncated) non-degenerate simplicial object (X, f) : ∆opn.d. → L(V)
of L(V), define

Hp((X, f),Z(q)) := lim←
(N,≤)op

[n �→ Hp((X, f) ◦ jn,Z(q))].

2.5.6. Products. The category Vop is a symmetric monoidal category with operation
×S, and has the commutative multiplication (see Part II, Chapter III, §1.2.2) given
by the opposite of the diagonal ∆X :X → X×SX. Similarly, the category L(V)op is
a symmetric monoidal category with product ×, and the projection L(V)op → Vop
is a symmetric monoidal functor. By the results of (Part II, Chapter III, §1.2.1) and
the external products given in (Part II, (III.1.2.1.4)), we have the natural products
in Cb

mot(V):

Z(∗)(∪(X,f),(Y,g)) : ZX(q)m≤∗≤nf ⊗ ZY (q′)g → ZX×SY (q + q′)m≤∗≤nf×g ,(2.5.6.1)

for (X, f) and (Y, g) in s.≤nL(V). These products are associative and graded-
commutative. Taking (X, f) = (X, fX), and (Y, g) = (Y, fY ) gives the natural
associative, graded-commutative products

Z(∗)(∪X,Y ) : ZX(q)m≤∗≤n ⊗ ZY (q′) → ZX×SY (q + q′)m≤∗≤n.(2.5.6.2)

Applying the functors Z(∗) to the cup product map of (Part II, (III.1.2.3.2))
produces the associative multiplications

Z(∗)(mn(Xm≤∗≤n)) : ZX(q)m≤∗≤n ⊗ ZX(q′) → ZX(q + q′)m≤∗≤n(2.5.6.3)

in Db
mot(V); if m = 0, this multiplication is (graded) commutative.
The products (2.5.6.3) give H∗(X,Z(∗)) := ⊕p,qH

p(X,Z(q)) the structure of a
bi-graded ring (without unit), graded-commutative in p. For m ≤ n, the products
(2.5.6.3) make the bi-graded Z-module ⊕p,qH

p(ZX(q)m≤∗≤n) a bi-graded module
over H∗(X,Z(∗)). Additionally, the various maps defined by changing n or m are
ring homomorphisms, or module homomorphisms, as appropriate; this follows from
the commutativity of the diagrams (Part II, (III.1.2.3.3)-(III.1.2.3.5)). We often
write the maps (2.5.6.2) and (2.5.6.3) as ∪X,Y and ∪X , respectively.

Let j :V → Y be an open simplicial subscheme of Y , and let Ŷm := Ym \ Vm.
Define the motive with support ZY,Ŷ (q)g, as in (2.1.3.1), to be the shifted cone of
the map j∗:

ZY,Ŷ (q)g := cone(j∗ : ZY (q)g → ZV (q)j∗g)[−1].

As the maps (2.5.6.1) are natural in (Y, g), they induce the map

∪X,Y := Z(∗)(∪X,Y ) : ZX(q)⊗ ZY,Ŷ (q′) → ZX×SY,X×SŶ
(q + q′).(2.5.6.4)

The products for H∗(X,Z(∗)) and the external products (2.5.6.4) extend to
the case of (non-truncated) simplicial schemes by taking the projective limit.

2.6. Cubes and relative motives

We give a discussion of n-cubes in a category, and the construction of relative
motives and relative motivic cohomology
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2.6.1. n-cubes. Let <n> be opposite of the category of subsets of the finite set
{1, . . . , n}, i.e., an object of <n> is a subset I of {1, . . . , n}, and there is a mor-
phism J → I if and only if J ⊃ I. The category <n> is called the n-cube. For
a category C we have the category C<n>, the category of n-cubes in C, being the
category of functors X :<n>→ C.

2.6.2. Lifting n-cubes to L(V). Let

X∗ :<n>→ V ,
I �→ XI ,

be a functor and let (X∅, f∅ :X ′ → X∅) be a lifting of X∅ to an object of L(V). For
each I ⊂ {1, . . . , n}, form the cartesian diagram

X ′I := X ′ ×X∅ XI
��

p1

��

fI :=p2

X ′

��

f∅

XI
��

XI⊃∅
X∅.

The maps XJ⊃I induce the maps X ′J⊃I :X ′J → X ′I defining the n-cube

X ′∗ :<n>→ SchS ;

the maps fI give the map of n-cubes f∗ :X ′∗ → X∗.
Supposing that the X ′I are in SmessS for all I, we define the lifting of X∗ to a

functor

(X∗, fX∗ ) :<n>→ L(V)(2.6.2.1)

by setting

X ′I :=
∐
J⊃I

X ′J ,

fXI := ∪J⊃IXJ⊃I ◦ fJ :X ′I → XI

(compare with (2.4.1.1)).

2.6.3. Motives of n-cubes. We apply the functor Z(0) :L(V)op → Amot(V) to the
functor (2.6.2.1). We then form the complex with ⊕|I|=sZXI (0)fX

I
in degree s, and

differential
∂s :

⊕
|I|=s

ZXI (0)gXI →
⊕

|I|=s+1
ZXI (0)fX

I

given by setting

∂sI,i : ZXI (0)fX
I
→ ZXI∪{i}(0)fX

I∪{i}

∂sI,i =

{
X∗I∪{i}⊃I for i �∈ I

0 for i ∈ I

∂s =
∑
|I|=s

n∑
i=1

(−1)i∂sI,i.

We denote the resulting object of Cb
mot(V) by ZX∗(0)f∅ .

If we take f∅ = idX∅ , then we have the lifting (X∗, fX∗ ) of X∗ and the object
ZX∗(0) := ZX∗(0)idX∅

of Cb
mot(V).
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2.6.4. n-cubes and cones. The main utility of the n-cube follows from the elementary
remark that the category of n-cubes in a category C is equivalent to the category
of maps of n − 1-cubes in C, the equivalence being given by associating to a map
of n− 1-cubes, f∗ :X−∗ → X+∗ , the n-cube X(f∗)∗ with

X(f∗)I =

{
X−I if n �∈ I,
X+I\{n} if n ∈ I,

X(f∗)J⊃I =

{
X−J⊃I if n �∈ J ,
X+J\{n}⊃I\{n} if n ∈ I,

X(f∗)I∪{n}⊃I = fI for I ⊂ {1, . . . , n− 1}

(this unique determines X(f∗)∗). If we have an n-cube X∗ in L(V), which we may
then write as X∗ = X(f∗)∗ for the uniquely determined map f∗ of n− 1-cubes in
L(V), we have the identity

ZX∗(0) = cone(Zf∗(0) : ZX−
∗

(0) → ZX+
∗

(0))[−1].(2.6.4.1)

Thus, each n-cube in L(V) gives rise to a sequence of linked distinguished triangles
in Kb

mot(V).
As a simple, but useful, application of the above cone sequence, we have

2.6.5. Lemma. (i) Let g :X∗ → Y∗ be a map of n-cubes in L(V) such that g∗I : ZYI →
ZXI is an isomorphism in Db

mot(V) for all I ⊂ {1, . . . , n}. Then g∗ : ZY∗ → ZX∗ is
an isomorphism in Db

mot(V).
(ii) Let X∗ :<n>→ L(V) be an n-cube in L(V). Suppose that

X(I ∪ {n} ⊃ I)∗ : ZXI → ZXI∪{n}

is an isomorphism in Db
mot(V) for all I ⊂ {1, . . . , n− 1}. Then ZX∗ is isomorphic

to 0 in Db
mot(V).

Proof. The second assertion follows from the first, using the distinguished
triangle coming from the cone sequence (2.6.4.1). The first assertion follows using
the same distinguished triangle and induction on n.

2.6.6. Relative motives. Suppose we have a smooth S-scheme X , with subschemes
D1, . . . , Dn ⊂ X. For each index I = (1 ≤ i1 < . . . < is ≤ n), let DI be the
subscheme of X , DI := Di1 ∩ . . . ∩Dis .

Suppose we have a lifting (X, f :X ′ → X) of X to L(V) such that each DI is
in V and the pull-backs fI := p2 :X ′ ×X DI → DI are in SmessS . We let

(X ;D1, . . . , Dn)∗ :<n>→ V

be the n-cube in V with (X ;D1, . . . , Dn)I = DI ; for J ⊂ I, we let

(X ;D1, . . . , Dn)J⊂I :DJ → DI

be the inclusion. Applying the construction described in §2.6.2 gives the lifting of
the n-cube (X ;D1, . . . , Dn)∗ to the n-cube ((X ;D1, . . . , Dn)∗, fX∗ ) :<n>→ L(V),
which in turn gives us the object Z(X;D1,... ,Dn)(0)f of Cb

mot(V); the identification
(2.6.4.1) of ZX∗(0)f as a cone gives us the relativization distinguished triangle in
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Kb
mot(V),

(2.6.6.1) Z(X;D1,... ,Dn)(0)f → Z(X;D1,... ,Dn−1)(0)f

→ Z(Dn;D1,n,... ,Dn−1,n)(0)fn
in−→ Z(X;D1,... ,Dn)(0)f [1].

We call the object Z(X;D1,... ,Dn)(0) of DM(V) the motive of X, relative to
D1, . . . , Dn. We define the relative motivic cohomology by

Hp(X ;D1, . . . , Dn,Z(q)) := HomDM(V)(1,Z(X;D1,... ,Dn)(q)[p]).

Let j :U → X be the inclusion of an open subscheme, with complement W in
X . Writing DU

i := Di ∩ U , the collection of maps jI :DU
I → DI gives the map of

objects of Cb
mot(V)

j∗ : Z(X;D1,... ,Dn) → Z(U ;DU
1 ,... ,DU

n )
.

We define the relative motive with support, Z(X;D1,... ,Dn),W , as the cone

Z(X;D1,... ,Dn),W := cone(j∗ : Z(X;D1,... ,Dn) → Z(U ;DU
1 ,... ,DU

n )
)[−1].

This gives us the localization distinguished triangle

(2.6.6.2) Z(X;D1,... ,Dn),W → Z(X;D1,... ,Dn)

→ Z(U ;DU
1 ,... ,DU

n )
→ Z(X;D1,... ,Dn),W [1].

2.6.7. Functorialities. Suppose we have (X ;D1, . . . , Dn) and (Y ;E1, . . . , Em) sat-
isfying the conditions of §2.6.6, and a map f :X → Y such that

f(Di) ⊂ Eα(i); α(i) ∈ {1, . . . ,m}; i = 1, . . . , n.

Let α :<n>→ <m> be the map on the subsets of {1, . . . , n} induced by α. Define
f∗ : Z(Y ;E1,... ,Em) → Z(X;D1,... ,Dn) by the maps f∗|DI

: ZEα(I) → ZDI , together with
the zero maps on ZEJ for J not in the image of α.

One easily shows that two different maps α give homotopic maps of complexes,
and that (f ◦ g)∗ = g∗ ◦ f∗.

2.7. Motives of diagrams

We refer the reader to (Part II, Chapter III, Section 3) for the notions related to
homotopy limits.

2.7.1. Adjoining a disjoint base-point. For a category C with an initial object ∅, we
let C+ be the category gotten from C by adjoining a final object ∗, and making the
canonical morphism ∅ → ∗ an isomorphism. Heuristically, we have just adjoined a
disjoint base-point to each object of C.

Given a functor F : C → A such that A has an initial object ∅A and final object
∗A which are isomorphic, and such that F (∅) = ∅A, we extend F to F : C+ → A by
sending ∗ to ∗A. In particular, each functor F :C → A to an additive category A,
with F (∅) = 0, extends canonically to the functor F :C+ → A.

If C has a product ×, we extend the operation × to C+ by taking the smash
product

X ∧ Y =

{
X × Y ; for X �= ∗ and Y �= ∗
∗; otherwise.
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Similarly, a coproduct
∐

on C extends to the pointed version X ∨ Y = X
∐

Y for
X �= ∗ and Y �= ∗, and X ∨ ∗ := X , ∗ ∨ Y := Y .

2.7.2. The motive of a diagram. Let I be a finite category and let X : I → V+ be a
functor. We write L(V+) for L(V)+. We lift X to a functor (X, fX) : I → L(V+)
by setting

X ′(i) :=
∨

f : j→i∈I/i
X(j),

and letting fX(i) :X ′(i) → X(i) be the union of the maps X(f) :X(j) → X(i).
Given a map s : i→ i′, the map X ′(s) :X ′(i) → X ′(i′) is defined to be the union

of the identity maps X(j) → X(j), where we send the component f : j → i to the
component s ◦ f : j → i′. Thus, (X, fX) is indeed a lifting.

Composing with the functor Z(q) :L(V+)op → Amot(V), we have the functor
Z(q)◦(X, fX) : Iop → Amot(V). We let ZX(q) be the non-degenerate homotopy limit
(see Part II, Chapter III, §3.2.2 and §3.2.7)

ZX(q) := holim
Iop, n.d.

Z(q) ◦ (X, fX) ∈ Cb
mot(V).

More generally, if (X, f) : I → L(V+) is a functor, we have the object

ZX(q)f := holim
Iop, n.d.

Z(q) ◦ (X, f)

of Cb
mot(V)

2.7.3. The holim distinguished triangle. Let (X, f) : I → L(V+) be a functor, and let
i ∈ I be a maximal element (minimal in Iop). Recall the category Ii/ of morphisms
s : i→ j, j �= i, in I, and the functor (X i/, f i/) : Ii/ → L(V+),

(X i/, f i/)(s : i→ j) := (X(j), f(j)).

The homotopy limit distinguished triangle (Part II, Chapter III, §3.2.9) gives us
the distinguished triangle in Kb

mot(V)

ZX(q)f → ZX(i)(q)f(i) ⊕ ZX|I\{i}(q)f |I\{i} → ZXi/(q)fi/ → ZX(q)f [1].

In particular, for X : I → V+ a functor, we have the distinguished triangle in
Kb
mot(V)

ZX(q)fX → ZX(i)(q)fX (i) ⊕ ZX|I\{i}(q)fX |I\{i} → ZXi/(q)(fX )i/ → ZX(q)fX [1].

The identity map on each X(i) gives the natural transformation of functors
(X|I\{i}, fX|I\{i}) → (X, fX)|I\{i}, which is an isomorphism in Db

mot(V) when eval-
uated at j ∈ I \ {i}. By (Part II, Chapter III, Proposition 3.2.10), the map on the
holim’s ZX|I\{i}(q)fX |I\{i} → ZX|I\{i}(q) is an isomorphism in Db

mot(V). Similarly,
we have the natural isomorphism

ZXi/(q)(fX )i/ ∼= ZXi/(q),

giving us the distinguished triangle in Db
mot(V)

ZX(q) → ZX(i)(q)⊕ ZX|I\{i}(q) → ZXi/(q) → ZX(q)[1].(2.7.3.1)

Using (2.7.3.1) and induction on dim I and |N (I)n.d.([dim I])|, one proves, for
example, the homotopy property: The map

p∗ : ZX(q) → ZX×A1(q)



36 I. THE MOTIVIC CATEGORY

is an isomorphism in Db
mot(V), the Künneth isomorphism: For Y in V , the external

product

� : ZX(q)⊗ ZY (q′) → ZX×Y (q + q′)

is an isomorphism in Db
mot(V), the moving lemma: The map

ZX(q)f∪g → ZX(q)f

is an isomorphism inDb
mot(V), etc. Using the moving lemma, one gets contravariant

functoriality: If f :Y → X is a map of functors X,Y : I → V+, define f∗ : ZX(q) →
ZY (q) as the composition

ZX(q) = ZX(q)fX ∼= ZX(q)fX∪f
f∗

−→ ZY (q)fY = ZY (q).

2.7.4. Products. The formula for products for the homotopy limit given in (Part II,
Chapter III, §3.4.4) give external products

�(X,f),(Y,g) : ZX(q)f ⊗ ZY (q′)g → ZX×SY (q + q′)f×g

in Cb
mot(V) for functors (X, f), (Y, g) : I → L(V+). These products are associative

in Cb
mot(V) and commutative in Kb

mot(V). Taking (X, f) = (Y, g) = (X, fX),
and pulling back by the diagonal gives the associative, commutative cup product
∪X : ZX(q)⊗ ZX(q′) → ZX(q + q′) in Db

mot(V).

2.7.5. Motivic cohomology. For a functor X : I → V+, define the motivic cohomol-
ogy of X to be the motivic cohomology of ZX :

Hp(X,Z(q)) := HomDb
mot(V)(1,ZX(q)[p]).

By the moving lemma, one gets the same definition if one chooses another lifting
of X to a functor to L(V+). The products defined in (2.7.4) give H∗(X,Z(∗))
the structure of a (possibly non-unital) bi-graded ring, graded-commutative with
respect to the cohomology degree. If X has values in V , then the structure morphism
pX :X → SI , where SI is the constant functor with value the base-scheme S, gives
the unit p∗X : ZS = 1 → ZX .

2.7.6. Remark. The constructions of motives of truncated simplicial schemes, trun-
cated cosimplicial schemes and n-cubes of schemes can all be rephrased in terms
of the homotopy limit construction of this section, but only up to isomorphism in
Db
mot(V). The actual representatives in Cb

mot(V) will in general be different; as this
can cause some difficulty in making explicit comparisons and computations, we find
it useful to pick and choose among the various methods for constructing isomorphic
motives.

3. Structure of the motivic categories

In this section, we prove some basic structural results for the motivic categories
Amot(V), Kb

mot(V), Db
mot(V)R and DM(V)R.

3.1. Structure of the motivic DG category

3.1.1. We begin with a description of A1(V), and its image in Amot(V).

3.1.2. Lemma. In A1(V), (ZX
`

Y (n)A`B, iX∗, iY ∗, i
∗
X , i∗Y ) is the bi-product of

ZX(n)f and ZY (n)g.



3. STRUCTURE OF THE MOTIVIC CATEGORIES 37

Proof. We have the diagram

∅ ��

��

∅
∐

Y

��

Y

X �� X
∐

Y .

Applying the relations from Definition 1.3.2 and Definition 1.4.1, we find i∗Y ◦ iX∗ =
0. Similarly, i∗X ◦ iY ∗ = 0. Applying the relations of Definition 1.3.2 to the diagram

X ��

��

X

��

X �� X
∐

Y

shows that i∗X ◦ iX∗ = idZX(n)f . Similarly i∗Y ◦ iY ∗ = idZY (n)g . The relation of
Definition 1.4.1 completes the proof.

3.1.3. Lemma. Let (X, f) and (Y, g) be in L(V), with X and Y connected. Then
HomA1(V)(ZX(n)f ,ZY (n)g) is the free Z-module on HomL(V)op((X, f), (Y, g))

Proof. We have the natural map

Ξ: HomL(V)op((X, f), (Y, g)) → HomA1(V)(ZX(n)f ,ZY (n)g).

It is clear that, for X and Y connected, the image of Ξ generates the Z-module
HomA1(V)(ZX(n)f ,ZY (n)g). Form the additive category C with objects finite direct
sums of objects ZX(n)f for ZX(n)f in A1(V) with X non-empty and connected.
Morphisms in C are given by taking HomC(ZX(n)f ,Z(n)g) to be the free Z-module
on HomL(V)op((X, f), (Y, g)), for X and Y non-empty and connected, and in general
by taking direct sums. The composition law is induced by that of L(V)op. Sending
maps of the form i∗ to the corresponding inclusion on the direct sum in C defines
a functor F :A1(V) → C; one sees directly that F ((X, f), (Y, g)) ◦ Ξ is the natural
inclusion

HomL(V)op((X, f), (Y, g)) → Z[HomL(V)op((X, f), (Y, g))].

This shows that HomL(V)op((X, f), (Y, g)) is an independent set (over Z) in the
Z-module HomA1(V)(ZX(n)f ,ZY (n)g), completing the proof.

We have the canonical “inclusion” functor ι0 :A1(V) → Amot(V); for k =
1, 2 . . . , let ιk :A1(V) → Amot(V) be the functor

X �→ e
⊗k ⊗X ; f �→ ide⊗k ⊗ f.

3.1.4. Lemma. The functors ιk, k = 0, 1, . . . , are faithful embeddings.

Proof. This follows directly from (Part II, Chapter I, Proposition 2.5.2).

3.1.5. The results of (Part II, Chapter I, §2.4), give a description of the morphisms
in the category A2(V). We let i :A1(V) → A2(V) = A1(V)⊗,c denote the canonical
functor. From (Part II, Chapter I, Proposition 2.4.5), the functor i is fully faithful.
In addition, we have a functor of tensor categories without unit, ρ :A2(V) → A1(V),
with ρ ◦ i = id, and a natural transformation � : idA2(V) → i ◦ ρ.

For n = 3, 4, 5, let
in :An(V)∗ → An(V)
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be the full DG subcategory generated by the objects e⊗k ⊗ X and e⊗k, for X in
A1(V) and k ≥ 0. We let

imot :Amot(V)∗ → Amot(V)

be the full DG subcategory generated by the objects e⊗k ⊗X , for X in A1(V), and
k ≥ 0.

It follows from (Part II, Chapter I, Proposition 2.5.3), that, for n = 3, 4, 5,
the tensor structure on A1(V) extends to a graded tensor structure without unit on
An(V)∗, the functor ρ extends to a graded tensor functor rn :An(V) → An(V)∗ with
rn ◦ in = id, and the natural transformation � extends to a natural transformation
�n : idAn(V) → in ◦ rn. One checks that r5 and �5 restrict to give the functor and
natural transformation

rmot :Amot(V) → Amot(V)∗

�mot : idAmot(V) → imot ◦ rmot.
(3.1.5.1)

3.1.6. Lemma. For n = 3, 4, 5, the DG categories An(V)∗, with the given tensor
structure, are DG tensor categories without unit, and the DG category Amot(V)∗

is a DG tensor category with unit 1. The functors rn, (resp., natural transforma-
tions �n), for n = 3, 4, 5 and for n = mot are DG tensor functors (resp. natural
transformations of DG tensor functors).

Proof. For Γ and ∆ in A1(V), the symmetries tΓ,∆ : Γ × ∆ → ∆ × Γ and
τΓ,∆ : Γ⊗∆ → ∆⊗Γ, and the external product �Γ,∆ : Γ⊗∆ → Γ×∆ are morphisms
in the tensor category A2(V), hence, as morphisms in the DG tensor categories
An(V), n = 3, 4, 5, these maps are morphisms of degree 0, with zero differential.
From the explicit expression for graded tensor product structure on An(V)∗, n =
3, 4, 5, given in the proof of (Part II, Chapter I, Proposition 2.5.3), one sees that
this tensor structure respects the differential structure (i.e., that the Leibnitz rule
is satisfied), and similarly, that the functors rn respect the differential structure.
The analogous result for n = mot follows from the case n = 5.

Similarly, it follows from (Part II, Chapter I, Proposition 2.5.3), that Amot(V)∗

is an tensor category with unit 1; arguing as above, we see that the unit respects
the differential structure, completing the proof.

3.2. The motivic cycles functor

We now show how the operation of taking the group of cycles of various codimension
becomes a functor on Amot(V).

3.2.1. We start with the cycles functor (1.4.7.3). We define the functor of additive
categories

Z2 :A2(V) → Ab(3.2.1.1)

by Z2 = Z1 ◦ ρ.

3.2.2. Lemma. The functor (3.2.1.1) extends to a functor of graded additive cate-
gories

Z3 :A3(V) → GrAb

which satisfies
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(i) Z3 factors as a composition

A3(V) r3−→A3(V)∗
Z∗
3−−→ GrAb.(3.2.2.1)

(ii) We have

Z∗3 (e⊗k ⊗ ZX(n)) = Z1(ZX(n)f )[−2n] = Zn(X)f [−2n]; Z∗3 (e⊗k) = Z,

with Z1(ZX(n)) and Z being concentrated in degree 0.
(iii) For X in A1(V), and for h : e⊗k⊗X → e⊗k⊗X a morphism of the form τ⊗ idX ,
where τ : e⊗k → e⊗k is a symmetry isomorphism in the category E, we have

Z∗3 (h) = idZ2(X).

If h = τ ⊗ idX , where τ has degree p < 0, then Z∗3 (h) = 0.
(iv) Let Y,X1, . . . , Xn be in A1(V), Zi ∈ Z1(Xi) for i = 1, . . . , n. Let

X = X1 ×S . . .×S Xn, Z = Z1 ×/S . . .×/S Zn.

If f : e⊗n ⊗ Y → X × Y is the morphism defined by the composition

e
⊗n ⊗ Y

[Z1]⊗...⊗[Zn]⊗idY−−−−−−−−−−−−→ X1 ⊗ . . .⊗Xn ⊗ Y

�X1,... ,Xn,Y−−−−−−−−→ X × Y,

then, for m ≥ 0, Z∗3 (ide⊗m ⊗ f) :Z1(Y ) → Z1(X × Y ) is the map determined by
the identity

Z∗3 (ide⊗m⊗f )(W ) = Z ×/S W for all W ∈ Z1(Y ).

(by Appendix A, Remark 2.3.3, Z×/SW is in Z1(X×S Y )). Moreover, the functor
Z∗3 is uniquely determined by (i)-(iv).

Proof. By (Part II, Chapter I, Proposition 2.5.2), the objects e⊗k ⊗X , e⊗k

and the morphisms of the form h = τ ⊗ idX and ide⊗m ⊗ f , together with the
morphisms of A2(V), generate A3(V)∗ as a graded additive category, whence the
uniqueness of Z3.

For existence, we first note that, if Zi is in Z1(Xi) for i = 1, 2, then it follows
immediately from the definitions that the cycle Z1×/S Z2 is in Z1(X1×X2). Thus,
the expression for Z3(ide⊗m⊗f ) is well-defined.

It follows from (Part II, Chapter I, Proposition 2.5.2) that the formulas (i)-
(iv) give, for each pair of objects X , Y of A3(V)∗, a well-defined homomorphism
Z3(X,Y ) : HomA3(V)∗(X,Y ) → HomGrAb(Z3(X),Z3(Y )). The functoriality of the
collection of maps Z3(X,Y ) is checked via the explicit form of the composition law
in A3(V)∗, giving a graded additive functor Z∗3 :A3(V)∗ → GrAb. We then define
Z3 as

Z3 = Z∗3 ◦ r3,
completing the proof.

3.2.3. Definition. Recall (Definition 1.4.12) the graded tensor categories A0n(V)
for n = 4, 5, and n = mot, having the same objects as An(V). For n = 4, 5 and
n = mot, we let A0n(V)∗ denote the full subcategory of A0n(V) generated by the
objects of An(V)∗.
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3.2.4. The DG tensor functor (1.4.12.1) induces the DG tensor functor

H∗n :An(V)∗ → A0n(V)∗.

The functors rn, in of §3.1.5 induce functors

r0n :A0n(V) → A0n(V)∗, i0n :A0n(V)∗ → A0n(V),

giving the commutative diagrams

An(V)

��

rn

��
Hn A0n(V)

��

r0n

An(V)∗

��

in

��
H∗

n

A0n(V)∗

��

i0n(3.2.4.1)

for n = 4, 5,mot.

3.2.5. Lemma. There is an extension of Z3 :A3(V) → GrAb to a functor of graded
additive categories

Zmot :Amot(V) → GrAb(3.2.5.1)

such that Zmot factors through H∗mot ◦ rmot as

Amot(V)
H∗
mot◦rmot−−−−−−−→ A0mot(V)∗

Z0∗
mot−−−→ GrAb.

Proof. One easily checks that the functor Z∗3 :A3(V)∗ → GrAb (3.2.2.1)
respects the relations of (1.4.7)(i)-(iv), giving the extension to Z0∗4 :A04(V)∗ →
GrAb. Noting that A04(V)∗ = A05(V)∗, we define Zmot as the restriction to Amot(V)
of the composition Z0∗4 ◦H∗5 ◦ r5.

3.3. The motivic homotopy category

We now derive some basic properties of the triangulated tensor category Kb(V).
We let Cb

mot(V)∗ denote the full subcategory Cb(Amot(V)∗) of Cb
mot(V), Simi-

larly, we let Kb
mot(V)∗ denote the full subcategory Kb(Amot(V)∗) of Kb

mot(V).

3.3.1. Lemma. (i) The functor of DG tensor categories rmot :Amot(V) → Amot(V)∗

and natural transformation �mot : id → imot ◦ rmot (cf. (3.1.5.1)) extend to the
functor of DG tensor categories, and natural transformation of functors, compatible
with the cone functors,

Cb(rmot) :Cb
mot(V) → Cb

mot(V)∗,

Cb(�mot) : id → Cb(imot) ◦Cb(rmot).

These in turn extend to the functor of triangulated tensor categories (without unit),
and natural transformation

Kb(rmot) :Kb
mot(V) → Kb

mot(V)∗,

Kb(�mot) : id → Kb(imot) ◦Kb(rmot).
(3.3.1.1)

(ii) The functor (3.2.5.1) extends to the functor of DG categories

Zmot := Cb(Zmot) :Cb
mot(V) → Cb(Ab),(3.3.1.2)
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compatible with cones. This functor in turn extends to the functor of triangulated
categories

Zmot := Kb(Zmot) :Kb
mot(V) → Kb(Ab).(3.3.1.3)

Proof. Apply the functors Cb(−) and Kb(−) to rmot, �mot and Zmot, and
use the equivalences (Part II, Chapter II, §1.2.9)

Tot:Cb(Cb(Ab)) → Cb(Ab),

Tot:Kb(Kb(Ab)) → Kb(Ab).

3.3.2. Let (X, f) be in L(V), and let Γ = ZX(q)f . For an integer b ≥ 0, we let

iΓ,b : HomA5(V)(e
⊗a,Γ)∗ → HomA5(V)(e

⊗a+b, e⊗b ⊗ Γ)∗(3.3.2.1)

be the map iΓ,b(f) = ide⊗b ⊗ f.

3.3.3. Lemma. The map (3.3.2.1) is a quasi-isomorphism.

Proof. Denote the complex HomA5(V)(e
⊗a+b, e⊗b ⊗Γ)∗ by C∗a,b and the com-

plex HomA5(V)(e
⊗a,Γ)∗ by C∗a . Let H denote the set of morphisms h : e⊗n →

ZY (n)g adjoined to form the category A5(V) from the category A2(V)[E] in Defini-
tion 1.4.6, Definition 1.4.8 and Definition 1.4.9. We may order the set H so that, if
h and h′ are in H, and we adjoin h before adjoining h′, then h < h′. We may then
filter the two complexes via this ordering. Using a spectral sequence argument,
it suffices to show that the map on the associated graded is a quasi-isomorphism.
Let grh denote the term in the associated graded corresponding to the adjoined
morphism h.

We refer to the description of the morphisms in C∗a and C∗a,b given by (Part
II, Chapter I, Proposition 2.5.2); each map in C∗a,b is a sum of compositions of the
form

e
⊗a+b τ−→e

⊗a+b = e
⊗b ⊗ e

⊗a = e
⊗b ⊗ e

⊗a1 ⊗ . . .⊗ e
⊗a1

id
e⊗b⊗h1⊗...⊗hs−−−−−−−−−−−→ e

⊗b ⊗∆1 ⊗ . . .⊗∆s

id
e⊗b⊗�∆1,... ,∆s−−−−−−−−−−−→ e

⊗b ⊗∆1 × . . .×∆s

id
e⊗b⊗p−−−−−→ e

⊗b ⊗ Γ.

(3.3.3.1)

Here h1 ≤ . . . ≤ hs is an increasing sequence of elements of I, with hi : e⊗ai → ∆i,
τ is a morphism in E, � is the external product, p is a morphism in A1(V) and
a = a1 + . . . + as. There is a similar description of the morphisms in C∗a .

For an increasing sequence h∗ := h1 ≤ . . . ≤ hs, we let S(h∗) denote the
subgroup of the symmetric group Ss which preserves the order in the sequence
h∗. We have the homomorphism ρh∗ :S(h∗) → Sa gotten by letting a permutation
in Ss act on {1, . . . , a} by permuting the blocks of size a1, . . . , as. We define a
left Z[S(h∗)]-module structure on HomE(e⊗a, e⊗a) by having σ ∈ S(h∗) act by left
composition with ρh∗(σ). We give the group HomE(e⊗a+b, e⊗a+b) the left Z[S(h∗)]-
module structure defined by writing e⊗a+b = e⊗b ⊗ e⊗a and acting via (ide⊗b ⊗
ρh∗(σ))◦.

We let ∆(h∗) denote the object ∆1 × . . . × ∆s appearing in the composition
(3.3.3.1). The group HomA1(V)(∆(h∗),Γ) is a right Z[S(h∗)]-module, where σ acts
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by right composition with the symmetry isomorphism ±t∗σ, where the sign is given
by the weighted sign representation determined by the degrees of the morphisms
hi.

The map (3.3.3.1) is in F≤hC∗a,b if and only if hi ≤ h for each i. We may
then filter grhC∗a,b and grhC∗b by the number of times h appears in the sequence
h1 ≤ h2 ≤ . . . ≤ hs. Let F≤mgrh denote the subgroup for which h appears at most
m times; since the differential of h is by construction in the category generated by
the adjunction of the h′ with h′ < h, the Leibnitz rule for differentiation implies
that F≤mgrhC∗a,b is a subcomplex of grhC∗a,b, and similarly for F≤mgrhC∗b . Again,
we need only show that the map on the associated graded

grmgrhiΓ,b :grmgrhC∗b → grmgrhC∗a,b(3.3.3.2)

is a quasi-isomorphism.
Using the Leibnitz rule again, we see that all the differentials in the complexes

grmgrhC∗b and grmgrhC∗a,b are induced by the differentials in the category E; using
(Part II, Chapter I, Proposition 2.5.2), the complex grmgrhC∗a,b is isomorphic to a
direct sum of complexes of the following form

grmgrhC∗a,b ∼= ⊕h∗HomA1(V)(∆(h∗),Γ)⊗Z[S(h∗)] HomE(e⊗a+b, e⊗a+b)∗.

We have a similar description of grmgrhC∗a as isomorphic to a direct sum of com-
plexes of the form

grmgrhC∗a,b ∼= ⊕h∗HomA1(V)(∆(h∗),Γ)⊗Z[S(h∗)] HomE(e⊗a, e⊗a)∗,

where the two sums are over the same set of sequences h∗. The map (3.3.3.2) is
the direct sum of the maps

id⊗ ia,b : HomA1(V)(∆(h∗),Γ)⊗Z[S(h∗)] HomE(e⊗a, e⊗a)∗

→ HomA1(V)(∆(h∗),Γ)⊗Z[S(h∗)] HomE(e⊗a+b, e⊗a+b)∗,
(3.3.3.3)

where ia,b : HomE(e⊗a, e⊗a) → HomE(e⊗a+b, e⊗a+b) is the map gotten by writing
e⊗a+b = e⊗b ⊗ e⊗a and defining ia,b(τ) = ide⊗b ⊗ f.

Now let M be a right Z[S(h∗)]-module, and let

iMa,b :M ⊗Z[S(h∗)] HomE(e⊗a, e⊗a)∗ →M ⊗Z[S(h∗)] HomE(e⊗a+b, e⊗a+b)∗

be the map idM⊗ia,b. The complex HomE(e⊗k, e⊗k)∗ is a free (left) Z[Sk]-resolution
of the trivial module Z (Part II, Chapter II, §3.1.12). Thus, if G is a sub-group
of Sk, HomE(e⊗k, e⊗k)∗ is a free (left) Z[G]-resolution of the trivial G-module Z.
From this we see that the map ia,b induces a map of Z[S(h∗)]-free resolutions
of the trivial Z[S(h∗)]-module Z, hence the map iMa,b induces an isomorphism in
cohomology. Taking M = HomA1(V)(∆(h∗),Γ) shows that (3.3.3.3) is a quasi-
isomorphism, which proves the lemma.

3.3.4. We have the cohomological functor on Kb(Ab)

X �→ H0(X) := HomKb(Ab)(Z, X).

Let B ≥ 0 be an integer, and letKb
mot(V)∗B be the full triangulated subcategory

of Kb
mot(V)∗ generated by the objects e⊗b ⊗ ZX(n)f , with (X, f) in L(V), n an

integer, and b an integer with 0 ≤ b ≤ B. It is immediate that Kb
mot(V)∗ is the

inductive limit
Kb
mot(V)∗ = lim→

B

Kb
mot(V)∗B .
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For Γ ∈ Kb
mot(V)∗, we let BΓ be defined by

BΓ = min{B | Γ is in Kb
mot(V)∗B}.

3.3.5. Proposition. Let Γ = ZX(n)f , and let a, b ≥ 0 be integers. Then
(i) If n < 0, or if a < b, then HomAmot(V)(e

⊗a ⊗ 1, e⊗b ⊗ Γ)∗ = 0. For all n, a,
b, and all q > 0, we have HomAmot(V)(e

⊗a ⊗ 1, e⊗b ⊗ Γ)q = 0.
(ii) If n ≥ 0, and a > b, then HomKb

mot(V)(e
⊗a⊗1, e⊗b⊗Γ)2n+p = 0 for all p �= 0.

(iii) Suppose that a > b. Then the map

evΓ : HomKb
mot(V)(e

⊗a ⊗ 1, e⊗b ⊗ Γ)2n → Zn(X)f

defined by evΓ(f) = Kb(Zmot)(f)(1) (see (3.3.1.3)) is an isomorphism.
(iv) Let ∆ be an object of Kb

mot(V)∗. Then the map

Zmot(e⊗a ⊗ 1,∆): HomKb
mot(V)(e

⊗a ⊗ 1,∆) → H0(Zmot(∆))

is an isomorphism for all a > B∆.

Proof. From the construction of the category A5(V), together with the ex-
plicit description of the morphisms in A5(V) given by (Part II, Chapter I, Propo-
sition 2.5.2), the complex HomA5(V)(e

⊗a, e⊗b⊗Γ[2n])∗ is zero in degrees d > 0 and
if n < 0, this complex is the zero complex. Similarly, if b > a, then the complex is
zero.

On the other hand, from Remark 1.4.11, the map

HomA5(V)(e
⊗a, e⊗b ⊗ Γ)∗ → HomA5(V)(e

⊗a ⊗ 1, e⊗b ⊗ Γ)∗

which sends f to fS is an isomorphism. This proves (i).
For (ii), we have the isomorphism

HomKb
mot(V)(e

⊗a ⊗ 1, e⊗b ⊗ Γ)q ∼= Hq(HomAmot(V)(e
⊗a ⊗ 1, e⊗b ⊗ Γ)∗),

and we have Zmot(fS) = Z5(f).
Thus we need only show that the cohomology of the complex

HomA5(V)(e
⊗a, e⊗b ⊗ Γ)∗(3.3.5.1)

is zero in degrees q �= 2n, and that Z5 induces an isomorphism

H2nZ5 :H2n(HomA5(V)(e
⊗a, e⊗b ⊗ Γ)∗) → Zn(X)f .

If a > b, the cohomology of (3.3.5.1) is, by Lemma 3.3.3, the same as the
cohomology in the complex HomA5(V)(e

⊗a−b,Γ)∗, i.e., we may assume that b = 0.
By the inductive construction of A5(V), together with (Part II, Chapter I,

Proposition 2.5.2), we have Hq(HomA5(V)(e
⊗a,Γ)∗) = 0 if a > 0 and q �= 2n. This

proves (ii). We now compute the cohomology H2n.
By (Part II, Chapter I, Proposition 2.5.2), HomAmot(V)(e

⊗a,Γ)2n is generated
as an abelian group by maps of the form

f = p∗ ◦� ◦ ([Z1]⊗ . . .⊗ [Za]) ◦ τ,
where [Zi] : e → ZYi(ei)gi are the maps of Definition 1.4.6 coming from elements
Zi ∈ Zei(Yi)gi , i = 1, . . . , a, � : ZY1(e1)g1⊗. . .⊗ZYa(ea)ga → ZY (e)g is the external
product, with

Y = Y1 ×S . . .×S Ya; g = g1 × . . .× ga; e = Σiei,

τ : e⊗a → e⊗a is a symmetry isomorphism in the category E, and p : (X, f) → (Y, g) is
a map in L(V). By (Part II, Chapter II, Proposition 3.1.12), the map τ is homotopic
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in E to the identity, so we may assume that τ = id. Using the homotopies adjoined
in Definition 1.4.8, there is a map h in A5(V) with

dh = f −�Y,1,... ,1 ◦ ([W ]⊗ [|S|]⊗ . . .⊗ [|S|]),

where W is the cycle p∗(Z1 ×/S . . .×/S Za). We may therefore replace f with the
map F := �Y,1,... ,1 ◦ ([W ]⊗ [|S|]⊗ . . .⊗ [|S|]).

As W = Z5(F )(1), we find that the map H2nZ5 is injective. The identity
W = Z5([W ])(1) for W ∈ Zn(X)f also shows that H2nZ5 is surjective, which
completes the proof of (iii).

For (iv), suppose a > B := B∆. The functor Zmot :Kb
mot(V) → Kb(Ab) is

exact, hence the functor H0◦Zmot :Kb
mot(V) → Kb(Ab) is a cohomological functor.

By (ii), the cohomological functors H0 ◦ Zmot and Hom(e⊗a ⊗ 1,−) agree on the
objects e⊗b ⊗ ZX(n)[p] for all p as long as a > b; as the objects e⊗b ⊗ ZX(n) with
b ≤ B generate Kb

mot(V)∗B as a triangulated category, we have

H0 ◦ Zmot = Hom(e⊗a ⊗ 1,−)

on Kb
mot(V)∗B . As ∆ is in Kb

mot(V)∗B , this proves (iv).

3.3.6. Let

νΓ,a : HomKb
mot(V)(e

⊗a ⊗ 1,Γ) → HomKb
mot(V)(e

⊗a+1 ⊗ 1,Γ)(3.3.6.1)

be the map sending f : e⊗a ⊗ 1 → Γ to the composition

e
⊗a+1 ⊗ 1 = e

⊗a ⊗ e⊗ 1 id⊗νa−−−−→ e
⊗a ⊗ 1. f−→ Γ.

3.3.7. Lemma. Let ∆ be in Kb
mot(V)∗. Then

ν∆,a : HomKb
mot(V)(e

⊗a ⊗ 1,∆) → HomKb
mot(V)(e

⊗a+1 ⊗ 1,∆)

is an isomorphism for all a > B∆.

Proof. This follows directly from Proposition 3.3.5(iv), and the fact that
Zmot(e⊗a ⊗ 1,∆)(f) = Zmot(e⊗a+1 ⊗ 1,∆)(ν∆,af).

3.4. The triangulated motivic category

We now derive some information on the localization Db
mot(V) of Kb

mot(V), and the
full motivic category DM(V).

3.4.1. Form the triangulated tensor category without unit Db
mot(V)∗ from the tri-

angulated tensor category without unit Kb
mot(V)∗ by inverting the morphisms of

Definition 2.1.4 (except for the Künneth isomorphism (c)).
The DG tensor functors and natural transformation (3.3.1.1) induce the func-

tors

Db(imot) :Db
mot(V)∗ → Db

mot(V),

Db(rmot) :Db
mot(V) → Db

mot(V)∗,

and the natural transformation

Db(�mot) : idDb
mot(V) → Db(imot) ◦Db(rmot).

We have Db(rmot) ◦Db(imot) = idDb
mot(V)∗ .
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3.4.2. Theorem. For each object X of Db
mot(V), the map Db(�mot)(X) :X →

Db(imot) ◦Db(rmot)(X) is an isomorphism, and the functors

Db(imot) :Db
mot(V)∗ → Db

mot(V),

Db(rmot) :Db
mot(V) → Db

mot(V)∗
(3.4.2.1)

are equivalences of triangulated tensor categories without unit.

Proof. Suppose X is a tensor product of objects ofA1(V): X = X1⊗. . .⊗Xn.
Then Db(�mot)(e⊗k ⊗X) is the map

id⊗�X1,...Xn : e⊗k ⊗X1 ⊗ . . .⊗Xn → e
⊗k ⊗X1 × . . .×Xn,

which is an isomorphism by the Künneth isomorphism (Definition 2.1.4(c)). As
Db
mot(V) is generated as a triangulated category by objects of this form, this suffices

to prove the theorem.

3.4.3. Corollary. Let R be a commutative ring, flat over Z. The categories
Db
mot(V)R and DM(V)R are triangulated R-tensor categories, with unit 1 = RS(0).

Proof. By Lemma 3.1.6, the DG category Amot(V)∗ has the structure of a
DG tensor category with unit 1 = ZS(0). Applying the functor Kb(−), we see that
Kb
mot(V)∗ has the structure of a triangulated tensor category with unit 1. This

structure is preserved under localization (as a triangulated tensor category without
unit), hence Db

mot(V)∗ is a triangulated tensor category with unit 1. Applying the
equivalence of triangulated tensor categories without unit Db(rmot) :Db

mot(V) →
Db
mot(V)∗ makes Db

mot(V) into a triangulated tensor category with unit 1. On
easily checks that this structure is preserved by taking the pseudo-abelian hull,
giving DM(V) the structure of a triangulated tensor category with unit 1. The
proof for general R is the same.

3.4.4. Remark. For Γ = ZX(n)f , the multiplication maps in DM(V)

µrΓ : Γ⊗ 1 → Γ; µlΓ : 1⊗ Γ → Γ

are given by the external products: µrΓ = �Γ,1, µlΓ = �1,Γ. More generally, for each
object Γ of Db

mot(V), we have the identity:

Db
mot(r)(Γ ⊗ 1) = Db

mot(r)(1 ⊗ Γ) = Db
mot(r)(Γ);

the multiplication µlΓ : 1⊗ Γ → Γ is given by the composition

1⊗ Γ
Db

mot(�mot)(1⊗Γ)−−−−−−−−−−−→ Db
mot(rmot)(1 ⊗ Γ) = Db

mot(rmot)(Γ)

Db
mot(�mot)(Γ)

−1

−−−−−−−−−−−→ Γ.

3.4.5. Form the triangulated category Db
mot(V)∗add as follows: Let S be the set of

morphisms of the form ide⊗a ⊗ f , where f is in the set of morphisms described in
Definition 2.1.4(a), (b), (d), (e) and (f). Form the category Dmot(V)∗add from the
triangulated categoryKb

mot(V)∗ by inverting the morphisms in S (as a triangulated
category, not as a triangulated tensor category).

3.4.6. Proposition. The canonical exact functor Db
mot(V)∗add → Db

mot(V)∗ is an
equivalence of triangulated categories.
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Proof. If (X, f) and (Y, g) are in L(V), and if f ′ :Z → X is a morphism in V ,
then ρf,f ′ × idZY (m)g : ZX(n)f × ZY (n)g → ZX(n)f∪f ′ × ZY (n)g is the morphism

ρf×g,f ′×g : ZX×SY (n + m)f×g → ZX×SY (n + m)f∪f ′×g.

Thus the set of morphisms of Definition 2.1.4(e) are closed under the operation
(−) × idZY (m)g . Similarly, the set of morphisms of Definition 2.1.4(a), (b), (d) or
(f) is closed under the operation (−)× idZY (m)g . Since the objects e⊗a ⊗ ZY (m)C
generate Kb

mot(V)∗ as a triangulated category, the set of morphisms inverted in
Kb
mot(V)∗ to form Db

mot(V)∗add is closed under the operation (−) × idZ for Z an
arbitrary object in Kb

mot(V)∗. As × is the tensor operation on Kb
mot(V)∗, it follows

that the canonical exact functor Db
mot(V)∗add → Db

mot(V)∗ is an isomorphism.

3.4.7. Remarks. From Definition 1.4.12 and Definition 3.2.3, we have the graded
tensor category A0mot(V), the full subcategory A0mot(V)∗ of A0mot(V), and the com-
mutative diagram (3.2.4.1)

Amot(V)

��

rmot

��
Hmot A0mot(V)

��

r0mot

Amot(V)∗

��

imot

��
H∗
mot

A0mot(V)∗.

��

i0mot

The natural transformation �mot induces the natural transformation

�0mot : idA0
mot(V) → i0mot ◦ r0mot;

the functor Zmot :Amot(V) → GrAb factors as

Amot(V)
H∗
mot◦rmot−−−−−−−→ A0mot(V)∗

Z0∗
mot−−−→ GrAb.

Define the categories:

Cb0
mot(V) := Cb(A0mot(V)), Cb0

mot(V)∗ := Cb(A0mot(V)∗),

Kb0
mot(V) := Kb(A0mot(V)), Kb0

mot(V)∗ := Kb(A0mot(V)∗).

We let Db0
mot(V) be the triangulated tensor category gotten from Kb0

mot(V) by in-
verting the maps of Definition 2.1.4, and define Db0

mot(V)∗ similarly as a localization
of Db0

mot(V)∗. We have the triangulated categoryDb0
mot(V)∗add formed from Kb0

mot(V)
by inverting the maps of Definition 2.1.4 as triangulated category.
(i) The cycles functors

Cb(Zmot) :Cb
mot(V) → Cb(Ab),

Kb(Zmot) :Kb
mot(V) → Kb(Ab)

factor as

Cb
mot(V)

Cb(H∗
mot◦rmot)−−−−−−−−−−→ Cb0

mot(V)∗
Cb(Z0∗

mot)−−−−−−→ Cb(Ab),

Kb
mot(V)

Kb(H∗
mot◦rmot)−−−−−−−−−−→ Kb0

mot(V)∗
Kb(Z0∗

mot)−−−−−−→ Kb(Ab).

(ii) Replace ?bmot(V) with ?b0mot(V), ?bmot(V)∗ with ?b0mot(V)∗, for ? = C, K and D,
and replace Db

mot(V)∗add with Db0
mot(V)∗add. Then the analogs of all the results of

this section remain valid, with similar proofs.
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(iii) It follows from Proposition 3.3.5, together with the analog of Proposition 3.3.5
for the category Kb0

mot(V), that the map

Kb(H∗mot)(e
⊗a ⊗ 1,∆): HomKb

mot(V)(e
⊗a ⊗ 1,∆) → HomKb0

mot(V)(e
⊗a ⊗ 1,∆)

is an isomorphism for all ∆ in Kb
mot(V)∗B (see §3.3.4), and all a > B.

(iv) We let DM0(V) be the pseudo-abelian hullDb0
mot(V)# ofDb0

mot(V). The functor
Kb(Hmot) gives rise to the commutative diagram of exact tensor functors

Db
mot(V) ��

Db(Hmot)

��

Db0
mot(V)

��

DM(V) ��
DM(Hmot)

DM0(V).

We may view the categories A0mot(V), Db0
mot(V), and DM0(V) as the “naive” ver-

sions of Amot(V), Db
mot(V),and DM(V), as we have replaced the DG tensor struc-

ture in Amot(V) (which gives the structural identities only up to homotopy) with
the graded tensor structure in A0mot(V) (which gives the structural identities on the
nose).

3.5. Cycles and cycle classes

In this section, we construct the cycle map and the cycle class map, and consider
their basic properties.

3.5.1. The cycle map and the cycle class map. We have the cohomological functor

H0 :Kb(Ab) → Ab

H0(X) := HomKb(Ab)(Z, X).

Let Γ be an object of Kb
mot(V)∗B (see §3.3.4). We have the functor (3.3.1.3),

the corresponding object Zmot(Γ) of Kb(Ab), and the abelian group H0(Zmot(Γ)).
By Proposition 3.3.5, we have the isomorphism

H0 ◦ Zmot(−) : HomKb
mot(V)(e

⊗a ⊗ 1,Γ) → H0(Zmot(Γ))(3.5.1.1)

for all a > B. We define the map

cycΓ :H0(Zmot(Γ)) → lim→
a

HomKb
mot(V)(e

⊗a ⊗ 1,Γ)(3.5.1.2)

to be the inverse of the isomorphism (3.5.1.1); here the limit is with respect to the
maps (3.3.6.1). For Γ inKb

mot(V)∗B, the limit is constant for a > B, by Lemma 3.3.7.
We have the unit isomorphism (2.2.4.1) νa : e⊗a ⊗ 1 → 1. Let Γ be an object of

Kb
mot(V)∗B , and let Z be an element of H0(Zmot(Γ)). We let clΓ(Z) : 1 → Γ be the

morphism in Db
mot(V) defined by the composition

1
ν−1
a−−→ e

⊗a ⊗ 1
cycΓ(Z)−−−−−→ Γ

for any a > B. This is easily seen to be independent of the choice of a.
Let H0mot :K

b
mot(V) → Ab be the cohomological functor HomDb

mot(V)(1,−).
The assignment Z �→ clΓ(Z) defines the homomorphism

clΓ :H0(Zmot(Γ)) → H0mot(Γ).(3.5.1.3)
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3.5.2. The cycle map and cycle class map for varieties. Let X be in V , (X, f)
in L(V), and Z ∈ Zd(X)f . The map (1.4.6.1) in A3(V) determines the map in
Amot(V), [Z]S : e⊗ 1 → ZX(d)f [2d] (see Remark 1.4.11). Since

Zmot(ZX(d)f [2d]) = Zd(X)f ,

Zmot(e⊗ 1) = Z,

Zmot([Z]S)(1) = Z,

(3.5.2.1)

it follows from Proposition 3.3.5 that sending Z to [Z]S gives the isomorphism

Zd(X)f
[−]S−−−→ HomKb

mot(V)(e⊗ 1,ZX(d)f [2d]).

Using the identities (3.5.2.1) we define

cycdX,f :Zd(X)f → HomKb
mot(V)(e⊗ 1,ZX(d)f [2d])(3.5.2.2)

as the composition of cycZX(d)f [2d] with the canonical isomorphism

Zd(X)f ∼= H0(Zd(X)f ) = H0(Zmot(ZX(d)f [2d])).(3.5.2.3)

It follows directly from the definitions that cycdX,f (Z) = [Z]S .
Similarly, if X̂ is a closed subset of X with complement j :U → X, we have the

subgroup Zd
X̂

(X)f of Zd(X)f defined by the exactness of

0 → Zd
X̂

(X)f → Zd(X)f
j∗−→ Zd(U)j∗f .

Since the map (3.5.2.2) is a functorial isomorphism, we have the canonically defined
map

cycd
X,X̂,f

:Zd
X̂

(X)f → HomKb
mot(V)(e⊗ 1,ZX,X̂(d)f [2d]),(3.5.2.4)

compatible with cycdX,f via the canonical map

HomKb
mot(V)(e⊗ 1,ZX,X̂(d)f [2d]) → HomKb

mot(V)(e⊗ 1,ZX(d)f [2d]).

It follows similarly from the definitions and Proposition 3.3.5 that cycd
X,X̂,f

(Z) =

[Z]S
X̂

in Kb
mot(V), where [Z]X̂ is the map (2.1.3.3).

For (X, f) ∈ L(V), we have H2d(X,Z(d)) = H0mot(ZX(d)f [2d]) by definition.
We define the homomorphism

cldX,f :Zd(X)f → H2d(X,Z(d))(3.5.2.5)

as the map clZX(d)f [2d], composed with the isomorphism (3.5.2.3). By the functori-
ality of the maps “change of f”, the maps cldX,f fit together to give a homomorphism

cldX :Zd(X/S) → H2d(X,Z(d)),

which we call the cycle class map.
The cycle maps with support give similarly the map

cld
X,X̂,f

:Zd
X̂

(X)f → H2d
X̂

(X,Z(d))(3.5.2.6)

and the map

cld
X,X̂

:Zd
X̂

(X/S) → H2d
X̂

(X,Z(d)).(3.5.2.7)
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3.5.3. Proposition. Sending Γ ∈ Kb
mot(V)∗ to cycΓ defines an exact natural trans-

formation of cohomological functors

H0(Zmot(−)) −→ lim→
a

HomKb
mot(V)∗(e⊗a ⊗ 1,−)

from Kb
mot(V)∗ to Ab. Sending Γ ∈ Kb

mot(V)∗ to clΓ defines an exact natural
transformation of cohomological functorsH0(Zmot(−)) −→ H0mot(−) fromKb

mot(V)∗

to Ab. In particular, the following properties of the cycle class map hold:

(i) Let p :Y → X be a map in V , X̂ a closed subset of X and Ŷ a closed subset

of Y containing p−1(X̂). Then

p∗(cld
X,X̂

(Z)) = cld
Y,Ŷ

(p∗(Z)),

for Z in Zd
X̂

(X)p∪idX .
(ii) Let i :X → X

∐
Y be the inclusion, with X and Y in V , let X̂ be a closed

subset of X and Ŷ a closed subset of Y . Then

i∗(cld
X,X̂

(Z)) = cld
X�Y,X̂�Ŷ (i∗(Z)),

for Z in Zd
X̂

(X/S).

Proof. This follows from the fact that Zmot(−) is an exact functor.

3.5.4. Lemma. We have

cl0S(|S|) = id1.

Proof. By definition (see Remark 1.4.11), the map [|S|]S : e ⊗ 1 → 1 is the
composition �1,1◦([|S|]⊗ id1). This latter morphism is the isomorphism ν1 : e⊗1 →
1. As cl0S(|S|) = [|S|]S ◦ ν−11 by definition, the lemma follows.

Recall from §2.2.11 the definition of external products, and cup products, for
motivic cohomology with support.

3.5.5. Lemma. Let X and Y be in V , let X̂ be a closed subset of X and Ŷ a closed
subset of Y . Take A in Zd

X̂
(X/S), and B in Ze

Ŷ
(Y/S). Then the product cycle

A×/S B is in Ze+d

X̂×SŶ
(X ×S Y/S), and

cld+e
X×SY,X̂×S Ŷ

(A×/S B) = cld
X,X̂

(A) ∪X̂,Ŷ
X,Y cle

Y,Ŷ
(B).

Proof. It follows from (Appendix A, Remark 2.3.3(i)), that A ×/S B is in
Ze+d(X ×S Y/S); clearly A×/S B is supported in X̂ × Ŷ . By Definition 1.4.8(ii),
we have the identity in the homotopy category of A5(V),

�X×SY,S ◦ ([A×/S B]⊗ [|S|]) = �X,Y ◦ ([A]⊗ [B]),

as maps from e⊗ e to ZX×SY (d + e)[2d + 2e].
Using the notation of §2.2.11 we have the map

θX̂,Ŷ
X,Y : ZX×SY,X̂×Ŷ (d + e)∆ → ZX,X̂(d) × ZY,Ŷ (e).

By Proposition 3.3.5, the map

HomKb
mot(V)(e⊗ e,ZX×SY,X̂×Ŷ (d + e)∆[2d + 2e])

→ HomKb
mot(V)(e⊗ e,ZX×SY (d + e)[2d + 2e])



50 I. THE MOTIVIC CATEGORY

is injective, so we have the identity of maps in Kb
mot(V),

θX̂,Ŷ
X,Y ◦�X×SY,S ◦ ([A×/S B]X̂×S Ŷ

⊗ [|S|]) = �X,Y ◦ ([A]X̂ ⊗ [B]Ŷ ).

This in turn implies the identity of maps in DM:

cld+e
X×SY,X̂×S Ŷ

(A×/S B) = �X̂,Ŷ
X,Y ◦ ([A]X̂ ⊗ [B]Ŷ ) ◦ ν−12 : 1 → ZX×SY (d+ e)[2d+ 2e].

From the definition of the tensor product in DM, and the definition (2.2.11.3) of
the product ∪X̂,Ŷ

X,Y , we have the identity

�X̂,Ŷ
X,Y ◦ ([A]X̂ ⊗ [B]Ŷ ) ◦ ν−12 = cldX(A) ∪X̂,Ŷ

X,Y cleY (B),

completing the proof.

3.5.6. Proposition. Let X be in V . Then
(i) ⊕p,qH

p(X,Z(q)), with product ∪X , is an associative, bi-graded ring, graded-
commutative with respect to p, with unit 1 ∈ H0(X,Z(0)) given by the map
cl0X(|X |) : 1 → ZX(0).

(ii) Let p :Y → X be a map in V . Then p∗ :⊕p,qH
p(X,Z(q)) → ⊕p,qH

p(Y,Z(q))
is a ring homomorphism.

Proof. (i) Associativity and graded-commutativity of the product ∪X follow
from the associativity and graded-commutativity of the tensor product in the tensor
category DM.

We now show that cl0X(|X |) acts as a unit. Let pX :X → S be the structure
morphism. We have the commutative diagram

ZS(0)⊗ ZX(q)[p] ��
�S,X

��

p∗
X⊗id

ZX(q)[p]

��

p∗
2

ZX(0)⊗ ZX(q)[p] ��
�X,X

ZX×SX(q)[p] ��
∆∗ ZX(q)[p].

Let f : 1 → ZX(q)[p] be a map in DM. By Corollary 3.4.3, DM is a tensor
category with unit 1, hence we have the commutative diagram

1⊗ 1 ��
µ

��

id⊗f

1

��

f

1⊗ ZX(q)[p] ��

µl
X

ZX(q)[p].

From the definition of the unit structure in DM (see Remark 3.4.4), we have

µlX = �S,X : ZS(0)⊗ ZX(q)[p] → ZX(q)[p].

Thus, we may put the two commutative diagrams together, giving the identity

f = p∗X ∪X f.(3.5.6.1)

By Proposition 3.5.3(i) and Lemma 3.5.4, we have

p∗X = p∗X ◦ cl0S(|S|) = cl0X(|X |);(3.5.6.2)

combining (3.5.6.1) and (3.5.6.2) shows that cl0(|X |) is a unit.
The proof of (ii) is similar and is left to the reader.
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3.5.7. Proposition. Let X be in V , let X̂1 and X̂2 be closed subsets of X , and let
A ∈ Zd

X̂1
(X/S), B ∈ Ze

X̂2
(X/S) be cycles on X . Suppose that each component of

the intersection supp(A)∩ supp(B) intersects each fiber Xs of X over S in a subset
of codimension at least d+ e. Then the intersection product of A and B in X over
S, A ·X/S B, exists, A ·X/S B is in Zd+e

X̂1∩X̂2
(X/S), and

cld+e
X,X̂1∩X̂2

(A ·X/S B) = cld
X,X̂1

(A) ∪X̂1,X̂2
X cle

X,X̂2
(B).

Proof. The intersection product of A and B in X over S is given by

A ·X/S B = ∆∗X(A×/S B),

whenever ∆∗X(A ×/S B) is defined. By our assumptions on A, B and supp(A) ∩
supp(B), the cycle A ×/S B is in Zd+e

X̂1∩X̂2
(X ×S X)id∪∆X . By Lemma 1.2.2, the

cycle ∆∗X(A×/S B) is defined and is in Zd+e(X/S). By Proposition 3.5.3, we have

∆∗X ◦ cld+e
X×SX,X̂1×X̂2

(A×/S B) = cld+e
X,X̂1∩X̂2

(∆∗X(A×/S B))

= cld+e
X,X̂1∩X̂2

(A ·X/S B);

by Lemma 3.5.5, we have

∆∗X ◦ cld+e
X×SX,X̂1×X̂2

(A×/S B) = ∆∗X(cld
X,X̂1

(A) ∪X̂1,X̂2
X,X cle

X,X̂2
(B))

= cld
X,X̂1

(A) ∪X̂1,X̂2
X cle

X,X̂2
(B),

completing the proof.
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CHAPTER II

Motivic Cohomology and Higher Chow Groups

In [19], Bloch defines his higher Chow groups as a candidate for a reasonable
theory of motivic cohomology. In this chapter, we extend and modify Bloch’s
definition of higher Chow groups to give a theory of higher Chow groups for motives
over a given base scheme S; in case S = Spec k, for k a field, the higher Chow groups
of the motive of a smooth k-variety agree with Bloch’s original construction. We
show that, if the motivic Chow groups satisfy certain natural conditions (see §3.2.1
and §3.3.1), then the motivic cohomology groups defined in Chapter I, §2.2.7 agree
with the motivic Chow groups (Theorem 3.3.10). We are able to verify the axioms
in case S = Spec k, k a field, or if S is smooth and of dimension one over a field
(Theorem 3.6.6), putting Bloch’s higher Chow groups in a categorical framework.

The agreement of motivic cohomology with the motivic Chow groups gives an
interpretation of motivic cohomology as Zariski hypercohomology, which enables us
to prove some additional properties of motivic cohomology, such as a Gersten-type
resolution, a local to global spectral sequence, and the like. These properties are
treated in §3.4.

1. Hypercohomology in the motivic category

We begin by describing how to define Zariski hypercohomology for objects of
Cb
mot(V).

1.1. Čech resolutions for Amot
1.1.1. Let (X, f) be in L(V), and let U := {U0, . . . , Um} be a Zariski open cover
of X . For an ordered index I = (i0 < . . . < ik), with 0 ≤ ij ≤ m, we let UI denote
the intersection UI = Ui0 ∩ . . . ∩ Uim . We have the augmented simplicial scheme
jU :U∗ → X where U∗ is the simplicial scheme with non-degenerate k-simplices
Un.d.∗ =

∐
I=(i0<...<ik)

UI . Let jk :Un.d.k → X be the union of the inclusions. This
gives us the non-degenerate simplicial scheme Un.d.∗ , which is the empty scheme in
degrees n > m + 1 (cf. Chapter I, §2.5.4).

We may then lift Un.d.∗ to the non-degenerate simplicial object

(U∗, j∗f)n.d. : ∆opn.d. → L(V)

with (j∗f)k = j∗kf , as in Chapter I, loc. cit. We let ZUn.d.∗
(q)f be the corresponding

object of Cb
mot(V),

ZUn.d.∗
(q)sf := ZUn.d.∗ ([s])(q)j∗f([s]),

with differential the usual alternating sum.

53
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From the Mayer-Vietoris distinguished triangle (I.2.2.6.1), we see that the aug-
mentation induces an isomorphism

j∗X,U : e⊗a ⊗ ZX(q)f [p] → e
⊗a ⊗ ZUn.d.∗

(q)f [p](1.1.1.1)

in Db
mot(V) for all a ≥ 0.
We call the map (1.1.1.1) in Cb

mot(V) a Čech resolution of e⊗a ⊗ZX(q)f [p]; we
extend the notion of a Čech resolution to arbitrary objects of Amot(V)∗ by taking
direct sums.

If we have a Čech resolution

j∗X,U : e⊗a ⊗ ZX(q)f [p] → e
⊗a ⊗ ZUn.d.∗

(q)f [p]

coming from a cover U of X , each refinement ρ :V → U gives rise to a commutative
diagram

e⊗a ⊗ ZX(q)f [p] ��
j∗X,U

e⊗a ⊗ ZUn.d.∗
(q)f [p]

��

ρ∗

e⊗a ⊗ ZX(q)f [p] ��
j∗X,V

e⊗a ⊗ ZVn.d.∗
(q)f [p].

1.1.2. Definition. Let Γ = ⊕m
i=1e

⊗ai ⊗ ZXi(qi)[pi]fi be an object of Amot(V)∗. A
Zariski open cover of Γ consists of a finite Zariski open cover Ui = {U0i, . . . , Unii} of
Xi for each i = 1, . . . ,m. If U and W are Zariski open covers of Γ, a refinement of U
by W , ρ :W → U , is a collection of refinements ρi :Wi → Ui for each i = 1, . . . ,m.

If U is a Zariski open cover of Γ ∈ Amot(V)∗, the direct sum of the Čech
resolutions for each component e⊗ai ⊗ ZXi (qi)[pi]fi gives a Čech resolution of Γ.
We denote this map in Cb

mot(V)∗ by j∗Γ,U : Γ → ΓU .

1.2. A structural result

Before proceeding to extend the notions of §1.1 to Cb
mot(V)∗, we need to examine

the morphisms in the category Amot(V)∗ a bit more closely.

1.2.1. We recall that the category Amot(V) is constructed from the tensor category
A2(V) by taking the coproduct with the DG tensor category E, and then adjoining
morphisms (see Chapter I, Definition 1.4.6, Definition 1.4.8 and Definition 1.4.9).
By (Part II, Chapter II, Proposition 3.1.12(i) and (ii)) there is a graded symmetric
semi-monoidal category C, with objects generated by a single object e, such that,
as a graded tensor category without unit, we have E = CZ, i.e., E is the graded
additive category generated by C (with the relation n(−f) = −nf for n ∈ Z and
f a morphism in C), and the tensor structure on E is induced by the symmetric
monoidal structure of C.

As C is a graded symmetric semi-monoidal category, there is the natural map
{±1} × Sn → HomC(e⊗n, e⊗n)0 (see Part II, Chapter II, §3.1.5) which, when ex-
tended to E, is the restriction of the canonical map Z[Sn] → HomE(e⊗n, e⊗n)0 send-
ing σ ∈ Sn to the symmetry isomorphism τσ. In addition to the structure results de-
scribed in the previous paragraph, a set of representatives in HomC(e⊗n, e⊗n)q\{∗}
for the action of {±1} × Sn forms a Z[Sn]-basis of HomE(e⊗n, e⊗n)q (cf. Part II,
Chapter II, Proposition 3.1.10(iii)).
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1.2.2. Now suppose we have connected schemes X and Y in V , and a morphism
q : e⊗a ⊗ ZY (b)g → e⊗a

′ ⊗ ZX(b′) in Amot(V)∗. By (Chapter I, Lemma 3.1.3 and
Part II, Chapter I, Proposition 2.5.2), we may write each such map q as a sum with
Z-coefficients of compositions of the form

e
⊗a ⊗ ZY (b)g

τ⊗idY−−−−→ e
⊗a ⊗ ZY (b)g = e

⊗a′ ⊗ e
⊗a−a′ ⊗ ZY (b)g

id
e⊗a′⊗h1⊗...⊗hs⊗id−−−−−−−−−−−−−−→

e
⊗a′

⊗ ZW1(b1)g1 ⊗ . . .⊗ ZWs(bs)gs ⊗ ZY (b)g

id
e⊗a′⊗�W1,... ,Ws,Y−−−−−−−−−−−−−−→ e

⊗a′ ⊗ ZW1×...Ws×Y (
∑

ibi + b)g1×...gs×g

id
e⊗a′⊗p∗

−−−−−−→ e
⊗a′

⊗ ZX(b′)f .

(1.2.2.1)

Here the hi are maps hi : e⊗ei → ZWi(bi)gi adjoined in Chapter I, Definition 1.4.6,
Definition 1.4.8 and Definition 1.4.9. We have

s∑
i=1

ei = a− a′; b1 + . . . + bs + b = b′,

and
p : (X, f) → (W1 ×S . . .×S Ws ×S Y, g1 × . . . gs × g)

is a map in L(V). The map τ : e⊗a → e⊗a is a map in C.
We may form a Z-basis of HomAmot(V)∗(e⊗a⊗ZY (b)g, e⊗a

′ ⊗ZX(b′)) consisting
of compositions of the form (1.2.2.1) by ordering the set of adjoined maps h, taking
h1 ≤ . . . ≤ hs, and taking τ in a set of representative of HomC(e⊗n, e⊗n)r \ {∗}
modulo the action of the {±1} × S(h∗), where S(h∗) ⊂ Sn is the group of order-
preserving permutations of {h1, . . . , hs} (see Part II, loc. cit. for details).

For a triple (τ, h∗, p), with τ a morphism in C, h∗ = (h1 ≤ . . . ≤ hs), and p as in
(1.2.2.1), we denote the morphism given by the composition (1.2.2.1) by q(τ, h∗, p).
We let

q̄(τ, h∗, p) :X → Y(1.2.2.2)

be the composition

X
p−→ W1 ×S . . .×S Ws ×S Y

pY−−→ Y.

1.2.3. Lemma. (i) The map (1.2.2.2) depends only on q(τ, h∗, p), not on the choice
of τ , h∗ and p.
(ii) When defined, the composition q(τ2, h∗2, p2)◦ q(τ1, h∗1, p1) is a map of the form
q(τ, h∗, p), or is zero; if the composition is not zero, then

q̄(τ2, h∗2, p2) ◦ q̄(τ1, h∗1, p1) = q̄(τ, h∗, p).

Proof. By (Part II, Chapter I, Proposition 2.5.2 and Chapter II, Proposi-
tion 3.1.10), the ambiguity in the choice of (τ, h∗, p) is given by

q(±σ ◦ τ, h∗, p) = ±q(τ, h∗, (tσ × idY ) ◦ p),
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where σ is in S(h∗) ⊂ Ss, and

tσ :W1 ×S . . .×S Ws →Wσ−1(1) ×S . . .×S Wσ−1(s)

is the corresponding symmetry isomorphism. As pY ◦ (tσ× idY ) = pY , (i) is proven.
For (ii), suppose the τi are maps τi : e⊗ai → e⊗ai . Using the notation of (1.2.2.1),

in order that the composition in (ii) is defined, we have

a′1 = a2, b′1 = b2, X1 = Y2.

Let σ be the shuffle permutation which puts the sequence h∗2h∗1 in increasing order,
and let h∗ be the resulting increasing sequence. Let

W i = W i
1 ×S . . .×S W i

si ; i = 1, 2,

and let W be the re-ordered version of W 1 ×S W 2: W = (W 1 ×S W 2)σ. Let
p :X2 →W × Y1 be the composition

X2
p2−→W 2 × Y2 = W 2 ×X1

idW2×p1−−−−−−→W 2 ×W 1 × Y1

t−1
σ ×idY−−−−−→W × Y1.

Then

q(τ2, h∗2, p2) ◦ q(τ1, h∗1, p1) = ±q(σ ◦ (τ2 ⊗ ide⊗a1−a2 ) ◦ τ1, h∗, p).

As pY1 ◦ p = (pY1 ◦ p1) ◦ (pY2 ◦ p2), the proof of (ii) is complete.

1.3. Čech resolutions for Cb
mot(V)

1.3.1. Push-forward of open covers. Let X and Y be in V , and let U = {U0, . . . , Um}
be a Zariski open cover of Y . Suppose we have a map q : e⊗a ⊗ ZY (b)g → e⊗a

′ ⊗
ZX(b′). We now define the Zariski open cover q∗U of X , and a commutative diagram
in Cb

mot(V)∗:

e⊗a ⊗ ZY (b)g

��

q

��
j∗Y,U

e⊗a ⊗ ZUn.d.∗
(b)g

��

qU

e⊗a
′ ⊗ ZX(b′)f ��

j∗X,q∗U
e⊗a

′ ⊗ Zq∗Un.d.∗
(b′)f .

(1.3.1.1)

Suppose at first that X and Y are connected, and that q = q(τ, h∗, p), giving
the map q̄ := q̄(τ, h∗, p) :X → Y (1.2.2.2). For an open subset U of Y , we have the
open subset q̄−1(U) of X .

For each open subscheme jU :U → Y , let kV :V → X denote the inclusion of
q̄−1(U) into X . If jU,U ′ :U ′ → U is the inclusion of open subschemes of Y , we have
the induced inclusion kV,V ′ :V ′ → V where V ′ = q̄−1(U ′). We have the map

qU : e⊗a ⊗ ZU (b)j∗Ug → e
⊗a′

⊗ ZV (b′)k∗
V f(1.3.1.2)
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defined as the composition

e
⊗a ⊗ ZU (b)j∗Ug

τ⊗idU−−−−→ e
⊗a ⊗ ZU (b)j∗Ug = e

⊗a′
⊗ e

⊗a−a′
⊗ ZU (b)j∗U g

id
e⊗a′⊗h1⊗...⊗hs⊗id

−−−−−−−−−−−−−−→ e
⊗a′

⊗ ZW1(b1)g1 ⊗ . . .⊗ ZWs(bs)gs ⊗ ZU (b)j∗Ug

id
e⊗a′⊗�W1,... ,Ws,U−−−−−−−−−−−−−−→ e

⊗a′
⊗ ZW1×...Ws×U (

∑
ibi + b)g1×...gs×j∗U g

id
e⊗a′⊗p∗

|V−−−−−−−→ e
⊗a′ ⊗ ZV (b′)k∗

V f .

The functoriality of the external products �∗∗ implies the commutativity of

e⊗a ⊗ ZU (b)j∗Ug ��
qU

��

j∗
U,U′

e⊗a
′ ⊗ ZV (b′)k∗

V f

��

k∗
V,V ′

e⊗a ⊗ ZU ′ (b)j∗
U′g

��
qU′

e⊗a
′ ⊗ ZV ′(b′)k∗

V ′f

(1.3.1.3)

for U ′ ⊂ U , with V = q̄−1(U), V ′ = q̄−1(U ′).
If U = {U0, . . . , Um} is an open cover of Y , we let q∗U be the open cover of X

defined by
q∗U = {q̄−1(U0), . . . , q̄−1(Um)}.

Let Vi = q̄−1(Ui).
Let I = (i0 < . . . < is), and let jI :UI → Y and kI :VI → X be the inclusions;

for I ⊂ J , we have the inclusions

jI⊂J :UJ → UI ; kI⊂J :VJ → VI .

Using the commutativity of the diagram (1.3.1.3), the collection of maps qUI

defines the map

qU : e⊗a ⊗ ZUn.d.∗
(b)g → e

⊗a′ ⊗ Zq∗Un.d.∗
(b′)f(1.3.1.4)

giving the desired commutative diagram (1.3.1.1).
Suppose q is a sum of compositions (1.2.2.1)

q =
l∑

i=1

niqi; ni ∈ Z, ni �= 0,

with the qi basis elements as described in §1.2.2. Let q∗U be cover given by the
open subsets

q̄−11 (Ui1) ∩ . . . ∩ q̄−1l (Uil); 0 ≤ ij ≤ m.

We then have the canonical refinement maps for each i ρi : q∗U → qi∗U . Forming the
maps qiU (1.3.1.4) for each i, composing with the refinement map ρ∗i , and summing,
gives the desired map

qU : e⊗a ⊗ ZUn.d.∗
(b)g → e

⊗a′ ⊗ Zq∗Un.d.∗
(b′)f ,

qU =
m∑
i=1

ni(ρ∗i ◦ qi,U ).

If q is the zero map, we define q∗U to be the trivial cover X , and qU to be the zero
map.
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The formation of qU and q∗U is compatible with refinement: each refinement
ρ :V → U gives the refinement q∗ρ : q∗V → q∗U and we have the identity

(q∗ρ)∗ ◦ qU = qρ∗U ◦ ρ∗.(1.3.1.5)

We might not have the identities

q′∗q∗U = (q′ ◦ q)∗U ; (q′ ◦ q)U = q′q∗U ◦ qU

due to possible cancellations in the expression for q′ ◦ q, however, it follows from
Lemma 1.2.3 that there is a (non-canonical) refinement ρq′,q : q′∗q∗U → (q′ ◦ q)∗U ,
and for any such refinement, we have the relation

ρ∗q′,q ◦ (q′ ◦ q)U = q′q∗U ◦ qU .(1.3.1.6)

For similar reasons, there is a (non-canonical) refinement ρdq,q : q∗U → (dq)∗U and
for any such refinement we have the relation

d1(qU ) = ρ∗dq,q ◦ (dq)U ,(1.3.1.7)

where d1 refers to the differential with respect to the category Amot(V)∗, not the
Čech differential.

We extend the definition of qU , q∗U and ρq′,q to arbitrary objects of Amot(V)∗

by taking direct sums. The relations (1.3.1.5)-(1.3.1.7) continue to hold.

1.3.2. We recall from (Part II, Chapter II, §1.2.6), that for a DG category A,
we have the DG category Pre-Tr(A) with objects X being tuples of the form
(XN , XN+1, . . . , XM ; qij), where N ≤ M are integers, the qij are morphisms
qij :Xj [−j] → Xi[−i] in A, and

∑
k qik ◦ qkj = dqij for all i and j (including

i = j). There is an operation of cone in Pre-Tr(A), and the category Cb(A) is the
smallest full DG subcategory of Pre-Tr(A) containing A and closed under taking
translations and cones. If A has trivial differential graded structure, Cb(A) is the
usual DG category of bounded complexes in A. The operation

(XN , XN+1, . . . , XM ; qij) �→ ⊕M
i=NXi[−i]

defines the “forgetful functor” FD :Cb(A) → A; in case A has trivial differential
structure, this is just the functor “forget the differential”.

We recall from (Part II, Chapter II, §1.2.9 and Lemma 1.2.10), that taking the
total complex defines the functor (see Part II, (II.1.2.9.1))

Tot:Cb(Cb
mot(V)∗) → Cb

mot(V)∗.

1.3.3. Definition. (i) Let Γ be an object of Cb
mot(V)∗. A Zariski open cover of Γ

is a Zariski open cover of FD(Γ). A refinement of a Zariski open cover of Γ is a
refinement of the corresponding Zariski open cover of FD(Γ).
(ii) Suppose we have Γ = (ΓN , . . . ,ΓM ; qij) for objects Γi of Amot(V)∗ and maps
qij : Γj [−j] → Γi[−i] in Amot(V)∗. A Čech resolution of Γ is a map j : Γ → ΓU in
Cb(Z0Cb

mot(A)∗) such that

(a) There are Zariski open covers Ui of Γi, and Čech resolutions jΓi,Ui : Γi →
(Γi)Ui with associated open cover Ui, i = N, . . . ,M .

(b) For each i and j with qij �= 0, there is a refinement (on Γi) ρij :Ui → qij∗Uj
(c) ΓU =

(
(ΓN )UN , . . . , (ΓM )UM ; q̃ij

)
, where q̃ij : (Γj)Uj [−j] → (Γi)Ui [−i] is

given by q̃ij = ρ∗ij ◦ (qij)Uj .
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Letting U be the Zariski open cover of Γ determined by the Ui, we say that the
Čech resolution j has associated cover U .
(iii) A map of Čech resolutions q̃ : (j : Γ → ΓU ) → (j′ : Γ′ → Γ′U ′) over a map
q : Γ → Γ′ in Z0Cb

mot(V)∗ is a map q̃ : ΓU → Γ′U ′ in Cb(Z0Cb
mot(V)∗) such that

q̃ ◦ j = j′ ◦ q̃, and such that the map FD(q̃) is a map of the form ρ∗U ′,q∗U ◦ qU , where
U and U ′ are the open covers of Γ and Γ′ corresponding to j and j′, for some choice
of refinement mapping ρU ′,q∗U :U ′ → q∗U .

1.3.4. Remark. It follows directly from Definition 1.3.3 that, if q̃ : (j : Γ → ΓU ) →
(j′ : Γ′ → Γ′U ′) is a map of Čech resolutions over a map q : Γ → Γ′ in Z0Cb

mot(V)∗,
then (j[1], j′) : cone(q) → cone(q̃) is a Čech resolution of cone(q), giving the com-
mutative diagram

Γ

��

j

��
q

Γ′

��

j′

�� cone(q)

��

(j[1],j′)

�� Γ[1]

��

j[1]

ΓU ��
q̃

Γ′U ′ �� cone(q̃) �� ΓU [1]

with the columns standard cone sequences.

1.4. The category of hyper-resolutions

1.4.1. Definition. (i) A sequence of maps

j0 : Γ → ΓU1 , j1 : Tot(ΓU1) → ΓU2 , . . . , jm−1 : Tot(ΓUm−1) → ΓUm ,

in Cb(Z0Cb
mot(A)∗) is called a length m tower of Čech resolutions of Γ if each map

ji is a Čech resolution. A map of length m towers over a map q : Γ → ∆ is a
sequence of maps q̃i : ΓUi → ∆Wi such that q̃1 is a map of Čech resolutions over q,
and q̃i+1 is a map of Čech resolutions over Tot(q̃i) for 1 ≤ i ≤ m − 1. We often
write a tower of Čech resolutions as

Γ
j0−→ ΓU1 −→ . . . −→ ΓUm .

(ii) If we have a tower of Čech resolutions of Γ as in (i), we call the composition

j := jm−1 ◦ Totjm−2 ◦ . . . ◦ Totj0 : Γ → ΓUm

a hyper-resolution of Γ.
(iii) Given two hyper-resolutions of Γ, j : Γ → ΓUm , j′ : Γ′ → Γ′U ′

m
, and a map

f : Γ → Γ′ in Z0Cb
mot(A)∗, a map f̃ : ΓUm → Γ′U ′

m
in Cb(Z0Cb

mot(A)∗) is a map of
hyper-resolutions over f if there is an m and a map (f1, . . . , fm) over f of length m

towers of Čech resolutions, such that f̃ is the map fm. A map of hyper-resolutions
of Γ is a map of hyper-resolutions over idΓ.
(iv) We let HR be the sub-category of Cb(Z0Cb

mot(A)∗) with objects the hyper-
resolutions of objects of Cb

mot(V)∗, and maps the maps of hyper-resolutions; we let
HRΓ be the subcategory of HR with objects the hyper-resolutions of Γ and maps
being maps over the identity.

1.4.2. Lemma. (i) Let Γ be in Cb
mot(V)∗, U a Zariski open cover of Γ. Then there

is a refinement W → U of U and a Čech resolution j : Γ → ΓW of Γ with associated
cover W .
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(ii) Suppose we have a map f : Γ → Γ′ in Z0Cb
mot(V)∗, and Čech resolutions j : Γ →

ΓW , j′ : Γ′ → Γ′W′ with associated covers W and W ′. Then there is a refinement

U ′ of W ′, a Čech resolution j′′ : Γ′ → Γ′U ′ with associated cover U ′, a map of Čech
resolutions f̃ : ΓW → ΓU ′ over f , and a map of Čech resolutions over the identity
ĩd : Γ′W′ → ΓU ′ .
(iii) Let Γ be in Cb

mot(V)∗, and let j : Γ → ΓU be a hyper-resolution of Γ. Then

Tot(j) : Γ → Tot(ΓU )

is an isomorphism in Db
mot(V).

Proof. Let Γ = (ΓN , . . . ,ΓM ; qij) be in Cb
mot(V)∗. As Γ is an iterated cone

of objects of Amot(V)∗, we may write each Γi as a direct sum

Γi = ⊕kΓik

such that the component qkk
′

ij : Γjk′ [−j] → Γik[−i] is zero if k ≤ k′. Let Γk =
⊕iΓik[−i]; we then have the collection of maps

qkk
′
: Γk′

→ Γk; N1 ≤ k′ < k ≤M1.

Given a Zariski open cover U of Γ, we have for each k a Zariski open cover Uk
of Γk for all k. We may then inductively choose refinements Wk of Uk so that Wk

is a refinement of qkk
′

∗ Wk′ for each k′ < k via ρkk
′
:Wk → qkk

′

∗ Wk′ .
Let Wik be the restriction of Wk to Γik, let ρkk

′

ij be the restriction of ρkk
′

to
the refinement ρkk

′

ij :Wik → qkk
′

ij∗Wjk′ , and let q̃kk
′

ij : (Γjk′ [−j])Wjk′ → (Γik[−i])Wik

be the map
q̃kk

′

ij = (ρkk
′

ij )∗ ◦ (qkk
′

ij )Wjk′ .

The relations (1.3.1.5)-(1.3.1.7) imply that the tuple

(. . . ,⊕k(Γik)Wik
, . . . ;⊕k,k′ q̃kk

′

ij )

defines an object ΓW of Cb(Z0Cb
mot(V)), and that the collection of maps

jWik
: Γik → (Γik[−i])Wik

define a Čech resolution jW : Γ → ΓW . This proves (i).
If we already have a Čech resolution for the coverW , jU : Γ → ΓW then the maps

in ΓW are completely determined by the maps in Γ and the choice of refinement
mappings ρWij :Wi → qij∗Wj .

Now, suppose we are given a map f : Γ → Γ′, and Čech resolutions j : Γ → ΓW ,
j′ : Γ′ → Γ′W′ . Let Γ′′ be the cone of the map f . We may order the summands Γ′′ik
of Γ′′ as above so that all the summands coming from Γ precede those coming from
Γ′. Let W

∐
W ′ be the Zariski open cover of Γ′′ which gives W on Γ[1] and W ′

on Γ′. We may then construct a refinement W ′′ of W
∐
W ′ as in the proof of (i),

together with refinement maps ρkk
′

ij as above, which satisfies in addition
1. When restricted to Γ[1], (W ′′, ρ∗∗∗∗) is equal to the cover W , together with

the refinement mappings defining ΓW [1].
2. When restricted to Γ′, the refinement mapping W ′′

|Γ′ → W ′ intertwines the
refinement mappings in W ′′

|Γ′ with those defining Γ′W′ .

This gives us the Čech resolution k : Γ′′ → Γ′′W′′ . The portion of Γ′′W′′ coming from
the refinement of W ′ induced by W ′′ then gives rise to the refinement of W ′, the
Čech resolution j′′ : Γ′ → Γ′U ′ of Γ′, and the map of Čech resolutions Γ′W′ → Γ′U ′
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over the identity. The (degree 1) maps in ΓW′′ which go from the terms in ΓW [1] to
the terms in Γ′U ′ then define the (degree 0) map of Čech resolutions f̃ : ΓW → Γ′U ′

over f , proving (ii).
For (iii), we have already noted in §1.1.1 that j is an isomorphism in Db

mot(V)
in case Γ is an object of the form e⊗a⊗ZX(q)f . As such objects generate Amot(V)∗

as an additive category, j is an isomorphism in Db
mot(V) for all Γ in Amot(V)∗. In

general, suppose Γ is a cone:

Γ0
q−→ Γ1 −→ Γ = cone(q) −→ Γ0[1].

By definition of a Čech resolution, we may fit the Čech resolution j : Γ → ΓU into
a commutative diagram

ΓU0 ��
q̃

ΓU1 �� ΓU = cone(q̃) �� ΓU0 [1]

Γ0 ��
q

��

j0

Γ1 ��

��

j1

Γ = cone(q) ��

��

j

Γ0[1]

��

j0[1]

with both rows cone sequences. As Cb
mot(V)∗ is generated by Amot(V)∗ by taking

cones, this proves (iii).

1.4.3. Proposition. Let Γ be in Cb
mot(V)∗. Then the image of the category HRΓ

in the homotopy category Kb(Z0Cb
mot(V)) is right-filtering.

Proof. As the identity map on Γ is a hyper-resolution of Γ,HRΓ is non-empty.
In addition, if we have a length m tower of Čech resolutions of Γ, we may extend
the tower to length m+ 1 by adjoining an identity map at the end of the tower, so
we may always consider two hyper-resolutions of Γ as coming from towers of Čech
resolutions of Γ of the same length. Thus, it follows from Lemma 1.4.2(ii) that,
given two hyper-resolutions of Γ, j : Γ → Γ̃, j′ : Γ → Γ̃′∗, there is a hyper-resolution
j′′ : Γ → Γ̃′′ and maps of hyper-resolutions

Γ̃ → Γ̃′′; Γ̃′ → Γ̃′′.

Now suppose we have two maps of hyper-resolutions of Γ

f̃1, f̃2 : Γ̃ → Γ̃′.

As above, we may assume that the maps f̃1, f̃2 come from maps of length m towers
of Čech resolutions

f1∗ , f
2
∗ : Γ∗ → Γ′∗.

From Definition 1.3.3 and Definition 1.4.1, the only choice that one has in forming a
map of towers of Čech resolutions is the choice of the various refinement mappings,
which must satisfy the compatibility requirement of Definition 1.3.3(iii).

Suppose we have a homotopy

dHm−1 = f2m−1 − f1m−1 : Γm−1 → Γ′m−1

in Cb(Z0Cb
mot(V)). Arguing as in the proof of Lemma 1.4.2(ii), we may extend

Tot(Hm−1) to a degree -1 map Hm : Γm → Γ′m. Replacing f2m with dHm + f1m, we
may assume that f2m−1 = f1m−1. Applying Lemma 1.4.2(ii), we may assume that
f2m−1 = f1m−1 = id, reducing us to the case m = 1.
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As is well known, if U = {U0, . . . , Um} and V = {V0, . . . , Vn} are open covers
of a topological space X and if we have two refinement mappings

ρ1, ρ2 :V → U ,
Vi ⊂ Uρ1(i); Vi ⊂ Uρ2(i),

there is the homotopy H = H(ρ1, ρ2) on the chain complexes (of nondegenerate
simplices) associated to the maps of simplicial schemes

N(ρ1), N(ρ2) :NV → NU ,
N(ρj) :Vi0 ∩ . . . ∩ Vik → Uρj(i0) ∩ . . . ∩ Uρj(ik),

defined by sending Vi0 ∩ . . . ∩ Vik to the sum

k∑
j=0

(−1)j[Uρ1(i0) ∩ . . . ∩ Uρ1(ij) ∩ Uρ2(ij) ∩ . . . ∩ Uρ2(ik)].

Here [Uj0 ∩ . . . ∩ Ujk ] = sgn(j0, . . . , jk) · (Uj0 ∩ . . . ∩ Ujk) and sgn(j0, . . . , jk) is
the sign of the permutation which puts j0, . . . , jk in increasing order if the ji are
distinct, and is zero if the ji are not distinct.

The homotopy H(ρ1, ρ2) is natural, in the following sense: Let f :Y → X be a
continuous map of topological spaces, let ρX1 , ρ

X
2 :VX → UX and ρY1 , ρ

Y
2 :VY → UY

be refinements of open covers on X and Y , respectively, and let fV :VY → f−1(VX)
and fU :UY → f−1(UX) be refinements of open covers on Y such that

fU ◦ ρYi = f−1(ρXi ) ◦ fV .

Then fV and fU give rise to maps N(fV) :NVY → NVX and N(fU ) :NUY → NUX ,
and we have

H(ρX1 , ρ
X
2 ) ◦N(fV) = N(fU) ◦H(ρY1 , ρ

Y
2 )

Since the homotopy H has this naturality, we may apply H to the two com-
patible choices of refinement mappings determined by the maps f̃1 and f̃2, giving
the desired homotopy between f̃1 and f̃2 in Cb(Z0Cb

mot(V)).

1.5. Hypercohomology

1.5.1. Let h :Cb
mot(V)∗ → C(Ab) be an DG functor, compatible with cones. We

define the hypercohomology of Γ with respect to h as

H0h(Γ) := lim→
Ũ∈HRΓ

H0(h(Tot(ΓŨ))).(1.5.1.1)

By Proposition 1.4.3, the limit in (1.5.1.1) is equivalent to a filtered inductive limit.
The augmentation Γ → ΓU gives the natural map H0(h(Γ)) → H0h(Γ), hence

sending Γ to H0h(Γ) defines a cohomological functor and exact natural transforma-
tion

H0h :Kb
mot(V)∗ → Ab,

H0 :H0 ◦ h→ H0h.
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1.5.2. Sheaves and hyper-resolutions. We now relate the functor H∗h to Zariski hy-
percohomology. For a scheme X , we have the full subcategory Zar(X) of SchX
with objects the open subschemes of X .

Given (X, f) in L(V), an integer q, and a non-negative integer a, we may map
Zar(X)op to Amot(V) by sending (jU :U → X) to e⊗a ⊗ ZU (q)j∗U f (for a = 0, we
send (jU :U → X) to just ZU (q)j∗U f ) and sending each inclusion jU,V :V → U to
id⊗ j∗U,V : ZU (q)j∗U f → ZV (q)j∗V f .

We let Amot(Zar(X, f)) denote the additive subcategory of Amot(V) generated
by image of {0, 1, . . .}×Zar(X)op×Z under this functor. and Cb

mot(Zar(X, f)) the
category of bounded complexes over Amot(Zar(X, f)); Cb

mot(Zar(X, f)) is naturally
a DG subcategory of Cb

mot(V)∗.
Let Zar(X)c denote the full subcategory of Zar(X) with objects the connected

open subsets of X . It follows from (Chapter I, Lemma 3.1.2, Lemma 3.1.3 and
Lemma 3.1.4) that Amot(Zar(X, f)) is isomorphic to the free additive category on
{0, 1, . . .} × Zar(X)opc × Z, with disjoint union of open subsets going over to the
direct sum in Amot(Zar(X, f)). In particular, if P is a Zariski presheaf on X , with
values in an additive category A, and if P sends disjoint unions to direct sums,
then P canonically defines an additive functor P :Amot(Zar(X, f)) → A, and thus
gives the functor of DG categories Cb(P ) :Cb

mot(Zar(X, f)) → Cb(A).
Note that, for each open subscheme U of X , the category HRe⊗a⊗ZU (q)f of

hyper-resolutions of e⊗a ⊗ ZU (q)f (§1.1 and Definition 1.4.1) is a subcategory of
Cb
mot(Zar(X, f)).

1.5.3. Lemma. Let (X, f) be in L(V), and a ≥ 0 an integer. Let S∗ be a bounded
above complex of presheaves on X which takes disjoint unions to direct sums, S̃∗

the sheafification of S∗, and let jU :U → X be an open subscheme of X . Then
there is a canonical functorial isomorphism

lim→
Γ∈HR

e⊗a⊗ZU (q)f

Hn(Cb(S∗)(Γ)) ∼= Hn
Zar(U, S̃

∗)

(for a = 0, we take the limit over HRZU (q)f ).

Proof. We set ΓU = e⊗a ⊗ ZU (q)j∗f [p] (or ZU (q)j∗f [p] for a = 0). By the
remarks in §1.5.2, we have the functor Cb(S) :Cb

mot(Zar(X, f)) → Cb(Ab). In par-
ticular, for each open subscheme U of X , we have the functor Cb(S) :HRΓU →
Cb(Ab), compatible with restriction maps k∗ :HRΓU → HRΓV for inclusions
k :V → U of open subschemes of X . We extend these constructions to complexes
of presheaves by taking the associated total complex.

If S is a complex of presheaves, and ΓU → ΓU is a Čech resolution, we have
the natural isomorphism

Cb(S)(ΓU ) → S(U),(1.5.3.1)

where S(U) is the ordered non-degenerate Čech complex of S associated to the
cover U of U . If S is a sheaf, we thus have have

H0(Cb(S)(ΓU )) = S(U),(1.5.3.2)

and if S is an injective sheaf, we have

Hp(Cb(S)(ΓU )) = 0(1.5.3.3)

for p > 0.
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Now let ΓU → Γ̃ be a hyper-resolution of ΓU . By (1.5.3.1)-(1.5.3.3), induction
and an elementary spectral sequence argument, we have

H0(Cb(S)(Γ̃)) = S(U)(1.5.3.4)

if S is a sheaf, and if S is an injective sheaf, we have

Hp(Cb(S)(Γ̃)) = 0(1.5.3.5)

for p > 0.
Let P be a presheaf on X whose associated sheaf is zero, let Γ̃ be a hyper-

resolution of ΓX , and let α be a degree d element of P(Γ̃). From Lemma 1.4.2(i),
there is a map of hyper-resolutions of X f : Γ̃ → ∆̃ over the identity such that
Cb(P)(f)(α) = 0. From this and Proposition 1.4.3, it follows that setting

H∗(S) := lim→
Γ̃∈HRΓX

H∗(Cb(S)(Γ̃))

defines a cohomological functor on the category of sheaves on X .
It follows then from (1.5.3.4) that there is a canonical map of cohomological

functors (on the category of sheaves on X)

H∗(−) → H∗Zar(X,−);(1.5.3.6)

it follows from (1.5.3.4) and (1.5.3.5) that the map (1.5.3.6) is an isomorphism.
In addition, we have H0(S) ∼= H0Zar(X, S̃) for a presheaf S with associated sheaf
S̃; from this and the isomorphism (1.5.3.6) we have the canonical isomorphism
H∗(S) → H∗Zar(X, S̃).

1.5.4. Lemma. (i) Let (X, f) be in L(V), and let h :Cb
mot(Zar(X, f)) → C(Ab) be

a DG functor, compatible with cones. Let h̃X be the complex of Zariski sheaves on
X associated to the presheaf hX given by hX(j :U → X) = h(e⊗a ⊗ ZU (q)j∗f [p])
Let H0Zar(X, h̃X) denotes the Zariski hypercohomology. Then there is a natural
isomorphism

H0h(e⊗a ⊗ ZX(q)f [p]) ∼= H0Zar(X, h̃X).
(ii) Let hn :Cb

mot(V)∗ → C(Ab), n = 0, 1, . . . ,∞ be DG functors, compatible with
cones, together with a sequence of natural transformations

h0
π10−−→ h1

π21−−→ . . .

and natural transformations πn :hn → h∞, compatible with cones, such that

πn+1 ◦ πn+1,n = πn.

Suppose that, for each pair of integers p and q, there is an integer Np,q such
that H0(πn) :H0(hn(ZX(q)f [m])) → H0(h∞(ZX(q)f [m])) is an isomorphism for
all (X, f) ∈ L(V), all m ≥ p, and all n ≥ Np,q. Then, for each Γ in Cb

mot(V)∗, there
is an integer N ′Γ such that the map H0(πN ) : H0hN

(Γ) → H0h∞
(Γ) is an isomorphism

for all N ≥ N ′Γ.

Proof. For (i), let j :U → X be a Zariski open subset of X . Suppose at first
that h is a functor with values in Ab. Then hX is an abelian presheaf on X , and
we have Cb(hX)(Γ̃) = h(Γ̃) for each hyper-resolution ΓU → Γ̃ of ΓU .

This together with Lemma 1.5.3 proves (i) in case the functor h takes values
in Ab; the general case follows from this and a spectral sequence argument, noting
that X has finite cohomological dimension by [46, Theorem 3.6.5].
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We now prove (ii). The DG category Cb
mot(V)∗ is generated by Amot(V)∗ by

taking translations and cones. Since the functors H0hn
are cohomological functors, it

suffices to prove the result for Γ a translate of an object in Amot(V)∗. As Amot(V)∗

is generated by the objects e⊗a⊗ZX(q)f , it suffices to proof the result for Γ of the
form Γ = e⊗a ⊗ ZX(q)f [p].

Let h̃Xn be the complex of Zariski sheaves on X associated to the presheaf

(j :U → X) �→ hn(e⊗a ⊗ ZU (q)j∗f [p]).

Suppose X has Krull dimension M . Then, by [46, loc. cit.], for all Zariski
sheaves F on X , we have

Hn(X,F) = 0; n > M.

By our assumption on the sequence of functors hn, if n ≥ Np−M−1,q, the map of
sheaves h̃Xn → h̃X∞ induces an isomorphism on the cohomology sheaves

Hm(h̃Xn ) → Hm(h̃X∞)

for all m ≥ −M − 1. Applying this to the local to global spectral sequence for
hypercohomology, we find that the natural map H0Zar(X, h̃Xn ) → H0Zar(X, h̃X∞) is an
isomorphism for n ≥ Np−M−1,q. This, together with (i), completes the proof.

2. Higher Chow groups

We recall Bloch’s construction of the higher Chow groups, and give an extension
to motives over an arbitrary base. We also define the motivic cycle map from the
motivic Chow group to motivic cohomology.

2.1. Bloch’s higher Chow groups

We review the constructions of [19]. Fix a field k.

2.1.1. The simplicial scheme ∆∗X . Let ∆n
Z be the affine space An

Z, given as the
scheme

∆n
Z := Spec Z[t0, . . . , tn]/

n∑
i=0

ti − 1.

∆n
Z has the vertices vni defined by ti = 1, tj = 0 for j �= i. Each map g : [n] → [m] in

∆ gives the map g := ∆∗k(g) : ∆n
Z → ∆m

Z , which sends vni to vmg(i), and is affine-linear.
This defines the cosimplicial scheme ∆∗Z. If X is a scheme, taking the product with
X over Z defines the cosimplicial scheme ∆∗X .

2.1.2. Bloch’s cycle complex. A face of ∆n
X is a subscheme of the form ∆∗X(g)(∆m

X)
for some g : [m] → [n]. Let zq(X,n) be the subgroup of Zq(∆n

X) generated by
the codimension q subvarieties W of ∆n

X such that, for each face F of ∆n
X , each

component of W ∩F has codimension at least q on F . As each face F is a complete
intersection in ∆n

X , this implies that, for each Z ∈ zq(X,n), and each map g : [m] →
[n] in ∆, the cycle pull-back g∗(Z) is defined, and is in zq(X, ∗). This gives us the
simplicial abelian group n �→ zq(X,n), and the associated (homological) complex
of abelian groups zq(X, ∗), called Bloch’s cycle complex for X .
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2.1.3. Functoriality. Let f :X → Y be a morphism of k-varieties. If f is flat,
then pull-back of cycles via the induced map ∆n

X → ∆n
Y gives rise to the map of

complexes f∗ : zq(Y, ∗) → zq(X, ∗).
If f is proper of relative dimension d, then push-forward of cycles gives the

maps of complexes f∗ : zq+d(X, ∗) → zq(Y, ∗).

2.1.4. Definition. Let X be a reduced k-scheme, essentially of finite type over k.
The higher Chow groups of X , CHq(X, p), p, q ≥ 0, are defined as

CHq(X, p) := Hp(zq(X, ∗)).

2.1.5. Let f :X → Y be a map of varieties. The pull-back and push-forward
operations of §2.1.3 give rise to the pull-back map f∗ : CHq(Y, p) → CHq(X, p) if f
is flat, and the push-forward map f∗ : CHq+d(X, p) → CHq(Y, p) if f is a proper of
relative dimension d. These are functorial, when the composition is defined.

2.1.6. Properties of the higher Chow groups. We give a list of the properties of
CHq(X, p); we take X to be quasi-projective over k.
(1) Homotopy. Let pX :X × A1 → X be the projection. Then

p∗X : CHq(X, p) → CHq(X × A1, p)

is an isomorphism.
(2) Localization and Mayer-Vietoris. Let i :Z → X be a closed codimension d
subscheme of a quasi-projective variety X , and j :U → X the complement. Then
the sequence

zq−d(Z, ∗) i∗−→ zq(X, ∗) j∗−→ zq(U, ∗)

defines a quasi-isomorphism zq−d(Z, ∗) → cone(j∗)[−1], giving rise to the long exact
localization sequence

. . .→ CHq−d(Z, p) i∗−→ CHq(X, p)
j∗−→ CHq(U, p) δ−→ CHq−d(Z, p− 1) → . . . .

Similarly, if X = U ∪ V , with jU :U → X and jV :V → X open subschemes, then
the sequence

zq(X, ∗) (j∗U ,j∗V )−−−−−→ zq(U, ∗)⊕ zq(V, ∗)
j∗U∩V,U−j

∗
U∩V,V−−−−−−−−−−→ zq(U ∩ V, ∗)

defines a quasi-isomorphism zq(X, ∗) → cone(j∗U∩V,U − j∗U∩V,V )[−1], giving rise to
the long exact Mayer-Vietoris sequence

. . .→ CHq(X, p)
(j∗U ,j∗V )−−−−−→ CHq(U, p)⊕ CHq(V, p)

j∗U∩V,U−j∗U∩V,V−−−−−−−−−−→

CHq(U ∩ V, p) δ−→ CHq(X, p− 1) → . . . .

(3) Contravariant functoriality. The functor X �→ zq(X, ∗) on the category of
localizations of smooth quasi-projective k-varieties, with flat maps, extends to a
functor

zq(−, ∗) :Smess opk → D−(Ab).

(4) Products. There are functorial maps of complexes in D−(Ab)

�X,Y : zq(X, ∗)⊗Z zq
′
(Y, ∗) → zq+q

′
(X ×k Y, ∗)
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which are associative and (graded) commutative. Following �X,X by the pull-back
via the diagonal makes the bi-graded group ⊕p,qCHq(X, p) into a bi-graded ring,
graded-commutative in p. If f :X → Y is a projective map, then

f∗(α ∪X f∗β) = f∗(α) ∪Y β

for α ∈ CHq(X, p) and β ∈ CHq′(Y, p′).
(5) Comparison with K-theory. Let X be a smooth quasi-projective variety.

There are natural isomorphisms

CHq(X, p)⊗Q ∼= Kp(X)(q),

where Kp(X)(q) is the weight q subspace (for the Adams operations) in the rational
higher algebraic K-theory of X , Kp(X)⊗Q.

2.1.7. Remarks. (i) These properties were first listed in [19]; (1) was proved there
and the construction of the products in (4) was given as well. There was an error in
the proof of (2) in [19]; a correct proof of (2) was given in [18]. There was also an
error in the proof of (3) in [19], which was fixed by Bloch [16]. We also give a proof
of the contravariant functoriality in §3.5 of this chapter, for affine X ; together with
(2), this gives a proof of contravariant functoriality for arbitrary X . A proof of (5)
(relying on (2) and (3)) was given in [19]; we have also given a proof of (5) in [84]
which makes no use of (2) or (3). We give a proof of (5), following the argument of
[19], in Chapter III, §3.6.
(ii) One consequence of (2) which we will use later is a comparison of CHq(−, p) with
Zariski hypercohomology. Let X be a quasi-projective k-variety. The functoriality
of the complexes zq(−, ∗) allows us to sheafify these complexes on X , forming the
complex of Zariski sheaves z̃q(∗)X associated to the complex of presheaves U �→
zq(U, ∗). An immediate consequence of (2) is that the natural map CHq(X, p) →
H−pZar(X, z̃q(∗)X) is an isomorphism.

2.2. Suspension and the motivic cycle complex

We use the technique of “relative cycles” to give a first approximation to the Chow
groups of motives. We fix a base scheme S.

We recall from Chapter I, §2.4, how to assign a motive to a “very smooth”
cosimplicial scheme (see Chapter I, §2.4.1)

2.2.1. Example. Recall the cosimplicial scheme ∆∗ := ∆∗S of §2.1.1. One easily
sees that ∆∗ is a very smooth cosimplicial scheme in V . We denote the maps (see
Chapter I, §2.4.1) fn∆∗ : ∆≤n → ∆n by δn, giving the objects (see (I.2.4.1.1) and
(I.2.4.2.2))

(∆∗, δ∗) : ∆ → L(V),

Z≤N∆∗ (0) ∈ Cb
mot(V)∗,

(2.2.1.1)

and the sequence of maps in Cb
mot(V)∗ (see (I.2.4.2.3))

. . .
χN,N−1

−−−−−→ Z≤N∆∗ (0)
χN+1,N

−−−−−→ Z≤N+1∆∗ (0)
χN+2,N+1

−−−−−−→ . . . .(2.2.1.2)

We let
Z∆∗(0)δ∗ : ∆op → Amot(V)∗

denote the simplicial object Z(0)((∆∗, δ∗)), where Z(0) :L(V)op → Amot(V)∗ is the
functor (X, f) �→ ZX(0)f .
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2.2.2. Definition. Let Γ be an object of Cb
mot(V)∗. We let ΣNΓ denote the object

Γ×Z≤N∆∗ (0)[−N ], where × is the tensor operation in Cb
mot(V)∗. Sending Γ to ΣNΓ

gives the cone-preserving functor

ΣN :Cb
mot(V)∗ → Cb

mot(V)∗;

we have as well the extension of ΣN to exact functors

ΣN :Kb
mot(V)∗ → Kb

mot(V)∗,

and
ΣN :Db

mot(V)∗ → Db
mot(V)∗.

2.2.3. Recall the cycles functor (I.3.3.1.2). For a simplicial object [n] �→ Γn of
Z0Cb

mot(V)∗, let Zmot(Γ∗) be the object of C−(Ab) defined as the total complex
of the double complex

. . .→ Zmot(Γn) d−n

−−→ Zmot(Γn−1) → . . .
d−1

−−→ Zmot(Γ0),
where d−n is the usual alternating sum

d−n =
n∑

i=0

(−1)iZmot(Γ(δn−1i )),

and Zmot(Γq
p) is in total degree q − p.

2.2.4. Definition. Let Γ be an object of Cb
mot(V)∗. Define the motivic cycle com-

plex Zmot(Γ, ∗) by

Zmot(Γ, ∗) := Zmot(Γ× Z∆∗(0)δ∗)

(see Example 2.2.1).

2.2.5. Proposition. Suppose S = Spec k, and X is a smooth quasi-projective
variety over k. Then Zmot(ZX(q)[2q], ∗) is naturally isomorphic to Bloch’s cycle
complex zq(X,−∗) (see §2.1.2).

Proof. We have the identity

ZX(q)f [2q]× Z∆p(0)δp = ZX×k∆p(q)idX×δp [2q],

giving the identification of Zmot(ZX(q)[2q],−p) with the subgroup Zq(X ×k ∆p)δp
of Zq(X ×k ∆p/k) generated by effective cycles W such that (idX × f)∗(W ) is
defined for all face maps f : ∆m → ∆p. This is the same as the group zq(X, p)
described in §2.1.2. With the shift [2q], the graded group Zmot(ZX(q)[2q],−p) is
concentrated in degree −p. The coboundary map

d−p :Zmot(ZX(q)[2q],−p) → Zmot(ZX(q)[2q],−p + 1)

is given as the alternating sum of the restrictions to the codimension one faces of
X ×k ∆p, which is the same as the boundary map dp : zq(X, p) → zq(X, p− 1).

2.2.6. Comparison maps. The sequence of maps (2.2.1.2) gives the sequences of
natural transformations

. . .
χN,N−1

−−−−−→ ΣN [N ]
χN+1,N

−−−−−→ ΣN+1[N + 1]
χN+2,N+1

−−−−−−→ . . . .(2.2.6.1)

We let

iN : id → ΣN [N ](2.2.6.2)

be the composition χN,N−1 ◦ . . . ◦ χ1,0.
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2.2.7. Sending Γ to Zmot(Γ, ∗) defines the DG functor

Zmot(∗) :Cb
mot(V)∗ → C−(Ab),(2.2.7.1)

and extends to the exact functor Zmot(∗) :Kb
mot(V)∗ → K−(Ab). The natural

maps (Part II, (III.1.1.4.2)) give the natural maps

idΓ × πN : Γ× Z≤N∆∗ (0) → Γ× ZN (j∗NZ∆∗(0)δ∗),

which in turn give the natural transformation

ΠN :Zmot ◦ ΣN(−)[N ] → Zmot(−, ∗)(2.2.7.2)

by applying the functor Zmot to the natural maps idΓ × πN , and composing with
the natural inclusion

Zmot(Γ× ZN (j∗NZ∆∗(0)δ∗)) ⊂ Zmot(Γ, ∗),
which is defined by identifying Zmot(Γ× ZN (j∗NZ∆∗(0)δ∗)) with the total complex
of the truncation

Zmot(Γ× Z∆N (0)δN ) d−N

−−−→ . . .
d−1

−−→ Zmot(Γ× Z∆0(0)δ0)

of the double complex defining Zmot(Γ, ∗).
Applying Zmot to the sequence (2.2.6.1) gives us the sequence of natural trans-

formations

(2.2.7.3) . . .
Zmot(χ

N,N−1)−−−−−−−−−→ ΣNZmot[N ]
Zmot(χ

N+1,N )−−−−−−−−−→

ΣN+1Zmot[N + 1]
Zmot(χ

N+2,N+1)−−−−−−−−−−−→ . . . .

The commutativity of the diagram (Part II, (III.1.1.4.3)) gives the relation

ΠN+1 ◦ Zmot(χN+1,N ) = ΠN .(2.2.7.4)

2.2.8. Lemma. (i) For each Γ in Cb
mot(V)∗, there is an integer NΓ such that the

maps

H0(ΠN (Γ)) :H0(Zmot(ΣN (Γ)[N ])) → H0(Zmot(Γ, ∗)),
H0(Zmot(χN+1,N )) :H0(Zmot(ΣN (Γ)[N ])) → H0(Zmot(ΣN+1(Γ)[N + 1]))

are isomorphisms for all N ≥ NΓ. In addition, if we take NΓ minimal, we have
NΓ[−1] = NΓ + 1.
(ii) For each pair of integers (p, q), there is an integer Np,q such that the maps

H0(ΠN (Γ)) :H0(Zmot(ΣN (Γ)[N ])) → H0(Zmot(Γ, ∗)),
H0(Zmot(χN+1,N )) :H0(Zmot(ΣN (Γ)[N ])) → H0(Zmot(ΣN+1(Γ)[N + 1]))

are isomorphisms for all N ≥ Np,q, and for all Γ of the form Γ = ZX(q)f [m] with
m ≥ p.

Proof. The assertion (i) for Γ = e⊗a⊗ZX(q)f [p] follows from (Part II, Chap-
ter III, Lemma 1.1.5), with C = Amot(V)∗, F∗(Γ) = j∗NZmot(Γ×Z∆∗(0)δ∗); we may
take NΓ = max(0, 2q − p + 1). Thus, taking Np,q = 2q − p + 1 proves (ii).

As the extension of both functors from Amot(V)∗ to Cb
mot(V)∗ preserves the

operation of taking cones, and as Cb
mot(V)∗ is generated by translates of Amot(V)∗

via the operation of taking cones, the assertion (i) is also true for arbitrary Γ in
Cb
mot(V)∗.
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2.3. The naive Chow groups of a motive

2.3.1. Definition. Let Γ be an object of Cb
mot(V)∗. The naive higher Chow groups

of Γ, CHnaif(Γ, p), are defined by

CHnaif(Γ, p) := H−p(Zmot(Γ, ∗)).

We often write CHnaif(Γ) for CHnaif(Γ, 0).

2.3.2. From Lemma 2.2.8, we have a natural isomorphism

CHnaif(Γ, p) ∼= H−p(Zmot(ΣN (Γ)[N ]))

for all N ≥ NΓ + p.

2.3.3. Cohomological functors. Sending Γ to CHnaif(Γ) defines a cohomological func-
tor CHnaif(−) :Kb

mot(V)∗ → Ab. The sequence of natural transformations (2.2.6.1)
defines the cohomological functor (for each a ≥ 0)

lim→
N

Hom(e⊗a ⊗ 1,ΣN [N ](−)) :Kb
mot(V)∗ → Ab,

Γ �→ lim→
N

HomKb
mot(V)(e

⊗a ⊗ 1,ΣN (Γ)[N ]).

Applying the natural maps νΣN (Γ)[N ],a (I.3.3.6.1) allows us to form the limit

lim→
N,a

HomKb
mot(V)(e

⊗a ⊗ 1,ΣN(Γ)[N ]).

2.3.4. Proposition. There is a natural exact isomorphism of cohomological func-
tors from Kb

mot(V)∗ to Ab:

Σ∗[∗]cyc: CHnaif(−) → lim→
N,a

HomKb
mot(V)(e

⊗a ⊗ 1,ΣN [N ](−)).

The limit on the right is constant after a finite stage for each Γ in Kb
mot(V)∗.

Proof. It follows from Chapter I, Proposition 3.3.5 that the functor Zmot
gives an isomorphism

HomKb
mot(V)(e

⊗a ⊗ 1,ΣN (Γ)[N ])
Zmot(e

⊗a⊗1,ΣN (Γ)[N ])−−−−−−−−−−−−−−−→ H0(Zmot(ΣN (Γ)[N ]))

for all a sufficiently large. By Lemma 2.2.8 and Chapter I, Lemma 3.3.7, this,
combined with the natural transformation of Lemma 2.2.8, gives the natural iso-
morphism

lim→
N,a

Hom(e⊗a ⊗ 1,ΣN(Γ)[N ]) → CHnaif(Γ);

we take Σ∗[∗]cyc(Γ) to be the inverse of this isomorphism.

2.3.5. Lemma. The sequence of natural transformations (2.2.6.1) composed with
the functor Kb

mot(V)∗ → Db
mot(V)∗ is a sequence of natural isomorphisms. In

particular, for each Γ in Kb
mot(V)∗, the map

iN (Γ): Γ → ΣNΓ[N ](2.3.5.1)

induced by the natural transformation (2.2.6.2) is an isomorphism in Db
mot(V)∗.
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Proof. Let X be an object in an additive category A. We have the constant
functor X≤N : ∆≤Nop → A. We have the natural map (see Part II, (III.1.1.4.1))

χN+1,N
X : Z⊕N (X≤N) → Z⊕N+1(X

≤N+1);

let BN+1(X) := cone(χN+1,N
X ) and set B0(X) = X . InKb(A), we have the natural

isomorphism BN+1(X) ∼= cone
(
id :BN (X) → BN (X)

)
[−1], showing that BN (X)

is isomorphic to zero for all N ≥ 1. This implies that the map χN+1,N
X is an

isomorphism in Kb(A) for all N ≥ 0.
The homotopy axiom (see Chapter I, Definition 2.1.4(a)), combined with the

moving lemma axiom (Chapter I, Definition 2.1.4(e)), shows that the map

p∗∆n : ZS(0) → Z∆n(0)δn

is an isomorphism for each n in Db
mot(V)∗. Thus we have the isomorphism

p∗∆∗ : Z⊕N (ZS(0)≤N ) → Z≤N∆∗ (0)

in Db
mot(V)∗. The remarks of the previous paragraph then show that the map

χN+1,N : Z≤N∆∗ (0) → Z≤N+1∆∗ (0) is an isomorphism in Db
mot(V)∗, as claimed.

2.3.6. The naive cycle class. For Γ in Cb
mot(V)∗, we have the map (2.3.5.1), which

by Lemma 2.3.5 is an isomorphism in Db
mot(V). We define the naive cycle class

map

clnaif(Γ): CHnaif(Γ) → HomDb
mot(V)(1,Γ)(2.3.6.1)

as the composition

CHnaif(Γ)
Σ∗[∗]cyc(Γ)−−−−−−−→ lim→

N,a

Hom(e⊗a ⊗ 1,ΣN(Γ)[N ])

= HomKb
mot(V)(e

⊗a ⊗ 1,ΣN (Γ)[N ]) → HomDb
mot(V)(e

⊗a ⊗ 1,ΣN(Γ)[N ])

ν−1
a ◦(−)◦iN (Γ)−1

−−−−−−−−−−−→ HomDb
mot(V)(1,Γ),

where N is any integer ≥ NΓ, a is sufficiently large (depending only on Γ) and νa
is the isomorphism (I.2.2.4.1).

2.4. The naive higher Chow groups of a variety

2.4.1. It follows from Proposition 2.2.5 that there is a natural isomorphism

CHnaif(ZX(q)[2q], p) ∼= CHq(X, p)(2.4.1.1)

for X a smooth quasi-projective k-variety, in case S = Spec k, k a field.

2.4.2. Remarks. (i) Let X be in V . The map δ1 : ∆≤1 → ∆1 is the union id∆1 ∪
i1 ∪ i0, where i0 :S → ∆1, i1 :S → ∆1 are the sections with value v0 and v1. We
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have the commutative diagram with exact columns

Zmot(ZX(q)[2q]× Z∆1(0)δ1)

��

d−1

Zq(X ×∆1)idX×δ1

��

i∗1−i
∗
0

Zmot(ZX(q)[2q])

��

Zq(X/S)

CHnaif(ZX(q)[2q])

��

0.

(2.4.2.1)

If S = Spec k, we have, via Proposition 2.2.5, the identification of the naive
Chow group CHnaif(ZX(q)[2q]) with the classical Chow group CHq(X); the left-
hand column in (2.4.2.1) is the standard sequence defining CHq(X). We may use
this as a definition for arbitrary base schemes: CHq(X/S) := CHnaif(ZX(q)[2q]).
(ii) The cycle map cycΓ (I.3.5.1.2) and the cycle map Σ∗[∗]cyc(Γ) of Proposi-
tion 2.3.4 are compatible in the following way: We have the commutative diagram

H0(Zmot(Γ)) ��
cycΓ

��

χN,0

HomKb
mot(V)(e

⊗a ⊗ 1,Γ)

��

χN,0

H0(Zmot(ΣNΓ[N ])) ��
cycΣNΓ[N ]

HomKb
mot(V)(e

⊗a ⊗ 1,ΣNΓ[N ]).

For N ≥ NΓ, we have the isomorphism ΠN :H0(Zmot(ΣNΓ[N ])) → CHnaif(Γ) and
the identity Σ∗[∗]cyc(Γ) = cycΣNΓ[N ] ◦ (ΠN )−1. For Γ = ZX(q)[2q], this gives us
the commutative diagram

Zq(X/S)

Zmot(ZX(q)[2q]) ��
cycqX

��

HomKb
mot(V)(e

⊗a ⊗ 1,ZX(q)[2q])

��

χ1,0

CHq
naif(X/S) ��

Σ∗[∗]cyc(ZX (q)[2q])
HomKb

mot(V)(e
⊗a ⊗ 1,Σ1ZX(q)[2q + 1]),

where the left-hand vertical arrows is the surjection of (i).
(iii) We define the naive higher Chow groups of X , for X ∈ V , as

CHq
naif(X/S, p) = CHnaif(ZX(q)[2q − p]).

By the isomorphism (2.4.1.1), this agrees with Bloch’s higher Chow groups in case
S = Spec k.

2.4.3. Products. For the remainder of this subsection, we assume that S = Spec k,
k a field. Via the isomorphism (2.4.1.1), the naive cycle class map gives the map

clq,pX,naif : CHq(X, 2q − p) → Hp(X,Z(q)).(2.4.3.1)
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As both ⊕p,qCHq(X, 2q−p) and ⊕p,qH
p(X,Z(q)) are bi-graded rings, one may ask

if the maps (2.4.3.1) give a ring homomorphism. We proceed to show that this is
the case.

If S and T are partially ordered sets, we give S × T the product partial order:
(s, t) ≤ (′s, t′) if s ≤ s′ and t ≤ t′. Let g = (g1, g2) : [k] → [n] × [m] be an
order-preserving map. We let ∆(g) : ∆k → ∆n ×∆m be the affine-linear map with
∆(g)(vki ) = vng1(i)×vmg2(i). A face of ∆n×∆m is a subscheme of the form ∆(g)(∆k).
Let Fg denote the face corresponding to g, and let

δn,m :
∐

g : [k]→[n]×[m]
Fg → ∆n ×∆m

be the union of the inclusion maps, where g runs over injective, order-preserving
maps.

We let Z≤N×M∆∗×∆∗(0)−k be the sum⊕
f1 : [n]→[N ], f2 : [m]→[M ]

n+m=k

Z∆n×∆m(0)δn,m ,

where the sum is over injective maps f1, f2 in ∆. For 0 ≤ i ≤ n, we map
Z∆n×∆m(0)δn,m in the factor (f1, f2) to Z∆n−1×∆m(0)δn,m in the factor (f1◦δn−1i , f2)
by the map (∆(δn−1i )× id)∗. The sum of these maps gives the map

(∆(δn−1i )× id)∗ : Z≤N×M∆∗×∆∗(0)−k → Z≤N×M∆∗×∆∗(0)−k+1.

For 0 ≤ j ≤ m, we have the map

(id×∆(δm−1j ))∗ : Z≤N×M∆∗×∆∗(0)−k → Z≤N×M∆∗×∆∗(0)−k+1

defined similarly. We let

d−kN,M : Z≤N×M∆∗×∆∗(0)−k → Z≤N×M∆∗×∆∗(0)−k+1

be the map
∑

n+m=k

∑n
i=0(−1)i(∆(δn−1i )×id)∗+(−1)n

∑m
j=0(−1)j(id×∆(δm−1j ))∗,

giving the complex

. . .→ Z≤N×M∆∗×∆∗(0)−k
d−k
N,M−−−→ Z≤N×M∆∗×∆∗(0)−k+1 → . . . ,

which we denote by Z≤N×M∆∗×∆∗(0).
The inclusion of ZS(0) into Z≤N×M∆∗×∆∗(0)0 as the summand corresponding to the

vertex vN0 × vM0 defines the map

iN,M : ZS → Z≤N×M∆∗×∆∗(0).

The collection of identity maps on ∆n ×∆m defines the map in Cb
mot(Smk)

κN,M : Z≤N×M∆∗×∆∗(0) → Z≤N∆∗ (0)× Z≤M∆∗ (0),

where× is the tensor operation inCb
mot(Smk)∗. By the moving lemma isomorphism

(Chapter I, §2.2.2), κN,M is an isomorphism in Db
mot(Smk). In addition, we have

κN,M ◦ iN,M = iN × iM .
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2.4.4. Triangulations. We have the standard triangulation of [N ]× [M ], defined as
the formal sum

∑
g sgn(g)g, where the sum is over injective order-preserving maps

g : [N + M ] → [N ]× [M ], and sgn(g) is defined as in (Part II, Chapter III, §3.4.5).
Let f1 : [n] → [N ], f2 : [m] → [M ], and h : [n + m] → [n] × [m] be injective

order-preserving maps. As each maximal totally ordered subset of [N ] × [M ] has
N +M + 1 elements, the composition (f1 × f2) ◦ h can be extended to an injective
order-preserving map g : [N + M ] → [N ] × [M ], i.e., there is an injective order-
preserving map

δhf1,f2 : [n + m] → [N + M ]

such that g ◦ δhf1,f2 = (f1 × f2) ◦ h. In fact, the map δhf1,f2 is independent of the
choice of g, and is characterized by the identity

δhf1,f2(i + 1)− δhf1,f2(i) = d((f1 × f2) ◦ h(i), (f1 × f2) ◦ h(i + 1)).

Here d(x, y) is the distance from x to y, for x ≤ y in the partially ordered set
[N ]× [M ], i.e., the maximal r such that there is a string of strict inequalities

x = x0 < x1 < . . . < xr = y.

For each injective, order-preserving map h : [n + m] → [n] × [m], we have the
map ∆(h) : ∆n+m → ∆n ×∆m, giving the map

∆(h)∗ : Z∆n×∆m(0)δn,m → Z∆n+m(0)δn+m

in Amot(Smk). Define the map

∆(h)∗,−k : Z≤N×M∆∗×∆∗(0)−k → Z≤N+M∆∗ (0)−k

by sending the summand Z∆n×∆m(0)δn,m indexed by (f1, f2) to the summand
Z∆n+m(0)δn+m indexed by δhf1,f2 , via the map ∆(h)∗. One checks that the maps∑

h sgn(h)∆(h)∗,−k, where the sum is over the injective, order-preserving maps
h : [n + m] → [n]× [m], n + m = k, define the map of complexes

TN,M : Z≤N×M∆∗×∆∗(0) → Z≤N+M∆∗ (0).

By a direct computation, we have

TN,M ◦ iN,M = iN+M .

2.4.5. Lemma. The maps TN,M and iN,M are isomorphisms in Db
mot(Smk).

Proof. The maps iM , iN and iN+M are isomorphisms in Db
mot(Smk) by

Lemma 2.3.5 of Chapter II; we have already seen that κN,M is an isomorphism
in Db

mot(Smk). Since × = � ◦⊗, it follows from the Künneth isomorphism (Chap-
ter I, Definition 2.1.4(c)) and from (Chapter I, Theorem 3.4.2) that the map iN×iM
is an isomorphism in Db

mot(Smk), hence iN,M is an isomorphism in Db
mot(Smk).

Since TN,M ◦ iN,M = iN+M , TN,M is an isomorphism as well.

2.4.6. Proposition. The map

⊕q,pclq,pX,naif : ⊕q,p CHq(X, 2q − p) → ⊕q,pH
p(X,Z(q))

is a ring homomorphism.



2. HIGHER CHOW GROUPS 75

Proof. Since both products are gotten by taking external products and pulling
back by the diagonal, it suffices to show that the maps clq,pnaif are compatible with
the external products. Take Z1 ∈ ZN (zq(X, ∗)), Z2 ∈ ZM (zq

′
(Y, ∗)), giving the

cycle Z1×Z2 on X×Y ×∆N ×∆M . By [19, Theorem 5.1], changing Z1 and Z2 in
HN (zq(X, ∗)) and HM (zq

′
(Y, ∗)), we may assume that Z1×Z2 intersects X×Y ×F

properly, for all faces F of ∆N × ∆M . Replacing zq(X, ∗) and zq
′
(Y, ∗) with the

normalized subcomplexes, we may assume that Z1 · (X×F ) = 0 for each dimension
N − 1 face of ∆N , and similarly for Z2.

The appropriate cycle maps cycq(Z1), cycq
′
(Z2) thus define the cycle class maps

in Db
mot(Smk)

clq(Z1) : 1 → ZX × Z≤N∆∗ (q)[2q −N ], clq
′
(Z2) : 1 → ZY × Z≤M∆∗ (q′)[2q′ −M ].

The appropriate cycle map cycq+q
′
(Z1 × Z2) similarly defines the cycle class map

in Db
mot(Smk)

clq+q
′
(Z1 × Z2) : 1 → ZX×Y × Z≤N×M∆∗×∆∗(q + q′)[2(q + q′)− (N + M)],

and we have

(id× κN,M) ◦ clq+q
′
(Z1 × Z2) = � ◦ (clq(Z1)⊗ clq

′
(Z2)),

by (Chapter I, Lemma 3.5.5), after identifying 1⊗ 1 with 1 via µ : 1⊗ 1 → 1.
Applying the map

∑
g sgn(g)[idX×Y × ∆(g)]∗ to the cycle Z1 × Z2 gives the

cycle

Z1 ∪X,Y Z2 :=
∑
g

sgn(g)[idX×Y ×∆(g)]∗(Z1 × Z2)

on X × Y × ∆N+M . By definition of the external product on the higher Chow
groups given in [19, §5], the class of Z1 ∪X,Y Z2 in

HN+M (zq+q
′
(X × Y, ∗)) = CHq+q′(X × Y,N + M)

is the product of the classes defined by Z1 and Z2. On the other hand, letting
p = 2q − N , p′ = 2q′ −M , we have (using Proposition 3.5.3 and Lemma 3.5.5 of
Chapter I, and the definition of clnaif)

clq,pX,naif(Z1) ∪X,Y clq
′,p′

Y,naif(Z2) = (id× iN)−1(clq(Z1)) ∪X,Y (id× iM )−1(clq
′
(Z2))

= (id× iN × iM )−1(clq(Z1)× clq
′
(Z2))

= (id× iN,M)−1(clq+q
′
(Z1 × Z2))

= (id× iN+M )−1(TN,M ◦ clq+q
′
(Z1 × Z2))

= (id× iN+M )−1(clq+q
′
(Z1 ∪X,Y Z2))

= clq+q
′,p+p′

X×Y,naif (Z1 ∪X,Y Z2).

2.5. Motivic Chow groups

As described in Remark 2.1.7, for a base scheme S of the form Spec k, the local-
ization theorem for the higher Chow groups shows that the naive Chow groups
CHq

naif(X, p) may be also defined as the hypercohomology on X of the complex of
sheaves associated to the presheaf U �→ zq(U, ∗). For a general base scheme S, the
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analogous statement is possibly not true for arbitrary X ; we must therefore pass
from the complex Zmot(ZX(q)f [2q], ∗) to the associated complex of sheaves on X
and take hypercohomology to get the proper definition of the higher Chow groups
of X over S. In order to have a reasonable understanding of this operation and how
it affects the maps in the category Db

mot(V), we use the notion of hypercohomology
for the functor Zmot(−), developed in §1.5.

2.5.1. Suspension. We have the DG functor (2.2.7.1), compatible with cones,

Zmot(∗) :Cb
mot(V)∗ → C−(Ab)

Γ �→ Zmot(Γ, ∗).
For each N , we have the DG functor, compatible with cones

ΣNZmot[N ] :Cb
mot(V)∗ → C−(Ab)(2.5.1.1)

defined as the composition ΣNZmot[N ] := Zmot ◦ ΣN (−)[N ] We have the natural
transformation (2.2.7.2)

ΠN : ΣNZmot[N ] → Zmot(∗),(2.5.1.2)

inducing the natural transformation

H0(ΠN ) : H0ΣNZmot[N ]
→ H0Zmot(∗).(2.5.1.3)

2.5.2. Definition. Let Γ be in Cb
mot(V)∗. Define the higher Chow groups of Γ by

CH(Γ, p) = H0Zmot(∗)(Γ[−p]).

(cf. (1.5.1.1)). We write CH(Γ) for CH(Γ, 0). The natural transformation

H0 :Zmot(∗) → H0Zmot(∗)

gives the natural map CHnaif(Γ, p) → CH(Γ, p).

2.5.3. Proposition. Let Γ be in Cb
mot(V)∗. Then there is an integer N ′′Γ such that,

for all N ≥ N ′′Γ , the natural transformation (2.5.1.3) defines an isomorphism

H0(ΠN )(Γ): H0ΣNZmot[N ]
(Γ) → CH(Γ).

Proof. This follows from Lemma 1.5.4 and Lemma 2.2.8.

2.5.4. The motivic cycle class map. We extend the naive cycle class map (2.3.6.1)
to the cycle class map

cl(Γ): CH(Γ) → HomDb
mot(V)(1,Γ).

For this, let j : Γ → ΓU be a hyper-resolution of Γ. We have the naive cycle
class map (2.3.6.1)

clnaif(ΓU ) : CHnaif(Tot(ΓU )) → HomDb
mot(V)(1,Tot(ΓU )).

By Lemma 1.4.2(iii), Totj is an isomorphism in Db
mot(V); composing clnaif(ΓU )

with (Totj)−1 gives the map

(Totj)−1 ◦ clnaif(TotΓU ) : CHnaif(ΓU ) → HomDb
mot(V)(1,Γ).

If we have another tower of Čech resolution of Γ, giving the hyper-resolution j′ : Γ →
ΓU ′ and a map η : ΓU → ΓU ′ over the identity, we have j′ = η ◦ j. As clnaif(−) is
natural, the maps j−1 ◦ clnaif(ΓU ) give a well-defined map on the limit

cl(Γ): CH(Γ) → HomDb
mot(V)(1,Γ).(2.5.4.1)
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By Lemma 1.4.2, we see that sending Γ to cl(Γ) defines a natural transformation
of cohomological functors from Kb

mot(V) to Ab.

2.5.5. Definition. Let (X, f) be in L(V). We let Zq(X/S, ∗)f denote the complex
Zmot(ZX(q)f [2q], ∗). We denote CH(ZX(q)f [2q−p]) by CHq(X/S, p)f , and the map

cl(ZX(q)[p]) : CH(ZX(q)[p])f → HomDb
mot(V)(1,ZX(q)f [2q − p]) = Hp(X,Z(q))

by

clq,pX : CHq(X/S, 2q − p)f → Hp(X,Z(q)).

We write CHq(X/S, p) for CHq(X/S, p)idX .

3. The motivic cycle map

In this last section, we give criteria for the injectivity and surjectivity of the
motivic cycle map, derive some consequences for motivic cohomology when these
criteria are satisfied, and verify the criteria if the base scheme has dimension at
most one over a field.

3.1. Sheafification

We relate the motivic Chow groups to Zariski hypercohomology.

3.1.1. Sending (X, f) ∈ L(V) to Zq(X/S, ∗)f defines the functor

Zq(−/S, ∗)− :L(V)op → C−Ab;

in particular, sending an open subscheme j :U → X to Zq(U/S, ∗)j∗f defines a
complex of presheaves on X . We let

Z
q
X/S(∗)f(3.1.1.1)

denote the associated complex of Zariski sheaves.

3.1.2. Let ShAb(ZarS) be the category of Zariski sheaves of abelian groups on S-
schemes: An object is a sheaf F on an S-scheme X , and a morphism (X,F) →
(Y,G) is a pair (p, p̃) consisting of a map p :Y → X and a map p̃ :F → p∗(G).
Composition is given by (q, q̃) ◦ (p, p̃) = (q ◦ p, q̃ ◦ q∗(p̃)).

Sending (X, f) to Z
q
X/S(∗)f then gives the functor

Z
q
/S(∗) :L(V)op → C−(ShAb(ZarS)),(3.1.2.1)

where we send a morphism p : (X, f) → (Y, g) to the pair (p, p∗), where p∗ is the
map p∗ : Zq

Y/S(∗)g → p∗(Z
q
X/S(∗)f ). We write Z

q
X/S(∗) for Z

q
X/S(∗)idX .

3.1.3. Proposition. For each X in V , there is a canonical identification

CHq(X/S, p)f ∼= H−pZar(X,Zq
X/S(∗)f ).

Proof. This follows from Lemma 1.5.4(i).
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3.1.4. Sending (X, f) to CHq(X/S, p)f defines the functor

CHq(−, p)f :L(V)op → Ab;

the cycle class maps clq,pX define the natural transformation

clq,p : CHq(−, 2q − p)f → Hp(−,Z(q)).(3.1.4.1)

Let i :Z → X be a closed embedding of smooth S-schemes in V of relative
codimension d. If Y is in V and W ∈ Zq−d(Z ×S Y/S) is a cycle, we may consider
W as a cycle on X ×S Y ; this defines the natural transformation

i∗ :Zq−d(Z ×S (−)/S) → Zq(X ×S (−)/S).

This extends in the obvious way to a natural map of complexes i∗ :Zq−d(Z/S, ∗) →
Zq(X/S, ∗), and to the natural map of complexes of sheaves on X ,

i∗ : i∗Z
q−d
Z/S(∗) → Z

q
X/S(∗).

If j∗ :U → X is the complement X\Z, we have j∗ ◦ i∗ = 0; giving the natural
map of complexes of sheaves on X ,

i∗ : i∗Z
q−d
Z/S(∗) → cone

(
j∗ : Zq

X/S(∗) → Z
q
U/S(∗)

)
[−1].(3.1.4.2)

3.2. Surjectivity of the cycle map

We give a general criterion for the surjectivity of the cycle map. To simplify the
notation, we take the coefficient ring to be Z; making the obvious changes, the
discussion goes through for a commutative ring, flat over Z, as coefficient ring.

For a Zariski sheaf of abelian groups F on a scheme X , we have the classical
Godement resolution [49] of F , F → G∗F , defined by letting G0F be the sheaf
on X with G0F(U) :=

∏
x∈U Fx, with inclusion F → G0F , and defining Gn(F)

inductively as

G
n(F) := G

0(Gn−1(F)/Im(Gn−2(F)),

with G−1(F) = F .
For a complex of Zariski sheaves F of Z-modules on a scheme X , we let GF

denote the total complex of the Godement resolution, and RXF the global sections
Γ(X,GF). If X̂ is a closed subset of X , with complement j :U → X , we let RX̂

XF
denote the cone

R
X̂
XF := cone

(
Rj∗ : RXF → RU (j∗F)

)
[−1].

The complex RXF gives a functorial representative in C+(Ab) for the object
RΓ(X,F) ofD+(Ab). Similarly, he complex RX̂

XF gives a functorial representative
in C+(Ab) for the object RΓW (X,F) of D+(Ab), where ΓW (X,−) is the functor
“global sections with support in W”.

3.2.1. The surjectivity conditions. Consider the following conditions:
(i) Homotopy. Let X be in V . Then the map

Rp∗ : RXZ
q
X/S(∗) → RX×A1Z

q
X×A1/S(∗)

induced by the projection p :X × A1 → X is a quasi-isomorphism for all q.
(ii) Moving lemma. Let (X, f) be in L(V). Then the natural map Z

q
X/S(∗)f →

Z
q
X/S(∗) is an quasi-isomorphism for all q.



3. THE MOTIVIC CYCLE MAP 79

(iii) Gysin isomorphism. Let i :Z → X be a closed codimension d embedding
in V . Then the map Ri∗ : RZZ

q−d
Z/S(∗) → RZ

XZ
q
X/S(∗) induced by the map

(3.1.4.2) is a quasi-isomorphism for all q.
In this section we will show that, assuming these conditions, the cycle map

(2.5.4.1) is surjective.

3.2.2. The Chow realization. We begin the construction of a functor from Db
mot(V)

to D−(Ab) which extends the assignment X �→ RXZ
q
X/S(∗) for X in V .

We denote the category Db
mot(V) by D. We assume throughout this section

that the conditions of §3.2.1 are satisfied.
We have the functor (2.2.7.1) and the functor (3.1.2.1).
Composing the functor Z/S(∗) with R(−) gives the functor

RZ
q
/S(∗) :L(V)op → C−(Ab).(3.2.2.1)

We now extend (3.2.2.1) to Amot(V)∗.
For an object of Amot(V)∗ of the form e⊗a ⊗ ZX(n)f , we define

RZmot(e⊗a ⊗ ZX(n)f , ∗) := RZ
n
X/S(∗)f [−2n];

we extend the definition of RZmot(Γ, ∗) to arbitrary objects of Ab
mot(V)∗ by taking

direct sums.
To define RZmot(q, ∗) for a morphism q : e⊗a

′ ⊗ ZY (b′)g → e⊗a ⊗ ZX(b)f we
use the representation of q as a sum of compositions of the form (1.2.2.1). If q is
one such composition, say q = q(τ, h∗, p), we have the associated map of S-schemes
q̄ := q̄(τ, h∗, p) :X → Y (1.2.2.2). For each open subscheme j :U → Y , we have the
inclusion k :V → X , where V = q̄−1(U), and the map (1.3.1.2)

qU : e⊗a
′ ⊗ ZU (b′)j∗g → e

⊗a ⊗ ZV (b)k∗f .

Let Zmot(e⊗a
′ ⊗ ZY (b′)g, ∗) denote the complex of presheaves on Y defined by

Zmot(e⊗a
′
⊗ ZX(b′)g, ∗)(j :U → Y ) = Zmot(e⊗a

′
⊗ ZU (b′)j∗g, ∗),

and define the complex of presheaves on X , Zmot(e⊗a ⊗ ZX(b)f , ∗), similarly.
The commutativity of the diagram (1.3.1.3) implies that the maps

Zmot(qU , ∗) :Zmot(e⊗a
′ ⊗ ZU (b′)j∗g, ∗) → Zmot(e⊗a ⊗ ZV (b)k∗f , ∗)

define a map of complexes of presheaves

Zmot(q, ∗) :Zmot(e⊗a
′ ⊗ ZX(b′)g, ∗) → Zmot(e⊗a ⊗ ZX(b)f , ∗)

over the map q̄.
Taking the map of associated sheaves, and noting that

Zmot(e⊗α ⊗ ZW (q)h, ∗) = Zmot(ZW (q)h, ∗) = Zq(W, ∗)h[−2q]

(see Chapter I, Lemma 3.2.2(ii)), we have the map of sheaves over q̄,

Z(q, ∗) : Zb′

Y/S(∗)g[−2b′] → Z
b
X/S(∗)f [−2b].

We let

RZmot(q, ∗) : RZmot(e⊗a
′ ⊗ ZY (b′)g, ∗) → RZmot(e⊗a ⊗ ZX(b)f , ∗)(3.2.2.2)

be the map induced by Z(q, ∗) on the global sections of the Godement resolution.
We extend the definition of RZmot(q, ∗) to finite sums of compositions (1.2.2.1) by
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linearity, and extend to arbitrary maps between arbitrary objects of Amot(V)∗ by
taking direct sums.

The relations (1.3.1.5)-(1.3.1.7) imply that the maps (3.2.2.2) define a DG
functor

RZmot(∗) :Amot(V)∗ → C−(Ab).(3.2.2.3)

We may then extend (3.2.2.3) to the DG functor, compatible with cones,
RZmot(∗) :Cb

mot(V)∗ → C−(Ab), and the exact functor, RZmot(∗) :Kb
mot(V)∗ →

K−(Ab), by applying the functor Tot ◦Cb (Part II, Chapter II, §1.2 and §1.2.9),
and passing to the homotopy category.

We have the identity

RZmot(e⊗a ⊗ ZX(q)f [2q], ∗) = RZ
q
X/S(∗)f ,(3.2.2.4)

and the canonical isomorphism (see Proposition 3.1.3)

H0(RZmot(e⊗a ⊗ ZX(q)f [2q − p], ∗)) ∼= CHq(X, p).

As the functors

H0(RZmot(−, ∗)) :Kb
mot(V)∗ → Ab,

CH(−) :Kb
mot(V)∗ → Ab

are cohomological functors, and the identity map onZmot(∗) gives the natural trans-
formation CH(−) → H0(RZmot(−, ∗)), we have, for Γ in Cb

mot(V)∗, the canonical
isomorphism

H0(RZmot(Γ, ∗)) ∼= CH(Γ).(3.2.2.5)

3.2.3. Proposition. Under the conditions of §3.2.1, the functor
RZmot(∗) :Kb

mot(V)∗ → K−(Ab)

extends to a functor of triangulated categories

�CH :D → D−(Ab).

Proof. The condition (i), together with the identity (3.2.2.4), implies that the
morphisms of Chapter I, Definition 2.1.4(a) get sent to quasi-isomorphisms; simi-
larly, the condition (ii) of §3.2.1 implies the functor RZmot(∗) sends the morphisms
of Definition 2.1.4(e) to quasi-isomorphisms.

Suppose we have a codimension d inclusion i :Z → P , split by a smooth pro-
jection p :P → Z. Then the map i∗ :Zn−d(Z, ∗) → Zn(P, ∗) is the same as the
composition ∪[i(Z)]◦p∗. Applying the remarks of Chapter I, §2.2.5, we see that the
condition (iii) of §3.2.1 implies that the morphisms of Chapter I, Definition 2.1.4(d)
get sent to quasi-isomorphisms.

The excision property (Chapter I, Definition 2.1.4(b)) is a general property of
the functor R. For each connected X , the complex Zmot(ZX(0), ∗) is the complex

. . .→ Z → Z → . . .→ Z

with the maps alternatively the identity map and the zero map; thus the canonical
map Z → Zmot(ZX(0), ∗) is a homotopy equivalence. From this, it is easy to verify
that the morphism of Chapter I, Definition 2.1.4(f) is sent to a quasi-isomorphism.

By Chapter I, Proposition 3.4.6, this implies that we have the extension of
RZmot(∗) to the exact functor RZmot(∗) :Db

mot(V)∗ → D−(Ab). Composing with
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the retraction (Chapter I, Theorem 3.4.2) Db(rmot) :Db
mot(V) → Db

mot(V)∗ gives
the desired extension.

3.2.4. We denote the category Db
mot(V)∗ by D∗, the categoryKb

mot(V)∗ by K∗ and
the category Cb

mot(V)∗ by C∗.
The identity X = X × ZS(0) = X × Z∆0(0)δ0 for X ∈ C∗ gives the identity

Zmot(−) = Zmot(−, 0) and thus gives us the natural transformation σ0 :Zmot(−) →
Zmot(−, ∗). Following σ0 with the natural transformation (presheaf to associated
sheaf to Godement resolution to complex of global sections):

Zmot(−, ∗) → RZmot(−, ∗)(3.2.4.1)

gives the natural transformation

RZσ0 :Zmot(−) → RZmot(−, ∗).(3.2.4.2)

We denote the categoryKb
mot(V)∗B (see Chapter I, §3.3.4) by K∗B . For ∆ in K∗,

we denote the map Zmot(e⊗a ⊗ 1,∆) of Chapter I, Proposition 3.3.5(iv) by

ev∆a : HomK∗(e⊗a ⊗ 1,∆) → H0(Zmot(∆)).(3.2.4.3)

If ∆ is in K∗B, then the map (3.2.4.3) is an isomorphism for all a > B, again by
Chapter I, Proposition 3.3.5(iv).

3.2.5. Lemma. Let Γ and Ξ be objects of K∗B, f : Γ → Ξ a map in K∗ which becomes
an isomorphism in D∗, and let g : e⊗a ⊗ 1 → Ξ be a map in K∗, with a > B. Then
there are hyper-resolutions (see Definition 1.4.1)

jU : Γ → ΓU
jW : Ξ → ΞW ,

a map of hyper-resolutions over f , f̃ : ΓU → ΞW , and an integer N such that, for
each n ≥ N , there is a map hn : e⊗a ⊗ 1 → ΣnΓU [n] in K∗ satisfying

Σn(Totf̃)[n] ◦ hn = in(TotΞW) ◦ TotjW ◦ g
in K∗ (see Definition 2.2.2 and (2.2.6.2) for the notation).

Proof. To simplify the notation, we omit the mention of the functor Tot. Let
ι :K∗ → D∗ and ι′ :K−(Ab) → D−(Ab) be the natural maps.

Since the map f becomes an isomorphism in D∗, the map in D−(Ab),

�CH(f) :�CH(Γ) → �CH(Ξ),

is an isomorphism. As �CH(−) ◦ ι = ι′ ◦ RZmot(−, ∗), there is an element η of
H0(RZmot(Γ, ∗)) such that

RZmot(f, ∗)(η) = RZσ0(evΞa (g))(3.2.5.1)

in H0(RZmot(Ξ, ∗)) (see (3.2.4.2)).
As

H0(RZmot(Γ, ∗)) = CH(Γ)

= H0Zmot(∗)(Γ),

(see (1.5.1.1), Definition 2.5.2 and (3.2.2.5)) there is a hyper-resolution jU : Γ →
ΓU , and an element η′ of H0(Zmot(ΓU , ∗)) mapping to η under the natural map
H0(Zmot(ΓU , ∗)) → H0Zmot(∗)(Γ).



82 II. MOTIVIC COHOMOLOGY AND HIGHER CHOW GROUPS

By applying Lemma 1.4.2 repeatedly, we may assume that we have a hyper-
resolution jW : Ξ → ΞW of Ξ, and a map of hyper-resolutions over f , f̃ : ΓU →
ΞW . By (3.2.5.1), the difference Zmot(f̃ , ∗)(η′) − σ0(evΞW

a (jW ◦ g)) goes to zero in
H0Zmot(∗)(Ξ); using Lemma 1.4.2 again, we may assume we have the identity

Zmot(f̃ , ∗)(η′) = σ0(evΞW
a (jW ◦ g))(3.2.5.2)

in H0(Zmot(ΞW , ∗)).
By Lemma 2.2.8, there is an integer N such that the natural maps (2.2.7.2)

Πn(ΓU ) :Zmot(ΣnΓU [n]) → Zmot(ΓU , ∗)
Πn(ΞW ) :Zmot(ΣnΞW [n]) → Zmot(ΞW , ∗)

induce an isomorphism on H0 for all n ≥ N . Take ηn ∈ H0(Zmot(ΣnΓU [n])) with
Πn(ηn) = η′ in H0(Zmot(ΓU , ∗)). The relation (3.2.5.2) then gives the identity

Zmot(Σn(f̃)[n])(ηn) = evΣ
nΞW [n]

a (in(ΞW) ◦ jW ◦ g)(3.2.5.3)

in H0(Zmot(ΣnΞW [n])).
By Chapter I, Proposition 3.3.5(iv), there is a unique map hn : e⊗a ⊗ 1 →

ΣnΓU [n] in K∗ such that
evΣ

nΓU [n]
a (hn) = ηn

in H0(Zmot(ΣnΓU [n])). The identity (3.2.5.3) implies the identity

evΣ
nΞW [n]

a (Σn(f̃)[n](hn)) = Zmot(Σn(f̃)[n])(ηn)

= evΣ
nΞW [n]

a (in(ΞW ) ◦ jW ◦ g)

in H0(Zmot(ΣnΞU [n])); applying Chapter I, Proposition 3.3.5 again, we have the
identity of maps in K∗,

Σn(f̃)[n](hn) = in(ΞW ) ◦ jW ◦ g,
completing the proof.

3.2.6. We have the equivalence of triangulated categories (I.3.4.2.1)

Db
mot(r) :Db

mot(V) → Db
mot(V)∗.

For Γ ∈ Db
mot(V), we define CH(Γ) := CH(Db

mot(r)(Γ)), and define the map

cl(Γ): CH(Γ) → HomDb
mot(V)(1,Γ)(3.2.6.1)

as the composition (see (2.5.4.1))

CH(Γ) = CH(Γ∗)
cl(Γ∗)−−−−→ HomDb

mot(V)∗(1,Γ∗)
Db

mot(r)(1,Γ)
−1

−−−−−−−−−−→ HomDb
mot(V)(1,Γ),

where Γ∗ = Db
mot(r)(Γ).

3.2.7. Theorem. Suppose the conditions of §3.2.1 hold, and let Γ be in Cb
mot(V).

Then the map (3.2.6.1)

cl(Γ): CH(Γ) → HomDb
mot(V)(1,Γ)

is surjective. In particular, the map (3.1.4.1)

clq,pX : CHq(X, p) → H2q−p(X,Z(q))

is surjective for all X in V .
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Proof. To simplify the notation, we omit the mention of the functor Tot.
Using the equivalence Db

mot(r) (Chapter I, Theorem 3.4.2), we may replace
Db
mot(V) with D∗, and assume that Γ is in D∗.

We have the isomorphism (I.2.2.4.1) in D∗, νa : e⊗a ⊗ 1 → 1. Since D∗ is a
localization of K∗, each map φ : 1 → Γ in D∗ may be factored as a composition

1
(νa)

−1

−−−−→ e
⊗a ⊗ 1 g−→ Ξ f−1

−−→ Γ,

where g : e⊗a ⊗ 1 → Ξ and f : Γ → Ξ are maps in K∗, and f is invertible in D∗ (see
Part II, Chapter II, §2.3.3). Since the diagram

e⊗a ⊗ e⊗b

��

id
e⊗a⊗νb

e⊗a+b

��

νa+b

e⊗a ⊗ 1 ��
νa

1

commutes in K∗, we may assume that Γ and Ξ are in K∗B (see §3.2.4) with a > B.
Applying Lemma 3.2.5, there are hyper-resolutions

jU : Γ → ΓU ,
jW : Ξ → ΞW ,

an integer n, and maps

hn : e⊗a ⊗ 1 → ΣnΓU [n],

f̃ : ΓW → ΞU

in K∗ such that

Σn(f̃)[n] ◦ hn = in(ΞW ) ◦ jW ◦ g.(3.2.7.1)

In addition, the diagram

Γ ��
f

��

jU

Ξ

��

jW

ΓU ��
f̃

��

in(ΓU)

ΞW

��

in(ΞW)

ΣnΓU [n] ��
Σn(f̃)[n]

ΣnΞW [n]

(3.2.7.2)

commutes in K∗. Since in(ΓU ), jU , in(ΞW ) and jW are isomorphisms in D∗
(Lemma 2.3.5 and Lemma 1.4.2(iii)), the relation (3.2.7.1) and the commutativ-
ity of (3.2.7.2) gives us the identity

f−1 ◦ g ◦ (νa)−1 = f−1 ◦ (jW )−1 ◦ (in(ΞW))−1 ◦ Σn(f̃)[n] ◦ hn ◦ (νa)−1

= (jU )−1 ◦ (in(ΓU ))−1 ◦ hn ◦ (νa)−1.
(3.2.7.3)

Let η̃ be the image of evΣ
nΓU [n]

a (hn) (see (3.2.4.3)) in H0(Zmot(ΓU , ∗)), under
the map (2.2.7.2),

Πn(ΣnΓU [n]) :Zmot(ΣnΓU [n]) → Zmot(ΓU , ∗).
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By Definition 2.5.2, we have

CH(Γ) = H0Zmot(∗)(Γ) = lim→
ΓU∈HRΓ

Zmot(ΓU , ∗),

hence η̃ has a well-defined image η ∈ CH(Γ). By definition of the map (2.5.4.1), we
have

cl(Γ)(η) = (jU )−1 ◦ (in(ΓU ))−1 ◦ hn ◦ (νa)−1;

as this is the map φ by (3.2.7.3), surjectivity is proved.

3.3. Injectivity of the cycle map

We give a criterion for the injectivity of the cycle map.

3.3.1. Cohomology vanishing. In order to prove injectivity, we need, in addition to
the conditions of §3.2.1, the following hypothesis: Let X be in V , let p :X×An → X
be the projection, and let (An, g) and (X, f) be liftings of An and X to objects of
L(SmSpecZ) and L(V), respectively. Then the map

p∗ : Zq
X/S(∗)f → p∗(Z

q
X×An/S(∗)f×g)

is a quasi-isomorphism of complexes of sheaves on X .

3.3.2. A double cycle complex. Recall from Example 2.2.1 the cosimplicial scheme
∆∗ : ∆ → V , the cosimplicial object of L(V), (∆∗, δ∗) : ∆ → L(V), and the associated
simplicial object Z∆∗(0)δ∗ (Definition 2.2.2(iii)) of Amot(V)∗. For Γ ∈ Amot(V)∗,
the complex Zmot(Γ, ∗) is the complex associated to the simplicial object Zmot(Γ×
Z∆∗(0)δ∗) : ∆op → Cb(Ab) (see Definition 2.2.4). We now form the bi-simplicial
object

Zmot(Γ× Z∆∗(0)δ∗ × Z∆∗(0)δ∗) : ∆op ×∆op → Cb(Ab).

and let Zmot(Γ, ∗, ∗) be the associated double complex. Since (Z∆∗(0)δ∗)0 = ZS(0),
and ZS(0) is the unit for the tensor operation ×, the sub-complexes Zmot(Γ, ∗, 0)
and Zmot(Γ, 0, ∗) are canonically isomorphic to the complexZmot(Γ, ∗). This defines
the two inclusions

i1, i2 :Zmot(Γ, ∗) → Tot(Zmot(Γ, ∗, ∗)).(3.3.2.1)

We let Zq(X, ∗)f denote the complex Zmot(ZX(q)f [2q], ∗), and we define the
double complex Zq(X, ∗, ∗)f by

Zq(X, ∗, ∗)f = Zmot(ZX(q)[2q], ∗, ∗).(3.3.2.2)

The inclusions (3.3.2.1) give the natural maps

i1, i2 :Zq(X, ∗)f → Tot(Zq(X, ∗, ∗)f).(3.3.2.3)

3.3.3. We may sheafify the construction of §3.3.2 over X . Let Z
q
X/S(∗, ∗)f be

the double complex of sheaves on X associated to the presheaf (j :U → X) �→
Zq(U, ∗, ∗)j∗f ; the maps (3.3.2.3) define the maps

i1, i2 : Zq
X/S(∗)f → Tot(Zq

X/S(∗, ∗)f ).(3.3.3.1)

3.3.4. Lemma. Assuming the condition of §3.3.1, the maps (3.3.3.1) are quasi-
isomorphisms.
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Proof. We consider one of the two convergent spectral sequences associated
to the double complex of sheaves Z

q
X/S(∗, ∗)f . The E1-terms are given by

Ea,b
1 = Ha(Zq

X/S(∗, b)f ),

where Z
q
X/S(∗,−b)f is the complex of sheaves on X associated to the presheaf

U �→ Zq(X ×∆b, ∗)f×δb , and Ha is the sheaf of cohomology groups on X .
Let pn :X ×S ∆n → X be the projection. We have the identity

Z
q
X/S(∗,−b)f = pb∗(Z

q
X×S∆b/S

(∗)f×δb).

By our assumption of §3.3.1, the map pb∗ : Zq
X/S(∗)f → Z

q
X/S(∗,−b)f is a quasi-

isomorphism. This implies that the complex of E1-terms is

. . .→ Ha(Zq
X/S(∗)f ) → Ha(Zq

X/S(∗)f ) → . . .→ Ha(Zq
X/S(∗)f ),

where the maps alternate between the zero map and the identity map, with the last
map being the zero map. Thus, the spectral sequence degenerates at E2, and the
inclusion i1 : Zq

X/S(∗)f = Z
q
X/S(∗, 0)f → Tot(Zq

X/S(∗, ∗)f ) is a quasi-isomorphism.
The other inclusion i2 is handled by using the other spectral sequence.

3.3.5. We now return to the cosimplicial object (X, f)× (∆∗, δ∗) : ∆ → L(V). We
may view the double complex Zq(X, ∗, ∗)f as the double complex associated to the
simplicial object

Zq(X ×S ∆∗, ∗)f×δ∗ : ∆op → C−Ab

n �→ Zq
mot(X ×S ∆n, ∗)f×δn .

(3.3.5.1)

We may apply the natural transformation (3.2.4.1), ιY,g :Zq(Y, ∗)g → RZ
q
Y/S(∗)g,

to (3.3.5.1), giving the simplicial object

RZ
q
X×S∆∗/S(∗)f×δ∗ : ∆op → C−Ab

n �→ RZ
q
X×S∆n/S(∗)f×δn ,

and the natural map of simplicial objects

ιX×S∆∗,δ∗ :Zq(X ×S ∆∗/S, ∗)f×δ∗ → RZ
q
X×S∆∗/S(∗)f×δ∗ .

We let

ιX(∗)(∗)f :Zq(X, ∗, ∗)f → RZ
q
X/S(∗)(∗)f(3.3.5.2)

denote the induced map on the associated double complexes; here the indices in
the double complex RZ

q
X/S(∗)(∗)f are arranged so that

RZ
q
X/S(m)(−n)f = RZ

q
X×S∆n/S(m)f×δn .

One easily sees that the map (3.3.5.2) factors canonically through the natural map
Zq(X, ∗, ∗)f → R(Zq

X/S(∗, ∗)f ), giving the map

RZιX : R(Zq
X/S(∗, ∗)f ) → RZ

q
X/S(∗)(∗)f .(3.3.5.3)

3.3.6. Lemma. Assume the conditions of §3.2.1 and §3.3.1 hold. Then the map
(3.3.5.3) induces a quasi-isomorphism on the associated total complexes.
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Proof. By §3.3.1 and §3.2.1(i) and (ii), the map

pn∗ : RZ
q
X/S(∗)f → RZ

q
X×S∆n/S(∗)f×δn

is a quasi-isomorphism for each n. The same spectral sequence argument as in the
proof of Lemma 3.3.4 then shows that the inclusion

ι1 : RZ
q
X/S(∗)f = RZ

q
X/S(∗)(0)f → Tot(RZ

q
X/S(∗)(∗)f )

is a quasi-isomorphism. By Lemma 3.3.4, the inclusion

R(i1) : RZ
q
X/S(∗)f = R(Zq

X/S(∗, 0)f) → Tot(R(Zq
X/S(∗, ∗)f ))

is a quasi-isomorphism. As (TotRZιX) ◦R(i1) = ι1, the lemma is proved.

3.3.7. Let Γ be inCb
mot(V)∗. We may form the functor ZΓmot :Cb

mot(V)∗ → Cb(Ab)
defined by

ZΓmot(−) = Zmot((−)× Γ).

For (X, f) ∈ L(V), we may form the presheaf on X ,

(j :U → X) �→ ZΓmot(ZU (q)j∗f [2q]);

we let Z
q,Γ
X/S,f denote the associated sheaf. The natural transformation (3.2.4.2)

defines the natural map

φΓ : Zq,Γ
X/S,f → RZmot(Γ× ZX(q)f [2q], ∗).(3.3.7.1)

3.3.8. We have the object Z≤N∆∗ (0) of Cb
mot(V)∗ (see (2.2.1.1)), the functor

ΣN (−)[N ] := (−)× Z≤N∆∗ (0) :Cb
mot(V)∗ → Cb

mot(V)∗

(Definition 2.2.2), and the functor (2.5.1.1)

ΣNZmot[N ] = Zmot ◦ ΣN (−)[N ] :Cb
mot(V)∗ → Cb(Ab).

Using the notation of §3.3.7, we may write ΣNZmot[N ] as ZZ
≤N

∆∗ (0)
mot (−).

Denote ΣNZmot[N ](ZX(q)f [2q]) by ΣNZq
mot(X)f [N ]. As in §3.3.7, we may

sheafify the Zariski presheaf (j :U → X) �→ ΣNZq
mot(U)j∗f [N ] over X , giving the

complex of sheaves ΣNZ
q
X/S,f [N ] on X , and the functor

ΣN
Z
q
−/S,−[N ] :L(V)op → C−(ShAb(ZarS)).

We have the identity

ΣN
Z
q
X/S,f [N ] = Z

q,Z≤N

∆∗ (0)

X/S,f ;

applying (3.3.7.1) gives the natural map

φX,N : RXΣN
Z
q
X/S,f [N ] → RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗).(3.3.8.1)

3.3.9. Lemma. Let p be an integer. For fixed X , f and q, there is an integer Np

such that the map (3.3.8.1) induces an isomorphism in cohomology Hm(−) for all
m ≥ −p if N ≥ Np.

Proof. The natural transformation (2.5.1.2) gives the natural transformation
(on the category of open subschemes j :U → X of X)

ZΠN (j :U → X) : ΣN
Z
q
U/S,j∗f [N ] → Z

q
U/S(∗)j∗f ,
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which in turn gives the natural map

RZΠN : RXΣN
Z
q
X/S,f [N ] → RZ

q
X/S(∗)f .(3.3.9.1)

We recall from Example 2.2.1 and Chapter I, §2.4.2, that Z≤N∆∗ (0) is the complex

Z≤N∆∗ (0)−N → . . .→ Z≤N∆∗ (0)0,

where Z≤N∆∗ (0)−p is the direct sum Z≤N∆∗ (0)−p = ⊕g : [p]→[N ]Z∆p(0)δp , with the sum
being over injective ordered maps g. The map ΠN in each degree p is the map
induced on Zmot(−) by the sum map ΣN,p : ⊕g : [p]→[N ] Z∆p(0)δp → Z∆p(0)δp . Ap-
plying the functor RZ/S(−, ∗) to id× ΣN,p gives the natural map

RZΠN (∗) : RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗) → TotRZ
q
X/S(∗)(∗)f ,(3.3.9.2)

where RZΠN (m) maps RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗) to RZ
q
X/S(m)(∗)f .

By Lemma 2.2.8, we may apply Lemma 1.5.4, with hN = Zmot(ΣN [N ]), h∞ =
Zmot, πn+1,n the natural transformation Zmot(χn+1,n) (2.2.7.3) and πn the natural
transformation (2.2.7.2). Thus, there is an Np such that, for all N ≥ Np, the map
(3.3.9.1) gives an isomorphism on Hm for all m ≥ −p.

We have the natural transformation (2.2.6.2), inducing the natural map

(3.3.9.3) RZmot(ZX(q)f [2q], ∗)
RZmot(iN (ZX(q)f [2q]))−−−−−−−−−−−−−−−→ RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗).

By Lemma 2.3.5, the map

iN(ZX(q)f [2q]) : ZX(q)f [2q] → ZX(q)f × Z≤N∆∗ (0)[2q]

is an isomorphism in Db
mot(V). By Proposition 3.2.3, the map (3.3.9.3) is thus a

quasi-isomorphism.
We have the identity RZmot(ZX(q)f [2q], ∗) = RZ

q
X/S(∗)f . Let

ιX,j : RZmot(ZX(q)f [2q], ∗) → TotRZ
q
X/S(∗)(∗)f ; j = 1, 2,

be the composition

RZmot(ZX(q)f [2q], ∗) R(ij)−−−→ Tot(R(Zq
X/S(∗, ∗)f)) RZιX−−−−→ TotRZ

q
X/S(∗)(∗)f

(cf. (3.3.3.1) and (3.3.5.3)).
We have the commutative diagram

RZmot(ZX(q)f [2q], ∗)

��

RZmot(iN (ZX (q)f [2q]))

RZmot(ZX(q)f [2q], ∗)

��

ιX,1

TotRZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗) ��
RZΠN (∗)

TotRZ
q
X/S(∗)(∗)f .

By Lemma 3.3.4 and Lemma 3.3.6, the map

ιX,1 : RZmot(ZX(q)f [2q], ∗) → TotRZ
q
X/S(∗)(∗)f

is a quasi-isomorphism. As the map (3.3.9.3) is a quasi-isomorphism, the map
(3.3.9.2) is a quasi-isomorphism.

By Lemma 3.3.4 and Lemma 3.3.6, the map

ιX,2 : RZmot(ZX(q)f [2q], ∗) → TotRZ
q
X/S(∗)(∗)f
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is also a quasi-isomorphism. One easily sees that the diagram

RXΣNZ
q
X/S,f [N ] ��

φX,N

��

RΠN

RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗)

��

RZΠN (∗)

RZ
q
X/S(∗)f ��

ιX,2
TotRZ

q
X/S(∗)(∗)f

commutes.
Take N ≥ Np. As the map RΠN gives an isomorphism on Hm for all m ≥ −p,

and the maps ιX,2, RZΠN (∗), and RΠN are quasi-isomorphisms, the map φX,N

gives an isomorphism on Hm for all m ≥ −p.

3.3.10. Theorem. Suppose the conditions of §3.2.1 and §3.3.1 are satisfied. Then
the map

cl(Γ): CH(Γ) → HomDM(V)(1,Γ)
is an isomorphism for all Γ in DM(V).

Proof. It suffices to prove the result for Γ in Db
mot(V); using the equivalence

(I.3.4.2.1) Db
mot(r) :Db

mot(V) → Db
mot(V)∗, we may assume Γ is in Db

mot(V)∗. As
Db
mot(V)∗ is generated as a triangulated category by the objects e⊗a⊗ZX(q)f , and

since cl(−) is an exact natural transformation of cohomological functors we may
take Γ to be a translate of e⊗a⊗ZX(q)f ; as e⊗a ⊗ZX(q)f is isomorphic to ZX(q)f
in Db

mot(V)∗, we may take Γ to be a translate of ZX(q)f . By Theorem 3.2.7, we
need only prove injectivity.

By Proposition 2.5.3, there is an N1 such that the map H0(ΠN ) gives an iso-
morphism

CH(ZX(q)f [2q − p]) ∼= H0ΣNZmot[N ]
(ZX(q)f [2q − p])(3.3.10.1)

for all N ≥ N1. By Lemma 1.5.4(i), we may identify the hypercohomology with
respect to the functor ΣNZmot[N ] as Zariski hypercohomology:

H0ΣNZmot[N ]
(ZX(q)f [2q − p]) = H−p(RΣN

Z
q
X/S,f [N ]).(3.3.10.2)

It follows directly from the construction of �CH in Proposition 3.2.3 that the
composition

�CH ◦ cl(ZX(q)f [2q − p]) : CH(ZX(q)f [2q − p]) → H0(�CH(ZX(q)f [2q − p]))
(3.3.10.3)

is the map induced on H−p by the map (3.3.8.1)

φX,N : RΣN
Z
q
X/S,f [N ] → RZmot(ZX(q)f × Z≤N∆∗ (0)[2q], ∗)

once we identify CH(ZX(q)f [2q− p]) with H−p(RΣNZ
q
X/S,f [N ]) via (3.3.10.1) and

(3.3.10.2). By Lemma 3.3.9, the map (3.3.10.3) is an isomorphism, once we take N
large enough. Thus cl(ZX(q)f [2q − p]) is injective, completing the proof.

We recall the triangulated tensor category DM0(V), and the exact tensor func-
tor DM(Hmot) :DM(V) → DM0(V) (see Chapter I, Remark 3.4.7).

3.3.11. Theorem. Suppose the conditions of §3.2.1 and §3.3.1 are satisfied. Then
the functor DM(Hmot) induces an isomorphism

DM(Hmot) : HomDM(V)(1,Γ) → HomDM0(V)(1,DM(Hmot)(Γ))
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for all Γ in DM(V).

Proof. We use throughout the notation of Chapter I, Remark 3.4.7. The
arguments of §2.2-§3.3 can be applied, replacing the categoriesAmot(V)∗, Cb

mot(V)∗,
Kb
mot(V)∗, and Db

mot(V)∗ with A0mot(V)∗, Cb0
mot(V)∗, Kb0

mot(V)∗, and Db0
mot(V)∗,

respectively, to prove the analog of Theorem 3.3.10 for the category DM0(V), i.e.,
that there is a natural cycle class map cl(Γ): CH(Γ) → HomDM0(V)(1,Γ), which is
an isomorphism for all Γ in DM(V).

Noting that the construction of cl(−) is compatible with the functor Hmot
proves the results.

3.4. Some consequences

In the previous section, we have given criteria (§3.2.1 and §3.3.1) for the cycle class
map cl(Γ): CH(Γ) → HomDM(V)(1,Γ) to be an isomorphism for all Γ in DM(V).
In this section, we suppose these criteria to be satisfied for SmessS , and deduce some
consequences.

The first is the interpretation of motivic cohomology in terms of Zariski hyper-
cohomology.

For X in V , we have the complex of Zariski sheaves (3.1.1.1), Z
q
X/S(∗).

3.4.1. Theorem. Suppose the conditions of §3.2.1 and §3.3.1 are satisfied for V =
SmessS . Let V be a full subcategory of SmessS such that the conditions of Chapter I,

Definition 2.1.4 are satisfied. Then for X in V , with closed subset X̂, we have the
natural isomorphism

Hp−2q
X̂

(X,Zq
X/S(∗)) ∼= HomDM(V)(1,ZX,X̂(q)[p]),

where H∗
X̂
is the Zariski hypercohomology with support.

Proof. Let Γ be in Cb
mot(V). From (3.2.2.5), we have the natural isomorphism

H0(RZmot(Γ, ∗)) ∼= CH(Γ). Taking Γ = ZX,X̂(q)[p] and noting that the Godement
resolution RZmot(ZX,X̂(q)[p], ∗) represents the object RΓX̂(X,Zq

X/S(∗)[p − 2q]) in
D−(Ab) gives the isomorphism

CH(ZX,X̂(q)[p]) ∼= Hp−2q
X̂

(X,Zq
X/S(∗)).

By Theorem 3.3.10, we have the natural isomorphism

cl(ZX,X̂(q)[p]) : CH(ZX,X̂(q)[p]) → HomDM(V)(1,ZX,X̂(q)[p]).

The next result is the independence of motivic cohomology on the choice of
category V in SmessS . If we have a full subcategory V of SmessS for which the
conditions of Chapter I, Definition 2.1.4 are satisfied, then the inclusion i :V →
SmessS induces the exact tensor functor i∗ :DM(V) → DM(SmessS ).

3.4.2. Corollary. Suppose the conditions of §3.2.1 and §3.3.1 are satisfied for
V = SmessS . Let i :V → SmessS be a full subcategory of SmessS such that the condi-
tions of Chapter I, Definition 2.1.4 are satisfied. Then the functor i∗ :DM(V) →
DM(SmessS ) induces an isomorphism

HomDM(V)(1,Γ) → HomDM(Smess
S )(1, i∗(Γ))

for all Γ in DM(V).
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Proof. It follows easily from the definition of the functor Zmot in Chapter I,
§3.2 that Zmot(ZX(q)f [p]) = Zmot(i∗(ZX(q)f [p])) for all (X, f) in L(V). From this,
it follows that we have the identity Zmot(ZX(q)f [p], ∗) = Zmot(i∗(ZX(q)f [p]), ∗) (see
Definition 2.2.4), from which it follows that the complex Z

q
X/S(∗) is independent of

the choice of the category V containing X .
Applying Theorem 3.4.1, it follows that i∗ induces the isomorphism

HomDM(V)(1,ZX(q)[p]) ∼= HomDM(Smess
S )(1, i∗(ZX(q)[p]))

for all X in V . As DM(V) is generated as a triangulated category by the objects
ZX(q)[p], and taking direct summands, the map

HomDM(V)(1,Γ) → HomDM(Smess
S )(1, i∗(Γ))

is an isomorphism for all Γ in DM(V).

We have as well a compatibility of motivic cohomology with filtered projective
limits.

3.4.3. Corollary. Let {Sα | α ∈ A} be a filtered inverse of reduced schemes,
with projective limit S. Suppose the conditions of §3.2.1 and §3.3.1 are satisfied
for SmessSα

, for each α. Let X in SmessS be a filtered projective limit in Sch: X =
lim←Xα, with Xα in SmessSα

for each α ∈ A, such that the canonical maps πα :X →
S ×Sα Xα are flat. Let X̂ be a closed subset of X , and suppose we have closed

subsets X̂α of Xα, compatible with the transition maps in the inverse system, and
with X̂ = lim←Xα. Then the natural map

lim
→

Hp

X̂α
(Xα,Z(q)) → Hp

X̂
(X,Z(q))

is an isomorphism. In addition, the conditions of §3.2.1 and §3.3.1 are satisfied for
SmessS

Proof. Let Y be in SmessS , then for large enough α, Y is a localization of a
scheme of the form S×SαYα for Yα in SmessSα

. In particular, Y is a projective limit of
an inverse system α �→ Yα ∈ SmessSα

, with the canonical map πα :Y → S×SαYα being
flat. It follows from the definition of the complexes Z

q
Y/S(∗) (which are functorial

in Y for flat maps, and functorial in S for arbitrary maps) that the natural map

Z
q
Y/S(∗) → lim

→
(p1 ◦ πα)∗Zq

Yα/Sα
(∗)

is an isomorphism. This shows that the conditions of §3.2.1 and §3.3.1 are satisfied
for SmessS .

In addition, taking Y = X , we have the isomorphism

Hp−2q
X̂

(X,Zq
X/S(∗)) ∼= lim

→
Hp−2q

X̂α
(Xα,Z

q
Xα/S

(∗));

applying Theorem 3.4.1 completes the proof.

3.4.4. Local to global spectral sequence. For X in SmessS , we have the presheaf of
motivic cohomology groups on XZar, Hp(Z(q)), gotten by sheafifying the presheaf
U �→ Hp(U,Z(q)). From Corollary 3.4.3, we have the natural isomorphism

Hp(Z(n))x ∼= Hp(SpecOX,x,Z(n)).(3.4.4.1)

Combining (3.4.4.1) with Theorem 3.4.1 and the local to global hypercohomology
spectral sequence

Ep,q
2 := Hq

Zar(X,Hp(Zn
X/S(∗))) =⇒ Hp+q

Zar (X,Zn
X/S(∗))
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gives the local to global spectral sequence for motivic cohomology

Ep,q
2 : Hq

Zar(X,Hp(Z(n)) =⇒ Hp+q(X,Z(n)),(3.4.4.2)

assuming that the conditions of §3.2.1 and §3.3.1 are satisfied for V = SmessS .

3.4.5. Quillen spectral sequence. The results of this paragraph rely in part on some
material in Chapter III and Chapter IV; we will not be using any of the results
proved here in Chapter III or in Chapter IV.

We now suppose that the base scheme S is of the form S = Spec k, where k is
a perfect field. We suppose in addition that the conditions of §3.2.1 and §3.3.1 are
satisfied for V = Smessk .

Let X be in Smessk , and suppose we have a filtration of X by closed subsets

X = X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ Xn+1 = ∅,(3.4.5.1)

such that
1. For j = 0, . . . , n, Xj has pure codimension j on X
2. For j = 0, . . . , n, Xj \Xj+1 is smooth over k.
Taking the motive of X with support in Xj , we have the distinguished triangles

(I.2.2.10.1)

ZX,Xj+1 → ZX,Xj → ZX\Xj+1,Xj\Xj+1 → ZX,Xj+1 [1].

We have as well the Gysin isomorphism (III.2.1.2.2)

ij∗ : ZXj\Xj+1 → ZX\Xj+1,Xj\Xj+1(j)[2j],

giving the linked distinguished triangles

ZX,Xj+1 → ZX,Xj → ZXj\Xj+1(−j)[−2j] → ZX,Xj+1 [1].

This gives the strongly convergent spectral sequence

Ep,q
1 (X∗) := Hq−p(Xp \Xp+1,Z(n− p)) =⇒ Hp+q(X,Z(n))

If we then pass to the limit over filtrations (3.4.5.1), and use Corollary 3.4.3, we
have the strongly convergent spectral sequence

Ep,q
1 (X∗) := ⊕x∈X(p)Hq−p(Spec k(x),Z(n − p)) =⇒ Hp+q(X,Z(n))(3.4.5.2)

where X(p) is the set of codimension p points of X .

3.4.6. Gersten complex. We let

(3.4.6.1) Hq(X,Z(n)) → ⊕x∈X(1)Hq−1(k(x),Z(n − 1)) → . . .

→ ⊕x∈X(dimX)Hq−dimk X(k(x),Z(n − dimX))

be the complex of E1-terms in the spectral sequence (3.4.5.2), where dimX is
the Krull dimension of X . As the spectral sequence is natural in X (for open
immersions), we may sheafify over X , giving the Gersten complex

(3.4.6.2) Hq(Z(n)) →
∐

x∈X(1)

ix∗H
q−1(k(x),Z(n − 1)) → . . .

→
∐

x∈X(dimX)

ix∗H
q−dimk X(k(x),Z(n − dimX)).

Quillen’s proof of Gersten’s conjecture gives the analogous result for motivic
cohomology.
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3.4.7. Lemma [Gersten’s conjecture for motivic cohomology]. Let k be a perfect
field, and suppose that the conditions of §3.2.1 and §3.3.1 are satisfied for V =
Smessk . Take X in Smessk , and let x be a finite set of points of X . Let Xx :=
SpecOX,x, let Xj

x be a closed, codimension j > 0 subset of Xx, and take η ∈
Hq

Xj
x
(Xx,Z(n)). Then there is a codimension j − 1 closed subset Xj−1

x of Xx with

Xj
x ⊂ Xj−1

x and with η going to zero in Hq

Xj−1
x

(Xx,Z(n)).

Proof. By Corollary 3.4.3, we may assume that η is the restriction to Xx of an
element η̃ ∈ Hq

Xj (X,Z(n)) for some codimension j closed subset Xj of X (shrinking
X if necessary). We may similarly assume that X is affine, and of finite type over
k; let d = dimk X. Take a codimension one closed subset D of X containing Xj.
As in [102, §7, Lemma 5.12], there is a morphism π :X → Ad−1

k , with π(x) = 0,
such that

1. the restriction of π to D is finite
2. π is smooth with fiber dimension one over an open neighborhood U of D ∩

π−1(0).

Shrinking U , we may assume that the image π(U∩D) is an open neighborhood V of
0, and U ∩D is finite over V . Let {x1, . . . , xr} = π−1(0)∩D, and let Xj

U = Xj∩U.
Form the pull-back diagram

U ×V U ��
p2

��

p1

U

��

π

U ��
π V

and let s :U → U ×V U be the diagonal section. Since π :U → V , is smooth, the
diagonal s(U) in U ×V U is a Cartier divisor [5, II 4.15], hence s(U) is defined by a
single equation t = 0 in a neighborhood of {. . . , xi × xj , . . . } ⊂ U ×V U. Shrinking
U and V , we may assume that s(U) is a principle divisor in U ×V U . Thus

cl1U×V U (|s(U)|) = 0

in H2(U ×V U,Z(1)).
Let X̃j−1 := p−11 (Xj

U ). Since π :D ∩ U → V is finite, X̃j−1 is finite over U ,
hence Xj−1 is closed in U and X̃j−1 is finite over Xj−1.

We have the Gysin map s∗ : ZU,Xj
U
→ ZU×V U,X̃j−1)(1)[2] (III.2.1.2.3).

Let ĩ : s(Xj
U ) → X̃j−1 and i :Xj

U → Xj−1 be the inclusions. Restricting p2
gives the maps pj2 : s(Xj

U ) → Xj and pj−12 : X̃j−1 → Xj−1. By the functoriality of
the Borel-Moore motive (Chapter IV, §2.4.6), we have the commutative diagram of
pushforward morphisms

ZU×V U,s(Xj
U )

(1)[2]

��

ĩ∗

��
pj2∗ ZU,Xj

U

��

i∗

ZU×V U,X̃j−1 (1)[2] ��

pj−1
2∗

ZU,Xj−1 ,

and in addition pj−12∗ ◦ s∗ = i∗.
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On the other hand, by (Chapter III, Lemma 2.2.7, with the closed subset F
taken to be U ×V U), we have

s∗ = ∪cl1U×V U (|s(U)|) ◦ p∗1 = 0,

hence i∗ : ZU,Xj
U
→ ZU,Xj−1 is the zero map, as desired.

Gersten’s conjecture yields the following result:

3.4.8. Theorem [Gersten resolution]. Let k be a perfect field, and suppose that
the conditions of §3.2.1 and §3.3.1 are satisfied for V = Smessk .
(i) Let y be a finite set of points on a scheme Y in Smessk . Then the complex
(3.4.6.1) for X = SpecOY,y is exact.
(ii) Let X be in Smessk . Then the Gersten complex (3.4.6.2) forms an acyclic
resolution of the sheaf Hq(Z(n)) on X .

Proof. The argument is the same as in [102]. Let (Y, y) be as in (i). The
vanishing proved in §3.4.7 implies that the spectral sequence (3.4.5.2) for X =
SpecOY,y has

Ep,q
2 =

{
Hq(SpecOY,y,Z(n)); for p = 0
0; otherwise,

which proves (i). The assertion (ii) follows from (i).

For arbitrary X in Smessk , Theorem 3.4.8 identifies the E2-term of the spectral
sequence (3.4.5.2) as the cohomology

Ep,q
2 = Hp

Zar(X,Hq(Z(n))).

From this, it follows by a standard argument that the Quillen spectral sequence
agrees with the local to global spectral sequence (3.4.4.2) from E2 on.

3.4.9. Bloch’s formula. If we suppose that the cycle class map clq,pX : CHq(X, p) →
H2q−p(X,Z(q)) is an isomorphism for all X in Smessk (e.g, if the conditions of §3.2.1
and §3.3.1 are satisfied for V = Smessk ), then in particular, we have Hp(X,Z(q)) = 0
for q < 0, H0(F,Z(0)) = Z, and H1(F,Z(1)) = F× for all fields F of finite type
over k. Thus, the Gersten resolution (3.4.6.2) for Hq(Z(q)) ends with∐

x∈X(q−1)

ix∗k(x)× →
∐

x∈X(q)

ix∗Z.

As in [102], this gives the isomorphism

Hq
Zar(X,Hq(Z(q))) ∼= CHq(X).(3.4.9.1)

Indeed, it suffices to show that the connecting homomorphism in the Gersten res-
olution is given by the divisor map. We will show this in Chapter VI, Proposi-
tion 1.1.11, when we discuss Milnor K-theory and motivic cohomology. We will
also show in Chapter VI, Theorem 1.1.16 that there is a natural isomorphism of
sheaves Hq(Z(q)) ∼= KM

q , where KM
q is the qth Milnor K-sheaf, defined as the kernel

of the tame symbol map for Milnor K-theory∐
x∈X(0)

ix∗K
M
q (k(x)) →

∐
x∈X(1)

ix∗K
M
q−1(k(x))

(see [7], [108]). Bloch’s formula (3.4.9.1) thus gives us the isomorphism

Hq
Zar(X,KM

q ) ∼= CHq(X)
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(this result is not new, see [108] and [76]).

3.5. Some moving lemmas

In this section, we verify a version of the classical moving lemma for the complexes
Zq(X, ∗)f in case the base S is Spec k for a field k, and X is affine. This helps
in the next section, where we verify the criteria of §3.2.1 and §3.3.1 in case S is
smooth, essentially of finite type, and of dimension ≤ 1 over a field k.

The main results of this section have been also proved by Bloch [16] by essen-
tially the same method; as this work has not appeared in published form, we give
the details here.

3.5.1. As in §2.1.2, we call a subvariety of ∆p of the form ∆∗(h)(∆m) for some
h : [m] → [p] in ∆ a face of ∆p; all faces F of ∆p are given by equations of the form
ti1 = . . . = tis = 0, where

∆p = Spec k[t0, . . . , tp]/
p∑

i=0

ti − 1.

Let X be a smooth k-variety, and C = {C1, . . . , Cs} a finite collection of
irreducible locally closed subsets of X ; let ij :Cj → X be the inclusion. Let
m = (m1, . . . ,ms) be a sequence of integers such that mj ≤ q, j = 1, . . . , s,
and let Zq

C,m(X, p) be the subgroup of Zq(X, p) generated by the codimension q
subvarieties W of X ×∆p such that

1. W is in Zq(X, p)
2. for each face F of ∆p and each i, we have

codimCi×F (W ∩ (Ci × F )) ≥ mi

or the intersection is empty.

One easily sees that Zq
C,m(X, ∗) forms a subcomplex of Zq(X, ∗).

3.5.2. Lemma. Let (X, f) be in L(Smk). Then the complex Zq(X, ∗)f is equal
to Zq

C,m(X, ∗) for some finite set of locally closed irreducible subsets C, and some
sequence m.

Proof. Write f as f :X ′ → X. Write X ′ as a union of connected components
X ′ =

∐s
i=1X

′
i, and let fi :X ′i → X be the restriction of f to X ′i. As X ′ is smooth

over k, each X ′i is irreducible; let ni = dimk(X ′i).
Let Ci,j be the subset of X defined as the set of points x such that each

irreducible component of f−1i (x) of maximal dimension has dimension j (over k(x)).
The sets Ci,j are constructible subsets of X , and form a filtration of the constructible
subset fi(X ′i) of X . Write each Ci,j as a finite union of irreducible subsets Cl

i,j ,
with each Cl

i,j locally closed in X , and let dli,j = dimk(Cl
i,j). Clearly, we have

dli,j + j ≤ ni.(3.5.2.1)

Now let W be a reduced irreducible codimension q closed subset of X×∆p, and
let F ∼= ∆m be a face of ∆p with inclusion g :F → ∆p. Let W ′ be an irreducible
component of (fi × g)−1(W ); then there is a j and an irreducible component Cl

i,j
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of Ci,j such that

(fi × g)(W ′) ⊂ C̄l
i,j × F

(fi × g)(W ′) �⊂ Ci,j+1 × F.

From this it follows that

dimk(W ′) ≤ j + dimk((fi × g)(W ′)) ≤ j + dimk(W ∩ (Cl
i,j × F )).(3.5.2.2)

Now suppose that codimX′
i×F (W ′) < q. Then (3.5.2.2) implies

ni + m− q < dimk(W ′)

≤ j + dimk(W ∩ (Cl
i,j × F ))

= j + dli,j + m− codimCl
i,j×F (W ∩ (Cl

i,j × F )),

or

codimCl
i,j×F (W ∩ (Cl

i,j × F )) < j + dli,j − ni + q.(3.5.2.3)

Conversely, suppose that (3.5.2.3) holds for some i, j, l. Take an irreducible com-
ponent Z of the intersection W ∩ (Cl

i,j × F ) of maximal dimension; then

dimk((fi × g)−1(W )) ≥ dimk((fi × g)−1(Z))

≥ j + dimk(Z)

> j + dli,j + m− (j + dli,j − ni + q)
= ni + m− q.

Thus, if we let ml
i,j be defined by ml

i,j = j + dli,j − ni + q, then

codimX′×F ((f × g)−1(W )) ≥ q for all faces g :F → ∆p

3
codimCl

i,j×F (W ∩ (Cl
i,j × F )) ≥ ml

i,j for all i, j, l and all faces F.

In addition, by (3.5.2.1), we have ml
i,j ≤ q.

This gives the equality Zq(X, ∗)f = Zq
C,m(X, ∗) for

C = {. . . , Cl
i,j , . . . }; m = (. . . ,ml

i,j , . . . ).

3.5.3. Generic projections. We take k to be an infinite field. Let X be a smooth
affine k-variety of dimension n, embedded as a closed subset of AN , with N > n.
We let X̄ be the closure of X in PN ⊃ AN . Let PN−1

∞ denote the complement
PN − AN , and X̄∞ the intersection X̄ ∩ PN−1

∞ .
For a linear subvariety L ⊂ PN of dimension N−n−1, we let πL : PN−L→ Pn

denote the projection with center L; the projection with center L ⊂ PN−1
∞ gives

the affine-linear map π0L : AN → An. The restriction of π0L to X : πL,X :X → An is
finite if and only if L ∩ X̄ = ∅. We let UX denote the subset of the Grassmannian
Gr

P
N−1
∞

(N − n− 1) consisting of those L with L ∩ X̄ = ∅.
If we have constructible subsets A and C of X , we let e(A,C) denote the

maximum among the irreducible components Ci of C and irreducible components
Z of A ∩ Ci of the expression

max(codimX(A) − codimCi(Z), 0).
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For an irreducible locally closed subset A of X , and an L ∈ UX , let L+(A) be
the closure in π−1L,X(πL,X(A)) of π−1L,X(πL,X(A))\A; for general A, we define L+(A)
to be the union of the L+(Ai), over the irreducible components Ai of A. We let
RL ⊂ X denote the ramification locus of the map πL,X .

The following result is a version of the classical moving lemma for algebraic
cycles.

3.5.4. Lemma [see [106], [29]]. Let X ⊂ AN
k be a smooth k-variety of dimension n,

embedded as a closed subset of AN
k . Let A be an irreducible, locally closed subset

of X , and C a locally closed subset of X . Then there is a non-empty open subset
U of UX such that RL contains no irreducible component of A, A ∩ C, or C, and

e(L+(A), C) ≤ max(e(A,C)− 1, 0)

for all L ∈ U .

Proof. We may assume that C is irreducible. Let E(A,C) be the set of lines
l in PN

k such that there are points p ∈ A, q ∈ C with p �= q and with p, q ∈ l. Let
S(A,C) be the secant space of A and C, i.e., the subset of PN

k

S(A,C) :=
⋃

l∈<(A,C)

l.

For a locally closed subset Y of X , let T (X ;Y ) be the set of lines l in PN
k which

are tangent to X at some point p ∈ Y , and let

R(X ;Y ) :=
⋃

l∈T (X;Y )
l.

For a constructible subset Y of PN
k , let dimk(Y ) stands for the maximum of the

dimension of the irreducible components of Y . By Chevalley’s theorem, S(A,C)
and R(X ;Y ) are constructible subsets of PN

k , with

dimk(S(A,C)) ≤ dimk(A) + dimk(C) + 1,

dimk(R(X ;Y )) ≤ dimk(Y ) + n.

Since both S(A,C) and R(X ;Y ) have no irreducible component contained in PN−1
∞ ,

we have

dimk(S(A,C) ∩ PN−1
∞ ) ≤ dimk(A) + dimk(C)

dimk(R(X ;Y ) ∩ PN−1
∞ ) ≤ dimk(Y ) + n− 1.

(3.5.4.1)

If a point x of X is in RL ∩ Y , then there is an l ∈ T (X ;Y ) with x ∈ l and
l ∩ L �= ∅. For L ∈ UX , this implies that l is not contained in X , hence

dimk(RL ∩ Y ) ≤ dimk(L ∩R(X ;Y )).(3.5.4.2)

Similarly, a point x is in L+(A) ∩ C \ RL ∩ A ∩ C if and only if there is an
l ∈ E(A,C) with x ∈ l and l ∩ L �= ∅. For L ∈ UX , this gives

dimk(L+(A) ∩ C \RL ∩A ∩C) ≤ dimk(L ∩ S(A,C)).(3.5.4.3)

Let U be the subset of UX consisting of those L which intersect S(A,C) prop-
erly, and R(X ;Y ) properly for all irreducible components Y of A, A∩C and C, and
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take L in U . By (3.5.4.2), RL contains no component of A, C or A∩C. Combining
(3.5.4.1), (3.5.4.2) and (3.5.4.3), we have

dimk(L+(A) ∩ C) ≤ max(dimk(A ∩ C) + n− 1 + (N − n− 1)− (N − 1),

dimk(A) + dimk(C) + (N − n− 1)− (N − 1))

= max(dimk(A ∩ C)− 1, dimk(A) + dimk(C) − n),

which is the desired result.

3.5.5. Finite pull-back. Let f :X → Y be a finite surjective morphism of smooth
k-varieties of finite type over k. Then the maps (f × id∆p)∗, (f × id∆p)∗ give maps
of complexes

f∗ :Zq(X, ∗) → Zq(Y, ∗),
f∗ :Zq(Y, ∗) → Zq(X, ∗).

Suppose we have a finite surjective map f :X → Y, a collection of locally
closed subsets C = {C1, . . . , Cs} of X , and a sequence of integers m1, . . . ,ms with
0 ≤ mj ≤ q. We let Zq

C,m,f(Y, p) be the subgroup of Zq(Y, p) generated by the
irreducible codimension q subvarieties W of Y ×∆p such that

codimCj×F
(
(Cj × F ) ∩ (f × id)−1(W )

)
≥ mj

for all faces F of ∆p. The Zq
C,m,f(Y, p) form a subcomplex of Zq(Y, ∗), and the map

f∗ :Zq(Y, ∗) → Zq(X, ∗) restricts to the map f∗ :Zq
C,m,f (Y, ∗) → Zq

C,m(X, ∗).
For a sequence of integers m = (m1, . . . ,ms) with mi ≤ q, we let m− 1 be the

sequence (m1 − 1, . . . ,ms − 1) and m + 1 the sequence (m′1, . . . ,m
′
s), where

m′j =

{
mj + 1 if mj < q,

q if mj = q.

We let mmax denote the constant sequence mmax = (q, . . . , q).

3.5.6. Lemma. Let W be an irreducible closed subvariety of X ×∆p such that W
is in Zq

C,m−1(X, p). Then there is an open subset UW,C,m of UX such that, for each
L ∈ UW,C,m, we have

(a) (πL,X × id∆p)∗(|W |) is in Zq
C,m−1,πL,X

(An, p).
(b) (πL,X × id∆p)∗((πL,X × id∆p)∗(|W |)) = |W |+ W ′, with W ′ effective.
(c) W ′ is in Zq

C,m(X, p).

Proof. Let f :X → Y be a finite surjective morphism of smooth k-varieties,
and let Z be in Z∗(X, ∗). Then f∗(f∗(Z)) is equal to Z +Z ′, with Z ′ effective if Z
is effective. This proves (b), and shows that (c) implies (a).

To prove (a), let F be a face of ∆p. Write W ∩(X×F ) as a union of irreducible
components W ∩ (X ×F ) = W 1

F ∪ . . .W t
F and let W i,j

F be the locally closed subset
of X defined by

x ∈W i,j
F ⇐⇒ dimk((x × F ) ∩W i

F ) = j

j = 0, 1, . . . ,dimk(F ); i = 1, . . . , t.

Let C0 = X , m0 = q. We note that |W | is in Zq
C,m−1(X, p) if and only if the

inequalities

codimCl
(W i,j

F ∩Cl) ≥ m′l + j − dimk(F )(3.5.6.1)
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hold for all i, j and l, where

m′l =

{
ml − 1 l = 1, . . . , s,
q l = 0.

Define L+(|W |) to be the support of the cycle

W ′ := (πL,X × id∆p)∗((πL,X × id∆p)∗(|W |))− |W |.
Write L+(|W |)∩(X×F ) as a union of irreducible components, L+(|W |)∩(X×F ) =
∪i′L

+(|W |)i′F , and define L+(|W i
F |) similarly to L+(|W |). Then each L+(|W |)i′F is

an irreducible component of L+(|W i
F |) for some i; we write this as i = ν(i′).

By Lemma 3.5.4, there is an open subset U0 of UX such that, for L ∈ U0, the
ramification locus RL contains no component of any W i,j

F or W i,j
F ∩ Cl, and that

RL ×∆p contains no component of W or W ∩Cl ×∆p.
Take L in U0. If we define the locally closed subsets L+(|W |)i

′,j
F for L+(|W |) in

a similar fashion to the definition of W i,j
F , then L+(|W |)i

′,j
F is a union of irreducible

components of L+(W ν(i′),j
F ).

We now apply Lemma 3.5.4 with A = W i,j
F ; we find that, for each F , i and j,

there is a non-empty open subset U i,j
F of U0 such that, for L ∈ U i,j

F , we have

codimCl
(L+(|W |)i

′,j
F ∩ Cl) ≥ min(m′l + j − dimk(F ) + 1, codimX(W i,j

F ))

(3.5.6.2)

for all i′ with ν(i′) = i, and for all l. On the other hand, by (3.5.6.1) for l = 0, we
have

codimX(W i,j
F ) ≥ q + j − dimk(F ),

so (3.5.6.2) is equivalent to

codimCl
(L+(|W |)i

′,j
F ∩ Cl) ≥ min(m′l + j − dimk(F ) + 1, q + j − dimk(F )).

(3.5.6.3)

Noting that ml = min(m′l + 1, q), we see that (3.5.6.3) is equivalent to

codimCl
(L+(|W |)i

′,j
F ∩ Cl) ≥ ml + j − dimk(F ); l = 0, . . . , s.(3.5.6.4)

Now take L in the intersection of all the U i,j
F . As (3.5.6.4) implies

codimCl
(L+(|W |)i

′,j
F ∩ Cl) ≥ ml + j − dimk(F ),

for all i′, j, l and F . and as L+(|W |) is the support of W ′, we see that W ′ is in
Zq
C,m(X, p), as desired.

3.5.7. A triangulation. We have the vertices vp0 , . . . , v
p
p of ∆p, where the vertex vpj

is given by tj = 1, ti = 0, i �= j. For i = 0, 1, j = 0, . . . , p, we let vpi,j be the point
of ∆1 ×∆p

vi,j = v1i × vpj ; i = 0, 1; j = 0, . . . , p.

We let [n] denote the set {0, . . . , n}. For each i = 0, . . . , p, we let fpi : [p + 1] →
[1]× [p] be given by

fpi (j) =

{
(0, j) if 0 ≤ j ≤ i,

(1, j − 1) if i + 1 ≤ j ≤ p + 1.
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If we let hp =
∑p

i=0(−1)ifpi , the hp form a triangulation of ∆1 ×∆p:

hp ◦ (
p+1∑
i=0

(−1)iδpi ) + (
p∑

i=0

(−1)i(id× δp−1i )) ◦ hp−1 = ip1 − ip0,

where the ipj are the maps

ipj : [p] → [1]× [p]

ipj (k) = (j, k).

Write fpi = (fpi,1, f
p
i,2). We let

F p
i : ∆p+1 = Ap+1 → ∆1 ×∆p = Ap+1; i = 0, . . . , p,

be the affine-linear map with F p
i (vp+1j ) = v1fp

i,1(j)
× vp

fp
i,2
. We call a linear subset F

of ∆1 ×∆p a face if F = F p
i (F ′) for some i and some face F ′ of ∆p+1.

3.5.8. Definition. Let f :X → Y be a finite surjective morphism, C a finite set of
locally closed subsets of X . Let Zq

C,m,f,h(Y × ∆1, p) be the subgroup of Zq(Y ×
∆1, p) generated by the codimension q subvarieties W of Y × ∆1 × ∆p such that
(idY × F p

i )∗(W ) is in Zq
C,m,f (Y, p + 1) for all i = 0, . . . , p.

3.5.9. We now take Y = An. Let F be a face of ∆1×∆p, let C := {C1, . . . , Cs} be
a set of locally closed subsets of X , and let C be the disjoint union C =

∐s
i=1 Ci.

Let W be an irreducible codimension q subvariety of Y × ∆p such that W is in
Zq(Y, p), and let WF be the intersection

WF := p−113 (W ) ∩ (Y × F ) ⊂ Y ×∆1 ×∆p.

Let (G, 1) be the pointed affine space (An
k , 0), considered as an algebraic group

under addition, and acting on Y = An via translation. We use coordinates x1, . . . ,
xn for G and y1, . . . , yn for Y . Let π :G \ {1} → Pn−1 be the canonical map

π(x1, . . . , xn) = (x1 : . . . : xn).

For x = (x1, . . . , xn) ∈ G \ {1}, the closure in G of fiber π−1(x) is canonically
isomorphic to ∆1 via the unique linear map which sends 0 to v10 , and sends x to
v11 . We write this isomorphism as φx : ∆1 → G.

Let iF :WF → Y × F be the inclusion, let fC :C → Y be the composition of f
with the natural map C → X , and let T :G× C → Y be the map

T (g, c) = g + fC(c).

Let pF,1 :F → ∆1 and pF,2 :F → ∆p be the projections.
Consider the diagram

p−113 (W )

��

G× C ×∆1 ×∆p ��
q Y ×∆1 ×∆p,

where q is the map
q(g, c, t, λ) = (g + fC(c), t, λ).



100 II. MOTIVIC COHOMOLOGY AND HIGHER CHOW GROUPS

Let φ : ∆1 → G be an affine-linear map sending v10 to 0, and let Φ be the map

Φ:C ×∆1 ×∆p → G× C ×∆1 ×∆p

Φ(c, t, λ) = (φ(t), c, t, λ).

This gives the diagram

φ∗CW ��

��

p−113 (W )

��

C ×∆1 ×∆p ��
q◦Φ Y ×∆1 ×∆p,

where φ∗CW and the maps φ∗CW → p−113 (W ) and φ∗CW → C ×∆1×∆p are defined
to make the diagram cartesian. For a face F , we let φ∗CWF be the intersection
φ∗CW ∩ (C × F ). We let F 0 be the open subset F \ v10 × ∆p of F , and φ∗CW

0
F the

open subset φ∗CWF ∩ C × F 0 of φ∗CWF .

3.5.10. Lemma. There is a non-empty Zariski open subset UW,C of G \ {1} such
that, for each x ∈ UW,C , for each face F of ∆1 × ∆p, and for φ = φx, φ

∗
CW

0
F has

codimension q on C × F 0, or is empty.

Proof. It suffices to show the existence, for each face F , of a non-empty open
subset UW,C,F of U such that, for each x ∈ UW,C,F , if we take φ = φx, then φ∗CW

0
F

has codimension q on C ×F 0. We may assume that F is not contained in v10 ×∆p.
Let F ′ = pF,2(F ). We consider three cases:

(a) pF,2 :F → F ′ is an isomorphism, and pF,1 :F → ∆1 is surjective.
(b) F = v11 × F ′.
(c) F = ∆1 × F ′.

It suffices to handle the case of a single locally closed subset C of X ; we consider
the case (a) first.

In case (a), we may identify F with the transpose of the graph of a surjective
affine linear map L :F ′ → A1, where we identify A1 with ∆1 via the affine-linear map
sending 0 to v10 and 1 to v11 . Let F ′0 = L−1(A1\{0}), and let Ψ:G×C×F ′0 → Y×F 0
be the map

Ψ(x, c, λ) = (L(λ) · x + f(c), L(λ), λ).

We claim that Ψ is surjective, with fibers of dimension dimk(C). Indeed, for
(y, L(λ), λ) ∈ Y × F 0, we have L(λ) �= 0. Thus the translates of f(C) by elements
of the form L(λ) · x cover all of Y , and the projection p2 : Ψ−1

(
(y, L(λ), λ)

)
→ C is

a bijection, proving the claim.
Since W is in Zq(Y, p), W ∩ Y × F ′ has codimension q on Y × F ′. Thus

WF := p−113 (W ) ∩ Y × F has codimension q on Y × F , and hence Ψ−1(WF ) has
codimension q on G× C × F ′0.

Let Π:G\{1}×C×F ′0 → Pn−1 be the map induced by the canonical projection
π :G \ {1} → Pn−1. Since Ψ−1(WF ) has codimension q on An ×C × F ′0, it follows
that Ψ−1(WF ) ∩ Π−1(z) has codimension q on π−1(z) × C × F ′0 for all z in an
open subset V of Pn−1. For x ∈ G−{0}, the map φ := φx gives an isomorphism of
∆1\{v10} with π−1(π(x)), and identifies Ψ−1(WF )∩Π−1(z) with φ∗CW

0
F , completing

the proof in case (a).
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The case (b) is similar; we write F = v11 × F , which identifies F with the
transpose of the graph of the constant map L :F ′ → A1 with value 1. The same
proof as in (a) gives the desired conclusion.

For (c), we have F 0 = (∆1 \ {v10})× F ′; let Ψ be the map

Ψ:G× C × F 0 → Y × F 0

Ψ(x, c, t, λ) = (t · x + f(c), t, λ).

The argument of (a) shows that Ψ is surjective with fibers of dimension dimk(C);
continuing the argument by considering the projection Π:G\{1}×C×F 0 → Pn−1

leads to the desired conclusion.

For a pointed map φ : (A1, 0) → (G, 1), we have the automorphism

T φ :Y ×∆1 → Y ×∆1

T φ(x, t) = (φ(t) + x, t),

where we identify (∆1, v10 , v
1
1) with (A1, 0, 1) as above. For a cycle W on Y × ∆p,

we let T ∗φ(W ) be the cycle (Tφ × id)∗(p∗13(W )) on Y ×∆1 ×∆p.
Let i1 be the inclusion

i1 :Y → Y ×∆1

i1(y) = (y, v11).

3.5.11. Lemma. Let W be an subvariety of Y ×∆p which is in Zq
C,m,f (Y, p). Then

(i) For each x ∈ UW,C , T
∗
φx

(W ) is in Zq
C,m,f,h(Y ×∆1, p).

(ii) The cycle i∗1(W ) is in Zq
C,mmax,f

(Y, p).

Proof. Let F be a face of ∆1 × ∆p. If F is contained in v10 × ∆p, then, for
each C ∈ C, or for C = X , we have

(f × id)∗(T ∗φx
(W )) ∩ (C × F ) = f∗(W ) ∩ C × (p2(F )).

As W is in Zq
C,m,f (Y, p), this intersection has the required codimension on C × F .

For all other faces F , it follows from the definition of UW,C in the statement of
Lemma 3.5.10 that (f × id)∗(T ∗φx

(W )) ∩ (C × F 0) has codimension q on C × F 0.
Taking F to be of the form v11 ×F ′ proves (ii). For the other F , C ×F \C ×F 0 =
C × F ′ for some face F ′ contained in v10 ×∆p. As we have already shown that the
intersection with C ×F ′ has the required codimension on C ×F ′, we have an even
better bound for the codimension of (f × id)∗(T ∗φx

(W )) ∩ (C × F ). This completes
the proof.

3.5.12. The homotopy. We now take k ⊂ K ⊂ F to be transcendental extensions
K = k(t11, . . . , tNn), F = K(s1, . . . , sn). Let πt : AN

K → An
K the linear map with

matrix  t11, . . . , t1,n
..., . . . ,

...
tN1, . . . , tNn


,

and let πt,X :XK → An
K = YK be the restriction to XK . Let φs : (A1F , 0) → (GF , 1)

be the map
φs(z) = z · s.
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Let Hp :Zq
C,m−1,f,h(Y ×∆1, p) → Zq

C,m−1,f(Y, p + 1) be the map

Hp =
p∑

i=0

(−1)iF p∗
i .

Let HX,C,m
p denote the composition

Zq
C,m−1(X, p)

πt,X∗◦p∗
F−−−−−−→ Zq

C,m−1,πt,X
(YF , p)

T∗
φs−−→ Zq

C,m−1,πt,X ,h(YF ×∆1, p)

Hp−−→ Zq
C,m−1,f(YF , p + 1)

π∗
t,X−−−→ Zq

C,m−1(XF , p + 1),

where p∗F is induced by the projection pF :XF → X. It follows from Lemma 3.5.6
and Lemma 3.5.11 that HX,C,m

p is well-defined, and that the maps HX,C,m
p give a

homotopy between the maps

π∗t,X ◦ πt,X∗ ◦ p∗F :Zq
C,m−1(X, ∗) → Zq

C,m−1(XF , ∗),
π∗t,X ◦ i∗1 ◦ T ∗φs

◦ πt,X∗ ◦ p∗F :Zq
C,m−1(X, ∗) → Zq

C,m−1(XF , ∗).

In addition, by Lemma 3.5.11, the map π∗t,X ◦i∗1◦T ∗φs
◦πt,X∗◦p∗F factors through the

inclusion Zq
C,mmax

(XF , ∗) → Zq
C,m−1(XF , ∗). Finally, it follows from Lemma 3.5.6

that the map p∗F ◦π∗t,X ◦πt,X∗◦p∗F−p∗F factors through the inclusion Zq
C,m(XF , ∗) →

Zq
C,m−1(XF , ∗). Thus, we have shown

3.5.13. Lemma. The base extension from k to F induces a homotopically trivial
map

Zq
C,m−1(X, ∗)
Zq
C,m(X, ∗) →

Zq
C,m−1(XF , ∗)
Zq
C,m(XF , ∗)

.

3.5.14. Theorem. Let k be a field, not necessarily infinite. Let (X, f) be in Smessk ,
with X affine. Then the inclusion

Zq(X, ∗)f → Zq(X, ∗)
is a quasi-isomorphism.

Proof. As the complexes Zq(X, ∗)f and Zq(X, ∗) transform filtered projective
limits in (X, f) to filtered inductive limits, we may assume that X is in Smk, i.e,
that X is of finite type over k.

Let K be a finite extension of k; we then have the base-extension and norm
maps

p∗K :Zq(X, ∗)f → Zq(XK , ∗)fK ,
pK∗ :Zq(XK , ∗)fK → Zq(XK , ∗)f ,

with

pK∗ ◦ p∗K = [K : k] · id.(3.5.14.1)

If k is a finite field, there exist infinite pro-l extensions of k for each prime l different
from char(k); using (3.5.14.1), we may assume that k is infinite.

From Lemma 3.5.2 and an elementary induction, it suffices to show that

Zq
C,m−1(X, ∗)
Zq
C,m(X, ∗)(3.5.14.2)
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is acyclic for all choices of C and m. By Lemma 3.5.13, the map

Zq
C,m−1(X, ∗)
Zq
C,m(X, ∗) →

Zq
C,m−1(XF , ∗)
Zq
C,m(XF , ∗)

is zero on homology. On the other hand, since F is a pure transcendental extension
of the infinite field k, an elementary specialization argument shows that the above
map is injective on homology. Indeed, if W is an element of Zq

C,m−1(X, p), and if
we have elements BF of Zq

C,m−1(XF , p+ 1) and ZF of Zq
C,m(XF , p) with W ×k F =

ZF + dBF , then there is an open subset U of an affine space over k, and elements

BU ∈ Zq
C,m−1(X ×k U, p + 1),

ZU ∈ Zq
C,m(X ×k U, p)

such that BF and ZF are the restrictions of BU and ZU to the generic point of
U , and such that W ×k U = ZU + dBU . We may then find a k-point s of U
such that restrictions of BU and ZU to X × s are all defined, giving the relation
W = i∗s(W ×k U) = i∗s(ZU ) + d(i∗s(BU )). Thus, the complex (3.5.14.2) is acyclic, as
desired.

3.5.15. Corollary. Let (X, f) and (Y, g) be in L(Smessk ), with Y affine. Let
p :X ×k Y → X be the projection. Then the natural map

id∗ : p∗(Z
q
X×kY/k

(∗)f×g) → p∗(Z
q
X×kY/k

(∗))

is a quasi-isomorphism of complexes of sheaves on X .

Proof. As in the proof of Theorem 3.5.14, we may assume that (X, f) and
(Y, g) are in L(Smk). Let x be a point of X . The stalk [p∗Z

q
X×kY/k

(∗)f×g)]x is the
inductive limit of the complexes Zq(U×k Y, ∗)j∗f×g over affine open neighborhoods
j :U → X ; we have the similar description of the stalk [p∗(Z

q
X×kY/k

(∗))]x. By The-
orem 3.5.14, the map Zq(U ×k Y, ∗)j∗f×g → Zq(U ×k Y, ∗) is a quasi-isomorphisms
for all affine U , whence the result.

3.6. Motivic cohomology and the higher Chow groups

We now verify the criteria of §3.2.1 and §3.3.1 in case S is smooth and of dimension
≤ 1 over a field k.

3.6.1. We first consider the case S = Spec k. Let X in Smessk . From the Mayer-
Vietoris property of the higher Chow groups (§2.1.6(2), see also Remark 2.1.7), the
natural map

Zq(X, ∗) → RZ
q
X/k(∗)(3.6.1.1)

is a quasi-isomorphism. From the homotopy property (§2.1.6(1)), the map

p∗1 :Zq(X, ∗) → Zq(X ×k A1, ∗)(3.6.1.2)

is a quasi-isomorphism.
For X̂ a closed subset of X , with complement j :U → X , we let Zq

X̂
(X, ∗)

denote the cone

Zq

X̂
(X, ∗) := cone

(
j∗ :Zq(X, ∗) → Zq(X − Z, ∗)

)
[−1].
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If Z is a smooth subvariety of X , of codimension d, and Ẑ is a closed subset of Z,
the localization property (§2.1.6(2)) implies that the inclusion iZ :Z → X induces
a quasi-isomorphism

iZ∗ :Zq−d
Ẑ

(Z, ∗) → Zq

Ẑ
(X, ∗).(3.6.1.3)

3.6.2. Proposition. Let k be a field. Then the conditions of §3.2.1 and §3.3.1 are
satisfied for S = Spec k, V = Smessk .

Proof. The Gysin morphism condition §3.2.1(iii) follows from (3.6.1.1) and
(3.6.1.3). We reduce the homotopy condition §3.2.1(i) to the usual homotopy
property (3.6.1.2), using (3.6.1.1) and (3.6.1.3). The conditions of §3.2.1(ii) and
§3.3.1 follow in a similar fashion from (3.6.1.1)-(3.6.1.3), together with Corol-
lary 3.5.15.

3.6.3. The case of curves. Let k be a field, let pS :S → Spec k be in Smessk and of di-
mension one over k. The functor “compose with pS” gives the functor pS∗ :SmessS →
Smessk inducing the functor pS∗ :L(SmessS ) → L(Smessk ). We usually ignore the pS∗
in the notion, and simply consider an object (X, f) of L(SmessS ) as an object of
L(Smessk ). In particular, we have the natural inclusion of complexes of sheaves on
X

ιS/k : Zq
X/S(∗)f → Z

q
X/k(∗)f .

More generally, for each (Y, g) in L(Smessk ), we have the inclusion of complexes of
sheaves on X :

ιS/k : p∗(Z
q
X×kY/S

(∗)f×kg) → p∗(Z
q
X×kY/k

(∗)f×kg),(3.6.3.1)

where p :X ×k Y → X is the projection.

3.6.4. Lemma. The map (3.6.3.1) is a quasi-isomorphism.

Proof. By taking limits, we may replace SmessS and Smessk with SmS and
Smk.

Let x be a point of X , and take W ∈ p∗(Z
q
X×kY/k

(∗)f×kg)(U) for some affine
open neighborhood j :U → X of x. Let pX :X → S be the structure map, and
let s = pX(x). We have the auxiliary maps f :X ′ → X and g :Y ′ → Y ; let
j∗fs :U ′s → U be the restriction of f to the fiber of X ′ ×X U over s. If W is in
the subcomplex p∗(Z

q
X×kY/S

(∗)f×kg)(U), then (j∗fs × g)∗(W ) is defined and is in
Zq(U ′s×kY

′, ∗), since (j∗fs×g)∗(W ) is the fiber of (j∗f×g)∗(W ) over s. Conversely,
suppose that the cycle (j∗fs× g)∗(W ) is defined and is in Zq(U ′s×k Y

′, ∗). Since S
has dimension one, this implies that (j∗f × g)∗W is equi-dimensional over an open
neighborhood of s in S; similarly, all the necessary intersections of (j∗f × g)∗W
with faces are equi-dimensional over a neighborhood of s in S. Thus W is in
p∗(Z

q
X×kY/S

(∗)f×kg)(V ) for some neighborhood V ⊂ U of x. We have just shown
the identity on the stalks

[p∗(Z
q
X×kY/k

(∗)(f∪fs)×kg)]x = [p∗(Z
q
X×kY/S

(∗)f×kg)]x.

As the inclusion [p∗(Z
q
X×kY/k

(∗)(f∪fs)×kg)]x → [p∗(Z
q
X×kY/k

(∗)f×kg)]x is a quasi-
isomorphism by Corollary 3.5.15, the proof is complete.

3.6.5. Proposition. Let k be a field, and let S be in Smessk and of dimension one
over k. Then the conditions of §3.2.1 and §3.3.1 are satisfied for V = SmessS .
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Proof. A smooth, dimension one k-scheme S → Spec k, is a projective limit
of smooth dimension one k schemes Yα → Spec k, of finite type over k. Using
Corollary 3.4.3, we reduce to the case of S of finite type over k. The result then
follows from Lemma 3.6.4 and Proposition 3.6.2.

3.6.6. Theorem. Let S be scheme which is filtered projective limit of schemes Sα,
such that each Sα is a smooth kα-scheme of finite type for some field kα, with Sα

of dimension at most one over kα. Let V be a full subcategory of SmessS such that
the conditions of Chapter I, Definition 2.1.4 are satisfied. Then
(i) The cycle class map

cl(Γ): CH(Γ) → HomDM(V)(1,Γ)

is an isomorphism for all Γ in DM(V).
(ii) The cycle class map

clq,pX : CHq(X, 2q − p) → Hp(X,Z(q))

is an isomorphism for all X in V .
(iii) Suppose S is smooth of dimenison at most one over a field k. Then the natural
map Zq(X/k, ∗) → RZ

q(X/S, ∗) induces an isomorphism
iq,pX : CHq

naif(X/k, p) → CHq(X/S, p)

for all X in V . The group CHq
naif(X/k, p) is Bloch’s higher Chow group CHq(X, p).

(iv) For X in V there is a natural isomorphism

K2q−p(X)(q) → Hp(X,Q(q)),

where Kn(X)(q) is the weight q Adams eigenspace of Kn(X)⊗Q.
(v) Suppose S = Spec k, k a field. Then the map

⊕p,qclq,pX : ⊕p,q CHq(X/S, 2q − p) → ⊕p,qH
p(X,Z(q))

is an isomorphism of rings, where we make ⊕p,qCHq(X/S, 2q − p) a ring using the
products on CHq(X, p) defined in [19, §5] and the isomorphism CHq(X/S, p) ∼=
CHq(X, p) from (iii).

Proof. By Corollary 3.4.2 and Corollary 3.4.3, it suffices to prove (i) and
(ii) in case of S is a smooth finite type k-scheme of dimension at most one over
k. The statement (i) then follows from Theorem 3.3.10, Proposition 3.6.2 and
Proposition 3.6.5. The assertion (ii) follows from (i) and the definition of the
map clq,pX , the higher Chow group CHq(X, p), and the motivic cohomology group
Hp(X,Z(q)) as

Hp(X,Z(q)) = HomDM(V)(1,ZX(q)[p]),

CHq(X, p) = CH(ZX(q)[2q − p]),

clq,pX = cl(ZX(q)[2q − p]).

The first part of (iii) follows from the Mayer-Vietoris property of the higher
Chow groups (see Remark 2.1.7(ii)), together with Proposition 3.1.3. The second
part follows from Proposition 2.2.5.

The statement (iv) for S smooth of dimension at most one over a field follows
from (iii) and §2.1.6(5) (see also Theorem 3.6.12 of Chapter III). The general case
follows from this, Corollary 3.4.2, Corollary 3.4.3, and compatibility of K-theory
with filtered inductive limits of exact categories [102, §2].
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Proposition 2.4.6, (ii), (iii), and the fact that clq,pX,naif = clq,pX ◦ iq,2q−pX prove (v).

3.6.7. Remark. In order to extend a version of Theorem 3.6.6 to more general
base schemes, it may be necessary to modify the definition of CH(Γ). One such
modification would be to form the inductive limit over the maps

CH(Γ)
id⊗p∗

−−−−→ CH(Γ⊗ ZA1)
id⊗p∗

−−−−→ . . .
id⊗p∗

−−−−→ CH(Γ⊗ Z⊗n
A1 )

id⊗p∗

−−−−→ . . . .

Clearly the cycle map to HomDM(1,Γ) factors through this inductive limit. It is
not difficult to show that the evident revision of the conditions §3.2.1 and §3.3.1
imply that the modified cycle map is an isomorphism. The advantage would be
that one could then increase the dimension of cycles of fixed codimension at will.



CHAPTER III

K-Theory and Motives

In this chapter, we describe the fundamental constructions relating K-theory
and motivic cohomology: Chern classes and the Riemann-Roch theorem. In order
to state Riemann-Roch, one needs the operation of push-forward, so we construct
this as well. Most of our arguments are adaptations of standard constructions for
a Bloch-Ogus cohomology theory, or for the Chow ring, but, as we are working
in the motivic category, we occasionally need to modify an argument to rely en-
tirely on either formal properties of triangulated categories, or on purely geometric
considerations. Our heavy debt to Grothendieck et al. [57] and [2], Gillet [46],
Baum-Fulton-MacPherson [8] and Fulton [44] will be readily apparent.

We will only prove the Riemann-Roch theorem for K-theory; the G-theory
version (Riemann-Roch for singular varieties) will have to wait until we have defined
motivic Borel-Moore homology in Chapter IV.

1. Chern classes

The first Chern class of a line bundle is given by the cycle class of the zero
section. We prove the projective bundle formula, and then use the classic method
of Grothendieck [57] to define Chern classes of vector bundles on simplicial schemes
by means of the splitting principle. Grothendieck’s geometric proof of the Whitney
product formula translates directly into the motivic setting. A modification of
Gillet’s construction gives us Chern classes for higher K-theory. We treat the case
of diagrams of schemes as well.

1.1. Cycles on simplicial schemes

We extend the definition of cycles to simplicial schemes; we will use the con-
structions and notation of Chapter I, §2.5 for the motives associated to simplicial
schemes.

We have the inclusion jn : ∆≤n → ∆, and for n′ < n the inclusion jn′,n : ∆n′ →
∆n. If X : ∆op → C is a simplicial object in a category C, we write X≤n for j∗nX ;
if X : ∆nop → C is an n-truncated simplicial object, and n′ < n, we write X≤n

′

for j∗n′,nX . We use a similar notation for morphisms. This notation conflicts with
the notation of Chapter I, §2.4.1 for cosimplicial objects, but the context will make
clear which notation is being used.

1.1.1. Let (X, f) : ∆≤nop → L(V) be a truncated simplicial object of L(V). We
have the sequence of maps in Cb

mot(V)

ZX(q)m≤∗≤nf [m] πm−−→ ZXm(q)fm
dm−−→ ZXm+1(q)fm+1 ,(1.1.1.1)

107
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where πm is the canonical map of complexes (I.2.5.3.4). From Chapter I, Proposi-
tion 3.3.5, the sequence (1.1.1.1) gives the exact sequence

(1.1.1.2) 0 → H0(Zmot(ZX(q)m≤∗≤n[2q + m])) −→ Zq(Xm)fm
Zq(dm)−−−−−→ Zq(Xm+1)fm+1 .

We set

Zq(X)m≤∗≤nf := H0(Zmot(ZX(q)m≤∗≤nf [2q + m]);

the exact sequence (1.1.1.2) thus gives the exact sequence

0 → Zq(X)m≤∗≤nf −→ Zq(Xm)fm
Zq(dm)−−−−−→ Zq(Xm+1)fm+1 .(1.1.1.3)

By Chapter I, Proposition 3.3.5 again, we have the canonical isomorphism

cycq
(X,f)m≤∗≤n :Zq(X)m≤∗≤nf → HomKb

mot
(e⊗ 1,ZX(q)m≤∗≤nf [2q + m]);(1.1.1.4)

one easily checks that, for m = n, this agrees with the cycle class map (I.3.5.2.2)
(after a shift).

For W ∈ Zq(X)m≤∗≤nf , we let

clq
(X,f)m≤∗≤n(W ) ∈ HomDb

mot(V)(1,ZX(q)m≤∗≤n[2q + m])

= H2q+mmot (ZX(q)m≤∗≤n)

be the composition in Db
mot(V)

1
ν−1
1−−→ e⊗ 1

cycq
(X,f)m≤∗≤n

(W )

−−−−−−−−−−−−→ ZX(q)m≤∗≤nf [2q + m],

where ν1 is the map (I.2.2.4.1). This defines the homomorphism

clq
(X,f)m≤∗≤n :Zq(X)m≤∗≤nf → H2q+mmot (ZX(q)m≤∗≤n);(1.1.1.5)

as above, this agrees with the shifted cycle class map (I.3.5.2.5) for m = n.
For m ≤ n′ < n, we have the canonical map of complexes

ρm;n′,n : ZX(q)m≤∗≤nf → ZX(q)m≤∗≤n
′

f ;(1.1.1.6)

in particular, we have the map (I.2.5.3.3)

ρn′,n := ρ0;n′,n : ZX(q)f → ZX≤n′ (q)f≤n′ .(1.1.1.7)

We may take m = 0 in (1.1.1.1)-(1.1.1.6); we write

Zq(X)f := Zq(X)0≤∗≤nf ,

cycq(X,f) := cycq
(X,f)0≤∗≤n ,

etc.
For a truncated simplicial object X : ∆≤nop → V we have the lifting (I.2.5.2.1)

to the truncated simplicial object (X, fX) of L(V); we write

Zq(X)m≤∗≤n := Zq(X)m≤∗≤nfX
,

Zq(X/S) := Zq(X)fX ,

cycqX := cycq(X,fX )
,

etc.
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For 0 ≤ n′ < n, the map (1.1.1.7) induces the injective map

Zq(ρn′,n) :Zq(X)f → Zq(X≤n
′
)f≤n′ .

1.1.2. Products. We recall the construction of cup products from Chapter I, §2.5.6.
We have the map fm,0

0 : [0] → [m], fm,0
0 (0) = m (see Part II, (III.1.2.1.1)).

1.1.3. Proposition. (i) The maps (1.1.1.4) and (1.1.1.5) define natural transfor-
mations of functors from s.≤nL to Ab.
(ii) Let

(X, f) : ∆≤nop → L(V),

(Y, g) : ∆≤nop → L(V)

be truncated simplicial objects of L(V), and take

WX ∈ Zq(X)f ⊂ Zq(X0)f0 ,

WY ∈ Zq′(Y )m≤∗≤ng ⊂ Zq′(Ym)gm .

Then the cycle WY ×/S X(fm,0
0 )∗(WX) is in Zq+q′(Y ×S X)m≤∗≤ng×f and we have

clq
(Y×SX,g×f)m≤∗≤n(WY ×/S X(fm,0

0 )∗(WX))

= clq
(Y,g)m≤∗≤n(WY ) ∪Y,X clq(X,f)(WX).

(iii) Let X : ∆≤nop → V be a truncated simplicial object of V , and take
W ∈ Zq(X) ⊂ Zq(X0)fX0 ,

W ′ ∈ Zq′(X)m≤∗≤n ⊂ Zq(Xm)fXm .

Suppose that X(fm,0
0 )∗(W ) and W ′ intersect properly on Xm. Then the inter-

section product W ′ ·Xm X(fm,0
0 )∗(W ) is defined, is in Zq+q′ (X)m≤∗≤n, and we

have

clq
Xm≤∗≤n(W ′ ·Xm X(fm,0

0 )∗(W )) = clq
′

Xm≤∗≤n(W ′) ∪X clqX(W ).

Proof. The assertion (i) follows from Chapter I, Proposition 3.5.3 and the
definitions, and (iii) follows from (ii), (i) and the definition (see Chapter I, §2.5.6 and
Part II, (III.1.2.3.6)) of ∪X . The assertion (ii) follows from (Chapter I, Lemma 1.2.2
and Proposition 3.5.3), and the definition of ∪X,Y (see Chapter I, §2.5.6 and Part
II, (III.1.2.1.4)).

1.1.4. Simplicial closed subsets. Let X : ∆≤nop → V be a truncated simplicial object
of V . Suppose we have, for 0 ≤ k ≤ n, a closed subset X̂k of X([k]). We say that
the collection {X̂k} defines a simplicial closed subset X̂ of X if X(g)−1(X̂k) = X̂m

for each g : [k] → [m] in ∆≤n.
Let X : ∆≤nop → V be a truncated simplicial scheme, and X̂ a simplicial closed

subset of X . Let Uk be the complement, Uk := X([k]) \ X̂k. Then, for each
g : [k] → [m] in ∆≤n, we have X(g)(Um) ⊂ Uk, so the open subschemes Uk define
an open simplicial subscheme j :U → X of X . We write this as U := X \ X̂, and
call U the complement of X̂. In particular, we may define the twisted motive of X,
with support in X̂, ZX,X̂(q), by

ZX,X̂(q) := cone
(
j∗ : ZX(q) → ZU (q)

)
[−1].
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1.1.5. Cycles associated to simplicial subschemes. Suppose we have a truncated sim-
plicial object (X, f) : ∆≤nop → L(V) of L(V), together with a closed simplicial
subscheme Z ⊂ X such that

(a) For each m ≤ n, Zm is a pure codimension q subscheme of Xm.
(b) For each m ≤ n, the codimension q cycle |Zm| determined by Zm is in

Zq(Xm)fm .
(c) For each map g : [m] → [k] in ∆≤n, we have X(g)∗(|Zm|) = |Zk| (note that,

by (b) and Chapter I, Lemma 1.2.2, X(g)∗(|Zm|) is defined).
It follows directly from (a)-(c) that the cycle |Z0| is in Zq(X)f . We write

|Z| ∈ Zq(X)f(1.1.5.1)

for the cycle |Z0| considered as an element of Zq(X)f . We call a subscheme Z
of X satisfying (a)-(c) a codimension q closed subscheme of (X, f), and the cycle
(1.1.5.1) the codimension q cycle on (X, f) determined by Z.

If Z is a codimension q closed subscheme of (X, f), then the collection of closed
subsets {supp(Z([k]))} forms a simplicial closed subset of X .

1.1.6. Simplicial vector bundles. Let X : ∆≤Nop → Sch be an N -truncated sim-
plicial scheme. A vector bundle of rank r on X is a map of truncated simplicial
schemes p :E → X together with the structure of a vector bundle of rank r on the
n-simplices pn :En → Xn for each n ≤ N , such that, for each g : [n] → [m] in ∆≤N ,
the map E(g) :Em → En is a map of vector bundles over X(g), and in addition,
the map Em → X(g)∗(En) induced by E(g) is an isomorphism. A line bundle on
X is as usual a vector bundle of rank 1.

A map f :E → E′ of vector bundles on X is a map over X of truncated
simplicial schemes such that the map of n-simplices fn :En → E′n. is a map of
vector bundles on Xn (i.e., fiber-wise linear). A sequence of maps of vector bundles
on X

E′ → E → E′′

is exact if the sequence of n-simplices

E′n → En → E′′n

is exact for each n.
This defines the category PX of vector bundles on X ; we have the Grothen-

dieck group K0(X) := K0(PX) defined as usual as the free abelian group on the
isomorphism classes of objects in PX , modulo relations

[E] = [E′] + [E′′]

for each exact sequence

0 → E′ → E → E′′ → 0

in PX .
Ignoring the truncation at N , these notions are defined for a simplicial scheme

as well.
There is a more sophisticated notion of K0(X) for X an N -truncated simplicial

scheme, involving a homotopy limit over ∆≤N , as in the definition in Appendix B
of the K-theory of a functor X . We will ignore the question of whether the two
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definitions of K0(X) agree; we will always use the definition of K0 given in this
section when X is a (truncated) simplicial scheme.

1.1.7. Lemma. Let X : ∆≤nop → V be a truncated simplicial object of V , and let
(X, fX) : ∆≤nop → L(V) be the lifting (I.2.5.2.1). Suppose we have a rank N vector
bundle π :E → X on the truncated simplicial scheme X , together with a section
s :X → E. Let Zm be the subscheme of Xm determined by sm = 0. Suppose that

(a) The subscheme Z0 of X0 defined by s0 = 0 has pure codimension N on X0.
(b) The cycle |Z0| on X0 determined by Z0 is in Zq(X0)fX0

.

Then the collection of subschemes Zm ⊂ Xm determines a codimension N closed
subscheme Z of (X, fX). In particular, the cycle |Z0| determines the element |Z|
of Zq(X).

Proof. Let g : [m] → [k] be a map in ∆≤n. We have the commutative diagram

Ek

��

πk

��
E(g)

Em

��

πm

Xk

��

sk

��
X(g)

Xm.

��

sm

As the map E(g) induces an isomorphism Ẽ(g) :Ek → X(g)∗(Em), we have the
identity of subschemes of Xk:

Zk = X(g)−1(Zm).(1.1.7.1)

By our hypotheses (a) and (b), and the definition of fX , it follows from (1.1.7.1),
with m = 0, that each Zk has pure codimension N on Xk. Since each Zl is a local
complete intersection in Xl, and Xl is smooth over S, it follows from (1.1.7.1) that

TorOXm
p (OZm ,OXk

) = 0(1.1.7.2)

for all p > 0, where OXk
is an OXm -module via the morphism X(g). Thus, from

(1.1.7.1) and (1.1.7.2), we have the identity of cycles |Zk| = X(g)∗(|Zm|). Taking
m = 0, the assumptions (a) and (b) together with Lemma 1.2.2 of Chapter I imply
that the cycle |Zk| is in ZN (Xk)fXk

for each k. From the definitions in §1.1.5, this
completes the proof.

We conclude this section with an elementary but useful extension of the homo-
topy property.

1.1.8. Lemma. Let X be an N -truncated simplicial object of V , and let p :E → X
be a vector bundle on X . Then p∗ : ZX → ZE is an isomorphism in Db

mot(V).

Proof. The map p∗ defines the map of distinguished triangles in Db
mot(V)

(ZXN [N ] → ZX → ZX≤N−1)
(p∗[N ],p∗,p∗

≤N−1)−−−−−−−−−−−→ (ZEN [N ] → ZE → ZE≤N−1).

Induction on N reduces us to the case N = 0, i.e., X in V . The Mayer-Vietoris
property (Chapter I, §2.2.6) reduces to the case of a trivial bundle; the result then
follows from the homotopy property (Chapter I, §2.2.1).
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1.2. Chern classes of line bundles

We define the motivic first Chern class of a line bundle on a truncated simplicial
scheme in V .

1.2.1. Line bundles. Let X : ∆≤nop → V be a truncated simplicial object in V , and
p :L → X a line bundle on X . By Lemma 1.1.8 the map p∗ : ZX(q) → ZL(q) is an
isomorphism in Db

mot(V). Applying Lemma 1.1.7 to the tautological section of p∗L
over L, the zero subscheme of L determines the element 0L ∈ Z1(L/S). We may
then take the cycle class map (1.1.1.5) in Db

mot(V), cl1L(0L) : 1 → ZL(1)[2].

1.2.2. Definition. Let X : ∆≤nop → V be a truncated simplicial object in V , and
p :L→ X a line bundle on X . The first Chern class of L,

c1(L) ∈ H2(X,Z(1)),

is the element corresponding to the morphism (p∗)−1 ◦ cl1L(0L) : 1 → ZX(1)[2] in
Db
mot(V).

1.2.3. Proposition. The first Chern class satisfies
(i) Functoriality: For f :Y → X a morphism in s.≤nV , and L a line bundle on X ,
we have

c1(f∗(L)) = f∗(c1(L)).

In addition, the simplicial first Chern class is stable in n, i.e., for n′ ≤ n, we have

ρn′,n(c1(L)) = c1(L≤n
′
).

(ii) Additivity: For L1 and L2 line bundles on X ∈ s.≤nV , we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

(iii) Compatibility with divisors: Let L be a line bundle on X ∈ s.≤nV , and let
s :X → L be a section such that the divisor D0 of s0 :X0 → L0 is in Z1(X0)fX0

.

Let D be the divisor on (X, fX) determined by the codimension one subscheme
s = 0 of (X, fX) (see §1.1.5 and Lemma 1.1.7). Then

c1(L) = cl1X(D).

Proof. For (i), let fL : f∗(L) → L be the canonical map of line bundles over
the map f , giving the commutative diagram

f∗(L) ��
fL

��

pY

L

��

pX

Y ��
f

X.

(1.2.3.1)

We have the identity of cycles f∗L(0L) = 0f∗(L), which, from Proposition 1.1.3(i),
gives the identity f∗L(cl1L(0L)) = cl1f∗(L)(0f∗(L)). This, together with the commuta-
tivity of (1.2.3.1) and the definition of c1, proves the first part of (i). The second
part follows by a similar argument.

For (ii), we have the map over X , π :L1 ×X L2 → L1 ⊗ L2, defined on a
fiber over a point x of Xm by sending (s, t) to the product st. We also have the
projections p1 :L1×XL2 → L1, p2 :L1×XL2 → L2, and the maps p :L1×XL2 → X ,
q :L1 ⊗ L2 → X.
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Let 01, 02 and 012 denote the zero sections on L1, L2 and L1⊗L2, respectively.
One easily checks that

π∗(012) = 01 ×X L2 + L1 ×X 02,

p∗1(02) = L1 ×X 02,

p∗2(01) = 01 ×X L2.

(1.2.3.2)

It follows immediately from the definition of c1 and Proposition 1.1.3(i) that

c1(L1) = (p∗)−1
(
p∗2(cl1L1

(01))
)
; c1(L2) = (p∗)−1

(
p∗1(cl1L2

(01))
)
.

Since c1(L1 ⊗ L2) = (q∗)−1(cl1L1⊗L2
(012)), and the cycle class map cl1 is additive

and functorial, the relations (1.2.3.2) prove (ii).
Finally, for (iii), it suffices to prove that cl1L(p∗(D)) = cl1L(0L) in H2(L,Z(1)),

where p :L→ X is the structure map for the line bundle L.
We may form the sheaf OX(D) on X with [OX(D)]m = OXm(Dm), where Dm

is the divisor of the section sm :Xm → Lm. We have the canonical map of sheaves
on X

iD :OX → OX(D);

the resulting section sD of L defines by Lemma 1.1.7 and the hypothesis of (iii)
a codimension one subscheme sD = 0 of (X, fX) with divisor on (X, fX) equal to
D. Pulling back by p, we have the section s1 of p∗(L) over L with divisor p∗(D)
on (L, fL). On the other hand the identity map on L determines the tautological
section s2 of p∗(L) over L with divisor 0L on (L, fL).

Let q :L ×S A1S → L be the projection, and form the section s3 := tq∗(s1) +
(1− t)q∗(s2) of q∗(p∗(L)) over L×S A1S , where t is the coordinate on A1S .

Let E be the divisor of the section s3, and take a geometric point a of S. For a
geometric point b �= 0 of A1 and for m ≤ n, the restriction of Ea to Lm

a ×b is locally
isomorphic to the graph of a function on Xm

a ; in particular Em
a is reduced, locally

irreducible and pure codimension one on (Lm ×S A1S)a. Let i0 :L → L ×S A1S and
i1 :L→ L ×S A1S be the 0 and 1 sections. From (Appendix A, Remark 2.3.4), and
the identities

i∗0(Em) = 0Lm , i∗1(Em) = p∗(Dm)(1.2.3.3)

of divisors on Lm, it follows that Em is in Z1(Lm ×S A1S)id∪i0∪i1 for each m.
From this it follows that the subscheme of L ×S A1S defined by the section s3 is
a codimension one subscheme of (L ×S A1S , fL×SA1

S
∪ i0 ∪ i1), with corresponding

cycle the divisor E.
By (1.2.3.3) and Proposition 1.1.3(i), we have the identity of divisors on (L, fL)

i∗0(E)− i∗1(E) = 0L − p∗(D).(1.2.3.4)

By the homotopy axiom (Chapter I, Definition 2.1.4(a)), (1.2.3.4) implies that

cl1L(p∗(D)) = cl1L(0L).

This gives the desired identity.

1.3. Projective bundle formula and Chern classes

We use the splitting principle to define the motivic Chern classes of vector bundles,
following the classic method of Grothendieck [57].
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1.3.1. Let X : ∆≤nop → V be a truncated simplicial object of V , let p :E → X be
a rank N + 1 vector bundle on X , and q : P(E) → X the associated PN -bundle. We
have the tautological surjection on P(E), q∗(E) → LE, where LE is the line bundle
associated to the invertible sheaf O(1) on P(E).

Let X̂ be a simplicial closed subset of X , P̂ the inverse image q−1(X̂). For
each integer i ≥ 0, we have the map

αE
i : ZX,X̂(q − i)[−2i] → Z

P(E),P̂ (q)(1.3.1.1)

defined as the composition

ZX,X̂(q − i)[−2i] ∼= ZX,X̂(q − i)[−2i]⊗ 1

id⊗c1(LE)
i

−−−−−−−→ ZX,X̂(q − i)[−2i]⊗ ZP(E)(i)[2i]
∪P(E),X−−−−−→ ZX×SP(E),X̂×SP(E)(q),

∆∗
E−−→ Z

P(E),P̂ (q),

where ∆E : P(E) → P(E)×SX is the map (id, q), and ∪P(E),X is the map (I.2.5.6.4).

1.3.2. Theorem [projective bundle formula]. The map

N∑
i=0

αE
i : ⊕N

i=0 ZX,X̂(q − i)[−2i] → Z
P(E),P̂ (q)

is an isomorphism in Db
mot(V), natural in (X, X̂, E).

Proof. By the naturality of c1 (Proposition 1.2.3(i)), the maps αE
i are natural

in the triple (X, X̂, E); using the definition of ZX,X̂ and Z
P(E),P̂ as shifted cones

(I.2.1.3.1), we reduce to the case X̂ = ∅.
We now reduce to the case of an object of V rather than a simplicial object,

i.e., to the case n = 0. Suppose n > 0. We have the distinguished triangles in
Db
mot(V)

ZXn(q)[n] → ZX(q) → ZX≤n−1(q) → ZXn(q)[n + 1],

ZP(E)n(q)[n] → ZP(E)(q) → ZP(E)≤n−1(q) → ZP(E)n(q)[n + 1].

From the definition of the product maps (I.2.5.6.3), we see that the map αE
i in-

duces the map αE
i,n : ZXn(q − i)[n − 2i] → ZP(E)n(q)[n]. By Proposition 1.1.3(ii),

the definition Definition 1.2.2 of the first Chern class, and the naturality of c1
(Proposition 1.2.3(i)), we have

αE
i,n = αEn

i [n].(1.3.2.1)

Similarly, αE
i induces the map αE,≤n−1

i : ZX≤n−1(q − i)[−2i] → ZP(E)≤n−1(q); the
naturality of c1 (Proposition 1.2.3(i)) implies

αE,≤n−1
i = αE≤n−1

i .(1.3.2.2)
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By (1.3.2.1) and (1.3.2.2), we have the map of distinguished triangles

ZXn(q)[n] ��

��

PN
i=0 α

En
i [n]

ZX(q) ��

��

PN
i=0 α

E
i

ZX≤n−1(q)

��

PN
i=0 α

E≤n−1
i

ZP(E)n(q)[n] �� ZP(E)(q) �� ZP(E)≤n−1(q).

By induction, this reduces us to the case n = 0, X ∈ V .
Using the Mayer-Vietoris distinguished triangle (I.2.2.6.1), and the naturality

of c1, we reduce to the case of trivial E:
E ∼= SpecOX

(OX [X0, . . . , Xn]),

P(E) ∼= ProjOX
(OX [X0, . . . , Xn]).

We let i : 0E → P(E) denote the subscheme of P(E) defined by X1 = . . . = XN = 0,
and let j :U → P(E) be the complement of 0E .

We have the projection π :U → PN−1
X defined by

π(x0 : . . . : xN ) = (x1 : . . . : xN );

this gives U the structure of a line bundle over PN−1
X . By Lemma 1.1.8, the map

π∗ : Z
P
N−1
X

(q) → ZU (q) is an isomorphism; by induction, we have the isomorphism

N−1∑
i=0

αN−1
i : ⊕N−1

i=0 ZX(q − i)[−2i] → Z
P
N−1
X

(q).

The naturality of c1 implies the identity j∗ ◦αi = π∗ ◦αN−1
i , giving us the isomor-

phism

j∗ ◦
N−1∑
i=0

αi : ⊕N−1
i=0 ZX(q − i)[−2i] → ZU (q).

The homogeneous functions Xi define sections of LE which are smooth over S;
in fact, each subscheme of P(E) defined by an equation of the form Xi1 = . . . =
Xis = 0 for i1 < . . . < is is smooth over S. Thus, by (Appendix A, Remark 2.3.4),
and Proposition 1.2.3(iii), we have the identity

c1(LE)N = clNP(E)(0E).(1.3.2.3)

We have the object ZP(E),0E (q) (I.2.1.3.1) of Cb
mot(V), defined as the shifted

cone of the morphism j∗ : ZP(E)(q) → ZU (q); the cone sequence thus gives the
distinguished triangle in Db

mot(V)

ZP(E),0E(q)
iP(E),0E−−−−−→ ZP(E)(q)

j∗−→ ZU (q).

We have the Gysin isomorphism (I.2.2.5.1)

∪[0E ] ◦ q∗ : ZX(q −N)[−2N ] → ZP(E),0E (q);

the identity iP(E),0E ◦ (∪[0E ] ◦ q∗) = αN follows from (1.3.2.3). This gives us the
map of distinguished triangles:

ZP(E),0E (q) ��
iP(E),0E ZP(E)(q) ��

j∗

ZU (q)

ZX(q −N)[−2N ] ��

��

∪[0E ]◦q∗

⊕N
i=0ZX(q − i)[−2i] ��

��

PN
i=0 αi

⊕N−1
i=0 ZX(q − i)[−2i].

��

j∗◦
PN−1

i=0 αi



116 III. K-THEORY AND MOTIVES

As the two maps on the ends are isomorphisms, the map in the middle is an
isomorphism as well, completing the proof.

1.3.3. Splitting principle. Let X be an n-truncated simplicial object of V , and
p :E → X be a vector bundle on X . We have the flag variety q :F l(E) → X,
gotten by forming the projective bundle q1 : P(E) → X, taking the kernel E1 of the
canonical surjection q∗1 :E → O(1), forming P(E1), and so on, until the resulting
kernel has rank 1. The pull-back q∗E then has the canonical filtration

E = E0 ⊃ E1 ⊃ . . . ⊃ EN ⊃ EN+1 = 0(1.3.3.1)

with Ei/Ei+1 a line bundle on F(E) for each i. We may then pull back further,
to the bundle of splittings of (1.3.3.1), q̃ :Sp(E) → X , giving the isomorphism
q̃∗(E) ∼= ⊕N

i=1Li, with the Li line bundles on Sp(E).
The bundle r :Sp(E) → F l(E) is a sequence of Zariski torsors for the vector

bundle Hom(Ei−1/Ei, Ei); using Mayer-Vietoris and the homotopy property, one
proves that the map r∗ : ZF l(E) → ZSp(E) is an isomorphism. From the projec-
tive bundle formula, the map q∗ : ZX → ZF l(E) is injective, hence, so is the map
q̃∗ : ZX → ZSp(E). This enables us to reduce proofs of identities among character-
istic classes of vector bundles to the case of sums of line bundles. We may use a
similar construction to replace any finite collection of exact sequences with split
exact sequences among direct sums of line bundles.

1.3.4. Definition. Let X : ∆≤nop → V be a truncated simplicial object of V , let X̂
be a closed simplicial subscheme of X , and let E → X be a vector bundle of rank
N on X . Let q : P(E) → X be the associated projective bundle with tautological
quotient line bundle LE , and let ζ = c1(LE). The Chern classes of E are the
elements ci(E) ∈ H2i(X,Z(i)) satisfying

N∑
i=0

(−1)iq∗(ci(E))ζN−i = 0, c0(E) = 1.(1.3.4.1)

By Theorem 1.3.2, the ci(E) exist and are uniquely determined by the identity
(1.3.4.1). We define the total Chern class c(E) to be the sum

c(E) =
N∑
i=0

ci(E).

1.3.5. Theorem. The Chern classes satisfy
(i) Naturality: Let f :Y → X be a morphism in s.≤nV , E a vector bundle on X .
Then

f∗(c(E)) = c(f∗(E)).

Similarly, if we have X in s.≤nV , E a vector bundle on X , and 0 ≤ n′ < n, then

ρn′,n(c(E)) = c(E≤n
′
),

where ρn′,n : ZX(q) → ZX≤n′ (q) is the map (1.1.1.7).
(ii) Normalization: The two definitions (Definition 1.2.2 and Definition 1.3.4) of
the first Chern class of a line bundle agree.

Proof. The first part of (i) follows from the naturality of the first Chern class
Proposition 1.2.3(i), and the naturality of the projective bundle isomorphism of
Theorem 1.3.2; the second part follows by using Proposition 1.2.3(i), and noting
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that the projective bundle isomorphism of Theorem 1.3.2 is compatible with trun-
cation. The statement (ii) follows from the defining relation c1(L)− ζ = 0 for c1 of
a line bundle L → X in Definition 1.3.4, and the identification of the tautological
line bundle LL on P(L) = X with L.

1.3.6. Remark. Suppose we have a morphism of base schemes p :T → S as in
(Chapter I, §2.3), an object X of s.≤nV and a vector bundle E → X . Suppose
that W is a subcategory of SmT for which DM(W) is defined and with W ⊃ p∗V .
Essentially the same proof as for Theorem 1.3.5(i), using the properties of pull-back
p∗ :DM(V) → DM(W) given in (Chapter I, §2.3), shows that the Chern classes
are functorial in this setting: p∗(cq(E)) = cq(p∗(E)), where p∗E is the pull-back
bundle E ×S T → X ×S T.

1.3.7. Theorem [Whitney product formula]. Let X be an n-truncated simplicial
object in V , and

0 → E1 → E → E2 → 0

an exact sequence of vector bundles on X . Then

c(E) = c(E1)c(E2).

Proof. Using the splitting principle of §1.3.3, we may assume that E = E1 ⊕
E2 and that E1 and E2 are direct sums of line bundles. This reduces us to showing,
for line bundles L1, . . . , LN on X , that

c(⊕N
k=1Lk) =

N∏
k=1

(1 + c1(Lk)).

Let E = ⊕N
k=1Lk, and let q : P → X be the projective bundle P(E). We

have the canonical surjection π : q∗E → O(1), giving the maps pk : q∗Lk → O(1),
i = 1, . . . , N , defined as the composition

q∗Lk ↪→ q∗E
π−→ O(1).

Twisting by q∗L−1k gives the sections sk :OP → O(1) ⊗ q∗L−1k , i = 1, . . . , N. Let
Dk be the subscheme of P defined by the vanishing of sk.

Locally on X , the divisors D1, . . . DN are independent hyperplanes in P (which
is a Zariski locally trivial PN−1-bundle); in particular, the Dk are smooth S-
schemes, hence in V . Thus, the cycles Dk are in Z1(P/S); it follows from Propo-
sition 1.2.3(iii) that cl1P(Dk) = ζ − q∗(c1(Lk)), where ζ = c1(O(1)). Since the
intersection D1 ∩ . . . ∩DN is empty on P, we have by Proposition 1.1.3(iii)

0 = clN (D1 ∩ . . . ∩DN )

= cl1(D1) ∪ . . . ∪ cl1(DN )

=
N∏
k=1

(ζ − q∗(c1(Lk)))

= ζN +
N∑
k=1

(−1)kζN−kq∗(σk),

where σk is the kth symmetric function in the Chern classes c1(L1), . . . , c1(LN ).
By the defining relation Definition 1.3.4 for the Chern classes of E, this shows
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ck(E) = σk, i.e.

c(⊕N
k=1Lk) =

N∏
k=1

(1 + c1(Lk)),

as desired.

We give a few immediate consequences of the product formula.
Recall from §1.1.6 the definition of K0(X) for X an n-truncated simplicial

scheme.

1.3.8. Corollary. Let X be an n-truncated simplicial object of V . Then sending
a vector bundle E on X to cq(E) ∈ H2q(X,Z(q)) descends to a map (of sets)

cq :K0(X) → H2q(X,Z(q)).

Proof. Form the group

1 + ̂H2∗(X,Z(∗))
+

:= 1×
∏
q≥1

H2q(X,Z(q))

with group law

(1 +
∑
q

xq) + (1 +
∑
q

yq) = (1 +
∑
q

xq)(1 +
∑
q

yq),

where the multiplication is as formal series. For a vector bundle E, let

ĉ(E) := 1 +
∑
q

cq(E) ∈ 1 + ̂H2∗(X,Z(∗))
+
.

The Whitney product formula implies that ĉ(E) = ĉ(E′)+ ĉ(E′′) if there is an exact
sequence

0 → E′ → E → E′′ → 0,

hence ĉ descends to a group homomorphism

ĉ :K0(X) → 1 + ̂H2∗(X,Z(∗))
+
.

We have an extension of Proposition 1.2.3(iii) to vector bundles of arbitrary
rank.

1.3.9. Corollary. Let p :E → X be a vector bundle of rank r on a truncated
simplicial object X in V , and let 0E ⊂ E denote the 0-section. Let s :X → E be a
section satisfying the conditions (a) and (b) of Lemma 1.1.7. Then

clrX(s∗(|0E |)) = cr(E)

in H2r(X,Z(r)).

Proof. Since s∗(|0E |) = |s−1(0E)|, it follows from Lemma 1.1.7 that s∗(|0E |)
is in Zr(X/S). By the splitting principle, we may pull back to the flag bundle
F(E) over X , and, by homotopy, we may pull back further to the affine bundle of
splittings of the canonical flag in E over F(E), so we may assume that E is a direct
sum of line bundles, E ∼= ⊕r

i=1Li, pi :Li → X . Let qi :E → Li be the projection.
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Let s̃ be the tautological section of p∗E over E. As in the proof of Proposi-
tion 1.2.3(iii), we have

p∗(clrX(s∗(|0E |))) = clrE(s̃∗(|0p∗E |))).
Letting si be the tautological section of p∗iLi over Li, we have

s̃∗(|0p∗E |) = ∩r
i=1q

∗
i (s∗i (|0p∗

iLi |)).
By Proposition 1.2.3, Theorem 1.3.5, and Theorem 1.3.7, together with Proposi-
tion 3.5.7 of Chapter I, we thus have

p∗(clrX(s∗(|0E |))) = clrE(s̃∗(|0p∗E |))
= cl1E(q∗1s

∗
1(|0p∗

1L1 |) ∪ . . . ∪ cl1E(q∗rs
∗
r(|0p∗

rLr |)
= c1(q∗1p

∗
1L1) ∪ . . . ∪ c1(q∗rp

∗
rL1)

= cr(p∗E)

= p∗(cr(E)).

Since p∗ : ZX → ZE is an isomorphism in DM(V) by homotopy and Mayer-Vietoris,
we thus have

clrX(s∗(|0E |)) = cr(E).

1.4. Chern classes for higher K-theory

We use the method of Gillet [46] to define motivic Chern classes for higher K-
theory.

1.4.1. Representable sheaves. We refer to the constructions, notations, and results
of Chapter II, §1.5.2 and Lemma 1.5.3; in particular, for X in V , we have the cate-
gory of Zariski open subsets of X , Zar(X), and the subcategory Cb

mot(Zar(X)) :=
Cb
mot(Zar(X, idX)) of Cb

mot(V), which contains the category of hyper-resolutions
HRZU (q) for all open subschemes U of X . For an abelian presheaf S on X which
takes disjoint unions to direct sums, we have the functor

Cb(S) :Cb
mot(Zar(X)) → Cb(Ab).

As a special case of this construction, we may take the presheaf S to be the
restriction to Zar(X) of the free abelian group on a representable functor, S(U) :=
Z[HomL(V)((U, idU ), (Z, g))], which we denote by HX

(Z,g). Sending a morphism of
h : (U, idU ) → (Z, g) to the map h∗ : ZZ(q)g → ZU (q) defines the map

ξ(Z, g)(U) :HX
(Z,g)(U) → HomAmot(ZZ(q)g ,ZU (q))(1.4.1.1)

which is natural in both (Z, g) and in U ∈ Zar(X).
We have as well the representable functor HX

Z (U) := Z[HomV(U,Z)]. The
subcategory of L(V) of maps (Z, g) → (Z, g′) over the identity on Z is filtering;
indeed (Z, g ∪ g′) dominates (Z, g) and (Z, g′). We have as well the identity

HX
Z = lim→

g

HX
(Z,g).(1.4.1.2)

Suppose we have non-degenerate simplicial object (Z, g) : ∆opn.d. → L(V) of L(V).
We may then form the complex of presheaves on X , C∗X((Z, g); Z), by setting
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Ck
X((Z, g); Z)(U) := HX

(Z([−k]),g([−k]))(U), with differential the alternating sum in-
duced by the maps in Z. We may make a similar construction for Z an n-truncated
non-degenerate simplicial object of L(V). If Z is a non-degenerate simplicial ob-
ject, or an n-truncated non-degenerate simplicial object of V , we have the complex
of presheaves on X , C∗X(Z; Z), with Ck

X(Z; Z)(U) := HX
Z([−k])(U). The identity

(1.4.1.2) gives

C∗X(Z; Z) = lim→
g

C∗X((Z, g); Z).(1.4.1.3)

Let Z be a non-degenerate simplicial object of V , and let (Z, g) : ∆opn.d. → L(V)
be a lifting to a non-degenerate simplicial object of L(V), giving the associated
motive ZZ(q)∗≤ng for each n ≥ 0, as in (Chapter I, §2.5.4).

If Γ is inCb
mot(Zar(X), q), the natural transformation (1.4.1.1) gives the natural

map of complexes

ξn(Z, g)(Γ):Cb(C∗≥−nX ((Z, g); Z))(Γ) → HomCb
mot(V)(ZZ(q)∗≤ng ,Γ).

Now suppose that Γ is in the subcategory HRZX(q) of Cb
mot(Zar(X), q). Since

the augmentation ε : ZX(q) → Γ is an isomorphism in Db
mot(V) (see Chapter II,

Lemma 1.4.2(iii)), we have the natural map

Hn(Cb(C∗≥−nX ((Z, g); Z))(Γ))
ε−1◦Hn(ξ(Z,g)(Γ))−−−−−−−−−−−−→ HomDb

mot(V)(ZZ(q)∗≤ng ,ZX(q)[n]).

(1.4.1.4)

As the map id∗Z : ZZ(q)∗≤ng → ZZ(q)∗≤ng′ induced by a map idZ : (Z, g′) → (Z, g) is
an isomorphism in Db

mot(V), the map (1.4.1.4) defines via (1.4.1.3) the natural map

Hn(Cb(C∗≥−nX (Z; Z))(Γ)) → HomDb
mot(V)(ZZ(q)∗≤ng ,ZX(q)[n]).

Taking the limit over HRZX (q) and applying (Chapter II, Lemma 1.5.3) gives the
natural map

Ξn(Z) : Hm
Zar(X, C̃∗≥−nX (Z; Z)) → HomDb

mot(V)(ZZ (q)∗≤n,ZX(q)[m]).(1.4.1.5)

Let c : 1 → ZZ(q)∗≤n[a] be a morphism in Db
mot(V). Composing with the map

(1.4.1.5) (suitably shifted) gives the natural map

Ξn(Z) ◦ c : Hm
Zar(X, C̃∗≥−nX (Z; Z)) → HomDb

mot(V)(1,ZX(q)[a + m]).

This gives us the natural map

(1.4.1.6) Hm
Zar(X, C̃∗≥−nX (Z; Z))⊗HomDb

mot(V)(1,ZZ(q)∗≤n[a])
Ψn(Z)−−−−→ Ha+m(X,Z(q)).

Since X has finite Zariski cohomological dimension, we have the identity

Hm
Zar(X, C̃∗≥−nX (Z; Z)) = Hm

Zar(X, C̃∗X(Z; Z))

for all n sufficiently large (depending on m). As

Ha(Z,Z(q)) = lim←
(N,≤)op

[n �→ HomDb
mot(V)(1,ZZ(q)∗≤n[a])]

by definition (see Chapter I, §2.5.5), the map (1.4.1.6) gives us the natural map

Ψ(Z) : Hm
Zar(X, C̃∗X(Z; Z))⊗Ha(Z,Z(q)) → Ha+m(X,Z(q)).(1.4.1.7)
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1.4.2. Homology and motivic cohomology. We refer the reader to §1.1.1-§1.1.3 of
Appendix B for notions related to classifying schemes and the general linear group.

For a scheme X , we have the sheaf of groups GLN := GLN/X defined as the
sheafification of the presheaf U �→ GLN (Γ(U,OX)), and the sheaf of simplicial sets
BGLN/X defined similarly. For a ring A, we have the simplicial abelian group
ZBGLN (A) with k-simplices being the free abelian on BGLN (A)([k]); applying
this construction to the sheaf BGLN/X gives the presheaf of simplicial abelian
groups ZBGLN/X , and the associated complex of presheaves C∗(BGLN/X ; Z),
Ck(BGLN/X ; Z)(U) = Z[BGLN/X([−k])(U)].

The stalk C∗(BGLN/X ; Z)x is the complex computing the homology of the
discrete group GLN (OX,x):

H−p(C∗(BGLN/X ; Z)x) = Hp(GLN (OX,x); Z).

We define Hp(X,GLN ; Z) by

Hp(X,GLN ; Z) := H−pZar(X, C̃∗(BGLN/X ; Z)).

Suppose that X is an S-scheme. We have the simplicial S-scheme BGLN/S,
which satisfies the flatness conditions of §1.4.1. We have in addition the identity of
complexes of presheaves on X , C∗(BGLN/X ; Z) = C∗X(BGLN/S; Z), so the map
(1.4.1.7) gives us the natural map

ΨN :Hp(X,GLN ; Z)⊗Ha(BGLN/S,Z(q)) −→ Ha−p(X,Z(q)).(1.4.2.1)

1.4.3. Stabilization. We have the stabilization map iN : GLN/S → GLN+1/S de-
fined by

iN (g) =
(
g 0
0 1

)
.

This induces stabilization maps BiN : BGLN/S → BGLN+1/S. For X in V , this
gives stabilization maps C∗(BGLN/X ; Z) → C∗(BGLN+1/X ; Z), and stabilization
maps on hypercohomology, H∗(X,GLN ; Z) → H∗(X,GLN+1; Z).

We set

Ha(BGL/S,Z(q)) := lim
←

Ha(BGLN/S,Z(q)),

Hp(X,GL; Z) := lim
→

Hp(X,GLN ; Z).

The maps (1.4.2.1) for varying N thus give the map

Ψ:Hp(X,GL; Z)⊗Ha(BGL/S,Z(q)) −→ Ha−p(X,Z(q)).(1.4.3.1)

1.4.4. Universal Chern classes. From Appendix B, §1.1.3, we have the universal
rank N vector bundle pn :EN → BGLN/S.

We have Bi∗N (EN+1) ∼= EN ⊕ 1, where 1 denotes the trivial line bundle. Thus,
by the Whitney product formula (Theorem 1.3.7) and the stability of Chern classes
(Theorem 1.3.5(i)) we have

Bi∗N (c(E≤nN+1)) = c(E≤nN ),

ρn′,n(c(E≤nN )) = c(E≤n
′

N ),

for all n ≥ n′ ≥ 0. Thus, the qth Chern class cq(E
≤n
N ) for n = 1, 2, . . . determines

the element cq(EN ) ∈ H2q(BGLN/S,Z(q)), and the classes cq(EN ) for N = 1, 2 . . .
determines the element cq(E) ∈ H2q(BGL/S,Z(q)).
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1.4.5. We apply the map (1.4.3.1) to the universal Chern class cq(E); we denote
the map Ψ(−⊗ cq(E)) by

Hcq,2q−p :Hp(X,GL; Z) → H2q−p(X,Z(q)).(1.4.5.1)

From Appendix B, §2.2.2, we have the Hurewicz map

hXp :Kp(X) → Hp(X,GL; Z).(1.4.5.2)

Composing (1.4.5.1) with (1.4.5.2) gives the Chern class map

cq,2q−p :Kp(X) → H2q−p(X,Z(q)).

1.4.6. Remark. Let E → X be a rank r-vector bundle on a scheme X ∈ V . We
may take a trivializing open cover U = {U0, . . . , UN} for E; a choice of trivializing
isomorphisms ψi :E|Ui

→ Ui×Ar gives the transition maps gij := ψi◦ψ−1j :Ui∩Uj →
GLr/S which extend to give the map of simplicial schemes over S:

g :NU → BGLr/S

gi0,... ,in = (gi0,i1 , gi1,i2 , . . . , gin−1,in)|Ui0∩...∩Uin
.

The isomorphisms ψi then give the isomorphism p∗UE
∼= g∗Er, where pU :NU → X

is the augmentation.
We have the truncated Chern classes ci(E≤nr ) ∈ H2i(ZBGLr/S(i)∗≤n). The map

g defines the map g∗ : Z∗≤nBGLr/S
→ Z∗≤nU . We may then pull back the ci via g∗ to

give classes g∗(ci(E≤nr )) ∈ H2i(ZU (i)∗≤n). On the other hand, the map pU induces
the isomorphism in DM(V), p∗U : ZX(i) → ZU (i)∗≤n = ZU (i), for all n ≥ N + 1.
Thus, we get the elements

(p∗U )−1 ◦ g∗(ci(E≤nr )) ∈ H2i(ZX(i)) = H2i(X,Z(i)).

It follows from the naturality of the Chern classes that

(p∗U)−1 ◦ g∗(ci(E≤nr )) = ci(E); i = 0, 1, . . .

for all n ≥ N + 1.
From this it follows that cq,2q agrees with the Chern class cq.

1.4.7. Chern classes for diagrams. We proceed to extend the construction of Chern
classes given in §1.4.5 to diagrams in V . We use the notions and notations of
(Appendix B, §2.1.3 and Remark 2.2.3) and Chapter I, §2.7.

Let I be the category associated to a finite partially ordered set and let X : I →
V+ be a functor. We have the lifting (X, fX) : I → L(V+), and the motive of X ,
ZX , defined as in (Chapter I, §2.7.2) as the non-degenerate homotopy limit

ZX = holim
I,n.d.

(i �→ ZX(i)(0)fX (i)).

Define Hp(X,GLN ; Z) as the hypercohomology

Hp(X,GLN ; Z) := H−pZar(X, C̃∗(BGLN/X ; Z)),

and set

Hp(X,GL; Z) := lim→
N

Hp(X,GLN ; Z).

We have the Hurewicz map (from Appendix B, Remark 2.2.3)

hX,N :Kp(X) → Hp(X,GLN ; Z)(1.4.7.1)
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for all N sufficiently large (stable in N).
We note that a bounded above complex of presheaves S∗ on X (which takes

disjoint unions to direct sums) defines the functor Cb(S∗) :HRZX(q) → C−(Ab),
just as in (Chapter II, §1.5.2). Using the distinguished triangles of (Chapter I,
§2.7.3) and (Part II, (III.3.3.1.3)), we extend Lemma 1.5.3 of Chapter II to give a
canonical isomorphism

lim→
Γ∈HRZX (q)

Hn(Cb(S∗)(Γ)) ∼= Hn
Zar(X, S̃∗).

For a simplicial scheme Z satisfying the flatness conditions of §1.4.1, we may then
use the construction of that section to give a natural map

Ψ(Z) : Hm
Zar(X, C̃∗X(Z; Z))⊗Ha(Z,Z(q)) → Ha+m(X,Z(q))(1.4.7.2)

extending the natural map (1.4.1.7).
Taking Z = BGLN/S, stabilizing and evaluating at the universal Chern classes

cq(E) gives us the map (as in (1.4.5.1))

Hcq,2q−p :Hp(X,GL; Z) → H2q−p(X,Z(q)).(1.4.7.3)

Composing with the Hurewicz map (1.4.7.1) gives the Chern class

cq,2q−p :Kp(X) → H2q−p(X,Z(q)).(1.4.7.4)

1.4.8. Examples. (i) Take I to be the category ∗ > 0 < 1, and U be an open
subscheme of X , with complement X̂. We have the functor (X, X̂) : I → V+ with

(X, X̂)(0) = U, (X, X̂)(1) = X, (X, X̂)(∗) = ∗, (X, X̂)(0 < 1) = jU :U → X.

Then Z(X,X̂)(q) is the motive with support ZX,X̂(q) and the K-group Kn

(
(X, X̂)

)
is the K-group with support KX̂

n (X), defined as the homotopy group πn+1 of the
homotopy fiber of the map j∗U : BQPX → BQPU

The Chern classes (1.4.7.4) give the Chern classes with support:

cq,2q−p
X̂

:KX̂
p (X) → H2q−p

X̂
(X,Z(q)),

compatible with the Chern classes without support via the “forget the support”
maps KX̂

p (X) → Kp(X), H2q−p
X̂

(X,Z(q)) → H2q−p(X,Z(q)).
(ii) We have the n-cube, <n> (see Chapter I, §2.6.1), the opposite of the category
of subsets of {1, . . . , n}; take I to be the category <n>∗ := <n>∪ ∗, (the pointed
n-cube) with ∗ > J for each non-empty J ⊂ {1, . . . , n}.

Given X in V and a collection of closed subschemes D1, . . . , Dn of X , such that
each intersection DJ := ∩j∈J⊂{1,... ,n}Dj is in V , we then have the functor

(X ;D1, . . . , Dn) :<n>∗ → V+

J �→ DJ ; ∗ �→ ∗.
The resulting object Z(X;D1,... ,Dn)(q) of DM(V) is isomorphic to the motive of
X relative to D1, . . . , Dn (see Chapter I, §2.6.6 and §1.5.1 below). The motivic
cohomology of X relative to D1, . . . , Dn is defined as

H2q−p(X ;D1, . . . , Dn,Z(q)) := HomDM(V)(1,Z(X;D1,... ,Dn)(q)[2q − p]).

We have the K-groups of X relative to D1, . . . , Dn, Kn(X ;D1, . . . , Dn), defined as

Kn(X ;D1, . . . , Dn) := πn+1(holim
<n>∗

J �→ BQP(X;D1,... ,Dn)(J)).
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The Chern classes (1.4.7.4) give the Chern classes for relative K-groups:

cq,2q−p(X;D1,... ,Dn)
:Kp(X ;D1, . . . , Dn) → H2q−p(X ;D1, . . . , Dn,Z(q)).

(iii) We may combine (i) and (ii): suppose we have a closed subset X̂ of X with
complement j : U → X , and closed subschemes D1, . . . , Dn such that each inter-
section DI is in V . This gives the pointed n+1-cube (X ;D1, . . . , Dn)X̂ defined via
the map of pointed n-cubes j : (U ;D1 ∩ U, . . . , Dn ∩ U) → (X ;D1, . . . , Dn). The
homotopy limit of BQP(X;D1,... ,Dn)X̂

over <n + 1>∗ then has homotopy groups

KX̂
n (X ;D1, . . . , Dn) := πn+1( holim

<n+1>∗
J �→ BQP(X;D1,... ,Dn)X̂(J)

),

the K-groups of X relative to D1, . . . , Dn, with support in X̂. The motive of
X relative to D1, . . . , Dn, with support in X̂ is the object Z(X;D1,... ,Dn)X̂

(q) of
DM(V). The Chern classes (1.4.7.4) then give the Chern classes for relative K-
groups with support:

cq,2q−p
(X;D1,... ,Dn),X̂

:KX̂
p (X ;D1, . . . , Dn) → H2q−p

X̂
(X ;D1, . . . , Dn,Z(q)).

(iv) Mod-n Chern classes (see [26]). Let Sm/n be the mod n Moore space: S2/n is
the CW-complex gotten by attaching the boundary of a 2-disk to S1 by the n to
1 cover S1 → S1, and Sm/n is the m − 2-fold suspension of S2/n. For a pointed
space (X, ∗) one defines the mod-n homotopy groups of X by

πp(X ; Z/n) := [(Sp/n, ∗), (X, ∗)]; n ≥ 3,

where [−,−] means pointed homotopy classes of pointed maps. The addition is
given by a co-H-space structure on Sp/n, similar to that of Sp. If X is an H-space,
the addition in H gives the same group structure, so one may extend the definition
to π2(X ; Z/n). One has the fundamental short exact sequence

0 → πp(X)/n→ πp(X ; Z/n) → nπp−1(X) → 0; p ≥ 2,(1.4.8.1)

where nπp−1(X) is the n-torsion subgroup of πp−1(X).
One defines the mod-n K-groups of a scheme X by

Kp(X ; Z/n) := πp+1(BQPX ; Z/n)

for p ≥ 1. For p = 0, one deloops BQPX and takes π2(−,Z/n).
For a simplicial abelian group S, the Dold-Kan isomorphism (see e.g. [95,

Chapter V]) gives a natural isomorphism πp(S; Z/n) ∼= H−p(C∗(S)⊗L Z/n), where
C∗(S) is the chain complex associated to S, and C∗(S)⊗L Z/n is the cone

C∗(S)⊗L Z/n := cone
(
C∗(S) ×n−−→ C∗(S)

)
.

The sequence (1.4.8.1) is then just the sequence one gets from breaking up the
cohomology sequence for the distinguished triangle

C∗(S)⊗L Z/n[−1] → C∗(S) ×n−−→ C∗(S) → C∗(S)⊗L Z/n

into short exact sequences. Thus, the construction of the Hurewicz map (1.4.5.2)
gives the mod-n Hurewicz map

Kp(X ; Z/n) → Hp(X,GLN ; Z/n)(1.4.8.2)

(at least for p ≥ 2); the extension to diagrams of schemes (1.4.7.1) gives rise to the
mod-n Hurewicz map for X a functor as in §1.4.7.
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For Γ in Cb
mot(V), we have the object Γ⊗L Z/n defined in Chapter I, §2.2.8 as

Γ⊗L Z/n := cone(Γ ×n−−→ Γ),

and the mod-n motivic cohomology

Hp(Γ,Z/n(q)) := Hp(Γ⊗L Z/n,Z(q)).

Taking Γ = ZX(0) defines the mod-n motivic cohomology of X

Hp(X,Z/n(q)) := Hp(ZX(0)⊗L Z/n,Z(q)).

The map (1.4.1.7) thus gives the mod-n version

Ψ(Z)⊗L Z/n : Hm
Zar(X, C̃∗X(Z; Z)⊗L Z/n)⊗Ha(Z,Z(q)) → Ha+m(X,Z/n(q)).

Thus, the construction of the map (1.4.5.1) (or (1.4.7.3) for X a diagram of schemes)
gives the map Hcq,2q−p :Hp(X,GL; Z/n) → H2q−p(X,Z/n(q)). Composing with the
Hurewicz map gives the mod-n Chern class

cq,2q−p :Kp(X ; Z/n) → H2q−p(X,Z/n(q)); p ≥ 2,

for X in V , as well as for X : I → V+ a functor as in §1.4.7. The constructions of
(i), (ii) and (iii) thus also have their mod-n versions.

1.4.9. Proposition. Let I be the category associated to a finite partially ordered
set and let X : I → V+ be a functor.
(i) For p ≥ 1, the Chern class maps (1.4.7.4) are additive.
(ii) The Chern class maps cq := cq,2q :K0(X) → H2q(X,Z(q)) satisfy the Whitney
product formula

c(x + y) = c(x) ∪ c(y).

(iii) Let J be the category associated to a finite partially ordered set, let ι : J → I
be a functor, and let Y : J → V+ be a functor. Let f :Y → X ◦ ι be a map of func-
tors, inducing the pull-back maps f∗ :Kp(X) → Kp(Y ) and f∗ :H2q−p(X,Z(q)) →
H2q−p(Y,Z(q)). Then the diagram

Kp(X) ��cq,2q−p

��

f∗

H2q−p(X,Z(q))

��

f∗

Kp(Y ) ��

cq,2q−p
H2q−p(Y,Z(q))

commutes.
(iv) Let g :T → S be a map of reduced schemes, and let W be a full subcategory of
SmessT containing g∗V , such that DM(W) is defined, giving the pull-back functor
g∗ :DM(V) → DM(W) (I.2.3.1.1). Let g∗X : I → W be the functor g∗X(i) :=
X ×S T, giving the map of functors from I to Sch+, p1 : g∗X → X . Then the
diagram

Kp(X) ��
cq,2q−p
X

��

p∗
1

H2q−p(X,Z(q))

��

g∗

Kp(g∗X) ��

cq,2q−p
g∗X

H2q−p(g∗X,Z(q))

commutes.
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Proof. The addition in Kp(X) is induced by the direct sum operation in PX ,
which gives rise to the H-space structure in ΩBQPX . Thus, the addition in Kp(X)
agrees with the group law as a homotopy group Kp(X) = πp(ΩBQPX) for p > 0.
The Hurewicz map (1.4.7.1) is a group homomorphism for p > 0, and the map
(1.4.7.3) is a group homomorphism for all p, which proves (i).

Formula (ii) follows from the Whitney product formula for the Chern classes
of the universal direct sum bundle p∗1EN ⊕ p∗2EM on BGLN/S ×S BGLM/S (see
Theorem 1.3.7).

The functoriality (iii) follows directly from the definitions and the functori-
ality of the Hurewicz map. The functoriality (iv) is proved similarly, using the
functoriality of the universal Chern class with respect to base-change described in
Remark 1.3.6.

1.4.10. Remark. The mod-n Chern classes

cq,2q−p :Kp(X ; Z/n) → H2q−p(X,Z/n(q))

satisfy the functorialities of Proposition 1.4.9; they are also additive for p ≥ 3 by
the same reasoning as in Proposition 1.4.9. For p = 2, cq,2q−p is additive if n is
odd. If n is even, then cq,2q−2 is not in general additive; this is due to the fact that
the mod n Hurewicz map is not in general a group homomorphism for even n! This
phenomenon and its consequences is discussed in [127], where the consequences
for the étale Chern classes are given in detail. Exactly the same consequences
hold for the motivic Chern classes. For instance, the motivic mod 2 Chern classes
cq,2q−2 :K2(X ; Z/2) → H2q−2(X,Z/2(q)) satisfy

cq,2q−2(a + b) = cq,2q−2(a) + cq,2q−2(b) + cq,2q−2(∂a ∪ ∂b),

where ∂ :K2(X ; Z/2) → K1(X) is the map in the universal coefficient sequence

0 → K2(X)/2 → K2(X ; Z/2) ∂−→ 2K1(X) → 0

[127, Proposition 2.4].

1.5. Localization and relativization

The relative K-theory with support, and the relative motivic cohomology with sup-
port give rise to the fundamental relativization sequences and localization sequences;
we now show that they are compatible via the Chern classes described in Exam-
ple 1.4.8. To describe these sequences, we first require a few generalities on iterated
homotopy fibers and iterated cones.

1.5.1. Homotopy fiber sequences. We refer the reader to (Part II, Chapter III, Sec-
tion 3) for the notions in this paragraph related to homotopy limits, and to [115]
and [95] for the basic notions of algebraic topology and simplicial sets.

Recall the category I := ∗ > 0 < 1 of Example 1.4.8(i). Let f : (X, ∗) → (Y, ∗)
be a map of pointed simplicial sets. We may then form the functor f̃ : Iop → Top∗

by

f̃(0) = Y, f̃(1) = X, f̃(∗) = ∗;
f̃(0 < 1) is the map f and f̃(0 < ∗) is the inclusion of ∗ as the base-point of Y .

Let [0, 1] denote the simplicial set Hom(−, [1]) : ∆op → Sets, with inclusions

0 : ∗ → [0, 1]; 1 : ∗ → [0, 1]
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given by the inclusions 0 �→ 0 and 0 �→ 1 of [0] in [1]. The simplicial path space
P (f) of the map f is defined as the fiber product

P (f) := X ×Y Hom([0, 1], Y ),

over the diagram

Hom([0, 1], Y )

��

1∗

X ��
f

Y,

and the simplicial homotopy fiber of f , defined as the fiber product

Fib(f) := P (f)×Y Hom
(
([0, 1], 0), (Y, ∗)

)
,

over the diagram

Hom
(
([0, 1], 0), (Y, ∗)

)
��

1∗

P (f) ��
0∗◦p2

Y.

One constructs directly from the definition of the homotopy limit a natural isomor-
phism of holimIop f̃ with Fib(f).

Suppose X and Y are fibrant (see e.g. [25, V,§3]). As the functor holim trans-
forms pointwise weak equivalences of fibrant simplicial sets to weak equivalences
[25, XI, 5.6], one can replace X and Y with the singular complex of their geometric
realizations, without changing the weak equivalence class of holimIop f̃ . Thus, it
follows that the geometric realization of holimIop f̃ is weakly equivalent to the usual
homotopy fiber of the map induced by f on the geometric realizations of X and Y
(see [93, Chapter III]).

Similarly, suppose we have an n-cube of (fibrant) pointed simplicial sets

X :<n>→ s.Sets∗.

We may form the iterated homotopy fiber of X , Fibn(X), inductively, by writing X
as a map of n − 1-cubes f :X+ → X− as in Chapter I, §2.6.4, taking the induced
map on the iterated homotopy fibers

Fibn−1f : Fibn−1X+ → Fibn−1X−,

and then taking the homotopy fiber. Sending ∗ to the one-point space ∗ extends
the functor X to the functor

X∗ :<n>∗ → s.Sets∗,

and one has the natural isomorphism of holim<n>∗X∗ with Fibn(X).
If we let

ΩX− :<n>→ s.Sets∗

be the functor which is the one-point simplicial set ∗ on all I ⊂ {1, . . . , n} with
n ∈ I, and X−(I) on all I ⊂ {1, . . . , n− 1}, then

(ΩX−)+ :<n− 1>→ s.Sets∗
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is the constant functor with value ∗, and (ΩX−)− = X−. Thus, we have the
isomorphism

holim
<n>∗

ΩX− ∼= Ω holim
<n−1>∗

X−,

where the loop space ΩY of a pointed simplicial set Y is the homotopy fiber of the
inclusion of the base-point ∗ → Y.

The maps ∗ → X+ and (ΩX−)− = X−
id−→ X− give the map ιX : (ΩX−)− →

X, yielding the sequence of functors

(ΩX−)− ∗ ◦in → X ∗ ◦in → X+∗ → X−∗,(1.5.1.1)

where in :<n− 1>∗ → <n>∗ is the inclusion functor in(I) := I ∪ {n}.
Applying holim to (1.5.1.1), we have the sequence of simplicial sets

holim
<n>∗

ΩX−∗ → holim
<n>∗

X∗ → holim
<n−1>∗

X+∗ → holim
<n−1>∗

X−∗,(1.5.1.2)

which is isomorphic to the (weak) fibration sequence

Ω holim
<n−1>∗

X−∗ → holim
<n>∗

X∗ → holim
<n−1>∗

X+∗ → holim
<n−1>∗

X− ∗ .

Now let A be an additive category, and X :<n> → Cb(A) a functor. Extend
X to X ∗ :<n>∗ → Cb(A) by sending ∗ to 0. We may inductively form the iterated
shifted cone of X , conen(X)[−n], by viewing X as a map f :X+ → X−, and taking
the shifted cone

conen(X)[−n] :=

cone
(
conen−1(X+)[−(n− 1)]

conen−1(f)[−(n−1)]−−−−−−−−−−−−−→ conen−1(X−)[−(n− 1)]
)
[−1].

If we take the non-degenerate homotopy limit holim<n>∗ n.d.X∗, we construct as
above a natural isomorphism in Kb(A)

holim
<n>∗ n.d.

X∗ ∼= conen(X)[−n].

Similarly, the sequence

holim
<n>∗ n.d.

ΩX−∗ →
A

holim
<n>∗ n.d.

X∗ → holim
<n−1>∗ n.d.

X+∗ → holim
<n−1>∗ n.d.

X− ∗

(1.5.1.3)

is isomorphic in Kb(A) to the shifted cone sequence

conen−1(X−)[−(n− 1)][−1] → conen(X)[−n]

→ conen−1(X+)[−(n− 1)] → conen−1(X−)[−(n− 1)].

1.5.2. Localization and relativization sequences. We apply the sequences (1.5.1.2)
and (1.5.1.3) of §1.5.1 to relative K-theory and relative motivic cohomology.

Let X be in V , let Y1, . . . , Yn be subschemes of X with YI := ∩i∈IYi in V for
each subset I of {1, . . . , n}. Let W be a closed subset of X , giving the relative
K-theory with support KW

p (X ;Y1, . . . , Yn) defined in Example 1.4.8 as the homo-
topy groups of a homotopy limit over the pointed n+ 1-cube <n+ 1>∗ of a certain
functor to simplicial sets. Similarly, we have the relative motivic cohomology with
support H∗W (X ;Y1, . . . , Yn,Z(q)) defined either via an iterated shifted cone (Chap-
ter I, §2.6.2-§2.6.6), or via a homotopy limit over <n+ 1>∗ using the isomorphism
mentioned in §1.5.1.
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The fibration sequence (1.5.1.2) gives the long exact relativization sequence

(1.5.2.1) → KW∩Yn
p+1 (Yn;Y1 ∩ Yn, . . . , Yn−1 ∩ Yn)

→ KW
p (X ;Y1, . . . , Yn) → KW

p (X ;Y1, . . . , Yn−1)

i∗n−→ KW∩Yn
p (Yn;Y1 ∩ Yn, . . . , Yn−1 ∩ Yn) →,

where the map i∗n is induced by pull-back with respect to the inclusion in :Yn → X.
Choosing a different face of n + 1-cube for the “last variable” gives the long

exact localization sequence

(1.5.2.2) → Kp+1(X \W ;Y1 \W, . . . , Yn \W ) → KW
p (X ;Y1, . . . , Yn)

→ Kp(X ;Y1, . . . , Yn)
j∗−→ Kp(X \W ;Y1 \W, . . . , Yn \W ) →,

where j∗ is induced by pull-back with respect to the open immersion j :X \W → X.
More generally, if W and F are closed subsets of X , the same construction

gives the localization sequence with support

(1.5.2.3) → K
F\W
p+1 (X \W ;Y1 \W, . . . , Yn \W ) → KW∪F

p (X ;Y1, . . . , Yn)

→ KF
p (X ;Y1, . . . , Yn)

j∗−→ KF\W
p (X \W ;Y1 \W, . . . , Yn \W ) → .

We have the analogous sequences for motivic cohomology: The relativization
sequence

(1.5.2.4) → Hp−1
W∩Yn

(Yn;Y1 ∩ Yn, . . . , Yn−1 ∩ Yn,Z(q))

→ Hp
W (X ;Y1, . . . , Yn,Z(q)) → Hp

W (X ;Y1, . . . , Yn−1,Z(q))

i∗n−→ Hp
W∩Yn

(Yn;Y1 ∩ Yn, . . . , Yn−1 ∩ Yn,Z(q)) →,

and the localization sequence

(1.5.2.5)
→ Hp−1

F\W (X \W ;Y1 \W, . . . , Yn \W,Z(q)) → Hp
W∪F (X ;Y1, . . . , Yn,Z(q))

→ Hp
F (X ;Y1, . . . , Yn,Z(q))

j∗−→ Hp
F\W (X \W ;Y1 \W, . . . , Yn \W,Z(q)) →

(the localization sequence without support in F is obtained by taking F = X).
As the sequences (1.5.2.1)-(1.5.2.5) are constructed by taking the long exact

homotopy, resp. motivic cohomology, associated to the fibration sequence (1.5.1.2),
resp. cone sequence (1.5.1.3), the functoriality of the Chern classes described in
Proposition 1.4.9(iii) and (iv) imply that the K-theory sequences are compatible
with the corresponding motivic cohomology sequences via the appropriate Chern
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classes defined in Example 1.4.8. For example, we have the commutative ladder

�� ��

KW∩Yn
p+1 (Yn;Y1≤∗<n ∩ Yn) ��cq,2q−p−1

��

H2q−p−1W∩Yn
(Yn;Y1≤∗<n ∩ Yn,Z(q))

��

KW
p (X ;Y1≤∗≤n) ��cq,2q−p

��

H2q−pW (X ;Y1≤∗≤n,Z(q))

��

KW
p (X ;Y1≤∗<n) ��cq,2q−p

��

i∗n

H2q−pW (X ;Y1≤∗<n)

��

i∗n

KW∩Yn
p (Yn;Y1≤∗<n ∩ Yn) ��cq,2q−p

��

H2q−pW∩Yn
(Yn;Y1≤∗<n ∩ Yn,Z(q))

��

Here Y1≤∗≤n denotes the collection Y1, . . . , Yn, and Y1≤∗<n stands for the collection
Y1, . . . , Yn−1.

2. Push-forward

In this section, we define the push-forward morphism in DM(V) associated to
a projective morphism in V , and verify the properties normally satisfied by projec-
tive push-forward in a reasonable cohomology theory: functoriality, compatibility
with pull-back in cartesian squares, and the projection formula. We verify the com-
patibility with cycle classes for the case of a closed embedding; the compatibility
of projective push-forward with cycle classes for an arbitrary projective morphism
is also valid for S = Spec k, where k is a field. We conclude the section with an
extension of push-forward to diagrams of schemes in V .

2.1. The Gysin morphism

We use the method of “deformation to the normal bundle” from [8] to define the
Gysin morphism associated to a closed embedding.

2.1.1. The split case. Let f :P → Z be a smooth map in V , with section s :Z → P,
let Ẑ be a closed subset of Z, and let P̂ = s(Ẑ).

We have the cycle class with support cldP,s(Z)(|s(Z)|) ∈ H2ds(Z)(P,Z(d)), cf.
(I.3.5.2.7). Using the cup products with support (Chapter I, §2.2.11) we have
the map

∪[s(Z)]s(Z) ◦ f∗ : ZZ,Ẑ (−d)[−2d] → ZP,P̂(2.1.1.1)

defined as the composition

ZZ,Ẑ (−d)[−2d]
f∗

−→ ZP,f−1(Ẑ)(−d)[−2d]
(−)∪s(Z),f−1(Ẑ)

P cldP,s(Z)(|s(Z)|)−−−−−−−−−−−−−−−−−−−−→ ZP,P̂ .
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Let j :Z \ Ẑ → Z and jP :P \ f−1(Ẑ) → P be the inclusions. The maps
(I.2.2.5.1)

∪[s(Z)] ◦ f∗ : ZZ(−d)[−2d] → ZP,s(Z)

∪[s(Z \ Ẑ)] ◦ f∗ : ZZ\Ẑ(−d)[−2d] → ZP\f−1(Ẑ),s(Z\Ẑ)

are isomorphisms by the remarks of Chapter I, §2.2.5. The triple

α := (∪[s(Z)]s(Z) ◦ f∗,∪[s(Z)] ◦ f∗,∪[s(Z \ Ẑ)] ◦ f∗)
gives the map of the distinguished localization triangles in DM(V) (see Chapter I,
§2.2.10)

(ZZ,Ẑ(−d)[−2d] → ZZ(−d)[−2d]
j∗−→ ZZ\Ẑ(−d)[−2d] → ZZ,Ẑ(−d)[1 − 2d])

α−→ (ZP,P̂ → ZP,s(Z)
j∗P−→ ZP\f−1(Ẑ),s(Z\Ẑ) → ZP,P̂ [1]),

hence the map (2.1.1.1) is an isomorphism.
We often omit the support s(Ẑ) from the notation; the meaning will be clear

from the context.

2.1.2. The deformation diagram. Let i :Z → X be a closed codimension d embed-
ding in V , and let Ẑ a be a closed subset of Z. Let q :Y → X×S A1S be the blow-up
of X ×S A1S along Z × 1, Ŷ the proper transform of Ẑ ×S A1S to Y , P the full
inverse image of Z× 1 in Y , P̂ the closed subset P ∩ Ŷ of P . Let i0 :X → Y be the
composition of the inclusion

idX × j0 :X → X ×S A1S
x �→ (x, 0),

with the inverse of the blow-up q :Y → X ×S A1S , i1 :P → Y the inclusion. P is
isomorphic to the projectivization of the normal bundle of Z × 1 in X ×S A1S ; let
f :P → Z be the resulting projection. Let [Z ×A1] denote the proper transform of
Z × A1 to Y . We note that the restriction of f to [Z × A1] gives an isomorphism
[Z × A1] → Z × A1, determining sections s′ to q over Z × A1, and s : Z → P to
f over Z, with s(Ẑ) = P̂ . We encapsulate the above discussion in the following
diagram:

X X × 0 ��
i0

��

idX×j0

Y

��

q

���
���

���
��

P��
i1

��

f

X × A1 Z × A1��
i×id

A1

��

s′

Z × 1��
idZ×j1

��

s

Z,

(2.1.2.1)

where j0 : 0 → A1, j1 : 1 → A1 are the inclusions.
By the results of §2.1.1, the map (2.1.1.1)

∪[s(Z)]s(Z) ◦ f∗ : ZZ,Ẑ (−d)[−2d] → ZP,P̂

is an isomorphism; the maps i∗1 : ZY,Ŷ → ZP,P̂ and i∗0 : ZY,Ŷ → ZX,Ẑ are isomor-
phisms by the homotopy axiom (Chapter I, Definition 2.1.4(a)). This gives the
sequence of isomorphisms in DM(V):

ZZ,Ẑ(−d)[−2d]
∪[s(Z)]s(Z)◦f∗

−−−−−−−−−→ ZP,P̂

(i∗1)
−1

−−−−→ ZY,Ŷ

i∗0−→ ZX,Ẑ ;
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we denote the composition by

i∗ : ZZ,Ẑ (−d)[−2d] → ZX,Ẑ .(2.1.2.2)

For Ẑ = Z, this gives the isomorphism i∗ : ZZ(−d)[−2d] → ZX,Z .

More generally, if X̂ is a closed subset of X containing Ẑ, we denote the com-
position

ZZ,Ẑ(−d)[−2d]
∪[s(Z)]s(Z)◦f∗

−−−−−−−−−→ ZP,P̂

(i∗1)
−1

−−−−→ ZY,Ŷ

i∗0−→ ZX,X̂

by

i∗ : ZZ,Ẑ(−d)[−2d] → ZX,X̂ .(2.1.2.3)

2.1.3. The Gysin distinguished triangle. Combining the localization distinguished
triangle (I.2.2.10.2)

ZX,Ẑ → ZX → ZX−Ẑ → ZX,Ẑ [1]

with the isomorphism (2.1.2.2) gives the Gysin distinguished triangle

ZZ,Ẑ(−d)[−2d] i∗−→ ZX
j∗−→ ZX−Ẑ

∂−→ ZZ,Ẑ(−d)[1 − 2d];(2.1.3.1)

the long exact cohomology sequence associated to (2.1.3.1) (after twisting by Z(q))
gives the exact Gysin sequence

. . .→ Hp−2d
Ẑ

(Z,Z(q − d)) → Hp(X,Z(q)) → Hp(X − Ẑ,Z(q))

→ Hp−2d−1
Ẑ

(Z,Z(q − d)) → . . . .

In particular, for Ẑ = Z, we have the Gysin distinguished triangle

ZZ(−d)[−2d] i∗−→ ZX
j∗−→ ZX−Z

∂−→ ZZ(−d)[1 − 2d]

and the exact Gysin sequence

. . .→ Hp−2d(Z,Z(q − d)) → Hp(X,Z(q)) → Hp(X − Ẑ,Z(q))

→ Hp−2d−1(Z,Z(q − d)) → . . . .

2.2. Properties of the Gysin morphism

2.2.1. Proposition. Suppose we have subschemes W i−→ Z
j−→ X of a scheme X ,

with X , Z and W in V , and with codimX(Z) = d and codimZ(W ) = e. Let Ŵ be

a closed subset of W , Ẑ a closed subset of Z, with Ẑ ⊂ Ŵ . Then the diagrams

ZW,Ŵ (−d− e)[−2d− 2e]

��
(i◦j)∗ ����

����
����

����
�

��
j∗ ZZ,Ŵ (−d)[−2d]

��

i∗

ZX,Ŵ

(1)
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and

ZZ,Ŵ (−d)[−2d] ��
i∗

��

id∗Z

ZX,Ŵ

��

id∗X

ZZ,Ẑ(−d)[−2d] ��
i∗

ZX,Ẑ

(2)

commute in DM(V). In addition, if i = idX , then i∗ = id.

Proof. For the commutativity of (1), let

YW , ŶW , PW , P̂W , iW0 :X → YW , iW1 :PW → YW ,

fW :PW →W, [W × A1]W and sW :W → PW

be as in §2.1.2 with Ŵ replacing Ẑ, and W replacing Z. Similarly, let

Y Z
W , Ŷ Z

W , PZ
W , P̂Z

W , iZW0 :Z → Y Z
W , iZW1 :PZ

W → Y Z
W ,

fZW :PZ
W →W, [W × A1]ZW , and sZW :W → PZ

W

be as in §2.1.2, after replacing Ẑ with Ŵ , replacing X with Z and replacing Z with
W . Finally, let

Y, ŶZ , P, P̂Z , i0 :X → Y, i1 :P → Y,

f :P → Z, [Z × A1], and s :Z → P

be as in §2.1.2, with Ŵ replacing Ẑ (and leaving X and Z the same). We let
[W × A1] denote the proper transform of W × A1 to Y .

We have the subscheme T := s(W ) of P , and closed subset T̂ := P̂Z = s(Ŵ )
of T . Let iT :T → P be the inclusion. Let

YT , ŶT , PT , P̂T , iT0 :P → YT , iT1 :PT → YT ,

fT :PT → T, [T × A1]T , and sT :T → PT

be as in §2.1.2, after replacing X with P , replacing Z with T and replacing Ẑ with
T̂ .

Let [f−1(W )] be the proper transform of f−1(W ) to YT , let Y 0T := YT \ (PT ∩
[f−1(W )]), and let P 0T = PT \ [f−1(W )]. Then the rational map YT → Y Z

W induced
by f × idA1 :P × A1 → Z × A1 restricts to a morphism

fZ/W :Y 0T → Y Z
W .

The section s :Z → P to f gives the section s× id :Z×A1 → P×A1 to f× idA1
S
;

blowing up W × 1 and s(W ) × 1 gives the section sZ/W :Y Z
W → Y 0T to fZ/W . In

particular, Y 0T contains ŶT ; by the excision isomorphism the inclusion Y 0T → YT
induces the isomorphism ZYT ,ŶT

∼= ZY 0
T ,ŶT

. Similarly, we have the isomorphism
ZPT ,P̂T

∼= ZP 0
T ,P̂T

.
Restricting sZ/W to PZ

W gives the commutative diagram

PZ
W

��

fZ
W

��
sZ/W

PT

��

fT

W

��

sZW

��
s|W

T.

��

sT
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In addition, we have the identity of cycles f∗Z/W (|sZW (W )|) · |sZ/W (PZ
W )| = |sT (T )|,

the intersection product taking place on P 0T . This gives us the commutative diagram
of isomorphisms

ZP,T̂

��

(i∗T0)
−1

���
���

���
��

��

(i∗T0)
−1

ZZ,Ŵ (−d)[−2d]��
∪[s(Z)]◦f∗

��

(i∗W0)
−1

ZYT ,ŶT

��

i∗T1

��∼ ZY 0
T ,ŶT

��

i∗T1

ZY Z
W ,Ŷ Z

W
(−d)[−2d]��

∪[sZ/W (Y
Z
W )]◦f∗

Z/W

��

iZ∗
W1

ZPT ,P̂T
��∼ ZP 0

T ,P̂T
ZPZ

W ,P̂Z
W

(−d)[−2d]��

∪[sZ/W (P
Z
W )]◦f

∗
Z/W

ZT,T̂ (−d− e)[−2d− 2e]

��

∪[sT (T )]◦f∗
T

		

∪[sT (T )]◦f∗
T

����������
��

s∗|W

ZW,Ŵ (−d− e)[−2d− 2e].

��

∪[sZW (W )]◦f
Z∗
W

(2.2.1.1)

Let h1 :Q1 → X×A1×A1 be the blow-up of X×A1×A1 along the subscheme
Z × A1 × 1, let [W × 1× A1]1 ⊂ Q1 be the proper transform of W × 1 × A1 , and
let h2 :Q→ Q1 be the blow-up along [W × 1× A1]1. Let h :Q→ X ×A1 × A1 the
composition h1 ◦ h2. Then we have isomorphisms (as X × A1-schemes)

h−1(X × A1 × 0) ∼= YW ; h−1(X × 0× A1) ∼= Y.(2.2.1.2)

We identify h−1(X × A1 × 0) with YW , and h−1(X × 0 × A1) with Y via these
isomorphisms.

Let E1 be the exceptional divisor of h1, E the exceptional divisor of h2, and
[E1] the proper transform of E1 to Q. SInce E is isomorphic to P × A1, and
E ∩ [W × 1× A1] goes to T × 1 under this isomorphism, we have an isomorphism

[E1] ∼= YT(2.2.1.3)

as a Z × A1-scheme; we identify [E1] with YT via this isomorphism.
Let [W ×A1×A1] and [Ŵ ×A1×A1] be the proper transforms of W ×A1×A1

and Ŵ ×A1×A1 to Q. Then the map h|[W×A1×A1] : [W ×A1×A1] →W ×A1×A1

is an isomorphism, and we have

h−1(X × A1 × 0) ∩ [W × A1 × A1] = [W × A1]W ,

h−1(X × 0× A1) ∩ [W × A1 × A1] = [W × A1],(2.2.1.4)

[E1] ∩ [W × A1 × A1] = [T × A1]T .

We have similar equalities with Ŵ replacing W , and with T̂ replacing T .
Let Q̂ = [Ŵ × A1 ×A1] and Ê = E ∩ [Ŵ ×A1 × A1]. As h1 : [W ×A1 × 1]1 →

W × A1 × 1 is an isomorphism, we have the projection hE :E → W × A1. The
restriction of hE to E∩[W×A1×A1] gives isomorphisms E∩[W×A1×A1] −→W×A1

and Ê → Ŵ × A1, which thus defines the section sE :W × A1 → E to hE .
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We have YW ∩E = PW , YW ∩ Ê = P̂W , YT ∩E = PT , and YT ∩ Ê = P̂T . The
isomorphisms (2.2.1.2), (2.2.1.3) and (2.2.1.4) give us inclusions

i#0 :YW → Q; i0# :Y → Q; i#1 :YT → Q; i1# :E → Q;

i00 :X → Q; i10 :PW → Q; i01 :P → Q; i11 :PT → Q;(2.2.1.5)
iE0 :PW → E; iE1 :PT → E.

We use the convention that the image of iab lies in the fiber of Q over X × (a, b),
that of i#b lies in the fiber over X × A1 × b, etc.

Putting (2.2.1.2)-(2.2.1.5) together and using the homotopy axiom gives the
commutative diagram of isomorphisms in DM(V),

ZX,Ŵ ZY,ŶZ
��

i∗0 ��
i∗1 ZP,P̂Z

ZYW ,ŶW

��

i∗W1

��

i∗W0

ZQ,Q̂
��

i∗#0





i∗10

��
��
��
��
��
��
�

��

i∗1#

��

i∗11 ��
��

��
��

��
��

�

��

i∗00

�������������

��

i∗0#



i∗01

�������������
��

i∗#1

ZYT ,ŶT

��

i∗T0

��

i∗T1

ZPW ,P̂W
ZE,Ê

��
i∗E0

��
i∗E1

ZPT ,P̂T
.

(2.2.1.6)

Let i0 :W → W × A1, i1 :W → W × A1 be the inclusions i0(w) = (w, 0),
i1(w) = (w, 1). We have the commutative diagram of isomorphisms in DM(V),

ZW,Ŵ (−d− e)[−2d− 2e] ZT,T̂ (−d− e)[−2d− 2e]��
s∗|W

��
∪[sT (W )]◦f∗

T ZPT ,P̂T

ZW×A1,Ŵ×A1(−d− e)[−2d− 2e]

��

i∗1

��
∪[sE(W×A1)]◦h∗

E

��

i∗0

ZE,Ê

��

i∗E1

��

i∗E0

ZW,Ŵ (−d− e)[−2d− 2e]. ��
∪[sW (W )]◦f∗

W

ZPW ,P̂W
.

(2.2.1.7)

Since the composition (i∗0)−1 ◦ i∗1 is the identity, the composition

ZW,Ŵ (−d− e)[−2d− 2e]
∪[sW (W )]◦f∗

W−−−−−−−−−→ ZPW ,P̂W

(i∗E0)
−1

−−−−−→ ZE,Ê

i∗E1−−→ ZPT ,P̂T

(∪[sT (W )]◦f∗
T )

−1

−−−−−−−−−−−→ ZT,T̂ (−d− e)[−2d− 2e]
s∗|W−−→ ZW,Ŵ (−d− e)[−2d− 2e]

is the identity.
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We thus have

(i ◦ j)∗ = i∗W0 ◦ (i∗W1)
−1 ◦ ∪[sW (W )] ◦ f∗W (by definition)

= i∗W0 ◦ (i∗W1)
−1 ◦ i∗E0 ◦ (i∗E1)

−1 ◦
∪ [sT (T )] ◦ f∗T ◦ (s∗W )−1

(2.2.1.7)

= i∗0 ◦ (i∗1)
−1 ◦ i∗T0 ◦ (i∗T1)

−1 ◦
∪ [sT (T )] ◦ f∗T ◦ s∗W

(2.2.1.6)

= (i∗0 ◦ (i∗1)
−1 ◦ ∪[s(Z)] ◦ f∗) ◦

(iZ∗W0 ◦ (iZ∗W1)
−1 ◦ ∪[sZW (W )] ◦ fZ∗W )

(2.2.1.1)

= i∗ ◦ j∗. (by definition)

The commutativity of (2) follows directly from the functoriality of the cycle
map, Chapter I, Proposition 3.5.3(i).

To prove the assertion idX∗ = id, we note that the blow-up of X × A1 along
X × 1 is isomorphic to X × A1, hence idX∗ is the composition

ZX,X̂

(i∗1)
−1

−−−−→ ZX×A1,X̂×A1

i∗0−→ ZX,X̂ ,

where i0 :X → X × A1 and i1 :X → X ×A1 are the 0 and 1 sections. As p1 ◦ i0 =
p1 ◦ i1 = idX , the above composition is the identity.

2.2.2. Proposition [projection formula]. Let i :Z → X be a closed embedding in

V of codimension d and let X̂i be closed subsets of X , i = 1, 2. Let Ẑi = Z ∩ X̂i,
i = 1, 2. Then the diagram

ZZ,Ẑ1
(−d)[−2d]⊗ ZX,X̂2

��

i∗⊗id

��
id∗Z⊗i∗ ZZ,Ẑ1

(−d)[−2d]⊗ ZZ,Ẑ2

��

∪Z

ZZ,Ẑ1∩Ẑ2
(−d)[−2d]

��

i∗

ZX,X̂1
⊗ ZX,X̂2

��
∪X

ZX,X̂1∩X̂2

commutes in DM(V).

Proof. To simplify the notation, we give the proof in the case Z = Ẑ1 = Ẑ2,
X = X̂1 = X̂2.

Via the diagram (2.1.2.1), we have the definition of the map i∗ : ZZ(−d)[−2d] →
ZX as the composition

(2.2.2.1) ZZ(−d)[−2d]
f∗

−→ ZP (−d)[−2d]
∪[s(Z)]−−−−→ ZP,s(Z)

(i∗1)
−1

−−−−→ ZY,Z×A1
i∗0−→ ZX .
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Taking the product of (2.1.2.1) with X yields the diagram (XX := X ×S X ,
PX := P ×S X , etc.)

XX XX × 0 ��
iX0

��

idXX
×j0

YX

��

qX

���
���

���
���

PX
��

iX1

��

fX

XX × A1 ZX × A1��
iX×idA1

��

s′X

ZX × 1��
idZX

×j1

��

sX

ZX ,

(2.2.2.2)

which gives the definition of the map (i× idX)∗ : ZZ×X(−d)[−2d] → ZX×X,Z×X as
the composition

(2.2.2.3) ZZ×X(−d)[−2d]
f∗
X−−→ ZPX (−d)[−2d]

∪[sX(ZX )]−−−−−−−→ ZPX ,sX (ZX )

(i∗X1)
−1

−−−−−→ ZYX ,ZX×A1
i∗X0−−→ ZX×X .

We have the commutative diagram

ZZ(−d)[−2d]⊗ ZX
��

�Z,X

��

f∗⊗id

ZZ×X(−d)[−2d]

��

f∗
X

ZP (−d)[−2d]⊗ ZX
��

�P,X

��

∪[s(Z)]⊗id

ZPX (−d)[−2d]

��

∪[sX (ZX)]

ZP,s(Z) ⊗ ZX ��
�P,X

ZPX ,sX (ZX)

ZX ⊗ ZX
��

�X,X

��

i∗0⊗id

ZX×X ,

��

i∗X0

which, together with (2.2.2.1) and (2.2.2.3), yields the commutativity of the diagram

ZZ(−d)[−2d]⊗ ZX
��

�Z,X

��

i∗⊗id

ZZ×X(−d)[−2d]

��

iX∗

ZX ⊗ ZX
��

�X,X

ZX×X .

The naturality of the external products �∗,∗ implies that the diagram

ZZ(−d)[−2d]⊗ ZX
��

id∗Z⊗i
∗

��

�Z,X

ZZ(−d)[−2d]⊗ ZZ

��

�Z,Z

ZZ×X(−d)[−2d] ��
(idZ×i)∗

ZZ×Z(−d)[−2d]

commutes. Thus, we need only check the commutativity of the diagram

ZZ×X(−d)[−2d] ��
(idZ ,i)∗

��

(i×idX )∗

ZZ(−d)[−2d]

��

i∗

ZX×X ��
∆∗

X

ZX .

(2.2.2.4)



138 III. K-THEORY AND MOTIVES

We have the commutative diagram

Z ��
(i,idZ)

��

i

Z ×X

��

i×idX

X ��
∆X

X ×X.

We take the product with A1, and blow up along Z × 1 and Z × X × 1, which,
together with the diagram (2.1.2.1) and (2.2.2.2), gives us the commutative diagram

Z
��s

��

(i,idZ)

P��
f

��
i1

��

δP

Y

��

δY

X��
i0

��

∆X

ZX
��

sX
PX��

fX

��
iX1

YX XX .��
iX0

(2.2.2.5)

In addition, we have

δ∗Y (|[ZX × A1]|) = |[Z × A1]|; δ∗P (|sX([ZX ])|) = |s([Z])|.(2.2.2.6)

Putting (2.2.2.5) and (2.2.2.6) together gives the commutative diagram

ZXX
��

∆∗
X

ZX

ZYX ,ZX×A1 ��
δ∗Y

��

i∗X0

��

i∗X1

ZY,Z×A1

��

i∗0

��

i∗1

ZPX ,sX (ZX )
��

δP ZP,s(Z)

ZPX (−d)[−2d] ��
δP

��

∪[sX(ZX )]

ZP (−d)[−2d]

��

∪[s(Z)]

ZZ×X(−d)[−2d] ��
(i,idZ)

∗

��

f∗
X

ZZ(−d)[−2d].

��

f∗

As this implies the commutativity of (2.2.2.4), the proof is complete.

2.2.3. Theorem. Let i :Z → X be a closed embedding in V , of codimension d, and
let W be in Zp(Z/S), supported on a closed subset Ẑ of Z. Then

i∗(clp
Z,Ẑ

(W )) = clp+q
X,Ẑ

(i∗(W )),

where clp
Z,Ẑ

, clp+q
X,Ẑ

are the cycle classes with support (I.3.5.2.6).
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Proof. We use the notation from §2.1.2. From Chapter I, Proposition 3.5.3,
we have

(∪[s(Z)] ◦ f∗)(clp
Z,Ẑ

(W )) = clp+q
P,s(Ẑ)

(s(Z) ∪ f∗(W ))

= clp+q
P,s(Ẑ)

(s∗(W )).

i∗1(clp+q
Y,Ẑ×A1(i∗(W )× A1)) = clp+q

P,s(Ẑ)
(s∗(W )).

i∗0(clp+q
Y,Ẑ×A1(i∗(W )× A1)) = clp+q

X,Ẑ
(i∗(W )).

These identities, together with the definition of i∗, prove the theorem.

2.2.4. Lemma. Let i :Z → X be a closed embedding in V , p :W → X a morphism
in V , giving the cartesian diagram

W ×X Z ��
p1

��

p2

W

��

p

Z ��
i

X.

Suppose that TorOX
p (OZ ,OW ) = 0 for all p > 0. Then

p∗ ◦ i∗ = p1∗ ◦ p∗2.

Proof. We use the notation from §2.1.2, and give the proof without closed
support to simplify the notation.

Since i is a closed embedding in V , Z is a local complete intersection in X .
The vanishing of the Tors implies that the closed embedding p1 :W ×X Z → W
identifies W ×X Z with a local complete intersection of codimension equal to the
codimension d of Z in X .

Applying the product W ×X (−) to the diagram (2.1.2.1) gives the diagram

W W × 0 ��
iW0

��

idW×j0

W ×X Y

��

qW

			
			

			
			

W ×X P��
iW1

��

fW

W × A1 W ×X Z × A1��
pW×idA1

��

s′W

W ×X Z × 1��
idW×XZ×j1

��

sW

W ×X Z.

Since W ×X Z is a codimension d local complete intersection, this diagram is the
same as the deformation diagram for the closed embedding p1.

We have the commutative diagram

W ×X Z
��

sW

��

p2

W ×X P��
fW

��

p2

��
iW1

W ×X Y

��

p2

W��
iW0

��

p2

Z
��s

P��
f

��
i1

Y X.��
i0

In addition, we have

p∗2(|[Z × A1]|) = |[W ×X Z × A1]|; p∗2(|s(Z)|) = |sW (W ×X Z)|.
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This gives us the commutative diagram

ZW,W×XZ ZX,Z��
p∗

ZW×XY,W×XZ×A1

��

i∗W0

��

i∗W1

ZY,Z×A1��
p∗
2

��

i∗0

��

i∗1

ZW×XP,s(W×XZ) ZP,s(Z)��
p∗
2

ZW×XP,s(W×XZ)(−d)[−2d]

��

∪[sW (W×XZ)]

ZP,s(Z)(−d)[−2d]��
p∗
2

��

∪[s(Z)]

ZW×XZ(−d)[−2d]

��

f∗
W

ZZ(−d)[−2d].��
p∗
2

��

f∗

(2.2.4.1)

By definition, p1∗ is the composition

ZW×XZ(−d)[−2d]
∪[sW (W×XZ)]◦f∗

W−−−−−−−−−−−−→ ZW×XP,s(W×XZ)

(i∗W1)
−1

−−−−−→ ZW×XY,W×XZ×A1
i∗W0−−→ ZW,W×XZ .

This, together with the definition of i∗ and the diagram (2.2.4.1), completes the
proof.

2.2.5. Theorem [semi-purity]. Suppose that the base scheme S is Spec k for a field
k. Let X be in V , and X̂ a closed subset of codimension ≥ d. Then

H2q−p
X̂

(X,Z(q)) = 0, if q = d and p �= 0, or if q < d.

Proof. Each X in V is a projective limit of schemes Xα in Smkα , with kα
finitely generated over the prime field k0. By (Chapter II, Corollary 3.4.3 and
Theorem 3.6.6), we may assume that k is finitely generated over k0, and that X is
in Smk.

Let f∗X denote X , considered as an object of Smessk0 . Since we have the identity
of complexes Zmot(X/k, ∗) = Zmot(f∗X/k0, ∗), Theorem 3.6.6 of Chapter II gives
us the isomorphism of motivic cohomology, H2q−p

f∗X̂
(f∗X,Z(q)) ∼= H2q−p

X̂
(X,Z(q)).

Thus, we may assume that k is perfect.
We proceed by downward induction on d, the case d = dimk X+1 being trivially

true. Let Ŷ ⊂ X̂ be the singular locus of X̂, together with all components of X̂
which have codimension > d, so codimX(Ŷ ) ≥ d + 1. We have the distinguished
triangle (I.2.2.10.1)

ZX,Ŷ (q) → ZX,X̂(q) → ZX\Ŷ ,X̂\Ŷ → ZX,Ŷ (q)[1].

Applying the induction hypothesis to the long exact cohomology sequence associ-
ated to this triangle, we reduce to the case of a smooth X̂, of pure codimension
d.

In this case, we have the isomorphism i∗ : ZX̂(q − d) → ZX,X̂(q)[2d], giving
the isomorphism i∗ :H−p(X̂,Z(q − d)) → H2d−p

X̂
(X,Z(q)). By Theorem 3.6.6 of
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Chapter II, we have H−p(X̂,Z(q − d)) = CHq−d(X̂, 2(q − d) + p), which is zero if
q < d, or if q = d and p �= 0. Thus, the induction goes through, completing the
proof.

2.2.6. We now check that, in case of a section i :Z → X to a smooth projection
q :X → Z, with s(Z) codimension d on X , the definition (2.1.2.3) of i∗ agrees with
the map (2.1.1.1)

∪[i(Z)]i(Z) ◦ q∗ : ZZ,Ẑ(−d)[−2d] → ZX,i(Ẑ).

We consider a somewhat more general situation.
Let Ẑ be a closed subset of Z, and let X̂ be a closed subset of X containing

i(Ẑ). Let F be a closed subset of X with i(Z) ⊂ F and with F ∩ q−1(Ẑ) ⊂ X̂.

We have the cycle class with support cldX,F (|i(Z)|) ∈ H2dF (X,Z(d)); let ∪[i(Z)]F ◦
q∗ : ZZ,Ẑ(−d)[−2d] → ZX,X̂ be the composition

ZZ,Ẑ (−d)[−2d]
q∗−→ ZX,q−1(Ẑ)

(−)∪F,q−1(Ẑ)
X cldX,F (|i(Z)|)−−−−−−−−−−−−−−−−−→ ZX,q−1(Ẑ)∩F → ZX,X̂ .

2.2.7. Lemma. The two maps

∪[i(Z)]F ◦ q∗ : ZZ,Ẑ(−d)[−2d] → ZX,X̂ ,

i∗ : ZZ,Ẑ(−d)[−2d] → ZX,X̂

agree in DM(V).

Proof. By the functoriality of the cycle class with respect to change of sup-
port, we have ∪[i(Z)]F ◦ q∗ = ∪[i(Z)]i(Z) ◦ q∗, so we may assume that F = i(Z).

We use the notation of §2.1.2. The map q induces maps qY :Y → Z × A1 and
qP :P → Z, with s′ a section to qY , and qP = f . Letting iZ0 :Z → Z × A1 and
iZ1 :Z → Z × A1 be the 0 and 1 sections, respectively, we have the commutative
diagram

X

��

q

��
i0

Y

��

qY

P��
i1

��

f

Z

��

i

��
iZ0

Z × A1

��

s′

Z.��
iZ1

��

s

In addition, we have the identity of cycles |i(Z)| = i∗0(|s′(Z ×A1)|). This gives
the commutative diagram

ZZ,Ẑ
��

∪[i(Z)]i(Z)◦q∗
ZX,X̂

ZZ×A1,Ẑ×A1

��

i∗Z1

��
∪[s′(Z×A1)]s′(Z×A1)◦q

∗
Y

��

i∗Z0

ZY,s′(Ẑ×A1)

��

i∗0

��

i∗1

ZZ,Ẑ
��

∪[s(Z)]s(Z))◦f∗

ZP,s(Ẑ).

(2.2.7.1)

As i∗Z0 = (p∗1)
−1 = i∗Z1, (2.2.7.1), together with the definition of i∗, completes the

proof.
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Finally, we check the compatibility of the Gysin morphism with the external
products.

2.2.8. Proposition. Let i :Z → X be a closed embedding in V of codimension d,
Ẑ a closed subset of Z and X̂ a closed subset of X with Ẑ ⊂ X̂. Let W be in V ,
Ŵ a closed subset of W . Then the diagram

ZZ,Ẑ(−d)[−2d]⊗ ZW,Ŵ
��

i∗⊗id

��

�Z,W

ZX,X̂ ⊗ ZW,Ŵ

��

�X,W

ZZ×SW,Ẑ×SŴ
(−d)[−2d] ��

(i×idW )∗
ZX×SW,X̂×SŴ

commutes in DM(V).

Proof. Taking the diagram (2.1.2.1) and forming the product (−)×SW gives
the diagram defining the map (i× idW )∗. We have the commutative diagram

ZX,X̂ ⊗ ZW,Ŵ
��

�X,W ZX×SW,X̂×SŴ

ZY,Ẑ×A1 ⊗ ZW,Ŵ
��

�Y,W

��

i∗0⊗id

��

i∗1⊗id

ZY×SW,Ẑ×SŴ×A1

��

(i0×idW )∗

��

(i1×idW )∗

ZP,s(Ẑ) ⊗ ZW,Ŵ
��

�P,W ZP×SW,(s×idW )(Ẑ×SŴ )

ZP,s(Ẑ)(−d)[−2d]⊗ ZW,Ŵ
��

�P,W

��

∪[s(Z)]⊗id

ZP×SW,(s×idW )(Ẑ×SŴ )
(−d)[−2d]

��

∪[(s×idW )(Z×SW )]

ZZ,Ẑ (−d)[−2d]⊗ ZW,Ŵ
��

�Z,W

��

f∗⊗id

ZZ×SW,Ẑ×SŴ
(−d)[−2d].

��

(f×idW )∗

This, together with the definition of i∗ and (i× idW )∗, completes the proof.

2.3. Push-forward for a projection

We use the projective bundle formula to define the push-forward q∗ for q : P(E) → X
the projective space bundle associated to a vector bundle E → X .

2.3.1. The definition of push-forward for a projection. Let X be in V , let p :E → X
be a vector bundle of rank N + 1, and let q : P(E) → X the associated PN -bundle
with tautological bundle OE(1). Let X̂ be a closed subset of X , and P̂E the inverse
image q−1(X̂). We let ζ = cl1(O(1)). By Theorem 1.3.2, we have the isomorphism

αE
X,X̂

:=
N∑
i=0

αE
i : ⊕N

i=0 ZX,X̂(N − i)[2N − 2i] → Z
P(E),P̂E

(N)[2N ].

We define the map q∗ : Z
P(E),P̂E

(N)[2N ] → ZX,X̂ to be the composition πN ◦
(αE

X,X̂
)−1, where πN : ⊕N

i=0 ZX,X̂(N − i)[2N − 2i] → ZX,X̂ is the projection on the
summand i = N .
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2.3.2. Lemma. Let X be in V , and let j :E → F be a surjection of vector bundles
on X , giving the closed embedding over X , j̄ : P(F ) → P(E). Let qE : P(E) → X ,
qF : P(F ) → X be the structure morphisms. Then

qF∗ = qE∗ ◦ j̄∗.

Proof. Let ζE = c1(OE(1)) and ζF = c1(OF (1)). By the naturality of the
first Chern class (Proposition 1.2.3(i)), and of the tautological bundle O(1), we
have

j̄∗(ζE) = ζF .(2.3.2.1)

Let
αE
i : ZX,X̂(−i)[−2i] → Z

P(E),P̂E
,

αF
i : ZX,X̂(−i)[−2i] → Z

P(F ),P̂F

be the maps (1.3.1.1), i.e., the respective compositions

ZX,X̂(−i)[−2i]
q∗E−→ Z

P(E),P̂E
(−i)[−2i]

∪ζiE−−→ Z
P(E),P̂E

,

ZX,X̂(−i)[−2i]
q∗F−→ Z

P(F ),P̂F
(−i)[−2i]

∪ζiF−−→ Z
P(F ),P̂F

.

Let N + 1 = rnk E, M + 1 = rnk F , and d = N −M . Let j̄∗|P(F )| denote the
cycle on P(E) determined by the subscheme P(F ); by (Appendix A, Remark 2.3.4),
j̄∗|P(F )| is an element of Zd(P(E)/S). Since qF = qE ◦ j̄, we have

j̄∗(q∗F (−) ∪ ζiF ) = j̄∗
(
cl0P(F )(|P(F )|) ∪ j̄∗(ζiE ∪ q∗E(−))

)
by Proposition 3.5.6
and Proposition 3.5.3,
Chapter I

= cldP(E)(j̄∗|P(F )|) ∪ (ζiE ∪ q∗E(−)) by Proposition 2.2.2
and Theorem 2.2.3.

Thus

j̄∗ ◦ αF
i (−) = cldP(E)(j̄∗|P(F )|) ∪ αE

i (−).(2.3.2.2)

We claim that there are elements ai ∈ H2i(X,Z(i)) such that

cldP(E)(j̄∗|P(F )|) = ζdE +
d∑

i=1

q∗E(ai)ζd−iE .(2.3.2.3)

Indeed, by the projective bundle formula (Theorem 1.3.2) we have

cldP(E)(j̄∗|P(F )|) =
N∑
i=0

q∗E(bi)ζiE

for unique elements bi ∈ H2d−2i(X,Z(d − i)). By the splitting principle (§1.3.3),
we may assume that the kernel of the surjection j :E → F is a direct sum of line
bundles: ker j = ⊕d

i=1Li.
Let ti : q∗ELi → OP(E)(1) be the composition

q∗ELi ↪→ q∗EE
π−→ OP(E)(1),

where π is the canonical surjection. Twisting by q∗EL
−1
i , ti determines the section

si :OP(E) → OP(E)(1)⊗q∗EL
−1
i ; let Hi be the zero subscheme of si. One checks by a
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local computation that Hi is smooth over X , hence the cycle |Hi| is in Z1(P(E)/S).
By Proposition 1.2.3(iii), we have cl1(Hi) = ζE − q∗E(c1(Li)).

One also checks by a local computation that j̄(P(F )) is the scheme-theoretic
complete intersection j̄(P(F )) = ∩d

i=1Hi. Thus

cldP(E)(j̄∗|P(F )|) = cldP(E)(|H1 ∩ . . . ∩Hd|)
= cl1P(E)(|H1|) ∪ . . . ∪ cl1P(E)(|Hd|)

=
d∏

i=1

(ζE − q∗E(c1(Li)))

= ζdE +
d∑

i=1

q∗E(ai)ζd−iE ,

as claimed.
Combining (2.3.2.3) with the identity (2.3.2.2), we have the identity

j̄∗ ◦ αF
j = αE

d+j +
d∑

i=1

αE
d+j−i ◦ (ai ∪X (−)), for 0 ≤ j ≤M.

Thus there is an N + 1×M + 1 matrix

P :=
(
pij
)

; pij ∈ H∗(X,Z(∗)),
with

pd+j,j = 1; j = 0, . . . ,M
pij = 0; for i > d + j,

such that the diagram

Z
P(F ),P̂F

(−d)[−2d] ��
j̄∗ Z

P(E),P̂E

⊕M
i=0ZX,X̂(−i− d)[−2i− 2d]

��

αF
X,X̂

��
P∪(−)

⊕N
i=0ZX,X̂(−i)[−2i]

��

αE
X,X̂

commutes. This implies the desired identity qF∗ = qE∗ ◦ j̄∗.

2.3.3. Proposition [projection formula]. LetX be in V . Let p :E → X be a vector

bundle of rank N + 1, q :P = P(E) → X the associated PN -bundle, X̂i, i = 1, 2
closed subsets of X , and P̂i = q−1(X̂i). Then the diagram

ZP,P̂1
(N)[2N ]⊗ ZX,X̂2

��

q∗⊗id

��
id∗P⊗q

∗

ZP,P̂1
(N)[2N ]⊗ ZP,P̂2

��

∪P

ZP,P̂1∩P̂2(N)[2N ]

��

q∗

ZX,X̂1
⊗ ZX,X̂2

��
∪X

ZX,X̂1∩X̂2

commutes.
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Proof. We give the proof in case X̂1 = X̂2 = X to simplify the notation.
The associativity and commutativity of products implies the commutativity of the
diagram

ZX ⊗ ZX
��

αE
i ⊗q

∗

��

∪X

ZP,P̂1
(i)[2i]⊗ ZP

��

∪P

ZX
��

αE
i

ZP (i)[2i].

This, together with the definition of q∗, proves the proposition.

2.3.4. Lemma. Let q : P(E) → X be the projective bundle associated to a rank
N + 1 vector bundle E → X on X , p :W → X a morphism in V , giving the
cartesian diagram

P(p∗E) W ×X P(E)

��

p1

��
p2

P(E)

��

q

W ��
p X.

Then
p∗ ◦ q∗ = p1∗ ◦ p∗2.

Proof. Let ζ = c1OE(1) and ζW = c1Op∗E(1). Then p∗2(ζ) = ζW . This implies
the relation p∗2 ◦ αE

i = αp∗E
i ◦ p∗, which in turn implies the desired result.

2.3.5. Remark. In the case of the dimension 0 projective bundle, q : P0X = X → X ,
the projective bundle isomorphism is the identity map, hence q∗ = id.

2.3.6. Proposition. Let p :E → X be a vector bundle of rank N + 1, q :P :=
P(E) → X the associated PN -bundle, X̂ a closed subset of X , P̂ = q−1(X̂). Let W
be in V , Ŵ a closed subset ofW giving us the projective bundle q× idW :P×SW →
X ×S W associated to the vector bundle p∗1E → X ×S W. Then the diagram

ZP,P̂ (N)[2N ]⊗ ZW,Ŵ
��

q∗⊗id

��

�P,W

ZX,X̂ ⊗ ZW,Ŵ

��

�X,W

ZP×SW,P̂×SŴ
(N)[2N ] ��

(q×idW )∗
ZX×SW,X̂×SŴ

commutes.

Proof. Since p∗1(c1(OP(E)(1))) = c1(OP(p∗
1E)

(1)), we have the commutative
diagram

ZX,X̂(N − i)[2N − 2i]⊗ ZW,Ŵ
��

αE
i ⊗id

��

�X,W

ZP,P̂ (N)[2N ]⊗ ZW,Ŵ

��

�P,W

ZX×SW,X̂×SŴ
(N − i)[2N − 2i] ��

α
p∗1E
i

ZP×SW,P̂×SŴ
(N)[2N ].

This, together with the definition of q∗ and (q × idW )∗, proves the result.
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2.4. Push-forward for a projective morphism

In this section, we assume that the base-scheme S admits an ample family of line
bundles. Since each scheme X in V ⊂ SmS is a quasi-projective scheme over S,
this implies that X admits an ample family of line bundles as well, i.e., for each
vector bundle E → X there is a line bundle L on X such that E ⊗ L is generated
by global sections.

2.4.1. Let p :Y → X be a projective morphism in V . By definition, there is a
vector bundle E → X , with associated projective bundle q : P(E) → X , and a
closed embedding i :Y → P(E) such that p = q ◦ i.

2.4.2. Lemma. SupposeX and Y are of pure dimension d and e over S, respectively.
Let X̂ be a closed subset of X , Ŷ a closed subset of Y such that p(Ŷ ) ⊂ X̂. Let

p :Y → X be a projective morphism, and let Y
i−→ P(E)

q−→ X be a factorization of
p as a closed embedding followed by a projection. Then the composition

ZY,Ŷ (e)[2e] i∗−→ Z
P(E),q−1(X̂)(a)[2a]

q∗−→ ZX,X̂(d)[2d]

(a = dimS(P(E))) depends only on the morphism p.

Proof. Suppose we have another factorization of p as q′ ◦ i′, with i′ :Y →
P(E′) a closed embedding, and q′ : P(E′) → X the projection. The projections
E⊕E′ → E, E⊕E′ → E′ induce the closed embeddings j : P(E) → P(E⊕E′) and
j′ : P(E′) → P(E ⊕ E′). Letting r : P(E ⊕ E′) → X be the structure morphism, we
have the commutative diagrams

Y ��i

��

p

P(E)

��

q


















��

j

X P(E ⊕ E′)��
r

Y

��

p

��i′
P(E′)

��
q′



















��

j′

X P(E ⊕ E′).��
r

This reduces us to considering the case of a projection j :E = F ⊕ F ′ → F, giving
the induced closed embedding j̄:

P(F )

��
q′ ��

��
��

��
��

j̄
P(E)

��
q

��
��
��
��

X

and closed embedding i′ :Y → P(F ) with i = j̄ ◦ i′.
By Proposition 2.2.1 and Lemma 2.3.2, we have

q∗ ◦ i∗ = q∗ ◦ j̄∗ ◦ i′∗
= q′∗ ◦ i′∗,

completing the proof.

2.4.3. Definition. Let p :Y → X be a projective morphism in V . Suppose X and
Y are of pure dimension d and e over S, respectively. Let X̂ be a closed subset of X ,
Ŷ a closed subset of Y such that p(Ŷ ) ⊂ X̂. Choose a vector bundle E → X , with
associated projective bundle q : P(E) → X , and a closed embedding i :Y → P(E)
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such that p = q ◦ i. Define

p∗ : ZY,Ŷ (e)[2e] → ZX,X̂(d)[2d]

to be the composition q∗ ◦ i∗. By Lemma 2.4.2, p∗ is well-defined.

2.4.4. Let X be in V . For integers N,M ≥ 0, we let iN,M : PN
X×XPM

X → PNM+N+M
X

be the Segre embedding. We let qn : Pn
X → X denote the structure morphism, and

p1 : PN
X ×X PM

X → PN
X ,

p2 : PN
X ×X PM

X → PM
X

the projections.

2.4.5. Lemma. We have

qN∗ ◦ p1∗ = qM∗ ◦ p2∗ = qNM+N+M
∗ ◦ iN,M∗.

Proof. We give the proof without closed support to simplify the notation.
Let ζ1 be the first Chern class of the tautological line bundle on PN

X , ζ2 the
first Chern class of the tautological line bundle on PM

X , and ζ the first Chern class
of the tautological line bundle on PNM+N+M

X .
Two applications of Theorem 1.3.2 give the isomorphism

αN,M :=
N∑
i=0

M∑
j=0

αi,j : ⊕N
i=0 ⊕M

j=0ZX(N + M − i− j)[2N + 2M − 2i− 2j]

→ ZPN
X×XPM

X
(N + M)[2N + 2M ],

where αi,j is the composition

ZX(N + M − i− j)[2N + 2M − 2i− 2j]

(qN◦p1)∗−−−−−−→ ZPN
X×XPM

X
(N + M − i− j)[2N + 2M − 2i− 2j]

∪(p∗
1(ζ

i
1)∪p∗

2(ζ
j
2))−−−−−−−−−−−→ ZPN

X×XPM
X

(N + M)[2N + 2M ].

It is easy to see that the composition

qN∗ ◦ p1∗ ◦ αN,M : ⊕N
i=0 ⊕M

j=0ZX(N + M − i− j)[2N + 2M − 2i− 2j] → ZX

is projection on the factor ZX (i = N , j = M).
Let K = NM +M +N . We denote the standard homogeneous coordinates on

PN
X , PM

X and PK
X by Y 10 , . . . , Y

1
N , Y 20 , . . . , Y 2M , and X0, . . . , XK , respectively.

By Proposition 1.2.3(iii), ζ1 and ζ2 are the classes of respective hyperplanes
Y 1i = 0, Y 2j = 0 in PN

X and PM
X (for any choice of i or j). Thus p∗1(ζ

i
1) ∪ p∗2(ζ

j
2) =

cli+j(Li
1 × Lj

2), where Li
1 is any codimension i linear subspace of PN

X defined by
equations of the form Y 1n1 = . . . = Y 1ni

= 0, 0 ≤ n1 < . . . < ni ≤ N , and
Lj
2 is any codimension j linear subspace of PM

X defined by equations of the form
Y 2m1

= . . . = Y 2mj
= 0, 0 ≤ m1 < . . . < mj ≤M . By Theorem 2.2.3, we have

iM,N∗(p∗1(ζ
i
1) ∪ p∗2(ζ

j
2)) = clNM+i+j(iM,N∗(Li

1 ×X Lj
2)).

Let H ⊂ PNM+N+M
X be the hyperplane X0 = 0. Then ζ = cl1(H) and the

cycle H · (PN
X ×X PM

X ) is rationally equivalent to L11 × PM
X + PN

X × L12. Counting
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intersection multiplicities, and using the classical projection formula for algebraic
cycles, we have the rational equivalence

iM,N∗(|Li
1 × Lj

2|) ∼r

(
N + M − i− j

N − i

)
H(NM+i+j)

for i ≤ N and j ≤M . Thus, applying Chapter I, Proposition 3.5.3, we have

clNM+i+j(iM,N∗(|Li
1 × Lj

2|)) =
(
N + M − i− j

N − i

)
ζNM+i+j

if i ≤ N and j ≤M . Therefore

iM,N∗(p∗1(ζ
i
1) ∪ p∗2(ζ

j
2)) =

(
N + M − i− j

N − i

)
ζNM+i+j(2.4.5.1)

if i ≤ N and j ≤M .
We have the isomorphism of Theorem 1.3.2

αK =
K∑
k=0

αk : ⊕K
k=0ZX(K − k)[2K − 2k] → ZPK

X
(K)[2K];

from the projection formula Proposition 2.2.2, and (2.4.5.1), we have the identity

iM,N∗ ◦ αi,j =
(
N + M − i− j

N − i

)
αNM+i+j

if i ≤ N and j ≤ M . In addition qK∗ ◦ αK is the projection on the factor ZX (i.e.,
the summand k = K).Thus qK∗ ◦ iM,N∗ ◦ αN,M is the projection on the factor ZX

(i.e., the summand i = N , j = M), hence qK∗ ◦ iM,N∗ = qN∗ ◦ p1∗. The identity
qK∗ ◦ iM,N∗ = qM∗ ◦ p2∗ is proved similarly.

2.4.6. Lemma. Let E → X be a vector bundle, i :Z → X a closed embedding in
V , i∗E → Z the restriction of E to Z, giving the cartesian diagram

P(i∗E) ��
j

��

q′

P(E)

��

q

Z ��
i

X.

Then

q∗ ◦ j∗ = i∗ ◦ q′∗.

Proof. We give the proof without closed support. Suppose E has rank N +1.
We have the isomorphisms of Theorem 1.3.2

αE =
N∑
k=0

αE
k : ⊕N

k=0 ZX(−k)[−2k] → ZP(E)

αi∗E =
N∑
k=0

αi∗E
k : ⊕N

k=0 ZZ(−k)[−2k] → ZP(i∗E),

with
αE
k = ∪ζkE ◦ q∗,

αi∗E
k = ∪ζki∗E ◦ q′∗.
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By the functoriality of c1 (Proposition 1.2.3(i)), we have i∗(ζE) = ζi∗E ; thus, by
Lemma 2.2.4 and the projection formula (Proposition 2.2.2), we have αE

k ◦ i∗ =
j∗ ◦ αi∗E

k . This, together with the definition of q∗ and q′∗, proves the lemma.

2.4.7. Theorem. Suppose we have a sequence of projective morphisms in V ,

Z
p′

−→ Y
p−→ X,

with X , Y and Z of pure dimension d, e and f over S, respectively, together with
closed subsets X̂ of X , Ŷ of Y and Ẑ of Z, such that p′(Ẑ) ⊂ Ŷ and p(Ŷ ) ⊂ X̂.
Then the diagram

ZZ,Ẑ(f)[2f ] ��
p′
∗

��(p◦p′)∗ 





ZY,Ŷ (e)[2e]

��

p∗

ZX,X̂(d)[2d]

commutes. In addition idX∗ = id.

Proof. As we may factor idX as a composition of the identity closed embed-
ding into X = P0X , followed by the identity projection q : P0X → X , the assertion
idX∗ = id follows from Proposition 2.2.1 and Remark 2.3.5.

For the first assertion, let E be a vector bundle on X . Since, by assumption, X
has an ample family of line bundles, there is a line bundle L on X and a surjection
1N → E ⊗ L for N >> 0, where 1N is the trivial rank N vector bundle on X .
This gives the closed embedding P(E) ∼= P(E ⊗L) → PN

X . Thus, we may factor the

projective morphism p :Y → X as Y
i−→ PN

X

qN−−→ X with i a closed embedding and

q the projection. Similarly, we may factor p′ as Z
i′−→ PM

Y

qM−−→ Y.
We therefore have the closed embeddings

j :Z → PN
X ×X PM

X

j′ : PM
Y → PN

X ×X PM
X

with
p ◦ p′ = qN ◦ p1 ◦ j
j = j′ ◦ i′,
p1 ◦ j′ = i ◦ qM .

This gives the factorization of p ◦ p′ as

p ◦ p′ = qNM+N+M ◦ iN,M ◦ j′ ◦ i′.
Thus, we have

(p ◦ p′)∗ = qNM+N+M
∗ ◦ (iN,M ◦ j′ ◦ i′)∗, by Definition 2.4.3

= qNM+N+M
∗ ◦ iN,M∗ ◦ j′∗ ◦ i′∗, by Proposition 2.2.1

= qN∗ ◦ p1∗ ◦ j′∗ ◦ i′∗, by Lemma 2.4.5

= qN∗ ◦ i∗ ◦ qM∗ ◦ i′∗, by Lemma 2.4.6

= p∗ ◦ p′∗ by Definition 2.4.3.
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The projection formula for a closed embedding and for a projection give the
general version.

2.4.8. Theorem [projection formula]. Let p :Y → X be a projective morphism in

V , with X and Y pure dimension d and e, respectively. Let X̂i, i = 1, 2, be closed
subsets of X , and let Ŷi = p−1(X̂i), i = 1, 2. Then the diagram

ZY,Ŷ1
(e)[2e]⊗ ZX,X̂2

��

p∗⊗id

��
id⊗p∗

ZY,Ŷ1
(e)[2e]⊗ ZY,Ŷ2

��

∪Y

ZY,Ŷ1∩Ŷ2(e)[2e]

��

p∗

ZX,X̂1
(d)[2d]⊗ ZX,X̂2

��
∪X

ZX,X̂1∩X̂2
(d)[2d]

commutes.

Proof. This follows from the definition of p∗, together with Proposition 2.2.2
and Proposition 2.3.3.

The usual compatibility of push-forward with pull-back in cartesian square is
valid as well. We call a cartesian square

Y ×X Z

��

p1

��
p2

Z

��

f

Y ��
p X

in V transverse if TorOX
p (OZ ,OY ) = 0 for all p > 0.

2.4.9. Theorem. Let

Y ×X Z

��

p1

��
p2

Z

��

f

Y ��
p X

be a transverse cartesian square in V , with p a projective morphism. Then

f∗ ◦ p∗ = p2∗ ◦ p∗1.

Proof. Let

Y
i−→ X ×S PN

S
q−→ X

be a factorization of p, with i a closed embedding and q the projection. We have
the isomorphism

Y ×X Z ∼= Y ×X×SPN
S
Z ×S PN

S .

Let j :Y ×X Z → Z ×S PN
S be the map induced by the projection Y ×X×SPN

S

Z ×S PN
S → Z ×S PN

S , and let r :Z ×S PN
S → Z be the projection. We have the
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commutative diagram

Y ×X Z ��
p2

��
j ��

��
��

��
�

��

p1

Z

��

f

Z ×S PN
S

��

r












��

f×id

X ×S PN
S

��

q

��
��

��
��

�

Y

��
i











��

p X

with the two trapezoids cartesian; in particular, j is a closed embedding. By
definition, we have p2∗ = r∗ ◦ i∗ and p∗ = q∗ ◦ i∗. Since q is faithfully flat, the

transversality hypothesis implies that Tor
O

X×SPN

p (OY ,OZ×SPN ) = 0 for all p > 0.
The result then follows from Lemma 2.2.4 and Lemma 2.3.4.

2.4.10. Theorem. Let p :X → Y be a projective morphism in V of relative dimen-
sion d, X̂ a closed subset of X and Ŷ a closed subset of Y with f(X̂) ⊂ Ŷ . Let W

be in V , with closed subset Ŵ . Then the diagram

ZX,X̂(d)[2d]⊗ ZW,Ŵ

��

�X,W

��
p∗⊗id ZY,Ŷ ⊗ ZW,Ŵ

��

�Y,W

ZX×SW,X̂×SŴ
(d)[2d] ��

(p×idW )∗
ZY×SW,Ŷ×SŴ

commutes.

Proof. This follows from Proposition 2.3.6, Proposition 2.2.8, and the defini-
tion (Definition 2.4.3) of p∗ and (p× idW )∗.

2.5. Some useful results

We collect some miscellaneous results on projective push-forward.

2.5.1. Naturality. Let i :Z → X be a closed codimension d embedding in SmessS , and
let f :T → S be a map of reduced schemes. Then, applying f∗ to the deformation
diagram (2.1.2.1) for i gives us the deformation diagram for the closed embedding
f∗(i). This, together with the definition of the pull-back functor (Chapter I, §2.3)
f∗ :DM(SmessS ) → DM(SmessT ), implies that f∗(i∗) = f∗(i)∗. Similarly, we have
f∗(q∗) = f∗(q)∗ for q : P(E) → X a projective bundle, hence the push-forward for
a projective morphism p :X → Y , is natural with respect to f∗:

f∗(p∗) = f∗(p)∗.

2.5.2. Push-forward of cycles. We have shown in Theorem 2.2.3 that cycle classes
are compatible with the Gysin morphism. The situation for a general projective
morphism is not as clear; however, in case the base scheme is Spec k, k a field, the
semi-purity of motivic cohomology enables us to prove compatibility in general.
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2.5.3. Theorem. Suppose S = Spec k, where k is a field. Let p :Y → X be a pro-
jective morphism in V of relative dimension d,W an element of Zq(Y/S), supported
on a closed subset Ŷ of Y . Then

clq−d
p(Ŷ )

(p∗(W )) = p∗(clq
Ŷ

(W )).

Proof. As in the proof of Theorem 2.2.5, we may assume that k is a perfect
field. Using Theorem 2.2.3, and the functoriality of projective push-forward (The-
orem 2.4.7), we reduce to the case of a projective bundle q : PN

X → X . We may also
assume that W is the cycle associated to an irreducible subscheme A of PN

X .
Let B = q(A); we may assume that Ŷ = q−1(A). By Theorem 2.2.5, we have

H
2(q−d)
B (X,Z(q − d)) = 0 if codimX(B) > q − d, which proves the result in this

case. Suppose codimX(B) = q − d. If B̂ is a proper closed subset of B, we have
the exact sequence

H
2(q−d)
B̂

(X,Z(q − d)) → H
2(q−d)
B (X,Z(q − d)) → H

2(q−d)
B\B̂ (X\B̂,Z(q − d))

→ H
2(q−d)+1
B̂

(X,Z(q − d)).

Applying Theorem 2.2.5, we arrive at the isomorphism

H
2(q−d)
B (X,Z(q − d)) → H

2(q−d)
B\B̂ (X\B̂,Z(q + d));

we may therefore remove from X any proper closed subset of B. In particular, we
may assume that B is smooth over k, and that A is finite over B, hence A has
codimension N in PN

B .
We have the cartesian square

PN
B

��
j

��

q′

PN
X

��

q

B ��
i

X.

(2.5.3.1)

By Theorem 2.4.7 and Theorem 2.2.3, we need only show that cl0B(q′∗(|A|)) =
q′∗(clNPN

B
(|A|)).

Let s :B → PN
B be a constant section, and let ζ = c1OPN

B
(1). Since A is finite

over B, we have the rational equivalence |A| ∼r a · s(B) + W ′, where W ′ is a cycle
supported over a proper closed subset B̂ of B, and a is the degree of A over B.
Removing B̂, we may assume that W ′ = 0. Since the cycle class respects rational
equivalence, and since clN (s(|B|)) = ζN , we have

clNPN
B

(|A|) = a · ζN

q′∗(|A|) = a · |B|.
Since the composite

ZB
∪ζN◦q∗−−−−−→ ZPN

B

q′∗−→ ZB

is the identity, we have

cl0(|B|) = q′∗
(
ζN ∪ q′∗(cl0(|B|))

)
= q′∗(ζ

N ).
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Thus q′∗(clNPN
B

(|A|)) = a · cl0B(|B|), verifying (2.5.3.1) and completing the proof.

2.5.4. Corollary. Suppose S = Spec k, with k a field. Let f :Y → X be a finite
morphism in V of degree d. Then

f∗ ◦ f∗ = d · idZX

in Db
mot(V).

Proof. Let pY :Y → S, pX :X → S be the structure morphisms. Since
pY = pX ◦ f , and cl0Y (|Y |) = p∗Y (cl0S(|S|)) = p∗Y , (Chapter I, Proposition 3.5.3
and Lemma 3.5.4), the projection formula (Theorem 2.4.8) implies that f∗ ◦ f∗ is
equal to the composition

ZX
∼= 1⊗ ZX

f∗(cl
0
Y (|Y |))⊗id−−−−−−−−−−→ ZX ⊗ ZX

∪X−−→ ZX .

By Theorem 2.5.3, we have

f∗(cl0Y (|Y |)) = d · cl0X(|X |) = d · p∗X ,

whence the result.

2.5.5. Borel-Moore motives. We will examine the Borel-Moore motive and extend
its definition to certain singular varieties in Chapter IV, §2.2, §2.3 and §2.4; we
content ourselves here with a brief introduction.

2.5.6. Definition. (i) Let Vproj be the subcategory of V with the same objects,
and with morphisms being the projective morphisms. Let PVproj be the category
of pairs in Vproj, i.e., objects are pairs (X,W ), with X in V and W a closed subset
of X , and a morphism f : (X,W ) → (Y, T ) is a projective map f :X → Y with
f(W ) ⊂ T .
(ii) Let X be in V . If X is connected, then X is equi-dimensional of dimension
dX over some connected component of S; we define the Borel-Moore motive of X ,
ZB.M.X , by

ZB.M.X = ZX(dX)[2dX ].

We extend the definition of ZB.M.X to general X ∈ V by taking direct sums over the
connected components of X .
(iii) Let X be in V , W a closed subset of X , and j :U → X the complement of W .
Define the Borel-Moore motive of X with support in W , ZB.M.X,W , by

ZB.M.X,W := cone(j∗ : ZB.M.X → ZB.M.U )[−1].

2.5.7. Theorem. Sending (X,W ) ∈ PV to ZB.M.X,W , and sending a projective mor-

phism f : (X,W ) → (Y, T ) to f∗ : ZB.M.X,W → ZB.M.Y,T defines a functor

ZB.M. :PVproj → DM(V).

Proof. The map f∗ is defined in Definition 2.4.3; the functoriality follows
from Theorem 2.4.7.

2.6. Push-forward for diagrams

We will now explain how to extend the construction of the push-forward morphism
to diagrams of schemes.
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2.6.1. Projective morphisms of diagrams. Let I be a small category, and let Z : I →
SmessS and X : I → SmessS be functors. We call a morphism of functors f :Z → X
a codimension d closed embedding if

1. For each i ∈ I, the morphism f(i) :Z(i) → X(i) is a codimension d closed
embedding.

2. For each morphism s : i→ j in I, the canonical map f/s :Z(i) → Z(j)×X(j)

X(i) induced by the diagram

Z(i) ��
f(i)

��

Z(s)

X(i)

��

X(s)

Z(j) ��
f(j)

X(j)

is an isomorphism.
One easily verifies that the composition of a codimension d closed embedding with
a codimension e closed embedding is a codimension d + e closed embedding.

A rank N vector bundle p :E → X is a morphism of functors E : I → SmessS ,
X : I → SmessS , such that

1. For each i ∈ I, p(i) :E(i) → X(i) is a rank N vector bundle on X(i).
2. For each morphism s : i → j in I, the natural map E(i) → X(s)∗(E(j)) is

an isomorphism of vector bundles on X(i).
A map of vector bundles f :E → F over X is a morphism of functors such that
f(i) :E(i) → F (i) is a map of vector bundles over X(i) for each i ∈ I. This makes
the category of vector bundles over X into an exact category, where a sequence is
exact if it is exact on each X(i). The usual operations of vector bundles, e.g., direct
sum, tensor product, pull-back, extend in the obvious way to this setting.

We say a vector bundle E → X is generated by global sections if there is a
trivial vector bundle 1MX and a surjection 1MX → E.

Given a rank N vector bundle p :E → X , we may form the associated projec-
tive bundle q : P(E) → X by taking the functor i �→ [q(i) : P(E(i)) → X(i)]. We
have the canonical surjection q∗E → OE(1) induced by the canonical surjections
q(i)∗(E(i)) → OE(i)(1).

A morphism of functors f :Y → X is call a projective morphism if f admits a
factorization

Y
i−→ P(E)

q−→ X

with i a closed, codimension d embedding for some d, and q : P(E) → X the pro-
jective bundle associated to a vector bundle E on X which is generated by global
sections.

From this latter requirement, one sees that each projective morphism f :Y → X

may be factored as Y i−→ PN
X

q−→ X ; from this one easily verifies that the composition
of two projective morphisms is a projective morphism.

2.6.1.1. Remark. Suppose that S is quasi-projective over a noetherian ring. Let
X : I → SmessS be a functor. If I is the category associated to a finite partially
ordered set, if all the morphisms X(i) → X(j) are affine, and if each X(i) is quasi-
projective over S, then, for each vector bundle on X , there is a line bundle L on
X with E ⊗ L generated by global sections. In particular, we may dispense with
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the requirement that the vector bundle E be generated by global sections in the
definition of a projective morphism.

2.6.2. Adjoining a disjoint base-point. We refer the reader to §2.7.1 of Chapter I for
the construction of the category Smess+S .

Suppose we have functors Y,X : I → Smess+S and a map of functors f :Y → X .
We call f a codimension d closed embedding (resp. a projective morphism) if

1. Y (i) = ∗ if and only if X(i) = ∗.
2. Let I0 be the full subcategory of I with objects those i ∈ I such that Y (i) �=
∗, giving us the map of functors f0 :Y0 → X0, where Y0, X0 : I0 → SmessS

are the restrictions of Y and X to I0. Then f0 is a codimension d closed
embedding (resp. a projective morphism).

We extend the other notions described above (vector bundles, projective bundles,
etc.) to functors from I to Smess+S similarly by requiring that a vector bundle or
projective bundle over ∗ be just ∗.

2.6.3. Blow-ups. Let f :Z → X be a closed, codimension d > 1 embedding of
functors Z,X : I → Smess+S . For each i with Z(i) and X(i) different from ∗, we may
form the blow-up Y (i) of X(i) along Z(i). If Z(i) = X(i) = ∗, define Y (i) = ∗ as
well; this gives us the functor Y : I → Smess+S and the diagram of functors

Y

��

µ

Z ��
f

X.

Similarly, letting E(i) be the exceptional divisor of µ(i) : Y (i) → X(i) (or ∗ if
X(i) = Z(i) = Y (i) = ∗), we have the diagram

E ��
g

��

q

Y

��

µ

Z ��
f

X

with g a codimension one closed embedding, and q the projective bundle associated
to the normal bundle of Z in X .

2.6.4. Closed subdiagrams. Let X : I → Smess+S be a functor. We let I0 be the full
subcategory of I with objects i such that X(i) �= ∗.

A collection of closed subsets W (i) ⊂ X(i) for i ∈ I0 forms a closed subdiagram
of X if, for each s : i → j in I0 we have X(s)−1(W (j)) = W (i). For example, if
f :Z → X is a codimension d closed embedding, then the support supp(Z(i)) form
a closed subdiagram of X .

If W ⊂ X is a closed subdiagram of X , let j(i) :U(i) → X(i) be the complement
of W (i) (we set U(i) = ∗ if X(i) = ∗). Then the U(i) form a functor U : I → X,
giving us morphism of functors j :U → X. We call U the complement of W in X ,
and call j :U → X an open immersion.

2.6.5. Motives. Suppose that I is a finite category, and X : I → V+ a functor. We
then have the motive of X , ZX , in Cb

mot(V), defined as in (Chapter I, §2.7), by
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taking the canonical lifting of X , (X, fX) : I → L(V)+ (Chapter I, §2.7.2), and form-
ing the non-degenerate homotopy limit holimIop,n.d. Z(X,fX ) (Part II, Chapter III,
§3.2.7).

If W ⊂ X is a closed subdiagram of X , with complement U : I → V+, we define
the motive of X with support in W by

ZX,W := cone(j∗ : ZX → ZU )[−1].

If i ∈ I is a maximal element, then i is a minimal element of Iop, hence we
have the distinguished triangle in Db

mot(V)

ZX,W → ZX(i),W (i) ⊕ ZX|I\{i},W|I\{i} → ZXi/,W i/ → ZX,W [1](2.6.5.1)

(see (I.2.7.3.1) and Part II, (III.3.2.9.1)).

2.6.6. Remark. Via the distinguished triangle (2.6.5.1), the properties of motives
with support described in (Chapter I, §2.2) extend to the setting of diagrams by
using induction on dim I and |N (I)n.d.([dim I])|; for example, we have the homo-
topy property, moving lemma, localization, and Mayer-Vietoris for the motives of
diagrams with support in a closed subdiagram.

2.6.7. Cup products and cycle classes. Let X : I → V+ be a functor, with I a finite
category, let W and W ′ be closed subdiagrams of X . We have the canonical lifting
(X, fX) : I → L(V)+.

Suppose we have for each i ∈ I a cycle Zi ∈ Zq
W (i)(X(i))fX (i) (we set Zq(∗) :=

{0}) such that, for each s : i → j in I, we have X(s)∗(Zj) = Zi. We call the
collection of cycles Z(i) a codimension q cycle on X , supported in W , and we
denote this group of cycles by Zq

W (X).
If Z is in Zq

W (X), we have the morphism

∪[Z] : ZX,W ′ → ZX,W∩W ′(q)[2q];

to define this, we first note the following construction:
Let I be a finite category, A a DG category with translation structure, and

X,Y : I → A two functors. Suppose we have maps f(i) :X(i) → Y (i) in Z0A, for
each i ∈ I, and in addition, for each non-degenerate t-simplex

i0
s1−→ i1 · · · it−1

st−→ it

in I, a map hst,... ,s1 :X(i0) → Y (it)[−t] of degree 0, with

dhst,... ,s1 + hst,... ,s2 ◦X(s1) +
t−1∑
i=1

(−1)ihst,... ,si+1si,... ,s1

+ (−1)tY (st)[−t + 1] ◦ hst−1,... ,s1 = 0,

where we set h∅ to be f (evaluated at the appropriate element of I), and we identify
degree zero maps A→ B[−t + 1] with degree one maps A→ B[−t].

Let

(f, h) : holim
I,n.d.

X → holim
I,n.d.

Y

be the map gotten by sending X(jr)[−r] in the component of holimAI,n.d.X indexed
by the r-simplex

j0
s1−→ j1 · · · jr−1

sr−→ jr
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to holimI,n.d. Y by taking the sum of all the maps hs′t,··· ,s′r+1
[−r] :X(i′r)[−r] →

Y (it)[−t], where Y (it) is in the component of holimI,n.d. Y indexed by the simplex

i′0
s′1−→ i′1 · · · i′t−1

s′t−→ i′t,

with sa = s′a for a = 1, . . . , r < t. For r = t, we assume sa = s′a for a = 1, . . . , t,
and map X(it)[−t] to Y (it)[−t] via f(it)[−t].

By a direct computation, we have

2.6.7.1. Lemma. The map

(f, h) : holim
I,n.d.

X → holim
I,n.d.

Y

is a map in Z0Cb(A).

We now define the map ∪[Z]. For each i ∈ I, we have the map (Chapter I,
Definition 1.4.6) [Zi] : e → ZX(i),W (i)(d)fX (i)[2d] in A5. For each map s : i → j
in Iop, the morphisms adjoined in (Chapter I, Definition 1.4.8) give us the map
hs : e → ZX(j),W (j)(d)fX (j)[2d− 1] of degree 0, with dhs = X(s)∗ ◦ [Zi]− [Zj ].

Let

i0
s1−→ i1 · · · it−1

st−→ it

be a non-degenerate t-simplex in I. Using the morphisms adjoined in (Chapter I,
Definition 1.4.9), it follows by an elementary induction that we have morphisms of
degree 0, hst,... ,s1 : e → ZX(it),W (it)(d)fX (it)[2d− t], with

dhst,... ,s1 = hst,... ,s2 +
t−1∑
i=1

(−1)ihst,... ,si+1si,... ,s1 + (−1)tX∗(st) ◦ hst−1,... ,s1 .

By the above lemma, the maps

e⊗ ZX(it),W ′(it)(0)fX (it)
hst,... ,s1⊗id−−−−−−−−→ ZX(it),W (it)(d)fX (it)[2d− t]⊗ ZX(it),W ′(it)(0)fX (it)

give a well-defined map

[Z]⊗ id : holim
Iop,n.d.

e⊗ ZX,W ′ (0)fX → holim
Iop,n.d.

ZX,W (d)fX [2d]⊗ ZX,W ′ (0)fX .

One similarly shows that [Z]⊗ id is independent (modulo homotopy) of the choice
of the maps hst,... ,s1 .

We compose [Z]⊗ id with the map

holim
Iop,n.d.

ZX,W (d)fX [2d]⊗ ZX,W ′(0)fX

holim �−−−−−→ holim
Iop,n.d.

ZX×SX,W×W ′(d)fX×fX [2d]

induced by the external products. We have the isomorphisms in Db
mot(V)

holim
Iop,n.d.

ZX×SX,W×W ′(d)fX×fX [2d] ∼= ZX×SX,W×W ′ (d)[2d]

holim
Iop,n.d.

e⊗ ZX,W ′(0)fX ∼= ZX,W ′ ;
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pulling back by the diagonal (using the moving lemma for diagrams; see Re-
mark 2.6.6) gives us the desired map in Db

mot(V)

∪[Z] : ZX,W ′ → ZX,W∩W ′(d)[2d].

It is easy to check that the map ∪[Z] is natural in the functor X ; in particular, if
i ∈ Iop is a minimal element, the triple (∪[Z],∪[Zi]⊕∪[ZI\{i}],∪[Zi/]) gives a map
of distinguished triangles

(2.6.7.2) (ZX,W → ZX|I\{i},W|I\{i} ⊕ ZX(i),W (i) → ZXi/,W i/)

(∪[Z],∪[Zi]⊕∪[ZI\{i}],∪[Zi/])
−−−−−−−−−−−−−−−−−−−→

(ZX,W (d)[2d] → ZX|I\{i},W|I\{i}(d)[2d]⊕ ZX(i),W (i)(d)[2d] → ZXi/,W i/(d)[2d]).

2.6.8. Gysin morphism. Let I be a finite category, Z,X : I → V+ functors, and
i :Z → X a codimension d closed embedding. Let W be a closed subdiagram of Z.
We have the cycle i∗(|Z|) in Zd(X).

2.6.8.1. Lemma. Suppose the map i is split by a smooth map p :X → Z, giving the
map p∗ : ZZ,W → ZX,p−1(W ). Then the map ∪[i∗(|Z|)] ◦ p∗ : ZZ,W (−d)[2d] → ZX,W

is an isomorphism.

Proof. The result follows from (Chapter III, §2.1.1) in case I is the one-
point category; in general, we use induction on the number of elements of I, the
distinguished triangle (2.6.5.1), and the naturality (2.6.7.2) of the map ∪[i∗(|Z|)].

We now define the Gysin isomorphism

i∗ : ZZ,W (−d)[2d] → ZX,W(2.6.8.2)

using the deformation diagram

X X × 0 ��
i0

��

idX×j0

Y

��

q

���
���

���
��

P��
i1

��

f

X × A1 Z × A1��
i×id

A1

��

s′

Z × 1��
idZ×j1

��

s

Z

defined just as the diagram (2.1.2.1). Indeed, the maps i∗0 : ZY,s′(W×A1) → ZX,W

and i∗1 : ZY,s′(W×A1) → ZP,s(W ) are isomorphisms by the homotopy property for
diagrams (see Remark 2.6.6), and ∪[s∗(|Z|)] ◦ f∗ : ZZ,W (−d)[−2d] → ZP,s(W ) is an
isomorphism by Lemma 2.6.8.1. Thus, we may define i∗ by

i∗ := i∗0 ◦ (i∗1)
−1 ◦ (∪[s∗(|Z|)] ◦ f∗).

If WX be a closed subdiagram of X containing i(W ), we define the Gysin mor-
phism i∗ : ZZ,W (−d)[−2d] → ZX,WX as the composition of the Gysin isomorphism
(2.6.8.2) with the map ZX,W → ZX,WX induced by the identity on X .

2.6.9. Pushforward for a projection. Let I be a finite category, X : I → V+ a functor,
and p :E → X a rank N+1 vector bundle on X . This gives us the projective bundle
q : P(E) → X and the tautological line bundle r :L→ P(E).

Let W be a closed subdiagram of X . The zero section of L gives the cycle [0L]
in Z1(L); for each i, define the map

αE
i : ZX,W (−i)[−2i] → ZP(E),q−1(W )
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as the composition of the map

(∪[0L])i ◦ (q ◦ r)∗ : ZX,W (−i)[−2i] → ZL,(q◦r)−1(W )

with the inverse of the isomorphism r∗ : ZP(E),q−1(W ) → ZL,(q◦r)−1(W ) given by the
homotopy property for diagrams (see Remark 2.6.6).

2.6.9.1. Lemma [projective bundle formula]. The map

α :=
N∑
i=0

αi : ⊕N
i=0 ZX,W (−i)[−2i] → ZP(E),q−1(W )

is an isomorphism.

Proof. The proof follows from the case of the one-point category, the natu-
rality of the maps ∪[0L] (2.6.7.2), and the distinguished triangle (2.6.5.1).

We may then define the pushforward map

q∗ : ZP(E),q−1(W )(N)[2N ] → ZX,W

as the inverse of the map αE(N)[2N ], followed by the projection on the factor
ZX,W .

2.6.10. Pushforward for a projective morphism. Let f :Y → X be a projective mor-
phism diagrams of relative dimension d, let WX be a closed subdiagram of X and
let WY be a closed subdiagram of Y with WY ⊂ f−1(WX). Factor f as

Y
i−→ P(E)

q−→ X

where i is a codimension e closed embedding, for some e, and P(E) is the projective
bundle associated to a vector bundle E which is generated by global sections. We
then define f∗ : ZY,WY (d)[2d] → ZX,WX by

f∗ = q∗ ◦ i∗.

The proofs of most of the main results of (Chapter III, Section 2) go through
without change, using the machinery we have developed in this section. We list
these results in an omnibus theorem for future reference.

2.6.11. Theorem. Let I be a finite category, X,Y : I → V+ functors, WX a closed
subdiagram of X , WY a closed subdiagram of Y , and f :Y → X a projective
morphism of relative dimension d with WY ⊂ f−1(WX).
(i) The map

f∗ : ZY,WY (d)[2d] → ZX,WX

is well-defined, independent of the choice of factorization of f (see Lemma 2.4.2).
(ii) We have the functoriality

(f ◦ g)∗ = f∗ ◦ g∗

for composable projective morphisms of diagrams (see Theorem 2.4.7).
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(iii) The projection formula (see Theorem 2.4.8) holds: Let X̂i, i = 1, 2, be closed
subdiagrams of X , and let Ŷi = f−1(X̂i), i = 1, 2. Then the diagram

ZY,Ŷ1
(d)[2d]⊗ ZX,X̂2

��

f∗⊗id

��
id⊗f∗

ZY,Ŷ1
(d)[2d]⊗ ZY,Ŷ2

��

∪Y

ZY,Ŷ1∩Ŷ2(d)[2d]

��

f∗

ZX,X̂1
⊗ ZX,X̂2

��
∪X

ZX,X̂1∩X̂2

commutes.
(iv) Let

Y ′ ��
g′

��

f ′

Y

��

f

X ′ ��
g X

be a transverse cartesian diagram of functors I → V+, i.e., for each i with Y ′(i),
Y (i), X ′(i) and X(i) in V , the diagram

Y ′(i) ��
g′(i)

��

f ′(i)

Y (i)

��

f(i)

X ′(i) ��
g(i)

X(i)

is a transverse cartesian diagram in V , and if one of Y ′(i), X ′(i), Y (i) or X(i) is ∗,
then they are all ∗.

Then f ′ is a projective morphism, and

g∗ ◦ f∗ = f ′∗ ◦ g′∗

(see Theorem 2.4.9).
(v) Let T : I → V+ be a diagram, with closed subdiagram WT . Then the diagram

ZY,WY (d)[2d]⊗ ZT,WT

��

�Y,T

��
f∗⊗id

ZX,WX ⊗ ZT,WT

��

�X,T

ZY×ST,WY ×SWT (d)[2d] ��
(f×idT )∗

ZX×ST,WX×SWT

commutes (see Theorem 2.4.10).

We remind the reader that the product of pointed diagrams X,Y : I → V+ is
the pointwise smash product, i.e.,

(X ×S Y )(i) =

{
X(i)×S Y (i); if X(i) �= ∗ and Y (i) �= ∗
∗; otherwise.
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2.6.12. Remark. The projective bundle formula for diagrams (Lemma 2.6.9.1) im-
plies that we have the splitting principle available for Chern classes of vector bundles
on a functor X : I → V+.

3. Riemann-Roch

The machinery is now in place for a proof of the motivic Riemann-Roch theo-
rem; the argument proceeds along the lines laid out in [8] and [45].

As an application, we show in §3.6 that the Chern character gives an isomor-
phism of weight-graded K-theory with rational motivic cohomology, when the base
scheme is a field or a smooth curve over a field.

3.1. Lambda rings

3.1.1. Recall from [2, exposé 0, Appendix] that a lambda ring is a commutative
ring R, together with operations

λk :R→ R; k = 0, 1, . . .

such that

1. λ0(x) = 1, λ1(x) = x for all x ∈ R.
2. For x and y in R, we have

λn(x + y) =
∑

i+j=n

λi(x)λj(y).

3.1.2. Universal polynomials. For symbols x1, x2, . . . , we have the symmetric func-
tions σk(x1, x2, . . . ) defined by the formal identity

∞∏
i=1

(1 + xit) = 1 +
∞∑
i=1

σk(x1, x2, . . . )tk.

Given elements a1, . . . , an in a commutative ring R, we define σk(a1, a2, . . . , an) ∈
R by setting

xi =

{
ai i = 1, . . . , n,
0 i > n

in σk(x1, x2, . . . ). The following result is well-known (see for example [82, V, §9]):

3.1.2.1. Theorem. Let R be a commutative ring, and let the symmetric group Sn

act on the polynomial ring R[X1, . . . , Xn] by

σ(f)(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n)).

Then the subring of invariants R[X1, . . . , Xn]Sn is equal to the polynomial ring
over R in σ1(X1, . . . , Xn), . . . , σn(X1, . . . , Xn).

Define polynomials

Pk(X1, . . . , Xk;Y1, . . . , Yk) ∈ Z[X1, . . . , Xk;Y1, . . . , Yk]

Pk,j(X1, . . . , Xkj) ∈ Z[X1, . . . , Xkj ]
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by setting Xi = σi(U1, U2, . . . ), Yj = σj(V1, V2, . . . ), and∑
k≥0

Pk(X1, . . . , Xk;Y1, . . . , Yk)tk =
∏
i,j

(1 + UiVjt)∑
k≥0

Pk,j(X1, . . . , Xkj)tk =
∏

i1<...<ij

(1 + Ui1 · · ·Uij t).

3.1.3. Special lambda rings. A lambda ring (R, λ∗) is called a special lambda ring if

λn(xy) = Pn(λ1(x), . . . , λn(x);λ1(y), . . . , λn(y)),

λk(λj(x)) = Pk,j(λ1(x), . . . , λkj(x)),

for all x, y ∈ R.

3.1.4. Examples [see [2], exposé 0]. (i) Let A = ⊕∞q=1Aq be a graded ring (without
identity). Set

Ã := Z× [1×
∞∏
q=1

Aq]

and make Ã a group by

(n, 1 +
∞∑
i=1

xi) + (m, 1 +
∞∑
i=1

yi) = (n + m, (1 +
∞∑
i=1

xi)(1 +
∞∑
i=1

yi)).

Define the product

(n, 1 +
∞∑
i=1

xi)�(m, 1 +
∞∑
i=1

yi)

by

(n, 1 +
∞∑
i=1

xi)�(m, 1 +
∞∑
i=1

yi)

= (nm, [(1 +
∞∑
i=1

xi) ∗ (1 +
∞∑
i=1

yi)](1 +
∞∑
i=1

xi)m(1 +
∞∑
i=1

yi)n),

where

(1 +
∞∑
i=1

xi) ∗ (1 +
∞∑
i=1

yi) := 1 +
∞∑
i=1

Pi(x1, . . . , xi; y1, . . . , yk).

This makes Ã into a commutative ring.
The ring Z is a lambda ring with

λk(n) =



(
n

k

)
; for n ≥ 0,

(−1)k
(
k − n− 1

k

)
; for n < 0.
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Define the operations λk on Ã by

λk(0, 1 +
∞∑
i=1

xi) := (0, 1 +
∞∑
i=1

Pk,i(x1, . . . , xki)),

and

λk(n, 1 + X) :=
k∑

i=0

(λi(n), 1)�λk−i(0, 1 + X).

This gives Ã the structure of a special lambda ring.
(ii) Let (R, λ∗) be a commutative ring with operations λk, k = 0, 1, . . . such that
λ0(x) = 1. We have the graded polynomial ring R[t]; let λt :R→ R̃[t] be the map

λt(r) = (0, 1 +
∞∑
i=1

λi(r)ti).

Then λt is additive if and only if (R, λ∗) is a lambda ring, and λt is a lambda ring
homomorphism if and only if (R, λ∗) is a special lambda ring.
(iii) Suppose we have a graded ring A as in (i), and a graded A-module M , M :=
⊕q≥1M

q. Let M̃ :=
∏

q≥1M
q. Form the ring A⊕M with

(a,m)(a′,m′) := (aa′, am′ + a′m).

Then we have the inclusions

Ã ↪→ Ã⊕M ←↩ M̃

identifying Ã with a subring of Ã⊕M and M̃ with an ideal in Ã⊕M . This allows
us to define the product � : Ã⊗ M̃ → M̃ , making M̃ into a Ã-module.

Similarly, if M and M ′ and M ′′ are (positively) graded abelian groups with a
graded product M ⊗M ′ →M ′′, we have the (non-unital) ring M ⊕M ′ ⊕M ′′ with

(m,m′,m′′)(n, n′, n′′) = (0, 0,mn′)

As above, this gives the product � : M̃ ⊗ M̃ ′ → M̃ ′′.

3.2. K0 and Chern classes

3.2.1. Lambda ring structure on K0. Let X : ∆≤Nop → Sch be a truncated simpli-
cial scheme. Tensor product of vector bundles makes K0(X) a commutative ring.
If

0 → E′ → E → E′′ → 0

is a short exact sequences of vector bundles on a scheme X , the images of the maps
ΛiE′⊗Λk−iE → ΛkE give an increasing filtration on ΛkE with ith graded quotient
canonically isomorphic to ΛiE′ ⊗ Λk−iE′′. This gives the identity in K0(X)

[ΛkE] =
k∑

i=0

[ΛiE′][Λk−iE′′].

This identity implies that [ΛkE] depends only on the K0-class [E], giving natural
operations

λk :K0(X) → K0(X),

which make K0(X) into a lambda ring.
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3.2.2. Splitting principle for K0. Let X be a scheme and q :F l(E) → X the flag
bundle over X associated to a vector bundle E → X . By [2, exposé VI, Théorème
1.1] the map q∗ :K0(X) → K0(F(E)) is injective, so identities in K0(X) may be
checked in K0(F(E)), or even in K0 of a product of flag bundles. As an application,
we have

3.2.3. Theorem. Let X be a scheme. Then (K0(X), λ∗) is a special lambda ring.

Proof. Using the splitting principle, we need only consider elements x, y in
K0(X) with

x =
n∑

i=1

[Li]; y =
m∑
j=1

[Mj ]

and the Li and Mj line bundles on X . We then have

λk(x) =
∑

1≤i1<...<ik≤n
[Li1 ] · · · [Lik ] = σk([L1], . . . , [Ln]),

and similarly λj(y) = σj([M1], . . . , [Mm]). The special lambda ring identities then
follow from the definition of the polynomials Pk and Pk,j in terms of symmetric
functions.

We will ignore the question of whether K0(X) is a special lambda ring for X a
truncated simplicial scheme.

3.3. Chern classes and Chern character for higher K-theory

3.3.1. Chern classes. Let X be a connected truncated simplicial object of V . We
have the (non-unital) ring H2∗(X,Z(∗)) := ⊕q≥1H

2q(X,Z(q)). Define the aug-
mented total Chern class

c̃X,0 :K0(X) → ˜H2∗(X,Z(∗))

by

c̃X,0 := (rnk, 1 +
∑
q

cq),

where rnk is the rank function.
For non-connected X with connected components X1, . . . , Xs, define c̃X,0 to

be the product∏
i

c̃Xi,0 :K0(X) =
∏
i

K0(Xi) →
∏
i

˜H2∗(Xi,Z(∗)).

Fix an integer p > 0, and let H2∗−p(X,Z(∗)) := ⊕∞q=1H2q−p(X,Z(q)). The cup
product in motivic cohomology makes H2∗−p(X,Z(∗)) a graded module over the
(non-unital) graded ring H2∗(X,Z(∗)), and gives the graded products

H2∗−p(X,Z(∗))⊗H2∗−p
′
(X,Z(∗)) → H2∗−p−p

′
(X,Z(∗)).

Following Example 3.1.4, we have the ˜H2∗(X,Z(∗))-module ˜H2∗−p(X,Z(∗)), and
the products

� : ˜H2∗−p(X,Z(∗))⊗ ˜H2∗−p′(X,Z(∗)) → ˜H2∗−p−p′(X,Z(∗)).
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Let

c̃X,p :Kp(X) → ˜H2∗−p(X,Z(∗))
be the total Chern class , c̃X,p =

∑
q≥1 c

q,2q−p.
Similarly, if I is the category associated to a finite partially ordered set, and if

X : I → V+ is a functor, we have the Chern classes

cq,2q−p :Kp(X) → H2q−p(X,Z(q)),

and the total Chern class (augmented for p = 0)

c̃X,p :Kp(X) → ˜H2∗−p(X,Z(∗))
(see §1.4.7).

3.3.2. Lemma. Let X be a truncated simplicial object of V . Then c̃X,0 is a homo-
morphism of lambda rings.

Proof. By the projective bundle formula for motivic cohomology of X (The-
orem 1.3.2), we may check the various identities on a product of flag bundles over
X ; this reduces us to the case of elements which are sums of line bundles. In this
case, the necessary identities all follows from the Whitney product formula (Theo-
rem 1.3.7), and the definition of the polynomials Pk and Pk,i in terms of symmetric
functions (§3.1.2).

3.3.3. Suppose we have an element Cq ∈ H2q(BGL,Z(q)). If one applies the con-
struction of the Chern classes for a functor X : I → V+ in §1.4.7, replacing the
universal Chern class cq(E) with the given class Cq, we get the natural map

Cq,2q−p :Kp(X) → H2q−p(X,Z(q)).

As the product of Chern classes cq(E≤nN )∪ cq′ (E
≤n
N ) for varying N and n gives

the “product” cq(E) ∪ cq′(E) ∈ H2(q+q
′)(BGL,Z(q + q′)), we thus have the corre-

sponding map

(cq ∪ cq′)q+q
′,2q+2q′−p :Kp(X) → H2q+2q

′−p(X,Z(q + q′)).(3.3.3.1)

Suppose we have functors X,Y : I → V+. We then have the pointed product
functor X ×S Y : I → V+ with

X ×S Y (i) :=

{
X(i)×S Y (i); if X(i) �= ∗ and Y (i) �= ∗
∗; otherwise.

The natural products

BQPX(i) ∧ BQPY (i) → BQPX(i)×SY (i)

give us the product

�X,Y : holim
I

BQPX ∧ holim
I

BQPY → holim
I

BQPX×SY ,

which in turn induces the external product

�X,Y :Kp(X)⊗Kp′(Y ) → Kp+p′(X ×S Y )

(see Appendix B, Remark 2.2.6). Taking the motives of X and Y , and applying
the non-degenerate homotopy limit, we have the external product (see §2.7.4 and
Part II, Chapter III, Section 3)

�X,Y :Hp(X ; Z(q))⊗Hp′
(Y ; Z(q′)) → Hp+p′

(X ×S Y ; Z(q + q′)).
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This induces the external product

�X,Y : ˜H2∗−p(X ; Z(∗))⊗ ˜H2∗−p′(Y ; Z(∗)) → ˜H2∗−p−p′(X ×S Y ; Z(∗)).

3.3.4. Lemma. Let I be the category associated to a finite partially ordered set,
and let X,Y : I → V+ be functors.
(i) For x ∈ Kp(X), y ∈ Kp′(Y ), we have

c̃X×SY,p+p′(x �X,Y y) = c̃X,p(x)�X,Y c̃Y,p′(y),

and for x ∈ Kp(X), y ∈ Kp′(X), we have

c̃X,p+p′(xy) = c̃X,p(x)�c̃X,p′ (y).

(ii) The map (3.3.3.1) is zero for all p > 0.
(iii) For x, y ∈ Kp(X), we have

cq,2q−p(x + y) = cq,2q−p(x) + cq,2q−p(y)

for all p ≥ 1.

Proof. The second assertion in (i) follows from the first by taking X = Y and
pulling back by the diagonal. For the first assertion in (i), recall from (Appendix B,
§2.2.4 and Remark 2.2.6) the construction of products

H−p(X, Z̃⊕ C̃∗(BGL; Z))⊗H−q(Y, Z̃⊕ C̃∗(BGL; Z))

�H
X,Y−−−→ H−p−q(X ×S Y, Z̃⊕ C̃∗(BGL; Z)),

compatible with the external products �X,Y :K∗(X)⊗K∗(Y ) → K∗(X ×S Y ) via
the Hurewicz map. Letting

Hc̃X,p : H−p(X, Z̃⊕ C̃∗(BGL; Z)) → ˜H2∗−p(X,Z(∗))
be the total homology Chern class (augmented for p = 0), constructed as c̃p,X by
using the map (1.4.7.3), we reduce to showing

Hc̃X×SY,p+p′(�H
X,Y (x ⊗ y)) = Hc̃X,p(x)�X,Y Hc̃Y,p′(y)

for x ∈ Hp(X,GL; Z), y ∈ Hp′(Y,GL; Z) (or x ∈ H0(X, Z̃) × H0(X,GL; Z) for
p = 0).

Let BGLN,M/S be the product simplicial scheme BGLN/S ×S BGLM/S. By
Lemma 3.3.2, we have

c̃
BGL

≤n
N,M/S,0

(p∗1EN ⊗ p∗2EM ) = p∗1c̃BGL≤n
N /S,0

(EN )�p∗2c̃BGL≤n
M /S,0

(EM )

for all n. Thus, letting 1k stand for the trivial rank k vector bundle, we have

c
BGL≤n

N,M/S,0
(p∗1EN ⊗ p∗2EM − p∗1EN ⊗ p∗21

M − p∗11
N ⊗ p∗2EM )

= p∗1(cBGL≤n
N /S

(EN )) ∗ p∗2(cBGL≤n
M /S,0

(EM ))

where ∗ is the operation

(1 +
∑
q

xq) ∗ (1 +
∑
q

yq) = 1 +
∑
q

Pq(x1, . . . , xq; y1, . . . , yq)

(see §3.1.2 and Example 3.1.4(i)). The result then follows from the definition of the
external product �H

X,Y , and of the Chern classes cq,p.
We now prove (ii); we refer the reader to Appendix B for the notation. The

elements x and y are represented by maps x :Sp → K(X) and y :Sp → K(X),
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where K(X) is the space holimI ΩBPX . Let hX :Kp(X) → H−p(X,GL; Z) denote
the Hurewicz map.

An element x of Kp(X) is “trivialized” on an open cover U := {U0, . . . , Un} of
X (see Appendix B, §2.1.3 and (B.2.1.1.2)), and hence comes from an element

x̃ ∈ πp( holim
(I×[n])op

Z× BGLN (Γ(U ,OX))+).

The Hurewicz map hX for x factors through the map on πp induced by the map

h̃X : holim
(I×[n])op

Z× BGLN (Γ(U ,OX))+ → holim
(I×[n])op

Z× ZBGLN (Γ(U ,OX))+,

(for N sufficiently large) which in turn is induced by the point-wise Hurewicz maps
Z× BGLN (Γ(U ,OX))+(i) → Z× ZBGLN (Γ(U ,OX))+(i).

Take p > 0 and let ιp :Sp → Sp ∧ Sp be the diagonal embedding. If

γ :Sp → holim
(I×[n])op

ZBGLN (Γ(U ,OX))+

is a map, we have the map

Sp (γ∧γ)◦ιp−−−−−−→ holim
(I×[n])op

ZBGLN (Γ(U ,OX))+ ∧ holim
(I×[n])op

ZBGLN (Γ(U ,OX))+.

By the Dold-Kan equivalence of the homotopy category of simplicial abelian groups
with the homotopy category of complexes of abelian groups (see e.g. [95, Chapter
V]), we may consider (γ ∧ γ) ◦ ιp as an element of

H−p(C∗≥−n(U ,BGLN ; Z)⊗ C∗≥−n(U ,BGLN ; Z))

for all n sufficiently large.
Let ε : ZX → ΓU be the Čech resolution of ZX coming from the open cover U

(see Chapter II, §1.3). As in §1.4.1, we have the natural map of complexes

ξ :C∗≥−n(U ,BGLN ; Z) → lim
g
→

HomCb
mot(V)(ZBGL≤n

N
(0)g,ΓU ).

Using the tensor structure in Cb
mot(V), this gives us the map of complexes

C∗≥−n(U ,BGLN ; Z)⊗ C∗≥−n(U ,BGLN ; Z)
ξ⊗ξ−−→ lim

g
→

HomCb
mot(V)(ZBGL≤n

N
(0)g ⊗ Z

BGL≤n
N

(0)g,ΓU ⊗ ΓU ).

Taking cohomology, composing with ε(q)−1 ⊗ ε(q′)−1, applying the moving lemma
isomorphism, and using the product structure on ZX (see Chapter I, §2.7.4) gives
the map

H−p(C∗≥−n(U ,BGLN ; Z)⊗ C∗≥−n(U ,BGLN ; Z))
Ξ⊗Ξ−−−→ HomDb

mot(V)(ZBGL≤n
N

(q)⊗ Z
BGL

≤n
N

(q′),ZX(q + q′)[−p]).

We may then compose Ξ⊗ Ξ[2q + 2q′] with the map

1 ∼= 1⊗ 1
cq(E

≤n
N )⊗cq′ (E

≤n
N )

−−−−−−−−−−−−→ Z
BGL≤n

N
(q)⊗ Z

BGL≤n
N

(q′)[2q + 2q′],
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giving the map

H−p(C∗≥−n(U ,BGLN ; Z)⊗ C∗≥−n(U ,BGLN ; Z))
(Ξ⊗Ξ)(cq⊗cq′ )−−−−−−−−−→ H2q+2q

′−p(X,Z(q + q′)).

It follows from the definition of (3.3.3.1) that

(cq ∪ cq′)q+q
′,2q+2q′−p(x) = (Ξ⊗ Ξ)(cq ⊗ cq′)

(
(γ ∧ γ) ◦ ιp

)
,

with γ = h̃X(x). Since the map ιp is homotopically trivial for p > 0, we have
(cq ∪ cq′)q+q

′,2q+2q′−p(x) = 0.
The assertion (iii) follows from the Whitney product formula (Theorem 1.3.7)

for the universal total Chern classes c(EN )≤n, the construction of the Chern classes
cq,2q−p, and (ii).

3.3.5. Example. As an example, we consider the case of K-theory with support.
Let X be in V , with closed subset W , and open complement j :U → X , U := X\W .
As explained in Example 1.4.8, the K-theory with support KW

∗ (X) is gotten by
taking the holim of BQP(−) over the diagram

(X,W ) :=
X U��

j

��
∗

and the motive with support ZX,W is given similarly. We may also consider the
“constant” diagram

(X) :=

X X

X.

There is the canonical map BQPX → holim(X) BQP(−), defined by taking the
constant maps N (I/−) → BQP(−). Similarly, we have the canonical map ZX →
Z(X). The appropriate diagonal maps give the morphism of diagrams

δ : (X,U) → (X)×S (X,U).

If we then take the external product, followed by the pull-back by δ, we have the
action of K(X) on KW (X), and the action of ZX on ZX,W :

Kp(X)⊗KW
p′ (X) → KW

p+p′(X)

Hp(X,Z(q))⊗Hp′

W (X,Z(q′)) → Hp+p′

W (X,Z(q + q′)).

Thus, Lemma 3.3.4(i) gives the identity

c̃WX,p+p′(xy) = c̃X,p(x)�c̃WX,p′ (y)

for x ∈ Kp(X), y ∈ KW
p′ (X), where c̃WX,∗ is the total Chern class with support.

We have a similar description of the action of K∗(X) on the relative K-theory
with support, KW

∗ (X ;Y1, . . . , Yn), the action of ZX on the relative motive with
support Z(X;Y1,... ,Yn),W , and a similar identity for the total Chern classes.
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3.3.6. Chern character. For each k = 1, 2, . . . , let Sk(t1, . . . , tk) ∈ Z[t1, . . . , tk] be
the polynomial such that

Sk(σ1(x1, x2, . . . ), . . . , σk(x1, x2, . . . )) =
∑
i

xki .

We have the universal Chern character

ch(EN )≤n ∈ ⊕q≥0H
2q(BGLN/S≤n,Q(q)),

given as

ch(EN )≤n := N · cl0(|BGL≤nN |) +
∑
q≥1

1
q!
Sq(c1, . . . , cq)(E

≤n
N ).

Write ch(EN )≤n =
∑

q≥0 ch(EN )≤nq .
The classes ch(EN )≤nq are stable in n for all q, and are stable in N for q > 0,

giving the element

ch(E)+ :=
∑
q≥1

ch(E)q ∈
∏
q≥1

H2q(BGL/S,Z(q)).

Let I be the category associated to a finite partially ordered set, and let
X : I → V+ be a functor, as in §1.4.7. We may then pair the classes ch(E)q with
Hp(X,GL; Z) via the map (1.4.7.2), and compose with the Hurewicz map, as in the
construction of the Chern classes for K∗(X) in §1.4.7, giving the maps

chX,p,q :Kp(X) → H2q−p(X,Q(q))(3.3.6.1)

for q > 0. For q = p = 0, we have the rank function rnk:K0(X) → H0Zar(X,Z);
sending i ∈ I and n ∈ Z to n · cl0X(i)(|Xi|) ∈ H0(X(i),Z(0)) extends to the map
cl0 :H0Zar(X,Z) → H0(X,Z(0)). We then define chX,0,0 to be the composition

K0(X) rnk−−→ H0Zar(X,Z) cl0−→ H0(X,Z(0)) −→ H0(X,Q(0)).

By the construction of the Chern classes cq,2q−p, it follows that, for each element
x ∈ Kp(X), we have cq,2q−p(x) = 0 for all q sufficiently large (the Chern class
Hcq,2q−p comes from a collection of maps into BGLN for some N , and cq(EN ) = 0
for q > N , see Appendix B, §2.2.2). By Lemma 3.3.4(ii), we have chX,p,q(x) =
(−1)q−1

(q−1)! c
q,2q−p(x), so we have the map

chX,p :=
∑
q≥1

chX,p,q :Kp(X) → ⊕qH
2q−p(X,Q(q)).

For q = 0, we have the map

chX,0 :=
∑
q≥0

chX,0,q :K0(X) →
∏
q≥0

H2q(X,Q(q)).

3.3.7. Remarks. (i) The functorialities for the Chern classes described in Proposi-
tion 1.4.9(iii) and (iv) give similar functorialities for the Chern character. Similarly,
the compatibility of the localization/relativization sequences via Chern classes, de-
scribed in §1.5.2, gives a similar compatibility of the localization/relativization
sequences via the Chern character.
(ii) Let X be in V and let E be a vector bundle on X . Suppose that the base
scheme S is a k-scheme of essentially finite type for k an infinite field, and has an
ample family of line bundles. Let dX <∞ be the dimension of X over k. One can



170 III. K-THEORY AND MOTIVES

show that each polynomial of weighted homogeneous degree N in the Chern classes
cq(E) (where we give cq(E) degree q) vanishes in H2N (X,Z(N)) for N > dX .

In fact, since X has an ample family of line bundles, there is a Grassmann
variety Grk(r,N), and k-morphism f :X → H , with H = PN

k ×k Grk(r,N), such
that

f∗(p∗1O(−1)⊗ p∗2U(r,N)) = E,

where U(r,N) is the universal bundle on GrS(r,N). Write U for the bundle
p∗1O(−1)⊗ p∗2U(r,N).

Let fS :X → H ×k S be the S-morphism induced by f . and let p :S → Spec k
be the structure morphism. We have the bundle p∗U → H ×k S.

From Remark 1.3.6, the Chern classes are functorial with respect to the motivic
pull-back of (Chapter I, §2.3); we thus have cq(p∗U) = p∗(cq(U)). By functoriality
of the Chern classes, we have as well

cq(E) = f∗S(cq(p∗U)).

Since k is a field, we know by (Chapter II, Theorem 3.6.6) that H2q(H,Z(q)) =
CHq(H), so there are codimension q cycles σq on H such that cq(U) = clq(σq).
Thus

cq(p∗U) = p∗clq(σq) = clq(p∗σq).

The automorphism group of H acts on the cycle σq, and leaves the cycle class
invariant. By Kleiman’s transversality result [78], one may translate any finite
number of the cycles σq so that they intersect properly on H , and so that the cycle
pull-back by f is defined. In particular, if we take a finite collection of cycles σi such
that the sum of their codimensions is more that dX , then there are translates gi ·σi
such that the cycle intersection ∩igi·σi is well defined, and f(X)∩∩isupp(gi·σi) = ∅.
Thus fS(X) ∩ ∩isupp(p∗(gi · σi)) = ∅, and hence

P (. . . , cq(E), . . . ) = f∗S(P (. . . , clq(p∗σq), . . . ) = 0

if P has weighted degree N > dX .
This implies that the Chern character chX,0 :K0(X) →

∏
q H

2q(X,Q(q)) has
image in the direct sum ⊕qH

2q(X,Q(q)).

3.3.8. Properties of the Chern character. We recall from (Appendix B, §2.2.4 and
Remark 2.2.6) and (Part II, Chapter III, §3.4.4) the construction of products and
external products for K∗(X), and the construction of products and external prod-
ucts for H∗(X,Z(∗)) in (Chapter I, §2.7.4).

3.3.9. Proposition. Let I be the category associated to a finite partially ordered
set, and let X,Y : I → V+ be functors. Then
(i) The Chern character

⊕pchX,p : ⊕p Kp(X) → ⊕p

∏
q

H2q−p(X,Q(q))

is a ring homomorphism.
(ii) For x ∈ Kp(X), y ∈ Kp′(Y ), we have

chX×SY,p+p′(x �X,Y y) = chX,p(x) �X,Y chY,p′(y).
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Proof. This follows from Lemma 3.3.4, and the fact (see [3, exposé V, §6]),
for a positively graded ring A, the map chA : Ã→ Q⊕

∏
q≥1 A

q ⊗Q given by

chA(n, 1 +
∑
q

xq) := n +
∑
q

1
q!
Sq(x1, . . . , xq)

is a ring homomorphism.

3.3.10. Remarks. (i) Via the discussion in Example 1.4.8, the Chern character for
diagrams constructed in §3.3.6 give the Chern character for relative K-theory with
support,

chW
X;Y1,... ,Yn,p :KW

p (X ;Y1, . . . , Yn) →
∏
q≥0

H2q−pW (X ;Y1, . . . , Yn,Z(q)).

(ii) As in Example 3.3.5, if W is a closed subset of X , with X in SmS , we have

chW
X,p+q(a ∪W

X b) = chX,p(a) ∪W
X chW

X,q(b),

where a is in Kp(X), b is in KW
q (X), and the ∪W

X are the products

Kp(X)⊗KW
q (X) → KW

p+q(X)

Hp(X,Q(q))⊗Hp′

W (X,Q(q′)) → Hp+p′

W (X,Q(q + q′)).

3.4. Riemann-Roch without denominators

We now proceed to give the proof of the Riemann-Roch formula without denomi-
nators; we use the arguments from [2], [8], [45], and [46].

3.4.1. For a scheme X , let HX denote the category of coherent sheaves of finite
homological dimension on X . If X has finite Krull dimension and an ample family
of line bundles, the natural map Kp(X) → Kp(HX) is an isomorphism (this follows
from Quillen’s resolution theorem [102], §4, Corollary 1); in particular, each coher-
ent sheaf F on X of finite homological dimension has a class [F ] in K0(X), and a
class in KW

0 (X) if F is supported on a closed subset W of X . If X is in V , we may

then take the augmented total Chern class with support c̃WX ([F ]) ∈ ˜H2∗W (X,Z(∗)).

3.4.2. Push-forward in K-theory. For a projective morphism f :X → Y in V , we
may factor f as a composition X

i−→ PN
Y

q−→ Y , where i is a closed embedding, and
q is the projection. Since X and Y are smooth over S, i is a regular embedding
[55, 16.9.2] hence f is a morphism of finite Tor-dimension. If we let Pf be the full
subcategory of PX of locally free coherent sheaves P on X such that Rqf∗P = 0
for q > 0, then, by the resolution theorem of Quillen [102, §4, Corollary 1], the
natural map Kp(Pf ) → Kp(PX) is an isomorphism. As the functor f∗ :Pf → HY

is exact, we have the push-forward map

Kp(X) = Kp(Pf )
f∗−→ Kp(HY ) = Kp(Y ).

This extends directly to push-forward for K-theory with support

f∗ :KW
p (X) → KW ′

p (Y ),

where W is a closed subset of X , W ′ is a closed subset of Y , and f(W ) ⊂ W ′.
Indeed, let jU :U → X and jV :V → Y be the complements of W and W ′, and let
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j∗f :U → V be the restriction of f . We then have the commutative diagram of
exact functors of exact categories

Pf ��
j∗U

��

f∗

Pj∗f

��

(j∗f)∗

PY
��

j∗V
PV

giving the map on the homotopy fibers

Fib(BQPf
j∗U−→ BQPj∗f ) → Fib(BQPY

j∗V−→ BQPV ).

One can easily check (using results of [102]) that the projective push-forward
is well-defined, functorial, satisfies the projection formula, and commutes with pull-
back in cartesian squares.

3.4.3. More universal polynomials. Let x := x1, x2, . . . , y := y1, . . . , yr be variables,
and form the formal series (with integral coefficients)

Gr(x; y) :=
∞∏
i=1

r∏
j=1

∏
k1<...<kj

(1 + xi − (yk1 + . . . + ykj ))(−1)
j

.

Clearly, Gr(x; y) is symmetric in the variables x and in the variables y. In addition,

Gr(x, y)− 1 is divisible by y1 · · · yr.(3.4.3.1)

Indeed, by symmetry, we need only check that y1 divides Gr(x, y) − 1. If we set
y1 = 0, then we may pair each term

(1 + xi − (yk1 + . . . + ykj ))(−1)
j

with k1 > 1 with the term

(1 + xi − (y1 + yk1 + . . . + ykj ))(−1)
j+1

,

so that the resulting product is 1, verifying (3.4.3.1).
Thus there is a unique power series Qr(s1, s2, . . . ; t1, . . . , tr), with integral

coefficients, such that

Gr(x; y) = 1 + σr(y)Qr(σ1(x), σ2(x), . . . ;σ1(y), . . . , σr(y)).(3.4.3.2)

Giving the xi and yj degree 1, and giving si and ti degree i, we may decompose
(3.4.3.2) into homogeneous terms, giving the identities

Gr(x; y)(d) = σr(y)Qr(σ1(x), . . . , σd−r(x);σ1(y), . . . , σr(y))(d−r); d = 1, 2, . . .

with Qr(s1, . . . , sd−r; t1, . . . , tr)(d−r) a polynomial with integral coefficients, of
weighted degree d− r.

3.4.4. For x in a lambda ring R, we have the formal sum

λt(x) :=
∑
i

λi(x)ti,

which we may evaluate at t = r ∈ R if λk(x) is non-zero for only finitely many k.
Now let A = ⊕i≥1 be a graded (non-unital) ring, and let

s := (n, 1 +
∑
i

si); t := (r, 1− t1 + . . . + (−1)rtr)
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be elements of Ã, where s is arbitrary and t has the given special form. We thus
have

s�λ−1t

= (nr, (1+tr
∑
d

Qr(s1, . . . , sd−r; t1, . . . , tr)(d−r))(1+
∑
i

si)r(1+
∑
j

(−1)jtj)n).

Thus, there are universal polynomials Qr,j−r(V,X1, . . . , Xj−r;Y1, . . . , Yr) with in-
tegral coefficients such that

(3.4.4.1) [(n, 1 +
∑
i

si)�(r, 1 − t + . . . + (−1)rtr)]j

= trQr,j−r(n, s1, . . . , sj−r; t1, . . . , tr)

for j ≥ 1. Here [(a, 1 +
∑

i yi)]j := yj. Note that

Qr,j−r(V,X1, . . . , Xj−r;Y1, . . . , Yr) ≡ 0

if 1 ≤ j < r.
Also, for a graded A-module M , we may evaluate Qr,j−r at elements n ∈ Z,

si ∈ M i and tj ∈ Aj , using the product � : M̃ ⊗ Ã → M̃ . This gives the element
Qr,j−r(n, s1, . . . , sj−r; t1, . . . , tr)) ∈M j−r.

3.4.5. Lemma. Let X be in V , q a vector bundle of rank r on X , W a closed subset
of X , and let e be in KW

p (X). Then

cj,2j−pW (eλ−1q∨)

= cr(q)Qr,j−r(rnk(e), c1,2−pW (e), . . . , cj−r,2j−2r−pW (e); c1(q), . . . , cr(q))

in H2j−pW (X,Z(j)).

Proof. It follows from Lemma 3.3.4 that

c̃WX,p(eλ−1q∨) = c̃WX,p(e)�λ−1c̃X,0(q∨).

It follows easily from the splitting principle that c̃(q∨) = (r, 1 − c1(q) + . . . +
(−1)rcr(q)). The identity then follows from (3.4.4.1).

3.4.6. Lemma. Let p :E → Y be a rank r vector bundle over Y in V , and let
i :Y → E be the zero section, and let W be a closed subset of Y . Let i∗ :KW

p (Y ) →
K

i(W )
p (E) and i∗ :H∗−2rW (Y,Z(∗− r)) → H∗i(W )(E,Z(∗)) be the push-forward maps.

Then for x ∈ KW
p (Y ), we have

cj,2j−pi(W ) (i∗x)

= i∗(Qr,j−r(rnk(x), c1,2−pW (x), . . . , cj−r,2j−2r−pW (x); c1(E), . . . , cr(E))).

Proof. Let q : Ē → Y be the projective bundle P(E∨ ⊕ 1Y ), where ∨ denotes
dual, and 1Y is the trivial line bundle on Y . We have the canonical open immersion
j :E → Ē. By excision, the restriction map j∗ : ZĒ,Y → ZE,Y is an isomorphism in
DM(V), hence we may replace E with Ē. As q ◦ i = idY the composition

ZY,W (−r)[−2r] i∗−→ ZĒ,W → ZĒ,q−1(W )

is split by q∗ : ZĒ,q−1(W ) → ZY,q−1(W )(−r)[−2r] hence we may work with support
in q−1(W ).
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Let Q be the kernel of the canonical surjection q∗(E∨ ⊕ 1Y ) → OĒ(1). The
projection of q∗(E∨ ⊕ 1Y ) onto q∗(1Y ) = OĒ gives the map π :Q → OĒ and thus
the section s :OĒ → Q∨. The projection of q∗(E∨ ⊕ 1Y ) onto q∗E∨ gives the map
π′ :Q → q∗E∨; restricting to E ⊂ Ē gives the isomorphism π′′ : j∗Q → p∗E∨. In
particular, we have

i∗Q ∼= E∨.

An elementary computation shows that the i(Y ) is the zero-subscheme of s,
hence, by Corollary 1.3.9, we have

cr(Q∨) = clrĒ(i∗(|Y |)).(3.4.6.1)

Additionally, the cokernel of π is isomorphic to Oi(Y ). Thus the augmented Koszul
complex

0 → ΛrQ→ . . .→ Q
π−→ OĒ → Oi(Y ) → 0

is a locally free resolution of Oi(Y ). This gives the identity in K0(Ē)

[Oi(Y )] = λ−1([Q]).

As the map i∗ :KW
∗ (Y ) → K

q−1(W )
∗ (Ē) is equal to the composition

KW
∗ (Y )

q∗−→ K
q−1(W )
∗ (Ē)

⊗[Oi(Y )]−−−−−→ K
q−1(W )
∗ (Ē),

we have the identity

i∗(x) = q∗(x)λ−1([Q])(3.4.6.2)

for all x ∈ KW
∗ (Y ).

Applying Lemma 3.4.5, (3.4.6.1), (3.4.6.2), and the projection formula, we have

cj,2j−p(i∗x) = cr(Q∨)Qr,j−r(rnk(x), q∗c1,2−p(x), . . . ; c1(Q∨), . . . , cr(Q∨))

= i∗(cl0Y (|Y |))Qr,j−r(rnk(x), q∗c1,2−p(x), . . . ; c1(Q∨), . . . , cr(Q∨))

= i∗Qr,j−r(rnk(x), c1,2−p(x), . . . ; i∗c1(Q∨), . . . , i∗cr(Q∨))

= i∗Qr,j−r(rnk(x), c1,2−p(x), . . . ; c1(E), . . . , cr(E)).

In the last two lines we use the naturality of the Chern classes (Theorem 1.3.5), and
the fact that cl0Y (|Y |) is the identity in H∗(Y,Z(∗) (Chapter I, Proposition 3.5.6).

3.4.7. Theorem. Let i :Z → X be a closed codimension r embedding of schemes
in V , with normal bundle N , and let W be a closed subset of Z. Then

cq,2q−pi(W ) (i∗x)

= i∗(Qr,q−r(rnk(x), c1,2−pW (x), . . . , cq−r,2q−2r−pW (x); c1(N), . . . , cr(N))),

for x ∈ KW
p (Z), q ≥ 1.

Proof. We have the deformation diagram

X X × 0 ��
i0

��

idX×j0

Y

��

q

���
���

���
��

P��
i1

��

f

X × A1 Z × A1��
i×id

A1

��

s′

Z × 1��
idZ×j1

��

s

Z
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as in §2.1.2. By the Thomason-Trobaugh theorem [121], the maps

s′∗ :KW×A1

p (Z × A1) → K [W×A1]
p (Y )

i∗ :KW
p (Z) → KW

p (X)

s∗ :KW
p (Z) → Ks(W )

p (P )

are isomorphisms.
Furthermore, the restriction maps j∗1 , j

∗
0 :KW×A1

p (Z × A1) → KW
p (Z) are sur-

jections, split by the pull-back map p∗ :KW
p (Z) → KW×A1

p (Z × A1). We have

as well the maps i∗1 :K [W×A1]
p (Y ) → K

s(W )
p (P ) and i∗0 :K [W×A1]

p (Y ) → K
i(W )
p (X),

satisfying

i∗1 ◦ s′∗ = s∗ ◦ j∗1 ; i∗0 ◦ s′∗ = i∗ ◦ j∗0 .(3.4.7.1)

The above maps all have their counterparts for motivic cohomology, which, by
Theorem 2.4.9 satisfy the relation (3.4.7.1). In addition, the maps

i∗1 :H2q−p[W×A1](Y,Z(q)) → H2q−ps(W )(P,Z(q)),

i∗0 :H2q−p[W×A1](Y,Z(q)) → H2q−pW (X,Z(q)),

are isomorphisms by the homotopy property.
We have the diagrams

KZ
p (X)

��

cq,2q−p

K
[W×A1]
p (Y )��

i∗0

��

cq,2q−p

��
i∗1

K
s(W )
p (P )

��

cq,2q−p

H2q−pZ (X,Z(q)) H2q−p[W×A1](Y,Z(q))��
i∗0 ��

i∗1
H2q−ps(W )(P,Z(q))

and

KW
p (Z)

��
cq

′,2q′−p

KW×A1

p (Z × A1)��
j∗0

��
cq

′,2q′−p

��
j∗1

KW
p (Z)

��
cq

′,2q−p

H2q
′−p

W (Z,Z(q′)) H2q
′−p

W×A1(Z × A1,Z(q′))��
i∗0 ��

i∗1
H2q

′−p
W (Z,Z(q′)),

which commute by the naturality of the Chern classes. This reduces us to the case
of the inclusion s :Z → P .

Since an open neighborhood of s(Z) in P is isomorphic to the normal bundle
N , j :N → P , with s going over to the zero section, and since

j∗ :H∗s(W )(P,Z(∗)) → H∗0W (N,Z(∗))

j∗ :Ks(W )
∗ (P ) → K0W∗ (N)

are isomorphisms (the isomorphism for K-theory uses results of [121] in the non-
regular case), we may finish the proof by applying Lemma 3.4.6.
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3.5. Riemann-Roch

3.5.1. The Todd class. For a graded ring A, let

Â :=
∏
q≥0

Aq,

and write

1 + Â+ ⊂ Â×

for the group of power series 1 +
∑

q≥1 xq with xq ∈ Aq.
If A is a graded Q-algebra, we have the Todd character

Todd: 1 + Â+ → 1 + Â+

defined by

Todd(1 + X) :=
X

1− e−X
.

Note that Todd is multiplicative:

Todd((1 + X)(1 + Y )) = Todd(1 + X)Todd(1 + Y ).

If X is in V , and x is an element of K0(X), we have the (reduced) total Chern

class c(x) ∈ 1 + ̂H2∗(X,Z(∗))
+

; we write Todd(x) for Todd(c(x)) ∈ ̂H2∗(X,Z(∗)).
The multiplicativity of Todd and the Whitney product formula gives the relation

Todd(x + y) = Todd(x)Todd(y).

Since X is smooth over S, we have the relative tangent bundle TX/S → S which
has the K0(X)-class [TX/S ]. Define

Todd(X/S) := Todd([TX/S ]).

The naturality of the total Chern class implies that Todd(X/S) is functorial in X .
Before stating the Riemann-Roch theorem, we prove two preliminary results.

3.5.2. Lemma. Let X be in V , and let E be a vector bundle of rank n on X . Then

ch(λ−1E) = cn(E∨)Todd(E∨)−1 in ̂H2∗(X,Z(∗)).

Proof. Since λt(x + y) = λt(x)λt(y), as formal power series, the function
λ−1(x) is multiplicative, and thus so is ch(λ−1x). By the Whitney product formula,
the map F �→ crnkF (F∨) is multiplicative, hence so is F �→ crnkF (F∨)Todd(F∨)−1.
By the splitting principle, we may assume that E has rank 1.

In this case, we have

λ−1(E) = 1− E,

cn(E∨) = c1(E∨) = −c1(E),

cq(E) = 0 for q > 1.

The result then follows from the power series identity

1− eX = −X(
−X

1− eX
)−1.
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3.5.3. Lemma. Let φN,k be the power series

φN,k(x) := ekx(
x

1− e−x
)N+1.

The coefficient of xN in φN,k is zero for −N ≤ k < 0 and is 1 for k = 0.

Proof. The coefficient of XN in φN,k is the residue (at 0) of the differen-

tial form
ekxdx

(1 − e−x)N+1
. Setting y = 1 − e−x, this is the same as the residue of

(1− y)−k−1dy
yN+1

. The coefficient of yN in (1− y)−k−1 is zero for −N ≤ k < 0 and 1

for k = 0, whence the result.

3.5.4. Theorem [Riemann-Roch]. Let f :X → Y be a projective morphism in V ,
W a closed subset of X and T a closed subset of Y with f(W ) ⊂ T . Then for
x ∈ KW

p (X), we have

f∗(chW
X,p(x) ∪ Todd(X/S)) = chT

Y,p(f∗(x)) ∪ Todd(Y/S)

in
∏

q≥0H
2q−p
W ′ (Y,Z(q)).

Proof. Factor f as X i−→ PN
Y

q−→ Y where i is a closed embedding, and q is the
projection. Since projective pushforward is functorial for both motivic cohomology
(Theorem 2.4.7) and for K-theory [102], we reduce to proving the theorem for i
and for q.
RR for a closed embedding: We use the notation of the proof of Lemma 3.4.6.
As in the proof of Theorem 3.4.7, we may assume that the embedding is the zero-
section into the projective closure of a rank r vector bundle E → X : i :X →
Ē := P(E ⊕ 1Y ), which is split by the projection q : Ē → X . From the proof of
Lemma 3.4.6, we have

c̃
q−1(W )

Ē,p
(i∗(x)) = c̃

q−1(W )

Ē,p
(q∗(x))�c̃Ē,0(λ−1Q).

As taking the Chern character transforms the multiplication � to the cup product
in the ring ⊕p

∏
q H

2q−p(−,Z(q)), (cf. the proof of Proposition 3.3.9) we thus have

chq
−1(W )

Ē,p
(i∗(x)) = chq

−1(W )

Ē,p
(q∗(x)) ∪ ch(λ−1Q).(3.5.4.1)

From the proof of Lemma 3.4.6, we have cr(Q∨) = i∗(cl0X(|X |)), and i∗Q = E∨.
Applying Lemma 3.5.2, (3.5.4.1) becomes

chq−1(W )

Ē,p
(i∗(x)) = q∗chWX,p(x) ∪ i∗(|X |) ∪ Todd(Q∨)−1

= i∗(chX,p(x) ∪ Todd(E)−1)

in H∗q−1(W )(Ē,Z(∗)). Since q∗ splits i∗, we thus have the identity

chW
Ē,p(i∗(x)) = i∗(chX,p(x) ∪ Todd(E)−1)

in H∗W (Ē,Z(∗)).
We have the exact sequence of vector bundles on Y ,

0 → TX/S → i∗TĒ/S → E = NX:Ē → 0.

Since the Todd character is multiplicative in exact sequences, we have

Todd(E)−1 = i∗Todd(Ē/S)−1Todd(X/S),
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giving us

chW
Ē,p(i∗(x)) = i∗(chW

X,p(x) ∪ i∗Todd(Ē/S)−1Todd(X/S))

= i∗(chW
X,p(x) ∪ Todd(X/S)) ∪Todd(Ē/S)−1,

or

i∗(chW
X,p(x) ∪ Todd(Y/S)) = chW

Ē,p(i∗(x)) ∪ Todd(Ē/S).

RR for a projection: Let q : PN
Y → Y be the projection. By the projective bundle

formula for K-theory [102, §8, Theorem 2.1], Kq−1(T )
∗ (PN

Y ) is a free KT
∗ (Y )-module

with basis {[OPN
Y

(−i)] | i = 0, . . . , N}. If we express an element x of Kq−1(T )
p (PN

Y )
in terms of this basis,

x =
N∑
i=0

q∗(yi)[OPN
Y

(−i)]; yi ∈ KT
p (Y ),

we have, by the projection formula for K-theory,

q∗(chq−1(T )(x)Todd(PN
Y )) = q∗(

N∑
i=0

q∗chT (yi)ch[OPN
Y

(−i)]Todd(PN
Y ))

=
N∑
i=0

chT (yi)q∗(ch[OPN
Y

(−i)]Todd(PN
Y )).

In addition, since Rqp∗(OPN
Y

(−i)) = 0 for all p if 0 < i ≤ N , and for all p > 0 if
i = 0, and since q∗OPN

Y
= OY , we have

q∗([OPN
Y

(−i)]) =

{
0 for 0 < i ≤ N,

[OY ] = 1 for i = 0.

Thus

chT (q∗(x))Todd(Y ) = chT (y0)Todd(Y ).

This reduces us to showing that

q∗(ch[OPN
Y

(−i)]Todd(PN
Y )q∗Todd(Y )−1) =

{
0 for 0 < i ≤ N,

|Y | = 1 for i = 0.

We have the relative tangent bundle TPN
Y /Y , defined by the exact sequence

0 → TPN
Y /Y → TPN

Y /S
dq−→ q∗TY/S → 0,

giving Todd(PN
Y )q∗Todd(Y )−1 = Todd(TPN

Y /Y ). In addition, we have the exact
sequence

0 → OPN
Y
→ OPN

Y
(1)N+1 → TPN

Y /Y → 0,

hence Todd(TPN
Y /Y ) = Todd(OPN

Y
(1))N+1.

Write ζ = c1(OPN
Y

(1)). Then, by the projective bundle formula (Theorem 1.3.2),
H∗(PN

Y ,Z(∗)) is a free H∗(Y,Z(∗))-module, with basis 1, ζ, . . . ζN ; the pushforward
on motivic cohomology is defined by

q∗(
N∑
i=0

q∗(ti)ζi) := tN
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(see §2.3.1). In addition, PN
Y is P(ON+1

Y ); the defining relation for the Chern classes
of the trivial bundle ON+1

Y gives

ζN+1 = ζN+1 +
N∑
i=1

ci(ON+1
Y )ζN+1−i = 0.

Since c1(O(−i)) = −iζ, we have

ch(O(−i)) = e−iζ .

Similarly, we have (formally)

Todd(TPN
Y /Y ) = (

ζ

1− e−ζ
)N+1.

Thus q∗(ch(O(−i))Todd(TPN
Y /Y )) is given by the coefficient of ζN in the formal

expression e−iζ(
ζ

1 − e−ζ
)N+1. By Lemma 3.5.3, this coefficient is zero for 0 < i ≤ N

and 1 for i = 0, completing the proof.

3.5.5. Remark. One could also deduce Riemann-Roch for a closed embedding di-
rectly from the Riemann-Roch theorem without denominators (Theorem 3.4.7) by
a formal power series identity.

3.6. The Chern character isomorphism

We conclude the chapter with a sketch of Bloch’s argument in [19], which shows
that the Chern character

chX,p :Kp(X)Q → ⊕qH
2q−p(X,Q(q))

is an isomorphism in case the base scheme S is Spec k, for k a field, or smooth and
of dimension at most one over a field.

We refer to §1.5.2 for the fundamental localization and relativization sequences
we will need. In §3.6.1-§3.6.3, we list some well-known facts about the gamma
filtration, Adams operations, and the weight space decomposition for lambda rings;
for details and proofs, we direct the reader to [6] and [64]. We give the main
argument in §3.6.4-§3.6.10, where we assume that S = Spec k, with k a perfect
field.

3.6.1. Lambda operations on K-theory. Functorial lambda operations

λk, k = 1, 2, . . . ,

on the higher K-groups of a commutative ring were first constructed by Quillen (the
construction was described in an article of Hiller’s [64]) and Kratzer [80]. These
operations satisfy the special lambda ring identities in the following sense: Make
K0(A) ⊕Kp(A) into a ring with

(e, x)(e′, x′) = (ee′, ex′ + e′x)

where the product in the second factor uses the graded product structure on K∗(A).
The lambda operations on K0(A) and Kp(A) give lambda operations on K0(A) ⊕
Kp(A) by

λk(e, x) := (λk(e),
k∑

i=1

λk−i(e)λi(x)).
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Then K0(A) ⊕Kp(A) is a special lambda ring. Kratzer refers to this structure on
Kp(X) as a special K0(A) lambda algebra.

The lambda operations for Kp(A) were extended to give lambda operations for
Kp(X) for a scheme X by Soulé [114]; these make Kp(X) into a special K0(X)
lambda algebra. This was further extended by Gillet-Soulé in [48] to the case of
an object in a Grothendieck topos, satisfying a certain cohomological finiteness
condition. Another treatment of lambda operations, this time for the K-theory
of a functor X : I → Sch+, where I is a finite category, appears in [83]. In any
case, the relative K-theory with support described in Example 1.4.8 has functorial
lambda operations, compatible with the boundary maps in the localization and
relativization sequences (see §1.5.2), which make KW

p (X ;Y1, . . . , Yn) into a special
K0(X) lambda algebra.

3.6.2. The gamma filtration. Let (R, λ∗) be a special lambda ring with augmen-
tation ε :R → Z of lambda rings (where Z has its uniquely defined lambda ring
structure), and set

F 1γR := ker ε.

We call (R, ε) an augmented lambda ring.
Define the operations

γk :R→ R; k = 1, 2, . . .

by

γk(x) := λk(x + k − 1).

Define F k
γR, k = 2, 3, . . . , as the subgroup of R generated by elements of the form

γi1(x1) · . . . · γis(xs), with xj ∈ F 1γR and
∑s

j=1 ij ≥ k. This gives the gamma
filtration

R = F 0γR ⊃ F 1γR ⊃ F 2γR ⊃ . . . .

3.6.3. Adams operations. Let (R, λ∗) be a special lambda ring. The Adams opera-
tions ψk :R→ R are defined as the polynomial in the lambda operations

ψk = Sk(λ1, . . . , λk),

where Sk is the polynomial of weighted degree k in X1, . . . , Xk (with Xi having
degree i) such that

Sk(σ1(x1, . . . ), . . . , σk(x1, . . . )) =
∑
i

xki .

The ψk are ring homomorphisms, and satisfy

ψk ◦ ψl = ψkl.(3.6.3.1)

The main result on the Adams operations is

Theorem. Let R be an augmented lambda ring. Then each ψk preserves the
gamma filtration, and ψk acts on grqγR as multiplication by kq.

In particular, let R(q) be the weight q eigenspace of ψk (k ≥ 2), acting on RQ:

R(q) := {x ∈ RQ | ψk(x) = kq · x}.
If R is generated by elements x such that λM (x) = 0 for some M (depending on
x), then the relation (3.6.3.1) implies that R(q) is independent of the choice of
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k ≥ 2. If we make the stronger assumption that FN+1
γ R = 0 for some N , then

RQ = ⊕N
q=0R

(q).
Let W be a closed subset of a smooth quasi-projective k-scheme X , and let

D1, . . . , Dn be closed subschemes of X forming a normal crossing divisor. In [83]
we have shown that KW

p (X ;D1, . . . , Dn)Q has the finite, functorial direct sum
decomposition

KW
p (X ;D1, . . . , Dn)Q = ⊕dimk X+p

q=α KW
p (X ;D1, . . . , Dn)(q),(3.6.3.2)

where

α =


0; for p = 0
1; for p = 1
2; for p ≥ 2,

relying on the analogous result of Soulé [114], for n = 0.
As the lambda ring structure on KW

∗ (X ;D1, . . . , Dn) is functorial and com-
patible with the localization and relativization sequences, the same holds for the
weight decomposition (3.6.3.2).

3.6.4. Relative cycles. We now require that k be perfect. Let X be a smooth quasi-
projective k-scheme, D1, . . . , Dn subschemes forming a normal crossing divisor in
X , and W a closed subset of X . For a subset I of {1, . . . , n}, let DI be the
intersection ∩i∈IDi, and let f :

∐
I⊂{1,... ,n}DI → X be the union of the inclusions.

For each i, intersection with Di defines the map

Zq(X)f
·Di−−→ Zq(Di);

let Zq(X ;D1, . . . , Dn) be the subgroup of Zq(X)f defined by the exactness of

0 → Zq(X ;D1, . . . , Dn) → Zq(X)f
⊕i·Di−−−−→ ⊕n

i=1Zq(Di).

We let Zq
W (X ;D1, . . . , Dn) be the subgroup of Zq(X ;D1, . . . , Dn) consisting of

those cycles with support in W .

3.6.5. Lemma. Let X be a smooth quasi-projective k-scheme, D1, . . . , Dn sub-
schemes forming a normal crossing divisor in X , and W is a closed subset of X
of codimension ≥ q. Suppose that W ∩ DI has codimension ≥ q on DI for each
I ⊂ {1, . . . , n}. Then there are natural isomorphisms

HcycqW :Zq
W (X ;D1, . . . , Dn)Q → H2qW (X ;D1, . . . , Dn,Q(q)),

KcycqW :Zq
W (X ;D1, . . . , Dn)Q → KW

0 (X ;D1, . . . , Dn)(q);

the isomorphism HcycqW being induced by the cycle class map clqX,W :Zq
W (X)f →

H2qW (X,Z(q)) (Chapter I, §3.5.2).

Proof. We first prove the assertion for K-theory. As a preliminary result, we
claim that

KW
p (X ;D1, . . . , Dn)(q) = 0

for all p > 0. We prove this by induction on n.
For n = 0, let F be a closed subset of X contained in W . We have the exact

localization sequence

→ KF
p (X)(q) → KW

p (X)(q) → KW\F
p (X \ F )(q) →;
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if U ⊂ X is an open subscheme containing W , we have the excision isomorphism

KW
p (X)(q) ∼= KW

p (U)(q).

Thus, by noetherian induction, we may assume that W is smooth over k, that X
is affine, and that W is defined (as a reduced subscheme) by q equations. In this
case, Soulé [114] has shown that the push-forward isomorphism iW∗ :Kp(W ) →
KW

p (X) gives isomorphisms i
(r)
W∗ :Kp(W )(r) → KW

p (X)(r+q). Since p > 0, we have
Kp(W )(0) = 0 by (3.6.3.2), so

KW
p (X)(q) = 0.

For general n, we have the relativization sequence

→ KW∩Dn
p+1 (Dn;D1 ∩Dn, . . . , Dn−1 ∩Dn) → KW

p (X ;D1, . . . , Dn)

→ KW
p (X ;D1, . . . , Dn−1) →

which gives the exact sequence on the weight q subspaces

→ KW∩Dn
p+1 (Dn;D1 ∩Dn, . . . , Dn−1 ∩Dn)(q) → KW

p (X ;D1, . . . , Dn)(q) →
KW

p (X ;D1, . . . , Dn−1)(q) → .

Then our induction hypothesis implies

KW
p (X ;D1, . . . , Dn)(q) = 0.

Taking p = 0 in the relativization sequence and applying our preliminary result
thus gives the exact sequence

0 → KW
0 (X ;D1, . . . , Dn)(q) → KW

0 (X ;D1, . . . , Dn−1)(q)

→ KW∩Dn
0 (Dn;D1 ∩Dn, . . . , Dn−1 ∩Dn)(q);

by an elementary induction, we thus have the exact sequence

0 → KW
0 (X ;D1, . . . , Dn)(q) → KW

0 (X)(q) → ⊕n
i=1K

W∩Di
0 (Di)(q).(3.6.5.1)

Arguing by localization as above, we have the natural isomorphisms

KW
0 (X)(q) ∼= K0(W ′)(0)

KW∩Di
0 (Di)(q) ∼= K0(W ′ ∩Di)(0),

where W ′ is any open subset of W which is smooth over k, contains all generic points
of W and W ∩Di, and such that W ′∩Di (with reduced scheme structure) is smooth
over k for each i. Localizing further, we reduce the computation of K0(W ′)(0) to
the case of Spec of a product of fields; as it easily seen that K0(F ) = Z by rank
(which is the augmentation for K∗), we thus have the natural isomorphism

KW
0 (X)(q) ∼= ⊕w∈W (0)Q,

where W (0) is the set of generic points for W . We have a similar computation for
KW∩Di
0 (Di)(q). We may therefore identify KW

0 (X ;D1, . . . , Dn)(q) via the exact
sequence (3.6.5.1) with the kernel of

Zq
W (X)Q

⊕i·Di−−−−→ ⊕n
i=1Zq(Di)Q.

This gives the desired isomorphism

KW
0 (X ;D1, . . . , Dn)(q) ∼= Zq

W (X ;D1, . . . , Dn)Q.
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The proof for H2qW (X ;D1, . . . , Dn,Q(q)) is essentially the same, using the cor-
respondence

K?2p (?1)(q) ←→ H2q−p?2
(?1,Q(q)).

We use as well the Gysin isomorphism i∗ :Ha(W,Z(b)) → Ha+2q
W (X,Z(q + b))

(2.1.2.2) for i :W → X a closed embedding in Smk (this is where we need k to
be perfect), the isomorphism H2q−p(Y,Z(q)) ∼= CHq(Y, p) for Y in Smk (Chap-
ter II, Theorem 3.6.6), and the identity

CH0(Y, p) =

{
0; for p > 0,
H0Zar(Y,Z); for p = 0.

We leave the details to the reader.

3.6.6. The cycle class map to K-theory. For a smooth k-scheme X , with subschemes
D1, . . . , Dn forming a normal crossing divisor, define

Zq
(q)(X ;D1, . . . , Dn) := lim→

W

Zq
W (X ;D1, . . . , Dn),

where W ranges over the closed codimension q subsets of X such that W ∩DI has
codimension q on DI (or is empty) for each I ⊂ {1, . . . , }. Define

K
(q)
0 (X ;D1, . . . , Dn)(q), H2q(q)(X ;D1, . . . , Dn,Z(q))

similarly. The isomorphisms of Lemma 3.6.5 give the isomorphisms

Hcycq(q) :Z
q
(q)(X ;D1, . . . , Dn)Q → H2q(q)(X ;D1, . . . , Dn,Q(q)),

Kcycq(q) :Z
q
(q)(X ;D1, . . . , Dn)Q → K

(q)
0 (X ;D1, . . . , Dn)(q).

Let

Hι :H2q(q)(X ;D1, . . . , Dn,Q(q)) → H2q(X ;D1, . . . , Dn,Q(q)),

Kι :K(q)0 (X ;D1, . . . , Dn)(q) → K0(X ;D1, . . . , Dn)(q),

be the “forget the support” maps.
Define the map

γqX;D1,... ,Dn
:Zq
(q)(X ;D1, . . . , Dn)Q → K0(X ;D1, . . . , Dn)(q)

as the composition

Zq
(q)(X ;D1, . . . , Dn)Q

Kcycq(q)−−−−−→ K
(q)
0 (X ;D1, . . . , Dn)(q) Kι−−→ K0(X ;D1, . . . , Dn)(q).

We have the cycle class map

clqX;D1,... ,Dn
:Zq
(q)(X ;D1, . . . , Dn)Q → H2q(X ;D1, . . . , Dn,Q(q))

defined similarly.

3.6.7. Lemma. We have

chX;D1,... ,Dn ◦ γ
q
X;D1,... ,Dn

= clqX;D1,... ,Dn
mod

∏
r>q

H2r(X ;D1, . . . , Dn,Q(r)),
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where

chX;D1,... ,Dn :K0(X ;D1, . . . , Dn) →
∏
r≥0

H2r(X ;D1, . . . , Dn,Q(r))

is the Chern character for relative K-theory (Remark 3.3.10).

Proof. Let W be a closed codimension q subset of X which intersects each
DI in codimension q. We write D∗ for D1, . . . , Dn.

We consider the Chern character with support

chW :KW
0 (X ;D∗)Q →

∏
q≥0

H2qW (X ;D∗,Q(q))

(see Remark 3.3.10). From the commutative diagram (§1.5.2)

KW
0 (X ;D∗)(q) ��

chWq

��

Kι

H2qW (X ;D∗,Q(q))

��

Hι

K0(X ;D∗)(q) ��
chq

H2q(X ;D∗,Q(q))

it suffices to prove

chW ◦KcycqW = HcycqW mod
∏
r>q

H2rW (X ;D1, . . . , Dn,Q(r)).(3.6.7.1)

We note that Hp
W (X ;D∗,Z(r)) = 0 for r < q; indeed, for n = 0, this fol-

lows from the semi-purity theorem (Theorem 2.2.5), and in general by induction,
together with the long exact relativization sequence

→ Hp−1
W (Dn;D∗<n ∩D,Z(r)) → Hp

W (X ;D∗,Z(r)) → Hp
W (X ;D∗<n,Z(r)) → .

Thus chW
r = 0 for r = 0, . . . , q − 1, so we need only compute chW

q .
Let W̄ be a closed subset of W . We write W 0 for W \ W̄ , X0 for X \ W̄ , etc.
We have the commutative diagrams

KW
0 (X ;D∗)(q)

��

j∗

Zq
W (X ;D∗)Q

��
KcycqW

��

j∗

��
HcycqW

H2qW (X ;D∗,Q(q))

��

j∗

KW 0

0 (X0;D0∗)
(q) Zq

W 0(X0;D0∗)Q
��

Kcycq
W0

��

Hcycq
W0

H2qW 0(X0;D0∗,Q(q))

and

KW
0 (X ;D∗)(q) ��

chWq

��

j∗

H2qW (X ;D∗,Q(q))

��

j∗

KW 0

0 (X0;D0∗)(q)
��

chW
0

q

H2qW 0(X0;D0∗,Q(q))

(see §1.5.2) with j∗ being the appropriate restriction map.
As the map j∗ :Zq

W (X ;D∗) → Zq
W 0(X0;D0∗) is injective if W̄ contains no

generic point of W , so are the two other maps j∗. Thus, we may pass to a neigh-
borhood of the generic points of W , so we may assume that n = 0 and the W is
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a disjoint union of smooth k varieties of codimension q in X with trivial normal
bundle in X . We may also assume W irreducible.

By the Riemann-Roch theorem (Theorem 3.5.4), we have

chW (i∗x) = i∗(ch(x)) ≡ i∗(rnk(x) · |W |) mod
∏
r>q

H2rW (X ;D1, . . . , Dn,Q(r))

(3.6.7.2)

for x ∈ K0(W ), where the i∗ are the push-forward isomorphisms

i∗ :H0(W,Q(0)) → H2qW (X,Q(q))

i∗ :K0(W )Q → KW
0 (X).

We know that the i∗ in K-theory sends K0(W )(0)Q isomorphically onto KW
0 (X)(q).

In addition, the rank function maps K0(W )(0)Q isomorphically onto Q; by the defi-
nition of the map KcycqW , we have

KcycqW (1 · |W |) = i∗(rnk−1(1) ∈ K0(W )(0)Q ).

This, together with (3.6.7.2), proves (3.6.7.1).

In fact, the higher degree terms in the Chern character on K0(−)(q) vanish as
well; as we won’t need this result, we omit the proof.

3.6.8. Cycles and higher K-theory. Take Y in Smessk . We have the cosimplicial
scheme (Chapter II, §2.1.1) ∆∗Y := ∆∗ × Y . We apply the constructions of the
previous section to

X := ∆N
Y ;D∗ = ∂∆N

Y ∗ := {∆N
Y 0, . . . ,∆

N
Y N},

where ∆N
Y i is the face ti = 0. We consider as well (∆N+1

Y ; ∂0∆N+1
Y ∗ ), where

∂0∆N+1
Y ∗ = {∆N+1

Y 0 , . . . ,∆N+1
Y N }.

Let

f :
∐

I⊂{0,... ,N+1}
∂∆N+1

Y I → ∆N+1
Y

be the union of the inclusion maps. We let Zq(∆N+1
Y ; ∂0∆N+1

Y )′ be the subgroup
of Zq(∆N+1

Y ; ∂0∆N+1
Y ) defined by the exactness of

0 → Zq(∆N+1
Y ; ∂0∆N+1

Y )′ → Zq(∆N+1
Y )f

⊕N
i=0·|∆

N+1
Y i |−−−−−−−−→ ⊕N

i=0Zq(∆N+1
Y i );

this is just the subgroup of Zq(∆N+1
Y ; ∂0∆N+1

Y ) of cycles z which have proper
intersection with each face of ∆N

Y = ∆N+1
Y N+1. The intersection with |∆N+1

Y N+1| thus
gives the map

i∗N+1 :Zq(∆N+1
Y ; ∂0∆N+1

Y )′ → Zq(∆N
Y ; ∂∆N

Y ).

We have as well the inclusions

Zq(∆N+1
Y ; ∂0∆N+1

Y )′ ↪→ zq(Y,N + 1),

Zq(∆N
Y ; ∂∆N

Y ) ↪→ zq(Y,N),
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where zq(Y, ∗) is Bloch’s cycle complex (Chapter II, §2.1.2); by the Dold-Kan equiv-
alence, these inclusions induce an isomorphism

cokeri∗N+1 ∼= HN (zq(Y, ∗)) =: CHq(Y,N).(3.6.8.1)

We write γqN for

γq
∆N

Y ;∂∆
N
Y

:Zq(∆N
Y ; ∂∆N

Y )Q → K0(∆N
Y ; ∂∆N

Y )(q),

and clqN for

clq
∆N

Y ;∂∆
N
Y

:Zq
(q)(∆

N
Y ; ∂∆N

Y )Q → H2q(∆N
Y ; ∂∆N

Y ,Q(q))

3.6.9. Lemma. We have γqN ◦ dN+1 = 0 and clqN ◦ dN+1 = 0.

Proof. Denote the restriction of γq
∆N+1

Y ;∂0∆
N+1
Y

to Zq(∆N+1
Y ; ∂0∆N+1

Y )′Q by

γq′N+1. We have the commutative diagram

Zq(∆N+1
Y ; ∂0∆N+1

Y )′Q ��
γq′
N+1

��

i∗N+1

K0(∆N+1
Y ; ∂0∆N+1

Y )(q)

��

i∗N+1

Zq(∆N
Y ; ∂∆N

Y )Q
��

γq
N

K0(∆N
Y ; ∂∆N

Y )(q),

(3.6.9.1)

where the map i∗N+1 on K0 is given by the restriction to the face ∂∆N+1
Y N+1.

Since Y is regular, the pull-back map p∗ :K∗(Y ) → K∗(∆m
Y ) is an isomorphism

for all m ≥ 0. This implies Kp(∆m
Y , ∂∆m

Y i) = 0 for each i. We have the relativization
sequence, gotten by identifying ∆m−1

Y with the face ∆m
Y n, n < m,

Kp+1(∆m−1
Y , ∂∆m−1

Y ∗<n) → Kp(∆m
Y , ∂∆m

Y ∗≤n) → Kp(∆m
Y , ∂∆m

Y ∗<n).(3.6.9.2)

The inclusion ∆m
Y n → ∆m

Y is split by projection

π : ∆m
Y → ∆m

Y n

(t0, . . . , tm) �→ (t0, . . . , tn + tn+1, . . . , tm)

for 0 ≤ n < m. As π sends the face ∆m
Y j to ∆m−1

Y j for 0 ≤ j < n, π induces a splitting
in the sequence (3.6.9.2). Thus, by induction, we have K∗(∆m

Y , ∂∆m
Y ∗≤n) = 0 for

all n < m. In particular, we have K0(∆N+1
Y ; ∂0∆N+1

Y ) = 0. The result for γqN then
follows from the commutativity of (3.6.9.1).

A similar argument proves the result for clqN .

Via the isomorphism (3.6.8.1), Lemma 3.6.9 shows that the map γqN descends
to γqN : CHq(Y,N) → K0(∆N

Y ; ∂∆N
Y ∗)

(q), and clqN descends to clqN : CHq(Y,N)Q →
H2q(∆N

Y ; ∂∆N
Y ∗,Q(q)).

By Lemma 3.6.7, we have

ch∆N
Y ;∂∆

N
Y ∗,0,q

◦ γqN = clqNQ.(3.6.9.3)
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3.6.10. Suspension isomorphisms. We have a natural isomorphism

KΣN :Kp(∆N
Y ; ∂∆N

Y ) → KN+p(Y ).

Indeed, from the proof of Lemma 3.6.9, we have Kp(∆N
Y ; ∂0∆N

Y ∗) = 0 for all p. The
relativization sequence

Kp+1(∆N−1
Y ; ∂∆N−1

Y ∗ ) → Kp(∆N
Y ; ∂∆N

Y ∗) → Kp(∆N
Y ; ∂0∆N

Y ∗) →
thus gives the isomorphisms

Kp(∆N
Y ; ∂∆N

Y ∗) ∼= Kp+1(∆N−1
Y ; ∂∆N−1

Y ∗ ) ∼= . . . ∼= KN+p(Y ).

The relativization sequence being compatible with the weight decomposition, we
have the isomorphisms

KΣN :Kp(∆N
Y ; ∂∆N

Y )(q) → KN+p(Y )(q)

as well.
Similarly, we have the natural isomorphism

HΣN :Hp(∆N
Y ; ∂∆N

Y ,Q(q)) → Hp−N(Y,Q(q)).

As the relativization sequences for H∗(−,Z(∗) and for K∗(−) are compatible via the
appropriate Chern classes (see §1.5.2 and Remark 3.3.10), we have the commutative
diagram

Kp(∆N
Y ; ∂∆N

Y ) ��KΣN

��

chp,q

KN+p(Y )

��

chN+p,q

H2q−p(∆N
Y ; ∂∆N

Y ,Q(q)) ��

HΣN
H2q−p−N (Y,Q(q)).

(3.6.10.1)

The Q-cycle class map, which gives the isomorphism clq,2q−NY : CHq(Y,N)Q →
H2q−N (Y,Q(q)) of (Chapter III, Theorem 3.6.6) is none other than the composition

HΣN ◦ clqN : CHq(Y,N)Q → H2q−N (Y,Q(q))

(at least up to sign). This follows from an elementary comparison of the isomor-
phism (II.2.2.6.2) used to define clnaif (see (II.2.3.6.1)) with the map HΣN defined
above via the linked relativization sequences. Thus, combining the identity (3.6.9.3)
with the commutativity of (3.6.10.1), we have shown

3.6.11. Lemma. The Chern character

chY,N :KN(Y )Q → ⊕q≥0H
2q−N (Y,Q(q))

is a split surjection.

To show the injectivity of chY,N,q, it suffices to show that the map

γqN : CHq(Y,N)Q → K0(∆N
Y ; ∂∆N

Y )(q)

is surjective. As the map with support

γqN :Zq(∆N
Y ; ∂∆N

Y )Q → K
(q)
0 (∆N

Y ; ∂∆N
Y )(q)

is an isomorphism by Lemma 3.6.5, it suffices to show that the map

K
(q)
0 (∆N

Y ; ∂∆N
Y )(q) → K0(∆N

Y ; ∂∆N
Y )(q)

is surjective.
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The proof of this latter fact would take us rather far from the main thread of
this text; we therefore refer the reader to [85, Theorem 2.3], where the following
result is proven

Lemma. Let k be an infinite field, let X be in Smk, and let Y1, . . . , Yn be sub-
schemes which form a normal crossing divisor. Then the map

K
(q)
0 (X ;Y∗)(q) → K0(X ;Y∗)(q)

is surjective.

Actually, in the result referred to in [85], the superscript (q) means the kq-char-
acteristic Q-subspace with respect to ψk; the fact that ψk acts by kq × id on grqγ
implies that the kq-characteristic subspace is the same as the kq-eigenspace.

As both K
(q)
0 (X ;Y∗)(q) and K0(X ;Y∗)(q) send filtered projective limits to fil-

tered inductive limits, the above result extends directly to X in Smessk .
We collect our results in

3.6.12. Theorem. Let k be a field (not necessarily perfect). Then the Chern char-
acter

chY,N :KN(Y )Q → ⊕q≥0H
2q−N (Y,Q(q))

is an isomorphism for all Y ∈ Smessk . If S smooth and of dimension at most one
over k, the same holds (using the motivic cohomology and Chern character for
DM(SmessS )) for all Y in SmessS .

Proof. If k is an infinite perfect field, the result for Smessk follows from the
above discussion. If k is not infinite or not perfect, we may pass to the algebraic
closure k̄; the pull-back maps on K-theory and on the higher Chow groups,

KN (Y )Q → KN(Yk̄)Q, CHq(Y,N)Q → CHq(Yk̄, N)Q,

are injective. As CHq(−, N)Q and H2q−N (−,Q(q)) are naturally isomorphic, the
pull-back map on motivic cohomology H2q−N (Y,Q(q)) → H2q−N (Yk̄,Q(q)) is in-
jective as well. The Chern character is compatible with change of base scheme
(Remark 3.3.7), hence the result for k follows from that for k̄.

Now take f :S → Spec k smooth and of dimension one over k, and take Y in
SmessS . Then S is an inductive limit of smooth dimension one k-schemes Sα →
Spec k in Smk, and Y is an inductive limit of schemes Yα in SmSα , with the
canonical maps πα :Y → S ×Sα Yα being flat. By (Chapter II, Corollary 3.4.3 and
Theorem 3.6.6), we have

H2q−N (Y,Q(q)) = lim
→

H2q−N (Yα,Q(q)).

By [102, §2] we have

KN (Y ) = lim
→

KN(Yα);

by the functoriality of the Chern character (Remark 3.3.7), we may assume that S
is of finite type over k.

Take pY :Y → S in SmessS . Let f∗Y denote Y considered as an object of Smessk ,
let p1 : f∗f∗Y = f∗Y ×k S → f∗Y be the projection, and let δ :Y → f∗Y ×k S be
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the map (id, pY ). Then the compositions

Kp(Y ) = Kp(f∗Y )
p∗
1−→ Kp(f∗f∗Y ) δ∗−→ Kp(Y )

CHq(Y, 2q − p) = CHq(f∗Y, 2q − p)
p∗
1−→ CHq(f∗f∗Y, 2q − p) δ∗−→ CHq(Y, 2q − p)

are the identity maps, hence (by Theorem 3.6.6 of Chapter II) the map

Hp(f∗Y,Z(q))
p∗
1−→ Hp(f∗f∗Y,Z(q)) δ∗−→ Hp(Y,Z(q))

is an isomorphism. Thus, the result for S follows from that for k, together with the
naturality of the Chern character with respect to the pull-back f∗.
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CHAPTER IV

Homology, Cohomology, and Duality

The first section of this chapter begins with some general results on duality in
a tensor category, followed by some results on duality in certain triangulated tensor
categories. In our main result of the section, Theorem 1.4.2, we show that the
full sub-category DM(V)pr of DM(V), gotten by taking the pseudo-abelian hull
of the triangulated sub-category generated by the motives of smooth projective
S-schemes in V , admits a duality involution. In particular, if S = Spec k, and if
one has resolution of singularities for k-varieties, then the category DM(k) has a
duality involution, making DM(k) a rigid triangulated tensor category.

We begin the second section by embedding the category of Chow motives over
a field k into the triangulated motivic category DM(Spec k). We then examine
motivic versions of the classical theories of homology, Borel-Moore homology, and
compactly supported cohomology.

We give an extension of these theories to certain non-smooth S-schemes (for
all quasi-projective k-schemes in case S = Spec k, k a perfect field), and we prove
a Riemann-Roch theorem for the K-theory of coherent sheaves on these S-schemes
(Riemann-Roch for singular varieties). We conclude with a brief discussion of the
Tate motivic category.

In the third and final section, we restrict our attention to a base scheme of the
form Spec k, with k a perfect field for which resolution of singularities holds for
k-schemes of finite type. We apply the methods of [60] and [61] to extend the con-
struction of the motive of a smooth quasi-projective k-scheme to arbitrary reduced
finite type k-schemes. We extend the homological, Borel-Moore, and compactly
supported motive as well.

We assume in this chapter that the base scheme S admits an ample family of
line bundles.

1. Duality

1.1. Duality in tensor categories

We recall some basic facts about duality in tensor categories. This material is taken
from [109], [37], and [31]; we give the treatment here mainly to fix notation and
to keep our presentation self-contained.

We give an applications of the duality involution in §1.5.2 and Theorem 1.5.5,
showing that, in case the base scheme S = Spec k where k is a field which ad-
mits resolution of singularities, the motivic category DM(k) can be constructed
from the “naive” version A0mot(k), i.e., we may replace all the homotopy identi-
ties in the construction of the motivic DG tensor category Amot(SmS) with strict
identities. Combining this with Chapter I, Theorem 3.4.2, we arrive at a construc-
tion of Db

mot(k) as a localization of the homotopy category of the usual category

191
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of complexes in the additive category A0mot(SmS)∗, with the tensor structure in-
duced by the product in the category L(SmS), similar to the classical Grothendieck
construction.

1.1.1. Let A be an tensor category, X and X ′ objects of A, ι : 1 → X ⊗ X ′ a
morphism. For objects A and B of A, we have the homomorphisms

ι′(A,B) : HomA(X ′ ⊗A,B) → HomA(A,X ⊗B),

ι′′(A,B) : HomA(A⊗X,B) → HomA(A,B ⊗X ′),
(1.1.1.1)

where ι′(A,B)(f) is the composition

A ∼= 1⊗A
ι⊗idf−−−→ X ⊗X ′ ⊗A

idX⊗f−−−−→ X ⊗B,

and ι′′(A,B)(g) is the composition

A ∼= A⊗ 1 idA⊗ι−−−−→ A⊗X ⊗X ′
g⊗idX−−−−→ B ⊗X ′.

In case A = 1, or B = 1, we will often make the identifications

X ⊗ 1 ∼= 1⊗X ∼= X, X ′ ⊗ 1 ∼= 1⊗X ′ ∼= X ′,

giving the maps

ι′(1, B) : HomA(X ′, B) → HomA(1, X ⊗B)

ι′(A, 1): HomA(X ′ ⊗A, 1) → HomA(A,X),

ι′(1, 1): HomA(X ′, 1) → HomA(1, X),

and similarly for ι′′.
Clearly, the maps (1.1.1.1) define natural transformations

ι′ : HomA(X ′⊗?1, ?2) → HomA(?1, X⊗?2)

ι′′ : HomA(?1 ⊗X, ?2) → HomA(?1, ?2 ⊗X ′),
(1.1.1.2)

of the functors
HomA(X ′⊗?1, ?2),HomA(?1, X⊗?2) :Aop ⊗A → A,
HomA(?1 ⊗X, ?2),HomA(?1, ?2 ⊗X ′) :Aop ⊗A → A.

1.1.2. Definition. Let X be an object of A. A dual to X is a pair (XD, ιX),
with XD an object of A, and ιX : 1 → X ⊗XD a morphism, such that the natural
transformations (1.1.1.2) are isomorphisms.

Clearly, the relation of duality is symmetric: If (XD, ιX) is a dual to X , then
(X, ιXD ) is a dual to XD, where ιXD = τX,XD ◦ ιX .

1.1.3. Lemma. Let X be an object of A, (XD, ιX) and (X∗D, ι∗X) two duals to X .
Then there is a unique morphism f :X∗D → XD such that (idX ⊗ f)(ι∗X) = ιX . In
addition, f is an isomorphism.

Proof. We have the isomorphism

ι∗′X := ι∗′X(1, XD) : HomA(X∗D, XD) → HomA(1, X ⊗XD).

Letting f = (ι∗′X)−1(ιX) gives the desired morphism f :X∗D → XD.
If g :X∗D → XD satisfies (idX ⊗ g)(ι∗X) = ιX , then

ι∗′X(g) = ιX = ι∗′X(f);

since ι∗′X is an isomorphism, we have g = f , hence f is unique.
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By symmetry, there is an h :XD → X∗D such that (idX ⊗ h)(ιX) = ι∗X , hence

(idX ⊗ h ◦ f)(ι∗X) = ι∗X , (idX ⊗ f ◦ h)(ιX) = ιX .

By the uniqueness just proven, we have h ◦ f = idX∗D and f ◦ h = idXD , hence f
is an isomorphism.

By Lemma 1.1.3, we may speak of the dual (XD, ιX) to X .

1.1.4. The dual of a morphism. If X and Y are objects of A, with duals (XD, ιX)
and (Y D, ιY ), we have the isomorphism

(−)D : HomA(X,Y ) → HomA(Y D, XD)(1.1.4.1)

given as the composition

HomA(X,Y )
ι′′X−→ HomA(1, Y ⊗XD)

(ι′Y )
−1

−−−−→ HomA(Y D, XD).

1.1.5. Lemma. (i) If X , Y and Z are objects of A, with duals (XD, ιX),(Y D, ιY )
and (ZD, ιZ), and if f :Y → Z and g :X → Y are morphisms, then

(f ◦ g)D = gD ◦ fD.
The dual of the identity map idX is idXD .
(ii) Let (X∗D, ι∗X) and (Y ∗D, ι∗Y ) be another choice for the duals of X and Y ,
F :X∗D → XD and G :Y ∗D → Y D the canonical isomorphisms. Let

(−)∗D : HomA(X,Y ) → HomA(Y ∗D, X∗D)

be the isomorphism (1.1.4.1), formed using the duals (X∗D, ι∗X) and (Y ∗D, ι∗Y ).
Then, for f :X → Y , we have

F ◦ f∗D = fD ◦G.

(iii) Let f :X → Y be a map in A. Take (X, τX,XD ◦ ιX), (Y, τY,Y D ◦ ιY ) for duals
to XD and Y D. Then

(fD)D = f.

(iv) Let f :X → Y be a morphism in A, and take duals as in (iii). Let A and B be
in A. Then the diagrams

HomA(XD ⊗A,B) ��
ι′X(A,B)

��

(fD⊗idA)∗

HomA(A,X ⊗B)

��

(f⊗idB)∗

HomA(Y D ⊗A,B) ��

ι′Y (A,B)
HomA(A, Y ⊗ B)

and

HomA(A⊗ Y,B) ��
ι′′Y (A,B)

��

(idA⊗f)∗

HomA(A,B ⊗ Y D)

��

(idB⊗fD)∗

HomA(A⊗X,B) ��

ι′′X(A,B)
HomA(A,B ⊗XD)

commute.

Proof. All four assertions follow easily from the definitions; we leave the de-
tails to the reader.
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1.1.6. Theorem. Let A be a tensor category. Suppose each object X of A has a
dual (XD, ιX).
(i) Sending X to XD, f :X → Y to fD :Y D → XD defines a functor (of additive
categories)

(−)D :Aop → A.
(ii) The functor (−)D is independent, up to canonical isomorphism, of the choice
of duals.
(iii) Suppose we have 1⊗nD = 1⊗n, with ι1⊗n : 1⊗n → 1⊗n ⊗ 1⊗n the inverse to
the multiplication µ : 1⊗n ⊗ 1⊗n → 1⊗n. Then the functor (−)D is a pseudo-tensor
functor, i.e.:

(a) There is a natural isomorphism ρ : (− ⊗ −)D → (−)D ⊗ (−)D of functors
(−⊗−)D → (−)D ⊗ (−)D :Aop ⊗Aop → A, such that

(ρX,Y ⊗ idZ) ◦ ρX⊗Y,Z = (idX ⊗ ρY,Z) ◦ ρX,Y⊗Z

for all X , Y and Z in A.
(b) ρ(1⊗a, 1⊗b) = id.
(c) The maps ρX,Y intertwine the symmetry isomorphisms τDX,Y and τXD,Y D ,

and the maps ρ1,X (resp. ρX,1) intertwine the multiplication isomorphisms
µDX,l (resp. µ

D
X,r) and µXD ,l (resp. µXD ,r) (cf. Part II, Chapter I, §1.3.7).

(iv) There is a canonical natural isomorphism of pseudo-tensor functors

idA → ((−)D)D.

Proof. The assertion (i) follows directly from Lemma 1.1.5(i), and (ii) follows
from Lemma 1.1.3 and Lemma 1.1.5(ii). Lemma 1.1.3 and Lemma 1.1.5(iii) imply
(iv). For (iii), let (XD, ιX) be a dual to X , (Y D, ιY ) a dual to Y , and let ι∗X⊗Y =
τ ◦ (ιX ⊗ ιY ), where

τ :X ⊗XD ⊗ Y ⊗ Y D → X ⊗ Y ⊗XD ⊗ Y D

is the symmetry isomorphism. We note that (XD⊗Y D, ι∗X⊗Y ) is a dual to X⊗Y .
Indeed, for objects A and B of A, the maps

ι′Y (A⊗XD, B) : HomA(A⊗XD ⊗ Y D, B) → HomA(A⊗XD, B ⊗ Y ),

ι′X(A,B ⊗ Y ) : HomA(A⊗XD, B ⊗ Y ) → HomA(A,B ⊗ Y ⊗X)

are isomorphisms. This implies that ι∗′X⊗Y (A,B) is an isomorphism. Similarly,
ι∗′′X⊗Y (A,B) is an isomorphism. Via Lemma 1.1.3, we have the canonical isomor-
phism ρX,Y : (X⊗Y )D → XD⊗Y D. The relation of (iii) follows from the uniqueness
portion of Lemma 1.1.3.

1.1.7. Remarks. (i) A tensor category such that each object has a dual is called a
rigid tensor category.
(ii) If A is a graded tensor category with translation structure (see Part II, Chap-
ter II, Definition 1.1.4), and if X ∈ A has a dual (XD, ι), then ((XD)[−1], ι1) is a
dual to X [1], where ι1 : 1 → X [1]⊗(XD)[−1] is the image of ι under composition with
the canonical isomorphism X ⊗XD → X [1]⊗ (XD)[−1]. Similarly, ((XD)[−1], ι2)
is a dual to X [1], via the isomorphism X ⊗ XD → X [1] ⊗ (XD)[−1], where ι2 is
induced from ι via this isomorphism. Since, in a graded tensor category with trans-
lation structure, we usually identify X [1] and X [1] via the symmetry isomorphism
τT,X :X [1] → X [1] (see Part II, Chapter II, §1.1.3), we have the dual (XD[1], ι′) to
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X , with ι′ induced from ι1 via the isomorphism τT,XD . We call this choice of dual
on X [1] the canonical dual.

If we have a morphism f :X → Y , where X and Y have duals (XD, ιX),
(Y D, ιY ), and if we make the canonical choice of dual for X [1] and Y [1], we have
the identity f [1]D = fD[−1]. Thus, if A is a graded tensor category such that each
object has a translation which has a dual, then each object of A has a dual, and,
we may assume that the dual of X [1] is the canonical dual (XD[−1], ι′) for each X
in A. In this case, Theorem 1.1.6 extends to a version for a graded tensor category
with translation structure, in which the duality functor of (i) is a graded functor.

1.1.8. A duality criterion. We now give a criterion for a given morphism ι : 1 →
X⊗XD to give a dual (XD, ι) to X . We prove a somewhat more general statement,
for later use. We refer the reader to (Part II, Chapter I, §1.3.7) for the notion of a
pseudo-tensor functor.

Let ι : 1 → X⊗XD be a morphism in A, (F, θ) :A → B a pseudo-tensor functor,
and let A and B be objects of B. Define the map

ι′F (A,B) : HomB(F (XD)⊗A,B) → HomB(A,F (X)⊗B)(1.1.8.1)

by setting ι′F (A,B)(f) equal to the composition

A ∼= 1⊗A
F (ι)⊗idA−−−−−−→ F (X ⊗XD)⊗A

θ(X,XD)−1⊗idA−−−−−−−−−−−→ F (X)⊗ F (XD)⊗A
idF (X)⊗f−−−−−−→ F (X)⊗B.

Define the map

ι′′F (A,B) : HomB(A⊗ F (X), B) → HomB(A,B ⊗ F (XD))(1.1.8.2)

similarly by setting ι′′F (A,B)(f) equal to the composition

A ∼= A⊗ 1
idA⊗F (ι)−−−−−−→ A⊗ F (X ⊗XD)

idA⊗θ(X,XD)−1

−−−−−−−−−−−→ A⊗ F (X)⊗ F (XD)
f⊗id

F (XD )−−−−−−−→ B ⊗ F (XD).

If (F, θ) is the identity pseudo-tensor functor on A, these maps are just the maps
ι′ and ι′′ defined in (1.1.1.1).

1.1.9. Proposition. Suppose there is a map ε :XD ⊗X → 1 in A such that the
compositions

X ∼= 1⊗X
ι⊗idX−−−−→ X ⊗XD ⊗X

idX⊗ε−−−−→ X ⊗ 1 ∼= X(1.1.9.1)

XD ∼= XD ⊗ 1
idXD⊗ι−−−−−→ XD ⊗X ⊗XD ε⊗idXD−−−−−→ 1⊗XD ∼= XD,

are the respective identity maps. Then the maps (1.1.8.1) and (1.1.8.2) are isomor-
phisms for all A and B in B. In particular, (XD, ι) is a dual to X .

Proof. Fix A and B in B, and write ι′F for ι′F (A,B). Define the map

σ′F : HomA(A,F (X)⊗B) → HomA(F (XD)⊗A,B)
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by sending g :A→ F (X)⊗B to the composition

F (XD)⊗A
id

F (XD )⊗g−−−−−−−→ F (XD)⊗ F (X)⊗B

θ(X,XD)⊗idB−−−−−−−−−→ F (XD ⊗X)⊗B
F (εX )⊗idB−−−−−−−→ 1⊗B ∼= B.

Let f :F (XD)⊗ A → B be a morphism in B. Then σ′F (ι′F (f)) is given by the
composition

F (XD)⊗A ∼= F (XD)⊗ 1⊗A
id

F (XD)⊗F (ι)⊗idA−−−−−−−−−−−−→ F (XD)⊗ F (X ⊗XD)⊗A

[θ(XD⊗X,XD)−1◦θ(XD,X⊗XD)]⊗id−−−−−−−−−−−−−−−−−−−−−−−−→ F (XD ⊗X)⊗ F (XD)⊗A

id⊗f−−−→ F (XD ⊗X)⊗B
F (ε)⊗idB−−−−−−→ 1⊗B ∼= B.

We may commute id⊗f and F (ε)⊗ id, hence σ′F (ι′F (f)) is equal to the composition

F (XD)⊗A ∼= F (XD)⊗ 1⊗A
θ(XD,1)⊗idA−−−−−−−−→ F (XD ⊗ 1)⊗A

F (idXD⊗ι)⊗idA−−−−−−−−−−→ F (XD ⊗X ⊗XD)⊗A

F (ε⊗id
XD )⊗idA−−−−−−−−−−−→ F (1 ⊗XD)⊗A

F (µ)⊗id−−−−−→ F (XD)⊗A
f−→ B.

By assumption, the composition F (ε⊗ idXD)◦F (idXD ⊗ ι) is the canonical isomor-
phism F (XD ⊗ 1) ∼= F (XD) ∼= F (1 ⊗XD). Since 1 is the unit in A, we therefore
have σ′F (ι′F (f)) = f.

Now let g :A → F (X) ⊗ B be a map in B. Then ι′F (σ′F (g)) is given by the
composition

A ∼= 1⊗A
F (ι)⊗idA−−−−−−→ F (X ⊗XD)⊗A

id⊗g−−−→ F (X ⊗XD)⊗ F (X)⊗B

[θ(X,XD⊗X)−1◦θ(X⊗XD,X)]⊗id−−−−−−−−−−−−−−−−−−−−−−→ F (X)⊗ F (XD ⊗X)⊗B

id⊗F (ε)⊗id−−−−−−−→ F (X)⊗ 1⊗B ∼= F (X)⊗B.

We may commute id⊗ g and F (ι) ⊗ idA, and rewrite this as the composition

A ∼= 1⊗A
id⊗g−−−→ 1⊗ F (X)⊗B

θ(1,X)⊗id−−−−−−→ F (1⊗X)⊗B

F (ι⊗idX )⊗idB−−−−−−−−−→ F (X ⊗XD ⊗X)⊗B
F (idX⊗ε)⊗idB−−−−−−−−−→ F (X ⊗ 1)⊗B

F (µ)⊗id−−−−−→ F (X)⊗B.

By assumption, the composition F (idX⊗ε)◦F (ι⊗idX) is the canonical isomorphism
F (1 ⊗X) ∼= F (X) ∼= F (X ⊗ 1). Since 1 is the unit in A, we have ι′F (σ′F (g)) = g.
Thus σ′F is the inverse to ι′F , hence ι′F = ι′F (A,B) is an isomorphism. The proof
that ι′′F (A,B) is an isomorphism is essentially the same.

There is a converse to Proposition 1.1.9, namely,

1.1.10. Proposition. Suppose (XD, ι) is a dual to X . Then there is a unique map
ε :XD ⊗ X → 1 such that the compositions (1.1.9.1) are the respective identity
maps.
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Proof. If such an ε exists, then the first composition in (1.1.9.1) is equal to
ι′(X,X)(ε), after making the canonical identification of X ⊗ 1 with X . Similarly,
the second composition in (1.1.9.1) is ι′′(XD, XD)(ε), after making a similar iden-
tification. Since ι′(X,X) is an isomorphism, ε is unique.

To show existence, we use the canonical structure for the dual of X ⊗XD, i.e.,
(X ⊗ XD)D = XD ⊗ X , with map ιX⊗XD : 1 → X ⊗ XD ⊗ XD ⊗ X being the
composition

1 ∼=1⊗ 1 ι⊗ι−−→ X ⊗XD ⊗X ⊗XD τ3,4−−→ X ⊗XD ⊗XD ⊗X
τ2,3−−→ X ⊗XD ⊗XD ⊗X.

(1.1.10.1)

Taking the dual of ι gives the map ιD :XD ⊗X → 1; we claim that ε = ιD is the
desired map. It suffices to show that ι′(X,X)(ιD) is the identity on X and that
ι′′(XD, XD)(ιD) is the identity on XD, after making the identifications as above.

We use the canonical dual for 1: 1D = 1 with ι1 : 1 → 1 ⊗ 1 the inverse of the
multiplication. By the definition of duality, ιD is characterized by the fact that the
composition

1
ιX⊗XD−−−−−→ X ⊗XD ⊗XD ⊗X

id⊗ιD−−−−→ X ⊗XD ⊗ 1 ∼= X ⊗XD

is the map ι. By definition, the map ι′(X,X)(ιD) :X → X is the composition

X ∼= 1⊗X
ι⊗idX−−−−→ X ⊗XD ⊗X

idX⊗ιD−−−−−→ X ⊗ 1 ∼= X.

From this, it follows that the map ι′′(1, X)(ι′(X,X)(ιD)) is the composition

1 ι−→ X ⊗XD ∼= 1⊗X ⊗XD ι⊗idX⊗idXD−−−−−−−−→ X ⊗XD ⊗X ⊗XD

idX⊗ιD⊗idXD−−−−−−−−−→ X ⊗ 1⊗XD ∼= X ⊗XD.

(1.1.10.2)

Using the above characterization of ιD, together with the definition (1.1.10.1) of
ιX⊗XD , it follows easily from (1.1.10.2) that ι′′(1, X)(ι′(X,X)(ιD)) = ι. Since
ι′′(1, X)(idX) = ι as well, and since ι′′(1, X) is an isomorphism, we have

ι′(X,X)(ιD) = idX .

The identity ι′′(XD, XD)(ιD) = idXD is verified similarly.

The dual maps ε = ιD :XD ⊗X → 1 give a description of the composition law
in A, as follows:

1.1.11. Proposition. Let X and Y be in A, with respective duals (XD, ιX),
(Y D, ιY ). Let εY :Y D ⊗ Y → 1 be the map given by Proposition 1.1.10. Suppose
we have maps f :X → Y and g :Y → Z in A. Then ι′′X(1, Z)(g ◦ f) : 1 → Z ⊗XD

is the composition

1 ∼=1⊗ 1
ι′′Y (1,Z)(g)⊗ι

′′
X(1,Y )(f)−−−−−−−−−−−−−−−→ Z ⊗ Y D ⊗ Y ⊗XD

idZ⊗εY⊗idXD−−−−−−−−−→ Z ⊗ 1⊗XD ∼= Z ⊗XD.

(1.1.11.1)
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Proof. We may expand the composition (1.1.11.1) as

1 ∼=1⊗ 1 id1⊗ιX−−−−→ 1⊗X ⊗XD
ιY ⊗idX⊗XD−−−−−−−−→ Y ⊗ Y D ⊗X ⊗XD

idY ⊗YD⊗f⊗idXD−−−−−−−−−−−−→ Y ⊗ Y D ⊗ Y ⊗XD

g⊗idYD⊗idY ⊗idXD−−−−−−−−−−−−−→ Z ⊗ Y D ⊗ Y ⊗XD

idZ⊗εY⊗idXD−−−−−−−−−→ Z ⊗ 1⊗XD ∼= Z ⊗XD.

We may then commute g⊗idY D⊗idY ⊗idXD with idZ⊗εY ⊗idXD , and ιY ⊗idX⊗XD

with idY⊗Y D ⊗ f ⊗ idXD to give the composition

1 ∼=1⊗ 1 id1⊗ιX−−−−→ 1⊗X ⊗XD id1⊗f⊗idXD−−−−−−−−→ 1⊗ Y ⊗XD

ιY⊗idY ⊗idXD−−−−−−−−−→ Y ⊗ Y D ⊗ Y ⊗XD idY ⊗εY ⊗idXD−−−−−−−−−→ Y ⊗ 1⊗XD

∼= Y ⊗XD g⊗idXD−−−−−→ Z ⊗XD.

Since (idY ⊗ εY ) ◦ (ιY ⊗ idY ) is the canonical identification 1⊗Y ∼= Y ⊗ 1, we may
rewrite this composition as

1 ∼=1⊗ 1 id1⊗ιX−−−−→ 1⊗X ⊗XD id1⊗f⊗idXD−−−−−−−−→ 1⊗ Y ⊗XD

∼= Y ⊗XD g⊗idXD−−−−−→ Z ⊗XD.

Eliminating the superfluous 1’s gives the composition

1 ιX−→ X ⊗XD f⊗id
XD−−−−−→ Y ⊗XD g⊗id

XD−−−−−→ Z ⊗XD;(1.1.11.2)

since
(g ⊗ idXD ) ◦ (f ⊗ idXD ) = (g ◦ f)⊗ idXD ,

the composition (1.1.11.2) is ι′′X(1, Z)(g ◦ f).

1.1.12. Remark. One can phrase duality in a tensor categoryA as in [109] in terms
of internal Hom objects, where Hom(X,Y ) is a representing object for the functor
HomA(−⊗X,Y ) :Aop → Ab. In our setting, we may defineHom(X,Y ) := Y ⊗XD,
with the necessary isomorphism HomA(−⊗X,Y ) → HomA(−,Hom(X,Y )) being
given by the isomorphism ι′′(−, Y ).

1.2. Duality in triangulated tensor categories

We show how the existence of duals for generating objects in certain triangulated
tensor categories gives rise to an exact duality on the entire category.

1.2.1. LetA be a DG tensor category without unit. We may then form the category
of complexes, Cb(A) and the homotopy category Kb(A) (see Part II, Chapter II,
§1.2). The tensor product on A induces the structure of a DG tensor category
without unit on Cb(A), and the structure of a triangulated tensor category without
unit on Kb(A). We may form a localization D of Kb(A) with respect to a thick
tensor subcategory; D is then a triangulated tensor category without unit.

If we have two distinguished triangles in D:
X1 → Y1 → Z1 → X1[1],

Z2 → Y2 → X2 → Z2[1],
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we may then form the commutative square

X1 ⊗ Z2 ��

��

Y1 ⊗ Z2 ��

��

Z1 ⊗ Z2 ��a′

��

c′

X1[1]⊗ Z2

��

X1 ⊗ Y2 ��

��

Y1 ⊗ Y2 ��b′

��

b

Z1 ⊗ Y2 ��

��

X1[1]⊗ Y2

��

X1 ⊗X2 ��c

��

a

Y1 ⊗X2 ��

��

Z1 ⊗X2 ��

��

X1[1]⊗X2

��

X1 ⊗ Z2[1] �� Y1 ⊗ Z2[1] �� Z1 ⊗ Z2[1] �� X1[1]⊗ Z2[1].

(1.2.1.1)

Identifying X1[1]⊗Z2 with X1 ⊗Z2[1] by the canonical isomorphism, we have
the map

X1 ⊗X2 ⊕ Z1 ⊗ Z2
a+a′
−−−→ X1 ⊗ Z2[1],

and we may form the distinguished triangle

K
q−→X1 ⊗X2 ⊕ Z1 ⊗ Z2

a+a′
−−−→ X1 ⊗ Z2[1] −→ K[1](1.2.1.2)

in D. In addition, we have the maps

Y1 ⊗ Y2
(b,b′)−−−→ Y1 ⊗X2 ⊕ Z1 ⊗ Y2,(1.2.1.3)

and

X1 ⊗X2 ⊕ Z1 ⊗ Z2
c⊕c′−−−→ Z1 ⊗ Y2 ⊕ Y1 ⊗X2.(1.2.1.4)

Putting the maps (1.2.1.3) and (1.2.1.4) together gives the diagram

X1 ⊗X2 ⊕ Z1 ⊗ Z2

��

c⊕c′

Y1 ⊗ Y2 ��

(b,b′)
Y1 ⊗X2 ⊕ Z1 ⊗ Y2.

(1.2.1.5)

1.2.2. Lemma. There is a morphism β :K → Y1 ⊗ Y2 so that the diagram (1.2.1.5)
fills in to a commutative diagram

K ��
q

��

β

X1 ⊗X2 ⊕ Z1 ⊗ Z2 ��
a+a′

��

c⊕c′

X1 ⊗ Z2[1] �� K[1]

Y1 ⊗ Y2 ��

(b,b′)
Y1 ⊗X2 ⊕ Z1 ⊗ Y2,

(1.2.2.1)

with the top row the distinguished triangle (1.2.1.2).

Proof. Let X and Y be objects of D, and f :X → Y a morphism in D. As
D is a localization of Kb(A), the morphism f can be factored as a composition

X
i−→ Y ′

j−1

−−→ Y with i and j morphisms in Kb(A), and j invertible in D. Let

X
f−→ Y −→ Z −→ X [1]
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be a completion of f to a distinguished triangle in D. As the diagram

X ��
f

��
i ��

��
��

��
Y

��

j

Y ′

commutes, there is a map of triangles

X ��
f

Y ��

��

j

Z ��

��

k

X [1]

X ��
i

Y ′ �� cone(i) �� X [1]

in D, where the bottom row is the image of the cone sequence. Since j is an
isomorphism in D, so is k (the “five lemma” for triangulated categories), hence
each distinguished triangle in D is isomorphic to the image of a cone sequence from
Cb(A).

Thus, it suffices to prove the lemma in the case of shifted standard distinguished
triangles from Cb(A):

X1
g1−→ Y1 = cone(f1)

h1−→ Z1
−f1[1]−−−−→ X1[1]

Z2
g2−→ Y2 = cone(f2)

h2−→ X2
−f2[1]−−−−→ Z2[1]

We may then take K to be given by

K :=

cone
(
− idX1 ⊗ f2[1]− f1[1]⊗ idZ2 :X1 ⊗X2 ⊕ Z1 ⊗ Z2 → X1 ⊗ Z2[1]

)
[−1],

and the sequence (1.2.1.2) to be the shifted standard cone sequence, with q :K →
X1 ⊗X2 ⊕ Z1 ⊗ Z2 the canonical projection (the map X1 ⊗ Z2[1] → K[1] is then
minus the canonical inclusion, so that we have a distinguished triangle). Explicitly,
K is the total complex of the double complex

X1 ⊗X2[−1]⊕ Z1[−1]⊗ Z2
id⊗f2+f1⊗id−−−−−−−−→ X1 ⊗ Z2.

The definition of Y1 and Y2 as cones give the description of Y1⊗Y2 as the total
complex of the double complex

Z1[−1]⊗X2[−1]
(f1⊗id,−id⊗f2)−−−−−−−−−−→ X1 ⊗X2[−1]⊕ Z1[−1]⊗ Z2

id⊗f2+f1⊗id−−−−−−−−→ X1 ⊗ Z2.

The total complex of the subcomplex gotten by omitting the term Z1[−1]⊗X2[−1]
is just K, so the inclusion of K as this subcomplex of Y1 ⊗ Y2 gives us the map
β :K → Y1⊗Y2. One then verifies the commutativity of (1.2.2.1) by inspection.

We suppose for the remainder of this section that the category D is a triangu-
lated tensor category with unit 1.
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1.2.3. Lemma. LetX
f−→ Y

g−→ Z
h−→ X [1] be a distinguished triangle in D. Suppose

thatX has a dual (XD, ιX), and Z has a dual (ZD, ιZ). Then Y has a dual (Y D, ιY ).
In addition, the sequence

XD[−1] hD

−−→ ZD gD−−→ Y D fD

−−→ XD(1.2.3.1)

is a distinguished triangle in D.

Proof. We use the canonical dual X [1]D = XD[−1], with ιX[1] the image
of ιX under the canonical isomorphism X ⊗ XD → X [1] ⊗ XD[−1]. The map
h :Z → X [1] gives rise to the dual map hD :XD[−1] → ZD; we define Y D and the
maps i :ZD → Y D and j :Y D → XD by requiring that the sequence

XD[−1] hD

−−→ ZD i−→ Y D j−→ XD(1.2.3.2)

be a distinguished triangle in D. By axiom (TR2) (Part II, Chapter II, §2.1.1), the
triangle

ZD i−→ Y D j−→ XD −hD[1]−−−−→ XD

is distinguished. Let p :X⊗XD⊕Z⊗ZD → X⊗ZD[1] be the map h⊗id−id⊗hD[1],
and let

K
q−→ X ⊗XD ⊕ Z ⊗ ZD p−→ X ⊗ ZD[1] → K[1]

be the extension of p to a distinguished triangle in D.
We identify Z ⊗ ZD with Z[−1]⊗ ZD[1] = Z[−1]⊗ Z[−1]D by the canonical

isomorphism and let ιZ[−1] : 1 → Z[−1]⊗ Z[−1]D be the map corresponding to ιZ .
Then, by definition, we have

(h⊗ 1) ◦ ιZ = (h[−1]⊗ 1) ◦ ιZ[−1] = ι′′Z[−1](h[−1]),

(1⊗ hD[1]) ◦ ιX = (1 ⊗ h[−1]D) ◦ ιX = ι′X(h[−1]D),

h[−1]D = (ι′X)−1(ι′′Z[−1](h[−1])).

Thus, we have p ◦ (ιX , ιZ) = 0, hence there is a map

ιK : 1 → K(1.2.3.3)

with

q ◦ ιK = (ιX , ιZ).(1.2.3.4)

From Lemma 1.2.2 we have the commutative diagram (1.2.2.1):

K

��

q

��
β

Y ⊗ Y D

��

(id⊗j,g⊗id)

X ⊗XD ⊕ Z ⊗ ZD ��
f⊗id⊕id⊗i Y ⊗XD ⊕ Z ⊗ Y D;

(1.2.3.5)
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let ιY = β ◦ ιK . Then we have

ι′Y (j) = (id⊗ j) ◦ ιY
= (f ⊗ id) ◦ ιX
= ι′′X(f),

ι′′Y (g) = (g ⊗ id) ◦ ιY
= (id⊗ i) ◦ ιZ
= ι′Z(i).

(1.2.3.6)

Let A and B be objects of D, and consider the diagram

HomD(XD ⊗A,B) ��
ι′′X

��

(j⊗id)∗

HomD(A,X ⊗B)

��

(f⊗id)∗

HomD(Y D ⊗A,B) ��

ι′′Y
HomD(A, Y ⊗B).

(1.2.3.7)

For a map α :XD ⊗A→ B, the map (f ⊗ id)∗(ι′′X(α)) is the composition

A ∼= 1⊗A
ιX⊗idA−−−−−→ X ⊗XD ⊗A

idX⊗α−−−−→ X ⊗B
f⊗idB−−−−→ Y ⊗B.

We may commute the last two maps in this composition, giving the identity

(f ⊗ id)∗(ι′′X(α)) = (idY ⊗ α) ◦ ([(f ⊗ idXD ) ◦ ιX ]⊗ idA).

(we ignore the identification of A and 1⊗A). By (1.2.3.6), this gives the identity

(f ⊗ id)∗(ι′′X(α)) = [idY ⊗ (α ◦ (j ⊗ idA))] ◦ (ιY ⊗ idA),

which shows that the diagram (1.2.3.7) commutes.
One shows that the diagram

HomD(A⊗ Y,B) ��
ι′Y

��

(id⊗f)∗

HomD(A,B ⊗ Y D)

��

(id⊗j)∗

HomD(A⊗X,B) ��

ι′X
HomD(A,B ⊗XD)

(1.2.3.8)

commutes, using a similar argument.
Using the second identity of (1.2.3.6), the same argument gives the commuta-

tivity of the diagrams

HomD(Y D ⊗A,B) ��
ι′′Y

��

(i⊗id)∗

HomD(A, Y ⊗B)

��

(g⊗id)∗

HomD(ZD ⊗A,B) ��

ι′′Z
HomD(A,Z ⊗B)

(1.2.3.9)
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and

HomD(A⊗ Z,B) ��
ι′Z

��

(id⊗g)∗

HomD(A,B ⊗ ZD)

��

(id⊗i)∗

HomD(A⊗ Y,B) ��

ι′Y
HomD(A,B ⊗ Y D).

(1.2.3.10)

Since we are using the canonical duals of Remark 1.1.7, the diagrams (1.2.3.7)-
(1.2.3.10) remain commutative after applying a shift. Thus, the commutativity of
diagrams (1.2.3.7)-(1.2.3.10), together with Lemma 1.1.5(iv), gives the commuta-
tivity of the diagrams

HomD(A⊗X [1], B) ��
ι′X[1]

��

(id⊗h)∗

HomD(A,B ⊗XD[−1])

��

(id⊗hD)∗

HomD(A⊗ Z,B) ��
ι′Z

��

(id⊗g)∗

HomD(A,B ⊗ ZD)

��

(id⊗i)∗

HomD(A⊗ Y,B) ��
ι′Y

��

(id⊗f)∗

HomD(A,B ⊗ Y D)

��

(id⊗j)∗

HomD(A⊗X,B) ��
ι′X

��

(id⊗h[−1])∗

HomD(A,B ⊗XD)

��

(id⊗hD [1])∗

HomD(A⊗ Z[−1], B) ��
ι′Z[−1]

HomD(A,B ⊗ ZD[1])

(1.2.3.11)

and

HomD(ZD[1]⊗A,B) ��
ι′′Z[−1]

��

(hD [1]⊗id)∗

HomD(A,Z[−1]⊗B)

��

(h[−1]⊗id)∗

HomD(XD ⊗A,B) ��
ι′′X

��

(j⊗id)∗

HomD(A,X ⊗B)

��

(f⊗id)∗

HomD(Y D ⊗A,B) ��
ι′′Y

��

(i⊗id)∗

HomD(A, Y ⊗B)

��

(g⊗id)∗

HomD(ZD ⊗A,B) ��
ι′′Z

��

(hD⊗id)∗

HomD(A,Z ⊗B)

��

(h⊗id)∗

HomD(XD[−1]⊗A,B) ��
ι′′X[1]

HomD(A,X [1]⊗ B).

(1.2.3.12)

As the columns of (1.2.3.11) and (1.2.3.12) are Hom sequences arising from distin-
guished triangles, they are exact; the five lemma then implies that the maps ι′Y and
ι′′Y are isomorphisms. Thus, (Y D, ιY ) is a dual to Y .
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Finally, the identities (1.2.3.6) show that gD = i and fD = j; the distinguished
triangle (1.2.3.2) is thus the desired triangle (1.2.3.1).

1.2.4. Remark. Consider the diagram (1.2.3.5). Suppose we have chosen duals
(XD, ιX) to X and (ZD, ιZ) to Z; this gives the object Y D by the sequence (1.2.3.2).
From Lemma 1.2.2 we have the diagram (1.2.2.1)

K ��
β

��

q

Y ⊗ Y D

��

X ⊗XD ⊕ Z ⊗ ZD �� Y ⊗ Y D ⊕ Z ⊗ Y D.

It follows from the proof of Lemma 1.2.3 that, if we have a map as in (1.2.3.3)
ι : 1 → K in D, satisfying the identity q ◦ ι = (ιX , ιZ), then (Y D, β ◦ ι) is dual to Y .

1.2.5. Theorem. Suppose D is generated (as a triangulated category) by a set of
objects S such that each X ∈ S has a dual (XD, ιX). Then
(i) Every object Y of D has a dual (Y D, ιY ).
(ii) If we assume that the choice of dual for X [1] is the canonical one (see Re-
mark 1.1.7) for each X in D, then, sending X to its dual XD and a morphism
f :X → Y to the dual morphism fD :Y D → XD defines an exact functor

(−)D :Dop → D.

The functor (−)D is a pseudo-tensor functor (see Theorem 1.1.6(iii)).

Proof. Part (i) follows directly from Lemma 1.2.3. From (i), Theorem 1.1.6
and Remark 1.1.7, sending X to its dual XD and f to its dual fD defines a graded
functor (−)D :Dop → D which is a pseudo-tensor functor. Thus, we need only show
that (−)D is exact.

Let X
f−→ Y

g−→ Z
h−→ X [1] be a distinguished triangle in D. By Lemma 1.2.3,

there is a choice of dual (Y ∗D, ι∗Y ) for Y such that the sequence

XD[−1] hD

−−→ ZD g∗D

−−→ Y ∗D
f∗D

−−→ XD

is a distinguished triangle, where g∗D and f∗D are the maps defined with respect
to the choice (Y ∗D, ι∗Y ) of dual for Y . Let F :Y ∗D → Y D be the canonical isomor-
phism given by Lemma 1.1.3. By Lemma 1.1.5, we have F ◦g∗D = gD, f∗D = fD◦F .
Thus, we have a commutative diagram

XD[−1] ��hD

ZD ��
g∗D

Y ∗D

��

F

��
f∗D

XD

XD[−1] ��

hD ZD ��

gD
Y D ��

fD XD.

As F is an isomorphism, the sequence

XD[−1] hD

−−→ ZD gD−−→ Y D fD

−−→ XD.

is a distinguished triangle, completing the proof.



1. DUALITY 205

1.3. The diagonal and co-diagonal

We examine the diagonal morphism for a smooth projective S-scheme.

1.3.1. Let pX :X → S be a smooth projective S-scheme in V of dimension d over
S. We have the diagonal δX :X → X ×S X, giving the maps δ∗X : ZX×SX(d)[2d] →
ZX(d)[2d] and δX∗ : ZX → ZX×SX(d)[2d]. We also have the external products

�X,X : ZX(a)⊗ ZX(d− a)[2d] → ZX×SX(d)[2d],

�X,X : ZX(d− a)[2d]⊗ ZX(a) → ZX×SX(d)[2d].

We define the maps in DM(V)

ιX : ZS = 1 → ZX(a)⊗ ZX(d− a)[2d],

εX : ZX(d− a)[2d]⊗ ZX(a) → 1,
(1.3.1.1)

by

ιX = �−1X,X ◦ δX∗ ◦ p∗X ,

εX = pX∗ ◦ δ∗X ◦�X,X .

We form the composition

ZX(a) ∼=1⊗ ZX(a) ιX⊗id−−−−→ ZX(a)⊗ ZX(d− a)[2d]⊗ ZX(a)
id⊗εX−−−−→ ZX(a)⊗ 1 ∼= ZX(a)

(1.3.1.2)

and the composition

ZX(d− a)[2d] ∼= ZX(d− a)[2d]⊗ 1
id⊗ιX−−−−→ ZX(d− a)[2d]⊗ ZX(a)⊗ ZX(d− a)[2d]
εX⊗id−−−−→ 1⊗ ZX(d− a)[2d] → ZX(d− a)[2d].

(1.3.1.3)

1.3.2. Lemma. The compositions (1.3.1.2) and (1.3.1.3) are identity maps.

Proof. Let δ12X :X ×X → X ×X ×X and δ23X :X ×X → X ×X ×X be the
maps δ12X = δX × idX and δ23X = idX × δX , respectively.

We recall from Chapter I, Remark 3.4.4 that the multiplication isomorphism
µl : 1⊗ ZX(a) → ZX(a) is the external product

�S,X : ZS ⊗ ZX(a) → ZS×SX(a)
p∗
2−→ ZX(a).

We have the isomorphism

�X,X,X : ZX(a)⊗ ZX(d− a)[2d]⊗ ZX(a) → ZX×X×X(d + a)[2d];

applying Theorem 2.4.10 of Chapter III, we find that (1.3.1.2) is equal to the
composition

ZX(a)
p∗
2−→ ZX×X(a)

δ12∗−−→ ZX×X×X(d + a)[2d]

δ23∗X−−→ ZX×X(d + a)[2d]
p1∗−−→ ZX(a).
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We have the transverse cartesian diagram

X ��
δX

��

δX

X ×S X

��

δ23X

X ×S X ��

δ12X
X ×S X ×S X.

By Chapter III, Theorem 2.4.9, we have δ23∗X ◦ δ12∗ = δX∗ ◦ δ∗X . Thus (1.3.1.2) is
equal to the composition

ZX(a)
p∗
2−→ ZX×X(a)

δ∗X−−→ ZX(a)
δX∗−−→ ZX×X(d + a)[2d]

p1∗−−→ ZX(a).
(1.3.2.1)

Since p2 ◦ δX = idX , we have δ∗X ◦ p∗2 = id. Since p1 ◦ δX = idX , it follows from
Chapter III, Theorem 2.4.7 that p1∗ ◦ δX∗ = id. Thus, the composition (1.3.2.1)
is the identity, completing the proof that (1.3.1.2) is the identity. The proof that
(1.3.1.3) is the identity is similar, and is left to the reader.

1.4. The duality involution

We describe the duality structure on the motivic category.

1.4.1. The dual for projective X. We let DM(V)pr denote the smallest strictly
full triangulated subcategory of DM(V) containing the objects ZX(a), with X
in V smooth and projective over S, and closed under taking summands. Since
ZX(a)⊗ZY (b) is isomorphic to ZX×SY (a+ b), DM(V)pr is an triangulated tensor
subcategory of DM(V).

For X in V , smooth and projective over S, we set

ZX(a)[b]D := ZX(d− a)[2d− b].(1.4.1.1)

We have the morphism (1.3.1.1) ιX : 1 → ZX(a)[b] ⊗ ZX(a)[b]D; by Lemma 1.3.2
and Proposition 1.1.9, (ZX(a)D, ιX) is a dual to ZX(a). Thus, for X and Y in V ,
smooth and projective over S, we have the isomorphism (1.1.4.1)

(−)D : HomDM(V)(ZX(a)[b],ZY (a′)[b′]) → HomDM(V)(ZY (a′)[b′]D,ZX(a)[b]D).
(1.4.1.2)

1.4.2. Theorem. The operation (−)D defined for projective X by (1.4.1.1) and
(1.4.1.2):

ZX(a)[b] �→ ZX(a)[b]D,

(f : ZX(a)[b] → ZY (a′)[b′]) �→ (fD : ZY (a′)[b′]D → ZX(a)[b]D),

extends to an exact pseudo-tensor functor (see Theorem 1.1.6(iii))

(−)D : (DM(V)pr)op → DM(V)pr

defining an exact duality on DM(V)pr, i.e., for A, B and C in DM(V)pr, there are
natural isomorphisms

HomDM(V)(A⊗BD, C) → HomDM(V)(A,C ⊗B),

HomDM(V)(A⊗B,C) → HomDM(V)(A,C ⊗BD),



1. DUALITY 207

which are exact in the variables A, B and C. In addition, there is a natural
isomorphism id → ((−)D)D.

Proof. Define the subcategory Db
mot(V)pr of Db

mot(V) to be the full triangu-
lated subcategory generated by the objects ZX(a) for X in V , smooth and projective
over S. Then the extension of the operation (−)D to an exact, pseudo-tensor func-
tor (−)D : (Db

mot(V)pr)op → Db
mot(V)pr, with a natural isomorphism id → ((−)D)D,

follows directly from Theorem 1.2.5.
We have the functor # (see Part II, Chapter II, §2.4) on the category of ten-

sor categories, where A# is the pseudo-abelian hull of a category A. Applying
Theorem 1.2.5 again, it suffices to show that, if A is a tensor category having a
duality involution (−)D, if A is an object of A, and if B is the summand of A in
A# corresponding to an idempotent endomorphism p :A → A, then B has a dual
(BD, ιB) in A#.

To see this, the idempotent endomorphism p :A → A gives rise to the endo-
morphism pD :AD → AD. Since (−)D is a functor on A, pD is an idempotent
endomorphism of AD. Let BD be the summand of AD in A# corresponding to
pD. The idempotent endomorphism p⊗ pD then defines the summand B ⊗ BD of
A⊗AD. We let ιB : 1 → B⊗BD be the map gotten by projecting ιA : 1 → A⊗AD

onto the summand B ⊗BD:

ιB = (p⊗ pD) ◦ ιA ∈ (p⊗ pD) ◦HomA(1, A⊗AD) := HomA#(1, B ⊗BD).

It is then an elementary exercise to show that (BD, ιB) is a dual to B, which
completes the proof of the theorem.

1.5. An application

The duality involution on DM(V)pr implies that the morphisms in DM(V)pr are
determined by the motivic cohomology, i.e., the functor HomDM(V)(1,−). We
formalize this principle, and give an application.

1.5.1. Theorem. Let A be a triangulated R-tensor category, and let

F :DM(V)R → A

be an exact R-pseudo-tensor functor (cf. Part II, Chapter I, §1.3.7). Suppose
the map F (1,Γ): HomDM(V)(1,Γ) → HomA(1, F (Γ)) is an isomorphism for each
Γ in DM(V)R. Then, for each ∆ in DM(V)prR , and each Γ in DM(V)R, the map
F (∆,Γ): HomDM(V)R(∆,Γ) → HomA(F (∆), F (Γ)) is an isomorphism, hence the
restriction of F to DM(V)prR fully faithful. In particular, if DM(V)prR = DM(V)R,
then F is fully faithful.

Proof. We give the proof for R = Z. Each object of DM(V)pr is a summand
of an iterated cone of objects of the form ZX(a)[b], with X smooth and projective
over S. Since F is exact, it suffices to show that F (∆,Γ) is an isomorphism for
∆ = ZX(a)[b].

This follows from the hypothesis on F , and Theorem 1.4.2.

1.5.2. We recall the graded tensor category A0mot(SmS) (see Chapter I, Defini-
tion 1.4.12), and the DG tensor functor (I.1.4.12.1)

Hmot :Amot(SmS) → A0mot(SmS).
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The category A0mot(SmS) and functor Hmot are characterized by the identity

HomA0
mot(SmS)(e

⊗a ⊗ ZX , e⊗b ⊗ ZY (n))

= H2n(HomAmot(SmS)(e
⊗a ⊗ ZX , e⊗b ⊗ ZY (n))).

We have the triangulated tensor category Kb0
mot(SmS) := Kb(A0mot(SmS)) (Chap-

ter I, Remark 3.4.7), and the exact tensor functor

Kb(Hmot) :Kb
mot(SmS) → Kb0

mot(SmS).

The category Db0
mot(SmS) is gotten from Kb0

mot(SmS) by inverting the morphisms
of Chapter I, Definition 2.1.4, and the categoryDM0(S) is gotten fromDb0

mot(SmS)
by forming the pseudo-abelian hull. This gives the exact tensor functors

Db(Hmot) :Db
mot(SmS) → Db0

mot(SmS)

DM(Hmot) :DM(S) → DM0(S)

1.5.3. Definition. Let Y be in SmS , and Z1, . . . , ZN closed subschemes. We
say that Z1, . . . , ZN form a normal crossing subscheme of Y for each collection of
indices 1 ≤ i1 < . . . < is ≤ N ,

codimY (Zi1 ∩ . . . ∩ Zis) =
s∑

j=1

codimY (Zij ),

and the closed subscheme Zi1 ∩ . . . ∩ Zis is smooth over S (or is empty). We call
the union ∪N

i=1Zi a normal crossing subscheme of Y .

1.5.4. Lemma. Let X be in SmS . Suppose there is an open immersion j :X → X̄
with X̄ smooth and projective over S, such that

(i) The complement Z := X̄\X is a union of smooth projective S-schemes,
Z = ∪N

i=1Zi, with each Zi a union of irreducible components of Z.
(ii) For each collection of indices i1, . . . , is, the closed subset Zi1 ∩ . . . ∩ Zis of

X̄ is smooth over S

(This is the case if, for instance Z is a normal crossing subscheme of X̄). Then ZX

is in DM(SmS)pr.

Proof. Let U = X̄\Z1, ZU = Z ∩ U . We have the distinguished triangles
(I.2.2.10.1) in DM(S):

ZX̄,Z(a) → ZX̄(a) → ZX(a) → ZX̄,Z(a)[1],

ZX̄,Z1
(a) → ZX̄,Z(a) → ZU,ZU (a) → ZX̄,Z1

(a)[1],

ZX̄,Z1
(a) → ZX̄(a) → ZU (a) → ZX̄,Z1

(a)[1].

Since Z1 is smooth, say of codimension d, we have the isomorphism (III.2.1.2.2)
ZX̄,Z1

(a) ∼= ZZ1(a− d)[−2d], hence ZU (a) is in DM(S)pr. Similarly, ZZi∩U (b) is in
DM(S)pr for each i = 2, . . . , N ; by induction, this implies ZU,ZU (a) is in DM(S)pr.
Thus ZX̄,Z(a) is in DM(S)pr, hence ZX(a) is in DM(S)pr.

1.5.5. Theorem. Suppose S = Spec k for a field k, and that, for each X in Smk,
there is an open immersion j :X → X̄ with X̄ smooth and projective over k, such
that

(i) The complement Z := X̄\X is a union of smooth projective irreducible
k-schemes: Z = ∪N

i=1Zi.
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(ii) For each collection of indices i1, . . . , is, the closed subset Zi1 ∩ . . . ∩ Zis of
X̄ is smooth over k.

Then the functors Db(Hmot) and DM(Hmot) are equivalences.

Proof. It suffices to show that Db(Hmot) is an equivalence of categories. By
Lemma 1.5.4, Db

mot(Smk)pr = Db
mot(Smk). Since Db0

mot(Smk) is generated by
the objects in the image of Db

mot(Smk), it suffices to show that Db(Hmot) is fully
faithful.

By (Chapter II, Theorem 3.3.11 and Theorem 3.6.6), the functor Db(Hmot)
gives an isomorphism

HomDb
mot(Smk)(1,ZX(a)[b]) → HomDb0

mot(Smk)(1,ZX(a)[b])

for each X in Smk. Since Db
mot(Smk) is generated as a triangulated category by

the objects ZX(a), it follows that Db(Hmot) gives an isomorphism

HomDb
mot(Smk)(1,Γ) → HomDb0

mot(Smk)(1,Γ)

for each Γ in Db
mot(Smk). Since Db

mot(Smk)pr = Db
mot(Smk), it follows from

Theorem 1.5.1 that Db(Hmot) is fully faithful, completing the proof.

If, for example, the field k has characteristic zero, then the hypotheses of The-
orem 1.5.5 are satisfied, by Hironaka’s resolution of singularities [66].

2. Classical constructions

We begin this section by showing in §2.1 how the morphisms in DM(V)pr can
be realized as correspondences; for S = Spec k, this allows us to embed the category
of R-Chow motives into DM(k)R.

We then proceed to define motivic versions of homology, Borel-Moore homol-
ogy, and compactly supported cohomology. In §2.2, we define the motive with
compact support, Zc/S

X , as well as motivic homology, motivic compactly supported
cohomology and motivic Borel-Moore homology, and verify the standard properties
of these theories. In §2.3, we give a detailed discussion of duality for “open relative
motives”, reminiscent of the Hodge-theory yoga of forms with log poles at infinity.
As a special case, for a smooth S-scheme X which admits a compactification X̄
which is smooth over S and has a normal crossing complement X̄\X = D1∪. . .∪Dn,
we identify the motive of X with compact support as the motive of X̄ relative to
D1, . . . , Dn.

In §2.4, we identify the Borel-Moore motive as the motive with support in a
closed subset, and use this to extend the Borel-Moore motive to “smoothly decom-
posable” S-schemes (see Definition 2.4.1(i)). Similarly, we extend the definition
of the motive with compact support to S-schemes which admit a “compactifiable
closed embedding” into a smooth quasi-projective S scheme (Definition 2.4.1(ii)).
We show that the resulting motivic cohomology with compact support/motivic
Borel-Moore homology have the usual properties of classical cohomology with com-
pact support/Borel-Moore homology.

For S = Spec k, where k is a perfect field, every quasi-projective k-scheme is
smoothly decomposable; if resolution of singularities holds for quasi-projective k-
schemes, then every quasi-projective k-scheme admits a compactifiable embedding,
so our construction gives a Borel-Moore motive, and a motive with compact support
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for arbitrary quasi-projective k-schemes, as well as the resulting motivic Borel-
Moore homology and motivic cohomology with compact support.

In §2.6, we define the Tate motivic category, and discuss some of its basic
properties.

2.1. Correspondences

Via the duality isomorphism of §1.4, we may interpret maps in DM(S) between
motives of projective varieties X and Y as classes in the motivic cohomology of the
product. In this section, we show how the one generalizes the construction of the
category of Chow motives over a field k to arbitrary base-schemes, and how the
generalized category of Chow motives embeds into DM.

2.1.1. Lemma. Let X be a smooth projective S-scheme, of dimension d over S, let
Y be in SmS , and let f : ZX → ZY (a)[b] be a morphism in DM(S).
(i) Let ζ : 1 → ZY×SX(a + d)[b + 2d] be the map �Y,X ◦ ι′′X(f). Then f is equal to
the composition

ZX
p∗
2−→ ZY×SX

∪Y ×SXζ
−−−−−→ ZY×SX(a + d)[b + 2d]

p1∗−−→ ZY (a)[b].

(ii) Suppose that Y is projective over S of dimension e, and write the map �X,Y ◦
ι′′Y (fD) as ζD : 1 → ZX×SY (a + d)[b + 2d]. Then

ζD = t∗X,Y (ζ),

where tX,Y :X×S Y → Y ×SX is the exchange of factors. Additionally, fD is equal
to the composition

ZY (e− a)[2e− b]
p∗
1−→ ZY×SX(e− a)[2e− b]

∪Y ×SXζ
−−−−−→ ZY×SX(d + e)[2d + 2e]

p2∗−−→ ZX(d)[2d].

Proof. We first prove (i). If we denote the composition in (i) by g, it suffices
to show that ι′′X(f) = ι′′X(g). The map ι′′X(g) is the composition

1 ιX−→ ZX ⊗ ZX(d)[2d]
p∗
2⊗id−−−−→ ZY×SX ⊗ ZX(d)[2d]

∪Y ×SXζ⊗id
−−−−−−−−→ ZY×SX(a + d)[b + 2d]⊗ ZX(d)[2d]

p1∗⊗id−−−−→ ZY (a)[b]⊗ ZX(d)[2d].

We may rewrite this as

�Y,X ◦ ι′′X(g) = p13∗ ◦ ∪Y×SX×SX(p∗12ζ) ◦ p∗23 ◦ δX∗ ◦ p∗X .

We have the transverse cartesian diagram

Y ×S X ��
idY×δX

��

p2

Y ×S X ×S X

��

p23

X ��
δX

X ×S X ;

applying Theorem 2.4.9 of Chapter III, we have the identity p∗23 ◦ δX∗ = (idY ×
δX)∗ ◦ p∗2. Using this and the projection formula (Chapter III, Theorem 2.4.8), we
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may rewrite �Y,X ◦ ι′′X(g) as

�Y,X ◦ ι′′X(g) = p13∗ ◦ (idY × δX)∗ ◦ ∪Y×SX(ζ) ◦ p∗Y×SX

= idY×SX∗ ◦ ζ
= ζ.

Thus ι′′X(g) = �−1Y,X ◦ ζ = ι′′X(f), completing the proof of (i).
For (ii), we note the ι′Y (fD) = ι′′X(f), by definition of fD. On the other hand,

it follows from the symmetry of the diagonal map that the maps

ιZY (a)[b] : 1 → ZY (a)[b]⊗ ZY (e− a)[2e− b],

ιZY (e−a)[2e−b] : 1 → ZY (e− a)[2e− b]⊗ ZY (a)[b]

are related by t∗Y,Y ◦ �Y,Y ◦ ιZY (a)[b] = �Y,Y ◦ ιZY (e−a)[2e−b]. From this, it follows
that �X,Y ◦ ι′′Y (fD) = t∗X,Y ◦ �Y,X ◦ ι′Y (fD), i.e., ζD = t∗X,Y ◦ ζ, proving the first
part of (ii); the second part follows from the first and (i).

2.1.2. Lemma. Suppose X , Y and Z are in SmS , with X and Y projective over S,
of relative dimensions d and e, respectively. Let f : ZX → ZY (a)[b], g : ZY (a)[b] →
ZZ(a′ + a)[b′ + b] be morphisms in DM(S), and let

ζf : 1 → ZY×SX(a + d)[b + 2d],

ζg : 1 → ZZ×SY (a′ + e)[b′ + 2e],

ζg◦f : 1 → ZZ×SX(a + a′ + d)[b + b′ + 2d]

be the respective morphisms

�Y,X ◦ ι′′X(f), �Z,Y ◦ ι′′Y (g), �Z,X ◦ ι′′X(g ◦ f).

Let

p12 :Z ×S Y ×S X → Z ×S Y,

p13 :Z ×S Y ×S X → Z ×S X,

p23 :Z ×S Y ×S X → Y ×S X

be the projections. Then

ζg◦f = p13∗(p∗12(ζg) ∪ p∗23(ζf )).

Proof. By Proposition 1.1.11 and the uniqueness (Proposition 1.1.10) of the
co-diagonal ε : ZY (e− a)[2e− b]⊗ ZY (a)[b] → 1, ζg◦f is the composition

1 ∼=1⊗ 1
ι′′Y (g)⊗ι′′X(f)−−−−−−−−→ ZZ(a + a′)[b + b′]⊗ ZY (e− a)[2e− b]⊗ ZY (a)[b]⊗ ZX(d)[2d]
id⊗εY⊗id−−−−−−→ ZZ(a + a′)[b + b′]⊗ 1⊗ ZX(d)[2d]
∼= ZZ(a + a′)[b + b′]⊗ ZX(d)[2d]
�Z,X−−−→ ZZ×SX(a + a′ + d)[b + b′ + 2d].



212 IV. HOMOLOGY, COHOMOLOGY, AND DUALITY

Since εY = pY ∗ ◦ δ∗Y ◦�Y,Y we may rewrite this as the composition

1 ∼=1⊗ 1
ιY⊗ιX−−−−→ ZY (a)[b]⊗ ZY (e− a)[2e− b]⊗ ZX ⊗ ZX(d)[2d]
g⊗id⊗f⊗id−−−−−−−→ ZZ(a + a′)[b + b′]⊗ ZY (e− a)[2e− b]⊗ ZY (a)[b]⊗ ZX(d)[2d]
id⊗(δ∗Y ◦�Y,Y )⊗id−−−−−−−−−−−→ ZZ(a + a′)[b + b′]⊗ ZY (e)[2e]⊗ ZX(d)[2d]
id⊗pY ∗⊗id−−−−−−−→ ZZ(a + a′)[b + b′]⊗ 1⊗ ZX(d)[2d]
∼= ZZ(a + a′)[b + b′]⊗ ZX(d)[2d]
�Z,X−−−→ ZZ×SX(a + a′ + d)[b + b′ + 2d].

Using the definition of ζf and ζg, and Theorem 2.4.10 of Chapter III, this in
turn may be rewritten as the composition

1 ∼=1⊗ 1
�Z×SY,Y ×SX◦(ζg⊗ζf )−−−−−−−−−−−−−−−→ ZZ×SY×SY×SX(a + a′ + e + d)[b + b′ + 2e + 2d]
(idZ×δY ×idX )∗−−−−−−−−−−→ ZZ×SY×SX(a + a′ + e + d)[b + b′ + 2e + 2d]
p13∗−−→ ZZ×SX(a + a′ + d)[b + b′ + 2d].

(2.1.2.1)

Since the composition

1 ∼=1⊗ 1
�Z×SY,Y ×SX◦(ζg⊗ζf )−−−−−−−−−−−−−−−→ ZZ×SY×SY×SX(a + a′ + e + d)[b + b′ + 2e + 2d]

is the same as the cup product p∗12(ζg) ∪ p∗34(ζf ), the composition (2.1.2.1) is the
same as the composition

1
p∗
12(ζg)∪p

∗
23(ζf )−−−−−−−−−−→ ZZ×SY×SX(a + a′ + e + d)[b + b′ + 2e + 2d]

p13∗−−→ ZZ×SX(a + a′ + d)[b + b′ + 2d],

completing the proof.

2.1.3. Lemma. Let X be a smooth projective S-scheme, of dimension d over S.

(i) Let Y be in SmS , and let f :Y → X be a morphism in SmS , giving the
morphism f∗ : ZX → ZY . Let ζf∗ = �Y,X ◦ ι′′X(f∗), and let Γf ⊂ Y ×S X be
the graph of f . Then

ζf∗ = cldY×SX(|Γf |).

(ii) Let Y be in SmS , and let f :X → Y be a morphism in SmS of relative
codimension a, giving the morphism f∗ : ZX → ZY (a)[2a]. Let ζf∗ = �Y,X ◦
ι′′X(f∗), and let Γt

f ⊂ Y ×S X be the transpose tX,Y (|Γf |) of the graph of f .
Then

ζf∗ = cla+dY×SX
(Γt

f ).
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(iii) Let Z ∈ Zq(Y ×SX/S) be a codimension q cycle on Y ×SX . Let γZ : ZX →
ZY (q − d)[2q − 2d] be the composition

ZX
p∗
2−→ ZX×SY

∪clq(Z)−−−−−→ ZX×SY (q)[2q]
p1∗−−→ ZY (q − d)[2q − 2d],

and let ζγZ = �Y,X ◦ ι′′X(γZ). Then

ζγZ = clqY×SX
(Z).

(iv) Let Y be in SmS , and let Z ∈ Zq(Y/S) be a codimension q cycle on Y ,
giving the map clqY (Z) : 1 → ZY (q)[2q]. Let ζZ = �Y,S ◦ ι′′S(clqY (Z)). Then

ζZ = clqY (Z).

(v) Let Z ∈ Zq(X/S) be a codimension q cycle on X ; cup product with clqX(Z)
gives the map ∪clqX(Z) : ZX → ZX(q)[2q]. Let ζ∪Z = �X,X ◦ ι′′X(∪clq(Z)).
Then

ζ∪Z = cld+qX×SX
(δX∗(Z)).

Proof. For (i), we use the relation

�Y,X ◦ ιX = δX∗ ◦ p∗X
= δX∗ ◦ p∗X ◦ cl0S(|S|) by Chapter I, Lemma 3.5.4

= δX∗ ◦ cl0X(|X |) by Chapter I, Proposition 3.5.3

= cldX×SX(δX∗(|X |)) by Chapter III, Theorem 2.2.3

= cldX×SX(|∆X |).

From this it follows that

�Y,X ◦ ι′′X(f∗) = (f × idX)∗(cldX×SX(|∆X |))
= cldY×SX(|Γf |) by Proposition 3.5.3,

Chapter I,

proving (i).
For (ii), we have

�Y,X ◦ ι′′X(f∗) = (f × idX)∗ ◦ δX∗ ◦ p∗X
= (f × idX)∗ ◦ δX∗ ◦ p∗X ◦ cl0S(|S|) by Lemma 3.5.4,

Chapter I

= (f, idX)∗ ◦ cl0X(|X |) by Theorem 2.4.7,
Chapter III

= cldY×SX(|Γt
f |) by Theorem 2.2.3,

Chapter III.

The assertion (iii) follows directly from Lemma 2.1.1. As the cycle class map
clqY (Z) may be factored as the composition

1 = ZS
p∗
2−→ ZY×SS

∪clq(Z)−−−−−→ ZY×SS(q)[2q]
p1∗−−→ ZY (q)[2q],
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(iv) follows from (iii). For (v), we have

p1∗ ◦ (p∗2(−)∪[δX∗ ◦ clqX(Z)])

= p1∗ ◦ δX∗(δ∗X ◦ p∗2(−) ∪ clqX(Z)) by Theorem 2.4.8,
Chapter III

= ∪clqX(Z) by Theorem 2.4.7,
Chapter III.

By Theorem 2.2.3 of Chapter III, δX∗ ◦ clqY (Z) = cld+qX×SX
(δX∗(Z)); this and (iii)

proves (v).

2.1.4. Remark. Let X and Y be smooth projective S-schemes.
(i)Let f :X → Y a morphism. Suppose X has dimension d over S and Y has
dimension e over S. Then the morphism f∗ : ZY (a) → ZX(a) has dual the morphism
f∗ : ZX(d−a)[2d] → ZY (e−a)[2e]. The morphism f∗ : ZX(a) → ZY (e−d+a)[2e−2d]
has dual f∗ : ZY (d− a)[2d] → ZX(d− a)[2d].
(ii) Let Z ∈ Zq(X/S) be a cycle. Then the morphism ∪XclqX(Z) : ZX(a) → ZX(a+
q)[2q] has dual the morphism ∪XclqX(Z) : ZX(d− a− q)[2d− 2q] → ZX(d− a)[2d].
The morphism clqX(Z) : 1 → ZX(q)[2q] has dual the composition

ZX(d− q)[2d− 2q]
∪Xcl

q
X (Z)−−−−−−→ ZX(d)[2d]

pX∗−−→ 1.

Indeed, the computations of the dual of f∗, f∗ and ∪XclqX(Z) follow easily from
Lemma 2.1.1 and Lemma 2.1.3. For clqX(Z), we have clqX(Z) = (∪clqX(Z)) ◦ p∗X ,
hence

(clqX(Z))D = (p∗X)D ◦ (∪clqX(Z))D = pX∗ ◦ (∪clqX(Z)).

2.1.5. Chow motives. We recall the construction of the category of graded Chow
motives over k with R-coefficients, MotR(k) (see [79] or [94] for a slightly different,
but equivalent, definition).

Let k be a field. The category Pre-MotR(k) has objects M(X)(a), where X is
a smooth projective k-scheme, and a an integer. The morphisms are given by

HomPre-MotR(k)(M(X)(a),M(Y )(b)) = CHdX+b−a(Y ×X)⊗Z R

if X has dimension dX over k. The composition law is given by

W ′ ◦W = pZX∗(p∗ZY (W ′) ∪ p∗YX(W )),

for W ∈ CHdX+n(Y ×X) and W ′ ∈ CHdY+m(Z ×Y ). Pre-MotR(k) is an R-tensor
category, with direct sum being disjoint union, and tensor product induced by the
product over k. The duality involution on Pre-MotR(k) is given by the interchange
of factors in Y × X . The category MotR(k) is the R-tensor category Pre-MotR#
gotten from Pre-MotR(k) by taking the pseudo-abelian hull.

Let R be a commutative ring, flat over Z, and let S = Spec k. It follows imme-
diately from Lemma 2.1.1, Lemma 2.1.2, and Lemma 2.1.3 that sending M(X)(a)
to RX(a)[2a] and

Z ∈ HomPre-MotR(k)(M(X)(a),M(Y )(b)) = CHdX+b−a(Y ×X)⊗Z R

to

(�Y,X ◦ ι′′X)−1(cldX+b−aY×SX
(Z)) :RX(a)[2a] → RY (b)[2b]
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extends to an R-tensor functor φ : MotR(k) → DM(S)R compatible with the re-
spective duality involutions. From Chapter II, Theorem 3.6.6, φ induces an iso-
morphism HomPre-MotR(k)(1,M(X)(a)) → HomDMR

(1, RX(a)[2a]) for all smooth
projective k-schemes X . Using the duality isomorphisms

HomPre-MotR(k)(M(X)(a),M(Y )(b))
∼= HomPre-MotR(k)(1,M(X × Y )(b − a + dX))

HomDMR(RX(a)[2a], RY (b)[2b])
∼= HomDMR

(1, RX×Y (b− a + dX)[2(b− a + dX)])

we see that φ is a fully faithful embedding.

2.2. Homology and compactly supported cohomology

We use the results of §1.4 and §2.1 to define and relate the homological motive,
the Borel-Moore motive, and the motive with compact support. The resulting
cohomology theories yield motivic homology, motivic Borel-Moore homology, and
motivc cohomology with compact support.

2.2.1. We have the full subcategory SmprS of SmS with objects being those X
in SmS for which ZX is in DM(S)pr; let SmprS,proj be the subcategory of SmprS
with the same objects, but with only projective morphisms. Similarly, let SmS,proj

be the subcategory of SmS with the same objects, but with only the projective
morphisms.

If X ∈ SmS is projective over S, then X is in SmprS ; more generally, if U is an
open subset of a smooth projective S-scheme X ∈ SmS , and if we can write the
complement of U as X − U = ∪n

i=1Di such that the closed subsets Di1 ∩ . . . ∩Dis

are smooth over S for each collection of indices i1, . . . , is, then, by Lemma 1.5.4,
U is in SmprS .

2.2.2. Definition. (i) Let X be in SmS . The homological motive of X , Zh
X , is the

dual ZD
X of ZX . The motivic homology Hp(X,Z(q)) of X is defined by

Hp(X,Z(q)) := HomDM(S)(1,Zh
X(−q)[−p]).

(ii) Let X be in SmS . We have the Borel-Moore motive ZB.M.X defined in Chap-
ter III, §2.5.5. The Borel-Moore homology of X , HB.M.p (X,Z(q)), is defined by

HB.M.p (X,Z(q)) = HomDM(S)(1,ZB.M.X (−q)[−p]).

(iii) Let X be in SmprS . We define the motive of X with compact support over S,
Zc/S
X , by

Zc/S
X := (ZB.M.X )D.

The compactly supported motivic cohomology of X , Hp
c/S(X,Z(q)), is defined by

Hp
c/S(X,Z(q)) := HomDM(S)(1,Z

c/S
X (q)[p]).

2.2.3. Functorialities and dualities. Dualizing the restriction to SmprS of the basic
motivic functor (I.2.2.9.1), Z(−) :Sm

op
S → DM(S), gives the homological motivic

functor

Zh
(−) :Sm

pr
S → DM(S).(2.2.3.1)
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Similarly, dualizing the Borel-Moore functor ZB.M.(−) :SmS,proj → DM(S) (Chap-
ter III, §2.5.5) gives the compactly supported motivic functor

Zc/S
(−) : (SmprS,proj)

op → DM(S).(2.2.3.2)

For a map f :X → Y in SmprS , we write Zh(f) as f∗ : Zh
X → Zh

Y and for f

projective, write Zc/S(f) as f ! : Zc/S
Y → Zc/S

X .
Composing the above functors with the cohomological functor HomDM(S)(1,−)

gives the appropriate functoriality for the (co)homology theories described in Def-
inition 2.2.2. Applying the duality involution gives the natural isomorphisms (for
X in SmprS )

HB.M.p (X,Z(q)) ∼= HomDM(S)(Z
c/S
X (q)[p], 1),

Hp(X,Z(q)) ∼= HomDM(S)(ZX(q)[p], 1).
(2.2.3.3)

2.2.4. The homological motive. The homotopy and Künneth isomorphisms, and the
Mayer-Vietoris and Gysin distinguished triangles (Chapter I, §2.2) dualize to yield
the corresponding properties of the homological motive.

1. Homotopy. The map p∗ : Zh
X×A1 → Zh

X is an isomorphism
2. Products. Taking the dual of the inverse of the external products �X,Y : ZX⊗

ZY → ZX×SY gives natural associative and commutative external products
�h

X,Y : Zh
X ⊗ Zh

Y → Zh
X×SY

, which are isomorphisms.
3. Mayer-Vietoris. Write X as a union of open subschemes X = U∪V, with X ,

U and V in SmprS . Then U ∩ V is in SmprS and we have the Mayer-Vietoris
distinguished triangle

Zh
U∩V

(jU∩V,U∗,−jU∩V,V ∗)−−−−−−−−−−−−−→ Zh
U ⊕ Zh

V

j∗U+j
∗
V−−−−→ Zh

X → Zh
U∩V [1].

4. Localization. Let j :U → X be an open immersion, with X and U in SmprS ,
and let W be the complement of U in X . Define the homological motive
of X relative to U , Zh

X/U , as the dual of the motive with support ZX,W .
Dualizing the localization distinguished triangle of (Chapter I, §2.2.10) gives
the distinguished triangle

Zh
U

jU∗−−→ Zh
X

p∗−→ Zh
X/U → Zh

U [1].

The Gysin isomorphism and projective push-forward morphisms of Chapter III,
Section 2 dualize to give functorial pull-back for projective morphisms f :Y → X
of relative dimension d: f∗ : Zh

X → Zh
Y (−d)[−2d] and the Thom isomorphism

i∗ : Zh
X/U → Zh

W (d)[2d] for i :W → X a closed embedding in SmprS of codimen-
sion d, with complement U . The above properties have the obvious translations
to properties of the motivic homology groups: homotopy property, external prod-
ucts, long exact Mayer-Vietoris and localization sequences, projective pull-back and
Thom isomorphism.

The composition operation, combined with the Tate twist isomorphism,

HomDM(S)(1,ZX(q)[p])⊗ HomDM(S)(ZX(q′)[p′], 1)

→ HomDM(S)(ZX(q′)[p′],ZX(q)[p])
∼= HomDM(S)(ZX(q′ − q)[p′ − p], 1)
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gives, via the isomorphism (2.2.3.3), the cap product pairing

∩X :Hp(X,Z(q)) ⊗Hp′(X,Z(q′)) → Hp′−p(X,Z(q′ − q)).

Let f :Y → X be a morphism in SmprS ; one easily verifies the identity

f∗ ◦ (idX ∪ α) = (idY ∪ f∗(α)) ◦ f∗

for α : 1 → ZX(p′)[q′]. This, together with the associativity of composition, imme-
diately implies the projection formula

f∗(f∗(α) ∩Y β) = α ∩X f∗(β)

for elements α ∈ Hp(X,Z(q)), β ∈ Hp′(Y,Z(q′)).

2.2.5. The motive with compact support and the Borel-Moore motive. For a mor-
phism f :X → Y in SmprS of relative dimension df , we let

f! : Zc/S
X → Zc/S

Y (−df )[−2df ](2.2.5.1)

denote the (shifted and twisted) dual of the pull-back map f∗ : ZY → ZX .
The properties of the motive ZX (homotopy, external products and Künneth

isomorphism, Mayer-Vietoris, localization, Gysin isomorphism) translate directly to
the analogous properties of the Borel-Moore motive, after making the appropriate
twist and shift. Dualizing gives the same properties for the motive with compact
support.

For example, taking the inverse of the dual of the Künneth isomorphism gives
the Künneth isomorphism �c/S

X,Y : Zc/S
X ⊗ Zc/S

Y → Zc/S
X×Y , giving external products

in compactly supported cohomology

∪c/S
X,Y :Hp

c/S(X,Z(q))⊗Hp′

c/S(Y,Z(q′)) → Hp+p′

c/S (X ×S Y,Z(q + q′)).

If X = Y , we may then pull-back by ∆!X , giving cup product in compactly sup-
ported cohomology:

∪c/S
X :Hp

c/S(X,Z(q)) ⊗Hp′

c/S(X,Z(q′)) → Hp+p′

c/S (X,Z(q + q′)),

∪c/S
X = ∆!X ◦ ∪c/S

X,X ,

which makes H∗c/S(X,Z(∗)) := ⊕p,qH
p
c/S(X,Z(q)) into a bi-graded ring (in gen-

eral, without unit). We have external products in Borel-Moore homology, defined
similarly.

Let HB.M.∗ (X,Z(∗)) := ⊕p,qH
B.M.
p (X,Z(q)). Composition defines as above the

cap product

∩c
X :Hp

c/S(X,Z(q))⊗HB.M.p′ (X,Z(q′)) → HB.M.p′−p (X,Z(q′ − q))

satisfying f!∗(f!(α)∩c
Y β) = α∩c

X f∗! (β) for α ∈ Hp′

c/S(X,Z(q′)), β ∈ HB.M.p (Y,Z(q)),
and f :X → Y a morphism in SmS . This gives HB.M.∗ (X,Z(∗)) the structure of a
bi-graded module over H∗c/S(X,Z(∗)).
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2.2.6. Poincaré duality. For X smooth and projective of dimension d over S, the
identity (1.4.1.1)

ZD
X = ZX(d)[2d],

the identifications (Remark 2.1.4) f∗D = f∗, fD∗ = f∗ for a morphism f :X → Y
of smooth projective S-schemes, and the fact that duality is an exact involution,
gives the functorial isomorphisms

Hp(X,Z(q)) ∼= H2d−p(X,Z(2d− q))

Hp
c/S(X,Z(q)) ∼= Hp(X,Z(q))

HB.M.p (X,Z(q)) ∼= Hp(X,Z(q)) ∼= H2d−p(X,Z(2d− q)).

Via these isomorphisms, the cap products defined above are identified with the cup
product in motivic cohomology.

2.3. Relative cohomology and homology

In this section, we discuss duality for the complement of a normal crossing sub-
scheme in a smooth projective S-scheme, relative to another normal crossing sub-
scheme. As a special case, we identify the compactly supported cohomology with
the cohomology of a projective compactification over S, relative to a “normal cross-
ing complement at infinity” in case such exists; we identify the Borel-Moore homol-
ogy with a similarly defined relative homology group. In particular, if S = Spec k
for a perfect field k, and if one has resolution of singularities for quasi-projective
k schemes, then one has this interpretation of compactly supported motivic coho-
mology, and Borel-Moore homology, for all quasi-projective k-schemes.

2.3.1. Relative cycle classes. Let X be in SmS , F1, . . . , Fk closed subschemes of
X forming a normal crossing subscheme (Definition 1.5.3), and let W be a closed
subset of X , disjoint from all the Fi. Then, as Fi ∩ (X \ W ) = Fi, it follows
from Chapter I, Lemma 2.6.5, that the canonical map Z(X;F1,... ,Fk),W → ZX,W

is an isomorphism. In particular, the cycle class map with support (I.3.5.2.7)
clqX,W :Zq

W (X/S) → ZX,W (q)[2q] defines the relative cycle class map

clq(X;F1,... ,Fk),W
:Zq

W (X/S) → Z(X;F1,... ,Fk),W .

2.3.2. Push-forward for relative cycles. Let X be in SmS , F1, . . . , Fk, Y closed sub-
schemes of X forming a normal crossing scheme, and let W be a closed subset of
Y , disjoint from all the Fi. Let i :Y → X denote the inclusion, and suppose that
Y has codimension e on X ; write FY

i for F i ∩ Y .
We have the push-forward

i∗ : Z(Y ;FY
1 ,... ,FY

k )
→ Z(X;F1,... ,Fk)(e)[2e]

(see Chapter III, §2.6).

2.3.3. Lemma. Let W be a closed subset of Y , disjoint from F1, . . . , Fk, and let z
be in Zq

W (Y/S). Then

cl(X;F1,... ,Fk)(i∗(z)) = i∗ ◦ cl(Y ;FY
1 ,... ,FY

k
)(z).

Proof. We have the push-forward for the relative motives with support in W
(Chapter III, loc. cit.)

i∗ : Z(Y ;FY
1 ,... ,FY

k ),W
→ Z(X;F1,... ,Fk),W (e)[2e],
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the push-forward for the motive with support in W (III.2.1.2.3)

i∗ : ZY,W → ZX,W (e)[2e],

and the commutative diagram

ZY,W

��

i∗

Z(Y ;FY
1 ,... ,FY

k ),W
��

��

i∗

�� Z(Y ;FY
1 ,... ,FY

k )

��

i∗

ZX,W (e)[2e] Z(X;F1,... ,Fk),W (e)[2e]�� �� Z(X;F1,... ,Fk)(e)[2e].

As the left-hand horizontal arrows are isomorphisms, we reduce to the case k = 0,
which is just Theorem 2.2.3 of Chapter II.

2.3.4. Relative motives and duality. Let X be in SmS of dimension d over S,
D1, . . . , Dn closed subschemes of X which form a normal crossing subscheme (Def-
inition 1.5.3) of X . Let U := X \ (D1 ∪ . . . ∪ Di), V := X \ (Di+1 ∪ . . . ∪ Dn),
and let δU∩V :U ∩ V → V ×S U be the diagonal inclusion. We suppose that X is
equi-dimensional over S; let d be the dimension of X over S.

Let DV
j := V ∩Dj and DU

j := Dj ∩ U . We have the relative motives

Z(V ;DV
∗≤i
) := Z(V ;DV

1 ,... ,DV
i )
, Z(U ;DU

i<∗)
:= Z(U ;DU

i+1,... ,D
U
n )
,

and

Z(V×SU ;DV
∗≤i
×SU,V×SDU

i<∗)
:= Z(V×SU ;DV

1 ×SU,... ,DV
i ×SU,V×SDU

i+1,... ,V×SDU
n )

in Db
mot(SmS) (see Chapter I, §2.6.6).
Let ∆U∩V be the image of δU∩V , and |∆U∩V | the corresponding cycle.
By the method of §2.3.1, we have the cycle class map

cl(|∆U∩V |) : 1 → Z(V×SU ;DV
∗≤i
×SU,V×SDU

i<∗)
(d)[2d].

We let

δU,V : 1 → Z(V ;DV
∗≤i
) ⊗ Z(U ;DU

i<∗)
(d)[2d](2.3.4.1)

be the map in Db
mot(SmS) defined by composing cl(|∆U∩V |) with the inverse of

the Künneth isomorphism

Z(V ;DV
∗≤i
) ⊗ Z(U ;DU

i<∗)
(d)[2d]

�∗,∗−−−→ Z(V×SU ;DV
∗≤i
×SU,V×SDU

i<∗)
(d)[2d].

Suppose we have closed subschemes E,D1, . . . , Dn of X , with transverse in-
tersection; we suppose that E has codimension dE :X in X . Let EV := E ∩ V ,
DV

Ei := Di ∩EV , and let Z(EV ;DV
E,∗≤i

) denote the relative motive Z(EV ;DV
E1,... ,D

V
Ei

).

The collection of inclusions DV
Ei ↪→ DV

i defines the morphism

i∗EV
: Z(V ;DV

∗≤i
) → Z(EV ;DV

E,∗≤i
).(2.3.4.2)

Similarly, using the Gysin morphism for diagrams (see Chapter III, §2.6), we have
the push-forward

iEU∗ : Z(EU ;DU
E,i<∗)

(−dE)[−2dE :X ] → Z(U ;DU
i<∗)

.(2.3.4.3)

2.3.5. Lemma. (i) The pair (Z(V ;DV
∗≤i
), δU,V ) is the dual of Z(U ;DU

i<∗)
(d)[2d].

(ii) The map (2.3.4.3) is the dual of the map (2.3.4.2).
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Proof. To simplify the notation, we suppress the auxiliary maps f in expres-
sions of the form ZY (n)f . We will use the notation for relative motives and relative
motives with support employed in the previous few paragraphs.

We prove (i) and (ii) together by induction on n, the case n = 0 for (i) being the
definition (1.4.1.1) of the dual of ZX(d)[2d] for X smooth and projective over S, and
for (ii) being Remark 2.1.4. We may suppose that each Di has pure codimension
di on X .

Let V ′ := X \ (Di+1 ∪ . . . ∪ Dn−1). Let d′ be the dimension of DV ′

n over
S, and let j :V → V ′ and i :DV ′

n → V ′ be the inclusions. We use the notation
DV ′

n,j := DV ′

n ∩Dj , DV ′

Dn,∗≤i
:= {DV ′

n,1, . . . , D
V ′

n,i}.
The Gysin isomorphism

i∗ : Z(DV ′
n ;DV ′

Dn,∗≤i
)(d
′)[2d′] → Z(V ′,DV ′

∗≤i
),DV ′

n
(d)[2d]

(III.2.6.8.2), together with the localization sequence for the relative motive with
support (I.2.6.6.2), gives us the Gysin distinguished triangle

(2.3.5.1) Z(V ′,DV ′
∗≤i
)(d)[2d]

j∗−→ Z(V,DV
∗≤i
)(d)[2d]

−→ Z(DV ′
n ;D

V ′
Dn,∗≤i

)(d
′)[2d′ + 1] i∗−→ Z(V ′,DV ′

∗≤i
)(d)[2d + 1].

Applying our induction hypothesis, the dual of the map i∗ is the map

i∗ : Z(U ;DU
i<∗≤n−1)

[−1] → Z(DU
n ;D

U
Dn,i<∗≤n−1

)[−1];

this latter map fits into the relativization sequence (I.2.6.6.1)

(2.3.5.2) Z(U ;DU
i<∗≤n−1)

[−1] i∗−→ Z(DU
n ;D

U
Dn,i<∗≤n−1

)[−1]

in−→ Z(U ;DU
i<∗)

jn−→ Z(U ;DU
i<∗≤n−1)

,

with Z(U ;DU
i<∗)

the cone of i∗, in the canonical inclusion, and jn the canonical
projection.

We have the relative motive with support on DV ′

n :

Z(V ;DV ′
∗≤i
),DV ′

n
:= cone

(
Z(V ′,DV ′

∗≤i
)

j∗−→ Z(V,DV
∗≤i
)

)
[−1];

the distinguished triangle (2.3.5.1) is by definition isomorphic to the cone sequence

(2.3.5.3) Z(V ′,DV ′
∗≤i
)(d)[2d]

j∗−→ Z(V,DV
∗≤i
)(d)[2d]

i0−→ Z(V ;DV ′
∗≤i
),DV ′

n
(d)[2d + 1]

j0−→ Z(V ′,DV ′
∗≤i
)(d)[2d + 1],

with i0 the canonical inclusion, and j0 the canonical projection.
Let

X1 = Z(DU
n ;D

U
Dn,i<∗≤n−1)

[−1], Y1 = Z(U ;DU
i<∗)

, Z1 = Z(U ;DU
i<∗≤n−1)

;

X2 = Z(V ′;DV ′
∗≤i
),DV ′

n
(d)[2d + 1], Y2 = Z(V,DV

∗≤i
)(d)[2d], Z2 = Z(V ′,DV ′

∗≤i
)(d)[2d].
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We may rewrite the cone sequences (2.3.5.2) and (2.3.5.3) as

X1
in−→ Y1

jn−→ Z1
−i∗[1]−−−−→ X1[1],

(2.3.5.4)
Z2

j∗−→ Y2
i0−→ X2

j0−→ Z2[1].

We form the 4×4 diagram (1.2.1.1) by tensoring the two sequences of (2.3.5.4)
together, using the tensor product × in the category Cb(SmS)∗ (see Chapter I,
§3.3), and let

K = cone
(
id× j0 − i∗[1]× id :X1 ×X2 ⊕ Z1 × Z2 → X1 × Z2[1]

)
[−1].

From §1.2, (see Lemma 1.2.2 and (1.2.1.5)) we have the commutative diagram in
Cb
mot(SmS):

K ��
β

��

q

Y1 × Y2

��

(id×i1,jn×id)

X1 ×X2 ⊕ Z1 × Z2 ��
in×id⊕id×j∗

��

id×j0−i∗×id

Y1 ×X2 ⊕ Z1 × Y2

X1 × Z2[1]

(2.3.5.5)

where the left-hand column is the defining cone sequence.
For a smooth S-scheme X with smooth closed subschemes W,F1, . . . , Fk, let

Zd
W (X ;F1, . . . , Fk) be the subgroup of Zd(X/S) consisting of those cycles z which

are supported in W , intersect each Fi properly, and have zero intersection with
each Fi.

By Proposition 3.3.5 of Chapter I, the cohomological functors H0(Zmot(−))
and HomKb

mot(V)(e ⊗ 1,−) are isomorphic on the full triangulated subcategory of
Kb
mot(V) generated by the objects ZX(a)f [b], with (X, f) in L(V).

In addition, we have

H0(Zmot(X1 ×X2)) = Zd
Dn

U×DV ′
n

(DU
n ×S V ′;DU

Dn,i<∗≤n−1 × V ′, DU
n ×DV ′

∗≤i),

H0(Zmot(X1 × Z2[1])) = Zd(DU
n ×S V ′;DU

Dn,i<∗≤n−1 × V ′, DU
n ×DV ′

∗≤i),

H0(Zmot(Y1 × Y2)) = Zd(U ×S V ;DU
i<∗ × V, U ×DV

∗≤i),

H0(Zmot(Z1 × Z2)) ⊂ Zd(U ×S V ′;DU
i<∗≤n−1 × V ′, U ×DV ′

∗≤i),

H0(Zmot(Z1 × Y2)) ⊂ Zd(U ×S V ;DU
i<∗≤n−1 × V, U ×DV

∗≤i).

In the last two lines, the H0 is the subgroup given by those cycles which have
proper intersection with all the subschemes (DU

i1
∩ . . . ∩DU

ip
)× V ′, i ≤ ij ≤ n, not

just those with 1 ≤ ij ≤ n − 1. It also follows from (Chapter I, loc. cit.) that
H−1(Zmot(X1 × Z2[1])) = 0.
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Thus, applying the functor H0(Zmot(−)) to the diagram (2.3.5.5) gives the
commutative diagram with exact columns

0

��

H0(Zmot(K)) ��
β

��

q

H0(Zmot(Y1 × Y2))

��

(id×i1,jn×id)

H0(Zmot(X1 ×X2))
⊕

H0(Zmot(Z1 × Z2))
��

in×id⊕id×j∗

��

id×j0−i∗×id

H0(Zmot(Y1 ×X2))
⊕

H0(Zmot(Z1 × Y2))

H0(Zmot(X1 × Z2[1])).

(2.3.5.6)

Now let ∆U,V ′ be the diagonal in U × V ′, and ∆D the diagonal in DU
n ×DV ′

n .
Since ∆U,V ′ avoids the subschemes U×DV ′

j , 1 ≤ j ≤ i, and the subschemes DU
j ×V ′,

j = i+1, . . . , n−1, the cycle |∆U,V ′ | is an element of H0(Zmot(Z1×Z2)). Similarly,
the cycle |∆D| is an element of H0(Zmot(X1 ×X2)). Since j0 is the map “forget
the support”, we have (id× j0)(|∆D|) = (i∗ × id)(|∆U,V ′ |), hence there is a unique
element η of H0(Zmot(K)) lifting the pair (|∆D|, |∆U,V ′ |). By the commutativity
of the diagram (2.3.5.6), we have

(jn × id)(β(η)) = (id× j∗)(|∆U,V ′ |) = |∆U,V |.

Since H0(Zmot(Y1×Y2)) and H0(Zmot(Z1×Y2)) are both subgroups of Zd(U×V ),
the map

jn × id :H0(Zmot(Y1 × Y2)) → H0(Zmot(Z1 × Y2))

is injective, which gives us the identity

β(η) = |∆U,V |.(2.3.5.7)

From the definition of the cycle class map (Chapter I, §3.5.1) the elements

η ∈ H0(Zmot(K)), |∆D| ∈ H0(Zmot(X1 ×X2)),

|∆U,V ′ | ∈ H0(Zmot(Z1 × Z2)), |∆U,V | ∈ H0(Zmot(Y1 × Y2))

determine the maps in Db
mot(V)

clK(η) : 1 → K, clX1×X2(|∆D|) : 1 → X1 ×X2

clZ1×Z2(|∆U,V ′ |) : 1 → Z1 × Z2, clY1×Y2(|∆U,V |) : 1 → Y1 × Y2

with

q ◦ cl(η) = (clX1×X2(|∆D|), clZ1×Z2(|∆U,V ′ |)),(2.3.5.8)

and, from (2.3.5.7),

β ◦ cl(η) = clY1×Y2(|∆U,V |).(2.3.5.9)

Additionally, these cycle class maps agree with the maps constructed by the method
of §2.3.1.
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Write X ′2 := Z(DV ′
n ;DV ′

Dn,∗≤i
)(d
′)[2d′]. Then, as above, the diagonal ∆D gives an

element |∆′D| ∈ H0(Zmot(X1 ×X ′2)), hence we have the cycle class

clX1×X′
2
(|∆′D|) : 1 → X1 ×X ′2.

By Lemma 2.3.3, we have

(id× i∗) ◦ clX1×X′
2
(|∆′D|) = clX1×X2(|∆D|).(2.3.5.10)

Write � for the Künneth isomorphism for X1 ⊗ X2, Z1 ⊗ Z2, etc. By our
induction hypothesis, the cycle class maps in Db

mot(SmS)

clZ1×Z2(|∆U,V ′ |) : 1 → Z1 × Z2,

clX1×X′
2
(|∆′D|) : 1 → X1 ×X ′2,

gives the duals

(Z1,�−1 ◦ clZ1×Z2(|∆U,V ′ |)), (X1,�−1 ◦ clX1×X′
2
(|∆′D|))

to Z2 and X ′2, respectively.
By (2.3.5.10), and the fact that the Gysin map iDV ′

n ∗ :X ′2 → X2 is an isomor-
phism, it follows that (X1,�−1 ◦ clX1×X2(|∆D|)) is the dual to X2. By (2.3.5.8),
(2.3.5.9), and Remark 1.2.4 this implies that (Y1,�−1clY1×Y2(|∆U,V |)) is the dual
of Y2, which proves part (i).

For part (ii), we need only show that

(id× iEU∗) ◦ cl(|∆EU∩EV |) = (i∗EV
× id) ◦ cl(|∆U∩V |)(2.3.5.11)

as maps 1 → Z(EV ×SU ;DV
EV ,∗≤i

×SU,EV ×SDU
i<∗)

. Indeed, we may apply (i) to the
relative motives

Z(EV ;DV
EV ,∗≤i

), Z(EU ;DU
EU,i<∗)

,(2.3.5.12)

showing that the map

cl(|∆EU∩EV |) : 1 → Z(EV ×SEU ;DV
EV ,∗≤i

×SEU ,EV ×SDU
EU,i<∗)

(followed by the inverse of the Künneth isomorphism) gives the duality between the
two relative motives (2.3.5.12). We then apply (i) as it stands in the statement of
the lemma, from which the identity (2.3.5.11) is equivalent to ι′′(i∗EV

) = ι′(iEU∗).
This in turn implies (ii) by the definition of the duality involution.

The identity (2.3.5.11) follows from the identity of cycles

(idEU × iEU )∗(|∆EU∩EV |) = (iEV × idV )∗(|∆U∩V |),
using the trick of lifting to the relative motives with support, as in Lemma 2.3.3.

The description of the morphism iEU∗ given above can be extended as follows.

2.3.6. Lemma. Let X and Y be smooth, projective and equi-dimensional over S,
let D1, . . . , Dn form a normal crossing subscheme of X and E1, . . . , En a normal
crossing subscheme of Y . Let

UX := X \ (D1 ∪ . . . ∪Di), VX := X \ (Di+1 ∪ . . . ∪Dn),

UY := Y \ (E1 ∪ . . . ∪ Ej), VY := Y \ (Ej+1 ∪ . . . ∪Em).

Suppose we have a morphism f :X → Y such that f restricts to a proper map
fU :UX → UY , and f restricts to a map fV :VX → VY . Suppose in addition that
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codimX(Dj) = codimY (Ej) and f(Dj ∩UX) ⊂ Ej ∩UY , for j = i+ 1, . . . , n. Then
the dual of

fU∗ : Z(UX ;DU
i+1,... ,D

U
n )

(dX)[2dX ] → Z(UY ;EU
j+1,... ,E

U
n )

(dY )[2dY ]

is

f∗V : Z(VY ;EV
1 ,... ,EV

j )
→ Z(VX ;DV

1 ,... ,DV
i )
.

Proof. Note that the first two hypotheses on f imply that f maps each Dk

to some El, with 1 ≤ l ≤ j for 1 ≤ k ≤ i, hence the map f∗V is defined (see
Chapter I, §2.6.7); the remaining hypotheses on f imply that f defines a projective
morphism of n − i-cubes fU : (UX ;DU

i+1, . . . , D
U
n )∗ → (UY ;EU

j+1, . . . , E
U
n )∗, hence

the push-forward fU∗ is defined following (Chapter III, §2.6).
The proof is then the same as the proof of Lemma 2.3.5(ii).

2.3.7. Good compactifications. Let X be smooth and projective over S, D1, . . . , Dn

closed subschemes of X which form a normal crossing subscheme, and let U =
X\ ∪n

i=1 Di. We call the collection (X ;D1, . . . , Dn) a good compactification of U
over S. If U admits a good compactification, then, by Lemma 1.5.4, U is in SmprS .

2.3.8. Proposition. (i) Let (X ;D1, . . . , Dn) be a good compactification of U over
S. Then there is a canonical isomorphism

Z(X;D1,... ,Dn) → Zc/S
U .

In particular, if (X ;D1, . . . , Dn) and (X ′;D′1, . . . , D
′
m) are two good compactifica-

tions of U over S, then there is a canonical isomorphism

Z(X;D1,... ,Dn) → Z(X′;D′
1,... ,D

′
m)

(ii) Let (X ;D1, . . . , Dn) and (Y ;E1, . . . , En) be good compactifications of U and V
over S, with D1, . . . , Dn and E1, . . . , En normal crossing divisors. Let f :X → Y
be a morphism such that f(Di) ⊂ Ei, i = 1, . . . , n, inducing the push-forward map

f∗ : Z(X;D1,... ,Dn)(dX)[2dX ] → Z(Y ;E1,... ,En)(dY )[2dY ]

(see Chapter III, §2.6). Then the isomorphism of (i) identifies f∗ with f! : Zc/S
U →

Zc/S
V , and the dual of f∗ with f∗ : ZV → ZU .

(iii) Let (X ;D1, . . . , Dn) be a good compactification of U , and (Y ;E1, . . . , Em) a
good compactification of V , and let ḡ :X → Y be a morphism such that ḡ restricts

to a proper morphism g :U → V. Then the isomorphism of (i) identifies f ! : Zc/S
V →

Zc/S
U with g∗ : Z(Y ;E1,... ,En) → Z(X;D1,... ,Dn).

Proof. The first assertion follows from Lemma 1.1.3, Lemma 2.3.5, and the
definition of Zc/S

U (Definition 2.2.2).
For (ii), the assertion that f∗ = f! follows from the assertion that fD∗ = f∗, and

the definition of f! (2.2.5.1). The identity fD∗ = f∗ is a special case of Lemma 2.3.6.
For (iii), the condition that g is proper implies that ḡ−1(∪m

i=1Ei) ⊂ ∪n
j=1Dj , so

the map of relative motives g∗ : Z(Y ;E1,... ,En) → Z(X;D1,... ,Dn) is defined (see Chap-
ter I, §2.6.7). As g! is the dual of g∗ : ZU (dU )[2dU ] → ZV (dV )[2dV ] by definition,
(iii) follows from Lemma 2.3.6.
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2.3.9. Relative homology and cohomology. We define the relative motivic homology
Hp((X ;D1, . . . , Dn),Z(q)) by

Hp(X ;D1, . . . , Dn,Z(q)) := HomDM(S)(Z(X;D1,... ,Dn)(q)[p],ZS);

this is compatible with our earlier definition in Chapter I, §2.6.6 of relative motivic
cohomology as HomDM(S)(ZS ,Z(X;D1,... ,Dn)(q)[p]). Via Lemma 2.3.5 and Proposi-
tion 2.3.8, we may identify the Borel-Moore homology, respectively the compactly
supported cohomology, of an S-scheme U which admits a good compactification
(X ;D1, . . . , Dn) with relative motivic (co)homology:

HB.M.p (U,Z(q)) ∼= Hp(X ;D1, . . . , Dn,Z(q))

Hp
c/S(U,Z(q)) ∼= Hp(X ;D1, . . . , Dn,Z(q)).

2.4. The Borel-Moore motive for singular schemes

We show how to interpret the Borel-Moore homology as homology with support in
a “smoothly decomposable” closed subscheme (Definition 2.4.1(i)). This enables us
to extend the definition of the Borel-Moore motive and Borel-Moore homology to
such S-schemes. We also consider the extension of the motive with compact support
to certain S-schemes which are not smooth over S: those which are smoothly
decomposable and admit a “compactifiable” closed embedding into a smooth S-
scheme (see Definition 2.4.1(ii)). For such S-schemes, we define the motive with
compact support and the resulting motivic cohomology with compact support.

2.4.1. Definition. (i) Let W be a reduced quasi-projective S-scheme. A sequence
of closed subsets of W :

∅ = W0 ⊂W1 ⊂ . . . ⊂Wn−1 ⊂Wn = W

is an S-smooth stratification of W if Wi+1\Wi is smooth and equi-dimensional over
S for each i = 0, . . . , n− 1. We call W smoothly decomposable over S if W has an
S-smooth stratification.
(ii) Let W be a smoothly decomposable S-scheme, i :W → X a closed embedding
of W into a smooth S-scheme X , with complement U . We call the embedding i
compactifiable if X and U are in SmprS .

2.4.2. Push-forward for Borel-Moore motives with support. Let i :W → X be a
closed embedding, with X in SmS . Recall from Chapter III, Definition 2.5.6, the
Borel-Moore motive with support in i(W ), ZB.M.X,i(W ), which we abbreviate by ZB.M.i .

Let g :W → W ′ be a projective S-morphism of smoothly decomposable S-
schemes, and take closed embeddings i :W → X and i′ :W ′ → X ′. Suppose we
have a morphism f :X → X ′ which makes the diagram

W ��i

��

g

X

��

f

W ′ ��

i′
X ′

commute. Factor f as a composition

X
iX−→ UX

jX−→ PN
X′

qX−−→ X ′,
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where iX is a closed embedding, jX is an open immersion, and qX is the projection;
since g is proper, the composition jX ◦ iX ◦ i :W → PN

X′ is a closed embedding. We
then define (g, f)∗ : ZB.M.i → ZB.M.i′ as the composition

ZB.M.i
iX∗−−→ ZB.M.iX◦i

(j∗X )
−1

−−−−→ ZB.M.jX◦iX◦i
qX∗−−→ ZB.M.i′ .

2.4.3. Lemma. (i) Suppose that f :W → W ′ is an isomorphism of S-schemes. Then

(g, f)∗ : ZB.M.i → ZB.M.i′

is an isomorphism in DM(S).
(ii) For all (g, f), the map

(g, f)∗ : ZB.M.i → ZB.M.i′

is independent of the choice of factorization.

Proof. For (i), let W = WX = WY . The reader will easily verify that the
maps iX∗, j∗X and qX∗ are all compatible with localization on W , i.e., suppose W̄
is a closed subset of W , with complement W0. Let X0 and Y0 be the complement
of W̄ in X and Y , and let U0 be the complement of q−1X (W ′) in U . Let

ī : W̄ → X, ī′ : W̄ → Y,

i0 :W0 → X0, i′0 :W0 → Y0

be the inclusions; the maps iX , jX and qX thus induce maps

(f, g)∗ : ZB.M.ī → ZB.M.ī′ ,

(f0, g0)∗ : ZB.M.i0 → ZB.M.i′0
,

and give the map of localization distinguished triangles

(ZB.M.ī

iW̄∗−−→ ZB.M.i

j∗W0−−→ ZB.M.i0 →)

((f,g)∗,(f,g)∗,(f0,g0)∗)−−−−−−−−−−−−−−→ (ZB.M.ī′
iW̄∗−−→ ZB.M.i′

j∗W0−−→ ZB.M.i′0
→).

Taking the filtration of W into locally closed subsets, smooth over S and using
noetherian induction, we reduce to the case in which W is smooth over S.

In this case, the maps i∗ :ZW → ZB.M.i and i′∗ : ZW → ZB.M.i′ are isomorphisms.
From (Chapter III, Theorem 2.4.7 and Theorem 2.4.9), it follows that

i′∗ = (g, f)∗ ◦ i∗,
whence (i).

For (ii), it follows easily from the excision isomorphism (Chapter I, Defini-
tion 2.1.4(b)) that the map (g, f)∗ is independent of the choice of open subscheme
UX .

Suppose we have another factorization of f as

X
i′X−→ U ′X

j′X−→ PM
X′

q′X−−→ X ′.

Form the diagonal embedding (iX , j′X ◦ i′X) :X → UX ×X′ PM
X′ . As iX(X) is closed

in UX , and UX ×X′ PM
X′ is proper over UX , (iX , i′X)(X) is closed in UX ×X′ PM

X′ .
By the functoriality of proper push-forward (Chapter III, Theorem 2.4.7), we have

p1∗ ◦ (iX , j′X ◦ i′X)∗ = iX∗ : ZB.M.i → ZB.M.iX◦i .
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By the compatibility of push-forward and pull-back in transverse cartesian squares
(Chapter III, Theorem 2.4.9), we have

p1∗ ◦ [(jX × j′X)∗]−1 ◦ (iX , i′X)∗ = (j∗X)−1 ◦ iX∗ : ZB.M.i → ZB.M.jX◦iX◦i.

Similarly, we have

p2∗ ◦ [(jX × j′X)∗]−1 ◦ (iX , i′X)∗ = (j′∗X)−1 ◦ i′X∗ : ZB.M.i → ZB.M.j′X◦i′X◦i
.

Since qX∗ ◦ p1∗ = q′X∗ ◦ p2∗, by the functoriality of push-forward (loc. cit.), we have
the desired result.

2.4.4. Borel-Moore motives and motives with compact support. Form the category
E with objects the closed embeddings i :W → X , X ∈ SmS , where a morphism
i→ i′ is a commutative diagram

W ��i

��

g

X

��

f

W ′ ��

i′
X ′

with g proper.
Let SDSS be the full subcategory of SchS with objects the smoothly decom-

posable S-schemes, and let SDSSproj the sub-category of SDSS with the same
objects as SDSS , and with morphisms being the projective morphisms. We have
the functor s :E→ SDSSproj sending i :W → X to W .

For a proper map g :W → W ′ in SDSS , let E(g) be the fiber of s over g,
i.e., the category of maps (g, f) : i → i′, where a morphism (g, f1) → (g, f2), with
(g, fj) : ij → i′j , j = 1, 2, is a commutative diagram

i1 ��
(idW ,s1)

��

(g,f1)

i2

��

(g,f2)

i′1
��

(idW ′ ,s2)
i′2.

Let HoE be the category gotten from E by inverting all the morphisms in E(idW ),
for all W in SDSS .

By Lemma 2.4.3, sending i :W → X to ZB.M.i , and a map of maps (g, f) : i→ i′

to (g, f)∗ : ZB.M.i → ZB.M.i′ defines the functor

ZB.M. : HoE→ Db
mot(SmS).(2.4.4.1)

We note the following result:

2.4.5. Lemma. The functor s :E→ SDSSproj induces an equivalence of categories
Ho(s) : HoE→ SDSSproj.

Proof. Let g :W →W ′ be a proper morphism in SDSS , and let E(g)∗ be the
image of E(g) in HoE, i.e., we identify two morphism in E(g) if they have the same
image in HoE. It suffices to show that E(g)∗ is left filtering.

In fact, suppose this is the case. It then follows easily that each morphism
η : i → i′, in HoE (i :W → X , i′ :W ′ → X ′) can be factored as η = s ◦ t−1, where
t : i′′ → i and s : i′′ → i′ are maps in E and t is a map over idW . From this, and
the fact that E(idW )∗ is left filtering, we see that the fiber of Ho(s) over idW is
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a connected and simply connected groupoid. Since the fiber of Ho(s) over a given
map g in SDSSproj is non-empty, it is then an easy exercise to show that Ho(s) is
an equivalence.

Take a closed embedding i′ :W ′ → X ′, and a projective morphism g :W →W ′.
We will show there is a closed embedding i :W → X , and a map (g, f) : i → i′.
Indeed, since g is projective, we may factor g as

W
ig−→ PN

W ′
qg−→W ′

with ig a closed embedding, and qg the projection. The embedding W ′ → X ′

induces the embedding PN
W ′ → PN

X′ , giving the commutative diagram

W ��i

��

g

PN
X′

��

q

W ′ ��

i′
X ′.

If we have embeddings

i′1 :W ′ → X ′1, i′2 :W ′ → X ′2,

i1 :W → X1, i2 :W → X2,

and maps (g, fj) : ij → i′j, j = 1, 2, then we have the product embeddings

(i1, i2) :W → X1 ×S X2, (i′1, i
′
2) :W ′ → X ′1 ×S X ′2,

and the map (g, f1×f2) : (i1, i2) → (i′1, i
′
2), which dominates both (g, f1) and (g, f2)

by taking the first and second projections.
Finally, suppose we have embeddings i :W → X , i′ :W ′ → X ′, and two maps

(g, f1), (g, f2) : i→ i′. We have the two maps of X to X ×S X ′,

gi := (idX , fi) :X → X ×S X ′,

with g1 ◦ i = g2 ◦ i = (i, i′ ◦ g), giving the commutative diagram

W ��i

��

g

X

��

f2

��

f1

��
g1

��
g2

X ×S X ′
��

p1

�� p2
W ′ ��

i′
X ′ .

This shows that, in HoE, the maps g1, g2 : (i :W → X) → ((i, i′◦g) :W → X×SX
′)

are equal. Thus, in E(g)∗,

(g, f1 ◦ p1) = (g, f2 ◦ p1) : (i, i′ ◦ g) → i′,

so p1 : (i, i′ ◦ g) → i equalizes the maps f1 and f2.

2.4.6. By Lemma 2.4.5, the functor (2.4.4.1) descends to the functor

ZB.M.(−) :SDSSproj → Db
mot(SmS).(2.4.6.1)

For W in SDSS , we call ZB.M.W the Borel-Moore motive of W ; for a proper map
g :W →W ′, we write the map ZB.M.(g) as g∗ : ZB.M.W → ZB.M.W ′ .
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Let SDSprSproj be the full subcategory of SDSSproj with objects those W which
admit a compactifiable closed embedding. Restricting ZB.M.(−) to SDSprSproj and du-
alizing gives the functor

Zc/S
(−) : (SDSprSproj)

op → Db
mot(SmS).(2.4.6.2)

We call Zc/S
W the motive of W with compact support over S; for a proper map

g :W →W ′, we write Zc/S(g) as g! : Zc/S
W ′ → Zc/S

W .

2.4.7. Open immersions. Let g :W → W ′ be an open immersion with complement
F . Take a closed embedding i′ :W ′ → X ′ with X ′ of dimension N over S, and let
i :W → X := X ′\i′(F ) be the restriction of i′. Let j :X → X ′ be the inclusion.
Then j gives the map j∗ : Zi′ → Zi. It follows from the compatibility of push-
forward with transverse pull-back (Chapter III, Theorem 2.4.9), together with an
argument similar to that of Lemma 2.4.5, that the map j∗ induces a well-defined
map g∗ : ZB.M.W ′ → ZB.M.W , independent of the choice of closed embeddings, and choice
of extension of g to the open immersion j. In addition, we have

(g ◦ g′)∗ = g′∗ ◦ g∗;(2.4.7.1)

the same compatibility of push-forward with transverse pull-back gives the identity

f∗ ◦ g∗ = g′∗ ◦ f ′∗(2.4.7.2)

for a cartesian diagram

T ′ ��
g′

��

f ′

T

��

f

W ′ ��
g W

with g an open immersion, and f proper.
We let

g! : Zc/S
W → Zc/S

W ′

be the dual of g∗ (when defined). Dualizing the relations (2.4.7.1) and (2.4.7.2)
gives functoriality

(g ◦ g′)! = g! ◦ g′!;
and compatibility in cartesian squares

g! ◦ f! = f ′! ◦ g′! .

2.4.8. Remarks. (i) If W is already smooth and equi-dimensional over S, we may
take the embedding i :W → X to be the identity map. From this, one sees that
ZB.M.W agrees with the definition of ZB.M.W given in Chapter III, Definition 2.5.6,
and the functor (2.4.6.1) is an extension of the functor ZB.M. of Theorem 2.5.7.
Similarly, for W in SmprS , the definition (2.4.6.2) of Zc/S

W agrees with that of Defi-
nition 2.2.2(ii).
(ii) Let i :W → X be a compactifiable embedding of a smoothly decomposable
S-scheme with complement j :U → X . Then ZB.M.W is canonically isomorphic to
the Borel-Moore motive with support, ZB.M.X,W , giving the distinguished triangle

ZB.M.W
i∗−→ ZB.M.X

j∗−→ ZB.M.U → ZB.M.W [1].
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Now (j∗)D = j! (2.2.5.1), i! = iD∗ by definition, and duality is an exact involution
(Theorem 1.2.5), so the motive Zc/S

W fits into a distinguished triangle

Zc/S
U

j!−→ Zc/S
X

i!−→ Zc/S
W → Zc/S

U [1].

We collect the results of the preceding paragraphs in the following omnibus
theorem for future reference.

2.4.9. Theorem. (i) We have functors

ZB.M. :SDSSproj → DM(S),

Zc/S :SDSpropSproj → DM(S).

If W is in SDS, and i :W → X is a closed embedding with X smooth of dimension
d over S, there is a canonical isomorphism

ZB.M.W
∼= ZX,i(W )(d)[2d].

If i is a compactifiable closed embedding, there is a canonical isomorphism

Zc/S
W

∼= ZD
X,i(W )(−d)[−2d].

(ii) The functor ZB.M. of (i) is an extension of the functor ZB.M. :SmSproj → DM(S)
defined in Chapter III, Theorem 2.5.7, and the functor Zc/S of (i) is an extension
of the functor (2.2.3.2) Zc/S :SmopS,proj → DM(S).
(iii) Let j :W →W ′ be an open immersion in SDSS . We have functorial pull-back
maps

j∗ : ZB.M.W ′ → ZB.M.W ,

compatible with the proper push-forward maps in cartesian squares. If j is a map
in SDSprS , we have functorial push-forward maps

j! : Zc/S
W → Zc/S

W ′ ,

compatible with the proper pullback maps in cartesian squares.

2.4.10. Definition. (i) Let W be a smoothly decomposable S-scheme. The motivic
Borel-Moore homology of W is defined by

HB.M.p (W,Z(q)) = HomDM(S)(1,ZB.M.W (−q)[−p]).

(ii) Let W be a smoothly decomposable S-scheme which has a compactifiable closed
embedding i :W → X into a smooth quasi-projective S-scheme X . The motivic
cohomology of W with compact support is defined by

Hp
c/S(W,Z(q)) = HomDM(S)(1,Z

c/S
W (q)[p]).

Since we have the duality isomorphism

HomDM(S)(1,ZB.M.X (−q)[−p]) ∼= HomDM(S)(Z
c/S
X (q)[p], 1)

for X in Smpr, the definition Definition 2.4.10 of Borel-Moore homology and com-
pactly supported cohomology extends that given in Definition 2.2.2. It follows from
Theorem 2.4.9 that the Borel-Moore homology is covariantly functorial for projec-
tive maps, and contravariantly functorial for open immersions; in addition, the
pull-back and push-forward are compatible in cartesian squares. The dual state-
ments follows for the compactly supported cohomology via the duality involution,
using Remark 2.4.8(ii).
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The cup and cap products for Borel-Moore homology and compactly supported
cohomology defined in §2.2.5 extend in the obvious way to the singular case when-
ever all the groups are defined; one applies Mayer-Vietoris and the Künneth isomor-
phism to give canonical isomorphisms ZB.M.W ⊗ ZB.M.W ′ → ZB.M.W×SW ′ , and then takes
the inverse of the dual to give canonical isomorphisms Zc/S

W ⊗Zc/S
W ′ → Zc/S

W×SW ′ ; the
remainder of the construction of cup and cap product then proceeds formally the
same way as the smooth case, as does the external products. The various proper-
ties: functoriality, projection formula, etc. described in §2.2 also extend without
trouble. In particular, there is a functorial bi-graded ring structure on the com-
pactly supported cohomology, and Borel-Moore homology is a bi-graded module
for the compactly supported cohomology ring.

Additionally, suppose we have an S-morphism f :W → Y , with Y smooth over
S, and W smoothly decomposable over S. If we embed W as a closed subscheme
of some X in SmS , i :W ↪→ X , then we have the embedding (i, f) :W ↪→ X ×S Y .
Via Theorem 2.4.9, we have the canonical identification of ZB.M.W with the motive
with support, ZB.M.W

∼= ZW,X×SY (N)[2N ], where N is the dimension of X ×S Y
over S. Combining the cup product

ZX×SY (q)⊗ ZW,X×SY (q′ + N)[2N ] → ZW,X×SY (q + q′N)[2N ]

with the pull-back f∗ : ZY → ZX×SY gives the cap product

∩f :Hp(Y,Z(q))⊗HB.M.p′ (W,Z(q′)) → HB.M.p′−p (W,Z(q′ − q)).(2.4.10.1)

One shows, as in the proof of Lemma 2.4.5, that ∩f is independent of the choice of
embedding i.

2.5. Riemann-Roch for singular schemes

Using the constructions of §2.4, we give a version of the Riemann-Roch theorem
for the K-theory of coherent sheaves, á la [8]. In this section, we assume that the
base scheme S is a regular scheme.

2.5.1. K-theory of coherent sheaves. Let X be a scheme. We have the exact category
MX of coherent sheaves on X , giving the Quillen K-theory space BQMX (see Ap-
pendix B, §1.2). We write Gp(X) for the homotopy groups Gp(X) := πp(BQMX).

We will require the following properties of G∗(X), for proofs, see [102]:
(i) Functoriality: Let f :X → Y be a map of schemes. If f is flat, the pull-back
functor f∗ :MY → MX is exact, hence induces the map f∗ :Gp(Y ) → Gp(X).
This makes Gp(−) a contravariant functor from the category of schemes, with
morphisms being flat maps, to abelian groups. Similarly, if f is finite, the push-
forward f∗ :MX → MY is exact, giving the map f∗ :Gp(X) → Gp(Y ), making
Gp(−) a functor from schemes with finite morphisms, to abelian groups. One
extends this covariant functoriality from finite morphisms to projective morphisms
by the methods of [102].
(ii) Products: Tensor product ⊗ :PX ⊗MX → MX is an exact pairing of exact
categories, hence Waldhausen’s products (see [126, p. 235], [128, §3], as well as
Appendix B, §2.2.4) give the graded group G∗(X) the structure of a graded K∗(X)-
module; we write the resulting product as ∩X . One has the projection formula:

f∗(f∗(α) ∩X β) = α ∩Y f∗(β)

for f :X → Y a projective morphisms, α ∈ Kp(Y ) and β ∈ Gq(X).
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Similarly, for flat S-schemes X and Y , we have the exact pairing of exact
categories �X,Y :MX⊗MY →MX×SY defined by sending (M,N) to p∗1M⊗OX×SY

p∗2N . This induces as above the external products

�X,Y :Gp(X)⊗Gq(Y ) → Gp+q(X ×S Y ).

(iii) Localization: Let i :Z → X be the inclusion of a closed subscheme, with
complement j :U → X . Let BQMX,U denote the homotopy fiber of the map
j∗ : BQMX → BQMU . The composition j∗ ◦ i∗ : BQMZ → BQMU is canoni-
cally contractible, hence we have the lifting of i∗ : BQMZ → BQMX to the map
i∗ : BQMZ → BQMX,U . This latter map is a weak homotopy equivalence, giving
the isomorphism

i∗ :Gp(Z) → KZ
p (X),(2.5.1.1)

and the long exact localization sequence

. . .→ Gp(Z) i∗−→ Gp(X)
j∗−→ Gp(U) δ−→ Gp−1(Z) → . . . .

(iv) Poincaré duality: If X is a regular scheme, then the inclusion PX → MX

induces an isomorphism Kp(X) ∼= Gp(X).
(v) Projective bundle formula: Let E → X be a rank N vector bundle, with as-
sociated projective bundle q : P(E) → X . Let O(1) be the tautological quotient
bundle, and O(−1) its dual. Let αi :Gp(X) → Gp(P(E)) be the map αi(x) :=
[O(−i)] ∩P(E) q

∗(x), where [O(−i)] is the K0-class. Then

N∑
i=0

αi : ⊕N
i=0 Gp(X) → Gp(P(E))

is an isomorphism.

2.5.2. The map τ . We recall from §2.4.4 the category SDSS of smoothly decom-
posable S-schemes, and the subcategory SDSSproj with the same objects, and
with morphisms being the projective morphisms over S. For X in SDSS , we let∏′

q
HB.M.p+2q(−,Q(q)) denote the subgroup of the full product consisting of sequences

(. . . , αq ∈ HB.M.p+2q(−,Q(q)), . . . )

such that there is a q0 with αq = 0 for all q ≥ q0.
Take W in SDSS , and choose an embedding i :W → X with X in SmS , of

dimension d over S. We then have the isomorphism (2.5.1.1) i∗ :Gp(W ) → KW
p (X),

and the isomorphism

ZB.M.W
∼= ZX,W (d)[2d].(2.5.2.1)

We have as well the Chern character for K-theory with support

chW
p,X :KW

p (X) →
∏
q≥0

H2q−pW (X,Q(q)),

and the Todd class Todd(X/S) ∈
∏

q≥0H
2q(X,Q(q)) (see Chapter III, §3.3.6 and

§3.5.1).
We define

τXp :Gp(W ) →
∏′

q

Hp+2q(W,Q(q))(2.5.2.2)
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to be the cap product (2.4.10.1)

Todd(X/S) ∩i :W→X chW
p,X :Gp(W ) →

∏
q≤d

Hp+2q(W,Q(q)),

where we identify
∏

q≥0H
2q−p
W (X,Q(q)) with

∏
q≤dHp+2q(W,Q(q)) via the canon-

ical isomorphism (2.5.2.1), and identify KW
p (X) with Gp(W ) via the isomorphism

(2.5.1.1).

2.5.3. Theorem [Riemann-Roch for singular varieties]. Suppose that S is a regu-
lar scheme. Then the maps (2.5.2.2) for W in SDSS are independent of the choice
of embedding, and define a natural transformation

τp :Gp(−) →
∏′

q

HB.M.p+2q(−,Q(q))

of functors from SDSSproj to Ab, satisfying the following conditions:
1. Let f :X → Y be a morphism in SchS , with X smoothly decomposable over

S, and with Y in SmS . Then for α ∈ Kp(Y ) and β ∈ Gq(X), we have

τp+q(f∗(α) ∩X β) = ch(α) ∩f τq(β).

2. For X and Y in SDSS , α ∈ Gp(X) and β ∈ Gq(Y ), we have

τp+q(α �X,Y β) = τp(α) �X,Y τq(β).

3. If j :U → X is an open immersion of smoothly decomposable S-schemes,
then, for α ∈ Gp(X), we have

j∗τp(α) = τp(j∗α).

4. If X is in SmS of dimension d over S, then we have the class [OX ] in G0(X)
and the fundamental cycle class cl0X(|X |) in HB.M.2d (X,Z(d)) = H0(X,Z(0)).
Then

τ0([OX ]) = Todd(X/S) ∩X cl0X(|X |)
(see Chapter III, §3.5.1).

Proof. Once we have shown that the maps τXp are independent of the choice
of X , the naturality of τp follows directly from the Riemann-Roch theorem. Indeed,
given a projective morphism in SDSS f :W → T , we may assume that W is a closed
subscheme of PN

T , and that f is the restriction of the projection q : PN
T → T . If we

embed T as a closed subscheme of some X in SmS , then we have the embedding
of W as a closed subscheme of PN

X , as well as the commutative diagram

W ⊂ PN
X

f

� �q

T ⊂ X.

From Theorem 3.5.4, we have

q∗ ◦ (Todd(PN
X/S) ∪ chWPN

X
(−)) = Todd(X/S) ∪ chT (q∗(−))

as maps from KW
∗ (PN

X)) to H∗T (X,Z(∗)), which implies the desired naturality.
On the other hand, the argument of Lemma 2.4.3, together with the above

naturality statement, implies the independence on the choice of embedding.
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Indeed, suppose we have another closed embedding i′ :W → X ′. If i′ factors
through a closed embedding s :X → X ′, then the Riemann-Roch theorem for K-
theory with support (Chapter III, Theorem 3.5.4) gives the identity

s∗(Todd(X/S) ∪ chW
p,X(−)) = Todd(X ′/S) ∪ chWp,X′(s∗(−))

in
∏

q≥0H
2q−p
W (X ′,Z(q)); from Lemma 2.4.3, this implies that τXp = τX

′

p . Similarly,
if i′ factors through an open immersion j :X → X ′, then excision, the naturality of
Todd and ch, and Lemma 2.4.3 imply τXp = τX

′

p .
We may therefore assume that X and X ′ are open subschemes of projective

spaces over S, say X ′ is an open subscheme of Pn
S . We then have the diagonal

embedding

W → X ×S X ′ ↪→ X ×S Pn
S = Pn

X ,

and W is still closed in Pn
X . Riemann-Roch for the projection q : Pn

X → X gives the
commutativity of the diagram

KW
p (Pn

X) ��
q∗

��
τ

PnX
p

KW
∗ (X)

��

τXp∏
q≥0H

2q−p
W (Pn

X ,Q(q)) ��
q∗

∏
q≥0H

2q−p
W (Pn

X ,Q(q)).

Combining this with the case of the open immersion X×SX
′ → PN

X , Lemma 2.4.3,
and symmetry, gives the desired independence of the choice of embedding.

For (2), we may assume, as in the definition of ∩f , that f is a closed embedding.
Then, by the definition of τ∗, we have

τp+q(f∗(α) ∩X β) = Todd(Y/S) ∪ chX
Y,p+q(α ∪X

Y β)

= Todd(Y/S) ∪ [chY,p(α) ∩X chX
Y,q(β)]

= chY,p(α) ∪X
Y [Todd(Y/S) ∪X

Y chX
Y,q(β)]

= chY,p(α) ∩X τq(β).

Here ∪X
Y is the cup product Hp(Y,Q(q))⊗Hp′

X (Y,Q(q′)) → Hp+p′

X (Y,Q(q+ q′)); we
identify Borel-Moore homology with cohomology with support in X (as modules
over H∗(Y,Q(∗))) via the isomorphism (2.5.2.1), and we use the multiplicativity
of the Chern character (see Chapter III, Remark 3.3.10(ii)). This proves (2). The
proof of (3) is similar, where we reduce to the case of Riemann-Roch for K-theory
with support by first embedding X and Y in smooth S-schemes.

The assertion (4) follows from the definition of τ∗, using the naturality of ch and
Todd, and (5) follows from the fact that chX,0([OX ]) = 1, and that, as cl0X(|X |)
is the unit in H∗(X,Z(∗)) (Chapter I, Proposition 3.5.6), the cap product with
cl0X(|X |) is just the identification of motivic cohomology of X with Borel-Moore
homology, via (2.5.2.1).

2.6. The triangulated Tate motivic category

We give the definition of the triangulated Tate motivic category DTM(S)R as a
subcategory of DM(S)R. If the base scheme S is Spec k for k a field, we show that
DTM(S)R is equivalent to a subcategory of both Db

mot(Smk)R and Db
mot(Smk)0R.
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In addition, the duality involution on DM(SmS)R restricts to a duality involution
on DTM(S)R.

2.6.1. Definition. Let S be a reduced scheme and R a commutative ring, flat over
Z. The triangulated Tate motivic category DTM(S)R is the strictly full triangu-
lated tensor subcategory of DM(S)R generated by the objects RS(q), q = 0,±1.

2.6.2. Lemma. The category DTM(S)R is equal to the strictly full triangulated
subcategory of DM(S)R generated by the objects RS(q), q ∈ Z.

Proof. This follows immediately from the exactness of the tensor product
operation in DM(S), and the Künneth isomorphism RS(a) ⊗ RS(b) ∼= RS(a + b)
(see Chapter I, Definition 2.1.4(c)).

2.6.3. Proposition. The duality involution (−)D :DM(S)opR → DM(S)R (Theo-
rem 1.4.2) restricts to an involution

(−)D :DTM(S)opR → DTM(S)R.

Proof. We have ZD
S = 1D = 1 = ZS , hence ZS(q)D = ZS(−q) for each integer

q. Since the involution (−)D is exact (Theorem 1.4.2), this implies that the strictly
full triangulated subcategory of DM(S)op is mapped into its opposite by (−)D.
Applying Lemma 2.6.2 completes the proof.

2.6.4. We recall the graded tensor categoryA0mot(V) (Chapter I, Definition 1.4.12),
and the DG tensor functor Hmot :Amot(V) → A0mot(V)(I.1.4.12.1). We have as well
the triangulated tensor categoriesDb0

mot(V) and DM0(V)R formed from A0mot(V) in
a way paralleling the construction ofDb

mot(V) andDM(V) fromAmot(V) (see §1.5.2
and Chapter I, Remark 3.4.7). In particular, we have the commutative diagram

Z0Amot(V) ��

��

Z0Hmot

Db
mot(V) ��

��

Db
mot(Hmot)

DM(V)

��

DM(Hmot)

Z0A0mot(V) �� Db0
mot(V) �� DM0(V)R.

If we take V = Smk for k a field, then, if, e.g., we have resolution of singularities
for k-varieties, it follows from Theorem 1.5.5 that the functors Db

mot(Hmot) and
DM(Hmot) are equivalences.

Let DT (S)R be the full triangulated tensor subcategory of Db
mot(SmS)R gen-

erated by the objects RS(q), q = 0,±1, and let DT (S)0R be the full triangulated
tensor subcategory of Db

mot(SmS)0R generated by the objects RS(q), q = 0,±1.
Similarly, let DTM(S)0R be the full triangulated tensor subcategory of DM(S)0R
generated by the objects RS(q), q = 0,±1.

2.6.5. Theorem. The functors

Db
mot(SmS)R → DM(S)R,

Db0
mot(SmS)R → DM(S)0R

induce equivalences

DT (S)R → DTM(S)R,

DT (S)0R → DTM(S)0R.
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Under the hypothesis of Theorem 1.5.5, the functors Db
mot(Hmot) and DM(Hmot)

induce equivalences

DT (S)R → DT (S)0R,

DTM(S)R → DTM(S)0R.

Proof. As the objects RS(q) generating DTM(S)R are in DT (S)R, and as
the functor Db

mot(SmS)R → DM(S)R is a fully faithful embedding, the categories
DT (S)R and DTM(S)R are equivalent. The second pair of equivalences follows
from Theorem 1.5.5.

2.6.6. Functoriality. We recall from Chapter I, §2.3 that the formation of the cate-
gory DM(S) is functorial in S. If p :T → S is a map of reduced schemes, the func-
tor DM(p∗) :DM(S)R → DM(T )R induces the functor DTM(p∗) :DTM(S) →
DTM(T ). This determines the functor

DTM(−)R :Sch→ TTR

S �→ DTM(Sred)R

from the category of schemes to the category of triangulated rigid R-tensor cate-
gories.

2.6.7. Remarks. (i) As the Tate motives ZS(q) are in DTM(S), one can recover
the motivic cohomology of S entirely from within DTM(S):

Hp(S,Z(q)) = HomDTM(S)(1,ZS(q)[p]).

For S = SpecF , F a field, we thus have the natural isomorphism

HomDTM(S)Q(1,QS(q)[2q − p]) ∼= Kp(F )(q).(2.6.7.1)

This follows from Theorem 3.6.6 and Theorem 3.6.12 of Chapter II.
(ii) Beilinson and Soulé (see [114]) have conjectured that, for a field F , one has the
following vanishing of the weight-graded pieces of the K-theory of F :

Kp(F )(q) = 0; for 2q ≤ p, p > 0.(2.6.7.2)

It follows from (i) and [85] that, assuming the vanishing (2.6.7.2), the triangulated
category DTM(SpecF )Q has a canonical t-structure, with heart MTM(F )Q con-
taining the Tate motives Q(q); in fact, an abelian subcategory of MTM(F )Q

containing the Q(q) and closed under extensions is all of MTM(F )Q. The duality
involution makes MTM(F )Q into a rigid tensor category, and the natural map
Ext1MTM(F )Q(1,Q(q)) → HomDTM(F )Q(1,Q(q)[1]) is an isomorphism. There is a
natural weight filtration on MTM(F )Q, and a fiber functor to graded Q-vector
spaces, making MTM(F )Q a Tannakian category (again, assuming the Beilinson-
Soulé vanishing conjectures).

It is not known if the Beilinson-Soulé vanishing conjectures suffice to imply
that the natural map

ExtpMTM(F )Q(1,Q(q)) → HomDTM(F )Q(1,Q(q)[p])(2.6.7.3)

is an isomorphism for all p, however, surjectivity in (2.6.7.3) for all p implies injec-
tivity. If F is a subfield of Q̄, then the vanishing of K2q−p(F )(q) for for q > 0 and
p �= 1 (see [22] and [23]) and (i) imply that the Beilinson-Soulé vanishing conjec-
tures are valid for F , and that both sides of (2.6.7.3) are zero for q > 0 and p > 1.
This gives a construction of the category of mixed Tate motives over F , for F a
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subfield of Q̄. It is not known, even in this case, if the inclusion of MTM(F )Q into
DTM(F )Q induces an equivalence of the bounded derived category of MTM(F )Q

with DTM(F )Q.

3. Motives over a perfect field

In this section, we take the base scheme S to be of the form S = Spec k, with
k a perfect field admitting resolution of singularities for reduced k-schemes of finite
type. We take this to mean:

1. Let X be a reduced k-scheme of finite type. Then there is a sequence of
blow-ups with smooth center Y → X such that Y is smooth.

2. Let D be a closed codimension one subset of a smooth finite type k-scheme
X . Then there is a sequence of blow-ups with smooth center µ :Y → X such
that µ−1(D)red is a divisor with normal crossing.

3. Let f :X → Z a rational map of reduced finite type k-schemes, i.e., there
is an open subscheme U of X , containing each generic point of X , and a
morphism fU :U → Z. Then there is a sequence of blow-ups of X with
smooth centers lying over X \ U , µ : Y → X , such that the rational map
f ◦ µ :Y → Z is a morphism.

A strong version of Chow’s lemma is an immediate consequence of resolution of
singularities, in other words, if X is a reduced finite type k-scheme, there is a
sequence of blow-ups with smooth centers Y → X such that Y is smooth and
quasi-projective over k. By [66], a field of characteristic zero admits resolution of
singularities.

Using the method of hyperresolutions constructed in [60], Hanamura [61] has
shown how to extend the definition of the motive (in the sense of [61]) of smooth
quasi-projective varieties to finite type k-schemes, assuming one has resolution of
singularities for finite type k-schemes. In this section, we show how to apply his
methods to give the motive of a finite type k-scheme as an object ofDb

mot(Smk). We
then give a description of the fundamental properties of (cohomological) motives of
singular schemes, a construction of the dual homological motive, and a comparison
with the motive with compact support and the Borel-Moore motive.

3.1. Hyperresolutions

We first prove a result about the motive of a blow-up along a smooth center. We
let Schfink denote the category of reduced finite type k-schemes.

3.1.1. Blow-up distinguished triangle. Let X be in SmS , and C a smooth closed
subscheme of X . Let µ :Y → X be the blow-up of X along C, with exceptional
divisor E. The map µ induces the commutative diagram of pull-back maps

ZX
��

i∗C

��

µ∗

ZC

��

µ∗
|E

ZY
��

i∗E
ZE ,

which induces the map

ZX
(µ∗,i∗C)−−−−→ cone

(
ZY ⊕ ZC

i∗E−µ
∗
|E−−−−−→ ZE

)
[−1].(3.1.1.1)
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3.1.2. Lemma. The map (3.1.1.1) is an isomorphism in Db(SmS).

Proof. Using the Mayer-Vietoris property on X , we may assume that C has
trivial normal bundle in X .

Let U := X \C = Y \E, and let d be the codimension of C in X . We have the
identification of µ|E :E → C with the projectivized normal bundle q : P(NC/X) →
C, i.e., E is a projective space Pd−1

C .
Let ζ ∈ H2(E,Z(1)) be the first Chern class of the tautological bundle O(1)

on E. We have the isomorphism O(1) ∼= OE(−E).
We claim that the diagram

ZC(−d)[−2d]

��

∪ζd−1◦µ∗
|E

��
iC∗

ZX

��

µ∗

ZE(−1)[−2] ��
iE∗

ZY

commutes.
Indeed, by taking the deformation to the normal bundle, we may assume that

X = N̄C/X := P(NC/X ⊕ 1X) ∼= Pd
C ,

with iC the section i0 :C → Pd
C with constant value (1 : 0 : . . . : 0).

The projection p : Pd
C → C induces the splitting pY :Y → E to the inclusion of

E in Y . Thus, by (Chapter III, Lemma 2.2.7), we have

iC∗ = ∪cldPd
C

(|i0(C)|) ◦ p∗,

iE∗ = ∪cl1(|E|) ◦ p∗Y = ∪(cl1Y (c1(O(E)))),

hence, by the functoriality of cycle classes,

µ∗ ◦ iC∗ = µ∗ ◦ (∪cldPd
C

(|i0(C)|) ◦ p∗)

= ∪(µ∗(cldPd
C

(|i0(C)|))) ◦ p∗Y ◦ µ∗|E .

On the other hand, i0(C) is the zero subscheme of a section of the vector
bundle OPd

C
(1)d, hence by Corollary 1.3.9 of Chapter III, we have cldPd

C
(|i0(C)|) =

cd(OPd
C

(1)d). Letting i1 :C → Pd
C be the section with constant value (0 : 1 : . . . : 0),

we have cldPd
S
(|i1(C)|) = cd(OPd

C
(1)d) for the same reason, hence cldPd

S
(|i1(C)|) =

cldPd
S
(|i0(C)|). As µ is an isomorphism over a neighborhood of i1(C), we have a

lifting of i1 to a section ĩ1 :C → Y , and thus have

µ∗ ◦ iC∗ = ∪cldY (|̃i1(C)|) ◦ p∗Y ◦ µ∗|E .

Let l be the P1C in Pd
C through the points (0 : 1 : . . . : 0) and (1 : 0 : . . . : 0),

and let l′ be the proper transform of l to Y . The intersection l′ ∩ E determines a
section p :C → l′. We may view ĩ1 as a section ĩ1 :C → l′. Since p(C) and ĩ1(C)
are both zero subschemes (on l′) of the tautological line bundle Ol′(1), we have
cl1l′(|p(C)|) = cl1l′(|̃i1(C)|) by (loc. cit.). From Theorem 2.2.3 of Chapter III, it
follows that cldY (|̃i1(C)|) = cldY (|p(C)|), so

µ∗ ◦ iC∗ = ∪cldY (|p(C)|) ◦ p∗Y ◦ µ∗|E .
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Since ζ = c1(OE(1)), we have cld−1E (|p(C)|) = ζd−1. Thus, using Theorem 2.2.3 of
Chapter III and the projection formula, we have

µ∗ ◦ iC∗ = ∪[iE∗(ζd−1)] ◦ p∗Y ◦ µ∗|E
= iE∗ ◦ (∪(ζd−1) ◦ µ∗|E).

This verifies the claim.
Thus we have the distinguished triangle

ZC(−d)[−2d]
(iC∗,(−1)d−1ζd−1∪◦µ∗

|E)−−−−−−−−−−−−−−−−→ ZX ⊕ ZE → ZY →

Via the projective bundle formula, we have ZE
∼= ⊕d−1

i=0 ZC(−i)[−2i], which gives
us the isomorphism

ZY
∼= ZX

⊕
⊕d−1

i=1ZC(−i)[−2i].

Via this isomorphism, the map i∗E : ZY → ZE becomes

i∗C ⊕ id : ZX

⊕
⊕d−1

i=1ZC(−i)[−2i] → ZC

⊕
⊕d−1

i=1ZC(−i)[−2i],

which proves the result.

3.1.3. We recall some notions from [60]. Let I be the category associated to a finite
partially ordered set. As in Chapter I, §2.7, an I-diagram of k-schemes is just a
functor X : I → Schk. We call a map f :X → Y of I-diagrams a closed embedding,
an open immersion, proper, etc., if f(i) :X(i) → Y (i) is a closed embedding, etc.,
for each i ∈ I. Call an I-diagram X smooth if each X(i) is smooth over k.

We work throughout with reduced k-schemes; for instance, we call a diagram
cartesian if it is the diagram of reduced schemes associated to a (usual) cartesian
diagram. As above, this generalizes to the notion of a cartesian diagram of I-
diagrams.

The discriminant of a map f :X → Y of I-diagrams is the I-diagram

i �→ discf(i),

where discf(i) is the complement of the largest open subset U(i) of Y (i) over which
f(i) is an isomorphism.

Following the notation of [60], we denote the opposite of the category associated
to the partially ordered set {0 < 1}n+1 by �+n , and the full subcategory gotten by
deleting the object (0, . . . , 0) by �n. �+n is isomorphic to the n+ 1-cube <n+ 1>.

3.1.4. Definition. Let X be an I-diagram of (reduced) finite type k-schemes. A
2-resolution of X is a cartesian �+1 × I-diagram of the form

Z11 ��

��

Z01

��

f

Z10 �� Z00
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where

1. Z00 = X ,
2. Z01 is in Smk,
3. the horizontal arrows are closed embeddings,
4. f is proper,
5. Z10 contains the discriminant locus of f .

(3.1.4.1)

We call the 2-resolution strict if, for each i ∈ I, dimk Z01(i) = dimk Z00(i), and the
restriction of f to the components of Z01(i) and Z00(i) of maximal dimension is
birational.

3.1.5. We now recall the reduction operation. Suppose we have �+n × I-diagrams
Xn
∗ for 1 ≤ n ≤ r such that the �+n−1 × I-diagrams Xn+1

00∗ and Xn
1∗ are the same

for all n, 1 ≤ n < r. Define the �+r × I-diagram

Z∗ := rd(X1∗ , . . . , X
r
∗)

inductively as follows: For r = 1, set Z∗ := X1∗ . For r = 2, define

Zab :=

{
X10b; if a = (0, 0),
X2ab; for a ∈ �1,

for all b ∈ �+0 , with the evident morphisms. For r > 2, define rd(X1∗ , . . . , X
r
∗) :=

rd(rd(X1∗ , . . . , Xr−1
∗ ), X∗r ), where we identify �+r × I with �+2 × (�+r−2 × I) and

�+r−1 × I with �+1 × (�+r−2 × I) by the evident isomorphism.
We now present the main definition of this section:

3.1.6. Definition. Let X be an I-diagram of reduced finite type k-schemes. A
cubical hyperresolution (or hyperresolution, for short) of X is a �r × I-diagram
of reduced finite type k-schemes Z∗, such that Z∗ is the restriction to �r × I of
rd(X1∗ , . . . , Xr

∗), where
1. X1∗ is a 2-resolution of X
2. For 1 ≤ n < r, Xn+1

∗ is a 2-resolution of Xn
∗

3. Za is in Smk for all a ∈ �r × I.
We call the hyperresolution strict if the 2-resolutions in (1) and (2) are strict.

If Z∗ is a hyperresolution of X , we have the �+r × I diagram Z+∗ gotten by “re-
membering” the component X = rd(X1∗ , . . . , X

r
∗)(0,... ,0). We call Z+∗ an augmented

hyperresolution, and write Z+∗ as Z∗ → X .

3.1.7. A map of hyperresolutions Z∗ → Z ′∗ over a map f :X → X ′ is given
by taking an inclusion functor ir,r′ : �+r → �+r′ , r ≤ r′, by filling in a given r-
tuple with 0’s in fixed spots i1, . . . , ir′−r, and taking a map of �+r × I-diagrams
f∗ :Z+∗ → Z∗′+ ◦ ir,r′ such that the map f(0,... ,0) is f . This gives us the functor
w from the category of hyperresolutions of I-diagrams of reduced finite type k-
schemes to Schfink by taking the (0, . . . , 0) component of the associated augmented
hyperresolution.

Let Hr denote the category of hyperresolutions, and Hrs the category of strict
hyperresolutions. We let HoHr and HoHrs denote the localizations of Hr and Hrs
with respect to the maps over some identity map in Schfink .
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The following facts are shown in [60] (here I is as above the category associated
to a finite partially ordered set).

1. Each I-diagram of k-schemes admits a strict hyperresolution.
2. The functors

Ho(w) : HoHr→ Schfink

and

Ho(w) : HoHrs→ Schfink

are equivalences of categories.

(3.1.7.1)

3.1.8. Remark. In fact, the notion of a strict hyperresolution is not explicitly for-
mulated in [60], but it is implicit throughout the discussion there, and the ar-
guments apply to strict hyperresolutions without modification. Also, in [60], a
2-resolution is somewhat less restrictive, as one does not require that Z01 be in
Smk (smooth and quasi-projective over k) but only smooth over k. Using the re-
mark on resolution of singularities at the beginning of this section, the arguments
of [60] give the results stated above.

3.1.9. The motive of a hyperresolution. Let Z∗ be a �r-diagram in Smk. We form
the motive of Z∗, ZZ∗ , exactly as we formed the motive of an n-cube (see Chapter I,
§2.6), except that we use 0 for the missing spot (0, . . . , 0). In particular, if X is a
reduced finite type k-scheme, and X∗ is a strict hyperresolution of X , we have the
motive ZX∗ .

We may (and will) adjust the auxiliary maps in the definition of ZZ∗ with-
out explicitly indicating this in the notation, so that each morphism f :Z∗ → W∗
of hyperresolutions gives a resulting morphism of motives f∗ : ZW∗ → ZZ∗ in
Cb
mot(Smk), and similarly for all finite diagrams of morphisms. The different ob-

jects of Cb
mot(Smk) are all canonically isomorphic in Db

mot(Smk), so the change
of representing object in Cb

mot(Smk) has no effect in Db
mot. This does allow us,

however, to construct the cone of the morphism f∗ : ZW∗ → ZZ∗ , which is thus
uniquely defined up to canonical isomorphism in Db

mot(Smk).

3.2. The motive of a k-scheme

The main result concerning the motive ZZ∗ is

3.2.1. Theorem. Let U be a reduced finite type k-scheme, and Z∗, Z
′
∗ two strict

hyperresolutions of U . Then the motives ZZ∗ and ZZ′
∗ are canonically isomorphic.

In order to prove Theorem 3.2.1, we need an auxiliary statement, useful in its
own right.

3.2.2. Theorem. Let

Z ′ ��α

��

g

U ′

��

f

Z ��
β

U
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be a cartesian diagram of reduced finite type k-schemes such that α and β are closed
embeddings, f is proper, and f induces an isomorphism U ′ \ Z ′ → U \ Z. Take
strict hyperresolutions of U , U ′, Z and Z ′ which fit into a commutative square

Z ′∗ ��α

��

g

U ′∗

��

f

Z∗ ��
β

U∗.

Then the square

ZZ′
∗

ZU ′
∗

�� α∗

ZZ∗

��

g∗

ZU∗
��
β∗

��

f∗

is distinguished, i.e., the induced map (α∗, β∗) : cone(f∗) → cone(g∗) is an iso-
morphism in Db

mot(Smk), or, equivalently, the induced map (f∗, g∗) : cone(β∗) →
cone(α∗) is an isomorphism in Db

mot(Smk).

3.2.3. To prove Theorem 3.2.1 and Theorem 3.2.2, we use the argument of [61],
proceeding by noetherian induction. We let Theorem 3.2.1n be the statement of
Theorem 3.2.1 for U of dimension at most n, and Theorem 3.2.2n be the statement
of Theorem 3.2.2 for U and U ′ of dimension at most n. Let Theorem 3.2.1n,l be
the statement of Theorem 3.2.1 for U of dimension at most n and having at most
l irreducible components of dimension n, and Theorem 3.2.2n,l be the statement of
Theorem 3.2.2 for U and U ′ of dimension at most n, and having at most l irreducible
components of dimension n.

We first show
Induction Step 1: Theorem 3.2.1n,l implies Theorem 3.2.2n,l

Proof. Using Theorem 3.2.1n,l, we are free to choose our strict hyperresolu-
tions.

Suppose first of all that we know Theorem 3.2.2n,l when the map f is bira-
tional. In particular, if V is a k-scheme of dimension at most n, with irreducible
components V1, . . . , Vr , having at most l components of dimension n, we may apply
Theorem 3.2.2n,l to the cartesian diagram

Z ′ ��α

��

g

V ′

��

f

Z ��
β

V,

where V ′ :=
∐r

i=1 Vi, Z = ∪1≤i<j≤rVi∩Vj . This gives the Mayer-Vietoris property
for unions of closed subschemes; using this Mayer-Vietoris property, we reduce to
the case of irreducible U and U ′. Thus, it suffices to prove Theorem 3.2.2n,l in case
Z contains no generic point of U , and Z ′ contains no generic point of U ′.

Assuming this, let Ũ → U ′ be a resolution of singularities of U ′ with Ũ in Smk,
let Z̃ be the inverse image of Z ′. We may take strict hyperresolutions of Z, Z ′ and
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Z̃ so that there is a commutative diagram

Z̃∗
��

��

Z̃ ��

��

Ũ

��

Z ′∗
��

��

Z ′ ��

��

U ′

��

Z∗ �� Z �� U.

Then

Z̃∗
��

��

Ũ

Z∗

is a strict hyperresolution of U ′ and

Z̃∗
��

��

Ũ

Z ′∗

is a strict hyperresolution of U , from which Theorem 3.2.2 for f :U ′ → U follows
directly.

Of course, it follows directly from the above that Theorem 3.2.1n implies The-
orem 3.2.2n.

3.2.3.1. Lemma. Let

Z ′ ��α

��

g

U ′

��

f

Z ��
β

U

be a cartesian diagram of quasi-projective k-schemes such that α and β are closed
embeddings, f is projective, and f induces an isomorphism U ′\Z ′ → U\Z. Suppose
that U and U ′ are smooth, that the restriction of f to the maximal dimension
components of U and U ′ is birational, and that Z does not contain all the maximal
dimensional components of U . Take strict hyperresolutions Z∗ of Z and Z ′∗ of Z

′

with a map g :Z ′∗ → Z∗ over g :Z → Z ′. Assume that dimk U ≤ n + 1, that either
U is irreducible and Theorem 3.2.1n holds, or U has at most l + 1 components of
dimension n + 1, and Theorem 3.2.1n+1,l holds. Then the square

ZZ′
∗ ZU ′�� α∗

ZZ∗

��

g∗

ZU
��

β∗

��

f∗

is distinguished.
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Proof. By our hypotheses, the motives ZZ∗ and ZZ′
∗ are independent of the

choice of strict hyperresolution. Suppose first that U ′ → U is the inclusion of a
union of components of U , necessarily containing all the components of maximal
dimension. Then Z must contain all the components of U not occurring in U ′.
As the components of U are all smooth and disjoint, the fact that the ZZ∗ and
ZZ′

∗
are independent of the choice of strict hyperresolution, and that forming the

motive takes disjoint union to direct sum, we reduce to the case in which all the
components of U and U ′ have dimension n + 1. The map f is thus birational.

Suppose first that f is the blow-up of U along a smooth center C ⊂ Z. Let E
be the exceptional divisor, giving us the commutative diagram

E ��

��

Z ′ ��α

��

g

U ′

��

f

C �� Z ��
β

U

with all squares cartesian. By our hypotheses, the result is independent of the
choice of strict hyperresolutions, and we may apply Theorem 3.2.2 to the left square.
Applying Lemma 3.1.2 to the outside square proves the result in this case.

Thus, the result is true for a map f which is a sequence of blow-ups with smooth
centers lying over Z.

In general, we may dominate f with a map f ′ :U ′′ → U which is a sequence
of blow-ups with smooth centers lying over Z. Thus, the map (g∗, f∗) : cone(β∗) →
cone(α∗) admits a left splitting, say h. We may then dominate the map U ′′ → U ′

by a sequence of blow-ups with smooth centers, which shows that h admits a left
splitting as well, hence (g∗, f∗) is an isomorphism.

The following result completes the inductive argument and the proof of Theo-
rem 3.2.1.
Theorem 3.2.2n implies Theorem 3.2.1n+1,1 and Theorem 3.2.2n+1,l implies Theo-
rem 3.2.1n+1,l+1

Proof. By (3.1.7.1), it suffices to show that a map of strict hyperresolutions
of U induces an isomorphism of the motives.

A strict hyperresolution of U is gotten by first forming a strict 2-resolution

Z ′ ��

��

U ′

��

Z �� U,

and then taking a strict hyperresolution

Z ′∗
��

��

Z ′

��

Z∗ �� Z
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of the diagram Z ′ → Z, giving the strict hyperresolution

Z ′∗ ��

��

U ′

Z∗

of U . We first compare two strict hyperresolutions of U with the same U ′. We may
assume that the second strict hyperresolution is of the form

W ′
∗

��

��

W ′ ��

��

U ′

��

W∗ �� W �� U

with Z ⊂ W , that Z ′∗ → Z∗ maps to W ′
∗ → W∗, and that W is a proper closed

subscheme of U .
Assume at first that U is irreducible and has dimension n + 1. Since the

hyperresolution is strict, U ′ is also irreducible and of dimension n + 1. We may
then apply Theorem 3.2.2n to the square

Z ′ ��

��

W ′

��

Z �� W,

giving the distinguished square

ZZ′ ZW ′��

ZZ

��

ZW .��

��

This proves the result in this case. In general, suppose U has l + 1 components of
dimension n+ 1. Then W has at most l components of dimension n+ 1, and since
U ′ → U is birational on the components of maximal dimension, W ′ has at most
l components of dimension n + 1 as well. Arguing as above, Theorem 3.2.2n+1,l
implies Theorem 3.2.1n+1,l+1 for hyperresolutions of this type.

Now suppose we have two strict hyperresolutions arising from the diagrams

Z ′′∗ ��

��

Z ′′

��

�� U ′′

��

W∗ �� W �� U

Z ′∗ ��

��

Z ′

��

�� U ′

��

Z∗ �� Z �� U.

By the result we have already proven, we may assume that Z = W ; we may also
assume that U ′′ maps to U ′. This gives us the cartesian square

Z ′′ ��

��

U ′′

��

g

Z ′ �� U ′.
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Since the hyperresolution is strict, the map g is birational on the components of
maximal dimension. We then apply Lemma 3.2.3.1 to this square, which proves
Theorem 3.2.1 for U .

3.2.4. Cohomological motives. Once we have the independence on the choice of hy-
perresolution, the rest is easy. For a reduced finite type k-scheme X , we define the
motive ZX to be ZX∗ , where X∗ is a strict hyperresolution of X .

3.2.5. Theorem. Let k be a perfect field admitting resolution of singularities.
The functor Z(−) :Smk → Db

mot(Smk) extends to the functor Z(−) :Sch
fin
k →

Db
mot(Smk).

Proof. By Theorem 3.2.1, the motive ZX of X in Schfink is well-defined, in-
dependent of the choice of hyperresolution. In particular, if X is in Smk, we may
use the identity hyperresolution

∅ ��

��

X

∅ �� X,

so ZX agrees with the old definition.
Let f :X → Y be a morphism of k-schemes. By the equivalence of categories

(3.1.7.1), we may find a morphism of hyperresolutions f :X∗ → Y∗ over f , and the
resulting map f∗ : ZY∗ → ZX∗ canonically induces the map f∗ : ZY → ZX . The
functoriality (f ◦ g)∗ = g∗ ◦ f∗, follows similarly, as does the fact that f∗ is the old
f∗ if X is in Smk.

The restriction to strict hyperresolutions is somewhat awkward, and in fact
unnecessary.

3.2.6. Theorem. Let X be a reduced finite type k-scheme. Then all motives ZX∗

of hyperresolutions X∗ of X are canonically isomorphic in Db
mot(Smk).

Proof. Let

Z11 ��

��

Z01

��

Z10 �� X

be a 2-resolution of X . By Theorem 3.2.2, the induced map ZX → ZZ∗ is an
isomorphism. By using the linked distinguished triangles of an n-cube (see Chap-
ter I, §2.6.4), the same holds true if X is a �+n -diagram of reduced finite type
k-schemes. Thus, if X∗ → X is a hyperresolution, the induced map ZX → ZX∗ is
an isomorphism.

Let I be a full subcategory of �+n , such that, if i is in I, and j → i is a map in
�+n , then j is in I; we call such a subcategory left closed. If X : I → Schk is an I-
diagram, then, using the equivalence of categories (3.1.7.1) and Theorem 3.2.6, we
have the Iop-diagram of motives (uniquely defined as a pro-object, with transition
maps isomorphisms in Db

mot) ZX/I : Iop → Cb
mot(Smk). We may then extend ZX/I

to all of (�+n )op, taking the value 0 at those a not in I, and then forming the
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resulting motive ZX as the associated total complex (or iterated shifted cone) as in
(Chapter I, §2.6, §2.6.2-§2.6.4).

3.2.7. Corollary. Let I be a left closed subcategory of �+n , let X : I → Schfink be
an I-diagram of reduced finite type k-schemes, and let X∗ → X be a hyperresolu-
tion. Then the induced map ZX → ZX∗ is an isomorphism in Db

mot(Smk).

Proof. This follows from Theorem 3.2.6 and the linked distinguished triangles
of an n-cube (loc. cit.).

We call a commutative diagram in Schfink

Z11 ��

��

Z01

��

Z10 �� X

a weak 2-resolution of X if all the properties of a 2-resolution (3.1.4.1) are satisfied
except (2), i.e., we do not require that Z01 be in Smk. A weak hyperresolution
X∗ → X of X is then defined as a hyperresolution (§3.1), with weak 2-resolutions
replacing 2-resolutions, and omitting the condition (3) that all the terms Xa, a �=
(0, . . . , 0), be in Smk. The proof of Theorem 3.2.6 and Corollary 3.2.7 gives the
generalization

3.2.8. Theorem. Let I be a left closed subcategory of �+n , X : I → Schfink an
I-diagram of reduced finite type k-schemes, and let X∗ → X be a weak hyperreso-
lution. Then the induced map ZX → ZX∗ is an isomorphism in Db

mot(Smk).

3.2.9. Remark. One can abstract the argument above. Let A be a DG category,
and F :Smopk → Cb(A) a functor (in our case, we take A to be the category
of pro-objects in Amot(Smk) such that the transition maps are isomorphisms in
Db
mot(Smk), and the functor F to be the map sending X to the system of motives

ZX(0)f ). Let Kb(A) be the homotopy category of Cb(A), and let G :Kb(A) → D
be an exact functor of triangulated categories. Since F is a functor to complexes,
we may extend G ◦ F to hyperresolutions Z∗ by taking the total complex of the
associated multi-dimensional complex F (Z∗), and then applying G.

Suppose G ◦ F satisfies “descent for blow-ups with smooth center”: Given X
in Smk, and C ⊂ X a smooth closed subscheme, form the blow-up µ :Y → X of X
along X , with exceptional divisor E. Then the square

(G ◦ F )(E) (G ◦ F )(Y )��
(G◦F )(iE)

(G ◦ F )(C)

��

(G◦F )(µ|E)

(G ◦ F )(X)��
(G◦F )(iC)

��

(G◦F )(µ)

is distinguished.
We then have descent for hyperresolutions: The functor G ◦ F :Hrs → D

extends to the homotopy category HoHrs, and therefore descends to the functor
G ◦ F :Schfink → D. Furthermore, this functor is an extension of the functor G ◦
F :Smk → D, and satisfies the property given by Theorem 3.2.2, namely, G ◦
F transforms cartesian diagrams (with the horizontal maps closed embeddings,
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and the vertical maps proper) to distinguished squares. The various extensions
described above hold in the abstract situation as well.

One may vary the above data, replacing A with an additive category and using
various other categories of complexes, C∗(A) (∗ = +,−, ∅), or one can replace
Cb(A) with a closed simplicial model category C, replace the total complex with
an iterated homotopy fiber, and replace D with the homotopy category.

Similar results are discussed in the paper [59].

3.2.10. Products. Suppose we have reduced finite type k-schemes X and Y , and a
hyperresolution Y∗ → Y . Then X ×k Y∗ → X ×k Y is a weak hyperresolution of
X ×k Y , where X ×k Y∗ is the diagram

i �→ X ×k Yi.

Similarly, if X∗ → X is hyperresolution of X , then the augmented �opn × �opm
diagram (for appropriate n and m) X∗ ×k Y∗ → X ×k Y∗ is a hyperresolution
of X ×k Y∗. By Theorem 3.2.8, the map ZX×Y → ZX∗×kY∗ induced by the two
augmentations is an isomorphism in Db

mot(k).
The external products �Xi,Yj : ZXi ⊗ZYj → ZXi×kYj give the external product

�X∗,Y∗ : ZX∗ ⊗ ZY∗ → ZX∗×kY∗ ,

which is an isomorphism in Db
mot(Smk). Composing this external product with the

isomorphisms ZX ⊗ ZY → ZX∗ ⊗ ZY∗ and ZX∗×kY∗ → ZX×kY gives the external
product

�X,Y : ZX ⊗ ZY → ZX×kY .(3.2.10.1)

It follows from the equivalence of categories (3.1.7.1) that the map �X,Y is inde-
pendent of the choices made, and that we get the same map if we first resolve X
and then resolve Y . This implies that the external products are commutative and
associative; the linked distinguished triangles of an n-cube imply that the product
�X,Y is an isomorphism.

3.2.11. Properties of the cohomological motive. The fundamental properties of mo-
tives described in Chapter I extend to the singular case as well, using the properties
of smooth motives, and the distinguished triangles associated to the n-cube defining
the motive of a hyperresolution. In particular, we have

1. Homotopy. For each reduced finite type k-scheme X , the pull-back p∗ : ZX →
ZA1×X is an isomorphism in Db

mot(Smk).
2. Künneth isomorphism. For X and Y reduced finite type k-schemes, we have

the natural commutative external product �X,Y : ZX⊗ZY → ZX×kY , which
is an isomorphism in Db

mot(Smk).
3. Mayer-Vietoris. Let X be a reduced finite type k-scheme, jU :U → X and

jV :V → X open subschemes with X = U ∪ V . Then the sequence

ZX
(j∗U ,j∗V )−−−−−→ ZU ⊕ ZV

j∗U∩V,U−j
∗
U∩V,V−−−−−−−−−−→ ZU∩V

induces an isomorphism in Db
mot(Smk)

ZX → cone
(
ZU ⊕ ZV

j∗U∩V,U−j
∗
U∩V,V−−−−−−−−−−→ ZU∩V

)
[−1].
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4. Blow-up distinguished triangle. Let

Z ′ ��i′

��

g

X ′

��

f

Z ��
i

X

be a cartesian diagram of reduced finite type k-schemes, with i and i′ closed
embeddings, f proper, and f :X ′ \ Z ′ → X \ Z an isomorphism. Then the
map

ZX
(i∗,f∗)−−−−→ cone

(
ZZ ⊕ ZX′

g∗−i′∗−−−−→ ZZ′
)
[−1]

is an isomorphism in Db
mot(Smk).

Indeed, the homotopy property follows from the homotopy property for smooth
k-schemes, together with the fact that A1 × X∗ is a hyperresolution of A1 ×X if
X∗ is a hyperresolution of X . The Künneth isomorphism was discussed in §3.2.10.

Define the motivic cohomology by

Hp(X,Z(q)) := HomDM(k)(1,ZX(q)[p]).

As in the case of smooth k-schemes, the Künneth isomorphism, followed by pull-
back by the diagonal, gives the bi-graded motivic cohomology H∗(X,Z(∗)) :=
⊕p,qH

p(X,Z(q)) the functorial structure of a bi-graded ring (graded-commutative
in p), with identity given by p∗X : ZSpeck → ZX .

For the Mayer-Vietoris property, take a hyperresolution X∗ → X of X , with
X∗ a �r-diagram. Then the pull-backs U∗ := X∗ ×X U , V∗ := X∗ ×X V , and
(U ∩V )∗ := X∗×X (U ∩V ) form hyperresolutions of U , V and U ∩V , respectively,
with Uα ∪ Vα = Xα and Uα ∩ Vα = (U ∩ V )α for each α ∈ �r. Thus, the map

ZXα → cone
(
ZUα ⊕ ZVα → Z(U∩V )α

)
[−1]

are isomorphisms for each α, which gives the result for ZX .
The blow-up triangle is a consequence of Theorem 3.2.2; note as in the proof

of Induction Step 1, §3.1.9, that as a special case, we have the Mayer-Vietoris
distinguished triangle for the union of closed subschemes.

3.2.12. Homological motives of singular schemes. Dualizing the motive ZX gives
the homological motive

Zh
X := ZD

X .

By duality, Theorem 3.2.5 gives

3.2.13. Theorem. Let k be a perfect field, admitting resolution of singularities.
Then sending X in Schfink to Zh

X extends to a functor

Zh
(−) :Sch

fin
k → Db

mot(k)

whose restriction to Smk is the functor ZD
(−).

In particular, the restriction of Zh to Smk agrees with the homological motive
functor (2.2.3.1).

For a morphism f :X → Y , we denote the morphism Zh(f) : Zh
X → Zh

Y by f∗.
The properties of the cohomological motive listed in §3.2.11 dualize to give
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1. Homotopy. The map p∗ : Zh
A1×kX

→ Zh
X is an isomorphism for all X in

Schfink .
2. Künneth isomorphism. There are natural commutative external products

�h
X,Y : Zh

X ⊗ Zh
Y → Zh

X×kY

which are isomorphisms.
3. Define the motivic homology of X by

Hp(X,Z(q)) := HomDM(k)(1,Zh
X(−q)[−p]).

The external products �h
X,Y induce commutative and associative external

products

�X,Y :Hp(X,Z(q))⊗Hp′(Y,Z(q′)) → Hp+p′(X ×k Y,Z(q + q′)).

4. Mayer-Vietoris Write X as a union of open subschemes, X = U ∪ V . Then
the map

cone
(
Zh
U∩V

(jU∩V,U∗,−jU∩V,V ∗)−−−−−−−−−−−−−→ Zh
U ⊕ Zh

V

) jU∗+jV ∗−−−−−→ Zh
X

is an isomorphism in Db
mot(k).

5. Blow-up distinguished triangle Let

Z ′ ��i′

��

g

X ′

��

f

Z ��
i

X

be a cartesian diagram of reduced finite type k-schemes, with i and i′ closed
embeddings, f proper, and f :X ′ \ Z ′ → X \ Z an isomorphism. Then the
map

cone
(
ZZ′

(g∗,−i′∗)−−−−−→ ZZ ⊕ ZX′
) (i∗+f∗)−−−−−→ ZX

is an isomorphism in Db(k).
In addition, the cap products for motivic cohomology and homology for smooth

varieties extend to the cap product

∩X :Hp(X,Z(q)) ⊗Hp′(X,Z(q′)) → Hp′−p(X,Z(q′ − q)),

using the same construction as in the smooth case: Identify Hp′(X,Z(q′) with
HomDM(k)(ZX(p′)[q′], 1) by duality, compose with an element of Hp(X,Z(q)) :=
HomDM(k)(1,ZX(p)[q]) to get to HomDM(k)(ZX(p′)[q′],ZX(p)[q]), and then twist
and shift to get to HomDM(k)(ZX(p′ − p)[q′ − q], 1) ∼= Hp′−p(X,Z(q′ − q)).

3.3. Comparison of motives

For S = Spec k, with k a perfect field, all reduced quasi-projective k-schemes are
smoothly decomposable, hence the Borel-Moore motive, and Borel-Moore homology
are defined for all reduced quasi-projective k-schemes. If, in addition, resolution of
singularities holds for reduced quasi-projective k-schemes, then, by Lemma 1.5.4, all
reduced quasi-projective k-schemes admit a compactifiable closed embedding into
a smooth quasi-projective k-scheme. Thus the compactly supported cohomology
is defined for all reduced quasi-projective k-schemes. We conclude the discussion
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of the motives of k-schemes by comparing the cohomological motive with the co-
homological motive with compact support, and the homological motive with the
Borel-Moore motive.

3.3.1. Cohomology of normal crossing schemes. Suppose D0, . . . , Dn define a nor-
mal crossing scheme in some X ∈ Smk, and let D := ∪n

i=1Di. We have the
�n-diagram D∗ : �n → Smk defined by

Dα0,... ,αn = ∩i, αi=1Di,

with maps being the inclusions. We may extend D∗ to the �+n -diagram (X,D)∗
with value X at (0, . . . , 0). By the evident isomorphism of �+n with the n+ 1-cube
<n+1>, the diagram (X,D)∗ agrees with the n+1-cube (X ;D0, . . . , Dn)∗ defined
in Chapter I, §2.6.6.

One sees by an elementary induction that D∗ is a hyperresolution of D, hence
we have the canonical isomorphism in Db

mot(Smk) ZD
∼= ZD∗ . Similarly, we may

view the �+n -diagram (X,D)∗ as a hyperresolution of the diagram D → X , giving
us the identification of the relative motive Z(X;D0,... ,Dn) with the shifted cone

Z(X;D0,... ,Dn)
∼= cone

(
i∗D : ZX → ZD

)
[−1].

We denote the cone of i∗D by Z(X;D).

3.3.2. Hyperresolutions of compactifications. Form the category Schcptk as the cate-
gory of open immersions j :X → X̄ with X and X̄ in Schfink and X̄ projective over
k; a map (j1 :X1 → X̄1) → (j2 :X2 → X̄2) is a pair of proper maps

f :X1 → X2; f̄ : X̄1 → X̄2

making the evident diagram commute. Letting Schfink,pr be the category with the
same objects as Schfink , but with proper maps, we have the functor F :Schcptk →
Schfink gotten by ignoring the compactification X̄.

Form the category HoSchcptk by inverting all maps of the form (id, f̄).

3.3.3. Lemma. The functor F induces an equivalence of categories

HoF : HoSchcptk → Schfink,pr.

Proof. The proof is essentially the same as the proof of Lemma 2.4.5, but
easier, and is left to the reader.

3.3.4. Compactly supported motives. For j :X → X̄ in Schcptk , we write D(j) :=
X̄ \X , and let iD(j) :D(j) → X̄ be the inclusion. Define the motive with compact
support Zc

j by

Zc
j := cone

(
i∗D(j) : ZX → ZD(j)

)
[−1].

To be precise, we take a hyperresolution Z∗ of the diagram D(j)
iD(j)−−−→ X̄ and set

Zc
j := ZZ∗ . From Theorem 3.2.6 and (3.1.7.1), Zc

j is well-defined, up to canonical
isomorphism, and each map (f, g) : j → j′ in Schcptk induces a map (f, g)∗ : Zc

j′ → Zc
j ,

giving the functor

Zc : (Schcptk )op → Db
mot(Smk).

From Theorem 3.2.2, each map in Schcptk of the form (id, f̄) induces an iso-
morphism (id, f̄)∗ : Zc

j′ → Zc
j , hence, by Lemma 3.3.3, we may descend Zc to the
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functor

Zc : (Schfink,pr)
op → Db

mot(Smk).(3.3.4.1)

Recall the category Smprk,proj (§2.2.1); by the comments at the beginning of this
section, we have Smprk,proj = Smk,proj, the category with the same objects as Smk,
but with only projective morphisms.

3.3.5. Lemma. The functor (3.3.4.1) defines an extension of the functor (2.2.3.2)

Zc/k :Smopk,proj → Db
mot(Smk).

Proof. Let X be in Smk, and take a compactification j :X → X̄ with com-
plement D(j) a normal crossing divisor. Write D(j) as the union of its irreducible
components D(j) = ∪n

i=1Di. By the identification in §3.3.1 of the relative motive
ZX̄,D(j) with the relative motive Z(X̄;D1,... ,Dn), together with the definition of Zc

X ,
we have the canonical and functorial identification Zc

X
∼= Z(X̄;D1,... ,Dn). The result

then follows from Proposition 2.3.8.

By duality, the functor ZB.M. := (Zc)D :Schfink,pr → Db
mot(Smk) is an extension

of the functor (see Chapter III, Theorem 2.5.7) ZB.M. :Smk,proj → Db
mot(Smk).

We let Hp
c (X,Z(q)) denote the cohomology with compact support

Hp
c (X,Z(q)) := HomDM(k)(1,Zc

X(q)[p]),

and HB.M.p (X,Z(q)) the Borel-Moore homology

HB.M.p (X,Z(q)) := HomDM(k)(1,ZB.M.X (−q)[−p]).

3.3.6. Products. Let j1 :X1 → X̄1 and j2 :X2 → X̄2 be compactifications, and write
Di for D(ji). We have the Mayer-Vietoris distinguished triangle (see §3.2.11)

ZD1×kX̄2∪X̄1×kD2
→ ZD1×kX̄2

⊕ ZX̄1×kD2
→ ZD1×kD2 → .

Using this, we see that the external products for the cohomological motive (3.2.10.1)
define the external product � : Z(X̄1;D1) ⊗ Z(X̄2;D2) → Z(X̄1×kX̄2;D1×kX2∪X1×kD2),
which is an isomorphism. This defines the external product

�c
X1,X2

: Zc
X1

⊗ Zc
X2

→ Zc
X1×kX2

,

which is an isomorphism. Taking the pull-back by the diagonal defines the cup prod-
uct ∪X : Zc

X ⊗Zc
X → Zc

X , giving the compactly supported cohomology H∗c (X,Z(∗))
a natural ring structure (without unit, in general).

Dualizing the external products gives external products for Borel-Moore motive
and for Borel-Moore homology. Cap products are defined as in §2.2.5 by identifying
HB.M.p′ (X,Z(q′)) with HomDM(k)(Zc

X(q′)[p′], 1) and using the composition

HomDM(k)(1,Zc
X(q)[p])⊗HomDM(k)(Zc

X(q′)[p′], 1)

→ HomDM(k)(Zc
X(q′)[p′],Zc

X(q)[p])
∼= HomDM(k)(Zc

X(q′ − q)[p′ − p], 1).
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3.3.7. Open push-forward. Let jU :U → X be an open subscheme, and let j :X → X̄
be a compactification, giving us the compactification j ◦ jU :U → X̄. The natural
map ZX̄,D(j◦jU ) → ZX̄,D(j) induced by the commutative diagram

D(j) ��

��

X̄

D(j ◦ jU ) �� X̄

defines the map jU ! : Zc
U → Zc

X . These push-forward maps are evidently functorial
and extend the push-forward maps defined in §2.2.5 (cf. the proof of Lemma 3.3.5).

Dualizing gives the functorial pull-back maps j∗U : ZB.M.X → ZB.M.U .

3.3.8. Let j :X → X̄ be a compactification. The canonical map j∗ : ZX̄,D(j) → ZX

defines the natural map ιX : Zc
X → ZX . The maps ιX and their duals define the

natural transformations ι : Zc → Z, ιD : Zh → ZB.M. of the functors

Zc,Z : (Schfink )op → Db
mot(Smk),

Zh,ZB.M. : (Schfink )op → Db
mot(Smk).

It is easy to see that ι and ιD are compatible with the respective products.
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CHAPTER V

Realization of the Motivic Category

In this chapter, we describe a mapping property satisfied by the category
DM(V). The main theorem of this chapter, Theorem 1.3.1, gives a criterion for a
cohomology theory defined by a complex of sheaves F on a Grothendieck site to
define the “F -realization” of DM(V). One should view this more as a prototype
than a final result; many interesting cohomology theories have been defined in a
somewhat more general setting than the one covered by our result, but it seems
difficult to give an all-encompassing result covering all the known cases. We will
consider various important examples of cohomology theories in the Section 2, where
we give the realizations corresponding to singular cohomology, étale cohomology,
Hodge (Deligne) cohomology, and Jannsen’s motivic cohomology of mixed absolute
Hodge complexes. Some of these theories do not quite satisfy the criterion we give
in Theorem 1.3.1, but minor modifications allow the construction to go through.

1. Realization for geometric cohomology

1.1. Geometric cohomology theories

We give axioms for a cohomology theory which suffice to give a realization functor
from DM.

1.1.1. Let C be a full subcategory of SchS , closed under finite fiber products,
and taking open subsets. Following Bloch-Ogus [20] and Gillet [46], a graded
cohomology theory Γ(∗) on C is a graded complex of sheaves of R-modules Γ∗(∗)
on the big Zariski site CZar of C, together with a pairing in the derived category of
graded complexes of sheaves of R-modules on CZar, Γ∗(∗)⊗L Γ∗(∗) → Γ∗(∗), which
is associative with unit and graded-commutative, and satisfies certain additional
axioms. We give here a slightly different version of this notion.

1.1.2. Basic assumptions. We begin with a Grothendieck site (S,T) (see Part II,
Chapter IV, §1.1) which has a final object ∗ and initial object ∅, and admits finite
products over ∗ and finite coproducts under ∅.
(1) We assume we have a functor α :V → S which is cocontinuous, i.e., if U → X is
the inclusion of a Zariski open subset of X in V , then α(U) → α(X) is an open in
(S,T). We suppose that α(SpecS) = ∗, α(∅) = ∅, and that α sends finite products
over SpecS to finite products over ∗, and similarly for coproducts under ∅. In
particular, the operation of product over S (resp. product over ∗), together with
the canonical isomorphisms X ×S Y → Y ×S X and A×∗ B → B×∗A, defines the
structure of a symmetric monoidal category on V (resp. S), and makes α into a
symmetric monoidal functor.

We will usually omit mention of the functor α when the distinction between V
and S is clear from the context.

255
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(2) We assume that the topos of sheaves of sets on S, S̃, has a conservative family
of points (see Part II, Chapter IV, §1.3 and Definition 1.3.5).
(3) We fix a commutative ring R, and let A denote the abelian tensor category
ModR. We denote the category of sheaves on S with values in A by ShAS,T; for an
object X of S, we let ShAS,T(X) denote the category of A-valued sheaves on X , for
the induced topology.
(4) We say a sheaf F ∈ ShAS,T is flat if the functor −⊗F : ShAS,T → ShAS,T is exact.
A presheaf F on S is flat if for each U in S, the functor − ⊗ F(U) :A → A is
exact. We assume that the functor i∗i

∗ : ShAS,T → ShAS,T sends flat sheaves to flat
presheaves. By (Part II, Chapter IV, Proposition 2.4.3 and Remark 2.4.4) this
condition is satisfied if R is noetherian.

1.1.3. From [4, II 6.9], ShAS,T and ShAS,T(X) are abelian categories with enough
injectives.

We have the category of bounded below complexes of sheaves C+(ShAS,T), the
homotopy category K+(ShAS,T), and the derived category D+(ShAS,T).

For an object X of S, the categories

C+(ShAS,T(X)), K+(ShAS,T(X)), D+(ShAS,T(X))

are similarly defined.
We let pX :X → S denote the structure morphism.

1.1.4. For X in V and W a closed subset of X , we have the functors

pX∗ : ShAS,T(X) → ShAS,T(∗)
pWX∗ : ShAS,T(X) → ShAS,T(∗)

where pWX∗ is the functor “sections with support in W”. This gives the derived
functors

RpX∗ :D+(ShAS,T(X)) → D+(ShAS,T(∗))
RpWX∗ :D+(ShAS,T(X)) → D+(ShAS,T(∗))

and the natural transformation

RiW∗ :RpWX∗ → RpX∗.(1.1.4.1)

We have the subgroup Zq
W (X/S) of Zq(X/S) consisting of cycles with support in

W .

1.1.5. If B is a tensor category, and F is in ShBS,T, we recall from (Part II, Chap-
ter IV, §2.3.3) the notion of a (associative, commutative) multiplication

µ : p∗1F ⊗ p∗2F → F ◦ ×,
i.e., a collection of natural maps of sheaves for X and Y in S,

µX,Y : p∗1(F|X)⊗ p∗2(F|Y ) → F|X×Y .

If F = ⊕qF(q) is a graded object in ShBS,T, a multiplication µ is said to be graded
if µ restricts to natural transformations µp,q : p∗1F(p)⊗ p∗2F(q) → F(p + q) ◦ ×.

1.1.6. Definition. Let F = ⊕∞q=0F(q) ∈ C+(ShAS,T) be a graded complex of flat
sheaves, with an associative, commutative, graded multiplication

µ : p∗1F ⊗ p∗2F → F ◦ ×(1.1.6.1)
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We say that F defines a geometric cohomology theory on V if the F has the following
properties:

(i) Homotopy. Let p :X → Y be the inclusion of a closed codimension one
subscheme. Let T ⊂ Y be a reduced closed subscheme, and let W = p−1(T ).
Suppose that the inclusion p :X → Y is a map in V . Suppose further that
T ∼= A1W , and that, via this isomorphism, p :W → T is the inclusion of
W × 0 into A1W . Then the map p∗ :RpTY ∗FY → RpWX∗FX is an isomorphism
in D+(ShAS,T(∗)).

(ii) Cycle classes. Let X be in V , and W ⊂ X a closed subset such that W is the
support of an effective cycle in Zq(X/S). Then there is a homomorphism

clqX,W :Zq
W (X/S) → HomD+(ShA

S,T
(∗))(1̃, Rp

W
X∗FX(q)[2q]).

Here 1̃ is the constant sheaf on ∗ = α(S) with value the unit 1 ∈ A.
The maps clqX,W are functorial in the following sense:

(a) If f :Y → X is a map in V , and if f−1(W ) is contained in the support
W ′ of some effective cycle in Zq(Y/S), then the diagram

Zq
W (X/S) ��

clqX,W

��

f∗

HomD+(ShA
S,T(∗))(1̃, Rp

W
X∗FX(q)[2q])

��

f∗

Zq
W ′ (Y/S) ��

clq
Y,W ′

HomD+(ShA
S,T(∗))(1̃, Rp

W ′

Y ∗FY (q)[2q])

commutes (by our assumption on W and f , the cycle f∗(Z) is defined
for all Z ∈ Zq

W (X/S)).
(b) If T ⊂ Y is the support of an effective cycle in Zq′(Y/S), then

clqX,W (Z) � clq
′

Y,T (Z ′) = clq+q
′

X×SY,W×ST
(Z ×/S Z ′)

for all Z ∈ Zq
W (X), Z ′ ∈ Zq′

T (Y ). Here � is the external product
induced by µ.

(iii) Semi-purity. Let X be in V , and W ⊂ X a closed subset which is the
support of an effective cycle in Zq(X/S). Then

HomD+(ShA
S,T(∗))(1̃, Rp

W
X∗FX(q)[2q − p]) = 0

for p > 0.
(iv) Künneth isomorphism. For all X , Y in V , the external products

�q1,q2
F (X,Y ) :RpX∗F(q1)⊗L RpY ∗FY (q2) → RpX×SY ∗FX×SY (q1 + q2)

induced by the product (1.1.6.1) are isomorphisms in D+(ShAS,T(∗)).
(v) Gysin isomorphism. Let p :P → X be a smooth morphism in V of relative

dimension d, with section s :X → P , giving the map cldP,s(X)(|s(X)|) : 1̃ →
Rp

s(X)
P∗ FP (d)[2d]. Then the composition

RpX∗FX(q)
p∗

−→ RpP∗FP (q)
(−)∪clds(X),P (|s(X)|)−−−−−−−−−−−−−→ Rp

s(X)
P∗ FP (q + d)[2d]

is an isomorphism in D+(ShAS,T(∗)).
(vi) Unit. The cycle class map cl0(|S|) : 1̃ → FS(0) associated to the fundamental

class on S is an isomorphism in D+(ShAS,T(∗)).
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1.1.7. Remark. Suppose we have a twisted duality theory Γ(∗) on V , in the sense
of [20] or [46]. Then, for p :X → Y the inclusion of a closed codimension d sub-
scheme, with X and Y smooth over S, we have the Poincaré duality isomorphism,
Hp(X,Γ(q)) → Hp+2d

X (Y,Γ(q + d)). This implies part (iv) above as a special case,
and reduces part (i) to the usual form of the homotopy axiom:
(i)′ For X in V , the map p∗ :RpX∗FX → RpA1

X∗FA1
X

is an isomorphism, where
p : A1X → X is the projection.

If the base is a perfect field k, the semi-purity condition (iii) reduces to the
condition Hp(X,Γ(0)) = 0 for p < 0, and (ii) is implied by requiring H0(X,Γ(0))
to be the free H0(S,Γ(0))-module on the fundamental classes of the connected
components of X , together with the projection formula. In particular, for S =
Spec k, k a perfect field, a twisted duality theory Γ(∗) gives rise to a geometric
cohomology theory if Γ(∗) (with its product) is given as Γ(∗) = Rβ∗(F(∗)), where
β :VT → VZar is a map of a Grothendieck site (V ,T) with enough points to the
Zariski site on V , and F(∗) is a graded complex of flat sheaves on V for the topology
T with an associative and commutative product.

1.2. Cohomology and cohomology with support

We show how to define canonical cochain complexes for cohomology and for “co-
homology with support in codimension q”.

1.2.1. Let (X, f, q) be in L(V)×Z, and let (X, f)(q) denote the set of closed subsets
W ⊂ X such that W is the support of an effective cycle in Zq(X)f .

Recall the symmetric monoidal category L(V) (Chapter I, Definition 1.1.2). We
have the faithful functor

i :L(V)× Z → V
i(X, f, q) = X.

(1.2.1.1)

Via i we identify HomL(V)×Z((X, f, q), (Y, f ′, q)) with a subset of HomV(Y,X); there
are no morphisms from (X, f, q) to (Y, f ′, q′) if q �= q′.

1.2.2. Lemma. (i) Let g : (Y, f ′) → (X, f) be a map in L(V). Then for each W in
(X, f)(q), g−1(W ) is in (Y, f ′)(q).
(ii) For W ∈ (X, f)(q), W ′ ∈ (X ′, f ′)(q

′), the subset W ×S W ′ of X ×S X ′ is in

(X ×S X ′, f × f ′)(q+q
′).

Proof. (i) Suppose W is the support of an effective cycle Z ∈ Zq(X)f . By
Chapter I, Lemma 1.2.2, g∗(Z) is defined and is in Zq(Y )f ′ . Since Z is effective,
and the map g is a map of smooth S-schemes, it follows that g∗(Z) is effective, and
g−1(W ) is the support of g∗(Z), hence g−1(W ) is in (Y, f ′)(q).

For (ii), write f and f ′ as f :Y → X and f ′ :Y ′ → X ′. Then by assumption,
codimY (f−1(W )) ≥ q and codimY ′(f ′−1(W ′)) ≥ q′, hence

codimY×SY ′(f × f ′)−1(W ×S W ′)) ≥ q + q′,

i.e., W ×S W ′ is in (X ×S X ′, f × f ′)(q+q
′).

1.2.3. Let B be the category C+(A × Z), i.e., the category of bounded below,
graded complexes in A; we will refer to the grading coming from the factor Z as the
Adams degree. The tensor structure on A induces the structure of a tensor category
on B. Let ShBS,T(∗)fl denote the full subcategory of ShBS,T(∗) with objects the flat
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sheaves. It follows from §1.1.2(2) and (Part II, Chapter IV, Lemma 2.4.2) that F is
flat if and only if Fp is a flat R-module for all points p of S̃; since (F⊗G)p ∼= Fp⊗Gp
(Part II, Chapter IV, Lemma 2.4.1), ShBS,T(∗)fl is a tensor subcategory of ShBS,T(∗).

We recall from (Part II, Chapter IV, §2.2 and (IV.2.2.1.1)) the construction
of the cosimplicial Godement resolution of F as the augmented cosimplicial object
F ι−→ GBF , and the associated augmented cochain complex (loc. cit. (IV.2.2.1.2))
F ι−→ ccGBF .

We now define the functors

p∗GF :L(V)op × Z → c.s.ShBS,T(∗)fl,(1.2.3.1)

p
(∗)
∗ GF :L(V)op × Z → c.s.ShBS,T(∗)fl,(1.2.3.2)

and natural transformation

i
(∗)
∗ G : p(∗)∗ GF → p∗GF .(1.2.3.3)

Here “c.s.” is the category of cosimplicial objects.
To define the functor (1.2.3.1), we start with the functor

p∗GFV :Vop × Z → c.s.ShBS,T(∗)fl
gotten by sending X in V to pX∗GBF(q)(X), concentrated in Adams degree q, and
similarly for morphisms; it follows from §1.1.2(2) and (4) that pX∗GBF(q)(X) is in
fact a flat sheaf on S in each degree.

The projection on the first and last factors defines the functor p13 :L(V)op×Z →
Vop × Z; we then define p∗GF := p∗GFV ◦ p13.

For the functor (1.2.3.2), let (X, f, q) be in L(V)op×Z, let W be in (X, f, q)(q),
and define

pW∗ GF := ker[p∗GF(j∗) : p∗GF(X, f, q) → p∗GF(X \W, j∗f, q)],

where j :X\W → X is the inclusion; by (Part II, Chapter IV, Lemma 2.2.3) pW∗ GF
is also flat. We then set

p
(∗)
∗ GF(X, f, q) := lim→

W∈(X,f,q)(q)

pW∗ GF ,

which is flat by §1.1.2(2), since the functor i∗ preserves inductive limits, and an
inductive limit of flat R-modules is flat.

By Lemma 1.2.2, the subcosimplicial object p(∗)∗ GF(X, f, q) of p∗GF(X, f, q) is
functorial with respect to the morphisms in L(V)op×Z, giving the functor (1.2.3.2).
The inclusions p

(∗)
∗ GF(X, f, q) ⊂ p∗GF(X, f, q) define the natural transformation

(1.2.3.3).
Taking the total complex of the cochain complex associated to the cosimplicial

object defines the functors

F̌ :L(V)op × Z → C+(ShBS,T(∗)fl)
F̌ := Tot(cc(p∗G∗F)),

(1.2.3.4)
F̌ (∗) :L(V)op × Z → C+(ShBS,T(∗)fl)

F̌ (∗) := Tot(cc(p(∗)∗ G∗F)),
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and natural transformation
ι̌∗ : F̌ (∗) → F̌

ι̌∗ := Tot(cc(i(∗)∗ G)).
(1.2.3.5)

Since F̌(X, f, q) only depends on (X, q), we often write F̌(X, q) for F̌(X, f, q).
We define Rp

(q)
X∗F(X)(q)f as the inductive limit:

Rp
(q)
X∗F(X)(q)f := lim→

W∈(X,f)(q)

RpWX∗F(X)(q)f .

Sending (X, f, q) to Rp
(q)
X∗FX(q)f or RpX∗FX(q) (concentrated in Adams degree q)

defines functors

Rp
(−)
∗ F :L(V)∗ → D+(ShBS,T(∗)),

Rp∗F :L(V)∗ → D+(ShBS,T(∗)).
The natural transformation (1.1.4.1) defines the natural transformation

Ri∗F :Rp(−)∗ F → Rp∗F .

1.2.4. Lemma. (i) For (X, f, q) ∈ L(V)∗, the complexes F̌ (∗)(X, f, q) and F̌(X, f, q)
are complexes of acyclic sheaves on S.
(ii) For G ∈ C+(ShBS,T(∗)), we let RG denote the image of G in D+(ShBS,T(∗)).
There are canonical isomorphisms of functors

RF̌ (−) → Rp
(−)
∗ F ,

RF̌ → Rp∗F .

In addition, the diagram

RF̌ (−) ��

��

Rι̌∗

Rp
(−)
∗ F

��

Ri∗

RF̌ �� Rp∗F
commutes.

Proof. This follows from Part II, Chapter IV, Lemma 2.2.2, Lemma 2.2.3 and
Remark 2.2.4.

1.3. The construction of the realization functor

We now give the construction of the realization functor

�F :DM(V) → D+(ShBS,T(∗))
associated to a geometric cohomology theory F on V . Except for one point, the
construction would be an essentially straightforward step-by-step extension of the
functor

F̌ :Vop × Z → C+(ShBS,T(∗)fl)
(X, q) �→ F̌(X, f, q),

to the DG tensor category Amot(V), and from there, a direct extension to the cate-
gory of complexes Cb

mot(V), the homotopy category Kb
mot(V), and the localization

Db
mot(V). One then applies (Part II, Chapter II, Corollary 2.4.10), to give the
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extension to DM(V). The problem is that in general one cannot define the exter-
nal product on the complexes F̌(X, f, q) to be associative and graded-commutative
(on the level of complexes), but only graded-commutative up to homotopy (al-
though still associative). We must then replace the DG category Amot(V) with an
up-to-homotopy commutative model Ash

mot(V), and use (Part II, Chapter II, The-
orem 2.2.2), to get back to the homotopy category Kb

mot(V). The extension to
DM(V) then proceeds as outlined above. We now give the details of this construc-
tion.

1.3.1. Theorem. Let F = ⊕∞q=0F(q) ∈ C+(ShBS,T) be a graded complex of flat
sheaves on the site (S,T), with values in A := ModR, having an associative,
graded-commutative product (1.1.6.1). Suppose F defines a geometric cohomology
theory on V (see Definition 1.1.6). Let A be a commutative ring, flat over Z, and
suppose R is an A-algebra. Then the functor

F̌ :Vop × Z → C+(ShBS,T(∗))
(X, q) �→ F̌(X, q)

has a canonical extension to an exact functor

�F :DM(V)A → D+(ShBS,T(∗)).
The functor �F is natural in the geometric cohomology theory F , and is natural,
up to canonical isomorphism, in the category V . In addition, there is a full tensor
triangulated subcategory DMsh(V)A of DM(V)A, containing the motives AX(n)
for all X in V , and with essential image all of DM(V)A, such that the restriction
of �F to DMsh(V)A is an exact, pseudo-tensor functor (Part II, Chapter I, §1.3.7).
The subcategory DMsh(V)A is independent of F , and is natural in V .

The proof proceeds in a series of steps:
Step 1. The extension to A1(V):

1.3.2. Using the additive structure of C+(ShBS,T(∗)fl), and the fact that sheaves
transform disjoint unions to direct sums, the functors (1.2.3.4) and natural trans-
formation (1.2.3.5) canonically extend to functors

F̌∗1 :A1(V) → C+(ShBS,T(∗)fl),
F̌1 :A1(V) → C+(ShBS,T(∗)fl),

(1.3.2.1)

with F̌∗1 (ZX(a)f ) = F̌ (∗)(X, a, f) and F̌1(ZX(a)f ) = F̌(X, a, f), and natural trans-
formation

ǐ∗F1 : F̌∗1 → F̌1.(1.3.2.2)

(see Chapter I, Definition 1.4.1).
Step 2. The category Ash

2 (V), and the extension to Ash

2 (V):

1.3.3. Ash

2 (V). We now apply the constructions of (Part II, Chapter III, §2.1). Us-
ing the notation of (Part II, Chapter I, §2.4), and referring to Chapter I, Defi-
nition 1.4.4, the category A2(V) is the universal commutative external product,
A1(V)⊗,c, on A1(V). Using the construction of (Part II, Chapter III, §2.1.5), and
applying (Part II, Chapter III, Theorem 2.1.7), we have the DG tensor category
A1(V)⊗,sh, and the DG tensor functor c :A1(V)⊗,sh → A1(V)⊗,c, which is the iden-
tity on objects, surjective on morphisms and a homotopy equivalence. We have as
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well the additive functor ish :A1(V) → A1(V)⊗,sh with c ◦ ish the canonical functor
(Part II, (I.2.4.3.1)) ic :A1(V) → A1(V)⊗,c. We set Ash

2 (V) := A1(V)⊗,sh.

1.3.4. Multiplicative structure. We extend the functors (1.2.3.1) and (1.2.3.2) and
natural transformation (1.2.3.3) to functors

p∗GF :L(V)∗ → c.s.ShBS,T(∗)fl,

p
(∗)
∗ GF :L(V)∗ → c.s.ShBS,T(∗)fl,

and natural transformation

i
(∗)
∗ G : p(∗)∗ GF → p∗GF ,

using the additivity of F with respect to disjoint union.
By (Part II, Chapter IV, Proposition 2.3.7), the graded product µ : p∗1F⊗p∗2F →

F ◦× induces the natural associative, commutative product Gµ : p∗1GF ⊗ p∗2GF →
GF ◦ ×. This product induces the natural transformation

p∗Gµ : p∗GF ⊗ p∗GF → p∗GF ◦ ×,(1.3.4.1)

where × is the symmetric monoidal product on L(V)∗ (see Part II, Chapter III,
§2.2.2). It follows from Lemma 1.2.2(ii) that the natural transformation (1.3.4.1)
maps p

(∗)
∗ GF ⊗ p

(∗)
∗ GF into p

(∗)
∗ GF ◦ ×, giving the natural transformation

p
(∗)
∗ Gµ : p(∗)∗ GF ⊗ p

(∗)
∗ GF → p

(∗)
∗ GF ◦ ×,

compatible with (1.3.4.1) via the natural transformation (1.2.3.3). As these prod-
ucts are associative and commutative, they define compatible multiplications on
the functors p∗GF and p

(∗)
∗ GF , in the sense of (Part II, Chapter III, §2.2.2).

We have the additive category ZL(V)∗ freely generated by L(V)∗. Using the
results of (Part II, Chapter III, Theorem 2.2.4), and applying the total complex
functor Tot, we have the functors of DG tensor categories without unit

F̌∗ : (ZL(V)∗)⊗,sh → C+(ShBS,T(∗)fl),
F̌ : (ZL(V)∗)⊗,sh → C+(ShBS,T(∗)fl)

(1.3.4.2)

extending the functors (1.3.2.1). The natural transformation (1.3.2.2) similarly
extends to the natural transformation

F̌∗ → F̌ .(1.3.4.3)

It follows directly from the definition (Part II, Chapter III, §2.1.5) of the functor
(−)⊗,sh that Ash

2 (V) := (A1(V))⊗,sh is isomorphic to the DG tensor category gotten
by imposing the relations of Chapter I, Definition 1.4.1 on (ZL(V)∗)⊗,sh. Thus, the
functors (1.3.4.2) and the natural transformation (1.3.4.3) extend to the functors
of DG tensor categories without unit

F̌∗2 :Ash

2 (V) → C+(ShBS,T(∗)fl),
F̌2 :Ash

2 (V) → C+(ShBS,T(∗)fl),
(1.3.4.4)

and natural transformation

F̌∗2 → F̌2.(1.3.4.5)

Before proceeding further with our construction, we note the following result;
the proof is elementary and is left to the reader:
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1.3.5. Lemma. Let F :A → B be a DG tensor functor of DG tensor categories
without unit. Suppose that

(i) F is an isomorphism on objects,
(ii) F is surjective on morphisms,
(iii) F is a homotopy equivalence.

Let f :F (X) → F (Y ) be a map of degree a in B such that df = 0. Then there is
a map s :X → Y of degree a in A such that F (s) = f and ds = 0. In addition,
let A[hs] be the DG tensor category without unit gotten by adjoining a morphism
hs :X → Y of degree a− 1 with dhs = s, let B[hf ] the DG tensor category without
unit defined by adjoining a morphism hf :F (X) → F (Y ) of degree a − 1 with
dhf = f , and let F ′ :A[hs] → B[hf ] be the extension of F with F ′(hs) = hf . Then
F ′ satisfies (i) and (ii).

Step 3. The category Ash

mot(V) and the extension to Amot(V):

1.3.6. The category Ash

mot(V). We now form a sequence of DG tensor categories
without unit

Ash

2 (V)→Ash

3 (V)→Ash

4 (V)→ Ash

5 (V)

∪

Ash

mot(V)

analogous to the sequence of DG tensor categories formed in Chapter I, §1.4.
We recall the homotopy one-point category E constructed in (Part II, Chap-

ter II, §3.1). E is a DG tensor category without unit, with the generating object e.
E has no morphisms of positive degree, no morphisms from e⊗m to e⊗n if n �= m,
and

Hq(Hom(e⊗n, e⊗n)∗) =

{
Z · id for q=0,
0 otherwise.

(1.3.6.1)

We have the coproduct of DG tensor categories without unit A2(V)[E]; the DG
tensor category A3(V) (Chapter I, Definition 1.4.6) is formed from the DG tensor
category A2(V)[E] by adjoining morphisms [Z] : e → ZX(n)f of degree 2n for each
non-zero Z ∈ Zn(X)f . We form the DG tensor categoryAsh

3 (V) from the coproduct
Ash

2 (V)[E] by adjoining morphisms [Z]sh : e → ZX(n)f of degree 2n, with d[Z]sh =
0 for each non-zero Z ∈ Zn(X)f . We extend the functor c[idE] :Ash

2 (V)[E] →
A2(V)[E] to

c3 :Ash

3 (V) → A3(V)(1.3.6.2)

by setting c3([Z]sh) = [Z]. By (Part II, Chapter II, Proposition 2.2.4), the functor
(1.3.6.2) is a homotopy equivalence.

For each pair of objects Γ, ∆ of A1(V), we have the external product �Γ,∆ : Γ⊗
∆ → Γ×∆ in A2(V), and the lifting of �Γ,∆ to the external product �sh

Γ,∆ : Γ⊗∆ →
Γ × ∆ in Ash

2 (V) (see (Part II, (III.2.1.6.1) and Chapter III, Theorem 2.1.7). We
note that d�sh

Γ,∆ = 0.
The DG tensor categoryA4(V) is formed from graded tensor categoryA3(V) by

selecting certain morphisms f in A3(V), and adjoining morphisms hf with dhf = f
(see Chapter I, Definition 1.4.8). The morphisms f are all constructed from the
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morphisms [Z], �∗∗ and ⊗, together with morphisms of the category A1(V). Given
such an expression for a morphism f , we let fsh be the morphism in Ash

3 (V) gotten
by replacing each occurrence of the morphism [Z] with the morphism [Z]sh, and
replacing �∗∗ with �sh

∗∗. Since d[Z]sh = 0 and d�sh
∗∗ = 0, we have dfsh = 0 as

well. We then adjoin, for each such f , a morphism hsh

f to Ash

3 (V) with dhsh

f = fsh,
forming the DG tensor category without unit Ash

4 (V).
We extend (1.3.6.2) to c4 :Ash

4 (V) → A4(V) by setting c4(h
sh

f ) = hf . By (Part
II, Chapter II, Proposition 2.2.4), c4 is a homotopy equivalence; by Lemma 1.3.5,
c4 is the identity on objects and surjective on morphisms.

The category A5(V) is formed from A4(V) by forming a succession of categories

A5(V)(0) = A4(V) ⊂ . . . ⊂ A5(V)(r,k−1) ⊂ A5(V)(r,k) ⊂ . . .

and letting A5(V) be the inductive limit. The category A5(V)(r,k) is formed from
A5(V)(r,k−1) by adjoining morphisms hf : e⊗k → ZX(n)f of degree 2n− r− 1, with
dhf = f for each non-zero morphism

f : e⊗k → ZX(n)f(1.3.6.3)

of degree r in A5(V)(r−1) with df = 0. This is done successively for k = 1, 2, . . . ,
which gives us the category A5(V)(r+1,0); we then take the inductive limit of the
categories A5(V)(r,0) to form A5(V).

Using Lemma 1.3.5 and (Part II, Chapter II, Proposition 2.2.4), we may induc-
tively construct the sequence of DG tensor categories

Ash

5 (V)(0) = Ash

4 (V) ⊂ . . . ⊂ Ash

5 (V)(r,k−1) ⊂ Ash

5 (V)(r,k) ⊂ . . .

and DG tensor functors

c
(r)
5 :Ash

5 (V)(r,k) → A5(V)(r,k)(1.3.6.4)

which are homotopy equivalences, the identity on objects and surjective on mor-
phisms as follows: Assuming we have constructed the sequence up to (r, k −
1), we may lift each morphism (1.3.6.3) to a morphism fsh : e⊗k → ZX(n)f in
Ash

5 (V)(r,k−1) with dfsh = 0. We may then adjoin morphisms hsh

f : e⊗k → ZX(n)f
with dhsh

f = fsh, forming the DG tensor category Ash

5 (V)(r,k). The extension of

c
(r,k−1)
5 to c

(r,k)
5 is defined by c

(r,k)
5 (hsh

f ) = hf .

Taking the inductive limit over (r, k) of (1.3.6.4) gives the DG tensor functor

c5 :Ash

5 (V) → A5(V),(1.3.6.5)

which is a homotopy equivalence.
Finally, the category Amot(V) is defined as the full DG tensor subcategory

of A5(V) generated by objects of the form ZX(n)f or e⊗a ⊗ ZX(n)f , a ≥ 1 (see
Chapter I, Definition 1.4.10). We let Ash

mot(V) be the full DG tensor subcategory
of Ash

5 (V) generated by objects of the form ZX(n)f or e⊗a ⊗ ZX(n)f , a ≥ 1.
Since (1.3.6.5) is a homotopy equivalence, the identity on objects and surjective on
morphisms, the same is true for the restriction cmot :Ash

mot(V) → Amot(V).

1.3.7. The extension to Ash

mot(V). It is now a straightforward matter to extend the
functors (1.3.4.4) and the natural transformation (1.3.4.5) to Ash

mot(V).
We consider A as a DG tensor category with all morphisms in degree zero,

and all differentials zero. By (1.3.6.1) and the universal mapping property of the
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category E (see Part II, Chapter II, Proposition 3.1.13), there is a unique functor
of DG tensor categories I : E → A with I(e) = R.

The sheaf 1̃⊗n is the constant sheaf on ∗ corresponding to R⊗n ∼= R. Let

Ĩ : E → ShBS,T(∗)fl
Ĩ(e⊗n) = 1̃⊗n

(1.3.7.1)

be the sheafification of the functor I (where the objects 1̃⊗n are in Adams degree
0).

Taking the coproduct of Ĩ with the functors (1.3.4.4) gives the DG tensor
functors

F̌∗2 [Ĩ] :Ash

2 (V)[E] → C+(ShBS,T(∗)fl),
F̌2[Ĩ] :Ash

2 (V)[E] → C+(ShBS,T(∗)fl).
(1.3.7.2)

The natural transformation (1.3.4.5) extends similarly to the natural transformation

F̌∗2 [Ĩ] → F̌2[Ĩ].(1.3.7.3)

It follows from Lemma 1.2.4 that we have the isomorphism

(1.3.7.4) HomK+(ShB
S,T(∗)fl)(1̃, F̌

n
X(n)f )

∼= lim→
W∈(X,f)(q)

HomD+(ShB
S,T

(∗)fl)(1̃, Rp
W
X∗FX(n)).

For each non-zero Z in Zn(X)f , define F̌∗3 ([Z]sh) : 1̃ → F̌n
X(n)f [2n] to be a

choice of a map in C+(ShBS,T(∗)fl) representing the map

clqX,W (Z) : 1̃ → RpWX∗FX(n)[2n]

in D+(ShBS,T(∗)fl) given by Definition 1.1.6(ii). We define F̌3([Z]sh) : 1̃ → F̌X(n)f
to be the composition of F̌∗3 ([Z]sh) with the natural map F̌∗X(n)f → F̌X(n)f . This
gives the extension of the functors (1.3.7.2) to functors

F̌∗3 :Ash

3 (V) → C+(ShBS,T(∗)fl),
F̌3 :Ash

3 (V) → C+(ShBS,T(∗)fl),
(1.3.7.5)

and the natural transformation (1.3.7.3) extends to the natural transformation

F̌∗3 → F̌3.(1.3.7.6)

The extension of (1.3.7.5) to the category Ash

4 (V) is accomplished using the
functoriality of the cycle classes in Definition 1.1.6(ii). For example, let f : (Y, g) →
(X, f) be a morphism in L(V), giving the map f∗ : ZX(n)f → ZY (n)g in A1(V).
Take Z ∈ Zn(X)f . Then we have the map hsh

X,Y,[Z],f∗ : e → ZY (n)g in Ash

4 (V) with

dhsh

X,Y,[Z],f∗ = f∗ ◦ [Z]sh − [f∗(Z)]sh. The functoriality of the cycle classes gives the
relation F̌∗3 (f∗ ◦ [Z]sh) − F̌∗3 ([f∗(Z)]) = dβ for some map β : 1̃ → F̌∗3 (ZY (n)g) of
degree 2n−1. We then define F̌∗4 (hsh

X,Y,[Z],f∗) = β. The definition of F̌∗4 for the other

types of maps adjoined to form Ash

4 (V) is similar; we let F̌4 be the composition of
F̌∗4 with the natural transformation (1.3.7.6).



266 V. REALIZATION OF THE MOTIVIC CATEGORY

The extension to Ash

5 (V) is accomplished in a similar manner, relying on the
semi-purity hypothesis Definition 1.1.6(iii) for the cohomology theory F . Restrict-
ing to the subcategory Ash

mot(V) and extending scalars to A gives the DG tensor
functor

F̌sh

mot :A
sh

mot(V)⊗A→ C+(ShBS,T(∗)fl).(1.3.7.7)

Step 4. The extension to DM(V):

1.3.8. Applying the functor Cb (Part II, Chapter II, Definition 1.2.7) to the DG
tensor functor (1.3.7.7) gives the functor

Cb(F̌sh

mot) :Cb(Ash

mot(V)⊗A) → Cb(C+(ShBS,T(∗)fl));

composing with the equivalence (see Part II, Chapter II, §1.2.9)

Tot:Cb(C+(ShBS,T(∗)fl)) → C+(ShBS,T(∗)fl)
gives the DG tensor functor

C̃b(F̌sh

mot) :Cb(Ash

mot(V)⊗A) → C+(ShBS,T(∗)fl).
Passing to the homotopy category gives the exact tensor functor

K̃b(F̌sh

mot) :Kb(Ash

mot(V)⊗A) → K+(ShBS,T(∗)fl).(1.3.8.1)

By (Part II, Chapter II, Theorem 2.2.2), the functor

Kb(cmot) :Kb(Ash

mot(V)⊗A) → Kb
mot(V)A := Kb(Amot(V)⊗ A)(1.3.8.2)

is an equivalence of triangulated categories; the functor (1.3.8.1) thus gives the
exact functor

Kb(F̌mot) :Kb
mot(V)A → K+(ShBS,T(∗)fl).(1.3.8.3)

In addition, if we letKb
motsh(V)A be the full image ofKb(cmot), thenKb(cmot) gives

a pseudo-tensor equivalence

Kb(cmot) :Kb(Ash

mot(V)⊗A) → Kb
motsh(V)A

of A-triangulated tensor categories, and the essential image of Kb
motsh

(V)A in
Kb
mot(V)A is all of Kb

mot(V)A.
Let X be in V , and suppose X is a union of two open subschemes in V : X = U∪

V . Let j : F̌U (n)⊕F̌V (n) → F̌U∩V (n) be the difference of the two restriction maps.
Since the image of F̌X(n) in the derived category is isomorphic to RpX∗FX(n),
the natural map F̌X(n) → cone(j)[−1] is a quasi-isomorphism. This, together with
Definition 1.1.6(i), (iii), (vi), implies that the composition of (1.3.8.3) with the
canonical map K+(ShBS,T(∗)fl) → D+(ShBS,T(∗)). factors through the localization
Db
mot(V)A of Kb

mot(V)A (Chapter I, §2.1.5), giving the exact functor

Db(F̌mot) :Db
mot(V)A → D+(ShBS,T(∗)),(1.3.8.4)

and the restriction to the full image Db
motsh

(V)A of Kb
motsh

(V)A is an exact pseudo-
tensor functor.

Finally, by (Part II, Chapter II, Theorem 2.4.8.2), the functor (1.3.8.4) extends
canonically to DM(V)A, giving the desired realization functor

�F :DM(V)A → D+(ShBS,T(∗)).(1.3.8.5)
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Let DMsh(V)A be the full triangulated tensor subcategory of DM(V)A gotten
by forming the pseudo-abelian hull of Db

motsh
(V)A; it follows from the theorem

just mentioned that the restriction of �F to DMsh(V)A is an exact pseudo-tensor
functor.

This completes the construction of the realization functor. We now show that
the functor (1.3.8.5) is canonical. For this, we first note that the extension from
Ash

2 to Ash

mot is independent of the various choices of the maps in Step 3, up to a
homotopy of the resulting functors; this follows directly from the semi-purity hy-
pothesis Definition 1.1.6(iii), and the fact that the category Ash

mot is freely generated
from Ash

2 by the adjoined maps. The only other choice is the choice of the functor
giving the inverse to (1.3.8.2). We make one choice of such an inverse, independent
of F , which shows that �F is canonical. The choice of the inverse is unique up to
unique isomorphism, which verifies the remaining assertions of Theorem 1.3.1.

1.3.9. Remark. Applying �F to AX(q)[p] for X in V gives the realization map on
cohomology

�F :Hp(X,A(q)) → Hp
T

(α(X),F(q))

and similarly for cohomology with support. The realization functor �F sends the
Chern classes defined in Chapter III to the Chern classes defined in [46] for the
twisted duality theory defined by F .

2. Concrete realizations

We show how the theory of Section 1, with some modifications, gives the re-
alizations corresponding to singular cohomology, étale cohomology, and Hodge co-
homology. We also give some extensions of these constructions for more general
base schemes, as well as the “motivic” realizations to the category of compatible
realizations.

2.1. The Betti realizations

2.1.1. Points for the classical site. For a topological space T with point p ∈ T , we
have the fiber functor φp : ShT → Sets defined by

φp(F) = lim→
p∈U

F (U),

where the limit is over open neighborhoods U of p in T . This gives us the point
ip :Sets→ ShT of the topos ShT . The inclusion the category of open subsets of T
into Top defines the morphism of topoi iT : ShT → ShTop. Composing these two
gives the point ip,T :Sets → ShTop of ShTop . As the set of points {ip | p ∈ T }
forms a conservative family of points for the topos ShT , it follows from [3, Chapter
IV, Proposition 6.5(b)] that a set of points of the form ip,T forms a conservative
family of points for ShTop.

2.1.2. The C-Betti realizations. Take S = Spec C and V = SmC. We take the
cohomology theory defined on the full subcategory CW of Top, with objects the
topological spaces having the homotopy type of a CW complex, by the graded sheaf
Z(∗) = ⊕∞q=0(2πi)qZ. We let an:V → CW be the functor sending a C-scheme X to
the topological space Xan formed by the C-points X(C) with the classical topology.
The well known properties of singular cohomology show that (Z(∗), α) defines a
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geometric cohomology theory on SmC; we then apply Theorem 1.3.1 to give the
C-Betti realization functor

�BC
:DM(SmC) → D+(Ab).

More generally, for an arbitrary base scheme S, each C-valued point of S,
σ : Spec C → S, defines the realization functor

�BC,σ :DM(SmS) → D+(Ab)

by composing �BC
with σ∗ :DM(SmS) → DM(SmC).

Using the same method, we may form the Betti realization over a smooth base
scheme. Let B be a smooth C-scheme of finite type, with associated topological
space Ban. Let CW/Ban be the category of maps E → Ban in CW, with the topol-
ogy induced from CW. The conservative family of points for ShCW described in
§2.1.1 induces a conservative family of points for ShCW/Ban . Using the cohomology
theory on SmB induced by the graded sheaf Z(∗) = ⊕∞q=0(2πi)qZ and the functor
an:SmB → CWBan gives via Theorem 1.3.1 the B-Betti realization functor

�BB,C
:DM(SmB) → D+(ShAb

Ban
).

2.1.3. The R-Betti realizations. The R-Betti realization is defined by adding the
data of a “real Frobenius” to the C-Betti realization.

Take S = Spec R and V = SmR, the category of smooth, quasi-projective
R-schemes. We have the Grothendieck site Z/2−CW, where an object is a CW-
complex X together with a continuous involution F∞ :X → X .

We replace the functor an:V → CW with the functor anR :V → Z/2 − CW
by XanR

:= (Xan, F∞), where F∞ is the continuous involution induced by complex
conjugation¯⊗ idX : C⊗R X → C⊗R X .

As the forgetful functor ˜Z/2−CW→ C̃W is faithful, the conservative family
of points for CW gives a conservative family of points for Z/2−CW.

Using the same cohomology theory as for the C-Betti realization, we then apply
Theorem 1.3.1 to give the R-Betti realization functor

�BR
:DM(SmR) → D+(ModZ[Z/2]).

If B is a smooth R-scheme, we have the category Z/2 − CW/BanR
of maps

(E, σ) → BanR
in Z/2−CW/BanR

. This gives us the Grothendieck site of Z/2-CW
complexes over BanR

, and the realization functor

�BB,R
:DM(SmR) → D+(ShAb

BanR
).

As above, the restriction of these functors to the full triangulated subcategory
DMsh(SmB) are exact pseudo-tensor functors.

2.2. The étale realization

For simplicity, we assume that the base scheme S is smooth and essentially of finite
type over a ring R, where R is either an algebraically closed field, a global field, a
local field, a finite field, or a ring of integers in a global field or a local field.
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2.2.1. Points for the étale site. For each point s of S, fix an algebraic closure k(s)
of the residue field k(s) of s. If X → S is a quasi-projective S-scheme, a geometric
point of X is an equivalence class of maps over S, x : Spec k(s) → X , where x is
equivalent to x′ if x and x′ differ by an automorphism of Spec k(s) over X . We let
Xgeom denote the set of geometric points of X .

A pointed étale map f : (U, u) → (X,x) is an étale map f :U → X , with geo-
metric points u of U , x of X such that f(u) = x. We form the fiber functor
φx : Sh(X,ét) → Sets by

φx(F ) = lim→
(U,u)→(X,x)

F (U),

where the limit is over pointed étale maps (U, u) → (X,x). As in §2.1.1, this gives
the point ix :Sets→ Shét(X) the point ix,X :Sets→ ShS,ét of the topos of sheaves
on the big étale site over S, and a conservative family of points of ShS,ét.

2.2.2. The category of inverse systems. We sketch Ekedahl’s construction [41] of
the category of sheaves of modules over the inverse system

Z/l∗ := (Z/l← Z/l2 ← . . .← Z/ln ← . . . ).

Let X be in SmessS . Let ShZ/l∗

ét (X) be the category of inverse systems of sheaves
on X ,

F := (F0 ←− F1 ←− . . . )

which form a module over the inverse system of rings Z/l∗; maps being commutative
diagrams

F0

��

F1��

��

. . .��

G0 G1�� . . .��

of maps of sheaves of Z/l∗-modules.
Forming the sheaf projective limit of the projective system defines the functor

π∗ : ShZ/l∗

ét (X) → ShZl

ét (X), where ShZl

ét (X) is the category of sheaves of continuous
Zl-modules. We have the functor π∗ : ShZl

ét (X) → ShZ/l∗

ét (X) defined by

π∗(G) := G ⊗ Z/l∗ := (G ⊗ Z/l←− G ⊗ Z/l2 ←− . . . ).

The categories ShZ/l∗

ét (X) and ShZl

ét (X) are abelian categories with enough in-
jectives; the functors π∗ and π∗ extend to exact functors

Rπ∗ :D(ShZ/l∗

ét (X)) → D(ShZl

ét (X)),

Lπ∗ :D(ShZl

ét (X)) → D(ShZ/l∗

ét (X)).

For F in D(ShZ/l∗

ét (X)), define F̂ := Lπ∗(Rπ∗(F)); we have the canonical map
F̂ → F .

2.2.3. Definition [[41], Definition 2.1]. Let F be in D(ShZ/l∗

ét (X)). Call F a nor-
malized Z/l∗-complex if the map F̂ → F is a quasi-isomorphism.
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2.2.4. By [41, Proposition 2.2], F is normalized if and only if

Z/ln ⊗L
Z/ln+1 Fn+1 → Fn

is a quasi-isomorphism for all n. In particular, if the stalks of Fn are flat Z/ln-
modules, and the maps Fn+1 → Fn are all surjective, then F is normalized.

2.2.5. Example. The system of Tate sheaves

Zl,X(q) := (Z/l(q) ←− Z/l2(q) ←− . . . )

is a normalized Z/l∗-complex.

2.2.6. The full subcategory K∗ lim ShZl

ét (X) of K∗(ShZ/l∗

ét (X)) (∗ = +,−, b, ∅) with
objects the normalized Z/l∗-complexes is closed under cones. Let D∗ lim ShZl

ét (X)
be the localization of K∗(ShZ/l∗

ét (X)) with respect to quasi-isomorphisms.
In [41], a more general notion, that of a Z/l∗-complex, is defined, as well as a

thick subcategory containing the acyclic complexes, the negligible complexes. By
[41, Proposition 2.7] the inclusion functor from the homotopy category of normal-
ized Z/l∗-complexes to Z/l∗-complexes induces an equivalence fromD∗ lim ShZl

ét (X)
to the localization of the homotopy category of Z/l∗-complexes with respect to the
negligible complexes.

It is shown in [41] that the tensor product and internal Hom of complexes define
a tensor structure and internal Hom forD∗ lim ShZl

ét (X). This makesD∗ lim ShZl

ét (X)
a triangulated tensor category, with internal Hom’s, functorially in X .

A map f :X → Y in SmessS induces the functor f∗ : ShZ/l∗

ét (X) → ShZ/l∗

ét (Y ),
which extends to the exact functor Rf∗ :D+ lim ShZl

ét (X) → D+ lim ShZl

ét (Y ).
We have the isomorphism Γ(X,π∗(−)) ∼= Hom

Sh
Z/l∗
ét (X)

(Z/l∗,−); define the

continuous hypercohomology of an object F of D+ lim ShZl

ét (X) by

Hp
cont(X,F) := Hom

D+ lim ShZl

ét (X)(Zl,X ,F [p]).

The continuous hypercohomology with support in a closed subset iW :W → X is
defined similarly as

Hp
cont,W (X,F) := Hom

D+ lim ShZl

ét (X)(iW∗Zl,W ,F [p]).

The continuous cohomology of an F in ShZl

ét (X) which satisfies the conditions in
§2.2.4 is thus defined, in particular, we have Hp

cont(X,Zl,X(q)). It is easy to see
that the definition given above agrees with the continuous cohomology of Jannsen
[72].

The triangulated category D+ lim ShZl

S,ét, constructed in a similar manner by
localizing the homotopy category of normalized Z/l∗-complexes on the big étale site
over S with respect to quasi-isomorphisms, has the analogous formal properties.

2.2.7. Remark. The construction given in [41] is more general than what we have
presented here; in particular, one may replace the étale topology with another
Grothendieck topology, and the same construction goes through without change, as
long as one assumes that X has finite cohomological dimension in the new topology.
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2.2.8. The construction of the étale realization. Take a prime l which is invertible
on S, and let X be an S-scheme.

We have the objects Zl,X(q) defined in Example 2.2.5, sending X to Zl,X(q)
gives us the objects Zl(q) of D+limShZl

S,ét with value Zl,X(q) on X . The continuous
l-adic cohomology is then defined as the cohomology theory associated to the graded
object Zl,ét(∗) := ⊕∞q=0Zl(q) of D+limShZl

S,ét.
Although Theorem 1.3.1 does not directly apply to this situation, the same

proof, replacing the homotopy category of sheaves over S with the homotopy cate-
goryK+ lim ShZl

ét (S), yields the analogous result. We give a sketch of the necessary
changes.

The work of Jannsen [72] (see also [98]) verifies that Zl,ét(∗) satisfies the axioms
of a geometric cohomology theory, suitably interpreted, in case the base scheme S
is smooth over a field. If S is smooth over a number ring, or a ring of integers in a
global field, we need to use Thomason’s purity result [120] for Ql étale cohomology,
so we will only get a Ql-realization (see §2.2.11 below).

One calls an inverse system F flat if Fn has stalks which are flat Z/ln-modules,
for all n; call F strongly normalized if F is flat, and in addition, the maps Z/ln ⊗
Fn+1 → Fn are isomorphisms (i.e., Fn+1 → Fn is surjective for all n). The sheaves
Zl(q) are strongly normalized.

Call a strongly normalized sheaf F strongly acyclic if the sheaves Fn and
ker(Fn+1 → Fn) are acyclic for all n.

Using (Part II, Chapter IV, Lemma 2.1.5 and Lemma 2.2.2), we see that the
Godement resolution takes strongly normalized complexes to complexes of strongly
acyclic sheaves. In addition, if f :X → Y is a map in SmessS , then f∗GF is a complex
of strongly acyclic sheaves if F is strongly normalized. Similarly, the tensor product
of strongly normalized complexes is again strongly normalized.

The construction of the realization functor then goes through without change
until the middle of Step 3, where we have the isomorphism (1.3.7.4). We alter the
construction at this point as follows: Let F be a strongly acyclic sheaf on S. Then

Rqπ∗F =

0 for q > 0,
lim←
n

Fn for q = 0.

Since F is strongly acyclic, and the maps Fn+1 → Fn, are surjective, we have the
inverse system

H0(S,F0) ←− H0(S,F1) ←− . . .

with all maps begin surjective. Thus, lim
←
1H0(S,F∗) = 0, hence

Hp(S, π∗(F)) =

0 for p > 0,
lim←
n

H0(S,Fn) for p = 0.

This gives us

Hp
cont(S,F) =

0 for p �= 0,
lim←
n

H0(S, π∗F) for p = 0;
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as

Hom
K+limShZl

ét (S)
(Zl,S ,F [p]) =

0 for p �= 0,
lim←
n

H0(S, π∗F) for p = 0

as well, we have

Hom
K+limShZl

ét (S)
(Zl,S ,F [p]) = Hom

D+limShZl
ét (S)

(Zl,S ,F [p])

for all p. By devissage, we have

Hom
K+limShZl

ét (S)
(Zl,S ,F) = Hom

D+limShZl
ét (S)

(Zl,S ,F)(2.2.8.1)

for a complex of strongly acyclic sheaves F on S.
We then use the isomorphism (2.2.8.1) instead of (1.3.7.4), and the construction

of the realization functor goes through without further change.
This gives us

2.2.9. Theorem. Let S be the localization of a smooth scheme over a finite, local,
global, or algebraically closed field, with l invertible on S. Then sending (X, q) to
RpX∗Zét,X,l(q) extends canonically to the exact l-adic realization functor

�ét,l,S :DM(SmS) → D+limShZl

ét (S).

The restriction of �ét,l,S to DMsh(SmS) is an exact pseudo-tensor functor.

2.2.10. The mod-n realization. Suppose n is invertible on S. To form the mod-n
realization, first take the product of the l-adic realization functors for all l dividing
n. If Γ is an object of Cb

mot(V), define Γ ⊗ Z/n to be the object cone(Γ ×n−−→ Γ).
Let DM(V ; Z/n) be the full subcategory of DM(SmS) generated by the objects
Γ ⊗ Z/n. Restricting the product of the l-adic realizations to DM(SmS ; Z/n)
defines the mod n realization

�ét,Z/n :DM(SmS ; Z/n) → D+limShZl

ét (S).

Using the quasi-isomorphism

µ⊗qn → cone
(∏

l|n
Zl(q) ×n−−→

∏
l|n

Zl(q)
)
,

we may form an equivalent realization in the usual category of étale sheaves of
Z/n-modules

�ét,Z/n :DM(SmS ; Z/n) → D+(ShZ/n
ét (S)).

2.2.11. The Ql realization. We tensor the l-adic realization with Q, and use the
argument of (Part II, Chapter II, Theorem 2.4.8.2) to give the Ql realization

�ét,l :DM(SmS)Q → D+limShZl

ét (S)Q.

The restriction of the various étale realization functors to the full triangulated
subcategory DMsh(SmS) are exact pseudo-tensor functors. Using Thomason’s
purity theorem [120], we have the Ql realization for S essentially smooth over a
number ring, or the ring of integers in a number field, as well as for S essentially
smooth over an algebraically closed field, a number field, or a local field.
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2.3. The Hodge realizations

We first construct the Hodge realization over a point via a modification of Beilin-
son’s category of Hodge complexes.

2.3.1. Absolute Hodge complexes. Let HR denote the category of polarizable R-
mixed Hodge structures (R a noetherian subring of R). We begin by recalling
Beilinson’s construction of the category of absolute Hodge complexes. This consists
of a subcategory of the category of diagrams

F =
F ′Q (F ′C,W ′

C)

FR

������
(FQ,WQ)

������
������

(FC,WC, F )

������(2.3.1.1)

Here, FR, F ′Q, FQ, FC and F ′C are complexes of R-modules, R⊗Q-modules, R⊗Q-
modules, C-vector spaces and C-vector spaces, resp., W , W ′ denotes an increasing
filtration, and F denotes a decreasing filtration. The arrows in the diagram denote
the following maps:

• The arrow FR → F ′Q is a quasi-isomorphism FR ⊗Q → F ′Q.
• The arrow (FQ,WQ) → F ′Q is a quasi-isomorphism FQ → F ′Q.
• The arrow (FQ,WQ) → (F ′C,W ′

C) is a filtered quasi-isomorphism

(FQ ⊗ C,WQ ⊗ C) → (F ′C,W ′
C).

• The arrow (FC,WC, F ) → (F ′C,W ′
C) is a filtered quasi-isomorphism

(FC,WC) → (F ′C,W ′
C).

The category C∗HR
(∗ = a boundedness condition) of mixed Hodge complexes are

those diagrams as above for which the following conditions are satisfied (see [11,
Definition 3.2]):

(i) The Hp(FR) are finitely generated R-modules.
(ii) For a in Z, consider the filtered complex (grWC

a FC, grWC
a F ). The differential

of this complex is strictly compatible with the filtration.
(iii) The filtration on H∗(grWC

a FC) induced by grWa
a F , together with the iso-

morphism H∗(grWQ
a FQ) ⊗ C → H∗(grWC

a FC) that comes from the diagram,
defines on H∗(grWQ

a FQ) a pure, polarizable R⊗Q-Hodge structure of weight
a.

In particular, taking the cohomology of the complexes in (2.3.1.1) defines a mixed
Hodge structure on H∗(FR); let H∗(F) denote the resulting mixed Hodge structure.

The categoryC∗HR
is closed under taking cones, and thus the homotopy category

K∗HR
is a triangulated category; the functor H∗(−) defines a cohomological functor

from K∗HR
to HR. Localizing K∗HR

with respect to H∗(−) gives the category D∗HR
;

Beilinson shows [11, Theorem 3.4] that the resulting functor

Db
HR

→ Db(HR)(2.3.1.2)

is an equivalence of triangulated categories.

2.3.2. Tensor structure. Let D be a diagram of the form

B1 B2

A1

��f1 ����
A2

�� g2����
��f2 ����

A3

�� g2����
��f3 ����
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and let D′ be similarly defined, replacing Ai with A′i, etc. The tensor product
D ⊗D′ is the diagram

D ⊗D′ :=
B1 ⊗B′1 B2 ⊗B′2

A1 ⊗A′1

��
f1⊗f ′

1
����

A2 ⊗A′2

��

g1⊗g′
1

����
��

f2⊗f ′
2

����
A3 ⊗A′3

��

g2⊗g′
2

����
��

f3⊗f ′
3

�����
.

This makes C∗HR
a DG tensor category, and the equivalence (2.3.1.2) a tensor

equivalence [11, Theorem 3.4].

2.3.3. Enlarged diagrams. We consider a slight modification of the above construc-
tions. Form the category C∗H′

R
as the category of diagrams

F =
F ′Q (F ′C,W ′

C) (F ′′C ,W ′′
C )

FR

������
(FQ,WQ)

������
������

(FC,WC)

������
������

(FC,WC, F )

������(2.3.3.1)

where the arrows are as in §2.3.1 quasi-isomorphisms of the appropriate objects in
the appropriate category, and the conditions of §2.3.1 are satisfied, where we use
the diagram of maps

(F ′C,W ′
C) (F ′′C ,W ′′

C )

(FQ,WQ)

������
(FC,WC)

������
������

(FC,WC, F )

������

to give the Q-weight filtration on H∗(FC). Taking the resulting mixed Hodge
structure gives the functor H∗(F)′.

We map C∗H′
R

to C∗HR
by replacing the portion

(F ′C,W ′
C) (F ′′C ,W ′′

C )

(FC,WC)

��

f

���
��

g
���

of the diagram (2.3.3.1) with

(F ′C,W ′
C) := cone

(
(f, g) :FC → F ′C ⊕F ′′C

)
,

forming the diagram

F :=
F ′Q (F ′C,W ′

C)

FR

������
(FQ,WQ)

������
�����

(FC,WC, F ).

�����

We map C∗HR
to C∗H′

R
by adding two identity maps, forming the diagram

F ′Q (F ′C,W ′
C) (F ′C,W ′

C)

FR

������
(FQ,WQ)

������
������

(F ′C,W ′
C)

��

id

����
��

id
����

(FC,WC, F ).

������

These maps give a tensor equivalence of the homotopy categories

K∗HR
→ K∗H′

R
.(2.3.3.2)
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The functor H∗(F)′ is compatible with the functor H∗(F) of §2.3.1 via the
equivalence (2.3.3.2). Defining D∗H′

R
to be the localization of K∗H′

R
with respect to

H∗(F)′, we thus have the equivalence of categories D∗H′
R
→ D∗HR

→ D∗(HR).

2.3.4. Godement resolutions. The set of points of the topological space Xan allows
us to define the cosimplicial Godement resolution (see Part II, Chapter IV, §2.1)
of a sheaf of abelian groups S on Xan: S → GXS. By (Part II, Chapter IV,
Lemma 2.2.2), the induced augmented cochain complex εX,S :S → ccGXS is a
quasi-isomorphism of S with the acyclic complex ccGXS. The formation of GXS
is natural in S and in X ; as GX is an exact functor, ccGX thus preserves filtered
quasi-isomorphisms. We often write G∗X for ccGX .

Each product µ : p∗1S ⊗ p∗2S
′ → S′′ on X ×C Y induces a product of augmented

cosimplicial sheaves GXµ : p∗1GXS⊗p∗2GY S
′ → GX×CY S

′′ (see Part II, Chapter IV,
Proposition 2.3.7). If µ comes from a multiplication of sheaves on the big analytic
site, and is associative and commutative, then so is G(−)µ. The analogous results
hold for complexes of sheaves of abelian groups.

2.3.5. Thom-Sullivan cochains. We have taken this material from [65].
Let |∆n| be the real n-simplex

|∆n| := {(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0

ti = 1, 0 ≤ ti},

and let ∆n be the simplicial set Hom∆(−, [n]) : ∆op → Sets. For f : [m] → [n] in
∆, let |f | : |∆m| → |∆n| denote the corresponding affine-linear map.

For a cosimplicial abelian group G, we have the associated complex ccG, and the
normalized subcomplex, Norm(G), with Norm(G)p the subgroup of those g ∈ G([p])
such G(f)(g) = 0 for all f : [p] → [q] in ∆ which are not injective. The inclusion of
Norm(G) ↪→ ccG is a homotopy equivalence. In particular, we have the complex of
(simplicial) cochains of ∆n, and the subcomplex of normalized cochains Z∗(∆n).

Let Ω∗(|∆n|) denote the complex of Q-polynomial differential forms on |∆n|

Ω∗(|∆n|) := Ω∗Q[t0,... ,tn]/
P

n
i=0 ti−1

.

Sending [n] to Z∗(∆n), Ω∗(|∆n|) determines functors

Z∗ : ∆op → C≥0(Ab), Ω∗ : ∆op → C≥0(ModQ),

where C≥0(ModQ) is the category of complexes of Q-vector spaces concentrated
in degrees ≥ 0, and C≥0(Ab) is the integral version. There is a natural homotopy
equivalence ∫

: Ω∗ → Z∗ ⊗Q

defined by ∫
(ω)(σ) =

∫
|σ|

ω

for ω ∈ Ωm(|∆n|) and σ an m-simplex of ∆n.
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We have the category Mor(∆), with objects the morphisms in ∆, where a
morphism f → g is a commutative diagram

• ��
f •

��
•

��

��
g

• .

For functors F : ∆op → C≥0(Ab) and G : ∆ → Ab, we have the functor

F (domain)⊗G(range): Mor(∆) → C≥0

f �→ F (domain(f))⊗G(range(f));

let F ⊗
←
G be the projective limit

F ⊗
←
G := lim

←−
Mor(∆)

F (domain)⊗G(range).

Explicitly, an element ε of (F ⊗
←
G)m is given by a collection p �→ εp ∈ Fm([p]) ⊗

G([p]) such that

F (f)⊗G(id)(εp) = F (id)⊗G(f)(εq)

for each f : [q] → [p] in ∆. The operation ⊗
←

is functorial and respects homotopy

equivalence.
For a simplicial abelian group G, we have the well-defined map e :Z∗⊗

←
G →

Norm(G) defined by sending ε := (. . . εp . . . ) ∈ (Z∗⊗
←
G)q to εq(id[q]) ∈ G([q]).

In [65, Lemma 3.1] it is shown that this map is well-defined, lands in Norm(G),
and gives an isomorphism of complexes. Thus, we have the natural homotopy
equivalences ∫

⊗
←

id : Ω∗⊗
←
G→ Norm(G) ⊗Q → G⊗Q.

The operation of wedge product makes Ω∗ into a simplicial differential graded
algebra. If G is a cosimplicial commutative ring without unit, i.e., if we have a
product µG :G ⊗ G → G which is commutative and associative, then the cochain
complex Ω∗⊗

←
G has the commutative and associative product

Ω∗µG : (Ω∗⊗
←
G)⊗ (Ω∗⊗

←
G) → Ω∗⊗

←
G

induced by the map (ω⊗ g)⊗ (ω′⊗ g′) �→ ω∧ω′⊗µ(g⊗ g′), for ω⊗ g ∈ Ωq(|∆p|)⊗
G([p]), ω′⊗g′ ∈ Ωq′(|∆p|)⊗G([p]). It is easy to check that this gives a well-defined
functorial product of cochain complexes.

In addition, suppose we have a commutative ring without unit A, which we
may consider as a constant cosimplicial ring without unit, and an augmentation
ι :A → G of cosimplicial rings without unit. Then Ω∗⊗

←
A = A, and the product

Ω∗µA agrees with µA. Thus the products µA and Ω∗µG are compatible via the
augmentation

A = Ω∗⊗
←
A

Ω∗ ⊗
←
ι

−−−−→ Ω∗⊗
←
G.
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We extend the functor Ω∗⊗
←

(−) to the functor G∗ : ∆op → C+(Ab) by taking

the total complex of the double complex

. . .→ Ω∗⊗
←
G0 → Ω∗⊗

←
G1 → . . . .

All the properties of Ω∗⊗
←

(−) described above extend to the case of complexes.

We may replace the category Ab with any abelian tensor category for which
projective limits and filtered inductive limits are representable; in particular, we
the above construction is valid for the category of sheaves of abelian groups on a
Grothendieck site.

2.3.6. Compactifications. Let X be a smooth quasi-projective C-scheme. A com-
pactification of X is a birational inclusion j :X → X of X as an open subscheme of
a smooth projective C-scheme X , such that the complement D := X\X is a normal
crossing divisor.

For as complex of sheaves S on X , we have the canonical filtration τ≤X of S

(τ≤pX S)q =


Sq; if q < p

ker(dq :Sq → Sq+1); if q = p

0; if q > p.

We have the similar notion for a complex of sheaves on X.
Form the category C∗(X,X) (∗ = b,+,− or ∅ is a boundedness condition) of

diagrams

F ′Q (FC,WC) (F ′′C ,W ′′
C )

FR

������
(FQ,WQ)

�����
������

(F ′C,W ′
C)

������
������

(GC,WC, F ).

������(2.3.6.1)

Here FR is a complex of sheaves of R-modules on X , F ′Q is a complex of sheaves of
R⊗Q-vector spaces on X , (FQ,WQ) is a filtered complex of sheaves of R⊗Q-vector
spaces on X, (FC,WC), (F ′C,W ′

C) and (F ′′C ,W ′′
C ) are filtered complexes of sheaves

of C-vector spaces on X , and (GC,WC, F ) is a bi-filtered complex of sheaves of
C-vector spaces on X. The W filtrations are all increasing and the F filtration is
decreasing.

The arrows in the diagram are as follows:
• The arrow FR → F ′Q is a quasi-isomorphism FR ⊗Q → F ′Q.
• The arrow (FQ,WQ) → F ′Q is a map j∗FQ → F ′Q which by adjunction

induces an isomorphism FQ → Rj∗F ′Q in D+(ShQ

Xan
).

• The arrow FQ → (FC,WC) is a filtered quasi-isomorphism (FQ,WQ)⊗C →
(FC,WC).

• The arrows (F ′C,W ′
C) → (FC,WC) and (F ′C,W ′

C) → (F ′′C ,W ′′
C ) are filtered

quasi-isomorphisms.
• The arrow (GC,WC, F ) → (F ′′C ,W ′′

C ) is a filtered quasi-isomorphism

(GC,WC) → (F ′′C ,W ′′
C ).

Maps in C∗(X,X) are component-wise; C∗(X,X) forms a DG tensor category, with
the tensor product given component-wise, and the cone functors on each component
defines the cone functor for C∗(X,X).
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If D is a diagram (2.3.6.1), we have the diagram

p(X,X)∗G
∗D :=

Γ(X,G∗XF ′Q) Γ(X,G∗
X

(FC,WC)) Γ(X,G∗
X

(F ′′C ,W ′′
C ))

Γ(X,G∗XFR)

����
Γ(X,G∗

X
(FQ,WQ))

������
�������

Γ(X,G∗
X

(F ′C,W ′
C))

		�����
������

Γ(X,G∗
X

(GC,WC, F )).

		�����

(2.3.6.2)

We have the full DG tensor subcategory C∗H(X,X) of C∗(X,X) consisting of dia-
grams D as in (2.3.6.1) for which the diagram p(X,X)∗G

∗D is in C∗H′
R

.

2.3.7. Décalage. The most obvious weight filtration to put on the analytic De Rham
complex of a smooth projective variety X is to put everything in weight zero. This
would not agree with the natural weights on the cohomology H∗(X), as Hn(X)
has a Hodge structure of weight n. The operation of décalage gives the necessary
shift.

Let C be a complex with an increasing filtration W . Define the filtration
Dec(W ) by

Dec(W )p(Cn) := ker
(
Wp−n(Cn) d−→ Cn+1/Wp−n−1(Cn+1)

)
.

The effect of replacing W with Dec(W ) is

grDec(W )p Hn(C) = grWp−nH
n(C)(2.3.7.1)

(see [38, 1.3.4]).

2.3.8. The representing diagram. Let j :X → X be a compactification. Let Ω∗X
denote the analytic de Rham complex, and let Ω∗

X
(log D) be the complex of forms

with log poles. Let (Ω∗
X

(log D),W ) denote the filtration by order of pole, and
(Ω∗

X
(log D), F ) the stupid filtration.
We have the following natural maps

ZX ⊗Q → Ω∗⊗
←
GXQX

j∗(Ω∗ ⊗
←
j∗GXQX) → Ω∗⊗

←
GXQX

(Ω∗⊗
←
j∗GXQX , τ≤

X
)⊗ C → (Ω∗⊗

←
j∗GXΩ∗X , τ≤

X
)

(Ω∗
X

(logD), τ≤
X

) → (Ω∗⊗
←
j∗GXΩ∗X , τ≤

X
)

(Ω∗
X

(log D), τ≤
X

) → (Ω∗
X

(log D),W ).

The first is the composition

ZX ⊗Q ∼= QX = Ω∗⊗
←

QX

Ω∗ ⊗
←
ιQX

−−−−−−→ Ω∗⊗
←
GXQX

with ιQX the canonical augmentation. The second is the isomorphism

j∗(Ω∗⊗
←
j∗(GXQX)) ∼= Ω∗⊗

←
GXQX .

The third is the map induced by applying Ω∗⊗
←
j∗GX to the augmentation QX⊗C ∼=

CX ↪→ Ω∗X and taking the canonical filtration on X. The fourth is given by the
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composition

Ω∗
X

(log D) → j∗Ω∗X = Ω∗⊗
←
j∗Ω∗X → Ω∗⊗

←
j∗GXΩ∗X

and taking the canonical filtration, and the last line induced by the identity map
on Ω∗

X
(log D) (the canonical filtration is finer than the weight filtration).

It follows from the discussion in §2.3.4 and §2.3.5 that the first, third and
fourth maps are quasi-isomorphisms and that the second map induces the sequence
of isomorphisms

Ω∗⊗
←
j∗GXQX

∼= j∗G
∗
XQX

∼= Rj∗G
∗
XQX

∼= Rj∗Ω∗⊗
←
GXQX

in D+(ShQ
an(X)). Since we are taking the canonical filtration, the third and fourth

maps are filtered quasi-isomorphisms. The fifth map is a filtered quasi-isomorphism
by [38, Prop. 3.1.8].

This gives us the diagram

D[X,X] :=

Ω∗⊗
←
GXQX (Ω∗⊗

←
j∗GXΩ∗X ,Decτ≤

X
) (Ω∗

X
(log D),DecW )

ZX

��������
(Ω∗⊗

←
j∗GXQX ,Decτ≤

X
)

�������
�������

(Ω∗
X

(logD),Decτ≤
X

)

�������
�������

(Ω∗
X

(log D),DecW,F )

�������

(2.3.8.1)

in C+(X,X). It follows from the results of [11, §4] that this diagram is in fact in
C+H′(X,X).

2.3.9. The Tate object. For an abelian group A, let W (q)A be the filtration on A
given by

W (q)A,p =

{
A; if p ≥ −2q
0; if p < −2q.

We let F (q) be the filtration on C given by

F (q)p =

{
C; if p ≤ −q
0; if p > −q.

We have the R-Tate mixed Hodge structure

R(q) :=

(2πi)qRQ (C,W (q)C) (C,W (q)C)

(2πi)qR

������
((2πi)qRQ,W (q)(2πi)qRQ

)

������
������

(C,W (q)C)

�������
�������

(C,W (q)C, F (q))

�������

(where RQ = R⊗Q). The object R(0) is the unit for the tensor structure on C+H′
R

.

Define RHdg
(X,X̄)

(q) to be the object R(q) ⊗ pX∗G
∗D[X, X̄] of C+H′

R
, and let

RHdgX (q) be the image in D+H′ of the inductive limit of the objects RHdg
(X,X̄)

(q) over
compactifications X̄ of X .
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2.3.10. Theorem. Sending (X, q) to RHdgX (q) extends canonically to an exact func-
tor

�Hdg :DM(V)R → D+H′
R
.

The restriction of �Hdg to DMsh(V)R is an exact pseudo-tensor functor.

Proof. The proof is essentially the same as the proof of Theorem 1.3.1 with
H playing the role of the abelian tensor category A; there are four main differences:
(i) We replace the categories C+(HR), K+(HR) and D+(HR) with the more con-
venient categories C+H′

R
, K+H′

R
and D+H′

R
.

Flatness is not a problem, as all the complexes involved are either complexes
of torsion-free abelian groups, or complexes of vector spaces over a field.
(ii) After applying p(X,X)∗G

∗ to the diagram D[X,X], we then form the inductive
limit (in C+H′

R
) with respect to compactifications X of X ; as the category of com-

pactifications is filtering, and the resulting Hodge structure is independent of the
compactification, the inductive limit

pX∗G
∗D[X,−] := lim→

X↪→X

pX∗G
∗D[X,X]

is still in C+H′ .
For a diagram D in C∗(X,X), let p(X,X)∗GD be defined as in (2.3.6.2), only

using the cosimplicial Godement resolutions GX , GX instead of the associated
complex G∗X , G∗

X
.

Let pX∗GD[X,−] be the inductive limit

pX∗GD[X,−] := lim→
X↪→X

pX∗GD[X,X].

pX∗G
∗D[X,−] is thus the diagram of complexes associated to the cosimplicial di-

agram pX∗GD[X,−].
The discussion of §2.3.4 and §2.3.5 shows that the compatible associative and

commutative multiplications on the functorial complexes of sheaves

(X,X) �→ ZX , QX , Ω∗X , ΩX(log D)

give functorial associative, commutative multiplications

µX,Y : pX∗GD[X,−]⊗ pY ∗GD[Y,−] → pX×CY ∗GD[X ×C Y,−]

in the category of cosimplicial diagrams of complexes.
(iii) We need to give a somewhat different construction for the functor (1.3.7.1),
and the isomorphism (1.3.7.4). We give the construction for R = Z for simplicity.

Consider the enlarged mixed Hodge complex P∗ which in degree 0 is

Q⊕Q (C⊕ C,W (0)C ⊕W (0)C) (C⊕ C,W (0)C ⊕W (0)C)

Z

  �����
(Q,W (0)Q)

		�����
  �����

(C,W (0)C)

		�����
  �����

(C,W (0)C, F (0))

		�����

and in degree -1 is

Q (C,W (0)C) (C,W (0)C)

0

  �����
0

		�����
  ����

0

		����
  ����

0.

		����
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The maps in the degree 0 portion are the obvious ones, with the left-hand side
from the lower row going into the left-hand summand, and the right-hand side
from the lower row going into the right-hand summand. The differential P−1 → P0
is the diagonal map. We map P0 to Z(0) by the identity on the lower row and
the difference map on the upper row. This determines the map of enlarged mixed
Hodge complexes

P∗ → Z(0)(2.3.10.1)

which is an isomorphism in K+H′
R

. It is easy to see that the map (2.3.10.1) gives an
isomorphism of functors

HomK+
H′

R

(P⊗n∗ ,−) → HomD+
H′

R

(Z(0)⊗n,−) ∼= HomD+
H′

R

(Z(0),−)(2.3.10.2)

for all n ≥ 0.
In addition, the complex of morphisms of complexes HomC+

H′
R

(P⊗n∗ , P⊗m∗ ) is

free of two-torsion for all n,m ≥ 1; by (2.3.10.2), we have

Hp(HomC+
H′

R

(P⊗n∗ , P⊗m∗ )) =

{
0; for p �= 0,
Z · id; for p = 0.

By (1.3.6.1) and the universal mapping property of the category E (see Part II,
Chapter II, Proposition 3.1.13), there is a functor of DG tensor categories

IH : E → C+H′
R

(2.3.10.3)

with IH(e⊗n) = P⊗n∗ . IH is unique up to homotopy equivalence.
Using the functor (2.3.10.3) instead of the functor (1.3.7.1), the isomorphism

(2.3.10.2) instead of the isomorphism (1.3.7.4), and using the categories C+H′
R

, K+H′
R

and D+H′
R

instead of C+(HR), K+(HR) and D+(HR), the proof of Theorem 1.3.1
goes through without essential change.

We may compose the functor �Hdg with the derived functor RHdg:D+H′
R
→

D+(ModR) of the absolute Hodge cohomology functor H0Hdg(−) := F 0(−)∩W0(−)
(more precisely, H0Hdg(D) is the R-submodule of DR of elements which land in
W 0(DQ) and in F 0(DC) under the comparison maps in the diagram D) to give the
absolute Hodge realization

�AHdg :DM(SmC)R → D+(ModR).

For R = Z, the resulting cohomology groups Hp(�AHdg(ZX(q))) are the absolute
Hodge cohomology groups Hp

AH(X,Z(q)); when X is projective, these agree with
the Deligne cohomology groups Hp

D(X,Z(q)). The restriction of these realization
functors to DMsh(SmC)R gives, as above, exact, pseudo-tensor functors.

2.3.11. The R-Hodge realization. One can extend the R-Betti realization to the R-
Hodge realization by adding the data of a real Frobenius (i.e., an involution) in
each component of a diagram in C+H′

R
, forming the category C+∞H′

R
. The comparison

maps between the components FR, F ′Q and (FQ,W ), as well as the comparison maps
between the components (FC,W ), (F ′C,W ), (F ′′C ,W ) and (GC,W, F ), are required
to be F∞ equivariant. The comparison map f : (FQ,W ) ⊗ C → (FC,W ) satisfies
F∞ ◦ f = f ◦ (F∞ ⊗ σ) where σ : C → C is complex conjugation.
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For an R-scheme X with compactification X, the diagram D[X,X] carries the
required involution, where the F∞ on the Z and Q portions is induced by complex
conjugation on the space Xan as in §2.1.3, and the F∞ on the C portion is induced
by η �→ F ∗∞η. We let RHdg∞X (q) be the object of D+∞H′

R
determined by the object

RHdgX (q) together with the real Frobenius defined above.
The construction of the Hodge realization in Theorem 2.3.10 gives the R-Hodge

version:

2.3.12. Theorem. Sending (X, q) to RHdg∞X (q) extends canonically to an exact
functor

�RHdg :DM(SmR)R → D+∞H′
R
.

The restriction of �RHdg to DMsh(SmR)R is an exact pseudo-tensor functor.

2.3.13. Hodge realization over a smooth base scheme. Let S be a smooth quasi-
projective C-scheme. The construction of the Hodge realization over C extends
to give a realization to M. Saito’s category MHM(S) of algebraic mixed Hodge
modules over S. To describe this, we first briefly recall some facts about MHM(S);
for further details, we refer the reader to [111], especially §2 and §5, and [110].

Let X be a complex manifold. We have the sheaf of linear holomorphic dif-
ferential operators DX , with (decreasing) filtration F by order. A (right) filtered
DX -module (M,F ) is holonomic if grFmM is a coherent OX -module; in this case, F
is a good filtration. This gives us the category MFh(DX) of holonomic DX -modules
with good filtration.

For a filtered holonomic DX -module (M,F ), we have the object in the derived
category of constructible C-sheaves DR(M) := M ⊗L

DX
OX . In fact, DR(M) is

in the abelian subcategory PervC(X) of perverse C-sheaves. There is an explicit
complex representing DR(M), which we now describe. Suppose X has dimension
d. We have the Koszul complex (ΘX is the holomorphic tangent bundle)

DX ⊗OX Λ−∗ΘX := (. . .→ DX ⊗OX Λ−pΘX → . . .→ DX),

which gives a free DX resolution of the left DX -module OX . We give DX ⊗OX

Λ−∗ΘX the filtration

Fp(DX ⊗OX Λ−iΘX) := Fp+iDX ⊗ Λ−iΘ.

Then

D̃R(M,F ) := (M,F )⊗D (DX ⊗OX Λ−∗ΘX , F )

is a filtered complex, which represents DR(M,F ).

2.3.13.1. Example. Let ωX be the filtered holonomic DX -module (Ωd
X , F ), d =

dimC X , with Fp = 0 for p �= −d (DX acts through the quotient OX). Then
D̃R(ωX , F ) is isomorphic to the shifted de Rham complex Ω∗X [d], with filtration
the (shifted) Hodge filtration. The canonical map CX [d] → Ω∗X [d] gives a quasi-
isomorphism CX [d] → D̃R(ωX).

For a filtered OX -module (L,F ), set DR−1(L,F ) := (L,F )⊗O (DX , F ).
Let X be a smooth quasi-projective C-scheme. We have the category PervQ(X)

of perverse Q-sheaves on Xan which have algebraic stratifications such that the re-
strictions of their cohomology sheaves are local systems (and similarly the category
PervC(X) of perverse C sheaves with the same condition).
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The category MFhW(DX ,Q) has objects ((M,F,W ), (K,W ), α), where (M,F )
is in MFh(DXan), K is in PervQ(X), W is a locally finite increasing filtration, and
α : DR(M,F ) → K ⊗Q C is an isomorphism respecting W (i.e. a filtered quasi-
isomorphism). MHM(X) is a certain abelian subcategory of MFhW(DX ,Q) (see
[111, Proposition 5.1.14] and [110, §4]). If X has dimension d, there are objects
QX(q)[d], q = 0,±1,±2, . . . in MHM(X).

There are external products �X,Y : MHM(X) ⊗ MHM(Y ) → MHM(X × Y ),
defined by

((MX , FX ,WX), (KX ,WX), αX) � ((MY , FY ,WY ), (KY ,WY ), αY )

=
(
(p−1X MX ⊗C p−1Y MY )⊗p−1

X OX⊗p−1
Y OY

OX×Y ,WX ⊗WY , FX ⊗ FY ),

(p−1X KX ⊗C p−1Y KY ,WX ⊗WY ), αX � αY

)
,

where the tensor product filtration WX ⊗WY is, in degree n, the submodule gener-
ated by p−1X W a

X⊗p−1Y W b
Y with a+b = n, and similarly for the F -filtration. αX�αY

is the isomorphism induced by αX and αY . We note that the functor D̃R admits a
commutative, associative multiplication with respect to the external products: the
natural map

D̃R(MX , FX) �X,Y D̃R(MY , FY ) → D̃R
(
(MX , FX) �X,Y (MY , FY )

)
induced by the usual product on the Koszul complex.

Each morphism p :X → Y induces the push-forward

p∗ :Db(MHM(X)) → Db(MHM(Y ))(2.3.13.2)

[110, §2.c, §4]. We now describe a representing complex for p∗, assuming p is
proper.

Let ((M,F,W ), (K,W ), α) be in MHM(X); we suppose that α is given by
a filtered isomorphism of filtered complexes α′ : D̃R(M,F,W ) → (K ′,W ′), with
(K ′,W ′) isomorphic to (K,W ) ⊗ C in the filtered derived category of C-sheaves
on X . Take the complexes associated to the cosimplicial Godement resolutions,
G∗XD̃R(M,F,W ), G∗X(K,W ), and G∗X(K ′,W ′), take push-forward, and take DR−1

for the first term:

(DR−1p∗G∗XD̃R(M,F,W ), p∗G∗X(K,W )).

Since DX ⊗OX Λ−∗ΘX is a resolution of OX , we have the natural map

D̃RDR−1p∗G∗X D̃R(M,F,W ) θ−→ p∗G
∗
XD̃R(M,F,W ),

which is a filtered quasi-isomorphism. Let p∗τ : p∗G∗X(K ′,W ′) → p∗G
∗
X(K,W )⊗C

be the filtered quasi-isomorphism induced by the given filtered quasi-isomorphism
on X . Then

(DR−1p∗G∗XD̃R(M,F,W ), p∗G∗X(K,W ), τ ◦ p∗G∗Xα′ ◦ θ)

represents p∗((M,F,W ), (K,W ), α).
We now describe a representative for j∗QX(0), where j :X → X̄ is a compact-

ification.

2.3.13.3. Example. (see [110], proof of Theorem 3.27) Let X̄ be a compactification
of X with normal crossing divisor D at infinity, let d = dimC(X). We have the
filtered DX̄ -module (Ωd

X̄
(log D), F ), which we denote by ωX̄(∗D). The usual weight

filtration gives the filtration W on ωX̄(∗D)[−d]. Then there is a canonical filtered
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isomorphism β of DR(ωX̄(∗D)[−d],W ) with (Ω∗
X

(log D),W ), and the filtration F

on ωX̄(∗D)[−d] induces the Hodge filtration F on Ω∗
X

(log D). The diagram

MW[X, X̄] :=

(Ω∗⊗
←
j∗GXΩ∗X , τ≤

X
) (Ω∗

X
(log D),W )

(Ω∗⊗
←
j∗GXQX , τ≤

X
)

��





(Ω∗

X
(log D), τ≤

X
)

�������
��






(Ω∗
X

(log D),W, F )

�������
(2.3.13.4)

together with the isomorphism β defines a quasi-isomorphism α of (ωX̄(∗D)[−d],W )
with (Rj∗QX , τ≤

X
); this defines an object of Db(MHM(X̄)) canonically isomorphic

to j∗QX .

2.3.14. We write MH[X, X̄] for the diagram ((ωX̄(∗D)[−d],W ),MW[X, X̄], α) rep-
resenting j∗QX . Suppose that X is an S-scheme, with S a smooth quasi-projective
C-scheme, pX :X → S. Extend pX to p̄X : X̄ → S̄, where i :S → S̄ is a smooth
compactification of S with normal crossing divisor at infinity.

We let p̄X∗G
∗XMH[X, X̄] be the diagram of complexes

(DR−1p∗G∗X D̃R(ωX̄(∗D),W ), pX∗G∗MW[X, X̄], αS),

which by the discussion above represents p̄X∗j∗QX in Db(MHM(S̄)). We then
restrict to S, giving �MHM(X) ∈ Db(MHM(S)). Let �MHM(X, q) := �MHM(X) ⊗
QS(q).

We can now apply the argument for Theorem 2.3.10; in fact, since we are work-
ing with Q-vector spaces, we may systematically use the Thom-Sullivan cochains in
place of the categorical cohomology operations used in the proof of Theorem 1.3.1,
so that our representing complexes admit strictly associative and commutative ex-
ternal products. The various properties required of the cohomology theory

Hp
MHM(X,Q(q)) := ExtpMHM(X)(QX(0),QX(q))

follow from the fact (see e.g. [68, Appendix A, Corollary A.1.10]) that the groups
agree with Beilinson’s absolute Hodge cohomology. Thus, we have

2.3.15. Theorem. Let S be a smooth quasi-projective C-scheme. Sending (X, q)
to �MHM(X, q) extends canonically to the exact tensor functor

�MHM :DM(S)Q → Db(MHM(S)),

natural in S.

2.3.16. Remarks. (i) If S is a smooth R-scheme, we have a version with the addi-
tional data of a real Frobenius, as in Theorem 2.3.12.
(ii) We may replace Q with a subfield R of R, giving the exact realization functor

�MHM,R :DM(S)R → Db(MHMR(S)).

2.4. The motivic realization

Let k be a field of characteristic zero, finitely generated over Q. We conclude this
section with an extension of the construction of the Hodge realization to give a
realization of DM(Smk) into a version of Jannsen’s category of mixed absolute
Hodge complexes. This is constructed similarly to Beilinson’s category D+H; the
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essential difference is the addition of l-adic data to the Betti-Hodge data encoded
in D+H.

We give a brief review of this construction, somewhat modified as in the pre-
vious section. For details see [71, §6], especially pages 97-104; for a more detailed
version, see [67]. The version we will give includes integral data, as in [71], but
takes some features from [67] as well.

2.4.1. Definition. Let Gk denote the Galois group of k over k. A polarizable mixed
absolute Hodge complex (MAH-complex) over k is a commutative diagram D of the
following form:

D :=

∏
σ : k→C

Kσ

��

f1

��
��

�

!! h1��
��
�∏

l,σ : k→C

Kl,σ

��f ′′
1 ��

��
�

∏
σ : k→C

K ′Q,σ

!!
h2��

��
�

∏
σ : k→C

(KC,σ,W )

∏
l

Kl

��

h′
1

�����

��f ′
1 ��

��
�

∏
l,σ : k→C

K ′Q,l,σ

∏
σ : k→C

(KQ,σ,W )

��
g1

�����
��

f2
�����

!! h3��
��
�

(Kk,W, F )

��
g2

�����

∏
l

K ′Q,l

��

h′
2

����� ∏
l,σ : k→C

(KQ,l,σ,W )

��
g′′
1

�����

∏
l

(KQ,l,W )

��

g′
1

�����
��

h′
3

�����

where σ : k → C denotes an embedding, l is a prime number, and

(i) For each l, Kl, KQ,l and K ′Q,l are bounded below complexes of continuous
Gk-modules. Kl is a complex of Zl-modules such that the homology groups
are finitely generated Zl-modules, KQ,l and K ′Q,l are complexes of Ql-vector
spaces such that the cohomology groups are finite dimensional Ql-vector
spaces; W is a finite increasing filtration on KQ,l.

(ii) For each l and each σ : k → C, K ′Q,l,σ and KQ,l,σ are bounded below com-
plexes of Ql-vector spaces with finite dimensional cohomology, and K ′l,σ is a
bounded below complex of Zl-modules with cohomology finitely generated
over Zl. W is a finite increasing filtration.

(iii) For each σ : k → C, KQ,σ and K ′Q,σ are bounded below complexes of Q-vector
spaces, and KC,σ are bounded below complexes of C-vector spaces, all with
finite dimensional cohomology. For each σ : k → C, Kσ is a bounded below
complex of abelian groups, with finitely generated cohomology. W denotes
a finite increasing filtration on the various complexes.

(iv) Kk is a complex of k-vector spaces, bounded below, with finite dimensional
cohomology, an increasing filtration W , and a decreasing filtration F , both
finite.
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(v) f ′1 =
∏

l f
′
1,l, g

′
1 =

∏
l g
′
1,l, where f ′1,l :Kl⊗Zl

Ql → K ′Q,l and g′1,l :KQ,l → K ′Q,l

are quasi-isomorphisms.
(vi) h′1 =

∏
l,σ h

′
1,l,σ, where each h′1,l,σ is a family of quasi-isomorphisms

h1,l,σ :Kl → Kl,σ

indexed by the set of extensions σ :k → C of σ, with h′1,l,σρ homotopic to
h′1,l,σ for each ρ ∈ Gk. h2 and h3 are similarly defined, with h2,l,σ :K ′Q,σ ⊗
Zl → K ′Q,l,σ a quasi-isomorphism, and h3,l,σ : (KQ,σ,W )⊗Zl → (KQ,l,σ,W )
a filtered quasi-isomorphism; in addition, for each l, σ and ρ, the homotopies
for the hi,l,σ, i = 1, 2, 3, are compatible via the maps f ′1, f

′′
1 , g′1 and g′′1 .

(vii) The maps h1, h2 and h3 are families of maps indexed by l and σ, with
h1,l,σ :K → Kl,σ and h′2,l,σ :K ′Q,σ → K ′Q,l,σ quasi-isomorphisms, and

h3,l,σ : (KQ,σ,W ) → (KQ,l,σ,W )

a filtered quasi-isomorphism.
(viii) f1 =

∏
σ f1,σ, g1 =

∏
σ g1,σ, f2 =

∏
σ f2,σ, g2 =

∏
σ g2,σ, where, for each

σ : k → C, the diagram

K ′Q,σ (KC,σ,W )

Kσ

��f1,σ �����
(KQ,σ,W )

�� g1,σ����
��f2,σ ����

(Kk,W, F )⊗k,σ C

�� g2,σ
����

is in Cb
H,Q, and defines on Hi(grWmKσ) a pure, polarizable Z-Hodge structure

of weight m.
(ix) Let H denote the collection of graded cohomologies grWmHi arising from

the diagram D. Then there are bilinear forms H? ⊗ H? → Q?(−m) for
each component, which are compatible under the various comparison iso-
morphisms, and which give a polarization of the real Hodge structure given
by the diagram in (viii).

(x) The cohomology H∗ of complexes Kl, K ′Q,l, and (KQ,l,W ) defines (via the
comparison maps in the diagram) a constructible filtered continuous Zl[Gk]-
module with grWmH∗ having weight m (see [67, Part I, Chapter 9]).

(xi) For each real embedding σ : k → R ⊂ C, the factors involving σ all have the
additional data of a real Frobenius, i.e., the structure of a complex of GR =
Gal(C/R)-modules. For such σ, all the comparison maps, except for f2σ, are
GR equivariant; the map f2σ is anti-equivariant: F∞◦f2σ = f2σ◦(F∞⊗(−)).

2.4.2. Let Cb
MAH,k denote the category of polarizable mixed absolute Hodge com-

plexes over k, where a morphism D1 → D2 consists of a collection of maps on each
component, in the appropriate category of complexes, such that each of the result-
ing squares commutes. We have the Tate object ZMAH,k(q) in C+MAH,k, defined by
putting the Tate object from the appropriate category in the appropriate spot, i.e.,
use the Galois module Zl(q) for Kl, Ql(q) for K ′Q,l, and (Ql(q),W (q)) for (KQ,l,W ).
We use Z(q) = (2πi)qZ for K, Q(q) = (2πi)qQ for K ′Q and the remaining data is
given as in §2.3.9.

2.4.3. Cb
MAH,k is a DG tensor category (⊗ given component-wise) with a cone

functor; the unit is the Tate object ZMAH,k(0). This gives the homotopy category
Kb
MAH,k the structure of a triangulated tensor category. Taking the 0th cohomology

of each component of a diagram D in Cb
MAH,k gives an object H0 in the category



2. CONCRETE REALIZATIONS 287

of diagrams equivalent to a version MRp
k of Jannsen’s category [71] of polarizable

mixed realizations (the requirement Definition 2.4.1(x) means we land in the refined
version of Jannsen’s category given in [67, Part II, Chapter 11]); one can give a quick
definition of this category as the category of diagrams given by Definition 2.4.1,
where we require that all the complexes are concentrated in degree zero. The
category MRp

k is similar to Deligne’s category of systems of realizations described
in [32, §1]; the main difference being that Deligne’s category uses only Q-data, but
adds a “crystalline realization” to the Betti, étale, and de Rham components of
MRp

k.
The functor H0 extends to a cohomological functor from Kb

MAH,k to MRp
k.

A map f in Kb
MAH,k is called a quasi-isomorphism if f induces a quasi-iso-

morphism (not necessarily filtered) in each component. Localizing Kb
MAH,k with

respect to quasi-isomorphisms defines the triangulated tensor category Db
MAH,k;

the cohomological functor H0 extends to Db
MAH,k.

2.4.4. Enlarged diagrams. As for the Hodge realization, it will be useful to enlarge
the basic diagram of Definition 2.4.1 by adding zigzag diagrams of (filtered) quasi-
isomorphisms between (filtered) complexes in the same category. We will make
various enlargements without further comment; as in §2.3, these enlargements lead
to equivalent homotopy categories, and equivalent “derived” categories, by adding
in zigzag diagrams of identity maps to enlarge a small diagram or by taking the
appropriate cone to shrink an enlarged diagram.

2.4.5. Tempered Thom-Sullivan cochains. We will want to apply the construction of
§2.3.5 to continuous Ql-modules, and to Z/l∗-modules; for this we need to consider
tempered differential forms.

For a variable x, we let γa(x) denote xa

a! . We have the subgroup Ωp,q(|∆n|) of
Ωp(|∆n|) generated by the differential p-forms γa0(t0) · . . . · γan(tn)dti1 . . . dtip with∑n

i=0 ai + p = q. One checks that the graded group Ω∗,q(|∆n|) of Ω∗(|∆n|) forms
a subcomplex; sending n to Ω∗,q(|∆n|) thus defines a simplicial subcomplex Ω∗,q

of the simplicial complex Ω∗. Sending n ∈ Z to nγq(t0) = n
q! in Ω0,q define the

augmentation 1
q!Z

εq−→ Ω∗,q. Clearly we have Ωp,q = 0 for p > q.
The following facts about Ω∗,q are proved in [97] and [27]:

1. The Ω∗,q form an increasing filtration of Ω∗, and Ω∗ = ∪q≥0Ω∗,q.
2. The integration map

∫
: Ω∗ → Z∗ ⊗ Q restricts to the integration map∫

q
: Ω∗,q → 1

q!Z
∗, i.e., q!

∫
maps Ω∗,q into Z∗.

3. Hp(Ω∗,q(|∆n|)) = 0 for p > 0, and the augmentation εq induces an isomor-

phism 1
q!Z

∼= H0(Ω∗,q(|∆n|)).

(2.4.5.1)

We now consider the simplicial abelian group Ωp,q. For a simplicial set X , let
Ωp,q(X) be the group of maps of simplicial sets X → Ωp,q; if |X | is the geometric
realization of X , we sometimes write Ωp,q(|X |) for Ωp,q(X). Note that restricting
to the non-degenerate simplex of ∆n defines an isomorphism of Ωp,q(∆n) with
Ωp,q(|∆n|), so the notation is unambiguous.
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2.4.5.2. Lemma. The simplicial abelian group Ωp,q is acyclic for 0 ≤ p < q:

πm(Ωp,q) = 0; for 0 ≤ p < q.

Proof. It suffices to prove the following extension property: Let m ≥ 0 be
an integer, and let i :Sm → |∆m| be the union of the faces ti = 0, i = 0, . . . ,m.
Suppose we have an element τ ∈ Ωp,q(Sm). Then there is an ω ∈ Ωp,q(|∆m|) with
i∗ω = τ .

Let vi be the vertex ti = 1 of |∆m|. If σ is the simplex of |∆m| spanned
by vertices vi0 , . . . , vis , with i0 < . . . < is, then Ωp,q(σ) is the free Z-module on
generators

g = γai0 (ti0 ) · . . . · γais (tis)dtj1 . . . dtjp(2.4.5.3)

with
∑

j aij = q − p, and with {j1 < . . . < jp} a subset of {i1 < . . . < is} (see [97,
§2]). We define the operators

hr,a : Ωp,q(σ) → Ωp,q(σ), r = 0, . . . ,m, a = 1, . . . , q − p,

on basis elements g as in (2.4.5.3) by setting hr,a(g) = g if ar = a and aij = 0 for
ij < r; we define hr,a(g) = 0 otherwise. We then extend by linearity. Since p < q,
we have ∑

r,a

hr,a = id.(2.4.5.4)

One checks that the maps hr,a are compatible with the restriction maps to
subfaces, hence they extend to gives well-defined operators hr,a : Ωp,q(L) → Ωp,q(L)
for each subcomplex L of |∆m|; the hr,a are natural in L, and satisfy the relation
(2.4.5.4).

Let Λr be the closed star neighborhood of the vertex vr in Sm, i.e., Λr is the
closure of the complement in Sm of the face tr = 0.

Now take τ ∈ Ωp,q(Sm). Using (2.4.5.4), it suffices to extend an element of
the form τ := γa(tr)τr, with a > 0 and τr ∈ Ωp,q−a(Λr), where we extend τ to
Sm by zero on the face tr = 0. Since Ωp,q−a is a simplicial abelian group, Ωp,q is
a Kan complex, hence the element τr of Ωp,q−a(Λr) extends to an element ωr of
Ωp,q−a(|∆m|). Then ω := γa(tr)ωr is the desired extension of τ .

For a complex C∗, we let σ≤NC∗ denote the “stupid” truncation, i.e., σ≤NCp =
Cp for p ≤ N , and σ≤NCp = 0 for p > N .

2.4.5.5. Lemma. There is a map of complexes (over the identity on 1
q!Z)

Tq :σ≤q−1
1
q!
Z∗ → σ≤q−1Ω∗,q

and maps

hp :
1
q!
Zp → 1

q!
Zp−1; gn : Ωp,q → Ωp−1,q

for p = 0, . . . , q − 1 which define homotopies idZ∗ ∼
∫
q
◦Tq, idΩ∗,q ∼ Tq ◦

∫
q
in

degrees ≤ q − 2.

Proof. This follows by applying the arguments of [24, §2]; we give a brief
description of how these methods apply, using the notations from loc. cit. It
follows from (2.4.5.1)(3) that Ω∗,q is acyclic on models. From Lemma 2.4.5.2, the
simplicial abelian groups Ωp,q are corepresentable for p < q. In loc. cit., it is shown



2. CONCRETE REALIZATIONS 289

that Z∗ is acyclic on models, and Zp is corepresentable for all p. The result then
follows from the method of acyclic models, as described in loc. cit.

Now let G be a cosimplicial abelian group. From Lemma 2.4.5.5, the map∫
q

⊗
←

id : Ω∗,q ⊗
←
G→ 1

q!
Z∗⊗

←
G

is a cohomology isomorphism in degrees ≤ q − 2. Setting

Ω∗∗⊗
←
G := lim→

q

Ω∗,q ⊗
←
G,

we thus have the quasi-isomorphism

lim→
q

∫
q

⊗
←

id : Ω∗∗⊗
←
G→ lim→

q

1
q!
Z∗⊗

←
G ∼= Q⊗ Z∗⊗

←
G ∼= Q⊗Norm(G).

In particular, the inclusion

Ω∗∗⊗
←
G→ Ω∗⊗

←
G

is a quasi-isomorphism. In addition, the wedge product of forms gives the product
Ωp,q ⊗ Ωp′,q′ → Ωp+p′,q+q′ . Thus, using the construction of §2.3.5, a commutative
multiplication on G gives Ω∗∗⊗

←
G the structure of a DG algebra over Q, and makes

the above inclusion a quasi-isomorphism of DG algebras.

2.4.6. We now proceed to define the motivic realization

�mot :DMmot(Smk) → Db
MAH,k.

2.4.7. Sites. Let étk denote the big étale site over k; We use a slightly different site
for the classical topology than the usual one. For an embedding σ : k → C and for
X ∈ Smk, let Xσ denote the complex manifold associated to the C-scheme X×k,σC.
Let ank denote the site where an open cover of X ∈ Smk is a collection of maps
fσ :Uσ → Xσ, where fσ is surjective, and fσ is locally (on Uσ) a homeomorphism.

We have the map of sites α : étk → ank given by sending U → X to∏
σ

Uσ → Xσ.

Similarly, letting Zark denote the big Zariski site over k, we have the map of sites
β : Zark → ank. Each of these site has a conservative family of points gotten by
taking the points of the topological space X (for the Zariski or classical topology),
the geometric points of X (for the étale topology), or the points of the topological
space Xσ (for the classical topology). These collections of points are compatible
with respect to the change of topology maps.

2.4.8. Let X be in Smk. There is a compactification X → X defined over k, and
the category of compactifications of X over k forms a directed filtering category.
For a compactification X → X, with normal crossing divisor D at infinity, we form
the diagram of complexes of sheaves D[X,X ] as in Definition 2.4.1 by

1. Kσ is ZanXσ . Kl is the inverse system Zétl,X in ShZ/l∗

ét (X) described in Ex-
ample 2.2.5. Via Remark 2.2.7, we have the category ShZ/l∗

an (Xσ) for each
embedding σ : k → C. We take Kl,σ to be the inverse system Zanl,Xσ in
ShZ/l∗

an (Xσ) gotten from Zétl,X by change of topology with respect to σ.
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2. We set

K ′Q,σ := Ω∗∗⊗
←
j∗GXσZanXσ

where Ω∗∗⊗
←

is the tempered Thom-Sullivan cochain construction described

in §2.4.5, and GXσ is the cosimplicial Godement resolution for the analytic
topology.

We define K ′Q,l and K ′Q,l,σ similarly by

K ′Q,l := Ω∗∗⊗
←
j∗GXZétl,X ,

K ′Q,l,σ := Ω∗∗⊗
←
j∗GXσZanl,Xσ ,

which are objects in the Q-localizations ShZ/l∗

ét (X)⊗Q and ShZ/l∗

an (Xσ)⊗Q

of ShZ/l∗

ét (X) and ShZ/l∗

an (Xσ), respectively.
3. We take KQ,σ = K ′Q,σ, KQ,l = K ′Q,l, and KQ,l,σ = K ′Q,l,σ. The weight

filtrations are given by taking Decτ≤
X̄

(or Decτ≤
X̄σ), where τ≤

X̄
and τ≤

X̄σ are
the canonical filtrations, in the appropriate topology.

4. (Kk,W, F ) := (ΩZar
X/k

(log(D)),DecWZar, F ), and (KC,σ,W ) is the zigzag
diagram

(Ω∗⊗
←
j∗GXσΩanXσ ,Decτ≤

X
σ) (Ωan

X
σ (log(D)),DecW an)

(j∗ΩanXσ ,Decτ≤
X

σ )

""

##��������

defined as in §2.3.8: “Zar” and “an” refer to the Zariski and analytic topolo-
gies, ΩanXσ , (resp. Ωan

X
σ(log(D))) is the complex of sheaves of holomorphic

forms (resp. holomorphic forms with log poles), ΩZar
X/k

(log(D)) is the com-

plex of sheaves of algebraic forms with log poles. W an and WZar are the
filtrations by order of pole, and F is the stupid filtration.

5. The map f1 is induced by the natural inclusion ιG :G → Ω∗∗⊗
←
G, which

gives the natural map of sheaves

ZanXσ → Ω∗∗⊗
←
GXσZanXσ ,

and similarly for f ′1 and f ′′1 .
6. The maps g1, g′1 and g′′1 are “forget the filtration”.
7. The maps hi are gotten by passing from the analytic sheaf ZXσ to the

analytic sheaf of Z/l∗-modules ZXσ ⊗ Z/l∗.
8. For each σ : k → C, we have the map of sites ασ :Xσ

an → Xét. The maps h′i
are induced by the product over l and σ of the change of topology morphism
α∗σZétl,X → Zanl,Xσ .

9. For each σ : k → C, we have the map of sites βσ :Xσ
an → XZar. The arrow g2

is the product over σ of the change of topology maps

β∗(ΩZar
X/k

(log(D)),WZar) → (Ωan
X

σ (log(D)),W an),

and the remainder of the diagram is the product over σ of the portion of the
Hodge realization diagram (2.3.8.1).
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We form the push-forward diagram p(X,X̄)∗GD[X, X̄] as a cosimplicial object
by first taking the cosimplicial Godement resolution of each term (either on Xét,
Xσ
an, X

σ

an or XZar, filtered or bifiltered, as necessary) and taking global sections;
we then take the projective limit in the l-adic components.

We identify a sheaf on két with a Gk-module. As in the construction of the
l-adic realization, the inverse systems involved are all normalized sheaves on the
étale site over k, so taking the projective limit preserves quasi-isomorphisms and the
resulting projective limit is a continuous Gk-module [72, Theorem 2.2 and Theorem
3.2]).

Let ZMAH,k,(X,X̄)(q)∆ be the cosimplicial diagram

ZMAH,k,(X,X̄)(q)∆ := ZMAH,k(q)⊗ p(X,X̄)∗GD[X, X̄ ],

and let ZMAH,k,(X,X̄)(q) be the diagram of associated total complexes.
We let ZMAH,k,X(q)∆ be the inductive limit of the diagrams ZMAH,k,(X,X̄)(q)∆,

over compactifications X̄ of X , and let ZMAH,k,X(q) be the diagram of associated
total complexes; equivalently, ZMAH,k,X(q) is the inductive limit of the diagrams
ZMAH,k,(X,X̄)(q).

It follows from [72, Theorem 2.2 and Theorem 3.2] that p(X,X̄)∗GD[X, X̄] and
ZMAH,k,(X,X̄)(q) are in fact objects of C+MAH,k, and that the maps in the inductive
limit are quasi-isomorphisms in each component, hence ZMAH,k,X(q) is an object
of C+MAH,k, canonically isomorphic to each ZMAH,k,(X,X̄)(q) in D+MAH,k.

The results of [72, Part I] and [67, §15] imply that the conditions of The-
orem 1.3.1 are satisfied for the objects ZMAH,k,(X,X̄)(q) of D+MAH,k (as objects
of the triangulated tensor category D+MAH,k, rather than the derived category of
sheaves). In fact, each natural map which gives a quasi-isomorphism in each of the
individual cohomology theories gives an isomorphism in D+MAH,k, which gives all
the properties except for cycle classes and semi-purity. As the cohomology group
HomD+

MAH,k
(1,ZMAH,k,(X,X̄)(q)[p]) can be computed from the cohomologies in the

individual theories by a cone construction, the compatible cycle classes in each the-
ory, together with semi-purity in each theory, gives cycle classes and semi-purity
for MAH.

Additionally, the compatible external products in the various sheaves

Zétl,X , ZanXσ , Zanl,Xσ , QanXσ ,

j∗ΩanXσ , Ωan
X

σ (log(D)), ΩZar
X/k

(log(D)),

together with their various filtrations, give, via §2.3.5 and §2.3.4, a natural as-
sociative and commutative external product for the diagrams ZMAH,k,X(q)∆, as
cosimplicial objects.

If we now repeat the construction of the realization functor in the proof of
Theorem 1.3.1, making the modifications we used to construct the étale realization
and the Hodge realization, we have the following result:

2.4.9. Theorem. Let R be a noetherian subring of R. Sending (X, q) in Smk × Z
to RMAH,k,X(q) extends canonically to an exact functor

�MAH,k :DM(Smk)R → D+MAH,k,R.

The restriction of �MAH,k to DMsh(Smk)R is an exact, pseudo-tensor functor.
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Here D+MAH,k,R is constructed as D+MAH,k, replacing Z with R, Q with R⊗Q,
etc., and RMAH,k,X(q) is the image of ZMAH,k,X(q) in D+MAH,k,R.

2.5. Questions, projects, and open problems

2.5.1. Singular base-schemes. One should have Betti, étale, and Hodge realizations
over a general base scheme. Do these various cohomology theories satisfy the prop-
erties required by Theorem 1.3.1, for objects smooth over a singular base?

2.5.2. L-functions. Suppose that the base field k is a number field, and fix an
integer m ≥ 0. The motivic realization gives us, for each motive X over k,
a packet of (virtual) l-adic Gk-representations of weight m, grWm�MAH,k(X)ét,l,
as well as a pure Hodge structure of weight m, grWm�MAH,k(X)Hdg,σ, for each
embedding σ of k, with real Frobenius for each real embedding. Suppose that
the characteristic function of Frobenius Fp, for each prime p of Ok for which
grWm�MAH,k(X)ét,l is unramified, is independent of l �= p. Suppose that one has
a good notion of inertia invariants, and that the resulting characteristic function
of Fp on grWm�MAH,k(X)Ipét,lis independent of the choice of l �= p. Then one can
define the L-function L(m)(X, s) as the Artin L-function of this packet of virtual
Gk-representations. The Hodge structures grWm�MAH,k(X)Hdg,σ define the factor
at infinity L

(m)
∞ (X, s), as in [36] and [113]; see also [34, §5.3]. This gives the

completed L-function Λ(X, s) := L
(m)
∞ (X, s)L(m)(X, s).

If E is a number field, and X is in DM(X)E , one should be able to define an
E ⊗ C-valued series Λ(X, s) as in [34, §2.2].

Suppose now that X is inDb
mot(k)E . Then the characteristic function of Frobe-

nius Fp on grWm�MAH,k(X)ét,l is independent of l for all l outside a finite set of
primes. Indeed, by Lemma 1.5.4 of Chapter IV, X is expressible in terms of finitely
many motives of the form ZX(q), with X smooth and projective over k. As the
Gk representations Hm+2q(X,Ql(q)) have the desired independence property, the
same holds for grWm�MAH,k(X)ét,l. Thus, the L-function L(m)(X, s) is defined,
except for finitely many factors. Is the above independence on l valid for all X in
DM(X)E , at least for all but finitely many p?

2.5.3. Mixed motives. It would be nice to add the crystalline data, in some form,
to the realization �MAH,k. Let us assume we have done this, and are working in
Db
MAH,k ⊗ Q. In [32, Définition 1.11] the category of mixed motives is “defined”

as the subcategory of the category of systems of realizations generated (by ⊕, ⊗,
dual, and subquotient) by systems of geometric origin, where this latter term is left
undefined. A reasonable definition would be the objects H0(�MAH,k(X)) for X in
DM(k)Q. Let MMgm(k) denote the full subcategory generated by the objects of
geometric origin. Then MMgm(k) is closed under ⊕, ⊗ and dual. Is MMgm(k)
already abelian?

In any case, let MM(k) be the closure of MMgm(k) under ⊕, ⊗, dual, and
subquotient, and let DMM(k) denote the full subcategory of Db

MAH,k of objects
with Hp in MM(k) for all p. Is DMM(k) equivalent to the bounded derived
category Db(MM(k))? Is the restricted realization functor

�MAH,k :DM(k)Q → DMM(k)

an equivalence of categories? What if k is a number field?



CHAPTER VI

Motivic Constructions and Comparisons

We begin this chapter by interpreting Milnor K-theory in terms of the category
DM, including a motivic proof of the Steinberg relation (Proposition 1.1.7). We
show in §1.2 how to construct Beilinson’s polylogarithm as a motive; although we
are not able to give an integral version, we do get an explicit bound on the denom-
inators involved. We conclude by comparing our motivic category DM(Spec k)
with Voevodsky’s category DMgm(k) [124]; we show that the two categories are
equivalent if k is a perfect field admitting resolution of singularities for finite type
k-varieties.

1. Motivic constructions

1.1. The group of units and Milnor K-theory

1.1.1. Let i0 :S → A1S and i1 :S → A1S be the 0-section and the 1-section, let
T := A1S \ {i0(S)}, and let ZGm be the image in DM of the object

cone
(
i∗1 : ZT (0)(i1∪idT ) → ZS

)
[−1]

of Cb
mot(SmS). Let �1 be the open subscheme P1S \ {i1(S)} of P1S , let i0 :S → �1

and i∞ : S → �1 be the 0-section and the ∞-section, and let Z(�1;∂�1) be the
image in DM of the object

cone
(
(i∗0, i

∗
∞) : Z�1(0)(i0∪i∞∪id�1 ) → ZS ⊕ ZS

)
[−1]

of Cb
mot(SmS). Letting ∂�1 be the set of divisors {i0(S), i∞(S)}, the notation

Z(�1;∂�1) agrees with the notation for relative motives given in Chapter I, §2.6.6.
Let ∆P1S

be the diagonal in P1S ×S P1S, and let D be the intersection of ∆P1S

with the open subscheme T ×S �1. As in (Chapter IV, §2.3.4 and (IV.2.3.4.1)), the
cycle class of D, cl(|D|) : 1 → Z(�1×T ;∂�1×T,�1×1)(1)[2], gives us the map

δ : 1 → Z(�1;∂�1)(1)[2]⊗ ZGm .

Let t := X1/X0 be the canonical rational function on P1S. Let �n be the n-fold
product of �1 over S, with the rational coordinate functions t1, . . . , tn, and let
∂�n be the collection of divisors ∂�n := {t1 = 0, t1 = ∞, . . . , tn = 0, tn = ∞}.
This gives us the relative motive Z(�n;∂�n). The Künneth isomorphism gives the
canonical isomorphism

Z(�n;∂�n)
∼= Z⊗n(�1;∂�1).(1.1.1.1)

Taking the nth tensor power of δ, and using the identification (1.1.1.1) gives
us the map

δ⊗n : 1 → Z(�n;∂�n)(n)[2n]⊗ Z⊗nGm
.

293
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1.1.2. Lemma. For each n = 1, 2, . . . , the pair (δ⊗n,Z(�n;∂�n)(n)[2n]) is the dual
of Z⊗nGm

.

Proof. We reduce immediately to the case n = 1. The result is then a special
case of Lemma 2.3.5 of Chapter IV.

1.1.3. Now let u ∈ Γ(X,O∗X) be a unit on a smooth S-scheme X . We view u as

a map u :X → A1S \ {0}; sending u to the composition ZGm

π0−→ ZA1
S\{0}

u∗
−→ ZX

gives the map of sets

clGm,X : Γ(X,O∗X) → HomDM(ZGm ,ZX).

We compose with the duality isomorphism

HomDM(ZGm ,ZX) ∼= HomDM(1,ZX ⊗ ZD
Gm

),

the isomorphism of Lemma 1.1.2,

HomDM(1,ZX ⊗ ZD
Gm

) ∼= HomDM(1,ZX ⊗ Z(�1;∂�1)(1)[2]),

and the Künneth isomorphism

HomDM(1,ZX ⊗ Z(�1;∂�1)(1)[2]) ∼= HomDM(1,Z(X×�1;X×∂�1)(1)[2]),

to give the map

clGD
m,X : Γ(X,O∗X) → HomDM(1,Z(X×�1;X×∂�1)(1)[2]).

Similarly, if u :X → A1S \ {0} is a unit, the cycle class of the graph Γu in
X × (A1S \ {0}) gives a well-defined cycle class map

cl[Γu] : 1 → Z(X×�1;X×∂�1)(1)[2]

as in Chapter IV, §2.3.1.

1.1.4. Lemma. (i) For u in Γ(X,O∗X), we have

cl[Γu] = clGD
m,X(u).

(ii) The map clGm,X : Γ(X,O∗X) → HomDM(ZGm ,ZX) is a group homomorphism,
and is natural with respect to morphisms f :Y → X in SmS .

Proof. The map clGD
m,X(u) is given by the composition

1 δ−→ ZGm ⊗ Z(�1;∂�1)(1)[2]
u∗⊗id−−−−→ ZX ⊗ Z(�1;∂�1)(1)[2] ∼= Z(X×�1;X×∂�1)(1)[2].

This is the same as the composition

1
cl∂,D(1·D)−−−−−−−→ Z(Gm×�1;Gm×∂�1),D(1)[2]

(u×id)∗−−−−−→ Z(X×�1;X×∂�1),Γu(1)[2]

−→ Z(X×�1;X×∂�1)(1)[2].

Since (u × id)∗(D) = Γu, this in turn is the same as the composition

1
cl∂,Γu (1·Γu)−−−−−−−−→ Z(X×�1;X×∂�1),Γu(1)[2] −→ Z(X×�1;X×∂�1)(1)[2],

which is exactly cl[Γu].
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For (ii), let ∆2 be the open subscheme of P2S (with projective coordinates
X0, X1, X2) defined by X0 − X1 −X2 �= 0, and let ∂∆2 be the set of closed sub-
schemes {D0, D1, D2}, with Di defined by Xi = 0. We identify each Di with �1
by the respective coordinate functions X1/X0 on D2, X2/X0 on D1, and −X2/X1
on D0, giving the three inclusions ij : �1 → ∆2, j = 0, 1, 2.

Use the standard coordinate functions t1, t2 on T 2, and let W be the subscheme
of T 2 × ∆2 defined by t2X1 + t1X2 = t1t2X0. Let pj :T 2 → T , j = 1, 2, be the
projections, and let q : T 2 → T be the map q(t1, t2) = t2/t1. Then

(1.1.4.1) (id× i2)∗(W )− (id× i1)∗(W ) + (id× i0)∗(W )

= (p1 × id)∗(D)− (p2 × id)∗(D) + (q × id)∗(D)
= Γt1 − Γt2 + Γt2/t1 .

We have the standard affine n-simplex

∆n := SpecOS [t0, . . . , tn]/
n∑

i=0

ti − 1.

We identify �1 with ∆1 by sending 0 to (0, 1) and ∞ to (1, 0), and identify ∆2 with
∆2 by sending Di to the face ti = 0 of ∆2, i = 0, 1, 2, both via affine linear maps.

Under these identifications, if Y is a smooth S-scheme, then a divisor on Y ×�1
which is disjoint from Y × {0,∞} defines an element of CHnaif(ZY (1)[2], 1) (see
Chapter II, Definition 2.3.1). The relation (1.1.4.1) shows that the cycle Γt1−Γt2 +
Γt2/t1 is zero in CHnaif(Z(A1\{0})2(1)[2], 1). As the cycle class map factors through
the class in CHnaif via the naive cycle class map (see (II.2.3.6.1)), it follows that

cl[Γt2/t1 ] = cl[Γt2 ] − cl[Γt1 ].

By (i), and the duality isomorphism, this proves that clGm,X is a group homomor-
phism.

The naturality of clGm,X follows easily from the definition.

1.1.5. The Steinberg relation. We give a proof of the Steinberg relation, based solely
on formal properties in DM.

We first note that the Leibnitz rule for relative motivic cohomology holds with
respect to localization sequences: Let X be in SmS , and j :U → X an open
subscheme with reduced closed complement i :W → X . Suppose that W is smooth
over S. The Gysin isomorphism ZW (−1)[−2] ∼= ZX,W gives us the distinguished
triangle in DM,

ZW (−1)[−2] i∗−→ ZX
j∗−→ ZU

∂−→ ZW (−1)[−1].(1.1.5.1)

The appropriate diagonal maps composed with the external products give rise
to the cup products

∪X : ZX ⊗ ZX → ZX ,

∪U,X : ZU ⊗ ZX → ZU ,

∪W,X : ZW ⊗ ZX → ZW ,

∪U : ZU ⊗ ZU → ZU ,

∪W : ZW ⊗ ZW → ZW ,
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with

∪W,X = ∪W ◦ (id⊗ i∗),

(1.1.5.2) ∪U,X = ∪U ◦ (id⊗ j∗).

1.1.6. Lemma. Let Γ be an object of DM, f : Γ → ZU and g : Γ → ZX morphisms
in DM. Then

∂(f ∪U j∗g) = ∂(f) ∪W i∗(g).

Proof. Tensoring the distinguished triangle (1.1.5.1) with Z(X;D) gives the
distinguished triangle

ZW ⊗ ZX(−1)[−2] i∗⊗id−−−→ ZX ⊗ ZX
j∗⊗id−−−→ ZU ⊗ ZX

∂⊗id−−−→ ZW ⊗ ZX(−1)[−1].

(1.1.6.1)

The maps ∪W,X , ∪X and ∪U,X define the map of the distinguished triangle (1.1.5.1)
to the distinguished triangle (1.1.6.1). This, together with the identity (1.1.5.2),
completes the proof.

We let t1, t2 be the standard coordinate functions on T 2, giving elements xi :=
clGm,T 2(ti), i = 1, 2, of HomDM(ZGm ,ZT 2), and the cup product x1∪T 2 x2 : Z⊗2Gm

→
ZT 2 . Let L0 = A1 \ {0, 1}, and let ι :L0 → T 2 be the map

ι(t) = (t, 1− t).

We also have the map

ρ :T → T 2

ρ(t) = (t,−t).

1.1.7. Proposition [The Steinberg relation]. (i) The map ι∗ ◦ (x1 ∪X x2) : Z⊗2Gm
→

ZL0 is zero.
(ii) The map ρ∗ ◦ (x1 ∪X x2) : Z⊗2Gm

→ ZT is zero.

Proof. (i) Let Y = A2 \ A1 × 0 = A1 × T , let µ : Ỹ → Y be the blow-up of
Y at the point (0, 1), and let E be the exceptional curve E := µ−1((0, 1)). The
inclusion of A1× 1 in Y lifts to the inclusion i1 : A1 → Ỹ and the inclusion of 0×T
into Y lifts uniquely to the inclusion i0 :T → Ỹ .

Let F1 be the image of i1 and F0 the image of i0 and let X = Ỹ \ F0. Let
W = X ∩ E, and let j :U → X be the inclusion of X \ W . Then µ gives an
isomorphism µ0 :U → Y \ 0× T = T 2.

Let z be the rational function (1 − t2)/t1 on X ; then z is a regular function
and (z, t1) are global coordinates on X . In addition, F1 is contained in X , and
F1 and W are defined respectively by the equations z = 0, t1 = 0 The function
t2 = 1 − t1z is a unit on X , and t1 is a unit on U . This gives us the identity
µ∗0(x1 ∪ x2) = µ∗0(x1) ∪ j∗µ∗(x2).

The exact triangle

ZW (−1)[−2] −→ ZX
j∗−→ ZU

∂−→ ZW (−1)[−1]

gives the exact Hom-sequences

HomDM(Z⊗iGm
,ZX)

j∗−→ HomDM(Z⊗iGm
,ZU ) ∂i−→ HomDM(Z⊗iGm

,ZW (−1)[−1])
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for i = 1, 2, . . . . By the Leibnitz rule (Lemma 1.1.6), we have

∂2(µ∗0(x1 ∪ x2)) = ∂2(µ∗0(x1) ∪ j∗µ∗(x2))

= ∂1(µ∗0(x1)) ∪ i∗W (µ∗(x2))

= ∂1(µ∗0(x1)) ∪ clGm,W (i∗W (µ∗(t2)))

= ∂1(µ∗0(x1)) ∪ clGm,W (1)
= 0.

Thus µ∗0(x1 ∪ x2) lifts to a map γ : Z⊗2Gm
→ ZX .

Both F1 and W are isomorphic to A1S , hence by the homotopy axiom there are
maps γF1 : Z⊗2Gm

→ ZS , γW : Z⊗2Gm
→ ZS , such that

i∗F1 ◦ γ = p∗F1 ◦ γF1 ; i∗W ◦ γ = p∗W ◦ γW ,

where pW :W → S, pF1 :F1 → S are the structure maps. Since F1 and W intersect
(at the point (z, t1) = (0, 0)), we have γF1 = γW . Additionally, F1 ∩ U maps to
A1 × 1 via µ0; let µ̄0 :F1 ∩ U → A1 × 1 be the induced map. Then

i∗F1∩U ◦ γ = µ̄∗0 ◦ i∗A1×1 ◦ (x1 ∪ x2) = 0,

since t2 = 1 on A1 × 1. Thus γF1 = 0, hence

i∗W ◦ γ = p∗W ◦ γW = p∗W ◦ γF1 = 0.

Now blow-up A2 at (1, 0) and (0, 1), τ :Y1 → A2, with exceptional curve
E1
∐

E2, E1 := τ−1((0, 1)), E2 := τ−1((1, 0)). The inclusion of A1 × 0 ∪ 0× A1 in
A2 lifts to the inclusion i : A1 × 0 ∪ 0 × A1 → Y1. Let F be the image of i, and let
Wi = Ei\F. Let V = τ−1(T 2), X1 = Y1\F , and let τ0 :V → T 2 be the restriction of
τ . A neighborhood of W1 in Y1 is isomorphic to X ; repeating the above argument
for the corresponding neighborhood of W2 in Y1, we find that τ∗0 (x1 ∪ x2) extends
to a map γ1 : Z⊗2Gm

→ ZX1 with

i∗W1
◦ γ1 = 0 = i∗W2

◦ γ1.
The inclusion ι :L0 → T 2 extends uniquely to the inclusion ι1 : A1S → X1 with

ι1(0) ∈ W1 and ι1(1) ∈ W2. Letting j :L0 → A1S be the inclusion, we have

j∗ ◦ ι∗1 ◦ γ1 = ι∗ ◦ (x1 ∪ c2).

On the other hand, by the homotopy property there is a map γ0 : Z⊗2Gm
→ ZS with

ι∗1 ◦ γ1 = p∗ ◦ γ0, where p : A1S → S is the structure map. Since i∗W1
◦ γ1 = 0, it

follows that γ0 = 0.
For (ii), let ρ0 :L0 → T 2 be the restriction of ρ to L0, and let σ :L0 → L0 be

the map σ(t) = t−1. Then

(1.1.7.1)

0 = (ι ◦ σ)∗ ◦ (x1 ∪ x2) = clGm(1/t) ∪ clGm((t− 1)/t)

= clGm(t) ∪ clGm(−t)− clGm(t) ∪ clGm(1 − t)

= clGm(t) ∪ clGm(−t)
= ρ∗0(x1 ∪ x2).

Now let x :S → A1S be a section, and p : A1S → S the structure morphism; by
the homotopy property, the map x∗ : ZA1

S
→ ZS is inverse to p∗ : ZS → A1S . As the

sections x+ 1 and x are disjoint, it follows from Theorem 2.4.9 of Chapter III that
(x+1)∗◦x∗ = 0, hence x∗ : ZS(−1)[−2] → A1S is the zero map. Let j :T → A1S be the
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inclusion and let y :S → T be a section. Then y∗ = j∗ ◦ (j ◦ y)∗ = 0. In particular,
for the section i1 :S → T with value one, the Gysin map i1∗ : ZS(−1)[−2] → ZT is
the zero map.

Letting k :L0 → T be the inclusion, we have seen that k∗ ◦ (ρ∗ ◦ (x1 ∪ x2)) = 0.
From the Gysin distinguished triangle

ZS(−1)[−2] i1∗−−→ ZT
k∗
−→ ZL0 → ZS(−1)[−1],

there is a map α : ZT 2 → ZS(−1)[−2] with ρ∗ ◦ (x1 ∪ x2) = i1∗ ◦ α = 0.

1.1.8. Milnor K-groups. For a field F , the graded ring KM
∗ (F ) is defined to be the

tensor algebra (over Z) of the multiplicative group F× of F , modulo the two-sided
ideal generated by elements of the form a⊗ (1− a), with a, 1− a ∈ F×. From the
identity used in (1.1.7.1), this ideal also contains the elements a ⊗ −a, a ∈ F×,
hence KM

∗ (F ) is graded commutative.
For an arbitrary commutative ring, one can mimic this definition defining the

graded ring KM
∗ (R) by

KM
∗ (R) := ⊕∞n=0(R×)⊗Zn/I,

with I the two-sided ideal generated by elements a⊗ (1 − a), with a, 1 − a ∈ R×,
and a⊗−a, with a ∈ R×. It follows from Lemma 1.1.4 and Proposition 1.1.7 that
the map clGm,X descends uniquely to a graded ring homomorphism

clMGm,X :KM
∗ (Γ(X,OX)) → ⊕∞n=0HomDM(Z⊗nGm

,ZX).

Via the duality isomorphism from Lemma 1.1.2, clMGm,X induces the graded ring
homomorphism

clMGD
m,X :KM

∗ (Γ(X,OX)) → ⊕∞n=0HomDM(1,Z(X×�n,X×∂�n)(n)[2n]).

As in (Chapter II, Lemma 2.3.5), the identification of ZX(n) with the summand
of the complex Z(X×�n,X×∂�n)(n) corresponding to the vertex (0, . . . , 0) of �n

determines an isomorphism in DM:

iX,n : ZX(n)[−n] → Z(X×�n,X×∂�n)(n).

Composing clMGD
m,X with iX,n[n]−1 gives the natural graded ring homomorphism

clMX :KM
∗ (Γ(X,OX)) → ⊕∞n=0Hn(X,Z(n)).(1.1.8.1)

1.1.9. Theorem. Suppose that S = Spec k, where k is a field, and let F be a
finitely generated field over k. Then the map (1.1.8.1) (for X = SpecF ) is an
isomorphism.

Proof. Let u1, . . . , un be units in a commutative ring R and let X = SpecR.
It follows from Lemma 1.1.4(i) that clMGD

m,X({u1, . . . , un}) is represented by the
cycle class map associated to the graph of the morphism (u1, . . . , un) :X → �n.

Let ∂0�n be the subset of ∂�n gotten by deleting the divisor tn = 0, and write
Zq(X,n)c for the cycle group Zq(Z(X×�n;X×∂0�n)(q)[2q]). Explicitly Zq(X,n)c can
be defined as follows: Let Zq(X,n)′ be the subgroup of Zq(X ×�n) generated by
irreducible codimension q subschemes W of X × �n such that W intersects each
“face” X×F in codimension q, where F is a subvariety of �n defined by an equation
of the form ti1 = ε1, . . . , tis = εs, εi ∈ {0, 1}. For each i, we have the restriction to
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the face X × ∂εi�n, defined by ti = ε, ε ∈ {0, 1}, δ∗i,ε :Zq(X,n)′ → Zq(X,n − 1)′,
and

Zq(X,n)c = ∩n
i=0 ker(δ∗i,1) ∩ ∩n−1

i=0 ker(δ∗i,0).

The map δ∗n,0 gives us the map dn :Zq(X,n)c → Zq(X,n−1)c, forming the complex
Zq(X, ∗)c.

In [85], we have constructed a natural quasi-isomorphism

φX :Zq(X, ∗)c → Zq(X, ∗);

additionally, one can repeat the arguments of Chapter II, replacing Zq(X, ∗)c with
Zq(X, ∗) throughout, and replacing the truncated simplicial object Z≤nX×∆∗ with the
cubical object Z(X×�n;X×∂0�n), to show that sending a cycle Z ∈ Zp(Zq(X, ∗)c) to
the corresponding morphism in DM, cl[Z] : 1 → ZX(q)[2q−p], gives an isomorphism

Hp(Zq(X, ∗)c) ∼= H2q−p(X,Z(q)).(1.1.9.1)

In [122] it is shown that the map sending (u1, . . . , un) ∈ F×n to the point
(u1, . . . , un) of SpecF × �n gives an isomorphism KM

n (F ) → Hn(Zq(X, ∗)c);
putting this together with the explicit description of the map clMGD

m,X , and the
isomorphism (1.1.9.1) proves the theorem.

1.1.10. The localization connecting homomorphism. For the discussion of the con-
necting homomorphism, we assume the base scheme S is normal. Let U be a dense
open subscheme of some X ∈ SmessS , and let f be a unit on U . We extend f to a
rational function on X , which we may view as a morphism f :X0 → P1, where X0

is the complement of a codimension two closed subset of X . Let W := X0 \ U .
We have the element clMU (f) ∈ H1(U,Z(1)); we want to compute the image of

clMU (f) in H2(X0,Z(1)) under the connecting homomorphism in the localization
sequence (Chapter I, §2.2.10)

. . .→ H1(X0,Z(1)) → H1(U,Z(1)) ∂−→ H2W (X0,Z(1)) → . . .

1.1.11. Proposition. Suppose that Div(f) is in Z1(X0/S). Then

∂(clMU (f)) = cl1X0,W (Div(f)).

Proof. Since f is a morphism on X0, the zero locus and infinity locus of f
are disjoint; it follows from excision that

ZX0,f−1(0)
`

f−1(∞) ∼= ZX0\f−1(∞),f−1(0) ⊕ ZX0\f−1(0),f−1(∞).

Thus, we may compute the boundary terms due to the zero’s and poles of f sepa-
rately, hence we may assume that f is a regular function on X0. By functoriality,
we reduce to the case U = T := A1 \ {0}, X0 = A1, f = t, with t the standard
coordinate on A1.

We now construct various relative motives and relative motives with support;
to simplify the notation, we omit the auxiliary h from the notation ZX(q)h.

We have the relative motive

Z(T×�1;T×{0,∞}) := cone
(
ZT×�1

(i∗0 ,i
∗
∞)−−−−→ ZT×0 ⊕ ZT×∞

)
[−1].

Let Γ be the intersection of the diagonal ∆P1 ⊂ P1 × P1 with the open subscheme
T ×�1; Γ is then Γt in the notation of §1.1.3.
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Let U := T ×�1\Γ. We have the relative motive Z(U ;T×{0,∞}) and the relative
motive with support,

Z(T×�1;T×{0,∞}),Γ := cone
(
Z(T×�1;T×{0,∞})

(j∗U ,id)−−−−→ Z(U ;T×{0,∞})
)
[−1].

Let Γ̄ be the closure of Γ in A1 ×�1, and let V := A1 × �1 \ Γ̄. We have the
relative motive

Z(A1×�1;T×0,A1×∞) := cone
(
ZA1×�1

(i∗0 ,i
∗
∞)−−−−→ ZT×0 ⊕ ZA1×∞

)
[−1],

the relative motive with support

Z(A1×�1;T×0,A1×∞),Γ̄ := cone
(
Z(A1×�1;T×0,A1×∞)

(j∗V ,id)−−−−→ Z(V ;T×0,A1×∞)
)
[−1],

and the relative motive

Z(A1×�1;A1×{0,∞}) := cone
(
ZA1×�1

(i∗0 ,i
∗
∞)−−−−→ ZT×0 ⊕ ZA1×∞

)
[−1].

We have the commutative diagram

Z(A1×�1;T×0,A1×∞),Γ̄ ��
j∗

��

π

Z(T×�1;T×{0,∞}),Γ

��

π

ZA1×�1,Γ̄
��

j∗

ZT×�1,Γ

where the maps j∗ are given by the appropriate collection of restriction maps (to
open subschemes), and the maps π are the projections onto the quotient complexes

ZA1×�1,Γ̄ := cone
(
ZA1×�1

j∗V−→ ZV

)
[−1]

ZT×�1,Γ := cone
(
ZT×�1

j∗U−→ ZU

)
[−1].

The maps π are isomorphisms in the homotopy category; from this, we see that
the class of the cycle |Γ|, cl∂,Γ(|Γ|) : 1 → Z(T×�1;T×{0,∞}),Γ(1)[2] (see §1.1.3), lifts
canonically to the class of the cycle |Γ̄|, cl∂,Γ̄(|Γ̄|) : 1 → Z(A1×�1;T×0,A1×∞),Γ̄(1)[2].

Let

cl[Γ] : 1 → Z(T×�1;T×{0,∞})(1)[2],

cl[Γ̄] : 1 → Z(A1×�1;T×0,A1×∞)(1)[2]

be the maps induced by cl∂,Γ(|Γ|) and cl∂,Γ̄(|Γ̄|) by forgetting the support.
We have the commutative diagram, with the columns being the localization

distinguished triangles, and horizontal maps the isomorphisms in DM induced by
the inclusion of Z? as the summand Z?×0:

ZA1(1)[1] ��i

��

Z(A1×�1;A1×{0,∞})(1)[2]

��

k∗(1)[2]

ZT (1)[1] ��i

��

∂

Z(T×�1;T×{0,∞})(1)[2]

��

∂

ZA1,{0}(1)[2] ��i cone(k∗)(1)[2].
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We have as well the commutative diagram

Z(A1×�1;A1×{0,∞})

��

k̃∗

Z(A1×�1;A1×{0,∞})

��

k∗

Z(A1×�1;T×{0},A1×{∞}) ��
j̃

��

ρ

Z(T×�1;T×{0,∞})

��

∂

cone(k̃∗) ��
j

cone(k∗)

with ρ the canonical map; it follows directly from the homotopy property that
j̃ is an isomorphism in DM, hence the map j is an isomorphism as well. The
map i lifts in the evident manner to the map ĩ : ZA1,{0}(1)[1] → cone(k̃∗)(1)[2] with
j(1)[2] ◦ ĩ = i.

Let i0 : A1 → A1 ×�1 be the section with value 0. We have the map

Π: cone(k̃∗) → ZA1,{0},

defined by taking the sum of the maps

i∗0 : ZA1×�1 → ZA1 ,

−i∗0 : ZA1×0 → ZA1 ,

i∗0 : ZT×0 → ZT ,

and mapping all the remaining terms in cone(k̃∗) to zero. Let τ : ZA1×�1,Γ̄ →
Z(A1×�1;T×{0},A1×{∞}) be the standard homotopy inverse to π, followed by the
map “forget the support”. Let ĩ∗0 : Z(A1×�1;T×{0},A1×{∞}) → ZA1,{0} be the map on
the cones given by the maps

ZA1×�1
i∗0−→ ZA1 ,

ZT×0 ⊕ ZA1×∞
(i∗0+0)−−−−→ ZT .

This gives the commutative diagram

Z(A1×�1;A1×{0,∞})

��

k̃∗

Z(A1×�1;A1×{0,∞})

��

k̃∗

Z(A1×�1;T×{0},A1×{∞})

��

ρ

Z(A1×�1;T×{0},A1×{∞})

��

ĩ∗0

ZA1×�1,Γ̄
�� τ

��

i∗0

cone(k̃∗) ��
Π

ZA1,{0} ZA1,{0}.

We have in addition Π(1)[2] ◦ ĩ = idZ
A1,{0}(1)[2]

.

Thus, we have

∂(i−1(cl[Γ])) = i∗0(cl∂,Γ̄(|Γ̄|)) = clA1,{0}(|0|).

Since clM (t) = i−1(cl[Γ]) (by Lemma 1.1.4), and since |0| = Div(t), the proof is
complete.
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1.1.12. Remark. Suppose that X is in Smk, for k a field. By semi-purity (Chap-
ter III, Theorem 2.2.5), and the fact that the complement of X0 in X has codimen-
sion two, it follows that the restriction map H2

W̄
(X,Z(1)) → H2W (X0,Z(1)) is an

isomorphism, for all closed subsets W of X0. Thus, Proposition 1.1.11 implies the
identity ∂(clM (f)) = cl1X,W̄ (Div(f)), where ∂ is the connecting homomorphism in
the localization sequence

→ H1(X,Z(1)) → H1(U,Z(1)) ∂−→ H2W̄ (X,Z(1)) → .

1.1.13. The tame symbol. Let O be a DVR with residue field k and quotient field
K. We have the tame symbol homomorphism TO :KM

n (K) → KM
n−1(k), which is

characterized by the following properties:

1. TO vanishes on the image of KM
n (O).

2. Let π be a generator of the maximal ideal of O, and let u2, . . . , un be units
in O. Then TO({π, u2, . . . , un}) = {ū2, . . . , ūn}, with ūi the image of ui in
k.

For details on Milnor K-theory, and the tame symbol map, we refer the reader to
[7] and [99].

Now take O = OX,D, where X is in SmS and D is a reduced irreducible
codimension one closed subscheme of X , with generic point a regular point of
X . Let Y := SpecO, W := Spec k, and U := Y \W . We have the connecting
homomorphism ∂ in the Gysin sequence

Hn(Y,Z(n)) → Hn(U,Z(n)) ∂−→ Hn−1(W,Z(n− 1)),

and the diagram

Hn(U,Z(n)) ��∂
Hn−1(W,Z(n− 1))

KM
n (K) ��

TO

��

clMU

KM
n−1(k).

��

clMW(1.1.13.1)

1.1.14. Lemma. The diagram (1.1.13.1) is commutative.

Proof. From the exactness of the Gysin sequence

Hn(Y,Z(n)) → Hn(U,Z(n)) ∂−→ Hn−1(W,Z(n− 1)),

and the functoriality of clM? , we see that we see that ∂ vanishes on clMU of the image
of KM

n (O). The Leibnitz rule (Lemma 1.1.6) implies that

∂(clMU ({π, u2, . . . , un})) = ∂(clMU (π) ∪U j∗UclMY ({u2, . . . , un}))
= ∂(clMU (π)) ∪W i∗W clMY ({u2, . . . , un}).

By Proposition 1.1.11, and the functoriality of clM? , we have

∂(clMU (π)) ∪W i∗W clMY ({u2, . . . , un}) = cl0(|W |) ∪W clMW ({ū2, . . . , un});

since cl0(|W |) is the unit in the motivic cohomology ring of W (Chapter I, Propo-
sition 3.5.6), the proof is complete.
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1.1.15. The Milnor K-sheaf. Suppose now that the base scheme S is Spec of a
perfect field, and let X be in SmessS . One may define the Zariski sheaf KM

n on X
as the kernel of the map∐

x∈X(0)

ix∗K
M
n (k(x))

`
x∈X(1) Tx

−−−−−−−→
∐

x∈X(1)

ix∗K
M
n−1(k(x)),

where Tx stands for the tame symbol map TOX,x . We have the motivic cohomology
sheaf Hn(Z(n)) on X defined as the Zariski sheaf associated to the presheaf U �→
Hn(U,Z(n)); it follows from (Chapter II, Theorem 3.4.8 and Proposition 3.6.2)
that the sequence

0 → Hn(Z(n))
`

x∈X(0) i
∗
x−−−−−−−→

∐
x∈X(0)

ix∗H
n(k(x),Z(n))

`
x∈X(1) ∂x−−−−−−−→

∐
x∈X(1)

ix∗H
n−1(k(x),Z(n − 1))

is exact, where ∂x is the connecting homomorphism in the localization sequence

→ Hn(SpecOX,x,Z(n)) → Hn(Spec k(X)x,Z(n)) ∂−→ Hn−1(k(x),Z(n− 1)) →,

with k(X)x the function field of the irreducible component of X containing x.
It follows directly from Lemma 1.1.14 that the maps

clMk(x) :K
M
n (k(x)) → Hn(k(x),Z(n))

for x ∈ X(0) induce the map of Zariski sheaves

clMX :KM
n → Hn(Z(n)).(1.1.15.1)

The following is thus a direct consequence of Theorem 1.1.9:

1.1.16. Theorem. Let k be a perfect field, X in Smessk . Then the map (1.1.15.1)
is an isomorphism of Zariski sheaves on X .

1.2. Motivic polylogarithm

We give a version of Beilinson’s construction of the rational motivic polylogarithm
[9], keeping track of the denominators. For a detailed description of Beilinson’s
construction, and Zagier’s conjecture on polylogarithms and values of L-functions,
see [13], [68], and [129].

1.2.1. The cube of schemes Y (n). As in §1, we have the S-scheme T := A1S \{i0(S)}.
This gives us the S-scheme T n+1, with coordinate functions x0, . . . , xn. We have
as well the coordinates y0, y1, . . . , yn with

yi =

{
xi/xi+1 0 ≤ i < n,

xn i = n.

We view T n+1 as a T -scheme via the coordinate function x0 :T n+1 → T .
For i = 0, . . . , n let Y (n)i be the subscheme yi = 1 of T n+1. More generally, for

a subset I of {0, . . . , n}, let Y
(n)
I be the subscheme of T n+1 defined by

Y
(n)
I =

{
∩i∈IY

(n)
i for I �= {0, . . . , n},

∅ for I = {0, . . . , n}.
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This defines the n + 1-cube Y (n), I �→ Y
(n)
I , where Y

(n)
J⊃I :Y (n)J → Y

(n)
I is the

inclusion.
Form the object ZY (n) in Cb(SmS) as the complex

(1.2.1.1) ZTn+1(0)f∅
d0−→ ⊕n

i=0ZY
(n)
i

(0)f{i}
d1−→ . . .

. . .
dk−1

−−−→ ⊕|I|=kZ
Y
(n)
I

(0)fI
dk−→ . . .

dn−1

−−−→ ⊕|I|=nZ
Y
(n)
I

(0)fI ,

where dk is the sum of the maps dkI , I = {i0 < . . . < ik},

dkI :=
k∑

j=0

(−1)jY (n)∗I\{ij}⊂I : ⊕k
j=0 Z

Y
(n)
I\{ij}

→ Z
Y
(n)
I

,

and the maps f I are given by

f I =
⋃
J⊃I

J ,={0,... ,n}

Y
(n)
J⊃I :

∐
J⊃I

J ,={0,... ,n}

Y
(n)
J → Y

(n)
I .

Here the term ZTn+1 is in degree 0. Note that we may construct ZY (n) from the
relative motive Z

(Tn+1;Y
(n)
0 ,... ,Y

(n)
n )

(see Chapter I, §2.6.6) by deleting the degree
n + 1 term ZY (n)(0){0,... ,n}, and deleting the component

Y
(n)
{0,... ,n}⊃I :Y (n){0,... ,n} → Y

(n)
I

from the maps giving the lifting of Y (n) to an n+1-cube in L(SmS), as in Chapter I,
§2.6.2.

If t :U → T is a T -scheme, smooth over S, we have the n+1-cube of U -schemes
I �→ Y

(n)
tU,I := U ×T Y

(n)
I , giving us the complex Z

Y
(n)
tU

constructed as in (1.2.1.1).

We denote by tU(−n) the n-cube I �→ U ×T Y
(n)
I , I ⊂ {1, . . . , n}, giving the

relative motive ZtU(−n) in Cb(SmS) (Chapter I, §2.6.6).
The T -isomorphism

jn :T n+1 → T n+1

(x0, . . . , xn) �→ (x0, y1, . . . , yn)

sends Y
(n)
i to the subscheme yi = 1 for i = 1, . . . , n. The inclusions

in :T n → T n+1

(x0, . . . , xn−1) �→ (x0, x0, x1, . . . , xn−1)

give the isomorphism in :Y (n−1)i → Y
(n)
0,i+1. Pulling back by t :U → T gives the map

i∗tU,n : ZtU(−n) → Z
Y
(n−1)
tU

and the isomorphism

j∗tU,n : ZU×SGn
m
→ ZtU(−n).(1.2.1.2)

From the construction of Z
Y
(n)
tU

, we have the identity in Cb(SmS):

Z
Y
(n)
tU

= cone(i∗tU,n)[−1].(1.2.1.3)
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1.2.2. The spectral sequence. The isomorphism (1.2.1.2), together with the Künneth
isomorphism in DM(S), ZU×Gn

m
∼= ZU ⊗ Z⊗nGm

, and the isomorphism ZGm
∼=

ZS(−1)[−1], gives the natural isomorphism

Hp(ZtU(−n),Z(q)) ∼= Hp−n(U,Z(q − n)).(1.2.2.1)

From (1.2.1.3), we have the linked distinguished triangles

Z
Y
(n−1)
tU

[−1] −→ Z
Y
(n)
tU

−→ ZtU(−n) −→ Z
Y
(n−1)
tU

,

Z
Y
(n−2)
tU

[−1] −→ Z
Y
(n−1)
tU

−→ ZtU(−n+1) −→ Z
Y
(n−2)
tU

,(1.2.2.2)

...

Z
Y
(0)
tU

[−1] −→ Z
Y
(1)(−1)n−1
tU

−→ ZtU(−1) −→ Z
Y
(0)
tU

.

As Y
(0)
tU = U , (1.2.2.1) and (1.2.2.2) give us the convergent spectral sequence

Ep,q
1 (tU, n) = Hq(U(p),Z(N)) ∼= Hp+q(U,Z(N + p)) =⇒ Hp+q+n(Z

Y
(n)
tU

,Z(N)).
(1.2.2.3)

with Ep,q
1 = 0 for p > 0, p < −n. We now examine this spectral sequence.

Let a ≥ 1 be an integer. and let ta :T p+1 → T p+1 be the morphism

(x0, . . . , xp) �→ (xa0 , . . . , x
a
p).

The morphism ta maps Y
(p)
I to Y

(p)
I for each subset I of {0, . . . , n}, giving the

morphisms Z
Y
(p)
tU

t∗a−→ Z
Y
(p)
t◦taU

and ZU(−p)
t∗a−→ ZU(−p). As these preserve the linked

distinguished triangles (1.2.2.2), the morphism ta thus induces a map of the spectral
sequences (1.2.2.3) t∗a :E(tU, n) → E(t ◦ taU, n).

1.2.3. Lemma. (i) The differential

dp,q1 (tU, n) :Hp+q(U,Z(N + p)) → Hp+q+1(U,Z(N + p + 1))

is ∪clGm((−1)p−1t).
(ii) Let iW :W → U be the inclusion of a closed codimension one subscheme W
in SmS , giving the open complement jV :V → U . Then we have a canonical
distinguished triangle in DM(S):

Z
Y
(n)
t◦iWW

(−1)[−2] iW∗−−→ Z
Y
(n)
tU

j∗V−→ Z
Y
(n)
t◦jV V

∂W−−→ Z
Y
(n)
t◦iWW

(−1)[−1].

This gives the localization sequence

. . .→ Hp−2(Z
Y
(n)
t◦iWW

,Z(N − 1)) iW∗−−→ Hp(Z
Y
(n)
tU

,Z(N))

j∗V−→ Hp(Z
Y
(n)
t◦jV V

,Z(N)) ∂W−−→ Hp−1(Z
Y
(n)
t◦iWW

,Z(N − 1)) −→ . . . ,

and induces a long exact sequence of Er-terms for the spectral sequence (1.2.2.3):

→ Ep−1,q−1
r (W ) iW∗−−→ Ep,q

r (U)
j∗V−→ Ep,q

r (V ) ∂W−−→ Ep−1,q
r (W ) → .(1.2.3.1)

For r = 1, the sequence (1.2.3.1) agrees with the usual localization sequence

. . .→ Hp+q−2(W,Z(p + N − 1)) iW∗−−→ Hp+q(U,Z(p + N))
j∗V−→ Hp+q(V,Z(p + N)) ∂W−−→ Hp+q−1(W,Z(p + N − 1)) → . . . .



306 VI. MOTIVIC CONSTRUCTIONS AND COMPARISONS

(iii) Let iζ :S → T be the section with value ζ, with ζN = 1, and let a ≥ 1 be an
integer with a ≡ 1 mod N . Then iζ◦ta = iζ , and the induced map t

∗
a :Ep,q

r (iζ , n) →
Ep,q
r (iζ , n) is multiplication by a−p.

Proof. The composition jp ◦ ip ◦ j−1p−1 is the map

(x0, y1, . . . , yp−1) �→ (x0, x0/
p−1∏
i=1

yi, y1, . . . , yp−1).

The isomorphism Hp+q(U,Z(N + p)) → Hq(U(−p),Z(N)) (1.2.2.1) sends a class α
to α ∪ clGm(y1) ∪ . . . ∪ clGm(yp). The relation clGm(y) ∪ clGm(−y) = 0 of Proposi-
tion 1.1.7(ii) gives

(1.2.3.2) (jp ◦ ip ◦ j−1p−1)
∗(clGm(y1) ∪ . . . ∪ clGm(yp))

= clGm((−1)p−1x0/
p−1∏
i=1

−yi) ∪ clGm(y1) ∪ . . . ∪ clGm(yp−1)

= clGm((−1)p−1x0) ∪ clGm(y1) ∪ . . . ∪ clGm(yp−1).

As the differential d−p,q1 (tU, n) is given by the composition

ZU (−p)[−p] ∼= ZU(−p)
(jp◦ip◦j−1

p−1)
∗

−−−−−−−−−→ ZU(−p+1) ∼= ZU (−p + 1)[−p + 1],

(i) follows from (1.2.3.2) and the naturality of the spectral sequence.
The assertion (ii) follows from the localization sequence for motives with sup-

port, together with the Gysin isomorphism for diagrams (III.2.6.8.2).
For (iii), we need only prove the case r = 1. The result then follows directly

from the identity

(1.2.3.3) t∗a(clGm(y1) ∪ . . . ∪ clGm(yp)) = clGm(ya1 ) ∪ . . . ∪ clGm(yap)

= apclGm(y1) ∪ . . . ∪ clGm(yp).

1.2.4. Some numerology. For p = 1, 2, 3, . . . , r = 1, . . . , p, let Np,r be the integer
defined as

Np,r = gcd
a=2,3,...

(ap − ap−r).

We note that Np,p = 1 and Np,1 = 2 for p > 1. If r < p, if q is a odd prime, and
k ≥ 1, then qk exactly divides Np,r if and only if k is the maximal number with
1 ≤ k ≤ p− r such that qk−1(q−1) divides r; if q−1 does not divide r, then q does
not divide Np,r. Similarly, suppose that r < p and that r > 1 and p− r > 1. Then
2k exactly divides Np,r if and only if k is the maximal number with 2 ≤ k ≤ p− r
such that 2k−2 divides r If p − r = 1, then 2 exactly divides Np,r. In particular,
only primes q ≤ r + 1 divide Np,r; more precisely: Np,r | 4(r + 1)!. On the other
hand, if r is prime, then Np,r = 2 for all p > r. Also, Np+N,r is eventually constant
in N . We set Np,r = 1 for r > p or for p ≤ 0.

1.2.5. Lemma. Let i1 :S → T be the section with value 1. Then the spectral
sequence E(i1S, n) satisfies N−p,rdp,qr = 0 for all p and q, and all r ≥ 1. In addition,
dp,q1 = 0 for p odd.
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Proof. From Lemma 1.2.3(i), the differential dp,q1 is given by

dp,q1 (x) = clGm((−1)p−1) ∪ x.

From Lemma 1.2.3(iii), we have a−pdp,qr (x) = dp,qr (a−px) = a−p−rdp,qr (x) for all
x ∈ Ep,q

r (i1, n), all q and all p = 0,−1, . . . ,−n.

We now take t :U → T to be the inclusion of T 0 := T \ {i1(S)}, and write Y
(n)
t

for Y
(n)
tT 0 . We write the motivic cohomology by Hp(Y (n)t ,Z(q)) := Hp(Z

Y
(n)
t

,Z(q)).
The localization sequence on T 0 gives the canonical isomorphism

ZS ⊕ ZS(−1)[−1]⊕ ZS(−1)[−1]
p∗+p∗∪clGm (t)+p

∗∪clGm (1−t)−−−−−−−−−−−−−−−−−−−−→ ZT 0 ,

where p :T 0 → S is the structure morphism. We denote the summand coming from
the image of p∗ ∪ clGm(t) as ZS(−1)[−1]∪ t, and similarly for ZS(−1)[−1]∪ (1− t).
The edge homomorphisms

E0,11 (t, n + 1) → Hn+1(Y (n)t ,Z(n + 1)) → E−n,n+11 (t, n + 1)

give the complex

0 → H1(S,Z(n + 1)) αn−−→ Hn+1(Y (n)t ,Z(n + 1))
βn−→ H1(T 0,Z(1)).(1.2.5.1)

For n ≥ 1, let Nn be the integer

Nn :=


1 for n = 1
2n
∏

r=2,... ,n−1Nn,r for n ≥ 2 odd,
2n+1

∏
r=2,... ,n−1Nn,r for n ≥ 2 even.

1.2.6. Proposition. Let N > 0 be an integer.
(i) If N · H0(S,Z(r)) = 0 and N · H−1(S,Z(0)) = 0 for all r = 1, . . . , n, then
homology of the complex (1.2.5.1) is killed by N .
(ii) If H0(S,Z(r))[1/N ] = 0 and H−1(S,Z(0))[1/N ] = 0 for all r = 1, . . . , n, then
homology of the complex (1.2.5.1) is killed by inverting N .
(iii) If n ≥ 2, we suppose that 2 is invertible on S. For all n ≥ 1, the image of βn
contains the subgroup Nn ·H0(S,Z(0)) ∪ (1− t).

Proof. For all −n ≤ p ≤ 0, we have the complex of E1-terms

→ Ep−1,q
1

∪clGm ((−1)
pt)−−−−−−−−−→ Ep,q

1

∪clGm ((−1)
p−1t)−−−−−−−−−−−→ Ep+1,q

1 →;

this gives the E2-terms as follows: For −n > p > 0, let

Modd(−p, q) := [Hq−p−1(S,Z(n − p− 1))/Hq−p−2(S,Z(n− p− 2)) ∪ clGm(−1)],

M ev(−p, q) := ker[Hq−p−1(S,Z(n− p− 1))
∪clGm (−1)−−−−−−−→ Hq−p(S,Z(n − p))].

Then

E−p,q2 =

{
Modd(−p, q) ∪ (1− t) for p odd,
M ev(−p, q) ∪ (1− t) for p even.

Let Modd be the subgroup of H1(S,Z(1))⊕H0(S,Z(0))∪t consisting of elements of
the form (x∪clGm(−1), x), and let M ev be the kernel of ∪clGm(−1):H0(S,Z(0)) →
H1(S,Z(1)). Then

E−n,n+12 =

{
Modd ⊕H0(S,Z(0)) ∪ (1− t) for n odd,
H0(S,Z(0)) ∪ t⊕M ev ∪ (1− t) for n even.
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We have a similar description of E−n,n2 , shifting the cohomology degree down by
one. Finally,

E0,q2 = Hq(S,Z(n + 1))⊕ [Hq−1(S,Z(n))/Hq−2(S,Z(n− 1)) ∪ clGm(−1)] ∪ (1− t).

All these computations are easy consequences of the relations of Proposition 1.1.7,
and the additivity of clGm .

Suppose as in (i) that N · H0(S,Z(r)) = 0 and N · H−1(S,Z(0)) = 0 for
all r = 1, . . . , n. Then E−p,1+p2 is N -torsion for 0 < p ≤ n, and the summand
H1(S,Z(n+ 1)) of E0,12 is isomorphic to E0,12 , modulo to N -torsion. Thus E−p,1+p∞
is N -torsion for 0 < p ≤ n, and the summand H1(S,Z(n+1)) of E0,12 is isomorphic
to E0,1∞ , modulo N -torsion. This proves (i). The proof of (ii) is similar.

For (iii), first take n = 1. One can check directly that 1·(1−t) is in the image of
β1. Indeed, this is just saying that x1∪ (1− t) lifts to an element of H2(Y (1)t ,Z(2)).
From the distinguished triangle relating Y

(1)
t , Y (0)t = T 0 and T 0(−1), this comes

down to the Steinberg relation t ∪ (1− t) = 0 of Proposition 1.1.7(i).
Now take n ≥ 2, and let ∂1 :Hm(T 0,Z(q)) → Hm−1(S,Z(q−1)) be the bound-

ary in the localization sequence coming from the section i1 of T . By Lemma 1.2.3(ii),
we have dr(∂1(x)) = ∂1(dr(x)); as ∂1 gives an isomorphism

∂1 :E−p,2+p2 (tT 0, n + 1) → E−p,2+p2 (i1S, n)

for −n < p < 0, it follows from Lemma 1.2.5 that

Nn,rd
−n,n+1
r = 0(1.2.6.1)

for 2 ≤ r < n.
Similarly, this argument shows that Nr,rd

−r,r+1
n = d−r,r+1r maps E−r,r+1r into

the kernel of ∂1 on E0,2r ; denote this kernel by E0,2+r . We now consider the section
i−1 :S → T 0 with constant value -1, and the resulting map of spectral sequences
i∗−1 :E(tT 0, n+ 1) → E(i−1S, n+ 1). For a ≥ 2 an even integer, the maps t∗a act on
E(i−1S, n + 1); arguing as in Lemma 1.2.5, the maps

d−r,r+1r :E−r,r+1r (i−1, n + 1) → E0,2r (i−1, n + 1)

are killed by the g.c.d. of the numbers ar − 1, as a runs over positive odd integers.
Taking a = q, for q an odd prime, we see that this g.c.d. is 2, hence the surjec-
tion E0,21 (i−1) → E0,2n (i−1) has kernel killed by 2n−1. But as E0,21 (i−1, n + 1) =
H2(S,Z(n+1)), and E0,22 (tT 0, n+1) = H2(S,Z(n+1))⊕H2(S,Z(n))∪(1−t), it fol-
lows that E0,2+2 is equal to the summand H2(S,Z(n+1)), and the map i∗−1 :E0,2+n →
E0,2n (i−1, n + 1) has kernel which is 2n−1-torsion. As 2d−n,n+1n (i−1) = 0, it follows
that

2nd−n,n+1n = 0.(1.2.6.2)

Since d−n,n+11 = 0 for n odd and 2d−n,n+11 = 0 for n even, (iii) follows from (1.2.6.1)
and (1.2.6.2).

1.2.7. Remarks. (i) Suppose that S = SpecF , where F is a field. Then by The-
orem 3.6.6 of Chapter II, we have the isomorphism Hp(S,Z(q)) ∼= CHq(S, 2q − p).
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In particular, we have

Hp(S,Z(0)) =

{
0 for p �= 0,
Z for p = 0,

Hp(S,Z(1)) =

{
0 for p �= 1,
F× for p = 1.

In addition, by [83, Theorem 8.1], we have the isomorphisms

Hp(S,Z[
1

(2q − p− 1)!
](q)) ∼= grqγK2q−p(S)[

1
(2q − p− 1)!

].

Suppose now that F is a number field. Then (see [22] and [23]) grqγK2q−p(F )
is a finite group for p �= 1. Thus, there is an integer N satisfying the condition of
Proposition 1.2.6(ii).
(ii) We may consider Z

Y
(n)
t

as an object of DM(T 0); the linked distinguished
triangles (1.2.2.2) and the isomorphism (1.2.1.2) are then valid in DM(T 0).

1.2.8. Now choose an element π ∈ Hn+1(Y (n)t ,Z(n+1)) with βn(π) = Nn·1∪(1−t),
where 1 is the image in H0(S,Z(0)) of the identity map on S (for n ≥ 2, we suppose
that S is a scheme over Z[12 ]). We may view π as a map

ZS(−(n + 1)) π−→ Z
Y
(n)
t

[n][1]

in DM(S). Let p :T 0 → S be the structure map, let δ : Y (n)t → Y
(n)
t ×S T 0 be the

canonical map induced by the structure map Y
(n)
t → T 0, and let

Π: ZT 0(−(n + 1)) → Z
Y
(n)
t

[n][1]

be the map in DM(T 0) defined as the composition

ZT 0(−(n + 1))
p∗(π)−−−→ Z

Y
(n)
t ×S

[n][1] δ∗−→ Z
Y
(n)
t

[n][1].

Complete the map Π to a distinguished triangle

ZT 0(−(n + 1)) Π−→ Z
Y
(n)
t

[n][1] → Φ → Z(−(n + 1))[1]

and let

NnpolSn+1 := Φ[−1].

1.2.9. Proposition. NnpolSn+1 is in the triangulated Tate subcategory DTM(T 0)
of DM(T 0). More precisely, we have the distinguished triangles in DM(T 0):

Z
Y
(n)
t

[n] → NnpolSn+1 → ZT 0(−(n + 1)) → Z
Y
(n)
t

[n + 1]

Z
Y
(n−1)
t

[n− 1] → Z
Y
(n)
t

[n] → ZT 0(−n) → Z
Y
(n−1)
t

[n]

...

Z
Y
(0)
t

= ZT 0 → Z
Y
(1)
t

[1] → ZT 0(−1) → Z
Y
(0)
t

[1].

Proof. This follows from the definition of NnpolSn+1, the linked distinguished
triangles (1.2.2.2), after shifting, and the isomorphism (1.2.1.2), together with Re-
mark 1.2.7(ii).
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1.2.10. Remarks. (i) If one passes to the rational motivic category, one can define
polSn+1Q as the object corresponding to an element πQ ∈ Hn+1(Y (n)t ,Q(n+1)) with
βn(πQ) = 1 ∪ (1 − t). For S = SpecF , with F a number field, this agrees with
Beilinson’s construction of the motivic polylogarithm in [9]. We thus have

NnpolSn+1 = Nn · polSn+1Q

in DM(S)Q (up to the image of αn, see (ii)).
(ii) Taking S = Q, the rational version polSn+1Q is unique for n odd. Indeed,
the lack of uniqueness comes from H1(Spec Q,Q(n + 1)) ∼= K2n+1(Q)(n+1), which,
by Borel [22], is zero for n odd. For n even, we have H1(Spec Q,Q(n + 1)) ∼=
K2n+1(Q)(n+1) ∼= Q, so there is a real lack of uniqueness.

Following [68], we may normalize our choice of π (for arbitrary S). For each
subset I of {0, . . . , n} of size n, we have the identification of T 0 with the term Y

(n)
I

in the n + 1-cube Y (n), giving the composition

ZS
p∗

−→ ZT 0 → Z
Y
(n)
t

[n],

which we call aI : ZS → Z
Y
(n)
t

[n]. The map

αn :H1(S,Z(n + 1)) → Hn+1(Y (n)t ,Z(n + 1))

is just the map on motivic cohomology induced by aI with I = {0, 1, . . . , n − 1};
on the other hand, it is easy to see that all the maps aI induce the same map on
motivic cohomology up to sign for n odd, and the same map for n even.

The symmetric group Sn acts on T 0 × T n, by permuting the factors in T n;
this extends to an action of Sn on Y

(n)
t . As Y

(n)
{1,... ,n} is defined by the equations

x1 = x2 = . . . = xn = 1, which is fixed by Sn, αn maps into the Sn-invariants of
Hn+1(Y (n)t ,Z(n + 1)) for n even. For n odd, Sn acts by even permutations on the
set of indices I as above, so αn maps into the Sn-invariants of Hn+1(Y (n)t ,Z(n+1))
for n odd as well.

On the other hand, Sn acts by the sign representation on Hp(T 0(−n),Z(q)),
so we have a splitting in the exact sequence of Proposition 1.2.6 after inverting n!
and N . This gives a unique choice of Nn!π by taking the alternating projection of
π.
(iii) We have the étale realization of NnpolSn+1 in D∗ lim ShZl

ét (X) (Chapter V, §2.2)
and the Hodge realization in Db(MHM(T 0)) (Chapter V, §2.3.13). This recovers
Beilinson’s étale and Hodge realization of the motivic polylogarithm.

2. Comparison with the category DMgm(k)

Voevodsky has defined a triangulated tensor category of motives over a perfect
field k, DMgm(k); in case the field k admits resolution of singularities (e.g., in
characteristic zero), the resulting motivic cohomology groups agree with Bloch’s
higher Chow groups. We show here (Theorem 2.5.5) that our category DM(Spec k)
is equivalent to DMgm(k). We begin by giving a brief description of the construction
of the category DMgm(k); for details, we refer the reader to [124]. We write DM(k)
for DM(Spec k).
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2.1. The category DMgm(k)

2.1.1. SmCor(k). Let k be a field, and let Sm/k denote the category of smooth
k-schemes of finite type. For X and Y in Sm/k, let c(X,Y ) be the free abelian
group on irreducible subschemes W of X ×k Y which are finite and dominant over
an irreducible component of X . Let ◦ : c(Y, Z)×c(X,Y ) → c(X,Z) be the operation
defined by

Z ◦ Z ′ := pXZ∗(p∗Y Z(Z) · pXY (Z ′)),

where · is the intersection product; the projection pXZ∗ is well-defined since each
component of p∗Y Z(Z)·p∗XY (Z ′) is finite over X×kZ. One checks that the operations
◦ are associative, giving the pre-additive category SmCor(k), with Hom-groups
HomSmCor(k)(X,Y ) := c(X,Y ), and composition ◦. In fact, the operation of dis-
joint union is a direct sum, making SmCor(k) into an additive category, and the
operation of product over k defines the structure of a tensor category on SmCor(k).

Sending a morphism f :X → Y in Sm/k to the graph Γf ⊂ X ×k Y defines
a faithful functor Sm/k → SmCor(k); we consider Sm/k as a subcategory of
SmCor(k) via this functor.

2.1.2. Nisnevic sheaves with transfer. Recall that the Nisnevic topology on Sm/k
is the Grothendieck topology on Sm/k for which a cover U → X is a cover in
the étale topology such that, for each field K containing k, the map on K-valued
points, U(K) → X(K), is surjective. A Nisnevic sheaf with transfers on SmCor(k)
is a functor S :SmCor(k)op → Ab, such that the restriction of S to Sm/k is a
Nisnevic sheaf. For example, for X in Sm/k, the “representing” presheaf L(X),
L(X)(Y ) = c(Y,X), is a Nisnevic sheaf with transfers. Denote the category of
Nisnevic sheaf with transfers on SmCor(k) by ShNis(SmCor(k)).

Note that sending X to L(X), and f :X → X ′ to the map of functors

f∗ : c(−, X) → c(−, X ′)
defines the functor

L :Sm/k → ShNis(SmCor(k)).

Voevodsky [124, Theorem 3.1.4 and Lemma 3.1.6] shows that the category
ShNis(SmCor(k)) is an abelian category with enough injectives. Let

D−(ShNis(SmCor(k)))

be the derived category of bounded above complexes.

2.1.3. Homotopy invariant sheaves. Let F be in ShNis(SmCor(k)). Call F homo-
topy invariant if the projection X × A1 → X induces an isomorphism F (X) →
F (A1 ×X) for all X in Sm/k.

Now assume that k is a perfect field. Let HI(k) be the full subcategory of
ShNis(SmCor(k)) consisting of the homotopy invariant sheaves. Then HI(k) is
abelian, and the inclusion HI(k) → ShNis(SmCor(k)) is exact [124, Proposition
3.1.12]. Let DM eff

− (k) be the full subcategory of D−(ShNis(SmCor(k))) consisting
of complexes whose cohomology sheaves are in HI(k).

2.1.4. The homotopy localization. Let ∆∗ be the cosimplicial scheme of affine spaces

∆n := Spec k[t0, . . . , tn]/
∑
i

ti − 1.
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For F in ShNis(SmCor(k)), let C∗(F ) be the complex of sheaves associated to the
simplicial sheaf F (∆∗), C−n(F ) = F (∆n). Then, for all F , the cohomology sheaves
of C∗(F ) are homotopy invariant [124, Lemma 3.2.1], giving the element C∗(F ) of
DM eff

− (k); sending F to C∗(F ) extends to an exact functor

RC∗ :D−(ShNis(SmCor(k))) → DM eff
− (k),

which is left adjoint to the embedding DMeff
− (k) → D−(ShNis(SmCor(k))) [124,

Proposition 3.2.3].
One can also consider the localization D−(ShNis(SmCor(k)))/Htp of the trian-

gulated category D−(ShNis(SmCor(k))) with respect to the thick subcategory Htp
generated by the objects cone(L(pX) :L(X×A1) → L(X)), where pX :X×A1 → X
is the projection. Let

α :D−(ShNis(SmCor(k))) → D−(ShNis(SmCor(k)))/Htp

be the canonical map. By [124, Proposition 3.2.3], the restriction of α to DMeff
− (k)

is an equivalence of triangulated categories, and the functor RC∗ descends to give
the inverse equivalence.

2.1.5. The tensor structure. Voevodsky defines a tensor structure on the triangu-
lated category DMeff

− (k) [124, §3.2] by first defining a tensor structure on the
sheaf category ShNis(SmCor(k)). For this, let F be in ShNis(SmCor(k)). One
has the canonical surjection

⊕φ,XL(X) → F,(2.1.5.1)

where (φ,X) runs over elements φ of F (X), with X in Sm/k. Applying this
operation to the kernel of (2.1.5.1) and repeating gives the canonical resolution
L(F ) → F , with each term in L(F ) a direct sum of the representing sheaves L(X).
Define L(X) ⊗ L(Y ) := L(X ×k Y ), so that the tensor product L(F ) ⊗ L(F ′) is
thus defined. This gives the definition of F ⊗ F ′ as

F ⊗ F ′ := H0(L(F )⊗ L(F ′)),

where H0 is the sheaf homology. This extends to a well-defined operation on
D−(ShNis(SmCor(k))), making D−(ShNis(SmCor(k))) into a triangulated tensor
category.

The thick subcategory Htp turns out to be a thick tensor subcategory [124,
Lemma 3.2.4], so the triangulated category D−(ShNis(SmCor(k)))/Htp inherits a
the structure of a triangulated tensor category from D−(ShNis(SmCor(k))). The
equivalence of D−(ShNis(SmCor(k)))/Htp and DM eff

− (k) via the functor RC∗

makes DM eff
− (k) into a triangulated tensor category.

2.1.6. Remark. One can find representatives in C−(ShNis(SmCor(k))) for the
tensor product of objects of DM eff

− (k) by using the functor C∗. If Fi = C∗(Zi)
for objects Zi of ShNis(SmCor(k)), i = 1, . . . , n, then F1⊗ . . .⊗Fn is represented
by C∗(Z1 ⊗ . . . ⊗ Zn). Since, for F in DM eff

− (k), the canonical map F → C∗(F )
in isomorphism, we can also apply C∗ as many times as we like, and still get a
representative of F1 ⊗ . . .⊗ Fn in C−(ShNis(SmCor(k))).
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2.1.7. Motives and Hom-objects. We write M(X), the “motive” of X , for the object
RC∗(L(X)) of DM eff

− (k). For X in Sm/k, let L̃(X) be the kernel of the map
L(p) :L(X) → L(Spec k), where p is the structure morphism, and let M̃(X) be
the object RC∗(L̃(X)) of DM eff

− (k): the reduced motive of X . For n ≥ 1 we
denote (M̃(P1)[−2])⊗n by Z(n), and let Z = Z(0) = M(Spec k); for an object F of
DM eff

− (k), write F (n) for F ⊗ Z(n).
We write DM eff

gm (k) for the strictly full triangulated subcategory of DM eff
− (k)

generated by first taking the triangulated subcategory generated by the objects
M(X) for X in Sm/k, and then taking the pseudo-abelian hull. This definition
differs from Voevodsky’s (see [124, §2]), but it is an immediate consequence of
[124, Theorem 3.2.6] that the two definitions agree up to equivalence. In addi-
tion, DMeff

gm (k) is closed under the tensor operation, so it is a triangulated tensor
subcategory of DM eff

− (k).
For objects A and B of D(ShNis(SmCor(k))) (the unbounded derived cate-

gory), we have the internal Hom object RHom(A,B). By [124, Proposition 3.2.8]
RHom(A,B) is in DM eff

− (k) if A is in DM eff
gm (k) and B is in DM eff

− (k); in this
case, denote this object of DMeff

− (k) by HomDMeff (A,B). If both A and B are in
DM eff

gm (k), then HomDMeff (A,B ⊗ Z(n)) is in DM eff
gm (k) for all sufficiently large

n.

2.1.8. The category of geometric motives. We suppose for the remainder of the
discussion that k admits resolution of singularities. Let DMgm(k) be the category
gotten from DMeff

gm (k) by inverting the Tate object Z(1), i.e., objects are pairs
(A, a), with a ∈ Z, and

HomDMgm(k)((A, a), (B, b)) = lim→
n

HomDMeff
gm (k)(A⊗ Z(n + a), B ⊗ Z(n + b)).

Denoting (A, a) by A(a), the category DMgm(k) inherits from DM eff
gm (k) the

structure of a triangulated tensor category, and the natural functor DMeff
gm (k) →

DMgm(k) is a full embedding (see [124, §2.1, and Theorem 4.3.1]). In addition, for
objects A and B of DMgm(k), the internal Hom-object HomDMgm

(A,B) exists in
DMgm(k) [124, Corollary 4.3.5], in the sense that there are natural isomorphisms

HomDMgm(A,HomDMgm
(B,C)) ∼= HomDMgm (A⊗B,C)

for objects A, B and C of DMgm. In fact, one may take HomDMgm
(A,B) to be

the object HomDMeff (A,B ⊗ Z(n))⊗ Z(−n) for n sufficiently large.
We form the triangulated tensor categoryDM−(k) from DM eff

− (k) by inverting
Z(1).

2.1.9. Motivic cohomology. For X in Sm/k, define the cohomology Hp
V (X,Z(q)) by

Hp
V (X,Z(q)) := HomDMgm(M(X),Z(q)[p]).

Then [124, Corollary 4.2.7, Proposition 4.2.9 and Theorem 4.3.7] there are natural
isomorphisms

Hp
V (X,Z(q)) ∼= CHq(X, 2q − p)

for X in Sm/k. On the other hand, we have (Chapter II, Theorem 3.6.6) the
natural isomorphism

Hp(X,Z(q)) := HomDMk
(Z,ZX(q)[p]) ∼= CHq(X, 2q − p)
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for X smooth and quasi-projective over k. Thus, one should expect that sending
ZX(q) to the internal Hom object

HomDMgm
(M(X),Z(q))(2.1.9.1)

should extend to an equivalence of DMk with DMgm(k). We now proceed to realize
this construction.

2.2. A complex of correspondences

We will be interested in understanding the morphisms among the various inter-
nal Hom-objects (2.1.9.1). As it is difficult to get a handle on all morphisms, we
construct a complex of correspondences which give enough morphisms for our pur-
poses, and which is concrete enough to compute with. In this section, we study
this complex of correspondences.

2.2.1. Quasi-finite cycles. For F in ShNis(SmCor(k)), and Y in Sm/k, let FY be
the presheaf on SmCor(k) with FY (U) := F (Y ×k U). It is immediate that FY is
a Nisnevic sheaf on Sm/k, hence an object of the category ShNis(SmCor(k)).

For X in Sm/k, let Lc(X) be the presheaf on Sm/k with Lc(X)(Y ) the free
abelian group on the set of reduced irreducible subschemes W of Y ×X which are
quasi-finite over Y and dominate a component of Y ; this is in fact an object of
ShNis(SmCor(k)). If X is proper over k, then Lc(X) = L(X).

2.2.2. Higher correspondences. Let Xi and Yi be in Sm/k for i = 1, 2. We will
describe an explicit subgroup of the group of morphisms Lc(X1)Y1 → Lc(X2)Y2 .

Let c(XY1
1 , XY2

2 ) be the free abelian group generated by subvarieties W of X1×
Y1 ×X2 × Y2 which satisfy

(2.2.2.1)

1. W is proper over X2 × Y2.
2. W is quasi-finite and dominant over a component of X1 × Y2.
3. The closure of the projection of W to Y1 × Y2 is finite over Y2.

2.2.3. Lemma. (i) Let Z be in c(XY1
1 , XY2

2 ). Then, for U in Sm/k, the correspon-
dence Z ×∆U from X1 × Y1 × U to X2 × Y2 × U defines a map

(Z ×∆U )∗ :Lc(X1)Y1(U) → Lc(X2)Y2(U),

giving the map of sheaves with transfer Z∗ :Lc(X1)Y1 → Lc(X2)Y2 .
(ii) Take Z in c(XY1

1 , XY2
2 ) and W in c(XY2

2 , XY3
3 ). Then the cycle-theoretic inter-

section product

(Z ×X3 × Y3) · (X1 × Y1 ×W )

is defined, has support which proper over X1 × Y1 ×X3 × Y3, and the projection

W ◦ Z := pX1×Y1×X3×Y3(Z × (X3 × Y3) · (X1 × Y1)×W )

is in c(XY1
1 , XY3

3 )
(iii) With Z and W as in (ii), we have

(W ◦ Z)∗ = W∗ ◦ Z∗ :Lc(X1)Y1 → Lc(X3)Y3 .

(iv) If W is in c(XY1
1 , XY2

2 ), and X1 is irreducible, then each component of W is
equi-dimensional over Y2.
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Proof. Indeed,

Z ∈ c(XY1
1 , XY2

2 ) =⇒ Z ×∆U ∈ c(XY1×U
1 , XY2×U

2 ),

hence we may assume U = Spec k; we may also assume Z = 1 ·W for W irreducible.
We may assume the Xi and Yi are irreducible. If C ⊂ X1×Y1 is irreducible and in
Lc(X1)Y1 , then dim(C) = dim(Y1), hence

codim(C ×X2 × Y2) + codim(W ) = dimX1 + dimX2 + dimY1,

using (2.2.2.1)(2). Thus

dim(C ×X2 × Y2 ∩W ) ≥ dim(Y2).

On the other hand, take a point y in Y2. Then, by (2.2.2.1)(3), there is a finite
subset S of Y1 such that

C ×X2 × y ∩W ⊂ (X1 × S ∩ C)×X2 × y.

Since C is in Lc(X1)(Y1), there is a finite subset S′ of X1 with X1×S∩C ⊂ S′×S,
hence

C ×X2 × y ∩W ⊂ S′ × Y1 ×X2 × y ∩W.

Since W is quasi-finite over X1 × Y2, C ×X2 × y ∩W is finite. Thus

dim(C ×X2 × Y2 ∩W ) = dim(pY2(C ×X2 × Y2 ∩W )) ≤ dim(Y2),

or C × X2 × Y2 ∩W = ∅, and thus the intersection product C × X2 × Y2 ·W is
defined. Since W is proper over X2 × Y2, the cycle

W∗(C) := pX2×Y2∗(C ×X2 × Y2 ∩W )

is defined.
In addition, pX2×Y2(C×X2×Y2∩W ) is quasi-finite over Y2. Since the dimension

of each component of W∗(C) and Y2 are the same, each component of W∗(C) must
dominate a component of Y2, hence W∗(C) is in Lc(X2)Y2 .

For (ii), one verifies (using e.g. the valuative criterion for properness) that
for X ⊂ A × B, Y ⊂ B × C with X proper over B and Y proper over C, that
X ×C ∩A×Y is proper over C. Thus |Z| × (X3×Y3)∩ (X1× Y1)× |W | is proper
over X3 × Y3, hence also proper over X1 × Y1 ×X3 × Y3.

Now fix y3 ∈ Y3 and x1 ∈ X1. By (2.2.2.1)(3), there is a finite set S2 ⊂ Y2 such
that

|W | ∩X2 × Y2 ×X3 × y3 ⊂ X2 × S2 ×X3 × y3,

and there is a finite set S1 ⊂ Y1 such that

|Z| ∩ (X1 × Y1 ×X2 × S2) ⊂ X1 × S1 ×X2 × S2.

By (2.2.2.1)(2), there is a finite set T2 ⊂ X2 such that

|Z| ∩ (x1 × Y1 ×X2 × S2) ⊂ x1 × S1 × T2 × S2,

and a finite subset T3 ⊂ X3 such that

[|Z| × (X3 × Y3) ∩ (X1 × Y1)× |W |] ∩ x1 × Y1 ×X2 × Y2 ×X3 × y3

⊂ x1 × S1 × T2 × S2 × T3 × y3,

i.e., |Z| × (X3 × Y3) ∩ (X1 × Y1) × |W | is quasi-finite over X1 × Y3. Counting
dimensions as in (i), this implies that the intersection product in (ii) is defined and
that W ◦ Z has support which is quasi-finite over X1 × Y3.
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Let Z̄ be the closure of the projection of |Z| to Y1 × Y2, and define W̄ ⊂
Y2 × Y3 similarly. Since |Z| and |W | are finite over Y2 and Y3, the intersection
Y1× |W | ∩ |Z| ×Y3 is defined and is finite over Y3. Letting W ◦ Z be the closure of
the projection of |W ◦ Z| to Y1 × Y3, we clearly have

W ◦ Z ⊂ p13(Y1 × |W | ∩ |Z| × Y3),

hence W ◦ Z is finite over Y3, completing the proof of (ii).
The assertion (iii) follows from the fact that, for the action of correspondences

on cycles, correspondence product is compatible with composition .
For (iv), take y ∈ Y2, let W be a subvariety of X1×Y1×X2×Y2 which is quasi-

finite and dominant over a component of X1 × Y2, and assume X1 is irreducible.
Then W ∩ (X1 ×X2 × Y1 × y) is empty or is quasi-finite and dominant over X1.
Thus W is equi-dimensional of dimension dimX1 over Y2.

2.2.4. Sending W to W∗ gives us the injective map

Tr : c(XY1
1 , XY2

2 ) → HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y2).

By Lemma 2.2.3 we may define an additive subcategory ShTr
Nis(SmCor(k)) of

ShNis(SmCor(k)) with objects the direct sums of sheaves Lc(X)Y , and morphisms
given as the image of Tr.

For example, the map Lc(f)g :Lc(X)Y → Lc(X ′)Y
′

associated to a proper map
f :X → X ′ and a g ∈ c(Y ′, Y ) is in the subcategory ShTr

Nis(SmCor(k)).

2.2.5. Operations. The groups c(XY1
1 , XY2

2 ) admit the following operations:
(1) Push-forward in Y1Y1Y1. Let f :Y1 → Y ′1 be a morphism in Sm/k, and take W
in X1 × Y1 ×X2 × Y2 satisfying (2.2.2.1)(1)-(3). As W is proper over X2 × Y2, W
is also proper over X1 × Y ′1 ×X2 × Y2, hence the cycle f∗(W ) is defined. It is easy
to check that this gives

f∗ : c(XY1
1 , XY2

2 ) → c(XY ′
1
1 , XY2

2 ),

with (fg)∗ = f∗g∗.
(2) Pull-back in Y2Y2Y2. Let g be in c(Y ′2 , Y2), giving the correspondence

G := ∆X1 ×∆X2 ×∆Y1 × g

from X1 ×X2 × Y1 × Y2 to X1 × X2 × Y1 × Y ′2 . It follows from Lemma 2.2.3(iv)
that G∗(W ) is defined for all W in c(XY1

1 , XY2
2 ); it is easy to check that G∗(W ) is

in fact in c(XY1
1 , X

Y ′
2
2 ), giving the homomorphism

g∗ : c(XY1
1 , XY2

2 ) → c(XY1
1 , X

Y ′
2
2 ),

with (g ◦ f)∗ = f∗ ◦ g∗.
(3) Products. Sending W to W × ∆Y (and making the appropriate exchange of
factors) defines

×Y : c(XY1
1 , XY2

2 ) → c(XY1×Y
1 , XY2×Y

2 ).

This operation is compatible, via Tr, with the map

HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y2)

→ HomShNis(SmCor(k))(Lc(X1)Y1×Y , Lc(X2)Y2×Y )

gotten by restricting the presheaves Lc(X1)Y1 and Lc(X2)Y2 to the k-schemes of
the form Y × U , U in Sm/k.
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Similarly, sending W to W × ∆X (and making the appropriate exchange of
factors) defines

×X : c(XY1
1 , XY2

2 ) → c((X1 ×X)Y1×Y , (X2 ×X)Y2×Y ).

We have

f∗ ◦ g∗ = g∗ ◦ f∗.
In addition, the maps f∗ and g∗ are compatible, via Tr, with the maps

HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y2)
f∗−→ HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y

′
2 ),

HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y2)
g∗

−→ HomShNis(SmCor(k))(Lc(X1)Y1 , Lc(X2)Y
′
2 )

defined using the functoriality in Lc(−)−.

2.2.6. Remark. Let Xi, Yi, Zi, Wi, i = 1, 2 be in Sm/k. Taking the “product” of
cycles defines the map

⊗ : c(XY1
1 , XY2

2 )⊗ c(ZW1
1 , ZW2

2 ) → c([X1 × Z1]Y1×W1 , [X2 × Z2]Y2×W2).

Similarly, the exchange of factors gives the isomorphism

τ : c([X1 × Z1]Y1×W1 , [X2 × Z2]Y2×W2) → c([Z1 ×X1]W1×Y1 , [Z2 ×X2]W2×Z2).

One checks that, via Tr, this gives ShTr
Nis(SmCor(k)) the structure of a tensor

category.

2.2.7. The Hom-complex. Let Xi, Yi, i = 1, 2 be in Sm/k. Applying the construc-
tions of §2.2.1 to (X1, Y1×∆∗, X2, Y2×∆∗), and using the functoriality described in
§2.2.5 gives the complex c(XY1×∆∗

1 , XY2×∆∗

2 ), defined as the extended total complex
associated to the functor from ∆×∆op to Ab:

([n], [m]) �→ c(XY1×∆n

1 , XY2×∆m

2 )

(see Part II, Chapter III, §2.1.1). We also have the map of complexes

Tr : c(XY1×∆∗

1 , XY2×∆∗

2 ) → HomShNis(SmCor(k))(Lc(X1)Y1×∆
∗
, Lc(X2)Y2×∆

∗
).

2.2.8. Lemma. Let Xi, Yi be in Sm/k. Then the map

×A1 : c(XY1×∆∗

1 , XY2×∆∗

2 ) → c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)

is a homotopy equivalence.

Proof. Let

[(X1 × A1)× Z1 × (X2 × A1)× Z2]∆ ⊂ (X1 × A1)× Z1 × (X2 × A1)× Z2

be the closed subscheme with points of the form (x1, t, z1, x2, t, z2), and let

c((X1 × A1)Z1 , (X2 × A1)Z2)∆

be the subgroup of c((X1×A1)Z1 , (X2×A1)Z2) consisting of those cycles supported
on [(X1 × A1)× Z1 × (X2 × A1)× Z2]∆. The map

×A1 : c(XZ1
1 , XZ2

2 ) → c((X1 × A1)Z1 , (X2 × A1)Z2)(2.2.8.1)
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of §2.2.5 sends c(XZ1
1 , XZ2

2 ) into c((X1 × A1)Z1 , (X2 × A1)Z2 )∆.
Taking Zi = Yi ×∆∗, we first show that the inclusion of complexes

c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)∆

i−→ c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)

is a homotopy equivalence.
Let

(X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1)
φ−→ (X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1)

be the map

(x1, s1, z1, x2, s2, z2, t) �→ (x1, t(s1 − s2) + s2, z1, x2, s2, z2, t).

For each cycle W on (X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1) which is finite over
X1 × Z1 × (X2 × A1) × (Z2 × A1), the pushforward φ∗(W ) is defined. One easily
checks that this defines

φ∗ : c((X1 × A1)Z1 , (X2 × A1)Z2×A1
) → c((X1 × A1)Z1 , (X2 × A1)Z2×A1

).

Letting p :Z2 × A1 → Z2 be the projection, we define the map

ψ : c((X1 × A1)Z1 , (X2 × A1)Z2) → c((X1 × A1)Z1 , (X2 × A1)Z2×A1
)

by ψ = φ∗ ◦ p∗. Letting i0 :Z2 → Z2 × A1 and i1 :Z2 → Z2 × A1 be the 0-section
and 1-section, we then have

i∗1 ◦ ψ = id.

In addition,

i∗0 ◦ ψ
(
c((X1 × A1)Z1 , (X2 × A1)Z2)

)
⊂ c((X1 × A1)Z1 , (X2 × A1)Z2)∆,

and the restriction of i∗0 ◦ ψ to c((X1 × A1)Z1 , (X2 × A1)Z2)∆ is the inclusion i.
Taking Zi to be the cosimplicial scheme Yi × ∆∗ gives the map

c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)

ψ∗−→ c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗×A1
).

Now, if F :Sm/k
op → C+(Ab) is a functor, let C∗(F ) :Sm/k

op → C(Ab) be
the functor given by defining C∗(F )(Z) to be the extended total complex associated
to the simplicial object F (Z × ∆∗). Then the map p∗ :C∗(F ) → C∗(F × A1) is
a homotopy equivalence. Indeed, one applies F to the standard triangulation of
∆n×A1, n = 0, 1, . . . (see Chapter II, §3.5.7), to show that i∗0 :C∗(F×A1) → C∗(F )
is a homotopy inverse to p∗, where i0 is the zero section.

In particular, the maps

c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)

i∗0◦ψ∗,i
∗
1◦ψ∗−−−−−−−−→ c((X1 × A1)Y1×∆

∗
, (X2 × A1)Y2×∆

∗
)

are homotopic; the properties of i∗0 ◦ψ∗, i∗1 ◦ψ∗ described above thus show that the
inclusion i is a homotopy equivalence.
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We now show that the map (2.2.8.1) is a homotopy equivalence. Let

[(X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1)]∆
π−→ [(X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1)]∆

be the map

(x1, s, z1, x2, s, z2, t) �→ (x1, ts, z1, x2, ts, z2, t).

The pullback π∗(W ) is defined for each cycle W on [(X1 ×A1)×Z1× (X2 ×A1)×
(Z2 × A1)]∆ which intersects (X1 × 0)× Z1 × (X2 × 0)× (Z2 × A1) properly.

Let W be in c((X1 × A1)Z1 , (X2 × A1)Z2×A1
). By (2.2.2.1)(2), W intersects

(X1×0)×Z1×(X2×A1)×(Z2×A1) properly on (X1×A1)×Z1×(X2×A1)×(Z2×A1).
Thus, if W is in c((X1 × A1)Z1 , (X2 × A1)Z2×A1

)∆, W intersects

(X1 × 0)× Z1 × (X2 × 0)× (Z2 × A1)

properly on

[(X1 × A1)× Z1 × (X2 × A1)× (Z2 × A1)]∆,

hence the cycle π∗(W ) is defined for all W ∈ c((X1 × A1)Z1 , (X2 × A1)Z2×A1
)∆.

The properties of (2.2.2.1) are preserved by taking π∗, hence we have the pull-back
homomorphism

π∗ : c((X1 × A1)Z1 , (X2 × A1)Z2×A1
)∆ → c((X1 × A1)Z1 , (X2 × A1)Z2×A1

)∆.

Define the map

ξ : c((X1 × A1)Z1 , (X2 × A1)Z2) → c((X1 × A1)Z1 , (X2 × A1)Z2×A1
)∆

by ξ = π∗ ◦ p∗.
We have i∗1 ◦ ξ = id. In addition,

i∗0 ◦ π∗
(
c((X1 × A1)Z1 , (X2 × A1)Z2)∆

)
⊂ ×A1(c(XZ1

1 , XZ2
2 )),

and the restriction of i∗0 ◦ π∗ to ×A1(c(XZ1
1 , XZ2

2 )) is the inclusion

i′ : × A1(c(XZ1
1 , XZ2

2 )) → c((X1 × A1)Z1 , (X2 × A1)Z2)∆.

As above, if we take Zi = Yi × ∆∗, i = 1, 2, this shows that i′ is a homotopy
equivalence. Since the map

×A1 : c(XY1×∆∗

1 , XY2×∆∗

2 ) → c((X1 × A1)Y1×∆
∗
, (X2 × A1)Y2×∆

∗
)∆

is injective, the lemma is proved.

2.2.9. Multiplicative structure. For f ∈ L(V ′)(V ) and s ∈ Lc(X)(Y × V ′), we have
the map

φf,s :L(V ) → ⊕U∈Sm/k,s∈Lc(X)(Y×U)L(U),

defined by taking the map L(f) :L(V ) → L(V ′) and including L(V ′) as the sum-
mand corresponding to (V ′, s ∈ Lc(X)(Y × U)).
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For X,Y, V in Sm/k, let

R(X,Y, V ) :=
∞⋃
n=1

{(f1, . . . , fn; s1, . . . , sn) | fi ∈ L(Ui)(V ), si ∈ Lc(X)Y (Ui),

Ui ∈ Sm/k, i = 1, . . . , n,

and
∑
i

f∗i (si) = 0}.

For (f1, . . . , fn; s1, . . . , sn) ∈ R(X,Y, V ), we have the map

φf∗,s∗ :L(V ) → ⊕U,s∈Lc(X)(Y×U)L(U)

by taking the sum of the maps φfi,si .
The resolution L(Lc(X)Y ) of §2.1.5 starts out as⊕

V ∈Sm/k
(f∗;s∗)∈R(X,Y,V )

L(V )
⊕φf∗,s∗−−−−−→

⊕
U,s∈Lc(X)(Y×U)

L(U) → Lc(X)Y .

This gives the presentation of Lc(X)Y ⊗ Lc(X ′)Y
′

as⊕
V,U ′∈Sm/k

(f∗;s∗)∈R(X,Y,V )

L(V × U ′) ⊕
⊕

V ′,U∈Sm/k
(f ′

∗;s
′
∗)∈R(X′,Y ′,V ′)

L(V ′ × U)

−→
⊕

U,U ′∈Sm/k
s∈Lc(X)(Y×U),s′∈Lc(X′)(Y ′×U ′)

L(U × U ′)

−→ Lc(X)Y ⊗ Lc(X ′)Y
′
.

Now take V, U, U ′ in Sm/k, s ∈ Lc(X)(Y × U), s′ ∈ Lc(X ′)(Y ′ × U ′), and t ∈
L(U×U ′)(V ). We consider s as a cycle on X×Y ×U , s′ as a cycle on X ′×Y ′×U ′,
giving the “product” cycle s×′ s′ ∈ Lc(X ×X ′)Y×Y

′
(U × U ′). This give the cycle

L(t)(s ×′ s′) ∈ Lc(X × X ′)Y×Y
′
(V ). One checks that this operation respects the

relations defining Lc(X)Y ⊗ Lc(X ′)Y
′
, and gives the map of sheaves with transfer

�Y,Y ′

X,X′ :Lc(X)Y ⊗ Lc(X ′)Y
′ → Lc(X ×X ′)Y×Y

′
.

The maps �Y,Y ′

X,X′ are natural in X,X ′, Y, Y ′, and satisfy the obvious associativity
and commutativity conditions.

In addition, the maps �Y,Y ′

X,X′ define a commutative external product (see Part II,
Chapter I, §2.4) for the inclusion functor ShTr

Nis(SmCor(k)) → ShNis(SmCor(k)).

2.3. Representing complexes

We now describe some good representatives in C−(ShNis(SmCor(k))) for the in-
ternal Hom-object (2.1.9.1).

2.3.1. For X,Y in Sm/k, we write z(Y,X) for the complex of sheaves with transfer
C∗(Lc(X)Y ). Explicitly, z(Y,X)−n is the sheaf defined by

z(Y,X)−n(U) = Lc(X)(U × Y ×∆n);
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the cosimplicial structure on ∆∗ giving the differential for the complex z(Y,X).
More generally, let zm(Y,X) denote the total complex associated to the m-simpli-
cial object

(n1, . . . , nm) �→ Lc(X)Y×∆
n1×...×∆nm

.

The external products �∗,∗X,X′ then give the map of complexes

�Y,Y ′;n,n′

X,X′ : zn(Y,X)⊗ z
n′

(Y ′, X ′) → z
n+n′

(Y × Y ′, X ×X ′).(2.3.1.1)

For Y in Sm/k we write

C∗(Y ) := C∗(L(Y )),

C∗c (Y ) := C∗(Lc(Y )).

The complex z(Y,X) is the complex z(Y,X, 0) of [124] (with cohomological notation
rather than the homological notation of [124]).

We record the following properties of zn(Y,X):

(2.3.1.2)

(1) For an integer n ≥ 0, let δn be the diagonal in ∆n×∆n. For y ∈ L(Y )(∆m), the
cycle y×δn defines an element y(n) of L(Y×∆n)(∆m×∆n). For x ∈ Lc(X)(Y×∆n),
we have the element x◦y(n) of Lc(X)(∆m×∆n). Sending y to x◦y(n) gives the map
φn,m(x) :L(Y )(∆m) → Lc(X)(∆m×∆n). As z(Y,X)−n(Spec k) = Lc(X)(Y ×∆n),
sending x to φn,m(x) gives the map of simplicial abelian groups

φY,X(k) :Lc(X)(Y ×∆∗) → HomC−(ShNis(SmCor(k)))(C∗(Y ), C∗c (X)(∆∗)),

and thus the map

Hi(φY,X(k)) :Hi(z(Y,X)(Spec k)) → HomDMeff (C∗(Y ), C∗c (X)[i]).

By [43, Theorem 8.1] (for r = 0) and [124, Theorem 4.1.10], Hi(φY,X(k)) is
an isomorphism.
(2) Replacing ∆m with U ×∆m gives the map

Lc(X)(Y × U ×∆∗)
φY,X (U)−−−−−→ HomC−(ShNis(SmCor(k)))(C∗(Y )(U), C∗c (X)(U ×∆∗))

defined as in (1), which induces the map in DMeff
− (k)

φY,X : z(Y,X) → HomDMeff (C∗(Y ), C∗c (X)).

By [124, Corollary 4.2.7], φY,X is an isomorphism. Similarly, we have the natural
isomorphism

φY,X,n : zn(Y,X) → HomDMeff

(
(C∗)n(Y ), C∗c (X)

)
,

where (C∗)n(Y ) is gotten by applying C∗ n times to L(Y ). As restriction map

HomDMeff

(
(C∗)n(Y ), C∗c (X)

)
→ HomDMeff

(
C∗(Y ), C∗c (X)

)
is an isomorphism, the restriction to ∆∗ in the first factor gives the isomorphism
zn(Y,X) → z(Y,X) in DM eff

− .
Taking X = Am and applying [124, Corollary 4.1.8] gives the isomorphisms

zn(Y,Am) → HomDMeff (C∗(Y ),Z(m)[2m]). By [124, Corollary 4.3.6], the internal
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Hom HomDMgm
(M(Y ),Z(m)) is in DM eff

− for m ≥ dimk Y , and is isomorphic to
HomDMeff (C∗(Y ),Z(m)). Thus, we get the natural isomorphism

φY,m,n : zn(Y,Am) → HomDMgm
(M(Y ),Z(m)[2m])

for all m ≥ dimk Y .
(3) The maps φY,m,n are compatible with products, i.e., the diagram

zn(Y,Am)⊗ zn
′
(Y ′,Am′

)

��

�
$$

φY,m,n⊗φY ′,m′,n′

�����
�����

�����
����

HomDMgm
(M(Y ),Z(m)[2m])⊗HomDMgm

(M(Y ′),Z(m′)[2m′])

��

�zn+n
′
(Y × Y ′,Am+m′

)

$$
φY ×Y ′,m+m′,n+n′

�����
�����

�����
����

HomDMgm
(M(Y × Y ′),Z(m + m′)[2(m + m′)])

commutes; here the tensor product is the tensor product in DMeff
− induced from

that of D−(ShNis(SmCor(k))) via the localizing functor RC∗. Since the product
on the right-hand side is an isomorphism, so is the product

� : zn(Y,Am)⊗ z
n′

(Y ′,Am′
) → z

n+n′
(Y × Y ′,Am+m′

)

(in DMeff
− ) for m ≥ dimk Y and m′ ≥ dimk Y

′.

2.4. Homotopy commutativity

The technically most difficult part of defining our equivalence comes from the lack
of commutativity in the product for our representing complexes z(X,Am). We now
have the tools to deal with this problem.

2.4.1. For an additive category A, let Gr+C−A denote the category of non-nega-
tively graded, uniformly bounded below complexes. We use the constructions and
notations of Part II, Chapter I, §2.3.

We proceed to define a functor

Φ0 : Ω0 → Gr+C−(ShTr
Nis(SmCor(k))).(2.4.1.1)

On objects, Φ0 is given by

Φ0(n) =
⊕

(m1,... ,mn)
mi≥0

z
n(Spec k,AΣimi)

with
∑

imi giving the grading.
To define Φ0 on morphisms, we first recall the standard triangulation of ∆n1 ×

∆n2 . We give [n1]× [n2] the product partial order

(a, b) ≤ (a′, b′) ⇔ a ≤ a′ and b ≤ b′.

For an injective, order-preserving map g := (g1, g2) : [n1 + n2] → [n1]× [n2], define
sgn(g) ∈ {±1} as in the sign of the shuffle permutation determined by g, as in
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(Part II, Chapter III, §3.4.5). Then
∑

g : [n1+n2]→[n1]×[n2] sgn(g) · g is the standard
triangulation of ∆n1 ×∆n2 .

Each order-preserving map g = (g1, g2) : [n1 + n2] → [n1] × [n2] defines the
affine-linear map of schemes

∆(g) : ∆n1+n2 = An1+n2 → ∆n1 ×∆n2 = An1+n2

by sending the vertex vi of ∆n1+n2 to the point (vg1(i), vg2(i)) of ∆n1 ×∆n2 .
Let

∪n1,n2
m1,m2

:Lc(Am1+m2)(∆n1 ×∆n2) → Lc(Am1+m2)(∆n1+n2)

be the map
∑

g sgn(g)Lc(Am1+m2)(∆(g)), where the sum is over the injective order-
preserving maps g : [n1 + n2] → [n1]× [n2]. We then let

∪m1,m2 : z2(Spec k,Am1+m2) → z
1(Spec k,Am1+m2)

be the cup product, i.e., the product of maps ∪n1,n2
m1,m2

. Let ∪ : Φ0(2) → Φ0(1) be
the product of the maps ∪m1,m2 .

The map ∪ are easily seen to be associative, hence, for each ordered surjective
map f :n→ m, there is a unique morphism ∪f : Φ0(n) → Φ0(m) such that

1. ∪f ◦ ∪g = ∪fg,
2. ∪f21 = ∪,

where f21 : 2 → 1 is the unique surjection.
For σ ∈ Sn, we have symmetry isomorphism

Lc(Am1 × . . .× Amn)(∆a1 × . . .×∆an)
τm1,... ,mn
σ;a1,... ,an−−−−−−−→ Lc(Am′

1 × . . .× Am′
n)(∆a′

1 × . . .×∆a′
n)

gotten by permuting the factors Ami via σ and the factors ∆ai via σ−1. Twisting
τm1,... ,mn
σ;a1,... ,an by the weighted sign map (with weights (a1, . . . , an)) gives the symmetry

isomorphism τσ : Φ0(n) → Φ0(n). One easily checks that dτσ = 0.
If we now send a morphism (f, σ) :n→ m in Ω0 to the composition ∪f ◦ τσ, we

have a well-defined functor Φ0.

2.4.2. Lemma. (i) Let σ be in Sn. Then the map τσ : Φ0(n) → Φ0(n) is homotopic
to the identity.
(ii) Each map in Gr+C−(ShTr

Nis(SmCor(k))) of non-zero degree, ψ : Φ0(n) → Φ0(n),
with dψ = 0, is homotopic to zero.

Proof. It follows directly from the definition of the groups c(XY , ZW ) (see
(2.2.2.1)) that

c(Spec k∆
∗
, Spec k∆

∗
) = L(∆∗)(∆∗)

= C∗(∆∗).

Since p2∗ :C∗(A1 ×X) → C∗(X) is a homotopy equivalence for each X , it follows
that the projection C∗(∆∗) → C∗(Spec k) is a homotopy equivalence. As L(Spec k)
is the constant sheaf Z, we have the homotopy equivalence c(Spec k∆

∗
, Spec k∆

∗
) ∼=

Z. As the map

×Am : c(Spec k∆
∗
, Spec k∆

∗
) → c(Am∆∗

,Am∆∗
)
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is a homotopy equivalence (Lemma 2.2.8), we see that the complex c(Am∆
∗
,Am∆

∗
)

is acyclic in non-zero degrees. An elementary spectral sequence argument then
implies that the extended total complex c(m)∗ associated to the functor

c(m) : ∆n ×∆nop → Ab

c(m)(a1, . . . , an; b1, . . . , bn) = c(Am∆
a1×∆an

,Am∆
b1×∆bn

)

is acyclic in negative degrees. As the Hom-complex

HomGr+C−(ShTr
Nis(SmCor(k)))(Φ0(n),Φ0(n))

is a product over m = 0, 1, 2, . . . of direct sums of c(m)∗, the assertion (ii) is proved.
For (i), it suffices to prove the case n = 2, with σ ∈ S2 the non-trivial permu-

tation. Let τ ′σ : Φ0(2) → Φ0(2) be the map defined similarly to τσ, except that we
only permute the factors in ∆a1 ×∆a2 . Let

Wa1,a2 ⊂ (A1 × A1)×∆a1 ×∆a2 × (A1 × A1)×∆a2 ×∆a1 × A1

be the subvariety with points ((x1, x2), (s1, s2), t(x2, x1)+(1− t)(x1, x2), (s2, s1), t).
Let

(A1 × A1)×∆a1 ×∆a2 × (A1 × A1)×∆a2 ×∆a1

i0,i1−−−→ (A1 × A1)×∆a1 ×∆a2 × (A1 × A1)×∆a2 ×∆a1 × A1

be the 0-section and 1-section. One sees immediately that

Wa1,a2 ∈ c(A2
∆a1×∆a2

,A2
∆a2×∆a1×A

1

),

and that the collection of cycles i∗0[(−1)a1a2Wa1,a2 ], i∗1[(−1)a1a2Wa1,a2 ], define τ ′σ
and τσ, respectively. It follows as in the proof of Lemma 2.2.8 that the collection
of cycles (−1)a1a2Wa1,a2 define a homotopy between τ ′σ and τσ.

Set

Hom([p]
∐

[q], [r]
∐

[s]) :=

Hom∆([p], [r]) ×Hom∆([q], [s])
∐

Hom∆([p], [s])×Hom∆([q], [r]),

giving the functor

Hom(−
∐

−,−
∐

−) : ∆op2 ×∆2 → Sets.

Let ZHom(∆∗×∆∗,∆∗×∆∗) denote the extended total complex of the free abelian
group on Hom(−

∐
−,−

∐
−). Sending an element g ∈ Hom([p]

∐
[q], [r]

∐
[s]) to

the graph of the affine linear map

A2 ×∆p × A2 ×∆q → A2 ×∆r × A2 ×∆s

or

A2 ×∆p × A2 ×∆q → A2 ×∆s × A2 ×∆r

given on the vertices by g (and the identity on the factors A2), gives a map of
complexes

ZHom(∆∗ ×∆∗,∆∗ ×∆∗)
ρ−→ HomGr+C−(ShTr

Nis(SmCor(k)))(Φ0(2),Φ0(2)).

On the other hand, the collection of symmetry isomorphisms σa,b : [a]
∐

[b] →
[b]
∐

[a] gives the element

σ∗,∗ := [(a, b) �→ (−1)abσa,b] ∈ Z0(ZHom(∆∗ ×∆∗,∆∗ × ∆∗)),
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with ρ(σ∗,∗) = τ ′σ. By (Part II, Chapter III, Lemma 2.1.3.1), σ∗,∗ is determined up
to homotopy by the term σ0,0 : [0]× [0] → [0]× [0]. As σ0,0 = id, this implies that
τ ′σ is homotopic to the identity, proving (i).

We refer the reader to (Part II, Chapter III, §3.2.1) for the construction of the
DG tensor category ZΩh. Using Lemma 2.4.2, we extend the functor (2.4.1.1) to a
DG tensor functor

Φh : ZΩh → Gr+C−(ShTr
Nis(SmCor(k)))

(recall that ShTr
Nis(SmCor(k)) is a tensor category, via Remark 2.2.6). For this,

suppose we have defined Φh on morphisms HomZΩh(a, b) for 1 ≤ b ≤ a < n, so that
Φh satisfies the axioms for a DG tensor functor, when the appropriate operations
are defined.

First suppose that n = 2. By Lemma 2.4.2(i), we may extend Φ0 to the
complex HomZΩh(2, 1)∗≥−1, and then use Lemma 2.4.2(ii) to extend to all of the
complex HomΩh(2, 1). Now suppose n > 2. The tensor structure on the category of
complexes Gr+C−(ShTr

Nis(SmCor(k))) gives the extension of Φh to HomZΩh(n, 1)0,
and we then extend to HomZΩh(n, 1) by using Lemma 2.4.2. By the construction
of ZΩh, this process does indeed define a DG tensor functor.

2.5. The equivalence

2.5.1. The category DMh. We proceed to define a category DMh equivalent to
DM(Spec k), and an exact tensor functor Ψ:DMh → DMgm(k).

Let Aeff
1 be the full subcategory of A1(Smk), with objects direct sums of

ZX(m)f with m ≥ 0. We let Aeff
2 be the full tensor subcategory of A2(Smk)

generated by Aeff
1 ; for n = 3, 4, 5, let Aeff

n be the full DG tensor subcategory of
An(Smk) generated by e and Aeff

2 . Let Aeff
mot be the full DG tensor subcategory of

Amot(Smk) generated by the objects e⊗k ⊗ZX(m)f , with k ≥ 0 and with ZX(m)f
in Aeff

1 .
We begin with the additive functor

φ1 :Aeff
1 → C−(ShTr

Nis(SmCor(k))),

which send ZX(m)f to z(X,Am)[−2m]. For a map g :Y → X , φ1 sends the mor-
phism g∗ : ZX(m)f → ZY (m)f ′ to g∗ : z(X,Am)[−2m] → z(Y,Am)[−2m].

We now proceed as in Chapter V, §1.3, to define a sequence of DG tensor
categories Aeffh

n , which are homotopy equivalent to the categories Aeff
n , and DG

tensor functors

φn :Aeffh
n → C−(ShNis(SmCor(k))),

n = 2, 3, 4, 5,mot.
The category Aeffh

2 is (Aeff
1 )⊗,h, defined in (Part II, Chapter III, §3.2.4). For

an integer n ≥ 1, and for objects ZXi(mi)fi of Aeff
1 , define

φ2(ZX1(m1)f1 ⊗ . . .⊗ ZXn(mn)fn) = φ1(ZX1 (m1)f1)⊗ . . .⊗ φ1(ZXn(mn)fn).

Write

X := X1 × . . .×Xn; m :=
∑
i

mi; f := f1 × . . .× fn,

ZX1 (m1)f1 ⊗ . . .⊗ ZXn(mn)fn = Ξ.
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Each pair (g, h), with g ∈ HomZΩh(n, 1) and h :X ′ → X , gives the element
g ⊗ h∗ of HomAeffh

2
(Ξ,ZX′ (m)f ′) (see Part II, (III.3.2.4.1)). Define

φ2(g ⊗ h∗) :φ2(Ξ) → φ2(ZX′ (m′)f ′) = z(X ′,Am)[−2m]

as the composition

φ2(Ξ) �Ξ−−→ z
n(X,Am)[−2m]

(Φh(g)m1,... ,mn×X)[−2m]−−−−−−−−−−−−−−−−−→ z(X,Am)[−2m]
h∗
−→ z(X ′,Am)[−2m],

where � is the external product (2.3.1.1), and ×X is the operation described in
§2.2.5(3).

Since the maps � form a commutative exterior product, this definition of φ2(g⊗
h∗) gives a well-defined map of complexes

φ2 : HomAeffh

2
(Ξ,ZX(m)f ) → HomC−(ShNis(SmCor(k)))(φ2(Ξ), φ2(ZX(m)f )).

Using the tensor structure of C−(ShNis(SmCor(k))), and the explicit description
of the maps in (Aeff

1 )⊗,h from (Part II, Chapter III, §3.2.4), it follows that the
formula for φ2 described above extends uniquely to give the functor

φ2 :Aeffh

2 → C−(ShNis(SmCor(k))).

2.5.2. Cycle classes and semi-purity. For a smooth equi-dimensional k-scheme X ,
let zreq(X) be the sheaf with zreq(X)(Y ) the codimension r cycles on X × Y which
are equi-dimensional over Y (see Appendix A). By [43, Theorem 8.1], the evident
inclusion

z(X,Aq)(Spec k) ↪→ C∗(zqeq(X × Aq))(Spec k)

is a quasi-isomorphism.
For a closed subset W ⊂ X , let zW (X,Aq) be defined as

zW (X,Aq) := cone
(
z(X,Aq)

j∗−→ z(X \W,Aq)
)
[−1],

and let C∗(zqeq(X × Aq))W be similarly defined as

C∗(zqeq(X × Aq))W := cone
(
C∗(zqeq(X × Aq))

j∗−→ C∗(zqeq((X \W × Aq))
)
[−1].

We then have the quasi-isomorphism

zW (X,Aq)(Spec k) → C∗(zqeq(X × Aq))W (Spec k).(2.5.2.1)

We have Bloch’s cycle complex zq(Y, ∗) (see Chapter II, §2.1.2), for a closed
subset F of Y , define zqF (Y, ∗) to be the shifted cone, as above. We have the evident
inclusion C∗(zqeq(X × Aq))(Spec k) → zq(X × Aq, ∗); by [124, Proposition 4.2.9],
this inclusion is a quasi-isomorphism, giving the quasi-isomorphism

C∗(zqeq(X × Aq))W (Spec k) → zqW×Aq(X × Aq, ∗).(2.5.2.2)

We have the group of codimension q cycles on X with support in W , Zq
W (X).

Via (2.5.2.1) and (2.5.2.2), we have the canonical map

clqX,W (k) :Zq
W (X) → HomK−(Ab)(Z, zW (X,Aq)(Spec k))(2.5.2.3)
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satisfying the functorialities of Chapter V, Definition 1.1.6(ii). Also, if W has pure
codimension ≥ q on X , we similarly have

Hp(zW (X,Aq)(Spec k)) = 0; for p < 0.(2.5.2.4)

2.5.3. The extension. The categories Aeffh
n , n = 3, 4, 5 and n = mot are now

constructed exactly as the categories Ash
n (V) in Chapter V, §1.3.6; note that all

the maps adjoined to A2(V) to form An(V) in Chapter I, §1.4 are of the form
h : e⊗k → ZX(n)f [m] with n ≥ 0.

We have the canonical isomorphism (for F in C−(ShNis(SmCor(k))))

HomK−(Ab)(Z,F(Spec k)) → HomK−(ShNis(SmCor(k)))(Z,F).(2.5.3.1)

The cycle class map (2.5.2.3) thus gives the map

clqX,W :Zq
W (X) → HomK−(ShNis(SmCor(k)))(Z, zW (X,Aq)),

satisfying the functorialities of Chapter V, Definition 1.1.6(ii).
The extension of φ2 to

φn :Aeffh
n → C−(ShNis(SmCor(k))); n = 3, 4, 5,mot,

is then constructed as the extension to Ash
n (V) described in Chapter V, §1.3.6, using

the cohomology vanishing (2.5.2.4) and the isomorphism (2.5.3.1). One then takes
complexes, and passes to the homotopy category, giving the exact tensor functor

Kb(φmot) :Kb(Aeffh

mot ) → K−(ShNis(SmCor(k))),

as in Chapter V, §1.3.8.
Using (Part II, Chapter II, Theorem 2.2.2), passing to the derived category, and

localizing with respect to the thick subcategory Htp, we have the exact functor

Kb(φmot)′ :Kb(Aeff
mot) → DM eff

− (k),

and the full triangulated tensor subcategory Kb
h(Aeff

mot) of Kb(Aeff
mot), with essential

image all ofKb(Aeff
mot); the restriction ofKb(φmot)′ toKb

sh(Aeff
mot) is an exact pseudo-

tensor functor.
We now let Aeff+

mot be the full DG tensor subcategory of Aeff
mot generated by

objects of the form e⊗k ⊗ ZX(m)f with m ≥ dimk X . Restricting Kb(φmot)′ gives
the exact functor

Kb(φmot)+ :Kb(Aeff+
mot ) → DM eff

− (k)

and the exact pseudo-tensor functor

Kb(φmot)+ :Kb
h(Aeff+

mot ) → DM eff
− (k).

Since

Kb(φmot)+(e⊗k ⊗ ZX(m)f ) = z(X,Am)[−2m],

and m ≥ dimk X , it follows from (2.3.1.2) that we have the isomorphism

Kb(φmot)+(e⊗k ⊗ ZX(m)f ) ∼= HomDMeff (M(X),Z(m)) ∼= M(X)D ⊗ Z(m).

Since m ≥ dimk X , it follows from [124, Corollary 4.3.4] that M(X)D ⊗Z(m) is in
the strictly full subcategory DMeff

gm (k) of DM eff
− (k). Thus we have exact functor

Kb(φmot)+ :Kb(Aeff+
mot ) → DM eff

gm (k),
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and restriction to the exact pseudo-tensor functor

Kb(φmot)+ :Kb
h(Aeff+

mot ) → DM eff
gm (k).

We may localize Kb(Aeff+
mot ) with respect to the morphisms of Chapter I, Def-

inition 2.1.4, with the restriction that the morphisms inverted are in Cb(Aeff+
mot ),

forming the category Db eff+
mot ; the basic properties of motivic cohomology listed in

[124, §2], together with the properties of (2.3.1.2), imply that Kb(φmot)+ extends
to the exact functor

Ψeff+ :Db eff+
mot → DM eff

gm (k).

Letting Db eff+
moth be the full image of Kb

h(Aeff+
mot ), we have the full triangulated

tensor subcategory Db eff+
moth of Db eff+

mot , with essential image all of Db eff+
mot , and

the exact pseudo-tensor functor

Ψeff+ :Db eff+
moth → DM eff

gm (k).

2.5.4. Lemma. (i) The symmetry isomorphism τ : ZS(1)⊗ ZS(1) → ZS(1)⊗ ZS(1)
in Db eff+

mot is the identity, so one may invert ZS(1) to form the triangulated tensor

category Db ±
mot

(ii) The natural functor Db ±
moth → Db

mot is an equivalence of triangulated tensor
categories.

Proof. (i) follows from the fact that the commutative external product

ZS(1)⊗ ZS(1) → ZS(2)

is an isomorphism in Db eff+
mot (see Chapter I, Definition 2.1.4). For (ii), we note

that the equivalence of triangulated categories of Chapter I, Theorem 3.4.2, works
as well for Db eff+

mot , giving the subcategory Cb eff+
mot (Smk)∗ of Cb

mot(Smk)∗, the
functors

Cb eff+(rmot) :Cb eff+
mot (Smk) → Cb eff+

mot (Smk)∗,

Kb eff (rmot) :Kb eff+
mot (Smk) → Kb eff+

mot (V)∗,

and the equivalences of triangulated tensor categories

Db(rmot) :Db
mot(V) → Db

mot(V)∗,(2.5.4.1)

Db eff+(rmot) :Db eff+
mot (V) → Db eff+

mot (V)∗.

We have the cone-preserving functor s(n) :Cb
mot(V)∗ → Cb

mot(V)∗ defined by

s(n)(Γ) = Cb(rmot)(Γ⊗ ZS(n)).

As rmot(ZX(m)f ⊗ ZS(n)) = ZX(m + n)f , it follows that, for each Γ in Cb
mot(V)∗,

s(n)(Γ) is in Cb eff+
mot (V)∗ for all n sufficiently large. As s(n) has the inverse s(−n),

we have the isomorphism

HomKb
mot(V)∗(Γ,Γ′) ∼= HomKb

mot(V)∗(s(n)(Γ), s(n)(Γ′))(2.5.4.2)

for all Γ, Γ′ in Cb
mot(V)∗.

We have the natural isomorphism

Db(�mot) : Γ⊗ ZS(n) → s(n)(Γ),
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which gives us the identity

HomDb
mot(V)∗(Γ,Γ′) ∼= HomDb

mot(V)∗(s(n)(Γ), s(n)(Γ′))(2.5.4.3)

for all Γ, Γ′ in Cb
mot(V)∗. As each morphism and each identity between morphisms

in a localization of Kb
mot(V)∗ can be described by a finite diagram of morphisms in

Kb
mot(V)∗, it follows from (2.5.4.2) and (2.5.4.3) that have the identity

HomDb
mot(V)∗(Γ,Γ′) ∼= lim→

n

HomDb eff+
mot (V)∗(s(n)(Γ), s(n)(Γ′))

∼= lim→
n

HomDb eff+
mot (V)(s(n0)(Γ)⊗ ZS(n), s(n0)(Γ′)⊗ ZS(n)),

where n0 is chosen so that s(n0)(Γ) and s(n0)(Γ′) are in Db eff+
mot . Together with

the equivalences (2.5.4.1), this proves (ii).

Via Lemma 2.5.4, we have the exact functor

Ψb :Db
mot(V) → DMgm(k).

As projectors have a kernel and cokernel in DMgm(k) [124, Lemma 3.1.13], we may
extend Ψb to the exact functor

Ψ:DM(k) → DMgm(k).

Let Db
moth(V) be the image of Db eff+

moth in Db
mot(V), and let DMh(k) be the

pseudo-abelian hull of Db
moth(V). Then DMh(k) is naturally a full triangulated

tensor subcategory of DM(k), with essential image all of DM(k), and Ψ restricts
to the exact pseudo-tensor functor

Ψh :DMh(k) → DMgm(k).

2.5.5. Theorem. (i) The functor Ψ is an equivalence of triangulated categories.
(ii) The functor Ψh is a pseudo-tensor equivalence of the triangulated tensor cate-
gory DMh(k) with its full image in DMgm(k); the essential image of Ψh is all of
DMgm(k).

Proof. Let Γ be an object of Cb(A1(Smk), i.e., a bounded complex with
terms direct sums of motives ZX(a)f [b]. We have the cycle class map (I.3.5.1.3)

clΓ :H0(Zmot(Γ)) → HomDM(k)(1,Γ).

Composing clΓ with the map induced by the functor Ψ gives us the map

Ψ ◦ clΓ :H0(Zmot(Γ)) → HomDMgm(k)(1,Ψ(Γ)).

The natural quasi-isomorphisms (2.5.2.1) and (2.5.2.2), and the natural iso-
morphism

Hi(φY,X(k)) :Hi(z(Y,X)(Spec k)) → HomDMeff (C∗(Y ), C∗c (X)[i])

of (2.3.1.2)(1) induces the isomorphism

ξΓ : HomDMgm(k)(1,Ψ(Γ)) → H0(Zmot(Γ, ∗))

(see Chapter II, Definition 2.2.4). It follows from the construction of the cycle class
map (2.5.2.3) that the composition

ξΓ ◦Ψ ◦ clΓ :H0(Zmot(Γ)) → H0(Zmot(Γ, ∗))
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is just the map induced by the canonical inclusion

Zmot(Γ) = Zmot(Γ, 0) ↪→ Zmot(Γ, ∗).(2.5.5.1)

We now take Γ = ΣN (ZX(q)[p])[N ] (Chapter II, Definition 2.2.2). For N
sufficiently large we have H0(Zmot(ΣN (ZX(q)[p])[N ]) ∼= CHq(X, 2q−p) (Chapter II,
Proposition 2.2.5 and Lemma 2.2.8). Via this isomorphism, the map

clΓ : CHq(X, 2q − p) → Hp(X,Z(q))

is the isomorphism of (Chapter II, Theorem 3.6.6), and the composition (see Chap-
ter II, Proposition 3.2.3)

CHq(X, 2q − p) clΓ−−→ Hp(X,Z(q)) /CH−−−→ CHq(X, 2q − p) ∼= CHq(X, 2q − p)

is the map on cohomology induced by the inclusion (2.5.5.1). This latter composi-
tion is shown to be an isomorphism in the proof of Theorem 3.6.6 of Chapter II.

Putting this all together, we have shown that the map

Ψ: HomDM(k)(1,ΣN (ZX(q)[p])[N ]) → HomDMgm(k)(1,Ψ(ΣN (ZX(q)[p])[N ]))

is an isomorphism. As the map iN : ZX(q)[p] → ΣN (ZX(q)[p])[N ] (II.2.2.6.2) is an
isomorphism in DM(k) (Chapter II, Lemma 2.3.5), we conclude that

Ψ: HomDM(k)(1,ZX(q)[p]) → HomDMgm(k)(1,Ψ(ZX(q)[p]))

is an isomorphism.
Since DMh(k) is generated as a triangulated category by the objects ZX(n),

and then taking the pseudo-abelian hull, it follows from Theorem 1.5.1 of Chap-
ter IV that Ψh is fully faithful; as each object of DM(k) is isomorphic to an object
of DMh(k), it follows that Ψ is fully faithful.

To see that the essential image of Ψh (or equivalently, of Ψ) is all of DMgm(k),
the category DMgm(k) has the duality involution Γ �→ ΓD := HomDMgm

(Γ,Z).
By (Chapter IV, Lemma 1.1.3, Proposition 1.1.9 and Proposition 1.1.10), we have
Ψ(∆D) ∼= Ψ(∆)D for each ∆ in DM(k). For each X in Smk, it follows from
(2.3.1.2) that

Ψ(ZX(m)f ) ∼= HomDMgm
(M(X),Z)⊗ Z(m) = M(X)D ⊗ Z(m),

hence

Ψ(ZX(m)Df ) ∼= Ψ(ZX(m)f )D ∼= M(X)⊗ Z(−m).

As DMgm(k) is generated as a triangulated category by the objects M(X)⊗Z(−m),
as X runs over Smk, and m ∈ Z, and then taking the pseudo-abelian hull, the
essential image of Ψ is all of DMgm(k).

Since Ψh is fully faithful, we may define the inverse equivalence on the image of
Ψh by choosing a lifting on objects; one easily verifies that this canonically extends
to a pseudo-tensor inverse

Φh : Im(Ψh) → Db
moth(V),

giving the desired pseudo-tensor equivalence.



APPENDIX A

Equi-dimensional Cycles

In this appendix, we give a review of a part of the theory of equi-dimensional
cycles as developed by Suslin-Voevodsky [117]. All the main ideas are from [117];
all errors are of course the responsibility of this author.

1. Cycles over a normal scheme

1.1. Relative cycles

1.1.1. Dimension. Let S be a scheme. Let k be an algebraically closed field, W a
reduced, irreducible k-scheme, essentially of finite type over k. We define dimk(W )
to be the transcendence dimension over k of the function field k(W ); since W is
essentially of finite type over k, dimk(W ) is finite. If s is a point of a scheme S,
we say that S has dimension r at s if the Krull dimension of the local ring OS,s

is r; we say that a local scheme (S, s) has dimension r if S has dimension r at s.
A geometric point s of a scheme S is an equivalence class of maps s : Spec k → S,
where k is an algebraically closed field, and where s and s′ are equivalent if there
is a commutative triangle

Spec k ��
p

%%
s   

  
  

 Spec k′

&&
s′!!

!!
!!
!

S

with p an isomorphism. We let k(s) denote a representative modulo isomorphism
of the collection of the algebraically closed fields k associated to a geometric point
s. We let Sgeom denote the set of geometric points of a scheme S.

For a map of schemes W → S, and a geometric point s of S, we denote
W ×S Spec k(s) by Ws; we also use the notation Ws := W ×S s when s is a point of
S. If W is an irreducible S-scheme, essentially of finite type over S, s a geometric
point of S, then dimk(s)(Z) is independent of the choice of irreducible component
Z of (Ws)red; we denote the common value of such dimensions by dimk(s)(Ws).

Let Z be a closed subset of a scheme W . We let OW,Z denote the semi-local
ring of Z in W ; for a OW,Z -module M , we let lngOW,Z

(M) denote the length of M .

1.1.2. Definition/Lemma. (i) Let S be a reduced scheme, and let p :W → S be a
reduced irreducible S-scheme, essentially of finite type over S. We say that W has
dimension d over S if W dominates an irreducible component S′ of S, and, for each
s ∈ S′geom, either Ws is empty, or dimk(s)(Ws) = d. We say a reduced S-scheme
Z → S, essentially of finite type over S, has dimension d over S if each irreducible
component of Z has dimension d over S. We say that Z is equi-dimensional over
S if Z has dimension d over S for some d.
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(ii) Let S be a reduced scheme, X → S an S-scheme, essentially of finite type
over S. A relative dimension d cycle on X is a finite sum

∑n
i=1 niZi where the ni

are integers, and each Zi is a closed, reduced irreducible subscheme of X , which
has dimension d over S. We define a relative dimension d Q-cycle on X similarly,
allowing Q-coefficients. We let Cd(X/S)Z, (resp. Cd(X/S)Q) denote the group of
relative dimension d cycles on X (resp. the Q-vector space of relative dimension d
Q-cycles on X).

Let Z =
∑N

i=1 niZi be in Cd(X/S)Z or Cd(X/S)Q, with the Zi distinct and
irreducible, and all ni �= 0. We call Z an effective cycle if ni > 0 for i = 1, . . . , N .
The collection of effective relative dimension d cycles on X (together with 0) forms
a sub-monoid Cd(X/S)≥0Z of Cd(X/S)Z; we have as well the Q-sub-cone Cd(X/S)≥0Q

of Cd(X/S)Q consisting of effective relative dimension d Q-cycles on X . The support
of Z is the union ∪n

i=1Zi.
(iii) Let S be a reduced scheme and X → S be an S-scheme with connected
components X1, . . . , Xm. Suppose each Xi has dimension ni over S. We have the
group Cd(X/S)Z of relative codimension d cycles on X , defined as

Cd(X/S)Z = ⊕m
i=1Cni−d(Xi/S)Z,

and the Q-vector space Cd(X/S)Q of relative codimension d Q-cycles on X :

Cd(X/S)Q = ⊕m
i=1Cni−d(Xi/S)Q.

We have as well the monoid of effective cycles Cd(X/S)≥0Z , which generates the
positive Q-cone Cd(X/S)≥0Q .
(iv) If S is a normal scheme, p :T → S a map of schemes, and if Z → S has
dimension d over S, then (Z ×S T )red → T has dimension d over T , or is empty.

Proof. (of (iv)). We may assume that T , Z and S are irreducible and Z×S T
is not empty; as the geometric fibers of (Z ×S T )red → T form a subset of the
geometric fibers of f :Z → S, it suffices to show that each irreducible component
of (Z ×S T )red dominates T .

By Gruson-Raynaud [105], there is a blow-up µ :S′ → S of S such that, if
U ⊂ S is a non-empty open subset of S such that µ is an isomorphism over U , then
the closure ZS′ of Z ×S µ−1(U) in Z ×S S′ is flat over S′. It suffices to show that

ZS′ = (Z ×S S′)red.(1.1.2.1)

Indeed, if this is the case, form the cartesian diagram

T ×S S′ ��
q

��

µT

S′

��

µ

T ��
p S.

As S′ → S is proper and surjective, so is T ×S S′ → T ; thus there is an irreducible
component T ′ of T ×SS

′ which maps surjectively to T . If Z×S T has an irreducible
component which does not dominate T , then Z×S T

′ has an irreducible component
which does not dominate T ′. As we have Z ×S T ′ ∼= (Z ×S S′) ×S′ T ′, as T ′-
schemes, (1.1.2.1) would imply that (Z ×S T ′)red ∼= (ZS′ ×S′ T ′)red as T ′-schemes.
Since ZS′ is flat over S′, ZS′×S′ T ′ is flat over T ′, hence each irreducible component
of ZS′ ×S′ T ′ dominates T ′.
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We now prove (1.1.2.1). Pick a point s of S; to prove (1.1.2.1), it suffices to
show that, for each s′ ∈ S′ with µ(s′) = s we have

(ZS′ ×S′ s′)red = (Z ×S s′)red.(1.1.2.2)

Let Y = µ−1(s)red, and let µY :Y → s be the restriction of µ. The map
q :ZS′ → Z induced by the projection p1 :Z ×S S′ → Z is proper and dominant,
hence the restriction of q to ZS′ ×S′ Y , qY :ZS′ ×S′ Y → Z ×S s, is also proper and
dominant; in particular, qY is surjective.

Let k(s) be the algebraic closure of k(s), s̄ = Spec k(s), and W be an irreducible
component of Z ×S s̄. Let Ȳ = Y ×S s̄. Since q :ZS′ → Z is proper and surjective,
there is an irreducible component Z ′ of ZS′ ×S′ Ȳ with qY (Z ′) = W .

Since ZS′ is flat over S′, and of dimension d over µ−1(U), each fiber of ZS′ over
S′ has dimension d, or is empty. If Z ′ is contained in ZS′×S′ Ȳ0 for some irreducible
component Ȳ0 of Ȳ , the fact the generic fiber of Z ′ over Ȳ0 has dimension d implies
that Z ′ = W ×s̄ Ȳ0.

Since ZS′ ×S′ Ȳi is flat over Ȳi for each irreducible component Ȳi of Ȳ , each
irreducible component of ZS′ ×S′ Ȳi dominates Ȳi. Suppose y is a point of Ȳi ∩ Ȳ0.
Then (ZS′×S′ Ȳi)×Ȳi

y = (ZS′×S′ Ȳ0)×Ȳ0y, hence, if Z ′y is an irreducible component
of Z ′ ×Ȳ0 y, there is an irreducible component Z ′i of ZS′ ×S′ Ȳi containing Z ′y. As
Z ′ ×Ȳ0 y = W ×s̄ y, we have Z ′i = W ×s̄ Ȳi.

As S is normal, Ȳ is connected by Zariski’s connectedness theorem [130], [56,
III, Théorème 4.3.1]. By the two preceding paragraphs, ZS′ ×S′ Ȳ contains (Z ×S

s̄)red ×s̄ Ȳ , which implies (1.1.2.2). This completes the proof.

1.1.3. Remark. Given an S-scheme f :X → S, the groups Cd(U/V )Z form a con-
travariant functor on the category of pairs (U, V ), with U open in X , V open
in S, and f(U) ⊂ V . This makes U �→ Cd(U/S)Z into a sheaf on X , and
V �→ Cd(f−1(V )/V )Z into a sheaf on S. In particular a cycle W on X is in
Cd(X/S)Z if and only if the stalk of W at p is in Cd(Spec (OX,p)/Spec (OS,f(p)))Z

for all p ∈ X . Similar remarks hold for effective cycles, and for the Q-versions.

1.1.4. Intersection multiplicities. As a general reference for this section, see [112].
Suppose S is a regular scheme, and W is an irreducible S-scheme of dimension

d over S. Since S is regular, the OS-module OW has finite Tor-dimension over OS ,
i.e., there is an N such that the coherent sheaf of OWs-modules TorOS

p (OW , k(s))
is zero for all p > N , and all points s of S. Let C → S be a reduced, irreducible S-
scheme with generic point c, and let Z be an irreducible component of (W ×S C)red
with generic point z. Let m(Z;W ·S C) be the integer

m(Z;W ·S C) =
N∑
p=0

(−1)plngOW×SC,Z
(TorOS

p (OW , k(c))z).

Then m(Z;W ·S C) is well-defined; we let W ·S C be the d-dimensional cycle over
C,

W ·S C =
∑
Z

m(Z;W ·S C) · Z,

where the sum runs over all irreducible components Z of (W ×S C)red. We extend
the definition of the operation (−) ·S C to all d-dimensional cycles over S, or all
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d-dimensional Q-cycles over S by linearity. If C is also regular, and A → C is a
reduced irreducible C-scheme, we have the associativity relation

(W ·S C) ·C A = W ·S A(1.1.4.1)

for all d-dimensional cycles over S.
One may define W ·SC for an arbitrary base scheme S, using the same formula,

if one assumes that each irreducible component of W has finite Tor dimension over
S.

1.1.5. Dominant pull-back. Let p :T → S be a dominant morphism of irreducible
normal schemes, let X → S be an S-scheme, essentially of finite type, and let
Z be an irreducible closed subscheme of X , of dimension d over S. By Defini-
tion/Lemma 1.1.2, each irreducible component W of Z ×S T has dimension d over
T . Let t be the generic point of T , s the generic point of S, and let

m(W, p∗(Z)) := m(Wt, Zs ·s t).
We set

p∗(Z) :=
∑
W

m(W, p∗(Z))W,

where the sum is over the irreducible components W of Z ×S T . It follows from
the associativity (1.1.4.1) that this makes the assignment T �→ Cd(X ×S T/T )Z

into a functor on the category of normal S-schemes, with maps being dominant
morphisms. The same holds for the effective cycles, and cycles with rational coeffi-
cients. This pull-back is compatible with the restriction maps for open immersions
described in Remark 1.1.3.

1.1.6. Remark. Suppose that X and S are affine. We have the identity

Cd(X/S)Z = lim
→
Cd(Xα/Sα)Z,

where Xα → Sα is a morphism, essentially of finite type, Sα is a normal scheme,
essentially of finite type over Z, and the limit is over the category of commutative
diagrams

X ��

��

Xα

��

S ��
f

Sα

which identify X with a localization of Xα ×Sα S, and with f dominant; maps
are (Xβ → Sβ) → (Xα → Sα) with Sβ → Sα dominant, and Xβ a localization of
Xα ×Sα Sβ .

Indeed, if S = SpecA, then A is the inductive limit over finitely generated
subrings; by [100, pg. 93, Theorem 3], the normalization BN of a ring B finitely
generated over Z is finite over B, so A is the inductive limit of normal finitely
generated subrings. Since X is essentially of finite type over S, this shows that X
is the projective limit of schemes Xα of the type considered above; similarly, each
closed subscheme Z of X is the projective limit of closed subschemes Zα of Xα.

If now Z is an irreducible closed subscheme of X of dimension d over S, and if
Z is the restriction of Zα ×Sα S to X for some irreducible subscheme Zα of some
Xα → Sα, with morphism f : (X → S) → (Xα → Sα) as above, then the set
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C of points Xα at which Xα fails to have dimension d over Sα is a constructible
subset of Xα. Since X is the projective limit of the Xα, we may factor f as
(X → S)

f1−→ (Xβ → Sβ)
f2−→ (Xα → Sα), with morphisms as above, and with C

disjoint from the image of f2. Taking Zβ to be the unique irreducible component
of Zα ×Xα Xβ which dominates Sβ , Zβ has dimension d over Sβ , and f∗1Zβ is Z.

This allows us to replace an arbitrary normal base with one essentially of finite
type over Z when making computations which are local on X .

1.2. Connectivity

The fundamental result on connectivity is Zariski’s theorem on the connectedness
of the fibers of a proper birational morphism to a normal scheme (see [130] and
[56, III, Théorème 4.3.1]). In this section, we give a series of elaborations on this
result.

1.2.1. Let E be a pure codimension p closed subset of a scheme Y . We say that E
is connected in codimension one if there is a pure codimension one subset F of E
such that the intersection of E with the semi-local scheme SpecOY,F is connected.
If this is the case, we say that E is connected by F .

We recall from [100, pg. 93, Theorem 3] that, for a scheme Y , essentially of
finite type over Z, the normalization Y N → Y is finite over Y .

1.2.2. Lemma. Let S = SpecO be a semi-local normal scheme, s a closed point
of S. Suppose S is essentially of finite type over Z. Then there is a projective
morphism f :Y → S such that

(i) Y is normal and f is birational.
(ii) f−1(s) is the support of a Cartier divisor on Y .
(iii) f−1(s) is connected in codimension one.

In addition, if s1, . . . , sp are points of S different from s, we may assume that f is
an isomorphism over each sj .

Proof. If S has dimension one at s, we may take f to be the identity; suppose
then that S has dimension r > 1 at s. Let m be the maximal ideal of OS,s. Since
S has dimension r, we may find elements x1, . . . , xr of m such that the subscheme
defined by any k of the xi’s has codimension k in S. We may also assume that all
the xi’s are units at each of the points sj , j = 1, . . . , p, and at each of the other
closed points of S. In particular, the ideal (x1, . . . , xr) contains mn for some n.

Form the sequence of blow-ups and normalizations:

S = Y0 = Y N
0 ← Y1 ← Y N

1 ← . . .← Yr−1 ← Y N
r−1,

where Yj is the blow-up of Y N
j−1 along the subscheme defined by the pull-back of

the ideal (x1, . . . , xj+1), and Y N
j is the normalization of Yj .

Let µj :Y N
j → S be the composite of the above maps; we take Y = Y N

r−1, and
f :Y → S to be µr−1. This verifies (i).

If I is an ideal sheaf on S, we write µ∗jI for the ideal sheaf generated by the
pullback of I to Y N

j .
Since Yr−1 is the blow-up of Y N

r−2 along the ideal sheaf µ∗r−2(x1, . . . , xr), the
pull-back of the ideal (x1, . . . , xr) to Yr−1 is locally principal, hence the ideal sheaf
µ∗r−1(x1, . . . , xr) is locally principal. As (x1, . . . , xr) contains mn, this proves (ii)
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Let Ij denote the sheaf of ideals µ∗j (x1, . . . , xj+2), let Zj be the subscheme
of Y N

j defined by Ij , and let Zk
j be the subscheme of Y N

j defined by the ideal
sheaf µ∗j (x1, . . . , xk+2) for k ≥ j. Let us assume by induction that Zk

j has pure
codimension k−j on Y N

j . As µ∗j (x1, . . . , xj+1) is locally principal, it follows that Ij
is locally generated by two elements. Let πj+1,j :Y N

j+1 → Y N
j be the normalization

of the blow-up of Y N
j along Zj. As π−1j+1,j(Zj) is a Cartier divisor, and Zj has

pure codimension two, the generic fibers of πj+1,j have a component of positive
dimension; by connectedness and upper semi-continuity of fiber dimension, each
irreducible component of the fiber of πj+1,j over each point of Zj has positive
dimension. Since Ij is locally generated by two elements, the fibers of πj+1,j over
Zj are all pure dimension one. This shows that Zk

j+1 has pure codimension k−j−1
on Y N

j+1, and the induction goes through. In particular, Ej := µ−1j (s) has pure
codimension r − j on Y N

j .
We have seen that all fibers of πj+1,j are connected and of dimension one. We

may suppose by induction that Ej is connected in codimension one; let Fj be a
codimension one subset of Ej such that Ej is connected by Fj . For each point p

of Ej , the fiber π−1j+1,j(p) is connected by a finite set of points F 1j+1(p); let F 1j+1 be
the union of the closures of the points F 1j+1(p), as p runs over the generic points of
Ej ; clearly F 1j+1 is a pure codimension one closed subset of Ej+1. Let

F 2j+1 = π−1j+1,j(Fj),

Fj+1 = F 1j+1 ∪ F 2j+1.

If E1 is an irreducible component of Ej , then clearly π−1j+1,j(E
1) is connected by

the components of F 1j+1 lying over E1. Similarly, if E1 and E2 are irreducible
components of Ej , with E1 ∩ E2 containing a component F 12 of Fj , then there is
an irreducible component E1j+1 of π−1j+1,j(E

1) and an irreducible component E2j+1
of π−1j+1,j(E

2) such that E2j+1 ∩ E1j+1 contains an irreducible component of F 2j+1.
Thus Ej+1 is connected by Fj+1, and (iii) follows by induction.

1.2.3. Lemma. Let S be a normal semi-local scheme with a closed point s. We
suppose S is essentially of finite type over Z. Let f :Y → S be a projective birational
map, with Y normal. Let E1 and E2 be pure codimension one irreducible subsets
of Y , with f(Ei) = s. Then there is a normal projective S-scheme g :Z → S, and
a pure codimension one closed subset E of Z such that

(i) g is a birational map and g(E) = s.
(ii) The rational map h := f−1 ◦ g :Z → Y is a morphism, and h(E) contains

E1 and E2.
(iii) E is connected in codimension one.

Proof. We may suppose S has dimension r > 1 at s. We may replace Y with
the normalization of the blow-up of Y along f−1(s), hence we may assume that
f−1(s) has pure codimension one on Y , and is the support of a Cartier divisor on
Y . Since S is normal, f−1(s) is connected.

Write f−1(s) as a union of its irreducible components, f−1(s) = E1 ∪ . . .∪Ep,
and let F be the union of the pair-wise intersections, F = ∪i,=j(Ei ∩ Ej). Write F
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as a union of irreducible components, F = F1 ∪ . . . ∪ Fa ∪ Fa+1 ∪ . . . ∪ Fb, where

codimY (Fi) > 2 for i = 1, . . . , a,

codimY (Fi) = 2 for i = a + 1, . . . , b.

Let Y F be the semi-local scheme SpecOY,F ; Y has the closed points s1, . . . , sb,
where si = Fi ∩ Y F for i = 1, . . . , b. The intersection EF of f−1(s) with Y F

is still connected. We may apply Lemma 1.2.2 repeatedly, forming the blow-up
πF :ZF → Y F such that π−1(si) is the support of a Cartier divisor, and is connected
in codimension one for each i = 1, . . . , a. We may also assume that πF is an
isomorphism over each si, i = a + 1, . . . , b.

Let EF
ZF be the proper transform of EF to ZF , and let E′ be an irreducible

component of EF
ZF . Since π−1(si) is the support of a Cartier divisor, the intersection

π−1(si)∩E′ is pure codimension one on E′. This implies that π−1F (EF ) is connected
in codimension one.

The map πF :ZF → Y F is the blow-up of a sheaf of ideals IF ; let I be the
maximal extension of IF to a sheaf of ideals on Y , and let h :Z → Y be the
normalization of the blow-up of Y along I. This gives the commutative diagram

ZF ��

��

πF

Z

��

h

Y F �� Y,

where the top horizontal arrow identifies ZF with a localization of Z. Letting E
be the closure of EF in Z gives the desired result.

1.2.4. Lemma. Let S = SpecO be a local normal domain, essentially of finite type
over Z, with closed point s. Suppose we have discrete valuation rings O1, O2,
and birational local inclusions q1 :O → O1; q2 :O → O2. Suppose that S has
dimension r > 1, and that O1 and O2 are localizations of O-algebras of finite
type over O. Then there is a regular, two-dimensional irreducible scheme X , a
birational morphism p :X → S, essentially of finite type over S, reduced irreducible
codimension one closed subschemes C1, C2 of X , and a codimension one closed
subset C of X such that

(i) the maps p∗ :O → OX,C1 and p∗ :O → OX,C2 are isomorphic to the inclu-
sions q1, q2.

(ii) C is connected, each irreducible component of C is regular, p(C) = s and C
contains C1 and C2.

Proof. Let Ti = SpecOi, with closed point ti, for i = 1, 2. By assumption,
Ti = SpecOYi,Di , for some finite type normal affine S-scheme Yi → S, with closed,
codimension one subset Di ⊂ Yi, i = 1, 2. We may assume that each Yi is reduced
and irreducible; as the inclusions qi are birational, the maps Yi → S are also
birational. We may embed Yi as a closed subset of an affine space ANi

S over S;
replacing Yi with the closure of Yi in PNi

S and changing notation, we may assume
that Yi is projective over S.

Let f :Y → S be the normalization of the S-scheme (Y1 ×S Y2)red. The pro-
jections pi : (Y1 ×S Y2)red → Yi induce the proper maps πi :Y → Yi. Thus there
are irreducible codimension one closed subsets Ei of Y such that πi(Ei) = Di; this
gives the birational local maps π∗i :Oi = OYi,Di → OY,Ei , which are necessarily
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isomorphisms as both rings are discrete valuation rings. Since πi(Ei) = Di, we
have f(Ei) = s. Replacing Y1 and Y2 with Y , we may assume from the start that
qi is the map f∗ :O → OY,Ei .

By Lemma 1.2.3, we may assume that Y contains a pure codimension one closed
subset E such that

(a) E ⊃ Ei; i = 1, 2,
(b) f(E) = s,
(c) E is connected in codimension one.
Suppose E is connected by a pure codimension one subset F . Let S′ be the

scheme SpecOY,F , and let EF be the restriction of E to S′. Let EF
i be the restric-

tion of Ei to S′. Then S′ is a normal two dimensional excellent domain, hence,
by [91], there is a projective birational map π :X → S′ such that X is regular.
In addition, EF is connected; as S′ is normal, this implies that C := π−1(EF ) is
connected. Since π is an isomorphism over each codimension one point of S′, there
are irreducible components C1, C2 of C with π(Ci) = EF

i . Blowing up X further,
we may assume that each component of C is regular. Taking p :X → S to be the
composition X

π−→ S′ ⊂ Y
f−→ S completes the proof.

1.3. Index of inseparability

1.3.1. Let k be a field, W a reduced irreducible k-scheme, K ⊃ k an extension
field. Let W ′ be an irreducible component of (W ×k K)red. We define the integer
mK :k(W ′/W ) by

mK :k(W ′/W ) := lngOW×kK,W ′ (OW×kK,W ′) = m(W ′,W ·Speck SpecK).

The function m− :−(−/−)is multiplicative in towers:

mL :k(W ′′/W ) = mL :K(W ′′/W ′) ·mK :k(W ′/W ),(1.3.1.1)

for L ⊃ K ⊃ k, W ′ an irreducible component of (W×kK)red and W ′′ an irreducible
component of (W ′ ×K L)red. In addition, if char(k) = 0, then mK :k(W ′/W ) = 1
for all K, W ′ and W ; if char(k) = p > 0, then mK :k(W ′/W ) = pα for some integer
α ≥ 0.

1.3.2. Lemma. Let k be a field, and let W be an irreducible reduced k-scheme, of
dimension d over k. Let O be a local k-algebra, essentially of finite type over k,
and suppose that O is a discrete valuation ring. Let C = SpecO, with closed point
a and generic point c. Let WC = W ×k C, let Za be an irreducible component of
(WC ×C a)red, let ZC be an irreducible component of (WC)red containing Za, and
let Zc = ZC ×C c. Then the multiplicity m(Za;ZC ·C a) of Za in ZC ·C a is given
by

m(Za;ZC ·C a) :=
mk(a) :k(Za/W )
mk(c) :k(Zc/W )

.

Proof. We may assume that W = SpecK for some field extension K of k.
We have (ZC ×C a)red = Za

∐
Z ′a; let

W 0
C := W ×k C \ Z ′a, W 0

a := W ×k a \ Z ′a, Z0C := ZC \ Z ′a.

Let MZ0
C be the category of coherent sheaves on W 0

C , with support on Z0C ,
MZc the category of coherent sheaves on W ×k c with support on Zc, and MZa
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the category of coherent sheaves on W 0
a with support on Za. The restriction and

inclusion functors

j∗ :MZ0
C →MZc

i∗ :MZa →MZ0
C

give the exact localization sequence

K0(MZa) i∗−→ K0(MZ0
C )

j∗−→ K0(MZc) → 0.(1.3.2.1)

The maps

lngOW×kc,Zc
:K0(MZc) → Z, lngOW0

a ,Za
:K0(MZa) → Z,

are isomorphisms.
Let (−)⊗L k(a) be the map from MZ0

C to K0(MZa) given by

M ⊗L k(a) = [M ⊗O
W0

C
,Z0

C

OW 0
a ,Za

]− [Tor
O

W0
C
,Z0

C
1 (M,OW 0

a ,Za
)],

where [−] denotes class in K0(MZa). Then (−)⊗L k(a) defines a map

(−)⊗L k(a) :K0(MZ0
C ) → K0(MZc)

with i∗(x) ⊗L k(a) = 0 for all x ∈ K0(MZa). Also, we have the expression for the
intersection multiplicity m(Za;ZC ·C a):

m(Za;ZC ·C a) = lngOW0
a,Za

([OZ0
C

]⊗L k(a)).(1.3.2.2)

Since

lngOW×kc,Zc
(OW×kc,Zc) = mk(c) :k(Zc/W ), lngOW×kc,Zc

(OZc) = 1,

lngOW0
a,Za

(OW 0
a ,Za

) = mk(a) :k(Za/W ), lngOW0
a ,Za

(OZa) = 1,

we have

[OW×kc,Zc ] = mk(c) :k(Zc/W ) · [OZc ] in K0(MZc),

[OW 0
a ,Za

] = mk(a) :k(Za/W ) · [OZa ] in K0(MZa),

where [−] denotes the class in the appropriate K0. Applying the localization se-
quence (1.3.2.1), and noting that j∗(OZ0

C
) = OZc , we have

[OW 0
C ,Z0

C
] = mk(c) :k(Zc/W ) · [OZ0

C
] + i∗(x) in K0(MZ0

C )

for some x ∈ K0(MZa). This gives

[OW 0
C ,Z0

C
]⊗L k(a) = mk(c) :k(Zc/W ) · [OZ0

C
]⊗L k(a) + i∗(x)⊗L k(a)

= mk(c) :k(Zc/W ) · [OZ0
C

]⊗L k(a).

Applying the length homomorphism and using (1.3.2.2), we have

mk(c) :k(Zc/W ) ·m(Za;ZC ·C a) = lngOW0
a,Za

([OW 0
C ,ZC

]⊗L k(a)).(1.3.2.3)

Since k is a field, W is flat over k, hence W 0
C is flat over C. Thus

lngOW0
a,Za

([OW 0
C ,ZC

]⊗L k(a)) = lngOW0
a,Za

(OW 0
C ,ZC

⊗ k(a))

= lngOW0
a,Za

(OW 0
a ,Za

)

= mk(a) :k(Za/W ).
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This, together with (1.3.2.3) gives m(Za;ZC ·Ca) =
mk(a) :k(Za/W )
mk(c) :k(Zc/W )

, as desired.

1.4. Multiplicities over a normal base

1.4.1. Proposition. (i) Let S be a normal scheme, p :W → S an equi-dimensional,
reduced irreducible S-scheme, s a point of S, and W̄ an irreducible component of
the reduced fiber (Ws)red. Let O be a discrete valuation ring, T = SpecO, and
t the closed point of T . Suppose we have a birational morphism, essentially of
finite type, f :T → S, with f(t) = s. Let WT = (W ×S T )red, with induced

maps pT :WT → T and f̃ :WT → W. Let W̄T be an irreducible component of
the reduced fiber p−1T (t)red with f̃(W̄T ) = W̄ , and let mT be the intersection
multiplicity mT = m(W̄T ,WT ·T t) = lngOWT ,W̄T

(OWT ,W̄T
⊗ k(t)) > 0. Then the

positive rational number

m(W̄ ;W, s) :=
mT

mk(t) :k(s)(W̄T /W̄ )
(1.4.1.1)

depends only on s, W and the choice of component W̄ .
(ii) If W has finite Tor-dimension over S, then

m(W̄ ;W, s) = m(W̄ ;W ·S s).

Proof. We first prove (i). We may assume that S is local, and W is affine
over S. Since W and T are S-schemes essentially of finite type, we may assume
that S is essentially of finite type over Z.

Suppose we have two such maps, fi :Ti → S, i = 1, 2. By Lemma 1.2.4, we
may find a regular two-dimensional scheme X , with a birational map p :X → S,
a connected curve C on X , contained in p−1(s), and irreducible components C1,
C2 of C such that the maps fi are the maps pi : SpecOX,Ci → S induced by p. In
addition, all the components of C are regular. By induction, we may assume that
C1 and C2 intersect at a point a of X . Let ci be the generic point of Ci.

Let WX be the reduced pull-back (W×SX)red. Since X , C1 and C2 are regular,
the intersection cycles

W1 := WX ·X C1, W2 := WX ·X C2, WX ·X a,

W1 ·C1 a, and W2 ·C2 a

are all defined. From the associativity relation (1.1.4.1), we have

WX ·X a = W1 ·C1 a = W2 ·C2 a.(1.4.1.2)

Let Za be an irreducible component of (WX ×X a)red lying over W̄ , let Z1 be
the reduced irreducible component of the cycle W1 containing Za, and let Z2 be
the reduced irreducible component of the cycle W2 containing Za. We have the
intersection multiplicities

m1 = m(Z1;WX ·X C1), m2 = m(Z2;WX ·X C2), ma = m(Za;WX ·X a).

By Lemma 1.3.2, Za appears with multiplicity

m(Za;Zi ·Ci a) =
mk(a) :k(s)(Za/W̄ )
mk(ci) :k(s)(Zci/W̄ )
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in Zi ·Ci a, hence, by (1.4.1.2), we have

m1 ·
mk(a) :k(s)(Za/W̄ )
mk(c1) :k(s)(Zc1/W̄ )

= ma = m2 ·
mk(a) :k(s)(ZaW̄ )

mk(c2) :k(s)(Zc2/W̄ )
,

which gives the desired identity

m1
mk(c1) :k(s)

=
m2

mk(c2) :k(s)
.

To prove (ii), we may assume that S is local, with closed point s, and that
W is a closed subscheme of Y := AN

S for some N . Since Y is smooth over S,
the assumption that W has finite Tor dimension over S implies there is a finite
resolution of OW by locally free coherent OY -modules, P∗ → OW . We may pull this
complex back to YT := Y ×S T , forming the complex p∗1P∗ → OW×ST ; composing
with the surjection OW×ST → OWT gives us the complex

p∗1P∗ → OWT(1.4.1.3)

on YT . Let Yt and Wt be the fiber of Y and WT over the closed point t of T
and let Ys be the fiber of Y over s. Let MWT

YT
be the abelian category of coherent

sheaves on YT with support in WT , and let MWt

Yt
be the abelian category of coherent

sheaves on Yt with support in Wt. The inclusion i :Yt → YT induces the functor
i∗ :MWt

Yt
→ MWT

YT
. As the map f :T → S is birational, the complex (1.4.1.3) is

exact away from Yt. From this, we arrive at the identity in K0(MWT

YT
):

[OWT ] = [H0(p∗1P∗)] + i∗(x),(1.4.1.4)

where [F ] denotes the class in K0(MWT

YT
) of a coherent sheaf F , and x is some

element of K0(MWt

Yt
). In addition, Hp(p∗1P∗) is in MWt

Yt
for all p > 0. By Serre’s

intersection vanishing formula [112] (for the case of a DVR), we have

∞∑
q=0

(−1)qlngOYt,W̄T
(TorOT

q (F , k(t))⊗OYt,W̄T
) = 0

for all F in MWt

Yt
and all components W̄T of Wt; from this and (1.4.1.4) it follows

that

(1.4.1.5)
∞∑
p=0

(−1)plngOYt,W̄T
(Hp(p∗1P∗ ⊗OT k(t))⊗OYt,W̄T

)

= lngOYt,W̄T
(OWT ,W̄T

⊗ k(t)).

On the other hand, the extension k(t) ⊃ k(s) is flat, hence

Hp(p∗1P∗ ⊗OT k(t)) = Hp(P∗ ⊗OS k(s))⊗k(s) k(t).(1.4.1.6)

Also, if F is a coherent sheaf on Ys, supported on W̄ , we have

lngOYt,W̄T
(F ⊗k(s) k(t)) = mk(t) : k(s)(W̄T /W̄ ) · lngOYs,W̄

(F).(1.4.1.7)
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From (1.4.1.5)-(1.4.1.7), we have

lngOYt,W̄T
(OWT ,W̄T

⊗ k(t))

=
∞∑
p=0

mk(t) : k(s)(W̄T /W̄ ) · (−1)plngOYs,W̄T
(Hp(P∗ ⊗OS k(s))⊗OYt,W̄T

)

= mk(t) : k(s)(W̄T /W̄ ) ·m(W̄ ,W ·S s).

This proves (ii).

1.4.2. Definition. (i) Let S be a normal scheme, p :W → S an irreducible reduced
S-scheme of dimension d over S, s a point of S. Let W (s) be the dimension d cycle
over k(s) with positive rational coefficients,

W (s) :=
∑
W̄

m(W̄ ;W, s) · W̄ ,

where the sum is over all irreducible components W̄ of W ×S s, and the rational
number m(W̄ ;W, s) > 0 is given by (1.4.1.1). We extend the definition to Q-linear
sums of such W by linearity.
(ii) Let f :T → S be a map of reduced normal schemes, and W → S be a relative
dimension d reduced irreducible scheme over S. Let t be the generic point of T ,
and let s = f(t). For an irreducible component W i

T of (W ×S T )red, let W i
s be

the irreducible component f(W i
T ) ∩ Ws of the fiber Ws. Define the multiplicity

m(W i
T ;W, f) > 0 by

m(W i
T ;W, f) = m(W i

s ;W, s) ·mk(t) : k(s)(W i
T /W

i
s).

We set f∗(W ) to be the effective dimension d Q-cycle over T :

f∗(W ) :=
∑
i

m(W i
T ;W, f) ·W i

T ,

where the sum is over all irreducible components W i
T of (W ×S T )red.

(iii) Let p :T → S be a map of normal schemes, X → S an S-scheme, essentially of
finite type over S. Sending W to p∗(W ) defines the homomorphisms

p∗ : Cd(X/S)≥0Q → Cd(X ×S T/T )≥0Q ,

p∗ : Cd(X/S)Q → Cd(X ×S T/T )Q.

1.4.3. Remarks. (i) If W is a d-dimensional cycle over S, and if each irreducible
component of W has finite Tor-dimension over S, then Proposition 1.4.1(ii) shows
that, for each point s of S, W (s) is the cycle W ·S s. In particular, W (s) has
Z-coefficients for all s ∈ S. Similarly, for a morphism of schemes f :T → S,
Proposition 1.4.1(ii) and the associativity (1.1.4.1) gives the identity

f∗(W ) = W ·S T ;

this shows that f∗(W ) has Z-coefficients under the assumption of finite Tor-dimen-
sion.
(ii) Let Z → S be irreducible and of dimension d over a normal scheme S, s a
generic point of S. Taking O to be the localization of k(s)[t] at the ideal (t), we see
that Z(s) is 1 · Zs. This shows that, for a dominant morphism of normal schemes,
the pull-back defined in §1.1.5 agrees with the pull-back defined in Definition 1.4.2.
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1.4.4. Proposition. Let f :T → S, g :U → T be maps of normal schemes, X → S
an S-scheme, essentially of finite type over S. Then the diagram

Cd(X/S)Q
��

f∗

''
(g◦f)∗ """

"""
"""

"""
Cd(X ×S T/T )Q

��

g∗

Cd(X ×S U/U)Q

commutes.

Proof. If T , S and U are all regular, the result is a consequence of the asso-
ciativity of intersection multiplicities and Remark 1.4.3.

Take W in Cd(X/S)Q. Since the pull-back of cycles is determined by the pull-
back at the generic point, we may assume that U = SpecL for some field L. We
may then reduce to proving two cases:

(a) U is a point t of T .
(b) T is a point s of S, and U → T is a map of reduced one-point schemes

u→ s.

In the case (b), we have f∗(W ) = W (s), and the identity

g∗(W (s)) = (f ◦ g)∗(W )

follows immediately from the definition. We now prove case (a).
We may assume that T is local, with closed point t, and that S is local, with

closed point s = f(t). The assertion is local on X , so we may assume that X is
affine. We may therefore assume that S and T are essentially of finite type over Z.

We have the following commutative diagram

t2
� � ��

��

gt2

T2

��

g2

t
� � ��

��

T ��
f

��

g1

S

t1
� � �� T1,

����������

where T1 is the normalization of the closure of f(T ) in S, g1 the induced morphism,
and t1 := g1(t). T2 is the normalization of an irreducible component of g−11 (t1)
containing t, g2 is the induced map, t2 is a point of g−12 (t), and gt2 is the restriction
of g2. From this diagram, the case (b), and the fact that the map gt∗2 is injective,
we reduce to proving (a) in two cases:

(a1) f is dominant, and t is a generic point of f−1(s).
(a2) T is the normalization of a closed subset T ′ of S, and f the induced map.

For case (a1), we may assume that s is not a generic point of S; otherwise
we are in case (b). Let p :Y → S be the normalization of the blow-up of S at s;
since Y → S is projective and birational, so is p1 :T ×S Y → T . Thus, p−11 (t) is
non-empty; letting q :YT → T be the normalization of the blow-up of T ×S Y along
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p−11 (t), we have the commutative square

YT ��
q

��

T

��

Y ��
p S.

Let E be an irreducible component of p−1(s), let E′ be an irreducible component
of q−1(t) lying over E, and let O and O′ be the discrete valuation rings O = OS,E,
O′ = OT,E′ . This gives us the commutative square

SpecO′ ��
q

��

T

��

SpecO ��
p

S;

the result in this case follows from the definition of pull-back, and the functoriality
in the regular case.

We now prove case (a2). Let pT ′ :YT → T ′ be the normalization of the blow-up
of T ′ at s. Then pT ′ is projective and birational, hence is the blow-up of T ′ along
some proper subscheme Z. Let pS :YS → S be be blow-up of S along Z. We arrive
at the commutative diagram

YT ��
iY

��

pT ′

YS

��

pS

T ′ ��
iT ′

S

(1.4.4.1)

with iT ′ the inclusion, and iY a closed embedding. This diagram identifies YT
with the proper transform p−1S [T ′] of T ′. Blowing up YS along p−1S (s), normalizing
and changing notation, we may assume that p−1S (s) is the support of a Cartier
divisor on YS . It may of course happen that the proper transform p−1S [T ′] is now no
longer normal, but as the map p−1S [T ′]N → p−1S [T ′] is also projective and birational,
we may further blow-up YS along the appropriate subscheme of p−1S [T ′], and then
normalize, to normalize p−1S [T ′]. Putting this all together, we have the commutative
diagram (1.4.4.1) such that YT and YS are normal, pT ′ and pS are birational, p−1T ′ (s)
is the support of a Cartier divisor on YT , p−1S (s) is the support of a Cartier divisor
on YS , and iY identifies YT with the proper transform p−1Y [T ′] . Since YT is normal,
the map pT ′ factors through the map T → T ′, giving the commutative diagram

YT ��
iY

��

pT

YS

��

pS

T ��
f

S.

We now let q :Y → YS be the normalization of the blow-up of YS along YT , and
let p :Y → S be the composition pS ◦ q. Since p−1S (s) is the support of a Cartier
divisor on YS , the same is true of p−1(s). As the map pS is an isomorphism over the
generic point of T ′, there is an irreducible component D of the pure codimension
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one closed subset q−1(YT ) such that D dominates T . As q is proper, this implies
that q(D) = YT , thus, if F ′ is an irreducible component of p−1T ′ (s) = p−1S (s) ∩ YT ,

there is an irreducible component F of D ∩ p−1(s) with q(F ) = F ′. As p−1T (t) is a
connected component of p−1T ′ (s), the same holds for each irreducible component F ′

of p−1T (t). Since p−1(s) is the support of a Cartier divisor on Y , F is necessarily a
pure codimension one subset of D. Let E be a component of p−1(s) such that E
contains F , where we now take F ′ to be an irreducible component of p−1T (t).

Let X be the localization, X = SpecOY,F , and let D′, E′ be the respective
intersections of D and E with X . Since F has codimension two on Y , OY,F is a
local normal noetherian domain of Krull dimension two; as we have assumed that
S is essentially of finite type over Z, so is X . Thus, we may resolve the singularities
of X by the blow-up of a sheaf of ideals; extending this sheaf of ideals to Y , blowing
up, normalizing and changing notation, we may assume that X is regular to begin
with. Similarly, we may assume that D′ and E′ are regular.

Denote the closed point of X by a, and the birational map X → S induced
by p by pX :X → S. Let WX → X be reduced X-scheme (W ×S X)red. The
map q :D → T induces the dominant map q′ :D′ → T with q′(a) = t and the
map pX :X → S induces the maps pE′ :E′ → s, pa,s : a → s, and pa : a → S. The
restriction of f to t gives the map ft : t→ S.

Let

iD′ :D′ → X, iE′ :E′ → X, ia : a→ X,

iD′,a :a→ D′ , iE′,a : a→ E′

be the inclusions, and let q′a : a → t be the restriction of q′ to a. By definition of
the pull-backs f∗ and q′∗, we have

q′∗(f∗(W )) = i∗D′
(
(W ×S X)red

)
= (W ×S X)red ·X D′.(1.4.4.2)

Similarly, by definition of W (s), we have

p∗E′(W (s)) = i∗E′
(
(W ×S X)red

)
= (W ×S X)red ·X E′.(1.4.4.3)

Since q′ is dominant, we have by (a2)

i∗D′,a(q′∗(f∗(W ))) = q′∗a (f∗(W )(t)).(1.4.4.4)

Since D′ is regular and a has codimension one on D′, we have (see Proposi-
tion 1.4.1(ii)) i∗D′,a(q′∗(f∗(W ))) = q′∗(f∗(W )) ·D′ a; using (1.4.4.2) and the asso-
ciativity of intersections (1.1.4.1), we have i∗D′,a(q′∗(f∗(W ))) = (W ×S X)red ·X ·a.
From (1.4.4.4), this gives

q′∗a (f∗(W )(t)) = (W ×S X)red ·X ·a.(1.4.4.5)

Since the map E′ → s is dominant, we have i∗E′,a(p∗E′(W (s))) = p∗a,s(W (s)). Ar-
guing as above, starting with (1.4.4.3) instead of (1.4.4.2), this gives p∗a,s(W (s)) =
(W ×SX)red ·X ·a, hence from (1.4.4.5) we have q′∗a (f∗(W )(t)) = p∗a,s(W (s)). From
the case (b), we have p∗a,s(W (s)) = p∗a(W ) = q′∗a (f∗t (W )), giving q′∗a (f∗t (W )) =
q′∗a (f∗(W )(t)). As the map q′∗a is clearly injective, this gives the desired relation
f∗t (W ) = f∗(W )(t), completing the proof.



346 A. EQUI-DIMENSIONAL CYCLES

1.4.5. Let S be a reduced scheme, X → S an S-scheme, essentially of finite type
over S. By Proposition 1.4.4, sending an S-morphism p :T ′ → T of normal S-
schemes to the homomorphism p∗ : Cd(X×S T/T )Q → Cd(X×S T

′/T ′)Q defines the
contravariant functor

Cd(X ×S (−)/(−))Q :NoropS →ModQ(1.4.5.1)

from the category NorS of normal S-schemes to Q-vector spaces. This is in fact a
Zariski sheaf on NorS .

More generally, let NorX→S be the category of morphisms U → T , with T
in NorS , and U → T a localization of X ×S T . Let Nor∗→∗ be the category
of morphisms X → S, essentially of finite type, with S normal, where a map
(U → T ) → (X → S) is a morphism in NorX→S . The restriction map

Cd(X ×S T/T )Q → Cd(U/T )Q

defined in Remark 1.1.3 extends (1.4.5.1) to the functor

Cd(−/−)Q :Norop∗→∗ →ModQ.(1.4.5.2)

1.4.6. Pull-back over S. Now let S be a normal scheme, f :X → Y be a map of
smooth S-schemes, essentially of finite type over S, and let Z be an irreducible
relative codimension d cycle on Y . If each irreducible component of f−1(Z) has
codimension d over S, we say that f∗(Z) is defined. Let s be the generic point of S
and assume f∗(Z) is defined; the pull-back f∗s (Zs) is then defined, with multiplici-
ties being the usual alternating sums of Tor’s, since the map fs :Xs → Ys is a map
of regular schemes. Define the pull-back f∗(Z) by

f∗(Z) =
r∑

i=1

miWi

where W1, . . . ,Wr are the irreducible components of f−1(Z), and the integers mi

are determined by f∗s (Zs) =
∑r

i=1miWis. We extend the definition of f∗ to ar-
bitrary cycles, satisfying the condition on the codimension over S of the inverse
images, by linearity. We extend the definition of f∗ to Q-cycles similarly.

1.4.7. Proposition. Let S be a normal scheme, X → S, Y → S be smooth S-
schemes, essentially of finite type over S, f :X → Y a map over S, and Z an element
of Cd(Y/S)Q such that f∗(Z) is defined.
(i) Let s be a point of S. Then f∗s (Z(s)) is defined and

f∗s (Z(s)) = f∗(Z)(s).

(ii) Let p :T → S be a map of normal irreducible schemes, fT :X ×S T → Y ×S T
the map induced by f . Then f∗T (p∗(Z)) is defined, and

p∗(f∗(Z)) = f∗T (p∗(Z)).

Proof. The fact that f∗T (p∗(Z)) is defined if f∗(Z) is defined is obvious.
Clearly (ii) implies (i). On the other hand, (ii) follows from (i), together with
the case of a dominant map f :T → S. In this case, the computation of p∗(f∗(Z))
and f∗T (p∗(Z)) can be made at the generic point of T , where the result follows from
the compatibility of intersection multiplicities with flat pull-back. We now prove
(i).

Using the definition of W (s) for a cycle W , we reduce immediately to the case
S = SpecO, where O is a discrete valuation ring, and s is the closed point of S.
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As in this case X , Y , Xs and Ys are regular, and we have W (s) = W ·S s for all
equi-dimensional cycles W over S. The result is then a straightforward application
of the associativity of intersection multiplicities.

2. Cycles over a reduced scheme

2.1. Gluing cycles

We extend the cycle theory of §1.4 to arbitrary reduced schemes by a gluing con-
struction. In this section, we take all schemes to be essentially of finite type over
Z.

2.1.1. Let S be a reduced scheme, p :SN → S the normalization of S, X → S an
S-scheme essentially of finite type. If Z is a reduced, irreducible closed subscheme
of X , of dimension d over S, there is a unique irreducible component Z ′ of Z×S S

N

which dominates Z; Z ′ then has dimension d over SN . Sending Z to Z ′ and
extending by linearity gives the maps

p∗ :Cd(X/S)Z → Cd(X ×S SN/SN )Z,

p∗ :Cd(X/S)Q → Cd(X ×S SN/SN)Q.

2.1.2. Definition. Let S be a reduced scheme, p :SN → S the normalization of S,
X → S an S-scheme, essentially of finite type over S.
(i) Define the submonoid Zd(X/S)≥0Z of Cd(X/S)≥0Z by the following condition:
Let Z be in Cd(X/S)≥0Z . Then Z is in Zd(X/S)≥0Z if, for each field K, and for
each pair of morphisms f1, f2 : SpecK → SN satisfying p ◦ f1 = p ◦ f2, we have
f∗1 (p∗(Z)) = f∗2 (p∗(Z)). We define Zd(X/S)Z to be the subgroup of Cd(X/S) gen-
erated by Zd(X/S)≥0Z .

The Q-sub-cone Zd(X/S)≥0Q of Cd(X/S)≥0Q is defined by the same condition:

Zd(X/S)≥0Q = Q≥0 · Zd(X/S)≥0Z .

We define Zd(X/S)Q to be the Q-vector subspace of Cd(X/S)Q generated by the
cone Zd(X/S)≥0Q .
(ii) If X → S is an S-scheme with connected components Xi, such that each Xi is
of dimension ni over S, we let

Zd(X/S)Q = ⊕iZni−d(Xi/S)Q,

Zd(X/S)Z = ⊕iZni−d(Xi/S)Z.

2.1.3. The inclusion Zd(X/S)≥0Z → Zd(X/S)≥0Q induces the inclusion Zd(X/S)Z →
Zd(X/S)Q, and we have

Zd(X/S)Q = Q · Zd(X/S)Z
∼= Zd(X/S)Z ⊗Z Q.

2.1.4. Lemma. Let S be a reduced scheme, X → S an S-scheme, essentially of
finite type over S, p :SN → S the normalization,W an element of Zd(X/S)≥0Q , and

s a point of S. Let |W | be the support of W , and |p∗(W )| the support of p∗(W ).
Then

(i) |p∗(W )| = (|W | ×S SN)red; in particular, if s1, s2 are points of S
N with

p(s1) = p(s2) = s, and if W̄ is an irreducible component of (|W | ×S s)red,
then there are irreducible components Zi of (|p∗(W )|si)red, i = 1, 2, with
p1(Zi) = W̄ , i = 1, 2.
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(ii) given Z1, Z2 as in (i), we have

m(Z1; p∗(W ), s1)
mk(s1) :k(s)(Z1/W̄ )

=
m(Z2; p∗(W ), s2)
mk(s2) :k(s)(Z2/W̄ )

.

Proof. For (i), write W as a sum, W =
∑

i riWi, ri ∈ Q, ri > 0, with
the Wi irreducible. For each i, let W ′

i be the unique irreducible component of
(Wi ×S SN )red dominating Wi; hence p∗(W ) =

∑
i riW

′
i . Since SN → S is finite,

so is p1 :W ′
i → Wi; in particular, each of the maps W ′

i → Wi is surjective. Take
a geometric point x of (|W | ×S SN)red, and let z := p1(x). Then x is a geometric
point of (Wi ×S SN )red for some i, hence there is a geometric point y of W ′

i with
p1(y) = p1(x) = z. If p2(y) = p2(x), then x = y, and we are done; if not, let
s1 = p2(x), s2 = p2(y). As p1(x) = p1(y), we have p(s1) = p(s2). Thus there is a
field K, and morphisms

fi : t→ SN ; i = 1, 2; t := SpecK,

such that fi(t) = si, and p ◦ f1 = p ◦ f2.
Since W is in Zd(X/S)Q, we have f∗1 (p∗(W )) = f∗2 (p∗(W )). Since y×f2t = z×St

is in the support of f∗2 (p∗(W )), this implies that z ×S t = x×f1 t is in the support
of f∗1 (p∗(W )) as well. Thus, as the support of f∗1 (p∗(W )) is (|p∗(W )| ×f1 t)red, x is
in |p∗(W )|geom, showing that |p∗(W )| ⊃ (|W | ×S SN)red. The reverse inclusion is
true for trivial reasons, completing the proof of (i).

For (ii), let F be the algebraic closure of k(s) in the field of rational functions on
W̄ . Then, for each field extension L of k(s), there is a canonical bijection between
the irreducible components of (W̄ ×k(s) L)red and the simple factors of the semi-
simple L-algebra F ⊗k(s) L/rad. Let Ki be the simple factor of F ⊗k(s) k(si)/rad
corresponding to Zi, and let K be a simple factor of K1 ⊗k(s) K2/rad. Let t =
SpecK. As k(si) is embedded in F ⊗k(s) k(si) as 1 ⊗ k(si), we have the canonical
homomorphism k(si) → Ki, i = 1, 2, giving the diagram of fields

k(s1) �� K

k(s)

��

�� k(s2).

��

This in turn defines morphisms fi : t→ SN with p◦ f1 = p◦ f2, and with fi(t) = si.
Let Fi : W̄ ×s t→ W̄ ×s si and fsi : t→ si be the maps induced by fi, i = 1, 2.

By construction, there is a simple factor L of F ⊗k(s)K/rad such that K1 and
K2 map into L under the canonical homomorphisms F ⊗k(s) k(si) → F ⊗k(s) K.

From this it follows that there is an irreducible component Y of W̄ ×s t such that
Fi(Y ) = Zi.

By the functoriality of pull-back, we have f∗i (p∗(W )) = fs∗i (p∗(W )(si)). The
multiplicity of Y in fs∗i (p∗(W )(si)) is given by

m(Y ; fs∗i (p∗(W )(si))) = m(Zi; p∗(W )(si)) ·mK :k(si)(Y/Zi).(2.1.4.1)

By assumption, we have f∗1 (p∗(W )) = f∗2 (p∗(W )); with (2.1.4.1) this implies

m(Z1; p∗(W )(s1)) ·mK :k(s1)(Y/Z1) = m(Z2; p∗(W )(s2)) ·mK :k(s2)(Y/Z2).
(2.1.4.2)

By the multiplicativity relation (1.3.1.1), we have

mK :k(s1)(Y/Z1) ·mk(s1) :k(s)(Z1/W̄ ) = mK :k(s2)(Y/Z2) ·mk(s2) :k(s)(Z2/W̄ ).
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This together with (2.1.4.2) proves (ii).

2.2. Multiplicities over a reduced base

2.2.1. Definition. Let S be a reduced scheme, essentially of finite type over Z,
and let X → S be an S-scheme, essentially of finite type.
(i) Let W be an element of Zd(X/S)≥0Q , and s a point of S. Let W̄ be an irreducible
component of (W ×S s)red. Define the positive rational number m(W̄ ;W, s) by

m(W̄ ;W, s) =
m(Z ′; p∗(W ), s′)
mk(s′) :k(s)(Z ′/W̄ )

,

where s′ ∈ SN is a point lying over s, and Z ′ is an irreducible component of
(p∗(W )s′)red lying over W̄ ; by Lemma 2.1.4, m(W̄ ;W, s) is well-defined, and de-
pends only on W , s and W̄ . We let W (s) be the element of Cd(Xs/s)

≥0
Q defined

by
W (s) :=

∑
W̄

m(W̄ ;W, s) · W̄ ,

where the sum is over all irreducible components W̄ of (W ×S s)red. We extend the
definition of W (s) to Zd(X/S)Q by linearity.
(ii) Let Zd(X/S) be the subgroup of Zd(X/S)Z generated by the elements W of
Zd(X/S)≥0Z such that W (s) is in Cd(Xs/s)Z for all s ∈ S.
(iii) If X → S is an S-scheme with connected components Xi, such that each Xi is
of dimension ni over S, we let

Zd(X/S) = ⊕iZni−d(Xi/S).

2.2.2. We note that, in case S is normal, we have Zd(X/S)Q = Cd(X/S)Q, and
the old definition of W (s) agrees with the new one. In addition, the cycle W (s) is
characterized by the following identity in Cd(X ×S s′/s′)Q: Let p :SN → S be the
normalization. Pick a point s′ ∈ SN with p(s′) = s. Then

p∗(W )(s′) = p∗s′(W (s)).(2.2.2.1)

The identity (2.2.2.1) follows easily from the definition of W (s) and the pull-back
p∗s′ .

2.2.3. Lemma. Let S be a reduced scheme, essentially of finite type over Z, and let
X → S be an S-scheme, essentially of finite type. Let p :U → T be a map over S
of reduced S-schemes, essentially of finite type. Then
(i) There is a homomorphism p∗ :Zd(X ×S T/T )Q → Zd(X ×S U/U)Q such that,
for each point u of U , and each W ∈ Zd(X ×S T/T )Q, we have

p∗(W )(u) = p∗u(W (t)),(2.2.3.1)

where t = p(u), pu :u → t is the restriction of p to u, and p∗u :Cd(X ×S t/t)Q →
Cd(X ×S u/u)Q is the pull-back homomorphism (see Definition 1.4.2).
(ii) In case U and T are normal, the homomorphism p∗ agree with the pull-back
homomorphism p∗ : Cd(X ×S T/T )Q → Cd(X ×S U/U)Q of Definition 1.4.2.
(iii) p∗ restricts to a homomorphism p∗ :Zd(X ×S T/T ) → Zd(X ×S U/U).

Proof. The assertion (iii) follows directly from the formula (2.2.3.1). Indeed,
for W in Zd(X×ST/T ) and u a point of U , the restriction pu :u→ p(u) = t is a map
of regular schemes. By Remark 1.4.3, the map p∗u : Cd(X×S t/t)Q → Cd(X×S u/u)Q
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restricts to p∗u : Cd(X×S t/t)Z → Cd(X×S u/u)Z. Thus, as p∗(W )(u) = p∗u(W (t)) in
Cd(X ×S t/t)Z, p∗(W ) is in Zd(X ×S T/T ), as claimed. We now prove (i) and (ii).

Let UTN be the normalization of (U ×T TN)red, and let

q :UTN → U, pN :UTN → TN

be the maps induced by the projections U ×T TN → U , U ×T TN → TN . Since
UTN is normal, the map q factors through the normalization pU :UN → U . This
gives us the commutative diagram

UTN ��
q′

��

pN

��

q

UN ��
pU

U

��

p

TN ��
pT

T.

(2.2.3.2)

As pT is a finite morphism, so is q; thus q′ is also a finite morphism. The diagram
(2.2.3.2) gives rise to the diagram

X ×S UTN
((

Q

��
Q′

��

PN

X ×S UN ��
PU

X ×S U

��

P

X ×S TN ��
PT

X ×S T

with all horizontal morphisms being finite morphisms.
Let W be an element of Zd(X ×S T/T )≥0Q ; we may write W as

∑n
i=1 riWi,

ri ∈ Q, ri > 0, where each Wi is a reduced, irreducible closed subscheme of X ×S

T/T , dominating an irreducible component of T . We have the cycle p∗T (W ) :=∑n
i=1 riW

′
i , where W ′

i is the unique component of P−1T (Wi) dominating Wi.
Since pN :UTN → TN is an S-morphism of normal S-schemes, the pull-back

pN∗(p∗T (W )) is defined. By definition of this pull-back, we have |pN∗(p∗T (W ))| =
(PN )−1(|p∗T (W )|), where |−| denotes support. By Lemma 2.1.4, we have |p∗T (W )| =
P−1T (|W |), hence |pN∗(p∗T (W ))| = (P ◦ Q)−1(|W |). As the map Q is finite, this
implies that, for each irreducible component Z of P−1(|W |), there is an irreducible
component ZT of |pN∗(p∗T (W ))| with Z = Q(ZT ). As pN∗(p∗T (W )) is an element
of Cd(X ×S UTN/UTN )Q, and UTN → U is finite, this implies that Z dominates an
irreducible component of U . The component ZT may not be unique, but Q′(ZT ) is
the unique component Z ′ of P−1U (Z) which dominates Z.

For each irreducible component Z of P−1(|W |), let uZ be the generic point
of the irreducible component of U which is dominated by Z, and let uZT be the
generic point of the irreducible component of UTN dominated by ZT . We define
the multiplicity m(Z; p∗(W )) as the rational number

m(Z; p∗(W )) :=
m(ZT ; pN∗(p∗T (W )))
mk(uZT

) :k(uZ )(ZT /Z)
.

We claim that m(Z; p∗(W )) is independent of the choice of component ZT . Indeed,
suppose we have two choices, Zi

T , i = 1, 2, with corresponding points uZi
T

. Let
ti = pN (uZi

T
). Since Q′(Zi

T ) = Z ′ for i = 1, 2, we have q′(uZ1
T

) = uN = q′(uZ2
T

),
where uN is the generic point of the component of UN dominated by Z ′. If we let
t = p(u), we therefore have pU (uN) = uZ and pT (t1) = t = pT (t2).
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Arguing as in the proof of Lemma 2.1.4, we may find a field K and two mor-
phisms g1, g2 : SpecK → UTN such that, letting v = SpecK, we have

gi(v) = uZi
T
,

q′ ◦ g1 = q′ ◦ g2,
and in addition, if we let Gi :X×S v → X×S uZi

T
, i = 1, 2, be the maps induced by

gi, there is an irreducible component Y of |W | ×S v with Gi(Y ) = Zi
T ×U

TN
uZi

T
,

i = 1, 2.
Let fi : v → TN be the map pN ◦ gi. Then

pT ◦ fi = pT ◦ pN ◦ gi
= p ◦ pU ◦ q′ ◦ gi,

hence pT ◦ f1 = pT ◦ f2. Since W is in Zd(X ×S T/T )Q, we have f∗1 (p∗T (W )) =
f∗2 (p∗T (W )). By the functoriality of pull-back for normal schemes (Proposition 1.4.4),
we have

g∗1(p
N∗(p∗T (W ))) = g∗2(p

N∗(p∗T (W ))).(2.2.3.3)

As the multiplicity of Y in g∗i (pN∗(p∗T (W ))) is given by

m(Y ; g∗i (pN∗(p∗T (W )))) = m(Zi
T ; pN∗(p∗T (W ))) ·mk(v) :k(u

Zi
T
)(Y/Zi

T )

(Definition 1.4.2(ii)), the identity (2.2.3.3), together with the multiplicativity rela-
tion (1.3.1.1), gives the desired identity

m(Z1T ; pN∗(p∗T (W )))
mk(u

Z1
T
) :k(uZ )(Z

1
T /Z)

=
m(Z2T ; pN∗(p∗T (W )))
mk(u

Z2
T
) :k(uZ )(Z

2
T /Z)

.

We may then define the cycle p∗(W ) ∈ Cd(X ×S U/U)≥0Q as

p∗(W ) =
∑
Z

m(Z; p∗(W )) · Z.

The formula

q′∗(p∗U (p∗(W ))) = pN∗(p∗T (W ))(2.2.3.4)

follows immediately from the definition. From this it easily follows that, in case U
and T are already normal, the new definition of p∗ agrees with the old one, proving
(ii).

It follows easily from (2.2.3.4) that p∗(W ) is in Zd(X ×S U/U)≥0Q . Indeed, let
fi : v → UN , i = 1, 2 be morphisms of a one-point scheme v = SpecK such that
pU ◦ f1 = pU ◦ f2. We need to verify that

f∗1 (p∗U (p∗(W ))) = f∗2 (p∗U (p∗U (W ))).

As pull-back is functorial and injective for morphisms of reduced one-point
schemes, we may replace the pair f1, f2 with f1 ◦ g, f2 ◦ g for any morphism
g : v′ → v of reduced one-point schemes. In particular, we may assume that
we have morphisms h1, h2 : v → UTN with fi = q′ ◦ hi. Let gi : v → TN be
the map pN ◦ hi. Then pT ◦ g1 = pT ◦ g2. Since W is in Zd(X ×S T/T )≥0Q ,
we have g∗1(p

∗
T (W )) = g∗2(p

∗
T (W )), hence h∗1(p

N∗(p∗T (W ))) = h∗2(p
N∗(p∗T (W ))).

By (2.2.3.4), this implies that h∗1(q
′∗(p∗U (p∗(W )))) = h∗2(q

′∗(p∗U (p∗(W )))), hence
f∗1 (p∗U (p∗(W ))) = f∗2 (p∗U (p∗(W ))), as desired.
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Let p′ :UN → T be the composition p ◦ pU , let u∗ be a point of UN , t = p′(u∗),
and p′u∗ :u∗ → t the restriction of p′. We now verify the formula

p∗U (p∗(W ))(u∗) = p′∗u∗(W (t)).(2.2.3.5)

Pick a point u′ in UTN lying over u∗, and let t′ = pN(u′). Let pt′ : t′ → t be the
restriction of pT to t′, and let q′u′ :u′ → u∗ be the restriction of q′. Let pNu′ :u′ → t′

be the restriction of pN . By (2.2.2.1), we have p∗t′(W (t)) = p∗T (W )(t′), hence, by
functoriality of pull-back for normal schemes, we have

pN∗(p∗T (W ))(u′) = pN∗u′ (p∗T (W )(t′))

= pN∗u′ (p∗t′(W (t)))

= q′∗u′(p′∗u∗(W (t))).

Similarly, we have q′∗(p∗U (p∗(W )))(u′) = q′∗u′(p∗U (p∗(W ))(u∗)). By (2.2.3.4), this
gives q′∗u′(p′∗u∗(W (t))) = q′∗u′(p∗U (p∗(W ))(u∗)); as the map q′∗u′ is injective, we have
p′∗u∗(W (t)) = p∗U (p∗(W ))(u∗), as desired.

Now let u = pU (u∗), pU,u∗ :u∗ → u the restriction of pU . By (2.2.2.1), we
have p∗U (p∗(W ))(u∗) = p∗U,u∗(p∗(W )(u)). Combining this with (2.2.3.5), and using
the identity p′u∗ = pu ◦ pU,u∗ gives p∗U,u∗(p∗u(W (t))) = p∗U,u∗(p∗(W )(u)). As p∗U,u∗ is
injective, we have p∗u(W (t)) = p∗(W )(u), completing the proof of (2.2.3.1) and the
lemma.

2.3. The main results

Let S be a reduced scheme, X → S an S-scheme, essentially of finite type over
S. Let RedS denote the category of reduced S-schemes, and let RedX→S denote
the category of maps U → T , with T in RedS , and U → T a localization of
X ×S T → T . We let Red∗→∗ be the category of morphisms essentially of finite
type X → S, with S reduced, where a map (U → T ) → (X → S) is a morphism in
RedX→S .

2.3.1. Theorem. (i) The functor (1.4.5.2) has a unique extension to a functor

Zd(−/−)Q :Redop∗→∗ →ModQ.

such that

(a) Zd(−/−)Q(U → T ) = Zd(U/T )Q if T is essentially of finite type over Z.
(b) If T is a reduced S-scheme, i : t → T the inclusion of a point t of T , then,

for W ∈ Zd(U/T )Q, we have

i∗(W ) = W (t) ∈ Zd(Ut/t)Q

(c) For U → T in Red∗→∗, the Zariski presheaf V �→ Zd(V/T )Q on U is a
subsheaf of the sheaf V �→ Cd(V/T )Q (see Remark 1.1.3).

(ii) Let Zd(X/S) be the subgroup of Zd(X/S)Q generated by the effective W in
Zd(X/S)Q such that, for each point s of S, the Q-cycle i∗sW is in Cd(Xs/s), where
is : s → S is the inclusion. Then, for a map of S-schemes p :T ′ → T , the homo-
morphism p∗ :Zd(X ×S T/T )Q → Zd(X ×S T ′/T ′)Q restricts to a homomorphism
p∗ :Zd(X ×S T/T ) → Zd(X ×S T ′/T ′), giving the functor

Zd(−/−) :Redop∗→∗ → Ab

(U → T ) �→ Zd(U/T ).
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(iii) Suppose T is irreducible,W is in Zd(X×S T/T )Q, and each irreducible compo-
nent ofW has finite Tor-dimension over T . Then, for a map of S-schemes p :U → T ,
we have

p∗(W ) = W ·T U.

(iv) Let f :X → Y be a morphism of smooth S-schemes, essentially of finite type
over S, and let W ∈ Zd(Y/S)Q be a cycle such that f∗(W ) is defined and is in
Cd(X/S)Q. Then f∗(W ) is in Zd(X/S)Q; if in addition, W is in Zd(Y/S) then
f∗(W ) is in Zd(X/S).

Let p :T → S be a morphism of reduced schemes, and let fT :X×ST → Y ×ST
be the map induced by f . Then p∗(W ) is in Zd(Y ×S T/T )Q, p

∗(f∗(W )) is in
Zd(X ×S T/T )Q, f

∗
T (p∗(W )) is defined, f∗T (p∗(W )) is in Zd(X ×S T/T )Q, and we

have

f∗T (p∗(W )) = p∗(f∗(W )).
In particular, if W is in Zd(Y/S), and f∗(W ) is in Cd(X/S)Q, then f∗T (p∗(W )) is
in Zd(X ×S T/T ).
(v) Suppose we have a sequence of S-morphisms of smooth S-schemes, essentially
of finite type over S,

X
f−→ Y

g−→ Z.

Let W be an effective cycle in Zd(Z/S)Q such that g∗(W ) is defined and in
Cd(Y/S)Q, and f∗(g∗(W )) is defined and is in Cd(X/S)Q. Then then (g ◦ f)∗(W )
is also defined, (g ◦ f)∗(W ) is in Cd(X/S)Q, and

f∗(g∗(W )) = (g ◦ f)∗(W ).

Proof. Let Redfin∗→∗ be the full subcategory of Red∗→∗ with objects U → T ,
where T is essentially of finite type over Z. Suppose we have the extension of
(1.4.5.2) to a contravariant functor

Zd(−/−)Q :Redfin∗→∗ →ModQ,

satisfying (i)-(v). We may then define the Zariski sheaf U �→ Zd(U/S)Q on X
(for f :X → S in Red∗→∗) to be the subsheaf of U �→ Cd(U/S)Q with stalk at
p ∈ X given by lim→Zd(Uα/Sα)Q, where the limit is over the category of maps
(SpecOX,p → SpecOS,f(p)) → (Uα → Sα) in Red∗→∗, with Uα → Sα in Redfin∗→∗.
It follows from Remark 1.1.6 that this extends the definition of Zd(−/−)Q for a
normal base. It is easy to show that the properties (i)-(v) also extend; the unique-
ness of the extension follows by an argument similar to that used in Remark 1.1.6.
Indeed, for uniqueness, we may assume that X → S is a morphism of local schemes.
If W is in Cd(X/S), but not in lim→Zd(Uα/Sα)Q, then there is a Uα → Sα with
f :S → Sα dominant, and a Wα ∈ Cd(Uα/Sα)Q such that W = f∗Wα. In addition,
we may assume that all the schemes and morphisms involved are local, and that
Wα fails to be in Zd(Uα/Sα)Q due to the existence of morphisms f1, f2 : t → SN

α

such that f∗1 p
∗Wα �= f∗2 p

∗Wα, but pf1 = pf2, where p :SN
α → Sα is the canonical

morphism. If we had an extension Z ′d(−/−)Q with W ∈ Z ′d(X/S)Q, the morphisms
fi would induce morphisms F1, F2 : t′ → X × SN

α with p1F1 = p1F2, contradicting
F ∗1 p

∗
1W �= F ∗2 p

∗
1W .

This reduces us to the case of schemes essentially of finite type over Z.
As an element W ∈ Zd(U/T )≥0Q is determined by the values W (t) ∈ Zd(Ut/t)Q

as t runs over the generic points of T , the extension of Cd(−/−)Q to Zd(−/−)Q
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satisfying (a), (b) and (c) is unique. To show the existence of the extension, it
suffices to show that the homomorphisms p∗ defined in Lemma 2.2.3 satisfy (b),
and are functorial. Indeed, the sheaf condition (c) follows from the fact that V �→
Cd(V/S)Q is a sheaf, and that the condition that a cycle in Cd(V/S)Q be in Zd(V/S)Q

is point-wise on V .
The formula (b) follows immediately from (2.2.3.1), and the fact that id∗t = id.

We now prove functoriality.
As the maps p∗ defined in Lemma 2.2.3 clearly respect the restriction to open

subschemes, it suffices to prove functoriality for U → T of the form X ×S T .
Let V

q−→ U
p−→ T be a sequence of S-morphisms of reduced S-schemes. As a

cycle W ∈ Zd(X×SV/V )≥0Q is determined by the values W (v) among generic points
v of V , we may assume that V is a one-point scheme v. Let u = q(v), t = p(u),
and let

pu :u→ t,

qv : v → u

be the respective restrictions of p and q. Take a W in Zd(X ×S T/T )≥0Q . By
(2.2.3.1), we have

p∗(W )(u) = p∗u(W (t)),

q∗(p∗(W ))(v) = q∗v(p∗(W )(u)),

(p ◦ q)∗(W )(v) = (pu ◦ qv)∗(W (t)).

Thus, since we have functoriality for pull-back among normal S-schemes (Proposi-
tion 1.4.4), we have

q∗(p∗(W ))(v) = q∗v(p∗u(W (t)))

= (pu ◦ qv)∗(W (t))

= (p ◦ q)∗(W )(v),

hence (p ◦ q)∗ = q∗ ◦ p∗, as desired.
The assertion (ii) follows directly from Lemma 2.2.3(iii).
The proof of (iii) is exactly the same as the proof of Proposition 1.4.1(ii), and

is left to the reader. The assertion (iv) follows directly from Proposition 1.4.7,
formula (2.2.2.1) and the functoriality in the normal case, Proposition 1.4.4.

Finally, for (v), as W is effective, the pull-backs f∗(g∗(W )) and (g ◦ f)∗(W )
are determined by their values at each generic point of S. This reduces us to the
case of regular schemes. Since W is effective, the cycles g∗(W ), f∗(g∗(W )) and
(g ◦ f)∗(W ) are defined and have relative codimension d over S if and only if each
component of g−1(|W |), f−1(g−1(|W |) and (g ◦f)−1(|W |) has relative codimension
d over S, where |W | is the support of W . Since f−1(g−1(|W |) = (g ◦ f)−1(|W |),
f∗(g∗(W )) is defined and has relative codimension d if and only if the same is true
of (g ◦ f)∗(W ). If this is the case, the identity f∗(g∗(W )) = (g ◦ f)∗(W ) is an
instance of the associativity formula (1.1.4.1).

2.3.2. Theorem. Let S be a reduced scheme, X → S an S-scheme, essentially of
finite type over S, and W an element of Zd(X/S)Z.
(i) There is an integer NW > 0 such that NW ·W is in Zd(X/S), i.e., the quotient
group Zd(X/S)Z/Zd(X/S) is torsion.
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(ii) If all but finitely many primes p1, . . . , pn are invertible on S, then we may take
NW to be a power of

∏n
i=1 pi. In particular, if S is a scheme over Q, we have

Zd(X/S)Z = Zd(X/S).
(iii) If S is essentially of finite type over Z, and if S ×Z Z[1/N ] is regular for some
N > 0, we may take NW to be a power of N .

Proof. For (i), we may suppose that S is essentially of finite type over Z, and
W effective. As S is reduced and essentially of finite type over Z, the non-regular
locus of S is a closed subscheme i :S1 → S of S, containing no generic point of S.
If s is a regular point of S, then W (s) is integral by Remark 1.4.3. In addition,
as S1 has only finitely many generic points, there is an integer N1 > 0 such that
N1 ·W (s′) is integral for all generic points s′ of S1. By the definition of i∗, this
implies that i∗(N1 ·W ) is in Zd(X ×S S1)Z. By noetherian induction, there is an
integer N2 such that N2 ·i∗(N1 ·W )(s) is integral for all s ∈ S1. By the functoriality
of pull-back, this implies that NW ·W (s) is integral for all s ∈ S, where we take
NW = N1N2.

For (ii) and (iii), if k(s′) has characteristic p > 0 for a generic point s′ of S1,
then pα ·W (s′) is integral for some α ≥ 0; if k(s′) has characteristic 0, then W (s′)
is already integral. Thus, if N =

∏
s′ char(k(s′)), where the product is over the

generic points s′ of S1 with positive characteristic, we may take N1 to be a power
of N . This, together with noetherian induction, proves (ii) and (iii).

2.3.3. Remarks. Let S be a reduced S-scheme, X1 → S, X2 → S smooth S-
schemes, essentially of finite type.
(i) Take Zi ∈ Cdi(Xi/S)≥0Q , i = 1, 2. Define Z1 ×/S Z2,

Z1 ×/S Z2 ∈ Cd1+d2(X1 ×S X2/S)≥0Q ,

as follows: We may assume Z1 and Z2 are irreducible, and then define Z1 ×/S Z2
for irreducible Zi, and extend by linearity.

Let Z12 = (Z1 ×S Z2)red ⊂ X1 ×S X2, and let qi :Zi → S be the structure
morphisms. We have the cycles q∗1(Z2) and q∗2(Z1) on X1 ×S X2 with support
Z12; it is easily checked that these agree, and define an element Z1 ×/S Z2 of
Cd1+d2(X1×SX2/S)≥0Q . By the functoriality of pull-back, we have (Z1×/SZ2)(s) =
Z1(s)×/s Z2(s); thus, if Z1 and Z2 are in Zdi(Xi/S), it follows from this that the
cycle Z1 ×/S Z2 is in Zd1+d2(X1 ×S X2/S).
(ii) If S is regular, and Z1 and Z2 are irreducible, Z1×/S Z2 is the cycle associated
to the subscheme Z1 ×S Z2 of X1 ×S X2. In addition, Z1 ×/S Z2 satisfies, and is
characterized by, the formula

(Z1 ×/S Z2)(s) = Z1(s)×/s Z2(s)(2.3.3.1)

for all s ∈ S. We will often omit write Z1 × Z2 for Z1 ×/S Z2 if the base scheme S
is understood.
(iii) It follows from the functoriality of pull-back for equi-dimensional cycles that
the product defined in (i) is functorial: If p :T → S is a map of schemes, if Xi are
in SmS and we have Zi ∈ Zdi(Xi/S), i = 1, 2, then

p∗(Z1 ×/S Z2) = p∗(Z1)×/T p∗(Z2).

2.3.4. Remark. Let S be a reduced scheme, X → S a smooth S-scheme, essentially
of finite type, and W a reduced codimension q subscheme of X . Write W as a union
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of irreducible components, W = ∪M
i=1Wi. Suppose that W is flat over S, and that

each geometric fiber Wt is reduced (e.g. W is smooth over S). In particular, for
each point s of S, and each generic point η of Ws, W is smooth over S at η. Let
SN → S be the normalization of S, and set XN := SN ×S X , WN := SN ×S W .
Then WN is a closed subscheme of XN , flat over SN , and with reduced geometric
fibers. It follows from Proposition 1.4.1 that the cycle

∑M
i=1Wi is in Zq(X/S).



APPENDIX B

K-Theory

In this appendix, we give a brief review of some basic facts and constructions of
algebraic K-theory. We will freely use notions and constructions from the theory of
simplicial sets; we will often identify a simplicial set with its geometric realization,
referring to e.g. the homotopy groups of a simplicial set. For more details, we refer
the reader to [102], [95], [107], [116]. See also Part II, Chapter III.

1. K-theory of rings and schemes

1.1. Preliminaries

1.1.1. The classifying space and group homology. For a set X and a finite set T , let
XT denote the set of maps T → X . XT is isomorphic to the |T |-fold product of
X . We form the simplicial set EX by

EX(−) := X(−).

A choice of a point ∗ ∈ X gives a contraction of EX , the contraction being given
by the sequence of maps

hnj :EX([n]) → EX([n + 1]); j = 0, . . . , n

hnj (x0, . . . , xn) �→ (∗, . . . , ∗, xj , . . . , xn)

(see [95, Chapter I, Definition 5.1]).
If G is a group, we may take the quotient of EG by the right diagonal action,

giving the simplicial principal G-bundle πG : EG→ BG; BG is the classifying space
for G. Since EG is contractible, BG is connected, and

πn(BG) =

{
G for n = 1,
0 for n > 1.

For a commutative ring A, we let C∗(G;A) denote the complex with Cn(G;A)
the free A-module on BG([−n]), and with differential the usual alternating sum.
The homology of G with A-coefficients is then defined as

Hp(G;A) := Hp(BG;A) = H−p(C∗(G;A)).

1.1.2. Classifying schemes. For an S-scheme X , and a finite set T , we have the
representable functor

HomSchS
(−, X)T :SchS → Sets,

represented by the self-product X ×S . . . ×S X with |T | factors. We denote this
representing object by XT/S , giving the contravariant functor X(−)/S from category
of finite sets to SchS . We let EX denote the simplicial scheme X(−)/S : ∆op →

357
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SchS . If Z is an S-scheme, we have the canonical isomorphism of simplicial sets
HomS(Z,EX) ∼= E(HomS(Z,X)).

If G is a group-scheme over S, we may take the quotient of EG via the right di-
agonal action, forming the map of simplicial schemes πG : EG→ BG. The quotient
map on the level of n-simplices,

EG([n]) ∼= Gn+1 → BG([n]) ∼= Gn

is split, hence, for each S-scheme Z, we have the canonical isomorphism of simplicial
sets

HomS(Z,BG) ∼= B(HomS(Z,G)).

If F is an S-scheme with a left G-action, we may form the simplicial scheme
EG×G F , giving the bundle πG,F : EG×G F → BG.

1.1.3. The general linear group. For a ring A, we have the general linear group
GLN (A); if A is commutative we may identify GLN (A) with the group of A-valued
points of the group scheme (over Z) GLN . We let GLN/S denote the base extension
of GLN to a group-scheme over S. Sending a matrix g ∈ GLN (A) to the matrix

iN (g) :=
(
g 0
0 1

)
defines the stabilization maps

iN : GLN/S → GLN+1/S; iN : GLN(A) → GLN+1(A).

We let GL(A) denote the inductive limit

GL(A) := lim→
N

GLN (A).

Applying the constructions of §1.1.1 gives us the classifying spaces BGLN(A),
and the stabilization maps BiN : BGLN (A) → BGLN+1(A), as well as the classi-
fying space BGL(A), which is homeomorphic to the inductive limit of the spaces
BGLN (A). We sometimes find it notationally convenient to write GL∞(A) for
GL(A), BGL∞(A) for BGL(A), etc.

Applying the construction of §1.1.2, we have the classifying simplicial scheme
BGLN/S. Taking the standard action of GLN/S on the affine space AN

S gives the
universal rank N bundle EN := EGLN/S ×GLN/S AN

S → BGLN/S.

1.2. Higher algebraic K-theory

1.2.1. The Q-construction. Quillen [102] has defined higher algebraic K-theory of
an exact category M by

Kp(M) := πp+1(BQM).

For our purposes, it will not be necessary to give a precise explanation of this
formula, but we will say a few words here for the readers convenience. An exact
category is an additive category, together with a collection of sequences of mor-
phisms of the form

0 → E′ → E → E′′ → 0(1.2.1.1)

called exact sequences, which satisfy the axioms listed in [102, §2]. For an exact
category M , QM is the category defined in [102, §2]. For a category C, we have the
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nerve N (C) (see Part II, Chapter III, §3.2.1), and the geometric realization B(C) of
N (C) [102, §1].

An exact category M has its Grothendieck group, K0(M), defined as the
free abelian group on the set of isomorphism classes of objects of M , modulo the
subgroup generated by differences E−E′−E′′ for each exact sequence (1.2.1.1) in
M . There is a canonical isomorphism between the Grothendieck group K0(M) and
π1(BQM) [102, §2, Theorem 1], so the two definitions of K0(M) are the same.

Let X be a scheme. Two primary examples of an exact category are
1. The category MX of coherent sheaves on X , with the usual notion of exact

sequence.
2. The full subcategory PX of MX of locally free coherent sheaves, where a

sequence in PX is exact if it is exact in MX .
Replacing the scheme X with a ring A, we have the exact categories MA of
finitely generated (left) A-modules, and PA of finitely generated (left) projective
A-modules.

The algebraic K-groups of X are defined as

Kp(X) := Kp(PX).

For a ring A, we have the algebraic K-groups of A:

Kp(A) := Kp(PA).

For details, we refer the reader to [102].

1.2.2. The plus construction. For a ring A, and integer N ≥ 3, we have the map of
simplicial sets ιA,N : BGLN (A) → BGLN (A)+, where BGLN (A)+ is Quillen’s plus
construction (see e.g. [64]). The map ιA,N is characterized, up to weak equivalence,
by the following properties:

1. ιA,N∗ is a surjection on π1, with kernel the subgroup of π1(BGLN (A)) =
GLN (A) generated by the elementary matrices.

2. For each local system L on BGLN (A)+, the map

ιA,N∗ :H∗(BGLN (A); ι∗A,NL) → H∗(BGLN (A)+;L)

is an isomorphism.

(1.2.2.1)

It is possible to make the simplicial set BGLN (A)+ and the map ιA,N func-
torial in A (at least for N ≥ 5, see e.g. [114] or [64]), and to extend the sta-
bilization maps BiN : BGLN (A) → BGLN+1(A) to functorial stabilization maps
Bi+N : BGLN (A)+ → BGLN+1(A)+, compatible with the maps ιA,N and ιA,N+1.
We may also form the plus construction on BGL(A), ιA : BGL(A) → BGL(A)+;
then BGL(A)+ is weakly equivalent to the inductive limit of the spaces BGLN (A)+.

Grayson [53] has given an exposition of Quillen’s construction of a natural
homotopy equivalence

BGL(A)+ ∼ (ΩBQPA)0,(1.2.2.2)

where 0 denotes the connected component containing 0 ∈ K0(A), giving the natural
isomorphism

lim→
N

πn(BGLN (A)) ∼= πn(BGL(A)+) ∼= Kn(A); p ≥ 1.
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2. K-theory and homology

We give a discussion of the Hurewicz map and how it is used in various settings
to map algebraic K-theory to the homology of GL.

2.1. K-theory via diagrams

We begin by describing a version of the K-theory of a diagram of schemes. The
main tool is the homotopy limit construction of [25]; for the properties of homotopy
limits we will be using, see Part II, Chapter III, Section 3.

2.1.1. The plus construction for schemes. Let [n] denote the category of non-empty
subsets of the set {0, . . . , n}, with morphisms the inclusions. If X is a noetherian
separated scheme, and U := {U0, . . . , Un} is a finite cover of X , then one has the
functor (see Part II, Chapter III, Example 3.2.3)

U : [n]op → SchX

defined by setting U(I) = ∩i∈IUi, with maps being the inclusions. Applying the
functor Z× BGLN (Γ(−,OX))+ gives the functor

Z× BGLN (Γ(U ,OX))+ : [n] → s.Sets.

For a commutative ring A, we let FA denote the full subcategory of PA with
objects the free finitely generated A-modules. Composing U with the functor U �→
BQFΓ(U,OX) gives us the functor

BQF(U) : [n] → s.Sets.

We now replace the various functors Z × BGLN (Γ(U ,OX))+, BQF(U), etc.,
with fibrant models (see Part II, Chapter III, §3.4.2), and change notation. For
example, one could use the singular complex of the geometric realization as a natural
fibrant model; in what follows, we will replace each functor to simplicial sets with
this fibrant model, without further comment.

Let K(X,U)N denote the homotopy limit

K(X,U)N := holim
[n]

Z× BGLN (Γ(U ,OX))+,

and let K(X,U) denote the homotopy limit

K(X,U) := holim
[n]

Z× BGL(Γ(U ,OX))+.

Similarly, let BQF(X,U) denote the homotopy limit

BQF(X,U) := holim
[n]

BQF(U).

As holim sends point-wise weak equivalences to weak equivalences (for fibrant ob-
jects) [25, V, 5.6], the natural homotopy equivalence (1.2.2.2) gives us the weak
equivalence

K(X,U) ∼ ΩBQF(X,U).(2.1.1.1)

Let PX,U be the full subcategory of PX with objects the locally free coher-
ent OX -modules M such that M restricts to a free OUi-module on each Ui in U .
Suppose that each Ui is affine, Ui = SpecAi. The restriction maps

j∗Ui
: BQPX,U → BQFAi
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give rise to the natural map

BQPX,U → holim
[n]

BQF(U).

Combining this with (2.1.1.1) gives the natural maps

σX,U : ΩBQPX,U → K(X,U),

σX,U∗ :πn(ΩBQPX,U) → πn(K(X,U)).

As each locally free sheaf on X can be trivialized on some finite affine open
cover, the category PX is equivalent to the inductive limit of the categories PX,U ,
giving via [102, §2] the identity

Kn(X) = lim→
U

πn(ΩBQPX,U),

and hence the natural map

σX∗ :Kn(X) → lim→
U

πn(K(X,U)).(2.1.1.2)

Here both limits are over the category of finite affine covers U of X , with maps
being refinements.

2.1.2. Remark. For regular X , Quillen’s localization theorem [102, §7, Proposi-
tion 3.1 and Remark 3.5] implies that σX∗ is an isomorphism; the extension of the
localization theorem by Thomason-Trobaugh [121] implies that σX∗ is an isomor-
phism for X having an ample family of line bundles. We will not require this result,
so we omit the details.

2.1.3. Diagrams of schemes. One can extend the construction of the map (2.1.1.2)
to cover certain finite diagrams of schemes as follows: Let I be the category asso-
ciated to a finite partially ordered set, i.e., I has finitely many objects, and there
is at most one morphism between any two objects of I (in either direction).

Let Sch+ be the category gotten from Sch by “adjoining a disjoint basepoint”
to each object. Precisely, we adjoin a new final object ∗, and make the canonical
map ∅ → ∗ an isomorphism. If we have a functor F :Sch → C to a category C
having an initial and final object ∗, such that F (∅) is isomorphic to ∗, we have the
canonical extension of F to F :Sch+ → C, by sending ∗ to ∗.

Suppose we have a functor X : I → Sch+. An open cover U of X is a col-
lection {U(i) | i ∈ I}, where U(i) is an open cover of X(i) (for X(i) �= ∗)
U(i) := {U0(i), . . . , Un(i)} such that X(i ≤ j)(Uk(i)) ⊂ Uk(j). For X(i) = ∗,
we take Uk(i) = ∗, k = 0, . . . , n.

By our condition on the category I, the open covers on X in the sense defined
above are cofinal in the category of covering families of X , defined in terms of the
Grothendieck site determined by taking the Zariski topology on each X(i) ∈ SchS ,
and the one-point category for each X(i) = ∗.

Each open cover U of X gives the functor

U : I × [n]op → Sch+

over X ◦ p1, defined by U(i, J) = ∩j∈JUj(i) ⊂ X(i). We have the functor

PX : Iop → cat

defined by PX(i) = PX(i), and the subfunctor

PX,U : Iop → cat
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defined by PX,U(i) = PX(i),U(i). We have as well the functors

Z× BGLN (Γ(U ,OX))+ : Iop × [n] → s.Sets

(i, J) �→ Z× BGLN (Γ(U(i, J),OX(i)))+; N = 5, 6, . . . ,∞,

and

BQF(U) : Iop × [n] → s.Sets

(i, J) �→ BQF(U(i, J)).

Define

Kp(X) := πp+1
(

holim
Iop

(BQPX)
)
;

Kp(X,U) := πp
(

holim
Iop×[n]

(Z× BGL∞(Γ(U ,OX))+)
)
.

The same construction as in §2.1.1 gives the isomorphism

Kp(X,U) ∼= πp+1
(

holim
Iop×[n]

(BQF(U))
)
,

and the natural map

σX∗ :Kn(X) → lim→
U

Kn(X,U),

where the limit is over covers U of X such that Uj(i) is affine for all i and j.

2.2. Homology

2.2.1. The Hurewicz map. Let A be a simplicial abelian group, giving us the (co-
homological) complex C∗(A). The Dold-Kan equivalence (see [39], [74], or [95,
Chapter V]) states that the homotopy groups of A agree with the homology groups
of C∗(A), i.e., πn(A) ∼= H−n(C∗(A)). In particular, for a simplicial set S, we have
the canonical isomorphism

πn(ZS) ∼= H−n(C∗(S; Z)) = Hn(S; Z).

The evident map hS :S → ZS induces the map hS∗ :πn(S) → Hn(S; Z) on πn; hS∗
is none other than the classical Hurewicz map.

If now S is a presheaf of simplicial sets on a noetherian scheme X , we may form
the presheaf of simplicial abelian groups ZS on X , and the associated complex
of presheaves C∗(S; Z). For an open cover U = {U0, . . . , Un} of X , define the
simplicial sets S(U) and (ZS)(U) by

S(U) := holim
[n]op

S ◦ U ; (ZS)(U) := holim
[n]op

ZS ◦ U ,

and let C∗(S; Z)(U) denote the total complex of the double complex of Čech
cochains for C∗(S; Z) with respect to the cover U .

The presheaf Hurewicz map hS :S → ZS induces the map hS(U) :S(U) →
(ZS)(U), factoring through the Hurewicz map for S(U), hS(U) :S(U) → Z(S(U)).
Note that the map Z(S(U)) → (ZS)(U) is not in general a weak equivalence.

From the remarks of (Part II, Chapter III, Example 3.2.3) and the quasi-
isomorphism (Part II, (III.3.4.3.2)), one has the canonical quasi-isomorphism

C∗
(
(ZS)(U)

)
→ τ≤0C∗(S; Z)(U),
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hence we have the isomorphism

πn(ZS(U)) ∼= H−n(C∗(S; Z)(U)); n = 0, 1, . . . .

Combining this isomorphism with the map hS(U), we have the natural map

hS(U)∗ :πn(S(U)) → H−n(C∗(S; Z)(U)).(2.2.1.1)

Let C̃∗(S; Z) denote the sheafification of the complex of presheaves C∗(S,Z).
For each open cover U , we have the canonical map

H−n(C∗(S; Z)(U)) → H−nZar(X, C̃∗(S; Z)),

which is compatible with refinements. The maps (2.2.1.1) are also compatible with
refinements, giving us the natural map

hS∗ : lim→
U

πn(S(U)) → H−nZar(X, C̃∗(S; Z)).(2.2.1.2)

Let BGL and BGL+ be the sheafification of the respective presheaves on X

U �→ BGL(Γ(U,OX)); U �→ BGL(Γ(U,OX))+.

The universal property of the plus construction (1.2.2.1) implies that the map
H−nZar(X, C̃∗(BGL; Z)) → H−nZar(X, C̃∗(BGL+; Z)) is an isomorphism. Composing
the map (2.2.1.2) with the map (2.1.1.2) thus gives the Hurewicz map

hX :Kn(X) → H−nZar(X, Z̃⊕ C̃∗(BGL; Z)),(2.2.1.3)

where the map to the summand Z̃ is given by projection Z× BGL+ → Z.

2.2.2. Stability. Wagoner [125] has proven the stability result that, for a local ring
O, the map Hp(GLN (O),Z) → Hp(GL(O),Z) is an isomorphism for all N ≥ Np,
where Np is an integer depending only on p.

We have the local to global spectral sequence for Zariski hypercohomology

Ep,q
2 = Hp(X,H−q(GLN ; Z)) =⇒ Hp+q

Zar (X, C̃∗(BGL; Z)); N = 1, 2, . . . ,∞,

where Hn(GLN ; Z) is the sheaf associated to the presheaf

U �→ Hn(GLN (Γ(U,OX)); Z) = H−n(C∗(BGLN (Γ(U,OX)); Z)).

If X has finite Zariski cohomological dimension dX (e.g., if X has finite Krull
dimension, see [58]), then this spectral sequence, together with Wagoner’s stability
result, shows that the map H−nZar(X, C̃∗(BGLN ; Z)) → H−nZar(X, C̃∗(BGL; Z)) is an
isomorphism for all N ≥ dX + Nn + 1. Thus, the map (2.2.1.3) gives us the maps

hX,N :Kn(X) → H−nZar(X, Z̃⊕ C̃∗(BGLN ; Z))(2.2.2.1)

for all N ≥ dX + Nn + 1, stable in N .

2.2.3. Remark. Let I be the category associated to a finite partially ordered set.
We may extend the construction of §2.2.1 and §2.2.2 to functors X : I → Sch+ as in
§2.1.3, as follows: Let X : I → Sch+ be a functor, giving the functor XZar : I → Top,
by taking the topological space X(i), with the Zariski topology, for each i.

From (Part II, Chapter III, §3.3.1), we have the notion of sheaves on XZar,
and hypercohomology of complexes of sheaves on XZar. We write H0Zar(X,−) for
H0(XZar,−).
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Suppose each X(i) has finite Zariski cohomological dimension d(i). Since I has
finite cohomological dimension, we have the functor

H0Zar(X,−) :D(ShAb
X ) → Ab.

Given an open cover U of X as in §2.1.3, and an presheaf of simplicial sets S
on X , we have the Čech complex C∗(U , S; Z) defined as

C∗(U , S; Z) := C∗( holim
Iop×[n]

ZS(U)).(2.2.3.1)

We may also sheafify the presheaf of chain complexes C∗(S; Z) := C∗(ZS), forming
the complex of sheaves C̃∗(S,Z).

The identity (2.2.3.1), together with the remarks of (Part II, Chapter III, Ex-
ample 3.2.3), gives the canonical map

Hp(C∗(U , S; Z)) → Hp
Zar(X, C̃∗(ZS)).

The construction of the map (2.2.1.3) then extends to give the Hurewicz map

hX :Kn(X) → H−nZar(X, Z̃⊕ C̃∗(BGL; Z)).(2.2.3.2)

Let dX := maxi∈I dX(i) + |I| − 1. The construction of the map (2.2.2.1) gives
the map

hX,N :Kn(X) → H−nZar(X, Z̃⊕ C̃∗(BGLN ; Z)).

for all N ≥ dX + Nn + 1, stable in N .

2.2.4. Products. Consider the tensor product representation

⊗N,M : GLN/S ×S GLM/S → GLNM/S.

This induces the map of simplicial schemes

τN,M : BGLN/S ×S BGLM/S → BGLNM/S.

We have as well the representations

⊗N,∗ : GLN/S ×S GLM/S → GLNM/S

and

⊗∗,M : GLN/S ×S GLM/S → GLNM/S

given by

⊗N,∗(g, h) = g ⊗ idM ; ⊗∗,M (g, h) = idN ⊗ h,

which induce the maps of simplicial schemes

τN,∗ : BGLN/S ×S BGLM/S → BGLNM/S;

τ∗,M : BGLN/S ×S BGLM/S → BGLNM/S.

For a commutative ring A, we have the map

µ̂AM,N :C∗(BGLN (A); Z) ⊗ C∗(BGLM (A); Z) → C∗(BGL(A)+; Z)

induced by τN,M−τN,∗−τ∗,M , where we use the H-group structure on BGL(A⊗B)+

to define the differences in the above formula. More precisely, µ̂A,B
M,N is induced by
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the composition

(2.2.4.1)

BGLN (A)×BGLM (A)
(τN,M ,τN,∗,τ∗,M)−−−−−−−−−−−→ BGLNM (A)×BGLNM (A)×BGLNM (A)

→ BGL(A)+ × BGL(A)+ × BGL(A)+ → BGL(A)+,

where the last map is (x, y, z) �→ x − y − z. We then take the integral chain
complexes, and compose with the Eilenberg-MacLane map

C∗(BGLN (A); Z)⊗ C∗(BGLM (A); Z) → C∗(BGLN (A)× BGLM (A); Z).

The subtraction in BGL(A)+ is only defined up to homotopy, which causes a
technical problem if we want to extend this map to schemes, and to diagrams of
schemes. In order to circumvent this, we must appeal to the theory of simplicial
sheaves on a Grothendieck site, as given in [73]. We sketch the construction, using
the notions from the theory of simplicial closed model categories given in [104].

Let X : I → Sch+ be a diagram of schemes, with I a small category. We may
pull back the big Zariski site on Sch+ to X , giving the site XZar, the category of
sheaves of abelian groups, ShAb

Zar(X), and the derived category D−(ShAb
Zar(X)). We

have as well the closed simplicial model category Sh∆Zar(X) of sheaves of simplicial
sets on XZar, and the homotopy category Ho(Sh∆Zar(X)), gotten by inverting the
weak equivalences in Sh∆Zar(X). Taking the integral chain complex of a sheaf of
simplicial sets gives the functor

C∗(−; Z) : Ho(Sh∆Zar(X)) → D−(ShAb
Zar(X)).

For elements a, b of GL(A), we have the shuffle sum a⊕ b, with

(a⊕ b)ij :=


ai′,j′ ; if i = 2i′, j = 2j′,
bi′,j′ ; if i = 2i′ + 1, j = 2j′ + 1,
0; otherwise.

This induces the map of complexes of sheaves of simplicial sets on XZar:

⊕ :BGL+ × BGL+ → BGL+;

we first show that ⊕ are associative and commutative in Ho(Sh∆Zar(X)).
Let α : N → N be an injection; α induces the map of sheaves of simplicial

sets α∗ :BGL → BGL on X by sending the matrix coefficient aij to the (α(i), α(j))
position, and extends to α+∗ :BGL+ → BGL+. The points on the individual schemes
X(i) give a conservative family of points for the site XZar (see Part II, Chapter IV,
§1.3.5); if p is a point of X(i), the stalk of α+∗ at p is the map

α+∗ (OX(i),p) : BGL(OX(i),p)+ → BGL(OX(i),p)+.(2.2.4.2)

In the course of showing that BGL(A)+ is an H-space, Quillen [103] (see also [107])
shows that the map

α+∗ (A) : BGL(A)+ → BGL(A)+

is a weak equivalence for all rings A, hence the map (2.2.4.2) is an weak equivalence.
By the definition of weak equivalence in Sh∆Zar(X), the map α+∗ is thus a weak
equivalence, i.e., an isomorphism in Ho(Sh∆Zar(X)).

Thus sending α to α+∗ extends to a map from the group completion of the
monoid of injective maps N → N; as this group completion is the trivial group,
each α+∗ is the identity in Ho(Sh∆Zar(X)). In particular, reordering of the matrix
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coefficients induces the identity map on BGL+, which thus shows that ⊕ is associa-
tive and commutative in Ho(Sh∆Zar(X)), and additionally that the identity matrix
acts as the identity for ⊕.

Thus ⊕ gives the sheaf BGL+ the structure of a commutative monoid in
Ho(Sh∆Zar(X)). Consider the map

(⊕, p2) :BGL+ × BGL+ → BGL+ × BGL+.
If we evaluate at a point p, and use the fact that the sum in a connected H-
space induces the sum in the homotopy groups, we see that (⊕, p2)p is a weak
equivalence of simplicial sets. Thus (⊕, p2) is an isomorphism in Ho(Sh∆Zar(X)); if
we let ι :BGL+ → BGL+ be the composition

BGL+ = BGL+ × ∗ ↪→ BGL+ × BGL+ (⊕,p2)−1

−−−−−−→ BGL+ × BGL+ p1−→ BGL+,
we have the inverse map for the operation ⊕.

The inverse ι is functorial in the functor X , in the homotopy category.
Having cleared up this technical point, we have the functorial map in the derived

category D−(ShAb
Zar(X)),

µ̂XM,N : C̃∗(BGLN ; Z)⊗ C̃∗(BGLM ; Z) → C̃∗(BGL; Z),

defined as a composition as in (2.2.4.1); we use the inverse of the quasi-isomorphism

C̃∗(BGL; Z) → C̃∗(BGL+; Z)

to replace C̃∗(BGL+; Z) with C̃∗(BGL; Z).
Let

µXN,M : [Z̃⊕ C̃∗(BGLN ; Z)]⊗ [Z̃⊕ C̃∗(BGLM ; Z)] → Z̃⊕ C̃∗(BGLNM ; Z)(2.2.4.3)

be the map

µXN,M(n, a)⊗ (m, b) = (nm, nb + ma + µ̂XN,M(a⊗ b)).

Taking the induced map on hypercohomology gives

Hp(X, Z̃⊕ C̃∗(BGLN ; Z))⊗Hq(X, Z̃⊕ C̃∗(BGLM ; Z))

µX
N,M−−−→ Hp+q(X, Z̃⊕ C̃∗(BGLMN ; Z));

if we fix a bijection N × N → N, we may take the limit of the maps µXN,M , giving
the map

Hp(X, Z̃⊕ C̃∗(BGL; Z))⊗Hq(X, Z̃⊕ C̃∗(BGL; Z))

µX
H−−→ Hp+q(X, Z̃⊕ C̃∗(BGL; Z)).

These maps are compatible with the product map on the Čech complexes
C∗(U ,Z × BGL; Z) given via (Part II, Chapter III, §3.4.4) using the collection
of products µUI

N,M on the global sections.
If X is a scheme, we have functorial products in K-theory,

µXK : ΩBQPX ∧ ΩBQPX → ΩBQPX(2.2.4.4)

induced by the tensor product on PX (see [126, p. 235], [128, §3]). This gives the
product on the K-groups

µXK :Kp(X)⊗Kq(X) → Kp+q(X).
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If X is a diagram of S-schemes X : I → Sch+S , as in §2.1.3, we have the extension
to products

ΩBQPX ∧ΩBQPX → ΩBQPX ,

since the products (2.2.4.4) are functorial. Via the method of (Part II, Chapter III,
§3.4.4), this gives the natural product

µXK : holim
I

ΩBQPX ∧ holim
I

ΩBQPX → holim
I

ΩBQPX ,

inducing product maps µXK :Kp(X)⊗Kq(X) → Kp+q(X).

2.2.5. Proposition. Let I be the category associated to a finite partially ordered
set, and let X : I → Sch+ be a functor. Then the products µXH and µXK are com-
patible via the Hurewicz map (2.2.3.2).

Proof. Suppose first that X = SpecA. We recall Loday’s construction of
products [92]. We have the map

µAN,M+ : BGLN (A)+ × BGLM (A)+ → BGL(A)+

induced by the maps τN,M −τN,∗−τ∗,M +∗, where ∗ is the map sending everything
to the basepoint, and − is with respect to the H-space structure on BGL(A)+.
Using the given bijection N× N → N, we may take the limit, giving the map

µA+ : BGL(A)+ × BGL(A)+ → BGL(A)+.

The restriction of µA+ to BGL(A)+ × ∗ ∪ ∗ × BGL(A)+ is contractible, giving the
map

µ̂A+ : BGL(A)+ ∧ BGL(A)+ → BGL(A)+.

We extend µ̂A+ to

µA+ : [Z× BGL(A)+] ∧ [Z× BGL(A)+] → Z× BGL(A)+.

by

µA+(n, x) ∧ (m, y) := (nm, ny + mx + µ̂A+(x, y)).

This induces products Kp(A) ⊗ Kq(A) → Kp+q(A) for p, q ≥ 1; it is immediate
from the definitions that these products are compatible via the Hurewicz map with
the products we have defined on Z× C∗(GL(A); Z).

Now let I be a category associated to a finite partially ordered set, and let
X : I → Sch+ be a functor.

We have the functor

U : I × [n]op → Sch+

U(i, J) = ∩j∈JUj(i) ⊂ X(i),

giving the functor

Γ(U ,OX) : Iop × [n] → Rings

Γ(U ,OX)(i, J) := Γ(U(i, J),OX(i)),
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and the commutative diagram of natural transformations

(Z× BGLN ) ◦ Γ(U ,OX) ��h

��

(Z× ZBGLN ) ◦ Γ(U ,OX)

��

(Z× BGL+N ) ◦ Γ(U ,OX) ��h (Z× ZBGL+N) ◦ Γ(U ,OX),

(2.2.5.1)

where h is the Hurewicz map.
The above construction of products for BGL(A)+ is made functorial by May

[96, Theorem 1.6 and Theorem 2.1] (see also [128, §3 and §4]), the same con-
struction gives functorial products for ZBGL(A) and ZBGL(A)+, compatible with
the Hurewicz map, and the natural map ZBGL(A) → ZBGL(A)+. We may need
to take a different model for the functor BGL(−)+, but the universal mapping
property of BGL(−) → BGL(−)+ over finite diagrams of rings [83, Lemma 3.1
and Theorem 4.3] implies that the two homotopy limits coming from two different
functorial models of BGL(−) → BGL(−)+ are canonically weakly equivalent. The
same holds for the diagram (2.2.5.1).

Taking the homotopy limit of (2.2.5.1) over Iop × [n] gives the commutative
diagram

holim
Iop×[n]

(Z× BGLN ) ◦ Γ(U ,OX) ��h

��

holim
Iop×[n]

(Z× ZBGLN ) ◦ Γ(U ,OX)

��

holim
Iop×[n]

(Z× BGL+N ) ◦ Γ(U ,OX) ��h holim
Iop×[n]

(Z× ZBGL+N) ◦ Γ(U ,OX).

(2.2.5.2)

The products constructed by May thus give products via the method of §3.4.4,

holim
Iop×[n]

F ∧ holim
Iop×[n]

F → holim
Iop×[n]

F,

where F is any one of the functors

(Z× ZBGL) ◦ Γ(U ,OX), (Z× ZBGL+) ◦ Γ(U ,OX), (Z× BGL+) ◦ Γ(U ,OX).

The universal mapping property of BGLN (−) → BGLN (−)+ given in [83,
Lemma 3.1 and Theorem 4.3], together with the construction of products described
in (Part II, Chapter III, §3.4.4), and the compatibility given in (loc. cit., §3.4.5),
implies that the May product on

holim
Iop×[n]

(Z× ZBGL) ◦ Γ(U ,OX)

is compatible, via the Dold-Kan equivalence, with the product µXH we have defined
on

holim
Iop×[n]

Z× C∗(BGL ◦ Γ(U ,OX); Z)

in the derived category D−(Ab). As the map ZBGLN(A) → ZBGLN (A)+ is a
weak equivalence for all commutative rings A, it follows from [25, V, 5.6] that the
map

holim
Iop×[n]

(Z× ZBGL) ◦ Γ(U ,OX) → holim
Iop×[n]

(Z× ZBGL+) ◦ Γ(U ,OX)
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is a weak equivalence. Thus, the products on K∗(X,U) induced by the May prod-
ucts on

holim
(I×[n])op

(Z× BGL+) ◦ Γ(U ,OX)

are compatible with the products µXH we have defined on

H−∗( holim
(I×[n])op

Z× C∗(BGL ◦ Γ(U ,OX); Z)),

and hence with the products µXH on the hypercohomology H−∗(X,BGL; Z).
Waldhausen [126, pg. 235] has given a functorial comparison of the products for

K∗(X,U) and for K∗(X) (see also [128, §4, §5]), which completes the discussion.

2.2.6. Remark. Suppose we have functors X,Y : I → Sch+S . We form the smash
product X ×S Y : I → Sch+S by

X ×S Y (i) :=

{
X(i)×S Y (i); if X(i) �= ∗ and Y (i) �= ∗,
∗; otherwise.

We then have the natural external products

BQPX(i) ∧BQPY (i) → BQPX(i)×SY (i),

giving us the product

�X,Y : holim
I

BQPX ∧ holim
I

BQPY → holim
I

BQPX×SY ,

which in turn induces the external product

�K
X,Y :Kp(X)⊗Kp′(Y ) → Kp+p′(X ×S Y ).

Similarly, the product (2.2.4.3) induces the external product

Hp(X, Z̃⊕ C̃∗(BGL; Z))⊗Hq(Y, Z̃⊕ C̃∗(BGL; Z))

�H
X,Y−−−→ Hp+q(X ×S Y, Z̃⊕ C̃∗(BGL; Z)).

The same proof as Proposition 2.2.5 then shows that the external products are
compatible via the Hurewicz maps for X and Y .
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Part II

Categorical Algebra





Introduction: Part II

In this second part, we collect the categorical notions and constructions neces-
sary for Part I. The first chapter is a review of the foundational notions of symmetric
monoidal categories, and related constructions, followed by applications to certain
constructions of graded tensor categories, including the “universal commutative
external product”. We include this well-known material here as it gives a unified
description of a wide range of categories we will be working with: graded tensor
categories, differential graded tensor categories, triangulated tensor categories, etc.
This unified treatment clarifies, for example, the usual problem of sign conventions
in graded categories. As general reference for Chapter I, see [77] and [93].

In Chapter II, we look at Kapranov’s generalization to DG categories of the
standard construction of the category of complexes for an additive category (see
[75]). We show that the homotopy category of this category of generalized com-
plexes is a triangulated category. We also show how a tensor structure on the
underlying DG category extends to the category of complexes, and makes the ho-
motopy category a triangulated tensor category. We consider the operation of tak-
ing the pseudo-abelian hull, as applied to triangulated categories, and show that,
for a localization of the homotopy category of complexes, the resulting category
is naturally a triangulated category. We conclude with the construction of some
useful DG tensor categories.

In Chapter III, we collect some results on simplicial and cosimplicial objects in
an additive category, including various associated (co)chain complexes, as well as
some details on products for cosimplicial objects in a tensor category. We then turn
to a discussion of the problem of homotopy commutativity and related questions
involving cochain operations. We give a multi-simplicial construction of “categorical
cochain operations” which we use to transform a cosimplicial tensor functor into a
DG tensor functor. We conclude with a discussion of homotopy limits.

In Chapter IV, we recall the construction of the cosimplicial Godement resolu-
tion of sheaf on a Grothendieck site with enough points. Combining this with the
constructions of Chapter III allows us to define a canonical acyclic resolution of a
sheaf on a Grothendieck site so that a commutative associative multiplication on
the sheaf induces a multiplicative structure on the resolution which is homotopy
commutative and has the required higher homotopies. These canonical cochain
complexes allow us to define in Part I, Chapter V the realization functor associated
to a reasonable family of sheaves.
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CHAPTER I

Symmetric Monoidal Structures

1. Foundational material

1.1. Symmetric monoidal categories

We review some foundational material on symmetric monoidal categories, and re-
lated constructions.

1.1.1. Definition. (i) A semi-monoidal category is a triple (C, •, α), where C is a
category, • : C × C −→ C is a functor, and α : • ◦(idC ×•) −→ • ◦ (•× idC) is a natural
isomorphism such that

[• ◦ (idC × α)] ◦ [α ◦ (idC × • × idC)] ◦ [• ◦ (α× idC)]

= [α ◦ (idC × idC × •)] ◦ [α ◦ (• × idC × idC)]
(1.1.1.1)

(the pentagonal identity). If

• ◦ (idC × •) = • ◦ (• × idC)

and α is the identity, call (C, •, α) strictly associative.
If there is an object 1 ∈ C and natural isomorphisms µl : 1 • (−) −→ idC and

µr : (−) • 1 −→ idC , such that

• ◦(µl × idC) = (µl ◦ •) ◦ α(1,−,−),

[• ◦ (idC × µr)] ◦ α(−,−, 1) = µr ◦ •,
(µr • idC) ◦ α(−, 1,−) = idC • µl,

(1.1.1.2)

call the tuple (C, •, α, 1, µl, µr) a monoidal category. A symmetric semi-monoidal
category is a semi-monoidal category (C, •, α), together with a natural isomorphism
τ : • ◦τC −→ •, where τC : C2 → C2 is the exchange of factors, such that τ2 is the
identity, and

[• ◦ (τ × idC)] ◦ α ◦ [• ◦ (idC × τ)] = α ◦ [τ ◦ (• × id)] ◦ α;(1.1.1.3)

a monoidal category together with natural isomorphism τ satisfying (1.1.1.3) and
with

µl(−) = τ(1,−) ◦ µr(−)(1.1.1.4)

is a symmetric monoidal category. The (symmetric) (semi-)monoidal category is
said to be strictly associative if the underlying semi-monoidal category is strictly
associative.
(ii) A (symmetric) (semi-)monoidal functor of (symmetric) (semi-)monoidal cate-
gories is a functor which strictly intertwines the various data of the (symmetric)
(semi-)monoidal categories: e.g., for a semi-monoidal functor

F : (C1, •1, α1) −→ (C2, •2, α2),

375
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we require

•2 ◦ (F × F ) = F ◦ •1
α2 ◦ [F × (F × F )] = [(F × F )× F ] ◦ α1;

the strictly associative case is defined similarly.

1.1.2. Examples. The primary example of a symmetric monoidal category is the
category of sets, Sets, with product the cartesian product ×, symmetry the ex-
change of factors, and unit the one-point set. The category of small categories,
cat, with product the cartesian product ×, symmetry the exchange of factors,
and unit the one-point category with only the identity morphism is a symmetric
monoidal category as well.

Let A be a commutative ring. We have the category of A-modules, ModA,
the category of graded A-modules, GrModA, with graded, degree 0 maps, and the
category of differential graded A-modules DG-ModA (with differential of degree
+1), with maps being degree 0 maps of complexes.
(i) ModA has the product tensor product over A:

⊗A :ModA ⊗ModA −→ModA,

symmetry τ

τX,Y :X ⊗A Y −→ Y ⊗A X

τX,Y (x⊗ y) = y ⊗ x,

associativity isomorphism

αX,Y,Z : (X ⊗A Y )⊗A Z −→ X ⊗A (Y ⊗A Z)

αX,Y,Z((x⊗ y)⊗ z) = x⊗ (y ⊗ z),

and unit A, with natural isomorphisms µl,X :A⊗AX −→ X and µr,X :X⊗AA −→ X .
This makes ModA into a symmetric monoidal category.
(ii) GrModA has the graded tensor product: For X = ⊕pX

p, Y = ⊕qY
q, set

X ⊗A Y = ⊕n(X ⊗A Y )n; (X ⊗A Y )n = ⊕p+q=nX
p ⊗A Y q.

The graded symmetry is given by

τX,Y (xp ⊗ yq) = (−1)pqyq ⊗ xp; xp ∈ Xp, yq ∈ Y q.

The associativity isomorphisms are defined as forModA, and the unit is the module
A, concentrated in degree 0, with isomorphisms µl, µr defined as for ModA. This
makes GrModA into a symmetric monoidal category.
(iii) DG-ModA has product (X, dX)⊗ (Y, dY ) = (X ⊗A Y, dX⊗Y ), where X ⊗A Y
is the graded tensor product, and

dX⊗Y (xp ⊗ yq) = dX(xp)⊗ yq + (−1)pxp ⊗ dY (yq); xp ∈ Xp, yq ∈ Yq.

The symmetry is the graded symmetry, and the unit is the graded unit, with 0
differential. The associativity isomorphisms and unit isomorphisms are defined as
for ModA.
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1.2. V-categories

Following [77, Chapter 1], we have the following

1.2.1. Definition. (1) Let (V ,⊗, α, τ, µl, 1) be a symmetric monoidal category. A
V-category C consists of the following data:

(i) A collection of objects of C, Obj(C).
(ii) For each pair A,B of objects of C, an object HomC(A,B) of V .
(iii) For each triple A,B,C of objects of C, a morphism in V

◦A,B,C : HomC(B,C)⊗HomC(A,B) −→ HomC(A,C).

(iv) For each object A of C, a morphism in V
idA : 1 −→ HomC(A,A).

These satisfy
(a) (associativity) The diagram

HomC(C,D)⊗ [HomC(B,C) ⊗HomC(A,B)]

��

α

))

id⊗◦A,B,C

####
####

####
####

HomC(C,D)⊗HomC(A,C)

��

◦A,C,D[HomC(C,D)⊗HomC(B,C)] ⊗HomC(A,B)

��

◦B,C,D⊗id HomC(A,D)

HomC(B,D)⊗HomC(A,B)

**

◦A,B,D

$$$$$$$$$$$$$$$$

commutes, where α is the associativity isomorphism.
(b) (unit) The diagrams

1⊗HomC(A,B) ��
idA⊗id

))
µ ####

####
####

####
HomC(A,A) ⊗HomC(A,B)

��

◦A,A,B

HomC(A,B)

HomC(A,B) ⊗ 1 ��
id⊗idB

))
µ ####

####
####

####
HomC(A,B) ⊗HomC(B,B)

��

◦B,B,A

HomC(A,B)

commute.
(2) A V-functor F :A → B of V-categories is given as for a functor of categories by
a map on objects A �→ F (A), together with maps in V

F (A,B) : HomA(A,B) −→ HomB(F (A), F (B))
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satisfying
(a) (functoriality) The diagram

HomA(B,C)⊗HomA(A,B)

))

◦A,B,C

����
����

����
����

��

F (B,C)⊗F (A,B) HomA(A,C)

��

F (A,C)HomB(F (B), F (C)) ⊗HomB(F (A), F (B))

))
◦F (A),F (B),F (C) ����

����
����

����

HomB(F (A), F (C))

commutes.
(b) (unit) F (A,A) ◦ idA = idF (A).

The composition of functors is given by the composition in V .
(3) A V-natural transformation θ :F → G of V-functors F,G :A → B consists of
giving a map

θ(A) : 1 −→ HomB(F (A), G(A))
in V for each object A of A such that, for objects A, A′ of A, the diagram

HomA(A,A′)⊗ 1 ��
G(A,A′)⊗θ(A)

��

τ

HomB(G(A), G(A′))⊗HomB(F (A), G(A))

��

◦F (A),G(A),G(A′)

HomB(F (A), G(A′))

1⊗HomA(A,A′) ��

θ(A′)⊗F (A,A′)
HomB(F (A′), G(A′))⊗HomB(F (A), F (A′))

��

◦F (A),F (A′),G(A′)

commutes. The composition of V-natural transformations θ :F → G, ρ :G → H is
given as the collection of morphisms

1
µ−1

−−→1⊗ 1
ρ⊗θ−−→ HomB(G(A), H(A)) ⊗HomB(F (A), G(A))

◦F (A),G(A),H(A)−−−−−−−−−−→ HomB(F (A), H(A)).

This defines the “category” CatV of V-categories and the category catV of
small V-categories; in fact, if we define a morphism of V-functors F,G :A → B to
be a V-natural transformation, we have the structure of a cat-category on catV .

1.2.2. Remark. For the symmetric monoidal categories of Example 1.1.2, each
object M of V has an underlying set, and each V-morphism f : 1 →M determines a
unique element f1 ∈M . We may thus refer to the elements of the Hom-objects as
morphisms, the element corresponding to the morphism idA : 1 −→ HomC(A,A) as
the identity morphism idA :A→ A, and the element corresponding to the morphism
θ(A) : 1 −→ HomC(F (A), G(A)) as the morphism θ(A) :F (A) → G(A).

For V = ModA (resp., GrModA, DG-ModA), a V-category is called a pre-
A-additive category (resp., pre-A-graded category, resp. pre-A-differential graded
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category). A cat-category is called a 2-category; for a 2-category A, we call the ob-
jects in the category HomA(X,Y ) morphisms, and the morphisms in HomA(X,Y )
2-morphisms.

1.2.3. The symmetric monoidal structure of catV . Let V be a symmetric monoidal
category, with product ⊗, symmetry τ and unit 1. Let A and B be V-categories.
Define A ⊗V B to be the V-category with objects being pairs (A,B), with A an
object of A and B an object of B. The Hom-objects are defined by

HomA⊗VB
(
(A1, B1), (A2, B2)

)
= HomA(A1, A2)⊗HomA(B1, B2).

The composition map is given by the composition (we ignore the associativity
isomorphisms)

[HomA(A2, A3)⊗HomB(B2, B3)]⊗ [HomA(A1, A2)⊗HomB(B1, B2)]

τA∗,B∗−−−−→ [HomA(A2, A3)⊗HomA(A1, A2)]⊗ [HomB(B2, B3)⊗HomB(B1, B2)]
◦A1,A2,A3⊗◦B1,B2,B3−−−−−−−−−−−−−−→ HomA(A1, A3)⊗HomB(B1, B3)

where τA∗,B∗ is the symmetry in V . The identity in A⊗V B is given by the compo-
sition

1
µ−1

−−→ 1⊗ 1 idA⊗idB−−−−−→ HomA(A,A)⊗HomB(B,B).

We have the symmetry functor τVA,B :A ⊗V B −→ B ⊗V A, given on objects by
τVA,B(A,B) = (B,A), and on morphisms by letting

τVA,B : HomA⊗VB
(
(A1, B1), (A2, B2)

)
−→ HomB⊗VA

(
(B1, A1), (B2, A2)

)
be the symmetry in V

τ∗∗ : HomA(A1, A2)⊗HomB(B1, B2) −→ HomB(B1, B2)⊗HomA(A1, A2).

We have associativity isomorphisms αVA,B,C induced by those from V in a similar
fashion.

We let 1V be the V-category with a single object ∗, and with Hom-module
Hom1V (∗, ∗) the unit object in V . For a V-category A, we have the natural isomor-
phisms of V-categories

µV,Al : 1V ⊗V A −→ A
µV,Ar :A⊗V 1V −→ A

induced by the isomorphisms

µl,(A,A′) : 1⊗HomA(A,A′) −→ HomA(A,A′)

µr,(A,A′) : HomA(A,A′)⊗ 1 −→ HomA(A,A′).

The category catV is then a symmetric monoidal category with the product
⊗V , associativity isomorphism αV , symmetry τV , unit 1V and multiplications µVl
and µVr .
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1.3. Symmetric monoidal V-categories

We have phased Definition 1.1.1 in terms of natural transformations, and identities
among natural transformations, to make subsequent refinements easier to state.
Indeed, the above notions make sense for V-categories as long as the category
catV of small categories with structure V has itself the structure of a symmetric
semi-monoidal category. One simply replaces the cartesian product C × C with
the product C ⊗ C in catV , and the exchange of factors isomorphism τC with the
symmetry isomorphism in catV in the above definition, and one has the definition
of a (symmetric) (semi-)monoidal object in catV .

One then extends these notions to an object C of CatV by requiring that
each small V-subcategory of C which is closed under the relevant operations is a
(symmetric) (semi-)monoidal object in catV .

1.3.1. Definition. Let V be a symmetric monoidal category. A symmetric mon-
oidal V-category is a tuple (C, •, α, τ, 1C, µl, µr), with C a V-category, • :C ⊗V C −→ C
a V-functor, 1C an object of C, α : • ◦[idC ⊗V •] −→ • ◦ [• ⊗V idC ], τ : • ◦τVC −→ •,
and µl : 1C ⊗ idC −→ idC , µr : idC ⊗ 1C −→ idC natural isomorphisms, such that the
relations (1.1.1.1), (1.1.1.2), (1.1.1.3) and (1.1.1.4) are satisfied as identities among
V-natural transformations, after replacing × with ⊗V .

The notions of a monoidal V-category, a semi-monoidal V-category and a sym-
metric semi-monoidal V-category are defined analogously. We sometimes refer to a
(symmetric) (semi)-monoidal V-category as a (symmetric) (semi)-monoidal object
of CatV .

1.3.2. Bi-products. Recall that the bi-product of objects X and Y in an pre-A-
additive category C is a tuple

(X ⊕ Y, iX , iY , pX , pY )
iX :X −→ X ⊕ Y, iY :Y −→ X ⊕ Y

pX :X ⊕ Y −→ X, pY :X ⊕ Y −→ Y,

such that

pX ◦ iX = idX , pY ◦ iY = idY

pX ◦ iY = 0, pY ◦ iX = 0
iX ◦ pX + iY ◦ pY = idX⊕Y .

We call C an A-additive category if C is an pre-A-additive category and, in addition,
finite bi-products exist in C. In particular, there is an initial and final object 0,
given as the empty bi-product.

Let (X ⊕Y, iX :X → X ⊕Y, iY :Y → X⊕Y ) be a direct sum of objects X and
Y in a pre-additive category C. The universal property of the direct sum, i.e., that
the map

(i∗X , i∗Y ) : HomC(X ⊕ Y,−) → HomC(X,−)×HomC(Y,−)

is a natural isomorphism, gives maps pX :X ⊕ Y → X and pY :X ⊕ Y → Y , with

(pX ◦ iX , pX ◦ iY ) = (idX , 0), (pY ◦ iX , pY ◦ iY ) = (0, idY ).

Then (X ⊕ Y, iX , iY , pX , pY ) is a bi-product of X and Y . For this reason, we
often refer to a bi-product as a direct sum, suppressing the explicit mention of the
projections pX and pY .
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We have the functors
0 : catGrModA

−→ catModA

Z∗ : catDG-ModA −→ catGrModA ;
(1.3.2.1)

for a pre-graded category C, the pre-additive category C0 has the same objects as
C, with HomC0(A,B) = HomC(A,B)0. For a pre-DG category C, the pre-graded
category Z∗C has the same objects as C, with

HomZ∗C(A,B)n = {f ∈ HomC(A,B)n | df = 0}.
The category C0 is naturally a subcategory of C, and similarly for Z∗C. We let
Z0C := (Z∗C)0.

A bi-product of objects X , Y in a pre-graded category C is defined to be a
bi-product in the pre-additive sub-category C0; similarly, a bi-product of objects
X , Y in a pre-DG category C is defined to be a bi-product in the pre-additive
sub-category Z0C

1.3.3. Definition. For V = ModA, GrModA, or DG-ModA, we let cat⊕V de-
note the full subcategory of catV consisting of categories A which admit finite
bi-products. We call cat⊕ModA

the category of small A-additive categories, AddA,
cat⊕GrModA

the category of small A-graded categories,GrModA and cat⊕DG-ModA

the category of small A-differential-graded categories, DGA.

1.3.4. One can form an additive category C⊕ from a pre-additive category by ad-
joining finite bi-products; as two bi-products of objects X and Y are canonically
isomorphic, this operation applied to an additive category yields an equivalent cat-
egory. In addition, the functor ⊕ : catModA −→ AddA is left adjoint to the inclusion
AddA −→ catModA

. Similar remarks hold for catGrModA
and catDG-ModA

.

1.3.5. Remarks. (i) Let (C,⊗, α) be a semi-monoidal V-category. The pentagonal
relation (1.1.1.1) implies (see MacLane [93]) that, given n objects X1, . . . , Xn of C,
and two orders of associativity for the product X1⊗. . .⊗Xn, there is a canonical iso-
morphism between the two resulting objects of C. This shows that C is equivalent to
a canonically defined strictly associative symmetric monoidal V-category. The same
remark holds for symmetric monoidal or symmetric semi-monoidal V-categories. In
the sequel, we will systematically work with the equivalent strictly associative ob-
jects, unless otherwise noted. In particular, we will replace catV with its equivalent
strictly associative version without further comment or additional notation.
(ii) Let (C,⊗, τ) be a strictly associative symmetric semi-monoidal V-category. The
relation (1.1.1.3) implies that we can unambiguously assign an isomorphism

τσ,X1,... ,Xn :X1 ⊗ . . .⊗Xn −→ Xσ−1(1) ⊗ . . .⊗Xσ−1(n)

for each σ in the symmetric group Sn by writing σ as a composition of adjacent
permutations σi,i+1, and defining τσ,X1,... ,Xn as the corresponding composition of
symmetry isomorphisms τ∗∗. In addition, the automorphisms τσ,X1,... ,Xn are func-
torial in the Xi and satisfy

τρ,X
σ−1(1),... ,Xσ−1(n)

◦ τσ,X1,... ,Xn = τρσ,X1,... ,Xn .

1.3.6. Examples. An A-tensor category is an A-additive category which is a sym-
metric monoidal object in the category of pre-A-additive categories. An additive
category which is a symmetric semi-monoidal object in ModA-categories is called
an A-tensor category without unit. Similarly, a graded A-tensor category is a graded
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A-additive category which is a symmetric monoidal object in the category of graded
pre-A-additive categories, and a DG A-tensor category is an differential graded
category which is a symmetric monoidal object in the category of DG-ModA-
categories. The respective symmetric semi-monoidal objects GrModA-categories,
resp. DG-ModA-categories are called a graded A-tensor category without unit,
resp. DG A-tensor category without unit.

We often refer to a symmetric monoidal object in the category of pre-A-additive
categories as an pre-A-tensor category. The notions of a pre-A-tensor category
without unit, a pre-A-DG tensor category, etc., are defined similarly.

1.3.7. Pseudo-tensor functors. It is sometimes necessary to relax the condition that
a functor of tensor categories be a tensor functor; we give here one version of such
a construction. To fix ideas, we work in the setting of a tensor category; the same
notions make sense for a symmetric monoidal V-category, for example, a graded
tensor category.

Let A and B be tensor categories. A pseudo-tensor functor from A to B is a pair
(F, θ), with F :A → B an additive functor of the underlying additive categories,
and θ a natural isomorphism of functors

θ :F (−)⊗B F (−) → F (−×A −)

F (−)⊗B F (−), F (−×A −) :A⊗A → B,
such that

1. θ is associative: The diagram

F (X)⊗ F (Y )⊗ F (Z) ��
idX⊗θ(Y,Z)

��

θ(X,Y )⊗idZ

F (X)⊗ F (Y ⊗ Z)

��

θ(X,Y⊗Z)

F (X ⊗ Y )⊗ F (Z) ��
θ(X⊗Y,Z)

F (X ⊗ Y ⊗ Z)

commutes,
2. θ is commutative: The diagram

F (X)⊗ F (Y ) ��
τF (X),F (Y )

��

θ(X,Y )

F (Y )⊗ F (X)

��

θ(Y,X)

F (X ⊗ Y ) ��
F (τX,Y )

F (Y ⊗X)

commutes,
3. F and θ are unital:

F (1⊗nA ) = 1⊗nB ; θ(1⊗aA , 1⊗bA ) = id1⊗a+b
B

,

and the diagram

1B ⊗ F (X) ��
µl,F (X)

��

θ(1A,X)

F (X)

F (1A ⊗X)

##

F (µl,X)

�����������

commutes.
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Composition of pseudo-tensor functors is the obvious notion:

(G, θG) ◦ (F, θF ) := (G ◦ F,G(θ(−,−)) ◦ θG(F (−), F (−));

the composition of two pseudo-tensor functors is again a pseudo-tensor functor.
If (F, θF ) and (G, θG) are pseudo-tensor functors from A to B, a natural trans-

formation from (F, θF ) to (G, θG) is a natural transformation of the additive func-
tors ρ :F → G, such that ρ(1⊗nA ) is the identity on 1⊗nB , and such that the diagram

F (X)⊗ F (Y ) ��
ρ(X)⊗ρ(Y )

��

θF

G(X)⊗G(Y )

��

θG(X,Y )

F (X ⊗ Y ) ��
ρ(X⊗Y )

G(X ⊗ Y )

commutes.
Pseudo-tensor functors (F, θF ) :A → B and (G, θG) :B → A define a pseudo-

tensor equivalence if there are natural isomorphisms of pseudo-tensor functors

ρ1 : idA → (G, θG) ◦ (F, θF ); ρ2 : idB → (F, θF ) ◦ (G, θG).

All the above notions makes sense for tensor categories without unit by ignoring
the conditions on the unit.

1.3.8. Let M = ⊕iM
i, N = ⊕jN

j be graded A-modules. An A-module homomor-
phism f :M → N is graded, of degree s, if f =

∏
i f

i :M i → N i+s. Let Hom(M,N)s

be the A-module of graded, degree s maps from M to N ; this makesGrModA into
an A-graded category with graded Hom-module Hom(M,N) := ⊕sHom(M,N)s.

If M and N are DG A-modules, we give Hom(M,N) the differential

df = (−1)degff ◦ dM − dN ◦ f.

This makes DGModA into an A-DG category, which is the usual DG category
of complexes of A-modules, C(ModA). The full DG subcategories C∗(ModA),
∗ = b,+,−, of bounded complexes, bounded below complexes and bounded above
complexes are defined as usual.

For graded A-modules X , Y , Z and W , define the tensor product of graded
maps f = ⊕if

i :X i → Zi+s and g = ⊕j :Y j →W j+t by

f ⊗ g = ⊕n ⊕i+j=n (−1)itf i ⊗A gj : (X ⊗A Y )n → (Z ⊗W )n+s+t.

This makes GrModA into an A-graded tensor category, and makes C(ModA)
into an A-DG tensor category. The full subcategories C∗(ModA) of C(ModA)
(∗ = +,−, b) are A-DG tensor subcategories.

2. Constructions and computations

2.1. Elementary constructions

We give some of the elementary methods for constructing symmetric monoidal V-
categories.
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2.1.1. Free objects, and similar constructions. For V as in Example 1.1.2, the in-
clusion of the category of symmetric monoidal V-categories into the category of
V-categories, SMV −→ catV , has a left adjoint, the functor forming the free sym-
metric monoidal V-category on a given V-category. We have the similar free ob-
jects for (semi-)monoidal V-categories, symmetric semi-monoidal V-categories, and
the strictly associative version. For V one of the A-additive categories ModA,
GrModA or DG-ModA, the inclusions of the additive versions SM⊕

V , etc., into
the additive versions Cat⊕V have the left adjoint given by taking the free object as
above, then applying the functor ⊕.

We have various forgetful functors among the categories V considered in Ex-
ample 1.1.2:

FD :DG-ModA −→ GrModA : “forget the differential”.
FG :GrModA −→ModA : “forget the grading”.
FA :ModA −→ Sets : “forget the A-module structure”.
FM : cat −→ Sets : “forget the morphisms”.

The functors FA and FM have the left adjoints FreeV2,V1 :V2 −→ V1, producing the
free V1-object on the given V2-object.

The forgetful functors induce forgetful functors FV1,V2 : catV1 −→ catV2 , and
for V1 = ModA, cat, the forgetful functor has the left adjoint FreeV2,V1 : catV2 −→
catV1 . Both of these are the identity on objects and operate on the Hom-objects
by forgetting the V1 structure, resp. producing the free V2-object. The formation
of the free object is a symmetric monoidal functor.

We denote the free pre-A-additive category on a category C by AC. We some-
times write AC for the free A-additive category on a category C; we will explicitly
make the distinction clear.

We have in addition the functors (1.3.2.1)

Z∗ :DG-ModA −→ GrModA : “take cycles”,
0 :GrModA −→ModA : “take 0th graded piece”,

which have left adjoints

d0 :GrModA −→ DG-ModA,
i0 :ModA −→ GrModA,

where d0(M) is the complex M with 0 differential, and i0(M) is the graded A-
module i0(M)0 = M , i0(M)d = 0 for d �= 0. As above, these have their counter-
parts on the level of V-categories, for which we use the same notation,

Z∗ : catDG-ModA
−→ catGrModA

,

etc.

2.1.2. Adjoining morphisms and objects. If (C,⊗, α, τ, µ, 1) is a symmetric monoidal
object in catV , we can adjoin morphisms {fα :Xα −→ Yα | α ∈ A} satisfying
relations {Zβ | β ∈ B} to form the V-symmetric monoidal object C[{fα}]/{Zβ},
with functor

ι{fα},{Zβ} : C −→ C[{fα}]/{Zβ}.
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The functor ι{fα},∅ is universal for V-symmetric monoidal functors F : C −→ D to-
gether with a choice of morphisms gα :F (Xα) −→ F (Yα). Similarly, ι{fα},{Zβ} is uni-
versal for V-symmetric monoidal functors F : C −→ D together with a choice of mor-
phisms gα :F (Xα) −→ F (Yα) which satisfy relations F̃ (Zβ), where F̃ : C[{fα}] −→ D
is the extension of F determined by the gα. The symmetric semi-monoidal, semi-
monoidal, monoidal and strictly associative versions are constructed similarly, and
have analogous properties.

If we have an V-symmetric monoidal category (C,⊗, α, τ, µ, 1), we may adjoin a
set of objects {Xα | α ∈ A} to C, with only identity morphisms, and form the functor
of V-symmetric monoidal categories i :C −→ C[{Xα}] as the universal object for V-
symmetric monoidal functors F : C −→ D, together with a choice of objects {Yα}
of D. The analogous remarks are also valid in the setting of V-(symmetric)(semi-)
monoidal categories.

2.2. The category of pairs

One can use a 2-functor as a means of encoding generators and relations for a
category. Describing this method of constructing categories is the object of this
section.

2.2.1. Let A be a 2-category with underlying category A0, and let Π:A −→ catV
be a 2-functor. We assume the structure category V admits coproducts of a given
set of objects, and that co-equalizers (quotient objects) for a pair of V-morphisms
exist; this is the case for V = Sets,ModA, GrModA and DG-ModA.

Define the V-category (Π,A) as follows: Objects consist of pairs (c, a), with a
an object of A, and c an object of Π(a). To define the morphisms, consider the
V-object

((c, a), (c′, a′)) :=
∐

f∈HomA(a,a′)

HomΠ(a′)(Π(f)(c), c′).

We let the pair (g, f) stand for the map g : Π(f)(c) → c′ in the component f . For
a 2-morphism h : f → f ′ in A, we define the V-morphism

Π(h)∗ : HomΠ(a′)(Π(f ′)(c), c′) −→ HomΠ(a′)(Π(f)(c), c′)

by Π(h)∗(g′) = g′ ◦ Π(h)(c). We define Hom(Π,A)((c, a), (c′, a′)) to be the co-
equalizer:

(2.2.1.1)
∐

(f ′,h : f−→f ′)

HomΠ(a′)(Π(f ′)(c), c′) ⇒ ((c, a), (c′, a′))

−→ Hom(Π,A)((c, a), (c′, a′)),

where the two maps on the component (f ′, h : f → f ′) are

g′ �→ (g′, f ′); g′ �→ (Π(h)∗(g′), f).

Composition is given by

(g′, f ′) ◦ (g, f) = (g′ ◦Π(f ′)(g), f ′ ◦ f).

We may, of course, consider a category as a 2-category with only identity 2-
morphisms; in this case we have Hom(Π,A)((c, a), (c′, a′)) = ((c, a), (c′, a′)). In gen-
eral, for each morphism f : a→ a′ in A, we have the natural map

Ψf : HomΠ(a′)(Π(f)(c), c′) −→ Hom(Π,A)((c, a), (c′, a′)).(2.2.1.2)
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2.2.2. Remark. Let A be a 2-category with underlying category A0. If all 2-
morphisms in A are isomorphisms, we have the equivalence relation on the set of
morphisms HomA0(a, a′) given by

F ∼ G⇐⇒ there is a 2-morphism η :F → G.

Let Ā be the category with the same objects as A0, and with HomĀ(a, a′) the set
of equivalence classes of morphisms F : a → a′ in A0. For each f : a → a′ in Ā,
choose a representative morphism Ff :a→ a′ in A0.

Suppose we have a 2-functor Π:A −→ catV . Let F : a → a′ be a morphism in
A0, let c be an object of Π(a), c′ an object of Π(a′), and let

ΨF : HomΠ(c′)(Π(F )(c), c′) −→ Hom(Π,A)((c, a), (c′, a′))

the canonical map (2.2.1.2). Suppose that, for each morphism F in A0, the only
2-morphism F → F is the identity. Then the map∐

f∈HomĀ(a,a
′)

ΨFf
:

∐
f∈HomĀ(a,a

′)

HomΠ(a′)(Π(F )(c), c′)

−→ Hom(Π,A)((c, a), (c′, a′))

is an isomorphism. Indeed, the equivalence defining Hom(Π,A)((c, a), (c′, a′)) results
from identifying HomΠ(a′)(Π(F )(c), c′) with HomΠ(a′)(Π(F ′)(c), c′) by the isomor-
phism Π(η)∗ for each 2-morphism η :F → F ′. Our assumptions on the 2-morphisms
in A yield our assertion immediately.

2.2.3. Remark. Many structures on A give rise to similar structures on (Π,A).
For example, if A is a symmetric semi-monoidal 2-category, and Π is a symmet-
ric semi-monoidal 2-functor, then (Π,A) has a natural structure of a symmetric
(semi)-monoidal V-category: The product • on objects is given by (c, a) • (c′, a′) =
((c, c′), a ⊗A a′), and on morphisms by (g, f) • (g′, f ′) = (g ⊗V g′, f ⊗A f ′). The
symmetry τ(Π,A) is given by τ(Π,A)((c, a), (c′, a′)) = (id(c′,c), τA(a, a′)).

2.2.4. Remark. One can define the notion of an inductive limit of a 2-functor of 2-
categories F :A → B as universal object for the data consisting of an object Z of B,
morphisms ia :F (a) → Z for each object a of A, and 2-morphisms θf : ia → ib◦F (f)
for each morphism f : a→ b in A such that

1. For each pair of composable morphisms a
f−→ b

g−→ c in A, we have

θf ◦ (θg ◦ F (f)) = θg◦f .

2. For each pair of maps f, f ′ : a→ b, and each 2-morphism η : f → f ′ in A, we
have

θf = θf ′ ◦ (ib ◦ F (h)).

Then the category of pairs (Π,A) is just the inductive limit of Π:A → catV ; as we
won’t be using this fact, we omit a detailed description of the inductive limit of a
2-functor, and the verification that (Π,A) is the inductive limit of Π.

2.3. Some categories and a 2-category

In this section, we construct some fundamental symmetric semi-monoidal categories
and an important symmetric semi-monoidal 2-category.
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2.3.1. The categories N and Σ. The most basic (strictly associative) (symmetric)
(semi-)monoidal object is the free object on the one-point category ∗. We denote
the free strictly associative semi-monoidal category on ∗ by N, and let Σ denote the
free strictly associative symmetric semi-monoidal category on ∗. N and Σ have the
same set of objects, namely, the set of positive integers N. N is the semi-monoidal
category associated to the semi-group (N,+): the only morphisms are the identities,
and the monoidal product is given by the sum in N. For Σ, we have

HomΣ(n,m) =

{
Sn for n = m,
∅ for n �= m,

with composition given by the group law in Sn (the symmetric group on n letters).
The monoidal product in Σ is given by the homomorphism +:Sn × Sm → Sn+m,
with

(σ1 + σ2)(i) =

{
σ1(i) for 1 ≤ i ≤ n,
n + σ2(i− n) for n + 1 ≤ i ≤ n + m.

The symmetry isomorphism ta,b : a + b −→ b + a is given by the permutation

σa,b(i) =

{
i + b for 1 ≤ i ≤ a,
i− a for a + 1 ≤ i ≤ a + b.

(2.3.1.1)

We define some other important semi-monoidal categories by allowing surjective
maps of finite sets rather than just bijections.

2.3.2. The categories ω and ω0. For a positive integer n, we denote the set {1, . . . , n}
by n. We consider n as an ordered set with the standard ordering. If A and B
are ordered sets, we give the disjoint union A

∐
B the order which restricts to the

given order on A and on B, and with a < b for a ∈ A and b ∈ B.
We now define the category ω. The objects of ω are 1, 2, . . . , with Homω(n,m)

the set Sn→m of surjections f :n→ m; composition is by composition of morphisms.
Let +:ω×ω → ω be the functor +(n,m) = n+m; + is defined on morphisms

by the map

+ :Sn1→m1 × Sn2→m2 −→ Sn1+m1→n2+m2 ;

(σ + ρ)(i) =

{
σ(i) for 1 ≤ i ≤ n1,
m1 + σ2(i− n1) for n1 + 1 ≤ i ≤ n1 + n2.

(2.3.2.1)

The permutation isomorphisms ta,b : a + b→ b + a are given by (2.3.1.1).
The category ω with operation + and symmetry isomorphisms t∗∗ is then a

strictly associative symmetric semi-monoidal category. We let ω0 be the subcat-
egory of ω with the same objects as ω, and with morphisms Homω0(n,m) the
subset S<

n→m of ordered surjections. The category ω0 with operation + is a strictly
associative semi-monoidal category; we have the canonical functors

i0 : N −→ ω0,

i : Σ −→ ω.

2.3.3. The category Ω0. Let p :n→ m be an ordered surjection. For each j ∈ m we
give the subset p−1(j) the order induced by the standard order on n. Let

πp :n −→ p−1(1)
∐

. . .
∐

p−1(m)
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be the order-preserving bijection. If σ is in Sm, we have the bijection

σ̃ : p−1(1)
∐

. . .
∐

p−1(m) −→ (σ ◦ p)−1(1)
∐

. . .
∐

(σ ◦ p)−1(m)

which sends the component p−1(j) to the component (σ ◦ p)−1(σ(j)) = p−1(j) via
the identity. We let p∗(σ) be the bijection of n:

p∗(σ) = π−1σ◦p ◦ (σ̃) ◦ πp.
We have the following facts about the map p∗ :Sm −→ Sn:

(i) For p ∈ S<
n→m, q ∈ S<

m→k, we have (q ◦ p)∗ = p∗ ◦ q∗.
(2.3.3.1)

(ii) For σ ∈ Sm, p ∈ S<
n→m, the surjection

σ · p := σ ◦ p ◦ p∗(σ)−1

is in S<
n→m.

(iii) For p ∈ Sm→n, p∗ :Sm → Sn is a twisted homomorphism, i.e.,

(σ · p)∗(τ)p∗(σ) = p∗(τσ)

for τ, σ ∈ Sm.
(iv) For f ∈ Sn→m, g ∈ Sm→k, σ ∈ Sk, we have

σ · (g ◦ f) = (σ · g) ◦ (g∗(σ) · f).

(v) For f ∈ Sn→m, g ∈ Sm→k and σ ∈ Sm with g ◦ σ = g, we have

g ◦ (σ · f) = g ◦ f.
We now define the symmetric semi-monoidal category Ω0 with the same objects

as ω, and with morphisms HomΩ0(a, b) the set of pairs (f, σ), where σ is in Sa, and
f : a→ b is a map in ω0. The composition

HomΩ0(b, c)×HomΩ0(a, b) −→ HomΩ0(a, c)

is given by

(f ′, σ′) ◦ (f, σ) = (f ′ ◦ (σ′ · f), f∗(σ′)σ).(2.3.3.2)

The product

+: HomΩ0(a, b)×HomΩ0(c, d) −→ HomΩ0(a + c, b + d)

is induced by the operation (2.3.2.1):

(f, σ) + (f ′, σ′) = (f + f ′, σ + σ′).(2.3.3.3)

For a, b ∈ N, the symmetry isomorphism τa,b : a + b→ b + a is given by

τa,b = (id, σa,b),(2.3.3.4)

where σa,b is the permutation (2.3.1.1).
The relations of (2.3.3.1) show that the operations (2.3.3.2)-(2.3.3.4) do indeed

define a symmetric semi-monoidal category. We define the functor c : Ω0 → ω by
sending (f, σ) : a → b to the composition f ◦ σ; one easily checks that this is a
symmetric semi-monoidal functor.

Let fn1 :n → 1 be the unique surjection; we let fn1 :n −→ 1 denote the corre-
sponding map in ω0 and ω. We let

Fn1 :n −→ 1, τσ :n −→ n(2.3.3.5)



2. CONSTRUCTIONS AND COMPUTATIONS 389

be the maps in Ω0 defined by

Fn1 = (fn1, id),

τσ = (idn, σ); σ ∈ Sn.

We have the identities

f21 ◦ (id1 + f21) = f21 ◦ (f21 + id1),

F21 ◦ (id1 + F21) = F21 ◦ (F21 + id1),
(2.3.3.6)

the first being an identity of maps in ω0 (or ω) and the second an identity of maps
in Ω0.

2.3.4. Lemma. (i) The semi-monoidal category ω0 is isomorphic to the semi-mon-
oidal category gotten from N by adjoining a morphism � : 2 → 1, and imposing the
relation

� ◦ (id1 + �) = � ◦ (� + id1).(2.3.4.1)

(ii) The symmetric semi-monoidal category Ω0 is isomorphic to the symmetric semi-
monoidal category gotten from Σ by adjoining a morphism � : 2 → 1, and imposing
the relation (2.3.4.1).

Proof. Let ω′0 be the semi-monoidal category gotten from N by adjoining a
morphism � : 2 → 1, and imposing the relation (2.3.4.1); the relation (2.3.3.6) shows
that the functor i1 : N → ω0 extends to the functor of semi-monoidal categories
i :ω′0 −→ ω0, with i(�) = f21.

From the relation (2.3.4.1) and an elementary induction, one sees that there is
a unique morphism �n1 :n→ 1 in ω′0; from this it easily follows that each morphism
f :n→ m in ω′0 is of the form

f = �n11 + . . . + �nm1;
∑
j

nj = n.

This then implies that i is an isomorphism.
The proof of (ii) is similar, and is left to the reader.

2.3.5. The symmetric semi-monoidal 2-category Ω. We now define a 2-category Ω
with underlying category Ω0

Let f :n→ m be a surjection. We let S(f) be the subgroup of Sn consisting of
η such that f ◦ η = f . For a morphism F = (f, σ) in Ω0, define S(F ) = S(f).

Let (f, σ) : a→ b be a morphism in Ω0, and take η in S(f). Define η · (f, σ) by

η · (f, σ) = (f, ησ).(2.3.5.1)

For morphisms F, F ′ : a→ b in Ω0, let Hom(F, F ′) be the set of η ∈ S(F ) such
that F ′ = η ·F (i.e., either the empty set or a singleton set). Composition is given
by the group law in S(F ) = S(F ′):

η1 · η2 = η1η2.(2.3.5.2)

This defines the category HomΩ(a, b) with objects HomΩ0(a, b).
We extend the composition on HomΩ0(−,−) to a composition functor

HomΩ(b, c)×HomΩ(a, b) −→ HomΩ(a, c)
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as follows: Let η : (f, σ) −→ η · (f, σ) and η′ : (f ′, σ′) −→ η′ · (f ′, σ′) be morphisms in
HomΩ(a, b), HomΩ(b, c) respectively. Define η′ ◦ η by

η′ ◦ η = f∗(η′σ′)ηf∗(σ′)−1.(2.3.5.3)

One easily checks, with the aid of (2.3.3.1), that this gives a well-defined composi-
tion functor, and gives Ω the structure of a 2-category.

The monoidal product + on HomΩ0(−,−) extend to the product functor

• : HomΩ(a, b)×HomΩ(c, d) −→ HomΩ(a + c, b + d)(2.3.5.4)

by setting η •η′ = η+η′. The reader will easily verify that the operations (2.3.5.1)-
(2.3.5.4) extends the symmetric semi-monoidal category Ω0 to give Ω the structure
of a symmetric semi-monoidal 2-category.

2.3.6. The 2-category Ω and symmetric semi-monoidal V-categories. The 2-category
Ω encodes the structure of a strictly associative symmetric semi-monoidal V-cate-
gory in the following sense: Suppose we have a symmetric semi-monoidal 2-functor
F : Ω → catV . In particular, we have the identity F (n) = F (1)⊗Vn for each n =
1, 2, . . . in N. Let C = F (1); we have the morphism F21 : 2 −→ 1 (2.3.3.5). This gives
us the functor

• := F (F2,1) : C ⊗V C −→ C.

The identity (2.3.3.6) in Ω0 gives the associativity (1.1.1.1) of •. Let σ ∈ S2 be
the non-trivial permutation, and let τ1,1 = τσ : 2 −→ 2 be the symmetry (2.3.3.4),
(2.3.3.5) in Ω0. We have the 2-morphism

σ :F21 = (f2,1, id) −→ (f2,1, σ) = F2,1 ◦ τ1,1

in Ω, giving the natural transformation

τ := F (σ) : • −→ • ◦ F (τ1,1);

since F is a symmetric monoidal functor, F (τ1,1) : C⊗V C −→ C⊗V C is the symmetry
τC,C in catV . Since σ2 = id, we have τ2 = id. The identity in S3,

(σ + id1) ◦ (id1 + σ) = [(id1 + σ) ◦ (σ + id1)]−1,

gives the hexagonal identity (1.1.1.3) for (•, τ), hence (C, •, τ) is a strictly associative
symmetric semi-monoidal category.

Conversely, it follows from Lemma 2.3.4 and Remark 1.3.5(ii) that, if we have
a strictly associative semi-monoidal category (C, •, τ), sending n to C⊗Vn, F2,1 to •
and σ to τ extends uniquely to a symmetric semi-monoidal 2-functor F : Ω → catV ;
2-natural transformations correspond likewise to symmetric semi-monoidal func-
tors. This gives a bijection between the category of strictly associative symmet-
ric semi-monoidal V-categories and the category of symmetric semi-monoidal 2-
functors from Ω to catV .

We let

ΠC : Ω −→ catV(2.3.6.1)

denote the symmetric semi-monoidal 2-functor corresponding to a strictly associa-
tive symmetric semi-monoidal V-category C.
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2.4. External products

External products arise naturally as the products on cochain complexes

�X,Y : ΓX ⊗ ΓY −→ ΓX×Y

coming from a cohomology theory Γ; we give an abstraction of this notion to the
setting of symmetric semi-monoidal categories.

2.4.1. Definition. Let (C,×, t) and (D,⊗, τ) be strictly associative symmetric
semi-monoidal V-categories. A commutative external product on C is a pair (f, θ),
where f : C −→ D is a V-functor (not necessarily symmetric monoidal), and θ is a
V-natural transformation θ : ⊗◦(f ⊗V f) −→ f ◦× of the functors ⊗ ◦ (f ⊗V f) and
f ◦ ×, such that θ is associative and commutative, i.e.,

(2.4.1.1)

θ(A ×B,C) ◦ (θ(A,B)⊗ idf(C)) = θ(A,B × C) ◦ (idf(A) ⊗ θ(B,C)),

f(tA,B) ◦ θ(A,B) = θ(B,A) ◦ τf(A),f(B).

2.4.2. We consider the category of pairs

(f : (C,×) −→ (D,⊗), θ : ⊗ ◦(f ⊗V f) −→ f ◦ ×)

with (f, θ) a commutative external product on C, where a morphism (f, θ) → (f ′, θ′)
is a symmetric semi-monoidal V-functor p :D −→ D′, with f ′ = p ◦ f and with
θ′ = p ◦ θ.

2.4.3. The category C⊗,c. Let (C,×, t) be a strictly associative symmetric semi-mo-
noidal V-category. We have the symmetric semi-monoidal 2-functor ΠC : Ω −→ catV
defined by C (2.3.6.1), forming the symmetric semi-monoidal V-category (ΠC ,Ω)
(see §2.2.1). We denote this category by (C⊗,c,⊗, τ).

We have the V-functor

iC :C −→ C⊗,c(2.4.3.1)

defined on objects by iC(X) = (X, 1) and on morphisms by iC(g) = (g, id1).
Let X and Y be objects in C, giving the object X × Y of C and the object

X ⊗ Y = ((X,Y ), 2) of C⊗,c. We let

�X,Y :X ⊗ Y −→ X × Y

denote the morphism defined by the pair (idX×Y , F21), where F21 : 2 → 1 is the
morphism (2.3.3.5) in Ω0. The symmetry τX,Y :X ⊗ Y −→ Y ⊗X is given by the
pair (idY ⊗V idX , τ1,1), where τ1,1 : 2 −→ 2 is the symmetry (2.3.3.4) in Ω0. It follows
immediately from the relations (2.2.1.1) defining the category (ΠC ,Ω) that

1. Sending (X,Y ) to �X,Y defines a V-natural transformation

� : ⊗ ◦(iC ⊗V iC) −→ iC ◦ ×.

2. We have the relation of associativity:

� ◦ (id⊗�) = � ◦ (�⊗ id).

3. We have the relation of commutativity:

� ◦ τ = t ◦�.

(2.4.3.2)
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Thus the pair

(iC : C −→ C⊗,c,�)(2.4.3.3)

defines a commutative external product on C.

2.4.4. Proposition. (i) The pair (2.4.3.3) is the universal commutative external
product on C.
(ii) Let X1, . . . , Xn, Y1, . . . , Ym be objects of C. For each morphism f :n → m in
ω, choose a morphism Ff :n→ m in Ω0 lifting f . There is a natural isomorphism

Ψ:
∐

f∈Homω(n,m)

HomCm(ΠC(Ff )(X1, . . . , Xn), (Y1, . . . , Ym))

−→ HomC⊗,c(X1 ⊗ . . .⊗Xn, Y1 ⊗ . . .⊗ Ym).

Proof. We have the free strictly associative symmetric semi-monoidal cate-
gory on the one-point category, Σ. The universality of Σ gives the functor

i : Σ −→ Ω0
i(n) = n, i(σ) = (idn, σ), σ ∈ Sn.

We have the inclusion j : Ω0 → Ω. We let

π : Σ −→ catV
Π0 : Ω0 −→ catV

be the respective compositions ΠC ◦ j ◦ i and ΠC ◦ j.
The functors i and j give the symmetric semi-monoidal functors iΠ : (π,Σ) −→

(Π0,Ω0) and jΠ : (Π0,Ω0) −→ (Π,Ω), and the functor iC : C → (Π,Ω) factors through
the similarly defined V-functor iΣC : C −→ (π,Σ).

Let (f : (C,×) → (D,⊗), θ) be a commutative external product on C. The
category (π,Σ) together with the V-functor iΣC is easily seen to be isomorphic to the
free symmetric semi-monoidal V-category on the V-category C; we therefore have
the canonical symmetric semi-monoidal V-functor pΣ : (π,Σ) −→ D, with f = pΣ◦iΣC .

By Lemma 2.3.4, Ω0 is the symmetric semi-monoidal category gotten from Σ
by adjoining the morphism F21 : 2 → 1, and imposing the associativity relation
(2.3.3.6). This then implies that the functor pΣ extends uniquely to the symmetric
semi-monoidal V-functor pΩ0 : (Π0,Ω0) −→ D, with pΩ0(idX×Y , F21) = θ(X,Y ).
Similarly, the 2-category Ω is generated over Ω0 as symmetric semi-monoidal 2-
category by the 2-morphism σ :F21 −→ F21 ◦ τσ, where σ ∈ S2 is the non-trivial
permutation. Thus, the symmetric semi-monoidal V-category (ΠC ,Ω) is gotten
from (Π0,Ω0) by imposing the relations

(tX,Y ◦ idX×Y , F21) = (idY×X , F21 ◦ τσ)

for all objects X and Y of C. From the commutativity relation in (2.4.1.1),
we see that pΩ0 extends canonically to the symmetric semi-monoidal V-functor
p : (ΠC ,Ω) −→ D with p(�X,Y ) = θ(X,Y ). This completes the proof of (i).

The statement (ii) follows directly from Remark 2.2.2.

2.4.5. Proposition. Let (C,×, t) be a strictly associative symmetric semi-monoi-
dal V-category. Then

(i) The natural map (2.4.3.1) of V-categories
iC :C −→ C⊗,c
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is fully faithful.
(ii) Let

⊗n : (C⊗,c)⊗Vn+1 −→ C⊗,c

×n : C⊗Vn+1 −→ C

be the n-fold products. There is a functor of symmetric semi-monoidal V-
categories

ρC : C⊗,c −→ C
satisfying

(a) ρC ◦ ⊗ni⊗Vn+1
C = ×n,

(b) for X and Y in C, we have

ρC(�X,Y ) = idX×Y ,

ρC(τX,Y ) = tX,Y .

(iii) There is a V-natural transformation

� : idC⊗,c −→ iC ◦ ρC .

Proof. We let ∗ :× −→ × be the identity natural transformation; thus (idC , ∗)
is a commutative external product on C. By the universality of the pair (iC ,�)
(Proposition 2.4.4) there is a symmetric semi-monoidal V-functor ρC : C⊗,c −→ C
such that ρC ◦ iC = idC , and ρC ◦ � = ∗. The identities (ii)(a) and (ii)(b) follow
directly. By (ii), the iterated external product

�X1,... ,Xn :X1 ⊗ . . .⊗Xn → X1 × . . .×Xn

defines the natural transformation (iii).

2.4.6. Remark. If we work in the additive version cat⊕V , we denote (ΠC ,Ω)⊕ by
C⊗,c, unless there is cause for confusion with the notation of §2.4.3.

2.5. Adjoining morphisms to tensor categories

We now take V = GrModA; the case V = ModA follows from the graded case by
taking everything in degree 0.

2.5.1. We fix a graded A-tensor category without unit E with the following prop-
erties:

(i) There is an object e of E which generates the objects of E, i.e., each object
of E is a finite direct sum of the objects e⊗a, a = 1, 2 . . . .

(ii) We have HomE(e⊗m, e⊗n)q = 0 if m �= n, or if n = m and q > 0.

(2.5.1.1)

Take a set I with map ε : I → N. Let B be a strictly associative graded A-tensor
category without unit. We let B[E] denote the coproduct (in the category of graded
tensor categories without unit) of E and B.

Let B[E, {si|i ∈ I}] be the (strictly associative) graded A-tensor category with-
out unit gotten from B[E] by adjoining morphisms si : e⊗ε(i) −→ Xi of degree di,
with Xi ∈ B.
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Let A = B[E, {si}], and let ΣA be the strictly associative graded A-tensor
category without unit on the one-point category ∗. There is the canonical functor
pe : ΣA −→ A with pe(n) = e⊗n; this gives the canonical morphism

p(n) : HomΣA(n, n) −→ HomA(e⊗n, e⊗n).

In addition, we have the natural isomorphism of graded A-modules,

HomΣA(n, n) ∼= A[Sn],

with A[Sn] being concentrated in degree 0.
For i∗ = (i1, . . . , ik) in Ik, let∑

i∗ :=
∑
j

ε(ij), d(i∗) :=
∑
j

dij ,

X⊗i∗ := Xi1 ⊗ . . .⊗Xik .

For a graded A-module M := ⊕nM
n, we let M [a] be the graded A-module with

M [a]n := Mn+a.
Let Y and Z be objects of B. For a = b +

∑
i∗, define the degree zero map

Ψ̃i∗(e⊗a ⊗ Y, e⊗b ⊗ Z) : HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗A HomE(e⊗a, e⊗a)

−→ HomA(e⊗a ⊗ Y, e⊗b ⊗ Z)

by letting Ψ̃i∗(e⊗a ⊗ Y, e⊗b ⊗ Z)(g ⊗ τ) be the composition

e
⊗a ⊗ Y

τ⊗idY−−−−→ e
⊗a ⊗ Y = e

⊗b ⊗ e
⊗ε(i1) ⊗ . . .⊗ e

⊗ε(is) ⊗ Y

id⊗(si1⊗...⊗sis )⊗idY−−−−−−−−−−−−−−→ e
⊗b ⊗X⊗i∗ ⊗ Y

id
e⊗b⊗g−−−−−→ e

⊗b ⊗ Z.

Define

Ψ̃i∗(e⊗a, e⊗b ⊗ Z) : HomB(X⊗i∗ , Z)[−d(i∗)]⊗A HomE(e⊗a, e⊗a)

−→ HomA(e⊗a, e⊗b ⊗ Z)

by the similar formula; we let

Ψ(e⊗a, e⊗a) : HomE(e⊗a, e⊗a) −→ HomA(e⊗a, e⊗a)(2.5.1.2)

be the canonical map, and let

Ψ(e⊗a ⊗ Y, e⊗b) : 0 −→ HomA(e⊗a ⊗ Y, e⊗b),

Ψ(e⊗a, e⊗b) : 0 −→ HomA(e⊗a, e⊗b); a �= b
(2.5.1.3)

be the zero maps.
Given a sequence of positive integers n∗ = (n1, . . . , nk) with b +

∑
i ni = m,

we have the map ρn∗ :Sk −→ Sm defined by having a permutation σ ∈ Sk act on the
set with m elements by permuting the blocks of size b, n1, n2, . . . , nk as σ permutes
1, . . . , k (and fixing the first b elements). We have the action of Sk on Ik, and,
given i∗ = (i1, . . . , ik) in Ik, we have the weighted sign map

sgni∗ :Sk −→ {±1}
determined by giving the permutation exchanging adjacent elements is and it the
sign (−1)disdit .
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For η ∈ Sk, we have the identity

Ψ̃iη(1),... ,iη(k)(g ◦ (τρε(i∗)(η) ⊗ idY )⊗ τ) = sgni∗(η)Ψ̃i∗(g ⊗ ρε(i∗)(η) ◦ τ).(2.5.1.4)

Now suppose the set I is ordered. Let Ik≤ denote the set of ordered k-tuples
i∗ = (i1 ≤ . . . ≤ ik) in Ik. For each i∗ ∈ Ik≤, we let S(i∗) be the subgroup of
Sk which act as order-preserving permutations of the sequence i∗. Note that the
restriction of ρε(i∗) and sgni∗ to S(i∗) are homomorphisms.

We let S(i∗) act on HomE(e⊗a, e⊗a) via left composition by ρε(i∗) and on
HomB(Xi1 ⊗ . . .⊗Xis ⊗ Y, Z) by

g · η = sgni∗(η) · g ◦ (τρε(i∗)(η) ⊗ idY ).

By the relation (2.5.1.4), the map Ψ̃i∗(e⊗a ⊗ Y, e⊗b ⊗ Z) descends to a degree zero
map

Ψi∗(e⊗a ⊗ Y, e⊗b ⊗ Z) : HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗A[S(i∗)] HomE(e⊗a, e⊗a)

−→ HomA(e⊗a ⊗ Y, e⊗b ⊗ Z).

We have the map Ψi∗(e⊗a, e⊗b ⊗ Z) defined similarly.
Let

(2.5.1.5)
∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗A[S(i∗)] HomE(e⊗a, e⊗a)

Ψ(e⊗a⊗Y,e⊗b⊗Z)−−−−−−−−−−−→ HomA(e⊗a ⊗ Y, e⊗b ⊗ Z)

be the map defined by

Ψ(e⊗a ⊗ Y, e⊗b ⊗ Z) =
∞∑
s=0

∑
i∗∈Is≤P
i∗=a−b

Ψi∗(e⊗a ⊗ Y, e⊗b ⊗ Z).

Define the map

(2.5.1.6)
∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB(X⊗i∗ , Z)[−d(i∗)]⊗A[S(i∗)] HomE(e⊗a, e⊗a)

Ψ(e⊗a,e⊗b⊗Z)−−−−−−−−−→ HomA(e⊗a, e⊗b ⊗ Z)

similarly; we have already defined Ψ(e⊗a ⊗ Y, e⊗b) and Ψ(e⊗a, e⊗b).

2.5.2. Proposition. The maps (2.5.1.2), (2.5.1.3), (2.5.1.5) and (2.5.1.6) are iso-
morphisms.

Proof. The relations defining a graded A-tensor category imply that the var-
ious maps Ψ(−,−) are surjective.

To prove the maps Ψ(−,−) are injective, let H(e⊗a⊗Y, e⊗b⊗Z) denote direct
sum

∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗A[S(i∗)] HomE(e⊗a, e⊗a).
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We denote the element g⊗τ in the summand i∗ by (g⊗τ)i∗ . We define H(e⊗a, e⊗b⊗
Z) similarly as

∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB(X⊗i∗ , Z)[−d(i∗)]⊗A[S(i∗)] HomE(e⊗a, e⊗a).

We set

H(Y, Z) := HomB(Y, Z),

H(Y, e⊗b ⊗ Z) := 0 for b > 0,

and
H(e⊗a, e⊗b) := HomE(e⊗a, e⊗b).

For i∗ ∈ Ik≤, j∗ ∈ I l≤, we let ji∗ denote the sequence of indices j∗, i∗, reordered
to be in increasing order. Let σ(j∗, i∗) ∈ Sk+l be the shuffle permutation trans-
forming the sequence j∗, i∗ to the sequence ji∗; let sgn(j∗, i∗) be the weighted sign
of σ(j∗, i∗), where we give the permutation exchanging adjacent elements s and t
the sign (−1)dsdt . We let

τj∗,i∗ :X⊗j∗ ⊗X⊗i∗ −→ X⊗ji∗

denote the symmetry isomorphism associated to σ(j∗, i∗). Let

τ e
j∗,i∗ : e⊗a−c → e

⊗a−c

be defined similarly via the identities

e
⊗a−c = e

ε(j∗) ⊗ e
ε(i∗) = e

ε(ji∗),

where we permute the terms eε(jk) and eε(ik) as σ(j∗, i∗) permutes the jk and ik.
If a ≥ b are positive integers, and τ is in HomE(e⊗b, e⊗b), we have the element

τ ⊗ ide⊗a−b ∈ HomE(e⊗a, e⊗a), defined via the identity e⊗a = e⊗b⊗ e⊗a−b; ide⊗c⊗ τ ′

is defined similarly, for τ ′ in HomE(e⊗a−c, e⊗a−c).
Define the composition

◦ :H(e⊗b ⊗ Z, e⊗c ⊗W )⊗A H(e⊗a ⊗ Y, e⊗b ⊗ Z) −→ H(e⊗a ⊗ Y, e⊗c ⊗W )

on homogeneous elements (g2 ⊗ τ2)j∗ ⊗ (g1 ⊗ τ1)i∗ by

(g2 ⊗ τ2)j∗ ◦ (g1 ⊗ τ1)i∗ = (−1)d1d(j∗)+d1δ2+d(i∗)δ2sgn(j∗, i∗)(g ⊗ τ)ji∗ ,

where

τ = (ide⊗c ⊗ τ e
j∗,i∗ ◦ (τ2 ⊗ ide⊗a−b) ◦ τ1,

d1 is the degree of g1, δi is the degree of τi, and g is the composition

X⊗ji∗ ⊗ Y
τ−1
ji∗⊗idY−−−−−−→ X⊗j∗ ⊗X⊗i∗ ⊗ Y

idX⊗j∗ ⊗g1−−−−−−−−→ X⊗j∗ ⊗ Z
g2−→ W.

One defines the composition for the special cases H(e⊗a, e⊗b ⊗ Z), etc., similarly.
One checks that the operation ◦ is associative.

Let Y1, Y2, Z1, Z2 be objects of C. Define the product

• :H(e⊗a1 ⊗ Y1, e
⊗b1 ⊗ Z1)⊗A H(e⊗a2 ⊗ Y2, e

⊗b2 ⊗ Z2)

−→ H(e⊗a1+a2 ⊗ Y1 ⊗ Y2, e
⊗b1+b2 ⊗ Z1 ⊗ Z2)

on homogeneous elements (g1 ⊗ τ1)i∗ ⊗ (g2 ⊗ τ2)j∗ by

(g1 ⊗ τ1)i∗ • (g2 ⊗ τ2)j∗ = (−1)δ1d2+δ1d(j∗)+d(i∗)d2sgn(i∗, j∗)(g ⊗ τ)ij∗ ,
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where

τ = (ideb1+b2 ⊗ τ e
i∗,j∗) ◦ (τ1 ⊗ τ2),

di is the degree of gi, δi is the degree of τi, and g is the composition

X⊗ij∗ ⊗ Y1 ⊗ Y2
τ−1
i∗,j∗⊗idY1⊗Y2−−−−−−−−−−→ X⊗i∗ ⊗X⊗j∗ ⊗ Y1 ⊗ Y2

id
X⊗i∗⊗τX⊗j∗ ,Y1

⊗idY2−−−−−−−−−−−−−−−→ X⊗i∗ ⊗ Y1 ⊗X⊗j∗ ⊗ Y2
g1⊗g2−−−−→ Z1 ⊗ Z2.

One defines the operation • for the special cases H(e⊗a, e⊗b ⊗ Z), etc., similarly.
One checks that the operation • is associative and graded-commutative.

Thus, we may define a graded A-tensor category without unit, D, with the
same objects as A, and with

HomD(e⊗a ⊗ Y, e⊗b ⊗ Z) = H(e⊗a ⊗ Y, e⊗b ⊗ Z),

HomD(e⊗a, e⊗b ⊗ Z) = H(e⊗a, e⊗b ⊗ Z),

HomD(e⊗a, e⊗b) = H(e⊗a, e⊗b),

HomD(e⊗a ⊗ Y, e⊗b) = 0;

the Hom-modules for all pairs of objects are determined, up to canonical isomor-
phism, by this.

The identities HomB(Y, Z) = H(Y, Z) and HomE(e⊗a, e⊗a) = H(e⊗a, e⊗a) de-
termines the graded A-tensor functor i :B[E] −→ D which is the identity on objects;
we extend i to is :A −→ D by sending the morphism si : e → Xi to the element
idXi ⊗ id of H(e, Xi). Clearly, the map

is(e⊗a ⊗ Y, e⊗b ⊗ Z) : HomA(e⊗a ⊗ Y, e⊗b ⊗ Z) −→ H(e⊗a ⊗ Y, e⊗b ⊗ Z)

is a left inverse to Ψ(e⊗a ⊗ Y, e⊗b⊗Z), hence Ψ(e⊗a ⊗ Y, e⊗b⊗Z) is injective. The
other cases are proved similarly.

2.5.3. Proposition. (i) Let (C,×, t) be a strictly associative graded A-tensor cat-
egory without unit, ((Bc,⊗, τ),�) the universal graded A-tensor category with
commutative external product C⊗,c and A the category Bc[E, {si | i ∈ I}], with I
an ordered set, and si : e⊗ε(i) −→ Xi a degree di morphism. Let κ : C → A be the
canonical tensor functor, and let i : C∗ → A be the full additive subcategory of A
generated by the objects e⊗k and e⊗k ⊗X , for X in C. Then C∗ has the structure
of a strictly associative graded A-tensor category without unit such that

(a) The functor κ : C → C∗ is a graded tensor functor.
(b) There is a graded tensor functor r :A → C∗ with r ◦ i = idC∗ .
(c) There is a natural transformation � : idA → i ◦ r.

In addition, the functor r and natural transformation� are extensions of the functor
ρ and natural transformation � of Proposition 2.4.5.
(ii) Let C∗∗ be the full graded A-tensor subcategory of C∗ generated by the objects
of the form e⊗a⊗X , where X is an object of C, and a ≥ 0 (we set e⊗0⊗X := X). If
C is a graded A-tensor category with unit 1, then the structure of a graded A-tensor
category without unit on C∗∗ has a unique extension to the structure of a graded
A-tensor category with unit 1, such that the functor C → C∗∗ is a functor of graded
A-tensor categories.
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Proof. We first define the structure of a graded tensor category without unit
on C∗. We retain the notation of the proof of Proposition 2.5.2; in addition, for
i∗ = (i1, . . . , ik) ∈ Ik≤, set X×i∗ := Xi1 × . . .×Xik .

Let Y1, Y2, Z1, Z2 be objects of C. Let

�i∗,1 :X⊗i∗ ⊗ Y1 −→ X×i∗ × Y1

�j∗,2 :X⊗j∗ ⊗ Y2 −→ X×j∗ × Y2

be the order-preserving external products. Let

τi∗,j∗ :X×i∗ × Y1 ×X×j∗ × Y2 −→ X×ij∗ × Y1 × Y2

be the shuffle permutation isomorphism.
By Proposition 2.4.4(ii), each morphism g :X⊗i∗⊗Y1 −→ Z1 in Bc can be written

as g = f ◦�i∗,1, for a uniquely determined f :X×i∗ × Y1 −→ Z1 in C. Denote this f
by ρ1(g); for g :X⊗j∗ ⊗ Y2 −→ Z2, define ρ2(g) :X×j∗ × Y2 → Z2 similarly.

We extend the tensor product × on C to the product × on C∗ by setting

(e⊗a ⊗X)× (e⊗b ⊗ Y ) = e
⊗a+b ⊗ (X × Y )

and

Ψi∗(g1 ⊗ τ1)×Ψj∗(g2 ⊗ τ2)

= (−1)Asgn(i∗, j∗)Ψij∗([(ρ(g1)× ρ(g2)) ◦ τ−1i∗,j∗
], (id⊗ τ e

i∗,j∗) ◦ (τ1 ⊗ τ2)),

with A := δ1d2 + δ1d(j∗) + d(i∗)d2, where di is the degree of gi, δi is the degree of
τi, and the symmetry τ e

i∗,j∗
is defined as in the proof of Proposition 2.5.2. Define

the symmetry isomorphism

(e⊗a ⊗X)× (e⊗b ⊗ Y ) → (e⊗b ⊗ Y )× (e⊗a ⊗X)

to be the map

τe⊗a,e⊗b ⊗ tX,Y : e⊗a+b ⊗ (X × Y ) → e
⊗a+b ⊗ (Y ×X).

This makes C∗ into a graded tensor category without unit.
Let j : C → C∗ be the natural map. Then j is a tensor functor; in addition,

the identity map gives the natural transformation ∗ : ⊗C∗ ◦(j × j) −→ j ◦ ×, which
is associative and commutative. Thus, the universal property of the graded tensor
category Bc gives the graded tensor functor r̄ :Bc −→ C∗. Since the functor π :Bc →
A is universal for triples consisting of a graded tensor functor F :Bc → D, an object
d of D, and a collection of morphisms hi : dε(i) −→ F (Xi), i ∈ I; the functor r̄ extends
canonically to the desired functor r :A −→ C∗.

The existence of a natural transformation �1 :π → i ◦ r̄ follows from the uni-
versal property of the category Bc; the canonical extension of �1 to a collection of
maps �X :X −→ r(X), X ∈ A, defines a natural transformation by the universal
property of the functor π.

Finally, suppose C is a graded A-tensor category with unit 1 and natural iso-
morphisms

ml : 1× (−) −→ idC ; mr : (−)× 1 −→ idC .
For an object X of C and integer a ≥ 0, define

µre⊗a⊗X : (e⊗a ⊗X)× 1 −→ e
⊗a ⊗X

to be the composition

(e⊗a ⊗X)× 1 = e
⊗a ⊗ (X × 1)

id
e⊗a⊗mr

X−−−−−−−→ e
⊗a ⊗X.
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We define µl
e⊗a⊗X by

µl
e⊗a⊗X = µr

e⊗a⊗X ◦ τ1,e⊗a⊗X .

It follows immediately from definitions that, sending e⊗a ⊗ X to µl
e⊗a⊗X , resp.

µr
e⊗a⊗X defines natural isomorphisms

µr : 1× (−) −→ idC∗∗ ; µr : (−)× 1 −→ idC∗∗

which give C∗∗ the desired structure of a graded A-tensor category with unit 1.

2.5.4. Remark. As in Proposition 2.4.5, one can easily write down the functor
r and natural transformation � explicitly. The functor r :A → C∗ is defined on
objects by r(e⊗a⊗X) = e⊗a⊗ρ(X), and on morphisms Ψi∗(g⊗τ), for g :X⊗i∗⊗Y →
Z and τ ∈ Hom(e⊗a, e⊗a), by

r(Ψi∗(g ⊗ τ)) = Ψi∗([rBc(g) ◦�Bc(X⊗i∗ ⊗ ρ(Y ))]⊗ τ).

Similarly, the natural transformation � : id → i ◦ r is given by the external product

ide⊗a ⊗�Y : e⊗a ⊗ Y −→ e
⊗a ⊗ ρ(Y ) = r(e⊗a ⊗ Y )

for Y in Bc.
If we let A′ be the full A-tensor subcategory of A generated by objects of the

form e⊗a⊗X , with a ≥ 0 and X in C, then the functor r and natural transformation
� restrict to the functor r′ :A′ −→ C∗∗ and natural transformation �′ : idA′ −→ i′◦r′,
where i′ : C∗∗ → A′ is the inclusion.
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CHAPTER II

DG Categories and Triangulated Categories

In this chapter, we extend the well-known constructions of the category of
bounded complexes of an abelian category and the associated homotopy category
of bounded complexes to the case of a DG category. We begin with an extension of
the notion of a translation in a graded category to the case of a DG tensor category.
We then recall the construction of Kapranov [75] of the category of complexes over
a DG category, and show how this extends to the case of DG tensor categories. We
recall the notion of a triangulated category and show that the homotopy category
of the category of complexes in a DG category is a triangulated category, and that
the homotopy category of the category of complexes in a DG tensor category is a
triangulated tensor category.

As in topology, a homotopy equivalence of DG categories induces an equivalence
on the homotopy category of complexes. We also consider the operation of adjoining
morphisms to a DG tensor category, and show that, in some cases, this operation
preserves homotopy equivalences

We consider the pseudo-abelian hull of a triangulated category, and show that
pseudo-abelian hull of a localization of the homotopy category of complexes forms
a triangulated category in a natural way. We conclude with some constructions of
special DG tensor categories.

We take the coefficient ring to be Z for simplicity of notation; all the construc-
tions go through without change for a general commutative coefficient ring.

1. Differential graded categories

1.1. Translation structures

1.1.1. For a DG module M := (M,d) = (⊕aM
a,⊕ad

a :Ma →Ma+1), and integer
n, we have the shifted DG module M [n], with M [n]a := Mn+a and with differential
daM [n] := (−1)ndn+a. We also have the shifted DG module M [n], with M [n]a :=
Mn+a and with differential da

M [n] := dn+a. Note that

M [a][b] = M [b][a].

We let −M be the DG module with the same grading as M , but with d−M :=
−dM . We note that M and−M are isomorphic, by the map ψ :M →M which sends
x ∈M l to (−1)lx. In addition, we have M [1] = −M [1], so ψ gives isomorphisms

ψ :M [1] →M [1]; ψ :M [1] →M [1].(1.1.1.1)

If f :M →M ′ is a graded map of DG modules of degree l, define f [n] :M [n] →
M ′[n] by f [n]a = (−1)nlfn+a, and f [n] :M [n] →M ′[n] by f [n]a = fn+a.

The tensor product M ⊗Z N of DG modules M and N has the differential

d(x⊗ y) := dMx⊗ y + (−1)degxx⊗ dNy.

401
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Recall from Chapter I, §1.3.8, that the graded Hom-complex Hom(M,N) has dif-
ferential df = (−1)degff ◦ dM − dN ◦ f . This gives the identities

(M [m])⊗ (N [n]) = (M ⊗N)[n][m]; (M [m])⊗N = M ⊗ (N [m]).

Hom(M [m], N [n]) = Hom(M,N)[−m][n]; Hom(M [m], N) = Hom(M,N [−m]).

(1.1.1.2)

We reinterpret these identities by introducing the notion of a permutative bi-
module over a DG tensor category.

1.1.2. Permutative bi-modules. Let T be a strictly associative DG tensor category,
with strict unit 1. A permutative T -bi-module is an DG category A, with functors

ρl : T ⊗Z A → A, ρr :A⊗ T → A,
and a natural isomorphism

τρ : ρl → ρr ◦ τT ,A,

where τT ,A : T ⊗Z A → A⊗Z T is the symmetry in the category of DG categories,
such that

1. The diagrams

T ⊗Z T ⊗Z A ��
⊗T ⊗ZidA

��

idT⊗Zρl

T ⊗Z A

��

ρl

T ⊗Z A ��
ρl

A

A⊗Z T ⊗Z T ��
idA⊗Z⊗T

��

ρr⊗ZidT

A⊗Z T

��

ρr

A⊗Z T ��
ρr A

and

T ⊗Z A⊗Z T ��
ρl⊗ZidT

��

idT ⊗Zρr

A⊗Z T

��

ρr

A⊗Z T ��
ρl

A

commute.

(1.1.2.1)

Write TM for ρl(T,M) and MT for ρr(M,T ); write gf for ρl(g ⊗Z f) and
fg for ρr(f ⊗Z g).

(2) Let S and T be in T and M in A. Then the diagrams

TMS ��
τρT,M idS

��τρT,MS 



 MTS

��

idMτT
T,S

MST,
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STM ��
τT
S,T idM

��
τρS,TM 




 TSM

��

idT τρS,M

TMS

and

STM ��
τρS,TM

��
τρST,M 




 TMS

��

τρT,MS

MST

commute.
The notion of a functor of permutative T bi-modules being the obvious one,

we have the category of permutative T bi-modules, with the forgetful functor to
the category of pre-DG categories.

1.1.3. The translation category. Let T be a symbol, and let T Z be the free pre-
additive category on the set {T n | n ∈ Z}. Let τTn,Tm = (−1)nmidTn+m . Then
defining T n⊗Tm := T n+m, and aidTn⊗bidTm := abidTn+m , the data (T Z,⊗, τ, T 0)
defines a strictly associative tensor category, with strict unit T 0. We consider T Z

as a DG tensor category with all morphisms in Z0.
The assignments

(T a,M, T b) →M [a][b]

idTa ⊗Z f ⊗Z idT b → f [a][b]

τTa,M := ψa :M [a] →M [a]

(see (1.1.1.1)) extend uniquely to give the DG category C(Ab) the structure of a
permutative T Z bi-module. In addition, the identities (1.1.1.2) become

T aMT n ⊗Z NT b = T a(M ⊗Z T nN)T b

Hom(T aAT n, TmM) = TmHom(A,MT−n)T−a.
(1.1.3.1)

The map f �→ f [m][n] is given by

(1.1.3.2) Hom(A,M)
ψn

−−→ (−1)nHom(A,M)

= T nHom(A,M)T−n = Hom(T nATm, T nMTm).

Finally, we have the identity

T 2M = MT 2,(1.1.3.3)

and, with respect to this identification,

τT 2,M = idT 2M .(1.1.3.4)

We abstract the identities (1.1.3.1)-(1.1.3.4) to the following definition.

1.1.4. Definition. Let C be a pre-DG category.
(i) A translation structure on C is given by making C into a permutative T Z bi-
module such that

1. For X and Y in C, we have HomC(T aXT n, TmY ) = TmHom(X,Y T−n)T−a.
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2. The map idTn(−)idTm : HomC(X,Y ) → HomC(T nXTm, T nY Tm) is given
by

HomC(X,Y )
ψn

−−→ (−1)nHomC(X,Y )

= T nHomC(X,Y )T−n = HomC(T nXTm, T nY Tm).

3. For X , Y and Z in C, the composition law

HomC(T bY, T cZ)⊗Z HomC(T aX,T bY ) → HomC(T aX,T cZ)

is the composition

HomC(T bY, T cZ)⊗Z HomC(T aX,T bY )

= T cHomC(Y, Z)T−b ⊗Z T bHomC(X,Y )T−a

= T cHomC(Y, Z)⊗Z HomC(X,Y )T−a

idTc (◦X,Y,Z)idT−a−−−−−−−−−−−−→ T cHomC(X,Z)T−a

= HomC(T aX,T cZ).

4. For X in C, we have T 2X = XT 2 and τT 2,X = idT 2X .

(ii) Suppose C has a translation structure (ρl, ρr), and that C is a DG tensor cate-
gory. We say that the translation structure is compatible with the tensor structure
on C if

1. For X and Y in C, (T aXT c)⊗ (Y T b) = T a(X ⊗ T cY )T b.
2. For morphisms f :X → X ′, g :Y → Y ′ in C,

(idTaf idT c)⊗ (gidT b) = idTa(f ⊗ idT cg)idT b .

3. For X and Y in C, the diagrams

T aX ⊗ Y ��
τρ
Ta,X

⊗idY

��τρ
Ta,X⊗Y %%%%

%%%%
%%%%

%%
XT a ⊗ Y

��

idX⊗τρTa,Y

X ⊗ Y T a

T aX ⊗ Y ��
idTaτC

X,Y

��τC
TaX,Y %%%%

%%%%
%%%%

%%
T aY ⊗X

��

τρ
Ta,Y

⊗idX

Y T a ⊗X

and

X ⊗ Y T a ��
τC
X,Y idTa

��τC
X,Y Ta %%%%

%%%%
%%%%

%%
Y ⊗XT a

Y ⊗ T aX

��

idY⊗τρTa,X

commute.
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4. For A, B, X and Y in C, the tensor operation

HomC(T aA, T nX)⊗Z HomC(T bB, TmY ) ⊗−→ HomC(T aA⊗ T bB, T nX ⊗ TmY )

is the composition

HomC(T aA, T nX)⊗Z HomC(T bB, TmY )

= T nHomC(A,X)T−a ⊗Z TmHomC(B, Y )T−b

= T nHomC(A,X)⊗Z T−aTmHomC(B, Y )T−b

id⊗τ
T−a,TmHomC(B,Y )T−b

−−−−−−−−−−−−−−−−−→ T nHomC(A,X)Tm ⊗Z HomC(B, Y )T−bT−a

idTnτ−1
Tm,HomC(A,X)⊗id−−−−−−−−−−−−−−−→ T n+mHomC(A,X)⊗Z HomC(B, Y )T−a−b

idTn+m(⊗)idT−a−b−−−−−−−−−−−−−→ T n+mHomC(A⊗B,X ⊗ Y )T−a−b

= HomC(T aT bA⊗B, T nTmX ⊗ Y )

(idTaτ−1
Tb,A

⊗idB)∗◦(idTnτTm,X⊗idY )∗
−−−−−−−−−−−−−−−−−−−−−−−−−→ HomC(T aA⊗ T bB, T nX ⊗ TmY ).

We write A[n][m] = A[m][n] for T nATm, and f [m][n] = f [n][m] for idTnf idTm .

The category of pre-DG categories with translation structure is the full sub-
category of the category of permutative T Z bi-modules with the obvious objects.
The category of pre-DG tensor categories with compatible translation structure is
defined similarly. Ignoring the existence of the unit gives the category of pre-DG
tensor categories without unit, with compatible translation structure.

1.1.5. Remark. We have the following identities in a pre-DG category with trans-
lation structure:

1. f [n][m] ◦ g[n][m] = (f ◦ g)[n][m].
2. d(f [n]) = (df)[n]; d(f [n]) = (df)[n].

1.1.6. Example. Recall from Chapter I, §1.3.8, that the category C(Ab) is a DG
tensor category with X⊗Y the tensor product of complexes X⊗ZY and with f⊗g =
⊕i,j(−1)itf i ⊗Z gj for graded maps f = ⊕f i :X i → Zi+s and g = ⊕jg

j :Y j →
W j+t. The translation structure T nMTm = M [m][n] for C(Ab) described above
is then compatible with the tensor structure.

1.1.7. Lemma. Suppose we have two translation structures on a DG category C:

(A, n,m) �→ A[n][m]11 ; (A, n,m) �→ A[n][m]22 .

Then the two structures are canonically isomorphic.

Proof. We have the canonical isomorphism

HomC(A[1]1, A[1]2) = HomC(A,A)[−1][1]
ψ−→ HomC(A,A).
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This gives the isomorphism φl(A) :A[1]1 → A[1]2 corresponding to idA. Similarly,
we have the canonical isomorphism

HomC(A[1]1 , A[1]2)
τ
ρ1∗
T,A◦(τ

ρ2∗
T,A)

−1

−−−−−−−−−→ HomC(A[1]1, A[1]2)

= HomC(A,A)[−1][1]
ψ−→ HomC(A,A),

giving the isomorphism φr(A) :A[1]1 → A[1]2 corresponding to idA. One easily
checks that (φl, φr) gives an isomorphism of permutative T Z bi-modules.

1.1.8. Free translation structures. Let A be an pre-DG category. Form the pre-DG
category A[∗] with objects T aAT b, where A is an object of A, and a and b are
integers. Define

HomA[∗](T aAT b, T nXTm) = HomA(A,X)[−a][n + m− b].

In particular, we have

HomA[∗](T aXT b, T aXT b) = HomA[∗](X,X)[−a][a] = (−1)aHomA[∗](X,X),

HomA[∗](T aX,XT a) = HomA[∗](X,X)[−a][a] = (−1)aHomA[∗](X,X).

Let

idTaXT b := ψa(idX) ∈ HomA[∗](T aXT b, T aXT b)

τTa,X := ψa(idX) ∈ HomA[∗](T aX,XT a).

Define the composition

HomA[∗](T bBT b′ , T cCT c′)⊗Z HomA[∗](T aAT a′
, T bBT b′)

→ HomA[∗](T aAT a′
, T cCT c′)

by

(1.1.8.1)

HomA[∗](T bBT b′ , T cCT c′)⊗Z HomA[∗](T aAT a′
, T bBT b′)

= T cT c′T−b
′
HomA(B,C)T−b ⊗Z T bT b′T−a

′
HomA(A,B)T−a

= T cT c′T−b
′
HomA(B,C)T b′−a′ ⊗Z HomA[∗](A,B)T−a

idτ−1

Tb′−a′ ,HomA(B,C)
⊗id

−−−−−−−−−−−−−−−−→ T c+c′−a′
HomA(B,C)⊗Z HomA(A,B)T−a

id(◦A,B,C)id−−−−−−−−→ T c+c′−a′
HomA(A,C)T−a = HomA[∗](T aAT a′

, T cCT c′).

One easily checks that this defines a pre-DG categoryA[∗] with translation structure
T n(T aAT b)Tm = T n+aAT b+m.

The functor A �→ T 0AT 0, f �→ f , defines a fully faithful embedding iA :A →
A[∗], which is universal for DG functors A → B to pre-DG categories with trans-
lation structure. Thus A �→ A[∗] defines a left adjoint to the functor “forget the
translation structure”. It follows from Lemma 1.1.7 that, if A already has a trans-
lation structure, then iA is an equivalence of pre-DG categories with translation
structure. We call A[∗] the free translation structure on A.
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If A is a pre-DG tensor category, form the category A[∗]⊗ with objects the
formal products T a0A1T

a1A2 . . . AnT
an where the Ai are objects of A, and the ai

integers. Define

HomA[∗]⊗(T a0A1 . . . AnT
an , T b0B1 . . . BmT bm)

:= HomA[∗](T a0+...+an−1(A1 ⊗ . . .⊗An)T an , T b0+...+bm−1(B1 ⊗ . . .⊗Bm)T bm)

with composition law being induced by that of A[∗].
Give A[∗]⊗ the translation structure so that the assignment

T a0A1 . . . AnT
an �→ T a0+...+an−1A1 ⊗ . . .⊗AnT

an

together with the identity map on morphisms defines a functor of pre-DG categories
with translation structure pA :A[∗]⊗ → A[∗]. The identity map on T a0+...+an−1A1⊗
. . .⊗AnT

an defines the canonical isomorphism

ξ :T a0+...+an−1A1 ⊗ . . .⊗AnT
an → T a0A1 . . . AnT

an

in A[∗]⊗; the isomorphisms ξ show that pA is an equivalence of DG categories with
translation structure, with inverse jA :A[∗] → A[∗]⊗ being the identification of A[∗]
with the full subcategory of A[∗]⊗ with objects T nXTm.

We now describe a tensor structure for the category A[∗]⊗. Define

(T a0A1T
a1A2 . . . AnT

an)⊗ (T b0B1 . . . BmT bm)

:= T a0A1T
a1A2 . . . AnT

an+b0B1 . . . BmT bm .

For

X = T a0A1 . . . AnT
an , Y = T b0B1 . . . BmT bm

A = A1 ⊗ . . .⊗An, B = B1 ⊗ . . .⊗Bm

a∗ = a0 + . . . + an,

b∗ = b0 + . . . + bm,

define the symmetry isomorphism τX,Y :X ⊗ Y → Y ⊗X to be the element of

HomA[∗](T a∗+b∗−bm(A⊗B)T bm , T b∗+a∗−an(B ⊗A)T an)

given by

T a∗T b∗−bm(A⊗B)T bm
idτ−1

Tbm ,A⊗B−−−−−−−−→ T a∗T b∗(A⊗B)
τ
Ta∗ ,Tb∗ id−−−−−−−→ T b∗T a∗(A⊗B) = T b∗T a∗−anT an(A⊗B)

τTan ,A⊗B−−−−−−→ T b∗T a∗−an(A⊗B)T an

idτA,Bid−−−−−→ T b∗T a∗−an(B ⊗A)T an .

The formula for the tensor product of morphisms is given by using shuffle
permutations to rearrange the translation operators. Precisely, for

X = T a0A1 . . . AnT
an , Y = T b0B1 . . . BmT bm ,

Z = T c0C1 . . . CkT
ck , W = T d0D1 . . .DlT

dl
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A = A1 ⊗ . . .⊗An, B = B1 ⊗ . . .⊗Bm,

C = C1 ⊗ . . .⊗ Ck, D = D1 ⊗ . . .⊗Dl,

a∗ = a0 + . . . + an, b∗ = b0 + . . . + bm,

c∗ = c0 + . . . + ck, d∗ = d0 + . . . + dl,

the tensor product of morphisms is given by the composition

HomA[∗]⊗(X,Y )⊗Z HomA[∗]⊗(Z,W )

= T b∗T−anHomA(A,B)T anT−a∗ ⊗Z T d∗−ckHomA(C,D)T−c∗+ck

τ−1

Td∗−ck ,T−anHomA(A,B)TanT−a∗
⊗id

−−−−−−−−−−−−−−−−−−−−−−−−→
T b∗+d∗−ckT−anHomA(A,B) ⊗Z T anT−a∗HomA(C,D)T−c∗+ck

idτ
T−an ,HomA(A,B)⊗id−−−−−−−−−−−−−−−→ T b∗+d∗−ckHomA(A,B) ⊗Z T−a∗HomA(C,D)T−c∗+ck

id⊗τ
T−a∗ ,HomA(C,D)T−c∗+ck−−−−−−−−−−−−−−−−−−−→ T b∗+d∗−ckHomA(A,B)⊗Z HomA(C,D)T−a∗−c∗+ck

id
Tb∗+d∗−ck

(⊗)id
T−a∗−c∗+ck−−−−−−−−−−−−−−−−−−−−→ T b∗+d∗−ckHomA(A⊗ C,B ⊗D)T−a∗−c∗+ck

= HomA[∗]⊗(X ⊗ Z, Y ⊗W ).

One checks that this data defines a pre-DG tensor category with compatible trans-
lation structure.

The functor

i⊗A :A → A[∗]⊗

A �→ T 0AT 0

is universal for DG tensor functors to DG tensor categories with compatible transla-
tion structure, and thusA �→ A[∗]⊗ is left adjoint to the forgetful functor. As above,
if A already has a compatible translation structure, it follows from Lemma 1.1.7
that i⊗A is an equivalence of pre-DG tensor categories with compatible translation
structure. We call A[∗]⊗ the free compatible translation structure on A.

If A is a pre-DG tensor category without unit, the analogous construction has
the analogous properties in the setting of DG tensor categories without unit. We
make all the constructions of this section on the level of DG categories, DG tensor
categories and DG tensor categories without unit by adjoining finite direct sums,
as explained in §1.3.2.

1.1.9. Remark. Classically (see e.g. [123]) a translation on an additive category
A is given by an isomorphism T :A → A. One can then define a graded category
(A, T ) with Hom(A,T )(X,Y )s = Hom(A,T )(X,T sY ). We may then extend the “left”
action X �→ TX to a translation structure by adjoining new objects XT a, and iso-
morphisms τTa,X :T aX → XT a. We set Hom(AT b, XTm) := HomA(T bA, TmX),
with the composition f �→ τ−1Tm,X ◦ f ◦ τTa,A giving the identity map. This defines a
graded category (A, T )′ with translation structure, which is equivalent, as a graded
category with translation isomorphism T , to (A, T ).
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In the setting of a graded category, we will usually only use the left T action, so
there is no essential difference between our notion of a translation structure, and the
notion of an additive category with translation isomorphism. When the additional
structure of a tensor operation, or a differential structure comes into play, then the
two-sided action of T becomes useful by simplifying the sign conventions.

1.2. Complexes over a differential graded category

We give a description of Kapranov’s construction [75] of the category of complexes
over a DG category, which gives a generalization of the usual construction of the
category of complexes on an additive category.

1.2.1. If C is a DG category, we have the functors

Zp(HomC(−,−)∗), Bp(HomC(−,−)∗) and Hp(HomC(−,−)∗)

defined by taking respectively the cocycles, coboundaries and cohomology in the
complex HomC(−,−)∗. We have the graded category Z∗C (I.1.3.2.1). We have as
well the homotopy category C/Htp, defined as the graded additive category with
the same objects as C and with

HomC/Htp(−,−)n = Hn(HomC(−,−)∗).

We have natural maps of graded categories, Z∗C −→ C, and Z∗C −→ C/Htp.
If C is a DG tensor category, then the categories Z∗C and C/Htp are graded

tensor categories, and the functors Z∗C → C and Z∗C → C/Htp are functors of
graded tensor categories. If C is a DG (tensor) category with (compatible) trans-
lation structure, then Z∗C and C/Htp have a canonically induced (compatible)
translation structure, and the functors Z∗C → C and Z∗C → C/Htp preserve the
translation structures. We have as well the additive subcategory Z0C of Z∗C with
HomZ0C(X,Y ) = Z0HomC(X,Y ).

1.2.2. Complexes for an additive category. Let A0 be an additive category. We have
the DG category of complexes in A0, C(A0), with objects

M := {M i, di :M i →M i+1 | i ∈ Z} := (M,dM ),

where the M i are objects of A0, the di are morphisms in A0 and di+1 ◦ di = 0. A
graded morphism f :M → N of degree s is a collection

f i :M i → N i+s; i ∈ Z.

This gives the Hom-complex Hom((M,dM ), (N, dN )) which in degree s is the group
of graded, degree s morphisms from M to N , and with differential

df = (−1)degff ◦ dM − dN ◦ f.

Composition is induced by composition in A0. We have the full subcategories
C∗(A0), ∗ = +,−, b of bounded below, bounded above and bounded complexes,
defined in the usual way: (M,dM ) is in C+(A0) if there is an i0 such that M i = 0
for all i < i0, etc.

The categories C∗(A0), (∗ = ∅,+,−, b) have the translation structure defined
as for C(Ab): T aMT b := M [a][b].
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If A0 is a tensor category, makeC∗(A0) (∗ = +,−, b) into a DG tensor category
by defining

(M,dM )⊗ (N, dN ) = (M ⊗N, dM⊗N ),

dM⊗N (m⊗ n) := dM (m)⊗ n + (−1)deg mm⊗ dN (n),

with (M ⊗N)n := ⊕i+j=nM
i ⊗N j , and

(f ⊗ g)n = ⊕i+j=n(−1)itf i ⊗ gj

if f = ⊕if
i, g = ⊕jg

j and g has degree t. The symmetry τM,N :M ⊗N → N ⊗M
is given by the sum of maps (−1)ijτMi,Nj :M i ⊗N j → N j ⊗M i. The translation
structure is then compatible with the tensor structure.

Suppose we have a morphism f : (M,dM ) → (N, dN ) in Z0C(A0). Form the
cone of f by cone(f)n := Mn+1 ⊕Nn, with differential given by the matrix(

−dn+1M 0
fn+1 dnN

)
: cone(f)n → cone(f)n+1.

The inclusions Nn → cone(f)n and the projections cone(f)n → Mn+1 define the
cone sequence

M
f−→ N

iN−→ cone(f)
jM−−→M [1].

If f is a map in Z0C∗(A0) (∗ = +,−, b), then cone(f) is also in C∗(A0).

1.2.3. Let A be a DG category, and let F(A) be the category of additive functors
F :Aop −→ C(Ab). F(A) is a DG category with grading, translation structure and
differential induced by that in C(Ab); sending an object E of A to the functor hE ,
hE(F ) := HomA(F,E), defines a full embedding h :A → F(A). Let A0 be the full
subcategory of F(A) generated by the translates of h(A).

Let cone: Maps(Z0C(Ab)) −→ C(Ab) be the functor f �→ cone(f). We define
a sequence of full subcategories

h(A) ⊂ A0 ⊂ . . . ⊂ An

of F(A) by letting An be the full subcategory generated by the objects of An−1
and cone(Maps(Z0An−1)).

1.2.4. Definition. If A is a DG category, define the DG category C
b
(A) as the

full subcategory of F(A)

C
b
(A) := ∪n→∞An.

The homotopy category C
b
(A)/Htp is denoted K

b
(A).

1.2.5. Remark. In case A is just an additive category, we have the DG category of
complexes Cb(A). Sending (⊕iX

i, d) ∈ Cb(A) to the functor (⊕iHomA(−, X i), d∗)
gives an equivalence of Cb(A) with C

b
(A).

1.2.6. The category Pre-Tr. Let A be a DG category with translation structure.
Kapranov [75] has given an explicit description of a full subcategory of F(A) con-
taining C

b
(A). He defines Pre-Tr(A) to be the following DG category: An object

in Pre-Tr(A) is a finite collection {Ei; i ∈ I ⊂ Z} of objects of A, together with
morphisms of degree +1

qji :Ei[−i] −→ Ej [−j]
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satisfying the condition

dA(qji) =
∑
m

qjm ◦ qmi(1.2.6.1)

for each i, j. If E := {Ei, qji}, F := {F i, sji} are objects of Pre-Tr(A), the graded
Hom group is given by

Hom(E,F )l = ⊕i,jHomA(Ei[−i], F j[−j])l.
We write an element of Hom(E,F )l as

f =
∑
i,j

f ji; f ji :Ei[−i] → F j [−j].

The differential on Hom(E,F )l is defined by

(df)ji = dAf
ji + (−1)l

∑
m

sjm ◦ fmi −
∑
n

f jn ◦ qni

for f =
∑

i,j f
ji.

Pre-Tr(A) has the translation structure

({Ei, qji})[b][a] = {(Ei)[b][a], (qji)[b][a]}

(
∑
i,j

f ji)[b][a] =
∑
i,j

(f ji)[b][a].

If we have a map f :E → F in Z0Pre-Tr(A), f =
∑

ij f
ji, let f ji+ be the element

of Hom(Ei[1− i], F j [−j])1 corresponding to f ji via the identity

Hom(Ei[1− i], F j [−j])1 = Hom(Ei[−i], F j [−j])[−1]1 = Hom(Ei[−i], F j[−j])0.
We define cone(f) = {cone(f)i} by cone(f)i = Ei[1]⊕ F i, with maps(

qji[1] 0
f ji+ sji

)
:Ei[1− i]⊕ F i[−i] −→ Ej [2− j]⊕ F j [1− j];

one checks directly that the condition f ∈ Z0Pre-Tr(A) ensures that cone(f) is
indeed an object of Pre-Tr(A).

We have the full embedding iA :A −→ Pre-Tr(A), defined by sending E to the
collection {E0 = E; q00 = 0}. The functor h :A −→ F(A) extends to the functor
h : Pre-Tr(A) −→ F(A); by h(E)(A) = HomPre-Tr(A)(A,E); this latter is also a fully
faithful embedding, and is compatible with the two cone functors, up to natural
isomorphism.

1.2.7. Definition. Let Cb(A) be the strictly full DG subcategory of Pre-Tr(A)
generated from A by repeatedly taking cones. We denote the homotopy category
Cb(A)/Htp by Kb(A)

1.2.8. Remarks. (i) It is immediate that Cb(A) ⊂ Pre-Tr(A) is a DG subcategory
of Pre-Tr(A), isomorphic to C

b
(A) via h. In addition, Cb(A) may be also defined

as the smallest strictly full DG subcategory of Pre-Tr(A) containing A, and closed
under taking cones of degree zero morphisms f with df = 0. In particular, the cone
functor for Pre-Tr restricts to give the cone functor for Cb(A)
(ii) Let A0 be an additive category, which we consider as a graded category with
all morphisms in degree zero, and let A = A0[∗] (see §1.1.8). It is easy to see that
Cb(A) = Pre-Tr(A) and that Pre-Tr(A) is equivalent to the category of bounded
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complexes Cb(A0) described in §1.2.2. This equivalence is defined by sending the
object {Ei; qji} of Pre-Tr(A) to the complex E with differential diE :Ei → Ei+1 be-
ing the map qi,i+1− [i], where qi,i+1− [i] is the degree zero map from Ei[−i] to Ei+1[−i]
corresponding to qi,i+1[i] via the identity

Hom(Ei[−i], Ei+1[−i− 1])1 = Hom(Ei[−i], Ei+1[−i])0.
Note that Hom(Ei[−i], Ej[−j])1 = 0 for j �= i + 1.
(iii) We will use the notation Cb(−) to mean the usual category of bounded com-
plexes when applied to an additive category, and the above construction when
applied to a DG category with translation structure. If A is a DG category, we
write Cb(A) for Cb(A[∗]) (see §1.1.8). This notation is ambiguous, but, by the re-
sults of §1.1.8, only up to a canonical equivalence of DG categories with translation
structure.

1.2.9. The functor Tot. Let A0 be a DG category with translation structure, and
let A be the DG category with translation structure A := Cb(A0). We define a DG
functor

TotA :Cb(A) −→ A(1.2.9.1)

which sends cones to cones as follows: Let

E := {Ei, qji :Ei[−i] −→ Ej [−j]}
be an object of Pre-Tr(A). Write each object Ei of Cb(A0) as

Ei = {Ei
k, r

i
lk :Ei

k[−k] −→ Ei
l [−l]}.

By the definition of the Hom-groups in Cb(A), we may write each qji as

qji =
∑
kl

qjilk

qjilk :Ei
k[−i− k] −→ Ej

l [−j − l]; deg qjilk = 1.

Let Tot(E)a = ⊕i+k=aE
i
k, and let sba : Tot(E)a[−a] −→ Tot(E)b[−b] be the sum

sba =
∑

i+k=a
j+l=b

qjilk +
∑

i+k=a
i+l=b

rilk[−i].

Define the object Tot(E) of Pre-Tr(A0) by

Tot(E) = {Tot(E)a, sba : Tot(E)a −→ Tot(E)b}.
The relation (1.2.6.1) for E and for the Ei implies the relation (1.2.6.1) for Tot(E),
hence Tot(E) is a well-defined object of Pre-Tr(A0). If we have a morphism f :E −→
E′ in Pre-Tr(A0), write f as

f =
∑
ij

f ji :Ei[−i] −→ E′j [−j]

f ji =
∑
k

f jilk :Ei
k[−i− k] −→ E′jl [−j − l].

Set
Tot(f)ba =

∑
i+k=a
j+l=b

f jilk : Tot(E)a[−a] −→ Tot(E′)b[−b],
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and let Tot(f) : Tot(E) −→ Tot(E′) be the map in Pre-Tr(A0) given by

Tot(f) :=
∑
ab

Tot(f)ba.

One easily checks that this defines a translation preserving DG functor

Tot: Pre-Tr(A) −→ Pre-Tr(A0),
and that the functor Tot sends a cone sequence in Pre-Tr(A) to a cone sequence
in Pre-Tr(A0). As the composition Tot ◦ iA :A −→ Pre-Tr(A0) is the canonical
inclusion of A into Pre-Tr(A0), we see that Tot restricts to a translation preserving
DG functor

Tot:Cb(A) −→ Cb(A0) = A,
as desired.

1.2.10. Lemma. Let A0 be an additive category, and let A = C∗(A0) be the cat-
egory of complexes, where ∗ = +,−, b, ∅ is a boundedness condition. Then the
functor Tot:Cb(A) −→ A (1.2.9.1) is an equivalence of DG categories (with trans-
lation structure). Similarly, if A0 is a DG category with translation structure, and
A = Cb(A0) then the functor (1.2.9.1) is an equivalence of DG categories with
translation structure.

Proof. We prove the second assertion; the first assertion has essentially the
same proof. We consider A as a sub-DG category of Cb(A) via the embedding iA.
For an object

E := {Ei, qji :Ei[−i] −→ Ej [−j]}
Ei = {Ei

k, r
i
lk :Ei

k[−k] −→ Ei
l [−l]}

qji =
∑
k,l

qjilk :Ei
k[−i− k] −→ Ej

l [−j − l]

as in §1.2.9, we let

f iE : Tot(E) −→ Ei[−i],
giE :Ei[−i] −→ Tot(E)

be the maps in A defined as the sums

f iE =
∑
a

f iEa : Tot(E)a[−a] −→ Ei
a−i[−a],

giE =
∑
a

giEa :Ei
a−i[−a] −→ Tot(E)a[−a],

with f iEa the projection of Tot(E)a[−a] on the summand Ei
a−i[−a], and giEa the

inclusion of the summand Ei
a−i[−a] into Tot(E)a[−a]. This gives the maps

fE : Tot(E) −→ E, gE :E −→ Tot(E),

in Cb(A) defined by

fE =
∑
i

f iE , gE =
∑
i

giE .

The maps fE and gE give an isomorphism of E with Tot(E) in Cb(A); clearly
Tot(E) = E if E is in A. This gives the desired equivalence.
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1.2.11. Tensor structure. Suppose A is a DG tensor category with compatible trans-
lation structure (Definition 1.1.4). We define the functor

⊗ : Pre-Tr(A)⊗Z Pre-Tr(A) −→ Pre-Tr(A)

by

({Ai; qji} ⊗ {Bi; sji})n = ⊕i+j=n(Ai[−i]⊗Bj [−j])[n],

with maps

rmn =
⊕

i+j=n
k+j=m

qki ⊗ idBj [−j] ⊕
⊕

i+j=n
i+l=m

idAi[−i] ⊗ slj .

This works because, as qki and slj have degree 1,

(qki ⊗ idBl[−l]) ◦ (idAi[−i] ⊗ slj) = −(idAk[−k] ⊗ slj) ◦ (qki ⊗ idBj [−j]).

The definition of f ⊗ g for morphisms f and g is induced by that of ⊗ on A by
bi-linearity:

(
∑
i,k

fki)⊗ (
∑
j,l

glj)mn =
∑

i+j=n
i+l=m

fki ⊗ glj .

If A = {Ai; qji}, B = {Bi; sji}, then set τA,B := ⊕i,jτAi[−i],Bj [−j]; the
associativity morphisms are defined similarly. This gives Pre-Tr(A) the structure
of a DG tensor category. In addition, the functor ⊗ restricts to the functor

⊗ :Cb(A)⊗Z Cb(A) −→ Cb(A),

giving Cb(A) and Kb(A) the structure of DG tensor categories without unit. If A
is a category of complexes C∗(A0), with A0 a tensor category, the functor Tot (cf.
(1.2.9.1) and Lemma 1.2.10) is an equivalence of DG tensor categories. Note that
the grading and translation structure absorbs all the explicit signs which occur in
the various structures on C∗(A0).

If A is a DG tensor category, we write Cb(A) for Cb(A[∗]⊗) (see §1.1.8). As
above, this notation is ambiguous if A is a DG tensor category with compatible
translation structure, but only up to canonical equivalence.

2. Complexes and triangulated categories

2.1. Triangulated categories

As in the case of an abelian category, the homotopy category of the category of
complexes is in a natural way a triangulated category.

2.1.1. Verdier’s axioms. Let A be an additive category with a translation isomor-
phism. A triangle (X,Y, Z, a, b, c) in A is the sequence of maps

X
a−→ Y

b−→ Z
c−→ X [1].

A morphism of triangles

(f, g, h) : (X,Y, Z, a, b, c) → (X ′, Y ′, Z ′, a′, b′, c′)
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is a commutative diagram

X ��a

��

f

Y

��

g

��b
Z

��

h

��c
X [1]

��

f [1]

X ′ ��

a′ Y ′ ��

b′
Z ′ ��

c′
X ′[1].

We have the notion of triangles and morphisms of triangles in a graded category
with translation structure by forgetting the right T -action and restricting to degree
zero morphisms.

Verdier [123] has defined a triangulated category as an additive category A
with translation isomorphism, together with a collection E of triangles, called the
distinguished triangles of A, which satisfy

(TR1) Each triangle isomorphic to a distinguished triangle is distinguished. The
triangle (A,A, 0, idA, 0, 0) is distinguished. Each morphism u :X → Y is
contained in a distinguished triangle.

(TR2) (X,Y, Z, u, v, w) is distinguished if and only if (Y, Z,X [1], v, w,−u[1]) is dis-
tinguished.

(TR3) If we have distinguished triangles (X,Y, Z, u, v, w), (X ′, Y ′, Z ′, u′, v′, w′),
and a morphism (f, g) :u → u′, then there exists a morphism h :Z → Z ′

such that (f, g, h) is a morphism of triangles.
(TR4) If we have three distinguished triangles (X,Y, Z ′, u, i, ∗), (Y, Z,X ′, v, ∗, j),

and (X,Z, Y ′, w, ∗, ∗), with w = v◦u, then there are morphisms f :Z ′ → Y ′,
g :Y ′ → X ′ such that

(a) (idX , v, f) is a morphism of triangles
(b) (u, idZ , g) is a morphism of triangles
(c) (Z ′, Y ′, X ′, f, g, i[1] ◦ j) is a distinguished triangle.

A graded functor F :A → B of triangulated categories is called exact if F
takes distinguished triangles in A to distinguished triangles in B. This defines the
category of triangulated categories.

We get an equivalent definition if we replace the additive category with trans-
lation isomorphism with a graded category with translation structure (see Re-
mark 1.1.9).

2.1.2. Remark. Let (A, T, E) be an additive category with translation isomor-
phism T , and collection of triangles E which satisfies (TR1), (TR2) and (TR3).
If (X,Y, Z, a, b, c) is in E , and A is an object of A, then the sequences

. . .
c[−1]∗−−−−→ HomA(A,X) a∗−→ HomA(A, Y ) b∗−→

HomA(A,Z) c∗−→ HomA(A,X [1])
a[1]∗−−−→ . . .

and

. . .
a[1]∗−−−→ HomA(X [1], A) c∗−→ HomA(Z,A) b∗−→

HomA(Y,A) a∗
−→ HomA(X,A)

c[−1]∗−−−−→ . . .

are exact; the proof is an easy exercise. From this, one has the following additional
properties:
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1. (five-lemma): If (f, g, h) is a morphism of triangles in E , and if two of f, g, h
are isomorphisms, then so is the third.

2. If (X,Y, Z, a, b, c) and (X,Y, Z ′, a, b′, c′) are two triangles in E , there is an
isomorphism h :Z → Z ′ such that

(idX , idY , h) : (X,Y, Z, a, b, c) → (X,Y, Z ′, a, b′, c′)

is an isomorphism of triangles.
3. Suppose we have three triangles

(X,Y, Z ′, u, i, ∗), (Y, Z,X ′, v, ∗, j), and (X,Z, Y ′, v ◦ u, ∗, ∗)

in E , and morphisms f :Z ′ → Y ′, g :Y ′ → X ′ satisfying the conditions (a)
and (b) of (TR4), and with (Z ′, Y ′, X ′, f, g, i[1] ◦ j) in E . Then, for each
choice of triangles

(X,Y, Z ′′, u, i′, ∗), (Y, Z,X ′′, v, ∗, j′), and (X,Z, Y ′′, v ◦ u, ∗, ∗)

in E , there are morphisms f ′ :Z ′′ → Y ′′, g′ :Y ′′ → X ′′ satisfying (a) and (b)
of (TR4), and with (Z ′′, Y ′′, X ′′, f ′, g′, i′[1] ◦ j′) in E .

If (TR4) holds as well, then E is closed under taking finite direct sums.

2.1.3. Definition. Let (A,⊗) be a graded tensor category with translation struc-
ture, such that the underlying graded category with translation structure is a tri-
angulated category. Suppose that, for each distinguished triangle (X,Y, Z, a, b, c)
in A, and each object W of A, the sequence

X ⊗W
a⊗idW−−−−→ Y ⊗W

b⊗idW−−−−→ Z ⊗W
c⊗idW−−−−→ X [1]⊗W = (X ⊗W )[1]

is a distinguished triangle in A. Then we call A a triangulated tensor category. The
notion of a triangulated tensor category without unit is defined similarly.

2.1.4. Remark. Let (X,Y, Z, a, b, c) be a distinguished triangle in a triangulated
tensor category A, and let W be an object of A. Then the sequence

W ⊗X
idW⊗a−−−−→ W ⊗ Y

idW⊗b−−−−→ W ⊗ Z
(τ−1

T,W⊗idX )◦(idW⊗c)−−−−−−−−−−−−−−→ (W ⊗X)[1]

is a distinguished triangle. Indeed, (τX,W , τY,W , τZ,W ) gives an isomorphism of the
distinguished triangle of Definition 2.1.3 with this triangle.

2.1.5. Definition. Let A be a DG category, and let f :E → F be a map in
Z0Cb(A). The inclusion and projection iF :F → E[1]⊕F and jE :E[1]⊕F → E[1]
induce the maps iF :F −→ cone(f) and jE : cone(f) −→ E[1] in Z0Cb(A). We call a
triangle in Cb(A) of the form

E
f−→ F

iF−→ cone(f)
jE−→ E[1]

a cone sequence; a triangle in Kb(A) is a distinguished triangle if it is isomorphic
to the image of a cone sequence from Cb(A).

2.1.6. Triangulated structure. We now proceed to show that the distinguished tri-
angles of Definition 2.1.5 make Kb(A) into a triangulated category; we begin with
some preliminary results.

Let f :A→ B be in Z0HomCb(A)(A,B). We then have the elements

idB + f ∈ Z0HomCb(A)(B ⊕A,B); (f, idA) ∈ Z0HomCb(A)(A,B ⊕A).
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In addition, the natural maps

pA[1] :B[1]⊕A[1] → A[1]; (−f [1], idA[1]) :A[1] → B[1]⊕A[1]
iB :B → B ⊕A; idB − f :B ⊕A→ B

define maps

pf : cone(idB + f) → A[1]; if :A[1] → cone(idB + f)(2.1.6.1)

if :B → cone(f, idA); pf : cone(f, idA) → B

in Z0Cb(A).

2.1.6.2. Lemma. In Kb(A), the maps (2.1.6.1) are isomorphisms, and if = p−1f ,

pf = i−1f .

Proof. We have pf ◦ if = idA[1] and pf ◦ if = idB in Cb(A). The composition

B[1]⊕A[1]⊕B
pB−−→ B

iB−→ B ⊕ A⊕B[−1]

gives the element h of HomCb(A)(cone(idB + f), cone(idB + f))−1, with

dh = idcone(idB+f) − if ◦ pf .

Similarly, the composition

A[1]⊕B ⊕A
pA−→ A

iA−→ A⊕B[−1]⊕A[−1]

defines an element h′ of HomCb(A)(cone(f, idA), cone(f, idA))−1, with

dh′ = idcone(f,idA) − if ◦ pf .

2.1.6.3. Lemma. Let A be a DG tensor category, let G be in Cb(A), and let

E
f−→ F

iF−→ cone(f)
jE−→ E[1]

be a cone sequence in Cb(A). Then

E ⊗G
f⊗idG−−−−→ F ⊗G

iF⊗idG−−−−−→ cone(f ⊗ idG)
jE⊗idG−−−−−→ E[1]⊗G = (E ⊗G)[1]

is a distinguished triangle in Kb(A).

Proof. This follows by a direct computation, using the isomorphisms (Ei[a]⊕
Fi[b])⊗Gj −→ (Ei ⊗Gj)[a]⊕ (Fi ⊗Gj)[b].

2.1.6.4. Proposition. (i) The category Kb(A) with its set of distinguished trian-
gles is a triangulated category.
(ii) If A is a DG tensor category (without unit), then Kb(A) with its set of distin-
guished triangles is an triangulated tensor category (without unit).
(iii) If A is a category of complexes C∗(A0), then the functor Tot (1.2.9.1) extends
to give an equivalence of Kb(A) with the usual homotopy category K∗(A0); this
is an equivalence of triangulated tensor categories without unit if A0 is a tensor
category without unit.
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Proof. We proceed to verify the axioms (TR1)-(TR4).
(TR1): The first and third conditions are satisfied directly from our construction.
For the second, take B = 0 in Lemma 2.1.6.2; by that lemma, the map i0 : 0 →
cone(idA) is an isomorphism in Kb(A). The commutative diagram in Kb(A)

A A ��
iA cone(idA) ��

jA
A[1]

A A �� 0 ��

��

i0

A[1]

shows that the lower row is a distinguished triangle.
(TR2): Let f :A → B be a morphism in Z0Cb(A). Let C = cone(f), giving the

cone sequence A
f−→ B

iB−→ C
jA−→ A[1]. The identity map

B[1]⊕A[1]⊕B → B[1]⊕A[1]⊕B

defines the isomorphism cone(iB) ∼= cone(idB + f) in Cb(A). By Lemma 2.1.6.2,
we have the isomorphism of triangles in Kb(A)

B ��
iB

C ��
iC cone(iB) ��

jB
B[1]

B ��
iB

C ��
jA

A[1]

��

if

��
−f [1]

B[1].

Thus the bottom row is a distinguished triangle. Similarly, the identity map

A[1]⊕B ⊕A→ A[1]⊕B ⊕A

defines the isomorphism cone(jA[−1]) ∼= cone
(
(f, idA)

)
in Cb(A). The diagram

C[−1] ��
jA[−1]

A ��
iA

��

−idA

cone(jA[−1]) ��
jC[−1]

��

pf

C

C[−1] ��
−jA[−1]

A ��
f

B ��
iB

C

gives by Lemma 2.1.6.2 an isomorphism of triangles in Kb(A), completing the
verification of (TR2).
(TR3): We may replace the two triangles with isomorphic triangles; thus we may
assume that the two triangles arise from cone sequences

(A,B, cone(a), a, iB, jA), (A′, B′, cone(a′), a′, iB′ , jA′)

in Cb(A). The morphism (f, g) : u→ u′ arises then from a diagram in Z0Cb(A)

A ��a

��

f

B

��

g

A′ ��

a′ B′,

and there is a map H :A → B′ in Cb(A), of degree -1, with dH = ga − a′f . Let
H+ :A[1] → B be the degree 0 map corresponding to H via the identity

HomCb(A)(A[1], B)0 = HomCb(A)(A,B)[−1]0 = HomCb(A)(A,B)−1.
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The degree 0 map from A[1]⊕B to A′[1]⊕B′ with matrix representation(
f [1] 0
H+ g

)
gives rise to the map h : cone(a) −→ cone(a′) in Z0Cb(A), giving the desired map of
triangles (f, g, h) in Kb(A).
(TR4): Let

(X,Y, Z ′, u, i, j′), (Y, Z,X ′, v, i′, j), and (X,Z, Y ′, w, k, k′)

be distinguished triangles with w = v ◦ u. Lift u and v to maps a :X → Y and
b :Y → Z in Z0Cb(A), giving the lifting c := b ◦ a for w. By Remark 2.1.2(2), we
have an isomorphism of triangles in Kb(A)

X ��u
Y ��i

Z ′ ��i′

��

h

X [1]

X ��
a Y ��

iY
cone(a) ��

jX
X [1].

Doing the same for v and w, and applying Remark 2.1.2(3), we may assume that
our three distinguished triangles are equal to the images in Kb(A) of the cone
sequences for the maps a, b and c:

X
a−→ Y

iY−→ cone(a)
j′X−→ X [1],

Y
b−→ Z

i′Z−→ cone(b)
jY−→ Y [1],

X
c−→ Z

iZ−→ cone(c)
jX−→ X [1].

We have the degree 0 maps

f := idX[1] ⊕ b : cone(a) → cone(c),

g := a[1]⊕ idZ : cone(c) → cone(b).

One easily computes that df = 0, dg = 0 and that (idX , b, f) and (a, idZ , g) are
morphisms of triangles.

The map a[1]⊕c :X [1]⊕X → Y [1]⊕Z determines a morphism u : cone(idX) →
cone(b) in Z0Cb(A). We have the commutative diagram in Z0Cb(A)

cone(idX) ��u cone(b) ��
icone(b)

cone(u) ��
jcone(idX )

cone(idX)[1]

0 ��

��

cone(b) cone(b)

��

icone(b)

�� 0.

��

We have already seen that cone(idX) is isomorphic to 0 inKb(A); it therefore follows
from Remark 2.1.2(1) that the map icone(b) : cone(b) → cone(u) is an isomorphism
in Kb(A). The evident isomorphism

X [2]⊕X [1]⊕ Y [1]⊕ Z → X [2]⊕ Y [1]⊕X [1]⊕ Z

defines the isomorphism cone(u) ∼= cone(f) in Cb(A); putting these two isomor-
phisms together shows that

cone(a)
f−→ cone(c)

g−→ cone(b)
iY [1]◦jY−−−−−→ cone(a)[1]



420 II. DG CATEGORIES AND TRIANGULATED CATEGORIES

is isomorphic in Kb(A) to the cone sequence for the map f , completing the proof
of (TR4).

The compatibility with the tensor structure follows from Lemma 2.1.6.3.
If A is a category of complexes C∗(A0), the functor Tot is compatible with

the cone sequences and the tensor structures. Together with Lemma 1.2.10, this
completes the proof.

2.1.7. Proposition. (i) The assignments

A �→ Cb(A) := Cb(A[∗]);
A �→ Kb(A) := Kb(A[∗])

extend to functors Cb(−) and Kb(−) from the category of DG categories to the
category of DG categories with translation structure, resp. the category of trian-
gulated categories.
(ii) The functorsCb(−) andKb(−) extend to tensor functors on the above categories
with tensor structure.
(iii) Let B be a DG (tensor) category Given a DG (tensor) functor F :A → Cb(B),
there is a canonical extension of F to an exact (tensor) functor Kb(F ) :Kb(A) →
Kb(B).

Proof. From Kapranov’s explicit construction of the functor Pre-Tr, it is
clear that the assignment A �→ Pre-Tr(A[∗]) extends to a functor from DG cate-
gories to DG categories with translation structure, compatible with the embedding
iA :A −→ Pre-Tr(A[∗]). Since Cb(A) is the strictly full subcategory of Pre-Tr(A[∗])
generated by i(A) and taking cones and translations, we have the desired functo-
riality of Cb(A), together with its cone functor. Since the triangulated structure
on the homotopy category Kb(A) is determined by the cone functor on Cb(A),
this gives the functoriality of Kb(A). The compatibility of these functors with the
tensor structure follows directly from the functoriality of the tensor structure on
Pre-Tr(A), and the compatibility of the cone functor with the tensor product.

For (iii), we use the universality of the operation of taking the free translation
structure on a DG category, together with the canonical equivalence Cb(B) →
Cb(B)[∗] (see §1.1.8), and the equivalence

Tot:Cb(Cb(B)) → Cb(B)

(see Lemma 1.2.10), to give the canonical functor of DG categories with translation
structure Cb(F ) :Cb(A) → Cb(B), compatible with the respective cone functors.
Taking the associated map on the homotopy categories gives the exact functor
Kb(F ) :Kb(A) → Kb(B). The same argument shows that Kb(F ) is an exact tensor
functor in case F is a DG tensor functor.

2.2. Homotopy equivalence of DG categories

We define the notion of a homotopy equivalence of differential graded categories,
and show that a homotopy equivalence of DG categories induces an equivalence on
the homotopy categories of complexes.

2.2.1. Definition. A functor of DG categories F :A −→ B is called a homotopy
equivalence if

(i) F gives an isomorphism Obj(A)/Iso → Obj(B)/Iso.
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(ii) The map

F (X,Y ) : HomA(X,Y ) −→ HomB(F (X), F (Y ))

is an quasi-isomorphism for all X , Y in A.

2.2.2. Theorem. Let F :A −→ B be a functor of DG categories.
(i) If F is a homotopy equivalence, then the induced map Kb(F ) :Kb(A) −→ Kb(B)
is an equivalence of triangulated categories.
(ii) Suppose that A and B are DG tensor categories, and F is a DG tensor functor
and a homotopy equivalence. Let Kb

F (B) be the full subcategory of Kb(B) with
objects of the form Kb(F )(X), with X an object of Kb(A). Then Kb

F (B) is a
full triangulated tensor subcategory of Kb(B), the inclusion Kb

F (B) → Kb(B) is an
equivalence of triangulated categories, and the functor Kb(F ) :Kb(A) −→ Kb

F (B)
induced by Kb(F ) is a pseudo-tensor equivalence of triangulated tensor categories
(see Part II Chapter I, §1.3.7).

Proof. To prove (i), we may replace A and B with equivalent categories, so
we may assume that Obj(A) = Obj(B) and F is the identity on objects.

Let G = Kb(F ). We first show that the map

G : HomKb(A)(E,F ) −→ HomKb(B)(G(E), G(F ))(2.2.2.1)

is an isomorphism for each E, F in Kb(A). If E and F are translations of objects of
A, the Hom groups are isomorphic by the definition of a homotopy equivalence of
DG categories. Since Kb(A) is generated by taking repeated cones and translations
in Cb(A), starting with objects of A, the long exact sequence of Hom’s coming from
a distinguished triangle shows that (2.2.2.1) is an isomorphism for all E and F , as
desired.

Since the map F is an isomorphism on objects, the isomorphisms (2.2.2.1)
and the fact that Kb(B) is generated from B by taking repeated cones and trans-
lations in Cb(B) imply that each object of Kb(B) is isomorphic to an object in
G(Kb(A)). Choose for each E′ in Kb(B) an object H(E′) of Kb(A), together with
an isomorphism Φ(E′) of G(H(E′)) with E′. Using the isomorphism (2.2.2.1), H
has a unique extension to a functor such that Φ defines a natural isomorphism
of G ◦ H with the identity on Kb(B). In addition, for each E in Kb(A), the iso-
morphism Φ(G(E)) :G(H(G(E))) −→ G(E) determines by (2.2.2.1) an isomorphism
Ψ(E) :H(G(E)) → E; clearly Ψ determines a natural isomorphism of H ◦G with
the identity on Kb(A), completing the proof of (i).

For (ii), it follows from the isomorphism (2.2.2.1) as above that the full image
Kb

F (B) is a triangulated tensor subcategory of Kb(B), equivalent to Kb(A); it thus
follows from (i) that the inclusionKb

F (B) → Kb(B) is an equivalence of triangulated
categories. For each E′ in Kb

F (B), we may choose an H(E′) in Kb(A) lifting E′,
and we may take H(1⊗nB ) := 1⊗nA .

As in the proof of (i), the assignment E′ �→ H(E′) extends uniquely to an exact
functor

H :Kb
F (B) → Kb(A),

with G◦H = idKb
F (B). Thus G◦H ◦G = G. By the isomorphism (2.2.2.1), it follows

that, for each X in Kb(A) there is a unique morphism ρ(X) :X → H(G(X)) with
G(ρ(X)) = idG(X); ρ(X) is automatically a natural isomorphism. Similarly, for X
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and Y in Kb(A), there is a unique morphism

θ(X,Y ) :H(X)⊗H(Y ) → H(X ⊗ Y )

with G(θ(X,Y )) = idX⊗Y , and θ(X,Y ) is an isomorphism The uniqueness of
θ(X,Y ) implies that (H, θ) defines a pseudo-tensor functor from Kb

F (B) to Kb(A),
and the uniqueness of ρ(X) implies that ρ defines a natural isomorphism of pseudo-
tensor functors

ρ : idKb(A) → H ◦G

(cf. Part II Chapter I, §1.3.7). Thus (H, θ, ρ) defines an exact pseudo-tensor inverse
equivalence to G, proving (ii).

2.2.3. Adjoining morphisms to a DG tensor category. Let

F :B −→ B0
be a DG tensor functor of DG tensor categories without unit. Let E be a DG tensor
category without unit such that the underlying graded tensor category without unit
satisfies the conditions of (I.2.5.1.1).

Let B[E] be the coproduct of B and E as DG tensor categories without unit.
As the tensor product of two DG modules M and N has underlying graded Z-
module equal to the tensor product of the underlying graded Z-modules of M and
N , it follows that the underlying graded tensor category without unit of B[E] is
the coproduct of B and E as graded tensor categories without unit. The functor F
induces the functor

F [idE] :B[E] −→ B0[E]

by taking the coproduct of F with the identity on E.
Let I be an ordered set, with function ε : I → N, and let A be the graded tensor

category without unit B[E, {si}] gotten from B[E] by adjoining morphisms

si : e⊗ε(i) −→ Xi

of degree di, as in Chapter I, §2.5.1. For each i ∈ I, let A<i be the tensor category
without unit gotten by adjoining the morphisms sj with j < i.

We make A into a DG tensor category without unit inductively, by choosing
morphisms fi : e⊗ε(i) −→ Xi of degree di + 1 in the category A<i. Assume we have
defined the structure of a DG tensor category on the graded tensor category A<i,
and that dfi = 0. We then define dsi = fi, and continue.

We let A0 be the graded tensor category without unit gotten from B0[E] by
adjoining morphisms ti : e⊗ε(i) −→ F (Xi) of degree di. We extend F [idE] to a graded
tensor functor by setting F (si) = ti. We make A0 into a DG tensor category
without unit by setting dti = F (fi); this makes the extension of F into a DG
tensor functor

F s :A −→ A0.
For each a, the Hom-groups HomE(e⊗a, e⊗a)q are left Z[Sa]-modules, with σ ∈

Sa acting via left composition with the symmetry isomorphism τσ.

2.2.4. Proposition. Suppose F is a homotopy equivalence, and that the Hom
group HomE(e⊗a, e⊗a)q is a free Z[Sa]-module, or is zero, for each a and q. Then
F s is a homotopy equivalence.
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Proof. Clearly F s is an isomorphism on isomorphism classes of objects; we
may assume that A and A0 have the same objects, and that F s is the identity on
objects. Let Y and Z be objects of B.

Denote the complex HomE(e⊗a, e⊗a) by Ea. We use the notation from Chap-
ter I, §2.5. From Chapter I, Proposition 2.5.2, we have the isomorphism (as graded
groups)

∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗Z[S(i∗)] Ea

Ψ(e⊗a⊗Y,e⊗b⊗Z)−−−−−−−−−−−→ HomA(e⊗a ⊗ Y, e⊗b ⊗ Z),

and the isomorphism (as graded groups)

∞⊕
s=0

⊕
i∗∈Is≤P
i∗=a−b

HomB0(X⊗i∗ ⊗ Y, Z)[−d(i∗)]⊗Z[S(i∗)] Ea

Ψ0(e
⊗a⊗Y,e⊗b⊗Z)−−−−−−−−−−−−→ HomA0(e⊗a ⊗ Y, e⊗b ⊗ Z).

Here S(i∗) is the group of order-preserving bijections of i∗.
Now define an increasing filtration on the complexes HomA(e⊗a⊗Y, e⊗b⊗Z) by

ordering the summands HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)] ⊗Z[S(i∗)] Ea lexicographically
with respect to the indices i∗. Then the E1-complexes in the resulting spectral
sequence are given by

Ei∗
1,A = HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)] ⊗Z[S(i∗)] Ea.

We have the similarly defined filtration on HomA0(e⊗a ⊗ Y, e⊗b ⊗ Z); clearly the
functor F s respects these filtrations, and defines a map of the corresponding spectral
sequences:

Ei∗
∗ (F s) :Ei∗

∗,A −→ Ei∗
∗,A0

.

The map Ei∗
1 (F s) on the E1 complexes E1(F s) is given by

HomB(X⊗i∗ ⊗ Y, Z)[−d(i∗)] ⊗Z[S(i∗)] Ea

F (X⊗i∗⊗Y,Z)⊗idEa−−−−−−−−−−−−−→ HomB0(X⊗i∗ ⊗ Y, Z)[−d(i∗)] ⊗Z[S(i∗)] Ea.

As Ea is a complex of free Z[S(i∗)]-modules, and F is a homotopy equivalence,
each map F (X⊗i∗ ⊗ Y, Z) ⊗ idEa is a quasi-isomorphism. Thus, F s induces a
quasi-isomorphism on the E1-complexes. Since each morphism in A (resp. A0)
involves only finitely many of the morphisms si (resp.ti), it follows that F s gives a
quasi-isomorphism

F s(e⊗a ⊗ Y, e⊗b ⊗ Z) : HomA(e⊗a ⊗ Y, e⊗b ⊗ Z) −→ HomA0(e⊗a ⊗ Y, e⊗b ⊗ Z).

The other cases F s(1⊗a⊗Y, 1⊗b), F s(1⊗a, 1⊗b⊗Z), etc., are handled similarly.

2.2.5. Corollary. Let F :B → B0 be a DG tensor functor of DG tensor categories
without unit. Let F s :A → A0 be the extension of F [idE] to the DG tensor functor
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of DG tensor categories without unit:

A = B[E, {si : eε(i) −→ Xi | i ∈ I, deg(si) = di, dsi = fi}],
A0 = B0[E, {ti : eε(i) −→ Xi | i ∈ I, deg(ti) = di, dti = gi}],

F s(si) = ti, F
s(fi) = gi.

Suppose F is a homotopy equivalence and a surjection on objects. Then the in-
duced functor Kb(F s) :Kb(A) −→ Kb(A0) is an equivalence of triangulated tensor
categories.

Proof. This follows from Theorem 2.2.2 and Proposition 2.2.4.

2.3. Localization

In this section, we recall the construction of Verdier [123] of the localization of
a triangulated category, and we show how to extend localization to triangulated
tensor categories.

2.3.1. Thick subcategories and multiplicative systems.

2.3.1.1. Definition. Let B be a full triangulated subcategory of a triangulated
category A. B is called thick (épaisse) if the following condition is satisfied:

Let X
f−→ Y −→ Z −→ X [1] be a distinguished triangle in A, with Z in B. If

f factors as X
f1−→ B′

f2−→ Y with B′ in B, then X and Y are in B.

2.3.1.2. Definition. Let A be a triangulated category. A set of morphisms S in
A is called a multiplicative system of morphisms if the following properties hold:

(FR1) If f, g ∈ S and if f and g are composable, then f ◦ g ∈ S. For all X in A,
idX is in S.

(FR2) In A, each diagram

Y

��

s∈S

Z ��
f

X

can be extended to a commutative diagram

P ��
g

��

t∈S

Y

��

s∈S

Z ��
f

X.

The symmetrically defined property holds as well.
(FR3) For morphisms f and g in A, the following conditions are equivalent:

(a) There is an s ∈ S with s ◦ f = s ◦ g.
(b) There is a t ∈ S with f ◦ t = g ◦ t.

(FR4) If s is in S, then s[1] is in S.
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(FR5) Let (X,Y, Z, u, v, w) and (X ′, Y ′, Z ′, u′, v′, w′) be distinguished triangles in
A, and let

X ��u

��

f

Y

��

g

X ′ ��

u′ Y ′

be a commutative diagram, with f and g in S. Then there is an h ∈ S
such that (f, g, h) : (X,Y, Z, u, v, w) → (X ′, Y ′, Z ′, u′, v′, w′) is a morphism
of triangles.

A multiplicative system of morphisms is called saturated if

A morphism f is in S if and only if there are morphisms g and g′ such that
g ◦ f and f ◦ g′ are in S.

2.3.2. If B is a thick subcategory of A, the set of morphisms s :X → Y in A which
fit into a distinguished triangle X s−→ Y −→ Z −→ X [1] with Z in B forms a saturated
multiplicative system of morphisms. Conversely, if S is a saturated multiplicative
system of morphisms in A, the full subcategory B of A consisting of objects Z

which fit into into a distinguished triangle X
s−→ Y −→ Z −→ X [1] with s in S forms

a thick subcategory of A. This gives a 1-1 correspondence between the collection
of thick subcategories of A and the collection of saturated multiplicative systems
of morphisms in A.

The intersection of thick subcategories ofA is a thick subcategory ofA, and sim-
ilarly for the intersection of saturated multiplicative systems of morphisms. Thus,
for each set T of objects of A, there is a smallest thick subcategory B containing
T , called the thick subcategory generated by T .

2.3.3. Localization of triangulated categories. Let S be a saturated multiplicative
system in a triangulated category A. For each X in A, we have the category SX of
morphisms s in S with range rng(s) equal to X , and the category SX of morphisms
s in S with domain dom(s) equal to X . Form the category A[S−1] with the same
objects as A, with

HomA[S−1](X,Y ) = lim→
s∈SopX

HomA(dom(s), Y ).

Composition of diagrams

Y ′ ��
g

��

t

Z

X ′ ��
f

��

s

Y

X
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is defined by filling in the middle via (FR2):

X ′′ ��
f ′

��

s′

Y ′ ��
g

��

t

Z

X ′ ��
f

��

s

Y

X.

One can describe HomA[S−1](X,Y ) by a calculus of left fractions as well, i.e.,

HomA[S−1](X,Y ) = lim→
s∈SY

HomA(X, rng(s)).

If B is a thick subcategory of A, define A/B to be A[S−1], where S is the
saturated multiplicative system of morphisms corresponding to B. It is easy to see
that the translation structure on A induces one on A[S−1]. Let QS :A → A[S−1]
and QB :A → A/B be the canonical functors. The main theorem of this paragraph
is

Theorem [Verdier [123]]. (i) A[S−1] is a triangulated category, where a triangle
T in A[S−1] is distinguished if T is isomorphic to the image under QS of a distin-
guished triangle in A.
(ii) The functor QS is universal for exact functors F :A → C such that F (s) is
an isomorphism for all s ∈ S, and the functor QB is universal for exact functors
F :A → C such that F (B) is isomorphic to 0 for all B in B.
(iii) S is equal to the collection of maps in A which become isomorphisms in A[S−1]
and B is the subcategory of objects of A which becomes isomorphic to zero in A/B.

2.3.4. Localization of triangulated tensor categories. If A is a triangulated tensor
category, and B a thick subcategory, call B a thick tensor subcategory if A in A and
B in B implies that A ⊗ B and B ⊗ A are in B. If S is a saturated multiplicative
system, call S a saturated tensor multiplicative system if s in S and A in A implies
that idA ⊗ s and s ⊗ idA are in S. One easily sees that the correspondence of
§2.3.3 between saturated multiplicative systems and thick subcategories restricts to
a correspondence between saturated tensor multiplicative systems and thick tensor
subcategories.

Let S be a saturated tensor multiplicative system in a tensor category A. It
follows immediately that the tensor operation

⊗A : HomA(X,Y )⊗Z HomA(Z,W ) → HomA(X ⊗ Y, Z ⊗W )

passes to the inductive limit defining the Hom-groups in A[S−1], giving A[S−1]
the structure of a tensor category. Similarly, the condition that the collection of
distinguished triangles in A is closed under right tensor product with objects of A
passes to A[S−1], making A[S−1] a triangulated tensor category, with exact tensor
functor QS :A → A[S−1] which is universal for exact tensor functors A → C which
invert the morphisms in S. The quotient QB :A → A/B of A by a thick tensor
subcategory thus has the analogous properties.
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2.4. The pseudo-abelian hull of a triangulated category

One step in the construction of the category of (pure) motives involves adjoining
objects to an additive category corresponding to idempotent endomorphisms. In
this section, we show how this procedure functions in the setting of a triangulated
category.

2.4.1. Definition. Let C be an additive category. Form the category C# with ob-
jects pairs (X, p), with p ∈ HomC(X,X) satisfying p2 = p. A morphism f : (X, p) →
(Y, q) is a morphism f :X → Y in C with f = qfp, i.e., HomC#((X, p), (Y, q)) is the
summand qHomC(X,Y )p of HomC(X,Y ); composition is induced by the composi-
tion in C. The category C is embedded as a full subcategory of C# by sending X
to (X, idX). C# is called the pseudo-abelian hull of C.

If C is a graded category, we make the same definition, requiring in addition
that p have degree zero.

2.4.2. Lemma. C# is an additive category. If C is a graded, resp. tensor category,
then so is C#; if C is a graded tensor category, then so is C#. A translation structure
on C extends canonically to a translation structure on C#, and similarly for a
translation structure compatible with a tensor structure. The embedding C → C#
is a functor of graded, resp. tensor resp. graded tensor categories.

Proof. The direct sum of (X, p) and (Y, q) is given as (X ⊕ Y, p ⊕ q). One
easily checks that this gives C# the structure of an additive category. If C is graded,
the summand pHomC(X,Y )q is a graded subgroup of HomC(X,Y ), giving C# a
canonical graded structure. If C has a translation structure, defining (X, p)[a][b]

to be (X [1][b], p[1][b]) gives C# a translation structure. If C is a tensor category,
setting (X, p)⊗ (Y, q) = (X⊗Y, p⊗ q) makes C# into a tensor category. One checks
directly that, if C is a graded tensor category, the graded and tensor structures on
C# give C# the structure of a graded tensor category, and if C has a compatible
translation structure, the translation structure on C# is compatible with the tensor
structure.

2.4.3. Definition. Let C be a triangulated category. We define a triangle T in C#
to be distinguished if there is a map of distinguished triangles

(p, q, r) : (X,Y, Z, f, g, h) → (X,Y, Z, f, g, h)

in C, such that T is isomorphic to

(X, p)
qfp−−→ (Y, q)

rgq−−→ (Z, r)
p[1]hr−−−−→ (X [1], p[1])

in C#. We call the map (p, q, r) a lifting of the distinguished triangle

((X, p), (Y, q), (Z, r), qfp, rgq, p[1]hr)

of C#.

2.4.4. Proposition. If C is a triangulated category, then C# satisfies (TR1), (TR2)
and (TR3). If C is a triangulated tensor category, then the distinguished triangles
in C# are closed under right tensor product with arbitrary objects of C#.

Proof. We already have the translation structure on C#. The axiom (TR2)
for C# follows directly from (TR2) for C. The distinguished triangles in C# are
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closed under isomorphism by definition, and ((X, p), (X, p), 0, id(X,p), 0, 0) is a dis-
tinguished triangle for all (X, p) in C#, with lifting (p, p, 0): (X,X, 0, idX , 0, 0) →
(X,X, 0, idX , 0, 0).

Let

((X, p), (Y, q), (Z, r), qfp, rgq, p[1]hr),

((X̄, p̄), (Ȳ , q̄), (Z̄, r̄), q̄f̄ p̄, r̄ḡq̄, p̄[1]h̄r̄)

be triangles in C#, with liftings

(p, q, r) : (X,Y, Z, f, g, h) → (X,Y, Z, f, g, h),

(p̄, q̄, r̄) : (X̄, Ȳ , Z̄, f̄ , ḡ, h̄) → (X̄, Ȳ , Z̄, f̄ , ḡ, h̄).

Take a map of maps in C#, (p̄up, q̄vq) : qfp→ q̄f̄ p̄. This gives the map of maps
(p̄up, q̄vq) : f → f̄ in C. Let w :Z → Z be a map in C such that

(p̄up, q̄vq, w) : (X,Y, Z, f, g, h) → (X̄, Ȳ , Z̄, f̄ , ḡ, h̄)

is a map of triangles. Then

(p̄up, q̄vq, r̄wr) : (X,Y, Z, f, g, h) → (X̄, Ȳ , Z̄, f̄ , ḡ, h̄)

is also a map of triangles, giving the map of triangles

((X, p), (Y, q), (Z, r), qfp, rgq, p[1]hr)
(p̄up,q̄vq,r̄wr)−−−−−−−−−→ ((X̄, p̄), (Ȳ , q̄), (Z̄, r̄), q̄f̄ p̄, r̄ḡq̄, p̄[1]h̄r̄)

in C#. This verifies the axiom (TR3) for C#.

Let qfp : (X, p) → (Y, q) be a morphism in C#, and let X
f−→ Y

g−→ Z
h−→ X [1]

be a distinguished triangle in C. We may take f satisfying qf = fp (e.g. use qfp
for f), hence there is a map r :Z → Z giving the map of triangles

X ��
f

��

p

Y

��

q

��
g

Z

��

r

��h
X [1]

��

p[1]

X ��
f

Y ��
g Z ��

h
X [1].

(2.4.4.1)

We will show that we may take r to be an idempotent; assuming this, (TR1) for
C# follows.

To show that we may take r to be an idempotent, let r′ be another choice of
map making (2.4.4.1) commute. Then h ◦ (r′ − r) = p[1] ◦ h − p[1] ◦ h = 0, hence
r′ − r = gs for some map s :Z → Y . Also

gsg = (r′ − r) ◦ g = g ◦ q − g ◦ q = 0.

Conversely, if s :Z → Y is a map with gsg = 0, then (p, q, r + gs) also gives a map
of triangles.

Since p2 = p and q2 = q, the map r2 is another morphism Z → Z making
(2.4.4.1) commute, hence we have r2 = r + gs, with s as above. Then rgs = gsr
and (gs)2 = 0, hence

rngs = rgs; rn = rn−1 + rn−2gs,

for n ≥ 2.
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Let ρ = r2 − 2rgs. Then we may use ρ instead of r in the diagram (2.4.4.1),
and

ρ2 = r4 − 4r3gs

= r3 + r2gs− 4rgs

= r2 + rgs + rgs− 4rgs
= ρ.

If C is a triangulated tensor category, it follows directly from the definition of
the tensor structure on C# that the collection of distinguished triangles in C# is
closed under right tensor product by arbitrary objects of C#.

2.4.5. Distinguished octahedra. Let

(A,B,C′, a, u, v), (B,C,A′, b, u′, v′),

(A,C,B′, ba, u′′, v′′), (C′, B′, A′, f, g, u[1] ◦ v′)

be triangles in a category C, such that
1. (idA, b, f) : (A,B,C′) → (A,C,B′) is a morphism of triangles
2. (a, idC , g) : (A,C,B′) → (B,C,A′) is a morphism of triangles.

We call the tuple (or equivalently, the resulting diagram)

(A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)

an octahedron. A map of octahedra consists of maps

(p, q, r, p′, q′, r′) : (A,B,C,A′, B′, C′) → (Ā, B̄, C̄, Ā′, B̄′, C̄′)

such that the four triples of maps

(p, q, r′), (q, r, p′), (p, r, q′), (r′, q′, p′)

are maps of triangles. If all four triangles in the octahedron are distinguished, we
say the octahedron is distinguished.

2.4.6. Lemma. Let A be a DG category, and let C be the localization of Kb(A)
with respect to a thick subcategory. Let

A ��a

��

p

B ��b

��

q

C

��

r

A ��
a B ��

b
C

(2.4.6.1)

be a commutative diagram in C, and let

(A,B,C′, a, u, v), (B,C,A′, b, u′, v′), (A,C,B′, ba, u′′, v′′)

be distinguished triangles. Then there is a distinguished octahedron

(A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)

and maps p′ :A′ → A′, q′ :B′ → B′, and r′ :C′ → C′ such that

(p, q, r, p′, q′, r′) : (A,B,C,A′, B′, C′) → (A,B,C,A′, B′, C′)

forms a map of octahedra.
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Proof. If we have two completions of a map f :X → Y to distinguished
triangles

X
f−→ Y

u−→ Z
v−→ X [1]

X
f−→ Y

u′
−→ Z ′

v′
−→ X [1]

then these triangles are isomorphic, by a map of triangles of the form

(idX , idY , w) : (X,Y, Z) → (X,Y, Z ′).

Thus, if we are able to prove the result for one choice of distinguished triangles
(A,B,C′, a, u, v), etc., it is true for all choices.

Similarly, if we have a commutative diagram in C

A ��a

��

sa

B ��b

��

sb

C

��

sc

Ā ��
ā B̄ ��

b̄
C̄,

(2.4.6.2)

with the maps sa, sb, sc in S, then, letting p̄ = saps
−1
a , q̄ = sbqs

−1
b , and r̄ = scrs

−1
c ,

a morphism of distinguished octahedra

(Ā, B̄, C̄, Ā′, B̄′, C̄′; ā, b̄, ū, v̄, ū′, v̄′, ū′′, v̄′′, f̄ , ḡ)
(p̄,q̄,r̄,p̄′,q̄′,r̄′)−−−−−−−−−→ (Ā, B̄, C̄, Ā′, B̄′, C̄′; ā, b̄, ū, v̄, ū′, v̄′, ū′′, v̄′′, f̄ , ḡ)

gives the morphism of distinguished octahedra

(A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)
(p,q,r,p′,q′,r′)−−−−−−−−−→ (A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)

with

A′ = Ā′, B′ = B̄′, C′ = C̄′; p′ = p̄′, q′ = q̄′, r′ = r̄′, f = f̄ , g = ḡ;

u = ūsb, v = sa[1]−1v̄, u′ = ū′sc, v′ = sb[1]−1v̄′, u′′ = ū′′sc, v′′ = sa[1]−1v̄′′.

Using the properties of a saturated multiplicative system of morphisms listed
in Definition 2.3.1.2, we may find a commutative diagram (2.4.6.2) with ā, b̄ and c̄
maps in Kb(A). Thus, we may assume a, b and c are maps in Kb(A). Using these
properties again, we may find a commutative diagram in Kb(A):

A ��a
B ��b

C

Ā ��ā

��

p̄

��

sa

B̄ ��b̄

��

sb

��

q̄

C̄

��

sc

��

r̄

A ��a
B ��b

C

(2.4.6.3)

with the maps sa, sb and sc in S, and with p = p̄◦ s−1a , q = q̄ ◦ s−1b , and r = r̄ ◦ s−1c .
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For a sequence of maps X
α−→ Y

β−→ Z in Kb(A), form the distinguished octa-
hedron

O(X,Y, Z;α, β) :=

(X,Y, Z, cone(β̃), cone(β̃α̃), cone(α̃), u, v, u′, v′, u′′, v′′, f, g),

where α̃ and β̃ are liftings of α and β to Cb(A), with maps u, v, u′, v′, u′′ and v′′

being those coming from the cone sequences for α̃, β̃α̃ and β̃, and with the maps f
and g being given by f := idA[1] ⊕ β̃, g := α̃[1]⊕ idC . We have shown in the proof
of Proposition 2.1.6.4 that O(X,Y, Z;α, β) is indeed a distinguished octahedron.

Let

X ��α

��

p

Y ��
β

��

q

Z

��

r

X ′ ��α′

Y ′ ��
β′

Z ′

(2.4.6.4)

be a commutative diagram in Kb(A). Lift (2.4.6.4) to the diagram

X ��α̃

��

p̃

Y

��

q̃

��
β̃

Z

��

r̃

X ′ ��α̃′

Y ′ ��
β̃′

Z ′

in Cb(A); there are then degree -1 maps h1 :Y → Z ′ and h2 :X → Y ′ with

dh1 = β̃′q̃ − r̃β̃, dh2 = α̃′p̃− q̃α̃.

Let h3 = h1α̃ + β̃′h2, so

dh3 = β̃′α̃′p̃− r̃β̃α̃.

Let h+1 :Y [1] → Z ′ be the degree zero map determined by h1, and define h+2
and h+3 similarly. We map cone(α̃), cone(β̃) and cone(β̃α̃) to cone(α̃′), cone(β̃′)
and cone(β̃′α̃′) by the matrices

p′ :=
(
q̃[1] 0
h+1 r̃

)
: cone(β̃) → cone(β̃′)

q′ :=
(
p̃[1] 0
h+3 r̃

)
: cone(β̃α̃) → cone(β̃′α̃′)

r′ :=
(
p̃[1] 0
h+2 q̃

)
: cone(α̃) → cone(α̃′)

We have the degree -1 maps

h4 :=
(
h2[1] 0

0 0

)
: cone(β̃α̃) → cone(β̃′)

h5 :=
(

0 0
0 h1

)
: cone(α̃) → cone(β̃′α̃′)

One checks that the maps h1, . . . , h5 define the homotopies required to show that

(p, q, r, p′, q′, r′) :O(X,Y, Z;α, β) → O(X ′, Y ′, Z ′;α′, β′)
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defines a map of distinguished octahedra. If p, q and r are in S, then so are p′, q′

and r′.
We apply this construction to the diagram (2.4.6.3), giving the maps of distin-

guished octahedra in Kb(A)

O(A,B,C; a, b)
(sa,sb,sc,s

′
a,s

′
b,s

′
c)←−−−−−−−−−−−− O(Ā, B̄, C̄; ā, b̄)

(p̄,q̄,r̄,p̄′,q̄′,r̄′)−−−−−−−−−→ O(A,B,C; a, b).

Setting p′ = p̄ ◦ s′−1a , q′ = q̄ ◦ s′−1b , and r′ = r̄ ◦ s′−1c gives the map of distinguished
octahedra in C,

(p, q, r, p′, q′, r′) :O(A,B,C; a, b) → O(A,B,C; a, b).

2.4.7. Theorem. Let A be a DG category, and let C be the localization of Kb(A)
with respect to a thick subcategory. Then C# is a triangulated category. If A is a
DG tensor category (with or without unit), and C is the localization of Kb(A) with
respect to a thick tensor subcategory, then C# is a triangulated tensor category
(with or without unit).

Proof. The assertion on the tensor structures follows from the first part of the
theorem, together with Proposition 2.4.4, so we need only prove the first assertion.
By Proposition 2.4.4, we need only verify the axiom (TR4).

Let then

(A, p) a−→ (B, q) b−→ (C, r)(2.4.7.1)

be a sequence of maps in C# (we may assume a = qap, b = rbq as maps in C),
giving the commutative diagram

A ��a

��

p

B

��

q

��b
C

��

r

A ��a
B ��b

C

in C. By Proposition 2.4.4, we may complete the maps a, b and ba to distinguished
triangles

((A, p), (B, q), (C′, r′′), a, r′′uq, p[1]vr′′),

((B, q), (C, r), (A′ , p′′), b, p′′u′r, q[1]v′p′′),

((A, p), (C, r), (B′, q′′), ba, q′′u′′r, p[1]v′′q′′),

with liftings

(p, q, r′′) : (A,B,C′, a, u, v) → (A,B,C′, a, u, v),

(q, r, p′′) : (B,C,A′, b, u′, v′) → (B,C,A′, b, u′, v′),

(p, r, q′′) : (A,C,B′, ba, u′′, v′′) → (A,C,B′, ba, u′′, v′′)

to C.
By Lemma 2.4.6, there is a map of distinguished octahedra

(A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)
(p,q,r,p′,q′,r′)−−−−−−−−−→ (A,B,C,A′, B′, C′; a, b, u, v, u′, v′, u′′, v′′, f, g)
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in C. We now argue as in the proof of (TR2) in Proposition 2.4.4 to change p′, q′

and r′ to idempotents. Indeed, since p, q and r are idempotent,

(A,B,C,A′, B′, C′, a, b, u, v, u′, v′, u′′, v′′, f, g)

(p,q,r,p′2,q′2,r′2)−−−−−−−−−−−→ (A,B,C,A′, B′, C′, a, b, u, v, u′, v′, u′′, v′′, f, g)

is also a map of distinguished octahedra. Thus, there are maps s :A′ → C, t :B′ →
C, and w :C′ → B such that

p′2 = p′ + u′s, q′2 = q′ + u′′t, r′2 = r′ + uw

u′su′ = 0, u′′tu′′ = 0, uwu = 0

fuw = u′′tf, gu′′t = u′sg.

Replacing (p′, q′, r′) with

(p′2 − 2p′u′s, q′2 − 2q′u′′t, r′2 − 2r′uw),

and changing notation, we may assume that p′, q′ and r′ are idempotent (see the
proof of Proposition 2.4.4). The octahedron in C#

((A, p), (B, q), (C, r), (A′ , p′), (B′, q′), (C′, r′),

a, b, r′uq, p[1]vr′, p′u′r, q[1]v′p′, q′u′′r, p[1]v′′q′, q′fr′, p′gq′)

is then distinguished. As it suffices by Remark 2.1.2(3) to find one distinguished
octahedron containing the diagram (2.4.7.1), the proof is complete.

2.4.8. Splitting idempotents in triangulated categories. Bökstedt and Neeman [21]
have given an elegant construction for splitting idempotents in certain triangu-
lated categories; we give a modification of their method in this section, with some
examples and applications.

Let A be a pre-additive category, S a set, A an object of A. We let AS denote
the direct sum (coproduct over 0) ⊕i∈SA, assuming the direct sum exists, i.e., that
there are maps is :A→ AS , s ∈ S, such that

HomA(AS , Z)
Q

s∈S i∗s−−−−−→
∏
s∈S

HomA(A,Z)

is an isomorphism for all Z in A.

2.4.8.1. Lemma. Let C be a triangulated category, X an object of C, p :X → X an
idempotent endomorphism. Suppose that XN exists in C. Then there is a direct
sum decomposition of X as X ∼= X(p)⊕X(1− p) such that p is identified with the
projection on X(p):

X(p)⊕X(1− p)
jX(p)−−−→ X(p)

iX(p)−−−→ X(p)⊕X(1− p).

Proof. For j ∈ N, let ij :X → XN be the corresponding inclusion. For each
j ≥ 2 ∈ N, let sj :X → XN be the map sj = ij−ij−1◦p; let s1 = i1. By the universal
property of XN, there is a unique map 1− tp :XN → XN with (1− tp) ◦ ij = sj for
all j = 1, 2, . . . .

Complete 1− tp to a distinguished triangle

XN 1−tp−−−→ XN q−→ X(p) r−→ XN[1].
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For each Z in C, we have the exact sequence∏
i∈N

HomC(X [1], Z)
(1−tp)[1]∗−−−−−−→

∏
i∈N

HomC(X [1], Z) −→ HomC(X(p), Z)

−→
∏
i∈N

HomC(X,Z)
(1−tp)∗−−−−−→

∏
i∈N

HomC(X,Z)

with

(1− tp)∗(f1, f2, . . . , fn, . . . ) = (f1 − f2 ◦ p, f2 − f3 ◦ p, . . . , fn − fn+1 ◦ p, . . . ),
and similarly for (1− tp)[1]∗. Thus (1 − tp)[1]∗ is surjective; the projection on the
factor i = 1 identifies the kernel of (1 − tp)∗ with the summand HomC(X,Z)p of
HomC(X,Z), giving the natural isomorphism HomC(X,Z)p ∼= HomC(X(p), Z).

Taking Z = X , the endomorphism p gives the map iX(p) :X(p) → X with
i∗X(p) : HomC(X,Z) → HomC(X(p), Z) identifying HomC(X(p), Z) with the sum-
mand HomC(X,Z)p of HomC(X,Z). Replacing p with 1 − p gives the morphism
iX(1−p) :X(1− p) → X ; the morphism

iX(p) + iX(1−p) :X(p)⊕X(1− p) → X

thus gives the natural isomorphism

(iX(p) + iX(1−p))∗ : HomC(X,Z) → HomC(X(p)⊕X(1− p), Z).

By the Yoneda lemma, the map iX(p) + iX(1−p) is an isomorphism; it is easy to
check that this isomorphism identifies p with the projection onto X(p).

As an immediate consequence, we have

2.4.8.2. Theorem. Let C be a triangulated category such thatXN exists for allX in
C. Then the embedding of additive categories C → C# is an equivalence of additive
categories. In particular, the category C# is a triangulated category, equivalent to
C. If C is in addition a triangulated tensor category, then the embedding C → C#
is an equivalence of triangulated tensor categories.

2.4.9. Examples. We give a few examples of triangulated categories satisfying the
hypothesis of Theorem 2.4.8.2.
(i) Let A be a DG category such that XN exists for all X in A. Then XN exists
in Kb(A) for all X in Kb(A). Similarly, if A is an additive category such that XN

exists for all X in A, then XN exists in K∗(A) for all X , for ∗ = ∅,+,−, b.
(ii) Let C be a triangulated category such that direct sums of arbitrary sets of
objects of C exist. Let B be a thick subcategory which is closed under taking
arbitrary direct sums. Then [21, Lemma 1.5] arbitrary direct sums exist in the
localization C/B; in particular, XN exists for all X in C/B.
(iii) Let A be an abelian category such that arbitrary direct sums exist. Then XN

exists for all X in the unbounded derived categoryD(A). This follows directly from
(ii), noting that arbitrary direct sums exist in the unbounded homotopy category
K(A), and that an arbitrary direct sum of acyclic complexes is acyclic.
(iv) Let A be an abelian category having enough injectives, such that XN exists for
all X in A. Then XN exists for all X in the derived category D∗(A), for ∗ = +, b.
Indeed, if we let I be the full subcategory of A consisting of injective objects, then
the natural functor K∗(I) → D∗(A) is an equivalence of triangulated categories;
more precisely, if f :A → B is a quasi-isomorphism in K∗(A), and Y is in C∗(I),
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then f∗ : HomKb(A)(B, Y ) → HomKb(A)(A, Y ) is an isomorphism. By (i), XN exists
in K∗(A) for all X in K∗(I); taking a quasi-isomorphism XN → X̃N with X̃N in
K∗(I), we see that X̃N represents the direct sum ⊕i∈NX in K∗(I).

2.4.10. Corollary. Let B be an abelian category, let A be a DG category and let
C be a localization of the triangulated category Kb(A). Let F : C −→ D∗(B) be an
exact functor, where ∗ = ∅,+, b is a boundedness condition. Suppose in addition

(In case ∗ = +, b) XN exists in B for all X in B, and B has enough injectives.
(In case ∗ = ∅) Arbitrary direct sums exist in B.

Then there is an extension of F to an exact functor F# : C# −→ D∗(B), which is
unique up to natural isomorphism. If A is a DG tensor category, B an abelian
tensor category, and F is a functor of triangulated tensor categories, then so is F#.

Proof. The category C# is a triangulated category (resp. triangulated tensor
category) by Theorem 2.4.7. The existence of F#, either as a functor of triangu-
lated categories, or of triangulated tensor categories, follows directly from Theo-
rem 2.4.8.2 and Example 2.4.9(iii) for ∗ = ∅, or Example 2.4.9(iv) for ∗ = +, b. The
uniqueness up to natural isomorphism follows from the uniqueness, up to canonical
isomorphism, of finite direct sums in an additive category.

3. Constructions

In this final section of the chapter, we give two constructions of DG tensor
categories. The first is a type of “fat point”; in topological terms, this would be a
contractible space with a free action of the infinite symmetric group. This category
with be of use in our construction of the motivic DG tensor category, as it has the
effect of absorbing the non-trivial cohomology that usually arise from cohomology
operations.

The second construction is the first of two methods for producing a categorical
external product which is homotopy commutative, and admits all higher homo-
topies. The second method, which is multi-simplicial, will be taken up in the next
chapter.

3.1. The homotopy one point DG tensor category

We construct a DG tensor category E which plays the role of a “homotopy point”.

3.1.1. The category of Z/2-Sets. Let Z/2-Sets be the category with objects being
pointed sets (S, ∗) with a pointed Z/2-action, such that the action on S\{∗} is
free; morphisms are pointed maps of sets respecting the Z/2-action. We write
Z/2 = {±1}, and write −x for (−1) · x. A graded Z/2-set is a Z/2-set (S∗, ∗)
together with a decomposition as Z/2-sets

S∗ =
∨
n∈Z

(Sn, ∗);

here ∨ is the pointed coproduct. The notion of a map of graded Z/2-sets being the
obvious one, we have the category Gr-Z/2-Sets of graded Z/2-sets.

The category Gr-Z/2-Sets is a symmetric monoidal category. The product
((S × T )∗, ∗) of graded Z/2-sets (S∗, ∗) and (T ∗, ∗) is given by

(S × T )n =
∨

p+q=n

Sp ∧ T q/ ≡,
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where ∧ is the pointed product (smash product) and the equivalence relation ≡ is
given by (s, t) ≡ (−s,−t). We give Sp ∧ T q/ ≡ the action

−(s, t) = (−s, t) = (s,−t);
one easily checks that this is free. The symmetry

tS,T : ((S × T )∗, ∗) −→ ((T × S)∗, ∗)
is given by tS,T (s, t) = (−1)pq(t, s), for s ∈ Sp, t ∈ T q.

3.1.2. Definition. A graded symmetric monoidal category is a symmetric monoi-
dal object in the category catGr−Z/2−Sets. Similarly, a graded symmetric semi-
monoidal category is a symmetric semi-monoidal object in catGr−Z/2−Sets.

3.1.3. Equivalence relations. If we have a (graded) Z/2-set (S, ∗) and a Z/2-equi-
variant equivalence relation ≡ on S, we have the quotient Z/2-set (S, ∗)/ ≡, which
is gotten from the pointed set with Z/2-action (S/ ≡, ∗) by identifying x̄ ∈ S/ ≡
with the base point ∗ if −x̄ = x̄. This gives the categorical quotient.

We have the functor

(−)Z : Z/2-Sets −→ Ab(3.1.3.1)

which sends (S, ∗) to the quotient of the free abelian group on S by the relations:
n · ∗ = 0

n · (−x) = −n · x.
The functor (−)Z extends to the graded setting, and sends (graded) product to
(graded) tensor product. As consequence, the functor (−)Z gives the functor (−)Z

from the category of graded symmetric monoidal categories to graded tensor cate-
gories, and from graded symmetric semi-monoidal categories to graded tensor cat-
egories without unit.

3.1.4. Remark. The functor (3.1.3.1) is not in general compatible with the oper-
ation of taking the quotient by a Z/2-equivariant equivalence relation; one does
however have the canonical isomorphism

((S, ∗)/ ≡)Z
∼= ((S, ∗)Z)/ ≡Z)/2− torsion.

Another way to say the same thing is to redefine the functor (−)Z as a functor to the
category of abelian groups which are 2-torsion free; this functor is then compatible
with quotients.

3.1.5. We note that taking the degree zero component of the Hom-sets in a graded
symmetric (semi-)monoidal category, and taking the quotient by the Z/2-action
defines a functor gr0 from graded symmetric (semi-)monoidal categories to sym-
metric (semi-)monoidal categories. Similarly, we may generate a graded symmetric
(semi-)monoidal category ±C from a symmetric (semi-)monoidal category C by tak-
ing the free Z/2-set on the Hom-sets of C, concentrated in degree zero, and adding
a base-point. In particular, if x is an object in a graded symmetric semi-monoidal
category (C, •), we have the natural map

ιn(x) : {±1} × Sn −→ HomC(x•n, x•n)0

sending σ ∈ Sn to the permutation isomorphism tσ :x•n −→ x•n.

3.1.6. Definition. Let (C, •) be a graded symmetric semi-monoidal category. Call
(C, •) punctual if
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(i) There is an object e of C such that Obj(C) = {e•n | n = 1, 2, . . . } and the
objects e•n and e•m are distinct if m �= n. We call e the generator of C.

(ii) HomC(e•n, e•m)∗ = ∗ if n �= m.
(iii) HomC(e•n, e•n)p = ∗ if p > 0 and the map

ιn(e) : {±1} × Sn −→ HomC(e•n, e•n)0 \ {∗}

is an isomorphism.
(iv) For each n, the action of Sn

∼= 1× Sn on HomC(e•n, e•n)p \ {∗} by both left
and right composition via the map ιn(e) is a free action for all p such that
HomC(e•n, e•n)p �= {∗}.

As an example, let ±N be the graded symmetric semi-monoidal category gen-
erated by the symmetric semi-monoidal category N. Then ±N is punctual with
generator 1.

3.1.7. We may adjoin objects, morphisms and relations to a Z/2-Sets category.
In particular, if C is a graded symmetric (semi)-monoidal category, and a and b
are objects of C, we may form the graded symmetric (semi)-monoidal category C[h]
gotten from C by adjoining a morphism h : a −→ b of some degree p. We have
the canonical functor ih :C −→ C[h], and ih satisfies the usual universal mapping
property to graded symmetric (semi)-monoidal categories. Explicitly, C[h] is the
Z/2-Sets category gotten from C by adjoining morphisms idc • h • idd, idc • h and
h • idd, where c and d run over objects of C, and imposing the relations of graded
commutativity

(idc • h • idb • idd) ◦ (idc • ida • h • idd),

= (−1)p(idc • idb • h • ide) ◦ (idc • h • ida • ide)

(idc • h • idd • ide) ◦ (idc • ida • f • ide)

= (−1)pq(idc • idd′ • h • ide) ◦ (idc • f • ida • ide);

for f :d −→ d′, deg(f) = q,

(idc • h • idd • ide) ◦ (idc • τd,a • ide)

= (idc • τb,d • ide) ◦ (idc • idd • h • ide),

together with similar relations for h•idd•ide and idc•idd•h; one must then identify
with ∗ all expressions E with E = −E, modulo the above relations. This suffices
to give the symmetric semi-monoidal case, for the symmetric monoidal case, one
must adjoin additional relations related to the action of the unit.

3.1.8. Remark. The operation of adjoining a morphism h to a graded symmetric
(semi-)monoidal category may not in general be compatible with the functor (−)Z

due to the 2-torsion issue discussed in Remark 3.1.4. It is the case, however, that
the graded tensor category without unit (C[h])Z is canonically isomorphic to the
graded tensor category without unit formed from (C)Z[hZ] by taking the quotient
of the Hom groups by their 2-torsion subgroup:

(C[h])Z
∼= (C)Z[hZ]/2-torsion.
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Consequently, the functor (ih)Z : CZ −→ (C[h])Z has the universal mapping property
of ihZ

: CZ −→ (C)Z[hZ] if we restrict to graded tensor categories without unit which
have no 2-torsion in the Hom-groups.

As an example, we have the one-point category 1, which we give a unique
structure of a symmetric monoidal category; the extension ±1 of 1 to a Z/2-Sets
category has the structure of a graded symmetric monoidal category. Now suppose
we adjoin morphisms

hi : 1 −→ 1; i = 1, . . . , n,
xj : 1 −→ 1; j = 1, . . . ,m,

with the hi of degree 1 and the xj of degree 0, forming the graded symmetric
monoidal category ±1[h1, . . . , hn;x1, . . . , xm]. The graded tensor category

(±1[h1, . . . , hn;x1, . . . , xm])Z

is then isomorphic to an exterior algebra on the hi, tensored with a polynomial
algebra on the xi. If however, we first form the graded tensor category (±1)Z, and
then adjoin the hi and the xj , forming the graded tensor category

(±1)Z[h1, . . . , hn;x1, . . . , xm],

we have the relations
hi ⊗ hi �= 0,

2(hi ⊗ hi) = 0.

This seems to indicate that the “correct” answer is to first adjoin morphisms as
a graded symmetric (semi-)monoidal category, and then form the tensor category,
rather than the other way around.

3.1.9. Lemma. Let (C, •) be the graded symmetric semi-monoidal category gotten
from ±N by adjoining morphisms hi :ni −→ ni of degree pi < 0, i ∈ I. Then
(i) (C, •) is punctual.
(ii) If C[h] is gotten from C by adjoining a morphism h :n −→ n of degree p < 0,
then the natural map

im,q : HomC(m,m)q −→ HomC[h](m,m)q

is injective for all m and q, an isomorphism for all q if m < n, and an isomorphism
for all q > p if m = n. In addition,

HomC[h](n, n)p = in,p(HomC(n, n)p)
∐ ∐

σ,ρ∈Sn

±tσ ◦ h ◦ tρ.

Proof. For a ∈ N, let 1a denote the identity morphism on a; for a, b ≥ 0
integers and i ∈ I, we let 1a•hi•1b denote the corresponding morphism a+ni+b→
a+ ni + b in C, where 1a • hi is the map hi if a = 0, and similarly for hi • 1b. Then
every morphism f :m→ m of degree q in C can be written as a composition

f = tσ0 ◦ (1a1 • hi1 • 1b1) ◦ tσ1 ◦ . . . ◦ tσs−1 ◦ (1as • his • 1bs) ◦ tσs(3.1.9.1)

with the σi ∈ Sm, and

aj + nij + bj = m,∑
j

pij = q.
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The representation of f as such a composition is of course not unique, however, if
we define σ(f) ∈ Sm ∪ {∗} by

σ(f) = σ0 · σ1 · . . . · σs

if f �= ∗, and σ(∗) = ∗, then we claim that σ(f) depends only on f . Indeed, by
§3.1.7, the relations among the tσ and the maps 1a•hi•1b are generated by relations
of the form

(a) (1a • hi • 1b) ◦ (1c • hj • 1d) = ±(1c • hj • 1d) ◦ (1a • hi • 1b) if a + ni ≤ c,
a + ni + b = c + nj + d,

(b) tσ ◦ (1a • hi • 1b) = (1c • hi • 1d) ◦ tσ if σ(a + j) = c + j for j = 1, . . . , ni,
and d = m− c− ni.

(c) tσ ◦ tρ = tσρ.

As these relations leave the product defining σ(f) unchanged, our claim is verified.
As

σ(tρ ◦ f) = ρ · σ(f), σ(f ◦ tρ) = σ(f) · ρ

for f �= ∗, it follows that the action of Sm on HomC(m,m)\{∗} is free. The remain-
ing identities required to show that C is punctual follow from the representation
(3.1.9.1) of an arbitrary morphism in C. This completes the proof of (i).

For (ii), we note that the functor i : C −→ C[h] is split by the functor C[h] −→ C
sending h to ∗, hence i is injective on the Hom sets. The assertions of (ii) then
follows from the representation (3.1.9.1), the corresponding representation of a
morphism in C[h], and noting that there are no relations of type (a) or (b) among
the morphisms ±tσ ◦ h ◦ tρ.

We note that the category ±NZ is just the free graded tensor category without
unit generated by one object; we denote this category by E , and the generating
object by e. Applying Remark 3.1.8 and Lemma 3.1.9 we find

3.1.10. Proposition. Let (A,⊗, τ) be the graded tensor category without unit
gotten from E by adjoining morphisms hi : e⊗ni −→ e⊗ni of degree pi < 0 and taking
the quotient of the Hom-groups by their 2-torsion subgroup. Let A[h] be the graded
tensor category without unit gotten from A by adjoining a morphism h : e⊗n −→ e⊗n

of degree p < 0 and taking the quotient of the Hom-groups by their 2-torsion. Then
(i)A = CZ for a punctual graded symmetric semi-monoidal category C; in particular,
sending σ ∈ Sn to the symmetry isomorphism τσ gives an isomorphism

Z[Sn] ∼= HomA(e⊗n, e⊗n)0.

(ii) The abelian groups HomA(e⊗m, e⊗n)q are zero if n �= m or if q > 0.
(iii) If HomA(e⊗n, e⊗n)q �= 0, then HomA(e⊗n, e⊗n)q is a free Z[Sn]-module, for the
left, resp. right, action of HomA(e⊗n, e⊗n)0 = Z[Sn], with basis a set of represen-
tatives in HomC(e⊗n, e⊗n)q for the action of HomC(e⊗n, e⊗n)0 = {±1}×Sn by left,
resp. right, composition.
(iv) The natural map

im,q : HomA(e⊗m, e⊗m)q −→ HomA[h](e⊗m, e⊗m)q

is a split injection for all m and q, an isomorphism for all q if m < n, and an
isomorphism for all q > p if m = n.
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(v) The morphism h generates a free Z[Sn] ⊗ Z[Sn]op summand of the group
HomA[h](e⊗n, e⊗n)p, and we have the direct sum decomposition

HomA[h](e⊗n, e⊗n)p = in,p(HomA(e⊗n, e⊗n)p)⊕⊕σ,ρ∈SnZ · τσ ◦ h ◦ τρ.

3.1.11. The construction. We now define a sequence of DG tensor categories without
unit

E = E0 −→ E1 −→ E2 −→ . . . −→ En −→ . . . .

We form Ei+1 from Ei as a graded tensor category without unit by adjoining mor-
phisms h of the type considered in Proposition 3.1.10, taking the quotient by the
2-torsion, and then setting dh = f for certain morphisms f in Ei with df = 0. Each
Ei+1 will be given as a inductive limit of a sequence

Ei = Ei+1,1 −→ Ei+1,2 −→ . . .

formed in this way. Throughout the construction, we will take the quotient by the
2-torsion subgroups without further comment.

Form E1 from E by adjoining a morphism hτ : e⊗2 −→ e⊗2 of degree −1, with
dhτ = τe,e − ide⊗2 . Let E2,1 = E1. Let H2,1 be the set of non-zero morphisms
f : e⊗2 −→ e⊗2 of degree −1 with df = 0. For each f ∈ H2,1, adjoin a morphism
hf : e⊗2 −→ e⊗2 of degree −2, with dhf = f. This forms the DG tensor category
without unit E2,2.

Suppose we have formed the category E2,r for some r ≥ 2. Let H2,r be the set
of non-zero morphisms f : e⊗2 −→ e⊗2 of degree −r with df = 0. For each f ∈ H2,r,
adjoin a morphism hf : e⊗2 −→ e⊗2 of degree −r − 1, with dhf = f. This forms the
DG tensor category without unit E2,r+1. We let E2 be the inductive limit

E2 = lim
−→
r

E2,r.

Now suppose we have formed the category Ek−1 for some k ≥ 3. Let Ek,1 = Ek.
Suppose we have formed the category Ek,r for some r ≥ 1. Let Hk,r be the set
of non-zero morphisms f : e⊗k −→ e⊗k of degree −r such that df = 0. For each
f ∈ Hk,r , adjoin a morphism hf : e⊗k −→ e⊗k of degree −r − 1, with dhf = f. This
forms the DG tensor category without unit Ek,r+1. We let Ek be the inductive limit

Ek = lim
−→
r

Ek,r.

We let E be the inductive limit

E = lim
−→
k

Ek.

We call the category E the homotopy one-point DG tensor category.

3.1.12. Proposition. (i) E is a DG tensor category without unit, with objects
generated by the object e. As a graded tensor category, E = C⊕Z for a punctual
graded symmetric semi-monoidal category C.
(ii) For m �= n, we have HomE(e⊗m, e⊗n)q = 0 for all q.
(iii) For all q > 0, HomE(e⊗n, e⊗n)q = 0. The map sending σ ∈ Sn to the symmetry
isomorphism τσ gives an isomorphism

HomE(e⊗n, e⊗n)0 ∼= Z[Sn].

If HomE(e⊗n, e⊗n)q �= 0, then HomE(e⊗n, e⊗n)q is a free Z[Sn]-module, for the
action of HomE(e⊗n, e⊗n)0 by left, resp. right, composition, with basis being a set
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of representatives in HomC(e⊗n, e⊗n)q \ {∗} for the action of HomC(e⊗n, e⊗n)0 =
{±1} × Sn by left, resp. right, composition.
(iv) We have H0(HomE(e⊗n, e⊗n)∗) = Z, with generator the class of the identity
map, and Hq(HomE(e⊗n, e⊗n)∗) = 0 for q �= 0.

Proof. The assertions (i)-(iii) follows by construction and Proposition 3.1.10.
For (iv), the assertion about the cohomology Hq for q �= 0 follows from the con-
struction, together with Proposition 3.1.10(iii).

To compute the H0, take an integer n ≥ 2. Let σn be the element of Sn which
exchanges 1 and 2. For σ ∈ Sn, we have

d(tσ ◦ (hτ ⊗ ide⊗n−2) ◦ t−1σ ) = ide⊗n − tσσnσ−1 .(3.1.12.1)

As the normal subgroup of Sn generated by σn is all of Sn, this shows that the class
of the identity map generates the H0. On the other hand, the only morphism of
degree -1 adjoined to E to form E is the morphism hτ . By degree considerations,
the group of boundaries

d(HomE(e⊗n, e⊗n)−1) ⊂ HomE(e⊗n, e⊗n)0 = Z[Sn]

is the Z[Sn]⊗Z[Sn]op-submodule of Z[Sn] generated by the elements in (3.1.12.1).
In particular, the boundaries are contained in the augmentation ideal of Z[Sn],
hence H0 = Z · id, as claimed.

The category E has the following universal mapping property:

3.1.13. Proposition. Let A be a DG tensor category without unit, and let P be
an object of A such that

(a) For each n > 0 and each σ ∈ Sn, we have

τσ = idP⊗n ∈ H0(HomA(P⊗n, P⊗n))

where τσ :P⊗n −→ P⊗n is the symmetry isomorphism.
(b) For q < 0 and n > 0, Hq(HomA(P⊗n, P⊗n)) = 0.
(c) For q < 0 and n > 0, HomA(P⊗n, P⊗n)q is 2-torsion free.

Then there is a DG tensor functor ρP : E −→ A with

ρP (e⊗n) = P⊗n; n = 1, 2, . . . .(3.1.13.1)

In addition, the condition (3.1.13.1) determines ρP uniquely up to homotopy.

Proof. This follows from the construction (see §3.1.11) of E as a freely gen-
erated graded tensor category, modulo 2-torsion, together with Proposition 3.1.12
and Remark 3.1.8.

3.2. Homotopy commutativity

For a tensor category C, we give a construction of a DG tensor category which is ho-
motopy equivalent to the universal commutative external product C⊗,c of Chapter I,
§2.4.2. This DG tensor category is freely generated over the free tensor category on
C (as a tensor category) which makes it appropriate for a type of “acyclic models”
argument.
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3.2.1. The homotopy commutative Ω0. Recall the symmetric semi-monoidal cate-
gories ω and Ω0 of Chapter I, §2.3, and the functor p : Ω0 → ω which is the identity
on objects, and sends a morphism (f, σ) to f ◦ σ.

Let ZΩ0 be the pre-additive category generated by Ω0, i.e., objects are the
objects of Ω0, and the morphisms HomZΩ0(a, b) are Z[HomΩ0(a, b)] The symmetric
semi-monoidal structure on Ω0 gives ZΩ0 the structure of a pre-tensor category
without unit; we consider ZΩ0 as a pre-DG tensor category with all morphisms in
degree zero, and with zero differential.

We form the pre-DG tensor category without unit ZΩh as follows: For all a ≥ 1,
we set

HomZΩh(a, a)p =

{
0; for p �= 0,
Z[HomΩ0(a, a)] = Z[Sa]; for p = 0,

with zero differential.
Recall from (I.2.3.3.5) the morphism F21 : 2 → 1 and the symmetry τσ : 2 → 2,

where σ ∈ S2 is the non-trivial permutation.
Form the complex HomZΩh(2, 1)∗ by first adjoining a free right HomZΩh(2, 2)-

module with generator h : 2 → 1 of degree -1, with differential dh = F21 − F21 ◦ τσ.
We write h ◦ τσ for h · σ and define d(h ◦ τσ) = dh ◦ τσ.

We now define the complex HomZΩh(2, 1)∗ inductively. Suppose we have defined
the complex HomZΩh(2, 1)∗ in degrees −r ≤ ∗ ≤ 0, with HomZΩh(2, 1)∗ = 0 for
∗ > 0. Define HomZΩh(2, 1)−r−1 to be the free right HomZΩh(2, 2)-module on
Z−r(HomZΩh(2, 1)∗)\{0}. Denote the element of HomZΩh(2, 1)−r−1 corresponding
to g ∈ Z−r(HomZΩh(2, 1)∗) by hg, and define the differential as above by d(hg◦τσ) =
g ◦ τσ.

Now suppose we have defined the complexes HomZΩh(a, 1)∗ for n > a ≥ 2,
together with a right action (right composition) by HomZΩh(a, a)0 = Z[Sa]. In
addition, we assume

1.

HomZΩh(a, 1)r =

{
0 for r > 0,
ZHomΩ0(a, 1) for r = 0.

2. Hr(HomZΩh(a, 1)∗) = 0 for r < 0, and the surjection ZHomΩ0(a, 1) →
H0(HomZΩh(a, 1)∗) identifies H0(HomZΩh(a, 1)∗) with Z[Homω(a, 1)].

3. HomZΩh(a, 1)r is free as a right HomZΩh(a, a)0-module.

(3.2.1.1)

Let f :n→ b be a order-preserving surjection, i.e, a morphism f :n→ b in ω0.
For 2 ≤ b ≤ n− 1, we define HomZΩh(n, b)∗f by

HomZΩh(n, b)∗f := ⊗b
i=1HomZΩh(|f−1(i)|, 1)∗.(3.2.1.2)

For f :n → b in ω0, we have the subgroup S(f) of Sn consisting of those
permutations η with fη = f ; explicitly, S(f) is the product Sf−1(1) × . . .× Sf−1(b)

embedded in Sn in the obvious way. S(f) acts on HomZΩh(n, b)∗f on the right via
the right action of Sf−1(1) × . . .× Sf−1(b) as right composition on each factor.
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Define the complex HomZΩh(n, b)∗ by

HomZΩh(n, b)∗ =
⊕

f∈Homω0(n,b)

HomZΩh(n, b)∗f ⊗Z[S(f)] Z[Sn].(3.2.1.3)

It follows from (3.2.1.1) that HomZΩh(n, b)∗f is a free Z[S(f)]op-module, hence
HomZΩh(n, b)∗ is a free right Z[Sn] = HomZΩh(n, n)0-module, and the cohomol-
ogy of HomZΩh(n, b)∗ is given as

H0(HomZΩh(n, b)∗) =
⊕

f∈Homω0(n,b)

Z[HomΩ0(n, b)f ]⊗Z[S(f)] Z[Sn](3.2.1.4)

= Z[Homω(n, b)].

Hp(HomZΩh(n, b)∗) = 0 for p �= 0.

For ρ ∈ Sb, f ∈ Sn→b, recall from (2.3.3.1)(ii) the construction of the element
ρ · f of Sn→b, and the map f∗ :Sb → Sn. For the sequence of non-negative integers
d := (d1, . . . , db), let sgnd(ρ) be the weighted sign of the permutation ρ, where we
give j weight dj . We make HomZΩh(n, b)∗ a left Z[Sb]-module by the action

ρ · : HomZΩh(n, b)∗f ⊗Z[S(f)] Z[Sn] → HomZΩh(n, b)∗ρ·f ⊗Z[S(f)] Z[Sn]

defined by

ρ · [(x1 ⊗ . . .⊗ xb)⊗ σ] := sgnd(x)(ρ)(xρ−1(1) ⊗ . . .⊗ xρ−1(b))⊗ f∗(ρ)σ,

where d(x) is the sequence (deg(x1), . . . , deg(xb)). We define

HomZΩh(n, 1)∗0 :=
n−1⊕
b=2

HomZΩh(b, 1)∗ ⊗Z[Sb] HomZΩh(n, b)∗.

Then HomZΩh(n, 1)p0 = 0 for p > 0, HomZΩh(n, 1)p0 is a free right HomZΩh(n, n)∗-
module for each p ≤ 0, and

H0(HomZΩh(n, 1)∗0) ∼=
n−1⊕
b=1

Z[Homω(b, 1)]⊗Z[Sb] Z[Homω(n, b)].(3.2.1.5)

Using the isomorphism (3.2.1.5) and the composition in ω, we have the map

HomZΩh(n, 1)00 → Z[Homω(n, 1)],

which is evidently surjective. As generators for the kernel of

◦ :
n−1⊕
b=1

Z[Homω(b, 1)]⊗Z[Sb] Z[Homω(n, b)] → Z[Homω(n, 1)],

we have the elements

sg,g′ := fb1 ⊗ g − fb′1 ⊗ g′,

where g :n→ b and g′ :n→ b′ are maps in ω, and fb1 : b→ 1 is the unique morphism
in ω. Choose s̃g,g′ in HomZΩh(n, 1)00 lifting sg,g′ , and adjoin to HomZΩh(n, 1)−10 a
free right Z[Sn]-module with basis hg,g′ , and with

d(hg,g′ ◦ τσ) = s̃g,g′ ◦ τσ.
We then adjoin a free right Z[Sn]-module to HomZΩh(n, 1)∗0 in each degree

r < −1, to kill the cohomology in degrees ≤ −1, as in the case n = 2. This forms
the complex HomZΩh(n, 1)∗.
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Define the composition

HomZΩh(b, 1)∗ ⊗HomZΩh(n, b)∗ → HomZΩh(n, 1)∗

for n > b ≥ 1 by mapping to the corresponding summand in HomZΩh(n, 1)∗0, and
then including in the complex HomZΩh(n, 1)∗ by the canonical map. This gives us
the composition

◦ : HomZΩh(a, b)∗f ⊗HomZΩh(n, a)∗g → HomZΩh(n, b)∗f◦g

by

(x1 ⊗ . . . xb) ◦ (y1 ⊗ . . .⊗ ya) =

[x1 ◦ (y1 ⊗ . . .⊗ ya1)]⊗ . . .⊗ [xb ◦ (yab−1+1 ⊗ . . .⊗ yb)],

where the order-preserving surjection f is given by

f−1(i) = {ai−1 + 1 < . . . < ai}; i = 1, . . . , b, a0 = 0, ab = b.

Now take n > a > b ≥ 2, and define the composition(
HomZΩh(a, b)∗f ⊗ ρ

)
⊗
(
HomZΩh(n, a)∗g ⊗ Z[Sn]

)
→ HomZΩh(n, b)∗f◦(ρ·g) ⊗ Z[Sn]

(ρ ∈ Sa) by

(x⊗ ρ)⊗ (y1 ⊗ . . .⊗ ya ⊗ σ) �→ sgnd(y)(ρ)(x ◦ (yρ−1(1) ⊗ . . .⊗ yρ−1(a)))⊗ f∗(ρ)σ.

Taking the tensor product of HomZΩh(a1, b1)∗f1 and HomZΩh(a2, b2)∗f2 , and map-
ping to the obvious summand in HomZΩh(a1 + a2, b1 + b2)∗f1+f2 gives a tensor op-
eration on morphisms. It is tedious, but easy, to check that this data defines a
pre-DG tensor category ZΩh.

By construction, we have a functor of pre-DG tensor categories j : ZΩ0 → ZΩh,
which gives an identification

HomZΩ0(a, b) = Z[HomΩ0(a, b)] ∼= HomZΩh(a, b)0 = Z0(HomZΩh(a, b)∗).

Also by construction (see (3.2.1.4)), the complex HomZΩh(a, b)∗ satisfies

1. HomZΩh(a, b)n = 0 for n > 0 or a < b.
2. Hn(HomZΩh(a, b)∗) = 0 for n < 0.
3. The natural map Z[HomΩ0(a, b)] → H0(HomZΩh(a, b)∗) gives an identifica-

tion of H0(HomZΩh(a, b)∗) with Z[Homω(a, b)].

(3.2.1.6)

3.2.2. Remark. (see e.g. [65]) Letting O(n) = HomZΩh(n, 1)∗, the collection

O(1),O(2), . . .

forms an operad in the category of cochain complexes, i.e., each O(n) is a right
Z[Sn]-module, and there are “substitution laws”:

◦i,n,m :O(n)⊗O(m) → O(n + m− 1); i = 1, . . . ,m,

satisfying

1. ◦i,n,m+l−1 ◦ (id⊗ ◦j,m,l) = ◦i+j−1,n+m−1,l ◦ (◦i,n,m ⊗ id).
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2. If we let ρi,n,m :Sn × Sm → Sn+m−1 be the homomorphism gotten by iden-
tifying the ordered set

1n < 2n < . . . < (i− 1)n < 1m < . . . < mm < (i + 1)n < . . . < nn

with n + m− 1, we have

σ(x) ◦i,n,m τ(y) = ρi,n,m(σ, τ)(x ◦i,n,m y).

It is not difficult to show that each operad O(∗) in cochain complexes gives rise to
a pre-DG tensor category O with objects 1, 2, . . . , and Hom-complexes

HomO(n, 1)∗ = O(n),

where the general Hom-complex HomO(a, b)∗ is given by a formula as in (3.2.1.3):

HomO(a, b)∗ = ⊕f∈Homω0 (a,b)
[⊗b

i=1HomO(|f−1(i)|, 1)∗]⊗Z[S(f)] Z[Sa].

3.2.3. Decomposition into type. Let A be a pre-DG category, with product ⊗. We
say that A has a decomposition into type if

1. A has the same objects as ω, i.e., 1, 2, . . . .
2. For each a and b in A, the Hom-complex HomA(a, b)∗ has a direct sum

decomposition

HomA(a, b) = ⊕f∈Homω(a,b)HomA(a, b)∗f ;

in particular, HomA(a, b)∗ = {0} if a < b.
The direct sum decomposition in (2) satisfies

(i) h ∈ HomA(a, b)∗f , g ∈ HomA(b, c)∗f ′ =⇒ g ◦ h ∈ HomA(a, c)∗f ′◦f .
(ii) h ∈ HomA(a, b)∗f , g ∈ HomA(a′, b′)∗f ′

=⇒ g ⊗ h ∈ HomA(a⊗ a′, b⊗ b′)∗f ′+f .

(iii) HomA(a, a)∗f is concentrated in degree zero and is isomorphic to Z, with
generator f̃ , such that f̃ ◦ f̃ ′ = ˜ff ′ for all f, f ′ in Homω(a, a).

Note that the condition (iii) is satisfied if there is a functor ZΩ0 → A which
induces an isomorphism HomZΩ0(a, a) → HomA(a, a) for each a.

Let f : a → b be a morphism in ω0, and σ ∈ Sa. Giving the summand
HomZΩh(a, b)∗f ⊗Z[σ] of HomZΩh(a, b)∗ the type f ◦ σ defines a decomposition into
type for ZΩh (cf. (3.2.1.3)). This follows easily from the definition of composition
and tensor product in ZΩh, together with the computation of HomZΩh(a, a)∗ in
§3.2.1.

3.2.4. The homotopy commutative C⊗. We refer to Chapter I, §2.4.3 for the no-
tation. Let (C,×, t) be a tensor category without unit. We have the 2-functor
ΠC : Ω −→ catAb (I.2.3.6.1), and the restriction Π0C to Ω0.

We let (ΠC ,Ω0)⊕ and (ΠC ,Ω)⊕ denote the additive categories generated from
the pre-additive categories (ΠC ,Ω0) and (ΠC ,Ω). We may consider (ΠC ,Ω0)⊕ and
(ΠC ,Ω)⊕ as graded categories, or as DG categories with trivial graded and differ-
ential structure; the tensor structure on induces the structure of a tensor category
(resp. graded tensor category, resp. DG tensor category) without unit on (ΠC ,Ω0)⊕

and (ΠC ,Ω)⊕. The tensor category without unit (ΠC ,Ω)⊕ is the category C⊗,c con-
structed in Chapter I, §2.4.3 and Remark 2.4.6.

The 2-functor Ω0 → Ω gives rise to the functor c0 : (ΠC ,Ω0) −→ (ΠC ,Ω); We let

c0C : (ΠC ,Ω0)⊕ −→ (ΠC ,Ω)⊕ = C⊗,c
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denote the tensor functor induced by c0.
By (3.2.1.6), we have the canonical isomorphism of rings

Z[Sa] → Z0(HomZΩh(a, a)∗);

we henceforth identify HomZΩh(a, a)0 with Z[Sa] via this isomorphism.
Let f0 :a → b be a morphism in ω0, take σ ∈ Sa, giving the morphism F :=

(f0, σ) : a → b in Ω0, and let p(F ) := f0σ be the resulting morphism in ω. Note
that f0 is uniquely determined by F . For objects x1, . . . , xn, y1, . . . , ym of C, and
morphism f :n→ m in ω, write x := (x1, . . . , xn) and y := (y1, . . . , ym), and set

Hom(x, y)f := ⊕F∈HomΩ0(n,m)

p(F )=f

HomC⊗n(Π(F )(x), y).

Denote a morphism g in the summand of Hom((x1, . . . , xn), (y1, . . . , ym))f indexed
by F by gF .

If η is in S(f), and F = (f0, σ) is a morphism from a to b in Ω0, the natural
isomorphism Π(η) : Π(F ) → Π(η · F ) gives the symmetry isomorphism

Π(η)(x) : Π(F )(x) → Π(η · F )(x)

in C⊗n. We define a left action of S(f0) on Hom(x, y)f by

η · gF = (g ◦Π(η)(x)−1)η·F .

Since S(f0) acts freely on the set p−1(f), S(f0) acts freely on the abelian group
Hom(x, y)f . The identification of HomZΩh(a, a)0 with Z[Sa] gives the right action
of S(f0) ⊂ Sa on HomZΩh(a, b)∗f by composition on the right.

Define the DG tensor category C⊗,h with the same objects as (ΠC ,Ω0)⊕, and
where the Hom-complexes are given as follows: For x = (x1, . . . , xn) and y =
(y1, . . . , ym) set

Hom(x, y)∗ := ⊕f∈Homω(n,m)Hom(x, y)∗f ,(3.2.4.1)

with

Hom(x, y)∗f := HomZΩh(n,m)∗f ⊗Z[S(f0)] Hom(x, y)f .

Since dη = 0 for η ∈ S(f0) ⊂ Sa ⊂ Z0(HomZΩh(a, a)∗), the differential on
HomZΩh(n,m)∗f gives a well-defined differential on Hom(x, y)∗.

Composition is given by

(h⊗ gF ) ◦ (h′ ⊗ g′F ′) = (h ◦ h′)⊗ (g ◦Π(F )(g′))F ′◦F ,

and the tensor operation is given by

(h⊗ gF )⊗ (h′ ⊗ g′F ′) = (h⊗ h′)⊗ (g ⊗ g′)F+F ′ ;

one easily checks that these operations respect the S(f0)-action, and that the result
satisfies the axioms of a DG tensor category.

The inclusion Ω0 → ZΩh induces the functor jC : (ΠC ,Ω0)⊕ → C⊗,h, giving the
diagram

(ΠC ,Ω0)⊕

��

c0

��
jC

C⊗,h

(ΠC ,Ω)⊕ C⊗,c.

(3.2.4.2)
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3.2.5. Proposition. There is a unique DG tensor functor

c
h : C⊗,h → C⊗,c

which fills in (3.2.4.2) to form a commutative diagram. In addition, ch is a homotopy
equivalence.

Proof. Write x for (x1, . . . , xn), y for (y1, . . . , ym). Since the action of S(f0)
on Hom(x, y)f is free, it follows from (3.2.1.6) that

Hp(HomC⊗,h(x, y)∗) =

{
0 for p �= 0,
⊕f∈Homω(n,m)Z⊗Z[S(f0)] Hom(x, y)f for p = 0.

The relation imposed on Hom(x, y)f by tensoring with Z over Z[S(f0)] is just the
relation

gF ∼ (g ◦Π(η)−1)η·F
for η ∈ S(f0), which is the same as the relation imposed on the Hom-groups in
(ΠC ,Ω0) to form (ΠC ,Ω). As a DG tensor functor from C⊗,h to C⊗,c must necessarily
factor through H0, the proposition is proved.
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CHAPTER III

Simplicial and Cosimplicial Constructions

In this chapter, we collect a number of useful results on simplicial and cosimpli-
cial objects in a category. We give some constructions, via multi-simplicial objects,
of DG tensor categories which have a homotopy commutative external product, and
which give rise to categorical cochain operations. We conclude with a discussion of
homotopy limits, both for DG categories and for simplicial sets.

1. Complexes arising from simplicial and cosimplicial objects

1.1. Simplicial and cosimplicial objects

1.1.1. The fundamental object is ∆, the category with objects the ordered sets
[n] := {0 < 1 < . . . < n} with morphisms order-preserving maps. The maps in ∆
are generated by the coface maps

δmi : [m] → [m + 1],(1.1.1.1)

δmi (j) =

{
j if 0 ≤ j < i,
j + 1 if i ≤ j ≤ m.

and the codegeneracy maps

σmi : [m] → [m− 1]; 0 ≤ i ≤ m− 1,(1.1.1.2)

σmi (j) =

{
j for 0 ≤ j ≤ i,
j − 1 for i < j ≤ m.

Let C be a category, c.s.C, s.C the categories of cosimplicial, resp. simplicial
objects in C; i.e., functors F ∗ : ∆ → C, resp. F∗ : ∆op → C. We have as well the
full subcategory ∆≤n with objects [0], . . . , [n], and the functor categories c.s.≤nC,
s.≤nC of truncated (co)simplicial objects in C. The inclusions

jn : ∆≤n → ∆,

jn,m : ∆≤n → ∆≤m; n ≤ m,

induce the restriction functors
j∗n : c.s.C → c.s.≤nC,
j∗n,m : c.s.≤mC → c.s.≤nC; n ≤ m,

(1.1.1.3)

and similarly for the simplicial versions.
We let ∆n.d. be the subcategory of ∆ with the same objects, and with

Hom∆n.d.([m], [n]) ⊂ Hom∆([m], [n])

consisting of the injective maps. For an integer n ≥ 0, we let ∆n.d./[n] be the
category of injective maps f : [m] → [n] in ∆.

449
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1.1.2. We have the free additive category ZC generated by C; objects are finite
direct sums of objects of C, with HomZC(X,Y ) = Z[HomC(X,Y )] for objects X , Y
of C, where Z[S] denotes the free abelian group on a set S. We may then form the
category of bounded complexes Cb(ZC) and the homotopy category Kb(ZC).

1.1.3. Complexes associated to truncated simplicial objects. Let F∗ : ∆≤nop → C be
a functor. Form the object Z⊕n (F∗) of Cb(ZC) by setting

Z⊕n (F∗)−m =
⊕

f : [m]→[n]
f∈∆n.d./[n]

Fm.

The differential d−m : Z⊕n (F∗)−m → Z⊕n (F∗)−m+1 is given by

d−m =
⊕

f : [m]→[n]
i=0,... ,m

d−mf,i ,

where d−mf,i maps the summand Fm corresponding to f to the summand Fm−1

corresponding to f ◦ δm−1i , via the map (−1)iF (δm−1i ) :Fm → Fm−1. It follows
from the identities

δmi ◦ δm−1j = δmj+1 ◦ δm−1i ; 0 ≤ i ≤ j ≤ m,

that Z⊕n (F∗) is indeed a complex.
We have as well the object Zn(F∗) of Cb(ZC) defined by setting Zn(F∗)−m =

Fm, with differential d−m : Zn(F∗)−m → Zn(F∗)−m+1 given by the usual alternating
sum

d−m =
m∑
i=0

(−1)iF (δm−1i ).

Sending Z⊕n (F∗)−m to Fm by the sum of the projections

π−m =
∑

f : [m]→[n]
πf : Z⊕n (F∗)−m → Fm

defines the map in Cb(ZC)

πn : Z⊕n (F∗) → Zn(F∗).(1.1.3.1)

1.1.4. For N > n, we let δN,n
0 : [n] → [N ] be the composition δN−10 ◦ . . . ◦ δn0 .

Let F∗ : ∆≤Nop → C be a functor and take n < N ; one easily checks that sending
Fm in the summand f : [m] → [n] to Fm in the summand δN,n

0 ◦ f : [m] → [N ] via
the identity gives a map of complexes

χN,n : Z⊕n (j∗n,NF∗) → Z⊕N (F∗).(1.1.4.1)

We have the canonical identification of Zn(j∗n,NF∗) with the “stupid truncation”
σ≥−nZN (F∗), giving the canonical map of complexes jN,n∗ : Zn(j∗n,NF∗) → ZN (F∗);
one sees immediately that the diagram

Z⊕n (j∗n,NF∗) ��
χN,n

��

πn

Z⊕N (F∗)

��

πN

Zn(j∗n,NF∗) ��
jN,n∗

ZN (F∗)
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commutes. Similarly, if F∗ : ∆op → C is a functor, we have the truncations

j∗NF∗ : ∆≤Nop → C.
The map (1.1.3.1) gives the natural map

πN : Z⊕N (j∗NF∗) → ZN (j∗NF∗)(1.1.4.2)

and the commutative diagram

Z⊕n (j∗nF∗)

��

πn

��
χN,n

Z⊕N (j∗NF∗)

��

πN

Zn(j∗nF∗) ��
jN,n∗

ZN (j∗NF∗).

(1.1.4.3)

We often omit the truncation j∗N from the notation, if the meaning is clear from
the context.

The following is a reformulation of a well-known result of Dold [39], which we
include for the convenience of the reader.

1.1.5. Lemma. (i) Let F∗ : ∆≤Nop → Ab be a functor. Then for all 0 ≤ n < N ,
the map (1.1.4.1) induces an isomorphism on H−m for m < n and a surjection for
m = n.
(ii) Let F∗ : ∆≤nop → Ab be a functor. Then the map (1.1.3.1) induces an iso-
morphism on Hp for −n < p ≤ 0. For p = n, the map H−n(πn) :H−n(Z⊕n (F∗)) →
H−n(Zn(F∗)) is injective, and identifiesH−n(Z⊕n (F∗)) with ∩n

i=0ker[F (δn−1i ) :Fn →
Fn−1].

Proof. It suffices to prove (i) for n = N−1. We first construct a left splitting
σ : Z⊕N (F∗) → Z⊕N−1(j

∗
N−1,NF∗) to χN,N−1.

We have the codegeneracy map σNN−1 : [N ] → [N−1] (1.1.1.2), which induces the
map σ : Z⊕N (F∗) → Z⊕N−1(j

∗
N−1,NF∗) by sending Fm in the summand f : [m] → [N ]

to Fm in the summand σNN−1 ◦ f : [m] → [N − 1] via the identity map, if σNN−1 ◦ f
is injective, and to zero otherwise. One verifies without difficulty that σ defines a
map of complexes, with

σ ◦ χN,N−1 = id
Z
⊕
N−1(j

∗
N−1,NF∗)

.

For a map g : [m] → [N − 1] in ∆, let g + 1: [m + 1] → [N ] be the map

(g + 1)(i) :=

{
g(i) 0 ≤ i ≤ m

N i = m + 1.

Clearly g + 1 is injective if g is.
Define the map hm : Z⊕N (F∗)−m → Z⊕N (F∗)−m−1 by sending Fm in the summand

f : [m] → [N ] to Fm+1 in the summand (σNN−1 ◦ f) + 1: [m + 1] → [N ] via the map
(−1)m+1F (σm+1m ) :Fm → Fm+1 if σNN−1 ◦ f is injective and f(m) = N , and to zero
otherwise. It follows by an elementary computation that

d−m−1 ◦ hm + hm−1 ◦ d−m = χN,N−1 ◦ σ − id

on Z⊕N (F∗)−m, for m = 0, . . . , N − 1, which proves (i).
For (ii), we may use (i); thus it suffices to show that the map (1.1.3.1) induces

an isomorphism on H−p for p = n− 1, and gives the desired injection for p = n.
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Let Zn(F∗)0 be the normalized cochain complex,

Zn(F∗)
−p
0 := ∩p

i=1ker[F (δp−1i ) : Zn(F∗)−p → Zn(F∗)−p+1],

with differential ∂−p := F (δp−10 ). The inclusion Zn(F∗)0 → Zn(F∗) induces an
isomorphism in cohomology H−p for p ≤ n− 1 (see e.g., [95, Chapter V]). By (i),
we have the exact sequence

(1.1.5.1) Zn(F∗)−n0
F (δn−1

0 )−−−−−→ H−n+1(Z⊕n−1(j
∗
n−1,nF∗))

χn,n−1

−−−−→ H−n+1(Z⊕n (F∗)) → 0.

On the other hand, a direct computation shows that πn−1 gives an identification

H−n+1(Zn−1(j∗n−1,nF∗))
∼= ker[F (δn−20 ) : Zn(F∗)−n+10 → Zn(F∗)−n+20 ].

This in turn gives, via πn, the identification of the sequence (1.1.5.1) with the
canonical sequence defining H−n+1(Zn(F∗)),

Zn(F∗)−n0
F (δn−1

0 )−−−−−→ ker[F (δn−20 ) : Zn(F∗)−n+10 → Zn(F∗)−n+20 ]

→ H−n+1(Zn(F∗)0) → 0.

This proves that πn gives an isomorphism on H−n+1, and the desired injection on
H−n, completing the proof.

1.2. Multiplication of cosimplicial objects

We describe how one gives a multiplicative structure to cosimplicial objects in
certain symmetric monoidal categories.

1.2.1. External products. We recall the standard construction of Alexander-Whitney
products for cosimplicial objects in a tensor category.

Let A be an additive category, and let X : ∆ → A be a cosimplicial object of
A. We may form the object X∗ of C+(A):

X∗ := X0
d0−→ . . .

dn−1−−−→ Xn dn−→ . . . ; Xn = X([n]),

where dn :Xn → Xn+1 is the usual alternating sum
∑n+1

i=0 (−1)iX(δni ). We may
also form the various truncations of X∗:

Xm≤∗≤n := Xm dm−−→ . . .
dn−1−−−→ Xn.

If p and q are positive integers, we have the maps

fp,qp : [p] → [p + q],

fp,qq : [q] → [p + q],
(1.2.1.1)

given by fp,qp (i) = i and fp,qq (j) = j + p.
Suppose that A is a tensor category with tensor product ⊗. Let X : ∆ → A

and Y : ∆ → A be cosimplicial objects of A, giving the diagonal cosimplicial object

X ⊗ Y : ∆ → A,
(X ⊗ Y )(x) = X(x)⊗ Y (x),
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where x is an object, or a morphism, in ∆. We have as well the tensor product
double complex X∗ ⊗ Y ∗, and the complex (X ⊗ Y )∗.

Let
∪n
p,q :Xp ⊗ Y q → Xn ⊗ Y n

be the map ∪n
p,q = X(fp,qp )⊗ Y (fp,qq ), and define

∪n
X,Y : ⊕p+q=n Xp ⊗ Y q → Xn ⊗ Y n(1.2.1.2)

by ∪n
X,Y =

∑
p+q=n ∪n

p,q. The relation (of linear combinations of maps from [p]
∐

[q]
to [p + q + 1])

(1.2.1.3)
p+1∑
i=0

(−1)i[(fp+1,qp+1 ◦ δpi )
∐

fp+1,qq ] +
q+1∑
i=0

(−1)i+p[fp,q+1p

∐
(fp,q+1q+1 ◦ δqi )]

=
p+q+1∑
i=0

(−1)iδp+qi ◦ (fp,qp

∐
fp,qq )

implies that the maps (1.2.1.2) define the map of complexes

∪X,Y : Tot(X∗ ⊗ Y ∗) → (X ⊗ Y )∗.(1.2.1.4)

One easily verifies that the maps ∪X,Y are associative, in the obvious sense; it
follows from the Eilenberg-Zilber theorem [42] that the maps ∪X,Y are graded-
commutative, up to functorial homotopy.

1.2.2. Multiplication in a symmetric monoidal category. Let (A,⊗, τ, µ, 1) be a sym-
metric monoidal category. We have the diagonal functor

∆A :A → A×A

∆A(X) = (X,X)

∆A(f :X → Y ) = (f, f).

A commutative multiplication in A is a natural transformation m : ⊗ ◦∆A → idA
such that

m ◦ (m× idA) = m ◦ (idA ×m)

m ◦ (τ ◦∆A) = m

m(1) = µ1 : 1⊗ 1 → 1.

1.2.3. Cup products. Suppose that A is a symmetric monoidal category with mul-
tiplication m, and X is a cosimplicial object in A.

Define the map of cosimplicial objects mX :X ⊗X → X by

mX([n]) = mX([n]) :X([n])⊗X([n]) → X([n]);

we let m∗X : (X ⊗X)∗ → X∗ be the map induced by mX .
The symmetric monoidal structure on A induces the structure of a tensor cat-

egory on the free additive category ZA generated by A. We may then define the
map in C+(ZA),

m(X∗) : Tot(X∗ ⊗X∗) → X∗,(1.2.3.1)

by m(X∗) = m∗X ◦ ∪X,X .
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For a complex X∗, we X∗≤n denote the truncation of X to degrees d, d ≤ n,
and Xm≤∗≤n the truncation to degrees d, m ≤ d ≤ n. Taking truncations gives the
maps

mn′
(Xm≤∗≤n) : Tot(Xm≤∗≤n ⊗X∗≤n

′
) → Xm≤∗≤n(1.2.3.2)

for all n′ ≥ n. For m′ ≤ m, and n ≤ n′ ≤ n′′, the diagrams

Tot(Xm≤∗≤n ⊗X∗≤n
′
)

��

��
mn′

(Xm≤∗≤n)

Xm≤∗≤n

��

Tot(Xm′≤∗≤n ⊗X∗≤n
′
) ��

mn′
(Xm′≤∗≤n)

Xm′≤∗≤n

(1.2.3.3)

and

Tot(Xm≤∗≤n′ ⊗X∗≤n
′′
) ��
mn′′

(Xm≤∗≤n′
)

��

Xm≤∗≤n′

��

Tot(Xm≤∗≤n ⊗X∗≤n
′′
) ��

mn′′
(Xm′≤∗≤n)

Xm≤∗≤n

(1.2.3.4)

commute, and for n ≤ n′ ≤ n′′, the diagram

Tot(Xm≤∗≤n ⊗X∗) ��
m(Xm≤∗≤n)

��

Xm≤∗≤n

Tot(Xm≤∗≤n ⊗X∗≤n
′′
)

��

��
mn′′

(Xm≤∗≤n)

Xm≤∗≤n

Tot(Xm≤∗≤n ⊗X∗≤n
′
) ��
mn′

(Xm≤∗≤n)

Xm≤∗≤n

(1.2.3.5)

commutes.
When the indices are obvious, we write

∪X : Tot(Xm≤∗≤n ⊗X∗≤n
′
) → Xm≤∗≤n.(1.2.3.6)

for the map (1.2.3.2).

1.2.4. Remark. The maps (1.2.3.1) are associative, which one checks by a direct
computation. The maps m(X∗) are not in general commutative, but are commu-
tative up to homotopy; this follows from the Eilenberg-Zilber theorem [42].

Thus, suppose we have a graded tensor functor F :Kb(ZA) → B. Then the maps
F (mn(X∗≤n)) and F (mn(Xm≤∗≤n)) give HomB(1B, F (X∗≤n)) the structure of a
(possibly non-unital) graded-commutative ring, and make HomB(1B, F (Xm≤∗≤n))
a graded HomB(1B, F (X∗≤n))-module.

2. Categorical cochain operations

In this section, we use simplicial methods to construct external products in
certain tensor categories, which are associative, and are graded-commutative up to
homotopy and “all higher homotopies” (compare with the construction of Chap-
ter II, §3.2). This may be viewed as a categorical version of the construction of
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the “Eilenberg-MacLane operad” of Hinich and Schechtman [65]. We will apply
these results in §2.2 to show how an associative, commutative product on cosimpli-
cial objects gives rise to products on the associated cochain complexes which are
graded-commutative up to homotopy and “all higher homotopies”. Combining this
result with the multiplicative structure on the cosimplicial Godement resolution
of a sheaf, discussed in Chapter IV, allows us to solve the fundamental coherence
problem in constructing realization functors for the motivic triangulated category.

2.1. A homotopy commutative DG tensor category

2.1.1. The extended total complex. If F : ∆nop × ∆m −→ Ab is a functor, we may
form the extended total complex of F , (F∗, d), with Fs the abelian group:

Fs =
∏

Σjqj−Σipi=s

F ([p1], . . . , [pn], [q1], . . . , [qm]).

Denote an element g of Fs as a tuple

g = (. . . , gp1,... ,pnq1,... ,qm , . . . ),

gp1,... ,pnq1,... ,qm ∈ F([p1], . . . , [pn], [q1], . . . , [qm]).

Write

F(δpji ; id) := F(id[p1], . . . , δ
pj
i , . . . , id[pn]; id[q1], . . . , id[qm])

F(id; δqji ) := F(id[p1], . . . , id[pn]; id[q1], . . . , δ
qj
i , . . . , id[qm]).

The differential ds :Fs → Fs+1 is given by

dsg = (. . . , dsgp1,... ,pnq1,... ,qm , . . . ),

with

dsgp1,... ,pnq1,... ,qm :=

(−1)s
n∑

j=1

(−1)p1+...+pj−1

pj∑
i=0

(−1)igp1,... ,pnq1,... ,qm ◦ F(δpii ; id)

−
m∑
j=1

(−1)q1+...+qj−1

qj∑
i=0

(−1)iF(id; δqji ) ◦ gp1,... ,pnq1,... ,qm .

For n = 0, this is the usual complex associated to a functor F : ∆m → Ab,
except with minus the usual differential; if m = 0, this complex has the same
underlying graded group as the complex associated to a functor F : ∆nop → Ab,
but with differential differing by the sign (−1)s in degree s. The first two complexes
are isomorphic, by sending x in degree s to (−1)sx, and the second two complexes
are isomorphic, by sending x in degree s to x if s ≡ 0, 1 mod 4 and to −x if s ≡ 2, 3
mod 4.

2.1.2. The complex of multi-simplicial maps. Let ∆un be the full subcategory of
Sets with the same objects as ∆, i.e., Hom∆un([n], [m]) = HomSets([n], [m]). The
operation of ordered disjoint union, where we identify two finite ordered sets of
the same cardinality by the unique ordered bijection, makes ∆un into a strictly
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associative symmetric semi-monoidal category; this gives us the symmetric semi-
monoidal 2-functor (see Chapter I, §2.3.5, §2.3.6, and (I.2.3.6.1))

π∆un : Ω −→ cat.(2.1.2.1)

We let π0∆un
denote the restriction of π∆un to the underlying category Ω0.

Following (Chapter I, §2.2), we form the category of pairs (π0∆un
,Ω0), which, by

Remark 2.2.3 of Chapter I, has the natural structure of a symmetric semi-monoidal
category.

The projection on the second factor gives the symmetric semi-monoidal functor
pΩ0 : (π0∆un

,Ω0) −→ Ω0; this in turn gives the natural decomposition of the Hom-sets
as

(2.1.2.2) Hom(π0∆un
,Ω)

(
([p1], . . . , [pn], n), (([q1], . . . , [qm]),m)

)
=

∐
F∈HomΩ0 (n,m)

Hom(π∆un ,Ω0)

(
([p1], . . . , [pn], n), (([q1], . . . , [qm]),m)

)
F
,

where
Hom(π0∆un

,Ω0)

(
([p1], . . . , [pn], n), (([q1], . . . , [qm]),m)

)
F

is the set of pairs (g, F ), with

g :π0∆un
(F )([p1], . . . , [pn]) −→ ([q1], . . . , [qm])(2.1.2.3)

a map in Setsm.
Recall from (Chapter I, §2.3.3) that a morphism F :n→ m in Ω0 is a pair (f, σ)

with f :n→ m an ordered surjection, and σ ∈ Sn. Given F :n→ m in Ω0, we may
write π0∆un

(F )([p1], . . . , [pn]) as an m-tuple:

π0∆un
(F )([p1], . . . , [pn])

= (π0∆un
(F )([p1], . . . , [pn])1, . . . , π0∆un

(F )([p1], . . . , [pn])m),

and each π0∆un
(F )([p1], . . . , [pn])j is a disjoint union

π0∆un
(F )([p1], . . . , [pn])j = [pij1 ]

∐
. . .
∐

[pij
sj

],

with {ij1, . . . , i
j
sj} = F−1(j). The map (2.1.2.3) may then be written as

g = (g1, . . . , gn)

gi : [pi] −→ [qF (i)].

The composition in (π0∆un
,Ω0) may then be described as follows: For

g1 :π0∆un
(F 1)([p1], . . . , [pn]) → ([q1], . . . , [qm]),

g2 :π0∆un
(F 2)([q1], . . . , [qm]) → ([r1], . . . , [rk]),

write
g1 = (g11 , . . . , g

1
n)

g1i : [pi] −→ [qF 1(i)],

g2 = (g21 , . . . , g
2
m)

g2j : [qj ] −→ [rF 2(j)].
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Then

(g2, F 2) ◦ (g1, F 1) = (g2 ◦ g1, F 2 ◦ F 1),

where F 2 ◦ F 1 is the composition in Ω0 and

(g2 ◦ g1) = (g1, . . . , gn), gi : [pi] −→ [rF 2(F 1(i))],

gi = g2F 1(i) ◦ g1i .

We let

Hom(π0∆un
,Ω0)ord

(
([p1], . . . , [pn], n), ([q1], . . . , [qm],m)

)
F

⊂ Hom(π0∆un
,Ω0)

(
([p1], . . . , [pn], n), ([q1], . . . , [qm],m)

)
F

denote the subset consisting of pairs (g, F ), with g = (g1, . . . , gn), gi : [pi] → [qF (i)],
such that, for each i = 1, . . . , n, the map gi : [pi] → [qF (i)] is order-preserving. We
set

Hom(π0∆un
,Ω0)ord

(
([p1], . . . , [pn], n), ([q1], . . . , [qm],m)

)
=
∐
F

Hom(π0∆un
,Ω0)ord

(
([p1], . . . , [pn], n), ([q1], . . . , [qm],m)

)
F
.

For n,m ∈ N, let

Hom(π0∆un
,Ω0)ord(n,m) : ∆nop ×∆m −→ Sets(2.1.2.4)

be the functor Hom(π0∆un
,Ω0)ord ((−, n), (−,m)), i.e.,

Hom(π0∆un
,Ω0)ord(n,m)([p1], . . . , [pn]; [q1], . . . , [qm])

= Hom(π0∆un
,Ω0)ord

(
([p1], . . . , [pn], n), ([q1], . . . , [qm],m)

)
,

Hom(π0∆un
,Ω0)ord(n,m)(f, g) = Hom(π0∆un

,Ω0)ord((f, idn), (g, idm)).

The decomposition (2.1.2.2) gives the decomposition

Hom(π0∆un
,Ω0)ord(n,m) =

∐
F∈HomΩ0 (n,m)

Hom(π0∆un
,Ω0)ord(n,m)F .

Let

Z[Hom(π∆un ,Ω0)
ord (n,m)F ] : ∆nop ×∆m → Ab,(2.1.2.5)

be the free abelian group on the functor (2.1.2.4), and let Hom∆Ω0
(n,m)∗F be the

extended total complex of the functor (2.1.2.5). Define the complex

Hom∆Ω0
(n,m)∗ := ⊕F∈HomΩ0 (n,m)

Hom∆Ω0
(n,m)∗F .

2.1.3. Cohomological triviality. We now proceed to compute the cohomology of the
complexes Hom∆Ω0

(n,m)∗.

2.1.3.1. Lemma. Let k > 0 and q ≥ 0 be integers, and let

Hom∆un([p1]
∐

. . .
∐

[pk], [q])ord
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denote the subset of Hom∆un([p1]
∐

. . .
∐

[pk], [q]) consisting of maps whose restric-
tion to each component [pi] is order-preserving. Let C∗q,k denote the complex asso-
ciated to the functor

Cq,k : ∆kop −→ Ab,

Cq,k([p1], . . . , [pk]) = Z[Hom∆un([p1]
∐

. . .
∐

[pk], [q])ord].

Then

Ha(C∗q,k) =

{
0 for a �= 0,
Z for a = 0,

and H0(C∗q,k) is generated by the class of the map [0]
∐

. . .
∐

[0] −→ [q] which has
image 0 ∈ [q].

Proof. The complex C∗q,1 is the chain complex of ordered affine simplicial
chains for the standard q-simplex ∆q, whence the result for k = 1. We proceed by
induction on k.

For a non-negative integer b, let Cq,k−1,b be the functor

Cq,k−1,b : ∆k−1op −→ Ab

Cq,k−1,b([p1], . . . , [pk−1]) = Z[Hom∆un([p1]
∐

. . .
∐

[pk−1]
∐

[b], [q])ord],

and let C∗q,k−1,b be the resulting total complex.
We may form the double complex C∗∗q,k from Cq,k by forming the total complex

with respect to the first k − 1 variables, i.e.,

C−a,−pq,k =
⊕

p1+...+pk−1=a

Cq,k([p1], . . . , [pk−1], [p]).

The total complex associated to C∗∗q,k is just C∗q,k. The subcomplexes F bC∗q,k of C∗q,k
given by taking the total complex of C∗,∗≥bq,k give a filtration of C∗q,k; the resulting
E1-spectral sequence is

Ea,b
1 = Ha(C∗q,k−1,−b) =⇒ Ha+b(C∗q,k).

On the other hand, we have the isomorphism of complexes:

C∗q,k−1,b
∼=

⊕
f∈Hom∆([b],[q])

C∗q,k−1;

this, together with our induction hypothesis, gives the computation of the E1-terms
as

Ea,−b
1 =

{
0 for a �= 0,
Z[Hom∆([b], [q])] for a = 0.

Additionally, the complex E0,∗1 is isomorphic to the complex C∗q,1. Thus the spectral
sequence degenerates at E2 and gives the desired result.

2.1.3.2. Lemma. The complexes Hom∆Ω0
(n,m)∗ satisfy

Ha(Hom∆Ω0
(n,m)∗) =

{
0 if q �= 0,
Z[HomΩ0(n,m)] if q = 0.
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Furthermore, for each F ∈ HomΩ0(n,m), projection on the factor p1 = . . . = pn =
q1 = . . . = qm = 0 gives an isomorphism

H0(Hom∆Ω0
(n,m)∗F )

−→ Z[HomSets([0]
∐

. . .
∐

[0], [0])× . . .×HomSets([0]
∐

. . .
∐

[0], [0])]
∼= Z.

Proof. It suffices to show that, for each morphism F :n → m in Ω0, the
complex Hom∆Ω0

(n,m)∗F is acyclic in non-zero degrees, and that the above pro-
jection gives an isomorphism on H0. Using the action of the symmetric group Sn

on HomΩ0(n,m), we may assume that F = (f, id), where f :n → m is an order-
preserving surjection. We may thus write f as a product f = f1 + . . . + fm, with
each fi :ni → 1 being the unique surjection.

For each j = 1, . . . ,m, and each collection of non-negative integers p1, . . . , pn,
let [pj∗] denote the disjoint union

[pn1+...+nj−1+1]
∐

[pn1+...+nj−1+2]
∐

. . .
∐

[pn1+...+nj ]

(we take n0 = 0). Using the definition of the complexes Hom∆Ω0
(a, b)∗G, we have

the isomorphism

Hom∆Ω0
(n,m)sF

=
∏

Σm
i=1qi−Σn

i=1pi=s

Z[Hom∆un([p1∗], [q1])
ord × . . .×Hom∆un([pm∗ ], [qm])ord]

∼=
∏

Σm
i=1qi−Σn

i=1pi=s

Z[Hom∆un([p1∗], [q1])
ord]⊗Z . . .⊗Z Z[Hom∆un([pm∗ ], [qm])ord].

Denote the complex Hom∆Ω0
(n,m)∗F by T ∗. Fix integers a1, . . . , ak ≥ 0, and

let T ∗a1,... ,ak be the complex with

T s
a1,... ,ak

:= ∏
Σm
i=k+1qi−Σn

i=1pi=s

q1=a1,... ,qk=ak

Z[Hom∆un([p1∗], [q1])
ord]⊗Z . . .⊗Z Z[Hom∆un([pm∗ ], [qm])ord],

and differential defined as in T ∗. We now show that T ∗a1,... ,ak is acyclic in non-zero
degrees and has H0 = Z; we proceed by descending induction on k.

For k = m, the complex T ∗a1,... ,am has term in degree s the finite sum

T s
a1,... ,am =⊕

Σn
i=1pi=−s

Z[Hom∆un([p1∗], [a1])
ord]⊗Z . . .⊗Z Z[Hom∆un([pm∗ ], [am])ord];

thus T ∗a1,... ,am is isomorphic to the tensor product complex

C∗a1,n1 ⊗Z . . .⊗Z C∗am,nm
,

where C∗q,k is the complex considered in Lemma 2.1.3.1. The desired computation
of the cohomology of T ∗a1,... ,am follows from Lemma 2.1.3.1.
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Now suppose k < m and that T ∗a1,... ,ak,b has the desired cohomology for all
indices (a1, . . . , ak, b). Filter the complex T ∗a1,... ,ak by the subcomplexes

T s
a1,... ,ak,qk+1≥b :=∏

Σm
i=k+1qi−Σ

n
i=1pi=s

q1=a1,... ,qk=ak, qk+1≥b

Z[Hom∆un([p1∗], [q1])
ord]⊗Z . . .⊗Z Z[Hom∆un([pm∗ ], [qm])ord].

The quotient complex T ∗a1,... ,ak,qk+1≥b/T
∗
a1,... ,ak,qk+1≥b+1 is then isomorphic to the

complex T ∗a1,... ,ak,b[−b]. This gives us the E1-spectral sequence

Ea,b
1 = Ha(T ∗a1,... ,ak,b) =⇒ Ha+b(T ∗a1,... ,ak);

since the complexes T ∗a1,... ,ak,b are zero for b < 0, and since the degree s terms
T s
a1,... ,ak

are a product (rather than a direct sum), this spectral sequence is (weakly)
convergent.

By our induction hypothesis, we have Ea,b
1 = 0 for a �= 0 and E0,b1

∼= Z. One
easily checks that the differential E0,b1 −→ E0,b+11 is zero for b even and the identity
for b odd, hence the spectral sequence degenerates at E2, and gives the desired
result for the cohomology of T ∗a1,... ,ak .

Similarly, if we take a1 = . . . = ak+1 = 0, and if we assume that the projection
on the factor p1 = . . . = pn = 0, qk+1 = . . . = qm = 0 gives an isomorphism

H0(T ∗a1,... ,ak,ak+1
)

−→ Z[HomSets([0]
∐

. . .
∐

[0], [a1])× . . .×HomSets([0]
∐

. . .
∐

[0], [ak+1])],

it follows that the projection

H0(T ∗a1,... ,ak)

−→ Z[HomSets([0]
∐

. . .
∐

[0], [a1])× . . .×HomSets([0]
∐

. . .
∐

[0], [ak])]

is an isomorphism as well. The lemma then follows by taking k = 0.

2.1.4. Let (C,×, t) be a tensor category without unit.
Recall from (Chapter I, §2.3.6, §2.4.3, and Remark 2.4.6) the 2-functor

ΠC : Ω −→ catAb,

the restriction Π0C to Ω0, the pre-tensor categories (ΠC ,Ω0) and (ΠC ,Ω), and the
tensor categories (ΠC ,Ω0)⊕ and (ΠC ,Ω)⊕ = C⊗,c.

The inclusion Ω0 → Ω induces the pre-tensor functor c0 : (ΠC ,Ω0) −→ (ΠC ,Ω),
which in turn induces the tensor functor c0(C) : (ΠC ,Ω0)⊕ −→ (ΠC ,Ω)⊕ = C⊗,c. We
have as well the inclusion functor iC : C → C⊗,c, which is the universal commutative
external product on C (see Chapter I, Proposition 2.4.4 and Proposition 2.4.5).

We have the additive category Z∆un generated by ∆un; the symmetric semi-
monoidal structure on ∆un gives Z∆un the structure of a tensor category without
unit.

We make Z∆un a graded category by giving a map f : [p] → [q] degree q−p. If we
have maps f1 : [p1] → [q1] and f2 : [p2] → [q2], define f1 ⊗ f2 : [p1]

∐
[p2] → [q1]

∐
[q2]

by

f1 ⊗ f2 := (−1)p1(q2−p2)(f1
∐

f2).



2. CATEGORICAL COCHAIN OPERATIONS 461

Define τ[p],[q] : [p]
∐

[q] → [q]
∐

[p] by

τ[p],[q] = (−1)pqt[p],[q]

where t[p],[q] is the symmetry in ∆un. This makes Z∆un into a graded tensor
category without unit.

The 2-functor (2.1.2.1) extends to the 2-functor ΠZ∆un : Ω → catGrAb and gives
the restriction Π0Z∆un

: Ω0 → catGrAb. The graded tensor structure on Z∆un makes
the category of pairs (Π0Z∆un

,Ω0) into a graded pre-tensor category without unit.

2.1.5. The category of multi-simplices. We proceed to construct the DG tensor cat-
egory C⊗,sh. The objects are finite direct sums of pairs ((x1, . . . , xn), n), with n ∈ N
and x1, . . . , xn objects of C.

For pairs

(x, n) := ((x1, . . . , xn), n),

(y,m) := ((y1, . . . , ym),m),

and a morphism F :n→ m in Ω0, define the complex

((x, n), (y,m))∆F := HomC⊗m(ΠC(F )(x), y) ⊗Z τ≤0Hom∆Ω0
(n,m)F ,(2.1.5.1)

where, for a complex C, τ≤0C is the canonical truncation

τ≤0Cp :=


Cp; for p < 0

ker(C0 d0−→ C1); for p = 0
0; for p > 0.

We have the map

◦ : ((y,m), (z, k))∆G ⊗Z ((x, n), (y,m))∆F −→ ((x, n), (z, k))∆G◦F(2.1.5.2)

induced by the composition in the categories (Π0C ,Ω0) and (Π0Z∆un
,Ω0):

(h2 ⊗ (. . . gq1,... ,qm2,r1...rk
. . . )) ◦ (h1 ⊗ (. . . gp1,... ,pn1,q1...qm

. . . ))

= h2 ◦ΠC(G)(h1)⊗ (. . .Σ(q1,... ,qm)g
q1,... ,qm
2,r1...rk

◦ΠZ∆un(G)(gp1,... ,pn1,q1...qm
) . . . )

(note that the sum is finite).
Similarly, the tensor products in (Π0C ,Ω0) and (Π0Z∆un

,Ω0) induces the tensor
product

(2.1.5.3) • : ((x1, n1), (y1,m1))∆F1 ⊗Z ((x2, n2), (y2,m2))∆F2
−→ ((x1, x2), n1 + n2), ((y1, y2),m1 + m2))∆F1+F2

by

(h1 ⊗ (. . . gp1,... ,pn11,q1...qm1
. . . )) • (h2 ⊗ (. . . g

p′
1,... ,p

′
n2

2,q′1...q
′
m2

. . . ))

= (h1 ⊗ h2)⊗ (. . . gp1,... ,pn11,q1...qm1
⊗ g

p′
1,... ,p

′
n2

2,q′1...q
′
m2

. . . ).

The differential structure on the complex ((x, n), (y,m))∆F is given by the dif-
ferential in the factor τ≤0Hom∆Ω0

(n,m)F .
Let τa,b : a + b→ b + a be the symmetry (2.3.3.4) in Ω0. The symmetry

τ(x,a),(y,b) ∈ ((x, y, a + b), (y, x, b + a))∆τa,b(2.1.5.4)
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is given by

τ(x,a),(y,b) = idy,x ⊗
∏

[p1],... ,[pa];[q1],... ,[qb]

(−1)Σi,jpiqj id([q1],... ,[qb]) × id([p1],... ,[pa]).

Let F :n → m a morphism in Ω0, and let η :F → η · F be a 2-morphism in Ω
(see §2.3.5 of Chapter I). For g ∈ Hom∆Ω0

(n,m)dF ,

g =
∏

p1,... ,pn;q1,... ,qm

gp1,... ,pnq1,... ,qm ,

gp1,... ,pnq1,... ,qm :π∆un(F )([p1], . . . , [pn]) −→ ([q1], . . . , [qm]),

define

η · g ∈ Hom∆Ω0
(n,m)dη·F

by

η · g =
∏

p1,... ,pn;q1,... ,qm

(η · g)p1,... ,pnq1,... ,qm ,

where

(η · g)q1,... ,qmp1,... ,pn :π∆un(η · F )([p1], . . . , [pn]) −→ ([q1], . . . , [qm])

is the map

(η · g)p1,... ,pnq1,... ,qm = gp1,... ,pnq1,... ,qm ◦ΠZ∆un(η)([p1], . . . , [pn])−1.

Similarly, for h ∈ HomC⊗m(ΠC(F )(x), y), define

η · h := h ◦ΠC(h)(x)−1.

For a 2-morphism η :F → η · F , and for g ⊗ h ∈ ((x, n), (y,m))∆F , we define

η · (g ⊗ h) := (η · g)⊗ (η · h) ∈ ((x, n), (y,m))∆η·F .(2.1.5.5)

We then define HomC⊗,sh((x, n), (y,m)) as the quotient complex of the sum of the
complexes (2.1.5.1)

HomC⊗,sh((x, n), (y,m)) := ⊕F∈HomΩ0(n,m)
((x, n), (y,m))∆F / ∼,(2.1.5.6)

where ∼ is the equivalence relation (g ⊗ h) ∼ η · (g ⊗ h).
One checks by direct computation that the Hom-complexes (2.1.5.6), with com-

position (2.1.5.2), tensor product (2.1.5.3) and symmetry (2.1.5.4) defines a DG
tensor category C⊗,sh.

We have the inclusion functor ish

C : C → C⊗,sh defined by

ish

C (x) = (x, 1)

ish

C (f :x→ y) = f ⊗ (. . . id[p] . . . ).
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2.1.6. The homotopy commutative external product. For [p], [q] ∈ ∆, have the Alex-
ander-Whitney map f[p],[q] := fp,qp ∪ fp,qq : [p]

∐
[q] → [p + q] (1.2.1.1),

f[p],[q](i) =

{
i; if i is in [p],
i + p; if i is in [q].

Let F21 : 2 → 1 be the map (I.2.3.3.5) in Ω0, and let �δ ∈ Hom∆Ω0
(2, 1)0F21 be the

morphism defined by the product
∏

p,q f[p],[q]. One easily checks the associativity
relation:

�δ ◦ (id1 ⊗�δ) = �δ ◦ (�δ ⊗ id1);

the relation d�δ = 0 follows from the identity (1.2.1.3). For x, y in C, we let

�sh
x,y : (x, y, 2) −→ (x× y, 1)(2.1.6.1)

be the map given by

idx×y ⊗�δ ∈ ((x, y, 2), (x × y, 1))F21 .

If q : C → D is a symmetric semi-monoidal functor, we have the induced functor

q⊗,sh : C⊗,sh −→ D⊗,sh(2.1.6.2)

defined by

q⊗,sh((x1, . . . , xn), n) = ((q(x1), . . . , q(xn)), n);

q⊗,sh(g ⊗ h) = q⊗(g)⊗ h.

2.1.7. Theorem. (i) Sending C to C⊗,sh and q : C → D to q⊗,sh :C⊗,sh −→ D⊗,sh

gives a functor from tensor categories without unit to DG tensor categories without
unit.
(ii) There is a natural (in C) DG tensor functor cC : C⊗,sh −→ C⊗,c with

cC(�sh
x,y) = �x,y

for all x, y in C, and with

cC ◦ ish

C = icC .

(iii) The functor cC is a homotopy equivalence.

Proof. We leave the elementary verification of (i) to the reader. Let F :n→ m
be a map in Ω0. The canonical map of complexes

H0 : τ≤0Hom∆Ω0
(n,m)F −→ H0(Hom∆Ω0

(n,m)F )(2.1.7.1)

is by Lemma 2.1.3.2 a quasi-isomorphism; in addition, we have the isomorphism

H0(Hom∆Ω0
(n,m)F ) −→ Z.(2.1.7.2)

Let
ψF : τ≤0Hom∆Ω0

(n,m)F −→ Z

be the composition of the maps (2.1.7.1) and (2.1.7.2), and let⊕
F∈HomΩ0(n,m)

((x, n), (y,m))∆F
Ψ̃−→

⊕
F∈HomΩ0(n,m)

HomC⊗m(ΠC(F )(x), y)

= Hom(Π0
C,Ω0)

((x, n), (y,m))
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be the map Ψ̃((h ⊗ g)F ) = (ψF (g) · h)F , where (x)F denotes the element x in the
summand indexed by F . One easily checks that, for a 2-morphism η :F → η · F in
Ω, the map Ψ̃ satisfies

Ψ̃(η · h⊗ η · g)η·F = η · Ψ̃((h⊗ g)F ),

hence Ψ̃ descends to the map

Ψ: HomC⊗,sh((x, n), (y,m)) −→ HomC⊗,c((x, n), (y,m)).

One checks directly that Ψ is compatible with the tensor structure in C⊗,sh and C⊗,c,
giving us the functor cC . The relations in (ii) follows directly from the definitions.

For (iii), we have the commutative diagram

⊕F ((x, n), (y,m))F ��

��

Hom(Π0
C,Ω0)

((x, n), (y,m))

��

HomC⊗,sh((x, n), (y,m)) �� HomC⊗,c((x, n), (y,m)),

with the top map a quasi-isomorphism. The vertical arrows are the quotient maps
induced by the equivalence relation defined by the action of the 2-morphisms in
Ω. As this action is given via the action of a finite group, which acts freely on the
unique non-zero cohomology H0, the bottom map is a quasi-isomorphism as well,
completing the proof.

2.2. Categorical cochain operations

We now show how a functor from C to cosimplicial objects in a tensor category B
gives rise to a functor from C⊗,sh to complexes in B (see also [65]).

2.2.1. Let B be a tensor category with operation ⊗. We have the category c.s.B
of cosimplicial objects of B, i.e, functors from ∆ to B. Let F : C → c.s.B be a
functor. We define ccF : C → C+(B) to be the cochain complex associated to F, i.e,
ccFn = F([n]) and δn : Fn → Fn+1 is the usual alternating sum

∑n+1
i=0 (−1)iF(δin).

2.2.2. Multiplicative structure. Let C be an additive category. We may view a
functor F : C → c.s.B as a functor from C × ∆ to B. If we have two functors
F1,F2 : C → c.s.B, define F1 ⊗ F2 :C⊗2 → c.s.B by taking the diagonal cosimplicial
object associated to the functor

F1 � F2 :C⊗2 ×∆2 → B
F1 � F2(X1, X2; [m1], [m2]) = F1(X1)([m1])⊗ F2(X2)([m2])

In particular, given F :C → c.s.B, we have the functor F⊗n : C⊗n → c.s.B.
Let (C,×, a, t) be a tensor category without unit. A multiplication on F : C →

c.s.B is a natural transformation

µ : F⊗2 → F ◦ ×

which is commutative and associative, in the obvious sense. Concretely, µ is given
by maps µX,Y : F(X)⊗ F(Y ) → F(X × Y ) in c.s.B, which are natural in X and Y ,
and which have the evident associativity and commutativity properties.

The semi-monoidal structure on C gives via (I.2.3.6.1) the functor ΠC : Ω → cat
and the category of pairs (ΠC , C). The associativity and commutativity of the
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multiplication µ implies that the association

(X1, . . . , Xn;n) �→ F
⊗n(X1, . . . , Xn)

(f1 :X1 → Y1, . . . , fn :Xn → Yn;n) �→ F
⊗n(f1, . . . , fn)

(F21, idX×Y ) �→ µ(X,Y )

(τ1,1, (idY , idX)) �→ τF(X),F(Y ) : F(X)⊗ F(Y ) → F(Y )⊗ F(X)

extends uniquely to a functor

F
⊗ : (ΠC , C) → c.s.B(2.2.2.1)

2.2.3. The functor ccF⊗,sh. Suppose that our functor F of §2.2.1 has a multiplication
µ, as in §2.2.2. We proceed to define a functor of DG tensor categories (without
unit)

ccF⊗,sh : C⊗,sh → C+(B).

For an object (X1, . . . , Xn) of C⊗,sh, set

ccF⊗,sh
(
(X1, . . . , Xn)

)
= ccF(X1)⊗ . . .⊗ ccF(Xn).

Let F :n→ m be a morphism in Ω0, let g = (. . . gp1,... ,pnq1,... ,qm . . . ) be in Hom∆Ω0
(n,m)sF ,

and let X1, . . . , Xn be objects of C. Write ΠC(F )(X1, . . . , Xn) = (Y1, . . . , Ym), and
let hi :Yi → Zi, i = 1, . . . ,m, be morphisms in C. This gives us the morphism

H := (h1 ⊗ . . .⊗ hm)⊗ g : (X1, . . . , Xn;n) → (Z1, . . . , Zm;m)

in C⊗,sh. Write F as F = (f, σ), with σ ∈ Sn and f ∈ S<
n→m. We write the set

f−1(j) as {aj, aj + 1, . . . , aj+1 − 1} with 1 = a1 < a2 < . . . < am < am+1 = n + 1
(recall that f is surjective and order-preserving).

For positive integers c1, . . . , cm we have the weighted sign map

sgnc1,... ,cm :Sm → {±1}

gotten by having ρ ∈ Sm act on [Σici] ∼= [c1]
∐

. . .
∐

[cm] by permuting the blocks
[ci] and taking the sign.

We define ccF⊗,sh(H) as follows: We have

ccF⊗,sh
(
(X1, . . . , Xn)

)t =
⊕

p1,... ,pn
Σipi=t

F(X1)([p1])⊗ . . .⊗ F(Xn)([pn]).

For each pair of tuples (p1, . . . , pn), (q1, . . . , qm), the map gp1,... ,pnq1,... ,qm is a collection
of ordered maps gi : [pi] → [qF (i)] = [qf(σ(i))], i = 1, . . . , n. We may then form the
composition

(2.2.3.1) F(X1)([p1])⊗ . . .⊗ F(Xn)([pn])
sgnp1,... ,pn(σ)τσ−−−−−−−−−−−→ F(Xσ−1(1))([pσ−1(1)])⊗ . . .⊗ F(Xσ−1(n))([pσ−1(n)])

F(Xσ−1(1))(gσ−1(1))⊗...⊗F(Xσ−1(n))(gσ−1(n))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
F(Xσ−1(1))([q1])⊗ . . .⊗ F(Xσ−1(n))([qm]).
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Writing out the last line, the image of the map (2.2.3.1) is the tensor product

F(Xσ−1(1))([q1])⊗ . . .⊗ F(Xσ−1(a2−1))([q1])⊗
F(Xσ−1(a2))([q2])⊗ . . .⊗ F(Xσ−1(a3−1))([q2])⊗

...

F(Xσ−1(am))([qm])⊗ . . .⊗ F(Xσ−1(n))([qm]).

For each j = 1, . . . ,m, the identity Yj = Xσ−1(aj) × . . .×Xσ−1(aj+1−1) determines
the map

φj = (idYj , Faj+1−aj ,1) : (Xσ−1(aj), . . . , Xσ−1(aj+1−1)) → Yj

in (Π0C , C). We may therefore compose (2.2.3.1) with the composition

F(Xσ−1(1))([q1])⊗ . . .⊗ F(Xσ−1(n))([qm])

F
⊗(φ1)⊗...⊗F

⊗(φm)−−−−−−−−−−−−−→ F(Y1)([q1])⊗ . . .⊗ F(Ym)([qm])
F(h1)([q1])⊗...⊗F(hm))([qm])−−−−−−−−−−−−−−−−−−−→ F(Z1)([q1])⊗ . . .⊗ F(Zm)([qm])

to give the map ccF⊗,sh(H)p1,... ,pnq1,... ,qm . Taking the sum over all indices (p1, . . . , pn),
(q1, . . . , qm) gives the map

ccF⊗,sh(H) : ccF⊗,sh
(
(X1, . . . , Xn)

)
→ ccF⊗,sh

(
(Z1, . . . , Zn)

)
.

We extend the definition of ccF⊗,sh(H) to arbitrary morphisms H by linearity.

2.2.4. Theorem. The association

(X1, . . . , Xn) �→ ccF⊗,sh
(
(X1, . . . , Xn)

)
H �→ ccF⊗,sh(H)

for X1, . . . , Xn objects of C, and H a morphism in C⊗,sh, defines a functor of DG
tensor categories without unit

ccF⊗,sh : C⊗,sh → C+(B).

Proof. The proof is a straightforward verification, which we leave to the
reader; in fact the data for the DG category C⊗,sh was chosen precisely with this
result in mind.

3. Homotopy limits

We conclude this chapter with a discussion of homotopy limits. We give a
description of the homotopy limit of a functor with values in a DG category, for lack
of a suitable reference. We then recall the Bousfield-Kan construction of homotopy
limits for simplicial sets [25], and relate the two constructions.

3.1. Cohomology for diagrams

We give a review of some notions, constructions and results from [3, exposé V].
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3.1.1. Cohomology over a category. Let I be a small category, giving us the category
AbI of functors F : I → Ab. The category AbI is an abelian category, with
kernels and cokernels given pointwise, i.e., F ′ → F → F ′′ is exact if and only if
F ′(i) → F (i) → F ′′(i) is exact for all i ∈ I.

We have the exact forgetful functorAbI →
∏

I Ab; applying [3, V, Proposition
0.2], the category AbI has enough injectives. We have the DG category C(AbI),
which we identify with the category of functors to Z0C(Ab), and the homotopy
category K(AbI), as well as the derived category D(AbI).

Given A,B in C(AbI) = [Z0C(Ab)]I , we have the complex HomI(A,B) of
natural transformations f :A→ B.

Define the functor H0(I,−) :AbI → Ab to be the projective limit functor

H0(I, F ) := lim←
I

F.

Letting ZI be the constant functor with value Z, we have the identity

H0(I, F ) = HomAbI (ZI , F );

in particular, H0(I,−) is left exact. We define the cohomology over I,

Hp(I,−) :AbI → Ab,

to be the pth right-derived functor of H0(I,−). We then have the identity

Hp(I, F ) = Extp
AbI (ZI , F )

and H0(I,−) extends to a cohomological functor

H0(I,−) :K(AbI) → Ab.

3.1.2. Let F be in C(AbI). Define the functor Hp(F ) : I → Ab by Hp(F )(i) :=
Hp(F (i)).

We have the spectral sequence

Ep,q
2 := Hp(I,Hq(F )) =⇒ Hp+q(I, F )(3.1.2.1)

which is convergent if F is in C+(AbI), or if I has finite cohomological dimension.
Thus, the cohomological functor H0(I,−) on K+(AbI) defines the cohomological
functor

H0(I,−) :D+(AbI) → Ab,

and extends to the cohomological functor

H0(I,−) :D(AbI) → Ab,

if I has finite cohomological dimension.

3.2. Homotopy limits in a DG category

3.2.1. Nerves. If (S,<) is a partially ordered set, we may consider S as a cate-
gory with a unique morphism from i to j exactly when i ≤ j, and no morphisms
otherwise; we write the morphism from i to j as i ≤ j. Each order-preserving
map of partially ordered sets is thus a functor on the corresponding categories, and
conversely. For example, we may consider the category ∆ as having objects the
categories [n], with maps being the functors from [n] to [m].
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Let I be a small category. Define the nerve of I, N (I), as the simplicial set

N (I)(−) := Homcat(−, I) : ∆op → Sets.

Explicitly, N (I)([n]) is the set of composable sequences of n morphisms in I:

i0
f1−→ i1 −→ . . .

fn−→ in.

A simplex i0
f1−→ . . .

fn−→ in in N (I) is degenerate if some fi is an identity mor-
phism; non-degenerate otherwise; we let Nn.d.(I)([n]) be the set of non-degenerate
simplices.

We call a category I finite if N (I) has only finitely many non-degenerate sim-
plices, i.e., the geometric realization of N (I) is a finite CW complex.

The formation of the nerve is functorial in the category I. A natural transfor-
mation ω : f → g of functors f, g :J → I is the same as a functor

(f, g, ω) : J × {0 < 1} → I,

where {0 < 1} is the category associated to the ordered set {0 < 1}, and

(f, g, ω)J×0 := f ; (f, g, ω)J×1 := g; (f, g, ω)(idX × (0 < 1)) := ω(X).

Taking nerves gives the map of simplicial sets N (f, g, ω) :N (J ×{0 < 1}) → N (I);
since

N (J × {0 < 1}) = N (J)×N ({0 < 1}) = N (J)× [0, 1],

the map N (f, g, ω) gives a homotopy between N (f) and N (g). In particular, a
choice of an initial object or a final object of I gives a contraction of N (I).

3.2.2. Additive homotopy limits. Let C be in C(AbI) = [Z0C(Ab)]I . For s : [n] →
I in N (I)([n]), define C(s) := C(s(n)). Let g : [n] → [k] be a map in ∆, and let
t : [k] → I be a functor (i.e., t is an element of N (I)([k])). Then, as g(n) ≤ k, we
have the morphism t(g(n) ≤ k) : t(g(n)) → t(k) in I. We let

C(g) :C(t ◦ g) → C(t)

denote the map C(t(g(n) ≤ k)) :C(t(g(n))) → C(t(k)).
Let Cδ be the following cosimplicial object of C(Ab):

Cδ([n])m :=
∏

s∈N (I)([n])
C(s(n))m

with differential the product of the differentials dm(C(s(n))). For g : [n] → [k] in
∆, let Cδ(g) :Cδ([n]) → Cδ([k]) be the map defined by

πt(Cδ(g)) = C(g) ◦ πt◦g,
where πt :Cδ([k]) → C(t) is the projection on the factor C(t), and similarly for
πt◦g.

We may then form the double complex Cδ∗ associated to cosimplicial complex
Cδ, and define holimI(C) to be the extended total complex of Cδ∗.

3.2.3. Example. Let X be a topological space, U := {U0, . . . , Un} an open cover
of X . Let O(X) be the category of open subsets of X .

Let [n] denote the category of non-empty subsets of the set {0, . . . , n}, with
maps the inclusions of subsets. We have the functor U : [n]op → O(X) defined by
U(I) := ∩i∈IUi.
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An abelian presheaf P on X gives the functor P◦U : [n] → Ab. Then holim[n] P◦
U is the standard (unordered) Čech complex for P with respect to the cover U .

3.2.4. Let S be a simplicial set, ZS the simplicial abelian group with n-simplices
the free abelian group on the set S([n]). The complex C∗(S; Z) associated to ZS is
the complex of integral simplicial chains of S; we consider C∗(S; Z) as a complex
C∗(S; Z) with differential of degree +1, and with Ck(S,Z) := C−k(S; Z). We may
form the complex, C∗(S; Z)n.d., of non-degenerate simplices, gotten by taking the
quotient of Cn(S; Z) by the images S(σ)(Cm(S; Z)) where σ : [n] → [m] is a non-
injective map in ∆.

More generally, if we have a simplicial abelian group A, we let C∗(A) denote
the chain complex Cm(A) := A([−m]), with usual alternating sum as differential;
we have the quotient complex of non-degenerate simplices C∗(A)n.d. defined as the
quotient of C∗(A) as above.

3.2.5. For i ∈ I, let I/i be the category of morphisms j → i in I. For a morphism
s : i→ i′ in I, we have the functor

s∗ : I/i→ I/i′

s∗(t : j → i) = s ◦ t : j → i′

This gives us the functor

N (I/−) : I → s.Sets

i �→ N (I/i)

Taking the complex C∗(N (I/i); Z) of integral simplices gives us the functor
C∗(N (I/−); Z) : I → C−(Ab).

3.2.6. Lemma. Let F be in C(AbI).
(i) There is a natural isomorphism

HomI(C∗(N (I/−); Z),F) → holim
I

F .

(ii) The natural map

HomI(C∗(N (I/−); Z)n.d.,F) → HomI(C∗(N (I/−); Z),F)

is a quasi-isomorphism.
(iii) Suppose that F is in C+(AbI) or that I is finite. There is a natural isomor-
phism

Hp(I,F) → Hp(holim
I

F).

Proof. For (i), we may assume that F is inAbI . Define the map N (I)([n]) →∐
i∈I N (I/i)([n]) by sending i0

f1−→ . . .
fn−→ in to

i0 ��
f1

��
fn◦...◦f1 ��

��
��

��
. . . ��

fn
in

!!
idin��

��
��
�

in
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in N (I/in). This induces the injective map

ι : holim
I

F →
∏
i∈I

Hom(C∗(N (I/i); Z),F(i)),

where Hom is the complex of maps in C(Ab); one easily sees that ι has image in
the subcomplex HomI(C∗(N (I/−); Z),F).

Suppose we have an n-simplex

σ :=

i0 ��
f1

��
s0 ��

��
��

��
. . . ��

fn
in

!!
sn

��
��
��
��

i

in N (I/i). We have the element

σ′ :=

i0 ��
f1

��
fn◦...◦f1 ��

��
��

��
. . . ��

fn
in

!!
idin��

��
��
�

in

of N (I/in), with sn∗(σ′) = σ. Thus, if f :C∗(N (I/−); Z) → F is a map, we have
f(i)(σ) = F(s)(f(in)(σ′)). This implies that ι is surjective, proving (i).

For (iii), first assume that F is in AbI . As I/i has the final object i
id−→ i,

N (I/i) is contractible, hence the augmentation C∗(N (I/i); Z) → Z is a quasi-
isomorphism, i.e., the augmentation C∗(N (I/−); Z) → ZI forms a resolution of
ZI . It thus suffices to show that the individual terms Cm(N (I/−); Z) are projective
objects of AbI .

Suppose then we have a map p :F → G in AbI such that p(i) :F (i) → G(i) is
surjective for all i ∈ I, and a map g :Cm(N (I/−); Z) → G. Take i ∈ I, and

σ :=

i0 ��
f1

��
s0 ��

��
��

��
. . . ��

fn
in

!!
sn

��
��
��
��

i

in N (I/i)([n]). As above, we have the simplex

σ′ :=

i0 ��
f1

��
fn◦...◦f1 ��

��
��

��
. . . ��

fn
in

!!
idin��

��
��
�

in

in N (I/in), with sn∗(σ′) = σ in N (I/i). Thus

g(i)(σ) = G(sn)(g(in)(σ′)).

Choose f(σ′) ∈ F (in) lifting g(in)(σ′), and define f(i)(σ) := F (sn)(f(σ′)).
One easily checks that this gives a map f :Cm(N (I/−); Z) → F with p ◦ f = g,
as desired. The result (iii) for F in C+(AbI) follows from the case of AbI by
devissage.
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It is well-known (see e.g. [95, Chapter V]) that, for a simplicial group A, the
map C∗(A) → C∗(A)n.d. is a homotopy equivalence. In particular, the augmenta-
tion C∗(N (I/−); Z)n.d. → ZI gives a resolution of ZI . Arguing as above, we see
that Cn(N (I/−); Z)n.d. is projective for each n, proving (ii).

If I is finite, N (I) is a finite dimensional complex, hence C∗(N (I/−); Z)n.d.
gives a finite projective resolution of ZI . We thus have the natural isomorphism

Hp(HomI(C∗(N (I/−); Z),F))
∼= Hp(HomI(C∗(N (I/−); Z)n.d.,F)) ∼= Hp(I,F)

for all F in C(AbI).

3.2.7. Non-degenerate holim. If F : I → Z0C(Ab) is a functor, we have the sub-
complex holimI, n.d.F of holimI F gotten by taking the product∏

σ∈N (I)([n])n.d.

F(σ)

and including in holimI Fn by filling in the remaining factors with 0’s. The proof
of Lemma 3.2.6 identifies holimI, n.d.F with HomI(C∗(N (I/−); Z)n.d.,F), hence
the inclusion

holim
I, n.d.

F → holim
I

F

is a quasi-isomorphism.
Suppose I is a finite category. Then holimI, n.d.Fn is a finite product of terms

of the form F(i), i ∈ I. Thus, suppose we have a functor F : I → Z0Cb(A), where
A is a DG category. Using the same formula as for the case A = Ab, we have the
complex

holim
I, n.d.

F ∈ Cb(A),

functorial in F and in A. Explicitly, for σ ∈ N (I)([n]), set

F(σ) :=

{
F(σ(n)); for σ ∈ N (I)([n])n.d.,
0; otherwise,

and define

honn.d.F :=
⊕

σ∈N (I)([n])n.d.

F(σ).

For g : [m] → [n] in ∆, we have the (degree 0) map

hon.d.F(g) : homn.d.F [−m] → honn.d.F [−m]

induced by the maps

F(σ(g(m) ≤ n)) :F(σ ◦ g) → F(σ); σ ∈ N (I)([n]).

We have the degree zero map
m∑
i=0

(−1)ihon.d.F(δmi ) : hon.d.Fm[−m] → hon.d.Fm+1[−m];(3.2.7.1)

let dm : hon.d.Fm[−m] → hon.d.Fm+1[−m− 1] be the be the degree 1 map induced
by (3.2.7.1). We then have the object hon.d.F := {homn.d.F ; dm} of Cb(Cb(A)); we
let holimI,n.d.F in Cb(A) be the total complex Tot(hon.d.F) (Chapter II, §1.2.9).
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3.2.8. Functoriality. Let I and J be small categories, and let ι : J → I, X : I →
Z0C(Ab), and Y : J → Z0C(Ab) be functors. Let f :X ◦ ι → Y be a natural
transformation.

The collection of maps f(σ) :X(ι◦σ) → Y (σ), σ ∈ N (J)([n]), defines the maps

(f, ι)n :
∏

τ∈N (I)([n])
X(τ) →

∏
σ∈N (J)([n])

Y (σ); n = 0, 1, . . . ,

which in turn define the natural map

holim
J

f ◦ ι∗ : holim
I

X → holim
J

Y.

Restricting to the subcomplex holimI, n.d.X gives the natural map

holim
J, n.d.

f ◦ ι∗n.d. : holim
I, n.d.

X → holim
J, n.d.

Y.

If I and J are finite categories, A a DG category, ι : J → I, X : I → Z0Cb(A),
and Y : J → Z0Cb(A) functors, and f :X ◦ ι → Y a natural transformation, we
have the map ⊕

τ∈N (I)([n])n.d.

X(τ) →
⊕

σ∈N (J)([n])n.d.

Y (σ)

defined by the collection of maps f(σ) :X(ι ◦ σ) → Y (σ), σ ∈ N (J)([n])n.d., as
above. This defines the natural map

holim
J, n.d.

f ◦ ι∗n.d. : holim
I, n.d.

X → holim
J, n.d.

Y.

These maps make holimI and holimI, n.d. into functors.

3.2.9. The homotopy limit distinguished triangle. As in §3.2.7, let A be a DG cat-
egory, let I be a finite category, and let F : I → Z0Cb(A) be a functor, giving us
the non-degenerate homotopy limit holimI, n.d.F in Cb(A).

Since I is finite, there exist minimal objects of I, i.e., an object i such that
HomI(j, i) = ∅ for all j �= i. Since I is finite, we have HomI(i, i) = {id}.

Take a minimal i ∈ I, giving us the full subcategory I \ {i} of I, with inclusion
functor jI\{i}. We have as well the inclusion functor ji : {i} → I. The identity
natural transformations on F ◦ jI\{i} and F ◦ ji give the maps

j∗I\{i} : holim
I, n.d.

F → holim
I\{i}, n.d.

F|I\{i},

j∗i : holim
I, n.d.

F → holim
{i}, n.d.

F(i) = F(i).

Let Ii/ be the category of morphisms s : i → j in I, with j �= i, where a
morphism (s : i → j) → (s′ : i → j′) is a map t : j → j′ with s′ = t ◦ s. Let
F i/ : Ii/ → Z0Cb(A) be the functor F i/(s : i→ j) = F(j).

Mapping F(i) to F i/(s : i→ j) = F(j) by the map F(s), and summing over s
gives the map

j∗Ii/,i :F(i) → holim
Ii/, n.d.

F i/.
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For an n-simplex i0
s1−→ i1

s2−→ . . .
sn−→ in in N (I \ {i}), and for s : i→ i0, let σs

be the element

i0 ��
s1 . . . ��

sn
in

i

��

s

��������

��

sn...s1s

��������

of N (Ii/)([n]). Sending F(σ) to F i/(σs) by the identity on F(in) and summing
over all s : i→ j in Ii/ defines the map

j∗Ii/,I\{i} : holim
I\{i}, n.d.

F|I\{i} → holim
Ii/, n.d.

F i/.

We have the identity holimI F = cone(j∗
Ii/,i

− j∗
Ii/,I\{i})[−1], with the natural

map holimI F → F(i)⊕ holimI\{i}, n.d.F|I\{i} being (j∗i , j
∗
I\{i}). This gives us the

homotopy limit distinguished triangle in Kb(A)

(3.2.9.1) holim
I, n.d.

F
(j∗i ,j

∗
I\{i})−−−−−−→ F(i)⊕ holim

I\{i}, n.d.
F|I\{i}

j∗
Ii/,i

−j∗
Ii/,I\{i}−−−−−−−−−−→ holim

Ii/, n.d.
F i/ → holim

I, n.d.
F [1],

natural in F . One immediate application of (3.2.9.1) is

3.2.10. Proposition. Let I be a finite category, A a DG category, and D a local-
ization of Kb(A). Let f :F → G be a natural transformation of functors F ,G : I →
Z0Cb(A) such that f(i) :F(i) → G(i) is an isomorphism in D for all i ∈ I. Then

holim
I, n.d.

f : holim
I, n.d.

F → holim
I, n.d.

G

is an isomorphism in D.

Proof. We define the dimension of a finite category J to be the maximal
n for which there is a sequence of non-identity morphisms j0

s1−→ . . .
sn−→ jn in

J ; this is the same as the maximal n for which N (J)n.d.([n]) is non-empty. Let
N := dim I; we may assume the result for all finite J with dim J ≤ N , and with
|N (J)n.d.([N ])| < |N (I)n.d.([N ])|.

Since I is finite, there is a minimal element i with |N (I \ {i})n.d.([N ])| <
|N (I)n.d.([N ])|; we obviously have dim Ii/ < dim I.

The distinguished triangle (3.2.9.1) and the similar triangle with F replaced
by G give distinguished triangles in D; the map f induces a map of distinguished
triangles. Thus, our induction assumption together with the five lemma in the
triangulated category D shows that holimI, n.d. f is an isomorphism in D.

3.3. Cohomology and homotopy limits

3.3.1. Hypercohomology. Let I be a small category, and X : I → Top a functor.
Pulling back the site Top via X gives the site X , the category X̃ of sheaves on
X and the category X̂ of presheaves on X . In particular, the sheaf category is
a full subcategory of the presheaf category. We let ShAb

X denote the category of
sheaves of abelian groups on X ; we have the constant sheaf ZX on X . The functor
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H0(X,−) from ShAb
X to Ab is defined as H0(X,−) := HomShAb

X
(ZX ,−). We have

as well the functor H0 :TopI → AbI defined by

H0(S)(i) := H0(X(i), S(i)),

and the identity

H0(I,H0(S)) = H0(X,S).(3.3.1.1)

We let

H0(X,−) :D+(ShAb
X ) → Ab

denote the extension of H0(X,−) to complexes. If I has finite cohomological di-
mension, and each X(i) has finite cohomological dimension, then H0(X,−) extends
to

H0(X,−) :D(ShAb
X ) → Ab.

The identity (3.3.1.1) gives us the following explicit complex computing the
hypercohomology Hp(X,F) for F a complex of abelian sheaves on X . We may
form the Godement resolution F(i) → GF(i) of the complex F(i) for each i ∈ I.
As the Godement resolution is functorial, taking pointwise global sections gives the
functor GF : I → C(Ab). We may then form the homotopy limit holimI GF .

In case F is bounded below, holimI GF is a representative in C+(Ab) of the
object RH0(X,F) of D+(Ab). Similarly, if each X(i) has finite cohomological
dimension and I has finite cohomological dimension, then holimI GF is a represen-
tative in C(Ab) of the object RH0(X,F) of D(Ab) for general F . In particular,
we have the natural isomorphism

Hp(holim
I

GF) ∼= Hp(X,F).

Using the representative GF , the spectral sequence (3.1.2.1) gives us the spec-
tral sequence

Ep,q
2 = Hp(I, [i �→ Hq(X(i), S(i))]) =⇒ Hp+q(X,S)(3.3.1.2)

for S in D+(ShAb
X ), or in D(ShAb

X ) if the above hypotheses are satisfied.
If I is finite, one can also apply the distinguished triangle (3.2.9.1) to the

representative GF , giving the distinguished triangle in D(Ab)

(3.3.1.3) RH0(X,F) → RH0(X(i),F(i))⊕ RH0(X|I\{i},F|I\{i})
→ RH0(X i/,F i/) → RH0(X,F)[1],

for i ∈ I a minimal element.

3.4. Homotopy limits of simplicial sets

3.4.1. Homotopy limits. We recall some of the basic constructions and results of
[25]. For each n = 0, 1, 2, . . . , we have the simplicial set

∆n : ∆op → Sets

∆n(−) := Hom∆(−, [n]).

Sending n to ∆n thus gives the functor ∆∗ : ∆ → s.Sets. The category of simplicial
sets has the internal Hom defined by

Hom(X,Y ) := Homs.Sets(X ×∆∗, Y ) : ∆op → Sets,
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that is

Hom(X,Y )([n]) = Homs.Sets(X ×∆n, Y ),

and similarly for morphisms. If we have two functors X,Y : I → s.Sets we may
form the simplicial set HomI(X,Y ) similarly by

HomI(X,Y ) := Homs.SetsI (X × (−), Y ) : ∆op → Sets.

If X is a functor X : I → s.Sets, the homotopy limit of X over I is the simplicial
set holimI X := HomI(N (I/−), X). This gives the functor

holim
I

: s.SetsI → s.Sets.

The construction of §3.2.8 gives the similarly defined map

holim
J

f ◦ ι∗ : holim
I

X → holim
J

Y(3.4.1.1)

given functors ι : I → J , X : I → s.Sets, and Y : J → s.Sets, and natural transfor-
mation f :X ◦ ι→ Y .

3.4.2. Closed simplicial model categories. We refer the reader to [104] for the basic
notions of closed model categories and closed simplicial model categories. We will
not attempt to discuss these notions here; we only list the few basic concepts we
will have occasion to use.

There is the notion of a fibrant simplicial set (see e.g., [25, VIII, §3]). A
map X → Y of simplicial sets is a weak equivalence if the map on the geometric
realizations |X | → |Y | induces an isomorphism on all homotopy groups. An object
X of s.SetsI is defined to be fibrant if X(i) is fibrant for all i ∈ I, and a map
X → Y in s.SetsI is a weak equivalence if X(i) → Y (i) is a weak equivalence for
each i ∈ I (see [25, XI, §8, proof of Proposition 8.1]).

A simplicial abelian group is fibrant. If S is a simplicial set, then the singular
complex of the geometric realization of S, Sin(|S|), is fibrant and the canonical map
S → Sin(|S|) is a weak equivalence (see e.g., [25, VIII, §3]). As this construction
is functorial, the canonical map S → Sin(|S|) gives a canonical fibrant model for
S in s.SetsI as well.

If f :X → Y is a weak equivalence of fibrant objects in s.SetsI , then

holim
I

f : holim
I

X → holim
I

Y

is a weak equivalence of fibrant objects in s.Sets (see [25, V, 5.6]).

3.4.3. Homotopy and homology. We now relate the operation holimI for simplicial
sets to holimI for complexes of abelian groups. To distinguish these two, we some-
times denote the holim for complexes of abelian groups by holimAb. If I is finite and
A is a DG category, we sometimes denote the holim for a functor X : I → Z0Cb(A)
by holimAI, n.d.X .

Let S be a simplicial set and T a simplicial abelian group. The Dold-Kan
equivalence [39], [74], see also [95, Chapter V] of the homotopy category of sim-
plicial abelian groups, and the homotopy category of (cohomological) complexes of
abelian groups which are supported in degrees ≤ 0, gives the natural homotopy
equivalence of complexes

C∗(Hom(S, T )) ∼ τ≤0Hom(C∗(S; Z), C∗(T ))
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where Hom(C∗(S; Z), C∗(T )) is the internal Hom in the category C(Ab), and τ≤0

is the canonical truncation

[τ≤0C]p :=


Cp; if p < 0,

ker[C0 d0−→ C1]; if p = 0,
0; if p > 0.

Since the homotopy equivalence is natural, the analogous result extends to functors
S : I → s.Sets, T : I → s.Ab, i.e., there is a natural homotopy equivalence of
complexes

C∗(HomI(S, T )) ∼ τ≤0HomI(C∗(S; Z), C∗(T )).(3.4.3.1)

Thus, it follows from Lemma 3.2.6 and (3.4.3.1) that we have the homotopy
equivalence

C∗(holim
I

A) ∼ τ≤0
Ab

holim
I

C∗(A),(3.4.3.2)

for simplicial abelian groups A, natural in A.

3.4.4. Products. Let s.Sets∗ be the category of pointed simplicial sets, and let
X,Y : I → s.Sets∗ be functors. This gives us the functor X ∧ Y : I → s.Sets∗

with (X ∧ Y )(i) := X(i) ∧ Y (i).
Suppose we have a “multiplication”, i.e., a natural transformation µ :X ∧ Y →

Z. We give holimI X a base-point by taking the base-point in each X(i), and
similarly for holimI Y and holimI Z. Define the pointed map

holim
I

µ : holim
I

X ∧ holim
I

Y → holim
I

Z

by sending

f :N (I/−)×∆n → X ; g :N (I/−)×∆n → Y

to

µ ◦ (f ∧ g) ◦ ιN (I/−)×∆n :N (I/−)×∆n → Z,

where

ιN (I/−)×∆n :N (I/−)×∆n → (N (I/−)×∆n) ∧ (N (I/−)×∆n)

is the diagonal embedding.
If µ is associative (resp. commutative), so is holimI µ.
Now suppose we have functors A,B,C : I → Z0C∗(Ab) (where ∗ = + or

∗ = −, and I has finite cohomological dimension if ∗ = −), and a multiplication
µ :A ⊗ B → C, where (A ⊗ B)(i) := A(i) ⊗ B(i). Define the Alexander-Whitney
product

Ab

holim
I

µ :
Ab

holim
I

(A) ⊗
Ab

holim
I

(B) →
Ab

holim
I

(C)(3.4.4.1)

as follows: We have the maps fn,mn : [n] → [n + m] and fn,mm : [m] → [n + m] given

by fn,mn (i) = i and fn,mm (j) = n + j (see §1.2.1). Let σ := (i0
f1−→ . . .

fn+m−−−→ in+m)
be an n + m-simplex in N (I), giving the n-simplex

σ ◦ fn,mn := (i0
f1−→ . . .

fn−→ in)
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and the m-simplex

σ ◦ fn,mm := (in
fn+1−−−→ . . .

fn+m−−−→ in+m).

Given

f :=
∏

τ∈N ([n])
f(τ) ∈ A(τ); g :=

∏
ρ∈N ([m])

g(ρ) ∈ B(ρ),

let
Ab

holim
I

µ(f ⊗ g) :=
∏

σ∈N ([n+m])
µ(f(σ ◦ fn,mn )⊗ g(σ ◦ fn,mm )).

If we have a collection of multiplications µ which are associative, the relations
described in §1.2.1 show that holimAb

I µ is associative; if µ is commutative (with
respect to an involution on C), then holimAb

I µ is commutative up to functorial
homotopy. Taking µ :A⊗B → A⊗B to be the identity, we have the map

Ab

holim
I

µ :
Ab

holim
I

A⊗
Ab

holim
I

B →
Ab

holim
I

(A⊗B),

which is commutative (up to homotopy) with respect to the symmetry isomorphism
on A⊗B, and satisfies the obvious associativity condition.

Restricting to simplices in Nn.d.(I) gives a multiplication for holimAb
I, n.d., com-

patible with the multiplication for holimAb
I via the canonical inclusion

Ab

holim
I, n.d.

(−) →
Ab

holim
I

(−).

If I is finite, A a DG tensor category, A,B,C : I → Z0Cb(A) functors and
µ :A⊗B → C a multiplication, the same formula gives products

A
holim

I
µ :

A
holim

I
A⊗

A
holim

I
B →

A
holim

I
(C).

3.4.5. Comparison of products. Let g : [m + n] → [m] × [n] be an injective order-
preserving map. The map g determines an isomorphism

g̃ : {1, . . . ,m + n} → {1, . . . ,m}
∐
{1, . . . , n}

by sending i to g1(i) if g1(i) > g1(i − 1) and to g2(i) if g2(i) > g2(i − 1); define
sgn(g) to be the sign of the shuffle permutation determined by g̃. We then have
the triangulation of ∆m ×∆n,

∑
g sgn(g)g.

Suppose we have functors A,B,C : I → s.Ab and a bilinear map µ :A×B → C.
This then induces maps µ∧ :A ∧B → C and µ⊗ :A⊗B → C.

We have the Eilenberg-MacLane map

θA,B :C∗(A) ⊗ C∗(B) → C∗(A⊗B),

defined by sending σp ⊗ τq (σp ∈ A([p])(i), τq ∈ B([q])(i)) to∑
g=(g1,g2)

sgn(g)A(g1)(σp)⊗B(g2)(τq),

where g = (g1, g2) : [p+ q] → [p]× [q] runs over the injective, order-preserving maps.
This gives the map

C∗(µ) := C∗(µ⊗) ◦ θA,B :C∗(A) ⊗ C∗(B) → C∗(C).
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The map

holim
I

(µ∧) : holim
I

(A) ∧ holim
I

(B) → holim
I

(C)

descends to the product

holim
I

(µ∧) : holim
I

(A) ⊗ holim
I

(B) → holim
I

(C)

and the map C∗(µ) gives the product
Ab

holim
I

(C∗(µ)) :
Ab

holim
I

(C∗(A)) ⊗
Ab

holim
I

(C∗(B)) →
Ab

holim
I

(C∗(C)).

We may take complexes and apply the Eilenberg-MacLane map for holimI(µ∧),
giving the product (hA := holimI A, hB := holimI B)

C∗(holim
I

(µ∧)) ◦ θhA,hB :C∗(holim
I

(A)) ⊗ C∗(holim
I

(B)) → C∗(holim
I

(C)).

These two products are compatible, up to homotopy, via the homotopy equiva-
lence (3.4.3.2); this follows from the fact that the Eilenberg-MacLane map and
the Alexander-Whitney product (3.4.4.1) are homotopy inverses via a functorial
homotopy (see [95, Chapter VI]).

More precisely, let S and T be simplicial sets, A and B simplicial abelian
groups. The tensor structure on the category of complexes gives the natural map

Hom(C∗(S; Z), C∗(A)) ⊗Hom(C∗(T ; Z), C∗(B))

→ Hom(C∗(S; Z)⊗ C∗(T ; Z), C∗(A)⊗ C∗(B)).

We have the Alexander-Whitney map

C∗(S × T ; Z) → C∗(S; Z)⊗ C∗(T ; Z)

σn × τn �→
∑

p+q=n

S(fp,qp )(σ) ⊗ T (fp,qq )(τ);

σn ∈ S([n]), τn ∈ T ([n]).

This gives the product

Hom(C∗(S; Z), C∗(A)) ⊗Hom(C∗(T ; Z), C∗(B))

→ Hom(C∗(S × T ; Z), C∗(A)⊗ C∗(B)).

If S = T , we may pull-back by the diagonal, giving the product map

(3.4.5.1) Hom(C∗(S; Z), C∗(A)) ⊗Hom(C∗(S; Z), C∗(B))

→ Hom(C∗(S; Z), C∗(A)⊗ C∗(B));

as all the maps are natural, we have the similarly defined products for functors from
I to simplicial sets, resp. simplicial abelian groups. Via Lemma 3.2.6, this gives us
a product for the functor holimAb

I , which one checks is the product (3.4.4.1).
We have as well the simplicially defined product

Hom(S,A)×Hom(T,B) → Hom(S × T,A×B),

which descends to the product

Hom(S,A)⊗Hom(T,B) → Hom(S × T,A⊗B).

Taking S = T and pulling back by the diagonal gives the product

Hom(S,A)⊗Hom(S,B) → Hom(S,A⊗B).
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Using the Eilenberg-MacLane map, the Alexander-Whitney map, and the homotopy
equivalence (3.4.3.1), we have the product map

τ≤0Hom(C∗(S; Z), C∗(A)) ⊗ τ≤0Hom(C∗(S; Z), C∗(B))

→ τ≤0Hom(C∗(S; Z), C∗(A)⊗ C∗(B)).

One can then use an acyclic models argument to give a natural homotopy
between this latter product and the product map (3.4.5.1). Applying this to the
definitions of holimI and holimAb

I as Hom objects gives the desired compatibility.
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CHAPTER IV

Canonical Models for Cohomology

We review some basic material about Grothendieck sites and topoi, with the
construction of the cosimplicial Godement resolution and a description of its prop-
erties being the main goal.

1. Sheaves, sites, and topoi

1.1. Grothendieck topologies

We begin by recalling the notions of a Grothendieck pre-topology, a Grothendieck
site, and a topos.

1.1.1. Let C be a category. A Grothendieck pre-topology on C consists of giving,
for each object X of C, a collection of families of morphisms

Cov(X) := {{fα :Uα → X | α ∈ A}}

satisfying the following axioms:

1. If {fα :Uα → X | α ∈ A} is in Cov(X), and if Y → X is in C, then the fiber
product Uα ×X Y exists for each α ∈ A, and the family {p2 :Uα ×X Y →
Y | α ∈ A} is in Cov(Y )

2. If {fα :Uα → X | α ∈ A} is in Cov(X), and if {gβ :Vαβ → Uα | β ∈ Bα} is
in Cov(Uα) for each α ∈ A then {fα ◦ gβ :Vαβ → X | α ∈ A, β ∈ Bα} is in
Cov(X)

3. The identity map idX :X → X is in Cov(X).

The elements of Cov(X) are called the covering families of X .
A Grothendieck pre-topology generates a Grothendieck topology (see [4, II,

Chapter 1]); as we will not need the notion of a Grothendieck topology, we omit
its description, and by abuse of notation, refer to a category with a Grothendieck
pre-topology as a Grothendieck site.

1.1.1.1. Examples. (i) Let X be a topological space, and let C be the category
with objects the open subsets of X , and with maps U → V the inclusions U ⊂ V .
For U in C, a family {iα :Uα → U} is in Cov(U) if and only if the Uα cover U , i.e.,
U = ∪αUα. This forms the site Xtop. Let Top denote the category of topological
spaces, and define Cov(X) to be the set of families of maps {fα :Uα → X} which
are isomorphic over X to covering families of open subsets. This forms the site
Top.
(ii) Let X be a scheme, and let C be the category of étale maps of finite type
U → X (where a morphism is a commutative triangle). Define Cov(U) to be the
collection of families {fα :Uα → U} such that the map of underlying topological
spaces

∐
α fα :

∐
α Uα → U is surjective. This defines the site Xét. Using the same

481
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definition of Cov(X) for X a scheme gives the site Schét with underlying category
the category of noetherian schemes.

1.1.2. Presheaves and sheaves. Let (C,T) be a Grothendieck site. A presheaf on C,
with values in a category A, is simply a functor P : C → A; with morphisms of
presheaves being natural transformations, this forms the category of presheaves on
C with values in A.

A presheaf P with values in Sets is a sheaf for the topology T if, for each object
U of C, and each covering family {fα :Uα → U | α ∈ A} in Cov(U), the sequence
of sets

∅ → P (U)
Q

α P (fα)−−−−−−→
∏
α

P (Uα)
P (p1)−−−→−−−→
P (p2)

∏
α,β

P (Uα ×U Uβ)

is exact. More generally, a presheaf P with values in a category A is a sheaf if, for
each object A of A, the presheaf of sets PA, PA(X) := HomA(A,P (X)), is a sheaf
for the topology T. This forms the category ShA(C,T) of sheaves on C with values in
A as the full subcategory of the presheaf category.

We denote the category of presheaves of sets on C by Ĉ, the category of sheaves
of sets by C̃, and ι : C̃ → Ĉ the canonical inclusion. By [4, II, Théorème 3.4], ι has
the left adjoint η : Ĉ → C̃, the sheafification of a presheaf.

For an object X of C, we let X̂ denote the representing presheaf X̂(Y ) =
HomC(Y,X) and let X̃ be the sheafification X̃ := ηX̂ . Sending X to X̃ defines the
functor

σ : C → C̃.(1.1.2.1)

1.1.3. Example. If C is a category, one can form the finest topology on C for which
all the representable functors Y �→ HomC(Y,X) are sheaves. This is called the
canonical topology on the category C.

1.2. Hypercovers

1.2.1. The coskeleton. Let CT be a Grothendieck site, U := {fα :Uα → U | α ∈ A}
in Cov(U). One can then form the augmented simplicial object in C̃, Ũ∗ → Ũ , with

Ũn =
∐

(α0,... ,αn)∈An+1

˜Uα0 ×U . . .×U Uαn ,

and with the usual face and degeneracy maps. This generalizes to the notion of a
hypercover of a simplicial object of C̃. We will give here a brief sketch of this notion;
for more details, we refer the reader to [3, Chapter V].

For a category B, we have the category s.B of simplicial objects of B. We have
the full subcategory ∆≤n of ∆ with objects [0], . . . , [n], and the category s.≤nB of
n-truncated simplicial objects in B, i.e., the category of functors ∆≤nop → B. The
restriction to ∆≤nop defines the functor i∗n : s.B → s.≤nB. Assuming the existence of
finite projective limits in B, the functor i∗n admits the right adjoint in∗ : s.≤nB → s.B;
let coskn : s.B → s.B be the composition in∗ ◦ i∗n. The identity map on i∗n(X) defines
by adjunction the natural map cn :X → cosknX .

Now let F be an object in the sheaf category C̃, and take B to be the category
C̃/F of maps F ′ → F in C̃. A simplicial object in C̃/F is then just a simplicial
object of C̃, with augmentation to F .
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We have the canonical topology on C̃ (Example 1.1.3), with covering families
Covcan.

1.2.2. Definition. An object F∗ → F of s.C̃/F is a hypercover of F if for each n =
0, 1, . . . , the natural map cnn+1 :Fn+1 → (cosknF∗)n+1 is in Covcan((cosknF∗)n+1).

It follows from the compatibility of the functor coskn with projective limits
that, if F∗ → F is a hypercover of F , and if F ′ → F is a map in C̃, then the fiber
product F ′ ×F F∗ → F ′ is a hypercover of F ′.

1.2.3. Definition. Let f :F ′ → F be a morphism in C̃, F ′∗ → F ′ and F∗ → F
hypercovers. A morphism f∗ :F ′∗ → F∗ of hypercovers over f is a morphism in
s.C̃/F ′,

f∗ :F ′∗ → F ′ ×F F∗.

This defines the category of hypercovers in C̃.

Using the functor (1.1.2.1), we may define a hypercover of an object X of C
as an augmented simplicial object X∗ → X such that X̃∗ → X̃ is a hypercover of
X̃ in C̃; morphisms of hypercovers of objects of C are defined similarly, giving the
category of hypercovers in C.

1.3. Topoi and points

1.3.1. A topos is a category which is equivalent to the category C̃ for some Gro-
thendieck site (C,T). A morphism of topoi u :T1 → T2 is a triple consisting of
functors u∗ :T1 → T2, u∗ :T2 → T1, and a natural isomorphism

φ : HomT1(u∗(−),−) → HomT2(−, u∗(−)),

with the additional requirement that the functor u∗ is left-exact, i.e., preserves finite
projective limits. With the obvious notion of composition, topoi form a category.

If T is a topos, one can form the site Tcan by using the canonical topology
(Example 1.1.3). It is a theorem of Giraud that all sheaves of sets on Tcan are
representable (see [4, IV, Theorem 1.2]). From this, one shows that a morphism of
topoi u :T1 → T2 is determined by the functor u∗ :T2 → T1, and that conversely,
each functor u∗ :T2 → T1 which preserves finite projective limits and arbitrary
inductive limits comes from a morphism of topoi [4, IV, Corollary 1.7]. Also, finite
projective limits in a topos are representable.

With its unique topology, the one-point category forms a site, and the category
of sheaves on this site is the same as the category of presheaves, which in turn is
equivalent to the category of sets; thus the category Sets is a topos.

1.3.2. Definition. Let T be a topos. A point of a topos T is a morphism of topoi
p :Sets→ T We denote the category of points of T by Point(T ).

1.3.3. A fiber functor on T is a functor

F :T → Sets

which preserves finite projective limits and arbitrary inductive limits.

By §1.3.1, sending a point p of a topos T to the fiber functor p∗ on T defines
an equivalence of the category of points of T with the opposite of the category of
fiber functors on T .
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If p is a point of T , and X is an object (or morphism) of T , we often write Xp

for p∗(X), and φp for the fiber functor p∗; Xp is called the stalk of X at p.

1.3.4. Examples. (i) Suppose we have a topology (in the usual sense) on a set X ,
giving the site Xtop as in Example 1.1.1.1(i), and the category of sheaves on X ,
X̃top. Let p be a point of X . Sending a sheaf P to the stalk Pp,

Pp := lim→
p∈U

P (U),

defines the functor p∗ : X̃top → Sets. Sending a set S to the skyscraper sheaf at p

with stalk S defines the functor p∗ :Sets → X̃top; we have the obvious adjunction
isomorphism

φ : HomSets(p∗(−),−) → HomX̃top
(−, p∗(−)).

The triple (p∗, p∗, φ) then defines the morphism of topoi

p :Sets→ X̃top.

(ii) Let X be a finite type k-scheme (k a field), and let p : Spec k̄ → X be a geometric
point of X . Sending a sheaf P on X for the étale topology to the stalk

Pp := lim→
(U,u)→(X,p)

P (U),

where (U, u) → (X, p) is an étale pointed map of finite type k-schemes, and sending
a set S to the skyscraper sheaf at p with value S defines the point of X̃ét, p :Sets→
X̃ét

1.3.5. Definition. Let T be a topos. We say that T has enough points if there
is a set P of points of T such that a map f :P → P ′ is an isomorphism (resp.
monomorphism, resp. epimorphism) if and only if the maps fp :Pp → P ′p are
isomorphisms (resp. monomorphisms, resp. epimorphisms) for all p ∈ P . A set P
of points of T which satisfies the above condition is called a conservative family of
points of T . If CT is a Grothendieck site, we call a conservative family of points of
C̃T a conservative family of points of CT.

1.3.6. Remarks. (i) Let P be a set of points of a topos T . The collection of
morphisms p :Sets→ T for p ∈ P defines the morphism of topoi

i :
∐
p∈P

Sets→ T.

Then P forms a conservative family of points of T if and only if the functor∏
p∈P

p∗ :T →
∏
p∈P

Sets

is a conservative functor [4, I, 6.1.1].
(ii) Let X be a topological space. The set of points of X forms via Example 1.3.4(i)
a conservative family of points of X̃top.
(iii) Let X be a finite type k-scheme. The set of geometric points of X (maps
Spec k̄ → X up to k-isomorphism σ : Spec k̄ → Spec k̄) forms via Example 1.3.4(ii)
a conservative family of points of X̃ét.
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1.3.7. Points, neighborhoods and pro-objects. We recall some basic facts and notions
on points of a topos, their interpretation in terms of neighborhoods and pro-objects
in the underlying category of a site. For reference, see [4, IV, §6.8].

Let T be a topos, p :Sets → T a point of T , φp :T → Sets the corresponding
fiber functor. A neighborhood of p is a pair (X,u), with X an object of T , and
u ∈ Xp. A morphism (X,u) → (Y, v) of neighborhoods of p is defined to be a
morphism f :X → Y in T such that fp(u) = v. This defines the category V (p) of
neighborhoods of p, projection on the first factor determining a functor V (p) → T .

Since finite projective limits in T are representable, and the fiber functor φ
preserves finite projective limits, it follows that finite projective limits in V (p) are
representable, and the functor V (p) → T commutes with such limits. From this, it
follows that the opposite category V (p)op is filtering. In addition, for each object
F of T , there is a canonical isomorphism

φp(F ) = Fp
∼= lim→
(X,u)∈V (p)op

F (X).(1.3.7.1)

Now suppose that T = C̃ for a Grothendieck site C, let p be a point of C̃, and
X an object of C. We write Xp for X̃p, and similarly for morphisms. We let VC(p)
be the category of pairs (X,u) with X in C, and u ∈ Xp; morphisms are defined
as in V (p). The category VC(p)op is again filtering, and one has the isomorphism
analogous to (1.3.7.1)

φp(F ) = Fp
∼= lim→
(X,u)∈VC(p)

op
F (X).(1.3.7.2)

The projection on the first factor defines the functor VC(p) → C, and thus
defines a pro-object of C (a functor I → C, where Iop is filtering, and has a small,
cofinal subcategory). Conversely, if f : I → C is a pro-object of C, then f defines
a fiber functor via the formula (1.3.7.2) if and only if the following condition is
satisfied:

Let Y be in C, {gα :Yα → Y | α ∈ A} in Cov(Y ). Given an i0 ∈ I, and a
morphism f(i0) → Y in C, there is an i ∈ I, a morphism s : i → i0 in I, an
α ∈ A, and a commutative diagram

f(i) ��

��

f(s)

Yα

��

gα

f(i0) �� Y

in C.

(1.3.7.3)

Sending a point p of C̃ to the corresponding pro-object of C defines a fully
faithful embedding

iPoint : Point(C) → Pro-C

with essential image the full subcategory of pro-objects which satisfy the condition
(1.3.7.3).
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1.3.8. If F is a presheaf (of sets) on C, define

Fp := lim→
I

F (f(−)),

where f : I → C is the pro-object associated to p. We have as well the associated
sheaf F̃ ; the canonical map of presheaves gives the canonical map

Fp → F̃p.(1.3.8.1)

1.3.9. Lemma. The map (1.3.8.1) is an isomorphism.

Proof. Let X be in C, and let U := {fα :Uα → X} be in Cov(X). Define
LF (U) by the exactness of

∅ → LF (U) ��
∏

α F (Uα) ��
��

∏
α,β F (Uα ×X Uβ).

If X = f(i) for some i ∈ I, then, by the condition (1.3.7.3), there is a map t : j → i
in I, an α, and a map g : f(j) → Uα with f(t) = fα ◦ g.

Let LF (X) be the inductive limit of the LF (U), over the category Cov(X)
(with maps being refinements). From [4, II, Remarque 3.3], sending X to LF (X)
defines a presheaf on C; from the remark above, it follows that the natural map
Fp → LFp is an isomorphism. In addition, from [4, II, Théorème 3.4], the presheaf
LLF is the sheafification F̃ of F , whence the lemma.

1.3.10. Sheaves with additional structure. One can consider a somewhat more gen-
eral situation, replacing sheaves of sets with sheaves in a suitable category A.
Suppose for example A is defined as a category of sets “with structure of type
Σ”, given as the existence of certain operations satisfying certain axioms which are
described as various commutative diagrams, and suppose we have a morphism of
topoi u : C̃1 → C̃2, where C1 and C2 are sites, and C̃i are the categories of sheaves of
sets. As the functors u∗ and u∗ both preserve finite projective limits (in particular,
products), they will preserve the structure Σ defining A, and thus give functors
u∗A : ShAC2

→ ShAC1
and uA∗ : ShAC1

→ ShAC2
, which will still be adjoint functors. For

example, the functors u∗ and u∗ extend to functors on sheaves of abelian groups,
modules over a fixed ring R, and sets with G-action, for a fixed group G.

For a ring R, we write C̃R for the category of sheaves of R-modules.

2. Canonical resolutions

2.1. The cosimplicial Godement resolution

2.1.1. Let u = (u∗, u∗, φ) : T1 → T2 be a morphism of topoi. The adjunction
properties of u∗ and u∗ give rise to natural transformations

α : idT1 → u∗u
∗; β :u∗u∗ → idT2 .(2.1.1.1)

2.1.2. Lemma. The natural transformations (2.1.1.1) satisfy

1. (u∗ ◦ β) ◦ (α ◦ u∗) = id,
2. (β ◦ u∗) ◦ (u∗ ◦ α) = id.

Proof. Let X be an object of T1, and let A = u∗X and B = u∗u∗X . We have

α(u∗X) = φA,B(idB), β(X) = φ−1A,X(idA).
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By the naturality of φ, we have

u∗(β(X)) ◦ α(u∗(X)) = u∗(φ−1A,X(idA)) ◦ φA,B(idB)

= φA,X(φ−1A,X(idA)∗(idB))

= φA,X(φ−1A,X(idA))
= idA,

which proves (1). The identity (2) is similar, and is left to the reader.

Let Gn :T1 → T1 be the functor (u∗u∗)n+1. For each codegeneracy map
σni : [n] → [n− 1], i = 0, . . . , n− 1, let G(σni ) :Gn → Gn−1 be the natural transfor-
mation

u∗ ◦ (u∗u∗)i ◦ β ◦ (u∗u∗)n−i−1 ◦ u∗.
For each coface map δn−1i : [n− 1] → [n], i = 0, . . . , n, let G(δn−1i ) :Gn−1 → Gn be
the natural transformation

(u∗u∗)i ◦ α ◦ (u∗u∗)n−i.

The identities of Lemma 2.1.2 (together with the well-known presentation of ∆,
see e.g. [95, Chapter 1]) imply that functors Gn and the natural transformations
G(σni ) and G(δn−1i ) extend uniquely to the cosimplicial object

Gu : ∆ → Funct(T1, T1)

in the category of functors from T1 to itself. Similarly, the natural transformation
α gives the augmentation

ε1 : idT1 → Gu.(2.1.2.1)

Let X be a cosimplicial object in a category C, and Y a simplicial set. If C has
a final object ∗, and if finite products over ∗ exist, we may form the cosimplicial
object XY of C defined by x �→ X(x)Y (x) for x a morphism or an object of ∆. We
have the simplicial set [0, 1] := Hom∆(−, [1]), with maps i0, i1 : ∗ → [0, 1] induced by
the two inclusions δ00 , δ

0
1 : [0] → [1]. Recall that a homotopy of maps of cosimplicial

objects of C, f, g :X → Y , is given by a map h :X → Y [0,1], with i∗0h = f and
i∗1h = g. For example, we may take C to be the functor category Funct(T1, T2), so
we may speak of a homotopy equivalence of cosimplicial objects of Funct(T1, T2).

2.1.3. Proposition. Applying u∗ to the map (2.1.2.1) induces a homotopy equiv-
alence of cosimplicial objects in the functor category Funct(T1, T2)

ε2 :u∗ → u∗(Gu).(2.1.3.1)

Proof. Let ∆∗ be the category of order-preserving, pointed maps of the
pointed (with base-point ∗) ordered sets [n]∗ := {∗ < 0 < . . . < n}, n = −1, 0, 1, . . . .
The morphisms in ∆∗ are generated from ∆ by the addition of the codegeneracy
maps

σn−1 : [n]∗ → [n− 1]∗,

σn−1(i) :=

{
∗; if i = ∗, 0,
i− 1; if i > 0.

Sending [n] to [n]∗ embeds ∆ as a subcategory of ∆∗.
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Suppose we have a category C with a final object, and finite products over the
final object. Let X0

ε−→ X be an augmented cosimplicial object of C, and suppose
we have an extension of X to a functor X ∗ : ∆∗ → C with X ∗([−1]∗) = X0, and
ε = X ∗ ([−1]∗ ↪→ [0]∗). Then the map ε is a homotopy equivalence (where we
consider X0 as the constant cosimplicial object). Indeed, let πn : [n]∗ → [−1]∗ be
the unique map; then the maps X ∗(πn) :X([n]) → X0 give a splitting π to ε. In
addition, let

σn,j : {∗ < 0 < . . . < n} → {∗ < 0 < . . . < n}; j = 0, . . . , n + 1,

be the map

σn,j(i) :=

{
∗; for i < j,

i− j; for i ≥ j.

Letting pn,j : [n] → [1], j = 0, . . . , n + 1 be the map

pn,j(i) :=

{
0; for i < j,

1; for i ≥ j,

we have

Hom∆([n], [1]) = {pn,0, . . . , pn,n+1}.

Then sending X([n]) to X([n])[0,1]([n]) by the map X(σn,j) in the factor indexed by
pn,j gives a homotopy of ε ◦ π with idX , completing the verification of our claim.

We have the natural transformations

β ◦ (u∗u∗)n ◦ u∗ :u∗Gn → u∗Gn−1; n > 0

β ◦ u∗ :u∗G0 → u∗.

The identities of Lemma 2.1.2 imply these maps give an extension of the augmented
cosimplicial object (2.1.3.1) to a functor u∗G ∗ : ∆∗ → Funct(T1, T2). By the above
discussion, this shows that ε2 is a homotopy equivalence.

2.1.4. Let CT be a Grothendieck site, forming the topos of sheaves C̃. Suppose that
C̃ has a conservative family of points P . Let C̃δ be the discrete topos associated to
P :

C̃δ :=
∐
p∈P

Sets,

and let

i : C̃δ → C̃(2.1.4.1)

the morphism of topoi as in Remark 1.3.6(i).
For a commutative ring R, we have the category C̃R of sheaves of R-modules on

C, and the category C̃δR of sheaves (or presheaves) of R-modules on P . The functors
i∗ and i∗ induce adjoint functors

i∗ : C̃δR → C̃R; i∗ : C̃R → C̃δR.

We let ĈR denote the category of presheaves of R-modules on C.
We recall that a map f :S → T of simplicial sets is a weak equivalence if the map

|f | : |S| → |T | on the geometric realizations induced by f gives an isomorphism on
the homotopy groups (see [25] for details). We call a map f :S → T of cosimplicial
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R-modules a weak equivalence if f induces a quasi-isomorphism on the associated
complexes of R-modules.

2.1.5. Lemma. (i) The functor i∗ (both for sheaves of sets, and for sheaves of R-
modules) is left exact and preserves epimorphisms; the same holds as well for the
compositions

C̃δ i∗−→ C̃ ι−→ Ĉ,

C̃δR
i∗−→ C̃R ι−→ ĈR.

(ii) Let X∗ → X be an augmented simplicial object of C̃ such that (X∗)p → Xp is
a weak equivalence of simplicial sets for each p ∈ P . Then, for each object S of CδR,
the natural map of cosimplicial R-modules

HomC̃(X, i∗S) → HomC̃(X∗, i∗S)

is a weak equivalence, where we make HomC̃(−, i∗S) a functor to ModR via the
R-module structure on i∗S.
(iii) Let F1 → F2 be a monomorphism in C̃. Then, for each S in C̃δ, the induced
map of sets HomC̃(F2, i∗S) → HomC̃(F1, i∗S) is a surjection.

Proof. (i) The same proof works for sheaves of sets, and sheaves of R-modules;
to fix ideas, we work with sheaves of sets.

Both i∗ and ι, being right adjoints, preserve projective limits. As ι has the
left adjoint η (the sheafification functor), and the natural map E → ηιE is an
isomorphism for all sheaves E, it suffices to show that ιi∗ preserves epimorphisms.

For an object X of C, we have the sheafification X̃ of the representing presheaf
X̂, X̂(Y ) = HomC(Y,X). By the Yoneda lemma, for each presheaf S, we have the
natural isomorphism HomĈ(X̂, S) ∼= S(X).

Now suppose we have a surjection S1 → S2 in C̃δ. Then we have isomorphisms

(i∗Si)(X) ∼= HomĈ(X̂, ιi∗Si)
∼= HomC̃δ (i∗X̃, Si)

On the other hand, if S is a set, the functor HomSets(S,−) sends surjections to
surjections, hence the map (i∗S1)(X) → (i∗S2)(X) is surjective for all X , proving
(i).

For (ii), we have

HomC̃(X∗, i∗S) ∼= HomC̃δ (i∗X∗, S)(2.1.5.1)

=
∏
p∈P

HomSets((X∗)p, S(p)),

and similarly for HomC̃(X, i∗S). Now, if f :A → B is a weak equivalence of sim-
plicial sets, the induced map on the simplicial R-modules freely generated by A
and B, Rf :RA → RB, is a weak equivalence of simplicial R-modules, hence, as
the homotopy groups of a simplicial R-module are the same as the homology of
the associated complex [95, Chapter V], the map of associated complexes of free
R-modules, Rf∗ :RA∗ → RB∗, is a quasi-isomorphism. For an R-module M , we
have the isomorphisms of cosimplicial R-modules

HomSets(A,M) ∼= HomModR(RA,M); HomSets(B,M) ∼= HomModR(RB,M),
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hence, by the universal coefficient theorem, the map of cosimplicial R-modules
HomSets(B,M) → HomSets(A,M) is a weak equivalence. Applying these remarks
to the augmentation (X∗)p → Xp, we see that

HomSets((X∗)p, S(p)) → HomSets(Xp, S(p))

is a weak equivalence for all p ∈ P . Since taking products is an exact functor in
ModR, the identity (2.1.5.1) implies that

HomC̃(X, i∗S) → HomC̃(X∗, i∗S)

is a weak equivalence, proving (ii).
For (iii), we have the natural isomorphisms

HomC̃(Fj , i∗S) ∼= HomC̃δ(i∗Fj , S); j = 1, 2.

As the functor i∗ is exact, the map i∗F1 → i∗F2 is a monomorphism in C̃δ. As
monomorphisms in Sets are split, the map

HomC̃δ (i∗F2, S) → HomC̃δ(i∗F1, S)

is surjective.

2.2. Cohomology and cohomology with support

We describe how the Godement resolution gives a computation of sheaf cohomology.

2.2.1. We suppose that C̃ has a conservative family of points P , as in §2.1.4, giving
the morphism of topoi (2.1.4.1) i : C̃δ → C̃, and the Godement resolution G : C̃ →
c.s.C̃/C.

Let R be a commutative ring. The functor G then extends to the functor

GR : C̃R → c.s.C̃R/C̃R.(2.2.1.1)

For F in C̃R, we let F → G∗RF be the augmented cochain complex associated to
the augmented cosimplicial object F → GRF . This defines the functor

G∗R : C̃R → C+(C̃R).(2.2.1.2)

For F ∗ in C(C̃R), we have the presheaf X �→ Hp(F ∗(X)) on C; taking the
associated sheaf defines the cohomology sheaves Hp(F ∗). A map f :F ∗1 → F ∗2
is a quasi-isomorphism if f induces an isomorphism on the cohomology sheaves
Hp(F ∗j ) for all p. Form the derived category D∗(C̃R) (∗ a boundedness condition)
by localizing the homotopy category K∗(C̃R) with respect to quasi-isomorphisms.

For an object X of C, we have the functor

Γ(X,−) : C̃R →ModR
Γ(X,F ) := F (X).

This extends to the derived functor

RΓ(X,−) :D+(C̃R) → D+(ModR).

Since the restriction functor i∗X : C̃R → (C̃/X)R is exact, the cohomologyH∗(X,F|X)
is given by the cohomology of RΓ(X,F ).
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2.2.2. Lemma. (i) The augmentation id → G∗R induces a natural isomorphism id ∼=
H0(G∗R).
(ii) For all p > 0, Hp(G∗R(−)) = 0.
(iii) Let f :X → Y be a map in C. Then, for all p > 0, n ≥ 0, Hp(Y, f∗Gn

R(−)|X) =
0.
(iv) Let f :X → Y be a morphism in C. Let P be a projective R-module, P̃ the

associated constant sheaf on C, giving us the Hom-sheaf Hom(P̃|Y , f∗Gn
R(−)|X) on

Y . Then Hp(Y,Hom(P̃|Y , f∗Gn
R(−)|X)) = 0 for all p > 0, and the natural map

Hom(P̃|Y , f∗Gn
R(−)|X) → H0(Y,Hom(P̃|Y , f∗Gn

R(−)|X))

is an isomorphism.

Proof. To prove (i) and (ii), it follows from the exactness of the functor
i∗ : C̃R → C̃δR, and the fact that P is a conservative family, that H0(G∗R(F )) ∼= F
(resp. Hp(G∗RF ) = 0) if and only if H0(i∗G∗R(F )) ∼= i∗F (resp. Hp(i∗G∗RF ) = 0).
These latter two properties follow from Proposition 2.1.3.

For (iii), it follows from [3, V, Théorème 7.4.1] that, for a sheaf F on X with
values in ModR, the cohomology Hp(X,F ) can be computed as the inductive limit
of the cohomologies Hp(F (X∗)∗), where X∗ → X runs over hypercovers of X ,
where F (X∗)∗ is the cohomological complex associated to the cosimplicial object
in A:

n �→ F (Xn),

and the inductive limit is taken over the category of hypercovers of X . By [3,
V, Théorème 7.3.2(3)], a hypercover S∗ → S in Sets is a weak equivalence. In
addition, if u :T1 → T2 is a map of topoi, and F∗ → F is a hypercover in T2, then
u∗F∗ → u∗F is a hypercover in T1. Thus, from Lemma 2.1.5, if X∗ → X is a
hypercover of an object X in C, and F is a sheaf on C with values in ModR, the
map

Gn
R(F )(X) = HomC̃(X̃,Gn

F (F )) → HomC̃(X̃∗, G
n
R(F )) = Gn

R(F )(X∗)

is a weak equivalence. By the Dold-Kan equivalence of the homotopy category
of simplicial abelian groups with the homotopy category of complexes of abelian
groups [39], [74] this implies that Gn

R(X∗)∗ has no higher cohomology and the
map Gn

R(F )(X) → H0(Gn
R(F )(X∗)∗) is an isomorphism. Taking the limit over

hypercovers of X , we see that Hp(X,Gn
R(F )|X) = 0 for all p > 0.

If now f :X → Y is a map in C, and U → Y is an open for the topology on
C, it follows from the previous paragraph that Hp(X ×Y U,Gn

R(F )) = 0 for all
p > 0. In particular, the sheafification Rqf∗G

n
R(F )|X of the presheaf (U → Y ) �→

Hq(X×Y U,Gn
R(F )) is zero for all q > 0. Thus, the local to global spectral sequence

Ep,q
2 := Hp(Y,Rqf∗G

n
R(F )|X) =⇒ Hp+q(X,Gn

R(F )|X)

degenerates at E2, and gives the isomorphism

Hp(Y, f∗Gn
R(F )|X) ∼= Hp(X,Gn

R(F )|X).

As we have already seen that Hp(X,Gn
R(F )|X) = 0 for all p > 0, this proves (iii).

For (iv), let P̃Y denote the sheafification (on Y ) of the constant presheaf P .
We have the local to global spectral sequence

Ep,q
2 := Hp(Y,Extq(P̃Y , f∗G

n
R(F ))) =⇒ Extp+q(P̃ , f∗G

n
R(−)),
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where Extq(P̃Y , f∗G
n
R(F )) is the sheafification of the presheaf

U �→ ExtqR(P, f∗Gn
R(F )(U)).

Since P is projective, this spectral sequence degenerates at E2, and thus gives the
isomorphism

Hom(P̃Y , f∗G
n
R(−)) → H0(Y,Hom(P̃Y , f∗G

n
R(F ))).

We extend P̃Y to the constant sheaf P̃ on C. Since we have P̃p = P for all
p ∈ P (Lemma 1.3.9), we have the identity Hom(P̃ , F )p = HomR(P, Fp) for all
sheaves of R-modules F on C. Thus

Hom(P̃Y , f∗G
n
R(F )) ∼= f∗G

n
RHom(P̃ , F ),

hence the cohomology vanishing follows from (iii).

Let X be in C, and j :U → X a monomorphism in C. We write W := X \U as
a formal symbol, in analogy with the case in which j :U → X is the inclusion of a
subset U of a topological space X . If F is a sheaf of R-modules on X , one defines
the cohomology of F with support in W as the cohomology of the cone

Hp
W (X,F ) := Hp(cone

(
RΓ(X,F )

j∗−→ RΓ(U,F )
)
[−1]).

Suppose we have, for each X in C, a monomorphism jX :UX → X , such that, for
each morphism f :X → Y in C, the composition f ◦jX factors through jY :UY → Y .
Since jY is a monomorphism, there is a unique morphism fU :UX → UY making
the diagram

UX
��

jX

��

fU

X

��

f

UY
��

jY
Y

commute. This gives us functor j∗j
∗ : C̃R → C̃R defined by

j∗j
∗F|X = jX∗j

∗
X(F|X).

We have as well the natural map ρ(F ) :F → j∗j
∗F . For a sheaf of R-modules F

on C, let GW
R (F )∗ be defined as the kernel of ρ(GR(F )∗).

2.2.3. Lemma. Let X be in C, F in C̃R.
(i) The map j∗X :GR(F )∗(X) → GR(F )∗(UX) is degree-wise surjective.
(ii) The sequence

GW
R (F )∗(X) → GR(F )∗(X)

j∗X−→ GR(F )∗(UX)

canonically extends to a distinguished triangle in D+(ModR), isomorphic to the
sequence

cone(j∗X)[−1] → RΓ(X,F )
j∗X−→ RΓ(UX , F ) → cone(j∗X).

Proof. By Lemma 2.2.2, there is a natural isomorphism in D+(ModR),

GR(F )∗(X) → RΓ(X,F ),

so (ii) follows from (i). The assertion (i) follows from Lemma 2.1.5.
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2.2.4. Remark. The analogous result holds for a collection of projective systems
i �→ jX(i) :UX(i) → X of monomorphisms to X (functorial in X), by defining

GW
R (F )∗(X) → GR(F )∗(X)

j∗X−→ GR(F )∗(UX)

to be the inductive limit of the sequences

G
W (i)
R (F )∗(X) → GR(F )∗(X)

jX (i)
∗

−−−−→ GR(F )∗(UX(i)).

2.3. Multiplicative structure

2.3.1. We now assume that the category C has a final object ∗, and that products
over ∗ exist, giving the functor × : C × C → C. This gives C the structure of a
symmetric monoidal category, with unit ∗. It follows from the axioms for covers
that the topology on X × Y is finer than the product topology, for each pair of
objects X , Y of C.

The category C̃ has the final object e, the sheafification of the constant presheaf
with value the one-point set. As projective limits exist in C̃, the product over e
defines the operation × : C̃ × C̃ → C̃. Explicitly, (F × F ′)(X) = F (X)×F ′(X). We
have the similarly defined product in the presheaf category.

2.3.2. Lemma. Let X and Y be objects of C. There is a natural isomorphism

X̃ × Ỹ ∼= X̃ × Y .

Proof. By the universal property of the product over ∗, we have the natural
isomorphism X̂ × Ŷ ∼= X̂ × Y . As sheafification is compatible with products, this
gives the isomorphism X̃ × Ỹ ∼= X̃ × Y .

2.3.3. Multiplication of sheaves. We let C × C be the site with underlying category
C × C, and with the product pre-topology:

Cov((X,Y )) =

{{(Uα, Vβ)
(fα,gβ)−−−−→ (X,Y )} | {Uα → X} ∈ Cov(X), {Vβ → Y } ∈ Cov(Y )}

If we have sheaves F and F ′ on C, we form the sheaf p∗1F × p∗2F
′ on C × C with

p∗1F × p∗2F
′((X,Y )) = F (X) × F ′(Y ). If F ′′ is a third sheaf, a multiplication is a

natural transformation

µ : p∗1F × p∗2F
′ → F ′′ ◦ ×,

i.e., a collection of maps µX,Y :F (X)× F ′(Y ) → F ′′(X × Y ) which is natural with
respect to pairs of maps (f, g) : (X,Y ) → (X ′, Y ′). If F = F ′ = F ′′, we have the
notion of an associative, or commutative multiplication (see §1.2.2).

2.3.4. Lemma. Let

µ : p∗1F × p∗2F
′ → F ′′ ◦ ×

be a multiplication. Then there is a multiplication

G0µ : p∗1i∗i
∗F × p∗2i∗i

∗F ′ → i∗i
∗F ′′ ◦ ×
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which is compatible with µ via the natural transformation α, i.e., the diagram

p∗1i∗i
∗F × p∗2i∗i

∗F ′ ��
G0µ

i∗i
∗F ′′ ◦ ×

p∗1F × p∗2F
′ ��

µ

��

p∗
1α×p

∗
2α

F ′′ ◦ ×

��

α◦×(2.3.4.1)

commutes. In addition, G1µ := G0G0µ is compatible with σ0 := i∗βi
∗, i.e., the

diagram

p∗1G
1F × p∗2G

1F ′ ��
G1µ

��

p∗
1σ0×p∗

2σ0

G1F ′′ ◦ ×

��

σ0◦×

p∗1F × p∗2F
′ ��

µ F ′′ ◦ ×

(2.3.4.2)

commutes.

Proof. Let X and Y be in C, and take F and F ′ in C̃. Using the fact that i∗

preserves finite projective limits, together with Lemma 2.3.2, we have the natural
isomorphisms

i∗i
∗F (X)× i∗i

∗F ′(Y ) ∼= HomC̃(X̃, i∗i
∗F )×HomC̃(Ỹ , i∗i

∗F ′)
∼= HomC̃δ (i∗X̃, i∗F )×HomC̃δ(i∗Ỹ , i∗F ′)

=
∏
q∈P

HomSets(X̃q, Fq)×
∏
q∈P

HomSets(Ỹq, F ′q),
(2.3.4.3)

i∗i
∗(F ′′)(X × Y ) ∼= HomC̃(X̃ × Y , i∗i

∗F ′′)

∼= HomC̃δ (i∗X̃ × Y , i∗F ′′)
∼= HomC̃δ (i∗X̃ × i∗Ỹ , i∗F ′′))

=
∏
p∈P

HomSets(X̃p × Ỹp, F
′′
p ).

(2.3.4.4)

Let p be in P , and let Up : Ip → C be the corresponding pro-object of C as
described in §1.3.7. Take

(s̄, t̄) ∈ X̃p × Ỹp,

and

(f, g) ∈
∏
q∈P

HomSets(X̃q, Fq)×
∏
q∈P

HomSets(Ỹq, F ′q).

Taking the p-component (fp, gp) of f and g, we may evaluate at (s̄, t̄), giving
(fp(s̄), gp(t̄)) ∈ Fp × F ′p. Since X̃p and Ỹp are given as the inductive limits

X̃p = lim→
j∈Ip

X̃(Up(j)); Ỹp = lim→
j∈Ip

Ỹ (Up(j)),

we may lift (s̄, t̄) to

(s, t) ∈ X̃(Up(j))× Ỹ (Up(j)) = X̃ × Y (Up(j)).
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Increasing j if necessary, this gives the lifting of (fp(s̄), gp(t̄)) to

˜(fp(s̄), gp(t̄)) ∈ F (Up(j))× F ′(Up(j)) = (p∗1F × p∗2F
′)(Up(j)× Up(j)).

Composing with µUp(j),Up(j), and pulling back by the diagonal

∆Up(j) :Up(j) → Up(j)× Up(j)

gives

(F ′′(∆Up(j)) ◦ µUp(j),Up(j))( ˜(fp(s̄), gp(t̄))) ∈ F ′′(Up(j)).(2.3.4.5)

We then define µp(fp(s̄), gp(t̄)) in F ′′p to be the image of (2.3.4.5) in F ′′p .
It is easy to check that µp(fp(s̄), gp(t̄)) is independent of the choices made;

taking the product over all p ∈ P gives the map∏
p

µp :
∏
q∈P

HomSets(X̃q, Fq)×
∏
q∈P

HomSets(Ỹq, F ′q) →
∏
p∈P

HomSets(X̃p × Ỹp, F
′′
p ).

It is easy to check that
∏

p µp is natural in X and Y , giving via the isomorphisms
(2.3.4.3) and (2.3.4.4) the desired multiplication

G0µ : p∗1i∗i
∗F × p∗2i∗i

∗F ′ → i∗i
∗F ′′ ◦ ×.

To check the commutativity of the diagram (2.3.4.1), take

s ∈ F (X) = HomC̃(X̃, F ); t ∈ F ′(Y ) = HomC̃(Ỹ , F ′).

For f ∈ X̃ × Y (U), let fX ∈ X̃(U), fY ∈ Ỹ (U) be the images of f under the
projections X̃ × Y → X̃ and X̃ × Y → Ỹ . This gives fX × fY ∈ X̃ × Y (U × U);
then ∆∗U (fX × fY ) = f ∈ X̃ × Y (U). From this, it follows that

µX,Y (s, t)(f) = ∆∗U (µU,U (s(U)(fX), t(U)(fY ))).

In addition, if S is a sheaf, and v ∈ S(V ) for some object V of C, then the section
α(v) ∈ i∗i

∗S(V ) is given, via the isomorphism

i∗i
∗S(V ) ∼=

∏
p∈P

HomSets(Ṽp, Sp),

as the product over p of the system of induced maps

i �→ vp(i) : Ṽ (Up(i)) → S(Up(i)).

Putting these two identifications together gives the commutativity of the diagram
(2.3.4.1).

To check the commutativity of the diagram (2.3.4.2), first let S be a sheaf on
Cδ, S =

∐
p∈P Sp. Then

i∗i∗S =
∐
q∈P

(i∗i∗S)q.
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The natural transformation β is given by the sequence of identifications and natural
maps

(i∗i∗S)q = lim→
j∈Iq

i∗S(Uq(j))

= lim→
j∈Iq

∏
p∈P

HomSets(Ũq(j)p, Sp)

→ lim→
j∈Iq

HomSets(Ũq(j)q, Sq)

= lim→
j∈Iq

HomSets(lim→
i∈Iq

Ũq(j)(Uq(i)), Sq)

→ lim→
j∈Iq

HomSets(lim→
i∈Iq

HomC(Uq(i), Uq(j)), Sq)

= lim→
j∈Iq

HomSets( lim→
i→j∈Iq/j

HomC(Uq(i), Uq(j)), Sq)

evi→j−−−−→ Sq,

where the map evi→j is the map which evaluates an element in the HomSets at the
map Uq(i) → Uq(j) induced by the structure map i → j. Using this identification
of β, the commutativity of (2.3.4.2) follows by a sequence of identifications similar
to the proof of the commutativity of (2.3.4.1).

2.3.5. Proposition. Let F , F ′ and F ′′ be sheaves on C, with a multiplication
µ : p∗1F × p∗2F

′ → F ′′ ◦ ×. Then there is a multiplication of cosimplicial sheaves
Gµ : p∗1G(F )× p∗2G(F ′) → G(F ′′) ◦ ×

which is natural in µ, and is compatible with µ via the augmentations

p∗1α× p∗2α : p∗1F × p∗2F
′ → p∗1G(F ) × p∗2G(F ′),

α :F ′′ → GF ′′.

If F = F ′ = F ′′, and µ is associative and commutative, then Gµ is also associative
and commutative.

Proof. The multiplication Gµ on the cosimplices of degree n is gotten by
iterating the transformation µ �→ G0µ of Lemma 2.3.4 n times. That this de-
fines a map of cosimplicial sets follows directly from the commutative diagrams in
Lemma 2.3.4. The commutativity and associativity of Gµ follow easily from the
explicit description of G0µ.

2.3.6. If F and G are in C̃R, we form the sheaf p∗1F ⊗R p∗2G on C × C by taking
the sheafification of the presheaf (X,Y ) �→ F (X) ⊗R G(Y ). This extends to the
operation

p∗1(−)⊗R p∗2(−) :C+(C̃R)⊗C+(C̃R) → C+(C̃ × CR).

Given sheaves of R-modules F , F ′ and F ′′, a multiplication is a map µ : p∗1F ⊗R

p∗2F
′ → F ′′ ◦ ×; we have the similar notion for complexes of sheaves. We have the

following analog of Proposition 2.3.5.

2.3.7. Proposition. Let F , F ′ and F ′′ be sheaves of R-modules on C, (resp.,
complexes of sheaves of R-modules) with a multiplication µ : p∗1F⊗Rp

∗
2F
′ → F ′′◦×.
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There is a multiplication of cosimplicial sheaves of R-modules, (resp. cosimplicial
C(ModR)-valued sheaves)

G⊗µ : p∗1G(F )⊗R p∗2G(F ′) → G(F ′′) ◦ ×

which is natural in µ, and is compatible with µ via the augmentations

p∗1α⊗R p∗2α : p∗1F ⊗R p∗2F
′ → p∗1G(F )⊗R p∗2G(F ′),

α ◦ × :F ′′ ◦ × → GF ′′ ◦ ×.

If F = F ′ = F ′′, and µ is associative and commutative, then G⊗µ is also associative
and commutative.

Proof. The case of complexes of sheaves of R-modules follows directly from
case of sheaves of R-modules. In this case, the multiplication of sheaves of R-
modules determines the multiplication µ0 : p∗1F × p∗2F

′ → F ′′ ◦ × of sheaves of sets
by composing µ with the natural transformation ⊗F,F ′. One sees directly from the
definition of the multiplication Gµ that, if F F ′ and F ′′ are sheaves of R-modules,
then the multiplications Gnµ0 are R-bilinear, giving the multiplications

Gn
⊗µ : p∗1G

n(F )⊗R p∗2G
n(F ′) → Gn(F ′′) ◦ ×

by the universal mapping property of ⊗R. That the maps Gn
⊗µ define a map of

augmented cosimplicial objects follows from Proposition 2.3.5 and the uniqueness
in the universal mapping property of ⊗R. The remainder of the assertions follow
from Proposition 2.3.5 and the commutativity and associativity properties of the
natural transformation ⊗∗∗.

2.4. Flatness

Fix a commutative ring R, and a Grothendieck site C. We call a sheaf of R-modules
F flat if the functor (−)⊗R F : C̃R → C̃R is exact; we call a complex C∗ of sheaves
of R-modules flat if Cn is flat for each n.

We proceed to give a criterion for the Godement resolution of a flat sheaf to be
flat.

2.4.1. Lemma. Let p be a point of C̃, F and F ′ in C̃R. Then (F⊗RF
′)p is canonically

isomorphic to the R-module Fp ⊗R F ′p.

Proof. The sheaf F ⊗R F ′ is the sheaf associated to the presheaf X �→
F (X) ⊗R F ′(X). Let f : I → C be the pro-object corresponding to the point p
(see §1.3.7). Then, by Lemma 1.3.9, we have the canonical isomorphism

lim→
i∈I

F (f(i))⊗R F ′(f(i)) ∼= (F ⊗R F ′)p.

As

Fp = lim→
i∈I

F (f(i)); F ′p = lim→
i∈I

F ′(f(i)),

and as tensor products commute with filtered inductive limits, we have the canonical
isomorphism Fp ⊗R F ′p

∼= (F ⊗R F ′)p.

2.4.2. Lemma. Suppose that C̃ has a conservative family of points P . Then a sheaf
F of R-modules is flat if and only if Fp is a flat R-module for all p ∈ P .
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Proof. Let

i : C̃δ :=
∐
p∈P

Sets→ C̃

be the morphism of topoi associated to the family of points P (§2.1.4), giving us
the functor

i∗ : C̃R →
∏
p∈P

ModR,

and the right adjoint to i∗,

i∗ :
∏
p∈P

ModR → C̃R.

If Fp is flat for all p ∈ P , then, as i∗ is conservative, it follows from Lemma 2.4.1
that F is flat. For the converse, let X be in C, and S =

∐
p Sp an object of C̃δ. For

X in C, we have

i∗S(X) ∼= HomC̃(X̃, i∗S)
∼= HomC̃δ(i∗X̃, S)

=
∏
p

HomSets(X̃p, Sp).

Thus, if we take Sq to be the one-point set for all q �= p, we have

i∗S(X) = HomSets(X̃p, Sp).(2.4.2.1)

If now F is flat, take an injective map of R-modules 0 → N →M , and let

0 → N δ →M δ

be the sequence of objects of C̃δ which is the sequence 0 → N →M at p, and zero
at all q �= p. Then, as i∗ is left-exact, we have the exact sequence in C̃R,

0 → i∗N
δ → i∗M

δ,

from which we have the exact sequence of R-modules

0 → (i∗N δ)p ⊗R Fp → (i∗M δ)p ⊗R Fp,

using the flatness of F and Lemma 2.4.1.
Let f : I → C be the pro-object associated to the point p. This gives us the

pro-object fp : I → Sets by fp(i) := f̃(i)p. Let

T := lim←
I

fp.

Since I is filtering, T is non-empty, indeed, for each i ∈ I, the category of objects
over i is non-empty. The collection of maps f(j) → f(i) for j → i a map in I thus
gives a canonical element in f̃(i)p, natural in i.

Pick an element t ∈ T . From (2.4.2.1), the projection of HomSets(f̃(i)p, N)

onto the factor N corresponding to the image of t in f̃(i)p defines a splitting to the
natural map N → (i∗N δ)p, and similarly for M . Thus, the sequence

0 → N →M

is a direct summand of the sequence

0 → (i∗N δ)p → (i∗M δ)p,
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from which it follows that

0 → N ⊗R Fp →M ⊗R Fp

is injective, i.e., that Fp is a flat R-module.

2.4.3. Proposition. Let P be a conservative family of points for C̃, and let F be
a flat sheaf of R-modules on C. Suppose that R satisfies the following property: A
product of flat R module is flat. Then for each n, and each X in C, GnF (X) is a
flat R-module. In addition the sheaf GnF is a flat sheaf on C.

Proof. As a filtered inductive limit of flat R-modules is flat, the second as-
sertion follows from the first, Lemma 2.4.2, and the description of the stalks of a
sheaf as an inductive limit. For the first assertion, by the inductive nature of the
definition of the sheaves GnF , it suffices to prove the case n = 0.

We have the canonical isomorphism, as in the proof of Lemma 2.4.2,

G0F (X) := i∗i
∗F (X) ∼=

∏
p∈P

HomSets(X̃p, Fp)

∼=
∏
p∈P

∏
x∈Xp

Fp.

By Lemma 2.4.2, each Fp is a flat R-module, so the flatness of G0F (X) results from
our hypothesis on R.

2.4.4. Remark. If R is noetherian, then the hypothesis on R in Proposition 2.4.3
is satisfied. Indeed, let {Mα | α ∈ A} be a set of flat R-modules, and let M :=∏

α∈AMα. Then M is flat.

Proof. It suffices to check that the functor −⊗R M is exact on the full sub-
category of finitely generated R modules. Let

Ra → Rb → N → 0

be a presentation of a finitely generated R-module N , with a and b finite. We have
the canonical isomorphism

Rs ⊗R M ∼=
s∏

i=1

∏
α

Mα

∼=
∏
α

s∏
i=1

Mα

∼=
∏
α

Rs ⊗R Mα

for all finite s, giving the presentation∏
α

Ra ⊗R Mα →
∏
α

Rb ⊗R Mα → N ⊗R M → 0

of N ⊗R M . Thus we have the natural isomorphism

N ⊗R M ∼=
∏
α

N ⊗Mα.

The result follows from the fact that the operation of taking products is exact in
ModR.
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de M. Raynaud. Lecture Notes in Mathematics, Vol. 224. Springer-Verlag, Berlin-New York,

1971. xxii+447 pp. MR 50:7129
[6] Atiyah, M. F.; Tall, D. O. Group representations, λ-rings and the J-homomorphism. Topology

8 (1969) 253–297. MR 39:5702
[7] Bass, H.; Tate, J. The Milnor ring of a global field. Algebraic K-theory, II: “Classical”

algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle
Memorial Inst., 1972), pp. 349–446. Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.
MR 56:449

[8] Baum, Paul; Fulton, William; MacPherson, Robert. Riemann-Roch for singular varieties.

Inst. Hautes Études Sci. Publ. Math. No. 45 (1975), 101–145. MR 54:317

[9] Beilinson, A.A. Polylogarithm and cyclotomic elements. Preprint (1989).
[10] Beilinson, A. A. Height pairing between algebraic cycles. K-theory, arithmetic and geometry

(Moscow, 1984–1986), 1–25, Lecture Notes in Math., Vol. 1289, Springer, Berlin-New York,
1987. MR 89h:11027

[11] Beilinson, A. A. Notes on absolute Hodge cohomology. Applications of algebraic K-theory
to algebraic geometry and number theory, Part I (Boulder, Colo., 1983), 35–68, Contemp.
Math., 55, Amer. Math. Soc., Providence, R.I., 1986. MR 87m:14019

[12] Beilinson, A. A. Higher regulators and values of L-functions. Current problems in mathemat-
ics, Vol. 24, 181–238, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i
Tekhn. Inform., Moscow, 1984. MR 86h:11103

[13] Beilinson, A.A.; Deligne, Pierre. Interprétation motivique de la conjecture de Zagier reliant
polylogarithmes et régulateurs. Motives (Seattle, WA, 1991), 97–121, Proc. Sympos. Pure
Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994. MR 95a:19008

[14] Beilinson, A. A.; Goncharov, A. B.; Schechtman, V. V.; Varchenko, A. N. Aomoto diloga-
rithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane.
The Grothendieck Festschrift, Vol. I, 135–172, Progr. Math., 86, Birkhäuser Boston, Boston,
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[47] Gillet, Henri; Soulé, Christophe. Descent, motives and K-theory. J. Reine Angew. Math. 478
(1996), 127–176.
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